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Preface

Optimal control theory is a discipline that has its historical origin in the calculus
of variations, dating back to the formulation of Johann Bernoulli’s brachistochrone
problem more than 300 years ago. It developed into a field of its own in the 1960s in
connection with the development of space exploration. In fact, it was the engineering
problem of launching a satellite into a sustained orbit—Sputnik—that generated the
activities in the Soviet Union that led to the early developments of the theory. This
theory provides techniques to analyze far-reaching problems in various fields of
science, engineering, economics, and more recently also biomedicine. Generally, in
these problems the underlying task is to transfer the state of a dynamical system
from a given initial position into a desired terminal condition, e.g., deploy a satellite
into a prescribed orbit; guide a spacecraft to some remote planet, possibly even
making a soft landing (Mars rover); perform tasks using robotic manipulators;
achieve positions of wealth in economic endeavors through investment decisions;
eliminate, if possible, cancer cells from our body or infected cells from a biological
host; and so on, with the number of realistic examples limitless. All these problems
have in common that the dynamics of the system can be influenced (“controlled”)
by means of some external variable, e.g., the fuel burned inside a rocket to generate
thrust, the allocation of economic resources between consumption and investment,
the amounts of therapeutic agents given to treat cancer. Naturally, there always
exist practical constraints that are imposed by a particular situation—the amount
of fuel that a rocket can carry is limited, drugs cannot be given without careful
consideration of their side effects, and so on. Still, and within the physical and other
limits imposed by a particular situation, generally there exists tremendous freedom
in the choice of the controls over time to achieve a desired objective. This leads
to optimization problems. Sometimes, problems are naturally associated with an
objective function to be minimized or maximized; in other instances, there is no
such choice, and imposing a criterion may simply be a means to generate procedures
(i.e., through necessary conditions for optimality) that allow one to come up with a
reasonable solution to the underlying problem. The problem of transferring the state
of a dynamical system from a given initial condition into a set of desired terminal
conditions, while at the same time minimizing some objective associated with the
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viii Preface

motion, and possibly a penalty on the terminal state, thus is a most natural one.
These belong to the general type of problems that are analyzed with the tools and
techniques of optimal control theory.

More precisely, the kinds of problems that will be considered in this text are
finite-dimensional deterministic optimal control problems. These are characterized
by the fact that the time evolution of the underlying dynamical system is described
by solutions to ordinary differential equations (“finite-dimensional”) as opposed to
partial differential equations (“infinite-dimensional”), and stochastic effects related
to noise and other modeling perturbations associated with random effects are not
included in the modeling (“deterministic”). Clearly, these are important aspects as
well. However, methods that deal with these structures are of a very different type
and are well represented in the literature. The problems we are analyzing here are
among the most classical ones in mathematics and physics and have their origin
in the calculus of variations. In fact, a calculus of variation problem simply is a
special optimal control problem with a trivial dynamics (given by the derivative of
the curve) and no constraints imposed on the control. While such constraints are
important in practical problems, these do not, from our point of view, constitute the
main difference between problems in the calculus of variations and optimal control
problems. Rather, it is the presence of a nontrivial and typically nonlinear dynamics
that connects the controls and states. For this reason, optimal control problems
become much more difficult than mere extensions of optimization problems from a
finite- to an infinite-dimensional setting. While there has been tremendous progress
in numerical methods in optimal control over the past fifteen years that has led to
the solutions of some specific and very difficult problems—the design of optimal
controls by NASA for the positioning of the international space station using gyros
with pseudospectral techniques or the experimental design of highly complicated
pulse sequences in nuclear magnetic resonance (NMR) spectroscopy, to mention
just two of the outstanding achievements—there still do not exist reliable numerical
procedures that could simply be applied to any optimal control problem and give the
solution. Specific methods, such as pseudospectral techniques, shooting methods,
and arc parameterization techniques, have their strengths and shortcomings, simply
because there exists far too great a variety in the dynamics. Nonlinear systems defy
simple classifications, and from the practical side, problems often have to be solved
on a case-by-case basis.

Yet, there does exist a common framework that can be used to tackle these
problems, and it is this framework that we describe in our text. We give a
comprehensive treatment of the fundamental necessary and sufficient conditions for
optimality and illustrate how these can be used to solve optimal control problems.
Our emphasis is on the geometric aspects of the theory, and in this context, we also
provide tools and techniques that go well beyond standard conditions (including
a comprehensive treatment of envelopes and singularities in the flow of extremals
as well as a Lie-algebra-based framework for explicit computations in canonical
coordinates) and can be used to obtain a full understanding of the global structure
of solutions for the underlying problem, not just an isolated numerical computation
for specific parameter values. We include a palette of examples that are worked
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out in detail and range from classical to novel and from elementary to the highly
nontrivial. All these examples, in one way or another, illustrate the power of
geometric techniques and methods.

The text is quite versatile and contains material on different levels ranging
from the introductory and elementary to the quite advanced. In this sense, some
parts of our text can be viewed as a comprehensive textbook for both advanced
undergraduate and all levels of graduate courses on optimal control in both
mathematics and engineering departments. In fact, this text grew out of lecture
notes of the authors for courses taught at the Departments of Systems Science and
Mathematics and Electrical and Systems Engineering in the School of Engineering
and Applied Science at Washington University in St. Louis and the Department of
Mathematics and Statistics and various engineering departments at Southern Illinois
University Edwardsville. The variety of fully solved examples that illustrate the
theory, rarely present to this extent in more advanced textbooks and monographs in
this field, makes this text a strong educational asset. The text moves smoothly from
the more introductory topics to those parts that are in a monograph style where more
advanced topics are presented. While this presentation is mathematically rigorous,
it is carried out in a tutorial style that makes the text accessible to a wide audience
of researchers and students from various fields, not just the mathematical sciences
and engineering. In a sequel, in which applications of geometric optimal control
to biomedical problems will be analyzed, the tools and techniques developed in
this text will be used to solve various optimal control problems that arise in cancer
treatments that range from classical procedures such as chemo- and radiotherapy to
novel approaches that include antiangiogenic agents and immunotherapy.

We are greatly indebted to not only our teachers who have influenced our views
on the subject, especially to our doctoral advisors, Hector Sussmann and Stanislaw
Walczak, but also to H.W. Knobloch, who introduced the first author to the fields
of differential equations and optimal control. This book would not have come into
existence without the guiding influence and passion for the subject instilled in us by
our mentor and good friend Hector Sussmann, who introduced us to the beauty of
the geometric approach to optimal control. Many professional colleagues have been
instrumental in our academic careers, and we would like to take the opportunity
to thank some of them, in particular E. Roxin, A. Nowakowski, A. Krener, V.
Lakshmikantham, and T.J. Tarn. Especially we would like to acknowledge the late
J. Zaborszky, a true engineer who appreciated mathematics, but always insisted
on a practical connection. Thanks are also due to all our students who at one
stage or another have contributed to the writing of this text. We also would like
to thank our universities, Washington University in St. Louis and Southern Illinois
University Edwardsville, and the National Science Foundation, which has supported
our research at various stages for by now over 20 years. Finally, we would like
to thank David Kramer, who so carefully read our text, and all the editors at
Springer, especially Achi Dosanjh and Donna Chernyk, who have been very helpful
throughout the entire production process.

Edwardsville, Illinois, USA Heinz Schättler
Urszula Ledzewicz



Outline of the Chapters of the Text

Below we give a brief outline of the chapters that can serve as a road map for the
scientific journey through our text.

Chapter 1 introduces the fundamental results of the calculus of variations
organized around complete solutions of two cornerstone classical examples: the
brachistochrone problem and the problem of surfaces of revolution of minimum
area. The ideas and concepts presented in this chapter serve both as an introduction
to and as a motivation for the corresponding notions in optimal control theory to be
discussed in subsequent chapters.

The Pontryagin maximum principle, which gives the fundamental necessary
conditions for optimality in optimal control problems, will be introduced in Chap. 2
with the focus on illustrating how this result can be used to solve problems. To this
end, we introduce important Lie-derivative-based techniques that form the basis
for geometric optimal control and use them to give a detailed derivation of H.
Sussmann’s results on the structure of time-optimal controls for nonlinear control-
affine systems in the plane. These results serve as a first illustration of the power
of geometric methods that go well beyond the conditions of the maximum principle
and lead to deep results about the structure of optimal solutions.

While the emphasis of our text is on methods for nonlinear systems, in Chaps. 2
and 3 we also give some of the classical results about linear time-invariant systems.
They include a proof of the convexity of the reachable sets and two formulations of
the celebrated bang-bang theorem.

In Chap. 4 we then prove the Pontryagin maximum principle. Necessary con-
ditions for optimality follow from separation results about convex cones that
approximate the reachable set and the set of points where the objective decreases,
respectively. These constructions equally apply to the classical needle variations
used by Pontryagin et al. and to high-order variations. Specific variations will be
made to prove the Legendre–Clebsch condition, the Kelley condition, and the Goh
condition for optimality of singular controls. For this, an adequate computational
framework is needed that is provided by exponential representations of solutions
to differential equations and the associated Lie-algebraic formalism related to the
Baker–Campbell–Hausdorff formula.

xi



xii Outline of the Chapters of the Text

Chapters 5 and 6 then deal with sufficient conditions for optimality, both local
and global. In Chap. 5 we introduce parameterized families of extremals, i.e., collec-
tions of controlled trajectories that satisfy the conditions of the maximum principle.
Throughout the text, we emphasize the role they play in the construction of solutions
to the Hamilton–Jacobi–Bellman equation, a first-order partial differential equation
coupled with the solution of a minimization problem for the controls that describe
the minimum value of the optimal control problem as a function of the initial data.
We adapt the method of characteristics, a classical solution procedure for first-order
partial differential equations, to the optimal control setting and use it to construct the
value function associated with a parameterized family of extremals. For example,
in this way we give an elementary proof of the optimality of the synthesis for the
Fuller problem for which optimal solutions consist of chattering arcs whose controls
switch infinitely often on finite intervals. These geometric constructions provide the
generalization of the concept of a field of extremals from the calculus of variations to
optimal control theory and clearly bring out the relationships between the necessary
conditions of the maximum principle and the sufficient conditions of the dynamic
programming principle.

While the results in Chap. 5 have a mostly local character and are all developed
in the context of continuous controls, in Chap. 6 we extend the constructions
to broken extremals that are finite concatenations of bang and singular controls.
Geometric transversality and matching conditions will be developed that allow
us to investigate the optimality of the flow of extremals as various patches are
combined. The main result of this chapter is a verification theorem due to H.
Sussmann that implies the optimality of a synthesis of controlled trajectories if
the associated value function satisfies some weak continuity properties and is
a continuously differentiable solution of the Hamilton–Jacobi–Bellman equation
away from a locally finite union of embedded submanifolds of positive codimension.
The results that will be developed in Chaps. 5 and 6 precisely lead to these piecewise
differentiability properties. It is not required that the value function be continuous.

Chapter 7 concludes our text with illustrating how these techniques can also be
used in low dimensions to determine small-time reachable sets exactly. This also
provides an alternative geometric viewpoint to the results on time-optimal control
for nonlinear systems in the plane that were derived in Chap. 2. The material in this
chapter has never been presented before in book form. Bits and pieces are available
in the research literature, and here these approaches are unified, and for the first time
an accessible account of this subject is given.

Throughout our presentation, the text is as much self-contained as possible, and
we do include more technical and difficult computations if they are required in the
proofs or to give complete solutions for some of the examples. At various stages, we
revisit the same topic from different angles, and below is a short road map to some
of these topics:

• Linear-Quadratic Regulator and Perturbation Feedback Control: Sects. 2.1, 2.4,
and 5.3

• Time-Optimal Control for Linear Systems: Sects. 2.5 and 2.6 and Chap. 3
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• Conjugate Points and Envelopes: Sects. 1.4–1.5, 5.3–5.4, and 6.1
• Singular Controls, Legendre–Clebsch, Kelley, and Goh conditions: Sects. 2.8–

2.9, 4.6, and 6.2
• Chattering Controls and the Fuller Problem: Sects. 2.11, 5.1 and 5.2.3
• Time-Optimal Control for Single-Input, Control-Affine Nonlinear Systems and

Small-Time Reachable Sets in Low Dimensions: Sects. 2.9–2.10 and 4.5, and
Chap. 7.
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Chapter 1
The Calculus of Variations: A Historical
Perspective

We begin with an introduction to the historical origin of optimal control theory, the
calculus of variations. But it is not our intention to give a comprehensive treatment
of this topic. Rather, we introduce the fundamental necessary and sufficient
conditions for optimality by fully analyzing two of the cornerstone problems of
the theory, the brachistochrone problem and the problem of determining surfaces of
revolution with minimum surface area, so-called minimal surfaces. Our emphasis is
on illustrating the methods and techniques required for getting complete solutions
for these problems. More generally, we use the so-called fixed-endpoint problem,
the problem of minimizing a functional over all differentiable curves that satisfy
given boundary conditions, as a vehicle to introduce the classical results of the
theory: (a) the Euler–Lagrange equation as the fundamental first-order necessary
condition for optimality, (b) the Legendre and Jacobi conditions, both in the form
of necessary and sufficient second-order conditions for local optimality, (c) the
Weierstrass condition as additional necessary condition for optimality for so-called
strong minima, and (d) its connection with field theory, the fundamental idea
in any sufficiency theory. Throughout our presentation, we emphasize geometric
constructions and a geometric interpretation of the conditions. For example, we
present the connections between envelopes and conjugate points of a fold type and
use these arguments to give a full solution for the minimum surfaces of revolution.

The classical ideas and concepts presented here will serve us both as an introduc-
tion to and motivation for the corresponding notions in optimal control theory to be
discussed in subsequent chapters. Since geometric content is most easily visualized
in the plane—and since the classical problems we are going to analyze are of this
type—we restrict our introductory treatment here to one-dimensional problems.
This mostly simplifies the notation, and only to a small extent the mathematics.
We include a brief treatment of the multidimensional case in Sect. 2.3 as a corollary
to the Pontryagin maximum principle from optimal control theory.

Chapter 1 is organized as follows: In Sect. 1.1 we introduce Johann Bernoulli’s
brachistochrone problem, the very first problem in the calculus of variations posed
as a challenge to the mathematical community of its time in 1696. The fundamental
first-order necessary condition for optimality, the Euler–Lagrange equation, will be

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
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2 1 The Calculus of Variations

developed in Sect. 1.2 and used to compute the extremals for the brachistochrone
problem, the cycloids. In general, extremals are curves that satisfy the Euler–
Lagrange equation. In Sect. 1.3, we formulate the problem of finding surfaces of
minimum area of revolution for positive differentiable functions and show that
the catenaries are the only extremals. We also include a detailed analysis of the
mapping properties of the family of catenaries and their envelope, a rather technical
mathematical argument, which, however, is essential to the understanding of the full
solutions to this problem that will be given in Sect. 1.7. This requires that we develop
second-order necessary conditions for optimality and the notion of conjugate points,
which will be done in Sects. 1.4 and 1.5, which naturally leads to results about
the local optimality of trajectories. A global solution of problems in the calculus
of variations requires the notion of a field of extremals, which will be developed
in Sect. 1.6, and leads to the Weierstrass condition. In Sects. 1.7 and 1.8, we then
return to the problem of minimum surfaces of revolution and the brachistochrone
problem, respectively, and give complete global solutions. This requires a further
and nontrivial analysis of the geometric properties of the flows of extremals for
these problems, which will be carried out in detail in these sections. In fact, both of
these classical problems cannot be analyzed directly with standard textbook results
of the theory. For the problem of minimum surfaces of revolution, the reason is
that a problem formulation within the class of positive continuously differentiable
functions is not wellposed, and a second class of candidates for optimality, the so-
called Goldschmidt extremals, which are only piecewise differentiable, rectifiable
curves, needs to be taken into account. For the brachistochrone problem, the
extremals, the cycloids, have singularities at their initial point that require special
attention. We include complete and mathematically rigorous solutions for these two
benchmark problems of the calculus of variations. All these arguments foreshadow
similar constructions that will be carried out more generally in the solutions of
optimal control problems in Chaps. 2 and 5. We close this introductory chapter
with a brief discussion of the Hamilton–Jacobi equation in Sect. 1.9 and provide in
Sect. 1.10 an outlook on how the conditions of the calculus of variations developed
here as a whole foreshadowed the Pontryagin maximum principle of optimal
control, the fundamental necessary conditions for optimality for an optimal control
problem.

1.1 The Brachistochrone Problem

The origins of the subject, and in some sense for much of the further development of
calculus as a whole, lie with the statement of the following problem posed in 1696
by Johann Bernoulli:

[Brachistochrone] “Given two points A and B in the vertical plane, for a moving
particle m, find the path AmB descending along which by its own gravity and
beginning to be urged from the point A, it may in the shortest time reach B.”
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Fig. 1.1 The brachistochrone
problem

This problem, which sounds much better in Latin than in its English translation,
is the so-called brachistochrone problem, named by combining the two Greek
words for “shortest” (βραχιστoς , brachistos) and “time” (χρoνoς , chronos).
Johann Bernoulli, who already had solved this problem with a rather ingenious ad
hoc argument, challenged the scientific community of his time, or as he called it
“the sharpest mathematical minds of the globe,” to give solutions to this problem.
In 1697, several solutions, including Johann’s own and solutions by his older brother
Jakob, Newton, and others also including a note by Leibniz, whose solution was
similar to Johann’s, were published in the Acta Eruditorum. The solution is a
cycloid, the locus that a point fixed on the circumference of a circle traverses as
the circle rolls on a line, not a line itself, a rather implausible candidate Johann
Bernoulli had warned against in his posting, nor a circle, the solution suggested by
Galileo more than a hundred years earlier. In hindsight, it was the newly developed
ideas of calculus, of which Galileo was deprived, and their relations with physics
problems that made it possible to give these solutions. A common thread in all
of them was the use of arguments—mathematics and physics still being the same
discipline at that time—based on Fermat’s principle or the laws of refraction by
Snell and Huygens. It was up to Euler, and even more so to his student Lagrange, to
consider the problem as the minimum-time problem it is and give a solution based
on variational ideas that eventually grew into the calculus of variations. We refer
the reader to the article [245] by H. Sussmann and J. Willems for an excellent and
detailed exposition of the historical context and the developments that led from the
posing of this problem to the formulation of the maximum principle of optimal
control, one of the main topics of this book.

In order to give a mathematical formulation, let A be the origin of a two-
dimensional coordinate system and denote the horizontal coordinate by x and the
vertical coordinate by y, but orient it downward (see Fig. 1.1). It is clear from
conservation of energy that the terminal point B cannot lie higher than the initial
point A and thus it needs to have coordinates B = (x0,y0) with y0 nonnegative.
Without loss of generality, we also assume that x0 > 0, ignoring the trivial case
of free fall (x0 = 0). The objective is to minimize the time it takes for the particle
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to move from A to B along a curve Γ that connects A with B when the only
force that acts upon the particle is gravity. It is implicitly assumed in the problem
formulation that the particle descends without friction. It seems obvious that curves
Γ that are not graphs of functions y : [0,x0]→ R+, x �→ y(x), cannot be optimal.
Mathematically, this can be proven, but it requires a different and more general
setup for the problem than the classical one. Here, we wish to follow the classical
argument and thus, a priori, restrict the problem formulation to curves Γ that are
graphs of functions y.

The time of descent along such a curve can easily be computed with some
elementary facts from physics. The speed of the particle is the change of distance
traveled in time,

v =
ds
dt

,

and the total time can formally be computed as

T =

∫
dt =

∫
ds
v
.

In our case, s represents the arc length of the graph of a function y : [0,x0]→ R+,
x �→ y(x), and thus

s(z) =

z∫

a

√
1+ y′(x)2dx, 0≤ z≤ x0,

which gives

T =

x0∫

0

√
1+ y′(x)2

v(x)
dx.

We then need to express the velocity v as a function of x. In the absence of friction,
the decrease in potential energy is accompanied by an equal increase in kinetic
energy, i.e.,

mgy =
1
2

mv2,

and thus the velocity at the point (x,y(x)) is given by

v(x) =
√

2gy(x).

Summarizing, mathematically, the brachistochrone problem therefore can be
formulated as the following minimization problem:
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[Brachistochrone] Find a “function”

y : [0,x0]→ R+, y(0) = 0, y(x0) = y0 > 0,

that minimizes the integral

I(y) =

x0∫

0

√
1+ y′(x)2

2gy(x)
dx.

Note that we are dealing with a minimization problem over a set of functions;
that is, the functions themselves are the variables of the problem. This raises some
immediate questions, and at the very least, we should specify exactly what this class
of “functions,” the domain of the minimization problem, actually is. It turns out
that this is not always an obvious choice, and it certainly is not in the case of the
brachistochrone problem. For instance, we have the boundary condition y(0) = 0,
and thus this is an improper integral. So we probably might want to require that
the integral converge. On the other hand, if the integral diverges to ∞, obviously
this is not going to be an “optimal” choice, and if we allow for this, then why not
keep these functions, since no harm will be done. Another obvious requirement
is that y be differentiable, at least on the open interval (0,x0). But do we need
differentiability at the endpoints from the right at 0 and from the left at x0? This
is not quite clear. In fact, all we need is that the integral remain finite. Indeed, the
solutions to the problem, the cycloids, are functions whose derivative y′(x) diverges
to ∞ as x decreases to 0. As this example shows, the choice of the class of functions
over which to minimize a given functional is not always a simple issue.

On the other hand, the choice of functions to minimize over is intimately
connected with the important question of the existence of a solution. The theory of
existence of solutions is well-established, and there exist numerous classical sources
on this topic (for example, see [70,118,260], to mention just a couple of textbooks).
The techniques used in existence proofs are very different from the methods pursued
in this book, and therefore we will not address the issue of existence of solutions.
Instead, we simply proceed, assuming that solutions to the problems we consider
exist within a reasonably nice class of functions (as will be the case for the problems
we shall consider) and try to single out candidates for a minimum. Our interest
in this text is to characterize such a minimizer through necessary conditions for
optimality and provide sufficient conditions that allow us to conclude the local or
even global optimality of a candidate found through application of these necessary
conditions. For the brachistochrone problem, and, more generally, for problems
in the calculus of variations, a natural approach is, as in classical calculus, to
ask whether the objective I might be “differentiable” and then develop first- and
second-order derivative tests. This is the approach of Lagrange, who formalized
and generalized the main necessary condition for optimality derived earlier for the
brachistochrone problem with geometric means by his teacher, Leonhard Euler,
himself a student of Johann Bernoulli in Basel.



6 1 The Calculus of Variations

1.2 The Euler–Lagrange Equation

The brachistochrone problem is a special case of what commonly is called the
simplest problem in the calculus of variations, and we use this problem to develop
the fundamental results of the theory. As is customary, we denote the space
of all continuous real-valued functions x : [a,b] → R, t �→ x(t), defined on the
compact interval [a,b] by C([a,b]). We use the notation Cr([a,b]) for functions
that are r-times continuously differentiable on the open interval (a,b) and have
derivatives that extend continuously to the compact interval [a,b]. Furthermore,
when describing intervals, we consistently use brackets to denote that the boundary
point is included and parentheses to indicate that the boundary point is not part of
the set. For example, (a,b] = {t ∈R : a < t ≤ b}, etc.

Definition 1.2.1. We denote by X the Banach space C([a,b]) equipped with the
supremum norm

‖x‖C = ‖x‖∞ = max
a≤t≤b

|x(t)|.

Convergence in the supremum norm is uniform convergence (see Appendix A).
It is well-known that C([a,b]) with the supremum norm is a Banach space, i.e.,
if {xn}n∈N is a sequence of continuous functions that is Cauchy in the supremum
norm, then there exists a continuous function x such that xn converges to x uniformly
on [a,b] (see Proposition A.2.2).

Definition 1.2.2. We denote by Y the Banach space that is obtained by equipping
C1([a,b]) with the norm

‖x‖D = ‖x‖∞+ ‖ẋ‖∞.
It easily follows that convergence in the norm ‖ · ‖D is equivalent to uniform

convergence of both the curves and their derivatives on the compact interval [a,b].
Figure 1.2 gives an example of a low-amplitude, high-frequency oscillation that lies
in a small neighborhood of x≡ 0 in X , but not in Y .

We can now formulate the “simplest problem in the calculus of variations.”

[CV] Let L : R×R×R → R, (t,x,y) �→ L(t,x,y), be an r-times continuously
differentiable function, r ≥ 2. Among all functions x ∈ C1([a,b]) that, for two
given points A and B in R, satisfy the boundary conditions x(a) = A and x(b) =B,
find one that minimizes the functional

I[x] =

b∫

a

L(t,x(t), ẋ(t))dt.

The integrand L is called the Lagrangian of the problem. Note that the derivative ẋ
of the function x takes the place of the argument y when the objective is evaluated,
and it is therefore customary (although a bit confusing in the beginning) to simply
denote this variable by ẋ instead of y.
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Fig. 1.2 A low-amplitude, high-frequency oscillation not close to x ≡ 0 in Y

Definition 1.2.3 (Weak and strong minima). A function x∗ ∈C1([a,b]) is called
a weak local minimum if it minimizes the functional I over some neighborhood of
x∗ in Y ; it is said to provide a strong local minimum if it provides a minimum of I
over some neighborhood of x∗ in X .

Note that strong local minimizers x∗ minimize the functional I over all functions x
that have the property that they are close to the reference at every time t ∈ [a,b],
whereas weak local minimizers are optimal only relative to those functions that in
addition have their derivatives ẋ close to the derivative of the reference ẋ∗ and thus
minimize over a smaller collection of functions.

Example. The function x ≡ 0 is a weak, but not a strong, local minimum for the
functional

I[x] =

π∫

0

x(t)2(1− ẋ(t)2)dt, x(0) = 0, x(π) = 0,

defined on C1([0,π ]). By inspection, the functional I[x] is nonnegative on the open
unit ball B1(0) = {x ∈ Y : ‖x‖D < 1}, and thus x∗ ≡ 0 is a weak local minimum.
But clearly, if ‖ẋ‖∞ becomes too large, the functional can be made negative. For
ε > 0 and n ∈ N simply consider the low-amplitude, high-frequency oscillations
xn ∈C1([0,π ]) given by xn(t) = ε sin(nt). Then we have
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I[xn] = ε2

π∫

0

sin2(nt)
(
1− ε2n2 cos2(nt)

)
dt

=
ε2

n

nπ∫

0

sin2(s)
(
1− ε2n2 cos2(s)

)
ds

= ε2

π∫

0

sin2(s)ds− ε4n2
∫ π

0
sin2(s)cos2(s)ds

= ε2

π∫

0

sin2(s)ds− ε
4n2

4

π∫

0

sin2(2s)ds

= ε2

π∫

0

sin2(s)ds− ε
4n2

4

2π∫

0

sin2(r)
dr
2

= ε2
(

1− ε
2n2

4

) π∫

0

sin2(s)ds,

and thus I[xn]< 0 for n > 2
ε . In fact, I[xn]→−∞ as n→ ∞, and this functional does

not have a minimum. �
We now develop necessary conditions for a function x∗ to be a weak local

minimizer. The fundamental necessary conditions for optimality follow from the
well-known conditions for minimizing a function in calculus by perturbing the
reference x∗ with a function h ∈ C1([a,b]), h(a) = h(b) = 0. Let C1

0([a,b]) denote
this class of functions. Clearly, if x∗ is a local minimizer, then for |ε| small enough,
the function x∗+ εh is also admissible for the minimization problem and lies in the
neighborhood over which x∗ is minimal. Thus, given any h ∈ C1

0([a,b]), for ε in
some small neighborhood of 0, we have that

I[x∗]≤ I[x∗+ εh],

and it thus is a necessary condition for minimality of x∗ that for all h ∈ C1
0([a,b]),

the first derivative of the function ϕ(ε;h) = I(x∗+ εh) at ε = 0 vanish and that the
second derivative be nonnegative:

ϕ ′(0;h) =
d

dε |ε=0
I[x∗+ εh] = 0 (1.1)

and

ϕ ′′(0;h) =
d2

dε2 |ε=0
I[x∗+ εh]≥ 0. (1.2)
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The quantities in Eqs. (1.1) and (1.2) are called the first and second variation of
the problem, respectively, and are customarily denoted by δ I(x∗)[h] and δ 2I(x∗)[h].
Differentiating under the integral gives that

δ I[x∗](h) =
b∫

a

Lx(t,x∗, ẋ∗)h+Lẋ(t,x∗, ẋ∗)ḣ dt (1.3)

with the curve x∗, its derivative ẋ∗, and the variation h all evaluated at t, and similarly,

δ 2I[x∗](h) =
b∫

a

(h, ḣ)

(
Lxx(t,x∗, ẋ∗) Lxẋ(t,x∗, ẋ∗)
Lẋx(t,x∗, ẋ∗) Lẋẋ(t,x∗, ẋ∗)

)(
h
ḣ

)
dt. (1.4)

The following lemma is fundamental in the calculus of variations and makes it
possible to eliminate the variational directions h from the necessary conditions.

Lemma 1.2.1. Suppose α and β are continuous functions defined on a compact
interval [a,b], α,β ∈C([a,b]), with the property that

b∫

a

α(t)h(t)+β (t)ḣ(t)dt = 0 (1.5)

for all h ∈C1
0([a,b]). Then β is continuously differentiable, β ∈C1([a,b]), and

β̇ (t) = α(t) for all t ∈ (a,b).

Proof. If we define A(t) =
∫ t

a α(s)ds, then, it follows from integration by parts that
for all h ∈C1([a,b]) and any constant c ∈ R, we have that

0 =

b∫

a

(−A(t)+β (t)− c)ḣ(t)dt.

Choosing

c =
1

b− a

b∫

a

(β (t)−A(t))dt

and taking

h(t) =

t∫

a

(β (s)−A(s)− c)ds,
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it follows that h ∈C1
0([a,b]) and

b∫

a

ḣ(t)2dt = 0.

Since ḣ is continuous, h is constant, and h(a) = 0 implies h ≡ 0. Hence β (t) =
A(t)+ c, and therefore β is differentiable with derivative β̇ (t) = α(t). ��

Applying this to Eq. (1.3), we obtain the Euler–Lagrange equation, the funda-
mental first-order necessary condition for optimality for problems in the calculus of
variations.

Corollary 1.2.1 (Euler–Lagrange equation). If x∗ is a weak minimum for the
functional I, then the partial derivative ∂L

∂ ẋ is differentiable along the curve t →
(t,x∗(t), ẋ∗(t)) with derivative given by

d
dt

(
∂L
∂ ẋ

(t,x∗(t), ẋ∗(t))
)
=
∂L
∂x

(t,x∗(t), ẋ∗(t)). (1.6)

Admissible functions x : t �→ x(t) that satisfy this differential equation are called
extremals. Note that it is not required that L be twice differentiable for the Euler–
Lagrange equation to hold. It is a part of the statement of the lemma that the
composition t → Lẋ(t,x∗(t), ẋ∗(t)) will always be differentiable in t (regardless of
whether the second partial derivatives of L exist) and that its derivative is given by
Lx(t,x∗(t), ẋ∗(t)).

If the Lagrangian L is twice differentiable, and if also the extremal x∗ under
consideration lies in C2, then we can differentiate Eq. (1.6) to obtain

Ltẋ +Lẋxẋ∗+Lẋẋẍ∗ = Lx.

In this case, the Euler–Lagrange equation becomes a possibly highly nonlinear
second-order ordinary differential equation. This equation, however, will be singular
if the second derivative Lẋẋ(t,x∗(t), ẋ∗(t)) vanishes at some times t ∈ (a,b). We
shall see in Sect. 1.4 that it is a second-order necessary condition for optimality, the
so-called Legendre condition, that this term be nonnegative, but generally, it need
not be positive. If Lẋẋ(t,x∗(t), ẋ∗(t)) is positive for all t ∈ [a,b], then the Euler–
Lagrange equation is a regular second-order ordinary differential equation, and if
we specify as initial conditions x(a) = A and ẋ(a) = p for some parameter p, then a
local solution x(t; p) exists near t = a. However, this solution need not necessarily
exist on the full interval [a,b]. In addition, we are interested in the solution to the
two-point boundary value problem with boundary condition x(b) = B. Thus there
may be no solutions, the solution may be unique, or there may exist several, even
infinitely many, solutions. The analysis of the Euler–Lagrange equation therefore
generally is a challenging and nontrivial problem.
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The following result, known as the Hilbert differentiability theorem, often is
useful for establishing a priori differentiability properties of extremals.

Proposition 1.2.1 (Hilbert differentiability theorem). Let x∗ : [a,b]→ R be an
extremal with the property that

Lẋẋ(t,x∗(t), ẋ∗(t)) = 0 for all t ∈ [a,b].

Then x∗ has the same smoothness properties as the Lagrangian L for problem [CV].
That is, if L ∈Cr, then also x∗ ∈Cr.

Proof. For some constant c, the extremal x∗ is a solution to the Euler–Lagrange
equation in integrated form,

∂L
∂ ẋ

(t,x∗(t), ẋ∗(t))−
t∫

a

∂L
∂x

(s,x∗(s), ẋ∗(s))ds− c = 0.

If we define a function G(t,u) as

G(t,u) =
∂L
∂ ẋ

(t,x∗(t),u)−
t∫

a

∂L
∂x

(s,x∗(s), ẋ∗(s))ds− c,

then the equation G(t,u) = 0 has the solution u = ẋ∗(t). By the implicit function
theorem (see Theorem A.3.2), this solution is locally unique and k times continu-
ously differentiable if the function G(t, ·) is k times continuously differentiable and
if the partial derivative

∂G
∂u

(t, ẋ∗(t)) =
∂ 2L
∂ ẋ2 (t,x∗(t), ẋ∗(t))

does not vanish. Hence x∗ ∈Cr if L is r times continuously differentiable. ��
For integrands L of the form L(x, ẋ) = xα

√
1+ ẋ2 with α ∈ R, we have that

Lẋẋ(x, ẋ) =
xα

(1+ ẋ2)
3
2

> 0,

and thus all extremals that lie in x > 0 are twice continuously differentiable. This
applies, for example, to the brachistochrone problem with α =− 1

2 .

Corollary 1.2.2 (First integral). If x∗ is a weak minimum for the functional I that
is twice continuously differentiable and if the function L is time-invariant, then it
follows that the function

t �→ L(t,x∗(t), ẋ∗(t))− ẋ∗(t)
∂L
∂ ẋ

(t,x∗(t), ẋ∗(t)) (1.7)
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is constant over the interval [a,b], i.e., the Euler–Lagrange equation has a “first
integral” given by

L− ẋLẋ = const.

Proof. Since L does not explicitly depend on t, we have, omitting the arguments,
that

d
dt
(L− ẋLẋ) = Lxẋ+Lẋẍ− ẍLẋ− ẋ

d
dt

(Lẋ)

= ẋ

(
Lx− d

dt
(Lẋ)

)
≡ 0.

��
Thus, for a time-invariant system, all twice continuously differentiable extremals

need to lie in the level curves of the function L− ẋLẋ. This often provides a quick
path to finding extremals for a given problem, and we will use formula (1.7) to find
extremals for the brachistochrone problem. Deleting the constant, in this case L is
given by

L(x, ẋ) =

√
1+ ẋ2

x
,

and thus the first integral takes the form

√
1+ ẋ2

x
− ẋ

(
1
2

√
1

x(1+ ẋ2)
2ẋ

)
= c,

where c is some constant. Simplifying this expression yields

(1+ ẋ2− ẋ2)

√
1

x(1+ ẋ2)
= c,

or equivalently, and renaming the constant,

x
(
1+ ẋ2)= 2ξ > 0. (1.8)

While it is possible to solve the resulting ordinary differential equation with
standard methods (albeit a bit tedious), it is more elegant and quicker to introduce a
reparameterization t = t(τ) of the time scale so that the derivative ẋ becomes

dx
dt

=− tan
(τ

2

)
. (1.9)

For in this case, we then have

1+ ẋ2 =
1

cos2
( τ

2

)
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Fig. 1.3 The field of cycloids for the brachistochrone problem

and thus

x =
2ξ

1+ ẋ2 = 2ξ cos2
(τ

2

)
= ξ (1+ cosτ). (1.10)

Furthermore,

dt
dτ

=
dt
dx

dx
dτ

=− 1

tan
( τ

2

)ξ (−sinτ) = ξ
2sin

( τ
2

)
cos

( τ
2

)
tan

( τ
2

)

= 2ξ cos2
(τ

2

)
= ξ (1+ cosτ),

which gives

t(τ) = ξ (τ+ sinτ)+ c.

Since extremals start at the origin, x(a) = 0, we choose a = −π , and then the
constant is c = ξπ . Thus, overall, the required time reparameterization is given by

t(τ) = ξ (π+ τ+ sinτ). (1.11)

Equations (1.10) and (1.11) represent, as already mentioned, a family of curves
called cycloids. Geometrically, a cycloid is the locus that a point fixed on the
circumference of a circle of radius ξ traverses as the circle rolls on the lower side
of the line x = 0. Examples of such curves are drawn in Fig. 1.3 below. Note that
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although we represent the cycloids as curves in R
2
+ = {(t,x) : t > 0,x > 0}, each

cycloid is the graph of some function t �→ x(t). We conclude this discussion of the
extremals for the brachistochrone problem by showing that there exists one and
only one cycloid in this family that passes through a given point (t,x) with t and x
positive.

Theorem 1.2.1. The family C of curves defined by Ξ ,

Ξ : (−π ,π)× (0,∞)→R
2
+,

(τ,ξ ) �→ (t(τ;ξ ),x(τ;ξ )) = (ξ (π+ τ+ sinτ),ξ (1+ cosτ)), (1.12)

covers R2
+ = {(t,x) : t > 0,x > 0} diffeomorphically; that is, the map Ξ is one-to-

one, onto, and has a continuously differentiable inverse.

Proof. (Outline) Define f : (−π ,π)→ (0,∞) by

f (τ) =
1+ cosτ

π+ τ+ sinτ
.

It is a matter of elementary calculus to verify that f is 1 : 1 and onto. (Establish
that f has a simple pole at τ = −π , is strictly monotonically decreasing over the
interval (−π ,π), and is continuous at π with value 0.) Thus, given (α,β ) ∈ R

2
+,

there exists a unique τ ∈ (−π ,π) such that f (τ) = β
α ; the parameter ξ is then given

by solving either Eqs. (1.10) or (1.11) for ξ . Furthermore, an explicit calculation
verifies that the Jacobian determinant of the transformation is everywhere positive,
and thus by the inverse function theorem (see Theorem A.3.1), Ξ has a continuously
differentiable inverse as well. ��

This verifies that the family of cycloids forms what later on will be called a
central field on the region R

2
+. We shall prove in Sect. 1.8 that these curves are

indeed the optimal solutions. Note that in the original parameterization x = x(t) of
the curves as functions of t, the derivative ẋ converges to ∞ as t converges to 0 from
the right (cf. Eq. (1.9)).

1.3 Surfaces of Revolution of Minimum Area

A second classical example in the calculus of variations that dates back to Euler in
the mid-eighteenth century is to find surfaces of revolution that have a minimum
area, so-called minimal surfaces: Given t1 > 0 and x0 and x1 positive numbers,
among all curves that join two given points (0,x0) and (t1,x1) and have positive
values, find the one that generates a surface that has the smallest surface area of
revolution when rotated around the t-axis (see Fig. 1.4).
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Fig. 1.4 Surfaces of
revolution

As in the brachistochrone problem, for starters, we restrict the curves to be graphs
of differentiable functions, and we do not allow the functions to touch 0. There is no
difficulty in finding the solutions experimentally: dip two circular loops into soap
water and remove them, holding them close to each other; the soap film that forms
between the circles is the desired solution. Unfortunately, this is a significantly
harder problem mathematically. But then again, its solution offers important insights
into calculus of variations problems as a whole, and in many ways, in the words
of Gilbert Bliss, this example is “the most satisfactory illustration which we have
of the principles of the general theory of the calculus of variations” [39, p. 85].
Mathematically, the problem can be formulated as follows:

[Minimal Surfaces] Given t1 > 0, let x0 and x1 be positive reals. Minimize the
integral

I[x] = 2π
t1∫

0

x
√

1+ ẋ2dt

over all functions x ∈C1([0,x1]) that have positive values, x : [0, t1]→ (0,∞), and
satisfy the boundary conditions

x(0) = x0 and x(t1) = x1.

The integrand L of the general problem formulation is given by

L(x, ẋ) = 2πx
√

1+ ẋ2,
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and, as for the brachistochrone problem, it follows from the Hilbert differentiability
theorem that extremals lie in C2. We thus again use the first integral L− ẋLẋ = c
with c a constant to find the extremals. Here

x
√

1+ ẋ2− ẋx
ẋ√

1+ ẋ2
= c,

and simplifying this expression gives

x√
1+ ẋ2

(1+ ẋ2− ẋ2) = c,

or renaming the constant,
x√

1+ ẋ2
= β . (1.13)

This equation is again most easily solved through a reparameterization of the time
scale, t = t(τ). Here we want the derivative ẋ to be

dx
dt

= sinhτ, (1.14)

so that

1+ ẋ2 = cosh2 τ

and thus

x(τ) = β coshτ.

This also implies

dt
dτ

=
dt
dx

dx
dτ

=
1

sinhτ
β sinhτ = β ,

and thus we simply have
t(τ) = α+βτ

for some constant α . Hence, the general solutions to the Euler–Lagrange equation
are given by the following family of catenaries:

x(t) = β cosh

(
t−α
β

)
, α ∈ R, β > 0. (1.15)

However, as illustrated in Fig. 1.5, the mapping properties of this family of
extremals are drastically different from those of the cycloids for the brachistochrone
problem. Now, given a fixed initial condition (0,x0), it is no longer true that an
extremal necessarily passes through any point (t1,x1) ∈ R

2
+, while there exist two

extremals through other points (t1,x1). The theorem below summarizes the mapping
properties of the family of catenaries. We call an open and connected subset of Rn

a region.
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Fig. 1.5 The family of catenaries and its envelope

Theorem 1.3.1. There exists a differentiable, strictly monotonically increasing,
and strictly convex function γ : [0,∞)→ [0,∞), t �→ γ(t), that satisfies

γ(0) = 0, γ̇(0+) = 0, and lim
t→+∞

γ(t) = +∞, lim
t→+∞

γ̇(t) = +∞,

with the property that if C denotes the graph of γ , then there exist exactly two
catenaries that pass through any point (t1,x1) in the region R above the graph of
γ , and there exists no catenary that passes through a point (t1,x1) in the region S
below the graph of γ . Through any point (t1,x1) on the graph C itself there exists a
unique catenary that passes through the point.

This material is classical, and we follow the presentation of Bliss [39, pp. 92–98]
in our proof below. Since we shall return to this example numerous times for
illustrative purposes, we also include some intricate details of the calculations to
give the complete picture. The reader who is mostly interested in the theoretical
developments may elect to skip this technical proof without loss of continuity, but
some of the properties established here will be used later on.

Proof. The initial condition x0 imposes the relation

x0 = β cosh

(
−α
β

)

and reduces the collection of catenaries defined by Eq. (1.15) to a 1-parameter
family. Introduce a new parameter p, p =−α

β , so that we have

β =
x0

cosh p
and α =−pβ =− px0

cosh p
.
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This gives the following parameterization of all extremals through the point (0,x0)
in terms of the parameter p:

x(t; p) =
x0

cosh p
cosh

(
p+

t
x0

cosh p

)
, p ∈R, t > 0. (1.16)

We fix the time t and compute the range of x(t; p) for p ∈ R. As p → ±∞, the
term p+ t

x0
cosh p diverges much faster to +∞ than p does, and it follows from the

properties of the hyperbolic cosine that

lim
p→±∞x(t; p) = +∞.

This also is readily verified using L’Hospital’s rule. Hence the real analytic function
x(t; ·) has a global minimum at some point p∗ = p∗(t) and

∂x
∂ p

(t; p∗) = 0.

The key technical computations are given in the lemma below, where, as is
customary, we denote partial derivatives with respect to t by a dot.

Lemma 1.3.1. If p∗ is a stationary point, ∂x
∂ p(t; p∗) = 0, then

ẋ(t; p∗) =
∂x
∂ t

(t; p∗)> 0 and
∂ 2x
∂ p2 (t; p∗)> 0. (1.17)

Proof. In these computations, it is important to combine terms that arise properly to
recognize sign relations that are not evident a priori. We have that

ẋ(t; p) = sinh

(
p+

t
x0

cosh p

)
,

and for later reference note that

x(t; p)
ẋ(t; p)

=
cosh

(
p+ t

x0
cosh p

)

sinh
(

p+ t
x0

cosh p
) x0

cosh p
. (1.18)

The partial derivatives of x with respect to p are best expressed in terms of this
quantity at times t and 0. We have that
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∂x
∂ p

(t; p) =
x0

cosh2 p

[
sinh

(
p+

t
x0

cosh p

)(
1+

t
x0

sinh p

)
cosh p

−cosh

(
p+

t
x0

cosh p

)
sinh p

]

=
sinh

(
p+ t

x0
cosh p

)
sinh p

cosh p

×
⎡
⎣x0 + t sinh p

sinh p
−

cosh
(

p+ t
x0

cosh p
)

sinh
(

p+ t
x0

cosh p
) x0

cosh p

⎤
⎦

=
ẋ(t; p)ẋ(0; p)

cosh p

[
t +

x(0; p)
ẋ(0; p)

− x(t; p)
ẋ(t; p)

]
. (1.19)

This quantity has an interesting and useful geometric interpretation due to Lindelöf:
For the moment, fix p and consider the catenary x(s, p) as a function of s and let �0

and �t denote the tangent lines to the graph at the initial point (0,x0) and at the point
(t,x(t; p)), respectively, i.e.,

�0(s) = x0 + sẋ(0; p) and �t(s) = x(t; p)+ (s− t)ẋ(t; p).

These tangent lines intersect for

s =
x(t; p)− x0− tẋ(t; p)

ẋ(0; p)− ẋ(t; p)
,

and the value at the intersection is given by

κ(t; p) = x0 +
x(t; p)− x0− tẋ(t; p)

ẋ(0; p)− ẋ(t; p)
ẋ(0; p)

=
ẋ(t; p)ẋ(0; p)

ẋ(t; p)− ẋ(0; p)

[
t− x(t; p)

ẋ(t; p)
+ x0

(
ẋ(t; p)− ẋ(0; p)

ẋ(t; p)ẋ(0; p)
+

1
ẋ(t; p)

)]

=
ẋ(t; p)ẋ(0; p)

ẋ(t; p)− ẋ(0; p)

[
t− x(t; p)

ẋ(t; p)
+

x0

ẋ(0; p)

]
.

We can therefore express the partial derivatives of x with respect to p as

∂x
∂ p

(t; p) = κ(t; p)
ẋ(t; p)− ẋ(0; p)

cosh p
. (1.20)

Since the function t �→ x(t; p) is strictly convex, it follows that ẋ(t; p)> ẋ(0; p), and
thus p∗ is a stationary point of the function p �→ x(t; p), now with t fixed, if and only
if κ(t; p∗) = 0, that is, if and only if the tangent line �0 to the catenary at the initial
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Fig. 1.6 Tangent lines to the catenary x(·; p∗) for a stationary p∗

point (0,x0) and the tangent line �t through the point (t,x(t; p)) intersect on the
horizontal, or time, axis (see Fig. 1.6). In particular, this is possible only if ẋ(t; p∗)
is positive. Geometrically, the point x(t, p∗) always lies on the increasing portion of
the catenary s �→ x(s, p∗). Furthermore, at any stationary point p∗, we have that

x(t; p∗)
ẋ(t; p∗)

− x(0; p∗)
ẋ(0; p∗)

= t > 0. (1.21)

We now compute the second partial derivative with respect to p, but evaluate it
only at a stationary point p∗. Since the term in brackets in Eq. (1.19) vanishes, we
get that

∂ 2x
∂ p2 (t; p∗) =

ẋ(t; p∗)ẋ(0; p∗)
cosh p∗

∂
∂ p

(
x(0; p)
ẋ(0; p)

− x(t; p)
ẋ(t; p)

)
|p∗

.

Differentiating Eq. (1.18) gives

∂
∂ p

(
x(t; p)
ẋ(t; p)

)
=− x0 + t sinh p

sinh2
(

p+ t
x0

cosh p
)

cosh p
− x0

cosh
(

p+ t
x0

cosh p
)

sinh
(

p+ t
x0

cosh p
) sinh p

cosh2 p

=−
(x0 + t sinh p)cosh p+ x0 cosh

(
p+ t

x0
cosh p

)
sinh

(
p+ t

x0
cosh p

)
sinh p

sinh2
(

p+ t
x0

cosh p
)

cosh2 p
.
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At a stationary point p∗, we have that (cf. the derivation of Eq. (1.19))

x0 + t sinh p∗ = x0

cosh
(

p∗+ t
x0

cosh p∗
)

sinh p∗

sinh
(

p∗+ t
x0

cosh p∗
)

cosh p∗
, (1.22)

and thus

∂
∂ p

(
x(t; p)
ẋ(t; p)

)
|p∗

=−
x0 cosh

(
p∗+ t

x0
cosh p∗

)
sinh p∗

sinh3
(

p∗+ t
x0

cosh p∗
)

cosh2 p∗

−
x0 cosh

(
p∗+ t

x0
cosh p∗

)
sinh p∗

sinh
(

p∗+ t
x0

cosh p∗
)

cosh2 p∗

=−x0

cosh
(

p∗+ t
x0

cosh p∗
)[

1+ sinh2
(

p∗+ t
x0

cosh p∗
)]

sinh p∗

sinh3
(

p∗+ t
x0

cosh p∗
)

cosh2 p∗

=−x0

cosh3
(

p∗+ t
x0

cosh p∗
)

sinh p∗

sinh3
(

p∗+ t
x0

cosh p∗
)

cosh2 p∗

=− 1

x2
0

(
x(t; p∗)
ẋ(t; p∗)

)3

cosh p∗ sinh p∗.

Hence, overall,

∂ 2x
∂ p2 (t; p∗) =

ẋ(t; p∗)sinh p∗
cosh p∗

1

x2
0

[(
x(t; p∗)
ẋ(t; p∗)

)3

−
(

x(0; p∗)
ẋ(0; p∗)

)3
]

cosh p∗ sinh p∗

=
ẋ(t; p∗)

x2
0

[(
x(t; p∗)
ẋ(t; p∗)

)3

−
(

x(0; p∗)
ẋ(0; p∗)

)3
]

sinh2 p∗. (1.23)

We already have shown above that ẋ(t; p∗)> 0, and it follows from Eq. (1.21) that

x(t; p∗)
ẋ(t; p∗)

>
x(0; p∗)
ẋ(0; p∗)

.

Clearly, p∗ = 0, and thus

∂ 2x
∂ p2 (t; p∗)> 0.

��
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This lemma implies that every stationary point of the function p �→ x(t; p) is a
local minimum. But then this function x(t; ·) has a unique stationary point p∗= p∗(t)
corresponding to its global minimum over R, and p∗ : [0,∞)→ [0,∞), t �→ p∗(t),
is well-defined, i.e., is a single-valued function. Furthermore, p∗ is given by the
solution of the equation

∂x
∂ p

(t; p) = 0.

Since ∂ 2x
∂ p2 (t; p∗(t)) > 0, it follows from the implicit function theorem that p∗(t) is

continuously differentiable with derivative given by

ṗ∗(t) =−
∂ 2x
∂ t∂ p (t; p∗(t))
∂ 2x
∂ p2 (t; p∗(t))

.

It is clear that for t fixed, x(t; p) is strictly decreasing in p for p < p∗(t) and
strictly increasing for p > p∗(t) with limit ∞ as p → ±∞. Hence, for any point
(t1,x1) with t1 > 0 and x1 > 0, the equation x(t1; p) = x1 has exactly two solutions
p1 < p∗(t1)< p2 if x1 > x(t1; p∗(t1)), the unique solution p∗(t1) if x1 = x(t1; p∗(t1)),
and no solutions for x1 < x(t1; p∗(t1)). The minimum value x(t1; p∗(t1)) is positive,
and since

∂x
∂ p

(t;0) = x0 sinh

(
t
x0

)
> 0,

p∗(t) is always negative.
Consequently, the curve

γ : [0,∞)→ [0,∞), t �→ γ(t),

is defined by
γ(t) = x(t; p∗(t)).

The derivatives of γ are then given by

γ̇(t) =
dγ
dt

(t) =
∂x
∂ t

(t; p∗(t))+
∂x
∂ p

(t; p∗(t))ṗ∗(t) =
∂x
∂ t

(t; p∗(t))> 0,

so that γ is strictly increasing, and

γ̈(t) =
d2γ
dt2 (t) =

∂ 2x
∂ t2 (t; p∗(t))+

∂ 2x
∂ p∂ t

(t; p∗(t))ṗ∗(t)

=
∂ 2x
∂ t2 (t; p∗(t))−

(
∂ 2x
∂ t∂ p (t; p∗(t))

)2

∂ 2x
∂ p2 (t; p∗(t))

.
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In general, we have that

∂ 2x
∂ t2 (t; p) = cosh

(
p+

t
x0

cosh p

)
cosh p

x0
= x(t; p)

cosh2 p

x2
0

and

∂ 2x
∂ p∂ t

(t; p) = cosh

(
p+

t
x0

cosh p

)(
1+

t
x0

sinh p

)
.

Using Eq. (1.22) to eliminate x0 + t sinh p∗ at the critical point p∗, we obtain

∂ 2x
∂ p∂ t

(t; p∗) =
cosh2

(
p∗+ t

x0
cosh p∗

)

sinh
(

p∗+ t
x0

cosh p∗
) sinh p∗

cosh p∗

=
1

x2
0

x(t; p∗)2

ẋ(t; p∗)
cosh p∗ sinh p∗.

Putting all this together, and using Eq. (1.23), we therefore have that

d2γ
dt2 (t) = x(t; p∗)

cosh2 p∗
x2

0

−

(
1
x2

0

x(t;p∗)2

ẋ(t;p∗) cosh p∗ sinh p∗
)2

ẋ(t;p∗)
x2

0

[(
x(t;p∗)
ẋ(t;p∗)

)3−
(

x(0;p∗)
ẋ(0;p∗)

)3
]

sinh2 p∗

= x(t; p∗)
cosh2 p∗

x2
0

⎡
⎢⎣1−

(
x(t;p∗)
ẋ(t;p∗)

)3

(
x(t;p∗)
ẋ(t;p∗)

)3−
(

x(0;p∗)
ẋ(0;p∗)

)3

⎤
⎥⎦

=−x(t; p∗)
x2

0

(
x(0;p∗)
ẋ(0;p∗)

)3

(
x(t;p∗)
ẋ(t;p∗)

)3−
(

x(0;p∗)
ẋ(0;p∗)

)3 cosh2 p∗.

By Eq. (1.21), the denominator is positive. Since p∗ < 0, it follows that ẋ(0; p∗) =
sinh p∗ < 0, and thus γ̈(t) is positive. Hence the function γ is strictly convex over
(0,∞).

In particular, these properties imply that limt→+∞ γ(t)=+∞. But also γ̇(t)→+∞
as t →+∞: The function κ(p) = p

cosh p is bounded over R, and therefore,

p∗(t)+
t

x0
cosh p∗(t) =

(
p∗(t)

cosh p∗(t)
+

t
x0

)
cosh p∗(t)

≥ p∗(t)
cosh p∗(t)

+
t

x0
→ ∞ as t → ∞.
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Fig. 1.7 Asymptotic properties of γ(t)

Thus, also

γ̇(t) =
∂x
∂ t

(t; p∗(t)) = sinh

(
p∗(t)+

t
x0

cosh p∗(t)
)
→ ∞ as t → ∞.

We conclude the proof with an analysis of the asymptotic properties of γ(t) as
t → 0+. An arbitrary catenary x(s; p) has its minimum when p+ s

x0
cosh p = 0, and

the minimum value is given by x0
cosh p . For t > 0 small enough, there exists a solution

p̃ = p̃(t) to the equation
p

cosh p
=− t

x0

with the property that p̃(t)→−∞ as t → 0+ (see Fig. 1.7).
For any time t, we thus have that

γ(t) = min
p∈R

x(t; p)≤ x(t; p̃(t)) =
x0

cosh p̃(t)
,

and consequently limt→0+ γ(t) = 0. Furthermore, since the graph of γ lies below the
curve ς of minima,

ς : t �→
(

t,
x0

cosh p̃(t)

)
=

(
− x0 p̃(t)

cosh p̃(t)
,

x0

cosh p̃(t)

)
,

it also follows that there exists a time τ ∈ (0, t) at which the slope γ̇(τ) must be
smaller than the slope of the line connecting the origin with this minimum point on
the catenary, i.e.,
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Fig. 1.8 The restricted family of catenaries with envelope C

γ̇(τ)≤ 1
t

x0

cosh p̃(t)
=−cosh p̃(t)

x0 p̃(t)
x0

cosh p̃(t)
=− 1

p̃(t)
→ 0 as t → 0+ .

Since γ̇(t) is strictly increasing, we therefore also have that limt→0+ γ̇(t) = 0. This
concludes the proof. �

For endpoints (t1,x1) in the region R above the curve C, there exist two solutions,
and thus these geometric properties naturally raise the question as to which of the
catenaries is optimal. The curve C : [0,∞)→ [0,∞), t �→ (t,γ(t)), is regular (i.e., the
tangent vector γ̇ is everywhere nonzero) and is everywhere tangent to exactly one
member of the parameterized family of extremals, x : [0,∞)→ [0,∞), t �→ x(t, p)
(with p < 0), without itself being a member of the family. In geometry such a

curve is called an envelope (see Fig. 1.8). The catenary x(t;0) = x0 cosh
(

t
x0

)
for

p=0 is asymptotic to C at infinity, and for p > 0 the catenaries do not intersect the
curve C. In fact, for each p < 0, there exists a unique time t = tc(p) > 0 when the
corresponding catenary (that is, the graph of the curve) is tangent to the envelope
C, and if we were to allow curves that lie in x1 < 0 as well, then for p > 0 the
catenaries touch the curve that is obtained from C by reflection along the x-axis at
time tc(p) =−tc(−p)< 0. The structure of the solutions for x1 < 0 is symmetric to
the one for x1 > 0, and thus we consider only this scenario. By restricting the times
along the catenaries appropriately, we can eliminate the overlaps. If we define

D = {(t, p) : p ∈R, 0 < t < τ(p)},
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where

τ(p) =

{
∞ if p≥ 0,

tc(p) if p < 0,

then, as with the field of cycloids in the brachistochrone problem, the mapping

Ξ : D→ R,

(t, p) �→ (t,x(t; p)) =

(
t,

x0

cosh p
cosh

(
p+

t
x0

cosh p

))
, (1.24)

is a diffeomorphism from D onto the region R above the envelope, and this
parameterized family again defines a central field. In fact, we shall see that all
trajectories in this field are strong local minima, while curves defined on an interval
[0, t1] with t1 ≥ tc(p) are not even weak local minima. The time tc(p) is said to be
conjugate to t = 0 along the extremal x = x(·; p), and the point (tc(p),x(tc(p); p))
is the conjugate point to the initial point (0,x0) along this extremal. The curve C,
whose precise shape of course depends on the initial condition x0, is also called the
curve of conjugate points for the problem of minimal surfaces.

In the next sections, we develop the tools that allow us to prove these statements
about optimality and, more generally, explain the significance of conjugate points
for the local optimality of curves in the calculus of variations.

1.4 The Legendre and Jacobi Conditions

If x∗ is a weak local minimum for problem [CV], then besides being an extremal,
by Eq. (1.2), we also have for all functions

h ∈C1
0([a,b]) = {h ∈C1([a,b]) : h(a) = h(b) = 0}

that the second variation is nonnegative,

δ 2I[x∗](h) =
b∫

a

Lxx(t,x∗, ẋ∗)h2 + 2Lẋx(t,x∗, ẋ∗)ḣh+Lẋẋ(t,x∗, ẋ∗)ḣ2dt ≥ 0.

This implies the following second-order necessary condition for optimality.

Theorem 1.4.1 (Legendre condition). If x∗ is a weak local minimum for problem
[CV] (see Fig. 1.9), then

Lẋẋ(t,x∗(t), ẋ∗(t))≥ 0 for all t ∈ [a,b].

Proof. This condition should be clear intuitively. Choosing functions h ∈C1
0([a,b])

that keep the norm ‖h‖∞ small while having large derivatives
∥∥ḣ

∥∥
∞, it follows that
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Fig. 1.9 The variation for the proof of the Legendre condition

the term multiplying ḣ2 will become dominant and thus needs to be nonnegative.
We prove this by contradiction. Suppose there exists a time τ ∈ (a,b) at which
Lẋẋ(τ,x∗(τ), ẋ∗(τ)) = −2β < 0. Choose ε > 0 such that Lẋẋ(t,x∗(t), ẋ∗(t)) < −β
for t ∈ [τ− ε,τ+ ε]⊂ [a,b] and pick the function

h(t) =

{
sin2 (π

ε (t− τ)
)

for | t− τ |≤ ε,
0 otherwise.

Then, since

ḣ(t) = 2sin
(π
ε
(t− τ)

)
cos

(π
ε
(t− τ)

) π
ε
=
π
ε

sin

(
2π
ε
(t− τ)

)
,

we have h ∈C1
0([a,b]) and

δ 2I[x∗](h) =
τ+ε∫

τ−ε
Lxx(t,x∗(t), ẋ∗(t))sin4

(π
ε
(t− τ)

)

+

τ+ε∫

τ−ε
2Lẋx(t,x∗(t), ẋ∗(t))

π
ε

sin2
(π
ε
(t− τ)

)
sin

(
2π
ε
(t− τ)

)

+

τ+ε∫

τ−ε
Lẋẋ(t,x∗(t), ẋ∗(t))

π2

ε2 sin2
(

2π
ε
(t− τ)

)
dt.



28 1 The Calculus of Variations

If we now let M and N, respectively, be upper bounds on the absolute values of the
continuous functions Lxx(t,x∗(t), ẋ∗(t)) and Lẋx(t,x∗(t), ẋ∗(t)) on the interval [a,b],
then we have the contradiction that

δ 2I[x∗](h)≤ 2εM+ 4Nπ−β
τ+ε∫

τ−ε

π2

ε2 sin2
(

2π
ε
(t− τ)

)
dt

= 2εM+ 4Nπ−β π
2ε

2π∫

−2π

sin2 (s)ds

= 2εM+ 4Nπ−β π
2

ε
→−∞ as ε → 0+ .

Hence Lẋẋ(t,x∗(t), ẋ∗(t)) must be nonnegative on the open interval (a,b) and thus,
by continuity, also on the compact interval [a,b]. ��
Definition 1.4.1 (Legendre conditions). An extremal x∗ satisfies the Legendre
condition along [a,b] if the function t �→ Lẋẋ(t,x∗(t), ẋ∗(t)) is nonnegative; it satisfies
the strengthened Legendre condition if Lẋẋ(t,x∗(t), ẋ∗(t)) is positive on [a,b].

Legendre mistakenly believed that the strengthened version of this condition
also would be sufficient for a local minimum. However, considering the geometric
properties of the extremals for the minimum surfaces of revolution, this clearly
cannot be true, since all extremals for this problem satisfy the strengthened Legendre
condition. It was up to Jacobi to rectify Legendre’s argumentation and come up with
the correct formulations, now known as the Jacobi conditions, which we develop
next. For convenience, throughout the rest of this and the next section, we make the
simplifying assumption that the function L is three times continuously differentiable,
L ∈C3.

Let x∗ be an extremal that satisfies the strengthened Legendre condition every-
where on [a,b]. Then it follows from Hilbert’s differentiability theorem, Proposi-
tion 1.2.1, that x∗ ∈C2, and we can integrate the mixed term in the second variation
by parts to get

b∫

a

2Lẋx(t,x∗(t), ẋ∗(t))ḣ(t)h(t)dt =−
b∫

a

(
d
dt

[Lẋx(t,x∗(t), ẋ∗(t))]
)

h(t)2dt.

This allows us to rewrite the second variation in the simpler form

δ 2I[x∗](h) =
b∫

a

Q(t)h(t)2 +R(t)ḣ(t)2dt,
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where

Q(t) = Lxx(t,x∗(t), ẋ∗(t))− d
dt

(
Lẋx(t,x∗(t), ẋ∗(t))

)

and

R(t) = Lẋẋ(t,x∗(t), ẋ∗(t)).

Under the assumption that L ∈ C3, it follows that Q is continuous and R is
continuously differentiable, Q ∈C([a,b]) and R ∈C1([a,b]).

Definition 1.4.2 (Quadratic form). Given a symmetric bilinear form B defined
on a real vector space X , B : X×X →R, (x,y) �→B(x,y), the mapping Q : X →R,
h �→Q(h) = B(h,h), is called a quadratic form. The quadratic form Q is said to
be positive semidefinite if Q(h) ≥ 0 for all h ∈ X ; it is positive definite if it is
positive semidefinite and Q(h) = 0 holds only for the function h ≡ 0. The kernel
of a quadratic form, kerQ, consists of all h ∈ X for which Q(h) = 0. On a normed
space X , a quadratic form is said to be strictly positive definite if there exists a
positive constant c such that for all h ∈ X ,

Q(h)≥ c‖h‖2 .

We formulate necessary and sufficient conditions for a quadratic form Q :
C1

0([a,b])→R given by

Q(h) =

b∫

a

Q(t)h(t)2 +R(t)ḣ(t)2dt (1.25)

with Q ∈ C([a,b]) and R ∈ C1([a,b]) to be positive semidefinite, respectively
positive definite, on the space C1

0([a,b]). These are classical results that can be
found in most textbooks on the subject. Our presentation here follows the one in
Gelfand and Fomin [105]. These positivity conditions then translate into second-
order necessary and sufficient conditions for a weak local minimum for problem
[CV]. Henceforth Q will always denote this quadratic form defined by Eq. (1.25).
Theorem 1.4.1 immediately implies the following condition:

Corollary 1.4.1. If the quadratic form Q(h) is positive semidefinite over C1
0([a,b]),

then R(t) is nonnegative on [a,b]. �
Assuming that R(t) is positive on [a,b], Legendre’s idea was to complete the

square in the quadratic form Q and write Q as a sum of positive terms. For any
differentiable function w ∈C1([a,b]), we have that

0 =

b∫

a

d
dt
(wh2)dt =

b∫

a

ẇh2 + 2whḣdt,
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and thus adding this term to the quadratic form gives

Q(h) =

b∫

a

(Rḣ2 + 2whḣ+(Q+ ẇ)h2)dt

=

b∫

a

R
(

ḣ+
w
R

h
)2

+

(
ẇ+Q− w2

R

)
h2dt.

If we now choose w as a solution to the differential equation

ẇ =
w2

R
−Q, (1.26)

and if this solution were to exist over the full interval [a,b], then we would have
Q(h) ≥ 0 for all h ∈ C1

0([a,b]) and Q(h) = 0 if and only if ḣ + w
R h = 0. But

since h(a) = 0, this is possible only if h ≡ 0. Thus, in this case the quadratic
functional Q(h) would be positive definite. However, (1.26) is a Riccati differential
equation, and while solutions exist locally, in general there is no guarantee that
solutions exist over the full interval [a,b]. For example, for R = α and Q =
− 1
α we get ẇ = 1

α
(
1+w2

)
, with general solution w(t) = tan( t

α ), which exists
only on intervals of length at most b− a < απ , which can be arbitrarily small.
Riccati differential equations arise as differential equations satisfied by quotients of
functions that themselves obey linear differential equations. As a consequence of
this fact, solutions to a Riccati differential equation can be related to the solutions
of a second-order linear differential equation by means of a classical change of
variables. In the result below, this connection is used to give a characterization
of the escape times of solutions to Riccati equations in terms of the existence of
nonvanishing solutions to a corresponding second-order linear differential equation.

Proposition 1.4.1. Suppose the function R is positive on the interval [a,b]. Then
the Riccati differential equation

R(Q+ ẇ) = w2

has a solution over the full interval [a,b] if and only if there exists a solution to the
second-order linear differential equation

d
dt

(Rẏ) = Qy (1.27)

that does not vanish over [a,b].

Proof. If there exists a solution y to (1.27) that does not vanish on the interval [a,b],
then the function w = − ẏ

y R is well-defined on [a,b], and it is simply a matter of
verification to show that w solves the Riccati equation:
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R(Q+ ẇ) = R

(
Q+

− d
dt (ẏR)y+ ẏRẏ

y2

)

= R

(
Qy2−Qy2 +Rẏ2

y2

)
=

(
Rẏ
y

)2

= w2.

Conversely, if w is a solution to the Riccati equation (1.27) that exists on the full
interval [a,b], let y be a nontrivial solution to the linear differential equation Rẏ+
wy = 0. Then Rẏ is continuously differentiable and we have that

d
dt
(Rẏ) =

d
dt
(−wy) =−wẏ− ẇy =−w

(
−wy

R

)
−

(
w2

R
−Q

)
y = Qy.

Furthermore, as a nontrivial solution, y does not vanish. ��
Note that if y is a solution to Eq. (1.27) that vanishes at some time c, then so

is yα(t) = αy(t) for any α ∈ R, α = 0. In particular, to see whether there exist
nonvanishing solutions, without loss of generality we may normalize the initial
condition on the derivative so that ẏ(a) = 1. This leads to the following definition.

Definition 1.4.3 (Conjugate points and Jacobi equation). A time c∈ (a,b] is said
to be conjugate to a if the solution y to the initial value problem

d
dt
(Rẏ) = Qy, y(a) = 0, ẏ(a) = 1, (1.28)

vanishes at c; in this case the point (c,x∗(c)) on the reference extremal is called a
conjugate point to (a,x∗(a)). The equation

d
dt
(Rẏ) = Qy (1.29)

is called the Jacobi equation.

We now show that the absence of conjugate points on the interval (a,b] is
equivalent to the quadratic form Q(h) being positive definite.

Theorem 1.4.2. Let x∗ be an extremal for which the strengthened Legendre condi-
tion is satisfied on the interval [a,b], i.e.,

R(t) = Lẋẋ(t,x∗(t), ẋ∗(t))> 0 for all t ∈ [a,b].

Then the quadratic functional

Q(h) =

b∫

a

R(t)ḣ(t)2 +Q(t)h(t)2dt

is positive definite for h ∈C1
0([a,b]) if and only if the interval (a,b] contains no time

conjugate to a.
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Proof. Essentially, the sufficiency of this condition has already been shown: If there
exists no time conjugate to a in (a,b], then, since the solution to the Jacobi equation
depends continuously on the initial time, for ε > 0 sufficiently small, the solution to
the initial value problem

d
dt
(Rẏ) = Qy, y(a− ε) = 0, ẏ(a− ε) = 1,

still exists and does not vanish on the interval (a−ε,b]. Hence, by Proposition 1.4.1,
there exists a solution to the Riccati equation R(Q+ ẇ) = w2 over the full interval
[a,b] and thus

Q(h) =

b∫

a

R
(

ḣ+
w
R

h
)2 ≥ 0,

with equality if and only if ḣ+ w
R h = 0, i.e., h≡ 0.

The condition about the nonexistence of conjugate times is also necessary for
Q(h) to be positive definite: Consider the convex combination of the quadratic form
Q(h) and the quadratic form given by

∫ b
a ḣ(t)2dt, i.e., set

Qs(h) = s

b∫

a

(
R(t)ḣ(t)2 +Q(t)h(t)2)dt +(1− s)

b∫

a

ḣ(t)2dt. (1.30)

Note that the quadratic form Q0(h) =
∫ b

a ḣ(t)2dt is positive definite on C1
0([a,b]).

For if Q0(h) = 0, then it follows that h is constant, and thus h ≡ 0 by the boundary
conditions. Since both quadratic forms Q1(h) and Q0(h) are positive definite on
C1

0([a,b]), it follows that the convex combination Qs(h) is positive definite for all
s ∈ [0,1].

Let y : [0,1]× [a,b] → R denote the solutions to the corresponding Jacobi
equation (1.29) given by

d
dt
([sR+(1− s)] ẏ) = sQy, y(s,a) = 0, ẏ(s,a) = 1.

For s = 0, we have the trivial equation ÿ = 0 and thus y(0, t) = t − a, i.e., there
exists no time conjugate to a. We now show that this property is preserved along the
convex combination, and thus also for s = 1 there does not exist a time conjugate to
a in (a,b].

Consider the zero set Z of y away from the trivial portion for t = a (see
Fig. 1.10),

Z = {(s, t) ∈ [0,1]× (a,b] : y(s, t) = 0}.
Since ẏ(s,a) = 1, there exists an ε > 0 such that we actually have

Z ⊂ [0,1]× [a+ ε,b].



1.4 The Legendre and Jacobi Conditions 33

s=0 s=1

t=b

t=a

(s0,t0)

Fig. 1.10 The zero set Z

(For every s ∈ [0,1] there exists a neighborhood Us of (s,a) in [0,1]× [a,b] such that
y(s, t)> 0 for (s, t) ∈Us and t > 0. By compactness we can choose a uniform bound
ε > 0.) If (s0, t0) ∈Z , then ẏ(s0,t0) cannot vanish, since otherwise y(s, ·) vanishes
identically in t as a solution to a second-order linear differential equation that
vanishes with its derivative at t0. But this is not possible, since ẏ(s,a) = 1. Hence,
by the implicit function theorem, the equation y(s, t) = 0 can locally be solved for t
with a continuously differentiable function t = t(s) near any point (s0,t0)∈Z . Thus,
if (s0,t0) ∈ Z , then it follows that there exists a curve C ⊂ Z that passes through
(s0,t0) and can be described as the graph of some function ς : I → [a,b], s �→ ς(s),
defined on some maximal interval I ⊂ [0,1]. But this interval I must be all of [0,1].
For we always have ς(s) ≥ a+ ε , and thus C cannot leave the set [0,1]× [a,b]
through t = a. But it cannot escape through t = b either. For if for some s̄ ∈ [0,1] we
have y(s̄,b) = 0, then the function h defined by h(t) = y(s̄, t) lies in C1

0([a,b]), and
by integration by parts we have that

b∫

a

[sR(t)+ (1− s)] ḣ(t)2 + sQ(t)h(t)2dt

=

b∫

a

(
− d

dt

[
(sR(t)+ (1− s)) ḣ(t)

]
+ sQ(t)h(t)

)
h(t)dt = 0.

Since ḣ(a) = 1, h(·) = y(s̄, ·) is not identically zero, contradicting the fact that Qs(h)
is positive definite. But then the curve C must extend over the full interval I = [0,1]
with both ς(0) and ς(1) taking values in the open interval (a,b). But for s = 0
we have y(0, t) = t− a, and thus Z cannot intersect the segment {0}× [a+ ε,b].
Contradiction. Thus the set Z is empty. ��

We separately still formulate the following fact, which was shown in the proof of
Theorem 1.4.2.
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Corollary 1.4.2. If h ∈ C1
0([a,b]) is a solution to the Jacobi equation, then h ∈

kerQ, i.e.,

Q(h) =

b∫

a

R(t)ḣ(t)2 +Q(t)h(t)2dt = 0.

��
This fact, coupled with the preceding proof, also allows us to give the desired

second-order necessary condition for optimality of extremals:

Theorem 1.4.3. If R(t)> 0 and the quadratic functional

Q(h) =

b∫

a

R(t)ḣ(t)2 +Q(t)h(t)2dt

is positive semidefinite over C1
0([a,b]), then the open interval (a,b) contains no time

conjugate to a.

Proof. In this case, the convex combination Qs(h) defined in Eq. (1.30) is still
positive definite for s ∈ [0,1), and thus for these values there does not exist a
time c conjugate to a in (a,b]. In particular, the set Z therefore does not intersect
[0,1)× (a,b]. If there were to exist a time c ∈ (a,b) such that (1,c) ∈ Z , then,
since ẏ(1,c) = 0, there would exist a differentiable curve in Z that starts at the
point (1,c) and takes values in (a,b). Specifically, there would exist a differentiable
function ς defined over some interval [1− ε,1], ς : [1− ε,1]→ (a,b), s �→ ς(s),
such that (s,ς(s)) ∈Z . Contradiction. Note, however, that if Q(h) is only positive
semidefinite, then it is possible that b is conjugate to a and this gives rise to a
conjugate point (b,x∗(b)). This happens if the Jacobi equation has a nontrivial
solution that vanishes at t = b. ��

We summarize the necessary conditions for a weak minimum:

Corollary 1.4.3 (Necessary conditions for a weak local minimum). Suppose x∗ :
[a,b]→R is a weak local minimum for problem [CV]. Then

1. x∗ is an extremal, i.e., satisfies the Euler–Lagrange equation

d
dt

(
∂L
∂ ẋ

(t,x∗(t), ẋ∗(t))
)
=
∂L
∂x

(t,x∗(t), ẋ∗(t));

2. x∗ satisfies the Legendre condition, i.e.,

∂ 2L
∂ ẋ2 (t,x∗(t), ẋ∗(t))≥ 0 for all t ∈ [a,b];
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3. if x∗ satisfies the strengthened Legendre condition, i.e.,

∂ 2L
∂ ẋ2 (t,x∗(t), ẋ∗(t))> 0 for all t ∈ [a,b],

then the open interval (a,b) contains no times conjugate to a.

Definition 1.4.4 (Jacobi condition). An extremal x∗ that satisfies the strengthened
Legendre condition over the interval [a,b] satisfies the Jacobi condition if the
open interval (a,b) contains no time conjugate to a; if the half-open interval (a,b]
contains no time conjugate to a, the strengthened Jacobi condition is satisfied.

Theorem 1.4.4 (Sufficient conditions for a weak local minimum). An extremal
x∗ : [a,b]→ R that satisfies the strengthened Legendre and Jacobi conditions is a
weak local minimum for problem [CV].

Proof. Let μ = min[a,b] R(t)> 0 and for α ∈ [0,μ) consider the quadratic form

Qα(h) =

b∫

a

R(t)ḣ(t)2 +Q(t)h(t)2dt−α
b∫

a

ḣ(t)2dt

with corresponding Jacobi equation

d
dt

[(R(t)−α)ẏ(t)] = Q(t)y(t), y(a) = 0, ẏ(a) = 1.

The solutions yα(t) to this initial value problem depend continuously on the
parameter α , and by assumption no conjugate time c to a exists in the interval (a,b]
for α = 0. Hence it follows that the solution yα(t) does not vanish in the interval
(a,b] for sufficiently small α > 0, and thus, by Theorem 1.4.2, the quadratic form
Qα(h) is positive definite on C1

0([a,b]), i.e., for all h ∈ C1
0([a,b]), h = 0, we have

that
b∫

a

R(t)ḣ(t)2 +Q(t)h(t)2dt > α
b∫

a

ḣ(t)2dt.

This relation allows us to conclude that x∗ is a weak local minimum: Let h ∈
C1

0([a,b]) with small norm ‖h‖D = ‖h‖∞+
∥∥ḣ

∥∥
∞. Using Taylor’s theorem, the value

I[x∗+ h] of the objective can be expressed in the form

I[x∗+ h] = I[x∗]+ δ I[x∗](h)+
1
2
δ 2I[x∗](h)+ r(x∗;h)

with r(x∗;h) denoting the remainder. Since we are assuming that L is three times
continuously differentiable, the remainder can be expressed as a sum of bounded
terms multiplying a cubic expression in h and ḣ. This implies that r(x∗;h) can be
written in the form
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r(x∗;h) =

b∫

a

(
ξ (t)h(t)2 +ρ(t)ḣ(t)2)dt

and the terms ξ and ρ are of order O(‖h‖D), i.e., can be bounded by C‖h‖D for some
positive constant C. It follows from Hölder’s inequality (see Proposition D.3.1) that

h2(t) =

⎛
⎝

t∫

a

ḣ(s)ds

⎞
⎠

2

≤ (t− a)

t∫

a

ḣ(s)2ds≤ (t− a)

b∫

a

ḣ2(s)ds

and thus

b∫

a

h2(t)dt ≤ 1
2
(b− a)2

b∫

a

ḣ2(s)ds.

Hence

|r(x∗,h)| ≤C(1+
1
2
(b− a)2)

⎛
⎝

b∫

a

ḣ(t)2dt

⎞
⎠‖h‖D .

Since x∗ is an extremal, we have δ I[x∗](h) = 0, and from the calculation above,
the second variation can be bounded below as

δ 2I[x∗](h)> α
b∫

a

ḣ(t)2dt.

Thus, overall, we have that

I[x∗+ h]> I[x∗]+
1
2
α

b∫

a

ḣ(t)2dt−C

(
1+

1
2
(b− a)2

)⎛
⎝

b∫

a

ḣ(t)2dt

⎞
⎠‖h‖D

= I[x∗]+
(

1
2
α−C(1+

1
2
(b− a)2)‖h‖D

)⎛
⎝

b∫

a

ḣ(t)2dt

⎞
⎠

> I[x∗]

for sufficiently small ‖h‖D. Hence x∗ is a weak local minimum. ��
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1.5 The Geometry of Conjugate Points and Envelopes

The Jacobi equation (1.29) provides a simple and efficient means to calculate
conjugate points numerically. As an example, consider the problem of minimum
surfaces of revolution. In this case,

L(x, ẋ) = x
√

1+ ẋ2,

and thus

∂L
∂ ẋ

(x, ẋ) = x
ẋ√

1+ ẋ2
,

∂ 2L
∂x∂ ẋ

(x, ẋ) =
ẋ√

1+ ẋ2
,

∂ 2L
∂ ẋ2 (x, ẋ) =

x

(1+ ẋ2)
3
2

.

Along the extremal x∗(t) = β cosh
(

t−α
β

)
, t ≥ 0, we have that

R(t) =
∂ 2L
∂ ẋ2 (x∗(t), ẋ∗(t)) =

x∗(t)

(1+ ẋ∗(t)2)
3
2

=
β

cosh2
(

t−α
β

)

and

Q(t) =
∂ 2L
∂x2 (x∗(t), ẋ∗(t))−

d
dt

(
∂ 2L
∂x∂ ẋ

(x∗(t), ẋ∗(t))
)

=− ∂ 3L
∂x∂ ẋ2 (x∗(t), ẋ∗(t)) · ẍ∗(t) =−

ẍ∗(t)

(1+ ẋ∗(t)2)
3
2

=−
1
β cosh

(
t−α
β

)

cosh3
(

t−α
β

) =− 1
β

1

cosh2
(

t−α
β

) .

Thus, in differentiated form, the Jacobi equation becomes

R(t)ü+ Ṙ(t)u̇(t) = Q(t)u

with

Ṙ(t) =−2
sinh

(
t−α
β

)

cosh3
(

t−α
β

) .

Multiplying all terms by β 2

R(t) = β cosh2
(

t−α
β

)
, we obtain the following equivalent

formulation of the Jacobi equation:

β 2ÿ− 2β tanh

(
t−α
β

)
ẏ+ y = 0, y(0) = 0, ẏ(0) = 1.
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Fig. 1.11 Solution to the Jacobi equation

Since we are interested only in the zeros of nontrivial solutions to the Jacobi
equation, we can arbitrarily normalize the initial condition for the derivative, and
thus there is no need to multiply by 1

R(t) . This equation is easily solved numerically.
Figure 1.11 shows the solution of the Jacobi equation for the extremal with values

α =−pβ and β = x0
cosh p for x0 = 1 and p=−1.2 as a dashed curve and the extremal

as a solid curve. Note that the zero of the Jacobi equation exactly identifies the point
of tangency between the extremal and the envelope of the family of catenaries as the
conjugate point. This geometric feature is a general property of certain conjugate
points and is related to the fact that the Jacobi equation is the variational equation
of the Euler–Lagrange equation. We now develop these geometric properties.

We henceforth assume that L ∈C3 and that the strengthened Legendre condition
is satisfied along an extremal x∗. Under these conditions, the extremal x∗ can
be embedded into a 1-parameter family of extremals: it follows from Hilbert’s
differentiability theorem that x∗ ∈C2([a,b]), and the Euler–Lagrange equation can
be rewritten in the form

Lẋt +Lẋxẋ+Lẋẋẍ = Lx.

This is a regular second-order ordinary differential equation with continuous
coefficients which, in a neighborhood of the reference extremal t �→ (t,x∗(t), ẋ∗(t)),
can be written in the form

ẍ = F(t,x, ẋ)

with a continuously differentiable function F . For p in some neighborhood (−ε,ε)
of 0, there exists a solution x = x(t; p) to this equation for the initial conditions
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x(a; p) = x∗(a) = A and ẋ(a; p) = ẋ∗(a)+ p.

For p = 0, this is the reference extremal x∗ defined over [a,b]. Again, without
loss of generality we may assume that x∗ is defined on some open interval
containing [a,b], and thus by continuous dependence of the solutions of an ordinary
differential equation on initial conditions and parameters, for ε > 0 small enough
all the solutions x(·; p) will exist on some open interval containing [a,b]. Under
our assumptions, the solutions are also continuously differentiable functions of
the initial conditions. Thus x(t; p) is continuously differentiable in both t and p,
and the partial derivative with respect to the parameter p can be computed as
the solution to the corresponding variational equation. While this construction of
a parameterized family that contains the reference extremal is canonical for the
problem [CV], sometimes (like in the case of minimum surfaces of revolution)
other parameterizations may be preferred or may be more natural. We thus, more
generally, formalize the construction in the definition below.

Definition 1.5.1 (Parameterized family of extremals for problem [CV]). A C1-
parameterized family E of extremals for problem [CV] consists of a family x =
x(·; p) of solutions to the Euler–Lagrange equation defined over some domain D =
{(t, p) : p ∈ P, a≤ t < t f (p)} with P an open interval parameterizing the extremals
and t f : P→ R, p �→ t f (p), a function determining the interval of definition of the
extremal x(·; p), so that the following properties hold:

1. for all t ∈ [a,b], x(t;0)≡ x∗(t);
2. all extremals in the family satisfy the initial conditions

x(a; p) = A and
∂ ẋ
∂ p

(a; p) = 0 for all p ∈ P; (1.31)

3. the partial derivatives of x with respect to the parameter p exist, are continuous
as functions of both variables t and p, and satisfy

d
dt

(
∂x
∂ p

(t; p)

)
=

∂
∂ p

(
∂x
∂ t

(t; p)

)
=
∂ ẋ
∂ p

(t; p). (1.32)

Any member x(·; p) of this family is said to be embedded in a family of extremals.

The trivial (and useless) parameterization of the form x(t, p) ≡ x∗(t) for some
fixed extremal x∗ is excluded by the requirement that ∂ ẋ

∂ p (a; p) = 0 for all p ∈ P.
Note that the terminal condition is left unspecified or free in this definition.

The function t f could be in principle an arbitrary function that defines the limits
of the parameterization, possibly t f (p) ≡ ∞. It may define the full lengths of
the intervals for which the curves are extremals or it may somewhat arbitrarily
limit these intervals to make the parameterization injective due to some overlaps
that otherwise would occur. Note that if the strengthened Legendre condition is
satisfied, then solutions to the Euler–Lagrange equation are unique. But this is a
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second-order equation, and so uniqueness holds in (x, ẋ)-space. But we are inter-
ested in the projections of the solutions into x-space, and here overlaps may occur
as in the family of catenaries. Observe that the tangent vectors of the two catenaries
that intersect are always different at the point of intersection. For the family of
catenaries, we thus may take t f (p) ≡ ∞ to parameterize the full family or simply
limit the domains to [0, tc(p)) to have an injective parameterization. But for the
moment, injectivity of the parameterization is not required in this definition, and it is
allowed that extremals in the family intersect. Summarizing the earlier construction,
we have shown the following result:

Corollary 1.5.1. If x∗ is an extremal that satisfies the strengthened Legendre condi-
tion over [a,b], then there exist an ε > 0 and a continuously differentiable function
t f that satisfies t f (p) > b for all p ∈ (−ε,ε), so that x∗ can be embedded into a
C1-parameterized family of extremals with domain D = {(t, p) : p ∈ (−ε,ε), a ≤
t < t f (p)} and x(t;0) = x∗(t) for all t ∈ [a,b]. �

These parameterizations are closely connected with the solutions to the Jacobi
equation.

Theorem 1.5.1. Let x = x(t; p) be a C1-parameterized family of extremals. Then
for every p ∈ P, the function

y(t; p) =
∂x
∂ p

(t; p)

is a non-trivial solution to the Jacobi equation on the interval [a,b] that satisfies
y(a; p) = 0.

Proof. Clearly, since x(a; p) = A, we have y(a; p) = 0 and also

ẏ(a; p) =
d
dt |t=a

(
∂x
∂ p

(t; p)

)
=
∂ ẋ
∂ p

(a; p) = 0

for all p ∈ P. It follows that none of the functions y(·; p) vanishes identically, and
thus it remains only to verify that y satisfies the Jacobi equation. We differentiate
the Euler–Lagrange equation,

d
dt

(
∂L
∂ ẋ

(t,x(t; p), ẋ(t; p))

)
=
∂L
∂x

(t,x(t; p), ẋ(t; p)),

with respect to p and interchange the derivatives with respect to p and t. This gives
(and for simplicity, we drop the arguments (t; p) in x and ẋ)

d
dt

(
∂ 2L
∂ ẋ∂x

(t,x, ẋ)
∂x
∂ p

+
∂ 2L
∂ ẋ2 (t,x, ẋ)

∂ ẋ
∂ p

)
=
∂ 2L
∂x2 (t,x, ẋ)

∂x
∂ p

+
∂ 2L
∂x∂ ẋ

(t,x, ẋ)
∂ ẋ
∂ p

.
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Computing the time derivative on the left and writing y and ẏ for the partial
derivatives in p yields

d
dt

(
∂ 2L
∂ ẋ∂x

(t,x, ẋ)

)
y+

(
∂ 2L
∂ ẋ∂x

(t,x, ẋ)

)
ẏ+

d
dt

(
∂ 2L
∂ ẋ2 (t,x, ẋ)

)
ẏ+

(
∂ 2L
∂ ẋ2 (t,x, ẋ)

)
ÿ

=
∂ 2L
∂x2 (t,x, ẋ)y+

∂ 2L
∂x∂ ẋ

(t,x, ẋ)ẏ,

and upon simplification, thus

(
∂ 2L
∂ ẋ2 (t,x, ẋ)

)
ÿ+

d
dt

(
∂ 2L
∂ ẋ2 (t,x, ẋ)

)
ẏ =

(
∂ 2L
∂x2 (t,x, ẋ)−

d
dt

(
∂ 2L
∂ ẋ∂x

(t,x, ẋ)

))
y,

i.e.,

d
dt

(R(t)ẏ(t)) = R(t)ÿ(t)+ Ṙ(t)ẏ(t) = Q(t)y(t).

Hence, y is a solution to the Jacobi equation. ��
Corollary 1.5.2. Given a C1-parameterized family of extremals, x = x(t; p), let
y(t; p) be the solution of the corresponding Jacobi equation with initial condition
y(a; p) = a and ẏ(a; p) = ∂x

∂ p(a; p). Then

x(t; p) = x∗(t)+ y(t; p)p+ρ(t; p),

where the remainder ρ satisfies limp→0
ρ(t;p)

p = 0 uniformly over the compact
interval [a,b].

We furthermore have the following characterization of conjugate points:

Corollary 1.5.3. Given a C1-parameterized family of extremals, x= x(t; p), defined
over D = {(t, p) : p ∈ P, a ≤ t < t f (p)}, a point (tc,x(tc; pc)) with (tc, pc) ∈ D is a
conjugate point to (a,A) if and only if

∂x
∂ p

(tc; pc) = 0. (1.33)

For a C1-parameterized family of extremals, conjugate points are thus charac-
terized by one inequality condition, the transversality condition ẏ(a; p) = 0 that
guarantees that the solution of the Jacobi equation is nontrivial, and one equality
condition. Conjugate points can then be classified further by means of singularity
theory according to the order of contact that the zero of ∂x

∂ p (tc; ·) has with zero at pc.
The least degenerate situation arises if the order of contact is 1, i.e., if the second
partial derivative in p does not vanish at the conjugate point. This is the most typical
scenario, and we shall now show that these so-called fold points exhibit the same
geometry as occurs for the problem of minimum surfaces of revolution.
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Definition 1.5.2 (Fold points). Let E be a C1-parameterized family of extremals
defined on the set D= {(t, p) : p∈ P, a≤ t < t f (p)}. A conjugate point (tc,x(tc; pc))
with (tc, pc) ∈ D is called a fold point if

∂ 2x
∂ p2 (tc; pc) = 0.

If a fold occurs at the point (tc, pc), then the function p �→ x(tc; p) has a local
minimum or maximum at pc, and for points p close enough to pc it resembles a
parabola, whence the name for this singularity.

The conjugate points for the problem of minimum surfaces of revolution are all
fold points: In this case, the parameterization of the smooth extremals given earlier
in Eq. (1.16),

x(t; p) =
x0

cosh p
cosh

(
p+

t
x0

cosh p

)
, t > 0, p ∈ R,

is real analytic, and we have x(0; p)≡ x0 and

d
dt |t=0

(
∂x
∂ p

(t; p)

)
=
∂ ẋ
∂ p

(0; p) =
∂
∂ p

(sinh p) = cosh p≥ 1.

The condition ∂ 2x
∂ p2 (tc; pc) > 0 was verified for any stationary point in the proof of

Theorem 1.3.1, and it follows from this proof that every extremal t �→ x(t; p) has a
unique conjugate point at which its graph is tangent to the envelope C and the locus
of all conjugate points is this envelope C.

The same geometric properties are generally valid near fold points (tc,xc) =

(tc,x(tc; pc)) of a C1-parameterized family of extremals: since ∂ 2x
∂ p2 (tc; pc) = 0, by

the implicit function theorem, there exist an ε > 0 and a continuously differentiable
function p∗ defined on the interval (tc− ε, tc + ε) with values in P,

p∗ : (tc− ε, tc + ε)→ P, t �→ p∗(t),

such that

∂x
∂ p

(t, p∗(t)) = 0 for all t ∈ (tc− ε, tc + ε). (1.34)

Thus, the curve

C : (tc− ε, tc + ε)→ [a,∞)×R, t �→ (t,x(t, p∗(t)),

that is, the graph of the function t �→ x(t, p∗(t)), is an envelope to the parameterized
family of extremals at the fold point (tc,xc) that entirely consists of conjugate points
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for the problem [CV]. The envelope condition (1.34) expresses the geometric fact
that the derivative of the function

γ : (tc− ε, tc + ε)→R, t �→ γ(t) = x(t, p∗(t)),

at time t is the same as the time derivative of the extremal corresponding to the
parameter p∗(t). In other words, the curve C and the graph of the extremal x(·; p∗(t))
not only are tangent, but even have the same tangent vector at time t. This allows us
to construct a 1-parameter family of continuously differentiable functions Γt for t ∈
(tc− ε, tc] by concatenating the extremal x(·; p∗(t)) corresponding to the parameter
value p∗(t) and restricted to the interval [a, t] with the restriction of the function γ
defining the envelope to the interval [t, tc], i.e.,

Γt(s) =

{
x(s; p∗(t)) if a≤ s≤ t,

x(s; p∗(s)) if t ≤ s≤ tc.

This curve Γt is continuously differentiable at time t because of the envelope
condition (1.34). Thus, each of these curves is admissible for the problem [CV]
with boundary conditions

x(a) = A and x(tc) = xc = x(tc; pc).

The significant observation in this context now is the fact that all these curves have
the same value for the objective,

I[x] =

tc∫

a

L(s,x(s), ẋ(s))ds.

Theorem 1.5.2 (Envelope theorem). For all t ∈ (tc− ε, tc] we have that

I[Γt ] = const. (1.35)

This result typically allows us to exclude the optimality of the extremal Γtc , i.e.,
of the extremal in the field corresponding to parameter value pc defined over the
interval [a, tc]. For if this curve is optimal, then by the envelope theorem, so are all
the other curves Γt for t ∈ (tc− ε, tc). But this requires Γt to be an extremal. Thus,
if the envelope is not a solution to the Euler–Lagrange equation (as, for example, is
the case for the problem of minimum surfaces of revolution), this already provides a
contradiction. A sufficient condition for this to be the case in general again is that the
extremal x(·; pc) satisfy the strengthened Legendre condition over the closed interval
[a, tc]. For in this case, the Euler–Lagrange equation with terminal conditions

x(tc) = γ(tc) = x(tc; pc) and ẋ(tc) = ẋ(tc; pc) (1.36)
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has a unique solution that is given by the extremal x(·; p∗(t)). But this extremal
cannot be equal to the curve t �→ (t,x(t; p∗(t))), since otherwise,

∂x
∂ p

(t; pc) =
∂x
∂ p

(t; p∗(t)) = 0

implies that ∂x
∂ p(·; pc) vanishes identically (as solution to the Jacobi equation), and

this contradicts the condition ∂ ẋ
∂ p(a; pc) = 0 in the definition of a parameterized

family of extremals. Hence, x(·; pc) and Γt are different solutions to the Euler–
Lagrange equation with terminal data (1.36). Contradiction. We thus have the
following:

Corollary 1.5.4. Let x∗ be an extremal that satisfies the strengthened Legendre con-
dition over the interval [a,b] and suppose x∗ is embedded into a C1-parameterized
family of extremals. If the conjugate point (tc,xc) = (tc,x(tc; pc)) is a fold point
of the parameterization, then the restriction of x∗ to the interval [a, tc] is not a
weak local minimum for the problem [CV ] with boundary data x(a) = A and
x(tc) = xc. �

It remains to prove the envelope theorem: We verify that I[Γt ] is differentiable
with derivative 0,

I[Γt ] =

t∫

a

L(s,x(s; p∗(t)), ẋ(s; p∗(t)))ds+

tc∫

t

L(s,x(s; p∗(s)), ẋ(s; p∗(s)))ds.

Recall that the curve s �→ x(s; p∗(s)) describes the envelope and that its derivative
is simply given by ẋ(s; p∗(s)), since ∂x

∂ p (s; p∗(s)) ≡ 0. Thus, by the regularity
assumptions made, this function is continuously differentiable in t and we have that

İ[Γt ] =
dI
dt

[Γt ] = L(t,x(t; p∗(t)), ẋ(t; p∗(t)))

+

⎡
⎣

t∫

a

(
∂L
∂x

(s,x(s; p∗(t)), ẋ(s; p∗(t)))
)
∂x
∂ p

(s; p∗(t))ds

⎤
⎦ ṗ∗(t)

+

⎡
⎣

t∫

a

(
∂L
∂ ẋ

(s,x(s; p∗(t)), ẋ(s; p∗(t)))
)
∂ ẋ
∂ p

(s; p∗(t))ds

⎤
⎦ ṗ∗(t)

−L(t,x(t; p∗(t)), ẋ(t; p∗(t))).

Integrate the term ∂L
∂ ẋ

∂ ẋ
∂ p by parts to get
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t∫

a

∂L
∂ ẋ

(s,x(s; p∗(t)), ẋ(s; p∗(t)))
∂ ẋ
∂ p

(s; p∗(t))ds

=

(
∂L
∂ ẋ

(s,x(s; p∗(t)), ẋ(s; p∗(t)))
∂x
∂ p

(s; p∗(t))
)∣∣∣∣

s=t

s=a

−
t∫

a

d
dt

(
∂L
∂ ẋ

(s,x(s; p∗(t)), ẋ(s; p∗(t)))
)
∂x
∂ p

(s; p∗(t))ds.

For any C1-parameterized family of extremals and any parameter p, we have that

∂x
∂ p

(a; p) = 0

and since the point (t,x(t; p∗(t)) is a conjugate point to (a,A)—this is precisely the
meaning of the envelope condition (1.34)—we also have that

∂x
∂ p

(t; p∗(t)) = 0.

Hence

İ[Γt ] =
dI
dt

[Γt ]

=

⎛
⎝

t∫

a

[(
∂L
∂x
− d

dt
∂L
∂ ẋ

)
(s,x(s; p∗(t)), ẋ(s; p∗(t)))

]
∂x
∂ p

(s; p∗(t))ds

⎞
⎠ ṗ∗(t),

and this term vanishes, since x(·; p∗(t)) is an extremal. �
Thus, in a C1-parameterized family of extremals, local optimality ceases at

conjugate points (tc,xc) = (tc,x(tc; pc)) that are fold points. If the conjugate point
(tc,xc) is not a fold point, then it is possible that the restriction of an extremal x∗ to
the interval [a, tc] still provides a weak local minimum. For example, this can happen
for the next degenerate type of conjugate points, so-called simple cusp points. These
are conjugate points such that

∂ 2x
∂ p2 (tc; pc) = 0, but

∂ 3x
∂ p3 (tc; pc) = 0.

We will describe the geometric properties of optimal solutions near this singularity
more generally in Sect. 5.5, for the optimal control problem. In contrast to the
geometry of fold points, this structure seems to have attracted little attention in
the calculus of variations, but it is equally important, if not more so, in optimal
syntheses for control problems.
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We close this section with another classical geometric characterization of general
conjugate points, which, at times, has been taken as a definition of conjugate points.

Proposition 1.5.1. Let x∗ be an extremal along which the strengthened Legendre
condition is satisfied. Then (c,(x∗(c)) is a conjugate point to (a,x∗(a)) if and only
if (c,(x∗(c)) is the limit point of points of intersection between the graph of x∗ and
graphs of neighboring extremals drawn from the same initial point (a,x∗(a)).

Proof. For p in some neighborhood (−ε,ε) of 0, let x = x(t; p) be the embedding
of the extremal x∗ constructed in Proposition 1.5.1 and denote the difference with
the reference extremal x∗ by

Δ(t; p) = x(t; p)− x(t;0) = x(t; p)− x∗(t).

For p = 0, we have Δ(t;0)≡ 0, and thus it is possible to factor p from this equation
and rewrite Δ in the form Δ(t; p) = pΩ(t; p). Let y(t) be the solution to the Jacobi
equation and note that

y(t) =
∂x
∂ p

(t;0) =
∂Δ
∂ p

(t;0) =Ω(t;0).

A time c is conjugate to a if and only if y(c) = 0. Since y does not vanish identically,
we have ẏ(c) = 0 and thus

∂Ω
∂ t

(c;0) = ẏ(c) = 0.

Hence, by the implicit function theorem, there exists a unique solution t = tc(p) of
the equationΩ(t; p) = 0 near the point (c,0). Consequently, for all sufficiently small
|p|, p = 0, there exist zeros of Δ(·; p). That is, there exist points of intersection of
the graphs of x∗ and x(·; p) that converge to (c,(x(c)) as p→ 0.

Conversely, if such a sequence {(tn, pn)}n∈N with (tn, pn)→ (c,0) exists, then

y(c) =Ω(c;0) = lim
n→∞Ω(tn; pn) = 0,

and thus c is a conjugate time to a for x∗. ��
This geometric characterization is sometimes useful in recognizing conjugate

points that are not easily characterized otherwise (see Fig. 1.12). The best example
for this is given by the cycloids of the brachistochrone problem. In the field Ξ
defined in Eq. (1.12),

Ξ : (−π ,π)× (0,∞)→ R
2
+ = {(α,β ) : α > 0,β > 0},

(τ,ξ ) �→ (t(τ),x(τ)) = (ξ (π+ τ+ sinτ),ξ (1+ cosτ)),
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Fig. 1.12 “Conjugate” point for the family of cycloids

we somewhat justifiably, but nevertheless mathematically arbitrarily, restricted the
parameterizations to traverse exactly one cycle. Obviously, otherwise the cycloids
start to overlap, and we do not want that. Nevertheless, these curves are extremals,
and the natural range for the parameterization would be τ ≥ −π . Also, the full
range of terminal points for the problem is not R2

+, but {(b,B) : b ≥ 0,B ≥ 0}.
Clearly, if the endpoint (b,B) lies on the x-axis, b = 0, the optimal solution is
simply the straight line corresponding to free fall. If the endpoint lies on the t-
axis, B = 0, naturally we expect the catenary that reaches this point after exactly
one cycle to be the optimal one. Being mathematically rigorous, however, once we
allow curves to lie in {(α,β ) : α ≥ 0,β ≥ 0}, we see that for many points there
exist multiple extremals that pass through (b,B) consisting of cycloids that hit the
line x = 0 orthogonally and reflect. However, it is clear that these extremals intersect
with nearby extremals for parameter values τ > π . It follows from the argument in
the proof of Proposition 1.5.1 that the times τ = π are all conjugate times to the
initial time −π chosen for the parameterization. (Note that this direction of the
argument is generally valid.) Reasoning by means of analogy, we would expect
that the cycloids are no longer optimal for values τ > π , and this is indeed correct.
However, this does not follow from the theory developed so far. For if we insist on
a formulation of the curves as graphs of differentiable functions, the cycloids have
singularities at both their initial and terminal points, and thus the theory developed
above is not applicable. If we use parameterizations, there are no problems at the
endpoints±π of the parameter interval, but we need to consider a two-dimensional
version of Jacobi’s theorem, and this simply would lead us too far astray here
given the introductory nature of this chapter. Thus, we simply present the very
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convincing picture and leave these statements unproven. But note that the cycloids
are still optimal for τ = π , in contrast to the situation for the minimum surfaces
of revolution. We shall encounter the very same geometric properties in Sect. 6.1.3,
when we consider transversal folds, the generalization of conjugate points to bang-
bang extremals in the optimal control problem.

1.6 Fields of Extremals and the Weierstrass Condition

We once again return to the problem of minimum surfaces of revolution. By now, we
know that for every extremal x(·; p), there exists a unique conjugate time tc = tc(p)
and that the extremal x(·; p) is no longer optimal on intervals [a,b] if b ≥ tc(p). For
b = tc(p) this was just verified in Corollary 1.5.4, and for b > tc(p) this is clear by
the Jacobi necessary condition. This leaves us with the central field F defined by Ξ
in Eq. (1.24) with the domain restricted to the intervals (0, tc(p)). This field covers
the region R above the envelope C diffeomorphically. It is tempting to conjecture
that all extremals in this field are optimal, but as will be seen in Sect. 1.7, this is not
true. By the way, existence theory is not of any help here, since this problem does
not have a solution for all terminal points in the class of positive (or more generally,
nonnegative) differentiable functions. Clearly, also for points (t1,x1) in the region
S below the curve C of conjugate points, differentiable curves exist that connect
(0,x0) with (t1,x1), but there is no optimal one. For if there were one, it would need
to be an extremal. But no catenaries pass through (0,x0) and points (t1,x1) ∈ S; and
catenaries are the only extremals. It is correct, and this will be shown below, that the
catenaries in the field F are better than any other differentiable curve whose graph
lies in the region R; that is, the catenaries provide a strong local minimum. But this
minimum is not global.

Having a C1-parameterized family of extremals that diffeomorphically covers
some region R in itself is not sufficient to have local minima, but an additional
necessary condition for optimality needs to be satisfied, the so-called Weierstrass
condition. The reason lies with the fact that so far, we have developed necessary
conditions for optimality only for a weak local minimum, but optimality over a
region R of endpoints is a strong minimum property, and the Weierstrass condition
is necessary for strong minima, but not for weak ones. We now develop these results
and again consider the scalar fixed endpoint problem [CV] as defined earlier, that is,
the problem to minimize the functional

I[x] =

b∫

a

L(t,x(t), ẋ(t))dt

over all continuously differentiable curves x ∈ C1([a,b]) that satisfy the boundary
conditions x(a) = A and x(b) = B. However, now we not only aim at solving this
problem for one specific point (b,B), but want to solve the problem for arbitrary
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terminal points. We keep the notation of (t,x) for the curves and change the notation
for the terminal point to the more convenient (s,z), i.e., x(s) = z.

Definition 1.6.1 (Central field). A central field of extremals, F , is a parameter-
ized family of extremals for the problem [CV] with domain D = {(t, p) : p ∈ P, a≤
t < t f (p)} for which the associated flow map restricted to the interior of D, D̊,

� : D̊ = {(t, p) : p ∈ P, a < t < t f (p)}→ R, (t, p) �→�(t, p) = (t,x(t, p)), (1.37)

is a diffeomorphism onto the simply connected1 region R = �(D̊). Recall, by the
definition of a C1-parameterized family of extremals, that we have x(a; p) ≡ A for
all p ∈ P.

Thus, we now assume that except for the initial point (a,A), for which all
extremals coincide, there are no further overlaps in the family of extremals and away
from (a,A), the graphs of the extremals in the field cover the region R bijectively.
Thus, if (s,z) is a point in R, then there exists a unique extremal t �→ x(t; p) of the
field F that passes through the point z at time s, z = x(s; p). Collectively, the tangent
vectors ẋ(s; p) at the points z = x(s; p) define a field of directions on R,

ż(s) =Ψ(s,z), (1.38)

which is referred to as a central field. Note that both the field of cycloids for the
brachistochrone problem and the field of restricted catenaries defined in Eq. (1.24)
are central fields in this sense. For the catenaries, this is immediate from the
parameterization (1.16) given in Sect. 1.3; for the field of cycloids defined in
Eq. (1.12) this follows upon a suitable reparameterization that inverts the map
τ �→ t(τ). In general, we have the following fundamental local embedding result:

Proposition 1.6.1. Let x∗ be an extremal that satisfies the strengthened Legendre
condition over [a,b] for which there does not exist a conjugate time tc ∈ (a,b]. Then
x∗ can be embedded into a central field of extremals, F , with domain D = {(t, p) :
p ∈ (−ε,ε), a ≤ t < t f (p)}, where ε > 0 and t f is a continuously differentiable
function that satisfies t f (p) > b for all p ∈ (−ε,ε). By construction, x(t;0) = x∗(t)
for all t ∈ [a,b].

Proof. It was already shown in the proof of Proposition 1.5.1 that for p in some
neighborhood (−ε,ε) of 0, the solutions x = x(t; p) to the Euler–Lagrange equation
with initial conditions

x(a; p) = x∗(a) = A and ẋ(a; p) = ẋ∗(a)+ p

1A precise definition of this term lies beyond the scope of this text, but the common calculus
characterization as a connected set “without holes” suffices for our purposes.
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define a C1-parameterized family of extremals for the problem [CV] with domain
D = {(t, p) : p ∈ (−ε,ε), a≤ t < t f (p)} that satisfies t f (p)> b for all p ∈ (−ε,ε).
If there does not exist a conjugate time along the reference trajectory, then it also
follows from Proposition 1.5.1 that for sufficiently small ε > 0 the graphs of these
extremals do not intersect, or in other words, the flow map

� : D̊→ R, (t, p) �→�(t, p) = (t,x(t, p))

is a diffeomorphism. This is a direct consequence of the relation

x(t; p) = x∗(t)+ py(t)+ o(t; p),

where y(·) is the solution of the Jacobi equation along the extremal x∗. ��
Definition 1.6.2 (Value function). Let F be a central field of extremals for the
problem [CV] that covers a simply connected region R of (a,∞)×R. The associated
value function VF ,

V F : R→ R, (s,z) �→VF (s,z),

is defined as

VF (s,z) =VF (s,x(s; p)) =

s∫

a

L(t,x(t; p), ẋ(t; p))dt,

where x(·; p) is the unique extremal in the field that passes through z at time s,
z = x(s; p).

If we define the parameterized cost along the extremals of the field as

C(s; p) =

s∫

a

L(t,x(t; p), ẋ(t; p))dt,

then it is clear that V ◦�=C. The function C is continuously differentiable (F is a
C1-parameterized family of extremals), and since � is a diffeomorphism, it follows
that V is continuously differentiable on R.

Note that the mapping

gr VF : D→ [a,∞)×R×R, (t, p) �→ (t,x(t, p),C(t, p)), (1.39)

gives a parameterization of the graph of the value function associated with the
family, and more generally, even for a C1-parameterized family of extremals with
overlaps, this construction provides a simple and efficient way of generating the
graph of this possibly multivalued function. Figure 1.13 shows a portion of this
multivalued graph for the family of catenaries based on Eqs. (1.46) and (1.47) given
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Fig. 1.13 The multivalued graph gr VF of the value function VF for the family of catenaries

later in Sect. 1.7. We shall also use this correspondence extensively in Sects. 5.4 and
5.5 when we study singularities for the value function of an optimal control problem.

Theorem 1.6.1. The value function VF is continuously differentiable on R and the
differential of V F is given by

dVF =

(
L(s,z,Ψ (s,z))− ∂L

∂ ẋ
(s,z,Ψ (s,z))Ψ (s,z)

)
ds+

∂L
∂ ẋ

(s,z,Ψ (s,z))dz.

(1.40)

Proof. To simplify the notation, we write V for VF . It follows from V (s,x(s; p)) =
C(s, p) that

∂V
∂ s

(s,x(s; p))+
∂V
∂ z

(s,x(s; p))ẋ(s; p) =
∂C
∂ s

(s, p)

and

∂V
∂ z

(s,x(s; p))
∂x
∂ p

(s; p) =
∂C
∂ p

(s, p).
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Solving for the gradient of V gives

(
∂V
∂ s

(s,x(s; p)),
∂V
∂ z

(s,x(s; p))

)

=

(
∂C
∂ s

(s, p),
∂C
∂ p

(s, p)

)⎛
⎜⎝

1 0

ẋ(s; p) ∂x
∂ p(s; p)

⎞
⎟⎠
−1

=

(
∂C
∂ s

(s, p),
∂C
∂ p

(s, p)

)
1

∂x
∂ p(s; p)

⎛
⎜⎝

∂x
∂ p (s; p) 0

−ẋ(s; p) 1

⎞
⎟⎠ .

We have that
∂C
∂ s

(s, p) = L(s,x(s; p), ẋ(s; p))

and

∂C
∂ p

(s, p) =

s∫

a

(
∂L
∂x

(t,x(t; p), ẋ(t; p))
∂x
∂ p

(t; p)+
∂L
∂ ẋ

(t,x(t; p), ẋ(t; p))
∂ ẋ
∂ p

(t; p)

)
dt.

Integrating by parts, exactly as in the proof of the envelope theorem, we get for this
term that

∂C
∂ p

(s, p) =

s∫

a

[
∂L
∂x

(t,x(t; p), ẋ(t; p))− d
dt

(
∂L
∂ ẋ

(t,x(t; p), ẋ(t; p))

)]
∂x
∂ p

(t; p)dt

+
∂L
∂ ẋ

(s,x(s; p), ẋ(s; p))
∂x
∂ p

(s; p)

=
∂L
∂ ẋ

(s,x(s; p), ẋ(s; p))
∂x
∂ p

(s; p),

since x(·; p) is an extremal. Thus, overall, we have that

(
∂V
∂ s

(s,x(s; p)),
∂V
∂ z

(s,x(s; p))

)

=

(
L(s,x(s; p), ẋ(s; p)),

∂L
∂ ẋ

(s,x(s; p), ẋ(s; p))
∂x
∂ p

(s; p)

)
1

∂x
∂ p (s; p)

(
∂x
∂ p(s; p) 0

−ẋ(s; p) 1

)

=

(
L(s,x(s; p), ẋ(s; p))− ∂L

∂ ẋ
(s,x(s; p), ẋ(s; p))ẋ(s; p),

∂L
∂ ẋ

(s,x(s; p), ẋ(s; p))

)
.
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If we now replace x(s; p) by z and ẋ(s; p) by the directionΨ(s,z) of the field, see
Eq. (1.38), then we get that

(
∂V
∂ s

(s,z),
∂V
∂ z

(s,z)

)

=

(
L(s,z,Ψ (s,z))− ∂L

∂ ẋ
(s,z,Ψ (s,z))Ψ (s,z),

∂L
∂ ẋ

(s,z,Ψ (s,z))

)

and the result follows. ��
Deviating slightly from historical custom, for (t,x) ∈ R and λ ∈ R we define the

Hamiltonian function H as

H : R×R→R, (t,x,λ ) �→ H(t,x,λ ) = L(t,x,Ψ (t,x))+λΨ(t,x),

and also define a function

λ : R→ R, (t,x) �→ λ (t,x) =−∂L
∂ ẋ

(t,x,Ψ (t,x)). (1.41)

The Hamiltonian defined in this way is simply the negative of the classical form
in physics and the calculus of variations. It will become clear in Sect. 1.10 why
we prefer this formulation. Using this notation, we then can employ the differential
dVF to compute VF (s,z) as a line integral along any rectifiable curve Γ that lies
in R (except for its initial point which needs to be given by (a,A)) and has terminal
point (s,z) as

V F (s,z) =
∫
Γ

dVF =

∫
Γ

H(t,x,λ (t,x))dt−λ (t,x)dx

=
∫
Γ

L(t,x,Ψ (t,x))dt +λ (t,x) [Ψ(t,x)dt− dx] . (1.42)

This integral is called the Hilbert invariant integral and is the key tool in proving
strong local optimality of the extremals in the field relative to any other function
whose graph lies in R. In fact, these functions need not be continuously differ-
entiable, but can have corners. We say that a continuous function x̃ : [a,s]→ R,
t �→ x̃(t), is piecewise continuously differentiable if there exists a finite partition
a = t0 < t1 < · · · < tr < tr+1 = s of the interval [a,s] such that the restrictions of
x̃ to the intervals [ti, ti+1] lie in C1([ti, ti+1]), and we denote the space of all these
functions by C1

pc([a,s]). We call a function x̃∈C1
pc([a,s]) admissible for the region R

if x̃(a) = A and (t, x̃(t)) ∈ R for all t ∈ (a,s]. Clearly, we can perform the integration
in (1.42) piecewise, and thus we can take as the curveΓ the graph of any admissible
function x̃ ∈C1

pc([a,s]).
Let x̃ ∈ C1

pc([a,s]) be any admissible function for the region R (in particular
x̃(s) = z) and denote its graph by Γ̃ . We then have that
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ψ

L(t,x,y)

L(t,x,ψ)− ∂yL(t,x,ψ)(y−ψ)

E(t,x,ψ,y) 

Fig. 1.14 The Weierstrass
excess function

I[x̃] =
∫
Γ̃

L(t, x̃, ˙̃x)dt =

s∫

a

L(t, x̃(t), ˙̃x(t))dt

and

V F (s,z) =
∫
Γ̃

L(t, x̃,Ψ(t, x̃))dt +λ (t, x̃) [Ψ(t, x̃)dt− dx̃] .

By construction, VF (s,z) is the cost of the extremal x∗ in the field that passes
through z at time s, and thus the difference I[x̃]− I[x∗] can be expressed as

I[x̃]− I[x∗] =
∫
Γ̃

[
L(t, x̃, ˙̃x)−L(t, x̃,Ψ (t, x̃))

]
dt− ∂L

∂ ẋ
(t, x̃,Ψ(t, x̃)) [dx̃−Ψ(t, x̃)dt] .

(1.43)

Definition 1.6.3 (Weierstrass excess function). The Weierstrass excess function

E : (a,∞)×R×R×R→ R, (t,x,ψ ,y) �→ E(t,x,ψ ,y)

is defined as

E(t,x,ψ ,y) = L(t,x,y)−L(t,x,ψ)− ∂L
∂ ẋ

(t,x,ψ)(y−ψ).

Geometrically, if we regard L(t,x,y) as a function of y for (t,x) fixed, then the
excess function E is simply the vertical distance between the point L(t,x,y) on
the graph and the value at y of the tangent line through the point L(t,x,ψ), i.e.,
L(t,x,ψ)+ ∂L

∂ ẋ (t,x,ψ)(y−ψ) (see Fig. 1.14).

Definition 1.6.4 (Weierstrass condition). Let F be a central field of extremals for
the problem [CV] that covers a simply connected region R of (a,∞)×R with field
of directions ẋ =Ψ(t,x). The Weierstrass condition is satisfied on the region R if for
all (t,x) ∈ R and all y ∈ R we have that

E(t,x,Ψ(t,x),y)≥ 0.
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Thus, the Weierstrass condition is a convexity statement that requires that for
every (t,x) ∈ R, the graph of the function y �→ L(t,x,y) lie above the tangent line
to this graph through the point Ψ(t,x). This will automatically be satisfied if the
function L(t,x, ẋ) is convex in ẋ. For example, this applies to integrands of the form
L(x, ẋ) = f (x)

√
1+ ẋ2 for some positive function f . Hence the Weierstrass condition

is satisfied for both the brachistochrone problem and the problem of minimum
surfaces of revolution.

Theorem 1.6.2 (Sufficient condition for a strong minimum). Let Γ ∈C1([a,b])
be an extremal for the problem [CV] and suppose there exists a central field of
extremals, F , that covers a simply connected region R of (a,∞)×R with field
of directions given by ẋ =Ψ (t,x) such that Γ is a member of the field F . If the
Weierstrass condition is satisfied on R, then Γ is minimal when compared with any
other function from C1

pc([a,b]) that satisfies the same boundary conditions as Γ
and whose graph (with the exception of the initial condition) lies in the region R.
In particular, Γ is a strong local minimum.

Proof. Let x̃∈C1
pc([a,s]) be any admissible function for problem [CV] that satisfies

the same boundary conditions asΓ and whose graph Γ̃ lies in R except for the initial
condition. By Eq. (1.43), the difference in the objectives between the curve Γ̃ and
the extremal Γ can be expressed as

I[x̃]− I[x∗] =
s∫

a

E
(
t, x̃(t),Ψ(t, x̃(t)), ˙̃x(t)

)
dt ≥ 0, (1.44)

and thus the result follows. ��
We close this section by showing that the Weierstrass condition also is a

necessary condition for strong optimality for extremals.

Theorem 1.6.3 (Weierstrass condition as necessary condition for a strong
minimum). Suppose x∗ ∈ C1

pc([a,b]) is a broken extremal that is a strong local
minimum for problem [CV]. Then for all y ∈ R and all t ∈ [a,b], we have that

E(t,x∗(t), ẋ∗(t),y)≥ 0. (1.45)

Proof. It suffices to prove the inequality for all times t when x∗ is continuously
differentiable. By taking appropriate limits from the left and right, Eq. (1.45) then
holds everywhere in [a,b].

Let t0 ∈ (a,b) be a time such that x∗ is continuously differentiable at t0 and set
x0 = x∗(t0) and ẋ0 = ẋ∗(t0). Let y∈R

n and pick δ > 0 such that t0+δ < b and let ε ∈
(0,1) (see Fig. 1.15). Define a 2-parameter family of arcs x(·;ε,δ ) ∈C1

pc([a,b]) as

x(t;ε,δ ) =

⎧⎪⎪⎨
⎪⎪⎩

x∗(t) for a≤ t ≤ t0 and t0 + δ ≤ t ≤ b,

x∗(t)+ (t− t0)(y− ẋ0) for t0 ≤ t ≤ t0 + εδ ,
x∗(t)+ ε

1−ε (t0 + δ − t)(y− ẋ0) for t0 + εδ ≤ t ≤ t0 + δ .



56 1 The Calculus of Variations

t0 t0+ed t0+d

x∗

Fig. 1.15 The variation
x(t;ε ,δ )

Since x∗ is a strong local minimum, there exists an open neighborhood R of the
restriction of the graph of x∗ to the half-open interval (a,b] such that the value I[x∗]
is no smaller than the value I[x̃] for any other admissible curve x̃ ∈C1

pc([a,b]) whose
graph lies in R. Since R is open, for sufficiently small ε and δ , 0≤ ε ≤ ε0, 0≤ δ ≤
δ0, the graph of the perturbed curve x(·;ε,δ ) still lies in R, and by construction it is
an admissible curve. Therefore we have that

0≤ I[x(·;ε,δ )]− I[x∗] = A(ε,δ )+B(ε,δ )

where

A(ε,δ ) =
t0+εδ∫

t0

L(t,x∗(t)+ (t− t0)(y− ẋ0), ẋ∗(t)+ (y− ẋ0))

−L(t,x∗(t), ẋ∗(t)) dt

and

B(ε,δ ) =
∫ t0+δ

t0+εδ
L

(
t,x∗(t)+

ε
1− ε (t0 + δ − t)(y− ẋ0), ẋ∗(t)− ε

1− ε (y− ẋ0)

)

−L(t,x∗(t), ẋ∗(t))dt.

Taking the limit δ → 0 in the first term, it follows that

lim
δ−→0

A(ε,δ )
εδ

= L(t0,x0,y)−L(t0,x0, ẋ0),
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and in the second term,

lim
δ−→0

B(ε,δ )
εδ

=

(
1
ε
− 1

)[
L

(
t0,x0, ẋ0− ε

1− ε (y− ẋ0)

)
−L(t0,x0, ẋ0)

]
.

Consequently, setting ξ = ε
1−ε yields

0≤ L(t0,x0,y)−L(t0,x0, ẋ0)+
L(t0,x0, ẋ0− ξ (y− ẋ0))−L(t0,x0, ẋ0)

ξ
.

Taking the limit ξ −→ 0, it follows that the second term converges to

−∂L
∂ ẋ

(t0,x0, ẋ0)(y− ẋ0),

and thus overall, we have that

0≤ L(t0,x0,y)−L(t0,x0, ẋ0)− ∂L
∂ ẋ

(t0,x0, ẋ0)(y− ẋ0) = E(t0,x0, ẋ0,y).

��
The variations made in this proof are fundamentally different from the classical

variations made to calculate the first and second variations. Weierstrass’s variations
have corners, and in fact, are designed to have spikes. In essence, they already
contain the main ideas of the needle variations made by Pontryagin et al. in their
proof of the maximum principle for optimal control problems. These constructions
will be developed in Sect. 4.2. In this chapter, we still show how the methods
developed in this section can be used to (a) find the globally optimal solutions for
the problem of minimal surfaces and (b) prove optimality of the cycloids for the
brachistochrone problem.

1.7 Optimal Solutions for the Minimum Surfaces
of Revolution

We give a full solution to the problem of minimum surfaces of revolution. Our
exposition here follows Bliss [39], but condenses the reasoning and includes the
calculations. Theorem 1.6.2 directly applies to the restricted field of catenaries and
gives the following statement:

Corollary 1.7.1 (Strong local minimum property of the restricted catenaries).
Let F be the central field of catenaries defined by

Ξ : D = {(t, p) : p ∈ R, 0 < t < τ(p)}→ R,

(t, p) �→ (t,x(t; p)) =

(
t,

x0

cosh p
cosh

(
p+

t
x0

cosh p

))
.
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Fig. 1.16 A C1-curve that does better than the catenary through a point (t1,x1) just above the
envelope C

Then every extremal in the field F is a strong local minimum with respect to any
other continuous and piecewise continuously differentiable function that has the
same boundary values and whose graph lies in R. �

Note, however, that we have only an optimality result relative to other curves that
lie in R. So this result is local. We can make no statement about optimality of the
catenaries in comparison to curves that would have portions that lie outside of R,
and thus the question about the global optimality of these trajectories arises.

In fact, it should already be clear from the earlier results that not all of these
extremals can be globally optimal. For p < 0 fixed, let γs(p) denote the extremal
x(t; p) defined for the compact interval 0 ≤ t ≤ s. Since the extremal γtc(p) defined
up to and including the conjugate time is not a weak local minimum, given any
neighborhood of this curve in Y there exists another continuously differentiable
function x̃, close to γtc(p) and with the same boundary conditions x̃(0) = x0 and
x̃(tc(p)) = x(tc(p); p), that gives a better value, I[x̃] < I[γtc(p)(p)]. But the value
I[γs(p)] depends continuously on s and thus also for times s close to tc(p), s <
tc(p), I[x̃]< I[γs(p)]. It is possible to deform the curve x̃ slightly to satisfy the new
boundary conditions for the extremal γs(p) and still provide a smaller value (see
Fig. 1.16). Thus γs(p) cannot be optimal. We shall now derive the globally optimal
solution for the minimal surfaces.
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However, in order to do so, we need to revise the classical problem formulation.
Recall that we formulated this problem to minimize the integral

I[x] =

t1∫

0

2πx(t)
√

1+ ẋ(t)2dt

over all positive curves x∈C1([0,x1]), x : [0, t1]→ (0,∞), that satisfy given boundary
conditions x(0) = x0 and x(t1) = x1. If there exists a solution for given boundary
conditions (t1,x1) within this class of functions, it needs to be one of the catenaries
in the family E of extremals,

x(t; p) =
x0

cosh p
cosh

(
p+

t
x0

cosh p

)
, p ∈ R. (1.46)

But this family has an envelope C, the graph of the function γ : [0,∞)→ [0,∞), t �→
γ(t), defined in Theorem 1.3.1, and thus does not contain any point in the region
S below the envelope C in its image. Clearly, there exist positive continuously
differentiable functions x that satisfy x(t1) = x1, and thus the problem is one of
existence of optimal solutions. Since any optimal solution in this class needs to
be an extremal, it simply follows that there does not exist an optimal solution
in the class of positive continuously differentiable functions if (t1,x1) ∈ C∪ S. In
fact, as we shall show now, for these points, and even for some points above the
envelope C, the optimal solution no longer is the graph of a function, but is only
a piecewise continuously differentiable curve. Its structure is easily revealed in a
simple experiment with soap films. The minimal surfaces problem is equivalent to
determining the shape of a soap film stretched between two circles whose planes
are parallel and whose centers are on a common third axis perpendicular to these
circles [39, p. 119]. As the two disks are slowly moved apart, this surface stretches
until at some point it suddenly ruptures, and all that is left are two disconnected
circles of soap film. This breakage happens exactly as the conjugate point is reached,
and the subsequent result is our desired optimal solution, the so-called Goldschmidt
extremal (see Fig. 1.17). It corresponds to the following parameterized curve,

z(t1,x1) : [0,x0 + t1 + x1]→ [0,∞)× [0,∞),

τ �→ (t(τ),x(τ)) =

⎧⎪⎪⎨
⎪⎪⎩
(0,x0− s) if 0≤ s≤ x0,

(s− x0,0) if x0 < s≤ x0 + t1,

(t1,s− t1− x0) if x0 + t1 < s≤ x0 + t1 + x1.

Indeed, the “correct” domain for this minimization problem is the space Z of all
rectifiable piecewise continuously differentiable curves

z : [α,β ]→ R×[0,∞), τ �→ (t(τ),x(τ)),



60 1 The Calculus of Variations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

 

C

x(. ;p)

(t1, x1) 

Z (t1, x1) 

Fig. 1.17 The Goldschmidt extremal through a point (t1,x1) on the envelope C

defined on some compact interval [α,β ]⊂ R. Given any such curve, we denote by

s = s(τ) =
τ∫

α

√
t ′(ξ )2 + x′(ξ )2dξ

its arc length. If z is the graph of some function x defined on an interval [0, t1], say
z(t) = (t,x(t)), then

I[x] =

t1∫

0

2πx(t)
√

1+ ẋ(t)2dt =

t1∫

0

2πx(τ)ds(τ) =
t1∫

0

2πxds.

We can thus reformulate the problem to find minimum surfaces of revolution more
generally as follows:

[Min Surf] Given (t1,x1) with x1 ≥ 0, find a rectifiable piecewise continuously
differentiable curve z,

z : [α,β ]→R×[0,∞), τ �→ (t(τ),x(τ)),

that satisfies the boundary conditions

t(α) = 0, x(α) = x0 and t(β ) = t1, x(β ) = x1,
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and minimizes the objective

I[z] = 2π
β∫

α

x(t)ds(t).

Compared with the original formulation [Minimal Surfaces] in Sect. 1.3, now
parameterized curves with a finite number of corners are allowed that do not have
to be graphs of functions. Also, these curves can lie anywhere in the closed half-
plane H = {(t,x) : x ≥ 0}. In particular, the endpoint (t1,x1) can lie to the left or
simply above or below the initial conditions as well. Then, as already mentioned
in Sect. 1.3, the catenaries t �→ x(t, p) for p > 0 have their conjugate point for
tc(p) = −tc(−p) < 0. It is clear that if we consider the family Eq. (1.46) also for
negative times, this family is invariant under the symmetry (t, p)→ (−t,−p), and
it follows that the associated value function has the symmetry

VF (t,x) =VF (−t,x) for all (t,x) ∈ R.

Thus there is no need to consider the case of terminal conditions with t1 < 0
separately. But clearly, the family of catenaries defined for all t has a singularity
for t = 0 and there is a new situation for terminal conditions that satisfy t1 = 0.
Actually, the optimal solutions for this case are trivial, but it becomes necessary, and
does indeed provide some insight, to add this solution to the family of catenaries.

Lemma 1.7.1. If t1 = 0, then the optimal solution to the problem [Min Surf]
consists of the straight line segment connecting x0 with x1 on the line t = 0, and
the value of the objective is given by

I[z] = π
∣∣x2

1− x2
0

∣∣ .
Proof. It is geometrically clear that the straight line segment generates an annulus
of surface area π

(
x2

0− x2
1

)
if x1 lies below x0, respectively, surface area π

(
x2

1− x2
0

)
if x1 lies above x0. Formally, set

z : [0,1]→ R×[0,∞), τ �→ (0,τx1 +(1− τ)x0),

and thus

I[z] =

1∫

0

2π (τx1 +(1− τ)x0)

√
(x1− x0)

2dτ

= π |x1− x0| (τx1 +(1− τ)x0)
2

x1− x0

∣∣∣∣∣
τ=1

τ=0

= π |x1− x0| x
2
1− x2

0

x1− x0
= π

∣∣x2
1− x2

0

∣∣ .
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Fig. 1.18 Examples of the level sets Qα for x0=1

If z̃ is any other curve in Z , then clearly, its arc length is strictly greater than
the length of the straight line segment connecting the points x0 and x1. If we
parameterize both curves in terms of their arc length s, then z is defined over the
interval [0, |x1− x0|] and z̃ is defined on an interval [0,β ] with β > |x1− x0|. For the
sake of argument, let us consider the case x1 < x0. Then in this parameterization, the
value of x̃(s) can never be smaller than the value of x(s), simply because the straight
line segment provides the maximum possible decay for the variable x. Hence, we
have that

I[z] =

|x1−x0|∫

0

2πx(s)ds≤
|x1−x0|∫

0

2π x̃(s)ds <

β∫

0

2π x̃(s)ds = I[z̃].

Thus the straight line segment provides the global minimum for the problem
[Min Surf] for these boundary data. ��

Adding the vertical line segments with appropriate arrows to the field of the
catenaries gives the natural extension of this field onto the x-axis and provides useful
closure properties. Clearly, this is the limiting behavior of the curves in the field as
t → 0+ (see Fig. 1.8). We now show that the value for the vertical line segments
provides a continuous extension of the value function for the field of catenaries to
the x-axis.
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Proposition 1.7.1. Let VF be the value function corresponding to the field of
catenaries defined in Eq. (1.46). Then V extends continuously to the x-axis with
value

V F (0,x1) = π
∣∣x2

1− x2
0

∣∣ .
Proof. We first describe the limiting properties of the parameterization in some
detail. Clearly, as t → 0+, for all extremals we have that x(t; p)→ x0, and so we
need to desingularize this behavior. Let α ∈ R+ be a positive constant and consider
the level sets Qα = {(t, p) : t cosh p = αx0} (see Fig. 1.18).

Rewriting the catenaries as

x(t; p) =
x0

cosh p
cosh

(
p+

t
x0

cosh p

)
= x0 [coshα+ tanh psinhα] ,

it follows that for (t, p) ∈ Qα we have that

lim
p→±∞x(t; p) = x0 [coshα± sinhα] = x0e±α ,

and thus we obtain the vertical line segment above x0 in the limit p → ∞ and the
vertical line segment below x0 in the limit p → −∞ along Qα . In this sense, the
entire x-axis arises as limiting behavior of the parameterization for t → 0+ and
p→±∞ with (t, p) ∈ Qα .

Now suppose {(tn,xn)}n∈N is a sequence of points in R that converges to
some point (0,x1) with x1 > 0 and x1 = x0. We can easily compute the limit of
the value function V (tn,xn) as n → ∞ using the parameterization. Since Ξ is a
diffeomorphism, there exists a unique sequence {pn}n∈N such that

V (tn,xn) =V (tn,xn(tn, pn)) =C(tn, pn).

But C(t, p) is easily computed:

C(t, p) =

t∫

0

2π
x0

cosh p
cosh2

(
p+

s
x0

cosh p

)
ds

= 2π
(

x0

cosh p

)2
p+ t

x0
cosh p∫

p

cosh2 rdr

= π
(

x0

cosh p

)2

[coshr sinhr+ r]

∣∣∣∣∣
p+ t

x0
cosh p

p
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= π
(

x0

cosh p

)2 [
cosh

(
p+

t
x0

cosh p

)
sinh

(
p+

t
x0

cosh p

)

−cosh psinh p+
t

x0
cosh p

]

= π
[

x(t; p)2 tanh

(
p+

t
x0

cosh p

)
− x2

0 tanh p+
tx0

cosh p

]
. (1.47)

Since (tn,xn)→ (0,x1), we have that pn →±∞ with the plus sign valid for x1 > x0

and the minus sign valid for x1 < x0. Without loss of generality, we may assume
that all xn satisfy either xn > x0 or xn < x0. It then follows that the points xn all lie
on ascending portions of the catenaries for x1 > x0 and on descending portions for
x1 < x0. Consequently, as n→ ∞, we accordingly have

pn +
tn
x0

cosh pn →±∞.

This is clear if pn > 0 and follows from the fact that xn/x0 converges to a positive
limit for pn < 0. Hence

lim
n→∞ tanh

(
pn +

tn
x0

cosh pn

)
=±1.

Obviously, we also have

lim
n→∞

tnx0

cosh pn
= 0 and lim

n→∞ tanh pn =±1,

and thus altogether

lim
n→∞V (tn,xn) = lim

n→∞C(tn, pn) = π
∣∣x2

1− x2
0

∣∣ .
��

Proposition 1.7.2. Let z be any rectifiable piecewise continuously differentiable
curve connecting (0,x0) with a point (t1,x1), t1 > 0, and suppose z has a point in
common with the envelope C of the family of catenaries. Then z generates a larger
surface area of revolution than the Goldschmidt solution ς(t1,x1) through the point
(t1,x1),

I[z]> I[z(t1,x1)]. (1.48)

Proof. Without loss of generality, we may assume that the curve z lies in the first
quadrant. (If it doesn’t, we replace the portion of the curve that lies in t < 0 by the
corresponding vertical line segment and in this way generate another curve that has
a smaller surface area of revolution and consider this as our original curve z.) Thus,
suppose z has a parameterization z : [α,β ]→ [0,∞)×[0,∞), τ �→ (t(τ),x(τ)), and
let θ be the first time for which (t(θ ),x(θ )) ∈C (see Fig. 1.19).
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Fig. 1.19 The curves Γt ∗C[t ,θ ]

Denote by zθ the restriction of z to the parameter interval [α,θ ] and let
(tθ ,xθ ) denote the point on the envelope C. We first show that the corresponding
Goldschmidt solution z(tθ ,xθ ) through the point (tθ ,xθ ) gives a better value for I than
zθ . Since except for the endpoint, the curve zθ lies entirely in the region R covered
by the field of catenaries, it follows from Corollary 1.7.1 that the value I[zθ ] is at
least as large as the value for the unique extremal in the field that passes through the
point (tθ ,xθ ). If we call the corresponding parameter pθ and denote the catenary
x(·; pθ ) defined over the interval [0, tθ ] by Γθ , we thus have that

I[zθ ]≥ I[Γθ ].

More generally, for 0 < t ≤ θ , let Γt denote the catenary x(·; p∗(t)) of the field
restricted to the interval [0, t] that passes through the point (t,γ(t)) of the envelope
(see Theorem 1.3.1) and denote the concatenation of the corresponding graph with
the portion of the envelope C over the interval [t,θ ] by Γt ∗C[t,θ ]. For t = 0, we
use the same notation to denote the concatenation of the vertical line segment from
(0,x0) to the origin with the envelope C. It then follows from the envelope theorem
(Theorem 1.5.2), and taking the limit as t → 0+, that all these curves have the same
value, i.e.,

I[Γθ ] = I[Γt ∗C[t,θ ]] = I[Γ0 ∗C[0,θ ]] for all t ∈ [0,θ ].
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But the latter value is easily estimated: the curve t �→ x∗(t) = x(t; p∗(t)) is positive
and increasing, and therefore

I[Γ0 ∗C[0,θ ]] = I[Γ0]+ I[C[0,θ ]]

= πx2
0 + 2π

θ∫

0

x∗(r)
√

1+ ẋ∗(r)2dr

> πx2
0 + 2π

θ∫

0

x∗(r)ẋ∗(r)dr

= πx2
0 + πx2

∗
∣∣θ
0 = π

[
x2

0 + x(θ ; p∗(θ ))2]= I
[
z(tθ ,xθ )

]
.

Hence

I[zθ ]≥ I[Γθ ] = I[Γ0 ∗C[0,θ ]]> I[z(tθ ,xθ )].

But this implies that we also have I[z]> I[z(t1,x1)]. For more generally, for τ ∈ [α,β ]
let zτ be the restriction of z to the parameter interval [α,τ] and let (tτ ,xτ ) denote
the corresponding point on the curve z. Then the difference in the value of the
objective between the curve zτ and the Goldschmidt extremal z(tτ ,xτ ) through (tτ ,xτ)
is given by

Δ(τ) =
τ∫

α

2πx(t)ds(t)−π [
x2

0 + x(τ)2] ,

and since

dΔ
dτ

(τ) = 2πx(τ)ds(τ)− 2πx(τ)
dx(τ)

dτ

= 2πx(τ)

⎛
⎝

√(
dt
dτ

(τ)
)2

+

(
dx
dτ

(τ)
)2

− dx
dτ

(τ)

⎞
⎠≥ 0,

this difference is nondecreasing along the curve z. Thus we have

I [z]− I[z(t1,x1)] = Δ(β )≥ Δ(θ )> 0.

This proves the result. ��
Corollary 1.7.2. If (t1,x1) is a point that lies on or below the envelope C, then the
optimal solution for problem [Min Surf] is given by the Goldschmidt extremal z(t1,x1)

with value V (t1,x1) = π(x2
0 + x2

1). �
This now leaves us with the question of optimal solutions for terminal points

(t1,x1) in the region R above the envelope C. Clearly, there are only two candidates,
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the catenaries and the Goldschmidt extremals. For if z is any rectifiable piecewise
continuously differentiable curve that connects (0,x0) with (t1,x1), then it either
intersects the envelope C or it doesn’t. If it does, it can do no better than the
Goldschmidt extremal; if it doesn’t, the curve lies in the region R, and thus the
catenary provides a lower bound. Thus, quite simply, we have the following result:

Proposition 1.7.3. If (t1,x1) is a point that lies in the region R above the envelope
C, then the optimal solution for problem [Min Surf] is given by either the catenary
of the field F that passes through (t1,x1) or the Goldschmidt extremal z(t1,x1),
whichever provides the smaller value. �

It remains to find the exact location of the cut-locus between the corresponding
two value functions, i.e., the set of points for which the surface area of revolution for
the catenary agrees with the value of the Goldschmidt extremal. For this, as above,
consider how the difference in values between the catenaries and the Goldschmidt
extremal changes along a fixed extremal x(·; p), p∈R. Let Δ : [0,∞)→R, t �→Δ(t),
be given by

Δ(t; p) = π

⎛
⎝

t∫

0

2x(r; p)
√

1+ ẋ(r; p)2dr

⎞
⎠−π (

x2
0 + x(t; p)2) .

Clearly, we have Δ(0; p) =−2πx2
0 < 0, so that the catenary is better for small times

t. Furthermore, for all times t > 0 we have that

Δ̇(t; p) = 2πx(t; p)

(√
1+ ẋ(t; p)2− ẋ(t; p)

)
> 0,

and thus Δ is strictly monotonically increasing. For p < 0, we already know that
Δ(tc) > 0 for the conjugate time tc, and thus it follows that along each catenary
x(·; p) for p < 0 there exists a unique positive time t = tg(p) < tc(p) such that
Δ(tg(p), p) = 0. By the implicit function theorem, see Theorem A.3.2, tg is a
continuously differentiable function. The graph G of this function,

G : (−∞,0)→(0,∞)× (0,∞), p �→ (tg(p),x(tg(p), p))

is the desired cut-locus. Since the catenaries are the better solutions in the limit
(t1,x1) → (0,x1) for x1 > 0 and since the Goldschmidt extremals are the better
solutions in the limit (t1,x1)→ (t1,0) for t1 > 0, it follows that the cut-locus has
the origin in its boundary. Thus, for p→−∞, we must have that

lim
p→−∞(tg(p),x(tg(p), p)) = (0,0).

Generally, the cut-locus G and the envelopeC of conjugate points have a very similar
shape (see Fig. 1.20). While there is no explicit formula for G, the parameterized
costs for the two families are easily compared numerically. Recall that for the family
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Fig. 1.20 The cut-locus G for x0 = 1

of catenaries we have that (see the derivation of (1.47))

C(t; p) = π
(

x0

cosh p

)2 [
cosh

(
p+

t
x0

cosh p

)
sinh

(
p+

t
x0

cosh p

)

−cosh psinh p+
t
x0

cosh p

]
,

and for the Goldschmidt extremals the objective can be written as

G(t; p) = π
[
x(t; p)2 + x2

0

]
= π

(
x0

cosh p

)2 [
cosh2

(
p+

t
x0

cosh p

)
+ cosh2 p

]
.

If we introduce the abbreviation

q = p+
t

x0
cosh p,

then in the parameter space (t, p), an equation that defines the cut-locus can be
written in the following simple but unfortunately highly transcendental form

q+ sinhqcoshq− cosh2 q = p+ sinh pcosh p+ cosh2 p.

Numerically, however, this zero set is easily computed, and we plot it in Fig. 1.20
for x0 = 1.
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While the Goldschmidt extremals may appear an oddity, and they are somewhat
in the sense of the calculus of variations, these are the more natural of the two
candidates from an optimal control point of view. By going to the formulation [Min
Surf] with curves, in this more general formulation, the t-axis with x = 0 provides a
“free pass,” which is the best one can do for the objective. Thus, it is an obvious
heuristic strategy to move toward the curve with as little cost as possible—and
these are the vertical straight line segments that generate the circles—and then to
follow the curve {x = 0} to some optimal point where this curve is left to get
to the prescribed terminal point, again with as little cost as possible, that is, by
a vertical line segment. We shall encounter such a structure in the form of bang-
singular-bang controls as a typical and in some sense common behavior of optimal
controlled trajectories in optimal control problems (e.g., Sect. 2.9). For example,
this also becomes the dominant feature in the design of optimal protocols for tumor
antiangiogenic treatments for cancer considered in [160]. Generally, the only reason
why such a strategy would not be optimal is that it simply is too “expensive” to
connect with this special curve {x = 0} and that a direct path exists that gives
a better value. These are the catenaries. Naturally, the true optimal solution then
strikes a balance between these two classes of candidates for optimality. This, of
course, is done through a direct comparison of their corresponding values, a global
and thus much more involved geometric argument. Cut-loci, the sets of points where
the values corresponding to different extremal strategies agree, in general are a
dominant structure for global solutions of calculus of variations and optimal control
problems. We shall return to this topic in Sect. 5.5. Figure 1.21 shows the globally
optimal synthesis for the minimum surfaces of revolution problem.

1.8 Optimality of the Cycloids for the Brachistochrone
Problem

We next establish the global optimality of the field of cycloids for the brachis-
tochrone problem. Also here the reasoning is not entirely straightforward. Note that
Theorem 1.6.2 does not directly apply, since the field has a singularity at the origin.
But the basic constructions of Sect. 1.6 can easily be modified to deal with this issue.

Theorem 1.8.1 (Global minimum property of the cycloids). Let F be the
central field of cycloids defined by

Ξ : (−π ,π)× (0,∞)→ R
2
+ = {(t1,x1) : t1 > 0,x1 > 0},

(τ,ξ ) �→ (t(τ;ξ ), x(τ;ξ )) = (ξ (π+ τ+ sinτ),ξ (1+ cosτ)).

Then every cycloid in this family is the global minimum for the brachistochrone
problem for the corresponding terminal condition.
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Fig. 1.21 The optimal synthesis for the minimum surfaces problem

Proof. Since extremals have a singularity as t→ 0+ in (t,x)-space, we need to carry
out a limiting argument as the initial point converges to the origin. Recall that the
Hilbert invariant integral (1.42) is given by

I∗ =
∫
Γ

L(t,x,Ψ (t,x))dt +
∂L
∂ ẋ

(t,x,Ψ(t,x))(dx−Ψ(t,x)dt) ,

whereΨ(t,x) defines the directions for the field F of extremals. For the brachis-
tochrone problem, we have that

I∗ =
∫
Γ

√
1+Ψ(t,x)2

x
dt +Ψ(t,x)

√
1

x(1+Ψ(t,x)2)
(dx−Ψ(t,x)dt)

=

∫
Γ

√
1

x(1+Ψ(t,x)2)

[(
1+Ψ(t,x)2)dt +Ψ(t,x)(dx−Ψ(t,x)dt)

]

=

∫
Γ

√
1

x(1+Ψ(t,x)2)
[dt +Ψ(t,x)dx] . (1.49)
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This integral will take the value 0 if we choose Γ as an integral curve of the
differential equation

dx
dt

=− 1
Ψ(t,x)

, (1.50)

that is, along a curve that is everywhere orthogonal to the cycloids of the field.
Given a point (t1,x1) ∈ R

2
+, let x : [0, t1]→ [0,∞), t �→ x(t), be any continuous

function that satisfies the boundary conditions x(0) = 0 and x(t1) = x1 and is
positive and continuously differentiable in the open interval (0, t1). For simplicity
of notation, we denote the graph of the function x by C and write Cs,t for the
portion of the graph of x defined over the interval [s, t]. Also, we denote the portion
of the cycloid that connects the origin with (t,x(t)) by Γt . We then define a 1-
parameter family of curvesΩ� =Γ� ∗C�,t1 , 0≤ �≤ t1, by concatenatingΓ� with C�,t1 ,
the remaining portion of the graph of x over the final interval [�, t1]. Specifically,
since the field F covers R2

+ diffeomorphically, there exist differentiable functions
τ = τ(·) and ξ = ξ (·) defined on the half-open interval (0, t1], so that in terms of the
parameterization of the field, we have that

p(�) = (�,x(�)) = (t(τ(�);ξ (�)), x(τ(�);ξ (�))) for all � ∈ (0, t1].

The curveΩ� is then given in parameterized form by

Ω�(u) =

{
(t(u;ξ (�)), x(u;ξ (�))) for −π ≤ u≤ τ(�),
(u− τ(�)+ �, x(u− τ(�)+ �)) for τ(�)≤ u≤ τ(�)+ t1− �.

Let ϕ be the value of the objective I along the continuous and piecewise continu-
ously differentiable curveΩ�, i.e.,

ϕ : [0, t1]→ R, � �→ ϕ(�) = I[Ω�] = I[Γ� ∗C�,t1 ] = I[Γ�]+ I[C�,t1 ].

It suffices to show that ϕ is monotonically nonincreasing. For then we have that

I[x] = I[C0,t1 ] = ϕ(0)≥ ϕ(1) = I[Γt1 ],

and thus the curve C is no better than the cycloid Γt1 .
In order to prove this monotonicity property, we first show that for times r and s

close to each other, we have that

I[Γr]+ I∗[Cr,s] = I[Γs]. (1.51)

If we simply ignored the fact that the field of extremals has a singularity at the origin
and apply Hilbert’s invariant integral anyway, this identity would follow. Rigorous
reasoning, however, requires a limiting argument (see Fig. 1.22).
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Fig. 1.22 The curves Γs ∗C[s,β ]

Fix s ∈ (0, t1) and suppose r is close to s, r < s. Choose ε close to −π and letΘ
be the integral curve to the differential equation (1.50) with initial condition

(tε ,xε) = (t(ε;ξ (s)), x(ε;ξ (s))),

i.e., the initial condition is a point on the cycloid Γs (through (s,x(s))) close to the
origin. In the limit (t,x)→ (0+,0+), the field Ψ (t,x) converges to the direction
(0,1) and the perpendicular field has limiting direction (−1,0), i.e., is horizontal at
the origin. It follows that for an initial condition (tε ,xε) near the origin, there exists
a δ = δ (ε) > 0 such that the solutionΘ is defined over some interval (−δ ,δ ) and
is orthogonal to all the cycloids it intersects. Thus, for times r close enough to s, the
cycloid Γr passing through the point (r,x(r)) also intersects this integral curve Θ .
Hence we can construct a piecewise continuously differentiable closed curve Ω by
concatenating the following arcs:

1. The portionΘε,η of the integral curveΘ that goes from the point (tε ,xε ) on the
cycloid Γs to the point (tη ,xη ) of intersection ofΘ with the cycloid Γr,

2. The portion Γ̃η,r of the cycloid Γr that connects the point (tη ,xη) with the point
(r,x(r)) on the curve C,

3. The portion Cr,s of the graph C of x corresponding to the time interval [r,s], and
4. The portion Γ̃ε,s of the cycloid Γs defined over the parameter interval [ε,τ(s)] that

connects the point (tε ,xε) with the point p(s) = (s,x(s)), but run backward.
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Thus, altogether we have that

Γ̃ε,s =Θε,η ∗ Γ̃η,r ∗Cr,s

and the full curve lies in R
2
+. Since the Hilbert invariant integral I∗ is defined by an

exact differential, it follows that

I∗[Γ̃ε,s] = I∗[Θε,η ]+ I∗[Γ̃η,r]+ I∗[Cr,s].

By construction, Θε,η is an integral curve of the field perpendicular to Ψ , and it
therefore follows from (1.49) that I∗[Θε,η ] = 0. Furthermore, since Γ̃s and Γ̃r are
integral curves of the field F itself, we have that

I∗[Γ̃ε,s] = I[Γ̃ε,s] and I∗[Γ̃η,r] = I[Γ̃η,r].

If we now take the limit ε →−π+, then it follows that (tη ,xη)→ (0+,0+), and
thus

lim
ε→0

I[Γ̃ε,s] = I[Γs] and lim
ε→0

I[Γ̃η,r] = I[Γr].

Here we use the fact that the integrals for the cycloids converge. Thus, as claimed,
for r close enough to s we have that

I[Γs] = I[Γr]+ I∗[Cr,s]. (1.52)

But it follows from the Weierstrass condition that I∗[Cr,s]≤ I[Cr,s]. (This precisely
is the significance of the Weierstrass condition.) For everywhere in the region R

2
+,

the Weierstrass condition is satisfied and thus for all (t,x) ∈ R
2
+, ψ =Ψ(t,x), and

all y ∈ R we have that

E(t,x,ψ ,y) = L(t,x,y)−L(t,x,ψ)− ∂L
∂ ẋ

(t,x,ψ)(y−ψ)≥ 0.

Hence it follows along the arc Cr,s that

I∗[Cr,s]− I[Cr,s] =

∫
Cr,s

[L(t,x,Ψ (t,x))−L(t,x, ẋ(t))]dt

+
∂L
∂ ẋ

(t,x,Ψ (t,x)) [dx−Ψ(t,x)dt]

= −
∫

Cr,s

E (t,x,Ψ(t,x), ẋ)dt ≤ 0.

Consequently,

I[Γs]≤ I[Γr]+ I[Cr,s], (1.53)
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and overall

ϕ(r) = I[Γr]+ I[Cr,t1 ] = I[Γr]+ I[Cr,s]+ I[Cs,t1 ]≥ I[Γs]+ I[Cs,t1 ] = ϕ(s).

This proves the result. ��

1.9 The Hamilton–Jacobi Equation

We briefly formulate an alternative approach to fields of extremals due to Hamilton.
As in Sect. 1.6, let F be a central field of extremals for the general problem [CV]
with field of directions given by ẋ =Ψ (t,x) that covers a simply connected region
R of (a,∞)×R. It is more convenient, and customary in this context, to denote the
points in the region R by (t,x), and these now stand for the endpoint of the extremals
in the field. Recall that by Theorem 1.6.1, the differential of the value function VF

associated with the field F is given by

dVF =

(
L(t,x,Ψ (t,x))− ∂L

∂ ẋ
(t,x,Ψ (t,x))Ψ (t,x)

)
dt +

∂L
∂ ẋ

(t,x,Ψ (t,x))dx.

In other words, the value function is a solution to the following first-order partial
differential equation determined solely by the integrand L and the central fieldΨ :

∂V
∂ t

(t,x)+
∂V
∂x

(t,x)Ψ (t,x) = L(t,x,Ψ (t,x)).

In terms of the Hamiltonian function H defined earlier,

H : [a,∞)×R×R→R, (t,x,λ ) �→H(t,x,λ ) = L(t,x,Ψ (t,x))+λΨ(t,x), (1.54)

this partial differential equation can then be written in the form

∂V
∂ t

(t,x) = H

(
t,x,−∂V

∂x
(t,x)

)
. (1.55)

Definition 1.9.1 (Hamiltonian, Hamilton–Jacobi equation). The function H
defined in Eq. (1.54) is called the Hamiltonian, and Eq. (1.55) is the Hamilton–
Jacobi equation.

This formalism, due to Hamilton and developed by him in connection with
what now is called Hamiltonian dynamics in physics, allows for an important
reformulation of the Euler–Lagrange equation as a pair of first-order ordinary
differential equations, sometimes also called the canonical form of the Euler–
Lagrange equation: we have that
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ẋ =Ψ(t,x) =
∂H
∂λ

(t,x,λ ),

and if we define λ (t) by the derivative that the variable λ represents, i.e.,

λ (t) =−∂L
∂ ẋ

(t,x(t),Ψ (t,x(t))),

then by the Euler–Lagrange equation, we also have that

λ̇ (t) =
d
dt

(
−∂L
∂ ẋ

(t,x(t),Ψ (t,x(t)))

)
=−∂L

∂x
(t,x(t),Ψ (t,x(t)))

=−∂L
∂x

(t,x(t),Ψ (t,x(t)))−
[
∂L
∂ ẋ

(t,x(t),Ψ(t,x(t)))+λ (t)
]
∂Ψ
∂x

(t,x(t))

=−∂H
∂x

(t,x(t),λ (t)).

Thus, if a function t �→ x(t) is a solution to the Euler–Lagrange equation, then the
pair (x(t),λ (t)) is a solution to the following system of Hamiltonian differential
equations:

ẋ =
∂H
∂λ

(t,x,λ ) and λ̇ =−∂H
∂x

(t,x,λ ). (1.56)

We summarize the main relations between solutions to the Euler–Lagrange equation
and the Hamilton–Jacobi equation in the propositions below.

Proposition 1.9.1. Let V = V (t,x;α) be a solution of the Hamilton–Jacobi equa-
tion that depends on a parameter α ∈ R and is continuously differentiable as a
function of (t,x) and the parameter α . Then the partial derivative of V with respect
to the parameter α ,

∂V
∂α

(t,x;α),

is a first integral for the Hamiltonian system (1.56), i.e., along its solutions

d
dt

(
∂V
∂α

(t,x(t);α)
)
= 0.

Proof. This is a direct computation: we have that

d
dt

(
∂V
∂α

(t,x(t);α)
)
=

∂ 2V
∂α∂ t

(t,x(t);α)+
∂ 2V
∂α∂x

(t,x(t);α)ẋ(t),



76 1 The Calculus of Variations

and differentiating Eq. (1.55) with respect to α gives

∂ 2V
∂α∂ t

(t,x(t);α) =−∂H
∂λ

(
t,x(t),−∂V

∂x
(t,x(t);α)

)
∂ 2V
∂α∂x

(t,x(t);α)

=−∂H
∂λ

(t,x(t),λ (t))
∂ 2V
∂α∂x

(t,x(t);α)

where we use the trivial identity

∂H
∂λ

(
t,x(t),−∂V

∂x
(t,x(t);α)

)
=Ψ(t,x(t)) =

∂H
∂λ

(t,x(t),λ (t)) .

Substituting into the previous formula yields

d
dt

(
∂V
∂α

(t,x(t);α)
)
=

∂ 2V
∂α∂x

(t,x(t);α)
(

ẋ(t)− ∂H
∂λ

(t,x(t),λ (t))
)
= 0

since by assumption,

ẋ(t) =Ψ(t,x(t)) =
∂H
∂λ

(t,x(t),λ (t)).

��
These calculations can easily be reversed and lead to the following result of

Jacobi:

Proposition 1.9.2. Let V = V (t,x;α) be a solution to the Hamilton–Jacobi equa-
tion depending on a parameter α ∈R and suppose

∂ 2V
∂α∂x

(t,x;α) = 0.

Then the general solution x = x(t;α,β ) to the Euler–Lagrange equation can be
obtained by solving for given constants β the equation

∂V
∂α

(t,x;α) = β (1.57)

for x = x(t;α,β ) and then setting

λ (t;α,β ) =−∂V
∂x

(t,x(t;α,β );α). (1.58)

Proof. We only need to reverse the above calculations. Since ∂ 2V
∂α∂x (t,x;α) = 0,

by the implicit function theorem we can locally solve the Eq. (1.57) for x with a
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continuously differentiable function x= x(t;α,β ), and along this function, as above,
we have the following identity shown in the proof of Proposition 1.9.1:

0 =
d
dt

(
∂V
∂α

(t,x(t;α,β ),α)
)

=
∂ 2V
∂α∂x

(t,x(t;α,β ),α)
(
−∂H
∂λ

(t,x(t;α,β ),λ (t;α,β ))+
dx
dt

(t;α,β )
)
.

Since ∂ 2V
∂α∂x (t,x;α) = 0, it follows that x = x(t;α,β ) satisfies

ẋ(t;α,β ) =
∂H
∂λ

(t,x(t;α,β ),λ (t;α,β )).

Furthermore,

λ̇ (t;α,β ) =
d
dt

(
−∂V
∂x

(t,x(t;α,β );α)
)

=− ∂
2V

∂ t∂x
(t,x(t;α,β );α)− ∂

2V
∂x2 (t,x(t;α,β );α)ẋ(t;α,β )

and differentiating Eq. (1.55) with respect to x gives

∂ 2V
∂ t∂x

(t,x(t;α,β );α)

=
∂H
∂x

(
t,x(t;α,β ),−∂V

∂x
(t,x(t;α,β );α)

)

− ∂H
∂λ

(
t,x(t;α,β ),−∂V

∂x
(t,x(t;α,β );α)

)
∂ 2V
∂x2 (t,x(t;α,β );α).

As above, substitute this relation into the prior equation to get

λ̇ (t;α,β ) =−∂H
∂x

(
t,x(t;α,β ),−∂V

∂x
(t,x(t;α,β );α)

)

+

[
∂H
∂λ

(
t,x(t;α,β ),−∂V

∂x
(t,x(t;α,β );α)

)
− ẋ(t;α,β )

]

× ∂
2V
∂x2 (t,x(t;α,β );α)

=−∂H
∂x

(t,x(t;α,β ),λ (t;α,β ))+ [Ψ (t,x(t;α,β ))− ẋ(t;α,β )]
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× ∂
2V
∂x2 (t,x(t;α,β );α)

=−∂H
∂x

(t,x(t;α,β ),λ (t;α,β )) .

This proves the result. ��
Example. Suppose f ∈C([a,b]) is positive and consider the fixed-endpoint problem
[CV] with objective

I[x] =

b∫

a

f (x)
√

1+ ẋ2dt.

If we define

λ =−∂L
∂ ẋ

(x, ẋ) =− f (x)
ẋ√

1+ ẋ2
,

then, solving for ẋ, we have that

ẋ =− λ√
f (x)2−λ 2

,

and thus the Hamiltonian H becomes

H(x,λ ) = L(x, ẋ)+λ ẋ = f (x)
√

1+ ẋ2+λ ẋ

= f (x)
f (x)√

f (x)2−λ 2
− λ 2√

f (x)2−λ 2

=
√

f (x)2−λ 2.

The Hamilton–Jacobi equation then simply has the form

∂V
∂ t

=

√
f (x)2−

(
∂V
∂x

)2

,

or in a more symmetric expression,

(
∂V
∂ t

)2

+

(
∂V
∂x

)2

= f (x)2.

Typically, as in this case, the Hamilton–Jacobi equation is nonlinear and does not fall
into any established class of partial differential equations. However, in this particular
case, the equation is separable and can easily be solved. With an ansatz of the form
V (t,x) = A(t)+B(x), the PDE reduces to
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Ȧ(t)2 = f (x)2−B′(x)2,

and since one side depends only on t, the other only on x, this quantity must be a
positive constant, say α2. But then the solution simply is

V (t,x;α) =V (t0,x0;α)+
t∫

t0

∂V
∂ t

(s,x0;α)ds+

x∫

x0

∂V
∂x

(t,ξ ;α)dξ

=V (t0,x0;α)+α(t− t0)+

x∫

x0

√
f (ξ )2−α2 dξ .

By the above proposition, extremals are the level curves of the function

∂V
∂α

(t,x;α) = t−α
x∫

x0

dξ√
f (ξ )2−α2

.

1.10 From the Calculus of Variations to Optimal Control

In the previous section we defined the Hamiltonian as it was done historically
(except for a change in sign that is immaterial). In optimal control theory, a
different—and in the view of the optimal control problem, a more natural—
formulation is used. It was argued by Sussmann and Willems in [245, p. 39] that
these are the form of “Hamilton’s equations as he should have written them.” At first
sight, the difference is inconspicuous. Rather than using a field of extremals to
define a vector field of directions, Ψ (t,x), we instead replace the derivative ẋ by
introducing a new variable u, ẋ = u, the control, and write the Hamiltonian (also
changing the order between x and λ to make it consistent with the usage in optimal
control) in the form

H : [a,∞)×R×R×R→ R, (t,λ ,x,u) �→ H(t,λ ,x,u) = L(t,x,u)+λu. (1.59)

In order to distinguish this function from its classical form, in this section we call
it the control Hamiltonian. This formulation allows to combine the fundamental
necessary conditions for optimality in the calculus of variations, the Euler–Lagrange
equation and the Weierstrass condition, into a coherent structure as it was never
achieved in the classical approach. For if we define

λ (t) =−∂L
∂u

(t,x(t), ẋ(t)),
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then, by the Euler–Lagrange equation, we have the following three conditions:

ẋ(t) = u(t) =
∂H
∂λ

(t,λ (t),x(t), ẋ(t)),

λ̇(t) =
d
dt

(
−∂L
∂u

(t,x(t), ẋ(t))

)
=−∂L

∂x
(t,x(t), ẋ(t)) =−∂H

∂x
(t,λ (t),x(t), ẋ(t)),

and automatically

0 =
∂H
∂u

(t,λ (t),x(t), ẋ(t)).

Furthermore, the Weierstrass condition states that for any u ∈ R we have that

L(t,x(t), ẋ(t))− ∂L
∂u

(t,x(t), ẋ(t))ẋ(t)≤ L(t,x(t),u)− ∂L
∂u

(t,x(t), ẋ(t))u

and this can be rewritten as

H(t,λ (t),x(t), ẋ(t)) = min
u∈R

H(t,λ (t),x(t),u).

Thus, it is a necessary condition of optimality for the minimization problem [CV]
that the control Hamiltonian be minimized in the variable u at the point ẋ(t). If we
had retained the classical formulation of the Hamiltonian with its sign from physics,
at this point a necessary condition for minimizing in the problem [CV] would be
to maximize this function. To us, it thus seems more natural to have the signs as
we have chosen them. An immediate corollary of this minimization property is the
Legendre condition,

0≤ ∂ 2H
∂u2 (t,λ (t),x(t), ẋ(t)) =

∂ 2L
∂u2 (t,x(t), ẋ(t)).

Thus, by introducing the formulation of the control Hamiltonian, the necessary
conditions for optimality of the calculus of variations take the following canonical
form:

[CV-OC] If a function x : [a,b]→ R, t �→ x(t), is a minimum for the calculus of
variations problem [CV], then there exists a function λ : [a,b]→ R, t �→ λ (t),
such that with u(t) = ẋ(t) we have that

ẋ(t) =
∂H
∂λ

(t,λ (t),x(t),u(t)), λ̇(t) =−∂H
∂x

(t,λ (t),x(t),u(t)),

and the function v �→ H(t,λ (t),x(t),v) is minimized at the point u(t),

H(t,λ (t),x(t),u(t)) = min
v∈R

H(t,λ (t),x(t),v).
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This formulation succinctly combines the Weierstrass condition, the Euler–
Lagrange equation, and the Legendre condition and shows their interdependencies.
But there is much more to this formulation: any reference to differentiability of the
“control” u has disappeared, and in the formulation itself, the condition ẋ = u is
immaterial. More generally, if we replace the notion of differentiable curves x by
one of “controlled trajectories,” that is curves x that are solutions to a dynamical
equation ẋ = f (t,x,u) driven by some control, and define the Hamiltonian now as

H(t,λ ,x,u) = λ0L(t,x,u)+λ f (t,x,u)

with an extra multiplier λ0 ∈ {0,1} at the objective, then basically the same
necessary conditions are valid with the one exception that the new multiplier
λ0 actually can be zero. These so-called abnormal extremals do not occur in
the simplest problem in the calculus of variations considered here, but they are
also possible for other more complicated problem formulations in the calculus of
variations [67]. Furthermore, it no longer needs to be allowed that the control can
take values anywhere, but the values can be restricted to lie in an arbitrary control
set U ⊂ R. These are the fundamental necessary conditions for optimality for an
optimal control problem to be developed in subsequent chapters.

1.11 Notes

The material that was presented in this chapter is classical, and its pieces can
be found in one formulation or other in many textbooks on the topic, e.g.,
[39, 40, 67, 70, 105, 118, 136, 185, 260]. Our exposition is somewhat different with
its emphasis on the geometric aspects of the theory, and we also have provided the
more technical and, at times, difficult computational details. Our main source for
the historical comments was the article [245] by H. Sussmann and J. Willems, and
we also based our presentation of the connection between Hamilton–Jacobi theory
and optimal control theory on this excellent article, which we highly recommend as
additional reading. Our treatment of the problem of minimum surfaces of revolution
is based on the nicely written, but unfortunately somewhat out-of-fashion, text by
G. Bliss [39]. But we have added numerous computational details to make his
treatment more accessible to the reader. We have chosen this particular problem as a
vehicle to develop the theoretical results, since it beautifully illustrates the geometric
properties that really stand behind the conditions of the calculus of variations. These
were the concepts that we wanted to emphasize in this introductory chapter. We will
further develop these geometric properties for the optimal control problem, and in
this sense our presentation was guided by the material still to come. Our source
for the material on quadratic forms in Sect. 1.4 was the textbook by Gelfand and
Fomin [105].



Chapter 2
The Pontryagin Maximum Principle:
From Necessary Conditions to the Construction
of an Optimal Solution

We now proceed to the study of a finite-dimensional optimal control problem, i.e.,
a dynamic optimization problem in which the state of the system, x = x(t), is linked
in time to the application of a control function, u = u(t), by means of the solution
to an ordinary differential equation whose right-hand side is shaped by the control.
We now consider multidimensional systems in which both the state and the control
variables no longer need to be scalar. In particular, the results presented here also
provide high-dimensional generalizations for the classical theorems of the calculus
of variations developed in Chap. 1. So far, we have considered only the simplest
problem in the calculus of variations in which the functional is minimized over all
curves that satisfy prescribed boundary conditions. Much more than in the calculus
of variations, an optimal control problem is determined by its constraints. Of these,
the most important one is represented by the dynamics, which in this text will always
be given by an ordinary differential equation,

ẋ = f (t,x,u(t)),

and the optimization is carried out over a subset of solutions to this differential
equation, so-called admissible controlled trajectories, not just simply over all
differentiable curves. In most optimal control problems, the controls are required
to satisfy control constraints in the form

u ∈U

requiring that the control function u(t) take values in a prescribed set U at (almost)
all times t. This set U is called the control set and in our formulations will always
be taken as a subset of R

m, but otherwise arbitrary. For example, the choice
U = {u1, . . . ,ur} would define a control system that is allowed to switch between r
possible settings. We also consider terminal constraints of the form

(T,x(T )) ∈ N,

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
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where T denotes the final time on the trajectory and N is a subset of the combined
time–state space R×R

n. Restrictions on the final time T , for example a fixed
terminal time, will be included in this constraint. We shall impose assumptions that
make N a “nice” geometric object. Many more types of constraints are conceivable
and occur in real systems. For example, state-space constraints restrict the state
of the system from entering prohibited regions. Mixed control-state constraints are
simultaneous requirements on the state and control in the sense that if the state
of the system has a specific value, then only a limited choice of control actions is
available. These clearly are realistic and important scenarios. However, the inclusion
of constraints of this type leads to a more complex theory, and in this text we restrict
our treatment to what is a finite-dimensional optimal control problem with control
and terminal constraints. Given these constraints, we then consider an objective of
the form

J (u) =
∫ T

t0
L(s,x(s),u(s))ds+ϕ(T,x(T ))

with the integral representing the running cost along the controlled trajectory and
the function ϕ defined on N defining a penalty term on the final state. A precise
problem formulation including all assumptions will be given in Sect. 2.2, which also
contains a statement of the main necessary conditions for optimality, the Pontryagin
maximum principle [193].

The rest of the chapter will then be devoted to illustrating the use of this result,
with the proof deferred until Chap. 4. Among the illustrations we provide, we
include a statement of the necessary conditions for optimality for the calculus
of variations problem in R

n (Sect. 2.3), the classical linear-quadratic regulator
(Sects. 2.1 and 2.4), several examples of optimal solutions for the time-optimal
control problem to the origin in R

2 for time-invariant linear systems (Sects. 2.5 and
2.6) and some classical examples of optimal control problems with a time-varying
or nonlinear dynamics (Sect. 2.7). General properties of optimal solutions for the
time-optimal control problem for nonlinear systems that are affine functions of the
control(s) will be developed in Sect. 2.8, which provides an introduction to some
of the Lie derivative-based techniques that form the basis for geometric methods
in optimal control. This section also includes a discussion of singular controls
and additional necessary conditions for optimality of the corresponding controlled
trajectories, such as the Legendre–Clebsch condition. We then use the developed
theory to analyze some generic cases for the time-optimal control problem in the
plane (Sects. 2.9 and 2.10). These results, due to H. Sussmann [230, 236], serve
as a first illustration of the power of geometric methods in the solution of optimal
control problems. We close this chapter (Sect. 2.11) with a derivation of the optimal
controls for the Fuller problem, a classical optimal control problem whose solutions
are given by chattering arcs, i.e., the associated controls switch infinitely often on a
finite interval and are no longer piecewise continuous.

In this chapter, the emphasis is on illustrating the use of the necessary conditions
for optimality of the maximum principle. We simplify the presentation by making
the mathematically unjustified, but in practical problems often satisfied, assumption



2 The Pontryagin Maximum Principle 85

that optimal controls are piecewise continuous. With only minor modifications, all
the results presented in this chapter remain valid for the more general class of locally
bounded Lebesgue measurable functions, and in subsequent chapters we then shall
work with this, for our purpose, adequately general class of controls.

We close these introductory comments with establishing our notation. The
equations of the maximum principle and many of the involved computations can
be written in a concise and elegant form that avoids the use of matrix transpositions
so common in the classical textbooks if a proper notation is established. In this
chapter, our state space will always be R

n or some open subset of it, and we write
the state x as a column vector. However, in our notation, we already here distinguish
between what in the formulation on manifolds will be tangent vectors, which we
write as column vectors, and cotangent vectors (or covectors for short), which we
write as row vectors. For example, ẋ is a tangent vector, and thus the right-hand
side of the dynamics, f (t,x,u) in the formulations above, is a column vector. On the
other hand, geometrically, multipliers λ represent linear functionals and thus are
covectors. We denote the space of n-dimensional covectors or row vectors by (Rn)∗,
but do not distinguish between R and R

∗. For a scalar continuously differentiable
function h : Rn → R, x �→ h(x), we consistently write the gradient with respect to x
as a row vector and denote it by ∇h(x) or ∂h

∂x (x), i.e.,

∇h(x) =
∂h
∂x

(x) =

(
∂h
∂x1

(x), . . . ,
∂h
∂xn

(x)

)
.

For a vector-valued continuously differentiable map H,

H : Rk → R
�, x �→ H(x) =

⎛
⎝ h1(x)

. . .

hk(x)

⎞
⎠ ,

we denote the Jacobian matrix of the partial derivatives of the components hi(x)
with respect to the variables x j by

DH(x) =
∂H
∂x

(x) =

⎛
⎜⎜⎜⎜⎜⎝

∂h1

∂x1
(x) . . .

∂h1

∂xk
(x)

...
∂hi

∂x j
(x)

...

∂hk

∂x1
(x) . . .

∂hk

∂xk
(x)

⎞
⎟⎟⎟⎟⎟⎠

1≤i, j≤k

,

with i as row index and j as column index. Thus, the Jacobian matrix is the matrix
whose ith row is given by the gradient of the component hi. The Hessian matrix of
a twice continuously differentiable function h : Rn → R, x �→ h(x), is the matrix of

the second-order partial derivatives of h and will be denoted by D2h(x) = ∂ 2h
∂x2 (x).

With the convention above, the Hessian of h is the Jacobian matrix of the transpose
of the gradient of h,
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D2h(x) =
∂ 2h
∂x2 (x) =

∂ (∇h)T

∂x
(x).

IfΛ =(λ1, . . . ,λn) is a row vector of continuously differentiable functions λ j :Rn→
R, x �→ λ j(x), j = 1, . . . ,n, then, and consistent with the notation just introduced,

we denote the matrix of the partial derivatives
(
∂λ j
∂xi

)
1≤i, j≤n

with row index i and

column index j by ∂Λ
∂x , that is,

∂Λ
∂x

(x) =

(
∂ΛT

∂x
(x)

)T

or DΛ(x) =
(
D
(
ΛT (x)

))T
.

Not only does this formalism properly distinguish the different geometric meanings
of the variables involved, but it also allows us to write almost all formulas without
having to use transposes and simplifies the notation considerably.

Finally, we denote the space of all k× � matrices of real numbers by R
k×�. We

assume that the reader is familiar with the basic concepts of matrix algebra and recall
that a matrix P ∈ R

n×n is positive semidefinite if it is symmetric and if vT Pv ≥ 0
for any vector v ∈ R

n; P is said to be positive definite if P is positive semidefinite
and if in addition, vT Pv = 0 holds only for v = 0. It is well-known from linear
algebra that a matrix P is positive definite/semidefinite if and only if all eigenvalues
are positive/nonnegative. Note that as a symmetric matrix, P has a full set of n real
eigenvalues.

2.1 Linear-Quadratic Optimal Control

Before formulating the general optimal control problem, we first fully solve by
elementary means what, from an applications point of view, justifiably may be
considered the single most important optimal control problem, the so-called linear-
quadratic regulator. Mathematically, this is but a small extension of the simplest
problem in the calculus of variations—neither control nor terminal constraints are
imposed—in the sense that the trivial dynamics ẋ = u is replaced by a linear
differential equation ẋ = Ax+Bu and the objective to be minimized is a positive
definite quadratic form in x and u. Standard calculus of variations techniques suffice
to solve this problem. In fact, Legendre’s idea of “completing the square” presented
in Sect. 1.4 works to perfection here and in this section we give an elementary and
self-contained derivation of the optimal solution based on Legendre’s argument.

The importance of the problem lies in its practical applications. Essentially, this
is the problem to regulate a typically nonlinear system around some reference
trajectory. In the mathematical formulation below, the reference trajectory and
control are normalized to be x ≡ 0 and u ≡ 0. As such, but also due to the
simplicity of its solution and the fact that this solution easily allows the inclusion
of stochastic effects (e.g., noisy measurements and estimation of the states from an
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incomplete set of measurements by means of the Kalman filter), the linear-quadratic
regulator is the theoretical basis for many practical control schemes whose aim is
to regulate a system around some set point. Real systems based on this principle
range from autopilots in commercial aircraft to advanced stability control systems in
cars to standard chemical process control. Naturally, this problem, and its manifold
extensions, are the subject of numerous textbooks on automatic control, one of the
best still being the classical text by Kwakernaak and Sivan [144]. For this reason,
this topic is not in the focus of our presentation in this text, and we shall limit
ourselves to its connection with conjugate points and perturbation feedback control
for nonlinear optimal control problems. These will be discussed in the context of
sufficient conditions for a strong local minimum in Sect. 5.3.

Let [0,T ] be a finite and fixed time horizon and suppose

A : [0,T ]→ R
n×n, t �→ A(t), B : [0,T ]→ R

n×m t �→ B(t),

Q : [0,T ]→ R
n×n, t �→ Q(t), R : [0,T ]→ R

m×m t �→ R(t),

are continuous matrix-valued functions defined on [0,T ]. We assume that the
matrices Q(t) and R(t) are symmetric and in addition that Q(t) is positive
semidefinite and R(t) is positive definite for all t ∈ [0,T ]. Furthermore, let ST ∈R

n×n

be a constant, symmetric, and positive semidefinite matrix. The linear-quadratic
regulator then is the following optimal control problem:

[LQ] Find a continuous function u : [0,T ]→ R
m, the control, that minimizes a

quadratic objective of the form

J(u) =
1
2

∫ T

0

[
xT (t)Q(t)x(t)+ uT (t)R(t)u(t)

]
dt +

1
2

xT (T )ST x(T ) (2.1)

subject to the linear dynamics

ẋ(t) = A(t)x(t)+B(t)u(t), x(0) = x0. (2.2)

It follows from well-known results about ordinary differential equations (see
Appendix B) that the initial value problem for the homogeneous linear matrix
differential equation

Ẋ(t) = A(t)X(t) and X(s) = Id

has a unique solution Φ(t,s), called its fundamental solution. For any initial time
s∈ [0,T ], this solution exists over the full interval [0,T ]. The unique solution x(t;x0)
to the homogeneous vector equation ẋ(t) = A(t)x(t) with initial condition x(0) = x0

is then given by x(t;x0) = Φ(t,0)x0, and as is easily verified, the solution to the
inhomogeneous equation (2.2) is obtained by variation of constants as

x(t;x0) =Φ(t,0)

(
x0 +

∫ t

0
Φ(0,s)B(s)u(s)ds

)
.
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This solution is called the trajectory corresponding to the control u. If the matrix A
is time-invariant, then Φ(t,s) is simply given by the absolutely convergent matrix
exponential,

Φ(t,s) = exp(A(t− s)) =
∞

∑
k=0

Ak

k!
(t− s)k.

In the time-varying case, for scalar problems, it is still possible to write down an
explicit formula as

Φ(t,s) = exp

(∫ t

s
A(r)dr

)
,

but in dimensions n ≥ 2 this formula no longer is valid, since generally A(t) and
exp

(∫ t
s A(r)dr

)
do not commute. Series expansions of the solution can still be

given in higher dimensions and are related to Lie-algebraic formulas in connection
with the Baker–Campbell–Hausdorff formula involving commutators [256] (see
also Sect. 4.5), but will not be needed here. The important fact simply is that the
fundamental matrix Φ exists and is unique.

Theorem 2.1.1. The solution to the linear-quadratic optimal control problem [LQ]
is given by the linear feedback control

u∗(t,x) =−R(t)−1B(t)T S(t)x,

where S is the solution to the Riccati terminal value problem

Ṡ+ SA(t)+AT(t)S− SB(t)R(t)−1BT (t)S+Q(t)≡ 0, S(T ) = ST . (2.3)

This solution S exists on the full interval [0,T ] and is positive semidefinite. The
minimal value of the objective is given by 1

2 xT
0 S(0)x0.

Proof. This is Legendre’s argument from the calculus of variations adjusted to this
setting. Let u : [0,T ]→R

m be any continuous control and let x : [0,T ]→R
n denote

the corresponding trajectory. Dropping the argument t from the notation, we have
for any differentiable matrix function S ∈ R

n×n that

d
dt

(
xT Sx

)
= ẋT Sx+ xT Ṡx+ xT Sẋ

= (Ax+Bu)T Sx+ xT Ṡx+ xT S(Ax+Bu),

and thus, by adjoining this quantity to the Lagrangian in the objective, we can
express the cost equivalently as

J(u) =
1
2

∫ T

0

[
xT (Q+AT S+ Ṡ+ SA)x+ xTSBu+ uTBT ST x+ uT Ru

]
dt

+
1
2

xT (T )[ST − S(T)]x(T )+
1
2

xT
0 S(0)x0.
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Take S as a symmetric matrix and complete the square to get

J(u) =
1
2

∫ T

0

[
xT (Ṡ+ SA+ATS− SBR−1BT S+Q)x

+(u+R−1BT Sx)T R(u+R−1BT Sx)
]

dt

+
1
2

xT (T )[ST − S(T)]x(T )+
1
2

xT
0 S(0)x0.

For the moment, let us assume that there exists a solution S to the matrix Riccati
equation (2.3) over the full interval [0,T ]. Then the objective simplifies to

J(u) =
1
2

∫ T

0
(u+R−1BT Sx)T R(u+R−1BT Sx)dt +

1
2

xT
0 S(0)x0.

Since the matrix R is continuous and positive definite over [0,T ], the minimum is
realized if and only if

u(t) =−R−1(t)BT (t)S(t)x(t),

and the minimum value is given by

1
2

xT
0 S(0)x0.

Thus the optimal solution to the linear-quadratic control problem is given as a linear
feedback function, i.e., a function u∗ : [0,T ]×R

n → R
m defined in the time–state

space, given by
u∗(t,x) =−R−1(t)BT (t)S(t)x.

For this argument to be valid, it remains to argue that such a solution S to
the initial value problem (2.3) indeed does exist on all of [0,T ]. It follows from
general results about the existence of solutions to ordinary differential equations
that such a solution exists on some maximal interval (τ,T ] and that as t ↘ τ (i.e.,
t → τ and t > τ), at least one of the components of the solution S(t) needs to
diverge to +∞ or −∞. For if this were not the case, then by the local existence
theorem on ODEs, the solution could be extended further onto some small interval
(τ − ε,τ + ε), contradicting the maximality of the interval (τ,T ]. In general,
however, this explosion time τ could be nonnegative, invalidating the argument
above. That this is not the case for the linear-quadratic regulator problem is
a consequence of the positivity assumptions on the objective, specifically, the
definiteness assumptions on the matrices R, Q, and ST .

In order to see this, suppose the explosion time τ of the solution to the Riccati
equation is nonnegative, τ ≥ 0, and consider the linear-quadratic regulator problem
for variable initial conditions (t0,x0) ∈ [0,T ]×R

n. If t0 > τ , then the reasoning
above is valid; thus the solution to the minimization problem [LQ] is given
by the feedback control u∗(t,x), and the minimal value is J(u∗) = 1

2 xT
0 S(t0)x0.
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This holds for arbitrary initial conditions x0. Since J(u) is always nonnegative by
our assumptions on the matrices in the objective, the matrix S(t0) must be positive
semidefinite. But we can choose t0 arbitrarily in the interval (τ,T ], and thus it
follows that the matrix S(t) is positive semidefinite on this interval. Furthermore,
since for any other control u defined on [t0,T ] we have that

J(u)≥ 1
2

xT
0 S(t0)x0,

using the control u≡ 0, we obtain an upper bound in the form

0≤ 1
2

xT
0 S(t0)x0 ≤ 1

2
xT

0

(∫ T

t0
Φ(t, t0)

T Q(t)Φ(t, t0)dt +Φ(T, t0)
T STΦ(T, t0)

)
x0

(2.4)

for every x0 ∈ R
n. Choosing for the initial condition x0 the ith coordinate vectors,

ei = (0, . . . ,0,1,0, . . . ,0)T , with the 1 in the ith position, the lower estimate in
Eq. (2.4) gives Sii(t0)≥ 0. The upper estimate is continuous in t0 on the full interval
[0,T ] and thus remains bounded over the full interval. Hence there exists a positive
constant C such that

0≤ Sii(t0)≤C for all t0 ∈ (τ,T ].

Choosing x0 = ei±θe j, we furthermore obtain

0≤ (ei±θe j)
T S(t0)(ei±θe j) = Sii(t0)+ 2θSi j(t0)+θ 2S j j(t0)

for all θ ∈ R, which is equivalent to

S2
i j(t0)≤ Sii(t0)S j j(t0).

But then all entries Si j(t0) of the matrix S(t0) take values in the interval [−C,C]
for all times t0 from the interval (τ,T ]. Hence there cannot be an explosion of the
solution as t0 ↘ τ . This contradicts the fact that (τ,T ] is the maximal interval of
existence for the solution S of Eq. (2.3). Thus we must have τ < 0, and the solution
to the Riccati equation exists over the full interval [0,T ]. ��

2.2 Optimal Control Problems

We now formulate the optimal control problem to be considered in this text and
introduce the main necessary conditions for optimality, the Pontryagin maximum
principle [193].
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2.2.1 Control Systems

We think of a control system as a collection of time-dependent vector fields on a
differentiable manifold parameterized by controls that by means of the solutions
of the corresponding ordinary differential equations, give rise to a family of
controlled trajectories. An optimal control problem then is the task to minimize
some functional over these controlled trajectories subject to additional constraints.
We shall postpone a precise definition along these lines until Chap. 4, where we
actually prove the maximum principle. Here, in view of the still introductory
character of this chapter, we retain the more elementary formulation of optimal
control problems with state space R

n. However, we already arrange the material
according to this framework.

Definition 2.2.1. A control system is a 4-tuple Σ = (M,U, f ,U ) consisting of a
state space M, a control set U , a dynamics f , and a class U of admissible controls.

Throughout this chapter, we make the following assumptions about the data
defining the control system:

1. The state space M is an open and connected subset of Rn.
2. The control set U is a subset of R

m. No further regularity conditions on the
structure of U need to be imposed, although in many practical situations U is
compact and convex.

3. The dynamics ẋ = f (t,x,u) is defined by a family of time-varying vector fields f
parameterized by the control values u ∈U ,

f : R×M×U →R
n, (t,x,u) �→ f (t,x,u),

i.e., f assigns to every point (t,x,u) ∈ R×M×U a (tangent) vector f (t,x,u) ∈
R

n. We assume that the time-varying vector fields are continuous in (t,x,u),
differentiable in x for fixed (t,u) ∈ R×U , and that the partial derivatives
∂ f
∂x (t,x,u) are continuous as a function of all variables; no differentiability
assumptions in the control variable u are made.

4. The class U of admissible controls is taken to be piecewise continuous functions
u defined on a compact interval I ⊂ R with values in the control set U . Without
loss of generality, we assume that controls are continuous from the left.

These specifications are simplifications of the setting considered in Chap. 4. Here
our aim is to formulate the fundamental necessary conditions for optimality and then
to illustrate how these conditions can be put to work. For this, the simpler framework
formulated above that requires only some knowledge of advanced calculus and
ordinary differential equations is adequate, and it simplifies the technical aspects of
the theory. In the more general framework considered in Chap. 4, the state space
M will be a Cr-manifold, and the class U of admissible controls will consist
of all locally bounded Lebesgue measurable functions u that take values in the
control set U , i.e., given a compact interval I ⊂ R, there exists a compact subset
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V of U such that u takes values in V almost everywhere on I. In particular, if the
control set U already is compact, then admissible controls are simply Lebesgue
measurable functions that take values in U almost everywhere. The need for taking
as admissible controls the class of Lebesgue measurable functions lies in the fact
that the class of piecewise continuous controls simply is too small, and this will
already be seen in Sect. 2.11 of this chapter, to guarantee the existence of optimal
solutions. Greater generality is required for several important and fundamental
results to be valid. Locally bounded Lebesgue measurable functions are pointwise
limits of piecewise continuous functions and provide the required closure properties
needed for many arguments. A brief exposition of Lebesgue measurable functions
is given in Appendix D, but this will be needed only in Chaps. 3, 4, and some
of 6. Similarly, many control systems, especially those connected with mechanical
systems (e.g., robotic manipulators) have natural state-space descriptions that are
manifolds. Clearly, the circle S1 is a far superior model for the state space of a
fixed-amplitude oscillation than R

2. The sphere S2 is the only reasonable model to
calculate the shortest air route from Paris to Sydney. But these generalizations will
be considered only in Chap. 4.

In the same spirit, we always impose conditions on the dynamics that for a
given admissible control, guarantee not only the existence of solutions to the
differential equation, but also its uniqueness. From an engineering perspective,
this is as important1 a condition as existence of solutions, and we will insist on
it being satisfied. Using the practical class of piecewise continuous controls in this
chapter suffices for our arguments and simplifies the reasoning. Given any piecewise
continuous control u ∈ U defined over some open interval J, it follows from
standard local existence and uniqueness results for ordinary differential equations
(see Appendix B) that for any initial condition x(t0) = x0 with t0 ∈ J, there exists a
unique solution x to the initial value problem

ẋ(t) = f (t,x,u(t)), x(t0) = x0, (2.5)

defined over some maximal interval (τ−,τ+)⊂ J that contains t0.

Definition 2.2.2 (Admissible controlled trajectory). Given an admissible control
u ∈ U defined over an interval J, let x be the unique solution to the initial value
problem (2.5) with maximal interval of definition I = (τ−,τ+). We call this solution
x the trajectory corresponding to the control u and call the pair (x,u) an admissible
controlled trajectory over the interval I.

An optimal control problem then consists in finding, among all admissible con-
trolled trajectories, one that minimizes an objective, possibly subject to additional
constraints. In this text, in addition to the control constraints that are implicit in the
definition of the control set, we consider only terminal constraints in the form of a
target set into which the controls need to steer the system. However, we restrict the

1From our point of view, uniqueness may be the more important of the two conditions.
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terminal set to have the regular geometric structure of a k-dimensional embedded
submanifold N in R×M (see Appendix C). More specifically, we assume that

N = {(t,x) ∈ R×M : Ψ (t,x) = 0},

where Ψ : R×M → R
n+1−k, (t,x) �→ Ψ(t,x) = (ψ0(t,x), . . . ,ψn−k(t,x))T , is a

continuously differentiable mapping and the matrix DΨ of the partial derivatives
with respect to (t,x) is of full rank n+ 1− k everywhere on N, i.e., the gradients of
the functions ψ0(t,x), . . . ,ψn−k(t,x) are linearly independent on N.

Finally, the objective is given in so-called Bolza form as the integral of a
Lagrangian L plus a penalty term ϕ . For the Lagrangian we make the same regularity
assumptions as on the dynamics f , i.e., the function

L : R×M×U →R, (t,x,u) �→ L(t,x,u),

is continuous in (t,x,u), differentiable in x for fixed (t,u)∈R×U , and the derivative
∂L
∂x (t,x,u) is continuous as a function of all variables. The penalty term ϕ is given
by a continuously differentiable function

ϕ : R×M→R, (t,x) �→ ϕ(t,x).

Clearly, this function needs to be defined only on N. Since we assume that N is
an embedded submanifold of R

n+1, if necessary, we can always extend ϕ to a
differentiable function ϕ : R×M → R locally, and thus for simplicity we assume
that ϕ is defined in the ambient state space. The objective or cost functional is then
given as

J (u) =
∫ T

t0
L(s,x(s),u(s))ds+ϕ(T,x(T )), (2.6)

where x is the unique trajectory corresponding to the control u. The terminal time T
can be fixed or free. A fixed terminal time simply will be modeled as the equation
ϕ0(t,x) = t−T in the mappingΨ defining the constraint in N. The initial time t0
and initial condition x0 are fixed, but arbitrary. Then the optimal control problem is
the following one:

[OC] Minimize the objective J (u) over all admissible controlled trajecto-
ries (x,u) defined over an interval [t0,T ] that satisfy the terminal constraint
(T,x(T )) ∈ N.

2.2.2 The Pontryagin Maximum Principle

The maximum principle of optimal control gives the fundamental necessary con-
ditions for a controlled trajectory (x,u) to be optimal. It was developed in the
mid 1950s in the Soviet Union by a group of mathematicians under the leadership



94 2 The Pontryagin Maximum Principle

of L.S. Pontryagin, also including V.G. Boltyanskii, R.V. Gamkrelidze, and E.F.
Mishchenko, and is known as the Pontryagin maximum principle [41, 193]. Below,
and consistent with our choice of admissible controls, we give its formulation
under the additional assumption that the optimal control is piecewise continuous.
Recall that we write tangent vectors as column vectors and cotangent vectors (i.e.,
multipliers) as row vectors.

Definition 2.2.3 (Hamiltonian). The (control) Hamiltonian function H of the
optimal control problem [OC] is defined as

H : R× [0,∞)× (Rn)∗ ×R
n×R

m → R

with
H(t,λ0,λ ,x,u) = λ0L(t,x,u)+λ f (t,x,u). (2.7)

Theorem 2.2.1 (Pontryagin maximum principle). [193] Let (x∗,u∗) be a con-
trolled trajectory defined over the interval [t0,T ] with the control u∗ piecewise
continuous. If (x∗,u∗) is optimal, then there exist a constant λ0 ≥ 0 and a covector
λ : [t0,T ]→ (Rn)∗, the so-called adjoint variable, such that the following conditions
are satisfied:

1. Nontriviality of the multipliers: (λ0,λ (t)) = 0 for all t ∈ [t0,T ].
2. Adjoint equation: the adjoint variable λ is a solution to the time-varying linear

differential equation

λ̇ (t) =−λ0Lx(t,x∗(t),u∗(t))−λ (t) fx(t,x∗(t),u∗(t)). (2.8)

3. Minimum condition: everywhere in [t0,T ] we have that

H(t,λ0,λ (t),x∗(t),u∗(t)) = min
v∈U

H(t,λ0,λ (t),x∗(t),v). (2.9)

If the Lagrangian L and the dynamics f are continuously differentiable in t, then
the function

h : t �→ H(t,λ0,λ (t),x∗(t),u∗(t))

is continuously differentiable with derivative given by

ḣ(t) =
dh
dt

(t) =
∂H
∂ t

(t,λ0,λ (t),x∗(t),u∗(t)). (2.10)

4. Transversality condition: at the endpoint of the controlled trajectory, the covector

(H +λ0ϕt ,−λ +λ0ϕx)

is orthogonal to the terminal constraint N, i.e., there exists a multiplier ν ∈
(Rn+1−k)∗ such that



2.2 Optimal Control Problems 95

H +λ0ϕt +νDtΨ = 0, λ = λ0ϕx +νDxΨ at (T,x∗(T )). (2.11)

The following statement is an immediate special case.

Corollary 2.2.1. If the Lagrangian L and the dynamics f are time-invariant (do not
depend on t), then the function h : t �→H(t,λ0,λ (t),x∗(t),u∗(t)) is constant. If ϕ and
Ψ also do not depend on t (and in this case the terminal time T necessarily is free),
then for any multiplier (λ0,λ ) that satisfies the conditions of the maximum principle,
the Hamiltonian H vanishes identically along the optimal controlled trajectory
(x∗,u∗):

H(t,λ0,λ (t),x∗(t),u∗(t))≡ 0. �
We start our discussions of the maximum principle by introducing some useful

terminology and give a brief and somewhat informal description of the significance
of each condition.

Definition 2.2.4 (Extremals; normal and abnormal). We call controlled trajec-
tories (x,u) for which there exist multipliers λ0 and λ such that the conditions
of the maximum principle are satisfied extremals, and the triples (x,u,(λ0,λ ))
including the multipliers are called extremal lifts (to the cotangent bundle in case
of manifolds). If λ0 > 0, then the extremal lift is called normal while it is called
abnormal if λ0 = 0.

1. Normal and abnormal extremal lifts. The maximum principle takes the form of
a multiplier rule with multiplier (λ0,λ (t)). The nontriviality condition precludes
a trivial solution of these conditions with (λ0,λ (t)) = (0,0). Since the conditions
are linear in the multipliers (λ0,λ ), it is always possible to normalize this vector.
For example, if λ0 > 0, then the conditions do not change if we divide by λ0

and instead consider as the new multiplier (1, λ̃ (t)), where λ̃ (t) = λ (t)/λ0.
Thus, without loss of generality, we may always assume that λ0 = 1 if the
extremal lift is normal. Note that it is a property of the extremal lift, not the
controlled trajectory, to be normal or abnormal. It is possible that both normal
and abnormal extremal lifts exist for a given controlled trajectory (x,u). For this
reason, controlled trajectories for which only abnormal extremal lifts exist are
sometimes called strictly abnormal. We shall see in Sect. 2.3 that all extremals
for the simplest problem in the calculus of variations are normal, and this fact
actually is the source of the terminology, which goes back to Carathéodory
[67]. In spite of their name, abnormal extremals are by no means pathological
situations, and if they exist, they often play an important role in determining
the structure of optimal solutions. We shall see in Sect. 2.6 that the synthesis of
optimal trajectories for the problem of steering points to the origin time-optimally
for the harmonic oscillator with bounded controls, a simple and standard text
book example, contains optimal, strictly abnormal extremals and that these play
a crucial role in determining the overall structure of the solutions.

2. Adjoint system. First note that as a solution to a linear time-varying ordinary
differential equation with piecewise continuous entries, the adjoint variable λ (·)
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exists over the full interval [t0,T ]. We shall see in the proof of the maximum
principle in Sect. 4.2 that (λ0,λ (t)) arises as a normal vector to a hyperplane in
(t,x)-space (hence also the nontriviality condition) that evolves in time according
to the adjoint equation. This equation arises as the adjoint in the sense of linear
ordinary differential equations of the so-called variational equation

ẏ = fx(t,x∗(t),u∗(t))y, (2.12)

which transports tangent vectors (that will be generated by means of variations)
along a reference controlled trajectory t �→ (x∗(t),u∗(t)). Solutions of the adjoint
system provide the corresponding transport for covectors along this curve.
In terms of the Hamiltonian H, the coupled system consisting of the dynamics
and the adjoint equation can be written as

ẋ∗(t)=
∂H
∂λ

(t,λ0,λ (t),x∗(t),u∗(t)) and λ̇ (t)=−∂H
∂x

(t,λ0,λ (t),x∗(t),u∗(t))
(2.13)

and thus forms a Hamiltonian system that is coupled with the control u∗ through
the minimization condition (2.9).

3. Minimum condition. In the original formulation of the theorem by Pontryagin
et al. [193], this condition was formulated as a maximum condition and gave the
result its name. In fact, depending on the choice of the signs associated with the
multipliers λ0 and λ , the maximum principle can be stated in four equivalent
versions. Here, since most of the problems we will be considering are cast as
minimization problems, we prefer this more natural formulation, but retain the
classical name. The minimum condition (2.9) states that in order to solve the
minimization problem on the function space of controls, the control u∗ needs
to be chosen so that for some extremal lift, it minimizes the Hamiltonian H
pointwise over the control set U , i.e., for every t ∈ [t0,T ], the control u∗(t) is
a minimizer of the function v �→ H(t,λ0,λ (t),x∗(t),v) over the control set U .
Note that it is not required just that the control satisfy the necessary conditions
for minimality—and this is how a weak version of the maximum principle is
formulated—but that the control u∗(t) be a true minimizer over the control set U .
This condition typically is the starting point for any analysis of an optimal control
problem. Formally, we first try to “solve” the minimization condition (2.9) for
the control u as a function of the other variables, u = u(t,x∗;λ0,λ ), and then
substitute the “result” into the differential equations for dynamics and adjoint
variable to get

ẋ = f (t,x,u(t,x∗;λ0,λ )), x(t0) = x0,

λ̇ (t) =−λ0Lx(t,x∗(t),u(t,x∗;λ0,λ ))−λ (t) fx(t,x∗(t),u(t,x∗;λ0,λ )).

Since multiple solutions to the minimization problem can exist, this is not in
general a unique specification of the control. Even if the minimization problem
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does have a unique solution, this solution depends on the multiplier, i.e., lives in
the cotangent bundle, and thus need not give rise to unique controlled trajectories.

4. Transversality conditions. Equations (2.5) and (2.8) form a system in 2n+ 1
variables (the state x, the multiplier λ , and the terminal time T ) with the initial
condition x0 specified for the state at time t0. Information about the remaining
n+1 conditions is contained in the transversality conditions at the endpoint. The
requirement that the terminal state lie on the manifold N, (T,x(T )) ∈ N, imposes
n+ 1− k conditions and thus leaves k degrees of freedom. The adjoint variable
λ (T ) ∈ (Rn)∗ at the terminal time T is determined on the k-dimensional tangent
space to N at (T,x∗(T )) by the relation

λ (T ) = λ0ϕx(T,x∗(T ))+νDxΨ(T,x∗(T )

and the multiplier ν ∈ (
R

n+1−k
)∗

in this equation accounts for n− (n+1− k) =
k−1 degrees of freedom, with the last degree of freedom taken up by the equation

H(T,λ0,λ (T ),x∗(T ),u∗(T ))+λ0ϕt(T,x∗(T ))+νDtΨ(T,x∗(T )) = 0

which gives information about the terminal time T . Overall, there thus are
2n+ 1 equations for the boundary values x(T ), λ (T ), and T . Hence, at least
in nondegenerate situations, the transversality conditions provide the required
information about the missing boundary conditions for both the adjoint variable
and the terminal time T .

The geometric statement that the vector (H +λ0ϕt ,−λ +λ0ϕx) is orthogonal
to the terminal constraint N at the endpoint of the controlled trajectory is
valid for any embedded submanifold N. For since the condition is local, it is
always possible to choose a collection of functions ψi, i = 0, . . . ,n− k, so that
N = {(t,x) : Ψ (t,x) = 0} and the gradients of the functions ψi are linearly
independent at (T,x∗(T )). The gradients ∇ψi are all orthogonal to N, and since
they are linearly independent, they span the space normal to N. Thus any covector
normal to N at (T,x∗(T )) is a linear combination of these covectors. Since the
gradients are the rows of the matrix DΨ(T,x∗(T )), there exists a row vector
ν = (ν0, . . . ,νn−k) such that

(H +λ0ϕt ,−λ +λ0ϕx) =−ν (DtΨ ,DxΨ) .

This is equivalent to the formulation given in the theorem.

Summarizing, in order to solve an optimal control problem, in principle, we need
to find all solutions to a boundary value problem on state and costate, coupled by a
minimization condition, and then compare the costs that the projections of these so-
lutions onto the controlled trajectories give. Clearly, this is not an easy problem, and
thus the rest of this chapter will be spent on illustrating how one may go about doing
this for some classes of optimal control problems, namely (i) once more the simplest
problem in the calculus of variations, but now in dimension n, (ii) the linear-
quadratic regulator, but now deriving its solution using the maximum principle,
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(iii) the time-optimal control problem for linear time-invariant systems, and (iv)
time-optimal control for general single-input, nonlinear, control-affine systems in
the plane.

2.3 The Simplest Problem in the Calculus of Variations in R
n

We once more consider the simplest problem in the calculus of variations, but now in
arbitrary dimension n. This is a special case of an optimal control problem, and we
illustrate how far-reaching the conditions of the maximum principle are by briefly
deriving the highdimensional versions of the necessary conditions for optimality
developed in Chap. 1.

Let L : [a,b]×R
n×R

n → R, (t,x,u) �→ L(t,x,u), be a continuous function that
for fixed t ∈ [a,b], is differentiable in (x,u) with the partial derivatives ∂L

∂x (t,x,u)

and ∂L
∂u (t,x,u) continuous in all variables. Also, let A and B be two given points in

R
n. We then consider the following problem:

[CV] Find, among all continuously differentiable curves x : [a,b] �→ R
n that

satisfy the boundary conditions x(a) = A and x(b) = B, one that minimizes the
functional

I(x) =
∫ b

a
L(t,x(t), ẋ(t))dt.

Calculus of variations problems are optimal control problems with a trivial
dynamics, ẋ = u, and no restrictions on the control set: the state space is given
by M = R

n, the control set U is all of Rn, and within our framework, the class U
of admissible controls is given by all piecewise continuous functions; the terminal
manifold N is zero-dimensional given by the point B. If x∗ : [a,b] �→R

n is an optimal
solution, then with u∗(t) = ẋ∗(t), the conditions of the maximum principle state that
there exist a constant λ0 ≥ 0 and an adjoint variable λ : [a,b]→ (Rn)∗ satisfying

λ̇ (t) =−λ0
∂L
∂x

(t,x∗(t),u∗(t))

such that (λ0,λ (t)) = 0 for all t ∈ [a,b] and

λ0L(t,x∗(t),u∗(t))+λ (t)u∗(t) = min
v∈Rn

[λ0L(t,x∗(t),v)+λ (t)v] = const. (2.14)

Since the interval [a,b] and the endpoint are fixed, no transversality conditions
apply: the vector ν can be any vector in (Rn+1)∗ leaving the terminal values of λ
and H(b,λ0,λ (b),x∗(b),u∗(b)) free. But extremals for the simplest problem in the
calculus of variations are always normal: If λ0 = 0, then the minimum condition
(2.14) implies that u∗(t) minimizes the linear function v �→ λ (t)v over Rn. But such
a minimum exists only if λ (t) = 0, and this then contradicts the nontriviality of the
multipliers. Thus λ0 cannot vanish, and without loss of generality we may normalize
it as λ0 = 1.
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The first-order necessary conditions for minimizing the function

v �→ L(t,x∗(t),v)+λ (t)v

over Rn then imply that

∂L
∂u

(t,x∗(t),u∗(t))+λ (t) = 0.

Combining this relation with the adjoint equation, while identifying ẋ∗ with the
control u, gives the standard form of the Euler–Lagrange equation, now valid for
the coordinates of the respective gradients of the Lagrangian

d
dt

(
∂L
∂ ẋ

(t,x∗(t), ẋ∗(t))
)
=
∂L
∂x

(t,x∗(t), ẋ∗(t)).

The actual minimum condition (2.14) of the maximum principle is the Weierstrass
condition of the calculus of variations: recall that the Weierstrass excess function E
was defined as

E(t,x,y,u) = L(t,x,u)−L(t,x,y)− ∂L
∂ ẋ

(t,x,y)(u− y);

thus condition (2.14) states that

E(t,x∗(t), ẋ∗(t),u)≥ 0 for all u ∈ R
n.

As shown in Sect. 1.6, this is a necessary condition for a strong local minimum of
a very different character from that of the Euler–Lagrange equation. Recall that the
piecewise continuous variations used in its proof allowed the derivatives to diverge,
and thus this no longer is a necessary condition for a weak minimum. We shall see
in Sect. 4.2 that Weierstrass’s variations pointed the path to the variations used in
the proof of the maximum principle.

If the Lagrangian L is twice continuously differentiable, additional regularity
statements about extremals easily follow from the maximum principle. For example,
the second-order necessary condition for the function v �→ L(t,x∗(t),v)+ λ (t)v to
have a minimum over Rn at ẋ∗(t) implies that the Hessian matrix

∂ 2L
∂ ẋ2 (t,x∗(t), ẋ∗(t))

is positive semidefinite for t ∈ [a,b]. This is the multi-dimensional version of the
Legendre condition. The strengthened Legendre condition holds over the interval
[a,b] if this matrix is positive definite for t ∈ [a,b]. In this case, as in the scalar
case, the Hilbert differentiability theorem is valid, and the extremal x∗ is twice
continuously differentiable. The argument is the same as in the scalar case: for some
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constant c the extremal x∗ is a solution to the Euler–Lagrange equation in integrated
form,

∂L
∂ ẋ

(t,x∗(t), ẋ∗(t))−
∫ t

a

∂L
∂x

(t,x∗(s), ẋ∗(s))ds− c = 0,

and defining a function F(t,w) as

F(t,w) =
∂L
∂ ẋ

(t,x∗(t),w)−
∫ t

a

∂L
∂x

(t,x∗(s), ẋ∗(s))ds− c,

the equation F(t,w) = 0 has the solution w(t) = ẋ∗(t). By the implicit function
theorem, this solution is continuously differentiable if the partial derivative

∂F
∂w

(t, ẋ∗(t)) =
∂ 2L
∂ ẋ2 (t,x∗(t), ẋ∗(t))

is nonsingular. Hence x∗ is twice continuously differentiable at all points where the
strengthened Legendre condition holds.

The connections between optimal control and problems in the calculus of
variations can be carried further including generalizations of the Jacobi condition
and field theory. These aspects will be developed in Chap. 5.

2.4 The Linear-Quadratic Regulator Revisited

We briefly return to the linear-quadratic regulator and give a derivation of the
optimal feedback control law from the conditions of the maximum principle. This
argument is instructive and will be expanded further in Sect. 5.3 in connection with
conjugate points for the optimal control problem. Also, in low dimensions, explicit
solutions of the Riccati equation for the feedback gain S can be computed using
these constructions, and we illustrate this with two scalar examples. As in the
calculus of variations, there are no restrictions on the control set, i.e., U = R

m,
but now a dynamics (albeit a simple linear one) is involved. In fact, since the
Hamiltonian H is strictly convex in the control u, for this case, variational arguments
as they were developed in Chap. 1 would still be sufficient to characterize the
minimum.

2.4.1 A Derivation of the Optimal Control from the Maximum
Principle

Recall that the linear quadratic regulator [LQ] is the problem of minimizing a
quadratic objective of the form
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J(u) =
1
2

∫ T

0

[
xT (t)Q(t)x(t)+ uT (t)R(t)u(t)

]
dt +

1
2

xT (T )ST x(T )

over all (piecewise) continuous functions u : [0,T ] → R
m defined over a fixed

interval [0,T ] subject to a linear dynamics

ẋ(t) = A(t)x(t)+B(t)u(t), x(0) = x0.

The entries of the matrices A(·), B(·), R(·), and Q(·) are continuous functions on
the interval [0,T ], and the matrices R(·) and Q(·) are symmetric; R(·) is positive
definite, and Q(·) positive semidefinite; ST is a constant positive definite matrix.

As in the simplest problem of the calculus of variations, all extremals are normal:
formally, since the problem is a minimization over a fixed interval [0,T ] without
terminal constraints, the submanifold N is described by a single functionΨ : [0,∞)×
M → R

1, (t,x) �→Ψ(t,x) = t−T , defining the final time T , and the transversality
condition (2.11) reduces to λ (T ) = λ0xT (T )ST . Thus, the adjoint equation with
terminal condition is given by

λ̇ =−λ0xT Q(t)−λA(t), λ (T ) = λ0xT (T )ST .

If λ0 = 0, then λ is a solution to a homogeneous linear equation with 0 boundary
conditions, hence identically zero. But this contradicts the nontriviality statement
of the maximum principle. Thus, without loss of generality, we set λ0 = 1. The
Hamiltonian function H then takes the form

H =
1
2

xT Q(t)x+
1
2

uT R(t)u+λ (A(t)x+B(t)u),

and since the matrix R is positive definite, is strictly convex with a unique minimum
given by the stationary point of the gradient in u,

∂H
∂u

= uT R(t)+λB(t) = 0,

i.e.,

u =−R−1(t)BT (t)λ T . (2.15)

For the subsequent calculation it is more convenient to write the equations in terms
of λ T , and we therefore define μ = λ T . Substituting Eq. (2.15) into the system
and adjoint equation gives the following classical linear two-point boundary value
problem for x and μ :

(
ẋ
μ̇

)
=

(
A(t) −B(t)R(t)−1B(t)T

−Q(t) −A(t)T

)(
x
μ

)
,

(
x(0)
μ(T )

)
=

(
x0

ST x(T )

)
.
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This is the n-dimensional analogue of the linear Hamiltonian system considered in
Sect. 1.4. Its solution is easily obtained from the solution of the associated matrix
differential equation

(
Ẋ
Ẏ

)
=

(
A(t) −B(t)R(t)−1B(t)T

−Q(t) −A(t)T

)(
X
Y

)
,

(
X(0)
Y (T )

)
=

(
Id
ST

)
.

The following classical result generalizes Proposition 1.4.1 to the multidimensional
case and establishes the connections between solutions to Riccati equations and
quotients of solutions to linear differential equations in general. In the engineering
literature, e.g., [64], this technique and its generalizations are known as the sweep
method.

Proposition 2.4.1. Suppose A(·), B(·), M(·), and N(·) are continuous n× n matri-
ces defined on [0,T ] and let (X ,Y )T be the solution to the initial value problem

(
Ẋ
Ẏ

)
=

(
A −M
−N −B

)(
X
Y

)
,

(
X(0)
Y (0)

)
=

(
X0

Y0

)
. (2.16)

Suppose X0 is nonsingular. Then the solution X(t) is nonsingular on the full interval
[0,T ] if and only if the solution S to the Riccati equation

Ṡ+ SA(t)+B(t)S− SM(t)S+N(t)≡ 0, S(0) = Y0X−1
0 , (2.17)

exists on the full interval [0,T ], and in this case we have that

Y (t) = S(t)X(t). (2.18)

The solution S to the Riccati equation (2.17) has a finite escape time at t = τ if and
only if τ is the first time when the matrix X(t) becomes singular.

Proof. [=⇒] Suppose X(t) is nonsingular for all t ∈ [0,T ]. Then S(t) = Y (t)X(t)−1

is well-defined over [0,T ], and we need only verify that S satisfies the Riccati
equation (2.17). This is shown with a direct calculation: omitting the variable t,
we have that

Ṡ =
d
dt
(YX−1) = Ẏ X−1 +Y

d
dt

(
X−1) .

Since X(t)X(t)−1 = Id, it follows that

0 =
d
dt
(XX−1) = ẊX−1 +X

d
dt
(X−1),

or
d
dt
(X−1) =−X−1ẊX−1,
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and thus
Ṡ = ẎX−1−YX−1ẊX−1.

Substituting the differential equations for Ẋ and Ẏ gives

Ṡ = (−NX−BY)X−1− S(AX−MY )X−1 =−SA−BS+ SMS−N.

[⇐=] Conversely, suppose a solution S to the Riccati equation exists on all of
[0,T ]. The linear equation

U̇ = (A(t)−M(t)S(t))U, U(t0) = X0,

has a solution U =U(t) defined over the full interval [0,T ]. Setting V (t) = S(t)U(t),
we have V (0) = S(0)X0 =Y0 and

V̇ = ṠU + SU̇ = (−SA−BS+ SMS−N)U+ S(A−MS)U =−NU−BV. (2.19)

Thus the pair (U,V )T is a solution to the initial value problem (2.16). But so is
(X ,Y )T , and by the uniqueness of solutions we have (X ,Y ) = (U,V ), i.e., Y (t) =
S(t)X(t).

Suppose that there exists a time τ for which X(τ) is singular. Pick x0 = 0
such that X(τ)x0 = 0 and let x(t) = X(t)x0 and y(t) = Y (t)x0. Then x(τ) = 0 and
y(τ) =Y (τ)x0 = S(τ)x(τ) = 0, and thus since (x,y)T satisfies a homogeneous linear
differential equation, both x and y vanish identically. But x(0) = X(0)x0 = 0, since
X(0) is nonsingular. Contradiction. Thus X(t) is nonsingular over all of [0,T ]. ��

For the linear-quadratic problem we already have seen in Theorem 2.1.1 that the
associated Riccati equation has a solution over the full interval [0,T ], and thus we
have μ(t) = S(t)x(t), or in the original notation, λ T (t) = S(t)x(t). Hence, as we
already know, the optimal control is given by

u(t) =−R(t)−1B(t)T S(t)x(t).

This argument, however, is based only on necessary conditions and thus by itself
does not prove the optimality of this control law. But of course, we already know
that the control is optimal from Sect. 2.1.

2.4.2 Two Scalar Examples

We illustrate the solution procedure with two scalar examples in which the Riccati
equation can be solved in analytic form.

Example 2.4.1. Let x and u be scalar and consider the problem to minimize the
objective

J(u) =
1
2

T∫

0

(
qx2 + u2)dt
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subject to the dynamics

ẋ = ax+ bu, x(0) = x0, 0≤ t ≤ T.

For example, this is a simple model of regulating the pH value of some chemical
component [139]. The variable x denotes the deviation of the pH value from a preset
nominal value and the pH value is regulated through a controlling agent with the rate
of change in pH proportional to a weighted sum of its current value and the strength
of the controlling ingredient u, also measured by its deviation from the nominal pH
value; a and b are known positive constants and x0 is the known initial value.

This formulation fits the model exactly, and thus the optimal control is given in
feedback form as

u∗(t) =−bS(t)x∗(t), 0≤ t ≤ T,

where S(t) is the solution to the Riccati equation (2.3),

Ṡ+ 2aS− b2S2 + q = 0, S(T ) = 0.

A scalar Riccati equation can always be reduced to a second-order homogeneous
linear differential equation by making the substitution

φ̇
φ
=−b2S,

which gives

− 1
b2

(
φ̈ φ − (φ̇)2

φ2

)
= Ṡ =

2a
b2

(
φ̇
φ

)
+

1
b2

(
φ̇
φ

)2

− q.

Equivalently,
1
b2

(
φ̈
φ

)
=−2a

b2

(
φ̇
φ

)
+ q,

and thus we obtain the following second-order homogeneous equation with constant
coefficients:

φ̈ + 2aφ̇− qb2φ = 0.

From the terminal condition on S we get φ̇ (T ) = 0, and since we are just looking for
a nontrivial solution, we may take φ(T ) = 1. Setting κ =

√
a2 + qb2, the explicit

solution is given as

φ(t) = e−a(t−T)
[
cosh(κ (t−T ))+

a
κ

sinh(κ (t−T))
]
, 0≤ t ≤ T,
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and thus

S(t) =− 1
b2

(
φ̇(t)
φ(t)

)
=

1
b2

(
a−κ κ sinh(κ (t−T))+ acosh(κ (t−T ))

κ cosh(κ (t−T ))+ asinh(κ (t−T ))

)
,

with the optimal time-varying feedback gain given by −bS(t).

Example 2.4.2 (Inventory control). [139] In most regulator problems, the variables
are normalized as deviations from predetermined set points. In this example, a
simple inventory control problem, the desired values are left as predetermined time-
varying quantities, and we illustrate the changes that arise in the argument for such
a model that involves a modified form of the Lagrangian in the objective. The
reasoning given here easily extends to the general case (for example, see [64,144]).

Consider a company that produces some good and has desired levels for the
production and inventory over a planning horizon [0,T ] represented by ud(t) and
xd(t), respectively. If the demand at time t is denoted by d(t), then the rate of change
of the inventory level x(t) is given by

ẋ(t) = u(t)− d(t), x(0) = x0.

If the firm’s objective is to maintain the inventory and production levels, then it is
reasonable to minimize a functional of the form

J(u) =
1
2

∫ T

0
q [x(t)− xd(t)]

2 + r [u(t)− ud(t)]
2 dt,

where r and q are positive weights selected by the company. In this problem, we
have the restrictions x(t) ≥ 0 and u(t) ≥ 0 that do not fit into the linear-quadratic
regulator model, but making the natural assumption that xd and ud are positive
continuous functions, for sufficiently high weights r and q we can assume that these
conditions will not be violated. In other words, we solve the problem ignoring these
constraints, but then need to verify that the optimal solution does not violate them.
The other, less significant change to the model formulation analyzed so far is that
the objective, when multiplied out, contains linear terms in x and u as well. These
are easily incorporated into the sweep method described above. (This topic will still
be picked up in greater generality in Sect. 5.3.)

The above change in the problem formulation does not alter the fact that
extremals are normal, and the Hamiltonian for the problem is

H(t,λ ,x,u) =
q
2
(x− xd(t))

2 +
r
2
(u− ud(t))

2 +λ (u− d(t)).

Minimization of the Hamiltonian over u ∈ R leads to λ =−r(u∗ − ud) and hence

u∗(t) =−λ∗(t)r
+ ud(t), 0≤ t ≤ T.
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Substituting this relation into the dynamics and combining with the adjoint equation
gives the inhomogeneous linear system

ẋ∗(t) =−λ∗(t)r
+ ud(t)− d(t),

λ̇∗(t) =−qx∗(t)+ qxd(t),

with boundary conditions x∗(0) = x0 and λ∗(T ) = 0. In this case, the solutions are
related by

λ∗(t) = a(t)+ b(t)x∗(t), (2.20)

for some C1-functions a and b that satisfy the terminal conditions a(T ) = 0 and
b(T ) = 0. Differentiating Eq. (2.20), we get that

λ̇∗ = ȧ+ ḃx∗+ bẋ∗,

which, upon substituting for λ̇∗ and ẋ∗, yields

ȧ+ b(ud(t)− d(t))− qxd(t)− ab
r
+

(
ḃ− b2

r
+ q

)
x∗ = 0.

This equation will be satisfied if we choose a and b such that

ȧ+ b(ud(t)− d(t))− qxd(t)− ab
r

= 0, a(T ) = 0, (2.21)

ḃ− b2

r
+ q = 0, b(T ) = 0. (2.22)

Equation (2.22) is the Riccati equation for a related standard linear-quadratic
optimal control problem [LQ] and has a solution over the full interval [0,T ] because
of the positivity of q and r. Equation (2.21) then is a time-varying linear ODE
defined over the full interval and thus also has a solution over the interval [0,T ].
As for Example 2.4.1, the solution b to the Riccati equation can be calculated
explicitly by making a substitution of the form

φ̇
φ
=−1

r
b,

yielding the second-order equation

φ̈ =
q
r
φ .

Setting κ =
√

q
r , the solution for terminal conditions φ(T ) = 1 and φ̇(T ) = 0 is

given by φ(t) = cosh(κ(t−T )) and thus
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b(t) =−rκ tanh(κ(t−T )) = rκ tanh(κ(T − t)) .

We still need to find a(t). This solution depends on the demand d(t) and the specified
production levels xd(t). If these are constants, say the firm controlling the inventory
desires to have the production rate equal to the demand rate, ud = d = const, while at
the same time maintaining a constant level of inventory, xd = const, then Eq. (2.21)
becomes

ȧ− b(t)
r

a− qxd = 0, a(T ) = 0.

Solving this equation, it follows that

a(t) =
qxd

κ
tanh(κ(t−T)) =−√qrxd tanh(κ(T − t)) .

Hence the optimal feedback control u∗(t,x) is given by

u∗(t,x) =−λ∗(t)r
+ d =−a(t)+ b(t)x∗(t)

r
+ d

= κ tanh(κ(T − t))(xd− x∗(t))+ d, 0≤ t ≤ T.

Thus the optimal control equals the constant demand rate d plus a time-varying
inventory correction factor proportional to the deviation from the set point.

2.5 Time-Optimal Control for Linear Time-Invariant
Systems

The two classes of problems considered so far, the simplest problem in the calculus
of variations and the linear-quadratic regulator, were both problems without con-
straints on the control set and as such, are examples that still could be fully analyzed
with techniques from the calculus of variations. We now consider examples from
another class of classical problems for which this no longer is the case: time-optimal
control to a point for a time-invariant linear system with bounded controls.

[LTOC] Given a time-invariant linear control system

Σ : ẋ = Ax+Bu, A ∈ R
n×n, B ∈ R

n×m,

find among all piecewise continuous controls u that take values in the hypercube

U =

{
u ∈R

m : ‖u‖∞ = max
i=1,...,m

|ui| ≤ 1

}
,

one that steers a given (but arbitrary) initial point x0 ∈ R
n into the origin 0 in

minimum time.
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In the formulation of Sect. 2.2, we have M = R
n, L(t,x,u) ≡ 1, f (t,x,u) =

Ax + Bu, ϕ ≡ 0, and Ψ is given by Ψ : [0,∞)×M → R
n, (t,x) �→ Ψ(t,x) = x,

i.e., N = {x ∈ R
n : x = 0}. Since both initial and terminal points on the state are

specified, in this case the transversality conditions give no information about the
multiplier λ . Formally, we have ∂Ψ

∂x (t,x) = Id and thus λ (T ) = ν , an arbitrary
covector from (Rn)∗. But the transversality condition on the final time T implies
that H(T,λ0,λ ,x,u) = 0. Since

H = λ0 +λ (Ax+Bu)

is time-invariant, it follows that along any extremal, we have

H(t,λ0,λ (t),x∗(t),u∗(t))≡ 0.

In particular, λ (t) can never vanish, since otherwise also λ0 = 0. The adjoint
equation is given by

λ̇ =−λA,

and the minimum condition implies that for each i = 1, . . . ,m, the ith component

u(i)∗ (t) of an optimal control must satisfy

u(i)∗ (t) =

{
+1 if λ (t)bi < 0,

−1 if λ (t)bi > 0,

where bi is the ith column of B. Summarizing, we thus have the following version
of the Maximum Principle for the optimal control problem [LTOC]:

Theorem 2.5.1 (Maximum principle for problem [LTOC]). Let (x∗,u∗) be a
controlled trajectory defined over the interval [t0,T ] that minimizes the time of
transfer from x0 ∈ R

n to the origin. Then there exists a nontrivial solution λ :
[t0,T ]→ (Rn)∗ to the adjoint equation λ̇ =−λA so that the control u∗ satisfies

u(i)∗ (t) =

{
+1 if λ (t)bi < 0,

−1 if λ (t)bi > 0,
(2.23)

and the Hamiltonian is identically zero on [t0,T ], H(t,λ0,λ (t),x∗(t),u∗(t))≡ 0.

The necessary conditions of this theorem are also sufficient for optimality under
some easily verifiable controllability assumption on the system Σ . For the moment,
consider a system Σ of the form

Σ : ẋ = Ax+Bu, x(0) = p, u ∈U, (2.24)
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with a general control set U ⊂ R
m. Since the system is time-invariant, without loss

of generality we normalize the initial time to t0 = 0, and the solution x(·; p) to the
initial value problem (2.24) is given by

x(t; p) = eAt p+
∫ t

0
eA(t−s)Bu(s)ds. (2.25)

Definition 2.5.1 (Reachable and controllable sets). The time-t-reachable set from
p is the set of all points q∈R

n that can be reached from p by means of an admissible
control defined on the interval [0, t],

ReachΣ ,t(p) =

{
q ∈ R

n : ∃ u ∈U such that q = eAt p+
∫ t

0
eA(t−s)Bu(s)ds

}
.

The reachable set from p is the union of all time-t-reachable sets for t > 0,

ReachΣ (p) =
⋃
t>0

ReachΣ ,t(p).

The time-t-controllable set to q is the set of all points p∈R
n that can be steered into

q by means of an admissible control defined on the interval [0, t],

ContrΣ ,t(q) =

{
p ∈R

n : ∃ u ∈U such that q = eAt p+
∫ t

0
eA(t−s)Bu(s)ds

}
.

The controllable set to q is the union of all time-t-controllable sets for t > 0,

ContrΣ (q) =
⋃
t>0

ContrΣ ,t (q).

Clearly, a point q is reachable from p in time t if and only if p is controllable to q
in time t. Thus, generally, we restrict out attention to reachable sets. It is clear from
Eq. (2.25) that

ReachΣ ,t(p) = eAt p+ReachΣ ,t(0)

and henceforth we consider only the case p = 0.
A special situation arises if there are no restrictions on the control set, i.e., if U =

R
m. That is, we are considering the problem of whether in principle it is possible

to steer a point p into another point q. In this case, for every t > 0 the reachable
set ReachΣ ,t(0) is a linear subspace (and in fact, the same one regardless of the size
of the interval), known as the controllable subspace C (A,B). This is the subspace
spanned by the columns of the so-called Kalman matrix, i.e.,

C (A,B) = Im (B,AB,A2B, . . . ,An−1B). (2.26)
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Theorem 2.5.2. If U = R
m, then for every t > 0

ReachΣ ,t(0) = C (A,B) = ContrΣ ,t(0).

Proof. We fix t and first show that the reachable set ReachΣ ,t(0) is given by the
image ImW (t) of the matrix

W (t) =
∫ t

0
eA(t−s)BBT eAT (t−s)ds.

Choosing continuous time-varying controls of the form

u(s) = BT eAT (t−s)p,

it follows that

x(t) =
∫ t

0
eA(t−s)Bu(s)ds =W (t)p,

and thus ImW (t)⊂ReachΣ ,t (0). But W (t) is a symmetric matrix, and hence the full
space Rn is the direct sum of the image and the kernel of W (t) [113],

R
n = ImW (t)

⊕
kerW (t).

Furthermore, the kernel is the orthogonal complement of the image, kerW (t) =
ImW (t)⊥, and it therefore suffices to show that

kerW (t)⊂ ReachΣ ,t(0)
⊥.

Given any point y ∈ kerW (t), we have that

0 = 〈y,W (t)y〉=
∫ t

0
yT eA(t−s)BBT eAT (t−s)yds =

∫ t

0

∥∥∥BT eAT (t−s)y
∥∥∥2

2
ds,

and thus yT eA(t−s)B≡ 0 on the interval [0, t]. Since any point q in the reachable set
ReachΣ ,t(0) is of the form

q =

∫ t

0
eA(t−s)Bu(s)ds

for some control u, we thus have that

〈y,q〉=
∫ t

0
yT eA(t−s)Bu(s)ds = 0

for all q ∈ ReachΣ ,t(0). Hence y ∈ ReachΣ ,t(0)⊥ as claimed. Overall, it therefore
follows that
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ReachΣ ,t(0) = ImW (t) for all t > 0.

It remains to compute this image, or equivalently, the kernel of W (t). If y ∈
kerW (t), then as shown above, yT eA(t−s)B ≡ 0 on the interval [0, t]. Since this
function is real-analytic, this is equivalent to the fact that all derivatives vanish at
t = 0, i.e.,

yT AkB = 0 for all k ∈ N.

By the Cayley–Hamilton theorem [113], An can be expressed as a linear combina-
tion of the powers Ai for i = 0,1, . . . ,n− 1, and thus this is equivalent to

yT (B,AB,A2B, . . . ,An−1B) = 0.

Hence the columns of the Kalman matrix

K = (B,AB,A2B, . . . ,An−1B)

span the orthogonal complement to kerW (t); that is, they span ImW (t). This proves
the result. ��
Definition 2.5.2 (Completely controllable). The linear system Σ is said to be
completely controllable if C (A,B) = R

n.

Thus, if the system Σ is completely controllable, then in principle, it is possible
to go from any point p0 ∈ R

n to any other point p1 ∈ R
n in arbitrarily short time T .

(Simply take the control that steers the point 0 into the point p1− eAT p0 in time T .)
Obviously, the shorter the time-interval is, the larger the control values need to
become, and if the controls are bounded, then complete controllability no longer
ensures that such a transfer is possible. In fact, as we shall see in the examples in
the next section, with a bound on the controls, it may no longer be possible to steer
p0 into p1 at all. However, for the system Σ with control set given by the hypercube

U =

{
u ∈ R

m : ‖u‖∞ = max
i=1,...,m

|ui| ≤ 1

}

(more generally, for any control set U that has 0 as interior point), this notion
of complete controllability makes the conditions of the maximum principle also
sufficient for optimality.

Theorem 2.5.3. Consider the time-optimal control problem to the origin for the
time-invariant linear system

Σ : ẋ = Ax+Bu, A ∈ R
n×n, B ∈R

n×m,

with control set

U =

{
u ∈R

m : ‖u‖∞ = max
i=1,...,m

|ui| ≤ 1

}
.
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If the system Σ is completely controllable, then a control u : [0,T ]→ U is time-
optimal if and only if there exists a nontrivial solution λ : [0,T ]→ (Rn)∗ to the
adjoint equation λ̇ =−λA such that

λ (t)Bu(t) = min
v∈U

λ (t)Bv. (2.27)

This theorem will be proven in Sect. 3.5. Thus, for the time-optimal control
problem for linear time-invariant systems, the conditions of the maximum principle
are both necessary and sufficient for optimality under an easily verifiable algebraic
condition. Note that the minimum condition (2.27) gives no information about

u(i)∗ (t) for times t when λ (t)bi = 0. The function Φi(t) = λ (t)bi is called the ith
switching function, and its properties determine the structure of optimal controls.
For instance, if Φi(t) has a simple zero at time τ , then the control switches between
+1 and −1 at τ . Controls that oscillate only between the upper and lower values
±1 are called bang-bang controls. For general nonlinear systems with locally
bounded Lebesgue measurable functions as controls, the switching functions may
have complicated zerosets (see Sect. 2.8). But for linear systems, as we shall show in
Chap. 3, these phenomena play a minor role, and we therefore do not discuss these
features here. Rather, we close this section with a useful criterion on the eigenvalues
of the matrix A that ensures that optimal controls are bang-bang and gives a bound
on the number of switching times.

Proposition 2.5.1. If all eigenvalues of the matrix A are real, then optimal controls
for the single-input linear control system

ẋ = Ax+ bu, A ∈ R
n×n, b ∈ R

n, |u| ≤ 1,

are bang-bang with at most n− 1 switching times.

Proof. It follows from the adjoint equation, λ̇ = −λA, that the derivatives of the
switching function Φ(t) = λ (t)b are given by

Φ̇(t) =−λ (t)Ab, Φ̈(t) = λ (t)A2b, , . . . , Φ(r)(t) = (−1)rArb, . . . .

By the Cayley–Hamilton theorem, the matrix −A is a root of its characteristic
polynomial, χ−A(−A) = 0, say

χ−A(t) = det(t · Id+A) = tn + an−1tn−1 + · · ·+ a1t + a0.

Thus (−A)n can be written as a linear combination of lower powers of A,

(−A)n =−an−1(−A)n−1−·· ·− a1(−A)− a0 Id .

The switching function therefore satisfies the nth-order linear differential equation

Φ(n)(t)+ an−1Φ(n−1)(t)+ · · ·+ a1Φ(t)+ a0 ≡ 0
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with constant coefficients, where the polynomial is the characteristic polynomial of
the matrix −A. Since all eigenvalues of A, and thus also those of −A, are real, the
general solution Φ to this differential equation is of the form

Φ(t) =
k

∑
i=1

pi(t)e
−αit , (2.28)

where α1, . . . ,αk are the distinct eigenvalues of the matrix A and pi are polynomials
of degree at most di, where di is the algebraic multiplicity of the eigenvalue αi, that
is, the multiplicity of αi as a zero of the characteristic polynomial of A. Expressions
of this type are called exponential polynomials, and the result of the proposition
follows from a general property of these functions. Define the degree Deg Φ of an
exponential polynomial of the form (2.28) as

Deg Φ =
k

∑
i=1

(1+ deg pi) ,

where deg pi denotes the usual degree of the polynomial pi. Then the proposition
follows from the following lemma:

Lemma 2.5.1. A nontrivial exponential polynomial of the form

Φ(t) =
k

∑
i=1

pi(t)e
−αit

of degree Deg Φ = r has at most r− 1 zeros.

Proof. The proof is by induction on the degree r. If Deg Φ = 1, then Φ is of the
formΦ(t) = ce−αt with c = 0 and henceΦ has no zeros. Thus, inductively, assume
that the statement is correct for all exponential polynomials of degree at most r and
assume that Φ is of degree r+ 1. Then

Ψ(t) =Φ(t)eα1t = p1(t)+
k

∑
i=2

pi(t)e
(α1−αi)t

also is an exponential polynomial of degree r+ 1, and we have

Ψ̇(t) = ṗ1(t)+
k

∑
i=2

(ṗi(t)+ (αi−α1)pi(t))e(α1−αi)t .

Since differentiation of the polynomial lowers the degree, deg ṗ1 = deg p1− 1, the
derivative Ψ̇ is an exponential polynomial of strictly smaller degree, Deg Ψ̇ ≤ r.
Hence, by the inductive assumption, Ψ̇ has at most r− 1 zeros. By the mean value
theorem,Ψ therefore has at most r zeros. Hence so does Φ . ��
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2.6 Time-Optimal Control for Planar Linear Time-Invariant
Systems: Examples

We give several examples that illustrate how the conditions of the maximum
principle can be used to construct optimal solutions for linear time-optimal control
problems. The examples are two-dimensional, but the procedures are generally
applicable. We start with the classical model of time-optimal control to the origin
for the double integrator.

2.6.1 The Double Integrator

The double integrator is a mathematical model of an object moving along a
horizontal line without friction, and the goal is to bring it to rest at the origin in
minimum time. Here x(t) denotes the position of the object at time t, ẋ(t) its velocity,
and u(t) the external force applied to the object. Mathematically, we take as variable
x = (x1,x2)

T = (x, ẋ)T , and the dynamics can be written in the form

ẋ =

(
0 1
0 0

)
x+

(
0
1

)
u.

The Hamiltonian H is given by

H = λ0 +λ
[(

0 1
0 0

)
x+

(
0
1

)
u

]
= λ0 +λ1x2 +λ2u,

and thus the minimum condition implies that

u(t) =

{
+1 if λ2(t)< 0,

−1 if λ2(t)> 0.

Obviously, the matrix A has the double eigenvalue 0, and thus by Proposition 2.5.1,
optimal controls are bang-bang with at most one switching. Naturally, for this simple
model this also is easily seen directly: The adjoint equation is given by

λ̇ =−λ
(

0 1
0 0

)
,

or
λ̇1 = 0, λ̇2 =−λ1,

and thus

λ̈2 ≡ d
dt

(−λ1) = 0.
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Hence any solution of the adjoint equation is an affine function λ2(t) = αt +β and
has at most one zero. Therefore optimal controls are bang-bang with at most one
switching.

Once this structure is known, it is straightforward to synthesize all possible
extremals. We simply need to analyze the phase portraits of the two systems
corresponding to the constant controls u ≡ +1 and u ≡ −1 and then consider all
possible combinations that steer the system into the origin and have no more than
one switching. Let X denote the vector field corresponding to control u ≡ −1, i.e.,
ẋ1 = x2 and ẋ2 = −1. Forming dx1

dx2
= −x2, we see that the integral curves have the

form x1 =− 1
2 x2

2 +a with a∈R some constant. Analogously, if Y denotes the vector
field corresponding to control u ≡ +1, then we have ẋ1 = x2 and ẋ2 = 1, and now
the integral curves are given by x1 =

1
2 x2

2 +b with b ∈ R another constant. Thus, all
integral curves are parabolas opening left for u = −1 and right for u =+1. Among
all these curves, however, there are only two that steer the system into the origin
directly, namely

Γ+ : x1 =
1
2

x2
2 for x2 < 0

and

Γ− : x1 =−1
2

x2
2 for x2 > 0.

Only these two half-parabolas are integral curves that steer the system into the
origin; the other two halves that were dropped steer the system away from the origin.
Thus any optimal trajectory needs to arrive at the origin along eitherΓ+ orΓ−. Bang-
bang trajectories that have exactly one switching are now constructed by integrating
the vector field X backward from any point in Γ+ and integrating Y backward from
any point in Γ−.

Denote the resulting family of extremal controlled trajectories by F . It is clear
that away from Γ+ and Γ−, this family F covers the entire state space injectively
and for every initial condition (x0

1,x
0
2) = (0,0) there exists a unique extremal in

F that is bang-bang with at most one switching and steers the system into the
origin forward in time. This family is shown in Fig. 2.1. In general, such a family
of controlled trajectories is called an extremal synthesis (and this will be the main
topic of Chap. 6). Note that for each trajectory, the control at (x1,x2) depends only
on the actual point (x1,x2), but not on the path along which this point was reached
and thus we can describe the controls associated with this family as a discontinuous
feedback control. If we define regions

G+ =

{
(x1,x2) : x1 <−sgn(x2)

1
2

x2
2

}

and

G− =

{
(x1,x2) : x1 >−sgn(x2)

1
2

x2
2

}
,
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Fig. 2.1 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for the double integrator

then the corresponding controls are given by

u∗(x) =

{
+1 for x ∈ Γ+∪G+,

−1 for x ∈ Γ−∪G−.

It follows from Theorem 2.5.3 that the controlled trajectories in this family are
optimal. For this simple example, this can also easily be verified directly [41]: Let
(x̄1, x̄2) = (0,0) be an arbitrary initial condition and let T denote the time it takes
for the system to reach the origin along the controlled trajectory in the family F .
Suppose there exists another control ū that steers (x̄1, x̄2) into the origin in time
T̄ < T . Without loss of generality, consider the case that the control in the family F
is given by

u(t) =

{
−1 for 0 < t ≤ α,
+1 for α < t ≤ T.

Define functions
Φ(t) =−x1(t)+ x2(t)(t−α)

and
Ψ(t) =−x̄1(t)+ x̄2(t)(t−α),
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where (x1(·),x2(·)) is the solution from the family F and (x̄1(·), x̄2(·)) is the
solution corresponding to the control ū. Then we have that

Φ̇(t) =−ẋ1(t)+ ẋ2(t)(t−α)+ x2(t) = u(t)(t−α) = |t−α|

and
Ψ̇ (t) =− ˙̄x1(t)+ ˙̄x2(t)(t−α)+ x̄2(t) = ū(t)(t−α).

Since U = [−1,1], it follows that Ψ̇(t)≤ |Ψ̇(t)| ≤ Φ̇(t) and thus

∫ T̄

0
Φ̇(t)dt ≥

∫ T̄

0
Ψ̇ (t)dt.

Hence
Φ(T̄ )−Φ(0)≥Ψ(T̄ )−Ψ(0).

But by construction,
Φ(0) =−x̄1−α x̄2 =Ψ(0),

and sinceΨ(T̄ ) = 0 (the system is at the origin at time T̄ ), we have Φ(T̄ )≥ 0. But
then

0 <
∫ T

T̄
|t−α|dt =

∫ T

T̄
Φ̇(t)dt =Φ(T )−Φ(T̄ ) =−Φ(T̄ )≤ 0.

Contradiction. This proves that the family F is an optimal synthesis of controlled
trajectories.

The general question of optimality of an extremal synthesis will be considered
in the context of sufficient conditions for optimality in Chap. 6. For the linear
systems considered in this section, the optimality of all the syntheses constructed
here follows from Theorem 2.5.3.

2.6.2 A Hyperbolic Saddle

We now consider a system that has both a positive and negative eigenvalue:

ẋ =

(
0 1
1 0

)
x+

(
0
1

)
u, |u| ≤ 1.

Again, the system is completely controllable,

K = (b,Ab) =

(
0 1
1 0

)
,

and the eigenvalues of A are μ1 = −1 and μ2 = +1. Hence optimal controls are
bang-bang with at most one switching, and an extremal synthesis is sufficient for
optimality.
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Fig. 2.2 Phase portrait for u =+1 (left) and for u =−1 (right)

As for the double integrator, geometric properties of the phase portrait of the
uncontrolled system determine the structure of the overall synthesis of optimal
controlled trajectories. The origin is a hyperbolic saddle for the system ż = Az, and
the stable and unstable subspaces at the equilibria are spanned by the eigenvectors
v1 and v2 of the eigenvalues μ1 and μ2, respectively,

v1 =

(
1
−1

)
, v2 =

(
1
1

)
.

That is, if p is a multiple of v1, then the solution z(t) to the initial value problem
ż = Az, z(0) = p, is given by z(t) = eAt p = e−t p and thus satisfies limt→∞ z(t) = 0,
while for multiples of v2 the solution is given by z(t) = eAt p = et p and thus satisfies
limt→−∞ z(t) = 0. The phase portraits for the controlled vector fields with u =+1 or
u =−1 are simply shifted versions of the phase portrait of the homogeneous system
ż = Az along the x1-axis and are shown in Fig. 2.2.

If, as above, we denote by X the vector field corresponding to the control u≡−1
and by Y the vector field corresponding to the control u≡+1, i.e.,

X(x) = Ax− b =

(
x2

x1− 1

)
, Y (x) = Ax+ b =

(
x2

x1 + 1

)
,

then these vector fields now have a hyperbolic saddle at the points p+ = (+1,0) and
p− = (−1,0) and the stable and unstable subspaces of the matrix A are translated
to become lines through p+ and p−. Note that there again exist unique trajectories
Γ− of X and Γ+ of Y that steer the system into the origin forward in time, shown
as solid black curves in Fig. 2.2. Their continuations, which will not be part of the
synthesis, are shown dashed. As with the double integrator, an extremal synthesis
is then constructed by integrating X backward from points in Γ+ and Y backward
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from points in Γ−. However, it is now no longer possible to steer every point into
the origin as it was the case with the double integrator, and the controllable set is
bounded by the stable manifolds of the equilibria p+ and p−, that is, by the lines

E+ = p++ linspan{v1}= {x ∈ R
2 : x1 + x2 =+1}

and
E− = p−+ linspan{v1}= {x ∈R

2 : x1 + x2 =−1}.
Clearly, for any admissible control u, we have that

d
dt

(x1 + x2) = (x1 + x2)+ u

and since |u| ≤ 1, we always have d
dt (x1 + x2) ≤ 0 at points (x1,x2) satisfying

x1 + x2 ≤ −1 and d
dt (x1 + x2) ≥ 0 at points satisfying x1 + x2 ≥ 1. Thus no point

outside of
C = {(x1,x2) :−1 < x1 + x2 < 1}

can be steered into the origin. On the other hand, if a point lies in C , then
it is clear from the phase portraits that there exists a unique bang-bang control
with at most one switching that steers this initial condition into the origin. This
family of controlled trajectories is illustrated in Fig. 2.3. By construction this family
of controlled trajectories is an extremal synthesis, and hence it is optimal by
Theorem 2.5.3.

This example illustrates the obvious fact that complete controllability does not
allow one to freely steer the system into arbitrary points if constraints are imposed
on the control. As seen in Example 2.4.1, if the eigenvalues are critical, i.e., lie on
the imaginary axis, then the instability can be fully overcome by any kind of control
action (of course, the control set needs to contain the origin in its interior). Generally,
for unstable systems with eigenvalues with positive real parts a certain degree of
instability can be overcome depending on the size of the control that is allowed.
In Example 2.4.2, when there still existed a one-dimensional stable subspace for
the system, it was this subspace (and the size on the control) that determined the
controllable set. The next example shows what happens if the system is an unstable
node without any stable trajectories at all. Even in this case, the control is still able
to overcome some of the instabilities, and the controllable set still is open.

2.6.3 An Unstable Node

Consider the system

ẋ =

(
2 1
2 3

)
x+

(
0
1

)
u, u ∈ [−1,1].
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Fig. 2.3 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for a hyperbolic saddle

As above, the system is completely controllable,

K = (b,Ab) =

(
0 1
1 3

)
,

with two real eigenvalues, μ1 = 1 and μ2 = 4, and as before, optimal controls are
bang-bang with at most one switching and an extremal synthesis is optimal.

The uncontrolled system is an unstable node, and the phase portraits for the
controlled vector fields X and Y corresponding to the constant controls u =−1 and
u=+1, respectively, again are simply shifted versions along the x1-axis of the phase
portrait of ż = Az shown in Fig. 2.4. In this case, the solutions along the eigenvectors
do not play an important role, but instead the boundary of the controllable set is
given by two specific trajectories Λ+ and Λ− of the vector fields X and Y : Λ+ is
the backward orbit of the trajectory of the vector field Y that passes through the
equilibrium point p− = (− 1

4 ,
1
2) of the vector field X at time 0 and converges to the

equilibrium p+ = ( 1
4 ,− 1

2) of the vector field Y as t →−∞, and symmetrically, Λ−
is the backward orbit of the trajectory of the vector field X that passes through the
equilibrium point p+ of the vector field Y at time 0 and converges to the equilibrium
p− of the vector field X as t →−∞. The concatenation of these two curves with
the equilibria p+ and p− forms a simple closed curve, and the controllable set C
is the interior of this closed curve with C as its boundary. The optimal synthesis is
constructed analogously as for the double integrator and the hyperbolic saddle by
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Fig. 2.4 Phase portrait of ż = Az for an unstable node

integrating the vector fields X and Y backward from the unique trajectories Γ− of X
and Γ+ of Y that steer the system into the origin forward in time, and it is illustrated
in Fig. 2.5.

2.6.4 The Harmonic Oscillator

We close this section with an example of a matrix A that has complex eigenvalues.
Because of the inherent oscillatory character of these systems, the number of
switchings no longer can be bounded. We consider the harmonic oscillator. As
before, x(t) denotes the position of the object at time t, ẋ(t) its velocity, and u(t) the
external force applied to the object, and we write the state as x = (x1,x2)

T = (x, ẋ)T .
Now the dynamics takes the form

ẋ =

(
0 1
−1 0

)
x+

(
0
1

)
u,

and the Hamiltonian H is given by

H = λ0 +λ
[(

0 1
−1 0

)
x+

(
0
1

)
u

]
= λ0 +λ1x2 +λ2(−x1 + u).
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Fig. 2.5 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for an unstable node

Thus again, the minimum condition implies that

u(t) =

{
+1 if λ2(t)< 0,

−1 if λ2(t)> 0.

As for all linear systems, the adjoint equation is given by the system itself run
backward, but written as a row vector

λ̇ =−λ
(

0 1
−1 0

)
,

or
λ̇1 = λ2, λ̇2 =−λ1,

and thus

λ̈2 ≡ d
dt

(−λ1) =−λ2.

Hence, all solutions of the adjoint equation are integral curves of the harmonic
oscillator. Thus again optimal controls are bang-bang, but now we cannot give
an a priori bound on the number of switchings. In fact, depending on the initial
condition, this number can be arbitrarily large. However, since switchings are the
zeros of a solution to the harmonic oscillator, it follows that all switchings τn are
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spaced exactly π units apart, and the first switching τ1 can take any value in the
interval (0,π ]. Analytically, any solution λ2 of the adjoint equation is of the form
λ2(t) = acost + bsint for some constants a and b and therefore can be written in
phase-angle form as

λ2(t) = Acos(t−ϕ)
with amplitude A =

√
a2 + b2 and phase ϕ = arctan

(
b
a

)
.

With this information, as with the examples above, it is again straightforward to
synthesize all possible extremals by analyzing the phase portraits of the systems
corresponding to the constant controls u ≡ +1 and u ≡ −1 and then consider
all possible concatenations that switch exactly π units of time apart. As before,
let X and Y denote the vector fields corresponding to the controls u ≡ −1 and
u ≡ +1, respectively. Integral curves of X are circles with center at the point
p− = (−1,0), and integral curves of Y are circles with center at p+ = (1,0), both
traversed clockwise. Exactly as in the case of the double integrator, among all these
trajectories there are only two that steer the system into the origin directly, namely

Γ+ : [−π ,0]→R
2, t �→ (x1(t),x2(t)) = (1− cos(t),sin(t)),

and
Γ− : [−π ,0]→R

2, t �→ (x1(t),x2(t)) = (−1+ cos(t),−sin(t)).

Note that Γ− is the curve obtained by reflecting Γ+ at the origin, and only these two
semicircles are admissible extremal trajectories, since switchings must be spaced
π units apart. Thus there cannot be any segment of an optimal X or Y trajectory
longer than π . Any extremal control that steers the system into the origin needs to
do so along either Γ+ or Γ− as final segment. The full family F is now constructed
by picking a point q+(t) ∈ Γ+ (respectively q−(t) ∈ Γ−) for a time t ∈ [−π ,0) and
integrating the vector fields X and Y (respectively, Y and X) backward from q+(t)
(respectively q−(t)), switching between these vector fields at all times precisely
π units apart. Thus, with the final time normalized to 0, the switchings occur at
times t, t−π , t− 2π , . . . and the curves where the switchings occur, the so-called
switching curves, are obtained inductively by following the flow of X , respectively
Y , for exactly π units of time starting with Γ+ and Γ−. Since integral curves are
concentric circles centered at p±, this generates a family of shifted semicircles of
type Γ+ below the positive x1-axis and of type Γ− above the negative x1-axis as
depicted in Fig. 2.6. In this figure, the curves Γ+ and Γ− are shown as solid curves
since these are actually integral curves of X and Y , while all their translates are
strictly switching curves that do not correspond to integral curves and are shown
dashed. On all points on these translates, the controls switch between +1 and −1
and the corresponding trajectories cross the switching curves.

As with the double integrator, the family F covers the entire state space
injectively, and for every initial condition (x0

1,x
0
2) there exists a unique bang-bang

extremal that steers the system into the origin. So again we have an extremal
synthesis, and the control can be given as a feedback control. If we denote the
switching locus by ϒ and let G+ denote the region below ϒ in the (x1,x2)-plane
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Fig. 2.6 Synthesis of optimal controlled trajectories for time-optimal control to the origin for the
harmonic oscillator

and G− the region above ϒ , then the control is again a discontinuous feedback of
the form

u∗(x) =

{
+1 for x ∈ Γ+∪G+,

−1 for x ∈ Γ−∪G−.

As with the other examples considered in this section, by Theorem 2.5.3 the
family F of controlled trajectories is an optimal synthesis.

We close this section with pointing out the special nature of the trajectories that
end with the full semicircles Γ+ and Γ−. Let γ+ and γ− be the controlled trajectories
in the field F that end at the origin at time 0 by following the full arcs Γ+ and
Γ−, respectively, and have switchings at all negative integer multiples of π . These
two extremal trajectories are strictly abnormal, i.e., the only way to satisfy the
conditions of the maximum principle is with λ0 = 0. Thus, the trajectories γ+ and
γ− are examples of optimal trajectories whose extremals are abnormal.

Proposition 2.6.1. The extremals corresponding to γ+ and γ− are unique (up to a
positive multiple) and are strictly abnormal.

Proof. Without loss of generality, we consider γ−. Since the system is time-
invariant, we can normalize the final time to be T = 0 and integrate backward. Then,
as used already above, the parametrization of γ− (respectively Γ−) over the interval
[−π ,0] is given by

x1(t) =−1+ cos(t) and x2(t) =−sin(t).
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The times t = −π and t = 0 are switching times. Since λ itself is a solution of the
harmonic oscillator, only multiples of sin(t) will satisfy this condition, and since the
control is u =−1 on [−π ,0], we must have λ2(t) = α sin(t) for some α < 0. Hence
λ1(t) =−λ̇2(t) =−α cos(t), and on [−π ,0] the Hamiltonian H takes the form

H = λ0 +λ1(t)x2(t)+λ2(t)(−x1(t)+ u(t))

= λ0 +α cos(t)sin(t)+α sin(t)(1− cos(t)− 1)

= λ0.

But it follows from Theorem 2.5.1 that H ≡ 0, and thus we must have λ0 = 0. ��

2.7 Extensions of the Model: Two Examples

The examples considered so far fall into well-established classes, linear-quadratic
optimal control and time-optimal control for time-invariant linear systems. But the
techniques that were used apply more generally, and as further illustration of how to
use the conditions of the maximum principle, we shall solve a basic trading problem
in economics and a classical example of a nonlinear system, the so-called moon
landing problem, that will lead us to a discussion of general nonlinear control-affine
systems in the next section.

2.7.1 An Economic Trading Model

We consider a simple model of a firm that buys and sells a product and has cash
and the quantity of this product as its two assets; denote the values of these assets at
time t by x1(t) and x2(t), respectively [139]. The initial values of the assets, x1(0)
and x2(0), are given. If the company’s reservation utility for the price of the product
at the end of some planning period [0,T ] is denoted by π , then the firm’s goal is to
maximize

C(u) = x1(T )+πx2(T ).

Ideally, the reservation utility would agree with the price at time T , but a priori this
price is unknown. The control in the problem, represented by u(t), is the rate of
buying and selling the product at time t with u(t) > 0 considered a purchase and
u(t) < 0 a sale. We assume that at any time, there are (self-imposed) limits on the
amount of the product the company wants to buy or sell, say m ≤ u(t) ≤ M with
m < 0 and M > 0 given constants. If p(t) denotes the price of the product at time t,
then the effect of a trading operation on the company’s assets is given by

ẋ1(t) =−αx2(t)− p(t)u(t), ẋ2(t) = u(t),
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where α > 0 is a constant associated with the cost of storing a unit of the product
and the term p(t)u(t) gives the cost of purchase or the revenue from sales at time t.

The dynamics now has the form ẋ = Ax+B(t)u, where A is time-invariant, but B
is time-varying,

A =

(
0 −α
0 0

)
and B(t) =

(−p(t)
1

)
.

The Hamiltonian H for the problem is

H = H(t,λ ,x,u) = λ1(−αx2− p(t)u)+λ2u =−αλ1x2 +(λ2−λ1p(t))u,

and the adjoint equations are given by

λ̇1 = 0, λ̇2 = αλ1,

with transversality conditions

λ1(T ) =−λ0, λ2(T ) =−λ0π .

Notice the minus signs in the transversality conditions that arise, since in our
formulation, we minimize the objective J(u) =−C(u). If λ0 = 0, then also λ (t)≡ 0,
contradicting the nontriviality of the multiplier, and thus we normalize λ0 = 1.
Hence

λ1(t)≡−1 and λ2(t) = α(T − t)−π , 0≤ t ≤ T.

The minimization condition on the Hamiltonian therefore implies that the optimal
control u∗(t) satisfies

u∗(t) =

{
m if p(t)> α(t−T )+π ,
M if p(t)< α(t−T )+π ,

while it is not specified through the minimization condition if p(t) = α(t−T )+π .
In fact, if the price were to follow this linear relationship, then the minimization
condition would be inconclusive, and this leads to the concept of singular controls
that we shall describe in Sect. 2.8. Here we consider only the simpler case in which p
is continuous and piecewise continuously differentiable with ṗ(t) = α everywhere.
In this case, whenever p(t) = α(t − T ) + π , then p crosses the line �(t) =
α(t−T )+π , and at every such crossing a switch from m to M or vice versa occurs.
Let us illustrate this solution with a particular case of price function as given below
for the numerical values T = 9, m =−1, M = 1, and α = 1

3 :
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Fig. 2.7 An optimal trading strategy

p(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 3
2 t + 4 for 0≤ t ≤ 2,

1 for 2≤ t ≤ 3,

t− 2 for 3≤ t ≤ 5,

−t + 8 for 5≤ t ≤ 6,

t− 4 for 6≤ t ≤ 8,

4 for 8≤ t ≤ 9.

Choosing π = 4, we get that λ2(t) = − 1
3 t− 1, and Fig. 2.7 illustrates the optimal

buy–sell decisions for this price function. The optimal control for the problem thus is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m for 0≤ t ≤ 1.64,

M for 1.64≤ t ≤ 4.5,

m for 4.5≤ t ≤ 5.25,

M for 5.25≤ t ≤ 7.5,

m for 7.5≤ t ≤ 9.
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2.7.2 The Moon-Landing Problem

We now consider a problem with a nonlinear dynamics, but for which the synthesis
of optimal controlled trajectories can still easily be obtained with the procedure used
for time-invariant linear systems. This is a highly simplified version of the dynamics
underlying the real version of a spacecraft making a vertical soft landing on the
surface of the moon while minimizing fuel consumption [95]. The state variables
are h, the height of the space craft above the lunar surface; v, its vertical velocity
oriented upward; and m, its mass. Fuel consumption lowers the mass and because of
the orientation, increases the velocity, since the jets are used to slow down the free
fall of the craft. The simplified dynamical equations therefore take the form

ḣ = v, h(0) = h0, (2.29)

v̇ =−g+
u
m
, v(0) = v0, (2.30)

ṁ =−ku, m(0) = M+F, (2.31)

where g is the moon’s gravitational constant and u denotes the control of the system.
By means of the constant k, we normalize the control set to be U = [0,1]. The
coefficients M and F in the initial condition for m denote the mass of the spacecraft
and the total mass of the fuel at the beginning of descent. The optimal control
problem then becomes the following:

[ML] For a free terminal time T , minimize the total amount of fuel used,

J(u) =
∫ T

0
u(t)dt,

over all piecewise continuous functions u : [0,T ]→ [0,1], subject to the dynamics
(2.29)–(2.31) and terminal conditions

h(T ) = 0 and v(T ) = 0.

Clearly, an implicit assumption in the model is the state constraint h ≥ 0, and
obviously we also cannot allow that h = 0 at some intermediate time with negative
velocity v. However, for the moment we ignore these constraints, and it will be seen
that the optimal solution fulfills these obvious physical side conditions.

The Hamiltonian function for the moon-landing problem is given as

H = λ0u+λ1v+λ2

(
−g+

u
m

)
−λ3ku = λ1v−λ2g+ u

(
λ0− λ2

m
−λ3k

)
.

If (x∗,u∗) is an optimal controlled trajectory defined over the interval [0,T ], then
there exist a constant λ0 ≥ 0 and an adjoint variable λ = (λ1,λ2,λ3) : [0,T ] →
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(
R

3
)∗

such that the following conditions are satisfied: (a) λ0 and λ (t) do not vanish
simultaneously over [0,T ], (b) λ (t) satisfies the adjoint equations

λ̇1 = 0, λ̇2 =−λ1, λ̇3 = λ2
u

m2 ,

with transversality condition λ3(T ) = 0, and (c) the control u∗(t) minimizes the
Hamiltonian H as a function of u over the control set [0,1] with minimum value 0.

Since the Hamiltonian H is linear in u, this minimum is determined by the sign
of the function

Φ(t) = λ0 +
λ2(t)
m(t)

−λ3(t)k,

and we have that

u∗(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Φ(t)> 0,

undefined if Φ(t) = 0,

1 if Φ(t)< 0.

Again Φ is the switching function of the problem.
For the time-optimal control problem, intuition would say that the optimal

solution should be free fall (u∗ = 0) followed, at the right moment, by a maximum
thrust (u∗ = 1) to slow down the craft to make a soft landing. This corresponds
to a bang-bang control that has exactly one switching from u = 0 to u = 1. For
this problem, this also is the minimum-fuel-consumption solution. To see this, we
analyze the derivative of the switching function. It follows from the dynamics and
adjoint equation that

Φ̇(t) =
λ̇2(t)
m(t)

−λ2(t)
ṁ(t)
m(t)2 − λ̇3(t)k =− λ1

m(t)
.

If λ1 = 0, then the switching functionΦ is constant. ButΦ cannot vanish identically,
since the condition that H = λ1v− λ2g+ uΦ(t) ≡ 0 then also gives that λ2 = 0,
which implies λ3 = 0 as well and thus also λ0 = 0 from Φ = 0, contradicting the
nontriviality of the multipliers. Clearly,Φ also cannot be positive, since v decreases
along the control u ≡ 0, and thus we cannot meet the terminal condition v = 0.
Hence, in this case, Φ must be negative, giving the constant control u∗(t)≡ 1. This
corresponds to braking with full thrust throughout, and clearly this is the optimal
control for specific initial conditions. If λ1 = 0, then the switching function is strictly
monotone and thus has at most one zero. Again, the only choice that can satisfy the
terminal condition is λ1 > 0, and hence optimal controls must be bang-bang with at
most one switching from u = 0 to u = 1.

Once this is known, a field of extremals can be constructed as before in the
examples for linear systems. Suppose the control is given by u∗ ≡ 1 on the interval
[ζ ,T ]. It then follows from the terminal conditions h(T ) = 0 and v(T ) = 0 that
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Fig. 2.8 Switching curve and optimal controlled trajectories near the final time T

h(ζ ) =−1
2

g(T − ζ )2− M+F
k2 ln

(
1− k (T − ζ )

M+F

)
− T − ζ

k
,

v(ζ ) = g(T − ζ )+ 1
k

ln

(
1− k (T − ζ )

M+F

)
.

Plotting h(ζ ) against v(ζ ), we get a curve Z , ζ �→ (h(ζ ),v(ζ )), that represents the
set of all initial conditions (height and velocity pairs) that would result in a soft
landing with full thrust u∗ ≡ 1. Since there exists a restriction that the total amount
of fuel will burn in time F

k seconds, one further needs to restrict the curve to the
ζ -values in the interval [T − F

k ,T ]. The first part of the trajectory simply is free fall
(u∗ = 0), and the initial portions of the equations are given by

h(t) =−1
2

gt2 + v0t + h0 and v(t) =−gt + v0

so that

h(t) = h0− 1
2g

(
v2(t)− v2

0

)
, t ≥ 0. (2.32)

Once this parabola meets the curve Z , the thrusters need to be engaged at full force
to make a soft landing. If the parabola does not meet the switching curve Z , a soft
landing is impossible. Figure 2.8 illustrates the synthesis.
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2.8 Singular Controls and Lie Derivatives

Both the linear time-optimal control problems in the plane and also the examples
considered in the previous section lead to minimizing a Hamiltonian function that
is linear in a scalar control u over a compact interval [a,b]. Clearly, this minimum
is attained at u = a if the function Φ multiplying u is positive and at u = b if this
function is negative. In the examples we have considered so far, it always turned out
that optimal controls were bang-bang, i.e., consisted of a finite number of switchings
between u = a and u = b. We shall show in Sect. 3.6, that this is “always” the
case for a time-invariant linear system whose control set is a compact polyhedron.
More precisely, for these systems, it is always possible to find an optimal control
that switches finitely many times between controls that take their values in one of
the vertices of the control set; in addition, the number of switchings over a finite
interval [0,T ] can be bounded. This no longer holds once the dynamics of the control
system becomes nonlinear: optimal controls need not be bang-bang, and even when
optimal controls switch only between u = a and u = b, the number of switchings
on a compact interval [0,T ] can be countably infinite. We shall see in the remaining
sections of this chapter that these phenomena are linked with controls that arise
when the function Φ multiplying u vanishes over some interval, so-called singular
controls. We now develop geometric tools and techniques required for their analysis.

2.8.1 Time-Optimal Control for a Single-Input Control-Affine
Nonlinear System

Again we use the time-optimal control problem as the vehicle to develop these tools,
but now allow for nonlinearities in the state. We consider a time-invariant, single-
input, control-affine system Σ of the form

Σ : ẋ = f (x)+ g(x)u, f ,g ∈V∞(Ω), x ∈Ω . (2.33)

Here, Ω is a domain (i.e., an open and connected subset) in R
n, and f : Ω → R

n

and g : Ω → R
n are two infinitely often continuously differentiable vector fields

defined on Ω . We use V r(Ω) to denote the set of all vector fields defined on
Ω for which all components are Cr(Ω)-functions, i.e., are defined and r times
continuously differentiable on Ω . Clearly, the C∞ assumption is without loss of
generality and can be replaced by requiring that the vector fields be sufficiently
smooth, say f ,g ∈ V r(Ω), with r large enough for all the derivatives that arise to
exist.

[NTOC] Given a time-invariant, single-input, control-affine control system Σ of
the form (2.33), among all piecewise continuous (more generally, Lebesgue
measurable) controls u that take values in the compact interval [−1,1], u :
[0,T ] → [−1,1], find one that steers a given initial point p ∈ Ω into a target
point q ∈Ω in minimum time.
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In the formulation of Sect. 2.2, we have that M = Ω , L(t,x,u) ≡ 1, f (t,x,u) =
f (x)+g(x)u, ϕ ≡ 0, andΨ is given byΨ : [0,∞)×Ω →Ω , (t,x) �→Ψ(t,x) = x−q,
i.e., N = {q}. As with the linear system, since both initial and terminal points on
the state are specified, the transversality conditions give no information about the
multiplier λ , and the terminal value λ (T ) is free. But the transversality condition
on the final time T implies that H(T,λ0,λ ,x,u) = 0, and since

H = λ0 +λ ( f (x)+ g(x)u) = λ0 + 〈λ , f (x)+ g(x)u〉

is time-invariant, it follows that the Hamiltonian vanishes identically along any
extremal. Equivalently, we have that

〈λ (t), f (x∗(t))+ u∗(t)g(x∗(t)〉 ≡ const≤ 0.

We freely use the notation 〈·, ·〉 for the inner product. In particular, note that this
implies that λ (t) = 0, since otherwise also λ0 = 0 contradicting the nontriviality
condition of the maximum principle. The adjoint equation is given by

λ̇(t) =−λ (t)(D f (x∗(t))+ u∗(t)Dg(x∗(t))) ,

where D f and Dg denote the matrices of the partial derivatives of the vector fields
f and g, respectively, and the minimum condition implies that

u∗(t) =

{
+1 if 〈λ (t),g(x∗(t))〉< 0,

−1 if 〈λ (t),g(x∗(t))〉> 0.

Summarizing, we thus have the following result:

Theorem 2.8.1 (Maximum principle for problem (NTOC)). Let (x∗,u∗) be a
controlled trajectory defined over the interval [0,T ]. If (x∗,u∗) minimizes the time
of transfer from p ∈Ω to q ∈Ω , then there exists a nontrivial solution λ : [0,T ]→
(Rn)∗ to the adjoint equation

λ̇ (t) =−λ (t)(D f (x∗(t))+ u∗(t)Dg(x∗(t))) (2.34)

such that

〈λ (t), f (x∗(t))+ u∗(t)g(x∗(t)〉 ≡ const≤ 0

and the control u∗ satisfies

u∗(t) =−sgn〈λ (t),g(x∗(t))〉 .
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2.8.2 The Switching Function and Singular Controls

Definition 2.8.1 (Switching function). Let Γ be an extremal lift for the problem
[NTOC] consisting of a controlled trajectory (x∗,u∗) defined over the interval [0,T ]
with corresponding adjoint vector λ : [0,T ]→ (Rn)∗. The function

ΦΓ (t) = λ (t)g(x∗(t)) = 〈λ (t),g(x∗(t))〉 (2.35)

is called the (corresponding) switching function.

We usually drop the subscript Γ in the notation if the extremal under consider-
ation is understood. Clearly, properties of the switching function Φ determine the
structure of the optimal controls. As long as Φ is not zero, the optimal control is
simply given by

u∗(t) =−sgn Φ(t)

and thus takes its value in one of the vertices of the control set. A priori, the control
is not determined by the minimum condition at times when Φ(t) = 0. Naturally,
if Φ(τ) = 0 and the derivative Φ̇(τ) exists and does not vanish, then the control
switches between u =−1 and u=+1 with the order depending on the sign of Φ̇(τ).
Such a time τ simply is a bang-bang junction, exactly as with linear systems. On the
other hand, ifΦ(t) were to vanish identically on an open interval I, then although the
minimization property by itself gives no information about the control, in this case,
also all the derivatives of Φ(t) must vanish, and this, except for some degenerate
situations, generally does determine the control as well. Controls of this kind are the
singular controls referred to above, while we refer to the constant controls u = −1
and u = +1 as bang controls. Strictly speaking, to be singular is not a property of
the control, but of the extremal lift, since it clearly also depends on the multiplier λ
defining the switching function.

Definition 2.8.2 (Singular controls and extremals). Let Γ be an extremal lift for
the problem [NTOC] consisting of a controlled trajectory (x∗,u∗) defined over the
interval [0,T ] with corresponding adjoint vector λ : [0,T ]→ (Rn)∗. We say that the
control u is singular on an open interval I ⊂ [0,T ] if the switching function vanishes
identically on I. The corresponding portion of the trajectory x defined over I is called
a singular arc, and Γ a singular extremal (respectively, singular extremal lift).

Historically, this terminology has its origin in the following simple observation:
in terms of the Hamiltonian H for problem [NTOC], the switching function can be
expressed as

Φ(t) =
∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)),

and thus the condition Φ(t) = 0 formally is the first-order necessary condition for
the Hamiltonian to have a minimum in the interior of the control set. For a general
optimal control problem, extremal lifts are called singular, respectively nonsingular,
over an open interval I if the first-order necessary condition
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∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)) = 0

is satisfied for t ∈ I and if the matrix of the second-order partial derivatives,

∂ 2H
∂u2 (λ0,λ (t),x∗(t),u∗(t)),

is singular, respectively nonsingular, on I. For problem [NTOC], this quantity is
always zero, and thus any optimal control that takes values in the interior of the
control set is necessarily singular. On the other hand, for example, for the linear-
quadratic optimal control problem [LQ] considered earlier, this matrix is always
positive definite and all extremals are nonsingular.

In order to solve the problem [NTOC], optimal controls need to be synthesized
from bang and singular controls, the potential candidates for optimality, through an
analysis of the zero set ZΦ of the switching function,

ZΦ = {t ∈ [0,T ] : Φ(t) = 0}.

This, however, can become a very difficult problem, since a priori, all we know
about ZΦ is that it is a closed set.

Proposition 2.8.1. Given any closed subset Z ⊂R
n, there exists a nonnegative C∞-

function ϕ such that Z = {y ∈R
n : ϕ(y) = 0}.

Proof. [108] Let B = Zc, the complement of Z. Since R
n is second countable (see

Appendix C), there exists a sequence of open balls Bi, i ∈ N, such that B = ∪i∈NBi.
It is a standard calculus exercise to verify that the function Γ defined by

Γ (y) =

⎧⎨
⎩

exp
(
− 1

(y−1)2

)
for y < 1,

0 for y≥ 1,

is C∞: derivatives of arbitrary order exist and all derivatives at y = 1 from the left
vanish. Let D= Br(p) be an open ball with radius r centered at p. Defining a radially
symmetric function ψ : D→R

n by

ψ(y) = Γ

(
‖y− p‖2

r2

)
,

it then follows thatψ is nonnegative,ψ ∈C∞(D), andψ vanishes identically outside
of D. For each open ball Bi, i ∈ N, let ψi be the correspondingly defined function.
For a multi-index α = (α1, . . . ,αn), αi ∈ N, let |α| = a1 + · · ·+αn and denote the
corresponding partial derivatives of ψi by Dαψi,
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Dαψi =
∂α1 · · ·∂αnψi

∂yα1 · · ·∂yαn
.

Let
Mi = sup

|α |≤i
‖Dαψi‖ ;

since all functions ψi have compact support and the summation is finite, all the
numbers Mi are finite. Thus the series

ϕ(y) =
∞

∑
i=1

ψi

2iMi

converges uniformly (we have ‖ψi‖ ≤ Mi for all i ∈ N), and so do all its partial
derivatives. For since also ‖Dαψi‖ ≤Mi for all i ≥ |α|, the termwise differentiated
series

∞

∑
i=1

Dαψi

2iMi

converges uniformly and its limit is the αth derivative of ϕ , Dαϕ . Thus ϕ is a C∞-
function that is positive on each ball Bi and vanishes identically outside ∪i∈NBi, i.e.,
on Z. ��

Thus, in principle, the zero set ZΦ of the switching function can be an arbitrary
closed subset of the interval [0,T ], and a better understanding of this set is needed
to solve the optimal control problem [NTOC]. In order to achieve this, we now
analyze the derivatives of the switching function. Since both λ and the state x satisfy
differential equations, the switching functionΦ is differentiable, and we obtain

Φ̇(t) = λ̇(t)g(x∗(t))+λ (t)Dg(x∗(t))ẋ∗(t)

=−λ (t) [D f (x∗(t))+ u∗(t)Dg(x∗(t))] g(x∗(t))

+λ (t)Dg(x∗(t)) f (x∗(t))+ u∗(t)g(x∗(t))

= λ (t) Dg(x∗(t)) f (x∗(t))−D f (x∗(t))g(x∗(t)). (2.36)

The coefficients at u∗(t) cancel, and thus the derivative of the switching function
does not depend on the control u∗. Hence Φ̇(t) is once more differentiable, and
we can iterate this calculation to find higher-order derivatives. This very much is
the approach pursued in older textbooks on the subject. However, brute force is not
necessarily always a good strategy, and now it is of benefit to develop the proper
formalism. The key is to observe that the tangent vector that multiplies λ in (2.36)
is the coordinate expression of the Lie bracket of the vector fields f and g, and
this quantity is of fundamental importance in the control of nonlinear systems. We
therefore digress to give some of the background that not only is fundamental for
nonlinear optimal control theory in general, but also provides us with an elegant and
transparent scheme to carry out the required calculations.
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2.8.3 Lie Derivatives and the Lie Bracket

As before, let Ω be a domain in R
n and denote the space of all infinitely often

continuously differentiable functions onΩ by C∞(Ω). Also let X :Ω →R
n be a C∞

vector field defined on Ω , X ∈ V∞(Ω). As before, the assumption r = ∞ is taken
for simplicity of notation, and it suffices to have all functions and vector fields to
be r-times continuously differentiable with the blanket assumption that r is large
enough for all the required differentiations to be permissible. The vector field X
can be viewed as defining a first-order differential operator from the space C∞(Ω)
into C∞(Ω) by taking at every point q ∈ Ω the directional derivative of a function
ϕ ∈C∞(Ω) in the direction of the vector field X(q), i.e.,

X : C∞(Ω)→C∞(Ω), ϕ �→ Xϕ ,

defined by
(Xϕ)(q) = ∇ϕ(q) ·X(q),

where ∇ϕ denotes the gradient of the function ϕ , as always written as a row vector.
While this is a convenient notation, which we freely use, in order to distinguish
the values of the vector field from its action when considered as an operator, it is
more customary to denote this operator by LX , i.e., LX (ϕ)(q) = (Xϕ)(q), and this
function is called the Lie derivative of the function ϕ along the vector field X .

Definition 2.8.3 (Lie bracket). The Lie bracket of two vector fields X and Y
defined on Ω is the operator defined by the commutator

[X ,Y ] = X ◦Y −Y ◦X = XY −YX .

Formally, this is a second-order differential operator. But in fact, all second-order
terms cancel, and the Lie bracket defines another first-order differential operator.
For if we denote the Hessian matrix of a function ϕ by H(ϕ) and the action of this
symmetric matrix on the vector fields X and Y by H(ϕ)(X ,Y ), then we simply have
that

[X ,Y ](ϕ) = X (Yϕ)−Y (Xϕ) = X (∇ϕ ·Y )−Y (∇ϕ ·X)

= ∇(∇ϕ ·Y ) ·X−∇(∇ϕ ·X) ·Y
= H(ϕ)(Y,X)+∇ϕ ·DY ·X−H(ϕ)(X ,Y )−∇ϕ ·DX ·Y
= ∇ϕ · (DY ·X−DX ·Y ) .

This calculation verifies that if X :Ω → R
n, z �→ X(z), and Y :Ω → R

n, z �→ Y (z),
are coordinates for these vector fields, then the coordinate expression for the Lie
bracket is given by

[X ,Y ](z) = DY (z) ·X(z)−DX(z) ·Y(z). (2.37)
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This computation directly extends to calculating Lie brackets if we consider C∞

vector fields as a module over C∞(Ω), i.e., multiply the vector fields by smooth
functions.

Lemma 2.8.1. Suppose α and β are smooth functions on Ω , α , β ∈ C∞(Ω), and
X and Y are C∞ vector fields on Ω . Then

[αX ,βY ] = αβ [X ,Y ]+α (LXβ )Y −β (LYα)X .

Proof. This simply follows from the product rule:

[aX ,βY ] = (αX (βY ))− (βY (αX))

= α {(Xβ )Y +βXY}−β {(Yα)X +αYX}
= αβ [X ,Y ]+α (Xβ )Y −β (Yα)X .

��
A more important, and less obvious identity is the Jacobi identity.

Proposition 2.8.2. For any C∞ vector fields X, Y , and Z defined onΩ we have that

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]≡ 0.

Proof. Again, computing as operators, we have that

[X , [Y,Z]] = X [Y,Z]− [Y,Z]X

= X(YZ−ZY )− (YZ−ZY )X

= XYZ−XZY −YZX +ZYX .

Adding the corresponding terms for the other brackets thus gives

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]

≡ (XYZ−XZY −YZX +ZYX)+ (YZX −YXZ−ZXY +XZY)

+ (ZXY −ZYX−XYZ +YXZ) ,

and all terms cancel. ��
Note that the Jacobi identity can be written in the form

[X , [Y,Z]] = [[X ,Y ],Z]+ [Y, [X ,Z]],

and this simply states that taking the Lie bracket with X (i.e., the Lie derivative of
a vector field along X) satisfies the product rule. These rules show that the vector
fields, understood as differential operators, form a Lie algebra. A Lie algebra over
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R is a real vector space G together with a bilinear operator [·, ·] : G×G→ G such
that for all X , Y , and Z ∈ G we have [X ,Y ] = −[Y,X ] and [X , [Y,Z]]+ [Y, [Z,X ]]+
[Z, [X ,Y ]] = 0. Many of the essential concepts and computational tools that will be
developed in Sect. 4.5 depend only on these general identities abstracted from the
above properties of vector fields.

These notions allow us to restate the formula for the derivative of the switching
function in a more general format, equally simple, but of great importance.

Theorem 2.8.2. Let Z : Ω → R
n be a differentiable vector field defined on Ω and

let (x,u) be a controlled trajectory defined over an interval I with trajectory in Ω .
Let λ be a solution to the corresponding adjoint equation and define the function

Ψ(t) = 〈λ (t), Z(x(t))〉 .
ThenΨ is differentiable with derivative given by

Ψ̇ (t) = 〈λ (t), [ f + ug,Z](x(t))〉 .

Proof. This is the same calculation as above. Note that for any row vector
λ ∈ (Rn)∗, matrix A ∈ R

n×n, and column vector x ∈ R
n we have that 〈λ ,Ax〉 =

λAx = 〈λA,x〉. Thus, and dropping the argument t in the calculation, we have that

Ψ̇(t) =
〈
λ̇ , Z(x)

〉
+ 〈λ , DZ(x)ẋ∗〉

=−〈λ (D f (x)+ uDg(x)) , Z(x)〉+ 〈λ , DZ(x)( f (x)+ ug(x))〉
= 〈λ , DZ(x) f (x)−D f (x)Z(x)〉+ u〈λ , DZ(x)g(x)−Dg(x)Z(x)〉
= 〈λ , [ f ,Z](x)〉+ u〈λ (t), [g,Z](x)〉 ,

which, for simplicity of notation, we also write as Ψ̇(t) = 〈λ (t), [ f + ug,Z](x(t))〉,
noting that u(t) simply is a real number under differentiation with respect to the
state variables involved in the calculation of the Lie brackets. ��

2.8.4 The Order of a Singular Control
and the Legendre–Clebsch Conditions

It follows from Theorem 2.8.2 that the first and second derivatives of the switching
functionΦ(t) = 〈λ (t),g(x(t))〉 are given by

Φ̇(t) = 〈λ (t), [ f ,g](x(t))〉 (2.38)

and

Φ̈(t) = 〈λ (t), [ f , [ f ,g]](x(t))〉+ u(t)〈λ (t), [g, [ f ,g]](x(t))〉 . (2.39)
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If now Γ = ((x,u),λ ) is an extremal lift for which the control is singular on an open
interval I, then all derivatives of Φ vanish identically on I, so that we have

〈λ (t), [ f ,g](x(t))〉 ≡ 0

and
〈λ (t), [ f , [ f ,g]](x(t))〉+ u(t)〈λ (t), [g, [ f ,g]](x(t))〉 ≡ 0.

Clearly, at times t when 〈λ (t), [g, [ f ,g]](x(t))〉 does not vanish, this equation
determines the singular control, and this leads to the following definition:

Definition 2.8.4 (Order 1 singular control). Let Γ = ((x,u),λ ) be an extremal
lift for the problem [NTOC] consisting of a controlled trajectory (x,u) defined over
the interval [0,T ] with corresponding adjoint vector λ : [0,T ]→ (Rn)∗. If Γ is a
singular extremal lift over an open interval I, then Γ , and also the control u, are
said to be singular of order 1 over I if 〈λ (t), [g, [ f ,g]](x(t))〉 does not vanish on the
interval I.

We thus immediately have the following formula for the singular control in terms
of the state and multiplier.

Proposition 2.8.3. If Γ = ((x,u),λ ) is a singular extremal lift of order 1 over an
open interval I, then the singular control is given by

using(t) =−〈λ (t), [ f , [ f ,g]](x(t))〉〈λ (t), [g, [ f ,g]](x(t))〉 . (2.40)

Note that this formula defines the singular control as a function of the state and
the multiplier, and thus it depends on the extremal lift. In differential-geometric
terms, it defines the singular control in the cotangent bundle (see Appendix C).
Generally, it is not a feedback function in the state space. However, more can be said
in low dimensions n of the state space and this will be pursued later on. Naturally,
this formula in no way guarantees that the control bounds imposed in the problem
are satisfied, and thus using(t) is admissible only if the values of this expression lie
in the control set, the interval [−1,1].

Similar to the Legendre condition in the calculus of variations, for singular
controls a generalized version of the Legendre condition also is necessary for
optimality. This result will be proven in Sect. 4.6.1.

Theorem 2.8.3 (Legendre–Clebsch condition). Suppose the controlled trajectory
(x∗,u∗) defined over the interval [0,T ] minimizes the time of transfer from p ∈ Ω
to q ∈Ω for problem [NTOC], and the control u∗ is singular over an open interval
I ⊂ [0,T ]. Then there exists an extremal lift Γ = ((x∗,u∗),λ ) with the property that

〈λ (t), [g, [ f ,g]](x(t))〉 ≤ 0 for all t ∈ I.

Definition 2.8.5 (Strengthened Legendre–Clebsch condition). Let Γ=((x,u),λ )
be an extremal lift for the problem [NTOC] consisting of a controlled trajectory (x,u)
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defined over the interval [0,T ] and corresponding adjoint vector λ : [0,T ]→ (Rn)∗
that is singular of order 1 over an open interval I. We say that the strengthened
Legendre–Clebsch condition is satisfied along Γ over I if 〈λ (t), [g, [ f ,g]](x(t))〉 is
negative on I, and that it is violated if this expression is positive.

An important property of singular extremals that satisfy the strengthened
Legendre–Clebsch condition is that if the singular control takes values in the interior
of the control set, then at any time t ∈ I, it can be concatenated with either of the
two bang controls u = −1 and u = +1 in the sense that this generates junctions
that satisfy the conditions of the maximum principle. As before, let X = f − g and
Y = f + g denote the corresponding vector fields. We write XS for a concatenation
of a trajectory corresponding to the control u=−1 with a singular arc; i.e., for some
ε > 0 the control is given by

u(t) =

{
−1 for t ∈ (τ− ε,τ),
using(t) for t ∈ [τ,τ+ ε).

The time τ is called a junction time, and the corresponding point x(τ) a junction
point. Similarly, concatenations of the type Y S, SX , and SY are defined, and we use
the symbol B to denote any one of X or Y .

Proposition 2.8.4. Let Γ = ((x,u),λ ) be an extremal lift for the problem [NTOC]
defined over the interval [0,T ] that is singular over an open interval I and suppose
the strengthened Legendre–Clebsch condition is satisfied on I. If the singular control
at the time τ ∈ I has a value in the open interval (−1,1), then there exists an ε > 0
such that any concatenation of the singular control with a bang control u = −1 or
u = +1 at time τ satisfies the necessary conditions of the maximum principle; i.e.,
concatenations of the types BS and SB are allowed.

Proof. It follows from Eq. (2.40) that the singular control is continuous if the
strengthened Legendre–Clebsch condition is satisfied and so trivially are the
constant controls u = ±1. For any control u that is continuous from the left (−)
or right (+), the second derivative of the switching function at time τ is given by

Φ̈(τ±) = 〈λ (τ), [ f , [ f ,g]](x(τ))〉+ u(τ±)〈λ (τ), [g, [ f ,g]](x(τ))〉 ,

and it vanishes identically along the singular control. If the strengthened Legendre–
Clebsch condition is satisfied, then we have λ (τ)[g, [ f ,g]](x(τ)) < 0. By assump-
tion, the singular control takes values in the interior of the control set, u(τ) ∈
(−1,1), and thus we get for u =−1 that

Φ̈(τ±) = 〈λ (τ), [X , [ f ,g]](x(τ))〉
= 〈λ (τ), [ f , [ f ,g]](x(τ))〉− 〈λ (τ), [g, [ f ,g]](x(τ))〉
> 〈λ (τ), [ f , [ f ,g]](x(τ))〉+ u(τ±)〈λ (τ), [g, [ f ,g]](x(τ))〉 = 0,
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and for u =+1 we have

Φ̈(τ±) = 〈λ (τ), [Y, [ f ,g]](x(τ))〉
= 〈λ (τ), [ f , [ f ,g]](x(τ))〉+ 〈λ (τ), [g, [ f ,g]](x(τ))〉
< 〈λ (τ), [ f , [ f ,g]](x(τ))〉+ u(τ±)〈λ (τ), [g, [ f ,g]](x(τ))〉 = 0.

For each control, these signs are consistent with both entry and exit from the singular
arc. For example, if u=−1 on an interval (τ−ε,τ), then the switching function has
a local minimum at time t = τ with minimum value 0, and thus Φ is positive over
this interval, consistent with the minimum condition of the maximum principle. ��

The order of a singular control over an interval I need not be constant, since
the function 〈λ (t), [g, [ f ,g]](x(t))〉 may vanish on some portions of I. If these are
isolated times, then typically at those times the local optimality status of the singular
control changes from minimizing to maximizing, and the resulting subintervals
simply need to be analyzed separately. A more degenerate situation would arise if
〈λ (t), [g, [ f ,g]](x(t))〉 were to vanish identically on some subinterval J ⊂ I. In this
case, many more relations need to be satisfied for the conditions to be consistent.
Since we have both

〈λ (t), [ f , [ f ,g]](x(t))〉 ≡ 0 and 〈λ (t), [g, [ f ,g]](x(t))〉 ≡ 0 for all t ∈ J,

differentiating both identities, we get the following two equations on J:

0≡ 〈λ (t), [ f , [ f , [ f ,g]]](x(t))〉+ u(t)〈λ (t), [g, [ f , [ f ,g]]](x(t))〉 ,
0≡ 〈λ (t), [ f , [g, [ f ,g]]](x(t))〉+ u(t)〈λ (t), [g, [g, [ f ,g]]](x(t))〉 .

Each condition by itself determines the control if the functions multiplying the
control u(t) are not zero. Since the pair (1,u(t)) is a nontrivial solution to this
homogeneous system, however, we also need to have the compatibility condition

〈λ (t), [ f , [ f , [ f ,g]]](x(t))〉 〈λ (t), [g, [g, [ f ,g]]](x(t))〉= 〈λ (t), [g, [ f , [ f ,g]]](x(t))〉2 ,

where we use that by the Jacobi identity,

[g, [ f , [ f ,g]]] = [ f , [g, [ f ,g]]].

It is clear that these are increasingly more and more demanding requirements for the
singular extremal to satisfy, and it seems plausible that “typically” these conditions
should be difficult to satisfy, even in higher dimensions. This indeed is correct and
can be made precise in the sense that “generically” singular extremals are of order
1, as shown by Bonnard and Chyba in [44, Sects. 8.3 and 8.5].

While this result, and also the results by Chitour, Jean and Trélat [71, 72] imply
that we should not expect higher-order singular extremals for too many systems, this
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does not mean that these do not exist nor that these may not be of particular interest
for some specific problem. One common way in which these higher-order singular
extremals arise is that the control vector field g and the Lie bracket [ f ,g] commute,
i.e., that

[g, [ f ,g]] = 0.

In this case, the brackets [ f , [g, [ f ,g]]] and [g, [g, [ f ,g]]] also are zero, and thus the
calculation of the derivatives of the switching function simply continues as

Φ(3)(t) = 〈λ (t), [ f , [ f , [ f ,g]]](x(t))〉 = 0

and

Φ(4)(t) = 〈λ (t), [ f , [ f , [ f , [ f ,g]]]](x(t))〉+ u(t)〈λ (t), [g, [ f , [ f , [ f ,g]]]](x(t))〉 = 0.
(2.41)

This seems an adequate place to introduce a shorter notation for the iterated Lie
brackets. It is common (for reasons that are connected with what is called the adjoint
representation in Lie theory [256]) to think of taking the Lie bracket of a fixed vector
field X with another vector field as a linear operator on the set of all smooth vector
fields defined on Ω , V∞(Ω), and to denote it by adX ,

adX : V∞(Ω)→V∞(Ω), Y �→ adX(Y ) = [X ,Y ].

The composition of these operators is then defined as

ad i
X = ad i−1

X ◦adX ,

so that, for example, we have

[ f , [ f , [ f , [ f ,g]]]] = ad 4
f (g).

In this notation, Eq. (2.41) can be written more compactly as

Φ(4)(t) =
〈
λ (t), ad 4

f (g)(x(t))
〉
+ u(t)

〈
λ (t), [g,ad 3

f (g)](x(t))
〉
= 0.

Definition 2.8.6 (Higher-order singular control). Let Γ be an extremal lift for
the problem [NTOC] consisting of a controlled trajectory (x,u) defined over the
interval [0,T ] and corresponding adjoint vector λ : [0,T ]→ (Rn)∗ that is singular
over an open interval I. The singular control is said to be of intrinsic order k over I if
the following conditions are satisfied: (1) the first 2k−1 derivatives of the switching
function do not depend on the control u and vanish identically, i.e., for i= 1, . . . ,2k−
1 we have that

Φ(i)(t) =
〈
λ (t), ad i

f (g)(x(t))
〉≡ 0,

and (2)
〈
λ (t),ad 2k

f (g)(x(t))
〉

does not vanish on I.
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Theorem 2.8.4 (Generalized Legendre–Clebsch condition). Suppose the con-
trolled trajectory (x∗,u∗) defined over the interval [0,T ] minimizes the time of
transfer from p ∈Ω to q ∈Ω for problem [NTOC] and the control u∗ is singular of
intrinsic order k over an open interval I ⊂ [0,T ]. Then there exists an extremal lift
Γ = ((x∗,u∗),λ ) with the property that

(−1)k ∂
∂u

d2k

dt2k

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

= (−1)k
〈
λ (t), [g,ad2k−1

f (g)](x(t))
〉
≥ 0 for all t ∈ I.

This result is also known as the Kelley condition [131, 132, 262]. For a singular
extremal of intrinsic order 2, it states that

〈
λ (t), [g,ad 3

f (g)](x(t))
〉≥ 0 for all t ∈ I, (2.42)

and a proof of this condition will be given in Sect. 4.6.2. The strengthened version
of this condition has very interesting consequences.

Proposition 2.8.5. Let Γ = ((x,u),λ ) be an extremal lift for the problem [NTOC]
defined over the interval [0,T ] that is singular of intrinsic order 2 over an open
interval I for which

〈
λ (t), [g,ad3

f (g)](x(t))
〉
> 0 for all t ∈ I.

Suppose that the singular control u takes values in the interior of the control set
over the interval I. Then at no time τ ∈ I can the control u be concatenated with a
bang control u = −1 or u = +1: concatenations of the types BS and SB violate the
conditions of the maximum principle and are not optimal.

Proof. Without loss of generality, we consider a concatenation of the type SX at
time τ ∈ I. That is, we assume that for some ε > 0 the control is singular over the
interval (τ − ε,τ) and is given by u = −1 over the interval (τ,τ + ε). Since the
singular control is of order 2, the first three derivatives of the switching function
do not depend on the control and thus are all continuous and given by Φ(i)(t) =〈
λ (t), ad i

f (g)(x(t))
〉

, i = 1,2,3. The fourth derivative of Φ at τ from the right is

thus given by

Φ(4)(τ) =
〈
λ (τ), ad 4

f (g)(x(τ))
〉− 〈

λ (τ), [g,ad 3
f (g)](x(τ))

〉

<
〈
λ (τ), [ f + u(τ)g,ad 3

f (g)](x(τ))
〉
= 0,

since the singular control u(τ) takes a value in (−1,1). Thus the switching function
has a local maximum for t = τ and is negative over the interval (τ,τ + ε). But
then the minimization property of the Hamiltonian implies that the control must be
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u =+1. The analogous contradiction arises for concatenations of the type SY or for
the order BS. ��

This result implies that an optimal singular arc of order 2 cannot be concatenated
with a bang control. In fact, an optimal control needs to switch infinitely many times
between the controls u = −1 and u = +1 on any interval (τ,τ + ε) if a singular
junction occurs at time τ . Corresponding trajectories are called chattering arcs. In
Sect. 2.11 we shall give an example that shows that these can be optimal for the
seemingly most innocent-looking system.

2.8.5 Multi-input Systems and the Goh Condition

We close this section with some comments about the multi-input case in which the
dynamics takes the form

ẋ = f (x)+
m

∑
i=1

gi(x)ui, x ∈Ω , u ∈U. (2.43)

As before, for simplicity, we assume that all vector fields are C∞ onΩ . Clearly, now
geometric properties of the control set U ⊂R

m matter. If U is a compact polyhedron,
then the Hamiltonian will be minimized at one of the vertices, and singular controls
arise as the minimum is attained along one of the faces of the polyhedron. The
situation that most closely resembles the structures for the single-input case above,
and probably is the practically most important one, occurs when the control set is a
multi-dimensional rectangle,

U = [α1,β1]×·· ·× [αm,βm].

In this case, the minimization of the Hamiltonian function

H = λ0 +

〈
λ , f (x)+

m

∑
i=1

gi(x)ui

〉
= λ0 + 〈λ , f (x)〉+

m

∑
i=1
Φiui

still splits into m scalar minimization problems as in the single-input case, and
optimal controls satisfy

ui(t) =

{
αi if Φi(t) = 〈λ (t), gi(x(t))〉< 0,

βi if Φi(t) = 〈λ (t), g(x(t))〉> 0.

As before, now the switching functions Φi, i = 1, . . . ,m, need to be analyzed
to determine the optimal controls, and in principle, this follows the pattern dis-
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cussed above. For example, Theorem 2.8.2 applies to give the derivatives of the
switching functions as

Φ̇i(t) =

〈
λ (t),

[
f +

m

∑
j=1

g ju j,gi

]
(x(t))

〉

= 〈λ (t), [ f ,gi](x(t))〉+∑
j =i

u j(t)
〈
λ (t), [g j,gi](x(t))

〉
.

In contrast to the single-input case, now the derivative Φ̇i depends on the controls; on
the controls other than ui, that is. Hence, whether higher derivatives can be computed
depends on the type of the controls, since these now need to be differentiated in time.
Clearly, this is no issue for those components that are bang controls, but it needs
to be checked if some of the controls are singular. All this leads to a much more
elaborate analysis, which is best left for the particular problem under consideration.
For example, if only one of the components is singular, with all other controls held
constant, all the necessary conditions for optimality for the single-input control
system are applicable. If more than one component is singular at the same time,
the following result, the so-called Goh condition, [107] provides an extra necessary
condition for optimality. This condition will be derived in Sect. 4.6.3.

Theorem 2.8.5 (Goh condition). [107] Suppose the controlled trajectory (x∗,u∗)
defined over the interval [0,T ] minimizes the time of transfer from p∈Ω to q∈Ω for
the multi-input control system with dynamics given by Eq. (2.43) and a rectangular
control set U. Suppose the ith and jth controls are simultaneously singular over an
open interval I ⊂ [0,T ]. Then there exists an extremal lift Γ = ((x∗,u∗),λ ) with the
property that 〈

λ (t), [gi,g j](x(t))
〉≡ 0 for all t ∈ I.

2.9 Time-Optimal Control for Nonlinear Systems
in the Plane

We use the time-optimal control problem [NTOC] in the plane as an instrument to
provide a first illustration of the use of geometric methods and the Lie-derivative-
based techniques introduced above in the analysis of optimal control problems.
These results are due to H. Sussmann, who in a series of papers [230, 236–238],
gave a complete solution for this optimal control problem in dimension 2. The two-
dimensional problem allows for easy visualization of the results, yet the general
problem quickly gets very difficult, both in dimension 2 and even more so in higher
dimensions. While Sussmann’s results and the monograph by Boscain and Piccoli
[51] provide a comprehensive analysis of the time-optimal control problem for
two-dimensional systems, only partial results about the structure of time-optimal
controls in higher dimensions (mostly in R

3 [54, 141, 210, 211] and some in R
4

[221]) are currently known.
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[TOC in R
2] LetΩ be an open and simply connected subset of R2 and let f :Ω→

R
2 and g :Ω → R

2 be two C∞ vector fields defined on Ω . For the control-affine
system Σ with dynamics given by

ẋ = f (x)+ g(x)u,

among all piecewise continuous (more generally, Lebesgue measurable) controls
u, u : [0,T ]→ [−1,1], find one that steers a given initial point q1 ∈Ω into a target
point q2 ∈Ω (while remaining in Ω ) in minimum time.

Our aim is to determine the concatenation structure of optimal controls whose
trajectories entirely lie inΩ . More precisely, we are asking the question what can be
said about time-optimal controlled trajectories that lie in Ω if certain assumptions
are made on the vector fields f and g at some reference point p ∈ Ω . We consider
Ω to be a sufficiently small neighborhood of the point p, and thus by continuity,
any inequality-type condition imposed on the values of f and g and/or their Lie
brackets at p can also be assumed to hold in Ω . But we shall develop the arguments
as much as possible semiglobally, i.e., state them in a way that they are valid for sets
Ω that satisfy the required conditions throughout. It is natural to tackle this question
by proceeding from the most general to increasingly more and more degenerate
situations. That is, we first assume that the vectors f (p) and g(p) and other relevant
Lie brackets are in general position, i.e., are linearly independent, and then proceed
to consider more degenerate cases in which dependencies are allowed. In this spirit,
throughout this section we make the following assumption:

(A0) The vector fields f and g are linearly independent everywhere on Ω ⊂ R
2.

Under this assumption, in this and the next section, we fully determine the
structure of time-optimal controlled trajectories that lie in Ω under generic con-
ditions. These results are due to H. Sussmann, and in our presentation we follow
his arguments that beautifully illustrate the use of geometric techniques in optimal
control theory. In particular, as we proceed, it will become clear how these methods
are needed to complement the first-order conditions of the Pontryagin maximum
principle in order to arrive at deep and sharp results such as Proposition 2.9.5. Some
of these results that we shall develop go well beyond the conditions of the maximum
principle.

2.9.1 Optimal Bang-Bang Controls in the Simple Subcases

Lemma 2.9.1. Any control corresponding to an abnormal extremal whose trajec-
tory lies in Ω is constant equal to u≡+1 or u≡−1.

Proof. Let Γ = ((x,u),λ ) be an extremal and suppose λ0 = 0. If the switching
functionΦ(t) = 〈λ (t), g(x(t))〉 vanishes at some time τ , then it follows from
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H(t) = 〈λ (t), f (x(t))〉+ u(t)〈λ (t), g(x(t))〉 ≡ −λ0

that we also must have 〈λ (τ), f (x(τ))〉 = 0. Hence λ (τ) vanishes against both
f (x(τ)) and g(x(τ)). Since these two vectors are linearly independent, it follows
that λ (τ) = 0. But this contradicts the nontriviality of the multipliers. Hence there
cannot be any zeros for the switching function, and thus the corresponding controls
must be constant. ��

Having taken care of this special case, we henceforth assume that all extremals
are normal and set λ0 = 1. In particular, whenever τ is a switching time, it follows
that

〈λ (τ), f (x(τ))〉 =−1. (2.44)

Using f and g as a basis, we can express any higher-order bracket of f and g as a
linear combination of this basis. In particular, there exist smooth functions α and β ,
α , β ∈C∞(Ω), such that for all x ∈Ω we have that

[ f ,g](x) = α(x) f (x)+β (x)g(x). (2.45)

We say an optimal controlled trajectory is of type XY if the corresponding control
is bang-bang with at most one switching from u =−1 to u =+1 and use analogous
labels for controlled trajectories that are concatenations of more segments. For
example, a controlled trajectory of type XY SY is a concatenation of an X-trajectory
followed by a Y -trajectory, a singular arc, and one more Y -trajectory. However, we
always allow for the possibility that some of the segments are absent and thus a
specific trajectory of type XYSY may simply be a concatenation of an X-trajectory
with a single Y -trajectory.

Proposition 2.9.1. If α does not vanish on Ω , then optimal controlled trajectories
that lie in Ω are of type XY if α is positive and of type YX if α is negative.
Corresponding optimal controls are bang-bang with at most one switching.

Proof. Recall that as always, X = f − g and Y = f + g. Let (x,u) be an optimal
controlled trajectory that transfers a point q1 ∈Ω into the point q2 ∈Ω in minimum
time with the trajectory x lying in Ω and let λ be an adjoint vector such that the
conditions of the maximum principle are satisfied. If τ is a zero of the corresponding
switching function, then we have that

Φ̇(τ) = 〈λ (τ), [ f ,g](x(τ))〉
= α(x(τ)) · 〈λ (τ), f (x(τ))〉+β (x(τ)) · 〈λ (τ), g(x(τ))〉
=−α(x(τ)).

Since α has constant sign on Ω , it follows that at every zero of Φ , the derivative
of the switching function Φ is nonzero and has the same sign. But then Φ can have
at most one zero, changing from positive to negative if α > 0 and from negative
to positive if α < 0. Thus optimal controls must switch from u = −1 to u = +1 if
α > 0 and from u =+1 to u =−1 if α < 0. This proves the result. ��
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For example, for the harmonic oscillator of Sect. 2.6, we have that

[ f ,g](x) =

(−1
0

)
=− 1

x2

(
x2

−x1

)
− x1

x2

(
0
1

)
= α(x)Ax+β (x)g.

We can take as Ω either the upper or lower half-plane, Ω+ = {(x1,x2) : x2 > 0} or
Ω− = {(x1,x2) : x2 < 0}, and it follows that optimal trajectories that entirely lie in
Ω+ or Ω− are bang-bang with at most one switching and that the switchings are
from u = +1 to u = −1 in Ω+ and from u = −1 to u = +1 in Ω−. Also, note that
the controls corresponding to the abnormal trajectories γ+ and γ− that lie in Ω+ and
Ω− are constant. As this example shows, there clearly can be more switchings, but
the trajectories need to leave and reenter the regionΩ for this to be possible.

This proposition settles the local structure of time-optimal controlled trajectories
near all points p where α does not vanish, i.e., where g and the Lie-bracket [ f ,g]
are in general position as well. Clearly, this does not suffice to settle the structure
of optimal controls since there may and generally will exist some points where the
vector fields g and [ f ,g] are linearly dependent and the local structure near these
points will need to be determined too. Proceeding from the general case to the more
special ones, but still maintaining condition (A0), we now assume that α(p) = 0.
At the same time, however, we want for this to occur in as nondegenerate a scenario
as possible. That is, no other equality relations that would matter should hold at p.
In terms of singularity theory, after determining the structure of optimal controlled
trajectories near points of codimension 0 (only two inequality relations are imposed,
one in the form of assumption (A0), the other as α(p) = 0, but no equality relations
hold at the reference point), we now proceed to the analysis of the codimension 1
scenario when we allow for exactly one equality constraint, but otherwise again only
impose inequality relations. More specifically we assume that

(A1) The vector fields f and g are linearly independent everywhere on Ω ⊂ R
2

and there exists a point p ∈Ω with α(p) = 0, but the Lie derivatives of α along
X = f − g and Y = f + g do not vanish on Ω ,

(Xα)(x) = LX (α)(x) = 0, (Yα)(x) = LY (α)(x) = 0 for all x ∈Ω .

Furthermore, we assume that the zero set S = {x ∈ Ω : α(x) = 0} is a
curve (embedded one-dimensional submanifold) in Ω that divides Ω into two
connected subregionsΩ+ = {x ∈Ω : α(x)> 0} and Ω− = {x ∈Ω : α(x)< 0}
so that Ω =Ω−∪S ∪Ω+.

With the understanding that Ω is a sufficiently small neighborhood of p, this
geometric assumption on the structure of the zero set of α simply follows from
the implicit function theorem, since the assumption on the Lie derivatives implies
that the gradient of α is non zero at p. On the other hand, several of the results
below are valid as long as Ω has this geometric separation property, not just in
small neighborhoods, and therefore we prefer to state the results as such.
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Fig. 2.9 Assumption (A1): subcases with (left) and without (right) a singular arc

Assumption (A1) by itself does not lead to a unique structure of time-optimal
trajectories, but several subcases exist, since it matters to which side of S the vector
fields X and Y point (see Fig. 2.9).

Proposition 2.9.2. Assuming condition (A1), if LX (α) = Xα and LY (α) =Yα have
the same sign on Ω , then optimal controlled trajectories that lie in Ω are of type
YXY if the Lie derivatives are positive and of type XYX if they are negative. Optimal
controls are bang-bang with at most two switchings.

Proof. As above, let (x,u) be an optimal controlled trajectory that transfers a point
q1 ∈ Ω into the point q2 ∈ Ω in minimum time with the trajectory x lying in Ω
and let λ be an adjoint vector such that the conditions of the maximum principle are
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satisfied. Note that under these assumptions, the directional derivative ofα along the
trajectory x is strictly increasing or decreasing. For at any point x(t), the dynamics
f (x(t))+ u(t)g(x(t)) is a convex combination of the vectors X(x(t)) and Y (x(t)),

f (x(t))+ u(t)g(x(t)) =
1
2
(X +Y) (x(t))+ u(t)

1
2
(Y −X)(x(t))

=
1
2
(1− u(t))X(x(t))+

1
2
(1+ u(t))Y(x(t)),

and thus

(
Lf+ugα

)
(x(t)) =

1
2
(1− u(t))LXα(x(t))+

1
2
(1+ u(t))LYα(x(t)). (2.46)

Regardless of the control value u(t) ∈ [−1,1], this quantity is positive if LXα and
LYα are positive and negative if these quantities are negative. But then the trajectory
x can cross the curve S at most once. By Proposition 2.9.1, optimal controlled
trajectories are of type Y X in Ω− and of type XY in Ω+. Thus, if LXα and LYα are
positive, then trajectories move from the regionΩ− intoΩ+, and overall trajectories
that lie in Ω can at most be of type YXY . Similarly, if LXα and LYα are negative,
then trajectories move from Ω+ into Ω−, and now trajectories that lie in Ω can at
most be of type XYX . In either case, optimal controls are bang-bang with at most
two switchings. ��

2.9.2 Fast and Slow Singular Arcs

If the vector fields X and Y point to opposite sides of the curve S = {x∈Ω : α(x) =
0}, then this curve is a singular arc.

Proposition 2.9.3. Assuming condition (A1), if LX (α) = Xα and LY (α) =Yα have
opposite signs on Ω , then S is a singular arc. If Γ = ((x,u),λ ) is a corresponding
singular extremal lift, then the strengthened Legendre–Clebsch condition is satisfied
if LXα is negative, and it is violated if LXα is positive.

Proof. In this case, X and Y always point to opposite sides of S . Hence, at every
point x ∈S there exists a convex combination u = u(x) such that the vector f (x)+
u(x)g(x) is tangent to S at x. This control is the unique solution to the equation
Lf+ugα = 0, i.e., solving from Eq. (2.46), we have that

u(x) =
LXα(x)+LYα(x)
LXα(x)−LYα(x)

.

Since LXα and LYα have opposite signs, it follows that this value u(x) lies strictly
between −1 and +1, i.e., lies in the interior of the control set. In particular, it is
admissible. Thus, if this control is optimal, then it must be singular.



2.9 Time-Optimal Control for Nonlinear Systems in the Plane 151

We verify that the associated controlled trajectory through an initial condition
q ∈S is extremal by constructing a singular extremal lift Γ = ((x,u),λ ). Let x =
x(t) be the solution to the initial value problem

ẋ = f (x)+ u(x)g(x), x(0) = q.

This solution exists over a maximal interval (t−, t+) with t−< 0< t+. Letψ ∈ (
R

2
)∗

be a covector such that

〈ψ , g(q)〉= 0 and 〈ψ , f (q)〉=−1

and let λ = λ (t) be the solution of the corresponding adjoint equation

λ̇ =−λ (D f (x(t))+ u(x(t))Dg(x(t))

with initial condition λ (0) = ψ . This triple defines a singular extremal lift if the
switching function Φ(t) = 〈λ (t), g(x(t))〉 vanishes identically on (t−, t+). But this
is clear by construction: we have

(
Lf+ugα

)
x(t)≡ 0, and since α(q) = 0, it follows

that α(x(t))≡ 0 on (t−, t+). Hence we get

Φ̇(t) = 〈λ (t), [ f ,g](x(t))〉
= α(x(t))〈λ (t), f (x(t))〉+β (x(t)) · 〈λ (t), g(x(t))〉
= β (x(t))Φ(t).

But Φ(0) = 〈ψ , g(q)〉 = 0, and so the switching function vanishes identically.
Hence Γ is a normal singular extremal lift.

It remains to check the Legendre–Clebsch condition. Using Lemma 2.8.1, it
follows that

[g, [ f ,g]] = [g,α f +βg] = (Lgα) f −α[ f ,g]+ (Lgβ )g.

Along the singular extremal, 〈λ ,g(x)〉 ≡ 0 and 〈λ , [ f ,g](x)〉 ≡ 0, and thus, using
Eq. (2.44), it also follows that 〈λ (t), f (x(t))〉 ≡ −1. Hence

〈λ (t), [g, [ f ,g]](x(t))〉 =−Lgα(x(t))

=−L 1
2 (Y−X)α(x(t)) =

1
2
(LXα−LYα)(x(t)). (2.47)

This quantity has the same sign as LXα , and the strengthened Legendre–Clebsch
condition is satisfied if 〈λ (t), [g, [ f ,g]](x(t))〉 < 0. Hence the result follows. ��

The Legendre–Clebsch condition distinguishes fast from slow singular arcs. On
a set Ω in the plane where f and g are linearly independent, this can be seen with
an instructive geometric argument by introducing a 1-form that measures the time
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along the trajectories. Differential forms provide a superior formalism for these
computations, and for the sake of completeness, we provide the needed definitions
and results. These are standard concepts from differential geometry and can be
found in any text on the subject, such as, for example, [50, 256]. One-forms are
simply linear functionals on the space of all tangent vectors; hence the space of 1-
forms on Ω is a two-dimensional vector space as well. If we write x = x1e1 + x2e2,
where {e1,e2} is the canonical ordered basis for R2, we denote the corresponding
dual basis by dx1 and dx2; that is, dxi is the linear functional that satisfies

〈
dxi,e j

〉
=

{
1 if i = j,

0 if i = j.

Since f and g are linearly independent on Ω , there exists a unique 1-form ω on Ω
that satisfies

〈ω(x), f (x)〉 ≡ 1 and 〈ω(x), g(x)〉 ≡ 0 for all x ∈Ω . (2.48)

This form ω is easily computed: if f and g have the representations

f (x) =

(
f1(x1,x2)

f2(x1,x2)

)
and g(x) =

(
g1(x1,x2)

g2(x1,x2)

)
,

then

ω(x) =
g2(x)dx1− g1(x)dx2

f1(x)g2(x)− f2(x)g1(x)
=

g2(x)dx1− g1(x)dx2

det( f (x),g(x))
, (2.49)

with det( f (x),g(x)) denoting the determinant of the matrix

(
f1 g1

f2 g2

)
.

This determinant does not vanish on Ω , since the vector fields f and g are
linearly independent. Depending on the sign of this determinant, the ordered basis
B ={ f ,g} is said to be positively, respectively negatively, oriented.

Let (x,u) be a controlled trajectory defined over an interval [t0, t1] with trajectory
x lying in Ω . Then the line integral of ω along the curve x(·) is given by

∫
x(·)
ω =

∫ t1

t0
〈ω(x(t), ẋ(t)〉dt

=

∫ t1

t0
〈ω(x(t), f (x(t))〉dt +

∫ t1

t0
u(t)〈ω(x(t), g(x(t))〉dt

=

∫ t1

t0
dt = t1− t0,
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Fig. 2.10 Positively (left) and negatively (right) oriented vector fields f and g

so thatω measures the time along trajectories. For this reason,ω sometimes is called
the clock form [44].

We now show how this differential form ω can be used to determine which type
of trajectory is faster. Consider a point q1 ∈ S and let (x,u) be the controlled
trajectory that steers q1 to another point q2 ∈ S along the singular arc S ⊂ Ω
in time τ . If τ is small, then there exists a unique XY -trajectory that also steers q1

into q2 and lies in Ω . Simply consider the forward orbit of the X-trajectory that
starts at q1 and the backward orbit of the Y -trajectory that ends at q2. Since X and Y
point to opposite sides of S , it follows that these two orbits intersect in some point
r ∈Ω . Suppose it takes time s to go from q1 to r along X and time t to go from r to
q2 along Y . If we denote the mapping that follows the flow of the vector field X for
time s byΨX

s , then we can write r =ΨX
s (q1), and analogously, for Y , we have that

q2 =ΨY
t (r). Overall, therefore,

q2 =ΨY
t (r) =ΨY

t (ΨX
s (q1)) =

(
ΨY

t ◦ΨX
s

)
(q1).

Stokes’s theorem allows us to compare the time s+ t along the XY -trajectory with
the time τ along the singular arc. Denote the closed curve consisting of the XY -
trajectory concatenated with the singular arc run backward from q2 to q1 by Δ . The
orientation of this closed curve matters in Stokes’s theorem, and Δ has the same
orientation as the ordered basis B ={ f ,g}: since

det(X(x),Y (x)) = det( f (x)− g(x), f (x)+ g(x)) = 2det( f (x),g(x)),

the ordered basis {X ,Y} has the same orientation as { f ,g}. But if {X ,Y} is
positively oriented, the curve Δ is traversed counterclockwise, while it is traversed
clockwise if {X ,Y} is oriented negatively (see Fig. 2.10).
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Without loss of generality, we assume that the orientation of Δ is positive. Then
Stokes’s theorem [50, 256] gives that

s+ t− τ =
∫
Δ
ω =

∫
R

dω

where R denotes the region enclosed by Δ . For a 1-form ω given as

ω(x) =
n

∑
i=1
ξi(x)dxi

with ξi smooth functions, the 2-form dω is defined as

dω(x) =
n

∑
i=1

dξi(x)∧dxi

with

dξi(x) =
n

∑
j=1

∂ξi

∂x j
(x)dx j ,

the differential of ξi. For the wedge product, ∧, the rules of an alternating product
apply, i.e., dx1 ∧ dx2 = −dx2∧ dx1 and dxi∧ dxi = 0. In order to evaluate the area
integral on the right, we need some facts about the actions of differential forms on
vector fields. If φ is a smooth function defined on some domain D⊂R

n, φ ∈C∞(D),
then the action of the 1-form dφ on a smooth vector field is simply taking the Lie
derivative of φ along Z,

〈dφ(x), Z(x)〉 = LZφ(x).

For writing out the inner product in terms of the basis vectors, we have that

〈dφ(x), Z(x)〉=
〈

n

∑
i=1

∂φ
∂xi

(x)dxi,
n

∑
j=1

Zj(x)e j

〉

=
n

∑
i=1

n

∑
j=1

∂φ
∂xi

(x)Zj(x)
〈
dxi, e j

〉

=
n

∑
i=1

∂φ
∂xi

(x)Zi(x) = LZφ(x).

If ψ is another smooth function on D, ψ ∈ C∞(D), then the action of the 2-form
dφ ∧ dψ on a pair of smooth vector fields f and g is defined as the alternating
product

〈dφ(x)∧dψ(x), ( f (x),g(x))〉
= 〈dφ(x), f (x)〉 · 〈dψ(x), g(x)〉− 〈dφ(x), g(x)〉 · 〈dψ(x), f (x)〉
= Lf φ(x) ·Lgψ(x)−Lgφ(x) ·Lfψ(x). (2.50)
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Note, in particular, that this gives 0 if f = g. These actions are then related to the
Lie bracket through the following relation:

Lemma 2.9.2. [50] Given any 1-form ω and smooth vector fields f and g defined
on D⊂ R

n, it follows that

〈dω ,( f ,g)〉= Lf 〈ω ,g〉−Lg 〈ω , f 〉− 〈ω , [ f ,g]〉 .

Proof. It suffices to prove the Lemma if ω is of the form ω = φdψ , where φ and ψ
are smooth functions on D. In this case, and dropping the argument x, we have that

Lf 〈ω ,g〉−Lg 〈ω , f 〉− 〈ω , [ f ,g]〉
= Lf 〈φdψ , g〉−Lg 〈φdψ , f 〉− 〈φdψ , [ f ,g]〉
= Lf (φ) 〈dψ , g〉+φLf 〈dψ , g〉−Lg(φ)〈dψ , f 〉−φLg 〈dψ , f 〉−φ 〈dψ , [ f ,g]〉
= Lf (φ)Lg(ψ)+φLf (Lg(ψ))−Lg(φ)Lf (ψ)−φLg

(
Lf (ψ)

)−φL[ f ,g]ψ

= Lf (φ)Lg(ψ)−Lg(φ)Lf (ψ)+φ
{

Lf (Lg(ψ))−Lg
(
Lf (ψ)

)−L[ f ,g]ψ
}
.

But
L[ f ,g]ψ = Lf (Lg(ψ))−Lg

(
Lf (ψ)

)
and thus since dω = dφ ∧dψ , the result follows from Eq. (2.50). ��

For the 1-form ω defined by Eq. (2.48), we have 〈ω , f 〉 ≡ 1 and 〈ω ,g〉 ≡ 0, and
thus the Lie derivatives of these functions vanish giving

〈dω ,( f ,g)〉 =−〈ω , [ f ,g]〉=−〈ω ,α f +βg〉
=−α 〈ω , f 〉−β 〈ω ,g〉=−α.

Furthermore,

〈dω ,( f ,g)〉= 〈dω ,( f1e1 + f2e2, g1e1 + g2e2)〉
= f1 〈dω ,(e1, g1e1 + g2e2)〉+ f2 〈dω ,(e2, g1e1 + g2e2)〉
= f1g1 〈dω ,(e1, e1)〉+ f1g2 〈dω ,(e1, e2)〉

+ f2g1 〈dω ,(e2, e1)〉+ f2g2 〈dω ,(e2, e2)〉
= ( f1g2− f2g1)〈dω ,(e1, e2)〉
= det( f (x),g(x))〈dω ,(e1,e2)〉 ,

so that

〈dω ,(e1,e2)〉=− α(x)
det( f (x),g(x))

.
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Hence

τ− (s+ t) =−
∫

R
dω =

∫
R

α(x)
det( f (x),g(x))

dx. (2.51)

By construction, the region R lies entirely in Ω+ or Ω−, namely in Ω+ if the Lie
derivative LXα is positive and in Ω− if it is negative. In the first case, the integral
is positive (recall that we assume that the basis B = { f ,g} is positively oriented),
and thus the singular arc takes longer than the XY -trajectory, while it does better
in the second case when the region R lies in Ω−. These conclusions are consistent
with the strengthened Legendre–Clebsch condition. In carrying out this argument
for Y X-trajectories, the same consistency shows. This explicitly verifies that the
Legendre–Clebsch condition distinguishes fast from slow singular arcs.

This calculation can also be used to show that increasing the number of
switchings along a bang-bang trajectory speeds up the time of transfer if the
strengthened Legendre–Clebsch condition is satisfied. Again, consider the XY -
trajectory that steers q1 into q2 and is part of the curve Δ constructed above.
Construct an XYXY -trajectory that connects q1 with q2 in Ω as follows: (i) Starting
from q1, follow the X-trajectory for time s1 < s and let r1 denote the point reached,
r1 =ΨX

s1
(q1). (ii) At r1, change to the Y -trajectory and follow it for time t1 until the

Y -trajectory again reaches the singular curve S in some point r2, r2 =ΨY
t1 (r1)∈S .

(iii) Here once more switch to the X-trajectory and follow it for time s2 until it
intersects the original Y -trajectory in the point r3, r3 =ΨX

s2
(r2). (iv) Then follow

this Y -trajectory from r3 into q2, say q2 =ΨY
t2 (r3). Thus, overall,

q2 =
(
ΨY

t2 ◦ΨX
s2
◦ΨY

t1 ◦ΨX
s1

)
(q1).

Denote by ♦ the diamond-shaped curve that is obtained by concatenating the
X-trajectory from r1 to r first with the Y -trajectory from r to r3, then with the X-
trajectory run backward from r3 to r2, and finally the Y -trajectory run backward
from r2 to r1 (see Fig. 2.11). Since we assume that the basis { f ,g} is positively
oriented, the curve ♦ also is mathematically positively (counterclockwise) oriented.
Let D denote the region enclosed by ♦. Using the 1-form ω , the difference in time
between the original XY -trajectory and the newly constructed XYXY -trajectory can
then be calculated as

(s+ t)− (s1 + t1 + s2 + t2) = (s− s1)+ (t− t2)− s2− t1

=−
∫
♦
ω =−

∫
D

dω =−
∫

D

α(x)
det( f (x),g(x))

dx.

By construction of ♦, the region D lies entirely in Ω+ if LXα > 0 and in Ω− if
LXα < 0. Hence, the XYXY -trajectory steers q1 into q2 faster than the XY -trajectory
does if LXα < 0, and it is slower if LXα > 0. Thus, if the strengthened Legendre–
Clebsch condition is satisfied, i.e., for LXα < 0, bang-bang trajectories with more
switchings near the singular arc are faster, while they are slower if the strengthened
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Fig. 2.11 Comparison of an XY XY -trajectory with an XY -trajectory

Legendre–Clebsch condition is violated. In either case, the singular arc can closely
be approximated by bang-bang trajectories with an increasing number of switchings,
and it is therefore to be expected that in the limit, optimal controls will follow the
singular arc if the strengthened Legendre–Clebsch condition is satisfied, while they
will avoid it, i.e., have as few switchings as possible, if it is violated. This indeed is
the case.

Proposition 2.9.4. Assuming condition (A1), if LX (α) = Xα is negative and
LY (α) = Yα is positive on Ω , then optimal controlled trajectories that lie in Ω
are of the type BSB, that is, are at most concatenations of a bang arc (X or Y )
followed by a singular arc and possibly one more bang arc.

Proof. Let (x,u) be an optimal controlled trajectory that transfers a point q1 ∈ Ω
into the point q2 ∈ Ω in minimum time with the trajectory x lying in Ω and let λ
be an adjoint vector such that the conditions of the maximum principle are satisfied.
Once more, recall that by Proposition 2.9.1, optimal controlled trajectories are at
most of type YX in Ω− and of type XY in Ω+.

Suppose q1 ∈Ω−. Initially, since q1 /∈S , the optimal control can be only u=−1
or u = +1. If the control starts with u = −1, then since LX(α) < 0, the trajectory
moves away from S = {x ∈ Ω : α(x) = 0}, and no junctions from X to Y are
possible in Ω−. Hence this trajectory simply is an X-arc, and the corresponding
control is constant, given by u ≡ −1. On the other hand, if the control starts with
u =+1, then the trajectory moves toward S = {x ∈Ω : α(x) = 0}. In this case, it
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Fig. 2.12 Bang-bang switchings near fast (left) and slow (right) singular arcs

is possible that (a) the control switches to u = −1 before or as the singular arc S
is reached, (b) the control switches to become singular as it reaches S , or (c) this
Y -trajectory simply crosses the singular arc. In case (a), after the switching time, the
X-trajectory again moves the state away from S and no further switchings to Y are
allowed in Ω−. Hence in this case the trajectory is of type Y X . In case (c), once the
Y -trajectory enters the region Ω+, switchings to X are no longer allowed and thus
this trajectory simply is a Y -arc with constant control u = +1. The interesting case
is (b). It follows from Proposition 2.8.4 that switchings onto and off the singular
arc are extremal at any time. Thus, in this case, after following the singular arc for
some time, the trajectory can leave S with the bang control u = −1 or u = +1.
Using an X-trajectory, the system enters the region Ω−, while it enters Ω+ along a
Y -trajectory. In any case, no more switchings are possible inΩ by Proposition 2.9.1.
Thus overall, the structure is at most of type BSB. The analogous reasoning for an
initial condition q1 ∈Ω+ shows the same concatenation structure to be valid. ��

2.9.3 Optimal Bang-Bang Trajectories near a Slow
Singular Arc

What makes Proposition 2.9.4 work is that optimal bang-bang switchings in the
regionsΩ− andΩ+ move the system away from the singular arc S if LX(α) = Xα
is negative and LY (α) = Yα is positive on Ω . The resulting synthesis of the type
BSB is quite common around optimal singular arcs in small dimensions and will
still be encountered several times throughout this text (e.g., Sects. 6.2 and 7.3). If,
however, LX (α) = Xα is positive and LY (α) = Yα is negative on Ω , and in this
case the singular arc is not optimal by the Legendre–Clebsch condition, or “slow,”
the opposite is true. Now optimal bang-bang junctions steer trajectories toward the
singular arc S (see Fig. 2.12). In fact, in this case, there exist bang-bang extremals
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(i.e., bang-bang trajectories that satisfy the necessary conditions for optimality of
the maximum principle) whose trajectories lie in Ω and have an arbitrarily large
number of switchings. But as the geometric argument carried out above indicates,
in this case, making more switchings slows down the trajectories, and thus none
of these are optimal. This reasoning, however, is quite more intricate and goes well
beyond a direct application of the conditions of the maximum principle, but involves
the generalization of the concept of an envelope from the calculus of variations to the
optimal control problem. We shall more generally develop this theory in Sect. 5.4,
but here we include a self-contained proof of the result below due to Sussmann.

Proposition 2.9.5. [230, 236] Let Ω be a domain on which condition (A1) is
satisfied and where LX (α) = Xα is positive and LY (α) = Yα is negative. If Ω
is taken sufficiently small, then optimal controls for trajectories that lie in Ω are
bang-bang with at most one switching.

Note that in contrast to the previous results, here we need to include the
requirement that Ω be a small enough neighborhood of the reference point. This
result does not hold in the more semiglobal setting without additional assumptions.
The essential new concept involved in the proof of this result involves what are
called conjugate points in [230]. However, for reasons that will be explained below,
we prefer to use the terminology of g-dependent points instead.

Definition 2.9.1 (Variational vector field). Let (x,u) : [0,T ] → Ω ×U be an
extremal controlled trajectory with multiplier λ . A variational vector field w along
Γ =((x,u),λ ) is a solution w : [0,T ]→R

2 of the corresponding variational equation

ẇ(t) = {D f (x(t))+ u(t)Dg(x(t))} ·w(t). (2.52)

The adjoint equation for the multiplier λ actually is the “adjoint” in the sense
of linear differential equations to this variational equation (2.52). Thus, for any
variational vector field w alongΓ , the function h : [0,T ]→R, t �→ h(t)= 〈λ (t),w(t)〉
is constant:

ḣ(t) =
〈
λ̇ (t),w(t)

〉
+ 〈λ (t), ẇ(t)〉= 0.

Suppose now that the switching function Φ(t) = 〈λ (t),g(x(t))〉 vanishes at times
t1 < t2 and let w be the variational vector field that satisfies w(t1) = g(x(t1)). Since
Φ(t1) = 0, it then follows that 〈λ (t2),w(t2)〉= 0. But Φ(t2) = 〈λ (t2),g(x(t2))〉= 0
as well, and since λ (t2) = 0, the vectors g(x(t2)) and w(t2) must be linearly
dependent. This leads to the following definition of g-dependent points in the plane.

Definition 2.9.2 (g-dependent). Let (x,u) : [0,T ]→ Ω ×U be an extremal con-
trolled trajectory with multiplier λ . Given times t1 and t2, 0 ≤ t1 < t2 ≤ T , let w(·)
be the variational vector field that satisfies w(t1) = g(x(t1)). We call the points x(t1)
and x(t2) g-dependent (along Γ = ((x,u),λ )) if the vectors g(x(t2)) and w(t2) are
linearly dependent.

Thus, ifΓ =((x,u),λ ) is an extremal lift for which the control u switches at times
t1 < t2, then the switching points x(t1) and x(t2) are g-dependent. As the example
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of time-optimal control for the harmonic oscillator shows, optimality of trajectories
need not cease at g-dependent points. It does in the case that will be considered here,
and thus the terminology of conjugate points is used in [230]. However, we generally
prefer to restrict the terminology “conjugate point” to the case when optimality of
trajectories ceases. We shall elaborate more on this in Sect. 6.1.

The key to the proof of Proposition 2.9.5 is to establish an inversion of g-
dependent points around S . For this calculation, a good choice of coordinates
around S = {x ∈ Ω : α(x) = 0} is beneficial. The type of coordinates used here
will also be needed in Sect. 2.10 and we therefore consider a slightly weaker version
of assumption (A1). Let p ∈Ω be a point at which (i) the vector fields f and g (and
thus also X and Y ) are linearly independent; (ii) α(p) = 0, but the Lie derivative of α
along X does not vanish, LXα(p) = 0; and (iii) the Lie derivative of α along g does
not vanish, Lgα(p) = 0. Conditions (i) and (ii) imply that the geometric properties of
S = {x∈Ω : α(x) = 0} required in assumption (A1) are satisfied on a sufficiently
small neighborhood of p. The third condition ensures that the vector field

S(x) = f (x)+
Lfα(x)
Lgα(x)

g(x) = f (x)+
LXα(x)+LYα(x)
LXα(x)−LYα(x)

g(x)

is well-defined near p. If the quotient
Lf α(x)
Lgα(x) lies between −1 and +1, then this

is the singular vector field. But for the current reasoning it is not necessary that S
correspond to a trajectory of the system, only that the integral curve of S through
p be the curve S . (This was shown in the proof of Proposition 2.9.3.) Let [a,b] be
an interval that contains 0 in its interior on which the solution to the initial value
problem ẏ = S(y), y(0) = p, exists. It then follows from a standard compactness
argument that there exists an ε > 0 such that the solution z= z(·;s) to the initial value
problem ż = X(z), z(0) = y(s), exists on the interval [−ε,ε]. Using the notationΨ
for the flow, we denote this solution by

ψ(s, t) =ΨX
t ◦ΨS

s (p).

If, in addition, the Lie derivative LX(α) does not vanish at y(t) for all t ∈
[a,b], then the X-flow is everywhere transversal to the curve S and the map
ψ is a diffeomorphism from some square Q(ε) = (−ε,ε)× (−ε,ε) onto some
neighborhoodψ(Q) of p. If we now choose this set ψ(Q) as Ω ,

Ω = {ψ(s, t) : −ε < s < ε, −ε < t < ε},

then the times (s, t) ∈ Q provide us with a good set of coordinates on Ω called
canonical coordinates of the second kind in Lie theory (also, see Sects. 4.5 and 7.1).
In these coordinates, the curve S corresponds to the s-axis, S ∼= {(s, t)∈Q : t = 0},
and integral curves of the vector field X are the vertical lines s = const. We call such
a mappingψ : Q→Ω an X-aligned chart of coordinates centered at the point p (see
Fig. 2.13).
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Fig. 2.13 An X-aligned coordinate chart

Definition 2.9.3 (X-aligned chart of coordinates). An X-aligned chart of coordi-
nates (centered at p) is a diffeomorphism ψ ,

ψ : Q(ε)⊂ R
2 →Ω , (s, t) �→ ψ(s, t) =ΨX

t ◦ΨS
s (p),

such that X and Y are linearly independent everywhere on Ω , the set S = {x ∈Ω :
α(x) = 0} is the integral curve of the vector field S through p, and the Lie derivatives
LXα and Lgα are everywhere nonzero on Ω .

Lemma 2.9.3. [230] Given an X-aligned chart of coordinates, Ω = ψ(Q(ε)), for
ε small enough, there exists a differentiable function

ζ : Q→R, (s, t) �→ ζ (s, t),

that satisfies

ζ (s,0) = 0,
∂ζ
∂ t

(s,0) =−1,

and is such that two points q=ψ(s, t) and q′ =ψ(s′, t ′) inΩ are g-dependent along
an X-extremal if and only if s′ = s and t ′ = ζ (s, t). Thus ζ defines the mapping from
q to its g-dependent point in this X-aligned chart of coordinates.
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Proof. In these coordinates, we have that X ∼=(0,1)T = ∂
∂ t , and we write Y ∼=(a,b)T

for some differentiable functions a and b. Since X and Y are everywhere linearly
independent on Ω , the function a does not vanish on Q. Since X-trajectories are
vertical lines, the variational equation (2.52) along X-extremals is simply ẇ(t)≡ 0,
and thus two points q = ψ(s, t) and q′ = ψ(s′, t ′) in Ω are g-dependent along X if
and only if s = s′ and the vectors g(q) and g(q′) are linearly dependent. In terms of
the coordinates of the vector fields X and Y , we have that

g =
1
2
(Y −X)∼= 1

2

(
a

b− 1

)
,

and since a has constant sign in Ω , the vectors g(q) and g(q′) need to point in the
same direction; that is,

b(s, t)− 1
a(s, t)

=
b(s, t ′)− 1

a(s, t ′)
.

If we define

θ : Q→R, (s, t) �→ θ (s, t) =
b(s, t)− 1

a(s, t)
,

then
∂θ
∂ t

(s, t) =
ξ (s, t)
a2(s, t)

,

where

ξ (s, t) =
∂b
∂ t

(s, t)a(s, t)− (b(s, t)− 1)
∂a
∂ t

(s, t).

This expression relates to the determinant of [ f ,g] and g: suppressing the arguments,
we have that

[ f ,g] = [X ,g]∼= Dg ·X =
1
2

⎛
⎜⎜⎝
∂a
∂ s

∂a
∂ t

∂b
∂ s

∂b
∂ t

⎞
⎟⎟⎠

(
0

1

)
=

1
2

⎛
⎜⎜⎝
∂a
∂ t

∂b
∂ t

⎞
⎟⎟⎠

and thus

det([ f ,g],g)∼= 1
4

∣∣∣∣∣∣∣∣

∂a
∂ t

a

∂b
∂ t

b− 1

∣∣∣∣∣∣∣∣
=−1

4
ξ (s, t).

Expressing the Lie bracket [ f ,g] in terms of f and g, we therefore get that

ξ (s, t) =−4det([ f ,g],g) =−4det(α f +βg,g) =−4α det( f ,g),

where α and the vector fields f and g are evaluated at the point q = ψ(s, t) ∈Ω . In
particular, since α vanishes for t = 0 (ψ(s,0) ∈S ), it follows that ξ (s,0)≡ 0, and
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therefore t can be factored from ξ (s, t), say

ξ (s, t) = tξ̃ (s, t).

Thus, with all functions and vector fields evaluated at ψ(s,0) ∈S , it follows that

ξ̃ (s,0) =
∂ξ
∂ t

(s,0) =−4
∂
∂ t |t=0

(
α det( f ,g)

)
=−4LXα ·det( f ,g) = 0.

Hence
∂θ
∂ t

(s,0) = 0

and

∂ 2θ
∂ t2 (s, t) =

∂ξ
∂ t (s, t)a(s, t)− 2 ∂a

∂ t (s, t)ξ (s, t)
a3(s, t)

gives that

∂ 2θ
∂ t2 (s,0) =

ξ̃ (s,0)
a2(s,0)

= 0.

Overall, we therefore can write

θ (s, t) = θ (s,0)+ t2θ̃(s, t)

for some smooth function θ̃ = θ̃ (s, t) that satisfies θ̃ (s,0) = 0 for all s ∈ [−ε,ε]. By
shrinking ε further, if necessary, we may assume that θ̃ (s, t) does not vanish on Q.

If one now expresses the difference

δ (s, t, t ′) = θ̃ (s, t)− θ̃(s, t ′)

as

δ (s, t, t ′) = (t− t ′)δ̃ (s, t, t ′),

then the equation θ (s, t) = θ (s, t ′) is equivalent to

0 = t2θ̃ (s, t)− (
t ′
)2 θ̃ (s, t ′)

=
(

t2− (
t ′
)2

)
θ̃(s, t ′)+ t2(θ̃ (s, t)− θ̃(s, t ′))

=
(
t− t ′

)[(
t + t ′

)
θ̃ (s, t ′)+ t2δ̃ (s, t, t ′)

]
,

and thus we need to solve the equation

Δ(s, t, t ′) =
(
t + t ′

)
θ̃ (s, t ′)+ t2δ̃ (s, t, t ′) = 0.
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Clearly, Δ(0,0,0) = 0 and

∂Δ
∂ t ′

(s,0,0) = θ̃(s,0) = 0.

Hence, by the implicit function theorem, the equation Δ(s, t, t ′) = 0 can be solved
for t ′ near (0,0,0) in terms of a differentiable function t ′ = ζ (s, t). Furthermore, for
t = 0, we have that

0 = Δ(s,0,ζ (s,0)) = ζ (s,0) · θ̃ (s,ζ (s,0)),

and since θ̃ (s, t) does not vanish, it follows that ζ (s,0) ≡ 0 for all s ∈ [−ε,ε].
Finally, differentiating Δ(s, t,ζ (s, t)) with respect to t and setting t = 0 gives

0 =
∂Δ
∂ t

(s,0,ζ (s,0))+
∂Δ
∂ t ′

(s,0,ζ (s,0))
∂ζ
∂ t

(s,0)

=
∂Δ
∂ t

(s,0,0)+
∂Δ
∂ t ′

(s,0,0)
∂ζ
∂ t

(s,0).

But
∂Δ
∂ t

(s,0,0) =
∂Δ
∂ t ′

(s,0,0) = θ̃ (s,0) = 0,

and therefore
∂ζ
∂ t

(s,0) =−1.

��
We now prove Proposition 2.9.5: Let Ω = ψ(Q(ε)) be an X-aligned chart of

coordinates and suppose ε is small enough that there exists a differentiable function
ζ : Q→R, (s, t) �→ ζ (s, t), with the properties of Lemma 2.9.3. By making ε smaller
if necessary, we also may assume that ∂ζ∂ t is negative on Q. As before, X ∼= (0,1)T =
∂
∂ t and we write Y ∼= (a,b)T for some differentiable functions a and b. In these
coordinates,

LXα ∼= ∂α
∂ t

and

LYα ∼= ∂α
∂ s
·a+ ∂α

∂ t
·b.

Since the singular curve S is given by the s-axis, we have α(s,0)≡ 0 and therefore
∂α
∂ s (s,0)≡ 0 as well. Hence, at the reference point p, we get

LYα(p)
LXα(p)

∼= b(0,0), (2.53)
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and thus b(0,0) is negative. By choosing ε small enough, we may assume that b
is negative everywhere on Q. Similarly, without loss of generality we assume that
LXα > 0 and LYα < 0 on all of Ω .

Let (x̄, ū) be a time-optimal Y XY - trajectory that transfers a point q1 ∈ Ω into
q2 ∈Ω with the entire trajectory x̄ lying in Ω . Denote the switching times by τ and
τ ′, τ < τ ′, and the corresponding junctions by r and r′, respectively. The points r and
r′ are g-dependent along X , and thus if r = ψ(s, t) and r′ = ψ(s′, t ′), then s′ = s and
t ′ = ζ (s, t). Note that t < 0 and t ′ > 0. (For by Proposition 2.9.1, Y X-junctions need
to lie in α ≤ 0 and XY -junctions in α ≥ 0. Since LXα > 0 onΩ , we thus have t ≤ 0
and t ′ ≥ 0. But ζ (s,0) = 0, and thus neither can be zero, since otherwise r = r′.)
The next lemma is one of the two key arguments in the construction, and it is only
for this result that we need to make the neighborhoodΩ small.

Lemma 2.9.4. Let γ denote the restriction of the Y XY-trajectory x̄ to some small
interval [τ− ε,τ], where τ is the first switching time and let γ ′ be the image of this
curve under the mapping Z : (s, t) �→ (s,ζ (s, t)). For ε sufficiently small, the curve
γ ′ is a trajectory of the system.

Proof. It suffices to show that the tangent vector to the curve γ ′ at the point r′ is
a linear combination of X(r′) and Y (r′) with positive coefficients. For if this is the
case, then by choosing the times sufficiently close to τ , at every point q′ on the curve
γ ′ there exists a continuous control u(q′) ∈ (−1,1) such that f (q′) + u(q′)g(q′)
is tangent to γ ′. After a suitable reparameterization, the curve thus becomes a
trajectory of Σ .

This property, however, can be guaranteed only in a sufficiently small neighbor-
hood of p. The tangent vector t′ to the curve γ ′ at r′ is the image of the vector Y (r)
under the differential of the mapping Z, i.e.,

t′ =

⎛
⎝ 1 0
∂ζ
∂ s

(s, t)
∂ζ
∂ t

(s, t)

⎞
⎠

(
a(s, t)
b(s, t)

)
=

⎛
⎝ a(s, t)
∂ζ
∂ s

(s, t)a(s, t)+
∂ζ
∂ t

(s, t)b(s, t)

⎞
⎠

=
a(s, t)
a(s, t ′)

(
a(s, t ′)
b(s, t ′)

)
+

[
∂ζ
∂ s

(s, t)a(s, t)+
∂ζ
∂ t

(s, t)b(s, t)− a(s, t)
a(s, t ′)

b(s, t ′)
](

0
1

)

=
a(s, t)
a(s, t ′)

Y (r′)+ b(s, t)

[
∂ζ
∂ s

(s, t)
a(s, t)
b(s, t)

+
∂ζ
∂ t

(s, t)− a(s, t)
a(s, t ′)

b(s, t ′)
b(s, t)

]
X(r′).

(2.54)

Since a has constant sign on Q, the quotient a(s,t)
a(s,t′) is positive. The function b is

negative on Q, and by Lemma 2.9.3,

∂ζ
∂ s

(s,0)
a(s,0)
b(s,0)

+
∂ζ
∂ t

(s,0)≡−1.
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Hence, and once more by choosing the neighborhood Q small enough, we may
assume that

∂ζ
∂ s

(s, t)
a(s, t)
b(s, t)

+
∂ζ
∂ t

(s, t)<−1
2

for all (s, t) ∈ Q.

Thus the coefficient at X(r′) is positive as well. ��
Remark 2.9.1. The construction of an X-aligned chart of coordinatesΩ =ψ(Q(ε))
does not require that LYα = 0, and it is still applicable if LYα(p) = 0, since then
Lgα(p) = 1

2 LXα(p) > 0. But in this case b(0,0) = 0, and thus the dominance
argument above no longer can be made. For later reference, however, we already
note here that such an argument is not needed at points where the Lie derivative of
ζ along Y is positive,

LYζ (s, t) =
∂ζ
∂ s

(s, t)a(s, t)+
∂ζ
∂ t

(s, t)b(s, t)> 0,

and where b(s, t ′) is negative. In this case, (2.54) directly gives that t′ is a linear
combination of X(r′) and Y (r′) with positive coefficients. This will allow us to deal
with codimension-2 cases in the next section.

We now show that Lemma 2.54 precludes the optimality of the Y XY -trajectory x̄.
In fact, the curve γ ′ is an envelope for the control system Σ , and the generalization
of the theory of envelopes to optimal control shows that it cannot be optimal. We
shall develop this theory for a general control problem in Sect. 5.4 but already
here anticipate this argument with a direct calculation invoking the clock form ω
introduced earlier.

Let Γ be the restriction of the Y XY -trajectory to the interval [τ− ε,τ ′] so that Γ
is the concatenation of the curve γ with the X-trajectory that steers r into r′. Define
another trajectory Γ ′ of Σ that steers the point x̄(τ − ε) into r′ by first following
the X-trajectory from x̄(τ − ε) to its g-dependent point on the curve γ ′ and then
concatenating with the Σ -trajectory that corresponds to γ ′ (see Fig. 2.14).

Lemma 2.9.5. The times along the trajectoriesΓ andΓ ′ are equal, T (Γ ) = T (Γ ′).

Proof. The concatenationϒ of Γ with the curve Γ ′ run backward is a closed curve,
and by Stokes’s theorem, the difference in the times along these two trajectories is
given by

T (Γ )−T(Γ ′) =
∫
ϒ
ω =

∫
R

dω ,

where R denotes the region enclosed by ϒ . The coordinate expression for ω (see
Eq. (2.49)) is given by

ω =
g2ds− g1dt

det( f ,g)
=

1
2(b− 1)ds− 1

2 adt

− 1
2 a

= dt +
1− b(s, t)

a(s, t)
ds
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Fig. 2.14 Conjugate curve γ ′

and thus, and using the notation θ from the proof of Lemma 2.9.3,

dω =
∂
∂ t

(
b(s, t)− 1

a(s, t)

)
ds∧dt =

∂θ
∂ t

(s, t)ds∧dt.

Since Y is transversal to X , we can parameterize the curve γ as the graph of a
function σ of s over some interval [sε ,sτ ], say γ : [sε ,sτ ]→ Q, s �→ γ(s) = (s,σ(s)).
Evaluating the double integral by integrating over the vertical segments therefore
gives

∫
R

dω =

∫ sτ

sε

∫ ζ (s,σ(s))

σ(s)

∂θ
∂ t

(s, t)dtds

=

∫ sτ

sε
[θ (s,ζ (s,σ(s)))−θ (s,σ(s))]ds.

But by construction, the points (s,σ(s)) on γ and (s,ζ (s,σ(s)) on γ ′ are
g-dependent, and therefore for all s ∈ [sε ,sτ ],

θ (s,ζ (s,σ(s))) = θ (s,σ(s)).

Hence
∫

R dω = 0 and thus T (Γ ) = T (Γ ′). ��
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Fig. 2.15 A variation along
a YXY -trajectory

This precludes the optimality of Γ : for if Γ is time-optimal, then so is Γ ′. But
the dynamics along γ ′ is a strict convex combination of X and Y , and thus the
control takes values in the interior of the control set. Hence it must be singular. But
α(r′)> 0, and so this is not possible. Contradiction.

Since the roles of X and Y are reversible in our assumptions, it similarly can be
shown that XYX-trajectories cannot be optimal either, and thus Proposition 2.9.5 is
proven. ��

This proof is the original one by H. Sussmann, and it beautifully illustrates the
underlying geometric aspects (i.e., conjugate points and envelopes) of the structure
of optimal bang-bang trajectories near a slow singular arc. We shall return to this
topic for a general n-dimensional system in Sect. 6.1.3 about transversal folds.

There exists an alternative, and in some sense more direct, algebraic approach
that is based on a variation analogous to the one used in [209] for the three-
dimensional case. Suppose again that Γ is a Y XY -trajectory with the switching
points given by q1 and q2 =ΦX

s (q1). It is geometrically clear (see Fig. 2.15), and not
difficult to verify analytically, that there exist continuously differentiable positive
functions r = r(ε) and t = t(ε) such that

ΦY
εs

(
ΦX

s (q1)
)
=ΦX

r(ε)

(
ΦY

t(ε)(q1)
)
.

The difference in time between these trajectories is then given by

Δ(ε) = s(1+ ε)− t(ε)− s(ε),

and the Y XY -trajectory is not time-optimal if Δ(ε) > 0 for small ε > 0. Hence,
the optimality of bang-bang trajectories with two switchings can be excluded by
computing the Taylor expansion of Δ at ε = 0. It can be shown that the fact that
q1 and q2 are g-dependent points is equivalent to Δ ′(0) = 0, and it thus becomes
necessary to compute the second derivative Δ ′′(0). This, however, requires a good
algebraic framework that is provided by a Lie-algebraic formalism that we shall
establish only in Sect. 4.5. We shall return to this second approach in Sect. 7.3 when
we analyze the corresponding situation—the structure of time-optimal bang-bang
trajectories near a slow singular arc—in dimension three.
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2.10 Input Symmetries and Codimension-2 Cases
in the Plane

The results of the last section cover the local structure of time-optimal controlled
trajectories near a point p in the plane under codimension-0 and some codimension-
1 conditions. In order to classify the structure of time-optimal controlled trajectories
for a generic time-invariant control-affine nonlinear system of the type [NTOC] in
the plane, by Thom’s transversality theorem [108] it is necessary to analyze all other
possible codimension-1 and codimension-2 conditions. Other codimension-1 condi-
tions arise if assumption (A0) is violated, i.e., if the vector fields f and g are linearly
dependent at p; codimension-2 conditions arise if two independent equality relations
are imposed. In this section, we still analyze those codimension-2 situations that
arise if condition (A0) is met. These correspond to situations in which in addition to
α(p), also one of the Lie derivatives of α along X or Y vanishes at p. The results of
this and the previous section then collectively describe the structure of time-optimal
controls near a reference point p where the vector fields f (p) and g(p) are linearly
independent under otherwise generic conditions on the vector fields f and g.

2.10.1 Input Symmetries

In cases of higher codimensions, the number of possibilities increases significantly,
and it now helps to use input symmetries and other invariances to reduce this number.
Since the control set U = [−1,1] is invariant under a reflection at the origin, the
problem [NTOC] remains unchanged if we use as control v = −u instead. This
transformation, however, changes the vector fields: g becomes −g while f remains
the same. Thus their Lie brackets and hence also the functions α and β and their
Lie derivatives are affected. This allows us to normalize the signs of some of these
functions.

Definition 2.10.1 (Input symmetry). An input symmetry is a linear transforma-
tion on the vector fields f and g that leaves the control system Σ : ẋ = f (x)+ug(x),
u ∈U (including the class of admissible controls), invariant.

Definition 2.10.2 (Reflection). For the system Σ : ẋ = f (x)+ug(x), |u| ≤ 1, define
the reflection ρ by ρ( f ) = f and ρ(g) =−g, or equivalently, as the transformation
that interchanges the vector fields X and Y ,

ρ(X) = ρ( f − g) = ρ( f )−ρ(g) = f + g = Y

and
ρ(Y ) = ρ( f + g) = ρ( f )+ρ(g) = f − g = X .
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This definition naturally extends as a homomorphism to the Lie algebra generated
by the vector fields f and g if we define

ρ ([ f ,g]) = [ρ( f ),ρ(g)]

and inductively extend this relation to higher-order Lie brackets. As before, we
assume that Ω is a simply connected region of R

2 and that f and g are linearly
independent vector fields on Ω . Thus, all higher-order Lie brackets of f and g can
be expressed as linear combinations of f and g with coefficients that are smooth
functions of x. Suppose [ f ,g](x) = α(x) f (x)+β (x)g(x) and write

ρ ([ f ,g]) = ρ(α)ρ( f )+ρ(β )ρ(g).

The effects that an input symmetry has on the higher-order brackets and coordinate
expressions can then easily be calculated through straightforward algebraic substi-
tutions. We have that

[ρ( f ),ρ(g)] =−[ f ,g] =−α f −βg =−αρ( f )+βρ(g)

and thus
ρ(α) =−α and ρ(β ) = β . (2.55)

Considering higher-order brackets, we arrive at analogous formulas for the Lie
derivatives of α and β :

[X , [ f ,g]] = [X ,α f +βg] = LX(α) f +α[X , f ]+LX(β )g+β [X ,g]

= LX(α) f +LX(β )g+(α+β )[ f ,g]

= (LX (α)+ (α+β )α) f +(LX (β )+ (α+β )β )g,

and analogously

[Y, [ f ,g]] = (LY (α)− (α−β )α) f +(LY (β )− (α−β )β )g.

Applying the input symmetry ρ , we have that

ρ ([X , [ f ,g]]) = [ρ(X), [ρ( f ),ρ(g)]] =−[Y, [ f ,g]]
=−(LY (α)− (α−β )α) f − (LY (β )− (α−β )β )g

= (−LY (α)+ (ρ(α)+ρ(β ))ρ(α))ρ( f )

+ (LY (β )+ (ρ(α)+ρ(β ))ρ(β ))ρ(g),

and therefore

ρ (LX(α)) =−LY (α) and ρ (LX(β )) = LY (β ).
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Since −LY (α) = LY (−α) = Lρ(X)(ρ(α)), this relation can succinctly be expressed
in the form

ρ (LX (α)) = Lρ(X)(ρ(α)). (2.56)

Analogously, it follows that

ρ (LY (α)) = Lρ(Y )(ρ(α)) =−LX(α)

and
ρ (LY (β )) = Lρ(Y)(ρ(β )) = LX(β ).

Similarly, for higher-order derivatives we have that

ρ
(
L2

X (α)
)
= Lρ(X)

(
Lρ(X)(ρ(α))

)
= LY (LY (−α)) =−L2

Y (α)

and
ρ
(
L2

Y (α)
)
= Lρ(Y)

(
Lρ(Y)(ρ(α))

)
= LX (LX (−α)) =−L2

X(α),

and so on. Once more, the effects that an input symmetry has on the vector fields f
and g and their Lie brackets are easily obtained through straightforward algebraic
substitutions.

We briefly reconsider the results of the previous section with this point of view. If
α is positive on some region Ω , we have shown that optimal controlled trajectories
that lie in Ω have at most the structure XY . Applying the input symmetry ρ to the
system changes the sign of α and interchanges X with Y . Thus, it directly follows
that optimal controlled trajectories are at most of type Y X if α is negative (see
Proposition 2.9.1). On the other hand, in the codimension-1 situation (A1), the
relevant conditions are all invariant under this input symmetry. For example, the
singular arc is given by

S = f +
LXα(x)+LYα(x)
LXα(x)−LYα(x)

g = f +
Lfα
Lgα

g

and

ρ(S) = ρ( f )+
ρ
(
Lfα(x)

)
ρ (Lgα(x))

ρ(g) = f +
−Lfα(x)
Lgα(x)

(−g) = S.

Naturally, the strengthened Legendre–Clebsch condition (see Eq. (2.47),

〈λ (t), [g, [ f ,g]](x(t))〉=−Lgα(x(t)),

is invariant under this input symmetry as well. In fact, the assumptions for each of
the various codimension-1 cases considered in the last section are invariant under
ρ . Still, this input symmetry is useful in the proof of Proposition 2.9.5, where we
carried out the construction only for YXY -trajectories and merely claimed that the
analogous construction excludes XYX-trajectories as well. Since ρ interchanges
LX(α) and −LY (α),
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ρ (LX (α)) =−LY (α) and ρ (LY (α)) =−LX(α),

the assumptions of Proposition 2.9.5 are invariant under ρ , and thus, applying ρ ,
it immediately follows that XYX-trajectories cannot be optimal either. No further
argument is necessary.

It is in the codimension-2 scenario, that input symmetries really become useful.
We can limit our analysis to the case that one of the Lie derivatives of α with respect
to X or Y vanishes, and without loss of generality, we shall consider the case when

LX(α)(p) = 0 and LY (α)(p) = 0, while L2
Y (α)(p) = 0.

Using a second symmetry that optimal trajectories possess, we can in addition
normalize the sign for the second Lie derivative L2

Y (α)(p). Time-optimal trajectories
are also invariant under time reversal. If (x∗,u∗) is a time-optimal trajectory for the
system Σ : ẋ= f (x)+ug(x), |u| ≤ 1, defined over an interval [0,T ] that steers a point
q1 into q2, then the pair (y∗,v∗) defined by y∗(t) = x∗(T − t) and v∗(t) = u∗(T − t)
is a time-optimal trajectory that steers q2 into q1 for the system Σ̌ : ẏ = f̌ (y)+vǧ(y),
|v| ≤ 1, where time has been reversed. Since

ẏ∗(t) =−ẋ∗(T − t) =− f (x∗(T − t))− u∗(T − t)g(x∗(T − t))

=− f (y(t))− v(t)g(y(t),

this property can be expressed in terms of a second input symmetry that reverses the
signs of the vector fields f and g.

Definition 2.10.3 (Time reversal). For the system Σ : ẋ = f (x) + ug(x), |u| ≤ 1,
define time reversal τ by τ( f ) =− f and τ(g) =−g, or equivalently, by τ(X) =−X
and τ(Y ) =−Y .

As above, we extend this definition to the Lie algebra generated by f and g and
then calculate the relations it implies on the coordinates with respect to the basis in
terms of f and g. Simple computations verify that

τ(α) =−α, τ(β ) =−β ,
τ(LX (α)) = LX (α), τ(LY (α)) = LY (α),

τ(L2
X (α)) =−L2

X(α), τ(L2
Y (α)) =−L2

Y (α),

and it is the last relation that, without loss of generality, allows us to assume that
L2

Y (α) is positive.
In a more abstract framework, the input symmetries generate a group G =

{id,ρ ,τ,τ ◦ ρ} of idempotent elements (i.e., ρ ◦ ρ = id, etc.) and using them, it
is possible to reduce the number of codimension-2 scenarios by a factor of 4. It is
to be expected that the mathematically more difficult scenarios arise when the Lie
bracket configurations are invariant under this group of symmetries, and this will
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again happen for nongeneric codimension-3 situations. The codimension-2 cases,
however, essentially can be fully analyzed based on the earlier codimension-1 results
of Sect. 2.9 and some additional geometric considerations.

2.10.2 Saturating Singular Arcs

We now assume that

(A2) the vector fields f and g are linearly independent everywhere on Ω ⊂ R
2

and there exists a point p ∈ Ω with α(p) = 0, but the Lie derivative of α along
X does not vanish on Ω ,

α(p) = 0, LX (α)(x) = 0 for all x ∈Ω ;

furthermore, the Lie derivative of α along Y vanishes at p, but the second Lie
derivative of α along Y is positive on Ω ,

LY (α)(p) = 0, L2
Y (α)(x) > 0 for all x ∈Ω .

Note that Lgα(p) = 1
2 LX (α)(p) = 0, and thus there exists an X-aligned chart

of coordinates (centered at p), ψ : Q(ε) ⊂ R
2 → Ω = ψ(Q(ε)), (s, t) �→ ψ(s, t) =

ΨX
t ◦ΨS

s (p). As above, in these coordinates X ∼= (0,1)T = ∂
∂ t , and we write Y ∼=

(a,b)T for some differentiable functions a and b. Since X and Y are everywhere
linearly independent on Ω , the function a does not vanish on Q, and without loss of
generality, we assume that a is positive on Ω . (If a is negative, then simply change
s in the definition of the coordinates to −s.) Assumption (A2) also implies that the
integral curveϒ of Y through the point p is tangent to the curve S = {x∈Ω : α(x) =
0} at p and that the order of contact is 1, i.e., for r near 0,

α (ϒ (r)) = α(p)+LYα(p)r+
1
2

L2
Yα(p)r2 + o(r2)

=
1
2

L2
Yα(p)r2 + o(r2).

Hence, except for the point p, the curveϒ lies in Ω+ = {x ∈Ω : α(x)> 0} and can
be parameterized as the graph of a function of s. By choosing ε sufficiently small,
we again can assume that this parameterization is defined on the full interval [−ε,ε],
say ϒ : [−ε,ε]→ Q(ε), s �→ (s,y(s)), and y′(0) = 0. The geometry is illustrated in
Fig. 2.16.

The point p is the beginning or end point of an admissible singular arc. The
singular control at p is given by

using(p) =
LXα(p)+LYα(p)
LXα(p)−LYα(p)

= +1,
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Fig. 2.16 Assumption (A2)

and thus the singular control saturates at p at its upper value. Since we normalized
a to be positive, we have LYα(s,0) > 0 for s > 0 and LYα(s,0) < 0 for s < 0.
Depending on the sign of LXα , the singular control is admissible for one side of
the s-axis and inadmissible for the other. The singular arc itself is fast, (respectively,
satisfies the strengthened Legendre–Clebsch condition), if LX (α) is negative and it
violates it if LX (α) is positive. The structure of optimal controlled trajectories on
Ω = ψ(Q(ε)) thus depends on this sign, and we now analyze these two cases.

Proposition 2.10.1. Let Ω be a domain on which condition (A2) is satisfied and
suppose LX (α) = Xα is positive everywhere on Ω . Then, for Ω sufficiently small,
optimal controlled trajectories that entirely lie in Ω are of type XYXY.

Proof. It follows from the results of Sect. 2.9 that except for p, every point in
Ω has a neighborhood such that optimal controls for trajectories that lie entirely
in this neighborhood are bang-bang. Thus optimal controlled trajectories are
concatenations of X- and Y -arcs in Ω . It remains to establish the concatenation
sequence. Recall that it follows from Proposition 2.9.1 that XY -junctions can lie
only in {x ∈Ω : α(x)≥ 0} and Y X-junctions must lie in {x ∈Ω : α(x) ≤ 0}.

As before, we consider an X-aligned chart of coordinates (centered at p), ψ :
Q(ε)→Ω =ψ(Q(ε)). In this case, X and Y point to opposite sides of the s-axis for
s< 0 and to the same side for s> 0 (see Fig. 2.16). Thus the set S−= {(s,0) : s< 0}
is a slow singular arc that saturates with using(p) = +1 at p and S+ = {(s,0) : s >
0} is inadmissible. Partition Q into three regions R0, R1, and R2 according to the
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following specifications:

R0 = {(s, t) ∈Q : t > y(s)},
R1 = {(s, t) ∈Q : s < 0, t < y(s)},

and
R2 = {(s, t) ∈Q : s > 0, t < y(s)}.

Thus R0 is the set above the integral curve ϒ , and the region below this curve is
divided further into its components in {s< 0} and {s> 0}with the boundaries given
by the trajectory ϒ and the negative t-axis, {(s, t) ∈ Q : s = 0, t < 0}. Since X ∼=
(0,1)T = ∂

∂ t is vertical, X-trajectories cross ϒ into R0. Once there, since R0 ⊂ Ω+,
at most one switching from X to Y can occur in R0 and thus trajectories cannot leave
R0 forward in time as long as they are contained in Ω . If an optimal trajectory were
to switch from X to Y on the curveϒ , then another junction with X is possible only
at p followed possibly by one more switch to Y . It will follow from our argument
below that no prior switchings can exist in this case, and overall, such a trajectory is
at most of type XYXY .

The switchings in R1 and R2 can be analyzed with the tools developed in the
proof of Proposition 2.9.5. By choosing ε small enough, we can assume that the
function ζ constructed in Lemma 2.9.3 exists on Q(ε) with the properties specified
there. It was shown in the proof of Proposition 2.9.5 that YXY -trajectories are not
optimal if the component b in the vector field Y is negative over the neighborhood
Q(ε), but under assumption (A2) the function b vanishes at p, and we first need to
analyze its zero set in Q.

We first show that under assumption (A2), we have that

b(0,0) = 0 and
∂b
∂ s

(s,0)> 0 for all s ∈ [−ε,ε].

For recall from the proof of Proposition 2.9.5 that LXα = ∂α
∂ t and

LYα(s, t) =
∂α
∂ s

(s, t) ·a(s, t)+ ∂α
∂ t

(s, t) ·b(s, t).

The singular curve S is given by the s-axis, α(s,0)≡ 0, and therefore ∂α
∂ s (s,0)≡ 0.

Hence we have along the s-axis that

LYα(s,0) = LXα(s,0) ·b(s,0), (2.57)

and thus, under assumption (A2), it follows that b(0,0) = 0. Differentiating
Eq. (2.57) once more along the vector field Y , we get that

L2
Yα(s,0)=LY LXα(s,0)·b(s,0)+LXα(s,0)·

(
∂b
∂ s

(s,0) ·a(s,0)+ ∂b
∂ t

(s,0) ·b(s,0)
)
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Fig. 2.17 Optimal XY XY -trajectories for LXα > 0

and therefore, upon evaluation at p∼= (0,0),

L2
Yα(0,0) = LXα(0,0) · ∂b

∂ s
(0,0) ·a(0,0).

Hence, with our normalization of a to be positive, we get that ∂b
∂ s (0,0) > 0. In

particular, b(s,0) is negative for s < 0 and positive for s > 0. It follows from the
implicit function theorem that the equation b(s, t) = 0 can be solved in terms of
a differentiable function s = σ(t), σ(0) = 0, in a neighborhood of the origin. By
making ε smaller, if necessary, we may assume that the function σ is defined over
the full interval [−ε,ε]. Furthermore, the graph of σ is transversal to the integral
curveϒ of Y at p (see Figs. 2.16 and 2.17).

We also need to know the signs of the Lie derivative of the function ζ along the
vector field Y . By definition,

LYζ (s, t) =
∂ζ
∂ s

(s, t)a(s, t)+
∂ζ
∂ t

(s, t)b(s, t),

and it follows from Lemma 2.9.3 that ζ (s,0) ≡ 0 and ∂ζ
∂ t (s,0) ≡ −1. In particular,

all partial derivatives of ζ with respect to s vanish along s = 0. Hence we have that
LYζ (0,0) = 0 and for s < 0,

LYζ (s,0) =
∂ζ
∂ s

(s,0)a(s,0)+
∂ζ
∂ t

(s,0)b(s,0) =−b(s,0)> 0.

Furthermore, with b(0,0) = 0, the second Lie derivative with respect to Y at the
origin simplifies to
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L2
Yζ (0,0) =

∂ζ
∂ t

(0,0)
∂b
∂ s

(0,0)a(0,0) =−∂b
∂ s

(0,0)< 0.

Thus the zero set Z = {(s, t) : LYζ (s, t) = 0} of the Lie derivative LY ζ near the origin
is a one-dimensional embedded submanifold that is transversal to the singular curve
S = {(s,0) : |s| ≤ ε}.
Lemma 2.10.1. YXY-trajectories that lie in the closure of R1 are not optimal.

Proof. Since the zero sets of b and LYζ are transversal to ϒ at p, it follows that
there exists an open sector V = {(s, t) ∈ Q : s < 0, t < 2ω |s|} that lies entirely in
the set {(s, t) ∈ Q : b(s, t) < 0, LY ζ (s, t) > 0}. Since Y is tangent to the s-axis at
p, by making ε smaller if necessary, we may assume that the curveϒ for s < 0 lies
entirely in the smaller sector W = {(s, t) ∈Q : s < 0, t <ω |s|} (see Fig. 2.17). Now
consider a Y XY -trajectory that lies in R1 and suppose it has switchings at the points
(s̃, t̃) and (s̃, t̃ ′), respectively. If this trajectory is optimal, then the two junctions are
g-dependent along X and we have that t̃ ′ = ζ (s̃, t̃). Since junctions of the type XY
are optimal only in Ω+, we have that (s̃, t̃ ′) ∈W . It follows from Lemma 2.9.3 that

t̃ ′ = ζ (s̃, t̃) =
∂ζ
∂ t

(s̃,0)t̃ + o(t̃) =−t̃ + o(t̃).

(We have ζ (s,0)≡ 0, and thus all derivatives in s vanish identically.) But then, for ε
small enough, the first junction point (s̃, t̃) still must lie in the larger sector V where
the Lie derivative LYζ is positive, and by construction the second junction point lies
in the region where b is negative. It follows from the remark following Lemma 2.9.4
that an envelope can be constructed, and thus this trajectory cannot be optimal. ��

In particular, if there is an XY -junction on the curveϒ , then there could not have
been a previous Y X-junction. Hence, as claimed earlier, such a trajectory can be at
most of type XYXY .

The remainder of the argument follows from a direct geometric analysis of X
and Y trajectories. It is possible that optimal trajectories are of the type XYXY in
{s < 0}, but then the last switching must lie above ϒ in R0, and overall such a
trajectory cannot switch any more. Trajectories that do not crossϒ in {s < 0} are at
most concatenations of type XY in {s < 0}. If they switch to X at s = 0, then once
more, only one additional switch to Y in {t > 0} is possible. If they cross {s = 0}
along Y , then it is possible to have a switch to X in the fourth quadrant {(s, t) ∈ Q :
s> 0, t < 0} and one more switch to Y in the first quadrant {(s, t)∈Q : s> 0, t > 0}
(cf., Fig. 2.17). In any case, an optimal controlled bang-bang trajectory that lies in
Ω can have at most the concatenation sequence XYXY . ��
Proposition 2.10.2. Let Ω be a domain on which condition (A2) is satisfied and
suppose LX (α) = Xα is negative everywhere on Ω . Then, for Ω sufficiently small,
optimal controlled trajectories that lie entirely in Ω are at most concatenations of
type XYSB.
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Fig. 2.18 Optimal XY SB-trajectories for LXα < 0

Proof. This is the easier case, and the result follows by a direct geometric reasoning
from the codimension-1 scenarios. As above, consider an X-aligned chart of
coordinates (centered at p), ψ : Q(ε) → Ω = ψ(Q(ε)). In this case X and Y
point to the same sides of the s-axis for s < 0 and to opposite sides for s > 0.
Furthermore, now S+ = {(s,0) : s > 0} is a fast singular arc (that again saturates
with using(p) = +1 at p) and S− = {(s,0) : s < 0} is inadmissible. By choosing Q
small enough, it follows from Proposition 2.9.2 that optimal controlled trajectories
that lie in Q− = {(s, t) : s < 0}, the second and third quadrants, are at most of
type XYX , and by Proposition 2.9.4, optimal controlled trajectories that lie in
Q+ = {(s, t) : s > 0}, the first and fourth quadrants, are at most of type BSB.
However, overall, at most the concatenation sequence XYSB is possible. For only
Y -trajectories can cross from Q− into Q+, and XY -junctions are optimal only in
Ω+, the first and second quadrants, while YX-junctions are optimal only in Ω−, the
third and forth quadrants. Therefore, if a Y -trajectory crosses the t-axis at a positive
value, then no further switching is possible, and such a trajectory can be at most
of type XY . If it crosses for t = 0 and does not switch at p, the same is true. If it
switches at p to a singular arc, then only SB is possible afterward, and this limits
the concatenation sequence to XYSB. If a switch to X occurs at p, then again no
further switches are possible, and such a trajectory is at most of type XYX . Finally,
if the crossing happens for t < 0, then it is possible to switch to X in the forth
quadrant (or also on the t-axis itself), and again in such a case we get at most XYX .
If there is no switch to X , then the Y -trajectory may reach the singular arc and switch
there, ending up with an SB concatenation. Overall, because of the directions of the
vector fields X and Y near p, only concatenations of type XYSB can be optimal (see
Fig. 2.18). ��

Altogether, we have shown the following result:

Theorem 2.10.1. Let p be a point where the vector fields f (p) and g(p) are linearly
independent. Then, under generic conditions on the vector fields f and g, there exists
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a neighborhood Ω of p such that optimal controlled trajectories that lie entirely
in Ω are concatenations of at most four pieces of either X = f − g, Y = f + g,
or the singular arc S. At most one of these pieces can be a singular arc, and if
there are four segments, then it must be the second or third leg in the concatenation
sequence. �

In all the examples considered here, there is a very simple relation between the
number of X , Y , and singular segments in concatenation sequences that lie in a
sufficiently small neighborhood Ω of some reference point p and what is called
the codimension of the Lie-bracket configuration of the system Σ = ( f ,g) at the
point p that we still briefly want to point out. Loosely speaking, this Lie-bracket
configuration consists of all the values of the vector fields f and g and their Lie
brackets at p, and its codimension is given by the number of linearly independent
“relevant” equality relations that hold between these vector fields at p. We are
assuming that f and g are linearly independent onΩ and thus always can express the
Lie bracket as [ f ,g] = α f +βg with some smooth functions α and β defined on Ω .
In this case, the first “relevant” relation is that g and [ f ,g] are linearly dependent
at p, characterized by α(p) = 0. If α does not vanish on Ω , the codimension-0
case, optimal controls are simply bang-bang with one switching, and the sign of α
determines the order of the switchings. If α does vanish at p, higher-order terms in
the Taylor expansion of α along the flows of X and Y at p matter, and depending
on whether these Lie derivatives of α vanish at p, more degenerate scenarios arise.
In the codimension-1 cases, characterized by the fact that both Lie derivatives of α
along X and Y do not vanish at p, only three segments are possible. If we allow that
one of the Lie derivatives vanishes, but again in a nondegenerate way, so that its
second Lie derivative is nonzero, the codimension-2 case, this number increases to
four. Overall, in each case we have the following simple relation:

Σp: The maximum number of concatenations of X , Y , and singular segments in
time-optimal controlled trajectories that lie in a sufficiently small neighborhood
Ω of some reference point p is given by

2+ codim(Σp) = dimΩ + codim(Σp) .

This relation has also been verified for numerous cases of low codimension
in dimensions 3 and 4 (e.g., see [210, 211, 221]). For example, the possible
concatenation sequences BBB and BSB that arise in the codimension-1 cases in the
plane are precisely the time-optimal concatenation sequences in the codimension-
0 three-dimensional case (see Sect. 7.3), and the optimal sequences BBBB, BBSB,
and BSBB for the codimension-2 case in the plane are the optimal sequences for the
codimension-1 cases in R

3 (see Sect. 7.5) and the codimension-0 cases in R
4. This is

very much like the unfolding of singularities in the theory of differentiable mappings
[108]. Thus, a general classification of the concatenation sequences that optimal
controlled trajectories for planar systems can have locally in more degenerate cases
based on Lie-theoretic conditions is not merely of intrinsic interest, but it also points
to the structures of optimal solutions in higher dimensions. We shall return to this



180 2 The Pontryagin Maximum Principle

topic in Chap. 7. In the next section, we shall analyze another classical optimal
control problem in which the codimension of the Lie-bracket configuration becomes
infinite, and indeed, optimal trajectories require an infinite number of switchings on
a finite interval and thus are no longer piecewise continuous.

Examples of these correspondences abound not only for the time-optimal
control problem, but in general. For example, in Sect. 6.2, we shall consider a
three-dimensional optimal control problem for a mathematical model for tumor
anti-angiogenesis [160] in which, because of the presence of optimal saturating
singular controls, the solution is fully characterized by the concatenation sequences
determined here for the codimension-2 scenario. Indeed, the optimal concatenation
structures encountered for the time-optimal control problem in the plane that were
analyzed in the last two sections consistently reappear in optimal solutions for
general optimal control problems in increasing dimensions.

2.11 Chattering Arcs: The Fuller Problem

The Fuller problem has its origin in electronics, arising in communication across a
nonlinear channel [34,35,94]. In this section, we give a solution to this problem, an
innocent-looking problem whose optimal controlled trajectories are chattering arcs
for which the controls switch infinitely often on an arbitrarily small interval as the
switchings accumulate at the final time. In particular, optimal controls are no longer
piecewise continuous, but lie in the class of Lebesgue measurable functions. The
reason for this behavior lies in the presence of an optimal singular arc of order 2.

[Fuller] Given a point p∈R
2, find a control (Lebesgue measurable function) with

values in the interval [−1,1] that steers p into the origin under the dynamics

ẋ1 = x2, ẋ2 = u,

and minimizes the objective

J(u) =
1
2

∫ T

0
x2

1(t)dt.

The time T of transfer is finite, but otherwise free. Since the problem is time-
invariant, we can arbitrarily shift the interval of definition for the control, and for
this problem it is more convenient to normalize the terminal time to be 0. We thus
consider the controls and trajectories to be defined over intervals [−T,0]⊂ (−∞,0].

Theorem 2.11.1. Let ζ =

√√
33−1
24 = 0.4446236 . . . , the unique positive root of the

equation z4 + 1
12 z2− 1

18 = 0, and define
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Fig. 2.19 Optimal synthesis for the Fuller problem

Γ+ = {(x1,x2) ∈R
2 : x1 = ζx2

2, x2 < 0},
Γ− = {(x1,x2) ∈R

2 : x1 =−ζx2
2, x2 > 0},

G+ =
{
(x1,x2) ∈R

2 : x1 <−sgn(x2)ζx2
2

}
,

G− =
{
(x1,x2) ∈R

2 : x1 >−sgn(x2)ζx2
2

}
.

Then, the optimal control for the Fuller problem is given in feedback form as

u∗(x) =

{
+1 for x ∈ G+∪Γ+,
−1 for x ∈ G− ∪Γ−.

(2.58)

Corresponding trajectories cross the switching curves Γ+ and Γ− transversally,
changing from u = −1 to u = +1 at points on Γ+ and from u = +1 to u = −1
at points on Γ−. These trajectories are chattering arcs with an infinite number of
switchings that accumulate with a geometric progression at the final time T = 0.

Figures 2.18 and 2.19 depict the optimal synthesis for the Fuller problem. It
looks very much like the synthesis for the double integrator, but with the significant
difference that the switching curve Γ = Γ+ ∪{(0,0)}∪Γ− now is not a trajectory.
Thus trajectories always cross Γ and cannot enter the origin along these curves.
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Fig. 2.20 An example of an optimal controlled trajectory (left) and a blowup near the final time
(right)

2.11.1 The Fuller Problem as a Time-Optimal Control
Problem in R

3

The reason for the occurrence of the chattering controls is best understood if one
embeds the Fuller problem into a time-optimal control problem of the form [NTOC]
in R

3 by adding the objective as a third variable, ẋ3 =
1
2 x2

1, i.e., the drift vector field
f and control vector field g are given by

f (x) =

⎛
⎜⎜⎜⎝

x2

0

1
2

x2
1

⎞
⎟⎟⎟⎠ and g(x) =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ .

If one then considers the time-optimal control problem to the origin, the classical
Fuller problem arises for initial conditions of the form p = (x0

1,x
0
2,−J(x0

1,x
0
2)),

where J(x0
1,x

0
2) is the optimal value for the Fuller problem with initial condition

(x0
1,x

0
2). It will be seen that the solution to the Fuller problem is unique, and thus

there exists exactly one control that steers p into the origin. Hence this control is the
time-optimal one. In fact, the solutions to the Fuller problem are optimal abnormal
extremals for this three-dimensional time-optimal control problem: the Hamiltonian
for the Fuller problem is given by

H =
1
2
λ0x2

1 +λ1x2 +λ2u

with λ0 ≥ 0, while the Hamiltonian for the time-optimal control problem, where
we change the notation for the multiplier to ψ in order to distinguish these two
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formulations, is given by

H = ψ0 +ψ1x2 +ψ2u+
1
2
ψ3x2

1.

We shall see below that extremals for the Fuller problem cannot be abnormal
(λ0 > 0), and for the time-optimal control problem, ψ3 is a constant that cannot
vanish if ψ0 = 0 with time-minimizing extremals corresponding to ψ3 > 0 and
maximizing ones to ψ3 < 0. Normalizing ψ3 = 1 and taking ψ0 = 0, the conditions
of the maximum principle for these two problems agree.

The Lie brackets of the vector fields f and g are easily computed as

[ f ,g](x) ≡
⎛
⎝−1

0
0

⎞
⎠ , [ f , [ f ,g]](x) =

⎛
⎝ 0

0
x1

⎞
⎠ , and [g, [ f ,g]](x) ≡ 0.

Since [g, [ f ,g]] vanishes identically, so do the brackets [ f , [g, [ f ,g]]] and [g, [g, [ f ,g]]],
and singular controls are of higher order. The other relevant fourth- and fifth-order
brackets are

ad 3
f g(x) =

⎛
⎝ 0

0
x2

⎞
⎠ , ad 4

f g(x)≡ 0, and [g,ad 3
f g](x)≡

⎛
⎝0

0
1

⎞
⎠ .

In particular, 〈
ψ , [g,ad3

f g](x)
〉
= ψ3 = 1 > 0,

and the Kelley condition for optimality of an order-2 singular arc is satisfied. The
equation defining the singular control is

Φ(4)(t) = ψad 4
f g(x)+ uψ [g,ad 3

f g](x) = u

and thus the singular control is given by

using ≡ 0.

The corresponding singular extremal ΓF is therefore given by u ≡ 0, x1 ≡ x2 ≡ 0,
with multipliers ψ0 = ψ1 = ψ2 = 0 and ψ3 ≡ 1. The classical Fuller problem can
thus be interpreted as the problem of steering a point in R

3 time-optimally into an
order-2 singular arc that satisfies the Kelley condition. By Proposition 2.8.5, the sin-
gular control cannot be concatenated with a constant bang control without violating
the necessary conditions of the maximum principle. This can be accomplished only
by means of a chattering control.
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2.11.2 Elementary Properties of Extremals

We now construct an extremal synthesis for the Fuller problem following an
argument of Kupka [143]. (The optimality of this synthesis will be verified in
Sects. 5.1 and 5.2.3 by means of two completely different arguments.) Let (x,u)
be an optimal controlled trajectory that transfers p into the origin and minimizes
the integral

∫ T
0 x2

1(t)dt. By Theorem 2.2.1, there exist a constant λ0 ≥ 0 and an
adjoint vector λ = (λ1,λ2) such that (i) (λ0,λ1,λ2) do not vanish simultaneously,
(ii) λ̇1 = −λ0x1, λ̇2 = −λ1, and (iii) the control minimizes the Hamiltonian H =
1
2λ0x2

1 + λ1x2 + λ2u over the interval [−1,1] with the minimum value identically
zero.

Lemma 2.11.1. Extremals of optimal controlled trajectories are normal.

Proof. Suppose λ0 = 0. The switching function Φ is given by the multiplier λ2,
and in this case λ̈2 = 0. Hence the corresponding control u is bang-bang with at
most one switching ending with either u = +1 or u = −1. But this contradicts
Proposition 2.8.5. For if we define a new control ǔ by adding an interval [T,T + ε]
with control ǔ(t)≡ 0 on this interval, then the value of the objective does not change
under this extension, and thus ǔ is optimal as well. But the final segment with u = 0
is a singular arc of order 2, and thus it cannot be concatenated optimally with a bang
control. Contradiction. ��

We henceforth normalize λ0 = 1. Then the derivatives of the switching function
Φ = λ2 are given by

Φ̇(t) =−λ1(t), Φ̈(t) = x1(t), Φ(3)(t) = x2(t), Φ(4)(t) = u(t),

and the minimum condition implies

u(t) =−sgnΦ(t).

In particular, the switching function is a solution to the nonsmooth differential
equation Φ(4)(t) = −sgnΦ(t). We start with some elementary properties of
extremals.

Lemma 2.11.2. Let u =±1; then the functions

I1,± = x1− 1
2

ux2
2 and I2,± =−λ1− ux1x2 +

1
3

x3
2

are first integrals for the extremals of the Fuller problem. That is, the functions I1,±
and I2,± are constant along extremals for the controls u =±1.
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Proof. This follows by direct differentiation from the system and adjoint equations

İ1,± = ẋ1− ux2ẋ2 = x2− u2x2 = 0,

İ2,± =−λ̇1− uẋ1x2− ux1ẋ2 + x2
2ẋ2 = x1− ux2

2− u2x1 + x2
2u = (1− u2)x1 = 0.

��
Lemma 2.11.3. LetΓ = ((x,u),λ ) be an extremal defined over the interval [−T,0].
If τ < 0 is a switching time, then τ is an isolated zero of the switching function, and a
bang-bang switch occurs at time τ . This switch is from u=+1 to u=−1 if x2(τ)> 0
and from u =−1 to u =+1 if x2(τ) < 0.

Proof. Suppose Φ(τ) = λ2(τ) = 0. It is clear that a bang-bang switch occurs if
λ̇2(τ) =−λ1(τ) does not vanish. If λ1(τ) = 0 as well, then the condition

0 = H(τ) =
1
2

x2
1(τ)+λ1(τ)x2(τ) (2.59)

implies that x1(τ) = 0, and thus, since the junction point is not the origin, we have
x2(τ) = 0. But then Φ(τ) = Φ̇(τ) = Φ̈(τ) = 0 and

Φ(3)(τ) = x2(τ) = 0.

Thus the switching function changes from negative to positive if x2(τ)> 0 and from
positive to negative if x2(τ)> 0 and the corresponding bang-bang switch occurs. For
the case λ1(τ) = 0, the same structure follows, since x2(τ) and λ1(τ) have opposite
signs by (2.59). ��

2.11.3 Symmetries of Extremals

The family of all extremals possesses two groups of symmetries, one continuous,
the other discrete, which can be used very much to advantage in calculating the
extremal synthesis. Without loss of generality, we define all extremals over the full
interval (−∞,0] with the terminal time T normalized to be T = 0. Let Gα denote
the multiplicative group of positive reals and define a 1-parameter group of scaling
symmetries on (−∞,0]× [−1,1]×R

2× (
R

2
)∗

by

Gα : (t,u,x1,x2,λ1,λ2) �→
( t
α
,α0u,α2x1,αx2,α3λ1,α4λ2

)
.

Proposition 2.11.1. Given an extremal lift Γ = ((x,u),λ ) for the Fuller problem
and α > 0, define Γα = ((xα ,uα),λα) as the controlled trajectory (xα ,uα) and
corresponding adjoint vector λα that are obtained under the action of the group Gα
on the variables; that is, by



186 2 The Pontryagin Maximum Principle

uα(t) = u
( t
α

)
, xα1 (t) = α2x1

( t
α

)
, xα2 (t) = αx2

( t
α

)
,

and
λα1 (t) = α3λ1

( t
α

)
, λα2 (t) = α4λ2

( t
α

)
.

Then Γα again is an extremal for the Fuller problem.

Proof. Consider the controlled trajectory (x,u) over the interval [−t̄,0] with initial
condition at time−t̄ given by (x̄1, x̄2). The rescaled control uα , restricted to [−α t̄,0],
then steers (x̄α1 , x̄

α
2 ) = (α2x̄1,α x̄2) into the origin with corresponding trajectory

xα . A direct calculation verifies that the adjoint equation is invariant under this
transformation as well,

λ̇ α1 (t) = α3λ̇1

( t
α

) 1
α

=−α2x1

( t
α

)
=−xα1 (t),

λ̇ α2 (t) = α4λ̇2

( t
α

) 1
α

=−α3λ1

( t
α

)
=−λα1 (t),

and also the Hamiltonian H remains unchanged:

H(λα(t),xα (t),uα(t))

=
1
2

xα1 (t)
2 +λα1 (t)xα2 (t)+λ

α
2 (t)uα(t)

=
1
2

[
α2x1

( t
α

)]2
+α3λ1

( t
α

)
αx2

( t
α

)
+α4λ2

( t
α

)
u
( t
α

)

= α4H
(
λ
( t
α

)
,x

( t
α

)
,u

( t
α

))
= 0.

Furthermore, by construction, the minimum condition on the control carries over
from the extremal lift Γ . Hence Γα is an extremal as well. ��

A second symmetry is given by reflecting controlled trajectories and their mul-
tipliers at the origin, in mathematical terms, by the action of the discrete group S2.
Let R denote the reflection symmetry defined on (−∞,0]× [−1,1]×R

2×(
R

2
)∗

by

R : (t,u,x1,x2,λ1,λ2) �→ (t,−u,−x1,−x2,−λ1,−λ2).

Proposition 2.11.2. Given an extremal lift Γ = ((x,u),λ ) for the Fuller problem,
define Γ̌ = ((x̌, ǔ), λ̌ ) as the controlled trajectory (x̌, ǔ) and corresponding adjoint
vector λ̌ that are obtained under the action of R, that is, by

ǔ(t) =−u(t) , x̌1(t) =−x1 (t) , x̌2(t) =−x2 (t) ,
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and
λ̌1(t) =−λ1 (t) , λ̌2(t) =−λ2 (t) .

Then Γ̌ again is an extremal for the Fuller problem.

Proof. It is clear that all the conditions of the maximum principle are invariant under
this transformation. ��

2.11.4 A Synthesis of Invariant Extremals

Whenever a mathematical problem exhibits symmetries, it is a good strategy to seek
solutions that obey these symmetries. In fact, there is one extremal that is invariant
under the action of all symmetries Gα for all α > 0 and R, namely the trivial solution
for u≡ 0 with x≡ 0 and λ ≡ 0. (The nontriviality condition is satisfied by λ0 = 1.)
In some sense, this is responsible for the special properties of trajectories that need
to steer the system into the origin. But there also exists a specific value α for which
all extremals are invariant (as individual curves, not just as the whole family) under
the actions of R and Gα . These are the optimal controlled trajectories for the Fuller
problem, and we now calculate this value.

Let Γ = ((x,u),λ ) be an extremal for the Fuller problem and suppose t0 < 0
is a switching time where the control switches from u = +1 to u = −1. Since the
switchings are isolated, but must accumulate for T = 0, there exists a sequence
{tn}n∈Z of switching times that converges to 0 as n → ∞ and the control switches
from u = +1 to u = −1 at even indices and from u =−1 to u =+1 at odd indices.
Let Γ̌α = ((x̌α , ǔα), λ̌ α) denote the image of the extremal Γ under the combined
action Aα of the reflection R and the group Gα for a fixed α > 0, i.e., for all t ≤ 0,

ǔα(t) =−u
( t
α

)
, x̌α1 (t) =−α2x1

( t
α

)
, x̌α2 (t) =−αx2

( t
α

)
,

and
λ̌ α1 (t) =−α3λ1

( t
α

)
, λ̌ α2 (t) =−α4λ2

( t
α

)
.

By Propositions 2.11.1 and 2.11.2, Γ̌α =Aα(Γ ) again is an extremal, but generally it
will be different fromΓ . If the extremalsΓ and Γ̌α are the same, i.e., if Γ (t) = Γ̌α(t)
for all t ≤ 0, then the extremal is a fixed point under this transformation, and we say
that it is invariant under this action. Note that if Γ is Aα-invariant, then it is also
invariant under the action of any odd power α2k+1 for all k ∈ Z. But there always
exists a smallest α > 1, and this number will be called the generator.

Proposition 2.11.3. let Γ = ((x,u),λ ) be an extremal for the Fuller problem
defined over the semi-infinite interval (−∞,0] with switching times {tn}n∈Z and
suppose the control switches from u =−1 to u =+1 for even indices. If the extremal
Γ is invariant under the combined action Aα of the reflection R and the group Gα
with generator α , i.e., if Γ (t) = Γ̌α(t) for all t ≤ 0, then
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α =

√
1+ 2ζ
1− 2ζ

, where ζ =

√√
33− 1
24

.

The switching points lie on the curves

Γ+ = {(x1,x2) ∈R
2 : x1 = ζx2

2, x2 < 0}

and
Γ− = {(x1,x2) ∈ R

2 : x1 =−ζx2
2, x2 > 0},

and switchings are from X = f − g to Y = f + g at points on Γ+ and from Y to X at
points on Γ−.

Proof. The invariance condition and the choice of α as the generator imply that the
switching times ti follow a geometric progression, ti−1 = αti, i ∈ Z. Starting at the
switching time t0 and integrating the control u =+1 until the time t1 =

t0
α , using the

first integral I1,+, we obtain that

x1(t1)− 1
2

x2
2(t1) = x1(t0)− 1

2
x2

2(t0) (2.60)

and thus

x1(t1)
x1(t0)

− 1 =
1
2

x2
2(t1)− x2

2(t0)
x1(t0)

=
1
2

(
x2

2(t1)

x2
2(t0)

− 1

)
x2

2(t0)
x1(t0)

.

It follows from the invariance of the trajectory under the action of Gα and R that

x1(t0) = x̌α1 (t0) =−α2x1

( t0
α

)
=−α2x1 (t1)

and
x2(t0) = x̌α2 (t0) =−αx2

( t0
α

)
=−αx2 (t1) . (2.61)

In particular, xi(t1) and xi(t0) have opposite signs at consecutive switchings for both
i = 1,2. Hence

x1(t1)
x1(t0)

=− 1
α2 and

x2(t1)
x2(t0)

=− 1
α
. (2.62)

But then we get for the XY -junction at time t0 that

− 1
α2 − 1 =

1
2

(
1
α2 − 1

)
x2

2(t0)
x1(t0)

or equivalently,

x1(t0) =
1
2
α2− 1
α2 + 1

x2
2(t0).
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Also, by Lemma 2.11.3, x2(t0) is negative.
Similarly, if we integrate u = −1 between the switching times t1 and t2, then we

get from I1,− that

x1(t2)+
1
2

x2
2(t2) = x1(t1)+

1
2

x2
2(t1),

which then leads to

x1(t2)
x1(t1)

− 1 =
1
2

x2
2(t1)− x2

2(t2)
x1(t1)

=
1
2

(
1− x2

2(t2)

x2
2(t1)

)
x2

2(t1)
x1(t1)

.

Analogous to Eq. (2.62), we also have that

x1(t2)
x1(t1)

=− 1
α2 and

x2(t2)
x2(t1)

=− 1
α
,

and so it follows that

− 1
α2 − 1 =

1
2

(
1− 1

α2

)
x2

2(t1)
x1(t1)

.

Hence

x1(t1) =−1
2
α2− 1
α2 + 1

x2
2(t1),

and Lemma 2.11.3 now implies that x2(t0) is positive. Setting

ζ =
1
2
α2− 1
α2 + 1

∈
(

0,
1
2

)
, (2.63)

the formulas for the switching curves follow.
It remains to calculate the value for ζ . For the switching times t0 and t1 we have

that
x1(t0) = ζx2(t0)

2 and x1(t1) =−ζx2(t1)
2

and thus, once more using the first integral I1,+, we get from Eq. (2.60) that

I1,+(t1) =

(
ζ − 1

2

)
x2

2(t1) =

(
−ζ − 1

2

)
x2

2(t0)

or equivalently, by Eq. (2.62),

(
ζ − 1

2

)
=

(
−ζ − 1

2

)
α2. (2.64)

Similarly, using the first integral I2,+, we also have that

−λ1(t1)− x1(t1)x2(t1)+
1
3

x3
2(t1) =−λ1(t0)− x1(t0)x2(t0)+

1
3

x3
2(t0). (2.65)
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It follows from the condition H(t)≡ 0 that at every switching time ti we have that

0 =
1
2

x2
1(ti)+λ1(ti)x2(ti)

and thus

λ1(ti) =−1
2

x2
1(ti)

x2(ti)
=−1

2
ζ 2x3

2(ti).

Hence Eq. (2.65) becomes

(
1
2
ζ 2− ζ + 1

3

)
x3

2(t1) =

(
1
2
ζ 2 + ζ +

1
3

)
x3

2(t0),

and thus, again by Eq. (2.62),

(
1
2
ζ 2− ζ + 1

3

)
=−

(
1
2
ζ 2 + ζ +

1
3

)
α3. (2.66)

Solving Eqs. (2.64) and (2.66) for α and equating the resulting expressions gives
the following relation on ζ :

( 1
2ζ

2− ζ + 1
3

)2

(
ζ − 1

2

)3 =

( 1
2ζ

2 + ζ + 1
3

)2

(−ζ − 1
2

)3 . (2.67)

This expressions simplifies to the equation

ζ 4 +
1

12
ζ 2− 1

18
= 0,

which has a unique positive solution given by

ζ =

√√
33− 1
24

.

The formula for α follows from Eq. (2.63). ��
These calculations prove that if there exist extremal controlled trajectories that

are invariant under the combined action A defined by the composition of the group
actions R and Gα for some α , then the generator is given by

α =

√
1+ 2ζ
1− 2ζ

= 4.1301599 . . ., (2.68)



2.11 Chattering Arcs: The Fuller Problem 191

and the trajectories are those corresponding to the synthesis defined in Theo-
rem 2.11.1. It is not difficult to reverse these computations and show that this
construction indeed gives rise to a family of Aα -invariant extremals.

Proposition 2.11.4. The synthesis F defined in Theorem 2.11.1 generates a family
of Aα -invariant extremals.

Proof. Let p > 0 and consider the point γ(p) = (ζ p2,−p) on the switching curve
Γ+. We first calculate the total time Tp it takes for the controlled trajectory of the
synthesis F that starts at the point γ(p) to reach the origin. If we take t0 = −Tp as
initial time t0 for the trajectory, then the time of the next switching is t1 = t0

α , and
x2(t1)
x2(t0)

=− 1
α . Since ẋ2 = 1 over [t0, t1], we have that

x2(t1)− x2(t0) = t1− t0 =

(
1
α
− 1

)
t0

and thus, dividing by −x2(t0),

(
1− 1

α

)
t0

(−p)
= 1− x2(t1)

x2(t0)
= 1+

1
α
,

which gives

Tp =−t0 =
1+ 1

α
1− 1

α
p =

α+ 1
α− 1

p.

Given γ(p), define a control up over the infinite interval (−∞,0) to have the
switching times {tn}n∈Z given by t0 = 1+α

1−α p < 0 and ti = α−it0 with the controls
alternating between +1 and −1 at the switching times and up ≡ +1 on the interval
(t0, t1). Let xp = (x1,x2)

T be the corresponding trajectory. This is the controlled
trajectory generated by the synthesis F through the point γ(p). Define a solution
λp = (λ1,λ2) of the corresponding adjoint equation by taking as initial conditions
at time t0 the values

λ1(t0) =−1
2

x2
1(t0)

x2(t0)
=−1

2
ζ 2 p3 and λ2(t0) = 0.

We claim that this defines an A -invariant extremalΓp = ((xp,up),λp). This is fairly
obvious by construction. Clearly, the control up is A -invariant, and calculations
invoking the first integral I1 analogous to those carried out in the proof of
Lemma 2.11.3 verify that the corresponding trajectory xp is invariant as well. We
have taken care to choose the correct initial condition for the multiplier, and the
A -invariance of the adjoint vector can be verified using the other first integral I2.
Finally, the fact that the Hamiltonian is identically zero simply follows from the
fact that
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H(t0) =
1
2

x2
1(t0)+λ1(t0)x2(t0)+λ2(t0)u(t0)

=−1
2

(
ζ p2)2− 1

2
ζ 2 p3 (−p)+ 0 = 0

and d
dt H(t) vanishes, since λ is a solution to the corresponding adjoint equation.

Since every controlled trajectory generated by the synthesis F is of this form, this
proves the proposition. ��

It is easy to define a “patch” Ξ0 of controlled trajectories that generates this
synthesis. Simply take the value p = 1 and consider the point (ζ ,−1) ∈ Γ+. The
first return of this trajectory to the curve Γ+ then is at

x̄2 = x2(t2) =
1
α2 x2(t0) =− 1

α2 .

Define the function t0 : [0,∞)→ (−∞,0] by

t0(p) =
1+α
1−α p

and let

D0 =

{
(t, p) :

1
α2 < p≤ 1, t0(p)≤ t < t1(p) =

t0(p)
α

}

be the domain for a parametrization of the controlled trajectories of the Fuller
synthesis F ,

Ξ0 : D0 →R
2\{(0,0)}, (t, p) �→ (x1(t, p),x2(t, p)).

Then the iterates Ξn under the action defined by A ,

Ξn : D0 →R
2\{(0,0)}, (t, p) �→ (−1)n

(
xα

n

1 (t, p)
xα

n

2 (t, p)

)
,

for all n ∈ Z cover the full state space, except for the origin.
We used invariance properties of the extremals to give a rather elegant and short

construction of an extremal synthesis. By itself, however, this does not guarantee
optimality. The optimality of this field will be verified in Sect. 5.2.3. In fact, there
we shall give a rather elementary constructive argument that proves the optimality
of this synthesis based on the parameterization of the patch Ξ0.

It is also true that the extremals constructed here are the only extremals possible,
but this argument is quite a bit more technical and involved (for example, see
[34, 35]). Coupled with a standard result that guarantees the existence of optimal
solutions for the Fuller problem, this indeed then proves the optimality of the
synthesis constructed. But here we are interested rather in illustrating the use of
invariance properties, a tremendously powerful tool in the analysis of nonlinear
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systems with symmetries. Our presentation here is based on ideas and arguments of
Kupka. While this problem with its solution given by chattering arcs was considered
an aberration for a long time, in his paper [143], Kupka has shown that this is
far from the truth and that chattering extremals indeed are a generic phenomenon,
i.e., are in some very precise mathematical sense “typical” in higher state-space
dimensions.

Another important point that is made with this problem is that optimal controls in
general need not be piecewise continuous for even the simplest-looking real analytic
system. It is easy to see that an arbitrary measurable control u can be the solution
of a time-optimal control problem for a system of the form ẋ = f (x)+ ug(x) with
control set U = [−1,1] and some sufficiently “weird” smooth vector fields f ,g∈C∞.
But whether optimal controls can be that general if the vector fields are real analytic,
or whether they then do have some regularity properties, as might be expected, still
is an open problem for which only partial results exist. While the structure of these
optimal chattering controls still is rather simple, nevertheless these are not piecewise
continuous, but only Lebesgue measurable controls. And this is the correct class of
controls to consider in any optimal control problem, since it allows for a reasonable
theory of existence of optimal solutions (e.g., [33]). The main aim of this chapter
was to illustrate how the conditions of the maximum principle can be used to solve
problems, and for this the class of piecewise continuous controls is mostly adequate.
But in order to proceed with the deeper theory, even if we shall not concern ourselves
with existence theory, we shall need to allow for Lebesgue measurable controls. We
shall see next that even for linear systems this is indispensable.

2.12 Notes

Linear-quadratic optimal control is a classical design principle in automatic control
and is at the heart of many actual control schemes including autopilots on com-
mercial aircraft, process control in chemical engineering, and many other regulation
processes. There exist many excellent engineering textbooks that are fully devoted
to this subject and its extensions, both as deterministic systems and in a stochastic
(noisy) environment. For this reason, we included only the most fundamental results
on this topic. We highly recommend the classical text by Kwakernaak and Sivan
[144] to the interested reader. We used the textbook by Knowles [139] as a source
for the introductory one-dimensional examples that allow for explicit integrations
of the solutions.

Time-optimal control for linear systems also is a classical topic treated in depth
in many of the textbooks from the 1960s and 1970s such as those by Lee and Marcus
[147] and Athans and Falb [25]. We shall take up this topic in some more detail next.

The necessary conditions for optimality of singular controls presented in Sects.
2.8.4 and 2.8.5 representonly theculmination of theclassical researchonthis topic that
was carried out in the 1960s, e.g., [31,104,107,121,122,131,132,169,173,178,201].
WeshallprovetheseresultsinChap. 4,butusingverydifferentcomputationalmethods.
Also, the lecture notes by H.W. Knobloch [137] provide an alternative approach to
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many of these conditions. A treatment of singular trajectories that proceeds beyond
these classical developments and takes into account conjugate points is given by
Bonnard and Kupka [48,49], and for an in-depth analysis of singular trajectories, we
highly recommend the monograph by Bonnard and Chyba [44]. Genericity properties
of singular trajectories are developed in the work by Chitour, Jean, and Trélat [71–73].

There do not exist many textbooks that provide the differential-geometric
framework that we employ in our treatment of optimal control. In fact, the early
texts that give some of these foundations are in engineering, such as those by Isidori
[120] and Nijmeijer and van der Schaft [176], but these texts focus on concepts from
automatic control such as regulation and disturbance decoupling and do not address
optimal control. The textbooks by Sontag [225] and Jurdjevic [126] address a more
mathematical audience. While focused on the foundations of nonlinear systems
theory (e.g., reachability and controllability, integral manifolds), these texts also
include an introduction to optimal control problems, however largely motivated by
linear-quadratic control problems.

The results that are included in the later sections of this chapter were for a
long time only scattered in the research literature or some edited volumes such
as [1, 6] and [4]. It is only more recently that some specialized monographs have
been published that include these issues, such as those by Bonnard and Chyba [44],
Boscain and Piccoli [51], and Bressan and Piccoli [56]. Among these, the book by
Boscain and Piccoli is fully devoted to optimal control problems in the plane. We
refer the reader to this text and Sussmann’s original paper [236] for a complete
analysis of generic systems. In his papers, Sussmann carries this analysis further,
analyzing all cases of positive codimension for a nondegenerate dynamical system
with smooth vector fields f and g in C∞(Ω) [236] and arbitrary real analytic vector
fields f and g in Cω(Ω) [237]. In [238], it is then shown how these local results
combine to provide a global solution to the problem in terms of a regular synthesis.
These results are developed further by Boscain and Piccoli, who, more generally,
analyze the time-optimal control problem and the structure of its optimal syntheses
for systems on two-dimensional manifolds [51]. Much less is known in dimension
three, and we shall pick up this topic in Chap. 7.

The Fuller problem is another classical optimal control problem. For quite
some time, the structure of its solution was considered an aberration until I.A.K.
Kupka showed that indeed this is a common phenomenon in higher dimensions
[143]. As in the Fuller problem, it arises naturally if controlled trajectories need
to follow or leave a locally optimal singular arc that is of order 2 and the singular
controls take values in the interior of the control set. While this, in principle, is
not a generic scenario, there are many interesting practical problems in which this
happens. For example, in mathematical models for tumor anti-angiogenic treatments
(see Sect. 6.2), there exists an optimal singular arc of order 1 that on addition of
pharmacokinetic models for the drug action becomes of order 2, leading to optimal
chattering connections [165]. Similarly, these phenomena arise in the control of
autonomous underwater robots [74, 75]. The most comprehensive treatment of
chattering arcs so far is given in the monograph by Zelikin and Borisov [262].



Chapter 3
Reachable Sets of Linear Time-Invariant
Systems: From Convex Sets to the Bang-Bang
Theorem

As a precursor to the proof of the maximum principle for a general nonlinear system,
in this chapter we develop the classical results about the structure of the reachable set
for linear time-invariant systems with bounded control sets and prove Theorem 2.5.3
of Chap. 2.

We always consider a system Σ of the form

Σ : ẋ = Ax+Bu, x(0) = p, u ∈U, (3.1)

where x ∈ R
n, u ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, and the control set U is an arbitrary
subset of R

m. Since the system is time-invariant, without loss of generality we
normalize the initial time to t0 = 0. In order to obtain some of the deeper results
of the theory, it now becomes necessary to consider Lebesgue measurable functions
as controls, and we therefore take as the class U of admissible controls the class
of all locally bounded Lebesgue measurable functions u : [0,∞) → U that take
values in the control set U almost everywhere (a.e.); that is, for any finite interval
[0,T ] ⊂ [0,∞) there exists a constant M = M(T ) < ∞ such that ‖u(t)‖ ≤ M for
all t ∈ [0,T ] with the possible exception of a Lebesgue null set.1 With this choice
of controls, the classical solution formula for a linear differential equation remains
valid, and the solution x(·; p) to the initial value problem (3.1) is given as

x(t; p) = eAt p+

t∫

0

eA(t−s)Bu(s)ds. (3.2)

Recall that the time-t-reachable set from p is the set of all points that can be reached
from p by means of an admissible control defined on the interval [0, t], i.e.,

1The technical aspects of measure theory and measurable functions are beyond the scope of this
text. A brief summary of the basic theory is given in Appendix D, and more advanced results will
be quoted from the literature. However, only few of these will be needed.

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
DOI 10.1007/978-1-4614-3834-2 3, © Springer Science+Business Media, LLC 2012
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ReachΣ ,t(p) =

⎧⎨
⎩q ∈ R

n : ∃ u ∈U so that q = eAt p+

t∫

0

eA(t−s)Bu(s)ds

⎫⎬
⎭ .

In this chapter, we shall show that if the control set U is compact and convex, then
so are the reachable sets ReachΣ ,t(0) (Sect. 3.3), and we will use this fact to derive
the celebrated bang-bang theorem for linear systems (Sect. 3.4). This theorem states
that whenever a point q is reachable in time t by means of a Lebesgue measurable
control that takes values in U , then it is also reachable in the same time t by
means of a control that takes its values in the set of extreme points of U , a much
smaller set. If U is a compact polyhedron, then in fact, q is reachable by means
of a bang-bang control with a finite number of switchings (Sect. 3.6). But we start
with two introductory sections in which we develop required background material.
Properties of convex sets in R

n are essential in the analysis of reachable sets for
linear systems and also in approximations to reachable sets of general nonlinear
systems later on. We therefore fully develop these elementary but important facts in
Sect. 3.1. Section 3.2 presents the useful notion of weak convergence in the Banach
space L1(I) of integrable Lebesgue measurable functions on an interval I, which we
shall also use on various occasions throughout the text. For this topic, some more
advanced background from real analysis is required, and we need to refer to the
literature for some of the results that will be used.

3.1 Elementary Theory of Convex Sets

We review some elementary but important facts about convex set in R
n that we will

need in this chapter and also later on.

Definition 3.1.1 (Convex set). A set E ⊂ R
n is convex if whenever two points x

and y lie in E , then the entire line segment connecting x with y lies in E:

x ∈ E, y ∈ E =⇒ λx+(1−λ )y∈ E for all λ ∈ [0,1].

Recall that the closure of a set E , Ē or Clos(E), consists of all accumulation
points of E , and the interior of E , E̊ , consists of all interior points (see Appendix A).

Proposition 3.1.1. If E ⊂R
n is convex, then so are its closure Ē and its interior E̊.

Proof. These topological properties inherit from the convexity of E . Given two
points x and y in the closure of E , pick sequences {xn}n∈N ⊂ E and {yn}n∈N ⊂ E
such that xn → x and yn → y. By the convexity of E , for all λ ∈ [0,1] we have
λxn+(1−λ )yn ∈E and λxn+(1−λ )yn→ λx+(1−λ )y. Hence λx+(1−λ )y∈ Ē
for all λ ∈ [0,1]. The fact that the interior of E is also convex immediately follows
from the following lemma.
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Lemma 3.1.1. Let E be a convex set and let x ∈ E̊ and y ∈ Ē. Then

λx+(1−λ )y∈ E̊ for all λ ∈ (0,1].

Proof. Choose ε > 0 such that B2ε(x) = {z ∈ R
n : ‖z− x‖ < 2ε} ⊂ E and pick a

sequence {yn}n∈N ⊂ E converging to y. Given λ ∈ (0,1], take n large enough that

1−λ
λ

‖y− yn‖< ε.

Then for every point z ∈ Bε(x) we have that

λ z+(1−λ )y= λ
(

z+
1−λ
λ

(y− yn)

)
+(1−λ )yn ∈ λB2ε(x)+ (1−λ )yn ⊂ E,

and thus the neighborhood λBε(x) + (1− λ )y of λx+(1− λ )y lies in E . Hence
λx+(1−λ )y∈ E̊. ��
Definition 3.1.2 (Convex hull of a set). Given an arbitrary subset S ⊂ R

n, the
convex hull of S, co(S), is the smallest convex subset that contains S.

It is clear that an intersection of convex sets is again convex. Hence the convex
hull of S is the intersection of all convex sets that contain S and as such is well-
defined. The next result gives an analytic description of the convex hull in terms of
convex combinations.

Proposition 3.1.2. Given S ⊂ R
n, the convex hull of S is given by

co(S) =

{
x ∈ R

n : x =
k

∑
i=0
λixi, xi ∈ S, λi ≥ 0,

k

∑
i=0
λi = 1, k ∈ N0

}
.

Proof. Denote the set on the right by Ŝ. This set is convex, for if x and y are points
in Ŝ, then without loss of generality, we may assume that x and y are written as
convex combinations of the same set of vectors (by simply adding some terms with
coefficients 0), say

x =
k

∑
i=0

λizi and y =
k

∑
i=0

μizi

with zi ∈ S, and all λi and μi nonnegative and summing to 1. But then, for any
ρ ∈ [0,1],

ρx+(1−ρ)y=
k

∑
i=0

(ρλi +(1−ρ)μi) zi
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with ρλi +(1−ρ)μi ≥ 0 and

k

∑
i=0

ρλi +(1−ρ)μi = ρ

(
k

∑
i=0

λi

)
+(1−ρ)

(
k

∑
i=0

μi

)
= 1.

Hence ρx+(1− ρ)y ∈ Ŝ. On the other hand, any convex set that contains S also
must contain any convex combinations of points from S, and thus it must contain Ŝ.
Hence Ŝ is the smallest convex set that contains S. ��

We next establish that a convex set has a well-defined dimension (which may be
smaller than n). To this effect, we need the concept of an affine variety.

Definition 3.1.3 (Affine variety generated by a convex set). A set V of the form
V = p+W , where p is a point in R

n and W is a subspace of Rn, is called an affine
variety, and the dimension of W is called the dimension of the affine variety. An
(n− 1)-dimensional affine variety is called a hyperplane. Given an arbitrary subset
E of Rn, the affine variety generated by E , A (E), is the smallest affine variety that
contains E .

Lemma 3.1.2. Given any set E ⊂ R
n, the affine variety generated by E is well-

defined and is given by the set of all affine combinations of points from E, that is,

A (E) =

{
x ∈ R

n : x =
k

∑
i=0

λixi, xi ∈ E, λi ∈R,
k

∑
i=0

λi = 1, k ∈ N

}
.

Proof. Points p0, . . . , pm are said to be affinely independent if (and only if) the
vectors p1− p0, . . . , pm − p0 are linearly independent. (It is easy to see that this
definition does not depend on the ordering of the points.) Thus, in R

n any set
consisting of more than n+ 1 points is affinely dependent. Choose m maximal so
that there exist affinely independent points p0, . . . , pm from the set E and let W be
the subspace spanned by the vectors p1− p0, . . . , pm− p0. Then p0 +W indeed is
the smallest affine variety that contains E .

To see this, first note that any point q ∈ E necessarily lies in p0 +W . For if there
existed a point q∈ E that lay outside p0+W , then the points p0, . . . , pm and q would
be affinely independent, contradicting the maximality of m. Thus, p0+W is an affine
variety that contains E . On the other hand, since the vectors p1− p0, . . . , pm− p0 are
linearly independent, any affine variety that contains E also must contain p0+W and
thus p0 +W ⊂A (E). Hence A (E) = p0 +W .

We now show that

p0 +W =

{
x ∈R

n : x =
k

∑
i=0

λixi, xi ∈ E, λi ∈ R,
k

∑
i=0

λi = 1, k ∈ N

}
.
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Any point q in p0 +W can be written as

q = p0 +
m

∑
i=1
μi(pi− p0)

for some μi ∈ R. Setting λ0 = 1−∑m
i=1 μi, and λi = μi for i = 1, . . . ,m, the point q

can therefore be written as

q =
m

∑
i=0
λi pi with

m

∑
i=0
λi = 1,

and thus

p0 +W ⊂
{

x ∈ R
n : x =

k

∑
i=0

λixi, xi ∈ E, λi ∈ R,
k

∑
i=0

λi = 1, k ∈ N

}
.

Conversely, let x0, . . . ,xk be arbitrary points in E , and λi real numbers that sum to 1.
Since xi ∈ p0 +W , we can write

xi = p0 +
m

∑
j=1
μi j(p j− p0)

with some μi j ∈R. Hence

k

∑
i=0
λixi =

k

∑
i=0
λi

(
p0 +

m

∑
j=1
μi j(p j− p0)

)

= p0 +
m

∑
j=1

(
k

∑
i=0
λiμi j

)
(p j− p0) ∈ p0 +W

and thus
{

x ∈R
n : x =

k

∑
i=0
λixi, xi ∈ E, λi ∈ R,

k

∑
i=0
λi = 1, k ∈ N

}
⊂ p0 +W,

proving the reverse inclusion. ��
Definition 3.1.4 (Dimension of a convex set). The dimension of a convex set E is
defined as the dimension of the affine variety A (E) generated by E . A point p ∈ E
is called an internal point of E if p is an interior point of E relative to the affine
variety A (E) generated by E .
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The following result is the key to separation theorems about convex sets and is
the finite-dimensional analogue to the Hahn–Banach theorem in infinite dimensions.
In finite-dimensional spaces, its proof is elementary by induction on the dimension.

Theorem 3.1.1 (Hahn–Banach). Let E be a nonempty open convex set in R
nand

let V be an affine variety disjoint from E. Then there exists a hyperplane H that
contains V and still is disjoint from E.

Proof. The result is vacuous in R: any affine variety disjoint from E is a point
and thus is a hyperplane in R. In order to emphasize the constructive nature of the
argument, we also give the reasoning for the two-dimensional case. Suppose E ⊂R

2

and let V be a point not in E . (Nothing needs to be shown if V already is a line.)
Without loss of generality we may assume that V = {0}. Denote by kE the set of all
points that are of the form kx for some x ∈ E and let

C =
⋃
k>0

kE.

Then C is an open convex cone: a set C is called a cone (with apex at 0) if whenever
x ∈C, then also kx ∈C for all k > 0. This property is obvious from the construction.
To see that C is convex, consider arbitrary points y1 and y2 from C, say y1 = k1x1

and y2 = k2x2 with x1 and x2 from E , and let λ ∈ [0,1]. Then

λy1 +(1−λ )y2 = (λk1 +(1−λ )k2)

(
λk1x1

λk1 +(1−λ )k2
+

(1−λ )k2x2

λk1 +(1−λ )k2

)
∈C.

Now let x be a boundary point from C, x ∈ ∂C, different from 0, and let H be the
line through x. Then this hyperplane is disjoint from E: Since C is open, it is clear
that x cannot lie in C. But−x also cannot lie in C, since otherwise, by Lemma 3.1.1,
0 = 1

2 x+ 1
2(−x) ∈C. Hence the hyperplane H does not intersect C. This proves the

result for n = 2.
Now suppose n ≥ 3. Without loss of generality, again assume 0 ∈ V and let W

be a subspace of maximal dimension that contains V and still is disjoint from E .
Nothing needs to be shown in dimW = n− 1. If the codimension of W is at least
2, then let U be a two-dimensional subspace of the orthogonal complement of W
and consider the space X =U

⊕
W . Denote the orthogonal projection in X along W

by π , so that π(W ) = {0}. The set E ′ = π(E) is open in U , and since W and E are
disjoint, does not contain 0. By the previous argument, there exists a line l through
0 that is disjoint from 0. But then l and W span a linear subspace disjoint from E of
dimension strictly larger than dimW . Contradiction. Thus dimW = n− 1. ��
Definition 3.1.5 (Supporting hyperplane). let E ⊂ R

n be a convex set. A hy-
perplane H = {x ∈ R

n : cT x = a} is called a supporting hyperplane to E if H
intersects the boundary of E , H ∩ ∂E = /0, and E lies entirely to one side of H,
i.e., H ⊂ H− = {x ∈ R

n : cT x≤ a} or H ⊂ H+ = {x ∈ R
n : cT x≥ a}.
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Corollary 3.1.1. Let E be a nonempty convex set. Then, through every point p in
the boundary of E, p ∈ ∂E, there exists a supporting hyperplane H.

Proof. If the dimension of E is n, then the interior of E , E̊ , is a nonempty open
convex set, and by the Hahn–Banach theorem, through every boundary point p there
exists a hyperplane H that is still disjoint from E̊ , say H = {x∈R

n : cT x = a}. Then
E̊ needs to lie to one side of the hyperplane H, say cT x > a for all x ∈ E̊ . It follows
from Lemma 3.1.1 that the closure of E is actually the same as the closure of the
interior of E . Hence we have cT x ≥ a for all x ∈ Ē , and thus H is a supporting
hyperplane to E at p. The result is trivially true if the dimension of E is smaller than
n: in this case the affine variety generated by E is at most (n− 1)-dimensional, and
thus the entire set E is contained in a hyperplane H. This hyperplane is supporting.��
Definition 3.1.6 (Separating hyperplane). Given two nonempty convex sets, E1

and E2, a hyperplane H is called separating if E1 ⊂H− and E2 ⊂ H+.

Proposition 3.1.3. Let E be a nonempty closed and convex set and let B= Bρ(p) =
{y : ‖y− p‖ < ρ} be an open ball disjoint from E. Then there exists a supporting
hyperplane H to E that separates E from B.

Proof. Let δ be the distance from p to E . Then 0 < ρ ≤ δ < ∞ and there exists
a point x∗ ∈ E such that δ = ‖x∗ − p‖. This simply follows from the fact that a
continuous function attains its minimum on a compact set (see Appendix A). Let
H = {x∈R

n : cT x = a} be the tangent plane to the sphere {x : ‖x− p‖= δ} through
x∗, and without loss of generality, assume that Bδ (p)⊂H−. Then E must lie in H+:
for if cT q < a, then the segment connecting q with x∗ lies in E and points on this
segment close to x∗ have a smaller distance to p than δ . Contradiction. Thus H is a
supporting hyperplane to E that separates E from B. ��
Corollary 3.1.2. Let E be a nonempty closed and convex set different from R

n.
Then there exist countably many supporting hyperplanes Hi, i ∈ N, to E such that
E = ∩∞i=1H+

i .

Proof. The complement G of E , G = Ec, is a nonempty open set and can be written
as a countable union of open balls Bi, i∈N, G =∪∞i=1Bi. By Proposition 3.1.3, there
exists a supporting hyperplane Hi to E such that E ⊂ H+

i and Bi ⊂ int
(
H−

i

)
. Then

E ⊂∩∞i=1H+
i and Ec =∪∞i=1Bi ⊂∪∞i=1 int

(
H−

i

)
=∪∞i=1

(
H+

i

)c
=

(∩∞i=1H+
i

)c
. Hence

E = ∩∞i=1H+
i . ��

Definition 3.1.7 (Extreme points). Let E ⊂ R
n be a convex set. A point q ∈ E

is said to be an extreme point of E if q cannot be written as a nontrivial convex
combination of other points from E , i.e., if q = λx+(1−λ )y with x and y from E
and λ = 0 and λ = 1, then x = y. We denote the set of all extreme points of E by
Eext.

Clearly, extreme points are boundary points of E , but not every boundary point
is an extreme point (see Fig. 3.1). For E = {x ∈ R

n : ‖x‖2 = 1}, this is the case,
but only the vertices are extreme points of E = {x ∈ R

n : ‖x‖∞ = 1}. Also, as the
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Fig. 3.1 Every point of a
circle is an extreme point, but
only the vertices are extreme
points of a rectangle

example of a closed hyperplane shows, closed convex sets need not have extreme
points at all. But if they are compact, this is the case, and we have the following
important result.

Theorem 3.1.2 (Krein–Milman). Let E be a non-empty, compact and convex set
in R

n. The set Eext of extreme points of E is nonempty, and every point in E can be
written as a convex combination of at most n+ 1 extreme points. In particular, E is
the convex hull of its extreme points, E = co(Eext).

For the proof we need the following auxiliary result, which is important enough
to be stated separately.

Proposition 3.1.4. Let E be a nonempty compact and convex set. Then every
supporting hyperplane to E contains at least one extreme point.

Proof. The proof is by induction on the dimension of E . If dimE = 1, then the affine
variety generated by E is a line and E is a compact interval in it. In this case, each
of the two boundary points (relative to the affine variety) is an extreme point. So
now assume that the result is true for convex sets E of dimension at most n− 1 and
suppose E is a convex set of dimension n. Any supporting hyperplane H = {x∈R

n :
cT x = a} for E contains at least one boundary point p. The intersection E ∩H is a
nonempty compact and convex set of strictly smaller dimension. By the inductive
assumption there exists an extreme point q of E ∩H. But since H is a supporting
hyperplane, q actually is an extreme point of E . For suppose q = λx+(1−λ )y with
x and y from E and λ = 0 and λ = 1. Since H is a supporting hyperplane, the set
E lies to one side of H, and we have, say, cT x≥ a and cT y≥ a. But cT q = a, since
q∈H, and so we must have cT x = a and cT y = a, i.e., x and y lie in E∩H. Since q is
an extreme point of E ∩H, it follows that x = y. Thus q is an extreme point of E . ��
Proof of the Krein–Milman Theorem: Once more, the proof is by induction on
the dimension of the convex set. The result is trivially true if dimE = 0, in which
case E consists of a single point. It is also obvious if dimE = 1, in which case E is
a compact interval in a line, and clearly every point in E is a convex combination of
the two boundary points that are the extreme points of E . So again assume that the
statement is correct for convex sets E of dimensions ≤ n− 1 and let E be a convex
set of dimension n.

Let x be any point in E . By Corollary 3.1.1 and Proposition 3.1.4 there exists an
extreme point p, p ∈ Eext. Consider the ray starting at p in the direction of x. Since
E is compact, there exists a last element y ∈ E on this ray and y ∈ ∂E . Let H be a
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supporting hyperplane to E through y. Then E ∩H is a nonempty compact convex
set of dimension strictly smaller than n. Hence, by the inductive assumption, y can
be written as a convex combination of at most n extreme points qi of E ∩H. But as
shown above, extreme points of a supporting hyperplane are also extreme points of
the set itself, and thus also qi ∈ Eext. Hence we have

y =
n

∑
i=1

λiqi, qi ∈ Eext, λi ≥ 0,
n

∑
i=1

λi = 1.

But x itself is a convex combination of p and y, and thus x = μ p+(1−μ)y for some
μ ∈ [0,1]. Hence, altogether,

x = μ p+(1− μ)
n

∑
i=1

λiqi,

and thus x is a convex combination of at most n+ 1 extreme points from E . This
proves the inductive step. ��
Corollary 3.1.3 (Carathéodory). Given S⊂ R

n, the convex hull of S is given by

co(S) =

{
x ∈R

n : x =
n

∑
i=0
λixi, xi ∈ S, λi ≥ 0,

n

∑
i=0
λi = 1

}
.

Proof. We already know that

co(S) =

{
x ∈ R

n : x =
k

∑
i=0

λixi, xi ∈ S, λi ≥ 0,
k

∑
i=0

λi = 1, k ∈ N0

}

with the upper limit k in the summation free. The difference in the corollary is
that the upper limit has been fixed to n, the dimension of the convex set. Every
point x ∈ co(S) lies in the convex hull of a finite set of points {x0, . . . ,xk} from
S. But the convex hull of this finite set is compact and convex, and thus x can be
written as a convex combination of at most n+1 extreme points of co({x0, . . . ,xk}).
But any extreme point of this set must be one of the xi, i = 0, . . . ,k. Hence every
point x ∈ co(S) can also be written as a convex combination of at most n+ 1 points
from S. ��
Corollary 3.1.4. If the set S is compact, then so is its convex hull co(S).

Proof. If S is bounded, say ‖x‖ ≤C < ∞ for all x ∈ S, and if y is some point in the
convex hull of S,

y =
n

∑
i=0
λixi, xi ∈ S, λi ≥ 0,

n

∑
i=0
λi = 1,
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then

‖y‖ ≤
n

∑
i=0

λi ‖xi‖ ≤
(

n

∑
i=0

λi

)
C =C,

and thus co(S) is bounded. To show that co(S) is closed, suppose {yk}k∈N ⊂ co(S)
and yk → y. Write

yk =
n

∑
i=0
λ k

i xk
i , xk

i ∈ S, λ k
i ≥ 0,

n

∑
i=0
λ k

i = 1.

Since S is compact, there exist convergent subsequences, and without loss of
generality, we may assume that xk

i → xi ∈ S. But also the unit simplex

Δ =

{
λ ∈ R

n+1 : λi ≥ 0,
n

∑
i=0
λi = 1

}

is compact, and thus, by taking convergent subsequences, we also may assume that
λ k

i → λi ≥ 0 and in the limit ∑n
i=0λi = 1. Hence

yk =
n

∑
i=0

λ k
i xk

i →
n

∑
i=0

λixi ∈ co(S)

and thus y ∈ co(S). ��
We close this section with the following useful characterization of extreme points

as lexicographically minimal elements of the set relative to some ordered basis B
of Rn (see Fig. 3.2).

Definition 3.1.8 (Lexicographic ordering on R
n). Given an ordered basis B

consisting of n linearly independent vectors (v1, . . . ,vn), every vector x has a unique
coordinate representation x = (x1, . . . ,xn)

T , x = ∑n
i=1 xivi. Given two vectors x and

y of Rn, x = y, let ι be the smallest index for which their coordinates differ. We say
that x is lexicographically smaller than y, x≺ y, if xι < yι .

Proposition 3.1.5. Let E be a nonempty compact and convex set in R
n. Then a

point q ∈ E is an extreme point of E if and only if there exists a linear change of
coordinates such that x is the lexicographically smallest element of E with respect
to the new basis. Without loss of generality, the basis can always be chosen to be
orthonormal.

Proof. Clearly this condition is sufficient: suppose x ≺ y for all y ∈ E , y = x, and
suppose x is a nontrivial convex combination of points from E , say

x = λ p+(1− μ)q, p,q ∈ E and λ ∈ (0,1).
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x
2

x1p

E

Fig. 3.2 p is the
lexicographic minimum of
the set E with respect to the
basis whose coordinates are
x1 and x2

Since x is the lexicographic minimum over E , the first coordinates satisfy x1 ≤ p1

and x1 ≤ q1. But x1 = λ p1 +(1− μ)q1, and thus neither p1 nor q1 can be strictly
larger. Hence x1 = p1 = q1. But then, by the definition of the lexicographic order, the
same argument applies to the second coordinate and inductively to each coordinate
of x. Hence x = p = q, and x is an extreme point of E .

Conversely, suppose x is an extreme point of E . Then x is a boundary point of E
and there exists a supporting hyperplane H1 = {y∈R

n : cT
1 y= a1} to E at x. Without

loss of generality, suppose that ‖c1‖2 = 1 and that E lies in the half-space H+
1 =

{y ∈ R
n : cT

1 y ≥ a1}. Make a linear change of coordinates so that c1 becomes the
first basis vector in the new basis B1. Then, for any point y ∈ E , the corresponding
coordinate is at least a1, and it has this value for x. Thus, in the basis B1, x minimizes
the first coordinate. If x is the unique minimizer, nothing more needs to be done and
the basis B1 has the desired property. In general, the set of all minimizers of the first
coordinate is given by E∩H1 and thus again is a nonempty compact and convex set.
Since x is an extreme point of E , it trivially follows that x also is an extreme point
of E∩H1. Let H2 = {y ∈R

n : cT
2 y = a2} be a supporting hyperplane to E∩H1 at x.

Without loss of generality, we may assume that c2 is normalized, orthogonal to c1,
and that E∩H1 lies in the half-space H+

2 = {y∈R
n : cT

2 y≥ a2}. Then, make another
linear change of coordinates to construct a new basis B2 that retains the first basis
vector c1 and introduces c2 as the second basis vector. As above, by construction
the point x then minimizes the second coordinate over all points y ∈ E that have the
same first coordinate as x, i.e., y ∈ E ∩H1. If necessary, iterate n times to arrive at a
basis Bn that has the required property. ��

3.2 Weak Convergence in L1(I)

One of the main results about reachable sets of linear systems is that the time-t-
reachable sets are compact and convex if the control set U is compact and convex.
The proof of this result requires the important concept of weak convergence in the
Banach space L1 of Lebesgue measurable functions, and we briefly discuss this topic
and some of the necessary background material.
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Given a normed space X with norm ‖·‖, the norm induces a topology through the
open balls Bε(x0) = {x ∈ X : ‖x− x0‖ < ε}, and a sequence {xn}n∈N ⊂ X is said
to converge to x, xn → x, if ‖xn− x‖ converges to 0 in R. This topology is called
the strong topology, and the corresponding concept of convergence is called strong
convergence in X . A sequence {xn}n∈N ⊂ X is said to be a Cauchy sequence if for
every ε > 0 there exists an integer N = N(ε) such that for all m,n≥ N(ε) we have
that ‖xn− xm‖ < ε . A normed space with the property that every Cauchy sequence
converges to a limit x ∈ X is called complete, and a complete normed space is a
Banach space. While strong convergence corresponds to the standard concept of
convergence in R

n, in infinite-dimensional spaces it often is much too stringent, i.e.,
it is too difficult to select convergent subsequences, a key argument in compactness
considerations. This led to the definition of a weaker concept of convergence (one
that makes it easier to find convergent subsequences) known as weak convergence.

Given a normed space X , a linear mapping � : X →R is called a linear functional,
and the vector space of all continuous linear functionals is called the dual space of X
and is denoted by X ′. It is not difficult to see that a linear functional � is continuous
if and only if it is bounded in the sense that there exists a constant C < ∞ such that

|�(x)| ≤C‖x‖ for all x ∈ X . (3.3)

[Clearly, this condition is sufficient: if xn → x, then |�(x)− �(xn)| = |�(x− xn)| ≤
C‖x− xn‖→ 0. On the other hand, if � is not bounded, then there exists a sequence
{xn}n∈N ⊂ S = {x ∈ X : ‖x‖ = 1} such that |�(xn)| ≥ n. Defining yn =

xn
n , we have

yn→ 0, but |�(yn)| ≥ 1 for all n∈N, and so �(yn)� 0.] In a finite-dimensional space,
this condition is always satisfied: If B = {v1, . . . ,vn} is a basis and x = ∑n

i=0αivi,
then, with C = maxi=1,...,n |�(vi)|,

|�(x)|=
∣∣∣∣∣�

(
n

∑
i=0
αivi

)∣∣∣∣∣≤
n

∑
i=0
|αi| |�(vi)| ≤C‖x‖1 ,

where ‖x‖1 denotes the �1-norm of the coordinate vector. Since all norms in a finite-
dimensional space are equivalent (see Appendix A), this gives Eq. (3.3). Thus, the
constant C is simply related to the maximum of a finite set of numbers arising for the
basis vectors. Obviously, in infinite-dimensional spaces, this supremum no longer
needs to be finite, and thus linear functionals are not automatically continuous. Often
functionals involving derivatives will not be continuous. For a simple example, let
X be the Banach space C([0,1]) of all continuous functions f : [0,1]→ R with the
supremum norm and denote the subspace of polynomials by P. On P define a linear
functional by the derivative evaluated at t = 1, i.e., � : P→ R, p �→ p′(1). Then for
pn(t) = tn we have ‖pn‖= 1 for all n, but �(pn) = n, so this linear functional is not
continuous.
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Definition 3.2.1 (Weak convergence). Given a normed vector space X , a sequence
{xn}n∈N ⊂ X is said to converge weakly to x∈ X , xn ⇀ x, if for all continuous linear
functionals �, � ∈ X ′, we have that limn→∞ �(xn) = �(x).

Clearly, if {xn}n∈N ⊂ X converges strongly to x, then

|�(xn)− �(x)| ≤C‖xn− x‖→ 0,

and so {xn}n∈N ⊂ X also converges weakly to x. In R
n, these two concepts of

convergence are equivalent, but no longer in infinite-dimensional spaces, and it then
becomes easier to extract convergent subsequences under weak convergence.

Given a compact interval I, L1(I) denotes the normed space of all equivalence
classes of Lebesgue measurable functions f : I → R for which the norm

‖ f‖1 =

∫

I

| f |dt

is finite; here dt denotes integration against Lebesgue measure. Thus a sequence
{ fn}n∈N⊂ L1(I) converges strongly to f ∈L1(I) if and only if limn→∞ ‖ fn− f‖1 = 0.
It is well-known that the normed space L1(I) is complete, i.e., is a Banach space
(see Appendix D). The space L∞(I) consists of all equivalence classes of Lebesgue
measurable functions f : I → R that are (essentially) bounded, i.e., there exists a
constant C < ∞ such that | f | ≤C almost everywhere on I. When endowed with the
norm

‖ f‖∞ = inf{C > 0 : | f | ≤C a.e. on I},

L∞(I) also is a Banach space (see Appendix D). Note that if h∈ L∞(I), then the map
� : L1(I)→ R defined by

�( f ) =
∫

I

h f dt (3.4)

is a continuous linear functional on L1(I),

|�( f )| ≤
∫

I

|h f |dt ≤ ‖h‖∞
∫

I

| f |dt = ‖h‖∞ · ‖ f‖1 .

Thus, every element h ∈ L∞(I) gives rise to an element of the dual space of L1(I)
by means of Eq. (3.4). In fact, these are all the continuous functionals on L1(I), i.e.,
every continuous linear functional � on L1(I) is of the form given in Eq. (3.4) [59,
Thm. 13.18]. Thus the dual space to L1(I) can be identified with L∞(I),

(
L1(I)

)′ � L∞(I).

Hence, for the space L1(I), the definition of weak convergence is equivalent to the
following statement.
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Definition 3.2.2 (Weak convergence in L1(I)). A sequence { fn}n∈N ⊂ L1(I) con-
verges weakly to f in L1(I), fn ⇀ f , if and only if for all h ∈ L∞(I),

lim
n→∞

∫

I

h fn dt =
∫

I

h f dt.

In our applications, the function f will be vector-valued, f = ( f1, . . . , fn)
T . The

above definitions are then understood componentwise; for example,

∫

I

f dt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫

I

f1 dt

...∫

I

fn dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

and we write L1(I;Rn) for the Banach space of integrable vector-valued functions
f . The dual space is then given by L∞(I;Rn), and the product becomes the inner
product of vectors.

Definition 3.2.3 (Weakly sequentially compact). A subset Q of L1(I;Rn) is said
to be weakly sequentially compact if for any sequence { fn}n∈N ⊂Q, there exists a
subsequence { fnk}k∈N that converges weakly to some limit f ∈Q.

Theorem 3.2.1. Let U ⊂ R
m be compact and convex, I a compact interval, and let

U denote the class of all Lebesgue measurable functions u : I →U defined on the
interval I with values in the set U almost everywhere. Then U is weakly sequentially
compact in L1(I;Rm).

This result is important in its own right and will also be used at various times
later on in the context of nonlinear systems. For this reason, we include its proof.
However, several advanced but nevertheless standard results from real analysis will
need to be used that lie beyond the scope of our text, and for these we need to refer
the reader to the abundant textbook literature on this topic (e.g., [59, 174, 257]).

Proof. Let {uk}k∈N be a sequence from U . By changing the controls on a set of
Lebesgue measure 0, if necessary, we may assume that the controls take values in U
for all t ∈ [0,T ]. The proof proceeds in two steps: First we show that there exists a
Lebesgue measurable control ū : I→R

m such that for all h∈ L∞(I;Rm) we have that

lim
n→∞

∫

I

〈h,un〉dt =
∫

I
〈h, ū〉dt.

Convexity of the control set is not required to prove this part, but is needed in the
second step, in which it is shown that the values of ū in fact lie in the control set U .
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Step 1: It suffices to verify the limit property componentwise and thus for this step,
we may assume that m = 1. Since the control set U is compact, all controls are
uniformly bounded, say |uk(t)| ≤ C < ∞ for all t ∈ [0,T ]. In particular, each
control also is an element of the Hilbert space L2(I) of all square-integrable
Lebesgue measurable functions f with the norm

‖ f‖2 =

√∫

I

| f |2 dt,

which is induced by the inner product

〈 f ,g〉=
∫

I

f g dt.

There exists a countable complete orthonormal set {Φi} for L2(I) [257, Thm.
8.24], and every control uk can be represented in L2(I) as a convergent Fourier
series [257, Thm. 8.27],

uk =
∞

∑
i=1

ck,iΦi with
∞

∑
i=1

∣∣ck,i
∣∣2 =

∫

I

|uk|2 dt ≤C2μ(I)

and μ(I) the length of the interval I. In particular,
∣∣ck,i

∣∣≤C
√
μ(I) for all i and k,

and thus all the sequences {ck,i}k∈N are bounded. Hence there exists a sequence
{kr}r∈N such that for each i the limits

γi = lim
r→∞ckr,i exist and satisfy

∞

∑
i=1
|γi|2 ≤C2μ(I).

[Since {ck,1}k∈N is bounded, there exists a subsequence {k(1)r }r∈N such that γ1 =

limr→∞ c
k
(1)
r ,1

. Then pick another convergent subsequence {k(2)r }r∈N of {k(1)r }r∈N
such that γ2 = limr→∞ c

k(2)r ,2
. It follows inductively that there exist subsequences

{k(i)r }r∈N of {k(i−1)
r }r∈N such that γi = limr→∞ c

k
(�)
r ,i

exists for all i ∈ N. But then

the diagonal sequence {k(r)r }r∈N has the desired property: given any index i, the

sequence {k(r)r }r≥i is a subsequence of {k(i)r }r∈N and thus also γi = limr→∞ c
k(r)r ,i

.

Furthermore, for any positive integer N, we have that

N

∑
i=1

|γi|2 = lim
r→∞

N

∑
i=1

∣∣∣c
k
(r)
r ,i

∣∣∣2 ≤ lim
r→∞

∞

∑
i=1

∣∣∣c
k
(r)
r ,i

∣∣∣2 ≤C2μ(I),

implying the second condition.] Hence, by the Riesz–Fischer theorem [257, Thm.
8.30], there exists a measurable function ū : I →R

m such that

ū =
∞

∑
i=1
γiΦi.
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This function ū is the desired limit. Let h ∈ L∞(I) and suppose |h(t)| ≤M on I.
The function h also lies in L2(I) and thus can be represented by its Fourier series
as h = ∑∞i=1ηiΦi. For any finite sum, p =∑N

i=1ηiΦi, we have that

lim
r→∞

∫

I

pukr dt = lim
r→∞

∫

I

(
N

∑
i=1
ηiΦi

)
ukr dt =

N

∑
i=1
ηi

⎛
⎝ lim

r→∞

∫

I

Φiukr dt

⎞
⎠

=
N

∑
i=1

ηi

(
lim
r→∞ckr ,i

)
=

N

∑
i=1

ηiγi =
N

∑
i=1

ηi

∫

I

Φiū dt =
∫

I

pū dt.

Hence
∣∣∣∣∣∣
∫

I

hukr dt−
∫

I

hū dt

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫

I

p(ukr − ū)dt

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

I

(h− p)(ukr − ū)dt

∣∣∣∣∣∣ ,

and the first term converges to 0 as r→∞. Given ε > 0, choose a positive integer
N such that

∫
I |h− p|2 dt < ε2. Using Hölder’s inequality (see Proposition D.3.1

in Appendix D), the second term can then be bounded in the form

∣∣∣∣∣∣
∫

I

(h− p)(ukr − ū)dt

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣
∫

I

(h− p)2 dt

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∫

I

(ukr − ū)2 dt

∣∣∣∣∣∣
≤ ε2 ‖ukr − ū‖2 ≤ 2C2μ(I)ε2

and thus also converges to 0. Overall, this proves the first step:

lim
r→∞

∫

I

hukr dt =
∫

I

hū dt.

Step 2: Since U is closed and convex, by Corollary 3.1.2 there exist (at most)
countably many hyperplanes Hi = {x ∈ R

n : cT
i x = ai}, i ∈ N, such that U =

∩∞i=1H+
i , H+

i = {x ∈ R
n : cT

i x ≥ ai}. Let Ei = {t ∈ I : cT
i ū(t) < ai} and denote

the characteristic function of the set Ei by χi. By step 1, we therefore have that

0≥
∫

Ei

(
cT

i ū(t)− ai
)

dt =
∫

I

χi
(
cT

i ū(t)− ai
)

dt = lim
r→∞

∫

I

χi
(
cT

i ukr(t)− ai
)

dt ≥ 0.

Hence Ei must be a null set, and thus cT
i ū(t) ≥ ai a.e. on I. Since this holds for

all i, the values of ū lie in U a.e., and thus ū ∈U . ��
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3.3 Topological Properties of Reachable Sets

We use Theorem 3.2.1 to establish basic topological properties of reachable sets for
linear systems.

Theorem 3.3.1. If the control set U is compact and convex, then the time-t-
reachable set ReachΣ ,t(0) is closed.

Proof. Let {pk}k∈N ⊂ ReachΣ ,t(0) be a sequence of points in the time-t-reachable
set, say

pk =

t∫

0

eA(t−s)Buk(s)ds

for some admissible control uk(·), and suppose pk → p. Since U is weakly
sequentially compact in L1(I), there exists a subsequence {ukr}r∈N such that ukr

converges weakly to some admissible control u ∈ U . The vector function s �→
eA(t−s)B is continuous, hence bounded, and thus lies in L∞(I;Rn). Therefore

p = lim
r→∞ pkr = lim

r→∞

t∫

0

eA(t−s)Bukr(s)ds =

t∫

0

eA(t−s)Bu(s)ds ∈ ReachΣ ,t(0)

and thus p also is reachable from the origin in time t. ��
Corollary 3.3.1. If the control set U is compact and convex, then the time-t-
reachable set ReachΣ ,t(0) is compact and convex.

Proof. It is clear from Eq. (3.2) that the reachable set is bounded. Hence, by
Theorem 3.3.1, it is compact. Furthermore, if u1 : [0, t]→ U and u2 : [0, t]→ U
are admissible controls that steer 0 into p1 and 0 into p2, respectively, then the
convex combination uλ = λu1 + (1− λ )u2 also is admissible and steers 0 into
λ p1 +(1−λ )p2,

λ p1 +(1−λ )p2 = λ
t∫

0

eA(t−s)Bu1(s)ds+(1−λ )
t∫

0

eA(t−s)Bu2(s)ds

=

t∫

0

eA(t−s)Buλ (s)ds.

This verifies the corollary. ��
It is a remarkable result that convexity of the control set is not needed for the

time-t-reachable sets to be convex. By Lyapunov’s theorem on the range of a vector-
valued measure, time-t-reachable sets are always convex. The reason essentially is
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that the class of Lebesgue measurable sets is so large that if u1 steers 0 into p1

and u2 steers 0 into p2 in time t, then these convex combinations can be realized
by “switching” between the admissible controls u1 and u2 in time over Lebesgue
measurable sets.

Theorem 3.3.2. For any control set U ⊂ R
m, the time-t-reachable set ReachΣ ,t(0)

is convex.

The proof of this theorem is a direct consequence of the following interesting
result, which gives an idea about the richness of the class of Lebesgue measurable
sets. It holds under more general assumptions on the integrand f , but this version
suffices for our purpose [70, 117].

Proposition 3.3.1. Let f ∈ L∞(I,Rn) be a bounded vector-valued Lebesgue mea-
surable function and let w be a scalar Lebesgue measurable function defined on I
with values in [0,1], w : I → [0,1]. Then there exists a Lebesgue measurable subset
E of I such that ∫

I

f w ds =
∫

E

f ds.

Proof. [70] Let Q denote the weakly sequentially compact set of all Lebesgue
measurable functions v : I → [0,1]. Define a linear operator T : Q→R

n by

T (v) =
∫

I

f v ds

and let q =
∫

I f w ds. Denote the inverse image of the point q under the operator T
by S , S = T−1({q}). This set S is convex: if T (v1) = q and T (v2) = q, then for
any λ ∈ [0,1], the function λv1 +(1−λ )v2 also lies in Q and

T (λv1 +(1−λ )v2) = λT (v1)+ (1−λ )T(v2) = q.

Furthermore, the operator T is continuous in the weak topology: if {vn}n∈N ⊂ Q
converges weakly to some v ∈Q, vn ⇀ v, then

lim
n→∞T (vn) = lim

n→∞

∫

I

f vn ds = lim
n→∞

∫

I

f v ds = T (v).

Hence S is a weakly sequentially closed subset of Q. Altogether, S thus is a
nonempty weakly compact and convex subset of L1(I).

It follows from an infinite-dimensional version of the Krein–Milman theorem
[117] that S has at least one extreme point, say ϖ ∈Qext. We claim that such an
extreme pointϖ must have values in the set of extreme points of [0,1], i.e., in {0,1},
almost everywhere. If we then take E as the set where ϖ takes the value 1, we get
that
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∫

I

f w ds = q =

∫

I

fϖ ds =
∫

E

f ds,

which concludes the proof.
While this claim may seem intuitively clear, this is the difficult part of the argu-

ment. We shall conclude the proof with an inductive argument on the dimension n.
Suppose P= {s∈ I : 0<ϖ(s)< 1} has positive measure. Then there exists an ε > 0
such that the set Aε = {s ∈ I : ε < ϖ(s) < 1− ε} has positive measure (otherwise
P =

⋃
n∈NA 1

n
is a null set). By choosing a Lebesgue measurable subset A ⊂ Aε , if

necessary, in addition we may assume that
∫

A

‖ f‖∞ ds < ε.

(Suppose I = [a,b] and let m = ‖ f‖∞ = maxi=1,...,n ‖ fi‖∞. If we partition [a,b] into a
finite number of intervals I j of length less than ε

m , then at least one of the sets Aε ∩ I j

has positive measure, and we may take any of these for A.) Write A as the disjoint
union of two Lebesgue measurable sets F1 and F2 of positive measure, A = F1∪F2,
F1∩F2 =∅.

We first consider the scalar case, n = 1. Let

α =

∫

F1

f ds and β =

∫

F2

f ds,

so that |α|< ε , |β |< ε and define a Lebesgue measurable function h as

h(s) =

⎧⎪⎪⎨
⎪⎪⎩
α if s ∈ F2,

−β if s ∈ F1,

0 if s /∈ A.

In the special case in which both α and β are zero, set the values of h to +1 and−1,
respectively. By construction,

∫

I

f (ϖ ± h)ds =
∫

I

fϖds±
⎛
⎝α

∫

F2

f ds−β
∫

F1

f ds

⎞
⎠= q± 0 = q,

and so both ϖ + h and ϖ − h lie in S . But they differ from ϖ on a set of positive
measure, and thus

ϖ =
1
2
(ϖ+ h)+

1
2
(ϖ− h)

is a nontrivial convex combination of elements in S . Thus ϖ is not an extreme
point. Contradiction. This proves the proposition in the scalar case.
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Now inductively assume that the proposition is correct for dimensions less than
n and suppose f ∈ L∞(I;Rn). By the inductive assumption, there exist Lebesgue
measurable subsets G1 of F1 and G2 of F2 such that for i = 1, . . . ,n−1, we have that

1
2

∫

F1

fi ds =
∫

G1

fi ds and
1
2

∫

F2

fi ds =
∫

G2

fi ds.

For j = 1,2 define Lebesgue measurable functions h j by

h j(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s ∈ G j,

−1 if s ∈ Fj\G j,

0 if s /∈ Fj.

Note that the functions h j vanish outside of Fj. Then, for each i = 1, . . . ,n− 1, we
have that

∫

F1

fih1 ds =
∫

G1

fi ds−
∫

F1\G1

fi ds = 2
∫

G1

fi ds−
∫

F1

fi ds = 0,

and analogously, ∫

F2

fih2 ds = 0.

Since h2 vanishes on F1 and h1 vanishes on F2, we have that
∫

F1

fih2 ds = 0 =

∫

F1

fih2 ds

for i = 1, . . . ,n− 1. Thus it follows for j = 1,2, and i = 1, . . . ,n− 1, that
∫

A

fih j ds = 0.

Since h j vanishes outside of A, also
∫

I

fih j ds = 0.

As in the scalar case, for the last component fn now define

α =
∫

F1

fnh1ds and β =
∫

F2

fnh2ds,

so that |α|< ε , |β |< ε , and define a Lebesgue measurable function h by

h = αh2−βh1.
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If both α and β are zero, take h = h1− h2. Then, as above,
∫

I

fnh ds = α
∫

F2

fnh2 ds−β
∫

F1

fnh1 ds = 0,

and thus ∫

I

f h ds = 0.

This provides the same contradiction as in the scalar case: the functions ϖ + h and
ϖ − h still lie in Q and

∫

I

f (ϖ ± h)ds =
∫

I

fϖ ds±
∫

I

f h ds = q,

i.e., both ϖ + h and ϖ − h still lie in S . These functions differ from ϖ on a set of
positive measure and ϖ = 1

2 (ϖ+ h)+ 1
2 (ϖ − h) is a nontrivial convex combination

of elements in S . Contradiction. This concludes the inductive argument. ��
Proof of Theorem 3.3.2: Let u1 : [0, t]→U and u2 : [0, t]→U be two admissible
controls that steer 0 into p1 and 0 into p2, respectively. Given λ ∈ (0,1), take the
function w in Proposition 3.3.1 constant equal to λ , w(s) ≡ λ . It follows that there
exists a Lebesgue measurable subset Eλ of the interval [0, t] such that

λ (p1− p2) =

∫

[0,t]

eA(t−s)B(u1(s)− u2(s))w(s) ds =
∫

Eλ

eA(t−s)B(u1(s)− u2(s)) ds.

The control uλ defined as

uλ (t) =

{
u1(t) if t ∈ Eλ ,

u2(t) if t /∈ Eλ ,

is admissible, i.e., is Lebesgue measurable, bounded, takes values in the control set
U almost everywhere, and we have that

λ p1 +(1−λ )p2 = λ (p1− p2)+ p2

=

∫

Eλ

eA(t−s)B(u1(s)− u2(s))ds+

T∫

0

eA(t−s)Bu2(s)ds

=

T∫

0

eA(t−s)Buλ (s)ds ∈ ReachΣ ,t(0).

Thus any convex combination lies in ReachΣ ,t (0). ��
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3.4 The General Bang-Bang Theorem

As above, let Σ be a linear time-invariant system with a control set U ⊂ R
m. We

assume that U is nonempty convex and compact and denote by U the class of
all Lebesgue measurable functions that take values in U . Thus U is a nonempty,
weakly sequentially compact, and convex subset of L1(I;Rm). It follows from the
infinite-dimensional version of the Krein–Milman theorem that U has extreme
points, U ext = /0, and that U = co(U ext). Similarly, by Theorem 3.1.2, the set Uext

of extreme points of U ⊂ R
m is nonempty and U is the convex hull of the set Uext.

Denote by Uext the class of all Lebesgue measurable functions u : [0,∞)→Uext that
take values in Uext almost everywhere and let Σ ext be the same linear time-invariant
system, but with control set Uext and admissible class of controls given by Uext,

Σ ext : ẋ = Ax+Bu, x(0) = p, u ∈Uext. (3.5)

It is easy to see that Uext⊂U ext: if v∈Uext and v= λu1+(1−λ )u2 with u1,u2 ∈U
and λ ∈ (0,1), then a.e. in [0, t], the point v(t) is an extreme point of U , and thus
u1(t) = u2(t) = v(t). Hence v = u1 = u2, and thus v is an extreme point of U , i.e.,
v ∈ U ext. The converse, however, is not so clear, and thus we consider the system
Σ ext with control set Uext. The following theorem states that any point q that is
reachable in time T at all can also be reached in the same time T by means of a
control that takes values in the set Uext of extreme points of the control set, i.e., with
a control in Uext. This is the celebrated bang-bang theorem for linear systems.

Theorem 3.4.1 (General bang-bang theorem). For every T > 0, the time-T-
reachable sets for the systems Σ and Σ ext are equal,

ReachΣ ,T (0) = ReachΣext,T (0). (3.6)

Since Uext ⊂U , it is clear that

ReachΣext ,T (0)⊂ ReachΣ ,T (0).

By Corollary 3.3.1, the reachable set ReachΣ ,T (0) is compact and convex, and thus
by the Krein–Milman theorem, it is the convex hull of its extreme points,

ReachΣ ,T (0) = co
{
(ReachΣ ,T (0))

ext} .
We shall show in Proposition 3.4.1 below that

(ReachΣ ,T (0))
ext ⊂ ReachΣext,T (0).

By Theorem 3.3.2, ReachΣext ,T (0) is convex, and thus it follows that

co
[
(ReachΣ ,T (0))

ext]⊂ ReachΣext,T (0).

Hence Eq. (3.6) holds. The bang-bang theorem therefore follows from the following
result:
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Proposition 3.4.1. Let p be an extreme point of the time-T-reachable set. Then
there exists a control v ∈Uext such that

p =

∫

[0,T ]

eA(T−s)Bv(s)ds, i.e., p ∈ ReachΣext,T (0).

If the columns of the matrix B are linearly independent, then this control v is unique
and is the only control that steers 0 into p.

Proof. Make a linear change of coordinates so that p becomes the first element
with respect to the induced lexicographic ordering ≺ in a new orthonormal basis
B = (h1, . . . ,hn). Let u ∈U be an admissible control that steers 0 into p,

p =
∫

[0,T ]

eA(T−s)Bu(s)ds.

If necessary, change u on a set of measure zero so that u(t) ∈U for all t ∈ [0,T ].
Denote by Et the compact and convex set Et = {eA(T−t)Bv : v ∈ U} and let
wt be the lexicographically first element of Et with respect to the basis B. By
Proposition 3.1.5, wt is an extreme point of Et . It is a highly nontrivial technical
issue to establish that the function w is actually Lebesgue measurable, and we only
indicate the reasoning. The following Lemma is still rather elementary:

Lemma 3.4.1. The graph of the function w : [0,T ]→ R
n is Borel measurable.

Proof. The Borel σ -algebra is the smallest σ -algebra that contains all open (and
closed) sets (see Appendix D). Let F = {(t,x) : t ∈ [0,T ],x∈Et}; F is the continuous
image of the compact set [0,T ]×U under the mapping

(t,u) �→
(

t,eA(T−t)Bu
)

and thus is compact, hence a Borel set. Let F1 be the set of all points (t,x) such that
x minimizes the first coordinate over the set Et , i.e.,

F1 = {(t,x) ∈ F : 〈h1,x〉 ≤ 〈h1,y〉 for all y ∈ Et}.
In general, the set F1 need no longer be compact, since the point where the minimum
is attained can jump. But F1 is Borel measurable: the set

G = {(t,x,y) ∈ [0,T ]×R
n×R

n : x ∈ Et , y ∈ Et}
is the continuous image of [0,1]×U×U under the mapping

(t,u,v) �−→
(

t,eA(T−t)Bu,eA(T−t)Bv

)
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and thus is compact. Then

G1,n =

{
(t,x,y) ∈G : 〈h1,y〉 ≤ 〈h1,x〉− 1

n

}

is a closed subset of a compact set and hence is compact as well. Let π denote the
projection π : (t,x,y) �→ (t,y). Since projections of compact sets are compact, the
set π(G1,n) is also compact and thus is a Borel set. But a point (t,x) ∈ F does not lie
in F1 if and only if there exists a point (t,y) ∈ F such that 〈h1,y〉< 〈h1,x〉 and thus

F1 = F ∩
(⋃

n∈N
π(G1,n)

)c

is a Borel set. It is not difficult to iterate this construction. For example,

F2 = {(t,x) ∈ F1 : 〈h2,x〉 ≤ 〈h2,y〉 for all y such that (t,y) ∈ F1},

and again the set

G2,n =

{
(t,x,y) ∈ G : 〈h1,y〉= 〈h1,x〉 , 〈h2,y〉 ≤ 〈h2,x〉− 1

n

}

is compact, and we also have that

F2 = F1∩
(⋃

n∈N
π(G2,n)

)c

.

Proceeding with a finite induction, the set Fn is Borel measurable. But Fn is the
graph of the function w, and thus this proves the lemma. ��

This reasoning is necessary, since in general, it is not true that the projection of
a Borel measurable set is Borel measurable. But the following rather deep result
holds.

Proposition 3.4.2. Let B be a Borel measurable subset of Rn and let f : Rn → R
k

be a continuous mapping. Then the image f (B) is Lebesgue measurable in R
k. �

Corollary 3.4.1. If the graph of a function w : [0,T ]→ R
n is Borel measurable in

R×R
n, then the function w itself is Lebesgue measurable in R

n. ��
This result establishes the measurability of the function w constructed as the

lexicographic minimum over the sets Et , a highly nontrivial technical issue. We
refer the reader to the textbook [59] for this proof (see Exercise 11:6.2 on p. 496).
The rest of the argument is rather straightforward.
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Rm/ker B 

ker B 
H = H + ker B 

−

U

U

v(t)

v(t)

−

Fig. 3.3 Lift of an extreme
point v̄(t) ∈ Ū to an extreme
point v(t) ∈U

Lemma 3.4.2. There exists a Lebesgue measurable control v(t) with values in Uext

such that wt = eA(T−t)Bv(t).

Proof. If the columns of B are linearly independent, we can simply solve the
equation wt = eA(T−t)Bv(t) for v(t) in terms of the pseudo-inverse as

v(t) = (BT B)−1BT eA(t−T )wt ,

and this solution is unique. By construction, the values of v are extreme points: if
v(t) = λv1(t)+ (1−λ )v2(t) for some λ ∈ (0,1), then

wt = eA(T−t)Bv(t)

= λeA(T−t)Bv1(t)+ (1−λ )eA(T−t)Bv2(t)

= λw1(t)+ (1−λ )w2(t),

and w1(t) and w2(t) lie in the set Et . Since wt is an extreme point of Et , we have
w1(t) = w2(t), and since the columns of B are linearly independent, this is possible
only if v1(t) = v2(t). Thus v takes values in the set Uext.

If the columns of B are not linearly independent, we need to factor out the kernel
of B, kerB. In the factor space, there exists a unique control v̄(t), and this control
takes values in the extreme points of the set Ū =U/kerB. But extreme points of Ū
can be lifted to extreme points of U : if ū is an extreme point of Ū , pick a supporting
hyperplane H̄ to Ū at ū. Then H̄ lifts to the supporting hyperplane H = H̄ +kerB to
U (see Fig. 3.3), and thus H contains a least one extreme point v(t). This lift can be
done so that measurability is preserved. ��

It remains to show that the new control v ∈Uext steers the system into the same
point p. For the moment, set
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q =

∫

[0,T ]

eA(T−t)Bv(t)dt ∈ ReachΣext ,T (0).

We then need to show that p = q. By the choice of w as lexicographic minimum and
the construction of v, we have that

〈
h1,e

A(T−t)Bv(t)
〉
≤

〈
h1,e

A(T−t)Bu(t)
〉

(3.7)

for all t ∈ [0,T ]. Integrating over [0,T ] gives 〈h1,q〉 ≤ 〈h1, p〉. But by assumption, p
was the lexicographic minimum, and therefore we must have 〈h1,q〉= 〈h1, p〉. Thus
equality holds almost everywhere in Eq. (3.7), i.e.,

〈
h1,e

A(T−t)Bv(t)
〉
=

〈
h1,e

A(T−t)Bu(t)
〉

a.e.

Now simply iterate this argument. We then also have that

〈
h2,e

A(T−t)Bv(t)
〉
≤

〈
h2,e

A(T−t)Bu(t)
〉

(3.8)

for all t ∈ [0,T ] and thus 〈h2,q〉 ≤ 〈h2, p〉. As above, this implies 〈h2,q〉 = 〈h2, p〉,
and again equality holds almost everywhere in Eq. (3.8), i.e.,

〈
h2,e

A(T−t)Bv(t)
〉
=

〈
h2,e

A(T−t)Bu(t)
〉

a.e.

Inductively, it follows that

〈
hi,e

A(T−t)Bv(t)
〉
=

〈
hi,e

A(T−t)Bu(t)
〉

a.e.

for i = 1, . . . ,n. The set B = (h1, . . . ,hn) is an ordered basis, and thus p = q ∈
ReachΣext ,T (0). ��

Note that the general bang-bang theorem merely states that if a point q is
reachable in time T at all, then it can also be reached in the same time T by means of
a Lebesgue measurable control v ∈Uext that takes values in the set Uext of extreme
points of the control set U . This does not guarantee that the control v has any
additional regularity properties such as being piecewise continuous, a practically
desirable feature. For the case that U is a compact polyhedron, i.e., when U is the
convex hull of a finite set of points, then indeed piecewise constant controls suffice.
But this argument uses entirely different methods based on the characterization of
boundary trajectories given in Theorem 2.5.3. We establish this result next.
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3.5 Boundary Trajectories and Small-Time Local
Controllability

The time-t-reachable sets for linear systems with compact control set are compact
and convex. Hence boundary points can be characterized in terms of supporting
hyperplanes. This directly leads to the following analytical characterization of
boundary points.

Theorem 3.5.1. Let Σ be a linear time-invariant system with a nonempty compact
and convex control set U and let u be an admissible control that steers the origin
into a point p in time T . Then p is a boundary point of the time-T-reachable set,
p∈ ∂ ReachΣ ,T (0), if and only if there exists a nontrivial solution λ : [0,T ]→ (Rn)∗

to the adjoint equation λ̇ =−λA such that

λ (t)Bu(t) = min
v∈U

λ (t)Bv a.e. on [0,T ]. (3.9)

Proof. Since ReachΣ ,T (0) is compact and convex, a point p ∈ ReachΣ ,T (0) is a
boundary point if and only if there exists a supporting hyperplane to ReachΣ ,T (0)
at p. If u is an admissible control that steers 0 into p, then this is equivalent to the
existence of a nonzero row vector η ∈ (Rn)∗ such that

〈
η ,

T∫

0

eA(T−t)Bu(t)dt

〉
≤

〈
η ,

T∫

0

eA(T−t)Bv(t)dt

〉

for all admissible controls v ∈U . Equivalently,

T∫

0

ηeA(T−t)Bu(t)dt ≤
T∫

0

ηeA(T−t)Bv(t)dt, (3.10)

and this holds if and only if

ηeA(T−t)Bu(t)dt ≤ ηeA(T−t)Bv for all v ∈U. (3.11)

Clearly, Eq. (3.11) is sufficient for Eq. (3.10) to hold (simply integrate).
Conversely, if Eq. (3.10) holds, consider a time t ∈ [0,T ) and choose h > 0 small
enough that t + h < T . By taking as control

v(s) =

{
u(s) if s /∈ [t, t + h],

v if s ∈ [t, t + h],
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for some fixed value v ∈U , it follows that

1
h

t+h∫

t

ηeA(T−s)Bu(s) ds≤ 1
h

t+h∫

t

ηeA(T−s)Bv ds.

Taking the limit as h→ 0, we obtain that

ηeA(T−t)Bu(t)dt ≤ ηeA(T−t)Bv a.e.

For the right-hand side, this is simply the fundamental theorem of calculus; for
the left-hand side, however, this is not that immediate, since the control u is
only Lebesgue measurable. But it is valid as well by Lebesgue’s differentiation
theorem (see Appendix D, [257, Thm. 7.2]). Hence the theorem follows with
λ (t) = ηeA(T−t). ��
Definition 3.5.1 (Small-time locally controllable). A system Σ is said to be small-
time locally controllable from a point p if there exists an ε > 0 such that p is an
interior point of the time-t-reachable set from p for all times t ∈ (0,ε),

p ∈ int(ReachΣ ,t(p)) , t ∈ (0,ε).

A necessary condition for Σ : ẋ = Ax + Bu, u ∈ U , to be small-time locally
controllable is that it must be completely controllable. Otherwise the reachable
set lies in a lower-dimensional affine subspace and does not have interior points.
Clearly, in such a case, one can redefine the state space as the controllable subspace,
and thus, without loss of generality, we can always assume that the underlying
system is completely controllable.

The obstruction to small-time local controllability is that the dynamics forces the
system to move away from p, as illustrated in the simple one-dimensional example
ẋ = u with control set U given by U = [1,2] (see Fig. 3.4). However, if 0 lies in
the interior of the control set, this is not possible, and the proposition below gives a
simple sufficient condition for small-time local controllability. It is not too difficult
to give a complete characterization of small-time locally controllable time-invariant
linear systems, but for this we refer the reader to the literature [225].

Proposition 3.5.1. A completely controllable linear time-invariant system Σ : ẋ =
Ax+Bu, u ∈U, for which 0 is an interior point of the control set U, 0 ∈ int(U), is
small-time locally controllable from the origin.

Proof. By assumption, U contains a ball Bδ (0) = {u ∈R
m : ‖u‖2 ≤ δ}. Pick ε > 0

such that for all t ∈ [0,T ] we have that
∥∥∥eA(T−t)Bv

∥∥∥
2
< δ whenever ‖v‖2 < ε . Then

the controls u(t) = eA(T−t)Bv are admissible, and thus

W (T )v =

⎛
⎝

T∫

0

eA(T−t)BBT eAT (T−t)dt

⎞
⎠v =

T∫

0

eA(T−t)Bu(t)dt ∈ ReachΣ ,T (0),
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Fig. 3.4 For Σ : ẋ = u ∈ [1,2] we have that ReachΣ ,t(0) = [t,2t]

i.e., W (T )Bε(0)⊂ ReachΣ ,T (0). Since (A,B) is completely controllable, the matrix
W (T ) is positive definite (see Sect. 2.5), and thus W (T )Bε(0) contains a neighbor-
hood of 0. ��
Theorem 3.5.2. Let Σ : ẋ = Ax + Bu, u ∈ U, be small-time locally controllable
from the origin. Then, a point p in the time-T-reachable set from the origin can
be reached in time T time-optimally if and only if p ∈ ∂ ReachΣ ,T (0).

Proof. We first show that if p lies in the interior of the time-T -reachable set from the
origin, then it can in fact also be reached in shorter time. This is a direct consequence
of the lemma below, which, for reasons of further applications, we formulate a bit
more generally. Note that its proof does not use linearity of the system, but only the
fact that the reachable sets are convex. It thus holds equally for nonlinear systems
that have this property.

Lemma 3.5.1. Let γ : (a,b)→R
n be a curve such that for some t ∈ (a,b) the point

γ(t) lies in the interior of the time-t-reachable set, γ(t) ∈ int(ReachΣ ,t(0)). Then for
some ε > 0 we have γ(s) ∈ ReachΣ ,s(0) for all s ∈ [t− ε, t].
Proof of the Lemma. Since γ(t) is an interior point of the time-t-reachable set, there
exist n+1 affinely independent points q0, . . . ,qn of the time-t-reachable set such that
γ(t) becomes the barycenter of the simplex generated by the points qi, i.e.,

γ(t) =
1

n+ 1
(q0 + · · ·+ qn) .

Let ui : [0, t]→U be admissible controls that steer 0 into the points qi and denote the
corresponding trajectories by γi, i = 0,1, . . . ,n. Then, the points γi(s), i = 0,1, . . . ,n,



224 3 Linear Time-Invariant Systems

are still affinely independent for s∈ [t−ε, t] and ε > 0 small enough. By the implicit
function theorem, there exist continuous functions ξi, i = 0,1, . . . ,n, such that

γ(s) =
n

∑
i=0
ξi(s)γi(s),

n

∑
i=0
ξi(s) ≡ 1.

These functions satisfy ξi(t) = 1
n+1 for all i = 0,1, . . . ,n, and thus remain positive

for ε > 0 small enough. Thus this defines a convex combination, and we have that

γ(s) ∈ co{γ0(s), . . . ,γn(s)} .

But the curves γi(s) lie in the reachable set ReachΣ ,s(0), and this set is convex.
Hence γ(s) is reachable in time s, γ(s) ∈ ReachΣ ,s(0). ��

If p ∈ int (ReachΣ ,T (0)), then we simply take γ(t) ≡ p, and it follows that p is
reachable in time T − ε .

Conversely, now suppose that p ∈ ReachΣ ,t(0) for t < T . Since Σ is small-time
locally controllable from the origin, there exists a neighborhood W of 0 that is
contained in the reachable set for time T − t. (If Σ is small-time locally controllable
from the origin, then it follows that 0 is an interior point of the time-t-reachable set
from the origin for all times t > 0.) Suppose u : [0, t] → U is an admissible
control that steers 0 to p in time t. The same control u steers any other point x
to eAtx+ p. If we now apply this control over the interval [T − t,T ] to the points
in W ⊂ ReachΣ ,T−t(0), then it follows that the neighborhood eAtW + p of p lies in
ReachΣ ,T (0). Hence p is an interior point. ��
Corollary 3.5.1. Let Σ : ẋ = Ax+ Bu, u ∈ U, be small-time locally controllable
from the origin. Then an admissible control u ∈ U is time-optimal if and only if
there exists a nontrivial solution λ : [0,T ]→ (Rn)∗ to the adjoint equation λ̇ =−λA
such that

λ (t)Bu(t) = min
v∈U

λ (t)Bv a.e. on [0,T ].

Thus, for small-time locally controllable linear time-invariant systems, the
conditions of the maximum principle are both necessary and sufficient for time opti-
mality. This applies to the examples considered in Sect. 2.6 and proves the optimality
of the syntheses constructed there. Compactness and convexity of the reachable sets
is the key to this result.

3.6 The Bang-Bang Theorem for Compact Polyhedra

We now use the maximum principle, respectively, Theorem 3.5.1, to improve on the
conditions of the general bang-bang theorem for compact polyhedra U , i.e., control
sets that are the convex hull of a finite set, U = co{u0,u1, . . . ,ur}.
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Theorem 3.6.1 (Bang-bang theorem for compact polyhedra). Let U = co(F) be
a compact polyhedron and consider the linear time-invariant system Σ : ẋ=Ax+Bu,
u ∈U. Then, for every T > 0, there exists an integer N = N(T ) such that whenever
a point q is reachable from p in time τ ≤ T , q ∈ ReachΣ ,τ (p), then q can also be
reached from p in time τ by means of a piecewise constant control u that has values
in F and has at most N(T ) switchings.

Proof. We first carry out some normalizations that will simplify the notation.

(i) Note that the set BU = {Bu : u ∈U} also is a compact polyhedron in R
n, and

in fact, it is the convex hull of the set BF , BU = Bco(F) = co(BF). Thus, we
may as well assume that B = Id and F ⊂ R

n.
(ii) By shifting the initial condition if necessary, we may also assume that u0 = 0.

For if u steers p into q in time τ , then

q = eAτ p+

τ∫

0

eA(τ−t)u(t)dt

= eAτ

⎛
⎝p+

τ∫

0

e−Atu0dt

⎞
⎠+

τ∫

0

eA(τ−t) (u(t)− u0)dt

∈ ReachΣ∗,τ

⎛
⎝p+

τ∫

0

e−Atu0dt

⎞
⎠ ,

and hence q is reachable in time τ with the control u(·)−u0 from the point p∗=
p+

∫ τ
0 e−Atu0dt. Thus, with a new control set U∗ = U − u0, we can consider

the system

Σ∗ : ẋ = Ax+ u, u ∈U∗ = co{0,u1, . . . ,ur}, x(0) = p∗.

(iii) Since admissible controls are convex combinations of the points ui, the
controllable subspace C ∗(A, I) for the system Σ∗ is given by

C ∗(A, I) = lin span
{

Aiu j : i = 0,1, . . . ,n− 1, j = 1, . . . ,r
}
.

If the system is not completely controllable, then replace R
n by the affine

variety eAτ p∗+C ∗(A, I), and relative to this space, the reachable set will have
a nonempty interior. Therefore, without loss of generality, we may assume that
the system is completely controllable in the sense that C ∗(A, I) = R

n.
(iv) Finally, simplifying the notation, we drop the ∗’s and we also take the origin as

initial point. This only causes a shift of the reachable set.

We now proceed with the actual proof of the result. Suppose q ∈ ReachΣ ,τ (0).
The strategy is to reduce the proof to the consideration of boundary points and then
use their characterization in Theorem 3.5.1 to prove the bang-bang property with a
bound on the number of switchings.
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q ∈ ReachΣ,τ(0)x

Fig. 3.5 x(σ ) ∈ ReachΣ ,σ (0)

Step 1: Reduction to boundary points. Let x̄ denote the solution to the linear
equation ẋ = Ax (that is, for the control u = 0) with terminal condition x̄(τ) = q
and let

σ = inf{t ≤ τ : x̄(s) ∈ ReachΣ ,s(0) for all s ∈ [t,τ]}.
Since x̄(τ) ∈ ReachΣ ,τ (0), this set of times is nonempty, and thus σ is well-
defined (see Fig. 3.5). We first want to show that σ actually is a minimum,
i.e., x̄(σ) ∈ ReachΣ ,σ (0). Pick a sequence of times {t j} j∈N that monotonically
decreases to σ . Since x̄(t j) ∈ ReachΣ ,t j (0), there exist controls u j such that

x̄(t j) =

t j∫

0

eA(t j−s)u j(s)ds.

Extend all the controls u j to the full interval [0,τ] by choosing the control value to
be 0 on the interval (t j,τ]. Since U is compact and convex, the class of admissible
controls is weakly sequentially compact in L1([0, t];Rm), and we can select a
weakly convergent subsequence. Without loss of generality, assume that u j ⇀ u.
Denote the characteristic function of the interval [0, t] by χ[0,t](s). Then we have
for all t ∈ [0,τ] that

t∫

0

eA(t−s)u j(s)ds =

τ∫

0

χ[0,t](s)eA(t−s)u j(s)ds

→
τ∫

0

χ[0,t](s)eA(t−s)u(s)ds =

t∫

0

eA(t−s)u(s)ds.
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Writing

σ∫

0

eA(σ−s)u(s)ds− x̄(t j) =

σ∫

0

eA(σ−s)u(s)ds−
t j∫

0

eA(t j−s)u j(s)ds

=

σ∫

0

eA(σ−s) (u(s)− u j(s))ds

+
(

Id−eA(t j−σ)
) σ∫

0

eA(σ−s)u j(s)ds

−eA(t j−σ)
t j∫

σ

eA(σ−s)u j(s)ds,

each of these terms converges to 0: the first one by the weak convergence of u j

to u, the second one since eA(t j−σ) → Id as t j → σ , and the last one since the
integrand remains bounded. Thus we have that

x̄(σ) = lim
j→∞

x̄(t j) =

σ∫

0

eA(σ−s)u(s)ds ∈ ReachΣ ,σ (0)

and x̄(σ) lies in the time-σ -reachable set. It then follows from Lemma 3.5.1
that this point actually lies in the boundary of the time-σ -reachable set, x̄(σ) ∈
∂ ReachΣ ,σ (0).

Step 2: Using the conditions of the maximum principle, we now prove that 0 can be
steered into the boundary point x̄(σ) in time σ by a control with a finite number
of switchings and that a bound on the number of switchings can be given. Using
Step 1, it then follows that any point in the time-τ-reachable set can be reached
with one more switching, and this proves the theorem.
Let u be an admissible control that steers the origin into x̄(σ) in time σ . By
Theorem 3.5.1 there exists a nonzero row vector η such that

ηeA(σ−t)u(t) = min
v∈U

ηeA(σ−t)v a.e. on [0,σ ].

For the controls ui ∈ F , i = 1, . . . ,r, define functions ψi as

ψi(t) = ηeA(σ−t)ui

and setψ0(t)≡ 0 (corresponding to u0 = 0). It follows from the normalization un-
dertaken in (iii) that not all of the functionsψi vanish identically. (Otherwise, η is
a nonzero vector orthogonal to the controllable subspace C ∗(A, I), contradicting



228 3 Linear Time-Invariant Systems

complete controllability.) The function λ (t) = ηeA(σ−t) is a solution to the
adjoint equation λ̇ (t) =−λ (t)A, and thus all the scalar functionsψi are solutions
to one and the same homogeneous nth-order linear differential equation with
constant coefficients of the form

ϕ(n) = bn−1ϕ(n−1) + bn−2ϕ(n−2) + · · ·+ b0ϕ , (3.12)

with the coefficients depending only on the characteristic polynomial of A (cf.,
Proposition 2.5.1).

Lemma 3.6.1. There exists a positive constant C < ∞ (depending only on the
length T of the interval and the system Σ ) such that any nontrivial solution ϕ of
Eq. (3.12) has at most n− 1 zeros in an interval of length C.

Proof of the Lemma. Let z = (ϕ , ϕ̇ , . . . ,ϕ(n−1))T and write the nth-order equa-
tion (3.12) as a first-order system of the form ż = Bz, where B is the companion
matrix,

ż =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
b0 b1 b2 b3 · · · bn−2 bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z.

Since ϕ is a nontrivial solution, the vector z(t) is nonzero for all t. Multiplying
z by a positive constant does not effect the zeros, and thus we may normalize z
such that ‖z(0)‖2 = 1. The solution is given by z(t) = eBtz0, and if M denotes the
least upper bound matrix norm of B,

M = lub2(B) = max
‖z‖2=1

‖Bz‖2 ,

then we have that

‖z(t)‖2 ≤ lub2
(
eBt)‖z0‖2 ≤ eMt .

Hence the derivative is bounded over the interval [0,T ],

‖ż‖2 ≤MeMT for all t ∈ [0,T ].

Since ‖z(0)‖2 = 1, at least one component, say the ith, satisfies
∣∣∣ϕ(i)

∣∣∣ ≥ 1√
n .

Since all derivatives are bounded by MeMT , it follows that the ith component
cannot have a zero in the interval [0, 1

2
√

nMeMT ]. But then ϕ itself can have at most

n− 1 zeros in the interval [0, 1
2
√

nMeMT ]. (Otherwise, no matter what i is, the ith
derivative would need to have a zero as well.) This proves the Lemma. ��
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We now prove the result by induction on the cardinality of the set F . If r = 0, i.e.,
if there is only one point in the control set, the result is trivial, and we therefore
may assume it to be true for sets F consisting of r points and now consider the
case F = {0,u1, . . . ,ur}. Recall that u is an admissible control that steers 0 into
x̄(σ) ∈ ∂ ReachΣ ,σ (0) in time σ . By Theorem 3.5.1,

λeA(σ−t)u(t) = min{0,ψ1(t), . . . ,ψr(t)} .

Letψk be a function that does not vanish identically. It follows from Lemma 3.6.1
that there exists a time C such that ψk has at most n− 1 zeroes in any interval
of length C. Hence there exists a constant ν = ν(T ) such that ψk has at most
ν(T ) zeros in the interval [0,T ]. Enumerate these zeros as 0 = t0 < t1 < · · · <
tν < tν+1 = T . Then the function ψk has constant sign over the open intervals
(ti, ti+1), i = 0,1, . . . ,r. If ψk is negative on (ti, ti+1), then on this interval, we
have

min{0,ψ1(t), . . . ,ψr(t)}= min{ψ1(t), . . . ,ψr(t)} ,
and if ψk is positive, then we have

min{0,ψ1(t), . . . ,ψr(t)}= min{0,ψ1(t), . . . ,ψk−1(t),ψk+1(t), . . . ,ψr(t)} .

In either case, on the subinterval (ti, ti+1) we can drop one of the controls and
thus have reduced the problem to one with a subset of F as controls that has
cardinality r− 1. By the inductive assumption, the control u is bang-bang on
the interval (ti, ti+1) with a bound on the number of switchings. Suppose there
are at most μ switchings in each of the intervals. Then overall there are at most
(ν+ 1)μ switchings. This proves the theorem. ��
It follows from the proof that the number of switchings in the interval [0,T ] can

be bounded by a constant C times the length of the interval, CT . The example of
the harmonic oscillator (Sect. 2.6.4) shows that this bound CT cannot be improved
upon. This result, which is due to Brunovsky [60], gives a significant improvement
over the conclusions of the general bang-bang theorem and is the basis for the
construction of piecewise defined optimal feedback controls [60] as illustrated in
Sect. 2.6.

3.7 Notes

The results presented in this chapter form the core of historical developments in
control theory in the 1960s and can be found in many textbooks from that area,
such as, for example, [25, 117, 147]. We included them in this text because of their
historical significance and the importance of convexity properties in the general
theory to be developed next. We made the exposition as elementary as possible to be
accessible to a reader (with possibly an engineering or economics background) who
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is familiar with basic real analysis, but not the more advanced functional-analytic
results (such as the Banach–Alaoglu theorem) that often are used to give quick and
elegant, but abstract and not very intuitive proofs of these results. While there is a
need for technical constructions involving measurability, the arguments presented
here hold these to a minimum. The proofs of both the general bang-bang theorem
and the bang-bang theorem with a bound on the number of switchings presented
here are based on lecture notes from a course on the topic given by H. Sussmann at
Rutgers University in 1983.



Chapter 4
The High-Order Maximum Principle:
From Approximations of Reachable Sets
to High-Order Necessary Conditions
for Optimality

In this chapter, we prove the Pontryagin maximum principle. The proof we present
follows arguments by Hector Sussmann [244, 247, 248], but in a smooth setting.
It is somewhat technical, but provides a uniform treatment of first- and high-order
variations. As a result, we not only prove Theorem 2.2.1, but obtain a general high-
order version of the maximum principle (e.g., see [140]) from which we then derive
the high-order necessary conditions for optimality that were introduced in Sect. 2.8.

We consider a general nonlinear time-invariant control system Σ . Recall that a
control system consists of a differential equation that describes its dynamics and
a class of admissible controls that specifies the input functions that can be used
to influence this dynamics. We write the dynamics in the form ẋ = f (x,u), where
the state variable x takes values in the state-space M and the control variable u
takes values in a control set U . As before, we take U as a subset of R

m, but
otherwise arbitrary. In this chapter, we consider both the cases in which the state
space M is an open subset of R

n and those in which it is a finite-dimensional
manifold. While much of our interest and treatment of applications is for problems
on R

n, it is the language of differential geometry that clearly brings out the role of
the objects (multipliers as cotangent vectors) and the constructions (differentials
and pullbacks of maps), and for this reason we include this more general—and
also more natural—formulation. Because of the importance of the underlying
subject, we include a somewhat more comprehensive introduction to manifolds
in Appendix C. Admissible controls are now always locally bounded Lebesgue
measurable functions u : I �→U defined on some interval I ⊂ R with values in U .
Overall, the setup remains unchanged under this modification: Given an admissible
control u, a time-varying ordinary differential equation ẋ = f (x,u(t)) is obtained
whose solution curve x is called the corresponding trajectory. (As before, we shall
impose conditions that guarantee the existence and uniqueness of solutions.) The
pair (x,u) is a controlled trajectory of the system. We say that a point q ∈ M is
reachable from an initial point p ∈M in time t if there exists a controlled trajectory
(x,u) defined over the interval [0, t] that starts at p, x(0) = p, and passes through q
at time t, x(t) = q. The set of all points that are reachable from p in time t is the

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
DOI 10.1007/978-1-4614-3834-2 4, © Springer Science+Business Media, LLC 2012

231



232 4 The High-Order Maximum Principle

time-t-reachable set, ReachΣ ,t(p), and the union of all these sets for t > 0 is the
reachable set from p, ReachΣ (p). In the literature, the term attainable set is also
used for these fundamental objects, whose study goes back to the early paper [203]
by E. Roxin (cf. also [204, 205]).

Our aim is to study the collection of all controlled trajectories as a whole and
to characterize special trajectories that minimize some objective over a subset of
trajectories. The latter is the typical situation in optimal control problems: Given
an initial point p ∈ M and a subset N ⊂ M of terminal conditions, among all
controlled trajectories that start at p and end in N, find those that minimize some
cost functional J. We shall always assume that the objective is of the form

J(u) =
∫ T

0
L(x,u)dt +ϕ(x(T ))

with the Lagranganian L describing the running cost of the controlled trajectory
(x,u) and ϕ defining a penalty term at the endpoint. The necessary conditions for
optimality of a controlled reference trajectory Γ = (x̄, ū) given in the Pontryagin
maximum principle (Theorem 2.2.1) are a direct corollary of a natural separation
property. For example, suppose J is given in Mayer form as a pure penalty term
J(u) = ϕ(x(T )) with ϕ a differentiable function defined on N. If Γ is optimal, then
no point in the set A = {q ∈ N : ϕ(q) < J(ū)} can be reachable from p. That is,
the reachable set ReachΣ (p) and A must be disjoint, ReachΣ (p)∩A = /0. At the
same time, the optimal controlled trajectory steers p into a point q in the closure of
both of these sets. The empty intersection property therefore implies that the cone
of decrease for the objective at q, which consists of all tangent vectors v to N at q
for which ∇ϕ(q)v < 0, can be separated from a suitably constructed approximating
cone to the set of all points that are reachable in N from p at q. We shall see that
the maximum principle is a direct consequence of the study of (suitably defined)
approximating cones for the reachable sets. Necessary conditions for optimality
will be recast as geometric conditions on reachable sets, and the geometric content
of the maximum principle is that of a separation theorem.

Our main aim therefore is to develop criteria that allow us to determine whether a
reachable point q is an interior point or a boundary point of the reachable set. These
techniques also are of interest for the question about small-time local controllability,
i.e., whether p ∈ int(ReachΣ ,≤T (p)) for small time T . For linear time-invariant
systems, given a compact and convex control set, the time-t-reachable set is compact
and convex, and we thus have a characterization of boundary points in terms of
supporting hyperplanes (Theorem 3.5.1). For a general nonlinear system, however,
reachable sets no longer need to be convex or closed, and thus characterizations of
boundary points are more difficult to give. By approximating the reachable set with
a suitable convex cone at q, it is still possible to give necessary conditions for q to
be a boundary point. These approximations will be developed as part of a general
framework to construct and compute approximating directions to the reachable set
at a point q. The essential ingredient of this framework is the definition of so-
called point variations. This class of variations is modeled after the classical needle
variations made by Pontryagin, Boltyansky, Gamkrelidze, and Mishchenko [193],
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but it also allows for the inclusion of so-called high-order variations. The needle
variations themselves are a generalization of the variations Weierstrass made in the
proof of his necessary condition for optimality in the calculus of variations. Given
a reference trajectory Γ = (x̄, ū) that steers p into q in time T , at every point x̄(t̄)
on the reference trajectory, these variations generate a cone Ct̄ of directions that
then is moved to the terminal point q to generate a convex approximating cone K
to the reachable set at q. The aim of this construction is to be able to distinguish
between interior and boundary points of the reachable set. For this reason, we want
that if every vector is an approximating direction to the reachable set at q, i.e., if
K = R

n, then q should be an interior point of the reachable set. By negation, if q
lies in the boundary of the reachable set, q ∈ ∂ ReachΣ (p), then K cannot be the
full space Rn and thus there exist nontrivial supporting hyperplanes to K . However,
care needs to be exercised in the definition of an approximating cone for this to be
true. We present in Sect. 4.1 an adequate definition that goes back to Boltyansky’s
original proof of the maximum principle. The necessary conditions for optimality
of the maximum principle then directly follow from classical separation theorems
about convex sets. In its purest form, the maximum principle indeed gives necessary
conditions for trajectories to lie in the boundary of the reachable set from a point.

After establishing the concept of approximating cone to be used and the
necessary separation results in Sect. 4.1, in Sect. 4.2 we first give the classical
construction by Pontryagin et al. [193] to prove the maximum principle for systems
on open sets in R

n with bounded Lebesgue measurable functions as the class
of admissible controls. We use this section to introduce the main ideas of the
construction with fewer technical details. These ideas, however, are more general,
and by placing the construction on a manifold, the geometric content of the
construction becomes clear. We also give some typical examples of control systems
on manifolds in Sect. 4.3. A brief introduction to differentiable manifolds and the
main concepts from differential geometry that will be used (tangent and cotangent
vectors, integral curves, differentials, and pullbacks of mappings) is included in
Appendix C, but we need to refer the reader to the literature for a deeper treatment
of this subject. Besides the setting on manifolds, in Sect. 4.4 also a more general
class of point variations will be considered that allows us to include high-order
variations into the construction and thus this generates a larger approximating cone
to the reachable set. This leads to a geometric form of the high-order maximum
principle, Theorem 4.4.1 [140]. In Sect. 4.6 we present some results from Lie
algebra on exponential representations of flows of vector fields that provide an
efficient computational technique to compute variational vectors generated by high-
order variations. We then use these constructions to derive the Legendre–Clebsch
condition as well as the Kelley and Goh conditions formulated in Chap. 2.

The constructions and computations presented in this chapter admittedly are
technical. But they form the foundation for the techniques of optimal control
theory, which, as the argument is made by Sussmann and Willems in their review
article [245], “although deeply rooted in the classical calculus of variations in
its problems and results, provides superior techniques which contrary to a still
widespread misconception go well beyond just incorporating inequality constraints
into the classical framework.”
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4.1 Boltyansky Approximating Cones

In this section we give the results on convex cones that will be needed to translate
geometric approximations of the reachable set (to be carried out in Sects. 4.2
and 4.4) into the analytical conditions of the maximum principle. Since these
approximations will be local, it suffices to consider the case where the underlying
state space is Rn and all our cones have apex at the origin.

Definition 4.1.1 (Cone). A cone C in R
n is a set with the property that rC ⊂C for

all r > 0.

Lemma 4.1.1. A cone C is convex if and only if rC+ sC ⊂C for all r,s > 0.

Proof. If C is convex and x and y are arbitrary points from C, then for any positive
numbers r and s,

rx+ sy = (r+ s)

(
r

r+ s
x+

s
r+ s

x

)
∈ (r+ s)C ⊂C;

the converse is obvious. �
There exists a large number of definitions that in one way or another express

the notion of approximating a set with “tangent” vectors. They can differ widely in
their technical assumptions, and we refer the interested reader to the book by Aubin
and Frankowska [26] for a survey and comparison of some of these concepts. Our
goal is to approximate the reachable set at a point q with a convex cone C in such
a way that if the full space R

n is an approximating cone at q, then q is an interior
point to the reachable set. The most typical and straightforward way of defining an
approximating cone to a set S at q, the so-called Bouligand tangent cone, is to simply
take the cone of tangent vectors at q: a vector v is tangent to a set S at a point q if
there exist an ε > 0 and a differentiable curve γ : [0,ε]→ S, γ(0) = q, with tangent
vector γ̇(0) = v. However, this concept is far too general, and it does not serve our
purpose.

Example. Let A = {(x,y) ∈ R
2 : x ≤ 0 or y ≤ 0 or y ≥ x2}. Any line � passing

through the origin has a segment that has (0,0) in its relative interior, which entirely
lies in A. Thus the set of all tangent vectors to A at (0,0) is R2, but (0,0) is not an
interior point of A (see Fig. 4.1).

What fails in the example is that the approximation of the set by the tangent line
tvε becomes increasingly worse in t for vectors vε = (1,ε) as ε → 0, and it is not
possible to approximate the set uniformly over all tangent lines. This is what makes
the difference, and the following somewhat technical condition that goes back to
Boltyansky makes such a notion of uniform approximation precise. We denote by
Dn

r (x0) the closed ball (disk) with radius r around x0 in R
n, Dn

r (x0) = {x ∈ R
n :

||x− x0||2 ≤ r}, while we write Bn
r (x0) for the open ball. We also write R

n
+ = {x ∈

R
n : xi ≥ 0 for all i = 1, . . . ,n} for the positive octant and Qn

δ = {x ∈ R
n : 0 ≤ xi ≤

δ for i = 1, . . . ,n} for the cube of side length δ in R
n
+.
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Fig. 4.1 The Bouligand approximating cone to A at the origin (0,0) is the full space, but (0,0) is
not an interior point of A

Definition 4.1.2 (Boltyansky approximating cone). Let A be a subset of Rn and
let q be a point in the closure of A. A cone C ⊂ R

n is a Boltyansky approximating
cone for A at q if for any finite set of vectors v1, . . . ,vk from C, k ∈ N, and every
ε > 0 there exist vectors v′1, . . . ,v

′
k in R

n satisfying ‖vi− v′i‖ < ε for i = 1, . . . ,k,
and a continuous map Ξ defined on Qk

δ for some δ > 0 with values in A∪ {q},
Ξ : Qk

δ → A∪{q}, such that

Ξ(z1, . . . ,zk) = q+ z1v′1 + · · ·+ znv′k + o(||z||) as z→ 0. (4.1)

Here, and in the following, we use the standard Landau notation o(‖z‖) to denote

functions ρ that have the property that limz→0
ρ(z)
‖z‖ = 0; we will also use O(‖z‖) to

denote functions ρ which remain bounded after division by ‖z‖, i.e., limsupz→0
ρ(z)
‖z‖

is finite. Generally, these functions correspond to higher-order terms whose specific
form is irrelevant for the argument. From now on, approximating cones will always
be understood in the sense of this definition.

Postulating that the map Ξ in Definition 4.1.2 approximates only the nearby
vectors v′i, although clearly more general, is not intuitive. This is a purely technical
aspect that will be convenient later on. It allows us to combine approximating direc-
tions obtained from point variations made at the same time into an approximating
map. This simple trick avoids serious problems one encounters when trying to do
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Fig. 4.2 Tangent plane to an
embedded submanifold

this (see, for example, [36, 37]). Little geometric insight is lost if the reader prefers
to think of v′i as vi. In the case that the set A is an embedded submanifold of Rn, the
definition readily reduces to the approximation of A by the tangent space as stated
below (see Fig. 4.2).

Proposition 4.1.1. Let F : Rn → R
m, m < n, be a continuously differentiable

mapping and let A = {x ∈ R
n : F(x) = 0}. If the Jacobian matrix DF(q) is of

full rank m at a point q ∈ A, then the kernel of DF(q),

C = kerDF(q) = {v ∈ R
n : DF(q)v = 0} ,

is a Boltyansky approximating cone to A at q. This (n−m)-dimensional subspace is
also called the tangent space to A at q and is denoted by TqA.

This is a classical result, sometimes also referred to as the Lusternik theorem.
Here we only indicate the main idea of the proof; the full proof is included in
Appendix C, Proposition C.1.2. Given a fixed finite collection of vectors v1, . . . ,vk

from C, define a linear functional � as � : Rk → R, z �→ �(z) = ∑k
i=1 zivi. There is

no need to introduce the approximating vectors v′i, and we simply take v′i = vi.
Furthermore, since C is a subspace, if v ∈ C, then also −v ∈ C. Hence, the
approximating map naturally needs to be defined not only on a cube Qk

δ , but on a
full neighborhood Bk

δ (0) of zero, Ξ : Bk
δ (0)→ A, z �→ Ξ(z). Thus one needs to show

that there exist a neighborhood Bk
δ (0) and a continuous function r = r(z) defined on

Bk
δ (0) that is of order o(‖z‖) as z → 0 such that Ξ(z) = q+ �(z)+ r(z) ∈ A. This

function r can be computed by solving the equation F(z) = 0 near q using a quasi-
Newton algorithm [228], and the superlinear convergence of the procedure implies
that r is of the desired order. If F is twice continuously differentiable, the Newton
algorithm can be used, and then its quadratic convergence implies that the remainder
r = r(z) actually is of order O(‖z‖2) as z→ 0.

Equation (4.1) requires a uniform approximation over the positive octant Rn
+. As

a result, it is possible to take linear combinations with positive coefficients, and thus
the definition automatically extends to the convex hull as well.
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Lemma 4.1.2. If C is a Boltyansky approximating cone for a set A at q, then so is
its convex hull co(C). �

The proof of this lemma simply consists in combining the definitions of the
convex hull with the notion of a Boltyansky approximating cone and is left as
an exercise for the reader. From now on, without loss of generality, we always
assume that Boltyansky approximating cones are convex. The essential result is the
following, which states that a Boltyansky approximating cone provides the desired
topological properties.

Theorem 4.1.1. If all of Rn is a Boltyansky approximating cone for a set A at q,
then q is an interior point of A∪{q}.
Proof. Without loss of generality, we assume that q = 0. Let e1, . . . ,en be the
canonical basis for Rn and set e0 = −(e1 + · · ·+ en). The points e0,e1, . . . ,en, are
affinely independent, and we denote by S the convex hull of these points. The set
S contains the origin in its interior, and every point s ∈ S can then be written in a
unique way as a convex combination of the points e0, . . . ,en, s = z0e0 + · · ·+ znen,
with zi ≥ 0 for all i = 0,1, . . . ,n, and z0 + · · ·+ zn = 1. Let z = (z0, . . . ,zn) denote
this vector of affine coordinates.

By assumption, the full space R
n is an approximating cone for A at 0 and thus,

given any ε > 0, there exist vectors e′0, . . . ,e
′
n in R

n such that ||ei− e′i|| < ε for all
i = 0, . . . ,n, a positive number δ > 0, and a continuous map Ξ : Qn+1

δ → A∪{0}
such that

Ξ(z) = z0e′0 + · · ·+ zne′n + o(||z||) as z→ 0.

Choose an α > 0 such that the closed ball Dn
α(0) lies in S (see Fig. 4.3), and for r

sufficiently small, define a map Φr : S→R
n by

Φr(s) =
1
r
Ξ(rz).

For ε and r small enough, we then have for all s ∈ S that

||Φr(s)− s||=
∥∥∥∥∥

n

∑
i=0

zi(e
′
i− ei)+

o(r)
r

∥∥∥∥∥

≤
n

∑
i=0

zi
∥∥e′i− ei

∥∥+ o(r)
r
≤ ε+ o(r)

r
≤ α

2
.

Since we can choose α arbitrarily small, this inequality states that the map
Φr : S → R

n can be made to be arbitrarily close to the identity map id : S → S.
But the identity map trivially covers a neighborhood of the origin, and it thus is to
be expected that a continuous map close enough to the identity will have the same
property. This is indeed correct and essentially goes back to a result in algebraic
topology that the identity map on a sphere is not homotopic to a constant. An
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Fig. 4.3 Neighborhood
Dn
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equivalent, and quicker way to see this is to invoke the Brouwer fixed-point theorem,
which can be derived from this result. (For an elegant and simple exposition of these
results, we refer the reader to Milnor’s notes [184].)

Theorem 4.1.2 (Brouwer fixed point theorem). Let D ⊂ R
n be a nonempty

compact and convex set and let f : D→ D be a continuous map that maps D into
itself. Then f has a fixed point in D. �

If f is a scalar function, f : [a,b]→ [a,b], then this is nothing but the mean value
theorem. For in this case, nothing needs to be shown if either f (a) = a or f (b) = b.
Otherwise, the function g : [a,b]→ [a,b] defined by g(x) = f (x)− x is positive at
x = a and negative at x = b and hence needs to have a zero in (a,b). But this simple
geometric reasoning does not generalize to higher dimensions.

For q ∈ Dn
α
2
(0) fixed, define the continuous map

F : S×Dn
α
2
(0)→ Dn

α(0),

(s,q) �→ F(s,q) = q−Φr(s)+ s.

It follows from the above estimate that F has values in Dn
α(0), and thus for q

fixed, the mapping F(·,q) maps Dn
α(0) ⊂ S into itself. By the Brouwer fixed-point

theorem, F has a fixed point μ , μ = μ(q), in Dn
α(0) ⊂ S. But F(μ ,q) = μ is

equivalent to Φr(μ) = q, and thus every point q ∈ Dn
α
2
(0) is the image of some

point μ ∈ S under Φr. Hence the closed ball Dn
α
2
(0) lies in the image of Φr(S), and

A∪{0} contains the neighborhood rBn
α
2
(0) of zero. �

The next theorem will allow us to translate the geometric conditions about
reachable sets into necessary conditions for optimality in the optimal control
problem.
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Fig. 4.4 Strongly transversal
cones C1 and C2

Definition 4.1.3 (Transversal cones). [247] Two convex cones C1 and C2 in R
n

are said to be transversal if C1−C2 = {x− y : x ∈ C1, y ∈ C2} = R
n. They are

strongly transversal if C1 and C2 are transversal and if in addition, C1 ∩C2 = {0},
i.e., C1 and C2 intersect at least along a half-line.

We give a simple sufficient condition for convex cones to be strongly transversal
(see Fig. 4.4) that will suffice for the purpose of this text.

Definition 4.1.4 (Separation of convex cones). Let C1 and C2 be convex cones in
R

n. The cones C1 and C2 are separated if there exists a nontrivial linear functional
λ such that

〈λ ,x〉 ≥ 0 for all x ∈C1 and 〈λ ,y〉 ≤ 0 for all y ∈C2.

Proposition 4.1.2. Let C1 and C2 be two nonempty convex cones that are not
separated and suppose C2 is not a linear subspace. Then C1 and C2 are strongly
transversal.

Proof. We first show that C1 and C2 are transversal. It is easy to verify that C1−C2

is a convex cone. Hence, if C1−C2 = R
n, then C1−C2 necessarily needs to lie in a

half-space, and thus there exists a nontrivial linear functional λ such that 〈λ ,z〉 ≥ 0
for all z ∈ C1−C2. Since cones are invariant under positive scalings, this implies
that

〈λ ,x〉 ≥ r〈λ ,y〉 for all x ∈C1, y ∈C2 and r > 0.

Taking the limit r→ 0, we obtain 〈λ ,x〉 ≥ 0 for all x ∈C1. Similarly, we also have
that

r〈λ ,x〉 ≥ 〈λ ,y〉 for all x ∈C1, y ∈C2 and r > 0,

and thus it follows that 〈λ ,y〉 ≤ 0 for all y ∈ C2. Hence C1 and C2 are separated.
Contradiction.
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Fig. 4.5 Geometric
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Theorem 4.1.3

But then C1 and C2 intersect at least along a nontrivial half-line. For suppose
C1∩C2 ⊂ {0} and pick any nonzero vector z ∈C2. Since C1 and C2 are transversal,
there exist vectors x ∈C1 and y ∈C2 such that z = x− y. Thus z+ y = x ∈C1∩C2 =
{0}, and so z = −y. Hence −z also lies in C2. But this holds for any z ∈C2, and so
C2 is a linear subspace. Contradiction. Thus C1 and C2 are strongly transversal. �
Theorem 4.1.3. Let A1 and A2 be subsets of Rn and suppose q is a point in the
intersection of the closures of these sets. Let C1 and C2 be convex approximating
cones for A1 and A2 at q, respectively, that are strongly transversal. Then q is a
limit point of A1∩A2, i.e., every neighborhood V of q contains a point q̄ ∈ A1∩A2,
q̄ = q.

The geometric contents of this theorem is visualized in Fig. 4.5.

Proof. Without loss of generality, we again assume that q = 0 and let e1, . . . ,en be
the canonical basis for Rn. As in the proof of Theorem 4.1.1, set e0 = −(e1 + · · ·+
en). Since C1 and C2 are transversal, we can write every vector as a difference of
vectors from C1 and C2, say

ei = fi− gi, fi ∈C1, gi ∈C2.

Since there exists a nonzero vector z ∈C1∩C2, we also have for any m > 0 that

ei = ( fi +mz)− (gi+mz)

with fi +mz ∈ C1 and gi +mz ∈ C2. The convex hull of the vectors { fi +mz : i =
0, . . . ,n} simply translates the convex hull of the vectors { fi : 0 = 1, . . . ,n} in R

n by
mz. But this convex hull is a compact set, and by choosing m large enough, we can
guarantee that it does not contain q = 0. Equivalently, without loss of generality, we
may assume that the original vectors fi are such that 0 does not lie in the convex
hull of the vectors { f0, . . . , fn}.
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Once more, let S be the convex hull of e0,e1, . . . ,en, i.e., the corresponding n-
dimensional unit simplex in R

n. Recall that elements s∈ S can be written in a unique
way as a convex combination in the form s = z0e0 + · · ·+ znen with zi ≥ 0 for all
i = 0,1, . . . ,n, and z0 + · · ·+ zn = 1, and again let z = (z0, . . . ,zn) denote this vector
of affine coordinates. Since C1 and C2 are approximating cones for A1 and A2 at
0, given ε > 0, there exist vectors f ′0, . . . , f ′n and g′0, . . . ,g

′
n such that ‖ fi− f ′i ‖ < ε

2
and ‖gi− g′i‖ < ε

2 for all i = 0, . . . ,n, and continuous maps Ξ j : Qn+1
δ → A j ∪{0},

j = 0,1, such that

Ξ1(z) = z0 f ′0 + · · ·+ zn f ′n + o(‖z‖)
and

Ξ2(z) = z0g′0 + · · ·+ zng′n + o(‖z‖)
as z→ 0. Let Dn

α(0) be a ball contained in the interior of the unit simplex S, and for
small r > 0 now define a map Φr : S→ R

n by

Φr(s) =
1
r
Ξ1(rz)− 1

r
Ξ2(rz).

Then, again for sufficiently small ε and r, we have that

‖Φr(s)− s‖=
∥∥∥∥∥

n

∑
i=0

zi( f ′i − g′i)+
o(r)

r
−

n

∑
i=0

ziei

∥∥∥∥∥

≤
∥∥∥∥∥

n

∑
i=0

zi( f ′i − fi)−
n

∑
i=0

zi(g
′
i− gi)+

o(r)
r

∥∥∥∥∥

≤
n

∑
i=0

zi
∥∥ f ′i − fi

∥∥+ n

∑
i=0

zi
∥∥g′i− gi

∥∥+ o(r)
r

≤ ε+ o(r)
r
≤ α

2
.

Using the Brouwer fixed-point theorem, it now follows, exactly as in the proof of
Theorem 4.1.1, that the imageΦr(S) contains the closed ball Dn

α
2
(0). Especially, 0∈

Φr(S), and so there exists a point zr = (zr
0, . . . ,z

r
n) ∈ S such that Ξ1(rzr) = Ξ2(rzr).

But for r small enough, Ξ1(rzr) = 0. [For we have that

Ξ1 (rz)
r

= z0 f ′0 + · · ·+ zn f ′n +
o(r)

r

and the point z0 f ′0 + · · ·+ zn f ′n lies in the convex hull of the vectors { f ′0, . . . , f ′n}. By
choosing ε small enough, we can guarantee that this compact set still has positive
distance to the origin and thus by also choosing r small enough, Ξ1(rz)

r has positive
distance to the origin.] Hence q̄ = Ξ1(rzr) = Ξ2(rzr) ∈ A1∩A2, q̄ = 0, and thus for
every sufficiently small r there exists a nonzero point q̄ ∈ A1 ∩A2 that lies in the
neighborhood rBn

α
2
(0) of q = 0. �
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4.2 Proof of the Pontryagin Maximum Principle

We now prove the Pontryagin maximum principle (Theorem 2.2.1). Recall that we
view a control systems as a collection of time-dependent vector fields defined on
some state space M indexed by a class U of admissible control functions. In this
section, we still assume that the state space M is an open and connected subset of
R

n, but controls are Lebesgue measurable functions. More precisely, we consider a
control system Σ = (M,U, f ,U ) consisting of the following objects:

1. The state space M is an open and connected subset of Rn.
2. The control set U is an arbitrary subset of Rm.
3. The dynamics or dynamical law is given by a function f : M×U →R

n, (x,u) �→
f (x,u), that is continuous and continuously differentiable in x for every u ∈U
fixed with continuous partial derivatives ∂ f

∂x (x,u).
4. The class U of admissible controls is given by all locally bounded Lebesgue

measurable functions with values in the control set U . Thus, if η is an admissible
control defined over a compact interval I, then η takes values in a compact subset
of U almost everywhere on I.

Given an admissible control u : J → U defined on some open interval J, we
obtain a time-dependent differential equation ẋ = f (x,u(t)) whose right-hand side
now is only Lebesgue measurable in t. As in the case when the right-hand side
is continuous in t, it still follows under our assumptions that solutions to initial
value problems exist, are unique, and are continuously differentiable functions of
the initial conditions (t0,x0). But these solutions x : J → R

n, t �→ x(t), now are no
longer continuously differentiable, but only absolutely continuous curves that pass
through x0 at time t0 and satisfy the differential equation almost everywhere.

Definition 4.2.1 (Absolutely continuous). A continuous curve ξ : J → R
n, t �→

ξ (t), is said to be absolutely continuous, ξ ∈ AC(J;Rn), if there exists a Lebesgue
measurable integrable function v : J → R

n, t �→ v(t), v ∈ L1(J;Rn), such that for
some t0 ∈ J,

ξ (t) =
∫
[t0,t]

v(s)ds,

with ds denoting integration against Lebesgue measure.

In fact, for any function v ∈ L1(J;Rn), the components of such a curve ξ define
σ -additive set functions that are absolutely continuous against Lebesgue measure,1

whence this terminology. It can be shown (the Radon–Nikodym theorem [174])
that an absolutely continuous curve ξ is differentiable almost everywhere in I with
derivative given by v. The function v is called the Radon–Nikodym derivative and is
also denoted by ξ̇ .

1A σ -additive set function ν is said to be absolutely continuous with respect to some measure μ if
whenever E is a measurable set for which μ(E) = 0, then also ν(E) = 0.
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Under our assumptions on the control system, for any admissible control u
defined on an open interval J, the function (t,x) �→ F(t,x) = f (x,u(t)) is Lebesgue
measurable in t and continuously differentiable in x. Furthermore, restricted to a
compact subinterval I ⊂ J, the control u takes values in a compact subset of U
(without loss of generality, we may assume that this holds everywhere on I), and
restricted to a compact subset K of M, the continuous functions f (x,u) and ∂ f

∂x (x,u)

are bounded. Hence it follows that both F and ∂F
∂x are bounded for t ∈ I and x ∈ K.

Thus the so-called C1-Carathéodory conditions are satisfied (see Appendix D), and
as in the case that the right-hand side of the differential equation is continuous
in time, it follows that for any initial condition (t0,x0) ∈ J ×M, there exists a
unique solution x(·;t0,x0) of the initial value problem ẋ = f (x,u(t)), x(t0) = x0,
defined on a maximal interval of definition, (τ−(t0,x0),τ+(t0,x0)). This solution is
the corresponding trajectory, and as before, we refer to the pair (x,u) as a controlled
trajectory. Furthermore, x(·;t0,x0) is a continuously differentiable function of t0 and
x0, and the partial derivatives ∂x

∂ t0
and ∂x

∂x0
are solutions to the variational equation

along x(·; t0,x0),

ż =
∂ f
∂x

(x(t;t0,x0),u(t))z, (4.2)

with the appropriate initial condition. Recall that the variational equation can
formally be obtained by simply differentiating the differential equation ẋ(t; t0,x0) =
f (x(t; t0,x0),u(t)) with respect to t0 and x0. Similarly, the initial conditions for the
variational equation follow by differentiating the identity x(t0; t0,x0) ≡ x0. Since
(4.2) is a time-varying linear differential equation whose matrix is bounded, these
solutions exist on the full interval (τ−(t0,x0),τ+(t0,x0)) on which x(·; t0,x0) is
defined (see Appendices B and D).

We close these introductory comments with a brief outline of the actual proof.
We assume as given a controlled reference trajectory (x̄, ū) defined over an interval
[0,T ] that steers p̄ = x̄(0) into q̄ = x̄(T ). The proof is divided into four main steps:

Step 1: Generation of approximating directions by means of variations (Sect. 4.2.1).
At every time t̄ ∈ [0,T ], variations V are made that generate curves ζV : [0,ε]→
R

n, α �→ ζV (α), anchored at ζV (0) = x̄(t̄). Integrating the variational equation
along the controlled reference trajectory (x̄, ū) maps these curves ζV into curves
κV : [0,ε]→ R

n, α �→ κV (α), that lie in the reachable set from p̄, ReachΣ (p̄), and
are anchored at q̄. The derivatives of these curves at α = 0, κ̇V (0), define tangent
vectors to the reachable set ReachΣ (p̄) at q̄.

Step 2: Construction of an approximating cone (Sect. 4.2.2). The tangent vectors
computed in step 1 are combined into an approximating map Ξ to create a
Boltyansky approximating cone K to ReachΣ (p̄) at q̄.

Step 3: Necessary conditions for boundary points (Sect. 4.2.3). If q̄ is a boundary
point of the reachable set ReachΣ (p̄), then by Theorem 4.1.1, this approximating
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cone cannot be the full space R
n, and thus there exists a supporting hyperplane

to K . This translates into analytical necessary conditions for q̄ ∈ ∂ ReachΣ (p̄).

Step 4: Necessary conditions for optimal control (Sect. 4.2.4). By augmenting the
dynamics with an extra variable that keeps track of the running cost in the objective
function, optimality of the controlled trajectory (x̄, ū) is described in terms of an
empty intersection property between the reachable set ReachΣ (p̄) and the set A of all
terminal conditions that if reachable, would give a better value for the objective. The
approximating cone to the set A at q̄ is not a half-space, and thus by Theorem 4.1.3,
these two sets can be separated at q̄ by a hyperplane. The analytical conditions of
the Pontryagin maximum principle follow from this separation property.

4.2.1 Tangent Vectors to the Reachable Set

Let x̄(·) be a controlled trajectory defined on [0,T ] corresponding to an admissible
control ū(·) with initial point x̄(0) = p̄ and terminal point x̄(T ) = q̄. Henceforth
we call x̄(·) the reference trajectory and ū(·) the reference control. Our goal is to
construct a (reasonably large) approximating cone for the reachable set ReachΣ (p̄)
from p̄ at q̄. In a first step we simply construct curves κV ,

κV : [0,ε]→ ReachΣ (p̄), α �→ κV (α),

that lie in the reachable set. The mechanism for doing so is to make variations in the
reference control that change the reference trajectory infinitesimally as a function
of a one-dimensional parameter α .

Definition 4.2.2 (Tangent vector to the reachable set). We say that a nonzero
vector v ∈ R

n is a tangent vector to the reachable set from p̄ at q̄ if there exists a
curve κV : [0,ε]→ ReachΣ(p̄), α �→ κV (α), that is differentiable from the right at
α = 0 and satisfies

v =

(
d

dα |α=0

)
κV (α) = κ̇V (0).

The following two variations generate the only curves needed for the proof of the
Pontryagin maximum principle:

(1) Variation V1 (CUT): For any t̄ ∈ (0,T ], we modify the reference control ū(·)
by deleting the portion that lies over the interval (t̄ −α, t̄]. This defines a 1-
parameter family of admissible controls as

uV1
α (t) =

{
ū(t) if 0≤ t < t̄−α,
ū(t +α) if t̄−α ≤ t ≤ T −α,
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Fig. 4.6 Variation CUT

(see Fig. 4.6), and we denote the corresponding trajectories by xV1
α (·). For α

small enough, the trajectory will exist on the full interval [0,T −α], and we
denote the endpoint by κV1(α),

κV1(α) = xV1
α (T −α). (4.3)

Since x̄ is a solution to the differential equation ẋ = f (x, ū(t)), the curve

ζV1 : [0,ε]→ R
n, α �→ ζV1(α) = x̄(t̄−α) (4.4)

is differentiable at zero for almost every t̄ ∈ (0,T ] with derivative

ζ̇V1(0) =− f (x̄(t̄), ū(t̄)).

This curve ζV1 has the advantage that its tangent vector can be easily calculated,
but it is not a curve in the reachable set. Rather, this curve is anchored at the
point x̄(t̄) on the reference trajectory. The curve κV1(α) in the reachable set will
then be the image of ζV1(α) under the flow of the solutions to the differential
equation ẋ = f (x, ū(t)). We shall show how this allows us to compute κ̇V

1 (0)
after the second variation has been defined.

(2) Variation V2 (PASTE): For any t̄ ∈ [0,T ] and an arbitrary admissible control
value v ∈U , insert a short constant segment given by u(t)≡ v for t̄ ≤ t < t̄ +α .
The control corresponding to this variation is given by

uV2
α (t) =

⎧⎪⎪⎨
⎪⎪⎩

ū(t) if 0≤ t < t̄,

v if t̄ ≤ t < t̄ +α,
ū(t−α) if t̄ +α ≤ t ≤ T +α,



246 4 The High-Order Maximum Principle

u

Tt

v

u

T+at+at

Fig. 4.7 Variation PASTE

(see Fig. 4.7), and as above, we denote the corresponding trajectory by xV2
α .

Given t̄, it follows from local existence of solutions to the differential
equation and continuous dependence on initial conditions that there exists an
ε > 0 such that the trajectory xV2

α will exist on the full interval [t̄,T +α] for all
α ∈ [0,ε]. If we define

ζV2(α) = xV2
α (t̄ +α), (4.5)

then this curve is always differentiable from the right at 0 and

ζ̇V2(0) = f (x̄(t̄),v).

Once again, the curve κV2(α) in the reachable set is defined as the endpoint of
the trajectories,

κV2(α) = xV2
α (T +α), (4.6)

and it is the image of ζV2(α) under the flow of the solutions to the differential
equation ẋ = f (x, ū(t)).

We now show how to calculate the tangent vectors κ̇Vi
1 (0) for i = 1,2. For this

we need to embed the controlled reference trajectory into a parameterized field of
controlled trajectories.

Proposition 4.2.1. Given a controlled trajectory (x̄(·), ū(·)) defined on the interval
[0,T ], there exists a neighborhood P of p̄ such that for every p ∈ P the solution
x(·; p) to the differential equation

ẋ = f (x, ū(t)), x(0) = p,

exists on the full interval [0,T ] and is continuously differentiable with respect to
the initial condition p. The partial derivative of the general solution with respect
to the parameter p, Θ(t) = ∂x

∂ p(t; p), is the fundamental solution of the variational
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Fig. 4.8 Canonical embedding of the controlled reference trajectory (x̄, ū)

equation, that is,

Θ̇(t) =
∂ f
∂x

(x(t; p), ū(t))Θ(t), Θ(0) = Id . (4.7)

Proof. This simply is a consequence of the general results about solutions to an
ordinary differential equation alluded to above: By extending ū(·) to an admissible
control on some open interval that contains [0,T ], we may assume that the reference
trajectory x̄(·) is defined on some interval [−ε,T + ε], ε > 0. It follows from
our general setup that the time-dependent vector field (t,x) �→ f (x, ū(t)) on M
satisfies the C1-Carathéodory conditions (see Appendix D). Hence there exists a
neighborhood P of p̄ such that for every p∈P the differential equation ẋ= f (x, ū(t))
has a unique solution x(·; p) that satisfies x(0) = p, and by choosing P small enough,
this solution exists on the interval [0,T ]. Furthermore, the general solution x(t; p) is
continuous in (t, p), differentiable in p for fixed t with jointly continuous derivative
∂x
∂ p(t; p) that can be calculated as the solution at time t to the variational equation
(4.7). As solution to a linear time-varying ordinary differential equation whose
matrix is given by a bounded Lebesgue measurable function, this solution exists
on the full interval [0,T ]. �

Let Pt = {x(t; p) : p ∈ P}, 0≤ t ≤ T , be the image of the neighborhood P under
the flow of the solutions of this differential equation. In particular, P0 = P. We also
denote this flow by

Φt : P0 → Pt , p �→Φt(p) = x(t; p),

and more generally, let Φt,s be the mapping that moves points from time s to time t
along this flow,

Φt,s : Ps → Pt , Φt,s =Φt ◦ (Φs)
−1. (4.8)

We call this flow Φt,s the canonical embedding of the controlled reference
trajectory (x̄, ū) into a local field of controlled trajectories (see Fig. 4.8). For both
variations V1 and V2, the curve κV (α) is given by κV (α) = ΦT,t̄

(
ζV (α)

)
, and by
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Fig. 4.9 The curve κV (·) is
the image of the curve ζV (·)
under the flow Φt̄,T

the chain rule, the tangent vector κ̇V (0) is related to ζ̇V (0) as

κ̇V (0) =
(
ΦT,t̄

)
�
ζ̇V (0),

where
(
ΦT,t̄

)
�

denotes the derivative, also called the differential of the flow map (see
Appendix C). In our case here, this differential is simply computed as the solution
to the variational equation (4.7).

Proposition 4.2.2. For the variations CUT and PASTE, the tangent vector κ̇V (0)
is given by the value θ (T ) of the solution θ to the variational equation with initial
condition ζ̇V (0) at time t̄,

θ̇ (t) =
∂ f
∂x

(x̄(t), ū(t))θ (t), θ (t̄) = ζ̇V (0). (4.9)

We say the vector ζ̇V (0) is moved from time t̄ into the vector κ̇V (0) at time T
along the flow of the canonical embedding (see Fig. 4.9).

Proof. The flow Φt̄ is a diffeomorphism, and thus there exists a differentiable
curve πV : [0,ε] → P0, α �→ πV (α), that parameterizes the initial conditions
corresponding to the curve ζV (·), i.e.,

ζV (α) =Φt̄

(
πV (α)

)
= x(t̄;πV (α)).

Since πV (0) = p̄, we therefore have that

ζ̇V (0) =
∂x
∂ p

(t̄; p̄)π̇V (0).

By Proposition 4.2.1, the derivative of x(t̄; p̄) in the direction of the vector π̇V (0)
at p̄ can be calculated as the solution at time t̄ of the variational equation (4.9)
with initial condition θ (0) = π̇V (0). If we denote the solutions of the matrix-valued
initial value problem

Ψ̇(t) =
∂ f
∂x

(x̄(t), ū(t))Ψ (t), Ψ (r) = Id,
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byΨ(t;r), then we simply have that ζ̇V (0) =Ψ(t̄;0)π̇V (0). Analogously, the curve
κV (·) is the image of the curve πV (·) under the flow ΦT ,

κV (α)=ΦT,t̄

(
ζV (α)

)
=ΦT

(
(Φt̄ )

−1
(
ζV (α)

))
=ΦT

(
πV (α)

)
= x(T ;πV (α)),

and thus also

κ̇V (0) =
∂x
∂ p

(T ; p̄)π̇V (0) =Ψ(T,0)π̇V (0).

Hence

κ̇V (0) =Ψ(T,0)π̇V (0) =Ψ(T,0)Ψ(t̄,0)−1ζ̇V (0)

=Ψ(T,0)Ψ(0, t̄)ζ̇V (0) =Ψ(T, t̄)ζ̇V (0),

and thus κ̇V (0) is the value of the solution θ of the variational equation (4.9) at time
T that has the initial condition ζ̇V (0) at time t̄. �

4.2.2 Construction of an Approximating Cone

The variations CUT and PASTE, carried out for all t̄ ∈ [0,T ] and all possible values
v from the control set U , thus generate a collection of tangent vectors κ̇V (0) to the
reachable set ReachΣ(p̄) from p̄ at q̄. As we have seen in Sect. 4.1, this in itself is
not sufficient to obtain a Boltyansky approximating cone, but we need to be able to
combine different variations into an approximating map. We now show that this can
be done for all these vectors.

Theorem 4.2.1. Let K be the convex hull of all the vectors κ̇V (0) that are
generated by the variations CUT and PASTE along the reference trajectory, i.e.,
all vectors of the form

(
ΦT,t̄

)
�
ζ̇V (0), where ζ̇V (0) is given by f (x̄(t̄),v) for all

possible values v ∈U and all times t̄ ∈ [0,T ] and by − f (x̄(t̄), ū(t̄)) for almost every
t̄ ∈ [0,T ]. Then K is a Boltyansky approximating cone to ReachΣ (p̄) at q̄.

Proof. By Lemma 4.1.2, it suffices to show that the prescribed collection of vectors(
ΦT,t̄

)
�
ζ̇V (0) is a Boltyansky approximating cone.

In a first step, suppose that v1, . . . ,vr, is a finite collection of vectors from K that
are of the form

vi = (ΦT,ti )∗wi (4.10)

with wi = ζ̇Vi(0) for variations V1, . . . ,Vr, all of the type CUT or PASTE, but for
distinct times ti, say t1 < · · · < tr. For sufficiently small δ > 0, define the so-called
endpoint mapping Ξ : Qr

δ → ReachΣ (p̄) by
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t1
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2(α2)(⋅) ζν
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1(α1)(⋅) Ξ (α1,α2,α3)

t2 + α1 t3 + α1+ α2 T + α1+ α2 + α3

Fig. 4.10 An illustration of the definition of the endpoint mapping Ξ (α1, . . . ,αr). (The flow of the
canonical embedding is indicated by the horizontal dash-dotted lines)

Ξ(α1, . . . ,αr) =ΦT,tr ◦ ζVr (αr)◦Φtr ,tr−1 ◦ · · · ◦Φt2,t1 ◦ ζV1 (α1)◦Φt1,0(p̄), (4.11)

where analogously to Eqs. (4.4) and (4.5), the mappings ζVi (αi) describe the effects
of the variations Vi, i = 1, . . . ,r, made at time ti acting on the point at which the
variation is anchored.

As the name indicates, this mapping simply describes the endpoints of the
combined successive trajectories xα corresponding to the admissible controls uα
defined by the variations (see Fig. 4.10). The first variation V1 is made at time
t1 and generates the curve ζV1(α1) anchored at x̄(t1). After the first variation has
been made, the trajectory follows the flow Φt2,t1 of the canonical embedding of the
reference controlled trajectory until time t2, when the second variation is made. This
second variation, however, is no longer made from the reference trajectory, but from
a point on a nearby trajectory of the canonical embedding that is determined by the
effects of the first variation. This step is then repeated finitely many times. In this
construction, we need to carefully track the errors that are made as we move from
one variation to the next in order to show that the higher-order term indeed is of
order o(|α|) as α→ 0, α = (α1, . . . ,αr), |α|= α1 + · · ·+αr.

We show that Ξ is an approximating map for the vectors vi, i.e., that we can
take v′i = vi in Definition 4.1.2. It follows from our general regularity assumptions
that Ξ is continuous. The proof that Ξ is an approximating map in the sense of
the property (4.1) is by induction on r, the number of variations made. Let r = 1.
Since the first variation is always made from the reference trajectory, setting t̄ = t1,
the map Ξ simply reduces to the curve κV (α) constructed above: with the curve
ζV (α) anchored at Φt̄,0(p̄) = x̄(t̄), it follows that

Ξ(α) =ΦT,t̄ ◦ ζV (α)◦Φt̄,0(p̄) =ΦT,t̄

(
ζV (α)

)
= κV (α).

In particular, the values of Ξ thus lie in ReachΣ (p̄). By Taylor’s theorem, we
have that
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Ξ(α) = Ξ(0)+Ξ ′(0)α+ o(α) = x̄(T )+ κ̇V (0)α+ o(α)

= q̄+α
(
ΦT,t̄

)
∗ ζ̇

V (0)+ o(α) = q̄+α
(
ΦT,t̄

)
∗w+ o(α)

= q̄+αv+ o(α)

and thus Ξ is an approximating map.
We now proceed with the inductive step. In order to simplify the notation, we

formulate it only for r = 2. The general argument is exactly the same, only with more
cumbersome indices. Hence, we assume that two vectors v1 and v2 are generated by
two variations V1 and V2 of the type CUT or PASTE at times t1 < t2, i.e., for i= 1,2,

vi = κ̇Vi(0) = (ΦT,ti )∗ ζ̇
Vi(0) = (ΦT,ti)∗wi.

We need to show that for |α|= α1 +α2 small enough, the mapping

Ξ(α1,α2) =ΦT,t2 ◦ ζV2 (α2)◦Φt2,t1 ◦ ζV1 (α1)◦Φt1,0(p̄)

takes values in the reachable set and that it has a linear approximation of the form

Ξ(α1,α2) = q̄+α1v1 +α2v2 + o(α1 +α2).

We first verify that the image lies in the reachable set. This actually requires
that we choose |α| small. For only then is the control determined by the variation
admissible. This control is easily written down. For example, say variation V1 is of
the type CUT for time α1 and variation V2 inserts the constant control v ∈ U for
time α2. Then the corresponding control uα is given by

uα(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ū(t) if 0≤ t < t1−α1,

ū(t +α1) if t1−α1 ≤ t < t2−α1,

v if t2−α1 ≤ t < t2−α1 +α2,

ū(t +α1−α2) if t2−α1 +α2 ≤ t ≤ T −α1 +α2.

In general, however, restrictions on the parameters αi need to be imposed to the
effect that the two variations do not interfere with each other. For example, if
variation V1 is of the type PASTE and variation V2 is of the type CUT, we need
to have that t1+α1 < t2−α2. Since t1 < t2, this condition can always be satisfied by
taking |α| = α1 +α2 small enough. Also, for |α| small enough, the corresponding
solution xα to the dynamics will exist on the full interval, and thus Ξ(α1,α2) defines
a point in the reachable set. Hence Ξ takes values in ReachΣ (p̄).

We now calculate the derivative of Ξ . The first variation V1 produces the curve

ζV1 (α1)◦Φt1,0(p̄) = x̄(t1)+α1ζ̇V1(0)+ o(α1),
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which then is moved along the flow of the canonical embedding from time t1 to time
t2. The flow Φt2,t1 is a diffeomorphism, and using Taylor’s theorem, it follows that

Φt2,t1 ◦ ζV1 (α1)◦Φt1,0(p̄) =Φt2,t1

[
x̄(t1)+α1ζ̇V1(0)+ o(α1)

]

=Φt2,t1 (x̄(t1))+ (Φt2,t1)∗
[
α1ζ̇V1(0)+ o(α1)

]
+ o(α1)

= x̄(t2)+α1 (Φt2,t1)∗ ζ̇
V1(0)+ o(α1). (4.12)

Here we use thatΦt2,t1 (x̄(t1)) = x̄(t2), since the canonical embedding reduces to the
reference controlled trajectory for p = p̄. Now the second variation V2 is made,
but starting from the point x = x̄(t2) + α1 (Φt2,t1)∗ ζ̇

V1(0) + o(α1), not from the
point y = x̄(t̄2) on the reference trajectory as in our earlier calculations. We thus
need to compare the effects of a variation V made at the two different starting
points x and y. We therefore now include the anchor point in our notation and let
ζV (α;x) denote the curve in α generated by a variation (CUT or PASTE) starting at
x, ζV (0;x) = x. By continuous dependence of the solutions of a differential equation
on initial conditions, ζV (α; ·) is differentiable in x and

ζV (α;x)− ζV (α;y) =
∫ 1

0

d
ds

(
ζV (α;y+ s(x− y))

)
ds

=

(∫ 1

0

∂ζV

∂x
(α;y+ s(x− y))ds

)
(x− y)

= x− y+

(∫ 1

0

[
∂ζV

∂x
(α;y+ s(x− y))− 1

]
ds

)
(x− y)

= x− y+ r(x,y;α)(x− y), (4.13)

where the last line defines r. By definition, r is continuous. Since ζV (0;x) = x, we
have r(x,y;0) ≡ 0, and thus uniformly in x and y over a compact neighborhood of
the point x̄(t̄) on the reference trajectory, we have that limα→0+ r̃(x,y;α) = 0. Thus
the function r is of order o(1) as α→ 0. Applying Eq. (4.13) to Eq. (4.12), we thus
get that

ζV2 (α2)◦Φt2,t1 ◦ ζV1 (α1)◦Φt1,0(p̄)

= ζV2
(
α2; x̄(t2)+α1 (Φt2,t1)∗ ζ̇

V1(0)+ o(α1)
)
= ζV2(α2;x)

= ζV2(α2;y)+ x− y+ r(x,y,α)(x− y)

= ζV2(α2; x̄(t2))+α1 (Φt2,t1)∗ ζ̇
V1(0)+ o(α1)+ o(1) ·O(α1).

The error made in this calculation by switching back from the point x (on the
trajectory reached after the first variation) to the point y (on the reference trajectory)
is thus of order O(α1), and it is propagated with order o(1) as α2 → 0. Since we still
have that
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o(1) ·O(α1)

α1 +α2
→ 0 as α1 +α2 → 0,

it follows that these remainders together are of order o(α1 +α2). Furthermore, for
the second variation V2 acting on the point x̄(t2) of the reference trajectory, we have
that

ζV2(α2; x̄(t2)) = x̄(t2)+α2ζ̇V2(0)+ o(α2).

Combining these equations yields

ζV2 (α2)◦Φt2,t1 ◦ ζV1 (α1)◦Φt1,0(p̄)

= x̄(t̄2)+α2ζ̇V2(0)+α1 (Φt2,t1)∗ ζ̇
V1(0)+ o(α1 +α2).

Finally, moving all the vectors with the flow ΦT,t2 to the terminal point, we obtain

Ξ(α1,α2) = ΦT,t2

[
x̄(t̄2)+α2ζ̇V2(0)+α1 (Φt2,t1)∗ ζ̇

V1(0)+ o(α1 +α2)
]

= ΦT,t2 (x̄(t̄2))+α2 (ΦT,t2)∗
[
ζ̇V2(0)

]
+α1 (ΦT,t2 )∗

[
(Φt2,t1)∗ ζ̇

V1(0)
]

+o(α1 +α2)

= q̄+α1κ̇V1(0)+α2κ̇V2(0)+ o(α1 +α2)

= q̄+α1v1 +α2v2 + o(α1 +α2).

Thus Ξ is an approximating map for v1 = κ̇V1(0) and v2 = κ̇V2(0). This concludes
the main step of the proof. Summarizing, we have shown that the endpoint mapping
Ξ = Ξ(α1, . . . ,αr) of trajectories defined through a finite number of variations of
types CUT and PASTE that are made at different times is an approximating map for
the corresponding tangent vectors to the reachable set.

We still need to take care of the situation in which variations are made at the
same time. In this case, it is possible that these variations interfere with each other,
and then the construction just given no longer works. But both variations CUT and
PASTE are stable in the sense that given t̄, they can also be made at sufficiently many
times τ near t̄. More generally, if V1 and V2 are two variations made at the same time
t̄ that generate the tangent vectors vi = κ̇Vi(0) =

(
ΦT,t̄

)
∗ ζ̇

Vi
0 (x̄(t̄)), it is possible to

separate the times if the variations can be approximated by other variations made
at nearby points. Specifically, suppose Knobloch’s condition (K) [137] is satisfied:

[K] there exist times {ti,n}n∈N ⊂ [0,T ], ti,n = t̄, that converge to t̄, limn→∞ ti,n = t̄,
and variations Vi,n made at ti,n such that

wi,n = ζ̇Vi,n(0; x̄(ti,n))→ wi = ζ̇Vi(0; x̄(t̄)).

If this condition is satisfied, then we have that
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vi,n = κ̇Vi,n(0) =
(
ΦT,ti,n

)
∗wi,n → vi = κ̇Vi(0) =

(
ΦT,t̄

)
∗wi,

and given ε > 0, by choosing n and m large enough, we can make the norms
‖v1− v1,n‖ and ‖v2− v2,m‖ less than ε while at the same time making sure that
t1,n = t2,m. By the previous step of the proof, the endpoint map Ξ corresponding
to the variations V1,n and V2,m made at the times t1,n and t2,m then still is an
approximating map for the original tangent vectors v1 and v2. It is exactly for this
reason that the mapΨ in the definition of an approximating cone (Definition 4.1.2)
is only required to approximate vectors v′i that are close to the tangent vectors vi.
Thus, we also have an approximating map for variations made at the same time
if these variations are stable in the sense that property (K) is valid. Clearly, this
argument extends to any finite number of variations.

It thus remains only to verify that the variations CUT and PASTE have the
stability property (K). For the variations PASTE this is immediate: if V denotes
the variation PASTE made at t̄ ∈ [0,T ] by inserting a constant control with value
v ∈ U , then this variation can be made at any time tn ∈ [0,T ] where it generates
the vector wn = f (x̄(tn),v), and by continuity wn = f (x̄(tn),v)→ f (x̄(t̄),v) = w
whenever tn → t̄. For the variation CUT, using some more specific results about
Lebesgue measurable functions, it can be shown that property (K) still is valid
almost everywhere in [0,T ].

Proposition 4.2.3. For almost every t̄ ∈ [0,T ], there exists a sequence of times
{tn}n∈N ⊂ [0,T ], tn = t̄ , that converge to t̄, t̄ = limn→∞ tn, with the property that the
variation CUT made at time tn generates the tangent vector wn =− f (x̄(tn)), ū(tn))
and that f (x̄(t̄)), ū(t̄)) = limn→∞ f (x̄(tn)), ū(tn)).

Proof. The variation CUT can be defined for any time t̄ ∈ (0,T ]. But the reference
control ū is only measurable, and thus the function α �→ ζV1(α) = x̄(t̄ − α)
need not be differentiable in α at α = 0 for all t̄ ∈ (0,T ]. However, it follows
from Lebesgue’s differentiation theorem [174] that there exists a measurable set
F ⊂ [0,T ] of full measure such that ζ̇V1(0) exists for all t̄ ∈ F and is given by
ζ̇V1(0) = − f (x̄(t̄)), ū(t̄)). Let φ̄ : [0,T ]→ R

n, t �→ f (x̄(t), ū(t)). Given n ∈ N, by
Lusin’s theorem [174] there exists a closed subset Fn ⊂ F of measure greater than
T − 1

n such that the restriction of φ̄ to Fn is continuous. In particular, whenever
{tn} ⊂ Fn and tn → t̄ ∈ Fn, then f (x̄(tn)), ū(tn))→ f (x̄(t̄)), ū(t̄)). Property (K) is
therefore valid for any time t̄ ∈ Fn that is a limit point of the set Fn (i.e., there exists
a sequence of times {tn} ⊂ Fn, tn = t̄, and tn → t̄). But almost every time in Fn

is a limit point of Fn. For if τ ∈ Fn is not a limit point of Fn, then there exists a
neighborhood of τ that does not contain another point from Fn, and thus the set of
times τ ∈ Fn that are not limit points of Fn is discrete and hence at most countable.
Thus, if F̃n denotes the set of times τ ∈ Fn that are limit points of Fn, then its measure
is still greater than T − 1

n . Consequently, F̃ = ∪∞n=1F̃n ⊂ F is a set of full measure,
and for every t̄ ∈ F̃ property (K) holds. �

This completes the proof of Theorem 4.2.1. �
The last step in the proof is the reason for the somewhat odd Definition 4.1.2 of

an approximating cone being able to approximate nearby vectors. This definition has



4.2 Proof of the Pontryagin Maximum Principle 255

the advantage that we do not need to address the highly nontrivial issue of whether
and when variations made at the same time t̄ can be combined. For more general
variations than CUT and PASTE, as we shall consider them later on, this is not
necessarily true in general (see, for instance, [36, 137]).

4.2.3 Boundary Trajectories

Theorem 4.2.1 immediately gives us necessary conditions for the point q̄ to lie
in the boundary of the reachable set. For if q̄∈ ∂ ReachΣ (p̄), then by Theorem 4.1.1
the approximating cone K constructed above cannot be the full space R

n. Hence
there exists a nonzero covector λ̄ ∈ (Rn)∗ such that

〈λ̄ ,v〉 ≥ 0 for all v ∈K . (4.14)

In the construction of K , the tangent vectors w = ζ̇V (0) generated at the point x̄(t̄)
are moved forward to the endpoint q̄ = x̄(T ) along the reference trajectory. Rather
than moving all these tangent vectors forward to the terminal point, instead we can
move the covector λ̄ backward along the reference trajectory to x̄(t̄). This has the
obvious advantage that overall, only one object needs to be moved.

Proposition 4.2.4. Let θ : [0,T ]→ R
n, t �→ θ (t), be a solution to the variational

equation

θ̇ (t) =
∂ f
∂x

(x̄(t), ū(t))θ (t),

and let λ : [0,T ]→ (Rn)∗, t �→ λ (t), be a solution to its adjoint equation,

λ̇ (t) =−λ (t)∂ f
∂x

(x̄(t), ū(t)). (4.15)

Then the function h : [0,T ]→ R, t �→ 〈λ (t),θ (t)〉= λ (t)θ (t), is constant.

Proof. This is an immediate consequence of the fact that the second equation is the
adjoint of the first:

d
dt
〈λ (t),θ (t)〉= λ̇ (t)θ (t)+λ (t)θ̇(t)

=−λ (t)∂ f
∂x

(x̄(t), ū(t))θ (t)+λ (t)
∂ f
∂x

(x̄(t), ū(t))θ (t) = 0. �

Recall that a tangent vector v = κ̇V (0) to the reachable set at q̄ is obtained from
the vector w = ζ̇V (0) as the solution θ (T ) of the variational equation at time T with
initial condition w at time t (Proposition 4.2.2). If we therefore choose λ (·) as the
solution to the adjoint equation (4.15) with terminal condition λ (T ) = λ̄ , then we
have for all t ∈ [0,T ] that



256 4 The High-Order Maximum Principle

〈λ̄ ,v〉= 〈λ (T ),θ (T )〉= 〈λ (t),θ (t)〉= 〈λ (t),w〉 .

Substituting for w the results of the variations CUT and PASTE, we therefore obtain
that

〈λ (t), f (x̄(t),v)〉 ≥ 0 for all t ∈ [0,T ] and all v ∈U

and
−〈λ (t), f (x̄(t), ū(t))〉 ≥ 0 for almost every t ∈ [0,T ].

Defining the Hamiltonian H as

H : (Rn)∗ ×R
n×U → R,

(λ ,x,u) �→ H(λ ,x,u) = 〈λ , f (x,u)〉,

we obtain the following result:

Theorem 4.2.2 (Maximum principle for boundary trajectories). Let Γ = (x̄(·),
ū(·)) be an admissible controlled trajectory defined on [0,T ] with initial point x̄(0)=
p̄ and terminal point x̄(T ) = q̄. If q̄ lies in the boundary of the reachable set from p̄,
q̄∈ ∂ ReachΣ (p̄), then there exists a nontrivial solution λ : [0,T ]→ (Rn)∗, t �→ λ (t),
to the adjoint equation along Γ ,

λ̇ (t) =−λ (t)∂ f
∂x

(x̄(t), ū(t)) =−∂H
∂x

(λ (t), x̄(t), ū(t)), λ (T ) = 0, (4.16)

such that almost everywhere on [0,T ]

0 = H(λ (t), x̄(t), ū(t)) = min
u∈U

H(λ (t), x̄(t),u). (4.17)

4.2.4 Necessary Conditions for Optimality

The necessary conditions for optimality of the Pontryagin maximum principle,
Theorem 2.2.1, also follow from Theorem 4.2.1. The additional ingredient now
is an objective that will be minimized over possibly a subset of all controlled
trajectories. Let L : M×U → R, (x,u) �→ L(x,u), be a function that has the same
regularity properties as postulated for the dynamics, i.e., is continuous on M×U
and, for each u ∈U fixed, is continuously differentiable in x with partial derivative
∂L
∂x (x,u) continuous on M ×U . Furthermore, let Ψ : Rn → R

n−k, x �→ Ψ(x), be
a continuously differentiable mapping with the property that the gradients of the
components are linearly independent on the set N = {x ∈M : Ψ (x) = 0}. Thus
the set N is a k-dimensional embedded C1-submanifold of the state space M, the
terminal manifold. Let ϕ : N → R be a continuously differentiable function defined
on N. For a controlled trajectory (x,u) defined on the interval [0,T ] with terminal
value x(T ) in N, define its cost as
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J (u) =
∫ T

0
L(x(t),u(t))dt +ϕ(x(T )).

We then consider the following optimal control problem:

[OC] Given a control system Σ , minimize J (u) over all controlled trajectories
(x,u) defined over some compact interval [0,T ] with fixed initial value x(0) = p̄
and terminal value x(T ) ∈ N. The final time T is free.

It is possible to express optimality of a controlled trajectory in terms of the
reachable set for a system in which the state space has been augmented with the
cost as extra variable. Let Σ̃ be the control system with state space M̃ = M×R, the
same control set U , and same class U of admissible controls, but dynamical law
given by

f̃ : M̃×U →R
n+1, (x,y,u) �→ f̃ (x,y,u) =

(
f (x,u)
L(x,u)

)

with initial condition p̃ = (p̄,0)T . Thus the differential equations become

ẋ = f (x,u(t)), x(0) = p̄,

ẏ = L(x,u(t)), y(0) = 0.

The terminal manifold remains the same, but is now considered an embedded
submanifold Ñ = N×R of M̃. Hence, to each admissible controlled trajectory (x,u)
of Σ defined over the interval [0,T ], there corresponds a unique controlled trajectory
(x,y,u) of Σ̃ with y given as

y(t) =
∫ t

0
L(x(s),u(s))ds,

and the value of the corresponding objective is J (u) = y(T )+ϕ(x(T )). Define a
function ω : Ñ = N×R→ R, (x,y) �→ ω(x,y) = ϕ(x)+ y, such that

J (u) = ω(x(T ),y(T )).

Given a controlled reference trajectory Γ = (x̄, ū) defined over the interval [0,T ]
that steers p̄ into q̄, let ω̄ = ω(q̄, ȳ(T )) be the corresponding value of the objective
and define

Ã = {(x,y) ∈ N×R : ω(x,y) = ϕ(x)+ y < ω̄}.
Thus, this is the set of all possible terminal points that in principle (i.e., if they were
reachable), would give a better value for the objective. An approximating cone to
this set is easily constructed:
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Proposition 4.2.5. The set

J̃ = {(v,α) ∈ R
n×R : DΨ (q̄)v = 0, 〈∇ϕ(q̄),v〉+α < 0}

is a Boltyansky approximating cone for Ã at q̃ = (q̄, ω̄).

It is clear that J̃ is a nonempty convex cone that is not a subspace. For (0,−1)∈
J̃ and (0,1) /∈ J̃ .

Proof. In order to show that J̃ is approximating, suppose (v1,α1), . . . ,(vr,αr) ∈
J̃ . It follows from Proposition 4.1.1 that the null space of DΨ(q̄), the tangent
space to N at q̄, is an approximating cone for N. Thus there exists a continuous map
Ξ defined on a full neighborhood Br

δ (0) of 0, Ξ : Br
δ (0)→ N, such that

Ξ(z1, . . . ,zr) = q̄+
r

∑
i=1

zivi + o(‖z‖).

Define the augmented map Ξ̃ : Br
δ (0)→ N×R by

Ξ̃(z1, . . . ,zr) =

(
Ξ(z1, . . . ,zr), ω̄+

r

∑
i=1

αizi

)
.

Clearly, Ξ̃ is continuous, and it satisfies

Ξ̃(z1, . . . ,zr) = (q̄, ω̄)+
r

∑
i=1

zi (vi,αi)+ o(‖z‖),

i.e., Eq. (4.1) is satisfied with (v′i,α ′i ) = (vi,αi). Therefore, all that remains to be
shown is that for sufficiently small positive coordinates zi, z ∈ Qr

δ , the mapping Ξ̃
takes values in the set Ã. We have that

ω
(
Ξ̃(z1, . . . ,zr)

)
= ϕ (Ξ(z1, . . . ,zr))+ ω̄+

r

∑
i=1
αizi

= ϕ

(
q̄+

r

∑
i=1

zivi + o(‖z‖)
)
+ ω̄+

r

∑
i=1
αizi

= ϕ(q̄)+

〈
dϕ(q̄),

r

∑
i=1

vizi

〉
+ o(‖z‖)+ ω̄+

r

∑
i=1
αizi

= ϕ(q̄)+ ω̄+
r

∑
i=1

[〈dϕ(q̄),vi〉+αi]zi + o(‖z‖)

< ϕ(q̄)+ ω̄,

where the last inequality follows from the facts that zi > 0 and that by definition
of J̃ , we have 〈dϕ(q̄),vi〉+αi < 0. Thus the linear term is negative, and for ‖z‖
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sufficiently small it dominates the remainder o(‖z‖). Hence Ξ̃ takes values in Ã, and
for δ > 0 small enough the map Ξ̃ : Qr

δ → Ã is approximating. �

If Γ = (x̄, ū) is optimal, then no point in Ã can be reachable for the augmented
system Σ̃ , and thus the reachable set ReachΣ̃ (p̃) must be disjoint from Ã:

ReachΣ̃ (p̃)∩ Ã = /0.

In particular, q̃ = (q̄, ȳ(T )) is an isolated point of ReachΣ̃(p̃)∩ (Ã∪{q̃}). Thus, if

K̃ denotes the approximating cone to ReachΣ̃ (p̃) at q̃ constructed in Theorem 4.2.1,

then it follows from Theorem 4.1.3 that K̃ and J̃ cannot be strongly transversal.

Since J̃ is not a linear subspace, it follows from Proposition 4.1.2 that K̃ can be

separated from J̃ . Hence there exists a nonzero covector λ̃ ∈ (
R

n+1
)∗

such that

〈λ̃ , ṽ〉 ≥ 0 for all ṽ ∈ K̃ (4.18)

and

〈λ̃ , j̃〉 ≤ 0 for all j̃ ∈ J̃ . (4.19)

We again use the adjoint equation to move the covector λ̃ back along the controlled
reference trajectory Γ . As in Sect. 4.2.3, condition (4.18) implies that there exists a
nontrivial solution to the adjoint equation, which we also call λ̃ , such that we have
almost everywhere on [0,T ],

0≡ 〈λ̃ (t), f̃ (x̄(t), ȳ(t), ū(t))〉= min
u∈U
〈λ̃ (t), f̃ (x̄(t), ȳ(t),u)〉.

If we write λ̃ = (λ ,λ0), then the adjoint equation for the augmented system reads

(
λ̇ (t), λ̇0(t)

)
=−(λ (t),λ0(t))

⎛
⎜⎜⎜⎝

∂ f
∂x

(x̄(t), ū(t)) 0

∂L
∂x

(x̄(t), ū(t)) 0

⎞
⎟⎟⎟⎠ ,

and thus

λ̇(t) =−λ (t)∂ f
∂x

(x̄(t), ū(t))−λ0(t)
∂L
∂x

(x̄(t), ū(t))

and λ̇0(t)≡ 0, such that λ0 is constant. If we now define the Hamiltonian H as

H : R× (Rn)∗ ×M×U →R,

(λ0,λ ,x,u) �→ H(λ0,λ ,x,u) = λ0L(x,u)+ 〈λ , f (x,u)〉,

then, exactly as in Theorem 4.2.2, the adjoint equation for λ can be rewritten as
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λ̇ (t) =−∂H
∂x

(λ0,λ (t), x̄(t), ū(t)),

and the minimum condition becomes

0 = H(λ0,λ (t), x̄(t), ū(t)) = min
u∈U

H(λ0,λ (t), x̄(t),u).

Furthermore, since λ̃ is nonzero, we also have the nontriviality condition
(λ0,λ (t)) = 0 for all t ∈ [0,T ].

For the optimal control problem, condition (4.19) in addition gives that

〈λ (T ),v〉+λ0α ≤ 0 for all (v,α) ∈ J̃ .

Taking (0,−1) ∈ J̃ , it follows that λ0 ≥ 0. Furthermore, in J̃ we can take the
limit as α ↗−〈∇ϕ(q̄),v〉 from below, and this implies

〈λ (T ),v〉 ≤ λ0〈∇ϕ(q̄),v〉 for all v ∈ kerDΨ(q̄).

But kerDΨ(q̄) is a linear subspace, and thus with v also−v lies in kerDΨ(q̄). Hence
this inequality must be an equality. Thus, the restriction of λ (T ) to kerDΨ(q̄),
i.e., to the tangent space of N at q̄, is given by λ0∇ϕ(q̄). This is the transversality
condition of the maximum principle. Summarizing, we have proven the following
theorem:

Theorem 4.2.3 (Maximum principle for optimal control problems). [193] Sup-
pose the controlled trajectory Γ = (x̄(·), ū(·)) defined on [0,T ] with initial point
x̄(0) = p̄ and terminal point x̄(T ) = q̄ is optimal for the optimal control problem
[OC]. Then there exist a constant λ0 ≥ 0 and a solution λ : [0,T ]→ (Rn)∗ of the
adjoint equation along Γ ,

λ̇(t) =−λ0
∂L
∂x

(x̄(t), ū(t))−λ (t)∂ f
∂x

(x̄(t), ū(t)) =−∂H
∂x

(λ0,λ (t), x̄(t), ū(t)),

that satisfies the terminal condition

〈λ (T ),v〉= λ0〈∇ϕ(q̄),v〉 for all v ∈ kerDΨ(q̄)

such that

(λ0,λ (t)) = 0 for all t ∈ [0,T ],

and almost everywhere on [0,T ] we have that

0 = H(λ0,λ (t), x̄(t), ū(t)) = min
u∈U

H(λ0,λ (t), x̄(t),u).



4.3 Control Systems on Manifolds: Definition and Examples 261

4.3 Control Systems on Manifolds: Definition and Examples

The results developed so far are adequate for problems that are naturally formulated
on all of Rn or some open subset of it. For example, many models in biomedical
applications fall into this category (see, for example, [155, 156, 160]). Mechanical
systems, on the other hand, are restricted in their movements. A robotic arm is of
a fixed length and may only be able to rotate. For such a system, Rn provides an
inadequate model for the state space. At a minimum, additional constraints need to
be imposed that reflect the physical limitations of the underlying system. Often these
problems then are more naturally (and without constraints) formulated on a mani-
fold. Even for problems on R

n, not only do differential-geometric concepts provide
an excellent framework that, for example, illuminates the geometric meaning of the
multipliers in the Pontryagin maximum principle, but they also enrich the analysis
of these problems with tools and techniques that we shall use later in the derivation
of high-order necessary conditions for optimality. We therefore extend our previous
definition of a control system to allow the state space to be a differentiable manifold.
A rather self-contained but brief introduction to differentiable manifolds and its
main definitions and concepts that will be used (tangent and cotangent vectors,
integral curves, differentials, and pullbacks of mappings) is given in Appendix C.
But we need to refer the reader to the rich literature for a deeper treatment of this
subject (e.g., [50, 102, 256]).

In our presentation, we do not strive for utmost generality, but instead our aim
is to generalize the key ideas of the classical construction to a reasonably broad
framework. Therefore we still employ a set of simplifying assumptions that lead to
what sometimes is referred to as the smooth maximum principle for time-invariant
systems, but now on a differentiable manifold M.

Definition 4.3.1. A control system is a 4-tuple Σ = (M,U, f ,U ) consisting of the
following objects:

1. The state space M is a connected n-dimensional differentiable manifold2 of class
C� with �≥ 1.

2. The control set U is an arbitrary subset of Rm.
3. The dynamics or dynamical law assigns to every point (q,u) ∈M×U a tangent

vector f (q,u) to the manifold M at the point q, f (q,u)∈ TqM. We assume that this
map has the following regularity property: for every coordinate chart φ : V →R

n,
q �→ x = φ(q), on M with domain V , the coordinate representation fφ of f on
φ(V ) is continuous on φ(V )×U , continuously differentiable in x for each fixed

u ∈U , and the partial derivatives
∂ fφ
∂x (x,u) are continuous on φ(V )×U .

4. The class U of admissible controls is given by all locally bounded Lebesgue
measurable functions.

2It will always be assumed that M is second countable and Hausdorff. A manifold M is second
countable if its topology has a countable basis, and it is Hausdorff if for any two points p and q
in M there exist open neighborhoods U of p and V of q that are disjoint. The interested reader is
referred to [81] or any other textbook on topology for this background material.
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Given an admissible control u defined on an interval I, for every coordinate
chart φ : V → R

n on M, the map Fφ : I×V → R
n, (t,x) �→ Fφ (t,x) = fφ (x,u(t)),

satisfies the C1-Carathéodory conditions on I × V , and thus the results about
existence of solutions and smooth dependence on initial conditions are valid for
each coordinate chart. It is a standard (but somewhat tedious) procedure to verify
that it is possible to patch together different coordinate neighborhoods. It follows
that the time-dependent vector field (t,q) �→ f (q,u(t)) defined on I×M satisfies the
C1-Caratheodory conditions, and thus for every initial condition (t0, p0) ∈ I×M the
initial value problem q̇ = f (q,u(t)), q(t0) = p0, has a unique absolutely continuous
solution x = x(t; t0, p0) that is defined on a maximal open subinterval that contains
t0. As before, this solution is a continuously differentiable function of the initial time
t0 and initial point p0. We shall not go into the details regarding coordinate charts,
and for ease of notation we use the same label x for points on the manifold and their
coordinate representations, x = x(q). We thus also write f (x,u) for both the map on
the manifold and its coordinate representation fφ . As before, we call x the trajectory
corresponding to the control u, and the pair (x,u) a controlled trajectory. The various
definitions of reachability all carry over verbatim.

We give three examples of control systems on manifolds that should convince the
reader that this is a natural and important generalization. The first one is the classical
problem of geodesics on a sphere, the second one a standard model for the control
of a rigid body such as a satellite in space, and the third one is about the control of
a kinematically redundant robotic manipulator.

4.3.1 Shortest Paths on a Sphere

Given two points p and q on the unit sphere S2 = {z ∈ R
3 : ‖z‖2 = 1} in R

3,
what is the shortest “path” that connects p to q and lies on S2? Without going
into details, let us simply informally assume that paths are (piecewise) continuously
differentiable curves that lie on S2. More generally, solutions to this problem on an
arbitrary manifold are called geodesics. On the sphere, the solution is geometrically
obvious: the points p, q and the origin in R

3 define a plane P whose intersection with
S2 defines a so-called great circle C = P∩R3, i.e., a circle that lies on S2 and has
radius r = 1. The points p and q divide this great circle into two disjoint segments
that connect p with q, and the shorter of the two is the solution to the problem
(see Fig. 4.11).

Mathematically, this is the optimal control problem to minimize the arc length
over all piecewise continuously differentiable curves in R

3 that connect p with q
and lie on S2. Clearly, one possibility would be to choose R

3 as state space and to
enforce the constraint that all curves must lie on S2. But this is not necessary: in this
new setup, we simply take the manifold M = S2 as the state space, the control set U
is given by the unit circle in R

2, U = {(u1,u2)
T : u2

1 + u2
2 = 1}, and the dynamics

simply assigns to every point q ∈ S2 and control vector u ∈ U the tangent vector
f (q,u) ∈ TqS2 that is defined by u in the tangent plane to S2 at q.
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Fig. 4.11 Geodesic curve
on S2

While the manifold S2 is embedded into R
3, it is a two-dimensional object.

The coordinates φ : V ⊂ S2 → R
2, q �→ x = φ(q), relate the optimal control

problem defined on S2 to an optimal control problem defined on R
2. But these

correspondences are never valid globally, and the problem is not equivalent to an
optimal control problem on R

2. For example, there clearly exists a distinguished set
of coordinates for S2 defined by spherical coordinates,

z1 = sinθ cosφ , z2 = sinθ sinφ , z3 = cosθ ,

where θ ∈ [0,π ] denotes the angle between the vector z ∈ S2 and the positive z3-
axis and φ ∈ [0,2π ] is the angle between the projection of z into the (z1,z2)-plane
and the positive z1-axis (see Fig. 4.12). Thus θ = const corresponds to a circle of
constant latitude (“parallel”), while φ = const defines a circle of constant longitude
(“meridian”) that connects the north pole N = (0,0,1)T with the south pole S =
(0,0,−1)T . This coordinate transform, which actually defines the inverse mapping
x = (θ ,φ) �→ z ∈ S2, is an analytic diffeomorphism if the angle θ is restricted to
the open interval (0,π), but it has singularities at the north and south poles; the
angle ϕ can be varied over [0,2π ]. Thus this provides a coordinate neighborhood
for S2/{N,S}.

These coordinates can be used to give a traditional, but somewhat incomplete,
description of the optimal control problem [64]. Using the obvious symmetries of
the problem, without loss of generality we may assume that the great circle C =
P∩R3 is the equator E = {z ∈ S2 : z3 = 0} and that p = (1,0,0). The second point
q also lies on E and has coordinates θ = π

2 and φ = φ f ≤ π , where we pick the
shorter segment to define the coordinate. The line element ds for a curve defined in
spherical coordinates on S2 is given by

(ds)2 = (dθ )2 + cos2 θ (dφ)2 .
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q

f

z

N

S

Fig. 4.12 Spherical
coordinates

If one anticipates (using heuristic arguments) that the optimal curve can be described
as a function of φ in this coordinate patch, then the problem can be formulated
mathematically as to minimize the integral

J(u) =
∫ φ f

0

√
w2 + cos2 θ dφ

over all differentiable curves θ : [0,φ f ]→ (0,π), ϕ �→ θ (φ), subject to the dynamics

dθ
dφ

= w, θ (0) =
π
2
,

and terminal condition θ
(
φ f

)
= π

2 . In this formulation, the derivative becomes a
one-dimensional unrestricted control. While this engineering-type formulation turns
out to be good enough for this particular case, clearly, the formulation on manifolds
is more accurate, more general, and more elegant.

4.3.2 Control of a Rigid Body

A rigid body is a mechanical object for which the distance between any two of
its points remains constant during motion and the orientation is preserved; that
is, a right-handed coordinate system won’t be changed into a left-handed one. For
example, satellites are rigid bodies that need to be controlled in space to maintain
an appropriate antenna orientation to enable efficient communication with specific
locations on Earth. In addition, nowadays often a primary source of energy for
satellites comes from solar cells, and thus the orientation of the satellite also should
try to maximize the exposure of its solar cells to the sun.
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Fig. 4.13 A circular satellite
path

Motions of a rigid body are described with respect to two coordinate frames,
one a body frame that is fixed on the rigid body, the other an inertial frame that
is fixed in space. For the example of a satellite, we can think of the latter as the
standard orthonormal coordinate system {e1,e2,e3} in R

3 with origin at the center
of the Earth and mutually orthogonal directions ei with say two endpoints located
somewhere on the equator and the third the North Pole. Similarly, a body frame
is given by another orthornormal coordinate system { f1, f2, f3} that has its origin
in the center of the satellite and one of its coordinate directions aligned with the
antenna to be directed. Thus these coordinates describe the points on the satellite
and do not change with time, while its coordinates relative to the inertial frame
describe the motion of the object. The latter consist of the position of the center
of the satellite and its orientation. This naturally leads to a manifold M as the state
space for this system. We briefly discuss simplified versions of these dynamics.

Denote the position of the center of the satellite by p and, for simplicity, assume
that the satellite nominally moves on a circular orbit in a fixed plane P at a distance
R from the center of the Earth (see Fig. 4.13). Generally, there exist small deviations
of the actual distance from the desired value R, and a stabilizing control law needs to
be implemented. (We shall discuss this topic in the context of perturbation feedback
control in Sect. 5.3). The underlying dynamics is simply Newton’s second law, but it
needs to be expressed in polar coordinates. If we write the position p of the satellite’s
center in the plane P as

p(t) = R(t)

(
cos(θ (t))
sin(θ (t))

)
,

with θ denoting the angle relative to some reference value θ = 0, then the motion of
the satellite in a gravitational field of strength

(ω
R

)2
obeys the differential equations

R̈ = Rθ̇ 2−
(ω

R

)2
, Rθ̈ =−2θ̇ Ṙ.
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For the first and second derivatives of p(t) are given by

ṗ(t) = Ṙ(t)

(
cos(θ (t))
sin(θ (t))

)
+R(t)θ̇(t)

(−sin(θ (t))
cos(θ (t))

)

and

p̈(t)=
(
R̈(t)− Ṙ(t)θ̇ (t)2)( cos(θ (t))

sin (θ (t))

)
+

(
R(t)θ̈(t)+ 2Ṙ(t)θ̇ (t)

)(−sin(θ (t))
cos(θ (t))

)
,

and thus the normal centrifugal force on the satellite, which is opposed by the
gravitational force −(ω

R

)2
, is given by R̈(t)− Ṙ(t)θ̇ (t)2, and the tangential force

becomes R(t)θ̈(t)+ 2Ṙ(t)θ̇ (t). Hence, a simple model for the orbit of the satellite
becomes

R̈ = Ṙθ̇ 2−
(ω

R

)2
+ u, θ̈ =−2θ̇

Ṙ
R
+

1
R

v

where u and v denote the effects of controls that influence the normal and tangential
motions of the satellite, respectively.

The orientation of the satellite at the point p(t) is determined by the coordinate
frame { f1, f2, f3} = { f1(t), f2(t), f3(t)}. If we write these three vectors as the
columns of a matrix Q,

Q = Q(t) = ( f1(t), f2(t), f3(t)) ,

this defines an orthogonal matrix Q, QT Q= Id, and without loss of generality, we are
assuming that the orientation is positive, i.e., det(Q) =+1. Then Q is an element of
the special orthogonal group SO(3), a Lie group (see Appendix C). The orientation
of the satellite over time therefore is described by a curve t �→ Q(t) ∈ SO(3) in
this manifold. Its tangent vector can be identified with a skew-symmetric matrix,
i.e., an element in the Lie algebra so(3), which represents the tangent space to this
manifold. In order to see this, consider a fixed, but arbitrary, point on the satellite.
Denote its coordinates in the body frame by x (the German letter x) and let y (the
German letter y) denote the coordinates of the same point, but relative to the inertial
frame {e1,e2,e3} that has been translated to the center of the satellite. Then the
coordinate transformation simply becomes y(t) = Q(t)x(t), and the corresponding
velocities relate as ẏ(t) = Q̇(t)x(t)+Q(t)ẋ(t). However, the coordinates of a given
point on the satellite are always the same in the body frame, and thus ẋ(t)≡ 0. Hence
the velocity is given by

ẏ(t) = Q̇(t)x(t) = Q̇(t)Q−1(t)y(t),
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and the matrix S(t) = Q̇(t)Q−1(t) is skew-symmetric. This is easily seen by
differentiating the identity Q(t)T Q(t) = Id which gives Q̇(t)T Q(t)+Q(t)T Q̇(t) = 0
and thus

Q̇(t)Q−1(t) =−Q−T (t)Q̇(t)T =−(
Q̇(t)Q−1(t)

)T
.

Any matrix S ∈ so(3) is of the form

S(ω) =

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠

for some vector ω = (ω1,ω2,ω3). Physically,ω gives the angular velocities relative
to the body frame, and the matrix S(ω) gives the instantaneous angular velocities as
seen from the inertial frame. The angular accelerations are then of the form

Jω̇ = S (ω)Jω

with J a positive definite symmetric matrix also called the moment of inertia
tensor related to these moments. The matrix J will be diagonal if the axes of the
body frame coincide with the rigid body’s so-called principal axes. If one now
considers the problem to control the satellite’s orientation through changes in the
angular accelerations around two of the satellite’s axes, say ω̇1 and ω̇2, then the
corresponding dynamics becomes

Q̇ = S(ω)Q, Jω̇ = S (ω)Jω+

⎛
⎝1

0
0

⎞
⎠u+

⎛
⎝0

1
0

⎞
⎠v,

with u and v denoting the corresponding angular accelerations.
For example, if the satellite is in a geostationary orbit over a base point, it is

of interest to have the antenna always directed toward this point. If this direction
is taken as the third axis, then one would want to control the orientation of the
satellite through the angular accelerations around the other two axes in such a way
that disturbances do not affect the desired orientation. It clearly is always possible
to counter steer for deviations in the first two angular accelerations, but the question
becomes whether it is possible to decouple disturbances in the angular velocities ω̇3

from the third row of the orientation R. This indeed can be done, and we refer the
interested reader to the papers [188, 200].

The manifold point of view offers distinct advantages in describing the dynamics.
The orientation of the satellite relative to an inertial reference is described by an
orthonormal frame, and mathematically this becomes an element of the Lie group
SO(3). This provides a far superior model for the dynamics and clearly brings out
the geometric content of the model.
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q1

q2

q3 q4

q5

Fig. 4.14 Schematic diagram
of a planar robot

4.3.3 Trajectory Planning for Redundant Robotic
Manipulators

Redundant manipulators are robotic configurations that possess more degrees of
freedom than are strictly necessary to perform a required task. Redundancy offers
several practical advantages. For example, it gives increased dexterity for obstacle
avoidance and allows for the generation of trajectories that optimize dynamic
performance. One type of redundant manipulators are so-called macro–micro
configurations. In many industrial applications, tasks often require high dynamic
motion over a large work space. Examples include routing and trimming of large
panels and ultrasonic scanning for nondestructive defect inspection. In order to
cover this large work envelope, typically large manipulators are used. However,
because of the massive castings used as the links, these robots lack the performance
required for dynamic trajectories, such as tight radius turns at high speed and high-
G accelerations at the start and stop of motions. To overcome these problems, one
proposed solution is to use a macro–micro manipulator configuration in which a
short-stroke micromanipulator with high dynamic performance characteristics is
coupled to a large-stroke macromanipulator. Overall, this creates a redundant robot
with improved dynamic performance while retaining the work envelope of the large
manipulator.

Figure 4.14 gives an example of a simple planar robot that combines three rotary
links with two translational links. The macro configuration consists of the two
rotational links of lengths L1 and L2, respectively, whose positions are characterized
by the two angles q1 and q2. The micro configuration consists of two rigid shafts that
are mounted to the end of the second link. The first of these shafts can still be rotated,
and q3 denotes the angle relative to the orientation of the second link. The second
shaft is mounted rigidly such that it is perpendicular to the first shaft, and it cannot be
rotated. But both shafts have mechanisms (small motors) that allow for forward or
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backward movements. The variable q4 denotes the displacement of the second shaft
relative to the center position of the first one, and q5 ≥ 0 denotes the displacement
of the tool tip relative to the first shaft. The position of the endpoint of the distal
fifth link of the manipulator contains the tool tip, and it is this point that generally
needs to be controlled. Forward kinematic equations describe its position in R

2 and
can easily be written down for this simple model using elementary geometry:

x = L1 cos(q1)+L2 cos(q1 + q2)+ q4 cos(q1 + q2 + q3)− q5 sin(q1 + q2 + q3),

y = L1 sin(q1)+L2 sin(q1 + q2)+ q4 sin(q1 + q2 + q3)+ q5 cos(q1 + q2 + q3).

Thus, the point (x,y) describes the position of the tool tip for this planar 5-axis
mechanism. In many practical robotic applications, it is not just the position of the
end-effector that is of interest, but also the orientation of the tool. For example,
imagine that the tool corresponds to some cutting or welding process. Therefore,
generally not only the position of the end-effector, but also its orientation is of
interest. For the example here, the orientation can simply be described by the total
angle

θ = q1 + q2 + q3.

The combined variables (x,y) ∈ R
2 and the orientation θ ∈ S1 are called the end-

effector coordinates. Note that the circle S1 is isomorphic to SO(2), the group of all
orthogonal 2×2 matrices Q that have determinant +1, the special orthogonal group
in R

2, by means of the mapping

θ �→
(

cosθ −sinθ
sinθ cosθ

)

(see Appendix C).
The task-space path plan then consists of a C2 curve in R

2×SO(2) describing
the position and orientation of the end-effector and a time parametrization of the
path. More generally, for a general-purpose robot in R

3, the task-space path plan
typically is given by a C2 curve in R

3×SO(3) and a time parametrization of the
path. If we denote the path plan by x : [a,b]→R

2×SO(2), t �→ x(t), then the role of
the trajectory planner is to develop a continuous function q : [a,b]→ R

5, t �→ q(t),
that describes the joint positions as a function of time so that the tool tip follows the
defined path plan, i.e.,

x(t) = f (q(t)),

where f is the forward kinematics of the robot. For a redundant manipulator, we
have that dim(q) > dim(x), and thus the robot has extra degrees of freedom, and
typically there is an infinite set of solutions to this equation. This leads to the notion
of a self-motion manifold. The self-motion manifold is defined for a fixed point x in
the task space as the disjoint union of all feasible joint configurations q that result
in the same end-effector position and orientation [63]. If the Jacobian matrix of the
forward kinematics f at the point x, D f (x), has linearly independent rows, then this
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is a possibly disjoint union of embedded submanifolds. Thus any point on the self-
motion manifold of a particular task point x generates the same end-effector position
and orientation, and movement on the self-motion manifold keeps the end-effector
coordinates stationary in the task space.

For our case, this self-motion manifold can easily be calculated, and it is a two-
dimensional torus T 2 = S1× S1. Clearly, we have dim(x) = dim(R2×SO(2)) = 3
and dim(q) = 5, and thus there exist two degrees of freedom. Intuitively, it is clear
that the variables (q3,q4,q5) provide a nonredundant mechanism of joints in the
task space, and thus the free variables are the two angles (z1,z2) = (q1,q2). For the
planar model considered here, it is not difficult to give a parameterization of the
joints in terms of these self-motion variables: clearly,

q1 = z1, q2 = z2, q3 = θ − z1− z2,

and

(
q4

q5

)
=

(
cosθ sinθ
−sinθ cosθ

)(
x−L1 cos(z1)−L2 cos(z1 + z2)

y−L1 sin(z1)−L2 sin(z1 + z2)

)

=

(
xcosθ + ysinθ −L1 cos(z1−θ )−L2 cos(z1 + z2−θ )
−xsinθ + ycosθ −L1 sin(z1−θ )−L2 sin(z1 + z2−θ )

)
.

Coupling the self-motion manifolds with the movement along a prescribed path
t �→ x(t) for the end-effector coordinates (possibly for small time intervals and
assuming that no singular configurations arise along the path) generates a foliation
structure of the interval with a constant manifold, the 2-dimensional torus T 2 in
this particular example. An optimal control problem then consists in determining a
path t �→ z(t) for which z(t) lies in the self-motion manifold for the point x(t) that
minimizes some objective function associated with the corresponding curve t �→ q(t)
in the joint space. Constraints on the control are then given by the mechanical
restrictions of the robot. For example, in [100] the problem of minimizing the
jerk, i.e., the derivative of the acceleration, along a prescribed trajectory plan is
considered and analyzed as an optimal control problem for a redundant manipulator.
This is the problem to minimize the integral

J(u) =
∫ T

0

∥∥∥q(3)(t)
∥∥∥2

dt

over all paths t �→ q(t) that lie in the foliation of self-motion manifolds defined
by an a priori prescribed task-space path plan t �→ x(t) subject to existing control
constraints.
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4.4 The High-Order Maximum Principle

We generalize the construction given in Sect. 4.2 to a class of variations that
includes as special cases the needle variations CUT and PASTE. The procedure thus
generates larger approximating cones K and hence leads to improved necessary
conditions for optimality. In particular, the framework presented here allows for
a uniform treatment of both first- and high-order variations, and we shall use it
in Sect. 4.6 to derive well-known high-order necessary conditions for optimality,
including the Legendre–Clebsch and Goh conditions. Concepts from differential
geometry and Lie algebra provide the framework to formulate and evaluate these
more complicated (high-order) variations, and it is for this reason that we formalize
the construction for systems on manifolds. The structure of the proof, which is based
on lecture notes by H. Sussmann, is identical to the procedure followed in Sect. 4.2.

4.4.1 Embeddings and Point Variations

As before, let x̄(·) be a trajectory defined on [0,T ] corresponding to the admissible
control ū(·) with initial point x̄(0) = p̄ and terminal point x̄(T ) = q̄, the controlled
reference trajectory. An important aspect of the classical construction is that
variational vectors ζ̇V (0) that are generated at a point x̄(t̄) need to be transported to
the endpoint q̄. This was achieved by means of the solutions of the dynamics for the
reference control ū(·). It is not necessary to use this specific flow, but any embedding
of the reference trajectory into a smooth family of trajectories can be used.

Definition 4.4.1 (Embedding of a controlled trajectory). An embedding E of
the reference controlled trajectory Γ = (x̄(·), ū(·)) defined on [0,T ] is a family of
controlled trajectories

{
Γ E(·) = (xE(·; p),uE(·; p)) : uE(·; p) ∈U , p ∈ NE

0

}

with the following properties:

1. NE
0 is a neighborhood of p̄, and for every point p∈NE

0 the pair (xE(·; p),uE(·; p))
is a controlled trajectory defined over the full interval [0,T ];

2. for p = p̄, the controlled trajectory (xE(·; p̄),uE(·; p̄)) is given by the controlled
reference trajectory,

(xE(t; p̄),uE(t; p̄)) = (x̄(t), ū(t)) for all t ∈ [0,T ];

3. for each t ∈ [0,T ] the flow defined by the embedding

ΦE
t (·) : NE

0 →M, p �→ΦE
t (p) = xE(t; p),
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is a C1-diffeomorphism from NE
0 onto some neighborhood NE

t of x̄(t), and the
partial derivatives of ΦE

t (·) with respect to the initial condition p are continuous
jointly in (t, p).

Under the technical assumptions made in Sect. 4.3, as was the case on an open
subset M of Rn, also on manifolds it is always possible to construct an embedding
of the controlled reference trajectory (x̄(·), ū(·)) using the flow induced by the
reference control ū (analogous to Proposition 4.2.1). The same control is used
for all controlled trajectories, uE(t; p) = ū(t) for all t ∈ [0,T ], and xE(t; p) is the
corresponding trajectory with initial condition xE(0; p) = p. We again call this the
canonical embedding of the controlled reference trajectory. While this is a natural
way to construct an embedding, it is not required that the embedding be given in
this form. In fact, only the properties postulated in Definition 4.4.1 are needed in the
construction, not actual properties of the reference vector field (t,x) �→ f (x, ū(t)).
It is only the flow that determines how to move vectors and covectors along the
reference trajectory. Examples can be given of vector fields that do not satisfy the
C1-Carathéodory conditions, but for which an embedding of the desired smoothness
properties still exists. The reason for this lies in the fact that flows of vector fields
can be “nicer” than the actual vector fields that generate them. Simply put, flows
have smoothing effects. Generalizations along these lines are given in the research
of H. Sussmann (e.g., see [244, 247, 248]).

We now proceed to define point variations. Point variations include the needle
variations CUT and PASTE defined earlier and, more generally, are a generalization
of the variations Weierstrass made in the proof of his side condition in the calculus
of variations. They are the fundamental tool for calculating approximating vectors to
the reachable set. The definition below goes back to H. Sussmann, and it formalizes
a general mechanism for the construction of approximating curves κV to the
reachable set at q̄. As before, the procedure is to change the reference trajectory
infinitesimally as a function of a one-dimensional parameter α , i.e., by making
variations in the control. The guiding principle behind the construction is to generate
as many tangent vectors as possible that still can be combined into an approximating
cone K . The framework presented here applies directly to so-called high-order
variations and thus allows for the inclusion of the corresponding tangent vectors (see
also [137, 140]). Recall that the variations CUT and PASTE can always be made,
regardless of the structure of the reference control or trajectory. If the reference
control has special properties, then this structure may be used to make additional
variations. For example, if the reference control takes values in the interior of the
control set, point variations can be defined that both increase and decrease the values
of the reference control, while this is not possible if the values are at their upper
or lower limits. In this way, the Legendre–Clebsch condition will be derived in
Sect. 4.6.

Definition 4.4.2 (Point variation). Given an embedding E of a controlled refer-
ence trajectory Γ = (x̄(·), ū(·)) defined on [0,T ], a point variation V along E is a
1-parameter family of variations characterized by a 7-tuple,
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V = {t̄,ε, t1(·), t2(·),Δ+(·),ξ (·, ·),η(·, ·)},

consisting of

1. a time t̄ ∈ [0,T ] that determines the anchor point for the variation on the
controlled reference trajectory, x̄(t̄), and a positive number ε > 0 that defines
the domain [0,ε] for the 1-parameter family of variations,

2. continuous functions t1 : [0,ε]→ [0,T ], t2 : [0,ε]→ [0,T ], and Δ+ : [0,ε]→ [0,∞)
that satisfy

t1(0) = t2(0) = t̄ and Δ+(0) = 0,

3. and a family of admissible controlled trajectories (ξ (α, ·),η(α, ·)), parameter-
ized by α ∈ [0,ε] and defined on the interval [0,Δ+(α)],

D = {(α,s) : 0≤ α ≤ ε,0 ≤ s≤ Δ+(α)},

such that ξ : D → M, (α,s) �→ ξ (α,s), is continuous in both variables and
satisfies the initial condition

ξ (α,0) = x̄(t1(α)) for all α ∈ [0,ε].

For ε sufficiently small, for each α ∈ [0,ε], this one-parameter family of
variations gives rise to a new controlled trajectory (xV

α (·),uV
α (·)), which we now

define. As with the variations CUT and PASTE, it is advantageous to parameterize
curves as images of a curve πV (·) in the neighborhood NE

0 of p̄ introduced in the
embedding.

Lemma 4.4.1. For ε sufficiently small, there exists a continuously differentiable
curve πV : [0,ε]→ NE

0 , α �→ πV (α), such that z = πV (α) is the unique solution to
the equation

xE(t2(α);z) = ξ (α,Δ+(α)) (4.20)

in NE
0 .

Proof. The set V = {(t,q) : 0 ≤ t ≤ T, q ∈ NE
t } is the image of [0,T ]×NE

0 under
the flow of the embedding (t, p) �→ (t,ΦE

t (p)) = (t,xE(t; p)). This flow is a C1-
diffeomorphism, and thus V is a neighborhood of {(t, x̄(t)) : 0 ≤ t ≤ T}. Since
limα→0 t2(α) = t̄ and

lim
α→0

ξ (α,Δ+(α)) = ξ (0,0) = x̄(t1(0)) = x̄(t̄),

for ε sufficiently small, the points (t2(α),ξ (α,Δ+(α)) lie in V and thus
ξ (α,Δ+(α)) ∈ NE

t2(α)
. But then there exists a unique point z = πV (α) ∈ NE

0 such
that

ξ (α,Δ+(α)) =ΦE
t2(α)(z) = xE(t2(α);z).
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Since the flow ΦE
t2(α)

: NE
0 → NE

t2(α)
is a diffeomorphism, by the implicit function

theorem this solution πV is continuously differentiable as a function of α . �
The point variation V gives rise to the following 1-parameter family uV

α , 0 ≤
α ≤ ε , of admissible controls:

uV
α (t)=

⎧⎪⎪⎨
⎪⎪⎩

ū(t) if 0≤ t ≤ t1(α),
η(α, t− t1(α)) if t1(α)≤ t ≤ t1(α)+Δ+(α) = t2(α)+Δ(α),
uE(t−Δ(α);πV (α)) if t2(α)+Δ(α)≤ t ≤ T +Δ(α),

with corresponding trajectory given by

xV
α (t)=

⎧⎪⎪⎨
⎪⎪⎩

x̄(t) if 0≤ t ≤ t1(α),
ξ (α, t− t1(α)) if t1(α) ≤ t ≤ t1(α)+Δ+(α) = t2(α)+Δ(α),
xE(t−Δ(α);πV (α)) if t2(α)+Δ(α)≤ t ≤ T +Δ(α).

Definition 4.4.3 (Controlled trajectories (xV
α ( · ),uV

α ( · )) generated by a point
variation). We call the 1-parameter family (xV

α (·),uV
α (·)), 0 ≤ α ≤ ε , the con-

trolled trajectories generated by the variation V .

Thus, using the variation V , a modification of the controlled reference trajectory
is defined as follows: t̄ denotes the time at which the variation is made and x̄(t̄)
is the point on the controlled reference trajectory where the variation is anchored.
All the actual computations will be made at t̄. The functions t1(α) and t2(α),
respectively, denote the times at which a change from the reference trajectory is
initiated and when the return to the reference trajectory is made in the form of
following the trajectory of the embedding. Thus the control is initially given by
ū(t) on the interval [0, t1(α)] and then is again given by the restriction of the control
uE(·;πV (α)) of the embedding to the interval [t2(α),T ], but shifted by the time
Δ(α). Overall, the time Δ−(α) = t2(α)− t1(α) has been “taken away” from the
reference control. Note that while typically t2(α) > t1(α), this is not required.
The piece of the reference trajectory over the interval (t1(α), t2(α)) is replaced
by the trajectory ξ (α, ·) corresponding to the admissible control η(α, ·),which
is used for a time interval of length Δ+(α). Hence ξ (α,Δ+(α)) is the point to
which the variation corresponding to a fixed value α steers the system in time
t1(α) +Δ+(α) = t2(α) +Δ(α). At this point, the trajectory switches back to the
“reference” trajectory in the sense that from now on, it follows the trajectory of
the embedding of Γ that passes through this point ξ (α,Δ+(α)) at time t2(α).
But note that we do not just pick up the trajectory of the embedding that passes
through ξ (α,Δ+(α)) at time t1(α)+Δ+(α), the total time that has elapsed since the
beginning of the variation. Rather, the point ξ (α,Δ+(α)) is taken as initial condition
for the trajectory of the embedding at time t2(α). This corresponds to still using the
full control uE(·;πV (α)) � [t2(α),T ] over the interval [t2(α) + Δ(α),T + Δ(α)]
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Fig. 4.15 Point variations

and allows us to make variations in the terminal time (see Fig. 4.15). The overall net
change of time in the variation is therefore given by Δ(α) = Δ+(α)−Δ−(α). In
particular, variations for which Δ(α) ≡ 0 are “equal-time” variations and generate
curves that lie in ReachΣ ,T (p̄).

Summarizing, the family of controlled trajectories obtained from the point
variation V is given by

Γ V =
{
Γ V
α =

(
xV
α (·),uV

α (·)
)
, 0≤ α ≤ ε

}
,

and for each α ∈ [0,ε], the terminal point xV
α (T +Δ(α)) lies in the reachable set

ReachΣ (p̄). However, our assumptions do not guarantee that the curve

κV : [0,ε]→ ReachΣ (p̄),

α �→ κV (α) = xV
α (T +Δ(α)) = xE(T ;πV (α)), (4.21)

is differentiable, and even if the derivative of this curve κV at α = 0 exists, it may
be zero. As before, a nonzero vector

κ̇V (0) =

(
d

dα |α=0

)
κV (α) = 0,

will be called a tangent vector to the reachable set ReachΣ (p̄) at q̄. As with the
variations CUT and PASTE introduced earlier, κ̇V (0) will be computed as the image
of the tangent vector ζ̇V (0), where ζV (·) is the curve defined as

ζV : [0,ε]→M, α �→ ζV (α) = xE(t̄;πV (α)), (4.22)
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with κV (α) the image of ζV (α) under the flow of the embedding from time t̄ to the
terminal time T ,

κV (α) =ΦE
T,t̄

(
ζV (α)

)
, (4.23)

andΦE
t,s is the mapping that moves points from time s to time t along the flow of the

embedding,

ΦE
t,s : NE

s → NE
t , ΦE

t,s =ΦE
t ◦ (ΦE

s )
−1.

It is easy to see that the variations CUT and PASTE are examples of point
variations in the sense of this definition:

Variation V1 (CUT): For t̄ ∈ (0,T ] define

t1(α) = t̄−α, t2(α) = t̄, and Δ+(α) = 0.

Since no controlled trajectory is inserted, we simply have ξ (α,0) = x̄(t1(α)) and
do not need to specify η . Undoing all the definitions, we see that the curve ζV1(α)
is given by

ζV1(α) = xE(t̄;πV1(α)) = xE(t2(α);πV1(α))

= ξ (α,Δ+(α)) = ξ (α,0) = x̄(t1(α)) = x̄(t̄−α).

Variation V2 (PASTE): Pick a value v ∈U , and for t̄ ∈ [0,T ] let

t1(α) = t2(α) = t̄, Δ+(α) = α.

The control η is constant, given by η(α,s) ≡ v for all s ∈ [0,α], and ξ (α, ·) is the
corresponding trajectory. By choosing ε small enough, this solution exists on [0,ε].
Note that for α1 ≤ α2, the trajectory ξ (α1, ·) is just the restriction of the trajectory
ξ (α2, ·) to the interval [0,α1]. Hence the curve ζV2(α) is given by the value at time
α of the inserted trajectory,

ζV2(α) = xE(t̄;πV2(α)) = xE(t2(α);πV2(α)) = ξ (α,α) = xV2
α (t̄ +α).

4.4.2 Variational Vector and Covector Fields

We have seen for the variations CUT and PASTE that it was easy to compute the
tangent vectors ζ̇V (0) at the anchor point x̄(t̄), and then the tangent vectors κ̇V (0)
to the reachable set at q̄ were computed as images under the differential of the
flow ΦE

t̄ ,T . This leads to the concept of a variational vector field along a controlled
reference trajectory as a curve in the tangent bundle of M (see Appendix C). For our
purpose, we do not really need a formal definition of the tangent bundle T M as a
manifold, and hence merely state that it simply consists of all the pairs (q,θ ), where
q is a point on M and θ is a tangent vector to M at q, θ ∈ TqM.
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Definition 4.4.4 (Variational vector field). Given a controlled trajectory Γ =
(x̄(·), ū(·)) defined on [0,T ] and an embedding E of Γ , a variational vector field
along (Γ ,E) is a mapΘ : [0,T ]→ T M, t �→ (x̄(t),θ (t)), i.e., θ (t) ∈ Tx̄(t)M for all t,

such that with
(
ΦE

t,s

)
�

denoting the differential of the flow ΦE
t,s =ΦE

t ◦
(
ΦE

s

)−1
, we

have that

θ (t) =
(
ΦE

t,s

)
�
θ (s) for all s, t ∈ [0,T ].

Thus, a variational vector field along (Γ ,E) is obtained by moving the vector
θ (0) along the reference trajectory using the differential of the flow. Given any
t̄ ∈ [0,T ] and any θ̄ ∈ Tx̄(t)M, there exists a unique variational vector field that

satisfies θ (t̄)= θ̄ , namely θ (t)=
(
ΦE

t,t̄

)
�
θ̄ . As before, for the canonical embedding,

a variational vector field simply is a solution to the variational equation (4.9) over the
interval [0,T ], and this solution is uniquely determined by its value at one specific
time.

As we have seen in the formulation of necessary conditions for optimality in
Sect. 4.2.3, it is equally important to move the multiplier λ back along the flow
of the controlled reference trajectory. Geometrically, multipliers are covectors and
correspond to linear functionals on the tangent spaces. Hence this naturally leads to
the dual notion of a variational covector field as a curve in the cotangent bundle T ∗M
(see Appendix C). Again, for our purpose it suffices to think of the cotangent bundle
as the collection of all pairs (q,λ ), where q is a point on M and λ is a cotangent
vector to M at q, λ ∈ T ∗q M. Variational covector fields are defined in terms of the
adjoint of the differential of the flow,

(
ΦE

t,s

)
�
, also called the pullback of the flow

ΦE
t,s. Recall that if A∈R

n×m defines the linear mapping L :Rm→R
n, x �→ L(x) =Ax,

then the adjoint of A, A∗, is the unique linear mapping L∗ : Rn → R
m, y �→ L∗(y) =

A∗y, such that 〈y,Ax〉= 〈A∗y,x〉 for all x ∈R
m and all y ∈R

n. For the inner product,
we simply get 〈y,Ax〉= yT Ax = (AT y)T x =

〈
AT y,x

〉
, and thus A∗ = AT . If we write

y as a row vector, y ∈ (Rn)∗, then this simplifies to 〈y,Ax〉 = yAx = 〈yA,x〉, and
it is not necessary to take the transpose. Consistent with our notation of writing
multipliers as row vectors, we therefore let the pullback act on the right. That is,
λ (s)

(
ΦE

s,t

)∗ denotes the covector obtained from λ (s) by moving λ (s) along the
flow of the embedding from time s to time t. For a variational covector field, this
covector must be the same as λ (t).

Definition 4.4.5 (Variational covector field). Given a controlled trajectory Γ =
(x̄(·), ū(·)) defined on [0,T ] and an embedding E of Γ , a variational covector field
along (Γ ,E) is a mapΛ(·) : [0,T ]→ T ∗M, t �→ (x̄(t),λ (t)), i.e., λ (t) ∈ T ∗x̄(t)(M) for
all t, such that

λ (s)
(
ΦE

s,t

)∗
= λ (t) for all s, t ∈ [0,T ].

The following simple but very important fact immediately follows from these
definitions.
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Proposition 4.4.1. If θ is a variational vector field along (Γ ,E) and λ is a
variational covector field along (Γ ,E), then the function h : [0,T ] → R, t �→
〈λ (t),θ (t)〉, is constant.

Proof. For all s, t ∈ [0,T ] we have that

〈λ (t),θ (t)〉= 〈λ (s)(ΦE
s,t

)�
,θ (t)〉= 〈λ (s),(ΦE

s,t

)
�
θ (t)〉= 〈λ (s),θ (s)〉. ��

Proposition 4.4.2. For the canonical embedding E, variational vector fields are
solutions to the variational equation

θ̇ (t) =
∂ f
∂x

(x̄(t), ū(t))θ (t),

and variational covector fields are solutions to the corresponding adjoint equation

λ̇ (t) =−λ (t)∂ f
∂x

(x̄(t), ū(t)).

Proof. The result for variational vector fields has already been shown in Proposi-
tion 4.2.2. To compute the pullback of the flow, observe that for all variational vector
fields θ we have that

0≡ d
dt
〈λ (t),θ (t)〉= 〈λ̇ (t),θ (t)〉+ 〈λ (t), θ̇(t)〉

= 〈λ̇ (t),θ (t)〉+
〈
λ (t),

∂ f
∂x

(x̄(t), ū(t))θ (t)
〉

= 〈λ̇ (t),θ (t)〉+
〈
λ (t)

∂ f
∂x

(x̄(t), ū(t)),θ (t)
〉

=

〈
λ̇(t)+λ (t)

∂ f
∂x

(x̄(t), ū(t)),θ (t)
〉
.

Note once more that there is no need to take transposes, since we write covectors
as row vectors. Hence the covector λ̇ (t)+λ (t) ∂ f

∂x (x̄(t), ū(t)) ∈ T ∗x̄(t)M is orthogonal
to every tangent vector θ ∈ Tx̄(t)M. But this is possible only for the zero vector, and

thus we have that λ̇ (t) =−λ (t) ∂ f
∂x (x̄(t), ū(t)). �

4.4.3 C1-Extendable Variations

So far, we have only generated curves κV (·) in the reachable set ReachΣ(p̄) and
calculated their tangent vectors κ̇V (0). We need to be able to combine finitely
many tangent vectors generated by different point variations into an approximating
map. In order to do so, Definition 4.4.2 given above is not strong enough. As for
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the variations CUT and PASTE, we also need these variations to be stable in the
sense that they can be made at nearby points as well. We therefore require that
these variations, or rather the corresponding flows of trajectories, extend into a
neighborhood of x̄(t̄) such that it is possible to apply these maps not only at the
points on the reference trajectory, but also at points in a full neighborhood of it. As
in the classical construction given earlier, the reason for this requirement simply is
that subsequent variations will not be made from the reference trajectory, but only
from nearby trajectories defined by the embedding.

Definition 4.4.6 (C1-Extendable point variation). A point variation V is called
C1-extendable if there exist a neighborhood W of x̄(t̄) and a map ξ̃ with values in
M defined on the set

D̃ = {(z;α,s) : z ∈W, 0≤ α ≤ ε, 0≤ s≤ Δ+(α)}

such that the following conditions are satisfied:

1. For (z,α) fixed, ξ̃ (z;α, ·) is an admissible controlled trajectory of the system Σ
that starts at the point z, ξ̃ (z;α,0) = z.

2. If the initial point z corresponds to the initial point of the variation V for α , i.e., if
z = x̄(t1(α)), then ξ̃ (z;α, ·) is given by the trajectory ξ (α, ·) of the variation, i.e.,

ξ̃ (x̄(t1(α));α,s) = ξ (α,s).

3. For (α,s) fixed, ξ̃ (·;α,s) is continuously differentiable on W and both ξ̃ and ∂ ξ̃
∂ z

are continuous as functions of all variables on D̃.

Proposition 4.4.3. The variations CUT and PASTE are C1-extendable.

Proof. This is trivial for the variation CUT: in this case Δ+(α) ≡ 0, and we can
simply define ξ̃ (z;α,0) ≡ z. All requirements are met, since from the definition of
a point variation we have that x̄(t1(α)) = ξ (α,0) and thus

ξ̃ (x̄(t1(α));α,0) = x̄(t1(α)) = ξ (α,0).

For the variation PASTE, we choose as ξ̃ the obvious map that extends the
definition of ξ as a solution to the dynamics with the constant control v∈U . Thus we
define ξ̃ (z;α,s) as the value at time s of the trajectory corresponding to the constant
control v that starts at z at time 0. If W is chosen as a sufficiently small neighborhood
of x̄(t̄), then it follows from the continuous dependence of the solution on initial
conditions that this solution exists on the interval [0,Δ+(α)] for all α ∈ [0,ε), and
by construction, the map ξ̃ agrees with ξ for initial points z= x̄(t1(α)). The required
smoothness properties of ξ̃ are again immediate consequences of the C1-dependence
of the solution of an ordinary differential equation on initial conditions. �

We then use the function ξ̃ to extend the mapping that assigns to the anchor point
x̄(t̄) the point ζV (α) = xE(t̄;πV (α)) generated by the variation
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Fig. 4.16 Illustration of the
definition of the mapping
ΨV (α ; z); the trajectories of
the embedding are
represented by horizontal
lines

x̄(t̄) �→ ζV (α) = xE(t̄;πV (α))

into the neighborhood W of x̄(t̄): define

ΨV : [0,ε]×W →M, (α,z) �→ΨV (α;z),

by

ΨV (α;z) =ΦE
t̄,t2(α) ◦ ξ̃

(
ΦE

t1(α),t̄(z);α,Δ+(α)
)
. (4.24)

Geometrically, starting at the point z ∈W , the flow of the embedding is used to
move z from time t̄ to time t1(α). Then the extension of the variation corresponding
to α is run for the full time Δ+(α). The resulting point ξ̃ (ΦE

t1(α),t̄
(z),α,Δ+(α) is

then moved back to time t̄ by picking up the trajectory of the embedding that passes
through ξ̃ (ΦE

t1(α),t̄
(z),α,Δ+(α) at time t2(α) (see Fig. 4.16).

From these definitions, it follows that

ΨV (α; x̄(t̄)) =ΦE
t̄,t2(α) ◦ ξ̃

(
ΦE

t1(α),t̄(x̄(t̄));α,Δ+(α)
)

=ΦE
t̄,t2(α) ◦ ξ̃ (x̄(t1(α)));α,Δ+(α))

=ΦE
t̄,t2(α) ◦ ξ (α,Δ+(α))

=ΦE
t̄,t2(α) ◦ xE(t2(α);πV (α))

= xE(t̄;πV (α) = ζV (α),

and for α = 0,

ΨV (0;z)≡ΦE
t̄,t2(0)

◦ ξ̃
(
ΦE

t1(0),t̄
(z);0,Δ+(0)

)

=ΦE
t̄,t̄ ◦ ξ̃

(
ΦE

t̄,t̄(z);0,0
)
= ξ̃ (z;0,0) = z,

i.e.,ΨV (0; ·) = id, the identity map.
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Proposition 4.4.4. The functionΨV =ΨV (α;z) is continuous on [0,ε]×W, con-

tinuously differentiable in z for fixed α and the partial derivative ∂ΨV

∂ z is continuous
on [0,ε]×W. For x,y ∈W and α ∈ [0,ε], define a function r = r(x,y,α) by

ΨV (α;x)−ΨV (α;y) = x− y+ r(x,y,α)(x− y). (4.25)

Then, for any convex neighborhood W ′ ⊂W of x̄(t̄) with compact closure in W,
there exists a function C : [0,ε]→ R+ such that ||r(x,y,α)|| ≤C(α) for all x and y
in W and limα→0+C(α) = 0.

Proof. Since the flows ΦE
s,t are diffeomorphisms, and since ξ̃ is continuously

differentiable on W , the smoothness properties ofΨV are a direct consequence of
our assumptions and the corresponding properties of the flows. Let W ′ be a convex
neighborhood W ′ ⊂W of x̄(t̄) that has compact closure in W . We need to show that
the remainder r defined by Eq. (4.25) is of order o(1) uniformly for x,y ∈W ′. On a
convex neighborhood, this remainder can be expressed explicitly with the following
calculation already made earlier:

ΨV (α;x)−ΨV (α;y) =
∫ 1

0

d
ds

(
ΨV (α;y+ s(x− y))

)
ds

=

(∫ 1

0

∂ΨV

∂x
(α;y+ s(x− y))ds

)
(x− y)

= x− y+

(∫ 1

0

[
∂ΨV

∂x
(α;y+ s(x− y))− 1

]
ds

)
(x− y)

= x− y+ r(x,y,α)(x− y),

with the last line defining r. It therefore suffices to show that ||r(x,y,α)|| ≤ C(α)
with C(α)→ 0 as α ↘ 0. It follows from the explicit form we just computed that r
is continuous for x,y in the compact closure of W ′. Let C(α) = supx,y∈W ′ r(x,y,α).
SinceΨV (0;z) = z, we have that r(x,y,0)≡ 0. A continuous function on a compact
set is uniformly continuous, and this therefore implies that limα→0+C(α) = 0. �

4.4.4 Construction of an Approximating Cone

We are now ready to define the collection of tangent vectors that can be combined
into an approximating map. As in the classical construction, the ability to make
variations at nearby points allows us to combine variations made at the same time.
We therefore consider only variational vectors that satisfy Knobloch’s condition [K]
and lie in the following sets: let

Q(t̄) be the set of all tangent vectors ζ̇V (0) generated by C1-extendable point
variations at time t̄ for which this derivative exists and is nonzero,
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and let

P(t̄) be the set of all vectors w ∈ Tx̄(t̄)M for which there exist a sequence {tn}n∈N,
tn = t̄, tn converging to t̄, and a sequence of vectors {wn}n∈N, wn ∈ Q(tn), such
that wn → w as n→ ∞.

As in Sect. 4.2, the vectors in P(t̄) correspond to approximating directions that
can be generated not only at some specific time t̄, but also at nearby points on the
reference trajectory. We have already seen in the proof of Theorem 4.2.1 that this is
true for all t̄ ∈ [0,T ] for the tangent vectors generated by the variations PASTE, and
for the tangent vectors generated by the variations CUT this still holds a.e. on [0,T ].

Moving the vectors in P(t̄) forward to the terminal point q̄ by means of the
embedding, we generate tangent directions to the reachable set at q̄. Let

P∗(t̄) =
{(
ΦE

T,t̄

)
∗w : w ∈ P(t̄)

}

and let K be the convex hull generated by all possible vectors in P∗(t̄),

K = co

( ⋃
0≤t̄≤T

P∗(t̄)

)
.

Then we have the main result of this construction:

Theorem 4.4.1. K is a Boltyansky approximating cone to ReachΣ (p̄) at q̄.

Proof. This proof is the same as for Theorem 4.2.1, only using the more general
concepts formulated above. We therefore only indicate the main steps.

As before, it suffices to show that
⋃

0≤t̄≤T P∗(t̄) is a Boltyansky approximating
cone and for this, given any vectors v1, . . . ,vr, vi ∈ P∗(ti) for some ti, not necessarily
distinct, we need to construct an approximating map.

The key step consists in showing that the endpoint mapping for vectors vi of the
form vi = (ΦE

T,ti
)∗wi with wi ∈ Q(ti) for distinct times ti, say t1 < · · · < tr, is an

approximating map for the vectors vi. Let Vi be C1-extendable point variations that
generate the vectors wi. For sufficiently small δ > 0 define Ξ : Qr

δ (0)→ ReachΣ (p̄)
by

Ξ(α1, . . . ,αr) =ΦE
T,tr ◦ΨVr (αr; ·)◦ΦE

tr ,tr−1
◦ · · · ◦ΦE

t2,t1 ◦ΨV1 (α1; ·)◦ΦE
t1,0(p̄).

(4.26)
As before, it follows from our general regularity assumptions that Ξ is continuous,
and the proof that Ξ is an approximating map is by induction on r, the number of
point variations made. Let r = 1. Since the first variation is made from the reference
trajectory, we have ΨV (α; x̄(t̄)) = ζV (α), and thus, if we set t̄ = t1, the map Ξ
reduces to the curve κV (α),
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Ξ(α) = ΦE
T,t̄ ◦ΨV (α; ·)◦ΦE

t̄,0(p̄) =ΦE
T,t̄ ◦ΨV (α; x̄(t̄))

= ΦE
T,t̄

(
ζV (α)

)
= κV (α) ∈ ReachΣ (p̄).

Furthermore, by Taylor’s theorem we have that

Ξ(α) = Ξ(0)+Ξ ′(0)α+ o(α) = x̄(T )+ κ̇V (0)α+ o(α)

= q̄+α
(
ΦE

T,t̄

)
∗ ζ̇

V (0)+ o(α) = q̄+α
(
ΦE

T,t̄

)
∗w+ o(α)

= q̄+αv+ o(α),

and thus Ξ is an approximating map.
Again, for reasons of notational simplicity, we formulate the inductive step only

for r = 2. It is assumed that the vectors w1 and w2 are generated by C1-extendable
variations V1 and V2 at times t1 < t2,

vi = κ̇Vi(0) =
(
ΦE

T,ti

)
∗ ζ̇

Vi(0) =
(
ΦE

T,ti

)
∗wi for i = 1,2.

As before, we need to show that the map

Ξ =ΦE
T,t2 ◦ΨV2 (α2; ·)◦ΦE

t2,t1 ◦ΨV1 (α1; ·)◦ΦE
t1,0(p̄)

is approximating, i.e., takes values in ReachΣ (p̄) and that its linear approximation
is of the form

Ξ(α1,α2) = q̄+α1v1 +α2v2 + o(α1 +α2).

We first show that the image lies in the reachable set. Let t(1)i , t(2)i , Δ i
+, and

ξi, i = 1,2, be the functions t1, t2, Δ+, and ξ in the definition of a point variation
for the variations V1 and V2, respectively, and also let ξ̃2 be the extension of ξ2.
Disentangling the definitions of the construction (cf. Eq. (4.22) and (4.20)), we have
that

ΦE
t2,t1 ◦ΨV1 (α1; ·)◦ΦE

t1,0(p̄) =ΦE
t2,t1 ◦ΨV1(α1; x̄(t1)) =ΦE

t2,t1 ◦ xE(t1;πV (α1))

=ΦE
t2,t1 ◦ΦE

t1,t
(2)
1 (α1)

◦ xE(t(2)1 (α1);πV (α1))

=ΦE
t2,t

(2)
1 (α1)

◦ ξ1(α1,Δ1
+(α1)).

This is the actual state into which the corresponding control steers the initial point
p̄ in time t2, and let us simply denote it by y = y(α1). Since y no longer lies on the
reference trajectory, now the extension ξ̃2 needs to be used to carry out the second
variation. We have
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Ξ(α1,α2) =ΦE
T,t2 ◦ΨV2 (α2; ·)◦ΦE

t2,t1 ◦ΨV1 (α1; ·)◦ΦE
t1,0(p̄)

=ΦE
T,t2 ◦ΨV2 (α2;y(α1))

=ΦE
T,t2 ◦ΦE

t2,t
(2)
2 (α2)

◦ ξ̃
(
ΦE

t
(1)
2 (α2),t2

(y(α1));α2,Δ+(α2)

)

=ΦE
T,t(2)2 (α2)

◦ ξ̃
(
ΦE

t(1)2 (α2),t2
(y(α1));α2,Δ+(α2)

)
.

It is part of the definition of a C1-extendable variation that the curves ξ̃ (z;α2, ·) are
admissible controlled trajectories. Since the times ti are all distinct, for sufficiently

small ‖α‖ we can guarantee that t(2)1 (α1) < t(1)2 (α2), and thus this defines a
controlled trajectory of the system. HenceΞ(α1,α2) is the endpoint of an admissible
controlled trajectory and thus lies in ReachΣ (p̄).

It remains to show that the map is approximating. This is the same argument as
for the variations CUT and PASTE. From the inductive beginning we have that

ΨV1 (α1; ·)◦ΦE
t1,0(p̄) =ΨV1(α1; x̄(t1)) = ζV1(α1) = x̄(t1)+α1ζ̇V1(0)+ o(α1).

(4.27)

Applying the diffeomorphism ΦE
t2,t1 to Eq. (4.27), we get, again using Taylor’s

theorem, that

ΦE
t2,t1 ◦ΨV1 (α1; ·)◦ΦE

t1,0(p̄) =ΦE
t2,t1

(
ΨV1(α1; x̄(t1))

)

=ΦE
t2,t1

[
x̄(t1)+α1ζ̇V1(0)+ o(α1)

]

=ΦE
t2,t1 (x̄(t1))+

(
ΦE

t2,t1

)
∗
[
α1ζ̇V1(0)+ o(α1)

]
+ o(α1)

= x̄(t2)+α1
(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1). (4.28)

Now the second variation V2 is made, but starting from this point, not from the
point x̄(t̄2) on the reference trajectory. Proposition 4.4.4 provides the required
control over the error made in this process. For α1 sufficiently small, the point
x̄(t2) +α1

(
ΦE

t2,t1

)
∗ ζ̇

V1(0) + o(α1) lies in a prescribed compact neighborhood of

x̄(t2) where the proposition will apply. Taking x= x̄(t2)+α1
(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+o(α1)
and y = x̄(t2) in Proposition 4.4.4, it follows that

ΨV2 (α2; ·)◦ΦE
t2,t1 ◦ΨV1 (α1; ·)◦ΦE

t1,0(p̄)

=ΨV2

(
α2; x̄(t2)+α1

(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1)
)

=ΨV2(α2; x̄(t2))+α1
(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1)+ o(1) ·O(α1).
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The additional remainder in this equation is generated by the term

C(α2)
∥∥∥α1

(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1)
∥∥∥

arising in the bound in Proposition 4.4.4. The error made by switching back to the
reference trajectory from the new trajectory reached after the first variation is thus
of order O(α1), and it is propagated only with order o(1) as α2 → 0. Since we still
have that

o(1) ·O(α1)

α1 +α2
→ 0 as α1 +α2 → 0,

it follows that these remainders together are of order o(α1 +α2). Furthermore, for
the second variation V2 we also have that

ΨV2(α2; x̄(t2)) = ζV2(α2) = x̄(t2)+α2ζ̇V2(0)+ o(α2).

Combining these equations yields

ΨV2 (α2; ·)◦ΦE
t2,t1 ◦ΨV1 (α1; ·)◦ΦE

t1,0(p̄)

= x̄(t̄2)+α2ζ̇V2(0)+α1
(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1 +α2).

Finally, moving all the vectors with the flow ΦE
T,t2

to the terminal point, we obtain

Ξ(α1,α2) = ΦE
T,t2

[
x̄(t̄2)+α2ζ̇V2(0)+α1

(
ΦE

t2,t1

)
∗ ζ̇

V1(0)+ o(α1 +α2)
]

= ΦE
T,t2 (x̄(t̄2))+α2

(
ΦE

T,t2

)
∗
[
ζ̇V2(0)

]

+α1
(
ΦE

T,t2

)
∗
[(
ΦE

t2,t1

)
∗ ζ̇

V1(0)
]
+ o(α1 +α2)

= q̄+α1κ̇V1(0)+α2κ̇V2(0)+ o(α1 +α2)

= q̄+α1v1 +α2v2 + o(α1 +α2).

Thus Ξ is an approximating map for v1 = κ̇V1(0) and v2 = κ̇V2(0). This concludes
the main step of the proof.

Now consider the general case and suppose v1, . . . ,vr are arbitrary vectors from⋃
0≤t̄≤T P∗(t̄). There exist times ti ∈ [0,T ], not necessarily distinct, and vectors wi ∈

P(ti) such that vi = (ΦE
T,ti

)∗wi. By definition of P(ti), there exist sequences {ti,n}n∈N,
ti,n = ti, ti,n → ti, and vectors wi,n ∈ Q(ti,n) converging to wi. Given ε > 0, choose
integers n1, . . . ,nr such that the times ti,ni are all distinct and such that ‖wi−wi,ni‖<
ε . It follows from the previous step of the proof that there exists an approximating
map Ξ for the vectors v′i = (ΦE

T,ti
)∗wi,ni . But this, by Definition 4.1.2, defines an

approximating map for the vectors v1, . . . ,vr. Hence
⋃

0≤t̄≤T P∗(t̄), and thus also
K , is an approximating cone. �



286 4 The High-Order Maximum Principle

Theorem 4.4.1 once more immediately gives necessary conditions for the point
q̄ to lie in the boundary of the reachable set. In this case K cannot be the full
tangent space Tq̄M, and thus, as in the classical case, there exists a nonzero covector
λ̄ ∈ T ∗̄q M such that

〈λ̄ ,v〉 ≥ 0 for all v ∈K .

Moving the covector λ̄ backward along the controlled reference trajectory, we get
the following result:

Corollary 4.4.1. If q̄ ∈ ∂ ReachΣ (p̄), then there exists a nontrivial variational
covector field λ : [0,T ]→ T ∗M such that

〈λ (t),w〉 ≥ 0 for all w ∈ P(t). (4.29)

Abstract necessary conditions for optimality follow analogously to the derivation
given in Sect. 4.2.4. However, in order to get concrete conditions that go beyond
the conditions of the Pontryagin maximum principle (Theorem 4.2.3), it will
be necessary to include additional and substantially different variations into this
framework. This will be the topic of the remaining parts of this chapter. However,
we first need to establish the algebraic framework that allows us to compute these
high-order variations efficiently.

4.5 Exponential Representations of Flows

Exponential representations of flows of vector fields, coupled with important Lie-
algebraic formulas such as the Baker–Campbell–Hausdorff formula [256], provide
a powerful set of tools for computations involving nonlinear control systems. We
develop them here in a generality that is sufficient for our purpose. In Chap. 7, this
framework will also be used to make explicit computations for nonlinear systems
based on properties of the vector fields in the dynamics and their Lie brackets in
so-called canonical coordinates, a “good” set of coordinates that allows us to make
explicit computations in the construction of small-time reachable sets.

Let Ω ⊂ R
n be an open set, and without loss of generality, assume that X :

Ω → R
n is a C∞ vector field3 defined on Ω . For every point p ∈ Ω , there exist

a neighborhood V of p and an ε > 0 such that the initial value problem ẋ = X(x),
x(0) = q0 ∈V , has a unique solution defined for |t|< ε . So far, we have denoted this
solution by x(t;q0) or, if we wanted to emphasize the flow aspects, by ΦX

t (q0). The
most important property of solutions derived from their uniqueness is the semigroup
property: if s and t are times such that the corresponding solutions are defined, then

ΦX
s+t(q0) =ΦX

s (Φ
X
t (q0)).

3It obviously suffices for the vector fields to be of class Cr with r large enough that all derivatives
exist that need to be taken.
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q0

q1 = q0 exp(t1X)

q2 = q1 exp(t2Y)

q4 = q3 exp(t4Y)q5 = q4 exp(–t5X)

q3 = q2 exp(–t3X)

*

*

Fig. 4.17 p = q0 exp(t1X)
exp(t2Y )exp(−t3X)exp(t4Y )
exp(−t5X)

Many of the formal properties of solutions to differential equations follow from
this relation, the functional equation for the exponential. For this reason, even for
nonlinear vector fields, exponentials give rise to a powerful calculus to work with
solutions of differential equations.

Definition 4.5.1 (Exponential representation of solutions to differential
equations). Given a C1-vector field X defined on some open set Ω ⊂R

n, X :Ω →
R

n, we also denote the solution to the initial value problem ẋ = X(x), x(0) = q0, at
time t by

qt = q0etX = q0 exp(tX)∼ΦX
t (q0).

Thus qt = q0etX simply is another notation for the point at time t on the integral
curve of the vector field X that starts at q0 at time 0. For the beginning, we also
include the more standard classical notation ΦX

t (q0) relating the two with the
symbol ∼. However, there is one significant difference: in the exponential notation
we let the diffeomorphisms act on the right. Thus, the standard formulation f (x)
for the value of the function f at the point x would take the uncommon form x f .
While the chain rule is the reason to write compositions of functions in the standard
form f (x), for many other computations (as we shall see below), this uncommon
formulation becomes more useful. It is quite regularly used in Lie algebra (for
example, see [123]), and it significantly simplifies the formal calculations we shall
be using. For example, if X and Y are two vector fields, then the order of the flows
in the exponential notation

q0esX etY = q0 exp(sX)exp(tY )∼ΦY
t (ΦX

s (q0))

is much more natural for the integral curve of Y that starts at the point q0esX

than the common notation, which will become highly cumbersome as additional
concatenations are added (see Fig. 4.17).
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The main advantage of the exponential notation for the flow is that it equally applies
to the differential and pullbacks of the flow. In fact, the same notation will be used
for the flow of the original vector field and for any of its extensions that are generated
on arbitrary tensor fields. For example, a vector Y transported from q0 to qt = q0etX

along the flow of the vector field X is denoted simply by q0YetX . As was shown
in Proposition 4.4.2, this vector is the solution at time t of the variational equation
along the integral curve s �→ q0esX with initial condition Y (q0) at the point q0; the
traditional notation for this vector used so far is

q0YetX = q0Y exp(tX)∼ (
ΦX

t

)
∗Y (q0).

The true advantage of the exponential notation becomes clear in the following
important computation:

Proposition 4.5.1. Given two C1-vector fields X and Y defined on an open subset
Ω ⊂ R

n, for q ∈Ω and sufficiently small t let

V (t) = q0etXYe−tX = q0 exp(tX)Y exp(−tX)∼ (
ΦX
−t

)
∗Y (ΦX

t (q0)),

i.e., V (t) is the vector obtained by moving the vector field Y evaluated at the point
q0etX back to the initial point q0 along the flow of the vector field X. The vector-
valued curve V is continuously differentiable and

V̇ (t) =
dV
dt

(t) = q0etX [X ,Y ]e−tX ∼ (
ΦX
−t

)
∗ [X ,Y ](ΦX

t (q0)) (4.30)

with [X ,Y ] the Lie bracket of the vector fields X and Y . In particular,

V̇ (0) = q0[X ,Y ]∼ [X ,Y ](q0).

Proof. We first carry out the proof in the standard notation and then show how
these calculations simplify using the formal calculus of exponential representations.
Note, however, that it is the proof given here that justifies these formal exponential
computations.

Write Z(t) = Y (ΦX
t (q0)) for the vector field Y evaluated along the solution

ΦX
t (q0) to the initial value problem ẋ = X(x), x(0) = q0 (see Fig. 4.18). By

definition, the vector-valued function V (t) is the solution to the variational equation
along X at time s = 0 with initial condition given by Z(t) at time s = t. This is
a time-varying linear ODE, and its solution can be expressed in terms of the so-
called fundamental matrix (see Sect. 2.1). If we denote the fundamental matrix of
the variational equation along X by Ψ(s, t), then V (t) =Ψ(0, t)Z(t). (Recall that
Ψ(s, t) is the inverse toΨ(t,s).) Differentiating, we get

V̇ (t) =

(
dΨ
dt

(0, t)

)
·Z(t)+Ψ(0, t) · dZ

dt
(t).
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q0

ΦX(q0)t

Z(t) = Y(ΦX(q0))

Z(0) = Y(q0)

t

Fig. 4.18 Z(t) = q0 exp(tX)Y
∼ Y (ΦX

t (q0))

By the chain rule,
dZ
dt

(t) = DY (ΦX
t (q0)) ·X(ΦX

t (q0)),

and by definition of the fundamental matrix,

∂Ψ
∂ s

(s, t) = DX(ΦX
t (q0)) ·Ψ(s, t).

Differentiating the identityΨ(t,0)Ψ(0, t)≡ Id yields

DX(ΦX
t (q0))Ψ (t,0) ·Ψ(0, t)+Ψ(t,0) · dΨ

dt
(0, t)≡ 0,

which gives

dΨ
dt

(0, t) =−Ψ(t,0)−1DX(ΦX
t (q0)) · Id =−Ψ(0, t)DX(ΦX

t (q0)).

Substituting this relation into the equation for V̇ (t), we therefore get that

V̇ (t) =−Ψ(0, t)DX(ΦX
t (q0)) ·Z(t)+Ψ(0, t)DY (ΦX

t (q0)) ·X(ΦX
t (q0))

=Ψ(0, t)(DY ·X−DX ·Y )(ΦX
t (q0))

=Ψ(0, t)[X ,Y ](ΦX
t (q0)) =

(
ΦX
−t

)
∗ [X ,Y ](ΦX

t (q0)),

verifying Eq. (4.30).
Using exponential notation, this derivation simply follows by differentiating

V (t) = q0etXYe−tX using the product rule and interpreting the vector fields as
differential operators, [X ,Y ] = XY −YX ,
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d
dt

(
q0etXYe−tX)

= q0
(
etX X

)
Ye−tX − q0etXY

(
e−tX X

)

= q0etX (XY −YX)e−tX = q0etZ [Y,X ]e−tZ.

In this computation, we are also using that the vector field X commutes with its
own flow, i.e., that we have

(
q0etX

)
X = (q0X)etX . Here the expression on the left

represents the vector field X evaluated at the point q0etX , while the expression on the
right formally is the vector q0X moved from time s= 0 to time s= t along the flow of
the vector field X . But this gives the same vector. Comparing the two computations
above should convince the reader of the efficiency of the exponential notation. �

If X and Y are C∞-vector fields, then this procedure can be iterated. Recall that
adX(Y ) = [X ,Y ] and high-order brackets are defined by adn X(Y ) = [X ,adn-1 X(Y )].
It follows inductively that

dn

dtn |t=0

(
q0etXYe−tX)

= q0 adn X(Y )∼ adn X(Y )(q0),

and we therefore obtain the following Taylor series expansion:

Corollary 4.5.1 [256]. For two C∞-vector fields X and Y , we have the Taylor series
expansion

V (t) = q0etXYe−tX = q0 exp(tX)Y exp(−tX) =
∞

∑
n=0

(
tn

n!

)
q0 adn X(Y ).

Note that this series simply is an exponential of the operator ad, and in standard
notation it is written in the form

et adXY =
∞

∑
n=0

(
tn

n!

)
adn X(Y ) = Y + t[X ,Y ]+

t2

2!
[X , [X ,Y ]]+ · · · . (4.31)

We henceforth use both X(q0) and q0X , and we freely switch between V (t) =
q0etXYe−tX and the more common notationV (t)= (et adXY )(q0). By Corollary 4.5.1,
for small |t|, the vector (et adXY )(q0) can be approximated by the terms in this series
when all the vector fields are evaluated at q0.

The representation (4.31) is fundamental for many explicit computations in the
context of nonlinear systems. As one example that we shall use extensively, we
give an asymptotic infinite product expansion for an exponential Lie series4 due to
Sussmann [234]. However, we limit the derivation to the formal aspects and refer the
reader to Sussmann’s paper and textbooks on Lie algebra [52,123] for the algebraic
definitions and constructions. For later use, we need the expansion including all Lie

4This expansion is in terms of exponentials of elements in a Philip Hall basis [52] of the Lie
subalgebra L(X ) of the free associative algebra generated by a family of noncommutative
indeterminates X = {X1, . . .,Xr}. We refer the interested reader to [234] for a proof of these
algebraic constructions and to [52] for a definition of a Hall basis. We do not need these in our text.
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brackets of order≤ 5. This expansion will be used in Sects. 4.6.1 and 4.6.2 to derive
the Legendre–Clebsch and Kelley conditions for optimality of singular controls.

Proposition 4.5.2 [209]. Let X and Y be C∞-vector fields and let v and w be
Lebesgue integrable functions of t on [0,T ]; set

V (t) =
∫ t

0
v(s)ds, W (t) =

∫ t

0
w(s)ds, and U(t) =

∫ t

0
w(s)V (s)ds,

and let S(t) be the solution of the initial value problem Ṡ = S(vX +wY ), S(0) = Id.
Then S has an asymptotic product expansion of the form

S(t) = · · ·exp

(
1
2

∫ t

0
wV 2Uds · [[X ,Y ], [X , [X ,Y ]]]

)

exp

(∫ t

0
wVWUds · [[X ,Y ], [Y, [X ,Y ]]]

)

exp

(
1

24

∫ t

0
wV 4ds · ad4 X(Y )

)
exp

(
1
6

∫ t

0
wV 3Wds · [Y,ad3 X(Y )]

)

exp

(
1
4

∫ t

0
wV 2W 2ds · [Y, [Y, [X , [X ,Y ]]]]

)

exp

(
1
6

∫ t

0
wVW 3ds · [Y, [Y, [Y, [X ,Y ]]]]

)

exp

(
1
2

∫ t

0
wVW 2ds · [Y, [Y, [X ,Y ]]]

)

exp

(
1
2

∫ t

0
wV 2Wds · [Y, [X , [X ,Y ]]]

)

exp

(
1
6

∫ t

0
wV 3ds · [X , [X , [X ,Y ]]]

)

exp

(∫ t

0
wVWds · [Y, [X ,Y ]]

)
exp

(
1
2

∫ t

0
wV 2ds · [X , [X ,Y ]]

)

exp

(∫ t

0
wV ds · [X ,Y ]

)
exp(W ·Y ) exp(V ·X) , (4.32)

with the remainder indicated by the dots an infinite product of exponentials of
iterated Lie brackets of X and Y of orders 6 and higher.

For small |t|, this representation gives rise to an asymptotic product expansion
for the solution z(·) of the time-varying differential equation

ż = v(t)X(z)+w(t)Y(z), z(0) = q0,
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which will be used frequently in the subsequent sections. For the moment, we simply
establish the algebraic formula.

Proof. Make an ansatz for the solution S as a product of the form S = S1eVX .
Differentiating in t, we obtain that

Ṡ = Ṡ1eVX + S1eVX (vX) = Ṡ1eVX + S (vX) .

Solving this equation for Ṡ1 and using the asymptotic series (4.31) gives

Ṡ1 = (Ṡ− S (vX))e−VX = S (wY )e−VX = S1eVX (wY )e−VX = S1eV adX (wY )

= S1

(
wY +wV [X ,Y ]+

1
2

wV 2[X , [X ,Y ]]

+
1
6

wV 3 ad3 X(Y )+
1

24
wV 4 ad4 X(Y ) · · ·

)
.

In our formal computation, we keep track of all iterated brackets of X and Y up to
order 5 and indicate higher-order brackets with dots. Now write S1 = S2eWY and
repeat this step to get

Ṡ2 = (Ṡ1− S1 (wY ))e−WY

= S2eWY
(

wV [X ,Y ]+
1
2

wV 2[X , [X ,Y ]]+
1
6

wV 3 ad3 X(Y )

+
1

24
wV 4 ad4 X(Y ) · · ·

)
e−WY

= S2eW adY

(
wV [X ,Y ]+

1
2

wV 2[X , [X ,Y ]]+
1
6

wV 3 ad3 X(Y )+
1

24
wV 4 ad4 X(Y ) · · ·

)

= S2

(
wV [X ,Y ]+

1
2

wV 2[X , [X ,Y ]]+wVW [Y, [X ,Y ]]+
1
6

wV 3 ad3 X(Y )

+
1
2

wV 2W [Y, [X , [X ,Y ]]]+
1
2

wVW 2[Y, [Y, [X ,Y ]]]+
1

24
wV 4 ad4 X(Y )

+
1
6

wV 3W [Y,ad3 X(Y )]+
1
4

wV 2W 2[Y, [Y, [X , [X ,Y ]]]]

+
1
6

wVW 3[Y, [Y, [Y, [X ,Y ]]]]+ · · ·
)
.

One more time, let S2 = S3eU[X ,Y ] and solve for Ṡ3 as

Ṡ3 = (Ṡ2− S2 (wV [X ,Y ]))e−U[X ,Y ]

= S3eU[X ,Y ]

(
1
2

wV 2[X , [X ,Y ]]+wVW [Y, [X ,Y ]]+ terms from above

)
e−U[X ,Y ]
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= S3eU ad[X ,Y ]
(

1
2

wV 2[X , [X ,Y ]]+wVW [Y, [X ,Y ]]+ terms from above

)

= S3

(
1
2

wV 2[X , [X ,Y ]]+wVW [Y, [X ,Y ]]

+
1
6

wV 3 ad3 X(Y )+
1
2

wV 2W [Y, [X , [X ,Y ]]]+
1
2

wVW 2[Y, [Y, [X ,Y ]]]

+
1
24

wV 4 ad4 X(Y )+
1
6

wV 3W [Y,ad3 X(Y )]

+
1
4

wV 2W 2[Y, [Y, [X , [X ,Y ]]]]+
1
6

wVW 3[Y, [Y, [Y, [X ,Y ]]]]

+
1
2

wV 2U [[X ,Y ], [X , [X ,Y ]]]]+wVWU [[X ,Y ], [Y, [X ,Y ]]]] · · ·
)
.

This equation can be solved formally by integrating to obtain

S3(t) = exp

((
1
2

∫ t

0
wV 2ds

)
[X , [X ,Y ]]+

(∫ t

0
wVWds

)
[Y, [X ,Y ]]

+ integrals of all other terms above

)
.

The derivation will be completed by writing the exponential of the sum as a product
of exponentials. By definition, S(t) = S3(t)eU[X ,Y ]eWY eVX , and the calculation done
so far implies that for any vector fields X and Y we have that

eX+Y = er(X ,Y )eY eX ,

where the remainder r(X ,Y ) consists of commutator brackets of order at least 2.
Thus, when we write S3(t) as a product of exponentials, then the commutator terms
here are all brackets of order at least 6 and do not contribute to the terms we want
to calculate. Hence, modulo terms of higher order, we can simply write S3(t) as the
product of all the exponentials of the terms in the sum. This gives the expansion
(4.32). �

We give some immediate applications of this product expansion.

Corollary 4.5.2 (Commutator formula).

q0erX esY = q0 · · ·exp

(
1
2

rs2[Y, [X ,Y ]]

)
exp

(
1
2

r2s[X , [X ,Y ]]

)

exp(rs[X ,Y ])exp(sY )exp(rX) . (4.33)
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Proof. For an interval I ⊂ R, denote the characteristic function of I by χI(t), i.e.,
χI(t) = 1 if t ∈ I and χI(t) = 0 if t /∈ I. Let v = χ[0,r], w = χ(r,r+s] and set T =
s + r. Then elementary integrations show that V (T ) = r, W (T ) = s, U(T ) = rs,
1
2

∫ T
0 w(t)V (t)2dt = 1

2 r2s and
∫ T

0 w(t)V (t)W (t)dt = 1
2 rs2. �

Corollary 4.5.3 (Expansion of the sum).

q0 exp(tX + tY ) = q0 · · ·exp

(
1
8

t4[Y, [Y, [X ,Y ]]]

)
exp

(
1
8

t4[Y, [X , [X ,Y ]]]

)

exp

(
1

24
t4[X , [X , [X ,Y ]]]

)

exp

(
1
3

t3[Y, [X ,Y ]]

)
exp

(
1
6

t3[X , [X ,Y ]]

)

exp

(
1
2

t2[X ,Y ]

)
exp(tY )exp(sX) .

Proof. Here we take v= w= χ[0,t]. Hence V (s) =W (s) = s, and thus for any i, j ∈N,
we get

∫ t
0 w(s)V (s)iW (s) jds =

∫ t
0 si+ jds = 1

i+ j+1 ti+ j+1. �

Corollary 4.5.4.

q0 exp(sX + tY ) = q0 · · ·exp

(
1
8

st3[Y, [Y, [X ,Y ]]]

)
exp

(
1
8

s2t2[Y, [X , [X ,Y ]]]

)

exp

(
1

24
s3t[X , [X , [X ,Y ]]]

)

exp

(
1
3

st2[Y, [X ,Y ]]

)
exp

(
1
6

s2t[X , [X ,Y ]]

)

exp

(
1
2

st[X ,Y ]

)
exp(tY )exp(sX) .

Proof. For the vector field X̃ = s
t X we have q0 exp(sX + tY) = q0 exp

(
tX̃ + tY

)
,

and the formula from Corollary 4.5.3 applies to give this result. �

Corollary 4.5.5 [52] (Baker–Campbell–Hausdorff formula).

q0 exp(sX)exp(tY ) = q0 exp

(
sX + tY +

1
2

st[X ,Y ]

+
1
12

s2t[X , [X ,Y ]]− 1
12

st2[Y, [X ,Y ]] · · ·
)
. (4.34)
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Proof. Using Corollaries 4.5.2 and 4.5.4, modulo commutator brackets of order≥ 4
we obtain the following product expansion:

q0 exp

(
sX + tY +

1
2

st[X ,Y ]+
1

12
s2t[X , [X ,Y ]]− 1

12
st2[Y, [X ,Y ]]

)

= q0 · · ·exp

(
1
4

s2t[X , [X ,Y ]]+
1
4

st2[Y, [X ,Y ]]

)

exp

(
1
2

st[X ,Y ]+
1

12
s2t[X , [X ,Y ]]− 1

12
st2[Y, [X ,Y ]]

)
exp (sX + tY )

= q0 · · ·exp

(
1
3

s2t[X , [X ,Y ]]

)
exp

(
1
6

st2[Y, [X ,Y ]]

)
exp

(
1
2

st[X ,Y ]

)
exp(sX+tY )

= q0 · · ·exp

(
1
3

s2t[X , [X ,Y ]]

)
exp

(
1
6

st2[Y, [X ,Y ]]

)
exp

(
1
2

st[X ,Y ]

)
· · ·

exp

(
−1

3
s2t[X , [X ,Y ]]

)
exp

(
−1

6
st2[Y, [X ,Y ]]

)

exp

(
−1

2
st[X ,Y ]

)
exp (sX)exp(tY )

= q0 exp(R(s, t))exp (sX)exp(tY ) ,

where R(s, t) denotes the remainder terms in this product expansion consisting of
exponentials of iterated Lie brackets of order ≥ 4. By Corollary 4.5.2, commuting
these exponentials only adds higher-order terms, and thus

q0 exp(R(s, t))exp(sX)exp(tY ) = q0 exp(sX)exp(tY )exp
(
R̃(s, t)

)
,

where R̃(s, t) also is a product of exponentials of iterated Lie brackets of order ≥ 4.
Hence

q0 exp(sX)exp(tY ) = q0 exp

(
sX + tY +

1
2

st[X ,Y ]+
1

12
s2t[X , [X ,Y ]]

− 1
12

st2[Y, [X ,Y ]]

)
exp

(−R̃(,st)
)

= q0 exp

(
sX + tY +

1
2

st[X ,Y ]+
1

12
s2t[X , [X ,Y ]]− 1

12
st2[Y, [X ,Y ]]+ · · ·

)
,

with the dots once more representing iterated Lie brackets of orders≥ 4. �

4.6 High-Order Necessary Conditions for Optimality

The necessary conditions of the maximum principle were derived solely using the
variations CUT and PASTE. These variations can always be made, and hence they
apply to every situation. If the controlled reference trajectory has special properties,
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it is possible to make additional variations that take advantage of these properties.
For example, if the control takes values in the interior of the control set, we can vary
the control in a full neighborhood of its values, which cannot be done if the control
value lies on the boundary of the control set. The Legendre–Clebsch condition is
an example of a second-order necessary condition for optimality that arises from
a specific such variation. In this section, we prove the most important high-order
necessary conditions for optimality of singular controls: the Legendre–Clebsch and
Kelley conditions for single-input control systems and the Goh–condition for multi-
input control systems. These results are more generally valid for nonlinear control
systems, but we restrict our presentation to the class of control-affine systems,

Σ : ẋ = f (x)+
m

∑
i=1

gi(x)ui.

While this indeed is the most important class of control systems in applications, our
motivation here also is that it allows us to use the algebraic formalism introduced
above to compute the tangent vectors ζ̇V (0) that arise as more complicated C1-
extendable variations V are made.

4.6.1 The Legendre–Clebsch Condition

The Legendre–Clebsch condition is a second-order necessary condition of opti-
mality for controls that take values in the interior of the control set. It is a rather
classical result in the optimal control literature (for example, see [64, 137, 140] and
the references therein), but in its proof often the questionable normalization ū≡ 0 is
made, which a priori assumes that the corresponding control is smooth. Here we set
up a general high-order point variation V that does not make such an assumption
and use Proposition 4.5.2 to compute the leading term in ζV (α). The argument is
a simplified version of the reasoning by M. Kawski and H. Sussmann from [130],
where the leading term of a variation is computed in great generality.

For simplicity of notation, we consider a single-input control-linear system of the
form

Σ : ẋ = f (x)+ ug(x), |u| ≤ 1,

and we henceforth assume that Γ = (x̄(·), ū(·)) is a controlled reference trajectory
defined on [0,T ] with initial point x̄(0) = p̄ and terminal point x̄(T ) = q̄. We recall
from real analysis [257] that a time t̄ is a Lebesgue point of an integrable function ū if

lim
α→0

1
2α

∫ t̄+α

t̄−α
|ū(t)− ū(t̄)|dt = 0.

It is clear that all points t̄ where ū is continuous are Lebesgue points, and more gen-
erally, it follows from Lebesgue’s differentiation theorem (see Appendix D, [257,
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Thm. 7.2]) that almost every time t̄ ∈ I of a locally bounded Lebesgue measurable
function ū is a Lebesgue point.

Theorem 4.6.1 [130]. Let t̄ ∈ I be a Lebesgue point of the reference control ū
and suppose that |u(t̄)| < 1. Then the vector −[g, [ f ,g]](x̄(t̄)) lies in the sets P(t̄)
and Q(t̄).

Theorem 4.6.1 immediately applies to boundary trajectories and the time-optimal
control problem, and we get the following corollary:

Corollary 4.6.1 (Legendre–Clebsch condition). Suppose q̄ lies on the boundary
of the reachable set, q̄ ∈ ∂ ReachΣ (p̄), and let I ⊂ [0,T ] be an open interval on
which the reference control ū takes values in the interior of the control set a.e. Then
there exists a nontrivial solution λ : [0,T ]→ (Rn)∗, t �→ λ (t), to the adjoint equation
along Γ such that the conditions of Theorem 4.2.2 are satisfied and in addition, for
all t ∈ I we have that

〈λ (t), [ f ,g](x̄(t))〉 ≡ 0

and
〈λ (t), [g, [ f ,g]](x̄(t))〉 ≤ 0. (4.35)

Proof of the Corollary. The first condition is an immediate consequence of Theorem
4.2.2. For if the values of ū lie in the interior of the control set a.e. on I, then
the minimization condition of Theorem 4.2.2 implies that the switching function
Φ(t) = 〈λ (t),g(x̄(t))〉 vanishes identically on I and so then does its derivative
Φ̇(t) = 〈λ (t), [ f ,g](x̄(t))〉. It is not difficult to set up point variations that show
that the vectors±[ f ,g](x̄(t̄)) lie in the sets P(t̄) and Q(t̄) for a.e. t̄ ∈ I, but this is not
necessary. The inequality (4.35) on the second-order bracket [g, [ f ,g]] is new, and it
follows from Theorem 4.2.2 that there exists a multiplier λ such that this inequality
holds a.e. on I. Since the function t �→ 〈λ (t), [g, [ f ,g]](x̄(t))〉 is continuous, it is valid
on all of I. �

We prove the theorem in several steps and begin with defining the structure of a
general point variation V that also will be used in the proof of the other high-order
necessary conditions. Again, we consider the canonical embedding of the controlled
reference trajectoryΓ . Given t̄ ∈ I, choose ε > 0 (sufficiently small) and for 0≤α ≤
ε replace the reference control ū over the interval [t̄, t̄ +α] with another, suitably
chosen, admissible control η(α, ·). Since the control set is bounded, for sufficiently
small ε > 0 these controlled trajectories will all exist over the full interval [t̄, t̄ +α].
In the notation of Definition 4.4.2, we have that t1(α)= t̄, t2(α) = t̄+α , Δ+(α) =α ,
and the control of the variation is given by

uV
α (t) =

⎧⎪⎪⎨
⎪⎪⎩

ū(t) if 0≤ t ≤ t̄,

η(α, t− t̄) if t̄ < t ≤ t̄ +α,
ū(t) if t̄ +α ≤ t ≤ T.
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Thus, the controlled trajectory (xV
α ,u

V
α ) follows the controlled reference trajectory

up to time t1(α) = t̄ and then switches to another admissible controlled trajectory
(ξ (α, ·),η(α, ·)) (whose specific form is still to be determined) for an interval of
length α until at time t̄ +α the system reaches the point ξ (α,α). Recall that the
curve πV (α) is defined as the unique solution z to the equation xE(t̄ + α;z) =
ξ (α,α), and the curve ζV (α), whose tangent vector we need to compute, is the
image of this curve πV (α) under the flow of the canonical embedding from time
t = 0 until time t = t̄, i.e.,

ζV (α) = xE(t̄;πV (α)) =ΦE
t̄ (πV (α)) =

(
ΦE

t̄,t̄+α
)
(ξ (α,α)) .

The curve ζV (α) is obtained by integrating the dynamics corresponding to the
reference control ū backward from ξ (α,α) over the interval [t̄, t̄ +α].

This construction can be expressed more succinctly using exponential notations.
Let S = f (x)+ ū(t)g(x) denote the time-varying vector field defined by the reference
control ū and let ρ(α, ·) denote the difference between the control η(α, ·) of the
variation and the reference control over [t̄, t̄ +α], i.e.,

η(α, t) = ū(t̄ + t)+ρ(α, t) for 0≤ t ≤ α.

Then the curve ζV (α) can be expressed in the form

ζV (α) = x̄(t̄)exp(α(S+ρg))exp(−αS) . (4.36)

(Starting at x̄(t̄), first the vector field S + ρg defined through the variation is
integrated forward for time α and then the reference vector field S is integrated
backward for time α .) Proposition 4.5.2 allows us to compute the leading term in
an asymptotic expansion for ζ̇V (α) near α = 0. We write the dynamics in the form
v(t) f (x)+w(t)g(x) with v defined over [0,2α] by

v(t) =

{
1 if 0≤ t ≤ α,
−1 if α < t ≤ 2α,

and we express w(t) in the form w(t) = w(t)+h(t) with w(t) the contribution of the
reference control and h(t) the contribution from the variation, i.e.,

w(t) =

{
ū(t̄ + t) if 0≤ t ≤ α,
−ū(t̄ + 2α− t) if α < t ≤ 2α,

and h(t) =

{
ρ(α, t) if 0≤ t ≤ α,
0 if α < t ≤ 2α.

The minus signs in the definitions of v and w over the interval [α,2α] express the
fact that the reference control is integrated backward. Then, by Proposition 4.5.2,
the curve ζV (α) has an asymptotic expansion of the form
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ζV (α) = x̄(t̄) · · ·exp

((∫ 2α

0
wVWds

)
[g, [ f ,g]]

)

exp

((
1
2

∫ 2α

0
wV 2ds

)
[ f , [ f ,g]]

)
exp

((∫ 2α

0
wVds

)
[ f ,g]

)

exp

((∫ 2α

0
wds

)
g

)
exp

((∫ 2α

0
vds

)
f

)
, (4.37)

where the dots represent a remainder term that is of order o(α3) as α → 0, and for
0≤ t ≤ 2α , we have that

V (t) =
∫ t

0
v(s)ds =

{
t if 0≤ t ≤ α,
−t + 2α if α ≤ t ≤ 2α,

and W (t) =
∫ t

0
w(s)ds.

We also write

W (t) =
∫ t

0
w(s)ds and H(t) =

∫ t

0
h(s)ds =

⎧⎨
⎩

∫ t
0 ρ(α,s)ds if 0≤ t ≤ α,

∫ α
0 ρ(α,s)ds if α ≤ t ≤ 2α,

such that W (t) =W (t)+H(t).

Our aim is to determine the controls η(α, ·), respectively the increments ρ(α, ·),
such that the coefficients at the vector fields f , g, [ f ,g], and [ f , ] f ,g]] in the
expansion (4.37) vanish, while the coefficient at [g, [ f ,g]] is nonzero. Obviously,
V (2α) = 0, and thus the coefficient at the vector field f vanishes.

Lemma 4.6.1. For k = 0,1, . . . we have that

∫ 2α

0
w(s)V (s)kds =

∫ α

0
skρ(α,s)ds.

Proof. We have

∫ 2α

0
w(s)V (s)kds =

∫ 2α

0
w(s)V (s)kds+

∫ 2α

0
h(s)V (s)kds.

Because of the telescoping nature of the variation, the integral that includes the
reference w vanishes:

∫ 2α

0
w(s)V (s)kds =

∫ α

0
ū(t̄ + s)skds+

∫ 2α

α
−ū(t̄ + 2α− s)(−s+ 2α)k ds

=

∫ α

0
ū(t̄ + s)skds+

∫ 0

α
ū(t̄ + r)rkdr = 0.
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Hence, ∫ 2α

0
w(s)V (s)kds =

∫ 2α

0
h(s)V (s)kds =

∫ α

0
skρ(α,s)ds. ��

In particular, W (2α) =
∫ α

0 ρ(α,s)ds, and we will choose the controls of the
variations such that

∫ α

0
ρ(α,s)ds = 0 for all α ∈ [0,ε].

Thus the coefficient at the vector field g vanishes and also H(t)≡ 0 on [α,2α]. The
coefficients at the Lie brackets [ f ,g] and [ f , [ f ,g]] in Eq. (4.37) are given by

∫ 2α

0
w(s)V (s)ds =

∫ α

0
sρ(α,s)ds

and

1
2

∫ 2α

0
w(s)V (s)2ds =

1
2

∫ α

0
s2ρ(α,s)ds,

and it is easy to choose ρ(α, ·) such that these terms vanish as well.
In order to bring out the structure of the variation more clearly, and also to

minimize the technical aspects of the construction, let us first assume that the
reference control ū is continuous from the right at t̄. Since |ū(t̄)| < 1, in this case
there exist positive constants ε and c such that for all t ∈ [t̄, t̄ + ε] we have that

−1+ 2c≤ ū(t)≤ 1− 2c,

and thus any continuous variation that satisfies |ρ(α, t)| ≤ c defines an admissible
control. Specifically, we can choose the following function:

Proposition 4.6.1. Let

Q(t) = 20t3− 30t2+ 12t− 1,

and for 0≤ s≤ α , define

ρ(α,s) = cQ
( s
α

)
.

Then η(α, ·) = ū(t̄ + ·)+ρ(α, ·) is an admissible control,

∫ α

0
siρ(α,s)ds = 0 for i = 0,1,2, (4.38)

and ∫ 2α

0
w(s)V (s)W (s)ds =−ωα3 + o(α3) (4.39)
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Fig. 4.19 Polynomial Q of the variation V for the Legendre–Clebsch condition

with

ω =
1
2

c2
∫ 1

0

(∫ t

0
Q(s)ds

)2

dt > 0.

This polynomial Q defines the variation that generates the Legendre–Clebsch
condition. Its graph is shown in Fig. 4.19. The maximum of |Q(t)| on the interval
[0,1] is taken on at its endpoints and is given by 1. Also note the symmetry of the
graph with respect to the point ( 1

2 ,0), i.e., Q(1− t) = −Q(t). This symmetry is
preserved in similar higher-order variations.

Proof. The polynomial Q is the unique cubic polynomial that satisfies

∫ 1

0
tiQ(t)dt = 0 for i = 0,1,2 and

∫ 1

0
t3Q(t)dt =

1
140

and is easily computed as the solution of a 4× 4 system of linear equations. The
normalization has been made such that max{|Q(t)| : 0 ≤ t ≤ 1} = 1. Hence it is
clear that η(α, ·) is an admissible control and Eq. (4.38) holds. We need to compute
the integral

∫ 2α
0 w(s)V (s)W (s)ds.

Recall that W = W̄ +H and H vanishes identically on [α,2α]. Thus,
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∫ 2α

0
w(s)V (s)W (s)ds =

1
2

V (s)W (s)2

∣∣∣∣
2α

0
− 1

2

∫ 2α

0
v(s)W (s)2ds

=−1
2

(∫ α

0
W (s)2ds+

∫ 2α

α
−W (s)2ds

)

=−1
2

(∫ α

0
W (s)2ds+ 2

∫ α

0
W (s)H(s)ds+

∫ α

0
H(s)2ds−

∫ 2α

α
W (s)2ds

)
.

Analogously to the earlier computation above in the proof of Lemma 4.6.1, the W
2

integrals cancel: we have

W (t) =
∫ t

0
ū(t̄ + s)ds for 0≤ t ≤ α,

and for α ≤ t ≤ 2α ,

W (t) =
∫ α

0
ū(t̄ + s)ds+

∫ t

α
−ū(t̄ + 2α− s)ds

=
∫ α

0
ū(t̄ + s)ds+

∫ 2α−t

α
ū(t̄ + r)dr =

∫ 2α−t

0
ū(t̄ + s)ds. (4.40)

Hence

∫ 2α

α
W (t)2dt =

∫ 2α

α

(∫ 2α−t

0
ū(t̄ + s)ds

)2

dt =−
∫ 0

α

(∫ r

0
ū(t̄ + s)ds

)2

dr

=

∫ α

0

(∫ r

0
ū(t̄ + s)ds

)2

dr =
∫ α

0
W (r)2dr,

and overall, we have that

∫ 2α

0
w(s)V (s)W (s)ds =−1

2

∫ α

0
H(s)2ds−

∫ α

0
W (s)H(s)ds. (4.41)

Furthermore,

∫ α

0
H(s)2ds = α

∫ 1

0
H(αt)2dt = α

∫ 1

0

(∫ αt

0
cQ

( r
α

)
dr

)2

dt

= α3c2
∫ 1

0

(∫ t

0
Q(s)ds

)2

dt = 2ωα3

with

ω =
1
2

c2
∫ 1

0

(∫ t

0
Q(s)ds

)2

dt > 0.
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The second term in Eq. (4.41) is of higher order, for since ū is continuous from
the right at t̄, we have that

W (t) =
∫ t

0
ū(t̄ + s)ds = ū(t̄)t + o(t)

and thus also ∫ t

0
W (s)ds =

1
2

ū(t̄)t2 + o(t2).

Integrating by parts, we get that

∫ α

0
W (s)H(s)ds =

(∫ t

0
W (s)ds

)
H (t)

∣∣∣∣
α

0
−

∫ α

0

(∫ s

0
W (t)dt

)
h(s)ds

=−
∫ α

0

(
1
2

ū(t̄)s2 + o(s2)

)
cQ

( s
α

)
ds

=−1
2

ū(t̄)α3c
∫ 1

0
t2Q(t)dt + o

(
α3)= o

(
α3) ,

since
∫ 1

0 t2Q(t)dt = 0. Overall, we thus have that

∫ 2α

0
w(s)V (s)W (s)ds =−ωα3 + o

(
α3) .

This concludes the proof of the proposition. �
Essentially, with some technical adjustments that account for measurability, this

argument remains valid if t̄ is a Lebesgue point for the reference control ū. Since ū(t̄)
lies in the open interval (−1,1), it is still possible to pick small positive constants
c such that −1 + 2c ≤ ū(t̄) ≤ 1− 2c, but now these inequalities need not hold
everywhere on the interval [t̄, t̄ +α]. We therefore define the “good” set Gα and
the “bad” set Bα as

Gα = {t ∈ [0,α] : |ū(t̄ + t)− ū(t̄)| ≤ c} and Bα = Gc
α = [0,α]\Gα .

We will now choose ρ(α, ·) as a measurable function that vanishes on Bα with
|ρ(α, t)| ≤ c for t ∈Gα . Hence, as above, the control η(α, t) = ū(t̄ + t)+ρ(α, t) is
admissible, and we need to show that Eqs. (4.38) and (4.39) remain valid.

On the set Bα , we have that |ū(t̄ + t)− ū(t̄)|> c, and since t̄ is a Lebesgue point,
it follows that

cμ (Bα)≤
∫
[t̄,t̄+α ]

|ū(t)− ū(t̄)|dμ = o(α).

Hence the Lebesgue measure μ (Bα) of the bad set is of order o(α); equivalently,
μ (Gα) = α − o(α). If we define Ĝα = {s ∈ [0,1] : αs ∈ Gα}, the set Gα rescaled
as a subset of [0,1], then it follows that
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lim
α→0

μ
(

Ĝα

)
= lim
α→0

(
1− o(α)

α

)
= 1,

and thus, in the limit α→ 0, this set has full measure; without loss of generality, we
set Ĝ0 = [0,1]. Forα ≥ 0, define cubic polynomials Qα(s) = aα0 +aα1 s+aα2 s2+aα3 s3

on [0,1] such that

∫
Ĝα

siQα(s)ds = 0 for i = 0,1,2 and
∫

Ĝα
s3Qα(s)ds =

1
140

.

As before, the coefficients of the polynomials Qα are the unique solutions to a
system of linear equations of the form M(α)aα = b, where aα =

(
aα0 ,a

α
1 ,a

α
2 ,a

α
3

)T ,
b = (0,0,0, 1

140)
T , and M(α) is the 4× 4 matrix with entries

mi j (α) =
∫

Ĝα
si+ j−2dμ .

In the limit α→ 0, these entries converge to the matrix M(0) with entries

mi j (0) =
∫
[0,1]

si+ j−2dμ =
1

i+ j− 1
.

This matrix is nonsingular, and thus for small enough α and i = 0,1,2, and 3, the
coefficients aαi are uniquely determined and as α → 0 converge to the coefficients
ai of the polynomial Q(t) = 20t3− 30t2 + 12t− 1 considered above. In particular,
we may assume that max[0,1] |Qα(t)| ≤ 2 for all α ∈ [0,ε]. Hence, if we now define

ρ(α, t) =

{
c
2 Qα

(
t
α
)

if t ∈ Gα ,

0 if t ∈ Bα ,
(4.42)

then it follows for i = 0,1, and 2 that

∫ α

0
tiρ(α, t)dt =

c
2

∫
Gα

tiQα

( t
α

)
dt =

c
2
α i+1

∫
Ĝα

siQα (s)ds = 0.

Furthermore,

∫ α

0
H(t)2dt = α

∫ 1

0
H(αs)2ds = α

∫ 1

0

(∫
[0,αs]∩Gα

c
2

Qα

( r
α

)
dr

)2

ds

= α3 c2

4

∫ 1

0

(∫
[0,s]∩Gα

Qα(t)dt

)2

ds

= α3 c2

4

[∫ 1

0

(∫ s

0
Q(t)dt

)2

ds+ o(1)

]
,
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where we once more use that μ (Bα) is of order o(α) as α → 0. Thus, taking

ω =
c2

8

∫ 1

0

(∫ s

0
Q(t)dt

)2

ds > 0,

we again have that ∫ α

0
H(t)2dt = 2ωα3 + o

(
α3) .

The second term in Eq. (4.41) remains of higher order o
(
α3

)
: the condition that t̄ is

a Lebesgue point still implies that

W (t) =
∫ t

0
η̄(t̄ + s)ds = η̄(t̄)t + o(t),

and the rest of the calculation is as above. Thus we have the same conditions as in
Proposition 4.6.1.

These properties imply that the asymptotic expansion for the curve

ζV (α) = x̄(t̄)exp(α(S+ρg))exp(−αS)

has the form

ζV (α) = x̄(t̄)exp
(−ωα3[g, [ f ,g]]+ o(α3)

)
.

Replacing α with β = ωα3, the resulting curve is differentiable at β = 0 and we
have

ζ̇V (0) =−[g, [ f ,g]] (x̄(t̄)) ,
verifying that this vector lies in P(t̄).

Furthermore, since t̄ is a Lebesgue point, it also follows that for every small
enough α , the interval [t̄, t̄ + α] must contain a set of positive measure where
|ū(t)|<1. (Otherwise, for some positive constant k we have that

∫
[t̄,t̄+α ] |ū(t)−ū(t̄)|

dμ≥kα , contradicting the definition of a Lebesgue point.) Since almost every time
t is a Lebesgue point, it follows that there exists a sequence of times {t̄n}n∈N
that converges to t̄ from the right such that all times t̄n are Lebesgue points of ū
with |ū(t̄n)| < 1. Hence Knobloch’s condition (K) is satisfied, and we have that
−[g, [ f ,g]] (x̄(t̄)) ∈ Q(t̄). This concludes the proof of Theorem 4.6.1.

4.6.2 The Kelley Condition

The Legendre–Clebsch condition is nontrivial if the singular control is of order 1,
that is, if

〈λ (t), [g, [ f ,g]](x̄(t))〉 = 0.
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If this term vanishes on an interval, then the singular control is of higher order, and
these computations can be extended, provided this order is intrinsic, i.e., the vector
fields that arise in the derivatives of the switching function at the control vanish
identically (see Sect. 2.8). We already have seen in Chap. 2 that singular controls that
are of intrinsic order 2 lead to chattering concatenations (cf., the Fuller problem).
This phenomenon also arises naturally in mathematical models for cancer treatments
involving anti-angiogenic therapy. For a wide class of these models, optimal controls
are characterized by an optimal singular arc of order 1 if dosage and concentration of
the drugs are identified; e.g., see [160]. If a standard linear pharmacokinetic model
is added that describes the concentration in the plasma, this singular arc remains
optimal, but its order increases to 2 [165]. These problems will be analyzed in a
companion volume to this text [166]. We therefore include a proof of the Kelley
condition for optimality of singular controls of intrinsic order 2. We again consider
a system of the form

Σ : ẋ = f (x)+ ug(x), |u| ≤ 1.

As above, let Γ = (x̄(·), ū(·)) be a controlled reference trajectory defined on [0,T ]
with initial point x̄(0) = p̄ and terminal point x̄(T ) = q̄.

Theorem 4.6.2. Suppose [g, [ f ,g]] vanishes identically in a neighborhood of the
reference trajectory x̄. Let t̄ ∈ I be a Lebesgue point of the reference control ū
and suppose that |u(t̄)| < 1. Then the vector [g,ad3 f (g)](x̄(t̄)) lies in the sets
P(t̄) and Q(t̄).

Corollary 4.6.2 (Kelley condition). Suppose q̄ lies in the boundary of the reach-
able set, q̄ ∈ ∂ ReachΣ (p̄), and let I ⊂ [0,T ] be an open interval on which the
reference control ū takes values in the interior of the control set. If the vector
field [g, [ f ,g]] vanishes identically (in a neighborhood of the controlled reference
trajectory), then there exists a nontrivial solution λ : [0,T ]→ (Rn)∗, t �→ λ (t), to
the adjoint equation along Γ such that the conditions of Theorem 4.2.2 are satisfied
and in addition, for all t ∈ I we have that

〈
λ (t),adi f (g)(x̄(t))

〉≡ 0 for i = 1,2,3,

and 〈
λ (t), [g,ad3 f (g)](x̄(t))

〉≥ 0.

The proof of the corollary is as above. As in the case of the Legendre–Clebsch
condition, the first relation is an immediate consequence of Theorem 4.2.2 and
the fact that [g, [ f ,g]] ≡ 0. In this case, the first three derivatives of the switching
functionΦ(t) = 〈λ (t),g(x̄(t))〉 are given by

Φ(i)(t) =
〈
λ (t),adi f (g)(x̄(t))

〉
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and vanish identically on I. The inequality on the Lie bracket [g,ad3 f (g)] is new,
and by Theorem 4.2.2 there exists a multiplier λ such that this inequality holds a.e.
on I. Since the function t �→ 〈

λ (t), [g,ad3 f (g)](x̄(t))
〉

is continuous, it thus is valid
on all of I.

We now prove the theorem using the same structure and notation for the variation
V as in the proof of Theorem 4.6.1. Here we need the full asymptotic product
expansion computed in Proposition 4.5.2 with all Lie brackets of order ≤ 5.
However, since [g, [ f ,g]]≡ 0, several fourth- and fifth-order brackets vanish, leading
to a significant simplification for this expression. Clearly, any brackets with [g, [ f ,g]]
such as [ f , [g, [ f ,g]]] vanish identically. But also other identities are induced by the
Jacobi condition. For example, [g, [ f , [ f ,g]]] = [ f , [g, [ f ,g]] ≡ 0. Furthermore,

[g, [ f ,ad2 f (g)]]+ [ f , [ad2 f (g),g]]+ [ad2 f (g), [g, f ]] ≡ 0.

Since [ad2 f (g),g] =−[g, [ f , [ f ,g]]] ≡ 0, we get that

[g,ad3 f (g)] =−[[ f ,g], [ f , [ f ,g]],

and the corresponding exponentials in Eq. (4.32) can be combined. We therefore
obtain the following reduced formula for ζV (α):

ζV (α) = x̄(t̄)exp(α(S+ρg))exp(−αS)

= x̄(t̄) · · ·exp

((
1
6

∫ 2α

0
wV 3Wds− 1

2

∫ 2α

0
wV 2Uds

)
· [g,ad3 f (g)]

)

exp

(
1
4!

∫ 2α

0
wV 4ds · ad4 f (g)

)
exp

(
1
3!

∫ 2α

0
wV 3ds · ad3 f (g)

)

exp

(
1
2

∫ 2α

0
wV 2ds · ad2 f (g)

)
exp

(∫ 2α

0
wVds · ad f (g)

)

exp

(∫ 2α

0
w ds ·g

)
, (4.43)

where the dots now represent a remainder term of order o(α5) and we already use
that V (2α) = 0, so that the term at f vanishes.

The technical aspects of carrying out the construction for a time t̄ that is a
Lebesgue point are the same as in the proof above, and thus without loss of
generality, we simply assume that the control ū is continuous at t̄ from the right.
As above, let ε and c be positive constants such that for all t ∈ [t̄, t̄ + ε] we have that
−1+ 2c≤ ū(t)≤ 1− 2c.

Proposition 4.6.2. Let

Q(t) = 252t5− 630t4+ 560t3− 210t2+ 30t− 1,
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Fig. 4.20 Polynomial Q of the variation V for the Kelley condition

and for 0≤ s≤ α , define

ρ(α,s) = cQ
( s
α

)
.

Then η(α, ·) = ū(t̄ + ·)+ρ(α, ·) is an admissible control,

∫ α

0
siρ(α,s)ds = 0 for i = 0, . . . ,4,

and

1
6

∫ 2α

0
w(s)V (s)3W (s)ds =−1

4
ψ1c2α5 + o

(
α5

)
, (4.44)

1
2

∫ 2α

0
w(s)V (s)2U(s)ds =−1

4
ψ2c2α5 + o

(
α5

)
, (4.45)

with

ψ1 =

∫ 1

0
t2

(∫ t

0
Q(s)ds

)2

dt < ψ2 =

∫ 1

0

(∫ t

0
sQ(s)ds

)2

dt.

The graph of this polynomial Q is shown in Fig. 4.20. As in the case of the
Legendre–Clebsch condition, the normalization has been chosen so that max{|Q(t)| :
0 ≤ t ≤ 1} = 1, and this maximum of |Q(t)| is taken on at both endpoints. The
symmetry with respect to the point ( 1

2 ,0), i.e., Q(1− t) =−Q(t), is preserved.
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Proof. Here Q is the unique fifth-order polynomial defined on the interval [0,1] that
satisfies

∫ 1

0
tiQ(t)dt = 0 for i = 0, . . . ,4 and

∫ 1

0
t5Q(t)dt =

1
2772

;

η(α, ·) is an admissible control, and by Lemma 4.6.1 the coefficients in the
expansion at the Lie brackets adi f (g), i = 1, . . .4, vanish. Hence we are left with
only

ζV (α) = x̄(t̄) · · ·exp

((
1
6

∫ 2α

0
wV 3Wds− 1

2

∫ 2α

0
wV 2Uds

)
· [g,ad3 f (g)]

)
.

(4.46)

We compute these two integrals separately. We again write W (s) =W (s)+H(s)
and recall that H(s) ≡ 0 on [α,2α]. Thus, analogously to the earlier computations,
we get that

∫ 2α

0
w(s)V (s)3W (s)ds =

1
2

V (s)3W (s)2

∣∣∣∣
2α

0
− 3

2

∫ 2α

0
v(s)V (s)2W (s)2ds

=−3
2

(∫ α

0
s2W (s)2ds+

∫ 2α

α
−(2α− s)2 W (s)2ds

)

=−3
2

(∫ α

0
s2W (s)2ds+ 2

∫ α

0
s2W (s)H(s)ds+

∫ α

0
s2H(s)2ds

−
∫ 2α

α
(2α− s)2 W (s)2ds

)
.

Once more, the W
2 integrals cancel: using Eq. (4.40), we get that

∫ 2α

α
(2α− s)2 W (s)2ds =

∫ 2α

α
(2α− s)2

(∫ 2α−s

0
ū(t̄ + t)dt

)2

ds

=
∫ α

0
r2

(∫ r

0
ū(t̄ + t)dt

)2

dr =
∫ α

0
r2W (r)2dr.

Hence

1
6

∫ 2α

0
w(s)V (s)3W (s)ds =−1

4

∫ α

0
s2H(s)2ds− 1

2

∫ α

0
s2W (s)H(s)ds.
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The first integral equals

∫ α

0
s2H(s)2ds = α

∫ 1

0
(αt)2 H(αt)2dt = α3

∫ 1

0
t2

(∫ αt

0
cQ

( r
α

)
dr

)2

dt

= α5c2
∫ 1

0
t2

(∫ t

0
Q(s)ds

)2

dt,

and we set

ψ1 =

∫ 1

0
t2

(∫ t

0
Q(s)ds

)2

dt > 0.

The second integral is of order o
(
α5

)
: as before,

W (t) = ū(t̄)t + o(t)

and ∫ t

0
W (s)ds =

1
2

ū(t̄)t2 + o(t2).

Integrating by parts, we get that

∫ α

0
s2W (s)H(s)ds =

(∫ t

0
s2W (s)ds

)
H (t)

∣∣∣∣
α

0
−

∫ α

0

(∫ s

0
t2W (t)dt

)
h(s)ds

=−
∫ α

0

(
1
2

ū(t̄)s4 + o(s4)

)
cQ

( s
α

)
ds

=−1
2

ū(t̄)α5c
∫ 1

0
t4Q(t)dt + o

(
α5

)
= o

(
α5

)
,

where we use that
∫ 1

0 t4Q(t)dt = 0. Overall, we therefore have that

1
6

∫ 2α

0
w(s)V (s)3W (s)ds =−1

4
ψ1c2α5 + o

(
α5

)
,

verifying Eq. (4.44).
We similarly evaluate the second integral in Eq. (4.46): using that

d
ds

(
1
2

U(s)2
)
= w(s)V (s)U(s),
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we obtain

∫ 2α

0
w(s)V (s)2U(s)ds =

1
2

V (s)U(s)2

∣∣∣∣
2α

0
− 1

2

∫ 2α

0
v(s)U(s)2ds

=−1
2

∫ α

0
U(s)2ds+

1
2

∫ 2α

α
U(s)2ds.

Once again, writing w(s) = w(s)+ h(s), define

U(s) =
∫ s

0
w(t)V (t)dt and K(s) =

∫ s

0
h(t)V (t)dt.

For s ∈ [α,2α] we have that

U(s) =
∫ α

0
ū(t̄ + t)tdt+

∫ s

α
−ū(t̄ + 2α− t)(2α− t)dt

=
∫ α

0
ū(t̄ + t)tdt+

∫ 2α−s

α
ū(t̄ + r)rdr =

∫ 2α−s

0
tū(t̄ + t)dt,

and thus

U(s) =
∫ s

0
w(t)V (t)dt =

⎧⎨
⎩

∫ s
0 tū(t̄ + t)dt if 0≤ s≤ α,

∫ 2α−s
0 tū(t̄ + t)dt if α ≤ s≤ 2α.

In particular, U(2α) = 0, and as with W , we have the symmetry

U(α− s) =U(α+ s) for 0≤ s≤ α.

Furthermore, since
∫ s

0 tρ(α, t)dt = 0, we also obtain that

K(s) =
∫ s

0
h(t)V (t)dt =

⎧⎨
⎩

∫ s
0 tρ(α, t)dt if 0≤ s≤ α,

0 if α ≤ s≤ 2α.

Hence, overall,

∫ 2α

0
w(s)V (s)2U(s)ds = −1

2

∫ α

0

(
U(s)+K(s)

)2
ds+

1
2

∫ 2α

α
U(s)2ds

= −1
2

∫ α

0
U(s)2ds+

1
2

∫ 2α

α
U(s)2ds−

∫ α

0
U(s)K(s)ds

−1
2

∫ α

0
K(s)2ds.
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As with the first integral, the U-integrals cancel, the mixed term is of higher order,
and the K2-integral gives the dominant term. Specifically,

∫ 2α

α
U(s)2ds =

∫ 2α

α

(∫ 2α−s

0
tū(t̄ + t)dt

)2

ds

=
∫ α

0

(∫ r

0
tū(t̄ + t)dt

)2

dr =
∫ α

0
U(r)2dr,

∫ α

0
U(s)K(s)ds =

(∫ t

0
U(s)ds

)
K (t)

∣∣∣∣
α

0
−

∫ α

0

(∫ s

0
U(t)dt

)
h(s)V (s)ds

=−
∫ α

0

(∫ s

0

1
2

ū(t̄)t2 + o(t2)dt

)
cQ

( s
α

)
s ds

=−1
2

ū(t̄)
∫ α

0

(
1
3

s4cQ
( s
α

)
+ o(s4)

)
ds

=−1
6

ū(t̄)α5c
∫ 1

0
t4Q(t)dt + o

(
α5

)
= o

(
α5

)
,

and

∫ α

0
K(s)2ds = α

∫ 1

0
K(αt)2dt = α3

∫ 1

0

(∫ αt

0
rcQ

( r
α

)
dr

)2

dt

= α5c2
∫ 1

0

(∫ t

0
sQ(s)ds

)2

dt = ψ2c2α5

with

ψ2 =

∫ 1

0

(∫ t

0
sQ(s)ds

)2

dt.

Hence
1
2

∫ 2α

0
w(s)V (s)2U(s)ds =−1

4
ψ2c2α5 + o

(
α5

)
,

verifying Eq. (4.45).
An explicit computation shows that

ψ2−ψ1 =
∫ 1

0

(∫ t

0
sQ(s)ds

)2

dt−
∫ 1

0
t2

(∫ t

0
Q(s)ds

)2

dt > 0,

and the result follows. �
Thus, the expansion of ζV (α) takes the form
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ζV (α) = x̄(t̄) · · ·exp

((
1
4
(ψ2−ψ1)c2α5 + o

(
α5

))
· [g,ad3 f (g)]

)
,

and this proves that [g,ad3 f (g)] (x̄(t̄)) ∈ P(t̄). The rest of the argument is as for the
Legendre–Clebsch condition. This concludes the proof of Theorem 4.6.2. �

These computations generalize to controls that are singular of intrinsic order k,
and we briefly recall these statements from Sect. 2.8. If Γ is an extremal lift for
a controlled trajectory (x̄, ū) defined over the interval [0,T ] with corresponding
adjoint vector λ : [0,T ] → (Rn)∗, then the corresponding switching function is
Φ(t) = 〈λ (t),g(x(t))〉, and if the control is singular on an interval I, then Φ(t)
and all its derivatives vanish identically on I. In the case analyzed in this section,
[g, f ,g]]≡ 0 and thus

Φ(i)(t) =
〈
λ (t),ad i f (g)(x(t))

〉 ≡ 0

for i = 1,2, and 3, and

Φ(4)(t) =
〈
λ (t), [ f + ug,ad3 f (g)](x(t))

〉

gives rise to the Kelley condition. This procedure can be continued as long as all
the relevant Lie brackets vanish identically. In such a case, because of Lie-algebraic
identities, the control can appear for the first time only in an even derivative. (We
warn the reader that contrary to what is being claimed in several textbooks and
research papers, this need not be the case for singular controls in general.) A singular
control u is said to be of intrinsic order k on I if u takes on values in the interior of the
control set and if all the Lie brackets that would arise at the control variable u when
the switching function is differentiated at most 2k−1 times vanish identically, while〈
λ (t),ad 2k

f (g)(x(t))
〉

does not vanish on I. In this case, the first 2k− 1 derivatives

of the switching function are given by

Φ(i)(t) =
〈
λ (t), ad i f (g)(x(t))

〉
, for i = 1, . . . ,2k− 1,

and vanish identically, and

Φ(2k)(t) =
〈
λ (t), [ f + ug,ad 2k−1 f (g)](x(t))

〉

can be solved for u. It then is a necessary condition for the trajectory to lie on the
boundary of the reachable set or be time-optimal that

(−1)k
〈〈
λ (t), [g,ad 2k−1 f (g)](x(t))

〉〉
≥ 0. (4.47)
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Since the switching functionΦ can also be expressed in the form

Φ(t) = 〈λ (t),g(x(t))〉= ∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)),

in its classical formulation [64] the generalized Legendre–Clebsch or Kelley condi-
tion can be stated as follows:

(−1)k ∂
∂u

d2k

dt2k

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))≥ 0 for all t ∈ I.

A proof of this condition can be given by constructing variations analogous to those
made above, but it requires a deeper look into the Lie-algebraic relations that enter
the asymptotic expansion (4.32) and will not be pursued in this text.

4.6.3 The Goh Condition for Multi-input Systems

The results derived above also apply to multi-input control-affine systems. For
simplicity, suppose the controls take values in a compact interval, ui ∈ [αi,βi]. If
only one of the controls is singular and the other controls are locally constant
except for a discrete set of switching times, then the results above directly apply
if we simply incorporate all these controls into the reference drift vector field f .
Even if more than one control is singular, we can just limit the variations to one
control at a time, and the same necessary conditions for optimality are valid. This
could be seen by doing the analogous computations within the framework presented
or by simply noting that the exponential formalism extends to the case of time-
varying vector fields. This gets more technical and is known as the chronological
calculus of A. Agrachev and R. Gamkrelidze [11, 12], but the computations made
above extend to this setting and the results remain true (e.g., see [130]). However, if
more than one control is singular at the same time, there is an important additional
necessary condition for optimality that arises, the so-called Goh condition. We close
this section with a derivation of this condition.

For simplicity of notation, we consider a system with two inputs of the form

Σ : ẋ = f (x)+ u1g1(x)+ u2g1(x), |u1| ≤ 1, |u2| ≤ 1,

and, as always, assume that Γ = (x̄(·), ū(·)) is a controlled reference trajectory
defined on [0,T ] with initial point x̄(0) = p̄ and terminal point x̄(T ) = q̄.

Theorem 4.6.3. Let t̄ ∈ I be a Lebesgue point for both reference controls ū1 and ū2

and suppose that |ui (t̄)|< 1 for i = 1,2. Then the vectors ±[g1,g2]](x̄(t̄)) lie in the
sets P(t̄) and Q(t̄).



4.6 High-Order Necessary Conditions for Optimality 315

Corollary 4.6.3 (Goh condition). Suppose q̄ lies on the boundary of the reachable
set, q̄ ∈ ∂ ReachΣ (p̄), and let I ⊂ [0,T ] be an open interval on which the reference
controls ū1 and ū2 take values in the interior of the control set. Then there exists
a nontrivial solution λ : [0,T ]→ (Rn)∗, t �→ λ (t), to the adjoint equation along Γ
such that the conditions of Theorem 4.2.2 are satisfied and in addition, for all t ∈ I
we have that

〈λ (t), [g1,g2](x̄(t))〉 ≡ 0.

Proof of Theorem. We need a version of the asymptotic product expansion in
Proposition 4.5.2 with three terms, but only up to second-order brackets. Let S(t) be
the solution of the initial value problem

Ṡ = S(uX + vY +wZ), S(0) = Id .

and denote the integrals over the integrable functions u, v, and w by the correspond-
ing capital letters U , V , and W . Making the ansatz S = S1eUX and differentiating in
t leads to

Ṡ1 = (Ṡ− S (uX))e−UX = S1eUX (vY +wZ)e−UX = S1eU adX (vY +wZ)

= S1 (vY +wZ+ vU [X ,Y ]+wU [X ,Z]+ · · ·) .

Writing S1 = S2eVY and repeating this step one more time gives

Ṡ2 = (Ṡ1− S1 (vY ))e−VY = S2eV adY (wZ + vU [X ,Y ]+wU [X ,Z]+ · · ·)
= S2 (wZ + vU [X ,Y ]+wU [X ,Z]+wV [Y,Z]+ · · ·) .

As in the proof of Proposition 4.5.2, this equation can be solved formally by
integrating and then, modulo higher-order terms, expanding the sum into a product
to obtain

S2(t) = · · ·exp

(∫ t

0
wV ds · [Y,Z]

)
exp

(∫ t

0
wUds · [X ,Z]

)
exp

(∫ t

0
vUds · [X ,Y ]

)

exp(W ·Z) exp(V ·Y ) exp(U ·X) .

We now use this formula to compute variational vectors

ζV (α) = x̄(t̄)exp(α(S+ρ1g1 +ρ2g2))exp(−αS) ,

where we use the same setup as before: S = f + ū1g1 + ū2g2 denotes the controlled
reference vector field and the terms ρigi describe the variations to be made. Given
t̄ ∈ I and ε > 0 small enough, for 0 ≤ α ≤ ε replace the reference controls ū1 and
ū2 over the interval [t̄, t̄+α] with other, suitably chosen admissible controls η1(α, ·)
and η2(α, ·). We again take t1(α) = t̄, t2(α) = t̄+α and Δ+(α) =α , and for i= 1,2,
the controls of the variation are given by
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uV
i,α(t) =

⎧⎪⎪⎨
⎪⎪⎩

ūi(t) if 0≤ t ≤ t̄,

ηi(α, t− t̄) if t̄ < t ≤ t̄ +α,
ūi(t) if t̄ +α ≤ t ≤ T.

The curve ζV (α) once more is obtained by integrating the dynamics corresponding
to the reference controls ū1 and ū2 backward from the endpoint ξ (α,α) of the
variation over the interval [t̄, t̄ +α]. As before, let ρi(α, ·) denote the difference
between the control ηi(α, ·) of the variation and the reference control ūi over
[t̄, t̄ +α], i.e., ηi(α, t) = ūi(t̄ + t)+ ρi(α, t) for 0 ≤ t ≤ α . Writing the dynamics
in the form Ṡ = S (u f + vg1 +wg2), the functions u, v, and w defined on [0,2α] are
given by

u(t) =

{
1 if 0≤ t ≤ α,
−1 if α ≤ t ≤ 2α,

and v(t) = v(t) + h1(t) and w(t) = w(t) + h2(t), where v(t) and w(t) denote the
contributions of the reference controls and hi(t) denotes the contributions from the
variation, i.e.,

v(t)=

⎧⎨
⎩

ū1(t̄ + t) if 0≤ t ≤ α,
−ū1(t̄ + 2α− t) if α < t ≤ 2α,

h1(t)=

⎧⎨
⎩
ρ1(α, t) if 0≤ t ≤ α,
0 if α < t ≤ 2α,

and

w(t)=

⎧⎨
⎩

ū2(t̄ + t) if 0≤ t ≤ α,
−ū2(t̄ + 2α− t) if α < t ≤ 2α,

h2(t)=

⎧⎨
⎩
ρ2(α, t) if 0≤ t ≤ α,
0 if α < t ≤ 2α.

Modulo the same technical argument about measurability that was used in the
proof of the Legendre–Clebsch condition, without loss of generality we may assume
that the reference controls ū1 and ū2 are continuous from the right at t̄. Then there
exist positive constants ε , c1, and c2 such that for i = 1 and 2 we have for all t ∈
[t̄, t̄ + ε] that

−1+ 2ci ≤ ūi(t)≤ 1− 2ci,

and thus measurable variations ρi with values in the intervals [−ci,ci] will give
rise to an admissible control. As before, we define the functions ρi in terms of
polynomials Qi defined on the interval [0,1] as

ρi(α,s) = ciQi

( s
α

)
for 0≤ s≤ α,
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Fig. 4.21 Polynomials Q1 (left) and Q2 (right) for the variation V to derive the Goh condition

where max{|Qi(t)| : 0≤ t ≤ 1}= 1. The first polynomial Q1 is chosen as the unique
quadratic polynomial that satisfies

∫ 1

0
tiQ1(t)dt = 0 for i = 0,1, and

∫ 1

0
t2Q1(t)dt =

1
30

,

i.e.,
Q1(t) = 6t2− 6t + 1.

However, totally symmetric variations in the two controls do not work, and we break
the symmetry by choosing Q2 as the cubic polynomial

Q2(t) = 10t3− 12t2+ 3t.

This polynomial satisfies for i = 0,1 that

∫ 1

0
tiQ2(t)dt = 0 and

∫ 1

0
Q2(t) ·

(∫ t

0
Q1(s)ds

)
dt =

1
140

= 0.

The graphs of these polynomials are shown in Fig. 4.21.

The telescoping structure of the variations is as before, and the calculations made
in the proof of Lemma 4.6.1 immediately imply that we have

U(2α) = 0, V (2α) = 0, W (2α) = 0,

as well as ∫ 2α

0
v(s)U(s)ds =

∫ α

0
sρ1(α,s)ds = 0
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and ∫ 2α

0
w(s)U(s)ds =

∫ α

0
sρ2(α,s)ds = 0.

Therefore, the expansion for

ζV (α) = x̄(t̄)exp(α(S+ρ1g1 +ρ2g2))exp(−αS)

reduces to

ζV (α) = x̄(t̄) · · ·exp

(∫ t

0
wV ds · [g1,g2]

)
,

which gives the leading term. We have

∫ 2α

0
wV ds =

∫ 2α

0
(w+ h2)

(
V +H1

)
ds

=

∫ 2α

0
wVds+

∫ α

0
h2Vds+

∫ α

0
wH1ds+

∫ α

0
h2H1ds.

As before, the first integral, which involves only the reference trajectory, will be
zero, the second and third integrals will be of higher order, and the last term will
give the dominant term: using Eq. (4.40) to represent V on the interval [α,2α], we
have that

∫ 2α

0
w(t)V (t)dt =

∫ α

0
ū2(t̄ + t)

(∫ t

0
ū1(t̄ + s)ds

)
dt

−
∫ 2α

α
ū2(t̄ + 2α− t)

(∫ 2α−t

0
ū1(t̄ + s)ds

)
dt

=

∫ α

0
ū2(t̄ + t)

(∫ t

0
ū1(t̄ + s)ds

)
dt

+

∫ 0

α
ū2(t̄ + r)

(∫ r

0
ū1(t̄ + s)ds

)
dr = 0.

Furthermore,
∫ α

0
h2(s)V (s)ds =

∫ α

0
ρ2(α,s)(ū1(t̄)s+ o(s))ds

= ū1(t̄)
∫ α

0
sρ2(α,s)ds+ o(α2) = o(α2),

∫ α

0
w(s)H1(s)ds = W (s)H1(s)

∣∣α
0 −

∫ α

0
W (s)h1(s)ds

= −
∫ α

0
(ū2(t̄)s+ o(s))ρ1(α,s)ds = o(α2),
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and

∫ α

0
h2(s)H1(s)ds =

∫ α

0
c1Q2

( s
α

)(∫ s

0
c2Q1

( r
α

)
dr

)
ds

= α2c1c2

∫ 1

0
Q2 (t)

(∫ t

0
Q1 (�)d�

)
dt =

α2c1c2

140
> 0.

If we were to use Q1 = Q2 = Q, it would actually hold that

∫ 1

0
Q(t)

(∫ t

0
Q(�)d�

)
dt = 0,

and thus this term would drop out. For this reason, we needed to pick two
polynomials such that one is not orthogonal to the integral of the other. After
normalizing the parameter α , we thus get the Lie bracket [g1,g2](x̄(t̄)) as the
variational vector,

ζ̇V (0) = [g1,g2](x̄(t̄)).

Replacing Q2 with its negative, the negative of this value can be realized as well,
and thus both [g1,g2](x̄(t̄)) and −[g1,g2](x̄(t̄)) lie in the sets P(t̄). It then follows as
for the Legendre–Clebsch condition that these vectors also lie in Q(t̄). �

4.7 Notes

In an article commemorating the 300th anniversary of the brachistochrone prob-
lem [245], Hector Sussmann and Jan Willems view this problem as the birth of
optimal control. Indeed, the brachistochrone problem is the first problem to deal
with dynamic behavior, asking for an optimal selection of a curve. H. Sussmann
and J. Willems make a compelling argument for “the superiority of the optimal
control method for the brachistochrone problem” [245, p. 44], which, in modern
optimal control theory, would be considered a minimum-time problem. Viewing the
history of the calculus of variations as a “search for the simplest and most general
statement of the necessary conditions for optimality, . . . this statement is provided
by the maximum principle of optimal control” [245, p. 35].

The proof of the maximum principle presented in this chapter is based on lecture
notes of one of the authors for a course on optimal control that Hector Sussmann
taught at Rutgers University in 1983. The underlying approach is the original one of
the group of mathematicians around Pontryagin [193], especially Boltyansky’s [42],
and the proof given in Sect. 4.2 reproduces their arguments for the case of the
needle variations CUT and PASTE (also, see [44, 56]). These needle variations
have their historic origin in the variations made by Weierstrass in the proof of his
side condition in the calculus of variations. The differential-geometric language and
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concepts that are used here clearly bring out the role of the various components in
the proof: variations as a means to generate tangent vectors to the reachable set, the
embedding of the controlled reference trajectory as a means to move or transport
vectors and covectors along the controlled reference trajectory, and the multipliers
as separating hyperplanes between suitably constructed approximating cones to the
reachable set and lower level sets of the objective. It especially becomes clear in
this construction that there is no need to distinguish between first- and higher-order
maximum principles [140]. Clearly, any point variation can be reparameterized to
give a first-order tangent vector.

Naturally, there also exist other approaches to prove the maximum principle.
We only briefly mention those that are based on ideas from optimization theory
and variational analysis. In the first approach, which goes back to Dubovitskii and
Milyutin [106, 185], constraints are treated separately and simple approximating
cones give rise to an Euler–Lagrange-type equation. From it one can easily obtain
a weak version of the maximum principle in which the minimization condition
on the Hamiltonian is replaced by the corresponding necessary conditions for
optimality. However, it is not all evident in these constructions, and indeed quite
cumbersome, to obtain the full version of the maximum principle. This approach,
however, is convenient to give extensions of the maximum principle for situations
in which the equality constraints (including the dynamics) are no longer regular. In
this way, one can give additional and stronger necessary conditions for abnormal
extremals. This research goes back to the work of Avakov [27–29] and has found
numerous extensions, for example in the work of Arutyunov [23,24], Tretyakov and
Brezhneva [251], and ourselves [149, 150, 153, 154]. In particular, the paper [152]
gives a high-order version of the concept of an approximating cone for these
problems. Proofs of the maximum principle that follow variational arguments, but
in a nonsmooth setting, are given by Ioffe and Tikhomirov [119], Clarke [76–78],
and Vinter [254]. For an in-depth account of variational analysis and generalized
differentiation we refer the reader to the monographs by Aubin and Frankowska [26]
and B. Mordukhovich [186,187]. The proof given in this chapter has been extended
to a nonsmooth setting in the work of H. Sussmann, e.g., [244, 247, 248], and
provides the most general version of the conditions of the maximum principle
proven so far.

Exponential representations of solutions to differential equations are classical in
differential geometry in the context of canonical coordinates, geodesics, and the
exponential mapping [50, 256], but their use in optimal control is not widespread.
They have been consistently employed by one of the authors in his work on time-
optimal control for nonlinear systems in small dimensions in the late 1980s, and
some of this work will be presented in Chap. 7. These techniques also were used in
several engineering problems in the early nineties, especially for path planning in
robotics. But overall, these techniques have not achieved the prominence they de-
serve. More general versions of exponential representations for time-varying vector
fields are given in the research of A.A. Agrachev and R.V. Gamkrelidze [11, 12]
and are known as chronological calculus. We refer the reader to the advanced
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research monograph by Agrachev and Sachkov [15] for these generalizations and
applications to high-order necessary and sufficient conditions for optimality that are
based on the formalism of symplectic geometry [13, 14].

Our treatment of high-order necessary conditions for optimality uses the product
expansion in Proposition 4.5.2 as it was derived in the thesis of one of the authors
in 1986 [209]. The construction in the proof of the Legendre–Clebsch condition is
a detailed version of the argument by Kawski and Sussmann in their paper [130].
In this paper, in great generality the leading term of a variation is computed using
Lie-algebraic computations based on a shuffle-product. These become of interest
with the use of highly oscillatory variations as they are considered in the research
on local controllability of M. Kawski [128, 129]. The variations that we give to
prove the Kelley and Goh conditions are our own way to prove these necessary
conditions for optimality. They present a much more streamlined proof of these
classical results than can be found in the literature (e.g., [64]). Especially for the
Goh-condition [107], we are not aware of a simpler treatment.

For some historical comments on the development of the conditions of the
maximum principle, especially its connections with Hestenes’s approach [118], we
refer the reader to the review article by Pesch and Plail [194].



Chapter 5
The Method of Characteristics: A Geometric
Approach to Sufficient Conditions for a Local
Minimum

So far, our focus has been on necessary conditions for optimality. The conditions of
the Pontryagin maximum principle, Theorem 2.2.1, collectively form the first-order
necessary conditions for optimality of a controlled trajectory (aside from the much
stronger minimum condition on the Hamiltonian that generalizes the Weierstrass
condition of the calculus of variations). Clearly, as in ordinary calculus, first-order
conditions by themselves are no guarantee that even a local extremum is attained.
High-order tests, based on second- and increasingly higher-order derivatives, like
the Legendre–Clebsch conditions for singular controls, can be used to restrict the
class of candidates for optimality further, but in the end, sufficient conditions need
to be provided that at least guarantee some kind of local optimality. These will be
the topic of the next two chapters of our text.

Once more, we consider the optimal control problem [OC] formulated in
Sect. 2.2. The topic now is to study the behavior of the optimal value of the solutions
as a function of the initial data, the initial time t0, and the initial value x0. As before,
we denote the trajectory corresponding to an admissible control that satisfies this
initial condition by x, and the optimal control problem under consideration therefore
is to

[OC] minimize the functional

J (u;t0,x0) =

∫ T

t0
L(s,x(s),u(s))ds+ϕ(T,x(T ))

over all admissible controls u ∈U for which the corresponding trajectory x,

ẋ(t) = f (t,x(t),u(t)), x(t0) = x0,

satisfies the terminal constraint

(T,x(T )) ∈ N = {(t,x) ∈ R×R
n :Ψ(t,x) = 0}.

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
DOI 10.1007/978-1-4614-3834-2 5, © Springer Science+Business Media, LLC 2012
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We have explicitly included the dependence of the value of the objective, J , on
the initial condition (t0,x0) in this notation. Throughout this chapter, we make the
following regularity assumptions on the data: the dynamics f and the Lagrangian
L are continuous in all variables, and for some positive integer � or � = ∞, these
functions are �-times continuously differentiable in x and u. If these functions are
real-analytic, we say they are of class Cω . We use C0,�,� and analogous notations to
denote the smoothness properties of various functions and mappings. The penalty
term ϕ and the functions Ψ defining the constraint are assumed to be �-times
continuously differentiable in both variables, t and x, and we simply write ϕ ∈C� if
the smoothness assumptions are the same for all variables. Furthermore, we always
assume that the Jacobian matrix of the equationsΨ defining the terminal constraint,
DΨ , is of full rank on N = {(t,x) ∈ R×R

n :Ψ(t,x) = 0}. Thus N is an embedded
C�-submanifold of R×R

n.

Time-dependent and time-independent models. In this formulation, we again
have included an explicit dependence of the data on the time t. In most practical
problems, these functions actually are time-invariant or autonomous. However, if
the problem is one of regulating a system over a fixed finite time interval [0,T ]
(e.g., the linear-quadratic regulator or models for cancer treatments over a prescribed
therapy horizon), even if all other data are time-invariant, the optimal control clearly
will depend not only on the state x, but also on the time t, or, more intuitively, the
time that is left until the terminal time T . We therefore call the optimal control
problem [OC] time-dependent if any one of the functions f , L, ϕ , Ψ depends
on t. In particular, in any optimal control problem over a fixed finite time-interval
[0,T ], one of the functions defining N is given by ψ(t,x) = t − T , and thus the
problem automatically becomes time-dependent regardless of whether the dynamics
and objective depend on t. We call the problem [OC] time-independent if none of
the data depend on t. For example, the time-optimal control problem to a point as
considered in Chap. 2 is time-independent. It is sometimes convenient to normalize
the final times in these problems, but this does not constitute a fixed terminal
time. We use the terminology time-varying and time-invariant, respectively, to
indicate whether the dynamics f and the Lagrangian L depend on t or not. The
theory presented in this chapter will be developed mostly for the time-dependent
formulation, but we also include time-independent versions. At times, this is as
simple as setting x′ = (t,x). In other situations, this formal substitution to make
the problem time-independent is somewhat inadequate. The reason is that the trivial
dynamics ṫ = 1 introduces a distinguished monotone variable that a general time-
invariant system does not have. Once flows of solutions to differential equations are
considered, however, such a variable will be needed, but there is no need to duplicate
it if it already exists in the formulation. And if one formally does so, this leads to
rather awkward formulations. For this reason, and at the expense of some minor
duplications, we consider both formulations in this chapter, but with emphasis on
the time-dependent problem.

The main idea in studying sufficient conditions for optimality is to consider the
value V of the optimal control problem as a function of the initial conditions. In
this context, it is customary and more convenient, although somewhat ambiguous,
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to denote the initial time by t and the initial value by x so that the value function
reads

V (t,x) = inf
u∈U

J (u;t,x),

where the infimum is taken over all admissible controls u∈U whose corresponding
trajectories start at the point x at time t and satisfy all other requirements of the
optimal control problem. It is not difficult to see—and this is known as Bellman’s
dynamic programming principle—that if the function V is differentiable at (t,x)
with gradient ( ∂V

∂ t (t,x),
∂V
∂x (t,x)), then for all u ∈ U the following inequality is

satisfied:
∂V
∂ t

(t,x)+
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)≥ 0.

Furthermore, if u∗ is an optimal control for the initial condition (t,x) that is
continuous at the initial time t, then equality holds for u = u∗(t). Thus, in this case
the value V satisfies the following first-order linear partial differential equation that
is coupled with the optimal control u∗ through a minimum condition,

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)

}
≡ 0,

the so-called Hamilton–Jacobi–Bellman equation [32]. The importance of this
equation, however, is not as a necessary condition for optimality, but it lies in its
significance as a sufficient condition for optimality. Indeed, if the pair (V,u∗) is a
solution to this equation (in the sense that V is a continuously differentiable function
and u∗ = u∗(t,x) is an admissible control for which the minimum is realized), then
u∗ is an optimal control. This also, as will be shown below, is easily seen. However,
for various reasons, this result does not provide a satisfactory sufficient condition
for optimality. While V turns out to be C1 for some problems, the common scenario
is that the value function V has singularities and that it will not be differentiable
on lower-dimensional submanifolds of the state space. This fact indeed severely
impedes a straightforward application of the dynamic programming principle, and
essentially, the study of sufficient conditions for optimality becomes equivalent to
analyzing the singularities of solutions to its associated Hamilton–Jacobi–Bellman
equation, a rather difficult problem.

In this chapter, we adapt the method of characteristics, the classical solution
procedure for first-order partial differential equations [124], to construct the value
function associated with a parameterized family of extremals. The so-called char-
acteristic equations for the Hamilton–Jacobi–Bellman equation are given by the
dynamics of the system and the adjoint equations of the maximum principle [33];
the minimum condition in the maximum principle becomes the minimum condition
in the Hamilton–Jacobi–Bellman equation. This construction clearly brings out
the relationships between the necessary conditions of the maximum principle
and the sufficiency of the dynamic programming principle, and it provides the
generalization of the concept of a field of extremals from the calculus of variations
to optimal control theory.
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After outlining the main ideas of dynamic programming in Sect. 5.1, Sect. 5.2
presents the construction of the value function associated with a parameterized
family of extremals. While our constructions may be global in some situations—
and we shall use them to give a straightforward and short proof of the optimality of
the synthesis for the Fuller problem constructed in Sect. 2.11—with the conditions
that need to be imposed, these constructions are inherently local in nature and
will be used to compute “patches” of the value function that then need to be
“glued together” to obtain a global solution. However, the global aspects of
the construction, known as a regular synthesis of optimal controlled trajectories
[41, 196], will be postponed until Chap. 6. Here, we develop the local aspects and
use the procedure to give sufficient conditions for a local minimum of a controlled
trajectory (Sect. 5.3). These results form the core of what is known as perturbation
feedback control in the engineering literature [64], and here a geometric approach
will be taken to rigorously derive the underlying formulas. Geometric arguments
are also crucial in Sects. 5.4 and 5.5, where we investigate the behavior of a
parameterized flow of extremals near singularities, that is, when the corresponding
trajectories overlap. This brings us back to conjugate points, and one main tool
in their investigation will be the generalization of the theory of envelopes from
the calculus of variations to the optimal control problem. It will be seen that very
different local syntheses arise depending on the type of the conjugate point: while
the local geometry of extremal trajectories near a fold singularity is exactly the same
as for the family of catenaries in the problem of minimum surfaces of revolution
in the calculus of variations (Sect. 1.3), a cusp singularity generates a cut-locus of
extremals akin to the intersection of the catenaries with the Goldschmidt extremals
(Sect. 1.7). Throughout this chapter, we assume that the control u is continuous,
a natural condition if only one “patch” of the field of extremals is considered. In
Chap. 6, the results will then be extended to situations in which various patches will
be glued together.

5.1 The Value Function and the Hamilton–Jacobi–Bellman
Equation

We present the main ideas of Bellman’s principle of optimality and illustrate it with
some classical examples. In this section, we denote the initial conditions by (t,x),
and in order to keep the notation unambiguous, we use the Greek letters η and ξ for
admissible controls and their corresponding trajectories. Thus, if η : [t,T ]→U is
an admissible control, then ξ is the solution to the dynamics ξ̇ (s) = f (s,ξ (s),η(s))
with initial condition ξ (t) = x. In subsequent sections, we shall return to the more
intuitive notation for the controls and trajectories as u and x. We first consider the
time-dependent formulation.

Definition 5.1.1 (Value function). Given an initial condition (t,x), denote by U(t,x)
the set of all admissible controls η defined over some interval [t,T ], η : [t,T ]→U ,
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for which the corresponding trajectory ξ exists on the full interval [t,T ] and steers
the system into the terminal manifold N. The value V =V (t,x) of the optimal control
problem [OC] is defined as

V (t,x) = inf
u∈U(t,x)

J (u;t,x), (5.1)

i.e., as the infimum of the values of the cost functional taken over all controlled
trajectories with initial condition (t,x). If the set U(t,x) is empty, we define V (t,x) =
+∞. The function V : G→ R, (t,x) �→ V (t,x), defined on the set G of all possible
initial conditions, is called the value function of the optimal control problem [OC].

Proposition 5.1.1 (Dynamic programming principle). If the value V is differen-
tiable at (t,x), then we have for every control value u in the control set, u ∈U, that

∂V
∂ t

(t,x)+
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)≥ 0.

If η∗ : [t,T ]→U is an optimal control that is continuous at the initial time t with
value u∗ = lims↘t η(s), then

∂V
∂ t

(t,x)+
∂V
∂x

(t,x) f (t,x,u∗)+L(t,x,u∗) = 0.

Overall, we therefore have that

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)

}
≡ 0. (5.2)

Proof. Let u ∈U be an admissible control value and for h > 0, let ηu : [t, t + h]→
U denote the admissible control that is constant on the interval [t, t + h] given by
ηu(s) ≡ u. For h sufficiently small, the corresponding trajectory ξu exists on the
interval [t, t +h]. If η : [t +h,T ]→U is any control that is admissible for the initial
condition (t + h,ξu(t + h)), then the concatenation ηu ∗η : [t,T ]→U , defined by

(ηu ∗η)(s) =
{

u for t ≤ s≤ t + h,

η(s) for t + h < s≤ T,

is admissible for the initial condition (t,x), ηu ∗ η ∈ U(t,x), and therefore, by
definition of the value function, we have that

V (t,x)≤
∫ t+h

t
L(s,ξu(s),u)ds+V (t + h,ξu(t + h)). (5.3)

Hence

V (t + h,ξu(t + h))−V(t,x)
h

+
1
h

∫ t+h

t
L(s,ξu(s),u)ds≥ 0.
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Since V is differentiable at (t,x), taking the limit h→ 0, h > 0, it follows that

∂V
∂ t

(t,x)+
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)≥ 0.

Furthermore, if η∗ is an optimal control, then equality holds in Eq. (5.3), and thus
in the limit h→ 0+, equality holds with u = u∗. ��

Equation (5.2) is called the Hamilton–Jacobi–Bellman (HJB) equation, and its
solutions are essential for any kind of theory of sufficient conditions for optimality.
Note that the function to be minimized in the HJB equation is the same expression
that is obtained if in the definition of the Hamiltonian H for the control system,
H = λ0L(t,x,u)+λ f (t,x,u), we normalize λ0 = 1 and replace the multiplier λ by
∂V
∂x (t,x). In fact, as we shall see in this chapter, the identification of the adjoint
variable λ with this gradient is the key relation that connects necessary to sufficient
conditions for optimality.

Definition 5.1.2 (Admissible feedback controls). Let G be a region in (t,x)-space.
We call a feedback control u : G → U , (t,x) �→ u(t,x), admissible (on G) for the
control problem [OC] if for every initial condition (t,x) ∈ G, the initial value
problem

ξ̇ = f (s,ξ ,u(s,ξ )), ξ (t) = x, (5.4)

has a unique solution ξ : [t,T ]→R
n (forward in time) for which the corresponding

open-loop controlη : [t,T ]→U , η(s) = u(s,ξ (s)), satisfies the regularity properties
postulated in the definition of the class U of admissible controls.

If the feedback control u is continuous, standard results on ODEs guarantee
the existence and uniqueness of solutions to the initial value problem (5.4); if,
however, this feedback control is discontinuous—and as we already have seen in
Chap. 2, this is the more typical scenario in optimal control problems—then these
standard results are not enough to clarify the existence of solutions. Rather than
going into the intricacies as to when solutions to ordinary differential equations
with discontinuous right-hand sides exist, in the formulation adopted here we
simply require the existence and uniqueness of solutions to Eq. (5.4), while at the
same time, demanding that the open-loop control that gives rise to this controlled
trajectory be admissible. This indeed typically holds for optimal feedback controls
and will be satisfied for all the examples considered in this text.

Definition 5.1.3 (Classical solution to the Hamilton–Jacobi–Bellman equation).
Let G be a region in (t,x)-space that contains the terminal manifold N in its
boundary. We call the pair (V,u∗) a classical solution to the Hamilton–Jacobi–
Bellman equation on G if (i) V : G → R is continuously differentiable on G and
extends continuously onto N, (ii) u∗ is an admissible feedback control, (iii) we have

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)

}
≡ 0,
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with equality holding for the feedback control u∗ = u∗(t,x), and (iv) the boundary
condition V (t,x) = ϕ(t,x) holds for all (t,x) ∈ N.

Theorem 5.1.1. If (V,u∗) is a classical solution to the Hamilton–Jacobi–Bellman
equation on G, then the control u∗ is optimal with respect to any other admissible
control η for which the graph of the corresponding controlled trajectory ξ lies in
G and V is the corresponding minimal value when taken over this class of controls.
In particular, if a classical solution (V,u∗) exists on the full space, then u∗ is an
optimal control and V is the value function for the problem.

Proof. Let η : [t,T ]→U be any admissible control for initial condition (t,x) ∈ G,
η ∈U(t,x), with corresponding trajectory ξ . By assumption, the graph of ξ lies in G
for s ∈ [t,T ) and the function V is differentiable along the graph of ξ . Since ξ is an
absolutely continuous curve, we have a.e. on [t,T ) that

d
ds

V (s,ξ (s)) =
∂V
∂ t

(s,ξ (s))+
∂V
∂x

(s,ξ (s)) f (s,ξ (s),η(s)).

It thus follows from the Hamilton–Jacobi–Bellman equation that

d
ds

V (s,ξ (s)) ≥−L(s,ξ (s),η(s)).

Integrating this inequality from t to some time T − ε and then taking the limit as
ε → 0 therefore yields

V (T,ξ (T ))−V(t,x)≥−
∫ T

t
L(s,ξ (s),η(s))ds.

The boundary condition for V states that V (T,ξ (T )) = ϕ(T,ξ (T )), and thus it
follows that

V (t,x)≤
∫ T

t
L(s,ξ (s),η(s))ds+ϕ(T,ξ (T )) = J (η ; t,x).

Furthermore, for the control η∗, η∗(s) = u∗(s,ξ∗(s)), we have equality and thus
V (t,x)=J (η∗; t,x). Hence V is the value function,V (t,x)=minη∈U(t,x)

J (η ; t,x).
This proves the theorem. ��

More generally, this argument shows that any differentiable function W that
satisfies

∂W
∂ t

(t,x)+
∂W
∂x

(t,x) f (t,x,u)+L(t,x,u)≥ 0 for all u ∈U

with boundary condition

W (T,x)≤ ϕ(T,x) for (T,x) ∈ N
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provides a lower bound for the value function. Such a function is called a lower
value.

The solution of optimal control problems is thus closely related to finding
solutions to the Hamilton–Jacobi–Bellman equation (5.2). It is the coupling of two
aspects, first-order PDE and optimization problem, that makes the solution of HJB
equations a challenge. One possible approach is to first solve the minimization
problem for u and “define” the control as a “function” of the state and the
gradient ∂V

∂x , u = u(t,x, ∂V
∂x ), and then substitute the resulting relation into the partial

differential equation. Clearly, there exist various obstacles to this approach: the
point where the minimum is attained need not be unique, and even if it is, (e.g.,
if the Hamiltonian of the associated control problem is strictly convex in u), then
the resulting PDE typically becomes highly nonlinear and difficult to solve. In
some special cases, often related to the existence of symmetries of the underlying
optimal control problem, an explicit solution to the HJB equation becomes possible,
and below we shall give two examples in which this procedure does work, one
straightforward (the linear-quadratic regulator), the other somewhat involved (the
Fuller problem). For a general problem, however, it is often preferable to retain the
structure of the HJB equation as a first-order linear PDE and reduce its solution to a
system of ordinary differential equations in the so-called method of characteristics.
For the optimal control problem, these characteristic equations are the dynamics
in the state space and the adjoint equations on the multipliers. In the next section,
we shall show how the method of characteristics can be used in a methodical way
in connection with an analysis of extremals to construct the value function for an
optimal control problem and thus to solve HJB equations. But we start with two
classical examples in which underlying symmetries of the problem allow an explicit
solution.

Example 5.1.1 (Linear-quadratic regulator). Recall that the linear-quadratic reg-
ulator problem [LQ] (see Sect. 2.1) is the optimal control problem to minimize a
quadratic objective of the form

J(η ;0,x) =
1
2

∫ T

0

[
ξ T (t)Q(t)ξ (t)+ηT (t)R(t)η(t)

]
dt +

1
2
ξ T (T )STξ (T )

over all locally bounded Lebesgue measurable functions η : [0,T ]→ R
m subject to

the linear dynamics

ξ̇ (t) = A(t)ξ (t)+B(t)η(t), ξ (0) = x.

The entries of the matrices A(·), B(·), R(·), and Q(·) all are continuous functions
on the interval [0,T ], and the matrices R(·) and Q(·) are symmetric; R(·) is positive
definite and Q(·) positive semidefinite; ST is a constant positive definite matrix.
Since the time horizon is specified, even if dynamics and Lagrangian are time-
invariant, this is a time-dependent problem, and the Hamilton–Jacobi–Bellman
equation needs to be considered in the form Eq. (5.2),
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∂V
∂ t

(t,x)+ min
u∈Rm

{
∂V
∂x

(t,x)(A(t)x+B(t)u)+
1
2

(
xT Q(t)x+ uT R(t)u

)}≡ 0,

with boundary condition

V (T,x) =
1
2

xT ST x.

Since the matrix R(t) is positive definite, the function to be minimized is strictly
convex in u. Hence the minimization problem has a unique solution given by the
stationary point, i.e.,

∂V
∂x

(t,x)B(t)+ uT R(t) = 0,

or equivalently,

u =−R−1(t)BT (t)

(
∂V
∂x

(t,x)

)T

.

Substituting this expression back into the HJB equation, we obtain a now nonlinear
first-order partial differential equation,

∂V
∂ t

(t,x)+
∂V
∂x

(t,x)A(t)x+
1
2

xT Q(t)x

− 1
2
∂V
∂x

(t,x)B(t)R−1(t)BT (t)

(
∂V
∂x

(t,x)

)T

≡ 0. (5.5)

While there is little hope of explicitly solving nonlinear partial differential equations
in general, this equation is separable. Since ∂V

∂x (t,x)A(t)x ∈ R, we can rewrite the
linear term as

∂V
∂x

(t,x)A(t) =
1
2

(
∂V
∂x

(t,x)A(t)x+ xT AT (t)

(
∂V
∂x

(t,x)

)T
)
,

and thus, because of the quadratic nature of the underlying optimal control problem,
Eq. (5.5) possesses a symmetry that can be exploited by considering a quadratic
function V of the form

V (t,x) =
1
2

xT S(t)x

with a symmetric matrix S. This ansatz separates the variables t and x, and Eq. (5.5)
reduces to

1
2

xT [
Ṡ(t)+ S(t)A(t)+AT(t)S(t)− S(t)B(t)R−1(t)BT (t)S(t)+Q(t)

]
x≡ 0,

and the boundary condition can be satisfied by choosing S(T ) = ST . Thus V (t,x) =
1
2 xT S(t)x is a classical solution to the Hamilton–Jacobi–Bellman equation if and
only if the matrix S(t) is a solution to the Riccati terminal value problem
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Ṡ+ SA(t)+AT(t)S− SB(t)R−1(t)BT (t)S+Q(t) = 0, S(T ) = ST ,

and the minimizing control is given by the linear feedback law

u(t,x) =−R−1(t)BT (t)S(t)x.

We already know that the solution to this Riccati equation exists over the full
interval [0,T ] (Sect. 2.1), and thus this defines an admissible feedback control, and
the pair (V,u∗) is a classical solution of the HJB equation for the linear-quadratic
regulator. Note that even if the dynamics and Lagrangian are time-invariant, the
optimal control depends on the time t via the solution S of the Riccati equation and
is a time-varying linear feedback. This clearly attests to the time-dependent nature
of the problem formulation.

Other problems, such as, for example, the time-optimal control problems to a
point considered in Sects. 2.6 and 2.9, are time-independent. Then the Hamilton–
Jacobi–Bellman equation is naturally defined in the state space, i.e., as a function
of x alone. The connections between the time-dependent and time-independent
formulations are easily made by means of the identification x′ = (t,x) when the
trivial equation ṫ = 1 is added to the dynamics. Writing

f ′(x′,u) =
(

1
f (x′,u)

)
, (5.6)

Eq. (5.2) reads

min
u∈U

{
∂V
∂x′

(x′) f (x′,u)+L(x′,u)
}
≡ 0,

and deleting the primes, this defines the time-independent or autonomous version of
the Hamilton–Jacobi–Bellman equation,

min
u∈U

{
∂V
∂x

(x) f (x,u)+L(x,u)

}
≡ 0. (5.7)

Example 5.1.2 (Fuller problem). We once more consider the problem (see
Sect. 2.11) of finding a Lebesgue measurable function with values in the interval
[−1,1] that steers a point x = (x1,x2) ∈ R

2 into the origin under the dynamics
ẋ1 = x2, ẋ2 = u, and minimizes the objective J(u) = 1

2

∫ T
0 x2

1(t)dt. This problem
is time-invariant, and the corresponding HJB equation for V =V (x) reads

min
|u|≤1

{
x2
∂V
∂x1

+ u
∂V
∂x2

+
1
2

x2
1

}
≡ 0

with boundary condition V (0,0) = 0. The minimization condition gives
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u(x) =−sgn

(
∂V
∂x2

(x)

)
,

and thus the HJB equation reduces to the following first-order nonlinear PDE:

x2
∂V
∂x1

(x1,x2)−
∣∣∣∣ ∂V
∂x2

(x1,x2)

∣∣∣∣+ 1
2

x2
1 ≡ 0, V (0,0) = 0. (5.8)

We shall show here (and once more by different and more direct means in the next
section) that the cost function associated with the extremal synthesis constructed in
Sect. 2.11 indeed is a classical solution V ∈ C

(
R

2
)

that is continuously differen-
tiable away from the origin. By Theorem 5.1.1, this proves the global optimality of
this synthesis.

Recall (Theorem 2.11.1) that the feedback control u∗ is given by

u∗(x) =

{
+1 for x ∈ G+∪Γ+,
−1 for x ∈ G−∪Γ−,

where with ζ =

√√
33−1
24 = 0.4446236 . . . the unique positive root of the equation

z4 + 1
12 z2− 1

18 = 0,

Γ+ = {(x1,x2) ∈ R
2 : x1 = ζx2

2, x2 < 0},
Γ− = {(x1,x2) ∈ R

2 : x1 =−ζx2
2, x2 > 0},

and

G+ = {(x1,x2) ∈R
2 : x1 <−sgn(x2)ζx2

2},
G− = {(x1,x2) ∈R

2 : x1 >−sgn(x2)ζx2
2}.

Proposition 5.1.2 [259] . The Hamilton–Jacobi–Bellman equation for the Fuller
problem has a classical solution (V,u∗) with V ∈C

(
R

2
)∩C1

(
R

2 \ {0,0}) given by

V (x) =

{
V+(x) for x ∈G+∪Γ+,
V−(x) for x ∈G− ∪Γ−,

where

V+(x) =− 1
15

x5
2 +

1
3

x1x3
2−

1
2

x2
1x2 +A

(
1
2

x2
2− x1

)5/2

and

V−(x) =V+(−x) =
1
15

x5
2 +

1
3

x1x3
2 +

1
2

x2
1x2 +A

(
1
2

x2
2 + x1

)5/2
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with

A =
2
5

1
3 + ζ +

1
2ζ

2

(
1
2 + ζ

)3/2
= 0.382 . . . .

Proof. Define the function V = V (x) as the value associated with the extremal
synthesis S for the Fuller problem constructed in Theorem 2.11.1, i.e., V (x) is the
value of the objective for the extremal controlled trajectory that starts at the point
x=(x1,x2) at time 0. We shall show that this function is given by the formulas above
and that it is a continuously differentiable solution to the Hamilton–Jacobi–Bellman
equation for the Fuller problem away from the origin.

We follow the argument of Wonham [259] that utilizes the symmetries of the
extremal synthesis S. We have seen in Proposition 2.11.1 that for any α > 0,
extremal controlled trajectories of the Fuller problem are invariant under the scaling
symmetry Gα defined by

tα =
t
α
, ηα(t) = η (tα) , ξα1 (t) = α2ξ1 (t

α) , and ξα2 (t) = αξ2 (t
α) .

This scaling symmetry extends to the value V : if η is an extremal control for the
initial condition (x1,x2) defined over the interval [0,T ], then ηα is an extremal
control for initial condition

(
α2x1,αx2

)
defined over the interval [0,αT ] and

V
(
α2x1,αx2

)
=

1
2

∫ αT

0
ξα1 (t)2 dt =

1
2

∫ αT

0

[
α2ξ1

( t
α

)]2
dt

= α5 1
2

∫ T

0
ξ1 (s)

2 ds = α5V (x1,x2) .

Hence, the value V of the extremal synthesis satisfies

V
(
α2x1,αx2

)
= α5V (x1,x2) , α > 0.

Functions that have this property are easily computed [191]: differentiating with
respect to α and evaluating at α = 1 yields the first-order linear PDE

2x1
∂V
∂x1

(x1,x2)+ x2
∂V
∂x2

(x1,x2) = 5V (x1,x2) . (5.9)

Clearly, the function V (x1,x2) = x5
2 is a particular solution, and the expression Y =

x1/x2
2 is a functional invariant to the homogeneous equation

2x1
∂Y
∂x1

(x1,x2)+ x2
∂Y
∂x2

(x1,x2) = 0.

The general solution to Eq. (5.9) is therefore of the form V (x1,x2) = x5
2Ψ

(
x1
x2

2

)
,

whereΨ is an arbitrary continuously differentiable functionΨ : R→ R [124].
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Substituting this general form for the function V into Eq. (5.8) gives

x4
2Ψ

′
(

x1

x2
2

)
−

∣∣∣∣5x4
2Ψ

(
x1

x2
2

)
+ x5

2Ψ
′
(

x1

x2
2

)(
−2

x1

x3
2

)∣∣∣∣+ 1
2

x2
1 ≡ 0,

or equivalently, after dividing by x4
2, in the variable y = x1/x2

2 we obtain

Ψ ′ (y)− ∣∣5Ψ (y)− 2yΨ ′ (y)
∣∣+ 1

2
y2 ≡ 0.

Taking out the absolute values with positive and negative signs gives two first-order
linear differential equations,

(1+ 2y)Ψ ′+(y)− 5Ψ (y)+
1
2

y2 ≡ 0

and

(1− 2y)Ψ ′−(y)+ 5Ψ (y)+
1
2

y2 ≡ 0,

which can be solved explicitly in the form

Ψ+(y) =− 1
15

+
1
3

y− 1
2

y2 +A+

(
1
2
− y

)5/2

and

Ψ−(y) =
1

15
+

1
3

y+
1
2

y2 +A−
(

1
2
+ y

)5/2

,

where A+ and A− are constants of integration. In the original variables, this gives
the functions

V+(x) =− 1
15

x5
2 +

1
3

x1x3
2−

1
2

x2
1x2 +A+

(
1
2

x2
2− x1

)5/2

and

V−(x) =
1
15

x5
2 +

1
3

x1x3
2 +

1
2

x2
1x2 +A−

(
1
2

x2
2 + x1

)5/2

.

The function V+ is well-defined and continuously differentiable for x1 <
1
2 x2

2, while
V− is well-defined and continuously differentiable for x1 > − 1

2 x2
2. Thus V+ and V−

are C1 in open neighborhoods of the domains G+ ∪Γ+ and G− ∪Γ− on which the
feedback control u∗ is defined by u∗ =+1 and u∗ =−1, respectively. Setting A+ =
A− = A, the combined function V possesses the reflection symmetry

V−(x) =V+(−x) and V+(x) =V−(−x),
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which is also present in the extremal synthesis. Making this choice, it therefore
suffices to show that V is continuously differentiable on one of the switching
curves Γ±. Without loss of generality, we consider Γ+ = {(x1,x2) ∈ R

2 : x1 =
ζx2

2, x2 < 0}.
The optimal control law satisfies the relation

u∗(x) =−sgn

(
∂V
∂x2

(x)

)
,

and therefore this partial derivative needs to vanish on the switching curve Γ+. The
choice of A ensures this condition. For we have that

(
∂V+

∂x2
(x)

)
�Γ+

=

(
−1

3
+ ζ − 1

2
ζ 2− 5

2
A

(
1
2
− ζ

) 3
2
)

x4
2

and (
∂V−
∂x2

(x)

)
�Γ+

=

(
1
3
+ ζ +

1
2
ζ 2− 5

2
A

(
1
2
+ ζ

) 3
2
)

x4
2.

(Note that
√

x2
2 =−x2, since x2 is negative on Γ+.) Thus, by definition of A,

(
∂V−
∂x2

(x)

)
�Γ+

= 0.

Furthermore, recall from Sect. 2.11, Eq. (2.67), that ζ is defined as the unique
positive solution of the following relation:

(
1
3 + ζ +

1
2ζ

2
)2

(
1
2 + ζ

)3 =

(
1
3 − ζ + 1

2ζ
2
)2

(
1
2 − ζ

)3 .

Taking the square root, and noting that 1
3 − ζ + 1

2ζ
2 < 0, it follows that

5
2

A =
1
3 + ζ +

1
2ζ

2

( 1
2 + ζ

)3/2
=
− 1

3 + ζ − 1
2ζ

2

( 1
2 − ζ

)3/2

and thus also (
∂V+

∂x2
(x)

)
�Γ+

= 0

as well. The partial derivatives with respect to x1 along Γ+ are then given by

(
∂V+

∂x1
(x)

)
�Γ+

=

(
1
3
− ζ + 5

2
A

(
1
2
− ζ

) 3
2
)

x3
2 =−

1
2
ζ 2x3

2
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and (
∂V−
∂x1

(x)

)
�Γ+

=

(
1
3
+ ζ − 5

2
A

(
1
2
+ ζ

) 3
2
)

x3
2 =−

1
2
ζ 2x3

2.

Hence the gradient of V is continuous on Γ+ and given by

(
∂V
∂x1

(x),
∂V
∂x2

(x)

)
�Γ+

=

(
−1

2
ζ 2x3

2,0

)
. (5.10)

It remains to verify that the two branches V+ and V− combine to a continuous
function on Γ+. We have that

V+(x)�Γ+ =

(
− 1

15
+

1
3
ζ − 1

2
ζ 2−A

(
1
2
− ζ

)5/2
)

x5
2

=

(
− 1

15
+

1
3
ζ − 1

2
ζ 2− 2

5

(
−1

3
+ ζ − 1

2
ζ 2

)(
1
2
− ζ

))
x5

2

=−1
5
ζ 3x5

2

and

V−(x)�Γ+ =

(
1

15
+

1
3
ζ +

1
2
ζ 2−A

(
1
2
+ ζ

)5/2
)

x5
2

=

(
1

15
+

1
3
ζ +

1
2
ζ 2− 2

5

(
1
3
+ ζ +

1
2
ζ 2

)(
1
2
+ ζ

))
x5

2

=−1
5
ζ 3x5

2.

Hence V is continuous on Γ+. This verifies that V is continuous and continuously
differentiable away from the origin. ��

This is one of few examples in which a nonlinear HJB equation can be solved
explicitly, albeit with considerable effort. For a general problem, however, the
obstacle to applying Theorem 5.1.1 lies more in the fact that solutions V to
the Hamilton–Jacobi–Bellman equation rarely are differentiable everywhere, but
typically have singularities along lower-dimensional sets. Rather than being the
exception, this is the norm, and can be seen in even the simplest problems.

Example 5.1.3 (Time-optimal control for the double integrator). Consider the time-
optimal control problem to the origin for the linear system ẋ1 = x2, ẋ2 = u, with
control set |u| ≤ 1 (see Sect. 2.6.1). Similar to the Fuller problem, the optimal control
u∗(x) is a feedback control given in the form
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u∗(x) =

{
+1 for x ∈ G+∪Γ+,
−1 for x ∈ G−∪Γ−,

where now

Γ+ =

{
(x1,x2) ∈ R

2 : x1 =
1
2

x2
2, x2 < 0

}
,

Γ− =

{
(x1,x2) ∈ R

2 : x1 =−1
2

x2
2, x2 > 0

}
,

and

G+ =

{
(x1,x2) ∈R

2 : x1 <−sgn(x2)
1
2

x2
2

}
,

G− =

{
(x1,x2) ∈R

2 : x1 >−sgn(x2)
1
2

x2
2

}
.

While trajectories cross the switching curves Γ+ and Γ− transversally for the
Fuller problem (and we shall see in Sect. 6.1 in general that this easily verifiable
geometric property in fact ensures that the value function V remains continuously
differentiable at the switching curves), here the switching curves are trajectories
of the system and the optimal trajectories follow these (lower-dimensional) curves.
This causes a loss of differentiability of the value function. For this example, it is
elementary to compute the value by integrating the time along the trajectories, and
the result is

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

V+(x) for x ∈ G+∪Γ+,

V−(x) for x ∈ G−∪Γ−,
with

V+(x) = 2

√
1
2

x2
2− x1− x2

and

V−(x) = 2

√
1
2

x2
2 + x1 + x2.

As with the Fuller problem, V has the reflection symmetry

V−(x) =V+(−x) and V+(x) =V−(−x)

and we need to consider only one switching curve, say Γ+. It is clear that V is
continuous on Γ+,

V+(x)�Γ+ =−x2 =V−(x)�Γ+ .
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Furthermore, the partial derivatives of V− extend as continuously differentiable
functions onto the switching surface Γ+, which is transversal to the flow,

(
∂V−
∂x1

(x),
∂V−
∂x2

(x)

)
�Γ+

=

(
− 1

x2
,0

)
.

But the partial derivatives of the tangential part V+ have a singularity on Γ+ with
both derivatives diverging to −∞ as x→ Γ+ from within G+. So the value function
is no longer differentiable on the switching curves Γ+ and Γ−.

As already indicated, the singularity in the derivatives of the value function
is caused by the drop in dimension of the surface that the optimal controlled
trajectories follow, a rather commonplace phenomenon in optimal control problems.
The nondifferentiability of solutions V to the Hamilton–Jacobi–Bellman equation
along lower-dimensional sets B invalidates the simple argument used in the proof of
Theorem 5.1.1: if η is an arbitrary control, then in principle, it is possible that the
set of times t when the corresponding trajectory ξ lies in this set B can be arbitrarily
complicated (recall that the zero set of a C1 function defined on an interval [0,T ] can
be any closed subset of [0,T ], Proposition 2.8.1), and one can no longer carry out the
differentiation along the trajectory ξ . Clearly, there is no problem if there are only
finitely many times when this trajectory crosses B, but for an arbitrary control η this
cannot be asserted in general. Thus the concept of a classical solution generally is
not adequate for the theory, and it needed to be revised.

This led to the definition of a viscosity solution to the Hamilton–Jacobi–Bellman
equation [80, 96] where differentiability of the solution V is replaced by two
inequalities that do not require the existence of derivatives of the solution: Consider
a general first-order partial differential equation of the form

H(z,V,DV ) = 0,

where z lies in some region Ω in R
k, V : Ω → R is the desired solution, and DV

denotes the gradient of V . Define the subdifferential D−V (z0) of V at a point z0 ∈
Ω as

D−V (z0) =

{
λ ∈ (Rk)∗ : lim inf

z→z0

V (z)−V (z0)−λ (z− z0)

‖z− z0‖ ≥ 0

}

and the superdifferential D+V (z0) of V at a point z0 ∈Ω as

D+V (z0) =

{
λ ∈ (Rk)∗ : lim sup

z→z0

V (z)−V(z0)−λ (z− z0)

‖z− z0‖ ≤ 0

}
.

Definition 5.1.4 (Viscosity solution). Let V : Ω → R be a continuous function.
Then V is called a viscosity subsolution of H(z,V,DV ) = 0 if

H(z,V (z),λ )≥ 0
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for all z ∈Ω and all λ ∈D−V (z) and a viscosity supersolution of H(z,V,DV ) = 0 if

H(z,V (z),λ )≤ 0

for all z ∈ Ω and all λ ∈ D+V (z). If V is both a viscosity subsolution and a
viscosity supersolution of H(z,V,DV ) = 0, then V is called a viscosity solution of
H(z,V,DV ) = 0.

It can be shown that the value function to problem [OC] indeed is a viscosity
solution to the HJB equation [30]. Results that establish existence and uniqueness
of viscosity solutions to the Hamilton–Jacobi–Bellman equation thus characterize
the value function as this unique viscosity solution. By now there exist numerous
texts that develop the theory of viscosity solutions in the optimal control context,
for example [30,96], and in our presentation here we do not pursue these theoretical
developments. Rather, we are interested in a constructive method to define these
solutions, not necessarily by means of explicit formulas, but in a way that provides
adequate geometric insights that make it possible to prove the optimality of
the underlying controls. Examples 5.1.1 and 5.1.2 above made use of existing
symmetries of the problem to give an analytic solution to the HJB equation. While
often elegant and convenient, a more direct approach is needed for the general case.
The seemingly pedestrian approach of example 5.1.3, where we simply evaluated
the cost function along a family of extremal controlled trajectories, provides such
an approach. Of course, in a general method the point is to use such a construction to
actually prove the optimality of an extremal synthesis that has been constructed. The
method of characteristics, the classical method to solve first-order partial differential
equations [124], reduces this computation of a solution to the integration of a pair
of ordinary differential equations, the so-called characteristic equations. It has a
natural generalization to the optimal control setting and provides such an approach.
We develop this method and show that it indeed is an efficient technique to derive
sufficient conditions for strong local optimality by constructing a local field of
extremals around a reference trajectory. Here we focus on the local aspects of these
constructions and defer a development of the global aspects, which are based on
Boltyansky’s concept of a regular synthesis [41], to the next chapter.

5.2 Parameterized Families of Extremals
and the Shadow-Price Lemma

We now formalize the method of characteristics for an optimal control problem.
The simple idea is to parameterize extremals by integrating the system and adjoint
equation backward from the terminal manifold while maintaining the minimum
condition of the maximum principle and then to investigate the mapping properties
of the corresponding family of controlled trajectories. If this flow covers the state
space (or if time-dependent, the product of time and state space) injectively, then
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the objective evaluated along this family of trajectories, also sometimes called the
cost-to-go function, will be the desired solution to the Hamilton–Jacobi–Bellman
equation. This procedure not only provides a general method to construct solutions
to the HJB equation, but also allows us to investigate singularities in the solutions by
relating them to singularities in the parametrization. The construction itself clearly
brings out the relationships between the necessary conditions of the maximum
principle, Theorem 2.2.1, and the dynamic programming principle, Theorem 5.1.1.

5.2.1 Parameterized Families of Extremals

As we have seen, for the time-optimal control problems in the plane and for the
Fuller problem, solutions to optimal control problems typically consist of various
“patches” that need to be glued together to form the full solution. In this section, we
develop the theory that applies to one such patch, but analyze how these patches fit
together only in Chap. 6. For example, within our construction, bang-bang controls
give rise to several patches and the control is constant on each of them.

Throughout this section, we assume that the controls depend in a sufficiently
smooth way on nearby points. More specifically, with p a parameter, we assume that
the control u = u(t, p) lies in C0,r with r a positive integer, r =∞ or r =ω . Thus, the
controls are continuous and, for fixed t, depend r-times continuously differentiably
on the parameter p with the partial derivatives ∂u

∂ p(t, p) continuous in (t, p).

Definition 5.2.1 (Cr-Parameterized family of controlled trajectories). Given an
open subset P of Rd with 0≤ d ≤ n, let

t− : P→ R, p �→ t−(p), and t+ : P→ R, p �→ t+(p),

be two r-times continuously differentiable functions, t± ∈ Cr(P), that satisfy
t−(p) < t+(p) for all p ∈ P. We call t− and t+ the initial and terminal times of
the parametrization and define its domain as

D = {(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)}.

Let ξ− : P→R
n, p �→ ξ−(p), and ξ+ : P→R

n, p �→ ξ+(p), be r-times continuously
differentiable functions, ξ± ∈ Cr(P). A d-dimensional, Cr-parameterized family
T of controlled trajectories with domain D, initial conditions ξ−, and terminal
conditions ξ+ consists of:

1. admissible controls, u : D→U , (t, p) �→ u(t, p), that are continuous and r-times
continuously differentiable in p on D, (u ∈C0,r(D)), and

2. corresponding trajectories x : D → R
n, (t, p) �→ x(t, p), i.e., solutions of the

dynamics
ẋ(t, p) = f (t,x(t, p),u(t, p)), (5.11)
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x

t

M− M+

Fig. 5.1 The flow � of a
parameterized family of
controlled trajectories

that exist over the full interval [t−(p), t+(p)] and satisfy the initial condition
x(t−(p), p) = ξ−(p) and terminal condition x(t+(p), p) = ξ+(p).

We shall be considering both time-dependent and time-independent formulations
and always wish to separate the time t and the state x in our notation. It is convenient,
however, to have a common notation for the associated flows (see Fig. 5.1).

Definition 5.2.2 (Flow of controlled trajectories). Let T be a Cr-parameterized
family of controlled trajectories. For a time-dependent optimal control problem, we
define the associated flow as the map

� : D→R×R
n, (t, p) �−→�(t, p) =

(
t

x(t, p)

)
,

i.e., in terms of the graphs of the corresponding trajectories. For a time-independent
optimal control problem, we define the associated flow as the flow of the trajectories,

� : D→R
n, (t, p) �−→�(t, p) = x(t, p).

We say the flow � is a C1,r-mapping on some open set Q ⊂ D if the restriction
of � to Q is continuously differentiable in (t, p) and r times differentiable in p
with derivatives that are jointly continuous in (t, p). If � ∈ C1,r(Q) is injective
and the Jacobian matrix D�(t, p) is nonsingular everywhere on Q, then, by the
inverse function theorem (see Appendix A, Theorem A.3.1), the mapping �(t, p)
has an inverse of class C1,r, and we say that � is a C1,r-diffeomorphism onto its
image �(Q).

The boundary sections

M− = {(t, p) : p ∈ P, t = t−(p)} and M+ = {(t, p) : p ∈ P, t = t+(p)}

of a Cr-parameterized family of controlled trajectories are the graphs of the
functions t− and t+, M− = gr(t−) and M+ = gr(t+). We call the images of these
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sections under the flow �, N± = �(M±), the source, respectively the target, of the
parametrization. Thus

N± = {(t,x) : t = t±(p), x = ξ±(p), p ∈ P}

in the time-dependent case and

N± = {x : x = ξ±(p), p ∈ P}

for a time-independent problem. In the construction, generally one of these is
specified and the trajectories are defined as the solutions of the associated initial
(or terminal) value problem. The other then simply is defined by the flow of these
solutions. If T is a Cr-parameterized family of controlled trajectories with source
N−, then (with the obvious modifications to the definition) we also allow that
t+(p) ≡ +∞, and for a family with target N+ we may have that t−(p) ≡ −∞. We
want to consider both the cases in which trajectories are integrated forward in time
(families of controlled trajectories with source N−) and backward in time (families
of controlled trajectories with target N+).

The controls u(t, p) in the parameterized family are assumed to be continuous
and r-times continuously differentiable in p,u ∈ C0,r(D). The parameter set P is
open, but the domain D is closed at the endpoints of the intervals. Hence this
assumption is understood in the sense that u(t, p) extends as a C0,r-function onto
an open neighborhood of D. For instance, for constant (bang) controls or singular
controls defined in feedback form, this is automatic and these are the only cases
considered in this text.

It thus follows from the classical results about solutions to ODEs (see Ap-
pendix B) that the trajectories x(t, p) and their time derivatives ẋ(t, p) are r-times
continuously differentiable in p and that these derivatives are continuous jointly in
(t, p) in an open neighborhood of D, i.e., x ∈C1,r(D). These partial derivatives can
be calculated as solutions to the corresponding variational equations:

d
dt

(
∂x
∂ p

(t, p)

)
=

∂ 2x
∂ t∂ p

(t, p) =
∂ ẋ
∂ p

(t, p) =
∂
∂ p

(
f (t,x(t, p),u(t, p))

)

= fx (t,x(t, p),u(t, p))
∂x
∂ p

(t, p)+ fu (t,x(t, p),u(t, p))
∂u
∂ p

(t, p).

(5.12)

In particular, the flow � is a C1,r-mapping. Section 5.3 deals with the question when
it is injective, i.e., a C1,r-diffeomorphism.

In order to calculate the value of the objective along a parameterized family of
controlled trajectories, we need to add an extra function γ that describes this cost at
the source N− or at the target N+.
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Definition 5.2.3 (Cr-Parameterized family of controlled trajectories with
cost γ). Suppose T is a d-dimensional, Cr-parameterized family T of controlled
trajectories with domain D and initial and terminal values ξ− and ξ+. Given an
r-times continuously differentiable function γ− : P→ R, p �→ γ−(p) (respectively,
γ+ : P→ R, p �→ γ+(p)), we define the cost or cost-to-go function associated with
T as

C(t, p) = γ−(p)−
∫ t

t−(p)
L(s,x(s, p),u(s, p))ds

(respectively as

C(t, p) =
∫ t+(p)

t
L(s,x(s, p),u(s, p))ds+ γ+(p)

when the terminal value is specified), and call T a Cr-parameterized family of
controlled trajectories with cost γ .

The functions γ+ and γ− propagate the cost along trajectories from patch to
patch, and C(t, p) represents the value of the objective for the control u = u(·, p)
if the initial condition at time t is given by x(t, p). This specification is equally
valid for a time-dependent or time-independent problem. Since the value of the
optimal cost on the terminal manifold N is specified by the penalty term ϕ in
the objective, integrating trajectories backward in time is the typical procedure.
For syntheses where trajectories can be successively integrated backward from the
terminal manifold, these functions are easily computed.

Example 5.2.1 (Time-optimal control to the origin for the double integrator).
Allowing for parameterized families of various dimensions d enables us to build a
synthesis in an inductive way. For this optimal control problem the switching curves
Γ+ and Γ− can be considered to be zero-dimensional “parameterized families,”
which, integrating backward from the target N+ = {0} and dropping the zero-
dimensional parameter p = 0, can be described as

Γ+ : P = {0} t− =−∞, t+ = 0, D = (−∞,0]×{0},

ξ+ = 0, u(t)≡+1, x(t) =

( 1
2 t2

t

)
,

and

Γ− : P = {0} t− =−∞, t+ = 0, D = (−∞,0]×{0},

ξ+ = 0, u(t)≡−1, x(t) =

(− 1
2 t2

−t

)
.
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The full families of trajectories that cover the regions

G+ =

{
(x1,x2) ∈ R

2 : x1 <−sgn(x2)
1
2

x2
2

}

and

G− =

{
(x1,x2) ∈ R

2 : x1 >−sgn(x2)
1
2

x2
2

}

then form one-dimensional parameterized families T+ and T− given by

T+ : P = (0,∞), t−(p) =−∞, t+(p) =−p, D = {(t, p) : t ≤−p < 0},

ξ+(p) =

(− 1
2 p2

p

)
, u(t, p)≡+1, x(t, p) =

( 1
2 t2 + 2pt+ p2

t + 2p

)
,

and

T− : P = (0,∞), t−(p) =−∞, t+(p) =−p, D = {(t, p) : t ≤−p < 0},

ξ+(p) =

( 1
2 p2

−p

)
, u(t, p)≡−1, x(t, p) =

(− 1
2 t2− 2pt− p2

−t− 2p

)
.

This problem is time-independent, and in this case there is always freedom to
choose either the initial or terminal time arbitrarily. In the parametrization above,
we have chosen t+(p) so that the variable t in x(t, p) is equal to the negative of
the total time it takes to steer the initial condition x(t, p) into the origin along the
concatenated optimal trajectory, i.e., C(t, p) =−t. The cost functions on the targets
of the parameterizations therefore are given by γ+ = 0 for the zero-dimensional
strata N = {0}, and γ+(p) = p for the two one-dimensional families T±. All these
parameterizations are real analytic, Cω (see Fig. 5.2).

In a general problem, the trajectories x(·, p) are defined as the solutions to the
initial or terminal value problem for the dynamics (5.11), and an explicit integration
is not required. For parameterized families as in Example 5.1.1, the cost functions γ±
are easily obtained through backward integration from the targets. Naturally, such
a direct integration approach becomes much less convenient for problems like the
Fuller problem when the switching curves Γ+ and Γ− are no longer trajectories of
the system. However, in order to find the correct functions γ that propagate the cost,
it is not always necessary to integrate the cost along the trajectories in the family.
These functions can sometimes be found in a much easier and more elegant way
from necessary conditions for optimality (see Example 5.1.2 below). Clearly, we are
interested in optimal controlled trajectories, and thus we now consider families of
controlled trajectories that satisfy the conditions of the maximum principle, i.e., are
extremals. Once more, we assume that u is of class C0,r, which naturally extends
to the state as x ∈ C1,r. However, since the adjoint is defined in terms of data
that are differentiated in the state x, we generally obtain only one degree less of
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Fig. 5.2 Synthesis of optimal controlled trajectories for the time-optimal control problem to the
origin for the double integrator

smoothness for the multipliers, λ ∈C1,r−1. The following definition is essential for
the construction of solutions to the Hamilton–Jacobi–Bellman equation by means
of the method of characteristics. As always,

H = H(t,λ0,λ ,x,u) = λ0L(t,x,u)+λ f (t,x,u).

Definition 5.2.4 (Cr-Parameterized family of extremals). As before, let P be an
open subset of R

d with 0 ≤ d ≤ n, let t− and t+, t± ∈ Cr(P), be the initial and
terminal times for the parametrization, and let D = {(t, p) : p ∈ P, t−(p) ≤ t ≤
t+(p)}. A d-dimensional,Cr-parameterized family E of extremals (or extremal lifts)
with domain D consists of

1. a Cr-parameterized family T of controlled trajectories (x,u) with domain D,
initial and terminal conditions ξ− and ξ+, and cost γ− (respectively, γ+):

ẋ(t, p) = f (t,x(t, p),u(t, p)), x(t±(p), p) = ξ±(p);

2. a nonnegative multiplier λ0 ∈ Cr−1(P) and costate λ : D→ (Rn)∗, λ = λ (t, p),
such that (λ0(p),λ (t, p)) = (0,0) for all (t, p) ∈ D and the adjoint equation

λ̇ (t, p) =−λ0(p)Lx(t,x(t, p),u(t, p))−λ (t, p) fx(t,x(t, p),u(t, p)),

is satisfied on the interval [τ−(p),τ+(p)] with boundary condition λ−(p) =
λ (τ−(p), p) (respectively, λ+(p) = λ (τ+(p), p)) given by an (r − 1)-times
continuously differentiable function of p,
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such that the following conditions are satisfied:

3. defining h(t, p) = H(t,λ0(p),λ (t, p),x(t, p),u(t, p)), the controls u = u(t, p)
solve the minimization problem

h(t, p) = min
v∈U

H(t,λ0(p),λ (t, p),x(t, p),v);

4. with h±(p) = h(t±(p), p)), the following transversality condition holds at the
source (respectively, target):

λ±(p)
∂ξ±
∂ p

(p) = λ0(p)
∂γ±
∂ p

(p)+ h±(p)
∂ t±
∂ p

(p); (5.13)

5. if the target N+ is a part of the terminal manifold N, N+ ⊂ N, then, setting
T (p) = t+(p), with ξ+(p) = x(T (p), p) we have that γ+(p) = ϕ(T (p),ξ+(p));
furthermore, there exists an (r− 1)-times continuously differentiable multiplier
ν : P→ (

R
n+1−k

)∗
such that the following transversality conditions are satisfied:

λ (T (p), p) = λ0(p)
∂ϕ
∂x

(T (p),ξ+(p))+ν(p)
∂Ψ
∂x

(T (p),ξ+(p)), (5.14)

−h(T (p), p) = λ0(p)
∂ϕ
∂ t

(T (p),ξ+(p))+ν(p)
∂Ψ
∂ t

(T (p),ξ+(p)). (5.15)

This definition merely formalizes that all controlled trajectories in the family E
satisfy the conditions of the maximum principle while some smoothness properties
are satisfied by the parametrization and natural geometric regularity assumptions
are met at the terminal manifold N. Note that it has not been assumed that the
parametrization E of extremals covers the state space injectively, and one of our
objectives is to use this framework to analyze the geometry of the flow of the
associated controlled trajectories as injectivity becomes lost (e.g., conjugate points).
The degree r in the definition denotes the smoothness of the parametrization of the
controls in the parameter p, u ∈C0,r, and as already explained, this implies that x ∈
C1,r. The condition λ ∈C1,r−1 is ensured by requiring that the multipliers λ0 and the
boundary values λ±(p), respectively ν , be (r−1)-times continuously differentiable.
In particular, for a C1-parameterized family of extremals, only continuity in p is
required. If the data defining the problem [OC] possess an additional degree of
differentiability in x and if the multiplier λ0 and the function λ±(p) are r-times
continuously differentiable with respect to p, then it follows that λ (t, p) ∈ C1,r as
well. In particular, this is true if r = ∞ or r = ω , as will be the case in almost
all examples considered in this chapter. In such a case, we call E a nicely Cr-
parameterized family of extremals. Also, if λ0(p) > 0 for all p ∈ P, then all
extremals are normal, and by dividing by λ0(p), we may assume that λ0(p) ≡ 1,
and we call such a family normal.
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Example 5.2.1 (continued). By construction, the families T± of controlled trajecto-
ries defined earlier are real analytic families of extremals: All extremals are normal,
λ0(p)≡ 1, and the adjoint variables λ (t, p) are the solutions to the equations λ̇1 = 0
and λ̇2 =−λ1 with terminal conditions

λ±(p) = λ (t±(p), p) =

(
− ε

p
,0

)
,

where ε = +1 for T+ and ε = −1 for T−. Recall that the multiplier λ2 is the
switching function for this problem (see Sect. 2.6.1), and thus it must vanish on
the switching curves Γ±. The value of λ1(t±(p), p) is then determined by the fact
that the Hamiltonian H vanishes identically, i.e.,

0 = H = 1+λ±(p)

(
0 1
0 0

)
ξ±(p)

= 1+λ1(t±(p), p)ξ2(t±(p), p)

= 1+λ1(t±(p), p)pε,

so that λ1(t±(p), p) =− ε
p . With this specification, the controls satisfy the minimum

condition by construction. Furthermore, t+(p) = −p, γ+(p) = p, and ξ+(p) =

ε
(− 1

2 p2

p

)
, which gives

λ±(p)
∂ξ±
∂ p

(p) =

(
− ε

p
,0

)(−p
1

)
ε = ε2 = 1 =

∂γ±
∂ p

(p),

i.e., the transversality condition (5.13) is satisfied. (Note that h≡ 0 and λ0(p)≡ 1.)
Since p = 0, these parameterizations are real-analytic.

We shall see below in Lemma 5.2.2 that it is this transversality condition that
ensures the proper relationship between the multiplier λ and the cost γ . Essentially,
this condition is the propagation of the transversality condition on the multiplier λ
from the terminal constraint along the parameterized family of extremals.

Lemma 5.2.1. For the optimal control problem [OC], if the target N+ is a part
of the terminal manifold N, N+ ⊂ N, then condition (5.13) follows from the
transversality conditions of the maximum principle.

Proof. Given a Cr-parameterized family E of extremals with target N+ ⊂ N, we
have that ξ+(p) = x(T (p), p), γ+(p) = ϕ(T (p),ξ+(p)), and

λ (T (p), p) = λ0(p)ϕx(T (p),ξ+(p))+ν(p)Ψx(T (p),ξ+(p)).

In the following calculation, all functions are evaluated at their proper
argument, i.e.,
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T = T (p), x = x(T (p), p), u = u(T (p), p),

ξ+ = ξ+(p), γ+ = γ+(p),

ϕ = ϕ(T (p),ξ+(p)), f = f (T (p),x(T (p), p),u(T (p), p)).

But it is more convenient—and the reasoning becomes much more transparent—
if these arguments are omitted. Differentiating with respect to p (and denoting the
partial derivatives of the data φ andΨ by subscripts) gives

∂ξ+
∂ p

=
∂x
∂ t
∂T
∂ p

+
∂x
∂ p

= f
∂T
∂ p

+
∂x
∂ p

and
∂γ+
∂ p

= ϕt
∂T
∂ p

+ϕx
∂ξ+
∂ p

= ϕt
∂T
∂ p

+ϕx

(
f
∂T
∂ p

+
∂x
∂ p

)
.

At the terminal point we have thatΨ(T (p),x(T (p), p))≡ 0 and therefore

Ψt
∂T
∂ p

+Ψx

(
f
∂T
∂ p

+
∂x
∂ p

)
≡ 0

as well. Hence

λ
∂ξ±
∂ p

= λ
(

f
∂T
∂ p

+
∂x
∂ p

)
= (λ0ϕx +νΨx)

(
f
∂T
∂ p

+
∂x
∂ p

)

= λ0

(
∂γ+
∂ p

−ϕt
∂T
∂ p

)
−νΨt

∂T
∂ p

= λ0
∂γ+
∂ p

− (λ0ϕt +νΨt)
∂T
∂ p

= λ0
∂γ+
∂ p

+H
∂T
∂ p

,

and condition (5.13) is satisfied. ��

5.2.2 The Shadow-Price Lemma and Solutions
to the Hamilton–Jacobi–Bellman Equation

The following result contains the key relation in making the step from necessary
to sufficient conditions for optimality. In economic models, the dynamics of the
optimal control problem often describes an actual production process, and the
objective represents its cost. For these applications, the lemma below relates changes
in the production, ∂x

∂ p , to the changes in the actual cost, ∂C
∂ p , and it is the multiplier λ
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that assigns a price to these changes. For this reason, the multipliers are also known
as shadow prices in economics. We retain this terminology.

Lemma 5.2.2 (Shadow-price Lemma). Let E be a C1-parameterized family of
extremal lifts with domain D. Then for all (t, p) ∈ D,

λ0(p)
∂C
∂ p

(t, p) = λ (t, p)
∂x
∂ p

(t, p). (5.16)

Proof. The parameterized cost C = C(t, p) and trajectories x = x(t, p) are con-
tinuously differentiable in p on D, and for fixed p, both sides of Eq. (5.16) are
continuously differentiable functions of t. It therefore suffices to show that for p
fixed, both sides have identical t-derivatives and the same value for t = t±(p).

(i) Both sides agree on the target (respectively, source) for t = t±(p): it follows
from the definition of the parameterized cost (Definition 5.2.3) that

∂C
∂ p

(t±(p), p) = L(t±(p),ξ±(p),u(t±(p), p))
∂ t±
∂ p

(p)+
∂γ±
∂ p

(p).

Furthermore, ξ±(p)≡ x(t±(p), p) implies that

∂ξ±
∂ p

(p) =
∂x
∂ t

(t±(p), p)
∂ t±
∂ p

(p)+
∂x
∂ p

(t±(p), p)

= f (t±(p),ξ±(p),u(τ±(p), p))
∂ t±
∂ p

(p)+
∂x
∂ p

(t±(p), p).

Hence, and once more dropping the arguments in the calculation,

λ0(p)
∂C
∂ p

(t±(p), p) = λ0L
∂ t±
∂ p

+λ0
∂γ+
∂ p

= (H−λ f )
∂ t±
∂ p

(p)+λ0
∂γ+
∂ p

= H
∂ t±
∂ p

+λ0
∂γ+
∂ p

−λ ∂ξ±
∂ p

+λ
∂x
∂ p

= λ (t±(p), p)
∂x
∂ p

(τ±(p), p),

where we use the transversality condition (5.13) in the last relation.
(ii) Both sides have the same time derivatives over the interval [t−(p), t+(p)]: using

the adjoint equation and the variational equation (5.12), we get that
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d
dt

{
λ (t, p)

∂x
∂ p

(t, p)

}

= λ̇ (t, p)
∂x
∂ p

(t, p)+λ (t, p)
∂ 2x
∂ t∂ p

(t, p)

= (−λ0Lx−λ fx)
∂x
∂ p

+λ
(

fx
∂x
∂ p

+ fu
∂u
∂ p

)

=−λ0

(
Lx
∂x
∂ p

+Lu
∂u
∂ p

)
+Hu

∂u
∂ p

= λ0(p)
∂ 2C
∂ t∂ p

(t, p)+Hu(t,λ0(p),λ (t, p),x(t, p),u(t, p))
∂u
∂ p

(t, p).

Hence the proof will be completed by verifying that

Hu(t,λ0(p),λ (t, p),x(t, p),u(t, p))
∂u
∂ p

(t, p)≡ 0 on D. (5.17)

To see this, fix a point (t, p) in the interior of D. Then, for q in some neighborhood
of p, also the points (t,q) lie in the interior of D, and the control values v = u(t,q)
are admissible. Hence it follows from the minimization property of the extremal
control u(t, p) that the function

h(q) = λ0(p)L(t,x(t, p),u(t,q))+λ (t, p) f (t,x(t, p),u(t,q))

has a local minimum at q = p. Since this function is differentiable in q, we have as
necessary condition that

0 =
∂h
∂ p

(p) = Hu(t,λ0(p),λ (t, p),x(t, p),u(t, p))
∂u
∂ p

(t, p).

This verifies that

d
dt

{
λ (t, p)

∂x
∂ p

(t, p)

}
= λ0(p)

∂ 2C
∂ t∂ p

(t, p).

Together (i) and (ii) prove Eq. (5.16). ��
Note that this computation does not require smoothness properties on the

multipliers λ0(p) and ν(p) and that the shadow-price lemma is also valid for
abnormal extremals, albeit in the degenerate form λ (t, p) ∂x

∂ p(t, p) = 0.
The following observation shows that the transversality condition (5.13) needed

for the shadow-price lemma to be valid propagates between source and target of
the parametrization. This will later allow us to concatenate different parameterized
families and will be taken up again in Sect. 6.1.
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Corollary 5.2.1. Let ξ be a Cr-parameterized family of extremals with domain D=
{(t, p) : p ∈ P, t−(p) ≤ t ≤ t+(p)}. Given any continuously differentiable function
τ : P → R, p �→ τ(p), that satisfies t−(p) ≤ τ(p) ≤ t+(p), let ξ (p) = x(τ(p), p),
γ(p) =C(τ(p), p), λ (p) = λ (τ(p), p), and h(p) = h(τ(p), p)). Then we have that

λ (p)
∂ξ
∂ p

(p) = λ0(p)
∂γ
∂ p

(p)+ h(p)
∂τ
∂ p

(p).

In particular, the transversality condition (5.13) propagates between source and
target.

Proof. Essentially, this is the same calculation as in step (i) of the proof of the
shadow-price lemma. For notational simplicity, we once more drop the arguments.
We have that

∂ξ
∂ p

= ẋ
∂τ
∂ p

+
∂x
∂ p

= f
∂τ
∂ p

+
∂x
∂ p

and
∂γ
∂ p

=−L
∂τ
∂ p

+
∂C
∂ p

.

Hence the shadow-price lemma gives

λ
∂ξ
∂ p
−λ0

∂γ
∂ p
− h

∂τ
∂ p

= λ
∂x
∂ p
− (h−λ f )

∂τ
∂ p
−λ0

∂γ
∂ p

= λ0

(
∂C
∂ p
−L

∂τ
∂ p

)
−λ0

∂γ
∂ p

= 0.

��
For normal extremals, we now show that the shadow-price lemma implies that

the associated cost is a classical solution to the Hamilton–Jacobi–Bellman equation
on a region G of the state space if the corresponding family of trajectories covers G
injectively. We consider the time-dependent formulation, i.e., the flow � is given by
�(t, p) = (t,x(t, p)). If � is an injective C1,r-map from some open set Q⊂ D onto
a region G ⊂ R×R

n, then � is a C1,r-diffeomorphism if and only if the Jacobian
matrix ∂x

∂ p is nonsingular on D. In this case, for t fixed, the map �(t, ·) : p �→ x(t, p)

is a Cr-diffeomorphism and its inverse �
−1(t, ·) : x �→ �

−1(t,x) also is r-times
continuously differentiable in x.

Theorem 5.2.1. Let E be a Cr-parameterized family of normal extremals for a
time-dependent optimal control problem and suppose the restriction of its flow �

to some open set Q ⊂ D is a C1,r-diffeomorphism onto an open subset G⊂ R×R
n

of the (t,x)-space. Then the value VE of the parameterized family E ,

V E : G→R, VE =C ◦�−1,
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is continuously differentiable in (t,x) and r-times continuously differentiable in x
for fixed t. The function

u∗ : G→R, u∗ = u ◦�−1,

is an admissible feedback control that is continuous and r-times continuously
differentiable in x for fixed t. Together, the pair (V E ,u∗) is a classical solution of the
Hamilton–Jacobi–Bellman equation

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (t,x,u)+L(t,x,u)

}
≡ 0

on G. Furthermore, the following identities hold in the parameter space on Q:

∂VE

∂ t
(t,x(t, p)) =−H(t,λ (t, p),x(t, p),u(t, p)), (5.18)

∂VE

∂x
(t,x(t, p)) = λ (t, p). (5.19)

If E is nicely Cr-parameterized, then V E is (r+1)-times continuously differentiable
in x on G, and we also have that

∂ 2VE

∂x2 (t,x(t, p)) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1

. (5.20)

Proof. Since � � Q : Q → G is a C1,r-diffeomorphism, the function VE and the
control u∗ are well-defined, and the stated smoothness properties carry over from
the parametrization. Furthermore, the differential equation

ẋ = f (t,x,u∗(t,x)), x(t0) = x(t0, p0) = x0,

has the unique solution x̃(t) = x(t, p0) with corresponding open-loop control

u(t0,x0)(t) = u∗(t,x(t, p0)) = u(t, p0).

Hence the feedback control u∗ is admissible.
Since C =VE ◦�, we have that

∂C
∂ p

(t, p) =
∂VE

∂x
(t,x(t, p))

∂x
∂ p

(t, p).
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In view of Lemma 5.2.2 and the fact that ∂x
∂ p is nonsingular, Eq. (5.19) follows;

furthermore,

−L(t,x(t, p),u(t, p)) =
∂C
∂ t

(t, p)

=
∂VE

∂ t
(t,x(t, p))+

∂V E

∂x
(t,x(t, p))ẋ(t, p)

=
∂VE

∂ t
(t,x(t, p))+λ (t, p) f (t,x(t, p),u(t, p))

gives Eq. (5.18). But then the minimum condition in the definition of extremals
implies that the pair (VE ,u∗) solves the Hamilton–Jacobi–Bellman equation: for
(t,x) = (t,x(t, p)) ∈G and an arbitrary control value v ∈U we have that

∂V E

∂ t
(t,x)+

∂VE

∂x
(t,x) f (t,x,v)+L(t,x,v)

=
∂V E

∂ t
(t,x(t, p))+

∂VE

∂x
(t,x(t, p)) f (t,x(t, p),v)+L(t,x(t, p),v)

=
∂V E

∂ t
(t,x(t, p))+λ (t, p) f (t,x(t, p),v)+L(t,x(t, p),v)

=
∂V E

∂ t
(t,x(t, p))+H(t,λ (t, p),x(t, p),v)

≥ ∂V E

∂ t
(t,x(t, p))+H(t,λ (t, p),x(t, p),u(t, p)) = 0

with equality for v = u(t, p).
If E is nicely Cr-parameterized, then in addition, λ also is Cr in p, and thus, since

on G we have that ∂V E

∂x = λ ◦�−1, it follows that ∂VE

∂x is still r-times continuously

differentiable in x. Differentiating the column vector λ T (t, p) =
(
∂VE

∂x

)T
(t,x(t, p)),

we get that

∂λ T

∂ p
(t, p) =

∂ 2VE

∂x2 (t,x(t, p))
∂x
∂ p

(t, p),

where consistent with our notation, ∂λ
T

∂ p is the matrix of partial derivatives of the

column vector λ T . ��
If the problem is time-independent, then we simply use the relation (5.6) to relate

the dynamics,

f ′(x′,u) =
(

1
f (x′,u)

)
.
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In this case, the flow map is given by �(t, p) = x(t, p), and the relation (5.19) reads

∂VE

∂x
(x(t, p)) = λ (t, p). (5.21)

Note that here the value function is independent of t and this is consistent with the
fact that the Hamiltonian H vanishes identically since the dynamics is time-invariant
and the terminal time T is free.

Definition 5.2.5 (Local field of extremals). A Cr-parameterized local field of
extremals, F , is a Cr-parameterized family of normal extremals for which the
associated flow � : D → R×R

n, (t, p) �→ �(t, p), is a C1,r-diffeomorphism from
the interior of the set D, D̊ = {(t, p) : p ∈ P, t−(p) < t < t+(p)}, onto a region
G =�

(
D̊
)
.

We do not require that the flow � be a diffeomorphism on the source or target of
the parametrization. If these are codimension-1 embedded submanifolds, and if the
flow � is transversal to them, then the flow extends as a C1,r-diffeomorphism onto
a neighborhood of the full closed domain D, and this is a common scenario along
switching surfaces (see Sect. 6.1). However, if the target parameterizes a section
NT of the terminal manifold N, NT ⊂ N, and N is of codimension greater than 1,
then the flow � is not a diffeomorphism for the terminal time t = t+(p) = T (p).
In this case, regardless of the dimension of N, the value function VE constructed
in Theorem 5.2.1 has a well-defined continuous extension to NT , since the terminal
value of the cost,

C(T (p), p) = ϕ(T (p),ξ+(p)) = ϕ (�(T (p), p)) ,

depends only on the terminal point �(T (p), p), but not on the parameter p itself.
Thus, even if parameterizations for p1 = p2 have the same terminal point, (T,x) =
�(T (p1), p1) = �(T (p2), p2), this nevertheless gives rise to a unique specification
of the value as

VE (T,x) = ϕ (�(T (p), p)) .

Hence, we can extend the definition of VE = C ◦�−1 to the target NT ⊂ N of the
parameterized family by taking any of the preimages of � in the parametrization of
the target through DT = {(T, p) : T = T (p), p ∈ P}.

Combining Theorems 5.1.1 and 5.2.1 therefore gives the following result about
optimality (see Fig. 5.3):

Corollary 5.2.2. Let F be a Cr-parameterized local field of extremals with target
NT in the terminal manifold N, NT ⊂ N, and assume that its associated flow covers
a domain G. Then, given any initial condition (t0,x0) ∈ G, x0 = x(t0, p0), the open-
loop control ū(t) = u(t, p0), t0 ≤ t ≤ T (p0), is optimal when compared with any
other admissible control u for which the corresponding trajectory x (respectively,
its graph) lies in G, i.e., J (ū)≤J (u) . �
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G

N

x(⋅,p0)
x0

t0

x(⋅,p)
x

x

t

Fig. 5.3 A relative minimum: J (u(t0,x0))≤J (v)

Corollary 5.2.2 is tailored to the formulation of sufficient conditions for local
minima, which we shall pursue in the next section. For questions about global
optimality, however, it is generally necessary to consider various local fields of
extremals and then glue them together, a topic we shall develop in general only
in Chap. 6. For a specific problem, however, this often is easily accomplished once
the extremal trajectories have been constructed. Here we shall still show how these
general constructions can rather easily (with considerably less technical effort than
the calculation given in Sect. 5.1) be used to prove the optimality of the extremal
synthesis for the Fuller problem constructed in Sect. 2.11.

5.2.3 The Fuller Problem Revisited

In contrast to the time-optimal control problem to the origin for the double
integrator, in this problem the switching curves Γ+ and Γ− are not trajectories.
However, as before, they form the source and target for two real analytic families
E± of normal extremals given by the trajectories for the constant controls u = ±1
(see Fig. 5.4).

It follows from the analysis of extremals in Sect. 2.11 that the switching curves
Γ+ and Γ− can be parameterized as

Γ+ : P = (−∞,0)→R
2, p �→

(
ζ p2

p

)
,

and

Γ− : P = (0,∞)→ R
2, p �→

(−ζ p2

p

)
,



5.2 Parameterized Families of Extremals and the Shadow-Price Lemma 357

−3 −2 −1 0 1 2 3
x 104

−300

−200

−100

0

100

200

300

x1

x2

Γ+

Γ−

u=−1

u=+1

Fig. 5.4 Synthesis of optimal controlled trajectories for the Fuller problem

with ζ =

√√
33−1
24 . We again normalize the parameterizations so that all trajectories

reach the origin at the final time T = 0. If a trajectory starts at the point (ζ p2, p)T ∈
Γ+ at time t0, then it follows from Eq. (2.61) in the proof of Proposition 2.11.3 that
the next switching is at time t1 =

t0
α and that x2(t0)+αx2(t1) = 0, where

α =

√
1+ 2ζ
1− 2ζ

= 4.1302 . . . .

Starting at Γ+, the control is given by u≡+1 on [t0, t1]⊂ (−∞,0), and we therefore
also get that

x2(t1)− x2(t0) = t1− t0 =

(
1
α
− 1

)
t0.

Hence

t0 =
x2(t1)− x2(t0)

1
α − 1

=
− 1
α − 1

1
α − 1

x2(t0) =
α+ 1
α− 1

p.

We therefore define a family E+ of normal extremals that correspond to the control
u(t, p)≡+1 over the domain

D+ = {(t, p) : p < 0, t−(p)≤ t ≤ t+(p)}

with the functions t+ and t− given by

t−(p) =
α+ 1
α− 1

p and t+(p) =
1
α
· α+ 1
α− 1

p.
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The corresponding controlled trajectories x(t, p) start at the point

ξ−(p) =

(
ζ p2

p

)
∈ Γ+

at time t−(p) and then at time t+(p) reach the point

ξ+(p) =

⎛
⎜⎝
−ζ ( p

α
)2

− p
α

⎞
⎟⎠ ∈ Γ−.

An explicit integration of the trajectories is not required, but of course it can easily
be done here, yielding

x2(t, p) = t− 2
α− 1

p and x1(t, p) =
1
2

x2(t, p)2 +

(
ζ − 1

2

)
p2.

The multipliers λ (t, p) are the solutions to the initial value problems

λ̇1(t, p) =−x1(t, p), λ1(t−(p), p) =−1
2
ζ 2 p3,

and
λ̇2(t, p) =−λ1(t, p), λ2(t−(p), p) = 0.

As for the double integrator, λ2(t−(p), p) vanishes, since the initial condition lies on
the switching curve Γ+, and λ2 once more is the switching function of the problem.
The value for λ1(t−(p), p) then again is simply computed from the condition that

0 = H =
1
2

x2
1 +λ1x2 +λ2 =

1
2
ζ 2 p4 +λ1 p.

The multipliers λ could easily be computed explicitly, but there is no need to do so.
It follows from the symmetries of the synthesis (see the proof of Proposition 2.11.3)
that λ at the target is given by

λ1(t+(p), p) =−1
2

x1(t+(p), p)2

x2(t+(p), p)
=−1

2
ζ 2x2(t+(p), p)3 and λ2(t+(p), p) = 0.

It remains to define the cost γ− at the source Γ+. This, in fact, does not require
that one evaluate the objective along the trajectories, but it can be done much
more elegantly by means of the shadow-price lemma. We shall prove in Sect. 6.1
(Theorem 6.1.1) that the value of a parameterized family of extremals remains
continuously differentiable at a switching curve Γ if the two respective flows
of trajectories cross Γ transversally. This is the case along Γ+ and Γ−. Already
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anticipating this result, the value of the cost V+ = VE+ of the parameterized family
E+ for the source γ− on the switching curve Γ+, γ−(p) = V+(ζ p2, p), can therefore
be obtained by integrating the differential dV+ of V+ along the curve

Z : [p,0]→ Γ+, s �→ (ζ s2,s).

By the shadow-price lemma, this gradient is given by the multiplier λ . Therefore,
and simply postulating that

∇V+(ζ s2,s) =

(
−1

2
ζ 2s3,0

)
, (5.22)

we calculate the cost at the source as

γ−(p) =V+(ζ p2, p)−V+(0,0) =−
∫

Z
dV+

=
∫ p

0

∂V+

∂x1
(ζ s2,s)dx1(s)+

∂V+

∂x2
(ζ s2,s)dx2(s)

=

∫ p

0

(
−1

2
ζ 2s3 ·2ζ s+ 0

)
ds =−1

5
ζ 3 p5. (5.23)

With this specification, the transversality condition (5.13) is satisfied:

λ (t−(p), p)
∂ξ−
∂ p

(p) =

(
−1

2
ζ 2 p3,0

)
·
(

2ζ p
1

)
=−ζ 3 p4 =

∂γ−
∂ p

(p).

Hence, E+ is a real-analytic parameterized family of normal extremals for the Fuller
problem. Furthermore, since the control is constant, it simply follows from the
uniqueness of solutions to ordinary differential equations that the corresponding
trajectories do not intersect, and thus the corresponding flow map, here given by
� : D+ → G+ ∪ Γ+, (t, p) �→ x(t, p), is a diffeomorphism (that extends into a
neighborhood of the two switching curves Γ+ and Γ−). Thus E+ is a Cω -field of
normal extremals. We want to emphasize that all these parameterizations are by
means of simple calculations that directly follow from the analysis of extremals
carried out in Sect. 2.11.

Analogously, a real-analytic field E− of extremal trajectories is constructed that
corresponds to the control u(t, p)≡−1 and starts on the switching curve Γ−. In this
case the domain is described as

D− = {(t, p) : p > 0, t−(p)≤ t ≤ t+(p)}

with the functions t+ and t− now given by

t−(p) =
1+α
1−α p and t+(p) =

1
α
· 1+α

1−α p.
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Fig. 5.5 The two parameterizations for a junction point on Γ+

The initial conditions for the trajectories x(t, p) on Γ− are given by ξ−(p) =(−ζ p2, p
)T

, for the multipliers λ by λ (t−(p), p) =
(− 1

2ζ
2 p3,0

)
, and the cost γ− at

the source is γ−(p) = 1
5ζ

3 p5.
If we denote the flows induced by these two parameterized families of extremal

trajectories by �+ and �−, respectively, then it follows from Theorem 5.2.1 that the
values V+ =VE+ =C◦�−1

+ and V−=VE− =C◦�−1
− are continuously differentiable

solutions to the Hamilton–Jacobi–Bellman equation for the Fuller problem on
the images G+ = �+(D+) and G− = �−(D−), respectively. We now show that
these two functions V+ and V− combine to a continuous function on the switching
curves Γ+ and Γ−.

Proposition 5.2.1. The values V+ and V− are continuous on the switching curves
Γ+ and Γ−.

Proof. Without loss of generality, we consider the switching curveΓ+. It needs to be
shown that the source cost of the parameterized field E+ is the same as the computed
target cost for the parameterized field E− at the junction on Γ+. This indeed is a
direct consequence of the construction, but we need to account for the fact that the
same trajectory is described by different parameters in these two parameterizations
(see Fig. 5.5).

We fix a parameter p > 0 in the field E−. The source cost γ− for E− on the
switching curve Γ− is defined as γ−(p) = 1

5ζ
3 p5, and it represents the value of

the objective for the controlled trajectory in the field with initial point ξ−(p) =(−ζ p2, p
)T ∈Γ−. The target cost for E− on Γ+, denoted by γ+(p), then is computed

along the parameterized family E− as

γ+(p) = γ−(p)−
∫ t+(p)

t−(p)

1
2

x2
1(t, p)dt.
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Fig. 5.6 The closed curveΘ

This is the cost of the objective when the initial point is given by the corresponding
target ξ+(p), hence the minus sign at the integral. Note that it follows from the
properties of the parameterized family that the target point is given by

ξ+(p) =

(
ζ
( p
α
)2

− p
α

)
∈ Γ+.

This point now becomes the source of a trajectory in the field E+. However, in
E+, this point is parameterized in the form

(
ζq2

q

)
for some q < 0. Hence the

parameters relate as q = − p
α . Using a tilde to distinguish the source cost for E+

from the analogous term for E−, this source cost γ̃− was therefore defined as
γ̃−(q) =− 1

5ζ
3q5. Hence, continuity at the junction is equivalent to

γ+(p) = γ̃−
(
− p
α

)
. (5.24)

In principle, this relation can be verified by an explicit computation. But a more
elegant, and also more general, argument can be made using the theory developed
so far. We work with the field E−, but in order not to clutter the notation, we drop the
subscript for the associated objects. Thus V denotes the value associated with the
field E−, V =C◦�−1

− , and so on. Since the corresponding parameterized trajectories
x(t, p) and parameterized cost C(t, p) extend into an open neighborhood of the
domain D, the associated value V extends as a continuously differentiable function
into a simply connected open neighborhood G̃ of G = �(D). For small ε > 0,
consider the closed curveΘ =Θ(ε) that lies in G̃ and is obtained by concatenating
the following four smooth curves,Θ = θ1 ∗θ2 ∗θ3 ∗θ4 (see Fig. 5.6):

θ1 : [−p,−ε]→ Γ+, s �→θ1(s) = ξ+ (−s) ,

θ2 : [−t+ (ε) ,−t− (ε)]→G−, s �→θ2(s) = x(−s,ε),
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θ3 : [ε, p]→ Γ−, s �→θ3(s) = ξ− (s) ,

θ4 : [t− (p) , t+ (p)]→G−, s �→θ4(s) = x(s, p).

The curveΘ is closed and lies in G̃. Hence we have that

0 =
∫
Θ

dV =
∫
θ1

dV +
∫
θ2

dV +
∫
θ3

dV +
∫
θ4

dV.

The curve θ4 is the trajectory corresponding to the parameter p, and the curve θ2 is
the trajectory for the parameter ε , but run backward. Hence we have that

∫
θ4

dV =V (ξ+(p))−V(ξ−(p)) = γ+(p)− γ−(p)

and analogously

∫
θ2

dV =V (ξ−(ε))−V (ξ+(ε)) = γ−(ε)− γ+(ε) =
∫ t+(ε)

t−(ε)

1
2

x1(s,ε)2ds.

As ε → 0, the length of the interval [t− (ε) , t+ (ε)] converges to 0,

t+ (ε)− t− (ε) =
(

1
α
− 1

)
· 1+α

1−α ε =
1+α
α

ε → 0,

and x1(s,ε) remains bounded on this interval as ε→ 0. Hence
∫
θ2

dV → 0 as ε→ 0.
The limits of θ1 and θ3 as ε → 0 are well-defined and parameterize the sections

on the switching curvesΓ+ and Γ− that connect the origin with the points ξ+ (p) and
ξ− (p), respectively. It follows from Theorem 5.2.1 that the gradient of the value V
associated with the family E− is given by the multiplier λ of the parameterized
family E− (see Eq. (5.21)). Hence, and consistent with our original definition, it
follows for the portion along Γ− that

lim
ε→0

∫
θ3

dV =
∫ p

0
∇V (ζ s2,s)dξ−(s)

=
∫ p

0
λ1(t−(s),s)dξ1,−(s)+λ2(t−(s),s)dξ2,−(s)ds

=

∫ p

0

(
−1

2
ζ 2s3 · (−2ζ s)+ 0

)
ds =

1
5
ζ 3 p5 = γ−(p).

Analogously, the gradient of the value V along the switching curve Γ+ is given by
the multiplier λ at the terminal time t+(p). For s ∈ [−p,−ε] the terminal points in

the target are given by ξ+(−s) =
(
ζ
(

s
α
)2
, s
α

)T ∈ Γ+, and from the properties of

the synthesis we have that
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λ1(t+(−s),−s) =−1
2
ζ 2ξ2,+(t+(−s),−s)3 =−1

2
ζ 2

( s
α

)3

and λ2(t+(−s),−s) = 0. Hence

lim
ε→0

∫
θ1

dV =

∫ 0

−p
∇V

(
ζ
(
− s
α

)2
,

s
α

)
dξ+(−s)

=

∫ 0

−p
λ1(t+(−s),−s)dξ1,+(−s)+λ2(t+(−s),−s)dξ2,+(−s)

=

∫ 0

−p

(
−1

2
ζ 2

( s
α

)3 ·2ζ
( s
α

) 1
α
+ 0

)
ds

= −1
5
ζ 3

( s
α

)5
∣∣∣∣
0

−p
=−1

5
ζ 3

( p
α

)5
=−γ̃−

(
− p
α

)
.

Thus, overall we get that

γ+(p) = γ−(p)+
∫
θ4

dV =

(
lim
ε→0

∫
θ3

dV

)
+

∫
θ4

dV

=− lim
ε→0

(∫
θ1

dV +

∫
θ2

dV

)
= γ̃−

(
− p
α

)
.

Hence the values join to a continuous function along Γ+. ��
Thus the combined value function V ,

V (x) =

{
V+(x) if x ∈ G+∪Γ+,
V−(x) if x ∈ G−∪Γ−,

is well-defined and is continuous on R
2. In fact, this function is continuously

differentiable away from the origin, and this is an immediate consequence of the
fact that the two flows corresponding to E+ and E− cross the switching surfaces
transversally. This result will be proven in general in Sect. 6.1 (Theorem 6.1.1).
Hence the value V constructed above is a continuous function that is continuously
differentiable away from the origin and solves the HJB equation. By Theorem 5.1.1,
this proves the global optimality of the synthesis. Obviously, there is no need, nor
reason, to actually calculate the value function V explicitly. Having the synthesis
of extremals that was constructed in Sect. 2.11, the method of characteristics
immediately, and with little further ado, implies the optimality of the corresponding
controlled trajectories. This is the idea behind the concept of a regular synthesis to
be developed further in Chap. 6.
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5.3 Neighboring Extremals and Sufficient Conditions
for a Local Minimum

We now use the method of characteristics to formulate sufficient conditions for
a local minimum. We are interested in conditions that establish the optimality
of a controlled reference trajectory Γ̄ = (x̄, ū) over other controlled trajectories
Γ = (x,u) that have the property that the trajectories x̄ and x are “close” to each
other in the state space. When the terminal manifold in problem [OC] is of lower
dimension, then the classical notion of a strong local minimum is somewhat too
restrictive and inconvenient to handle. Therefore, here we adopt the following
definition of a relative minimum.

Definition 5.3.1 (Relative minimum). Let Γ̄ = (x̄, ū) be a controlled trajectory for
the optimal control problem [OC] and let T be a family of controlled trajectories
that contains Γ̄ . We say that Γ̄ is a relative minimum over T if J (ū)≤J (u) for
all controls u such that the corresponding controlled trajectory (x,u) lies in T .

Clearly, this becomes a meaningful statement only if the class T is reasonably
large. If T consists of all trajectories that steer the initial condition of x̄ into N, then
Γ̄ is globally optimal. Typically, and this will be the case throughout this chapter,
if Γ̄ is defined over an interval [τ,T ], then T will be the class of all controlled
trajectories (x,u) for which the trajectories x (respectively, their graphs, in the time-
dependent case) lie in some open neighborhood G of the restriction of the reference
trajectory x̄ (respectively, its graph) to the semiopen interval [τ,T ). Such families
arise naturally if the controlled reference trajectory Γ̄ is embedded into a local field
of extremals. Since the corresponding flow � of trajectories cannot be injective at
the terminal manifold when N is of lower dimension, the final point is excluded (see
also Fig. 5.3).

Definition 5.3.2 (Relative minimum over a domain G). We say that a controlled
trajectory Γ̄ = (x̄, ū) defined over a compact interval [τ,T ] provides a relative
minimum over a domain G if the restriction of the trajectory x̄ (respectively, its
graph) to the open interval (τ,T ) is contained in the interior of G and if for any
other controlled trajectory (x,u) that lies in G (respectively, has its graph in G) and
steers x̄(τ) into the terminal manifold N, the value for the cost is not better than for
Γ , J (ū)≤J (u).

It is not required that the corresponding controls remain close as well. As in
the calculus of variations, being able to embed the controlled reference trajectory
into a local field gives rise to sufficient conditions for a relative minimum. We
shall construct these embeddings in two steps: (i) set up a parameterized family
of extremals that includes the reference extremal and (ii) develop conditions that
guarantee that the associated flow � of controlled trajectories is injective around
the reference trajectory. It then follows from Corollary 5.2.2 that the reference
controlled trajectory is a relative minimum with respect to all controlled trajectories
(x,u) for which x lies in the region G covered injectively by the flow associated with
the trajectories in the parameterized family.
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In this section, we consider the case that the reference control lies in the interior
of the control set; we shall analyze bang-bang controls later in Sect. 6.1. We develop
sufficient conditions for local optimality that involve second-order terms of the
data, and we henceforth assume that the general regularity assumptions made in the
beginning of the chapter are in effect with � ≥ 2. Furthermore, since the questions
addressed in this section typically arise in the context of regulating a system over
a prescribed interval, we consider only the time-dependent formulation. As a side
comment, the brachistochrone problem and the problem of minimum surfaces of
revolution in the classical calculus of variations are initially formulated for problems
for general curves in the plane. But once the mathematical model is written in terms
of graphs of functions, this then matches the framework used here. The results
that we present now are equally classical in the optimal control literature and date
back to the early control literature from the sixties. They can be found in a more
engineering orientated, but less rigorous formulation, for example, in [64, Chap. 6].
Our presentation here is mathematically precise and emphasizes the geometric
properties of the underlying flow of extremals. For simplicity of exposition, we
consider only the case that the terminal time T is fixed. In this case, the underlying
geometric properties come out quite cleanly, whereas the formulas become a bit
tedious if the final time T is defined implicitly through one of the constraints that
define the terminal manifold N. We refer the reader to [64, Chap. 6] for a formal
discussion of this situation, but restrict our presentation to the following optimal
control problem:

[OCT ] For a fixed terminal time T , minimize the functional

J (u;t0,x0) =
∫ T

t0
L(s,x(s),u(s))ds+ϕ(x(T ))

over all admissible controls u ∈U for which the corresponding trajectory x,

ẋ(t) = f (t,x(t),u(t)), x(t0) = x0,

satisfies the terminal constraintΨ(x(T )) = 0.

5.3.1 A Canonical Parameterized Family of Extremals

In this section we construct a canonical embedding for an extremal whose control
takes values in the interior of the control set provided the matrix of the second
derivatives ∂ 2H

∂u2 is nonsingular along the reference extremal (also, see Sect. 2.8).
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Definition 5.3.3 (Nonsingular extremal). A normal extremalΛ = ((x,u),λ ) con-
sisting of a controlled trajectory Γ = (x,u) defined over an interval [τ,T ] with
corresponding multiplier λ is said to be nonsingular if for all t ∈ [τ,T ] we have
that

∂H
∂u

(t,λ (t),x(t),u(t))≡ 0

and the matrix

∂ 2H
∂u2 (t,λ (t),x(t),u(t))

is positive definite. As in the calculus of variations, in this case we say that the
strengthened Legendre condition is satisfied along the extremalΛ .

If the control u(t) of a normal extremal Λ lies in the interior of the control
set, then it is an immediate consequence of the actual minimization condition
of the maximum principle that ∂H

∂u (t,λ (t),x(t),u(t)) ≡ 0 and that the matrix
∂ 2H
∂u2 (t,λ (t),x(t),u(t)) is positive semidefinite. We refer to this property also as the
Legendre condition.

Theorem 5.3.1. Let Λ = ((x̄, ū), λ̄ ) be a nonsingular extremal for problem [OCT ]
defined over an interval [τ,T ] and suppose

1. for every t ∈ [τ,T ] the control ū(t) lies in the interior of the control set, ū(t) ∈
int(U), and

2. ū(t) is the unique minimizer of the function v �→H(t, λ̄(t), x̄(t),v) over the control
set U.

Then there exist a canonical, nicely C�−1-parameterized family of nonsingular
extremals E with domain D = {(t, p) : p ∈ P, t−(p)≤ t ≤ T} and a parameter value
p0 ∈ P such that for all t ∈ [τ,T ] we have that

x(t, p0)≡ x̄(t), u(t, p0)≡ ū(t), and λ (t, p0)≡ λ̄ (t).

We say that the reference extremal Λ is embedded into the family E .

Condition (2) that ū(t) is the unique minimizer is important in this construction.
It holds, for instance, if the Hamiltonian H is strictly convex in u. If it is not satisfied,
the local construction below can still be carried out, but it is not guaranteed that the
resulting controlled trajectories are extremal, since the minimizing control might
switch in any neighborhood of p0. In such a case, the smoothness properties that we
require will not be satisfied, and different parameterized families of extremals will
need to be patched together.

Proof. Let ρ denote the lift of the graph of the controlled trajectory x̄ into the
cotangent bundle defined by the extremalΛ , i.e., ρ : [τ,T ]→ [τ,T ]×Rn×(Rn)∗, t �→
ρ(t) = (t, x̄(t), λ̄ (t)). Since the strengthened Legendre condition is satisfied along
ρ , it follows from the implicit function theorem that for every time t ∈ [τ,T ] there
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Fig. 5.7 A tubular
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exist neighborhoods Vt of ρ(t) and Wt of ū(t), which, without loss of generality, we
take in the forms

Vt = (t− ε, t + ε)×Bε(x̄(t))×Bε(λ̄ (t))⊂ R×R
n× (Rn)∗

and Wt=Bδ (ū(t))⊂ int(U), such that for all (s,x,λ )∈Vt , the equation Hu(s,λ ,x,u)=
0 has a unique solution u= u(s,x,λ )∈Wt . This solution is continuous, (�−1)-times
continuously differentiable in x and λ , and satisfies

u(s, x̄(s), λ̄ (s)) = ū(s) for all s ∈ (t− ε, t + ε).

The parameters ε and δ generally depend on the time t, ε = ε(t), and δ = δ (t),
and the stated properties are valid by choosing ε small enough. Since the curve
ρ is compact, there exists a finite subcover of this curve with neighborhoods Vti ,
i = 1, . . . ,k. If two of these neighborhoods overlap, Vt1 ∩Vt2 = /0, then there exists a
section over the interval

(σ1,σ2) = (t1− ε(t1), t1 + ε(t1))∩ (t2− ε(t2), t2 + ε(t2))

that is common to both neighborhoods, and over this section both functions
u1 = u1(t,x,λ ) and u2 = u2(t,x,λ ) are solutions of the equation Hu(t,λ ,x,u) =
0 that satisfy u(s, x̄(s), λ̄ (s)) = ū(s) for t ∈ (σ1,σ2). Since the solutions in the
neighborhoods Vt1 and Vt2 are unique, it follows that u1(t,x,λ ) = u2(t,x,λ ) for
all (t,x,λ ) ∈ Vt1 ∩ Vt2 . This allows us to define a function u = u(s,x,λ ) in a
neighborhood of the curve ρ by setting u(s,x,λ ) = ui(s,x,λ ) whenever (s,x,λ ) ∈
Vti . Since there are only finitely many neighborhoods, there exists a positive ε (now
independent of t) such that this function exists, is continuous, and is (�− 1)-times
continuously differentiable in x and λ on a tubular neighborhood

V =
{
(t,x,λ ) : τ ≤ t ≤ T, ‖x− x̄(t)‖< ε,

∥∥λ − λ̄(t)∥∥< ε
}

of the curve ρ (see Fig. 5.7).
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By choosing ε sufficiently small, we can also guarantee that for all (t,x,λ ) ∈ V ,
the control u(t,x,λ ) is the unique minimizer of the function

η : U → R, v �→ η(v) = H(t,λ ,x,v).

For by assumption, this holds along the curve ρ , and by construction, u(t,x,λ )
is a stationary point of η . Since the matrix ∂ 2H

∂u2 (t,λ ,x,u(t,x,λ )) is positive
definite along the compact curve ρ , by continuity this condition is preserved for
small enough ε , and thus u(t,x,λ ) is a strict local minimizer for the function
η . By assumption, the control ū(t) is the unique minimizer of the function v �→
H(t, λ̄(t), x̄(t),v) over the control set U everywhere on the compact curve ρ . Since
the minimum value is a continuous function, for ε small enough the function η
still has a unique minimum for all points (t,x,λ ) ∈ V , and this minimum lies in
the interior of the control set, int(U). Once more, this is a consequence of the
compactness of ρ . Hence u(t,x,λ ) is this minimum of η over the control set U .
Note that this need not hold any longer if there exist a time t ∈ [τ,T ] and a control
value v ∈ U such that H(t, λ̄(t), x̄(t), ū(t)) = H(t, λ̄(t), x̄(t),v). In this case, it is
possible that control values near v are better than the local solution u(t,x,λ ) near
the point (t, λ̄ (t), x̄(t)). For this reason assumption (2) is needed.

We define the flow of extremals by parameterizing the terminal points for the
states and multipliers. Since N is an embedded submanifold, there exists a canonical
parametrization of extremals in terms of the final points for the state x in the
manifold N and the normal vectors to the manifold N at x, the so-called normal
bundle: Let ξ0 = x̄(T ) ∈ N and let ν0 ∈ (Rn−k)∗ be the covector in the terminal
condition for the multiplier λ̄ (T ), λ̄ (T ) = ϕx(ξ0) + ν0Ψx(ξ0). Let P1 be an open
neighborhood of the origin in R

k and let ξ : P1 → N, y �→ ξ (y), be a C�-coordinate
chart for N centered at ξ0, i.e., ξ is a C�-diffeomorphism such that ξ (0) = ξ0. By our
standing assumption, the columns of the matrixΨT

x (ξ (y)) are linearly independent
and therefore form a basis for the normal space to N at ξ (y). Hence the vectors νT

provide coordinates for this normal space. Thus, if P2 is an open neighborhood of
νT

0 in R
n−k and P = P1×P2, then the mapping

ω : P→ N×
(
R

n−k
)
, p = (y,νT ) �→ ω(p) = (ξ (y),νT ), (5.25)

defines a C�-coordinate chart for the normal bundle to N at the point (ξ0,νT
0 ). Define

the endpoint mapping for the states and costates, Ω : P→ N× (Rn)∗, as

p = (y,νT ) �→Ω(p) = (ξ (y),ϕx(ξ (y))+νΨx(ξ (y))) = (x(T, p),λ (T, p)) . (5.26)

Note that Ω(p1) = Ω(p2) if and only if ω(p1) = ω(p2), and thus Ω is a C�−1-
diffeomorphism onto its n-dimensional image. We then define the trajectories x =
x(t, p) and costates λ = λ (t, p) as the solutions to the combined dynamics

ẋ = f (t,x,u(t,x,λ )), (5.27)

λ̇ =−Lx(t,x,u(t,x,λ ))−λ fx(t,x,u(t,x,λ )), (5.28)
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with terminal values (x(T, p),λ (T, p)) =Ω(p). The control u(t, p) is given by

u(t, p) = u(t,x(t, p),λ (t, p)). (5.29)

By taking ε in the definition of the neighborhood V small enough, it follows
from the continuous dependence of solutions to ordinary differential equations on
initial conditions and parameters that x(·, p) and λ (·, p) exist and are (�− 1)-times
continuously differentiable in the parameter p over some interval [t−(p),T ] with
t− : P → (−∞,T ], p �→ t−(p), a smooth function that satisfies t−(p0) = τ . This
therefore defines a nicely C�−1-parameterized family of nonsingular extremals E
that reduces to the reference extremalΛ for p0 =

(
0,νT

0

)
. ��

We henceforth take this canonical, nicely C�−1-parameterized family of nonsin-
gular extremals E as given and denote its domain by D = {(t, p) : p∈ P, t−(p)≤ t ≤
T} with t−(p0) = τ . For the parameterization of the terminal states and multipliers,
we also write ξ (p) and ν(p), but always assume that the mappingω : P→N×R

n−k,
p �→ (ξ (p),νT (p)), is a diffeomorphism.

If the matrix D�(t, p0) is nonsingular on the interval [τ,T ), then for every time
t in this interval there exists a neighborhood Ot of (t, p0), Ot ⊂ D, such that the
restriction of the flow map � to Ot is a C�−1-diffeomorphism. If we thus define

G =
⋃

τ≤t<T

�(Ot), (5.30)

then G is an open set that except for the terminal point x̄(T ), contains the controlled
reference trajectory Γ̄ = (x̄, ū). By Corollary 5.2.2, Γ̄ is a relative minimum over
the domain G.

Corollary 5.3.1. The canonical, nicely C�−1-parameterized family of nonsingular
extremals E constructed in Theorem 5.3.1 defines a local field around the reference
trajectory if and only if the matrix ∂x

∂ p(t, p0) is nonsingular on the interval [τ,T ). �

5.3.2 Perturbation Feedback Control and Regularity
of the Flow �

Perturbation feedback control is probably the most important practical application of
optimal control theory. It is widely used, for example, in autopilots on commercial
aircraft, chemical process control, and many other control schemes that regulate
a system around some predetermined set point. Mathematically, it is based on
formulas that establish the local injectivity of the flow �. In our slightly different,
but mathematically more classical viewpoint, the neighboring extremals considered
in the engineering literature are the members of the canonical parameterized family
of extremals constructed above, and the conditions that are imposed guarantee that
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this construction actually provides a local embedding of the reference extremal into
a field of extremals. Chapter 6 of the textbook by Bryson and Ho [64] provides an
engineering-type exposition of calculations that indeed provide sufficient conditions
for the matrix ∂x

∂ p (t, p0) to be nonsingular along a reference extremal. As we have
seen, the boundary conditions at time T for x(T, p) and λ (T, p) define an n-
dimensional manifold. The combined flow in the cotangent bundle, the combined
state-multiplier space, is a C�−1-diffeomorphism in (x,λ )-space, since together
(x,λ ) are solutions to the differential equations (5.27) and (5.28), and thus the
resulting flow map Φt , which maps the terminal conditions to the solutions at
time t, is one-to-one. Hence the image of the flow for a given time t always is
an n-dimensional manifold. Local optimality of the reference trajectory follows
if one can ensure that the projection π : (x,λ ) �→ x is one-to-one away from
the terminal time T . For if this is the case, then the flow locally covers an n-
dimensional set in the state space, hence a neighborhood of the reference trajectory.
For problem [OCT ] (and even in the case that the terminal time becomes part of the
constraints and is defined implicitly) there exist classical results that characterize the
local regularity of the flow along a reference extremal in terms of solutions to Riccati
equations [64, Chap. 6]. In the engineering literature, these calculations, which are
collectively known as perturbation feedback control, are usually treated formally
without any relations to the underlying geometric properties they represent. It are
these geometric facts that we want to elucidate.

In the subsequent calculations, x, u, and λ and their partial derivatives are
evaluated at (t, p), partial derivatives of f are evaluated along the controlled
trajectories of the family, (t,x(t, p),u(t, p)), and all partials of H are evaluated along
the full extremals, (t,λ (t, p),x(t, p), u(t, p)). For notational clarity, however, we
drop these arguments. Recall that the matrix ∂x

∂ p(t, p) of the partial derivatives with
respect to the parameter p is the solution of the variational equation of the dynamics,
i.e.,

d
dt

(
∂x
∂ p

)
= fx

∂x
∂ p

+ fu
∂u
∂ p

(see Eq. (5.12)). In order to eliminate ∂u
∂ p , we differentiate the identity

HT
u (t,λ (t, p),x(t, p),u(t, p))≡ 0

with respect to p. The notation has been set up for column vectors, and differen-
tiating the m-dimensional column vector HT

u with respect to x, we get an m× n
matrix whose row vectors are the x-gradients of the components of HT

u . We denote
this matrix by Hux. In particular, under our general differentiability assumptions, the
mixed partials are equal and we have that Hxu = HT

ux. However, the multiplier λ is
written as a row vector, and in order to be consistent in our notation, we need to
differentiate HT

u with respect to the column vector λ T . For example, HuλT is the
m×n matrix whose row vectors are the partial derivatives of the components of HT

u
with respect to λ T . Since HT

u = f T
u λ T +LT

u , we simply have that HuλT = f T
u , etc.
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Differentiating HT
u = 0 thus gives

0 = HuλT
∂λ T

∂ p
+Hux

∂x
∂ p

+Huu
∂u
∂ p

= f T
u
∂λ T

∂ p
+Hux

∂x
∂ p

+Huu
∂u
∂ p

.

Along a nonsingular extremal, the matrix Huu is nonsingular, and it therefore follows
that

∂u
∂ p

=−H−1
uu

(
Hux

∂x
∂ p

+ f T
u
∂λ T

∂ p

)
. (5.31)

Substituting this relation into the variational equation for x, we obtain

d
dt

(
∂x
∂ p

)
=

(
fx− fuH−1

uu Hux
) ∂x
∂ p
− fuH−1

uu f T
u
∂λ T

∂ p
.

The equation for the partial derivative ∂λT

∂ p follows by differentiating the adjoint
equation:

d
dt

(
∂λ T

∂ p

)
=
∂ 2λ T

∂ t∂ p
=

∂
∂ p

(
λ̇ T

)
=

∂
∂ p

(
−∂H
∂x

)T

=−Hxx
∂x
∂ p
−HxλT

∂λ T

∂ p
−Hxu

∂u
∂ p

(5.32)

=−(
Hxx−HxuH−1

uu Hux
) ∂x
∂ p
− (

fx− fuH−1
uu Hux

)T ∂λ T

∂ p
.

Hence, we have the following fact:

Proposition 5.3.1. Given a Cr-parameterized family of nonsingular extremals, the
matrices ∂x

∂ p (t, p) and ∂λT

∂ p (t, p) are solutions to the homogeneous linear matrix
differential equation

⎛
⎜⎜⎝

d
dt

(
∂x
∂ p

)

d
dt

(
∂λT

∂ p

)

⎞
⎟⎟⎠=

⎛
⎜⎝

fx− fuH−1
uu Hux − fuH−1

uu f T
u

−(
Hxx−HxuH−1

uu Hux
) −(

fx− fuH−1
uu Hux

)T

⎞
⎟⎠

⎛
⎜⎝

∂x
∂ p

∂λT

∂ p

⎞
⎟⎠ .

(5.33)

We have already encountered these equations in Sect. 2.4. However, extensions
of those results are needed to deal with terminal manifolds N. We briefly dispose of
the simpler problem without terminal constraints.
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(a) Neighboring extremals without terminal constraints.

In this case, the parameter set P is simply a neighborhood of the terminal value
ξ0 = x̄(T ) of the controlled reference trajectory. Using ξ (p) = p, the terminal
conditions for the variational equations (5.33) are given by

∂x
∂ p

(T, p) = Id and
∂λ T

∂ p
(T, p) = ϕxx(p).

Since ∂x
∂ p(T, p) is nonsingular, Proposition 2.4.1 directly applies to give the follow-

ing result:

Theorem 5.3.2. Let E be a nicely C1-parameterized family of nonsingular ex-
tremals with domain D = {(t, p) : p ∈ P, t−(p) ≤ t ≤ T} for the optimal control
problem [OCT ] without terminal constraints. Then the matrix ∂x

∂ p (t, p) is nonsin-
gular over the interval [τ,T ] if and only if the solution S = S(t, p) to the Riccati
differential equation

Ṡ+ S fx + f T
x S+Hxx− (S fu +Hxu)H

−1
uu (Hux + f T

u S)≡ 0 (5.34)

with terminal condition
S(T, p) = ϕxx(p) (5.35)

exists over the full interval [τ,T ]. �
The Riccati equation

Ṡ+S
(

fx− fuH−1
uu Hux

)
+

(
fx− fuH−1

uu Hux
)T

S−S fuH−1
uu f T

u S+Hxx−HxuH−1
uu Hux≡ 0

of Proposition 2.4.1 can be written more concisely in the form (5.34) given here.

Proposition 5.3.2. If ∂x
∂ p(t, p0) is nonsingular for all times t ∈ [t−(p0),T ], then

there exists a neighborhood P of p0 such that the restriction of the flow � to
[t−(p0),T ]× P is a C1,�−1-diffeomorphism. In this case, the reference controlled
trajectory is a strong local minimum for the optimal control problem [OCT ].

Proof. Since the flow � along the trajectory x(·, p0) is regular, it follows from
the inverse function theorem that for every time s ∈ [t−(p0),T ] there exists a
neighborhood Ds of (s, p0) such that the restriction of � to Ds is a C1,�−1-
diffeomorphism. Without loss of generality, we may take Ds in the form Ds = Is×Ps,
where Is is an open interval and Ps an open neighborhood of p0. The sets {Ds : s ∈
[t−(p0),T ]} form an open cover of the compact set [t−(p0),T ]×{p0}, and thus
there exists a finite subcover {Dsi : si ∈ [t−(p0),T ], i = 1, . . . ,r}. Let P =

⋂r
i=1 Psi .

Then the map � is a C1,�−1-diffeomorphism on D = {(t, p) : p∈ P, t−(p0)≤ t ≤ T}.
For suppose �(s1, p1) =�(s2, p2). Since the flow map � is defined in terms of the
graphs of the trajectories, we have s1 = s2, and this time lies in one of the intervals
Isi . But � � Isi×P is a C1,�−1-diffeomorphism, and since both p1 and p2 lie in P, we
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have p1 = p2 as well. Thus � is injective on D. Furthermore, � has a differentiable
inverse by the inverse function theorem. ��

The controlled reference trajectory (x̄, ū) = (x(·, p0),u(·, p0)) thus gives a strong
local minimum for the problem [OCT] in the following classical form: there exists
an ε > 0 such that for any other admissible controlled trajectory (x,u) with the same
initial condition, x(τ) = x̄(τ), that satisfies ‖x(t)− x̄(t)‖ < ε for all t ∈ [t̄0,T ], we
have that J (ū)≤J (u). Summarizing, we thus have proven the following result:

Corollary 5.3.2. Consider the optimal control problem [OCT ] without terminal
constraints. Let Λ = ((x̄, ū),λ ) be a nonsingular extremal defined over [τ,T ]
and suppose that (i) for every t ∈ [τ,T ] the control ū(t) lies in the interior of
the control set, ū(t) ∈ int(U), (ii) ū(t) is the unique minimizer of the function
v �→ H(t, λ̄(t), x̄(t),v) over the control set U, and, (iii) along Λ , the Riccati
equation (5.34) with terminal condition (5.35) has a solution over the full interval
[τ,T ]. Then (x̄, ū) is a strong local minimum. �

Thus, for this problem, the existence of a solution to Eqs. (5.34) and (5.35) on
the compact interval [τ,T ] is the generalization of the strengthened Jacobi condition
from the calculus of variations. As in the calculus of variations, we shall see in the
next section that the existence of a solution on the half-open interval (τ,T ] is a
necessary condition for a local minimum. While the solution S = S(t, p) exists, it

follows from Proposition 2.4.1 that ∂x
∂ p (t, p) and ∂λT

∂ p (t, p) are related as

∂λ T

∂ p
(t, p) = S(t, p)

∂x
∂ p

(t, p),

and thus the Hessian matrix of the corresponding value VE is given by (cf.
Eq. (5.20))

∂V E

∂x2 (t,x(t, p)) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1

= S(t, p).

However, these relations need to be modified when terminal constraints are imposed.

(b) Neighboring extremals with terminal constraints N = {x ∈R
n :Ψ(x) = 0}.

In this case, the flow map � is singular at the terminal time t = T , and since
∂x
∂ p(T, p) = ∂ξ

∂ p (p), the image of ∂x
∂ p (T, p) is given by the tangent space of N at ξ (p).

It is the second part of the parameter, the multiplier ν , that desingularizes the flow
� around the terminal manifold. Differentiating the transversality condition (5.14)
for λ (T, p) with respect to p, and taking the transpose, we have that

∂λ T

∂ p
(T, p) = [ϕxx(ξ (p))+ν(p)Ψxx(ξ (p))]

∂ξ
∂ p

(p)+ΨT
x (ξ (p))

∂νT

∂ p
(p). (5.36)
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In this equation, the notation νΨxx is a convenient shortcut for νΨxx = ∑n−k
i=1 νi

∂ 2ψi
∂x2

with ∂ 2ψi
∂x2 denoting the Hessian matrices of the functions ψi that define the terminal

constraint, Ψ = (ψ1, . . . ,ψn−k)
T . Thus, the first term in Eq. (5.36) is the sum of

1+n−k vectors, each of which is obtained by an n×n matrix acting on the tangent
vector ∂ξ∂ p (p) to N at ξ (p). Recall that the multiplier ν = ν(p) depends only on the
extremal, but not on time. Equation (5.36) therefore points to the following ansatz
for the solutions to the variational equations:

∂λ T

∂ p
(t, p) = S(t, p)

∂x
∂ p

(t, p)+RT (t, p)
∂νT

∂ p
(p).

Substituting this relation into the differential equations (5.33) for ∂x
∂ p and ∂λT

∂ p ,
differential equations for S and R can be derived that indeed generate this relation. In
fact, for S this gives the same Riccati equation (5.34) as in the case without terminal
constraints, but with modified terminal condition

S(T, p) = ϕxx(ξ (p))+ν(p)Ψxx(ξ (p)). (5.37)

Assuming that this solution exists over the full interval [τ,T ], the matrix R =
R(t, p) ∈ R

(n−k)×n can then simply be computed as the solution to the linear matrix
differential equation

Ṙ = R
(− fx + fuH−1

uu Hux + fuH−1
uu f T

u S
)

(5.38)

with terminal condition
R(T, p) =Ψx(ξ (p)). (5.39)

Lemma 5.3.1. If the solution S = S(t, p) to the Riccati equation (5.34) with
terminal condition (5.37) exists over the full interval [τ,T ] and R denotes the
solution to the linear ODE (5.38) with boundary condition (5.39), then for all
t ∈ [τ,T ], we have that

∂λ T

∂ p
(t, p) = S(t, p)

∂x
∂ p

(t, p)+RT (t, p)
∂νT

∂ p
(p). (5.40)

Proof. In order to simplify the notation, we use the abbreviations

Ã = fx− fuH−1
uu Hux, B̃ = fuH−1

uu f T
u , and C̃ = Hxx−HxuH−1

uu Hux, (5.41)

where, as always, all the partial derivatives are evaluated along the extremals

t �→ (t,λ (t, p),x(t, p),u(t, p)).
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Note that S, B̃, and C̃ are symmetric matrices. Define

Δ(t, p) =
∂λ T

∂ p
(t, p)− S(t, p)

∂x
∂ p

(t, p)−RT (t, p)
∂νT

∂ p
(p).

It follows from the specifications of the terminal values that Δ(T, p) = 0. Using
Eq. (5.33), we furthermore get that

Δ̇ (t, p) =
d
dt

(
∂λ T

∂ p

)
− Ṡ

∂x
∂ p
− S

d
dt

(
∂x
∂ p

)
− ṘT ∂νT

∂ p

=−ÃT ∂λ T

∂ p
− C̃

∂x
∂ p
− (−SÃ− ÃT S+ SB̃S− C̃

) ∂x
∂ p

− S

(
fx
∂x
∂ p

+ fu
∂u
∂ p

)
− (−Ã+ B̃S

)T
RT ∂νT

∂ p

=−ÃT ∂λ T

∂ p
+ SÃ

∂x
∂ p
− (−Ã+ B̃S

)T
(

S
∂x
∂ p

+RT ∂νT

∂ p

)

− S

(
fx
∂x
∂ p

+ fu
∂u
∂ p

)
.

Since all extremals are nonsingular, Eq. (5.31) implies that

Δ̇ (t, p)

=−ÃT ∂λ T

∂ p
+ SÃ

∂x
∂ p
− (−Ã+ B̃S

)T
(

S
∂x
∂ p

+RT ∂νT

∂ p

)
− S

(
Ã
∂x
∂ p
− B̃

∂λ T

∂ p

)

=
(−Ã+ B̃S

)T
(
∂λ T

∂ p
− S

∂x
∂ p
−RT ∂νT

∂ p

)

=
(−Ã+ B̃S

)T Δ

and thus Δ(t, p)≡ 0. ��

Lemma 5.3.2. Let Q = Q(t, p) ∈ R
(n−k)×(n−k) be the integral of

Q̇ = R fuH−1
uu f T

u RT , Q(T, p) = 0. (5.42)

Then

R(t, p)
∂x
∂ p

(t, p)+Q(t, p)
∂νT

∂ p
(p)≡ 0. (5.43)

Proof. Define

Θ(t, p) = R(t, p)
∂x
∂ p

(t, p)+Q(t, p)
∂νT

∂ p
(p).
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It follows from Q(T, p) = 0 that

Θ(T, p) =Ψx(ξ (p))
∂ξ
∂ p

(p)+ 0 = 0,

where in the last step, we use the fact that the columns of ∂ξ
∂ p (p) are tangent to N

at ξ (p), while the rows ofΨx(ξ (p)) are a basis for the normal space to N at ξ (p).
Furthermore,

Θ̇(t, p) = Ṙ
∂x
∂ p

+R
d
dt

(
∂x
∂ p

)
+ Q̇

∂νT

∂ p

= R
(−Ã+ B̃S

) ∂x
∂ p

+R

(
Ã
∂x
∂ p
− B̃

∂λ T

∂ p

)
+RB̃RT ∂νT

∂ p

= RB̃

(
S
∂x
∂ p

+RT ∂νT

∂ p
− ∂λ

T

∂ p

)
≡ 0.

ThusΘ(t, p)≡ 0. ��
Corollary 5.3.3. The matrix ∂x

∂ p(t, p) is nonsingular if and only if Q(t, p) is
nonsingular.

Proof. The matrix R(t, p) ∈ R
(n−k)×n is the solution of the homogeneous linear

matrix differential equation (5.38). Since the rows of the matrix R(T, p) =Ψx(ξ (p))
are linearly independent, it follows that the rows of R(t, p) are linearly independent
for all times t and thus R(t, p) is of full rank n− k everywhere. Thus, if ∂x

∂ p (t, p)

is nonsingular, then the rank of the product R(t, p) ∂x
∂ p(t, p) is equal to n− k. By

Eq. (5.43), this then also is the rank of the product Q(t, p) ∂ν
T

∂ p (p). Hence both

Q(t, p) and ∂νT

∂ p (p) must be of full rank n− k.

Conversely, suppose Q(t, p) is nonsingular. If z∈ ker( ∂x
∂ p(t, p)), then by Eq. (5.43),

we have that ∂νT

∂ p (p)z = 0 and thus by Eq. (5.40) also ∂λT

∂ p (t, p)z = 0. Hence the

vector functions s→ ∂x
∂ p(s, p)z and s→ ∂λT

∂ p (s, p)z are solutions to the homogeneous
linear differential equation (5.33) that vanish for s = t, and thus these functions
vanish identically. In particular, at the terminal time T , we have that ∂ξ

∂ p (p)z =
∂x
∂ p(T, p)z= 0. But the mappingω : p �→ω(p)= (ξ (p),ν(p)T ) is a diffeomorphism,
and therefore (

∂ξ
∂ p

(p),
∂νT

∂ p
(p)

)
z = 0

implies that z = 0. Hence ∂x
∂ p(t, p) is nonsingular. ��
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Summarizing the construction, we have the following result:

Theorem 5.3.3. Let E be the canonical, nicely C�−1-parameterized family of
nonsingular extremals constructed in Theorem 5.3.1 with domain D = {(t, p) : p ∈
P, t−(p)≤ t ≤ T} for the optimal control problem [OCT ] with terminal constraints
given by N = {x ∈ R

n :Ψ(x) = 0}. Suppose the solution S = S(t, p) to the Riccati
differential equation

Ṡ+ S fx + f T
x S+Hxx− (S fu +Hxu)H

−1
uu (Hux + f T

u S)≡ 0,

with terminal condition

S(T, p) = ϕxx(ξ (p))+ν(p)Ψxx(ξ (p)),

exists over the full interval [τ,T ] and let R=R(t, p) and Q=Q(t, p) be the solutions
to the terminal value problems

Ṙ = R
(− fx + fuH−1

uu Hux + fuH−1
uu f T

u S
)
, R(T, p) =Ψx(ξ (p)),

and
Q̇ = R fuH−1

uu f T
u RT , Q(T, p) = 0,

over the interval [τ,T ]. If Q(t, p) is negative definite over the interval [τ,T ), then
the matrix ∂x

∂ p(t, p) is nonsingular over the interval [τ,T ) as well. In this case,
there exists a domain G in (t,x)-space that, with the exception of the terminal point
x̄(T ), contains the graph of the controlled reference trajectory Γ̄ = (x̄, ū) and Γ̄ is
a relative minimum over the set G. �

The last statement of the theorem follows from Corollary 5.2.2. As before, the
Hessian matrix of the corresponding value VE is given by

∂VE

∂x2 (t,x(t, p)) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1

.

However, for t < T , in this case it follows from Eqs. (5.40) and (5.43) that

∂VE

∂x2 (t,x(t, p)) = S(t, p)+RT (t, p)
∂νT

∂ p
(p)

(
∂x
∂ p

(t, p)

)−1

= S(t, p)−RT (t, p)Q(t, p)−1R(t, p). (5.44)

This matrix is the so-called Schur complement of Q for the matrix

(
S RT

R Q

)
. The

function

Z(t, p) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1
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satisfies the same Riccati differential equation as S. For if ∂x
∂ p(t, p) is nonsingular,

then it always holds that (see Eq. (5.32))

Ż =

[
d
dt

(
∂λ T

∂ p

)](
∂x
∂ p

)−1

+

(
∂λ T

∂ p

)[
d
dt

(
∂x
∂ p

)−1
]

=

[
d
dt

(
∂λ T

∂ p

)](
∂x
∂ p

)−1

−
(
∂λ T

∂ p

)(
∂x
∂ p

)−1 [ d
dt

(
∂x
∂ p

)](
∂x
∂ p

)−1

=

(
−Hxx

∂x
∂ p
− f T

x
∂λ T

∂ p
−Hxu

∂u
∂ p

)(
∂x
∂ p

)−1

−Z

(
fx
∂x
∂ p

+ fu
∂u
∂ p

)(
∂x
∂ p

)−1

=−Z fx− f T
x Z−Hxx− (Z fu +Hxu)

(
∂u
∂ p

)(
∂x
∂ p

)−1

(5.45)

and along a nonsingular extremal we have that

(
∂u
∂ p

)(
∂x
∂ p

)−1

=−H−1
uu

(
Hux + f T

u Z
)
.

Naturally, in this case Z(t, p) has a singularity as t → T and Eq. (5.44) resolves the
behavior near the terminal time. The general formulation (5.45) will also come in
useful for the case of bang-bang controls considered in Sect. 6.1 when ∂u

∂ p ≡ 0.
The condition that Q(t, p) be nonsingular for all t < T , also called a normality

condition in [64], has an intuitive and natural control engineering interpretation.
This is a controllability assumption on the linearized time-varying system

ẏ =
∂ f
∂x

(t,x(t, p),u(t, p))y+
∂ f
∂u

(t,x(t, p),u(t, p))v.

This is best seen through the connection with solutions to the adjoint equation for
this system.

Lemma 5.3.3. The matrix Q(τ, p) is singular if and only if there exists a nontrivial
solution μ = μ(t, p) of the linear adjoint equation

μ̇ =−μ ∂ f
∂x

(t,x(t, p),u(t, p))

with terminal condition μ(T, p) that is perpendicular to N at ξ (p) = x(T, p) such
that

μ(t, p)
∂ f
∂u

(t,x(t, p),u(t, p))≡ 0

on the interval [τ,T ].
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Proof. The matrix Q = Q(τ, p) is negative semi definite: for any vector z ∈ R
n−k

we have that

zT Q(t, p)z =−
∫ T

τ
zT Q̇z ds =−

∫ T

τ
zT R fuH−1

uu f T
u RT z ds≤ 0.

Since the matrix Huu is positive definite, Q(τ, p) is singular if and only if there exists
a non-zero vector z ∈ R

n−k such that

zT R(t, p) fu(t,x(t, p),u(t, p))≡ 0 on [τ,T ].

In this case, μ(t, p) = zT R(t, p) is a nontrivial solution of the linear adjoint equation

μ̇ = zT Ṙ = zT R
(− fx + fuH−1

uu Hux + fuH−1
uu f T

u S
)
=−zT R fx =−μ fx

that satisfies μ(T, p)⊥N and μ fu = zT R fu≡ 0. Conversely, if such a solution exists,
then μ is also a solution to the ODE

μ̇ = μ
(− fx + fuH−1

uu Hux + fuH−1
uu f T

u S
)
.

Since μ(T, p) is nontrivial and orthogonal to N, there exists a nonzero vector z ∈
R

n−k such that μ(T ) = zTΨx (ξ (p)), and thus μ is given by μ(t) = zT R(t, p). Thus
zT Q(τ, p)z = 0 and Q(τ, p) is singular. ��

This relates the regularity of Q to a classical characterization for the controllabil-
ity of a time-varying linear system (e.g., see [127, 138]).

Proposition 5.3.3. A time-varying linear system ẏ = A(t)y+B(t)v is controllable
over an interval [τ,T ] if and only if for every nontrivial solution μ of the adjoint
equation μ̇ = −μA(t), the function μ(t)B(t) does not vanish identically on the
interval [τ,T ]. It is completely controllable if this holds for any subinterval [τ,T ].

Proof. If there exists a nontrivial solution μ of the adjoint equation μ̇ =−μA(t) for
which the function μ(t)B(t) vanishes identically on the interval [τ,T ], then for any
solution y of the dynamics we have that

d
dt

(μy) = μ̇y+ μ ẏ =−μA(t)y+ μ (A(t)y+B(t)v)≡ 0.

It thus follows, for arbitrary initial conditions yτ and terminal conditions yT , that
μ(τ)yτ = μ(T )yT . In particular, initial points yτ for which μ(τ)yτ = 0 cannot be
steered into yT = 0 at time T , and the system is not controllable over [τ,T ].

Conversely, suppose that μ(t)B(t) does not vanish identically on the interval
[τ,T ] for any nontrivial solution μ of the adjoint equation μ̇ = −μA(t). We
explicitly construct a control that steers a given initial point yτ into a specified
terminal point yT over the interval [τ,T ]. If we denote the fundamental matrix of
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the homogeneous time-varying linear system ẏ = A(t)y by Φ(t,s), then we need to
find a control v such that

yT =Φ(T,τ)yτ +
∫ T

τ
Φ(T,s)B(s)v(s)ds.

In terms of the fundamental matrix Φ , solutions to the adjoint equation are simply
given in the form μ(s) = μ̄Φ(T,s) with μ̄ some n-dimensional row vector. This is a
consequence of the fact that Φ(T,s) is the inverse matrix of Φ(s,T ). For using the
formula for the differentiation of the inverse of a matrix,

d
dt

X−1(t) =−X−1(t)Ẋ(t)X−1(t),

it follows that

∂
∂ s
Φ(T,s) =−Φ(T,s)

∂Φ
∂ t

(s,T )Φ(T,s)

=−Φ(T,s)A(s)Φ(s,T )Φ(T,s) =−Φ(T,s)A(s).

By assumption, for any μ̄ = 0, the function μ(s)B(s) = μ̄Φ(T,s)B(s) does not
vanish identically on [τ,T ], and therefore

μ̄
(∫ T

τ
Φ(T,s)B(s)BT (s)Φ(T,s)T ds

)
μ̄T > 0.

Hence, the matrix

W (τ,T ) =
∫ T

τ
Φ(T,s)B(s)BT (s)Φ(T,s)T ds

is positive definite. Thus, we can simply take

v(s) = BT (s)Φ(T,s)T v̄,

where v̄ is the solution to the linear equation

yT −Φ(T,τ)yτ =W (τ,T )v̄.

This control steers yτ into yT over the interval [τ,T ]. Hence the linear system is
completely controllable. ��

Thus, the fact that Q(t, p) needs to be nonsingular for all t ∈ [τ,T ) is related
to a complete controllability condition on the linearized system. However, the
situation here is different in the sense that the problem requires only that the system
be steered into the terminal manifold N, and for this reason it is not required
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Fig. 5.8 Foliation of the
flow �

that the linearization be completely controllable; we need only that the system is
fully controllable with respect to the normal directions at the terminal manifold.
This is the significance of the terminal constraint μ(T ) ⊥ N; controllability of the
linearization along tangent directions to N is not required. In fact, depending on the
values of the parameter, two different solutions x(·, p1) and x(·, p2) may or may not
end at the same terminal point.

The assumption that Q(·, p) is nonsingular enforces a regular geometric structure
in the form of a foliation that clarifies these relations. Going back to the canon-
ical, nicely C1-parameterized family of nonsingular extremals E constructed in
Theorem 5.3.1, the parameter set P, P = P1×P2, is the direct product of an open
neighborhood P1 of the origin in R

k that is the domain of a coordinate chart for
the terminal manifold N and an open neighborhood P2 of νT

0 in R
n−k that defines

coordinates for the normal space and is used to parameterize the terminal conditions
on the multiplier λ . For p1 ∈ P1 fixed, the controlled trajectories

(t, p2) �→ (t,x(t, p1, p2)), p2 ∈ P2, t < T,

form (n− k+ 1)-dimensional integral submanifolds M(p1) of graphs of controlled
trajectories all of which steer the system into the point (T,ξ (p1)) at the terminal
time T . On the other hand, if we freeze a parameter p2 ∈ P2, then the image of the
terminal manifold N under the flow � for a fixed time t,

(t, p1) �→ (t,x(t, p1, p2)), p1 ∈ P1, t < T,

defines a k-dimensional submanifold N(t, p2) that is transversal to all the manifolds
M(p1) at the point (t,x(t; p1, p2)). Mathematically, such a decomposition is called
a foliation, with the surfaces M(p1) the leaves of the foliation and the manifolds
N(t, p2) the transversal sections (see Fig. 5.8).

Thus there exist both an intuitive control engineering interpretation and an
elegant geometric picture underlying the formal computations of neighboring
extremals done in [64, Chap. 6]. These interpretations can be extended to the case
that the terminal time is defined implicitly through one of the constraints in Ψ ,
but a third equation that models the time evolution is required, and the notation
becomes somewhat cumbersome. Also, if one wants to make the constructions
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mathematically rigorous, as was the case for the model considered here with
condition (ii) in Theorem 5.3.1, some minor extra assumptions need to be made
about the formal computations in [64].

The equations derived above form the basis for the linearization of a nonlinear
control system around a locally optimal controlled reference trajectory, the so-called
perturbation feedback control in the engineering literature [64, Sect. 6.4]. The nom-
inal path is given by the controlled reference trajectory (x̄, ū) = (x(·, p0),u(·, p0))
corresponding to the parameter p0. For a real system, because of disturbances and
unmodeled high-order aspects in the true dynamics, generally, at time t, the system
will not be in its specified location x̄(t) = x(t, p0), but is expected to have some
small deviation from the actual position at time t given by x = x̄(t). If x lies in the
region covered by the flow � of the parameterized family of extremals, then there
exists a parameter p ∈ P such that x = x(t, p). The corresponding optimal solution
therefore is given by (x(·, p),u(·, p)). Since the family is C1-parameterized, a first-
order Taylor expansion for this control around the reference value is given by

u(t, p) = u(t, p0)+
∂u
∂ p

(t, p0)(p− p0)+ o(‖p− p0‖),

and by Eq. (5.31) we have that

∂u
∂ p

(t, p0) =−H−1
uu

(
Hux

∂x
∂ p

(t, p0)+ f T
u
∂λ T

∂ p
(t, p0)

)
,

with the partial derivatives of H all evaluated along the reference extremal for
parameter p0. It follows from Eqs. (5.40) and (5.43) that

∂λ T

∂ p
(t, p0) =

(
S(t, p0)−RT (t, p0)Q(t, p0)

−1R(t, p0)
) ∂x
∂ p

(t, p0),

and thus we have that

∂u
∂ p

(t, p0) =−H−1
uu

(
Hux + f T

u

(−RT Q−1R
)) ∂x
∂ p

(t, p0).

If we denote the deviation of the state from the reference trajectory by

Δx(t) = x(t, p)− x(t, p0)

and the deviation of the reference control by

Δu(t) = u(t, p)− u(t, p0),

then overall, this gives

Δu(t) =−H−1
uu

(
Hux + f T

u

(
S−RT Q−1R

))
Δx(t)+ o(‖Δx(t)‖). (5.46)
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This equation provides the linearization of the optimal control u(t, p) around the
nominal control u(t, p0) as a time-varying linear feedback control of the deviation
from the nominal trajectory, information that typically is readily available with
today’s sensor technology. For a nonlinear control system with reasonable local
stability properties around the reference, such a control scheme generally is highly
effective, and it has the advantage that it requires computations only along one
trajectory, the reference controlled trajectory, since all the matrices S, R, Q and all
the partial derivatives of H are evaluated along the controlled reference trajectory
for parameter p0. Naturally, if the deviation becomes too large, this control law no
longer is applicable. Even with the best technology, if turbulence occurs, the pilot
needs to turn off the autopilot and return to work, since a linearization-based control
scheme no longer is able to handle deviations of such a magnitude.

We note only that is not difficult to show that this perturbation feedback control
scheme can also be derived as the solution to a linear-quadratic optimal control
problem (but with terminal constraints), as would seem obvious from the structure
involving the solution of a Riccati differential equation. This is the natural extension
of the accessory problem of the calculus of variations to the control theory setting.
However, as in that case, and in contrast to the classical formulation considered
in Sect. 2.1, it is no longer guaranteed that a solution to the Riccati differential
equation exists for all times. This will be our next topic. We still reiterate that some
adjustments to the construction become necessary if the final time T is included
in the terminal constraint. In this case, additional quantities that account for the
time evolution near the terminal manifold become necessary, but otherwise our
arguments carry over almost verbatim. In particular, the matrices S, R, and Q satisfy
the same differential equations. We refer the interested reader to [64, Sects. 6.5
and 6.6].

SUMMARY: In this section, for problem [OCT ] we showed how to embed a
nonsingular extremal Λ = ((x̄, ū),λ ) in a canonical way into a nicely C�−1-
parameterized family of nonsingular extremals E with domain D = {(t, p) : p ∈
P, t−(p) ≤ t ≤ T} with Λ the extremal for parameter p0 ∈ P (Theorem 5.3.1).
Then, for various formulations of the general optimal control problem [OCT ], we
established conditions under which the members of E are locally optimal (e.g.,
Theorems 5.3.2 and 5.3.3). All these criteria are based on sufficient conditions for
the corresponding flow �,

� : D→ R×R
n, (t, p) �−→�(t, p) =

(
t

x(t, p)

)
,

to be a diffeomorphism away from the terminal manifold N, and as such, these are
all related to the fact that the Jacobian matrix ∂x

∂ p (t, p) is nonsingular.
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5.4 Fold Singularities and Conjugate Points

In the last two sections of this chapter, we analyze the behavior of the flow of
trajectories � when this flow becomes singular. Throughout, we assume as given
a C2-parameterized family of normal extremals E with domain

D = {(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)}.

We call the member of this family that corresponds to the parameter value p0 ∈
P the reference controlled trajectory and denote it by Λ = ((x̄, ū), λ̄ ). All our
considerations here will be local, and we always assume that P is a sufficiently small
neighborhood of p0 that will be shrunk whenever necessary so that local properties
of the construction are valid on all of P.

We study the behavior of the flow � of the family E and its associated value
function near a singular point, but consider only the two least-degenerate scenarios,
so-called fold points in this section, and the case of a simple cusp point in the
next section. The analysis of more degenerate singularities very quickly becomes
exceedingly difficult, and the geometric properties of the corresponding value
functions in these cases are still largely unknown. The two cases analyzed here are
commonly encountered in many low-dimensional optimal control problems (related
to the fact that these are the only generic singularities for two-dimensional maps
[258]) and often form determining structures in the optimal solutions. The canonical
example for fold singularities is given by the envelope of the extremals for the
minimum surfaces of revolution in the classical problem of the calculus of variations
(see Sects. 1.3 and 1.7), and we shall show that the local geometry of the flow � near
a fold point is exactly the same. In particular, local optimality of the extremals in the
family ceases at fold points. In fact, we here carry out an argument using envelopes
that generalizes this classical concept from the calculus of variations to the optimal
control problem and mimics this theory.

Our aim is to study singularities in the flow �=�(t, p) of a parameterized family
of extremals. In the time-dependent case, the differential of the flow is given by

D�(t, p) =

(
1 0

∂x
∂ t (t, p) ∂x

∂ p(t, p)

)
,

and therefore singularities of the flow correspond to rank deficiencies of the matrix
∂x
∂ p(t, p). In the time-independent case, since the dimension of the parameter space P

is reduced by one, the full Jacobian also contains the time derivative ∂x
∂ t (t, p). Still,

in the flow � the variable t has a distinguished role, and we are interested in the
singularities that arise in time, i.e., conjugate points. Therefore, here we disregard

singularities that are caused when ∂x
∂ t ∈ lin span

(
∂x
∂ p

)
and ∂x

∂ p is of full rank.
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t=σ(p)

p

t

S

Fig. 5.9 Assumption (A)

Definition 5.4.1 (Singular points). Let E a be k-dimensional, C2-parameterized
family of normal extremals, k ≤ n. We call a point (t0, p0) in the interior of D,
(t0, p0) ∈ int(D), a singular point if the matrix ∂x

∂ p(t0, p0) ∈ R
n×k does not have

full rank k. A singular point is called a corank-� > 0 singular point if the matrix
∂x
∂ p(t0, p0) has rank k− �.

The k× k matrix ∂x
∂ p (t, p)T ∂x

∂ p(t, p) is positive semidefinite, and the corank of
a singular point is the dimension of the kernel or null space of this matrix. In
particular, at a corank-1 singular point (t0, p0), this kernel is spanned by any
eigenvector for the algebraically simple eigenvalue 0. Let

Δ(t, p) = det

[(
∂x
∂ p

(t, p)

)T ∂x
∂ p

(t, p)

]
.

Definition 5.4.2 (t-Regular singular points). We call a singular point (t0, p0) ∈
int(D) t-regular if

∂Δ
∂ t

(t0, p0) = 0.

If (t0, p0) is a t-regular singular point, then by the implicit function theorem,
there exists an open neighborhood W = (t0− ε, t0 + ε)×Bδ (p0) of (t0, p0) with the
property that the equation Δ(t, p) = 0 has a unique solution on W given in the form
t = σ(p) with a continuously differentiable function σ : Bδ (p0)→ (t0− ε, t0 + ε),
p �→ σ(p). In other words, the singular set S is the graph of this function σ ; in
particular, it is a codimension-1 embedded submanifold in D [see Fig. 5.9]. If (t0, p0)
is a t-regular corank-1 singular point, then for sufficiently small δ , all points in the
singular set will be of corank 1. (There exists a (k− 1)-dimensional minor of the
matrix ∂x

∂ p(t0, p0) that is nonzero, and by continuity this holds in a neighborhood.)
We henceforth assume that this is the case:

(A) The singular set S is a codimension-1 embedded submanifold of D that
entirely consists of corank-1 singular points and can be described as the graph of
a continuously differentiable function σ : P→ (t0− ε, t0 + ε), p �→ σ(p),
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S = {(t, p) ∈ int(D) : t = σ(p)}= gr(σ).

Lemma 5.4.1. There exists a C1 vector field v : P→ S
k−1 = {z ∈ R

k : zT z = 1},
p �→ v(p), such that (

∂x
∂ p

(σ(p), p)

)
v(p) = 0.

Proof. Let v0 ∈ S
k−1 be a basis vector for the one-dimensional kernel of ∂x

∂ p
(σ(p0), p0) and define the mapping

E : P×S
k−1, (p,v) �→ E(p,v) =

∂x
∂ p

(σ(p), p)v.

The equation E(p,v) = 0 has the solution (p0,v0), and the partial derivative with
respect to v is of rank k− 1 at (p0,v0), the dimension of S

k−1. Hence, by the
implicit function theorem, the equation E(p,v) = 0 can locally be solved for v as a
differentiable function of p near p0. ��

The corresponding vector field that gives the eigenvectors in the kernel of the
differential for the full flow � is obtained by adding zero as first coordinate,

v̂ : P→ S
k, p �→ v̂(p) =

(
0

v(p)

)
.

Corank-1 singularities are broadly classified as fold or cusp points depending on
whether the vector field v̂ is transversal to the tangent space of the singular set S at
(t0, p0) or not [108].

Definition 5.4.3 (Fold and cusp points). A corank-1 singular point is called a fold
point if

T(t0,p0)S ⊕ lin span {v̂(p0)}= R
k+1;

it is called a cusp point if
v̂(p0) ∈ T(t0,p0)S.

For our setup, we have the following simple criterion:

Lemma 5.4.2. The point (t0, p0), t0 = σ(p0), is a fold point if and only if the Lie
derivative of the function σ along the vector field v does not vanish at p0,

(Lvσ)(p0) = ∇σ(p0)v(p0) = 0.

Proof. Since S is the graph of the function σ , S= {(t, p) : t−σ(p) = 0}, the tangent
space T(t0,p0)S consists of all vectors that are orthogonal to (1,−∇σ(p0)). ��

By reversing the orientation of the vector field v, without loss of generality we
may always assume that ∇σ(p0)v(p0) is positive for a fold point.
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5.4.1 Classical Envelopes

We show that the local geometry of a flow of extremals near a fold singularity
is identical to that for the flow of catenaries near the envelope in the problem of
minimum surfaces of revolution in the classical calculus of variations. In fact, if we
define the manifold Mf of fold points as the image of the singular set S under the
flow �, Mf = �(S), then trajectories in the parameterized family E touch Mf in
exactly one point.

Definition 5.4.4 (Classical envelope). Let E be a C1-parameterized family of
normal extremals with domain D. A classical envelope for the parameterized family
E is a (possibly small) portion of an admissible controlled trajectory (ξ ,η) of the
control system defined over some interval [a,b] with the property that there exists
a differentiable curve p : [a,b]→ P, t �→ p(t), such that ξ (t) = x(t, p(t)), and for
p = p(t) we have that

H(t,λ (t, p),ξ (t),η(t)) = H(t,λ (t, p),x(t, p),u(t, p)). (5.47)

One obvious way of satisfying condition (5.47) is with η(t) = u(t, p(t)), and
this corresponds to the classical definition from the calculus of variations. For this
reason, and also to distinguish it from a more general concept introduced below,
we call envelopes of this type classical. The main property of envelopes is the
agreement of the cost along concatenations of portions of the envelope with the
trajectories of the parameterized family.

Theorem 5.4.1 (Envelope theorem). Let (ξ ,η) : [a,b]→ M×U be a classical
envelope for a C1-parameterized family E of normal extremals with domain

D = {(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)}.

For any interval [t1, t2]⊂ (a,b), setting p1 = p(t1) and p2 = p(t2), we then have that

C(t1, p1) =

∫ t2

t1
L(t,ξ (t),η(t))dt +C(t2, p2). (5.48)

Proof. For s ∈ [t1, t2], define a 1-parameter family of admissible controlled trajecto-
ries (ξs,ηs) as

ηs(t) =

⎧⎨
⎩
η(t) for t1 ≤ t ≤ s,

u(t, p(s)) for s < t ≤ t+(s),

and

ξs(t) =

⎧⎨
⎩
ξ (t) for t1 ≤ t ≤ s,

x(t, p(s)) for s < t ≤ t+(s).
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Thus the controlled trajectories (ξs,ηs) follow (ξ ,η) over the interval [t1,s] until
the point ξ (s) is reached and then switch to the controlled trajectory of the
parameterized family E determined by the parameter p(s) that passes through
ξ (s) at time s, ξ (s) = x(s, p(s)). In particular, these concatenations satisfy the
terminal constraints, since the controlled trajectories in the family E do so. The
corresponding cost Γ (s) is given by

Γ (s) =
∫ s

t1
L(t,ξ (t),η(t))dt +C(s, p(s)),

and it satisfies Γ (t1) = C(t1, p1) and Γ (t2) =
∫ t2

t1
L(t,ξ (t),η(t))dt +C(t2, p2). It

follows from our general regularity assumptions that the integrand is bounded over
a compact interval, and thus Γ is an absolutely continuous function. Hence, Γ is
differentiable almost everywhere on [t1, t2], and it suffices to show that

Γ ′(s) =
dΓ
ds

(s)≡ 0,

so that Γ is constant on [t1, t2].
Differentiating Γ (·) gives

Γ ′(s) = L(s,ξ (s),η(s))+
∂C
∂ t

(s, p(s))+
∂C
∂ p

(s, p(s))
d p
ds

(s)

= L(s,ξ (s),η(s))−L(s,x(s, p(s)),u(s, p(s)))+λ (s, p(s))
∂x
∂ p

(s, p(s))
d p
ds

(s),

where in the last equation, we use the formulas for the derivatives of C and the
shadow-price lemma, Lemma 5.2.2. Since x(s, p(s)) ≡ ξ (s) and ξ is a controlled
trajectory, it follows that

∂x
∂ t

(s, p(s))+
∂x
∂ p

(s, p(s))
d p
ds

(s) =
dξ
ds

(s) = f (s,ξ (s),η(s)),

so that

∂x
∂ p

(s, p(s))
d p
ds

(s) = f (s,ξ (s),η(s))− f (s,x(s, p(s)),u(s, p(s))).

Hence

Γ ′(s) = H(s,λ (s, p(s)),ξ (s),η(s))−H(s,λ (s, p(s)),x(s, p(s)),u(s, p(s))) ≡ 0

and the result follows. ��
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Recall that C(t, p) denotes the cost of the trajectories in the parameterized
family E , i.e., C(t, p) is the cost for the control u(·, p) with trajectory x(·, p) and
initial condition x(t, p) at initial time t. In terms of the boundary points (t1,x1) =
(t1,x(t1, p1)) and (t2,x2) = (t2,x(t2, p2)), the envelope condition (5.48) can thus
equivalently be expressed as

VE (t1,x1) =
∫ t2

t1
L(t,ξ (t),η(t))dt +VE (t2,x2).

As in the calculus of variations, Eq. (5.48) relates the cost of the controlled
trajectories in the family E to concatenations along the envelope.

We now show that integral curves of the vector field v defined in Lemma 5.4.1
generate in a canonical way classical envelopes at fold singularities: Let

π : (−ε,ε)→ P, s �→ π(s),

be the integral curve of the vector field v that passes through the point p0 at time
t = 0, i.e.,

dπ
ds

(s) = v(π(s)), π(0) = p0, (5.49)

and let
χ : P→ S, p �→ (σ(p), p),

be the C1-diffeomorphism that injects the parameter space into the singular set. With
x = x(t, p) denoting the parameterized trajectories in the family E , let Γ denote the
curve

Γ : (−ε,ε)→R
n, s �→ Γ (s) = (x◦ χ ◦π)(s) = x(σ(π(s)),π(s)). (5.50)

We claim that a reparameterization of this curve is a controlled trajectory of the
system. Let θ = σ ◦π , so that

dθ
ds

(0) = ∇σ(p0) · v(p0)> 0.

Hence, for ε small enough, t = θ (s) is a strictly increasing function that maps
(−ε,ε) onto some interval (a,b) with inverse s = θ−1(t). Let p = p(t) be the curve

p : (a,b)→ P, t �→ p(t) =
(
π ◦θ−1)(t),

and define
ξ : (a,b)→R

n, t �→ ξ (t) = x(t, p(t)),

and
η : (a,b)→R

n, t �→ η(t) = u(t, p(t)).
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Proposition 5.4.1. The pair (ξ ,η) is a portion of an admissible controlled trajec-
tory.

Proof. By construction, η is a continuous function that takes values in the control
set U . (The latter is automatic, since u = u(t, p) is the control of the parameterized
families of extremals.) Hence η is an admissible control. Differentiating ξ , it
follows that

ξ̇ (t) = ẋ(t, p(t))+
∂x
∂ p

(t, p(t))ṗ(t) = f (t,ξ (t),η(t))+
∂x
∂ p

(t, p(t))ṗ(t).

But by construction, the second term vanishes, since ṗ(t) is a multiple of the vector
v(p(t)) in the null space of ∂x

∂ p(t, p(t)): writing t = θ (s), we have that

ṗ(t) = π ′(s)
ds
dt

(t) = v(π(s))
ds
dt

(t) = v(p(t))
ds
dt

(t)

and thus
∂x
∂ p

(t, p(t))ṗ(t) =
∂x
∂ p

(t, p(t))v(p(t))
ds
dt

(t) = 0. (5.51)

As in the proof of Theorem 5.4.1, this segment can then be concatenated at the point
ξ (t) = x(t, p(t)) with the controlled trajectory in the parameterized family E for the
parameter p(t), and this defines an admissible controlled trajectory. ��

Thus, the controlled trajectory (ξ ,η) is a classical envelope. Note that it makes
no difference for this argument whether the curve Γ can be reparameterized as an
increasing or a decreasing function, since we can simply reverse the orientation of
the vector field v. But the result is no longer valid if a reversal of orientation occurs
at p0. This happens at a simple cusp singularity, and thus this result does not extend
to cusp points. We shall see below that it is this property that is responsible for the
fact that controlled trajectories can still be optimal at a cusp point, while this is never
true for fold points.

Thus the classical results of the calculus of variations directly carry over to
parameterized families of extremals. They are equally valid for the time-dependent
and the time-independent formulations, nor do they require that the flow cover an
open set in the state space. We illustrate the usage of this result to show that local
optimality of controlled trajectories ceases at fold singularities for the canonical
flow of nonsingular extremals constructed in Sect. 5.3 (Theorem 5.3.1).

Theorem 5.4.2. Let E be the n-dimensional nicely C1-parameterized canonical
family of nonsingular extremals with domain D = {(t, p) : p ∈ P, t−(p) ≤ t ≤ T}
for the optimal control problem [OCT ] constructed in Theorem 5.3.1. (Recall that
we assume that the controls are the unique minimizers of the Hamiltonian and that
they take values in the interior of the control set.) Suppose there exists a function
σ : P→ (t−(p),T ), p �→ σ(p), such that the associated flow
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� : D→ R
n+1, (t, p) �→�(t, p) = (t,x(t, p)),

is a diffeomorphism when restricted to Dopt = {(t, p) : p ∈ P, σ(p) < t < T}, and
that it has fold singularities at the points in S= {(t, p) : p∈P, t =σ(p)}. Then every
controlled trajectory (x(·, p),u(·, p)) defined over an interval [τ,T ] with τ > σ(p)
provides a relative minimum over the domain G =�(Dopt), but is no longer optimal
over the interval [σ(p),T ].

Proof. The statements about local optimality of the controlled trajectories on Dopt

follow from Corollary 5.2.2. It remains to show that the controlled trajectory
(x(·, p),u(·, p)) is no longer optimal over the full interval [σ(p),T ].

Let p1 = p, t1 = σ(p) and x1 = x(σ(p), p). Since (t1, p1) is a fold point, on
some small interval [t1, t2] there exists a classical envelope (ξ ,η) through the point
(t1,x1) ∈ S. Let x2 = ξ (t2); since (t2,x2) ∈ S, there exists a parameter p2 such that
t2 = σ(p2) and x2 = x(t2, p2). Define a second controlled trajectory (ξ̂ , η̂) by

ξ̂ (t) =

{
ξ (t) if t1 ≤ t < t2,

x(t, p2) if t2 ≤ t ≤ T,
and η̂(t) =

{
η(t) if t1 ≤ t < t2,

u(t, p2) if t2 ≤ t ≤ T.

By Theorem 5.4.1, we have that

C(t1, p1) =

∫ t2

t1
L(t,ξ (t),η(t))dt +C(t2, p2),

and thus the controlled trajectories (x(·, p1),u(·, p1)) and (ξ̂ , η̂) have the same cost.
Hence, if (x(·, p1),u(·, p1)) is optimal over the interval [t1,T ], then so is (ξ̂ , η̂).

In order to show that this is not the case, we construct a curve of extremals in E
that all project onto the one controlled trajectory (x(·, p2),u(·, p2)) on the interval
[t2,T ]. For t fixed, the combined (x,λ ) flow in the cotangent bundle always has
an n-dimensional image, since this is the dimension of the manifold describing the
terminal conditions at time T . But by our earlier results, for times t, t2 < t < T ,
we already know that this flow has an n-dimensional projection into the state space.
Contradiction.

If (ξ̂ , η̂) is optimal, then on the interval [t2,T ], there exists a nontrivial solution
λ̂ to the homogeneous linear equation

dλ̂
dt

(t) =−λ̂ (t) fx(t,x(t, p2),u(t, p2))

with terminal condition λ̂ (T ) = ν̂Ψx(ξ (p2)) for some ν̂ ∈ (
R

n−k
)∗

that satisfies

0 = λ̂ (t) fu(t,x(t, p2),u(t, p2)).
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This directly follows from the maximum principle if (γ̂, η̂) is an abnormal extremal.
If (γ̂, η̂) is a normal extremal, then these relations are satisfied by the difference be-
tween the adjoint vector for (γ̂, η̂) and the multiplier λ (·, p2) from the parameterized
family E . Furthermore, because of the different structures of the controls over the
interval [t1, t2), the two multipliers cannot have the same values for t = t2. Thus, in
either case there exists a nontrivial abnormal extremal lift of (ξ̂ , η̂) to the cotangent
bundle. For |ε| sufficiently small, the covector

λ (t;ε) = λ (t, p2)+ ελ̂(t)

is thus a solution of the adjoint equation

λ̇ (t;ε) =−λ (t;ε) fx(t,x(t, p2),u(t, p2))−Lx(t,x(t, p2),u(t, p2))

on the interval [t2,T ] that satisfies the terminal condition

λ (T ;ε) = ϕx(ξ (p2))+ (ν(p2)+ εν̂)Ψx(ξ (p2)).

Recall, from the construction of the parameterized family E in Theorem 5.3.1, that
the function u(t,x,λ ) that defines the parameterized controls is the unique local
solution of the equation Hu(t,λ ,x,u) = 0 for u in a neighborhood of the reference
extremal. For t2 and ε small enough, the pair (x(t, p2),λ (t;ε)) will lie in this
neighborhood. Since u(·, p2) is a minimizing control that lies in the interior of the
control set, we have that

0 = Lu(t,x(t, p2),u(t, p2))+λ (t; p2) fu(t,x(t, p2),u(t, p2)),

and since 0 = λ̂ (t) fu(t,x(t, p2),u(t, p2)), this gives that

0 = Lu(t,x(t, p2),u(t, p2))+λ (t;ε) fu(t,x(t, p2),u(t, p2)).

Thus u(t, p2) is a local solution of the equation

0 = Hu(t,λ (t;ε),x(t, p2),u(t, p2))

as well, and so it follows that

u(t, p2) = u(t,x(t, p2),λ (t;ε)).

By our assumption that controls lie in the interior of the control set and are the
unique minimizers of the Hamiltonian around the reference extremal, it furthermore
follows from the proof of Theorem 5.3.1 that for given terminal values

(x(T, p),λ (T, p)) = (ξ (p2),ϕ(ξ (p2))+ (ν(p2)+ εν̂)TΨ(ξ (p2))),
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extremals (λ ,x,u) are the unique solutions to the following combined system of
differential equations and minimality condition:

ẋ = f (t,x,u), λ̇ =−λ fx(t,x,u)−Lx(t,x,u), 0 = Hu(t,λ ,x,u).

The triple consisting of the multiplier λ (·;ε), state x(·, p2), and control u(·, p2) satis-
fies these equations, and thus for ε near 0, the curves t �→ (λ (t;ε),x(t, p2),u(t, p2))
are extremals for the optimal control problem [OCT ], which for ε = 0, reduce to
the reference extremal. But extremals around the reference are unique, and hence
these extremals are members of the parameterized family E that all project onto the
controlled trajectory (x(·, p2),u(·, p2)) on the interval [t2,T ]. This establishes our
contradiction and proves the theorem. ��

This result extends to the case that the terminal time T is defined only implicitly
as well, and it shows that for the optimal control problem [OC], fold points of
the flow � are conjugate points in the sense of the calculus of variations: given
a parameterized family of extremals, it is a necessary condition for optimality of the
reference controlled extremal (x(·, p0),u(·, p0)) that the flow �(·, p0) not contain a
fold singularity over the interval [τ,T ). We shall show by means of an example in
Sect. 5.5 that trajectories can remain optimal on the interval [τ,T ) if τ = σ(p0) is
a singular point that is not a fold point. In fact, this always holds for simple cusp
points. But it can be shown in general that there must not be a singular point in the
open interval (τ,T ). This is the generalization of the Jacobi condition to this setup.
However, this result is best proven by different means and will not be pursued in
this text. In this chapter, we are interested in establishing sufficient conditions for
optimality, and we have already seen in the last section that if the flow �(·, p0)
is regular on the half-open interval [τ,T ), then the reference extremal is a relative
minimum when compared with other controlled trajectories that lie in some open
neighborhood of the reference trajectory. This regularity condition therefore is the
strengthened Jacobi condition.

5.4.2 The Hilbert Invariant Integral and Control Envelopes

The concept of a classical envelope is closely related to the differential 1-form
ω = λdx−Hdt, the Hilbert invariant integral (Sect. 1.6), and we briefly digress
to present this connection here. The following technical computation also leads to
a generalization of the concept of a classical envelope that will be useful later on.
For simplicity, we consider a parameterized family of normal extremals, but the
statement can easily be modified to apply with a general multiplier λ0 = λ0(p) (see
[148]).

Lemma 5.4.3. Let E be a C1-parametrized family of normal extremals with domain
D = {(t, p) : p ∈ P, t−(p) ≤ t ≤ t+(p)} and suppose (ξ ,η) : [t0,T ] → M ×U
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is a controlled trajectory. Suppose there exist an interval [a,b] ⊂ [t0,T ] and
differentiable curves τ : [α,β ]→ [a,b], s �→ τ(s), andΘ : [α,β ]→ D, s �→Θ(s) =
(t(s), p(s)) such that for all s ∈ [α,β ], we have

ξ (τ(s)) = x(t(s), p(s)). (5.52)

Let

Γ (τ) =
∫ T

τ
L(s,ξ (s),η(s))ds+ϕ(T,ξ (T ))

denote the cost-to-go for the controlled trajectory from the point ξ (τ) at time τ , and
for s ∈ [α,β ], let

Δ(s) = Γ (τ(s))−C(t(s), p(s))

denote the difference in the cost-to-go functions of (ξ ,η) and the controlled tra-
jectory in the parameterized family E from the initial point ξ (τ(s)) = x(t(s), p(s)).
Then we have that

Δ(β )−Δ(α) =
∫
τ×Θ

H(t,λ (t, p),x(t, p),u(t, p))dt−H(τ,λ (t, p),ξ (τ),η(τ))dτ.
(5.53)

As was the case with envelopes, the parametrizations τ andΘ may represent only
a small piece of the controlled trajectory (ξ ,η). Also, take note of the fact that the
multiplier λ is given by the same expression, namely λ (t, p), in both Hamiltonians.
This is not a typo.

Proof. This is a direct computation. All curves are evaluated at s, but we suppress
the argument:

Δ(β )−Δ(α) =
∫ β

α

d
ds

[Γ (τ(s))−C(t(s), p(s))]ds

=
∫ β

α

[
Γ̇ (τ)

dτ
ds
− ∂C
∂ t

(t, p)
dt
ds
− ∂C
∂ p

(t, p)
d p
ds

]
ds.

Given our differentiability assumptions, we always have that

Γ̇ (τ)
dτ
ds
− ∂C
∂ t

(t, p)
dt
ds

=−L(τ,ξ (τ),η(τ))
dτ
ds

+L(t,x(t, p),u(t, p))
dt
ds

,

and it follows from ξ (τ(s)) ≡ x(t(s), p(s)) that

f (τ,ξ (τ),η(τ))
dτ
ds

= ξ̇ (τ)
dτ
ds

=
∂x
∂ t

(t, p)
dt
ds

+
∂x
∂ p

(t, p)
d p
ds

= f (t,x(t, p),u(t, p))
dt
ds

+
∂x
∂ p

(t, p)
d p
ds

.
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Hence,

∂x
∂ p

(t, p)
d p
ds

= f (τ,ξ (τ),η(τ))
dτ
ds
− f (t,x(t, p),u(t, p))

dt
ds

,

and thus by the shadow-price lemma,

∂C
∂ p

(t, p)
d p
ds

= λ (t, p)
∂x
∂ p

(t, p)
d p
ds

= λ (t, p)

(
f (τ,ξ (τ),η(τ))

dτ
ds
− f (t,x(t, p),u(t, p))

dt
ds

)
.

Combining terms gives the desired result:

Δ(β )−Δ(α)

=

∫ β

α

[
H(t,λ (t, p),x(t, p),u(t, p))

dt
ds
−H(τ,λ (t, p),ξ (τ),η(τ))

dτ
ds

]
ds.

=
∫
τ×Θ

H(t,λ (t, p),x(t, p),u(t, p))dt−H(τ,λ (t, p),ξ (τ),η(τ))dτ.

��
This proof can be rephrased in terms of the differential form ω , but in our

calculation the λdx term is being replaced with the shadow-price lemma. This
lemma serves the same purpose as the Hilbert invariant integral in the calculus of
variations as a tool for eliminating controlled trajectories from optimality. If the
parameterizations τ and t are the same, we immediately get the following corollary:

Corollary 5.4.1. Let E be a C1-parametrized family of normal extremals and let
(ξ ,η) : [t0,T ]→ M×U be a controlled trajectory. If there exists a continuously
differentiable curveΘ : [α,β ]→ D, s �→ (t(s), p(s)), such that for all s ∈ [α,β ] we
have that

ξ (t(s)) = x(t(s), p(s)),

then

C(t(α), p(α)) ≤
∫ t(β )

t(α)
L(t,ξ (t),η(t))dt +C(t(β ), p(β )). (5.54)

Proof. In this case, dτ = dt, and the minimum condition of the maximum principle
gives that

H(t,λ (t, p),x(t, p),u(t, p))≤ H(t,λ (t, p),ξ (t),η(t)).

Hence

0≥ Δ(β )−Δ(α) = Γ (t(β ))−C(t(β ), p(β ))−Γ (t(α))+C(t(α), p(α)),
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and thus

C(t(α), p(α))−C(t(β ), p(β ))≤ Γ (t(α))−Γ (t(β )) =
∫ t(β )

t(α)
L(t,ξ (t),η(t))dt.

��
In particular, if the entire trajectory lies in the region covered by the family, i.e.,

if [t(α), t(β )] = [t0,T ], then we have that

C(t0, p0)≤
∫ T

t0
L(t,ξ (t),η(t))dt +C(T, p(T ))

=

∫ T

t0
L(t,ξ (t),η(t))dt +ϕ(T,ξ (T)) = J(η), (5.55)

and thus the cost along the controlled trajectory (ξ ,η) is no better than the cost
along the extremal in the parametrized family of extremals defined by the parameter
p0 = p(t0) that starts at time t0. Note that this trajectory itself need not be optimal,
but the relation (5.55) is sufficient to exclude (ξ ,η) when we are building an optimal
synthesis from the extremals in our family.

Our reason for allowing different time parameterizations in Eq. (5.52) lies in
another application of Lemma 5.4.3 that gives the more general, and surprisingly
useful, concept of control envelopes. These notions go back to the work of H.
Sussmann [240, 242], but here we follow our own setup and formalism.

Definition 5.4.5 (Control envelope). Let E be a C1-parameterized family of
normal extremals with domain D. Let (ξ ,η) be a portion of a controlled trajectory
defined over an interval [a,b] with the property that there exist differentiable curves
τ : [α,β ]→ [a,b], s �→ τ(s), and Θ : [α,β ]→ D, s �→Θ(s) = (t(s), p(s)) such that
for all s ∈ [α,β ] we have

ξ (τ(s)) = x(t(s), p(s)).

We call (ξ ,η) a control envelope for the parameterized family E if along the curves
τ andΘ , we have that

H(τ,λ (t, p),ξ (τ),η(τ))dτ = H(t,λ (t, p),x(t, p),u(t, p))dt. (5.56)

The difference between this and the definition of a classical envelope thus is that
it is no longer required that the trajectory ξ be generated by means of the controlled
trajectories in the parameterized families as ξ (s) = x(s, p(s)). In fact, it can be
rather arbitrary, as long as the values along the Hamiltonian function relate in the
correct way. In the case of a classical envelope, we simply have that t ≡ τ , and thus
Eq. (5.56) reduces to Eq. (5.47). While the new definition may appear somewhat
artificial, this condition will naturally be satisfied for bang-bang trajectories if the
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controlled trajectory (ξ ,η) lies in a switching surface, and we shall return to it in
Sect. 6.1.3. It immediately follows from Lemma 5.4.3 that the envelope theorem
remains valid for control envelopes.

Corollary 5.4.2 (Control envelope theorem). Let (ξ ,η) : [a,b]→ M×U be a
control envelope for a C1-parameterized family of normal extremals with domain
D = {(t, p) : p ∈ P, t−(p) ≤ t ≤ t+(p)}. For any interval [s1,s2] ⊂ (a,b), let t1 =
t(s1), p1 = p(s1), and t2 = t(s2), p2 = p(s2). Then we have that

C(t1, p1) =

∫ t2

t1
L(s,ξ (s),η(s))ds+C(t2, p2).

Proof. In the notation of Lemma 5.4.3, we have that Δ(s2) = Δ(s1); equivalently,

C(t1, p1)−C(t2, p2) = Γ (t1)−Γ (t2) =
∫ t2

t1
L(s,ξ (s),η(s))ds. ��

5.4.3 Lyapunov–Schmidt Reduction and the Geometry
of Fold Singularities

We close this section with developing the geometric properties of an n-dimensional
flow of extremal controlled trajectories and its associated value functions C =
C(t, p), respectively V E =C ◦�−1, near a fold singularity. As before, we consider
the time-dependent formulation. In this case, the singular points can be characterized
in terms of an eigenvector for the eigenvalue 0 of the matrix ∂x

∂ p (t, p), and this allows
us to give a more convenient description of the singular set S than the determinant of
Δ(t, p), the so-called Lyapunov–Schmidt reduction [109]. Although geometrically
not intrinsic, since it generally depends on a choice of basis for the kernel of
∂x
∂ p(t, p), in the corank-1 case this is not an issue. It is a useful construction that
describes the singular set as the zero set of a scalar function defined in terms of a
left and right eigenvector of the matrix ∂x

∂ p(t0, p0) for the eigenvalue 0. Recall that

a right eigenvector, or just eigenvector, of a matrix A ∈ R
n×n for the eigenvalue

μ is a nonzero column vector x ∈ R
n such that Ax = μx, while a left eigenvector

is a nonzero row vector y ∈ (Rn)∗ such that yA = μy. In this case, there exist left
and right eigenvector fields that can be used to characterize the singular set, and as
shown above, we have the following lemma:

Lemma 5.4.4. There exist a nonzero C1 right-eigenvector field v : P → R
n, v =

v(p), and a nonzero C1 left-eigenvector field w : P→ (Rn)∗, w = w(p), such that

(
∂x
∂ p

(σ(p), p)

)
v(p) = 0 and w(p)

(
∂x
∂ p

(σ(p), p)

)
= 0.
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Note that w(p) spans the orthogonal complement of the image of ∂x
∂ p(σ(p), p),

lin span{w(p)}= Im

(
∂x
∂ p

(σ(p), p)

)⊥
.

For the optimal control problem, there exists a remarkable and useful relation
between the left and right eigenvectors that follows from the somewhat surprising
result below, a corollary of the shadow-price lemma, Lemma 5.2.2.

Proposition 5.4.2. For any C2-parametrized family of normal extremals, the matrix

Ξ(t, p) =
∂λ
∂ p

(t, p)
∂x
∂ p

(t, p) (5.57)

is symmetric.

Proof. By the shadow price lemma, the partial derivative ∂C
∂ p j

(t, p) of the parame-

terized cost with respect to the parameter p j is given by

∂C
∂ p j

(t, p) =
n

∑
k=1

λk(t, p)
∂xk

∂ p j
(t, p) = λ (t, p)

∂x
∂ p j

(t, p), j = 1, . . . ,n,

where ∂x
∂ p j

(t, p) is the column vector of the partial derivatives of the components of

x with respect to p j. Differentiating this equation with respect to pi gives

∂ 2C
∂ pi∂ p j

(t, p) =
n

∑
k=1

(
∂λk

∂ pi
(t, p)

∂xk

∂ p j
(t, p)+λk(t, p)

∂ 2xk

∂ pi∂ p j
(t, p)

)
.

For a C2-parameterized family of extremals, the second partial derivatives, ∂ 2C
∂ pi∂ p j

(t, p) and ∂ 2xk
∂ pi∂ p j

(t, p), are equal, and thus we have that

n

∑
k=1

(
∂λk

∂ pi
(t, p)

∂xk

∂ p j
(t, p)

)
=

n

∑
k=1

(
∂λk

∂ p j
(t, p)

∂xk

∂ pi
(t, p)

)
.

But these terms, respectively, are the (i, j) and ( j, i) entries of the matrix Ξ . ��
Corollary 5.4.3. If nonzero, then a left-eigenvector field w for the matrix function
p �→ ∂x

∂ p (σ(p), p) on P is given by

w(p) = vT (p)
∂λ
∂ p

(σ(p), p). (5.58)
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Proof. We have that

w(p)
∂x
∂ p

(σ(p), p) = vT (p)
∂λ
∂ p

(σ(p), p)
∂x
∂ p

(σ(p), p) = vT (p)Ξ(t, p)

= (Ξ(t, p)v(p))T =

(
∂λ
∂ p

(σ(p), p)
∂x
∂ p

(σ(p), p)v(p)

)T

= 0.

��
This holds, for example, for the nicely C1-parameterized canonical family of

nonsingular extremals constructed earlier.

Proposition 5.4.3. Let E be the n-dimensional, nicely C1-parameterized, canonical
family of nonsingular extremals with domain D = {(t, p) : p ∈ P, t−(p)≤ t ≤ T} for
the optimal control problem [OCT ] constructed in Theorem 5.3.1. Then w(p) =
vT (p) ∂λ∂ p (σ(p), p) is nonzero.

Proof. If w(p)= 0, then the vector functions t �→ ∂x
∂ p(t, p)v(p) and t �→ ∂λT

∂ p (t, p)v(p)
are solutions to the homogeneous linear system (5.33) that vanish for t = σ(p).
Hence these functions vanish identically. At the terminal time T , we thus have that
0 = ∂ξ

∂ p (p)v(p), and by Eq. (5.36),

0 =
∂λ T

∂ p
(T, p)v(p)

= (ϕxx(ξ (p))+ν(p)Ψxx(ξ (p)))
∂x
∂ p

(T, p)v(p)+ΨT
x (ξ (p))

∂νT

∂ p
(p)v(p)

=ΨT
x (ξ (p))

∂νT

∂ p
(p)v(p).

The columns of the matrixΨT
x (ξ (p)) are linearly independent, and thus overall, we

have that

∂ω
∂ p

(p)v(p) =

(
∂ξ
∂ p

(p),
∂νT

∂ p
(p)

)
v(p) = 0.

But for the canonical parameterization, the matrix ∂ω
∂ p (p) is nonsingular, and thus

v(p) = 0 as well, contradicting the fact that v(p) is an eigenvector. ��
We return to the general setup and define the Lyapunov–Schmidt reduction in

terms of the left- and right-eigenvector fields v and w. Let

ζ : D→ R, (t, p) �→ ζ (t, p) = w(p)
∂x
∂ p

(t, p)v(p). (5.59)
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Note that for

w(p) = v(t)T ∂λ
∂ p

(t, p),

this function can be expressed in the form

ζ (t, p) = w(p)
∂x
∂ p

(t, p)v(p) = v(p)TΞ(t, p)v(p) = 〈v(p),Ξ(t, p)v(p)〉 ,

so that ζ is a symmetric quadratic form. Denote the zero set of ζ in D by Z. Clearly,
Z contains the singular set S. If the gradient of ζ , ∇ζ , does not vanish at the singular
point (t0, p0), t0 = σ(p0), then Z is an embedded n-dimensional manifold near
(t0, p0) that contains S, under our assumptions itself an embedded n-dimensional
manifold. Hence S and Z are equal. The gradient of ζ at a point (σ(p), p) ∈ S is
easily calculated: dropping the arguments, we have that

ζ = w
∂x
∂ p

v =
n

∑
i=1

n

∑
j=1

wi
∂xi

∂ p j
v j,

and thus the partial derivative with respect to t is simply given by the quadratic form

∂ζ
∂ t

=
n

∑
i=1

n

∑
j=1

wi
∂ 2xi

∂ t∂ p j
v j = w

∂ 2x
∂ t∂ p

v.

On the singular set S, and this is where our interest lies, the partial derivatives with
respect to p also become simple, since w and v are the left and right eigenvectors of
∂x
∂ p(σ(p), p). In general, we have that

∂
∂ pk

(
w
∂x
∂ p

v

)

=
n

∑
i=1

n

∑
j=1

(
∂wi

∂ pk

∂xi

∂ p j
v j +wi

∂ 2xi

∂ pk∂ p j
v j +wi

∂xi

∂ p j

∂v j

∂ pk

)

=
n

∑
i=1

∂wi

∂ pk

(
n

∑
j=1

∂xi

∂ p j
v j

)
+

n

∑
i=1

n

∑
j=1

wi
∂ 2xi

∂ pk∂ p j
v j +

n

∑
j=1

(
n

∑
i=1

wi
∂xi

∂ p j

)
∂v j

∂ pk
,

and on the singular set S, this reduces to

∂
∂ pk

(
w
∂x
∂ p

v

)
=

n

∑
i=1

n

∑
j=1

wi
∂ 2xi

∂ pk∂ p j
v j,

since both ∂x
∂ p v and w ∂x

∂ p vanish. These partial derivatives can be expressed in a more
convenient and compact form if instead we consider the directional derivative in the
direction of a tangent vector z in p-space. For then we have that
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〈
∇pζ (σ(p), p) ,z

〉
=

n

∑
k=1

∂
∂ pk

(
w
∂x
∂ p

v

)
zk =

n

∑
k=1

n

∑
i=1

wi

(
n

∑
j=1

∂ 2xi

∂ pk∂ p j
v j

)
zk

=
n

∑
i=1

wi

(
n

∑
j=1

n

∑
k=1

∂ 2xi

∂ pk∂ p j
v jzk

)

=

〈
w,
∂ 2x
∂ p2 (v,z)

〉
= w

∂ 2x
∂ p2 (v,z).

Thus, the directional derivative in the direction of z is given on S by the inner product
of the left eigenvector w with the column vector ∂ 2x

∂ p2 (v,z) whose entries are the
quadratic forms of the second derivatives of the components xi of the state with
respect to p acting on the vectors v and z.

Summarizing this calculation, at a singular point (σ(p), p), p∈ P, the directional
derivative of ζ in the direction of the vector z= (τ,z) can be expressed as

〈∇ζ (σ(p), p),z〉 =
〈

w(p),
∂ 2x
∂ t∂ p

(σ(p), p)v(p)τ +
∂ 2x
∂ p2 (σ(p), p)

(
v(p),z

)〉
.

(5.60)

We thus have the following statement:

Proposition 5.4.4. Suppose (t0, p0) is a t-regular, corank-1 singular point for
which the gradient ∇ζ (σ(p0), p0) does not vanish. Then there exist an open
neighborhood W = (t0− ε, t0 + ε)×P of (t0, p0) and a C1-function σ defined on
P, σ : P→ (t0− ε, t0 + ε) such that the singular set S is given by S = (t, p) ∈W :
t = σ(p)}. In terms of a C1 right-eigenvector field v : P→ R

n,

∂x
∂ p

(σ(p), p)v(p)≡ 0,

and a C1 left-eigenvector field w : P→ (Rn)∗,

w(p)
∂x
∂ p

(σ(p), p)≡ 0,

the singular set S can be described as

S =

{
(t, p) ∈W : ζ (t, p) = w(p)

∂x
∂ p

(t, p)v(p) = 0

}
, (5.61)
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and the tangent space to S at (σ(p), p), T(σ(p),p)S, is given by

{
z=

(
τ
z

)
∈ R

n+1 : w(p)

(
∂ 2x
∂ t∂ p

(σ(p), p)v(p)τ+
∂ 2x
∂ p2(σ(p), p)(v(p),z)

)
= 0

}
.

(5.62)

Corollary 5.4.4. Under the same assumptions, and setting v0 = v(p0) and w0 =
w(p0), (t0, p0) is a fold singularity if and only if

w0
∂ 2x
∂ p2 (t0, p0)(v0,v0) = 0. (5.63)

Proof. The point (t0, p0) is a fold if and only if the vector z0 = (0,v0)
T is not

tangent to S at (t0, p0). Assuming that the gradient∇ζ (t0, p0) does not vanish, this is

equivalent to w0
∂ 2x
∂ p2 (t0, p0)(v0,v0) = 0. Note that this condition by itself guarantees

that ∇ζ (t0, p0) does not vanish. ��

5.4.4 The Geometry of the Flow � and the Graph of the Value
Function V E near a Fold Singular Point

The name for the fold singularity has its origin in the geometric properties of the
mapping at such a point that resemble those of a quadratic function: Let Mf =�(S)
be the image of the singular manifold S under the flow �(t, p) = (t,x(t, p)). For
a corank-1 singular point, the differential D�(t, p) is of rank n with null space
spanned by (0,v(p))T , and at a fold point this vector does not lie in the tangent
space to S at (σ(p), p). Hence the restriction of the flow � to its singular set
S is a diffeomorphism, and thus Mf is an n-dimensional manifold as well. It
follows from the chain rule that the tangent space to Mf at the point �(σ(p), p) =
(σ(p),x(σ(p), p)) is given by the image of the tangent space to S at the point
(σ(p), p), T(σ(p),p)S, under the differential D�. Furthermore,

(
−w(p)

∂x
∂ t

(σ(p), p), w(p)

)(
1 0

∂x
∂ t (σ(p), p) ∂x

∂ p(σ(p), p)

)
= (0,0),

and thus n=
(
−w(p) ∂x

∂ t (σ(p), p), w(p)
)

is a normal vector to T�(σ(p),p)Mf .

In order to establish the geometric properties of the flow �, let

γp : [−ε,ε]→ D, s �→ (σ(p), p+ sv(p),

be small line segments in the parameter space that pass through the point (σ(p), p)
in S for s = 0. Since the vector (0,v(p))T is transversal to S, without loss of
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generality we may assume that γp(s) /∈ S for all 0 < |s| ≤ ε and p in a sufficiently
small neighborhood of p0. Let φp = � ◦ γp be the images of the line segments γp

under the flow �. By Taylor’s theorem, since ∂x
∂ p(σ(p), p)v(p) = 0, we have that

x(σ(p), p+ sv(p)) = x(σ(p), p)+
1
2

s2 ∂ 2x
∂ p2 (σ(p), p)(v(p),v(p))+ o(s2),

and thus

φp(s) =�(γp(s)) =

(
σ(p)

x(σ(p), p)

)
+

1
2

s2

(
0

∂ 2x
∂ p2 (σ(p), p)(v(p),v(p))

)
+ o(s2).

Since the singular points are fold singularities, ∂ 2x
∂ p2 (σ(p), p)(v(p),v(p)) = 0, and

taking the inner product of the second-order tangent vector

φ̈p(0) =

(
0

∂ 2x
∂ p2 (σ(p), p)(v(p),v(p))

)

with the normal vector n to T�(σ(p),p)Mf , we get that

〈
n,φ̈

〉
= w(p)

∂ 2x
∂ p2 (σ(p), p)(v(p),v(p)) = 0.

This expression has constant sign for p near p0, and thus, except for s = 0, where
φp(0) = �(σ(p), p) = (σ(p),x(σ(p), p)) ∈ Mf , the curves φp have first-order
contact with the manifold Mf and thus lie to the same side of Mf . (Note that
we could also express the curves as two separate directed curves in terms of the
parameter

√|s| for s ≥ 0 and s ≤ 0, and then the one-sided tangent vectors are
transversal to and point to the same side of the tangent plane. Hence the curves lie
to the same side of the manifold Mf .) For the parameterized family of extremals, this
implies that the flow � is 2 : 1 near the singular set S. We summarize the mapping
properties in the following proposition:

Proposition 5.4.5. If (t0, p0) is a fold singular point, then there exist open neigh-
borhoods W of (t0, p0) and G of (t0,x0) = (t0,x(t0, p0)) such that S divides W into
two connected components W+ and W−, W = W− ∪ S ∪W+, with the following
properties: the flow � restricted to the open subsets W+ and W− is a C1,2

diffeomorphism, and � maps each of the regions W+ and W− of the (t, p)-space
onto a region G+ ⊂ G, �(W+) = G+ = �(W−). Away from the singular set S, the
flow � is 2 : 1 on W. �

Similar calculations also establish the geometric properties of the parameterized
cost near a fold singularity. We augment the flow map � with the parameterized
cost and consider the graph of the associated value function V E = C ◦�−, where
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�
− now denotes the set of all inverse images, i.e., �−(t,x) = {(t, p) : x = x(t, p)}.

Since the flow � is 2 : 1 near the fold points, this becomes a multivalued function.
The mapping

gr
(

VE
)

: D→ R
n+2, (t, p) �→ gr

(
V E

)
(t, p) =

⎛
⎝ t

x(t, p)
C(t, p)

⎞
⎠ , (5.64)

gives a parameterization of the value V E = C ◦�−, and when the image is plotted
in (t,x,C)-space, it is the graph of this multivalued function VE =C ◦�− (also, see
Sect. 1.6) By the shadow-price lemma, the Jacobian matrix of gr

(
VE

)
is given by

Dgr
(

VE
)
(t, p) =

⎛
⎜⎝

1 0
f (t,x(t, p),u(t, p)) ∂x

∂ p (t, p)

−L(t,x(t, p),u(t, p)) λ (t, p) ∂x
∂ p(t, p)

⎞
⎟⎠ ,

and the nonzero covector

ϖ(t, p) =
(

h(t, p), −λ (t, p), 1
)
, h(t, p) = H(t,λ (t, p),x(t, p),u(t, p)),

is normal to the image ImDgr
(
VE

)
(t, p) everywhere,

ϖ(t, p) Dgr
(

VE
)
(t, p)≡ 0 for all (t, p) ∈D. (5.65)

In particular, the last row of Dgr
(
VE

)
(t, p) is a linear combination of the first n+1

rows, and therefore the mapping gr
(
VE

)
has the same singular set S as �. Indeed,

both maps share the eigenvector field v̂(p) = (0,v(p))T . Away from the singular
set, Dgr

(
VE

)
is of full rank, and near those regular points, the image of gr

(
V E

)
is locally a codimension-1 embedded submanifold, a hypersurface, with the tangent
plane given by the hyperplane H(t, p) through the point gr

(
VE

)
(t, p) with normal

vectorϖ(t, p). On the singular set S, the dimension drops by 1, and the extra normal
vector that annihilates the image is given by

ϖ f (p) =
(−w(p) f (σ(p),x(σ(p), p),u(σ(p), p)), w(p), 0

)
,

where, as before, w(p) is the left eigenvector for ∂x
∂ p(σ(p), p). However, even at the

singular points, the hyperplane H(σ(p), p) is well-defined, and the tangent space to
Mf is a codimension-1 subspace of this hyperplane.

Lemma 5.4.5. Suppose w(p) = v(p)T ∂λ
∂ p (σ(p), p) is nonzero; then we have the

following formulas for the derivatives of gr
(
VE

)
on the singular set S, i.e., for

(t, p) = (σ(p), p),
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ϖ

(
∂ 2gr

(
VE

)
∂ p2

)
(v,v)≡ 0, (5.66)

ϖ

(
∂ 3gr

(
VE

)
∂ p3

)
(v,v,v)≡ 2w

∂ 2x
∂ p2 (v,v) = 0. (5.67)

Proof. All functions are evaluated at (t, p) and the eigenvectors v and w at p, but we
drop the argument. For all (t, p) ∈D we have that

(
∂ 2gr

(
V E

)
∂ p2

)
(v,v) =

⎛
⎜⎜⎜⎝

0

∂ 2x
∂ p2 (v,v)

∂ 2C
∂ p2 (v,v)

⎞
⎟⎟⎟⎠ .

By the shadow-price lemma, we have ∂C
∂ p = λ ∂x

∂ p for all (t, p) and thus

∂ 2C
∂ p2 =

∂λ
∂ p

∂x
∂ p

+λ
∂ 2x
∂ p2 .

With w = vT ∂λ
∂ p the left eigenvector of ∂x

∂ p , this gives

∂ 2C
∂ p2 (v,v) = wT ∂x

∂ p
v+λ

∂ 2x
∂ p2 (v,v) = ζ +λ

∂ 2x
∂ p2 (v,v), (5.68)

where ζ is the function defining the Lyapunov–Schmidt reduction. On the singular
set, ∂x

∂ p v = 0, and thus ∂ 2C
∂ p2 (v,v) = λ ∂ 2x

∂ p2 (v,v), so that

(
∂ 2gr

(
VE

)
∂ p2

)
(v,v) =

⎛
⎜⎜⎜⎝

0

∂ 2x
∂ p2 (v,v)

λ ∂ 2x
∂ p2 (v,v)

⎞
⎟⎟⎟⎠ .

This vector is orthogonal to ϖ(σ(p), p), and Eq. (5.66) follows.
Differentiating Eq. (5.68) once more with respect to p, letting the derivative act

on v, and evaluating on the singular set, we obtain that

∂ 3C
∂ p3 (v,v,v) = 2wT

(
∂ 2x
∂ p2 (v,v)

)
+λ

∂ 3x
∂ p3 (v,v,v).
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Thus, on the singular set, we have that

(
∂ 3gr

(
VE

)
∂ p3

)
(v,v,v) =

⎛
⎜⎝

0
∂ 3x
∂ p3 (v,v,v)
∂ 3C
∂ p3 (v,v,v)

⎞
⎟⎠=

⎛
⎜⎝

0
∂ 3x
∂ p3 (v,v,v)

2w ∂ 2x
∂ p2 (v,v)+λ ∂ 3x

∂ p3 (v,v,v)

⎞
⎟⎠ ,

which gives Eq. (5.67). ��
A third-order Taylor expansion of the mapping gr

(
VE

)
along the curves γp takes

the general form

gr
(

VE
)
(γp(s)) = gr

(
VE

)
(γp(0))+ sDgr

(
VE

)
(γp(0)) · γ̇p(0)

+
1
2

s2D2gr
(

VE
)
(γp(0)) · (γ̇p(0), γ̇p(0))

+
1
6

s3D3gr
(

VE
)
(γp(0)) · (γ̇p(0), γ̇p(0), γ̇p(0))+ o(s3).

We have γp(0) = (σ(p), p), γ̇p(0) = (0,v(p))T , and thus with v and σ evaluated at
p and all functions evaluated at (σ(p), p), we get that

gr
(

VE
)
(γp(s)) =

⎛
⎝σ

x
C

⎞
⎠+

1
2

s2

⎛
⎜⎝

0
∂ 2x
∂ p2 (v,v)

λ ∂ 2x
∂ p2 (v,v)

⎞
⎟⎠

+
1
6

s3

⎛
⎜⎝

0
∂ 3x
∂ p3 (v,v,v)

2w ∂ 2x
∂ p2 (v,v)+λ ∂ 3x

∂ p3 (v,v,v)

⎞
⎟⎠+ o(s3).

Now take the inner product of the normal vector ϖ(σ(p), p) to the hyperplane
H(σ(p), p) with the increment in s. This normal vector annihilates the quadratic

term and also the ∂ 3x
∂ p3 (v,v,v)-terms at s3, so that

〈
ϖ(σ(p), p),gr

(
VE

)
(γp(s))−gr

(
VE

)
(γp(0))

〉
=

1
3

s3w
∂ 2x
∂ p2 (v,v)+ o(s3).

Assuming that w(p) = v(p)T ∂λ
∂ p (σ(p), p) is nonzero (cf. Proposition 5.4.3), the

leading term is a nonzero multiple of the term defining the fold singularity. This
time, however, it is of odd order, and thus it follows that the hypersurfaces defined
by gr

(
VE

)
(γp(s)) for s < 0 and for s > 0 lie to opposite sides of the hyperplane

H(σ(p), p). Since the normal vector ϖ(σ(p), p) has its last coordinate given by 1,
this implies that near
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t

p t=σ(p)

x

t

(t,x)

V

F=F(t,p)

C=C(t,p)

V = C°  F−1

Fig. 5.10 The square on the left is the neighborhood W in (t, p)-space with the singular set S given
by the inscribed curve. On the right, the top diagram represents the image of the flow � showing
the “fold” in the controlled trajectories; the bottom diagram shows a slice of the corresponding
value in the state space

gr
(

VE
)
(γp(0)) =

⎛
⎝ σ(p)

x(σ(p), p)
C(σ(p), p)

⎞
⎠

one of these surfaces lies below H(σ(p), p) in the direction of the cost C and
the other one lies above H(σ(p), p). Thus, one of the branches is minimizing,
and optimality ceases as the fold singularities are crossed. The overall structure
is illustrated in Fig. 5.10

We give a simple, yet canonical, one-dimensional example in which all compu-
tations can easily be done.

Example 5.4.1 (Fold singularity). For a fixed terminal time T , consider the problem
to minimize the objective
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J(u) =
1
2

∫ T

t0
u2dt +

1
3

x(T )3

over all locally bounded Lebesgue measurable functions u : [t0,T ]→ R subject to
the dynamics ẋ = u. It is straightforward to construct a real-analytic parameterized
family E of extremals for this problem: The Hamiltonian is given by H = 1

2λ0u2 +

λu, and the adjoint equation is λ̇ ≡ 0 with terminal condition λ (T ) = λ0x(T )2. The
nontriviality condition on the multipliers implies that extremals are normal, and we
set λ0≡ 1. Furthermore, multipliers and controls are constant. We choose as domain
D for the parameterization D = {(t, p) : t ≤ T, p∈R} with p denoting the terminal
point, p = x(T ). All extremals can then be described in the form

x(t, p) = p+(T − t)p2, u(t, p) =−p2, λ (t, p) = p2,

and the parameterized cost is given by

C(t, p) =
1
2
(T − t)p4 +

1
3

p3.

This defines a Cω -parameterized family of extremals.
For this one-dimensional problem, the singular set is given by the solutions to

the equation ∂x
∂ p(t, p) = 0, and formally, left and right eigenvectors are given by the

constants v(p)≡ 1 and w(p)≡ 1. We could equally well take the term

w(p) = v(p)T ∂λ
∂ p

(σ(p), p) = 2p = 0

that came up in the theoretical computations. Thus,

S =

{
(t, p) ∈ D : t = σ(p) = T +

1
2p

, p < 0

}
.

Since ∂ 2x
∂ p2 (t, p) = 2(T− t)> 0, all singular points are fold points. Figure 5.11 shows

the flow of extremals for p < 0 on the left and the graph of the corresponding
multivalued value function VE =C ◦�− on the right.

Figure 5.12 shows four slices of this value function in the state space for t = 0.6,
t = 0.8, t = 1, and t = 1.6. For t = 1.6, the fold point does not lie in the range shown,
and thus the corresponding section of the value function VE = C ◦�−1 appears
singlevalued. For the other three time slices, the value function has two values and
shows the characteristic behavior near a fold singularity.
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Fig. 5.11 The flow of the parameterized family of extremals E over the interval [0,T ] for T = 2
and p < 0 (left) and the graph of the associated value function V E =C ◦�− (right)
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Fig. 5.12 Slices of the value corresponding to the parameterized family E of extremals for t =
const
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5.5 Simple Cusp Singularities and Cut-Loci

The geometry of the flow near cusp singularities is more intricate and so are its
implications on the local optimality of controlled trajectories. We do not develop
these here in full generality, but limit our presentation to illustrate them with another
simple example, analogous to the one just given for the case of a fold, where all
computations can easily be done. We shall pick up this geometric structure again
and in more detail in Chap. 7.

Recall that a singular point (t0, p0) of a C2-parameterized family E of normal
extremals is a cusp point if the eigenvector v̂(p0) = (0,v(p0))

T = (0,v0)
T of

D�(t0, p0) for the eigenvalue 0 is tangent to the singular set S at (t0, p0), v̂(p0) ∈
T(t0,p0)S. This requires an extra equality constraint to be satisfied, and thus typically
the set of all cusp points is a lower-dimensional subset of S. It is called a simple cusp
singularity if this happens in the least-degenerate case, i.e., if no additional equality
relations will be satisfied. In this case, the set C of cusp points is a codimension-1
submanifold of S, hence a codimension-2 submanifold D.

Definition 5.5.1 (Simple cusp points). A cusp point (t0, p0), t0 = σ(p0), is called
simple if the vector v̂(p0) = (0,v0)

T is transversal to the submanifold C of cusp
points in T(t0,p0)S, i.e.,

T(t0,p0)C ⊕ lin span {v̂(p0)}= T(t0,p0)S.

We again make assumption (A) of the last section. Hence, the singular set is
described as the graph of a function σ as S = {(t, p) ∈ D : t = σ(p)}, and by
Lemma 5.4.2, the set of cusp points is given by

C = {(t, p) ∈ D : t = σ(p), Lvσ(p) = ∇σ(p)v(p) = 0} ,

i.e., is the set of points where the Lie derivative of the function σ in the direction of
the zero-eigenvalue eigenvector field v vanishes. If the gradient of this function in p
does not vanish at p0, then C is a codimension-1 embedded submanifold of S and
(t0, p0) ∈C, t0 = σ(p0), is simple if and only if the second Lie derivative L2

vσ of σ
in the direction of v does not vanish at p0. (In this case, v̂(p0) is not tangent to the
submanifold defined by the equation Lvσ(p) = 0, while it is tangent to S at (t0, p0).)
Note that

L2
vσ(p0) =

(
∂
∂ p |p0

∇σ(p)v(p)

)
v0 =

∂ 2σ
∂ p2 (p0)(v0,v0)+∇σ(p0)

∂v
∂ p

(p0)v0,

with ∂ 2σ
∂ p2 (p0)(v0,v0) denoting the quadratic form defined by the Hessian matrix of

σ acting on the eigenvector v0, and ∂v
∂ p(p) is the Jacobian matrix of the vector field v.
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In terms of the Lyapunov–Schmidt reduction, ζ (t, p) = w(p) ∂x
∂ p(t, p)v(p), if the

gradient∇ζ (σ(p0), p0) does not vanish, then by Proposition 5.4.4, the set C of cusp
points is given as

C =

{
(t, p) ∈W : w(p)

∂x
∂ p

(t, p)v(p) = 0, w(p)
∂ 2x
∂ p2 (t, p)(v(p),v(p)) = 0

}
.

For example, the condition that ∇ζ (σ(p0), p0) = 0 can simply be guaranteed by

∂ζ
∂ t

(t0, p0) = w0
∂ 2x
∂ t∂ p

(t0, p0)v0 = 0.

Making this assumption, simple cusp points can be described as follows:

Proposition 5.5.1. Suppose (t0, p0) is a t-regular, corank-1 singular point for

which ∂ζ
∂ t (t0, p0) = w0

∂ 2x
∂ t∂ p (t0, p0)v0 = 0. Then (t0, p0) is a simple cusp if and only if

w0
∂ 2x
∂ p2 (t0, p0)(v0,v0) = 0

and

w0

(
∂ 3x
∂ p3 (t0, p0)(v0,v0,v0)+ 3

∂ 2x
∂ p2 (t0, p0)

(
∂v
∂ p

(p0)v0,v0

))
= 0. (5.69)

Proof. For all p ∈ P we have that

∂x
∂ p

(σ(p), p)v(p) = 0.

Differentiating this equation, and letting the derivative act upon v(p), gives

∂ 2x
∂ t∂ p

(σ(p), p)v(p) ·Lvσ(p)+
∂ 2x
∂ p2 (σ(p), p)(v(p),v(p))

+
∂x
∂ p

(σ(p), p)
∂v
∂ p

(p)v(p) = 0.

Multiplying on the left by the left eigenvector field w(p) annihilates the last term.

Furthermore, for a cusp point, Lvσ(p) = 0, and thus w0
∂ 2x
∂ p2 (t0, p0)(v0,v0) = 0

follows. Now differentiate this relation once more, evaluate at the cusp point, and
multiply on the right with v and on the left with w. In doing so, all terms that include
Lvσ(p0), w0

∂x
∂ p(t0, p0) or w0

∂ 2x
∂ p2 (t0, p0)(v0,v0) vanish. We are left with
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(
w0

∂ 2x
∂ t∂ p

(t0, p0)v0

)
L2

vσ(p0)+w0
∂ 3x
∂ p3 (t0, p0)(v0,v0,v0)

+ 3w0
∂ 2x
∂ p2 (t0, p0)

(
∂v
∂ p

(p0)v0,v0

)
= 0.

By assumption, w0
∂ 2x
∂ t∂ p (t0, p0)v0 is nonzero, and thus L2

vσ(p0) = 0 if and only if
Eq. (5.69) holds. ��

We now illustrate the mapping properties of the flow � of a parameterized
family E of extremals near a simple cusp point. These and their implications on
the associated value function are quite intricate, and therefore we use a simple yet
canonical example that is based on the so-called normal form of the simple cusp
to develop these properties. The geometric properties seen in this example indeed
are generally valid features near simple cusp points. We once more consider a one-
dimensional optimal control problem similar to the one above, but with a different
penalty term that preprograms the cusp singularity.

Example 5.5.1 (Simple cusp singularity). [148] For a fixed terminal time T ,
consider the problem to minimize the objective

J(u) =
1
2

∫ T

t0
u2dt +

1
2

(
x(T )4− x(T )2) (5.70)

over all locally bounded Lebesgue measurable functions u : [t0,T ]→ R subject to
the dynamics ẋ = u.

This simple regulator problem over a finite interval is related to the inviscid
Burgers’s equation (e.g., see [65, 66]), a fundamental partial differential equation
in fluid mechanics that is a prototype for equations that develop shock waves. In the
optimal control formulation, this becomes the Hamilton–Jacobi–Bellman equation,
and we shall see that it is the simple cusp point that generates a cut-locus of optimal
controls where solutions are no longer unique, the shockwave in the language of
PDEs.

As before, it is elementary to construct a real-analytic parameterized family E of
extremals. Once again, extremals are normal, and we set λ0 ≡ 1. The Hamiltonian
is thus given by H = 1

2 u2 + λu, and the minimizing control satisfies u = −λ .
The adjoint equation is λ̇ ≡ 0 with terminal condition λ (T ) = 2x(T )3 − x(T ).
Again choosing as parameter the terminal point p = x(T ), we can parameterize all
extremals over the domain D = {(t, p) : t ≤ T, p ∈ R} in the form

x(t, p) = p+(t−T)(p− 2p3), u(t, p) = p− 2p3, λ (t, p) = 2p3− p.

The terminal cost is given by γ(p) = 1
2

(
p4− p2

)
, and since we start integrating

from the terminal manifold N = {(t,x) : t = T}, the transversality condition (5.13)
is automatically satisfied, and the parameterized cost is given by
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C(t, p) =
1
2
(T − t)(p− 2p3)2 +

1
2
(p4− p2). (5.71)

This defines a Cω -parameterized family of extremals.
All functions, including the parameterized cost, are polynomial, and this allows

us to make explicit computations in the analysis of the flow �(t, p) = (t,x(t, p)).
The singular set S is given by the solutions to the equation ∂x

∂ p(t, p) = 0 with the left
and right eigenvectors simply given by v≡ 1 and w≡ 1. Solving for t gives

t = σ(p) = T − 1
1− 6p2 , (5.72)

which is finite and less than T for |p|< 1√
6
. Since

∂ 2x
∂ p2 (t, p) =−12p(t−T),

the map has fold singularities at (σ(p), p) for p ∈ (− 1√
6
, 1√

6
), p = 0, and (t, p) =

(T −1,0) is a simple cusp point. For ∂ 2x
∂ t∂ p (t, p) = 1−6p2 is positive on the singular

set and ∂ 3x
∂ p3 (T − 1,0) = 12. Since ∂v

∂ p (p)≡ 0, this is equivalent to the transversality
condition (5.69).

Let

tcp(p) =

⎧⎨
⎩

T − 1
1−6p2 for |p|< 1√

6
,

−∞ for |p| ≥ 1√
6
.

(5.73)

It then follows from Proposition 5.4.2 that controlled trajectories (x(·, p),u(·, p))
for p = 0 defined over an interval [t0,T ] give a strong local minimum if t0 > σ(p),
but they are no longer optimal if t0 ≤ σ(p). The points (tcp(p), p) for 0 < |p| <

1√
6

are conjugate points of the corresponding trajectories that lose local optimality

there. For |p| ≥ 1√
6
, no conjugate points exist, and the trajectories can be integrated

backward for all times. It therefore might seem reasonable to restrict the domain of
the parametrization to

Dcp = {(t, p) : tcp(p)≤ t ≤ T, p ∈ R},

but there are advantages to keeping the full family of extremals. And in fact, as will
be shown below, the presence of the simple cusp point causes that not all trajectories
are globally optimal until tcp(p). This follows from the mapping properties of the
flow � that we develop now.

For α ≥ 0, consider the curves

Φα :

(
− 1√

α
,

1√
α

)
→R

2, p �→ (tα(p), p), tα(p) = T − 1
1−α p2 ,
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and denote the half-curves for positive or negative values of p by Φ+
α and Φ−α ,

respectively. Except for the trivial intersection in the point (T − 1,0), which all
curves have in common, the curvesΦα define a foliation of the subset

D̂ = {(t, p) ∈ D : t ≤ T − 1},

and the image of D̂ under � is the subset Ĝ = (−∞,T −1]×R of G. But there exist
nontrivial overlaps in the map. A direct calculation verifies that

x(tα(p), p) =
(2−α)p3

1−α p2 , (5.74)

and using p2 = 1
α

(
1− 1

T−tα

)
, we can represent the image of the curve Φα as

x =±2−α
α

√
1
α
(T − t− 1)

√
1− 1

T − t
, t ≤ T − 1.

In particular, the singular set S of the parametrization is given by the curveΦ6,

S =

{
(t, p) ∈ D : t = tcp(p) = t6(p), |p|< 1√

6

}
,

and its image under the flow � is given by the curve

Gc =�(S) =

⎧⎨
⎩

⎛
⎝t,±

√
2

27
(T − t− 1)3

(T − t)

⎞
⎠ : t ≤ T − 1

⎫⎬
⎭ ,

a cusp, which gives the singularity its name. It follows from Eq. (5.74) that

�(t6(p), p) =�(t1.5(−2p),−2p), |p|< 1√
6
, (5.75)

and thus the curve Φ1.5 also is mapped onto Gc. But note that the curve

G+ =

⎧⎨
⎩

⎛
⎝t,

√
2

27
(T − t− 1)3

(T − t)

⎞
⎠ : t < T − 1

⎫⎬
⎭=�

(
Φ+

6

)
=�

(
Φ−1.5

)

is the image of the half-curvesΦ+
6 and Φ−1.5, while

G− =

⎧⎨
⎩

⎛
⎝t,−

√
2

27
(T − t− 1)3

(T − t)

⎞
⎠ : t < T − 1

⎫⎬
⎭=�

(
Φ−6

)
=�

(
Φ+

1.5

)

is the image of Φ−6 and Φ+
1.5.
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Fig. 5.13 Stratifications of the domain D and the range G that are compatible with the map �

We summarize the mapping properties of the flow � using the same name tα for
the extended function defined as

tα(p) =

⎧⎨
⎩

T − 1
1−α p2 for |p|< 1√

α ,

−∞ for |p| ≥ 1√
α .

(5.76)

The regions and submanifolds defined below form a partition of the domain of the
parameterized family of extremals into embedded analytic submanifolds,

D = {DT ,D0,D
−
1 ,D

0
1,D

+
1 ,D

cp
− ,Dcp

+ ,D−,D+,Dc}

(see Fig. 5.13), where DT = {T}×R, Dc = {(T − 1,0)},

D0 = {(t, p) ∈ D : t1.5(p)< t < T},
D+

1 = {(t, p) ∈ D : t6(p)< t < t1.5(p), p > 0} ,
D−1 = {(t, p) ∈ D : t6(p)< t < t1.5(p), p < 0} ,
D0

1 = {(t, p) ∈ D : t < t6(p), p ∈ R},

and

D+ =

{
(t, p) ∈ D : t = t1.5(p), 0 < p <

√
2
3

}
,

D− =

{
(t, p) ∈ D : t = t1.5(p), −

√
2
3
< p < 0

}
,
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Dcp
− =

{
(t, p) ∈ D : t = t6(p), 0 < p <

1√
6

}
,

Dcp
+ =

{
(t, p) ∈ D : t = t6(p), − 1√

6
< p < 0

}
.

Accordingly, partition the range of �, G =�(D), into the open sets

G0 =

⎧⎨
⎩(t,x) ∈ G : |x|>

√
2

27
(T − t− 1)3

(T − t)
, t ≤ T − 1

⎫⎬
⎭∪ (T − 1,T)×R,

G1 =

⎧⎨
⎩(t,x) ∈ G : |x|<

√
2

27
(T − t− 1)3

(T − t)
, t < T − 1

⎫⎬
⎭ ,

the curves G− and G+ defined above, the cusp point Gc = {(T − 1,0)}, and the
terminal manifold GT = {T}×R (see Fig. 5.13),

G = {GT ,G0,G−,G+,Gc,G1}.

The embedded submanifolds in the collections D and G give a decomposition
of the domain and the range of the flow of extremals into embedded submanifolds
such that � maps each submanifold in D diffeomorphically onto exactly one of the
submanifolds in G . Specifically,

GT =�(DT ), G0 =�(D0), Gc =�(Dc),

G− =�(D−) =�(Dcp
− ), G+ =�(D+) =�(Dcp

+ ),

G1 =�(D−1 ) =�(D0
1) =�(D+

1 ).

Thus the flow � is 3 : 1 onto G1, 2 : 1 onto the branches G− and G+ of fold points,
and 1 : 1 otherwise.

These mapping properties can succinctly be expressed using the concepts of
stratifications, and we briefly digress to introduce this notion, which will also
be used later on. Let M be a Cr-manifold and let A be a subset of M. Also let
A = {Ai : i∈ I} be a family of connected Cr-embedded submanifolds of M. A set A
is the locally finite union of the Ai, i ∈ I, if A = ∪i∈IAi and if every compact subset
K of M intersects only finitely many of the Ai. For a subset A of M, its frontier,
FronA, is the set of all boundary points of A in M that do not lie in A. The collection
A is said to satisfy the frontier axiom if whenever Ai and A j are elements of A ,
Ai = A j, such that Ai∩ClosA j = /0, then Ai ⊂ FronA j and dimAi < dimA j, i.e., for
every A ∈A the frontier of A is a union of members of A of smaller dimension.
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Definition 5.5.2 (Stratification). Let M be a Cr-manifold. A Cr-stratification A =
{Ai : i ∈ I} of M is a locally finite family of connected Cr-embedded submanifolds
Ai, i ∈ I, of M that satisfies the frontier axiom. An element of A is called a stratum.

Definition 5.5.3 (Refinement). A Cr-stratification A ′ = {A′i : i ∈ I} of M is a
refinement of the Cr-stratification A = {Ai : i ∈ I} of M if every stratum Ai ∈A is
a union of strata A′i ∈ A ′.

Definition 5.5.4 (Compatible stratification). A Cr-stratification A = {Ai : i ∈ I}
of M is compatible with a subset A⊂M if A is a union of strata.

Definition 5.5.5 (1:1 compatible stratifications). Let F : M → N be a Cr-map
and let A = {Ai : i ∈ I} and B = {B j : j ∈ J} be Cr-stratifications of M and N
that are compatible with subsets A of M and B of N, respectively. We say that the
stratifications A and B are 1 : 1 compatible with the map F over (A,B) if whenever
a∈Ai⊂ A, b∈ B j ⊂B, and F(a) = b, then F maps Ai Cr-diffeomorphically onto B j.

For this example, the collections D and G are stratifications of the domain and
range that are 1 : 1 compatible with the flow map �.

For each initial point in G0, there exists only one extremal, and this one is
optimal. But we need to see which of the three values is optimal over G1. The
parameterized cost C(t, p) for the family is easily evaluated. The value C along the
curvesΦα is given by

C(tα(p), p) =
(4−α)p2 +(α− 3)

1−α p2 p4.

For α = 2, it follows that C(t2(p), p) = −p4, and thus the values for the two
trajectories corresponding to ±p are equal. Furthermore, by Eq. (5.74) the curves

Dcl
− =

{
(t, p) ∈ D : t = t2(p), − 1√

2
< p < 0

}

and

Dcl
+ =

{
(t, p) ∈ D : t = t2(p), 0 < p <

1√
2

}

are both mapped diffeomorphically onto the half-line

G = {(t,0) ∈ G1 : t < T − 1}.

Thus, given an initial condition (t,0)∈G, the two trajectories that are determined by
the preimages (t,±p) in Dcl− and Dcl

+ have the same value for the objective. Define
the value VE =V of the parameterized family E of extremals as VE =C◦�−, where
�
− again denotes the multivalued map that assigns to a point (t,x) all possible

parameter values (t, p) that satisfy �(t, p) = (t,x). Thus the map �
− is single-

valued on GT ∪G0 ∪Gc, has two values on G− and G+, and three values on G1.
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If we define πi, i = −,0,+, as the inverse parameter maps for the restrictions of �
to Di

1, then the associated value VE has three sections over the set G1, which we
denote by

Vi : G1 → R, Vi(t,x) =C(t,πi(t,x)).

We have shown that

V+(t,0)≡V−(t,0) for (t,0) ∈G, (5.77)

and V0 will never be minimal. In fact, V0(t,x)>V±(t,x) for all (t,x)∈G1. Analyzing
the map � further, it can be seen that � maps each of the regions

D+
opt =

{
(t, p) ∈ D+

1 : t2(p)< t < t1.5(p)
}

and
D−not = {(t, p) ∈ D−2 : t6(p)< t < t2(p)}

diffeomorphically onto Ĝ+ = G1∩{(t,x) ∈ G : x > 0}. Analogously, the regions

D−opt =
{
(t, p) ∈ D−1 : t2(p)< t < t1.5(p)

}

and
D+

not = {(t, p) ∈ D+
1 : t6(p)< t < t2(p)}

are mapped diffeomorphically onto Ĝ− = G1∩{(t,x) ∈ G : x < 0}. Computing the
values, one obtains that

V+(t,x)<V−(t,x) for all (t,x) ∈ Ĝ+

and

V+(t,x)>V−(t,x) for all (t,x) ∈ Ĝ−.

Hence, a parametrization of the trajectories that are globally optimal is given if the
domain is restricted to

Dopt = {(t, p) ∈ D : t2(p)≤ t ≤ T}.

The curve Φ2 gives a parametrization of the cut-locus Γ of the two branches
corresponding to the parameterizations over D+

1 and D−1 , respectively, and for initial
points on Γ there exist two optimal trajectories in the family. In the interior of Dopt

the parametrization is an analytic diffeomorphism.
Figure 5.14 illustrates the flow of the parameterized family of extremals: in the

top row, it shows the two fields of locally optimal trajectories defined for p > 0 and
p < 0, respectively. While the controlled trajectories (x(·, p),u(·, p)) for p = 0 are
strong local minima over the interval [t0,T ] if t0 > σ(p) = t6(p), they are globally
optimal only if t0 ≥ t2(p) > t6(p). The simple cusp point at (T − 1,0) generates a
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Fig. 5.14 Flow of the parameterized family of extremals E : the top row shows the flow on the
intervals [tcp,T ] for p > 0 (left) and p < 0 (right); the bottom row gives a combination of these two
flows (left) and the resulting optimal synthesis of controlled trajectories (right)

cut-locus (intersection) between the two branches of the parameterized family for
p > 0 and p < 0 that limits the global optimality of trajectories at time t2(p), and
thus the controlled trajectories for p = 0 already lose global optimality prior to the
conjugate point. The optimal synthesis is shown in the bottom right of Fig. 5.14.

Figure 5.15 shows the graph of the multivalued cost function VE =C◦�−1 in the
(t,x)-space in a neighborhood of the simple cusp point, and Fig. 5.16 shows various
time slices that illustrate the changes in the cost as the simple cusp point is passed.
Interestingly, taken together, the graph of this multivalued function is qualitatively
identical to the singular set of the swallowtail singularity, the next type of singularity
in the order of cusps. The same observation holds for the fold singularities in which
case the graph of the corresponding multivalued function VE takes the shape of
the singular set of a simple cusp. These relations also are a consequence of the
fundamental relation for optimality expressed in the shadow-price lemma.

Note that we have σ(0) = t2(0) = T − 1 for the extremal (x(·,0),u(·,0)) that
passes through the simple cusp point and that this controlled trajectory remains
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Fig. 5.15 The graph of the value function V E =C ◦�− near a simple cusp singularity
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Fig. 5.16 Slices of the multivalued function V E corresponding to the parameterized family E of
extremals for t = const
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Fig. 5.17 The square on the left is the neighborhood W in (t, p)-space with the singular set S
given by the inscribed curve. The top diagram on the right represents the image of the flow � near
a “simple cusp,” and the bottom diagram shows a slice of the corresponding value in the state space

globally optimal over the compact interval [T − 1,T ]. Thus, this is an example
where the trajectory loses optimality only after the conjugate point has been crossed
(we are thinking of integrating the field backward). In contrast, we have seen that
trajectories lose optimality at the conjugate point for fold singularities, i.e., they are
no longer optimal on the intervals [tcp(p),T ] if tcp(p) denotes the corresponding
conjugate time.

These geometric properties are valid in general near simple cusp points. This
can be shown by transforming the system into normal form and then analyzing
the resulting system, which has all the features of the example considered here.
However, the computations involving the required changes of coordinates are quite
technical and lengthy [134, 135]. The geometry is illustrated in Fig. 5.17. This
structure is seen in many practical applications (e.g., optimal paths in a velocity
field [64], chemical control of a batch reactor [47], and many more), and in these
cases, the cut-locus typically is the determining feature for the overall synthesis of
optimal controlled trajectories. We shall take up this topic in detail in Chap. 7.
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5.6 Notes

In this chapter, we developed techniques that allow the construction of solutions
to the Hamilton–Jacobi–Bellman equation locally. There exists a vast amount of
literature on viscosity solutions to the HJB equation, including excellent expositions
in book form such as the texts by Fleming and Soner [96] and by Bardi and Capuzzo-
Dolcetta [30]. The connections with the value function are explored in many other
texts on optimal control theory such as the book by Vinter [254]. But this is not
the topic of our text. Rather, we here developed the geometric underpinnings of
this theory in the context of the method of characteristics. While this method is a
classical procedure for solving first-order PDEs, it is not entirely straightforward
to adjust the constructions to the optimal control problem [33], and in this chapter
we formalized our own version of how to do this. In this procedure, the shadow-
price lemma and injectivity properties of the flow of extremals play the major roles.
A similar approach was taken by Young in [260], but we deliberately avoided the
notion of a descriptive map so prevalent in his approach. Instead, throughout our
development, we have emphasized the mapping properties of the underlying flow.

The results in Sect. 5.3 are based on Chap. 6 of the classical textbook by
A. Bryson and Y.C. Ho [64], but our reasoning is quite a bit different in its
mathematically oriented approach. Our constructions clearly bring out the geometric
properties that underly the important procedure of perturbation feedback control in
engineering applications and pinpoint the significance of various solutions to the
differential equations that arise in these constructions. The reader who is interested
in the classical spacecraft guidance problems that motivated these results may wish
to consult [53]. Also, extensions of the theory to problems with control constraints
are considered in [93].

Our emphasis on the mapping properties has various other advantages. To begin
with, it allows us to relate singularities in the flow of extremals to singularities in
the value function. The geometry of the value function near fold and simple cusp
points was initially investigated in joint research with M. Kiefer in [135], and some
of these results were incorporated into Sects. 5.4 and 5.5. The example considered in
Sect. 5.5 is from the papers by C.I. Byrnes et al. [65,66] and was fully analyzed by us
and A. Nowakowski in [148] in connection with the Hilbert invariant integral. The
connections with shocks in the solutions of the Hamilton–Jacobi–Bellman equation
are also the topic of the paper [68] by Caroff and Frankowska. But generally, in our
opinion, only the surface has been scratched in exploring these relations, and we
believe that this could be an interesting area of research for years to come. Much of
the construction given here utilizing the Lyapunov–Schmidt reduction in this context
is new. Similarly, the presentation of the material analyzing the value function near
a fold singularity based on envelopes in connection with parameterized families of
extremals also is new. We have chosen this particular path for the exposition in
order to emphasize the direct connections with the methods of the classical calculus
of variations. On this topic, we also have elected to forgo the generality that the
results of H. Sussmann [240, 242] provide for the benefit of naturally fitting these
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constructions within our framework. While much of the material presented in this
chapter is based on classical ideas, the methods and procedures that we employed
to derive them represent our own approach to this topic.

The results presented here and also in the next chapter naturally relate to
necessary and sufficient conditions for local minima. Our approach to constructing
local solutions to the Hamilton–Jacobi–Bellman equation is equivalent to the
construction of local fields of extremals around a reference trajectory and thus gives
conditions for strong minima. There exists a wealth of literature on necessary and
sufficient conditions for optimality for both weak and strong minima that, analogous
to ideas from the calculus of variations, are based on the second variation, e.g.,
[19, 84, 86, 168] and many more. While the results by Agrachev, Stefani, and Zezza
[19] are for strong minima, generally these techniques are more effective in the
case of weak local minima. Furthermore, without any practical procedures (such
as those presented in Sect. 5.3 or the ones given by Maurer and Oberle in [181]) to
verify abstract conditions on coercivity of quadratic forms, these results have a more
theoretical character.



Chapter 6
Synthesis of Optimal Controlled Trajectories:
From Local to Global Solutions

Our overall objective is to analyze the mapping properties of a flow of
extremal controlled trajectories and to show that the cost-to-go function satisfies the
Hamilton–Jacobi–Bellman equation in regions where this flow covers an open set of
the state injectively (x-space in the time-invariant case, respectively (t,x)-space in
the time-dependent case). In the previous chapter, we have assumed that the control
u = u(t, p) in the parameterized family of extremals is continuous and differentiable
with respect to the parameter. Some regularity properties of the embedding of a
reference extremal into a family of extremals are needed, and in our framework,
these are guaranteed by the differentiability properties with respect to the parameter
p. More general definitions are given in the work of H. Sussmann (e.g., see [196]),
but these will not be pursued here. However, continuity of the control in t is neither
a natural nor a realistic assumption. As the examples analyzed in this text show,
typically various patches defined in terms of parameterized families of extremals
need to be combined to obtain the full solutions. It thus remains to show how these
patches can be concatenated. This includes both concatenations of parameterized
families defined over the same parameter set as they arise naturally for bang-
bang trajectories with the same type of switchings, but also situations in which
parameterized families for different parameter sets need to be glued together, as
was the case in the Fuller problem. The main result in this chapter is a powerful
verification theorem for the global optimality of a synthesis of extremal trajectories
that has been constructed in this way. This result, Theorem 6.3.3, has grown out
of Boltyansky’s geometric approach to sufficiency in optimal control problems of
constructing a regular synthesis of optimal controlled trajectories [41]. The version
that we present below gives a significant improvement over Boltyansky’s original
constructions and was developed over the years in a sequence of publications by H.
Sussmann [196,229,243]. While we do not develop this result in its full generality as
far as the technical assumptions on the underlying system are concerned—we retain
the simpler technical framework of smooth vector fields employed in this text—our
argument does provide the essential aspects of the construction, the most important
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one being that the differentiability assumption on the solution to the Hamilton–
Jacobi–Bellman equation can be relaxed to be valid only on the complement of a
locally finite union of embedded submanifolds of positive codimension.

This chapter is organized as follows: In Sect. 6.1, we consider broken extremals
whose controls are discontinuous in time. We emphasize that these constructions
are for families that have a finite number of patches. The typical scenario for
which these families of broken extremals arise is given by piecewise continuous
controls, and the theory applies equally to bang-bang and singular controls. It
follows from the shadow-price lemma that the cost-to-go-function is a continuously
differentiable solution to the HJB equation on those patches where the associated
flow is a diffeomorphism. This property is the main objective of our constructions
and becomes the essential assumption in the verification theorem. As an illustration
of these arguments, in Sect. 6.2 we carefully work out the construction of a
parameterized family of extremals arising in a mathematical model for tumor
antiangiogenic treatment that contains singular arcs. The extremals constructed in
this example indeed are globally optimal, and the results that were developed in
Chap. 5 allow us to prove that the associated value is a continuously differentiable
solution of the Hamilton–Jacobi–Bellman equation on open regions that are covered
injectively by the flow. It is of no bearing for this argument that the flow actually
collapses to a lower-dimensional submanifold along the singular arcs. Section 6.3
then develops a verification result that allows us to prove the global optimality of
a synthesis of controlled trajectories that has been constructed by means of the
procedures presented here and in Chap. 5. We once more stress that this result,
in contrast to the versions of the theory developed in Chap. 5, allows that the
corresponding value function VE need not be differentiable on a locally finite
union of embedded submanifolds of positive codimension, the natural and realistic
scenario. This proof relies on some perturbation and lower semicontinuity properties
to overcome the issues connected with nondifferentiability of the value function.
These will be fully developed here. Also, the final result no longer assumes that
the verification function is continuous. Optimal control problems for which this is
the case are by no means an oddity, but often arise when there is a lack of local
controllability properties in the system.

6.1 Parameterized Families of Broken Extremals

We start by dispensing with the condition that the controls u = u(t, p) in a
parameterized family of extremals need to be continuous and allow the requirements
imposed in the definition to be satisfied piecewise in time.
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6.1.1 Concatenations of Parameterized Families of Extremals

Without loss of generality, we take two parameterized families of extremals, and in
order to keep the notation unambiguous, we consider the time-dependent case, i.e.,
the flow � is defined in terms of the graphs of the controlled trajectories, �(t, p) =
(t,x(t, p)). Adjustments to the time-independent situation are immediate and will be
considered in examples. Let P be an open subset of Rd with 1≤ d ≤ n and let E1 be
a Cr-parameterized family of extremals with domain

D1 = {(t, p) : p ∈ P, t1,−(p)≤ t ≤ t1,+(p)},

source
N1,− = {(t,x) : t = t1,−(p), x = ξ1,−(p), p ∈ P},

target
N1,+ = {(t,x) : t = t1,+(p), x = ξ1,+(p), p ∈ P},

and cost γ1,± : P→ R, p �→ γ1,±(p), at the source, respectively target. For the same
parameter set P, let E2 be a Cr-parameterized family of normal extremals with
domain

D2 = {(t, p) : p ∈ P, t2,−(p)≤ t ≤ t2,+(p)},
source

N2,− = {(t,x) : t = t2,−(p), x = ξ2,−(p), p ∈ P},
target

N2,+ = {(t,x) : t = t2,+(p), x = ξ2,+(p), p ∈ P},
and cost γ2,± : P → R, p �→ γ2,±(p), at the source, respectively target. We denote
the associated controls, trajectories, and multipliers by the corresponding subscript.
For example, λ2 denotes the adjoint variable for the family E2, and we denote the
constant multiplier by λ0,2(p).

Two Cr-parameterized families E1 and E2 of extremals can be concatenated if
for all p ∈ P we have that (i) t1,+(p) = t2,−(p), ξ1,+(p) = ξ2,−(p), (ii) λ0,1(p) =
λ0,2(p), λ1(t1,+(p), p) = λ2(t2,−(p), p), and (iii) γ1

+(p) = γ2−(p). Conditions (i) and
(ii) enforce that the controlled trajectories of the two flows and their adjoint variables
match at the junction N1,+ = N2,−, while condition (iii) guarantees the agreement of
the associated cost functions.

Requiring the agreement of the parameter sets in the two families simplifies our
presentation, but does not constitute an essential restriction. Clearly, it would be
enough to have a Cr-diffeomorphism that connects the two parameter sets, but we
do not concern ourselves here with this more general formulation. Our treatment of
the Fuller problem in Sect. 5.2.3 shows how this can be done in a specific case.

To simplify the notation, we henceforth denote the functions defining the
concatenation by

τ(p) = t1,+(p) = t2,−(p), ξ (p) = ξ1,+(p) = ξ2,−(p), γ(p) = γ1
+(p) = γ2

−(p),
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λ0(p) = λ0,1(p) = λ0,2(p), and λ (p) = λ1(t1,+(p), p) = λ2(t2,−(p), p).

Furthermore, it follows from the fact that E1 and E2 are Cr-parameterized families
of extremals that the controls ui = ui(t, p) solve the minimization problems

min
v∈U

H(t,λi(t, p),xi(t, p),v) = H(t,λi(t, p),xi(t, p),ui(t, p)).

Hence, also the functions hi(t, p) = H(t,λi(t, p),xi(t, p),ui(t, p)) remain continuous
at the junction, and we let

h(p) = h1(t1,+(p), p) = h2(t2,−(p), p).

The minimization condition generally determines when and where the control
u1 must be changed to u2. The value where the minimum of the Hamiltonian
is achieved changes, and typically discontinuities arise in the optimal controls.
A common scenario is that of bang-bang junctions, but also concatenations with
singular controls can be analyzed within this framework, and we shall give a
rather typical example in the next section. Naturally, situations in which regularity
properties of the parametrization break down also match this framework. The latter
happens, for example, at saturation points when a singular control with values in
the interior of the control set reaches the control limits. In this case, although the
control may remain continuous, generally differentiability in p will be lost, and this
also will give rise to different patches in the parameterizations.

The concatenated family E = E 1 ∗E2 then is defined as the family of extremals
with domain

D = {(t, p) : p ∈ P, t1,−(p)≤ t ≤ t2,+(p)},
source

N1,− = {(t,x) : t = t1,−(p), x = ξ1,−(p), p ∈ P},
target

N2,+ = {(t,x) : t = t2,+(p), x = ξ2,+(p), p ∈ P},
and the controls u, trajectories x, and adjoint variable λ are defined piecewise as

u(t, p) =

{
u1(t, p) for (t, p) ∈ int(D1) ,

u2(t, p) for (t, p) ∈D2,

x(t, p) =

{
x1(t, p) for (t, p) ∈ D1,

x2(t, p) for (t, p) ∈ D2,

and

λ (t, p) =

{
λ1(t, p) for (t, p) ∈ D1,

λ2(t, p) for (t, p) ∈ D2.

(see Fig. 6.1).
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t

x

Fig. 6.1 Flow � of a family
of broken extremals

Definition 6.1.1 (Family of broken extremals). A Cr-parameterized family of
broken extremals is a finite concatenation E = E 1 ∗ · · · ∗ Ek of Cr-parameterized
families of extremals.

The important feature of families of normal broken extremals (λ0(p) ≡ 1) is
that the property that the corresponding value in the state space is a differentiable
solution to the Hamilton–Jacobi–Bellman equation propagates along the individual
segments and holds whenever the flow covers an open set in the state space
injectively. This holds even if later on, this flow collapses onto lower-dimensional
manifolds, a common scenario both with bang-bang controls (see Sect. 2.6) and
when the controlled trajectories follow singular arcs (see Sect. 6.2). The key
observation is that since the trajectories, multipliers, and the cost agree at the
junctions, the transversality condition (5.13),

λ (p)
∂ξ
∂ p

(p) = λ0(p)
∂γ
∂ p

(p)+ h(p)
∂τ
∂ p

(p),

propagates from one family to the other. This directly follows from Corollary 5.2.1.
Recall that it was this transversality condition that guaranteed the validity of the
shadow-price lemma (cf. step 1 in the proof of Lemma 5.2.2),

λ0(p)
∂C
∂ p

(t, p) = λ (t, p)
∂x
∂ p

(t, p). (6.1)

Hence, the shadow-price lemma remains valid as one crosses from one parame-
terized family of extremals to the next, and Eq. (6.1) holds on the domain D of
the concatenated family E of extremals away from the junction T = {(t, p) : t =
τ(p), p∈ P}. On T , the partial derivatives of C and x with respect to the parameter
p generally are discontinuous, but their jumps cancel in the expression (6.1), and
this allows us to construct solutions to the Hamilton–Jacobi–Bellman equation for
families of broken extremals. We give these formulas for later reference.

Lemma 6.1.1. The shadow-price identity (6.1) is valid for the concatenated family
E = E 1 ∗E2 of broken extremals for all (t, p) ∈ D\T . Along the switching surface
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T = {(t, p) : t = τ(p), p ∈ P}, it is valid in the limits as t → τ(p) from the right
and the left. Furthermore, setting

k0(p) = L(τ(p),ξ (p),u2(τ(p), p))−L(τ(p),ξ (p),u1(τ(p), p))

and
k(p) = f (τ(p),ξ (p),u2(τ(p), p))− f (τ(p),ξ (p),u1(τ(p), p)),

we have that
λ0(p)k0(p)+λ (p)k(p) = 0

and

∇C2(τ(p), p) = ∇C1(τ(p), p)− k0(p)

(
1,− ∂τ

∂ p
(p)

)
, (6.2)

Dx2(τ(p), p) = Dx1(τ(p), p)+ k(p)

(
1,− ∂τ

∂ p
(p)

)
. (6.3)

Recall that ∂τ
∂ p (p) denotes the gradient of τ written as a row vector, so that

∂x2
∂ p (τ(p), p) is a rank-1 correction of the matrix ∂x1

∂ p (τ(p), p).

Proof. It remains to compute the formulas at the switching surface T . Recall that
the controls ui extend as C0,r-functions onto an open neighborhood of Di, and thus
the states xi extend to C1,r-functions onto open neighborhoods D̃i of the junction
manifold T . Defining, for i = 1 and 2,

Ci : D̃i → R, Ci(t, p) =
∫ τ(p)

t
L(s,xi(s, p),ui(s, p))ds+ γ(p),

this formula extends the definition of the cost functions for the two parameteriza-
tions onto the neighborhoods D̃i. Note that the extensions xi of the states beyond Di

no longer are extremals, and nor do the extensions of the functions Ci represent the
cost of the extremals in the concatenated family. But simply having these extensions
allows us to relate their partial derivatives on the switching surface by means of the
following elementary lemma.

Lemma 6.1.2. Let z0 ∈ R
n and let Z be an open neighborhood of z0. Suppose g :

Z→R and h : Z→R are continuously differentiable functions such that h(z) = 0 on
{z ∈ Z : g(z) = 0}. If g(z0) = 0 and ∇g(z0) = 0, then there exist a neighborhood W
of z0 contained in Z and a continuous function k : W → R such that h(z) = k(z)g(z)
for z ∈W and ∇h(z) = k(z)∇g(z) whenever g(z) = 0.

Proof of the Lemma. Without loss of generality, assume that ∂g
∂ z1

(z0) = 0 and
replace the first basis vector e1 in the standard basis defining a change of coordinates
near z0 by
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Θ : Z →R
n z �→ ζ =Θ(z) =

⎛
⎜⎜⎜⎝

g(z)
z2− z0

2
...

zn− z0
n

⎞
⎟⎟⎟⎠ .

The Jacobian matrix of Θ at z0 is nonsingular, and thus by the inverse function
theorem, there exists an open neighborhood W of z0 so that Θ � W → V =Θ(W )
is a diffeomorphism. Defining functions G : V → R, G = g ◦Θ−1 and H : V → R,
H = h ◦Θ−1, we then have for all ζ ∈V that

G(ζ ) = g(Θ−1(ζ )) = g(z) = ζ1

and H(0,ζ2, . . . ,ζn) = 0. Hence for ζ ∈V ,

H(ζ ) = ζ1

∫ 1

0

∂H
∂ζ1

(tζ1,ζ2, . . . ,ζn)dt.

Setting

K : V →R, K(ζ ) =
∫ 1

0

∂H
∂ζ1

(tζ1,ζ2, . . . ,ζn)dt,

it follows that H(ζ ) = K(ζ )G(ζ ), and with k = K ◦Θ , we have that

h(z) = k(z)g(z) for all z ∈W.

The integrand in the definition of K is continuous on [0,1]×V , and thus K and k are
continuous. Furthermore, whenever g(z) = 0, the product h = kg is differentiable at
z with partial derivatives given by

∂h
∂ zi

(z) = lim
t→0

k(z+ tei)g(z+ tei)− 0
t

=

(
lim
t→0

k(z+ tei)

)(
lim
t→0

g(z+ tei)− 0
t

)
= k(z)

∂g
∂ zi

(z).

This proves the lemma. ��
In our case here, in the time-dependent case, z = (t, p), g(z) = t − τ(p), and h

can be taken as the difference in the cost, C2(t, p)−C1(t, p), or the difference in

each of the coordinates of the state, x(i)2 (t, p)− x(i)1 (t, p), i = 1, . . . ,n. Hence there
exist continuous functions k0 and k = (k1, . . . ,kn) defined on a neighborhood W of
(t0, p0) such that

∇C2(τ(p), p)−∇C1(τ(p), p) =−k0(p)

(
1,− ∂τ

∂ p
(p)

)
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and

Dx2(τ(p), p)−Dx1(τ(p), p) = k(p)

(
1,− ∂τ

∂ p
(p)

)
.

From the definition of the parameterized costs, for i = 1,2 we have that

∂Ci

∂ t
(t, p) =−L(t,xi(t, p),ui(t, p)),

and thus

k0(p) = L(τ(p),ξ (p),u2(τ(p), p))−L(τ(p),ξ (p),u1(τ(p), p)).

Similarly,

k(p) = ẋ2(τ(p), p)− ẋ1(τ(p), p)

= f (τ(p),ξ (p),u2(τ(p), p))− f (τ(p),ξ (p),u1(τ(p), p)).

In particular,

λ0(p)k0(p)+λ (p)k(p) = h2(τ(p), p)− h1(τ(p), p) = 0

from the minimum condition of the maximum principle. ��
We give a simple, but in many ways canonical, example of a parameterized

family of broken extremals when the flow of controlled trajectories collapses and
show that this does not invalidate the construction of solutions to the Hamilton–
Jacobi–Bellman equation along those segments where the flow is injective.

Example 6.1.1 (Time-optimal control to the origin for the double integrator).
Recall (see Sect. 2.6.1) that this is the problem to steer points x ∈ R

2 into the
origin time-optimally by means of the dynamics ẋ1 = x2 and ẋ2 = u with |u| ≤ 1.
Optimal trajectories enter the origin through one of the two semiparabolas Γ+,
x1 = 1

2 x2
2 for x2 < 0, and Γ−, x1 = − 1

2 x2
2 for x2 > 0, along the controls u ≡ +1

and u≡−1, respectively. There are two parameterized families of normal extremals
that combine to form the optimal synthesis. We illustrate the construction by giving
all the functions involved in the definition of concatenations of the form XY , i.e.,
controlled trajectories that start with u =−1 and enter the origin along Γ+.

The problem is time-independent, and thus the flow is given by �(t, p) = x(t, p)
with a one-dimensional parameter set P. In Example 5.2.1, Sect. 5.2.1, we have
formulated a Cω -parameterized family of normal extremals E− that describes the
X-trajectories integrated backward from Γ+ and uses this switching curve Γ+ to
parameterize the extremals. In this family, Γ+ is parameterized using P = (0,∞) as

ξ+(p) =
(

1
2 p2,−p

)T
, and the domain of the parameterization is D = {(t, p) : t ≤

−p < 0} with t−(p) = −∞, i.e., trajectories are integrated backward in time for
all times, and t+(p) = −p. This choice of parameterization implies that for points
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on Γ+, the cost γ+, i.e., the time along the Y -trajectory from ξ+(p) into the origin,
is given by γ+(p) = p. Together with the specifications u(t, p) ≡ −1, x(t, p) the
solution of the dynamics with terminal condition ξ (p), and the adjoint variable
λ (t, p) the backward solution to the equations λ̇1 = 0 and λ̇2 = −λ1 with terminal

conditions λ (p) = λ (t+(p), p) =
(

1
p ,0

)
at the switching points, it was verified that

the transversality condition is satisfied and that this defines a Cω -parameterized
family of extremals E−. Now simply take this as the first parameterized family
E1 with

τ(p) =−p, ξ (p) =

(
1
2

p2,−p

)T

, γ(p) = p, and λ (p) =

(
1
p
,0

)

defining the source data for a second Cω -parameterized family of normal extremals
E2 that is obtained by integrating u = +1 along Γ+ into the origin. Thus, with
P = (0,∞), we have D2 = {(t, p) : −p ≤ t ≤ 0 = t+(p)}, the initial and terminal
values of the cost are given by γ2,−(p) = p and γ2,+(p) = 0, and the multiplier
λ (t, p) is defined on D2 as the forward solution to the adjoint equation with initial
condition λ (p) at the switching point ξ (p). Thus, the parameterized family of
extremals constructed in Sect. 5.2.1 immediately extends to a family of broken
extremals that describes the full switching structure. The same holds for the family
E+ that describes the concatenations of the form YX , i.e., controlled trajectories that
start with u =+1 and enter the origin along Γ−.

Note that by Corollary 5.2.1, the transversality condition propagates along the
subdomain D2 to the terminal state ξ2,+(p) = (0,0) with cost γ2,+(p) = 0 at the
origin. Naturally, here the transversality condition

λ (p)
∂ξ+
∂ p

(p) = λ0(p)
∂γ+
∂ p

(p)+ h(p)
∂T
∂ p

(p)

is satisfied trivially, since also h(p) ≡ 0. Thus, starting the construction at the
terminal point, this condition is obviously satisfied and no longer would need to
be verified as we did in Sect. 5.2.1. However, in that section, we still insisted on
the control being continuous and thus had to verify this condition at the switching
points.

This example, albeit simple, illustrates how the framework applies to situations
in which the flow of trajectories collapses to a lower-dimensional subset on the
subsequent domain D2. Importantly, this does not impede the construction of
solutions to the Hamilton–Jacobi–Bellman equation. For this example, the flow
restricted to the domain D1 of the first parameterized family, �1 = � � D1,
�(t, p) = x(t, p), is a diffeomorphism, and on G− = {(x1,x2) : x1 >−sgn(x2)

1
2 x2

2}
the value is simply defined by V− = C ◦�−1

1 . Since the transversality condition
propagates along a parameterized family of extremals, the shadow-price lemma
remains valid, and thus it follows from Theorem 5.2.1 that V is a continuously
differentiable function on G− that solves the Hamilton–Jacobi–Bellman equation.
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In fact, V−(x) = T (x) = x2 + 2
√

x1 +
1
2 x2

2 on G−, as was shown earlier, but we do
not need to know this explicit form.

Similarly, Y X-trajectories form a parameterized family of normal broken ex-
tremals that defines a solution of the HJB equation on G+. Since trajectories collapse
onto the curves Γ+ and Γ−, the combined value function no longer is differentiable
on these two curves. This, however, as will be shown in Sect. 6.3, does not invalidate
the optimality of the synthesis. However, it is essential for the argument that the
value that arises from the synthesis is differentiable and a solution of the HJB
equation on sufficiently rich open subsets. It is this step that is accomplished with
parameterized families of broken extremals.

6.1.2 Transversal Crossings

In the example just considered, the flow � collapsed onto a lower-dimensional sub-
manifold along the second parameterized family. While this is a common scenario,
equally important are situations in which the individual flows are diffeomorphisms
and in which the switching surfaces are crossed transversally. We now consider
these cases and assume that the parameter set P is n-dimensional. In this case

T = {(t, p) : t = τ(p), p ∈ P}

is an embedded hypersurface (codimension-1 submanifold) of D, and its image in
the combined state space is given by

S = {(t,x) : t = τ(p), x = ξ (p), p ∈ P}.

We want the flow � restricted to T to be a diffeomorphism so that S = �(T )
also is an n-dimensional embedded submanifold of the extended state space. This
property is guaranteed locally if the flow of one of the two parameterized families
of extremals is regular, i.e., if its Jacobian matrix is nonsingular.

Lemma 6.1.3. If the differential D�i(t, p) of the flow �i(t, p) = (t,xi(t, p)), i = 1
or i = 2, is nonsingular for t = τ(p), then near (t,x) = (τ(p),ξ (p)), the switching
surface S is an embedded n-dimensional submanifold and the flow �i is transversal
to S , i.e., the tangent vectors to the graphs of the trajectories (1, ẋ(t, p))T do not
lie in the tangent space to S at �i(t, p).

Proof. By the inverse function theorem, the mapping �i is a local diffeomor-
phism that maps a neighborhood of (t, p) = (τ(p), p) diffeomorphically onto a
neighborhood of (t,x) = (τ(p),ξ (p)). Hence it maps the n-dimensional embedded
submanifold T into an n-dimensional embedded submanifold S , and the tangent
space to S at (t,x) is given by the image of the tangent space to T at (τ(p), p)
under the differential D�i. Since the direction (1,0) is transversal to T in the
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Fig. 6.2 The flow of a parameterized family of broken extremals near a transversal crossing (left)
and a transversal fold (right)

parameter space, the graphs of the trajectories t �→ x(t, p) are transversal to S at
(τ(p),ξ (p)) as well. ��
Definition 6.1.2 (Transversal crossings and folds). We say that the Cr-para-
meterized family E = E 1 ∗ E2 of broken extremals has a regular switching point
at (t0, p0) = (τ(p0), p0) if both flow maps �1 and �2 are regular at (t0, p0). We
call such a switching point a transversal crossing if the graphs of the trajectories
t �→ xi(t, p), i = 1,2, cross the switching surface

S = {(t,x) : t = τ(p), x = ξ (p), p ∈ P}

in the same direction and a transversal fold if they cross it in opposite directions.

Recall that our formulations are for the time-dependent case, but analogous
definitions apply to the time-independent formulation.

The main results of this section show that local optimality properties of the flow
of extremals are preserved at transversal crossings—in fact, in this case the value
function VE remains continuously differentiable at the corresponding switching
surface S —while optimality typically ceases at a switching surface consisting
of transversal folds (see Fig. 6.2). As will be seen below, the reason is that if
such a surface supports trajectories of the system, these are control envelopes (see
Sect. 5.4.1) for the control problem. In this sense, transversal folds correspond to
“conjugate points” for parameterized families of broken extremals.

We start with a characterization of transversal crossings and folds in the
parameter space. Since we typically integrate the family of extremals backward
from the terminal manifold, here we take the second parameterized family E2 as
our starting point.

Proposition 6.1.1. Suppose ∂x2
∂ p (t, p) is nonsingular for t = τ(p) and let

k(p) = f (τ(p),ξ (p),u2(τ(p), p))− f (τ(p),ξ (p),u1(τ(p), p)).
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The point (τ(p), p) is a regular switching point if and only if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p) = 0.

The concatenated family E = E 1 ∗E2 of normal broken extremals has a transversal
crossing at (τ(p), p) if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p)> 0 (6.4)

and a transversal fold if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p)< 0. (6.5)

Proof. The trajectories x1 and x2 extend as C1,r-functions onto a neighborhood of
T , and by (6.3), their partial derivatives are related by the rank-1 correction formula

∂x1

∂ p
(τ(p), p) =

∂x2

∂ p
(τ(p), p)+ k(p)

∂τ
∂ p

(p).

Lemma 6.1.4. Suppose A ∈ R
n×n is nonsingular and let u and v be vectors in R

n.
Then B = A+ uvT is nonsingular if and only if 1+ vT A−1u = 0. In this case,

(A+ uvT )−1 = A−1− A−1uvT A−1

1+ vT A−1u
.

Proof of the Lemma. The statement is trivially valid if either one of u and v is
the zero vector, and thus we assume that both u and v are nonzero. Writing
B = A

(
Id+A−1uvT

)
, the matrix B is nonsingular if and only if C = Id+A−1uvT

is. But C has eigenvalue λ = 1 with geometric multiplicity n−1 (the corresponding
eigenspace is the orthogonal complement of the one-dimensional space spanned by
v), and the nth eigenvalue is 1+ vT A−1u with eigenvector w = A−1u:

Cw = w+wvT w = (1+ vT w)w = (1+ vT A−1u)w.

The formula for the inverse is readily verified. ��
Hence, the point (τ(p), p) is a regular switching point if and only if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p) = 0.

The sign of this quantity distinguishes between transversal folds and crossings.
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Since ∂x2
∂ p (t, p) is nonsingular at t = τ(p), the map �2 : V → W , (t, p) �→

(t,x2(t, p)), is a C1,r diffeomorphism and hence invertible between some neighbor-
hoods V of (τ(p), p) and W of (τ(p),ξ (p)). Denote the inverse by �

−1
2 : W → V ,

(t,x) �→ (t,π(t,x)), and defineΨ : W →R by

Ψ (t,x) = t− τ(π(t,x)). (6.6)

ThenΨ ∈C1,r, S = {(t,x) ∈W :Ψ(t,x) = 0}, and on S the gradient ∇Ψ (t,x) is
not zero, since for (t,x) = (τ(p),ξ (p)), and writing u2(p) = u2(τ(p), p), we have
that

∇Ψ (t,x) =

(
1, − ∂τ

∂ p
(p)

)⎛
⎝ 1 0
∂x2

∂ t
(τ(p), p)

∂x2

∂ p
(τ(p), p)

⎞
⎠
−1

=

(
1, − ∂τ

∂ p
(p)

)⎛
⎝ 1 0

−
(
∂x2

∂ p
(τ(p), p)

)−1
∂x2
∂ t (τ(p), p)

(
∂x2

∂ p
(τ(p), p)

)−1

⎞
⎠

=

(
1+

∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

f (τ(p),ξ (p),u2(p)),

− ∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1
)
.

In particular, if ∂Ψ
∂x (t,x) = 0, then ∂Ψ

∂ t (t,x) = 1 and therefore ∇Ψ (t,x) = 0.
Furthermore, along the flow �2 we have that

∇Ψ (t,x) ·
(

1
f (t,x,u2(p))

)
≡ 1,

and along �1, setting u1(p) = u1(τ(p), p),

∇Ψ(t,x) ·
(

1
f (t,x,u1(p))

)
= 1+

∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p).

The tangent plane to S at (t,x) can be described as

T(t,x)S =

{
(α,z) ∈R

n+1 :
∂Ψ
∂ t

(t,x)α+
∂Ψ
∂x

(t,x)z = 0

}
,

and two vectors (1,v)T and (1,w)T point to the same side of T(t,x)S at (t,x)
if and only if ∇Ψ (t,x) · (1

v

)
and ∇Ψ(t,x) · ( 1

w

)
have the same sign. Hence, it
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follows that the switching point at (τ(p), p) is a transversal crossing if and only

if 1+∇τ(p)
(
∂x2
∂ p (τ(p), p)

)−1
k(p) is positive, while it is a transversal fold if and

only this quantity is negative. ��

We shall return to the question of how to compute ∇τ(p)
(
∂x2
∂ p (τ(p), p)

)−1

efficiently below once we have established the main results.

Definition 6.1.3 (Field of broken extremals). We say that the Cr-parameterized
family E = E 1 ∗ E2 of broken extremals defines a field of broken extremals over
the domain D if (i) each of the two flows �i : Di → Gi = �i(Di), is a C1,r-
diffeomorphism on the domains Di and (ii) the combined flow map

� : D→G =�(D), (t, p) �→ (t,x(t, p)) =

{
(t,x1(t, p)) for (t, p) ∈ D1,

(t,x2(t, p)) for (t, p) ∈ D2,

is injective. The sets G and Gi are defined as the images under these flows, and we
have that G = G1∪S ∪G2.

Theorem 6.1.1. Let E = E 1 ∗ E2 be a Cr-parameterized field of normal broken
extremals. If E has transversal crossings at all switching points in T = {(t, p) :
t = τ(p), p ∈ P}, then the associated value function V E : G→ R, VE = C ◦�−1,
is a continuously differentiable solution to the Hamilton–Jacobi–Bellman equation
on G.

Proof. It needs to be shown that the value VE remains continuously differentiable
on the switching surface S . The fact that the Hamilton–Jacobi–Bellman equation
remains valid on S then is immediate.

Let (t0,x0) = (t0,x(t0, p0)) ∈ S . There exist C0,1 extensions u0 and u1 of the
controls onto a small open neighborhood W of (t0, p0), and since E has a regular
switching at (t0, p0), without loss of generality, we may assume that the flow maps
�i, i = 1,2, are diffeomorphisms on W with images G̃i ⊃ Gi. Let C1 and C2 be the
corresponding extensions of the cost functions defined in the proof of Lemma 6.1.1,
i.e., for i = 1,2 and all (t, p) ∈W we have that

Ci(t, p) =
∫ τ(p)

t
L(s,xi(s, p),ui(s, p))ds+C(τ(p), p).

Then the functions Ṽi : G̃i → R, Ṽi = Ci ◦�−1
i , are well-defined and continuously

differentiable on G̃i. However, since the maximum condition on the controls is
satisfied only on Di, the functions Ṽi are solutions to the Hamilton–Jacobi–Bellman
equation only on Gi = �i(Di), and there they agree with the values VE

i of the
individual parameterized families. This, and the fact that the identities below are
valid on the sets Di, follows from Theorem 5.2.1:
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∂V E
i

∂ t
(t,xi(t, p)) =−H(t,λ (t, p),xi(t, p),ui(t, p)),

∂V E
i

∂x
(t,xi(t, p)) = λ (t, p).

But these formulas, coupled with the continuity of the trajectories, the multipliers,
and the Hamiltonian on the switching surface, imply that the gradients of V E

1 and
VE

2 are equal on S . Thus, VE
1 and VE

2 are continuously differentiable functions
defined in a neighborhood of S that along with their gradients agree for points on
S . Hence, the composite function V E : G→R defined by

V (t,x) =

{
VE

1 (t,x) for (t,x) ∈ G1∪S ,

VE
2 (t,x) for (t,x) ∈ G2,

is continuously differentiable on S with ∇V E = ∇VE
1 = ∇VE

2 . ��
Corollary 6.1.1. Let E be a C1-parameterized field of normal broken extremals
with regular transversal crossings over its domain D. Let G =�(D), G =�(D)∪N,
and let VE : G → R, VE = C ◦�−1, be the corresponding value function and
u∗ : G → U, u∗ = u ◦�−1, the corresponding feedback control. Then VE is a
continuously differentiable solution to the Hamilton–Jacobi–Bellman equation on
G that has a continuous extension to the terminal manifold N. The feedback control
is optimal on G (i.e., in comparison to any other control for which the corresponding
trajectory lies in G), and the corresponding value function is given by VE . �
Example 6.1.2 (Time-optimal control to the origin for the harmonic oscillator).
The canonical example that illustrates these features is given by the optimal
synthesis for the time-optimal control problem to the origin for the harmonic
oscillator. Again, this is a time-independent control problem, and the flow is given
by �(t, p) = x(t, p) with p a one-dimensional parameter.

Figure 6.3 once more shows the optimal synthesis for this problem (see Sect.2.6.4):
optimal trajectories enter the origin along the semicircles

Γ+ = {x ∈ R
2 : (x1− 1)2 + x2

2 = 1, x2 ≤ 0}

(with control u =+1) and

Γ− = {x ∈ R
2 : (x1 + 1)2 + x2

2 = 1, x2 ≥ 0}

(with control u =−1). Let Γ̃+ and Γ̃− denote the relatively open curves

Γ̃+ = {x ∈ R
2 : (x1− 1)2 + x2

2 = 1, x2 < 0}
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Fig. 6.3 Synthesis of optimal controlled trajectories to the origin for the harmonic oscillator

and
Γ̃− = {x ∈R

2 : (x1 + 1)2 + x2
2 = 1, x2 > 0}.

These are one-dimensional, real-analytic embedded submanifolds from which
trajectories are integrated backward for controls that alternate between u = +1
and u = −1 with switchings occurring every π units of time. The corresponding
switching surfaces are easily described in the state space. For example, integrating
the flow for u =+1 backward from Γ̃− for π units of time generates the semicircle

S1 = {x ∈ R
2 : (x1− 3)2 + x2

2 = 1, x2 < 0}.

Geometrically, this simply is the semicircle Γ̃+ shifted to the right by 2 units. Since
the endpoints, for which x2 = 0, are excluded, both flows for u=+1 and u =−1 are
transversal to S1 everywhere, and thus the combined flow has a transversal crossing.
This is repeated for every other switching. And the same holds for trajectories
integrated backward from Γ̃+. Thus the associated value function VE is continuously
differentiable everywhere in R

2 with the exception of the two special trajectories
shown as solid curves in Fig. 6.3 that are obtained by integrating the full curves
Γ+ and Γ− backward. These controlled trajectories have switching times exactly
for t = −nπ for n = 0,1,2, . . .. It was shown in Sect. 2.6.4 that these are strictly
abnormal extremals, and indeed it is easily verified that the value function no longer
is differentiable in R

2 along these trajectories. Also, note that the flow would be
tangential to the switching curves at these points if we were to include the endpoints
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into the parameterized family of extremals. In principle, this could be done (and this
then is an example for such a family with both normal and abnormal extremals),
but we would need to allow for the parameter set P to be a manifold with boundary.
Also, as for the time-optimal control problem to the origin, we can easily include
the last pieces along Γ̃+ and Γ̃− in the parameterized family, and then once again,
trajectories collapse onto these lower-dimensional submanifolds.

6.1.3 Transversal Folds

Transversal folds, on the other hand, typically correspond to surfaces where optimal-
ity of the combined flow ceases. Essentially, under some regularity assumptions,
in this case the switching surface S is made up of controlled trajectories (ξ ,η)
that are control envelopes in the sense of Definition 5.4.5. If it then can be argued
that controlled trajectories that lie in S cannot be optimal, using the envelope
theorem (Corollary 5.4.2), it can be shown that S consists of “conjugate points”
where optimality ceases. An argument along these lines often invokes that controls
corresponding to controlled trajectories that lie in S must be singular and that
singular controls are not optimal. However, to make this reasoning precise, specific
models need to be considered. Quite simply, for systems with an arbitrary control
set U , there is no reason to believe that the switching surface S supports controlled
trajectories (ξ ,η) to begin with. We therefore here restrict our presentation to the
time-optimal control problem to a point for a time-invariant, single-input system

Σ : ẋ = f (x)+ ug(x), |u| ≤ 1, x ∈ R
n.

Theorem 6.1.2. Let E = E 1 ∗E2 be a C1-parameterized family of normal broken
extremals for the time-optimal control problem to a point for the system Σ . Suppose
that the controls u1 and u2 are given by the bang controls u =±1 with a transversal
fold at T = {(t, p) : t = τ(p), p ∈ P} and switching surface

S = {x : ξ (p) = x(τ(p), p), p ∈ P}=�(T ).

In this case, the switching surface S supports controlled trajectories of the system
Σ , and these are singular arcs. If singular controlled trajectories that lie in S
are slow (i.e., violate the Legendre–Clebsch condition), then optimality of the flow
ceases at S .

Proof. Let X = f − g and Y = f + g. By assumption, the vector fields X and Y
point to opposite sides of the hypersurface S at every point. We claim that there
exists a continuous function η : S → (−1,1), x �→ η(x), defined on S with values
in the open interval (−1,1), such that the vector field S(x) = f (x) + η(x)g(x)
is everywhere on S tangent to S . Since the family of broken extremals has
regular switching points, S = �(T ) is a codimension-1 embedded submanifold
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that locally can be represented as the zero set of some C1-functionΨ , S = {x ∈
W :Ψ(x) = 0}, for which the gradient ∇Ψ (x) is not zero on S (see Eq. (6.6)). The
vector field S is tangent to the switching surface S if and only if the Lie derivative
ofΨ in the direction of S vanishes on S . Hence the function u simply is the solution
to the equation LSΨ(x) = ∇Ψ(x) · ( f (x)+ ug(x)) = 0, i.e.,

η(x) =−LfΨ(x)

LgΨ(x)
=−LX+YΨ(x)

LY−XΨ(x)
=

LXΨ (x)+LYΨ(x)
LXΨ (x)−LYΨ(x)

.

This defines a continuous function that since LXΨ (x) and LYΨ(x) have opposite
signs, takes values in the open interval (−1,1). Hence η is an admissible feedback
control on S .

The integral curves of this vector field S thus are controlled trajectories (ξ ,η) of
Σ that lie on the switching surface S . These integral curves are control envelopes
for the system: since the switching points are regular, the restriction of the flow to
D1, �1 =� � D1, extends as a local diffeomorphism into a neighborhood of T . The
trajectory ξ = ξ (s) lies in S , and therefore

�
−1
1 (ξ (s)) = (t(s), p(s)) ∈ D1∩T

with t(s) = τ (p(s)). Thus, if we take τ̃(s)≡ s, then we have

ξ (τ̃(s)) = x(t(s), p(s)),

and we need to show that Eq. (5.56) in Definition 5.4.5 holds, i.e., that

H(λ (t, p),ξ (τ̃),η(τ̃))dτ̃ = H(λ (t, p),x(t, p),u1(t, p))dt. (6.7)

(We changed the notation for the reparameterization in this definition to τ̃ , since
here τ already has been used to denote the switching time.)

Since the problem is time-invariant and the terminal time is free, we have on all
of D1 that

H = H(λ (t, p),x(t, p),u1(t, p))≡ 0,

so that the right-hand side of Eq. (6.7) vanishes. But so does the left-hand side:
for normal extremals, the Hamiltonian is given by H = 1 + 〈λ , f (x)+ ug(x)〉,
and along the switching points, the parameterized switching function Φ(t, p) =
〈λ (t, p),g(x(t, p))〉 vanishes identically,Φ(τ(p), p) ≡ 0. Hence for all p ∈ P,

1+ 〈λ (τ(p), p), f (x(τ(p), p))〉 ≡ 0,

and thus since ξ (τ̃) = x(t, p) = x(τ(p), p), we in fact have for any control η that

H(λ (t, p),ξ (τ̃),η(τ̃)) = 1+ 〈λ (τ(p), p), f (x(τ(p), p))〉+ 0 ·η(τ̃)≡ 0.
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x(⋅,p0)

x(τ(p0),p0) ξ(⋅)

x(τ(p1),p1)

Fig. 6.4 Construction of an
envelope for a transversal fold

Thus condition (6.7) is trivially satisfied along controlled trajectories that lie in the
switching surface.

Corollary 5.4.2 can now be used to exclude the optimality of the parameterized
family E1: we show that for any p ∈ P, the controlled trajectory x(·, p) is not time-
optimal for t ≤ τ(p). Fix a parameter p0 and let t0 ≤ τ(p0). The value along the
controlled trajectory Γ0 = (x(·, p0),u(·, p0)) with initial point x(t0, p0) is given by
C(t0, p0). We construct a second controlled trajectory Γ1 as follows: for t0 ≤ t ≤
τ(p0), follow the controlled reference trajectory; then, for some small positive time
ε > 0, follow the controlled trajectory (ξ ,η) that is the integral curve of the vector
field S(x) = f (x)+η(x)g(x) and starts at the point ξ (0) = x(τ(p0), p0) ∈S . The
point ξ (ε) still lies on S , and thus there exists a unique parameter value p1 such
that ξ (ε) = x(τ(p1), p1). We then follow the controlled trajectory (x(·, p1),u(·, p1))
for the full interval [τ(p1), t2,+(p1)] of definition in E2 (see Fig. 6.4).

The cost for the comparison trajectory Γ1 is given by

C(t0, p0)−C(τ(p0), p0)+ ε+C(τ(p1), p1).

But by Corollary 5.4.2 we have that

C(τ(p0), p0) = ε+C(τ(p1), p1),

and thus Γ0 and Γ1 take the same time C(t0, p0). However, since the control values
η for the controlled trajectory ξ lie in the interior of the control interval [−1,1], this
piece of the comparison trajectory is a singular arc. By assumption, this arc is slow,
and thus Γ1 is not time-optimal. Since Γ0 takes the same time, Γ0 is not time-optimal
either. ��
Examples of this type arise in the context of slow singular arcs like the one analyzed
for time-optimal control in the plane in Sect. 2.9.3. We shall return to this topic
also in Chap. 7 when we consider time-optimal control problems in R

3, where once
more, transversal fold points limit the optimality of bang-bang trajectories near slow
singular arcs.
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Fig. 6.5 Self-intersection properties of trajectories in the time-dependent (left) and time-
independent cases (right)

We note that several of the arguments made in the proof of Theorem 6.1.2 are
applicable if we consider only the first parameterized family E1. If the switching
point for t = τ(p) is regular, and if there exists a controlled trajectory (ξ ,η) that
lies in the switching surface S , then it follows that (ξ ,η) is a control envelope.
For example, this applies to Example 6.1.1, the time-optimal control problem to
the origin for the double integrator. In fact, the switching curves Γ+ and Γ− are
control envelopes in the sense of Definition 5.4.5, and the envelope condition of
Theorem 5.4.2 is satisfied. However, in this case, the switching is not a transversal
fold, but the second flow follows the switching surface and the control η lies in the
boundary of the control set. Thus the step in the argument that implies nonoptimality
is not applicable. Similar features arise if the switching surface consists of fast
(locally minimizing) singular arcs, and then the flow follows these controlled
trajectories. We shall give a detailed example in Sect. 6.2.

6.1.4 Local Analysis of a Flow of Broken Extremals

We now localize the results above. For these formulations, there is one significant
difference between the time-dependent and time-independent formulations. The
curves in the flow for a time-dependent problem are the graphs of the controlled
trajectories, and these cannot self-intersect. This property is not guaranteed for a
time-independent system and needs to be assumed (see Fig. 6.5).

Proposition 6.1.2. Let E be an n-dimensional Cr-parameterized family of normal
broken extremals for a time-dependent optimal control problem with domain D =
{(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)} and switching times

t−(p) = τ0(p)< τ1(p)< · · ·< τk(p)< τk+1(p) = t+(p).
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Let p0 ∈ P determine a reference controlled trajectory (x(·, p0),u(·, p0)) and
suppose that (i) the matrix ∂xi

∂ p (t, p0) is nonsingular on the intervals τi(p0) ≤ t ≤
τi+1(p0) for i = 0, . . . ,k, and (ii) the trajectory x(·, p0) has regular and transversal
crossings at all switchings. Then there exists a neighborhood W ⊂ P of p0 such that
the restriction of E to {(t, p) : t−(p)≤ t≤ t+(p), p∈W} defines a Cr-parameterized
field of normal broken extremals that has regular and transversal crossings.

Proof. Without loss of generality, we consider the case k = 1 and denote the
switching times by τ(p). By assumption, the flows �1 and �2, �i(t, p) = (t,x(t, p)),
are regular along the reference controlled trajectory. Thus, by the inverse function
theorem, for every time t ∈ [t−(p0),τ(p0)] and t ∈ [τ(p0), t+(p0)] there exists a
neighborhood Ot of (t, p0) of the form Ot = (t − εt , t + εt)×Wt ⊂ D, so that
the restriction of the flow map �i to Ot is a Cr-diffeomorphism. Since we have
regular switchings, the endpoints of the intervals can be included. By compactness,
we can select finite subcovers of the curve t �→ x(t, p0). Overall, there thus exist
neighborhoods W1 and W2 of p0 such that the flows �1 and �2, restricted to
the domains D̃1 = {(t, p) : p ∈ W1, t−(p) ≤ t ≤ τ(p)} and D̃2 = {(t, p) : p ∈
W2, τ(p) ≤ t ≤ t+(p)}, are Cr-diffeomorphisms. Furthermore, since we have a
transversal crossing at (τ(p0), p0), the combined flow is injective in a neighborhood
of (τ(p0), p0) as well, and thus the restriction of E to D defines a Cr field of broken
extremals. ��

For a time-invariant problem, we need to add the condition that the reference
controlled trajectory not self-intersect. Then, locally, the same argument can be
made.

Proposition 6.1.3. Let E be an (n− 1)-dimensional Cr-parameterized family of
normal broken extremals for a time-independent optimal control problem with
domain D = {(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)} and switching times

t−(p) = τ0(p)< τ1(p)< · · ·< τk(p)< τk+1(p) = t+(p).

Let p0 ∈ P determine a reference controlled trajectory (x(·, p0),u(·, p0)) and
suppose that (i) the matrix ∂xi

∂ p (t, p0) is nonsingular on the intervals τi(p0) ≤ t ≤
τi+1(p0) for i = 0, . . . ,k, (ii) the trajectory x(·, p0) has regular and transversal
crossings at all switchings, and (iii) there are no self-intersections along the
reference trajectory, i.e., the mapping x(·, p0) : [t−(p0), t+(p0)]→M, t �→ x(t, p0), is
injective. Then there exists a neighborhood W ⊂ P of p0 such that the restriction of
E to {(t, p) : t−(p)≤ t ≤ t+(p), p ∈W} defines a Cr-parameterized field of normal
broken extremals that has regular and transversal crossings. �

Under the assumptions of either Proposition 6.1.2 or 6.1.3, the combined flow
� piecewise is a diffeomorphism on the domain D, and the parameterized value
function C gives rise to a continuously differentiable solution to the Hamilton–
Jacobi–Bellman equation on G =�(D) with the associated local optimality results.
Thus, in order to obtain results about local optimality, we need conditions to verify
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that the flow is regular and has transversal crossings. For a time-dependent problem,
we already gave characterizations of the regularity of the flow in Sect. 5.3, and these
results apply. In this case, if E is a nicely C1-parametrized family of normal extremal
lifts, then as long as the flow is regular, the function

Z(t, p) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1

satisfies the differential equation

Ż +Z fx + f T
x Z +Hxx +(Z fu +Hxu)

∂u
∂ p

(
∂x
∂ p

)−1

≡ 0 (6.8)

with the partial derivatives of f and H evaluated along the extremal corresponding
to the parameter p. If the control takes values in the interior of the control set, then,
as shown in Sect. 5.3, one can solve the equation ∂H

∂u = 0 for ∂u
∂ p , and this becomes

a Riccati differential equation whose explosion times correspond to the times when
regularity of the flow ceases (e.g., Theorems 5.3.2 and 5.3.3). The situation becomes
considerably simpler for the case of bang-bang controls, a common situation with
broken extremals. In this case, the control u= u(t, p) is constant along the individual
domains and thus ∂u

∂ p = 0. Hence Eq. (6.8) simplifies to the linear Lyapunov
differential equation

Ż +Z fx + f T
x Z +Hxx ≡ 0, (6.9)

and solutions to this linear equation always exist. It therefore follows from
Proposition 2.4.1 that ∂x

∂ p (t, p) is nonsingular if and only if it is nonsingular at the
initial (or terminal) time. This gives the following result:

Corollary 6.1.2. Let E be a nicely C1-parameterized family of normal extremal
lifts for a time-dependent control problem and let Γp : [t−(p), t+(p)]→M×U be an
extremal for which the corresponding control does not depend on p, i.e., ∂u

∂ p(t, p)≡0.

Then ∂x
∂ p(t, p) is nonsingular over [t−(p), t+(p)] if and only if the matrix ∂x

∂ p(t, p) is
nonsingular at the initial time or terminal time. �

It is clear from the uniqueness of solutions to a differential equation that the
flow � corresponding to a constant control cannot have singularities. (In the time-
dependent case, this holds as well, since the flow consists of the graphs of the
controlled trajectories.) Conjugate points can thus occur only at the switching
points, and typically these are transversal folds. While it may be easy to check
directly for some problems whether the switchings are transversal crossings or folds
(e.g., see the time-optimal control problem to the origin for the harmonic oscillator),
for a general nonlinear system this brings us back to the criteria established in
Proposition 6.1.1. Indeed, there exist effective ways to evaluate these formulas
whenever the switchings occur on surfaces that are defined as the zero sets of
smooth functions in (t, p)-space. For example, for bang-bang trajectories, typically
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the parameterizations t = τ(p) of the switching surfaces are obtained by solving an
equation of the typeΦ(t, p) = 0 given by some switching function for t. This indeed
allows us to calculate the quantity

∂τ
∂ p

(p)

(
∂x
∂ p

(τ(p), p)

)−1

without having to take partial derivatives with respect to the parameter p or matrix
inversions. However, the specifics depend on the form of the dynamics. We illustrate
the procedure for a nonlinear regulator problem for a single-input, control-affine
system. Systems of this type are common and arise, for example, in models for
cancer chemotherapy over a prescribed therapy horizon (e.g., see [155, 156]).

[OC-BB] For a fixed terminal time T , consider the optimal control problem
to minimize an objective of the form

J(u) =
∫ T

t0
(L(x)+ u)dt +ϕ(x(T ))

subject to the dynamics

ẋ = f (x)+ ug(x), 0≤ u≤ 1, x ∈ R
n.

Extremals for this problem are normal: The Hamiltonian is given by

H = λ0 (L(x)+ u)+λ ( f (x)+ ug(x))

and the adjoint equation and terminal condition are

λ̇ =−λ (D f (x)+ uDg(x))−λ0∇L(x), λ (T ) = λ0∇ϕ(x(T )).

Thus, if λ0 = 0, then λ vanishes identically, contradicting the nontriviality of the
multipliers. We thus set λ0 = 1. A parameterized family of extremals can then
be constructed by integrating the dynamics and adjoint equation backward from
the terminal time, choosing p = x(T ) as parameter and enforcing the minimum
condition. The parameterized switching function is given by

Φ(t, p) = 1+λ (t, p)g(x(t, p)),

and the control in the parameterized family of extremals satisfies

u(t, p) =

{
1 ifΦ(t, p)< 0,

0 ifΦ(t, p)> 0.
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Suppose controls are bang-bang and let t = τ(p) define a switching surface S .
This function is the solution of the equation Φ(t, p) = 0 near a switching point
(t0, p0) of the reference trajectory, and by the implicit function theorem such a
solution exists locally if the time derivative Φ̇(t0, p0) does not vanish. It then follows
from implicit differentiation that

Φ̇(τ(p), p)
∂τ
∂ p

(p)+
∂Φ
∂ p

(τ(p), p) ≡ 0.

DifferentiatingΦ(t, p) with respect to p, and using Z(t, p)= ∂λT

∂ p (t, p)
(
∂x
∂ p(t, p)

)−1
,

we have that

∂Φ
∂ p

(t, p) =

(
∂λ
∂ p

(t, p)g(x(t, p))

)T

+λ (t, p)Dg(x(t, p))
∂x
∂ p

(t, p)

=

(
λ (t, p)Dg(x(t, p))+ gT (x(t, p))Z(t, p)

)
∂x
∂ p

(t, p).

Setting t0 = τ(p0) and x0 = x(t0, p0), we thus get that

∂τ
∂ p

(p0)

(
∂x
∂ p

(t0, p0)

)−1

=−λ (t0, p0)Dg(x0)+ gT (x0)Z(t0, p0)

Φ̇(t0, p0)
.

Further simplifications in the transversality condition (6.4) can be made because of
the special form of the dynamics. Let us denote the left- and right-hand limits of
functions at the switching surface by a − and + sign, respectively, and denote the
jump in the control at the switching surface by Δu = u+− u−. It then follows from
the minimization property of the controls that Δu =−sgn Φ̇(t0, p0), and thus

1+
∂τ
∂ p

(p0)

(
∂x2

∂ p
(t0, p0)

)−1

Δug(x0)

= 1+
1

|Φ̇(t0, p0)|
(
λ (t0, p0)Dg(x0)+ gT (x0)Z(t0, p0)

)
g(x0)> 0.

Summarizing, we have the following result:

Theorem 6.1.3. Suppose a reference control u(·, p0) for the optimal control prob-
lem [OC-BB] has a bang-bang switch at t0 with Φ̇(t0, p0) = 0. Then the switching
surface S is an n-dimensional embedded submanifold near (t0,x0), x0 = x(t0, p0),
and there exists a continuously differentiable function τ defined in some neighbor-
hood W of p0 such that S = {(t,x) : t = τ(p), x = x(τ(p), p), p ∈W}. Assuming
that ∂x

∂ p (t0+, p0) is nonsingular, the combined flow � : (t, p) �→ (t,x(t, p)) has a
regular and transversal crossing at (t0,x0) if and only if

|Φ̇(t0, p0)|+
{
λ (t0, p0)Dg(x0)+ gT (x0)Z+(t0, p0)

}
g(x0)> 0. (6.10)
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Except for the value of the matrix Z+(t0, p0), all the quantities in (6.10) are
continuous at the switching time and are readily available or easily computed. But
the matrix Z is discontinuous at the switching times and needs to be propagated
backward recursively as solution to the Lyapunov equation (6.9) from the terminal
time T . Note that we have x(T, p)≡ p and λ (T, p) = ∇ϕ(p), so that

Z−(T, p) =
∂λ T

∂ p
(T, p)

(
∂x
∂ p

(T, p)

)−1

=
∂ 2ϕ
∂x2 (p).

Then the value of Z+(t0, p0) for the last switching simply is the solution to Eq. (6.9)

with this terminal condition. However, the partial derivatives ∂x
∂ p and ∂λT

∂ p are
discontinuous at the switching surface, and it becomes necessary to update these
formulas. In order to simplify the appearance of these formulas, we drop the
arguments. The function τ is evaluated at p, states x and multipliers λ are evaluated
at (τ(p), p), and the left-and right-hand limits of Z,Z− and Z+ are also evaluated at
(τ(p), p). It follows from Eq. (6.3) that

∂x−
∂ p

=
∂x+
∂ p

+Δug(x)
∂τ
∂ p

,

and analogously, we have for the multipliers that

∂λ T−
∂ p

=
∂λ T

+

∂ p
−ΔuDg(x)Tλ T ∂τ

∂ p
.

Hence

Z− =
∂λ T−
∂ p

(
∂x−
∂ p

)−1

=

(
∂λ T

+

∂ p
−ΔuDg(x)Tλ T ∂τ

∂ p

)(
∂x+
∂ p

+Δug(x)
∂τ
∂ p

)−1

Let

R = R(p) =− ∂τ
∂ p

(p)

(
∂x+
∂ p

(τ(p), p)

)−1

Δu =
λDg(x)+ gT (x)Z+∣∣Φ̇∣∣ ,

so that

Z− =

(
∂λ T

+

∂ p

(
∂x+
∂ p

)−1

−ΔuDg(x)Tλ T ∂τ
∂ p

(
∂x+
∂ p

)−1
)(

∂x+
∂ p

)

×
(
∂x+
∂ p

+Δug(x)
∂τ
∂ p

)−1

=
(
Z++Dg(x)Tλ T R

)(∂x+
∂ p

)(
∂x+
∂ p

+Δug(x)
∂τ
∂ p

)−1

.
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Furthermore,

1−Rg(x) = 1+
∂τ
∂ p

(
∂x+
∂ p

)−1

Δug(x),

and this term is positive for a transversal crossing. It then follows from Lemma 6.1.4
that

(
∂x+
∂ p

)(
∂x+
∂ p

+Δug(x)
∂τ
∂ p

)−1

= Id−
Δug(x) ∂τ∂ p

(
∂x+
∂ p

)−1

1−Rg(x)
= Id+

g(x)R
1−Rg(x)

,

and thus we get that

Z− =
(
Z++Dg(x)Tλ T R

)(
Id+

g(x)R
1−Rg(x)

)
,

giving us the following update formula for Z(t, p) at the switching t = τ(p):

Lemma 6.1.5. Suppose an extremal controlled trajectory has a bang-bang switch-
ing at the point (t0,x0), x0 = x(t0, p0), and

∣∣Φ̇(t0, p0)
∣∣ = 0. If this switching is a

transversal crossing, then with

R(t0, p0) =
λ (t0, p0)Dg(x0)+ gT (x0)Z+(t0, p0)∣∣Φ̇(t0, p0)

∣∣ , (6.11)

the left-sided limit for Z(t0, p0) is given by

Z−(t0, p0) =
(
Z+(t0, p0)+Dg(x0)

Tλ (t0, p0)
T R(t0, p0)

)(
Id+

g(x0)R(t0, p0)

1−R(t0, p0)g(x0)

)
.

(6.12)

This formula provides the required terminal value on the left-hand side of the
switching surface, and then the solution Z can be propagated further backward by
integrating the Lyapunov equation (6.9). Altogether, a simple algorithmic proce-
dure results to check whether successive switching surfaces are regular (R(t0, p0)
g(x0) = 1) and consist of transversal crossings (R(t0, p0)g(x0) < 1) or folds
(R(t0, p0)g(x0)> 1).

For time-independent problems, similar characterizations of the regularity of the
flow � can be given, but in this case the matrix

Z(t, p) = Dλ T (t, p) ·Dx(t, p)−1

needs to be considered with D denoting the matrix of partial derivatives with respect
to all variables (t, p).
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6.2 A Mathematical Model for Tumor Antiangiogenic
Treatment

We give an example of a parameterized family of broken extremals that includes
singular arcs. Similar to the flow of bang-bang trajectories for the double integrator,
the flow � collapses onto a lower-dimensional manifold as the controls follow
singular arcs and no longer covers a full set in the state space. However, as we shall
see, this does not invalidate the constructions, and the value of the parameterized
family still is a solution of the Hamilton–Jacobi–Bellman equation on those sections
of the parameterized family along which the flow is a diffeomorphism. The
scenario considered here is typical for syntheses involving optimal singular arcs
in low dimensions. We give it as an illustration and to show the flexibility of the
constructions. We consider the following optimal control problem formulated in the
customary notation for this application:

[A] For a free terminal time T , minimize the value p(T ) subject to the dynamics

ṗ =−ξ p ln

(
p
q

)
, p(0) = p0, (6.13)

q̇ = bp− d p
2
3 q− μq− γuq, q(0) = q0, (6.14)

ẏ = u, y(0) = 0, (6.15)

over all Lebesgue measurable functions u : [0,T ]→ [0,a] for which the corre-
sponding trajectory satisfies y(T )≤ A.

It is not difficult to see that the set M = {(p,q,y) : p > 0, q > 0, 0≤ y≤ A} has
the following invariance property [160]: given any admissible control u : [0,T ]→
[0,a], the solution to the dynamics (6.13)–(6.15) exists over the interval [0,T ] and its
trajectory lies in M. Hence it is not necessary to impose any state-space constraints
in the model. The limits in the variable y are easily handled, and the essential part
of the state space is the positive quadrant in p and q, an open subset of R2.

This is a mathematical model for antiangiogenic treatment of a solid tumor
formulated by Hahnfeldt, Panigrahy, Folkman, and Hlatky in [114]. The model is
based on cell populations and aggregates the main biological features into minimally
parameterized equations with two principal variables, the primary tumor volume,
p, and the carrying capacity of its vasculature, q. In the forthcoming text [166]
on applications of methods of geometric optimal control to biomedical models,
a detailed derivation of these equations (based on an asymptotic expansion of
an underlying diffusion–consumption equation) will be given and the biological
background will be explained in more detail. Here, we are interested in its
mathematical aspects and thus only briefly indicate the underlying medical problem.

A growing solid tumor, in its initial stage of so-called avascular growth, is able to
obtain enough nutrients and oxygen from its surrounding environment. However, as
it reaches about 2 mm in diameter, this is no longer the case, and most tumor cells
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enter a dormant stage of the cell cycle. This causes a release of stimulators, such
as VEGF (vascular endothelial growth factor), that cause the migration of existing
blood vessels as well as the creation of new ones that supply the tumor with nutrients
and thus enable its further growth. This process is called tumor angiogenesis and
is essential in the further growth of the tumor. The resulting network of blood
vessels and capillaries is called the tumor vasculature. Tumor antiangiogenesis is
a treatment approach that aims at depriving the tumor of this needed vasculature.
Ideally, without an adequate support network, the tumor shrinks, and its further
development is halted. This approach was proposed already in the early seventies
by J. Folkman, but became a medical reality only in the nineties with the discovery
of inhibitory mechanisms.

In the model above, tumor growth is described by a so-called Gompertzian
growth function, Eq. (6.13), and its carrying capacity, the variable q, can be
interpreted as the ideal size to which the tumor can grow. If q > p, the tumor
has ample nutrients available and will proliferate, while it will shrink if p > q.
The dynamics for the carrying capacity q, Eq. (6.14), consists of the difference
of a stimulatory effect, S = bp, that is taken proportional to the tumor size, and
an inhibitory effect, I = d p

2
3 q, that arises through the interaction of antiangiogenic

inhibitors that are released through the tumor surface with the vasculature. The extra
term μq represents natural death, and γuq models additional loss to the vasculature
achieved through the administration of outside inhibitors. This term represents the
control in the model. In this simplified version, the drug’s dosage is identified with
its concentration, and the maximum dosage is denoted by a. Angiogenic inhibitors
are expensive biological agents in limited supply. Thus, the optimal control problem
arises as to how a given amount of antiangiogenic agents can be applied in the best
possible way. In problem [A], this is formulated by asking for the maximum tumor
reduction that can be achieved with a given amount A of antiangiogenic agents.
This leads to an optimal control problem with free terminal time T that represents
the time when this minimum is achieved. Equation (6.15) simply accounts for the
amount of inhibitors that already have been used, and the addition of such an extra
state variable is the standard way of including isoperimetric constraints.

Assuming b > μ , the uncontrolled system (u = 0) has a unique equilibrium

point at (p̄, q̄) given by p̄ = q̄ =
(

b−μ
d

)3/2
, which can be shown to be globally

asymptotically stable [87]. Its value generally is too high to be acceptable, and this
equilibrium state is malignant. The medically relevant region is contained in the
domain

D = {(p,q) : 0 < p < p̄, 0 < q < q̄}.
In order to exclude irrelevant discussions about the structure of optimal controls
in regions where the model does not represent the underlying medical problem to
begin with, we henceforth restrict our discussions to this square domain D .
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6.2.1 Preliminary Analysis of Extremals

In [160], we have given a complete solution to this optimal control problem, and
we refer the interested reader to our text [166] for a full discussion and numerous
further extensions. Here we focus on one specific aspect and make some simplifying
assumptions. For example, for initial data (p0,q0) with p0 < q0, i.e., when the tumor
is proliferating, then, since ṗ is always positive in the set {p < q}, it is possible that
the amount of inhibitors is insufficient to reach a tumor volume that is smaller than
p0. For such a case, the optimal solution to problem [A] is simply given by T = 0.
However, if A is large enough, this degenerate situation does not arise, and then the
optimal terminal time T will be positive and all inhibitors will be used up, y(T ) = A.
We consider only these well-posed data.

We start with an overview of basic properties of optimal controls for this problem.
The Hamiltonian H is given by

H =−λ1ξ p ln

(
p
q

)
+λ2

(
bp−

(
μ+ d p

2
3

)
q− γuq

)
+λ3u. (6.16)

If u is an optimal control defined over the interval [0,T ] with corresponding
trajectory (p,q,y), then there exist a constant λ0 ≥ 0 and an absolutely continuous
covector λ : [0,T ]→ (R3)∗ such that the following conditions hold:

1. (Nontriviality condition) (λ0,λ (t)) = (0,0) for all t ∈ [0,T ],
2. (Adjoint equations) λ3 is constant, nonnegative, and λ1 and λ2 satisfy the

equations

λ̇1 =−∂H
∂ p

= ξλ1

(
ln

(
p
q

)
+ 1

)
+λ2

(
2
3

d
q

p
1
3

− b

)
, (6.17)

λ̇2 =−∂H
∂q

=−ξλ1
p
q
+λ2

(
μ+ d p

2
3 + γu

)
, (6.18)

with terminal conditions

λ1(T ) = λ0 and λ2(T ) = 0,

3. (Minimum condition) for almost every time t ∈ [0,T ], the optimal control u(t)
minimizes the Hamiltonian along (λ (t), p(t),q(t)) over the control set [0,a] with
minimum value given by 0.

The nonnegativity condition on the multiplier λ3 follows from the terminal
constraint y(T ) ≤ A. A first observation is that if λ0 = 0, then λ1 and λ2 vanish
identically, and in this case λ3 must be positive. Hence, the control is u ≡ 0, which
corresponds to ill-posed data that we have excluded. Thus, extremals for well-posed
initial data are normal, and we henceforth take λ0 = 1. In particular, λ1 and λ2

cannot vanish simultaneously, and λ2 has only simple zeroes.
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Lemma 6.2.1. Along an optimal trajectory (p,q,y), all available inhibitors are
exhausted, y(T ) = A, and at the final time p(T ) = q(T ) holds.

Proof. Since the cancer volume p is growing for p < q and is shrinking for p >
q, optimal trajectories can terminate only at times for which p(T ) = q(T ). For, if
p(T ) < q(T ), then it would simply have been better to stop earlier, since p was
increasing over some interval (T − ε,T ]. (Since the initial condition is well-posed,
the optimal final time T is positive.) On the other hand, if p(T ) > q(T ), then we
can always add another small interval (T,T + ε] with the control u = 0 without
violating any of the constraints, and p will decrease along this interval if ε is small
enough. Thus, at the final time, necessarily p(T ) = q(T ). If now y(T )< A, then we
can still add a small piece of a trajectory for u = a over some interval [0,ε]. Since
p(T ) = q(T ), we have that ṗ(T ) = 0, and in D , on the diagonal it also holds that
q̇(T ) < 0. This implies that the trajectory enters the region p > q where the tumor
volume p is still decreasing further. Hence T was not the optimal time. ��

The Hamiltonian H(λ (t), p(t),q(t),u) is minimized over the interval [0,a] as a
function of u by the optimal control u(t). The switching function Φ is given by

Φ(t) = λ3−λ2(t)γq(t), (6.19)

and we have that

u(t) =

{
0 if Φ(t)> 0,

a if Φ(t)< 0,
(6.20)

while the control can be singular on an interval I where the switching function
vanishes identically. For this problem, singular controls indeed are optimal, and
a surface of singular trajectories in the state space M determines the structure of
optimal controls.

6.2.2 Singular Control and Singular Arcs

We first compute explicit formulas for the singular control and singular arc. Note
that if an optimal control is singular over an interval I, then λ3 > 0, and also λ2(t) is
positive for t ∈ I. Write the state as z = (p,q,y)T ; then the drift f and control vector
field g are given by

f (z) =

⎛
⎜⎜⎜⎜⎜⎝

−ξ p ln

(
p
q

)

bp−
(
μ+ d p

2
3

)
q

0

⎞
⎟⎟⎟⎟⎟⎠
, g(z) =

⎛
⎜⎜⎜⎝

0

−γq

1

⎞
⎟⎟⎟⎠ , (6.21)
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and their first- and second-order Lie brackets are

[ f ,g](z) = γ p

⎛
⎜⎝
ξ
−b

0

⎞
⎟⎠ , [g, [ f ,g]](z) =−γ2bp

⎛
⎜⎝

0

1

0

⎞
⎟⎠ , (6.22)

and

[ f , [ f ,g]](z) = γ p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ 2 + ξb
p
q

ξb ln

(
p
q

)
+ ξ

(
2
3

d
q

3
√

p
− b

)
−

(
μ+ d p

2
3

)
b

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.23)

If u is singular on an interval I, then all the derivatives of the switching function Φ
vanish on I (cf. Sect. 2.8), and we thus have that

Φ̇(t) = 〈λ (t), [ f ,g](z(t))〉 ≡ 0,

Φ̈(t) = 〈λ (t), [ f + ug, [ f ,g]](z(t))〉 ≡ 0.

Here, since λ2 is positive along a singular arc,

〈λ (t), [g, [ f ,g]](z(t))〉 =−λ2(t)γ2bp(t)< 0,

and thus singular controls are of order 1, the strengthened Legendre–Clebsch
condition is satisfied, and the singular control can be expressed in the form

using(t) =−〈λ (t), [ f , [ f ,g]](z(t))〉〈λ (t), [g, [ f ,g]](z(t))〉 .

The vector fields g, [ f ,g], and [g, [ f ,g]] are linearly independent everywhere, and a
direct calculation verifies that we can express [ f , [ f ,g]] in the form

[ f , [ f ,g]] =

(
ξ + b

p
q

)
[ f ,g]+ψ [g, [ f ,g]]

with

ψ = ψ(p,q) =−1
γ

(
ξ ln

(
p
q

)
+ b

p
q
+

2
3
ξ

d
b

q

p
1
3

−
(
μ+ d p

2
3

))
.
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Thus we have the following result:

Proposition 6.2.1. If the control u is singular on an open interval (α,β ) with
corresponding trajectory (p,q), then the singular control is given in feedback
form as

using(t) =
1
γ

(
ξ ln

(
p(t)
q(t)

)
+ b

p(t)
q(t)

+
2
3
ξ

d
b

q(t)

p
1
3 (t)

−
(
μ+ d p

2
3 (t)

))
. (6.24)

However, the singular control can be optimal only on a thin set. Since the terminal
time T is free, we have H ≡ 0, and thus, along a singular arc, in addition to 〈λ ,g〉≡ 0
and 〈λ , [ f ,g]〉 ≡ 0, we also must have that 〈λ , f 〉 ≡ 0. Since the multiplier λ is
nonzero (recall that λ2 must be positive along a singular arc), these three vector
fields must be linearly dependent. For this example, g is always linearly independent
of f and [ f ,g], and thus this simply becomes the set where f and [ f ,g] are linearly
dependent. This relation determines a curve in (p,q)-space given as

bp− d p
2
3 q− bp ln

(
p
q

)
− μq = 0.

It is possible to desingularize this equation with a blowup in the variables of the
form p = xq, x > 0, and in terms of the projective coordinate x we have that

μ+ d p
2
3 = bx(1− lnx) , (6.25)

which clearly brings out the geometry of the singular curve. The quotient q
p is

proportional to the endothelial density, which is used to replace the carrying
capacity of the vasculature as a variable. As it turns out, the singular curve and
its corresponding singular control can be expressed solely in terms of the variable x.
In these variables, Eq. (6.25) can be rewritten in the form

p2 +ϕ(x)3 = 0 with ϕ(x) =
bx(lnx− 1)+ μ

d
.

The function ϕ is strictly convex with a minimum at x = 1 and minimum value
μ−b

d . In particular, if μ ≥ b, then this equation has no positive solutions, and thus
no admissible singular arc exists. The case μ < b that we consider here is the only
medically relevant case. For μ = 0, the zeros of ϕ are given by x∗1 = 0 and x∗2 = e, and
ϕ is negative on the interval (0,e). In general, for μ > 0, we have ϕ(0) = μ

d = ϕ(e)
and the zeros x∗1 and x∗2 satisfy 0 < x∗1 < 1 < x∗2 < e. We thus have the following
result:

Proposition 6.2.2. The singular curve S lies entirely in the sector {(p,q) : x∗1q <
p < x∗2q}, where x∗1 and x∗2 are the unique zeros of the equation ϕ(x) = 0 and satisfy
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Fig. 6.6 The singular curve S for ξ = 0.084,b = 5.85, d = 0.00873, and μ = 0.02

0 ≤ x∗1 < 1 < x∗2 ≤ e. In the variables (p,x), with x = p
q , the singular curve can be

parameterized in the form

p2 =

(
bx(1− lnx)− μ

d

)3

for x∗1 < x < x∗2. (6.26)

Figure 6.6 shows the singular curve for the following parameter values: ξ =
0.084 per day, b = 5.85 per day, d = 0.00873 per mm2 per day, μ = 0.02 per day.
These values are based on data from [114], but we use them only for numerical
illustrations; our results are generally valid.

The next result gives an equivalent expression for the singular control along the
singular arc in terms of the scalar variable x alone. This relation is valid only on the
singular arc S , but it allows us to determine the admissible part of the singular arc,
that is, the portion of S where the singular control takes values in the interval [0,a].

Proposition 6.2.3. Along the singular curve S , the singular control can be
expressed as a function of the scalar variable x = p

q in the form

Ψ (x) =
1
γ

[(
1
3
ξ + bx

)
lnx+

2
3
ξ
(

1− μ
bx

)]
. (6.27)

There exists exactly one connected arc on the singular curve S along which the
control is admissible, i.e., satisfies the bounds 0≤Ψ ≤ a. This arc is defined over an
interval [x∗� ,x

∗
u], where x∗� and x∗u are the unique solutions to the equationsΨ(x∗�) = 0

andΨ(x∗u) = a. These values satisfy x∗1 < x∗� < x∗u < x∗2.
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Fig. 6.7 The singular control using(x) is plotted as a function of the quotient x = p
q (left) and the

singular curve S is plotted in the (p,q)-plane with the admissible part (where the singular control
takes values in the interval [0,a]) marked by the solid portion of the curve (right). Away from
this solid segment, the singular control is either negative or exceeds the maximum allowable limit
a = 75. In order to better visualize tumor reductions, p is plotted vertically and q horizontally

Figure 6.7 gives a plot of the singular control and the admissible portion of
the petal-like singular curve S for a = 75 marked as a solid curve for the same
numerical values as before. For the control, we use γ = 0.15 kg per mg of dose per
day with concentration in mg of dose per kg.

Proof. In the variables p and x, the singular control is given by

using(t) =
1
γ

(
ξ lnx(t)+ bx(t)+

2
3
ξ

d p(t)2/3

bx(t)
−

(
μ+ d p(t)2/3

))
.
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Along the singular arc, we have that p2/3 =−ϕ(x), and thus we obtain the singular
control as a feedback function of x alone, using(t) =Ψ(x(t)), in the form

Ψ (x) =
1
γ

(
ξ lnx+ bx+

2
3
ξ

bx(1− lnx)− μ
bx

− bx(1− lnx)

)

=
1
γ

[(
1
3
ξ + bx

)
lnx+

2
3
ξ
(

1− μ
bx

)]
.

Note that limx↘0Ψ(x) =−∞ and limx→∞Ψ(x) = +∞. Now

Ψ ′(x) =
1
γ

[
b(lnx+ 1)+

1
3
ξ
(

1
x
+ 2

μ
bx2

)]
,

Ψ ′′(x) =
1
γx3

(
bx2− 1

3
ξ x− 4

3
ξ
μ
b

)
,

and the second derivative has a unique positive zero at

x∗ =
1
6
ξ
b

(
1+

√
1+ 48

μ
ξ

)
.

It follows that Ψ is strictly concave for 0 < x < x∗ and strictly convex for
x > x∗. If the function Ψ has no stationary points, then Ψ is strictly increasing,
and thus, as claimed, there exists a unique interval [x∗� ,x

∗
u] on whichΨ takes values

in [0,a] and the limits are the unique solutions of the equations Ψ (x) = 0 and
Ψ(x) = a, respectively. The same holds if Ψ has a unique stationary point at x∗.
In the remaining case, it follows from the convexity properties thatΨ has a unique
local maximum at x̃1 < x∗ and a unique local minimum at x̃2 > x∗. It suffices to
show thatΨ is negative at its local maximum. For this, as before, implies thatΨ is
strictly increasing when it is positive. Suppose now thatΨ ′(x̃) = 0. Then

−b ln x̃ = b+
1
3
ξ
(

1
x̃
+ 2

μ
bx̃2

)
> 0

and thus

Ψ(x̃) =
1
γ

[(
1
3
ξ + bx̃

)(
−1− 1

3
ξ
b

(
1
x̃
+ 2

μ
bx̃2

))
+

2
3
ξ
(

1− μ
bx̃

)]

=
1
γ

[
−bx̃− 1

9
ξ 2

b

(
1
x̃
+ 2

μ
bx̃2

)
− 4

3
ξμ
bx̃

]
< 0.

HenceΨ is negative at every stationary point. ��
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6.2.3 A Family of Broken Extremals with Singular Arcs

Optimal controlled trajectories then need to be synthesized from the constant
controls u = 0 and u = a and the singular control. This has been done for the
problem [A] in [160]. We briefly describe some features of this synthesis, but focus
on the case that arises for initial conditions (p0,q0) with p0 < q0 when enough
inhibitors are available to lower the tumor volume. This case is the most important
and typical situation. Optimal controls are initially given at full dose, u ≡ a, until
the singular arc is reached. For small tumor volumes, this point may lie where the
singular control no longer is admissible, and in this case, optimal controls simply
give all available inhibitors in one full dose segment. If the singular arc is reached
in the section where the singular control is admissible, then at this point, optimal
controls switch to the singular regime and follow the singular arc. In the case that
inhibitors are plentiful, so that it would be possible to reach the lower saturation
point where using = a, optimal controlled trajectories actually leave the singular arc
prior to saturation and inhibitors are exhausted along another full dose segment for
u≡ a. However, this is rather the exception, and typically inhibitors are given along
the singular arc until they are exhausted, y = A. At that time, the state of the system
lies on the singular arc in the region p < q, and thus the tumor volume will still
be decreasing for a while even as no more inhibitors are administered, u = 0, and
the minimum tumor volume is realized as the corresponding trajectory crosses the
diagonal in (p,q)-space, p = q. Consequently, for these initial conditions, optimal
controlled trajectories are concatenations of the form as0 consisting of a full dose
bang arc followed by a singular segment and another bang arc when no inhibitors
are given. The switching times are the unique times when the singular arc is reached
and when all inhibitors have been exhausted, respectively, and are easily computed
for given initial conditions.

We construct a Cω -parameterized family of broken extremals that describes this
situation and show that the associated value function satisfies the Hamilton–Jacobi–
Bellman equation along the initial bang segment where the flow � is a diffeo-
morphism. Along the middle segment, when the flow follows the singular arc, the
image collapses onto the singular surface S in the three-dimensional state-space,
but this does not invalidate the reasoning, and solutions to the Hamilton–Jacobi–
Bellman equation can be propagated along such a section. These considerations
are local, but then, together with other parameterized families, they can be used to
piece together a global synthesis. These considerations will be taken up in the next
section. Arguments like the one given here generally establish the crucial property
that the value function associated with a memoryless synthesis of extremals is a
solution of the Hamilton–Jacobi–Bellman equation on open regions that are covered
diffeomorphically by the flow �.

Let (z̄, ū) be a controlled trajectory of the type as0 with initial condition z0 =
(p0,q0,0) defined over an interval [0,T ]. More precisely, suppose the control is
given by
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ū(t) =

⎧⎪⎪⎨
⎪⎪⎩

a for 0≤ t ≤ t̄1,

using(t) for t̄1 < t ≤ t̄2,

0 for t̄2 < t ≤ T ,

where t̄1 is the time when the trajectory corresponding to the control u≡ a intersects
the admissible segment of the singular arc, t̄2 is the time along the admissible
singular arc when all inhibitors become exhausted, y(t̄2) = A, and T is the time when
the trajectory corresponding to the control u≡ 0 reaches the diagonal, p(T ) = q(T ).
We denote the switching points by z̄1 = z̄(t̄1) and z̄2 = z̄(t̄2).

We start the construction by embedding this reference controlled trajectory into
the obvious parameterized family of controlled trajectories of the same type and
will only later verify that they are extremal. Since p denotes one of the state
variables in this problem, here we use w to denote the parameters. Since this is
a time-independent problem, the flow to be constructed is �(t,w) = z(t,w) and
the parameter set is two-dimensional. We simply vary the initial conditions in a
neighborhood of the initial condition z0 = (p0,q0) and let W ⊂ R

2 be a small
neighborhood of w0 = z0. In principle, we shall shrink this neighborhood without
mention whenever necessary for the argument. But in fact, for this construction to
be valid, the parameter set W can be quite a large subset of {(p0,q0) : p0 < q0}
that needs to be restricted only due to ill-posed data (with an insufficient amount
of inhibitors A) or when the concatenation structure changes due to saturation
phenomena (which we do not describe here).

Denote the solutions of the dynamics for the constant controls u ≡ a, u ≡ 0 and
the singular control u= using with initial condition z0 at initial time t0 byΦa(t; t0,z0),
Φ0(t; t0,z0), and Φsing(t;t0,z0), respectively. For example, we have that

z̄1 =Φa(t̄1;0,z0) and z̄2 =Φsing(t̄2; t̄1, z̄1).

Essentially, the argument in constructing a Cr-parameterized family of broken
controlled trajectories simply is that if the flow of a Cr vector field intersects a
codimension-1 embedded Cr submanifold transversally, then the times of intersec-
tion are given by a Cr function. This is simply a consequence of the implicit function
theorem.

Lemma 6.2.2. There exists a real-analytic function t1 defined on W , t1 : W →
(0, T̄ ), w �→ t1(w), that satisfies t1(w0) = t̄1 and is such that for all w ∈W, the
points Φa(t1(w);0,w) describe the intersections of the trajectories corresponding
to the constant controls u≡ a with the singular curve S .

Proof. While the flow � is in R
3, the variable y accounts only for the amount of

inhibitors that have been used and does not affect the two-dimensional geometry
described in Sect. 6.2.2. The singular surface S simply becomes a vertical hyper-
surface in y that lies over the singular arc in (p,q)-space, and we use the same
letter for both. Except for the upper and lower saturation points along the singular
surface S , it is easily verified that the full dose trajectories meet the admissible
portion of the singular surface S transversally. In fact, this trajectory is tangential
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to the singular surface S precisely if the singular control is given by using = a.
By Proposition 6.2.2, S is an embedded Cω -submanifold that can locally be
described as the zero set of some real analytic function. That is, for every point
z ∈ S there exist some neighborhood Z of z and a function G : Z → R such that
S ∩Z = {z ∈ Z : G(z) = 0}. The composite mapping

η = G◦Φa : W →R, η(t,w) = G(Φa(t;0,w)) ,

is differentiable and satisfies η(t̄1,w0) = 0. Furthermore, the transversal intersection
is equivalent to

∂η
∂ t

(t̄1,w0) = ∇G(z̄1) · ( f (z̄1)+ ag(z̄1)) = 0

and thus by the implicit function theorem, the equation η(t,w) = 0 can be solved in
a neighborhood of (t̄1,w0) for t as a function of w by a real-analytic function. ��
Thus the first switching can be described by a real-analytic function. The very same
argument applies to the second and third switchings as well.

Lemma 6.2.3. There exists a real-analytic function t2 defined on W , t2 : W →
(0, T̄ ), w �→ t2(w), that satisfies t2(w) > t1(w) for all w ∈W, t2(w0) = t̄2, and is
such that for w ∈W the points

Φsing (t2(w);t1(w),Φa(t1(w);0,w))

describe the points on the singular surface S where the inhibitors are
exhausted, i.e.,

y
(
Φsing (t2(w);t1(w),Φa(t1(w);0,w))

)
= A.

Proof. At the first switching point, z̄1, inhibitors are left. We are assuming—this
is the particular scenario for which we construct this particular parameterized
family of extremals—that these are used up fully and without saturation along the
controlled reference trajectory at time t̄2. Thus, for a sufficiently small neighborhood
W of w0, the same holds for all initial conditions in W . The codimension-1
submanifold that the flow intersects now is simply the hyperplane determined by
y = A. Since ẏ = using(t)> 0, again trajectories meet this hyperplane transversally,
and by the implicit function theorem, we once more can solve the equation
y
(
Φsing (t; t1(w),Φa(t1(w);0,w))

)
= A by a real-analytic function of the parameter

near the point (t̄2,w0). ��
Lemma 6.2.4. There exists a real-analytic function T defined on W, T : W →
(0,∞), w �→ T (w), that satisfies T (w) > t2(w) for all w ∈W, T (w0) = T̄ , and is
such that for w ∈W, the endpoints

Ξ(w) =Φ0(T (w);t2(w),Φsing (t2(w);t1(w),Φa(t1(w);0,w)))

lie on the diagonal p = q.
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Fig. 6.8 A projection of the flow � for the parameterized family E of type as0 into (q, p)-space

Proof. Along the third segment the variable y is constant, y(t) ≡ A, and thus we
consider only p and q and the corresponding two-dimensional flow. On the diagonal,
D0 = {(p,q) ∈D : p = q}, we have that ṗ = 0 and q̇ is positive for u = 0 in the
biologically relevant domain D . Thus again the flow is transversal and the same
argument applies. ��

Overall, we therefore have a Cω -parameterized family T of broken controlled
trajectories of the type as0 with parameter set W and domain

D = {(t,w) : 0≡ t−(w)≤ t ≤ T (w) = t+(w)}

(see Fig. 6.8). The parameterized cost for this family is given by the value of the
coordinate p at the endpoint, C(t,w) = 〈e1,Ξ(w)〉, and thus also is a real-analytic
function of w. Since w represents the initial condition for the family of controlled
trajectories, it also follows that the associated value VE = V E (z) in the state space
is a real-analytic function of the initial condition z0.

It should be clear from the construction that this parameterized family T is
extremal, and we verify that this is the case.

Theorem 6.2.1. The parameterized family T gives rise to a Cω -parameterized
family E of broken extremals.
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Proof. We need to show that there exist multipliers λ = λ (t,w) defined on D such
that all the conditions of the maximum principle are satisfied. But it is clear, what
the multipliers have to be: λ0(w) ≡ 1 and λ = λ (t,w) is the solution of the adjoint
equation that satisfies the terminal conditions λ1(T (w),w)≡ 1 and λ2(T (w),w)≡ 0.
We merely need to verify that this specification is consistent with the definition of
the controls.

Let D1 = {(t,w) : 0 ≤ t ≤ t1(w)}, D2 = {(t,w) : t1(w) ≤ t ≤ t2(w)}, and
D3 = {(t,w) : t2(w) ≤ t ≤ T (w)} and let λ1(t,w) and λ2(t,w) be the solution to
the adjoint equation with u≡ 0 on D3 and terminal conditions λ1(T (w),w)≡ 1 and
λ2(T (w),w) ≡ 0. For the moment, we do not yet specify the multiplier λ3. On D3,
the Hamiltonian H =H(λ (t,w),z(t,w),0) satisfies H(λ (T (w),w),z(T (w),w),0)=0
at the terminal time T and is given by H = 〈λ (t,w), f (z(t,w))〉. Since λ is a solution
to the corresponding adjoint equation, the differentiation formula in Theorem 2.8.2
remains valid, and we have that d

dt H = 〈λ , [ f , f ]〉 ≡ 0, so that H(λ (t,w),z(t,w),0)≡
0 on D3. In particular, 〈λ (t2(w),w), f (z(t2(w),w))〉 = 0 at the junction with the
singular arc. Furthermore, H ≡ 0 implies that

λ1(t,w)ξ
p(t,w)
q(t,w)

ln

(
p(t,w)
q(t,w)

)
= λ2(t,w)

(
b

p(t,w)
q(t,w)

−
(
μ+ d p(t,w)

2
3

))
.

The trajectory z(t,w) lies in the region p> q, and therefore the coefficient at λ1(t,w)
is positive for t2(w) ≤ t < T (w). Furthermore, in the region D = {(p,q) : 0 < p <
p̄, 0 < q < q̄} we also have that

b
p
q
−

(
μ+ d p2/3

)
> b− μ− d p2/3 > b− μ− d p̄2/3 = 0,

and thus the coefficient at λ2(t,w) is positive as well. Since λ1 and λ2 cannot
vanish simultaneously, it follows that λ1(t,w) and λ2(t,w) have the same sign
for t ∈ [t2(w),T (w)). Since λ1(T (w),w) ≡ 1, both λ1 and λ2 are positive over
[t2(w),T (w)).

Along the singular arc S , the vector fields f and [ f ,g] are linearly dependent
and thus we also have that 〈λ (t2(w),w), [ f ,g](z(t2(w),w))〉 = 0. The parameterized
switching function is given by,

Φ(t,w) = 〈λ (t,w),g(z(t,w))〉 = λ3(w)−λ2(t,w)γq(t,w)

and we now define the constant multiplier λ3 as

λ3(w) = λ2(t2(w),w)γq(t2(w),w) > 0.

With this specification, we ensure that 〈λ (t2(w),w),g(z(t2(w),w))〉 = 0, and thus
all the conditions required for the multiplier to have a singular junction at t2(w) are
satisfied. We then define λ (t,w) on D2 as the solution to the adjoint equation for
the singular control. The controlled trajectories (z(t,w),u(t,w)) and the multiplier
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λ (t,w) thus satisfy all the conditions of the maximum principle along singular
controls on D2, and in addition, since λ2(t,w) > 0, the singular control is of order
1 and the strengthened Legendre–Clebsch condition for minimality is satisfied.
Once more, H(λ (t,w),z(t,w),using(t,w)) ≡ 0 is a direct corollary of the fact that
the multiplier λ satisfies the adjoint equation. Finally, on D1 we let λ (t,w) be the
solution to the adjoint equation for u≡ a with terminal conditions λ (t1(w),w).

These specifications define a multiplier λ = λ (t,w) that satisfies the adjoint
equation and the transversality conditions at the terminal time; furthermore,

H(λ (t,w),z(t,w),u(t,w)) ≡ 0,

and the switching function Φ(t,w) vanishes identically on D2. It remains to show
that the switching function is positive on the interior of D3 and negative on the
interior of D1. This then implies that the minimization condition on the Hamiltonian
is satisfied.

We first consider the domain D3 at the terminal time and show that the switching
functionΦ(t,w) is positive on D̃3 = {(t,w) : t2(w)< t ≤ T (w)}. In the definition of
this parameterized family of extremals we are assuming that inhibitors are exhausted
along the singular arc prior to saturation and thus the value of the singular control
is strictly smaller than a. Since singular controls are of order 1, it follows from
Proposition 2.8.4 that the switching function indeed is positive for t > t2(w) close
enough to t2(w) so that a concatenation with u = 0 at t2(w) satisfies the conditions
of the maximum principle locally. Furthermore,Φ(T (w),w) = λ3(w)> 0.

Lemma 6.2.5. If Φ(τ,w) = 0 for some τ ∈ (t2(w),T (w)), then Φ̇(τ,w) > 0.

Thus the switching function can have at most one zero on the interval (t2(w),T (w)).
But this is not possible, since the values near both ends of the interval are positive.
It remains to prove the lemma: on the interval (t2(w),T (w)), trajectories lie in the
region p> q, and there the vector fields f , g and the constant third coordinate vector
field h = (0,0,1)T are linearly independent. Hence the Lie bracket [ f ,g] can be
written as a linear combination of these vector fields, say

[ f ,g](z) = ρ(z) f (z)+σ(z)g(z)+ ζ (z)h.

On (t2(w),T (w)), the multiplier λ vanishes against f , and thus if the switching
function has a zero at time τ , then we have that

Φ̇(τ,w) = λ3(w)ζ (z(τ,w)).

An elementary computation verifies that

ζ (z) =
b
(

p
q

)(
1− ln

(
p
q

))
−

(
μ+ d p

2
3

)

ln
(

p
q

) .
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The denominator of σ is positive, since p > q and the zero set of the numerator is
exactly the locus where the vector fields f and [ f ,g] are linearly dependent, i.e., the
singular curve S (see Eq. (6.26)). Under our assumption that b > μ , the numerator
is positive inside the singular loop and thus Φ̇(τ,w)> 0. This proves the lemma and
thus verifies thatΦ(t,w) is positive on D̃3 = {(t,w) : t2(w)< t ≤ T (w)}. Hence the
minimizing control is u≡ 0.

The situation is different on the domain D1. As above, it follows from Proposi-
tion 2.8.4 that the switching function indeed is negative for t < t1(w) close enough
to t1(w), so that a concatenation with u = a at t1(w) satisfies the conditions of
the maximum principle locally. But now, in principle, it is possible that there
exists another switch to the control u = 0 as trajectories are integrated backward.
This happens if the junction points are too close to the upper saturation point on
the singular arc. Indeed, near this saturation point, a local synthesis of optimal
controls takes the form 0as0 (also, see Sect. 7.5) and thus one additional switching
is possible if we integrate the system and adjoint equations backward from the
singular junctions at time t1(w). However, this is not the case if these singular
junctions lie at a sufficient distance to the saturation point. Thus, here we terminate
this particular parameterized family as such a switching is encountered. In this
construction, however, we simply assume that this is not the case along the reference
controlled trajectory (z̄, ū), and thus this will also be the case in a sufficiently small
neighborhoodW of the initial condition. Consequently, all the controlled trajectories
in the family T are extremals.

It remains to verify the transversality condition (5.13) in Definition 5.2.4: Let

ξ̄ (w) = z(T (w),w) = (p(T (w),w), p(T (w),w),A)T

and
λ̄ (w) = λ (T (w),w) = (1,0,λ3(w))

denote the state and multipliers at the terminal time T (w) and denote the cost
at the terminal points by γ̄(w) = C(T (w),w) = p(T (w),w). Since extremals are
normal, λ0(w) ≡ 1, and since the system has a free terminal time, h̄(w) =
H(λ̄ (w), ξ̄ (w),0) ≡ 0, the transversality condition (5.13) required for the shadow-
price lemma to hold takes the form

λ̄ (w)
∂ ξ̄
∂w

(w) = λ0(w)
∂ γ̄
∂w

(w)+ h̄(w)
∂T
∂w

(w) =
∂ γ̄
∂w

(w).

This simply is the transversality condition of the maximum principle, and it is
satisfied by construction:

λ̄ (w)
∂ ξ̄
∂w

(w) = (1,0,λ3(w)) · ∂∂w

⎛
⎜⎜⎝

p(T (w),w)

p(T (w),w)

A

⎞
⎟⎟⎠ =

∂
∂w

p(T (w),w) =
∂ γ̄
∂w

(w).
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By Corollary 5.2.1, this transversality condition propagates along the subdomain D3

to the states ξ̄2(w) = z(t2(w),w), costates λ̄2(w) = λ (t2(w),w), and cost γ̄2(w) =
C(t2(w),w). Since these define the terminal values for the second subdomain D2,
the transversality condition is also satisfied on D2 and it analogously propagates
onto D1 and thus is valid on all of D. This concludes the construction. ��

6.2.4 Analysis of the Corresponding Flow and Value Function

The flow of trajectories corresponding to this parameterized family of trajectories is
given by� : D→M, (t,w) �→�(t,w)= z(t,w). Let �i : Di→Gi =�(Di), i= 1,2,3,
denote the restrictions of the flow to the three closed subdomains D1, D2, and D3

and let D̃1 = {(t,w) : 0≤ t < t1(w)}, D̃2 = {(t,w) : t1(w) < t < t2(w)}, and D̃3 =
{(t,w) : t2(w)< t ≤ T (w)} denote the relatively open subsets in the domain D. Also
let M−= {(0,w) : w∈W}, M1 = {(t1(w),w) : w∈W}, M2 = {(t2(w),w) : w∈W},
and M+ = {(T (w),w) : w∈W} denote the parametrizations of the initial conditions,
the switching surfaces, and the terminal set in the parameter space, respectively, and
denote their images under the flow � by N−, N1, N2, and N+, respectively.

Since the initial control u ≡ a is constant, it follows from the uniqueness of
solutions to an ODE that the flow �1 is a diffeomorphism (with an appropriate
extension at the transversal boundary segments defined by the initial time t−(w)≡ 0
and the first switching time t1(w)). Thus G̃1 = �(D̃1) is an open set with boundary
segments given by N− and N1 ⊂ S . We can therefore define the value on the
set G1 in the state space as V E : G1 → R, z �→ VE (z) = C ◦�−1

1 , and because
the manifolds N− and N1 are crossed transversally by the flow, VE extends as a
C1-diffeomorphism into a neighborhood of G̃1. By construction, the shadow price
lemma is valid on D̃1, and it thus follows from the version of Theorem 5.2.1 for
a time-independent problem that VE is a real-analytic solution of the Hamilton–
Jacobi–Bellman equation that extends to the boundary segments N− and N1.

Corollary 6.2.1. The value function VE is a real-analytic solution to the Hamilton–
Jacobi–Bellman equation on G1. �

Over the second domain, D2, the flow collapses onto the singular surface S (see
Fig. 6.8) and then remains on lower-dimensional sets as y≡ A on D3. However, this
does not invalidate that the HJB equation is valid on the first part where the flow
is a diffeomorphism. Since S is a thin set, it does not make sense to consider the
Hamilton–Jacobi–Bellman equation for these values, and, as we shall see next, this
is not needed.

Generally, given a parameterized family of broken extremals, the combined flow
is easily analyzed, even if it collapses onto lower-dimensional sets as here. The
important feature is that it is still possible to show that the associated value function
is a solution to the Hamilton–Jacobi–Bellman equation on initial segments where
the flow is a diffeomorphism. This is the indispensable property needed if one wants
to solve optimal control problems globally, and it generally also gives rise to local
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optimality results. For example, for the problem considered here, as already used
a couple of times before, it follows from Proposition 2.8.4 that we can integrate
the constant controls u = 0 and u = a backward from every point of the singular
arc for small times and satisfy the conditions of the maximum principle. In this
way one can construct a local field of extremals that covers a neighborhood of the
controlled reference trajectory (z̄, ū), and indeed this proves the local optimality of
the reference controlled trajectory. The technical difficulty lies in the fact that the
associated value function no longer is differentiable along the portion of S covered
by the flow. Using approximation procedures, the differentiability assumption on the
value function can indeed be relaxed on a thin set (essentially, a locally finite union
of embedded submanifolds of positive codimension), and optimality of the synthesis
can be proven under these relaxed conditions. This was the key idea of Boltyansky
that led him to the formulation of a regular synthesis, the construction of a globally
optimal field of controlled trajectories. This will be our next topic. In this theory,
one indispensable ingredient is that the associated value function is a differentiable
solution to the Hamilton–Jacobi–Bellman equation on the complementary open
subsets. This, of course, is a local property, and the techniques developed here and
in Chap. 5 provide effective tools to verify this condition.

6.3 Sufficient Conditions for a Global Minimum: Syntheses
of Optimal Controlled Trajectories

We now develop a verification theorem that allows us to prove the optimality of
a family of extremal controlled trajectories that has been obtained by combining
various local parameterized fields of extremals. The key feature is that the globally
defined value function VE : G→ R needs to be differentiable only on a sufficiently
rich open subset of G. We once more restrict our presentation to the problem [OC]
defined in Chap. 5, but here we consider the time-independent formulation with
free terminal time. Analogous constructions are valid for a time-varying problem.
For the reader’s convenience, we recall the problem formulation and the precise
assumptions that will be made:

[OC] minimize the functional

J (u;z) =
∫ T

0
L(x(s),u(s))ds+ϕ(x(T ))

over all locally bounded Lebesgue measurable functions u that take values in the
control set U ⊂ R

m a.e., u : [0,T ]→U , t �→ u(t), for which the corresponding
trajectory x,

ẋ(t) = f (x(t),u(t)), x(0) = z,

satisfies the terminal constraint x(T ) ∈ N = {x ∈ R
n :Ψ(x) = 0}.
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We use the variable z to denote the initial condition for the problem. It is assumed
that

1. for each u ∈ U fixed, the vector field f (·,u) and the Lagrangian L(·,u) are
continuously differentiable on the state space M and the functions (x,u) �→
f (x,u) and (x,u) �→ ∂ f

∂x (x,u), respectively (x,u) �→ L(x,u) and (x,u) �→ ∂L
∂x (x,u),

are jointly continuous;
2. the terminal set N is an embedded k-dimensional submanifold, and ϕ : N → R

is continuously differentiable. In particular, the function ϕ thus extends to a
continuously differentiable function into a full neighborhood of N in the ambient
state space.

These assumptions will be in effect throughout this section.

Definition 6.3.1 (Synthesis). A synthesis for the optimal control problem [OC]
over a domain G⊂M consists of a family of controlled trajectories S = {(xz,uz) :
z ∈ G} that start at the point z ∈ G, xz(0) = z. A synthesis is called optimal
(respectively, extremal) if each controlled trajectory in the family S is optimal
(respectively, extremal).

Clearly, an optimal synthesis is extremal, and the aim of all of our developments
is to give conditions that guarantee that an extremal synthesis that has been
constructed through an analysis of necessary conditions for optimality is optimal.
The following result, in a simplified formulation, provides such a statement and
gives the main result of this section. We recall that a union of sets Si ⊂ M, i ∈ I,
is said to be locally finite if every compact subset K of M intersects only a finite
number of the sets Si.

Theorem 6.3.1 (Simple verification theorem). Let G ⊂ M be a domain with N
in its boundary and suppose V : G∪N → R is a continuous function defined on G
that satisfies V (z) ≤ ϕ(z) for z ∈ N. Suppose there exists a locally finite union of
embedded submanifolds Mi, i ∈ N, of positive codimensions such that the function
V is continuously differentiable on the complement of these submanifolds in M,
Mg = M \∪i∈NMi, and satisfies the Hamilton–Jacobi–Bellman inequality

∂V
∂ z

(z) f (z,u)+L(z,u) ≥ 0 for all z ∈Mg and u ∈U. (6.28)

Then, for every controlled trajectory (x,u) that starts at a point z ∈ M whose
trajectory lies in the region G over the interval [0,T ) and ends in N at time T ,
we have that

J(u)≥V (z). (6.29)

Several comments about the theorem are in order. First of all, requiring that V be
continuous makes for a smoother formulation, but is not necessary. In many practical
situations, continuity will be satisfied, and thus it seemed worthwhile to give this
simpler formulation separately. However, the proof of this result naturally leads
to a more general setting for functions V that satisfy Sussmann’s weak continuity
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requirement (see Definition 6.3.3 below), and we shall prove the result in this form.
This will also include a weaker form of the inequality V (z) ≤ ϕ(z) at the terminal
set. Note that the formulation above allows for the possibility that an optimal
trajectory x might pass through a point y= x(τ)∈N in the terminal manifold without
actually terminating at this point. This occurs if because of a high value ϕ(y) of the
penalty function, the objective can still be improved upon by continuing and steering
the system over an interval [τ,T ] into another terminal point x(T ) for which

∫ T

τ
L(x(s),u(s))ds+ϕ(x(T ))< ϕ(y).

In such a case, V (y)< ϕ(y). Naturally, often these situations can easily be remedied
by redefining the manifold N and deleting those portions. From a practical point of
view, the problem formulation might have been a bad one to begin with, but it is no
problem to allow for these scenarios in the verification theorem.

While these are technical aspects, the fundamental question is how the verifi-
cation theorem relates to the optimality of controlled trajectories. Generally, the
function V is defined as the value of the objective for some synthesis of controlled
trajectories for initial conditions z ∈ G that are constructed through an analysis of
extremals, as has been the topic throughout most of this text, especially Chaps. 5
and 6. In fact, parameterized families of extremals, E , and their associated value
functions VE naturally give rise to piecewise defined functions V as are needed
in this verification theorem. Constructions like those carried out above in Sect. 6.2
can be used to establish the continuous differentiability of V E on open subsets, and
this, at the same time, guarantees that the Hamilton–Jacobi–Bellman equation is
valid. Not only implies this that the inequality (6.28) is automatically satisfied, but
it also gives a control u = uz in the parameterized family for which equality holds,
V (z) = J(u). In principle, the function V could come from an arbitrary selection of
extremal controlled trajectories (xz,uz) that steer the points z ∈ G into N, and it can
even be allowed that there is more than one member of this family for some values
z ∈ G as long as they give the same value of the objective. This, for example, is
of interest in cases like those considered in Sect. 5.5 when there exists a cut-locus
of optimal trajectories and when this allows us to keep all the optimal controlled
trajectories in the synthesis. Often, however, the function V comes from a unique
specification in terms of what is called a memoryless synthesis.

Definition 6.3.2 (Memoryless synthesis). A synthesis S = {(xz,uz) : z ∈ G} for
the optimal control problem [OC] over a domain G ⊂ M is called memoryless if
whenever (xz,uz) is a controlled trajectory defined on [0,T ] and z̃= x(τ) is a point on
the trajectory for τ > 0, then the controlled trajectory (xz̃,uz̃) in the family starting
at the point z̃ is given by the restriction of the controlled trajectory (xz,uz) to the
interval [τ,T ].

While pursuing the construction of parameterized families of extremals, lower-
dimensional submanifolds Mi where differentiability fails arise naturally. These
include sections where the flow of the parameterized families collapse to follow
lower-dimensional submanifolds (as is often the case for time-optimal bang-bang
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trajectories or along singular trajectories in small dimensions), but also may be
composed of submanifolds where the value function is no longer continuous. This
phenomenon typically is related to a lack of local controllability properties in
the system, and we shall give an example for a time-optimal control problem in
Sect. 7.2. Being able to include these lower-dimensional subsets gives the results a
global nature. Clearly, if the set G is small, we have similar results for a relative
minimum as before. But various parameterized families of extremals can simply be
glued together as long as the resulting value function is continuous. For example, in
a full solution for the problem considered in Sect. 6.2, the concatenation structure
needs to be changed from as0 to asa0 near the point where the singular control
saturates [160] and there is a loss of differentiability for the value function on a
codimension-1 submanifold near the saturation point because of this phenomenon;
but continuity of the combined value is automatic. Altogether, the construction of
parameterized families of extremals canonically leads to the definition of functions
V that not only satisfy these requirements, but at the same time realize the
values V (z). Thus these are optimal collections of controlled trajectories over the
domain G.

Finally, our focus in this text is on establishing applicable criteria that allow us
to prove the optimality of syntheses of controlled trajectories, but we do not address
the related issue of when such syntheses exist. If one wants to establish results of
this type in great generality, a considerably more technical framework needs to be
employed as far as the assumptions on the data are concerned, and for this we refer
the interested reader to the paper by Piccoli and Sussmann [196].

We now proceed to prove Theorem 6.3.1 and start with the observation that the
result is trivial if V is differentiable everywhere on G. This simply is the argument
considered earlier in Theorem 5.1.1: for any controlled trajectory that is defined over
an interval [0,T ] we then have that

d
dt

V (x(t)) =
∂V
∂ z

(x(t)) f (x(t),u(t)) ≥−L(x(t),u(t))

and thus

V (x(T ))−V (x(0))≥−
∫ T

0
L(x(s),u(s))ds.

Hence

V (x(0))≤
∫ T

0
L(x(s),u(s))ds+V (x(T ))

≤
∫ T

0
L(x(s),u(s))ds+ϕ(x(T )) = J(u).

This simple-minded reasoning breaks down if there exist lower-dimensional sub-
manifolds along which V is not differentiable. In principle, the set of times when
a given controlled trajectory x lies in such a submanifold can be an arbitrary
closed subset of the interval [0,T ] (cf. Proposition 2.8.1), and it simply is no
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longer possible to differentiate the function V along such a trajectory. Dealing
with this problem is a nontrivial technical matter. The idea, which goes back to
Boltyansky’s original approach of a so-called regular synthesis [41], is to perturb
the given nominal trajectory in such a way that the resulting trajectory has a value
that is close to that of the original trajectory but meets the manifolds where V is
not differentiable only in a finite set of times. Then the argument above can be
carried out piecewise, and the result follows in the limit as the approximations
approach the given controlled trajectory. In Boltyansky’s original definition, several,
at times stringent, assumptions were made that guarantee these properties. Not all of
these conditions are necessary, and here we carry out this approximation procedure
following Sussmann’s arguments that lead to his weaker continuity requirements on
the value function V as well. We first dispose of some of the technical aspects of this
construction starting with the following fundamental approximation result, which
sets the stage for the argument. In the proofs below, we need to use somewhat more
advanced, but still standard, results from measurable functions (the Vitali covering
lemma) and differential geometry (Sard’s theorem). For a proof of these statements,
we refer the reader to the literature on the respective subjects.

Proposition 6.3.1. [239] Given any controlled trajectory (x,u) defined over an
interval [0,T ] that starts at z, x(0) = z, there exists a sequence of controlled
trajectories {(xn,un)}n∈N, also defined over the interval [0,T ] and starting at z,
xn(0) = z for all n ∈ N, with the following properties:

1. The controls un are piecewise constant, take values in a compact subset K of U,
and un converges to u almost everywhere on [0,T ];

2. The trajectories xn converge to x uniformly over the interval [0,T ] and

∫ T

0
L(xn(s),un(s))ds→

∫ T

0
L(x(s),u(s))ds.

The important property here is that the controls are piecewise constant, i.e., have
only a finite number of switchings, and are not just so-called simple measurable
controls with a finite number of values. In fact (e.g., see [112] and the argument
given below), using the Vitali covering lemma, it can be shown that a function u :
R→ R is measurable if and only if there exists a sequence of piecewise constant
functions un that converges to u almost everywhere on R.

Proof. We first construct the approximating controls. Since (x,u) is an admissible
controlled trajectory, the control u takes values in a compact subset K of U almost
everywhere. Without loss of generality, we assume that this is true for all t ∈ [0,T ].
Fix n ∈ N and select a finite subcover of this set K with balls Bi with center ui ∈U
and radius 1

n , i = 1, . . . ,r, with the ordering arbitrary, but fixed. Then, for each time
t, define a function v by choosing as value the point ui with i the smallest index such
that u(t) ∈ Bi,

v(t) = ui(t), where i(t) = min{i : u(t) ∈ Bi}.



6.3 Sufficient Conditions for a Global Minimum 473

The inverse image of the value ui under v is given by the inverse image of the set
where the control u takes values in Bi, but not in the sets B j for j = 1, . . . , i− 1,

Ei = {t ∈ [a,b] : v(t) = ui}= {t ∈ [a,b] : u(t) ∈ Bi \∪i−1
j=1B j},

and this set is measurable, since the control u is a measurable function. Hence v is
measurable as well. However, v is only a simple function (i.e., its range is finite, but
the sets on which the values are taken are only Lebesgue measurable), and we still
need to approximate it with piecewise constant controls (i.e., the sets on which the
values are taken are intervals). Such a function can be constructed by means of the
Vitali covering lemma [257, Corollary (7.18)]. This result implies that if E is a set
of finite Lebesgue measure in R, then for every ε > 0, there exists a finite collection
of disjoint intervals Ik, k = 1, . . . , �, such that we have

μ
(

E \∪�
k=1Ik

)
< ε and μ

(
∪�

k=1Ik

)
< (1+ ε)μ(E).

In particular, the Lebesgue measure of the symmetric difference of E and ∪�
k=1Ik,

EΔ ∪�
k=1 Ik, the set of points that lie in one set but not the other, is of order ε:

(1+ ε)μ(E)> μ
(
∪�

k=1Ik

)
= μ

(
∪�

k=1Ik ∩Ec
)
+ μ

(
∪�

k=1Ik∩E
)

and

μ(E) = μ
(

E ∩∪�
k=1Ik

)
+ μ

(
E \∪�

k=1Ik

)

implies that μ
(∪�

k=1Ik∩E
)≥ μ(E)− ε , which gives

μ
(
∪�

k=1Ik \E
)
= μ

(
∪�

k=1Ik∩Ec
)
< (1+ ε)μ(E)− μ(E)+ ε = ε(1+ μ(E)),

so that

μ
(

EΔ ∪�
k=1 Ik

)
= μ

(
E \∪�

k=1Ik

)
+ μ

(
∪�

k=1Ik \E
)
< ε(2+ μ(E)).

Applying this result to E1, there exist disjoint intervals I1,k, k = 1, . . . , �1, that
are such that the Lebesgue measure of the symmetric difference between E1 and
the union of the intervals I1,k is less than 1

2r(2+T)n . On these intervals, define
the control ũn to be constant given by the first value u1. It then follows that

‖u(t)− ũn(t)‖ < 1
n for all t ∈ E1 ∩

(
∪�1

k=1I1,k

)
, and the Lebesgue measure of the

subset of E1 ∪
(
∪�1

k=1I1,k

)
where this is not valid is at most 1

2rn . Then repeat this

procedure for the set E2 \∪�1
k=1I1,k and choose the new intervals I2,k, k = 1, . . . , �2, to

be disjoint from all previously constructed intervals I1,k. Since there are only finitely
many intervals, we can always drop possible overlaps when we define the control
ũn by the second value u2. The procedure is finite and results in a finite collection
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of disjoint intervals on which the control is given by one of the values u1, . . . ,ur

with the property that ‖u(t)− ũn(t)‖ < 1
n with the possible exception of a set of

measure 1
2n . By construction, the complement of these disjoint intervals, itself a

disjoint union of intervals, also has Lebesgue measure less than 1
2n , and on these

intervals we arbitrarily define the controls to be given by the first value u1. Thus ũn

is a piecewise constant control that satisfies

μ
({

t ∈ [a,b] : ‖u(t)− ũn(t)‖ ≥ 1
n

})
<

1
n
.

Thus the sequence {ũn}n∈N converges in measure, and it is a well-known fact about
measurable functions that there exists a subsequence, which we label {un}n∈N, that
converges almost everywhere to u (see Appendix D). This verifies the first condition.

The second one follows from a standard argument about solutions to ordinary
differential equations. The corresponding trajectory xn is the solution to the
differential equation ẋ = f (x,un(t)) with initial condition xn(0) = z. The nominal
controlled trajectory x defines a compact curve C = {x(t) ∈M : 0 ≤ t ≤ T} in the
state space, and for R > 0, let MR denote the compact tubular neighborhood of this
curve consisting of all points that have distance less than or equal to R,

MR = {z ∈M : dist(z,C) ≤ R} .

As before, let K be the compact set in the control set that contains the values of u.
The function f is continuous on MR×K, and thus the infinity norm is bounded, say
N = maxMR×K ‖ f (x,u)‖∞. It then follows that whenever y is a point in M 1

2 R, then

for any admissible control u, the solution to the initial value problem ẋ = f (x,u(t)),
xn(τ) = y, exists at least for an interval of length κ = R

2N and lies in the compact set
MR. This simply is a consequence of the a priori bound

‖x(t)− y‖∞ ≤
∫ t

τ
‖ f (x(s),u(s)‖∞ ds≤ N |t− τ| .

On the compact set MR×K, the function f also satisfies a Lipschitz condition in x
(see Appendix B); that is, there exists a constant L such that for all points x and y in
MR and all control values u ∈ K we have that

‖ f (x,u)− f (y,u)‖∞ ≤ L‖x− y‖∞ .

As long as the trajectory xn lies in the compact set MR, we can therefore estimate

‖xn(t)− x(t)‖∞ =

∥∥∥∥
∫ t

0
f (xn(s),un(s))− f (x(s),u(s))ds

∥∥∥∥
∞

≤
∫ t

0
‖ f (xn(s),un(s))− f (x(s),u(s))‖∞ ds
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≤
∫ t

0
‖ f (xn(s),un(s))− f (x(s),un(s))‖∞ ds

+

∫ t

0
‖ f (x(s),un(s))− f (x(s),u(s))‖∞ ds

≤
∫ t

0
[L‖xn(s)− x(s)‖∞+ bn(s)]ds,

where bn is a bounded function that converges to zero a.e. Defining

Δn(t) = max
0≤s≤t

‖xn(s)− x(s)‖∞ ,

it follows that

Δn(t)≤
∫ t

0
[LΔn(s)+ bn(s)]ds, Δn(0) = 0,

and the Gronwall–Bellman inequality (Proposition B.1.1 in Appendix B) gives that

Δn(t)≤
∫ t

0

[
L

(∫ s

0
bn(r)dr

)
exp(L(t− s)+ bn(s)

]
ds.

Since the sequence {bn}n∈N is bounded and converges to zero a.e., the dominated
convergence theorem implies that limn→∞ Δn(t) = 0 as long as the sequence {xn}n∈N
lies in MR. But by the a priori bound, we know that this will hold at least on the
interval [0,κ ]. By choosing n large enough, we can then ensure that Δn(κ)≤ R

2 for
all n ≥ N1. But then, the a priori bound once more allows us to conclude that the
trajectories will still remain in the larger compact set MR up to time 2κ . Choosing
n≥N2 will guarantee that Δn(2κ)≤ R

2 . Since we can always extend the domain by at
least a constant length κ > 0, for n sufficiently large, all trajectories will exist on the
full interval [0,T ] and limn→∞Δn(T ) = 0, i.e., the trajectories converge uniformly to
x on [0,T ].

The last statement is an immediate consequence of the dominated convergence
theorem. Since the trajectories remain in the compact set MR×K, the integrand L is
bounded and L(xn(s),un(s))→ L(x(s),u(s)) a.e. This proves the proposition. ��

In the proof of the verification theorem, we approximate a given controlled
trajectory (x,u) by another controlled trajectory that meets the locally finite union
of embedded submanifolds where the function V is not continuously differentiable
in a finite set. The above proposition allows us to reduce this perturbation problem
to the case of a constant control or smooth vector fields. But then this becomes a
simple transversality argument: if the flow ΦX

t (·) of a vector field X at a point p
is transversal to an embedded submanifold Mb of M that has positive codimension,
then there exists an ε > 0 such that the flow does not lie in Mb for 0 < |t| ≤ ε and
thus t is an isolated point of the set of times when the flow meets Mb. One just needs
to make sure that this will be the case for enough trajectories, and Sard’s theorem
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(see below) allows us to formalize the argument. We recall that we assume that all
manifolds are connected and second countable (cf. Definition 4.3.1).

Let X be a C1-vector field on M and denote its flow by ΦX
t (·), i.e., ΦX

t (p) is the
point on the integral curve of X that starts at p at time 0. It follows from standard
results on uniqueness of solutions to an ODE that this integral curve is defined on
a maximal open interval Ip = (t−(p), t+(p)) and the domain Ω of the flow is given
by Ω = {(t, p) : t ∈ Ip}. Let Mb be an embedded submanifold of M with positive
codimension and denote the set of all times for which the integral curve of X that
passes through p at time 0 meets Mb by Tp, i.e.,

Tp = {t ∈ Ip :ΦX
t (p) ∈Mp}.

The set Tp is discrete if for every time t ∈ Tp there exists an open interval that
contains t and does not contain any other points from Tp. Let G (“good”) denote
the set of all points p ∈M for which the set Tp is discrete, i.e.,

G = {p ∈M : the set Tp is discrete}

and denote its complement by B (“bad”). Then we have the following result:

Proposition 6.3.2. For any embedded submanifold Mb of positive codimension, G
is a set of full measure in M; equivalently, B has Lebesgue measure zero. If the
codimension of Mb is greater than 1, then the set Tp is empty for a set of full measure
in M. For these points the trajectory starting at p does not intersect Mb at all.

Proof. Let Ωb =Ω ∩ (R×Mb) and let F :Ωb →M, (t, p) �→ q = F(t, p) =ΦX
t (p),

denote the restriction of the flow to points inΩb. The mapping F is differentiable on
Ω with the t-derivative of F given by the vector field X at the corresponding point,

∂F
∂ t

(t, p) = X
(
ΦX

t (p)
)
= X(q),

and the partial derivative with respect to p is given by the differential of the flow
map for fixed time t, ΦX

t (·). Since

ΦX
t (p+ εv) =ΦX

t (p)+ ε
(
ΦX

t (p)
)
∗ v+ o(ε),

we simply have that
∂F
∂ p

(t, p) · v = (
ΦX

t (p)
)
∗ v

for any tangent vector v ∈ Tp(M). The differential
(
ΦX

t (p)
)
∗ is a bijective linear

mapping from the tangent space TpM to TqM. In the mapping F , its domain is
restricted to the subspace Tp(Mb), and its image thus is the subspace

Wq =
(
ΦX

t (p)
)
∗ (Tp(Mb))
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of TqM of the same dimension as Tp(Mb). Therefore, the rank of the differential of
F at the point (t, p), DF(t, p), is given by

rk DF(t, p) =

{
dim Mb + 1 if X(q) /∈Wq,

dim Mb if X(q) ∈Wq,

i.e., it increases by 1 whenever the vector X(q) ∈ Tq(M) is transversal to the
subspace Wq. Clearly, this is a geometrically obvious fact. We evaluate this condition
at the point p by moving the vector X(q) and the subspace Wq from q back to p along
the flow of the vector field X . This simply gives

(
ΦX
−t(q)

)
∗X(q) =

(
ΦX
−t(q)

)
∗X(ΦX

t (p)) = X(p)

(cf. Proposition 4.5.1 for Y = X), and since
(
ΦX−t(q)

)
∗ is the inverse to

(
ΦX

t (p)
)
∗,

the image of the subspace Wq under this transformation simply is the tangent space
Tp(Mb). Moving vectors along the flow of a vector field is a diffeomorphism, and
thus the vector X(p) is transversal to the manifold Mb at p if and only if X(q) is
transversal to Wq. We thus have that

rk DF(t, p) =

{
dim Mb + 1 if X(p) /∈ Tp(Mb),

dim Mb if X(p) ∈ Tp(Mb),

independently of t.
The singular set of a smooth mapping between manifolds is defined analogously

to the definitions given in Sect. 5.4. If g : M → N is a smooth mapping between
manifolds, then a point q ∈ M is said to be a regular point if the differential at q
maps the tangent space TqM onto the tangent space Tg(q)N of N at g(q), and it is
called a singular point if the image of TqM under the differential is of dimension
smaller than dimN. Thus, it follows that all points of the mapping F are singular if
the codimension of Mb is greater than 1, and if it is equal to 1, then still all points
p where X(p) is tangent to Mb are singular as well. Sard’s theorem (for a proof, see
[184]) establishes that the image of the singular set in N is small.

Theorem 6.3.2 (Sard). If g : M→ N is a smooth mapping between manifolds, then
the image of the singular set S,

S = {q ∈M : rk Dg(q)< dimN} ,

has Lebesgue measure 0 in N, μ (g(S)) = 0. �
In particular, if the codimension of Mb is greater than 1, then the set of all points

q∈M for which the trajectory of X through q intersects Mb has Lebesgue measure 0.
For if p =ΦX

t (q) ∈Mb, then also q =ΦX−t(p) = F(−t, p), and so q lies in the image
F(Ωb), which has measure zero.
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So now assume that Mb is of codimension 1 and suppose the point q∈ F(Ωb)⊂M
does not lie in the image of the singular set. We claim that the associated set Tq is
discrete. Let t ∈ Tq and set p = ΦX

t (q) ∈ Mb. As above, we then also have that
q = ΦX−t(p) = F(−t, p), and since q does not lie in the image of the singular set,
it follows that X(p) /∈ Tp(Mb). Hence there exists an ε > 0 such that ΦX

t (p) /∈Mb

for 0 < |t| ≤ ε . This proves that the set Tq is discrete. Thus the set B is contained
in the image of the singular set under F , and by Sard’s theorem, this is a set of
measure 0. ��

Note that since the maximal intervals of definition for integral curves are open,
in any compact interval [a,b]⊂ Ip there can be only a finite number of times t ∈Tp.
Hence, away from p ∈ B, integral curves have only a finite number of intersections
with the manifold Mb over compact intervals and the same then holds for a locally
finite union of such manifolds.

We now are ready to give the proof of Theorem 6.3.1. This proof does not use
the continuity of the function V , but only the following three properties identified
by H. Sussmann.

Definition 6.3.3 (Sussmann’s weak continuity requirement). [196,229] Let G⊂
M be a domain with N in its boundary and suppose V : G∪N → R is a function
defined on G. We say that the function V satisfies Sussmann’s weak continuity
requirement if the following three conditions are satisfied:

1. The function V is lower semicontinuous on G, i.e., whenever {zn}n∈N is a
sequence of points from G that converges to some limit z ∈ G, then

V (z) ≤ lim
n→∞ inf V (zn).

2. For every constant control u ∈ U , the function V has the no-downward-jumps
property along the vector field x �→ f (x,u), i.e., if γ is an integral curve of such a
vector field defined on a compact interval [a,b], γ : [a,b]→G, t �→ γ(t), then for
all s ∈ (a,b] we have that

lim
h↘0

inf V (γ(s− h)≤V (γ(s)).

3. For every point n ∈ N and every ε > 0, there exists a nonempty open set Ω ⊂
G∩Bε(n) such that for all z ∈Ω we have that

V (z)≤ ϕ(n)+ ε.

Note that all these requirements are satisfied if the function V is continuous on
G∪N. It can be shown that the value function of the optimal control problem [OC]
satisfies the first two of these conditions, and thus these are necessary conditions
that need to be satisfied by any verification function V . While the second condition
may look somewhat odd, this is a natural property that will be needed when
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approximating trajectories cross lower-dimensional submanifolds where the func-
tion V is not differentiable. The third condition allows us to handle discontinuities
in the value function at the terminal manifold N, and it simply requires that for any
potential target point n ∈ N, there exist sufficiently rich sets that are close such that
the function V still has some upper continuity property along sequences converging
to n along these sets. We shall give an example of a value function exhibiting this
property in Sect. 7.2.

We then have the following generalization of the simple verification theorem
stated earlier.

Theorem 6.3.3 (Main verification theorem). [196] Let G ⊂M be a domain with
N in its boundary and suppose V : G∪N→R is a function defined on G that satisfies
Sussmann’s weak continuity condition. Suppose there exists a locally finite union of
embedded submanifolds Mi, i ∈ N, of positive codimensions such that the function
V is continuously differentiable on the complement of these submanifolds in M,
Mg = M \∪i∈NMi, and satisfies the Hamilton–Jacobi–Bellman inequality

∂V
∂ z

(z) f (z,u)+L(z,u) ≥ 0 for all z ∈Mg and u ∈U. (6.30)

Then, for every controlled trajectory (x,u) that starts at a point z ∈ M whose
trajectory lies in the region G over the interval [0,T ) and ends in N at time T ,
we have that

J(u)≥V (z). (6.31)

Proof. Let (x,u) be an arbitrary nominal controlled trajectory defined over an
interval [0,T ] that starts at z ∈M, ends in N at time T , and is such that the trajectory
x lies in the region G over the interval [0,T ). For any ε > 0, by the third property in
the definition of the weak continuity requirement, there exists a nonempty open set
Ω ⊂ G∩Bε(x(T )) such that for all q ∈Ω we have that

V (q)≤ ϕ(x(T ))+ ε.

In a first step, we simply perturb the terminal condition to lie in Ω (see Fig. 6.9).
Using the nominal control u, it follows from the continuous dependence of a solution
of a differential equation on initial data (which remains valid for solutions defined
in the Carathéodory sense) that for ε small enough, the solution xq = x(·;q) to the
terminal value problem

ẋ = f (x,u(t)), x(T ) = q,

exists on the full interval [0,T ]. It suffices to show that there exists a point q ∈ Ω
such that

V (xq(0))≤ ϕ(x(T ))+
∫ T

0
L(xq(s),u(s))ds+ ε. (6.32)



480 6 Synthesis of Optimal Controlled Trajectories

Mb

q

qk

Ω

Bε(x(T))

Fig. 6.9 Perturbation
argument near the terminal
manifold N

For since ε > 0 is arbitrary, there exists a sequence of points qk, k ∈ N, that satisfy
this inequality with ε = 1

k and thus, in particular, qk → x(T ). But as qk → x(T ), the
solutions xqk(t) uniformly converge to the nominal trajectory x(t) on the interval
[0,T ]. These trajectories lie in a compact set in the state space, and the admissible
control u also takes values in a compact subset K of U . Since the Lagrangian L is
continuous, it follows that L(xqk(t),u(t))→ L(x(t),u(t)) as qk → x(T ), and thus, by
the dominated convergence theorem, we have that

lim
k→∞

∫ T

0
L(xqk(t),u(t))dt =

∫ T

0
L(x(t),u(t))dt.

Since V is lower semicontinuous, taking the limit as k→ ∞ in Eq. (6.32), we obtain
the desired conclusion:

V (z) =V (x(0))≤ lim
k→∞

infV (xqk(0))≤ lim
k→∞

(
ϕ(x(T ))+

∫ T

0
L(xqk (s),u(s))ds+

1
k

)

= ϕ(x(T ))+

∫ T

0
L(x(s),u(s))ds = J(u).

It thus remains only to verify Eq. (6.32).
Using Proposition 6.3.1, approximate the nominal control u by a sequence of

piecewise constant controls un such that un converges to u a.e. on [0,T ]. For n
large enough, the corresponding trajectories xn,q that satisfy the terminal condition
xn,q(T ) = q exist on [0,T ] and also converge uniformly on this interval to the
solution xq (see Fig. 6.9). But these trajectories may intersect the bad set B, B =
∪i∈NMi, for uncountably many times t, and thus the point q needs to be chosen to
make sure that these trajectories meet B only for at most a finite number of times.
Fix the index n, and dropping the dependence on this index in our notation, suppose
the final interval is given by [τ,T ] and denote the constant control on this interval
by v. It then follows from Proposition 6.3.2 that the set of terminal conditions q∈Ω
that have the property that the trajectory corresponding to the constant control v and
ending at q meets a particular manifold Mi for a discrete set of times is a set of full
measure in Ω . In particular, for such a point q, the set of times that lie in [τ,T ] is
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finite. Since we are assuming that the union of the manifolds Mi is locally finite, it
follows that there exists a set of full measure in Ω for which the trajectories ending
at one of those points meet B only a finite number of times ti, τ < t1 < · · ·< tr < T .
Without loss of generality we can also assume that τ and T are not such times, but
write τ = t0 and tr+1 = T . On each of these intervals, the trajectory xq,n lies in the
open set Mg, and thus the standard Hamilton–Jacobi–Bellman argument applies: for
δ > 0, the function V is differentiable over the interval [ti + δ , ti+1− δ ] along the
trajectory xn,q, and it follows from Eq. (6.30) that

d
dt

V (xn,q(t)) =
∂V
∂ z

(xn,q(t)) f (xq(t),v)≥−L(xn,q(t),v),

which gives

V (xn,q(ti + δ ))≤V (xn,q(ti+1− δ ))+
∫ ti+1−δ

ti+δ
L(xn,q(s),v)ds.

Taking the limit δ ↘ 0, we have that

xn,q(ti + δ )→ xn,q(ti) and xn,q(ti+1− δ )→ xn,q(ti+1),

and the integral converges to
∫ ti+1

ti L(xn,q(s),v)ds. Let

V (x+n,q(ti)) = lim
δ↘0

infV (xn,q(ti+δ )) and V (x−n,q(ti+1)) = lim
δ↘0

infV (xn,q(ti+1−δ ))

denote the lower limits, respectively, of the function V along this trajectory as δ
decreases to zero. We then have that

V (x+n,q(ti))≤V (x−n,q(ti+1))+

∫ ti+1

ti
L(xn,q(s),v)ds,

or equivalently,

V (x+n,q(ti))−V (x−n,q(ti+1))≤
∫ ti+1

ti
L(xn,q(s),v)ds.

Adding these inequalities over all segments gives

V (x+n,q(τ))+

(
r

∑
i=1

V (x+n,q(ti))−V(x−n,q(ti)

)
−V(x−n,q(T ))≤

∫ T

τ
L(xn,q(s),v)ds.

It follows from the no-downward-jump property of the verification function V that
the value of the objective cannot improve as the trajectory for the constant control v
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crosses a manifold in the bad set B at time ti, and therefore, for all i = 1, . . . ,r, we
have that

V (x−q (ti) = lim
δ↘0

inf V (xn,q(ti− δ ))≤V (xq(ti)).

But by the lower semi-continuity of V we have in general (i.e., for arbitrary
sequences, not just those along trajectories corresponding to constant controls) that

V (x±q (ti)) = lim
δ↘0

infV (xn,q(ti± δ ))≥V (xq(ti)),

and thus it follows that
V (x+n,q(ti))−V(x−n,q(ti)≥ 0

for all i = 1, . . . ,r. Hence

V (x+n,q(τ+))≤V (x−n,q(T ))+
∫ T

τ
L(xn,q(s),v)ds.

Furthermore, since xn,q(T − δ ) → q as δ ↘ 0, for δ small enough, the points
xn,q(T − δ ) lie in Ω , and thus V (xn,q(T − δ ))≤ ϕ(x(T ))+ ε . But then also

V (x−n,q(T )) = lim
δ↘0

infV (xn,q(T − δ ))≤ ϕ(x(T ))+ ε.

Altogether, we thus have that

V (x+n,q(τ+))≤ ϕ(x(T ))+

∫ T

τ
L(xn,q(s),un(s))ds+ ε.

Note that at the expense of adding ε , the penalty term ϕ is evaluated at the terminal
point of the nominal trajectory x.

This argument can be iterated. The image of the set Ω under the flow of the
solutions for the constant control v at time τ is another open set Ω̃ , and as before,
it follows that there exists a subset of full measure with the property that solutions
that end in this set meet the bad set B only finitely many times. If necessary, we can
perturb the terminal point q ∈Ω so that xq(τ) ∈ Ω̃ and then repeat the argument for
the next interval. Since there is only a finite number of such intervals, it is possible
to find a terminal point q∈Ω that works for all these segments. Once more invoking
the no-downward-jump property of the verification functionVat the switching times,
it then follows that

V (x+n,q(0))≤ ϕ(x(T ))+
∫ T

0
L(xn,q(s),un(s))ds+ ε.

Finally, the lower semicontinuity of V still gives that V (xq(0))≤V (x+q (0)), and thus
it follows that

V (xn,q(0))≤ ϕ(x(T ))+
∫ T

0
L(xn,q(s),un(s))ds+ ε.



6.4 Notes 483

Taking the limit as n→ ∞, the trajectories xn,q converge uniformly on [0,T ] to the
solution xq, and thus it follows, once more using the lower semicontinuity of V and
Proposition 6.3.1, that

V (xq(0))≤ lim
n→∞ infV (xn,q(0))≤ ϕ(x(T ))+

∫ T

0
L(xq(s),u(s))ds+ ε.

This establishes the inequality (6.32) and completes the proof of the theorem. ��
The result in [196] gives a version of this theorem under significantly weaker

differentiability assumptions on the data of the problem. It also allows for the union
of the exceptional manifolds Mi not to be locally finite by using a technical lemma
that allows for a countable number of switchings along a subarc. But this appears to
be less of a practical concern, and therefore we did not use this formulation, which
could easily still be included in the argument.

Once more, we do not concern ourselves here with the general question of
establishing the existence of syntheses that would give rise to value functions V
that would have the required properties. The definitions given by Boltyansky [41]
and Brunovsky [62] provide some examples for this, with the most general version
currently known in the paper by Piccoli and Sussmann [196], and we refer the
interested reader to this paper for this topic. Our experience is that indeed, the
construction of parameterized families of extremals naturally leads to verification
functions that have all the required properties, and we shall illustrate this once more
in the last chapter for the time-optimal control problem to a point in low dimensions.

6.4 Notes

The results presented here about families of broken extremals have their origin
in joint work with J. Noble, and a first version was published in [189]. Our
presentation here gives a much improved exposition of these results and has added
a detailed analysis of the mapping properties near transversal crossings and folds.
This research has been part of a very strong renewed interest in recent years in
local optimality results for bang-bang trajectories, e.g., the papers by A. Sarychev
[207, 208], A. Agrachev, G. Stefani, and P.L. Zezza [20], U. Felgenhauer [89, 90],
H. Maurer, N. Osmolovskii, and coworkers [180, 182, 183], and L. Poggiolini and
coworkers [197, 198]. While there exist various versions of these results—some
numerical, others highly abstract in a Hamiltonian framework—essentially, for
single-input problems, the common underlying framework is that the derivative of
the switching function for the controlled reference trajectory needs to be nonzero at
bang-bang junctions (which generates well-defined switching surfaces), and some
kind of coercivity properties need to be satisfied that ensure transversal crossings.
For multi-input systems, these results are directly applicable if the switching
times do not coincide, but the situation becomes much more difficult in case of
simultaneous switchings, and we refer the interested reader to the recent paper by
Poggiolini and Spadini [197].
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Much of our own research on this topic has been motivated by mathematical
models that describe cell-cycle-specific cancer chemotherapy [155, 156, 253]—
control problems over a prescribed therapy horizon [0,T ]—where optimal controls
are bang-bang and the results developed in this chapter are used to construct fields
of locally optimal bang-bang extremals. We refer the interested reader to [155,156]
and our forthcoming text [166] for an exposition of these results. Also, the example
presented in Sect. 6.2 is a result of our increasing interest in mathematical models
that describe medical models in connection with cancer treatment approaches.
The particular concatenation sequence arising there—bang-singular-bang—is the
most typical one, not only in low dimensions, and quite recently there has been
strong activity in the area of necessary and sufficient optimality conditions for
concatenations of bang with singular arcs in general [22, 199]. In our approach,
results about strong local optimality become a consequence of embedding such a
controlled reference trajectory into a local field. This directly connects with the
verification results derived in Sect. 6.3 that apply both locally and globally. For
example, an almost complete analysis of the problem considered in Sect. 6.2 has
been given (to the extent that this is possible in a page-limited research publication)
in [160], and a local synthesis can easily be constructed based on Proposition 2.8.4.
The strong local optimality (in the sense of the most restrictive classical definitions)
of the particular controlled trajectories considered there is immediate from the
verification theorem proven in Sect. 6.3. This section gives a streamlined exposition
of Sussmann’s arguments devoid of the technical issues that arise if one considers
the nonsmooth setting [196]. The construction presented here contains the core of
the argument, and to the best of our knowledge, has not been presented in a coherent
and simplified exposition before.



Chapter 7
Control-Affine Systems in Low Dimensions:
From Small-Time Reachable Sets
to Time-Optimal Syntheses

We have seen in Chap. 4 that necessary conditions for optimality follow from
separation results using convex approximations for the reachable set from a point.
If the reachable sets are known exactly, not only necessary conditions, but complete
solutions can be obtained for related optimal control problems (e.g., the time-
optimal control problem). In general, determining these sets is as difficult a problem
as solving an optimal control problem. However, in low dimensions, the Lie
algebraic formalism introduced in Sect. 4.5 provides effective tools to accomplish
this for control affine-systems of the form Σ ,

Σ : ẋ = f (x)+ ug(x), |u| ≤ 1, x ∈M ⊆ R
n, (7.1)

where M is a small open neighborhood of some reference point p in R
n, f and g

are smooth (respectively, sufficiently often continuously differentiable) vector fields
on M, and as always, admissible controls are Lebesgue measurable functions u that
take values in the closed interval [−1,1] almost everywhere. Obviously, the precise
structure of these sets will depend on the vector fields f and g, and even for a system
of the form (7.1), it can be very complicated. Thus, once more, we make it our
guiding principle to proceed from the “general” to the “special.” In the same way as
the local behavior of a function near a point is determined by its Taylor coefficients,
the local behavior of an analytic system Σ is determined by the values of the drift
vector field f , the control vector field g, and all their Lie brackets at a reference point
p [231]. Recall that the most typical, or codimension-0 situation, arises if all the
vector fields f , g and relevant Lie brackets are in general position, that is, satisfy no
linear dependencies beyond those required by antisymmetry and the Jacobi identity.
The concept of codimension is used to organize the Lie-bracket conditions into
groups of increasing degrees of degeneracy. Depending on how many nontrivial
independent equality relations exist, as was done in Sects. 2.9 and 2.10, cases of
positive codimension are distinguished. We loosely call the dependencies of the
vector fields f and g and their Lie brackets at p, the Lie bracket configuration
of the system at p. We shall see that as both the dimension n of the state space
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and the codimension k of the Lie bracket configuration of Σ at the initial point p
increase, the structure of the small-time reachable sets becomes increasingly more
complex, and while it can be determined completely from the conditions of the
maximum principle for small n and k, as these numbers increase, these conditions
increasingly need to be supplemented by more and more sophisticated global
considerations that go well beyond a direct application of necessary conditions for
optimality. Since the full small-time reachable set is constructed, not only do we
consider trajectories that lie close to some reference trajectory, as is the case in
local optimality considerations, but indeed, on the level of controlled trajectories,
global aspects are taken into account automatically. We shall see that this is already
the case for n = 3 and k = 0, where cut-loci and transversal folds of bang-bang
extremals determine the overall structure. Our strategy is to establish the geometric
properties of these reachable sets by inductively building on the results for lower
dimensional systems, and then to add to these by analyzing the geometric properties
of hypersurfaces that are defined by increasingly more complex concatenation
structures until the full small-time reachable sets have been obtained. Obviously,
the heuristic reasoning is that we expect a rather regular structure that inductively
builds on the simpler lower-dimensional features. This indeed will be the case for
all the cases considered here.

The main results in this last chapter give a complete description of the small-
time reachable sets and the corresponding time-optimal local syntheses to a point in
dimension 3 under codimension-0 and -1 assumptions. For the codimension-0 case,
this synthesis combines bang-bang trajectories with two switchings, BBB, whose
optimality is limited by a cut-locus that is generated by a slow singular arc, with
the typical BSB synthesis near a fast singular arc and thus, in a uniform picture,
presents the typical local syntheses near singular arcs. In the codimension-1 case,
saturation phenomena on the singular arc need to be taken into account, and then
one more segment needs to be added to the concatenation sequences, which now
become BBSB, respectively BSBB. These results also provide a full description of
the boundary trajectories in the codimension-0 four-dimensional case. For the cases
analyzed here, we shall see that the structures of the lower-codimension cases in
higher dimensions succinctly unify all the possible cases for the higher-codimension
cases in lower dimensions. For example, the trajectories in the boundary of the
small-time reachable set in the codimension-0 four-dimensional case follow the
optimal concatenation sequences for the codimension-1 three-dimensional case,
which itself combines all codimension-2 two-dimensional cases.

The results we give are not merely descriptions of these local structures, but the
local results can then be combined to form global solutions. For example, for real
analytic systems, there exists a wealth of literature about when these procedures
can be carried out mechanically in the context of stratification theorems about
subanalytic sets (e.g., [60–62, 233, 243]), but these results lie beyond the scope of
our text. Yet the important point we want to make is that these solutions are not
just mere examples, but are general and point the way to the structure of globally
optimal controlled trajectories for optimal control problems. For example, for the
three-dimensional mathematical model for tumor antiangiogenesis considered in
Sect. 6.2, in the paper [160], we have given a complete solution that is completely
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determined by the features of the codimension-0 and -1 situations described in this
text that involve an optimal singular arc and two saturation points. This particular
synthesis will be fully developed in [166].

This chapter is organized as follows: After establishing a framework for our
geometric constructions in Sect. 7.1, we briefly summarize the implications that the
results on time-optimal control presented in Sects. 2.9 and 2.10 have on the structure
of the small-time reachable sets. In Sect. 7.3 we present a landmark result by C.
Lobry on boundary trajectories in dimension three that formed one of the corner-
stones in the development of nonlinear control theory as a whole [170] and then
determine the small-time reachable set under codimension-0 assumptions. These
results naturally connect with the boundary trajectories for the four-dimensional
system and give us the local time-optimal synthesis to an equilibrium point of f in
R

3. These results will be developed in Sect. 7.4 and we shall describe the analogous
results for the codimension-1 case in Sect. 7.5.

7.1 Basic Topological Properties of Small-Time
Reachable Sets

The small-time reachable set is the set ReachΣ ,≤T (p),

ReachΣ ,≤T (p) = {x(t) ∈ R
n : there exists a control u(·) ∈U defined on an interval

[0, t] with t ≤ T such that (x(·),u(·)) is a controlled

trajectory defined over [0, t] satisfying x(0) = p} ,

when the overall time T is kept small. If this set is known, then solutions for the
corresponding time-optimal control problems can generally be given rather easily
using an inversion procedure on the boundary trajectories. We first establish some
basic compactness properties of these sets for control-affine systems.

Theorem 7.1.1. For T small, the reachable sets ReachΣ ,≤T (p) are compact.

Proof. Let O be an open neighborhood of p with compact closure K in M. The
norm of the right-hand side of the differential equation (7.1), F(x,u) = f (x)+ug(x),
is bounded for x ∈ K and |u| ≤ 1, say ‖F(x,u)‖∞ ≤ C < ∞. Thus there exists a
T > 0 such that for any admissible control u defined on [0,T ], the solution to the
differential equation ẋ = f (x)+u(t)g(x), x(0) = p, exists on [0,T ] and lies in O. We
henceforth always take T ≤ T .

Let T be the collection of all trajectories defined over [0,T ] that start at p.
This family T is globally Lipschitz (see Appendix B): for all s, t ∈ [0,T ] and any
controlled trajectory (x,u), we have that

‖x(t)− x(s)‖∞ =

∥∥∥∥
∫ t

s
f (x(r))+ u(r)g(x(r))dr

∥∥∥∥
∞
≤C |t− s| . (7.2)



488 7 Control Affine Systems in Low Dimensions

In particular, taking s = 0, it follows that T is bounded, and thus ReachΣ ,≤T (p) is
bounded.

It remains to show that ReachΣ ,≤T (p) is closed. Let {qn}n∈N be a sequence of
points in ReachΣ ,≤T (p) that converges to q as n→ ∞. Let {(xn(·),un(·))}n∈N be a
sequence of controlled trajectories defined over intervals [0, tn] such that xn(tn) =
qn. Extending the controls to the interval [tn,T ], without loss of generality we may
assume that all controls and trajectories are defined on [0,T ]. Furthermore, by taking
a subsequence if necessary, we may assume that tn → t̄. It suffices to show that there
exists a controlled trajectory (x(·),u(·)) defined on [0,T ] such that x(t̄) = q.

The key observation is that the family T is equicontinuous (see Appendix A):
a family T of continuous curves defined over the compact interval [0,T ] is
equicontinuous if for every time t ∈ [0,T ] and every ε > 0 there exists a δ > 0 such
that for all the curves x ∈ T we have that ‖x(t)− x(s)‖ < ε whenever |t− s| < δ .
This property is an immediate consequence of the global Lipschitz condition (7.2).
The Arzelá–Ascoli theorem, a classical result in analysis (see Corollary A.2.1),
implies that there exists a subsequence {xnk(·)}k∈N that converges uniformly on
[0,T ] to a continuous limit x̄. By Theorem 3.2.1, the sequence {unk(·)}k∈N of
controls is weakly sequentially compact in L1([0,T ]), and thus, taking another
subsequence if necessary, we may also assume that unk converges weakly to
some admissible control ū. Without loss of generality, simply assume that xn → x̄
uniformly on [0,T ] and that un ⇀ ū weakly in L1([0,T ]). We claim that (x̄, ū) is a
controlled trajectory, i.e., that x̄ is the trajectory corresponding to ū. For all t ∈ [0,T ]
we have that

x̄(t) = lim
n→∞xn(t) = lim

n→∞

(
p+

∫ t

0
f (xn(s))+ un(s)g(xn(s))ds

)

= p+
∫ t

0
f (x̄(s))ds+ lim

n→∞

∫ t

0
un(s)g(xn(s))ds

and

lim
n→∞

∫ t

0
un(s)g(xn(s))− ū(s)g(x̄(s))ds

= lim
n→∞

∫ t

0
un(s) [g(xn(s))− g(x̄(s))]ds+ lim

n→∞

∫ t

0
[un(s)− ū(s)]g(x̄(s))ds.

Using Lebesgue’s dominated convergence theorem (see Appendix D), the first
integral converges to zero, since xn(s)→ x̄(s) pointwise and g and the controls are
bounded; the second integral converges to zero by the weak convergence of un to ū.
Hence

x̄(t) = p+
∫ t

0
f (x̄(s))+ ū(s)g(x̄(s))ds,

and thus (x̄(·), ū(·)) is a controlled trajectory.
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Finally, given ε > 0, choose δ = δ (ε)> 0 such that ‖x̄(t̄)− x̄(s)‖< ε
2 whenever

|t̄− s| < δ and choose N = N(ε) such that ‖xn− x̄‖∞ < ε
2 and |t̄− tn| < δ for all

n≥ N. Then for all n≥ N,

‖x̄(t̄)− qn‖ ≤ ‖x̄(t̄)− x̄(tn)‖+ ‖x̄(tn)− xn(tn)‖< ε

and thus q = limn→∞ qn = x̄(t̄) ∈ ReachΣ ,≤T (p). �
Corollary 7.1.1. For small t, the time-t-reachable sets ReachΣ ,t(p) are compact.

Proof. This argument is identical to the one just given, except that all trajectories
are defined on [0, t] and all points are reached in time t exactly. ��

The assumption that Σ is control-affine matters for this result, and we give a
simple example that shows that small-time reachable sets need not be closed for a
general nonlinear system.

Example. Let R denote the reachable set at time T from the origin for the two-
dimensional system

ẋ1 = (1− x2
2)u

2, ẋ2 = u, |u| ≤ 1.

Partition the interval [0,T ] into 2n equidistant intervals of the form I j =
(

jT
2n ,

( j+1)T
2n

]
,

j = 1, . . . ,2n−1, and define a control un that alternates between +1 and−1 on these
intervals starting with u =+1. If we denote the corresponding trajectory by x(n) (·),
then we have ‖x(n)2 ‖∞ = T

2n and x(n)2 (T ) = 0. Furthermore, since u2 ≡ 1,

∣∣∣x(n)1 (T )−T
∣∣∣=

∣∣∣∣
∫ T

0
x(n)2 (s)2ds

∣∣∣∣≤ T 3

4n2 ,

so that

lim
n→∞(x

(n)
1 (T ),x(n)2 (T )) = (T,0) ∈ clos R.

But this point is not reachable in small time T : for any admissible control defined
over an interval [0,T ] with T ≤ 1, we have that x2

2(t)≤ 1 and thus ẋ1 = (1−x2
2)u

2 ≤
1− x2

2. Hence the only way to realize x1(T ) = T is for x2(t) ≡ 0. But this requires
u(t)≡ 0 and thus x1(T ) = 0 as well. Hence (T,0) /∈ clos R. ��

The construction of small-time reachable sets gives us direct information about
time-optimal controls. It provides a geometric approach that complements analytic
techniques of the type that were already described and used for planar systems
in Sects. 2.9 and 2.10. We have seen in Sect. 3.5 that there are close connections
between trajectories that lie in the boundary of the reachable set and time-
optimal controls for linear systems. For nonlinear systems, the same properties are
sometimes still valid for specific models, but they are no longer true in general,
since reachable sets need not be convex. However, the following simple observation
remains true and will be used frequently.
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Lemma 7.1.1. If a controlled trajectory (x(·),u(·)) steers a point p = x(0) into
q = x(T ) in time T time-optimally, then x(t) ∈ ∂ ReachΣ ,t(p) for all times t ∈ [0,T ).

Proof. Clearly, if x(τ) ∈ int(ReachΣ ,τ(p)), for some τ ∈ [0,T ), then there exists an
ε > 0 such that x(τ + ε) is also reachable in time τ . Concatenating the control that
steers p into x(τ+ ε) in time τ with the restriction of the control u(·) to the interval
[τ+ ε,T ], this control steers p into q in time T − ε . Contradiction. ��

More generally, trajectories that lie in the boundary of the small-time reachable
set for all times play a major role in establishing the “borders” of the reachable sets
ReachΣ ,≤T (p); we call them boundary trajectories.

Definition 7.1.1 (Boundary trajectory). A controlled trajectory (x,u) defined
over the interval [0,T ] is a boundary trajectory for the small-time reachable set if
x(t) ∈ ∂ ReachΣ ,≤T (p) for all times t ∈ [0,T ].

We close this section with establishing our notation and introducing the type
of coordinates that will be used throughout our explicit constructions. Especially,
a “good” set of coordinates is indispensable. Depending on this choice, for a given
system, the problem may become simple or extremely complicated. It is here that the
Lie-bracket configuration at p matters, and quite frankly, in nondegenerate situations
it dictates a choice of so-called canonical coordinates. These are defined in terms of
the times spent along the vector fields X = f −g and Y = f = g and their low-order
Lie brackets that are linearly independent.

Definition 7.1.2 (Canonical coordinates). Suppose M is an open neighborhood of
some point p ∈ R

n and let Z1, . . . ,Zn be n smooth vector fields defined on M such
that the vectors Z1(p), . . ., Zn(p), are linearly independent. Then there exists an open
ball Bε(0) such that the mappingsΨi : Bε(0)→M, i = 1,2,

Ψ1 : (ξ1, . . . ,ξn) �→ pexp(ξnZn + ξn−1Zn−1 + · · ·+ ξ2Z2 + ξ1Z1) (7.3)

and

Ψ2 : (ξ1, . . . ,ξn) �→ pexp(ξnZn)exp(ξn−1Zn−1) · · ·exp(ξ2Z2)exp(ξ1Z1) (7.4)

define smooth coordinates in a neighborhood of p in M. The (ξ1, . . . ,ξn) are said to
be canonical coordinated of the first and second kind, respectively.

Note that for both i = 1 and 2 we have that Ψi(0, . . . ,0) = p and that the jth
column of the Jacobian matrix DΨi(0, . . . ,0) is given by the vector field Zj(p), or
using the exponential notation introduced in Sect. 4.5,

∂Ψ1

∂ξ j
(0, . . . ,0) =

∂Ψ2

∂ξ j
(0, . . . ,0) =

∂
∂ξ j

pexp(ξ jZ j) = pZj.

Since these vectors are linearly independent, the Jacobian matrix is nonsingular, and
it follows from the inverse function theorem that there exists a neighborhood of 0 on
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which the mappingsΨ1 andΨ2 are C1-diffeomorphisms. HenceΨi is a well-defined
change of coordinates near p. In our calculations below, we mainly use canonical
coordinates of the second kind with basis vectors Zi that are chosen depending on the
Lie-bracket configuration of the system at p. Without loss of generality, by shrinking
the neighborhood M if necessary, we always assume that any linear independence
relations that hold at p are valid on all of M.

We close these introductory comments with establishing our notation for various
concatenations of trajectories. As in Chap. 2, we always write X = f −g, Y = f +g
and denote the vector field corresponding to a singular control by S. Concatenations
of bang and singular arcs are simply denoted by the corresponding sequence of
letters, i.e., XYSX denotes a controlled trajectory that initially is given by an X-arc
(corresponding to the constant control u ≡ −1) on some interval [0, t1], then by a
Y -arc (corresponding to the constant control u ≡ 1) over some interval [t1, t2],
followed by a singular arc over an interval [t2, t3] and one more Y -arc over the final
interval [t3,T ]. We shall always assume that T is a fixed, sufficiently small time
so that all trajectories are defined on [0,T ]. Furthermore, it becomes convenient to
allow for the possibility that these structures collapse. Thus, for example, we allow
that t1 = t2, and in this case we actually have a controlled trajectory of type XSX .

We still set up a notation that will allow us to give concise descriptions of the
small-time reachable sets ReachΣ ,≤T (p) and their boundaries. In all examples con-
sidered, these indeed will be cell complexes in the sense of algebraic topology and
can best be described in terms of the concatenation structures that define these cells.
We denote cells by C (with subscripts that indicate the concatenation sequence); for
example, C0 = {p} denotes the trivial zero-dimensional cell consisting of only the
initial point. More interestingly,

CX = {pexp(rX) : 0≤ r ≤ T},
CXY = {pexp(rX)exp(sY ) : 0≤ r, 0≤ s, r+ s≤ T},

CXY X = {pexp(rX)exp(sY )exp(tX) : 0≤ r, 0≤ s, 0≤ t, r+ s+ t ≤ T},

and so on, with analogous notation for different concatenation sequences. Each
of these cells is a compact set that contains the cells with shorter concatenation
sequences, i.e., for example, C0 ⊂ CX ⊂ CXY ⊂ CXY X ⊂ ·· · , and under general
position assumptions, these sets form the boundary of these cell complexes. In fact,
typically we have a stratification (see Sect. 5.5) and it becomes useful to have this
concept available here. For this reason, we still prefer to have a separate notation for
the submanifolds that make up these stratifications of the cell complexes. We denote
the submanifolds that consist of trajectories of the system with the letter T , i.e.,

TX = {pexp(rX) : 0 < r < T},
TXY = {pexp(rX)exp(sY ) : 0 < r, 0 < s, r+ s < T},

TXY X = {pexp(rX)exp(sY )exp(tX) : 0 < r, 0 < s, 0 < t, r+ s+ t < T},
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and so on. We also need labels for the submanifolds that define the endpoints of the
controlled trajectories at time T and denote these by the letter E , i.e.,

EX = {pexp(T X)},
EXY = {pexp(rX)exp(sY ) : 0≤ r, 0≤ s, r+ s = T},

EXY X = {pexp(rX)exp(sY )exp(tX) : 0≤ r, 0≤ r, 0≤ t, r+ s+ t = T}.

Finally, the wedge product ∧ provides a convenient notation for linear inde-
pendence relations of vectors, and we use this notation both to formulate our
assumptions and also extensively in the computations. For our purposes, it suffices
to state that the wedge product of n vectors v1, . . . ,vn in R

n is the multilinear form
given by the determinant of the matrix whose columns are the ordered vectors
v1, . . . ,vn,

v1∧·· ·∧ vn = det(v1, . . . ,vn) .

In particular, v1∧·· ·∧ vn = 0 if and only if the vectors vi are linearly dependent.

7.2 Small-Time Reachable Sets in Dimension 2

In this section, we summarize the implications of the results from Sects. 2.9 and 2.10
on the structure of small-time reachable sets in dimension two. We always assume
that the neighborhood M of the initial point p and the terminal time T are chosen
small, and throughout this section we assume that

(A) the vector fields f and g are linearly independent on M,

f (p)∧g(p) = 0 ⇐⇒ X(p)∧Y(p) = 0.

Under this assumption, the integral curves of the vector fields X and Y emanating
from p are the only boundary trajectories.

Proposition 7.2.1. Under assumption (A), if (x,u) is a boundary trajectory, then u
is constant given by +1 or−1. The boundary portion of the small-time reachable set
ReachΣ ,≤T (p) that is not due to the restriction of the time to T is therefore composed
on an X- and a Y-arc starting at p.

Proof. By Theorem 4.2.2, there exists a nontrivial covector field λ such that a.e.
on [0,T ],

0 = 〈λ (t), f (x(t))+ u(t)g(x(t))〉= min
u∈U

〈λ (t), f (x(t))+ u(t)g(x(t))〉 .

If the control u has a switching at some time τ in the interior of the domain, then
this implies that we must have both

0 = 〈λ (τ),g(x(τ))〉 and 0 = 〈λ (τ), f (x(τ))〉 .
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Actually, since we know only that the conditions of the maximum principle are valid
almost everywhere, in principle it could be the case that these conditions are not
valid for the specific time τ . However, it is easily seen that these conditions always
hold at switching times. For suppose the control switches from u = +1 to u = −1
at τ . Then for some small δ > 0, there exist measurable subsets E+ of (τ − δ ,τ)
and E− of (τ,τ + δ ) of full measure δ such that 〈λ (t),g(x(t))〉 < 0 for t ∈ E+ and
〈λ (t),g(x(t))〉 > 0 for t ∈ E−. Taking sequences {t−n }n∈N ⊂ E+ and {t+n }n∈N ⊂
E− that converge to τ , it follows from the continuity of the switching function
Φ(t) = 〈λ (t),g(x(t))〉 that we must have Φ(τ) = 0. The analogous argument for
the function 〈λ (t), f (x(τ))〉 then also gives that 〈λ (τ), f (x(τ))〉 = 0. This, however,
contradicts the nontriviality of λ . Hence controls that steer p into boundary points of
the (full) reachable set must be constant and thus are given by u≡+1 or u≡−1. ��

Since admissible controls are convex combinations of u = −1 and u = +1,
the linear independence of X and Y implies that the small-time reachable set
ReachΣ ,≤T (p) must somehow lie “between” these X- and Y -trajectories emanating
from p. Thus, apart from the boundary points of ReachΣ ,≤T (p) that lie in the exact
time-T -reachable set, those portions that lie in the boundary for all small times T
are given by the union of the sets C0 = {p}, CX , and CY . The remaining portions
in ∂ ReachΣ ,≤T (p) lie in ReachΣ ,T (p), but these sections are no longer determined
by assumption (A) alone. Clearly, CXY ⊂ ReachΣ ,≤T (p) and CY X ⊂ ReachΣ ,≤T (p),
but ReachΣ ,≤T (p) may be strictly larger than either of these sets. The problem
of describing ReachΣ ,≤T (p) exactly, even for small T , is equivalent to solving
the two-dimensional optimal control problem for Σ locally assuming only that f
and g are linearly independent at p. As we have already seen to some extent in
Sects. 2.9 and 2.10, the structure of optimal controls that lie in a sufficiently small
neighborhood of p depends on the Lie-bracket configuration at p, and depending
on its codimension, infinitely many inequivalent cases exist. But the results of
these sections allow us to determine the structure of the small-time reachable sets
ReachΣ ,≤T (p) under the same conditions. In fact, since we always start at the point
p, rather than considering arbitrary trajectories that lie near p, our controls here
will generally be even simpler. We briefly summarize the resulting structures for
the small-time reachable sets and then illustrate them with some examples. As in
Chap. 2, we write

[ f ,g](x) = α(x) f (x)+β (x)g(x) (7.5)

with smooth functions α and β on M. Then the results of Sect. 2.9 immediately
imply the following structures for the small-time reachable sets:

Theorem 7.2.1. Under assumption (A), the small-time reachable sets from p for Σ ,
ReachΣ ,≤T (p), are given by the following sets:

1. in codimension 0, we have that

ReachΣ ,≤T (p) =

{
CXY if α(p)> 0,

CY X if α(p)< 0.
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2. in codimension 1, for α(p) = 0, we have that

ReachΣ ,≤T (p) =

{
CXY if LXα(p)> 0 and LYα(p)> 0,

CY X if LXα(p)< 0 and LYα(p)< 0,

if LXα(p) and LYα(p) have the same sign, and by

ReachΣ ,≤T (p) =

{
CBB = CXY ∪CY X if LXα(p)> 0 and LYα(p)< 0,

CSB = CSY ∪CSX if LXα(p)< 0 and LYα(p)> 0,

if LXα(p) and LYα(p) have opposite signs.
3. in codimension 2, for α(p) = 0 and LYα(p) = 0, no new geometric structures

arise, but depending on the Lie-bracket configuration, the small-time reachable
set is given by one of the sets CXY , CY X , or CSB.

Proof. These geometric structures are an immediate consequence of the results
proven in Sects. 2.9 and 2.10, and we only briefly recall these constructions.

It is the coefficient α that determines the structure of time-optimal controls in
codimension-0 conditions: if α is positive on M, then time-optimal trajectories are
of type XY , and if α is negative on M, time-optimal trajectories are of type YX
(Proposition 2.9.1). This gives the first statement.

Under codimension-1 conditions, the function α vanishes at p, but the vector
fields X and Y are transversal to the curve S = {x ∈ M : α(x) = 0}. If X and Y
point to the same side of S on M, then the structure of the reachable set from p
is the same as in the corresponding codimension-0 case: if X and Y point into the
region where α is positive, then only switchings from u = −1 to u = +1 are time
optimal there, and thus ReachΣ ,≤T (p) =CXY . Analogously, ReachΣ ,≤T (p) =CY X if
X and Y point into the region where α is negative. In comparison with the structure
of time-optimal trajectories near p, here the situation simplifies somewhat since
all trajectories start at the point p ∈ S . Indeed, the same structure of trajectories
remains optimal for cases of higher codimension as long as all the trajectories lie
in M+ = {x ∈ M : α(x) > 0} or M− = {x ∈ M : α(x) < 0}. For this reason, for
example, the small-time reachable sets are also given by CXY in the codimension-2
case described in Proposition 2.10.1.

But different structures arise if X and Y point to opposite sides of S . In this case,
S is a singular arc that is fast if the Lie derivative LXα is negative and is slow if this
Lie derivative is positive (Proposition 2.9.3). For a slow singular arc, time-optimal
controls are still bang-bang with at most one switching (Proposition 2.9.5), but now
no longer is one of the cells CXY or CY X contained in the other, but the small-time
reachable set is given by their union,

ReachΣ ,≤T (p) = CXY ∪CY X ,
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with a cut-locus arising between these two cells that determines the time-optimal
trajectories. In the case that the singular arc is fast, the structure of the small-time
reachable set is simpler. Once more, since all trajectories start at a point on the
singular arc, compared with the structure of time-optimal trajectories that lie in a
neighborhood of p that is of the form BSB (Proposition 2.9.4), only SB-trajectories
matter for the small-time reachable set. Indeed, since X and Y point to opposite sides
of the singular arc, we now have that

ReachΣ ,≤T (p) = CSY ∪CSX ,

and the two cells CSY and CSX only intersect along their trivial common boundary
stratum CS. Note that X and Y point to sides of S in which it is not optimal to
switch away from X respectively Y .

No new structures for small-time reachable sets arise for the codimension-2 cases
analyzed in Sect. 2.10. In these cases, while one of the vector fields X and Y still is
transversal to the singular arc, the other is tangent, but has order of contact equal
to 1 (see Figs. 2.16–2.18). As under the codimension-1 assumptions, it is still true
that all trajectories starting from p move into regions of the state space where no
further switchings are possible, and thus again the small-time reachable set is given
by one of the sets CXY , CY X , CSB. ��

We give examples of the small-time reachable sets for each of these four cases.
If we introduce canonical coordinates of the second type of the form

(ξ1,ξ2) �→ pexp(ξ1X)exp(ξ2Y ) ,

then concatenations of the form pesX etY that consist of an X-trajectory starting from
p for time s followed by a Y -trajectory for time t simply have coordinates (ξ1,ξ2) =
(s, t), and thus CXY becomes the triangle

CXY = {(ξ1,ξ2) : 0≤ ξ1, 0≤ ξ2, ξ1 + ξ2 ≤ T}.

Figure 7.1 illustrates this structure, and the trajectories show how points in this set
are reached time-optimally if α(p)> 0.

As a comparison, Fig. 7.2 shows the cells CY X for the system given by the vector
fields

X =

(
1

−ax2

)
and Y =

(
0

1

)
,

or equivalently,

f =
1
2
(X +Y) =

1
2

(
1

1− ax2

)
and g =

1
2
(Y −X) =

1
2

(
−1

1+ ax2

)
.
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Fig. 7.1 The cell CXY in canonical coordinates (ξ1,ξ2) �→ pexp (ξ1X)exp (ξ2Y )
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Fig. 7.2 The cell CY X for the vector field X = (1,−ax2)
T for a =−1 (on the left) and a =+1 (on

the right)

In this case, we have that

[ f ,g](x) =
1
2
[X ,Y ](x) =−1

2
DX(x)Y =

1
2

(
0

a

)
=

a
2

f +
a
2

g,

and thus α(x) ≡ a
2 . As the figure clearly illustrates, we have that CXY ⊂ CY X for

α < 0 and CXY ⊃ CY X for α > 0.
Figure 7.3 shows the synthesis of controlled trajectories if the initial point p lies

on a slow singular arc. The figure was created using the vector fields
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Fig. 7.3 The small-time reachable set from a point p on a slow singular arc

X =

(
1

−1+ x2
2

)
and Y =

(
0

1

)
,

but the geometric structure shown is generally valid under the corresponding
codimension-1 assumptions. For this example,

f =
1
2
(X +Y ) =

1
2

(
1

x2
2

)
and g =

1
2
(Y −X) =

1
2

(
−1

2− x2
2

)
,

and we have that

[ f ,g](x) =−1
2

DX(x)Y =

(
0

−x2

)
= (−x2) ( f + g) .

Hence α(x) =−x2, the singular arc is given by S = {x ∈M : x2 = 0}, and

LXα(x) = (0,−1)X(x) = 1− x2
2 and LYα(x) = (0,−1)Y (x) =−1.

Thus X and Y point to opposite sides of the singular arc, but the Legendre–Clebsch
condition is violated and the singular arc is slow. For this example, all equations
can be integrated explicitly: the X-trajectory starting at the origin at time 0 is given
by x(t) = (t,− tanh(t)), and concatenating this solution with the vertical lines that
are the integral curves of Y , the endpoints corresponding to an XY -trajectory of the
form 0esX e(T−s)Y are given by

EXY = {(x1,x2) : x1 = s, x2 = T − s− tanh(s), 0≤ r ≤ T}.
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Fig. 7.4 Time-optimal trajectories from a point p on a slow singular arc

If we reverse the order of integrations, 0e(T−s)Y esX , we similarly obtain

EYX =

{
(x1,x2) : x1 = s, x2 =

(1+ s)e−(T−s)− (1− s)eT−s

(1+ s)e−(T−s) + (1− s)eT−s
, 0≤ r ≤ T

}
.

These two curves intersect in a nontrivial cut-locus determined by the solution of
the transcendental equation

T − s− tanh(s) =
(1+ s)e−(T−s)− (1− s)eT−s

(1+ s)e−(T−s) + (1− s)eT−s
.

It is not difficult to compute the solutions numerically, and Fig. 7.4 identifies the cut-
locus Γ for this example and also shows the structure of time-optimal trajectories.
Time-optimal XY - and Y X-trajectories reach Γ in the same time.

By simply changing the sign of the quadratic term in the vector field X above,

X =

(
1

−1− x2
2

)
,

and retaining Y , we obtain an example for a fast singular arc. For this model,

f =
1
2
(X +Y ) =

1
2

(
1

−x2
2

)
, g =

1
2
(Y −X) =

1
2

(
−1

2+ x2
2

)
,
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Fig. 7.5 The small-time reachable set from a point p on a fast singular arc

and we now have that

[ f ,g](x) =

(
0

x2

)
= x2 ( f + g) .

Thus α(x) = x2, the singular arc is still given by S = {x ∈M : x2 = 0}, and now

LXα(x) = (0,1)X(x) =−1− x2
2 and LYα(x) = (0,1)Y (x) = 1.

Again X and Y point to opposite sides of the singular arc, but now the Legendre–
Clebsch condition is satisfied and the singular arc is fast. Figure 7.5 shows the small-
time reachable set ReachΣ ,≤T (p) for this system.

As all these examples show, the X- and Y -trajectories provide a barrier that
cannot be crossed in small time by controlled trajectories. It is not possible to
circumvent this border in a sufficiently small neighborhood of p by “going around.”
For longer times, however, clearly this is an option, and there may exist points in
the reachable sets ReachΣ ,≤T (p) that converge to p, but lie outside of this sector. We
close this section with an example that not only illustrates this behavior as reachable
sets evolve over large times T , but also is an example of an optimal synthesis for
which the value function is not continuous.

Example 7.2.1. We consider the reachable sets ReachΣ ,≤T (0) from the origin as the
total time T evolves for the system Σ given by

X =

(
1− x2

x1

)
and Y =

(
0

1

)
,
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or equivalently, the control and drift vector fields

f =
1
2

(
1− x2

1+ x1

)
and g =

1
2

(
−1+ x2

1− x1

)
.

We have that

[ f ,g](x) =−1
2

DX(x)Y =−1
2

(
0 −1

1 0

)(
0

1

)
=

1
2

(
1

0

)
,

and thus the functions α and β are given by

α(x) =
1
2

1− x1

1− x2
and β (x) =−1

2
1+ x1

1− x2
.

It thus follows from Proposition 2.9.1 that optimal XY -junctions must lie in the
regions {(x1,x2) : x1 < 1,x2 < 1} and {(x1,x2) : x1 > 1,x2 > 1} and optimal YX-
junctions must lie in the regions {(x1,x2) : x1 > 1,x2 < 1} and {(x1,x2) : x1 < 1,
x2 > 1}. Along a singular arc S, the vector fields g and [ f ,g] must be linearly
dependent, and this implies that singular arcs can lie only on the vertical line x1 ≡ 0.
But this corresponds to the vector field Y (and the control u ≡ +1), and thus for
this system, although a singular arc exists, it plays no special role, and we need to
analyze only concatenations of X- and Y -trajectories.

Figure 7.6 shows the evolution of the reachable sets ReachΣ ,≤T (0) as T → ∞.
Observe that X-trajectories are the circles x2

1 +(x2− 1)2 = const, all of which have
period 2π , and Y -trajectories are vertical lines oriented upward. At the origin, f (0)
and g(0) are linearly independent and α(0)> 0. Hence the small-time reachable set
from the origin initially is given by the cell CXY , and this is valid for all times T
that satisfy 0 < T ≤ 1. At time T = 1, the Y -trajectory reaches the equilibrium point
(0,1) of the vector field X , and for times T > 1, along this Y -trajectory, X now points
to the opposite side of the x2-axis and switchings from Y to X become optimal. This
generates a second portion of the reachable sets that lies in {x1 < 0}. If these YX-
junctions occur at times τ between 1 and 2, these corresponding trajectories add
to the reachable set until, after time π along the X-trajectory, they again reach the
positive x2-axis, at which point they simply terminate. For switching times τ > 2,
these trajectories all will be optimal for 3π

2 units of time until they reach the half-line
{x1 ≥ 1, x2 = 1}, at which point optimal controls switch to u =+1. In some sense,
the anchor point that determines the structure of time-optimal trajectories and of the
reachable sets ReachΣ ,≤T (0) is the point (1,1) that is reached along the X-trajectory
that starts at the origin at time T = π

2 . This is a conjugate point to the origin, and
it is no longer optimal to follow X . As Fig. 7.6 shows, this trajectory now would
enter the interior of the reachable sets. At this point, the control switches to u =+1
and afterward follows a Y -trajectory without any further switchings. In fact, for all
points 0≤ x1 ≤ 1 with x2 above the X-trajectory emanating from the origin, optimal
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Fig. 7.7 Synthesis of time-optimal trajectories from the origin

trajectories are XY -arcs, while optimal trajectories that steer the origin into points
in {x1 > 1, x2 > 1} are of the type YXY , the longest time-optimal concatenation
sequence to reach any point in R

2.
Figure 7.7 shows the synthesis of time-optimal controls from the origin to an

arbitrary point q ∈ R
2. Note in particular that there exists a cycle consisting of

an initial Y -trajectory over the interval [0,2] followed by an X-trajectory over the
interval (2,2+ π

2 ) that at time T = 2+ π
2 reaches the origin again. This trajectory

indeed is time-optimal over the interval [0,2 + π
2 ) excluding the final point. As

a result, the optimal value function for this problem, which here, for a given
point q ∈ R

2, denotes the minimum time when q is reachable from the origin,
is discontinuous along the quarter-circle that connects the origin with (1,1), the
vertical half-line {x1 = 1,x2 ≥ 1}, and the segment {x1 = 0,0 ≤ x2 ≤ 1}; it also
is not differentiable along the vertical half-line {x1 = 0,x2 ≥ 1}. But clearly, the
value function is lower semicontinuous at the discontinuities, and the synthesis
shown in Fig. 7.7 satisfies all the requirements of the main verification theorem,
Theorem 6.3.3. Overall, the set where VE is not differentiable is a finite union of
embedded submanifolds that define a stratification of the bad set B. It is not difficult
to set up parameterized families of extremals that show that the value function is
continuously differentiable away from these sets. Hence this synthesis is optimal.
Naturally, one could also consider the time-optimal control problem to the origin
with reversed directions of the vector fields, and the same results remain valid.
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The fact that the value function is not continuous at the origin is caused by a lack
of local controllability in the system. The system is completely controllable from
the origin, i.e., ReachΣ (0) = R

2, but points (q1,q2) close to the origin that satisfy
q1 < 0 cannot be reached in small time, and this is the property that matters. As
this example shows, a constructive approach of building fields of extremals is not
hampered by such issues, and the theory easily applies to cover situations in which
the value functions are discontinuous.

7.3 Small-Time Reachable Sets in Dimension 3

As the dimension n of the state space increases, features that are seen only in
cases of positive codimension in lower dimensions emerge to become the nonde-
generate scenarios in higher dimensions. In a certain sense, the higher-dimensional
codimension-0 models provide an unfolding of the geometric structures of the small-
time reachable sets ReachΣ ,≤T (p) from positive-codimension scenarios in lower
dimensions. We illustrate this general feature for dimensions n = 3 and n = 4.

7.3.1 Boundary Trajectories in Dimension 3: Lobry’s Example

We assume that

(B1) the vector fields f , g and their Lie bracket [ f ,g] are linearly independent on a
neighborhood M of a reference point p ∈ R

3,

f (p)∧g(p)∧ [ f ,g](p) = 0 ⇐⇒ X(p)∧Y (p)∧ [X ,Y ](p) = 0.

The structure of boundary trajectories under these conditions was first analyzed
by Lobry in his landmark paper [170], one of earliest papers on nonlinear control
theory, that became a foundation for the development of the theory as a whole. The
result is an immediate generalization from the two- to the three-dimensional case.

Proposition 7.3.1. Under assumption (B1), if (x,u) is a boundary trajectory, then
u is bang-bang with at most one switching. The boundary portion of the small-time
reachable set ReachΣ ,≤T (p) that is not due to the restriction of the time to T is
therefore composed of the cells CXY and CY X .

Proof. Let λ be a nontrivial covector field such that the conditions of Theorem 4.2.2
are satisfied. If the switching function Φ(t) = 〈λ (t),g(x(t))〉 has a zero at time t1,
then it follows that 〈λ (t1), f (x(t1))〉= 0 as well, and so λ (t1) vanishes against both
X(x(t1)) and Y (x(t1)). Since f , g, and [ f ,g] are linearly independent on M, and since
λ (t1) is nonzero, it cannot vanish against [ f ,g] at x(t1). Hence

Φ̇(t1) = 〈λ (t), [ f ,g](x(t))〉 = 0,
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and thus t1 is a bang-bang switch. Thus boundary trajectories are bang-bang with
isolated switchings.

We show that there can be at most one. Suppose there exists a second switching
at time t2 > t1, and for the sake of argument, assume that u(t)≡−1 on (t1, t2). Then
λ (t2) also vanishes against both X and Y at x(t2). Let q1 = x(t1), q2 = x(t2) and move
the vector Y (q2) back to q1 along the flow of X . Setting τ = t2− t1, in exponential
notation, this simply becomes

q2Y exp(−τX) = q1 exp(τX)Y exp(−τX)

∼ exp(τ adX)Y (q1) = Y (q1)+ τ[X ,Y ](q1)+ o(τ),

where we made use of the asymptotic expansion (4.31) from Sect. 4.5. The covector
λ is moved backward along the flow of X by integrating the covariational equation,
which by Proposition 4.4.2, is the adjoint equation. Thus we simply get λ (t1).
Furthermore, by Proposition 4.4.1, we have that

〈λ (t1),q2Y exp(−τX)〉= 〈λ (t1)(exp(−τX))∗ ,q2Y 〉= 〈λ (t2),Y (q2)〉= 0.

Hence λ (t1) vanishes against X(q1), Y (q1) and exp(τ adX)Y (q2). By the nontrivi-
ality of λ (t1), these vectors must be linearly dependent, and thus we have that

0 = X ∧Y ∧ exp(τ adX)Y = X ∧Y ∧Y + τ[X ,Y ]+ o(τ)

= τ(1+ o(τ))(X ∧Y ∧ [X ,Y ])

which contradicts the linear independence of X , Y and [X ,Y ]. Thus boundary
trajectories are bang-bang with at most one switching. ��

The underlying geometry becomes clear if we choose a good set of coordinates.
Both canonical coordinates of the first and second kind will do here, and we use this
simple structure to illustrate the computations for both cases. Coordinates of the first
kind are defined by

(ξ1,ξ2,ξ3) �→ pexp(ξ1X + ξ2Y + ξ3[X ,Y ]).

In particular, by the uniqueness of the coordinate representation, the canonical
coordinates for the X-trajectory pexp(sX), 0≤ s≤ T , are simply given by

CX = {ξ ∈R
3 : 0≤ ξ1 ≤ T, ξ2 = 0, ξ3 = 0},

and the canonical coordinates for the Y -trajectory pexp(tY ), 0≤ s≤ T , are

CY = {ξ ∈ R
3 : ξ1 = 0, 0≤ ξ2 ≤ T, ξ3 = 0}.
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The canonical coordinates for the surfaces TXY and TY X of XY - and Y X-trajectories
can easily be computed using the Baker–Campbell–Hausdorff formula. It follows
from Corollary 4.5.5 that

pexp(sX)exp(tY ) = pexp

(
sX + tY +

1
2

st[X ,Y ]+ stρ
)
,

with the remainder term ρ determined by higher-order brackets that are at least of
order 3. Each such commutator has the factor st, and at least one more term s or t
as an additional factor. Thus ρ is of order O(T ) in time, where once more, we use
the Landau notation O(T k) to denote terms that can be bounded by CT k for some
constant C < ∞. If we express the remainder as a linear combination of the basis
vector fields X , Y , and [X ,Y ], then these terms only add higher-order perturbations
of the form stO(T ) to the existing coefficients at X , Y and [X ,Y ] and we get that

pexp(sX)exp(tY )

= pexp

(
s(1+O(T 2))X + t(1+O(T2))Y +

1
2

st(1+O(T))[X ,Y ]

)
,

i.e., the ξ -coordinates of a point q = pexp(sX)exp(tY ) ∈TXY are given by

ξ1(q) = s(1+O(T2)), ξ2(q) = t(1+O(T2)), ξ3(q) =
1
2

st(1+O(T)).

The equations for ξ1 and ξ2 can be solved for s and t near (0,0), and hence for ε
sufficiently small, we can express the ξ3-coordinate on the surface TXY as a function
of ξ1 and ξ2 in the form

ξXY
3 =

1
2
ξ1ξ2(1+O(‖ξ‖)).

This expression is positive for small ‖ξ‖. Hence we have the following statement:

Lemma 7.3.1. In canonical coordinates of the first kind, the surface TXY of XY-
trajectories can be described as the graph of a smooth function ξXY

3 (ξ1,ξ2) that
is positive on the first quadrant in the (ξ1,ξ2)-plane and has the cells CX and CY

along the positive ξ1- and ξ2-axes in its boundary. �
Canonical coordinates for the surface TY X follow in the same way, except that

the orders of X and Y are reversed and this introduces a minus sign. Now we have
that

pexp(tY )exp(sX)

= pexp

(
s(1+O(T 2))X + t(1+O(T2))Y − 1

2
st(1+O(T))[X ,Y ]

)
,
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and thus the ξ -coordinates of a point q = pexp(tY )exp(sX) ∈TY X are given by

ξ1(q) = s(1+O(T2)), ξ2(q) = t(1+O(T2)), ξ3(q) =−1
2

st(1+O(T)).

Hence, the ξ3-coordinate on the surface TYX also is given as a function of ξ1 and ξ2

in the form

ξYX
3 =−1

2
ξ1ξ2(1+O(‖ξ‖)).

We thus also have the following analogous statement:

Lemma 7.3.2. In canonical coordinates of the first kind, the surface TY X of YX-
trajectories can be described as the graph of a smooth function ξXY

3 (ξ1,ξ2) that is
negative on the first quadrant in the (ξ1,ξ2)-plane and also has the cells CX and CY

along the positive ξ1- and ξ2-axes in its boundary. �
Indeed, the small-time reachable sets ReachΣ ,≤T (p) will lie between these

two surfaces, but as before, their precise structures depend on the Lie-bracket
configuration at p.

Canonical coordinates of the first kind are somewhat easier to use in simple low-
dimensional examples, but as the dimension increases, and concatenations of longer
sequences of trajectories need to be considered, the asymptotic product expansion in
Proposition 4.5.2 becomes far superior in its ease of use. We give the computations
of canonical coordinates of the second kind as well in order to explain the procedure
at this simpler example. These coordinates are defined by

(ξ1,ξ2,ξ3) �→ pexp(ξ3[X ,Y ])exp(ξ2Y )exp(ξ1X) ,

and now the coordinates of a point q = pexp(sY )exp(tX) corresponding to a YX-
trajectory are immediate, ξ1(q) = t, ξ2(q) = s, and ξ3(q) = 0. Thus, as before, the
cells CX and CY lie on the positive ξ1- and ξ2-axes,

CX = {ξ ∈R
3 : 0≤ ξ1 ≤ T, ξ2 = 0, ξ3 = 0},

CY = {ξ ∈R
3 : ξ1 = 0, 0≤ ξ2 ≤ T, ξ2 = 0},

but now also CY X has a trivial coordinate representation and is simply a triangle in
the positive (ξ1,ξ2)-quadrant,

CY X = {ξ ∈ R
3 : 0≤ ξ1, 0≤ ξ2, ξ1 + ξ2 ≤ T, ξ3 = 0}.

Canonical coordinates of the second kind for the surface TXY are computed using
the commutator formula in Corollary 4.5.2. We have that

q0 exp(sX)exp(tY ) = q0 exp(stρ)exp(st[X ,Y ])exp(tY )exp(sX) ,
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with the remainder term ρ again determined by higher order brackets that are at least
of order 3 and of order O(T ) in time. The remainder ρ again will be expressed as a
linear combination of the basis vector fields X , Y , and [X ,Y ], and when these terms
are combined with the exponentials of X , Y , and [X ,Y ], they only add higher-order
terms of order stO(T ) to the existing coefficients at X , Y , and [X ,Y ]. We therefore
get that

q0 exp(sX)exp(tY ) = q0 exp(st(1+O(T))[X ,Y ])

× exp
(
t(1+O(T2))Y

)
exp

(
s(1+O(T2))X

)
,

i.e., the ξ -coordinates of q = q0 exp(sX)exp(tY ) are given by

ξ1(q) = s(1+O(T2)), ξ2(q) = t(1+O(T2)), ξ3(q) = st(1+O(T)).

Hence, for ε sufficiently small, we again can express the ξ3-coordinate on the cell
CXY as a function of ξ1 and ξ2 in the form ξ3 = ξ1ξ2(1 + O(‖ξ‖)), and thus,
once more, the surface TXY of XY -trajectories can be described as the graph of
a smooth function ξXY

3 (ξ1,ξ2) that is positive on the first quadrant in the (ξ1,ξ2)-
plane. The domain D = dom

(
ξXY

3

)
of this function lies in the first quadrant and

has the coordinate axes in its boundary. Since the surface TY X of Y X-trajectories is
described in the same way with the trivial function ξYX

3 (ξ1,ξ2) ≡ 0, it follows that
TXY lies above TY X in the direction of ξ3 with the cells CX and CY as their common
boundary.

This argument illustrates the power of using a good set of coordinates, a pervasive
feature in all our constructions. It also already points to the inductive nature of
these constructions. The boundary trajectories for the small-time reachable set in
Lobry’s case in dimension 3 are given by the two cells CXY and CY X that describe the
full small-time reachable sets ReachΣ ,≤T (p) in dimension 2 in the codimension-0
case. The full three-dimensional small-time reachable set ReachΣ ,≤T (p) is then
constructed relative to this frame.

7.3.2 Small-Time Reachable Sets under Codimension-0
Assumptions

Throughout this section, assumption (B1) remains in effect, and we write the
second-order brackets as linear combinations of the basis X , Y , and [X ,Y ],

[X , [X ,Y ]] = a1X + a2Y + a3[X ,Y ] = α f + · · · ,
[Y, [X ,Y ]] = b1X + b2Y + b3[X ,Y ] = β f + · · · .
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We determine the small-time reachable set ReachΣ ,≤T (p), and more generally, as
in Sects. 2.9 and 2.10 for the two-dimensional case, we give the structure of time-
optimal controlled trajectories that lie in a sufficiently small neighborhood of p,
under the following codimension-0 assumptions:

(B2) The functions α and β do not vanish at p; equivalently, the vector fields g,
[ f ,g], and [ f ± g, [ f ,g]] are linearly independent at p:

g(p)∧ [ f ,g](p)∧ [X , [ f ,g]](p) = 0 and g(p)∧ [ f ,g](p)∧ [Y, [ f ,g]](p) = 0.

Geometrically, the functions α and β indicate to which side of the plane
generated by g and [ f ,g] the vector fields [X , [X ,Y ]] and [Y, [X ,Y ]] point. The wedge
product of three vectors vanishes if and only if these vectors are linearly dependent.
Thus under assumption (B1), the wedge product of g and [ f ,g] with a third vector
Z vanishes if and only if Z lies in the plane generated by the linearly independent
vectors g and [ f ,g]. In particular, [X , [ f ,g]] and [Y, [ f ,g]] point to the same side of the
plane spanned by g and [ f ,g] if and only if the wedge products g∧ [ f ,g]∧ [X , [ f ,g]]
and g∧ [ f ,g]∧ [Y, [ f ,g]] have the same sign, and to opposite sides if these signs are
different. As in the two-dimensional case, these geometric properties are connected
with the existence and optimality properties of singular arcs for the time-optimal
control problem.

In this section, we prove the following result, and, as a corollary, determine the
full structure of the small-time reachable sets ReachΣ ,≤T (p).

Theorem 7.3.1. Let M be a sufficiently small neighborhood of a point p for which
conditions (B1) and (B2) are satisfied. Then time-optimal controlled trajectories
that lie in M are concatenations of at most three pieces of the following type:

Y XY if α(p)> 0 and β (p)> 0,
XYX or Y XY if α(p)> 0 and β (p)< 0,

BSB if α(p)< 0 and β (p)> 0,
XYX if α(p)< 0 and β (p)< 0.

This is a substantial result with a long proof that we develop in several steps. Sup-
pose (x,u) is a time-optimal controlled trajectory that lies in M. By Theorem 4.2.3,
there exist a constant λ0 ≥ 0 and a nontrivial solution λ : [0,T ]→ (

R
3
)∗

of the
adjoint equation along (x,u) such that we have

u(t) =−sgn Φ(t) =−sgn 〈λ (t),g(x(t))〉

almost everywhere on [0,T ] and

H = λ0 + 〈λ (t), f (x(t))+ u(t)g(x(t))〉= 0.
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It was already shown above that these relations are always valid at switching times,
and we freely use this fact henceforth.

Lemma 7.3.3. On a sufficiently small neighborhood M of p, the only abnormal
extremals are XY- and YX-trajectories.

Proof. For an abnormal extremal, the multiplier λ vanishes against both vector
fields f and g at every switching time. Thus, if (x,u) is a time-optimal controlled
trajectory that has two switchings at times t1 < t2, then setting qi = x(ti), λ (t1)
vanishes against f (q1), g(q1), but also against the vector g(q2) moved back along
the flow to the point q1. Regardless of the value of the control between t1 and t2, this
generates a third vector of the form±[ f ,g](q1)+O(T ), which by assumption (B1),
is linearly independent of f (q1) and g(q1). Contradiction. ��

We henceforth consider only normal extremals and set λ0 = 1. We begin the
proof of Theorem 7.3.1 with the analysis of possible singular arcs.

Proposition 7.3.2. For a point q ∈ M, if α(q) and β (q) have the same sign, then
there does not exist an admissible singular arc through q. If α(q) and β (q) have
opposite signs, then there exists a unique singular arc passing through q, and it is
given by the integral curve of the vector field

S =
αY −βX
α−β .

The singular arc is fast if α(q)< 0 and it is slow if α(q)> 0.

Proof. For notational clarity, we often drop the argument t in our computations. The
second derivative of the switching functionΦ(t) = 〈λ (t),g(x(t))〉 can be expressed
in the form

Φ̈(t) = 〈λ , [ f , [ f ,g]](x)〉+ u〈λ , [g, [ f ,g]](x)〉

=
1
2
(1− u)〈λ , [X , [X ,Y ]](x)〉+ 1

2
(1+ u)〈λ (t), [Y, [X ,Y ]](x)〉 .

If the control u is singular over an open interval, then λ vanishes against g(x) and
[ f ,g](x), and 〈λ , f (x)〉 = −1. Expressing the second-order brackets in terms of f ,
g, and [ f ,g], the condition Φ̈Γ (t)≡ 0 is equivalent to

0 = (1− u)α(x)+ (1+ u)β (x),

which determines the singular control as

using(t) =
α(x(t))+β (x(t))
α(x(t))−β (x(t)) .
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Note that
∣∣using(t)

∣∣< 1 if α and β have opposite signs, while
∣∣using(t)

∣∣> 1 if α and
β have the same sign. Hence, the singular control is not admissible in the second
case and no singular arc exists through q. In the first case,

S = f + usingg =
1
2

(
X +Y +

α+β
α−β (Y −X)

)
=
αY −βX
α−β ,

defines a smooth vector field whose integral curves are admissible singular arcs. The
Legendre–Clebsch condition for optimality requires that

0≥ 〈λ , [g, [ f ,g]](x)〉 = 1
2
〈λ , [Y −X , [X ,Y ]](x)〉= 1

2
(α(x)−β (x)) ,

where we use that 〈λ , f (x)〉=−1. Thus the Legendre–Clebsch condition is satisfied
for α < 0 and violated for α > 0. ��

In contrast to the two-dimensional case, we now have a well-defined singular
vector field that can be used everywhere, not just on one singular arc.

An important concept in our analysis of the various cases (which has already been
used in the proof of Proposition 7.3.1 and, implicitly, in the proof of the lemma about
abnormal extremals above) is what we called g-dependent points earlier, and what,
in the context here, generally are called conjugate triples (e.g., [210–212,240,242]).
We shall show below that indeed these points are conjugate, and we therefore retain
both terminologies.

Definition 7.3.1 (g-Dependent points/conjugate triples.). Given an extremal con-
trolled trajectory (x,u), three consecutive points q1 = x(t1), q2 = x(t2), and q3 =
x(t3), t1 ≤ t2 ≤ t3, along the trajectory x where the switching function vanishes,
Φ(ti) = 0 for i = 1,2,3, are called g-dependent, and the points (q1,q2,q3) form a
conjugate triple. We allow that two of the points agree if the switching function has a
double zero at the corresponding time, and in this case we call (q1,q2,q3) a singular
conjugate triple.

Conjugate triples impose nontrivial relations on the times along the controlled
trajectory between the consecutive switchings that can easily be computed.

Lemma 7.3.4. Let (q1,q2,q3) be a conjugate triple along an ·XY ·-trajectory with
switching points q1, q2 = q1 exp(s1X), s1 > 0, and q3 = q2 exp(s2Y ), s2 > 0. Then
g(q1) and the vectors obtained by moving g(q2) and g(q3) back to q1 along the flow
of the extremal are linearly dependent. These two vectors are given by

q2gexp(−s1X) = q1 exp(s1X)gexp(−s1X)∼ exp(s1 adX)g(q2)

and

q3gY exp(−s2Y )exp(−s1X) = q1 exp(s1X)exp(s2Y )gexp(−s2Y )exp(−s1X)

∼ exp(s1 adX)exp(s2 adY )g(q3).
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Recall that the exponential notation provides a common framework for the flows
of the vector fields as well as for moving tangent vectors along these flows. Thus,
q2gexp(−s1X) denotes the vector g(q2) moved back along the flow of the vector
field X to the point q1, and so on. Also, we consistently use the notation ·XY · with
the dot · indicating that there is a switching point at the initial point q1 and at the
endpoint q3 = q1 exp(s1X)exp(s2Y ).

Proof. The lemma is a direct consequence of the conditions of the maximum
principle, and a similar argument has already been made several times: if we take
the time at the junction q1 to be zero, then there exists a nontrivial solution λ to
the adjoint equation such that 〈λ (s1),g(q2)〉 = 0 and 〈λ (s1 + s2),g(q3)〉 = 0. By
Proposition 4.4.1, the value of this inner product does not change if both λ and the
vectors g are moved back along the flow to the point q1, i.e.,

0 = 〈λ (0),exp(s1 adX)g(q2)〉

and
0 = 〈λ (0),exp(s1 adX)exp(s2adY )g(q3)〉 .

Since λ (0) is nonzero, it follows that the three vectors g(q1), exp(s1 adX)g(q2),
and exp(s1 adX)exp(s2 adY )g(q3) are linearly dependent. ��

This linear dependency relation can easily be evaluated. Recall that the wedge
product is a multi-linear form that obeys the same rules as the determinant. Thus,
when taking the wedge product of

exp(s1adX)g(q2) = g(q1)+ s1[X ,g](q1)+ o(s1)

with g(q1), the constant term in this expansion gets canceled, and we therefore can
factor s1. Using the operator notation

(
exp(s1 adX)− id

s1

)
g = [X ,g]+ o(1),

and also dropping the first switching point q1 for notational convenience, it follows
that

0 = g∧ exp(s1 adX)g∧ exp(s1 adX)exp(s2adY )g

= s1s2

(
g∧

(
exp(s1 adX)− id

s1

)
g∧ exp(s1 adX)

(
exp(s2 adY )− id

s2

)
g

)

= s1s2

(
g∧ [X ,g]+

1
2

s1[X , [X ,g]]+ · · ·

∧ exp(s1 adX)

(
[Y,g]+

1
2

s2[Y, [Y,g]]+ · · ·
))
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= s1s2

(
g∧ [X ,g]+

1
2

s1[X , [X ,g]]+ · · ·

∧ [Y,g]+ s1[X , [Y,g]]+
1
2

s2[Y, [Y,g]]+ · · ·
)
.

Dividing by s1 and s2, and using the coordinate expressions for [X , [ f ,g]] and
[Y, [ f ,g]], we obtain that

0 = g∧ [ f ,g]+ 1
4
αs1 f + · · ·∧ [ f ,g]+

(
1
2
αs1 +

1
4
β s2 + · · ·

)
f

=

∣∣∣∣∣∣∣∣∣

0 1 0
1
4
αs1 + · · · 0 1+ · · ·

1
2
αs1 +

1
4
β s2 + · · · 0 1+ · · ·

∣∣∣∣∣∣∣∣∣
( f ∧g∧ [ f ,g])

=−1
4
(αs1 +β s2 + · · ·)( f ∧g∧ [ f ,g])

which implies that
α(q1)s1 +β (q1)s2 + · · ·= 0. (7.6)

We call this equation a conjugate point relation. Similar computations, or just the
use of input symmetries (see Sect. 2.10), lead to analogous formulas for ·YX ·-
trajectories, where as above, the dots indicate that there are switching points
at the initial and final points of this segment. We want to stress the ease of
these computations that give necessary conditions for optimality when bang-bang
trajectories have a larger number of switchings. This will become more and more
important as the dimension of the state space increases. Note that Eq. (7.6) cannot
be satisfied with small times s1 and s2 near p if α(p) and β (p) have the same sign.
Hence in such a case there cannot be optimal bang-bang trajectories with more than
two switchings.

Proposition 7.3.3. If α(p) and β (p) have the same sign, then time-optimal con-
trolled trajectories that lie in a sufficiently small neighborhood M of p are at most
of the type Y XY if α(p) > 0 and of the type XYX if α(p) < 0. In particular, the
small-time reachable set from p is given by

ReachΣ ,≤T (p) =

{
CY XY if α(p)> 0,

CXY X if α(p)< 0.

Proof. On a sufficiently small neighborhood M of p, the linear terms in Eq. (7.6)
dominate the higher-order remainders, and thus there cannot exist optimal ·XY ·-
concatenations. Applying the input symmetry ρ of Sect. 2.10 that interchanges X
with Y , the same follows for ·Y X ·-concatenations.
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The specific structures follow from some convexity-type properties of the
switching function in these cases. Without loss of generality, we consider the case in
which α(p) and β (p) are positive on M. We claim that with the exception of some
cases in which optimal controls are bang-bang with at most one switching, on a
sufficiently small neighborhood M of p, the second derivative Φ̈(τ) of the switching
function is always negative along an optimal Y -trajectory when Φ̇(τ) = 0. Once this
fact has been established, if I = (t1, t2) is a maximal open subinterval of [0,T ] where
u=+1, then it follows from the fact that the switching function is negative along Y -
trajectories that we must have either t1 = 0 or t2 = T . For if 0 < t1 < t2 < T , then the
switching function has a negative minimum at some time τ ∈ (t1, t2), contradicting
the fact that Φ̈(τ)< 0. (Note that the control u ≡+1 cannot be singular if α and β
have the same sign, and thus the switching function cannot vanish identically on I;
in principle, this a possible degenerate case.) Thus Y -trajectories necessarily need
to lie at the beginning or at the end of [0,T ], and optimal controlled trajectories are
at most of the form Y XY .

It remains to establish our claim above. The second derivative of Φ along Y for
a time τ where Φ̇(τ) = 〈λ (τ), [X ,Y ](x)〉 = 0 is given by

Φ̈(τ) = 〈λ , [Y, [ f ,g]](x)〉 = β (x)〈λ , f (x)〉+(b2(x)− b1(x)) 〈λ ,g(x)〉 .

It follows from H ≡ 0 that 〈λ ,Y (x)〉= −1 along an extremal Y -trajectory, and thus
we have that

Φ̈(τ) = 〈λ , [Y, [ f ,g]](x)〉=−β (x)+ω(x)〈λ ,g(x)〉

where ω = b2 − b1 − β is a smooth function. It is not difficult, but somewhat
tedious, to show that after normalizing the multiplier λ (0) so that ‖λ (0)‖1 = 1, for
every κ > 0 there exists a small enough neighborhood M of p such that optimal
trajectories that lie in M are bang-bang with at most one switching whenever
|〈λ (0),g(p)〉| ≥ 1 − κ . (We refer the interested reader to [209, 210] for this
argument.) As a consequence, it is possible to choose the neighborhood small
enough that the term −β dominates ω(x)〈λ ,g(x)〉 for all the remaining choices
of the multipliers. Consequently, the sign of the second derivative Φ̈(τ) is given by
the negative sign of β (p), which proves the result. ��

In fact, this argument could be used to establish the following stronger convexity
properties of the switching function.

Lemma 7.3.5. [209] There exists a neighborhood M of p such that for all extremals
that are not bang-bang with at most one switching, the switching function Φ has
the following convexity properties: Φ is strictly convex along any X-trajectory if
α(p) < 0 and strictly concave if α(p) > 0 and Φ is strictly convex along any
Y-trajectory if β (p)< 0 and strictly concave if β (p)> 0. �
Proposition 7.3.4. If α(p) < 0 and β (p)> 0, then time-optimal controlled trajec-
tories that lie in a sufficiently small neighborhood M of p are concatenations of
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YX
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XSX YSY
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YSX

X Y

XS SY

SX YS

Fig. 7.8 A qualitative sketch
of the structure of the
endpoints in the boundary
ReachΣ ,T (p) of the
small-time reachable set for
α(p)< 0 and β (p) > 0

at most the type BSB, where B is either X or Y and S denotes a singular arc. The
small-time reachable set from p is given by the union of the corresponding cells
CXSX , CXSY , CY SX , and CY SY ,

ReachΣ ,≤T (p) = CBSB.

Figure 7.8 illustrates the qualitative structure of the boundary portion ReachΣ ,T (p)
of the small-time reachable set that is defined by the points that are reachable time-
optimally in time T .

Proof. In this case, and ignoring the cases in which optimal controls a priori
are bang-bang with at most one switching, the switching function Φ is strictly
convex along X-trajectories and strictly concave along Y -trajectories. Both of these
convexity properties prevent further switchings, and it follows that both X- and
Y -trajectories need to lie at the end of the interval [0,T ]. Singular controls are
admissible and satisfy the Legendre–Clebsch condition and thus overall, only BSB
can be time-optimal.

It is illustrative to employ a singular conjugate point relation in this case as well.
Let ∗X · denote a concatenation of the form q2 = q1 exp(sX) with the ∗ indicating
that there is a singular junction at q1 and the dot representing another junction at q2.
Setting the time along the trajectory at q1 to 0, it then follows that the multiplier
λ (0) vanishes against the vectors g(q1), [ f ,g](q1), and against the vector g(q2)
transported back to q1 along the flow of X . As before, this vector is given by

exp(sadX)g(q2) = g(q1)+ s[ f ,g](q1)+
1
2

s2[X , f ,g]](q1)+ o(s2).

But in the wedge product with g(q1) and [ f ,g](q1), the constant and linear terms get
canceled and thus, writing the second-order bracket [X , f ,g]] as a linear combination
of f , g, and [ f ,g], the linear dependence of these three vectors is equivalent to
α(q1)+ o(1) = 0. This is not possible on a small enough neighborhood of p. ��
Proposition 7.3.5. If α(p) > 0 and β (p)< 0, then time-optimal controlled trajec-
tories that lie in a sufficiently small neighborhood M of p are trajectories of at most
type XYX or YXY.
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X

X

YY

q1

q2=q1exp(s1X)

q3=q2exp(s2Y)

q1exp(t1Y)

q1exp(t1Y)exp(t2X)

q3exp(s3X)

Fig. 7.9 A variation along a
YXY X-trajectory

This result is the three-dimensional analogue of Proposition 2.9.5 from Sect. 2.10
that describes time-optimal trajectories near a slow singular arc. As in the planar
case, this result lies considerably deeper than the previous propositions, and we
develop its proof in several steps.

In this case, the convexity properties of the switching function are conducive to
a large number of switchings: Φ is strictly concave along X-trajectories where it is
positive and strictly convex along Y -trajectories where it is negative. In the work by
Kupka and Bonnard (e.g., [43, 49, 142]), this situation is called elliptic, reflecting
the characteristic convexity properties of the switching function, while the case in
which α and β have the same sign is called hyperbolic in view of the fact that for at
least one of the constant controls u = +1 and u = −1, the curvature works against
zeros for the switching function. The case α < 0 and β > 0 would be parabolic in
this classification. We prefer to classify these cases according to the existence and
local optimality of singular arcs.

Ignoring situations in which optimal controls are bang-bang with at most one
switching a priori, the convexity properties of the switching function imply that
switchings occur whenever the switching function vanishes. Thus time-optimal
extremals that lie in a sufficiently small neighborhood of p are bang-bang. But
this time, the number of switchings can be large, and indeed there exist bang-bang
extremals with an arbitrarily large number of switchings. But they are not optimal.
In order to exclude the optimality of bang-bang controls with three switchings, we
set up a specific variation that is not a point variation and indeed is quite different
from these variations considered earlier (see Fig. 7.9). Essentially, our construction
below sets up a parameterized family of bang-bang extremals as defined in Sect. 6.1
for which the third switching points are transversal folds. It is in this construction
that the Lie-algebraic computations show their full force, and we use the proof of
this result to showcase these geometric techniques. They center on the computation
of canonical coordinates using the exponential formalism and associated with it the
determination of tangent spaces for surfaces defined by various concatenations of
trajectories of the system.
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Consider a YXY X concatenation that lies in M and denote the switching points
by q1, q2, and q3. Thus (q1,q2,q3) form a conjugate triple. Let s1 > 0 and s2 > 0 be
the times along the intermediate X- and Y -arcs, i.e.,

q2 = q1 exp(s1X) and q3 = q2 exp(s2Y ) = q1 exp(s1X)exp(s2Y ) .

We shall show that the point q3 exp(s3X) on this YXYX-trajectory is also reachable
from the first junction q1 by means of a YXY -trajectory, i.e., that there exist positive
times t1, t2, t3, all small, such that

q1 exp(s1X)exp(s2Y )exp(s3X) = q1 exp(t1Y )exp(t2X)exp(t3Y ) . (7.7)

We then want to compare these total times. If we consider Eq. (7.7) simply as an
equation in the variables si and t j, then this equation has the trivial solutions 0 = t1,
s1 = t2, s2 = t3, s3 = 0 and s1 = 0, s2 = t1, s3 = t2, 0 = t3. We are interested
in solutions that lie near the first of these two trivial solutions and therefore
desingularize this behavior through a blowup of s3 in the direction of s1. That is,
rather than using s3 as a variable, we make a transformation of the form s3 = τs1

and instead use τ as the third variable. Thus, we consider the following form of
Eq. (7.7):

q1 exp(s1X)exp(s2Y )exp(s1τX) = q1 exp(t1Y )exp(t2X)exp(t3Y ) (7.8)

and denote the difference in time by

Δ = Δ(τ) = t1 + t2 + t3− s1− s2− s1τ.

We first show that given (s1,s2) and τ > 0 small, there exist unique times t j that
are defined by smooth functions of (s1,s2) and τ that solve this equation and then
compute a second-order Taylor expansion for Δ in terms of τ for (s1,s2) fixed. We
start with expressing both sides of Eq. (7.8) in terms of canonical coordinates of the
second kind of the form

(ξ1,ξ2,ξ3) �→ q1 exp(ξ3[X ,Y ])exp(ξ2Y )exp(ξ1X) .

Using Corollary 4.5.2 to calculate the coordinates in terms of the si and t j, for XYX-
trajectories, we obtain

q1 exp(s1X)exp(s2Y )exp(s1τX)

= q1 · · ·exp

(
1
2

s2
1s2[X , [X ,Y ]]

)
exp

(
1
2

s1s2
2[Y, [X ,Y ]]

)

× exp(s1s2[X ,Y ])exp(s2Y )exp(s1(1+ τ)X). (7.9)
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The higher-order brackets will be expressed as linear combinations of the basis, and
we write

[X , [X ,Y ]] = a1(q1)X + a2(q1)Y + a3(q1)[X ,Y ]+Ra,

where the coefficients ai are evaluated at the initial point q1 and Ra is the remainder
defined by this equation. Thus Ra(q1) = 0, or equivalently, q1 = q1 exp(Ra). Sub-
stituting this expression into Eq. (7.9) and expanding into a product of exponentials
gives

q1 · · ·exp

(
1
2

s2
1s2[X , [X ,Y ]]

)
· · ·

= q1 · · ·exp

(
1
2

s2
1s2

(
a1(q1)X + a2(q1)Y + a3(q1)[X ,Y ]+Ra

))
· · ·

= q1 · · ·exp

(
1
2

s2
1s2Ra

)
exp

(
1
2

s2
1s2a3(q1)[X ,Y ]

)

× exp

(
1
2

s2
1s2a2(q1)Y

)
exp

(
1
2

s2
1s2a1(q1)X

)
· · · ,

where all commutator terms have at least the factor s4
1s2

2 and become part of higher-
order terms. The X-, Y -, and [X ,Y ]-exponentials now need to be rearranged so that
they can be combined with other like terms. For example, exp

( 1
2 s2

1s2a1(q1)X
)

needs
to be combined with the term exp(s1(1+ τ)X). In order to do so, it needs to be
commuted with other terms to become adjacent to this term. In doing so, additional
commutator terms arise. But each of them has at least the factor s2

1s2
2 and thus is of

higher order when compared with the existing terms. Hence, modulo commutators
that only contribute to higher-order terms, we can simply replace the third-order
brackets by their linear combinations and then combine like terms. This gives

q1 exp(s1X)exp(s2Y )exp(s1τX)

= q1 exp

(
s1s2

(
1+

1
2

a3(q1)s1 +
1
2

b3(q1)s2 + o(s)

)
[X ,Y ]

)

× exp

((
s2 +

1
2

s1s2 [a2(q1)s1 + b2(q1)s2 + o(s)]

)
Y

)

× exp

((
s1(1+ τ)+

1
2

s1s2 [a1(q1)s1 + b1(q1)s2 + o(s)]

)
X

)
,

with the expression o(s) once more denoting higher-order terms ρ(s) that have

the property that lim‖s‖→0
ρ(s)
‖s‖ = 0, where ‖s‖ = s1 + s2 and the times s1 and

s2 are positive. In fact, if the vector fields f and g are three time continuously
differentiable, all these higher-order terms are at least quadratic in s1 and s2. Notice,
however, that τ never partakes in the commutation procedures and thus does not
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come up in these higher-order terms. The coordinates therefore are exact in τ . This
gives us the following formulas:

Lemma 7.3.6. The canonical coordinates for q1 exp(s1X)exp(s2Y )exp(s1τX) are
given by

ξXYX
1 (s) = s1(1+ τ)+

1
2

s1s2

(
a1(q1)s1 + b1(q1)s2 + o(s)

)
,

ξXYX
2 (s) = s2 +

1
2

s1s2

(
a2(q1)s1 + b2(q1)s2 + o(s)

)
,

ξXYX
3 (s) = s1s2

(
1+

1
2

a3(q1)s1 +
1
2

b3(q1)s2 + o(s)

)
.

Similarly, for Y XY -trajectories, we obtain that

q1 exp(t1Y )exp(t2X)exp(t3Y )

= q1 exp(t1Y ) · · ·exp

(
1
2

t2
2 t3[X , [X ,Y ]]

)
exp

(
1
2

t2t2
3 [Y, [X ,Y ]]

)

× exp(t2t3[X ,Y ])exp(t3Y )exp(t2X)

= q1 · · ·exp

(
1
2

t2
2 t3[X , [X ,Y ]]

)
· · ·exp

(
1
2

t2t2
3 [Y, [X ,Y ]]

)
exp(t1Y )

× exp(t2t3[X ,Y ])exp(t3Y )exp(t2X)

= q1 · · ·exp

(
1
2

t2
2 t3[X , [X ,Y ]]

)
exp

(
1
2

t2t2
3 [Y, [X ,Y ]]

)
· · ·exp(t1t2t3[Y, [X ,Y ]])

× exp(t2t3[X ,Y ])exp((t1 + t3)Y )exp(t2X).

Note that an extra commutator term that is cubic in the times t j arises when exp(t1Y )
and exp(t1t2[X ,Y ]) are commuted. As above, we express the third-order brackets as
linear combinations of the basis and overall obtain

q1 exp(t1Y )exp(t2X)exp(t3Y )

= q1 exp

(
t2t3

(
1+

1
2

t2a3(q0)+

(
1
2

t3 + t1

)
b3(q0)+ o(t)

)
[X ,Y ]

)

× exp

((
t1 + t3 + t2t3

[
1
2

t2a2(q0)+

(
1
2

t3 + t1

)
b2(q0)+ o(t)

])
Y

)

× exp

((
t2 + t2t3

[
1
2

t2a1(q0)+

(
1
2

t3 + t1

)
b1(q0)+ o(t)

])
X

)
,

which gives the following formulas:
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Lemma 7.3.7. The canonical coordinates for q1 exp(t1Y )exp(t2X)exp(t3Y ) are
given by

ξYXY
1 (t) = t2 + t2t3

[
1
2

a1(q1)t2 + b1(q1)

(
1
2

t3 + t1

)
+ o(t)

]
,

ξYXY
2 (t) = t1 + t3 + t2t3

[
1
2

a2(q1)t2 + b2(q1)

(
1
2

t3 + t1

)
+ o(t)

]
,

ξYXY
3 (t) = t2t3

(
1+

1
2

a3(q1)t2 + b3(q1)

(
1
2

t3 + t1

)
+ o(t)

)
.

Lemma 7.3.8. There exists a neighborhood M of p with the property that for
arbitrary points q1 ∈ M, sufficiently small positive times s1 and s2, and a positive
parameter τ , the equation

q1 exp(s1X)exp(s2Y )exp(s1τX) = q1 exp(t1Y )exp(t2X)exp(t3Y )

has a unique solution in t that is given by smooth functions ti(τ;s), i = 1,2,3, of s1,
s2, and τ . Furthermore, s2 divides t1 and t3, and s1 divides t2. Low-order expansions
for the solutions have the form

t1 = s2

(
τ

1+ τ
+ o(s1)

)
, t2 = s1 [(1+ τ)+ o(s2)] , t3 = s2

(
1

1+ τ
+ o(s1)

)
,

(7.10)

where o(s1) and o(s2) denote higher-order terms that after division by s1 and s2,
respectively, vanish at the origin.

Proof. The function ζ defined by

ζ (t) =
ξYXY

3 (t)

ξYXY
1 (t)

=
t2t3 (1+ o(1))
t2 + t2t3o(1)

=
t3 (1+ o(1))

1+ o(t3)
= t3 (1+ o(1))

is differentiable near the origin and satisfies ζ (t1, t2,0) = 0. Thus, the mapping

Ξ : (t1, t2, t3) �→ Ξ(t) = (ξY XY
1 (t),ξY XY

2 (t),ζ (t))

is differentiable, satisfies Ξ(0) = 0, and has a non-singular Jacobian at the origin,

DΞ(0) =

⎛
⎜⎝

0 1 0

1 0 1

0 0 1

⎞
⎟⎠ .

Thus this transformation is invertible near 0 with a continuously differentiable
inverse Ξ−1 (see Appendix A, Theorem A.3.1). Furthermore, the corresponding
expression for the XYX-coordinates is given by
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ζ (s) =
ξXYX

3 (s)

ξXYX
1 (s)

=
s1s2 (1+ o(1))

s1(1+ τ)+ s1s2o(1)
=

s2 (1+ o(1))
1+ τ+ o(s2)

= s2 (1+ o(1)),

and thus also the transformation Θ : (s1,s2,τ) �→ Θ(s) = (ξ1(s),ξ2(s),ζ (s)) is
differentiable near the origin. Hence the composition

(s1,s2,τ) �→ (t1, t2, t3) =
(
Ξ−1 ◦Θ)

(s1,s2,τ)

is a differentiable mapping defined in a neighborhood of (0,0,0). Thus, given
any sufficiently small times (s1,s2,τ), there exist unique times (t1, t2, t3) such that
Eq. (7.8) is satisfied, and these times are differentiable functions of (s1,s2,τ). The
function ζ represents the blowup of s3 in the direction of s1 that desingularizes
Eq. (7.8) and leads to unique and smooth solutions. Note that t1 = t3 = 0 if s2 = 0 and
t2 = 0 if s1 = 0; thus s2 divides t1 and t3, while s1 divides t2. Low-order expansions
for the functions t j can be computed by equating the canonical coordinates,

s1(1+ τ)+ o(s1s2) = t2 + o(t2t3) ,

s2 + o(s1s2) = t1 + t3 + o(t2t3) ,

s1s2 (1+O(s)) = t2t3 (1+O(t)) ,

which gives Eq. (7.10). �
Lemma 7.3.9. For small times s1 and s2, the function Δ has the following second-
order Taylor expansion in τ:

Δ(τ;s1,s2)=
1
2

s1s2
[−τ (α(q1)s1 +β (q1)s2 +o(s)) +τ2 (β (q1)s2 +o(s))+o(τ2)

]
.

In particular,

Δ ′(0) =
dΔ
dτ

(0) =−1
2

s1s2 [α(q1)s1 +β (q1)s2 + o(s)] ,

Δ ′′(0) =
d2Δ
dτ2 (0) = s1s2 [β (q1)s2 + o(s)] .

Proof. Adding the ξ1- and ξ2-coordinates, and using the low-order expansions in
Eq. (7.10) for the t j, gives

Δ(τ) = t1 + t2 + t3− s1− s2− s1τ

=
1
2
α(q1)

[
s2

1s2− t2
2t3

]
+β (q1)

[
1
2

s1s2
2− t2t3

(
t1 +

1
2

t3

)]
+ s1s2o(s)
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=
1
2
α(q1)s

2
1s2 [1− (1+ τ)+ o(s)]

+β (q1)s1s2
2

[
1
2
− τ

1+ τ
− 1

2
1

1+ τ
+ o(s)

]
+ s1s2o(s)

=
1
2

s1s2

[
−α(q1)s1τ−β (q1)

s2τ
1+ τ

+ o(s)

]

=
1
2

s1s2
[−α(q1)s1τ−β (q1)s2τ+β (q1)s2τ2 + o(τ2;s)

]
.

The formulas for the first and second derivatives in τ follow from this expansion. ��
This construction is valid regardless of the signs of α and β . If α and β have the

same sign, then the linear terms are dominant and the first-order term Δ ′(0) implies
that the XYX-trajectory

q1 exp(s1X)exp(s2Y )exp(s1τX)

is faster than the corresponding YXY -trajectory

q1 exp(t1Y )exp(t2X)exp(t3Y )

if these terms are negative, and it is slower if they are positive. This is consistent
with the results already derived in Proposition 7.3.3. However, in the case we are
considering now,α > 0 and β < 0, the first-order term Δ ′(0) is inconclusive. Indeed,
this term is the conjugate point relation along the extremal defined earlier.

Proposition 7.3.6. For the conjugate triple (q1,q2,q3), we have that Δ ′(0) = 0.

Proof. Differentiating both sides of Eq. (7.8) with respect to τ at τ = 0, it follows
that

s1X (q3) = ṫ1(0)v1 + ṫ2(0)v2 + ṫ1(0)v3, (7.11)

where the vectors vi, i = 1,2,3, are given by

v1 = q1 exp(t1(0)Y )Y exp(t2(0)X)exp(t3(0)Y ) = q1Y exp(s1X)exp(s2Y ),

v2 = q1 exp(t1(0)Y )exp(t2(0)X)X exp(t3(0)Y ) = q2X exp(s2Y ),

v3 = q1 exp(t1(0)Y )Y exp(t2(0)X)exp(t3(0)Y )Y = q3Y.

Thus, v1 is the vector Y (q1) moved forward along the trajectory to its endpoint q3,
and so on. We transform this vector equation into a scalar equation by factoring out
the linear subspace W spanned by the vectors g(q3),

exp(−s2adY )g(q2) = g(q3)− s2[ f ,g](q3)+ o(s2),
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and

exp(−s2adY )exp(−s1adX)g(q1) = g(q3)− (s1 + s2)[ f ,g](q3)+ o(s1,s2)

that define the conjugate point relation. Because of assumption (B1), the vectors
X(q3) and Y (q3) do not lie in W , and thus X(q3) mod W = 0. Note that v3 =Y (q3) =
X(q3)+ 2g(q3) = X(q3) mod W . Furthermore,

v1 = q1Y exp(s1X)exp(s2Y ) = q1 (X + 2g)exp(s1X)exp(s2Y )

= q2X exp(s2Y )+ 2q1gexp(s1X)exp(s2Y )

= q2 (Y − 2g)exp(s2Y )+ 2q3 exp(−s2Y )exp(−s1X)gexp(s1X)exp(s2Y )

= q3Y − 2q3 exp(−s2Y )gexp(s2Y )

+ 2q3 exp(−s2Y )exp(−s1X)gexp(s1X)exp(s2Y )

∼ X(q3)+ 2g(q3)− 2exp(−s2 adY )g(q2)+ 2exp(−s2 adY )exp(−s1 adX)g(q1)

= X(q3) mod W

and

v2 = q2X exp(s2Y ) = q2 (Y + 2g)exp(s2Y )

= q3Y + 2q3 exp(−s2Y )gexp(s2Y )

∼ X(q3)+ 2g(q3)− 2exp(−s2 adY )g(q2) = X(q3) mod W.

Thus all vectors vi are congruent to X(q2) mod W , which is nonzero. Hence
Eq. (7.11) becomes s1 = ṫ1(0)+ ṫ2(0)+ ṫ1(0), i.e., Δ ′(0) = 0. ��

Thus, we have that α(q1)s1 + β (q1)s2 + o(s) = 0. In these computations, the
higher-order terms all have at least one of s1 and s2 as a factor, and we can thus
write

α(q1)s1(1+ o(1)) =−β (q1)s2(1+ o(1)).

Since α(q1) and β (q1) are nonzero and have opposite signs, it follows that there
exist a neighborhood M of p and positive constants c and C that depend only on
this neighborhood such that whenever q1 exp(s1X)exp(s2Y ) is a time-optimal ·XY ·-
trajectory, then cs1 ≤ s2 ≤Cs1. We say the times s1 and s2 along time-optimal ·XY ·-
trajectories in M are comparable. But then the second derivative Δ ′′(0) is negative:
since the times are comparable, we get that ‖s‖= s1 + s2 ≥

(
1
C + 1

)
s2, and thus for

small enough ‖s‖ we have that

β (q1)s2 + o(s)≤ β (q1)s2

(
1+

o(s)
‖s‖

)
<

1
2
β (q1)s2 < 0.
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Recall that since f (p) is nonzero, we can always enforce this by making the
neighborhood M small enough. But this means that for small positive τ , the Y XY -
trajectory

q1 exp(t1Y )exp(t2X)exp(t3Y )

is faster than the XYX-trajectory

q1 exp(s1X)exp(s2Y )exp(s1τX).

Overall, see Fig. 7.9, this implies that YXYX-trajectories are not time-optimal near
p if α(p)> 0 and β (p)< 0.

We use an input symmetry to exclude the optimality of XYXY -trajectories as
well. Let ρ denote the input symmetry that interchanges X and Y , or equivalently,
ρ( f ) = f and ρ(g) =−g (see Sect. 2.10). Under this transformation, the identity

[X , [X ,Y ]] = α f + · · ·

becomes
[Y, [Y,X ]] = ρ(α) f + · · ·

and since
[Y, [X ,Y ]] = β f + · · ·

it follows that ρ(α) = −β ; similarly, ρ(β ) = −α . Hence, the assumption that
α is positive and that β is negative is invariant under this transformation, while
it interchanges the roles of X and Y . Our calculation thus immediately implies
that XY XY -trajectories also are not time-optimal near p. Since we already know
that time-optimal controls for trajectories that lie in a sufficiently small neigh-
borhood M of p are bang-bang, it follows that the corresponding time-optimal
controls are bang-bang with at most two switchings. This concludes the proof of
Proposition 7.3.5. ��

We point out that this construction provides an alternative geometric approach
for the analysis of bang-bang extremals near a slow singular arc in R

2 that was
given in Sect. 2.9. Also, this argument verifies that the local optimality of bang-
bang trajectories ceases at the third switching points, and thus it is an appropriate
terminology to call such a triple of switching points a conjugate triple and the
relation that exists between the switching times a conjugate point relation. However,
our analysis for the case α(p) > 0 and β (p) < 0 is not complete yet. This is the
three-dimensional generalization of Fig. 7.4 from dimension 2, and as in that case
not every extremal bang-bang control with two switchings is optimal. Once more
there exists a nontrivial cut-locus between XY X- and YXY -trajectories that limits
the optimality of these trajectories.

Theorem 7.3.2. Suppose α(p)> 0 and β (p)< 0 and let M be a sufficiently small
neighborhood of p. Then, for every initial point q ∈ M, the set of points that are
reachable time-optimally in time t, 0 < t < T , by means of both an XYX- and a
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Γ
XY

XYXopt

Γ

Y

Γ
YX

YXYopt

XY

YX

X

Fig. 7.10 A qualitative
sketch of the structure of the
endpoints in the boundary
ReachΣ ,T (p) of the
small-time reachable set for
α(p)> 0 and β (p) < 0

YXY-trajectory is a surface Γ . This surface contains the X- and Y-trajectories, TX

and TY , in its relative boundary, and for t fixed, the curve Γt = Γ ∩ReachΣ ,t(p) is
the transversal intersection (cut-locus) of the surfaces

E t
XY X = {qexp(s1X)exp(s2Y )exp(s3X) : s1 + s2 + s3 = t}

and
E t

Y XY = {qexp(t1Y )exp(t2X)exp(t3Y ) : t1 + t2 + t3 = t}
of endpoints of all XYX- respectively YXY-trajectories that are reachable in time t.
This cut-locus Γ separates optimal from nonoptimal concatenations.

Figure 7.10 illustrates the qualitative structure of the portion ReachΣ ,T (p) in the
boundary of the small-time reachable set ReachΣ ,≤T (p) that is defined by the points
that are reachable time-optimally in time T for this case.

Proof. We again carry out the proof in various steps and start with determining
the cut-locus Γt = E t

XYX ∩ E t
YXY , i.e., the set where arbitrary XYX- and Y XY -

trajectories defined over the same interval [0, t] intersect. Both surfaces include
trivial parameterizations of the X- and Y -trajectories, and thus these trajectories
lie in the relative boundary of Γ . For example, the X-trajectory can be described
by setting s2 = 0 in E t

XYX or t2 = t in E t
Y XY . The nontrivial cut-locus is computed

by equating the canonical coordinates. Without loss of generality, we consider the
initial point p, but it will be clear that these results hold as this point varies over a
sufficiently small neighborhood M of p. It has already been shown that there exists
a neighborhood M of p with the property that for sufficiently small positive times s1

and s2 and positive parameter τ , the equation

pexp(s1X)exp(s2Y )exp(s1τX) = pexp(t1Y )exp(t2X)exp(t3Y )

has a unique solution that is given by smooth functions ti(τ;s1,s2), i = 1,2,3, that
satisfy Eq. (7.10). A nontrivial cut-locus Γ , if it exists, is determined by imposing
the additional equation Δ(τ) = 0, or

t1 + t2 + t3 = s1 + s2 + s1τ.
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Using this relation in the sum of ξ1 + ξ2 and dividing by ξ3, we obtain that

1
2
α(p)t2 +β (p)

(
t1 +

1
2

t3

)
+ o(t) =

1
2
α(p)s1 +

1
2
β (p)s2 + o(s).

We now substitute the low-order approximations (7.10) into this relation to get

1
2
α(p)s1 (1+ τ)+β (p)s2

(
τ

1+ τ
+

1
2

1
1+ τ

)
− 1

2
α(p)s1− 1

2
β (p)s2 + o(s) = 0,

and upon simplification, we obtain the following equation defining the cut-locus:

α(p)s1 (1+ τ)+β (p)s2 + o(s) = 0. (7.12)

This equation can be solved for s2 as a function of s1 and τ ,

s2 =−α(p)
β (p)

s1 (1+ τ)+ o(s1), (7.13)

and s2 is positive. Thus, if we let the total time t vary between 0 and T , then the
full cut-locus Γ = ∪0<t<TΓt is a surface that can be described as the image of the
mapping

ΩXY X : (s1,τ) �→ pexp(s1X)exp(s2Y )exp(s1τX)

where s2 is given by Eq. (7.13). Equivalently, the cut-locus is also given as the image

ΩY XY : (s1,τ) �→ (t1, t2, t3) �→ pexp(t1Y )exp(t2X)exp(t3Y )

with the times t j the unique solutions of Eq. (7.8).
It is more useful to parameterize the cut-locus in terms of the time after the

second switching. If instead of s1τ , we denote this time by scl , then Eq. (7.12)
becomes

scl = scl(s1,s2) =−s1− β (p)
α(p)

s2 + o(s). (7.14)

An important observation then is the following:

Lemma 7.3.10. For an XYX-trajectory, denote the switching points by

q1 = pexp(s1X) and q2 = q1 exp(s2Y )

and let
qcl = pexp(s1X)exp(s2Y )exp(sclX)

be the point on the cut-locus. Let scp denote the time along this ·Y X ·-trajectory when
the third switching point q3 = q2 exp(scpX) occurs. Then scl < scp, i.e., the conjugate
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point q3 lies after the point qcl on the cut-locus. In particular, the XYX-trajectory
still is an extremal at time scl . The analogous statement holds for Y XY-trajectories.

Proof. We compare Eq. (7.12) that defines the cut-locus with the conjugate point
equation along the ·YX ·-trajectory with first switching point q1. The easiest way
to obtain the conjugate point relation along the ·YX ·-trajectory is to use the input
symmetry ρ that interchanges X with Y , and we get that

β (q1)s2 +α(q1)scp + o(s) = 0.

We have seen above that the conjugate point relation along an ·XY ·-trajectory with
times s2 and s3 along the X- and Y -trajectories is given by

α(q1)s2 +β (q1)s3 + o(s) = 0.

Since ρ(α) =−β and ρ (β ) =−α , this becomes

−β (q1)s2−α(q1)s3 + o(s) = 0.

The conjugate point relation thus defines the time scp along the second ·X ·-leg as

scp =−β (q1)

α(q1)
s2 (1+ o(s2)) .

On the other hand, it follows from Eq. (7.12) which defines the cut-locus that

s1 + scl = s1(1+ τ) =−β (p)
α(p)

s2 + o(s).

Since q1 = pexp(s1X), we have that α(q1) = α(p) + o(s1) and β (q1) = β (p)+
o(s1) and thus also

s1 + scl =−β (q1)

α(q1)
s2(1+ o(s1))+ o(s).

Hence
scp− scl = s1 + o(s).

Since the times s1 and s2 are comparable by Eq. (7.13), this expression is positive.
Thus the point on the cut-locus happens before the third conjugate point qcp along
the ·YX ·-trajectory (see Fig. 7.11). Once more, using the input symmetry ρ gives
that the same result is valid for Y XY -trajectories. ��

Therefore, all XYX-trajectories that are defined for times that do not violate
the cut-locus equation, i.e., for s3 ≤ scl , are extremals and similarly for Y XY -
trajectories. But so are the ones that correspond to times s3 that still satisfy scl <
s3 ≤ scp. As we show next, these trajectories are no longer time-optimal near p.
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p

q1=pexp(s1X)

q2=q1exp(s2Y)

q3=q2exp(scpX)

q2exp(sclX)

Fig. 7.11 The times scl and
scp along an extremal
XY X-trajectory

Lemma 7.3.11. The surfaces E t
XY X and E t

Y XY intersect transversally in the cut-
locus Γt = E t

XYX ∩ E t
YXY , i.e., together their tangent spaces at a point q ∈ Γt span

the full space,
TqE

t
XY X +TqE

t
YXY = R

3.

Proof. We first compute the tangent space to the surface E t
XY X . Let q1 = pexp(s1X),

q2 = q1 exp(s2Y ), and q = q2 exp(s3X). Since the total time t is fixed, we have
s3 = t− s1− s2 and s3 becomes this function of s1 and s2. Two tangent vectors to
E t

XY X at q are then given by the partial derivatives of the expression defining the
surface with respect to s1 and s2. Using the exponential notation, these vectors can
be computed as follows:

v1 =
∂
∂ s1

pexp(s1X)exp(s2Y )exp(s3X)

= pexp(s1X)X exp(s2Y )exp(s1τX)+ qX
∂ s3

∂ s1

= qexp(−s3X)exp(−s2Y )X exp(s2Y )exp(s3X)− qX

∼ exp(−s3 adX)exp(−s2 adY )X(q1)−X(q)

= exp(−s3 adX) [exp(−s2 adY )X(q1)−X(q2)]

= exp(−s3 adX) [s2[X ,Y ](q)+ o(s2)]

= s2 ([X ,Y ](q)+ o(1)).

Similarly,

v2 =
∂
∂ s2

pexp(s1X)exp(s2Y )exp(s3X)

= pexp(s1X)exp(s2Y )Y exp(s1τX)+ qX
∂ s3

∂ s2

= qexp(−s3X)Y exp(s3X)− qX

∼ exp(−s3 adX)Y (q2)−X(q)
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= Y (q)− s3 ([X ,Y ](q)+ o(1))−X(q)

= 2g(q)− s3 ([X ,Y ](q)+ o(1)) .

Since the vector fields g and [X ,Y ] are linearly independent, these two vectors are
linearly independent and therefore span the tangent space to E t

XY X at q. Similarly,
with q̃1 = pexp(t1Y ) and q̃2 = q̃1 exp(t2X), the tangent space to E t

YXY at q = p
exp(t1Y )exp(t2X)exp(t3Y ) is spanned by

w1 =
∂
∂ t1

pexp(t1Y )exp(t2X)exp(t3Y )

= pexp(t1Y )Y exp(t2X)exp(t3Y )+ pexp(t1Y )exp(t2X)exp(t3Y )
∂ t3
∂ t1

Y

= qexp(−t3Y )exp(−t2X)Y exp(t2X)exp(t3Y )− qY

∼ exp(−t3 adY ) [exp(−t2 adX)Y (q̃1)−Y(q)]

= exp(−t3 adY ) [t2 (−[X ,Y ](q̃2)+ o(1))]

=−t2 ([X ,Y ](q)+ o(1))

and

w2 =
∂
∂ t2

pexp(t1Y )exp(t2X)exp(t3Y )

= pexp(−t3Y )X exp(t3Y )

= X(q)+ t3[X ,Y ](q)+ o(t3).

The three vectors v1, v2, and w2 are linearly independent,

v1∧v2∧w2 = s2

∣∣∣∣∣∣∣

0 0 1

0 2 −s3

1 −1 t3

∣∣∣∣∣∣∣
(1+ o(t))( f ∧g∧ [X ,Y ]) = 0,

and thus E t
XYX and E t

Y XY intersect transversally. ��
The cut-locus Γ divides the surfaces E t

XY X and E t
YXY into two connected

components each. Let E t,opt
XY X be the one were the time s3 along the third leg does not

exceed the time scl until the cut-locus and let E t,nopt
XY X be the section where s3 > scl .

Note that the component E t,opt
XY X is attached to the Y -trajectory CY , while the section

E t,nopt
XY X is attached to the X-trajectory CX . Reversing the order, let E t,opt

YXY denote the
section of E t

YXY that is attached to the X-trajectory CX and E t,nopt
YXY the one attached

to the Y -trajectory CY . Since the surfaces E t
XY X and E t

Y XY intersect transversally in
Γ , it follows that for each of these surfaces one of these two components lies in the
interior of the small-time reachable set ReachΣ ,≤t(p). It is geometrically clear, and
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this can be verified using the canonical coordinates, that E t,opt
XY X and E t,opt

YXY (which
contain the trajectories with s3, respectively t3, values near 0) are the sections that
lie in the boundary of the small-time reachable set, while the sections E t,nopt

XY X and
E t,nopt

YXY lie in the interior and thus are no longer time-optimal from p. This concludes
the proof of Theorem 7.3.2. ��
Corollary 7.3.1. The small-time reachable set from a point p where α(p) > 0 and
β (p)< 0 is given by the union of the two cells

C opt
XY X = {pexp(s1X)exp(s2Y )exp(s3X) : s3 ≤ scl(s1,s2)}

and
C opt

Y XY = {pexp(t1Y )exp(t2X)exp(t3Y ) : t3 ≤ tcl(t1, t2)}
corresponding to the optimal concatenations,

ReachΣ ,≤T (p) = C opt
XY X ∪C opt

Y XY .

Summarizing, under codimension-0 assumptions in dimension 3, there exist four
qualitatively different scenarios that can be grouped according to the existence and
local optimality properties of singular controlled trajectories:

(a) in the totally bang-bang case (α and β have the same sign on M), singular
controls are inadmissible and optimal controls near p are bang-bang with at
most two switchings. In this case, the lengths between the switchings are
unrestricted and optimal controlled trajectories near p are of type YXY if α
is positive and of type XYX if α is negative.

(b) in the singular case (α and β have opposite signs on M), singular controls are
admissible, but they can be fast or slow.

(b.1) If singular trajectories are fast, time-optimal controlled trajectories near
p are of type BSB; that is, they are concatenations of at most a bang
arc B (that is, either X or Y ), followed by a singular arc S and another
bang arc B. In this case, the times along the individual segments are
also unrestricted and all possible combinations are optimal. Note that we
allow in our notation that pieces in the concatenation sequence are absent;
equivalently, the time along a specific arc may be 0. Thus, for example,
BSB-trajectories include bang-bang trajectories with one or no switching.

(b.2) In the case of a slow singular arc, even in a small neighborhood of p, there
exist bang-bang extremals (that satisfy the necessary conditions of the
maximum principle) that have an arbitrarily large number of switchings.
However, these are not optimal. Optimal controls have at most two
switchings, and the times along the third leg are limited by the time when
a nontrivial cut-locusΓ =TXY X ∩TY XY is reached. This time occurs prior
to the time when a conjugate point relation forces the next switching.

While the cases (a) and (b.1) follow from the conditions of the maximum
principle and higher-order necessary conditions for optimality, this no longer is
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true for case (b.2). The explicit geometric constructions that were presented and
the resulting small-time reachable sets go well beyond the analysis of necessary
conditions for local optimality and indeed analyze the full class of admissible
controlled trajectories. For as we have seen, XYX- and YXY -trajectories are no
longer time-optimal near p once the cut-locus has been passed, but as we shall
show next, they are local minima in the sense of providing a strong local minimum
over a neighborhood of the trajectory until the third switching time is reached. In
fact, we show below that the third switching point is the conjugate point along
this trajectory, and it is only here that local optimality is lost. Thus, the optimality
of these trajectories near p cannot be excluded based on necessary conditions for
optimality alone. We summarize the optimality properties of bang-bang trajectories
in the theorem below, which, without loss of generality, is formulated for an XYX-
trajectory. The analogous result holds for a Y XY -trajectory.

Theorem 7.3.3. Suppose α(p) > 0 and β (p) < 0 and let M be a sufficiently
small neighborhood of p. Consider an XYX-trajectory with switching points q1 =
pexp(s1X) and q2 = q1 exp(s2Y ) and let s3 denote the time along the last X-
trajectory. Let scl be the time when the point qcl = pexp(s1X)exp(s2Y )exp(sclX)
on the cut-locus is reached and let scp denote the time when the third switching
point q3 = q2 exp(scpX) is reached. Then this XYX-trajectory (i) is time-optimal
near p if s3 ≤ scl , (ii) is still locally time-optimal in the sense of providing a strong
local minimum over a neighborhood of the trajectory if scl < s3 < scp, (iii) is an
extremal, but no longer locally optimal, if s3 = scp and (iv) is no longer an extremal
if s3 > scp. The third switching point q3 is a transversal fold, and at this point
local optimality ceases. Continuations of the XYX-trajectory through additional
switchings that satisfy the conjugate point relations are still extremals, but they are
no longer locally optimal.

Proof. Statement (i) was already proven above in Theorem 7.3.2.
The second claim (ii) follows from the results in Sect. 6.1 about the method of

characteristics for broken extremals: choose small times σ1 > s1 and σ2 > s2 and
define a C1-parameterized family FXY X of bang-bang trajectories of type XYX by
letting the times t1 and t2 along the first two legs vary freely over (0,σ1) and (0,σ2),
respectively, and then restricting the third time by 0 < t3 < scp, where scp is the time
of the third switching time, i.e.,

FXY X =
{

pexp(t1X)exp(t2Y )exp(t3X) : 0 < t1 < σ1, 0 < t2 < σ2, 0 < t3 < scp
}
.

It follows from the proof of Lemma 7.3.10 that for each pair (t1, t2), the time scp

is uniquely defined as a differentiable function ϕ of t1 and t2 by the fact that the
points q̃1 = pexp(t1X), q̃2 = q̃1 exp(t2Y ) and the endpoint q̃3 = q̃2 exp(t3X) form a
conjugate triple, and it is given by

scp = ϕ(t1, t2) =−β (p)
α(p)

t2 (1+ o(t1, t2)) . (7.15)
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XYX

YXY

Fig. 7.12 The parameterized
family FXY X

Since q̃1 and q̃2 are switching points, it follows that the corresponding adjoint vector
λ̃ (t1) satisfies the relations

〈
λ̃ (t1),g(q̃1)

〉
= 0 and

〈
λ̃(t1),exp(t2 adY )g(q̃1)

〉
= 0

and the vectors g(q̃1) and

exp(t2adY )g(q̃1) = g(q̃1)+ t2[Y,g](q̃1)+ o(t2)

are linearly independent. Normalizing
∥∥∥λ̃ (t1)

∥∥∥ = 1, and using the fact that the

switching function Φ(t) =
〈
λ̃ (t),g(x̃(t)

〉
needs to be negative along the Y -arc,

this then determines λ̃(t1) uniquely, and the corresponding covector λ̃ (t) simply
is the unique solution of the corresponding adjoint equation. Since there are no
conjugate triples over the interval (0,scp), the minimum condition in the maximum
principle is satisfied, and this defines a C1-parameterized family of extremals.
Since the controls are constant, the flow of the X-trajectories starting from the
points pexp(t1X)exp(t2Y ) is a diffeomorphism (by the uniqueness of solutions
of the corresponding ODE) and covers a neighborhood of the third X-leg of the
reference trajectory (see Fig. 7.12). Hence this portion of FXY X defines a local field
of extremals.

Denote the controlled reference trajectory in this field corresponding to the times
si, i = 1,2,3, by (x̄, ū) and let q = x̄(T ), T = s1 + s2+ s3. It follows from the general
results of Chap. 5 that the reference trajectory is faster than any other controlled
trajectory that lies in the set covered by the field. (Note that this field does not
include the Y -trajectory starting from p, and thus the YXY -trajectories that steer p
into q in time less than T are not covered by this field.) For κ > 0, let

Vκ = {x ∈M : ‖x− x̄(t)‖∞ < κ}

be a tubular neighborhood of the reference trajectory. The family FXY X does not
cover the full neighborhood Vκ , but it follows from our results above that for small
κ , it does cover the portion of Vκ that lies in the reachable set ReachΣ ,≤T̃ (p) for
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some suitable T̃ > T . Thus, any trajectory that lies in Vκ , but at one time passes
outside of the set covered by the field FXY X , must already have left this reachable
set and thus overall takes a time longer than T , and thus is no better than the
reference trajectory. In particular, by choosing κ small enough, we can ensure that
the Y -trajectory starting from p lies in Vκ for only a very short time, and thus the
optimal Y XY -trajectory does not lie in Vκ . It follows that (x̄, ū) is a local minimum
over all controlled trajectories that lie in Vκ .

We next show that the third switching point q3 is a transversal fold point in the
sense of Definition 6.1.2 in Sect. 6.1. This implies that there exists a control envelope
through q3, and thus XYX-trajectories are no longer optimal for s3 = scp, proving
(iii). Let

Scp = {pexp(t1X)exp(t2Y )exp(scp(t1, t2)X) : |ti− si|< ε, i = 1,2}

be the surface consisting of the third switching points as the times t1 and t2 vary
near the times s1 and s2 along the reference trajectory. We need to show that X and
Y point to opposite sides of the tangent space to Scp at q3. This tangent space is
spanned by the vectors

v1 = pexp(s1X)X exp(s2Y )exp(scpX)+ pexp(s1X)exp(s2Y )exp(scpX)X
∂ scp

∂ t1

= exp(−scp adX)exp(−s2 adY )X(q1)+
∂ scp

∂ t1
X(q3)

and

v2 = pexp(s1X)exp(s2Y )Y exp(scpX)+ pexp(s1X)exp(s2Y )exp(scpX)Y
∂ scp

∂ t2

= exp(−scp adX)Y (q1)+
∂ scp

∂ t2
X(q3).

It follows from Eq. (7.15) that

∂ scp

∂ t1
= o(s) and

∂ scp

∂ t2
=−β (p)

α(p)
+ o(s),

and thus we have that

v1 = X(q3)+ s2[X ,Y ](q3)+ o(s)

and

v2 =Y (q3)− β (p)
α(p)

X(q3)− s3[X ,Y ](q3)+ o(s).
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These two vectors are linearly independent and thus span the tangent space to Scp

at q3. Taking the wedge product of these two tangent vectors with X(q3) and Y (q3)
gives

v1∧v2∧X(q3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 s2

−β (p)
α(p)

1 −s3

1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1+ o(s))(X ∧Y ∧ [X ,Y ]) (q3)

=−s2 (1+ o(s))(X ∧Y ∧ [X ,Y ]) (q3)

and

v1∧v2∧Y (q3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 s2

−β (p)
α(p)

1 −s3

0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1+ o(s))(X ∧Y ∧ [X ,Y ])(q3)

=

(
−β (p)
α(p)

s2 + s3

)
(1+ o(s))(X ∧Y ∧ [X ,Y ])(q3).

Since α and β have opposite signs, it follows that the coefficients at the wedge
product (X ∧Y ∧ [X ,Y ])(q3) have opposite signs, and thus X and Y point to opposite
sides of Scp at q3. Hence the parameterized family FXY X has a transversal fold at
the third switching point. Since we know that singular arcs are slow in this case, the
result now follows from Theorem 6.1.2.

Finally, condition (iv) simply is a consequence of the fact that XY X-trajectories
are no longer extremal if s > scp. If switchings are made according to the conjugate
point relations, then indeed extremals with an arbitrarily large number of switching
can be constructed that lie in an arbitrarily small neighborhood of p, but these
trajectories are no longer optimal in any sense after their third switching. This
clearly makes the point by how much the class of extremals is larger than that of
optimal trajectories. ��

Time-optimal control in R
3 has been and still is the focus of several papers,

e.g., [18, 43, 54, 210, 211, 224]. Our results presented here give the geometric struc-
tures that small-time reachable sets and time-optimal controls have locally under
codimension-0 conditions. The resulting structures are simple—just concatenations
of three bang and singular pieces—yet the proofs of these results become highly
nontrivial. Cases of higher codimension have been analyzed in [209], and some of
these results are summarized in [210] and [211]. While the concatenation sequences
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naturally get more complicated, it still holds in many of the cases considered there
that an upper bound on the length of the number of concatenations can be given in
the form 3+ k, where k denotes the codimension of the Lie-bracket configuration at
p. This bound is also supported in the research of Agrachev and Sigalotti [18, 224].
However, the structure of time-optimal trajectories near a point p∈R

3 under generic
conditions still is not fully resolved.

7.4 From Boundary Trajectories in Dimension 4
to Time-Optimal Control in R

3

In the transition from the two- to the three-dimensional time-optimal control
problem, the following relation is evident: time-optimal controlled trajectories for
the two codimension-0 cases for the two-dimensional problem, XY and YX , form
the boundary trajectories for the three-dimensional setup, CXY and CY X . The same
holds for the transition from the three- to the four-dimensional problem, but this is
less obvious and requires a proof. In this section, based on computations analogous
to those just carried out, we give a complete description of the boundary trajectories
for the small-time reachable set in dimension four and show that they comprise all
four classes of time-optimal trajectories for the codimension-0 three-dimensional
problem. Many of the arguments are analogous, and thus we only highlight some of
the differences and more geometric aspects. We also use this setup as a nontrivial
example to construct a time-optimal synthesis to an equilibrium point of f for a
corresponding three-dimensional system. Such a problem, since f (p) = 0, actually
is an example of a codimension-3 Lie-bracket configuration for the underlying
system Σ , since the requirement that f vanish corresponds to three independent
equality constraints imposed on the system. As such, in the hierarchy of Lie-bracket
configurations, it lies well beyond the cases analyzed so far. Nevertheless, this
geometric approach rather directly leads to the full solution.

7.4.1 Boundary Trajectories in Dimension 4 under
Codimension-0 Assumptions

We consider the system Σ : ẋ = f (x)+ug(x), |u| ≤ 1, near a reference point p∈R
4

and make the following assumption:

(C1) the vector fields X , Y , [X ,Y ], and [Y, [X ,Y ]] are linearly independent at p,

X(p)∧Y(p)∧ [X ,Y ](p)∧ [Y, [X ,Y ]](p) = 0.
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We use these vector fields as a basis near p, and on some neighborhood M
of p, write

[X , [X ,Y ]] = aX + bY + c[X ,Y ]+ d[Y, [X ,Y ]] (7.16)

with smooth functions a, . . . ,d defined on M. We also assume that
(C2) the function d does not vanish at p, d(p) = 0; equivalently, the vector fields

X , Y , [X ,Y ], and [X , [X ,Y ]] are linearly independent at p,

X(p)∧Y (p)∧ [X ,Y ](p)∧ [X , [X ,Y ]](p) = 0.

It will be seen that the sign of d distinguishes between the totally bang-bang
case in which no admissible singular controls exist and boundary trajectories are
bang-bang with two switchings (d > 0) and the case that a singular vector field is
well-defined (d < 0). In this case, boundary trajectories consist of both the four BSB
cells CBSB = CXSX ∪CXSY ∪CY SX ∪CY SY and the two BBB cells C opt

XY X and C opt
XY X

that arise through a cut-locus.
We again choose canonical coordinates of the second kind with the vector fields

from (C1) as the basis, but for reasons that have to do with the construction of a
three-dimensional time-optimal synthesis later on, we label the first coordinate as ξ0,

(ξ0,ξ1,ξ2,ξ3) �→ pexp(ξ3[Y, [X ,Y ]])exp(ξ2[X ,Y ])exp(ξ1Y )exp(ξ0X) .

Note that the projection onto the plane {ξ3 = 0} reduces to Lobry’s setup analyzed
above, and it follows that the restriction of the reachable set to the three-dimensional
subspace spanned by (ξ0,ξ1,ξ2) has a similar geometric structure. The cells CXY

and CY X will lie in the boundary of the small-time reachable set and anchor the
cells TXY X and TY XY of all bang-bang trajectories with exactly two switchings. In
the four-dimensional problem, these manifolds become hypersurfaces that can be
described as graphs of functions of (ξ0,ξ1,ξ2).

Lemma 7.4.1. The cells TXY X and TYXY are graphs of smooth functions φ∓ of the
variables (ξ0,ξ1,ξ2), ξ3 = φ∓(ξ0,ξ1,ξ2). These functions have smooth extensions
to the boundary strata TXY and TY X ; the function φ− defining TXY X has a smooth
extension to TY and a continuous extension to TX , while the function φ+ defining
TY XY has a smooth extension to TX and a continuous extension to TY .

Proof. Without loss of generality, we consider the hypersurface TXY X ,

TXY X = {q = pexp(s1X)exp(s2Y )exp(s3X) : s1,s2,s3 > 0, s1 + s2 + s3 < T} .

Denote the junctions by q1 = pexp(s1X) and q2 = q1 exp(s2Y ). We show that TXY X

is a three-dimensional manifold and that the last coordinate vector field, ∂
∂ξ3

, always
points to one side of TXY X . Hence TXY X satisfies the vertical line test in canonical
coordinates, and this implies that it can be represented as the graph of some function
φ−. As above, the partial derivatives with respect to s1, s2, and s3 at the end-point q
are given by
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∂q
∂ s1

= pexp(s1X)X exp(s2Y )exp(s3X) ,

∂q
∂ s2

= pexp(s1X)exp(s2Y )Y exp(s3X) ,

∂q
∂ s3

= pexp(s1X)exp(s2Y )exp(s3X)X ∼ X(q),

and are tangent vectors to TXY X at q. In order to prove that ∂
∂ξ3

always points to

one side of TXY X , we verify that the wedge product of these three vectors with ∂
∂ξ3

has constant nonzero sign. Hence, these four vectors are linearly independent, and
in particular, the three vectors above span the tangent space to TXY X at q. Rather
than evaluating the wedge product at q, it is computationally more advantageous to
move all vectors back to the first switching point q1 along the trajectory. As we have
already argued several times, this is a diffeomorphism, and thus linear independence
relations are preserved. In particular, the wedge product cannot change sign during
this operation. The transport of the tangent vectors generates the following three
vectors:

∂q
∂ s1

exp(−s3X)exp(−s2Y ) = pexp(s1X)X ∼ X(q1),

∂q
∂ s2

exp(−s3X)exp(−s2Y ) = q1 exp(s2Y )Y exp(−s2Y )∼ Y (q1),

∂q
∂ s3

exp(−s3X)exp(−s2Y ) = q1 exp(s2Y )X exp(−s2Y )∼ exp(s2adY )X(q2).

In the wedge product of these vectors, the vector X(q1) will cancel the X(q1)-term
coming from exp(s2adY )X(q2), and we factor s2. Also note that

∂
∂ξ3

(0,0,0,0) = [Y, [X ,Y ]](p),

and the vector ∂
∂ξ3

transported back to q1 will simply be of the form

exp(s2adY )exp(s3adX)
∂
∂ξ3

= [Y, [X ,Y ]](p)+O(T).

Hence, with all the vectors evaluated at the point q1, we have that

X ∧Y ∧ exp(s2adY )X ∧ exp(s2adY )exp(s3adX)
∂
∂ξ3

=

= s2

(
X ∧Y ∧

(
exp(s2 adY )− id

s2

)
X ∧ exp(s2 adY )exp(s3 adX)

∂q
∂ξ3

)
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= s2 (X ∧Y ∧ [Y,X ]+O(s2)∧ [Y, [X ,Y ]]+O(T ))

= s2

∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

∗ ∗ −1 O(T )

∗ ∗ O(T ) 1+O(T)

∣∣∣∣∣∣∣∣∣∣
(X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]])

= s2 (−1+O(T)) (X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) , (7.17)

which is nonzero. Thus the tangent vectors ∂q
∂ si

, i = 1,2,3 and ∂
∂ξ3

are linearly
independent. Writing

∂q
∂ s1

=
∂q
∂ξ0

∂ξ0

∂ s1
+
∂q
∂ξ1

∂ξ1

∂ s1
+
∂q
∂ξ2

∂ξ2

∂ s1
+
∂q
∂ξ3

∂ξ3

∂ s1
,

∂q
∂ s2

=
∂q
∂ξ0

∂ξ0

∂ s2
+
∂q
∂ξ1

∂ξ1

∂ s2
+
∂q
∂ξ2

∂ξ2

∂ s2
+
∂q
∂ξ3

∂ξ3

∂ s2
,

∂q
∂ s3

=
∂q
∂ξ0

∂ξ0

∂ s3
+
∂q
∂ξ1

∂ξ1

∂ s3
+
∂q
∂ξ2

∂ξ2

∂ s3
+
∂q
∂ξ3

∂ξ3

∂ s3
,

it follows that the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ξ0

∂ s1

∂ξ1

∂ s1

∂ξ2

∂ s1

∂ξ3

∂ s1

∂ξ0

∂ s2

∂ξ1

∂ s2

∂ξ2

∂ s2

∂ξ3

∂ s2

∂ξ0

∂ s3

∂ξ1

∂ s3

∂ξ2

∂ s3

∂ξ3

∂ s3

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is nonsingular and so is then its principal 3× 3 minor. By the inverse function
theorem, it is possible to solve for the times (s1,s2,s3) as smooth functions of
(ξ0,ξ1,ξ2) near q provided s2 = 0. Since ∂

∂ξ3
is transversal to TXY X everywhere,

the entire 3-manifold is the graph of a smooth function φ−. Furthermore, these
calculations show that φ− has a smooth extension to a neighborhood of s1 = 0 and
s3 = 0 provided s2 > 0. It is clear that these extensions agree with TY , TXY , and
TY X . As should be clear, the vertical line test breaks down for {s2 = 0}, i.e., along
the X-trajectory. In this case, the hypersurface TXY X reduces to TX , and therefore
φ− still extends continuously to TX = {(ξ0,0,0,0) : ξ0 > 0}. This proves the lemma
for TXY X . ��
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In this geometric argument, we considered all bang-bang trajectories with at
most two switchings, regardless of whether they are extremals. Analyzing whether
this is the case, once again is easily pursued within the framework of conjugate
triples. Although the setting now is in R

4, since we are considering boundary
trajectories, at every switching the multiplier λ vanishes not only against g, but
also against f , or equivalently, against X and Y . Hence, three consecutive switching
points q1, q2, and q3 still form a conjugate triple (q1,q2,q3). But now, for example,
for an ·XY · boundary trajectory with switching points q1, q2 = q1 exp(s1X) and
q3 = q2 exp(s2Y ), the vectors X(q1), Y (q1),

q2Y exp(−s1X) = q1 exp(s1X)Y exp(−sX)∼ exp(s1adX)Y (q2)

and
q3X exp(−s2Y )exp(−s1X)∼ exp(s1adX)exp(s2adY )X(q1)

are linearly independent, and this generates a corresponding conjugate point
relation. As above, we factor out s1 and s2 and use Eq. (7.16) to write [X , [X ,Y ]]
as a linear combination of the basis, to obtain that

0 = X ∧Y ∧ exp(s1 adX)Y ∧ exp(s1 adX)exp(s2 adY )X

= s1s2

(
X ∧Y ∧

(
exp(s1 adX)− id

s1

)
Y ∧ exp(s1 adX)

(
exp(s2 adY )− id

s2

)
X

)

= s1s2

(
X ∧Y ∧ [X ,Y ]+

1
2

s1[X , [X ,Y ]]+ · · ·

∧− [X ,Y ]− 1
2

s2[Y, [X ,Y ]]+ · · ·− s1[X , [X ,Y ]]+ · · ·
)

(7.18)

= s1s2

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

∗ ∗ 1+O(s1)
1
2

s1d+O(s2
1)

∗ ∗ −1+O(T) −1
2

s2− s1d +O(T 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]])

=−1
2

s1s2
(
s2 + s1d +O(T 2)

)
(X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) . (7.19)

More generally, let us write this relation in the form

X ∧Y ∧
(

exp(s1 adX)− id
s1

)
Y ∧ exp(s1 adX)

(
exp(s2 adY )− id

s2

)
X

=ΨXY (q1;s1,s2) · (X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) ,
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where the functionΨ (q1;s, t) is defined as the quotient of these two wedge products
of 4-vectors. The equation

0 =ΨXY (q1;s1,s2)⇔ 0 = ds1 + s2 +O(T 2) (7.20)

then defines the conjugate point relation as a function of the first switching point
q1 and the times s1 and s2 along the consecutive bang segments X and Y . The
relation for a ·Y X ·-trajectory follows analogously or by using the input symmetry ρ
of Sect. 2.10.

By assumption (C2), we have d(p) = 0, and without loss of generality we may
assume that M is chosen so small that all values of d on M dominate T . Then the
linear terms in this expansion dominate the remainders, and therefore the expression
ds1 + s2 + o(T 2) does not vanish if d > 0. Hence, in this case no conjugate triples
exist, and bang-bang trajectories that lie in the boundary of the small-time reachable
set have at most two switchings. The following result is the immediate analogue of
Proposition 7.3.3.

Proposition 7.4.1. If d is positive on M, then the boundary trajectories of the small-
time reachable set ReachΣ ,≤T (p) are given by all bang-bang trajectories in the
cells CXY X and CY XY . The surface TXY X lies below TY XY in the direction of the
coordinate ξ3 everywhere. �

The last statement follows from the cut-locus computation given below, and we
shall comment on this later. Thus, in this case, the structure of the boundary of the
small-time reachable set is the direct extension of the two- and three-dimensional
cases.

Henceforth we assume that d < 0. This case corresponds to the situation that
singular controls exist and now the boundary trajectories of the small-time reachable
set in dimension four are made up of both the stratified hypersurface CBSB that
combines concatenations of the X- and Y -trajectories with a singular arc and the
hypersurface CBBB that arises form a cut-locus in the bang-bang trajectories. We
first discuss the cut-locus

pexp(s1X)exp(s2Y )exp(s3X) = pexp(t1Y )exp(t2X)exp(t3Y ) . (7.21)

A cut-locus is a globally defined object that is rather difficult to find, and it generally
needs to be analyzed by direct computational arguments. The following result thus
is remarkable in the sense that it locates a cut-locus by means of easily verifiable
conditions. In fact, conjugate triples imply the existence of a cut-locus. Let ΓXY

denote the set of all nontrivial points in TXY that satisfy the conjugate point relation
for ·XY ·-trajectories,

ΓXY = {q = pexp(s1X)exp(s2Y ) : ΨXY (p;s1,s2) = 0, s1 > 0,s2 > 0} ,

and similarly

ΓYX = {q = pexp(t1Y )exp(t2X) : ΨYX (p;t1, t2) = 0, t1 > 0, t2 > 0} .
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Proposition 7.4.2. [212] In the case d(p)< 0, a nontrivial cut-locus

Γ = TXY X ∩TYXY

bifurcates from the curves ΓXY and ΓY X of conjugate triples.

Proof. By the implicit function theorem, Eq. (7.21) can be solved uniquely for
(s1,s2) as a function of (s3;t1, t2, t3) near a point q on the cut-locus if the Jacobian
matrix with respect to (s3;t1, t2, t3) is nonsingular. Let q1 = pexp(t1Y ), q2 =
q1 exp(t2Y ), and q = q3 = q2 exp(t3X). Then these partial derivatives are given by

∂q
∂ t1

= q1Y exp(t2X)exp(t3Y ) ,
∂q
∂ t2

= q2X exp(t3Y ) ,

∂q
∂ t3

= q3Y, and
∂q
∂ s3

= q3X .

But these are the four vectors that arise in the conjugate point relation along the
last XY -portion of the YXY -trajectory. Hence, these vectors are linearly dependent
if and only if the points (q1,q2,q3) form a conjugate triple. By the implicit function
theorem, the cut-locus equation (7.21) therefore has a unique, and thus only the
trivial, solution s1 = t2, s2 = t3, s3 = t1 = 0 everywhere on TXY except possibly
along the curve ΓXY defined by the solutions to the equationΨXY (p; t2, t3) = 0.

Along this curve, indeed a nontrivial solution to Eq. (7.21) bifurcates. This can
be seen geometrically by considering the tangent space to TY XY at q. If we transport
the tangent vectors ∂q

∂ t1
, ∂q
∂ t2

, and ∂q
∂ t3

back to the first junction q1, we get the vectors
X(q1), Y (q1), and exp(t2adX)Y (q2). This gives at q1 that

X ∧Y ∧ exp(t2 adX)Y ∧ exp(t2 adX)exp(t3 adY )
∂
∂ξ3

≡ t2(1+O(T))(X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) (7.22)

where ∂
∂ξ3

again denotes the last coordinate vector field in canonical coordinates.

(Recall that ∂
∂ξ3

(0) = [Y, [X ,Y ]](p).) But from the conjugate point relation for

(q1,q2,q3) we also get at q1 that

X ∧Y ∧ exp(t2adX)Y ∧ exp(t2adX)exp(t3adY )X

≡ t2t3ΨXY (p;t2, t3)(X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) . (7.23)

Hence the vectors ∂
∂ξ3

and X(q) point to the same side of the tangent space Tq(TY XY )

ifΨXY (p; t2, t3) > 0 and to opposite sides ifΨXY (p;t2, t3) < 0. This implies that the
surfaces TY XY and TXY X cross each other near ΓXY ⊂ TXY . Elementary geometric
considerations show that trajectories that maximize the coordinate ξ3 near the
surface TXY are of the form Y XY if ΨXY (p;t2, t3) > 0 and of the form XY X if
ΨXY (p; t2, t3)< 0. ��
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While this result guarantees the existence of a nontrivial cut-locus, the set itself
needs to be determined through explicit calculations. As before, this is done by
equating the canonical coordinates of the left- and right-hand sides of Eq. (7.21).
We give only the resulting equations:

(ξ0) s1 + s3 +O(S3) = t2 +O(T 3), (7.24)

(ξ1) s2 +O(S3) = t1 + t3 +O(T3), (7.25)

(ξ2) s1s2(1+O(S)) = t2t3(1+O(T)), (7.26)

(ξ3)
1
2

s1s2(s1d + s2 +O(S)) =
1
2

t2t3(2t1 + t2d+ t3 +O(T )), (7.27)

where S = s1+s2+s3 and T = t1+ t2+ t3. Dividing ξ3 by ξ2, we furthermore obtain
that

s1d + s2 +O(S) = 2t1 + t2d + t3 +O(T ). (7.28)

Equations (7.24), (7.25), and (7.28) have dominant linear terms and can be solved
uniquely for s as a function of t,

s1 =
1
d

t1 + t2 +O(T 2), s2 = t1 + t3 +O(T 3), s3 =− 1
d

t1 +O(T 2).

The conjugate point relations imply that all these times (and also t3 calculated
below) are nonnegative for extremals. Now substitute these functions for s into
Eq. (7.26) to obtain

t1

(
1
d

t1 + t2 +
1
d

t3

)
+O(T 3) = 0.

In general, for several variables, specific quadratic terms need not dominate arbitrary
cubic remainders. However, in our situation it follows from the conjugate point
relations that the times ti satisfy a relation of the type

t1 ≥ εT = ε(t1 + t2 + t3) ⇔ t1 ≥ ε
1− ε (t2 + t3),

and thus this equation can be solved for t3 as

t3 =−t1− dt2 +O(T 2). (7.29)

This solution is well-defined near {t3 = 0} (i.e., the curveΓYX ), and thus a nontrivial
cut-locus Γ , Γ = TY XY ∩TXY X , extends beyond TY X along ΓYX . Similarly, by
solving Eqs. (7.24), (7.25), and (7.28) for t as a function of s, it follows that Γ
also extends beyond TXY at ΓXY . It is not difficult to verify that the hypersurfaces
TY XY and TXY X intersect transversally in the cut-locus Γ , and thus we have the
following result:
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Proposition 7.4.3. If d < 0, then the hypersurfaces TY XY and TXY X intersect trans-
versally along a two-dimensional surface Γ . This surface extends smoothly across
TY X and TXY , and intersects these surfaces transversally in the curves ΓY X and ΓXY

of conjugate triples. �
We next establish the geometric location of the surfaces TYXY and TXY X , but

revert to the case d(p) > 0 for a moment. Using Eqs. (7.24)–(7.26), the difference
in the ξ3 coordinates of Y XY - and XYX-trajectories over a common base point
(ξ0,ξ1,ξ2) can be expressed in the form

ξY XY
3 − ξXYX

3 =
1
2

t2t3 [2t1 + t2d + t3− s1d− s2 + · · · ]

=
1
2

t2t3 [t1 + s3d+ · · · ] ,

and for trajectories along which all times are comparable, this quantity is positive.
Since there do no exist nontrivial intersections between the surfaces TY XY and TXY X

in the case d > 0, it follows that TXY X always lies below TY XY , as claimed in
Proposition 7.4.1.

In the case that d is negative, these locations change along the cut-locus. As a
subset of TXY X (or TY XY ), Γ can be described as the graph of the function ξ3 =
ξXYX

3 (ξ0,ξ1,ξ2), and it separates the portion of the hypersurface TXY X that lies
above TY XY in the direction of ξ3 from the one that lies below TY XY . If we denote
the corresponding substrata by a superscript ±, then only the trajectories in the
“southern hemisphere” S = T −

XY X ∪Γ ∪T +
Y XY that correspond to the two sections

that minimize the ξ3-coordinate are boundary trajectories. The remaining portions
of the hypersurfaces, T +

XY X and T −
Y XY , lie in the interior of the small-time reachable

set, and therefore these trajectories cannot be time-optimal. Within our construction,
the natural way to see this is to complement the construction with a stratified hyper-
surface N that closes the small-time reachable set with a “northern hemisphere”
N in the coordinates (ξ0,ξ1,ξ2,ξ3). This is indeed possible [141], and N is made
of concatenations with singular arcs. The analysis of the northern hemisphere is
the same as in the three-dimensional case, and we derive only the formulas for the
singular control and arc, and leave the rest to the interested reader (also, see [141]).

Proposition 7.4.4. If Γ = (x,u) is an extremal controlled trajectory pair with the
property that the control u is singular on an open subinterval I, then for all t ∈ I,
the singular control is given as a feedback function of x in the form

using(t) =
d(x)+ 1
d(x)− 1

. (7.30)
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Proof. The multiplier λ vanishes on I against X , Y , and [X ,Y ] along x. Since X ,
Y , [X ,Y ], and [Y, [X ,Y ]] are linearly independent, it cannot vanish against [Y, [X ,Y ]],
and thus

2〈λ , [g, [ f ,g]](x)〉 = 〈λ , [Y −X , [X ,Y ]](x)〉= (1− d(x))〈λ , [Y, [X ,Y ]](x)〉 = 0.
(7.31)

Hence Φ̈ = 〈λ , [ f + ug, [ f ,g]](x)〉 ≡ 0 gives that

using(t) =−〈λ , [Y +X , [X ,Y ]](x)〉
〈λ , [Y −X , [X ,Y ]](x)〉 =−

1+ d(x)
1− d(x)

as desired. ��
The singular control thus is a smooth feedback control defined on M. Note that it

is admissible if and only if d < 0. Also, in a sufficiently small neighborhood of p, the
quotient (d+1)/(d−1) is bounded away from±1, and so no saturation is possible
in M. This phenomenon will be investigated in the last section. As above, singular
conjugate point relations can be invoked to show that boundary trajectories are at
most of the form BSB, and it can be shown that the surfaces TXSX , TXSY , TY SX , and
TY SY form a stratified hypersurface SBSB that can be described as the graph of a
piecewise smooth function φS = φS(ξ0,ξ1,ξ2). In principle, this verification is the
same as for bang-bang trajectories, but the fact that the singular control is a smooth
feedback function must be taken into account in the calculations. We leave it to the
attentive reader to supply the details or to consult [215], where a similar calculation
is carried out. This concludes the construction of the small-time reachable set for
the nondegenerate four-dimensional case, and we get the following analogue to
Propositions 7.3.4 and 7.3.5.

Proposition 7.4.5. If d(p) < 0, then there exists a sufficiently small neighborhood
M of p such that the boundary trajectories of the small-time reachable set
ReachΣ ,≤T (p) are given by a stratified hypersurface

S = T −
XY X ∪T +

Y XY

of bang-bang trajectories that minimize the coordinate ξ3 (over the small-time
reachable set for fixed (ξ0,ξ1,ξ2)-coordinates) and a stratified hypersurface

N = SBSB = TXSX ∪TXSY ∪TY SX ∪TY SY

of trajectories that contain a singular arc and maximize the coordinate ξ3. �
Figure 7.13 illustrates the structure of the boundary trajectories for the case that

d(p) is negative.
The statements about which trajectories minimize, respectively maximize the

coordinate ξ3 can be verified using formulas for the canonical coordinates. They
can also be deduced rather directly from the proof of the maximum principle given
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Fig. 7.13 Schematic illustration of the structure of boundary trajectories in the “southern hemi-
sphere” S (left) and “northern hemisphere” (right) for d(p) < 0
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Fig. 7.14 Entry and exit
points for integral curves of
the vector field [Y, [X ,Y ]]

in Sect. 4.2.3. Recall that the multiplier λ in Theorem 4.2.2 has been chosen to be
non-negative on the vectors from the approximating cone K to the reachable set at
the endpoint q ∈ ReachΣ ,T (p). By the Legendre–Clebsch condition, Theorem 4.6.1,
the vector −[g, [ f ,g]](q) +O(T ) lies in this approximating cone. For trajectories
that contain singular arcs, it follows from Eq. (7.31) that 〈λ , [g, [ f ,g]](x)〉 and
〈λ , [Y, [X ,Y ]](q)〉 are nonzero and have the same sign. In particular, for small T
we have that both 〈λ , [g, [ f ,g]](q)〉 and 〈λ , [Y, [X ,Y ]](q)〉 are negative and thus
the vector [Y, [X ,Y ]](q) is separated from K by λ (T ). Since it is the vector field
[Y, [X ,Y ]] that defines the third coordinate ξ3, it follows that trajectories that contain
a singular arc maximize ξ3. Similarly, for trajectories that minimize ξ3, the vector
[Y, [X ,Y ]](q) points into the reachable set and thus we have 〈λ , [Y, [X ,Y ]](q)〉 > 0
and these are the bang-bang trajectories. Another way to look at the underlying
geometry is to say that points in the lower hemisphere S form entry points into the
reachable sets along integral curves of the vector field [Y, [X ,Y ]] and points in the
northern hemisphere are exit points (see Fig. 7.14).
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7.4.2 Construction of a Local Time-Optimal Synthesis
to an Equilibrium Point in Dimension 3

For a system Σ : ẋ = f (x)+ug(x), |u| ≤ 1, in R
3, we consider the local time-optimal

control problem to steer points q in a neighborhood M of an equilibrium point p of
the vector field f , f (p) = 0, into this equilibrium point p in minimum time under
the following assumptions:

(1) The vectors g(p), [ f ,g](p), and [g, [ f ,g]](p) are linearly independent;
(2) If we express [ f , [ f ,g]] as a linear combination of this basis near p,

[ f , [ f ,g]] = αg+β [ f ,g]+ γ[g, [ f ,g]], (7.32)

then we have −1 < γ(p)< 0.

Our aim is to illustrate that an optimal synthesis of controlled trajectories for this
problem can be constructed in a relatively straightforward way from the structure of
the small-time reachable set and the accompanying analysis of boundary trajectories
that has been carried out for an associated augmented four-dimensional system Σ̃
where time has been added as an extra coordinate, ẋ0 ≡ 1. If the underlying system
Σ is small-time locally controllable (in the sense that p is an interior point of
the small-time reachable set ReachΣ ,≤T (p) for any T > 0), a local time-optimal
synthesis can generally be obtained by projecting the time slices ReachΣ̃ ,t(p) of
the reachable set of the augmented system Σ̃ into the original state space. Under
the assumptions made above, the augmented system Σ̃ is given by the system Σ
considered in Sect. 7.4.1. For if x̃ = (x0,x), x ∈ R

3, and the vector fields f̃ and g̃ are
defined by

f̃ (x̃) =

(
1

f (x)

)
and g̃(x̃) =

(
0

g(x)

)
,

then it follows that

[X̃ ,Ỹ ](x̃) =

(
0

[X ,Y ](x)

)
, [X̃ , [X̃ ,Ỹ ]](x̃) =

(
0

[X , [X ,Y ]](x)

)
,

and so on. Hence the assumptions (C1) and (C2) of Sect. 7.4.1 that the vector
fields X̃ = f̃ − g̃, Ỹ = f̃ + g̃, [X̃ ,Ỹ ], and [X̃ , [X̃ ,Ỹ ]](x̃), respectively [Ỹ , [X̃ ,Ỹ ]](x̃),
are linearly independent at p are equivalent to the condition that |γ(p)| = 1. Note
that it follows from Eq. (7.32) that the singular control for the problem is given by
the feedback control using(x) =−γ(x). The assumption |γ(p)|> 1 thus corresponds
to the totally bang-bang case of Proposition 7.4.1 when optimal controls are
bang-bang with at most two switchings, and in this case the corresponding local
optimal synthesis is a straightforward extension of the time-optimal synthesis for
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the double integrator from dimension two to three. The case |γ(p)|< 1 corresponds
to Proposition 7.4.5 and has a nontrivial synthesis that we develop here. It is clear
that we can normalize the sign of γ by simply replacing g with −g, and thus,
without loss of generality, we may assume that −1 < γ(p) ≤ 0. Some comments
about the extra assumption γ(p) = 0 are in order. It follows from results about the
local controllability of nonlinear systems (for example, see [235]) that the system
Σ is small-time locally controllable from p if γ(p) = 0, but this need not hold if
γ(p) = 0. Thus the values γ(p) = 0 and |γ(p)| = 1 are bifurcation values for the
structure of the optimal synthesis, i.e., correspond to more degenerate scenarios in
which additional assumptions need to be made to determine the optimal solutions.
For this reason, we restrict γ(p) to lie in the interval (−1,0) with the negative sign
chosen arbitrarily. For γ close to−1, the singular vector field S(x) = f (x)−γ(x)g(x)
is therefore close to Y .

Our aim here is merely to describe the optimal synthesis—we shall give a
stratification of a neighborhood of p and define the optimal control on each of the
strata—but we shall skip some of the computational details. Most of the arguments
needed to verify our geometric claims are immediate extensions of the reasoning
given above. But we also give explicit formulas for the relevant structures of the
synthesis that have been computed using canonical coordinates of the second kind
of the form

(x1,x2,x3) �→ pexp(x3[g, [ f ,g]])exp(x2[ f ,g])exp(x1g)

and these computations, especially when the singular feedback control is involved,
become somewhat lengthy and technical. In these formulas, we assign a weight i
to xi and use the symbol � to indicate equality modulo terms of higher weight. We
refer the reader to the paper [215] for the details of these computations.

For the example

Σ3 : ẋ1 = u, ẋ2 =−x1, ẋ3 =−1
2

x2
1− γx2, (7.33)

with γ a constant, we have that

f (x) =

⎛
⎜⎜⎜⎝

0

−x1

−1
2

x2
1− γx2

⎞
⎟⎟⎟⎠ , g =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ , [ f ,g](x) =

⎛
⎜⎜⎝

0

1

x1

⎞
⎟⎟⎠ ,

[ f , [ f ,g]] = γ

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ , [g, [ f ,g]] =

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ ,
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and all brackets of orders three and higher vanish, i.e., the system Σ3 is nilpotent of
order 3. For this example the formulas we give are exact.

Since the objective is to steer points into p time-optimally, it makes sense to build
the synthesis inductively by integrating trajectories backward from p. Compared
with the construction of the small-time reachable set for the augmented system
Σ̃ , which is done forward in time, this introduces a time-reversal input symmetry
that changes f into − f and g into −g. In particular, second-order Lie brackets
like [g, [ f ,g]] and [Y, [X ,Y ]] reverse sign, and as a consequence the roles of the
northern and southern hemispheres in the construction of the small-time reachable
set become reversed. Thus, in the synthesis, bang-bang will now “maximize” in
the direction of x3, while those trajectories that contain a singular arc will be
“minimizing.” Otherwise, no qualitative changes arise. As before, we use notations
like TXY to denote actual XY trajectories when the system is integrated forward in
time, i.e.,

TXY = {pexp(−tY)exp(−sX) : s > 0, t > 0} .
and with q = pexp(−tY)exp(−sX), this becomes the forward trajectory

p = qexp(sX)exp(tY ) .

Lemma 7.4.2. [215] The set M = CXY ∪CY X is a stratified surface that near p
can be represented as the graph of a piecewise smooth function x3 = FM (x1,x2). It
divides a small neighborhood M of p in the direction of the coordinate vector field
∂
∂x3

into an upper region M+ and a lower region M−. The submanifolds C0 = {p},
TX , TY , TXY , and TY X form the strata of M , and on M the optimal feedback
control is given by

u∗(x) =

{
−1 if x ∈ TX ∪TXY ,

+1 if x ∈ TY ∪TY X . �

This lemma can easily be verified by computing the tangent spaces to the surfaces
TXY and TY X and by verifying that the third coordinate vector field ∂

∂x3
, which at the

equilibrium point p is given by [g, [ f ,g]](p), always points to the same side. These
computations are identical to those done above. The local optimal feedback flow on
M is the one for the double integrator and is indicated in Fig. 7.15, but naturally M
still warps in 3-space.

We show that optimal trajectories are bang-bang in the region M+ that lies
above M in the direction of the coordinate vector field ∂

∂x3
, while they contain a

singular arc in the region M− that lies below M . In the construction of the optimal
synthesis, X-trajectories are now integrated backward from TY X and Y -trajectories
are integrated backward from TXY . However, in contrast to the totally bang-bang
case, this can no longer be done optimally from every point. The reason lies in the
conjugate point relations. If we consider a Y XY -trajectory of the form

pexp(−tY )exp(−sX)exp(−rY ) = q
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Fig. 7.15 The stratified
surface M = C XY ∪CY X

with positive times r, s, and t, then the corresponding trajectory has switchings at
q1 = qexp(rY ) and at q2 = q1 exp(sX). The time s along the intermediate X-arc
then determines the times t̃ and r̃ until the next switchings through a conjugate
point relation. For r̃ this need not concern us, since as follows from the structure
of the small-time reachable set, the synthesis will be terminated at a cut-locus prior
to this conjugate point anyhow. However, if the initial time t is longer than t̃, then
this trajectory no longer is an extremal, and it thus cannot be part of the optimal
synthesis. It is therefore necessary to restrict the length of t to obey the conjugate
point relation. These are precisely the values for which (q1,q2, p) form a conjugate
triple. Evaluating the corresponding conjugate point relation at the equilibrium point
p, for YXY -trajectories, we define the functionΨXY (s, t) through the equation

g(p)∧
(

exp(−t adY )− id
t

)
g(q1)∧ exp(−t adY )

(
exp(−sadX)− id

s

)
g(q2)

=ΨXY (s, t)(g(p)∧ [ f ,g](p)∧ [g, [ f ,g]](p)) .

It then follows that the first Y -leg of an optimal Y XY -trajectory needs to arrive in
the surface TXY at a point pexp(−tY )exp(−sX) that lies in the set

AXY = {pexp(−tY)exp(−sX) : s > 0, t > 0 and ΨXY (s, t)> 0} .

The sign of the functionΨXY is chosen from the fact that

ΨXY (s,0) =
1
2
(1− γ)s+ o(s)> 0,

and for t = 0, the conjugate point relation is always satisfied. A by now standard
computation shows that with γ̄ = γ(p), this relation imposes the restriction that

t ≤ tcp(s) =
1− γ̄
1+ γ̄

s+ o(s).



7.4 From Boundary Trajectories in Dimension 4 to Time-Optimal Control in R
3 549

Fig. 7.16 The arrival regions
AXY ⊂ TXY and AY X ⊂TY X

in the stratified surface M

The boundary sections for this arrival region AXY are given by the X-trajectory TX

and the curve ΓXY of conjugate points,

ΓXY = {pexp(−tY )exp(−sX) : s > 0, t > 0 and ΨXY (s, t) = 0} .

Analogously, for an XYX-trajectory of the form

pexp(−tX)exp(−sY )exp(−rX) = q

with q1 = qexp(rX) and q2 = q1 exp(sY ), define a functionΨY X(s, t) through the
equation

g(p)∧
(

exp(−t adX)− id
t

)
g(q1)∧ exp(−t adX)

(
exp(−sadY )− id

s

)
g(q2)

=ΨYX(s, t)(g(p)∧ [ f ,g](p)∧ [g, [ f ,g]](p)) ,

and for this case, it follows that the first X-leg of an optimal XYX-trajectory needs
to arrive in the surface TY X at a point pexp(−tX)exp(−sY ) that lies in the arrival
region

AYX = {pexp(−tX)exp(−sY ) : s > 0, t > 0 and ΨYX (s, t)< 0} .

Similarly, the boundary sections for AYX are given by the Y -trajectory TY and the
curve ΓYX of conjugate points,

ΓY X = {pexp(−tX)exp(−sY ) : s > 0, t > 0 and ΨY X(s, t) = 0} .

These arrival regions and their boundary sections are illustrated in Fig. 7.16.
Integral curves of the vector field Y are now integrated backward from the

arrival region AXY ⊂ TXY . It is not difficult to verify that forward in time, these
curves cross TXY going from M+ into M−. Actually, these directions reverse
along the curve ΓY X of conjugate points. Thus, when integrated backward from
AXY , the region TY XY lies in M+. The time r along these trajectories of the form
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pexp(−tY )exp(−sX)exp(−rY ) will then be limited so that this trajectory does not
cross the cut-locus Γ , which is defined as the set of points q for which there exist
both an XYX- and a YXY -trajectory that reach p in the same time,

Γ = {pexp(−t3Y )exp(−t2X)exp(−t1Y ) = pexp(−s3X)exp(−s2Y )exp(−s1X)

t1 + t2 + t3 = s1 + s2 + s3, si, t j positive and small
}
.

The geometric structure of this cut-locus is summarized below. It can be verified by
explicit computations in canonical coordinates.

Lemma 7.4.3. [215] The cut-locus Γ is a surface that lies in the region M+ and
has the curves ΓXY and ΓY X of conjugate points and the terminal point p in its
relative boundary. In canonical coordinates, it can be represented as the graph of
a smooth function x3 = FΓ (x1,x2) whose domain is defined by the curves ΓXY and
ΓYX in M . Modulo terms of higher weights and with γ̄ = γ(p), the projections of the
curves ΓXY and ΓY X of conjugate points into (x1,x2)-space are given by

ΓXY : 4γ̄2x2 �
(
γ̄2 + 2γ̄− 1

)
x2

1, and x1 < 0

and
ΓYX : 4γ̄2x2 �

(−γ̄2 + 2γ̄+ 1
)

x2
1, and x1 < 0

with the domain dom(Γ ) for the cut-locus given by the set

dom(Γ ) =
{
(x1,x2) :

(
γ̄2 + 2γ̄− 1

)
x2

1 ≤ 4γ̄2x2 ≤
(−γ̄2 + 2γ̄+ 1

)
x2

1, x1 < 0
}
.

Over this domain, the cut-locusΓ is given modulo terms of weight 5 by the solutions
to the equation

x3x1 �
γ̄4− 6γ̄2 + 1

96γ̄4 x4
1 +

1
2

x2
1x2 +

1
2
γ̄x2

2.

�
The cut-locus Γ thus divides the region M+ into two connected components, a

(small) set N− that lies between the stratified surface M and the cut-locus Γ , and
the (large) set N+ that lies above the cut-locusΓ , respectively M , in regions that are
not covered by the cut-locus. The geometry is illustrated in Fig. 7.17, which shows
the cut-locus for the nilpotent example Σ3 from Eq. (7.33). The cut-locus Γ is the
solid surface that extends from ΓXY to ΓY X and lies above M , and the region N+

is everything that lies above Γ , respectively M . The figure also shows an example
of a time-optimal Y XY -trajectory that starts at a point on Γ and as it intersects the
surface TXY , follows the XY -structure on this surface into the equilibrium point.

Lemma 7.4.4. [215] For every point q = pexp(−tY)exp(−sX) ∈ AXY , there
exists a unique first positive time r = rΓ (q) described by a differentiable function
such that qexp(−rY ) ∈ Γ . The mapping GY : AXY → Γ , q �→ qexp(−rΓY ), is a
diffeomorphism between the arrival region and the cut-locus, and the flow of the
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Fig. 7.17 The cut-locus Γ in
the region M+ and a
YXY -trajectory starting
from Γ

vector field Y , ΦY : {(r,q) : q ∈AXY ,0 < r < rΓ (q)} → N+ is a diffeomorphism
onto the region N+. �

An analogous result holds for X-trajectories and the region N−. In particular,
starting at points on the cut-locus Γ , integral curves of the vector field Y enter the
region N+ and integral curves of the vector field X enter N−. It thus follows that
time-optimal controls on M+ are given by

u∗(x) =

{
−1 if x ∈ N− ∪Γ ,
+1 if x ∈ N+∪Γ .

(7.34)

For points x in either of these two regions, away from the cut-locus, the
corresponding XYX- or YXY -trajectories define a parameterized family E of broken
extremals. The associated value function V = VE is a continuously differentiable
solution to the Hamilton–Jacobi–Bellman equation on the sets N+ and N−. For ex-
ample, suppose x0 ∈ N−. As parameter set, pick a small surface Q that is transversal
to the flow of the vector field X at x0 and let x(t,q) = qexp(tX) denote the flow with
q0 = x0. By means of a coordinate chart, we could think of Q as an open subset of
R

2 (the definition of a parameterized family was formulated in this way), but this
clearly is not necessary. However, in order to keep the notation unambiguous, here
we use q to denote the parameter. Choose Q so small that all these trajectories meet
the arrival region AYX transversally. Then the time t1 = t1(q) defined as the solution
to the equation x(t1(q),q) ∈ AYX is a continuously differentiable function. At this
point, the control switches, and the trajectories in the parameterized family are now
given by x(t,q) = x(t1(q),q)exp(tY ). The flow collapses onto the surface TY X , but
it still meets the stratum TX transversally, and thus there also exists a differentiable
function t2 = t2(q) such that x(t2(q),q) ∈ TX . Once more the control switches, and
on the last segment the trajectory is given by x(t,q) = x(t2(q),q)exp(tX) until the
origin is reached at time T = T (q). Again, this function is differentiable in q. It
follows from our constructions above that these trajectories are all extremals, and
the corresponding multiplier λ = λ (t,q) is uniquely determined (modulo a positive
scalar multiple) by the two switching points. At the terminal point, the transversality
conditions are satisfied trivially, and thus this defines a Cr-parameterized family of
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bang-bang extremals (with r ≥ 2 the degree of smoothness of the vector fields f
and g). Since the transversality condition propagates across the switching surfaces—
this is a property of the parameterization and holds regardless of whether there
is a collapse in the flow—it follows from our results in Chaps. 5 and 6 that the
associated value function is a continuously differentiable solution to the Hamilton–
Jacobi–Bellman equation at x0. (Simply extend the domain of the parameterization
to be D = {(t,q) : q ∈ Q, −ε ≤ t ≤ T (q)}, so that (0,x0) lies in the interior of this
domain.) This reasoning is totally analogous to that as illustrated in Sect. 6.2.3
for the case in which singular controls were present. The value function is not
differentiable on the cut-locus Γ , but it remains continuous on M+∪M .

In the region M−, optimal controls contain a segment along a singular arc. As
for M+, concatenations of the singular trajectories with X- and Y -trajectories define
two surfaces TSX and TSY that split the region M− into two connected components
S+ and S− where the optimal controls are +1 and −1, respectively. The singular
control is given by the feedback function using(x) = −γ(x), and the singular vector
field is S(x) = f (x)−γ(x)g(x). Let TS = {pexp(−tS) : t > 0} denote the backward
orbit of the singular trajectory through p and let

TSX = {pexp(−sX)exp(−tS) : s > 0, t > 0}

and
TSY = {pexp(−sY )exp(−tS) : s > 0, t > 0} .

The following geometric properties are once more verified through explicit calcula-
tions using canonical coordinates. But there is a difference from the cases considered
so far in that the singular control itself is a feedback function. This necessitates the
use of Lemma 2.8.1 in computing canonical coordinates. However, since we carry
out these computations only modulo terms of higher order, it is possible to replace
the function γ near p by its value γ̄ = γ(p). Intuitively, the justification is that, for
example, we have that

[ f ,γg] = γ[ f ,g]+Lf (γ)g.

In all expansions, the Lie bracket will be carrying quadratic terms in the times,
while the principal terms that arise at the vector field g come with linear coefficients.
Thus, the extra terms that arise from the Lie derivatives of γ will be of higher order
when compared with other terms that already exist. Naturally, this needs to be traced
carefully in the computations, but it does work out under the assumptions made here.
We have the following results about the surfaces TSX and TSY :

Lemma 7.4.5. [215] Both TSX and TSY are smooth surfaces that lie in M− and
can be represented as graphs of functions x3 =FS,±(x1,x2) in canonical coordinates.
Modulo terms of higher weights, the domain dom(TSX ) for TSX is given by

dom(TSX) =

{
(x1,x2) : x2 >

1
2γ̄

x2
1 for x1 < 0 and x2 >

1
2

x2
1 for x1 > 0

}
,
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Fig. 7.18 The stratified
two-dimensional set
Ξ = CSX ∪CSY in the
region M−

and over this domain, the points on TSX satisfy

x3 �− 1
6γ̄

x3
1 + x1x2− 1

3

√
2γ̄ (γ̄− 1)

∣∣∣∣x2− 1
2γ̄

x2
1

∣∣∣∣
3/2

.

Similarly, the domain dom(TSY ) for TSY is given by

dom(TSY ) =

{
(x1,x2) :

1
2γ̄

x2
1 < x2 <−1

2
x2

1 for x1 < 0

}
,

and over this domain, the points on TSY satisfy

x3 �− 1
6γ̄

x3
1 + x1x2 +

1
3

√
−2γ̄ (γ̄+ 1)

∣∣∣∣x2− 1
2γ̄

x2
1

∣∣∣∣
3/2

.

The domain dom(TSY ) is contained in dom(TSX ), dom(TSY ) ⊂ dom(TSX ), and
over dom(TSY ) the surface TSY lies above the surface TSX . The two surfaces meet
along the singular curve TS that is given by

x2 �
1
2γ̄

x2
1 and x3 �

1
3γ̄

x3
1 for x1 ≤ 0. �

Figure 7.18 illustrates the cusp-like behavior of the stratified set Ξ = CSX ∪CSY .
This figure once more has been made using the exact formulas for the nilpotent
system Σ3 and γ = − 1

4 . The entire set Ξ lies below the stratified surface M and
it divides M− into two disjoint connected components S− and S+. We label the
components so that S− is the set where the optimal control is given by u ≡ −1
and on S+ we have that u ≡ +1. The set S+ is the connected component of M−
that lies below the union of the cells CY X ∪CSY in the direction of the coordinate
x3, but above the singular surface TSX . An equivalent way of describing this
set is that it is the component that besides the set Ξ , contains the surface TY X

of YX-trajectories in its boundary. Correspondingly, the complement S− is the
other connected component that contains the surface TXY of XY -trajectories in
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Fig. 7.19 The connected
component S+ and a sample
YSX-trajectory in the
region M−

its boundary. This geometry, along with a sample Y SX-trajectory, are illustrated
in Fig. 7.19. The sample trajectory starts at a point in S+ with the control u = +1
until the corresponding trajectory meets the surface TSX . At this point, the control
switches to the singular control u =−γ(x) and the corresponding trajectory remains
on the surface TSX until it meets the boundary stratum TX . At that point, the control
switches to u =−1 and follows the X-trajectory into the equilibrium point p.

The control corresponding to this synthesis is then given by

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if x ∈ S−,
−γ(x) if x ∈ Ξ = TSX ∪TS∪TSY ,

+1 if x ∈ S+.

(7.35)

As with the synthesis in M+, it follows that the associated value function V =V E

is a continuously differentiable solution to the Hamilton–Jacobi–Bellman equation
on the sets S+ and S−. In fact, this situation is identical to the one that was analyzed
in Sect. 6.2.3. The value function is not differentiable on the stratified surface Ξ , but
it remains continuous on M−∪M and thus is continuous everywhere. Overall, we
have the following result:

Theorem 7.4.1. The controlled trajectories associated with the feedback control
u∗(x) defined in Eqs. (7.34) and (7.35) are a local time-optimal synthesis.

Proof. The controlled trajectories and the stratification that were constructed define
a memoryless synthesis for which the assumptions of the simple verification
theorem, Theorem 6.3.1, are satisfied: All controlled trajectories included in the
synthesis are extremal, and except for the cut-locus Γ , cover a neighborhood
of p injectively. The associated value-function V = VE is continuous and is a
continuously differentiable solution to the Hamilton–Jacobi–Bellman equation on
the open sets N+, N−, S+, and S−. The complement of these open sets is a finite
union of embedded submanifolds of positive codimension consisting of the strata in
M , Γ , and Ξ . Thus, by Theorem 6.3.1, the synthesis is optimal. �
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7.5 The Codimension-1 Case in Dimension 4: Saturating
Singular Arcs

We close with a description of the structure of the boundary trajectories in the
small-time reachable sets in dimension four and the corresponding three-dimensional
optimal synthesis when singular controls saturate. This corresponds to the next
degenerate or codimension-1 case. In the context of the four-dimensional system
Σ : ẋ = f (x)+ ug(x), |u| ≤ 1, x ∈ R

4, we still assume that

(C1) the vector fields X , Y , [X ,Y ], and [Y, [X ,Y ]] are linearly independent at p,

X(p)∧Y (p)∧ [X ,Y ](p)∧ [Y, [X ,Y ]](p) = 0,

and use the same canonical coordinates as in Sect. 7.4.1,

(ξ0,ξ1,ξ2,ξ3) �→ pexp(ξ3[Y, [X ,Y ]])exp(ξ2[X ,Y ])exp(ξ1Y )exp(ξ0X) .

We again write

[X , [X ,Y ]] = aX + bY + c[X ,Y ]+ d[Y, [X ,Y ]], (7.36)

but now assume that d(p) = 0 and that the Lie derivatives of d along X and Y , LX d
and LY d, do not vanish at p. Recall that for d(p) > 0, boundary trajectories of the
small-time reachable set ReachΣ ,≤T (p) are given by all bang-bang trajectories in the
cells CXY X and CY XY with the surface TY XY lying above TXY X in the direction of the
coordinate ξ3 (Proposition 7.4.1). For d(p)< 0, boundary trajectories consist of the
bang-bang surface N = T −

XY X ∪T +
Y XY determined by the cut-locus of bang-bang

trajectories with two switchings that minimize the coordinate ξ3 and a stratified
hypersurface S = SBSB of trajectories that contain a singular arc and maximize ξ3

(Proposition 7.4.5). If the Lie derivatives LX d(p) and LY d(p) have the same sign,
then trajectories lie in the regions d(p)> 0, respectively d(p)< 0. It easily follows
that boundary trajectories have the same structure as in the totally bang-bang case if
LX d(p)> 0 and as in the mixed bang-singular case for LX d(p)< 0. A new situation
arises if LX d(p) and LY d(p) have opposite signs. Using an input symmetry, we can
normalize these signs and make the following assumption:

(C3) d(p) = 0, LX d(p)> 0, and LY d(p)< 0.

We again assume that all relevant inequalities are satisfied in a sufficiently small
neighborhood M of p. As should be expected in this case, which represents the
simplest step in a complicated bifurcation sequence of the reachable sets from the
totally bang-bang case d(p) > 0 to the bang-singular case d(p) < 0, boundary
trajectories become an amalgam of these two cases. It is the conjugate point relation
along ·XY · and ·YX ·-trajectories that becomes the key to unlocking these structures,
and we first compute these equations.

Consider an ·XY ·-trajectory with switching points q1, q2 = q1 exp(sX) and
q3 = q2 exp(tY ). Recall from Sect. 7.4.1 that the points q1, q2, and q3 form a
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conjugate triple if and only if the vectors X(q1), Y (q1), exp(sadX)Y (q2), and
exp(sadX)exp(tadY )X(q3) are linearly dependent and that this is equivalent to a
conjugate point relation of the form ΨXY (q1;s, t) = 0, where the function ΨXY is
defined as a quotient of two 4-vectors:

X ∧Y ∧
(

exp(sadX)− id
s

)
Y ∧ exp(sadX)

(
exp(t adY )− id

t

)
X

=ΨXY (q1;s, t) · (X ∧Y ∧ [X ,Y ]∧ [Y, [X ,Y ]]) .

Under assumption (C3), we now need a more accurate expansion for this function.
In the same way as before, and only keeping leading terms, we have that

X ∧Y ∧
(

exp(sadX)− id
s

)
Y ∧ exp(sadX)

(
exp(tadY )− id

t

)
X

= X ∧Y ∧ [X ,Y ]+
1
2

s[X , [X ,Y ]]+
1
6

s2[X , [X , [X ,Y ]]]+ · · ·

∧−[X ,Y ]− 1
2

t[Y, [X ,Y ]]+ · · ·− s[X , [X ,Y ]]− 1
2

s2[X , [X , [X ,Y ]]]+ · · · .
(7.37)

We again write vectors in this expansion as linear combinations of the basis, but
we also need this representation for the third-order bracket [X , [X , [X ,Y ]]]. It follows
from Eq. (7.36) that

[X , [X , [X ,Y ]]] = [X ,aX + bY + c[X ,Y ]+ d[Y, [X ,Y ]]

= LX (a)X +LX(b)Y +(LX(c)+ b)[X ,Y ]

+ c[X , [X ,Y ]]+LX(d)[Y, [X ,Y ]]+ d[X , [Y, [X ,Y ]]].

UsingthecoordinaterepresentationEq.(7.36)for [X , [X ,Y]],andwriting [X , [Y, [X ,Y]]]
as a linear combination of the basis, we see that the coefficient ϕ at the vector field
[Y, [X ,Y ]],

[X , [X , [X ,Y ]]] = · · ·+ϕ [Y, [X ,Y ]], (7.38)

is a smooth function on M that satisfies ϕ(p) = LX(d)(p). Substituting into
Eq. (7.37) then gives that

ΨXY (q1;s, t) =

∣∣∣∣∣∣∣∣

1+ o(1)
1
2

sd+
1
6

s2ϕ+ o(s2)

−1+ o(1) −1
2

t− sd− 1
2

s2ϕ+ o(t)+ o(s2)

∣∣∣∣∣∣∣∣
=−1

2

(
t + sd+

2
3

s2ϕ+ o(t)+ o(s2)

)
. (7.39)
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Similarly, the conjugate point relation for a conjugate triple (q1,q2,q3) along a ·YX ·-
trajectory of the form q3 = q1 exp(tY )exp(sX) is given by

ΨYX (q1;s, t) =−1
2

(
t + sd+

1
3

s2ϕ+ o(t)+ o(s2)

)
(7.40)

with, formally, the only difference in the coefficient at the s2-term.
These two formulas allow us to determine the structure of optimal bang-bang

trajectories in this case.

Proposition 7.5.1. The hypersurface TXY X is the graph of a smooth function φS

of the variables (ξ0,ξ1,ξ2), ξ3 = φS(ξ0,ξ1,ξ2). The vector field Y points to the
same side of TXY X as the coordinate vector field ∂

∂ξ3
everywhere, XYX-trajectories

minimize the coordinate ξ3 (over the small-time reachable set for fixed (ξ0,ξ1,ξ2)-
coordinates) and all XYX-trajectories are extremal.

Proof. These geometric properties are verified by a direct computation of the
tangent space to TXY X and then taking the wedge product with Y and ∂

∂ξ3
,

respectively. These are the same computations as done earlier, and we only verify
the statement about extremals. Consider an XYX-trajectory starting from p of the
form

q = pexp(s1X)exp(s2Y )exp(s3X)

and denote the switching points by q1 = pexp(s1X) and q2 = q1 exp(s2Y ). The
points (p,q1,q2) form a conjugate triple if and only if ΨXY (p;s1,s2) = 0 (cf.
Eq. (7.39)). Since d(p) = 0 and ϕ(p) = LX (d)(p), this is equivalent to

0 = s2 (1+ o(1))+
2
3

LX(d)(p)s2
1 (1+ o(1)).

But LX(d)(p)> 0, and thus this equation has no solution. Hence the first two times
s1 and s2 are not limited by a conjugate point relation. The same also holds for s3,
but for a different reason. The points (q1,q2,q) form a conjugate triple if and only
ifΨY X(q1;s2,s3) = 0 (cf. Eq. (7.40)). This relation now takes the form

0 = s2 (1+ o(1))+ d(q1)s3 +
1
3
ϕ(q1)s

2
3 (1+ o(1)).

But q1 = pexp(s1X), and in case (C3), the Lie derivative of d along X is positive
in a sufficiently small neighborhood M of p. Hence d(q1) > 0. However, this term
generally is small and not able to dominate higher-order terms. For this reason, we
need the quadratic term. Using a Taylor expansion, we simply have that

ϕ(q1) = ϕ(pexp(s1X)) = ϕ(p)+O(s1) = LX (d)(p)+O(s1)> 0,



558 7 Control Affine Systems in Low Dimensions

and thus the quadratic term is also positive near p. Hence, there also exists no
positive solution s3 to the conjugate point relationΨY X(q1;s2,s3)= 0. Thus the times
along XYX-trajectories can vary freely and all these trajectories are extremals. ��

This is no longer true for Y XY -trajectories. Consider a trajectory of the form

q = pexp(t1Y )exp(t2X)exp(t3Y )

and again denote the switching points by q1 = pexp(t1Y ) and q2 = q1 exp(t2X).
Since trajectories start from the point p, it still holds that the first two times t1 and
t2 are free. For as above, in this case the conjugate point relationΨYX (p; t1, t2) = 0
simplifies to

0 = t1 (1+ o(1))+
1
3

LX(d)(p)t2
2 (1+ o(1)),

which again has no positive solutions. But this is no longer the case for the second
conjugate point relationΨXY (q1;t2, t3) = 0. We now have that

0 = t3 (1+ o(1))+ d(q1)t2 +
2
3
ϕ(q1)t

2
2 (1+ o(1)),

and this equation has a unique solution for t3 as a function of t1 and t2, t̄3 = τ(t1, t2)
of the form

τ =−d(q1)t2 (1+ o(t2))− 2
3
ϕ(q1)t

2
2 (1+ o(t2))

with the dependence on the first time t1 coming in through evaluation of the
functions d and ϕ at the first junction q1 = pexp(t1Y ). Since d(p) = 0, it follows
that expressions of the type d(q1)t2

2 that arise in solving for t3 are of size O(t1t2
2)

and can be incorporated into the higher-order remainders at the quadratic term. We
thus get that

t̄3 = τ(t1, t2) =−d(q1)t2− 2
3
ϕ(q1)t

2
2 (1+ o(1)). (7.41)

Factoring out t2, and using Taylor’s theorem to evaluate the functions at the
reference point p, we obtain that

t̄3 = τ(t1, t2) =−t2

(
LY (p)t1 +

2
3

LX(p)t2 + · · ·
)
.

Let t̄2 = θ (t1) be the time when the quantity in parentheses vanishes, i.e.,

t̄2 = θ (t1) =−3
2

LY (p)
LX(p)

t1 + · · · . (7.42)

Since LX(p) and LY (p) have opposite signs, this quantity is always positive. For
t2≥ t̄2 = θ (t1), it follows that t̄3 = τ(q1;t2)≤ 0, and thus the conjugate point relation
ΨXY (q1; t2, t3) = 0 puts no restrictions on the time t3, i.e., if t2 is large enough, then
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the corresponding YXY -trajectory is extremal. However, if t2 < t̄2 = θ (t1), then the
time t̄3 = τ(t1, t2) is positive, and the third time t3 needs to satisfy t3 ≤ t̄3 = τ(t1, t2).
If we define the sets

U =
{
(t1, t2, t3) ∈ R

3
+ : t2 < t̄2 = θ (t1), t3 > t̄3 = τ(t1, t2)

}
,

P =
{
(t1, t2, t3) ∈ R

3
+ : t2 < t̄2 = θ (t1), t3 = t̄3 = τ(t1, t2)

}
,

D =
{
(t1, t2, t3) ∈ R

3
+ : t2 < t̄2 = θ (t1), t3 < t̄3 = τ(t1, t2)

}
,

then the following geometric properties can be verified with analogous computa-
tions to those that were made earlier.

Proposition 7.5.2. The hypersurface TY XY is the graph of a smooth function φN of
the variables (ξ0,ξ1,ξ2), ξ3 = φN(ξ0,ξ1,ξ2). The vector field X points to the same
side of TY XY as the coordinate vector field ∂

∂ξ3
at points defined by times in U, is

tangent to TY XY for points defined by times in P, and points to the opposite side of
TY XY than ∂

∂ξ3
for points defined by times in D. The surface TYXY everywhere lies

above the surface TXY X in direction of the coordinate vector field ∂
∂ξ3

. �

The portions of the hypersurface TY XY that are close to the X-trajectory (which is
obtained in the limit t2 → T ) indeed will provide the upper closure for the boundary
trajectories (these are the boundary trajectories that maximize the coordinate ξ3).
But trajectories that satisfy t3 > t̄3 = τ(t1, t2) are not boundary trajectories, also
reiterated by the fact that X points in the same direction as the coordinate vector field
∂
∂ξ3

, i.e., upward, and thus these points clearly cannot lie in the northern hemisphere.
We need to restrict the Y XY -trajectories and properly complement the boundary
portions of TY XY to find the northern hemisphere N ; the southern hemisphere and
the corresponding “equator” are simply given by S = CXY X . The missing pieces
are provided through trajectories that contain singular arcs.

Proposition 7.5.3. Optimal boundary trajectories in ReachΣ ,≤T (p) that contain a
singular arc are at most of the form Y SXY.

Proof. This proposition is an application of singular conjugate point relations. We
denote a junction of a singular arc S with a bang trajectory by an asterisk, ∗, and,
as before, denote ordinary junctions by a dot, ·. We first show that there do not
exist any concatenations of the form ·Y∗ and ∗Y ·. Suppose q2 = q1 exp(tY ) and the
trajectory has a singular junction at q1 and a switching point at q2. Then there exists
a nontrivial multiplier λ that vanishes against the vector fields X , Y , and [X ,Y ] at
q1 and also vanishes against the vector that is obtained by transporting the vector
X(q2) back to q1 along the flow of Y , i.e.,

0 = X(q1)∧Y (q1)∧ [X ,Y ](q1)∧ exp(tadY )X(q2)

=
1
2

t2

(
X(q1)∧Y (q1)∧ [X ,Y ](q1)∧

(
exp(t adY )− (id+t adY )

1
2 t2

)
X(q2)

)
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=
1
2

t2 (X(q1)∧Y (q1)∧ [X ,Y ](q1)∧−[Y, [X ,Y ]](q1)(1+ o(t))) .

This contradicts assumption (C1), the linear independence of these vector fields.
Similarly, ·Y∗-concatenations are not possible, and thus whenever there is a singular
junction SY or Y S, the time t along the vector field Y is unrestricted.

This does not hold for singular concatenations with the vector field X . Suppose
first that q2 = q1 exp(sX) and the trajectory is of the type ·X∗, i.e., has a switching
point at q1 and a singular junction at q2. Then, as above, but evaluating all the vector
fields at the singular junction q2, it follows that the vectors X , Y , and [X ,Y ] at q2 and
the vector Y (q1) moved forward to q2 along the flow of X are linearly dependent.
Thus

0 = X(q2)∧Y (q2)∧ [X ,Y ](q2)∧
(

exp(−sadX)− (id−sadX)
1
2 s2

)
Y (q2)

= X(q2)∧Y (q2)∧ [X ,Y ](q2)∧
(
[X , [X ,Y ]](q2)− 1

3
s[X , [X , [X ,Y ]]](q2)+ o(s)

)
.

The coefficient of the last term at [Y, [X ,Y ]](q2) therefore must vanish. This
coefficient is given by

d(q2)− 1
3
ϕ(q2)s+ o(s).

Since there is a singular junction at q2, we have d(q2) ≤ 0. (Otherwise, the
singular control is not admissible.) Furthermore, in small time, we always have
ϕ(q2) = ϕ(p)+O(T ) = LX (d)(p)+O(T ) > 0. Hence ·X∗-concatenations are not
extremal, and this excludes concatenations of the form YXS. Since trajectories
start at p, trajectories of the type pexp(sX)exp(rS) are not possible either. For
since LX(d) > 0, it follows that d(pexp(sX)) > 0, and thus the singular control is
inadmissible at pexp(sX). Thus, trajectories that contain a singular arc are initially
of the form Y S with the time along the Y -arc free.

Now consider a junction of type ∗X · as can arise at the end of a singular arc and
suppose q2 = q1 exp(sX) is another junction point. Define a functionΨ∗X(q1;s) by
moving the vector Y (q2) back to q1 and writing

X(q1)∧Y (q1)∧ [X ,Y ](q1)∧
(

exp(sad X)− (id+sadX)
1
2 s2

)
Y (q2)

=Ψ∗X(q1;s)(X(q1)∧Y (q1)∧ [X ,Y ](q1)∧ [Y, [X ,Y ]](q1)) .

A similar computation as above gives that

Ψ∗X(q1;s) = d(q1)+
1
3
ϕ(q1)s(1+ o(1)). (7.43)
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Assuming that the singular control does not saturate at the point q1, we have that
d(q1)< 0, and therefore, by the implicit function theorem, the equationΨ∗X(q1;s) =
0 has a unique solution s̄ = σ(q1), and by Eq. (7.43), this solution is positive. Thus
the time s along an X-arc following a singular junction is limited, and at the time
s̄ a switch in the control to u = +1 occurs. But then no further switchings are
possible: if q3 = q2 exp(tY ) were another junction, then the triple (q1,q2,q3) would
be conjugate; but by (7.41) the time t̄ = τ(q1,s) until the third junction is given by

t̄3 = τ(q1, t2) =−d(q1)s− 2
3
ϕ(q1)s

2 (1+ o(1)),

and thus

t̄3 = τ(q1, t2) =−1
3
ϕ(q1)s

2 (1+ o(1)) =−1
3

LX (d)(p)s2 (1+O(T))< 0.

Contradiction. Thus boundary trajectories that contain a singular arc have at most
the structure Y SXY . ��

Not all of these segments need to be present in every such boundary trajectory,
however, and there are limitations on the times along these trajectories. Consider a
trajectory of the form

pexp(tY )exp(rS)exp(sX)

with switchings at the points q1 = pexp(tY ) and q2 = q1 exp(rS). Then, the time s
along the X-arc is restricted by the equation

s≤ s̄(t,r) = σ(q2) = σ (pexp(tY )exp(rS))

with σ the solution to Eq. (7.43). Since

d(q2) = LY (d)(p)t +LX(d)(p)r+ · · ·

and
ϕ(q2) = LX (d)(p)+ · · · ,

it follows that

s̄(t,r) =−3

(
LY (d)(p)
LX (d)(p)

t + r+ · · ·
)
.

In particular, for r = 0, denote by TYX̄ ⊂ TY X and TY X̄Y ⊂ TY XY , respectively, the
curve and surfaces of endpoints obtained when the time along the X-arc is given by
s = s̄(t,0),

TY X̄ = {pexp(tY )exp(sX) : s = s̄(t,0) } ,
TY X̄Y = {pexp(tY )exp(sX)exp(uY ) : s = s̄(t,0) } .
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Comparing the formula for s̄(t,0) with the formula Eq. (7.42), we see that s̄(t,0)>
θ (t), and hence the conjugate point relation for a ·XY · junction will never become
active. Thus the time u along the second Y -arc is unrestricted and these are all
extremal YXY -trajectories. In fact, it is this surface where the portion of TY XY that
lies in the boundary of the small-time reachable set meets those trajectories that
contain a singular arc.

We also need to make sure that the singular controls remain admissible. Let

Δ = {q ∈M : d(q) = 0} ;

since the Lie derivative of d along X does not vanish, Δ is an embedded three-
dimensional manifold near p. The singular vector field at the point p is given by
S(p) = X(p) (see Proposition 7.4.4), and therefore the Lie derivative of d along S is
positive in a sufficiently small neighborhood M of p. Hence, singular arcs starting
at a point pexp(tY ) will eventually reach Δ , where they saturate. It is easy to see
that there exists a well-defined smooth function r̄ = r̄(t) such that

pexp(tY )exp(r̄(t)S) ∈ Δ .

An expansion for r̄ is easily computed from

d (pexp(tY )exp(r̄(t)S)) = d(p)+LY (d)(p)t +LS(d)(p)r̄+ · · ·

to be

r̄(t) =−LY (d)(p)
LX(d)(p)

t + o(t).

If the singular control saturates, then the control actually needs to switch.

Lemma 7.5.1. It is not optimal to continue with the control u =−1 at a saturation
point pexp(tY )exp(r̄(t)S).

Proof. This junction condition follows from a calculation like those in Proposi-
tion 2.8.4. Suppose the control u≡−1 is being used after saturation and let λ be the
value of the corresponding multiplier at the saturation time such that the conditions
of the maximum principle are satisfied. Since q is a singular junction, λ vanishes
against the vectors X(q), Y (q), and [X ,Y ](q). By assumption (C1), λ therefore does
not vanish against [Y, [X ,Y ]](q). Furthermore, the second and third derivatives of the
switching function from the right are given by

Φ̈ =
1
2
〈λ , [X , [X ,Y ]](q)〉 and

...
Φ =

1
2
〈λ , [X , [X , [X ,Y ]]](q)〉 .

But, since q ∈ Δ ,

〈λ , [X , [X ,Y ]](q)〉= d(q)〈λ , [Y, [X ,Y ]](q)〉= 0,
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and from Eq. (7.38) we get that

〈λ , [X , [X , [X ,Y ]]](q)〉= ϕ(q)〈λ , [Y, [X ,Y ]](q)〉 ,

with a positive function ϕ . But by Eq. (7.31),

2〈λ , [g, [ f ,g]](q)〉= 〈λ , [Y −X , [X ,Y ]](q)〉= 〈λ , [Y, [X ,Y ]](q)〉

and thus 〈λ , [Y, [X ,Y ]](q)〉 is negative by the Legendre–Clebsch condition. But then
the switching function is negative to the right of the saturation point, contradicting
the minimum property of the maximum principle. ��

Hence, at a saturation point, the control switches to u=+1. Overall, we therefore
get the following concatenations for boundary trajectories that contain singular arcs:

TY S = {pexp(tY )exp(rS) : t > 0, 0 < r < r̄(t)} ,
TY S̄ = {pexp(tY )exp(r̄(t)S) : t > 0} ,

TY SY = {pexp(tY )exp(rS)exp(uY ) : t > 0, 0 < r < r̄(t), u > 0} ,
TY S̄Y = {pexp(tY )exp(r̄(t)S)exp(uY ) : t > 0, u > 0} ,
TY SX = {pexp(tY )exp(rS)exp(sX) : t > 0, 0 < r < r̄(t), 0 < s < s̄(t,r)} ,
TY SX̄ = {pexp(tY )exp(rS)exp(s̄(t,r)X) : t > 0, 0 < r < r̄(t)} ,

TYSX̄Y = {pexp(tY )exp(rS)exp(s̄(t,r)X)exp(uY ) : t > 0, 0 < r < r̄(t)u > 0} .

Denoting the corresponding sets when also equalities are allowed by C , this defines
a singular cell

Csing = CY SY ∪CY SX ∪CY SX̄Y

that combines with TYXY to form the northern hemisphere of the boundary of the
small-time reachable set. Modulo some standard geometric considerations, which
can be found in [221], we have shown the following result:

Proposition 7.5.4. The stratified hypersurface Csing is the graph of a piecewise
defined, smooth function φN of the variables (ξ0,ξ1,ξ2), ξ3 = φN(ξ0,ξ1,ξ2). The
restrictions of φN to the domains for the surfaces TYSY , TY SX , and TYSX̄Y have
smooth extensions to their relative boundaries. The surface Csing lies above the
surface TY XY (in direction of the coordinate vector field ∂

∂ξ3
) everywhere in its

domain, and these two surfaces meet along the stratum TY X̄Y in the relative
boundary of Csing. �

The geometric structure of the trajectories that make up this northern hemisphere
is illustrated in Fig. 7.20.

Altogether, our results give a complete description of the boundary trajectories
in the small-time reachable set ReachΣ ,≤T (p) under the codimension-1 assumptions
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Fig. 7.20 A qualitative
sketch of the structure of the
endpoints in the northern
hemisphere N of the
boundary ReachΣ ,T (p) of the
small-time reachable set
under assumptions (C1)
and (C3)

(C1) and (C3). It is now possible, exactly as in Sect. 7.4.2, to construct a time-
optimal synthesis to an equilibrium point for the corresponding system in R

3, and
we briefly describe this result. The underlying system again is of the form

Σ : ẋ = f (x)+ ug(x), x ∈R
3, |u| ≤ 1,

and we are assuming that

(1) f (p) = 0,
(2) the vectors g(p), [ f ,g](p), and [g, [ f ,g]](p) are linearly independent.

As before, we write

[ f , [ f ,g]] = αg+β [ f ,g]+ γ[g, [ f ,g]].

The coefficient d̃ for the augmented system Σ̃ with state x̃ = (x0,x)T where time has
been added as extra coordinate, ẋ0 ≡ 1, agrees with the function d defined through
the relation

[ f − g, [ f ,g]] = bg+ c[ f ,g]+ d[ f + g, [ f ,g]]

in R
3, and we have that

d(x) =
γ(x)− 1
γ(x)+ 1

.

Thus, the assumption d(p) = 0 corresponds to γ(p) = 1. The singular control again
is using(x) = −γ(x), and it saturates on the set Δ = {x ∈M : γ(x) = 1} with the
singular vector field at saturation given by X . (By changing g into −g, the situation
that was considered in Sect. 7.4.2 arises.) Assuming that the Lie derivative of γ along
X does not vanish at p, LX (γ) (p) = 0, this becomes a two-dimensional embedded
submanifold. A direct calculation gives the relations between the Lie derivatives of
d and γ , and we have that

LX (d) =
2LX(γ)
(1+ γ)2 and LX(γ) =

2LX(d)
(d− 1)2
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and analogously for Y . Hence the conditions that correspond to (C3) can be
expressed in one of the following two equivalent forms:

(3) the function d vanishes at p, d(p) = 0, but has nonzero Lie derivatives along
X and Y . Without loss of generality, we normalize the Lie derivatives so that
LX d(p)> 0 and LY d(p)< 0. Equivalently,

γ(p) = 1, LX (γ)(p)> 0, and LY (γ)(p)< 0.

Under these conditions, the system once more is small-time locally controllable
(i.e., p is an interior point of the small-time reachable set ReachΣ ,≤T (p) for any
T > 0), and as before, a time-optimal synthesis for steering points in a sufficiently
small neighborhood M of p into the equilibrium point p can be constructed from the
structure of the small-time reachable set for the augmented system by projecting the
boundary trajectories into the original state space.

As above, this synthesis is built inductively by integrating trajectories backward
form p, and thus the roles of trajectories in the northern and southern hemispheres
interchange. Again, we use notation like TXY to denote actual XY trajectories when
the system is integrated forward in time, i.e.,

TXY = {pexp(−tY )exp(−sX) : s > 0, t > 0} .

As in Sect. 7.4.2, the stratified hypersurface M = CXY ∪ CY X is the graph of
a piecewise smooth function x3 = FM (x1,x2) near p, and it divides a small
neighborhood M of p into a region M+ that lies above M in the direction of
the coordinate vector field ∂

∂x3
and a region M− that lies below M . As before,

time-optimal trajectories are bang-bang in M+ and trajectories in M− contain a
singular arc.

For this problem, because of the absence of a cut-locus, the bang-bang synthesis
simplifies; in fact, it becomes trivial in the region M+. Since boundary trajectories
in the northern hemisphere are of type XYX , we simply have that

u∗(x)≡−1 for all x ∈M+.

This reflects the fact that the structure of the small-time reachable set in this
bifurcation scenario consists of an amalgam of the simple totally bang-bang case
(d > 0) and the complicated bang-singular scenario (d < 0). The lower part M−
is divided into two regions S+ and S− where the controls, respectively, are given
by u = +1 and u = −1. The boundary between these two regions comprises two
surfaces,

Ξ = Ξ1∪Ξ2,

where Ξ1 is an integral manifold of the singular vector field and Ξ2 is the surface
in the boundary of S− where the controls switch from u = −1 to u =+1. Contrary
to the other strata (and also in contrast to the strata constructed in Sect. 7.4.2), the
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surface Ξ2 does not support trajectories, but only describes the transit of trajectories.
These surfaces are given explicitly in the form

Ξ1 = TSY = {pexp(−tY )exp(−rS) : t > 0, 0 < r < r̄(t)}

where r̄ denotes the time of saturation for the singular control, and

Ξ2 = TX̄SY = {pexp(−tY)exp(−rS)exp(−s̄(t,r)X) : t > 0, 0 < r < r̄(t)}

with s̄(t,r) the time determined by the singular conjugate point relation

Ψ∗X(pexp(−tY)exp(−rS) ;−s) = 0.

The region S− is the set

TXSY = {pexp(−tY)exp(−rS)exp(−sX) : t > 0, 0 < r < r̄(t), 0 < s < s̄(t,r)} ,

and it is the subset of M− that has Ξ and a part of the surface TXY in its boundary,
but does not border the surface TY X . The region S+ is the complement of this set in
M−. It consists of the cell T opt

Y XY that corresponds to optimal Y XY -trajectories that
lie in the boundary of the small-time reachable set,

TY XY = {pexp(−tY )exp(−sX)exp(−uY ) : t > 0, s > s̄(t,0), u > 0} ,

its main frontier stratum TY X̄Y ,

TY X̄Y = {pexp(−tY )exp(−sX)exp(−uY ) : t > 0, s = s̄(t,0), u > 0} ,

and the cell

CY SXY = TY SX̄Y ∪TYS̄Y ∪TY SY

= {pexp(−tY )exp(−rS)exp(−sX)exp(−uY) :

t > 0, 0 < r ≤ r̄(t), 0≤ s≤ s̄(t,r), u > 0} .

Summarizing, we have the following optimal synthesis:

Theorem 7.5.1. The controlled trajectories corresponding to the feedback control
u∗(x) defined by

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if x ∈ N− ∪TXY ∪TX ∪M−,
−γ(x) if x ∈ TSY ,

+1 if x ∈ N+∪TY X ∪TY ,
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together with the associated stratification of the state-space define a local time-
optimal synthesis of controlled trajectories.

Proof. As in the codimension-0 case, the controlled trajectories and the stratification
that were constructed satisfy the assumptions of the simple verification theorem,
Theorem 6.3.1: Setting up a parameterized family of extremals, it is easily seen
that the value-function V = VE defined by this synthesis is continuous and is a
continuously differentiable solution to the Hamilton–Jacobi–Bellman equation on
all the open strata. The complement of these open sets is a finite union of embedded
submanifolds of positive codimension, and thus, by Theorem 6.3.1, the synthesis is
optimal. ��

7.6 Notes

The results presented in this chapter were developed in the work of H. Schättler
et al. (e.g., [141, 209–211, 215, 221]). They illustrate how constructive geometric
arguments can be used in connection with explicit Lie-algebraic computations in
canonical coordinates to give precise results about small-time reachable sets and
how these, in turn, in certain cases, directly give rise to a time-optimal synthesis
of controlled trajectories for related lower-dimensional optimal control problems.
Clearly, the procedures are tied to nondegenerate-case or general-position-type
assumptions, but they can be carried out under assumptions made only on the Lie-
bracket configuration of the system. And the fact that cases of higher codimension
or problems in higher dimensions become harder does not invalidate the procedure.
The results obtained make a clear connection between the structure of time-optimal
controlled trajectories for higher-codimension situations in lower dimensions and
the structure of these trajectories for lower-codimension cases in higher dimensions.
The structure of optimal controls in the codimension-2 two-dimensional scenario
considered in Sect. 2.10 is the same as the structure of the optimal trajectories in
the codimension-1 three-dimensional case just considered, and these concatenations
form the boundary trajectories for the codimension-0 four-dimensional small-time
reachable set. These results are not mere special cases; indeed they comprise general
structures. Even in the general optimal control problem, it is these structures that
determine optimal syntheses. For instance, the most degenerate situation that arises
in the optimal synthesis for the mathematical model for tumor antiangiogenesis
considered in Sect. 6.2 is that of two saturation points along an optimal singular
arc, the situation just considered. One of them gives rise to optimal controls at most
of the form XYSB, and the second generates concatenations of the form BSYX ,
leading overall to a synthesis that consists of XYSYX trajectories that generate the
global solution to this problem.

The cases considered in this last chapter of our text give the structure of an
optimal synthesis near general phenomena (BSB near fast singular arcs, BBB with
a cut-locus near slow singular arcs, BSBB or BBSB near points where singular arcs
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saturate) that often are the optimal solutions in general when these phenomena are
involved and more degenerate situations do not arise. In this sense, these structures
typically directly apply to particular situations in which, based on the structures that
are optimal here, optimal solutions can be conjectured and often verified easily. For
example, this is how we solved the problem from Sect. 6.2. But this will have to be
left for some other time.



Appendix A
A Review of Some Basic Results from Advanced
Calculus

We briefly review some fundamental concepts and results from advanced calculus
that are used frequently throughout the text. Most of these (with possibly the
exception of Sard’s theorem) are standard, and we generally refer the reader to
textbooks on this subject for a more detailed exposition and proofs of these results.
We assume that the reader is familiar with basic topological notions (such as
open and closed sets, convergence, etc.) and matrix algebra (vector space, linear
operators, matrix and vector computations, etc.).

A.1 Topology and Convergence in Normed Vector Spaces

Definition A.1.1 (Normed space). Let V be a vector space over R. A function
‖·‖ : R→[0,∞) is called a norm if for all vectors v,w ∈V and all real numbers λ the
following three conditions are satisfied: (i) (positive definite) ‖v‖ = 0 ⇐⇒ v = 0,
(ii) (positive homogeneity) ‖λv‖= |λ |‖v‖, and (iii) (triangle inequality) ‖v+w‖ ≤
‖v‖+ ‖w‖. A vector space V endowed with a norm is called a normed space.

Examples of norms that we use throughout the text are the ‖·‖p norms for 1 ≤
p≤ ∞. For V = R

n, these are defined by

‖x‖1 =
n

∑
i=1
|xi| , ‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

, for 1 < p < ∞,

and
‖x‖∞ = max

i=1,...,n
|xi| .

It is obvious that each function is positive definite and positively homogeneous.
The triangle inequality for ‖·‖1 and ‖·‖∞ is an immediate consequence of the
triangle inequality in R. For 1 < p < ∞, the triangle inequality is a consequence

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
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of Hölder’s inequality, which we discuss more generally in the context of Lp-spaces
in Appendix D. For p = 2, the so-called Euclidean norm, it also follows from the
Cauchy–Schwarz inequality. The Euclidean norm is unique among the ‖·‖p norms
in the sense that it is induced by an inner product.

Definition A.1.2 (Inner product space). Let V be a vector space over R. An inner
product on V is a positive definite symmetric bilinear form (·, ·), i.e., a mapping
(·, ·) : V ×V →R, (v,w) �→ (v,w), such that for all vectors v and w of V and all real
numbers λ we have that (i) (bilinear form) (v1 +λv2,w) = (v1,w)+λ (v2,w), (ii)
(symmetric) (v,w) = (w,v), and (iii) (positive definite) (v,v) ≥ 0 and (v,v) = 0 if
and only if v = 0.

The Euclidean inner product on R
n is given by (v,w) = vT w. If (·, ·) is an inner

product on V , then ‖v‖ = √
(v,v) defines a norm. It is clear that this function is

positive definite and positively homogeneous. The triangle inequality follows from
the Cauchy–Schwarz inequality:

|(v,w)| ≤ ‖v‖‖w‖ for all v,w ∈V.

This inequality allows us to define the angle ϕ between two vectors v and w in an
inner product space by

cosϕ =
(v,w)
‖v‖‖w‖ .

In particular, two vectors v and w are orthogonal if and only if their inner product is
zero. It is not difficult to show that a norm ‖·‖ is induced by an inner product if and
only if the parallelogram identity,

‖v+w‖2 + ‖v−w‖2 = 2
(
‖v‖2 + ‖w‖2

)
,

is valid for all vectors v and w from V .
Norms allow us to define the basic topological concepts of neighborhoods

and convergence in the same natural way as in R
n. We briefly summarize these

fundamental definitions.

Open and closed sets. Given a normed space (V,‖·‖), for x ∈ V and ε > 0, define
the ball with radius ε around x as Bε(x) = {y ∈ V : ‖y− x‖ < ε}. A set E ⊂ V is
open if for every x ∈ E there exists an ε > 0 such that the ball Bε(x) lies entirely in
E , Bε(x) ⊂ E . It easily follows from the triangle inequality that the balls Bε(x) are
open. A set F is closed if its complement, Fc = {x ∈V : x /∈ F}, is open.

Convergence. A sequence {xn}n∈N ⊂V converges to a limit x ∈V if

lim
n→∞‖xn− x‖= 0,
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and we simply write xn→ x. Closed sets are more importantly characterized through
convergence properties. It is easily seen that a set F ⊂ V is closed if and only if
whenever a sequence {xn}n∈N ⊂ F of points in the set F converges to a point x ∈V ,
then it follows that x ∈ F . A sequence {xn}n∈N ⊂V is said to be a Cauchy sequence
if for every ε > 0, there exists an integer N such that ‖xn− xm‖ < ε for all indices
n,m≥ N.

Definition A.1.3 (Banach space). A normed space (V,‖·‖) in which every Cauchy
sequence converges is said to be complete. If the underlying vector space is infinite-
dimensional, a complete normed space is called a Banach space.

Continuity. A mapping F : V →W between normed spaces is continuous at a point
x∈V if for every ε > 0 there exists a δ = δ (ε)> 0 such that F (Bδ (x))⊂ Bε(F(x)).
It is easily seen that F is continuous at x if and only if whenever {xn}n∈N is a
sequence that converges to x, then F(xn) → F(x). The mapping F : V → W is
continuous if it is continuous at every point. Equivalently, from a topological point
of view, F : V →W is continuous if and only if inverse images of open sets in W
are open in V . Note that the norm itself, ‖·‖ : V → R, is a continuous function. It
follows from the triangle inequality that |‖x‖−‖y‖| ≤ ‖x− y‖ for all x and y. Hence,
if xn→ x, then also ‖xn‖→ ‖x‖. In particular, if xn → x, then {‖xn‖}n∈N is bounded.
Similarly, an inner product is continuous in both variables: if vn → v and wn → w,
then (vn,wn)→ (v,w).

Definition A.1.4 (Compact). Let V be a normed vector space. A family {Ui}i∈I of
open sets Ui for i in some arbitrary index set I is an open cover for the set E ⊂ V
if E ⊂ ∪i∈IUi. A set K ⊂ V is compact, if every open cover of K contains a finite
subcover.

It is easily seen from the definition that compact sets are closed and bounded.
These conditions, however, are not sufficient in an infinite-dimensional vector space,
but they characterize compact sets in finite-dimensional spaces.

Theorem A.1.1 (Heine–Borel). A subset K ⊂ R
n is compact if and only if it is

closed and bounded. �
Corollary A.1.1 (Weierstrass). Every bounded sequence {xn}n∈N ⊂ R

n contains
a convergent subsequence. �

The next result is one of the most important properties of continuous functions
on compact sets, and we include its simple proof to give a typical compactness
argument.

Theorem A.1.2. A continuous function f : K → R defined on a compact set K in
R

n attains its minimum and maximum on K.

Proof. Let m = infx∈K f (x) and M = supx∈K f (x). A priori, we have only that−∞≤
m ≤ M ≤ ∞, and it is claimed that there exist points x∗ ∈ K and x∗ ∈ K such that
−∞ < m = f (x∗) ≤ f (x∗) = M < ∞. Without loss of generality, we only consider
the case of the minimum.
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It follows from the definition of the infimum as the greatest lower bound that
there exists a sequence {xn}n∈N ⊂ K such that f (xn)→ m, a so-called minimizing
sequence. Since K is compact, there exists a convergent subsequence, and we may
simply assume that xn → x∗. Since K is closed, the limit x∗ lies in K. Since f is
continuous on K, it follows that f (xn)→ f (x∗), which must be finite. Thus −∞ <
m = f (x∗). ��

The Heine–Borel theorem implies that the unit sphere S = {x ∈V : ‖x‖= 1} in
a finite-dimensional normed space is compact. Indeed, it can be shown that this is
correct if and only if V is finite-dimensional. On R

n, this implies that all norms are
equivalent in the following sense:

Definition A.1.5 (Equivalent norms). Two norms |·| and ‖·‖ on a vector space
V are equivalent if there exist positive constants m and M such that for all vectors
v ∈V we have that m |v| ≤ ‖v‖ ≤M |v|.

Equivalent norms have the same convergent sequences, and as far as the
definition of open sets or convergence is concerned, there is no need to distinguish
between equivalent norms.

Proposition A.1.1. All norms on R
n are equivalent.

Proof. The unit ball S = {v ∈ R
n : ‖v‖2 = vT v = 1} is a compact set in R

n, and as
a positive definite continuous function, the norm ‖·‖ attains a positive minimum m
and finite maximum M on S. Thus we have for all v ∈ S that 0 < m≤ ‖v‖ ≤M <∞.
Given any nonzero vector w ∈R

n, there exists a v ∈ S and a λ > 0 such that w = λv
and thus, since norms are positively homogeneous, the inequality

m‖w‖2 = mλ ≤ λ ‖v‖= ‖w‖ ≤ λM = M‖w‖2

holds for all vectors w ∈ R
n. The general result easily follows by combining the

bounds obtained in this way for two arbitrary norms. ��
Thus all norms on R

n induce the same topology as the standard Euclidean norm

‖v‖2 =
√
∑n

i=1 v2
i , and we do not need to specify which norm is being used on R

n

when we talk of convergence. The compactness of the unit spheres also allows us to
define “good” matrix norms for A ∈ R

m×n that are compatible with a given vector
norm, the so-called operator or lub-norm. Let ‖·‖a be a norm in R

n and let ‖·‖b be
a norm in R

m. Then the subordinate matrix norm ‖A‖a,b is defined as

‖A‖a,b = max
x=0

‖Ax‖b

‖x‖a
= max
‖x‖a=1

‖Ax‖b .

The function A �→ ‖A‖a,b is well-defined, and it is easily verified that it satisfies the
defining properties of a norm. Furthermore, it is immediate from the definition that
the matrix norm is compatible with the vector norm in the sense that

‖Ax‖b ≤ ‖A‖b,a · ‖x‖a .
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If A ∈ R
n×n and the same norm is used, we delete the subscripts. It is not difficult

to see that the operator norm corresponding to the Euclidean norm is given by the
largest singular value of A, i.e.,

‖A‖2 = max
xT x=1

√
xT AT Ax =

√
λmax(AT A),

with λmax denoting the largest eigenvalue of the positive semidefinite matrix AT A.
(Since AT A is symmetric, there exists an orthogonal matrix Q ∈ R

n×n, QT Q = Id,
such that QT AT AQ = Λ with Λ = diag(λ1, . . . ,λn) a diagonal matrix. The claim
immediately follows from this by making a linear change of coordinates x = Qy and
observing that ‖Qy‖2 = ‖x‖2 = 1.) Similarly,

‖A‖∞ = max
‖x‖∞=1

{
max

i=1,...,n

∣∣∣∣∣
n

∑
k=1

aikxk

∣∣∣∣∣
}

= max
i=1,...,n

n

∑
k=1

|aik| .

A.2 Uniform Convergence and the Banach Space C(K)

Definition A.2.1 (Uniform convergence). Let V be a normed vector space.
A sequence { fn}n∈N of functions fn : E → R

m defined on some subset E of V
converges uniformly on E to some limit f if for every ε > 0, there exists an
integer N = N(ε) such that for all n ≥ N and all points x ∈ E we have that
‖ fn(x)− f (x)‖< ε .

If the sequence fn converges pointwise in E , then for each x∈ E and every ε > 0,
there exists an integer N = N(ε;x) such that ‖ fn(x)− f (x)‖ < ε for all n ≥ N, but
this number N depends on the point x as well. Uniform convergence means that an
integer N can be chosen that works for all points in the set E . The significance of
the concept lies with the following simple fact:

Proposition A.2.1. If { fn}n∈N is a sequence of continuous functions fn : E → R
m

that converges uniformly on E, then the limit f : E → R is continuous.

Proof. Given x ∈ E , let ε > 0. Since { fn}n∈N converges uniformly to f on E ,
there exists an integer N such that ‖ fN(y)− f (y)‖ < ε

3 for all y ∈ E . Since fN is
continuous, there exists a δ = δ (ε) > 0 such that ‖ fN(y)− fN(x)‖ < ε

3 whenever
‖y− x‖< δ . Hence, we have for all y ∈ Bδ (x) that

‖ f (y)− f (x)‖ ≤ ‖ f (y)− fN(y)‖+ ‖ fN(y)− fN(x)‖+ ‖ fN(x)− f (x)‖ < ε,

and thus f is continuous at x. ��
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Often such a sequence of functions is given as the partial sums of a series, i.e.,
fn = ∑n

i=0 gi, where the gi are continuous functions defined on E . In this case we
have the following simple criterion for uniform convergence due to Weierstrass.

Lemma A.2.1. If there exists a convergent series∑∞i=0 εi of positive numbers εi such
that ‖gi(x)‖ ≤ εi for all x ∈ E and all i ∈ N, then the sequence { fn}n∈N, fn(x) =
∑n

i=0 gi(x), converges uniformly on E to the continuous limit f (x) = ∑∞i=0 gi(x). �
Definition A.2.2 (C(K)). Let K be a compact set of Rn; C(K) is the normed vector
space of all continuous functions f : K →R

m equipped with the supremum norm

‖ f‖∞ = max
x∈K

‖ f (x)‖ .

Since K is compact, ‖ f‖∞ is well-defined. It is clear that it defines a norm on
the space of continuous functions defined on K, and convergence in the supremum
norm is the same as uniform convergence on K. Proposition A.2.1 implies that this
space is complete.

Proposition A.2.2. The space C(K) is a Banach space.

Proof. Suppose { fn}n∈N is a sequence of continuous functions fn : K → R
m that is

Cauchy in the supremum norm, i.e., for every ε > 0 there exists an integer N =N(ε)
such that for all integers k, n ≥ N(ε), we have that ‖ fn− fk‖∞ < ε . But then, for
every x ∈ K, the sequence { fn(x)}n∈N is Cauchy in R and thus has a limit, call it
f (x). Taking the limit as m→ ∞, we obtain for n≥ N(ε) that

‖ fn− f‖∞ = lim
k→∞

(
max
x∈K

| fn(x)− fk(x)|
)
≤ ε,

i.e., { fn}n∈N converges to f in the supremum norm, or equivalently, uniformly on
the set K. But then the limit f is continuous by Proposition A.2.1 and thus { fn}n∈N
converges in the supremum norm to an element in the space. ��

In the context of control systems, it is often important to be able to select
subsequences of controlled trajectories {(xn,un)}n∈N for which the sequence of
trajectories converges uniformly. The Arzelà–Ascoli theorem provides a criterion
for this to be possible. Equivalently, it gives conditions for a subset K in the Banach
space C(K) to be compact. We need the following terminology:

Definition A.2.3 (Equicontinuous). A family F of continuous functions f : E →
R

m is said to be equicontinuous if for every ε > 0 there exists a δ > 0, depending
only on ε , such that for all f ∈F and all points x and y from K that satisfy ‖x− y‖<
δ , we have that ‖ f (x)− f (y)‖< ε .

Note that any finite family F of continuous functions f : K → R
m defined on

a compact set K is equicontinuous. For this definition is equivalent to a single
function being uniformly continuous, and it follows from a standard compactness
argument that continuous functions are uniformly continuous on compact sets. Thus
an equicontinuous family is a family of continuous functions that is uniformly
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continuous with the same ε and δ working for every function in the family. For
example, all functions f : K → R

n that satisfy a Lipschitz condition of the form
‖ f (x)− f (y)‖ ≤ L‖x− y‖ with a fixed Lipschitz constant L are equicontinuous.

Definition A.2.4 (Pointwise compact). Let K be a compact subset of Rn and let F
be a family of continuous functions f defined on K, f : K → R

m. The family F is
said to be point wise compact if for every point x ∈ K, the set { f (x) : f ∈F} ⊂R

m

is compact.

Then the following result holds [177, Sect. 5.6]:

Theorem A.2.1 (Arzelà–Ascoli). Let K be a compact subset of Rn and let F
be a family of continuous functions f defined on K, f : K → R

m. Then the family
F is compact in C(K) if and only if F is closed, equicontinuous, and pointwise
compact. �
Corollary A.2.1. Let { fn}n∈N be a sequence of continuous functions fn : K → R

m

defined on a compact set that is equicontinuous and pointwise bounded. Then there
exists a subsequence

{
fnk

}
k∈N that converges uniformly.

A.3 Differentiable Mappings and the Implicit Function
Theorem

One of the most important results of advanced calculus is the implicit function
theorem which gives information about the local solvability of an equation of the
form F(x,y) = 0 near a solution point (x0,y0). It is equivalent to the inverse function
theorem, which establishes the local invertibility of a mapping F : Rn → R

n near a
point x0 where the matrix of the partial derivatives of F , DF(x0), is nonsingular. We
briefly review these important results that will be used many times in this text. We
recall the fundamental definitions:

Definition A.3.1 (Differentiable mapping). Let U be an open subset of R
n.

A mapping F : M → R
m is differentiable at a point x0 ∈ U if there exist a linear

mapping, denoted by DF(x0) : Rn → R
m, and a continuous function r : M → R

m

that vanishes at x0, r(x0) = 0, such that for all x ∈U we have that

F(x) = F(x0)+DF(x0)(x− x0)+ r(x)(x− x0).

The matrix DF(x0) is called the derivative or the Jacobian matrix of F at x0. The
mapping F is differentiable on U if it is differentiable at every point x0 ∈M.

Suppose the mapping F has components fi : U → R, i = 1, . . . ,m. If F is
differentiable at x0, then the limits

∂ fi

∂x j
(x0) = lim

h→0

fi(x1, . . . ,x j−1,x j + h,x j, . . . ,xn)− fi(x1, . . . ,x j−1,x j,x j, . . . ,xn)

h
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exist and are called the partial derivatives of the components fi at x0; ∂ fi
∂x j

(x0) is the

(i,j)th entry of the Jacobian matrix. The row vector

∇ fi(x0) =

(
∂ fi

∂x1
(x0), . . . ,

∂ fi

∂xn
(x0)

)

is the gradient of the function fi. Conversely, it can be shown that if all partial
derivatives exist and are continuous on U , then F is differentiable on U with the
Jacobian matrix given by the matrix whose entries are the partial derivatives. In this
case, we say that F is continuously differentiable on M.

We refer the reader to the textbook [177] for these and other fundamental results
about differentiable functions such as the chain rule and the mean value theorem. We
just note that if a function f : U → R is differentiable at a point x0 ∈U , and v ∈ R

n

is any vector, then by the chain rule, the composition ϕ : (−ε,ε)→ R defined by
ϕ(t) = f (x0+tv) is differentiable at t = 0 with derivative given by ϕ ′(0) =∇ f (x0)v.
This is the directional derivative of the function f in the direction v at x0, also called
the Lie derivative of f along v.

Higher-order derivatives are defined inductively as the derivatives of the map-
pings given by the lower-order derivatives (for example, see [177, Chap. 6]). Our
computations in Chap. 5 make extensive use of these multilinear forms and their
associated multidimensional Taylor expansions. For a scalar function f : M ⊂R

n →
R, these derivatives are easily expressed in coordinates. For example, the quadratic
Taylor expansion reads

f (x0 + h) = f (x0)+
n

∑
i=1

∂ f
∂xi

(x0)hi +
1
2

n

∑
i=1

n

∑
j=1

∂ 2 f
∂xi∂x j

(x0)hih j + · · · ,

and it is clear what the Taylor expansion up to an arbitrary order r will look like. In
vector notation, this becomes

f (x0 + h) = f (x0)+∇ f (x0)h+
1
2
∂ 2 f
∂x2 (x0)(h,h)+ o

(
‖h‖2

)
,

where ∂ 2 f
∂x2 (x0)(h,h) denotes the bilinear form defined by the Hessian matrix of the

second-order partial derivatives of f evaluated at x0 and acting on h. For a vector-
valued function F : M → R

m, we then write this equation componentwise in the
form

F(x0 + h) = F(x0)+DF(x0)h+
1
2

D2F(x0)(h,h)+ o
(
‖h‖2

)
,

with the understanding that D2F(x0)(h,h) denotes the vector whose ith entry is

given by the quadratic forms ∂ 2 fi
∂x2 (x0)(h,h) defined by the ith component fi. Similar

notation can be used for arbitrary orders.
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Definition A.3.2 (Cr). A function F : M → R
m is of class Cr, r ≥ 1, if the first r

derivatives exist and are continuous.

Equivalently, the partial derivatives of all components fi of F up to order r exist
and are continuous functions.

Definition A.3.3 (Cr-Diffeomorphism). Let U and V be open subsets of Rn. The
mapping F : U → V is a Cr-diffeomorphism if F is one-to-one and onto, r-times
continuously differentiable on U , and has an r-times continuously differentiable
inverse F−1 : V →U .

Theorem A.3.1 (Inverse function theorem). Let M be an open subset of Rn and
suppose the mapping F : M→R

n is r-times continuously differentiable (of class Cr)
at a point x0 ∈ M with a nonsingular Jacobian matrix DF(x0). Then there exist a
neighborhood U of x0, U ⊂M, and a neighborhood V of the image point y0 = F(x0)
such that the mapping F : U →V is a Cr-diffeomorphism. �

The implicit function theorem is an equivalent version of the inverse function
theorem in the sense that one follows from the other.

Theorem A.3.2 (Implicit function theorem). Let M⊂R
n×R

m be an open subset
and suppose the mapping F : M → R

m is r-times continuously differentiable (of
class Cr) at a point (x0,y0) ∈ M where F(x0,y0) = 0. If the matrix of the partial
derivatives ∂F

∂y (x0,y0) is nonsingular, then there exist a neighborhood U of x0, a
neighborhood V of y0, and a unique function f : U →V that is r-times continuously
differentiable (of class Cr) on U such that (i) f (x0) = y0 and (ii) F(x,y) = 0 and
(x,y) ∈U×V if and only if y = f (x). In particular, the points on the graph of f are
the only solutions to the equation F(x,y) = 0 that lie in the neighborhood U×V.

The implicit function theorem simply asserts that the equation F(x,y) = 0 can
locally be solved uniquely for y as a function of x, y = f (x), near a point (x0,y0)
where the partial derivatives with respect to y are “nonzero”.

Proof. The proof is an immediate corollary of the inverse function theorem. Define
a mapping

G : Rn×R
m → R

n×R
m, (x,y) �→G(x,y) = (x,F(x,y)).

This mapping has a nonsingular Jacobian at the point (x0,y0), and thus, by the
inverse function theorem, G is a Cr-diffeomorphism near (x0,y0). The inverse G−1

is of the form

G−1 : Rn×R
m → R

n×R
m, (x,y) �→G−1(x,y) = (x,H(x,y)),

with some function H ∈Cr. In particular, F(x,H(x,y))≡ y, and thus f (x) = H(x,0)
provides a solution of class Cr. It follows from the inverse function theorem that this
solution is unique. ��
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A.4 Regular and Singular Values: Sard’s Theorem

Definition A.4.1 (Regular and singular points and values). Let U and V be open
subsets of Rn and let F : U → V be a Crmapping. A point x0 ∈U is called regular
if the Jacobian matrix DF(x0) is nonsingular; it is called singular (or critical) if
DF(x0) is singular. A point y ∈ V is called a regular value if every point x in the
inverse image of y,

F−1 ({y}) = {x ∈U : F(x) = y} ,
is a regular point; y is called singular (or critical) if there exists an x ∈ F−1 ({y})
that is singular.

Definition A.4.2 (Rank of a mapping at a point). For a mapping F : Rn → R
m,

the rank of F at the point x is defined as the rank of the Jacobian matrix DF(x).

Definition A.4.3 (Singular set of a mapping). Let U ⊂ R
n be an open set and let

F : U → R
m be a Cr-mapping. Then the singular set S is the set of all points x ∈U

for which the rank is less than m, the dimension of the image:

S = {x ∈U : rk(DF(x)) < m}.

If m > n, then this is always true, and every point is singular. While Sard’s
theorem below holds in either case, the interesting case is m≤ n. Essentially, Sard’s
theorem states that the image of the singular set is “small.” For a proof of this
result, we highly recommend Milnor’s notes [184], which give a proof based on
an argument of Pontryagin.

Theorem A.4.1 (Sard’s theorem). Let U ⊂R
n be an open set and let F : U →R

m

be a Cr-mapping. Then the image of the singular set S under F, F(S), has Lebesgue
measure 0, μ(F(S)) = 0. �

The basic notions of Lebesgue measure are reviewed in Appendix D. This result
states that for every ε > 0, there exists a sequence of cubes {Qk}k∈N that covers
F(S) such that the volumes of the cubes add up to a number less than ε . Since R

n

can be covered by a countable union of open balls, it follows that the regular values,
the complement of F(S), are everywhere dense in R

m (Brown’s theorem).



Appendix B
Ordinary Differential Equations

The general theory of ordinary differential equations—that is, results about exis-
tence and uniqueness of solutions to ordinary differential equations, ẋ = f (t,x), as
well as the fact that these solutions depend continuously, respectively differentiably,
on initial conditions and parameters—is of fundamental importance in the text and is
used pervasively everywhere. Furthermore, several times in the text (e.g., Sects. 5.3
or 6.3, to mention just a couple of instances), we need to make use of the actual
constructions that establish these theorems. For this reason, we include a proof of
these results under the assumption that the time-varying vector fields f = f (t,x) are
continuous in the time variable t. The equally classical theory for vector fields that
are only Lebesgue measurable in t, to the extent that it is needed in the later chapters
of the book, will be described in Sect. D.4.

B.1 Existence and Uniqueness of Solutions of Ordinary
Differential Equations

Let G be a domain in R×R
n, i.e., an open and connected subset. A mapping f :

G → R
n, (t,x) �→ f (t,x), will be called a time-varying vector field on G. Vector

fields f that have discontinuities arise in syntheses of solutions of optimal control
problems, and there are plenty of examples in the text that illustrate the structure of
solutions for some of these cases. But no general existence results can be valid for
this case, since geometric properties of the vector field at the discontinuities matter.
Here, we always assume that f is continuous on G, and we write f ∈C0,r(G) if for
t fixed, the mapping x �→ f (t,x) is r-times continuously differentiable in x with all
partial derivatives continuous in both variables t and x on G. We call the system
time-invariant or autonomous if the vector field f does not depend on t, and in this
case we simply consider G as a region in the state space R

n and f as a vector field
on G.

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
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Definition B.1.1 (Solution to the initial value problem). Given a point (t0,x0) ∈
G, a continuously differentiable curve x : I → R

n, t �→ x(t), defined on some open
interval I containing t0 is a solution to the initial value problem

ẋ = f (t,x), x(t0) = x0, (B.1)

in G if it satisfies the following three conditions: (i) ẋ(t) = f (t,x(t)) for all t ∈ I, (ii)
x(t0) = x0, and (iii) the graph of x lies in the region G, i.e., (t,x(t)) ∈ G for all t ∈ I.

Theorem B.1.1 (Peano). If f is continuous on G, then every initial value problem
(B.1) has a solution. �

This result gives the most general existence result in the theory of ordinary
differential equations. Essentially, it is proven by an application of the Arzelà–
Ascoli theorem, Corollary A.2.1, to a family of approximating curves that are
generated using a simple Euler scheme,

x(t + h) = x(t)+ h f (t,x(t)).

However, continuity of f does not guarantee uniqueness of solutions. For example,
the autonomous differential equation ẋ= 3

√
x, x(0)= 0, has the trivial solution x(t)≡

0, but also x(t) =
√(

2
3 t
)3

is a solution. Thus

xτ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0≤ t ≤ τ,√(
2
3
(t− τ)

)3

for t > τ,

defines a 1-parameter family of solutions. From a practical point of view, uniqueness
of solutions is as important as existence (if not more so, in engineering problems)
and here we therefore develop the classical theory that guarantees both existence and
uniqueness of solutions. The extra requirement that gives uniqueness of solutions is
the Lipschitz condition.

Definition B.1.2 (Lipschitz condition). Let f : G → R
n, (t,x) �→ f (t,x), be a

continuous time-varying vector field on a domain G. We say that f satisfies a
Lipschitz condition in x on a subset U of G if there exists a constant L, the Lipschitz
constant, such that for all points (t,x) and (t,y) that lie in G, we have that

‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖ .

We say that f is Lipschitz continuous in x on G if every point (t,x) ∈ G has a
neighborhood U such that f satisfies a Lipschitz condition in x on U .

Since the state space is finite-dimensional, all norms are equivalent, and there
is no need to specify the norm in the definition. But note that the numerical value
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of the Lipschitz constant L very much depends on the norm that is being used. As
an example, any norm ‖·‖ : V → R on a normed vector space V satisfies a global
Lipschitz condition with Lipschitz constant L = 1. This simply is the statement of
the identity |‖x‖−‖y‖| ≤ ‖x− y‖.
Lemma B.1.1. Suppose f : G → R

n, (t,x) �→ f (t,x), is bounded and Lipschitz
continuous in x. Then for every compact subset K ⊂ G there exists a Lipschitz
constant L = L(K) such that

‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖ for all (t,x) ∈ G and (t,y) ∈ K.

In particular, the function f satisfies a Lipschitz condition in x on K.

Proof. Let K be a compact subset of G. Since f is Lipschitz continuous in x, for
every point (t̃, x̃)∈K there exist a neighborhood Ñ, which without loss of generality
we may take in the form Ñ = (t̃− ε, t̃ + ε)×Bε(x̃) for some ε > 0, and a constant L̃
such that for all (t,x) and (t,y) in Ñ we have that

‖ f (t,x)− f (t,y)‖ ≤ L̃‖x− y‖ . (B.2)

Let N = (t̃− ε, t̃ + ε)×B ε
2
(x̃). Then, for (t,x) /∈ Ñ and (t,y) ∈ N, the norm ‖x− y‖

is bounded away from zero, ‖x− y‖ ≥ ε
2 , and since the function f is bounded, it

follows that for some finite constant C we have that

‖ f (t,x)− f (t,y)‖
‖x− y‖ ≤C < ∞ for all (t,x) /∈ Ñ and (t,y) ∈ N.

For (t,x)∈ Ñ, the bound (B.2) is valid by the Lipschitz condition. Thus by increasing
the Lipschitz constant L̃ if necessary, we therefore have that

‖ f (t,x)− f (t,y)‖ ≤ L̃‖x− y‖ for all (t,x) ∈ G and (t,y) ∈ N.

Since K is compact, we can cover K with a finite number of neighborhoods of type
N, and choosing L as the largest of the corresponding Lipschitz constants, we get
that

‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖ for all (t,x) ∈ G and (t,y) ∈ K.

��
Lemma B.1.2. Suppose f ∈C0,1(G) (i.e., f is continuous and continuously differ-
entiable in x with the partial derivatives continuous in both variables (t,x)). Then f
is Lipschitz continuous in x on G.

Proof. It suffices to prove the result for the Euclidean norm ‖·‖2. Given (t̃, x̃) ∈ G,
choose ε > 0 small enough that Ñ = (t̃− ε, t̃ + ε)×Bε(x̃)⊂G has compact closure
in G. Suppose (t,x) and (t,y) are points in Ñ and, without loss of generality, assume
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that f (t,x) = f (t,y). Otherwise, any kind of Lipschitz condition is trivially valid for
these two points. Define the function

ϕ : [0,1]→R, s �→ ϕ(s) =
〈

f (t,x)− f (t,y)
‖ f (t,x)− f (t,y)‖2

, f (t,sx+(1− s)y)

〉
,

where 〈·, ·〉 denotes the standard inner product on R
n. This function is continuously

differentiable, and by the mean value theorem, there exists a point s∗ ∈ (0,1) such
that

‖ f (t,x)− f (t,y)‖2 = ϕ(1)−ϕ(0) = ϕ ′(s∗)

=

〈
f (t,x)− f (t,y)

‖ f (t,x)− f (t,y)‖2
,
∂ f
∂x

(t,s∗x+(1− s∗)y)(x− y)

〉
.

By the Cauchy–Schwarz inequality, we therefore have that

‖ f (t,x)− f (t,y)‖2 ≤
∥∥∥∥∂ f
∂x

(t,s∗x+(1− s∗)y)(x− y)

∥∥∥∥
2

≤ lub2

(
∂ f
∂x

(t,s∗x+(1− s∗)y)
)
‖x− y‖2

≤
[

max
(t,z)∈Ñ

lub2

(
∂ f
∂x

(t,z)

)]
‖x− y‖2 .

Here lub2(A) denotes the least upper bound, or operator matrix norm associated
with the Euclidean vector norm, i.e.,

lub2(A) = max
‖x‖2=1

‖Ax‖2 =
√
λmax(AT A),

the square root of the largest eigenvalue of the positive semidefinite matrix AT A.
Since the partial derivatives ∂ f

∂x are continuous in G, it follows that the largest

eigenvalue of the matrix
(
∂ f
∂x (t,z)

)T (
∂ f
∂x (t,z)

)
for (t,z) in the compact closure of

Ñ is finite, and thus f satisfies a Lipschitz condition in x on the neighborhood Ñ. ��
Theorem B.1.2 (Existence and uniqueness of solutions). Let G ⊂ R× R

n be
a domain and suppose f : G → R

n, (t,x) �→ f (t,x), is continuous and Lipschitz
continuous in x on G. Then for every (t0,x0) ∈ G, there exists a unique solution
x = x(t; t0,x0) to the initial value problem

ẋ = f (t,x), x(t0) = x0, (t,x) ∈G, (B.3)
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defined on a maximal interval (t−(t0,x0), t+(t0,x0)) of definition (i.e., it is not
possible to extend the solution beyond any of these times without leaving the
domain G).

We develop the proof in a series of lemmas. The existence of local solutions
directly follows from the Picard–Lindelöf iteration given below.

Lemma B.1.3 (Picard–Lindelöf iteration). WithDβ (x0) = {x ∈R
n : ‖x− x0‖∞ ≤

β}, let K=K(α,β )=[t0−α, t0+α]×Dβ (x0)⊂G. If for M= max(t,x)∈K ‖ f (t,x)‖∞,
we have that αM ≤ β , then Eq. (B.3) has a solution x that is defined over the full
interval [t0−α, t0 +α] and takes values in Dβ (x0), x : [t0−α, t0 +α]→Dβ (x0).

Proof. Inductively define a sequence of functions {xn}n∈N as x0(t)≡ x0 and

xn+1(t) = x0 +

∫ t

t0
f (s,xn(s))ds.

We claim that all functions are defined over the full interval [t0−α, t0 +α] and
have values in Dβ (x0). Let L be a Lipschitz constant for the function f in x over
the compact set K in the supremum norm ‖·‖∞. We show inductively that for all
t ∈ [t0−α, t0 +α],

‖xn(t)− x0‖∞ ≤ β and ‖xn+1(t)− xn(t)‖∞ ≤MLn |t− t0|n+1

(n+ 1)!
. (B.4)

For n = 0, the first assertion is trivial, and we have that

‖x1(t)− x0‖∞ =

∥∥∥∥
∫ t

t0
f (s,x0)ds

∥∥∥∥
∞
≤

∣∣∣∣
∫ t

t0
‖ f (s,x0)‖∞ ds

∣∣∣∣= M |t− t0| .

Thus assume inductively that both assertions hold for n. We then have, as above,

‖xn+1(t)− x0‖∞ =

∥∥∥∥
∫ t

t0
f (s,xn(s))ds

∥∥∥∥
∞
≤

∣∣∣∣
∫ t

t0
‖ f (s,xn(s))‖∞ ds

∣∣∣∣
≤M |t− t0| ≤ αM ≤ β

and thus the function xn+1 takes values in Dβ (x0) for all t ∈ [t0 − α, t0 + α].
Furthermore, we can estimate the difference as

‖xn+1(t)− xn(t)‖∞ =

∥∥∥∥
∫ t

t0
f (s,xn(s))− f (s,xn−1(s))ds

∥∥∥∥
∞

≤
∣∣∣∣
∫ t

t0
‖ f (s,xn(s))− f (s,xn−1(s))‖∞ ds

∣∣∣∣
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≤
∣∣∣∣
∫ t

t0
L‖xn(s)− xn−1(s)‖∞ ds

∣∣∣∣

≤
∣∣∣∣
∫ t

t0
L ·MLn−1 |s− t0|n

n!
ds

∣∣∣∣ = MLn |t− t0|n+1

(n+ 1)!
,

establishing Eq. (B.4) for all n ∈ N.
It follows from Weierstrass’s criterion (see Appendix A) that the sequence

{xn}n∈N converges uniformly on the interval [t0−α, t0 +α] to some limit x and
that x itself is a continuous function with values in Dβ (x0). Since

‖ f (s,xn(s))− f (s,x(s))‖∞ ≤ L‖xn(t)− x(t)‖∞ ,

also f (t,xn(t)) converges to f (t,x(t)) uniformly on [t0−α, t0 +α] and therefore

x0 +

∫ t

t0
f (s,xn(s))ds→ x0 +

∫ t

t0
f (s,x(s))ds

uniformly on [t0−α, t0 +α]. In the limit n→ ∞, we therefore have that

x(t) = x0 +

∫ t

t0
f (s,x(s))ds,

and thus x is a solution to Eq. (B.3) on the interval [t0−α, t0 +α]. ��
This lemma immediately implies the existence of a local solution: given (t0,x0),

simply take any compact set K(ε,β ) = [t0− ε, t0 + ε]×Dβ (x0) that lies in G and
let M be the maximum of the continuous function ‖ f (t,x)‖∞ over the compact set

K(ε,β ). Then choose α = min{ε, βM}, and the condition αM ≤ β is automatically
satisfied. Note that this lemma actually establishes a generally useful relation
between the size of the interval over which a solution is guaranteed to exist and
the size of the norm of the dynamics.

We next show that this solution is unique in the set K. Suppose y is another
solution to Eq. (B.3) defined on some interval I ⊂ [t0−α, t0 +α] and with values
in Dβ (x0) for all t ∈ I. Define Δ(t) = ‖x(t)− y(t)‖∞, so that Δ(t0) = 0. Since the
graphs of both x and y lie in G, as above we have for all t ∈ I that

Δ(t) =
∥∥∥∥
∫ t

t0
f (s,x(s))− f (s,y(s))ds

∥∥∥∥
∞

≤
∣∣∣∣
∫ t

t0
‖ f (s,x(s))− f (s,y(s))‖∞ ds

∣∣∣∣
≤

∣∣∣∣
∫ t

t0
L‖x(s)− y(s)‖∞ ds

∣∣∣∣= L

∣∣∣∣
∫ t

t0
Δ(s)ds

∣∣∣∣ .
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But by the Gronwall–Bellman inequality below, this relation implies that Δ must be
identically zero on the interval I, and this in turn implies that I = [t0−α, t0 +α].
Proposition B.1.1 (Gronwall–Bellman inequality). Suppose λ and μ are con-
tinuous functions on the compact interval [a,b] and μ is nonnegative. If Δ is a
continuous function that satisfies

Δ(t)≤ λ (t)+
∫ t

a
μ(s)Δ(s)ds for all t ∈ [a,b], (B.5)

then

Δ(t)≤ λ (t)+
∫ t

a
λ (s)μ(s)exp

(∫ t

s
μ(r)dr

)
ds for all t ∈ [a,b]. (B.6)

Inequality Eq. (B.6) gives an a priori estimate for Δ in terms of the functions λ
and μ . In our application, we have λ ≡ 0 and thus Δ(t) ≤ 0 for all t ≥ t0, which
gives Δ(t) ≡ 0 on this interval. A version of the Gronwall–Bellman inequality that
reverses the direction of time and fixes Δ(b) = 0 (which we leave for the reader to
formulate), then gives Δ(t) ≡ 0 on I as claimed and establishes the uniqueness of
the solution in K.

Proof. Set

ς(t) =
∫ t

a
μ(s)Δ(s)ds and v(t) = λ (t)+ ς(t)−Δ(t)≥ 0.

Then ς satisfies the first-order ordinary differential equation

ς̇ = μΔ = μς + μ (λ − v)

with initial condition ς(a) = 0. Hence

ς(t) =
∫ t

a
exp

(∫ t

s
μ(r)dr

)
μ(s) [λ (s)− v(s)]ds

≤
∫ t

a
exp

(∫ t

s
μ(r)dr

)
μ(s)λ (s)ds.

Substituting this inequality into Eq. (B.5) gives the desired inequality. ��
Corollary B.1.1. If λ (t) is constant, λ (t)≡ λ , then

Δ(t)≤ λ exp

(∫ t

a
μ(s)ds

)
for all t ∈ [a,b]. (B.7)
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Proof. In this case

∫ t

a
exp

(∫ t

s
μ(r)dr

)
μ(s)ds =−

∫ t

a

d
ds

[
exp

(∫ t

s
μ(r)dr

)]
ds

= −exp

(∫ t

s
μ(r)dr

)∣∣∣∣
t

a
= exp

(∫ t

a
μ(r)dr

)
− 1,

which gives the simplified inequality. ��
Corollary B.1.2. If both λ and μ are constant, λ (t) ≡ λ and μ(t) ≡ μ ≥ 0, then
Δ(t)≤ λ exp(μ(t− a)). �

It remains to show that the solution x = x(t;t0,x0) exists and lies in the domain
G over a maximal open interval (t−(t0,x0), t+(t0,x0)). If x is a solution to the initial
value problem (B.3) in G defined over some interval I, and if y is another solution to
the initial value problem (B.3) in G defined over some interval J, then it follows from
the local uniqueness of solutions just established that x(t) = y(t) for all t ∈ I∩J. This
allows us to define a solution z to (B.3) on the interval I ∪ J by concatenating the
two solutions as

z(t) =

{
x(t) if t ∈ I,

y(t) if t ∈ J.

In this way, we can construct a solution on a maximal interval (t−(t0,x0), t+(t0,x0)).
This interval is open, since otherwise, the point (t±(t0,x0),x(t±(t0,x0))) would lie in
G and thus, by Lemma B.1.3, the solution could be extended further.This concludes
the proof of Theorem B.1.2. �

We close this section with a useful criterion for when the solution to a differential
equation exists on the full interval.

Definition B.1.3 (Linearly bounded). Let G = [a,b]×R
n; we say that a function

f : (a,b)×R
n → R

n, (t,x) �→ f (t,x), is linearly bounded over the interval [a,b] if
there exist constants μ and ϕ such that

‖ f (t,x)‖ ≤ μ ‖x‖+ϕ for all t ∈ [a,b].

Proposition B.1.2. Let G = [a,b]×R
n and suppose f : [a,b]×R

n → R
n, (t,x) �→

f (t,x), is continuous, Lipschitz continuous in x, and linearly bounded over [a,b].
Then for every (t0,x0) ∈ G, the solution x = x(t;t0,x0) exists on the full interval
[a,b].

Proof. Since all norms on R
n are equivalent, we may use the ∞-norm. Given

(t0,x0)∈G, let α = 1
2μ > 0 and β = ‖x0‖+ ϕ

μ . Without loss of generality, we assume
that the full interval [t0−α, t0 +α] lies in [a,b]. (Otherwise limit the interval at the
left or right endpoint, respectively.) Thus K = [t0−α, t0 +α]×Dβ (x0)⊂ G and for
all (t,x) ∈ K we have that
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M = max
(t,x)∈K

‖ f (t,x)‖ ≤ μ ‖x‖+ϕ ≤ μ (‖x0‖+β )+ϕ .

Hence

αM ≤ 1
2μ

[μ (‖x0‖+β )+ϕ ] = 1
2μ

[
μ
(

2‖x0‖+ ϕ
μ

)
+ϕ

]
= β .

By Lemma B.1.3, the solution x to the initial value problem with initial condition
x(t0) = x0 therefore exists on the full interval [t0 − α, t0 + α]. Thus, regardless
of where the actual initial condition (t0,x0) ∈ G lies, the solution can always be
continued for an interval of length 1

μ > 0 to the left and the right until the boundary
points a and b are reached. Thus solutions can be continued onto the full interval
[a,b]. ��

The following important special cases are immediate corollaries:

Corollary B.1.3. Let G = [a,b]×R
n and suppose f : [a,b]×R

n → R
n, (t,x) �→

f (t,x) = A(t)x+ b(t), where A and b are continuous functions on [a,b]. Then for
any initial condition (t0,x0)∈G the solution x = x(t; t0,x0) exists on the full interval
[a,b]. �
Corollary B.1.4. Let G =R

n and suppose f : Rn →R
n, x �→ f (x) is bounded. Then

the solution x = x(t;x0) of the time-invariant system ẋ = f (x) exists for all times
t ∈ R. �

B.2 Dependence of Solutions on Initial Conditions
and Parameters

Let G be a domain in R×R
n×R

k and let f : G→R
n, (t,x, p) �→ f (t,x; p), be a time-

varying vector field that depends on a k-dimensional parameter p. Throughout this
section, we assume that f is continuous and Lipschitz continuous in (x, p). It thus
follows from the general theorem on existence of solutions that for each (t0,x0, p0),
the initial value problem

ẋ = f (t,x; p0), x(t0) = x0, (t,x, p) ∈ G, (B.8)

has a unique solution x = x(t;t0,x0, p0) defined on a maximal intervalv

I(t0,x0, p0) = (t±(t0,x0, p0),x(t±(t0,x0, p0))).

(Simply add the trivial differential equation ṗ = 0 to the system.) The set

D = {(t;t0,x0, p0) : t ∈ I(t0,x0, p0), (t0,x0, p0) ∈ G} (B.9)

is called the domain of the general solution x = x(t; t0,x0, p0).
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Theorem B.2.1. Let G be a domain in R×R
n×R

k and suppose the parameter-
dependent, time-varying vector field f : G→R

n, (t,x, p) �→ f (t,x; p), is continuous
and Lipschitz continuous in (x, p) on G. Then D is open, and the general solution
x = x(t; t0,x0, p0) is a Lipschitz continuous function of all variables on D.

Proof. Without loss of generality, we again use the supremum norm throughout our
calculations. The solution x is a continuously differentiable function in t, and thus,
by Lemma B.1.2, it is Lipschitz continuous in t. We therefore consider only the
remaining variables (t0,x0, p0) ∈ G. Fix (t0,x0, p0) and denote the corresponding
solution by x(t); let (s0,y0,q0) be another point from G and denote the correspond-
ing solution by y(t). Without loss of generality, consider a time t > t0 and let [a,b]
be a compact interval contained in I(t0,x0, p0) such that [t0, t] ⊂ (a,b)⊂ [a,b]. Let
Dε(p0) = {p ∈ R

k : ‖p− p0‖ ≤ ε} be the closed disk and let Uε be the tubular
neighborhood

Uε = {(t,x) ∈ [a,b]×R
n : ‖x− x(t)‖ ≤ ε} .

For ε sufficiently small, the compact set Uε ×Dε(p0) lies in G, and the function f
satisfies a global Lipschitz condition in (x, p) on Uε ×Dε(p0) with some Lipschitz
constant L,

‖ f (t,x, p)− f (t,y,q)‖ ≤ L(‖x− y‖+ ‖p− q‖) .

Also, let M be an upper bound for ‖ f (t,x, p)‖ on this set Uε×Dε(p0). We show that
there exists a positive δ = δ (ε) such that whenever

‖(s0,y0,q0)− (t0,x0, p0)‖< δ ,

then the solution y = y(t) exists on the interval [a,b], lies in Uε , and satisfies a
Lipschitz condition in all variables. This will prove the theorem.

For δ small enough, we have that

‖y0− x(s0)‖=
∥∥∥∥y0− x0 +

∫ s0

t0
f (r,x(r), p0)dr

∥∥∥∥≤ ‖y0− x0‖+M |s0− t0|< ε,

and thus there exists a closed interval J = [α,β ] that contains s0 in its interior for
which the graph of the solution y = y(t;s0,y0,q0) lies in the neighborhood Uε of
the graph of x. Using the Gronwall–Bellman inequality, it follows that this interval
actually is [a,b], provided δ is small enough. This is because for all t ∈ [α,β ] we
have that
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‖y(t)− x(t)‖=
∥∥∥∥y0 +

∫ t

s0

f (r,y(r),q0)dr− x0 +
∫ t

t0
f (r,x(r), p0)dr

∥∥∥∥
=

∥∥∥∥y0− x(s0)+

∫ t

s0

f (r,y(r),q0)− f (r,x(r), p0)dr

∥∥∥∥
≤ ‖y0− x0‖+M |s0− t0|+

∣∣∣∣
∫ t

s0

‖ f (r,y(r),q0)− f (r,x(r), p0)‖dr

∣∣∣∣
≤ ‖y0− x0‖+M |s0− t0|+L

∣∣∣∣
∫ t

s0

‖y(r)− x(r)‖+ ‖q0− p0‖dr

∣∣∣∣
= ‖y0− x0‖+M |s0− t0|+L(b− a)‖q0− p0‖

+L

∣∣∣∣
∫ t

s0

‖y(r)− x(r)‖dr

∣∣∣∣ .

The absolute values in this derivation are included, since possibly t < s0. But then it
follows from the Gronwall–Bellman inequality (Corollary B.1.2) that

‖y(t)− x(t)‖ ≤ (‖y0− x0‖+M |s0− t0|+L(b− a)‖q0− p0‖)exp(L(b− a)).

Thus, the difference of the solutions satisfies a Lipschitz condition in the variables
(t0,x0, p0) as long as t ∈ [α,β ]. By choosing δ small enough, we can guarantee that
the right-hand side in the last inequality is arbitrarily small as well, and thus we
can always get that ‖y(t)− x(t)‖ ≤ ε on the full interval [a,b]. Thus y exists for all
t ∈ [a,b] and its graph lies in Uε .

Finally, the same computation as was carried out above, but for two arbitrary
solutions, verifies that the general solution x = x(t; t0,x0, p0) satisfies a Lipschitz
condition in the variables (t0,x0, p0) on the set [a,b]×Uε ×Dε(p0) and thus is
Lipschitz continuous in these variables. ��

Not only do Lipschitz properties propagate from the dynamics to the solutions,
but so do differentiability properties. For the case of a C1-vector field, this leads to
the so-called variational or sensitivity equations that are of fundamental importance
and are an essential tool in the calculus of variations and optimal control theory.

Theorem B.2.2. Let G be a domain in R×R
n×R

k and suppose the parameter-
dependent, time-varying vector field f : G→R

n, (t,x, p) �→ f (t,x; p), is continuous
and continuously differentiable in (x, p) on G. Then the general solution x =
x(t; t0,x0, p0) to the initial value problem (B.8) is continuously differentiable in all
variables, and the partial derivatives can be computed as solutions to the linear
differential equations that are obtained by formally interchanging differentiation
with respect to the variables (t0,x0, p0) and t. Thus,



590 Appendix B

1. the partial derivative with respect to the initial condition x0,

Y (t;t0,x0, p0) =
∂x
∂x0

(t;t0,x0, p0) ∈ R
n×n,

is the so-called fundamental solution of the variational equation, i.e., it satisfies

Ẏ =
∂ f
∂x

(t,x(t;t0,x0, p0), p0)Y, Y (t0) = Id; (B.10)

2. the partial derivative with respect to the initial time t0,

y(t;t0,x0, p0) =
∂x
∂ t0

(t;t0,x0, p0) ∈R
n,

is the solution of the homogeneous initial value problem

ẏ =
∂ f
∂x

(t,x(t;t0,x0, p0), p0)y, y(t0) =− f (t0,x0, p0); (B.11)

3. the partial derivative with respect to the parameter p0,

S(t;t0,x0, p0) =
∂x
∂ p0

(t;t0,x0, p0) ∈R
n×k,

is the solution of the inhomogeneous initial value problem

Ṡ =
∂ f
∂x

(t,x(t; t0,x0, p0), p0)S+
∂ f
∂ p

(t,x(t;t0,x0, p0), p0), S(t0) = 0; (B.12)

Note that all these differential equations are formally obtained from the identities

ẋ(t; t0,x0, p) = f (t,x(t;t0,x0, p), p), x(t0; t0,x0)≡ x0,

by differentiating with respect to the variables t0, x0, and p, respectively, and
interchanging the order of derivatives with t. While this is a simple way of
remembering these equations, the proof nevertheless needs to justify this procedure.

Proof. The proofs for these cases are analogous, and we consider only

Y (t;t0,x0, p0) =
∂x
∂x0

(t;t0,x0, p0).

Equation (B.10) is a homogeneous linear matrix differential equation, and it thus
follows from Corollary B.1.3 that it has a well-defined solution Y (t; t0,x0, p0) over
the full maximal interval of definition I(t0,x0, p0) of the solution x = x(t; t0,x0, p0).
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It suffices to consider directional derivatives, and we shall show that for any vector
h ∈ R

n, we have that

lim
ε→0

1
ε
(x(t;t0,x0 + εh, p0)− x(t;t0,x0, p0)) = Y (t; t0,x0, p0)h.

Let

Δ(t,ε) =
1
ε
(x(t;t0,x0 + εh, p0)− x(t;t0,x0, p0))−Y(t; t0,x0, p0)h,

dropping from now on the variables t0 and p0, which are held constant in the
notation. Let [a,b] be a compact subinterval of I(x0) and let ε0 be a sufficiently small
positive number. By Theorem B.2.1, the general solution x = x(t;x0) is Lipschitz
continuous, and it thus follows that Δ(t,ε) is continuous and bounded on the set

{(t,ε) : a≤ t ≤ b,0 < ε ≤ ε0}.

As a function of t, Δ(·,ε) is continuously differentiable, and it follows from Taylor’s
theorem that it satisfies a linear differential equation of the form

Δ̇ (t,ε) =
1
ε
( f (t;x(t,x0 + εh))− f (t;x(t,x0))− ∂ f

∂x
(t,x(t;x0))Y (t;x0)h

=
∂ f
∂x

(t,x(t;x0))Δ(t,ε)+ r(t,ε),

where the remainder term r(t,ε) satisfies limε→0 r(t,ε) = 0, uniformly over the
interval [a,b]. Furthermore,

Δ(t0,ε) =
1
ε
(x0 + εh− x0)− h = 0.

Since Y (·;x0) is the solution of the initial value problem (B.10), it follows from the
variation of constants formula for linear differential equations that

Δ(t,ε) = Y (t;x0)

(
0+

∫ t

t0
Y (s;x0)

−1r(s,ε)ds

)
,

and thus

lim
ε→0

Δ(t,ε) = Y (t;x0)

∫ t

t0
Y (s;x0)

−1
(

lim
ε→0

r(s,ε)
)

ds = 0.

Hence, for every vector h, the directional derivative of x0 → x(t,x0) in the direction
of h is given by Y (t;x0)h. This proves that x(t,x0) is differentiable in x0 with
derivative Y (t;x0). ��



Appendix C
An Introduction to Differentiable Manifolds

We give a brief introduction to manifolds and some of the language of differ-
ential geometry that provides the framework for nonlinear control theory. After
introducing the fundamental concepts and giving some examples, we discuss those
concepts and tools that we need in this text, especially in Chap. 4 in the proof of the
maximum principle and Chap. 7 in the construction of small-time reachable sets.
We forgo generality for a more intuitive approach that makes the connection with
advanced calculus. This indeed is the context within which we almost exclusively
deal with manifolds in this text. For more general expositions, we refer the reader
to any textbook on differential geometry, e.g., [38,102,256]. We highly recommend
Milnor’s notes [184] and Boothby’s text [50] to the novice on the subject.

C.1 Embedded Submanifolds of Rk

Historically, the concept of a manifold was abstracted from the notions of curves and
surfaces in R

3, and many of the general ideas and concepts of differential geometry
are best visualized in this context. We therefore start with embedded submanifolds
in R

k.

Definition C.1.1 (d-dimensional Cr-embedded submanifold of Rk). A subset M
of Rk is said to be a d-dimensional Cr-embedded submanifold of Rk if for every
point p ∈M there exist a neighborhood V of p in R

k and an r-times continuously
differentiable mapping F : V → R

� into R
� for some � ∈ N that is of rank k− d

everywhere on V and is such that

M∩V = F−1(0) = {x ∈V ⊂ R
k : F(x) = 0}.

Recall that a mapping F is of rank r at a point p if the Jacobian matrix DF(p)
has rank r. Intuitively, embedded submanifolds are curves, surfaces, etc. in R

k that
locally have a rather simple structure. In order to see this, reorder the coordinates
xi so that the partial derivatives of F with respect to the variables x1, . . . ,xk−d are

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
DOI 10.1007/978-1-4614-3834-2, © Springer Science+Business Media, LLC 2012
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Fig. C.1 Tangent space to an
embedded submanifold

linearly independent at p. If we partition x into vectors y = (x1, . . . ,xk−d)
T and

m = (xk−d+1, . . . ,xk)
T and write p = (py, pm)

T , then it follows from the implicit
function theorem that there exist a neighborhood W ⊂ V of p of the form W =
Bk−d
ε (py)×Bd

δ (pm) and a Cr-function f : Bd
δ (pm)→ Bk−d

ε (py), m �→ f (m), such that
for all x = (y,m)T ∈W we have that F(x) = 0 if and only if y = f (m). Hence

M∩W = {(y,m) ∈W ⊂ R
k : y = f (m)}.

If we define a new mapping F̃ : Bd
δ (pm)→W , m �→ (m, f (m)), then F̃ is one-to-one,

and it represents the embedded manifold M as the graph of a Cr-function near p.
In control theory, we consider these manifolds, even when they are embedded

in R
k, as stand-alone objects that become models for the state space of a nonlinear

system. This will be appropriate only if the evolution of the system t �→ x(t) occurs
on M. This clearly puts restrictions on the tangent vector to this curve. The set of all
directions that are tangent to M at a point p therefore is of intrinsic importance, and
this leads to the notion of the tangent space to M at p (see Fig. C.1).

Definition C.1.2 (Tangent space to a d-dimensional Cr-embedded submanifold
of Rk at a point). Given a d-dimensional Cr-embedded submanifold M of Rk and a
point p∈M, the tangent space to M at p, TpM, is the set of all vectors v = γ̇(0) ∈R

k

that are the derivatives at time t = 0 of differentiable curves γ , γ : (−ε,ε)→ M,
t �→ γ(t), that satisfy γ(0) = p and lie in M.

Proposition C.1.1. Given a d-dimensional embedded submanifold M of Rk and a
point p ∈ M, let F : V → R

� be a function that represents M near p (i.e., F has
constant rank k− d and M∩V = F−1(0)). Then the tangent space to M at p, TpM,
is the d-dimensional subspace given by

TpM = {v ∈ R
k : DF(p)v = 0}= kerDF(p).

This space does not depend on the particular function F chosen to represent M
near p.
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Proof. We first note that the definition does not depend on the specific function F
that has been chosen to represent M near p. If F and F̃ are two such functions, then
there exists an open neighborhood V of p in R

k such that

{x ∈V : F(x) = 0}= M∩V = {x ∈V : F̃(x) = 0}.

Hence, if γ : (−ε,ε)→M, t �→ γ(t), γ(0) = p, is any curve that lies in M∩V , then
both F (γ(t)) and F̃ (γ(t)) vanish identically near t = 0 and thus

d
dt |t=0

F(γ(t)) = DF(p)γ̇(0) = 0 =
d
dt |t=0

F̃(γ(t)) = DF̃(p)γ̇(0).

In particular, the tangent space TpM is contained in the kernel of any differentiable
function F that locally represents M. Since both of these subspaces are d-
dimensional, it suffices to verify that TpM contains a subspace of dimension d.
In fact, it is not even clear from our definition that TpM is a subspace to begin
with. But this easily follows if we change from the coordinates x in the ambient
space R

k to the set of coordinates x = (y,m)T introduced above that give a faithful
representation of the set M. The new mapping F̃ : Bd

δ (pm)→W , m �→ (m, f (m)),
represents the embedded manifold M near p as the graph of a Cr-function defined
on R

d . For any vector v ∈ R
d , the image of some small straight line segment

�v : (−ε,ε)→ M, t �→ �v(t) = pm + tv, under F̃ therefore is a curve in M whose
tangent vector lies in TpM. But this image is a d-dimensional subspace, and thus we
have TpM = kerDF(p). ��
Examples:

(1) The n-sphere

Sn = {x = (x0, . . . ,xn)
T ∈ R

n+1 : F(x) = x2
0 + · · ·+ x2

n− 1 = 0}

is an n-dimensional real-analytic embedded submanifold of Rn+1. The gradient
of the function F is given by ∇F(x) = 2xT and is everywhere nonzero on Sn.
The tangent space TpSn is given by

TpSn = {v ∈R
n+1 : 〈v, p〉= 0},

where 〈·, ·〉 denotes the standard inner product on R
n+1. Thus these are all

vectors perpendicular, or normal, to p, the ordinary tangent plane to Sn at p.
(2) The n-dimensional torus T n is the direct product of n circles S1,

T n = S1×·· ·× S1,
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Fig. C.2 The two-dimensional sphere S2 and torus T 2

and can be embedded into R
2n by means of the equation

T n = {x ∈ R
2n : F(x) = (x2

1 + x2
2− 1, . . . ,x2

2n−1 + x2
2n− 1) = 0}.

The Jacobian DF(x),

DF(x) =

⎛
⎜⎜⎜⎝

2x1 2x2 0 0 · · · · · · 0 0
0 0 2x3 2x4 · · · · · · 0 0
...

...
...

...
. . .

. . .
...

...
0 0 0 0 · · · · · · 2x2n−1 2x2n

⎞
⎟⎟⎟⎠ ,

is of rank n everywhere on the torus, and thus T n is an n-dimensional real-
analytic embedded submanifold of R2n. Figure C.2 shows the more common
embedding of the 2-torus into R

3 given by

F : S1× S1 → R
3, (θ ,φ) �→ ((2+ cosθ )cosφ ,(2+ cosθ )sinφ ,sinθ ).

The n-dimensional torus T n also is a group. A group G is an algebraic structure
consisting of elements g together with an associative operation ◦ : G×G→ G,
(a,b) �→ a ◦ b, called “multiplication” for which there exists a neutral element
e, e◦a = a = a◦e for all a∈G, and such that every element a ∈G is invertible,
i.e., there exists a (unique) element in the group, called the inverse of a and
denoted by a−1, such that a ◦ a−1 = e = a−1 ◦ a. The circle S1 can be identified
with the complex numbers of absolute value 1, S1 � {z ∈ C : |z| = 1}, and
ordinary multiplication becomes the operation ◦ in the group with the inverse
given by z−1 = 1

z . Both multiplication and taking the inverse are defined in terms
of analytic operations. More generally, real-analytic manifolds that are groups
and for which the operation G×G→ G, (a,b) �→ a ◦ b−1, also is real-analytic,
are called Lie groups.
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(3) Common examples of Lie groups are given by the so-called matrix groups.
Consider a matrix A ∈ R

n×n as an element of Rn2
with the matrix entries as

the coordinates. It is trivial from the definition that open subsets of R
k are

k-dimensional embedded submanifolds of R
k (simply take F as the identity

map). Thus the set of nonsingular matrices,

GL(n) = {A ∈ R
n×n : det(A) = 0},

is an n2-dimensional analytic submanifold of R
n2

, called the general linear
group. (Here the group operations are matrix multiplication and taking the
inverse. The representation of the inverse of a matrix in terms of its classical
adjoint shows that these operations are real-analytic functions of the matrix
entries.) Since det(AB) = det(A)det(B), the set

SL(n) = {A ∈ R
n×n : det(A) = 1}

is a subgroup, the special linear group, and it also is an n2-dimensional analytic
submanifold of Rn2

: if we take F(A) = det(A)−1, then the partial derivative of
F with respect to the element ai j is given by its (i, j) minor,

∂F
∂ai j

(A) = ∑
π∈Sn:π(i)= j

sgnπ ·a1,π(1) · · ·ai−1,π(i−1)ai+1,π(i+1) · · ·an,π(n),

and not all of these minors vanish if A is nonsingular.
(4) A more interesting example of a subgroup is the orthogonal group O(n) of all

orthogonal matrices,

O(n) = {A ∈ R
n×n : AAT = Id}.

In this case, F : Rn2 → R
n2

, F(A) = AAT − Id. For any other matrix H ∈ R
n×n,

we have that

F(A+H) = AAT − Id+
(
AHT +HAT)+HHT .

Thus H lies in the kernel of DF(A) if and only if AHT +HAT = 0, i.e., if and
only if AHT is skew-symmetric. Writing S = HAT , we therefore have that

kerDF(A) = {H ∈R
n×n : H = SA, where S+ ST = 0}.

The vector space of skew-symmetric n× n matrices has dimension 1
2 n(n− 1)

(all diagonal entries must be 0 and s ji = −si j), and thus the rank of DF(A) is
constant, given by 1

2 n(n− 1). Hence the orthogonal group O(n) is a 1
2 n(n− 1)-

dimensional embedded analytic submanifold of Rn2
, and its tangent space can



598 Appendix C

be identified with the vector space s(n) of all n× n skew-symmetric matrices.
This is the tangent space at the identity, Id ∈ O(n), and the tangent space
TA O(n) can be obtained simply by multiplying these matrices by A. Note that
the commutator of skew-symmetric matrices again is skew-symmetric:

(RS− SR)T = ST RT −RT ST = (−S)(−R)− (−R)(−S)=−(RS− SR).

Thus, s(n) is a Lie algebra of matrices. A Lie algebra over R is a real vector
space G together with a bilinear operator [·, ·] : G×G→G such that for all X ,
Y , and Z ∈G we have that [X ,Y ] =−[Y,X ] and

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

The last identity is called the Jacobi-identity. It can be rewritten in the form

[X , [Y,Z]] = [[X ,Y ],Z]+ [Y, [X ,Z]],

and if we think of X as “differentiating” the bracket [Y,Z], then this simply
demands that the product rule of differentiation be satisfied. It is true in general
that the tangent space at the identity for arbitrary Lie groups is a Lie algebra.

An embedded d-dimensional manifold M is connected if it is not possible to
write M as the disjoint union of two embedded d-dimensional manifolds. For
example, S0 = {x = R : F(x) = x2− 1 = 0} consists of the two points {−1}
and {+1}, which are zero-dimensional manifolds, and thus is not connected.
It is not too difficult to show that if a manifold M is connected, then it is
also path connected in the sense that for any two points p and q in M, there
exists a Cr-curve γ : [0,1] → M such that γ(0) = p and γ(1) = q (e.g., see
[38, Proposition 1.5.2]). The orthogonal group also is not connected: The
determinant of orthogonal matrices can be +1 or −1. Along any curve γ that
lies in O(n) the determinant is continuous, and thus it must be constant. Hence
there exist two connected components. The one defined by det(A) = +1 is a
subgroup, and called the special orthogonal group SO(n),

SO(n) = {A ∈ O(n) : det(A) = 1}.

For example, SO(2) consists of all rotation matrices

Aθ =

(
cosθ sinθ
−sinθ cosθ

)
, θ ∈ [0,2π),

and it is clear that this is the same manifold as S1, SO(2)� S1, by means of the
identification θ �→ Aθ .

We close this section with a proof that the tangent space to an embedded
submanifold is a Boltyansky approximating cone. (We refer the reader to Sect. 4.1
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for the definition of a Boltyansky approximating cone.) The small difference to
the definition of the tangent space is that a differentiable mapping is constructed
that uniformly approximates an arbitrary finite collection of tangent vectors. It is
intuitively clear that this can be done. Since this result is of somewhat fundamental
importance in the development of necessary conditions for optimality in Sect. 4.2.4,
we include its proof here. It simply combines the proof of the inverse function
theorem (e.g., see [177, Chap. 7]) with the definition of the tangent space.

Proposition C.1.2. Let F : Rn → R
m, m < n, be a continuously differentiable

mapping and let M = {x ∈ R
n : F(x) = 0}. If the Jacobian matrix DF(q) is of

full rank m at a point q ∈ A, then the tangent space to M at q, TqM = kerDF(q), is
a Boltyansky approximating cone to M at q.

Proof. Given a fixed finite collection of vectors v1, . . . ,vk from C = kerDF(q),
define a linear functional � as � : Rk → R, z �→ �(z) = ∑k

i=1 zivi. For this case, there
is no need to introduce the approximating vectors v′i that are present in Definition
4.1.2, and we simply take v′i = vi. Furthermore, since C is a subspace, i.e., with v∈C
also−v∈C, the approximating map naturally needs to be defined not only on a cube
Qk
δ of nonnegative numbers, but on a full neighborhood Bk

δ (0) of zero,

Ξ : Bk
δ (0)→M, z �→ Ξ(z).

Thus, we need to show that there exist a δ > 0 and a continuous function r = r(z)
defined on Bk

δ (0) that is of order o(‖z‖) as z→ 0 such that Ξ(z) = q+ �(z)+ r(z) ∈
M, i.e.,

F (q+ �(z)+ r(z)) = 0.

This function r is computed by solving the equation F(z) = 0 near q using a quasi-
Newton algorithm [228], and the superlinear convergence of the procedure implies
that r is of the desired order. (If F is twice continuously differentiable, the Newton
algorithm can be used, and then its quadratic convergence implies that the remainder
r = r(z) is actually of order O(‖z‖2) as z→ 0.) We provide the details.

Since the matrix DF(q) is of full rank, there exists a matrix B ∈ R
n×m such

that DF(q)B = Id, the identity matrix in R
m×m. For example, we may simply

take the pseudoinverse B = DF(q)T
(
DF(q)DF(q)T

)−1
. Let K = ‖B‖2 with the

norm the lub-norm induced by the Euclidean norm and choose ε > 0 such that
‖DF(p)−DF(q)‖ ≤ 1

2K whenever p ∈ Bn
ε(q). The function ϕ(z) = F(q+ �(z)) is

continuously differentiable, and it follows from Taylor’s theorem that ϕ(z) is of
order o(‖z‖) as z→ 0. For since F(q) = 0 and DF(q)�(z) = 0, we have that

ϕ(z) = F(q+ �(z)) = F(q)+DF(q)�(z)+ o(‖z‖) = o(‖z‖).

Choose δ > 0 such that both ‖ϕ(z)‖ < ε
4K and ‖�(z)‖ < ε

2 hold for all z ∈ Bk
δ (0).

Then, inductively define a sequence of continuous functions xi : Bk
δ (0)→ Bn

ε(q) as
follows: set x0(z) = q+ �(z) and define
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xi+1(z) = xi(z)−BF(xi(z)) and yi(z) = F(xi(z)). (C.1)

Claim: the functions xi all take values in Bn
ε(q), and for i∈N, the following bounds

are satisfied in the Euclidean norm:

‖yi(z)‖ ≤
(

1
2

)i

‖ϕ(z)‖ and ‖xi+1(z)− xi(z)‖ ≤ K

(
1
2

)i

‖ϕ(z)‖ .

The verification is by induction on i. By definition, y0(z) = F (q+ �(z)) = ϕ(z), and
thus the first inequality holds trivially. Furthermore,

‖x1(z)− x0(z)‖= ‖BF(x0(z))‖ ≤ ‖B‖‖F(q+ �(z))‖= K ‖ϕ(z)‖

and
‖x1(z)− q‖ ≤ ‖x1(z)− x0(z)‖+ ‖�(z)‖ ≤ K ‖ϕ(z)‖+ ‖�(z)‖< ε.

Thus assume inductively that these inequalities hold for all indices less than or equal
to i. In particular, we then have that

‖xi+1(z)−q‖≤‖xi+1(z)−xi(z)‖+‖xi(z)−xi−1(z)‖+ · · ·+‖x1(z)−x0(z)‖+‖�(z)‖

≤ K
i

∑
j=0

(
1
2

) j

‖ϕ(z)‖+ ‖�(z)‖ ≤ ε
4

(
i

∑
j=0

(
1
2

) j
)
+
ε
2
< ε,

and so xi+1(z) ∈ Bn
ε(q). By definition of the sequence, we have that

DF(q)(xi+1(z)− xi(z)) =−DF(q)BF(xi(z)) =−F(xi(z)) =−yi(z),

and thus also (and dropping the argument z)

yi+1 = F(xi+1) = F(xi+1)−F(xi)+ yi = F(xi+1)−F(xi)−DF(q)(xi+1− xi)

=

(∫ 1

0

d
dt

(F(txi+1 +(1− t)xi))dt

)
−DF(q)(xi+1− xi)

=

(∫ 1

0
DF(txi+1 +(1− t)xi)dt−DF(q)

)
(xi+1− xi) .

Since all the points along the line segment from xi to xi+1 lie in Bn
ε(q), it follows

that

‖yi+1‖ ≤
(∫ 1

0
‖DF(txi+1 +(1− t)xi)dt−DF(q)‖dt

)
‖xi+1− xi‖

≤ 1
2K
·K

(
1
2

)i

‖ϕ(z)‖ =
(

1
2

)i+1

‖ϕ(z)‖ .
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This immediately gives

‖xi+2(z)− xi+1(z)‖ = ‖BF(xi+1(z))‖ ≤ K ‖yi+1(z)‖ ≤ K

(
1
2

)i+1

‖ϕ(z)‖ ,

concluding the inductive argument.
These inequalities imply that yi(z) → 0 uniformly on Bk

δ (0). Furthermore,
the sequence {xi(z)}i∈N also converges uniformly to a continuous limit x̄(z) =
limi→∞ xi(z) on Bk

δ (0). By continuity of F , it follows that

0 = lim
i→∞

yi(z) = lim
i→∞

F(xi(z)) = F (x̄(z))

and thus x̄(z) ∈M. Defining r(z) as r(z) = x̄(z)− q− �(z), we obtain F(q+ �(z)+
r(z)) = 0 and

‖r(z)‖ =
∥∥∥∥lim

i→∞
xi(z)− x0(z)

∥∥∥∥=

∥∥∥∥∥lim
i→∞

i

∑
j=0

(
x j(z)− x j−1(z)

)∥∥∥∥∥

≤ lim
i→∞

i

∑
j=1
‖xi(z)− xi−1(z)‖ ≤ lim

i→∞

i

∑
j=1

K

(
1
2

) j−1

‖ϕ(z)‖ ≤ 2K ‖ϕ(z)‖ .

Thus the remainder r = r(z) is of order o(‖z‖) as z→ 0. This concludes the proof.��

C.2 Manifolds: The General Case

Locally, all d-dimensional embedded submanifolds of Rk look alike: by means of
a change of coordinates they can diffeomorphically be represented as the image of
some neighborhood of Rd . This main feature leads to the general definition of a
manifold in which it is no longer assumed that the set lies in some Euclidean space.

We always take M as a second-countable topological space that is Hausdorff. We
briefly recall these definitions. A topological space is a nonempty set Ω together
with a collection of distinguished sets, called open, that contains the empty set /0
and the full space Ω , and is closed under arbitrary unions and finite intersections.
It is said to be second countableif there exists a countable basis B = {Oi}i∈N of
open sets such that every open set can be written as a union of some of the sets
Oi. For example, in R

k, the set of all balls Bε(p) with centers p ∈ Q
n and radius

ε ∈ Q+ is such a collection, and hence R
k is second countable. The topology on

Ω is Hausdorff if whenever p and q are different points in X , then there exist
neighborhoods U of p and V of q that are disjoint, U ∩V = /0. (A neighborhood of a
point p is any set that contains an open set containing p.) A topological space Ω is
said to be locally Euclidean of dimension d if every point p∈Ω has a neighborhood
U that is homeomorphic to some open subset V of R

d . A homeomorphism is a
bijective continuous map that has a continuous inverse. A homeomorphism ϕ from
a neighborhood U in Ω onto a neighborhood V in R

d , ϕ : U → V = ϕ(U) ⊂ R
d ,
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Fig. C.3 The stereographic
projection of the sphere Sn

is called a coordinate chart, and the components z1, . . . ,zd of ϕ are a local set of
coordinates on U . We say that a coordinate chart ϕ : U →V is centered at p ∈U if
ϕ(p) = 0 and V is a neighborhood of 0 ∈ R

d . If ϕ1 : U1 → V1 and ϕ2 : U2 → V2

are two coordinate charts for which U1 and U2 overlap, U1 ∩U2 = /0, then the
composition ψ = ϕ1 ◦ϕ−1

2 ,

ψ = ϕ1 ◦ϕ−1
2 : V1∩V2 →V1∩V2,

describes the change of coordinates in R
d . By construction, this mapping is a

homeomorphism. But ψ is a function between open subsets of Rd , and thus one may
ask whether these changes of coordinates have additional smoothness properties, for
example, differentiability properties. The two coordinate charts ϕ1 and ϕ2 are said
to be Cr-compatible if the change of coordinates ϕ1 ◦ϕ−1

2 is a Cr-diffeomorphism.
Differentiable manifolds are topological manifolds together with a maximal family
of Cr-compatible coordinate charts.

Definition C.2.1 (Cr-atlas). Let M be a d-dimensional locally Euclidean space. A
Cr-atlas consists of an open cover {Uι}ι∈I of M, M = ∪ι∈IUι , together with a Cr-
compatible family {ϕι}ι∈I of coordinate charts ϕι : Uι →Vι ⊂ R

d .

Example: On Sn, let N = (1, . . . ,0,0) and S = (−1, . . . ,0,0) denote the north and
south poles, respectively. The stereographic projections (see Fig. C.3)

ϕ1 : U1 = Sn\{N}→ R
n, z �→ ϕ1(z) =

(z1, . . . ,zn)

1− z0
,

and

ϕ2 : U2 = Sn\{S}→R
n, z �→ ϕ2(z) =

(z1, . . . ,zn)

1+ z0
,

are homeomorphisms, and their composition ϕ1 ◦ ϕ−1
2 is the inversion at the

sphere Sn,

ϕ1 ◦ϕ−1
2 (z) =

z

‖z‖2 ,

i.e., a real-analytic diffeomorphism. Thus these two maps define a Cω -atlas for Sn.
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It is not difficult to see that under the assumption that M is second countable and
Hausdorff, given any Cr-atlas {Uι}ι∈I of M, there exists a unique maximal atlas that
contains all other coordinate charts that are Cr-compatible with the given atlas [50,
Theorem 1.3]. Such a maximal atlas is called a differentiable structure.

Definition C.2.2 (Cr-differentiable manifold). A d-dimensional Cr-differentiable
manifold M is a d-dimensional locally Euclidean space together with a differentiable
structure, i.e., a maximal Cr-atlas {ϕι}ι∈I of coordinate charts ϕι : Uι → Vι ⊂ R

d

that cover M. Thus, whenever Uι and Uκ overlap, then the change of coordinates
ϕι ◦ϕ−1

κ is a Cr-diffeomorphism.

This definition no longer assumes that M is a subset of some Euclidean space Rk.
If M⊂R

k, then M is said to be embedded into R
k if the topology on M is the relative

topology from R
k, i.e., open sets (neighborhoods) U in M are intersections of open

sets (neighborhoods) V of Rk with M, U = V ∩M. All the manifolds considered in
the examples above were embedded in this sense. In general, however, this need not
be the case, even if M is a subset of some R

k. To give examples, we first need to
consider mappings between manifolds. Since coordinate changes in the manifolds
are given by Cr diffeomorphisms, the following definition does not depend on the
specific coordinate chart chosen.

Definition C.2.3 (Cr-mapping). Let M and N be Cr-differentiable manifolds of
dimensions m and n, respectively. A continuous mapping F : M → N is called a
Cr-mapping if for every point p ∈M there exist a coordinate chart (U,ϕ) centered
at p and a coordinate chart (V,ψ) centered at F(p) with F(U) ⊂ V such that the
coordinate representation ψ ◦F ◦ϕ−1 : ϕ(U)→ ψ(V ) is a Cr mapping from R

m

into R
n.

Definition C.2.4 (Cr-immersion, -submersion, -diffeomorphism). Let M and N
be Cr-differentiable manifolds of dimensions m and n, respectively, and let F : M→
N be a Cr-mapping. For a point p∈M, let (U,ϕ) be a coordinate chart centered at p
and let (V,ψ) be a coordinate chart centered at F(p) with F(U)⊂V . The mapping
F is an immersion at p if the Jacobian matrix of the coordinate representation ψ ◦
F ◦ϕ−1 at p is injective (one-to-one), a submersion if it is surjective (onto), and a
diffeomorphism if it is bijective (injective and surjective).

Definition C.2.5 (Cr-immersed and embedded submanifolds). Let M and N be
Cr-differentiable manifolds of dimensions m and n, respectively, and let F : M→ N
be a (globally) injective Cr-immersion. Then Ñ = F(N), endowed with the topology
that makes the mapping F a Cr-diffeomorphism, is an immersed submanifold of N.
If Ñ carries the relative topology from N (open sets Ṽ of Ñ are intersections of open
sets V of N with Ñ, Ṽ = V ∩ Ñ), then Ñ is called an embedded submanifold of N
and F is called an embedding.

Example (Dense line on a torus). Consider the 2-torus T 2 ⊂ R
4 defined above,

and for α ∈ R let Fα be the map Fα : R→T 2, t �→ Fα(t) = (e2π it ,e2πα it). The rank
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Fig. C.4 Embedded (left) versus immersed (right) submanifolds of the two-dimensional torus T 2

is 1 everywhere, and so Fα is an analytic immersion. If α is rational, say α = m
n ,

then this generates a periodic curve on T 2, Fα(n) = Fα(0), and in this case the image
Nα = Fα(R) is an embedded submanifold of T 2. But if α is irrational, the image is
a dense line on T 2, i.e., given a point q∈ T 2 and any neighborhood V of q in T 2, the
intersection Nα ∩V is nonempty. (For a proof, see, for example, [50, p. 86].) In this
case, the topology carried over from R onto Nα does not coincide with the relative
topology from T 2, since in any small neighborhood V of T 2, there exist points from
Nα that are far from each other in the topology of Nα that is carried over from R

(see Fig. C.4).
It is a famous result due to Whitney, the Whitney embedding theorem, that any

d-dimensional manifold M can be embedded into R
2d+1. In these notes, we shall

almost exclusively deal with embedded submanifolds of some R
k.

C.3 Tangent and Cotangent Spaces

We now proceed to the definition of the tangent space at a point p, TpM, for a
general d-dimensionalCr-differentiable manifold M. When M was embedded in R

k,
we could simply lean on the differentiable structure in R

k and differentiate curves to
generate tangent vectors. In the abstract framework formulated above, this no longer
is straightforward, since there is no natural notion of distance on a manifold—when
embedded into R

k, this simply was inherited from the ambient space—and thus also
speed is not well-defined. But the notion of a tangent vector precisely combines
these two concepts—direction and speed [38]. These thus need to be carried over
from R

d onto the manifold by means of coordinate charts. But then changes in the
coordinates must be taken into account, and this leads to (somewhat cumbersome)
definitions of tangent vectors in terms of equivalence classes that involve both
coordinate charts and vectors in R

d . There exist more elegant, abstract ways to
define tangent vectors as derivations on C∞-manifolds (see below), but because of
the associated loss of differentiability, these actually do not work equally well on
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Cr-manifolds if r is finite [38]. Also, we generally prefer the intuitive geometric
over the abstract algebraic approach.

Let M be a d-dimensional Cr-differentiable manifold and let p be a point in M.
Given two coordinate charts (U,ϕ) and (V,ψ) centered at p and two vectors u and
v in R

d , we say that the triples (U,ϕ ,u) and (V,ψ ,v) are equivalent, (U,ϕ ,u) ∼
(V,ψ ,v), if

u = D
(
ϕ ◦ψ−1)(ψ(p))v. (C.2)

That is, if
γ : (−ε,ε)→ R

k, t �→ γ(t),

is a curve in ψ(V ) that passes throughψ(p) with tangent vector v at time t = 0, then
the curve

ζ : (−ε,ε)→R
k, t �→ ζ (t) =

(
ϕ ◦ψ−1 ◦ γ)(t),

defined through the corresponding change of coordinates has tangent vector u at
time t = 0.

Definition C.3.1 (Tangent space of M at p, TpM). A tangent vector to M at p
consists of an equivalence class under the equivalence relation (U,ϕ ,u)∼ (V,ψ ,v),
and the tangent space to M at p, TpM, is the set of all equivalence classes.

Proposition C.3.1. TpM is a d-dimensional vector space.

Proof. Arbitrarily select a “distinguished” coordinate chart (U,ϕ) centered at p.
The mapping τ = τ(U,ϕ)

τ : Rd → TpM, u �→ class(U,ϕ ,u), (C.3)

that assigns to each vector u ∈ R
d its corresponding equivalence class is an

isomorphism. Clearly,

τ (αu+βv) = class(U,ϕ ,αu+βv)

= αclass(U,ϕ ,u)+βclass(U,ϕ ,v) = ατ(u)+βτ(v),

and thus τ is a linear map. Furthermore, given any two distinct vectors, u1 = u2, the
associated classes are different, since the equivalence relation (C.2) is not satisfied
if we take (V,ψ) as the distinguished chart, (V,ψ) = (U,ϕ). Hence the mapping
is one-to-one. On the other hand, each equivalence class has a representative in the
coordinate chart (U,ϕ), and thus this mapping is also surjective. ��

Let
ϕ : U → R

d , q �→ ϕ(q) = (z1(q), . . . ,zd(q)),

be a coordinate chart centered at p with coordinates z = (z1, . . . ,zd) and denote the
corresponding basis vectors in R

d with the 1 in the ith spot by ei = (0, . . . ,1, . . . ,0)T ,
i = 1, . . . ,d. Then a basis for the tangent space TpM is given by the tangent vectors
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∂i =

(
∂
∂ zi

)
|p
= class(U,ϕ ,ei),

and every tangent vector t ∈ TpM can be expressed as a linear combination of these
vectors,

t=
d

∑
i=1

ui

(
∂
∂ zi

)
|p
,

with u = (u1, . . . ,ud)
T the coordinates of t relative to this basis. If

ψ : V →R
d , q �→ ψ(q) = (y1(q), . . . ,yd(q)),

is another set of coordinates centered at p, then t also has a coordinate representation
in terms of this coordinate chart of the form

t=
d

∑
i=1

vi

(
∂
∂yi

)
|p
,

with coordinates v = (v1, . . . ,vd)
T . The formula for the corresponding change of

coordinates for the tangent vector t then is given by the equivalence relation (C.2),
u = D

(
ϕ ◦ψ−1

)
v.

This formula for the change of coordinates follows if one considers how tangent
vectors act on functions by taking directional derivatives. If f is a Cr-function
defined near p, then its coordinate representation is given by

fϕ : ϕ(U)→R, z �→ fϕ (z) =
(

f ◦ϕ−1)(z),
and the directional derivative of fϕ in the direction of the vector u is

〈
∇ fϕ (0),u

〉
=

d

∑
i=1

∂ fϕ
∂ zi

(z)ui =
d

∑
i=1

ui
∂
(

f ◦ϕ−1
)

∂ zi
(ϕ(p)) = t( f ).

If we think of the coordinate xi as a smooth function of x, then

t(zi) =
d

∑
j=1

u j

(
∂ zi

∂ z j

)
|p
=

d

∑
j=1

u jδi j = ui.

By means of the change of coordinates, we can also consider xi as a Cr-function of
y and then get the desired formula:

ui = t(zi) =
d

∑
j=1

(
∂ zi

∂y j

)
|p

v j.
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Clearly, the matrix
(
∂ zi
∂y j

)
1≤i, j≤d

is the Jacobian matrix of the change of coordinates,

x =
(
ϕ ◦ψ−1

)
(y), and thus this is the relation defining the equivalence of tangent

vectors, u = D
(
ϕ ◦ψ−1

)
v.

Corollary C.3.1. If (U,ϕ) is a coordinate chart centered at p with coordinates
z1, . . . ,zd, then every tangent vector t ∈ TpM has a coordinate representation in the
form

t=
d

∑
i=1

t(zi)

(
∂
∂ zi

)
|p
.

In view of these formulas, tangent vectors t can also be defined as mappings that
take the directional or Lie derivative of functions that are defined in a neighborhood
of p in the direction of t. It follows from the rules of differentiation that for all α ,
β ∈ R and arbitrary Cr-functions f and g defined near p, we have that

t(α f +βg) = αt( f )+β t(g) and t( f g) = t( f )g+ f t(g). (C.4)

Any mapping t that satisfies these properties is called a derivation, and an equivalent
definition of the tangent space for C∞-manifolds is that it is the vector space of all
derivations. However, for Cr-manifolds these two concepts are not equivalent [38].

Definition C.3.2 (Tangent bundle). The tangent bundle T M is the disjoint union
of the tangent spaces TpM for all points p in the manifold,

TM =
⋃

p∈M

TpM = {(p,v) : p ∈M, v ∈ TpM}.

Thus the tangent bundle consists of all pairs of a point p ∈M and a tangent vector
v ∈ TpM to M at p.

Proposition C.3.2. Let M be a Cr-differentiable manifold of dimension d for r≥ 1.
Then the tangent bundle T M can canonically be made into a 2d-dimensional Cr−1-
differentiable manifold.

Proof (Outline [102]). One needs to define a topology on TM that makes it into a
2d-dimensional locally Euclidean space and endow it with a differentiable structure.
These all naturally carry over from M. Let π : TM → M, (p,v) �→ p, denote the
projection onto the base point. For any chart (U,ϕ) on M centered at p, let τ = τ(U,ϕ)
be the isomorphism (C.3) between R

d and TpM that assigns to a vector v ∈ R
d its

corresponding equivalence class. The mapping

Φ : π−1(U)→R
d×R

d, Φ(q,w) =
(
ϕ(q),τ−1

(U,ϕ)w
)
,

is bijective, and we can thus make T M into a topological space by taking
as neighborhoods of (p,v) the inverse images of neighborhoods of Φ(p,v) in
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ϕ(U)×R
d . By construction, all the maps Φ are homeomorphisms, and since M is

second countable and Hausdorff, these properties carry over. Furthermore, if (U,ϕ)
and (V,ψ) are two coordinate charts centered at p, then the transition functions for
the associated coordinate charts (π−1(U),Φ) and (π−1(V ),Ψ ) on T M are given by
the change of coordinates on the manifolds and by the equivalence relation (C.2) for
the corresponding vectors,

Ψ ◦Φ−1 : ϕ(U ∩V )×R
d → ψ(U ∩V )×R

d,

(y,v) �→ (
ψ ◦ϕ−1(y),D

(
ψ ◦ϕ−1)(y)v) .

These mappings are Cr−1 and define a differentiable structure on T M. ��
A Cr-mapping F : M → N between Cr-manifolds M and N induces a linear

mapping between the corresponding tangent spaces, the so-called differential. Let
(U,ϕ) be a coordinate chart centered at p and let (V,ψ) be a coordinate chart
centered at q = F(p), such that the coordinate representation of the mapping F
is given by

Fϕ : ϕ(U)→ ψ(V ), z �→ Fϕ(z) =
(
ψ ◦F ◦ϕ−1) (z).

A tangent vector u ∈ TpM can be represented by the equivalence class (U,ϕ ,u),
and the derivative of the coordinate representation Fϕ at 0, DFϕ(0), defines a
tangent vector F∗(u)∈TqN represented by the equivalence class (V,ψ ,F∗(u)), where
F∗(u) = DFϕ(0)u is simply the image of u induced by the coordinate representation
of the mapping F . Clearly, any differentiable curve

γ : (−ε,ε)→ ϕ(U), s �→ γ(s), γ(0) = 0,

is mapped into a differentiable curve

Fϕ ◦ γ : (−ε,ε)→ ψ(V ), s �→ Fϕ(γ(s)), Fϕ(γ(0)) = 0,

with derivative
d
ds

(
Fϕ ◦ γ

)
(0) = DFϕ(0)γ̇(0).

It is a simple exercise to verify that this definition does not depend on the coordinate
charts taken, and thus this is a well-defined and linear mapping from the tangent
bundle T M into the tangent bundle T N. This mapping is called the differential of F .

Definition C.3.3 (Differential of a Cr-mapping). Let F : M→N be a Cr-mapping
between Cr-manifolds M and N of dimensions m and n, respectively. The differential
of F , F∗, is the mapping F∗ : T M → T N that assigns to a tangent vector t to M at p,
t ∈ TpM, represented by the class (U,ϕ ,u), the tangent vector F∗t to N at q = F(p)
represented by the class (V,ψ ,F∗(u)), where F∗(u) = DFϕ(0)u.
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It is clear that the differential is a linear mapping, and if F : M → N and
G : N → P are Cr-mappings between Cr-manifolds, then the chain rule in Euclidean
space immediately implies that (G◦F)∗ = G∗ ◦F∗.

For C∞-manifolds, the differential F∗ : T M → TN can equivalently also be
defined in terms of the action of tangent vectors on smooth functions f . As before,
if F : M → N is a C∞-mapping between C∞-manifolds M and N, and t is a tangent
vector to M at p, t ∈ TpM, then F∗t is the tangent vector to N at q that differentiates
a smooth function g defined near q according to the rule

(F∗t)(g) = t(g ◦F),

i.e., is given by the Lie derivative of the composite function g ◦F (which is smooth
near p) with respect to t.

The cotangent space and cotangent bundle are the dual notions of the tangent
space and the tangent bundle.

Definition C.3.4 (Cotangent space of M at p, T∗pM). The cotangent space to M
at p is the dual space to the tangent space of M at p, i.e., the space of all linear
functionals defined on TpM.

Since M is a finite-dimensional manifold, the space of all linear functionals on
the tangent space to M at p is isomorphic to TpM as a vector space, but it is better not
to identify these spaces (as is often done in linear algebra) and instead distinguish
between cotangent vectors or covectors λ ∈ T ∗p M and tangent vectors v ∈ TpM.
We use 〈λ ,v〉 to denote the action of a covector λ on a tangent vector v; note
that the base points for λ and v must agree for this to be defined. In coordinates,
we consistently write covectors as row vectors, while we write tangent vectors as
column vectors. This significantly simplifies the notation, and it is a much better
reflection of the underlying geometric concepts.

Definition C.3.5 (Cotangent bundle). The cotangent bundle T ∗M is the disjoint
union of the cotangent spaces T ∗p M for all points p in the manifold,

T ∗M =
⋃

p∈M

T ∗p M = {(p,λ ) : p ∈M, λ ∈ T ∗p M}.

Thus the cotangent bundle consists of all pairs of a point p ∈ M and a cotangent
vector λ ∈ T ∗p M to M at p.

Since a Cr-mapping F : M→ N between Cr-manifolds M and N induces a linear
mapping between the tangent spaces, F∗ : T M → T N, it also generates a linear
mapping in the reverse direction between the cotangent spaces, F∗ : T ∗N → T ∗M,
through the adjoint mapping of the differential.

Definition C.3.6 (Pullback of a Cr-mapping). Let F : M → N be a Cr-mapping
between Cr-manifolds M and N of dimensions m and n, respectively. The pullback
F∗ is the linear map from the cotangent bundle T ∗N into the cotangent bundle T ∗M,
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F∗ : T ∗N → T ∗M, defined as the dual (or adjoint) mapping to the differential F∗ :
T M → T N, i.e., if F(p) = q and λ ∈ T ∗q N, then F∗(λ ) is the unique covector in
T ∗p N that satisfies

〈F∗(λ ),v〉= 〈λ ,F∗(v)〉 for all v ∈ TpM.

C.4 Vector Fields and Lie Brackets

Definition C.4.1 (Cr vector and covector fields). Let M be a Cr+1-manifold. A
Cr vector field X on M is a Cr-section of the tangent bundle, i.e., a Cr mapping
X : M→ T M that assigns to every point p∈M a unique tangent vector X(p)∈ TpM.
Similarly, a Cr covector field λ on M is a Cr-section of the cotangent bundle, i.e.,
a Cr mapping λ : M → T ∗M that assigns to every point p ∈ M a unique covector
λ (p) ∈ T ∗p M.

Let (U,ϕ) be a coordinate chart with coordinates z1, . . . ,zd . Then, for q ∈U , the

tangent vectors
(
∂
∂ zi

)
|q

are a basis for TqM, and a Cr vector field X can be expressed

in the form

X(q) =
d

∑
i=1

Xi(q)

(
∂
∂ zi

)
|q
,

where the Xi are Cr functions defined on U , Xi : U →R. The coordinate expressions
of these functions Xi are given by r-times continuously differentiable real-valued
functions

fi = (Xi)ϕ : ϕ(U)→R, z �→ fi(z) =
(
Xi ◦ϕ−1)(z),

which, in turn, define the coordinate expression Xϕ of the vector field X on ϕ(U),

Xϕ(z) =
d

∑
i=1

fi(z)

(
∂
∂ zi

)
|z
.

Similarly, the coordinate expression of a covector field is of the form

λϕ(z) =
d

∑
i=1

gi(z)(dzi)z ,

where the gi are r-times continuously differentiable real-valued functions and (dzi)|z
denotes the dual basis to the basis

(
∂
∂ zi

)
|z

of the tangent space, i.e., the linear

functionals defined by

〈
dzi,

∂
∂ z j

〉
=

{
1 if i = j,

0 if i = j.
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Definition C.4.2 (Integral curve). A C1 curve γ : I →M, t �→ γ(t), defined on an
open interval I ⊂ R is said to be an integral curve of the vector field X if at every
point γ(t), the tangent vector γ̇(t) to the curve γ is given by the value of the vector
field X at γ(t),

γ̇(t) = X(γ(t)) for all t ∈ I.

The curve γ is a C1 mapping from the one-dimensional manifold I ⊂ R into M.
The tangent space to R is one-dimensional with a canonical basis vector given by
∂
∂ t with t ∈ I the natural coordinate. Thus, the tangent vector γ̇(t) to the curve γ at

the point γ(t) is given by the image of ∂
∂ t under the differential of the mapping γ ,

i.e., in the notation established above, we have that

γ̇(t) = γ∗
(
∂
∂ t

)
.

In the coordinate chart (U,ϕ), we can express the curve γ(t) as a d-tuple γ(t) =
(γ1(t), . . . ,γd(t))T , where γi = zi ◦ γ ∈ R is the ith coordinate of the curve γ . Hence,

the tangent vector γ∗
(
∂
∂ t

)
has the coordinate representation

d

∑
i=1

dγi

dt

(
∂
∂ zi

)
|γ(t)

.

Comparing this with the coordinate representation of the vector field X along γ ,
which is given by

d

∑
i=1

fi(γ(t))
(
∂
∂ zi

)
|γ(t)

,

it follows that
dγi

dt
= fi(γ(t)),

and in local coordinates we thus have the following statement:

Proposition C.4.1. A curve γ : I →M, t �→ γ(t), is an integral curve of the vector
field X if and only if for every coordinate chart (U,ϕ) with coordinates z1, . . . ,zd ,
the coordinate expressions γi = zi ◦γ of the curve γ and fi of the vector field X satisfy
the following system of ordinary differential equations:

dγi

dt
= fi(γ1(t), . . . ,γd(t)).

Thus, vector fields are a way to describe ordinary differential equations on
manifolds, and integral curves simply are the corresponding solutions. All the fun-
damental results about solutions to ordinary differential equations from Appendix B
carry over by means of local coordinates, and for example, we get the following
result:
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Proposition C.4.2. Let X be a Cr vector field on a Cr manifold M. Then, for every
point p ∈M, there exists a maximal open interval Ip in R containing the origin such
that the integral curve γ of X that passes through p at time t = 0 exists on Ip. The
corresponding flow ΦX

t (p) is defined on the domain D =
{
(t, p : p ∈M, t ∈ Ip

}
and is a Cr mapping from D to M. Furthermore,

ΦX
s+t(p) =ΦX

t (ΦX
s (p)),

whenever both sides are defined. �
We close with a formal definition of the Lie derivative and Lie bracket. These

are the most fundamental tools used in the text, and we have therefore generally
included proofs of the results below in the sections of the text where these concepts
came up for the first time, especially Sects. 2.8, 2.9, and 4.5. For the reader’s
convenience, we include a concise statement of the relevant notions here as well.

For simplicity, let M be a C∞ manifold and denote the space (module) of all
infinitely often continuously differentiable functions on M by C∞(M). Also, denote
the space of all C∞ vector fields on M by V∞(M). The vector field X can be viewed
as defining a first-order differential operator from the space C∞(M) into C∞(M) by
taking, at every point p∈M, the derivative of a function α ∈C∞(M) in the direction
of the vector field X(p).

Definition C.4.3 (Lie derivative). The Lie derivative LX is the first-order differen-
tial operator LX : C∞(M)→ C∞(M), α �→ LX (α), defined at every point p ∈M by
taking the derivative of the function α in the direction of the vector X(p).

Given a coordinate chart (U,ϕ) centered at p, the coordinate representation of α
is given by

αϕ : ϕ(U)→ R, z �→ αϕ (z) =
(
α ◦ϕ−1) (z),

and if

Xϕ(z) =
d

∑
i=1

fi(z)

(
∂
∂ zi

)
|z

denotes the coordinate representation of the vector field X , then for q= ϕ−1(z) ∈U ,
the Lie derivative at q, LX (α)(q), has the coordinate expression

d

∑
i=1

∂αϕ
∂ zi

(z) fi(z) =
〈
∇αϕ(z),Xϕ (z)

〉
,

with ∇αϕ denoting the gradient of the coordinate representation of α . This gradient
∇αϕ defines a covector that acts on the tangent vector Xϕ , and we also write

LX (α)(p) = 〈∇α(p),X(p)〉 ,

identifying α and the vector fields X with their coordinate representations.
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Given two vector fields, the commutator

[LX ,LY ] = LX ◦LY −LY ◦LX

is formally a second-order differential operator. However, in this expression all the
terms that are associated with second derivatives cancel (this can be shown through
a computation in canonical coordinates analogous to the one given in Sect. 2.8.3),
and indeed the commutator is the Lie derivative of another C∞ vector field Z that is
denoted by [X ,Y ] and called the Lie bracket of the vector fields X and Y .

Definition C.4.4 (Lie bracket). The Lie bracket of two vector fields X and Y
defined on M is the vector field [X ,Y ] such that

L[X ,Y ] = [LX ,LY ] = LX ◦LY −LY ◦LX .

If coordinate expressions for the vector fields X and Y are given by

Xϕ(z) =
d

∑
i=1

fi(z)

(
∂
∂ zi

)
|z

and Yϕ(x) =
d

∑
i=1

gi(z)

(
∂
∂ zi

)
|z
,

and if we write F(z) = ( f1(z), . . . , fd(z))T and G(z) = (g1(z), . . . ,gd(z))T , then,
similarly as was shown in Sect. 2.8.3, the coordinate expression for the Lie bracket
[X ,Y ] is given by

[X ,Y ]ϕ(z) = DG(z) ·F(z)−DF(z) ·G(z).

A similar computation also verifies that the Jacobi-identity is satisfied, and thus the
set V∞(M) of all C∞ vector fields defined on M is a Lie algebra with the Lie bracket
defining the bilinear operation [·, ·].

The Lie bracket of two vector fields X and Y measures the extent to which these
vector fields commute. If we denote the flows of these vector fields by ΦX and ΦY ,
respectively, then for every neighborhood U of a point p ∈M there exists an ε > 0
such that integral curves of X and Y that start at points in U are well-defined for
times t2 < ε . For t ∈ [0,ε), define a curve γ : [0,ε)→M by

γ(t) =ΦY
−√t ◦ΦX

−√t ◦ΦY√
t ◦ΦX√

t(p).

It then follows that

γ̇(0) = [X ,Y ](p).

This relation follows, for example, from the Baker–Campbell–Hausdorff formula,
which was proven in Sect. 4.5. More importantly, it is also shown in that section that
the curve

γ : (−ε,ε)→ TpM, γ(t) =
(
ΦX
−t

)
∗Y (ΦX

t (p)),
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i.e., γ is the vector field Y evaluated at the point ΦX
t (p) on the integral curve of X

through p and moved back to p along the flow of X , has derivative

γ̇(0) = [X ,Y ](p).

It is this relation from which all the other formulas derived in Sect. 4.5 follow. And
the importance of the Lie bracket for nonlinear systems is rooted in this identity,
which gives rise to the adjoint representation (see Corollary 4.5.1).



Appendix D
Some Facts from Real Analysis

We briefly summarize some facts about Lebesgue measurable sets and functions.
This section only serves the purpose of providing a convenient summary of the
results from real analysis that are used in the text, but this area is too vast
to be presented comprehensively here. For this, we need to refer the reader to
any of the many excellent treatments of this topic available in the literature,
e.g., [125, 174, 257].

D.1 Lebesgue Measure and Lebesgue Measurable Functions
in R

n

A σ -algebra F of subsets of R
n is a nonempty collection of subsets E of R

n

that is closed under taking countable unions and complements. It follows that F
is closed under arbitrary countable set-theoretic operations that combine unions,
complements, and intersections. The sets that are contained in F are called
F -measurable. A measure is a nonnegative σ -additive set function μ defined on
the sets in a σ -algebra F , μ : F →R+, i.e., if Ei, i = 1,2, . . ., is a sequence of
disjoint sets from F , Ei∩E j =∅ for i = j, then

μ

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

μ(Ei).

The smallest possible σ -algebra on R
n is given by F = {∅,Rn}, and the largest

is the so-called power set, consisting of all subsets of R
n. Given an arbitrary

collection C = {Ci : i ∈ I} of subsets of Rn, there exists a smallest σ -algebra that
contains all the sets Ci in the collection C , namely the intersection over all σ -
algebras that contain all the sets Ci. This σ -algebra is called the σ -algebra generated
by C . The Borel σ -algebra, B, is the σ -algebra generated by the open subsets

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods
and Examples, Interdisciplinary Applied Mathematics 38,
DOI 10.1007/978-1-4614-3834-2, © Springer Science+Business Media, LLC 2012
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of Rn. It contains all closed sets as well as, for example, countable intersections of
open sets (so-called Gδ -sets) and countable unions of closed sets (so-called Fσ -sets)
and many more. Generally, Borel measurable sets provide a rich enough collection
of measurable subsets of Rn for many of the results that appear in the text to hold.
The Borel measure on B is the unique measure that can be defined on the Borel
sets that for compact intervals I = [a1,b1]× ·· ·× [an,bn] agrees with the ordinary
volume in R

n,

μ(I) =Π n
i=1(bi− ai).

The Lebesgue σ -algebra, L , is the completion of the Borel σ -algebra under this
measure; that is, all Borel measurable sets B are Lebesgue measurable and are given
the same measure, and in addition, if A⊂ B and B is Borel measurable with measure
μ(B) = 0, then the set A is made Lebesgue measurable with Lebesgue measure 0.
Lebesgue measurable sets that have measure 0 are called null sets. Since points are
Borel measurable sets with measure 0, it follows that all countable sets are null sets.
The Cantor set C is a well-known example of a null set that is uncountable [257,
Chap. 3]. We have the following characterization of Lebesgue measurable sets:

Proposition D.1.1. The following statements are equivalent:

1. The set E ⊂ R
n is Lebesgue measurable.

2. For any ε > 0, there exist a closed set F ⊂ E and an open set G ⊃ E such that
μ (G\F)< ε .

3. There exist a Borel measurable set F of type Fσ , F = ∪∞i=1Ai with Ai closed, and
a null set N such that E = F ∪N.

4. There exist a Borel measurable set G of type Gδ , G = ∩∞i=1Bi with Bi open, and
a null set N such that G = E ∪N.

A function f : Rn → R is Lebesgue (respectively, Borel) measurable if for any
open set B in R the inverse image of B,

f−1(B) = {x ∈ R
n : f (x) ∈ B},

is a Lebesgue (respectively, Borel) measurable subset of Rn. We henceforth simply
call sets and functions measurable with the understanding that the underlying
measure is either Borel or Lebesgue measure. It is easily seen that measurable
functions are closed under the standard algebraic operations (sum, product, and
quotient). An important property of measurable functions is that they are also closed
under taking limits.

Proposition D.1.2. If { fn}n∈N is a sequence of measurable functions, then the
infimum, infn∈N ( fn), and supremum, supn∈N ( fn), are measurable functions as well.
In particular, the smallest and largest accumulation points, liminf and limsup, of
the sequence are measurable. The set of points for which the sequence converges is
measurable and the limit is a measurable function. �
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The characteristic function χE of a set E in R
n is defined by

χE(x) =

{
1 if x ∈ E,

0 if x /∈ E,

and is an F -measurable function if and only if E ∈ F . A function s with finite
range of the form

s(x) =
N

∑
i=1

ciχEi(x)

is called simple, and without loss of generality, we may assume that the sets Ei

are disjoint and that the coefficients ci are distinct, ci = c j for i = j. With these
normalizations, a simple function s is F -measurable if and only if all sets Ei are
F -measurable.

Proposition D.1.3. Given any nonnegative measurable function f : E → [0,∞),
there exists a sequence {sn}n∈N of simple nonnegative F -measurable functions such
that sn(x) converges monotonically to f (x), sn(x)≤ sn+1(x)≤ f (x) for all x ∈ E. �
Definition D.1.1 (Convergence of measurable functions). Let { fn}n∈N be a
sequence of measurable functions, f : Rn → R, and let E be a measurable set in
R

n. The sequence { fn} converges to f in measure on E if for any ε > 0 we have that

lim
n→∞μ {x ∈ E : | fn(x)− f (x)|> ε}= 0;

it converges to f almost everywhere (a.e.) in E if there exists a null set N ⊂ E such
that

lim
n→∞ fn(x) = f (x) for all x /∈ E.

The fundamental relations between these concepts of convergence are summa-
rized below:

Proposition D.1.4. Let { fn}n∈N be a sequence of measurable functions that are
defined and finite on a measurable set E in R

n, f : E ⊂ R
n → R. If E has finite

measure and fn converges to f a.e. on E, then fn also converges to f in measure.
Conversely, if fn converges to f in measure, the sequence fn(x) need not converge
to f (x) for a single point x, but there always exists a subsequence

{
fnk

}
k∈N that

converges to f a.e. on E.

The following two results, Egorov’s theorem and Lusin’s theorem, essentially
state that “modulo sets of arbitrarily small measure,” measurable functions are
continuous, and convergence a.e. is uniform convergence.

Theorem D.1.1 (Lusin’s theorem). Let E ⊂R
n be a measurable set and f : E→R

a measurable function that is finite on E. Then there exists a closed subset F ⊂ E
such that μ (E \F)< ε and the restriction of f to F is continuous. �
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Theorem D.1.2 (Egorov’s theorem). Let E ⊂ R
n be a measurable set that has

finite measure, μ(E) < ∞, and suppose { fn}n∈N is a sequence of measurable
functions, fn : E → R, that are finite on E and converge to a limit f a.e. on E.
Then, given any ε > 0, there exists a closed subset F of E such that μ (E \F) < ε
and fn converges uniformly to f on F. �

D.2 The Lebesgue Integral in R
n

For a simple nonnegative Lebesgue measurable function f (x) = ∑N
i=1 ciχEi(x), the

Lebesgue integral of s over a measurable set E ⊂ R
n is defined as

∫
E

sdμ =
N

∑
i=1

ciμ (Ei∩E) .

If the simple function is normalized such that the sets Ei are disjoint and that the
coefficients ci are distinct, this gives a unique specification of the Lebesgue integral
for s, but more generally, even without these normalizations the definition applies,
and it is easy to see that it does not depend on the representation of the simple
function. Given an arbitrary nonnegative Lebesgue measurable function f : Rn →
[0,∞), the Lebesgue integral then is defined as

∫
E

f dμ = sup

{∫
E

s dμ : s is simple, Lebesgue measurable,

and s(x) ≤ f (x) for all x ∈ E

}
.

Definition D.2.1 (Lebesgue integrable). Given a Lebesgue measurable function
f : E ⊂ R

n → R, let f+ = max( f ,0) and f− = −min( f ,0) be its positive and
negative parts, respectively. The Lebesgue integral of f over E is defined as

∫
E

f dμ =

∫
E

f+ dμ−
∫

E
f− dμ

provided not both of the integrals
∫

E f+ dμ and
∫

E f− dμ are infinite. The function
f is said to be Lebesgue integrable over E with Lebesgue integral

∫
E f dμ if both∫

E f+ dμ and
∫

E f− dμ are finite.

Note that a function f is Lebesgue integrable if and only if

∫
E
| f |dμ =

∫
E

f+ dμ+
∫

E
f− dμ < ∞.
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Like the Riemann integral, the Lebesgue integral is a linear operator,
∫

E
(α f +βg) dμ = α

∫
E

f dμ+β
∫

E
g dμ .

However, it provides a much more powerful tool for taking limits. Indeed, the results
below were the original motivation behind the construction of this integral.

Proposition D.2.1 (Monotone convergence theorem). Let { fn}n∈N be a sequence
of nonnegative measurable functions that are defined on a measurable set E in R

n,
fn : E → R, and are monotonically increasing, fn(x) ≤ fn+1(x) for all x ∈ E. Then
the limit

f (x) = lim
n→∞ fn(x) = sup

n∈N
fn(x)≤ ∞

exists, is measurable, and satisfies

∫
E

f dμ = lim
n→∞

∫
E

fn dμ .

Note that the implications are that if one of the two sides in the last equation is
finite, respectively infinite, so is the other.

Proposition D.2.2 (Fatou’s lemma). Let { fn}n∈N be a sequence of nonnegative
measurable functions that are defined on a measurable set E in R

n, fn : E → R.
Then ∫

E

(
lim
n→∞ inf fn

)
dμ = lim

n→∞ inf

(∫
E

fn dμ
)
.

Proposition D.2.3 (Dominated convergence theorem). Let { fn}n∈N be a
sequence of measurable functions that are defined on a measurable set E in R

n,
fn : E → R, and converge a.e. on E to some limit f , f (x) = limn→∞ fn(x) for a.e.
x ∈ E. If there exists a Lebesgue integrable function g such that | fn| ≤ g a.e. on E,
then ∫

E
f dμ =

∫
E

(
lim
n→∞ fn

)
dμ = lim

n→∞

(∫
E

fn dμ
)
.

It is these results allowing us to interchange limits with the integral that for
many applications make the Lebesgue integral a superior tool to the Riemann
integral for which uniform convergence is required for this operation. On the other
hand, the Riemann integral offers a superior formalism for computing integrals, the
fundamental theorem of calculus. It is therefore important that these two integrals
generally agree if they both exist. More precisely, if f : E→R is a bounded function
that is Riemann integrable, then f is Lebesgue integrable and the values of the
Riemann and the Lebesgue integrals agree. However, the Lebesgue integral exists
for a much larger class of functions. For example, the characteristic function of the
rationals χQ actually is a simple function in the sense of measurable functions, and
for any compact interval I ⊂ R, by definition, we simply have that

∫
I χQdμ = 0,

while this function is not Riemann integrable. There also exist functions that are
Riemann integrable, but not Lebesgue integrable. For example, the Riemann integral
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of f (x) = sin(x)
x over [0,∞) exists, but the Lebesgue integral does not. The reason is

that the Riemann integral allows for cancellations of positive with negative terms,
while these are not tolerated in the measure-oriented definition of the Lebesgue
integral, and the Lebesgue integral

∫ ∞
0

sin(x)
x dx leads to the indefinite form ∞−∞.

But in most cases the Lebesgue integral is more general and provides the preferred
mechanism when an interchange of limits with integration is required.

This broader generality in the integration process, however, comes at the expense
of a more difficult and much more cumbersome differentiation theory for the
resulting integral

F(E) =
∫

E
f dμ ,

understood as a set-valued function. But the following result, also valid in R
n, holds:

Theorem D.2.1 (Lebesgue’s differentiation theorem). If the function f : R→ R

is Lebesgue integrable, then the indefinite integral

F(x) =
∫
(−∞,x]

f dμ

is differentiable a.e. on R with derivative given by F ′(x) = f (x). �
The proof of this result is much more difficult than for the Riemann integral, and

it is related to so-called covering lemmas by Vitali that will also be needed in the
text.

Proposition D.2.4 (Vitali covering lemma). Let E be a Lebesgue measurable set
with finite measure and suppose a family Q of intervals covers E and is such that
for any x ∈ E and any ε > 0 there exists an interval I in the family Q that contains x
and has length less than ε . (For example, this trivially holds if the family Q consists
of all intervals.) Then, for every ε > 0, there exists a finite collection of disjoint
intervals I j, j = 1, . . . ,N, such that

μ

(
E \

N⋃
j=1

I j

)
< ε and

N

∑
i=1
μ(I j)< (1+ ε)μ(E).

The notion of the indefinite integral also is closely related to the Radon–Nikodym
theorem and the concept of an absolutely continuous function.

Definition D.2.2 (Absolutely continuous). A set function F : L →R, E �→ F(E),
defined on the Lebesgue measurable sets is said to be absolutely continuous with
respect to Lebesgue measure if whenever μ(E) = 0, then F(E) = 0.

If f is an integrable Lebesgue measurable function, then it is easily seen from
the definition of the Lebesgue integral that

∫
E f dμ = 0 whenever μ(E) = 0. Thus

F(E) =
∫

E f dμ defines a σ -additive set function that is absolutely continuous with
respect to Lebesgue measure. The Radon–Nikodym theorem states that any such set
function is of this form.
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Theorem D.2.2 (Radon–Nikodym). Let Φ be a σ -additive set function defined
on the σ -algebra of Lebesgue measurable sets in R

n that is absolutely continuous
with respect to Lebesgue measure. Then there exists a Lebesgue integrable function
f : Rn →R such that

Φ(E) =
∫

E
f dμ .

D.3 Lp-Spaces

On function spaces, there exist many ways of defining norms that are not equivalent
in the sense of Definition A.1.5. For example, on the space of continuous functions
f : [a,b]→ R defined on a compact interval [a,b], other commonly used norms are
the Lp-norms defined by

‖ f‖p =

(∫ b

a
f (t)pdt

)1/p

for p ≥ 1. For example, the sequence of functions fn(t) = tn does not converge to
f = 0 in the supremum norm in C([0,1]) (the limit is not continuous), but for every
p≥ 1,

‖ fn‖p =
p

√∫ 1

0
tnpdt = p

√
1

np+ 1
→ 0 as n→ ∞,

such that fn converges to f ≡ 0 for any p ≥ 1 in the Lp-norm in the space
of continuous functions on [0,1]. As this simple example shows, in infinite-
dimensional spaces, convergence properties very much depend on the norm that
is being used. But clearly, the space of continuous functions on a compact interval
[a,b] is not complete in any of the Lp-norms. For example, the sequence of functions
{ fn}n∈N given by

fn(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 for a≤ t ≤ a+ b
2
− 1

n
,

n

(
t− a+ b

2

)
for

a+ b
2
− 1

n
≤ t ≤ a+ b

2
+

1
n
,

+1 for
a+ b

2
+

1
n
≤ t ≤ b,

converges to the discontinuous function

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 for a≤ t < a+b
2 ,

0 for t = a+b
2 ,

+1 for a+b
2 < t ≤ b,
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in the Lp-norm, and thus the continuous functions on [a,b] are not a Banach space
under these norms. Obviously the problem is not one of convergence—the sequence
has a well-defined and easily computed limit—but the limit no longer lies in the
space under consideration. The Lp-spaces are the completions of the space of
continuous functions under these norms.

Definition D.3.1 (Lp). For 1≤ p < ∞, the space Lp = Lp(R
n) is the normed space

consisting of all (equivalence classes of) Lebesgue measurable functions f : Rn→R

endowed with the norm ‖ f‖p. The space L∞ = L∞(Rn) is the normed space
consisting of all (equivalence classes of) bounded Lebesgue measurable functions
f : Rn →R with the norm ‖ f‖∞ = inf{C : | f (x)| ≤C a.e.}.

Two Lebesgue measurable functions f and g are said to be equivalent if f (x) =
g(x) only for x in a null set N. This simply makes the elements of the space unique
and defines a unique zero vector. It is clear that ‖ f‖p is positively homogeneous; the
triangle inequality, also called the Minkowski inequality, is a direct consequence of
Hölder’s inequality.

Proposition D.3.1 (Hölder’s inequality). Let 1 ≤ p ≤ ∞ and define the conjugate
exponent q by the relation 1

p +
1
q = 1. If f ∈ Lp and g ∈ Lq, then f g ∈ L1 and

‖ f g‖1 =
∫
Rn
| f g|dμ leq

(∫
Rn
| f |p dμ

)1/p (∫
Rn
|g|q dμ

)1/q

= ‖ f‖p‖g‖q

This is an important result that will be used several times and we include its proof.

Proof. The result is clear if p = 1 or p = ∞, and thus assume that 1 < p < ∞.
If ‖ f‖p = 0, it follows that f = 0 a.e., and once more the result is trivial. Without loss

of generality, we thus assume that ‖ f‖p and ‖g‖q are positive and define F = | f |
‖ f‖p

and G = |g|
‖g‖q

. Hölder’s inequality then is equivalent to the statement that

∫
Rn
|FG|dμ ≤ 1.

A simple geometric argument verifies that if ϕ : [0,∞) → [0,∞) is a strictly
increasing continuous function that satisfies ϕ(0) = 0, and if ψ denotes its inverse
function, then for all a,b≥ 0 we have that

ab≤
∫ a

0
ϕ(x)dx+

∫ b

0
ψ(y)dy,

with equality if and only if b=ϕ(a). Applying this inequality to the functionϕ(x) =
xp−1, it follows that

ab≤ ap

p
+

bq

q
.
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Hence, for all x ∈ R
n,

F(x)G(x)≤ F(x)p

p
+

G(x)q

q
,

and integrating over Rn gives

∫
Rn
|FG|dμ ≤ 1

p

∫
Rn | f |p dμ
‖ f‖p

p
+

1
q

∫
Rn |g|q dμ
‖g‖q

q
=

1
p
+

1
q
= 1.

This proves the result. ��
Theorem D.3.1. [257, Thm. 8.14] The spaces Lp, 1 ≤ p ≤ ∞, are complete, i.e.,
are Banach spaces. �

In particular, note that for 1 ≤ p < ∞, the dominated convergence theorem also
gives sufficient conditions for a sequence { fn}n∈N ⊂ Lp to converge in the space Lp,
i.e., in the norm ‖·‖p.

Another direct consequence of Hölder’s inequality is that a function g ∈ Lq

defines a continuous functional on the space Lp through the specification

�( f ) =
∫
Rn

f g dμ . (D.1)

In fact, for p < ∞, these are all continuous functionals on Lp.

Theorem D.3.2 (Dual space). Let 1 ≤ p < ∞ and let q by the conjugate exponent
1
p +

1
q = 1. If � is a continuous linear functional defined on Lp, then there exists a

unique g ∈ Lq such that

�( f ) =
∫
Rn

f g dμ .

The dual space to Lp thus is isomorphic to Lq, (Lp)
′ = Lq. The dual space to L∞

contains L1, but is strictly larger. �

D.4 Solutions to Ordinary Differential Equations
with Lebesgue Measurable Right-Hand Sides

All the fundamental results on existence and uniqueness of solutions to ordinary
differential equations as well as continuous and differentiable dependence on initial
conditions and parameters are equally valid for right-hand sides that are Lebesgue
measurable in time t if the appropriate assumptions are made. These are known
as the Carathéodory conditions. We consider a parameter-dependent differential
equation

ẋ = f (t,x, p),
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where f is defined on some open set I×O× P ⊂ R×R
n×R

k. Solutions to the
differential equation then are given by absolutely continuous curves that satisfy the
differential equation a.e.

Definition D.4.1 (Absolutely continuous). A continuous curve ξ : I → R
n, t �→

ξ (t), is said to be absolutely continuous, ξ ∈ AC(I;Rn), if there exists a Lebesgue
measurable integrable function f : I → R

n, t �→ f (t), v ∈ L1(I;Rn), such that for
some t0 ∈ I,

ξ (t) =
∫
[t0,t]

f (s)ds,

with ds denoting integration against Lebesgue measure.

Definition D.4.2 (Solution to the initial value problem). Given a point (t0,x0) ∈
I×O, an absolutely continuous curve x : J → R

n, t �→ x(t), defined on some open
interval J containing t0 is a solution to the initial value problem

ẋ = f (t,x), x(t0) = x0, (D.2)

on J if it satisfies the following three conditions: (i) ẋ(t) = f (t,x(t)) almost
everywhere in J, (ii) x(t0) = x0, and (iii) the graph of x lies in I×O.

Definition D.4.3 (C1-Carathéodory conditions). The vector field f satisfies the
C1-Carathéodory conditions if the following assumptions are satisfied:

1. f is measurable, jointly in (t,x),
2. For each t ∈ I fixed, the function x �→ f (t,x, p) is continuously differentiable in

(x, p) on O×P,
3. For every compact set K ⊂ O, there exist integrable functions g and h, g,h ∈

L1(I), such that for all x ∈ K and all t ∈ I we have that

‖ f (t,x)‖ ≤ g(t) and
∥∥D(x,p) f (t,x)

∥∥≤ h(t),

4. For every compact set K ⊂ O, there exists an integrable function k, k ∈ L1(I),
such that for all x ∈ K and all t ∈ I,

‖ f (t,x)− f (t,y)‖ ≤ k(t)‖x− y‖ .

If the vector field f satisfies the C1-Carathéodory conditions, then all the results
from the standard theory of differential equations formulated in Appendix B remain
valid. The classical reference for these results is [175].
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malité des trajectoires singulières dans le problème du temps minimal, Forum Matematicum,
5 (1993), pp. 111–159.

[49] B. Bonnard and I.A.K. Kupka, Generic properties of singular trajectories, A. Inst. H.
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in the calculus of variations, 55
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singular, 559
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control Hamiltonian, 79
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calculus of variations, 43
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Jacobi equation, 31
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Lie algebra, 137, 598
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Lie derivative, 136, 612
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manifold
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time-independent, 324
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341
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source, 343
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for the calculus of variations, 39
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value of a, 352
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Q
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R
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for a linear system, 109
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regular point of a mapping, 578
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S
Sard’s theorem, 578
second variation, 9
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transversality conditions, 94, 97

U
uniform convergence, 6

V
value function, 326

for a central field in the calculus of
variations, 50

variational covector field, 277
variational equation, 96, 243, 370, 589
variational vector field, 277

in the plane, 159
variations

cut, 244
extendable point-variation, 279
paste, 245
point-variation, 272

vector field, 610
integral curve, 611

verification theorem
simple, 469

Vitali covering lemma, 473

W
weak convergence, 207, 208

weakly sequentially compact, 208
Weierstrass condition, 54
Weierstrass excess function, 54
Whitney embedding theorem, 604

X
X-aligned chart of coordinates, 161
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