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Preface

The idea for this book came when I was an assistant at the Department of Mathe-
matics and Computer Science at the Philipps-University Marburg, Germany. Sev-
eral times I faced the task of supporting lectures and seminars on complex analysis
of several variables and found out that there are very few books on the subject,
compared to the vast amount of literature on function theory of one variable, let
alone on real variables or basic algebra. Even fewer books, to my understanding,
were written primarily with the student in mind. So it was quite hard to find sup-
porting examples and exercises that helped the student to become familiar with
the fascinating theory of several complex variables.

Of course, there are notable exceptions, like the books of R.M. Range [9] or
B. and L. Kaup [6], however, even those excellent books have a drawback: they
are quite thick and thus quite expensive for a student’s budget. So an additional
motivation to write this book was to give a comprehensive introduction to the
theory of several complex variables, illustrate it with as many examples as I could
find and help the student to get deeper insight by giving lots of exercises, reaching
from almost trivial to rather challenging.

There are not many illustrations in this book, in fact, there is exactly one,
because in the theory of several complex variables I find most of them either trivial
or misleading. The readers are of course free to have a different opinion on these
matters.

Exercises are spread throughout the text and their results will often be re-
ferred to, so it is highly recommended to work through them.

Above all, I wanted to keep the book short and affordable, recognizing that
this results in certain restrictions in the choice of contents. Critics may say that
I left out important topics like pseudoconvexity, complex spaces, analytic sheaves
or methods of cohomology theory. All of this is true, but inclusion of all that
would have resulted in another frighteningly thick book. So I chose topics that
assume only a minimum of prerequisites, i.e., holomorphic functions of one complex
variable, calculus of several real variables and basic algebra (vector spaces, groups,
rings etc.). Everything else is developed from scratch. I also tried to point out some
of the relations of complex analysis with other parts of mathematics. For example,
the Convergence Theorem of Weierstrass, that a compactly convergent sequence
of holomorphic functions has a holomorphic limit is formulated in the language of
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functional analysis: the algebra of holomorphic functions is a closed subalgebra of
the algebra of continuous functions in the compact-open topology.

Also the exercises do not restrict themselves only to topics of complex analysis
of several variables in order to show the student that learning the theory of several
complex variables is not working in an isolated ivory tower. Putting the knowledge
of different fields of mathematics together, I think, is one of the major joys of the
subject. Enjoy !

I would like to thank Dr. Thomas Hempfling of Birkhäuser Publishing for
his friendly cooperation and his encouragement. Also, my thanks go to my wife
Claudia for her love and constant support. This book is for you!



Chapter 1

Elementary theory of several
complex variables

In this chapter we study the n-dimensional complex vector space Cn and introduce
some notation used throughout this book. After recalling geometric and topolog-
ical notions such as connectedness or convexity we will introduce holomorphic
functions and mapping of several complex variables and prove the n-dimensional
analogues of several theorems well-known from the one-dimensional case. Through-
out this book n, m denote natural numbers (including zero). The set of strictly
positive naturals will be denoted by N+, the set of strictly positive reals by R+.

1.1 Geometry of Cn

The set Cn = Rn + iRn is the n-dimensional complex vector space consisting of all
vectors z = x+iy,where x, y ∈ Rnand i is the imaginary unit satisfying i2 = −1.By
z = x − iy we denote the complex conjugate. Cn is endowed with the Euclidian
inner product

(z|w) :=
n∑

j=1

zjwj (1.1)

and the Euclidian norm
‖z‖2 :=

√
(z|z). (1.2)

Cn endowed with the inner product (1.1) is a complex Hilbert space and the
mapping

Rn × Rn → Cn, (x, y) �→ x + iy

is an isometry. Due to the isometry between Cn and Rn × Rn all metric and
topological notions of these spaces coincide.
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Remark 1.1.1. Let p ∈ N be a natural number ≥ 1. For z ∈ Cn the following
settings define norms on Cn:

‖z‖∞ :=
n

max
j=1

|zj |

and

‖z‖p :=

⎛⎝ n∑
j=1

|zj |p
⎞⎠ 1

p

.

‖.‖∞ is called the maximum norm, ‖.‖p is called the p- norm. All norms define
the same topology on Cn. This is a consequence of the fact that, as we will show
now, in finite dimensional space all norms are equivalent.

Definition 1.1.2. Two norms N1, N2 on a vector space V are called equivalent, if
there are constants c, c′ > 0 such that

cN1 (x) ≤ N2 (x) ≤ c′N1 (x) for all x ∈ V.

Proposition 1.1.3. On a finite-dimensional vector space V (over R or C) all norms
are equivalent.

Proof. It suffices to show that an arbitrary norm ‖.‖ on V is equivalent to the
Euclidian norm (1.2) , because one shows easily that equivalence of norms is an
equivalence relation (Exercise !). Let {b1, . . . , bn} be a basis of V and put

M := max {‖b1‖ , . . . , ‖bn‖} .

Let x ∈ V, x =
∑n

j=1 αjbj with coefficients αj ∈ C. The triangle inequality and
Hölder’s inequality yield

‖x‖ ≤
n∑

j=1

|αj | ‖bj‖

≤

⎛⎝ n∑
j=1

|αj |2
⎞⎠ 1

2
⎛⎝ n∑

j=1

‖bj‖2

⎞⎠ 1
2

≤ ‖x‖2

√
nM.

Every norm is a continuous mapping, because |‖x‖ − ‖y‖| ≤ ‖x − y‖ , hence, ‖.‖
attains a minimum s ≥ 0 on the compact unit sphere

S := {x ∈ V | ‖x‖2 = 1} .

S is compact by the Heine–Borel Theorem, because dim V < ∞. Since 0 /∈ S the
identity property of a norm, i.e. that ‖x‖ = 0 if and only if x = 0, implies that
s > 0. For every x 	= 0 we have

x

‖x‖2

∈ S,
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which implies ∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ s > 0.

This is equivalent to ‖x‖ ≥ s ‖x‖2 . Putting both estimates together gives

s ‖x‖2 ≤ ‖x‖ ≤
√

nM ‖x‖2 ,

which shows the equivalence of ‖.‖ and ‖.‖2 . �
Exercise 1.1.4. Give an alternative proof of Proposition 1.1.3 using the 1-norm.

Exercise 1.1.5. Show that limp→∞ ‖z‖p = ‖z‖∞ for all z ∈ Cn.

If we do not refer to a special norm, we will use the notation ‖.‖ for any norm
(not only p-norms).

Example 1.1.6. On infinite-dimensional vector spaces not all norms are equivalent.
Consider the infinite-dimensional real vector space C1 [0, 1] of all real differentiable
functions on the interval [0, 1] . Then we can define two norms by

‖f‖∞ := sup
x∈[0,1]

|f (x)|

and
‖f‖C1 := ‖f‖∞ + ‖f ′‖∞ .

The function f (x) := xn, n ∈ N, satisfies

‖f‖∞ = 1, ‖f‖C1 = 1 + n.

Since n can be arbitrarily large, there is no constant c > 0 such that

‖f‖C1 ≤ c ‖f‖∞
for all f ∈ C1 [0, 1] .

Exercise 1.1.7. Show that C1 [0, 1] is a Banach space with respect to ‖.‖C1 , but
not with respect to ‖.‖∞ .

Let us recall some definitions.

Definition 1.1.8. Let E be a real vector space and x, y ∈ E.

1. The closed segment [x, y] is the set

[x, y] := {tx + (1 − t) y | 0 ≤ t ≤ 1} .

2. The open segment ]x, y[ is the set

]x, y[ := {tx + (1 − t) y | 0 < t < 1} .
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3. A subset C ⊂ E is called convex if [x, y] ⊂ C for all x, y ∈ C.

4. Let M ⊂ V be an arbitrary subset. The convex hull conv (M) of M is the
intersection of all convex sets containing M.

5. An element x of a compact and convex set C is called an extremal point of
C if the condition x ∈ ]y, z[ for some y, z ∈ C implies that x = y = z. The
subset of extremal points of C is denoted by ∂exC.

Example 1.1.9. Let r > 0 and a ∈ Cn. The set

Bn
r (a) := {z ∈ Cn | ‖z − a‖ < r } (1.3)

is called the n-dimensional open ball with center a and radius r with respect to
the norm ‖.‖ . It is a convex set, since for all z, w ∈ Br (a) and t ∈ [0, 1] it follows
from the triangle inequality that

‖tz + (1 − t) w‖ ≤ t ‖z‖ + (1 − t) ‖w‖ < tr + (1 − t) r = r.

The closed ball is defined by replacing the < by ≤ in (1.3).

Exercise 1.1.10. Show that the closed ball with respect to the p-norm coincides
with the topological closure of the open ball. Show that the closed ball is compact
and determine all its extremal points.

The open (closed) ball in Cn is a natural generalization of the open (closed)
disc in C. It is, however, not the only one.

Definition 1.1.11. We denote by Rn
+ the set of real vectors of strictly positive

components. Let r = (r1, . . . , rn) ∈ Rn
+ and a ∈ Cn.

1. The set

Pn
r (a) := {z ∈ Cn| |zj − aj | < rj for all j = 1, . . . , n}

is called the open polycylinder with center a and polyradius r.

2. The set

Tn
r (a) := {z ∈ Cn| |zj − aj | = rj for all j = 1, . . . , n}

is called the polytorus with center a and polyradius r. If rj = 1 for all j and
a = 0 it is called the unit polytorus and denoted Tn.

Remark 1.1.12. The open polycylinder is another generalization of the one- dimen-
sional open disc, since it is the Cartesian product of n open discs in C.Therefore
we also use the expression polydisc. For n = 1, open polycylinder and open ball
coincide. Pn

r (a) is also convex.

Lemma 1.1.13. Let C be a convex subset of Cn. Then C is simply connected.



1.1. Geometry of Cn 5

Proof. Let γ : [0, 1] → C be a closed curve. Then

H : [0, 1] × [0, 1] → Cn, (s, t) �→ sγ (0) + (1 − s) γ (t)

defines a homotopy from γ to γ (0) . Since C is convex we have

H (s, t) ∈ C

for all s, t ∈ [0, 1] . �

As in the one-dimensional case, the notion of connectedness and of a domain
is important in several complex variables. We recall the definition for a general
topological space.

Definition 1.1.14. Let X be a topological space.

1. The space X is called connected, if X cannot be represented as the disjoint
union of two nonempty open subsets of X, i.e., if A,B are open subsets of
X, A 	= ∅, A ∩ B = ∅ and X = A ∪ B, then B = ∅.

2. An open and connected subset D ⊂ X is called a domain.

There are different equivalent characterizations of connected sets stated in
the following lemma.

Lemma 1.1.15. Let X be a topological space and D ⊂ X an open subset. The
following statements are equivalent:

1. The set D is a domain.

2. If A 	= ∅ is a subset of D which is both open and closed, then A = D.

3. Every locally constant function f : D → C is constant.

Proof. 1. ⇒ 2. Let A be a nonempty subset of D which is both open and closed
in D. Put B := D \ A. Then B is open in D, for A is closed, A ∩ B = ∅ and
D = A ∪ B. Since D is connected and A 	= ∅ we conclude B = ∅, hence, A = D.

2. ⇒ 3. Let c ∈ D and A := f−1 ({f (c)}) . In C, sets consisting of a single
point are closed (this holds for any Hausdorff space). f is continuous, because f is
locally constant, so A is closed in D.Since c ∈ A, the set A is nonempty. Let p ∈ A.
Then there is an open neighbourhood U of p, such that f (x) = f (p) = f (c) for
all x ∈ U, i.e., U ⊂ A. Thus, A is open. We conclude that A = D, so f is constant.

3. ⇒ 1. If D can be decomposed into disjoint open nonempty subsets A,B,
then

f : D → C, z �→
{

1, z ∈ A
0, z ∈ B

defines a locally constant, yet not constant function �
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Remark 1.1.16. In the one-variable case the celebrated Riemann Mapping The-
orem states that all connected, simply connected domains in C are biholomor-
phically equivalent to either C or to the unit disc. This theorem is false in the
multivariable case. We will later show that even the two natural generalizations
of the unit disc, i.e., the unit ball and the unit polycylinder, are not biholomor-
phically equivalent. This is one example of the far-reaching differences between
complex analysis in one and in more than one variable.

Exercise 1.1.17. Let X be a topological space.

1. If A,B ⊂ X, such that A ⊂ B ⊂ A and A is connected, then B is connected.

2. If X is connected and f : X → Y is a continuous mapping into some other
topological space Y, then f (X) is also connected.

3. The space X is called pathwise connected, if to every pair x, y ∈ X there
exists a continuous curve

γx,y : [0, 1] → X

with γx,y (0) = x, γx,y (1) = y. Show that a subset D of Cn is a domain if
and only if D is open and pathwise connected. (Hint: You can use the fact
that real intervals are connected.)

4. If (Uj)j∈J is a family of (pathwise) connected sets which satisfies⋂
j∈J

Uj 	= ∅,

then
⋃

j∈J Uj is (pathwise) connected.

5. Show that for every R > 0 and every n ≥ 1 the set Cn \ Bn
R (0) is pathwise

connected.

6. Check the set

M :=
{

z ∈ C
∣∣∣∣ 0 < Re z ≤ 1, Im z = sin

1
Re z

}
∪ [−i, i]

for connectedness and pathwise connectedness.

Exercise 1.1.18. We identify the space M (n, n; C) of complex n× n matrices as a
topological space with Cn2

with the usual (metric) topology

1. Show that the set GLn (C) of invertible matrices is a domain in M (n, n; C) .

2. Show that the set Un (C) of unitary matrices is compact and pathwise con-
nected.

3. Show that the set Pn (C) of self-adjoint positive definite matrices is convex.

Exercise 1.1.19. Let C be a compact convex set.
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1. Show that
∂exC ⊂ ∂C.

2. Let Pn
r (a) be a compact polydisc in Cn and Tr (a) the corresponding poly-

torus. Show that
∂exPn

r (a) = Tn
r (a) .

Remark 1.1.20. By the celebrated Krein–Milman Theorem (see, e.g.,[11] Theorem
VIII.4.4) every compact convex subset C of a locally convex vector space possesses
extremal points. Moreover, C can be reconstructed as the closed convex hull of its
subset of extremal points:

C = conv (∂exC)

Notation 1.1.21. In the following we will use the expression that some proposition
holds near a point a or near a set X if there is an open neighbourhood of a resp.
X on which it holds.

1.2 Holomorphic functions in several complex variables

1.2.1 Definition of a holomorphic function

Definition 1.2.1. Let U ⊂ Cn be an open subset, f : U → Cm, a ∈ U and ‖.‖ an
arbitrary norm in Cn.

1. The function f is called complex differentiable at a, if for every ε > 0 there
is a δ = δ (ε, a) > 0 and a C-linear mapping

Df (a) : Cn → Cm,

such that for all z ∈ U with ‖z − a‖ < δ the inequality

‖f (z) − f (a) − Df (a) (z − a)‖ ≤ ε ‖z − a‖

holds. If Df (a) exists, it is called the complex derivative of f in a.

2. The function f is called holomorphic on U, if f is complex differentiable at
all a ∈ U.

3. The set
O (U, Cn) := {f : U → Cm| f holomorphic}

is called the set of holomorphic mappings on U . If m = 1 we write

O (U) := O (U, C)

and call this set the set of holomorphic functions on U .
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This definition is independent of the choice of a norm, since all norms on Cn

are equivalent. The proofs of the following propositions are analogous to the real
variable case, so we can leave them out.

Proposition 1.2.2.

1. If f is C-differentiable in a, then f is continuous in a.

2. The derivative Df (a) is unique.

3. The set O (U, Cm) is a C− vector space and

D (λf + µg) (a) = λDf (a) + µDg (a)

for all f, g ∈ O (U, Cm) and all λ, µ ∈ C.

4. (Chain Rule) Let U ⊂ Cn, V ⊂ Cm be open sets, a ∈ U and

f ∈ O (U, V ) := {ϕ : U → V | ϕ holomorphic} ,

g ∈ O
(
V, Ck

)
. Then g ◦ f ∈ O

(
U, Ck

)
and

D (g ◦ f) (a) = Dg (f (a)) ◦ Df (a) .

5. Let U ⊂ Cn be an open set. A mapping

f = (f1, . . . , fm) : U → Cm

is holomorphic if and only if all components f1, . . . , fm are holomorphic func-
tions on U.

6. O (U) is a C− algebra. If f, g ∈ O (U) and g (z) 	= 0 for all z ∈ U , then
f
g ∈ O (U) .

Example 1.2.3. Let U ⊂ Cn be an open subset and f : U → C be a locally constant
function. Then f is holomorphic and Df (a) = 0 for all a ∈ U.

Proof. Let a ∈ U and ε > 0. Since f is locally constant there is some δ > 0, such
that f (z) = f (a) for all z ∈ U with ‖z − a‖ < δ. Therefore

‖f (z) − f (a)‖ = 0 ≤ ε ‖z − a‖

for all z ∈ U with ‖z − a‖ < δ, i.e., f is holomorphic with Df (a) = 0 for all
a ∈ U. �
Example 1.2.4. For every k = 1, . . . , n the projection

prk : Cn → C, (z1, . . . , zn) �→ zk

is holomorphic and D prk (a) = ek (the k-th canonical basis vector) for all a ∈ Cn.
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Proof. Let ε > 0 and a ∈ Cn. Then

|prk (z) − prk (a) − (z − a|ek)| = 0 ≤ ε ‖z − a‖

for all z ∈ Cn. �

Example 1.2.5. The complex subalgebra C [z1, . . . , zn] of O (Cn) generated by the
constants and the projections is called the algebra of polynomials. Its elements are
sums of the form ∑

α∈Nn

cαzα

with cα 	= 0 only for finitely many cα ∈ C, where for z ∈ Cn and α ∈ Nn we use
the notation

zα := zα1
1 . . . zαn

n .

The degree of a polynomial

p (z) =
∑

α∈Nn

cα=0 for almost all α

cαzα

is defined as
deg p := max {α1 + · · · + αn | α ∈ Nn, cα 	= 0} .

For example, the polynomial p (z1, z2) := z5
1 +z3

1z3
2 has degree 6. By convention the

zero polynomial has degree −∞.The following formulas for the degree are easily
verified:

deg (pq) = deg p + deg q,

deg (p + q) ≤ max {deg p, deg q} .

Exercise 1.2.6. Show that for all z, w ∈ Cn and all α ∈ Nn there exists a polynomial
q ∈ C [z, w] of degree |α| := ‖α‖1 such that

(z + w)α = zα + q (z, w) .

Exercise 1.2.7. Show that the polynomial algebra C [z1, . . . , zn] has no zero divi-
sors.

Exercise 1.2.8. Show that the zero set of a complex polynomial in n ≥ 2 variables
is not compact in Cn. (Hint : Use the Fundamental Theorem of Algebra). Compare
this to the case n = 1.

Exercise 1.2.9. Show that every (affine) linear mapping L : Cn → Cm is holomor-
phic. Compute DL (a) for all a ∈ Cn.

Exercise 1.2.10. Let U1, . . . , Un be open sets in C and let fj : Uj → C be holo-
morphic functions, j = 1, . . . , n.
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1. Show that U := U1 × · · · × Un is open in Cn.

2. Show that the functions

f : U → C, (z1, . . . , zn) �→
n∏

j=1

fj (zj)

and

g : U → C, (z1, . . . , zn) �→
n∑

j=1

fj (zj)

are holomorphic on U.

1.2.2 Basic properties of holomorphic functions

We turn to the multidimensional analogues of some important theorems from the
one variable case. The basic tool to this end is the following observation.

Lemma 1.2.11. Let U ⊂ Cn be open, a ∈ U, f ∈ O (U) , b ∈ Cn and V := Va,b;U :=
{t ∈ C | a + tb ∈ U} . Then V is open in C, 0 ∈ V and the function

ga,b : V → C, t �→ f (a + tb)

is holomorphic.

Proof. From a ∈ U follows that 0 ∈ V. If b = 0 then V = C. Let b 	= 0. If t0 ∈ V
then z0 := a+ t0b ∈ U. Since U is open, there is some ε > 0, such that Bε (z0) ∈ U.
Put zt := a + tb. Then

‖z0 − zt‖ = ‖b‖ |t0 − t| < ε

for all t with |t0 − t| < ε
‖b‖ , i.e., B ε

‖b‖ (t0) ⊂ V. Since ga,b is the composition of the
affine linear mapping t �→ a + tb and the holomorphic function f, holomorphy of
ga,b follows from the chain rule. �
Conclusion 1.2.12. We have analogues of the following results from the one-dimen-
sional theory.

1. Liouville’s Theorem: Every bounded holomorphic function

f : Cn → C

is constant.

2. Identity Theorem: Let D ⊂ Cn be a domain, a ∈ D, f ∈ O (D) , such that
f = 0 near a. Then f is the zero function.

3. Open Mapping Theorem: Let D ⊂ Cn be a domain, U ⊂ D an open subset
and f ∈ O (D) a non-constant function. Then f (U) is open, i.e., every
holomorphic function is an open mapping. In particular, f (D) is a domain
in C.
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4. Maximum Modulus Theorem: If D ⊂ Cn is a domain, a ∈ D and f ∈ O (D) ,
such that |f | has a local maximum at a, then f is constant.

Proof. 1. Let a, b ∈ Cn. The function ga,b−a from Lemma 1.2.11 is holomorphic
on C, satisfies

ga,b−a (0) = f (a) , ga,b−a (1) = f (b)

and
ga,b−a (C) ⊂ f (Cn) .

Since f is bounded, ga,b−a is bounded. By the one-dimensional version of Liouville’s
Theorem ga,b−a is constant, hence, f (a) = f (b) for all a, b ∈ Cn.

2. Let
U := {z ∈ D | f = 0 near z} .

By prerequisite a ∈ U. U is closed in D, because either U = D (if f is the zero
function) or, by continuity of f, to every z ∈ D \ U there exists a neighbourhood
W, on which f does not vanish, i.e., W ⊂ D \ U . Let c ∈ U ∩ D. There is a
polyradius r ∈ Rn

+, such that the polycylinder Pr (c) is contained in D and such
that Pr (c) ∩ U 	= ∅. Choose some z ∈ Pr (c) and w ∈ Pr (c) ∩ U. From Lemma
1.2.11 we obtain that the set Vw,z−w;D is open in C and because Pr (c) is convex,
we have [0, 1] ⊂ Vw,z−w;D. Since f vanishes near w, there exists an open and
connected neighbourhood W ⊂ C of [0, 1] on which gw,z−w vanishes. This implies
that Pr (c) ⊂ U, so U is open in D. However, since D is connected, the only
nonempty open and closed subset of D is D itself. Hence, U = D, i.e., f = 0 on
D.

3. f (D) is connected, because D is connected and f is continuous (cf. Exercise
1.1.17). We have to show that f (U) is open. Let b ∈ f (U) . There is some a ∈ U
with b = f (a) . Since U is open, there is a polycylinder Pr (a) ⊂ U. By the Identity
Theorem f is not constant on Pr (c) , since otherwise f would be constant on all of
D, contradicting the prerequisites. This implies that there is some w ∈ Cn, w 	= 0,
such that ga,w from Lemma 1.2.11 is not constant on V = Va,w;Pr(a). From the
one-dimensional theory we obtain that ga,w (V ) is an open neighbourhood of b.
Because

b ∈ ga,w (V ) ⊂ f (Pr (a)) ⊂ f (U) ,

f (U) is a neighbourhood of b. Since b was arbitrary, f (U) is open in C.
4. f (D) is open in C. Since

|.| : C → [0, +∞[

is an open mapping (Exercise !), the assertion follows. �

Corollary 1.2.13 (Maximal Modulus Principle for bounded domains). Let D ⊂ Cn

be a bounded domain and f : D → C be a continuous function, whose restriction
to D is holomorphic. Then |f | attains a maximum on the boundary ∂D.



12 Chapter 1. Elementary theory of several complex variables

Proof. Since D is bounded, the closure D is compact by the Heine–Borel Theorem.
Thus, the continuous real-valued function |f | attains a maximum in a point p ∈ D.
If p ∈ ∂D we are done. If p ∈ D the Maximum Modulus Theorem says that f |D is
constant. By continuity, f is constant on D and thus |f | attains a maximum also
on ∂D. �

In the one-dimensional version of the Identity Theorem it is sufficient to
know the values of a holomorphic function on a subset of a domain, which has an
accumulation point. This is no longer true in more than one dimension.

Example 1.2.14. The holomorphic function

f : C2 → C, (z, w) �→ zw

is not identically zero, yet it vanishes on the subsets C×{0} and {0} × C of C2,
which clearly have accumulation points in C2.

Exercise 1.2.15. Let U ⊂ Cn be an open set. Show that U is a domain if and only
if the ring O (U) is an integral domain, i.e., it has no zero divisors.

Exercise 1.2.16. Let D ⊂ Cn be a domain and F ⊂ O (D) be a family of holomor-
phic functions. We denote by

N (F) := {z ∈ D | f (z) = 0 for all f ∈ F}

the common zero set of the family F .

1. Show that either D \ N (F) = ∅ or D \ N (F) is dense in D.

2. Show that GLn (C) is dense in M (n, n; C) .

Exercise 1.2.17. Consider the mapping

f : C2 → C2, (z, w) �→ (z, zw)

Show that f is holomorphic, but is not an open mapping. Does this contradict the
Open Mapping Theorem?

Exercise 1.2.18. Let
f : X → E

be an open mapping from a topological space X to a normed space E. State and
prove a Maximum Modulus Theorem for f.

Exercise 1.2.19. Let D ⊂ Cn be a domain, B ⊂ D an open and bounded subset,
such that also the closure B is contained in D. Let ∂B denote the topological
boundary of B and f ∈ O (D) . Show that

∂ (f (B)) ⊂ f (∂B) .

Does this also hold in general, if B is unbounded?
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Exercise 1.2.20. Let Bn
1 (0) be the n-dimensional unit ball and f : Bn

1 (0) → C
be holomorphic with f (0) = 0. Let M > 0 be a constant satisfying |f (z)| ≤ M
for all z ∈ Bn

1 (0) . Prove the following n-dimensional generalization of Schwarz’
Lemma:

1. The estimate |f (z)| ≤ M ‖z‖ holds for all z ∈ Bn
1 (0).

2. The following estimate holds:

‖Df (0)‖ := sup
‖z‖=1

|Df (0) z| ≤ M.

1.2.3 Partially holomorphic functions and the Cauchy–Riemann
differential equations

As in real calculus one may consider all but one variable of a given holomorphic
function

(z1, . . . , zn) �→ f (z1, . . . , zn)

as fixed. This leads to the concept of partial holomorphy.

Definition 1.2.21. Let U ⊂ Cn be an open set, a ∈ U and f : U → C. For
j = 1, . . . , n define

Uj := {z ∈ C | (a1, . . . , aj−1, z, aj+1, . . . , an) ∈ U}

and
f̂j : Uj → C, z �→ f (a1, . . . , aj−1, z, aj+1, . . . , an) .

f is called partially holomorphic on U, if all f̂j are holomorphic.

A function f holomorphic on an open set U ⊂ Cn can also be considered as
a totally differentiable function of 2n real variables. Taking this point of view we
define

Ck (U) := {f : U → C | f is k − times R − differentiable} ,

where, as usual, k = 0 denotes the continuous functions. In this case we leave out
the superscript. Let a ∈ U and f ∈ C1 (U) . Then there is an R-linear function

daf : R2n → C

called the real differential of f at a, such that

f (z) = f (a) + daf (z − a) + O
(
‖z − a‖2

)
.

Comparing this to Definition 1.2.1 we can say that f is C-differentiable at a if
and only if daf is C-linear. This shows that it makes sense at this point to look a
little closer at the relationships between R-linear and C-linear functions of complex
vector spaces.
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Lemma 1.2.22. Let V be a vector space over C and V # its algebraic dual, i.e.,

V # := {µ : V → C | µ is C − linear} .

Further, we define

V
#

: = {µ : V → C | µ is C − antilinear}
= {µ : V → C | µ is C − linear}

and
V #

R := {µ : V → C | µ is R − linear} .

Then V #
R is a complex vector space, V #, V

#
are subspaces of V #

R and we have
the direct decomposition

V #
R = V # ⊕ V

#
.

Proof. The first propositions are clear. We only have to prove the direct decom-
position. To this end let µ ∈ V # ∩ V

#
and z ∈ V. Since µ is both complex linear

and antilinear we have
µ (iz) = iµ (z) = −iµ (z) ,

which holds only if µ = 0. To prove the decomposition property let µ ∈ V #
R . We

define

µ1 (z) :=
1
2

(µ (z) − iµ (iz)) ,

µ2 (z) :=
1
2

(µ (z) + iµ (iz)) .

An easy computation shows that µ1, µ2 are R-linear and that µ1 + µ2 = µ. Now

µ1 (iz) =
1
2

(µ (iz) − iµ (−z))

= i
1
2

(µ (z) − iµ (iz)) = iµ1 (z)

and

µ2 (iz) =
1
2

(µ (iz) + iµ (−z))

= −i
1
2

(µ (z) + iµ (iz)) = −iµ2 (z) ,

which shows that µ1 ∈ V # and µ2 ∈ V
#

. �
We use this lemma in the special case

V := Cn = Rn + iRn.
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Let w = u + iv ∈ V. For j = 1, . . . , n consider the linear functionals

dxj , dyj : Cn → C, dxj (w) := uj , dyj (w) := vj .

Clearly, dxj , dyj ∈ V #
R and

dxj (iw) = −vj , dyj (iw) = uj .

Now define

dzj (w) := dxj (w) + idyj (w) , dzj (w) := dxj (w) − idyj (w) .

We then have

dzj (w) = uj + ivj = dxj (w) − idxj (iw) ,

dzj (w) = uj − ivj = dxj (w) + idxj (iw) .

As in Lemma 1.2.22 we obtain

dzj ∈ V #, dzj ∈ V
#

.

By applying linear combinations of the dzj resp. dzj to the canonical basis vectors
e1, . . . , en of Cn we find that the sets {dz1, . . . , dzn} resp. {dz1, . . . , dzn} are lin-
early independent over C, thus forming bases for V # resp. V

#
. Their union then

forms a basis for V #
R by Lemma 1.2.22. This leads to the following representation

of the real differential daf :

daf =
n∑

j=1

(
αj (f, a) dzj + βj (f, a) dzj

)
(1.4)

with unique coefficients αj (f, a) , βj (f, a) ∈ C.

Notation 1.2.23. Let αj (f, a) , βj (f, a) be the unique coefficients in the represen-
tation (1.4) . We write

∂jf (a) :=
∂f

∂zj
(a) := αj (f, a) , ∂jf (a) :=

∂f

∂zj
(a) := βj (f, a) .

Definition 1.2.24. The linear functional

∂af :=
n∑

j=1

∂f

∂zj
(a) dzj : Cn → C, w �→

n∑
j=1

∂f

∂zj
(a)wj

is called the complex differential of f at a. The antilinear functional

∂af :=
n∑

j=1

∂f

∂zj
(a) dzj : Cn → C, w �→

n∑
j=1

∂f

∂zj
(a)wj

is called the complex-conjugate differential of f at a.



16 Chapter 1. Elementary theory of several complex variables

With these definitions we can decompose the real differential

daf = ∂af + ∂af ∈ (Cn)# ⊕ (Cn)
#

. (1.5)

These results can be summarized in

Theorem 1.2.25 (Cauchy–Riemann). Let U ⊂ Cn be an open set and f ∈ C1 (U) .
Then the following statements are equivalent:

1. The function f is holomorphic on U.

2. For every a ∈ U the differential daf is C-linear, i.e., daf ∈ (Cn)# .

3. For every a ∈ U the equation ∂af = 0 holds.

4. For every a ∈ U the function f satisfies the Cauchy–Riemann differential
equations

∂f

∂zj
(a) = 0 for all j = 1, . . . , n

on U.

Exercise 1.2.26. (Wirtinger derivatives) Let U ⊂ Cn be open, a ∈ U and f ∈
C1 (U) .

1. Show that

∂f

∂zj
(a) =

1
2

(
∂f

∂xj
− i

∂f

∂yj

)
(a) ,

∂f

∂zj
(a) =

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
(a) ,

where ∂f
∂xj

, ∂f
∂yj

denote the real partial derivatives.

2. Let U ⊂ Cn be open, a ∈ U and f = (f1, . . . , fm) ∈ O (U, Cm) . Let Df (a) =
(αkl) ∈ M (m,n; C) be the complex derivative of f in a. Show that

αkl =
∂fk

∂zl
(a)

for all k = 1, . . . ,m and l = 1, . . . , n.

3. Letf̂j be defined as in Definition 1.2.21. Show that if f is holomorphic on U
then f is partially holomorphic and satisfies the equations

∂f

∂zj
(a) = f̂j

′
(aj) for all j = 1, . . . , n.

Exercise 1.2.27. Let U ⊂ Cn be open and f = (f1, . . . , fm) : U → Cm differentiable
in the real sense. Prove the formulas

∂fk

∂zj
=

(
∂fk

∂zj

)
,

∂fk

∂zj
=

(
∂fk

∂zj

)
for j = 1, . . . , n and k = 1, . . . ,m.
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Remark 1.2.28. It is a deep theorem of Hartogs [5] that the converse of Exercise
1.2.26.3 also holds: Every partially holomorphic function is already holomorphic.
The proof of this theorem is beyond the scope of this book, however, we will use
the result. Note the fundamental difference from the real case, where a partially
differentiable function need not even be continuous, as the well-known example

ϕ : R2 → R, (x, y) �→
{

0, if (x, y) = (0, 0)
xy

x2+y2 , if (x, y) 	= (0, 0)

shows. Readers who are not familiar with this example should consider lim
x→0

ϕ (x, x).

Exercise 1.2.29. Show that the inversion of matrices

inv : GLn (C) → GLn (C) , Z �→ Z−1

is a holomorphic mapping (Hint : Cramer’s rule).

Exercise 1.2.30. Let m ∈ N+ and f ∈ O (Cn) be homogenous of degree m, i.e., f
satisfies the condition

f (tz) = tmf (z)

for all z ∈ Cn and all t ∈ C. Prove Euler’s identity
n∑

j=1

∂f

∂zj
(z) zj = mf (z)

for all z ∈ Cn.

1.3 The Cauchy Integral Formula

Probably the most celebrated formula in complex analysis in one variable is
Cauchy’s Integral Formula, since it implies many fundamental theorems in the
one-dimensional theory. Cauchy’s Integral Formula allows a generalization to di-
mension n in a sense of multiple line integrals. We start by considering the poly-
torus Tn

r (a). For a ∈ Cn and r ∈ Rn
+ let

Tn
r (a) := {z ∈ Cn | |zj − aj | = rj , j = 1, . . . , n} .

Tn
r (a) is a copy of n circles in the complex plane and is contained in the boundary

of the polydisc Pn
r (a) . Let

f : Tn
r (a) → C

be continuous and define h : Pn
r (a) → C by the iterated line integral

h (z) :=
(

1
2πi

)n ∫
T n

r (a)

f (w)
(w − z)1

dw

:=
(

1
2πi

)n ∫
|wn−an|=rn

· · ·
∫

|w1−a1|=r1

f (w) dw1 · · · dwn

(wn − zn) · · · (w1 − z1)
,
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where the notation
∫
|wj−aj |=rj

stands for the line integral over the circle around aj

of radius rj . Recall that the integral is independent of a particular parametrization,
so we may use this symbolic notation.

Lemma 1.3.1. The function h is partially holomorphic on Pn
r (a) .

Proof. Let b ∈ Pn
r (a) . Choose some δ > 0, such that |zj − aj | < rj for all z

satisfying |zj − bj | < δ, j = 1, . . . , n. Then the function

ĥj : B1
δ (bj) → C, zj �→ h (b1, . . . , bj−1, zj , bj+1, . . . , bn)

is continuous. Choose a closed triangle ∆ ⊂ B1
δ (bj) . The theorems of Fubini–

Tonelli and Goursat yield that ∫
∂∆

ĥj (zj) dzj = 0.

By Morera’s theorem ĥj is holomorphic. �

Applying Hartogs’ theorem we see that h is actually holomorphic.

Notation 1.3.2. Let α = (α1, . . . , αn) ∈ Nn. We call α a multiindex and define

|α| : = α1 + · · · + αn,

α + 1 : = (α1 + 1, . . . , αn + 1) ,

α! : = α1! · · ·αn!.

For z ∈ Cn and a multiindex α we write

zα := zα1
1 · · · zαn

n

and we define the partial derivative operators

Dα :=
∂|α|

∂zα1
1 · · · ∂zαn

n
.

Theorem 1.3.3. Let U ⊂ Cn be open, a ∈ U, r ∈ Rn
+, such that the closed poly-

cylinder Pn
r (a) is contained in U. Let f : U → C be partially holomorphic. Then

for all α ∈ Nn and all z ∈ Pn
r (a):

1. Cauchy’s Integral Formula, CIF:

Dαf (z) =
α!

(2πi)n

∫
T n

r (a)

f (w)
(w − z)α+1 dw.
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2. Cauchy inequalities:

|Dαf (z)| ≤ α!
rα

∥∥∥f |T n
r (a)

∥∥∥
∞

.

Proof. 1. We prove the formula by induction on n. The case n = 1 is known.
Chose r′ ∈ Rn

+, such that rj < r′j for all j and such that Pn
r (a) ⊂ Pn

r′ (a) ⊂ U.
Let z = (z1, . . . , zn) ∈ Pn

r′ (a). Then the function of one complex variable

ζ �→ f (z1, . . . , zn−1, ζ)

is holomorphic on the open disc defined by |ζ − an| < r′n. The one-dimen-
sional version of CIF yields

f (z1, . . . , zn) =
1

2πi

∫
|wn−an|

f (z1, . . . , zn−1, wn)
wn − zn

dwn.

For fixed wn the function

(z1, . . . , zn−1) �→ f (z1, . . . , zn−1, wn)

is partially holomorphic on the polydisc defined by |zj | < r′j , j = 1, . . . , n−1.
The rest of the proof now follows by the induction hypothesis and differenti-
ation under the integral.

2. Standard estimate for line integrals over circles, as in one dimension.
�

Exercise 1.3.4. Let Tn ⊂ Cn be the unit polytorus and µ, ν ∈ Nn. Compute the
integral (

1
2πi

)n ∫
Tn

ζµ

ζν+1 dζ.

1.4 O (U) as a topological space

This section studies convergence in the space O (U) of holomorphic functions on
an open set U ⊂ Cn. To this end we introduce the compact-open topology on
O (U) , which turns O (U) into a Fréchet space. The major results of this section
are Weierstrass’ Convergence Theorem and Montel’s Theorem. Readers with a
profound knowledge of functional analysis may skip the part about locally convex
spaces.
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1.4.1 Locally convex spaces

We collect some basic facts about locally convex spaces, i.e., topological vector
spaces whose topologies are defined by a family of seminorms.

Definition 1.4.1. Let k be one of the fields R or C and V a k-vector space. A
seminorm on V is a mapping p : V → [0, +∞[ with the following properties:

1. The mapping p is positively homogenous, i.e., p (αx) = |α| p (x) for all α ∈ k
and all x ∈ V.

2. The mapping p is subadditive, i.e., p (x + y) ≤ p (x) + p (y) for all x, y ∈ V.

Example 1.4.2. Every norm ‖.‖ on a vector space V is a seminorm.

Example 1.4.3. Let R [a, b] be the space of (Riemann-)integrable functions on the
interval [a, b] and let

p : R [a, b] → R, f �→
∫ b

a

|f (t)| dt.

Then p is a seminorm, but not a norm, because p (f) = 0 does not imply f = 0.
For instance, take the function

f : [a, b] → R, t �→
{

1, t = a
0, t 	= a

.

Seminorms on vector spaces can be used to construct topologies on these
spaces. In contrast to the topologies defined by norms, topologies defined by semi-
norms need not be Hausdorff.

Lemma 1.4.4. Let I be an index set, V a (real or complex) vector space and (pi)i∈I

a family of seminorms on V . For a finite subset F ⊂ I and ε > 0 put

UF ;ε :=
⋂
i∈F

{x ∈ V | pi (x) < ε}

and define
U := {UF ;ε| ε > 0, F ⊂ I,#F < ∞} .

Then the set

T := {O ⊂ V | For all x ∈ O there is some U ∈ U, such that x + O ⊂ U}

defines a topology on V.

Remark 1.4.5. A vector space with a topology induced by a family of seminorms as
above is called a locally convex space. The topology T turns V into a topological
vector space, i.e., vector addition and multiplication with scalars are continuous
mappings with respect to this topology. Locally convex spaces are studied in depth
in functional analysis.
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Proof. Trivially, T contains V and the empty set. Let J be an index set and
(Oj)j∈J be an arbitrary family in T . Put

O :=
⋃
j∈J

Oj

and let x ∈ O. Then x ∈ Oj for some index j. Since Oj ∈ T , there is some U ∈ U
with

x + U ⊂ Oj ⊂ O,

hence, O ∈ T . Now let O1, . . . , On be open sets, i.e., elements of T . Put

O :=
n⋂

j=1

Oj

and let x ∈ O. Since every Oj is open, there are sets Uj ∈ U, such that

x + Uj ∈ Oj .

Every Uj is of the form
Uj = UFj ;εj

with Fj a finite subset of I and εj > 0. Put

ε :=
n

min
j=1

εj , F :=
n⋃

j=1

Fj .

Then ε > 0 and F is also a finite subset of I. Further

UF ;ε ⊂ O,

thus,

x + UF ;ε ⊂
n⋂

j=1

(x + Uj) ⊂ O. �

Exercise 1.4.6. Show that a locally convex space (V, T ) is a Hausdorff space if and
only if the family (pi)i∈I of seminorms separates points, i.e., if for all x ∈ V , x 	= 0
there is some index i ∈ I, such that pi (x) > 0.

Exercise 1.4.7. Let V be a locally convex Hausdorff space whose topology T is
induced by a countable family (pi)i∈N of seminorms. Show that the definition

d (x, y) :=
∞∑

n=0

2−n pn (x − y)
1 + pn (x − y)

for all x, y ∈ V

defines a metric on V and that the topology Td induced by this metric coincides
with T .
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Remark 1.4.8. Topological vector spaces whose topologies can be induced by a
metric are called metrizable. If the topology can be induced by a norm they are
called normable. Note that the metric of Exercise 1.4.7 is not induced by a norm,
since

d (0, x) ≤ 2

for all x ∈ V. If d were induced by a norm ‖.‖, then for all λ ∈ C and all x ∈ V ,

d (0, λx) = ‖λx‖ = |λ| ‖x‖ .

If x 	= 0 we can choose λ with |λ| > 2
‖x‖ .

In the abstract setting of general locally convex spaces the sets UF ;ε play
the role of the open ε-balls Bn

ε (0) in Cn or Rn, i.e., they form a basis of open
neighbourhoods of zero. This analogy is mirrored in the definition of convergence.

Definition 1.4.9. Let
(
V, (pi)i∈I

)
be a locally convex space, T the topology induced

by the family (pi)i∈I of seminorms and U the basis of neighbourhoods of zero as
defined in Lemma 1.4.4.

1. A sequence (xj)j∈N
in V converges to the limit x ∈ V, if for every U ∈ U

there is some N = NU ∈ N, such that x − xj ∈ U for all j ≥ N.

2. The sequence (xj)j∈N
is called a Cauchy sequence, if for every U ∈ U there

is some N = NU ∈ N, such that xk − xl ∈ U for all k, l ≥ N.

3. The space V is called sequentially complete with respect to the topology T ,
if every Cauchy sequence converges in V.

Remark 1.4.10. In functional analysis the general notion of completeness is defined
by means of so-called Cauchy nets, which are a generalization of Cauchy sequences.
The interested reader may refer to standard literature on functional analysis, e.g.,
[11]. For our purposes the notion of sequential completeness suffices.

Lemma 1.4.11. A sequence (xj)j∈N
converges to x ∈ V if and only if

lim
j→∞

pi (xj − x) = 0

for all i ∈ I.

Proof. The sequence (xj)j∈N
converges to x ∈ V if and only if for all U ∈ U there

is some NU ∈ N, such that
x − xj ∈ U

for all j ≥ NU . By definition of U this is equivalent to the condition that for every
ε > 0 and every i ∈ I there is some Ni ∈ N, such that

pi (x − xj) < ε

for all j ≥ Ni. �
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Exercise 1.4.12. Let D ⊂ Cn be a domain and K ⊂ D be a compact subset. Define
pK : C (D) → R by

pK (f) := ‖f |K‖∞ .

1. Show that pK defines a seminorm on C (D) .

2. If K has interior points, then pK defines a norm on the subspace O (D) of
holomorphic functions.

3. Is O (D) complete with respect to pK ?

Exercise 1.4.13. Let R [a, b] , p be as in Example 1.4.3 and let R [a, b] be equipped
with the locally convex topology induced by p. Please show:

1. Restricted to the subspace C [a, b] ⊂ R [a, b] of continuous functions, p defines
a norm on C [a, b] .

2. Is (C [a, b] , p) a Banach space?

1.4.2 The compact-open topology on C (U,E)

The results about locally convex spaces and the notion of convergence in these
spaces will be applied to the space C (U,E) of continuous mappings on an open
set U ⊂ Cn with values in a Banach space (E, ‖.‖E) . The reason to consider
Banach-space-valued mappings here is mainly that the results apply to scalar-
valued and vector-valued mappings at the same time. It is well known that for a
compact set K the space C (K, E) is a Banach space with respect to the norm

‖f‖E,∞ := sup
x∈K

‖f (x)‖E .

The important fact here is the completeness of C (K, E) . This can be generalized
to continuous functions defined on open sets by choosing a compact exhaustion of
U.

Lemma 1.4.14. Let U ⊂ Cn be open. For every j ∈ N+ define

Kj :=
{

z ∈ U | ‖z‖∞ ≤ j, dist‖.‖∞ (z, Cn \ U) ≥ 1
j

}
. (1.6)

Then the following holds:

1. Every Kj is a compact set.

2. For all j ≥ 1 we have Kj ⊂ K◦
j+1.

3. The set U is the union of the Kj :

U =
∞⋃

j=1

Kj .
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4. If K is an arbitrary compact subset of U , then there is some jK ∈ N+, such
that K ⊂ KjK

.

Proof. 1. Every Kj is the intersection of two closed sets and is contained in the
ball of radius j. By the Heine–Borel theorem Kj is compact.

2. The set{
z ∈ U | ‖z‖2 < j + 1, dist‖.‖2

(z, Cn \ U) >
1

j + 1

}
is open, contains Kj and is contained in Kj+1, thus Kj ⊂ K◦

j+1.
3. If U = ∅ there is nothing to show. Let U 	= ∅. Since U is an open set, every

z ∈ U has a positive distance to the complement of U , i.e., there is some j1 ∈ N+,
such that

dist‖.‖∞ (z, Cn \ U) ≥ 1
j1

.

Also, there is some j2 ∈ N+ ,such that

‖z‖∞ ≤ j2.

Then z ∈ Kj3 , where j3 := max {j1, j2} . Since every Kj is a subset of U, 3. follows.
4. If K is a compact subset of U the sets

{
K◦

j

∣∣ j ∈ N+

}
form an open cover

of K. Compactness of K implies the existence of some jK ∈ N+, such that

K ⊂
jK⋃
j=1

Kj ,

but since the Kj ⊂ Kj+1 for all j this implies K ⊂ KjK
. �

Remark 1.4.15. A sequence of compact sets having the properties 2. and 3. from
Lemma 1.4.14 is called a compact exhaustion. A locally compact Hausdorff space X
having a compact exhaustion is called countable at infinity. Thus, in the language
of general topology, Lemma 1.4.14 states that every open set in Cn is countable
at infinity.

Using the normal exhaustion of Lemma 1.4.14 we define a topology Tco on
the space C (U,E) by the family

(
pKj

)
j∈N+

of seminorms

pKj : C (U,E) → R, f �→ sup
x∈Kj

‖f (x)‖E

(cf. Exercise 1.4.12). Note that this turns C (U,E) into a metric space as was shown
in Exercise 1.4.7.

Definition 1.4.16. The topology Tco on C (U,E) is called the compact-open topology
or the topology of compact convergence.

The name topology of compact convergence stems from the following result.
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Proposition 1.4.17. A sequence (fj)j∈N
⊂ C (U,E) converges with respect to the

topology Tco if and only if (fj)j∈N
converges compactly on U.

Proof. Let K ⊂ U be compact. By Lemma 1.4.14 there is an index jK such that
K ⊂ KjK

. If fj → f with respect to Tco then

sup
x∈K

‖fj (x) − f (x)‖E = pK (fj − f) ≤ pKjK
(fj − f) → 0,

hence the sequence (fj)j∈N
converges uniformly on K. Conversely, if

lim
j→∞

sup
x∈K

‖fj (x) − f (x)‖E = 0

for every compact set K ⊂ U , then this holds in particular for the compact
exhaustion (1.6) . Lemma 1.4.11 implies that fj → f with respect to Tco. �

It can be shown that the topology Tco does not depend upon the special
choice of the compact exhaustion, i.e., if

(
K ′

j

)
j∈N

is any compact exhaustion of U ,
then the topology induced by the seminorms pK

′
j

coincides with Tco defined above.
We skip the proof of this, because we do not need the result in the following. The
interested reader may refer to [3] for details.

Proposition 1.4.18. (C (U,E) , Tco) is complete.

Proof. Let (fj)j∈N
be a Cauchy sequence in C (U,E) and K ⊂ U be a compact

set. Then
(
fj |K

)
j∈N

is a Cauchy sequence with respect to the norm ‖.‖E,∞ . Since(
C (K, E) , ‖.‖E,∞

)
is a Banach space there is an fK ∈ C (K, E) , which is the

uniform limit of
(
fj |K

)
j∈N

. Let z ∈ U be an arbitrary point. There is an open
neighbourhood Uz of z such that the closure Uz is compact and is contained in U.
By the above argument we have limj→∞ fj |Uz

= fUz . When we define

f : U → C, z �→ lim
j→∞

fj (z)

we find that fj |Uz
converges uniformly towards f |Uz

= fUz ∈ C
(
Uz

)
, hence, f is

continuous at z. Since z ∈ U is arbitrary we conclude f ∈ C (U,E) . �
Remark 1.4.19. Looking at the above proof we find that the only characteristic
we needed from the open set U was the fact that every point z ∈ U has a compact
neighbourhood contained in U. Therefore Proposition 1.4.18 holds for the space
C (X, E) of continuous mappings on every locally compact Hausdorff space X.
A complete metrizable topological vector space is called a Fréchet space. Thus,
C (X, E) is a Fréchet space. More precisely, since multiplication in C (X, E) is
continuous, it is a Fréchet algebra.

We return now to the investigation of the space O (U, Cm) of holomorphic
mappings. As a subspace of C (U, Cm) it inherits the topology of compact conver-
gence from C (U, Cm) .
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Theorem 1.4.20 (Weierstrass). Let U ⊂ Cn be an open set. Then O (U, Cm) is a
closed subspace of C (U, Cm) with respect to the topology of compact convergence.
For every α ∈ Nn the linear operator

Dα : O (U, Cm) → O (U, Cm) , f �→ Dαf

is continuous. In case m > 1, i.e., f = (f1, . . . , fm) the operator Dα has to be
applied to every component.

Proof. Since the assertion holds if and only if it holds in each component sepa-
rately, we may without loss of generality assume m = 1. Since C (U) is metrizable
it suffices to show that for every sequence (fj)j∈Nn ⊂ O (U) converging compactly
towards some f ∈ C (U) we have f ∈ O (U) and the sequence (Dαfj)j∈N

converges
compactly towards Dαf. As in one variable the major tool used here is Cauchy’s
integral formula. If a ∈ U there is a polydisc Pn

r (a) , which is relatively compact in
U. The sequence

(
fj |P n

r (a)

)
j∈Nn

converges uniformly towards f |
P n

r (a)
. Let Tn

r (a)

be the polytorus contained in the boundary of Pn
r (a) . For all w ∈ Tn

r (a) and all
z ∈ Pn

r (a),

lim
j→∞

fj (w)
(w − z)1

=
f (w)

(w − z)1

uniformly in w. Cauchy’s integral formula yields

f (z) = lim
j→∞

fj (z)

= lim
j→∞

(
1

2πi

)n ∫
T n

a (r)

fj (w)
(w − z)1

dw

=
(

1
2πi

)n ∫
T n

a (r)

f (w)
(w − z)1

dw

and Lemma 1.3.1 says that f is holomorphic. Moreover, by CIF we have

Dαf (z) = α!
(

1
2πi

)n ∫
T n

a (r)

f (w)
(w − z)α+1 dw.

Let K ⊂ U be compact. There is a compact set K ′ ⊂ U and a polyradius r′ ∈ Rn
+

such that for all a ∈ K the polydisc Pn
r′ (a) is relatively compact in K ′. By the

Cauchy inequalities,∣∣∣∣Dαf (a)
α!

− Dαfj (a)
α!

∣∣∣∣ ≤ 1
(r′)α sup

T n
r′ (a)

|f − fj |

≤ 1
(r′)α sup

K′
|f − fj | .
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Since fj converges compactly towards f and a ∈ K is arbitrary we find that Dαfj

converges towards Dαf compactly on U, hence, Dα is continuous. �
Exercise 1.4.21. Let D :=

{
(z, w) ∈ C2

∣∣ Re z > 0, Re w > 0
}

and

B : D → C, (z, w) �→
∫ 1

0

tw−1 (1 − t)z−1
dt.

B is called Euler’s beta function. Please show:

1. D is a convex domain.

2. B is holomorphic on D. (Hint : Construct a sequence (Bj)j≥1 ⊂ O (D) con-
verging compactly to B.)

3. B satisfies the functional equation

B (1, w) =
1
w

, B (z + 1, w) =
z

z + w
B (z, w)

and the estimate
|B (z, w)| ≤ B (Re z, Re w)

on D.

Exercise 1.4.22. Let D ⊂ Cn be a bounded domain with boundary ∂D and

A (D) :=
{
f ∈ C

(
D
)
| f |D ∈ O (D)

}
.

1. Show that A (D) , equipped with the norm

‖f‖∞ := sup
z∈D

|f (z)|

is a complex Banach algebra, i.e., a C− algebra, a Banach space and for all
f, g ∈ A (D) the inequality

‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞

holds.

2. The restriction mapping

ρ : A (D) → C (∂D) , f �→ f |∂D

is an isometric1 homomorphism of complex algebras. Is it bijective?

3. The image ρ (A (D)) is a closed subalgebra of C (∂D) with respect to the
topology induced by ‖.‖∞ (i.e., the topology of uniform convergence) on
C (∂D) . Is ρ (A (D)) an ideal in C (∂D)?

1i.e., ‖f‖∞ = ‖ρ (f)‖∞ for all f ∈ A (D) .
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1.4.3 The Theorems of Arzelà–Ascoli and Montel

We consider the question of compactness in the spaces C (U,E) and O (U, Cm)
leading to the multivariable version of Montel’s Theorem. Recall that in one vari-
able theory Montel’s Theorem is an important tool in the proof of the Riemann
Mapping Theorem. Ironically, in Chapter III we will use the multidimensional ver-
sion of Montel’s Theorem to give a proof that the Riemann Mapping Theorem does
not hold in Cn if n > 1. The proof of Montel’s Theorem uses the Arzelà–Ascoli
Theorem, which we include in a rather general form, and which has applications
outside complex analysis as well.

Definition 1.4.23. Let (X, dX) be a metric space, (E, ‖.‖E) a (real or complex)
Banach space, U ⊂ X an open subset and F a family of functions f : U → E.

1. The family F is called bounded if for every compact subset K ⊂ U there
exists a constant 0 ≤ MK < ∞ such that

sup
f∈F

sup
x∈K

‖f (x)‖E ≤ MK .

2. The family F is called locally bounded if for all a ∈ U there exists an open
neighbourhood V = V (a) such that

F|V := {f |A | f ∈ F}

is bounded.

3. The family F is called equicontinuous if for every ε > 0 there exists some
δ = δε > 0 such that

‖f (x) − f (y)‖ < ε

for all f ∈ F and all x, y ∈ U satisfying dX (x, y) < δ.

4. The family F is called locally equicontinuous if for all a ∈ U there is an open
neighbourhood V = V (a) such that F|V is equicontinuous.

Trivially, if F is equicontinuous then F ⊂ C (X, E) . The next proposition
shows that for families of holomorphic functions the weaker condition of local
boundedness already implies equicontinuity. This will be used in the proof of Mon-
tel’s Theorem.

Proposition 1.4.24. Let U ⊂ Cn be open and F ⊂ O (U, Cm) be a locally bounded
family. Then F is locally equicontinuous on U.

Proof. Since all norms in Cm are equivalent it suffices to consider the maximum
norm ‖.‖∞ in Cm, a ∈ U, r > 0,M > 0 such that

Pr (a) = {z ∈ Cn | ‖z − a‖∞ ≤ r} ⊂ U
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and ∥∥∥f |
Pr(a)

∥∥∥
∞

≤ M

for all f ∈ F . This is possible, because U is open, Pr (a) is compact and F is
locally bounded. Put

K := P r
2

(a)

and let ε > 0, f ∈ F and x, y ∈ K be arbitrary. Applying the Mean Value Theorem
in R2n to f gives

‖f (x) − f (y)‖∞ ≤ ‖x − y‖∞ sup
z∈K

‖Df (z)‖ ,

where
sup
z∈K

‖Df (z)‖ = sup
z∈K

sup
‖x‖∞=1

‖Df (z) x‖∞ .

Assume without loss of generality that

Df (z) x =

(
n∑

k=1

∂f1 (z)
∂zk

xk, . . . ,

n∑
k=1

∂fm (z)
∂zk

xk

)

attains its maximum absolute value over K and the sphere ‖x‖∞ = 1 in the first
component, i.e.,

sup
z∈K

sup
‖x‖∞=1

‖Df (z) x‖∞ = sup
z∈K

sup
‖x‖∞=1

∣∣∣∣∣
n∑

k=1

∂f1 (z)
∂zk

xk

∣∣∣∣∣
≤ sup

z∈K

n∑
k=1

∣∣∣∣∂f1 (z)
∂zk

∣∣∣∣
≤ n

n
max
k=1

sup
z∈K

∣∣∣∣∂f1 (z)
∂zk

∣∣∣∣ .
For z ∈ K = P r

2
(a) and ζ ∈ Tn

r (a) we have for all k,

|ζk − zk| ≥
r

2
.

This, together with the Cauchy Integral Formula, implies

∣∣∣∣∂f1 (z)
∂zk

∣∣∣∣ =

∣∣∣∣∣∣∣
(

1
2πi

)n ∫
T n

r (a)

f1 (ζ)
(ζk − zk)2

dζ

∣∣∣∣∣∣∣
≤ 4rn−2 sup

ζ∈T n
r (a)

|f1 (ζ)| ≤ 4rn−2M.
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Choosing
δ :=

ε

4rn−2M

gives that for all x, y ∈ K with ‖x − y‖∞ < δ we have

‖f (x) − f (y)‖∞ < ε,

hence, F is locally equicontinuous. �

Lemma 1.4.25. Let X be a locally compact and connected metric space and K � X
a proper compact subset. Then there is a compact set H ⊂ X such that K ⊂ H◦

and dist (K, ∂H) > 0.

Proof. X is locally compact. Therefore, every x ∈ K has an open neighbourhood
U = U (x) ⊂⊂ X. The set

U := {U (z) | x ∈ K}

then forms an open cover of K containing a finite subcover

U1 (x1) , . . . , Ul (xl) .

Since X is connected it contains no proper subsets that are both open and closed.
This implies that

K ⊂
l⋃

j=1

Uj (xj) �
l⋃

j=1

Uj (xj) =: H.

By construction H is compact and contains K in its interior. Since the boundary
∂H is closed we have

K ∩ ∂H = ∅,

thus,
dist (K, ∂H) > 0. �

Lemma 1.4.26. Let X be a locally compact and connected metric space, K �
X a compact subset, A ⊂ K a dense subset, E a Banach space, F ⊂ C (K, E)
an equicontinuous family of continuous mappings and (fj)j≥1 ⊂ F a sequence
converging pointwise on A. Then (fj)j≥1 converges uniformly on K.

Proof. We only have to show that (fj)j≥1 is a uniform Cauchy sequence on K.
Convergence then follows from completeness of E. Let ε > 0. From Lemma 1.4.25
we know that there is a compact set H containing K in its interior such that K
has a positive distance to the boundary of H. Equicontinuity of F on K implies
that we can find some δ = δε such that

0 < δ ≤ 1
2

dist (K, ∂H)
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and
‖fj (x) − fj (y)‖ <

ε

3

for all x, y ∈ K satisfying d (x, y) ≤ δ and all j ≥ 0. The open δ-balls

{Bδ (x) | x ∈ K}

form an open cover of K and because δ ≤ 1
2 dist (K, ∂H) we have.

K ⊂
⋃

x∈K

Bδ (x) ⊂
⋃

x∈K

Bδ (x) ⊂ H.

This open cover contains a finite subcover and because A is dense in K we can
choose finitely many points

x1, . . . , xp ∈ A

such that

K ⊂
p⋃

j=1

Bδ (xj)︸ ︷︷ ︸
=:Kj

.

(fj)j≥0 is pointwise a Cauchy sequence on A, hence, there is N = Nε ∈ N such
that

‖fk (xj) − fl (xj)‖ <
ε

3

for all k, l ≥ N and all j = 1, . . . , p. If x ∈ K there is an index q ∈ {1, . . . , p}
such that x ∈ Kq, which implies d (x, xq) ≤ δ. Now we can conclude that for all
k, l ≥ N and all x ∈ K,

‖fk (x) − fl (x)‖ ≤ ‖fk (x) − fk (xq)‖ + ‖fk (xq) − fl (xq)‖
+ ‖fl (xq) − fl (x)‖

<
ε

3
+

ε

3
+

ε

3
= ε.

�

Theorem 1.4.27 (Arzelà–Ascoli). Let X be a locally compact connected metric
space, K ⊂ X a compact subset containing a countable dense subset A ⊂ K, E a
finite dimensional Banach space over R or C, F ⊂ C (K, E) a family of equicon-
tinuous functions and (fj)j≥1 ⊂ F a bounded sequence, i.e., there is a constant
C > 0 such that

sup
j≥1

sup
x∈K

‖fj (x)‖ ≤ C.

Then (fj)j≥0 contains a subsequence converging uniformly on K.
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Proof. Since A is countable, we may write A = {x1, x2, . . . } . Because of

sup
j≥1

sup
l≥1

‖fj (xl)‖ ≤ C

the sequence (fj (x1))j≥1 is bounded in E. Since E is of finite dimension the Theo-
rem of Bolzano–Weierstrass is valid in E. Hence, there is a convergent subsequence
(fpk

(x1))k≥1 of (fj (x1))j≥1 . Because of∥∥∥∥sup
k≥1

fpk
(x2)

∥∥∥∥ ≤ C,

by the same argument, we obtain a convergent subsequence

(fqk
(x2))k≥1

of (fpk
(x1))k≥1 , where (qk)k≥1 is a subsequence of (pk)k≥1 . An iteration of this

process yields a series of subsequences of (fj)j≥1,

fp1 fp2 fp3 . . . convergent in x1

fq1 fq2 fq3 . . . convergent in x1, x2

fr1 fr2 fr3 . . . convergent in x1, x2, x3

...
...

...
. . .

Here, the sequence in the k − th row forms a subsequence of the sequence in the
(k − 1)− th row. Hence, the diagonal sequence fp1 , fq2 , fr3 , ... converges pointwise
on all of A. Lemma 1.4.26, however, states that the convergence is uniform on
K. �
Corollary 1.4.28. If U ⊂ X is open and (fj)j≥1 is a locally bounded and locally
equicontinuous sequence, then (fj)j≥1 contains a subsequence converging locally
uniformly on U.

Proof. Since X is locally compact every a ∈ U possesses a relatively compact
neighbourhood V ⊂⊂ U. Apply the Arzelà–Ascoli Theorem on the compact set
V . �
Remark 1.4.29. In the case X = Cn a suitable choice for the set A is the set of
points in K with rational coordinates, i.e.,

A = K ∩ (Q + iQ)

We are now ready to consider compact sets in the space O (U, Cm) of holo-
morphic mappings. Remember that in a metric space the notions of compactness
and sequential compactness coincide. In the space O (U, Cm) , provided with the
topology of compact convergence, a sequence (fj) converges if and only if it con-
verges uniformly on every compact subset K of D. The next proposition states
that O (U, Cm) has the Bolzano–Weierstrass property.



1.4. O (U) as a topological space 33

Proposition 1.4.30. Every locally bounded sequence (fj) ⊂ O (U, Cm) contains a
convergent subsequence.

Proof. From Proposition 1.4.24 we know that every locally bounded sequence in
O (U, Cm) is locally equicontinuous, hence, it contains a subsequence converging
locally uniformly on D by Corollary 1.4.28. �
Theorem 1.4.31 (Montel). Let U ⊂ Cn be an open set and F ⊂ O (U, Cm) be a
family of holomorphic mappings. Then the following are equivalent:

1. The family F is locally bounded.

2. The family F is relatively compact in O (U, Cm) .

Proof. 1. ⇒ 2. Let (fj) ⊂ F be a sequence. Then (fj) is locally bounded and from
Proposition 1.4.30 we know that (fj) contains a convergent subsequence. Thus, F
is sequentially compact, hence, compact.

2. ⇒ 1. Let K ⊂ U be a compact set. The function

ϕ : F → R+, f �→ ‖f |K‖∞
is continuous and since F is compact, ϕ

(
F
)

is bounded. Hence,

sup
f∈F

‖f |K‖∞ < ∞.

�
Corollary 1.4.32. A subset F ⊂ O (U, Cm) is compact if and only if F is closed
and bounded.

Proof. If F is compact F is closed and bounded. This holds in every metric space.
If F is closed and bounded, Montel’s Theorem states that F is compact. �
Remark 1.4.33. Locally convex spaces in which the compact sets are exactly those
which are closed and bounded are called Montel spaces. Note the analogy to the
characterization of compact sets in Rn or Cn given by the Heine–Borel Theorem.

Example 1.4.34. Montel’s Theorem does not hold for real-analytic functions. For
instance, the family F consisting of the functions

fj : R → R, x �→ cos (jx)

is bounded in C (R) , but not relatively compact. This can be seen as follows. Since

‖fj‖∞ ≤ 1 for all j ∈ N,

the family F is bounded. If F were compact, every sequence in F would contain
a convergent subsequence. However, on the compact set K := {π} we have

cos (kπ) − cos (lπ) =

⎧⎨⎩ −2, if k ≡ 1 mod 2, l ≡ 0 mod 2
0 if k ≡ 0 mod 2, l ≡ 0 mod 2
2 if k ≡ 0 mod 2, l ≡ 1 mod 2

,
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thus (fj |K)j∈N
contains no Cauchy subsequence.

Definition 1.4.35. Let D ⊂ Cn be a domain. A subset A ⊂ D is called a set of
uniqueness if for every f ∈ O (D) the condition f |A = 0 implies that f = 0.

Example 1.4.36. If D ⊂ Cn is a domain, then every open subset A ⊂ D is a set
of uniqueness by the Identity Theorem. Also, every dense subset of D is a set of
uniqueness, because O (D) ⊂ C (D) .

Exercise 1.4.37. Prove Vitali’s Theorem: Let D ⊂ Cn be a domain, A ⊂ D a set of
uniqueness and (fk)k∈N a bounded sequence in O (D) , which converges pointwise
on A. Then the sequence (fk)k∈N converges towards a holomorphic function f ∈
O (D) . Hint : Apply Montel’s Theorem to the set

{fk| k ∈ N}.

1.5 Power series and Taylor series

In one dimension Cauchy’s integral formula is used to prove that every holomorphic
function can be expanded into its Taylor series everywhere it is defined. The same
holds in several variables and the proof is also analogous. Before we come to this
we introduce general power series of n complex variables. Since Nn does not carry
a natural ordering, we start by recalling some well-known facts about summability
in Banach spaces.

1.5.1 Summable families in Banach spaces

Let (E, ‖.‖) be a Banach space and I be a countable set.

Definition 1.5.1. Let (aα)α∈I be a countable family in E. (aα)α∈I is called ab-
solutely summable, if there exists a bijection

τ : N →I,

such that the series
∑

n≥0

∥∥aτ(n)

∥∥ converges.

The following two lemmas are well-known (see, e.g., [1] Ch. 5.5)

Lemma 1.5.2. Let (aα)α∈I be absolutely summable in the Banach space E. Then
the following holds:

1.
∑

n≥0 aϕ(n) converges for every bijection ϕ : N → I to the same limit.

2. If I = Nn, the limit can be computed from the homogenous expansion

∑
α∈Nn

aα =
∞∑

k=0

⎛⎝ ∑
|α|=k

aα

⎞⎠ .
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Remark 1.5.3. Thanks to this lemma the expression∑
α∈I

aα :=
∑
n≥0

aτ(n)

is well defined. We say that
∑

α∈I aα converges absolutely.

Lemma 1.5.4. The following statements are equivalent.

1. The family (aα)α∈I is absolutely summable.

2. The series
∑

α∈I aα converges absolutely.

3. There exists a constant C ≥ 0, such that
∑

α∈F ‖aα‖ < C for all finite subsets
F ⊂ I.

1.5.2 Power series

Definition 1.5.5. Let (cα)α∈Nn be a family of complex numbers. The expression∑
α∈Nn

cα (z − a)α =
∑

α∈Nn

cα1...αn
(z1 − a1)

α1 · · · (zn − an)αn

is called a power series in n complex variables z1, . . . , zn centered at a ∈ Cn.

For simpler notation we will mainly consider a = 0.As in one dimension, a
power series always converges for z = a, so it makes sense to ask for the set of
points in Cn, on which a power series converges.

Definition 1.5.6. Let
∑

α∈Nn cαzα be a power series. The interior of the set of
points on which the series converges is called the domain of convergence of the
series.

Example 1.5.7. The geometric series ∑
α∈Nn

zα

converges on the unit polycylinder. This can be seen as follows. Let z ∈ Pn
1 (0)

and F a finite subset of Nn. Then there is some q ∈ [0, 1[ , such that |zj | ≤ q for
all j = 1, . . . , n. Hence,

∑
α∈F

|zα| =
∑
α∈F

|z1|α1 · · · |zn|αn ≤
∑
α∈F

qα1+...αn ≤
∞∑

j=0

qj =
1

1 − q
.
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Moreover, the limit can be computed from the homogenous expansion

∑
α∈Nn

zα =
∞∑

k=0

⎛⎝ ∑
|α|=k

zα

⎞⎠
=

∞∑
k1=0

· · ·
∞∑

kn=0

zα1
1 · · · zαn

n

=

( ∞∑
k1=0

zαn
1

)
· · ·

( ∞∑
kn=0

zαn
n

)
=

n∏
j=1

1
1 − zj

.

As in one variable, this example can be generalized, which finally leads to
the Taylor expansion formula for holomorphic functions in n variables.

Lemma 1.5.8 (Abel). Let (cα)α∈Nn be a family of complex numbers, t ∈ Rn
+, such

that the family (cαtα)α∈Nn is bounded and r ∈ Rn
+, such that rk < tk for all

k = 1, . . . , n. Then the power series ∑
α∈Nn

cαzα

converges absolutely and uniformly on the closed polycylinder Pn
r (0).

Proof. Put s := supα∈Nn |cαtα1
1 · · · tαn

n | . Since (cαtα)α∈Nn is bounded, we have
0 ≤ s < ∞. Put

q :=
n

max
k=1

rk

tk
.

For z ∈ Pn
r (0) we have

|cαzα| ≤ |cαtα|
∣∣∣∣rα

tα

∣∣∣∣ ≤ sq|α|,

hence, ∑
α∈Nn

|cαzα| ≤
∑

α∈Nn

sq|α| =
s

(1 − q)n < ∞. �

Corollary 1.5.9 (Taylor expansion). Let U ⊂ Cn be an open set, a ∈ U, r ∈ Rn
+,

such that Pn
r (a) ⊂ U and f ∈ O (U) . Then the following holds:

1. The power series ∑
α∈Nn

Dαf (a)
α!

(z − a)α

converges compactly on Pn
r (a) .
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2. The function

jf : Pn
r (a) → C, z �→

∑
α∈Nn

Dαf (a)
α!

(z − a)α

is holomorphic.

3. For all z ∈ Pn
r (a) the equation

f (z) = jf (z)

holds.

Proof. 1. Let K ⊂ Pn
r (a) be a compact subset and Tn

r (a) be the compact poly-
torus. By the Cauchy inequalities∥∥∥∥Dαf (a)

α!

∥∥∥∥ ≤ α!
rα

∥∥∥f |T n
r (a)

∥∥∥
∞

.

Since K is compact it is bounded. Hence, for z ∈ K the family(
Dαf (a)

α!
(z − a)α

)
α∈Nn

is bounded. The proposition now follows from Abel’s lemma.
2. It follows from 1. that

jf (z) = lim
k→∞

∑
|α|≤k

Dαf (a)
α!

(z − a)α

compactly on Pr (a). Holomorphy of polynomials and Weierstrass’ theorem imply
that jf is holomorphic on Pn

r (a) .
3. Let z ∈ Pn

r (a) be fixed. Choose ρ ∈ Rn
+ such that ρj < rj , j = 1, . . . , n

and
z ∈ Pn

ρ (a) ⊂ Pn
r (a) .

If w ∈ Tn
r (a) then

1
w − z

=
1

w − a

∑
α∈Nn

(
z − a

w − a

)α

uniformly in w ∈ Tn
r (a) . Cauchy’s integral formula yields

f (z) =
(

1
2πi

)n ∫
T n

r (a)

f (w)
w − z

dw

=
(

1
2πi

)n ∑
α∈Nn

(z − a)α
∫

T n
r (a)

f (w)
(w − a)α+1 dw

= jf (z) . �
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Exercise 1.5.10. Let f ∈ O (Cn) and ν ∈ Nn be a fixed multiindex. Show that if
there is a constant C > 0 such that

|f (z)| ≤ C |zν |

for all z ∈ Cn, then f is a polynomial of degree at most |ν| . Which result follows
for |ν| = 0?

Exercise 1.5.11. Show that for all ν ∈ Nn the domains of convergence of a power
series

∑
α cαzα and its derived series

∑
α cα (Dνzα) coincide.

Exercise 1.5.12. Let f (z) :=
∑

α aαzα and g (z) :=
∑

α bαzα be defined by con-
vergent power series and let f (z) = g (z) for all z in some open set U ⊂ Cn. Then
αα = bα for all α ∈ Nn.

Exercise 1.5.13. Let w∈Cn and let (cα)α∈Nn be a family in C such that (cαwα)α∈Nn

is unbounded in C. Show that the power series∑
α∈Nn

cαzα

diverges for every z ∈ Cn, which satisfies |zj | > |wj | , j = 1, . . . , n.

Exercise 1.5.14. Let D be a domain and f ∈ O (D) such that the function

‖f‖2 : D → R, z �→ ‖f (z)‖2

is constant. Show that f must already be constant (Hint : Use Exercise 1.2.27).

1.5.3 Reinhardt domains and Laurent expansion

This section studies ways to expand a holomorphic function f into a series other
than a power series. It turns out that the geometry of the underlying domain on
which f is defined plays a crucial role. The results of this chapter will lead to a
phenomenon alien to the theory in one variable, i.e., in more than one variable there
are domains D ⊂ Cn such that every function f ∈ O (D) extends holomorphically
to a strictly larger domain. Extension phenomena will be examined in depth later
in this book. We start by taking a closer look at the geometry of the domain
of convergence of a power series. This will lead to the definition of Reinhardt
domains.

For the study of subsets of Cn, sometimes a picture of the so-called absolute
space is useful. We regard the mapping

τ : Cn → Rn, (z1, . . . , zn) �→ (|z1| , . . . , |zn|) . (1.7)

If U ⊂ Cn the set τ (U) is called the absolute space of U.
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Example 1.5.15. Let B be the unit ball in C2 with respect to the Euclidian norm
‖.‖2 . The absolute space of B is the set

τ (B) =
{

(|z1| , |z2|) ∈ R2
∣∣∣ |z1|2 + |z2|2 < 1

}
which is the planar domain enclosed by the two axes and the quarter circle in the
positive quadrant in R2.

Absolute space τ(B)

Note that every point in absolute space in this picture represents a 2-torus.

Exercise 1.5.16. Determine the domains D1, D2 of convergence of the power series

f1 (z, w) :=
∑

k,l≥0

zkwl

and

f2 (z, w) :=
∑

k,l≥0

k2

l!
zkwl

and sketch the absolute spaces τ (D1) , τ (D2) .

If a power series
∑

α cαzα converges absolutely in z ∈ Cn, then by Abel’s
Lemma also the power series∑

α

cα (ζ1z1)
α1 · · · (ζnzn)αn

converges for all ζ1, . . . , ζn ∈ T1. Let

Tn = T1 × · · · × T1︸ ︷︷ ︸
n times

=
{
ζ ∈ Cn |

∣∣ζj

∣∣ = 1, j = 1, . . . , n
}

be the unit polytorus in Cn. Tn carries an abelian group structure defined by
componentwise multiplication

ζ · ξ := (ζ1ξ1, . . . , ζnξn) .

The neutral element is the vector (1, . . . , 1) ∈ Tn.
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Definition 1.5.17. Let G be a group with neutral element e and X an arbitrary
set.

1. G is said to act on X from the left if there is a mapping

µ : G × X → X

with the properties
µ (e, x) = x for all x ∈ X

and
µ (ab, x) = µ (a, µ (b, x)) for all a, b ∈ G and all x ∈ X.

Actions from the right are defined in the obvious way.

2. Let E be a vector space and L (E) be the vector space of linear endomor-
phisms of E. A homomorphism

µ : G → L (E)

is called a representation of G on E.

Example 1.5.18. Representations of groups always exist, since the mapping defined
by

µ (g) := idE for all g ∈ G,

where idE denotes the identity mapping of E, is a representation, called the trivial
representation.

Remark 1.5.19. The concepts of group action and group representation are equiv-
alent in the following way. If µ : G × E → E determines a left group action on a
vector space E, which has the additional property that µ is linear in the second
argument, we can define a representation of G on E by

G → L (E) , g �→ µg,

where µg (x) := µ (g, x) for all x ∈ E. Vice versa, if µ̃ : G → L (E) is a represen-
tation of G on E, then G acts on E from the left by

µ : G × E → E, (g, x) �→ µ̃ (g) (x) .

If D ⊂ Cn is the domain of convergence of some power series it is easy to see
that Tn acts on D by componentwise multiplication

µ : Tn × D → D, (ζ, z) �→ (ζ1z1, . . . , ζnzn) . (1.8)

Furthermore, for every ζ ∈ Tn the mapping

µζ : D → D, z �→ µ (ζ, z)

is holomorphic. Note that Tn does not act on arbitrary subsets of Cn. We use the
following notation. If θ = (θ1, . . . , θn) ∈ Rn we write

eiθ · z :=
(
eiθ1z1, . . . , e

iθnzn

)
.
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Example 1.5.20. Let D ⊂ C be a domain. If T1 acts on D, then D is either the
whole complex plane or a disc centered at zero or an annulus centered at zero.

Proof. If T 1acts on D and z ∈ D, then D also contains the circle

C|z| :=
{
|z| eit | 0 ≤ t ≤ 2π

}
.

Because z ∈ C|z| ⊂ D for all z ∈ D we have

D =
⋃

z∈D

C|z|,

which is either the whole plane or a disc centered at zero or an annulus centered
at zero. �

Definition 1.5.21. A subset D ⊂ Cn is called polycircular if Tn acts on D by
componentwise multiplication. If D is a domain then D is called a Reinhardt
domain.

With the above definition we can say that the domains of convergence of
power series are Reinhardt domains. Note that the property of being a Reinhardt
domain is not invariant under biholomorphic equivalence. For instance, the Rie-
mann Mapping Theorem in one variable says that every simply connected domain
D properly contained in C is biholomorphically equivalent to the open unit disk,
which is a Reinhardt domain, even if D isn’t.

Example 1.5.22. Let p ∈ N∪{∞} and r > 0. Then the ball of radius r with respect
to ‖.‖p centered at zero

Bn
r (0) =

{
z ∈ Cn

∣∣∣ ‖z‖p < R
}

is a Reinhardt domain, because for all ζ ∈ Tn and p ∈ N,

‖ζ · z‖p =

⎛⎝ n∑
j=1

∣∣ζjzj

∣∣p⎞⎠ 1
p

=

⎛⎝ n∑
j=1

|zj |p
⎞⎠ 1

p

= ‖z‖p .

The case p = ∞ follows from Exercise 1.1.5.

Exercise 1.5.23. Let D ⊂ Cn be a domain and τ be the mapping (1.7) into absolute
space. Show that D is a Reinhardt domain if and only if τ−1 (τ (D)) = D.

Definition 1.5.24. For j = 1, . . . , n let 0 ≤ rj < Rj ≤ +∞. Let a ∈ Cn. The set

An
r,R (a) := {z ∈ Cn | rj < |zj − aj | < Rj , j = 1, . . . , n}

is called a polyannulus with polyradii r and R centered at a.
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A polyannulus is the Cartesian product A1 × · · · × An of one-dimensional
annuli. If a = 0 then a polyannulus is a Reinhardt domain.

Exercise 1.5.25. Let D be a Reinhardt domain. Show that for every a ∈ D there
are polyradii r < R such that

a ∈ An
r,R (0) ⊂ D.

In particular, every Reinhardt domain is the union of polyannuli.

Theorem 1.5.26 (Laurent expansion). Let A := An
r,R (a) be a polyannulus centered

at a ∈ Cn and f ∈ O (A) . Let rj < ρj < Rj , .j = 1, . . . , n. Then f has a Laurent
expansion

f (z) =
∑

α∈Zn

cα (z − a)α

converging compactly on A. The coefficients cα are given by

cα =
(

1
2πi

)n ∫
|wn−an|=ρn

· · ·
∫

|w1−a1|=ρ1

f (w)
(w − a)α+1 dw.

Proof. We prove the theorem by induction on n. The case n = 1 is known. Suppose
n ≥ 2. For z ∈ Cn we write

z = (z1, z
′)

where z′ = (z2, . . . , zn) ∈ Cn−1. For fixed w1 with |w1 − a1| = ρ1 the function
f (w1, .) is holomorphic on A2 × · · · × An. By induction hypothesis we have

f (w1, z
′) =

∑
α′∈Zn−1

(z′ − a′)α′
(

1
2πi

)n−1

×
∫

|wn−an|=ρn

· · ·
∫

|w2−a2|=ρ2

f (w1, w
′)

(w′ − a′)α′+1
dw′.

Also, for fixed z′ we have the one-dimensional Laurent expansion

f (z1, z
′) =

∑
α1∈Z

(z1 − a1)
α1 1

2πi

∫
|w1−a1|=ρ1

f (w1, z
′)

(w1 − a1)
α1+1 dw1.

Combining these two expansions yields that for all z satisfying

rj < |zj − aj | < ρj ,

for all j the equation

f (z) =
∑

α∈Zn

(
1

2πi

)n ∫
|wn−an|=ρn

· · ·
∫

|w1−a1|=ρ1

f (w)
(w − a)α+1 (z − a)α

dw
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holds pointwise on A. To prove the compact convergence let K ⊂ A be a compact
set. If we put

ρ−j := min
z∈K

|zj − aj | , ρ+
j := max

z∈K
|zj − aj |

and choose r−j , R−
j such that

rj < r−j < ρ−j ≤ ρ+
j < R−

j < Rj ,

we conclude from Cauchy’s integral theorem (homotopy version) that the coeffi-
cients cα satisfy

cα =
(

1
2πi

)n ∫
|wn−an|=rsgnαn

n

· · ·
∫

|w1−a1|=r
sgnα1
1

f (w)
(w − a)α+1 dw,

where

r
sgnαj

j :=
{

r+
j , if αj ≥ 0

r−j , if αj < 0
.

Then for all z ∈ K and all α ∈ Zn we obtain from the standard estimate for line
integrals over circles

|cα (z − a)α| ≤
n∏

j=1
αj≥0

(
ρ+

j

R−
j

)αj n∏
j=1

αj<0

(
r−j
ρ−j

)|αj |
sup

w∈An
r−,R−(a)

|f (w)| .

With

q :=
n

max
j=1

{
ρ+

j

R−
j

,
r−j
ρ−j

}
and

MK := sup
w∈An

r−,R−(a)

|f (w)|

we have ∑
α∈Zn

|cα (z − a)α| ≤ MK

∑
α∈Zn

q|α| =
MK

(1 − q)n < ∞

on K. �
With Exercise 1.5.25 in mind we can say that Theorem 1.5.26 holds locally for

every function holomorphic on a Reinhardt domain. We use the Laurent expansion
to give another series expansion for holomorphic functions on Reinhardt domains.

Theorem 1.5.27. Let D ⊂ Cn be a Reinhardt domain and f ∈ O (D) . For every
α ∈ Zn define

fα : D → C, z �→
(

1
2πi

)n ∫
Tn

f (ζ · z)
ζα+1 dζ, (1.9)
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where ζ · z = (ζ1z1, . . . , ζnzn) . Then fα ∈ O (D) and the series∑
α∈Zn

fα (z)

converges compactly on D towards f.

Proof. Since D is a Reinhardt domain for every z ∈ D, the set

Xz := {ζ ∈ Cn | ζ · z ∈ D}

is polycircular and contains the unit polytorus Tn. It is also open in Cn, because
the mapping

ζ �→ ζ · z
is continuous. Thus, there exists an open polyannulus Az centered at zero such
that

Tn ⊂ Az ⊂ Xz.

Define
gz : Az → C, ζ �→ f (ζ · z) .

Then gz is holomorphic on Az. From Theorem 1.5.26 we obtain the Laurent ex-
pansion at zero

gz (ζ) =
∑

α∈Zn

cα (z) ζα,

with

cα (z) =
(

1
2πi

)n ∫
Tn

gz (ζ)
ζα+1 dζ

=
(

1
2πi

)n ∫
Tn

f (ζ · z)
ζα+1 dζ

= fα (z) .

Choosing ζ = (1, . . . , 1) we find that

f (z) =
∑

α∈Zn

fα (z)

pointwise on D. Let K ⊂ D be compact. Then also

Tn · K := {ζ · z | ζ ∈ Tn, z ∈ K}

is compact by continuity of the action and is contained in D. This implies the
existence of some R > 1 such that

(R − 1) sup
z∈K

‖z‖∞ < δ := dist‖.‖∞ (Tn · K, ∂D) .
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We claim that for all z ∈ K the compact annulus

A :=
{

ζ ∈ Cn | 1
R

≤
∣∣ζj

∣∣ ≤ R, j = 1, . . . , n

}
is contained in Az. This can be seen as follows. If 1

R <
∣∣ζj

∣∣ < R, then

∣∣ζj

∣∣− 1 ≤ R − 1, 1 −
∣∣ζj

∣∣ ≤ 1 − 1
R

=
R − 1

R
< R − 1,

hence,
∣∣∣∣ζj

∣∣− 1
∣∣ ≤ R − 1. If z ∈ K, then for all j = 1, . . . , n,∣∣∣∣∣ζjzj −

ζj∣∣ζj

∣∣zj

∣∣∣∣∣ =

∣∣∣∣∣(∣∣ζj

∣∣− 1
) ζj∣∣ζj

∣∣zj

∣∣∣∣∣
=

∣∣∣∣ζj

∣∣− 1
∣∣ |zj |

≤ (R − 1) ‖z‖∞
< δ,

thus ζ · z ∈ D. This implies ζ ∈ Az. By the homotopy version of Cauchy’s Integral
Theorem we have

fα (z) =
(

1
2πi

)n ∫
Tn

f (ζ · z)
ζα+1 dζ

=
(

1
2πi

)n ∫
|ζn|=Rsgnαn

· · ·
∫

|ζ1|=Rsgnα1

f (ζ · z)
ζα+1 .

Put

MK := max
{
|f (ζz)| | z ∈ K,

1
R

≤
∣∣ζj

∣∣ ≤ R, j = 1, . . . , n

}
.

Then the standard estimate yields

|fα (z)| ≤ MK

R|α| ,

which implies that
∑

α∈Zn fα (z) converges absolutely and uniformly on K. �

Exercise 1.5.28. Let fα be the function (1.9) .

1. Show that fα is homogenous of order α on Tn, i.e.,

fα (ζ · z) = ζαfα (z)

for all ζ ∈ T nand z ∈ D.
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2. Prove the formula

fα (z) =
(

1
2πi

)n ∫
[0,2π]n

f
(
eiθ · z

)
e−i(α|θ)dθ.

Exercise 1.5.29. A domain D ⊂ Cn is called circular if T1 acts on D by scalar
multiplication, i.e.,

µ : T1 × D → D, (ζ, z) �→ ζz := (ζz1, . . . ζzn)

Let D be a circular domain and f ∈ O (D) .

1. Show that for all k ∈ Z the formula

fk (z) :=
1

2πi

∫
T1

f (ζz)
ζk+1

dζ

defines a holomorphic function on D which satisfies

fk (ζz) = ζkfk (z)

for all ζ ∈ T1, z ∈ D.

2. The series ∑
k∈Z

fk

converges compactly on D to the function f.

3. If 0 ∈ D then fk = 0 for all k < 0.



Chapter 2

Continuation on circular and
polycircular domains

In one-dimensional function theory it is known that for every domain D ∈ C there
exists a function f ∈ O (D) which cannot be holomorphically extended to a strictly
larger domain (see, e.g., [4], Satz VIII, 5.2. We will prove this result in a general
setting in Chapter 7.). For example, the function f defined by f (z) =

∑∞
k=0 zk! is

holomorphic on the unit disc B1
1 (0) and is unbounded near every boundary point

of B1
1 (0) . Thus, it cannot be expanded to any domain strictly larger than B1

1 (0) .1

In n ≥ 2 dimensions the situation changes. Here we encounter domains D hav-
ing the property that every function f ∈ O (D) can be holomorphically extended
to a larger domain. This has many interesting consequences, which illustrate a
big difference between complex analysis in one and in more than one variable.
This chapter studies extension phenomena for holomorphic functions based on the
geometry of their domain of definition. We will encounter deeper extension theo-
rems (Riemann’s Removable Singularity Theorems, Hartogs’ Kugelsatz, Bochner’s
Extension Theorem for tube domains) in the next chapters, finally leading to the
notion of holomorphy domains and the theory of Cartan and Thullen.

2.1 Holomorphic continuation

Definition 2.1.1. Let D1, D be two domains in Cn with D1 ⊂ D and f ∈ O (D1) .
We say that f can be holomorphically extended (or continued) to D if there is a
function F ∈ O (D) whose restriction to D1 coincides with f, i.e.,

F |D1
= f.

1The reader who is unfamiliar with this example should carry out a proof by considering the
values f

�
teiθ

�
with 0 ≤ t < 1 and θ ∈ Q.
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Example 2.1.2. Let Pn
1 (0) be the unit polydisc in Cn. The function

f : Pn
1 (0) → C

defined by the geometric series

f (z) =
∑

α∈Nn

zα

can be holomorphically extended to Cn \ A by

F (z) :=
n∏

j=1

1
1 − zj

,

where
A := {z ∈ Cn | ∃j : 1 ≤ j ≤ n : zj = 1} .

Proposition 2.1.3. Let ∅ 	= D1 ⊂ D ⊂ Cn be two domains. If a function f ∈ O (D1)
allows a holomorphic extension F ∈ O (D), this extension is necessarily unique.

Proof. If F,G ∈ O (D) are two holomorphic extensions they coincide on D1, which
is open. By the Identity Theorem F = G on D. �

An equivalent formulation of Proposition 2.1.3 is that the restriction mapping

ρ : O (D) → O (D1) , F �→ F |D1
(2.1)

is injective. ρ is a (continuous) homomorphism of complex algebras, so a natural
question is under what circumstances is ρ an isomorphism? ρ is surjective if and
only if every f ∈ O (D1) is the restriction of some F ∈ O (D), that is, if every
f ∈ O (D1) allows a holomorphic continuation to D.

Definition 2.1.4. A domain D ⊂ Cn is called balanced if 0 ∈ D,D is circular and
star-shaped with respect to the origin.

Example 2.1.5. For every p ∈ N+ ∪ {∞} and every r > 0 the ball{
z ∈ Cn | ‖z‖p < r

}
is a balanced domain.

Lemma 2.1.6. Let D ⊂ Cn be a circular domain and 0 ∈ D. Then there exists a
unique domain D̃, called the balanced hull of D, with the following properties:

1. The set D̃ is balanced and contains D.

2. If D′ is any balanced domain containing D then D̃ ⊂ D′.
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Proof. 1. We define D̃ by

D̃ := [0, 1] · D := {tz | t ∈ [0, 1] , z ∈ D} .

Then 0 ∈ D ⊂ D̃ and D̃ is star-shaped with respect to 0, hence, connected. Since
0 ∈ D we have

D̃ =
⋃

0<t≤1

tD.

The sets tD = { tz | z ∈ D} are open, because for t > 0 the mapping z �→ tz is a
homeomorphism. This shows that D̃ is also open.

2. Let D′ ⊃ D be a balanced domain. Since D′ is star-shaped with respect
to the origin we have

tz ∈ D′

for all t ∈ [0, 1] and all z ∈ D, hence, D̃ ⊂ D′. �
Exercise 2.1.7. The domain

DH :=
{

z ∈ C2
∣∣ |z1| <

1
2
, |z2| < 1

}
∪
{

z ∈ C2
∣∣ |z1| < 1,

1
2

< |z2| < 1
}

(2.2)

is called a Hartogs figure. Determine the balanced hull D̃H and sketch the sets
τ (DH) and τ

(
D̃H

)
in absolute space.

Theorem 2.1.8 (Continuation on circular domains). Let D ⊂ Cn be a circular
domain with 0 ∈ D and let D̃ be the balanced hull of D. Then the restriction

ρ : O
(
D̃
)
→ O (D) , F �→ F |D

is an isomorphism of algebras.

Proof. By Lemma 2.1.6 D̃ is a domain. Together with Proposition 2.1.3 this shows
that ρ is injective. Let f ∈ O (D) . For k ∈ N define fk : D → C by

fk (z) :=
1

2πi

∫
T1

f (ζz)
ζk+1

dζ.

As was shown in Exercise 1.5.29 each fk is holomorphic and the series

∞∑
k=0

fk

converges to f compactly on D. We show that this series even converges compactly
on D̃ and thus defines a holomorphic extension F of f. A domain in Cn is locally
compact. Therefore, there is an open cover

(Uλ)λ∈Λ
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of relatively compact subsets of D. Let K ′ ⊂ D̃ be a compact subset. Then

K ′ ⊂
⋃

0<t≤1

⋃
λ∈Λ

tUλ = D̃.

Since all sets tUλ are open and K ′ is compact, this open cover contains a finite
subcover, i.e., there are M,N ∈ N such that

K ′ ⊂
M⋃

k=1

N⋃
l=1

tkUλl
.

The set

K :=
N⋃

l=1

Uλl

is then a compact subset of D. Hence, the series
∑

k≥0 fk converges absolutely
and uniformly on K. By construction we have

K ′ ⊂ [0, 1] · K.

Since for t ∈ [0, 1] and z ∈ K,

|fk (tz)| =
∣∣tkfk (z)

∣∣ ≤ |fk (z)|

we have
sup
z∈K′

|fk (z)| ≤ sup
z∈K

|fk (z)| .

This implies that
∑

k≥0 fk converges absolutely and uniformly on K ′. Thus the
function

F : D̃ → C, z �→
∑
k≥0

fk (z)

defines a holomorphic continuation of f to the balanced hull D̃, which proves the
surjectivity of ρ. �

Note that this theorem reveals its strength only if n ≥ 2, because if n = 1
then every circular domain D ⊂ C containing zero coincides with its balanced hull.

Definition 2.1.9. If D ⊂ Cn is a Reinhardt domain containing the origin, its

polybalanced hull ˜̃
D is defined as

˜̃
D := {(t1z1, . . . , tnzn) | z ∈ D, tj ∈ [0, 1] , j = 1, . . . , n} .

Exercise 2.1.10. Show that the polybalanced hull of a Reinhardt domain is again
a Reinhardt domain.
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Exercise 2.1.11. Determine the polybalanced hull of the Hartogs figure (2.2) ,

sketch τ

(˜̃
DH

)
and compare this to τ

(
D̃H

)
.

Theorem 2.1.12 (Continuation on Reinhardt domains). Let D ⊂ Cn be a Reinhardt

domain containing the origin and ˜̃
D its polybalanced hull. Then the following holds:

1. For all f ∈ O (D) the series

∑
α∈Nn

Dαf (0)
α!

zα

converges to f compactly on D.

2. The restriction

ρ : O
(˜̃

D

)
→ O (D) , F �→ F |D

is an isomorphism of algebras.

Proof. 1. Since 0 ∈ D there is a polydisc P ⊂ D containing 0 such that the Taylor
expansion

f (z) =
∑

ν∈Nn

Dνf (0)
ν!

zν

converges compactly on P. Thus, for all α ∈ Zn and all z ∈ P we have

fα (z) =
(

1
2πi

)n ∫
Tn

f (ζz)
ζα+1 dζ

=
(

1
2πi

)n ∫
Tn

dζ

ζα+1

( ∑
ν∈Nn

Dνf (0)
ν!

ζνzν

)
︸ ︷︷ ︸

converges uniformly for ζ∈Tn

=
∑

ν∈Nn

Dνf (0)
ν!

zν

(
1

2πi

)n ∫
Tn

ζν

ζα+1 dζ

︸ ︷︷ ︸
=δαν by Exercise 1.3.4

=
{

Dαf(0)zα

α! , if α ∈ Nn

0, if α /∈ Nn .

Since D is a domain and P ⊂ D is open this equality holds on all of D. Theorem
1.5.27 implies

f (z) =
∑

α∈Zn

fα (z) =
∑

α∈Nn

fα (z) =
∑

α∈Nn

Dαf (0)
α!

zα
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compactly on D.
2. Since D is open in Cn there is an open cover (Uλ)λ∈Λ of D consisting of

relatively compact subsets of D. Then the polybalanced hulls ˜̃
Uλ are relatively

compact subsets of ˜̃
D and form an open cover of ˜̃

D. If K ⊂ ˜̃
D is a compact set,

then there is a finite subcover
(˜̃

Uλj

)
j=1,...,m

of K. Put

K ′ :=
m⋃

j=1

Uλj
.

Then K ′ is compact in D and K ⊂ ˜̃
K ′. Now for all α ∈ Nn we have the estimates

sup
z∈K

∣∣∣∣Dαf (0)
α!

zα

∣∣∣∣ ≤ sup
z∈��K′

∣∣∣∣Dαf (0)
α!

zα

∣∣∣∣ = sup
z∈K′

∣∣∣∣Dαf (0)
α!

zα

∣∣∣∣ .
From 1. we know that

∑
α∈Nn

Dαf(0)
α! zα converges to f compactly on D, so by the

above estimate this holds on the polybalanced hull ˜̃
D, too. Hence, the function

F : ˜̃
D → C, z �→

∑
α∈Nn

Dαf (0)
α!

zα

defines a holomorphic continuation of f from D to ˜̃
D. �

Exercise 2.1.13. Show that the isomorphism constructed in the above theorem is
also a homeomorphism.

In the next continuation result we can weaken the prerequisite that D con-
tains the origin. The key to this is the following theorem about Laurent expansion
on Reinhardt domains.

Theorem 2.1.14. Let D be a polycircular subset of Cn. We define a partition of
the set {1, . . . , n} by

ID : = {k ∈ {1, . . . , n} | ∃z ∈ D : zk = 0} ,

JD : = {l ∈ {1, . . . , n} | ∀z ∈ D : zl 	= 0}

and put
NID×ZJD := {α ∈ Zn | αj ≥ 0 for all j ∈ ID} .

If D is a Reinhardt domain and f ∈ O (D) then

f (z) =
∑

α∈NID×ZJD

Dαf (0)
α!

zα

compactly on D.



2.1. Holomorphic continuation 53

Proof. From Theorem 1.5.27 we know that
∑

α∈Zn fα converges to f compactly
on D, where, as usual,

fα (z) =
(

1
2πi

)n ∫
Tn

f (ζz)
ζα+1 dζ.

We show that for every α ∈ Zn the following holds:

1. If there is some j ∈ ID with αj < 0 then fα = 0.

2. If αj ≥ 0 for all j ∈ ID then fα (z) = Dαf(0)
α! zα.

Let α ∈ Zn be fixed such that αj < 0 for some j ∈ ID. Without loss of
generality we may assume j = 1, i.e., there is some z ∈ D with z1 = 0.Since D is
open there is an open disc Bε (0) ⊂ C and an open polydisc P ′ ⊂ Cn−1 such that

D′ := Bε (0) × P ′ ⊂ D.

Laurent expansion on D′ gives

f (z) =
∑

α∈Zn

α1≥0

cαzα

implying

fα (z) =
(

1
2πi

)n ∫
Tn

f (ζz)
ζα+1 dζ

=
(

1
2πi

)n ∫
Tn

1
ζα+1

∑
µ∈Zn

µ1≥0

cµζµzµdζ

=
∑

µ∈Zn

µ1≥0

cµzµ

(
1

2πi

)n ∫
Tn

ζµ

ζα+1 dζ

︸ ︷︷ ︸
=δαµ

.

Since α1 < 0 we conclude that fα = 0 on D′. By the Identity Theorem fα = 0 on
D.
Now let α ∈ Zn such that αj ≥ 0 for all j ∈ ID. Then the function

z �→ Dαf (0)
α!

zα

is holomorphic on D, because by definition of JD we have zj 	= 0 for all j ∈ JD.
Choosing a polydisc P ⊂ D and comparing the Laurent expansion of f on P
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with the homogenous expansion
∑

α fα from Theorem 1.5.27 gives by analogous
arguments as above

fα (z) =
Dαf (0)

α!
zα

on P. Apply the Identity Theorem again to see that this equation holds on all of
D. �

Corollary 2.1.15. Let D ⊂ Cn be a Reinhardt domain. Let 1 ≤ p ≤ n such that for
all k = 1, . . . , p there is some z ∈ D with zk = 0 and for all l = p + 1, . . . , n we
have zl 	= 0 for all z ∈ D. Further, let

D̂ := {(t1z1, . . . , tpzp, zp+1, . . . , zn) | z ∈ D, 0 ≤ tj ≤ 1, j = 1, . . . , p} .

Then
ρ : O

(
D̂
)
→ O (D) , F �→ F |D

is an isomorphism.

Proof. The proof is analogous to the case 0 ∈ D, i.e., p = n. �

Remark 2.1.16. Note that if n = 1, Corollary 2.1.15 is trivial, because in that case
we have 0 ∈ D, which implies D̂ = D.

2.2 Representation-theoretic interpretation of the
Laurent series

The results about Laurent expansion can be interpreted in a representation- the-
oretic framework. If D is a Reinhardt domain the action

Tn × D → D, (ζ, z) �→ ζ · z

defines a representation
π : Tn → L (O (D))

of Tn on the space O (D) of holomorphic functions on D by

π (ζ) (f) (z) := f (ζ · z) . (2.3)

For simplicity, put G := Tn. Generally, in representation theory, one is interested
in the simultaneous eigenvectors of the representation, i.e., in this case, in all
holomorphic functions f ∈ O (D) , f 	= 0, for which there is a function χ : G → C
such that

π (g) (f) = χ (g) f

for all g ∈ G. This notion, of course, applies to representations of generic groups
G on a vector space V.From the fact that π is a representation it follows that χ is
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a group homomorphism from G to (C×, ·) . Such group homomorphisms are called
group characters of G. For every α ∈ Zn we have a continuous group character

χα : G → C×, ζ �→ ζα.

Theorem 2.2.1. Let D be a Reinhardt domain, let π be the representation (2.3)
and for α ∈ Zn let fα be the function (1.9) . Then the following holds:

1. The eigenvectors of π are exactly those monomials zα, z ∈ D,α ∈ Zn, which
can be extended to all of D. In other words, if there is a z ∈ D with zj = 0
for some j, then only those α ∈ Zn with αj ≥ 0 appear.

2. For every α ∈ Zn the function pα : O (D) → O (D) defined by pα (f) :=
fα defines a continuous projection onto the eigenspace corresponding to the
character χα.

3. The eigenvectors of π span a dense subset of O (D) .

Proof. 1. If f ∈ O (D) with Laurent expansion f (z) =
∑

α∈Zn cαzα, then

π (ζ) (f) (z) = f (ζ · z) =
∑

α∈Zn

cαζαzα.

It follows from the uniqueness of the Laurent coefficients that f is an eigenvector
if and only if there is an α ∈ Zn such that f (z) = cαzα. From Theorem 2.1.14 we
obtain that αj ≥ 0 if zj = 0.

2. From the uniform convergence of the Laurent series on the compact set
Tn · z we obtain

pα (f) (z) =
(

1
2πi

)n ∫
Tn

f (ζ · z)
ζα+1 dζ

=
∑

β∈Zn

cβ

(2πi)n zβ

∫
Tn

ζβ−α−1dζ

=
∑

β∈Zn

cβ

(2πi)n zβδβα = cαzα.

In particular, pα (cα idα) (z) = cαzα.
3. This is an immediate consequence of Theorem 1.5.27. �

Remark 2.2.2. Theorem 2.2.1 gives a representation-theoretic interpretation of the
Laurent expansion of holomorphic functions on Reinhardt domains. Within this
framework there are theorems which contain the Laurent expansion theorems on
Reinhardt domains as special cases. This theory, however, requires a much deeper
background in functional analysis. The reader familiar with this theory might
have noticed that one could use the theorems of Peter–Weyl and Harish–Chandra
(see [10], for instance) about continuous representations of compact Lie groups on
Fréchet spaces and the convergence of the corresponding Fourier series.
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2.3 Hartogs’ Kugelsatz, Special case

As an application of Corollary 2.1.15 we prove a special form of Hartogs’ Kugelsatz.
It states that every function holomorphic on a ball shell can be extended to the full
ball. As a consequence it follows that holomorphic functions of n ≥ 2 variables have
neither isolated singularities nor isolated zeros. Taking into account that in one
variable a good part of the theory is based on the existence of isolated singularities,
especially the theory of residues with all its applications, for instance in analytic
number theory, this is a rather remarkable fact.

Theorem 2.3.1 (Kugelsatz, special case). Let n ≥ 2, 0 < r < R ≤ ∞, ‖.‖ an
arbitrary norm in Cn and Bn

r (0) , Bn
R (0) the balls of radius r resp. R with respect

to ‖.‖ (in case R = ∞ this means all of Cn). Let

Bn (r, R) := Bn
R (0) \ Bn

r (0).

Then the restriction

ρ : O (Bn
R (0)) → O (Bn (r, R)) , F �→ F |Bn(r,R)

is an isomorphism of topological algebras.

Proof. Clearly, Bn (r, R) is a Reinhardt domain. Let e1, . . . , en be the canonical
basis of Cn and fix some λ ∈ ]r, R[ . Then Bn (r, R) contains all vectors λej having
λ in the j-th component and zero otherwise, i.e., we have p = n in Corollary 2.1.15.
Hence,

̂Bn (r, R) = {(t1z1, . . . , tnzn) | z ∈ B (r, R) , 0 ≤ tj ≤ 1, j = 1, . . . , n}
= {(t1z1, . . . , tnzn) | r < ‖z‖ < R, 0 ≤ tj ≤ 1, j = 1, . . . , n}
= {z ∈ Cn | 0 ≤ ‖z‖ < R}
= Bn

R (0) .

Corollary 2.1.15 says that

ρ : O (Bn
R (0)) → O (Bn (r, R)) , F �→ F |B(r,R)

is an isomorphism of algebras. It follows from Exercise 2.1.13 that this isomorphism
is also topological. �

This theorem has a striking consequence.

Corollary 2.3.2. A holomorphic function of n ≥ 2 variables has no isolated non-
removable singularities.

Proof. Let f be holomorphic on an open set U ⊂ Cn with n ≥ 2 and let a ∈ U.
By a shift of coordinates we may assume a = 0 without loss of generality. Since U
is open we can choose 0 < r < R such that

0 /∈ Bn (r, R) ⊂ U.
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Since f ∈ O (U) the restriction f |Bn(r,R) is holomorphic. By Theorem 2.3.1 there is
a unique F ∈ O (Bn

R (0)) , which extends f holomorphically, hence the singularity
0 is removable. �
Example 2.3.3. Let Ω := B2

(
1
2 , 1

)
∩ (C×{0}) and

f : Ω → C, (z, 0) �→ 1
z − 1

2

.

f allows no holomorphic extension to B2
(

1
2 , 1

)
, because if there was an extension

F ∈ O
(

B2

(
1
2
, 1

))
of f , application of Theorem 2.3.1 would produce another holomorphic extension

G ∈ O
(
B2

1 (0)
)

of F. This extension, however, cannot exist, because G would have to be bounded
near the point

(
1
2 , 0

)
∈ B2

1 (0) , while f isn’t. Contradiction!

Exercise 2.3.4. Let DH be the Hartogs figure (2.2) . Show that every f ∈ O (DH)
has a unique holomorphic extension to the unit polydisc in C2.

Exercise 2.3.5. Give an example that Theorem 2.3.1 does not hold for the case
n = 1.

Exercise 2.3.6. Let n ≥ 2, r, R ∈ Rn
+ such that 0 < rj < Rj ≤ ∞ for all j = 1, . . . , n

and
Pn (r, R) := Pn

R (0) \ Pn
r (0).

Show that
ρ : O (Pn

R (0)) → O (Pn (r, R)) , f �→ f |P n(r,R)

is an isomorphism.

Exercise 2.3.7. Let n ≥ 2, P a polydisc in Cn and D an open and connected
neighbourhood of the boundary ∂P. Show that

O (D) ∼= O (D ∪ P )

Exercise 2.3.8. Show that a holomorphic function in n ≥ 2 variables has no isolated
zeroes.
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Biholomorphic maps

In this chapter we study biholomorphic maps of domains in Cn and prove the
biholomorphic inequivalence of unit ball and unit polydisc if n ≥ 2. We start
with examining the question when a holomorphic map locally has a holomorphic
inverse.

3.1 The Inverse Function Theorem and
Implicit Functions

Definition 3.1.1. Let U ⊂ Cn be an open set and f ∈ O (U, Cm) . f is called
biholomorphic if there is a holomorphic map

g : f (U) → U

such that g ◦ f = idU and f ◦ g = idf(U) . If g exists we write

f−1 := g.

Biholomorphic maps can only exist between equidimensional spaces.

Lemma 3.1.2. Let U ⊂ Cn be open and f ∈ O (U, Cm) be a biholomorphic map.
Then n = m and det Df (a) 	= 0.

Proof. Let a ∈ U and b := f (a) . It follows from the chain rule that for the
derivatives D (f ◦ g) and D (g ◦ f) we have

idCn = D (g ◦ f) (a) = (Dg (f (a)))Df (a) ,

idCm = D (f ◦ g) (b) = (Df (b)) Dg (b) .

If n 	= m then either Df or Dg would not be of maximum rank. By symmetry
of the above equations we may without loss of generality assume rg Df (a) < n.
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Then there would exist a nonzero vector z ∈ Cn with

Df (a) z = 0,

which is a contradiction to idCn = D (g ◦ f) (a) . Hence, n = m and rg Df (a) is
maximal, which is equivalent to detDf (a) 	= 0. �

The next theorem is the holomorphic version of the Inverse Function Theorem
from real calculus.

Theorem 3.1.3 (Inverse Function). Let X ⊂ Cn be open, a ∈ X and f ∈O (X, Cn) .
Then the following statements are equivalent:

1. The functional determinant det Df (a) 	= 0.

2. There exist open neighbourhoods

U = U (a) ⊂ X, V = V (f (a)) ⊂ Cn

such that f (U) ⊂ V and
f |U : U → V

is biholomorphic.

Proof. The direction 2. ⇒ 1. was just proven. Let det f (a) 	= 0. From the real
version of the Inverse Function Theorem we obtain the existence of open neigh-
bourhoods

U = U (a) ⊂ X, V = V (f (a)) ⊂ Cn

and a real differentiable map
g : V → U

such that
f ◦ g = idV , g ◦ f = idU .

We have to show that g is actually holomorphic. To this end we note that f ◦ g =
idV is holomorphic. The Cauchy–Riemann differential equations then say that
near a we have

0 =
∂

∂w
f ◦ g =

(
∂f

∂z
◦ g

)
◦ ∂g

∂w
.

∂f
∂z is invertible near a = g (f (a)) by the real Inverse Function Theorem, hence,

∂g

∂w
= 0

near f (a) , i.e., g is holomorphic near f (a) . �

As in real calculus we obtain the holomorphic version of the Implicit Function
Theorem.
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Theorem 3.1.4 (Implicit Functions). Let X ⊂ Cn, Y ⊂ Cm be open sets, f ∈
O (X × Y, Cm) ,

N (f) := {(z, w) ∈ X × Y | f (z, w) = 0} ,

and (a, b) ∈ N (f) such that rg ∂f
∂w (a, b) = m. Then there are open neighbourhoods

U = U (a) ⊂ X,

W = W (b) ⊂ Y

and a holomorphic function
h : U → W

having the property that (z, w) ∈ (U × W ) ∩ N (f) if and only if w = h (z) ,
(z, w) ∈ U × W.

Proof. We apply the Inverse Function Theorem. From

rg
∂f

∂w
(a, b) = m

it follows that there are open neighbourhoods

U = U (a) ⊂ X, W = W (b) ⊂ Y, V = V ((a, 0)) ⊂ X × Y

such that the mapping

F : U × W → V, (z, w) �→ (z, f (z, w))

is biholomorphic. By eventually shrinking U we may assume that U × {0} ⊂ V.
Let prCn denote the projection onto the first n coordinates. Then we can write

F−1 = (prCn ,H) : V → U × W

and we can define a holomorphic function h : U → W by

h (z) := H (z, 0) .

Now if (z, w) ∈ U × W such that w = h (z) = H (z, 0), then (z, w) = F−1 (z, 0) .
Hence,

(z, 0) = F
(
F−1 (z, 0)

)
= F (z, w) = (z, f (z, w)) ,

i.e., f (z, w) = 0. Conversely, if (z, w) ∈ (U × W )∩N (f), then there is some v ∈ V
such that

(z, w) = F−1 (v) = (prCn (v) ,H (v)) ,

thus,
F (z, w) = (z, f (z, w)) = F

(
F−1 (v)

)
= v = (v′, v′′) ,
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where
v′ = (v1, . . . , vn) , v′′ = (vn+1, . . . , vn+m) .

This implies
v′ = z, v′′ = f (z, w) = 0,

thus,
w = H (v) = H (v′, 0) = h (v′) = h (z) .

�
Corollary 3.1.5. Let f ∈ O

(
C2

)
,

Y := N (f) :=
{
z ∈ C2 | f (z) = 0

}
,

X :=
{

z ∈ Y | ∂f

∂z2
(z) 	= 0

}
and let prk denote the projection onto the k-th coordinate. Then the following
holds:

1. The set X is open in Y.

2. Every a ∈ X has an open neighbourhood W = W (a) ⊂ C2 such that

pr1 |X∩W : X ∩ W → pr1 (X ∩ W )

is a homeomorphism.

Proof. 1. The mapping ψ : C2 → C : z �→ ∂f
∂z2

(z) is continuous, thus,

X = Y ∩ ψ−1 (C \ {0})

is open in Y.
2. Let a = (a1, a2) ∈ X. By the Implicit Function Theorem there are open

neighbourhoods Wj = Wj (aj) ⊂ C, j = 1, 2 and a holomorphic function

h : W1 → W2

such that
(b1, b2) ∈ (W1 × W2) ∩ Y

if and only if
b2 = h (b1) , (b1, b2) ∈ W1 × W2 =: W.

Let z, w ∈ W ∩ X satisfy pr1 (z) = pr1 (w) . Then

pr2 (z) = h (pr1 (z)) = h (pr1 (w)) = pr2 (w) ,

i.e., z = w. This shows that

pr1 |X∩W : X ∩ W → pr1 (X ∩ W )
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is bijective. Since pr1 is holomorphic and non-constant, it is a continuous and open
mapping. Therefore, the inverse mapping

(pr1 |X∩W )−1 : pr1 (X ∩ W ) → X ∩ W

is continuous. �

Example 3.1.6. Consider the function

f : C2 → C, (z1, z2) �→ z1 − exp (z2) .

Then Y = N (f) = {(exp ζ, ζ) | ζ ∈ C} and because of

∂f

∂z2
(z1, z2) = − exp (z2) 	= 0 for all (z1, z2) ∈ C2

we have in this case X = Y. X carries the structure of an Abelian group by

(z1, z2) · (w1, w2) := (z1w1, z2 + w2)

with neutral element
(1, 0) = (exp 0, 0) .

The inverse element to (exp z, z) is (exp (−z) ,−z) . If we define the functions

Exp : C → X, ζ �→ (exp ζ, ζ)

and
log : X → C, (expw,w) �→ w,

then log is holomorphic1 and satisfies

log (z · w) = log z + log w

and
log ◦Exp = idC, Exp ◦ log = idX .

X is called the Riemann surface of the logarithm.

Exercise 3.1.7 (Riemann surface of the square root). Let

f : C2 → C, (z1, z2) �→ z1 − z2
2 .

1. Determine X, Y as in Example 3.1.6.

1i.e., to every a ∈ X exists an open neighbourhood U ⊂ C2 and a holomorphic function
f : U → C such that f |X∩U = log |X∩U.
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2. Define an Abelian group structure on X and a holomorphic function
√

. : X → C \ {0}

such that √
z · w =

√
z
√

w

for all z, w ∈ X.

3. Determine a holomorphic function (.)2 : C \ {0} → X which satisfies

(.)2 ◦ √. = idX ,
√

. ◦ (.)2 = idC\{0} .

Exercise 3.1.8. Let A ⊂ C3 be the set of solutions of the system of holomorphic
equations

sin (z1 + z2) − z2
2z3 = 0,

exp (z1) − exp (z2) = z3.

Show that there is an open neighbourhood U ⊂ C of zero and a holomorphic
mapping

ϕ : U → A

such that ϕ (0) = 0 and ϕ : U → ϕ (U) is a homeomorphism.

3.2 The Riemann Mapping Problem

A high spot in every introductory course on function theory in one variable is
Riemann’s Mapping Theorem, which states that every simply connected domain
D properly contained in C is biholomorphically equivalent to the open unit disc.
This is especially remarkable, because a purely topological property — simple
connectedness — implies a very restrictive analytical property. In more than one
variable, however, there are simply connected domains which are not biholomor-
phically equivalent. In particular, this holds for unit ball and unit polydisc. This
fact was first discovered by H. Poincaré in 1907 [8] by proving that the groups of
holomorphic automorphisms of Bn

1 (0) and Pn
1 (0) are not isomorphic if n > 1.

Theorem 3.2.1. Let
Bn

1 (0) = {z ∈ Cn | ‖z‖2 < 1}
be the Euclidian unit ball and

Pn
1 (0) = {z ∈ Cn | ‖z‖∞ < 1}

the unit polydisc in Cn. Then there exists a biholomorphic map

F : Pn
1 (0) → Bn

1 (0)

if and only if n = 1.
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Proof. Since B1
1 (0) = P 1

1 (0) we can choose F = id, if n = 1. Let n > 1. Assume
that F is holomorphic. For fixed w ∈ P 1

1 (0) ⊂ C we define the mapping

Fw : Pn−1
1 (0) → Cn, z′ �→ ∂F

∂zn
(z′, w) .

Let
(
z′j
)
j∈N

⊂ Pn−1
1 (0) be a sequence converging towards the boundary ∂Pn−1

1 (0)
and define

Fj : P 1
1 (0) → Bn

1 (0) , w �→ F
(
z

′
j , w

)
.

Then
sup
j∈N

sup
w∈P 1

1 (0)

‖Fj (w)‖ ≤ 1,

i.e., the sequence (Fj)j∈N
is bounded in O

(
P 1

1 (0) , Cn
)
. By Montel’s Theorem

there exists a subsequence (Fjk
)k∈N

converging compactly on P 1
1 (0) to a function

Φ : P 1
1 (0) → Bn

1 (0).

By Weierstrass’ Theorem Φ is holomorphic. Because of

lim
j→∞

z
′
j ∈ ∂Pn−1

1 (0)

for every w ∈ P 1
1 (0) the sequence((

z
′
j , w

))
j∈N

converges towards the boundary

∂Pn
1 (0) = {z ∈ Cn | |zk| = 1 for at least one k} .

Put
aw := lim

j→∞
F

(
z′j , w

)
∈ Bn

1 (0).

We claim that aw ∈ ∂Bn
1 (0) . This can be seen as follows: if aw /∈ ∂Bn

1 (0) then

∂Pn
1 (0) � lim

j→∞
(
z′j , w

)
= F−1 (aw) ∈ F−1 (Bn

1 (0)) ⊂ Pn
1 (0) ,

which is a contradiction, because Pn
1 (0) is an open set. Hence,

Φ
(
P 1

1 (0)
)
⊂ ∂Bn

1 (0) .

This shows that the function
w �→ ‖Φ (w)‖2
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is constant on P 1
1 (0) , which is equivalent to Φ = const. = 1., as was shown in

Exercise 1.5.14 This implies

0 = Φ′ (w) = lim
k→∞

F ′
jk

(w) = lim
k→∞

Fw

(
z′jk

)
,

thus
lim

z′→∂P n−1
1 (0)

Fw (z′) = 0.

Hence, Fw is continuously extendible to the boundary ∂Pn−1
1 (0) by

Fw|∂P n−1
1 (0) := 0.

Applying the Maximum Modulus Theorem to every coordinate function of Fw

we find that Fw = 0. Now if en = (0, . . . , 0, 1)T denotes the n-th canonical basis
vector of Cn, we have

0 = Fw (z′) = DF (z′, w) en,

thus,
det DF (z′, w) = 0.

This, finally, contradicts the Inverse Function Theorem. �
Exercise 3.2.2. Show that Pn

1 (0) and Bn
1 (0) are homeomorphic for all n ≥ 1. Hint:

Consider the mapping

Φ : Pn
1 (0) → Cn, z �→

{
0, if z = 0

z
‖z‖∞
‖z‖2

, if z 	= 0.

Exercise 3.2.3. Show that the mapping

ϕ : P 2
1 (0) → B2

1 (0) , (z, w) �→
(
z, w

√
1 − zw

)
is bijective and that ϕ and ϕ−1 are real-analytic.

Exercise 3.2.4. An automorphism of a domain D ⊂ Cn is a biholomorphic self-map
f : D → D.

1. Show that the set Aut (D) of automorphisms of D forms a group with respect
to composition.

2. Show that if D1, D2 are biholomorphic domains, then Aut (D1) and Aut (D2)
are isomorphic as groups.

3. Prove that Aut (D) acts on D by the mapping

Aut (D) × D → D, (f, z) �→ f (z)

Exercise 3.2.5. Show without using Theorem 3.2.1 that if

f : Pn
1 (0) → Bn

1 (0)

is a linear isomorphism then n = 1. (Hint : Note that f has an extension F to all
of Cn. Consider F (∂Pn

1 (0)) .
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3.3 Cartan’s Uniqueness Theorem

The following theorem by H.Cartan can be viewed as an n-dimensional analogue
of Schwarz’ Lemma.

Theorem 3.3.1 (Cartan). Let D ⊂ Cn be a bounded domain, a ∈ D and

f : D → D

a holomorphic map satisfying f (a) = a and Df (a) = idCn . Then f is the identity
mapping.

Proof. Without loss of generality we may assume a = 0. Let r be a polyradius
with 0 < ‖r‖∞ < 1 such that the polydisc P := Pr (0) ⊂ P ⊂ D. Let pj (z) be the
homogenous polynomial of degree j defined by

pj (z) :=
∑
|α|=j

Dαf (0)
α!

zα.2

Then we have the expansion on P ,

f (z) =
∑
j≥0

pj (z) .

From f (0) = 0 and Df (0) = idCn we deduce that this expansion actually has the
form

f = id +
∑
j≥k

pj

with k ≥ 2. Since f (D) ⊂ D we can consider the iterated mapping

fm := f ◦ · · · ◦ f︸ ︷︷ ︸
m times

: D → D.

Computation gives

fm = idD +mpk + terms of higher order. (3.1)

Now we can estimate for all m ∈ N,

‖mpk|P ‖∞ = sup
z∈P

∣∣∣∣∣∣
∑
|α|=k

Dαf (0)
α!

zα

∣∣∣∣∣∣
≤ ‖fm|P ‖∞
≤ ‖f‖∞ .

Since D is a bounded domain and f (D) ⊂ D we have ‖f‖∞ < ∞. The right-hand
side of the above estimate is independent of m. From this we conclude pk = 0 for
all k ≥ 2. Hence, f = idD . �

2i.e., the vector with polynomial coefficients
�

|α|≤j
Dαfk(0)

α!
zα



68 Chapter 3. Biholomorphic maps

Remark 3.3.2. The theorem is false, if D is not bounded. This can already be seen
in one dimension. For instance, consider the function

f : C → C, z �→ exp z − 1.

Corollary 3.3.3. Let D1, D2 be bounded circular domains in Cn such that 0 ∈
D1 ∩ D2 and f : D1 → D2 a biholomorphic mapping with f (0) = 0. Then f is
linear.

Proof. For t ∈ R define

Ft : D1 → D1, z �→ f−1
(
e−itf

(
eitz

))
.

Then Ft (0) = 0 and DFt (0) = idCn , hence, by Cartan’s Uniqueness Theorem,
Ft = idD1 . This implies

f
(
eitz

)
= eitf (z) . (3.2)

Expansion of f into a series of homogenous polynomials gives

f =
∑
j≥0

pj ,

thus
f
(
eitz

)
=

∑
j≥0

pj

(
eitz

)
=

∑
j≥0

eijtpj (z)
(3.2)
=

∑
j≥0

eitpj (z) .

Hence, for all t ∈ R,
0 =

∑
j≥0

pj (z) eit
(
ei(j−1)t − 1

)
.

Comparing coefficients we find that pj = 0 for all j 	= 1, i.e., f = p1, which is
linear. �
Exercise 3.3.4. In this exercise we give an alternative proof of Theorem 3.2.1. For
a ∈ Bn

1 (0) let [a] denote the subspace of Cn spanned by a. Let

Pa : Cn → [a]

denote the orthogonal projection onto [a] and

P⊥
a : Cn → [a]⊥

the projection onto the orthogonal complement of [a] . Let

sa :=
(
1 − ‖a‖2

2

)2

and define

ϕa : Bn
1 (0) → Cn, z �→ a − Paz − saP⊥

a z

1 − (z|a)
,

where (z|a) denotes the standard inner product in Cn.
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1. Show that ϕa (Bn
1 (0)) ⊂ Bn

1 (0) .

2. Prove the equations
Dϕa (0) = −s2

aPa − saP⊥
a

and
Dϕa (a) = −s2

aPa − s−1
a P⊥

a .

(Hint : It is useful to determine explicit formulas for Paz and P⊥
a z.)

3. Show that ϕa ◦ ϕa = idBn
1 (0) .

4. The group Aut (Bn
1 (0)) acts transitively on Bn

1 (0) , i.e., for every pair

(z, w) ∈ Bn
1 (0) × Bn

1 (0)

there is some g ∈ Aut (Bn
1 (0)) such that g (z) = w.

5. If D ⊂ Cn is a circular, bounded domain containing the origin and

F : D → Bn
1 (0)

a biholomorphic map, then there exists some T ∈ GLn (C) such that

T (Bn
1 (0)) = D.

6. Conclude again that Bn
1 (0) and Pn

1 (0) are not biholomorphically equivalent
if n ≥ 2.
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Analytic Sets

In this chapter we give an introduction to analytic sets. Roughly speaking, analytic
sets are sets whose elements are locally solutions of holomorphic systems of equa-
tions. We will introduce the notion of codimension of an analytic set and show that
in most cases analytic sets are “thin enough” that holomorphic functions defined
outside an analytic set can be extended across the analytic set.

4.1 Elementary properties of analytic sets

Definition 4.1.1. Let D ⊂ Cn be open. A subset A ⊂ D is called analytic in D, if
A is closed and for every a ∈ A there exists an open neighbourhood U ⊂ D and
finitely many functions f1, . . . , fm ∈ O (U) such that

A ∩ U = {z ∈ U | f1 (z) = · · · = fm (z) = 0} .

Example 4.1.2. The empty set ∅ and D itself are analytic in D. D is the zero set
of the zero function on D, ∅ is the zero set of the constant function f = 1. If
A1, A2 are analytic in D then so are A1 ∪ A2 and A1 ∩ A2. If an analytic set A is
the union of two proper analytic subsets, then A is said to be reducible, otherwise
irreducible.

Example 4.1.3. If V is a k-dimensional (affine) subspace of Cn, then V is an
analytic in Cn.

Proof. By a shift of coordinates we may assume that V is a proper, non-affine
subspace of Cn. Let {b1, . . . , bk} be a basis of V. Then there are vectors bk+1, . . . , bn

such that {b1, . . . , bn} forms a basis of Cn. For z =
∑n

l=1 αlbl let prj : Cn → C
denote the linear projection defined by

prj (z) := αj .
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Then prj is a holomorphic function for all j and

V = N
(
prk+1, . . . ,prn

)
=

n⋂
j=k+1

N
(
prj

)
.

Since intersections of closed sets are closed, V is closed in Cn. �

A k-dimensional subspace of Cn has codimension n − k. This notion can be
generalized to analytic sets. In the case of a k-dimensional (affine) subspace of Cn

both notions coincide.

Definition 4.1.4. Let A ⊂ D be an analytic set, a ∈ A and m ∈ N. We say that

codima A ≥ m

if there is an m-dimensional affine complex subspace E containing a such that a
is an isolated point in E ∩ A. We say that

codima A = m

if codima A ≥ m, but codima A ≯ m. If A 	= ∅ we define

codim A := inf
a∈A

codima A.

Example 4.1.5. If f : D → C is a holomorphic function, f 	= 0, then the zero set

N (f) := f−1 ({0})

has codimension 1.

Proof. If n = 1 the assertion is trivial. Let n > 1. Let a ∈ N (f) . Since f 	= 0
there is an open and connected neighbourhood U = U (a) ⊂ D such that f (b) 	= 0
for some b ∈ U, b 	= a. Let

E1 := a + Cb

be the complex line through a and b.E1 ∩ U is connected and one-dimensional,
thus, a is an isolated zero of f |E1∩U , i.e.,

codima N (f) ≥ 1.

If codima N (f) ≥ 2 there would exist a two-dimensional complex subspace E2

containing a such that a is an isolated point in E2 ∩ N (f) . From Chapter 2,
however, we already know that holomorphic functions in more than one variable
have no isolated zeroes, thus codima N (f) � 2. �

Proposition 4.1.6. Let D ⊂ Cn be open and A ⊂ D be an analytic set. Then the
following holds.
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1. If codim A ≥ 1, then D \ A is dense in D.

2. If D is connected and if the interior A◦ of A is non-empty, then A = D.

3. If D is a domain and A 	= D, then codim A ≥ 1.

Proof. 1. Let a ∈ A. There is a complex affine subspace E of dimension ≥ 1 such
that a is an isolated point in E ∩ A. This implies that for every k ≥ 1 there is
some

zk ∈ Bn
1
k

(a) ∩ E,

which is not contained in A. Hence, the sequence (zk)k≥1 is contained in D \ A
and satisfies

lim
k→∞

zk = a.

2. Let a ∈ A◦. There are an open and connected neighbourhood U = U (a) ⊂
D and holomorphic functions f1, . . . , fm ∈ O (U) such that

U ∩ A = {z ∈ U | fj (z) = 0, j = 1, . . . ,m} .

Since a ∈ A◦ we have U ∩A◦ 	= ∅ and U ∩A◦ is open in D. The Identity Theorem
implies

f1 = · · · = fm = 0,

i.e., U = U ∩ A ⊂ A, hence, a ∈ A◦. Since a was an arbitrary element of A◦ this
shows that

A◦ = A◦.

As was shown in Lemma 1.1.15, the only non-empty subset of a domain D which
is both open and closed is D itself.

3. Let a ∈ A, U, f1, . . . , fm ∈ O (U) as above. 2. implies A◦ = ∅, because
A 	= D by prerequisite. Then there is some b ∈ U such that fk (b) 	= 0 for some
k ∈ {1, . . . , n} . Let E be the complex line through a and b, i.e.,

E := a + Cb.

Then A ∩ U ⊂ N (fk) and

(A ∩ E) ∩ U ⊂ N (fk) ∩ U ∩ E.

N (fk)∩U ∩E consists only of isolated points, because otherwise the holomorphic
function of one variable

f : C → C, λ �→ fk (a + λb)

would have a non-isolated zero, while not being the zero function, which contra-
dicts the Identity Theorem. �
Exercise 4.1.7. Which of the following sets A are analytic in D ?
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1. D = Cn, A = S2n−1 := {z ∈ Cn | ‖z‖2 = 1}.

2. D = M (n, n; C) , A = GLn (C).

3. D = Cn, A ⊂ Cna discrete subset.

Decide in each case, if A is analytic in D, whether A is the zero set of some
f ∈ O (D) .

Exercise 4.1.8. Let U ⊂ Cn, V ⊂ Cm be open sets and f ∈ O (U, V ) . Let A ⊂ V
be analytic in V. Show that f−1 (A) is analytic in U.

Exercise 4.1.9. Show that a k-dimensional (affine) subspace V of Cn has codimen-
sion n − k in the sense of analytic sets.

Exercise 4.1.10. Let A1, A2 be analytic sets. What can you say about

codim (A1 ∩ A2)

and
codim (A1 ∪ A2)?

Exercise 4.1.11. Let p, q ∈ N, p, q > 1, gcd (p, q) = 1 and consider the analytic set

Ap,q :=
{
(z, w) ∈ C2 | zp − wq = 0

}
.

1. Show that the mapping

φ : C → Ap,q, ζ �→ (ζq, ζp)

is a holomorphic homeomorphism.

2. Show that there is no function ψ holomorphic in a neighbourhood U of 0 ∈ C2

such that
ψ ◦ φ|φ−1(U) = idφ−1(U) .

(Hint : By Euclid’s Algorithm there are a, b ∈ Z such that gcd (p, q) = ap+bq.)

3. Show that φ (T) ⊂ T2.

4. Let φj := prj ◦φ, j = 1, 2 and

γ : [0, 1] → T, t �→ e2πit.

Compute the winding numbers of the curves φj ◦ γ at zero and interpret
this result geometrically. Can you sketch φ (T) in the case (p, q) = (2, 3)?
(Imagine the torus T2 embedded in R3.)
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4.2 The Riemann Removable Singularity Theorems

Analytic sets give rise to continuation results for holomorphic functions, which are
independent of the geometry of the underlying domain of definition. In one vari-
able theory the Riemann Removable Singularity Theorem states that holomorphic
functions which are defined outside an isolated point a and which are bounded near
a can be extended across a. The next theorem generalizes this result to analytic
sets.

Theorem 4.2.1 (1st Riemann Removable Singularity Theorem). Let D ⊂ Cn be
open, A ⊂ D an analytic set with codim A ≥ 1 and f ∈ O (D \ A) a holomorphic
function, which is locally bounded at A, i.e., for every a ∈ A there is an open
neighbourhood U such that

f |(D\A)∩U

is bounded. Then f has a unique holomorphic continuation F : D → C.

Proof. If F exists it is unique, because D \ A is dense in D and F is continuous.
(Note that D need not be connected, hence, we cannot apply the Identity Theorem
on D!). If n = 1 the result is known, so we consider the case n ≥ 2. Since a global
extension is also a local extension, uniqueness of F implies that it is enough to
prove the theorem in a neighbourhood of each a ∈ A. Hence, without loss of
generality, we may assume that

A = {z ∈ D | f1 (z) = · · · = fm (z) = 0} .

From codimA ≥ 1 we deduce that there is a complex line E through a such that
a is an isolated point in A ∩ E. By change of coordinates and shift of the origin
we may assume that a = 0 and E is the zn-axis. Choose some r > 0 such that the
polydisc

Pn
r (0) = {z ∈ Cn | ‖z‖∞ < r}

is contained in D. Then there is 0 < δ < r such that

{z ∈ Cn | z1 = · · · = zn−1 = 0, |zn| = δ} ⊂ Pn
r (0) \ A.

Since D \ A is an open set there is some ε > 0 such that

R := {z ∈ Cn | |zj | < ε, j = 1, . . . , n − 1, |zn| = δ} ⊂ D \ A.

For every w′ ∈ Cn−1 with
∣∣w′

j

∣∣ < ε, j = 1, . . . , n − 1 the set

Wr := {(w′, zn) | |zn| < r}

intersects A only in isolated points, because fj (w′, zn) 	= 0 for |zn| = δ. Define

U := {z ∈ Cn | |zj | < ε, j = 1, . . . , n − 1, |zn| < δ}



76 Chapter 4. Analytic Sets

and

F : U → C, z = (z′, zn) �→ 1
2πi

∫
|ζ|=δ

f (z′, ζ)
ζ − zn

dζ.

Then F is continuous and partially holomorphic in the variables z1, . . . , zn−1. We
show that F is also partially holomorphic in zn. Let z′ ∈ Cn−1 be fixed such that
‖z′‖∞ < ε. Then the function of one complex variable

ϕ (ζ) := f (z′, ζ)

is holomorphic on the disc defined by |ζ| < r with the possible exception of iso-
lated points. Near these points ϕ is bounded, because f is bounded. The Riemann
Removable Singularity Theorem in one dimension states that ϕ can be holomor-
phically extended to the whole disc. Cauchy’s Integral Formula yields

f (z) = ϕ (zn) =
1

2πi

∫
|ζ|=δ

ϕ (ζ)
ζ − zn

dζ = F (z)

on U \ A. �
Corollary 4.2.2. Let D ⊂ Cn be a domain, A ⊂ D an analytic subset with
codim A ≥ 1. Then D \ A is connected.

Proof. Assume D \A = U ∪ V, where U, V are disjoint, nonempty open subsets of
D \ A. Then the function

f : U ∪ V → C, z �→
{

1, if z ∈ U
0, if z ∈ V

is holomorphic and bounded near A. By Theorem 4.2.1, f has a holomorphic
extension F ∈ O (D) . Since D is connected the Identity Theorem then implies
that F = 0 and F = 1, which is absurd. �
Theorem 4.2.3 (2nd Riemann Removable Singularity Theorem). Let D ⊂ Cn be
open and A ⊂ D an analytic set with codim A ≥ 2. Then the restriction

ρ : O (D) → O (D \ A) , f �→ f |D\A

is an isomorphism of complex algebras.

Proof. Let a ∈ A and f ∈ O (D \ A) . By applying Theorem 4.2.1 we see that it
suffices to show that f is bounded near a. Without loss of generality assume a = 0
and that a is an isolated point in A ∩ E, where

E := {z ∈ Cn | z1 = · · · = zn−2 = 0} .

Hence, there are 0 < r′ < r such that

{z ∈ Cn | z1 = · · · = zn−2 = 0, r′ < |zn−1| , |zn| < r} ⊂ D \ A.
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Since D \ A is open there is ε > 0 such that the compact set

K := {z ∈ Cn | |zj | ≤ ε, j = 1, . . . , n − 2, r′ < |zn−1| , |zn| < r}

is contained in D \ A. Compactness of K implies that f is bounded on K. f can
be holomorphically extended to

K ′ := {z ∈ Cn | |zj | < ε, j = 1, . . . , n − 2, |zn−1| , |zn| < r}

and from the Maximum Modulus Theorem we deduce∥∥f |(D\A)∩K′
∥∥
∞ ≤ ‖f |K‖∞ < ∞.

Hence, f is bounded near zero. �
Exercise 4.2.4. Give an example of a real-analytic function f : R2n → R such that
R2n \ N (f) is not connected.

Exercise 4.2.5. Let ∆n ⊂ GLn (C) denote the set of regular right upper triangular
matrices. For which n ≥ 2 is the restriction

O (GLn (C)) → O (GLn (C) \ ∆n) , f �→ f |GLn(C)\∆n

an isomorphism of complex algebras?

Exercise 4.2.6. Let f, g ∈ O (Cn) such that |f (z)| ≤ |g (z)| for all z ∈ Cn. Show
that f is a multiple of g, i.e., there is some λ ∈ C such that f = λg.



Chapter 5

Hartogs’ Kugelsatz

The goal of this chapter is to state and prove a theorem of Hartogs known
as the “Kugelsatz”. We encountered a special case of the Kugelsatz already in
Chapter 2, where it was shown that every function holomorphic on a ball shell
B (r, R) = {z ∈ Cn | r < ‖z‖2 < R} has a unique holomorphic extension to the
full ball BR (0) . While this special case is the origin of the name “Kugelsatz”
(Kugel is one possible German word for ball) the general case of the Kugelsatz
yields the result that every function holomorphic on the complement D \K ⊂ Cn

(n ≥ 2) of some compact set K, provided this complement is connected, can be
holomorphically extended across K. As a consequence we will see that the zero set
of a holomorphic function in more than one variable is never compact unless it is
empty.

5.1 Holomorphic Differential Forms

We start by giving a brief introduction to holomorphic differential forms in Cn, but
assume that the reader is (at least roughly) familiar with the calculus of differential
forms in Rn. Let us first collect the necessary basics from linear algebra.

5.1.1 Multilinear forms

Let V be an n-dimensional real vector space and denote by

V # := {µ : V → R | µ R-linear}

its algebraic dual. For k ∈ N we then consider the so-called k-th outer product∧k
V # :=

{
µ : V k → R | µ R-multilinear and alternating

}
, (5.1)

where ∧0
V # := R and

∧1
V # := V #.
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An element µ ∈
∧k

V # is called an alternating k-form or simply a k-form. k is
called the degree deg µ of µ. As is known from linear algebra, if v1, . . . , vk are
linearly dependent then

µ (v1, . . . , vk) = 0

for every µ ∈
∧k

V #, which implies∧k
V # = {0} if k > n.

This in mind we define ∧
V # :=

⊕
k≥0

∧k
V #. (5.2)

If T : V → W is a linear mapping and ω ∈
∧k

W# we define a k-form T ∗ω ∈∧k
V #, called the pullback by T, by

T ∗ω (v1, . . . , vk) := ω (Tv1, . . . , T vk) . (5.3)

Denote by Sk the symmetric group of k variables, i.e., the set of permutations of
the numbers 1, . . . , k. For σ ∈ Sk the signum of σ is defined by

sign σ :=
∏

1≤i<j≤k

i − j

σ (i) − σ (j)
. (5.4)

sign σ equals +1 if it takes an even number of transpositions to reorder the numbers

σ (1) , . . . , σ (k)

into their original order 1, . . . , k and −1 if this number of transpositions is odd. It
is easy to see that a k-form satisfies

µ (v1, . . . , vk) = sign σ · µ
(
vσ(1), . . . , vσ(k)

)
.

If µ ∈
∧p

V # and ω ∈
∧q

V # are two p- resp. q-forms we define their product
µ ∧ ω ∈

∧p+q
V # by

µ ∧ ω (v1, . . . , vp, vp+1, vp+q) (5.5)

: =
1

p!q!

∑
σ∈Sp+q

sign σ · µ (v1, . . . , vp) ω (vp+1, . . . , vp+q) .

By bilinear continuation this defines a mapping

∧ :
∧

V # ×
∧

V # →
∧

V #, (ω, ω′) �→ ω ∧ ω′,

which turns
∧

V # into an associative unital algebra called the exterior algebra of
V #.
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Lemma 5.1.1. The mapping (ω, ω′) �→ ω ∧ ω′ has the following properties:

1. The wedge-product ∧ is R-bilinear and associative.

2. The wedge-product ∧ is a natural mapping, i.e., if T is a linear mapping,
then

T ∗ (ω ∧ ω′) = T ∗ω ∧ T ∗ω′.

3. The equation 1 ∧ ω = ω holds.

4. Commutation formula:

ω ∧ ω′ = (−1)deg ω deg ω′
ω′ ∧ ω.

5. If deg ω is even, then ω ∧ ω = 0.

6. If µ1, . . . , µk ∈ V # and v1, . . . , vk ∈ V , then

(µ1 ∧ · · · ∧ µk) (v1, . . . , vk) = det (µi (vj))
k
i,j=1 .

7. If {ε1, . . . , εk} is a basis of V #, then

{εj1 ∧ · · · ∧ εjk
| 1 ≤ j1 < · · · < jk ≤ n}

is a basis of
∧k

V #. In particular,

dimR

∧k
V # =

(
n

k

)
.

Proof. Left to the reader. �
We now turn to the complexification of a real vector space V . To this end we

note that the mapping

J : V × V → V × V, (u, v) �→ (−v, u)

is bilinear and satisfies J2 = − id . Hence, V × V becomes a complex vector space
VC by the definition

i · (u, v) := J (u, v) = (−v, u)

satisfying i · (V × {0}) = {0} × V, hence,

VC = V ⊕ iV. (5.6)

If V #
C denotes the real dual space of VC then∧k

V #
C =

{
µ : V k

C | µ is R-multilinear and alternating
}

=
∧k

V # ⊕ i
∧k

V #

is a complex vector space. We define conjugation in
∧k

V #
C by

µ̄ (v1, . . . , vk) := µ (v1, . . . , vk). (5.7)
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Exercise 5.1.2. Let ωp, ωq, ωr be alternating p-, q- and r-forms. Under what con-
dition does the equation

ωp ∧ ωq ∧ ωr = ωr ∧ ωq ∧ ωp

hold?

5.1.2 Complex differential forms

We introduce complex differential forms on open sets in Cn. All definitions and
results can be transferred to complex manifolds as well.

Definition 5.1.3. Let X ⊂ Cn be an open set and a ∈ X.

1. If γ : ]−ε, ε[ → X is a real differentiable curve with γ (0) = a, then the vector

·
γ (0) :=

d

dt

∣∣∣∣
t=0

γ (t)

is called a tangent vector at a.

2. The set TaX of all tangent vectors at a is called the real tangent space of X
at a.

Exercise 5.1.4. Show that the tangent space TaX of an open set X at a ∈ X is all
of Cn.

Remark 5.1.5. One may ask why we give a rather complicated definition of tangent
space of an open set in Cn if it turns out to coincide with all of Cn. The reason
is that this definition of tangent space also generalizes to differentiable manifolds.
The real dual space T#

a X of TaX is called the real cotangent space of X at a.

Definition 5.1.6. A mapping ω from X into the disjoint union

ω : X →
·⋃

a∈X

∧(
T#

a X
)

C

is called a complex differential form of degree k if for all a ∈ X,

ω (a) ∈
∧k (

T#
a X

)
C

,

i.e., if for all a ∈ X,
ω (a) : (TaX)k → C

is R-multilinear and alternating.
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Example 5.1.7. If f ∈ C1 (X), then the real differential

df : X →
·⋃

a∈X

∧(
T#

a X
)

C
,

a �→ daf =
n∑

j=1

(
∂f

∂zj
(a) dzj +

∂f

∂zj
(a) dzj

)
of f is a complex differential form (cf. (1.4)). Especially the differentials

dzj = d prj = dxj + i dyj ,

dzj = dprj = dxj − i dyj

are complex differential forms.

Combining Lemma 1.2.22 and Lemma 5.1.1 we see that a complex differential
form ω of degree k can generally be written as a finite sum

ω =
∑
finite

aI,JdzI ∧ dzJ , (5.8)

where for k = p + q,

dzI : = dzi1 ∧ · · · ∧ dzip , 1 ≤ i1 < · · · < ip ≤ n,

dzJ : = dzj1 ∧ · · · ∧ dzjq , 1 ≤ j1 < · · · < jq ≤ n,

aI,J : X → C.

Definition 5.1.8. ω is called a smooth differential form of degree k, if all functions
aI,J in (5.8) are smooth, i.e., aI,J ∈ C∞ (X, C) .

Notation 5.1.9. We write

E (X) : = C∞ (X, C) ,

Ek (X) : = {ω | ω smooth complex differential form of degree k on X} ,

Ep,q (X) : =

⎧⎨⎩ω =
∑

finite

aI,JdzI ∧ dzJ

∣∣∣∣∣∣ aI,J smooth, #I = p, #J = q

⎫⎬⎭ .

Remark 5.1.10. It is easy to see that

Ek (X) =
⊕

p+q=k

Ep,q (X) .

If (Kj)j∈N
is a compact exhaustion of X and α ∈ Nn we can define a countable

family of seminorms

pjα
: E (X) → R, f �→ sup

z∈Kj

|Dαf (z)|
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which turns each Ep,q (X) into a Fréchet space. The Fréchet structure of Ep,q (X)
is induced by the Fréchet structure of E (X) , since every differential form

ω =
∑

finite

aI,JdzI ∧ dzJ ∈ Ep,q (X)

can be identified with its set of coefficients aI,J ∈ E (X) . In particular, this means
that a sequence

ωn =
∑

finite

aI,J;ndzI ∧ dzJ ∈ Ep,q (X)

converges to some ω =
∑

finite aI,JdzI ∧ dzJ ∈ Ep,q (X) if and only if

lim
n→∞ aI,J;n = aI,J for all I, J.

The exterior derivative

If ω =
∑

finite aI,JdzI ∧ dzJ is a smooth complex differential form all aI,J are
differentiable functions. Thus we can define a mapping

ω �→ dω :=
∑

finite

daI,J ∧ dzI ∧ dzJ , (5.9)

called the exterior derivative of ω. If ω = aI,J is a differential form of degree zero,
i.e., a smooth function, the exterior derivative is simply the real differential of aI,J .
The following properties are easily verified and the proof is left to the reader.

Lemma 5.1.11. The exterior derivative satisfies:

1. The equation d ◦ d = 0 holds.

2. The exterior derivative of a wedge-product is given by

d (ω ∧ ω′) = dω ∧ ω′ + (−1)deg ω
ω ∧ dω′.

3. For all f ∈ E (X) we have df = df .

4. The mapping d is C-linear.

5. The mapping d can be decomposed into d = d′ +d′′, where d′, d′′ are induced
by

d′ : E (X) → E1,0 (X) , f �→ d′f :=
n∑

j=1

∂f

∂zj
dzj ,

d′′ : E (X) → E0,1 (X) , f �→ d′′f :=
n∑

j=1

∂f

∂zj
dzj .
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6. The equations

d′ ◦ d′ = d′′ ◦ d′′ = 0,

d′ ◦ d′′ + d′′ ◦ d′ = 0

hold.

7. We have

d′f = d′′f,

d′′f = d′f.

Remark 5.1.12. We encountered the mappings d′, d′′ already in Chapter 1, where
we used the notation ∂f = d′f and ∂f = d′′f in (1.5) . For the rest of the book
we will use the more general d′, d′′, because they apply to both functions and
differential forms. We also already know that a function f ∈ E (X) is holomorphic
if and only if d′′f = 0, which is just a short formulation of the Cauchy–Riemann
Differential Equations. This leads to the notation

Ωp (X) := ker
(
Ep,0 (X) d′′

→ Ep,1 (X)
)

(5.10)

=

⎧⎨⎩ω =
∑

finite

aIdzI

∣∣∣∣∣∣ aI ∈ O (X)

⎫⎬⎭ .

Ωp (X) is called the space of holomorphic differential forms of degree p on X.

Definition 5.1.13. A holomorphic differential form ω ∈ Ωp (X) is called exact or
total if there exists a η ∈ Ωp−1 (X) , called a primitive of ω, such that ω = dη. ω
is called closed if dω = 0.

Lemma 5.1.14. Every exact differential form is closed.

Proof. This follows from d ◦ d = 0. �

Example 5.1.15. The differential form

ω = dz1 ∧ dz2 ∈ Ω2 (Cn) , n ≥ 2,

is exact, because ω = dη with η = z1dz2. The differential form

ω = z1dz2 ∧ dz3 ∈ Ω2 (Cn) , n ≥ 3

is not exact, because
dω = dz1 ∧ dz2 ∧ dz3 	= 0,

thus, ω is not closed.
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Remark 5.1.16. It can be shown that on an open subset X of Cn the equation dω =
η can always be solved locally, i.e., for every a ∈ X there is an open neighbourhood
U, such that the equation dω = η has a solution that is valid on U. This follows from
a result known as Poincaré’s Lemma, which will be discussed in the exercises. For
this and also in the following chapters we need the following notion from general
algebra(see, for example, [7]).

Definition 5.1.17. A sequence
(
Ej , ϕj

)
j∈N

of vector spaces (groups, rings, mod-
ules,...) Ej and corresponding homomorphisms ϕj : Ej → Ej+1 is called an exact
sequence of vector spaces (groups, rings, modules,...), if img ϕj = ker ϕj+1 for all
j.

Example 5.1.18. Let G be a group with neutral element e and N � G a normal
subgroup. Let inc denote the natural inclusion, π : G → G/N the canonical
projection

π (g) := g ∗ N := {g ∗ n | n ∈ N}

for all g ∈ G and let φ be the trivial homomorphism φ (g) := e for all g ∈ G. Then
the sequence

{e} inc→ N
inc→ G

π→ G/N
φ→ {e} (5.11)

is exact. It is customary to write 0 instead of {e} and to omit the trivial homo-
morphisms inc and φ if the choice is clear from the context, so the sequence (5.11)
would usually be written

0 → N → G
π→ G/N → 0.

Definition 5.1.19. An exact sequence of the form

0 → E1
ϕ1→ E2

ϕ2→ E3 → 0 (5.12)

is called a short exact sequence.

Lemma 5.1.20. If 0 → E1
ϕ1→ E2

ϕ2→ E3 → 0 is a short exact sequence, then ϕ1 is
injective and ϕ2 is surjective.

Proof. By definition kerϕ1 = img inc = 0, hence, ϕ1 is injective. ϕ2 is surjective,
because img ϕ2 = ker φ = E3. �

Exercise 5.1.21. Let X ⊂ C be a simply connected domain, A ⊂ X a discrete
subset and

ω := fdz ∈ Ω1 (X \ A) .

Show that ω is exact if and only if resa f = 0 for all a ∈ A.

Exercise 5.1.22. Let f : C → C \ {0} be a holomorphic function and ω := f ′

f dz.

Determine a function g ∈ O (C) such that dg = ω.
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Exercise 5.1.23. Let X ⊂ Cn be an open set and F = (f1, . . . , fn) ∈ O (X, Cn) .
Find a relation between df1 ∧ · · · ∧ dfn and dz1 ∧ · · · ∧ dzn.

Exercise 5.1.24. Let 0 ≤ p, q ≤ n, X, Y, Z be open subsets of Cnand

f : Z → Y, g : Y → X

holomorphic mappings. For ω ∈ Ep,q (Y ) we define the pullback f∗ by f∗ω := ω◦f.
Please show:

1. f∗ is a linear mapping

f∗ : Ep,q (Y ) → Ep,q (Z) ,

which satisfies
(g ◦ f)∗ = f∗ ◦ g∗, id∗

X = idEp,q(X) .

2. The pullback commutes with all outer derivatives, i.e., if ∂ ∈ {d, d′, d′′} then

f∗ (∂ω) = ∂ (f∗ω) .

Exercise 5.1.25. Let 1 ≤ p ≤ n and X ⊂ Cn be a domain, which is star-shaped
with respect to the origin. We put

σi1...ip
:=

p∑
k=1

(−1)k−1
zik

dzi1 ∧ · · · ∧ d̂zik
∧ dzik+1 ∧ · · · ∧ dzip

,

where d̂zik
means that this factor is omitted. Let

η = fdzi1 ∧ · · · ∧ dzip ∈ Ωp (X) .

We define an operator I : Ωp (X) → Ωp−1 (X) by

Iη (z) :=
(∫ 1

0

tp−1f (tz) dt

)
σi1...ip

and extension by linearity. Please show:

1. The equation dσ1...p = pdz1 ∧ · · · ∧ dzp holds.

2. For j = 1, . . . , n we have dzj ∧ σ1...p = −σj1...p + zjdz1 ∧ · · · ∧ dzp.

3. For all ω ∈ Ωp (X) we have I (dω) + d (Iω) = ω.

4. (Poincaré’s Lemma) The sequence

0 → C →O (X) d→ Ω1 (X) d→ · · · d→ Ωn (X) → 0

is exact. (C is identified with the set of constant functions on X.)
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5. Interpret Poincaré’s Lemma in the case n = 1. Which classical theorem in
function theory of one complex variable corresponds to it?

Exercise 5.1.26. Let X ⊂ Cn be an open set, which is star-shaped with respect to
the origin and let b1, b2, b3 ∈ O (X) such that

3∑
j=1

∂bj

∂zj
= 0 on X.

Show that the system of partial differential equations

∂f3

∂z2
− ∂f2

∂z3
= b1,

∂f1

∂z3
− ∂f3

∂z1
= b2,

∂f2

∂z1
− ∂f1

∂z2
= b3

has a solution f = (f1, f2, f3) , fj ∈ O (X) . Is this solution unique? (Hint: Apply
Poincaré’s Lemma.)

Remark 5.1.27. The first statement of Remark 5.1.16 follows from Poincaré’s
Lemma in the following way: if X is an open subset of Cn, every a ∈ X has
a star-shaped open neighbourhood U ⊂ X, for instance, an open ball, on which
Poincaré’s Lemma holds. In particular, Poincaré’s Lemma says that the mapping

Ωn−1 (U) d→ Ωn (U)

is surjective. Note that even though the equation dω = η always has a local
solution near every point a ∈ X this does not mean that it has a global solution.
For example, take n = 1, X = C \ {0} and η = dz

z . Finding a global solution ω
of the equation dω = η would mean finding a global logarithm function on all of
C\{0} , which does not exist. When diving deeper into the question of the existence
of global solutions of the equation dω = η it is well known that one encounters
merely topological obstructions, which lead to the notion of the so-called de Rham
cohomology groups. The interested reader may refer to [9]for more details on this
matter. General cohomology theory is studied in depth in Algebraic Topology.

5.2 The inhomogenous Cauchy–Riemann Differential
Equations

A differentiable function f of one complex variable is holomorphic if f is a solution
of the homogenous Cauchy–Riemann Differential Equation

∂f

∂z
= 0.
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It is natural to ask also for solutions of the more general equation

∂f

∂z
= ϕ,

where ϕ is a differentiable function. We will answer this question, at least in a
special case.

Proposition 5.2.1. Let U ⊂ Cn be an open set and let ϕ : C×U → C be a smooth
function such that for all w ∈ U the function

ζ �→ ϕ (ζ, w)

has compact support. Define f : C × U → C by

f (z, w) :=
1

2πi

∫
C

ϕ (ζ, w)
ζ − z

dζ ∧ dζ.

Then f is smooth on C × U and satisfies

∂f

∂z
= ϕ.

Proof. Let z ∈ C be fixed. Every ζ ∈ C can be expressed in polar coordinates

ζ = z + r exp (it) ,

so dζ ∧ dζ = −2ir dr ∧ dt. Hence,

f (z, w) = − 1
π

∫ 2π

0

∫ ∞

0

ϕ (z + r exp (it) , w) dr ∧ dt,

which shows that f exists and has the stated properties with respect to the para-
meter w. Now let (a,w) ∈ C × U be fixed. Then, if we replace ζ by ζ + z in the
integral,

∂f

∂z
(z, w) =

1
2πi

∫
C

∂ϕ

∂z
(z + ζ, w)

dζ ∧ dζ

ζ
.

Replacing ∂
∂z by ∂

∂ζ
and ζ by ζ − a we find

∂f

∂z
(a,w) =

1
2πi

∫
C

∂ϕ

∂ζ
(ζ, w)

dζ ∧ dζ

ζ − a

= − 1
2πi

lim
ε→0+

∫
|ζ−a|≥ε

d

(
ϕ (ζ, w)
ζ − a

dζ

)
.

By Stokes’ Theorem, applied to Br (a)\Bε (a) for suitable r > ε, the latter equals

1
2πi

lim
ε→0+

∫
|ζ−a|=ε

ϕ (ζ, w)
ζ − a

dζ =
1

2πi
lim

ε→0+

∫ 2π

0

ϕ
(
a + εeit, w

)
dt

= ϕ (a,w) . �
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5.3 Dolbeaut’s Lemma

Proposition 5.3.1. Let P ′ ⊂ P ⊂ Cn be polydiscs such that P ′ is concentric and P ′
is a compact subset of P. Let p ≥ 0, q ≥ 1. Then to every ω ∈ Ep,q (P ) satisfying
d′′ω = 0 there exists some η ∈ Ep,q−1 (P ′) such that

d′′η = ω|P ′ .

Proof. For ν = 0, . . . , n we use the following notation for index sets I ⊂ N:

I ≤ ν : ⇐⇒ max I ≤ ν.

Put

Aν (P ) :=

⎧⎨⎩ω ∈ Ep,q (P )

∣∣∣∣∣∣ω =
∑

I,J≤ν

aI,JdzI ∧ dzJ

⎫⎬⎭ .

Then {0} = A0 ⊂ A1 ⊂ · · · ⊂ An = Ep,q (P ) . We use induction on ν. If ν = 0
then ω = 0, because q ≥ 1, so we can choose η := 0. Now assume the proposition
holds for j = 0, . . . , ν − 1. Choose some open concentric polydisc P ′′ such that P ′′
is compact and

P ′ ⊂ P ′′ ⊂ P ′′ ⊂ P

and let ω ∈ Aν (P ) satisfy d′′ω = 0. ω can be written in the form

ω =
∑

I,J≤ν

aI,JdzI ∧ dzJ .

It follows from J ≤ ν that

∂aI,J

∂zk
= 0 for all k > ν,

i.e., the coefficients aI,J depend holomorphically on zν+1, . . . , zn. Now we can
decompose ω into

ω = dzν ∧ σ + β,

where β ∈ Aν−1 (P ) and

σ =
∑

I,J≤ν−1

bI,JdzI ∧ dzJ

with coefficient bI,J , which coincide with some aI′,J ′ up to the sign. In particular,
they depend holomorphically upon zν+1, . . . , zn. There exists a smooth function
χ : P → C with compact support such that

χ|P ′′ = 1.
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Proposition 5.2.1 states that for χ · bI,J there exist smooth functions cI,J ∈ E (P ′′)
such that

∂cI,J

∂zν
= bI,J |P ′′ ,

and the cI,J depend holomorphically upon zν+1, . . . , zn. Put

γ :=
∑

I,J≤ν−1

cI,JdzI ∧ dzJ .

Then
d′′γ = dzν ∧ σ|P ′′ + δ

with some δ ∈ Aν−1 (P ′′) . Thus, ω − d′′γ|P ′′ = β|X′′ − δ. In particular,

β|P ′′ − δ ∈ Aν−1 (P ′′) , d′′ (β|P ′′ − δ) = 0.

The induction hypothesis yields that there is τ ∈ Ep,q−1 (P ′) such that

d′′τ = (β − δ) |P ′ .

Choose η := γ|P ′ + τ . Then η ∈ Ep,q−1 (P ′) and

d′′η = d′′γ|P ′ + d′′τ
= ω|P ′ + (β − δ) |P ′ + (β − δ) |P ′

= ω|P ′ ,

proving the proposition. �
Lemma 5.3.2. Let (Ek)k≥0 be a family of complete metric spaces and let

γk : Ek → Ek−1, k ≥ 1

be continuous mappings such that γk (Ek) is dense in Ek−1 for all k ≥ 1. Then
there exists a sequence (xk)k≥0 with xk ∈ Ek such that

γk (xk) = xk−1.

Proof. Let x1 ∈ E1 be an arbitrary element. Put x0 := γ1 (x1) and define

x00 := x01 := x0, x10 := x11 := x1.

Let ε > 0 be arbitrary. Then xjk ∈ Ej , j = 0, 1 and

γ1 (xj1) = xj−1,1, d (xj1, xj0) = 0 < 2−1ε.

By induction on k ≥ 1 we obtain elements xjk ∈ Ej , j = 0, . . . , k, such that

γj (xjk) = xj−1,k, d (xjk, xj,k−1) < 2−kε.



92 Chapter 5. Hartogs’ Kugelsatz

Then, if k ≥ l + 1 ≥ j, the triangle inequality yields

d (xjk, xjl) ≤
k−(l+1)∑

m=0

d (xj,k−m, xj,k−m−1)

≤
k−(l+1)∑

m=0

2−k+mε = ε
(
2−l − 2−k

)
,

which shows that (xjk)k≥0 is a Cauchy sequence in Ej . Hence, since Ej is complete,
xj := lim

k→∞
xjk exists in Ej . xj satisfies

γj (xj) = lim
k→∞

γj (xjk) = lim
k→∞

xj−1,k = xj−1 ∈ Ej−1

by continuity of γj . �

Theorem 5.3.3 (Dolbeaut’s Lemma). Let P ⊂ Cn be a polydisc and p + q = n.
Then the sequence

0 → Ωp (P ) → Ep,0 (P ) d′′
→ Ep,1 (P ) d′′

→ · · · d′′
→ Ep,q (P ) → 0

is exact.

Proof. Let q ≥ 1 and ω ∈ Ep,q (P ) such that d′′ω = 0. We have to show that there
is some η ∈ Ep,q−1 (P ) such that d′′η = ω. Let

P0 ⊂ P0 ⊂ P1 ⊂ P1 ⊂ · · · ⊂ P

be an exhaustion of P by concentric and relatively compact polydiscs. Define for
k ∈ N,

Mk :=
{
η ∈ Ep,q−1 (Pk) | d′′η = ω|Pk

}
.

Lemma 5.3.1 says that Mk 	= ∅, so we have

∅ 	= M0 ⊂ M1 ⊂ M2 ⊂ · · ·

(with the suitable restrictions of the elements). Let ηk ∈ Mk. We proceed by
induction on q. If q = 1 and η′, η′′ ∈ Mk, then d′′ (η′ − η′′) = 0, i.e., η′ − η′′ ∈
Ωp (Pk) . Consider the mappings

ψk : Ωp (Pk) → Mk, η �→ η + ηk,

τk : Ωp (Pk) → Ωp (Pk−1) , η �→ η +
(
ηk − ηk−1

)
.

ψk is surjective, τk is continuous and has dense image, because the Taylor polyno-
mials of the coefficients of η+ηk−ηk−1 approximate the coefficients of an arbitrary



5.3. Dolbeaut’s Lemma 93

element of Ωp (Pk−1) . Furthermore, if ρk : Mk → Mk−1 denotes the restriction,
the diagram

Ωp (Pk) τk−→ Ωp (Pk−1)
ψk ↓ ↓ ψk−1

Mk
ρk−→ Mk−1

commutes. From Lemma 5.3.2 we obtain holomorphic p-forms σk ∈ Ωp (Pk) , such
that τk (σk) = σk−1. Put

η̃k := ψk (σk) = σk + ηk.

Then η̃k|Pk−1 = η̃k−1. Hence, we can well-define η ∈ Ep,0 (P ) by η|Pk
:= η̃k for all

k. Then
d′′η|Pk

= d′′σk + d′′ηk = 0 + ω|Pk
,

i.e., d′′η = ω. The case q = 1 is thus proven. Let now q ≥ 2 and η′, η′′ ∈ Mk. From
the induction hypothesis we obtain σ ∈ Ep,q−1 (P ) such that d′′σ = η′ − η′′, i.e.,
the mapping

ψk : Ep,q−2 (Pk) → Mk, σ �→ d′′σ + ηk

is surjective. Define

τk : Ep,q−2 (Pk) → Ep,q−2 (Pk−1) , σ �→ σ + γk−1,

where d′′γk−1 = σk − σk−1. τk is continuous and since to every compact set
K ⊂ Pk−1 there exists a smooth function s ∈ E (Pk), whose support is contained
in Pk−1 and which satisfies s|K = 1, τk has dense image. The diagram

Ep,q−2 (Pk) τk−→ Ep,q−2 (Pk−1)
ψk ↓ ↓ ψk−1

Mk
ρk−→ Mk−1

commutes. It follows again from Lemma 5.3.2 that there are σk ∈ Ep,q−2 (Pk) such
that τk (σk) = σk−1. Finally, define η ∈ Ep,q−1 (P ) by

η|Pk
:= ηk + d′′σk.

Then d′′η|Pk
= d′′ηk = ω|Pk

, i.e., d′′η = ω. �
Corollary 5.3.4. Let n ≥ 2 and let ω ∈ E0,1 (Cn) have compact support and satisfy
d′′ω = 0. Then there is a smooth function f : Cn → C with compact support such
that d′′f = ω.

Proof. By Dolbeaut’s Lemma there is a smooth function h ∈ E (Cn) = E0,0 (Cn)
such that d′′h = ω. Let K be the support of ω. There is a bounded ball B such
that K ⊂ B ⊂ B. On Cn \ B we have d′′h = 0, i.e., h is holomorphic outside B.
It follows from Theorem 2.3.1 that h has a unique holomorphic continuation g to
Cn. Put f := h − g. Then the support supp f of f is closed per definition and
contained in B, so it is compact and d′′f = d′′h − d′′g = d′′h = ω. �
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5.4 The Kugelsatz of Hartogs

Hartogs’ Kugelsatz generalizes Theorem 2.3.1. In order to give a proof we need
some basic results from general topology.

Lemma 5.4.1. Let X be a locally connected topological space, W ⊂ X and a, b ∈
W . Then the following defines an equivalence relation ∼ on X :

a ∼ b : ⇐⇒ There is a connected set U ⊂ W such that a, b ∈ U.

Proof. a ∼ a, because X is locally connected. Symmetry is trivial. If a ∼ b and
b ∼ c then there are connected sets U, V ⊂ W such that a, b ∈ U, b, c ∈ V. Because
b ∈ U ∩ V the set U ∪ V is connected and contains a, b, c, hence, a ∼ c. �
Definition 5.4.2. The equivalence class of an element a ∈ W under the above
relation is called the connected component of a in W. We denote it by W̃ a. If a is
not specified W̃ denotes any connected component of W.

Lemma 5.4.3. Let X be a locally connected topological space, W ⊂ X an open
subset and a ∈ W. Then the following holds:

1.
W̃ a =

⋃
V ⊂W

V connected
a∈V

V. (5.13)

2. W̃ is open in X.

3. Let K be a compact subset of Cn. Then Cn \ K contains exactly one un-
bounded connected component.

Proof. 1. If b ∈ W̃ a there is a connected subset U ⊂ X that contains a and b, i.e.,
the inclusion “⊂” holds. On the other hand, if b is contained in some connected
set V, which also contains a, then b ∼ a, hence, b ∈ W̃ a.

2. The assertion is trivial if W = ∅. If W 	= ∅ let a ∈ W̃ , i.e., W̃ = W̃ a Since
W is open and X is locally connected there is a connected open neighbourhood U
of a, which is contained in W. Thus, U ⊂ W̃ a, which shows that W̃ a is open.

3. Put V := Cn \K. Since K is compact, it is closed and bounded. Therefore,
V is open and there is some r > 0 such that K ⊂ Bn

r (0) . Then Cn \ Bn
r (0) is an

unbounded and connected set, which is contained in V.Choose

a ∈ Cn \ Bn
r (0) ⊂ V

and let Ṽ a denote its connected component in V. Then Cn \ Bn
r (0) ⊂ Ṽ a, hence,

Ṽ a is an unbounded connected component in V. If Ṽ is an arbitrary unbounded
connected component of V then

Ṽ ∩ (Cn \ Bn
r (0)) 	= ∅.

Since Cn \ Bn
r (0) ⊂ Ṽ a, we conclude Ṽ = Ṽ a. �
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Theorem 5.4.4 (Kugelsatz). Let X be an open set in Cn, n ≥ 2 and K ⊂ X a
compact subset such that X \ K is connected. Then the restriction

ρ : O (X) → O (X \ K)

is an isomorphism of C-algebras.

Proof. As usual, we only prove that ρ is surjective. Choose an open and relatively
compact set C such that K ⊂ C ⊂ X and a smooth function ϕ : X → [0, 1] with
compact support suppϕ such that

ϕ|C = 1.

Let f ∈ O (X \ K) and define the smooth function

h : X → C, z �→
{

(1 − ϕ (z)) f (z) , if z ∈ X \ K
0, if z ∈ K

.

Then
h|X\supp ϕ = f |X\supp ϕ. (5.14)

In particular, we have d′′f = d′′h = 0 outside suppϕ. d′′h can thus be extended
by zero outside X, i.e., d′′h ∈ E0,1 (Cn) . The support of d′′h is a closed subset
of the compact set supp ϕ, hence it is itself compact. We obtain from Corollary
5.3.4 that there is a function g ∈ E (Cn) with compact support, which satisfies
d′′g = d′′h. g is holomorphic on Cn \ suppϕ, because of d′′h = 0 outside suppϕ.
Since d′′h = d′′g, we can define a holomorphic function F : X → C by

F := h − g.

We claim that F is the desired holomorphic extension of f. This can be seen as
follows. If W denotes the unique unbounded connected component of Cn \ supp ϕ
the Identity Theorem implies that g vanishes on W, because supp g is compact. It
follows from the fact that X is an open set and from

∂W ⊂ ∂ (Cn \ supp ϕ) = ∂ suppϕ ⊂ X

that X ∩ W 	= ∅. Now note that X ∩ W is an open set and that

∅ 	= X ∩ W ⊂ X ∩ (Cn \ suppϕ) = X \ supp ϕ.

It follows from (5.14) that

F |X∩W = h|X∩W = f |X∩W .

From ϕ|K = 1 we obtain K ⊂ suppϕ, thus, X \ supp ϕ ⊂ X \ K. By prerequisite
X \K is a domain and F |X\K and f coincide on the open nonempty subset X∩W.
Hence, the Identity Theorem implies

F |X\K = f,

and the proof is complete. �
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Corollary 5.4.5. Let D be a domain in Cn, n ≥ 2, and f ∈ O (D) . Then the zero
set N (f) is not compact.

Proof. If f is the zero function the proof is trivial. Let f 	= 0. It was shown in
Example 4.1.5 that in this case the analytic set N (f) has codimension 1. Corol-
lary 4.2.2 states that D \ N (f) is connected. The function 1

f is holomorphic on
D \N (f) . If N (f) were compact the Kugelsatz would imply that there is a holo-
morphic function F ∈ O (D) such that

F |D\N(f) =
1
f

.

Multiplication by f yields F ·f = 1 on D \N (f) . Since f is not the zero function,
D \ N (f) is a nonempty open subset of the connected set D \ N (f) , thus, the
Identity Theorem says that F · f = 1 on all of D, contradicting f |N(f) = 0. �
Example 5.4.6. The statement of the corollary does not hold for real analytic
functions. For example, the zero set of the function

f : Cn → C, z �→ ‖z‖2
2 − 1

is the compact unit sphere in Cn.

Example 5.4.7. The zero set of the polynomial p (z1, . . . , zn) := z1 is {0} × Cn−1,
which is not compact if n > 1.

Exercise 5.4.8. Give examples that the Kugelsatz does no longer hold if X \ K is
not connected or if n = 1.

Exercise 5.4.9. Let n ≥ 2 and K ⊂ Cn be a compact and convex set. Let X :=
Cn \ K and f ∈ O (X) be a nonconstant function.

1. Show that there is a sequence (zj)j∈N
in X such that lim

j→∞
|f (zj)| = ∞.

2. Can one of the prerequisites compact resp. convex be weakened such that 1.
still holds?

3. Does 1. also hold if we only demand f to be smooth?

Exercise 5.4.10. Let D be a bounded domain in Cn, n ≥ 2, with connected bound-
ary ∂D. Let

A (D) =
{
f ∈ C

(
D
)
| f |D ∈ O (D)

}
and

ρ : A (D) → C (∂D) , f �→ f |∂D.

1. Let f ∈ A (D) . Find the implications in the following two statements:

(a) N (f) ∩ X 	= ∅.
(b) N (ρ (f)) 	= ∅.

2. Determine the set {f ∈ A (D) | |ρ (f)| = const.} .



Chapter 6

Continuation on Tubular
Domains

An especially important class of domains in Cn are tubular domains ( or tube
domain), i.e., domains of the form D := Ω+ iRn, where Ω is a domain in Rn. Ω is
called the basis of the tubular domain D. In particular, Cn = Rn+iRn is a tubular
domain with basis Rn. The aim of this chapter is to give a proof of a continuation
theorem due to Bochner, which states that every function holomorphic on a tubular
domain D can be holomorphically extended to the convex hull of D. Bochner’s
Theorem, unlike Hartogs’ Kugelsatz, holds also in dimension 1. However, if n = 1
the theorem is trivial, because every tube domain in C coincides with its convex
hull.

6.1 Convex hulls

Recall from Chapter 1 that for a subset X of a real vector space the convex hull
conv (X) of X is the smallest convex set that contains X, i.e.,

conv (X) =
⋂

C convex
C⊃X

C.

If X = {x0, . . . , xm} is a finite set, then conv (X) is called the simplex spanned by
x0, . . . , xm.

Example 6.1.1. The convex hull of the set {0, 1, i} ⊂ C is the closed triangular
surface ∆ with corners 0, 1, i.

In Rn the convex hull of a set X can be computed as the union of all simplices
spanned by a maximum of n+1 elements of X. This is the content of the following
lemma due to Carathéodory.



98 Chapter 6. Continuation on Tubular Domains

Lemma 6.1.2 (Carathéodory). Let X ⊂ Rn. Then the convex hull of X is given
by

conv (X) =

⎧⎨⎩
n∑

j=0

λjxj

∣∣∣∣∣∣ xj ∈ X, λj ∈ [0, 1] ,
n∑

j=0

λj = 1

⎫⎬⎭ .

Proof. “⊃”: Let x0, . . . , xm ∈ X and let λj ∈ [0, 1] ,
∑m

j=0 λj = 1. We show by
induction on m ≥ 1 that

∑m
j=0 λjxj ∈ conv (X) . If m = 1 this is an immediate

consequence of the convexity of conv (X) . Assume that the proposition holds for
m − 1. If λm = 1 then all other λj vanish and nothing is to show. If λm < 1 then

m∑
j=0

λjxj = λmxm + (1 − λm)
m−1∑
j=0

λj

1 − λm
xj .

Because of
∑m−1

j=0
λj

1−λm
= 1 the induction hypothesis yields that

ym :=
m−1∑
j=0

λj

1 − λm
xj ∈ conv (X) .

Hence,
m∑

j=0

λjxj = λmxm + (1 − λm) ym ∈ conv (X) ,

because it is a convex combination of the two elements xm, ym ∈ conv (X) .
“⊃”: Using the first part of the proof it is easy to see that

conv (X) =
⋃

m≥1

⎧⎨⎩
m∑

j=0

λjxj

∣∣∣∣∣∣ xj ∈ X, λj ∈ [0, 1] ,
n∑

j=0

λj = 1

⎫⎬⎭ .

To complete the proof we have to show that for m > n every convex combination∑m
j=0 λjxj can be written as a convex combination

∑m
j=1 λ̃jxj . We may assume

that λj > 0, otherwise we simply drop the summand. Since m > n the vectors

xm − x0, . . . , x1 − x0

are linearly dependent in Rn. Thus, there are coefficients αj ∈ R, j = 1, . . . ,m,
not all of them zero, such that

0 =
m∑

j=1

αj (xj − x0) .

Put α0 := −
∑m

j=1 αj . Then
∑m

j=0 αj = 0 and

m∑
j=0

αjxj = 0.
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After an eventual renumbering we may assume that |αj |
λj

≤ |α0|
λ0

for all j > 0. In
particular, α0 	= 0. We can now put

λ̃j := λj −
αjλ0

α0
, j = 0, . . . ,m.

Then λ̃0 = 0, λ̃j ≥ 0 for j > 0 and

m∑
j=1

λ̃j =
m∑

j=0

λ̃j =
m∑

j=0

λj −
λ0

α0

m∑
j=0

α0 = 1 − 0 = 1.

Finally,
m∑

j=1

λ̃jxj =
m∑

j=0

λjxj −
λ0

α0

m∑
j=0

αjxj =
m∑

j=0

λjxj ,

which completes the proof. �
If we identify Cn with R2n the lemma is valid for subsets of Cn as well.

Another useful, but less geometric characterization of the convex hull of a compact
set can be given by means of linear functionals. Let, as usual, (Cn)# denote the
algebraic dual of Cn, i.e., the space of all linear functionals µ : Cn → C.

Lemma 6.1.3. If K ⊂ Cn is a compact set, then its convex hull is compact and
given by

conv (K) =
⋂

µ∈(Cn)#

{
z ∈ Cn

∣∣∣∣∣Re µ (z) ≤ sup
ζ∈K

Re µ (ζ)

}
. (6.1)

Proof. Denote by S :=
{

λ ∈ R2n+1
∣∣∣ λj ∈ [0, 1] ,

∑n
j=1 λj = 1

}
the 2n-dimen-

sional unit simplex. By Carathéodory’s Lemma conv (K) is the image of the con-
tinuous mapping

K2n+1 × S → Cn, (k0, . . . , k2n, λ0, . . . .λ2n) �→
2n∑

j=0

λjkj .

Since K2n+1 and S are compact, conv (K) is compact. Denote the right-hand side
of (6.1) by K̃. For every µ ∈ (Cn)# the linear functional Reµ : Cn → R is R−
linear. Thus, K̃ is convex. Since K ⊂ K̃, we also have conv (K) ⊂ K̃. On the
other hand, if p /∈ conv (K) the Hahn–Banach separation theorem (see, e.g., [11],
Theorem III.2.4) states that there is an R-linear functional µ̃ : Cn → R such that
µ̃ (p) > sup µ̃ (K) . We define µ ∈ (Cn)# by the complex-linear extension

µ (z) := µ̃ (z) − iµ̃ (iz) ,

which satisfies Re µ (p) = µ̃ (p) > sup µ̃ (K) = sup Re µ (K) . �
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Exercise 6.1.4. Let U ⊂ Rn be a subset. Please show:

1. If U is open then conv (U) is open in Rn.

2. If U is bounded then conv (U) is bounded.

Exercise 6.1.5. Determine the convex hull of the sets

X1 :=
{
(x, y) ∈ R2 | 1 < x2 + y2 < 2

}
and

X2 := X1 ∪ {(0, 0)} .

Sketch the relevant sets.

Exercise 6.1.6. Let D = Ω + iRn be a tubular domain in Cn. Please show:

1. D is convex if and only if Ω is convex.

2. The convex hull satisfies conv (Ω + iRn) = conv (Ω) + iRn.

Exercise 6.1.7. Let D = Ω + iRn be a tubular domain in Cn and let T ∈ GLn (R)
be a regular real matrix.

1. Show that D′ := T (D) is a tubular domain, D′ = Ω′ + iRn.

2. If the basis Ω is star-shaped with respect to the origin then so is Ω′.

6.2 Holomorphically convex hulls

Formula (6.1) describes the convex hull of a compact set in terms of linear func-
tionals. Replacing the linear functionals by holomorphic functions leads to the
definition of the holomorphically convex hull of a subset K ⊂ Cn.

Definition 6.2.1. Let U ⊂ Cn be open and K ⊂ U . The set

K̂U :=
⋂

f∈O(U)

{
z ∈ U

∣∣∣∣∣ |f (z)| ≤ sup
ζ∈K

|f (z)|
}

(6.2)

is called the holomorphically convex hull of K with respect to U.

From the definition it is immediate that K ⊂ K̂U . If K is a compact set we
have sup |f (K)| < ∞ in (6.2) , otherwise it might happen that this supremum is
infinity. In most cases we will consider compact sets K. It is important to notice
that the holomorphically convex hull of a set depends on the surrounding open
set U.

Remark 6.2.2. Replacing the set O (U) by an arbitrary family F of functions on
U leads to the general notion of F-convex hull. For instance, if we take F to be
the family of monomials

{zα | α ∈ Nn} ,
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we obtain the monomially convex hull. If F is the family of polynomials⎧⎨⎩ ∑
|α|≤k

cαzα

∣∣∣∣∣∣ k ∈ N

⎫⎬⎭
we speak of the polynomially convex hull and so on.

Example 6.2.3. Let T be the unit circle in C. Then

T̂C× = T

and
T̂C = B1

1 (0).

Proof. The functions idC× and 1
id

C×
are holomorphic on C× and both have constant

absolute value 1 on T, which shows that z ∈ T̂C× if and only if |z| = 1. Since idC

is holomorphic and has constant absolute value 1 on T, we see that

T̂C ⊂ B1
1 (0).

On the other hand, if f ∈ O (C) and |z| = r > 1 the Maximum Modulus Theorem
implies that the function ∣∣∣f |B1

r(0)

∣∣∣ : B1
r (0) → R

attains its maximum on the circle T 1
r (0) = ∂B1

r (0) . Thus, z /∈ T̂C, which shows
that B1

1 (0) ⊂ T̂C. �

To get acquainted with the definition the reader should check the following
properties of K̂U .

Lemma 6.2.4. Let K ⊂ L ⊂ U ⊂ V ⊂ Cn be subsets such that U, V are open.
Then

1. K̂U =
(̂
K̂U

)
U

.

2. K̂U ⊂ L̂U .

3. K̂U is closed in U.

4. ̂(
K ∩ U

)
U

= K̂U

5. K̂U ⊂ K̂V .

Lemma 6.2.5. Let U ⊂ Cn be open, K ⊂ U compact. Then the following holds.

1. The holomorphically convex hull is contained in the convex hull: K̂U ⊂
conv (K) .
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2. If M ⊂ U \ K is a connected component, which is relatively compact in U,

then M ⊂ K̂U .

Proof. 1. If µ ∈ (Cn)# we regard the holomorphic function

f := exp ◦µ|U ∈ O (U)

which satisfies |f | = exp ◦Re µ and thus we obtain from (6.1) that

K̂U ⊂ conv (K) .

2. Let f ∈ O (D) . Since M ⊂ U \K is a relatively compact connected component,
we have ∂M ⊂ U and thus ∂M ⊂ K. The Maximum Modulus Theorem implies
that for all z ∈ M ,

|f (z)| ≤ sup |f (∂M)| ≤ sup |f (K)| ,

hence, z ∈ K̂U . �

Example 6.2.6. We generalize Example 6.2.3. Let

K := S2n−1 := {z ∈ Cn | ‖z‖2 = 1}

be the unit sphere. Then
K̂Cn = Bn

1 (0)

and

K̂Cn\{0} =
{

T = S1, if n = 1
Bn

1 (0) \ {0} , if n > 1
.

Proof. We have conv
(
S2n−1

)
= Bn

1 (0). The only relatively compact connected
component of Cn \ K is Bn

1 (0) . Lemma 6.2.5 gives

Bn
1 (0) ⊂ K̂Cn ⊂ Bn

1 (0).

Since also K ⊂ K̂Cn , it follows that

K̂Cn = Bn
1 (0).

We know from Example 6.2.3 that for n = 1 we have K̂C\{0} = T. If n ≥ 2 we can
apply the Kugelsatz to extend every function holomorphic on Cn \ {0} to Cn and
can thus apply the above argument, which shows that

K̂Cn\{0} = Bn
1 (0) \ {0} for n ≥ 2.

Note that K̂Cn\{0} is compact in Cn if and only if n = 1. �
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For a proper subset U ⊂ Cn let U c := Cn \ U denote the complement with
respect to Cn. We consider the boundary distance function

dist∂U : Cn → R, z �→ dist∞ (∂U, z) := inf
w∈∂U

{‖z − w‖∞} .

For any subset A ⊂ Cn we define

dist∞ (A, ∂U) := inf
z∈A

dist∂U (z) .

dist∂U is uniformly continuous and its zero set coincides with Cn \ U.

Lemma 6.2.7 (Thullen’s Lemma). Let U ⊂ Cn be a proper open subset and K ⊂ U
compact. If u ∈ O (U) satisfies

|u (z)| ≤ dist∂U (z) for all z ∈ K,

then for every f ∈ O (U) and all a ∈ K̂U the Taylor series

∑
α∈Nn

Dαf (a)
α!

(z − a)α

converges to f on {z ∈ U | ‖z − a‖∞ < |u (a)| } .

Proof. For t ∈ ]0, 1[ put

Mt := {z ∈ U | There is w ∈ K such that ‖z − w‖∞ ≤ t |u (w)|} .

We claim that Mt is compact. For every z ∈ Mt there is some w ∈ K such that

‖z‖∞ ≤ ‖w‖∞ + |u (w)| ,

so Mt is a bounded set, because K is compact and u is continuous. Let (zj)j∈N
⊂

Mt be a sequence converging to some z ∈ Mt. Then there is a sequence (wj)j∈N
⊂

K such that
‖zn − wn‖∞ ≤ t |u (wn)| .

Since K is compact there is a subsequence of (wj)j∈N
converging to some w ∈ K.

Without loss of generality we assume that (wj)j∈N
itself converges to w. If w = z

then z ∈ Mt. Otherwise, we obtain from the triangle inequality

‖z − w‖∞ ≤ ‖z − zj‖∞ + ‖zj − wj‖∞ + ‖wj − w‖∞ .

Taking the limit j → ∞ yields

0 < ‖z − w‖∞ ≤ t |u (w)| < |u (w)| ≤ distUc (w) .



104 Chapter 6. Continuation on Tubular Domains

It follows from the definition of distUc that z ∈ U, hence, z ∈ Mt, i.e., Mt is closed.
By the Heine–Borel theorem, Mt is compact. Let f ∈ O (U) . The compactness of
Mt implies that there is some Ct > 0 such that

sup |f (Mt)| ≤ Ct.

Since Mt contains the polytorus Tt|u(w)| (w) the Cauchy Inequalities yield for every
α ∈ Nn that

sup
w∈K

∣∣∣∣Dαf (w)
α!

∣∣∣∣ t|α| |u (w)||α| ≤ Ct.

The function Dαf · u|α| is holomorphic on U, hence, the same estimates apply
to w ∈ K̂U . Choosing w = a yields the convergence of the Taylor series for
‖z − a‖∞ < |u (a)| . �

Corollary 6.2.8. Let U,K be as in Thullen’s Lemma and let a ∈ K̂U .Then every
function f ∈ O (U) has a holomorphic extension to the polydisc Pn

dist(K,∂U) (a) .

Proof. Apply Thullen’s Lemma to the constant function

u = dist∞ (K, ∂U) . �

Lemma 6.2.9. Denote by e1, . . . , en the canonical basis of Cn and put

∆ := [0, 1] e1 ∪ [0, 1] e2.

For ε ∈
]
0, 1

2

[
let

Qε :=
{

x1e1 + x2e2

∣∣∣∣ 0 ≤ x1, x2, x1 + x2 ≤ 1,
x1 + x2 − ε

(
x2

1 + x2
2

)
≤ 1 − ε

}
and

∆ε :=
{

x + iy ∈ ∆
∣∣∣∣ y2

1 + y2
2 ≤ 1

ε
, yj = 0 for j ≥ 3

}
.

Further, let D = Ω + iRn be a tubular domain such that conv (∆) ⊂ Ω. Then for
all η ∈ Rn,

Qε + iη ⊂ ̂(∆ε + iη)D.

Proof. We can assume that η = 0, because D = D+ iη, so the general case follows
from the case η = 0. Regard the set

Mε :=
{

z1e1 + z2e2 ∈ Cn

∣∣∣∣ 0 ≤ Re z1, Re z2, Re z1 + Re z2 ≤ 1,
z1 + z2 − ε

(
z2
1 + z2

2

)
= 1 − ε

}
.

For z = x + iy ∈ Mε we have

x1 + x2 − ε
(
x2

1 + x2
2

)
+ ε

(
y2
1 + y2

2

)
= 1 − ε, 0 ≤ x1, x2, x1 + x2 ≤ 1.
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If z ∈ Mε, then x2
1 + x2

2 ≤ x1 + x2 ≤ 1 and

ε
(
1 −

(
x2

1 + x2
2

))
+ ε

(
y2
1 + y2

2

)
= 1 − x1 − x2 ≤ 1. (6.3)

It follows that y2
1 +y2

2 ≤ 1
ε , hence, Mε is compact. Since ε < 1

2 we have for z ∈ Mε,

∂

∂z1

(
z1 + z2 − ε

(
z2
1 + z2

2

))
= 1 − 2εz2 	= 0.

The Implicit Function Theorem shows that z1 is locally a function of z2 (and vice
versa). It follows that every nonconstant holomorphic function on Mε attains its
maximum absolute value on

∂̃Mε := {z ∈ Mε | Re z1 = Re z2 = 0 or Re z1 + Re z2 = 1} .

Every holomorphic function f ∈ O (D) thus satisfies for every z ∈ Mε the estimate

|f (z)| ≤ sup
∣∣∣f (

∂̃Mε

)∣∣∣ .
If Re z1 + Re z2 = 1 for some z ∈ Mε, equation (6.3) implies y1 = y2 = 0 and
x2

1 + x2
2 = 1, i.e., z ∈ {e1, e2} . Hence, ∂̃Mε ⊂ ∆ε, so

|f (z)| ≤ sup |f (∆ε)| ,

which implies Mε ⊂
(
∆̂ε

)
D

. In particular,
(
∆̂ε

)
D

contains the set

Q′
ε :=

{
x1e1 + x2e2

∣∣∣∣ 0 ≤ x1, x2, x1 + x2 ≤ 1,
x1 + x2 − ε

(
x2

1 + x2
2

)
= 1 − ε

}
.

From t∆ε ⊂ ∆ε for all t ∈ [0, 1] we obtain

Qε =
⋃

t∈[0,1]

tQ′
ε ⊂

(
∆̂ε

)
D

. �

Exercise 6.2.10. Let
D := {z ∈ Cn | 1 < ‖z‖2 < 3}

and
K := {z ∈ Cn | ‖z‖2 = 2} .

Determine K̂D.

Exercise 6.2.11. Let U ⊂ Cn be an open set and let K := {p} ⊂ U consist of a
single point. Determine K̂U .

Exercise 6.2.12. Let K ⊂ Cn be a compact set. Show that K̂Cn is compact.
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Exercise 6.2.13. Let D ⊂ Cn be a domain and K ⊂ D a compact subset. Show
that K̂D is the union of K with all relatively compact connected components of
D \ K. (Geometrically: K̂D arises from K by “filling the holes of K”.)

Exercise 6.2.14. Let D ⊂ Cn be a domain and K ⊂ D a compact subset. Show
that

dist∞ (K, ∂D) = dist∞
(
K̂D, ∂D

)
in the following cases:

1. n = 1.

2. n arbitrary, D = Bn
1 (0) .

Exercise 6.2.15. Let

K :=

{
(z, w) ∈ C2

∣∣∣∣∣
∣∣∣∣z − 1

2

∣∣∣∣2 + |w|2 ≥ 1
4
,

∣∣∣∣w − 1
2

∣∣∣∣2 + |z|2 ≥ 1
4

}
∩ Bn

1 (0)

and
f : Cn → R, (z, w) �→ exp (Re z − Re w) .

Determine all maxima of f on K. (Hint : Regard K̂C2 .)

6.3 Bochner’s Theorem

Now we have all the technical tools to prove the main result of this chapter.

Theorem 6.3.1 (Bochner). Let D = Ω + iRn ⊂ Cn be a tube domain. Then the
restriction

ρ : O (conv (D)) → O (D) , f �→ f |D
is an isomorphism of complex algebras.

Proof. As usual, we only have to show that ρ is surjective, i.e., that every function
f ∈ O (D) can be extended to the convex hull conv (D) .
Step 1: In this first step we assume that the basis Ω of D is star-shaped with
respect to some p ∈ Ω. By a shift of the coordinate system we may assume p = 0.
If D = Cn there is nothing to show, so we assume D 	= Cn. If D1, D2 are two
tubular domains such that all holomorphic functions on D can be extended to
D1, D2 and if their bases Ω1, Ω2 are star-shaped with respect to the origin, then

D1 ∩ D2 = Ω1 ∩ Ω2 + iRn

is a tubular domain. In particular, D1∩D2∩D 	= ∅. If fj ∈ O (Dj) are holomorphic
extensions of f ∈ O (D), then

f1|D1∩D2∩D = f2|D1∩D2∩D,
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hence, by the Identity Theorem, they coincide on D1 ∩ D2. We obtain thus a
holomorphic continuation to the tubular domain D1 ∪ D2, whose basis is also
star-shaped with respect to the origin. Let D̃ be the union of all tubular domains,
whose bases are star-shaped with respect to the origin and to which all holomorphic
functions can be extended. By the above argument,

D̃ = Ω̃ + iRn

is a tube domain with the same property and D̃ contains D. We show that the
basis Ω̃ is convex. If x, x′ ∈ Ω̃ are linearly dependent elements then the segment
[x, x′] is contained in Ω̃, because Ω̃ is star-shaped with respect to the origin. If x, x′

are linearly independent over R, then there is a regular matrix T ∈ GLn (R) such
that Tx = e1, Tx′ = e2 and T

(
D̃
)

is a tube domain whose basis is star-shaped
with respect to the origin (see Exercise 6.1.7). Hence, without loss of generality
we may assume x = e1, x

′ = e2. Let ∆ be chosen as in Lemma 6.2.9 and let
0 < δ < inf dist∂D (∆) . We consider the set

E :=
{

t ∈ [0, 1]
∣∣∣ t conv (∆) ⊂ Ω̃

}
� 0,

which is open in [0, 1], because Ω̃ is open and conv (∆) is compact. Let t ∈ E and
0 < ε < 1

2 and put
Lt,ε := (1 − ε) t conv (∆) .

From Lemma 6.2.9 we obtain that there is a compact set K ⊂ Rn such that

Lt,ε ⊂ ̂(t∆ + iK)
�D.

Choosing u to be the constant function u = dist
(
t∆ + iK, D̃c

)
in Thullen’s

Lemma 6.2.7 we see that the Taylor series of every function f̃ ∈ O
(
D̃
)

converges
at some point a with Re a ∈ Lt,ε for ‖z − a‖∞ < δ, i.e., on the set a + δPn

1 (0) . If
a′ is another point with Re a′ ∈ La,ε then the intersection

Pn
δ (a) ∩ Pn

δ (a′)

is convex. If this intersection is 	= ∅ there is some a′′ ∈ [a, a′] . This implies Re a′′ ∈
Lt,ε, thus, a′′ ∈ D̃. It follows that the two holomorphic continuations of f̃ to Pn

δ (a)
and to Pn

δ (a′) coincide. We obtain a holomorphic continuation to the tube domain

Lt,ε + Pn
δ (0) + iRn.

Maximality of D̃ implies

Lt,ε + Pn
δ (0) + iRn ⊂ D̃.
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Put t̃ := (1 − ε) t + δ. Then

t̃ conv (∆) ⊂ Lt,ε + Pn
δ (0) + iRn.

Letting ε → 0 we obtain that

t̃ conv (∆) ⊂ D̃

for every t̃ < t + δ. It follows that supE = 1, i.e., E = [0, 1] . Thus, conv (∆) ⊂ Ω̃.

Since conv (∆) contains the segment [e1, e2] , Ω̃ is convex.

Step 2: In the second step we free ourselves from the assumption that the
basis Ω of D is star-shaped. Let Ω ⊂ Rn be an arbitrary domain. By a shift of
coordinates we may assume that 0 ∈ Ω. Let

D̃ = Ω̃ + iRn

be the maximal tube domain, which is star-shaped with respect to the origin, such
that to every f ∈ O (D) there is an f̃ ∈ O

(
D̃
)

, which coincides with f near the

origin. From Step 1 we know that D̃ is convex. We only have to show that D ⊂ D̃.
This is clear if Ω ⊂ Ω̃ , otherwise let x ∈ Ω \ Ω̃. The pathwise connectedness of Ω
implies that there is a continuous curve

γ : [0, 1] → Ω, γ (0) = 0, γ (1) = x.

Put s := sup
{

t ∈ [0, 1]
∣∣∣ γ ([0, t]) ⊂ Ω̃

}
and xs := γ (s) . Then

xs /∈ Ω̃, (6.4)

because otherwise openness of Ω̃ would imply that s = 1, i.e., x = xs ∈ Ω̃, which
contradicts the choice of x. Let Ωs ⊂ Ω be an open convex neighbourhood of
xs, f ∈ O (D) and f̃ ∈ O

(
D̃
)

such that f̃ and f coincide near the origin. Put

I :=
{

t ∈ [0, s]
∣∣∣ f = f̃ near γ ([0, t])

}
.

Then I is an open subinterval of [0, 1] and 0 ∈ I. Put τ := sup I. Assume τ < s.

Then γ (κ) ∈ Ω̃. If U is an open connected neighbourhood of γ (τ) contained in
D ∩ D̃ there is a τ0 < τ with τ0 ∈ I and γ (τ0) ∈ U. Hence, f and f̃ coincide in
an open neighbourhood of γ (τ0) and thus, by the Identity Theorem, on all of U,
which contradicts the choice of τ . This shows that τ = s and there is some τ1 < s
with γ (τ1) ∈ Cs. Using the same argument as above we see that f and f̃ coincide
on an open subset of the tubular domain

Ds := Ωs + iRn,
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and thus, on all of the convex domain Ds∩D̃, defining a holomorphic continuation
of f̃ to Ds ∪ D̃. In Step 1 we saw that the maximal domain Dmax, which is star-
shaped with respect to xs and to which all f ∈ O

(
Ds ∪ D̃

)
can be extended,

is convex. Hence, Dmax is star-shaped with respect to the origin. Because of the
maximality of D̃ we conclude Dmax ⊂ D̃. This, however, implies Ds ⊂ D̃, which
contradicts (6.4) . Finally, we can conclude that

D ⊂ D̃,

hence, every f ∈ O (D) has a holomorphic extension to conv (D) ⊂ D̃. �
Corollary 6.3.2. Let f ∈ O (Cn) be an entire function and let

Ωf :=
⋂

y∈Rn

{x ∈ Rn | f (x + iy) 	= 0} .

Then every connected component of the interior
◦

Ωf of Ωf is convex.

Proof. Let Cf be a connected component of
◦

Ωf and put Df := Cf + iRn. Then
1
f ∈ O (Df ) . By Bochner’s Theorem 1

f has a holomorphic extension to conv (Df ) ,
hence

N (f) ∩ conv (Df ) = ∅.

This shows that if x, x′ ∈ Cf and t ∈ [0, 1],

f (tx + (1 − t) x′ + iy) 	= 0 for all y ∈ Rn,

hence, tx+ (1 − t) x′ ∈ Cf . �



Chapter 7

Cartan–Thullen Theory

In the preceding chapters we have learned that in Cn with n ≥ 2 there are many
domains with the property that every holomorphic function on the domain can
be holomorphically extended to a strictly larger domain. Those domains were not
domains of holomorphy in the intuitive understanding that a domain of holomor-
phy should be the maximal domain of existence of some holomorphic function. In
this chapter we will work on the task to characterize those domains D ⊂ Cn, on
which no simultaneous extension phenomena occur.

7.1 Holomorphically convex sets

In Exercise 6.2.12 we saw that for every compact set K ⊂ Cn the holomorphically
convex hull K̂Cn is compact. It is a trivial observation that no function f ∈ O (Cn)
can be extended to a larger domain in Cn. However, we also know from the Kugel-
satz, that every function holomorphic on the domain Cn \ {0} , n ≥ 2, can be
extended to an entire function. We also saw in Example 6.2.6 that the holomor-
phically convex hull of the unit sphere in Cn \ {0} is not compact if n ≥ 2. This
turns out to be a crucial observation.

Definition 7.1.1. Let U ⊂ Cn be an open set. U is called holomorphically convex
if for all compact subsets K ⊂ U the holomorphically convex hull K̂U is compact.

Remark 7.1.2. In general we speak of F-convexity if in the above definition the
family O (U) is replaced by the family F of functions on U, e.g., monomial con-
vexity, polynomial convexity etc.

Example 7.1.3. Cn is holomorphically convex (Exercise 6.2.12), while Cn \ {0}
isn’t unless n = 1. (see Example 6.2.6).

Holomorphic convexity of a domain D can be used to assert the existence of
certain unbounded holomorphic functions on D.
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Lemma 7.1.4. Let D ⊂ Cn be a holomorphically convex set. Then D has a compact
exhaustion (Kj)j∈N

by holomorphically convex sets.

Proof. From Lemma 1.4.14 we know that D has a compact exhaustion (Cj)j∈N
.

Holomorphic convexity of D implies that the sets (̂Cj)D are compact. Put

K1 := (̂C1)D.

Then K1 is compact and K1 coincides with its holomorphically convex hull. We
inductively assume that K1, . . . ,Km are holomorphically convex compact sets such
that Kj ⊂ K◦

j+1 for all j = 1, . . . ,m − 1. Since (Cj)j∈N
is a compact exhaustion

there is some index lm such that Km ⊂ C◦
lm

. Put

Km+1 := (̂Clm)D.

This construction yields the desired exhaustion . �

Lemma 7.1.5. Let D be a domain and C ⊂ D an arbitrary subset. Then for every
ε > 0,M > 0 and p ∈ D \ ĈD there is a function f ∈ O (D) such that

sup |f (C)| < ε

and
|f (p)| > M.

Proof. Since p /∈ ĈD there is a function g ∈ O (D) such that

0 < sup |g (C)| < |g (p)| .

If we put

δ :=
1
2

(
|g (p)|

sup |g (C)| − 1
)

and λ :=
1 + δ

|g (p)| ,

then δ, λ > 0 and

λ |g (p)| = 1 + δ > 1,

λ sup |g (C)| =
1
2

(
sup |g (C)|
|g (p)| + 1

)
< 1.

Now put f := (λg)k for a sufficiently large k. �
Lemma 7.1.6. Let (Kj)j∈N

be a compact exhaustion by holomorphically convex
sets of the domain D ⊂ Cn and let wj ∈ Kj+1 \ Kj for all j ≥ 1. Then there is a
function f ∈ O (D) such that

lim
j→∞

|f (wj)| = ∞.
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Proof. We inductively construct a sequence fj by the following. Put f1 = 0. By
Lemma 7.1.5 we may assume that we have constructed f1, . . . , fm such that for
all j = 1, . . . ,m the following holds:∥∥fj |Kj

∥∥
∞ < 2−j , (7.1)

|fj (wj)| > j + 1 +
j−1∑
k=1

|fk (wj)| . (7.2)

Since wm+1 /∈
(
K̂m+1

)
D

Lemma 7.1.5 produces a holomorphic function fm+1 ∈
O (D) , which also satisfies the estimates (7.1) , (7.2) . It follows from (7.1) that
the series ∑

j≥0

fj

converges compactly on D. Hence, by Weierstrass’ Theorem, f :=
∑

j≥0 fj defines
a holomorphic function on D, which by (7.2) satisfies

|f (wj)| ≥ |fj (wj)| −
∑
k≥0
k �=j

|fk (wj)| > j + 1 −
∑
k>j

|fk (wj)|

for all j ≥ 2. �
Lemma 7.1.4 and Lemma 7.1.6 can be combined to give a characterization of

holomorphic convexity that gives a hint of what holomorphic convexity has to do
with the problem of finding domains without simultaneous extension phenomena.

Proposition 7.1.7. Let D ⊂ Cn be a domain. The following are equivalent:

1. D is holomorphically convex

2. For every sequence (wj)j∈N
⊂ D without accumulation point in D there is

an f ∈ O (D) such that sup
j∈N

|f (wj)| = ∞.

Proof. 1. ⇒ 2. : Using Lemma 7.1.4 we find a compact exhaustion (Kj)j≥0 of D

by holomorphically convex sets. If (wj)j≥0 ⊂ D has no accumulation point in D

there are sequences (kj) , (lj) ⊂ N such that

wkj
∈ Klj+1 \ Klj for all j ≥ 0.

The existence of the desired f follows then from Lemma 7.1.6.
2. ⇒ 1. :Let K ⊂ D be compact and let (wj)j≥0 ⊂ K̂D be a sequence. Then

for all f ∈ O (D)
sup
j≥0

|f (wj)| ≤ ‖f |K‖∞ < ∞.

The condition 2. implies that the sequence (wj)j≥0 must have an accumulation

point w ∈ D, but since the holomorphically convex hull K̂D is closed, we even
have w ∈ K̂D. Hence, K̂D is compact. �



114 Chapter 7. Cartan–Thullen Theory

Remark 7.1.8. If D is a bounded holomorphically convex domain, Proposition
7.1.7 especially says that to every boundary point p ∈ ∂D there is a function
fp ∈ O (D), which is unbounded near p and thus cannot be extended across any
part of the boundary, which contains p.

Example 7.1.9. Every simply connected domain D ⊂ C is holomorphically convex.

Proof. From the Riemann Mapping Theorem we obtain a biholomorphic function

ϕ : D → B1
1 (0) .

If (zj)j≥0 ⊂ D is a sequence without accumulation point on D then

(ϕ (zj))j≥0

is a sequence in B1
1 (0) without accumulation point in B1

1 (0) . Since the unit disc
is bounded this sequence must have an accumulation point in D on the boundary
T. Hence, the function

z �→
∑
k≥0

zk!

is unbounded on (ϕ (zj))j≥0 . �
Remark 7.1.10. In fact, the assumption that D is simply connected is superfluous:
every domain in C is holomorphically convex. This will be a consequence of the
Theorem of Cartan–Thullen.

Definition 7.1.11. A continuous mapping f : X → Y between topological spaces
is called proper if for every compact subset K ⊂ Y the inverse image f−1 (K) is
compact in X.

Proposition 7.1.12. Let X ⊂ Cn, Y ⊂ Cm be domains and f : X → Y a proper
holomorphic mapping.

1. If Y is holomorphically convex then so is X.

2. If f is biholomorphic and X is holomorphically convex then so is Y.

Proof. 1. : Let K ⊂ X be compact and put C := f (K) . C is compact, because f
is continuous. Since Y is holomorphically convex, the holomorphically convex hull
ĈY is compact. Hence, f−1

(
ĈY

)
is compact, for f is a proper mapping. Since

closed subsets of compact sets are again compact, we have that

f−1
(
ĈY

)
∩ X ⊂ Cn

is compact. Let z ∈ K̂X and ϕ ∈ O (Y ) . Then

|(ϕ ◦ f) (z)| ≤ max
w∈K

|(ϕ ◦ f) (z)| = max
ζ∈C

|ϕ (ζ)| .
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It follows that

f (z) ∈ ĈY = {ζ ∈ Y | |ϕ (ζ)| ≤ ‖ϕ|C‖∞ ∀ϕ ∈ O (Y )} ,

thus, K̂X ⊂ f−1
(
ĈY

)
∩ X. Since K̂X is closed and f−1

(
ĈY

)
∩ X is compact,

we conclude that K̂X is compact. Hence, X is holomorphically convex.
2. : If f is biholomorphic, then f−1 is a proper holomorphic mapping and

part 1. applies. �

Example 7.1.13. The set S :=
{

(z′, zn) ∈ Cn | Im zn > ‖z′‖2
2

}
is called the Siegel

upper half plane. It is holomorphically convex, because S is biholomorphically
equivalent to the unit ball Bn

1 (0) by the Caley map

c : Bn
1 (0) → S, (z′, zn) �→ 1

1 + zn
(z′, i (1 − zn)) .

The inverse mapping is given by

c−1 : S → Bn
1 (0) , (w′, wn) �→ 2i

i + wn

(
w′,− i

2
(i − wn)

)
.

The reader should carry out the details, i.e., he should show that

c (Bn
1 (0)) ⊂ S, c−1 (S) ⊂ Bn

1 (0)

and c, c−1 are inverse to each other.

Exercise 7.1.14. Let D := B1
1 (0) \ [0, 1[ . Determine a function f ∈ O (D) , which

is unbounded on every sequence (zj)j≥0 ⊂ D without accumulation point in D.

Exercise 7.1.15. Let U ⊂ Cn be an unbounded open set and f : U → Cm a con-
tinuous mapping such that lim

‖z‖→∞
‖f (z)‖ = ∞. Show that f is a proper mapping.

Exercise 7.1.16. Is the set {z ∈ Cn | 1 < ‖z‖2 < 3} holomorphically convex?

7.2 Domains of Holomorphy

Definition 7.2.1. A domain D ⊂ Cn is called a domain of holomorphy if the
following holds: if ∅ 	= V ⊂ U ⊂ Cn are domains with the properties

H1 V ⊂ D,

H2 For every f ∈ O (D) there is a F ∈ O (U) such that f |V = F |V ,

then U ⊂ D.
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We shall later see that a domain in Cn is a domain of holomorphy if and only
if it is holomorphically convex (Theorem of Cartan–Thullen). Before we come to
this deep result, we examine the notion of domain of holomorphy in more detail.
One can interpret Definition 7.2.1 in such a way that, on a domain of holomorphy,
there are functions which cannot be holomorphically extended across any part
of the boundary. We have seen such an example in dimension 1 by the function
f (z) =

∑
k≥0 zk!, which is holomorphic on the open unit disc, but cannot be

extended across the unit circle. So we can say that the unit disc in C is a domain
of holomorphy. In fact, this is true for every domain in C.

Example 7.2.2. Every domain D ⊂ C is a domain of holomorphy.

Proof. Assume there are domains V ⊂ U ⊂ C with the properties H1,H2 of
Definition 7.2.1, but such that U � D. Then there is some a ∈ U \ D. Consider
the holomorphic function

f : C\ {a} → C, z �→ 1
z − a

.

The restriction f |D is holomorphic, because a /∈ D. H2 implies that there is a
holomorphic function F ∈ O (U) such that F |V = f |V . The Identity Theorem
yields that

F (z) =
1

z − a

for all z ∈ U \ {a} . This, however, is absurd, because F is continuous at a, hence,
bounded in a neighbourhood of a, while z �→ 1

z−a is not. �
Proposition 7.2.3. Let D ⊂ Cn be a domain such that for all a ∈ ∂D there is a
larger domain Da ⊃ D and a holomorphic function f ∈ O (Da) such that

a ∈ Da, f (a) = 0, D ∩ N (f) = ∅. (7.3)

Then D is a domain of holomorphy.

Proof. Assume that D is not a domain of holomorphy. Then there are domains
∅ 	= V ⊂ U ⊂ Cn with the properties H1,H2 of Definition 7.2.1, but U � D.
Since V ⊂ U ⊂ D, there is a connected component W of U ∩ D, which contains
V. If g ∈ O (D) , F ∈ O (U) such that g|V = F |V the functions coincide on W by
the Identity Theorem. Let γ : [0, 1] → U be a path such that γ (0) ∈ V, γ (1) /∈ D
and put

τ := inf {t ∈ [0, 1] | γ (t) /∈ D} .

Then τ > 0, a := γ (τ) ∈ ∂D. By prerequisite there is a domain Da ⊃ D and a
holomorphic function f ∈ O (Da) such that (7.3) holds. Since W ∩N (f) = ∅,there
is a holomorphic function F ∈ O (U) such that

F |W =
1
f

∣∣∣∣
W

.
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In particular, f (γ (t)) F (γ (t)) = 1 for all t < τ. Continuity implies

f (a)F (a) = 1,

which is a contradiction to f (a) = 0. �

Corollary 7.2.4. Let D ⊂ Cn be a domain of holomorphy and f ∈ O (D) , f 	= 0.
Then D \ N (f) is a domain of holomorphy.

Proof. From Corollary 4.2.2 we know that D\N (f) is a domain. The case N (f) =
∅ is trivial, so we assume N (f) 	= ∅. Let ∅ 	= V ⊂ U ⊂ Cn satisfy the conditions
of Definition 7.2.1 and assume U � D \ N (f) , i.e., we assume that D \ N (f) is
not a domain of holomorphy. Then there is some

a ∈ U ∩ ∂ (D \ N (f)) .

Case 1: a ∈ N (f) .
Then f (a) = 0, f (z) 	= 0 for all z /∈ N (f) , hence we can put

Da := D ⊃ D \ N (f)

in Proposition 7.2.3.
Case 2: a ∈ ∂D.

Let g ∈ O (D) . Then the restriction g|D\N(f) is holomorphic. Thus, there is
F ∈ O (U) such that

F |V = g|V , V ⊂ D \ N (f) ⊂ D.

Since D is a domain of holomorphy, we conclude U ⊂ D. This, however, contradicts
a ∈ V ∩ U ∩ ∂D, because D is open and thus, D ∩ ∂D = ∅. �

Example 7.2.5. The set GLn (C) ⊂ M (n, n; C) ∼= Cn2
of regular matrices is a

domain of holomorphy, because the determinant function

det : M (n, n; C) → C

is holomorphic and GLn (C) = M (n, n; C) \ N (det) .

Our next result shows that all convex domains in Cn are domains of holo-
morphy. In particular, balls and polydiscs are domains of holomorphy.

Proposition 7.2.6. If D ⊂ Cn is a convex domain, then D is a domain of holomor-
phy.

Proof. This is clear, if D = Cn. If D 	= Cn there is some a /∈ D. By the Hahn–
Banach separation theorem there is a real linear form µ satisfying

µ (z) < µ (a)
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for all z ∈ D, because D is convex. Put

µC : Cn → C : z �→ µ (z) − iµ (iz) .

Then µC is C-linear and µC (z) 	= µC (a) for all z ∈ D. For every a ∈ ∂D we put

Da := Cn, f := µC − µC (a)

and use Proposition 7.2.3 �
Exercise 7.2.7. Show that a tube domain Ω + iRn is a domain of holomorphy if
and only if Ω ⊂ Rn is convex.

Exercise 7.2.8. Which of the following sets is a domain of holomorphy?

1.
{
(z, w) ∈ C2 | |z| < |w| < 1

}
(Hartogs’ triangle).

2. Pn (C) (the set of self-adjoint positive definite matrices).

3. GLn (C) \ Un (C) .

Exercise 7.2.9. Does Corollary 7.2.4 still hold if we replace the zero set N (f) of a
single holomorphic function f ∈ O (D) by the simultaneous zero set

N (f1, . . . , fk) :=
k⋂

j=1

N (fj)

of k functions f1, . . . , fk ∈ O (D)?

7.3 The Theorem of Cartan–Thullen

The Theorem of H.Cartan and P.Thullen says that the notions of holomorphically
convex domain and domain of holomorphy coincide. Another characterization is
given by means of the boundary distance function.

Lemma 7.3.1. Let K ⊂ D ⊂ Cn and assume

dist∞ (K, ∂D) = dist∞
(
K̂D, ∂D

)
.

Then K̂D is compact.

Proof. By Lemma 6.2.5 we have K̂D ⊂ conv (K) , which is bounded, because K

is. We have to show that K̂D is closed in Cn. Since K̂D is closed in D by Lemma
6.2.4 we have

K̂D ∩ D = K̂D.

The prerequisite and the compactness of K yield

0 < dist∞ (K, ∂D) = dist∞
(
K̂D, ∂D

)
= dist∞

(
K̂D, ∂D

)
,

hence, K̂D ∩ ∂D = ∅. This implies K̂D = K̂D. �
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Theorem 7.3.2 (Cartan–Thullen). Let D ⊂ Cn be a domain. Then the following
are equivalent:

1. The domain D is a domain of holomorphy.

2. For all compact subsets K ⊂ D the equation

dist∞ (K, ∂D) = dist∞
(
K̂D, ∂D

)
holds.

3. The domain D is holomorphically convex.

Proof. 1. ⇒ 2. Let D be a domain of holomorphy, K ⊂ D a compact subset and
r := dist∞ (K, ∂D) . Then

r ≥ dist∞
(
K̂D, ∂D

)
, (7.4)

because K ⊂ K̂D. Let z ∈ K̂D and U := rP 1
1 (z) be the concentric polydisc of

polyradius r centered at z. Choose V to be the connected component of z in D∩U
and let f ∈ O (D) . It follows from Thullen’s Lemma that

g (w) :=
∑

α∈Nn

Dαf (z)
α!

(w − z)α

defines a holomorphic function on U and that g = f near z. Hence, we obtain from
the the Identity Theorem that g = f on V. Since D is a domain of holomorphy,
we can conclude U ⊂ D. This implies

dist∞ (z, ∂D) ≥ r for all z ∈ K̂D. (7.5)

2. ⇒ 3. This was shown in Lemma 7.3.1.
3. ⇒ 1. Since it is clear that Cn is a domain of holomorphy we may assume

D 	= Cn. We know from Proposition 7.1.7 that to every sequence in D, which has
no accumulation point in D there is a holomorphic function, which is unbounded
on this sequence. The idea is now to construct a sequence that has every point of
the boundary as limit point. The corresponding function cannot be extended at
any point outside D, which shows that D is a domain of holomorphy. In order to
construct this sequence we consider the set

D ∩ (Qn+iQn)

of rational points in D. For z ∈ D let P̃n
r (z)

D

denote the connected component
of Pn

r (z) ∩ D, which contains z. Since Qn+iQn is countable, also the set

P :=
{

P̃n
r (z)

D
∣∣∣∣ z ∈ D ∩ (Qn+iQn) , r ∈ Qn, Pn

r (z) � D

}



120 Chapter 7. Cartan–Thullen Theory

is countable. Let
P : N →P, j �→ Pj

be bijective and let (Kj)j≥0 be a compact exhaustion in the sense of Lemma 7.1.6.
We recursively construct a sequence (wj , lj+1)j≥0 in D × N such that for every j,

wj ∈ Pj ∩
(
Klj+1 \ Klj

)
in the following way: Choose an arbitrary w0 ∈ P0 ∩ (K1 \ K0) . Having chosen
(wj−1, lj) fix some wj ∈ Pj \Klj and a number lj+1 such that wj ∈ Klj+1 . This is
possible, because (Kj)j≥0 is an exhaustion of D. Lemma 7.1.6, applied to (Kj)j≥0

yields a function f ∈ O (D) satisfying

|f (wj)| ≥ j for all j.

We show that this function is not extendible at any point outside D. Assume, that
this is wrong. Then there is a polydisc Pn

t0 (z0) � D with z0 ∈ D on which the
Taylor series jf (z0) of f at z0 converges. f and jf (z0) coincide on the connected

component P̃n
t0 (z0)

D

. Now we recursively construct a sequence
(

P̃n
tk

(zk)
D
)

k≥0

in P with zk ∈ P̃n
tk

(zk)
D

and 0 < tk < 1
k+1 for all k ≥ 0 such that

˜Pn
tk+1

(zk+1)
D

⊂⊂ P̃n
tk

(zk)
D

.

Then the corresponding wjk
∈ P̃n

tk
(zk)

D

form a subsequence of (wj)j≥0 in P̃n
t0 (z0)

D

,
which converges to some w ∈ Pn

t0 (z0) . Now this implies a contradiction, because
although jf converges on Pn

t0 (z0), we have

|jf (w)| = lim
k→∞

|f (wjk
)| = ∞,

which is absurd. �

We use the Cartan–Thullen Theorem to identify several domains as domains
of holomorphy.

Proposition 7.3.3. Let D ⊂ Cn, D′ ⊂ Cm be domains of holomorphy and f : D →
Cm a holomorphic mapping. Then every connected component of Ω := f−1 (D′)
is a domain of holomorphy.

Proof. Let K ⊂ f−1 (D′) be a compact set. For every g ∈ O (D′) we have g ◦ f ∈
O (D) , hence,

|g (f (z))| ≤ sup
w∈f(K)

|g (w)| for all z ∈ K̂Ω.
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This implies f (z) ∈ f̂ (K)D′ for all z ∈ K̂Ω. Since D is holomorphically convex by
the Theorem of Cartan–Thullen, we have

K̂Ω ⊂ K̂D = K̂D ⊂ D.

Continuity of f and holomorphic convexity of D′ imply

f
(
K̂Ω

)
⊂ f

(
K̂Ω

)
⊂ f̂ (K)D′ = f̂ (K)D′ ⊂ D′.

Thus, K̂Ω ⊂ f−1 (D′) = Ω. It follows that K̂Ω is compact, i.e., Ω is holomorphically
convex and we can apply the Cartan–Thullen Theorem. �
Example 7.3.4. Let f1, . . . , fm ∈ O (Cn) . The set

Ω := {z ∈ Cn | |fj (z)| < 1, j = 1, . . . ,m}

is called an analytic polyhedron. Every connected component of Ω is a domain
of holomorphy, for we can put D := Cn, D′ := Pn

1 (0) and f := (f1, . . . , fm) in
Proposition 7.3.3.

Exercise 7.3.5. Give an example that the union of two domains of holomorphy
(with nonempty intersection) need not be a domain of holomorphy any longer.
What can you say about intersections of domains of holomorphy?

Exercise 7.3.6. Show that for a domain D ⊂ Cn the following two statements are
equivalent:

1. The domain D is a domain of holomorphy.

2. A closed subset K ⊂ D is compact if and only if sup |f (K)| < ∞ for every
f ∈ O (D) .

7.4 Holomorphically convex Reinhardt domains

We conclude this chapter with the characterization of those Reinhardt domains
which are domains of holomorphy. It turns out that a complete Reinhardt domain
is a domain of holomorphy if and only if it is the domain of convergence of a power
series. Another characterization is given by the geometric notion of logarithmic
convexity.

Definition 7.4.1. A Reinhardt domain D ⊂ Cn is called logarithmically convex if
the set

log τ (D) :=
{
(log |z1| , . . . , log |zn|) | z ∈ D ∩

(
C×)n} ⊂ Rn

is convex. It is called complete if Pn
τ(z) (0) ⊂ D for every z ∈ D ∩ (C×)n

.
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Proposition 7.4.2. Let D ⊂ Cn be the domain of convergence of a power series∑
α∈Nn cαzα. Then D is a complete logarithmically convex Reinhardt domain.

Proof. Abel’s Lemma implies that D is a complete Reinhardt domain. Let x, y ∈
log τ (D) and t ∈ [0, 1] . We choose z, w ∈ D and λ > 1 such that λz, λw ∈ D and
for all j = 1, . . . , n,

xj = log |zj | , yj = log |wj | .
Since the power series

∑
α∈Nn cαzα converges at λz and λw there is some constant

0 < C < ∞ such that

max
α∈Nn

{
|cα|λ|α| |zα| , |cα|λ|α| |wα|

}
≤ C.

It follows that for all t ∈ [0, 1] and all α ∈ Nn we have the estimate

|cα|λ|α| |zα|t |wα|1−t ≤ C.

Abel’s Lemma implies that
∑

α∈Nn cαzα converges near

ξt :=
(
|z1|t |w1|1−t

, . . . , |zn|t |wn|1−t
)

,

i.e., ξt ∈ D. We conclude that for all t ∈ [0, 1],

tx + (1 − ty) ∈ log τ (D) ,

hence, log τ (D) is convex. �
Proposition 7.4.3. Let D be a complete logarithmically convex domain. Then D
is monomially convex.

Proof. Let F := {zα | α ∈ Nn} be the family of monomials and for K ⊂ D denote
by

K̂F :=
⋂

f∈F

{
z ∈ D

∣∣∣∣∣ |f (z)| ≤ sup
ζ∈K

|f (ζ)|
}

the F - convex hull of K in D. We have to show that K̂F ∩D is relatively compact
in D for every compact set K ⊂ D. By the Heine–Borel theorem K̂F is compact,
so it suffices to show that K̂F does not intersect the boundary of D. Compactness
of K implies that there is a finite cover of K consisting of polydiscs Pn

τ(w(l)) ⊂

D, l = 1, . . . , k, where w(l) ∈ D and w
(l)
j 	= 0 for j = 1, . . . , n. Put

W :=
{

w(1), . . . , w(k)
}

.

Then K̂F ⊂ ŴF . The proof is complete if we show that ŴF ∩∂D = ∅. Let w ∈ ∂D
and put

w∗ := (log |w1| , . . . , log |wn|) .
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Obviously, w∗ ∈ ∂ (log τ (D)) . By prerequisite, log τ (D) is convex, thus, the Hahn–
Banach separation theorem states that there is a linear functional

L (ξ) =
n∑

j=1

γjξj , γj ∈ R

such that
L (ξ) < L (w∗) for all ξ ∈ log τ (D) .

Observing that

ξ ∈ log τ (D) implies
{
x ∈ Rn | xj ≤ ξj for all j = 1, . . . , n

}
⊂ log τ (D) (7.6)

we deduce that the coefficients γj are nonnegative. Let W ∗ ⊂ log τ (D) be the
finite set of points which corresponds to W. Density of Q in R implies that there
are rational numbers

qj > γj ≥ 0

such that for L̃ (ξ) :=
∑n

j=1 qjξj we have

L̃ (ξ) < L̃ (w∗) for all ξ ∈ W ∗. (7.7)

This equation remains true if we multiply both sides with the common denomi-
nator of the numbers q1, . . . , qn, so we may assume that qj ∈ N. Let mα be the
monomial

mα (z) := zα = zα1
1 · · · zαn

n .

Then sup |mα (W )| < |mα (w)| , i.e., w /∈ ŴF . For the remaining points p ∈ ∂D
we can renumber the coordinates so that there is an index 1 ≤ kp ≤ n such that
pj 	= 0 for 1 ≤ j ≤ kp and pj = 0 for j > kp. Let

prCkp : Cn → Ckp , (z1, . . . , zn) �→
(
z1, . . . , zkp

)
be the projection onto Ckp . Then log τ (prCkp ) is convex and satisfies equation
(7.6) . Hence, we can apply the same argument as above to prCkp (p) and obtain a
monomial m in z1, . . . , zkp

satisfying

sup |m (W )| < |m (p)| ,

i.e., p /∈ ŴF . This completes the proof. �
Corollary 7.4.4. If D is a complete logarithmically convex Reinhardt domain, then
D is holomorphically convex.

Proof. This is trivial, since all monomials are holomorphic. �
We can now give a complete characterization of the domains of convergence

of a power series.
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Theorem 7.4.5. Let D be a complete Reinhardt domain with center 0. Then the
following are equivalent.

1. D is the domain of convergence of a power series.

2. D is logarithmically convex.

3. D is monomially convex.

4. D is holomorphically convex.

5. D is a domain of holomorphy.

Proof. 1. ⇒ 2. Proposition 7.4.2.
2. ⇒ 3. Proposition 7.4.3.
3. ⇒ 4. Corollary 7.4.4.
4. ⇒ 5. Theorem of Cartan–Thullen.
5. ⇒ 1. By Cartan–Thullen and Proposition 7.1.7 there is a function f ∈

O (D) which is unbounded near every boundary point of D. The Taylor series of f
converges on D and since f is unbounded near every boundary point, it obviously
does not converge on any domain strictly larger than D. �
Example 7.4.6. The set

{
(z, w) ∈ C2 | |z| < 1

}
is a complete logarithmically con-

vex Reinhardt domain, for it is the domain of convergence of the power series∑
k,l≥0

k

l!
zkwl

(see Exercise 1.5.16).

Example 7.4.7. Every convex complete Reinhardt domain is logarithmically con-
vex, because every convex set is a domain of holomorphy by Proposition 7.2.6.

Exercise 7.4.8. Give an example of a complete Reinhardt domain which is not
logarithmically convex.

Exercise 7.4.9. Let r > 0.

1. Show that the set
Dr :=

{
(z, w) ∈ C2 | |zw| < r

}
is a complete Reinhardt domain.

2. Show by direct computation that Dr is logarithmically convex.

3. State a power series which has Dr as domain of convergence.



Chapter 8

Local Properties of holomorphic
functions

Every student remembers from his first (or, at least, second) course on calculus
that the function

f : R → R, x �→
{

0, if x = 0
e−

1
x2 , if x 	= 0

is of class C∞, but its Taylor series represents f only at the origin, since f (k) (0) = 0
for all k ∈ N. One major difference between real and complex analysis is that a
holomorphic function on a domain is determined completely by local information.
If two holomorphic functions f, g ∈ O (D) coincide on an open subset U of a do-
main D they coincide on all of D by the Identity Theorem. Locally, a holomorphic
function is represented by its Taylor series. In this final chapter we study holo-
morphic functions from this local point of view, i.e., we do not take into account
the domain of definition of a function, but only its local representation. This leads
to the concept of germ of a holomorphic function. An equivalent approach is to
examine the rings C {z1, . . . , zn} resp. C [[z1, . . . , zn]] of convergent resp. of for-
mal power series and to study algebraic properties of these rings. The reader not
familiar with the algebraic concepts needed in this chapter may refer to [7].

8.1 Local representation of a holomorphic function

8.1.1 Germ of a holomorphic function

Definition 8.1.1. Let X ⊂ Cn be an arbitrary subset and f : X → Cm a mapping.
We say that f is holomorphic on X, if there is an open set Uf ⊂ Cn with X ⊂ Uf

and a holomorphic mapping gf : Uf → Cm such that gf |X = f.
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Notation 8.1.2. We write OX for the set of all holomorphic functions on X in the
sense of the above definition, i.e., OX consists of all pairs (U, g) , where U is an
open set containing X and g ∈ O (U).

OX has no natural algebraic structure, because of the variable domains of de-
finition of the functions in OX . To get rid of this problem we define an equivalence
relation on OX by the following:

Definition 8.1.3. We call (U, f) ∈ OX and (V, g) ∈ OX equivalent modulo X,
written

f ∼
X

g, (8.1)

if there is an open set W ⊂ U ∩ V with X ⊂ W such that f |W = g|W .

The reader easily checks the next lemma.

Lemma 8.1.4. Formula (8.1) defines an equivalence relation on OX . An equivalence
class of (U, f), denoted by

•
fX ,

is called a germ of f modulo X. The quotient

OX := OX
/
∼
X

carries the structure of a commutative unital complex algebra by the definitions

•
fX +

•
gX : =

•
(f + g)X ,

•
fX · •gX : =

•
(f · g)X ,

λ
•
fX : =

•
(λf)X , λ ∈ C.

Every germ in OX has a well-defined value at every point of X. If we want to
stress the dimension of the surrounding space we also write nOX . We are especially
interested in the case where X consists of a single point a. In this case we write

Oa resp. nOa. A function germ
•
facarries all the local information about f in a

neighbourhood of a and so does the Taylor series of f at a. It is a natural question
to ask about the relationship between the algebra of germs at a and the algebra of
convergent power series at a. Before dealing with this question in detail we note
that we can restrict ourselves to the case where a is the origin: if f is holomorphic
near a we consider the translation

τaf (z) := f (a − z) . (8.2)

Then τaf (0) = f (a) and τaf is holomorphic near zero. Hence, τa induces an
isomorphism of algebras

Oa → O0,
•
fa �→

•
(τaf)0. (8.3)
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Lemma 8.1.5. O0 is an integral domain.

Proof. Let
•
f0,

•
g0 be nonzero function germs. Then no representative f, g of those

germs is the zero function near 0, hence, fg 	= 0 by the Identity Theorem. This

implies
•

(fg)0 	= 0. �

8.1.2 The algebras of formal and of convergent power series

Abel’s Lemma states that a power series∑
α∈Nn

cαzα

converges near zero if and only if there is some r ∈ Rn with rj > 0 for all j =
1, . . . , n such that (cαrα)α∈Nn is bounded. By the Identity Theorem a convergent
power series is determined completely by its set of coefficients (cα)α∈Nn , thus, it
can be identified with the mapping

Nn → C, α �→ cα,

where the numbers cα satisfy the conditions of Abel’s Lemma. Dropping these
convergence conditions leads to the concept of formal power series. Formal power
series can be considered over arbitrary commutative unital rings R.

Definition 8.1.6. Let R be a commutative ring with unit 1. A formal power series
with coefficients in R is a mapping

Nn → R,α �→ cα

where cα ∈ R. This mapping is denoted by the symbol∑
α∈Nn

cαXα,

where X = (X1, . . . , Xn) and X1, . . . , Xn are indeterminates over R. The set of
all formal power series with coefficients in R is denoted by

R [[X1, . . . , Xn]] .

A formal power series f =
∑

α∈Nn cαXα has a well-defined “value at zero”

f (0) := c0...0.

Notation 8.1.7. If R is a ring and a1, . . . , al ∈ R we denote by

(a1, . . . , al)
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the ideal in R generated by a1, . . . , al. If we want to emphasize the ring or if there
is danger of confusion with the tuple with components a1, . . . , al we will write

(a1, . . . , al)R

to make clear the difference.

For the proof of the following we refer to [7], Ch. IV, §9.

Theorem 8.1.8. Let R be a commutative unital ring. Then the following holds.

1. R [[X1, . . . , X]] is a commutative unital ring by the definitions∑
α∈Nn

aαXα +
∑

α∈Nn

bαXα : =
∑

α∈Nn

(aα + bα) Xα,

( ∑
α∈Nn

aαXα

)
·

⎛⎝ ∑
β∈Nn

bβXβ

⎞⎠ : =

⎛⎝ ∑
γ∈Nn

cγXγ

⎞⎠
where

cγ :=
∑

α+β=γ

aαbβ .

Moreover, if R is an algebra over a field K, then R [[X1, . . . , Xn]] becomes a
K-algebra by putting

λ
∑

α∈Nn

cαXα :=
∑

α∈Nn

(λcα) Xα, λ ∈ K.

2. R [[X1, . . . , Xn]] contains the polynomial ring (algebra) R [X1, . . . , Xn] as a
subring (subalgebra).

3.

R [[X1, . . . , Xn]] = (R [[X1, . . . , Xn−1]]) [[Xn]]
= · · · = ((R [[X1]]) . . . [[Xn]]) .

4. If R is Noetherian, then so is R [[X1, . . . , Xn]] .

5. If R = K is a field, then K [[X1, . . . , Xn]] is a factorial algebra.

The statements of the above theorem can be proved in a purely algebraic
manner, since no notion of convergence is involved. When considering questions
of local complex analysis one works over the field C of complex numbers and
in the subalgebra C {z1, . . . , zn} of convergent power series. While the first three
statements of the above theorem are proven in exactly the same way, besides the
fact that convergence of the relevant series must be checked separately, the fourth
and fifth statements require deeper insight into the structure of C {z1, . . . , zn} ,
which is defined as follows.
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Definition 8.1.9. The set of convergent power series at zero is defined by

C {z1, . . . , zn} :=

{ ∑
α∈Nn

cαzα

∣∣∣∣∣ ∃r ∈ Rn
+, sup

α∈Nn

|cα| rα < ∞
}

.

We have a chain of strict subalgebras

C [z1, . . . , zn] � C {z1, . . . , zn} � C [[z1, . . . , zn]] .

In an obvious fashion one can define power series at an arbitrary point a and obtain
the set C {z1 − a1, . . . , zn − an} , but just as in the case of germs of holomorphic
functions it is immediate that the algebras

C {z1 − a1, . . . , zn − an}

and
C {z1, . . . , zn}

are isomorphic. The following result is no surprise.

Lemma 8.1.10. The complex algebras nO0 and C {z1, . . . , zn} are isomorphic. An
isomorphism is given by

j0 : nO0 → C {z1, . . . , zn} ,
•
f0 �→ j0f,

where j0f is the unique Taylor series expansion of a representative f of
•
f0.

Proof. Left to the reader. �
Thanks to this lemma we need not distinguish between germs of holomorphic

functions and convergent power series. The next lemma gives us first insight into
the analytic structure of the algebra of convergent power series. These results will
be needed in the proof of the Weiserstrass Preparation Theorem.

Lemma 8.1.11. For r ∈ Rn
+ let

B (r) :=

{ ∑
α∈Nn

cαzα

∣∣∣∣∣ sup
α∈Nn

|cα| rα < ∞
}

and
‖.‖(r) : B (r) → R,

∑
α∈Nn

cαzα �→
∑

α∈Nn

|cα| rα.

Then the following holds:

1. The set B (r) is a complex algebra without zero divisors, which satisfies

C {z1, . . . , zn} =
⋃

r∈Rn
+

B (r) .
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2. If s < r (componentwise) then B (r) ⊂ B (s) .

3. The inclusion B (r) ⊂ O (Pn
r (0)) holds.

4. The mapping ‖.‖(r) defines a norm on B (r) .

5. The norm
(
B (r) , ‖.‖(r)

)
is a Banach algebra.

6. If f =
∑

α cαzα ∈ B (r) then

|cα| ≤
‖f‖(r)

rα

for every α ∈ Nn.

Proof. 1. and 2. are left to the reader.
3. Since every convergent power series determines a holomorphic function on

a polydisc we have
B (r) ⊂ O (Pn

r (0)) .

4. It is clear that ‖f‖(r) = 0 if and only if f = 0 and that ‖λf‖(r) = |λ| ‖f‖(r)

for all λ ∈ C. To see that the triangle inequality holds let f =
∑

α aαzα and
g =

∑
α bαzα. Then

‖f + g‖(r) =
∑

α∈Nn

|aα + bα| rα

≤
∑

α∈Nn

|aα| rα +
∑

α∈Nn

|bα| rα

= ‖f‖(r) + ‖g‖(r) .

5. With the notation as in 4. we have

‖fg‖(r) =

∥∥∥∥∥∥
( ∑

α∈Nn

aαzα

)⎛⎝ ∑
β∈Nn

aβzβ

⎞⎠∥∥∥∥∥∥
(r)

=

∥∥∥∥∥∥
∑

γ∈Nn

⎛⎝ ∑
α+β=γ

aαbβ

⎞⎠ zγ

∥∥∥∥∥∥
(r)

=
∑

γ∈Nn

∣∣∣∣∣∣
∑

α+β=γ

aαbβ

∣∣∣∣∣∣ rγ

≤
∑

γ∈Nn

∑
α+β=γ

|aαbβ | rγ by the triangle inequality

=

( ∑
α∈Nn

|aα| rα

)⎛⎝ ∑
β∈Nn

|bβ | rβ

⎞⎠ = ‖f‖(r) ‖g‖(r) .
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Let (fj)j≥0 ⊂ B (r) be a Cauchy sequence with respect to ‖.‖(r) . We identify fj

with the holomorphic function on Pn
r (0) defined by z �→ fj (z) . If K ⊂ Pn

r (0) is
a compact subset then

sup
z∈K

|fj (z)| = sup
z∈K

∣∣∣∣∣ ∑
α∈Nn

c(j)
α zα

∣∣∣∣∣
≤

∑
α∈Nn

∣∣∣c(j)
α

∣∣∣ rα

= ‖fj‖(r) .

Hence, since (fj)j≥0 is a Cauchy sequence with respect to ‖.‖(r) , (fj)j≥0 converges
compactly on Pn

r (0) . We apply Weierstrass’ Theorem on compact convergence to
see that there is some holomorphic function

f ∈ O (Pn
r (0))

such that
lim

j→∞
sup
z∈K

|fj (z) − f (z)| = 0.

The Taylor series of f at zero is an element of B (r) by Corollary 1.5.9. Hence,
B (r) is complete with respect to ‖.‖(r) .

6. If f =
∑

β cβzβ and α ∈ Nn then

‖f‖(r)

rα
= |cα| +

∑
β∈Nn

β �=α

|cα| rα,

i.e.,

|cα| =
‖f‖(r)

rα
−

∑
β∈Nn

β �=α

|cα| rα ≤
‖f‖(r)

rα
. �

Definition 8.1.12. Let f =
∑

α∈Nn cαzα ∈ C [[z1, . . . , zn]] be a formal power series.
The order (or subdegree) of f is defined as

ord f :=
{

+∞, if f = 0
min {|α| | cα 	= 0} , if f 	= 0 .

Example 8.1.13.
ord

(
z4
1 + z2 sin (z1z2)

)
= 3,

because
sin (z1z2) = z1z2 +

∑
k≥1

(−1)k

(2k + 1)!
(z1z2)

2k+1
.



132 Chapter 8. Local Properties of holomorphic functions

Lemma 8.1.14. Let f, g ∈ C [[z1, . . . , zn]] . Then the following holds:

1. The order satisfies
ord fg = ord f + ord g.

2. The estimate
ord (f + g) ≥ min {ord f, ord g}

holds.

3. The algebra C [[z1, . . . , zn]] of formal power series is an integral domain.

4. We have ord f = 0 if and only if f is a unit in C [[z1, . . . , zn]] .

Proof. 1. Every formal power series f =
∑

α∈Nn cαzα has a unique expression as
a series of k-homogenous polynomials

f =
∞∑

k=0

Pk (f) ,

where
Pk (f) :=

∑
|α|=k

cαzα.

Then ord f = min {k ≥ 0 | Pk (f) 	= 0} . It follows that

fg =

( ∞∑
k=0

Pk (f)

)
·
( ∞∑

l=0

Pl (g)

)

=
∞∑

j=0

∑
k+l=j

Pk (f) Pl (g)

=
∞∑

j=0

Pj (fg) ,

which implies

ord fg = min {k + l ∈ N | Pk (f) Pl (g) 	= 0}
= min {k ∈ N | Pk (f) 	= 0} + min {l ∈ N | Pl (g) 	= 0}
= ord f + ord g.

2. Since
f + g =

∑
α∈Nn

(aα + bα) zα,

we have

ord (f + g) = min {|α| | aα + bα 	= 0}
≥ min {min {|α| | aα 	= 0} , min {|α| | bα 	= 0}}
= min {ord f, ord g} .
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3. If f, g ∈ C [[z1, . . . , zn]] are 	= 0 they are of finite order. From 1. we deduce

ord fg = ord f + ord g < ∞,

thus, fg 	= 0.
4. If ord f = 0 then f = f (0) ∈ C×, thus 1

f ∈ C×, i.e., f is a unit. Vice versa,
if f is a unit there is a formal power series g such that fg = 1. It follows from 1.
that

0 = ord 1 = ord fg = ord f + ord g.

Since the order of a power series is always nonnegative it follows that ord f = 0. �

Proposition 8.1.15. Let m := {f ∈ C [[z1, . . . , zn]] | f (0) = 0} be the set of non-
units in C [[z1, . . . , zn]] . Then m is a maximal ideal in C [[z1, . . . , zn]] . Moreover,
m is unique.

Proof. The evaluation mapping

ε0 : C [[z1, . . . , zn]] → C, f �→ f (0)

is a surjective algebra homomorphism with kernel ker ε0 = m. The quotient

C [[z1, . . . , zn]] /m

is isomorphic to the image of ε0 by the well-known isomorphy theorem from general
algebra. Since ε0 is surjective this image is C, which is a field. Hence, m is a maximal
ideal. Let n be another maximal ideal in C [[z1, . . . , zn]] . Then n contains no unit of
C [[z1, . . . , zn]] , i.e., n ⊂ m. However, since n is maximal, it follows that n = m. �

Remark 8.1.16. A ring (algebra) with a unique maximal ideal is called a local ring
(algebra). We have thus proven that C [[z1, . . . , zn]] is a local algebra. The same is
true for the algebra of convergent power series and the proof is identical.

Exercise 8.1.17. Show that a ring (algebra) is local if and only if its nonunits form
an ideal. Prove that this ideal of nonunits is necessarily the unique maximal ideal.

Proposition 8.1.18. The maximal ideal m is generated by z1, . . . , zn.

Proof. Clearly, z1, . . . , zn ∈ m. Since m is an ideal, m also contains the ideal
(z1, . . . , zn) generated by z1, . . . , zn. On the other hand every f ∈ m has order
> 0, hence, f is divided by some zj , which proves that m ⊂ (z1, . . . , zn) . �

A common misperception, especially for students who are just beginning to
learn algebra, is that properties of a ring (or some other algebraic structure) etc. do
not necessarily hold for a subring. We have just seen that C [[z1, . . . , zn]] is a local
algebra. The set of polynomials C [z1, . . . , zn] is a subalgebra of C [[z1, . . . , zn]] ,
however, we have the following:

Example 8.1.19. C [z1, . . . , zn] is not a local algebra.
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Proof. If C [z1, . . . , zn] were a local algebra its nonunits would form an ideal in
C [z1, . . . , zn] . However, the units in C [z1, . . . , zn] are precisely the nonzero con-
stant polynomials. For example, the polynomial

f = 1 + z1

is not a unit. By the same argument as in Proposition 8.1.15 it is shown that a max-
imal ideal m in C [z1, . . . , zn] is the ideal generated by z1, . . . , zn. If C [z1, . . . , zn]
were a local algebra m would contain f . However, then m would also contain the
constant 1, because m contains z1 and since it is an ideal it also contains the
difference

f − z1 = 1.

This implies m =C [z1, . . . , zn] , which is false. �
Exercise 8.1.20. Let f ∈ C {z1, . . . , zn} . Show that

lim
r→0

‖f‖(r) = |f (0)| .

Exercise 8.1.21. Let Rn be the complex algebra of either formal or of convergent
power series and let m be the maximal ideal in Rn. For k ∈ N+ we define

mk :=

⎧⎨⎩ ∑
finite

f1 · · · fk

∣∣∣∣∣∣ fj ∈ m,j = 1, . . . , k.

⎫⎬⎭ .

Prove the following statements:

1.
mk = {f ∈ Rn | ord f ≥ k} .

2. Each mk is an ideal in Rn.

3. Determine a minimal set Mk of generators for mk and prove an explicit
formula for the number of elements of Mk.

4. Show that m is a principal ideal in Rn if and only if n = 1.

Exercise 8.1.22. Let Rn, m be defined as in the previous exercise and put

U :=
{
mk | k ∈ N+

}
.

We define a set T of subsets of Rn by

M ∈ T : ⇐⇒ For all f ∈ M there is some U ∈ U , such that f + U ⊂ M,

where f + U := {f + u | u ∈ U} . Prove the following statements:

1. The set T defines a topology on Rn.
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2. The set U is a fundamental system of neighbourhoods of 0, i.e., every neigh-
bourhood of 0 ∈ Rn contains an element of U .

3. The equation ⋂
k≥0

mk = {0}

holds.

4. The topology T is Hausdorff.

(T is called the m-adic or Krull topology on Rn.)

5. A sequence (fj)j≥1 ⊂ Rn is called a Cauchy sequence if to every U ∈ U there
is some n0 ∈ N such that

fk − fl ∈ U for all k, l ≥ n0.

It is called convergent with limit f ∈ Rn if to every U ∈ U there is some
n0 ∈ N such that

f − fk ∈ U for all k ≥ n0.

Show that every Cauchy sequence in (Rn, T ) converges, i.e., Rn is complete
with respect to the Krull topology.

6. Let f ∈ Rn, ord f > 0. Show that the series

∞∑
k=0

fk

converges with respect to the Krull topology and determine the limit.

8.2 The Weierstrass Theorems

In this and the following sections Rn = C {z1, . . . , zn} denotes the algebra of
convergent power series. In case n = 1 it is a simple consequence of the Taylor
expansion that a holomorphic function which has a zero of order k at the origin
can locally be written in the form

f (z) = zkh (z) (8.4)

with a holomorphic function h satisfying h (0) 	= 0. In particular, h is a unit in
C {z} . The zero set of f near the origin thus coincides with the zero set of the
monomial zk. The generalization of this rather basic observation to dimension
n is the celebrated Weierstrass Preparation Theorem, which, together with the
Weierstrass Division Formula, is the subject of this section. These theorems and
their consequences are of fundamental importance in the local investigation of the
zero sets of holomorphic functions. We start by generalizing formula (8.4) .
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Definition 8.2.1. An f ∈ Rn is called zn-general of order m if there is an h ∈
C {zn} , h (0) 	= 0 such that

f (0, . . . , 0, zn) = zm
n h (zn) .

Example 8.2.2. If n = 1, by (8.4) , every f ∈ R1 is z1 - general. However, if n > 1
this need not be the case. For instance

f (z1, z2) := z1z2 ∈ R2

is neither z1- nor z2-general.

Lemma 8.2.3. Let f1, . . . , fk ∈ Rn \{0} . Then f1, . . . , fk are zn-general if and only
if their product f1 · · · fk is zn-general.

Proof. “⇒”: If f1, . . . , fk are zn-general of order mj then

f1 · · · fk (0, . . . , 0, zn) = zm1+···+mk
n

k∏
j=1

hj (zn)

with hj ∈ Rn, h (0) 	= 0.
“⇐”: Let

f1 · · · fk (0, . . . , 0, zn) = zm
n h (zn)

with some h ∈ Rn, h (0) 	= 0. Let 1 ≤ j ≤ k. Then

fj (z) =
∑

α∈Nn

c(j)
α zα,

hence,
fj (0, . . . , 0, zn) = c

(j)
0...0 +

∑
k≥1

γ
(j)
k zk

n.

If fj (0, . . . , 0, zn) = 0 then also f1 · · · fk (0, . . . , 0, zn) = 0, contradicting the zn-
generality of f1 · · · fk. Thus, fj (0, . . . , 0, zn) 	= 0. If c

(j)
0...0 	= 0 then fj is a unit in

Rn, thus, zn-general of order 0. Otherwise, fj is zn-general of some order mj >
0. �

It turns out that in the Weierstrass Theorems zn-generality of some power
series is a crucial prerequisite. Therefore, the following result is important.

Proposition 8.2.4. Let h1, . . . , hk ∈ Rn with h1 · · ·hk 	= 0. Then there are complex
numbers c1, . . . , cn−1 and a shearing

σ : Cn → Cn

defined by

σj (z) :=
{

zj + cjzn, 1 ≤ j < n
zn, j = n
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such that for all j = 1, . . . , n,

σ∗hj := hj ◦ σ

is zn-general of some order mj . In particular, since σ is linearly invertible, thus
biholomorphic mapping it induces an algebra automorphism

σ∗ : Rn → Rn. (8.5)

Proof. Let g ∈ Rn, g 	= 0. Because of the absolute convergence we can freely
reorder terms and can thus write g as a sum of j-homogenous polynomials

g (z) =
∑
j≥0

gj (z) .

Let m := ord g.Then gj = 0 for j < m and gm 	= 0. Hence, there is a vector

(w1, . . . , wn) ∈ Cn

such that gm (w1, . . . , wn) 	= 0. By continuity we may without loss of generality
assume wn 	= 0. Put

cj :=
wj

wn
, j = 1, . . . , n − 1.

Then

σ∗gj (0, . . . , 0, zn) = gj (c1zn, . . . , cn−1zn, zn)
= zj

ngj (c1, . . . , cn−1, 1) ,

hence,

σ∗g (0, . . . , 0, zn) = zm
n

⎛⎝∑
j≥0

gj+m (c1, . . . , cn−1, 1) zj
n

⎞⎠ =: zm
n f (zn) ,

f (0) = gm (c1, . . . , cn−1, 1) 	= 0.

In particular, this holds for g := h1 · · ·hk.

σ∗ (h1 · · ·hn) = σ∗h1 · · ·σ∗hk

is zn-general, which is equivalent to all σ∗h1, . . . , σ
∗hk being zn-general by Lemma

8.2.3. �
Example 8.2.5. The germ defined by

f (z1, z2) := sin
(
z2
1z2

)
is neither z1- nor z2-general, because

f (0, z2) = f (z1, 0) = 0.
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However, with the shearing σ defined by

σ (z1, z2) := (z1 + z2, z2)

we have

σ∗f (z1, z2) = sin
(
(z1 + z2)

2
z2

)
=

∑
k≥0

(−1)k

(2k + 1)!
(z1 + z2)

4k+2
z2k+1
2

=
∑
k≥0

(−1)k

(2k + 1)!

2k+1∑
j=0

(
2k + 1

j

)
zj
1z

6k+3−j
2 ,

hence,

σ∗f (0, z2) =
∑
k≥0

(−1)k

(2k + 1)!
z6k+3
2

= z3
2

⎛⎝1 +
∑
k≥1

(−1)k

(2k + 1)!
z6k
2

⎞⎠ ,

i.e., σ∗f is z2-general of order 3.

Exercise 8.2.6. Let f (z1, z2, z3) := z1z2z3 cos (z1 + 2z3) . Determine a shearing σ
such that σ∗f becomes z3-general of order 3.

Exercise 8.2.7. Let f ∈ Rn. Show that f is zn-general of order m if and only if
there are fk ∈ Rn−1, k ≥ 0, such that for z = (z′, zn) we have

f (z) =
∑
k≥0

fk (z′) zk
n

and min {k ∈ N | fk (0) 	= 0} = m.

Exercise 8.2.8. Prove in detail that for a shearing σ the induced map σ∗ from (8.5)
is an algebra automorphism.

8.2.1 The Weierstrass Division Formula

Weierstrass’ Division Formula is an analogue for the division with remainder in
Z or in the polynomial ring K [X] , where K is a field. The proof of the theorem
requires the following auxiliary result.

Lemma 8.2.9. Let r ∈ Rn
+ and let

f ∈ O (Pn
r (0)) , f 	= 0
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be zn-general of order m ≥ 0. Then there is an s ∈ Rn
+ and polydisc

Pn
s (0) ⊂ Pn

r (0)

such that for all a ∈ Cn−1 satisfying |aj | < sj , j = 1, . . . , n − 1, the mapping

zn �→ f (a1, . . . , an−1, zn)

has m zeros in the disc B1
sn

(0) .

Proof. Since f is zn-general of order m, the function

zn �→ f (0, . . . , 0, zn)

has an isolated zero of order m in zn = 0. Therefore, there is some sn ∈ ]0, rn[
such that

f (0, . . . , 0, zn) 	= 0

for all zn satisfying 0 < |zn| ≤ sn. Compactness of the circle

ρ := {zn ∈ C | |zn| = sn}

implies
ε := min

zn∈ρ
|f (0, . . . , 0, zn)| > 0.

Let r′ := (r1, . . . , rn−1) . There is a compact set K ⊂ Pn−1
r′ (0) with 0 ∈ K such

that K × ρ is a compact subset of Pn
r (0) , hence, f |K×ρ is uniformly continuous.

This implies that to the chosen ε there is some δ > 0 such that for all z ∈ Cn with
‖z‖∞ < δ we have

|f (z1, . . . , zn) − f (0, . . . , 0, zn)| <
ε

2
.

Let a ∈ Cn−1 such that ‖a‖∞ < δ and put

D : = {zn ∈ C | 0 < |zn| < sn} ,

F : D → C, zn �→ f (a1, . . . , an−1, zn) ,

G : D → C, zn �→ f (0, . . . , 0, zn) .

Then for all zn ∈ ρ we have the inequality

|F (zn) − G (zn)| < |G (zn)| .

By Rouché’s Theorem, F and G have the same number of zeros in D. �
For the proof of the Weierstrass Division Formula we need a simple, but useful

result from functional analysis, which is an analogue of the classical geometric
series.
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Lemma 8.2.10. Let (A, ‖.‖) be a Banach algebra with neutral element e and let
a ∈ A be an element such that

‖e − a‖ < 1.

Then a is invertible in A and the inverse element is given by the Neumann series

a−1 =
∑
k≥0

(e − a)k
.

Proof. Let sk :=
∑k

j=0 (e − a)j and let k ≥ l. Then

‖sk − sl‖ =

∥∥∥∥∥∥
n∑

j=m+1

(e − a)j

∥∥∥∥∥∥ ≤
n∑

j=m+1

‖e − a‖k
.

Since ‖e − a‖ < 1 we see as in the case of the geometric series that (sk)k≥0 is a
Cauchy sequence in A. A is complete, thus, (sk)k≥0 has a limit s ∈ A. If we regard

ska =
k∑

j=0

(e − a)j
a =

k∑
j=0

(e − a)j (e − (e − a))

=
k∑

j=0

(e − a)j −
k+1∑
j=1

(e − a)j

= e − (e − a)k+1
,

since lim
k→∞

‖e − a‖k+1 = 0 we conclude that

lim
k→∞

sk = a−1.

�
Theorem 8.2.11 (Weierstrass Division Formula). Let f ∈ Rn be zn-general of
order m and let g ∈ Rn. Then there is a unique power series q ∈ Rn and a unique
polynomial r ∈ Rn−1 [zn] of degree < m such that

g = qf + r.

Proof. Uniqueness: Suppose we have

g = q1f + r1 = q2f + r2.

Without loss of generality we may assume that f, q1, q2, r1, r2 are all holomorphic
on some polydisc Pn

r (0) . By Lemma 8.2.9 there is some s ∈ Rn
+, s < r (componen-

twise) such that for fixed z′ := (z1, . . . , zn−1) satisfying |zj | < sj , j = 1, . . . , n− 1,
the function

zn �→ f (z′, zn)
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has m zeroes in the disc B1
sn

(0) . Hence, the function

zn �→ (q1 − q2) f (z′, zn)

has m zeroes in B1
sn

(0) . However, because

(q1 − q2) f = r2 − r1 ∈ Rn−1 [zn]

is a polynomial of degree < m, r2 − r1 must be the zero polynomial. Since f 	= 0
and because Rn has no zero divisors, we conclude

q1 = q2.

Existence: If m = 0 then f is a unit in Rn and we can put

q := gf−1, r := 0.

If m > 0 we write
f (z) =

∑
k≥0

fk (z′) zk
n

with fk ∈ Rn−1, min {k ∈ N | fk (0) 	= 0} = m. After multiplication with a suitable
unit we may assume that fm = 1. We define gk ∈ Rn−1 by

g (z) =
∑

α∈Nn

cαzα

=:
∑
k≥0

gk (z′) zk
n

=
m−1∑
k=0

gk (z′) zk
n +

∑
k≥m

gk (z′) zk
n,

i.e., if we put

bg (z) :=
m−1∑
k=0

gk (z′) zk
n, ag (z) :=

∞∑
k=0

gk+m (z′) zk
n

we have a unique decomposition

g (z) = zm
n ag (z) + bg (z) . (8.6)

We apply Lemma 8.1.11 to find some r ∈ Rn
+ such that g, f ∈ B (r) . Consider the

linear operator
Tf : B (r) → B (r) , g �→ agf + bg.

Then Tf is injective, because ag, bg are uniquely determined by (8.6) . With the
notation of Lemma 8.1.11 we have

‖g‖(r) =
∑
k≥0

‖gk‖(r′) rk
n = ‖ag‖(r) rm

n + ‖bg‖(r) .



142 Chapter 8. Local Properties of holomorphic functions

Thus,

‖Tfg − g‖(r) = ‖ag (f − zm
n )‖(r)

≤ ‖ag‖(r) ‖f − zm
n ‖(r) .

We can choose 0 < ε < 1 and ‖r‖∞ small enough such that

‖f − zm
n ‖(r) ≤ εrm

n .

This implies that
‖Tfg − g‖(r) ≤ ε ‖g‖(r) ,

thus, the linear operator id−Tf has operator norm < 1. Applying Lemma 8.2.10
we conclude that the Neumann series∑

k≥0

(id−Tf )k

converges to T−1
f . This shows that the operator Tf is bijective, which completes

the proof. �
Remark 8.2.12. If we drop the condition that f must be zn-general, the division
formula becomes false. For instance, we regard the function f (z1, z2) := z1z2 and
decompose z1 in two different ways:

z1 = 1 · z1z2 + (−z1) z2 + z1

= (z2 + 1) z1z2 + (−z1) z2
2 + (−z1) z2 + z2,

thus, uniqueness is no longer given.

8.2.2 The Weierstrass Preparation Theorem

The Weierstrass Preparation Theorem is fundamental in the local study of the
zero set of a holomorphic function, because, among other things, it says that near
the origin the zero set N (f) of a function f coincides with the zero set of a so-
called Weierstrass polynomial ω, which we obtain from a unique decomposition
f = uω, where u ∈ Rn is a unit. This means that N (f) , together with the
natural projection Cn → Cn−1 is locally a branched covering of Cn−1 with m
branches. Furthermore, it can be used to obtain deeper insight into the algebraic
structure of the ring of convergent power series or, if you prefer, the ring of germs
of holomorphic functions.

Definition 8.2.13. A polynomial

ω = zm
n + am−1z

m−1
n + · · · + a0 ∈ Rn−1 [zn]

which satisfies aj (0) = 0 for all j = 0, . . . ,m−1 is called a Weierstrass polynomial
of degree m.
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Example 8.2.14.

ω (z1, z2) := z3
2 + z2

(
1 − cos3 z1

)
+ z5

1 + exp z1 − 1

is a Weierstrass polynomial of degree 3 with

a2 (z1) = 0, a1 (z1) = 1 − cos3 z1, a0 (z1) = z5
1 + exp z1 − 1.

Theorem 8.2.15 (Weierstrass Preparation Theorem). Let f ∈ Rn be zn-general of
order m ∈ N. Then there are a unique Weierstrass polynomial ω ∈ Rn−1 [zn] and
a unique unit u ∈ Rn such that

f = u · ω.

Proof. We apply the Weierstrass Division Formula to the function germ defined
by

g (z1, . . . , zn) := zm
n

to obtain unique elements q ∈ Rn, r ∈ Rn−1 [zn] with deg r < m such that

zm
n = qf + r.

We write

r (z) = r (z′, zn) =
m∑

j=1

bj (z′) zm−j
n .

From the zn-generality of f we obtain that there is a unit h ∈ C {zn} such that

q (0, . . . , 0, zn) f (0, . . . , 0, zn) = q (0, . . . , 0, zn) zm
n h (zn)

= zm
n − r (0, zn) .

If we put aj := −bj for all j = 1, . . . ,m and

r1 (z) :=
m∑

j=1

aj (z′) zm−j
n ,

we see that

q (0, . . . , 0, zn) zm
n h (zn) = zm

n +
m∑

j=1

aj (0) zm−j
n .

If zn = 0 this implies am (0) = 0. Iterating this process m times gives that

aj (0) = 0, j = 1, . . . ,m,

i.e., zm
n − r is a Weierstrass polynomial. Hence,

zm
n = q (0, . . . , 0, zn) zm

n h (zn) ,
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which for zn 	= 0 implies

1 = q (0, . . . , 0, zn) h (zn) .

Since h (0) 	= 0 we conclude that q (0) 	= 0, i.e., q is a unit in Rn. Now we can put

u := q−1, ω := zm
n − r,

which completes the proof. �

Remark 8.2.16. There are analogues of the Weierstrass Division Theorem and
the Weierstrass Preparation Theorem for differentiable real-valued germs. Those
analogues are known in the literature as Malgrange’s Theorems. The interested
reader may find details in [2].

Example 8.2.17. Let f (z1, z2) := e3z1 (ez2 − e−z1)3 ∈ C {z1, z2} . Then

f (0, z2) = (ez2 − 1)3 =

( ∞∑
k=1

zk
2

k!

)3

= z3
2

⎛⎝1 +
∑
k≥2

zk
2

k!

⎞⎠3

,

i.e., f is z2-general of order 3 and we obtain the decomposition f = uω, where

u (z1, z2) :=

⎛⎝∑
k≥0

(z1 + z2)
k

(k + 1)!

⎞⎠3

,

ω (z1, z2) := (z1 + z2)
3 = z3

1 + 3z2z
2
1 + 3z2

2z1 + z3
2 .

Exercise 8.2.18. Let f be defined as in Example 8.2.17 and let g (z1, z2) := z3
2 .

Find the decomposition
g = qf + r

according to the Weierstrass Division Formula.

Exercise 8.2.19. Let ω1, . . . , ωs ∈ Rn−1 [zn] be normed polynomials. Show that
every ωj is a Weierstrass polynomial if and only if their product

ω :=
s∏

j=1

ωj

is a Weierstrass polynomial.

Exercise 8.2.20. Let f ∈ Rn be zn-general of order 1.
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1. Deduce the Weierstrass Preparation Theorem from the Implicit Function
Theorem.

2. Vice versa, use the Weierstrass Preparation Theorem to prove the following
version of the Implicit Function Theorem: Let f ∈ Rn satisfy

f (0) = 0,
∂f

∂zn
(0) 	= 0.

Show that there is a unique ϕ ∈ Rn−1, which satisfies

ϕ (0) = 0, f (z′, ϕ (z′)) = 0 near 0 ∈ Cn−1.

8.3 Algebraic properties of C {z1, . . . , zn}
Two well-known important theorems in the theory of polynomial rings in indeter-
minates X1, . . . , Xn are the following results:

Theorem 8.3.1 (Hilbert’s Basis Theorem). Let R be a commutative ring with
unit 1. Then R is Noetherian if and only if the polynomial ring R [X1, . . . , Xn]
is Noetherian.

Theorem 8.3.2 (Gauss). Let R be a commutative ring with unit 1. Then R is a
factorial ring if and only if the polynomial ring R [X1, . . . , Xn] is factorial.

The Weierstrass Theorems can be used to obtain equivalent results for the
algebra Rn of convergent power series. Before we come to that let us stress the im-
portance of Hilbert’s Basis Theorem for the investigation of systems of polynomial
equations.

Example 8.3.3. Let F ⊂ R := C [z1, . . . , zn] be an arbitrary family of polynomials
and

N (F) :=
⋂

f∈F
N (f)

their common zero set. Then there is a finite family

F1 ⊂ R,

which has the same zero set, i.e., the eventually infinite (or even uncountable)
system of equations has a solution equivalent to the solution of a finite system of
equations. This can be seen as follows. If we put

I := I (N (F)) :=
⋂
F⊂a

a Ideal in R

a,

then I is an ideal in R, the so-called vanishing ideal of N (F) . By Hilbert’s Basis
Theorem, I is finitely generated, say, by functions f1, . . . , fm ∈ R. Hence,

N (F) = N (f1, . . . , fm) .
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We now come back to Rn.

Theorem 8.3.4. Rn is a Noetherian algebra.

Proof. We use induction on n. If n = 0 then Rn
∼= C, which is a field, thus

Noetherian. Now assume that Rn−1 is Noetherian and let a � Rn be an ideal.
Let f ∈ a, f 	= 0. By Proposition 8.2.4 we may assume without loss of generality
that f is zn-general of order m, because every shearing induces an automorphism
of Rn. If m = 0 then f is a unit, hence, a = Rn · f = Rn. If m > 0 the Weier-
strass Preparation Theorem says that there are a unit u ∈ Rn and a Weierstrass
polynomial ω ∈ Rn−1 [zn] such that

f = uω,

i.e.,
u−1f = ω ∈ a ∩ Rn−1 [zn] � Rn−1 [zn] .

Rn−1 is Noetherian by induction hypothesis, so Rn−1 [zn] is Noetherian by Hil-
bert’s Basis Theorem. Hence, there are finitely many polynomials

g1, . . . , gl ∈ Rn−1 [zn]

which span I := a∩Rn−1 [zn] . If g ∈ a is an arbitrary element we obtain from the
Weierstrass Division Formula a unique decomposition

g = q ·
(
u−1f

)
+ r

with r ∈ I, hence,
g ∈ (f, g1, . . . , gl) = (g1, . . . , gl) .

This shows that
a ⊂ (g1, . . . , gl) = I ⊂ a,

i.e., a is finitely generated. �
It is important to notice that this is a local result, which becomes false in

the global case.

Example 8.3.5. O (C) is not Noetherian.

Proof. For k ∈ N regard

Ik := {f ∈ O (C) | f (m) = 0 for all m ∈ N,m > k} .

Then Ik is an ideal in O (C) and we have an ascending chain

I0 ⊂ I1 ⊂ I2 ⊂ · · · . (8.7)

By the Weierstrass Factorization Theorem there is an fk ∈ O (C) such that

N (fk) = {k + l | l ∈ N} ,

i.e., fk ∈ Ik+1 \ Ik. This means that the chain (8.7) does not terminate. Hence,
O (C) is not Noetherian. �
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Lemma 8.3.6. Let ω ∈ Rn−1 [zn] be a Weierstrass polynomial. Then the following
are equivalent:

1. The polynomial ω is prime in Rn−1 [zn] .

2. The polynomial ω is prime in Rn.

Proof. We first note that an element p of a ring R is a prime element if and only
if the quotient R

/
(p) is an integral domain and that for every unit u ∈ Rn the

element g := uω is zn-general. Furthermore, ω and g generate the same ideal in
Rn. Consider the inclusion

i : Rn−1 [zn] → Rn

and natural projection
π : Rn → Rn

/
(g) .

We also have a projection

π′ : Rn−1 [zn] → Rn−1 [zn]
/

(ω) .

Put α := π ◦ i and let f ∈ Rn. The Weierstrass Division Formula gives a unique
decomposition

f = qg + r

with q ∈ Rn and r ∈ Rn−1 [zn] . Since qg ∈ (g) we see that α is surjective. We
have g = uω, thus, ω ∈ ker α, i.e.,

(ω) ⊂ ker α.

Also, if h ∈ ker α there is some b ∈ Rn such that

h = bg = buω ∈ (ω) ,

i.e., kerα ⊂ (ω) . Hence, by the Isomorphism Theorem from algebra, we obtain an
isomorphism

φ : Rn−1 [zn]
/

(ω) → Rn

/
(g) ,

which makes the diagram

Rn−1 [zn] α−→ Rn

/
(g)

π′ ↓ ↗ φ

Rn−1 [zn]
/

(ω)

commutative. This shows that ω is a prime element in Rn−1 [z] if and only if it is
prime in Rn. �

Theorem 8.3.7. Rn is a factorial algebra.
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Proof. We use induction on n. If n = 0 then R0
∼= C. Since C is a field it contains

no elements 	= 0, which are not units, so it is trivially a factorial ring. Now suppose
that Rn−1 is factorial and let f ∈ Rn. Once again, by Proposition 8.2.4, we may
assume without loss of generality that f is zn-general of some order m, because f
can be factored into prime components

f = p1 · · · pl

if and only if the sheared germ σ∗f can be factored into prime components

σ∗f = (σ∗p1) · · · (σ∗pl) .

The Weierstrass Preparation Theorem gives a unique decomposition

f = uω

with a unit u ∈ Rn and a Weierstrass polynomial ω ∈ Rn−1 [zn] of degree m. By
induction hypothesis Rn−1 is factorial, so we can use Gauss’ Theorem to see that
Rn−1 [zn] is factorial, too. Hence, ω can be factored

ω = ων1
1 · · ·ωνs

s .

into a product of prime elements ω1, . . . , ωs ∈ Rn−1 [zn]. We have seen in Exercise
8.2.19 that all ωj are Weierstrass polynomials, because ω is one. Lemma 8.3.6
finally states that all ωj are also prime in Rn. �
Remark 8.3.8. This theorem gives even deeper insight into the local structure
of the zero set of a holomorphic function near the origin. If f ∈ Rn then there
is a shearing σ such that σ∗f is zn-general and σ∗f = uω by the Weierstrass
Preparation Theorem, where the unit u has no zeroes near the origin. Furthermore,
ω factors into prime components ω1, . . . , ωs. Thus, we have near the origin

N (f) = σ−1 (N (σ∗f)) = σ−1 (N (uω))
= σ−1 (N (ω)) = σ−1 (N (ω1 · · ·ωs))

= σ−1

⎛⎝ s⋃
j=1

N
(
ω

νj

j

)⎞⎠ = σ−1

⎛⎝ s⋃
j=1

N (ωj)

⎞⎠
=

s⋃
j=1

σ−1 (N (ωj)) .

Example 8.3.9. Let f ∈ R2 be defined by

f (z1, z2) := ez1−z2 − 1 − z1 + z2.

Because of f (0, 0) = 0, f is not a unit. Taylor expansion gives

f (z1, z2) = (z1 − z2)
2
∑
j≥0

(z1 − z2)
j

(j + 2)!
.
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The series

u (z1, z2) :=
∑
j≥0

(z1 − z2)
j

(j + 2)!

is a unit in R2, because u (0, 0) = 1
2 	= 0. The factor

g (z1, z2) := z1 − z2

is prime in R2, because it is a Weierstrass polynomial in z1. Hence, by Lemma
8.3.6 it is prime in R2 if and only if it is prime in R1 [z1] . Since the degree of g
with respect to z1 is 1, g is irreducible in R1 [z1] and since R1 [z1] is a factorial
ring, it is also prime. Hence, we have the prime decomposition of f in R2 given by

f = u · g2.

Theorem 8.3.10 (Hensel’s Lemma). Let ω ∈ Rn−1 [zn] be a normed polynomial of
degree m > 0, such that for some s ∈ N,

ω (0, . . . , 0, zn) =
s∏

j=1

(zn − cj)
mj (8.8)

with pairwise distinct complex numbers cj and mj ∈ N, m1 + · · ·+ ms = m. Then
there are uniquely determined normed polynomials

ω1, . . . , ωs ∈ Rn−1 [zn]

such that the following holds:

1. The polynomial ω has a factorization ω =
∏s

j=1 ωj .

2. For each ωj we have ωj (0, . . . , 0, zn) = (zn − cj)
mj , j = 1, . . . , s.

3. The ωj are pairwise relatively prime in Rn−1 [zn] .

Proof. We use induction on s. If s = 1 the proposition is clear, for we can choose
ω1 := ω. If s > 1 we consider

q (z1, . . . , zn) := ω (z1, . . . , zn−1, zn + c1) .

Then q ∈ Rn−1 [zn] is a normed polynomial and q is zn-general of order m1,
because

q (0, . . . , 0, zn) = zm1
n

s∏
j=2

(zn + c1 − cj)

and cj 	= c1 for j > 1. From the Weierstrass Preparation Theorem we obtain a
unit u ∈ Rn and a Weierstrass polynomial q1 ∈ Rn−1 [zn] of order m1 such that
q = uq1. Define

ω1 (z) : = q1 (z1, . . . , zn−1, zn − c1) ,

ω′ (z) : = u (z1, . . . , zn−1, zn − c1) .
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Then ω = ω1ω
′, ω1 is normed and ω′ (c1) 	= 0. By construction, ω′ must also be a

normed polynomial in Rn−1 [zn] and it follows from ω = ω1ω
′ and (8.8) that

ω′ (0, . . . , 0, zn) =
∏
j=2

(zn − cj)
mj .

Now we proceed by induction to uniquely factor ω′ in the same way, which proves
1. and 2. We also may assume by induction that ω2, . . . , ωs are pairwise relatively
prime. We only need to show that ω1 is relatively prime to all ωj , j > 1. This,
however, is clear, because otherwise ω1 (0, . . . , 0, zn) and ωj (0, . . . , 0, zn) would
have a common factor, which is not the case, because all cj are distinct, i.e., 3.
also holds. �

Definition 8.3.11. Let A be a local Noetherian complex algebra with maximal ideal
mA, X an indeterminate over A and let

π : A [X] → (A [X] /mA ) [X]

be the canonical projection. A is called Henselian if the following holds: if f ∈
A [X] and

π (f) = p1 · p2

is a decomposition into relatively prime normed polynomials

p1, p2 ∈ (A [X] /mA ) [X] ,

then there are polynomials f1, f2 ∈ A [X] such that f = f1 · f2 and π (fj) = pj ,
j = 1, 2.

Remark 8.3.12. Consider the inclusion

i : C →A

and the projection
π : A → A

/
mA .

Since mA is a maximal ideal, A
/

mA is a field, which contains π (C) ∼= C as a
subfield. Because A is Noetherian

A
/

mA | π (C)

is a finite field extension and because C has characteristic zero, this extension is
simple, i.e., there is some a ∈ A

/
mA such that

A
/

mA
∼= C (a) .
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Let pa ∈ C [X] be the minimal polynomial of a. By the Fundamental Theorem of
Algebra, pa splits into linear factors over C, from which we conclude that a ∈ C,
i.e.,

A
/

mA
∼= C.

Theorem 8.3.13. The algebra Rn is Henselian.

Proof. The mapping

π : Rn−1 [zn] → C [zn] , ω (z) �→ ω (0, . . . , 0, zn)

satisfies the prerequisites of Hensel’s Lemma. �
Exercise 8.3.14. Give another proof that O (C) is not Noetherian by showing that

I := {f ∈ O (C) | f (k) = 0 for almost all k ∈ N}

is an ideal in O (C), which is not finitely generated.

Exercise 8.3.15. Is O (C) a factorial ring?

Exercise 8.3.16. Let p, q ∈ N and f (z1, z2) := zp
2 − zq

1 .

1. Show that f is irreducible in R2 if gcd (p, q) = 1.

2. Let p = q. Determine the prime factorization of f in R2.

8.4 Hilbert’s Nullstellensatz

Let D ⊂ C be a domain, V a nonempty open subset of D and f, g ∈ O (D) such
that

N (f |V ) ⊂ N (g|V ) 	= V. (8.9)

For all ϕ ∈ O (V ) we define a divisor on V by

div ϕ : V → N, z �→ div ϕ (z) := zero order of ϕ at z.

Then it is easily seen that

div ϕψ = div ϕ + div ψ. (8.10)

Let a ∈ V and K ⊂ V be a compact neighbourhood of a. Then div f and div g
attain at most finitely many positive values on K by the Identity Theorem. From
this and from (8.9) it follows that there is some m ∈ N such that

m div g (z) ≥ div f (z) for all z ∈ V.

From (8.10) we obtain that on V the equation

0 ≤ m div g − div f = div
(

gm

f

)
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holds, which means that the meromorphic function gm

f has at most removable
singularities on V. By the Riemann Removable Singularities Theorem there is an
h ∈ O (V ) such that

hf = gm,

i.e., f |V divides gm|V in O (V ) . In the words of Algebra we can say that gm|V lies
in the principal ideal of O (V ) generated by f |V . Hilbert’s Nullstellensatz (zero
set theorem) generalizes this result to power series in n variables.

8.4.1 Germs of a set

As with germs of functions we define an equivalence relation on subsets of Cn by
the following.

Definition 8.4.1. Let X, Y ⊂ Cn and a ∈ X ∩ Y.

1. We call X and Y equivalent at a if there is an open neighbourhood U of a
such that

X ∩ U = Y ∩ U.

2. An equivalence class of X under this equivalence relation is called a germ of
X at a and will be denoted by

•
Xa.

If the point a is not of importance, we simply write
•
X for any germ of X.

3. If
•
X,

•
Y are set germs, we define

•
X ∩

•
Y : =

•
(X ∩ Y ) ,

•
X ∪

•
Y : =

•
(X ∪ Y ),

•
X ⊂

•
Y : ⇐⇒

•
X ∩

•
Y =

•
X.

4. If
•
f ∈n O0 is represented by some f ∈ O (U) , where U ⊂ Cn is a neighbour-

hood of the origin, we put

N

(•
f

)
:=

•
N (f).

5. If
•
X0 is a germ at zero and

•
f ∈n O0, we say that

•
f vanishes on

•
X if

•
X ⊂ N

(•
f

)
.
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6. The germ
•
X is called an analytic germ if there are finitely many germs

•
f1, . . . ,•

fk ∈n O0 such that

•
X =

k⋂
j=1

N

(•
f j

)
= N (f1, . . . , fk)• .

Lemma 8.4.2. If
•
X and

•
Y are analytic germs, then so are

•
X ∩

•
Y and

•
X ∪

•
Y .

Proof. Let U, V be neighbourhoods of zero such that
•
X and

•
Y can be written as

•
X = {z ∈ U | f1 (z) = · · · = fk (z) = 0}• ,
•
Y = {z ∈ V | g1 (z) = · · · = gl (z) = 0}• .

Then
•
X ∩

•
Y = {z ∈ U ∩ V |f1 (z) = · · · = fk (z) = g1 (z) = · · · = gl (z) = 0}•

and
•
X ∪

•
Y = N

({•
f

•
igj | 1 ≤ i ≤ k, 1 ≤ j ≤ l

})
. �

One of the problems when dealing with analytic sets, i.e., solutions of holo-
morphic equations, is that there is no structure on these sets that allow one to
make computations. A very common way to solve this problem is to translate
questions of analysis or of geometry into the language of Algebra. This is basically
what algebraic geometry is about, where solutions of polynomial equations are
studied by examination of associated ideals in the ring of polynomials. We copy
this idea for our purposes.

Proposition 8.4.3. Let
•
X be an analytic germ at zero and A ⊂ O0. We define

I

( •
X

)
:=

{ •
f ∈ O0

∣∣∣∣ •
X ⊂ N

(•
f

)}
and

N (A) :=
⋂
•
f∈A

N

(•
f

)
.

Then the following holds:

1. The set I

( •
X

)
is an ideal on O0, called the vanishing ideal of

•
X.

2. The set N (A) = N ((A)) is an analytic germ.
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Proof. 1. Let
•
f,

•
g ∈ I

( •
X

)
and

•
h ∈ O0. Then

•
X ⊂ N

(•
f

)
∩ N

(•
g
)

= N

(•
f,

•
g

)
⊂ N

(•
f +

•
g

)
and

•
X ⊂ N

(•
f

)
∪ N

(•
h

)
= N

(•
f
•
h

)
.

This shows that
•
f+

•
g ∈ I

( •
X

)
and

•
f

•
h ∈ I

( •
X

)
, i.e., I

( •
X

)
is an ideal in O0.

2. The ideal (A) generated by the elements of A can be written as

(A) =

{ ∑
finite

•
f

•
jhj

∣∣∣∣∣ •
f j ∈ A,

•
hj ∈ O0

}
,

since O0 is a commutative ring with 1. From Theorem 8.3.4 we know that O0

is Noetherian, so there are finitely many function germs
•
f1, . . . ,

•
fk ∈ A, which

generate (A) . Hence,

N ((A)) = N

((•
f1, . . . ,

•
fk

))
.

Let
•
f ∈ (A) . Then

•
f =

k∑
j=1

•
f j

•
hj ,

which implies

N

(•
f1, . . . ,

•
fk

)
⊂ N

(•
f

)
,

i.e., N ((A)) ⊂ N (A) . Now, for all j = 1, . . . , k, we have
{•

f j

}
⊂ A. From this we

conclude

N (A) ⊂ N

({•
f j

})
= N

(•
f j

)
,

so

N (A) ⊂
k⋂

j=1

N

(•
f j

)
= N ((A)) .

It can be shown easily that N ((A)) does not depend on the choice of generators
of (A) . The reader may carry out the details. �
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Example 8.4.4. The vanishing ideal of the set germ defined by the origin is

I

( •
{0}

)
=

{•
f ∈ O0 |

•
f vanishes on

•
{0}

}
= {f holomorphic near 0 | f (0) = 0}
= m,

the unique maximal ideal in O0.

Example 8.4.5.

N (O0) =
⋂

•
f∈O0

N

(•
f

)
= ∅,

because O0 contains the constants.

Exercise 8.4.6. Let
•
X,

•
Y be analytic germs and let a, b be ideals in O0. Show the

following:

1. If
•
X ⊂

•
Y , then I

( •
Y

)
⊂ I

( •
X

)
.

2. If
•
X 	=

•
Y , then I

( •
X

)
	= I

( •
Y

)
.

3. If a ⊂ b, then N (b) ⊂ N (a) .

4. The inclusion a ⊂ I (N (a)) holds.

Exercise 8.4.7. An analytic germ
•
X is said to be reducible if there is a decompo-

sition
•
X =

•
Y ∪

•
Z,

where
•
Y ,

•
Z are analytic germs properly contained in

•
X. If no such decomposition

exists,
•
X is said to be irreducible.

1. Show that an analytic germ
•
X is irreducible if and only if its vanishing ideal

I

( •
X

)
is a prime ideal in O0.

2. Is the germ
•
X at zero defined by the set

X :=
{
(z, w) ∈ C2 | zw = 0

}
irreducible? If X is reducible, determine its irreducible components.
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8.4.2 The radical of an ideal

In the introductory example we saw that the condition (8.9) that the zero set of
some function f is contained in the zero set of a function g leads to the algebraic
statement that f divides a certain power of g, or, equivalently, that a power gm

of g lies in the ideal (f) generated by f. This observation leads us to the following
definition.

Definition 8.4.8. Let R be a commutative ring with 1 and let I be an ideal in R.
The radical of I in R is defined as

radI := {x ∈ R | There is some m = mx ∈ N, such that xm ∈ I} .

Example 8.4.9. Consider the ideal 4Z =(4) ⊂ Z. Then

rad (4) = {k ∈ Z | There is some m ∈ N, such that 4|km} = (2) = 2Z.

Example 8.4.10. Let m ⊂ Rn be the maximal ideal. Then

radm = {f ∈ Rn | There is some m ∈ N, such that fm (0) = 0}
= {f ∈ Rn | f (0) = 0}
= m.

Lemma 8.4.11. Let R and I be as in Definition 8.4.8. Then

1. I ⊂ radI.

2. The radical radI is an ideal in R.

3. If I is a prime ideal, then rad I = I.

Proof. 1. This is clear, because x = x1 for all x ∈ R.
2. Let x, y ∈ radI. Then there are mx,my ∈ N such that

xmx , ymy ∈ I.

Let m := mx + my. Since R is commutative we can apply the Binomial Theorem:

(x + y)m =
m∑

k=0

(
m

k

)
xkym−k.

If k < mx then m − k > my and since I is an ideal this implies that

xkym−k ∈ I

for all k = 0, . . . ,m, hence, since I is additively closed, we have

x + y ∈ radI.
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Now let r ∈ R be an arbitrary element. Since xmx ∈ I and I is an ideal we also
have

rmxxmx ∈ I,

i.e., rx ∈ radI. Hence, radI is an ideal in R.
3. Let I be a prime ideal and let x ∈ radI. Then xm ∈ I for some m ∈ N.

Assume that m > 1. Then
xm = xxm−1 ∈ I.

Since I is a prime ideal, this implies that x ∈ I or xm−1 ∈ I. If x ∈ I we are done,
otherwise we proceed by induction to see that x ∈ I. Thus,

radI ⊂ I.

Together with 1. this proves 3. �

Proposition 8.4.12. Let
•
X be an analytic germ. Then

N

(
I

( •
X

))
=

•
X.

Proof. Let I

( •
X

)
be generated by

•
f1, . . . ,

•
fk. Then

N

(
I

( •
X

))
= N

( •
f1, . . . ,

•
fk

)
⊃

•
X,

•
X = N

( •
g1, . . . ,

•
gl

)
⊂ N

( •
gj

)
for all j = 1, . . . , l.

Therefore,
•
gj ∈ I

( •
X

)
for all j = 1, . . . , l. If N

(
I

( •
X

))
were not contained in

•
X there would be some

Y ∈ N

(
I

( •
X

))
\

•
X.

This would imply that Y /∈ N
(•
gj

)
for all j, i.e.,

•
gj |Y 	= 0,

which contradicts the fact that
•
gj ∈ I

( •
X

)
and Y ∈ N

(
I

( •
X

))
. �

Remark 8.4.13. Proposition 8.4.12 gives rise to considering the following. Let X
be the set of all analytic set germs at zero and let J be the set of all ideals in O0.
Then we have mappings

N : J → X, I �→ N (I)
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and

I : X → J,
•
X �→ I

( •
X

)
.

Proposition 8.4.12 says that the composition N ◦ I is the identity mapping on X.
In particular, I is injective and N is surjective. It is now a natural question to ask
what the composition I◦N looks like and whether there is a one-to-one relation
between analytic germs and ideals in O0. Hilbert’s Nullstellensatz answers this
question.

As we have seen in Example 8.4.9 it is not always true that I = rad I for an
ideal I, whereas this equation holds, for example, if I is a prime ideal. Our next
aim is to find a general way to express the radical of an ideal.

Proposition 8.4.14. Let R be a commutative ring with 1 and let x ∈ R. Then the
following are equivalent:

1. x is nilpotent, i.e., there is some m ∈ N such that xm = 0.

2. x ∈ p for all prime ideals p � R.

Proof. 1. ⇒ 2. If xm = 0 for some m ∈ N then

xxm−1 ∈ p

for all prime ideals p. Since p is prime we have x ∈ p or xm−1 ∈ p. If x ∈ p we are
done. If xm−1 ∈ p we proceed by induction to find again that x ∈ p for all prime
ideals p.

2. ⇒ 1. Assume that xm 	= 0 for all m ∈ N. We consider the multiplicatively
closed set

S :=
{
xj | j ∈ N

}
and the set

G := {b| b ideal in R, b ∩ S = ∅} .

Then G is inductively ordered by inclusion and G 	= ∅, because (0) ∈ G. If

b1⊂ b2⊂ · · ·

is an ascending chain of elements of G, their union

b :=
⋃
j≥0

bj

is an ideal, which satisfies

b ∩ S =
⋃
j≥0

(bj ∩ S) = ∅,
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so b ∈ G. By Zorn’s Lemma, G has a maximal element p̃. We claim that p̃ is a
prime ideal. Assume the contrary. Then there are u, v ∈ R\ p̃ such that

uv ∈ p̃.

Denote by
(
p̃, u

)
the smallest ideal in R which contains p̃ and u. Then

p̃ �
(
p̃, u

)
/∈ G,

because p̃ is maximal in G. This implies that(
p̃, u

)
∩ S 	= ∅.

Analogously, (
p̃, v

)
∩ S 	= ∅.

Then there are m1,m2 ∈ N such that

xm1 ∈
(
p̃, u

)
∩ S, xm2 ∈

(
p̃, v

)
∩ S.

Hence, there are α, β, α′, β′ ∈ R, p, p′ ∈ p̃ such that

xm1 = αp + βu, xm2 = α′p′ + β′v.

Since S is multiplicatively closed we have

S � xm1xm2 = αβ′vu + βα′up′ + αα′pp′ + ββ′uv ∈ p̃,

i.e., S ∩ p̃ 	= ∅, which contradicts p̃ ∈ G. Hence, p̃ is a prime ideal. By prerequisite
this implies that x ∈ p̃, but this contradicts the fact that no power of x meets p̃.
Hence, xm = 0 for some m ∈ N. �
Corollary 8.4.15. The radical radI of an ideal I is the intersection of all prime
ideals p which contain I :

radI =
⋂
p⊃I

p prime ideal ⊂R

p.

Proof. Apply Proposition 8.4.14 to the factor ring R/I . �
Exercise 8.4.16. Let a be an ideal in O0.

1. Prove the equation N (a) = N (rad a) .

2. Show that rad a ⊂ I (N (a)) .

Exercise 8.4.17. Find an example of a commutative ring R with unit element 1
and an ideal I � R with the following two properties:

1. The equation radI = I holds.

2. The ideal I is not a prime ideal in R.

Exercise 8.4.18. Let
•
f ∈ O0,

•
f 	=

•
0. Show that there is a prime ideal p in O0,

which contains no power of
•
f.



160 Chapter 8. Local Properties of holomorphic functions

8.4.3 Hilbert’s Nullstellensatz for principal ideals

Hilbert’s Nullstellensatz in the analytic version states that

I (N (a)) = rad a

for all ideals a in O0, i.e., there is a bijective relationship between analytic germs
and radical ideals, i.e., ideals, which coincide with their radicals. In particular, this
establishes a one-to-one correspondence between irreducible germs of analytic sets
and their vanishing ideals, as was shown in Exercise 8.4.7. With the knowledge
we have gained so far, however, we are only able to prove Hilbert’s Nullstellensatz
in the case where a is a principal ideal. Those readers interested in a proof of the
general case are referred to [6], §47. We need another auxiliary result.

Lemma 8.4.19. Let f, g ∈ Rn have greatest common divisor gcd (f, g) = 1. Then
there are a shearing σ, germs λ, µ ∈ Rn and p ∈ Rn−1, p 	= 0 such that

p = λσ∗ (f) + µσ∗ (g) .

Proof. From Proposition 8.2.4 we obtain a shearing σ such that σ∗ (f) and σ∗ (g)
are zn-general, so by the Weierstrass Preparation Theorem we find units u, v ∈n O0

and Weierstrass polynomials P,Q ∈ Rn−1 [zn] such that

σ∗ (f) = uP, σ∗ (g) = vQ. (8.11)

Then

1 = gcd (f, g)
= gcd (σ∗ (f) , σ∗ (g))
= gcd (uP, vQ)
= gcd (P,Q) ,

i.e., P,Q are relatively prime in Rn. Thus, they are also relatively prime in
Rn−1 [zn] . Let F be the quotient field of Rn−1. Then there are some P ′, Q′, T ∈
F [zn] with

deg T < min {deg P,deg Q}
such that

P = P ′T, Q = Q′T.

If we write

T (z1, . . . , zn) =
deg T∑
j=0

fj (z1, . . . , zn−1)
gj (z1, . . . , zn−1)

zj
n,

we find that ⎛⎝deg T∏
j=0

gj

⎞⎠T (z) =
deg T∑
j=0

fj (z′) zj
n

deg T∏
k=0
k �=j

gk (z′) .
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This implies that P,Q are also relatively prime in F [zn] . Since F [zn] is a principal
ideal ring we conclude that there are A,B ∈ F [zn] such that

gcd (P,Q) = 1 = AP + BQ.

We can then find α, β ∈ Rn−1 and λ′, µ′ ∈ Rn−1 [zn] such that

A =
λ′

α
, B =

µ′

β
. (8.12)

Putting
p := αβ, λ := λ′βu−1, µ := µ′αv−1

we obtain from (8.11) and (8.12) that

p = λσ∗ (f) + µσ∗ (g) ,

which proves the lemma. �

Theorem 8.4.20 (Hilbert’s Nullstellensatz ). For all
•
f ∈ O0 we have

I

(
N

(•
f

))
= rad

(•
f

)
.

Proof. We identify the germ
•
f ∈ O0 with the Taylor series of a representantive

f ∈ Rn. Since Rn is a factorial ring we can decompose f into prime powers

f = fν1
1 · · · fνr

r ,

so

N (f) =
r⋃

j=1

N
(
p

νj

j

)
=

r⋃
j=1

N (pj) .

Thus, using the result from Exercise 8.4.16 we have

rad (f) ⊂ I (N (f)) = I

⎛⎝ r⋃
j=1

N (pj)

⎞⎠
=

r⋂
j=1

I (N (pj)) .

Let pj := (pj) be the principal ideal generated by pj and let

x ∈
r⋂

j=1

pj .
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Then for every j = 1, . . . , r there is some rj ∈ Rn such that

xνj = r
νj

j p
νj

j ,

thus,

x|ν| =
r∏

j=1

xνj =
r∏

j=1

r
νj

j︸ ︷︷ ︸
=:r

r∏
j=1

p
νj

j = rf ∈ (f) .

It follows that
r⋂

j=1

pj ⊂ rad (f) ,

so what is left is a proof that I (N (p)) = (p) for an irreducible p ∈ Rn. Fur-
thermore, we know from Proposition 8.2.4 and from the Weierstrass Preparation
Theorem that it is no loss of generality if we assume that p is an irreducible
Weierstrass polynomial. Let f ∈ I (N (p)) . We have to distinguish two cases.

Case 1: gcd (p, f) = p.
This means that p divides f in Rn, so f ∈ (p) .
Case 2: gcd (p, f) = 1.
We claim that this cannot happen. Use Lemma 8.4.19 to find a shearing σ

and the mentioned λ, µ ∈ Rn, q ∈ Rn−1 [zn] , q 	= 0, such that

q = λσ∗ (f) + µσ∗ (p) . (8.13)

There is some s > 0 such that all representatives from equation (8.13) are holo-
morphic on the symmetric polydisc Pn

s (0) . On Pn
s (0) we have

σ (0) = 0, σ∗p (0, . . . , 0, zn) = zm
n

for some m ∈ N. Lemma 8.2.9 yields that there is a polydisc

Pn
ρ (0) ⊂ Pn

s (0)

such that for all (z1, . . . , zn−1) ∈ Pn−1

(ρ1,...,ρn−1)
(0′) the function

zn �→ σ∗ (p) (z1, . . . , zn)

has exactly m zeroes in the one-dimensional disc defined by |zn| < ρn. Now we
have the result that if f ∈ I (N (p)), then

σ∗ (f) ∈ I (N (σ∗ (p))) ,

so
σ∗ (f) |N(σ∗(p)) = 0.
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Applying this to (8.13) we find that

q (z′) = 0 for all z′ ∈ Pn−1

(ρ1,...,ρn−1)
(0′) .

The Identity Theorem implies q = 0, which contradicts the choice of q. This shows
that the case gcd (p, f) = 1 is impossible. �
Exercise 8.4.21. Determine generators for the vanishing ideals of the following
analytic set germs at zero:

1. •
X :=

{
(z, w) ∈ C2 | z2 = w3

}•

2. •
Y :=

{
(z, w) ∈ C2 | z2 = w2

}•



Register of Symbols

(z|w) standard inner product
‖z‖ norm
[x, y] , ]x, y[ closed resp. open segment or interval
Bn

r (a) ball in Cn with center a and radius r
Pn

r (a) in Cn with center a and polyradius r
Tn

r (a) in Cn with center a and polyradius r
Tn unit polytorus
M (m,n; C) set of complex m × n− matrices
GLn (C) group of regular n × n− matrices
Un (C) group of unitary n × n− matrices
Pn (C) set of positively definite n × n− matrices
∂X boundary of the topological space X
∂exX set of extremal points of X
Df (a) , f ′ (a) derivative of f at a
O (X, Y ) space of holomorphic mappings f : X → Y
O (D) algebra of holomorphic functions f : D → C
prk projection onto the k − th coordinate
C [z1, . . . , zn] algebra of complex polynomials in n variables
C [[z1, . . . , zn]] algebra of formal power series
C {z1, . . . , zn} or Rn algebra of convergent power series
N (F) zero set of the family F
Ck (X, Y ) k− times real differentiable mappings f : X → Y
daf real differential of f at a
V # algebraic dual space of the vector space V

∂f, ∂f complex rsp. conjugate-complex differential of f

Dαf, ∂|α|f
∂z

α1
1 ···∂zαn

n
partial derivatives of f

τ (D) absolute space of D
ρ restriction mapping
Bn (r, R) ball shell in Cn with radii r and R
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Pn (r, R) polydisc shell in Cn with polyradii r and R
Aut (D) group of automorphisms of D
codima A codimension of the analytic set A at the point a
codim A codimension of the analytic set A
S2n−1 Euclidian unit sphere in Cn∧k

V k − th outer product of the vector space V
dω outer derivative of the differential form ω
Ωp (X) set of holomorphic differential forms of degree p

W̃ a connected component of the point a in W
con (X) convex hull of X
Ω + iRn tubular domain with basis Ω
K̂U holomorphically convex hull of K in U
dist∞ (X, Y ) distance of X and Y with respect to ‖.‖∞
OX set of holomorphic functions on a subset X ⊂ Cn

•
fa,

•
f germ of the function f at a resp. at an arbitrary point

OX ,Oa algebra of function germs on the set X resp. at a
τaf translate of f by a
ord f order of a power series f
m maximal ideal in Rn

σ shearing or permutation
•
X germ of the set X

I

( •
X

)
vanishing ideal of the germ

•
X

radI radical of the ideal I
A ⊂⊂ B A is a relatively compact subset of B
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Algebra
Banach, 27
factorial, 128, 147
Henselian, 150
local, 133
Noetherian, 146

Analytic
set, 71

irreducible, 71
reducible, 71

Ball
closed, 4
open, 4

Boundary distance, 103

Cauchy
inequalities, 19
Integral formula, 17
Riemann differential equations,

16
sequence, 22, 135

Chain rule, 8
Codimension

of a linear subspace, 72
of an analytic set, 72

Completeness
in a locally convex space, 22

Complex
conjugate, 1
derivative, 7
differentiable, 7
vector space, 1

Connected
pathwise, 6

simply, 4
topological space, 5

Connected component, 94
Convergence

in a locally convex space, 22
Convex

hull, 4
set, 4

Derivative
exterior, 84
partial, 18

Differential
complex, 15
complex-conjugate, 15
real, 13, 15

Differential form, 79, 82
closed, 85
exact, 85
holomorphic, 85
total, 85

Domain, 5
balanced, 48
logarithmically convex, 121
of convergence, 35
of Holomorphy, 115
polycircular, 41
Reinhardt, 38, 41
tube, 97
tubular, 97

Exact sequence, 86
short, 86
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Exhaustion
by holomorphically convex sets,

112
compact, 23

Extremal point, 4

Function
biholomorphic, 59
bounded, 28
complex differentiable, 7
equicontinous, 28
Euler’s Beta, 27
holomorphic, 7
homogenous, 17
partially holomorphic, 13
proper, 114
z-general, 136

Germ
analytic, 153

irreducible, 155
reducible, 155

of a function, 126
of a set, 152

Group
action, 40

transitive, 69
representation, 40

Hartogs figure, 49
Hartogs triangle, 118
Holomorphic

continuation, 47
differential form, 85
extension, 47
function, 7
mapping, 7
partially, 13

Holomorphically convex, 111
Homomorphism, 48
Hull

balanced, 48
convex, 97
F-convex, 100

holomorphically convex, 100
monomially convex, 101
polybalanced, 50
polynomially convex, 101

Ideal
maximal, 133
prime, 156
principal, 134
radical of an, 156
vanishing, 145, 153

Multiindex, 18

Norm
equivalence, 2
maximum, 2
p-, 2

Order
of a power series, 131

Polyannulus, 42
Polycylinder, 4
Polydisc, 4
Polynomial

complex, 9
degree, 9

Polytorus, 4
Projection

onto k-th coordinate, 8
Pullback, 87

Riemann
Mapping problem, 64, 68
surface

of the logarithm, 63
of the square root, 63

Segment
closed, 3
open, 3

Seminorm, 20
Series

formal power, 127
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geometric, 35
Neumann, 140
power, 35

Shearing, 136, 160
Simplex, 97
Space

absolute, 38
algebraic dual, 14
Banach, 3
connected, 5
Fréchet, 25
Hilbert, 1
locally convex, 20
Montel, 33
of complex matrices, 6
of real differentiable functions, 3

Summability, 34

Tangent
space, 82
vector, 82

Theorem
Abel’s Lemma, 36
Arzelà–Ascoli, 28, 31
Bochner, 106
Bolzano–Weierstrass, 32
Carathéodory’s Lemma, 98
Cartan’s Uniqueness, 67
Cartan–Thullen, 114, 119
Cauchy’s Integral Formula, 18
Cauchy–Riemann, 16
continuation on circular

domains, 49
continuation on Reinhardt

domains, 51
Dolbeaut’s Lemma, 92
Gauss, 145
Harish–Chandra, 55
Hensel’s Lemma, 149
Hilbert, 145
Hilbert’s Nullstellensatz, 152, 158,

161
Identity, 10
implicit functions, 61

inequivalence of ball and poly-
disc, 64

Invariance of domain, 10
inverse function, 60
Krein–Milman, 7
Kugelsatz, 94, 95

special case, 56
Laurent expansion, 42
Laurent expansion on Reinhardt

domains, 52
Liouville, 10
Maximum Modulus, 11, 12
Montel, 28, 33
Peter–Weyl, 55
Poincaré’s Lemma, 87
Riemann Mapping, 28
Riemann removable singularities

1st, 75
2nd, 76

Schwarz’ Lemma, 13
Taylor expansion, 36
Thullen’s Lemma, 103
Weierstrass Division, 135, 138,

140
Weierstrass Preparation, 129,

135, 142, 143
Weiertstrass Convergence, 26

Topology
compact-open, 24
Krull, 135
locally convex, 20
metrizable, 22
of compact convergence, 24

Weierstrass polynomial, 142, 147
Wirtinger derivative, 16

Zero
divisor, 9, 12
set, 12
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