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Preface

The aim of this manuscript is to provide an introduction to the theory of piecewise
differentiable functions and, specifically, piecewise differentiable equations. The
presentation is based on two basic tools for the analysis of piecewise differentiable
functions: the Bouligand derivative as the analytic approximation concept and the
theory of piecewise affine functions as the combinatorial tool for the study of the
approximation function.

The first chapter presents two sample problems which illustrate the relevance of
the study of piecewise differentiable equations. Chapter 2 then investigates piece-
wise affine functions and piecewise affine equations, followed by an introduction to
the Bouligand derivative in the third chapter. Chapter 4 is concerned with piecewise
differentiable functions and combines the results of the former chapters to develop
inverse and implicit function theorems for piecewise differentiable equations. The
final chapter presents two applications of the results to equilibrium modeling and
parametric optimization.

This booklet is a reprint of my Habilitation Thesis of 1994. Although the history
of piecewise differentiable equations can be traced back to J.H.C. Whitehead, the
theory had not been uniformly presented when I wrote my thesis. In particular,
its relation to more recent developments in nonsmooth analysis and the theory of
piecewise affine mappings had not been sufficiently integrated. The manuscript
of the thesis has remained in sufficient demand to warrant its publication in this
series. In order to make the theory accessible to a large audience, I have tried to
keep the mathematical prerequisites at a minimal level. In fact, most parts of this
booklet can be understood with a basic knowledge of mathematical analysis. The
treatment of piecewise affine functions requires some familiarity with polyhedral
theory at the level of a standard course in linear programming. I hope the text will
serve graduate and advanced undergraduate students as a gentle introduction to the
theory of piecewise smooth functions and equations in finite dimensions and equip
them with basic mathematical intuition on the combinatorial aspects of nonsmooth
analysis that will help them conquer more advanced and more recent material. I am
grateful to Steve Robinson for his encouragement to publish the manuscript in this
series.
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Chapter 1
Sample Problems for Nonsmooth Equations

To illustrate the latter idea, suppose we are interested in a vector which is known to
minimize a function f subject to equality constraints h.x/ D 0; where f :IRn! IR
and h:IRn! IRm are twice differentiable. Instead of working with the realistic
minimization model, one may try to determine the unknown quantity by specifying
a set of necessary optimality conditions. Assuming that rh.x/ has full row rank at
every x 2 IRn with h.x/ D 0, a necessary condition for a point x to be a minimizer
of f subject to h.x/ D 0 is the existence of a vector � 2 IRm such that the pair
.x; �/ satisfies the stationary point conditions

rf .x/C rh.x/T � D 0;

h.x/ D 0: (1.1)

Note that a reasonable set of necessary conditions should not leave us with too many
candidates for the demanded quantity. If, for instance, the conditions are formulated
as a system of linear or differentiable equations, one would like to have as many
equations as there are unknown quantities, so that chances are good to have a unique
or at least locally unique solution. This is indeed the case for the stationary point
conditions (1.1). What are the advantages of passing from the original minimization
problem to the stationary point conditions (1.1)?

Existence and uniqueness questions: The theory of differentiable equations provides
us with a variety of tools to check whether a solution exists and whether it is
unique. For instance if the C1-function F :IRn! IRn is a diffeomorphism, i.e., if
it has a differentiable inverse function, then the equation F.x/ D 0 certainly has
a unique solution. A necessary and sufficient condition for the function F to be a
diffeomorphism is the nonsingularity of the Jacobian rF.x/ at every point x 2 IRn

and the closeness of the function F , i.e., the images F.A/ of closed sets A � IRn

are closed. A sufficient condition is provided by Hadamard’s theorem which states
that F is a diffeomorphism if the Jacobians rF.x/ are nonsingular and there exists
a constant ˛ 2 IR such that krF.x/�1k � ˛ for every x 2 IRn.

S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs
in Optimization, DOI 10.1007/978-1-4614-4340-7 1, © Stefan Scholtes 2012
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2 1 Sample Problems for Nonsmooth Equations

Algorithms: We can attempt to solve the problem by applying Newton’s methods
or one of its variants to the system of equations. If this method yields a solution
.x�; ��/ of the equation, then the local optimality of x� for the minimization
problem can be verified by the use of a second-order sufficiency condition like the
positive definiteness of the matrix

r2f .x�/C
mX

iD1
��
i r2h.x�/

on the nullspace of the matrix rh.x�/.

Sensitivity analysis: If some of the data of the original problem is uncertain or can
be controlled, then it is often reasonable to embed the problem into a parametric
family of problems, the parameters reflecting uncertain or controllable quantities.
In the case of the stationary point conditions (1.1), we thus obtain a parametric
equation F.x; y/ D 0. Given a solution x� corresponding to a parameter vector y�,
the following questions naturally arise:

1. Is the solution x� corresponding to y� locally unique?
2. If so, is there still a unique solution close to x� if the parameter is slightly

perturbed?
3. If so, what are the continuity and differentiability properties of the locally defined

solution function x.y/?
4. Can we estimate the asymptotic condition number

lim sup
y!y�

kx.y/ � x.y�/k
ky � y�k

of the solution function x.y/ at the point y�?

In the differentiable case, these questions are all answered by the implicit function
theorem which states that the nonsingularity of the reduced Jacobian rxF.x

�; y�/
implies the existence of a locally unique solution function x.y/ of the equation
F.x; y/ D 0 which, in addition, is continuously differentiable with

rx.y�/ D �rxF.x
�; y�/�1ryF.x

�; y�/:

In particular, the norm of the latter matrix is the asymptotic condition number of the
function x.y/ at y�.

If a problem is more complicated than the equality-constrained minimization
problem, then necessary conditions often naturally involve inequalities in addition
to the equations. However, the trivial observation that f .x/ � 0 if and only if
maxff .x/; 0g D 0 shows that inequalities can be readily turned into equations if the
differentiability assumption is dropped. The aim of this book is to explain how the
above ideas can be generalized to equations which are not necessarily continuously
differentiable. We begin with a presentation of two sample problems which can be
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naturally reformulated in terms of nonsmooth equations. To illustrate the practical
relevance of the sample problems, we first introduce a practical application, the
mathematical formulation of which leads to the general problem.

1.1 Complementarity Problems

1.1.1 Equilibria of Dynamical Systems

The theory of dynamical systems is to a large extent concerned with the analysis
of equilibrium states. We will not go into the details of this theory but instead use
as a working definition for a dynamical system a tuple .X; T /, where X denotes
a set of admissible states of the system, called the state space, while T is a set-
valued transition mapping which assigns to a given state x 2 X a set T .x/ � X

of admissible subsequent states. If the system is in state x, we assume that there
is an incentive for the system to move from state x to some state y 2 T .x/. We
neither assume knowledge about the time when the change occurs nor about the
actual choice of the state y 2 T .x/. The system is said to be in an equilibrium state
if there is no incentive to change the state, i.e., x 2 X is an equilibrium state of the
system .X; T / if T .x/ D ;.

An elementary physical illustration of a dynamical system is a particle moving
in space and being driven by a vector field f W IR3 ! IR3. The position x.t/ of the
particle at time t changes according to the differential equation

dx

dt
D f .x/:

In our terminology, X D IR3 is the state space of the system, while the transition
mapping T may be defined by

T .x/ D ˚
y 2 IR3jf .x/T y > f .x/T x�

:

The equilibrium condition T .x/ D ; corresponds to the well-known condition
f .x/ D 0. If the particle is bound to a convex subset X of IR3, then the transition
mapping T is naturally defined by

T .x/ D ˚
y 2 X jf .x/T y > f .x/T x�

;

and the equilibrium condition T .x/ D ; is equivalent to the variational inequality

f .x/T x � f .x/T y for every y 2 X . (1.2)

Beside the classical physical interpretations, there are interesting economical
situations which can be put into the framework of a dynamical systems. Consider for
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instance a closed market with n firms, each firm producing a single product. Suppose
ci is the unit production cost of firm i , whilepi is the price per unit of the commodity
produced by firm i . The production costs may depend on the output xi of the
i th firm, i.e., ci D ci .xi /, while, due to substitution effects, the price pi of the
commodity produced by the i th firm may also depend on the outputs of all other
firms, i.e., pi D pi.x1; : : : ; xn/. Defining the function di .x/ D pi .x/ � ci .xi /; the
total profit of the i th firm is given by di .x/xi : The aim of each firm manager is to
maximize total profits. Observing a vector of joint outputs x D .x1; : : : ; xn/; the
firm managers may increase or decrease the output of their firms. We assume that
the manager of the i th firm knows the cost function ci and that he has an idea how
the price pi changes if he changes the output of his firm, provided the outputs of all
other firms remain constant. The manager of the i th firm will increase the output of
his firm by some amount� > 0 if

di.x C�ei/.xi C�/ � di .x/xi ;

where ei denotes the i th unit vector in IRn. The latter inequality holds if and only if

di.x C�ei/ � di .x/
�

xi � �di .x C�ei/:

Letting � tend to zero and assuming the differentiability of the function di we thus
see that a small increase of the variable xi results in an increase in total profits as
long as

@di

@xi
.x/xi C di.x/ > 0:

Similarly a small decrease of the variable xi yields an increase in total profits if

@di

@xi
.x/xi C di.x/ < 0:

So we may think of the system as being driven by the vector field F :IRn! IRn

defined by

Fi .x/ D @di

@xi
.x/xi C di .x/; i D 1; : : : ; n;

The set of admissible states is the nonnegative orthantX D IRnC. As before, we use
the transition mapping

T .x/ D fy 2 X jF.x/T y > F.x/T xg;
and thus a state x 2 IRnC is an equilibrium state if it satisfies the variational
inequality

F.x/T x � F.x/T y for every y 2 IRnC. (1.3)
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It is not difficult to check that this is the case if and only if

x � 0;

F.x/ � 0;

F.x/T x D 0: (1.4)

An economic interpretation of the latter conditions is straightforward. In fact, in
an equilibrium situation we observe that either the manager of the i th firm has no
incentive to change the output xi ; or the i th firm is out of business and there is no
incentive to start the production again. In the first situation we thus have xi � 0 and
Fi .x/ D @di

@xi
.x/xi C di.x/ D 0, while the second situation corresponds to xi D 0

and Fi .x/ D @di
@xi
.x/xi C di.x/ � 0. The latter situation occurs if the price pi .x/

of the i th product at the current overall production level x does not exceed the unit
production cost ci .0/ of the i th firm at the zero production level.

1.1.2 Nonlinear Complementarity Problems

Problem (1.4) is directly transformed into the nonlinear complementarity problem
corresponding to a function f :IRn! IRn which is the problem of finding a vector
x 2 IRn such that

x � 0;

f .x/ � 0;

f .x/T x D 0: (1.5)

The nonlinear complementarity problem can be easily transformed into a nonsmooth
equation. In fact, x 2 IRn is a solution of (1.5) if and only if

minffi .x/; xi g D 0; i D 1; : : : ; n:

We will see later on that a slightly more complicated formulation has some advan-
tages. This formulation is obtained by introducing an artificial variable z D f .x/.
One readily verifies that x solves (1.5) if and only if there exists a vector z 2 IRn

such that

H.x; z/ D

0

BBB@

f .x/ � z
minfx1; z1g

:::

minfxn; zng

1

CCCA D

0

BBB@

0

0
:::

0

1

CCCA :
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The advantage of the latter formulation will become apparent only later in the text
in connection with strongly B-differentiable functions. In fact, if f is continuously
differentiable, then the function H is strongly B-differentiable, while the function
minffi .x/; xi g might not have this property.

1.1.3 Comments and References

For an introduction to the variational inequality problem and its relation to
dynamical systems we refer to the recent article [15] of Dupuis and Nagurney.
Complementarity theory has been initiated by Lemke and Howson in their article
[43] which deals with equilibria of bimatrix games. Starting with the latter
application in game theory, complementarity formulations have been used to model
a variety of equilibrium situations in economics and engineering. There is still a
vivid research activity in the field. For a collection of recent results we refer the
interested reader to the publications [10, 11], in particular, to the survey article [25]
of Harker and Pang. For a recent contribution dealing with the relation between
nonlinear complementarity theory and nonlinear programming we refer to the paper
[46] of Mangasarian and Solodov and the references herein.

1.2 Stationary Solutions of Parametric Programs

1.2.1 Multiobjective Optimization

An important problem of the engineering and management sciences is the deter-
mination of an optimal decision out of a whole set of feasible decisions. The
decision-finding process can often be supported by the use of a mathematical model.
Assuming that the different decisions can be identified with finite-dimensional
vectors, such a model may be specified by a collection of constraint functions
which determine the set of feasible decisions and a set of objective functions which
reflect the decision maker’s preferences. The aim is to find a feasible decision
which simultaneously minimizes the objective functions. Such problems belong
to the realm of multiobjective optimization, a discipline which studies various
specifications of the term “simultaneous minimization.” The most natural solution
concept is that of a Pareto-optimal decision which is a feasible decision with
the property that there is no other decision which increases at least one of the
objectives without decreasing any of the other objectives. Being theoretically very
appealing, most solution concepts for multiobjective optimization problems share a
severe practical drawback: They do not determine a unique solution for the decision
problems, so that the decision maker needs to select his “optimal” decision from a
whole set of generated solutions. In particular, it is usually not possible to provide



1.2 Stationary Solutions of Parametric Programs 7

the whole solution set, let alone the problem of representing it in a way which
allows the decision maker to find the “optimal” decision. In an approach to solve
this problem, one may focus attention on a reasonably large subset of “optimal”
solutions and trace this subset with the aid of finitely many parameters. The hope
is that the decision maker can identify his optimal parameters in an interactive
process. The most natural parameters for multiobjective optimization problems are
weights for the objective functions. Depending on such weights, one transforms the
multiobjective optimization problem into a parametric mathematical program by
minimizing the sum of the weighted objectives over the set of feasible decisions.
Such mathematical programs are more likely to have unique optimal solutions. One
easily verifies that every solution of a mathematical program corresponding to a
strictly positive weight vector is a Pareto-optimal solution of the multiobjective
optimization problem. The iterative procedure to determine the decision maker’s
“optimal” decision is the following. Starting with an arbitrary weight vector, one
calculates the corresponding solution of the parametric program and suggests it to
the decision maker. The decision maker may either accept the solution or, if he is
unhappy with the value of one or another of the objectives, he may increase the
corresponding weights in the hope to obtain a better decision. To decide whether
the suggested solution is acceptable, the decision maker may ask for

• A local approximation of the set of Pareto-optimal solutions

If the decision maker is unhappy with the value of a specific objective, then he may
want to increase the weight of this objective. To control the changes of the other
objectives, he may thus be interested in

• The change of the value of the objectives if the weight vector is changed

In order to get an idea how the questions of the decision maker can be answered,
we formalize the above approach. We suppose that M � IRn is the set of feasible
decisions, and that the function f D .f1; : : : ; fp/ W IRn ! IRp reflects the different
objectives f1; : : : ; fp of the decision maker. Instead of considering Pareto-optimal
solutions we confine ourselves to the subset of all solutions of the parametric
optimization problem

min
˚
f .x/T yjx 2 M �

; (1.6)

corresponding to strictly positive weight parameters y 2 IRp , i.e., we focus attention
to the set

W D
(

z 2 M jz D argminx2Mf .x/T y; yi > 0;
pX

iD1
yi D 1

)
: (1.7)

Let x� be a unique optimal solution of problem (1.6) corresponding to the parameter
vector y�. Suppose for the moment that we are able to formulate problem (1.6) as
the solution of an equation F.x; y/ D 0 and that the function F W IRn � IRp ! IRn

is continuously differentiable at the point .x�; y�/. In this case, we can apply the
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implicit function theorem to answer both questions of the decision maker. In fact,
if the assumptions of the latter theorem are satisfied, i.e., if the reduced Jacobian
rxF.x

�; y�/ is nonsingular, then there exist open neighborhoodsU of x� and V of
y� such that for every y 2 V the equation F.x; y/ D 0 has a unique solution x.y/
in U . Moreover, the solution function x.y/ is a continuously differentiable in V and
its Jacobian at the point y� is given by

rx.y�/ D �rxF.x
�; y�/�1ryF.x

�; y�/:

In particular, the set

W 0.x�/ D
(
x.y�/C rx.y�/.y � y�/jyi > 0;

pX

iD1
yi D 1

)

is a local approximation of the set W defined in (1.7) at the point x�. If the decision
maker is unhappy with the value of the objective fi , he may be interested in the
quantity

rfi .x�.y�//T
@x

@yi
.y�/

which approximates the change of fi corresponding to a unit increase of the weight
yi . More generally, the decision maker may provide a change vector for the weights,
i.e., a vector v 2 IRp; the components of which sum up to zero, and be interested in

rfi .x�.y�//rx.y�/v;

a quantity which approximates the change fi .y C v/ � fi .y/ of the objective fi
corresponding to small vectors v.

In the sequel we introduce a formulation of the stationary point conditions for
parametric programs as a parametric nonsmooth equation which will eventually
allow us to answer the questions of the decision maker analogously to the latter
approach for differentiable equations.

1.2.2 The Kojima Mapping

Let us first briefly recall some basic notions and results from mathematical
programming. We consider the parametric nonlinear program

P(y) min
x2IRn ff .x; y/jg.x; y/ � 0; h.x; y/ D 0g;

where the functions f W IRn � IRp ! IR; g W IRn � IRp ! IRl ; and h W IRn � IRp ! IRm

are twice differentiable. Suppose for the moment that the parameter y is fixed.
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A general scheme for the development of necessary optimality conditions for a
vector x to be a solution of a nonlinear problem is to replace the problem functions
by their first-order approximations at the point x and to find conditions which ensure
that x is the solution of the resulting linear problem whenever x is the solution of
the original nonlinear problem. In the case of the mathematical program .P.y// the
vector x is a solution of this approximated problem if and only if the origin is a
solution of the linear program

LP(x,y) min
v2IRn

frxf .x; y/vjrxg.x; y/v � �g.x; y/;

rxh.x; y/v D 0g: (1.8)

Duality theory for linear programming shows that this is true if and only if there
exist vectors � 2 IRl ; and � 2 IRm such that

rxf .x; y/C rxg.x; y/�C rxh.x; y/� D 0;

g.x; y/ � 0;

h.x; y/ D 0;

� � 0;

g.x; y/T � D 0: (1.9)

The latter conditions are well known as the stationary point conditions or Karush-
Kuhn-Tucker conditions for nonlinear programs, i.e., a point x 2 IRn is called a
stationary point of .P.y// if and only if there exist multiplier vectors � 2 IRl ; � 2
IRm; such that .x; �; �; y/ satisfy the conditions (1.9). Conditions which ensure that
a local minimizer is indeed a stationary point of the problem are called constraint
qualifications. For a treatment of such conditions we refer to the standard literature
on nonlinear programming.

There are various formulations of the stationary point conditions (1.9) as a system
of nonsmooth equation. We follow an approach of M. Kojima, who introduced a
mapping F W IRn � IRlCm � IRp ! IRn � IRlCm defined by

F.x; �; y/ D

0

BBBBBBBBBBBBBB@

rxf .x; y/C
lX

iD1
maxf�i ; 0grxgi .x; y/C

mX

jD1
�lCjrxhj .x; y/

�g1.x; y/C minf�1; 0g
:::

�gl .x; y/C minf�l ; 0g
h1.x; y/

:::

hm.x; y/

1

CCCCCCCCCCCCCCA

:
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One readily verifies that there exist vectors � 2 IRl and � 2 IRm such that
.x; �; �; y/ satisfies the stationary point conditions (1.9) if and only if there exists a
vector � 2 IRlCm such that

F.x; �; y/ D 0: (1.10)

We call the mapping F the Kojima mapping corresponding to the parametric
program .P.y//. Equation (1.10) thus yields a reformulation of the stationary point
conditions for the parametric program .P.y// as a nonsmooth equation.

1.2.3 Comments and References

Many specialists in nonlinear programming have published excellent textbooks
on the subject. We confine ourselves to a reference to the classical text [19] of
Fletcher, and to Mangasarian’s book [45] which contains an extensive treatment
of constraint qualifications for nonlinear programs. The Kojima mapping was
introduced by Kojima in [31] to investigate sensitivity and stability questions for
nonlinear programs.

1.3 Appendix: Differentiability Versus Nondifferentiability

It is well known that every closed subset of IRn is the solution set of a C1-equation.
Hence every problem with a closed solution set can, in principle, be formulated as
the solution of a C1-equation. However, the bare formulation as a differentiable
equation does not provide any benefits. To see this, let us take a closer look at a
differentiable equation which reformulates the stationary point conditions (1.10)
of the parametric program .P.y// introduced in the latter section. Consider the
functionG W IRn � IRlCm � IRp ! IRn � IRlCm defined by

G.x; ˛; y/ D

0
BBBBBBBBBBBBBB@

rxf .x; y/C
lX

iD1
maxf0; ˛3i grxgi .x; y/C

mX

jD1
˛lCjrxhj .x; y/

�g1.x; y/C minf0; ˛31g
:::

�gl .x; y/C minf0; ˛3l g
�h1.x; y/

:::

�hm.x; y/

1
CCCCCCCCCCCCCCA

:

(1.11)
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Clearly G is continuously differentiable. Setting ˛i D 3
p
�i for i D 1; : : : ; l and

˛j D �j for j D l C 1; : : : ; l C m, one readily verifies that the vector .x; �; y/
is a zero of the Kojima mapping F if and only if the vector .x; ˛; y/ satisfies the
equation

G.x; ˛; y/ D 0: (1.12)

The reduced Jacobian r.x;˛/G.x; ˛; y/ has an .n C l C m/ � .n C l C m/ block
structure of the form

0

@
A B C

�DT E 0

�CT 0 0

1

A ;

where

A D r2
xf .x; y/C

lX

iD1
maxf0; ˛3i gr2

xgi .x; y/C
mX

jD1
˛lCjr2

xhj .x; y/;

B D �
˛1 maxf0; 3˛1grxg1.x; y/; : : : ; ˛l maxf0; 3˛lgrxgl .x; y/

�
;

C D rxh.x; y/;

D D rxg.x; y/;

and E is an l � l diagonal matrix with the diagonal entries

˛1 minf0; 3˛1g; : : : ; ˛l minf0; 3˛lg:
It is not difficult to verify that this matrix is nonsingular if and only if the following
conditions are satisfied:

1. None of the multipliers ˛i vanishes.
2. The set of all active gradient vectors consisting of the gradients rxgi .x; y/ with
gi .x; y/ D 0 together with the gradients rxhj .x; y/; j D 1; : : : ; m, constitute a
linearly independent set of vectors.

3. The matrix V T AV is nonsingular, where the columns of V form a basis of
the orthogonal complement of the linear subspace spanned by the set of active
gradient vectors.

Note that the first requirement already implies that the Kojima mapping is differ-
entiable at the point .x; �; y/, where �i D ˛3i for i D 1; : : : ; l , and �j D ˛j for
j D l C 1; : : : ; m. So nothing is really won in passing from the nondifferentiable
equation (1.10) to the differentiable equation (1.12). The main disadvantage of
the differentiable equation (1.12) is the fact that it does not account for the
inherent nonsmooth structure of the problem. This inherent nonsmoothness is easily
visualized by considering the elementary example

minf�y1x1 � y2x2jx1 � 0; x2 � x1; x
2
1 C x22 � 1g:
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Clearly for positive weights y D .y1; y2/, the solution is given by

x.y/ D
8
<

:

1p
y21Cy22

.y1; y2/ if y2 � y1 > 0,

1p
2
.1; 1/ if y1 � y2 > 0.

Although the solution is unique for every positive weight vector y, the function
x.y/ is not differentiable if y1 D y2. Hence the assumptions of the implicit function
theorem cannot be satisfied at these points independently of the formulation of the
problem as a differentiable equation. However, the latter points are distinguished
by the drastic change of the solution set and thus a local analysis of the function
x.y/ at these points would reveal valuable information about the behavior of the
solution function. It turns out that it is indeed possible to gather information about
the behavior of the solution function at such points if the problem is reformulated
as a nonsmooth equation with the aid of the Kojima mapping. However, such
information can only be obtained at the cost of a more sophisticated analysis
since the classical implicit function theorem will not work. A presentation of the
necessary mathematical background is the main subject of this book.



Chapter 2
Piecewise Affine Functions

2.1 Elements from Polyhedral Theory

We begin this chapter with a review of some results from polyhedral theory,
a subject which provides us with the necessary combinatorial tools for the analysis
of piecewise affine functions. It is way beyond the scope of this section to serve as an
introduction to the beautiful and rich field of polyhedral combinatorics. Instead we
have confined ourselves to the mere presentation of some notions and results which
we need in the subsequent sections of this chapter. We have not included proofs of
results which are well accessible in standard textbooks.

2.1.1 Convex Sets and Convex Cones

Before we introduce polyhedral sets, we present some general notions and results
from convex analysis. For a set S � IRn we define

linS D
(

mX

iD1
�isi jm 2 IN; si 2 S; �i 2 IR

)
;

affS D
(

mX

iD1
�isi jm 2 IN; si 2 S; �i 2 IR;

mX

iD1
�i D 1

)
;

convS D
(

mX

iD1
�isi jm 2 IN; si 2 S; �i 2 IRC;

mX

iD1
�i D 1

)
;

coneS D
(

mX

iD1
�isi jm 2 IN; si 2 S; �i 2 IRC

)
; (2.1)

S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs
in Optimization, DOI 10.1007/978-1-4614-4340-7 2, © Stefan Scholtes 2012
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The sets linS , affS , and convS are called the linear, affine, and convex hull of S,
respectively, while the set coneS is called the cone generated by S. A set S � IRn is
called convex if convS D S . In particular, linS , affS , and coneS are convex sets for
every S � IRn. A set S � IRn is called a convex cone if coneS D S . In particular,
the linear hull of a set S is a convex cone. A convex cone C is called pointed if it
does not contain a nontrivial linear subspace, i.e., if linfxg � C implies x D 0 for
every x 2 IRn. We define the dimension of a convex set S to be the dimension of the
affine subspace affS . A point x 2 S is called a relative interior point of S if there
exists a number " > 0 such that every point y 2 affS with ky�xk < " is contained
in S . The set of all relative interior points of S , denoted by relintS , is called the
relative interior of S .

There are two important set-valued mappings which relate a closed convex set
S � IRn to the dual space of all linear functionals on IRn. The first mapping NS is
defined by

NS.x/ D
� ˚
y 2 IRnjyT x � yT z for every z 2 S�

if x 2 S ,
; otherwise.

(2.2)

It assigns to every point x 2 S the set of all linear functions which achieve their
maximum over S at the point x. The set NS.x/ is called the normal cone of S at
x 2 S . We recall some of its properties:

1. The normal cone of a convex set S at x 2 S is a closed convex cone.
2. The normal cone is a local concept, i.e., if S and QS are convex subsets of IRn and
U is a neighborhood of x 2 IRn such that S\U D QS\U , thenNS.x/ D N QS.x/.

3. If the set S is a closed convex cone S , thenNS.x/ � NS.0/ for every x 2 S and
the relation NNS.0/.0/ D S holds.

The second mapping FS assigns to each linear functional in IRn the set of all
maximizers x 2 S of the linear functional over S , i.e.,

FS.y/ D ˚
x 2 S jyT x � yT z for every z 2 S�

: (2.3)

The set FS.y/ is called the max-face of the closed convex set S corresponding to
the vector y 2 IRn. The max-faces of S have the following properties:

1. Every nonempty max-face FS.y/ is convex, since it is the intersection of S with
the hyperplane fx 2 IRnjyT x D maxz2S yT zg.

2. The nonempty intersection of two max-faces FS.y/ and FS.z/ is again a max-
face of S . In fact, if FS.y/ \ FS.z/ ¤ ;, then FS.y/ \ FS.z/ D FS.y C z/:
If Ox 2 FS.y/\FS.z/ and x 2 S then y> Ox � y>x and z> Ox � z>x and therefore
.y C z/> Ox � .y C z/>x. Hence Ox 2 FS.y C z/. To see the converse, suppose
Ox 2 FS.y C z/ and Ox 62 FS.y/ \ FS.z/. Since FS.y/ \ FS.z/ ¤ ; there exists
Nx 2 S with y> Nx � y> Ox and z> Nx � z> Ox and as Ox 62 FS.y/ \ FS.z/ one of
the two inequalities holds strictly and therefore .y C z/> Nx > .y C z/> Ox. This
contradicts Ox 2 FS.y C z/.



2.1 Elements from Polyhedral Theory 15

3. The inclusion x 2 FS.y/ holds if and only y 2 NS.x/. This is an immediate
consequence of the definition of both mappings.

A subset X of a convex set S is called an extremal set of S if whenever a point
x 2 X is contained in a line segment joining two points v;w 2 S , then both points
are contained in X . If the singleton fxg is an extremal set of a convex set S , then x
is called an extremal point of S . If x ¤ 0 and conefxg is an extremal set of a convex
cone S , then conefxg is called an extremal ray of S . The vector x is called a unit
generator of the extremal ray conefxg if kxk D 1.

The following results are well known from convex analysis.

Proposition 2.1.1. 1. If S � IRn is a compact set, then convS is compact.
2. A convex compact set S � IRn is the convex hull of its extremal points.
3. A closed pointed convex cone is generated by its extremal rays.

2.1.2 Polyhedral Sets and Polyhedral Cones

The decisive property of convex sets is the separation property which states that
for every z 2 IRn which does not belong to the convex set S � IRn there exists a
vector y 2 IRn such that yT z � yT x for every x 2 S , i.e., S is contained in a
halfspace which does not contain x as an interior point. In fact, every closed convex
set S � IRn is the intersection of all halfspaces containing S , i.e., every closed
convex set is the solution set of a possibly infinite system of linear inequalities. To
avoid the difficulties caused by an infinite number of inequalities, one has introduced
the concept of a polyhedron as the nonempty solution set of a finite system of linear
inequalities. Thus a nonempty set P � IRn is called a polyhedron if there exists an
m � n-matrix A and an m-vector b such that P D fx 2 IRnjAx � bg. A compact
polyhedron is called a polytope. The solution set of a homogeneous system of linear
inequalities is called a polyhedral cone. A polyhedral cone is thus representable as

C D fx 2 IRnjAx � 0g; (2.4)

where A is an m � n-matrix. Clearly a polyhedron is a closed convex set,
while a polyhedral cone is a closed convex cone. The following important result
characterizes polyhedral cones.

Theorem 2.1.1 (Farkas–Minkowski–Weyl Theorem). A set C � IRn is a
polyhedral cone if and only if there exists an l � n-matrix B such that

C D ˚
x 2 IRnjx D BT �; � 2 IRlC

�
: (2.5)
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In other words, a convex coneC is polyhedral if and only if it is generated by a finite
set fb1; : : : ; blg � IRn: If C is pointed, then we may use the unit generators of its
extremal rays as the vectors b1; : : : ; bl . The representations (2.4) and (2.5) are called
the primal and dual representation of C , respectively. If x 2 C and C is given in
dual form (2.5), then a vector � 2 IRmC such that x D BT � is called a multiplier
vector corresponding to x.

Applying the Farkas–Minkowski–Weyl Theorem to the set conef.x; 1/jx 2 P g
� IRnC1, one can show that P � IRn is a polytope if and only if it is the convex hull
of a finite point set. In particular a polytope has only a finite number of extremal
points.

Note that the pointwise addition of two nonempty sets A;B � IRn is defined
by A C B D fa C bja 2 A; b 2 Bg: An important result in polyhedral theory is
the decomposability of a polyhedron into the sum of a linear subspace, a pointed
polyhedral cone, and a compact polyhedron.

Theorem 2.1.2 (Decomposition theorem). If P � IRn is a polyhedron, then there
exists a unique linear subspaceL � IRn, a unique pointed polyhedral cone C�L?,
and a compact polyhedron Q � L? such that P D L C C C Q: The set C C Q

necessarily coincides with P \ L?.

If P D fx 2 IRnjAx � bg; then L D fx 2 IRnjAx D 0g. The linear subspace
L is called the lineality space of P , while the cone L C C is called the recession
cone of P . The recession cone of a polyhedron P D fx 2 IRnjAx � bg is the set
L C C D fx 2 IRnjAx � 0g. The polyhedron P is called pointed if its lineality
space vanishes, or, equivalently, if its recession cone is pointed. If P is a cone, then
we may choose Q D f0g in the decomposition. Hence every polyhedral cone can
be uniquely decomposed as the sum of its lineality space and a pointed polyhedral
cone which is contained in the orthogonal complement of the lineality space.

The normal cones of polyhedral cones at the origin are characterized by the
following useful lemma.

Lemma 2.1.1 (Farkas’ Lemma). If C D ˚
x 2 IRnjaTi x � 0; i D 1; : : : ; m

�
, then

the normal cone of C at the origin is given by NC.0/ D conefai ji D 1; : : : ; mg:
In view of the Farkas–Minkowski–Weyl theorem, the latter lemma shows that the
normal cone NC.0/ of a polyhedral cone C is a polyhedral cone as well. It can be
used to describe the normal cone of a polyhedron.

Proposition 2.1.2. If P D ˚
x 2 IRnjaTi x � bi ; i D 1; : : : ; m

�
and x 2 P; then

the normal cone ofP at x is given byNP .x/ D conefai ji 2 f1; : : : ; mg; aTi x D bi g:
A proof of the latter proposition is easily carried out with the aid of Farkas’ Lemma
using the fact that the normal cone is a local concept and that the polyhedron
P coincides in a neighborhood of x with the polyhedron P.x/ D fxg C ˚

y 2
IRnjaTi y � 0; i 2 fj jaTj x D bi g

�
:
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2.1.3 The Face Lattice of a Polyhedron

The collection of all max-faces of a polyhedron P together with the empty set is
called the face lattice of P , its elements are called the faces of P . The term face
lattice is justified by the property that the nonempty intersection of two max-faces of
P is again a max-face of P and thus there is a unique minimal max-face containing
two fixed max-faces of P . A nonempty face of P which does not coincide with
P is called a proper face. The extremal points of a polyhedron P are the faces
of dimension zero, while the extremal rays of a polyhedral cone are the faces of
dimension 1.

To represent the nonempty faces of a polyhedron P D fx 2 IRnjAx � bg, we
define for an m � n-matrix A with row vectors a1; : : : ; am and a vector b 2 IRm the
collection of index sets

I .A; b/ D
n
I � f1; : : : ; mgjthere exists a vector x 2 IRn with

aTi x D bi ; i 2 I; aTj x < bj ; j 2 f1; : : : ; mgnI
o
: (2.6)

and for every index set I � f1; : : : ; mg the polyhedron

FI D
n
x 2 IRnjaTi x D bi ; i 2 I; aTj x � bj ; j 2 f1; : : : ; mgnI

o
: (2.7)

Proposition 2.1.3. If P D fx 2 IRnjAx � bg; then

1. A subset F � P is a max-face of P if and only if there exists an index set
I 2 I .A; b/ such that F D FI ,

2. Any two faces FI ; FJ corresponding to distinct index sets I; J 2 I .A; b/ are
distinct,

3. If I 2 I .A; b/; then the relative interior of the face FI is the set GI D fx 2
IRnjaTi x D bi ; i 2 I; aTj x < bj ; j 2 f1; : : : ; mgnI g,

4. I \ J 2 I .A; b/ for any two index sets I; J 2 I .A; b/.

Proof. 1. The first part is an elementary exercise. In fact, if, on the one hand, I 2
I .A; b/, then the set FI coincides with the max-face FP .

P
i2I ai /. If, on the

other hand,FP .y/ is a max-face ofP , then FP .y/ D FI ;where I is the maximal
subset of f1; : : : ; mg with the property that aTi x D bi for every i 2 I and every
x 2 FP .y/.

2. Let I; J 2 I .A; b/ be distinct index sets. Interchanging the role of I and J if
necessary, we may assume without loss of generality that there exists an index
i 2 I with i 62 J . Since J 2 I .A; b/, there exists a vector x 2 FJ with
aTi x < bi . Thus x 62 FI which shows that FI ¤ FJ .
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3. Recall that x 2 P is a relative interior point of P if there exists a positive number
" such that y 2 P whenever y 2 affP and ky�xk < ". One readily verifies that

affFI D ˚
x 2 IRnjaTi x D bi ; i 2 I�

(2.8)

for every I 2 I .A; b/. If, on the one hand, x 2 FI nGI , then aTj x D bj for
some j 62 I . Since GI ¤ ;; we may choose a vector y 2 GI . In particular,
aTj y � bj < 0. Defining z.t/ D xC t.y � x/, we first conclude that z.t/ 2 affFI
for every t 2 IR. However, if t < 0, then aTj z D bj C t.aTj y � bj / > bj
and thus z.t/ 62 P . This shows that x is not a relative interior point of FI . The
reverse statement that every point of GI is a relative interior point of FI is a
trivial consequence of (2.8).

4. If v;w 2 IRn are vectors satisfying

aTi v D bi ; i 2 I; aTk v < bk; k 2 f1; : : : ; mgnI;

aTj w D bj ; j 2 J; aTl w < bl ; l 2 f1; : : : ; mgnJ;
then the vector vCw

2
satisfies

aTi
v C w

2
D bi ; i 2 I \ J; aTk

v C w

2
< bk; k 2 f1; : : : ; mgn.I \ J /I

hence I \ J 2 I .A; b/. �

Since FI � FJ if and only if I � J , statement 1 of the latter proposition
shows that the face lattice of P D fx 2 IRnjAx � bg and the lattice I .A; b/ are
isomorphic if the ordering relation is suitably defined.

The following result is concerned with the faces of the sum of two polyhedra.

Lemma 2.1.2. IfQ;R � IRn are polyhedra with P D QCR, then every nonempty
face of P is uniquely decomposable as the sum of a face of Q and a face of R.

Proof. The proof is a consequence of the fact that

FPCQ.y/ D FP .y/C FQ.y/:

To see this, note that

yT x D max
p2P

yT p

D max
q2Q
r2R

yT q C yT r

D max
q2Q

yT q C max
r2R

yT r;
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and hence if x 2 P is represented as x D v C w for some v 2 Q; w 2 R, then x is a
maximizer of the linear function yT p over the polyhedron P if and only if v and w
are maximizers of the same function over the polyhedraQ andR, respectively. This
shows that the face of P corresponding to the maximizers of yT p is the sum of the
faces of Q and R corresponding to the maximizers of the same linear function. �

As an immediate consequence of the decomposition theorem and the latter
lemma, we obtain the following corollary.

Corollary 2.1.1. The lineality space of a face of a polyhedron coincides with the
lineality space of the polyhedron.

2.1.4 Comments and References

For comprehensive treatments of polyhedral theory we refer the interested reader to
Grünbaum’s monograph [22] and to the recent book of Ziegler [82]. A comprised
account with an emphasis on linear programming applications can be found in
Schrijver’s text [73]. The standard reference for the more general results from
convex analysis is Rockafellar’s monograph [67].

The statements of Proposition 2.1.1 are stated as Theorem 17.2 and Theorem 18.5
in [67], while the Farkas–Minkowski–Weyl Theorem, the Decomposition Theorem,
and Farkas’ Lemma are proved as Corollaries 7.1a, 7.1b, and 7.1d, respectively,
in [73].

2.2 Basic Notions and Properties

We proceed by setting the basic notions for the analysis of piecewise affine function.
We start with a precise definition. A continuous function f :IRn! IRm is called
piecewise affine if there exists a finite set of affine functions fi .x/ D Aix C bi ;

i D 1; : : : ; k; such that the inclusion f .x/ 2 ff1.x/; : : : ; fk.x/g holds for every
x 2 IRn. The affine functions fi .x/ D Aix C bi ; i D 1; : : : ; k; are called selection
functions, the set of pairs .Ai ; bi /; i D 1; : : : ; k; is called a collection of matrix-
vector pairs corresponding to f . The function f is called piecewise linear if there
exists a corresponding set of linear selection functions.

Similar as in the affine case, the superposition .f ı g/.x/ D f .g.x// of two
piecewise affine functionsf :IRn! IRm and g W IRk ! IRn is again piecewise affine.
In fact, the set of all possible superpositions of selection functions corresponding to
f and g, respectively, forms a collection of selection functions for f ıg. It is easily
checked that a continuous function f :IRn! IRm is piecewise affine if and only if
all real-valued coordinate functions f1; : : : ; fm :IRn! IR are piecewise affine. The
following result provides a useful characterization of piecewise linear functions.
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Proposition 2.2.1. A piecewise affine function f is piecewise linear if and only
if it is positively homogeneous, i.e., f .˛x/ D f̨ .x/, for every nonnegative real
number ˛.

Proof. Let f :IRn! IRm be a positively homogeneous piecewise affine function
with matrix-vector pairs .Ai ; bi /; i D 1; : : : ; k: If k D 1, then the claim is trivial.
So suppose that k � 2 and that bk ¤ 0: We will show that for every x 2 IRn with
f .x/ D Akx C bk there exists an index i ¤ k such that f .x/ D Aix C bi . In fact,
since f is positively homogeneous, the identity f .x/ D Akx C bk implies that

f .˛x/ D f̨ .x/ D ˛Akx C ˛bk ¤ Ak˛x C bk

for every positive number ˛ ¤ 1. Hence f .˛x/ D Ak˛x C bk if and only if
˛ D 1 and thus the continuity of f shows that there exists another matrix–vector
pair .Ai ; bi / such that f .x/ D AixCbi . Hence the matrix-vector pairs .Ai ; bi /; i D
1; : : : ; k�1, form a collection of matrix–vector pair corresponding to f and thus an
induction argument completes the proof that a positively homogeneous piecewise
affine function is piecewise linear. �

It is a matter of plane geometry to check that a real-valued piecewise linear
function � W IR ! IR of a single variable is positively homogeneous. To prove the
general case, suppose f :IRn! IRm is piecewise linear with corresponding matrices
A1; : : : ; Ak: Fix a vector x 2 IRn and consider the function �.t/ D f .tx/. If Aij
denotes the j th row of the matrix Ai , then the component functions �j W IR ! IR are
piecewise linear with selection functions A1j tx; : : : ; A

k
j tx. Hence the component

functions �j W IR ! IR are piecewise linear and thus the function � is positively
homogeneous, which shows that f .˛x/ D �.˛/ D ˛�.1/ D f̨ .x/ for every
˛ � 0. �

2.2.1 Representations of Piecewise Affine Functions

Typical examples of real-valued piecewise affine functions are the pointwise
maxima or minima of a finite set of affine functions, or, more generally, functions
which are built up by superpositions of finitely many maximum or minimum
functions. It is rather surprising that every real-valued piecewise affine function is
in fact a function of this type.

Proposition 2.2.2. If f :IRn! IR is a piecewise affine with affine selection func-
tions f1.x/ D aT1 x C b1; : : : ; fk.x/ D aTk x C bk; then there exists a finite number
of index sets M1; : : : ;Ml � f1; : : : ; kg such that

f .x/ D max
1�i�l

min
j2Mi

aTi x C bi :
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Proof. In the first part of the proof we construct a max–min function of the required
form which is then shown to coincide with f . Removing redundant selection
functions, if necessary, we may assume without loss of generality that the selection
functions are mutually distinct, i.e.,

.ai ; bi / ¤ .aj ; bj / (2.9)

for every i ¤ j . For a permutations � of the numbers f1; : : : ; kg we define the set

M.�/ D
n
x 2 IRnjaT�.1/x C b�.1/ � � � � � aT�.k/x C b�.k/

o
:

Note that M.�/ is the set of solutions of the inequalities

.a�.1/ � a�.2//T x � �b�.1/ C b�.2/

.a�.2/ � a�.3//T x � �b�.2/ C b�.3/

:::

.a�.k�1/ � a�.k//T x � �b�.k�1/ C b�.k/

and thus either empty or a convex polyhedron. Let ˘ be the set of all permutations
� of the numbers f1; : : : ; kg with the property intM.�/ ¤ ;. Note that

[

�2˘
M.�/ D IRn; (2.10)

since by definition the union of all polyhedra M.�/; where � is a permutation
of the numbers f1; : : : ; kg; covers IRn and the removal of polyhedra with empty
interior does not affect this covering property. In view of (2.9) and part 3 of
Proposition 2.1.3, the interior of the polyhedron M.�/ is given by the solution set
of the strict inequalities, i.e.,

intM.�/ D
n
x 2 IRnjaT�.1/x C b�.1/ < � � � < aT�.k/x C b�.k/

o
: (2.11)

Since f is continuous and the selection functions are mutually distinct, we can thus
find for every � 2 ˘ a unique index i� 2 f1; : : : ; kg such that

f .x/ D aT�.i� /x C b�.i� /

for every x 2 M.�/. With the aid of the indices i� , we define the max–min function

g.x/ D max
�2˘ min

i2fi� ;:::;kg
aT�.i/x C b�.i/; (2.12)
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which is a function of the form required by the assertion. In order to prove that the
functions f and g coincide, we choose an arbitrary vector x0 2 IRn. Equation (2.10)
shows that there exists a permutation O� 2 ˘ with x0 2 M. O�/. The definitions of
the set M. O�/ and the index i O� yield

f .x0/ D aTO�.i
O� /
x0 C b O�.i

O� /
D min

i2fi
O� ;:::;kg

aTO�.i/x0 C b O�.i/

and hence

f .x0/ � max
�2˘ min

i2fi� ;:::;kg
aT�.i/x0 C b�.i/ D g.x0/: (2.13)

�
In order to prove the reverse inequality, we show that for every � 2 ˘ the

inequality

f .x0/ � min
i2fi� ;:::;kg

aT�.i/x0 C b�.i/ (2.14)

holds. Suppose the contrary, i.e.,

f .x0/ < min
i2fi� ;:::;kg

aT�.i/x0 C b�.i/

for some � 2 ˘ . To simplify the exposition, we renumber the selection functions
in such a way that � is the identity, i.e., �.i/ D i for i D 1; : : : ; k and hence

f .x0/ < min
i2fi� ;:::;kg

aTi x0 C bi : (2.15)

Since � 2 ˘; we can find a vector

y0 2 intM.�/ D ˚
x 2 IRnjaT1 x C b1 < � � � < aTk x C bk

�
: (2.16)

Since f is piecewise affine, the image of the line segment Œx0; y0� is a polygonal
path. In fact, there exists a finite number of indices ij ; j D 0; : : : ; l , and
corresponding vectors xj 2 Œx0; y0� such that

f .x/ D aTij x C bij for every j 2 f0; : : : ; lg and every x 2 Œxj ; xjC1�, (2.17)

where xlC1 D y0. Next, we prove that for every j 2 f0; : : : ; lg the inequalities

aTij xj C bij < a
T
i xj C bi ; i 2 fi�; : : : ; kg;

aTij y0 C bij < a
T
i y0 C bi ; i 2 fi�; : : : ; kg (2.18)

hold. This is done by induction over j . For j D 0, the first set of inequalities is
an immediate consequence of (2.15). In fact, (2.15) implies that i0 62 fi�; : : : ; kg,
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which yields the second set of inequalities in view of (2.16). Now we assume that
the inequalities (2.18) hold for the index j , and prove their validity for the index
j C 1. One readily deduces from the validity of the inequalities for the index j that

aTij x C bij < a
T
i x C bi (2.19)

for every x 2 Œxj ; y0� and every i 2 fi�; : : : ; kg. Since in view of (2.17) the identity

aTijC1
xjC1 C bijC1

D aTij xjC1 C bij ; (2.20)

holds, the inequalities (2.19) applied to x D xjC1 yield the first set of inequalities
in (2.18) for the index j C 1. Furthermore, (2.19) and (2.20) show that ijC1 62
fi�; : : : ; kg and thus (2.16) yields the validity of the second set of inequalities.
Setting j D l and recalling that xjC1 D y0; we may apply (2.17) and the fact
that y0 2 M.�/ to obtain

f .y0/ D aTil y0 C bil < a
T
i�
y0 C bi� D f .y0/;

which is a contradiction. Hence (2.15) does not hold and thus (2.14) holds for every
� 2 ˘ , which completes the proof of the proposition. �

The latter representation result shows that the component functions of every
piecewise affine function f :IRn! IRm can be represented as max–min functions.
Such a representation is called a max–min representation of f .

While the max–min representation has many theoretical benefits, a severe
drawback of the max–min form constructed in the latter proof is the large number
of minimum functions appearing in it. Of course the max–min representation of
a piecewise affine function is generally not unique. However, the construction of
a handy max–min form is often very difficult, if at all possible. The reader may
for instance try to construct a tractable max–min form for the Euclidean projection
onto a polyhedron (cf. Sect. 2.4). In practice, a piecewise affine function is often
specified by providing a finite collection ˙ of subsets of IRn on each of which the
function coincides with an affine function together with the corresponding selection
functions. Suppose a set of selection functions Aix C bi ; i D 1; : : : ; k; is given,
and consider the sets 	i D fx 2 IRnjf .x/ D Aix C big; i D 1; : : : ; k: Since
f is continuous, the sets 	i are closed and since f is piecewise affine, the union
of all these sets covers IRn. This covering property is not affected if we remove
from the collection all sets 	i with empty interior. Moreover, if the interiors of
two sets 	i and 	j have a point in common, then the affine functions Aix C bi

and Aj x C bj coincide. Hence, if we require the selection functions to be mutually
distinct, the collection˙ of all sets 	i with nonempty interior is a so-called partition
of IRn, i.e., every 	 2 ˙ is a closed subset of IRn with nonempty interior, no
two distinct sets 	; Q	 2 ˙ have a common interior point, and the union of all
sets 	 2 ˙ covers IRn. We say that a partition ˙ corresponds to the piecewise
affine function f if f coincides with an affine function on every set 	 2 ˙ .
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The collection˙ just constructed is thus a partition of IRn corresponding to f . Note
that the resulting collection of selection functions is the smallest possible and that it
is uniquely determined. We will call this collection and the corresponding partition
the minimal collection of selection functions and the minimal partition, respectively,
corresponding to f . Although minimal in number, the sets in the minimal partition
lack some desirable properties, like convexity or even connectedness. For some
purposes, however, such additional structural properties of the partition are very
useful. If P � IRn is a convex polyhedron and ˙ is a finite collection of convex
polyhedra in IRn, then ˙ is called a polyhedral subdivision of P if

1. All polyhedra in ˙ are subsets of P
2. The dimension of the polyhedra in ˙ coincides with the dimension of P
3. The union of all polyhedra in ˙ covers P
4. The intersection of any two polyhedra in ˙ is either empty or a common proper

face of both polyhedra

The polyhedral subdivision ˙ of P is called pointed if the lineality space of
every polyhedron vanishes. If P is a polyhedral cone and all polyhedra in ˙ are
polyhedral cones, then ˙ is called a conical subdivision of P . The collection of all
j -dimensional faces of the polyhedra 	 2 ˙ , denoted by˙j ; is called the j-skeleton
of ˙ . For a collection ˙ of subsets of IRn, we denote by j˙ j the union of all sets
in ˙ . The set j˙ j is called the carrier of ˙ .

It is not clear a priori, whether every piecewise affine function can be endowed
with a corresponding polyhedral subdivision of IRn. The following proposition
shows that this is indeed the case.

Proposition 2.2.3. Every piecewise affine (piecewise linear) function f :IRn! IRm

admits a corresponding polyhedral (conical) subdivision of IRn.

Proof. Let f D .f1; : : : ; fm/; where the functions fj are the real-valued com-
ponent functions of f . Suppose the affine selection functions of the component
function fj are the functions .vji /

T x C ˛
j
i ; i D 1; : : : ; kj , where we assume

that .vji ; ˛
j
i / ¤ .vji 0 ; ˛

j

i 0/ for every i ¤ i 0. For a vector � D .�1; : : : ; �m/ of
permutations �i of the numbers f1; : : : ; kj g we define the set

M.�/ D
n
x 2 IRnj.vj�j .1//T x C ˛

j

�j .1/
� � � � � .vj�j .kj //

T xC˛j�j .kj /; 1 � j � m
o
:

We claim that the collection of all sets M.�/ which have nonempty interior forms
a polyhedral subdivision of IRn corresponding to the piecewise affine function f .
Clearly every set M.�/ is a polyhedron since it can be easily transformed into the
solution set of a finite system of linear inequalities. Since the selection functions of
the components are mutually distinct, the interior of a polyhedronM.�/ is given by

intM.�/ D
n
x 2 IRnj.vj�j .1//T x C ˛

j

�j .1/
< � � � < .vj�j .kj //T x C ˛

j

�j .kj /
; 1 � j � m

o
:
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Hence every component function coincides on intM.�/ with a single selection
function and thus f coincides with an affine function on M.�/ if the latter set
has a nonempty interior. It remains to prove that the collection of all polyhedra with
nonempty interior constitutes a polyhedral subdivision of IRn. Note first that the
union of all sets M.�/ covers IRn and that this covering property is not affected if
the polyhedra with empty interior are removed. It thus remains to prove that any two
distinct sets M.�/ and M. Q�/ with nonempty intersection share a common proper
face. It follows immediately from the definition of M.�/ that the latter set can be
represented by

M.�/ D
n
x 2 IRnjsi;i 0;j .�/.vji � vji 0/

T x � si;i 0;j .�/.�˛ji C ˛
j

i 0/;

1 � j � m; 1 � i; i 0 � kj ; i ¤ i 0
o
:

where

si;i 0;j .�/ D
(
1 if ��1

j .i/ < ��1
j .i 0/,

�1 if ��1
j .i/ > ��1

j .i 0/.

Note that an inequality representation of M.�/ \ M. Q�/ is obtained from the
representation ofM.�/ by turning inequalities into equalities whenever the relation
si;i 0;j .�/ D �si;i 0;j . Q�/ holds. Hence M.�/ \M. Q�/ is a face of M.�/. Moreover,
since for any two distinct permutation vectors � and Q� there exists at least one
index triple .i; i 0; j / with si;i 0;j .�/ D �si;i 0;j . Q�/, and since the interior of M.�/ is
the solution set of the strict inequality system, we conclude that the face is proper,
provided that intM.�/ ¤ ;. �

If f is piecewise linear, then the we may choose ˛ji D 0 for every j D 1; : : : ; m

and every i D 1; : : : ; kj and thus the sets M.�/ are polyhedral cones. �
The next property of polyhedral subdivisions is a consequence of the decompo-

sition theorem for polyhedra.

Proposition 2.2.4. If ˙ is a polyhedral subdivision of a polyhedron P � IRn, then
all polyhedra 	 2 ˙ have the same lineality space.

Proof. Consider first two polyhedra 	; Q	 2 ˙ with nonempty intersection and
suppose 	 D LCQ; Q	 D QLC QQ;whereL and QL are the lineality spaces of 	 and Q	 ,
respectively, andQ and QQ are pointed polyhedra. Since the partition is a polyhedral
subdivision, 	 and Q	 intersect in a common face F D LC G D QLC QG; where G
and QG are faces ofQ and QQ, respectively. As stated in Corollary 2.1.1, the lineality
space of a polyhedron coincides with the lineality space of its faces; hence G and
QG are pointed polyhedra. The uniqueness of the lineality space of a polyhedron thus

shows that L and QL coincide, i.e., if two polyhedra intersect in a common proper
face, then their lineality spaces coincide. Suppose the polyhedral subdivision ˙
is divided into two subsets, the first one containing polyhedra with lineality space
L and the other one containing polyhedra with lineality spaces different from L.
Then the above argument shows that any two polyhedra from different subsets have
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empty intersection. Since the union of both subsets is closed, the polyhedron P is
the union of two closed sets with nonempty intersection. However, this contradicts
the convexity of P unless one of the sets is empty. Hence the lineality spaces of all
polyhedra in the subdivision coincide. �

For short, we call the common lineality space of the polyhedra of a polyhedral
subdivision˙ the lineality space of ˙ .

It is sometimes helpful to work with pointed subdivisions. The final result of this
section shows that every subdivision can be subdivided into a pointed subdivision.

Proposition 2.2.5. If ˙ is a polyhedral (conical) subdivision of polyhedron
(polyhedral cone) P � IRn, then there exists a pointed polyhedral (conical)
subdivision Q̇ of P such that every polyhedron Q	 2 Q̇ is contained in some
polyhedron 	 2 ˙ .

Proof. Due to the decomposition theorem and Proposition 2.2.4, every polyhedron
	 2 ˙ can be decomposed as 	 D L C O	 , where L is the lineality space of 	
and O	 D 	 \ L?. Since any two polyhedra 	i ; 	j 2 ˙ intersect in a common
face, so do the polyhedra O	i and O	j . Next partition the subspace L into pointed
cones such that any two cones intersect in a common proper face. Such a partition
certainly exists since the collection of orthants in IRdimL can be mapped onto L by
means of a linear function mapping IRdimL one-to-one onto L. Let c1; : : : ; ck be
the cones which partition the linear subspace L and let Q̇ be the collection of all
polyhedra of the form 	i \L? C cj ; where 	i 2 ˙ and j 2 f1; : : : ; kg. Clearly the
lineality spaces of the polyhedra in Q̇ vanish. Using the fact that O	i D 	i \L? and
cj are contained in mutually orthogonal subspaces, it is not difficult to check that
two polyhedra O	i C cj and O	p C cq have nonempty intersection if and only if the
polyhedra O	i and O	p have nonempty intersection and that in this case

. O	i C cj / \ . O	p C cq/ D O	i \ O	p C cj \ cq:
Moreover, since O	i \ O	p and cj \ cq are faces of O	i and cj , there exist two vectors
l 2 L and l 0 2 L? with F O	i .l 0/ D O	i \ O	p and Fcj .l/ D cj \ cq . Using the mutual
orthogonality of L and L?, the definition of the max-faces yields

F. O	iCcj /.l C l 0/ D O	i \ O	p C cj \ cq:

Hence Q̇ is a pointed polyhedral subdivision of P . It should also be clear that the
collection Q̇ is a conical subdivision if ˙ is conical. �

2.2.2 Local Approximations of Piecewise Affine Functions

Many problems that we encounter in the sequel are local in nature, i.e., they are
concerned only with the behavior of a function in a neighborhood of a given point.
For this purpose it is convenient to have a local approximation concept at hand.
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Suppose f :IRn! IRm is a piecewise affine function with corresponding
polyhedral subdivision˙ and let x0 2 IRn be some fixed point. Define

˙.x0/ D f	 2 ˙ jx0 2 	g; (2.21)

Obviously x0 2 intj˙.x0/j and hence there exists an open convex neighborhood U
of zero such fx0gCU � j˙.x0/j. In particular, we can find for every vector v 2 IRn a
real number ˛0 > 0 such that ˛0v 2 U . Hence there exists a polyhedron 	 2 ˙.x0/
such that x0C˛0v 2 	 and thus the convexity of 	 implies that x0C˛v 2 	 for every
˛ 2 Œ0; ˛0�: Since f coincides on 	 with an affine function, say f .x/ D AxC b for
every x 2 	 , we thus obtain

lim
˛!0
˛>0

f .x0 C ˛v/ � f .x0/

˛
D Av:

Hence, the function

f 0.x0I v/ D lim
˛!0
˛>0

f .x0 C ˛v/ � f .x0/
˛

is well defined and positively homogeneous. In fact, it coincides on U with the
function

Of .v/ D f .x0 C v/� f .x0/ (2.22)

which is continuous. Since a positively homogeneous function is continuous
whenever it is continuous in a neighborhood of the origin, the function f 0.x0I :/
is continuous. We have seen above that f 0.x0I v/ achieves only values Aiv, where
Ai is a matrix corresponding to an affine function Aix C bi which coincides with
f on some polyhedron 	 2 ˙ with x0 2 	 ; whence f 0.x0I :/ is piecewise linear.
The function f 0.x0I :/ is called the B-derivative of f at x0. In view of (2.22), the
B-derivative contains all local information about the piecewise affine function f
since the values f .x0/Cf 0.x0I x�x0/ and f .x/ coincide in a neighborhood of x0.

A conical subdivision of IRn corresponding to f 0.x0I :/ is given by the collection

˙ 0.x0/ D fcone.	 � fx0g/j	 2 ˙.x0/g: (2.23)

The latter collection of polyhedral cones is called the localization of ˙ at x0. The
subdivision property is easily verified using the fact that a subset F 0 � IRn is a face
of cone.	 � fx0g/ if and only if F 0 D cone.F � fx0g/, where F is a face of 	
with x0 2 F . Moreover, one easily checks that the dimension of the lineality space
of ˙ 0.x0/ is p if x0 is contained in the relative interior of a p-dimensional face of
some polyhedron 	 2 ˙ .

We comprise the above observations in the following proposition.

Proposition 2.2.6. Let f :IRn! IRm be a piecewise affine function, ˙ be a corre-
sponding polyhedral subdivision of IRn, and let x0 2 IRn.
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1. The collection˙ 0.x0/ is a conical subdivision of IRn. If x0 2 ˙pn˙p�1, then the
dimension of the lineality space of ˙ 0.x0/ is p.

2. The B-derivative f 0.x0I :/ is a piecewise linear function with corresponding
conical subdivision˙ 0.x0/.

3. If f coincides with the affine function Ax C b on the polyhedron 	 2 ˙.x0/;

then f 0.x0I v/ D Av for every v 2 cone.	 � fx0g/.
4. The identity f .x/ D f .x0/C f 0.x0I x � x0/ holds for every x 2 j˙.x0/j.

2.2.3 Lipschitz Continuity of Piecewise Affine Functions

An important property of piecewise affine functions is their Lipschitz continuity.
Recall that a function f :IRn! IRm is called Lipschitz continuous, if there exists a
constant L such that

kf .x/ � f .y/k � Lkx � yk;
for every x; y 2 IRn. A suitable constant L is called a Lipschitz constant of the
function f . In the case of a linear function, the smallest Lipschitz constant serves
as a norm, the so-called operator norm, i.e., if A is an m � n-matrix, then

jjjAjjj D max
x¤y

kAx � Ayk
kx � yk D max

z¤0
kAzk
kzk :

The number jjjAjjj is also a Lipschitz constant for the affine function Ax C b. The
piecewise affine functions inherit the Lipschitz property from the affine functions.

Proposition 2.2.7. Every piecewise affine function f :IRn! IRm is Lipschitz
continuous. If .A1; b1/; : : : ; .Ak; bk/; is a collection of matrix-vector pairs corre-
sponding to f , then maxfjjjA1jjj; : : : ; jjjAkjjjg is a Lipschitz constant for f .

Proof. Let˙ be a polyhedral subdivision of IRn corresponding to f , let x; y 2 IRn,
and let Œx; y� be the line segment joining x and y. Since the nonempty intersection
of a line segment with a polyhedron is either a singleton or again a line segment,
there exist numbers 0 D ˛0 � ˛1 � � � � � ˛m D 1 such that each line
segment Œx C ˛i .x � y/; x C ˛iC1.x � y/�; i D 0; : : : ; m � 1; is contained in
some fixed polyhedron 	i . Since f coincides on 	i with an affine function, say
f .x/ D Aix C bi for every x 2 	i , we conclude

kf .x/ � f .y/k �
m�1X

iD0
kf .x C ˛i .x � y// � f .x C ˛iC1.x � y/k

D
m�1X

iD0
.˛iC1 � ˛i /kAi .x � y/k
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�
m�1X

iD0
.˛iC1 � ˛i /jjjAi jjj.kx � yk/

�
�

max
1�i�m�1 jjjAi jjj

�
kx � yk:

�

Similarly as in the linear case, the smallest Lipschitz constant of a piecewise
linear function may serve as a norm on the linear space of piecewise linear functions.

2.2.4 Comments and References

Piecewise affine functions are usually studied within the framework of piecewise
linear topology as simplicial or cellular maps (cf. e.g. [26, 68]). In fact, in the
literature piecewise affine mappings are only defined with respect to a corresponding
polyhedral subdivision (cf., e.g., [16,20,30,33,59,70]). However, for our purposes,
the definition presented here is best suited. In particular, there is no problem to define
the superposition of two piecewise affine mappings. In view of Proposition 2.2.3
(cf. [72]) our definition of piecewise affine functions is equivalent to the definitions
given in the literature.

A different proof of the max–min representation result of Proposition 2.2.2 can be
found in [3]. The latter article contains also a uniqueness condition for the max–min
form given in Proposition 2.2.2. The results of Propositions 2.2.4 and 2.2.6 can
be found in the article [16] of Eaves and Rothblum. The Lipschitz continuity of
piecewise affine functions (cf. Proposition 2.2.7) is proved in the paper [20] of
Fujisawa and Kuh.

Some authors have extended the definition of piecewise affine functions by
replacing the finiteness of the number of selection functions by a local finiteness
condition (cf. e.g., [33]). We do not treat this case since the piecewise affine
functions appearing in applications are almost always built up by a finite number
of selection functions.

2.3 Piecewise Affine Homeomorphisms

After the introduction of the basic notions, we proceed to the main topic of this
chapter which is the study of the homeomorphism problem for piecewise affine
functions. We begin with some definitions. If X � IRn; Y � IRm, and f WX ! Y

is a continuous function on X , then f is called a homeomorphism if for every
y 2 Y there exists a unique solution x D f �1.y/ to the equation f .x/ D y

and the inverse function f �1 W Y ! X is continuous. In this case, we say that f
maps X homeomorphically onto Y . The function f W X ! Y is called a local
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homeomorphism at a point x 2 X if there exist neighborhoods U of x and V of
f .x/ such that f maps U \ X homeomorphically onto V \ Y . If f is a local
homeomorphism at every point x 2 X , then f is called a local homeomorphism.

In the sequel we will develop conditions which ensure that a piecewise affine
function f :IRn! IRn is a homeomorphism. By definition, a homeomorphism
f :IRn! IRn is characterized by the following three features:

Injectivity: Every image vector y 2 IRn has at most one preimage x 2 IRn.
Surjectivity: Every image vector y 2 IRn has at least one preimage x 2 IRn.
Openness: The image of any open subset of IRn is an open subset of IRn.

Our restriction to functions mapping IRn into a space of the same dimension is
necessary in view of Brouwer’s theorem on the invariance of dimension which
implies that there is no homeomorphism mapping IRn into IRm unless n D m.
However, in the case of a piecewise affine function it is not even necessary to appeal
to the latter theorem. In fact, if f :IRn! IRm is piecewise affine and Aix C bi

is an affine selection function from the minimal collection of selection functions
corresponding to f , then the set 	i D fx 2 IRnjf .x/ D Aix C bi g has
nonempty interior. If f is a homeomorphism, then the interior of 	i is mapped
homeomorphically onto f .int	i / which implies that the affine function Aix C bi

maps an open set homeomorphically onto an open set. Elementary linear algebra
thus shows that n D m.

An important property of affine homeomorphisms is the fact that their inverse
functions are affine as well. This can readily be generalized to piecewise affine
functions.

Proposition 2.3.1. A piecewise affine homeomorphism has a piecewise affine
inverse function.

Proof. We have already argued above that every affine function Aix C bi in
the minimal collection of selection functions corresponding to a piecewise affine
homeomorphism f is itself a homeomorphism, i.e., the matrix Ai is nonsingular.
So if f .x/ D Aix C bi D y, then x D .Ai /�1y C .Ai /�1.�bi/: This shows that
for every y in the image space there exists an affine function of the above type such
that f �1.y/ coincides with the value of this affine function at y. The result thus
follows from the fact that the inverse function of a homeomorphism is by definition
a continuous functions. �

In this section we will be mainly concerned with the problem, how to decide
whether a given piecewise affine function is a homeomorphism or not. We try to
keep our exposition as close as possible to the well-known special case of affine
function. In fact, most of the following results are generalizations of properties of
affine homeomorphism.
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2.3.1 Coherently Oriented Piecewise Affine Functions

A particularly nice property of an affine function f :IRn! IRn is the fact that any
one of the characteristic features surjectivity, injectivity, or openness implies that f
is a homeomorphism. Unfortunately, this property is not inherited by the class of
piecewise affine functions. In fact, we will show in this section that in the piecewise
affine case injectivity implies openness which again implies surjectivity, but that
none of the reverse implications hold. Hence injectivity is the key property of a
piecewise affine homeomorphism. The fact that injectivity implies openness may
be deduced from the open mapping theorem which states that a continuous injective
function which maps an open subset of IRn into IRn is open. In the case of a piecewise
affine function, the latter result will be a side product of the following investigations.

We start with a study of injective piecewise affine functions. Our first observation
is the fact that an injective piecewise affine function admits a collection of matrix-
vector pairs, the matrices of which are nonsingular.

Proposition 2.3.2. All matrices in the minimal collection of matrix-vector pairs
corresponding to an injective piecewise affine function f :IRn! IRn are nonsingular.

Proof. If .A1; b1/; : : : ; .Ak; bk/ is the minimal collection of matrix-vector pairs
corresponding to f , then the sets 	i D fx 2 IRnjf .x/ D Aix C big have
nonempty interior. If Aiv D 0 for some nonvanishing vector v 2 IRn and some
index i 2 f1; : : : ; kg, then every line fx0 C ˛vj˛ 2 IRg will be mapped by the
affine function Aix C bi onto the point Aix0 C bi . Choosing x0 to be an interior
point of 	i , we thus obtain f .x0 C ˛v/ D f .x0/ for every sufficiently small ˛.
Hence the equation f .x/ D f .x0/ has more than one solution, which contradicts the
injectivity of f . Thus Aiv D 0 implies v D 0 which shows that Ai is nonsingular.

�

The following two-dimensional example demonstrates that the nonsingularity of
the matrices is not sufficient for a piecewise affine function to be injective:

f .x; y/ D
(
.x; y/ if .x; y/ 2 	1 D f.x; y/jx � 0g
.�x; y/ if .x; y/ 2 	2 D f.x; y/jx � 0g

What is the characteristic property that destroys injectivity in this case? Note that
the collection f	1; 	2g is a polyhedral subdivision of IR2 corresponding to f and that
L D f.x; y/ 2 IR2jx D 0g is the common face of both polyhedra in the partition.
The subspace L divides IR2 into two halfspaces, each halfspace containing one of
the polyhedra. Since the matrices corresponding to both linear selection functions
are nonsingular, the images f .	1/ and f .	2/ of the polyhedra 	1 and 	2 are two-
dimensional polyhedra and the image of L is a common face of both polyhedra.
The linear subspace f .L/ again divides the image space into two halfspaces. The
injectivity is violated because the polyhedra f .	1/ and f .	2/ are contained in the
same halfspace in the image space, while the polyhedra 	1 and 	2 are contained
in different halfspaces in the preimage space. The following result shows that this
situation typically destroys injectivity.



32 2 Piecewise Affine Functions

Proposition 2.3.3. Let f :IRn! IRn be an injective piecewise affine function with
polyhedral subdivision ˙ . Whenever two polyhedra 	1; 	2 2 ˙ intersect in a
common .n � 1/-face, then so do f .	1/ and f .	2/.

Proof. Suppose .A1; b1/; .A2; b2/ are the matrix-vector pairs corresponding to 	1
and 	2, respectively, i.e., f .x/ D AixCbi for every x 2 	i , i D 1; 2. The continuity
of f implies that both affine mappings coincide on 	1 \ 	2. Since f is injective,
Proposition 2.3.2 shows that the matrices A1 and A2 are nonsingular. Note that the
nonsingular affine image of a convex polyhedron is again a convex polyhedron and
faces are mapped onto faces of the same dimension. Hence the set f .	1 \ 	2/ is a
common .n � 1/-dimensional face of the polyhedra f .	1/ and f .	2/. If f .	1/ and
f .	2/ do not intersect in the common .n � 1/-face f .	1 \ 	2/, then there exists a
common point y0 which is not contained in the affine hull of the set f .	1 \ 	2/. If
y1 is a point in the relative interior of the common .n � 1/-face f .	1 \ 	2/, then
elementary geometric arguments show that any point in the relative interior of the
line segment joining y0 and y1 is an interior point of both polyhedra f .	1/ and
f .	2/. Clearly any point which is contained in the interior of both polyhedra f .	1/
and f .	2/ has two preimages, one of them being contained in the interior of 	1 and
the other one in the interior of 	2. This, however, violates the injectivity assumption.
Thus f .	1/ and f .	2/ intersect in the common .n� 1/-face f .	1 \ 	2/. �

A piecewise affine function f :IRn! IRm is said to be coherently oriented on the
polyhedron P if there exists a polyhedral subdivision˙ of P with the properties

1. f coincides with an affine mapping on each polyhedron 	 2 ˙
2. For every 	 2 ˙ the dimensions of 	 and f .	/ coincide
3. Whenever two polyhedra 	 and Q	 intersect in a common .dimP � 1/-face, then

so do the polyhedra f .	/ and f . Q	/
By abuse of language we call a piecewise affine function coherently oriented if it
is coherently oriented on IRn. Note that the dimensions of the preimage and image
spaces of coherently oriented piecewise affine mappings coincide.

The next result is an immediate consequence of the latter definition and
Proposition 2.3.3.

Proposition 2.3.4. An injective piecewise affine function f :IRn! IRn is coherently
oriented.

Proof. Let ˙ be a polyhedral subdivision of IRn and let .A1; b1/; : : : ; .Ak; bk/ be
the minimal collection of matrix-vector pairs corresponding to f . By definition,
f coincides with an affine selection function on each of the polyhedra 	 2 ˙ .
Moreover, the matrices Ai are nonsingular in view of Proposition 2.3.2, and thus
dimf .	/ D dim 	 D n for every 	 2 ˙ . Finally, if 	 and Q	 are two polyhedra
in ˙ which intersect in a common .n � 1/-face, then Proposition 2.3.3 shows that
f .	/ and f . Q	/ also have this property. Hence f is coherently oriented. �

The geometric condition presented in Proposition 2.3.3 can be equivalently
formulated algebraically in terms of the determinants of the corresponding matrices
A1 and A2.
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Lemma 2.3.1. If 	1; 	2 � IRn are n-dimensional convex polyhedra which intersect
in a common .n � 1/-face, A1;A2 are nonsingular n � n-matrices, and b1; b2 are
n-vectors such that

A1x C b1 D A2x C b2 for every x 2 	1 \ 	2, (2.24)

then A1.	1/C b1 and A2.	2/C b2 intersect in a common .n� 1/-face if and only if
det.A1/ det.A2/ > 0:

Proof. First we show that we may assume without loss of generality that

0 2 	1 \ 	2;
A2 D I;

b1 D 0;

b2 D 0: (2.25)

To check this, choose a vector x0 2 	1 \ 	2; and defineA D .A2/�1A1: Elementary
manipulations show that assumption (2.24) is equivalent to the identity Ax D x

for every x 2 .	1 � fx0g/ \ .	2 � fx0g/ and that the polyhedra A1.	1/ C b1 and
A2.	2/ C b2 intersect in a common .n � 1/-face if and only if this is true for the
polyhedraA.	1�fx0g/ and 	2�fx0g. Moreover, det.A1/ det.A2/ > 0 if and only if
det.A/ > 0. Hence, if the assumptions (2.25) do not hold, then we may replace 	1;
	2; A

1, and A2 by 	1 � fx0g; 	2 � fx0g, A, and I; respectively. To further simplify
the exposition, we next show that we may assume without loss of generality that

	1 \ 	2 � fx 2 IRnjxn D 0g; (2.26)

To see this, note that our assumptions (2.25) imply that 	1 \ 	2 is contained in an
.n � 1/-dimensional linear subspace L � IRn. Hence there exists an orthogonal
matrix Q such that QL D fx 2 IRnjxn D 0g. Moreover, 	1 and 	2 intersect in a
common .n � 1/-face if and only if this property holds for the polyhedra Q	1 and
Q	2, and A1x D x holds for every x 2 	1 \ 	2 if and only if QA1QTy D y holds
for every y 2 Q	1 \Q	2. Since A1	1 and 	2 intersect in a common .n � 1/-face
if and only if .QA1QT /Q	1 andQ	2 have this property and since det.QA1QT / D
det.A1/, we thus conclude that we may assume without loss of generality the validity
of the assumptions (2.26), for otherwise, we replace 	1; 	2; and A1 by Q	1; Q	2,
andQA1QT ; respectively.

Defining L D fx 2 IRnjxn D 0g, we deduce from (2.24) and (2.25) that

A1x D x for every x 2 L, (2.27)

which shows that A1 has the block structure

A1 D
�

I 0
0 ˛

�
; (2.28)
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where ˛ is a nonvanishing real number since A1 is a nonsingular matrix. In view
of (2.24) and (2.25), the set A1.	1/ \ 	2 is a common face of the polyhedra A1.	1/
and 	2. To prove the assertion, it thus suffices to show that the dimension of the
intersection of A1.	1/ and 	2 is .n � 1/ if and only if ˛ > 0. Defining LC D fx 2
IRnjxn � 0g and L� D fx 2 IRnjxn � 0g, the assumptions imply that one of the
polyhedra, say 	1, is contained in LC, while 	2 is contained in L�. In view of the
assumptions (2.24) and (2.25) the vector x 2 A1.	1/ whenever it is contained in
	1 \ 	2. Hence the inclusion

	1 \ 	2 � A1.	1/ \ 	2 (2.29)

holds and thus dim.A1.	1/ \ 	2/ � .n � 1/; while dim.A1.	1/ \ 	2/ D .n � 1/

if and only if the two polyhedra can be separated by a hyperplane. Since L is the
affine hull of 	1 \ 	2, the inclusion (2.29) shows that this separating hyperplane
would necessarily be the linear subspace L, i.e., the intersection of A1.	1/ and 	2
has dimension .n� 1/ if and only if A1.	1/ � LC. In view of (2.27),A1.	1/ � LC
if and only if LC is mapped by A1 into LC. Using (2.28), one readily verifies that
A1.LC/ D LC if and only if ˛ > 0 which holds if and only if det.A1/ > 0. �

The next proposition is sometimes used to define coherent orientation.

Proposition 2.3.5. A piecewise affine function f :IRn! IRn with corresponding
minimal collection of matrix-vector pairs .A1; b1/; : : : ; .Ak; bk/ is coherently ori-
ented if and only if all matrices Ai have the same nonvanishing determinant sign.

Proof. The “if”-part is an immediate consequence of Lemma 2.3.1 and the defi-
nition of coherent orientation. To see the “only if”-part, suppose f is coherently
oriented and let ˙ be a corresponding polyhedral subdivision of IRn which has
the properties required by the definition of coherent orientation. In particular,
dimf .	/ D dim 	 , whence all matrices Ai have a nonvanishing determinant sign.
Let Q̇ be a subset of ˙ such that the determinants of the matrices corresponding to
the polyhedra in Q̇ have positive determinant signs, while the remaining matrices
have negative determinant signs. The assertion of the proposition is equivalent to
the statement that either the collection Q̇ or the collection ˙n Q̇ is empty. If both
sets Q̇ and ˙n Q̇ are nonempty, then both carriers j Q̇ j and j˙n Q̇ j have the same
boundary which is a subset of the carrier j˙n�1j of the .n � 1/-skeleton of ˙ . If
F 2 ˙n�1 is a boundary face of Q̇ and ˙n Q̇ , then the subdivision property shows
that there exist two polyhedra 	 2 ˙n Q̇ and Q	 2 Q̇ which intersect in the fact F .
Hence by definition of coherent orientation the polyhedra f .	/ and f . Q	/ intersect
in a common .n� 1/-face as well, and thus, in view of Lemma 2.3.1 the matrices of
the corresponding affine functions have the same determinant sign. This, however,
contradicts the fact that 	 2 ˙n Q̇ , while Q	 2 Q̇ and thus proves that all matrices
in the minimal collection of matrix-vector pairs corresponding to f have the same
nonvanishing determinant sign. �

The following example shows that a coherently oriented piecewise affine mapping
is not necessarily injective.
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Example 2.3.1. Consider the two-dimensional vectors

v1 D .1; 0/; v2 D .1; 1/; v3 D .1; 2/; v4 D .1; 3/; v5 D .1; 4/; v6 D .0; 1/;

w1 D .1; 0/;w2 D .0; 1/;w3 D .�1; 0/;w4 D .0;�1/;w5 D .1; 0/;w6 D .0; 1/:

and define f W IR2 ! IR2 to be the piecewise linear function which coincides on
conefvi ; viC1g with the linear mapping which carries vi onto wi and viC1 onto wiC1,
i D 1; : : : ; 5, and which coincides with the identity outside of the union of the
latter cones. It is easily verified that the determinants of all matrices are positive.
Nevertheless every nonzero point in IR2 has two preimages.

A closer examination of the latter mapping shows that, loosely spoken, the function
f wraps IR2 twice around the null vector. In particular, the mapping f is surjective
which, in fact, is typical for coherently oriented piecewise affine functions.

Proposition 2.3.6. A coherently oriented piecewise affine function is surjective.

Proof. Consider a polyhedral subdivision ˙ D f	1; : : : ; 	kg corresponding to a
coherently oriented piecewise affine function f :IRn! IRn. By Proposition 2.3.5,
all matrices of the minimal collection of matrix-vector pairs corresponding to f
are nonsingular, and hence all polyhedra f .	i /; i D 1; : : : ; k; are n-dimensional.
Clearly f is surjective if and only if the union of all sets f .	i /; i D 1; : : : ; k;

covers IRn, i.e., if and only if this set has no boundary points. Suppose this is not the
case. If the boundary of a finite union of n-dimensional polyhedra is nonempty, then
obviously there exists a boundary point, say y0 which is contained in the relative
interior of some .n�1/-faceF of one of the polyhedra, say f .	1/. Since all matrices
corresponding to the affine selection functions of f are nonsingular, the face F is
the image of an .n�1/-face of 	1, which, due to the polyhedral subdivision property
of the partition, is a common face with some other polyhedron, say 	2. By definition
of the coherent orientation, the polyhedra f .	1/ and f .	2/ intersect in the common
face F and thus the relative interior point y0 of F is an interior point of the union
of the polyhedra f .	1/ and f .	2/. This, however, contradicts the fact the y0 is a
boundary point of the union of the polyhedra f .	i /; i D 1; : : : ; k. �

Another nice property of the function in the previous example is that it is open,
i.e., it carries open sets onto open sets. Again, this is a typical property of a
coherently oriented piecewise affine function. In fact, it is equivalent to the coherent
orientation.

Proposition 2.3.7. A piecewise affine function is coherently oriented if and only if
it is open.

Proof. A mere reformulation of the definition in terms of sequences shows that a
function is open if and only if for every point x0 and every sequence yn converging
to y0 D f .x0/ there exist a sequence xn converging to x0 such that f .xn/ D yn
for every sufficiently large n 2 IN. Using the B-derivative f 0.x0I :/ and the fact that
the values of f .x/ and f .x0/C f 0.x0I x � x0/ coincide in a neighborhood of x0, it
suffices to find a sequence xn such that f 0.x0I xn�x0/ D yn�f .x0/ for sufficiently
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large n 2 IN. By Propositions, 2.2.6 and 2.3.5 the B-derivative of a coherently
oriented piecewise affine function is a coherently oriented piecewise linear function.
It thus suffices to show that for a coherently oriented piecewise linear function
f :IRn! IRn the origin in the image space is an interior point of the image of any
neighborhood of zero. To see this, suppose yn converges to zero. Proposition 2.3.6
yields the existence of a sequence xn with f .xn/ D yn. If fA1; : : : ; Akg is a minimal
set of matrices corresponding to f , then xn 2 f.Ai /�1ynj1 � i � kg; and since yn
converges to zero, so does xn. Hence the origin is an interior point of the image of
every zero neighborhood, which proves that a coherently oriented piecewise affine
function is open.

To prove the reverse statement, suppose the piecewise affine function
f :IRn! IRn is open and let ˙ be a polyhedral subdivision corresponding to f .
If 	 2 ˙ and f .x/ D Ax C b for every x 2 	 , then the openness of f shows
that A maps the interior of 	 onto an open subset of IRn and hence detA ¤ 0. Thus
dimf .	/ D dim 	 for every 	 2 ˙ . Next suppose 	 and Q	 intersect in a common
.n� 1/-face F and let x0 be a relative interior point of F . Since the affine selection
functions which are active on 	 and Q	 , respectively, coincide on F , the set f .F /
is a common .n � 1/-face of f .	/ and f . Q	/. Hence any of the latter polyhedra
is contained in one of the halfspaces induced by the hyperplane afff .F /. If the
intersection of f .	/ and f . Q	/ contains a point y1 62 f .F /, then both polyhedra
f .	/ and f . Q	/ are contained in the same halfspace, and thus f .x0/ is a boundary
point of the image f .U / of every sufficiently small open neighborhood U of x0.
This, however, contradicts the openness of f and thus f .	/ and f . Q	/ are contained
in different halfspaces which shows f .	/ and f . Q	/ intersect in the common .n�1/-
face f .F /. Thus f is coherently oriented. �

We have already seen in Example 2.3.1 that coherent orientation does not imply
injectivity. The following slight modification of this example shows that surjectivity
does not imply openness.

Example 2.3.2. Consider the following sets of vectors:

v1 D .1; 0/; v2 D .1; 1/; v3 D .1; 2/; v4 D .0; 1/;

w1 D .1; 0/;w2 D .0; 1/;w3 D .1; 0/;w4 D .0; 1/;

and let f be the piecewise linear function which coincides on the set conefvi ; viC1g
with the linear map that carries vi onto wi and viC1 onto wiC1, i D 1; 2; 3; and
which coincides with the identity outside of the union of these cones. The matrices
corresponding to conefv1; v2g and to conefv2; v3g are thus given by

A1 D
�
1 �1
0 1

�
and A2 D

� �1 1

2 �1
�
:

Since the determinants have different signs, the function is not coherently oriented
and thus not open. Nevertheless, f is surjective.

For future reference, we summarize the statements of the Propositions 2.3.4–2.3.7
in the following theorem.
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Theorem 2.3.1. Let f :IRn! IRn be a piecewise affine function.

1. If f is injective, then f is open.
2. If f is open, then f is surjective.
3. The function f is open if and only if it is coherently oriented.

The reverse implications of the first and second statement fail in general.

We conclude this section with a remarkable result on the number of preimages
corresponding to a coherently oriented piecewise affine mapping. Recall that for
a polyhedral subdivision ˙ of IRn the set ˙j denotes the j -skeleton of ˙ , i.e., the
set of all j -faces of the subdivision˙ .

Proposition 2.3.8. If f is a coherently oriented piecewise affine function with
corresponding polyhedral subdivision ˙ , then any two points not contained in
f .j˙n�2j/ have the same number of preimages. The number of preimages of a point
contained in f .j˙n�2j/ does not exceed the number of preimages of points outside
of this set.

Proof. Since f is coherently oriented, every image vector has a finite number of
preimages; at most one preimage corresponding to each function from the minimal
collection of selection functions. Moreover, by Theorem 2.3.1, a coherently oriented
piecewise affine function is open; hence the number of preimages cannot drop
locally, i.e., if a vector y0 has m preimages, then there exists a neighborhood of
y0 such that every vector in this neighborhood has at most m preimages. This is
easily seen by choosing for each preimage an open neighborhood which does not
contain any other preimage. The vector y0 is an interior point of the intersection of
the images of the chosen neighborhoods. Hence any vector sufficiently close to y0
has a preimage in each of the m disjoint neighborhoods. What are the candidates
in the image space where the number of preimages increases? Note that if yn tends
to y0 and f .xn/ D yn, then the nonsingularity of the matrices yields that xn is
bounded and since f is continuous, every cluster point of xn will be a preimage
of y0. Hence a small perturbation of y0 cannot cause a sudden occurrence of a
new preimage somewhere far away from the preimages of y0; it can only cause
a bifurcation, i.e., some of the preimages of y0 split into several branches if y0
is perturbed. Such a bifurcation is certainly avoided if the function f is a local
homeomorphism at each preimage of y0. Clearly a coherently oriented piecewise
affine function f is a local homeomorphism at every point x0 2 int	i ; where 	i
is a set from a partition corresponding to f . Moreover, if x0 is contained in the
relative interior of an .n � 1/-face of a polyhedron from a polyhedral subdivision,
then f has locally only two active affine selection functions. Lemma 2.3.1 shows
that in this case f is a local homeomorphism if and only if the determinants of
the corresponding matrices have the same nonvanishing sign. Hence if y0 is not
contained in f .j˙n�2j/, then no bifurcation occurs, i.e., the number of preimages
cannot increase locally around y0. Note that the set f .j˙n�2j/ is contained in the
union of a finite number of .n � 2/-dimensional affine subspaces. It is a matter
of elementary geometrical insight to check that any two points not contained in
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f .j˙n�2j/ can be joined by a polyhedral path which does not intersect f .j˙n�2j/.
This shows that both points have the same number of preimages and thus proves the
first part of the statement. The second part is easily checked since for every point
in f .j˙n�2j/, one may find arbitrarily close to this point some point which is not
contained in f .j˙n�2j/. As argued before, it is a consequence of the openness of f
that the number of solutions cannot drop locally; hence any point in f .j˙n�2j/ has
at most as many preimages as the points which are not contained in f .j˙n�2j/. �

The latter result reveals a striking similarity between affine functions and
coherently oriented piecewise affine functions. If an affine equationAxCb D y has
a single solution for some y D y0, then it has a single solution for all y, i.e., we can
choose any test candidate y0 to establish the injectivity of the mapping. Almost the
same is true for coherently oriented piecewise affine functions, only that we have to
choose y0 carefully, namely outside of the image of j˙n�2j. This set, however, is a
nullset and, moreover, its complement is open and dense. So from a probabilistic as
well as from a topological point of view almost all points y0 are good test points for
the injectivity of the piecewise affine function.

Since f .j˙n�2j/ is a finite collection of lower dimensional polyhedra, every
open set in the image space contains at least one point which is not contained in
f .j˙n�2j/. We thus obtain the following corollary to the latter proposition which
will be used frequently in the sequel.

Corollary 2.3.1. Let U � IRn be an arbitrary open set. If f :IRn! IRn is
coherently oriented and the equation f .x/ D y has a single solution for all y 2 U ,
then f is a homeomorphism.

2.3.2 Piecewise Affine Local Homeomorphisms

One readily verifies that a homeomorphism f :IRn! IRn is a local homeomorphism
at every point x 2 IRn. The elementary example f .x/ D ex shows that the
reverse statement is generally false. In the affine case, however, the reverse statement
does hold, i.e., an affine function is a homeomorphism whenever it is a local
homeomorphism at some point x 2 IRn. The elementary example of the modulus
function shows that the local homeomorphism property of a piecewise affine
function at a single point does not provide any global information. However, the
main results of the present section show that a piecewise affine function is a
homeomorphism if it is a local homeomorphism at a finite number of distinguished
points.

We begin with an elementary observation.

Proposition 2.3.9. 1. A local homeomorphism is an open mapping.
2. A piecewise affine local homeomorphism f :IRn! IRn is coherently oriented.

Proof. To prove the first statement, we have to show that for every sequence of
image points yk 2 Y converging to an image point y0 2 Y there exists a sequence
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of preimages xk 2 X converging to some point x0 2 X such that f .x0/ D y0

and f .xk/ D yk for every sufficiently large k 2 IN. To see this, choose an
arbitrary element x0 2 f �1.fy0g/. Since f is a local homeomorphism at x0;
there exist neighborhoods U � X of x0 and V � Y of y0 such that f maps U
homeomorphically onto V . Since the sequence yk will eventually be captured in
the neighborhood V of y0, we can find for every sufficiently large k 2 IN a unique
vector xk 2 U with f .xk/ D yk , which proves the assertion. The second statement
is an immediate consequence of part 1 and Theorem 2.3.1. �

The following proposition shows that the local homeomorphism property for
a piecewise affine function is passed on from lower dimensional faces to higher
dimensional faces of a corresponding polyhedral subdivision.

Proposition 2.3.10. Let f :IRn! IRn be a piecewise affine function and ˙ be
a corresponding subdivision of IRn. Suppose ; ¤ ˙k D fF1; : : : ; Frg and let
xi 2 relintFi ; i D 1; : : : ; r . If f is a local homeomorphism at every point xi ;
i D 1; : : : ; r; then f is a local homeomorphism at every point x0 62 j˙k�1j:
Proof. In view of part 4 of Proposition 2.2.6, the piecewise linear functions
f 0.xi I :/; i 2 f1; : : : ; rg are local homeomorphisms at the origin. Since the
latter functions are positively homogeneous, they are global homeomorphisms and
thus, using again Proposition 2.2.6, we conclude that the function f is a local
homeomorphism at every interior point of j˙.xi /j; i D 1; : : : ; r . Given a point
x0 62 j˙k�1j; it thus suffices to prove that there exists a vector xi such that x0 is an
interior point of j˙.xi /j.

To see this, note first that x0 is an interior point of j˙.x0/j. Moreover, every
polyhedron 	i 2 ˙.x0/ has a unique face Gi containing x0 as a relative interior
point. If Gj is the face corresponding to another polyhedron 	j 2 ˙.x0/, then the
faces Gi and Gj are both faces of the common face of the polyhedra 	i and 	j .
Since Gi as well as Gj contain x0 as a relative interior point, they thus coincide.
Hence we conclude that there exists a unique face G which is a common face of all
polyhedra 	 2 ˙.x0/ and contains x0 as a relative interior point.

Since x0 62 j˙k�1j; the dimension ofG is at least k and thus there exists a k-face
Fi0 which is a face ofG. SinceG is a face of 	 for every 	 2 ˙.x0/, the same holds
for the face Fi0 . Since by assumption xi0 is a relative interior point of Fi0 , we thus
conclude that xi0 2 	 for every 	 2 ˙.x0/. Hence ˙.x0/ � ˙.xi0/ and since x0 is
an interior point of j˙.x0/j, it is also an interior point of j˙.xi0/j, which completes
the proof. �

Choosing k to be the dimension of the lineality space of˙ , the latter proposition
implies that it suffices to check the local homeomorphism property at a finite number
of distinguished points.

During the proof of Proposition 2.3.8 we have already established the next result.

Proposition 2.3.11. A coherently oriented piecewise affine function f :IRn! IRn

with corresponding polyhedral subdivision ˙ of IRn is a local homeomorphism at
every point x 2 IRnnj˙n�2j.
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The following theorem contains the main results of this section. While the impor-
tance of the first statement is clear, the usefulness of the second assertion will only
become apparent in subsequent sections.

Theorem 2.3.2. 1. A piecewise affine local homeomorphisms f :IRn! IRn is a
homeomorphism.

2. Let n � 3; f :IRn! IRn be a piecewise linear function, and v1; : : : ; vk 2 IRn

be unit generators of the extremal rays of a corresponding pointed conical
subdivision. If f is a local homeomorphism at every point vi ; i D 1; : : : ; k,
then f is a homeomorphism.

To prove the latter theorem, one has to employ quite general results, which belong
to the realm of algebraic topology. In fact, a proof is fairly easy if one uses
Browder’s Theorem on local homeomorphisms which are covering maps and the
homotopy lifting property for covering maps. It is beyond the scope of this section
to provide proofs of these classical theorems. Nevertheless, we will introduce the
necessary topological notions to formulate them and show how they can be used to
prove Theorem 2.3.2. The reader who is willing to accept the validity of the latter
statement may skip the rest of this section. For references concerning the following
results we refer to Sect. 2.3.5 below

In order not to overload the exposition with unnecessary topological details, we
restrict ourselves to subsets X of IRn, the topology on X being induced by the
Euclidean metric. Note that a closed subset of X is not necessarily a closed subset
of IRn unlessX itself is a closed subset of IRn. In fact, a setA � X is a closed subset
ofX if the limit point of every convergent sequence in A belongs to A, provided the
limit point is contained in X . A mapping f WX ! Y is called closed if the image
f .A/ of every closed subset A � X is a closed subset of Y .

We begin with a notion which is slightly stronger than the notion of a local
homeomorphism. A continuous mapping f W X ! Y is called a covering map
if every y 2 Y admits an open neighborhood V � Y such that f �1.V / is the
disjoint union of open sets, each of which is mapped homeomorphically onto V by
f . A typical example of a covering map is the mapping f W IR ! S1 given by
f .t/ D .sin t; cos t/, where S1 denotes the unit sphere in IR2. One easily verifies
that a covering map is a local homeomorphism. The reverse statement, however, is
false in general. The classical example is the restriction of the above function f to
the interval .0; 4�/. In fact, the point .1; 0/ does not admit an open neighborhood
V � .0; 4�/, the preimage of which is the disjoint union of open sets, each of
which is mapped homeomorphically onto V by f . A covering map f WX ! Y is
called finite if each vector y 2 Y has a finite number of preimages. It is well known
that a local homeomorphism f W X ! Y is a finite covering map if the number
of preimages of every point y 2 Y is finite and constant. In fact, if y 2 Y and
f �1.y/ D fx1; : : : ; xlg; then choose disjoint open neighborhoods Vi � X of xi
which are mapped homeomorphically onto the open sets f .Vi / and let U D \l

iD1
f .Vi /. Defining QVi D f �1

i .U /, where f �1
i W f .Vi / ! Vi is the local inverse of

f at xi , one readily verifies that the sets QVi are disjoint open sets, each of which



2.3 Piecewise Affine Homeomorphisms 41

is mapped homeomorphically onto the open set U and that f �1.U / D [l
iD1 QVi

since every point in U has precisely l preimages. Thus Proposition 2.3.8 shows that
the restriction of a coherently oriented piecewise affine function f to the carrier
j˙n˙n�2j is a finite covering map. Another useful condition ensuring that a local
homeomorphism is a finite covering map can be obtained by focusing attention to
mappings with a connected image space. Recall that a subset Y � IRn is called
connected if Y cannot be separated by two open sets, i.e., if Y is a subset of the
union of two open sets U; V � IRn, then U \ V ¤ ;.

Theorem 2.3.3 (Browder’s Theorem [6], Theorem 7). Let X � IRn; Y � IRm;
and f WX ! Y be a local homeomorphism. If f is closed and Y is connected, then
f is a finite covering map.

A fundamental characteristic of covering maps is comprised in the so-called
homotopy lifting property.

Theorem 2.3.4 (Homotopy Lifting Theorem [78], Chap. 2.2, Theorem 3). Let
X � IRn, Y � IRm, and S � IRk be sets and let f W X ! Y; p W S ! X; and
H WS�Œ0; 1� ! Y be continuous functions withH.s; 0/ D f .p.s// for every s 2 S .
If f is a covering map, then there exists a continuous function OH WS � Œ0; 1� ! X

such that f ı OH D H and OH.s; 0/ D p.s/ for every s 2 S .

If S is connected, then the mapping OH is unique as a consequence of the following
theorem.

Theorem 2.3.5 ([78], Chap. 2.2, Theorem 2). Let X � IRn, Y � IRm, and Z �
IRk be sets, f WX ! Y be a covering map, and let OG; OH WZ ! X be two continuous
mappings with f ı OG D f ı OH . IfZ is connected and OG.z/ D OH.z/ for some point
z 2 Z, then OG D OH .

To formulate the main theorem, we need some additional notions. A set X � IRn

is called path connected if for any two points x0; x1 2 X there exists a continuous
function p W Œ0; 1� ! X such that p.0/ D x0 and p.1/ D x1. The function p is
called a path joining x0 and x1. Note that a path connected set is connected, but
that the reverse statement fails in general. A loop is a path p with p.0/ D p.1/.
A set X � IRn is called simply connected if it is path connected and every loop
can be continuously deformed into a point, i.e., for every path p W Œ0; 1� ! X

with p.0/ D p.1/ D x0 there exists a point x1 2 X and a continuous function
H W Œ0; 1� � Œ0; 1� ! X such that H.s; 0/ D p.s/ and H.s; 1/ D x1 for every
s 2 Œ0; 1� and H.0; t/ D H.1; t/ for every t 2 Œ0; 1�. Since X is assumed to be path
connected, we may choose any point x1 2 X .

With the aid of Browder’s Theorem and the Homotopy Lifting Theorem, one can
prove the following result which relates local and global homeomorphisms.

Theorem 2.3.6. SupposeX � IRn is path connected, Y � IRm is simply connected,
and f W X ! Y is a local homeomorphism. If f is closed, then f is a
homeomorphism.
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Proof. By Proposition 2.3.9, a local homeomorphism is an open mapping.
Moreover, since by assumption f is closed, the set f .X/ is an open and closed
subset of Y and hence coincides with Y which establishes the surjectivity of f . It
thus remains to show that f is injective. Suppose x0; x1 2 X are two points with
y0 D f .x0/ D f .x1/, and consider a path p W Œ0; 1� ! X joining x0 and x1. Since
Y is simply connected, there exists a function H W Œ0; 1� � Œ0; 1� ! Y such that
H.s; 0/ D f .p.s// and H.s; 1/ D y0 for every s 2 Œ0; 1�, and H.0; t/ D H.1; t/

for every t 2 Œ0; 1�. By Theorem 2.3.3 the function f is a finite covering map and
hence the Homotopy Lifting Theorem shows that there exists a continuous function
OH W Œ0; 1� � Œ0; 1� ! X such that

f . OH.s; t// D H.s; t/ for every .s; t/ 2 Œ0; 1� � Œ0; 1�, (2.30)

OH.s; 0/ D p.s/ for every s 2 Œ0; 1�. (2.31)

Equation (2.30) shows that OH.Œ0; 1�; 1/ � f �1.H.Œ0; 1�; 1// D f �1.y0/. Since
f is a finite covering map, the latter set is finite and since the set Œ0; 1� � f1g is
connected and OH is continuous, we deduce that the set OH.Œ0; 1�; 1/ is connected as
well and thus consists of a single point. This implies that

OH.0; 1/ D OH.1; 1/: (2.32)

Since by assumptionH.0; t/ D H.1; t/; we can use Theorem 2.3.5 to deduce from
(2.30), and (2.32) that the functions OH.0; :/ and OH.1; :/ coincide. Thus (2.31) yields

p.0/ D OH.0; 0/ D OH.1; 0/ D p.1/;

which proves that x0 D x1 and thus shows that f is injective. �

Proof of Theorem 2.3.2

1. Since IRn is simply connected, it suffices to prove that a piecewise affine function
is closed. This is easily seen since a linear function maps closed sets onto closed
sets; hence the image of a closed set by a piecewise affine function is the finite
union of closed sets and thus closed.

2. In view of Theorem 2.3.1 it suffices to prove that f is injective. Setting k D 1, we
can deduce from Proposition 2.3.10 that f is a local homeomorphism at every
point x ¤ 0. If A1; : : : ; Ak is a minimal collection of matrices corresponding
to the piecewise linear function f , then the latter property shows that every
matrix Ai is nonsingular. Hence the equation f .x/ D 0 has the unique solution
x D 0 and it thus suffices to prove that the function g W IRnnf0g ! IRnnf0g
defined by g.x/ D f .x/ is injective. As argued above, the mapping g is a local
homeomorphism. Since n � 3, the set IRnnf0g is simply connected. In view of
Theorem 2.3.6, it thus suffices to prove that g is closed. Note that C is a closed
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subset of IRnnf0g if and only if C [f0g is a closed subset of IRn. Since f .x/ D 0

holds if and only if x D 0, we deduce that f . OCnf0g/ D f . OC /nf0g for every
subset OC � IRn. We have already argued in the proof of the first part of the
theorem that a piecewise affine mapping is a closed mapping. Hence if OC is a
closed subset of IRn, so is the set f . OC/. Thus g.C / D g. OCnf0g/ is closed for
every closed subset C D OCnf0g of IRnnf0g. �

2.3.3 The Factorization Lemma

We have seen in the last section that a piecewise affine function is a homeomorphism
if and only if it is a local homeomorphism at a finite number of distinguished points.
It has also been pointed out before that a piecewise affine function f :IRn! IRn

is a local homeomorphism at x 2 IRn if and only if its B-derivative f 0.xI :/
is a homeomorphism. This reduces the homeomorphism problem for piecewise
affine functions to the same problem for piecewise linear functions. In view of
part 2 of Theorem 2.3.2 and the fact that every piecewise linear function admits
a corresponding pointed conical subdivision, the homeomorphism problem for a
piecewise linear function is reduced to the homeomorphism problem for a finite
number of B-derivatives. At first glance this does not seem to be a reduction of
the problem. However, note that the B-derivative f 0.xI :/ is taken at nonvanishing
points x. If˙ is a subdivision corresponding to the piecewise linear function f and
x ¤ 0; then linfxg is a subset the lineality space of the localization˙ 0.x/ which is a
subdivision corresponding to f 0.xI :/. So we have actually reduced the homeomor-
phism problem for a piecewise linear function to the homeomorphism problem for a
finite number of piecewise linear functions which admit a corresponding subdivision
with nonvanishing lineality space. In order to exploit this property, we would like
to factor out the lineality space. It will be shown below that this is indeed possible.
We begin with an elementary observation.

Lemma 2.3.2. If f :IRn! IRn is a piecewise linear function,˙ is a corresponding
conical subdivision of IRn, and L is a linear subspace of the lineality space of ˙ ,
then f is linear on L and f .v C w/ D f .v/C f .w/ for every v 2 L and w 2 L?.

Proof. Since L is a subspace of the lineality space of every cone 	 2 ˙ , L is a
subset of every cone 	 2 ˙ which shows that all linear selection functions of f
coincide on L and thus f is linear on L. Moreover, the decomposition theorem
for polyhedra yields the identity 	 D L C 	 \ L?: Hence, if v C w 2 	 , then
w 2 	 \ L?; while v 2 L � 	 . Since f coincides with a linear function on 	 , we
thus obtain f .v C w/ D f .v/C f .w/. �

Let us denote by ˘L the orthogonal projection onto a linear subspace L � IRn.
Recall that the orthogonal projection onto a linear subspace is a linear function.
If f :IRn! IRn is a piecewise linear function and L is a linear subspace of the
lineality space of a corresponding conical subdivision of IRn, then the latter lemma
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states that f is a linear function on L and hence f .L/ is a linear subspace of IRn.
We may thus define the function fL? W IRn ! IRn by

fL?.x/ D ˘f.L/?.f .x//: (2.33)

The piecewise linear function fL? if called the factor of f with respect to
L?. Recall that a linear function f is a homeomorphism if and only if for
some linear subspace L the function maps L and its orthogonal complement L?
homeomorphically onto f .L/ and f .L?/, respectively and, in addition, the linear
subspaces f .L/ and f .L?/ intersect only at the origin. One readily verifies that the
latter condition is equivalent to the requirement that f maps L homeomorphically
onto f .L/ and fL? maps L? homeomorphically onto f .L/?. The next result
provides a generalization of this fact to piecewise linear functions.

Lemma 2.3.3 (Factorization Lemma). If f :IRn! IRn is a piecewise linear
function, ˙ a corresponding conical subdivision of IRn, and L a linear subspace
of the lineality space of ˙ , then f is a homeomorphism if and only if f maps
L homeomorphically onto f .L/ and the factor fL? maps L? homeomorphically
onto f .L/?.

Proof. Clearly, if f is a homeomorphism, then it maps L homeomorphically onto
f .L/. We may thus assume that f has the latter property and show that f is a
homeomorphism if and only if fL? maps L? homeomorphically onto f .L/?. To
simplify the exposition, we define g WL? ! f .L/? by g.x/ D fL? .x/. Clearly if
f maps L homeomorphically onto f .L/, then the linear subspaces L? and f .L/?
have the same dimension, say m. Hence, if N is an m � n-matrix with Nf.L/? D
IRm andM is an n�m-matrix withM IRm D L; then the function h D N ı g ıM W
IRm ! IRm is a piecewise linear mapping and g is a homeomorphism if and only
if h is a homeomorphism. In view of Theorem 2.3.1, the assertion of the lemma
is thus equivalent to the statement that the homeomorphism property of any of the
functions f or g implies the injectivity of the other one.

To prove this, we consider the equation f .x/ D y; and let v D ˘L.x/ and
w D ˘L?.x/. The equation f .x/ D y is thus equivalent to the two equations

˘f.L/.f .v C w// D ˘f.L/.y/;

˘f.L/?.f .v C w// D ˘f.L/?.y/: (2.34)

Lemma 2.3.2 yields

f .v C w/ D f .v/C f .w/: (2.35)

Since f .v/ 2 f .L/, the identity ˘f.L/?.f .v// D 0 holds, and, by definition of the
function g, g.w/ D ˘f.L/?.f .w//. Thus, in view of (2.35) and the linearity of the
orthogonal projection equations (2.34) are equivalent to
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f .v/ D ˘f.L/.y � f .w//;

g.w/ D ˘f.L/?.y/: (2.36)

If, on the one hand, g is a homeomorphism, then w is uniquely determined by the
second equation, and since by assumption f mapsL homeomorphically onto f .L/,
v is uniquely determined by the first equation; hence f .x/ D y has a unique solution
and thus f is injective. If, on the other hand, f is a homeomorphism and y is an
arbitrary point in f .L/?, then the equation f .x/ D y has a unique solution x
which can be uniquely represented as x D v C w with v 2 L and w 2 L?. Since
f .v C w/ D y if and only if v and w satisfy equation (2.36), and since y 2 f .L/?,
we conclude that g.w/ D y has a unique solution and thus g is injective. �

We close this section with a collection of some useful results concerning the
factors of piecewise linear functions.

Proposition 2.3.12. Let f :IRn! IRn be a piecewise linear function, ˙ be a
corresponding conical subdivision, let L be a linear subspace of the lineality space
of ˙ , and let fL? be the factor of f with respect to L?.

1. The collection Q̇ D f	 \L?j	 2 ˙g is a conical subdivision of L?.
2. The factor fL? coincides with an affine function on each cone 	 \ L?.
3. If f is coherently oriented on IRn, then its factor fL? is coherently oriented on
L?.

Proof. 1. Since L is a subset of the lineality space of 	 , we may decompose 	 as

	 D LC 	 \L?: (2.37)

Hence Lemma 2.1.2 shows that F is a face of 	 if and only if F D L C F \
L? and F \ L? is a face of 	 \ L?. Moreover, since L and L? are mutually
orthogonal, we obtain

dimF D dimLC dimF \ L?: (2.38)

To see that the nonempty intersection of two cones in Q̇ is a common proper face
of both cones, note that, 2.37 implies that 	 \ Q	 D LC .	 \ L?/ \ . Q	 \ L?/
for every 	; Q	 2 ˙ . Hence if F is the common proper face of 	 and Q	 , then the
cones 	\L? and Q	\L? intersect in the face F \L? which is proper in view of
(2.38). Moreover, since dim 	 D n for every 	 2 ˙ , we deduce from (2.37) that
dim 	 \L? D dimL?: Finally, the collection of all polyhedra 	 \ L?; 	 2 ˙;
certainly covers L? and thus forms a polyhedral subdivision of L?.

2. This assertion is trivial since 	 \L? � 	 and fL? is linear on each cone 	 2 ˙ .
3. We have already seen above that the function fL? coincides with an affine

function on every cone 	 \ L? and that the collection of all cones 	 \ L?;
	 2 ˙; is a conical subdivision of L?. To prove that fL? is coherently oriented
on L?, we first show that for every 	 2 ˙ the decomposition

f .	/ D f .L/C fL?.	 \ L?/ (2.39)
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holds. Note that Lemma 2.3.2 yields the identity f .v C w/ D f .v/ C f .w/ for
every v 2 L and w 2 L?. Hence (2.37) implies that

f .	/ D f .L/C f .	 \L?/: (2.40)

In particular, f .L/ is a subspace of the lineality space of f .	/. Hence the
decomposition theorem for polyhedra shows that f .	/ D f .L/Cf .	/\f .L/?
and a fortiori ˘f.L/?.f .	// D f .	/ \ f .L/?. Combining the latter identities,
we thus obtain f .	/ D f .L/ C ˘f.L/? .f .	//: Since (2.40) implies that
˘f.L/? .f .	// D ˘f.L/?.f .	 \L?//; we thus conclude that

f .	/ D f .L/C˘f.L/?

�
f

�
	 \L?��

; (2.41)

which in view of the definition (2.33) of fL? yields (2.39).
Since f is coherently oriented, the polyhedra f .	/ are n-dimensional and

thus (2.39) shows that dimfL?.	 \ L?/ D dimL?: Moreover, in view of the
first statement of the present proposition the two polyhedra 	 and Q	 intersect in a
face of dimension .n�1/ if and only if the polyhedra	\L? and Q	\L? intersect
in a face of dimension .dimL? � 1/. Similarly, we deduce from (2.39) that the
polyhedra f .	/ and f . Q	/ intersect in a face of dimension .n � 1/ if and only if
the polyhedra fL?.	 \ L?/ and fL?. Q	 \ L?/ intersect in a face of dimension
.dimf .L/ � 1/. Since f is coherently oriented, the dimensions of L and f .L/
coincide. Hence we conclude that the polyhedra fL?.	 \L?/ and fL?. Q	 \L?/
intersect in a face of dimension .dimL? � 1/ whenever the polyhedra 	 \ L?
and Q	 \ L? have this property. Thus fL? is indeed coherently oriented on L?.

�

2.3.4 The Branching Number Theorem

For practical purposes, the most important necessary condition for a piecewise affine
function to be a homeomorphism is its coherent orientation. Given a collection
of matrix-vector pairs corresponding to a piecewise affine function, this condition
is easily checked. We have already given an example which shows that coherent
orientation is not sufficient for a piecewise affine function to be a homeomorphism.
One might now try to develop criteria which are necessary and sufficient. However,
necessary and sufficient criteria are nothing else but restatements of the definition
and, although shedding light on the problem, are usually not very helpful in practice.
It is much more appropriate to look for sufficient conditions which are on the one
hand applicable to a large class of piecewise affine functions and, on the other hand,
are relatively easy to verify. There are of course two structures on which one can
impose additional assumptions; the collection of matrix-vector pairs on the one
hand, and the polyhedral subdivision corresponding to a piecewise affine function,
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on the other hand. Note that both approaches are not independent since admissible
subdivision structures contain information about admissible matrix-vector pairs and
vice versa. The subdivision structure is, however, more geometric in spirit and thus
corresponding conditions are easier to envision. Moreover, it turns out that the
condition which we discuss below can be nicely applied to some important examples
of piecewise affine functions. This is the main reason to confine our presentation to
sufficient conditions which rely on the subdivision structure.

It turns out that a decisive property of a polyhedral subdivision in the context of
sufficient homeomorphism conditions is the maximal number of full-dimensional
polyhedra containing a face of a given dimension. We therefore introduce the k-th
branching number of a polyhedral subdivision ˙ of a polyhedron P � IRn as the
maximal number of polyhedra in ˙ containing a face of dimension .dimP � k/,
where k 2 f1; : : : ; dimP�lg and l is the dimension of the lineality space of˙ . One
readily verifies that the first branching number of ˙ is 2, provided that ˙ does not
consist of the set P alone. The following lemma shows that the branching numbers
do not grow if one passes from a polyhedral subdivision ˙ of IRn corresponding
to a piecewise affine function f to the localization’ ˙ 0.x/ corresponding to the B-
derivative f 0.xI :/, or, in the case of a conical subdivision and a piecewise linear
function, to the subdivision corresponding to a factor of f (cf. Proposition 2.3.12).

Lemma 2.3.4. Let ˙ be a polyhedra subdivision of IRn and let k 2 f2; : : : ; n� lg;
where l is the dimension of the lineality space of˙ .

1. If x 2 IRn, then the k-th branching number of the localization ˙ 0.x/ does not
exceed the k-th branching number of ˙ .

2. If ˙ is a conical subdivision of IRn and L is a subset of the lineality space of˙ ,
then the k-th branching number of the subdivision Q̇ D f	 \L?j	 2 ˙g of L?
does not exceed the k-th branching number of ˙ .

Proof. 1. Recall that ˙ 0.x/ D fcone.	 � fxg/j	 2 ˙; x 2 	g: The assertion
is an immediate consequence of the fact that a subset F 0 � IRn is a face of
cone.	 � fxg/ if and only if F 0 D cone.F � fxg/, where F is a face of 	 with
x 2 F . Clearly the dimensions of F 0 and F both coincide with the dimension
of lin.F � fxg/ and hence if a face F 0 of dimension .n � k/ is contained in
cone.	 � fxg/; then the corresponding face F has also dimension .n� k/ and is
contained in the polyhedron 	 .

2. To see the second assertion, note that a set F � IRn is a face of dimension .n�k/
of a cone 	 2 ˙ if and only if F \ L? is a face of dimension .dimL? � k/ of
the cone 	 \ L?. �

The following theorem is the main result of this section. It shows how the
branching numbers can be used to decide whether a piecewise affine function is
a homeomorphism.

Theorem 2.3.7. Let f :IRn! IRn be a piecewise affine function with correspond-
ing polyhedral subdivision˙ and let l be the dimension of the lineality space of˙ .
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If either l D .n � 1/ or there exists a number k 2 f2; : : : ; n � lg such that the k-th
branching number does not exceed 2k, then f is a homeomorphism if and only if it
is coherently oriented.

Proof. Proposition 2.3.11 states that a coherently oriented piecewise affine function
is a local homeomorphism at every point in IRnn˙n�2. Hence if the dimension of
the lineality space of˙ is n�1, then f is a local homeomorphism and thus in view
of Theorem 2.3.2 a homeomorphism. So we may assume that l � .n � 2/.

In view of Proposition 2.3.10 and Theorem 2.3.2, it suffices to prove that
f is a local homeomorphism at every point of x0 2 j˙l j which by part 4 of
Proposition 2.2.6 is equivalent to the homeomorphism property of the piecewise
linear function f 0.x0I :/. Recall from Proposition 2.2.6 that a conical partition
corresponding to f 0.x0I :/ is given by the localization˙ 0.x0/. Part 1 of Lemma 2.3.4
shows that the k-th branching number of˙ 0.x0/ does not exceed the k-th branching
number of ˙ . Hence the assertion of the theorem holds for piecewise affine
functions if it holds for their B-derivatives which are piecewise linear functions.
So we may assume without loss of generality that f is a piecewise linear function
and that ˙ is a corresponding conical subdivision of IRn. The result is proved by
induction over the dimension n.

If n D 2, then our assumption l � .n�2/ shows that˙ is pointed and that k D 2.
Hence˙ consists of four pointed polyhedral cones. Since f is coherently oriented,
every pointed cone is mapped by f onto a pointed cone. In view of Corollary 2.3.1,
the statement for n D 2 is thus an immediate consequence of the elementary fact
that it is not possible to cover IR2 twice with four pointed cones.

Now suppose that n � 3 and that the claim holds for all piecewise linear
functions f W IRq ! IRq with 2 � q � .n � 1/. We distinguish two cases:

1. Suppose first that k D n and that the .n � 1/-st branching number is greater
than 2.n � 1/. In this case, ˙ is pointed since by assumption n D k � n � l .
Moreover, since the nth branching number does not exceed 2n, the collection˙
consists of at most 2n cones. Since the .n � 1/-st branching number is greater
than 2.n � 1/, there exists an extremal ray in ˙1 which is contained in at least
2n � 1 cones, say 	1; : : : ; 	2n�1. Let v be a unit generator of this extremal ray.
Since f is coherently oriented, f .v/ ¤ 0 and the images f .	/ of the pointed
cones 	 2 ˙ are pointed as well. Hence the vector �f .v/ is not contained in
any of the pointed cones f .	i /; i D 1; : : : ; 2n � 1 since by assumption any of
the latter cones contains the vector f .v/. Since the finite union of closed sets is
closed, there exists an open neighborhood U of �f .v/ which does not intersect
the union of the cones f .	i /, i D 1; : : : ; 2n � 1: Since a coherently oriented
piecewise linear mapping is surjective and˙ consists of not more than 2n cones,
every vector y 2 U has at least one preimage and all preimages of the vectors
y 2 U are contained in the remaining cone 	2n 2 ˙ . Since f is coherently
oriented, 	2n contains at most one preimage of y 2 U and hence Corollary 2.3.1
shows that f is a homeomorphism.

2. If k D n and the .k � 1/-st branching number does not exceed 2.k � 1/, then
we may replace k by .k � 1/ without violating the assumptions of the theorem.
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It thus remains to prove the assertion for the case k � .n�1/. If, on the one hand,
˙ is pointed, then Theorem 2.3.2 shows that it suffices to prove that f 0.xI :/ is a
homeomorphism at every point x 2 j˙1jnj˙0j. If, on the other hand, l � 1, then
Proposition 2.3.10 and Theorem 2.3.2 show that it suffices to prove that f 0.xI :/
is a homeomorphism at every point x 2 ˙l . In any case, Proposition 2.2.6
shows that the corresponding subdivisions ˙ 0.x/ have a lineality space L with
dimension 1 � p � n � k. Since f is coherently oriented, Lemma 2.3.2 shows
that f maps L homeomorphically onto f 0.xIL/. In view of Lemma 2.3.3 it
thus suffices to show that the function g.y/ D ˘f 0.xIL/?.f 0.xIy// maps L?
homeomorphically onto f 0.xIL/?. Proposition 2.3.12 shows that g is coherently
oriented with corresponding subdivision Q̇ of L?. Lemma 2.3.4 states that the
subdivision Q̇ inherits from˙ the property that the k-th branching number does
not exceed 2k. Applying nonsingular linear transformations, we may assume that
L? D f 0.xIL/? D IRn�p . Hence the induction assumption shows that g maps
L? homeomorphically onto f 0.xIL/? and thus f is a local homeomorphism at
x which in view of Theorem 2.3.2 completes the proof. �

2.3.5 Comments and References

It has already been observed in the early papers dealing with piecewise affine
mappings that the determinant signs of the matrices corresponding to the selection
functions play an important role in connection with the homeomorphism problem
(cf. Theorem 2.3.1). Rheinboldt and Vandergraft have proved in [59] that a
piecewise affine mapping is surjective, provided that all determinants of the matrices
corresponding to a set of selection functions have the same nonvanishing sign
(cf. also [8, 48]), and Schramm has shown in [70] that such mappings are open.
In [33] Kuhn and öwen introduced the term coherent orientation for piecewise
affine mappings which admit a collection of selection functions, the matrices of
which have the same nonvanishing determinant sign, and showed that injective
piecewise affine mappings are coherently oriented. They have also indicated the
geometric meaning of coherent orientation which we have used as a definition
(cf. Proposition 2.3.5).

The problem of local versus global homeomorphisms has been intensively
studied in the literature. The general theorems on covering maps and local home-
omorphisms of Sect. 2.3.2 remain valid for arbitrary metric spaces X and Y .
Theorem 2.3.3 is due to Browder (cf. [6, 33], Sect. 4.2). Further conditions which
ensure that a local homeomorphism is a covering map are given in [50]. Theorems
2.3.4 and 2.3.5 can be found in Spanier’s book [78] as indicated. The introduction
of covering map theory to the study of piecewise affine functions is due to Schramm
(cf. [70]) and has been further exploited in [33] to prove the branching number
theorem for the important special case of the second branching number. The general
branching number theorem has been proved in [72].
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The factorization results of Sect. 2.3.3 can be found in the article [16] of Eaves
and Rothblum. The latter paper extends most of the results which we have presented
in this section to piecewise affine mappings over general ordered fields.

Sufficient homeomorphism conditions which rely on the matrix-vector pairs
rather than the subdivision can be found e.g., in the articles [20] of Fujisawa and
Kuh, [30] of Kojima and Saigal, and in the recent paper [58].

2.4 Euclidean Projections

To illustrate the results developed in the present chapter, we proceed with an analysis
of Euclidean projections onto polyhedra. This class of mappings is a particularly
important subclass of piecewise affine functions and has numerous applications,
one of which is outlined at the end of this section.

The Euclidean projection ˘S onto a closed convex set S � IRn is the mapping
which assigns to each point x 2 IRn the unique point˘S.x/ 2 S which has minimal
Euclidean distance to x. The existence of a minimizer follows from Weierstass’
Theorem which implies that a continuous function which has compact lower level
sets has a minimizer on every closed set. The uniqueness is a consequence of the
convexity of S and the trivial fact that the midpoint between any two distinct points
on a sphere has smaller distance to the center of the sphere than the endpoints. As
an illustration of the mapping˘S , we first calculate the Euclidean projection onto a
line segment

Œv;w� D ftv C .1 � t/wj0 � t � 1g:

Since the result will be used in the sequel, it is convenient to formulate it as a lemma.

Lemma 2.4.1. If v and w are distinct vectors in IRn, then

˘Œv;w�.x/ D

8
ˆ̂<

ˆ̂:

v if .x � v/T .w � v/ � 0

v C .x � v/T .w � v/

.w � v/T .w � v/
.w � v/ if 0 < .x � v/T .w � v/ < .w � v/T .w�v/

w if .w � v/T .w � v/ � .x � v/T .w � v/

Proof. Elementary geometric arguments show that the unique point of the line

affŒv;w�which has minimal Euclidean distance to x is the point vC .x�v/T .w�v/
.w�v/T .w�v/

.w�v/.

Hence if 0 < .x�v/T .w�v/
.w�v/T .w�v/

< 1, then the latter point is the closest point to x on the line
segment Œv;w�. Clearly the endpoint v is the closest point to x on the line segment
Œv;w� if the angle between .x� v/ and .w � v/ is obtuse, i.e., if .x� v/T .w � v/ � 0;

while w is the Euclidean distance minimizer to x if the angel between .x � w/ and
.v � w/ is obtuse, i.e., if .x � w/T .v � w/ � 0. The identity
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.x � w/T .v � w/ D .w � v/T .w � v/� .x � v/T .w � v/

thus proves the assertion. �

We note that for every closed convex set S � IRn the equation ˘S.x/ D s

holds if and only if ˘Œs;s0 �.x/ D s for every s0 2 S . The next result establishes the
nonexpansiveness of the Euclidean projection with respect to the Euclidean norm.

Proposition 2.4.1. Let S � IRn be a nonempty closed convex set and x; y 2 IRn.
Then

k˘S.x/ �˘S.y/k � kx � yk:

Proof. Define v D ˘S.x/ and w D ˘S.y/. If v D w, then the inequality holds
trivially. If v ¤ w, then the convexity of S implies that v D ˘Œv;w�.x/ and w D
˘Œv;w�.y/ and hence Lemma 2.4.1 yields that

.x � v/T .w � v/ � 0

and

.y � w/T .v � w/ � 0:

Summing up both inequalities, we obtain

.v � w/T .v � w/ � .x � y/T .v � w/:

Schwarz’s inequality thus yields

kv � wk2 � kx � ykkv � wk
which establishes the assertion of the proposition. �

Beside the definition of the Euclidean projection by means of a minimal principle
there is an equivalent “dual” characterization of this mapping based on the normal
cone concept.

Proposition 2.4.2. For every nonempty closed convex set S � IRn and every s 2 S
the following identity holds:

˘�1
S .s/ D fsg CNS.s/:

Proof. We have to prove that ˘S.x/ D s if and only if .x � s/ 2 NS.s/. By
definition of the normal cone a vector v is an element of NS.s/ if and only if the
set S is a subset of the halfspace H.s; v/ D fy 2 IRnjvT y � vT sg: We thus have
to prove that for every x 2 IRn the equality ˘S.x/ D s holds if and only if S �
H.s; x � s/. To see this, recall that ˘S.x/ D s if and only ˘Œs;s0 �.x/ D s for
every s0 2 S . Lemma 2.4.1 shows that the latter statement holds if and only if
.x � s/T s0 � .x � s/T s for every s0 2 S , i.e., if and only if S � H.s; x � s/. �
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2.4.1 The Euclidean Projection onto a Polyhedron

Next we show that the Euclidean projection onto a polyhedron is piecewise affine.
Before we present this result, we calculate the Euclidean projection onto an affine
subspace S of IRn, hereby using the result of Proposition 2.4.2. Recall that any
affine subspace S is representable as the intersection of a finite number of .n � 1/-
dimensional hyperplanes with linearly independent normals.

Proposition 2.4.3. If S D fx 2 IRnjAx D bg; where A is an m � n-matrix with
full row rank and b 2 IRm, then˘S.z/ D .I �AT .AAT /�1A/z C .AT .AAT /�1/b:

Proof. By Proposition 2.4.2 the vector x 2 S is the Euclidean projection of the
vector z 2 IRn if and only if

z 2 fxg CNS.x/:

It is an immediate consequence of the definition that the normal cone of the affine
subspace S � IRn at a point x 2 S is the orthogonal complement of the linear
subspace S � x which is independent of x. In view of the representation of S , we
thus obtain

NS.x/ D fAT yjy 2 IRmg:
Hence the Euclidean projection˘S.z/ can be determined by solving the equation

�
z
b

�
D

�
I AT

A 0

� �
˘S.z/
y

�
;

and thus the assertion of the theorem follows from the identity

�
I AT

A 0

��1
D

�
I �AT .AAT /�1A AT .AAT /�1

.AAT /�1A �.AAT /�1
�
:

�

The latter proposition shows that the Euclidean projection onto an affine space is
an affine function. In order to prove that the Euclidean projection onto a polyhedron
P is a piecewise affine function we recall from Proposition 2.1.3 that the faces of a
polyhedron P D fx 2 IRnjAx � bg can be indexed by elements of the collection

I .A; b/ D ˚
I � f1; : : : ; mgjthere exists a vector x 2 IRn with

aTi x D bi ; i 2 I; aTj x < bj ; j 2 f1; : : : ; mgnI�
; (2.42)

where the vectors a1; : : : ; am form the rows of the m � n-matrix A, while the
numbers b1; : : : ; bm are the components of the vector b 2 IRm. The collection of
all sets

FI D ˚
x 2 IRnjaTi x D 0; i 2 I�

; I 2 I .A; b/; (2.43)
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is the collection of all nonempty faces of P . Moreover, Proposition 2.1.2 and part 3
of Proposition 2.1.3 show that the normal cone of P at a relative interior point x of
the face FI is given by

NI D conefai ji 2 I g; (2.44)

where N; D f0g by definition.

Proposition 2.4.4. Let P D fx 2 IRnjAx � bg, where A is an m � n-matrix
and b 2 IRm, let I .A; b/; FI , and NI be defined by (2.42)–(2.44), respectively. If
z 2 FI C NI for some I 2 I .A; b/; then ˘P .z/ D ˘SI .z/, where SI D fx 2
IRnjaTi x D bi ; i 2 I g.

Proof. If z 2 FI CNI ; then z 2 fxg CNI for some x 2 FI . Since, on the one hand,
Proposition 2.1.2 implies that NI � NP .x/, we obtain z 2 fxg C NP .x/ and, in
view of Proposition 2.4.2, x D ˘P .z/. Since, on the other hand, NI � NSI .x/ D
linfai ji 2 I g; we obtain z 2 fxg C NSI .x/ and since x 2 SI , Proposition 2.4.2
shows that x D ˘SI .z/. Thus˘P .z/ D ˘SI .z/. �

2.4.2 The Normal Manifold

The normal manifold induced by the polyhedronP D fx 2 IRnjAx � bg is defined
to be the collection of all polyhedra PI D FI CNI ; I 2 I .A; b/, where I .A; b/,
FI , andNI are defined by (2.42)–(2.44), respectively. Note that the normal manifold
is independent of the representation of the polyhedron since every set PI is the sum
of a face FI of P and the normal cone NI of P at a relative interior point of this
face. We will see below that the normal manifold is a polyhedral subdivision and
that its second branching number is 4. To prove this result, we use the following
lemma.

Lemma 2.4.2. 1. If I 2 I .A; b/, then every face of the polyhedron FI is of the
from FJ ; for an index set J 2 I .A; b/ with I � J .

2. If I 2 I .A; b/, then every proper face of the cone NI is of the form NJ , J 2
I .A; b/; J � I; J ¤ I .

3. If I; J 2 I .A; b/ are two distinct index sets such that PI \ PJ ¤ ;, then

(a) PI \ PJ D FI \ FJ CNI \NJ ;

(b) FI \ FJ is a common proper face of FI and FJ ,
(c) NI \NJ D NI\J is a common proper face of NI and NJ .

Proof. 1. The first assertion is a trivial consequence of the fact that every face of
FI is representable as fx 2 FI jaTk x D 0; k 2 Kg for some K � f1; : : : ; mgnI .
Taking the maximal index sets K , we thus conclude that every face of FI is
indeed of the form FJ , J � I , J 2 I .A; b/.
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2. To see the second assertion, note that every proper face F of NI is generated by
a subset of the vectors ai ; i 2 I . So let J � I be a maximal subset of I such
that F D NJ . Since F is proper, J ¤ I . In order to see that J 2 I .A; b/;

recall that every face is a max-face, i.e., there exists a vector v such that the
points of F are the maximizers of vT x over x 2 NI . Since J was assumed to
be maximal, we conclude that vT aj D 0 for every j 2 J , and vT ak < 0 for
every k 2 f1; : : : ; mgnJ , which shows that J 2 I .A; b/. To see the converse
let J 2 I .A; b/ with J � I , J ¤ I . In particular, there exists a vector v 2 IRn

such that vT aj D 0 for every j 2 J and vT ak < 0 for every k 2 f1; : : : ; mgnJ .
Hence the setNJ is the set of maximizers of the linear function vT x over x 2 NI
and thus a face of NI . The face is proper since for every i 2 InJ the strict
inequality vT ai < 0 holds.

3. (a) Note first that by the definition of the sets PI and PJ the inclusion

.FI \ FJ /C .NI \NJ / � PI \ PJ

holds. To prove the converse inclusion, we note that z 2 PI \PJ if and only
if there exist two vectors x 2 FI and y 2 FJ such that

z 2 .fxg CNI /\ .fyg CNJ /: (2.45)

Since by Proposition 2.1.2 the inclusion NI � NP .x/ holds for every x 2
FI , (2.45) implies

z 2 .fxg CNP .x// \ .fyg CNP .y//; (2.46)

which in view of Proposition 2.4.2 is equivalent to x D ˘P .z/ D y and thus
proves that

˘P .z/ 2 FI \ FJ : (2.47)

Moreover, since x D ˘P .z/ D y, (2.45) also shows that

z �˘.z/ 2 NI \NJ ;

which proves the inclusion PI \ PJ � .FI \ FJ /C .NI \NJ /.
(b) Recall that (2.47) holds for every z 2 PI \ PJ . Since the latter set was

assumed to be nonempty, we thus conclude that FI \FJ ¤ ;. The assertion
thus follows from the fact that the nonempty intersection of any two distinct
faces FI and FJ of P is a proper face of both faces FI and FJ .

(c) Note first that the inclusion NI\J � NI \NJ is trivial. To see the converse
inclusion, let v;w 2 IRn be two vectors satisfying
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aTi v D bi ; i 2 I; aTk v < bk; k 2 f1; : : : ; mgnI;
aTj w D bj ; j 2 J; aTl v < bl ; l 2 f1; : : : ; mgnJ: (2.48)

Note that yT v D 0 for every y 2 NI and yTw D 0 for every y 2 NJ and
thus

yT .v C w/ D 0 for every y 2 NI \NJ . (2.49)

If y 2 NI , then y D P
i2I\J �iai C P

j2InJ �j aj ; for some multipliers
�i � 0. If y 62 NI\J , then at least one of the multipliers �j ; j 2 InJ;
is nonzero and hence yT .v C w/ < 0. In view of (2.49), we deduce that
y 62 NI \ NJ and thus NI \ NJ � NInJ . Since the same holds with the
roles of I and J interchanged, we conclude that NI \ NJ � NI\J . The
assertion that NI\J is a common proper face of NI and NJ is an immediate
consequence of part 2 and the trivial observation that I \ J 2 I .A; b/ for
every I; J 2 I .A; b/. �

With the aid of the latter lemma, one easily proves the following important result.

Proposition 2.4.5. The normal manifold induced by a polyhedron P is a polyhe-
dral subdivision of IRn, the second branching number of which is 4.

Proof. Let P D fx 2 IRnjAx � bg. The full dimensionality of the sets FI C NI ;

I 2 I .A; b/ is an immediate consequence of the fact that FI contains a relative
interior point x and that the set NI spans the subspace linfai ji 2 I g, while the
set FI � fxg spans its orthogonal complement. The covering property is also easily
verified since for every z 2 IRn there exists a unique face FI of P containing the
point x D ˘P .z/ in its relative interior. Since by Proposition 2.4.2 the identity x D
˘P .z/ holds if and only if z 2 fxg CNP .x/ and by Proposition 2.1.2NP .x/ D NI
for every relative interior point x of FI , we conclude that z 2 FI CNI . The fact that
the nonempty intersection of any two polyhedra PI and PJ of the normal manifold
is a common face of both polyhedra is a direct consequence of Lemma 2.1.2 and
part 3 of Lemma 2.4.2. We thus conclude that the normal manifold induced by a
polyhedron is indeed a polyhedral subdivision.

To see that the second branching number is 4, note that Lemmas 2.1.2 and 2.4.2
show that every face of a polyhedron PI D FI C NI ; I 2 I .A; b/; is of the form
F D FJ C NK , where J;K 2 I .A; b/ with K � I � J , and, moreover, that
FJ C NK � P QI for some index set QI 2 I .A; b/ if and only if K � QI � J .
Since K � J , the sets FJ and NK are contained in mutually orthogonal subspaces
of IRn and thus dim.FJ C NK/ D dimFJ C dimNK: Since K 2 I .A; b/, we
deduce from the definition of NK and FK that dimNK D .n � dimFK/. Hence
dim.FJ CNK/ D .n�2/ if and only if dimFJ D .dimFK �2:/ SinceK � I � J

for I 2 I .A; b/ if and only if FJ and FI are faces of the polyhedron FK and FJ
is a face of FI , the proof is complete if we can show that every face of dimension
.dimFK �2/ of the polyhedronFK is contained in precisely two faces of dimension
.dimFK � 1/.

To see this, recall that
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FK D
n
x 2 IRnjaTk x D bk; k 2 K; aTj x � bj ; j 2 f1; : : : ; mgnK

o
:

Since K 2 I .A; b/; there exists a vector v 2 IRn with

aTk v D bk; k 2 K; aTj v < bj ; j 2 f1; : : : ; mgnK:

To simplify the exposition, we make some additional assumptions which do not
affect the face lattice of FK . First of all, since the face lattice of a translation of a
polyhedron is the collection of all translated faces, we may assume without loss of
generality that v D 0 and thus

bk D 0 for every k 2 K
bj > 0 for every j 2 f1; : : : ; mgnK: (2.50)

Secondly, since any vector in IRn can be uniquely decomposed as the sum of a
vector in a linear subspace and of a vector in its orthogonal complement, any vector
aj ; j 62 K; is the sum of a vector cj 2 linfakjk 2 Kg and a vector dj 2 fx 2
IRnjaTk x D 0; k 2 Kg. If j 62 K is an arbitrary index and x 2 IRn is a vector
with aTk x D bk for every k 2 K , then, in view of (2.50), the vector x satisfies the
inequality aTj x � bj if and only if it satisfies the inequality dTj x � bj . Since the
faces of the polyhedron FK do not depend on its representation, we may replace aj
by dj , if necessary, and thus assume without loss of generality that

aj 2 linfakjk 2 Kg? for every j 2 f1; : : : ; mgnK . (2.51)

Finally, we may delete redundant inequalities from the representation of FK and
assume that for each j 2 f1; : : : ; mg the constraint aTj x � bj is necessary, i.e., the
set of feasible solutions increases if the inequality is removed. Note that every face
of dimension .dimFK � 1/ is of the form FK[fj g; where j 62 K . In order to prove
the assertion that every face of dimension .dimFK � 2/ is contained in precisely
two faces of dimension .dimFK � 1/, it thus suffices to show that the dimension of
the nonempty intersection of any three distinct faces of the from FK[fj g; j 62 K , is
less than .dimFK � 2/. In view of (2.51), it suffices to check that any three vectors
aj1 ; aj2 ; and aj3 with ji 2 f1; : : : ; mgnK are linearly independent, provided there
exists a vector x 2 FK with

aTji x D bji ; i D 1; 2; 3. (2.52)

If two vectors are linearly dependent, say aj1 D ˛aj2 ; then we deduce from (2.50)
and (2.52) that ˛ > 0. Hence one of the constraints is redundant, which contradicts
the assumption that all inequalities are necessary. Therefore any two vectors are
linearly independent and the equation
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�1aj1 C �2aj2 C �3aj3 D 0

implies that either all multipliers �i vanish or all of them are nonzero. If one of
the multipliers, say �1, is positive, while another multiplier, say �2, is negative,
then either aj1 2 conefaj2 ; aj3g or aj2 2 conefaj1 ; aj3g, depending on the sign of
�3. Both implications contradict the non-redundancy assumption in view of (2.52).
Therefore the multipliers are either all positive or all negative. However, if this
is the case, then aj1 2 conef�aj2;�aj3g; which in view of (2.52) contradicts the
assumption (2.50) and thus proves the linear independence of the vectors aj1 ; aj2 ;
and aj3 . �

We note that we have actually shown in the final part of the latter proof that every
ridge of a polyhedron is contained in exactly two facets, a fact which is well known
in polyhedral theory. This is the geometric reason why the second branching number
of the normal manifold induced by a polyhedron is 4.

2.4.3 An Application: Affine Variational Inequalities

To illustrate the results developed in the present section, we show how they can
be used to answer existence and uniqueness questions for the solution of an affine
variational inequality

.Cx C d/T x � .Cx C d/T y for every y 2 P D fz 2 IRnjAz � bg; (2.53)

where A and C are m � n- and n � n-matrices, respectively, b 2 IRm, and d 2 IRn.
In Sect. 1.1.1 we have indicated how variational inequalities can be used to model
equilibrium situations of dynamical systems.

Let us first show how the variational inequality (2.53) can be turned into a
piecewise affine equation. Note that the definition (2.2) of the normal cone mapping
NP shows that x solves the variational inequality (2.53) if and only if Cx C d 2
NP .x/ which in view of Proposition 2.4.2 is equivalent to the equation

˘P .x C Cx C d/ D x: (2.54)

Using the results developed in the former sections, one easily proves the following
existence and uniqueness result.

Theorem 2.4.1. Let A and C be m� n- and n� n-matrices, respectively, b 2 IRm,
d 2 IRn, let a1; : : : ; am be the row vectors ofA, and let I .A; b/ be defined by (2.6).
Choose for every I 2 I .A; b/ a maximal set of linearly independent vectors from
fai ji 2 I g and store these vectors in the rows of a matrixMI . If all matrices

�
I �MT

I .MIM
T
I /

�1MI

�
C �MT

I .MIM
T
I /

�1MI , i 2 I .A; b/,
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have the same nonvanishing determinant sign, then the variational inequality (2.53)
has a unique solution.

Proof. Since the variational inequality (2.53) is equivalent to the (2.54), it suffices
to prove that the function ˘P .x C Cx C d/ � x has a unique zero. In view of
Propositions 2.4.4 and 2.4.5, the mapping˘P .xCCxC d/� x is piecewise affine
with affine selection functions

˘SI .x C Cx C d/� x:

Moreover, the normal manifold induced by P is a polyhedral subdivision corre-
sponding to the mapping ˘P .x C Cx C d/ � x. In view of the assumptions and
Proposition 2.4.3, we deduce that˘P .xCCxC d/� x is coherently oriented, and
in view of Theorem 2.3.7 and Proposition 2.4.5, the latter mapping thus has a unique
zero. �

Specifying the polyhedron P , we can use the latter theorem to develop the well-
known existence and uniqueness conditions for the linear complementarity problem
of finding a vector x 2 IRn which satisfies

x � 0; Sx C r � 0; .Sx C r/T x D 0; (2.55)

where S is an n � n-matrix and r 2 IRn. Note that (2.55) is equivalent to

maxf�x;�Sx � rg D 0:

Since ˘IRnC

.z/ D maxfz; 0g, the complementarity problem is equivalent to (2.54)
with C D �S; d D �r , and P D IRnC, i.e., A D I and b D 0 in the formulation
(2.53). Since I .I; 0/ is the collection of all subsets of I � f1; : : : ; ng, the matrices
MI in the above theorem contain the row vectors ei , i 2 I , where ei is the i th unit
vector in IRn. Hence the matrixDI D MT

I .MIM
T
I /

�1MI is a diagonal matrix with
diagonal entries

DI
ii D

�
1 if i 2 I;
0 otherwise.

The rows NI
i of the matrix

NI D �
I �MT

I .MIM
T
I /

�1MI

�
C �MT

I .MIM
T
I /

�1MI

are therefore given by

NI
i D

� �ei if i 2 I;
�Si otherwise,

(2.56)

where Si denotes the i th row of the matrix S D �C . Since NI D �I for
I D f1; : : : ; ng; the assumption of the above theorem is satisfied if all determinants
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of the matrices NI ; I � f1; : : : ; ng, are negative. In view of the Laplace expansion
and the special form (2.56) of the matricesNI , this is equivalent to the requirement
that all principal minors of the matrix S are positive. In the terminology of linear
complementarity theory, a matrix with the latter property is called a P-matrix.
Summing up, we have proven the following well-known result as a corollary of
Theorem 2.4.1:

Corollary 2.4.1. If S is a P -matrix, then the linear complementarity problem
(2.55) has a unique solution.

2.4.4 Comments and References

For a detailed account on the Euclidean projection, we refer to Zarantonello’s article
[81] and to Singer’s book [77]. By a result of Pang the Euclidean projection˘P can
be locally decomposed as

˘P .x C y/ D ˘P .x/C˘C.x/.y/;

whereC.x/ D conefz 2 P �f˘P .x/gj.˘P .x/�x/T x D 0g is the so-called critical
cone at ˘P .x/ (cf. Lemma 4 in [53] and Corollary 4.5 in [61]). In particular, the
latter result implies that the B-derivative of ˘P is given by

˘ 0
P .xIy/ D ˘C.x/.y/:

The Euclidean projection onto polyhedra has been further studied by Robinson in
[66], where the normal manifold is introduced and analyzed in connection with
normal maps induced by linear transformations (cf. also [55]). The branching
number theorem has been first proved by Ralph in [56]. His proof differs from
ours by the use of purely geometric arguments. In particular, he does not exploit
the representation of the polyhedron as a system of linear inequalities (cf. [71]).

The results of Theorem 2.4.1 are related to the results of Robinson in [66], where
the affine variational inequality is transformed into a normal map. For a first account
on the well-known existence and uniqueness result for the linear complementarity
problem (cf. Corollary 2.4.1), we refer to the paper [69] of Samelson, Thrall, and
Wesler. A comprehensive survey of the linear complementarity problem is given in
Murty’s book [47].

2.5 Appendix: The Recession Function

In this appendix to the chapter on piecewise affine functions, we introduce the
recession function and study the relationship between a piecewise affine function
and its recession function. The recession function of a function f :IRn! IRm is
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defined by

f 1.x/ D lim
˛!1

f .˛x/

˛
;

provided the limit exists for every x 2 IRn. If f is piecewise affine, then the latter
limit always exist since for every x there exists a polyhedron 	 in the corresponding
polyhedral subdivision such that ˛x 2 	 for every sufficiently large ˛ > 0. Hence
if .Ai ; bi / is the corresponding matrix-vector pair, we obtain

f 1.x/ D lim
˛!1

Ai˛x C bi

˛
D Aix:

In particular, the recession function of an affine function f .x/ D Ax C b is the
linear function f 1.x/ D Ax.

The recession function has some interesting properties which are reminiscent of
the properties of the B-derivative. In particular, the recession function is piecewise
linear. This is easily seen by considering a max–min representation of a real-valued
piecewise affine function f :IRn! IR (cf. Proposition 2.2.2), i.e.,

f .x/ D max
1�i�l

min
j2Mi

aTj x C bj ;

where aT1 xCb1; : : : ; a
T
k Cbk are selection functions corresponding to f andMi �

f1; : : : ; kg, i D 1; : : : ; l . The recession function of f is easily calculated as

f 1.x/ D max
1�i�k min

j2Mi

aTj x;

which is a piecewise linear function. Since a function f :IRn! IRm is piecewise
linear if and only if its component functions are piecewise linear, we obtain the
following result.

Proposition 2.5.1. The recession function of a piecewise affine function is piece-
wise linear.

Beside its piecewise linearity, the recession function has a second property in
common with the B-derivative, namely the existence of a chain-rule.

Proposition 2.5.2. If f :IRn! IRm and g W IRk ! IRn are piecewise affine
functions, then

.f ı g/1 D f 1 ı g1:

Proof. Let us fix some vector x 2 IRk and suppose

g.˛x/ D Ai˛x C bi

for every sufficiently large ˛ > 0, i.e., g1.x/ D Aix. Note that the following two
limits both exist:
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.f ı g/1.x/ D lim
˛!1

f .Ai˛x C bi/

˛
;

.f 1 ı g1/.x/ D lim
˛!1

f .˛Aix/

˛
:

Since f is Lipschitzian (cf. Proposition 2.2.7), there exists a constant L such that

����
f .Ai˛x C bi /

˛
� f .Ai˛x/

˛

���� � L

����
bi

˛

���� :

Letting ˛ tend to infinity, we conclude that .f ı g/1.x/ D .f 1 ı g1/.x/. �

The main result of this appendix states that the recession function f 1 of a
coherently oriented piecewise affine function f preserves enough information to
decide whether or not f is a homeomorphism.

Theorem 2.5.1. A coherently oriented piecewise affine function is a homeomor-
phism if and only if its recession function is a homeomorphism.

Proof. Let ˙ be a polyhedral subdivision corresponding to the piecewise affine
function f :IRn! IRn. Recall that the recession cone of a polyhedron 	 2 ˙

is the set of all vectors y 2 IRn such that 	 C conefyg 2 	 � 	 . Setting
g.x/ D x � x0 for some vector x0 2 	 , one readily deduces from the latter chain
rule that f 1.y/ D Ay, provided the function f coincides on 	 with an affine
function Ay C b. Since for every y 2 IRn there exists a polyhedron 	 2 ˙ such
that ˛y 2 	 for every sufficiently large ˛ � 0, every y 2 IRn is contained in the
recession cone of some polyhedron	 2 ˙ . Hence if f is a piecewise affine function
with corresponding collection of matrix-vector pairs .A1; b1/; : : : ; .Ak; bk/, then
the collection of matrices A1; : : : ; Ak corresponds to the recession function f 1.
Moreover, if c is the recession cone of 	 2 ˙ , then 	 D O	 C c for some polytope
O	 and f .	/ D f . O	/ C f 1.c/, i.e., f 1.c/ is the recession cone of f .	/. Let
C˙ be the collection of all n-dimensional recession cones of polyhedra 	 2 ˙ .
We have already argued above that the collection of all recession cones of polyhedra
in ˙ covers IRn. If we remove the cones with nonempty interior, this covering
property is not affected; whence the cones in C˙ cover IRn. We also note that
the intersection of the interiors of any two distinct cones c and Qc is empty for
otherwise the corresponding polyhedra 	; Q	 2 ˙ would have a common interior
point. To see this, let 	 D fx 2 IRnjAx � bg and Q	 D fx 2 IRnj QAx � Qbg, where
none of the rows of the matrices A and QA vanishes. In this case the intersection of
the interiors of the corresponding recession cones c and Qc is given by

int.c/ \ int. Qc/ D fx 2 IRnjAx < 0; QAx < 0g;

and one readily verifies that ˛x 2 int.	/ \ int. Q	/ for every x 2 int.c/ \ int. Qc/ and
every sufficiently large ˛ > 0.
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Suppose first that f is not a homeomorphism and let Q	 be an element of ˙ with
n-dimensional recession cone Qc. By Corollary 2.3.1

f . Q	/ �
[

	2˙nfQ	g
f .	/: (2.57)

If x C ˛y 2 Q	 for every ˛ � 0, then the latter inclusion shows that there exists a
polyhedron 	 2 ˙nf Q	g such that x C ˛y 2 	 for every sufficiently large ˛ > 0.
Hence y is contained in the recession cone of 	 and thus the recession cone of the
polyhedron f . Q	/ is a subset of the union of the recession cones f .	/; 	 2 ˙nf Q	g.
Since f 1.c/ is the recession cone of f .	/, we thus deduce from (2.57) that

f 1. Qc/ �
[

c¤Qc
f 1.c/: (2.58)

Since Qc has nonempty interior and f 1 is coherently oriented and coincides with a
linear mapping on Qc, the cone f 1. Qc/ has nonempty interior as well. Hence (2.58)
implies that there exists at least one cone c 2 C˙nf Qcg such that

intf 1.c/ \ intf 1. Qc/ ¤ ;:

If v is an element of the latter set, then v has a preimage in the interior of c and in
the interior of Qc. We have already seen above that the interiors of c and Qc have no
common points. Hence v has at least two preimages and f 1 is not injective. Thus
f is a homeomorphism if f 1 is a homeomorphism.

The converse is proved in a similar way. If f is a homeomorphism, then

intf .	/ \ intf . Q	/ D ;

whenever 	 ¤ Q	 . Since the interiors of two polyhedra with n-dimensional recession
cones have a nonempty intersection whenever the interiors of the recession cones
have a nonempty intersection, we deduce that

intf 1.c/ \ intf 1. Qc/ D ;

for every two distinct recession cones c; Qc 2 C˙ . Since the union of all cones
in C˙ covers IRn, we may use Corollary 2.3.1 to deduce that f 1 is indeed a
homeomorphism. �

As an example of the simplification one can achieve in passing from a piecewise
affine function to its recession function, we calculate the recession function of the
Euclidean projection˘P onto a convex polyhedron P � IRn.

Proposition 2.5.3. If P is a convex polyhedron with recession cone C , then
˘1
P D˘C :
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Proof. Let P be decomposed asP D QCC;whereQ is a compact polyhedron and
let x 2 IRn. Since ˘p is piecewise affine, the set ˘P .conefxg/ polygonal line, i.e.,
pieced together by a finite number of line segments. Hence there exists a direction
v 2 IRn and a positive real number Ǫ such that

˘P .˛x/ D ˘P . Ǫx/C .˛ � Ǫ /v (2.59)

for every ˛ � Ǫ . It follows from the definition of the recession function that
˘1
P .x/ D v. Moreover, since ˘P .˛x/;˘P . Ǫx/ 2 P , we conclude that v 2 C .

The definition of the Euclidean projection˘P yields

k˛x �˘P .˛x/k � k˛x � yk; (2.60)

for every ˛ � Ǫ and every y 2 P . Since P is the sum of Q and C; we may set
y D q C c; q 2 Q; c 2 C , and since ˛C D C for every ˛ > 0, we obtain from
(2.59) and (2.60) the inequality

k˛x �˘P . Ǫx/C Ǫv � ˛vk � k˛x � q � ˛ck (2.61)

for every q 2 Q; c 2 C , and ˛ � Ǫ . Dividing both sides by ˛ and letting ˛ tend to
infinity we conclude that kx � vk � kx � ck for every c 2 C , hence ˘C .x/ D v.

�



Chapter 3
Elements from Nonsmooth Analysis

3.1 The Bouligand Derivative

The success of the derivative concept for smooth functions relies on the following
properties of the derivative:

• The function g.x/ D f .x0/C rf .x0/.x � x0/ is a first order approximation of
the function f at x0, i.e. g.x0/ D f .x0/ and

lim
x!x0

kf .x/ � g.x/k
kx � x0k D 0:

• The first-order approximation, being an affine function, is considerably simpler
than the original function.

• The existence of calculus rules allows the calculation of the derivative even for
complicated composed functions.

In an attempt to generalize the derivative to a class of nonsmooth function, one has
to try to preserve the latter properties in some sense. A natural extension of the
classical derivative is the Bouligand derivative, a concept which we have already
used in the latter chapter for a local analysis of piecewise affine functions.

Let U � IRn be an open set and let f :U ! IRm be a function. If for every
y 2 IRn the limit

f 0.x0Iy/ D lim
˛!0
˛>0

1

˛
.f .x0 C ˛y/ � f .x0//

exists, then f is called directionally differentiable at x0 and the function f 0.x0I :/
is called the directional derivative of f at x0. If f is directionally differentiable at
x0 and the function g.x/ D f .x0/C f 0.x0I x � x0/ is a first-order approximation
of f at x0, then f is called Bouligand differentiable (B-differentiable) at x0 and
the function f 0.x0I :/ is called the B-derivative of f at x0. The classical definition

S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs
in Optimization, DOI 10.1007/978-1-4614-4340-7 3, © Stefan Scholtes 2012
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of Fréchet differentiability (F-differentiability) is recovered by requiring that f is
B-differentiable at x0 and that f 0.x0I :/ is a linear function. In this case the function
f 0.x0I :/ is called the F-derivative of f at x0. We call the function f W U ! IRm

B-differentiable (F-differentiable) if it is B-differentiable (F-differentiable) at all
points of the open set U .

While the B-derivative concept preserves the first-order approximation property
of the classical F-derivative, the approximation function is not necessarily affine any
more. Nevertheless, it is still considerably simpler than the original function since
the directional derivative of a function is positively homogeneous, i.e.,

f 0.x0I�y/ D �f 0.x0Iy/ for every � � 0. (3.1)

In fact, if ˇ D ˛� for a positive real number �, then ˇ tends to zero from above if
and only if ˛ does so; hence

lim
˛!0
˛>0

1

˛
.f .x0 C ˛�y/ � f .x0// D � lim

ˇ!0
ˇ>0

1

ˇ
.f .x0 C ˇy/ � f .x0//:

The directional differentiability of a function is only of limited interest since the
directional derivative provides a rather poor local approximation of the function. In
fact, the function f W IR2 ! IR defined by

f .x1; x2/ D
(
0 if x2 � pjx1j; or if x1 D 0,

1 otherwise

has a vanishing directional derivative at the origin without even being continuous
at this point. The approximation properties of the B-derivative are much better. The
proofs of the following facts are straightforward and therefore omitted.

Remark 3.1.1. 1. If f :U ! IRm is B-differentiable at x0 2 U , then f 0.x0I :/ is
continuous if and only if f is continuous.

2. If f :U ! IRm is a function, x0 2 U; and g :IRn! IRm is a positively homoge-
neous function with

lim
y!0

kf .x0 C y/ � f .x0/� g.y/k
kyk D 0;

then f is B-differentiable at x0 and f 0.x0Iy/ D g.y/.
3. A function f :U ! IRm is B-differentiable at x0 2 U if and only if its component

functions fi :U ! IR; i D 1; : : : ; m; are B-differentiable at x0.

An unrenounceable property for the practical use of the B-derivative is the existence
of calculus rules which, in fact, are mere restatements of the classical rules. The most
important calculus rule is the following chain rule.
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Theorem 3.1.1. If U � IRn and V � IRp are open sets and f :U ! IRm and
g :V ! IRn are continuous and B-differentiable at the points x0 2 V and g.x0/ 2
U , respectively, then the function f ı g is B-differentiable at x0 and

.f ı g/0.x0Iy/ D f 0.g.x0/Ig0.x0Iy//:

Proof. Define the functions

rf .z/ D f .g.x0/C z/� f .g.x0// � f 0.g.x0/I z/;

rg.y/ D g.x0 C y/ � g.x0/ � g0.x0Iy/
rf ıg.y/ D f .g.x0 C y//� f .g.x0// � f 0.g.x0/Ig0.x0Iy//

in suitable neighborhoods of the origin in IRn and IRp; respectively. The definition
of the B-derivative yields

lim
z!0

rf .z/

kzk D 0 and lim
y!0

rg.y/

kyk D 0: (3.2)

Since f 0.g.x0/Ig0.x0I :// is positively homogeneous, the second part of
Remark 3.1.1 shows that it suffices to prove that

lim
y!0

krf ıg.y/k
kyk D 0: (3.3)

As a consequence of the positive homogeneity of the B-derivatives, we obtain

krf ıg.y/k
kyk D kf .g.x0 C y//� f .g.x0//� f 0.g.x0/Ig0.x0I y//k

kyk

D kf .g.x0/C g0.x0I y/C rg.y//� f .g.x0//� f 0.g.x0/Ig0.x0I y//k
kyk

D krf .g0.x0I y/C rg.y//C f 0.g.x0/Ig0.x0I y/C rg.y//� f 0.g.x0/Ig0.x0I y/k
kyk

� krf .g0.x0I y/C rg.y//k
kyk

C
����f

0

�
g.x0/Ig0

�
x0I y

kyk
�

C rg.y/

kyk
�

� f 0

�
g.x0/Ig0

�
x0I y

kyk
������ :

In order to complete the proof, it thus suffices to show that

lim
y!0

krf .g0.x0Iy/C rg.y//k
kyk D 0 (3.4)
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and

lim
y!0

����f
0
�
g.x0/Ig0

�
x0I y

kyk
�

C rg.y/

kyk
�

� f 0
�
g.x0/Ig0

�
x0I y

kyk
������ D 0:

(3.5)

The latter identity is a mere consequence of (3.2) and the continuity of the
B-derivatives f 0.g.x0/I :/ and g0.x0I :/ which these functions inherit from the
functions f and g (cf. Remark 3.1.1). To see (3.4), note that

krf .g0.x0Iy/C rg.y//k
kyk � krf .g0.x0Iy/C rg.y//k

kg0.x0Iy/C rg.y/k
�����g

0

�
x0I y

kyk
����� C krg.y/k

kyk
�
:

The continuity of g0.x0I :/ and (3.2) implies the existence of a boundM > 0 with
�����g

0
�
x0I y

kyk
����� C krg.y/k

kyk
�

� M

for every y in a neighborhood of the origin. Since g0.x0Iy/ C rg.y/ tends to zero
as y tends to zero, we may thus use (3.2) to deduce (3.4). �

The following corollary is an immediate consequence of the chain rule and the
derivatives of the functions f1.x1; x2/ D ˛x1 C ˇx2; f2.x1; x2/ D x1x2, and
f3.x1; x2/ D x1

x2
, where the last function is defined only if x2 ¤ 0.

Corollary 3.1.1. Let f; g :U ! IR be continuous B-differentiable functions and
˛; ˇ 2 IR. Then

. f̨ C ˇg/0.x0Iy/ D f̨ 0.x0Iy/C ˇg0.x0Iy/;
and

.fg/0.x0Iy/ D g.x0/f
0.x0Iy/C f .x0/g

0.x0Iy/:
If g.x0/ ¤ 0, then

�
f

g

�0
.x0Iy/ D g.x0/f

0.x0Iy/ � f .x0/g0.x0Iy/
g.x0/2

:

Example 3.1.1. As an illustration of the chain rule, we calculate the B-derivative of
the max-min function

f .x/ D max
1�i�l min

j2Mi

fj .x/;

whereMi � f1; : : : ; kg for every i D 1; : : : ; l; and the functionsf1; : : : ; fk :U ! IR
are C1-functions defined on an open subset U of IRn. Note first that the piecewise
linear function

Qf .v/ D max
1�i�l min

j2Mi

vj
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is B-differentiable in view of Proposition 2.2.6 and that the functions fi are by
assumption F-differentiable. Hence Theorem 3.1.1 shows that f is B-differentiable.
To calculate the B-derivative of f at x0 2 U , we use the chain rule of Theorem 3.1.1.
For z 2 IRl , we define

h.z/ D max
1�i�l zi ;

and for i 2 f1; : : : ; lg and v 2 IRk; we define

gi .v/ D min
j2Mi

vj :

A direct application of the definition of the directional derivative yields

h0.zI u/ D max
i2I.z/ ui ;

g0
i .vI w/ D min

j2Ji .v/
wj ;

where I.z/ D fi jh.z/ D zi g and Ji .v/ D fj 2 Mi jg.v/ D vj g. Now we can use the
chain rule to calculate the B-derivative of Qf .v/ D h.g1.v/; : : : ; gl .v// as

Qf 0.vI w/ D max
i2 QI .v/

min
j2 QJi .v/

wj ;

where

QJi .v/ D
�
j 2 Mi j min

p2Mi

vp D vj

	
;

QI .v/ D
(
i 2 f1; : : : ; kgj QJi .v/ ¤ ;; Qf .v/ D min

p2 QJi .v/
vp

)
:

A final application of the chain rule thus yields

f 0.xIy/ D max
i2 QI .f .x//

min
j2 QJi .f .x//

rfj .x/T y:

3.1.1 The B-Derivative of a Locally Lipschitz Continuous
Function

An important class of nonsmooth functions are the locally Lipschitz continuous
functions. Recall that a function f :U ! IRm is called Lipschitz continuous on V �
U if there exists a constant L such that

kf .x/ � f .y/k � Lkx � yk (3.6)



70 3 Elements from Nonsmooth Analysis

for every x; y 2 V , i.e., the distance between two function values can be bounded
by a linear function of the distance between the arguments. A constant L satisfying
(3.6) is called a Lipschitz constant for f on V . The function f is called locally
Lipschitz continuous, if every point x 2 U admits a neighborhood V � U on
which f is Lipschitz continuous. Note that a locally Lipschitz continuous function
f :U ! IRm is Lipschitz continuous on every compact subset of U . Originally,
S.M. Robinson introduced the B-derivative as the directional derivative of a locally
Lipschitz continuous function. The reason that this definition is equivalent to ours in
the case of a locally Lipschitz continuous function is a consequence of the following
theorem.

Theorem 3.1.2. Let U � IRn be an open set, and let f :U ! IRm be a locally
Lipschitz continuous function which is directionally differentiable at x0 2 U .

1. If L is a Lipschitz constant for f in a neighborhood of x0, then L is a global
Lipschitz constant for f 0.x0I :/.

2. The function f is B-differentiable at x0.

Proof. The first part is a direct consequence of the definition of the directional
derivative. In fact,

kf 0.x0Iy/ � f 0.x0I z/k D lim
˛!0
˛>0

1

˛
kf .x0 C ˛y/ � f .x0 C ˛z/k

� lim
˛!0
˛>0

1

˛
Lk˛y � ˛zk

D Lky � zk:

To prove part 2, we have to show that

lim
x!x0

kf .x/ � f .x0/ � f 0.x0I x � x0/k
kx � x0k D 0:

Suppose this is not the case. Then there exists a sequence of vectors ym 2 IRn

converging to the origin such that

lim
m!1

kf .x0 C ym/� f .x0/� f 0.x0Iym/k
kymk ¤ 0: (3.7)

Since the unit sphere in IRn is compact, we may assume without loss of generality
that the sequence ym

kymk converges to a vector Ny on the unit sphere, for otherwise
we choose a suitable subsequence. Setting ˛m D kymk, we may use part 1 of the
theorem and the positive homogeneity of the directional derivative to conclude that
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0 � kf .x0 C ym/ � f .x0/ � f 0.x0Iym/k
kymk

D 1

˛m
kf .x0 C ym/ � f .x0 C ˛m Ny/C f 0.x0I˛m Ny/ � f 0.x0Iym/

C f .x0 C ˛m Ny/� f .x0/� f 0.x0I˛m Ny/k

� 1

˛m

�kf .x0 C ym/� f .x0 C ˛m Ny/k C kf 0.x0I˛m Ny/� f 0.x0Iym/k
�

C 1

˛m
kf .x0 C ˛m Ny/� f .x0/� f 0.x0I˛m Ny/k

� 2L

����
ym

˛m
� Ny

���� C
����
1

˛m
.f .x0 C ˛m Ny/ � f .x0// � f 0.x0I Ny/

���� :

Since ˛m D kymk is a nullsequence and ym
˛m

tends to Ny, the definition of the
directional derivative yields

lim
m!1

kf .x0 C ym/ � f .x0/ � f 0.x0Iym/k
kymk D 0;

which contradicts (3.7) and thus proves the assertion. �
An important tool for the applications of the classical differential calculus is
the fundamental theorem of the calculus which relates derivatives and integrals.
The following proposition yields an extension of this result to locally Lipschitz
continuous B-differentiable functions.

Proposition 3.1.1. Let U � IRn be an open convex set, f :U ! IRm be a locally
Lipschitz continuous B-differentiable function, and let x0; x1 2 U . The function
 W Œ0; 1� ! IRm defined by  .t/ D f 0.x0 C t.x1 � x0/I x1 � x0/ is Lebesgue
integrable and

f .x1/ D f .x0/C
Z 1

0

f 0.x0 C t.x1 � x0/I x1 � x0/dt:

Proof. Note first that, in view of the chain rule, the function �.t/ D f .x0C t.x1�
x0// is locally Lipschitz continuous and B-differentiable and that

�0.t/ D f 0.x0 C t.x1 � x0/I x1 � x0/ D  .t/;

provided the derivative �0 exists at the point t . Since �.0/ D f .x0/ and �.1/ D
f .x1/, it thus suffices to show that the ordinary derivative

�0.t/ D lim

!t

�.
/ � �.t/

 � t
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exists for almost all t 2 Œ0; 1�, that �0 is Lebesgue integrable, and that the identity

�.0/� �.1/ D
Z 1

0

�0.t/dt (3.8)

holds. By a classical result of Lebesgue the function � has the required properties
if it is absolutely continuous on Œ0; 1�, i.e., if for every number " > 0; there exists a
number ı > 0 such that for every n 2 IN and every collection of pairwise disjoint
intervals .˛k; ˇk/ � Œ0; 1�; k D 1; : : : ; n, with total length

nX

kD1
.ˇk � ˛k/ < ı;

the inequality
nX

kD1
j�.ˇk/ � �.˛k/j < "

holds. To see this, note first that the locally Lipschitz continuous function � is
Lipschitz continuous on the compact set Œ0; 1�. Let L > 0 be a Lipschitz constant
for the function � on Œ0; 1�, " > 0 be an arbitrarily chosen positive real number,
and set ı D "

L
. If .˛k; ˇk/ � Œ0; 1�; k D 1; : : : ; n; is a finite collection of pairwise

disjoint intervals with total length

nX

kD1
.ˇk � ˛k/ < ı;

then the Lipschitz inequality yields

nX

kD1
j�.ˇk/ � �.˛k/j � L

nX

kD1
jˇk � ˛kj < ";

which shows that � is indeed absolutely continuous on Œ0; 1�. �

3.1.2 Strongly B-Differentiable Functions

In applying the classical calculus, one often encounters situations in which the
continuous dependence of the derivative on the argument plays an important role.
The following proposition shows that for locally Lipschitz continuous
B-differentiable functions this favorable situation can only occur if the function is
indeed F-differentiable at the respective point.
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Proposition 3.1.2. LetU be an open neighborhood of x0 2 IRn and let f :U ! IRm

be locally Lipschitz continuous and B-differentiable. If for every fixed direction
y 2 IRn the function f 0.xIy/ as a function of x is continuous at x0, then f is
F-differentiable at x0.

Proof. We have to prove that f 0.x0I :/ is linear. Since the directional derivative is
positively homogeneous, it suffices to prove that it is additive as well. To see this,
fix two nonvanishing directions y; z 2 IRn. In view of Proposition 3.1.1 and the
continuity of the function f 0.:I z/ at x0 we obtain

0 � kf 0.x0Iy C z/ � f 0.x0Iy/ � f 0.x0I z/k

D lim
˛!0
˛>0

k 1
˛
.f .x0 C ˛y C ˛z/ � f .x0 C ˛y// � f 0.x0I z/k

D lim
˛!0
˛>0

k 1
˛

Z 1

0

f 0.x0 C ˛y C t˛zI˛z/dt � f 0.x0I z/k

� lim
˛!0
˛>0

Z 1

0

kf 0.x0 C ˛y C t˛zI z/ � f 0.x0I z/kdt

D
Z 1

0

lim
˛!0
˛>0

kf 0.x0 C ˛y C t˛zI z/ � f 0.x0I z/kdt

D 0;

where the exchange of the limit and the integral is allowed as a consequence
of Lebesgue’s bounded convergence theorem which is applicable in view of the
continuity of the function f 0.:I z/ at the point x0. In fact, since the function f 0.:I z/
is continuous at x0, we may choose an arbitrary boundK > 0. The continuity yields
the existence of a real number ı > 0 such that

kf 0.x0 C vI z/ � f 0.x0I z/k � K

for every kvk < ı. If 0 < ˛ < ı
kykCkzk and t 2 Œ0; 1�, then

k˛y C t˛zk � ˛.kyk C tkzk/ � ˛.kyk C kzk/ < ı;

and hence

kf 0.x0 C ˛y C t˛zI z/ � f 0.x0I z/k � K

for every 0 < ˛ < ı
kykCkzk and every t 2 Œ0; 1�. �

Note that the latter proposition does not claim that the function f is continuously
F-differentiable in a neighborhood of the point x0. In fact, the B-derivative of the
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function f .x; y/ D jxjy in a fixed direction .v;w/ 2 IR2 is a continuous function
of the argument .x; y/ at the origin. Nevertheless, f is not F-differentiable in a
neighborhood of the origin and thus not continuously F-differentiable at this point.

A concept which is somewhat weaker than continuous differentiability but
considerably stronger than B-differentiability is the strong B-differentiability of a
function. If U � IRn is an open set and f; g :U ! IRm are two functions, then g is
called a strong first-order approximation of f at x0 2 U if f .x0/ D g.x0/ and

lim
.y;z/!.x0;x0/

y¤z

k.f .y/ � g.y// � .f .z/ � g.z//k
ky � zk D 0:

A B-differentiable (F-differentiable) function f :U ! IRm is called strongly
B-differentiable (F-differentiable) at x0 if the function g.x/ D f .x0/C f 0.x0I x �
x0/ is a strong first-order approximation of f at x0, i.e., if

lim
.y;z/!.x0;x0/

y¤z

k.f .y/ � f .z// � .f 0.x0Iy � x0/� f 0.x0I z � x0/k
ky � zk D 0:

Setting z D x0, one readily verifies that a strong first order approximation of f
is a first order approximation of f . We will see in the subsequent section that
the strong approximation property can be used to generalize the classical inverse
function theorem. However, before we present these results we show that strong B-
differentiability is implied by the continuity of the B-derivative as a function of the
base point.

Proposition 3.1.3. LetU � IRn be an open neighborhood of x0 and let f :U ! IRm

be a locally Lipschitz continuous and B-differentiable. If for every y 2 IRn the
function f 0.:Iy/ as a function of x is continuous at x0, then f is strongly F-
differentiable at x0.

Proof. It has already been shown in Proposition 3.1.2 that f is F-differentiable at
x0. Consider two sequences of distinct vectors ym; zm which both converge to x0.
We have to prove that

lim
m!1

k.f .ym/ � f .zm//� .f 0.x0Iym � x0/ � f 0.x0I zm � x0//k
kym � zmk D 0: (3.9)

Set

vm D ym � zm
kym � zmk :

In view of Proposition 3.1.1 and the F-differentiability of f at x0, the relation (3.9)
is equivalent to

lim
m!1

����
Z 1

0

f 0.zm C t.ym � zm/I vm/dt � rf .x0/vm
���� D 0: (3.10)
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Since it suffices to prove the latter relation for every convergent subsequence of the
sequence of vectors vm, we may assume that vm converges to a vector Nv and thus
obtain

����
Z 1

0

f 0.zm C t.ym � zm/I vm/dt � rf .x0/vm
����

�
Z 1

0

kf 0.zm C t.ym � zm/I vm/� f 0.zm C t.ym � zm/I Nv/kdt

C
Z 1

0

kf 0.zm C t.ym � zm/I Nv/� f 0.x0I Nv/kdt

Ckrf .x0/.Nv � vm/k:
If L is a Lipschitz constant for f in some open convex neighborhood of x0, then
part 1 of Theorem 3.1.2 shows that for sufficiently large m 2 IN the first and third
summand are bounded by Lkvm� Nvk and thus converge to zero. The convergence of
the second summand is a consequence of the continuity of f 0.:I Nv/ and Lebesgue’s
bounded convergence theorem, which, in view of the continuity assumption, implies
that

lim
m!1

Z 1

0

kf 0.zm C t.ym � zm/I Nv/� f 0.x0I Nv/kdt

D
Z 1

0

lim
m!1 kf 0.zm C t.ym � zm/I Nv/ � f 0.x0I Nv/kdt D 0: �

3.1.3 Comments and References

The notion of a Bouligand derivative has been introduced by Robinson in [64] for
locally Lipschitz continuous functions. Most of the properties of B-derivatives can
be found in the book [14] of Demyanov and Rubinov. For a comparison of the
properties of various differential concepts, we refer to the article [75] of Shapiro.
A proof of Theorem 3.1.2 can be found in the paper [51] of Pallaschke, Recht, and
Urbański.

In the proofs of the Propositions 3.1.1–3.1.3 we have used some results from
Lebesgue integration theory. For an account on the subject, we refer to the book
[32] of Kolmogorov and Fomin. In particular, Lebesgue’s bounded convergence
theorem can be found in Chap. 8, Sect. 30.1, while Lebesgue’s Theorem on the
integrability of the derivative of an absolutely continuous function is presented in
Chap. 9, Sect. 33.2.

Strongly B-differentiable functions have been introduced and studied by
Robinson in [61].
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3.2 Inverse and Implicit Function Theorems

We have seen in the introductory chapter that many problems in optimization and
equilibrium theory can be formulated as the problem of finding a solution of an
equation

f .x/ D 0;

where f :IRn! IRn is a continuous, not necessarily differentiable function. An
important question is how the solution of the problem changes if the data is
perturbed. Assuming that the perturbation of the data is controlled by a finite
dimensional parameter y 2 IRm, one can formulate this problem as a parameterized
equation

f .x; y/ D 0:

The question is how a given solution x0 corresponding to an initial parameter vector
y0 varies as a function of the parameter. The preferable situation is the functional
dependence of the solution on the parameter, i.e., to each parameter vector y there
exists a unique solution vector x.y/ solving the equation f .x; y/ D 0. However,
such a global behavior cannot be expected in general. For instance the equation
f .x; y/ D x2 � y D 0; has a unique solution if y D 0, two solutions for every
y > 0 and no real solution for y < 0. The solutions in the .x; y/-space form the
graph of the function y.x/ D x2. If the function f is slightly perturbed in such
a way that the solution set of the new function Qf in the .x; y/-space is close to
the solution set of the old function f , then the new equation Qf .x; y/ D 0 will
also have two solutions for some parameter vectors y, i.e., the unpleasant situation
persists under small perturbations of the function f . Since this situation is in a sense
typical for nonlinear equations, we focus attention on local existence and uniqueness
questions. If U and V are subsets of IRn and IRm, respectively, f WU � V ! IRn is
a function, then the equation f .x; y/ D 0 is said to determine an implicit function
x.y/ at the point .x0; y0/ 2 U � V if f .x0; y0/ D 0 and there exist neighborhoods
QU � U and QV � V such that for every y 2 QV the vector x.y/ is the unique solution

of f .x; y/ D 0 in the set QU . Of course, one is not only interested in the existence
and local uniqueness of a solution but also in the properties of the implicit function.
Questions arising in this context are for instance:

• Is the implicit function continuous?
• Is it possible to estimate the distance of x.y/ from the original solution x0 D
x.y0/ in terms of the distance from y0 to y?

• Is the implicit function locally Lipschitz continuous and if so, how can we
calculate a Lipschitz constant in a neighborhood of y0?

• Is the implicit function differentiable at y0 and if so, how can we calculate its
derivative at the point y0?

Statements which provide conditions for the existence of an implicit function are
called implicit function theorems. For smooth functions, the following classical
implicit function theorem holds.
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Theorem 3.2.1. Let f W IRn�IRm ! IRn be aC r -function, r � 1, and let .x0; y0/ 2
IRn � IRm be such that f .x0; y0/ D 0: If rxf .x0; y0/ is a nonsingular matrix,
then the equation f .x; y/ D 0 determines an implicit function x.y/ at .x0; y0/.
Moreover the function x is a C r -function and its Jacobian at the point y0 is given by

rx.y0/ D �rxf .x0; y0/
�1ryf .x0; y0/:

We will not prove this result since it is a special case of a more general implicit
function theorem which will be stated and proved later. There are three properties
which make the latter theorem extremely useful in applications:

• The implicit function x inherits the differentiability property of the function f .
• The condition is verifiable, provided the Jacobian of f is known.
• The Jacobian of x at y0 can be easily calculated with the aid of the Jacobian of
f at .x0; y0/.

A straightforward generalization of the assumption of the implicit function theo-
rem to nonsmooth functions would be the requirement that f 0..x0; y0/I .:; 0// is
invertible, which in the C1-case is equivalent to the nonsingularity of the restricted
Jacobian rxf .x0; y0/. In the nonsmooth case, however, the latter condition does
not guarantee that the equation f .x; y/ determines an implicit function at .x0; y0/.
The following example exhibits a particularly simple nonsmooth equation which
satisfies the latter condition without determining an implicit function.

Example 3.2.1. Consider the parametric nonlinear complementarity problem

CP."/ x1; x2 � 0;

f1.x1; x2/ D 1

2
.x1 C x2/ � 1

4
.x1 C x2 C "/2 � 0

f2.x1; x2/ D 1

2
.x1 C x2/ � 1

4
.x1 C x2 C "/2 � 0

f .x/T x D 0:

A reformulation of CP."/ as a parametric nonsmooth equation can be done via

F.x1; x2; "/ D

0

BB@
min

�
x1;

1

2
.x1 C x2/� 1

4
.x1 C x2 C "/2

	

min

�
x2;

1

2
.x1 C x2/� 1

4
.x1 C x2 C "/2

	

1

CCA D
�
0

0

�
:

The vector .x1; x2/ D .0; 0/ solves CP.0/. Moreover, using the theory of piecewise
affine functions or direct calculation, one easily verifies that

F 0..0; 0; 0/I .y1; y2; 0// D

0

BB@
min

�
y1;

1

2
.y1 C y2/

	

min

�
y2;

1

2
.y1 C y2/

	

1

CCA
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is a homeomorphism. In fact, its inverse is the function

G.z1; z2/ D
�

maxfz1; 2z1 � z2g
maxfz2; 2z2 � z1g

�
:

Nevertheless, the equation F.x1; x2; "/ D 0 does not determine an implicit function
at .0; 0; 0/. In fact, define the function � W.�1; 1

2
/ ! IR by

�."/ D 1 � " � p
1 � 2":

Note that � is a C1-function and

�0."/ D �1C 1p
1 � 2" ;

�00."/ D
�

1p
1 � 2"

�3
:

Hence � is a strictly convex function and " D 0 is its unique minimizer; thus

�."/ > �.0/ D 0

for every nonvanishing " < 1
2
. Using the latter inequality, a direct calculation yields

F.�."/; 0; "/ D
�

minf�."/; 0g
minf0; 0g

�
D F.0; �."/; "/ D

�
minf0; 0g

minf�."/; 0g
�

D
�
0

0

�

for every " 2 .�1; 1
2
/. Moreover, �."/ D 0 if and only if " D 0. Hence the

equation F.x1; x2; "/ D 0 has at least two distinct solutions for every nonvanishing
" 2 .�1; 1

2
/ and thus does not determine an implicit function in a neighborhood

of .0; 0; 0/.

The latter example is the starting point for our study of parametric nonsmooth
equations. Our aim is to provide conditions which ensure that the invertibility of
the restricted B-derivative f 0..x0; y0/I .:; 0// implies the existence of an implicit
function x.y/ determined by the equation f .x; y/ D 0 in a neighborhood of a
solution .x0; y0/.

A particularly easy form of a parametric equation is the right-hand side pertur-
bation

f .x/ D y;

of an equation f .x/ D 0, where x; y 2 IRn. In this case, the equation f .x/�yD0
determines an implicit function at .x0; y0/ if and only if the function f has a
local inverse function at x0. The additional requirement that the inverse function
is continuous leads to the local homeomorphism problem for the function f at the
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point x0. We have already introduced the notion of a homeomorphism in connection
with piecewise affine functions. We say that a function f :U ! V mapping a subset
U of IRn into a subset V of IRm is invertible if the equation f .x/ D y has a unique
solution x D f �1.y/ 2 U for every y 2 V . The function f �1 is called the inverse
function of f . Thus a continuous function is a homeomorphism if and only if it
is invertible and open, i.e., the images of open sets in U are open sets in V . In
the following we will be mainly concerned with Lipschitz homeomorphisms, i.e.,
invertible functions f :U ! V with the property that f and f �1 are Lipschitz
continuous on U and V; respectively. There are also local versions of the latter
notions. The function f W U ! V is called invertible at x0 2 U if there exist
neighborhoods QU � U of x0 and QV � V of f .x0/ such that the equation
f .x/ D y has a unique solution x D f �1

x0
.y/ 2 QU for every y 2 QV . The

function f �1
x0

W QV ! QU is called a local inverse of f at x0. If f and f �1
x0

are
Lipschitz continuous on QU and QV , then f is said to be Lipschitz-invertible at x0. A
function which is Lipschitz-invertible at x0 is sometimes also called a local Lipschitz
homeomorphisms at x0.

There are three celebrated theorems of L.E.J. Brouwer which are related to the
homeomorphism problem.

Open mapping theorem: If U � IRn is open and f :U ! IRn is continuous and
injective, then f is open.

Invariance of domain: If U; V are subsets of IRn and f :U ! V is a homeomor-
phism, then boundary points of U are mapped onto boundary points of V .

Invariance of dimension: If U � IRn and V � IRm are open sets and f :U ! V

is a homeomorphism, then n D m.

Note that the last statement can be directly deduced from the second result by
embedding the space of smaller dimension into the space of larger dimension. The
latter results belong to the heart of combinatorial topology. We omit the proofs since
they are quite involved and can be found in standard textbooks on the subject (cf.
Sect. 3.2.4 ).

Verifying whether a given function is a homeomorphism or not is usually very
difficult. In the case of a C r -function, however, the following inverse function
theorem provides a tool to check whether a given function is locally Lipschitz
invertible or not.

Theorem 3.2.2. If U � IRn is open and f :U ! IRn is a C r -function, r � 1;

then f is locally Lipschitz invertible at x0 if and only if the Jacobian rf .x0/ is
nonsingular. Moreover, the local inverse of f is a C r -function in a neighborhood
of f .x0/.

We will not prove this theorem here since a generalization is proved later on for
strongly B-differentiable functions. As in the case of the implicit function theorem,
the question arises, whether the invertibility of the B-derivative of a nonsmooth
function is a sufficient criterion for the function to be invertible. The following
modification of Example 3.2.1 shows that this is not the case in general.
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Example 3.2.2. Consider the function

H.z1; z2/ D

0
BB@

min

�
z1;
1

2
.z1 C z2/ � 1

4
.z1 C z2/

2

	

min

�
z2;
1

2
.z1 C z2/ � 1

4
.z1 C z2/

2

	

1
CCA :

An application of the chain rule yields

H 0..0; 0/I .y1; y2/ D

0
BB@

min

�
y1;

1

2
.y1 C y2/

	

min

�
y2;

1

2
.y1 C y2/

	

1
CCA :

The B-derivative of H at the origin is a homeomorphism and its inverse function is
given by

G.z1; z2/ D
�

maxfz1; 2z1 � z2g
maxfz2; 2z2 � z1g

�
:

Nevertheless, H is not invertible at the origin. To see this, let F be the function
defined in Example 3.2.1, i.e.,

F.x1; x2; "/ D

0
BB@

min

�
x1;

1

2
.x1 C x2/� 1

4
.x1 C x2 C "/2

	

min

�
x2;

1

2
.x1 C x2/� 1

4
.x1 C x2 C "/2

	

1
CCA D

�
0

0

�
:

A direct calculation shows that

H

�
x1 C 1

2
"; x2 C 1

2
"

�
�

0
B@

1

2
"

1

2
"

1
CA D F.x1; x2; "/:

Choosing " 2 .�1; 1
2
/, Example 3.2.1 yields the solutions .�."/ C 1

2
"; 1

2
"/ and

. 1
2
"; �."/C 1

2
"/ of the equation

H.z1; z2/ D

0

B@

1

2
"

1

2
"

1

CA :
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The solutions are distinct for every nonvanishing " < 1
2
, i.e., H is not injective in a

neighborhood of the origin.
Inverse function theorems, being special cases of implicit function theorems, are

not as special as it might seem at first glance. In fact there is a classical approach to
create implicit function theorems from inverse function theorems.

Lemma 3.2.1. Let U; V be subsets of IRn and IRm; respectively, f W U � V !
IRn be a function, and let .x0; y0/ 2 U � V; z0 D f .x0; y0/.The equation
f .x; y/ � z D 0 determines an implicit function x.y; z/ at .x0; y0/ if and only
if the function g.x; y/ D .f .x; y/; y/ has a local inverse at .x0; y0/. In fact, if
g�1.v;w/ D .g�1

x .v;w/; g
�1
y .v;w// 2 U � V; then x.y; z/ D g�1

x .z; y/.

Proof. The equation f .x; y/ D z holds if and only if g.x; y/ D .z; y/. If, on
the one hand, the function g has a local inverse function at .x0; y0/, then there
exists a neighborhood W � U � V of .x0; y0/ which is bijectively mapped onto
a neighborhood g.W / of .z0; y0/. Hence the equation f .x; y/ D z has a unique
solution x D g�1

x .z; y/ for every .y; z/ 2 g.W /. If, on the other hand, there exist
neighborhoods QU of x0; QV of y0, and QW of z0/ such that the equation f .x; y/�z D 0

has a unique solution x.y; z/ 2 QU for every .y; z/ 2 QV � QW , then g.x; y/ maps
QU � QV bijectively onto QW � QV and its inverse is given by g�1.z; y/ D .x.y; z/; y/.

�

Remark 3.2.1. The latter lemma shows that the equation f .x; y/ D 0 determines
an implicit function x.y/ at .x0; y0/, provided that g.x; y/ D .f .x; y/; y/ has a
local inverse at .x0; y0/ and that in this case the implicit function x.y/ is given by
x.y/ D g�1

x .y; 0/. However, the converse of this statement is not true in general.
A trivial counterexample is provided by function f .x; y/ D x2. The equation
f .x; y/ D 0 determines the implicit function x.y/ D 0 at .0; 0/. However, the
equation f .x; y/ D z has no solution for z < 0 and thus g does not have an inverse
function at the origin.

The classical implicit function theorem can be proved with the aid of the corre-
sponding inverse function theorem using the latter lemma. This shows that every
inverse function theorem yields an implicit function theorem and we can thus focus
attention to inverse function theorems.

We close this section with an elementary but very useful lemma which charac-
terizes local Lipschitz homeomorphisms.

Lemma 3.2.2. A locally Lipschitz continuous function f :U ! IRn is a local
Lipschitz homeomorphism at x0 if and only if there exists a neighborhood V � U

of x0 and a constant l > 0 such that kf .x1/ � f .x2/k � lkx1 � x2k for every
x1; x2 2 V .

Proof. Recall that f is a local Lipschitz homeomorphism at x0 if and only if there
exist neighborhoods V of x0 and W of f .x0/ and a locally Lipschitz continuous
mapping g :W ! V such that for every x 2 V and y 2 W the equation f .x/ D y

holds if and only if x D g.y/. Suppose on the one hand that f is a local Lipschitz
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homeomorphism at x0. If we choose l > 0 in such a way that 1
l

is a Lipschitz
constant of g in W , then

kx1 � x2k D kg.y1/ � g.y2/k � 1

l
ky1 � y2k D 1

l
kf .x1/ � f .x2/k;

which proves the inequality.
Suppose on the other hand that the inequality holds for all x1; x2 in a neigh-

borhood V of x0 and let W D f .V /. The validity of the inequality implies that
f .x1/ D f .x2/ if and only if x1 D x2, i.e., f is injective. Hence there exists an
inverse function g :W ! V with the property that f .x/ D y for x 2 V and y 2 W
if and only if x D g.y/. Moreover, if x1 D g.y1/ and x2 D g.y2/, then

kg.y1/� g.y2/k D kx1 � x2k � 1

l
kf .x1/� f .x2/k D 1

l
ky1 � y2k;

whence g maps V homeomorphically ontoW . Since V is a neighborhood of x0, the
invariance of domain theorem shows thatW is a neighborhood of f .x0/ and thus f
is a local Lipschitz homeomorphism at x0. �

3.2.1 B-Derivatives of Local Lipschitz Homeomorphisms

We have seen in Example 3.2.2 that the Lipschitz invertibility of the B-derivative of
a nonsmooth function does not necessarily imply the local Lipschitz invertibility of
the function. The aim of this section is to study the relation between the Lipschitz
invertibility of the B-derivative and the Lipschitz invertibility of the function. We
begin with an elementary observation about positively homogeneous functions.

Proposition 3.2.1. Let f :IRn! IRn be a positively homogeneous function.

1. If f is invertible at the origin, then f is invertible on IRn and the inverse f �1 is
positively homogeneous.

2. If f is a local Lipschitz homeomorphism at the origin, then f is a Lipschitz
homeomorphism.

Proof. 1. Let u 2 IRn be an arbitrary vector. The positive homogeneity of f implies
that f .x/ D u if and only if f .�x/ D �u for every � > 0. Since f is invertible
at the origin, there exists a � > 0 such that f .x/ D �u has a solution x�. Hence
f . 1

�
x�/ D u, which proves the surjectivity. Moreover, if f .x/ D f .y/, then

f .�x/ D f .�y/ for every � � 0. The local injectivity of f yields �x D �y

for some � > 0 and thus x D y, which shows that f is injective. The positive
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homogeneity of f �1 is easily seen since f �1.�u/ is the unique solution to the
equation f .x/ D �u. Hence 1

�
f �1.�u/ D f �1.u/.

2. Using the first statement, it suffices to prove that every Lipschitz constant L of a
positively homogeneous function f in a neighborhoodU of the origin is a global
Lipschitz constant for f . To see this, let x; y 2 IRn and choose � > 0 such that
�x; �y 2 U . Then

kf .x/ � f .y/k D 1

�
kf .�x/ � f .�y/k � 1

�
Lk�x � �yk D Lkx � yk: �

The following theorem illuminates the relation between the local Lipschitz
invertibility of a B-differentiable function and of its B-derivative.

Theorem 3.2.3. Let U � IRn be open and f WU ! IRn be a continuous function
which is B-differentiable at x0 2 U .

1. If f is a local Lipschitz homeomorphism at x0, then its B-derivative f 0.x0I :/
is a Lipschitz homeomorphism. Moreover, the local inverse function f �1 is B-
differentiable at f .x0/ and its B-derivative is the inverse of the function f 0.x0I :/.

2. If f 0.x0Iy/ D 0 implies y D 0, then there exists a neighborhood V � U of x0
such that the only solution of the equation f .x/ D f .x0/ in the set V is x D x0.

3. If the B-derivative f 0.x0I :/ is a Lipschitz homeomorphism, then f .x0/ is an
interior point of f .V / for every neighborhood V � U of x0.

Proof. Considering the function Qf .x/ D f .x � x0/ � f .x0/ instead of f if
necessary, we may assume without loss of generality that x0 D f .x0/ D 0.

1. Since f is a local Lipschitz homeomorphism at x0, Lemma 3.2.2 yields the
existence of a constant l � 0 and a neighborhood QU of x0 such that

kf .x/ � f .y/k � lkx � yk

for every x; y 2 QU . Hence

kf 0.x0I v/� f 0.x0I w/k D k lim
˛!0
˛>0

1

˛
.f .x0 C ˛v/ � f .x0 C ˛w//k

� lim
˛!0
˛>0

lk˛v � ˛wk

D lkv � wk;

which, in view of Lemma 3.2.2, shows that f 0.x0I :/ is a local Lipschitz
homeomorphism at the origin and thus a Lipschitz homeomorphism.

To see the second part of the statement, let h.y/ D f 0.x0Iy/ and let L be
a common Lipschitz constant of h�1 in IRn and of f �1 in a neighborhood V of
f .x0/. Define

y.v/ D f �1.f .x0/C v/� x0
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for v 2 V � ff .x0/g. Since f �1 WV ! f �1.V / is a homeomorphism, we obtain

y.v/ D 0 if and only if v D 0:

Moreover, a direct application of the definition of y.v/ yields

ky.v/k D kf �1.f .x0/C v/� f �1.f .x0//k � Lkvk;

v D f .x0 C y.v//� f .x0/;

and

lim
kvk!0

ky.v/k D 0: (3.11)

With these properties, one easily verifies that the following chain of inequalities
holds for every nonvanishing v 2 V � ff .x0/g W

0 � kf �1.f .x0/C v/� f �1.f .x0// � h�1.v/k
kvk

� Lkh�
f �1.f .x0 C v/� x0/

� � vk
kvk

� Lkf 0.x0Iy.v//� f .x0 C y.v//C f .x0/k
kvk

� L2kf .x0 C y.v// � f .x0/ � f 0.x0Iy.v//k
ky.v/k

If kvk tends to zero, then the B-differentiability of f together with (3.11) implies
that the last term tends to zero and thus all the other terms tend to zero as well.
In particular,

lim
kvk!0

kf �1.f .x0/C v/� f �1.f .x0// � h�1.v/k
kvk D 0:

Since the inverse of a positively homogeneous function is again positively
homogeneous, the latter identity shows that h�1 is indeed the B-derivative of
f �1 at the point f .x0/.

2. We have to show that there exists a positive real number ı such that x0 is the only
solution to the equation f .x/ D f .x0/ in the ball with radius ı. By assumption
the equation f 0.x0Iy/ D 0 has the only solution y D 0. Hence the positive
homogeneity of the B-derivative yields

kf 0.x0Iy/k � "kyk
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for every y 2 IRn, where " > 0 is the minimum of the continuous function
kf 0.x0I :/k on the compact unit sphere. Due to the approximation property of the
B-derivative, we can find a real number ı > 0 such that

kf .x0 C y/� f .x0/� f 0.x0Iy/k < "kyk

for every y 2 IRn with 0 < kyk < ı. Combining both inequalities, we obtain

kf .x0 C y/� f .x0/� f 0.x0Iy/k < kf 0.x0Iy/k:

The triangle inequality immediately implies

0 < kf .x0 C y/� f .x0/k

for every y 2 IRn with 0 < kyk < ı, i.e., x0 is the only solution of the equation
f .x/ D f .x0/ in the ball around x0 with radius ı.

3. We have to prove that for every sufficiently small " > 0 there exists a real number
ı > 0 such that for every z with kzk � ı the equation f .x0Cy/ D f .x0/Cz has
a solution y with kyk � ". Setting h.y/ D f 0.x0Iy/, the equation f .x0 C y/ D
f .x0/C z is equivalent to the fixed-point equation

gz.y/ D y � h�1.f .x0 C y/ � f .x0/ � z/ D y:

If L is a Lipschitz constant of the function h�1, then we obtain

kgz.y/k D ky � h�1.f .x0 C y/ � f .x0/ � z/k
� kh�1.h.y// � h�1.f .x0 C y/ � f .x0//k

Ckh�1.f .x0 C y/ � f .x0// � h�1.f .x0 C y/ � f .x0/ � z/k
� L.kf 0.x0Iy/ � f .x0 C y/C f .x0/k C kzk/:

We have to show that for every " > 0 there exists a real number ı > 0 such that
for every kzk � ı the function gz has a fixed point yz with kyzk � ". Brouwer’s
fixed-point theorem states that every continuous function which maps a convex
compact set into itself has a fixed point. Since gz is continuous, it thus suffices to
provide positive numbers ı and O" � " such that kgz.y/k � O" for every kzk � ı

and every kyk � O". The B-differentiability of f shows that there exists a number
Q" such that

kf .x0 C y/� f .x0/� f 0.x0Iy/k � 1

2L
kyk

for every kyk � Q". Choosing O" D minfQ"; "g and ı D O"
2L
; we conclude from the

above estimation of kgz.y/k that
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kgz.y/k � L

�
1

2L
kyk C O"

2L

�
� O"

for every kyk � O" and every kzk � ı, which proves the assertion. �

3.2.2 An Inverse Function Theorem

The following theorem can be readily used to generalize the classical inverse func-
tion theorem to the class of locally Lipschitz continuous strongly B-differentiable
functions.

Theorem 3.2.4. Let U � IRn be an open set and f; g :U ! IRn be locally Lipschitz
continuous functions. If g is a strong first order approximation of f at x0, then
f is a local Lipschitz homeomorphism at x0 if and only if g is a local Lipschitz
homeomorphism at x0.

Proof. Suppose g is a local Lipschitz homeomorphism at x0. Then there exists a
constant l > 0 such that

kg.y/ � g.z/k � lky � zk

for every x; y in a neighborhood V � U of x0. Moreover, the strong approximation
property shows that for every " > 0 there exists a real number ı > 0 such that

k.f .y/ � f .z// � .g.y/ � g.z//k � "ky � zk;

whenever ky � x0k � ı and kz � x0k � ı. Hence

kf .y/ � f .z/k D k.g.y/ � g.z// � Œ.f .z/ � f .y// � .g.z/ � g.y//�k
� kg.y/ � g.z/k � k.f .z/ � f .y// � .g.z/ � g.y//k
� lky � zk � "ky � zk

Choosing " < l; we thus obtain a positive constant Ql D l � " such that

kf .y/ � f .z/k � Qlky � zk

for every y; z 2 V with ky�x0k � ı and kz�x0k � ı. Lemma 3.2.2 thus shows that
f is a local Lipschitz homeomorphism at x0. Since g is a strong approximation of f
at x0 if and only if f is a strong approximation of g at x0, we have thus completed
the proof. �

The following corollary is an immediate consequence of the definition of a strong
B-derivative.
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Corollary 3.2.1. If the locally Lipschitz continuous function f :U ! IRn has a
strong B-derivative at x0, then f is a local Lipschitz homeomorphism at x0 if and
only if its B-derivative is a local Lipschitz homeomorphism at the origin.

3.2.3 Hadamard’s Theorem

We close this chapter with an extension of Hadamard’s Theorem to locally Lipschitz
continuous B-differentiable functions. The original version of this theorem states
that a C1-function f :IRn! IRn which is a local diffeomorphism at every point x 2
IRn is a global diffeomorphism provided the set of all matrices rf .x/�1; x 2 IRn,
is bounded.

The basis for a proof of the latter theorem is the continuation property. A
continuous mapping f :IRn! IRn has the continuation property for a path q W
Œ0; 1� ! IRn if for every a 2 .0; 1� and every continuous function p W Œ0; a/ ! IRn

satisfying f .p.t// D q.t/ for every t 2 Œ0; a/ there exists a number p.a/ such that
p.t/ tends to a p.a/ if t tends to a from below. Note that the continuity of f and
q implies that f .p.a// D q.a/. The following lemma is a variant of the Homotopy
Lifting Theorem 2.3.4.

Lemma 3.2.3 ((cf. [49], (5.3.4))). Let f :IRn! IRn be a local homeomorphism,
r W Œ0; 1� ! IRn be a path, andH W Œ0; 1�� Œ0; 1� ! IRn be a continuous function such
that H.s; 0/ D f .r.s// for all s 2 Œ0; 1�. If for each s 2 Œ0; 1� the function f has
the continuation property for the pathH.s; :/, then there exists a unique continuous
mapping OH W Œ0; 1�� Œ0; 1� ! IRn such that OH.:; 0/ D r and f ı OH D H . Moreover,
if H.s; 1/ D H.0; t/ D H.1; t/ for every s; t 2 Œ0; 1�, then r.0/ D r.1/.

With the aid of the latter lemma, it is possible to prove the following generalization
of Hadamard’s theorem.

Theorem 3.2.5. Let f :IRn! IRn be a B-differentiable local Lipschitz homeomor-
phism at each point x 2 IRn. If there exists a constant l > 0 such that

kf 0.xIy/k � lkyk for every x; y 2 IRn, (3.12)

then f maps IRn homeomorphically onto IRn.

Proof. The proof is based on the fact that f has the continuation property for every
locally Lipschitz continuous B-differentiable path q W Œ0; 1� ! IRn. To see this, let
a 2 .0; 1� and p W Œ0; a/ ! IRn be a continuous function with f .p.t// D q.t/ for
every t 2 Œ0; a/. Since f is a local homeomorphism, the identity

p.t/ D f �1.q.t// (3.13)
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holds in a neighborhood of Nt , where f �1 is a local inverse of f at p.Nt/. Since q as
well as f �1 are locally Lipschitz continuous and B-differentiable, so is the function
p. In order to see that

lim
t!a
t<a

p.t/ D p.a/ (3.14)

exists, we first apply the chain rule and part 1 of Theorem 3.2.3, and conclude from
(3.13) and the assumption of the theorem that

kp0.t I 1/k � 1

l
kq0.t I 1/k: (3.15)

for every t 2 .0; a/. Since any locally Lipschitz continuous function is globally
Lipschitz continuous on compact sets, there is a global Lipschitz constant L for q
and hence

kq0.vI w/k � Lkwk (3.16)

for every v 2 .0; a/ and every w 2 IR. Combining the inequalities (3.15) and (3.16),
we thus obtain

kp0.t I 1/k � L

l
(3.17)

for every t 2 .0; a/. Hence we conclude from Proposition 3.1.1 that

kp.t1/ � p.t0/k � L

l
jt1 � t0j (3.18)

for every t0; t1 2 .0; a/ and thus, in view of the Cauchy convergence criterion, the
limit (3.14) exists which establishes the continuation property of f for Lipschitz
continuous B-differentiable paths.

In order to establish the surjectivity of f , fix a vector x0 2 IRn; set y0 D f .x0/;

and choose an arbitrary vector y1 2 IRn. Define a path q W Œ0; 1� ! IRn by q.t/ D
ty1 C .1� t/y0. SettingH.s; t/ D q.t/, we may apply Lemma 3.2.3 and obtain the
existence of a path p W Œ0; 1� ! IRn with p.0/ D x0 and f ı p D q. In particular,
f .p.1// D q.1/ D y1 which proves that f is surjective.

To see that f is injective, let x0; x1 2 IRn with f .x0/ D f .x1/. Define the path
r.s/ D .1�s/x0Csx1 and consider the mappingH W Œ0; 1�� Œ0; 1� ! IRn defined by

H.s; t/ D tf .x0/C .1 � t/f .sx1 C .1 � s/x0/:

Clearly H satisfies the assumptions of Lemma 3.2.3 and H.s; 1/ D H.0; t/ D
H.1; t/ for every s; t 2 Œ0; 1�. Hence x0 D x1 and thus f is injective.

The openness of f is a direct consequence of the local homeomorphism property
(cf. Proposition 2.3.9). �
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Recall that by Theorem 2.3.6 a local homeomorphism f :IRn! IRn is a homeo-
morphism if and only if f is closed. It would be interesting to have a direct proof
of the fact that a function f satisfying the assumptions of Hadamard’s Theorem is
a closed mapping without referring to Lemma 3.2.3.

3.2.4 Comments and References

For a proof of the invariance of domain theorem, we refer to the classical monograph
[1] of Alexandroff and Hopf or to Spanier’s book [78]. A proof of the open mapping
theorem based on degree theory can be found in Deimling’s book [12].

Lemma 3.2.2 and part 1 of Theorem 3.2.3 are due to Kummer (cf. [35],
Lemma 1, and [37], Lemma 2). The local surjectivity result of Theorem 3.2.3
was essentially already known to Alexandroff and Hopf (cf. [1], p. 477–478, in
particular “Bemerkung I” and “Bemerkung II” p. 478). The proof given here is
based on an idea of Halkin (cf. [24, 39]). For an account on Brouwer’s fixed-point
theorem we refer to [49]. As a reference for the inverse function theorem for strongly
B-differentiable functions we mention Robinson’s articles [61, 65]. For an account
on the continuation property, in particular for a proof of Lemma 3.2.3, we refer to
the monograph [49] of Ortega and Rheinbold. The proof of Theorem 3.2.5 is close to
the proof of the classical theorem given in Schwartz’s book [74] (cf. [74], Theorem
1.22, and [49], (5.3.10)). For a more general result in the context of strongly
B-differentiable functions we refer to Theorem 3.3 in Robinson’s paper [65].

3.3 Appendix: Inverse Function Theorems of Clarke
and Kummer

There are some inverse function theorems close in spirit to the classical inverse
function theorem for differentiable functions which are applicable to general locally
Lipschitz continuous functions. They all incorporate one or another generalization
of the Jacobian of a differentiable function. The most important of these concepts is
F.H. Clarke’s notion of the generalized Jacobian of a locally Lipschitz continuous
function f :IRn! IRm which is defined by

@f .x0/ D conv
\

">0

clfrf .x/jkx � x0k < "; x 2 ˝g;

where ˝ � IRn is the set of all points where f is F-differentiable (cf. [9]). In
other words, the generalized Jacobian is the convex hull of all limit points of
Jacobian sequences rf .xk/, where the sequence of base-points xk 2 ˝ converges
to x0. The basis of the differential theory of locally Lipschitz continuous functions
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is Rademacher’s Theorem which ensures that the set of points where a locally
Lipschitz continuous function fails to be F-differentiable is a Lebesgue nullset. This
classical result is used to prove the following proposition.

Proposition 3.3.1 ([9], Proposition 2.6.2). If f :IRn! IRm is a locally Lipschitz
continuous function, then @f .x0/ is a nonempty convex compact set of m � n-
matrices.

Clarke’s generalized Jacobian was the first analytic device to deal with nonsmooth
equations and is still very useful for many purposes. In particular, it can be used to
formulate an inverse function theorem.

Theorem 3.3.1 (Clarke’s Inverse Function Theorem [9], Theorem 7.1.1). Let
f :IRn! IRn be a locally Lipschitz continuous function. If all matrices in the
generalized Jacobian @f .x0/ of f at the point x0 2 IRn are nonsingular, then f
is a local Lipschitz homeomorphism at x0.

The main drawback of Clarke’s inverse function theorem is the fact that it involves
the nonsingularity of a generally infinite number of matrices. Moreover, it is not as
close to the classical theorem has one might think. In theC1-case, the nonsingularity
of the Jacobian matrix is a necessary and sufficient criterion for a function to be a
local Lipschitz homeomorphism. Kummer gave a simple example, which shows
that this is not the case for Clarke’s condition (cf. [36]). He provided necessary
and sufficient conditions for a locally Lipschitz continuous function to be a local
Lipschitz homeomorphism in terms of a generalized directional derivative

�f.x0Iy/ D
\

">0

cl

�
f .x C ˛y/ � f .x/

˛
jkx � x0k < "; 0 < ˛ < "

	
:

In other words, �f.x0Iy/ consists of all limit points of sequences of vectors

zn D f .xn C ˛ny/ � f .xn/

˛n
;

where the sequence of vectors xn tends to x0 and the sequence of real ˛n tends to
zero from above.

Theorem 3.3.2 (Kummer’s Inverse Function Theorem [35], Theorem 1). A
locally Lipschitz continuous function f :IRn! IRn is a local Lipschitz homeomor-
phism at x0 2 IRn if and only if 0 62 �f.x0Iy/ for every nonvanishing vector
y 2 IRn.

Despite the theoretical benefits of the inverse function theorems of F.H. Clarke and
B. Kummer, they share the drawback that their assumptions are not very handy
in applications. In particular, one cannot hope to find a finite algorithm for their
verification. This is due to the fact that in general locally Lipschitz continuous
functions do not admit a sufficiently simple local approximation scheme.



Chapter 4
Piecewise Differentiable Functions

4.1 Basic Notions and Properties

We start with some basic notions. Let U be a subset of IRn and let fi :U ! IRm;
i D 1; : : : ; k be a collection of continuous functions. A function f :U ! IRm is
said to be a continuous selection of the functions f1; : : : ; fk on the set O � U if
f is continuous on O and f .x/ 2 ff1.x/; : : : ; fk.x/g for every x 2 O . A function
f :U ! IRm defined on an open set U � IRn is called a PCr-function, for some r 2
IN [f1g if for every x0 2 U there exists an open neighborhoodO � U and a finite
number of C r -functions fi :O! IRm; i D 1; : : : ; k; such that f is a continuous
selection of f1; : : : ; fk on O . A set of C r -functions fi :O! IRm; i D 1; : : : ; k,
defined on an open neighborhoodO � U of x0 is called a set of selection functions
for the PC r -function f at x0 if f .x/ 2 ff1.x/; : : : ; fk.x/g for every x 2 O .

If we say that a function f is a continuous selection of the functions f1; : : : ; fk ,
we tacitly assume that the domains of definition of all functions coincide and that
f is a continuous selection of the functions fi on the common domain. A PC r -
function is thus a function which is everywhere locally a continuous selection of
C r -functions. PC1-functions are also called piecewise differentiable functions.

Examples of piecewise differentiable functions can be found in the introductory
chapter. In fact, the nonsmooth equations presented there all involve piecewise
differentiable functions if the data functions of the original problems are sufficiently
smooth.

The superposition g ı f of two PC r -functions f and g is again a PC r -
function. In fact, if f is a continuous selection of the C r -functions f1; : : : ; fk
in the open neighborhood O of x0 and g is a continuous selection of the C r -
functionsg1; : : : ; gl in the open neighborhoodV of f .x0/, then gıf is a continuous
selection of the C r -functions gj ı fi , i 2 f1; : : : ; kg; j 2 f1; : : : ; lg in the
open neighborhood f �1.V / \ O of x0. In particular, a function f :U ! IRm is a
PC r -function if and only if each component function fi ; i D 1; : : : ; m; is PC r .
Moreover, scalar multiples and finite sums ofPC r -functions are againPC r , and, in
the case of real-valued functions, the product as well as the pointwise maximum or

S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs
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minimum of two PC r -functions is PC r . In particular, the maximum and minimum
operations readily allow the construction of piecewise differentiable functions. More
sophisticated examples will be considered later.

Given a set of selection functions f1; : : : ; fk for a PC r -function f at a point x0,
we define the active index set at the point x0 by

If .x0/ D fi 2 f1; : : : ; kg j f .x0/ D fi .x0/g : (4.1)

The selection functions fi ; i 2 If .x0/; are called active selection functions at x0.
Since the functions fi are C r and a fortiori continuous, the relation f .x/ ¤ fi .x/

persists in a neighborhood Ux0 of x0, whence If .x/ � If .x0/ for every x 2 Ux0 .
So, if we are only interested in local properties of the function f in a neighborhood
of x0, which will be mainly the case throughout this chapter, we may assume that
f is a continuous selection of the functions fi ; i 2 If .x0/. In some cases it is
reasonable to exclude superfluous indices from If .x0/. Consider for instance the
following function of two variables:

f .x; y/ D .maxfx; yg;minfx; yg/:

A set of selection functions for such max-min-type PC r -functions can be con-
structed by combining all selection functions of the components. In our example this
yields the functions .x; x/; .x; y/; .y; x/; and .y; y/. All these selection functions
are active at the origin. Nevertheless, the functions .x; x/ and .y; y/ are not essential
for building the function f . In fact they are only active on the principal diagonal,
which is a lower-dimensional set. This observation leads us to the introduction of
the set of essentially active indices

I ef .x0/ D fi 2 f1; : : : ; kgjx0 2 cl.intfx 2 U jf .x/ D fi .x/g/g;

where we assume that the C r -functions f1; : : : ; fk form a set of selection functions
for the PC r -function f at x0. A selection function fi is called essentially active at
x0 if i 2 I ef .x0/.

Our first result shows a piecewise differentiable function is everywhere locally a
continuous selection of essentially active selection functions.

Proposition 4.1.1. If f :U ! IRm is a PC r -function and x0 2 U , then there exists
a collection of selection functions for f at x0 which are all essentially active.

Proof. We will prove the assertion by induction on the number k of selection
functions. If f admits a single selection function at x0, then this selection function
coincides with f in a neighborhood of x0 and is thus essentially active. So suppose
the assertion holds for every PC r -function defined on U which admits a collection
of less than k selection functions at x0 and let f1; : : : ; fk :O! IRm be a set of
selection functions corresponding to the PC r -function f at x0. Assuming that not
all selection functions are essentially active, we will reduce the number of selection
functions for f at x0. By definition an index i is essentially active at x0 if there exists
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a sequence xn converging to x0 with xn 2 intfx 2 Ojf .x/ D fi .x/g. Thus, if the
index i 2 f1; : : : ; kg is not essentially active at x0, then there exists a neighborhood
V of x0 with

V \ intfx 2 Ojf .x/ D fi .x/g D ;: (4.2)

Moreover, if Nx 2 O with f . Nx/ D fi . Nx/ and f . Nx/ ¤ fj . Nx/ for every i ¤ j , then
these relations persists in a neighborhood of Nx due to the continuity of f and fj and
the assumption that f is a continuous selection of the functions f1; : : : ; fk . We thus
obtain Nx 2 intfx 2 Ojf .x/ D fi .x/g and, in view of (4.2), Nx 62 V . Hence for every
x 2 V there exists an index j 2 f1; : : : ; kgnfig with f .x/ D fj .x/, and thus f is a
continuous selection of the functions fi ; i 2 If .x0/nfig on the open neighborhood
V of x0. An induction argument thus completes the proof. �

4.1.1 Local Lipschitz Continuity

In this section, we prove the important fact that a piecewise differentiable function
is locally Lipschitz continuous. First of all, it is not difficult to verify that every C1-
function is locally Lipschitz continuous. In fact, if f :U ! IRm is C1 andO � U is
a compact neighborhood of x0, then the continuity of the gradient mapping shows
that there exists a number L such that

krf .x/k � L

for every x 2 O . Choosing a convex subneighborhoodV � O of x0, we thus obtain

kf .x/ � f .y/k D
����
Z 1

0

rf .x C t.y � x//T .y � x/dt

����

�
Z 1

0

krf .x C t.y � x//kky � xkdt

� Lky � xk

for every x; y 2 V . We will show in this section that every continuous selection
of locally Lipschitz continuous functions is locally Lipschitz continuous, thus
implying this property for the special case of piecewise differentiable functions.
In order to prove this result, we make use of the following elementary lemma.

Lemma 4.1.1. Let � W Œ0; 1� ! IRm be a continuous function and let A1; : : : ; Al �
IRm be closed sets. If �.Œ0; 1�/ � [l

iD1Ai ; then there exist real numbers 0 D t0 �
� � � � tl D 1 and corresponding indices i0; : : : ; il�1 such that

f�.tj /; �.tjC1/g � Aij

for every j D 0; : : : ; l � 1
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Proof. The proof of this assertion is done by induction on the number l . The claim
is certainly true if l D 1. In fact, in this case we may choose t0 D 0; t1 D 1; and
i0 D 1. Suppose the assertion of the lemma holds for all curves Q� W Œ0; 1� ! IRm and
at most l � 1 closed sets QAi , and suppose the function � W Œ0; 1� ! IRm and the sets
A1; : : : ; Al satisfy the assumptions of the lemma. Let i0 2 f1; : : : ; lg be an index
with �.0/ 2 Ai0 and define

t1 D supft 2 Œ0; 1�j�.t/ 2 Ai0g:

The continuity of � and the closedness of Ai0 imply that �.t1/ 2 Ai0 . If on the one
hand t1 D 1, then the assertion holds with t1 D t2 D � � � D tl and i0 D i1 D � � � D
il�1. On the other hand, if t1 < 1, then the maximality of t1 shows that �.t/ 62 Ai0
for every t1 < t � 1 and the continuity of � yields �.t1/ 2 Ai1 for some index
i1 ¤ i0. Hence the continuous function Q�.t/ D �.t1 C t.1 � t1// defined on the
interval Œ0; 1� passes through the l � 1 closed sets Ai ; i 2 f1; : : : ; kgnfi0g. The
induction assumption thus yields a sequence of numbers 0 D Qt0 � � � � � Qtl�1 D 1

and indices Qi0; : : : ; Qil�2 such that

f�.Qtj /; �.QtjC1/g � AQij

for every j D 0; : : : ; l � 2. Setting tj D t1 C Qtj�1.1 � t1/ for j D 1; : : : ; l and
ij D Qij�1 for j D 1; : : : ; l � 1 thus yields the assertion. �

The following result is easily established with the aid of the latter lemma.

Proposition 4.1.2. Let V � IRn be a convex set and fi :V ! IRm; i D 1; : : : ; l; be
Lipschitz continuous on V with Lipschitz constants Li ; i D 1; : : : ; l . If f :V ! IRm

is continuous and f .x/ 2 ff1.x/; : : : ; fl .x/g; then f is Lipschitz continuous on V
with Lipschitz constant L D maxfL1; : : : ; Llg.

Proof. Fix x; y 2 V and define �.t/ D .x C t.y � x// for t 2 Œ0; 1� and

Ai D f�.t/jf .�.t// D fi .�.t//; t 2 Œ0; 1�g

for i D 1; : : : ; l: Since the functions f and � are continuous, the sets Ai are closed.
Hence Lemma 4.1.1 yields the existence of real numbers 0 D t0 < t1 < � � � < tl D 1

and indices i0; : : : ; il�1 such that f�.tj /; �.tjC1/g � Aij for every j D 0; : : : ; l�1.
Due to the definition of the sets Ai , we thus obtain

f .x C tj .y � x// D fij .x C tj .y � x//
f .x C tjC1.y � x// D fij .x C tjC1.y � x// (4.3)
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for every j D 0; : : : ; l � 1. Since

f .x/ � f .y/ D
l�1X

jD0
f .x C tj .y � x// � f .x C tjC1.y � x//;

we deduce from (4.3) and the assumptions of the proposition that

kf .x/ � f .y/k D
������

l�1X

jD0
fij .x C tj .y � x// � fij .x C tjC1.y � x//

������

�
l�1X

jD0
kfij .x C tj .y � x// � fij .x C tjC1.y � x//k

�
l�1X

jD0
Lij kx � yk.tjC1 � tj /

� maxfL1; : : : ; Lkgkx � yk
l�1X

jD0
.tjC1 � tj /

D Lkx � yk: �

The main result of this section is a direct consequence of the latter proposition and
the fact that C1-functions are locally Lipschitz continuous. It is formulated in the
following corollary.

Corollary 4.1.1. Every piecewise differentiable function is locally Lipschitz con-
tinuous. A Lipschitz constant in a neighborhood of x0 is given by the maximum of
the Lipschitz constants of the selection functions.

4.1.2 B-Differentiability

The B-differentiability of piecewise differentiable functions is of fundamental
importance for our study of this function class.

Proposition 4.1.3. Let f :U ! IRm be PC1-function, let f1; : : : ; fk :O! IRm be
a collection of C1-selection functions for f at x0 2 O � U .

1. The function f is B-differentiable at x0 and its B-derivative is a continuous
selection of the F-derivatives of the essentially active selection functions, i.e.,

f 0.x0Iy/ 2 frfi .x0/yji 2 I ef .x0/g:
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2. In addition, the function is directionally continuously differentiable in the
following sense:

lim
y!0

f 0.x0 C yIy/ � f 0.x0Iy/
kyk / D 0:

Proof. Let �.t/ D f .x0 C ty/ and �i .t/ D fi .x0 C ty/, i 2 I ef .x0/, be defined on

a suitably small interval .�ı; ı/. Then � is a PC1 function with �.0/ D �i.0/ and
for every t 2 .�ı; ı/ we have �.t/ 2 f�i.t/ j i 2 I ef .x0/g. Since the functions �i
are continuously differentiable, the relation

�i .t/ D �i.0/C
Z t

0

�0
i .s/ds

holds and hence, reducing ı if necessary, we deduce from �0
i .0/ ¤ �0

j .0/ that
�i .t/ ¤ �j .t/ for every t 2 .0; ı/. Therefore there exists an index set I � I ef .x0/

such that �0
i .0/ D �0

j .0/ for every i; j 2 I and �.t/ 2 f�i.t/ j i 2 I g for
every t 2 .0; ı/. Considering subsequences f˛ng corresponding to different active
functions, one easily verifies that

�0.0I 1/ D lim
˛!0
˛>0

1

˛
.�.˛/� �.0// D �0

i .0/ (4.4)

for every i 2 I . Hence � is directionally differentiable at the origin and

�0.0I 1/ 2 f�0
i .0/ j i 2 I.0/g:

This proves the first part of the proposition. To see the second part, let yn be a null
sequence. Since f is PC1 there is an index sequence in 2 I ef .x0/ with f .x0 C
yn/ D fin.x0 C yn/ for all sufficiently large n. Notice that also f .x0/ D fin.x0/ as
in 2 I ef .x0/. It suffices to prove the equation for all subsequences of yn with a fixed
index in D i . Since fi is continuously differentiable we have

lim
n!1

fi .x0 C yn � yn/� .fi .x0 C yn/C rfi .x0 C yn/.�yn//
kynk D 0;

and the B-differentiability of f implies

lim
n!1

f .x0 C yn/� .f .x0/C f 0.x0Iyn//
kynk D 0:

Combining these two equations we obtain
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lim
n!1

f 0.x0 C ynIyn/ � f 0.x0Iyn/
kynk

D lim
n!1

fi .x0 C yn � yn/ � .fi .x0 C yn/C rfi .x0 C yn/.�yn//
kynk

C lim
n!1

f .x0 C yn/� .f .x0/C f 0.x0Iyn//
kynk

D 0: �

Note that the second statement of the latter proposition cannot be generalized
to locally Lipschitz continuous B-differentiable functions which can be seen by
considering the function

f .x/ D
8
<

:
x2 sin

1

x
if x ¤ 0,

0 if x D 0

The function f is F-differentiable on IR with

f 0.x/ D
8
<

:
2x sin

1

x
C cos

1

x
if x ¤ 0,

0 if x D 0.

Moreover, since the derivative f 0 is locally bounded, the mean value theorem
implies the local Lipschitz continuity of f . Nevertheless, setting tn D 1

2n�
, we

obtain

f 0.0C tnI 1/ D f 0.tn/ D 1;

which does not converge to f 0.0I 1/ D 0 as n tends to 1.

4.1.3 Strong B-Differentiability

Beside the continuously differentiable functions, there is an important class of
strongly B-differentiable but not necessarily F-differentiable PC1-functions. This
is the class of PC1-functions for which the points where the function fails to be
continuously differentiable is locally contained in a conical set. Recall that a set
C � IRn is called a cone if �c 2 C for every c 2 C and every � > 0.

Proposition 4.1.4. Let f :U ! IRm be aPC1-function and let f1; : : : ; fk :O! IRm

be a collection of C1-selection functions for f at x0 2 O � U . If there exists a
neighborhood V � O of x0 and a collection C1; : : : ; Cl � IRn of closed cones
such that
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1. IRn D [l
iD1Ci

2. For every i 2 f1; : : : ; lg there exists an index p.i/ 2 f1; : : : ; kg such that f .x/ D
fp.i/.x/ for every x 2 V \ .fx0g C Ci/

then f is strongly B-differentiable at x0.

Proof. A direct application of the definition shows that the function f is strongly
B-differentiable at x0 if and only if the function Qf defined on U � fx0g by Qf .x/ D
f .x � x0/ is strongly B-differentiable at the origin. Since the function Qf satisfies
all assumptions of the proposition for the origin instead of x0, it suffices to prove
the claim for the function Qf . Hence we may assume without loss of generality that
x0 D 0, which simplifies the exposition of the proof. Moreover, taking a smaller
neighborhood if necessary, we may assume that V is convex.

Our first observation is that the directional derivatives f 0.0Iy/ and f 0
p.i/.0Iy/

coincide in the direction y 2 Ci . In fact, if y 2 Ci , then f .˛y/ D fp.i/.˛y/ for
every sufficiently small ˛ > 0, which shows that

f 0.y/ D rfp.i/.0/y (4.5)

for every y 2 Ci . The proof is now carried out in two steps:

1. In the first step we show that for any two points y; z 2 V there exist real numbers
0 D t0 � � � � � tl D 1 and indices q0; : : : ; ql�1 2 f1; : : : ; kg such that the vectors
vj D y C tj .z � y/ satisfy the identities

f .vj /� f 0.0I vj / D fqj .vj / � f 0
qj
.0I vj /

f .vjC1/� f 0.0I vjC1/ D fqj .vjC1/ � f 0
qj
.0I vjC1/; (4.6)

where j 2 f0; : : : ; l � 1g: Setting �.t/ D y C t.z � y/, Lemma 4.1.1 yields
real numbers 0 D t0 � � � � � tl D 1 and indices i0; : : : ; il�1 such that
f�.tj /; �.tjC1/g � Cij for every j D 0; : : : ; l � 1. Setting vj D �.tj / D
y C tj .z � y/ for j D 0; : : : ; l , we thus obtain

fvj ; vjC1g � Cij : (4.7)

Since y; z 2 V and V is convex, the vectors vj are all contained in V and since
the set Cij are cones, we conclude from (4.7) that f .˛vj / D fp.ij /.˛vj / and
f .˛vjC1/ D fp.ij /.˛vjC1/ for every ˛ 2 Œ0; 1�. Setting qj D p.ij / and applying
the definition of the directional derivative thus prove the identities (4.6).

2. Now we are ready to prove the assertion of the proposition. Let " > 0 be
arbitrarily chosen. Proposition 3.1.3 yields the strong F-differentiability of the
selection functions fp at the point x0 D 0. Hence there exists a number ı > 0

such that

kfp.u/� fp.w/ � f 0
p.0I u/C f 0

p.0I w/k � "ku � wk (4.8)
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for any two points u;w 2 V with kuk < ı and kwk < ı and everyp 2 f1; : : : ; kg.
Let y; z 2 V with kyk < ı and kzk < ı. According to part 1 there exist reals
0 D t0 � : : : � tl D 1 and indices q0; : : : ; ql�1 2 f1; : : : ; kg such that the
points vj D y C tj .z � y/; j D 0; : : : ; l � 1; satisfy (4.6). Since the vectors vj
are contained in the line segment joining y and z, we obtain kvjk < ı for every
j D 0; : : : ; l . Since v0 D y and vl D z, we further obtain

f .y/�f .z/�f 0.0Iy/Cf 0.0I z/ D
l�1X

jD0

�
f .vj /�f .vjC1/�f 0.0I vj /Cf 0.0I vjC1/

�
:

Hence (4.6) and (4.8) yield

kf .y/ � f .z/ � f 0.0Iy/C f 0.0I z/k

D
������

l�1X

jD0
f .vj /� f .vjC1/ � f 0.0I vj /C f 0.0I vjC1/

������

�
l�1X

jD0
kfqj .vj /� fqj .vjC1/� f 0

qj
.0I vj /C f 0

qj
.0I vjC1k

�
l�1X

jD0
"kvj � vjC1k

D
l�1X

jD0
"ky � zk.tjC1 � tj /

D "ky � zk:

Since " > 0 was chosen arbitrary and y; z where arbitrary points in V with
kyk < ı and kzk < ı, we conclude that f is strongly B-differentiable at x0. �

4.1.4 Continuous Differentiability

We close the analysis of the differentiability properties of piecewise differentiable
functions with the proof that a PC r -function is r-times continuously differentiable
in a generic point set. As a first result, we mention Rademacher’s Theorem which
states that a locally Lipschitz continuous function defined on a subset of IRn is
F-differentiable at all points outside of a Lebesgue nullset. Since a PC r -function
is locally Lipschitz continuous (cf. Corollary 4.1.1), this statement carries on to
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PC r -functions. However, as far as higher order derivatives are concerned, the
Lipschitz property is of no use. In fact, if g W IR ! IR is a continuous function,
then the function

f .t/ D
Z t

0

g.s/ds

is continuously differentiable and a fortiori locally Lipschitz and f 0.t/ D g.t/ for
every t 2 IR. Taking as g a continuous nowhere differentiable function thus yields
a locally Lipschitz continuous function f which is nowhere twice differentiable.
Here, PC r -functions behave much nicer. In fact, the following result shows that a
PC r -function is r-times continuously differentiable in a generic point set.

Proposition 4.1.5. LetU and be an open subset of IRn, and f :U ! IRm be a PC r -
function. There exists an open and dense subset U 0 � U such that f is r-times
continuously differentiable on U 0.

Proof. Let f1; : : : ; fk :O! IRm be a set of C r -selection functions for f at a point
x0 2 U . Clearly f is r-times continuously differentiable on the set

O 0 D
k[

iD1
intfx 2 Ojf .x/ D fi .x/g

which is a finite union of open sets and thus itself open. Let us show that O 0 is
a dense subset of O . To see this, we fix a point Nx 2 O and construct a sequence
xn 2 O 0 which converges to Nx. Since O is open, there exists a real number N̨ such
that every closed ball B. Nx; ˛/ with center Nx and radius 0 < ˛ � N̨ is a subset of
O . Since f is a continuous selection of the functions fi ; i D 1; : : : ; k, the set O is
representable as

O D
k[

iD1
fx 2 Ojf .x/ D fi .x/g:

Thus we obtain

B. Nx; ˛/ D
k[

iD1
fx 2 B. Nx; ˛/jf .x/ D fi .x/g

for every 0 � ˛ � N̨ . Baire’s Theorem states that at least one of the closed sets
fx 2 B. Nx; ˛/jf .x/ D fi .x/g; i D 1; : : : ; k, has an interior point, say x˛ , which is
also an interior point of the larger set fx 2 Ojf .x/ D fi .x/g and thus an element
of O 0 \ B. Nx; ˛/. Hence if ˛n is a null sequence of positive reals with ˛n � N̨ , then
the sequence of vectors x˛n is contained in O 0 and converges to Nx.

So we can construct for each x 2 U a neighborhood Ox and an open subset
O 0
x � Ox which is dense in Ox and has the property that f is r-times continuously
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differentiable at every point in Ox . Taking the union of all set Ox , we obtain an
open set which is dense in U and has the property that f is r-times continuously
differentiable at every point in the set. �

4.1.5 Comments and References

Piecewise differentiable functions are not coherently defined in the literature. The
study of these functions started with Whitehead’s paper [79] on C1-complexes,
where he introduced piecewise differentiable mappings on polyhedral subdivi-
sions (cf. also [29]). In view of Proposition 4.1.4 such functions are strongly
B-differentiable and hence the inverse function theorem of Sect. 3.2.2 is applicable.
The notion of continuous selections of differentiable functions has been introduced
in the article [27] of Jongen and Pallaschke to extend the classical critical point
theory to nonsmooth functions (cf. also [3, 41]). Real-valued piecewise differen-
tiable functions have been introduced by Womersley in [80] and extensively studied
by Chaney in connection with nonsmooth optimization problems (cf. [7] and the
references herein). For further results on real-valued PC r -functions we refer to
[38]. Our presentation of the subject is close to the exposition in [40], where
also most of the results can be found. Continuous selections of locally Lipschitz
continuous functions have been studied in Hager’s paper [23]. For an account on
Rademacher’s Theorem we refer to Federer’s book [17]. Baire’s Theorem can be
found in the book [32] of Kolmogorov and Fomin.

4.2 Piecewise Differentiable Homeomorphisms

In this section, we will be interested in the local homeomorphism property
for piecewise differentiable functions. A function f :U ! IRn which is a local
homeomorphism at x0 2 U � IRn is called a local PCr-homeomorphism (local
Cr-diffeomorphism) at x0 if f as well as its local inverse function are PC r -
functions (C r -functions) in a neighborhood of x0 and f .x0/, respectively. The next
result shows that we may apply any inverse function theorems for locally Lipschitz
continuous functions to recognize PC r -homeomorphisms.

Proposition 4.2.1. A PC r -function f :U ! IRn is a local PC r -homeomorphism
at x0 2 U � IRn if and only if it is a local Lipschitz homeomorphism at x0.

Proof. Since by Corollary 4.1.1 a PC r -function is locally Lipschitz continuous,
every local PC r -homeomorphism is certainly a local Lipschitz homeomorphism.
To see the converse, let f be a local Lipschitz homeomorphism at x0. Lemma 3.2.2
shows that there exists a neighborhoodO � U of x0 and a constant l > 0 such that

kf .x C y/ � f .x/k � lkyk (4.9)
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for every x; y 2 IRn with x; x C y 2 O . Moreover, since f is PC r , it is B-
differentiable at every point x 2 O and thus we can find for every " > 0 a number
ı > 0 such that

kf .x C y/� f .x/ � f 0.xIy/k � "kyk (4.10)

for every kyk � ı. In view of the positive homogeneity of f 0.xI :/, we deduce from
(4.9) and (4.10) that

kf 0.xIy/k � lkyk (4.11)

for every y 2 IRn. Reducing the neighborhood O if necessary, we may select
a collection of C r -functions f1; : : : ; fk :O! IRn which are essentially active
selection functions for f at x0. Hence for each i 2 f1; : : : ; kg there exists a sequence
of points xim 2 U; m 2 IN; converging to x0 such that

xim 2 intfx 2 U jf .x/ D fi .x/g:

In particular, f is F-differentiable at every point xim and

f 0.ximIy/ D rfi .xim/y:

The inequality (4.11) thus yields

krfi .xim/yk � lkyk

for every y 2 IRn. Due to the continuity of rfi , the latter inequality holds also for
the limit point x0. Hence rfi .x0/y D 0 if and only if y D 0 and thus rfi .x0/ is
a nonsingular n � n-matrix. The classical inverse function theorem for C r -function
thus shows that every selection function fi is a local C r -diffeomorphism at x0.
Since f was assumed to be a local Lipschitz homeomorphism, its local inverse is
continuous. To prove that f �1 is a PC r -function, it thus suffices to show that

f �1.v/ 2 ff �1
1 .v/; : : : ; f �1

k .v/g (4.12)

for every v close to f .x0/, where the function f �1
i is the local inverse function of

fi defined in a neighborhood of f .x0/. Note that f .x/ D v for some x 2 O if and
only if there exists a selection function fi .x/ D v. If v is close enough to f .x0/,
then the latter equation has a unique solution x D f �1

i .v/ in a neighborhood of x0,
which proves (4.12) for every v in a sufficiently small neighborhood of f .x0/. �

The following inverse function theorem is the essence of this chapter.

Theorem 4.2.1. Let f :U ! IRm be a PC r -function and let f1; : : : ; fk :O! IRm

be a collection of C r -selection functions for f at x0 2 O � U . If there exists a
neighborhood V � O of x0 and a collection C1; : : : ; Cl � IRn of closed cones such
that
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1. IRn D [l
iD1Ci

2. For every i 2 f1; : : : ; lg there exists an index p.i/ 2 f1; : : : ; kg such that f .x/ D
fp.i/.x/ for every x 2 V \ .fx0g C Ci/

then f is a local PC r -homeomorphism at x0 if and only if its B-derivative f 0.x0I :/
is a homeomorphism.

Proof. Proposition 4.2.1 shows that f is a PC r -homeomorphism at x0 if and
only if it is a local Lipschitz homeomorphism at x0. In view of Proposition 4.1.4
the function f is strongly B-differentiable and thus Corollary 3.2.1 shows that
f is a local Lipschitz homeomorphism at x0 if and only if f 0.x0I :/ is a local
Lipschitz homeomorphism at the origin. In view of Proposition 3.2.1, the positively
homogeneous function f 0.x0I :/ is a local Lipschitz homeomorphism at the origin
if and only if it is a Lipschitz homeomorphism. By Proposition 2.3.1 a piecewise
affine homeomorphism has a piecewise affine inverse function and thus, in view of
Proposition 2.2.7, a piecewise affine function is a homeomorphism if and only if it
is a Lipschitz homeomorphism which completes the proof. �

4.2.1 An Implicit Function Theorem

Theorem 4.2.1 can be used in connection with Lemma 3.2.1 to prove the following
implicit function theorem for PC r -functions. Instead of formulating the result in
its most general form, we use the theory of piecewise affine functions, in particular
Theorem 2.3.7, to make the result accessible for many applications.

Theorem 4.2.2. Let U � IRn � IRm be open, f W U ! IRn be a PC r -function,
and let

.x0; y0/ 2 U be a vector with f .x0; y0/ D 0,
f1; : : : ; fk W O ! IRn be a collection of selection functions for f at
.x0; y0/ 2 O � U;

˙ be a conical subdivision of IRn � IRm with a lineality space of dimension l .

If

1. For every 	 2 ˙ there exists an index j	 2 f1; : : : ; kg such that f .x; y/ D
fj	 .x; y/ for every .x; y/ 2 O \ .	 C f.x0; y0/g/

2. Either .nCm� l/ � 1 or there exists a natural number k 2 f2; : : : ; .nCm� l/g
such that the kth branching number of˙ does not exceed 2k

3. All matrices rxfj	 .x
0; y0/, 	 2 ˙; have the same nonvanishing determinant

sign

then

1. The equation f .x; y/ D 0 determines an implicit PC r -function x.y/ at .x0; y0/
2. The implicit functions xj	 .y/ determined by the equationsfj	 .x; y/ D 0; 	 2 ˙;

form a collection of selection functions for the PC r -function x.y/ at y0
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3. For every w 2 IRm the identity v D x0.y0I w/ holds if and only if v satisfies the
piecewise linear equation f 0..x0; y0/I .v;w// D 0

Proof. Having the classical approach for the construction of implicit function theo-
rems from inverse function theorems in mind (cf. Lemma 3.2.1 and Remark 3.2.1),
we first prove that the function F WU ! IRn � IRm defined by

F.x; y/ D .f .x; y/; y/

is a PC r -homeomorphism at .x0; y0/. The assumptions of the theorem ensure that
the function F satisfies the assumptions of Theorem 4.2.1. Thus it suffices to prove
that the B-derivative of F is a homeomorphism. Due to assumption 1 and the fact
that the sets 	 are cones, we deduce from the definition of the B-derivative that

F 0..x0; y0/I .v;w// D .rxfj	 .x
0; y0/v C ryfj	 .x

0; y0/w;w/ (4.13)

for every .v;w/ 2 	 . Hence the conical subdivision ˙ corresponds to the B-
derivative of F at .x0; y0/. In view of assumption 2 and Theorem 2.3.7, the
B-derivative of F at .x0; y0/ is a homeomorphism if and only if it is coherently
oriented which, in view of (4.13), is equivalent to the fact that the matrices

� rxfj	 .x
0; y0/ ryfj	 .x

0; y0/

0 I

�
; 	 2 ˙; (4.14)

have the same nonvanishing determinant sign. Performing successive Laplace
expansions over the last m rows shows that the determinants of the latter matrices
coincide with the determinants of the matrices rxfj	 .x

0; y0/, which have the same
nonvanishing sign by assumption. Hence F is a PC r -homeomorphism at .x0; y0/
and thus Lemma 3.2.1 and Remark 3.2.1 show that the equation f .x; y/ D 0

determines an implicit function at .x0; y0/ and that x.y/ D F �1
x .0; y/; which is

locally a PC r -function since F�1 is locally PC r .
To prove the second assertion, we note that the functions Fj	 .x; y/D.fj	 .x; y/;

y/ form a collection of selection functions for F at .x0; y0/, and that all these se-
lection functions are local C r -diffeomorphisms at .x0; y0/ since the corresponding
Jacobians have nonvanishing determinant. Hence the locally defined functions F�1

j	

form a collection of selection functions of the PC r -function F�1 at F.x0; y0/ and
thus x.y/ D F�1

x .0; y/ is a continuous selection of the C r -functions xj	 .y/ D
.Fj	 /

�1
x .0; y/; 	 2 ˙; in a neighborhood of y0.

In order to see the final assertion, let

˚.y/ WD .x.y/; y/ D F�1.0; y/: (4.15)

Hence

˚ 0.y0I w/ D .x0.y0I w/;w/

D .F�1/0..0; y0/I .0;w//: (4.16)
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In view of part 1 of Theorem 3.2.3, .F�1/0..0; y0/I .:; :// is a homeomorphism and
the identity

.v;w/ D .F�1/0..0; y0/I .0;w//
holds if and only if

F 0..x0; y0/I .v;w// D .0;w/: (4.17)

In view of (4.16) and the definition of F , we thus obtain that v D x0.y0I w/ if and
only if v satisfies the equation

f 0..x0; y0/I .v;w// D 0: �

Beside the determination of x0.x0I w/ by solving a piecewise linear equation,
there is also a combinatorial result which may be used to determine the latter
derivative:

Proposition 4.2.2. Suppose the assumptions of Theorem 4.2.2 are satisfied
and w 2 IRm.

1. There exists a cone 	 2 ˙ such that

�
0

w

�
2

� rxfj	 .x
0; y0/ ryfj	 .x

0; y0/w;w/
0 I

�
	 (4.18)

2. The inclusion (4.18) holds if and only if

.�rxfj	 .x
0; y0/�1ryfj	 .x

0; y0/w;w/ 2 	 (4.19)

3. If w 2 IRm satisfies (4.18), then

x0.y0I w/ D �rxfj	 .x
0; y0/�1ryfj	 .x

0; y0/w

Proof. We use the notations of the proof of Theorem 4.2.2.

1. To see the first assertion, note that every cone 	 is mapped byFj	 onto a setM	 2
IRn � IRm and that the sets M	; 	 2 ˙ , cover a neighborhood of F.x0; y0/ D
.0; y0/ in the image space IRn � IRm since the function F.x; y/ D .f .x; y/; y/,
which is a continuous selection of the functions Fj	 , is a PC r -homeomorphism
at .x0; y0/. Set z0 D .x0; y0/ and fix a vector � 2 IRn � IRm. The surjectivity
property yields the existence of a cone 	 2 ˙; a null sequence˛k; and a sequence
zk 2 	 such that

Fj	 .z
0/C ˛k� D Fj	 .z

0 C zk/: (4.20)
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Since Fj	 is a local diffeomorphism at z0, the sequence zk can be chosen so that
it converges to the origin. Passing to a subsequence if necessary, we may also
assume that

lim
k!1

zk
kzkk D Nz:

Note that Nz 2 	 since the latter cone is closed. The differentiability of Fj	 yields

lim
k!1

Fj	 .z
0 C zk/� Fj	 .z

0/

kzkk D rFj	 .z0/Nz:

In view of (4.20) we thus obtain

� lim
k!1

˛k

kzkk D rFj	 .z0/Nz;

which shows that � 2 rFj	 .z0/	 .
2. The equivalence of the inclusions (4.18) and (4.19) is readily verified since the

inverse of the matrix

� rxfj	 .x
0; y0/ ryfj	 .x

0; y0/

0 I

�
(4.21)

is given by

� rxfj	 .x
0; y0/�1 �rxfj	 .x

0; y0/�1ryfj	 .x
0; y0/

0 I

�
: (4.22)

3. To see the second assertion of the proposition, recall from the last part of
Theorem 4.2.2 that

x0.y0I w/ D v if and only if f 0..x0; y0/I .v;w// D 0. (4.23)

Now let w 2 IRm be a vector satisfying (4.19) and set

v D �rxfj	 .x
0; y0/�1ryfj	 .x

0; y0/w (4.24)

the inclusion (4.19) and assumption 1 of the theorem imply that

f .x0 C ˛v; y0 C ˛w/ D fj	 .x
0 C ˛v; y0 C ˛w/

for every sufficiently small ˛ � 0. Hence it follows immediately from the
definition of the B-derivative that

f 0..x0; y0/I .v;w// D f 0
j	
..x0; y0/I .v;w//: (4.25)
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In view of (4.24), we obtain

f 0
j	
..x0; y0/I .v;w//

D �rxfj	 .x
0; y0/rxfj	 .x

0; y0/�1ryfj	 .x
0; y0/w C ryfj	 .x

0; y0/w D 0;

and thus (4.23) and (4.25) yield

x0.y0I w/ D �rxfj	 .x
0; y0/�1ryfj	 .x

0; y0/w: �

4.2.2 A Bound for the Condition Number

In the latter section we have developed an implicit function theorem for parametric
problems which can be formulated as a parametric PC1-function. The theory of
condition is concerned with the behavior of the solution function to a parametric
problem in the vicinity of a given parameter value. We will not go into the details of
the theory of condition but instead only investigate the asymptotic condition number
of the solution function. The absolute asymptotic condition number of a function
f :U ! IRm defined on an open set U � IRn at a point x0 2 U is defined by


.f; x0/ D lim sup
x!x0

kf .x/ � f .x0/k
kx � x0k : (4.26)

Since we are not dealing with other types of condition numbers, we will call

.f; x0/ simply the condition number of f at x0. Note that 
.f; x0/ provides some
information about possible changes of the function values of f in terms of changes
of the argument. In fact, for every " > 0 there exists a ı > 0 such that

kf .x/ � f .x0/k � .
.f; x0/C "/kx � x0k
for every kx � x0k < ı. The following proposition shows how to calculate the
condition number of a B-differentiable function.

Proposition 4.2.3. If f :U ! IRm is a continuous B-differentiable function defined
on an open set U � IRn and x0 2 U , then


.f; x0/ D max
kykD1

f 0.x0Iy/:

Proof. Since f is B-differentiable, the continuity of f implies the continuity of the
B-derivative f 0.x0I :/ Hence there exists a vector y� 2 IRn with ky�k D 1 and

f 0.x0; y�/ � f 0.x0; y/



108 4 Piecewise Differentiable Functions

for every y 2 IRn with kyk D 1. Thus we have to prove the identity

lim sup
x!x0

kf .x/ � f .x0/k
kx � x0k D kf 0.x0; y�/k: (4.27)

To see that the left-hand side does not exceed the right-hand side, recall that the
definition of the B-derivative yields for every " > 0 the existence of a number ı > 0
such that

kf .x/ � f .x0/k � kf .x/ � f .x0/� f 0.x0I x � x0/k C kf 0.x0I x � x0/k
� "kx � x0k C kf 0.x0Iy�/kkx � x0k

for every x 2 U with kx � x0k < ı. Hence

lim sup
x!x0

kf .x/ � f .x0/k
kx � x0k � "C kf 0.x0; y�/k

for every " > 0, which proves that the left-hand side of (4.27) is at most as large
as the right-hand side. To see the converse inequality, note that by definition of the
B-derivative

lim
t!0
t>0

f .x0 C ty�/ � f .x0/
t

D f �.x0Iy�/:

Setting xn D x0 C 1
n
y� and recalling that ky�k D 1, we thus obtain

lim
n!1

kf .xn/ � f .x0/k
kxn � x0k D kf �.x0Iy�/k

which shows that the left-hand side of (4.27) is at least as large as the right-hand
side and thus completes the proof. �

The following corollary is an immediate consequence of the latter proposition
and the fact that the B-derivative is a continuous selection of the F-derivatives of a
set of essentially active selection functions. Recall that the norm of anm�n-matrix
A is defined by

jjjAjjj D max
kykD1

kAyk:

Corollary 4.2.1. If U � IRn is open, f :U ! IRm is a piecewise differentiable
function, and f1; : : : ; fk :O! IRm is a collection of selection functions for f at
x0 2 O � U , then


.f; x0/ � max
i2Ie

f
.x0/

jjjrfi .x0/jjj:
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Proof. Since f 0.x0Iy/ 2 frfi .x0/yji 2 I ef .x0/g; one readily verifies that

max
kykD1

kf 0.x0Iy/k � max
kykD1

max
i2Ie

f
.x0/

krfi .x0/yk

D max
i2Ie

f
.x0/

max
kykD1

krfi .x0/yk

D max
i2Ie

f
.x0/

jjjrfi .x0/jjj: �

4.2.3 Comments and References

A generalization of the inverse function Theorem 4.2.1 is given in [40], while a
more general formulation of the implicit function Theorem 4.2.2 can be found in
the paper [61] of Robinson. For a degree theoretic approach towards inverse and
implicit function theorems for PC r -functions we refer to Pang’s article [52] and to
the recent paper [54] of Pang and Ralph. The absolute asymptotic condition number
has been introduced in Rice’s paper [60] on the theory of condition which contains
a nice introduction to the subject.

In [40, 54] more general conditions have been studied which relate local
invertibility of a piecewise differentiable function to invertibility of its B-derivative.
The paper [40] extends the differential topology approach to PC1-maps initiated by
Jongen and Pallaschke in their seminal paper [27] to vector-valued functions. One of
the results in [40] states that a PC1-map has a local PC1-inverse at a point x if its
B-derivative at x is invertible and every collection of at most n of the gradients of the
essentially active selection functions of the components is linearly independent. The
approach of Pang and Ralph in [54] is based on degree theory. They show, e.g., that a
PC1-function has a local PC1-inverse at x if its B-derivative at x is invertible and
every Jacobian of the essentially active selection function of the original function
forms an essentially active selection function of the B-derivative. In [44, 58] the
degree theoretic approach has been used to prove the following implicit function
theorem:

Theorem 4.2.3. Let U � IRn; V � IRm be open sets and f W U � V ! IRn be
a PC r -map with C r -selection functions f1; : : : ; fm. Then the following statements
are equivalent:

1. The equation f .x; y/ � z D 0 determines an implicit PC r -function x.y; z/ in a
neighborhood of a solution .x0; y0; z0/.

2. The matrices rxfi .x0; y0/; i 2 I ef .x0; y0/, have the same nonvanishing
determinant sign and the piecewise linear equation
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f 0..x0; y0/I .u; v//� w D 0

has a unique solution u.v;w/ for every v 2 IRm and w 2 IRn.

For m D 0, one obtains the most general PC r -inverse function theorem. The latter
theorem has been applied to mathematical programs with normal map constraints in
[44] and to composite nonsmooth equations in [58].

4.3 Appendix: A Formula for the Generalized Jacobian

Generally the calculation of Clarke’s generalized Jacobian can be quite difficult due
to the lack of exact calculus rules. For piecewise differentiable functions, however,
there is a representation of the generalized Jacobian at hand once a set of essentially
active selection functions is known. A similar result is stated as Proposition 4 in
[34].

Proposition 4.3.1. IfU is an open subset of IRn and f :U ! IRm is aPC1-function
with C1 selection functions fi :O! IRm, i D 1; : : : ; k; at x0 2 O � U , then

@f .x0/ D convfrfi .x0/ji 2 I ef .x0/g:

Proof. By definition

I ef .x0/ D ˚
i 2 f1; : : : ; kgjx0 2 cl.intfx 2 Ojf .x/ D fi .x/g/

�I

hence for every i 2 I ef .x0/ there exists a sequence of points xn 2 intfx 2
Ojf .x/ D fi .x/g, and thus f is Fréchet differentiable at xn and rf .xn/ D
rfi .xn/. The continuity of rfi implies rfi .x0/ 2 @f .x0/, which proves the
inclusion

@f .x0/ � convfrfi .x0/ji 2 I ef .x0/g:
To see the converse inclusion, let xn be a sequence of points converging to x0 such
that f is F-differentiable at each point xn and that the sequence of Jacobians rf .xn/
converges. This implies that the B-derivative f 0.xnI :/ is a linear function. Recall
from Proposition 4.1.1 that f is locally a continuous selection of the functions fi ;
i 2 I ef .x0/ and from Proposition 4.1.3 that the B-derivative of a PC1-function
is a continuous selection of the F-derivatives of the selection functions. Hence
for each sufficiently large n 2 IN there exists an index in 2 I ef .x0/ such that
rf .xn/ D rfin.xn/. Considering the subsequences with constant indices, one
readily verifies that

lim
n!1 rf .xn/ 2 frfi .xn/ji 2 I ef .x0/g:
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This proves the inclusion

@f .x0/ � convfrfi.x0/ji 2 I ef .x0/g;

and thus completes the proof of the theorem. �



Chapter 5
Sample Applications

5.1 Variational Inequalities and Normal Maps

The notion of a normal map has been introduced by S.M. Robinson as a device
for the treatment of nonlinear variational inequalities. Here, a variational inequality
induced by a closed convex set S � IRn and a function f WS ! IRn is the problems
of finding a vector x 2 S which satisfies

f .x/T x � f .x/T y for every y 2 S . (5.1)

In view of the definition (2.2) of the normal cone, the variational inequality can be
equivalently formulated as a so-called generalized equation

0 2 f�f .x/g CNS.x/: (5.2)

Recall that by Proposition 2.4.2 the identity

NS.x/C fxg D ˘�1
S .x/ (5.3)

holds, where˘S is the Euclidean projection onto S . Hence the variational inequality
(5.1) as well as the generalized equation (5.2) are equivalent to the fixed-point
equation

˘S.x C f .x// D x: (5.4)

The latter equation is closely related to the so-called normal equation

f .˘S.z//C˘S.z/ D z: (5.5)

In fact, if x solves (5.4), then z D x C f .x/ solves (5.5), while x D ˘S.z/ solves
(5.4) whenever z solves (5.5). The normal equation (5.5) determines the zeros of the
mapping

fS D f ı˘S C˘S � I:

S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs
in Optimization, DOI 10.1007/978-1-4614-4340-7 5, © Stefan Scholtes 2012
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S.M. Robinson called the latter mapping the normal map induced by the function f
and the closed convex set S . Naturally the question arises why the latter mapping
should be preferred to the mapping˘S ı .I Cf /� I, the zeros of which correspond
directly to the solutions of the variational inequality (5.1) in view of its equivalence
to (5.4). In fact, we have successfully used the latter function in Sect. 2.4.3 to analyze
affine variational inequalities. However, in the nonlinear case the latter formulation
has a severe drawback. In most applications of variational inequalities, the function
f is a C1-function. In this case the normal map fS is differentiable at all points
where ˘S is differentiable, while the set of points where the function ˘S ı .I C
f / � I fails to be differentiable may have a more complicated structure. To get an
idea of this phenomenon, consider the real-valued functions g.x/ D f .jxj/ and
h.x/ D jf .x/j of a single variable x. If f is differentiable, then g is differentiable
at all points except perhaps at the origin, while h may be nondifferentiable at all
points where f vanishes. The following proposition exploits the property that the
nondifferentiability points of fS coincide with the nondifferentiability points of˘S .

Proposition 5.1.1. If P � IRn is a polyhedron and f :IRn! IRn is a C r -function,
then fP is a strongly B-differentiable PC r -function.

Proof. Let P D fx 2 IRnjAx � bg and suppose a1; : : : ; am are the row vectors
of A. In view of Proposition 2.4.4 the function fP is a continuous selection of the
functions

f ı˘SI C˘SI � I; I 2 I .A; b/, (5.6)

where SI D fx 2 IRnjaTi x D bi ; i 2 I g; and I .A; b/ is defined by (2.42). By
Proposition 2.4.3 the functions ˘SI are affine. Hence the latter selection functions
areC r -functions and thus fP is a PC r -function. Moreover, Proposition 2.4.4 shows
that fP coincides with a selection function on each polyhedron of the normal
manifold included by P . Since a polyhedral subdivision ˙ of IRn coincides in a
neighborhood of a point x with the polyhedral subdivision

˚fxg C 	 0j	 0 2 ˙ 0.x/
�
,

where ˙ 0.x/ is the localization (2.23) of ˙ at x, we deduce from Proposition 4.1.4
that fP is indeed strongly B-differentiable at each point x 2 IRn. �

5.1.1 A Homeomorphism Condition for Normal Maps
of Polyhedra

As a consequence of Proposition 5.1.1 the normal map fP is a PC1-function,
provided that f :IRn! IRn is a C1-function and that P is a polyhedron. Propo-
sition 4.1.5 thus yields the existence of an open and dense subset ˝ of IRn such
that f is continuously differentiable at every point x 2 ˝ . The following theorem
provides a global homeomorphism condition for the normal map fP in terms of the
determinants of the Jacobian of fP in ˝ .

Theorem 5.1.1. Let P � IRn be a polyhedron, f :IRn! IRn be a C r -function, and
let ˝ be a dense subset of IRn such that fP is F-differentiable for every x 2 ˝ .
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If all matrices rfP .x/; x 2 ˝ , have the same nonvanishing determinant sign and
if there exists a positive real l such that jjjrfP .x/�1jjj � l for every x 2 ˝ , then fP
is a global PC r -homeomorphism.

Proof. We prove the theorem for the case that the determinants of the matrices
rfP .x/, x 2 ˝ , are positive; the proof for the case of negative determinants
is mutatis mutandis the same. If all determinants are positive, then the second
assumption of the theorem implies that there exists a number � > 0 such that

det.rfP .x// � � for every x 2 ˝: (5.7)

As in the proof of the latter proposition we assume that P D fx 2 IRnjAx � bg;
where A has row vectors a1; : : : ; am and use Proposition 2.4.4 to deduce that fP is
a continuous selection of the C r -functions

fI D f ı˘SI C˘SI � I; I 2 I .A; b/, (5.8)

where SI D fx 2 IRnjaTi x D bi ; i 2 I g; and that fP coincides with fI on the
polyhedron PI D FI C NI of the normal manifold, i.e., given a point x 2 IRn,
the function fP is a continuous selection of the C r -functions fI ; x 2 PI , in a
neighborhood of x. Since the polyhedron PI has nonempty interior, the set ˝ \
intPI is dense in PI and hence we deduce from (5.7) and the second assumption of
the theorem that

det.rfI .x// � �

jjjrfI .x/�1jjj � l (5.9)

Since the B-derivative f 0
P .xI :/ is a continuous selection of the F-derivatives

rfI .x/; x 2 PI , we deduce from the first inequality of (5.9) that every B-derivative
f 0
P .xI :/ is coherently oriented. Moreover, a conical subdivision of IRn correspond-

ing to the piecewise linear function f 0
P .xI :/ is the localization (2.23) ˙ 0.x/ of the

normal manifold ˙ induced by P . In view of Lemma 2.3.4, the second branching
number of the localization does not exceed the second branching number of the
normal manifold which, in view of Proposition 2.4.5, does not exceed 4. Thus
Theorem 2.3.7 shows that f 0

P .xI :/ is a homeomorphism. Since by Proposition 5.1.1
the function fP is strongly B-differentiable, we thus conclude that fP is a local
PC r -homeomorphism. Using the second inequality of (5.9), we obtain

kf 0.xIy/k � min
I Wx2PI

krfI .x/yk

� min
I Wx2PI

1

jjjrfI .x/�1jjjkyk

� 1

l
kyk

for every y 2 IRn. Thus Hadamard’s Theorem 3.2.5 shows that fP is indeed a
homeomorphism. �
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5.1.2 Comments and References

For an account on variational inequalities we refer to the recent survey article [25]
of Harker and Pang. An introduction to generalized equations can be found in
Robinson’s paper [62]. Normal maps have been studied by Robinson in [61,63,66],
by Pang and Ralph in [54], and by Kuntz and the author in [40]. The result presented
here is complementary to the results in [63].

5.2 Sensitivity Analysis for Mathematical Programs

In this section we use the implicit function theorem to develop conditions which
ensure that a parametric mathematical programming problem

P.y/ min
x2IRn

ff .x; y/jg.x; y/ � 0; h.x; y/ D 0g

has locally a unique solution and to investigate properties of the solution function.
We assume throughout this section that the functions f W IRn � IRp ! IR, g W
IRn � IRp ! IRl ; and h W IRn � IRp ! IRm are C r -functions with r � 2. The
minimization is carried out over the variable x 2 IRn, while the vector y 2 IRp

serves as a parameter which might reflect uncertainties in the problem data or control
variables. Throughout this section, we assume that we are given a stationary point
x0 of the mathematical program P.y0/ for a fixed parameter vector y0 2 IRp and
we are interested in the following questions:

1. Is the solution x0 locally unique for the fixed parameter vector y0?
2. If the first question is answered affirmatively, does there exist a locally unique

stationary point x.y/ close to x0 if y is close to y0?
3. If the second question is answered affirmatively, which conditions ensure that

the stationary points x.y/ are local solutions of the programs P.y/ for y close
to y0?

4. If the second question is answered affirmatively, what are the properties of the
stationary point mapping x.y/?

(a) Is the function x.y/ piecewise differentiable?
(b) Can we calculate a collection of selection functions at y0?
(c) Can we calculate the B-derivative of x.y/ at the point y0?

We emphasize the necessity to find algorithmically verifiable conditions to treat the
latter questions.



5.2 Sensitivity Analysis for Mathematical Programs 117

5.2.1 Sensitivity Analysis of Stationary Solutions

We have already seen in the introductory chapter that the stationary points of the
mathematical programming problem P.y/ correspond to the zeros of the Kojima
mapping F W IRn � IRlCm � IRp ! IRn � IRlCm which is defined by

F.x; �; y/ WD

0
BBBBBBBBB@

rxf .x; y/C
lX

iD1
maxf�i ; 0grxgi .x; y/C

lCmX

jDlC1
�jrxhj .x; y/

�g1.x; y/C minf�1; 0g
:::

�gl .x; y/C minf�l ; 0g
�h.x; y/

1
CCCCCCCCCA

;

i.e., x is a stationary point of the program P.y/ if and only if there exists a
vector � 2 IRlCm such that F.x; �; y/ D 0. Clearly F is a PC r�1-function,
provided the data functions determining the program P.y/ are C r -functions. The
function F is a C r�1-function in a neighborhood of any point .x0; �0; y0/ with
nonvanishing components �0i , i D 1; : : : ; l . Note that in this case the stationary
point x0 admits Lagrange multipliers .�0; �0/ 2 IRl � IRm which satisfy the strict
complementarity condition, i.e., �i > 0 for every i with gi .x

0; y0/ D 0. If
some of the components �0i , i 2 f1; : : : ; lg; are vanishing, then the function F is
locally a continuous selection of C r�1-functions. The objective of this section is to
analyze the local properties of the function F in a neighborhood of a general point
.x0; �0; y0/ 2 IRn � IRlCm � IRp . As a consequence of Theorem 4.2.2 we obtain the
following sensitivity result for the stationary points of parametric programs.

Theorem 5.2.1. Let .x0; �0; y0/ 2 IRn � IRlCm � IRp be a zero of the Kojima
mapping F corresponding to a parametric programming problem P.y/ with C r -
data, r � 2. Let

�.�0/ D ˚
ı 2 f�1; 1gljıi D sign�0i if �0i ¤ 0

�
; (5.10)

and define for ı 2 �.�0/ the C r�1-function

Fı.x; �; y/WD

0
BBBBBBBBB@

rxf .x; y/C
lX

iD1
maxfıi ; 0g�irxgi .x; y/C

lCmX

jDlC1
�jrxhj .x; y/

�g1.x; y/� minfı1; 0g�1
:::

�gl .x; y/� minfıl ; 0g�l
�h.x; y/

1
CCCCCCCCCA

:
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If all matrices r.x;�/Fı.x
0; �0; y0/; ı 2 �.�0/; have the same nonvanishing

determinant sign, then the following statements hold:

Implicit function: The equation F.x; �; y/ D 0 determines implicit PC r�1-
functions x.y/ and �.y/ at .x0; �0; y0/.

Selection functions: The collections of all implicit functions xı.y/ and �ı.y/

determined by the equationsFı.x; �; y/ D 0; ı 2 �.�0/; are collections of selection
functions for x.y/ and �.y/:

B-derivative of the solution function: If we define

A.x0; �0; y0/ D r2
xxf .x

0; y0/C
lX

iD1
maxf�0i ; 0gr2

xxgi .x
0; y0/

C
lCmX

jDlC1
�0jr2

xxhj .x
0; y0/;

B.x0; �0; y0/ D r2
xyf .x

0; y0/C
lX

iD1
maxf�0i ; 0gr2

xygi .x
0; y0/

C
lCmX

jDlC1
�0jr2

xyhj .x
0; y0/;

I0.�
0/ D ˚

i 2 f1; : : : ; lgj�0i D 0
�
;

IC.�0/ D
n
j 2 f1; : : : ; lgj�0j > 0

o
;

I�.�0/ D ˚
s 2 f1; : : : ; lgj�0s < 0

�
;

then for every w 2 IRm the quadratic program

QP.x0; v0; y0;w/ min
1

2
zT A

�
x0; �0; y0

�
z C zT B

�
x0; �0; y0

�
w

subject to

rxgi
�
x0; y0

�T
z � �rygi

�
x0; y0

�T
w; i 2 I0

�
�0

�
;

rxgj
�
x0; y0

�T
z D �rygj

�
x0; y0

�T
w; j 2 IC

�
�0

�
;

rxhk
�
x0; y0

�T
z D �ryhk

�
x0; y0

�T
w; k D 1; : : : ; m;

has a unique stationary point z.w/ with unique corresponding Lagrange multipliers

.�.w/; �.w/; �.w// 2 IRI0.�
0/

C � IRIC.�
0/ � IRm; and the relations
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x0.y0I w/ D z.w/;

�0
i .y

0I w/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�i .w/ if i 2 I0.�0/ and �i .w/ > 0,
rxgi .x

0; y0/T v.w/ � rygi .x
0; y0/w if i 2 I0.�0/ and �i .w/ D 0

or i 2 I�.�0/,
�i .w/ if i 2 IC.�0/,
�i�l .w/ if i 2 fl C 1; : : : ; l Cmg

hold.

Proof. Since the nonvanishing sign of a number is locally constant, the set

O.�0/ D f.x; �; y/ 2 IRn � IRlCm � IRpjsign�i D sign�0i if �0i ¤ 0g

is an open neighborhood of .x0; �0; y0/. Setting

	ı.�
0/Df.v; �;w/ 2 IRn � IRlCm � IRpjıi�i � 0; i 2 I0.�0/g; (5.11)

the definitions of Fı and�.�0/ show that for every ı 2 �.�0/ and every

.x; �; y/ 2 O.�0/\ .	ı.�
0/C f.x0; �0; y0/g/

the identity F.x; �; y/ D Fı.x; �; y/ holds. It is easily seen that the collection of all
cones 	ı.�0/; ı 2 �.�0/; is a conical subdivision of IRn� IRlCm � IRp with lineality
space

L D f.v; �;w/ 2 IRn � IRlCm � IRpj�i D 0; i 2 I0.�0/g:
Note that the codimension .nC l CmC p � dimL/ of the lineality space L equals
the cardinality of I0.�0/. If the codimension is larger than 1, then every face of
codimension 2 is contained in exactly four cones. In fact, a face of codimension
2 of a cone is obtained by turning two inequalities into equalities. Thus this face
is contained in the four cones which correspond to the four different possibilities
to turn two equalities into inequalities. Hence the second branching number of the
conical subdivision is 4. Since by assumption the matrices r.x;�/Fı.x

0; �0; y0/ have
the same nonvanishing determinant sign, we may apply Theorem 4.2.2. The first two
assertions follow immediately from the statements .1/ and .2/ of Theorem 4.2.2.
To see that the third assertion is a direct consequence of Part 3 of Theorem 4.2.2,
note that

F 0..x0; �0; y0/I .v; �;w// D 0

if and only if
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A.x0; �0; y0/v C B.x0; y0; y0/w C
X

i2I0.�0/
maxf�i ; 0grxgi .x

0; y0/

C
X

j2IC.�0/

�jrxgj .x
0; y0/C

mX

kD1
�lCkrxhk.x

0; y0/ D 0;

� rxgi .x
0; y0/T v � rygi .x

0; y0/Tw C minf�i ; 0g D 0; i 2 I0.�0/;
� rxgj .x

0; y0/T v � rygj .x
0; y0/Tw D 0; j 2 IC.�0/;

� rxgs.x
0; y0/T v � rygs.x

0; y0/Tw C �s D 0; s 2 I�.�0/;

� rxhk.x
0; y0/T v � ryhk.x

0; y0/T w D 0; k D 1; : : : ; m:

Eliminating the forth set equations which has free �s variables, the left-hand
side of the latter equation coincides with the Kojima mapping corresponding to
the quadratic program QP.x0; �0; y0;w/. Thus the third assertion of the theorem
follows immediately from statement .3/ of Theorem 4.2.2. �

In view of the definition of the functions Fı and the set �.�0/, the reduced
Jacobians of Fı; ı 2 �.�0/; have the following block structure:

r.x;�/Fı.x
0; �0; y0/ D

0

@
A Bı C

�DT Eı 0

�CT 0 0

1

A ; (5.12)

where

1. A is an n � n-matrix with

A D r2
xxf .x

0; y0/C
lX

iD1
maxfıi ; 0g�0i r2

xxg.x
0; y0/C

mC1X

jDlC1
�0jr2

xxh.x
0; y0/

D r2
xxf .x

0; y0/C
lX

iD1
maxf�0i ; 0gr2

xxg.x
0; y0/C

mC1X

jDlC1
�0jr2

xxh.x
0; y0/;

where the equality is due to the fact that ı 2 �.�0/ (cf. 5.10)
2. Bı is an n � l-matrix defined by

Bı D �
maxfı1; 0grxg1.x

0; y0/; : : : ;maxfıl ; 0grxgl .x
0; y0/

�

3. C is the n �m-matrix rxh.x
0; y0/T

4. D is the l � n-matrix rxg.x
0; y0/T

5. Eı is an l � l-matrix the i th column of which is the vector � minfıi ; 0gei ; where
ei is the i th unit vector in IRl
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A natural question is how we can exploit the block structure of the matrix (5.12) to
simplify the calculation of the determinant sign of the matrices r.x;�/Fı.x

0; �0; y0/;

ı 2 �.�0/: A first observation is the fact that for ıi D �1, the .n C i/th column
of the matrix (5.12) is the .n C i/th unit vector in IRnClCm. Using the Laplace
expansion for the determinant, we can thus delete the .nC i/th row and column of
the matrix without changing the determinant. Definition 5.10 shows that for every
i 2 f1; : : : ; lg with �0i < 0 and every ı 2 �.�0/ the identity ıi D �1 holds.
Deleting all columns and rows corresponding to negative components of ı, we thus
conclude

Remark 5.2.1. For every ı 2 �.�0/ the identity

det
�r.x;�/Fı.x

0; �0; y0/
� D det

0

@
A Mı C

�MT
ı 0 0

�CT 0 0

1

A ; (5.13)

holds, where Mı is a matrix the columns of which store the gradients rxgi .x
0; y0/

with ıi D 1.

Note that the columns of the matrix Mı consist of all gradients of active inequality
constraints with positive multipliers and, in addition, some of the gradients of
active inequality constraints with vanishing multiplier, according to our choice of
ı 2 �.�0/. Each such matrix is a submatrix of the largest of these matrices which
consists of all column vectors rxgi .x

0; y0/ corresponding to active inequality
constraints. If we denote this largest matrix by M , we thus obtain as a necessary
condition for all matrices on the right-hand side of (5.13) to have a nonvanishing
determinant that the block matrix .M;C / has full column rank. This condition
is known as the linear independence constraint qualification. It implies that the
Lagrange multiplier vector �0 corresponding to the stationary solution x0 is unique,
which in turn implies the uniqueness of �0. We thus conclude

Remark 5.2.2. If all matrices r.x;�/Fı.x
0; �0; y0/; ı 2 �.�0/; have a nonvanishing

determinant sign, then the program P.y0/ satisfies the linear independence con-
straint qualification at the stationary point x0.

Te latter fact enables us to use the following elementary lemma from linear algebra
for a further exploitation of the block structure of the matrix on the right-hand side
of (5.13).

Lemma 5.2.1. Let A and B be n � n-matrices and let B D .V;W /, where V is an
n � .n�m/-matrix andW is an n �m-matrix. If det.B/ ¤ 0 and V TW D 0, then

det

�
A W

�W T 0

�
D det.W TW /2

det.B/2
det.V T AV /:
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Proof. Consider the .nCm/ � ..n �m/CmCm/ block matrix

�
V 0 W

0 I 0

�

Interchangingm columns yields

det

�
V 0 W

0 I 0

�
D .�1/m det

�
B 0

0 I

�

D .�1/m det.B/

¤ 0: (5.14)

Since V TW D 0, we obtain

�
V 0 W

0 I 0

�T �
A W

�W T 0

� �
V 0 W

0 I 0

�
D

0

@
V TAV 0 V T AW

0 0 �W TW

W TAV W TW W TAW

1

A

and thus in view of (5.14)

det

�
A W

�W T 0

�
D 1

det.B/2
det

0

@
V TAV 0 V TAW

0 0 �W TW

W TAV W TW W TAW

1

A : (5.15)

Since the matrix B is nonsingular, the submatrix W has full column rank. Hence
the matrix W TW is nonsingular and we can calculate

�
0 �W TW

W TW W TAW

��1
D

�
.W TW /�1W TAW.W TW /�1 .W TW /�1

�.W TW /�1 0

�
: (5.16)

The latter identity shows that

.0; V T AW /

�
0 �W TW

W TW W TAW

��1 �
0

W TAV

�
D 0

and thus the Schur complement formula yields

det

0

@
V TAV 0 V T AW

0 0 �W TW

W TAV W TW W TAW

1

A D det

�
0 �W TW

W TW W TAW

�
det.V T AV /

D .�1/m det

� �W TW 0

W TAW W TW

�
det.V T AV /
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D .�1/m det.�W TW / det.W TW / det.V T AV /

D det.W TW /2 det.V T AV /:

Equation (5.15) proves the assertion of the lemma. �

Setting W D .Mı; C /; where Mı is the matrix defined in Remark 5.2.1, we can
immediately apply the latter lemma to prove the following result:

Remark 5.2.3. If the program P.y0/ satisfies the linear independence constraint
qualification at x0, then for every ı 2 �.�0/ the equality

sign det

0

@
A Mı C

�MT
ı 0 0

�CT 0 0

1

A D sign det.V T
ı AVı/ (5.17)

holds, where the columns of the matrix Vı form a basis of the nullspace of the matrix�
Mı;C

�T
.

5.2.2 Sensitivity Analysis of Local Minimizers

In the preceding section, we have investigated the local change of a stationary point
as a function of the parameter. Here, we will be more interested in the change of a
local minimizer as a function of the parameter. We will see that the key towards the
analysis of the local minimizers is played by the following second-order sufficiency
condition.

Second-order sufficiency condition: If x0 2 IRn is a stationary solution of the
program P.y0/ and �0 2 IRlCm is a corresponding Lagrange multiplier, then
x0 is a local minimizer provided that wT Aw > 0 for every nonvanishing vector
w 2 IRn satisfying

rh.x0; y0/w D 0

rgi .x0; y0/T w D 0 if �0i > 0,

rgj .x0; y0/T w � 0 if �0j D 0 and gj .x0; y0/ D 0,

where

A D r2
xxf .x

0; y0/C
lX

iD1
�0ir2

xxg.x
0; y0/C

mC1X

jDlC1
�0jr2

xxh.x
0; y0/:
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We have not incidentally denoted the latter matrix by the symbol A. It does indeed
coincide with the matrix A used in the representation (5.12) of r.x;�/Fı.x

0; �0; y0/;

where the vector

�0i D
�
�0i if either �0i > 0 or i 2 fl C 1; : : : ; l Cmg,
gi .x

0; y0/ otherwise,
(5.18)

is chosen in such a way that F.x0; �0; y0/ D 0.

Proposition 5.2.1. Let x0 be a stationary point of the mathematical programP.y0/
and suppose the linear independence constraint qualification holds at x0. Let
.�0; �0/ 2 IRlC � IRm be the Lagrange multiplier vector corresponding to x0, and
let V be a matrix whose columns form a basis of the linear subspace

L D fz 2 IRnjrxh.x
0; y0/z D 0;rxgi .x

0; y0/T z D 0; if �0i > 0g:

If the matrix V TAV is positive definite, then there exist open neighborhoods U �
IRp of y0 and V � IRn of x0 such that for every parameter value y 2 U there
exists a unique stationary solution x.y/ 2 V of the program P.y/: Moreover, x is
a PC r�1-function of the parameter y and every stationary solution x.y/ is a local
minimizer of the corresponding program.

Proof. Defining �0 by (5.18), we obtain F.x0; �0; y0/ D 0. Note that V T AV is
positive definite if and only if wT Aw > 0 for every nonvanishing vector w 2 L.
If we define

Lı D
�

z 2 IRnjrxh.x
0; y0/z D 0;rxgi .x

0; y0/T z D 0; if �0i > 0

rxgj .x
0; y0/T z D 0; if �0i D 0 and ıi D 1

	
;

then Lı � L and thus wT Aw > 0 for every nonvanishing vector w 2 Lı . If the
columns of Vı form a basis of the subspace Lı , we can thus deduce that the matrix
V T
ı AVı is positive definite and as thus has a positive determinant. In view of the

linear independence assumption, Remarks 5.2.1 and 5.2.3 and Theorem 5.2.1 can
be readily used to prove the local existence of a piecewise differentiable stationary
point mapping x.y/. To see that for y close enough to y0 the stationary point x.y/
is a local minimizer, note that the assumptions of the corollary imply the second-
order sufficiency condition. Since x depends continuously on the parameter y, so do
the matrix A as well as the equality system defining L. Since wT Aw > 0 for every
nonvanishing vector w 2 L if and only if the latter inequality holds for every w 2 L
with unit norm, we deduce that wT A.y/w > 0 for every w 2 L.y/ as long as y is
sufficiently close to y0. �
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Remark 5.2.4. If the assumptions of the corollary are satisfied, then the objective
function of the corresponding quadratic program QP.x0; �0; y0;w/ exhibited in
Theorem 5.2.1 is strictly convex over the feasible region and thus its unique
stationary solution is a minimizer.

5.2.3 Comments and References

The standard introductory text to sensitivity analysis is Fiacco’s book [18]. Our
treatment of the subject follows the approach of Kojima in [31]. He called a
stationary solution which satisfies the conditions of Theorem 5.2.1 a strongly stable
stationary solution. A survey of equivalent characterizations can be found in the
paper [28] of Klatte and Tammer. The directional derivative of the solution function
has been investigated under weaker assumptions in a number of articles (cf. e.g.
[2, 4, 5, 13, 21, 42, 57, 76]).



References

1. Alexandroff, P., Hopf, H.: Topologie. Chelsea Publishing Company, New York (1972)
2. Auslender, A., Cominetti, R.: First and second order sensitivity analysis of nonlinear programs

under directional constraint qualification condition. Optimization 21, 351–363 (1990)
3. Bartels, SG., Kuntz, L., Scholtes, S.: Continuous selections of linear functions and nonsmooth

critical point theory. Nonlinear Anal. Theor. Meth. Appl. 24, 385–407 (1994)
4. Bonnans, JF.: Directional derivatives of optimal solutions in smooth nonlinear programming.

J. Optim. Theor. Appl. 73, 27–45 (1992)
5. Bonnans, JF., Ioffe, AD., Shapiro, A.: Expansion of exact and approximate solutions in

nonlinear programming. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization.
Springer Verlag, Berlin (1992)

6. Browder, FE.: Covering spaces, fibre spaces, and local homeomorphisms. Duke Math. J. 21,
329–336 (1954)

7. Chaney, RW.: Piecewise Ck-functions in nonsmooth analysis. Nonlinear Anal. Theor. Meth.
Appl. 15, 649–660 (1990)

8. Chien, MJ., Kuh, ES.: Solving piecewise linear equations for resistive networks. Circ. Theor.
Appl. 4, 3–24 (1976)

9. Clarke, FH.: Optimization and Nonsmooth Analysis. Les publications CRM, Université de
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Index

A
active index set, 92
active index set, essentially, 92
affine hull, 14

B
B-derivative, 47, 65
B-derivative, of a piecewise affine function, 27
B-derivative, of implicit functions, 103, 105
B-differentiability, of PCr-functions, 95
B-differentiable, 65
B-differentiable, strong, 74
Baire’s Theorem, 100, 101
Bouligand differentiable, 65
branching number, 47
branching number, branching number theorem,

47
branching number, of a normal manifold, 55

C
carrier, 24
closed mapping, 40, 41
coherent orientation, on a polyhedron, 32
complementarity problem, 5, 6
complementarity problem, linear, 58
complementarity problem, nonlinear, 5
condition number, absolute asymptotic, 107
condition number, of a B-differentiable

function, 107
condition number, of a piecewise differentiable

function, 108
cone generated by a set, 14
connected, 41
connected, path, 41
connected, simply, 41

continuation property, 87
continuous differentiability, of PCr-functions,

100
continuous selection, 91
convex cone, 14
convex cone, pointed, 14
convex hull, 14
convex set, 14
covering map, 40, 41
covering map, finite, 40, 41

D
Decomposition Theorem, 16
diffeomorphism, local, 101
dimension of a convex set, 14
directional derivative, 65
directionally differentiable, 65
dual representation of a polyhedral cone, 16

E
equilibrium, 3
Euclidean projection, 113
Euclidean projection, onto a convex set, 50
Euclidean projection, onto a polyhedron, 52
extremal point of a convex set, 15
extremal ray of a convex cone, 15
extremal set of a convex set, 15

F
F-derivative, 66
F-differentiable, 66
F-differentiable, strong, 74
face lattice of a polyhedron, 17
face of a polyhedron, 17
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face, proper, 17
factor, 44, 45, 47
factorization lemma, 44
Farkas’ Lemma, 16
Farkas–Minkowski–Weyl Theorem, 15
first order approximation, strong, 74
first-order approximation, 65
first-order approximation, strong, 86
Fréchet differentiable, 66

G
generalized equation, 113, 116
generalized Jacobian, 89

H
Hadamard’s Theorem, 87
homeomorphism, 29
homeomorphism, local, 30, 38, 41
homeomorphism, local Lipschitz, 101
homeomorphism, local PCr-, 101
homeomorphism, local, at a point, 30
homotopy liftin, 41
Homotopy Lifting Theorem, 87

I
implicit function, 76
implicit function theorem, 76
Implicit Function Theorem, for PCr-functions,

103
invariance of dimension, 30, 79
invariance of domain theorem, 79
inverse function, 29, 79
inverse function theorem, 79, 87
Inverse Function Theorem, for PCr-functions,

102
invertibility, 79
invertibility, Lipschitz-, 79

K
Kojima mapping, 10

L
lineality space, of a polyhedron, 16
lineality space, of a subdivision, 26
linear hull, 14
linear independence constraint qualification,

121, 124
Lipschitz homeomorphism, 79
Lipschitz homeomorphism, local, 79

local Lipschitz continuity, of PCr-functions, 95
localization, 27, 47
loop, 41

M
matrix-vector pair, 19
max-face of a closed convex set, 14
max-min representation, 23
multiobjective optimization, 6
multiplier vector, 16

N
nonlinear program, parametric, 8
normal cone, 14, 51, 113
normal equation, 113
normal manifold, 53, 55
normal map, 114, 116

O
open mapping theorem, 79
orthogonal projection, 43

P
P-matrix, 59
parametric program, 116
partition, 23
partition, minimal, 24
path, 41
PC-function, 91
piecewise affine function, 19
piecewise affine function, coherent orientation,

41
piecewise affine function, coherently oriented,

32, 34, 35, 37, 38
piecewise affine function, injective, 32, 37
piecewise affine function, open, 35, 37
piecewise affine function, surjective, 36, 37
piecewise affine functions, surjective, 35
piecewise differentiable, 91
piecewise linear function, 19
pointed polyhedron, 16
polyhedral cone, 15
polyhedron, 15
polytope, 15
primal representation of a polyhedral cone, 16

R
Rademacher’s Theorem, 90, 99, 101
recession cone of a polyhedron, 16
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recession function, 59
relative interior of a convex set, 14

S
selection function, 91
selection function of an affine function, 19
selection function, active, 92
selection function, essentially active, 92
selection functions, minimal collection of, 24
separation property of convex sets, 15
skeleton, 24, 37
stationary point, 9, 117
stationary solution, strongly stable, 125

strong B-differentiability, of PCr-functions, 97
subdivision, conical, 24
subdivision, pointed, 24
subdivision, polyhedral, 24

U
unit generator of an extremal ray, 15

V
variational inequality, 3, 113, 116
variational inequality, affine, 57
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