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PREFACE

It was forty years ago that my “Introduction to the arithmetic theory of au-

tomorphic functions” appeared. At present the terminology “modular form”

can be counted among those most frequently heard in the conversations of

mathematicians, and indeed, there are many textbooks on this topic. How-

ever, almost all of them are at the elementary level, and not so interesting

from the viewpoint of the reader who already knows the basics. So, my inten-

tion in the present book is to offer something new that may satisfy the desire

of such a reader. Therefore we naturally assume that the reader has at least

rudimentary knowledge of modular forms of integral weight with respect to

congruence subgroups of SL2(Z), though we state every definition and some

basic theorems on such forms.

One of the principal new features of this book is the theory of modular

forms of half-integral weight, another the discussion of theta functions and

Eisenstein series of holomorphic and nonholomorphic types. Thus we have

written the book so that the reader can learn such theories systematically.

However, we present them with the following two themes as the ultimate

aims:

(I) The correspondence between the forms of half-integral weight and those

of integral weight.

(II) The arithmeticity of various Dirichlet series associated with modular

forms of integral or half-integral weight.

The correspondence of (I) associates a cusp form of weight k with a mod-

ular form of weight 2k − 1, where k is half an odd positive integer. I gave

such a correspondence in my papers in 1973. In the present book I prove a

stronger, perhaps the best possible, result with different methods.

As for (II), a typical example is a Dirichlet series

v

D(s; f, g) = L(2s+ 2, ω)

∞∑
n=1

anbnn
−s−(k+�)/2
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obtained from a cusp form f(z)=
∑∞

n=1 an exp(2πinz) of weight k and an-

other form g(z) =
∑∞

n=0 bn exp(2πinz) of weight �, where L(s, ω) is the

L-function of a Dirichlet character ω determined by f and g. In the crudest

form, our main results show that there exists a constant A(f) that depends on

f, k, �, ω, and an integer κ such that D(κ; f, g)/A(f) is algebraic if an and

bn are algebraic, for infinitely many different g. We can of course consider

D(s; f, χ) =
∑∞

n=1 χ(n)ann
−s with a Dirichlet character χ and ask about

the nature of D(m; f, χ) for certain integers m.

Though we eventually restrict our modular forms to functions of one com-

plex variable, some of our earlier sections provide an easy introduction to the

theory of Siegel modular forms, since that gives a good perspective and makes

our proofs of various facts more transparent. Also, since our second theme

concerns the arithmeticity, we naturally discuss the rationality of the Fourier

coefficients of a modular form, and how the form behaves under the action of

an automorphism of the field to which the coefficients belong. This is a delicate

problem, particularly when it is combined with the group action. Therefore,

a considerable number of pages are spent on this problem. Another essential

aspect of our theory is the involvement of the class of functions which we

call nearly holomorphic modular forms, especially nonholomorphic Eisenstein

series.

As for D(m; f, χ), we only state the results without proof, and cite two of

my papers published in 1976 and 1977. My original plan was to make the book

self-contained even in this respect by including the proof, but an unexpected

accident made me abandon the idea. Possibly I may be excused by saying

that once the reader acquires some elementary results in earlier sections of

the present book, those two papers will be easy to read, and so the exclusion

of the proof is not a great loss. Also, I allowed myself to quote some standard

facts discussed in my books of 1971 and 2007 without proof, since I thought

it awkward to reproduce the proof of every quoted fact.

It is my great pleasure to express my heartfelt thanks to my friends Koji

Doi, Tomokazu Kashio, Kamal Khuri-Makdisi, Kaoru Okada, and Hiroyuki

Yoshida, who read my manuscript and helped me eliminate many misprints

and improve the exposition.

Princeton

September 2011 Goro Shimura
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NOTATION AND TERMINOLOGY

0.1. For a set X we denote by #X or #(X) the number of elements of X

when it is finite, and put #X = #(X) =∞ otherwise.

We denote by Z, Q, R, and C the ring of rational integers and the fields

of rational numbers, real numbers, and complex numbers, respectively. Also,

Q and Qab mean the algebraic closure of Q in C and the maximal abelian

extension of Q in Q, respectively. We put

(0.1) T =
{
z ∈ C

∣∣ |z| = 1
}
.

We denote by Aut(C) the group of all ring-automorphisms of C.

Given an associative ring A with identity element and an A-module X,

we denote by A× the group of all invertible elements of A, and by Xm
n the

A-module of all m × n-matrices with entries in X ; we put Xm = Xm
1 for

simplicity. For an element y of Xm
1 or X1

m we denote by yi the ith entry

of y. The zero element of Am
n is denoted by 0mn or simply by 0. When we

view An
n as a ring, we usually denote it by Mn(A). We denote the identity

element of Mn(A) by 1n or simply by 1. The transpose, determinant, and

trace of a matrix x are denoted by tx, det(x), and tr(x). For X ∈ Am
n and

an ideal B of A we write X ≺ B if all the entries of X belong to B. For square

matrices x1, . . . , xr we denote by diag[x1, . . . , xr] the square matrix with

x1, . . . , xr in the diagonal blocks and 0 in all other blocks.

We put GLn(A) = Mn(A)
×, SLn(A) =

{
α ∈ GLn(A)

∣∣ det(α) = 1
}
if A is

commutative, and

(0.2) Sn(A) =
{
T ∈Mn(A)

∣∣ tT = T
}
.

For T ∈ Sn(A) and X ∈ An
m we put T [X ] = tXTX ; we also put T (x, y) =

txTy for x, y ∈ An. For h = th ∈ Mn(C) we write h > 0 if h is positive

definite, and we write h > k if h− k > 0. Throughout the book we put

(0.3) e(c) = exp(2πic) (c ∈ C).

0.2. We define the Legendre-Jacobi symbol
(m
n

)
for 0 ≤ n− 1 ∈ 2Z and

m ∈ Z as follows. Let n = q1 · · · qs with odd prime numbers qj . Then we put

(0.4)
(m
n

)
=

s∏
j=1

(
m

qj

)
,

ix

where

(
m

qj

)
is the quadratic residue symbol, and we understand that the
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product means 1 if n = 1 (even when m = 0). Clearly
(m
n

)
= 0 if mZ+nZ �=

Z and

(
mm′

n

)
=

(m
n

)(
m′

n

)
. If n < 0 and n is prime to 2m, we put

(0.5)
(m
n

)
=
|m|
m

(
m

|n|
)
,

where we understand that |0|/0 = 1. We also put, for every odd integer d,

(0.6) εd =

{
1 if d− 1 ∈ 4Z,

i if d+ 1 ∈ 4Z.

Thus ε2d =

(−1
d

)
for odd d.

0.3. For a finite-dimensional vector space V over Q, by a Z-lattice in V

we mean a finitely generated Z-submodule of V that spans V over Q. We also

denote by L (V ) the set of all C-valued functions λ for which there exist two

Z-lattices L and M in V such that λ(x) = 0 for x /∈ L and λ(x) for x ∈ L

depends only on the coset x+M.

For example, take V = Qn and put L = Zn. Given r, s ∈ Qn, define a

function λr,s on V by λr,s(x) = 0 if x − r /∈ L and λr,s(x) = e(txs) for

x− r ∈ L. Then clearly λr,s ∈ L (V ). Let us now show that L (V ) is spanned

over C by λr,s for all (r, s).

Given λ ∈ L (V ), we can find positive integers g and h such that λ(x) = 0

for x /∈ g−1L and λ(x) for x ∈ g−1L depends only on x + hL. Let R and

S be complete sets of representatives for g−1L/L and h−1L/L, respectively.

For r ∈ R let μr = εrλ, where εr is the characteristic function of r+L. Then

λ =
∑

r∈R μr, and μr(r + y) for y ∈ L depends only on y + hL. Now for

each s ∈ S the map y �→ e(tys) defines a function on L/hL, and the space of

functions on L/hL is spanned by such functions e(tys) for all s ∈ S, and so we

can put μr(r + y) =
∑

s∈S cr,se(
tys) for y ∈ L with cr,s ∈ C. Consequently

λ =
∑

r∈R
∑

s∈S cr,se(−trs)λr,s, which proves the italicized statement above.

0.4. If σ is an isomorphism of a field F onto K, then for x ∈ F we denote

by xσ the image of x under σ. If τ is an isomorphism of K onto another

field, then στ denotes the composite of σ and τ defined by xστ = (xσ)τ . We

will define the action of σ on various objects X such as Dirichlet characters

and modular forms, but the action will always be written Xσ, and the rule

Xστ = (Xσ)τ is universal.



CHAPTER I

PRELIMINARIES

1. Symplectic groups and symmetric domains

1.1. Though the principal aim of this book is to discuss various topics

on modular forms of one complex variable, we first introduce the so-called

Siegel modular forms defined on a certain space Hn, called the Siegel upper

half space of degree n and defined by (1.12) below, since these will make

our exposition easier. Besides, what we need about them are some formal

identities, which are not complicated, and we find no reason for avoiding

them.

For 0 < n ∈ Z and a commutative ring A with identity element we put

(1.1a) Sp(n, A) =
{
α ∈ GL2n(A)

∣∣ tαια = ι
}
, ι = ιn =

[
0 −1n
1n 0

]
,

(1.1b) Gp(n, A) =
{
α ∈ GL2n(A)

∣∣ tαια = ν(α)ι with ν(α) ∈ A×
}
.

Clearly Sp(n, A) and Gp(n, A) are subgroups of GL2n(A). In particular, the

group Sp(n, A) is called the symplectic group of degree n over A. Notice

that tαια = ν(α)ι if and only if αι · tα = ν(α)ι, since ι−1 = −ι. We easily

see that

(1.2a) γ =

[
a b
c d

]
∈ Gp(n, A) =⇒

{
a · td− b · tc = tda− tbc = ν(γ),

a · tb, c · td, tac, tbd ∈ Sn(A),

(1.2b) γ =

[
a b
c d

]
∈ Gp(n, A) =⇒ γ−1 = ν(γ)

−1

[
td −tb
−tc ta

]
,

(1.2c)

[
a b
c d

]
∈ Sp(n, A) ⇐⇒ tac = tca, tbd = tdb, tda− tbc = 1,

⇐⇒ a · tb = b · ta, c · td = d · tc, a · td− b · tc = 1,

(1.2d) γ ∈ Gp(n, A) =⇒ tγ ∈ Gp(n, A), ν(tγ) = ν(γ),

(1.2e) tι = ι−1 = −ι, ι2 = −12n, and ι ∈ Sp(n, A).

Given α ∈ Gp(n, A), put γ = diag[ν(α)1n, 1n]. Then clearly γ ∈ Gp(n, A)

and ν(γ) = ν(α), and so γ−1α ∈ Sp(n, A). In this way we see that

(1.3) Every element of Gp(n, A) is the product of an element of Sp(n, A)

and an element of the form diag[e1n, 1n] with e ∈ A×.

DOI 10.1007/978-1-4614- _1, © Springer Science+Business Media, LLC 2012
 1G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics,

2125-2
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If n = 1, noting that ι−1 · tαια = det(α)12 for every α ∈M2(A), we see that

(1.4a) Sp(1, A) = SL2(A), Gp(1, A) = GL2(A),

(1.4b) ν(α) = det(α) for α ∈ Gp(1, A).

1.2. We will eventually define the action of Sp(n, R) on Hn, but we first

define more generally the action (in a weak sense) of Gp(n, C) on Sn(C). For

α =

[
a b
c d

]
∈M2n(C) with a of size n we hereafter put a = aα = a(α), b =

bα = b(α), c = cα = c(α), and d = dα = d(α), whenever there is no fear of

confusion. Then for z ∈ Sn(C) and α ∈ Gp(n, C) we put

(1.5a) μα(z) = μ(α, z) = cαz + dα, jα(z) = j(α, z) = det
[
μα(z)],

(1.5b) α(z) = αz = (aαz + bα)(cαz + dα)
−1,

where α(z) is defined only when μα(z) is invertible. We will often write αz

for α(z). To see the nature of α(z), put p = aαz + bα and q = μα(z). Using

the relations in (1.2a), we easily see that tpq = tqp, and so pq−1 ∈ Sn(C) if

q is invertible. Therefore, if α(z) is defined, then α(z) ∈ Sn(C), and

(1.6) α

[
z
1

]
=

[
αz
1

]
μα(z).

Given z ∈ Sn(C) and α ∈ Gp(n, C), suppose α

[
z
1

]
=

[
w
1

]
λ with w ∈ Cn

n

and λ ∈ GLn(C); then we easily see that αz is defined, αz = w, λ = μα(z),

and (1.5b) holds.

Next suppose α, β ∈ Gp(n, C) and both αz and β(αz) are meaningful;

then applying β to (1.6), we obtain

βα

[
z
1

]
= β

[
αz
1

]
μα(z) =

[
β(αz)

1

]
μβ(αz)μα(z),

and so (βα)(z) is meaningful and

(1.7) μβα(z)=μβ(αz)μα(z), jβα(z)=jβ(αz)jα(z), and (βα)(z)=β(αz).

Moreover, if z′ ∈ Sn(C) and αz′ is defined, then

(1.8) α

[
z′ z
1 1

]
=

[
αz′ αz
1 1

] [
μα(z

′) 0
0 μα(z)

]
.

Calling this product W and forming tWιW, we obtain

(1.9) ν(α)(z′ − z) = tμα(z
′)(αz′ − αz)μα(z).

If dz = (dzij) denotes the differential of the variable matrix z = (zij) on

Sn(C), then from (1.9) we obtain

(1.10) ν(α)dz = tμα(z)d(αz)μα(z).

We now put
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(1.11) Gp+(n, R) =
{
α ∈ Gp(n, R)

∣∣ ν(α) > 0
}
,

(1.11a) Gp+(n, Q) = GL2n(Q) ∩Gp+(n, R),

(1.12) Hn =
{
z ∈ Sn(C)

∣∣ Im(z) > 0
}
.

Every element z of Hn can be written z = x + iy with x ∈ Sn(R) and

0 < y ∈ Sn(R), and vice versa. Hereafter, whenever we write z = x+ iy for

z ∈ Hn, we always take x and y in that sense.

Lemma 1.3. Let X be the set of all X ∈ C2n
n such that

(1.13) tXιX = 0 and i · tXιX̄ > 0.

Then the following assertions hold:

(i) The map (z, μ) �→
[
z
1n

]
μ gives a bijection of Hn ×GLn(C) onto X.

(ii) αXβ ⊂ X for every α ∈ Gp+(n, R) and β ∈ GLn(C).

Proof. That the image of the map of (i) is indeed in X can easily be seen.

Given X =

[
g
h

]
with g, h ∈ Cn

n, we have (1.13) if and only if

(∗) thg = tgh and i(thḡ − tgh̄) > 0.

Therefore, for 0 �= x ∈ Cn
1 we have

0 < i · tx(thḡ − tgh̄
)
x̄ = i

(
t(hx)ḡx̄− t(gx)h̄x̄

)
,

and so gx �= 0 and hx �= 0. Thus both g and h are invertible. Put z = gh−1.

Then (∗) shows that tz = z and i(z̄− z) = i · th−1(thḡ− tgh̄)h̄−1 > 0, and so

z ∈ Hn. Since X =

[
z
1

]
h, we see that our map is surjective. The injectivity

and (ii) are obvious.

1.4. Let z ∈ Hn and α ∈ Gp+(n, R). Then by Lemma 1.3(i),

[
z
1

]
∈ X.

By (ii) of the same lemma, α

[
z
1

]
∈ X, and so by (i) we can put α

[
z
1

]
=[

w
1

]
μ with unique w ∈ Hn and μ ∈ GLn(C). Thus αz is meaningful and

w = αz; consequently (1.5b) and (1.6) hold. Since we have 1 = μ(αα−1, z) =

μα(α
−1z)μ(α−1, z), we obtain

(1.14) μ(α−1, z) = μα(α
−1z)−1 and j(α−1, z) = jα(α

−1z)−1.

Taking the complex conjugate of (1.6) in this case, we obtain

(1.15) α

[
z̄
1

]
=

[
αz
1

]
μα(z),
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since α is a real matrix. This means that we can let an element α of

Gp+(n, R) act on the set
{
z̄
∣∣ z ∈ Hn

}
, and view αz as the image of z̄

under α. Thus α(z̄) = αz̄ = αz, μα(z̄) = cαz̄ + dα = μα(z), and jα(z̄) =

det
[
μα(z̄)

]
= jα(z). Taking z̄ as z′ in (1.9), we obtain

(1.16) Im(αz) = tμα(z)
−1

Im(z)μα(z)
−1 if α ∈ Sp(n, R).

1.5. We note here how an element of Gp+(n, R) belonging to several

special types acts on z ∈ Hn:

(1.17a)

[
r1n 0
0 1n

]
: z �→ rz (0 < r ∈ R),

(1.17b)

[
a 0
0 d

]
: z �→ az · ta (d = ta−1 ∈ GLn(R)),

(1.17c)

[
1n b
0 1n

]
: z �→ z + b (b ∈ Sn(R)),

(1.17d)

[
a b
0 d

]
: z �→ az · ta+ bd−1 (d = ta−1∈GLn(R), tbd∈Sn(R)),

(1.17e)

[
0 b
c 0

]
: z �→ −bz−1 · tb (c = −tb−1∈GLn(R)).

We also note that Sp(n, R) acts transitively on Hn, that is, given z and

w in Hn, there exists an element α of Sp(n, R) such that αz = w. Indeed,

given z = x + iy ∈ Hn, take a ∈ GLn(R) so that a · ta = y and put

β =

[
1 x
0 1

] [
a 0
0 ta−1

]
. Then β ∈ Sp(n, R) and β(i1n) = z. Similarly we

can find γ ∈ Sp(n, R) such that γ(i1n) = w. Then αz = w with α = γβ−1.

2. Some algebraic and arithmetic preliminaries

2.1. We begin with some easy facts on Z1
n and SLn(Z). We call an element

v = (v1, . . . , vn) of Z1
n primitive if the vi have no common divisors other

than ±1. Given such a v, put M = Z1
n/Zv. Then M has no torsion elements

and is finitely generated over Z, and so it must be a free Z-module. Thus

M has a Z-basis {yi}mi=1. Let ui be an element of Z1
n that represents yi.

Then we can easily verify that {u1, . . . , um, v} is a Z-basis of Z1
n. Clearly

m = n− 1. Let α be the square matrix whose rows are u1, . . . , um, v. Then

α ∈ GLn(Z), which proves the “only-if”-part of the first of the following

statements:

(2.1) An element v of Z1
n is primitive if and only if v is the last row of an

element of GLn(Z). Moreover, if n > 1, this is true with SLn(Z) in

place of GLn(Z).

The “if”-part is obvious. If n > 1 and det(α) = −1, then by replacing u1

by −u1, we obtain an element of SLn(Z).
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Generalizing the idea of (2.1), we call an element x of Zm
n with m < n

primitive if there is an element y of Zn−m
n such that

[
y
x

]
∈ GLn(Z). Notice

that if an element x of Zm
n is primitive, then αxβ is primitive for every

α ∈ GLm(Z) and β ∈ GLn(Z).

Lemma 2.2. (i) Let Qn denote the subgroup of GLn(Q) consisting of all

the upper triangular matrices. Then GLn(Q) = QnSLn(Z).

(ii) Let Wn be the set of all primitive elements of Zn
2n such that wι · tw = 0.

Then Wn = [0 1n]Sp(n, Z).

(iii) Let Pn, or simply P, denote the subgroup of Sp(n, Q) consisting of

all the elements of the form

[
a b
0 d

]
, where a, b, d are of size n. Then

Sp(n, Q) = P · Sp(n, Z).
(iv) Sp(n, Q) is generated by P and ι.

Proof. We first prove (i) by induction on n. It is trivial if n = 1. Given

ξ ∈ GLn(Q), n > 1, let x be the last row of ξ. Then x = qy with 0 �= q ∈ Q

and a primitive element y of Z1
n. By (2.1) we can find an element α of SLn(Z)

whose last row is y. Then y = [01n−1 1]α, so that xα−1 = [01n−1 q]. Thus we

can put ξα−1 =

[
r s
0 q

]
with r ∈ Qn−1

n−1 and s ∈ Qn−1
1 . By induction we find

τ ∈ Qn−1 and σ ∈ SLn−1(Z) such that r = τσ. Then ξα−1 · diag[σ−1, 1] ∈
Qn, which proves (i).

As for (ii), clearly [0 1n]Sp(n, Z) ⊂Wn. Let x ∈ Wn. Since x is primitive,

there exists an element α∈SL2n(Z) of the form α=

[
y
x

]
with some y ∈ Zn

2n.

Then αι · tα =

[
u v
−tv 0

]
with u, v ∈ Zn

n. Since αι · tα ∈ GL2n(Z), we see

that v ∈ GLn(Z). Put β = diag[−v−1, 1n]. Then βαι · tα · tβ =

[
z −1n
1n 0

]
with z ∈ Zn

n. If [a b] is the upper half of βα, then z = −a · tb + b · ta. Put

γ =

[
1n −b · ta
0 1n

]
. Then γβαι · tα · tβ · tγ = ι, and so γβα ∈ Sp(n, Z). Now

we see that [0 1n]γβ = [0 1n], and so [0 1n]γβα = [0 1n]α = x, which

proves (ii).

To prove (iii), let ξ ∈ Sp(n, Q). By (i) we have ξ = ηα with η ∈ Q2n and

α ∈ SL2n(Z). Put η =

[
a b
0 d

]
and ξ =

[
p q
r s

]
with a, b, . . . , r, s of size

n. Then d−1[r s] = [0 1n]α, which is primitive. Since ξ ∈ Sp(n, Q), we

easily see that d−1[r s] ∈ Wn. By (ii) we can put [0 1n]α = [0 1n]β with

β ∈ Sp(n, Z). Put γ = αβ−1. Then [0 1n]γ = [0 1n], and so γ =

[
u v
0 1n

]
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with u, v of size n. Thus ηγ =

[
w z
0 d

]
with w, z of size n. Now ξ = ηα =

ηγβ, and so ηγ = ξβ−1 ∈ Sp(n, Q). Therefore, ηγ ∈ P, which proves (iii).

Finally, as will be shown in Lemma A1.3(i) of the Appendix, Sp(n, Z) is

generated by ι and P ∩ Sp(n, Z). This fact combined with (iii) proves (iv)

and completes the proof.

Lemma 2.3. Let f be an odd integer and s an element of Sn(Z). Then

there exist an element u of Mn(Z) and a diagonal element d of Mn(Z) such

that tusu− d ≺ fZ and det(u) is a positive integer prime to f.

Proof. We can reduce the problem to the following statement, in which

p is an odd prime number and Zp is the ring of p-adic integers:

(2.2) Given s ∈ Sn(Zp), there exists an element τ of GLn(Zp) such that
tτsτ is diagonal.

Indeed, given s and f as in our lemma, employing (2.2), for each prime

factor p of f we take τp ∈ GLn(Zp) such that tτpsτp is diagonal. We

can find u ∈ Mn(Z) and a diagonal matrix d such that u − τp ≺ fZp and

d − tτpsτp ≺ fZp for every p|f. Replacing u by u + fv with a suitable

v ∈ Mn(Z), we may assume that det(u) > 0. Then u has the required

properties of our lemma.

We now prove (2.2) by induction on n. The case n = 1 or s = 0 is trivial.

Assuming that n > 1 and s �= 0, put s = (sij) and
∑

i,j sijZp = σZp with

0 �= σ ∈ Zp. Replacing s by σ−1s, we may assume that σ = 1. Suppose sii ∈
Z×p for some i; we may assume that i = 1. Then we can put s =

[
a b
tb d

]
with

a = s11. Put γ =

[
1 −a−1b
0 1n−1

]
. Then γ ∈ GLn(Zp) and tγsγ = diag[a, e]

with e = d−tba−1b. Clearly e ∈ Sn−1(Zp). Applying induction to e, we obtain

the desired conclusion. Next suppose sii /∈ Z×p for every i. Then changing

the numbering, we may assume that s12 ∈ Z×p . Put a =

[
s11 s12
s21 s22

]
and

s =

[
a b
tb d

]
. Then a ∈ GL2(Zp). Putting γ =

[
12 −a−1b
0 1n−2

]
, we see that

γ ∈ GLn(Zp), and
tγsγ = diag[a, d− tba−1b]. Thus again induction gives the

desired fact. This completes the proof.

2.4. We need two types of Gauss sums. The first type is defined with re-

spect to a Dirichlet character (or simply, a character) modulo a positive

integer r, by which we mean a function χ : Z → T belonging to one of the

following two types:

(i) r = 1 and χ(a) = 1 for every a ∈ Z;
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(ii) r > 1 and χ is a homomorphism of (Z/rZ)× into T, which we view

as a function on Z by putting

χ(a) =

{
χ
(
a (mod rZ)

)
if a is prime to r,

0 if a is not prime to r.

We call χ of type (i) the principal character. We say that χ is trivial if

it is of type (i) or χ(a) = 1 for every a prime to r. We call χ primitive if it

is of type (i), or it is a nontrivial character for which there is no character ξ

modulo a proper divisor s of r such that χ(a) = ξ(a) for every a prime to

r. We will say more about characters in §2.7, but we first define Gauss sums.

We put e(z) = exp(2πiz) for z ∈ C as we did in (0.3). Let χ be a

primitive Dirichlet character modulo an integer r > 1. Then we put

(2.3) G(χ) =

r∑
a=1

χ(a)e(a/r)

and call it the Gauss sum of χ. Since χ(r) = 0, we can use
∑r−1

a=1 in place

of
∑r

a=1 . We note here three well-known facts:

(2.3a)

r∑
a=1

χ(a)e(sa/r) = χ(s)G(χ) for every s ∈ Z,

(2.3b) rG(χ)−1 = G(χ) = χ(−1)G(χ̄),

(2.3c) |G(χ)|2 = r.

The proof is easy; see [S71, Lemma 3.63] or [S10, (3.8a, c, d)], for example.

There is a classical result about G(χ) when χ = χ. Namely,

(2.4a) G(χ) =

{√
r if χ(−1) = 1,

i
√
r if χ(−1) = −1.

In particular, if χ(x) =

(
x

p

)
with an odd prime number p, then

(2.4b) G(χ) =

{√
p if p− 1 ∈ 4Z,

i
√
p if p− 3 ∈ 4Z.

The simplest proof of (2.4a) follows from the functional equation of the Dirich-

let series
∑∞

n=1 χ(n)n
−s. This is explained in [S07, p. 40] when χ(−1) = −1,

but the same method is applicable to the other case. In fact, by the same

technique Hecke determined the Gauss sum of a Hecke character associated

with a quadratic extension of an arbitrary algebraic number field; see [S97,

(A6.3.4)].

2.5. The second type of Gauss sum, denoted by G(a, b), is defined for

relatively prime integers a and b and given by
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(2.5) G(a, b) =

|b|∑
x=1

e(ax2/b),

where
∑|b|

x=1 can be replaced by
∑

x∈Z/bZ .

Define the Legendre-Jacobi symbol
(m
n

)
as in (0.4). For two positive odd

integers m and n we have

(2.6)
(m
n

)( n

m

)
= −1 ⇐⇒ m ≡ n ≡ 3 (mod 4),

(2.7)

(−1
n

)
= −1 ⇐⇒ n ≡ 3 (mod 4).

To prove these, we first note that

(2.8)

(
p

q

)(
q

p

)
= −1 ⇐⇒ p ≡ q ≡ 3 (mod 4)

for two different odd prime numbers p and q. This follows easily from the

quadratic reciprocity law. To prove (2.6) in general, put m = p1 · · · pr and

n = q1 · · · qs with odd prime numbers pi and qj . Then(m
n

)( n

m

)
=

r∏
i=1

s∏
j=1

(
pi
qj

)(
qj
pi

)
.

By (2.8) we can eliminate from the right-hand side any pi or qj that is ≡ 1

(mod 4). Let ρ resp. σ be the number of i’s resp. j’s such that pi − 3 ∈ 4Z

resp. qj − 3 ∈ 4Z. By (2.8),
(m
n

)( n

m

)
= (−1)ρσ, which is −1 if and only

if both ρ and σ are odd, that is, if and only if m ≡ n ≡ 3 (mod 4). Thus

we obtain (2.6). Similarly we have

(−1
n

)
=

s∏
j=1

(−1
qj

)
= (−1)σ, and so we

obtain (2.7).

Theorem 2.6. If b is odd and positive, then

(2.9) G(a, b) =
(a
b

)
εb
√
b,

where εb = 1 if b− 1 ∈ 4Z and εb = i if b− 3 ∈ 4Z.

Proof. We first prove

(2.10) G(a, cd) = G(ad, c)G(ac, d) if c, d ∈ Z and cZ+ dZ = Z.

Indeed, the map
(
y (mod c), z (mod d)

) �→ dy+cz (mod cd) gives a bijection

of (Z/cZ)× (Z/dZ) onto Z/cdZ, and so for b = cd we have

G(a, b) =
∑

y∈Z/cZ

∑
z∈Z/dZ

e
(
a(dy + cz)2/b

)

=
∑

y∈Z/cZ

e(ady2/c)
∑

z∈Z/dZ

e(acz2/d) = G(ad, c)G(ac, d),
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which proves (2.10). Now suppose (2.9) is true for G(∗, c) and G(∗, d) (with
positive c and d). Then

G(a, b) =

(
ad

c

)(
ac

d

)
εcεd

√
cd =

(
a

b

)
η
√
b

with η =

(
d

c

)( c

d

)
εcεd. If c ≡ d ≡ 3 (mod 4), then by (2.6), η = −i2 = 1,

and b−1 ∈ 4Z. If c−1 ∈ 4Z, then b−d ∈ 4Z and η = εd = εb; similarly η = εb
if d− 1 ∈ 4Z. Thus we obtain (2.9) for b = cd. This means that it is sufficient

to prove (2.9) when b = pm with an odd prime number p and 0 < m ∈ Z.

Suppose m > 1; since the map
(
y (mod pm−1), z (mod p)

) �→ y + pm−1z

(mod pm) gives a bijection of (Z/pm−1Z) × (Z/pZ) onto Z/pmZ, we have

G(a, pm) =
∑pm−1

y=1 e(ay2/pm)
∑p

z=1 e(2ayz/p). The last sum over 1 ≤ z ≤ p

equals p if y∈pZ. For y /∈pZ we have
∑p

z=1 e(2ayz/p) =
∑p

w=1 e(w/p) = 0.

Therefore

G(a, pm) = p

pm−2∑
u=1

e(ap2u2/pm) = pG(a, pm−2)

for m > 1. If m = 2 in particular, we see that G(a, p2) = p. Thus for

0 < n ∈ Z we obtain G(a, p2n) = pn and G(a, p2n+1) = pnG(a, p). Therefore

our problem can be reduced to the formula

(2.11) G(a, p) =

(
a

p

)
εp
√
p.

To show this, put χ(y) =

(
y

p

)
. Dividing the set

{
y ∈ Z

∣∣ 0 < y < p
}
into the

set of quadratic residues modulo p and that of nonresidues, we see that

G(a, p) =

p∑
x=1

e(ax2/p) =

p∑
y=1

χ(y)e(ay/p) +

p∑
y=1

e(ay/p)

=

p∑
u=1

χ(u)e(au/p) = χ(a)G(χ),

and so (2.11) follows from (2.4b). This completes the proof.

Remark. We can determine G(a, b) even for odd negative b as follows.

We first take c = −1 in (2.10) and obtain

(2.12) G(a, −d) = G(−a, d),
since G(x, −1) = 1 for every x ∈ Z. Therefore, if b is odd and negative, then

G(a, b) = G(a, −|b|) = G(−a, |b|) by (2.12), and so by (2.9) we obtain

(2.13) G(a, b) =

(−a
|b|

)
ε|b|

√|b| = (
a

|b|
)(−1

|b|
)
ε|b|

√
|b|.

Applying (2.7) to the factor

(−1
|b|

)
, we can give another formula. Thus, for

0 ≥ b+ 1 ∈ 2Z we have
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(2.14) G(a, b) =

(
a

|b|
)
ε′(b)

√|b|,
where ε′(b) = 1 if b− 3 ∈ 4Z and ε′(b) = −i if b− 1 ∈ 4Z.

2.7. Let χ0 be the principal character as defined in §2.4. We define its

Gauss sum G(χ0) by

(2.15) G(χ0) = 1.

Let χ be a character modulo an integer r > 1 that is not primitive. We

then call χ imprimitive. If χ is nontrivial, then we can find a character

χ′ modulo a proper divisor c of r, > 1, such that χ(a) = χ′(a) for every a

prime to r. Moreover, among such characters χ′ there is a unique one that

is primitive. We then call χ′ the primitive character associated with χ,

and call c the conductor of χ. If χ is trivial, we call the principal character

χ0 the primitive character associated with χ, and define the conductor

of χ to be 1. In both cases, given χ, we take the primitive character χ′

associated with χ, and define the Gauss sum G(χ) by G(χ) = G(χ′).
For 1 ≤ i ≤ m let χi be a Dirichlet character modulo ri, and let r be the

least common multiple of the ri. Then we denote by χ1 · · ·χm the character

modulo r defined by (χ1 · · ·χm)(a) = χ1(a) · · ·χm(a) for a prime to r.

Let Aut(C) denote the group of all ring-automorphisms of the field C. For

σ ∈ Aut(C) we can define a character χσ
i modulo ri by χσ

i (a) = χi(a)
σ for

every a. Then we have:

Lemma 2.8. Put q(χ1, . . . , χm) = G(χ1) · · ·G(χm)/G(χ1 · · ·χm). Let K

be the field generated over Q by the values χi(a) for all i and all a. Then

q(χ1, . . . , χm) belongs to K, and for every automorphism σ of Q we have

(2.16) q(χ1, . . . , χm)σ = q(χσ
1 , . . . , χ

σ
m).

Proof. Let ζ = e(1/N) with a multiple N of r1 · · · rm. We take N so that

χi(a) ∈ Q(ζ) for every i and a. Given σ, we can find an integer t prime to

N such that e(a/N)σ = e(ta/N). Then from (2.3) we obtain

(2.17) χ(t)σG(χ)σ = G(χσ)

for every character χ modulo N. Formula (2.16) is an immediate consequence

of this fact. Suppose σ is the identity map on K; then χσ
i = χi for every i,

and so q(χ1, . . . , χm)σ = q(χ1, . . . , χm). This shows that q(χ1, . . . , χm) ∈
K, and our proof is complete.

To state an easy application of (2.17), for every primitive or imprimitive

character modulo N and every q ∈ Z, put

(2.17a) [χ, q] = G(χ)−1

N∑
n=1

χ(n)e(nq/N).
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Then from (2.17) we can easily derive

(2.17b) [χ, q] ∈ Qab and [χ, q]σ = [χσ, q] for every σ ∈ Gal(Qab/Q).

In fact, we will give an explicit form of [χ, q] in Lemma A3.1 of the Appendix,

which implies (2.17b).

2.9. Given a primitive or an imprimitive Dirichlet character χ, we put

(2.18a) L(s, χ) =
∞∑
n=1

χ(n)n−s,

(2.18b) LN(s, χ) = L(s, χ)
∏
p|N

[
1− χ(p)p−s

]
=

∑
(n,N)=1

χ(n)n−s,

where 0 < N ∈ Z. The function of (2.18a) is called the Dirichlet L-function

of χ. We will state some of its analytic properties in §8.3. For the moment

we just note that L(m, χ) and L(1−m, χ) for a positive integer m such that

χ(−1) = (−1)m is meaningful. Then we put

(2.19) PN (m, χ) = G(χ)−1(πi)−mLN(m, χ).

Lemma 2.10. Let χ and m be as above. Then PN (m, χ) ∈ Qab and

L(1−m, χ) ∈ Qab. Moreover, for every σ ∈ Gal(Qab/Q) we have

(2.20) PN (m, χ)σ = PN (m, χσ),

(2.21) L(1−m, χ)σ = L(1−m, χσ).

Proof. We can easily reduce the problem to the case where χ is primitive

and N = 1. Then

2 ·m!(2πi)−mG(χ)L(m, χ) = md1−mL(1−m, χ) = −
d∑

a=1

χ(a)Bm(a/d),

where d is the conductor of χ and Bm the mth Bernoulli polynomial. If χ

is principal, this means

2 · n!(2πi)−nζ(n) = nζ(1 − n) = −Bn

for 0 < n ∈ 2Z, where Bn is the nth Bernoulli number. This formula is

ancient. The preceding one was first noted by Hecke in 1940. For the proof

and other formulas for L(m, χ) and L(1−m, χ) we refer the reader to Section

4 of [S07]. Our lemma now follows from these formulas. Notice that the

complex conjugate of χσ is (χ̄)σ, and G(χ̄) = dχ(−1)G(χ)−1 by (2.3b).

Lemma 2.11. Let V be a finite-dimensional vector space over a field F

and let W = V ⊗FK with a finite or an infinite extension K of F. Let End(V )

denote the algebra of all F -linear transformations of V. Given a subset A of

End(V ), for each α ∈ A denote by α̃ the K-linear extension of α to W. Then⋂
α∈A Ker(α̃) =

{⋂
α∈A Ker(α)

} ⊗F K.
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Proof. Take a basis {yi}i∈I of V over F and also a basis B of K over

F. For α ∈ A put αyi =
∑

j∈I p
α
ijyj with pαij ∈ F. Let u =

∑
i∈I ciyi ∈⋂

α∈A Ker(α̃) with ci ∈ K. Then there is a finite subset E of B such that

ci =
∑

e∈E aiee with aie ∈ F for every i ∈ I. Then for α ∈ A we have

0 = α̃u =
∑

e∈E e
∑

i,j∈I aiep
α
ijyj, and so

∑
e∈E e

∑
i∈I aiep

α
ij = 0 for every

j. Thus
∑

i∈I aiep
α
ij = 0 for every j and every e ∈ E. Now u =

∑
e∈E eve

with ve =
∑

i∈I aieyi. We have ve ∈ V and αve =
∑

i,j∈I aiep
α
ijyj = 0, and

so ve ∈
⋂

α∈A Ker(α), which proves our lemma.

Lemma 2.12. Let V, F, and End(V ) be as in Lemma 2.11. Suppose that

V �= {0} and F is algebraically closed. Let R be a subspace of End(V ), �= {0},
whose elements are mutually commutative. Then V has a nonzero element u

that is an eigenvector of every element of R.

Proof. We prove this by induction on the dimension of R. Let 0 �= α ∈ R.

We can take an eigenvector v of α and put αv = cv with c ∈ F. (This settles

the case where dim(R) = 1.) Let W =
{
x ∈ V

∣∣αx = cx
}
. Then W �= {0},

since v ∈ W. Assuming that dim(R) > 1, take a subspace S of R so that

R = Fα⊕ S. Since the elements of S commute with α, we easily see that W

is stable under S. By the induction assumption we can find an element u of

W that is an eigenvector of every element of S. Since αu = cu, this proves

our lemma.

Lemma 2.13. Let K be a finite Galois extension of a field F and W a

vector space over K of finite dimension; let G = Gal(K/F ). Suppose there is

an action of G on W, written (x, σ) �→ xσ for x ∈ W and σ ∈ G, such that

(ax)σ = aσxσ for a ∈ K and x ∈ W. Then W = V ⊗F K with V =
{
y ∈

W
∣∣ yσ = y for every σ ∈ G

}
.

Proof. Let B be a basis of K over F, and Y a finite set of elements of

V that are linearly independent over F. Suppose
∑

b∈B, y∈Y abyby = 0 with

aby ∈ F. Then
∑

b∈B, y∈Y abyb
σy = 0 for every σ ∈ G. Since det[bσ]b,σ �= 0,

we obtain
∑

y∈Y abyy = 0 for every b ∈ B, and so aby = 0 for every b and y.

If W has dimension n over K, then W is a vector space of dimension n ·#B

over F, and so #Y ≤ n. Given any x ∈ W, put zb =
∑

σ∈G bσxσ for b ∈ B.

Then zb ∈ V. Since det[bσ]b,σ �= 0, x is a K-linear combination of the zb.

This shows that V has dimension n over F, and we can find Y such that

#Y = n. This proves our lemma.

Lemma 2.14. Given a positive integer M and κ = 0 or 1, there exists a

primitive character χ such that M is prime to the conductor of χ, χ(−1) =
(−1)κ, and χ2 is nontrivial.

Proof. Since there exist infinitely many prime numbers p such that p−
1 ∈ 8Z, we can find such a p prime to M. Let ψ be a character modulo p
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of order p− 1. Take χ = ψ if κ = 1 and χ = ψ2 if κ = 0. Then χ has the

desired properties.

3. Modular forms of integral weight

3.1. In this book we assume that the reader has some notion of modular

forms of integral weight with respect to a congruence subgroup of SL2(Z),

though we try to make our exposition as self-contained as possible. As to

their well-known properties, sometimes we will only state them, dispensing

with the proof. To define modular forms on Hn, we first put e(c) = exp(2πic)

for c ∈ C, as we did in (0.3). Next, for k ∈ Z, α ∈ Gp+(n, R), and a function

f : Hn → C we define f‖kα : Hn → C by

(3.1) (f‖kα)(z) = jα(z)
−kf(αz) (z ∈ Hn).

From this definition and (1.7) we obtain

(3.2a) f‖k(c12n) = c−nkf (c ∈ R×),

(3.2b) (f‖k αβ) = (f‖k α)‖k β if α, β ∈ Gp+(n, R).

For a positive integer N put

(3.3) Γ (N) =
{
γ ∈ Sp(n, Z)

∣∣ γ − 12n ≺ NZ
}
.

(For the symbol ≺ see §0.1.) By a congruence subgroup of Sp(n, Q),

or simply, a congruence subgroup, we mean a subgroup Γ of Sp(n, Q) that

contains Γ (N) as a subgroup of finite index for some N. If Γ and Γ ′ are
congruence subgroups and Γ ⊂ Γ ′, we call Γ a congruence subgroup of Γ ′.
Given a congruence subgroup Γ and k ∈ Z, we denote by Mk(Γ ) the set of

all functions f : Hn → C satisfying the following conditions:

(3.4a) f is holomorphic;

(3.4b) f‖kγ = f for every γ ∈ Γ ;

(3.4c) f is holomorphic at every cusp.

An element of Mk(Γ ) is called a (holomorphic) modular form of weight

k with respect to Γ. Condition (3.4c) is necessary only when n = 1, in which

case it means the following condition:

(3.4d) For every α∈SL2(Q) we have jα(z)
−kf

(
α(z)

)
=

∞∑
m=0

cα(m)e(mz/rα)

with 0 < rα ∈ Z and cα(m) ∈ C.

In fact, if this is satisfied for every α ∈ SL2(Z), then it holds for every

α ∈ SL2(Q). Indeed, by Lemma 2.2(iii) every element α of SL2(Q) can be

written α = βγ with β ∈ SL2(Z) and γ of the form γ =

[
r s
0 t

]
. Therefore

(3.4d) for α = βγ can easily be derived from the case with β in place of α.
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For β ∈ Gp(n, Q) we easily see that β−1Γβ is a congruence subgroup,

and M k(Γ )‖kβ = M k(β
−1Γβ) provided ν(β) > 0. We put

(3.5) Mk =

∞⋃
N=1

Mk

(
Γ (N)

)
.

3.2. Let us now explain why (3.4c) is unnecessary if n > 1. Let Γ be a

congruence subgroup of Γ (1). Then Γ (N) ⊂ Γ for some N ∈ Z, > 0, and so

there is a Z-lattice M in Sn(Z) and also a subgroup U of SLn(Z) of finite

index such that{[
1n b
0 1n

] ∣∣∣∣ b ∈M

}
⊂ Γ,

{[
a 0
0 ta−1

] ∣∣∣∣ a ∈ U

}
⊂ Γ.

Therefore if f ∈Mk(Γ ), then by (1.17b) and (1.17c) we have

(3.6a) f(z + b) = f(z) for every b ∈M,

(3.6b) f(az · ta) = f(z) for every a ∈ U.

Let S = Sn(Q) and L =
{
h ∈ S

∣∣ tr(hM) ⊂ Z
}
. Then L is a Z-lattice in S

and (3.6a) guarantees an expansion of the form

(3.7a) f(z) =
∑
h∈L

c(h)e
(
tr(hz)

)
with c(h) ∈ C. This will be proven in §A1.1 of the Appendix. We often put

(3.7b) f(z) =
∑
h∈S

c(h)e
(
tr(hz)

)
by defining c(h) to be 0 for h ∈ S, /∈ L. Usually we call the right-hand side of

(3.7a) or (3.7b) the Fourier expansion of f, and call the c(h) the Fourier

coefficients of f.

Lemma 3.3. Suppose n > 1; let f be a holomorphic function on Hn of

the form (3.7a) satisfying (3.6b) with a subgroup U of SLn(Z) of finite index.

Then we have (3.7a) with c(h) �= 0 only if h is nonnegative.

The proof will be given in §A1.2 of the Appendix. Similar results can be

proved for the Fourier expansion of an automorphic form of a more general

type; see [S97, Propositions A4.2 and A4.5] and [S00, Proposition 5.7]. In

fact, we do not need Lemma 3.3 in this book, since the modular forms in our

later treatment in the case n > 1 will always be given explicitly, and so they

have expansions of type (3.7a) with c(h) �= 0 only for nonnegative h.



CHAPTER II

THETA FUNCTIONS AND FACTORS OF AUTOMORPHY

4. Classical theta functions

4.1. We define the classical theta function θ and its modification ϕ by

(4.1) θ(u, z; r, s) =
∑

g−r∈Zn

e
(
2−1 · tgzg + tg(u+ s)

)
,

(4.2) ϕ(u, z; r, s) = e
(
2−1 · tu(z − z)−1u

)
θ(u, z; r, s).

Here u ∈ Cn, z ∈ Hn, and r, s ∈ Rn. To prove the convergence of the infinite

series of (4.1), put g = h + r with h ∈ Zn and y = Im(z); take compact

subsets U of Cn and Z of Hn. Then for fixed r, s ∈ Rn, u ∈ U, and z ∈ Z

we easily see that

Re
(
πi · tgzg + 2πi · tg(u+ s)

)
= −π · thyh+ thv + w

with v ∈ Rn and w ∈ R in some compact sets depending on r, s, U, and Z.

Let λ be the smallest eigenvalue of πy. Then π · thyh ≥ λ · thh, and so the

sum of (4.1) is majorized by∑
h∈Zn

exp(−λ · thh+ thv + w) = ew
n∏

j=1

∑
k∈Z

exp(−λk2 + kvj),

where vj is the jth component of v. Therefore we see that the right-hand

side of (4.1) is locally uniformly convergent on Cn × Hn, and so defines a

holomorphic function in (u, z).

The function θ(u, z; r, s) is calledRiemann’s theta function. By purely

formal calculations we can easily verify

(4.3) θ(u + za+ b, z; r, s)

= e
(−2−1 · taza− ta(u+b+s)

)
θ(u, z; r+a, s+b) (a, b ∈ Rn),

(4.4) θ(u + za+ b, z; r, s)

= e
(−2−1 ·taza−tau+trb−tsa

)
θ(u, z; r, s) (a, b ∈ Zn),

(4.5) θ(u, z; r + a, s+ b)

= e(trb)θ(u, z; r, s) = θ(u+b, z; r, s) (a, b ∈ Zn).

DOI 10.1007/978-1-4614- _2, © Springer Science+Business Media, LLC 2012
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The function θ(u, z; r, s) was introduced by Riemann for the purpose of

studying abelian integrals on an algebraic curve. In fact, these theta func-

tions are essential in the geometric investigation of abelian varieties. In the

present book, however, we merely employ them as a technical tool for study-

ing automorphic forms of several types. The reader who is interested in their

geometric and other aspects may be referred to [S98] and earlier articles by

various authors cited there.

4.2. Let us now put

(4.6) Γ θ
n = Γ θ =

{
γ ∈ Γ (1)

∣∣ {aγ · tbγ} ≡ {cγ · tdγ} ≡ 0 (mod 2Zn)
}
,

where {s} is the column vector consisting of the diagonal elements of s. Notice

that aγ · tbγ and cγ · tdγ belong to Sn(Z) by (1.2a). We note an easy fact:

(4.7) For s ∈ Sn(Z) we have
txsx ∈ 2Z for every x ∈ Zn ⇐⇒ {s} ∈ 2Zn

=⇒ {tysy} ∈ 2Zn for every y ∈ Zn
n.

Clearly Γ (2) ⊂ Γ θ. Put F (x, y) = x · ty for x, y ∈ Z1
n. By (1.2c) we have

F
(
(x, y)γ

)− F (x, y) = xaγ · tbγ · tx+ ycγ · tdγ · ty + 2xbγ · tcγ · ty
for γ ∈ Γ (1), and so we see that

(4.8a) Γ θ =
{
γ ∈ Γ (1)

∣∣F (
(x, y)γ

)− F (x, y) ∈ 2Z for every x, y ∈ Z1
n

}
.

This shows that Γ θ is a subgroup of Γ (1). Taking γ−1 in place of γ, from

(1.2b) we see that

(4.8b) Γ θ =
{
γ ∈ Γ (1)

∣∣ {taγcγ} ≡ {tbγdγ} ≡ 0 (mod 2Zn)
}
.

We can let Sp(n, R) act on Cn × Hn by the rule

(4.9) γ(u, z) =
(
tμγ(z)

−1u, γz
)

for γ ∈ Sp(n, R), u ∈ Cn, and z ∈ Hn.

From (1.7) we obtain (βγ)(u, z) = β
(
γ(u, z)

)
for β, γ ∈ Sp(n, R); also 12n

gives the identity map on Cn × Hn.

Lemma 4.3. (i) μγ(z)
−1cγ ∈ Sn(C) for every γ ∈ Sp(n, R) and z ∈ Hn.

(ii) Let κ(u, z) = tu(z − z̄)−1u for u ∈ Cn and z ∈ Hn. Then

(4.10) κ
(
γ(u, z)

)− κ(u, z) = −tuμγ(z)
−1cγu

for every γ ∈ Sp(n, R).

Proof. Put pz(u, v) = tu(z − z̄)−1v for u, v ∈ Cn. Then pz(u, v) =

pz(v, u) and κ(u, z) = pz(u, u). From (1.16) we obtain

(4.11) (γz − γz̄)−1 = μγ(z)(z − z̄)−1 · tμγ(z̄)

for every γ∈Sp(n, R). Therefore
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pγz
(
tμγ(z)

−1u, tμγ(z)
−1v) = tuμγ(z)

−1(γz − γz̄)−1 · tμγ(z)
−1v

= tu(z − z̄)−1 · tμγ(z̄) · tμγ(z)
−1v.

Since μγ(z̄) = μγ(z) − cγ(z − z̄), we have tμγ(z̄) · tμγ(z)
−1 = 1n − (z − z̄) ·

tcγ · tμγ(z)
−1. Thus

pγz
(
tμγ(z)

−1u, tμγ(z)
−1v)− pz(u, v) = −tu · tcγ · tμγ(z)

−1v.

Since the left-hand side is symmetric in (u, v), we see that tcγ · tμγ(z)
−1 ∈

Sn(C), which proves (i). Putting u = v, we obtain (ii). Here we add a more

direct proof of (i). We have cγ · tμγ(z) = cγz · tcγ + cγ · tdγ ∈ Sn(C), as can

be seen from (1.2a). Thus μγ(z)
−1cγ = μγ(z)

−1cγ · tμγ(z) · tμγ(z)
−1 ∈ Sn(C)

as expected.

Theorem 4.4. (i) For every γ ∈ Γ (1) we have

(4.12) θ
(
γ(u, z); r, s) = ζ · jγ(z)1/2e

(
2−1 · tuμγ(z)

−1cγu
)
θ(u, z; r′′, s′′)

with a constant ζ ∈ T depending on r, s, γ, and a suitable choice of a branch

of jγ(z)
1/2, and [

r′′

s′′

]
= tγ

[
r
s

]
+

1

2

[ {tac}
{tbd}

]
,

where the symbol {∗} is defined in §4.2.
(ii) For every γ ∈ Γ θ there is a holomorphic function hγ(z) in z ∈ Hn,

written also h(γ, z), such that hγ(z)
2 = ζ · jγ(z) with a constant ζ ∈ T and

(4.13) θ
(
γ(u, z); r, s)

= e
(
2−1(trs− tr′s′)

)
hγ(z)e

(
2−1 · tuμγ(z)

−1cγu
)
θ(u, z; r′, s′)

with

[
r′

s′

]
= tγ

[
r
s

]
.

(iii) hγ(z)
4 = jγ(z)

2 if γ ∈ Γ (2).

These formulas are classical (see [KP92], for example). We will give a

shorter proof by proving (4.12) for some special γ in §4.9, and the remaining

statements in Section A1 of the Appendix.

Putting u = 0, from (4.12) and (4.13) we obtain

(4.14) θ(0, γz; r, s) = ζ · jγ(z)1/2θ(0, z; r′′, s′′) if γ ∈ Γ (1),

(4.15) θ(0, γz; r, s) = e
(
2−1(trs− tr′s′

))
hγ(z)θ(0, z; r

′, s′) if γ ∈ Γ θ,

where (r′′, s′′) is as in (4.12) and (r′, s′) is as in (4.13).

4.5. Put q(u, z) = e
(
2−1 · tu(z − z̄)−1u

)
. Then from (4.10) we obtain

(4.16) q
(
γ(u, z)

)
= q(u, z)e

(− 2−1 · tuμγ(z)
−1cγu

)
.

We now consider ϕ of (4.2). Since ϕ(u, z; r, s) = q(u, z)θ(u, z; r, s), we

easily see that (4.12) and (4.13) are equivalent to
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(4.17) ϕ
(
γ(u, z); r, s

)
= ζ · jγ(z)1/2ϕ(u, z; r′′, s′′),

(4.18) ϕ
(
γ(u, z); r, s

)
= e

(
2−1(trs− tr′s′)

)
hγ(z)ϕ(u, z; r

′, s′).

Thus the transformation formulas for ϕ under (u, z) �→ γ(u, z) are simpler

than those for θ. It is mainly for this reason that we consider ϕ in addition

to θ.

4.6. Let us now put

(4.19) θ(z) =
∑
g∈Zn

e
(
2−1 · tgzg) (z ∈ Hn).

Then θ(z) = θ(0, z; 0, 0) = ϕ(0, z; 0, 0), and so from (4.13) we obtain

(4.20) θ(γz) = hγ(z)θ(z) (γ ∈ Γ θ),

and consequently

(4.21) h(βγ, z) = hβ(γz)hγ(z) (β, γ ∈ Γ θ).

Clearly θ(az · ta) = θ(z + b) = θ(z) for a ∈ GLn(Z) and b ∈ 2Sn(Z), and so

(4.22a) hα = 1 for α = diag[a, ta−1], a ∈ GLn(Z),

(4.22b) hβ = 1 for β =

[
1 b
0 1

]
, b ∈ 2Sn(Z),

(4.22c) h−γ = hγ for every γ ∈ Γ θ.

In the following theorem we will see that h2
γ coincides with jγ if γ ∈ Γ (4).

For every congruence subgroup Γ of Γ θ we denote by M 1/2(Γ ) the set of all

holomorphic functions f on Hn such that f2 ∈M 1 and

(4.23) f(γz) = hγ(z)f(z) for every γ ∈ Γ.

In fact, the condition f2 ∈M 1 follows from (4.23) if n > 1. Indeed, if (4.23)

is satisfied, then f(γz)2 = jγ(z)f(z)
2 for every γ ∈ Γ ∩ Γ (4), which implies

that f2 ∈ M 1. If f ∈ M 1/2(Γ ), then f has expansion (3.7a) with c(h) �= 0

only for nonnegative h. Indeed, from (4.22a, b) we see that f satisfies (3.6a,

b) for suitable M and U, and so we have at least an expansion of type (3.7a).

If n > 1, Lemma 3.3 gives the desired result. If n = 1, the condition f2 ∈ M 1

implies condition (3.4d), as will be explained in §5.1. In fact, we will introduce

in §5.1 modular forms of weight k for an arbitrary k ∈ 2−1Z and will discuss

(3.4d) in that context. We put

(4.24) M 1/2 =

∞⋃
N=1

M 1/2

(
Γ (2N)

)
.

Theorem 4.7. (1) If γ ∈ Γ θ and det(dγ) �= 0, then

(4.25) lim
z→0

hγ(z) =
∑
x∈A

e
(− txd−1

γ cγx/2
)
=

∑
x∈B

e
(
txbγd

−1
γ x/2

)
,
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where A = Zn/tdγZ
n and B = Zn/dγZ

n.

(2) If γ ∈ Γ θ and det(dγ) is odd, then hγ(z)
2 =

( −1
det(dγ)

)
jγ(z). In

particular, hγ(z)
2 = jγ(z) for every γ ∈ Γ (4).

(3) hι(z) = det(−iz)1/2 with the branch of the square root such that hι(z) >

0 for Re(z) = 0.

(4) Let α ∈ Gp+(n, Q) and r(z) = jα(z)
1/2 with any choice of a branch.

Then there is a congruence subgroup Δ of Γ θ such that

h(αγα−1, αz) = r(γz)h(γ, z)r(z)−1

for every γ ∈ Δ.

We will prove the first two assertions in Section A1 of the Appendix; (3)

will be proven in §4.9 and (4) in §5.3. Clearly (2) implies Theorem 4.4(iii).

Once (2) of the above theorem is established, we see from (4.14) and (4.15)

that θ(0, z; r, s) as a function of z belongs to M 1/2 if r, s ∈ Qn. If n = 1,

condition (3.4d) for θ(0, z; r, s)2 follows from (4.14).

We will often consider det(−iz)±1/2 in our later treatment. We use the

convention that it always means the function as in (3) above and its inverse.

4.8. Let us now recall some elementary facts on Fourier analysis. For

f ∈L1(Rn) we define its Fourier transform f̂ by

(4.26) f̂(x) =

∫
Rn

f(y)e(−txy)dy (x ∈ Rn),

where we consider x and y column vectors, so that txy =
∑n

ν=1 xνyν , and

dy is the standard volume element of Rn. Then f̂ is a continuous function.

If f is continuous, then we have

(4.27)
∑
g∈Zn

f(r + g) =
∑
h∈Zn

f̂(h)e(thr) (r ∈ Rn),

provided both sides converge absolutely and uniformly. This is called the

Poisson summation formula (see [S07, Theorem 2.3], for example). If we

exchange f for f̂ , then we obtain

(4.27a)
∑
g∈Zn

f̂(r + g) =
∑
h∈Zn

f(h)e(−thr) (r ∈ Rn).

It is well known that the function exp(−πx2) is its own Fourier transform,

that is,

(4.28)

∫
R

exp(−πx2)e(−xt)dx = exp(−πt2).

For a short proof, see [S07, pp. 14–15]. An n-dimensional version of (4.28)

can be given as follows:

(4.29)

∫
Rn

exp
(− πh[x]

)
e(−tvx)dx = det(h)−1/2 exp

(− πh−1[v]
)

(v ∈ Rn, 0 < h ∈ Sn(R)),
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where h[x] = txhx. This can be proved by taking a real matrix α such that
tαhα = 1n and replacing x by α−1x, which reduces the problem to (4.28).

From this we obtain

(4.30)

∫
Rn

e
(
2−1z[x]

)
e(−tvx)dx = det(−iz)−1/2e

(− 2−1z−1[v]
)

(v ∈ Rn, z ∈ Hn).

Indeed, if z = ih with 0 < h ∈ Sn(R), this is exactly (4.29). Now the left-

hand side of (4.30) is convergent and defines a holomorphic function in z;

the right-hand side is clearly holomorphic in z. Since they coincide on “the

imaginary axis” of Hn, we obtain (4.30) on the whole Hn.

4.9. We now prove formula (4.12) for the elements γ of Γ (1) of the forms

(4.31)

[
a 0
0 d

]
,

[
1 b
0 1

]
,

[
0 −1
1 0

]
.

If γ = diag[a, d] ∈ Γ (1), then d = ta−1 ∈ GLn(Z) and γ(z) = az · ta, and so

we easily see that

(4.32) θ(au, az · ta; r, s) = θ(u, z; tar, a−1s).

Next, if γ =

[
1 b
0 1

]
∈ Γ (1), then tb = b and γ(z) = z + b. Observing that

txbx/2≡ tx{b}/2 (mod Z) if x∈Zn (with {∗} defined as in §4.2), we obtain

(4.33) θ(u, z + b; r, s) = e
(− 2−1(trbr + tr{b}))θ(u, z; r, s+ br + 2−1{b}),

which is (4.12) for the present γ. Finally, if γ =

[
0 −1
1 0

]
, then γ(z) =

−z−1. To discuss this case, we first put v = y − u − s in (4.30) with real

vectors y, u, s, and consider the Fourier transform f̂ of the function f(x) =

e
(
2−1z[x] + tx(u + s)

)
. Then (4.30) shows that

f̂(y) = det(−iz)−1/2e
(− 2−1z−1[y − u− s]

)
.

Applying the Poisson summation formula (4.27) to the present case we obtain

(4.34) det(−iz)1/2e(2−1z−1[u]
)
θ(u, z; r, s) = e(trs)θ(z−1u, −z−1; −s, r)

for real u, and so for all u ∈ Cn, since both sides are holomorphic in u.

Consequently, we know that (4.12) holds for γ of the forms of (4.31). Taking

u = r = s = 0 in (4.34), we obtain

(4.34a) det(−iz)1/2θ(z) = θ(−z−1),

which gives Theorem 4.7(3).

4.10. Let us now look more closely at the special case n = 1. In this case

our function takes the form
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(4.35) θ(u, z; r, s) =
∑
m∈Z

e
(
2−1(m+ r)2z + (m+ r)(u + s)

)
,

where u ∈ C, z ∈ H1, and r, s ∈ R; in particular,

(4.36) θ(z) = θ(0, z; 0, 0) =
∑
m∈Z

e(m2z/2).

The function of (4.35) satisfies the differential equation

(4.37)
∂2θ(u, z; r, s)

∂u2
= 4πi · ∂θ(u, z; r, s)

∂z
.

Also, we have

(4.38) Γ θ = Γ (2) ∪ Γ (2)ι, ι =

[
0 −1
1 0

]
.

Indeed, that Γ (2)∪Γ (2)ι ⊂ Γ θ can easily be seen. Suppose γ =

[
a b
c d

]
∈ Γ θ

and a /∈ 2Z. Then c ∈ 2Z and ad− 1 ∈ 2Z. Thus d /∈ 2Z and b ∈ 2Z, and so

γ ∈ Γ (2). Suppose γ ∈ Γ θ and γ /∈ Γ (2). Then a ∈ 2Z, and so b /∈ 2Z. Since

b = aγι, we see that γι ∈ Γ (2). This proves (4.38).

From Theorem 4.7(3) we obtain

(4.39) hι(z) = (−iz)1/2,
where the branch of (−iz)1/2 is chosen so that it is a positive real number if

z = iy with 0 < y ∈ R. We use this convention throughout the present book.

Let us now show that

(4.40) hγ(z)=ε−1
d

(
2c

d

)
(cz + d)1/2 if γ=

[
a b
c d

]
∈Γ (2).

Here the branch of (cz + d)1/2 is taken so that −π/2 < arg(cz + d)1/2 ≤ π/2,

which means that

(4.41a) lim
z→0

(cz + d)1/2 =

⎧⎪⎪⎨
⎪⎪⎩

√
d if d > 0,

i
√
|d| if d < 0 and c ≥ 0,

− i
√
|d| if d < 0 and c < 0;(

2c

d

)
is the symbol defined in (0.4) and (0.5), and εd is defined by (as already

done in (0.6))

(4.41b) εd =

{
1 if d− 1 ∈ 4Z,

i if d+ 1 ∈ 4Z.

To prove (4.40), let us assume c �= 0, since the case c = 0 is easy. Take the

branch of (cz+d)1/2 as specified, and let q = limz→0(cz+d)1/2. By Theorem

4.7(2), hγ(z)
2 = ±jγ(z), and so we can put hγ(z) = η(cz+d)1/2 with η such

that η2 = ±1. By (4.25) we obtain
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ηq =
∑

x∈Z/dZ

e
(− cx2/(2d)

)
=

|d|∑
y=1

e
(− 2cy2/d

)
= G(−2c, d)

with G(∗. ∗) of (2.5). Suppose d > 0; then by (2.9), ηd1/2 =

(−2c
d

)
εdd

1/2,

and so η = ε−1
d

(
2c

d

)
, which proves (4.40) when d > 0. If d < 0, employing

(2.13), we obtain qη =

(
2c

−d
)
ε−d

√
|d|. Comparing this with (4.41a), we

obtain the desired result. We can also use the fact hγ = h−γ . However, for

all practical purposes we need the formula only when d > 0; in fact, it is not

advisable to use it when d < 0.

By (4.5), θ(u, z; r, s) up to a factor of T depends only on r, s modulo Z.

In particular, there are four functions determined by r, s ∈ {0, 1/2}. We can

replace 1/2 by −1/2 by multiplying the function by a root of unity. Now the

explicit forms of these four functions are given as follows:

(4.42a) θ(u, z; 0, 0) =
∑
m∈Z

e(m2z/2)e(mu),

(4.42b) θ(u, z; 0, 1/2) =
∑
m∈Z

(−1)me(m2z/2)e(mu),

(4.42c) θ(u, z; 1/2, 0) =
∑
m∈Z

e
(
(2m+ 1)2z/8

)
e
(
(2m+ 1)u/2

)
,

(4.42d) θ(u, z; 1/2, −1/2) = −i
∑
m∈Z

(−1)me
(
(2m+ 1)2z/8)e

(
(2m+ 1)u/2

)
.

These were introduced by Jacobi, and so it is natural to call them Jacobi’s

theta functions. They are traditionally denoted by ϑν(u, z) with 0 ≤ ν ≤ 3,

but the numbering depends on the author. Formulas (4.3), (4.4), (4.5), and

(4.13) are of course valid for these, and the explicit transformation formulas

for ϑν are given in any textbook on elliptic functions. We do not need these

ϑν in this book, but we note them here for the purpose of giving a perspective

that the functions ϑν and their transformation formulas are merely special

cases obtained by taking n to be 1 and substituting 0 or ±1/2 for r or s,

and this point is worthy of emphasis.

We add here a few facts about ∂θ/∂u. Namely, put

(4.43) θ∗(z; r, s) = (2πi)−1(∂θ/∂u)(0, z; r, s).

Then

(4.44) θ∗(z; r, s) =
∑
m∈Z

(m+ r)e
(
2−1(m+ r)2z + (m+ r)s

)
,

and from (4.13) we immediately obtain

(4.45) θ∗(γz; r, s) = e
(
(rs− r′s′)/2

)
jγ(z)hγ(z)θ

∗(z; r′, s′) if γ ∈ Γ θ,



4. CLASSICAL THETA FUNCTIONS 23

where [r′ s′] = [r s]γ. In particular, put θ∗(z) = θ∗(z; 0, 0); then

(4.46) θ∗(z) =
∑
m∈Z

me(m2z/2),

(4.47) θ∗(γz) = jγ(z)hγ(z)θ
∗(z) if γ ∈ Γ θ.

4.11. Returning to the case with n ≥ 1, we consider the functions of the

forms

(4.48a) ϕ(u, z; λ) = e
(
2−1 · tu(z − z̄)−1u

)
θ(u, z; λ),

(4.48b) θ(u, z; λ) =
∑
ξ∈Qn

λ(ξ)e
(
2−1 · tξzξ + tξu

)
.

Here u ∈ Cn and z ∈ Hn as before; λ is an element of the set L (Qn) defined

in §0.3. By our explanation in §0.3, θ(u, z; λ) is a finite C-linear combination

of θ(u, z; r, s) with r, s ∈ Qn, and such a θ(u, z; r, s) is a special case of

(4.48b). We now reformulate Theorems 4.4 and 4.7 as follows.

Theorem 4.12. Let P be the group defined in Lemma 2.2(iii). For α ∈
PΓ θ and λ ∈ L (Qn) we can define a holomorphic function hα(z) on Hn and

an element λα of L (Qn) with the following properties:

(4.49a) ϕ
(
α(u, z); λ) = hα(z)ϕ(u, z; λ

α).

(4.49b) hα(z)
2 = ζjα(z) with ζ ∈ T.

(4.49c) hα(z) = | det(dα)|1/2 if α ∈ P.

(4.49d) hρατ (z) = hρ(z)hα(τz)hτ (z) if ρ ∈ P and τ ∈ Γ θ.

(4.49e) λρατ =
(
(λρ)α

)τ
if ρ ∈ P and τ ∈ Γ θ.

(4.49f) For each λ the set {α ∈ Γ θ
∣∣λα = λ} is a congruence subgroup.

(4.49g) Let α ∈ Sp(n, Q) and r(z) = jα(z)
1/2 with any choice of a branch.

Then for every λ ∈ L (Qn) there exists an element μ of L (Qn) such

that ϕ
(
α(u, z); λ) = r(z)ϕ(u, z; μ).

Proof. We already have hγ(z) for γ ∈ Γ θ. Formula (4.18) (or rather

its C-linear combination) means that λγ can be determined by (4.49a). For

β =

[
a b
0 d

]
∈ P we have β(u, z) = (td−1u, az · ta+ bd−1) and q

(
β(u, z)

)
=

q(u, z) by (4.16), and so ϕ
(
β(u, z), λ

)
= ϕ(u, z; λ′) with λ′(ξ) = e(2−1 · tξ ·

tdbξ)λ(dξ). Thus putting hβ(z) = | det(d)|1/2 and λβ = | det(d)|−1/2e(2−1 ·
tξ · tdbξ)λ(dξ), we have (4.49a) with β in place of α. We can easily verify that

hβ′β(z) = hβ′(βz)hβ(z) and λβ′β = (λβ′)β for β′, β ∈ P. If γ ∈ Γ θ ∩ P, then

hγ = 1 by (4.22a, b), and so it coincides with hγ defined for γ as an element of

P. The same is true for λγ , as it is determined by (4.49a). Now given α = βγ

with β ∈ P and γ ∈ Γ θ, we define hα and λα by hα(z) = hβ(γz)hγ(z) and

λα = (λβ)γ . These are well defined, since we have shown the consistency on
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Γ θ ∩ P. Then formulas (4.49a, b, c, d, e) can be verified in a straightforward

way. To prove (4.49f), it is sufficient to show that given r, s ∈ Qn, there is

a congruence subgroup Γ such that ϕ
(
γ(u, z); r, s

)
= hγ(z)ϕ(u, z; r, s) for

every γ ∈ Γ. For that purpose take a positive integer m so that mr, ms ∈ Zn.

Then for γ ∈ Γ (2m2) we have trs − tr′s′ ∈ 2Z in (4.13), and so (4.18) gives

the desired result. As for (4.49g), since Sp(n, Q) is generated by P and ι as

noted in Lemma 2.2(iv), successive applications of (4.49a) with elements of P

and ι as α establish (4.49g). This completes the proof.

Putting u = 0 in (4.48a, b) and (4.49a), we obtain

(4.50a) ϕ(0, z; λ) = θ(0, z; λ) =
∑
ξ∈Qn

λ(ξ)e(2−1 · tξzξ),

(4.50b) θ(0, αz; λ) = hα(z)θ(0, z; λ
α) for every α ∈ PΓ θ.

The factors of automorphy μγ(z) and jγ(z) are defined for every γ ∈
Sp(n, Q) and the “associativity” of the type (1.7) holds on the whole group

Sp(n, Q), but in the case of hα(z) it is defined only for α ∈ PΓ θ and the

associativity holds only to the extent given by (4.49d, e). However, these are

sufficient for practical purposes, though we always have to be careful about

our calculation involving hα(z).

4.13 As generalizations of (4.43) and (4.47) when n = 1, we put

(4.51) θ∗(z, λ) =
∑
ξ∈Q

λ(ξ)ξe(ξ2z/2)
(
z ∈ H1, λ ∈ L (Q)

)
.

Since θ∗(z, λ) = (2πi)−1(∂ϕ/∂u)(0, z; λ), from (4.49a) we obtain

(4.52) θ∗(αz, λ) = hα(z)jα(z)θ
∗(z, λα) for every α ∈ PΓ θ.

5. Modular forms of half-integral weight

5.1. By a weight (of a modular form) we mean an element of 2−1Z; we

call it an integral weight if it belongs to Z and a half-integral weight

otherwise. To make our formulas short, for a weight k and α ∈ Sp(n, Q) we

hereafter put

(5.1a) [k] =

{
k if k ∈ Z,

k − 1/2 if k /∈ Z,

(5.1b) jkα(z) =

{
jα(z)

k if k ∈ Z,

hα(z)jα(z)
[k] if k /∈ Z.

Here we assume that α ∈ PΓ θ when k /∈ Z. We also put

(5.2) Gp+(n, Q) =
{
α ∈ Gp(n, Q)

∣∣ ν(α) > 0
}
.

For k, α as in (5.1b) and a function f on Hn we define a function f‖k α on

Hn by
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(5.3a) (f‖k α)(z) = jkα(z)
−1f

(
α(z)

)
.

This is the same as (3.1) if k ∈ Z and α ∈ Sp(n, Q). Notice that

(5.3b) f‖k(−1) = (−1)n[k]f.
Also, from Theorem 4.7(2) we see that

(5.3c) j−k
γ (z) =

( −1
det(dγ)

)
jkγ (z)

−1 if k /∈ Z, γ ∈ Γ θ and det(dγ) /∈ 2Z.

As for the analogue of formula (3.2b), from (1.7) and (4.21) we obtain

(5.4) f‖k(γδ) = (f‖k γ)‖k δ if γ, δ ∈ Γ θ and k /∈ Z.

In fact, the last formula can be extended to the cases covered by (4.49d, e).

Suppose k /∈ Z. The symbols jkα(z) and f‖k α are defined with no am-

biguity if α ∈ PΓ θ. However, we will have to consider an arbitrary α ∈
Gp+(n, Q). For that purpose we make the following convention: Whenever

we write jα(z)
−kf(αz) for α ∈ Gp+(n, Q), the symbol jα(z)

−k means any

branch of the function. There is no danger in doing so, since the statement in

each case is valid with any choice of a branch.

Let Γ be a congruence subgroup of Sp(n, Q). For an integral weight k

we defined M k(Γ ) in §3.1. Suppose now k is half-integral and Γ ⊂ Γ θ.

We then define M k(Γ ) to be the set of all holomorphic functions f ∈ Hn

such that f‖k γ = f for every γ ∈ Γ and f2 ∈ M 2k. The last condition is

automatically satisfied if n > 1. Indeed, by Theorem 4.7(2), f2‖2k γ = f2 for

every γ ∈ Γ ∩ Γ (4), and so f2 ∈ M 2k, since condition (3.4c) is unnecessary

if n > 1. We call an element of M k(Γ ) a modular form of weight k with

respect to Γ.

Suppose n = 1 and k is half-integral. Let f be a holomorphic function

on H1 such that f‖k γ = f for every γ ∈ Γ. Then f2 ∈ M 2k if and only

if (3.4d) is satisfied with any choice of a branch of (cz + d)−k. Indeed, for

such an f satisfying (3.4d) we have f2‖2k γ = f2 for every γ ∈ Γ ∩ Γ (4),

since
(
hγ(z)jγ(z)

k−1/2
)2

= jγ(z)
2k for γ ∈ Γ (4), and (3.4d) is satisfied with

(f2, 2k) in place of (f, k), and so f2 ∈M 2k.

Conversely, suppose f2 ∈ M 2k and f‖k γ = f for every γ ∈ Γ. Let

α ∈ SL2(Q) and let r(z) be a branch of jα(z)
k. Let γ =

[
1 m
0 1

]
with

0 < m ∈ 4Z. We can find m such that γ ∈ Γ ∩α−1Γα∩α−1Γ (4)α. Put δ =

αγα−1 and κ = 2k. Then κ ∈ Z, δα = αγ, and jδ(αz)
κjα(z)

κ = jδα(z)
κ =

jαγ(z)
κ = jα(γz)

κjγ(z)
κ, which means that hδ(αz)

κr(z) = ±r(γz)hγ(z)
κ.

Put g(z) = r(z)−1f(αz). Since δ ∈ Γ ∩ Γ (4) and hγ = 1, we have g(γz) =

r(γz)−1f
(
αγ(z)

)
= r(γz)−1f

(
δα(z)

)
= r(γz)−1hδ(αz)

κf(αz) = ±r(z)−1

·f(αz) = ±g(z). Thus g(z + m) = ±g(z), and so g(z + 2m) = g(z). Con-

sequently we can put g(z) =
∑

ν∈Z c(ν)q(z)ν with c(ν) ∈ C and q(z) =
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e(z/(2m)). If f2 ∈M κ, then (3.4d) applied to f2 implies that g2 as a func-

tion of q(z) has no singularity at q(z) = 0. Then the same must be true for

g(z), and so c(ν) = 0 for ν < 0. Thus f satisfies (3.4d).

We now put

(5.5) Mk =
∞⋃

N=1

Mk

(
Γ (2N)

)
.

Let k and � be weights. Then for f ∈ M k and g ∈ M �, we easily see that

fg ∈ M k+�.

Also, θ(0, z; λ) ∈ M 1/2 for every λ ∈ L (Qn). This follows from (4.49a)

and (4.49f) if n > 1. Now suppose n = 1. Putting u = 0 in (4.49g), we find

that (3.4d) is satisfied with k = 1/2 and f(z) = θ(0, z; λ) as expected.

If n = 1, θ∗(z, λ) belongs to M 3/2 for every λ ∈L (Qn). To show this,

we first note that θ∗(γz, λ) = j
3/2
γ (z)θ∗(z, λ) for γ in a suitable congruence

subgroup, which follows from (4.52) and (4.49f). Since θ∗(z, λ) = (2πi)−1

·(∂ϕ/∂u)(0, z; λ), from (4.49g) we obtain θ∗(αz, λ) = jα(z)
3/2θ∗(z, μ), and

so θ∗(z, λ) satisfies (3.4d) with k = 3/2. Thus θ∗(z, λ) ∈M 3/2.

Let f ∈ M k with half-integral k and n > 1. From (4.22a, b) we see that

(3.6a) and (3.6b) hold for f with suitable M and U . Therefore we have an

expansion of f of the form (3.7a) or (3.7b). Thus we can speak of the Fourier

expansion of f in the case of half-integral k. If n = 1, we have shown that

f satisfies (3.4d).

5.2. For k ∈ Z our definitions of f‖k α and M k(Γ ) in Section 3 are

standard, but the case of half-integral k is not so clear-cut. Indeed, for

half-integral k we could have defined f‖k α by (f‖k α)(z) = hα(z)
−2kf(αz)

instead of (5.3a). The reason for adopting (5.3a) is that its natural gener-

alization to the Hilbert modular case is the best definition. This of course

requires a clarification, but without going into details here we refer the reader

to Section 17 of the present book and [S87].

The factor of automorphy hγ of (4.40) is different from what we introduced

in [S73a], which has been employed by many researchers and which is given

by

(5.6) h′δ(z)=ε−1
d

(
c

d

)
(cz + d)1/2

for δ=

[
a b
c d

]
∈Γ (1) with c∈4Z. For such a δ put γ =

[
a 2b
c/2 d

]
. Then

γ ∈ Γ (2) and hγ(2z) = h′δ(z). In the present book for various reasons, we

develop the theory by using hγ of (4.40). The formulation in terms of h′δ of

(5.6) can easily be obtained by means of the equality hγ(2z) = h′δ(z).

5.3. Let us now prove Theorem 4.7(4). Let α and r(z) be as in that

statement. We first assume that α ∈ Sp(n, Q). Put Δλ =
{
γ ∈ Γ θ

∣∣λγ = λ
}
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for λ ∈ L (Qn). By (4.49f), Δλ is a congruence subgroup of Sp(n, Q). Now

take λ to be the characteristic function of Zn and take also μ as in (4.49g).

Let γ ∈ Δμ ∩ α−1Δλα and δ = αγα−1. Then δα = αγ, λδ = λ, μγ =

μ, and ϕ
(
δα(u, z); λ

)
= hδ(αz)ϕ

(
α(u, z); λ

)
= hδ(αz)r(z)ϕ(u, z; μ). This

equals ϕ
(
αγ(u, z); λ

)
= r(γz)ϕ

(
γ(u, z); μ

)
= r(γz)hγ(z)ϕ(u, z; μ). Since

ϕ(u, z; μ) is a nonzero function, we obtain hδ(αz)r(z) = r(γz)hγ(z). This

proves Theorem 4.7(4) for α ∈ Sp(n, Q).

By (1.3) every element of Gp+(n, Q) is the product of an element of

Sp(n, Q) and an element β of the form β = diag[e1n, 1n] with 0 < e ∈ Q.

Therefore we easily see that it is sufficient to prove Theorem 4.7(4) when α

is such a β; we may even assume that e ∈ Z. Thus our task is to show that

h(βγβ−1, βz) = hγ(z) for γ in a suitable congruence subgroup. Suppose n =

1 and γ =

[
a b
c d

]
∈ Γ (2e); then βγβ−1 =

[
a eb

e−1c d

]
∈ Γ (2), and from

(4.40) we see that h(βγβ−1, βz) =
(
e
d

)
hγ(z), and so h(βγβ−1, βz) = hγ(z)

if d− 1 ∈ 4eZ, which gives the desired result.

If n > 1, the proof is more involved and requires some facts on the Gauss

sum of a quadratic form as in (4.25). We refer the reader to [S00, Theorems

6.8 and 6.9], whose proof is given in [S00, §A2.9]. Howeve,r we need Theorem

4.7(4) only for the proof of the following lemma, which we employ only when

n = 1 in the present book.

Lemma 5.4. Let k be an integral or a half-integral weight. Given α ∈
Gp+(n, Q) and f ∈ M k, put g(z) = jα(z)

−kf(αz). Then g ∈M k.

For integral k this was already noted in §3.1. If k is half-integral, this is

an immediate consequence of Theorem 4.7(4), and so the proof may be left

to the reader.

Lemma 5.5. Let ψ be a primitive or an imprimitive character modulo r,

and let ψ(−1) = (−1)μ with μ = 0 or 1. Put k = (2μ+ 1)/2 and

(5.7) θψ(z) = 2−1
∑
m∈Z

ψ(m)mμe(m2z/2).

Then θψ ∈ M k and

(5.8) θψ‖k γ = ψ(dγ)θψ for every γ ∈ Γ (2) such that cγ ∈ 2r2Z,

(5.9) θψ‖k
[
0 −r−1

r 0

]
= ψ(−1)r−1/2G(ψ)θψ̄ if ψ is primitive.

Proof. Notice that 2−1
∑

m∈Z of (5.7) can be replaced by
∑∞

m=1 if ψ is

not the principal character. If r = 1, then ψ is the principal character and

θψ = 2−1θ with θ of (4.36), and so (5.8) and (5.9) in that case follow from

(4.20). Here we prove (5.8) when ψ is primitive; the general case will be

settled after the proof of Lemma 7.13. Assuming that r > 1 and μ = 0, for
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s ∈ Z put fs(z) =
∑

m∈Z e(ms/r)e(m2z/2). Then fs(z) = θ(0, z; 0, s/r).

Let γ =

[
a b
c d

]
∈ Γ (2) with c ∈ 2r2Z. By (4.15) we have

(5.10) fs‖1/2 γ = e
(− cds2/(2r2)

)
θ(0, z; cs/r, ds/r)

= θ(0, z; 0, ds/r)=fds.

Now by (2.3a) we have
r∑

s=1

ψ̄(s)fs(z) = G(ψ̄)
∑
m∈Z

ψ(m)e(m2z/2) = 2G(ψ̄)θψ(z).

This combined with (5.10) shows that

2G(ψ̄)θψ‖1/2 γ =

r∑
s=1

ψ̄(s)fs‖1/2 γ =

r∑
s=1

ψ̄(s)fds = 2G(ψ̄)ψ(d)θψ .

This proves (5.8) when μ = 0, since G(ψ̄) �= 0 as can be seen from (2.3c).

Next, suppose μ = 1; let gs(z) = θ∗(z; 0, s/r) with θ∗ of (4.44). Then k =

3/2 and
∑r

s=1 ψ̄(s)gs = 2G(ψ̄)θψ. Also, we see from (4.45) that gs‖k γ = gds.

Therefore we obtain (5.8) when μ = 1 in the same manner as in the case

μ = 0.

As for (5.9) when μ = 1, from (4.45) we obtain gs(ιz) = jkι (z)θ
∗(z; s/r, 0),

and so

2G(ψ̄)θψ(−1/r2z) = jkι (r
2z)

r∑
s=1

ψ̄(s)θ∗(r2z; s/r, 0)

= r−1jkι (r
2z)

r∑
s=1

∑
m∈Z

ψ̄(s)(rm + s)e
(
(rm+ s)2z/2

)
= 2r2k−1jkι (z)θψ̄(z).

For α=

[
0 −r−1

r 0

]
we have jkα(z)= rkjkι (z) and so θψ‖k α= r1/2G(ψ̄)−1θψ̄

= ψ(−1)r−1/2G(ψ)θψ̄ by (2.3b, c), which gives (5.9) for μ = 1. The case

μ = 0 can be proved by employing (4.15) instead of (4.45).

5.6. We note here an interesting special case. Take ϕ(m) =

(
3

m

)
and

put

(5.11) η(z) = θϕ(z/12) =

∞∑
m=1

(
3

m

)
e(m2z/24).

In this case r = 12 and G(ϕ) = 2
√
3 by (2.4a), and so from (5.9) we obtain

η‖1/2 ι = η. Also, m2 − 1 ∈ 24Z for every integer m prime to 6, and so

η(z + 1) = e(1/24)η(z). Employing these relations we can easily prove

(5.12) η(z) = Δ(z)1/24 = e(z/24)
∞∏
n=1

(
1− e(nz)

)
,

where Δ(z) = e(z)
∏∞

n=1

(
1− e(nz)

)24
. We leave the proof to the reader. In

fact, it was explained in [S07, p. 19]. We also note an easy fact:
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(5.12a) η‖1/2 γ = η for every γ ∈ Γ (1) such that bγ , cγ ∈ 24Z.

Lemma 5.7. For every congruence subgroup Γ of Γ θ and k ∈ 2−1Z we

have M k(Γ ) = {0} if k < 0 and M 0(Γ ) = C.

Proof. Since f2 ∈ M 2k for f ∈ M k, it is sufficient to treat the case

k ∈ Z. If n = 1, our assertions are well known, and so we assume that n > 1.

We do not need this lemma for our later treatment, but we prove here that

M k(Γ ) = {0} if k < 0. For α ∈ SL2(Q) put σα =

[
aα1n bα1n
cα1n dα1n

]
; put also

p(z) = z1n for z ∈ H1. Then σα ∈ Sp(n, Q), p(z) ∈ Hn, σα

(
p(z)

)
= p

(
α(z)

)
,

and j
(
σα, p(z)

)
= jα(z)

n. Let f ∈ M k(Γ ) with a congruence subgroup

Γ of Sp(n, Q) and 0 > k ∈ Z. Put Γ1 =
{
α ∈ SL2(Z)

∣∣ σα ∈ Γ
}

and

g(z) = f
(
p(z)

)
for z ∈ H1. Then Γ1 is a congruence subgroup of SL2(Q) and

(g‖nk α)
(
p(z)

)
= (f‖k σα)

(
p(z)

)
, and so g‖nk δ = g for δ ∈ Γ1. Moreover,

since f‖k σα ∈ M k, we see that g satisfies (3.4d). Therefore g ∈ M k(Γ1),

and so g = 0. This means that f
(
p(z)

)
= 0 for every z ∈ H1. Given w ∈ Hn,

as shown at the end of Section 1, we can find an element of the form β =[
1 s
0 1

] [
a 0
0 ta−1

]
with a ∈ GLn(R) and s ∈ Sn(R) such that β(i1n) = w.

Since GLn(Q) and Sn(Q) are dense in GLn(R) and Sn(R), respectively, we

can find an element δ of P that is in any small neighborhood of β. In other

words, the set
{
δ(i1n)

∣∣ δ ∈ P
}
is dense in Hn. Put f1 = f‖k δ. Then f1 ∈M k,

and so f1
(
p(z)

)
= 0, which means that f

(
δ(i1n)

)
= 0. Since this is so for every

δ ∈ P, we obtain f = 0 as expected.

5.8. Let f ∈ M k with 0 ≤ k ∈ 2−1Z. Given α ∈ Sp(n, Q), by Lemmas

5.4 and 3.3 we have

jα(z)
−kf(αz) =

∑
0≤h∈S

cα(h)e
(
tr(hz)

)
, S = Sn(Q),

with cα(h) ∈ C. We call f a cusp form if cα(h) �= 0 only when h > 0

for every α, and we denote by S k(Γ ) the set of all cusp forms contained in

M k(Γ ). We put

(5.13) S k =

∞⋃
N=1

S k

(
Γ (2N)

)
.

From our definition and Lemma 5.4 we easily see that if f ∈ S k, then

jα(z)
−kf(αz) ∈ S k for every α ∈ Gp+(n, Q). Clearly S 0 = {0}.

We note that θ∗(z, λ) ∈ S 3/2 for every λ ∈ L (Q). Indeed, since Γ (1) is

generated by ι and Γ (1) ∩ P1, from (4.52) we see that jα(z)
−3/2θ∗(αz, λ) =

θ∗(z, μ) with some μ ∈ L (Q) for every α ∈ SL2(Q). Clearly θ∗(z, μ) has 0

as its constant term, and so θ∗(z, λ) ∈ S 3/2.

Lemma 5.9. Let f(z) =
∑

h∈S c(h)e
(
tr(hz)

) ∈ M k(Γ ) with k ∈ 2−1Z

and a congruence subgroup Γ, where S = Sn(Q). Put
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(5.14) fρ(z) =
∑
h∈S

c(h)e
(
tr(hz)

)
.

Then fρ(z)=f(−z̄) and fρ∈M k(εΓε−1) with ε=diag[−1n, 1n]. Moreover,

(5.15) jkα(z) = jkα′(−z̄),
(5.16) fρ‖k α = (f‖k α′)ρ
for α ∈ Sp(n, Q), whenever jkα(z) is defined, where α′ = εαε−1.

Proof. Clearly, fρ(z) = f(−z̄) and α′ ∈ Sp(n, Q); also, α′ ∈ PΓ θ if

α ∈ PΓ θ. Moreover, −α(z) = α′(−z̄), jα(z) = jα′(−z̄), and
(5.17) fρ(αz) = f

(− αz
)
= f

(
α′(−z̄)).

Take θ as f. Then θρ = θ and (5.17) shows that if α ∈ Γ θ, then hα(z)θ(z) =

hα′(−z̄)θ(z), and so hα(z) = hα′(−z̄), which is also true for α ∈ P because of

(4.49c). Thus hα(z) = hα′(−z̄) for every α ∈ PΓ θ by (4.49d), and we obtain

(5.15). Then (5.16) follows immediately from (5.15). Take α in εΓε−1 in

(5.17). Then α′ ∈ Γ and we obtain fρ(αz) = jkα′(−z̄)f(−z̄) = jkα(z)fρ(z),

and so fρ ∈M k(εΓε−1) as expected. This completes the proof.

6. Holomorphic and nonholomorphic modular forms on H1

6.1. Hereafter we will mainly be concerned with functions on H1, and so

we write simply H for H1. We also put

(6.1a) GL+
2 (R)=

{
α∈GL2(R)

∣∣ det(α)>0
}
,

(6.1b) GL+
2 (Q)=GL+

2 (R) ∩GL2(Q),

(6.1c) P =
{
α ∈ SL2(Q)

∣∣ cα = 0
}
.

Hereafter we work with GL2(R) and H1; the group P is Pn (with n = 1) of

Lemma 2.2(iii).

Formulas (1.10) and (1.16) in the case n = 1 take the forms:

(6.2) d(αz) = jα(z)
−2dz for every α ∈ SL2(R),

(6.3) Im(αz) = |jα(z)|−2Im(z) for every α ∈ SL2(R).

Writing simply y = Im(z), from (6.2) and (6.3) we see that y−2dz ∧ dz̄ is

invariant under SL2(R). Since dz ∧ dz̄ = −2idx ∧ dy, we obtain

(6.4) (y−2dx ∧ dy) ◦ α = y−2dx ∧ dy for every α ∈ SL2(R).

Thus the form y−2dx∧dy gives a measure on H invariant under SL2(R). To

make our formulas short, we put

(6.5) dz = y−2dxdy,



6. HOLOMORPHIC AND NONHOLOMORPHIC MODULAR FORMS ON H1 31

and define a measure μ on H by

(6.5a) μ(A) =

∫
A

dz

for A ⊂ H. It is well known that μ(Γ (1)\H)
= π/3, and so

(6.6) μ(Γ\H) = [
Γ (1) : {±1}Γ ]

π/3 if Γ ⊂ Γ (1).

Lemma 6.2. Let f ∈Mk and let f(z) =
∑∞

m=0 cme(mz/N) with cm ∈ C

and 0 < N ∈ Z. Then the following assertions hold:

(i) There exists a positive number A such that |f(z)| ≤ A(1 + y−k) on the

whole H, where y = Im(z). Moreover, if f is a cusp form, then A can be

chosen so that |f(z)| ≤ Ay−k/2 on the whole H.

(ii) cm = O(mk).

(iii) cm = O(mk/2) if f is a cusp form.

Proof. For the proof of these facts when k ∈ Z the reader is referred to

[S07, Lemmas 1.7 and 1.8]. To prove (i) when k /∈ Z, take (f2, 2k) as (f, k)

in (i). Then we obtain the desired fact for (f, k). To prove (ii) and (iii), we

first note, for 0 ≤ m ∈ Z,

Ncm exp(−2πmy/N) =

∫ N

0

f(z)e(−mx/N)dx.

Take y = 1/m. Then (ii) and (iii) follow from (i).

Results of the same type as the above lemma hold in the case n > 1. The

case of cusp form is easy, but there are some nontrivial technical problems in

the case of non-cusp forms; see [S00, Proposition A6.4 and formula (A6.7)]

and the proof given there.

6.3. The notion of a cusp can be defined for a certain class of discrete

subgroups of SL2(R) that includes congruence subgroups of SL2(Q). Since

we deal only with such congruence subgroups in this book, a cusp is a point

of Q ∪ {∞}, and vice versa. Then the map α �→ α(∞) with α ∈ SL2(Q)

is a bijection of SL2(Q)/P onto Q ∪ {∞}, and so Γ\(Q ∪ {∞}) is the set

of Γ -equivalence classes of cusps, which is in one-to-one correspondence with

Γ\SL2(Q)/P. We often use P\SL2(Q)/Γ instead, by considering the inverse

map.

For a congruence subgroup Γ of SL2(Z) and a weight k we denote by

Ck(Γ ) the set of all C∞ functions f(z) on H such that

(6.7) f‖k γ = f for every γ ∈ Γ ;

we assume that Γ ⊂ Γ θ if k /∈ Z. Then from (6.3) we see that

(6.8) |yk/2f(z)| is a Γ -invariant function on H.



32 II. THETA FUNCTIONS AND FACTORS OF AUTOMORPHY

Therefore we consider more generally a C∞ function f(z) satisfying (6.8) for

some Γ and k. We say that such an f is slowly increasing or rapidly

decreasing at every cusp according as the following condition (6.9a) or

(6.9b) is satisfied:

(6.9a) For every α ∈ SL2(Q) there exist positive constants A, B, and c

depending on f and α such that

|Im(αz)k/2f(αz)| < Ayc if y = Im(z) > B.

(6.9b) For every α ∈ SL2(Q) and c ∈ R, > 0, there exist positive constants

A and B depending on f, α, and c such that

|Im(αz)k/2f(αz)| < Ay−c if y = Im(z) > B.

Notice that these are conditions on |f |, rather than on f. Since SL2(Q) =

Γ (1)P by Lemma 2.2(iii), we can find a finite set X such that

(6.10) SL2(Q) =
⊔
ξ∈X

ΓξP, X ⊂ Γ (1).

Then we easily see that condition (6.9a) or (6.9b) is satisfied for every α ∈
SL2(Q) if it is satisfied for every α ∈ X. Also, if f satisfies (6.9a) or (6.9b),

so does jβ(z)
−kf(βz) for every β ∈ GL+

2 (Q).

Since |Im(αz)k/2f(αz)| is invariant under z �→ z+m with a positive integer

m and the set {x+ iy
∣∣ 0 ≤ x ≤ m, B′ ≤ y ≤ B} is compact for every B′ < B,

we easily see that changing A in (6.9a, b) suitably, we can replace B in (6.9a,

b) by an arbitrary positive number.

We will be considering a function f(z, s) of (z, s) ∈ H × D, also written

fs(z), with a domain D in C such that fs(z) for each fixed s as a function of

z satisfies (6.8) with the same Γ and k. If for every compact subset K of D,

fs satisfies condition (6.9a) for s ∈ K with A, B, and c depending only on

K and α, then we say that f is slowly increasing at every cusp locally

uniformly on D (or locally uniformly in s).

Lemma 6.4. (i) Let f be a holomorphic function on H belonging to Ck(Γ ).

Then f ∈M k if and only if f is slowly increasing at every cusp.

(ii) For f as in (i), f ∈ S k if and only if f is rapidly decreasing at every

cusp.

(iii) An element of M k(Γ ) is a cusp form if the constant term of the Fourier

expansion of jξ(z)
−kf(ξz) is 0 for every ξ in the set X of (6.10).

(iv) Let f be an element of Ck(Γ ) that is slowly increasing at every cusp.

Then there exist two positive constants A and c such that

|yk/2f(x+ iy)| ≤ A(yc + y−c) for every x+ iy ∈ H.
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(v) If an element f of Ck(Γ ) is rapidly decreasing at every cusp, then

|Im(z)k/2f(z)| is bounded on the whole H.

Proof. Given a holomorphic f satisfying (6.7), for α ∈ SL2(Q) put

g(z) = jα(z)
−kf(αz). Then g ◦ γ = ±g for every γ ∈ α−1Γα ∩ P. Now

(α−1Γα ∩ P ){±1}/{±1} is a cyclic group generated by an element of the

form

[
1 tα
0 1

]
with 0 < tα ∈ Q. Therefore g(z + 2tα) = g(z), and so g(z) =∑

m∈Z cα(m)e(mz/rα) with rα = 2tα and cα(m) ∈ C. Suppose f is slowly

increasing at every cusp. Then |g(z)| ≤ Ayc for y > B as in (6.9a). Put

q = e(z/rα) and h(q) =
∑

m∈Z cα(m)qm. Since |q| = exp(−2πy/rα), we see

that limq→0 qh(q) = 0, which means that cα(m) = 0 for m ≤ 0. Thus f

satisfies (3.4d), and so f ∈ Mk. Suppose f is rapidly decreasing at every

cusp. Then limq→0 h(q) = 0, and so cα(0) = 0. Thus f ∈ S k.

Conversely, given f ∈Mk, let jα(z)
−kf(αz)=

∑∞
m=0 cα(m)e(mz/rα) as in

(3.4d). Put q=e(z/rα). Then j−k
α f(αz)=h(q) with h(q)=

∑∞
m=0 cα(m)qm.

Since h is a holomorphic function for |q| < 1, there is a constant A such that

|h(q)| ≤ A for |q| < 1/2. Thus f is slowly increasing at every cusp. Next

suppose f ∈ S k; then cα(0) = 0, and so |h(q)| ≤ A′|q| for |q| < 1/2 with a

positive constant A′. Consequently, |Im(αz)k/2f(αz)| < Ayk/2 exp(−2πy/rα)
if y > B with a suitable B, and so f satisfies (6.9b). Assertion (iii) is clear.

To prove (iv), put

(6.10a) T =
{
x+ iy ∈ C

∣∣ |x| ≤ 1/2, y > 1/2
}
.

Since T contains a fundamental domain for Γ (1)\H, we can find a finite subset

E of Γ (1) such that

(6.10b) H =
⋃
ε∈E

ΓεT.

Then |Im(εz)k/2f(εz)| ≤ A · Im(z)c for every ε ∈ E and z ∈ T with some

A and c. Given z ∈ H, we can put z = γεw with some γ ∈ Γ, ε ∈ E, and

w ∈ T. Then |Im(z)k/2f(z)| = |Im(γεw)k/2f(γεw)| = |Im(εw)k/2f(εw)| ≤
A · Im(w)c. Let (γε)−1 =

[ ∗ ∗
r s

]
. If r = 0, then Im(w) = Im(z) since

(γε)−1 ∈ Γ (1) ∩ P. If r �= 0, then Im(w) = Im(z)|rz + s|−2 ≤ Im(z)−1. Thus

|Im(z)k/2f(z)| ≤ A
(
Im(z)c + Im(z)−c

)
, which proves (iv).

If f is as in (v), then |Im(εz)k/2f(εz)| < Ay−c for every ε ∈ E and z ∈ T

with some A and c > 0. Then we easily see that |Im(εz)k/2f(εz)| is bounded
on T. Since |Im(z)k/2f(z)| is a Γ -invariant function on H and H =

⋃
ε∈E ΓεT,

we obtain (v). This completes the proof.

6.5. Given f, g ∈ Ck(Γ ), we put

(6.11) 〈f, g〉 = μ(Φ)−1

∫
Φ

f̄ gykdz, Φ = Γ\H.
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The integral over Φ is formally meaningful, since f̄ gyk is Γ -invariant, as can

be seen from (6.3). We call 〈f, g〉 the inner product of f and g if the

integral is convergent, in which case we easily see that the quantity of (6.11)

is independent of the choice of Γ.

The integral is convergent if fg is rapidly decreasing at every cusp. Indeed,

by Lemma 6.4(v), |ykfg| is bounded on the whole H, which implies that the

integral of (6.11) is convergent, since
∫
Φ
y−2dxdy <∞. We easily see that

(6.12) 〈f‖k α, g‖k α〉 = 〈f, g〉
for every α ∈ SL2(Q). Here, if k /∈ Z, then we either assume that α ∈ PΓ θ,

or put f‖k α = κjα(z)
−kf(αz) with κ ∈ T and any choice of a branch of

jα(z)
−k. We also note an easy fact:

(6.12a) tk〈f(tz), g(tz)〉 = 〈f, g〉 if 0 < t ∈ Q.

Lemma 6.6. The inner product 〈f, g〉 is meaningful for every f, g ∈
M 1/2, even when neither f nor g is a cusp form.

Proof. In this proof we put k = 1/2. Take Γ ⊂ Γ (2) so that f, g ∈
M k(Γ ), and take T and E as in (6.10a, b). For each ε ∈ E put fε(z) =

jε(z)
−kf(εz) and gε(z) = jε(z)

−kg(εz) with any choice of a branch of jε(z)
−k.

Then fε, gε ∈M k by Lemma 5.4, and so by Lemma 6.2(i), |fεgε| ≤ Aε on T

with a constant Aε. Since Γ\H is covered by
⋃

ε∈E εT, we have∣∣〈f, g〉∣∣ ≤ ∑
ε∈E

∫
εT

|fg|ykdz =
∑
ε∈E

∫
T

(|fgyk| ◦ ε)dz.
Now |fgyk| ◦ ε = yk|fεgε| ≤ Aεy

k on T, and so∣∣〈f, g〉∣∣ ≤ ∑
ε∈E

Aε

∫
T

yk−2dxdy =
∑
ε∈E

Aε

∫ ∞

1/2

y−3/2dy <∞.

This proves our lemma.

6.7. We put y = Im(z) and view it as a real-valued function on H as we

have done in previous sections. For k ∈ R we define differential operators

ε, δk, and Lk acting on C∞ functions f on H by

(6.13a) εf = −y2∂f/∂z,
(6.13b) δkf = y−k(∂/∂z)(ykf) =

kf

2iy
+

∂f

∂z
,

(6.13c) Lk = 4δk−2ε = −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ 2iky

∂

∂z
= 4εδk − k,

and define also δpk for 0 ≤ p ∈ Z inductively by

(6.13d) δp+1
k = δk+2pδ

p
k, δ1k = δk, δ0k = 1.

For every α ∈ GL+
2 (R) these operators satisfy
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(6.14a) ε(f‖k α) = (εf)‖k−2 α,

(6.14b) δk(f‖k α) = (δkf)‖k+2 α,

(6.14c) δpk(f‖k α) = (δpkf)‖k+2p α,

(6.14d) Lk(f‖k α) = (Lkf)‖k α.
Here f‖k α for k /∈ Z can be defined by (f‖k α)(z) = jα(z)

−kf(αz) with any

choice of a branch of jα(z)
−k. Then we define (f‖k+2p α)(z) with jα(z)

−k−2p

= jα(z)
−kjα(z)

−2p for every p ∈ Z. From (6.13c) we easily obtain

(6.14e) Lk−2ε = ε(Lk − k + 2), Lk+2δk = δk(Lk + k).

To prove the above formulas, we first note that

(6.15)
∂

∂z
f(αz) =

∂f

∂z
(αz)jα(z)

−2,
∂

∂z̄
f(αz) =

∂f

∂z̄
(αz)jα(z)

−2
.

Employing (6.3) and (6.15), we have

δk
(
f‖k α

)
= y−k(∂/∂z)

(
ykj−k

α f(αz)
)
= y−k(∂/∂z)

(
y(αz)kjα

k
f(αz)

)
= y−kjα

k
(∂/∂z)

(
(ykf) ◦ α) = y−kjα

k
j−2
α {(∂/∂z)(ykf)}(αz)

= j−k−2
α y(αz)−k{(∂/∂z)(ykf)}(αz) = (δkf)‖k+2α,

which gives (6.14b). Formula (6.14a) can be proved in a similar way. Then

(6.14c) and (6.14d) follow immediately from (6.14a, b).

From (6.2) we easily see that y−2(dx2 + dy2) is a Riemannian metric on

H invariant under SL2(R). Therefore −L0 is exactly the Laplace-Beltrami

operator with respect to this metric.

Theorem 6.8. Let f ∈ Ck(Γ ) and h ∈ Ck−2(Γ ) with a congruence sub-

group Γ. Then

(6.16) 〈f, δk−2h〉 = 〈εf, h〉,
provided fh, f · δk−2h and (εf)h are rapidly decreasing at every cusp.

Proof. Replacing Γ by Γ ∩ Γ (4) if necessary, we may assume that Γ ⊂
Γ (4). Then Γ has no elements of finite order other than 1. Throughout the

proof, we put y = Im(z). For 0 < r ∈ R put

(6.17) Tr =
{
z ∈ H

∣∣ y > r
}
, Mr =

{
z ∈ H

∣∣ y = r
}
.

Take a finite subset X of Γ (1) as in (6.10). Then Γ\(Q ∪ {∞}) is repre-

sented by
{
ξ(∞)

∣∣ ξ ∈ X
}
. Put Qξ = ξ−1Γξ ∩ P for each ξ ∈ X. Then

ξQξξ
−1 =

{
γ ∈ Γ

∣∣ γξ(∞) = ξ(∞)
}
. Now Γ\(H∪Q∪ {∞}) can be viewed as

a compact Riemann surface. We can find a sufficiently large r such that the

set ξ(Qξ\Tr) for ξ ∈ X can be embedded in Γ\H without overlap. Let K be

the complement of
⋃

ξ∈X ξ(Qξ\Tr) in Γ\H. Then K is a compact manifold

with boundary, and



36 II. THETA FUNCTIONS AND FACTORS OF AUTOMORPHY

∂K =
∑
ξ∈X

ξ(Bξ), Bξ = Qξ\Mr.

Let ϕ be a Γ -invariant C∞ 1-form on H. Then∫
K

dϕ =

∫
∂K

ϕ =
∑
ξ∈X

∫
Bξ

ϕ ◦ ξ.

Given f and h as in our theorem, take ϕ = f̄hyk−2dz̄. Then

dϕ = (∂/∂z)(f̄hyk−2)dz ∧ dz̄

=
{
(∂f̄/∂z)hyk−2 + f̄(∂h/∂z)yk−2 + (−i/2)(k − 2)f̄hyk−3

}
dz ∧ dz̄.

Since dz ∧ dz̄ = −2idx ∧ dy and (∂f̄/∂z) = (∂f/∂z̄), we see that

(6.18) (2i)−1dϕ = εf · hyk−4dx ∧ dy − f̄ · (δk−2h)y
k−2dx ∧ dy.

Thus∫
K

εf · hyk−4dx ∧ dy −
∫
K

f̄ · (δk−2h)y
k−2dx ∧ dy = (2i)−1

∑
ξ∈X

∫
Bξ

ϕ ◦ ξ.

We now take the limit when r → ∞. By our assumption the left-hand side

converges to μ(Γ\H){〈 εf, h〉 − 〈f, δk−2h〉
}
. We have ϕ ◦ ξ = pξ(z)dz̄ with

pξ(z) = jξ(z)
−2

(f̄hyk−2) ◦ ξ. Notice that y|pξ(z)| = |f̄hyk−1| ◦ ξ. Now Qξ is

generated by a matrix of the form

[
1 tξ
0 1

]
with 0 < tξ ∈ Q, and so Qξ\Mr

can be identified with the line segment
{
x+ ir

∣∣ 0 ≤ x ≤ tξ
}
. Thus∣∣∣∣

∫
Bξ

ϕ ◦ ξ
∣∣∣∣ ≤

∫ tξ

0

∣∣pξ(x+ ir)
∣∣dx.

Suppose fh is rapidly decreasing at every cusp; then |pξ(x + iy)| ≤ Aξy
−c

with positive constants Aξ and c for sufficiently large y. Therefore we obtain

our theorem.

Corollary 6.9. (i) Let Γ be a congruence subgroup and let f ∈ S k. Then

〈f, δk−2h〉 = 0 for every h ∈ Ck−2(Γ ) such that both h and δk−2h are slowly

increasing at every cusp.

(ii) Let f ∈Ck(Γ ). Suppose both f and εf are rapidly decreasing at every

cusp and Lkf = 0. Then f ∈ S k.

(iii) Let f, g ∈Ck(Γ ). Then under a suitable condition (see the following

Proof) we have

(6.19) 〈f, Lkg〉 = 〈Lkf, g〉,
(6.20) 〈f, Lkf〉 ≥ 0.

Proof. Let f and h be as in (i). Then, by Lemma 6.4(ii), both fh and

fδk−2h are rapidly decreasing at every cusp. Since f is holomorphic, we have

εf = 0, and so 〈f, δk−2h〉 = 0 by (6.16). This proves (i). Next let f be as
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in (ii). Then δk−2εf = 4−1Lkf = 0, and so 〈εf, εf〉 = 〈f, δk−2εf〉 = 0 by

(6.16). Thus εf = 0, which means that f is holomorphic, and so f ∈ S k

by Lemma 6.4(ii). As for (iii), we have, by (6.16), 〈f, δk−2εg〉 = 〈εf, εg〉 =
〈δk−2εf, g〉, which gives (6.19). To justify the last sequence of equalities, we

need some conditions on f and g as stated in Theorem 6.8, which are often

easy to verify, and so we leave the precise statements to the reader. If we take

f = g, then 〈f, Lkf〉 = 4〈εf, εf〉 ≥ 0, which proves (6.20). This completes

the proof.

Remark. In Corollary 6.9(ii) the condition on εf is unnecessary. This

will be explained after the proof of Lemma 9.3.

Lemma 6.10. If f ∈ M k(Γ ), then δpkf for every p ∈ Z, ≥ 0, belongs

to Ck+2p(Γ ), and is slowly increasing at every cusp. Moreover, it is rapidly

decreasing at every cusp if f ∈ S k.

Proof. That δpkf ∈ Ck+2p(Γ ) follows from (6.14c). Let α ∈ Γ (1) and

g(z) = jα(z)
−kf(αz) =

∑
m∈Z cα(m)e(mz/rα) as in (3.4d). By (6.14c) we

have jα(z)
−k−2p(δpkf)(αz) = δpkg(z), and by induction on p we easily see

that δpkg =
∑p

ν=0 aνy
−ν(∂/∂z)p−νg with aν ∈ C, and so

δpkg(z) =

p∑
ν=0

aνy
−ν

∞∑
m=0

cα(m)(2πim/rα)
p−νe(mz/rα).

Since cα(m) = O(mk) by Lemma 6.2(iii), we can easily verify the inequality

of (6.9a) for δpkg. If f ∈ S k, then cα(0) = 0, and so δpkg satisfies (6.9b).

Thus we obtain our lemma.

6.11. We have been discussing modular forms as functions on H. Instead,

we can treat them as functions on SL2(R) or its covering. Let us explain the

idea in the case k ∈ Z for simplicity. Put K =
{
α ∈ SL2(R)

∣∣ tαα = 12
}
and

ρ(ξ) = jkξ (i)
−1 for ξ ∈ K. Then ρ is a continuous homomorphism of K into

T. Given f ∈ Ck(Γ ), define a function f̃ on SL2(R) by f̃(α) = (f‖k α)(i)
for α ∈ SL2(R). Then f̃(γα) = f̃(α) for every γ ∈ Γ and f̃(αξ) = ρ(ξ)f̃ (α)

for every ξ ∈ K. In this way we can associate with f a function on Γ\G
belonging to a representation ρ of K.

One consequence of this association is that the action of the differential

operators ε and δpk corresponds to that of some elements of the universal

enveloping algebra U of the Lie algebra of SL2(R). This approach gives a

certain conceptual perspective, and even clarifies some technical points, espe-

cially when we deal with higher-dimensional Lie groups and symmetric spaces.

In this book, however, we stay within the traditional framework of functions

on H. The reader who is interested in the higher-dimensional cases and also in

the Lie-theoretical treatment of this topic is referred to the author’s articles as

follows: the operators in the higher-dimensional cases are discussed in [S94],
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[S00, Sections 12 and A8], and [S04, Section A1]; the connection with U is

explained in [S90, Section 7], and [S02, vol. IV, pp. 739–740].

In particular, (6.16) formulated on a Lie group G can be given in the form

(6.21)

∫
Γ\G

Xf · h dμ = −
∫
Γ\G

f ·Xhdμ,

where X is an element of the Lie algebra of G. However, in almost all papers

and textbooks this is proved under the condition that f and h have compact

support, or under a similar strong condition, which makes its application

impractical. The fact under a much weaker condition is given in [S00, p. 287,

Lemma A8.3].



CHAPTER III

THE RATIONALITY AND EISENSTEIN SERIES

7. The rationality of modular forms

7.1. We employ the symbols Q and Qab defined in §0.1, which are the

algebraic closure of Q in C and the maximal abelian extension of Q in Q.

We also denote by Aut(C) the group of all ring-automorphisms of C, and for

σ ∈Aut(C) and x∈C we denote by xσ the image of x under σ. Thus, for

τ ∈Aut(C) the product στ is defined by xστ = (xσ)τ . These are consistent

with what we said in §0.4. Given two subfields K and L of a field M, we

denote by KL their composite, that is, the subfield of M generated by K and

L.

Putting H∗ = H ∪Q ∪ {∞}, we recall the basic fact that for a congruence

subgroup Γ of SL2(Q) the orbit space Γ\H∗ has a structure of compact

Riemann surface, which can naturally be viewed as an algebraic curve defined

over C; for this the reader is referred to [S71]. (In the present book we mean

by an algebraic curve a nonsingular projective curve.) We denote by A0(Γ )

the field of all Γ -invariant meromorphic functions on H which can be viewed

as meromorphic functions on the compact Riemann surface Γ\H∗, and put

(7.0) A0 =
∞⋃

N=1

A0

(
Γ (N)

)
.

If f ∈ A0, we can put

(7.1) f(z) =
∑

n0≤n∈Z
ane(nz/t)

with n0 ∈ Z, 0 < t ∈ Z and an ∈ C. For a subfield Φ of C we denote

by A0(Φ) the set of all f ∈ A0 such that an ∈ Φ for every n, and put

A0(Γ, Φ) = A0(Φ)∩A0(Γ ). If A0(Γ ) = CA0(Γ, Φ), then the curve Γ\H∗ has
a model over Φ. Now we have:

Theorem 7.2. (i) A0

(
Γ (N)

)
= CA0

(
Γ (N), Q

)
for every N ∈ Z, > 0.

(ii) Given σ ∈ Aut(C) and f ∈ A0 as in (7.1), there exists an element fσ

of A0 such that

(7.2) fσ(z) =
∑

n0≤n∈Z
aσne(nz/t).
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(iii) A0(Γ ) = CA0(Γ, Qab) for every congruence subgroup Γ of SL2(Q).

Proof. The first assertion is proved in [S71, Proposition 6.9]. To prove

(ii), let A denote the set of all formal infinite sums of the form (7.1). We

easily see that A is a field containing A0. For f ∈ A as in (7.1) and σ ∈
Aut(C) define fσ ∈ A by (7.2). Clearly f �→ fσ is an automorphism of

A. Let f ∈ A0

(
Γ (N)

)
. By (i) we can put f = (

∑
μ cμgμ)/(

∑
ν dνhν) with

finitely many elements cμ, dν ∈ C and gμ, hν ∈ A0

(
Γ (N), Q

)
. Viewing

this expression of f as an equality in A0 and applying σ to it, we obtain

fσ = (
∑

μ c
σ
μgμ)/(

∑
ν d

σ
νhν), since gσμ = gμ and hσ

ν = hν . This shows that

fσ ∈ A0, which proves (ii). As for (iii), a detailed discussion about the fields

of definition for Γ\H∗ is given in [S71, Section 6.7], which includes (iii); see

especially Propositions 6.27 and 6.30 of the book.

7.3. We next consider M k with 0 ≤ k ∈ 2−1Z and define fσ for f ∈M k.

In fact, we do this for a more general class of functions. Namely we consider

a weight k ≥ 0 and a function f on H such that

(7.3a) f(z) =
∑

0≤ξ∈Q

m∑
a=0

ca(ξ)(πy)
−ae(ξz), y = Im(z),

(7.3b) f‖k γ = f for every γ ∈ Γ,

where 0 ≤ m ∈ Z, ca(ξ) ∈ C, and Γ is a congruence subgroup of SL2(Q),

which is contained in Γ θ if k /∈ Z. One more condition:

(7.3c) For every α ∈ SL2(Q) the function jα(z)
−kf(αz) can be written in

the form (7.3a).

Since (7.3b) implies that f(z + t) = f(z) for some t ∈ Z, > 0, we have

ca(ξ) �= 0 in (7.3a) only for tξ ∈ Z. Then we denote by Nm
k (Γ ) the set of all

f satisfying (7.3a, b, c), and put

(7.3d) N m
k =

⋃∞
N=1 N m

k

(
Γ (2N)

)
, N k =

⋃∞
m=0 N m

k .

For a subfield Φ of C we denote by N m
k (Φ) the set of all f ∈ N m

k such that

ca(ξ) in (7.3a) belongs to Φ for every a and ξ; we then put N m
k (Γ, Φ) =

N m
k (Γ )∩N m

k (Φ). We also use these symbols with N k in place of N m
k , when

m is not specified, or rather N k is understood in the sense of (7.3d). Clearly

M k = N 0
k ; notice that (7.3c) implies (3.4d) if f ∈ M k. We call an element

of N k a nearly holomorphic modular form of weight k. If an element

of N k belongs to N k(Φ), then we call it Φ-rational. We put M k(Φ) =

M k ∩N k(Φ), M k(Γ, Φ) = M k(Γ ) ∩M k(Φ), S k(Φ) = S k ∩M k(Φ), and

S k(Γ, Φ) = S k(Γ ) ∩M k(Φ).

7.4. Let Γ be a congruence subgroup of Γ (1) such that CA0(Γ, Q) =

A0(Γ ). Then the curve Γ\H∗ has a Q-rational model V whose function-field
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over Q can be identified with A0(Γ, Q). We then denote by VC the algebraic

curve Γ\H∗ over C in which V is embedded. By a divisor on VC we mean

as usual a formal finite sum A =
∑

P∈VC
cPP with cP ∈ Z. We write A � A′

if A′ =
∑

P∈VC
c′PP and cP ≥ c′P for every P. We also consider a sum

B =
∑

P∈VC
dPP with dP ∈ Q; we call it a fractional divisor on VC. Given

a divisor A we put

(7.4) L(A) = {0} ∪ {
0 �= g ∈ A0(Γ, C)

∣∣ div(g) � −A}
,

(7.4a) L(A, Φ) = L(A) ∩A0(Γ, Φ),

where div(g) is a divisor of g and Φ is a subfield of C. It is well known that

if A is Φ-rational, then

(7.4b) L(A) = L(A, Φ)⊗Φ C.

By Theorem 7.2 we can take Γ (N) as Γ ; then we denote V by VN . Let

p be the natural projection map of VN onto V1. Then p is defined over Q,

since it corresponds to the injection A0(Γ (1), Q) → A0(Γ (N), Q). Let CN

be the divisor that is the sum of all inequivalent cusps of ΓN viewed as points

of (VN )C. Then C1 is the point on V1 represented by ∞, which is Q-rational.

We have p−1(C1) = μNCN with a positive integer μN , and so CN is a Q-

rational divisor on VN . Now, for 0 �= f ∈ M k(Γ (N)) with k ∈ Z we can

define the divisor of f, written div(f), as a fractional divisor on (VN )C; see

[S71, §2.4]. We can even define div(f) for f ∈ M k

(
Γ (N)

)
with N ∈ 2Z and

k /∈ Z. We merely put div(f) = (1/4)div(f4), which is well defined, since

f4 ∈M 4k

(
Γ (N)

)
as can be seen from Theorem 4.4(iii).

Theorem 7.5. Let k be a weight ≥ 0, and let X denote any of the three

symbols M , N , and S . For σ ∈ Aut(C) and f ∈ N k given by (7.3a) define

fσ as a formal infinite series by

(7.5) fσ(z) =
∑

0≤ξ∈Q

m∑
a=0

ca(ξ)
σ(πy)−ae(ξz).

Then the following assertions hold:

(i) We have Xk = Xk(Q) ⊗Q C, and consequently for every f ∈ Xk and

σ ∈ Aut(C) the series of (7.5) is convergent and defines an element of Xk.

(ii) For two positive integers M and N put

Γ (M, N) =
{
γ ∈ Γ (1)

∣∣ bγ ∈MZ, cγ ∈ NZ
}
.

(This is clearly a congruence subgroup of Γ (1).) Given a character ψ modulo

MN, assuming that M, N ∈ 2Z if k /∈ Z, put

(7.6) Xk(M, N ; ψ) =
{
f ∈Xk

∣∣ f‖k γ = ψ(dγ)f for every γ ∈ Γ (M, N)
}
.

Then (iia) Xk(M, N ; ψ)σ = Xk(M, N ; ψσ); (iib) Xk(M, N ; ψ) is spanned

by its Qab-rational elements.
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(iii) For every subfield Φ of C containing Qab, the set Xk(Φ) is stable under

f �→ (cαz + dα)
−kf(αz) for every α ∈ GL+

2 (Q).

(iv) Xk is spanned by Xk(M, N ; ψ) for all combinations of (M, N, ψ).

(v) If f(z) =
∑

ξ∈Q c(ξ)e(ξz) ∈M k, then the coefficients c(ξ) belong to a

field that is finitely generated over Q.

Proof. Before starting our proof, we note that Xk(M, N ; ψ) �= {0} only
if ψ(−1) = (−1)[k], since f‖k(−1) = (−1)[k]f. Now we prove the statements of

our theorem first for M k and S k. The case of N k will be treated in §7.9. We

take η and Δ of (5.12) and assume that 24|N. By Theorem 4.7(2) and (5.12a),

η2k ∈ M k

(
Γ (N), Q

)
for every weight k > 0. Clearly Δ has no zeros in H, and

so div(Δ) considered on V1 is C1. Since e(z/N) is the local parameter at∞ on

(VN )C and (VN )C is a Galois covering of (V1)C, we see that div(Δ) considered

on VN is NCN . Thus div(η) considered on VN is (N/24)CN . Suppose f ∈
M k

(
Γ (N)

)
. Put g = f/η2k and DN = (kN/12)CN . Then g ∈ A0

(
Γ (N)

)
and div(g) = div(f)−div(η2k) � −DN , and so g ∈ L(DN ). Conversely, given

g ∈ L(DN ), we easily see that gη2k ∈ M k

(
Γ (N)

)
. Moreover, f ∈ M k(Q)

if and only if g ∈ A0

(
Q), and so M k

(
Γ (N), Q

)
=

{
gη2k

∣∣ g ∈ L(DN , Q)
}
.

Thus from (7.4b) we obtain

(7.7) M k

(
Γ (N)

)
= M k

(
Γ (N), Q

)⊗Q C

for every weight k at least when 24|N. Therefore M k = M k(Q)⊗Q C, and

so every element f of M k is a sum f =
∑

a∈A aqa with a finite subset A of

C and qa ∈ M k(Q). Then for σ ∈ Aut(C) we see that fσ defined by (7.5)

equals
∑

a∈A aσqa, which belongs to M k. This proves (i) for M k. Also, if f

is as in (v), then the c(ξ) are contained in the field generated by all a ∈ A

over Q. This proves (v).

To discuss S k, we have to be careful about the contribution of cusps to

the divisor in question. To simplify the matter, put tα(z) = η(αz)/η(z) for

α ∈ Γ (1). Then tα(z)
2 = ζjα(z) with a root of unity ζ, tαβ(z) = tα(βz)tβ(z)

for α, β ∈ Γ (1), and by (5.12a), tα(z) = hα(z) if α ∈ Γ (24). Put

(7.7a) g|kα = tα(z)
−2kg(αz)

for a function g on H. Let f ∈ S k

(
Γ (N)

)
with N ∈ 24Z. Then for every

α ∈ Γ (1), we see that f |kα ∈ S k

(
Γ (N)

)
and f |kα =

∑∞
n=1 cα(n)e(nz/N)

with cα(n) ∈ C, and so we see that div(f) � CN , where div(f) is considered

on VN . The above argument about g = f/η2k with f restricted to S k

(
Γ (N)

)
shows that S k

(
Γ (N)

)
=

{
gη2k

∣∣ g ∈ L(DN − CN )
}

and S k

(
Γ (N), Q

)
={

gη2k
∣∣ g ∈ L(DN − CN , Q)

}
. Thus from (7.4b) we obtain

(7.7b) S k

(
Γ (N)

)
= S k

(
Γ (N), Q

)⊗Q C

if 24|N. This proves (i) for S k.
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As for (iii), we note that GL+
2 (Q) is generated by ι, P, and the elements

diag[e, 1] with 0 < e ∈ Q, by Lemma 2.2(iv) and (1.3). Thus it is sufficient

to prove (iii) for α of three such types. The cases with the latter two types

are easy. We also note that A0(Qab) is stable under ι. (In fact A0(Qab) is

stable under GL+
2 (Q); see [S71, Theorem 6.23].) Now let f ∈ M k(Qab).

Then f |k ι ∈ M k by Lemma 5.4, f/η2k ∈ A0(Qab), and (f |k ι)/(η2k|k ι) =

(f/η2k) ◦ ι ∈ A0(Qab). Since η2k|k ι = η2k, we see that f |kι ∈ M k(Qab).

Thus we obtain (iii) for M k. Since S k(Qab) = M k(Qab) ∩ S k and S k is

stable under f �→ f |k ι as noted at the end of §5.8, we obtain (iii) for S k.

To prove (iv), we observe that f �→ f ||kγ for γ ∈ Γ (N, N) for even

N defines an action of Γ (N, N)/Γ (N) on Xk

(
Γ (N)

)
with X = M or S .

(This is so even for N k, provided (iii) is established for N k.) Now the map

γ �→ aγ is a homomorphism of Γ (N, N) into (Z/NZ)× whose kernel is Γ (N),

and so Xk

(
Γ (N)

)
as a representation space of Γ (N, N)/Γ (N), or rather of

(Z/NZ)×, can be decomposed as the direct sum of Xk(N, N ; ψ) with the

characters ψ modulo N such that ψ(−1) = (−1)[k], from which we can easily

derive (iv). As for (ii), we first prove:

Lemma 7.6. (i) Given σ∈Aut(C), three positive integers M, N, K such

that K ∈MZ∩NZ, and γ ∈ Γ (M, N), there exists an element β ∈ Γ (M, N)

such that dβ − dγ ∈ KZ and fσ‖k γ = (f‖k β)σ for every f ∈ M k

(
Γ (K)

)
,

where we assume that both M and N are even if k /∈ Z.

(ii) For f ∈M k(M, N ; ψ)∩M k(Qab) with k /∈ Z and even M, N, define

fX by fX(z) = (−iNz)−kf
( − (Nz)−1

)
. Then fX ∈ M k(2, MN ; ψ̄ρ) ∩

M k(Qab), with ρ(d) =

(
N

d

)
, and for every σ ∈ Gal(Qab/Q) we have

(fσ)X =χ(s)σ(fX)σ, where χ(d) = ψ(d)

(−1
d

)[k]

and s is an integer prime

to MN such that e(1/MN)σ = e(s/MN).

Proof. We put G = GL2(Q) and define the adelization GA of G as usual;

see [S71, §6.4] or [S97, Section 8]. We also put Ga+ = GL+
2 (R) and define

subgroups GA+, U, and UN of GA by

(7.7c) GA+ =
{
x ∈ GA

∣∣ xa ∈ Ga+

}
, U = Ga+

∏
p GL2(Zp),

(7.7d) UN =
{
x ∈ U

∣∣xp − 1 ≺ NZp for every p
}
,

where xa resp. xp denotes the archimedean component resp. p-component of

x, and
∏

p is the product over all prime numbers p. Notice that Γ (1) =

SL2(Q) ∩ U and Γ (N) = SL2(Q) ∩ U(N). We can let GA+ act on A0(Qab)

as a group of automorphisms; see [S71, Theorem 6.23]. This action can be ex-

tended to the graded algebra
∑∞

k=0 Ak(Qab), where Ak(Qab) is the A0(Qab)-

linear span of M k(Qab). This is explained in [S07, Section A5]. Namely, there
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is an action of GA+ on
∑∞

k=0 Ak(Qab), written (x, f) �→ f [x] for x ∈ GA+

and f ∈ Ak(Qab), with the following properties:

(7.8a) The map f �→ f [x] gives a Q-linear map of Ak(Qab) onto itself.

(7.8b) (f [x])[y] = f [xy], (fg)[x] = f [x]g[x].

(7.8c) f [α] = (cαz + dα)
−kf(αz) if α ∈ GL+

2 (Q).

(7.8d) f [u] = f{t} if u = diag[1, t−1] with t ∈∏
p Z

×
p , where {t} is the image

of t under the canonical homomorphism of Q×A onto Gal(Qab/Q) and

f{t} is understood in the sense of (7.5).

(7.8e) For f, g ∈ Ak(Qab), g �= 0, we have f [x]/g[x] = (f/g)τ(x) with τ(x)

defined in [S71, §6.6].
(7.8f) Given f ∈ Ak(Qab), there exists M ∈ Z, > 0, such that f [v] = f for

every v ∈ UM .

(7.8g) If t ∈ ∏
p Z

×
p , s ∈ Z, 0 < N ∈ Z, and stp − 1 ∈ NZp for all prime

numbers p, then e(1/N){t} = e(s/N).

We put Ak

(
Γ (N), Qab

)
=

{
f ∈ Ak(Qab)

∣∣ f‖k γ = f for every γ ∈ Γ (N)
}

and prove

(7.9) f [w] = f for every f ∈ Ak

(
Γ (N), Qab

)
and w ∈ UN ∩ SL2(Q)A.

To prove this, given f ∈ M k

(
Γ (N), Qab

)
, take M as in (7.8f). We may

assume that N |M. Put WN = UN ∩ SL2(Q)A. By strong approximation (see

[S71, Lemma 6.15]), SL2(Q)A = WMSL2(Q), and so if w ∈ WN , then w =

yγ with y ∈ WM and γ ∈ SL2(Q). We see that γ ∈ UN ∩ SL2(Q) = Γ (N)

and f [y] = f by (7.8f). Thus f [w] = f [y][γ] = f [γ] = f‖k γ = f, which proves

(7.9).

In view of (7.7) it is sufficient to prove (i) of our lemma when f ∈M k

(
Γ (K),

Q
)
. Let σ ∈ Aut(C) and γ ∈ Γ (M, N).We can find t ∈ ∏

p Z
×
p such that σ =

{t} on Qab. Put u = diag[1, t−1]. Again by strong approximation, uγu−1 =

xβ with x ∈ WK and β ∈ SL2(Q). Then dβ − dγ ∈ KZ, β ∈ Γ (M, N), and

f [uγ] = f [xβu]. By (7.8c, d), f [uγ] = fσ‖k γ and by (7.9), f [xβu] = f [βu] =

(f‖k β)[u] = (f‖k β){t} = (f‖k β)σ. This proves (i) for integral k.

Suppose k /∈ Z and M, N ∈ 2Z; let f ∈ M k

(
Γ (K), Q

)
. Put m = k−1/2.

Then θ−1f ∈ Am

(
Γ (K), Q

)
, and the above argument with f replaced by

θ−1f shows that (θ−1f)σ‖m γ =
(
(θ−1f)‖m β

)σ
. We have (θ−1f)σ‖m γ =

(θ‖1/2 γ)−1(fσ‖k γ), (θ−1f)‖m β = (θ‖1/2 β)−1(f‖k β), and θ‖1/2 γ = θ‖1/2 β
= θ, and so we obtain our lemma when k /∈ Z. This completes the proof of

(i).

As for (ii), fX ∈ M k(Qab) by Theorem 7.5(iii). Now take t ∈ ∏
p Z

×
p and

s ∈ Z so that σ = {t} on Qab and stp − 1 ∈ MNZp for all prime num-

bers p. Then e(1/MN)σ = e(s/MN) by (7.8g). Put α =

[
0 −1
N 0

]
, u =
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diag[1, t−1], and v = diag[t−1, t]. Take γ ∈ Γ (1) so that γ− vp ≺MNZp for

all prime numbers p. Then αu = vuα. Put g = θ−2kf. Then g ∈ A0(Qab).

Since θ2k ∈ M k(2, 2; ϕ) with ϕ(d) =

(−1
d

)[k]

, we see that g ◦ ε = χ(dε)g

for every ε ∈ Γ (M, N), where χ = ψϕ. By (7.9), g ◦ γ = g[v], and so

(g◦α)σ = g[αu] = g[vuα] = (g◦γ)σ ◦α = χ(dγ)
σgσ ◦α = χ̄(s)σgσ ◦α. Now θ

(−
(Nz)−1

)
= (−iNz)1/2θ(Nz), and so (θ2k)X = θ2k(Nz). Since θσ = θ, we have[

(θ2k)X
]σ

=
[
(θ2k)σ

]X
. We have fX = (θ2k)Xg ◦α = θ2k(Nz)g ◦α. We easily

see that g ◦α ◦ δ = χ̄(dδ)g ◦α for every δ ∈ Γ (1, MN) and θ2k(Nz) belongs

to M k(2, N ; ϕρ) with ρ as in our lemma. Thus fX ∈ M k(2, MN ; ψ̄ρ), and

(fX)σ = (θ2k)X(g ◦α)σ = χ̄(s)σθ2k(Nz)gσ ◦α = χ̄(s)σ(fσ)X . This proves (ii)

and completes the proof.

7.7. We now prove Theorem 7.5(iia) for M k and S k. Put K = MN.

Given σ∈Aut(C), f ∈M k(M, N ; ψ), and γ ∈Γ (M, N). take β∈Γ (M, N)

as in Lemma 7.6. Then fσ‖k γ = (f‖kβ)σ = ψ(dβ)
σfσ = ψ(dγ)

σfσ, and so

fσ ∈ M k(M, N ; ψσ), which proves Theorem 7.5(iia) for M k. Then the case

of S k follows immediately. Theorem 7.5(iib) will be proven in §7.9.
To prove Theorem 7.5 for N k, we first put

(7.10) E2(z) =
1

8πy
− 1

24
+

∞∑
n=1

( ∑
0<d|n

d

)
e(nz),

(7.11) Dk = (2πi)−1δk, Dp
k = (2πi)−pδpk,

where δk and δpk are the differential operators defined in §6.7. Taking the

logarithmic derivative of the expression Δ(z) = e(z)
∏∞

n=1

(
1 − e(nz)

)24
, we

easily find that

(7.12) Δ−1D12Δ = −24E2.

Therefore by (6.14b), E2‖2γ = E2 for every γ ∈ Γ (1), and so from (7.10)

we see that E2 satisfies (7.3a, b, c) with Γ = Γ (1) and k = 2. Thus E2 ∈
N 1

2

(
Γ (1), Q

)
. Also, E2 is an Eisenstein series as will be shown in (8.14e).

Lemma 7.8. For every subfield Φ of C and every congruence subgroup

Γ of Γ (1), which is assumed to be contained in Γ θ if k /∈ 2Z, the following

assertions hold:

(i) The operator Dp
k sends N m

k (Γ, Φ) into N m+p
k+2p(Γ, Φ); in particular, it

sends M k(Γ, Φ) into N p
k+2p(Γ, Φ). Moreover, (Dp

kf)
σ = Dp

kf
σ for every σ ∈

Aut(C).

(ii) Every element f(z) of N k(Γ, Φ) can be written in the form

f(z) =
∑

0≤p≤k/2

Dp
k−2pgp +

{
cD

(k/2)−1
2 E2 if k ∈ 2Z,

0 if k /∈ 2Z
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with gp ∈ M k−2p(Γ, Φ) and c ∈ Φ.

(iii) N k = M k if k < 2.

Proof. Denote by At the set of all functions f of the form

(7.13) f(z) =
∑t

a=0(πy)
−afa(z)

with holomorphic functions fa on H. We note that

(7.14) Dp
k(πy)

−a = c(πy)−a−p with c ∈ Q× if k > a > 0,

which can easily be verified. From the definition of Dk and (6.14b), we easily

see that (i) is true if p = 1. Then the general case can be proved by induction

on p. To prove (iii), suppose f of (7.13) belongs to N k(Γ, Φ); suppose also

k ∈ Z for the moment. For γ ∈ SL2(Q) we have (y ◦ γ)−a = |jγ |2ay−a and

jγ = jγ − 2icγy, and so

(7.15) f‖k γ =

t∑
a=0

(πy)−aja−k
γ (jγ − 2icγy)

a(fa ◦ γ),

which can be written
∑t

a=0(πy)
−agaγ with holomorphic functions gaγ . View-

ing this as a polynomial in y−1 and comparing the coefficients of y−t, we

obtain gtγ = j2t−k
γ (ft ◦ γ), that is, gtγ = ft‖k−2tγ, because the function

y−1 is an algebraically independent variable over the field of meromorphic

functions on H. In particular, gtγ = ft if γ ∈ Γ, and so ft‖k−2tγ = ft for

γ ∈ Γ. By condition (7.3c), gtγ has a Fourier expansion finite at ∞ for every

γ ∈ SL2(Q). This shows that ft ∈M k−2t(Γ ). Therefore, if t > 0 and ft �= 0,

then k ≥ 2t. Consequently, t = 0 if k < 2, which proves (iii).

We prove (ii) for f ∈ N t
k(Γ, Φ) as above with ft �= 0 by induction on t. We

have seen that ft ∈M k−2t(Γ ). This combined with the definition of N t
k(Γ, Φ)

shows that ft ∈ M k−2t(Γ, Φ). Suppose k = 2t; then ft ∈ M 0(Γ, Φ) = Φ.

From (7.14) we see that Dt−1
2 E2 = b(πy)−t + q with b ∈ Q× and q ∈ At−1.

Put p = f − (ft/b)D
t−1
2 E2. Then p ∈ N t−1

k (Γ, Φ). In particular, if k = 2,

then p ∈ N 2(Γ, Φ)∩A0 = M 2(Γ, Φ), which settles the problem. If k > 2, we

apply induction to p. Thus we obtain (ii) when k = 2t. It remains to consider

the case k > 2t > 0. Then ft ∈ M k−2t(Γ, Φ), and by (7.14) we see that

Dt
k−2tft = c(πy)−tft+r with c ∈ Q× and r ∈ At−1. Put g = f−c−1Dt

k−2tft.

Then g ∈ N t−1
k (Γ, Φ), and applying induction to g, we can complete the

proof of (ii).

So far we have assumed k ∈ Z. The case k /∈ Z can be proved in the same

way; we have only to make the meaning of f‖k α or j−k
γ precise, which can

easily be done. Our proof is now complete.

7.9. We now return to Theorem 7.5 and prove the assertions concerning

N k. Given σ ∈ Aut(C) and f as in (7.3a), define fσ formally by (7.5).

Clearly Eσ
2 = E2. Also, we can easily verify that (Dkf)

σ = Dkf
σ for every
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f ∈ N k, and so (Dp
kf)

σ = Dp
kf

σ for every p. Since Theorem 7.5(i) for M k

was proved, from Lemma 7.8(ii) we obtain Theorem 7.5(i) for N k. As for

(iii), it is sufficient to prove it for α = diag[e, 1] with 0 < e ∈ Q, α ∈ P, and

α ∈ Γ (1). The first two cases are clear. If α ∈ Γ (1), we have E2‖2 α = E2,

and so the desired result follows from Lemma 7.8(ii), (6.14c), and Theorem

7.5(iii) for M k.

To prove Theorem 7.5(iia) for N k, we consider the sum expression for f as

in Lemma 7.8(ii), and take γ and β in Γ (M, N) as in the first paragraph of

§7.7. Since they are independent of the weight k, we have (Dp
k−2pgp)

σ‖k γ =

(Dp
k−2pg

σ
p )‖k γ = Dp

k−2p(g
σ
p ‖k−2p γ) = Dp

k−2p(gp‖k−2p β)
σ by (6.14c); sim-

ilarly (D
(k/2)−1
2 E2)

σ‖k γ = D
(k/2)−1
2 (E2‖2 β)σ, and so fσ‖k γ = (f‖k β)σ,

from which we obtain Theorem 7.5(iia) for N k. Theorem 7.5(iv) for N k was

proved in the paragraph above Lemma 7.6.

It remains to prove Theorem 7.5(iib). From Lemma 7.8(ii) and (7.7) we

obtain

(7.16) N k

(
Γ (N)

)
= N k

(
Γ (N), Q

)⊗Q C if 24|N.

We apply Lemma 2.11 to the present setting with Xk

(
Γ (N0), Qab

)
,Qab, and

C as V, F, and K in that lemma, where N0 = 24MN ; we also take {α̃}
there to be the set of the maps f �→ f‖kγ − ψ(dγ)f for all γ ∈ Γ (M, N).

Then W = V ⊗F K = Xk

(
Γ (N0)

)
by (7.7), (7.7b), and (7.16). By The-

orem 7.5(iii) that is already proved, V is stable under these maps. Then⋂
α∈A Ker(α̃) = Xk(M, N ; ψ) and

⋂
α∈A Ker(α) = Xk(M, N ; ψ)∩Xk(Qab).

Therefore Lemma 2.11 gives Theorem 7.5(iib), and the proof of Theorem 7.5

is now complete.

We add here two remarks. First, in (5.14) we defined fρ for f ∈ M k.

If we mean by ρ the complex conjugation in C, then this coincides with fρ

defined by (7.5). However, we employ fρ in addition to fρ for some notational

reasons.

Next, we assumed 24|N in (7.7) and (7.7b) merely for expediency. In fact,

we can prove better and more comprehensive results as follows.

Theorem 7.10. Let X denote M , S , or N as in Theorem 7.5 and let

k ∈ 2−1Z, > 0. Then the following assertions hold.

(i) For every congruence subgroup Γ of Γ (1) the set Xk(Γ ) is spanned by

its Qab-rational elements, provided Γ ⊂ Γ θ if k /∈ Z.

(ii) Let Γ denote any one of the groups Γ0(N), Γ1(N), Γ (M, N), and

Γ (N) with positive integers M and N, where Γ0(N) =
{
γ ∈ Γ (1)

∣∣ cγ ∈ NZ
}

and Γ1(N) =
{
γ ∈ Γ0(N)

∣∣ dγ − 1 ∈ NZ
}
. Then Xk(Γ ) = Xk(Γ, Q) ⊗Q C,

provided Γ ⊂ Γ θ if k /∈ Z.

Proof. To prove (i), take a multiple N0 of 24 so that Γ (N0) ⊂ Γ. We then
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apply Lemma 2.11 to the present setting by taking Xk

(
Γ (N0), Qab

)
, Qab,

and C to be V, F, and K in that lemma. We also take {α̃} there to be the set

of the maps f �→ f‖kγ − f for all γ ∈ Γ. Then W = V ⊗F K = Xk

(
Γ (N0)

)
by (7.7), (7.7b), and (7.16). By Theorem 7.5(iii), V is stable under these

maps. Then
⋂

α∈AKer(α̃) = Xk(Γ ) and
⋂

α∈A Ker(α) = Xk(Γ, Qab), and so

we obtain (i) from Lemma 2.11.

Given Γ as in (ii), we note

(7.17) Xk(Γ )σ = Xk(Γ ) for every σ ∈ Aut(C).

This is included in Theorem 7.5(iia) if Γ is Γ0(N) or Γ (M, N), because

Xk

(
Γ0(N)

)
= Xk(1, N ; χ0

)
and Xk

(
Γ (M, N)

)
= Xk(M, N ; χ0

)
, where

χ0 is the trivial character. Now, as shown in the proof of Theorem 7.5(iv),

Xk

(
Γ (N)

)
is the sum of Xk(N, N ; ψ) for all characters ψ of (Z/NZ)× such

that ψ(−1) = (−1)[k], and so (7.17) for Γ = Γ (N) follows from Theorem

7.5(iia). Also, (7.17) for X = N follows from Lemma 7.8(ii) combined with

(7.17) for X = M . Therefore we have only to prove (7.17) for X = M or S

when Γ = Γ1(N). Clearly

M k

(
Γ1(N)

)
=

{
f ∈M k

(
Γ (N)

) ∣∣ f‖kγ = f for every γ ∈ Γ1(N)
}
.

Let f ∈ M k

(
Γ1(N)

)
, γ ∈ Γ1(N), and σ ∈ Aut(C). Taking M = 1 and

N = K in Lemma 7.6(i), we have fσ‖kγ = (f‖kβ)σ with some β ∈ Γ1(N).

Then we find that fσ‖kγ = fσ, and so fσ ∈ M k

(
Γ1(N)

)
, which proves (7.17)

when Xk(Γ ) = M k

(
Γ1(N)

)
. The case of S k follows from this immediately,

since S σ
k = S k.

To prove (ii), in view of (i), it is sufficient to show that Xk(Γ, Qab) is

spanned by its Q-rational elements. Take a Qab-basis B of Xk(Γ, Qab). By

Theorem 7.5(v) and Lemma 7.8(ii) we can find a finite extension K of Q

contained in Qab such that every member of B is K-rational. By (7.17),

Xk(Γ, K)σ = Xk(Γ, K) for every σ ∈ Gal(K/Q). Therefore Xk(Γ, K) =

Xk(Γ, Q)⊗Q K by Lemma 2.13. This proves (ii) and completes the proof.

Lemma 7.11. Every element of N k is slowly increasing at every cusp.

Proof. Given f ∈ N k, take the expression for f as in Lemma 7.8(ii).

By Lemma 6.10, Dp
k−2pgp is slowly increasing at every cusp. Now take E2 in

place of g in the proof of Lemma 6.10. Then from the expression (7.10) we

easily see that δp2E2 is slowly increasing at every cusp, and so we obtain our

lemma.

Lemma 7.12. Given 0 < t ∈ Q, put θt(z, λ) = θ(0, tz; λ) with θ(u, z; λ)

as in (4.48b). Then for α ∈ Sp(n, Q) and r(z) = jα(z)
1/2 there exists an

element μ of L (Qn) such that θt(αz, λ) = r(z)θt(z, μ). Moreover, if λ is

Qab-valued, then so is μ.
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Proof. Put β=diag[t1n, 1n]α·diag[t1n, 1n]−1. Then β∈Sp(n, Q), t·α(z)
= β(tz), jβ(tz) = jα(z), and θt(αz, λ) = θ(0, β(tz); λ) = r(z)θ(0, tz; μ) with

μ ∈ L (Qn) determined for λ and β by (4.49g). This proves the first part

of our lemma. Suppose λ is Qab-valued; then θt(z, λ) ∈M 1/2(Qab), and so

θt(z, μ) belongs to M 1/2(Qab) by Theorem 7.5(iii). This completes the proof

when n = 1, since the quoted theorem concerns only that case. However, a

similar fact is true in the case n > 1 too, as proved in [S00, Theorem 7.11].

We will later employ this lemma only in the case n = 1.

Lemma 7.13. (i) Let f(z) =
∑∞

n=0 ane(nz/ν) ∈ M k(ν, N/ν; ψ), where

0 < N ∈ Z, ν = 1 if k ∈ Z, and ν = 2 if k /∈ Z; we assume N ∈ 4Z if

k /∈ Z. Let s be the conductor of ψ. Given a character χ modulo rt, where

0 < t ∈ Z and r is the conductor of χ, put g(z) =
∑∞

n=0 χ(n)ane(nz/ν). Let

t0 be the product of all the prime factors of t. Then g ∈M k(ν, M/ν; χ2ψ),

where M is the least common multiple of N, t20, r
2, and rs.

(ii) Given f as in (i), put h(z) =
∑

(n,t)=1 ane(nz/ν) with a positive

integer t. Define t0 as in (i). Then h ∈M k(ν, M/ν; ψ), where M is the least

common multiple of N and t20.

Proof. We first prove (i) when χ is primitive, that is, when t = 1.

For u ∈ Z let ξ(u) =

[
1 νu/r
0 1

]
. Using (2.3a), we easily see that G(χ̄)g =

∑r
u=1 χ̄(u)f‖kξ(u). Let γ=

[
a bν

Mc/ν d

]
∈Γ (ν, M/ν) and γ′=

[
a′ b′ν

Mc/ν d′

]
with a′ = a + Mcu/r, b′ = b + du(1 − ad)/r − cd2u2M/r2, and d′ = d −
cd2uM/r. Then γ′ ∈ Γ (ν, M/ν), d′ − d ∈ sZ, and ξ(u)γ = γ′ξ(d2u). Assum-

ing that k ∈ Z for the moment, we have

(∗) f‖kξ(u)γ = f‖kγ′ξ(d2u) = ψ(d)f‖kξ(d2u),
and so

G(χ̄)g‖kγ =

r∑
u=1

χ̄(u)f‖kξ(u)γ = ψ(d)

r∑
u=1

χ̄(u)f‖kξ(d2u) = ψ(d)χ(d2)G(χ̄)g,

which proves (i) when k ∈ Z and t = 1.

If k /∈ Z, we have to justify (∗) by checking (4.40) for hγ and hγ′ . First

suppose r is odd; then M = 4r2q with q ∈ Z, and so d − d′ ∈ 4qcZ. Thus

εd = εd′ and

(
Mc

d

)
=

(
4qc

d

)
=

(
4qc

d′

)
=

(
Mc

d′

)
, from which we obtain

(∗). Next suppose r is even; then r = 2αr1 with α > 1 and an odd r1. Thus

M = 22αr21q with q ∈ Z and d− d′ ∈ 4qcZ, and so we obtain (∗) in this case

too. This completes the proof of (i) when t = 1.

We next prove (ii). Taking the prime decomposition of t, we can reduce the

problem to the case where t is a prime number. Assuming this to be so, put

�(z) =
∑∞

n=0 atne(tnz/ν) and η(u) =

[
1 νu/t
0 1

]
. Then

∑t
u=1 f‖kη(u) = t�.
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Define the matrices γ and γ′ in the above proof of (i) with t in place of r

and M defined as in (ii). Then γ, γ′ ∈ Γ (ν, M/ν), η(u)γ = γ′η(d2u), and
we find that f‖kη(u)γ = f‖kγ′η(d2u) = ψ(d)f‖kη(d2u). Since d is prime to

t, we easily see that t�‖kγ = ψ(d)t�, and so � ∈ M k(ν, M/ν; ψ). We have

clearly h = f − �, from which we obtain (ii).

Finally to prove (i) in the general case, we have only to observe that it can

be obtained by combining (ii) and the special case of (i) in which t = 1. This

completes the proof.

In the proof of Lemma 5.5 we proved (5.8) only when ψ is primitive. That

result combined with Lemma 7.3(ii) settles the case of imprimitive ψ.

Lemma 7.14. For f(z) =
∑∞

n=0 c(n)e(nz/N) ∈ M k

(
Γ (N)

)
with N ∈

νZ, put (Pf)(z) = (ν/N)
∑N/ν

u=1 f(z + νu), where ν is as in Lemma 7.13.

Then (Pf)(z) =
∑∞

n=0 c(Nn/ν)e(nz/ν), and 〈Pf, h〉 = 〈f, Ph〉 for every

h ∈ S k

(
Γ (N)

)
. Moreover, if f ∈M k(N, N ; ψ), then Pf ∈ M k(ν, N ; ψ).

Proof. The first equality for (Pf)(z) is easy. Next, for h ∈ S k

(
Γ (N)

)
we have, by (6.12),

〈Pf, h〉 = (ν/N)

〈N/ν∑
u=1

f(z+ νu), h

〉
= (ν/N)

〈
f,

N/ν∑
u=1

h(z− νu)

〉
= 〈f, Ph〉.

Suppose f ∈ M k(N, N ; ψ). Given γ =

[
a bν
Nc d

]
∈ Γ (N, N) define γ′ =[

a′ b′ν
Nc d′

]
as in the proof of Lemma 7.13 with r = 1 and M = νN. Then

we see that γ′ ∈ Γ (N, N), d − d′ ∈ νcNZ, and (∗) in the proof holds with

ξ(u) =

[
1 νu
0 1

]
, and so

(Pf)‖kγ = (ν/N)

N/ν∑
u=1

f‖kξ(u)γ = ψ(d)(ν/N)

N/ν∑
u=1

f‖kξ(d2u) = ψ(d)Pf.

Now (Pf)(z + ν) = Pf, and Γ (ν, N) can be generated by Γ (N, N) and

ξ(1), as will be proven in Lemma 8.18. Therefore Pf ∈ M k(ν, N ; ψ), which

completes the proof.

Lemma 7.15. Let K be a multiple of N, and A a complete set of repre-

sentatives for Γ (N)/Γ (K); suppose N ∈ 2Z if k /∈ Z. For f ∈ M k

(
Γ (K)

)
put q(f) = #(A)−1

∑
γ∈A f‖k γ. Then q(f) ∈ M k

(
Γ (N)

)
, q(f)σ = q(fσ)

for every σ ∈ Aut(C), and 〈f, h〉 = 〈q(f), h〉 for every h ∈ S k

(
Γ (N)

)
.

Proof. That q(f) ∈ M k

(
Γ (N)

)
is easy. For h ∈ S k

(
Γ (N)

)
we have,

by (6.12),

〈q(f), h〉 = #(A)−1

〈 ∑
γ∈A

f‖kγ, h
〉

= #(A)−1

〈
f,

∑
γ∈A

h‖kγ−1

〉
= 〈f, h〉.
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Let σ ∈ Aut(C). Then the proof of Lemma 7.6(i) shows that the element β

there can be chosen so that γ �→ β gives an automorphism of Γ (N)/Γ (K).

Writing βγ for β, we obtain q(fσ) = #(A)−1
∑

γ∈A fσ‖kγ = #(A)−1
∑

γ∈A
(f‖kβγ)

σ = q(f)σ. This completes the proof.

8. Dirichlet series and Eisenstein series

8.1. We are going to consider various types of Dirichlet series associated

with modular forms. In order to study their analytic properties, the gamma

function Γ (s) is essential, and so we first recall its basic properties:

(8.1a) Γ (s) is a meromorphic function on the whole C.

(8.1b) Γ (s)−1 is an entire function.

(8.1c) Γ (s+ 1) = sΓ (s).

(8.1d) The set of poles of Γ consists of 0 and all negative integers, and each

pole is of order 1.

(8.1e) Γ (n) = (n− 1)! if 0 < n ∈ Z.

These are well known. We will often be using

(8.2) Γ (s)a−s =

∫ ∞

0

e−atts−1dt if a ∈ C, Re(a) > 0, and Re(s) > 0.

Here a−s = exp(−s log a) with the standard branch of log a for Re(a) >

0. Indeed, the formula is well known for 0 < a ∈ R. Now the integral is

meaningful for Re(a) > 0, and defines a holomorphic function of a. Since it

coincides with Γ (s)a−s for 0 < a ∈ R, we obtain (8.2) as stated.

Given f(z) =
∑

ξ∈Q aξe(ξz) ∈ M k with an integral or a half-integral

weight k, we put, ignoring a0,

(8.3) D(s, f) =
∑
ξ>0

aξξ
−s,

(8.4) R(s, f) = (2π)−sΓ (s)D(s, f).

We can put f(z) =
∑∞

m=0 cme(mz/N) as in Lemma 6.2. Then D(s, f) =

Ns
∑∞

m=1 cmm−s, and so from (ii) of the same lemma, we see that the right-

hand side of (8.3) is convergent for Re(s) > k+1, and so D(s, f) is holomor-

phic for such s.

For z = iy with 0 < y ∈ R we have f(iy)− a0 =
∑

ξ>0 aξe
−2πξy, and so

in view of (8.2) we obtain

(8.5)

∫ ∞

0

[
f(iy)− a0

]
ys−1dy =(2π)−sΓ (s)

∑
ξ>0

aξξ
−s = R(s, f)

for Re(s) > k + 1. Termwise integration is justified, since the series for such

s is absolutely convergent. Fixing a positive integer N, put
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(8.6) f#(z) = N−k/2(−iz)−kf
(− (Nz)−1

)
,

where the branch of (−iz)−k is taken so that it is real and positive if z ∈
H∩iR. By Lemma 5.4, f# ∈ M k, and so we can put f#(z) =

∑
ξ∈Q bξe(ξz).

Thus D(s, f#) and R(s, f#) are meaningful.

Theorem 8.2. In the above setting R(s, f) and R(s, f#) can be continued

as meromorphic functions to the whole s-plane with the following properties:

(8.7a) Ns/2R(s, f) = −a0
s

+
b0

s− k
+ an entire function,

(8.7b) R(k − s, f) = Ns−k/2R(s, f#).

In particular, R(s, f) is an entire function if a0 = b0 = 0.

This is a standard theorem first proved by Hecke in a somewhat different

formulation. For the proof, see [S07, Theorem 3.2].

8.3. For a Dirichlet character ψ and a positive integer N we put, as we

did in §2.9,
(8.8) LN (s, ψ) =

∑
(n,N)=1

ψ(n)n−s,

where the sum is extended over the positive integers n prime to N. If ψ is

primitive, then L1(s, ψ) is the L-function of ψ, and is usually denoted by

L(s, ψ). Let χ be the primitive character associated with ψ. Then

(8.9) LN(s, ψ) = L(s, χ)
∏
p|N

(
1− χ(p)p−s

)
.

Thus the analytic properties of LN(s, ψ) can be reduced to those of L(s, χ),

which can be summarized as follows. Let r be the conductor of χ and let

χ(−1) = (−1)ν with ν = 0 or 1. Put

(8.10) R(s, χ) = (r/π)(s+ν)/2Γ
(
(s+ ν)/2

)
L(s, χ).

Then R(s, χ) as a meromorphic function of s can be continued to the whole

C, and satisfies the functional equation

(8.10a) R(s, χ) = W (χ)R(1 − s, χ) with W (χ) = i−νr−1/2G(χ),

where G(χ) is defined by (2.3). Notice that |W (χ)| = 1 because of (2.3c).

Moreover, R(s, χ) is entire except when χ is the principal character, in which

case it is holomorphic on C except for simple poles at s = 0 and 1, with

residues 1 and −1 respectively.

These are well known, and in fact, can be obtained from Theorem 8.2 by

taking f to be θψ of (5.7). For simplicity we treat here the case of nontrivial

χ. (If χ is the principal character, then L(s, χ) = ζ(s), and its functional

equation is well known.)
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The notation being as in Lemma 5.5, put f(z) = θψ(z/r), f
∗(z) = θψ̄(z/r),

α =

[
0 −r−1

r 0

]
, and ω = ψ(−1)r−1/2G(ψ). Since jkα(z) = rkjkι (z), we have

f(−1/z)r−kjkι (z/r)
−1 = θψ(−1/rz)jkα(z/r)−1 = (θψ‖kα)(z/r). By (5.9) this

can be written

(8.10b) f(−1/z)z−ν(−iz)−1/2 = ωf∗(z).

Take N = 1 in (8.6). Then the left-hand side of (8.10b) is i−νf#. Thus f# =

iνωf∗ = W (ψ)f∗ with W (ψ) of (8.10a). We see that R(s, f) = (2π)−sΓ (s)

·∑∞
n=1 ψ(n)n

ν(n2/2r)−s = (r/π)sΓ (s)
∑∞

n=1 ψ(n)n
ν−2s, and so

(8.10c) R
(
(s+ ν)/2, f

)
= R(s, ψ).

By (8.7b) we have R(k − s, f) = R(s, f#) = W (ψ)R(s, f∗). Substituting
(s+ ν)/2 for k − s, we obtain (8.10a) with ψ in place of χ.

We add here a formula that will be needed in Section A3. In [S07, p. 20] it

was shown that

R(k − s, f) =

∫ ∞

1

f(iy)yk−s−1dy +

∫ ∞

1

f#(iy)ys−1dy,

and so

(8.10d) R(s, ψ) =

∫ ∞

1

f(iy)y(s+ν−2)/2dy +W (ψ)

∫ ∞

1

f∗(iy)y(ν−1−s)/2dy.

We have f(iy) =
∑∞

n=1 ψ(n)n
ν exp(−πn2y/r) and f∗(iy) is the series of the

same type with ψ̄ in place of ψ.

8.4. There are two types of Eisenstein series with respect to SL2(Q). The

first type can be defined for both integral and half-integral weights, but the

second type can be defined only for integral weights. There is also the question

whether the series involves a complex variable, which is usually denoted by s.

In this book we first define the series with s, and specialize s to an element

of 2−1Z. We begin our discussion with two easy lemmas:

Lemma 8.5. + The series
∑

0�=(m,n)∈Z2 |mz+n|−σ with a fixed z ∈ C, /∈
R, is convergent for 2 < σ ∈ R.

Proof. Let L = Zz+Z. For 0 < n ∈ Z let Qn be the parallelogram on the

plane C whose vertices are ±(nz + n) and ±(nz − n). Then there are exactly

8n points of L lying on the sides of Qn. Take r ∈ R, > 0, so that the circle

|z| = r is inside Q1. Then |ξ| ≥ nr for any ξ of such 8n points, and so for

σ > 0 we have
∑

0�=ξ∈L |ξ|−σ ≤∑∞
n=1 8n(nr)

−σ = 8r−σ
∑∞

n=1 n
1−σ, which is

convergent for σ > 2 as expected.

8.6. For two positive integers M and N we put (as we did in Theorem 7.5)

(8.11) Γ (M, N) =
{
γ ∈ Γ (1)

∣∣ bγ ∈MZ, cγ ∈ NZ
}
.

We also put
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(8.11a) Γ0(N) = Γ (1, N), Γ1(N) =
{
γ ∈ Γ0(N)

∣∣ aγ − 1 ∈ NZ
}
.

These are traditional. Notice that the condition aγ − 1 ∈ NZ is equivalent

to dγ − 1 ∈ NZ. For a character ψ modulo MN we put

(8.11b) M k(M, N ; ψ)=
{
f ∈M k

∣∣ f‖k γ=ψ(dγ)f for every γ∈Γ (M, N)
}
,

(8.11c) S k(M, N ; ψ) = S k ∩M k(M, N ; ψ),

(8.11d) M k(N, ψ) = M k(1, N ; ψ), S k(N, ψ) = S k(1, N ; ψ),

where we assume that M, N ∈ 2Z if k /∈ Z. In fact, (8.11b) and (8.11c) are

included in (7.6). Since f‖k(−1) = (−1)[k]f, we have M k(M, N ; ψ) = {0}
if ψ(−1) �= (−1)[k]. Observing that γ �→ aγ (mod N) gives an isomor-

phism of Γ0(N)/Γ1(N) onto (Z/NZ)× (if N > 1), we see that M k

(
Γ1(N)

)
resp. S k

(
Γ1(N)

)
is the direct sum of M k(N, ψ) resp. S k(N, ψ) for all char-

acters ψ modulo N.

For two characters ψ and χ modulo N we have

(8.11e)
〈
M k(N, ψ), S k(N, χ)

〉
= 0 if χ �= ψ.

This can be seen by taking α of (6.12) to be an element γ of Γ0(N) such

that ψ(dγ) �= χ(dγ).

Lemma 8.7. Put Γ = Γ (M, N) and Γ∞ = Γ ∩ P with fixed M and N ;

put also

WM
N =

{{
(c, d) ∈ NZ× Z

∣∣McZ+ dZ = Z, d > 0
}

if MN > 1,

{(1, 0)} ∪ {
(c, d) ∈ Z× Z

∣∣ cZ+ dZ = Z, d > 0
}

if MN = 1.

Then each coset Γ∞α in Γ∞\Γ contains an element γ such that (cγ , dγ) ∈
WM

N , and the map Γ∞α �→ (cγ , dγ) with such a γ gives a bijection of Γ∞\Γ
onto WM

N .

Proof. Since Γ∞=
{
γ∈Γ ∣∣ (0, 1)γ=±(0, 1)} and Γ∞ is generated by −1

and

[
1 M
0 1

]
, we easily see that the map from Γ∞\Γ to WM

N can be defined

as described above and that it is injective. Conversely, let (c, d) ∈ WM
N with

MN > 1. Then d is prime to Mc, and so we can find a, b ∈ Z such that

ad −Mbc=1. Put γ =

[
a bM
c d

]
. Then γ ∈ Γ and our map sends Γ∞γ to

(c, d), which proves our lemma when MN>1. The case MN=1 requires only

an additional observation that (1, 0) corresponds to Γ∞ι.

8.8. The first type of Eisenstein series is defined for any weight k and

a congruence subgroup Γ = Γ (M, N) with some M and N ; we assume that

M ∈ 2Z and N ∈ 2Z if k /∈ Z. We put Γ∞ = P ∩ Γ and

(8.12) Ek(z, s) = Ek(z, s; Γ, ψ) =
∑

γ∈Γ∞\Γ
ψ(dγ)y

s‖k γ,

or more explicitly,
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(8.12a) Ek(z, s; Γ, ψ) = ys
∑

γ∈Γ∞\Γ
ψ(dγ)j

k
γ (z)

−1|jγ(z)|−2s.

Here z ∈ H, s ∈ C, y = Im(z), ψ is a character modulo MN such that

ψ(−1) = (−1)[k], and jkγ is as in (5.1b). Clearly the sums of (8.12) and

(8.12a) are formally well defined. By Lemma 8.7, for σ = Re(s) these sums are

majorized by yσ
∑

0�=(c, d)∈Z2 |cz+d|−2σ−k, which is convergent for 2σ+k > 2

by Lemma 8.5. Thus Ek(z, s) is defined as a holomorphic function of s at

least for Re(s) > 1− k/2. Moreover, we easily see that

(8.13) Ek(γz, s) = ψ(dγ)
−1jkγ (z)Ek(z, s) for every γ ∈ Γ,

(8.13a) E−k(z, s; Γ, ψ̄) = ykEk(z, s̄− k; Γ, χ0ψ),

where χ0 is the principal character if k ∈ Z and χ0(d) =
(−1

d

)
if k /∈ Z; we

use (5.3c) for the proof of (8.13a).

8.9. The second type of Eisenstein series is defined for an integral weight

k. For k ∈ Z, a positive integer N, and (p, q) ∈ Z2 we put

(8.14) EN
k (z, s; p, q) = ys

∑
(m,n)

(mz + n)−k|mz + n|−2s (z ∈ H, s ∈ C),

where the sum is taken over all (m, n) ∈ Z2 such that 0 �= (m, n) ≡ (p, q)

(mod NZ2). From Lemma 8.5 we see that the series of (8.14) is convergent

for Re(2s) + k > 2. Also, we can easily verify that

(8.14a) jγ(z)
−kEN

k (γz, s; p, q) = EN
k

(
z, s; (p, q)γ

)
for every γ ∈ Γ (1),

(8.14b) EN
−k(z, s; p, q) = ykEN

k (z, s̄− k; p, q),

(8.14c) EN
k (rz, s; p, q) =

r∑
i=1

rsErN
k (z, s; rp, q + iN) (0 < r ∈ Z),

(8.14d) EhN
k (z, s; hp, hq) = h−k−2sEN

k (z, s; p, q) (0 < h ∈ Z).

Theorem 8.10. (i) If k ∈ Z, there is a real analytic function F (z, s) of

(z, s)∈H×C which is holomorphic in s and coincides with

s(s− 1)Γ (s+ k′)EN
k (z, s; p, q)

for Re(2s)+ k > 2, where k′ = Max(k, 0). The factor s(s− 1) is unnecessary

if k �= 0. If k = 0, then Γ (s)EN
0 (z, s; p, q) has residue πN−2 at s = 1, and

−δ(p/N)δ(q/N) at s = 0, where δ(x) = 1 if x ∈ Z, and δ(x) = 0 otherwise.

(ii) For every fixed s ∈ C, F (z, s) as a function of z belongs to Ck

(
Γ (N)

)
.

Moreover, F (z, s) is slowly increasing at every cusp locally uniformly in s.

Proof. In view of (8.14b) it is sufficient to prove the case k ≥ 0. The

first assertion can be proved in a rather elementary way as an application of

Theorem 8.2. For details, the reader is referred to [S07, Theorem 9.7]. The

first part of (ii) follows from (8.14a), since EN
k (z, s; p, q) depends only on
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(p, q) modulo NZ2. The second part of (ii) will be proven in §A3.7 of the

Appendix.

Notice that EN
k (z, 0; p, q) is meaningful for k > 0. In particular, put

(8.14e) Ek(z) = 2−1(2πi)−kE1
k(z, 0; 0, 0) (2 ≤ k ∈ 2Z).

Then Ek ∈ M k(Q) if k > 2; E2 is exactly the function of (7.10); see [S07,

§9.2].
8.11. For k ∈ Z, 0 < N ∈ Z, and a primitive or an imprimitive character

ψ modulo N such that ψ(−1) = (−1)k, we put

(8.15) EN
k (z, s; ψ) = ys

∑
0�=(m,n)∈Z2

ψ(n)(mNz + n)−k|mNz + n|−2s,

where we put ψ(n) = 0 if n is not prime to N. Notice that the sum over

(m, n) is 0 if ψ(−1) �= (−1)k. Again Lemma 8.5 guarantees the convergence

of (8.15) for Re(s) > 1− k/2. We easily see that

(8.16) EN
k (z, s; ψ) =

N∑
q=1

ψ(q)EN
k (z, s; 0, q),

and so from (8.14a) we obtain

(8.16a) jγ(z)
−kEN

k (γz, s; ψ) = ψ(aγ)E
N
k (z, s; ψ) for every γ ∈ Γ0(N).

From (8.16) and Theorem 8.10 we immediately obtain

Theorem 8.12. (i) There is a real analytic function Fψ(z, s) of (z, s) ∈
H×C such that Fψ(z, s) = s(s− 1)Γ (s+ k′)EN

k (z, s; ψ) for Re(2s) + k > 2,

where k′ = Max(k, 0); moreover Fψ is holomorphic in s. The factor s(s− 1)

is unnecessary if k �= 0 or ψ is nontrivial. If k = 0 and ψ is trivial, then

Γ (s)EN
0 (z, s; ψ) has residue πN−2ϕ(N) at s = 1, and −δ(1/N) at s = 0,

where ϕ is Euler’s function.

(ii) For every fixed s ∈ C, Fψ(z, s) as a function of z belongs to Ck

(
Γ (N)

)
,

and is slowly increasing at every cusp locally uniformly in s.

8.13. Returning to (8.12) with k ∈ Z, by Lemma 8.7 we have

(8.17) Ek(z, s; Γ, ψ) = ys
∑

(c,d)∈WM
N

ψ(d)(cz + d)−k|cz + d|−2s

for Γ = Γ (M, N). Let us now assume that M |N and ψ is a character modulo

N. Given mNz+n as in (8.15), put (m, n) = ±r(m′, n′) with 0 < r ∈ Z and

relatively prime m′ and n′ such that n′ > 0. If ψ(n) �= 0, then (m′N, n′) ∈
WM

N . Therefore we find that

(8.18) EN
k (z, s; ψ) = 2LN(2s+ k, ψ)Ek(z, s; Γ, ψ),

and so the analytic properties of Ek(z, s; Γ, ψ) can be obtained from those

of LN(s, ψ) and EN
k (z, s; ψ). We note here only its residue at s = 1.
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(8.19) For Γ = Γ (M, N) and ψ as above and k ≥ 0, Ek(z, s; Γ, ψ) has

nonzero residue at s = 1 only if k = 0 and ψ is trivial, in which case

the residue is (3/π)N−1
∏

p|N (1 + p−1)−1.

This follows from Theorem 8.12, since if χ0 is the principal character, then

(8.19a) LN(2, χ0) = ζ(2)
∏

p|N (1− p−2) and ζ(2) = π2/6.

The case k /∈ Z is more complex and difficult. Indeed, we have the following

theorem which will be proven in §A3.6 of the Appendix.

Theorem 8.14. Suppose k /∈ Z and Γ = Γ (M, N) with N ∈ MZ ⊂ 2Z;

put κ = 2k, λ = (1 − κ)/2, and λ0 = 0 or 1 according as λ is even or odd.

For z ∈ H and s ∈ C put

F ∗(z, s) = (2s− λ− 1)LN(4s− 2λ, ψ2)Ek(z, s; Γ, ψ)

·
{
Γ (s)Γ

(
s+ (1− λ− λ0)/2

)
(κ ≤ 1),

Γ
(
s+ k

)
Γ
(
s+ (λ0 − λ)/2

)
(κ ≥ −1).

Then F ∗(z, s) can be continued as a holomorphic function of s to the whole

s-plane. Moreover, for any fixed s ∈ C, F ∗(z, s) as a function of z belongs

to Ck

(
Γ (N)

)
. Moreover, F ∗(z, s) is slowly increasing at every cusp, locally

uniformly in s. The factor 2s−λ−1 is necessary only if (|κ|+1)/2 is odd and

ψ2 is trivial, in which case F ∗(z, s) at s = (λ + 1)/2 is a nonzero function

on H, whose nature is described in Theorem 8.16 below when k > 0.

Theorem 8.15. (i) If 0 < k ∈ Z, then Ek(z, s; Γ, ψ) with Γ = Γ (M, N)

and ψ as in (8.12) is finite at s = 0 and Ek(z, 0; Γ, ψ) belongs to M k(Qab)

except when k = 2 and ψ is trivial, in which case it is a nonholomorphic

element of N 1
2 (Qab). Moreover, Ek(z, 0; Γ, ψ)

σ = Ek(z, 0; Γ, ψ
σ) for every

σ ∈ Gal(Qab/Q).

(ii) If 0 < k ∈ Z, then EN
k (z, s; ψ) is finite at s = 1−k and EN

k (z, 1−k; ψ)
belongs to πM k(Qab) except when k = 2 and N = 1, in which case it is a

nonholomorphic element of πN 1
2 (Qab). Moreover,{

ikG(ψ)−1π−1EN
k (z, 1− k; ψ)

}σ
= ikG(ψσ)−1π−1EN

k (z, 1− k; ψσ)

for every σ ∈ Gal(Qab/Q), where G(ψ) is the Gauss sum defined in §2.7.
(iii) If 3/2 ≤ k /∈ Z, then Ek(z, s; Γ, ψ) of (8.12) is finite at s = 0,

and Ek(z, 0; Γ, ψ) belongs to M k(Qab) except when k = 3/2 and ψ2 is

trivial. Moreover, when it belongs to M k(Qab) we have Ek(z, 0; Γ, ψ)
σ =

Ek(z, 0; Γ, ψ
σ) for every σ ∈ Gal(Qab/Q).

(iv) If 3/2 ≤ k /∈ Z, then LN(4s + 2k − 1, ψ2)Ek(z, s; Γ, ψ) is finite at

s = 1 − k and its value at s = 1 − k is π times a nonzero element of

M k(Qab) except when k = 3/2 and ψ2 is trivial. Denote this Qab-rational

element times 2ki[k]G(ψ)−1 by C∗k(Γ, ψ), that is,
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C∗k(Γ, ψ) = 2ki[k]G(ψ)−1π−1
[
LN (4s+ 2k − 1, ψ2)Ek(z, s; Γ, ψ)

]
s=1−k

.

Then C∗k (Γ, ψ)
σ = C∗k(Γ, ψ

σ) for every σ ∈ Gal(Qab/Q).

Proof. Suppose k ∈ Z. From (8.16) and (8.18) we obtain

2(πi)−kLN(k, ψ)Ek(z, 0; Γ, ψ) =

N∑
q=1

ψ(q)(πi)−k
E
N
k (z, 0; 0, q).

Let A(ψ) denote the right-hand side times G(ψ)−1, and let σ ∈ Aut(C).

In [S07, (9.4)] we gave a Fourier expansion of (πi)−kEN
k (z, 0; p, q), which

shows that A(ψ) is Qab-rational. Applying σ to the expansion and employing

(2.17b), we find that A(ψ)σ = A(ψσ). Combining this with Lemma 2.10, we

obtain (i). Assertion (ii) can be derived similarly from (8.16) and [S07, (9.14)].

In the case k /∈ Z assertion (iii) will be proven in §A3.8 and (iv) in §A3.9 of

the Appendix.

Notice that 4s+ 2k − 1 becomes 3 − 2k at s = 1 − k, and 0 ≥ 3− 2k ∈
2Z if k ≥ 3/2. Since Γ (s/2)LN(s, ψ2) is finite for Re(s) ≤ 0, we see that

LN(m, ψ2) = 0 for every m ∈ 2Z, ≤ 0. Thus LN (4s + 2k − 1, ψ2) = 0 at

s = 1− k. For this reason, Theorem 8.15(iv) cannot be given as a statement

on the value of Ek(z, s; Γ, ψ) at s = 1−k. Similarly, Theorem 8.15(ii) cannot

be stated in terms of Ek(z, s; Γ, ψ) at s = 1− k.

Theorem 8.16. Let the notation be as in Theorem 8.14 with k /∈ Z;

suppose that k > 0, λ is even, and ψ2 is trivial. Then F ∗(z, s) is nonzero

at s = (λ+ 1)/2, and the following assertions hold:

(i) If k = 1/2, then λ = 0, and F ∗(z, 1/2) belongs to π3/2M 1/2(Qab).

More precisely, F ∗(z, 1/2) = π3/2
∑

ξ∈Q μ(ξ)e(tξ2z/2) with 0 < t ∈ Q and a

Qab-valued element μ of L (Q).

(ii) If k > 1/2, then k = 2p+ 1/2 with 0 < p ∈ Z, and F ∗
(
z, (λ + 1)/2

)
belongs to π3/2+pN p

k (Qab).

Proof. Assertion (i) will be proven in §A3.10 of the Appendix. To prove

(ii), we take the operator δpk of (6.13d) and Dp
k of (7.11). Then we have

(8.20) Dp
kEk(z, s; Γ, ψ) = (−4π)−pεk(s)Ek+2p(z, s− p; Γ, ψ) with

εk(s) =

p−1∏
a=0

(s+ k + a) = Γ (s+ k + p)/Γ (s+ k).

(This is true even for integral k.) Indeed, we can easily verify (by induction

on p, for example) that δpky
s = (2i)−pεk(s)y

s−p. By (6.14c), δpk(y
s‖kγ) =

(δpky
s)‖k+2pγ = (2i)−pεk(s)y

s−p‖k+2pγ for every γ ∈ Γ, and so we obtain

(8.20) at least formally. To justify termwise differentiation of the infinite series

of (8.12), we note a well-known principle on the validity of (d/dx)
∑

γ∈A fγ(x)

=
∑

γ∈A dfγ/dx. If it is applied to (8.12) p times, then we see that (8.20) holds
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at least for sufficiently large Re(s). Since δpk commutes with ∂/∂s̄, we easily

see that the left-hand side of (8.20) is meromorphic in s when Ek(z, s) is

defined, and the same is true with the right-hand side. This proves (8.20) in

the domain of s in which both sides of (8.20) are meaningful as meromorphic

functions. (There are alternative methods that are applicable to the case of

many complex variables instead of a single z. We refer the reader to Lemma

A in [S02, vol. III, p. 922].)

Now in the setting of (ii) put −λ = 2p. Then 0 < p ∈ Z and k = 2p +

1/2, and so from (8.20) we obtain (2i)pδp1/2E1/2(z, s + p) = ε0Ek(z, s) with

ε0 = Γ (s + k)/Γ (s + p + 1/2). Let F ∗k denote F ∗ of Theorem 8.14. Then,

after verifying the cancellation of all gamma factors, we see that F ∗k (z, s) =
(2i)pδp1/2F

∗
1/2(z, s+p), and therefore F ∗k

(
z, (λ+1)/2

)
= (2i)pδp1/2F

∗
1/2(z, 1/2)

= (−4π)pDp
1/2F

∗
1/2(z, 1/2). By Lemma 7.8(i) we see that F ∗k

(
z, (λ + 1)/2

)
belongs to π3/2+pN p

k (Qab). This proves (ii) and completes the proof.

Lemma 8.17. Let 0 < m ∈ Z and f ∈ M k(M, N ; ψ) in the notation of

§8.6; suppose 2|M and 2|N if k /∈ Z. Then the following assertions hold.

(i) Put g1(z) = f(mz) and g2(z) = f(z/m). Then g1 ∈ M k(M, mN ; χ)

and g2 ∈ M k(mM, N ; χ), where χ = ψ if k ∈ Z and χ(a) =

(
m

a

)
ψ(a) if

k /∈ Z. Moreover, g2 ∈M k(mM, N/m; χ) if 2m|N.

(ii) The map f �→ f‖k ι is a bijection of M k(M, N ; ψ) onto M k(N, M ;

ψ−1) and (f‖k ι)‖k ι = (−1)[k]f.
(iii) For f ∈ M k(2, K/2; ψ) with k /∈ Z and 0 < K ∈ 4Z define f τ by

f τ (z) = f(−4/Kz)jkι (z)
−1. Then f �→ f τ is a bijection of M k(2, K/2; ψ)

onto M k(2, K/2; ζ), where ζ(a)=

(
K

a

)
ψ(a)−1 and (f τ )τ =(−1)[k](K/4)kf.

(iv) The forms g1, g2, f‖k ι and f τ belong to S k if f ∈ S k.

Proof. For α=

[
a b
c d

]
∈Γ (M, mN) with d > 0 put β =

[
a mb

c/m d

]
.

Then β ∈ Γ (M, N) and g1(αz) = f
(
β(mz)

)
= ψ(d)jkβ(mz)f(mz). We have

clearly j
[k]
β (mz) = j

[k]
α (z) and hβ(mz) =

(
m

d

)
hα(z) by (4.40). Thus g1 ∈

M k(M, mN ; χ) in view of Lemma 5.4. As for g2, taking

[
a b/m
cm d

]
in

place of β, we obtain the desired results in the same way. To prove (ii), put

δ = ι−1γι for γ ∈ Γ (M, N). Then δ ∈ Γ (N, M) and aδ = dγ , and so (ii)

can easily be verified. In the proof of (i) suppose 2m|N ; then we see that

g2 ∈M k(mM, N/m; χ). Now, to prove (iii), takeM = 2, N = K/2, and m =

K/4. Then g2(z) = f(4z/K) and f τ = g2‖k ι. Thus g2 ∈ M k(K/2, 2; χ)

with χ(a) =

(
K

a

)
ψ(a), and f τ ∈ M k(2, K/2; χ−1) by (ii). Now (f τ )τ (z) =
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f(z)jkι (−4/Kz)−1jkι (z)
−1. We easily see that j

[k]
ι (−4/Kz)j

[k]
ι (z) = (−4/K)[k]

and hι(−4/Kz)hι(z) is (4/K)1/2 times an element t of T. Taking z = iy

with y > 0, we find that t = 1, and so jkι (−4/Kz)jkι (z) = (−1)[k](4/K)k,

which completes the proof of (iii). Assertion (iv) follows immediately from

the last statement of §5.8.
Lemma 8.18. Let M, N, K be positive integers such that K ∈ MNZ.

Then Γ (M, N) can be generated by

[
1 M
0 1

]
,

[
1 0
N 1

]
, and Γ (K, K).

Proof. This is not so easy as it looks. We put U =
∏

p SL2(Zp), E(M) =∏
p Ep(M), E′(N) =

∏
p E

′
p(N), and D(M, N) =

∏
p Dp(M, N), where p

runs over all prime numbers and

Ep(M) =

{[
1 b
0 1

] ∣∣∣∣ b ∈MZp

}
, E′p(N) =

{[
1 0
c 1

] ∣∣∣∣ c ∈ NZp

}
,

Dp(M, N) =
{
γ ∈ SL2(Zp)

∣∣ bγ ∈MZp, cγ ∈ NZp

}
.

Then D(M, N) can be generated by E(M), E′(N), and D(K, K). To prove

this, we first note that Dp(M, N) = Dp(K, K) if p �K. Thus it is sufficient to

show that Dp(M, N) is generated by Ep(M), E′p(N), and Dp(K, K) if p|K.

If p �MN, then Dp(M, N) = SL2(Zp), and the fact is easy to verify, noting

that [
0 −1
1 0

]
=

[
1 −1
0 1

] [
1 0
1 1

] [
1 −1
0 1

]
.

Suppose p|MN and let α =

[
a b
c d

]
∈ Dp(M, N). Then a ∈ Z×p and[

a b
c d

]
=

[
1 0

a−1c 1

] [
a 0
0 a−1

] [
1 ba−1

0 1

]
,

and so we obtain the desired fact. Now put

H =
∏

p Hp, Hp =
{
w ∈ Dp(K, K)

∣∣w − 1 ≺ KZp

}
.

Then H is a normal subgroup of U. Let β ∈ Γ (M, N). Since β ∈ D(M, N),

we have β = u1 · · ·um with ui ∈ E(M) ∪ E′(N) ∪ D(K, K). By strong

approximation in SL2(Q) (see [S71, Lemmas 1.38 and 6.15] or [S10, Theorem

10.21], for example) we can put ui = γivi with γi ∈ SL2(Q) and vi ∈ H.

If ui ∈ E(M), then clearly we can take γi of the form γi =

[
1 Mb
0 1

]
with

b ∈ Z; similarly, if ui ∈ E′(N), then we can take γi =

[
1 0
Nc 1

]
with c ∈ Z. If

ui ∈ D(K, K), then γi−ui ≺ KZp for every p|K, and so γi ∈ Γ (K, K). Put

γ = γ1 · · · γm. Then we see that β = γz with z ∈ H, that is, γ−1β ∈ Γ (K, K).

This proves our lemma.

This lemma can be generalized to the case of Sp(n, F ) with an arbitrary

algebraic number field F ; see [S93, Lemma 3b.4].
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8.19. Let us add some technical and historical remarks on the Eisenstein

series discussed in this section. Let Ek(z, s) denote any function belonging to

types (8.12), (8.14), and (8.15). If the series expressing Ek(z, s) is absolutely

convergent at s = 0, then obviously Ek(z, 0) is a holomorphic function in z,

which one can define without the parameter s. For example, if it is of type

(8.12) with k ∈ Z, the function is
∑

γ∈Γ∞\Γ ψ(dγ)j
k
γ (z)

−1, which is meaning-

ful only for k ≥ 3. In order to include the cases k = 1 and 2, Hecke introduced

in [H27] the parameter s and proved that Ek(z, s) can be continued analyt-

ically to a neighborhood of 0, and obtained the explicit forms of the Fourier

expansions of the value at s = 0. Similar results in the case of half-integral

weight were obtained by Maass. However, neither Hecke nor Maass investi-

gated analytic continuation of Ek(z, s) as a meromorphic function in s on

the whole complex plane.

Analytic continuation of Ek(z, s), especially in the case k = 0, was in-

vestigated by several researchers, Rankin [Ra39] for example. The proof of

the fact alone is not difficult. However, it is important to show that Ek(z, s)

is slowly increasing at every cusp locally uniformly in s, which guarantees

the convergence of the integral of the type (8.27) below, a highly nontrivial

fact that almost all authors took for granted without proof. I found that the

Fourier expansion of Ek involving both z and s was also important, and

confluent hypergeometric functions were quite effective in obtaining such ba-

sic pieces of information. In fact, I investigated such Fourier expansions in

[S75], and eventually similar expansions, as well as analytic continuation, of

Eisenstein series on Hn. In §A2 of the Appendix we will give an exposition of

confluent hypergeometric functions, and employing them, we will discuss in

the next section various properties of Ek(z, s) in the context of eigenforms of

the operator Lk of (6.13c).

8.20. For f ∈M k with k ∈ 2−1Z we put

(8.21) f(z) =
∑

0≤ξ∈Q
μf (ξ)e(ξz).

Let f ∈ M k(K, M ; ψ) and g ∈ M �(K
′, M ′; ϕ) with characters ψ and ϕ.

We naturally assume (see §8.6)
(8.22) ψ(−1) = (−1)[k], ϕ(−1) = (−1)[�].
We now define a Dirichlet series D(s; f, g) by

(8.23) D(s; f, g) =
∑

0<ξ∈Q
μf (ξ)μg(ξ)ξ

−s−(k+�)/2.

By Lemma 6.2 the right-hand side is convergent for Re(s) > (k + �)/2 + 1.

Thus D(s; f, g) is holomorphic for such s. We assume:

(8.24) k ≥ � and f is a cusp form.
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To find an integral expression for (8.23), we first take gρ defined by (5.14)

with n = 1 and g in place of f there, and observe that

f(z)gρ(z) =
∑
0<ξ

∑
0≤η

μf (ξ)μg(η)e
2πi(ξ−η)xe−2π(ξ+η)y

for z = x + iy. We can find a positive integer N such that ϕ and ψ are

characters modulo N, f ∈M k(N, N ; ψ), and g ∈M �(N, N ; ϕ). Then f(z)

and g(z) depend only on z (mod NZ), and both μf (ξ) and μg(ξ) are nonzero

only when ξ ∈ N−1Z. Thus∫ N

0

f(z)gρ(z)dx = N
∑

0<ξ∈N−1Z

μf (ξ)μg(ξ)e
−4πξy .

Multiplying this by ys+(k+�)/2−1 and employing (8.2), we find that

(8.25)

∫ ∞

0

∫ N

0

f(z)gρ(z)dx · ys+(k+�)/2−1dy

= N(4π)−s−(k+�)/2Γ
(
s+ (k + �)/2

)
D(s; f, g)

for Re(s) > (k+ �)/2+1, since termwise integration is justified in view of the

convergence of (8.23). Put Γ = Γ (N, N), Γ∞ = P ∩ Γ, Ψ = Γ∞\H, and Φ =

Γ\H. Since { x+ iy | 0 ≤ x < N} represents Ψ, the left-hand side of (8.25) can

be written
∫
Ψ
fgρy

s+(k+�)/2+1dz. Let A be a complete set of representatives

for Γ∞\Γ. Then
⊔

α∈A αΦ represents Ψ, and so (replacing s + (k + �)/2 + 1

by s)∫
Ψ

f(z)gρ(z)y
sdz=

∑
α∈A

∫
αΦ

f(z)gρ(z)y
sdz=

∫
Φ

{ ∑
α∈A

(fgρy
s) ◦ α

}
dz,

provided
∫
Ψ |fgρys|dz <∞.

Taking g as f of (5.16), we see that gρ ∈ M �(N, N ; ϕ̄). For α ∈ Γ we

easily verify that

(fgρy
s) ◦ α = ω(dα)j

k−�
α (z)

−1|jα(z)|2k−2sfgρy
s with

(8.26) ω(d) =

⎧⎨
⎩ (ψϕ)(d)

(−1
d

)
if k ∈ Z and � /∈ Z,

(ψϕ)(d) otherwise.

Thus the last integral over Φ can be written∫
Φ

fgρ · ys−k
∑
α∈A

ω(dα)j
k−�
α (z)

−1|jα(z)|2k−2sykdz

=

∫
Φ

fgρEk−�(z, s− k; Γ, ω̄)ykdz

with Ek−� of (8.12). Notice that ω(−1) = (−1)[k−�] by (8.22). Substituting

s+ (k + �)/2 + 1 for s, we obtain

(8.27) N(4π)−s−(k+�)/2Γ
(
s+ (k + �)/2

)
D(s; f, g)

=

∫
Φ

fgρEk−�(z, s+ (�− k)/2 + 1; Γ, ω̄)ykdz
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for Re(s) > (k + �)/2 + 1.

The expression of a series of type (8.23) by an integral of type (8.27) was

first given in [Ra39] by Rankin when g = fρ and k ∈ Z. Thus this technique

may be called Rankin’s transformation. We will later use this transfor-

mation at various places.

Let us now put

(8.28) DN (s; f, g) = D(s; f, g) ·
{
LN (2s+ 2, ω) if k − � ∈ Z,

LN (4s+ 3, ω2) if k − � /∈ Z,

(8.29) Γ̃ (s)=Γ

(
s+

k + �

2

)
Γ

(
s+1+

k − �

2

)
·
⎧⎨
⎩

1 if k − � ∈ Z,

Γ

(
s+

3

4
+

λ0

2

)
if k − � /∈ Z,

where λ0 is 0 or 1 according as [k − �] is even or odd.

Theorem 8.21. Under (8.24) the product Γ̃ (s)DN (s; f, g) can be contin-

ued to the whole s-plane as a meromorphic function, which is holomorphic

except for possible simple poles at the following points: s = 0 only if k = �

and ϕψ is trivial; s = −1 only if k = � ∈ Z and N = 1; s = −1/4 only if

ψ2ϕ2 is trivial and k − � − 1/2 ∈ 2Z. The residue of DN (s; f, g) at s = 0

is π2+kΓ (k)−1〈 gρ, f 〉r0, where r0 is a positive rational number that depends

on the choice of the levels of f and g.

Proof. Suppose k − � ∈ Z; then by Theorem 8.12, s(s − 1)Γ (s + k −
�)EN

k−�(z, s; ω) is entire in s; moreover, for each fixed s the product as a

function of z is slowly increasing at every cusp locally uniformly in s. Since

f is a cusp form, we see that

s(s+ 1)LN(2s+ 2, ω)Γ
(
s+ 1 + (k − �)/2

)
times the right-hand side of (8.27) is meaningful for the reason explained in

§6.5; s(s+ 1) is unnecessary if k �= � or ω is nontrivial. From the reasoning

there we also see that the integral is convergent locally uniformly in s. Suppose

k = � and ω is trivial; then a pole may occur at s = 0 and s = −1. By
Theorem 8.12 we find that the residue of DN (s; f, g) at s = 0 is

N−1Γ (k)−1(4π)kμ(Φ)〈 gρ, f 〉 · 2−1πN−2ϕ(N).

By (6.6), μ(Φ) ∈ πQ, and so we obtain the residue as stated in our theorem.

Next suppose k − � /∈ Z. We apply Theorem 8.14 to Ek−�(· · · ) in (8.27).

Define κ, λ, and F ∗(z, s) as in that theorem. Then we find that κ = 2k −
2�, λ = −[k − �], and F ∗

(
z, s+ (� − k)/2 + 1

)
equals

(2s+1/2)LN(4s+3, ω2)Γ

(
s+ k−�

2

)
Γ

(
s+ 3

4 + λ0

2

)
Ek−�

(
z, s+ �−k

2 +1;Γ, ω̄

)
.
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Then we obtain the results in this case as stated in our theorem. This com-

pletes the proof.

If f and g of §8.20 are eigenfunctions of Hecke operators of integral weight,
then D(s; f, g) has an Euler product that can be given as follows.

Lemma 8.22. Let f(z) =
∑∞

n=1 a(n)e(nz) ∈ S k(N, ψ) and g(z) =∑∞
n=0 b(n)e(nz) ∈ M �(M, ϕ) with k, � ∈ Z. Suppose that these are nor-

malized eigenfunctions of Hecke operators in the sense that we can put
∞∑

n=1

a(n)n−s =
∏
p

[
1− a(p)p−s + ψ(p)pk−1−s

]−1
,

∞∑
n=1

b(n)n−s =
∏
p

[
1− b(p)p−s + ϕ(p)p�−1−s

]−1
,

where
∏

p means the product over all the prime numbers p (see [S71,Theorem

3.43]). Taking an indeterminate X, put, for each prime number p,

X2 − a(p)X + ψ(p)pk−1 = (X − αp)(X − βp),

X2 − b(p)X + ϕ(p)p�−1 = (X − γp)(X − δp)

with complex numbers αp, βp, γp, δp. Then

LNM (2s+ 2− k − �, ψϕ)

∞∑
n=1

a(n)b(n)n−s

=
∏
p

[
(1 − αpγpp

−s)(1− αpδpp
−s)(1 − βpγpp

−s)(1− βpδpp
−s)

]−1
.

Proof. We have
∑∞

n=0 a(p
n)Xn =

(
1− a(p)X + ψ(p)pk−1X2

)−1
, and so

∞∑
n=0

(αn
p − βn

p )X
n = (1− αpX)−1 − (1− βpX)−1

= (αp − βp)X
[
(1− αpX)(1− βpX)

]−1
= (αp − βp)

∞∑
n=0

a(pn)Xn+1.

Thus we obtain a(pn) = (αn+1
p − βn+1

p )/(αp − βp) if αp �= βp. Similarly,

b(pn) = (γn+1
p − δn+1

p )/(γp − δp) if γp �= δp. Now
∑∞

m=1 a(m)b(m)m−s =∏
p

{∑∞
n=0 a(p

n)b(pn)p−ns
}
and

(αp − βp)(γp − δp)
∞∑
n=0

a(pn)b(pn)Xn =
∞∑
n=0

(αn+1
p − βn+1

p )(γn+1
p − δn+1

p )Xn

=
αpγp

1− αpγpX
− αpδp

1− αpδpX
− βpγp

1− βpγpX
+

βpδp
1− βpδpX

=
(αp − βp)(γp − δp)(1 − αpβpγpδpX

2)

(1− αpγpX)(1− αpδpX)(1− βpγpX)(1− βpδpX)
.
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This gives the desired result when αp �= βp and γp �= δp. However, we have

a(pn) =
∑n

i=0 α
n−i
p βi

p and b(pn) =
∑n

i=0 γ
n−i
p δip unconditionally, and so our

result is a formula for
∑∞

n=0

(∑n
i=0 α

n−i
p βi

p

)(∑n
i=0 γ

n−i
p δip

)
Xn, which is valid

even if αp �= βp or γp �= δp. This completes the proof.

Theorem 8.23. Given f(z) =
∑∞

n=1 a(n)e(nz) ∈ S k(N, ψ) and a prim-

itive or an imprimitive Dirichlet character χ, put

(8.30) D(s; f, χ) = LN(2s− 2k + 2, χ2ψ2)
∞∑

n=1

χ(n)a(n2)n−s

and χ(−1) = (−1)μ with μ = 0 or 1. Put also Γ̃ (s) = Γ (s/2)Γ
(
(s +

1)/2
)
Γ
(
(s − k − 1 + λ0)/2

)
, where λ0 = 0 or 1 according as k − μ − 1

is even or odd. Then Γ̃ (s)D(s; f, χ) can be continued to a meromorphic func-

tion on the whole complex plane, which is holomorphic except for a possible

simple pole at s = k, that occurs only if ψ2χ2 is trivial and k − μ− 1 ∈ 2Z.

Proof. Put θ1(z) = 2−1
∑

m∈Z χ(m)mμe(m2z). Then θ1(z) = θχ(2z)

with θχ of (5.7). Suppose χ is defined modulo r; then by Lemmas 5.5 and

8.17, θ1 ∈ M �(2, 4r
2;χ1), where � = μ + 1/2 and χ1(a) =

(
8

a

)
χ(a). We

then see that

D(s; f, θ1) =

∞∑
m=1

χ(m)a(m2)m−2s−k−1/2,

and so

D(s; f, χ) = L(2s− 2k + 2, χ2ψ2)D(s/2− k/2− 1/4; f, θ1).

Comparing this with (8.28), we find that

D(s; f, χ) = DM (s/2− k/2− 1/4; f, θ1),

where M is the least common multiple of N and 4r2. Thus we obtain the

desired result from Theorem 8.21.

The above theorem was essentially given in [S75, Theorem 1], which stated

that another pole at s = k− 1 might occur, but that is not the case as shown

here. The pole at s = k can indeed happen; see Theorem 2 and the discussion

on page 97 of that paper. Notice that if k−μ−1 ∈ 2Z, then (ψχ)(−1) = −1,
and so ψχ is nontrivial.

Lemma 8.24. Suppose that f of Theorem 8.23 is a normalized Hecke

eigenform as in Lemma 8.22; define αp and βp as in that lemma. Then

D(s; f, χ) =
∏
p

[
(1− χ(p)α2

pp
−s)(1− χ(p)αpβpp

−s)(1− χ(p)β2
pp
−s)

]−1
.
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Proof. We have
∑∞

n=1 χ(n)a(n
2)n−s =

∏
p

{∑∞
m=0 χ(p)

ma(p2m)p−2ms
}
,

and

(αp − βp)

∞∑
m=0

a(p2m)Xm =

∞∑
m=0

(α2m+1
p − β2m+1

p )Xm

=
αp

1− α2
pX

− βp

1− β2
pX

=
(αp − βp)(1 + αpβpX)

(1− α2
pX)(1− β2

pX)

= (αp − βp)(1− α2
pβ

2
pX

2)
{
(1 − α2

pX)(1− αpβpX)(1− β2
pX)

}−1
.

Thus we obtain the desired equality. The result is valid even if αp = βp for

the reason explained at the end of the proof of Lemma 8.22.

Comparing this with the case f = g in Lemma 8.22, we obtain

(8.31) L(s− k + 1, χψ)D(s; f, χ) = L(2s− 2k + 2, χ2ψ2)

∞∑
n=1

χ(n)a(n)2n−s

= L(2s− 2k + 2, χ2ψ2)D(s− k; f, h),

(8.32) L(s− k + 1, χψ)

∞∑
n=1

χ(n)a(n2)n−s =

∞∑
n=1

χ(n)a(n)2n−s,

where h(z) =
∑∞

n=1 χ(n)a(n)e(nz). By Lemma 7.13, h ∈ S k(M, ψχ2) with

a multiple M of N, and so the analytic continuation of D(s, f, h) follows

from Theorem 8.21. Therefore we can derive the analytic continuation of

D(s; f, χ) also by combining this with (8.31), but this gives a weaker result

than Theorem 8.23, because of the factor L(s− k + 1, χψ).

9. Eisenstein series as automorphic eigenforms

9.1. Given a congruence subgroup Γ of Γ (1) and a weight k (not neces-

sarily ≥ 0) we consider a C∞ function f on H satisfying the following three

conditions:

(9.1a) f‖k γ = f for every γ ∈ Γ ;

(9.1b) Lkf = λf with λ ∈ C, where Lk is as in (6.13c);

(9.1c) f is slowly increasing at every cusp, that is, f satisfies (6.9a).

Such an f is called an automorphic eigenform, or simply, an eigenform

of Lk belonging to the eigenvalue λ. It is also called aMaass form, as Maass

introduced this type of function and made some fundamental contributions in

[Ma49] and [Ma53]. We denote by Ak(Γ, λ) the set of all such functions f.

We naturally assume that Γ ⊂ Γ θ if k /∈ Z. We put

(9.2) Ak(λ) =
∞⋃

N=1

Ak

(
Γ (2N), λ

)
.
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By (6.14d), for every f ∈ Ak(λ) and α ∈ SL2(Q), we see that jα(z)
−kf(αz) ∈

Ak(λ). This is clear if k ∈ Z, but if k /∈ Z, then we have to invoke Theorem

4.7(4); cf. Lemma 5.4. If f is holomorphic, then Lkf = 4δk−2εf = 0, since

ε = −y2∂/∂z̄, and so from Lemma 6.4(i) we see that

(9.3) M k consists of the holomorphic elements of Ak(0).

As the title of this section indicates, we are mainly interested in the signifi-

cance of Eisenstein series among eigenforms in general; we will not investigate

much about the so-called cusp eigenforms, though we will define them and

prove a few of their elementary properties.

If f ∈ Ak(Γ, λ), we have f(z + b) = f(z) for b ∈ NZ for some positive

integer N, for the same reason as in (3.6a). Therefore, putting r = N−1, we

see that f(x+ iy) as a function of x has a Fourier expansion

(9.4) f(x+ iy) =
∑
h∈rZ

ch(y)e(hx)

with C∞ functions ch(y) of y. It should be noted that h may be negative.

Moreover, termwise partial differentiation is valid (see [S07, §A2]), and so

(∂/∂x)a(∂/∂y)bf(x+ iy) =
∑
h∈rZ

(2πih)a(∂/∂y)bch(y)e(hx)

for every a and b. Therefore, applying Lk to (9.4), we find that ch is a

solution of the differential equation

(9.5)
(
y2(d/dy)2 + ky · d/dy − 4π2h2y2 + 2πhky + λ

)
c(y) = 0.

If h �= 0, the solutions of this equation are given by Whittaker functions,

which we use in the form

(9.6) V (y; α, β) = e−y/2 Γ (β)−1 yβ
∫ ∞

0

e−yt(1 + t)α−1tβ−1dt,

where 0 < y ∈ R and (α, β) ∈ C2. The last integral is convergent for Re(β) >

0. In fact, V (y; α, β) can be defined as a holomorphic function of (α, β) on

the whole C2. In §A2 of the Appendix we give an exposition of some basic

facts on this function.

Given k and λ ∈ C, we take (α, β) ∈ C2 so that

(9.7) k = α− β, λ = β(1− α),

and define a function Wk(t, λ) for t ∈ R× by

(9.8) Wk(t, λ) =

{
V (4πt; α, β) if t > 0,

|4πt|−kV (|4πt|; β, α) if t < 0.

If (α, β) is a solution of (9.7), then the other solution is (1−β, 1−α) (which

may be equal to (α, β)), but Wk(t, λ) is determined by k and λ, since

V (y; 1 − β, 1 − α) = V (y; α, β), as will be shown in Lemma A2.2 of the

Appendix.
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Returning to ch(y) of (9.4), we have

(9.9) ch(y) = r

∫ 1/r

0

f(x+ iy)e(−hx)dx,
and so (9.1c) implies that ch(y) = O(yB) as y →∞ with B ∈ R. By Lemma

A2.4 of the Appendix every solution c of (9.5) such that c(y) = O(yB) as y →
∞ is a constant times Wk(hy, λ), and vice versa. Thus ch(y) = bhWk(hy, λ)

with bh ∈ C, and so

(9.10) f(x+ iy) = b0(y) +
∑

0�=h∈rZ
bhWk(hy, λ)e(hx)

with a C∞ function b0. We call this the Fourier expansion of f, and b0
the constant term of f. (The word “constant” is used with respect to the

variable x, and b0(y) may involve y nontrivially.) Let α ∈ SL2(Q). Then

jα(z)
−kf(αz) belongs to Ak(λ), and so has a Fourier expansion of the type

(9.10). We call f a cusp form if the constant term of jα(z)
−kf(αz) is 0 for

every α ∈ SL2(Q), and we denote by Sk(λ) the set of cusp forms of Ak(λ),

and put Sk(Γ, λ) = Ak(Γ, λ) ∩Sk(λ).

Taking h = 0 in (9.5), we obtain a differential equation

(9.11) y2b′′0 + kyb′0 + λb0 = 0,

which is easy to solve. Indeed, let X2 + (k − 1)X + λ = (X − p)(X − q) with

p, q ∈ C, and p �= q if and only if 4λ �= (k − 1)2; if 4λ = (k − 1)2, then

X2 + (k − 1)X + λ = (X − p)2 with p = (1 − k)/2. With these p and q

equation (9.11) has linearly independent solutions as follows:

(9.12a) yp and yq with p+ q = 1− k and pq = λ if 4λ �= (k − 1)2,

(9.12b) yp and yp log y with p = (1 − k)/2 if 4λ = (k − 1)2.

Thus b0 is a C-linear combination of these two functions in each case. We

call the eigenvalue λ critical in the latter case.

Lemma 9.2. For f, b0, and bh as in (9.10), the following assertions hold:

(i) There exist two positive constants M and m such that |bh| ≤M |h|k/2+m

for every h ∈ rZ, �= 0. Moreover, we can take m = 0 if f is a cusp form.

(ii) There exist positive constants A, B, and C such that

yk/2
∑

0�=h∈rZ

∣∣bhWk(hy, λ)
∣∣ ≤ Ae−By if y ≥ C.

(iii) Sk(λ) consists of all the elements of Ak(λ) that are rapidly decreasing

at every cusp.

(iv) Sk(0) = S k.

Proof. We have

bhWk(hy, λ) = r

∫ 1/r

0

f(x+ iy)e(−hx)dx,
and so by Lemma 6.4(iv) we have
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(9.13)
∣∣yk/2bhWk(hy, λ)

∣∣ ≤ A(yc + y−c)

with positive constants A and c independent of h. In Lemma A2.5 of the

Appendix we will show that limy→∞ ey/2V (y; α, β) = 1. Thus we can find

a constant d > 1 such that |V (y; α, β)| ≥ 2−1e−y/2 and |V (y; β, α)| ≥
2−1e−y/2 if y > d, and so by (9.8) we obtain

(9.14) |Wk(hy, λ)| ≥
{
2−1e−2πhy if h > 0 and 4πhy > d,

2−1e−2π|h|y|4πhy|−k if h < 0 and 4π|h|y > d.

Dividing (9.13) by this, we can find a positive constant M independent of h

such that

|bh| ≤Me2π|h|yy−k/2(yc + y−c) ·
{
1 if h > 0 and 4πhy > d,

|hy|k if h < 0 and 4π|h|y > d.

Taking y = d/|2πh|, we obtain |bh| ≤ M ′ed|h|k/2+c with a constant M ′

independent of h. This proves the first part of (i).

By Lemma A2.2(i) of the Appendix we have, for any positive number y0,

(9.15) |V (y; α, β)|+ |V (y; β, α)| ≤ A1e
−y/2 for y > y0

with a positive constant A1. Combining this with (i), we obtain

yk/2
∑

0�=h∈rZ

∣∣bhWk(hy, λ)
∣∣ ≤ A2y

k/2
∑

0�=h∈rZ
|h|k/2+me−2π|h|y.

for y > 1/2 with a constant A2 > 0. Put |h| = rn with 0 < n ∈ Z. Then

the last sum is majorized by 2rae−πry
∑∞

n=1 n
ae−πrny with an integer a ≥

k/2 +m. We have
∑∞

n=1 n
axn = xPa(x)/(1− x)a+1 with a polynomial Pa of

degree a− 1, and so we obtain the estimate of (ii).

If f ∈ Ak(λ), then (ii) is applicable to f‖kα for every α ∈ SL2(Q). If

f ∈ Sk(λ) in particular, (ii) implies that f is rapidly decreasing at every

cusp. Conversely, if an element f of Ak(λ) is rapidly decreasing at every

cusp, then from (9.9) with h = 0 we see that limy→∞ ycb0(y) = 0 for every

c ∈ R, and so b0 = 0. This is so for f‖kα in place of f for every α ∈ SL2(Q).

Thus f ∈ Sk(λ). This proves (iii).

Returning to (i), suppose f is a cusp form; then Lemma 6.4(v) combined

with (iii) shows that |yk/2f | is bounded on H, and so we can take c = 0 in

(9.13). Thus |bh| ≤M |h|k/2, which proves the last part of (i).

As for (iv), we have S k ⊂ Sk(0) by (9.3) combined with (iii). Let f ∈
Sk(0). As will be shown in Lemma 9.3 below, εf is rapidly decreasing at

every cusp. Therefore, by Corollary 6.9(ii), f ∈ S k. This proves (iv) and

completes the proof.

Remark. For h > 0 and λ = 0 we have Wk(hy, 0) = V (4πhy; k, 0) =

e−2πhy by (A2.3) of the Appendix, and so Wk(hy, 0)e(hx) = e(hz). Thus the

Fourier expansion of an element of M k is a special case of (9.10), and (i) of

the above lemma includes Lemma 6.2(ii, iii) as special cases.
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Lemma 9.3. Let ε and δk be as in (6.13a, b). Then the following asser-

tions hold:

(i) εAk(Γ, λ) ⊂ Ak−2(Γ∗, λ− k + 2).

(ii) δkAk(Γ, λ) ⊂ Ak+2(Γ
∗, λ+ k).

(iii) These inclusions are true with S in place of A.

(iv) Sk(Γ, λ) contains a nonholomorphic function only if 0 < λ ∈ R.

For the moment we have Γ∗ = Γ ∗ = Γ. In §9.5 we will generalize the notion

of A congruence subgroup, and explain the meaning of Γ∗ and Γ ∗.

Proof. Let f ∈ Ak(Γ, λ). Then, from (6.14a, b, e) we easily see that εf

and δkf satisfy (9.1a, b) with k and λ modified as in (i) and (ii). Thus

our task is to show that they are slowly increasing at every cusp. We see

that Wk(hy, λ)e(hx) equals ϕA(x+ iy; k, λ) of (A2.9) of the Appendix with

A = 2πh, and so from (A2.10) and (A2.11) of the Appendix we obtain

ε
{
Wk(hy, λ)e(hx)

}
= Wk−2(hy, λ+2− k)e(hx) ·

{
(8πih)−1λ if h > 0,

(8πih)−1 if h < 0,

δk
{
Wk(hy, λ)e(hx)

}
= Wk+2(hy, λ+ k)e(hx) ·

{
2πih if h > 0,

2πih(λ+ k) if h < 0.

Therefore, if f is as in (9.10), then

εf = εb0 +
∑
h �=0

chWk−2(hy, λ+ 2− k)e(hx)

with ch = (8πih)−1λbh if h > 0 and ch = (8πih)−1bh if h < 0. By Lemma

9.2(i), |ch| = M ′|h|(k−2)/2+m with positive constants M ′ and m. Since the

technique of the proof of Lemma 9.2(ii) is applicable to εf − εb0, we have

y(k−2)/2|εf−εb0| = O(e−By) as y →∞ with some B > 0. Observe that εb0 is

a function of the same type as b0 with (k−2, λ+2−k) in place of (k, λ). These

are applicable to ε(f‖kα) with any α ∈ SL2(Q). Since ε(f‖kα) = (εf)‖k−2 α

by (6.14a), we see that εf is slowly increasing at every cusp. Thus εf ∈
Ak−2(Γ, λ−k+2), which is (i). The proof of (ii) can be given in a similar way.

Suppose f ∈ Sk(Γ, λ). Then b0 = 0, and so |y(k−2)/2(εf)‖k−2 α| = O(e−By)

as y → ∞. Thus εf is rapidly decreasing at every cusp, and the same is

true with δkf. This proves (iii). To prove (iv), let 0 �= f ∈ Sk(Γ, λ). Then,

by (6.19), λ〈f, f〉 = 〈f, Lkf〉 = 〈Lkf, f〉 = λ̄〈f, f〉; also, 〈f, Lkf〉 ≥ 0 by

(6.20). Therefore, in view of Lemma 9.2(iv) we obtain (iv). This completes

the proof.

Returning to Corollary 6.9(ii), we see that the assumption on εf is unnec-

essary in view of (iii) of the above lemma.

Theorem 9.4. The vector space Ak(Γ, λ) is finite-dimensional.



9. EISENSTEIN SERIES AS AUTOMORPHIC EIGENFORMS 71

Proof. We first note that given 0 < r < 1 and two positive integers a

and p, we have

(9.16)

∞∑
m=p

maxm ≤ Ca,rp
axp for 0 ≤ x ≤ r

with a constant Ca, r independent of p and x. Indeed,
∞∑

m=p

maxm−p =
∞∑
n=0

(n+ p)axn ≤
a∑

i=0

(
a
i

)
pa−i

∞∑
n=0

nirn

for 0 ≤ x ≤ r, which proves (9.16). Next, take a finite subset X of Γ (1) such

that H =
⋃
ΓXT with T =

{
x + iy ∈ C

∣∣ |x| ≤ 1/2, y > 1/2
}
, as we did

in the proof of Lemma 6.4. By Lemma 9.2(iii) and Lemma 6.4(v), |yk/2f | is
bounded on H. Given f ∈ Sk(Γ, λ) and ξ ∈ X, put Mf = Maxz∈H|yk/2f(z)|
and f‖k ξ =

∑
0�=h∈rZ bh,ξWk(hy, λ)e(hx) with the same r for all ξ ∈ X

and all f ∈ Sk(Γ, λ). Since |yk/2(f‖kξ)| = |(yk/2f) ◦ ξ| ≤Mf , from (9.9) we

obtain yk/2|bh,ξWk(hy, λ)| ≤Mf . Dividing this by (9.14) and employing the

technique of a few lines below (9.14), we find that |bh,ξ| ≤ BMf |h|k/2 with

a constant B independent of h, ξ, and f. Fix an integer p > 1 and suppose

bh,ξ = 0 for all ξ ∈ X and all h such that |h| < rp. Then by (9.15),

|yk/2(f‖kξ)| ≤ yk/2
∑
|h|≥p

|bh,ξWk(hy, λ)| ≤ DMf

∑
|h|≥rp

|h|k/2e−2π|h|y

for y > 1/2 with a constant D independent of f and ξ. The last sum is

majorized by 2ra
∑∞

m=p m
ae−2πrmy with a positive integer a ≥ k/2. By (9.16)

this is ≤ 2raCpae−2πrpy for y > 1/2 with some C independent of p. Thus

(9.17) |yk/2(f‖kξ)| ≤ 2raCDMfp
ae−2πrpy for y > 1/2.

Now, given z ∈ H, take γ ∈ Γ, ξ ∈ X, and w ∈ T so that z = γξw. Then

|yk/2f(z)| = |yk/2f(γξw)| = |vk/2(f‖kξ)(w)|, where v = Im(w). Therefore,

by (9.17) we have

(9.17a) |yk/2f(z)| ≤ 2raCDMfp
ae−2πrpv ≤ 2raCa,1DMfp

ae−πrp,

since v > 1/2. The last quantity of (9.17a) tends to 0 as p → ∞. Thus if p

is sufficiently large, we obtain Mf = 0. This means that for f ∈ Sk(Γ, λ) if

bh,ξ = 0 for all ξ ∈ X and all h such that |h| < rp with a large enough p,

then f = 0. This shows that dim
[
Sk(Γ, λ)

]
is finite. Since an element of

Ak(Γ, λ)/Sk(Γ, λ) is determined by the constant terms of f‖kξ for all ξ ∈ X,

we see that dim
[
Ak(Γ, λ)/Sk(Γ, λ)

] ≤ 2#(X). This proves our theorem.

9.5. So far it was unnecessary to specify a branch of jkα for an arbitrary α

in SL2(Q) when k /∈ Z, but in the following treatment, that is not satisfactory.

To make it more specific, for a weight k we define a group Gk as follows:

Gk = SL2(Q) if k ∈ Z. If k /∈ Z, Gk consists of all couples (α, q), where
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α ∈ SL2(Q) and q is a holomorphic function on H such that q(z)2 = tjα(z)
2k

with a root of unity t. We make Gk a group by the law of multiplication

(9.18) (α, q)(α′, q′) =
(
αα′, q(α′z)q′(z)

)
.

We define a projection map pr : Gk → SL2(Q) by pr(α, q) = α if k /∈ Z, and

take the identity map to be pr if k ∈ Z. We put Pk =
{
α ∈ Gk

∣∣pr(α) ∈ P
}
.

(This is different from what was defined in Lemma 2.2(iii), since we are in the

one-dimensional case.) Notice that Pk is isomorphic to P ×T0, where T0 is

the group of all roots of unity. Thus Pk is commutative.

If Γ is a congruence subgroup of Γ θ, then the map γ �→ (γ, jkγ ) for k /∈ Z

with jkγ as in (5.1b) is an injection of Γ into Gk. We identify Γ with its image

under this map, and view Γ as a subgroup of Gk.

For ξ = (γ, q) ∈ Gk, z ∈ H, and a function f on H we put aξ = aγ , bξ =

bγ , cξ = cγ , dξ = dγ , j
k
ξ (z) = q(z), ξz = γz, and

(9.19) (f‖kξ)(z) = q(z)−1f(γz).

From (9.18) we easily obtain

(9.19a) f‖k(ξη) = (f‖kξ)‖kη.
We also define elements ξ∗ of Gk−2 and ξ∗ of Gk+2 by

(9.20) ξ∗ = (γ, qj−2
γ ), ξ∗ = (γ, qj2γ).

Then from (6.14a, b) we obtain

(9.21) ε(f‖kξ) = (εf)‖k−2ξ∗, δk(f‖kξ) = (δkf)‖k+2ξ
∗.

We easily see that (6.12) is valid for α ∈ Gk. Also, we have

(9.21a) Let the notation be as in Theorem 7.5, and let Φ be a subfield of

C containing Qab. Then Xk(Φ) is stable under the map f �→ f‖kξ
for every ξ ∈ Gk.

This follows immediately from Theorem 7.5(iii).

By a congruence subgroup of Gk we mean a subgroup Γ of Gk that

contains Γ (N) (viewed as a subgroup of Gk) for some even N as a subgroup

of finite index, and such that pr restricted to Γ is injective. For such a Γ

and ξ ∈ Gk we see that ξΓξ−1 is a congruence subgroup of Gk. This follows

from Theorem 4.7(4).

Given a congruence subgroup Γ of Gk, we can define Ak(Γ, λ) by (9.1a,

b, c). If Γ (N) ⊂ Γ as above, then Ak(Γ, λ) ⊂ Ak

(
Γ (N), λ

)
, and so what

we have done in §9.1 is applicable to the elements of Ak(Γ, λ); also, Sk(Γ, λ)

can be defined in an obvious fashion. Lemma 9.2 and Theorem 9.4 are valid

in this generalized sense. In Lemma 9.3 we take Γ∗ =
{
ξ∗

∣∣ ξ ∈ Γ
}

and

Γ ∗ =
{
ξ∗

∣∣ ξ ∈ Γ
}
. These are congruence subgroups of Gk−2 and Gk+2.
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We note here an alternative way of treating factors of automorphy of non-

integral weight. In [S74] we developed an axiomatic (and algebraic) theory

of automorphic forms of an arbitrary weight. The advantage of this method

is that we can prove a certain trace formula for Hecke operators, which is

quite practicable. Indeed, in [N77] Niwa computed the traces of some Hecke

operators of half-integral weight, and investigated the structure of Hecke alge-

bras effectively. Though we do not discuss this theory here, those researchers

interested in the computation of the trace of a Hecke operator of half-integral

weight may be encouraged to look at [S74].

9.6. Given a congruence subgroup Γ of Gk, we put Γ∞ = Pk ∩ Γ and

(9.22) Ek(z, s; Γ ) =
∑

α∈Γ∞\Γ
ys‖k α,

where z ∈ H, s ∈ C, and y = Im(z); we assume that jkγ = 1 for γ ∈ Γ∞.

Then the sum of (9.22) is formally well defined, and convergent for Re(s) >

1− k/2 by Lemma 8.7. This series is called the Eisenstein series of Γ.

Let Γ ′ be a congruence subgroup of Gk contained in Γ, and let Γ ′∞ =

Γ ′ ∩ Pk. Then we easily see that

(9.23) [Γ∞ : Γ ′∞]Ek(z, s; Γ ) =
∑

α∈Γ ′\Γ
Ek(z, s; Γ

′)‖k α.

Take a multiple N of 4 so that Γ (N) ⊂ Γ. Let Ψk be the set of all characters

ψ modulo N such that ψ(−1) = (−1)[k]. Then we easily see that

(9.24) 2#(Ψk)Ek

(
z, s; Γ (N)

)
=

∑
ψ∈Ψk

Ek

(
z, s; Γ (N, N), ψ

)
.

This combined with (9.23) reduces the problems on analytic properties of

Ek(z, s; Γ ) to those of Ek

(
z, s; Γ (N, N), ψ

)
. Therefore from Theorems 8.12

and 8.14 we see that Ek(z, s; Γ ) can be continued as a meromorphic function

of s to the whole complex plane. We will give more precise statements in

Theorem 9.9.

In view of (9.21) we can easily verify, by termwise differentiation, that

(9.25a) εEk(z, s; Γ ) = (−si/2)Ek−2(z, s+ 1; Γ∗),

(9.25b) δkEk(z, s; Γ ) =
(− (s+ k)i/2

)
Ek+2(z, s− 1; Γ ∗),

(9.25c) LkEk(z, s; Γ ) = s(1− k − s)Ek(z, s; Γ ).

Strictly speaking, termwise differentiation is first justified for sufficiently large

Re(s), but meromorphic continuation of both sides guarantees the equalities

on the whole s-plane. For more details, see the paragraph below (8.20).

Given a congruence subgroup Γ of Gk, the projection map pr gives a

bijection of Pk\Gk/Γ onto P\SL2(Q)/pr(Γ ), which corresponds to the pr(Γ )-

equivalence classes of cusps as observed in §6.3. We call each coset PkξΓ
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with ξ ∈ Gk a cusp-class of Γ, and call it regular if jkη = 1 for every

η ∈ Pk ∩ ξΓξ−1. This is the condition on PkξΓ, and is independent of the

choice of ξ. Then Ek(z, s; ξΓξ−1) is well defined.

Lemma 9.7. Let Γ be a congruence subgroup of Gk, Ỹ a complete set of

representatives for Pk\Gk/Γ, and Y the set of all ξ ∈ Ỹ such that PkξΓ is

regular. Then the following assertions hold:

(i) Let f ∈ Ak(Γ, λ) and ξ ∈ Ỹ . Then the Fourier expansion of f‖kξ−1

has a nontrivial constant term only if ξ ∈ Y.

(ii) For ξ, η ∈ Y we have

Ek(z, s; ξΓξ−1)‖kξη−1 = δξηy
s + fξη(s)y

1−k−s +
∑

0�=h∈pZ
gξη(h, s, y)e(hx),

where δξη is Kronecker’s delta, fξη and gξη are meromorphic functions in s,

and 0 < p ∈ Q.

Proof. Put Γξ = ξΓξ−1. Let α ∈ Pk ∩ Γξ and β = pr(α). Then β ∈
P ∩pr(Γξ), and so β = ±

[
1 b
0 1

]
with b ∈ Q. Thus ys‖k α = (jkα)

−1ys. Since

f‖k ξ−1α = f‖k ξ−1 in the setting of (i), f‖k ξ−1 has a nontrivial constant

term only if jkα = 1. This proves (i). To prove (ii), for a ∈ Q define an element

r(a) of Pk by

(9.26) r(a) =

([
1 a
0 1

]
, 1

)
.

Then r(Q) ∩ Γξ = r(qZ) with 0 < q ∈ Q. (This is because Γ (N) ⊂ Γ for

some even N.) Take a subset Φ of Γ so that 1 /∈ Φ and Φ ∪ {1} is a complete

set of representatives for (Pk ∩Γξ)\Γξ/r(qZ). Then 1 and the elements ϕr(a)

with ϕ ∈ Φ and a ∈ qZ represent (Pk ∩ Γξ)\Γξ without overlap. Therefore

Ek(z, s; Γξ) = ys +
∑
ϕ∈Φ

∑
m∈Z

ys‖k ϕr(qm).

For a fixed ϕ ∈ Φ put c = cϕ and d = dϕ. Then c �= 0 and jkϕ(z)/(cz+ d)k ∈
T, and so∑

m∈Z
ys‖k ϕr(qm) = tysc−2s−k

∑
m∈Z

(z + c−1d+ qm)−s−k(z̄ + c−1d+ qm)−s

with an element t ∈ T determined by ϕ. By Lemma A2.3 of the Appendix

the last sum over Z has an expansion of the form

i−k(2π/q)2s+k
∑
n∈Z

e
(
q−1n(x+ c−1d) + q−1|n|iy)gn(q−1y; s+ k, s)

with gn as in (A2.4). For n = 0, from (A2.4) we obtain y1−2s−kh(s) with

a meromorphic function h(s). Multiplying by tysc−2s−k and taking the sum

over all ϕ ∈ Φ, we obtain the Fourier expansion of Ek(z, s; Γξ) as stated in

our lemma in the case ξ = η.
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Next, let ξ �= η ∈ Y. Let Z be a complete set of representatives for (Pk ∩
Γξ)\ξΓη−1/

(
r(Q) ∩ Γη

)
. Then the elements ζr(a) with ζ ∈ Z and r(a) ∈

r(Q)∩Γη represent (Pk∩Γξ)\ξΓη−1 without overlap, because of the following

simple fact:

(9.27) If α ∈ SL2(Q) and α

[
1 x
0 1

]
α−1 ∈ P with x ∈ Q×, then α ∈ P.

Indeed, suppose x �= 0 and α

[
1 x
0 1

]
α−1 =

[
v−1 u
0 v

]
. Then cα = vcα and

cαx + dα = vdα. If cα �= 0, then v = 1 and x = 0, a contradiction. This

proves (9.27). Therefore the same argument as above establishes the Fourier

expansion of Ek(z, s; Γξ)‖kξη−1; the only new feature is that ys does not

appear. This proves (ii) and completes the proof.

Lemma 9.8. Let Q be a finite set of functions q(z, s) of the form q(z, s)

= E(z, s)‖k α with E of type (8.12a) or (9.22) and α ∈ Gk, and let g(z, s) =∑
q∈Q fq(s)q(z, s) with meromorphic functions fq on C. Then, for every s0 ∈

C there exists an integer m and a neighborhood V of s0 such that (s −
s0)

mg(z, s) is a real analytic function on H × V that is holomorphic in s,

and, as a function of z, is slowly increasing at every cusp, locally uniformly

in s ∈ V. In particular, if g is finite at s = s0, then g(z, s0) is an element

of Ak(λ) with λ = s0(1− k − s0).

Proof. In view of (9.23) and (9.24), it is sufficient to prove our lemma

when q = E‖kα with a function E of type (8.12). Then our first assertion

follows immediately from Theorems 8.12 and 8.14. From (9.25c) and (6.14d)

we obtain Lkg(z, s) = s(1− k− s)g(z, s), and so Lkg(z, s0) = λg(z, s0) with

λ = s0(1−k−s0) if g is finite at s = s0. Moreover, those theorems show that

m and V can be taken in such a way that (s−s0)
mg(z, s) is slowly increasing

at every cusp, locally uniformly in s ∈ V. This shows that g(z, s0), if finite,

belongs to Ak(λ). This proves our lemma.

Theorem 9.9. Given a congruence subgroup Γ of Gk, there exist a non-

zero entire function A(s) and a real analytic function B(z, s) on H×C holo-

morphic in s such that A(s)Ek(z, s; Γ ) = B(z, s). Moreover, Ek(z, s; Γ )

is holomorphic in s except at the points given in (1), (2), (1′), (2′), and (3′)
below, and E0(z, s; Γ ) has a pole as described in (4).

(1) k ∈ Z and −k/2 ≤ Re(s) < (1− k)/2.

(2) k ∈ Z and s is an integer such that s ≤ −(k + ν)/2, where ν is 0 or

1 determined by k + ν ∈ 2Z.

(1′) k /∈ Z and (1− 2k)/4 ≤ Re(s) < (1− k)/2.

(2′) k /∈ Z and s is an element of 4−1Z such that 0 ≥ 2s+ k − 1/2 ∈ Z.

(3′) k /∈ Z and |k| − 1/2 ∈ 2Z; then Ek(z, s; Γ ) has at most a simple pole

at s = (3− 2k)/4.
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(4) If k = 0, then E0(z, s; Γ ) has a simple pole at s = 1, and the residue

is π−1 times a positive rational number.

Proof. By (9.23) and (9.24) our problem can be reduced to the func-

tions of type (8.12). Therefore the existence of A(s) and B(z, s) follows from

Theorems 8.12 and 8.14 combined with those formulas.

Suppose k ∈ Z. We employ Theorem 8.12 and (8.18), which involves a

character ψ such that ψ(−1) = (−1)k. Thus ψ(−1) = (−1)ν with ν as in

(2). Let ψ′ be the primitive character associated with ψ. It is well known

that L(s, ψ′) can be 0 only if 0 < Re(s) < 1 or 0 ≥ s + ν ∈ 2Z. We have

LN(2s + k, ψ) in (8.18), and so we have to consider 1 − ψ′(p)p−2s−k, which

becomes 0 only if Re(2s + k) = 0. Therefore LN(2s + k, ψ) = 0 only if

−k/2 ≤ Re(s) < (1− k)/2 or 0 ≥ 2s+ k + ν ∈ 2Z. Thus, from (8.18), (9.23),

and (9.24) we see that Ek(z, s; Γ ) is finite except at the points of (1) and (2).

Suppose k = 0; then EN
0 (z, s; χ0) = 2ζ(2s)E0

(
z, s; Γ (1)

)
by (8.18), where

χ0 is the principal character. From Theorem 8.12 we see that E0

(
z, s; Γ (1)

)
has a simple pole at s = 1 with residue π/[2ζ(2)], which equals 3/π. This

combined with (9.23) proves (4).

Next suppose k /∈ Z.We employ Theorem 8.14, in which LN (4s−1+2k, ψ2)

appears. In this case N > 1. For the same reason as in the case k ∈ Z we see

that it becomes 0 only if (1− 2k)/4 ≤ Re(s) < (1−k)/2 or 0 ≥ 4s− 1+2k ∈
2Z. Also, a factor 2s− λ − 1 appears in Theorem 8.14, where λ = 1/2− k.

This is necessary only if |k|+1/2 is odd. Thus Ek(z, s; Γ ) may have a simple

pole at s = (3 − 2k)/4 if |k| + 1/2 is odd. Therefore we have conditions

(1′), (2′), and (3′) when k /∈ Z. This completes the proof.

9.10. Let Γ be a congruence subgroup of Gk and X a finite subset of Gk

such that Gk =
⊔

ξ∈X ΓξPk. (This is consistent with (6.10). Then we can

take Ỹ =
{
ξ−1

∣∣ ξ ∈ X
}
in Lemma 9.7.) Let f ∈ Ak(Γ, λ) and g ∈ Ak(Γ, μ).

Assuming that both λ and μ are noncritical, denote by {p}λ the set {p, q}
with p, q such that p+ q = 1− k and pq = λ. Then for each ξ ∈ X we put

(9.28a) f‖kξ =
∑

p∈{p}λ
ap,ξy

p + nonconstant terms,

(9.28b) g‖kξ =
∑

p∈{p}μ
bp,ξy

p + nonconstant terms

with ap,ξ, bp,ξ ∈ C. If both λ and μ are critical, we put

(9.28c) f‖kξ = aξy
p + a′ξy

p log y + nonconstant terms,

(9.28d) g‖kξ = bξy
p + b′ξy

p log y + nonconstant terms

with aξ, bξ, a
′
ξ, b

′
ξ ∈ C, where p = (1−k)/2.We also put Qξ = P ∩pr(ξ−1Γξ)

and R =
⋂

ξ∈X Qξ.
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Theorem 9.11. With f and g as above, suppose μ = λ̄ and λ is not

critical. Fix one p ∈ {p}λ and put q = 1− k − p. Then

(9.29a)
∑
ξ∈X

νξ(āp,ξbq̄,ξ − āq,ξbp̄,ξ) = 0,

where νξ =
[{±1}Qξ : {±1}R

]−1
. If λ = μ and λ is critical, then

(9.29b)
∑
ξ∈X

νξ(āξb
′
ξ − ā′ξbξ) = 0.

Proof. The idea of the proof is the same as in the proof of Theorem 6.8.

Define Tr and Mr as in (6.17), and take a sufficiently large r so that the sets

ξ(Qξ\Tr) for ξ ∈ X can be embedded into Γ\H without overlap. Also, take a

union J of small neighborhoods of elliptic fixed points on Γ\H. Let K be the

complement of
⋃

ξ∈X ξ(Qξ\Tr) ∪ J in Γ\H. Then K is a compact manifold

with boundary, and

∂K =
∑
ξ∈X

ξ(Qξ\Mr)− ∂J.

Let ϕ be a 1-form on H that is C∞ and Γ -invariant. Then

(9.30)

∫
K

dϕ =

∫
∂K

ϕ =
∑
ξ∈X

νξ

∫
Br

ϕ ◦ ξ −
∫
∂J

ϕ,

where Br = R\Mr with a natural orientation. Take ϕ = f̄ · εg · yk−2dz̄. Then

by (6.18) with εg as h, we have

dϕ = (2i)−1f̄ · Lkg · ykdz + 2iεf · εg · yk−2dz

with dz viewed as a 2-form. Putting similarly ψ = ḡ · εf · yk−2dz̄, we find

that

dϕ+ dψ = (2i)−1(f̄ · Lkg − Lkf · g)ykdz = 0,

since Lkf = λf and Lkg = λ̄g. Applying (9.30) to this form, we obtain∑
ξ∈X

νξ

∫
Br

(ϕ + ψ̄) ◦ ξ −
∫
∂J

(ϕ+ ψ̄) = 0.

We now take the expansions (9.28a, b) into consideration. We have ϕ ◦ ξ =

f‖k ξ ·ε(g‖k ξ)yk−2dz̄, and a similar formula holds for ψ̄ ◦ ξ. Fix one p ∈ {p}λ
and put q = 1− k − p. Then for μ = λ̄ we have {p}μ = {p̄, q̄}, and so

2iϕ ◦ ξ = (āp,ξy
p̄ + āq,ξy

q̄)(p̄bp̄,ξy
p̄+1 + q̄bq̄,ξy

q̄+1)yk−2dz̄

+ nonconstant terms,

− 2iψ̄ ◦ ξ = (bp̄,ξy
p̄ + bq̄,ξy

q̄)(p̄āp,ξy
p̄+1 + q̄āq,ξy

q̄+1)yk−2dz

+ nonconstant terms.

Since
∫
Br

ys(dx ± dy) = − ∫ h

0 rsdx with a constant h > 0 independent of ξ,

we have
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∫
Br

2i(ϕ+ ψ̄) ◦ ξ = (p̄− q̄)(āp,ξbq̄,ξ − āq,ξbp̄,ξ)

∫ h

0

dx+ nonconstant terms.

By Lemma 9.2(ii) the sum of the nonconstant terms of (9.28a, b, c, d) are

O(e−cy) as y → ∞ with some c > 0, and so the same is true for the non-

constant terms of ϕ ◦ ξ and ψ̄ ◦ ξ, and even for their integrals over Br. We

have q − p = 1 − k − 2p �= 0, since λ is noncritical. Therefore, taking the

limit as r →∞ and making J shrink to the elliptic points, we obtain (9.29a).

When λ is critical, the constant terms involving log y cancel each other, and

so equality (9.29b) can be proved in a similar way. Our proof is now complete.

9.12. We put

(9.31a) Nk(λ) =
{
g ∈ Ak(λ)

∣∣ 〈f, g〉 = 0 for every f ∈ Sk(λ)
}
,

(9.31b) Nk(Γ, λ) =
{
g ∈ Ak(Γ, λ)

∣∣ 〈f, g〉 = 0 for every f ∈ Sk(Γ, λ)
}
,

where Γ is a congruence subgroup of Gk. The inner product 〈f, g〉 is mean-

ingful in view of (9.1c), Lemma 9.2(iii), and what we said in §6.5. From (6.12)

we see that Nk(λ)‖k α = Nk(λ) for every α ∈ Gk. We have also

(9.32a) Ak(λ) = Sk(λ) ⊕Nk(λ),

(9.32b) Ak(Γ, λ) = Sk(Γ, λ)⊕Nk(Γ, λ),

(9.33) Nk(Γ, λ) = Nk(λ) ∩ Ak(Γ, λ).

Indeed, (9.32b) is easy, since Ak(Γ, λ) is of finite dimension, as proved in

Theorem 9.4. Clearly the left-hand side of (9.33) contains the right-hand

side. To prove the opposite inclusion, let g ∈ Nk(Γ, λ) and f ∈ Sk(λ). Take

a normal congruence subgroup Δ of Γ so that f ∈ Sk(Δ, λ). By (9.32b),

g = p + q with p ∈ Sk(Δ, λ) and q ∈ Nk(Δ, λ). For γ ∈ Γ we have

g = g‖k γ = p‖k γ + q‖k γ. We easily see that p‖k γ ∈ Sk(Δ, λ) and q‖k γ ∈
Nk(Δ, λ) by virtue of (6.12), and so (9.32b) with Δ in place of Γ shows

that p‖k γ = p and q‖k γ = q, and so p ∈ Sk(Γ, λ) and q ∈ Nk(Γ, λ). By

(9.32b), g = q ∈ Nk(Δ, λ), and so 〈g, f〉 = 0, which shows that g ∈ Nk(λ).

This proves (9.33). Since Ak(λ) is the union of Ak(Γ, λ) for all Γ, we obtain

(9.32a) from (9.32b) and (9.33).

9.13. Lemma 9.8 shows that a function of type Ek(z, s; Γ )‖kα, if finite,
belongs to Ak(λ) with λ = s(1−k−s).We are going to show that the function

actually belongs toNk(λ), and moreover,Nk(λ) is generated by such functions

for almost all values of λ.

To prove the first statement, given f ∈ Sk(λ1) with any λ1 ∈ C, take an

even integer N > 2 so that f ∈ Sk

(
Γ (N), λ1). We have expansion (9.10)

with r = 1/N. Since the constant term of f is 0, we have
∫ N

0 f(z)dx = 0, and

so
∫∞
0

∫ N

0 f(z)dx ys+k+2dy = 0. Let Γ (N)∞ = Pk ∩ Γ (N), Ψ = Γ (N)∞\H,
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and Φ = Γ (N)\H. Then we see that
∫∞
0

∫ N

0 · · · y−2dxdy =
∫
Ψ · · ·dz. Since

Ψ can be given by
⊔

γ∈R γΦ with R = Γ (N)∞\Γ (N), we have by Rankin’s

transformation, at least formally,

0 =

∫
Ψ

f(z)ys+kdz =
∑
γ∈R

∫
Φ

(
f̄ys+k

) ◦ γdz
=

∫
Φ

f(z)
∑
γ∈R

jkγ (z)|jγ(z)|−2s−2kys+kdz =

∫
Φ

f(z)Ek

(
z, s; Γ (N)

)
ykdz.

This can be justified for sufficiently large Re(s). Indeed, Ek

(
z, s; Γ (N)

)
is

majorized by

yσ
∑
γ∈R

|jγ(z)|−2σ = E0

(
z, σ; Γ (N)

)
for σ ∈ R, which, if finite, is slowly increasing at every cusp. Since f,

being an element of Sk(λ1), is rapidly decreasing at every cusp, our formal

calculation is justified for sufficiently large σ. Combining this with (9.23), for

every f ∈ Sk(λ1) and every congruence subgroup Γ of Gk we have

(9.34)

∫
Γ\H

f(z)Ek(z, s; Γ )ykdz = 0

at least for sufficiently large Re(s). By Lemma 9.8, for every s0 ∈ C there is an

integer m and a neighborhood V of s0 such that (s−s0)mEk(z, s; Γ ) is slowly

increasing at every cusp, locally uniformly in s ∈ V. Therefore the left-hand

side of (9.34) is meaningful as a meromorphic function of s on the whole C,

and also is valid whenever Ek(z, s; Γ ) is finite at s. Thus Ek(z, s; Γ ), if finite

at s, belongs to Nk(λ1) with any λ1 ∈ C. For the moment λ1 is unrelated to

s, but we will eventually take λ1 = s(1− k − s).

9.14. Let Γ be a congruence subgroup of Gk. Taking Y as in Lemma 9.7,

we denote by Ek(Γ ) the C-linear span of Ek(z, s; ξΓξ−1)‖k ξ for all ξ ∈ Y.

Given s0 ∈ C, we denote by Ek[s0, Γ ] the subset of Ek(Γ ) consisting of all

g(z, s) in Ek(Γ ) that are finite at s = s0, and put Ek(s0, Γ ) =
{
g(z, s0)

∣∣
g ∈ Ek[s0, Γ ]

}
. We also denote by E∗k[s0, Γ ] the set of all g ∈ Ek(Γ ) that

have at most a simple pole at s0, and by E∗k(s0, Γ ) the set of the residues at

s0 of the elements of E∗k[s0, Γ ]. Let us now prove

(9.35) Ek(s0, Γ ) + E∗k(s0, Γ ) ⊂ Nk(Γ, λ) with λ = s0(1− k − s0).

Indeed, from Lemma 9.8 it follows that both Ek(s0, Γ ) and E∗k(s0, Γ ) are

contained in Ak(Γ, λ). Now the elements of Ek(Γ ) are functions of the type

g(z, s) of Lemma 9.8, and so formula (9.34) can be generalized to

(9.36)

∫
Γ\H

f(z)g(z, s)ykdz = 0

for every f ∈ Sk(λ1) with any λ1 ∈ C in the sense that the left-hand side is

meromorphic in s on the whole C, and is valid whenever g(z, s) is finite at
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s. This shows that Ek(s0, Γ ) ⊂ Nk(Γ, λ). Considering (s− s0)g instead of g,

we see similarly that E∗k(s0, Γ ) ⊂ Nk(Γ, λ), and so we obtain (9.35).

Lemma 9.15. (i) The symbols being as in §9.14, we have dimEk(Γ ) = #Y.

(ii) The map g(z, s) �→ g(z, s0) is a bijection of Ek[s0, Γ ] onto Ek(s0, Γ ),

provided s0 �= (1 − k)/2.

(iii) Ek(Γ ) = Ek[s0, Γ ] if Re(s0) ≥ (1 − k)/2 except in the following two

cases: (a) s0 = 1 and k = 0; (b) s0 = (3− 2k)/4 and |k| − 1/2 ∈ 2Z.

Proof. Let g(z, s) =
∑

ξ∈Y cξEk(z, s; ξΓξ−1)‖k ξ with cξ ∈ C. Suppose

g ∈ Ek[s0, Γ ]. Then from Lemma 9.7 we obtain, for every η ∈ Y,

g(z, s0)‖k η−1 = cηy
s0 +

(∑
ξ∈Y

cξfξη

)
(s0)y

1−k−s0 + · · · .

If s0 �= (1 − k)/2, then s0 �= 1 − k − s0, and so if g(z, s0) = 0, we have

cη = 0 for every η ∈ Y. This proves (ii). In particular, if g = 0, then cξ = 0

for every ξ ∈ Y, which proves (i). Assertion (iii) follows immediately from

Theorem 9.9.

Theorem 9.16. (i) The notation being as in §9.14, suppose that Ek(Γ ) =

Ek[s0, Γ ] = Ek[s̄0, Γ ] and s0 �= (1 − k)/2; let λ = s0(1 − k − s0). Then

Nk(Γ, λ) = Ek(s0, Γ ) and dimNk(Γ, λ) = #Y.

(ii) In the setting of (i) let f ∈Ak(Γ, λ) and f‖k ξ−1=aξy
s0 + a′ξy

1−k−s0+

nonconstant terms. If aξ = 0 for every ξ ∈ Y, then f is a cusp form.

Proof. Given f ∈ Ak(Γ, λ) and g ∈ Ak(Γ, λ̄), for each ξ ∈ Y put

f‖k ξ−1 = aξy
s0 + a′ξy

1−k−s0 + nonconstant terms,

g‖k ξ−1 = bξy
s̄0 + b′ξy

1−k−s̄0 + nonconstant terms.

(We can consider such expansions even for ξ ∈ Ỹ , but the constant term is

0 by Lemma 9.7(i) if ξ /∈ Y.) By Theorem 9.11 (with X =
{
ξ−1

∣∣ ξ ∈ Ỹ
}
) we

have

(9.37)
∑
ξ∈Y

νξ−1

(
aξ b̄

′
ξ − a′ξ b̄ξ

)
= 0,

where ν∗ is as in that theorem. Moreover, the map

(9.38) f �→ (aξ, a
′
ξ)ξ∈Y

gives an injection of Ak(Γ, λ)/Sk(Γ, λ) into C2κ, where κ = #Y. A sim-

ilar statement holds with λ̄ in place of λ. By Lemma 9.15 and our as-

sumption, dimEk(s0, Γ ) = dimEk(s̄0, Γ ) = κ. Each nonzero element g

of Ek(s̄0, Γ ) defines a nontrivial linear relation on (aξ, a
′
ξ) by (9.37), since

Ek(s̄0, Γ ) ∩ Sk(λ̄) = {0} by (9.32b) and (9.35). Therefore the elements

of Ek(s̄0, Γ ) produce κ linearly independent relations on (aξ, a
′
ξ), which
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means that dimNk(Γ, λ) = dim
[
Ak(Γ, λ)/Sk(Γ, λ)

] ≤ κ. Since Ek(s0, Γ ) ⊂
Nk(Γ, λ), this proves (i).

Let f be as in (ii). By (i) we can put f(z) = g(z, s0) + h(z) with g ∈
Ek(s0, Γ ) and h ∈ Sk(Γ, λ). Take this g as g in the proof of Lemma 9.15.

Then our assumption aξ = 0 means cξ = 0 in that lemma, and so g = 0.

This proves (ii).

Theorem 9.17. The notation being as in §9.14, define a CY -valued func-

tion Ek on H × C by Ek(z, s; Γ ) =
(
Ek(z, s; ξΓξ−1)‖k ξ

)
ξ∈Y . Then there

exists an End(CY )-valued meromorphic function Φk(s, Γ ) such that

(9.39a) Ek(z, s; Γ ) = Φk(s, Γ )Ek(z, 1− k − s; Γ ),

(9.39b) Φk(1− k − s, Γ )Φk(s, Γ ) = 1.

Moreover, there is a diagonal element A of End(CY ), depending only on Γ

and Y, whose diagonal entries are positive integers such that

(9.39c) Φk(s, Γ )A · tΦk(1− k − s̄, Γ ) = A.

Proof. Put Γξ = ξΓξ−1 and Eξ(s) = Ek(z, s; Γξ)‖k ξ. By Lemma 9.7,

for ξ, η ∈ Y we have

(9.40a) Eξ(s)‖k η−1 = δξηy
s + fξη(s)y

1−k−s + · · ·
with meromorphic functions fξη on C, and so

(9.40b) Eξ(1− k − s)‖k η−1 = δξηy
1−k−s + fξη(1− k − s)ys + · · · .

Therefore

(9.41)

{
Eξ(1− k − s)−

∑
ζ∈Y

fξζ(1− k − s)Eζ(s)

}
‖k η−1

= 0 · ys +
{
δξη −

∑
ζ∈Y

fξζ(1− k − s)fζη(s)

}
y1−k−s + · · · .

We can easily find a nonempty open subset W of C such that Ek(Γ ) =

Ek[s, Γ ] = Ek[s̄, Γ ] = Ek[1 − k − s, Γ ] = Ek[1 − k − s̄, Γ ], fξη(1 − k − s)

is finite, and s �= (1 − k)/2 for every s ∈ W. Then by Theorem 9.16(i) the

left-hand side of (9.41) without ‖k η−1 for such an s belongs to Nk(Γ, λ)

with λ = s(1− k − s). By Theorem 9.16(ii) it must be a cusp form, and so∑
ζ∈Y

fξζ(1− k − s)fζη(s)= δξη and Eξ(1− k − s) =
∑
ζ∈Y

fξζ(1− k − s)Eζ(s)

for every s ∈ W. Writing Φk(s, Γ ) for the matrix [fξη(s)], we obtain (9.39a,

b). Next, Eξ(1− k− s̄) belongs to Ak(Γ, λ̄), and so from (9.37), (9.40a), and

(9.40b) with ζ in place of ξ we obtain∑
η∈Y

νη−1

(
δξηδζη − fξη(s)fζη(1− k − s̄)

)
= 0.
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Let A = diag[νη−1 ]η∈Y . Viewing this as an element of End(CY ), we obtain

(9.39c). This completes the proof.

Theorem 9.18. The notation being as in Theorem 9.17, suppose λ =

μ2 with μ = (1 − k)/2. Given a congruence subgroup Γ of Gk, let E′k(Γ )

denote the space spanned by (∂g/∂s)
(
z, μ

)
for g ∈ Ek[μ, Γ ] and E0

k(Γ ) the

space consisting of (∂g/∂s)
(
z, μ

)
for all g ∈ Ek[μ, Γ ] such that g(z, μ) = 0.

Further let κ+ resp. κ− be the multiplicity of 1 resp. −1 in the eigenvalues of

Φk(μ, Γ ). Then #Y = κ+ + κ−, dimEk(μ, Γ ) = κ+, dimE0
k(Γ ) = κ−, and

E′k(Γ ) ⊂ Nk(Γ, λ) = Ek(μ, Γ )⊕ E0
k(Γ ).

Moreover, Ek(μ, Γ ) consists of the elements of Nk(Γ, λ) that do not involve

yμ log y.

Proof. Put κ=#Y. By Lemma 9.15(iii), Ek(Γ )=Ek[μ, Γ ] and so every

function appearing in this proof is finite at s= μ; also, dimEk[μ, Γ ] = κ by

Lemma 9.15(i). We easily see that the elements of E′k(Γ ) satisfy (9.1a, b), and

also (9.1c), in view of Lemma 9.8. Also, equality (9.34) holds with an element

g(z, s) of Ek[μ, Γ ] in place of Ek(z, s; Γ ), and the integral is uniformly conver-

gent in a neighborhood of s=μ. Therefore we see that (∂g/∂s)(z, μ)∈Nk(λ),

and so E′k(Γ ) ⊂Nk(Γ, λ). From (9.39b) we obtain Φk(μ, Γ )2 = 1. Thus the

eigenvalues of Φk(μ, Γ ) are ±1. Let Eξ(s) be as in the proof of Theorem 9.17.

Then from (9.40a) we obtain

Eξ(μ)‖k η−1 =
(
δξη + fξη(μ)

)
yμ + · · · ,

(∂Eξ/∂s)(μ)‖k η−1 =
(
δξη − fξη(μ)

)
yμ log y + (dfξη/ds)(μ)y

μ + · · ·
for every ξ, η ∈ Y. Let g(z, s) =

∑
ξ∈Y cξEξ(s) ∈ Ek[μ, Γ ] with cξ ∈C. Put

c = (cξ)ξ∈Y . Then g(z, μ) = 0 if and only if tΦk(μ, Γ )c=−c, which means

that dimEk(μ, Γ ) = κ − κ− = κ+. If
tΦk(μ, Γ )c=−c, then g(z, μ) = 0 and

(∂g/∂s)(z, μ)‖kη−1 = 2cηy
μ log y + bη · yμ + · · · with some bη, which shows

that dimE0
k(Γ )=κ−. Since no element of Ek(μ, Γ ) involves yμ log y, we see

that Ek(μ, Γ ) and E0
k(Γ ) form a direct sum.

Next, the notation being as in (9.28c, d), consider the map f �→ (aξ, a
′
ξ)ξ∈Y

defined for f ∈ Ak(Γ, λ). This sends Ak(Γ, λ) into C2κ with kernel Sk(Γ, λ).

Let d be the dimension of the image space. Then d = dimNk(Γ, λ) and

(9.29b) shows that d ≤ 2κ − d, and so d ≤ κ. Since Ek(μ, Γ ) ⊕ E0
k(Γ ) is

a subspace of Nk(Γ, λ) of dimension κ+ + κ− = κ, we can establish all the

statements of our theorem.

Theorem 9.19. Let λ = s0(1 − k − s0) with s0 ∈ C. The notation being

as in §9.14, suppose that s0 �= (1−k)/2, λ ∈ R, and Ek(Γ ) = E∗k[s0, Γ ]. Then

dimNk(Γ, λ) = #Y and Nk(Γ, λ) = Ek(s0, Γ )⊕ E∗k(s0, Γ ).
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Proof. Put κ = #Y. For p ∈ Ek(Γ ) denote by ρ(p) the residue of p

at s = s0. Then ρ is a C-linear map of Ek(Γ ) onto E∗k(s0, Γ ) with kernel

Ek[s0, Γ ], and so by Lemma 9.15(i,ii), dimEk(s0, Γ )+dimE∗k(s0, Γ ) = κ. Let

h ∈ Ek(s0, Γ ) ∩ E∗k(s0, Γ ). Then h(z) = g(z, s0) = ρ(p) with g ∈ Ek[s0, Γ ]

and p ∈ Ek(Γ ). Put g =
∑

ξ∈Y aξEξ(s) and p =
∑

ξ∈Y bξEξ(s) with aξ, bξ ∈
C and Eξ(s) = Ek(z, s; ξΓξ−1)‖k ξ. By (9.40a) we have, for η ∈ Y,

h‖k η−1 = aηy
s0 +

∑
ξ∈Y

aξfξη(s0)y
1−k−s0 + · · ·

= 0 · ys0 +
∑
ξ∈Y

bξ
[
Ress=s0fξη(s)

]
y1−k−s0 + · · · ,

and so aη = 0 for every η ∈ Y. Thus h = 0, and consequently, Ek(s0, Γ ) and

E∗k(s0, Γ ) form a direct sum of dimension κ. Take again the map of Ak(Γ, λ)

into C2κ with kernel Sk(Γ, λ) given by (9.38). Let m = dimNk(Γ, λ), which

is the dimension of the image space of (9.38). Since λ̄ = λ, relation (9.37)

shows that m ≤ 2κ−m, and so m ≤ κ. We have seen that the left-hand side

of (9.35) has dimension κ, and so we obtain our theorem.

Corollary 9.20. Let Γ and Y be as in Lemma 9.7. Then dimNk(Γ, λ) =

#Y for every λ.

Proof. If λ is critical, this is included in Theorem 9.18. Suppose λ is

not critical. Let s0 be a solution of X2 + (k − 1)X + λ = 0. Then the other

solution is 1−k− s0. Replacing s0 by 1−k− s0 if necessary, we may assume

that Re(s0) ≥ (1 − k)/2. Excluding cases (a) and (b) of Lemma 9.15(iii),

we obtain dimNk(Γ, λ) = #Y from Theorem 9.16. In cases (a) and (b) we

obtain the desired result from Theorem 9.19.

9.21. We now return to holomorphic modular forms on H. Given a congru-

ence subgroup Γ of Gk, we denote by M k(Γ ) resp. S k(Γ ) the set of elements

f of M k resp. S k such that f‖k γ = f for every γ ∈ Γ. This is consistent

with what we already have if k ∈ Z or if k /∈ Z and Γ ⊂ Γ θ. We have then

(9.42a) M k(Γ ) consists of the holomorphic elements of Ak(Γ, 0),

(9.42b) S k(Γ ) = Sk(Γ, 0).

These follow immediately from (9.3) and Lemma 9.2(iv). We put

(9.43a) Ek(Γ ) =
{
f ∈M k(Γ )

∣∣ 〈f, g〉 = 0 for every g ∈ S k(Γ )
}
,

(9.43b) Ek =

∞⋃
N=1

Ek

(
Γ (2N)

)
.

Theorem 9.22. For every congruence subgroup Γ of Gk with k > 0 we

have
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(9.44) Ek(Γ ) = M k(Γ ) ∩Nk(0),

(9.45a) M k = S k ⊕ Ek,

(9.45b) M k(Γ ) = S k(Γ )⊕ Ek(Γ ),

(9.46) Ek(Γ ) = M k(Γ ) ∩ Ek(0, Γ ) if k ≥ 1,

(9.47) Ek(Γ ) = Ek(0, Γ ) if k > 2 or k = 1,

(9.48) E1/2(Γ ) = E∗1/2(1/2, Γ ).

Proof. By (9.42b) the right-hand side of (9.44) is contained in Ek(Γ ).

Conversely, let f ∈ Ek(Γ ) and g ∈ Sk(Γ
′, 0) with any Γ ′ ⊂ Γ. Let R be a

complete set of representatives for Γ ′\Γ. Then by (6.12) we have

[Γ : Γ ′]〈f, g〉 =
∑
α∈R

〈f, g‖k α〉 =
〈
f,

∑
α∈R

g‖k α
〉

= 0,

since
∑

α∈R g‖k α ∈ Sk(Γ, 0) = S k(Γ ) by (9.42b). Thus f ∈ Nk(0), which

proves (9.44). Formula (9.45b) follows immediately from the definition of

Ek(Γ ). Then clearly (9.45a) holds. Take s0 = 0 in Lemma 9.15 and Theorem

9.16(i); then we find that Ek(0, Γ ) = Nk(Γ, 0) for k ≥ 3/2, which combined

with (9.44) proves (9.46) for such k. Next, take k = 1 in Theorem 9.18. Then

M 1∩N1(Γ, 0) = M 1∩E1(0, Γ ), which gives (9.46) for k = 1. Formulas (9.47)

and (9.48) will be poven in the proof of the following theorem.

Theorem 9.23. Let Ek(z, s) denote the analytic continuation of any se-

ries of type (8.12) or (9.22) with k > 0. Then the following assertions hold:

(i) Ek(z, s) is finite at s = 0.

(ii) Ek(z, 0) belongs to M k(Qab) if k > 2 or k = 1.

(iii) If k = 2, then E2

(
z, 0; Γ (N, N), ψ

)
belongs to M 2(Qab) except when

ψ is trivial, in which case it belongs to N 1
2(Qab).

(iv) If k = 3/2, then E3/2

(
z, 0; Γ (N, N), ψ

)
belongs to M 3/2(Qab) except

when ψ2 is trivial.

(v) If k = 1/2, then E1/2(z, s; Γ ) has at most a simple pole at s = 1/2,

and the residue belongs to π−1M 1/2(Qab). More explicitly, the residue is of

the form π−1
∑

ξ∈Q λ(ξ)e(tξ2z/2) with 0 < t ∈ Q and a Qab-valued element

λ of L (Q).

Proof. By (9.23), (9.24), and Theorem 7.5(iii) the problems can be re-

duced to the case of Ek(z, s; Γ, ψ). Assertions (i), (ii), and (iv) follow from

Theorem 8.15(iii) if 3/2 ≤ k /∈ Z. Suppose k ∈ Z; then (8.18) reduces the

problem to EN
k (z, s; ψ). Indeed, since ψ(−1) = (−1)k, we have LN (k, ψ) ∈

πkQ×ab by Lemma 2.9, and so we obtain (i) and (ii) from Theorem 8.15(i).

Combining these results with (9.46), we obtain (9.47). Assertion (iii) follows

from Theorem 8.15(i).

Suppose k = 1/2; let F ∗ be as in Theorem 8.14. Then
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F ∗(z, s) = (2s− 1)Γ (s)Γ (s+ 1/2)LN(4s, ψ2)E1/2(z, s; Γ, ψ).

By Lemma 2.10, LN(2, ψ2) ∈ π2Q×ab. Therefore from Theorem 8.16(i) we see

that Ek(z, s; Γ, ψ) has at most a simple pole at s = 1/2, and the residue

is π−1 times a Qab-rational theta series as given in that theorem. Thus

we obtain (v), and see that Ek(Γ ) = E∗k[1/2, Γ ] and E∗k(1/2, Γ ) ⊂ M k(Γ ).

Therefore, by Theorem 9.19, Nk(Γ, 0) = Ek(1/2, Γ ) ⊕ E∗k(1/2, Γ ). Thus, to

prove (9.48), it is sufficient to show that the only holomorphic element of

Ek(1/2, Γ ) is 0. For that purpose, take h(z) = g(z, 1/2) with g ∈ Ek[1/2, Γ ].

Put g =
∑

ξ∈Y aξEξ(s) with aξ ∈ C as in the proof of Theorem 9.19. Then

h‖kη−1 = aηy
1/2+ cη+ · · · with cη ∈ C for every η ∈ Y. If h is holomorphic,

then aη = 0 for every η ∈ Y, and so h = 0 as expected. This proves (9.48)

and completes the proof of our theorem.

From (v) above and (9.48) we obtain

(9.49) E1/2(Γ ) is spanned by some functions of the form
∑

ξ∈Q λ(ξ)e(tξ2z/2)

with 0 < t ∈ Q and an element λ of L (Q).

We also note that

(9.50) EN
k (z, 0; p, q) belongs to Nk

(
Γ (N), 0

)
if k > 0. In particular, Ek(z)

defined by (8.14e) belongs to Nk

(
Γ (N), 0

)
.

In view of (8.14d) we may assume that (N, p, q) = 1. Then there exist

relatively prime integers p0 and q0 such that (p0, q0) − (p, q) ∈ NZ2. We

have EN
k (z, s; p, q) = EN

k (z, s; p0, q0), and (8.14a) reduces the problem to

EN
k (z, s; 0, 1). From (8.16) we see that

ϕ(N)EN
k (z, s; 0, 1) =

∑
ψ∈Ψ

EN
k (z, s; ψ),

where Ψ is the set of all characters modulo N such that ψ(−1) = (−1)k.
Notice that ϕ(N) = #(Ψ) = 1 and k ∈ 2Z if N ≤ 2. By (8.18) we obtain

ϕ(N)EN
k (z, s; 0, 1) = 2

∑
ψ∈Ψ

LN (2s+ k, ψ)Ek(z, s; Γ, ψ),

which together with (9.35) proves (9.50).

9.24. We note here one of the easiest cases of Φk(s, Γ ) of (9.39a, b). Take

Γ = Γ (1) and 0 ≤ k ∈ 2Z. Let χ0 denote the principal character. Then

(8.18) shows that

2ζ(2s+ k)Ek

(
z, s; Γ (1), χ0

)
= E1

k(z, s; χ0) = E1
k(z, s; 0, 1).

The Fourier expansion of E1
k(z, s; 0, 1) is a special case of the formula given

in [S07, p. 134]. Employing it, we obtain

Ek

(
z, s; Γ (1), χ0

)
= ys + y1−k−sπi−k22−k−2sΓ (2s+ k − 1)ζ(2s+ k − 1)

Γ (s)Γ (s+ k)ζ(2s+ k)
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+ nonconstant terms.

Put ξ(s) = π−s/2Γ (s/2)ζ(s). Since Γ (s)Γ (s− 1/2) = π1/222−2sΓ (2s− 1), we

have

(9.51) Ek

(
z, s; Γ (1), χ0

)
= ys + Φk

(
s, Γ (1)

)
y1−k−s+ nonconstant terms

with Φk

(
s, Γ (1)

)
= i−k · ξ(2s+ k − 1)

ξ(2s+ k)
· Γ (s+ k/2)2

Γ (s)Γ (s+ k)
.

Then the relation Φk

(
s, Γ (1)

)
Φk

(
1− k − s, Γ (1)

)
= 1 means the well-known

equality ξ(1− s) = ξ(s) combined with the fact that the map s �→ 1− k − s

transforms Γ (s)Γ (s + k)Γ (s + k/2)−2 (which is a rational expression in s)

into its inverse.

Lemma 9.25. Given f ∈ M k, α ∈ Gk, and σ ∈ Aut(C), there exists an

element β of Gk such that (f‖kα)σ = fσ‖kβ.
Proof. We first prove the case k ∈ Z. Since SL2(Q) = PΓ (1), it is

sufficient to prove the cases α ∈ Γ (1) and α is of the form α =

[
1 b
0 1

]
or

α =

[
a 0
0 d

]
. The first case is included in Lemma 7.6. The latter two cases

can easily be verified. Now suppose k /∈ Z; let f ∈M k and γ = (α, p) ∈ Gk.

Then f2 ∈ M 2k and we find β ∈ SL2(Q) such that (f2‖2kα)σ = (f2)σ‖2kβ.
We easily see that

(
(f‖kγ)σ

)2
= ζ(f2‖2kα)σ with a root of unity ζ. Therefore

(f‖kγ)σ = fσ‖k(β, q) with a suitable (β, q) ∈ Gk. This completes the proof.

Theorem 9.26. For every weight k > 0 the space Ek is spanned by its

Q-rational elements.

Proof. This follows from (9.49) if k = 1/2. Since the cases k = 3/2 and

k = 2 require special considerations, we first assume k > 2 or k = 1. Our

task is to show that Ek for such a k is spanned by Q-rational elements. By

(9.23) and (9.24), Ek is spanned by Ek

(
z, 0; Γ (N, N), ψ

)‖kα for all choices

of (N, ψ) and α ∈ Gk. By Theorem 9.23(ii) and (9.21a), such a function is

Qab-rational. To obtain the desired result, it is sufficient to show that Ek is

stable under the action of Aut(C) defined by (7.2). Indeed, assuming such

a stability, take a Qab-rational element f(z) =
∑

ξ∈Q c(ξ)e(ξz) of Ek. Let

K be the field generated over Q by the c(ξ). By Theorem 7.5(v), [K : Q]

is finite. Put G = Gal(K/Q) and gb =
∑

σ∈G(bf)
σ for b ∈ K. Then gb is

a Q-rational element of Ek and f is a finite K-linear combination of gb for

some b, and so Ek is spanned by Q-rational elements. Thus our problem is to

show that
{
Ek

(
z, 0; Γ (N, N), ψ

)‖kα}σ
belongs to Ek for every σ ∈ Aut(C).

This is indeed so by Lemma 9.25, Theorem 8.15(i), and Theorem 8.15(iii).

This completes the proof in the case k > 2 or k = 1.



9. EISENSTEIN SERIES AS AUTOMORPHIC EIGENFORMS 87

Next suppose k = 2. By (9.46), E2(Γ ) consists of the holomorphic elements

of E2(0, Γ ), and the nonholomorphic elements belong to N 1
2. Therefore, in-

cluding such nonholomorphic elements, we observe that the space spanned

by E2

(
z, 0; Γ (N, N), ψ

)‖2α is stable under Aut(C). For this, in addition to

Theorem 8.15(i), we need Lemma 9.25 for f ∈ N 2. The statement in the two

cases of the elements of P are easy, and so we have only to check the case

α ∈ Γ (1). Then expressing f in the form f = g + cE2 with g ∈ M 2, c ∈ C,

and the function E2 of (7.10), we easily obtain the desired result. Thus⋃
Γ E2(0, Γ ) is stable under Aut(C), and its subset consisting of the holomor-

phic elements is also stable under Aut(C) as expected.

Finally suppose k = 3/2. We invoke the result of Pei in [P82, 84], in which

a subset F of E3/2 with the following properties is given: (i) F consists of

Qab-rational elements, and is stable under Gal(Qab/Q); (ii) E3/2 is spanned

by the elements of the form f‖3/2α with f ∈ F and α ∈ SL2(Q). Therefore

our argument in the case k > 2 is applicable and we obtain the desired result.

This completes the proof.



CHAPTER IV

THE CORRESPONDENCE BETWEEN FORMS

OF INTEGRAL AND HALF-INTEGRAL WEIGHT

10. Theta series of indefinite quadratic forms

In this section we will associate a certain theta function with an indefinite

quadratic form, and prove its automorphy properties. In later sections we

will employ the function in various ways. We consider the set Sn(A) defined

by (0.2) with A = Z, Q, or R, and put S[x] = txSx and S(x, y) = txSy for

x, y ∈ Cn and S ∈ Sn(R). We begin with some easy facts.

Lemma 10.1. For two elements S and P of Sn(R)∩GLn(R) the following

three conditions are mutually equivalent:

(i) P > 0 and PS−1P = S.

(ii) There exists an element A of GLn(R) such that P = tAA and S =
tAIp,qA with nonnegative integers p and q such that p+ q = n, where Ip,q =

diag[1p, −1q]. (We of course ignore 1p or 1q if p or q is 0.)

(iii) There exists a direct sum decomposition Rn = W ⊕ W ′ such that

S[x] ≥ 0 and Px = Sx for x ∈ W, S[y] ≤ 0 and Py = −Sy for y ∈ W ′, and
S(x, y) = 0 for x ∈W and y ∈W ′.

Proof. Given P and S as in (i), take B ∈ GLn(R) so that P = tBB, and

put T = tB−1SB−1. Then tT = T and T−1 = BS−1 · tB = BP−1SP−1 · tB =
tB−1SB−1 = T, and so the eigenvalues of T are ±1. Therefore we can find

an element C of GLn(R) such that tCC = 1n and C−1TC = Ip,q with some

p and q as in (ii). Putting A = tCB, we obtain (ii). Next, given (p, q)

and A as in (ii), let X resp. Y denote the subspace of Rn consisting of the

elements of Rn whose last q resp. first p coordinates are 0. Let W = A−1X

and W ′ = A−1Y. Then we obtain (iii). Finally suppose W and W ′ are taken

as in (iii); then we can find an element U of GLn(R) such that UX = W

and UY = W ′. We see that tUSU = diag[G, −H ] with 0 < G ∈ Sp(R) and

0 < H ∈ Sq(R). Then tUPU = diag[G, H ], and so P > 0 and tUPS−1PU =
tUPU(tUSU)−1 · tUPU = diag[G, −H ] = tUSU. Thus we obtain (i) and our

proof is complete.

10.2. For S ∈ Sn(R) ∩GLn(R) we put

DOI 10.1007/978-1-4614- _4, © Springer Science+Business Media, LLC 2012
G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics,

2125-2
89



90 IV. THE CORRRESPONDENCE BETWEEN MODULAR FORMS

(10.1) O(S) =
{
α ∈ GLn(R)

∣∣ tαSα = S
}
,

(10.2) P(S) =
{
P ∈ Sn(R)

∣∣P > 0, PS−1P = S
}
.

Then we can show that P(S) is a symmetric space that is O(S) modulo

a compact subgroup as follows. First take A ∈ GLn(R) and nonnegative

integers p and q so that S = tAIp,qA and put P0 = tAA. By Lemma 10.1,

P0 ∈ P(S). (ThusP(S) �= ∅.) Put K = O(S)∩O(P0). Since O(P0) is compact,

K is a compact subgroup of O(S). In view of Lemma 10.1, it is an easy exercise

to show that α �→ tαP0α for α ∈ O(S) gives a bijection ofK\O(S) ontoP(S).

(We do not need this fact in our later treatment, however.)

10.3. We fix two elements S and P of Sn(R)∩GLn(R) such that P ∈ P(S).

For z = x+ iy ∈ H and γ ∈ SL2(R) we put

(10.3) R(z) = xS + iyP,

(10.4) σγ =

[
aγ1n bγS
cγS

−1 dγ1n

]
.

Then clearly R(z) ∈ Hn and

(10.5) σγ =

[
1n 0
0 S

]−1 [
aγ1n bγ1n
cγ1n dγ1n

] [
1n 0
0 S

]
.

Therefore we easily see that σγ ∈ Sp(n, R) and the map γ �→ σγ is a homo-

morphism of SL2(R) into Sp(n, R). Moreover we have

(10.6) R(z)−R(z) = 2iyP,

(10.7) σγ

(
R(z)

)
= R

(
γ(z)

)
,

(10.8) j
(
σγ , R(z)

)
= jγ(z)

pjγ(z)
q
,

where p and q are determined by S as in Lemma 10.1(ii). Formula (10.6)

is obvious. To prove the last two formulas, take A as in Lemma 10.1(ii) and

put Z = diag[z1p, −z̄1q]. Then we easily see that R(z) = tAZA, and so for

γ =

[
a b
c d

]
we have

σγ

[
R(z)
1n

]
=

[
a1n bS
cS−1 d1n

][
tAZA
1n

]
=

[
a · tAZA+b · tAIp,qA
cA−1Ip,qZA+ d1n

]
=

[
tAXA
A−1Y A

]
with X =diag[(az + b)1p, −(az̄ + b)1q] and Y =diag[(cz + d)1p, (cz̄ + d)1q],

and so

σγ

[
R(z)
1n

]
=

[
tA · diag[γ(z)1p − γ(z)1q]A

1n

]
A−1Y A

=

[
R
(
γ(z)

)
1n

]
A−1 · diag[jγ(z)1p, jγ(z)1q]A.

Recalling formula (1.6), we obtain (10.7) and also

(10.9) μ
(
σγ , R(z)

)
= A−1 · diag[jγ(z)1p, jγ(z)1q]A.
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Taking the determinant, we obtain (10.8).

10.4. We now assume that S ∈ Sn(Q). Then the map γ �→ σγ sends

SL2(Q) into Sp(n, Q). We then consider the function ϕ(u, Z; λ) of (4.48a)

with u ∈ Cn, Z ∈ Hn, and λ ∈ L (Qn). Put

(10.10) f(u, z; λ) = ϕ
(
u, R(z); λ

)
.

Here z ∈ H. More explicitly

(10.11) f(u, z; λ) = e
(
(4iyP )−1[u]

) ∑
ξ∈Qn

λ(ξ)e
(
2−1R(z)[ξ] + tξu

)
.

Put

(10.12) MS =
{
γ ∈ SL2(Q)

∣∣ σγ ∈ PnΓ
θ
n

}
with Pn of Lemma 2.2(iii) and Γ θ

n of (4.6). Then P1MS = MS . Take positive

integers r and s so that rS ≺ 2Z and sS−1 ≺ 2Z. Then σγ ∈ Γ θ
n if

γ ∈ Γ (r, s); see (8.11) for the notation. Also σι = diag[S, S−1]ιn ∈ PnΓ
θ
n .

Thus

(10.12a) Γ (r, s) ⊂MS and σι ∈MS .

If γ ∈MS and σ = σγ , then from (10.7) and (4.49a) we obtain

(10.13) f
(
tM−1

γ u, γ(z); λ
)
= hσ

(
R(z)

)
f(u, z; λσ),

where Mγ = μ
(
σγ , R(z)

)
. Also, from (10.8) and (4.49b) we see that

(10.14) hσ

(
R(z)

)
= κγ(cz + d)p/2(cz̄ + d)q/2 with κγ ∈ T.

10.5. Let S, P, and R(z) be as in §10.3 with S ∈ Sn(Q). Put V = Rn,

VC = Cn, and

(10.15) V +
C =

{
x ∈ VC

∣∣Px = Sx
}
, V −C =

{
x ∈ VC

∣∣Px = −Sx}.
We consider a C-valued polynomial function χ on V given by

(10.16) χ(ξ) =
∏

ρ∈{ρ}
(tρSξ)�ρ

∏
τ∈{τ}

(tτSξ)mτ (ξ ∈ V ).

Here {ρ} resp. {τ} is a finite subset of V +
C resp. V −C ; 0 ≤ �ρ ∈ Z, 0 ≤ mτ ∈ Z.

We assume: S(ρ, ρ′) = 0 if ρ, ρ′ ∈ {ρ} and ρ �= ρ′; S(τ, τ ′) = 0 if τ, τ ′ ∈ {τ}
and τ �= τ ′; S[ρ] = 0 if �ρ > 1; S[τ ] = 0 if mτ > 1. We then put

(10.17) f(z, λ) = f(z; λ, χ) =
∑
ξ∈V

λ(ξ)χ(ξ)e
(
2−1R(z)[ξ]

)
,

where z ∈ H and λ ∈ L (Qn). We call f(z, λ) a theta series associated

with S. Take A as in Lemma 10.1(ii). Then we easily see that

(10.18) Ax = Ip,qAx if x ∈ V +
C and Ay = −Ip,qAy if y ∈ V −C ;

(10.19) the last q resp. first p coordinates of Ax are 0 if x ∈ V +
C resp. x ∈

V −C .
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We define a factor of automorphy Jp,q
α (z) as follows:

(10.20) Jp,q
α (z) =

{
jα(z)

(p−q)/2|jα(z)|q if n ∈ 2Z,

hα(z)
p−q|jα(z)|q if n /∈ 2Z,

where α ∈ SL2(Q) if n ∈ 2Z and α ∈ P1Γ
θ if n /∈ 2Z; hα is defined in

Theorem 4.12. Notice that p − q − n ∈ 2Z. In the following theorem S and

χ are fixed.

Theorem 10.6. Let γ∈SL2(Q) if n∈2Z and γ∈P1Γ
θ if n /∈2Z. Then

for λ∈L (Qn) we can define an element λγ of L (Qn) such that

(10.21) f
(
γ(z), λ

)
= jγ(z)

�jγ(z)
m
Jp,q
γ (z)f(z, λγ),

where �=
∑

ρ∈{ρ} �ρ and m=
∑

τ∈{τ}mτ . Moreover, λγ is independent of χ

and
{
γ∈SL2(Q)

∣∣λγ=λ
}
contains a congruence subgroup of SL2(Q).

Proof. From (10.14) we see that hσ

(
R(z)

)
is Jp,q

γ (z) times an element of

T. Therefore we can reformulate (10.13) in the form

(10.22) f
(
tM−1

γ u, γ(z); λ
)
= Jp,q

γ (z)f(u, z; λγ)

with a well-defined λγ ∈ L (Qn) for γ ∈ MS ∩ PΓ θ. Suppose n ∈ 2Z;

then Jp,q
βγ (z) = Jp,q

β (γz)Jp,q
γ (z) for every β, γ ∈ SL2(Q). By Lemma 2.2(iv),

SL2(Q) is generated by P and ι. Since (10.22) is valid for γ ∈ P and γ = ι, we

can define λγ by (10.22) for every γ ∈ SL2(Q) when n ∈ 2Z. Next suppose

n /∈ 2Z. Then a similar reasoning establishes (10.22) for every γ ∈ SL2(Q)

if we replace Jp,q
γ and λγ by J ′ = jγ(z)

p/2jγ(z)
q/2

and some element λ′ ∈
L (Qn). Here λ′ depends on the choice of J ′. Therefore, if we take J ′ = Jp,q

γ (z)

as defined by (10.20), then (10.22) is valid for γ ∈ PΓ θ with a well-defined

λγ when n /∈ 2Z. Thus (10.22) can be extended to γ ∈ SL2(Q) or γ ∈ PΓ θ;

we call this extended formula (10.22).

We will derive (10.21) by applying some differential operators to (10.22)

and putting u=0. We first treat the case with χ(ξ) = (tρSξ)�(tτSξ)m, and

will add a comment in a more general case at the end of the proof. Put

Dx=
∑n

i=1(Sx)i∂/∂ui for x∈VC and g(u) = e
(
(4iyP )−1[u] + tξu

)
. Then

(10.23) (D�
ρD

m
τ g)(0) = (2πi)�+mχ(ξ).

To prove this we first observe that DxB[u] = 2B(Sx, u) for every B ∈ Sn(R).

Then

(Dxg)(u) = 2πi
{
S(ξ, x) + (2iyP )−1(Sx, u)

}
g(u),

(D2
xg)(u) = (2πi)2

{
S(ξ, x) + (2iyP )−1(Sx, u)

}2
g(u)

+ 2πi(2iyP )−1[Sx]g(u).



10. THETA SERIES OF INDEFINITE QUADRATIC FORMS 93

Now P−1[Sx] = txPx = ±txSx for x ∈ V ±C . Therefore, by our assumption

S[τ ] = 0 if mτ > 1, we obtain (Dm
τ g)(0) = (2πi)mS(τ, ξ)m for 0 ≤ m ∈ Z.

Also, DρDτg involves P−1(Sτ, Sρ), which equals tτPρ = tτSρ = 0. Thus we

obtain (10.23), and consequently termwise differentiation of (10.11) gives

(10.24) (D�
ρD

m
τ )

{
f(u, z; λ)

}
u=0

= (2πi)�+mf(z, λ).

On the other hand,

(10.25) (D�
ρD

m
τ )

{
f(tM−1

γ u, γz; λ)
}

= jγ(z)
−�jγ(z)

−m
(D�

ρD
m
τ f)(tM−1

γ u, γz; λ).

Indeed, in view of (10.9) and (10.19) we have

tM−1
γ Sρ = tA · diag[jγ(z)1p, jγ(z)1q]−1 · tA−1Sρ

= tA · diag[jγ(z)1p, jγ(z)1q]−1Ip,qAρ = jγ(z)
−1Sρ,

and similarly tM−1
γ Sτ = jγ(z)

−1
Sτ, and so (10.25) holds. Therefore, applying

D�
ρD

m
τ to (10.22) and putting u = 0, we obtain

(2πi)�+mjγ(z)
−�jγ(z)

−m
f(γz, λ) = (2πi)�+mJp,q

γ (z)f(z, λγ),

which can be written in the form (10.21). When χ is defined in the most

general form, we apply
∏

ρ D
�ρ
ρ

∏
τ D

mτ
τ to (10.22). In view of our assumption

that tρSρ′ = tτSτ ′ = 0, we obtain (10.21) in the general case.

Clearly λγ is independent of χ. The last assertion will be proven in §10.10.
Lemma 10.7. Let the symbols be as in §10.5 and Theorem 10.6. Then

f(z, λ) is slowly increasing or rapidly decreasing at every cusp, locally uni-

formly in the parameters ρ and τ of (10.16), according as � = m = 0 or

�+m > 0.

Proof. Let α ∈ SL2(Q) and κ = �+m+ (p+ q)/2. Then by (10.21),

|Im(αz)κ/2f(αz, λ)| = |Im(z)κ/2f(z, λα)|,
and so our task is to make an estimate of |f(z, μ)| for an arbitrary μ ∈ L (Qn).

Clearly it is sufficient to treat the case in which μ is the characteristic function

of L = Zn. Let χ be a homogeneous polynomial function of ξ ∈ V of degree

d. Then we can find a positive constant C such that |χ(ξ)| ≤ CP [ξ]d/2 for

every ξ ∈ V. Since |e(2−1R(z)[ξ]
)| = exp(−πyP [ξ]), we have∣∣∣∣∑

ξ∈L
χ(ξ)e

(
2−1R(z)[ξ]

)∣∣∣∣ ≤ C
∑
ξ∈L

P [ξ]d/2 exp
(− πyP [ξ]

)
.

Suppose d = 0. Then we see that |f(z, μ)| ≤ C ′ for y > 1/2 with a constant

C′. Thus f(z, λ) is slowly increasing at every cusp. Suppose d > 0. Since L

is discrete in V and
{
ξ ∈ V

∣∣P [ξ] ≤ 1
}
is compact,

{
ξ ∈ L

∣∣P [ξ] ≤ 1
}
is a
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finite set, and so we can find a positive constant M such that P [ξ] ≥ M for

0 �= ξ ∈ L. Therefore if d > 0, we have

|f(z, μ)| ≤ C exp(−πMy/2)
∑
ξ∈L

P [ξ]d/2 exp
(−πyP [ξ]/2

) ≤ C0 exp(−πMy/2)

if y > 1/2 with a positive constant C0. This shows that f(z, λ) is rapidly

decreasing at every cusp. Since we can take the same C when the parameters

ρ and τ of (10.16) stay in compact sets, we obtain the desired local uniformity

in ρ and τ.

Lemma 10.8. For γ =

[
a b
c d

]
∈ Γ (2) define σγ by (10.4). Suppose

σγ ∈ Γ θ
n and 0 ≤ d− 1 ∈ 2Z; then

(10.26) h
(
σγ , R(z)

)
=

(
(−1)p det(bcS)

d

)
hγ(z)

phγ(z)
q

(z ∈ H).

If S ≺ Z in particular, (−1)p det(bcS) can be replaced by (−1)q det(S).
Proof. Since bS ≺ Z, cS−1≺Z, and ad1n−(bS)(cS−1)=12n, we see that

det(bS) is prime to d. By Theorem 4.7(1) we have h(σγ , Z) = κj(σγ , Z)1/2

with

κ = d−n/2
∑

x∈Zn/dZn

e
(
bS[x]/(2d)

)
, lim

Z→0
j(σγ , Z)1/2 > 0,

where Z is a variable onHn. Since d is odd, putting x = 2y with y ∈ Zn/dZn,

we obtain

κ = d−n/2
∑

y∈Zn/dZn

e
(
2bS[y]/d

)
.

By Lemma 2.3 there exist an element α of Mn(Z) and ri ∈ Z such that
tαbSα − diag[r1, . . . , rn] ≺ dZ and det(α) is a positive integer prime to d.

Clearly we may assume that the diagonal elements of tαbSα are r1, . . . , rn.

Then

κ = d−n/2

n∏
i=1

d∑
y=1

e(2riy
2/d).

and det(α)2 det(bS)− r1 · · · rn ∈ dZ. By Theorem 2.6 we have

κ =

n∏
i=1

εd

(
2ri
d

)
= εnd

(
det(2bS)

d

)
= ε−n

d

(
2c

d

)n(
det(−bcS)

d

)
.

Now μ
(
σγ , R(z)

)
is given by (10.9). Therefore, by (4.40) we obtain

h
(
σγ , R(z)

)
= ε2qd

(
det(−bcS)

d

)
hγ(z)

phγ(z)
q
,

which gives (10.26). If S ≺ Z, we can replace −bcS by S, since bc+ 1 ∈ dZ.

This completes the proof.
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Theorem 10.9. Given 0 < S ∈ Sn(Z), put

(10.27) f(z) =
∑
ξ∈Zn

χ(ξ)e
(
2−1S[ξ]z

)
(z ∈ H)

with χ as in (10.16) such that {τ} = ∅. Then f ∈ M k with k= �+n/2, � =∑
ρ∈{ρ} �ρ, and f ∈ S k if � > 0. Moreover, if γ=

[
a b
c d

]
∈Γ (1), bS ≺ 2Z,

cS−1≺ 2Z, and d > 0, then

(10.28) f(γz) =

(
det(S)

d

)
hγ(z)

njγ(z)
�f(z).

Proof. Since bc ∈ 4Z, d is odd. Take S = P and τ = ∅ in Theorem

10.6; take also λ to be the characteristic function of Zn. Then our f(z) is

f(z, λ), or rather, f(z) = f(0, z; λ) with f of (10.11). Therefore we have

f(tM−1
γ u, γz; λ) = h(σγ , zS)f(u, z; λ)

for γ ∈ Γ θ. Now h(σγ , zS) is determined by Lemma 10.8. Then the applica-

tion of D�
ρ produces jγ(z)

� as explained in the proof of Theorem 10.6, and so

we obtain (10.28). Also, from (10.21) we see that f satisfies condition (3.4d).

That f ∈ S k if � > 0 can easily be seen. This proves our theorem.

The fact that a theta series of type (10.27) belongs to M k was proved by

Hecke and Schoeneberg when n is even. A general formula for both even and

odd n was given in [S73a]. There is a paper cited in [S73a] that treated the

case of odd n, but its proof is erroneous.

10.10. Let us now prove the last assertion of Theorem 10.6. Take an

integer m so that mS ≺ Z. Suppose γ =

[
a b
c d

]
∈ Γ (r, s) with d > 0

and positive even integers r and s such that rs ∈ mZ and σγ ∈ Γ θ
n . Put

bc = mt. Since mt+ 1 = bc+ 1 ∈ dZ, we have(
(−1)p det(bcS)

d

)
=

(
(−1)ptn det(mS)

d

)
=

(
(−1)qmn det(mS)

d

)
= 1

if d−1 ∈ 4mn det(mS)Z. By Lemma 10.8, we have h
(
σγ , R(z)

)
= Jp,q

γ (z) for

such a γ, that is, for γ in a sufficiently small congruence subgroup. Also, our

proof of (10.21) shows that λγ does not depend on χ, that is, λγ is determined

by (10.22). Since h
(
σγ , R(z)

)
= Jp,q

γ (z) for γ as above, comparing (10.22)

with (10.13), we have λσ = λγ for σ = σγ , where λ
σ is determined by (4.49a).

Therefore the last assertion of Theorem 10.6 follows from (4.49f).

10.11. If S of §10.3 has signature (m, 2) with 0 < m ∈ Z (that is, (p, q)

above is (m, 2)), then the symmetric space associated with P(S) in the sense

of §10.2 is a noncompact hermitian symmetric space, and so has a complex

structure. Here, however, without proving this in a precise form, let us merely

show that P(S) can be parametrized by some complex variables.
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For that purpose, we take, instead of S ∈ S(Rn), a vector space V overR of

dimension m+2, and take also an R-bilinear symmetric form S : V ×V → R

that has signature (m, 2). We put VC = V ⊗R C and extend S to a C-valued

C-bilinear form on VC × VC, using the same letter S. For v ∈ VC we can

define its complex conjugate v̄ ∈ VC in an obvious way. We now put

(10.29) Y(S) =
{
v ∈ VC

∣∣S[v] = 0, S(v, v̄) < 0
}
,

where S[v] = S(v, v). Taking 1m,2 as S, we see that Y(S) �= ∅. Given

v ∈ Y(S), put u = v + v̄, u′ = iv − iv̄, W = Ru + Ru′, and W ′ =
{
y ∈

V
∣∣S(y, W ) = 0

}
. Since S[u] < 0, S[u′] < 0, and S(u, u′) = 0, we see that

dim(W ) = 2, V = W ⊕W ′, S is negative definite on W, and S is positive defi-

nite on W ′. Let WC = W⊗RC, Then WC = Cv+Cv̄. Define Pv : V ×V → R

so that Pv = −S on W ×W, Pv = S on W ′ ×W ′, and Pv(W, W ′) = 0. Then

Pv is positive definite, and we have W ′
C = V +

C and WC = V −C in the sense of

(10.15) with respect to (S, Pv); also, we have

(10.30) Pv[ξ]− S[ξ] = −4S(v, v̄)−1|S( ξ, v)|2 for every ξ ∈ V.

Indeed, given ξ ∈ V, we can find c ∈ C and z ∈ W ′ such that ξ = cv+ c̄v̄+z.

Then S(ξ, v) = c̄S(v, v̄) and Pv[ξ]− S[ξ] = −2S[cv+ c̄v̄] = −4cc̄S(v, v̄), and
so we obtain (10.30). By Lemma 10.1, the matrices representing S and Pv

with respect to an R-basis of V are of the type described in (i) of that lemma.

11. Theta integrals

11.1. In the setting of §10.11 let us consider the special case m = 1 by

taking

(11.1) V =
{
x∈M2(R)

∣∣ tr(x) = 0
}
, S(x, y) = −2−1tr(xy) (x, y ∈ V ).

Thus S[ξ] = −a2 − bc = det(ξ) for ξ =

[
a b
c −a

]
∈ VC. We put

(11.2a) p(w)=

[
w −w2

1 −w
]
, q(w)=

[
1 −2w
0 −1

]
=

∂p(w)

∂w
(w ∈ H ∪ H̄),

(11.2b) [ξ, w] = 2S
(
ξ, p(w)

)
(ξ ∈ V ).

Then we have

(11.3a) [ξ, w] = cw2 − 2aw − b if ξ =

[
a b
c −a

]
∈ V,

(11.3b) γp(w)γ−1 = jγ(w)
2p(γw) if γ ∈ SL2(R),

(11.3c) [γ−1ξγ, w] = jγ(w)
2[ξ, γw] if γ ∈ SL2(R).
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Formula (11.3a) is easy. As for the latter two formulas, we can easily verify

that p(w) =

[
w
1

]
[w 1]ι and γ−1 = ι−1 · tγι with ι =

[
0 −1
1 0

]
for γ ∈

SL2(R). Therefore

γp(w)γ−1 = γ

[
w
1

]
[w 1] · tγι = jγ(w)

2

[
γw
1

]
[γw 1]ι,

which gives (11.3b). The left-hand side of (11.3c) equals 2S
(
γ−1ξγ, p(w)

)
=

2S
(
ξ, γp(w)γ−1

)
= 2jγ(w)

2S
(
ξ, p(γw)

)
by (11.3b), and so we obtain (11.3c).

Clearly p(w) ∈ VC and S
[
p(w)

]
= 0. Also, a direct calculation shows

(11.4) S
(
p(w), p(w)

)
= 2−1(w − w̄)2 = −2Im(w)2 < 0,

and so p(w) ∈ Y(S).

11.2. For v = p(w) define Pv as in §10.10 and put Rw(z) = xS + iyPv for

z = x+ iy ∈ H. Then for ξ ∈ VC we have

(11.5) Rw(z)[ξ] = S[ξ]z + iy
(
Pv[ξ]− S[ξ]

)
= det(ξ)z + 2−1iy · Im(w)−2|[ξ, w]|2,

because of (10.30), (11.2b), and (11.4). We have seen that V −C = WC =

Cv +Cv̄ in §10.11, and so Pvv = −Sv and Pvv̄ = −Sv̄.
We now consider a function of the form

(11.6) Θ(z, w; η) = Im(z)1/2Im(w)−2m
∑
ξ∈V

η(ξ)[ξ, w̄]me
(
2−1Rw(z)[ξ]

)
.

Here 0 ≤ m ∈ Z, (z, w) ∈ H×H, and η ∈ L (V ). This is y1/2 times a special

case of (10.17). Indeed, we have S[p(w̄)] = 0 and [ξ, w̄] = 2S
(
ξ, p(w̄)

)
, and

Pvp(w̄) = −Sp(w̄) as noted above, and so Im(w)−2m[ξ, w̄]m is a special case

of χ(ξ) = (tτSξ)m of (10.16). Notice that p = 1 and q = 2 in the present

case. We put

(11.7) k = m+ 1/2, jkγ (z) = hγ(z)jγ(z)
m (γ ∈ Γ θ).

This is consistent with (5.1b). Then from Theorem 10.6 we obtain

(11.8) Θ(γz, w; η) = jkγ (z)Θ(z, w; η) for every γ ∈ Γ

with a sufficiently small congruence subgroup Γ of Γ θ. (The factor y1/2 in

(11.6) eliminates |jγ |.) Also, from (11.3c) we easily obtain

(11.9) Θ(z, βw; η) = jβ(w)
2mΘ(z, w; ηβ) for every β ∈ GL+

2 (Q),

where ηβ(ξ) = η(βξβ−1). In the rest of this section we assume m > 0.
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Theorem 11.3. (i) Given f ∈Mk(Γ ) with k = m+1/2, 0 < m ∈ Z, and

a congruence subgroup Γ for which (11.8) holds, put

(11.10) g(w) =

∫
Φ

f(z)Θ(z, w; η)ykdz, Φ = Γ\H,
where dz is as in (6.5). Then the integral is convergent and g belongs to

M 2m.

(ii) In the setting of (i) suppose that f is a cusp form. Then g is a

cusp form at least in the following two cases: (a) m > 1; (b) m = 1 and

〈f, θ∗(z, μ)〉 = 0 for every μ ∈ L (Q), where θ∗ is as in (4.51).

We call the expression on the right-hand side of (11.10) a theta integral.

The proof of (i) will be completed in §11.7 and (ii) will be proven in §12.7.
11.4. In this subsection we assume that every integral is convergent. The

convergence will be proven in the next subsection. Now we need to compute

(∂/∂w̄)Θ(z, w; η). We have (∂/∂w̄)[ξ, w̄]m = 2mS
(
ξ, q(w̄)

)
[ξ, w̄]m−1, where

q(w) = ∂p(w)/∂w, as we defined in (11.2a). Writing simply p and q for p(w)

and q(w), we obtain, from (11.5) and (10.30),

(∂/∂w̄)Rw(z)[ξ] = iy(∂/∂w̄)Pv[ξ]

= −4iy(∂/∂w̄){S(p, p̄)−1S(ξ, p)S(ξ, p̄)
}

= 4iyS( ξ, p)
{
S(p, p̄)−2S(p, q̄)S(ξ, p̄)− S(p, p̄)−1S(ξ, q̄)

}
= iy · Im(w)−4S(ξ, p)S(ξ, r) with

(11.11) r = S(p, q̄)p̄− S(p, p̄)q̄ = 2Im(w)2q̄ − 2iIm(w)p̄,

since S(p, q̄) = −2iIm(w). Notice that

(11.12) S(p, q) = S(p, r) = S(p̄, r) = 0.

Thus, putting E = e
(
2−1Rw(z)[ξ]

)
for simplicity, we have

(11.13) (∂/∂w̄)Θ(z, w; η) = −miy1/2Im(w)−2m−1
∑
ξ∈V

η(ξ)[ξ, w̄]mE

+ 2my1/2Im(w)−2m
∑
ξ∈V

η(ξ)[ξ, w̄]m−1S(ξ, q̄)E

− (π/2)y3/2Im(w)−2m−4
∑
ξ∈V

η(ξ)[ξ, w̄]m[ξ, w]S(ξ, r)E.

We need an auxiliary series H defined by

(11.14) H(z, w; η) = y3/2Im(w)−2m−2

·
∑
ξ∈V

η(ξ)[ξ, w̄]m−1S(ξ, r)e
(
2−1Rw(z)[ξ]

)
,

and also the operator δk−2 = (k − 2)(2iy)−1 + ∂/∂z on H defined in (6.13b).

Writing simply H for H(z, w; η), we are going to prove
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(11.15) (∂/∂w̄)Θ(z, w; η) = −2iδk−2H̄.

Indeed, since Rw(z) = xS + iyPv, we have, by (10.30),

(∂/∂z̄)Rw(z)[ξ] = 2−1(S − Pv)[ξ]

= 2S(p, p̄)−1|S(ξ, p)|2 = −4−1Im(w)−2[ξ, w][ξ, w̄],

and so

(11.16) δk−2H̄ = (2− k)(2iy)−1H + (∂/∂z̄)H

= (k − 2)(i/2)y1/2Im(w)−2m−2
∑
ξ∈V

η(ξ)[ξ, w̄]m−1S(ξ, r)E

+ (3i/4)y1/2Im(w)−2m−2
∑
ξ∈V

η(ξ)[ξ, w̄]m−1S(ξ, r)E

− (πi/4)y3/2Im(w)−2m−4
∑
ξ∈V

η(ξ)[ξ, w̄]m[ξ, w]S(ξ, r)E.

The last line times −2i equals the last line of (11.13). Substituting (11.11)

into r of the first two terms of the right-hand side of (11.16) and multiplying

by −2i, we obtain the first two terms on the right-hand side of (11.13). This

proves (11.15). Now g(w) is μ(Φ) times 〈f̄ , Θ(z, w; η)〉, and so ∂g/∂w̄ is

μ(Φ) times

(11.17) (∂/∂w̄)〈f̄ , Θ(z, w; η)〉 = 〈f̄ , (∂/∂w̄)Θ(z, w; η)〉
= −2i〈f̄ , δk−2H̄〉 = −2i〈δk−2H̄, f〉 = −2i〈H̄, εf〉

by (6.16). This is 0, since f is holomorphic. Thus g(w) is holomorphic in w.

By Lemma 10.7, Θ(z, w; η) is rapidly decreasing locally uniformly in w, and

so the first equality of (11.17) is justified.

11.5. Since m > 0, Θ(z, w; η) is rapidly decreasing at every cusp as a

function in z by Lemma 10.7. Every element of M k is slowly increasing

at every cusp, and so the integral of (11.10) is convergent. Similarly, H of

(11.14) is a special case of (10.17), since r ∈ V −C and S(p̄, r) = 0, and so

by Lemma 10.7, H is rapidly decreasing at every cusp. Also, as can be seen

from (11.13) or (11.16), (∂/∂w̄)Θ and δk−2H̄ are rapidly decreasing at every

cusp. Therefore all the inner products appearing in (11.17) are meaningful;

also the last equality of (11.17) can be justified, since the conditions stated in

Theorem 6.8 are satisfied.

To study the nature of g beyond its holomorphy, we first put g(w) =

g(w, η). From (11.9) we obtain g(w, η)‖2m β=g(w, ηβ) for every β∈SL2(Q).

Put Δ =
{
β ∈ SL2(Q)

∣∣ ηβ = η
}
. Then Δ is a congruence subgroup and

g‖2m δ = g for every δ ∈ Δ. Therefore, in view of Lemma 6.4, to show that

g ∈ M 2m, it is sufficient to show that g is slowly increasing at every cusp.

For that purpose, we take T and E as in (6.10a, b) As shown there, Γ\H is

covered by
⋃

ε∈E εT, and so the integral over Φ is majorized by
∑

ε∈E
∣∣ ∫

εT

∣∣.
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Thus, putting fε(z) = jε(z)
−kf(εz), our question is reduced to the estimate

of
∫
T fε(z)Θ(z, w; η)ykdz, or rather, to the problem of showing that

h(w) =

∫
T

f(z)Θ(z, w; η)ykdz

as a function of w satisfies (6.9a) (with 2m and h in place of k and f there)

for every f ∈M k. Fixing f, let α ∈ SL2(Q). Then

Im(αw)mh(αw) = Im(w)m
∫
T

f(z)jα(w)
−2mΘ(z, αw; η)ykdz

= Im(w)m
∫
T

f(z)Θ(z, w; ηα)ykdz

with ηα as in (11.9). Our task is to make an estimate of Θ(z, w; ζ) for

ζ ∈ L (V ), when Im(w) is sufficiently large. It is sufficient to treat the case in

which ζ is the characteristic function of a lattice L in V. Then Θ is invariant

under w �→ w+2p with a positive number p. Thus our estimate will be made

under the condition

(11.18) |Re(w)| ≤ p and Im(w) > q

with a positive constant q. Changing the notation, write Pw for Pv of (11.5).

For ξ =

[
a b
c −a

]
∈ V put ‖ξ‖ = (a2 + b2 + c2)1/2. In §11.7 we will prove

(11.19) Pw[ξ] ≥ 8−1Im(w)−2‖ξ‖2 under (11.18),

(11.20)
∣∣[ξ, w]∣∣2 ≤ A · Im(w)4‖ξ‖2 under (11.18),

with a constant A depending only on p and a sufficiently large q.

We need two more easy facts. The first one is:

(11.21) For 0 ≤ m ∈ Z there is a constant Bm depending only on m such

that
∑∞

N=1 N
me−tN ≤ Bmt−m−1 for 0 < t ≤ 1.

Indeed,
∑∞

N=1N
mxN = xFm(x)(1−x)−m−1 with a polynomial Fm of degree

Max{m − 1, 0}. This can be obtained by applying x · d/dx successively to

x/(1−x) =
∑∞

N=1 x
N . Putting x = e−t and observing that t/2 ≤ 1− e−t for

0 < t ≤ 1, we obtain the desired inequality.

Next, for L = Zn and 0 < N ∈ Z we have

(11.22) #
{
ξ ∈ L

∣∣Max1≤ν≤n|ξν | = N
} ≤ CnN

n−1 with a constant Cn de-

pending only on n.

The proof is left to the reader, as it is completely elementary.

11.6. For ξ in the set of (11.22) we have N ≤ ‖ξ‖2 ≤ nN2, and so for

0 < m ∈ Z and y > 1/2 we have
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(11.23)
∑
ξ∈L

‖ξ‖m exp
(− yt‖ξ‖2) ≤ exp(−yt/2)

∑
ξ∈L

‖ξ‖m exp
(− yt‖ξ‖2/2)

≤ Cn exp(−yt/2)
∞∑

N=1

Nn−1(n1/2N)m exp(−ytN/2)

= nm/2Cn exp(−yt/2)
∞∑

N=1

Nm+n−1 exp(−tN/4)

≤ 4m+nnm/2CnBm+n−1t
−m−n exp(−yt/2)

for 0 < t ≤ 4, by (11.21). We apply this to Θ(z, w; ζ) with the characteristic

function of L = V ∩M2(Z) as ζ. (Thus n = 3.) Since
∣∣e(2−1Rw(z)[ξ]

)∣∣ =
exp

(− πyPw[ξ]
)
, we have, by (11.6), (11.19), and(11.20),∣∣Θ(z, w; ζ)

∣∣ ≤ y1/2Im(w)−2m
∑
ξ∈L

∣∣[ξ, w]∣∣m exp
(− πyPw[ξ]

)
≤ Am/2y1/2

∑
ξ∈L

‖ξ‖m exp
(− (π/8)yIm(w)−2‖ξ‖2).

Applying the estimate of (11.23) to this, we find that, under (11.18),∣∣Θ(z, w; ζ)
∣∣ ≤ Dy1/2Im(w)2m+6 exp

(− (π/16)yIm(w)−2
)

with a constantD that depends only on m. (We take z in T, and so y > 1/2.)

Now f(z) is bounded on T and k = m+ 1/2, and so

Im(w)m
∣∣∣∣
∫
T

f(z)Θ(z, w; ζ)ykdz

∣∣∣∣ ≤ E · Im(w)3m+6

∫ ∞

1/2

e−ayym−1dy

with a = (π/8)Im(w)−2 and a constant E. Replacing
∫∞
1/2 by

∫∞
0 and noting

that
∫∞
0 e−ayym−1dy = Γ (m)a−m, we see that

Im(w)m
∣∣∣∣
∫
T

f(z)Θ(z, w; ζ)ykdz

∣∣∣∣ ≤ F · Im(w)5m+6

with a constant F, which proves that g of (11.10) is slowly increasing at every

cusp, and so g ∈ M 2m as stated in Theorem 11.3(i).

11.7. It remains to prove (11.19) and (11.20). By (11.5) we have

(11.24) Pw[ξ] = det(ξ) + 2−1Im(w)−2
∣∣[ξ, w]∣∣2.

Put u = Re(w) and v = Im(w). Then a direct calculation shows that

(∗) ∣∣[ξ, w]∣∣2 = c2|w|4 + 4a2|w|2 + b2 − 4acu|w|2 − 2bc(u2 − v2) + 4abu,

and so

2v2Pw[ξ] =
∣∣[ξ, w]∣∣2 − 2(a2 + bc)v2

= c2|w|4 + 4a2|w|2 + b2 − 2a2v2 − 2bcu2 − 4acu|w|2 + 4abu.
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We are assuming (11.18). Thus |u| ≤ p, and so −2bcu2 ≥ −2|2−1b · 2p2c| ≥
−(4−1b2 + 4p4c2). Similarly −4acu|w|2 ≥ −(a2 + 4p2c2)|w|2 and 4abu ≥
−(8p2a2 + 2−1b2). Therefore

2v2Pw[ξ] ≥ a2(3|w|2 − 2v2 − 8p2) + 4−1b2 + c2
(|w|4 − 4p2|w|2 − 4p4

)
.

We easily see that the right-hand side is ≥ 4−1(a2 + b2 + c2) for sufficiently

large v, which proves (11.19).

As for (11.20), viewing [ξ, w] as the inner product of the vectors (c, a, b)

and (w2, −2w, −1), we find that∣∣[ξ, w]∣∣2 ≤ ‖ξ‖2(|w|4 + 4|w|2 + 1
)
,

from which we obtain (11.20). This completes the proof of Theorem 11.3(i).

12. Main theorems on the correspondence

12.1. We need nonholomorphic modular forms involving the Hermite poly-

nomial Hn(x) defined by

(12.1) Hn(x) = (−1)n exp(x2/2)(d/dx)n exp(−x2/2) (0 ≤ n ∈ Z).

This is a polynomial of degree n with coefficients in Z. We easily obtain

(12.1a) (−√c)nHn(
√
c x) = exp(cx2/2)(d/dx)n exp(−cx2/2) (c > 0).

Here are some basic formulas on Hn, in which H ′
n(x) = (d/dx)Hn(x) :

(12.2) H0(x) = 1, H1(x) = x,

(12.3) Hn(−x) = (−1)nHn(x),

(12.4) Hn+1(x) = xHn(x) −H ′
n(x),

(12.5) H ′
n(x) = nHn−1(x),

(12.6) (x + iy)n =

n∑
k=0

(
n
k

)
ikHk(y)Hn−k(x),

(12.7)

∫ ∞

0

Hn(
√
4πy a)e(ia2y)y(s/2)−1dy

= 2−n/2(2π)−s/2a−sΓ
(
(s− n)/2

) n∏
ν=1

(s− ν) (Re(s)>n, a>0).

The first three are easy; (12.5) can be derived from (12.4) by induction on

n. As for (12.6), putting E = e−zz̄/2, we have (x + iy)nE = (−2∂/∂z̄)nE =∑n
k=0

(
n
k

)
(−i∂/∂y)k(−∂/∂x)n−kE, which gives the desired result. The case

n = 0 of (12.7) is∫ ∞

0

e(ia2y)y(s/2)−1dy = Γ (s/2)(2π)−s/2a−s (Re(s)>0),
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which follows from (8.2). Applying dn/dan to this, we obtain, by (12.1a),

(−1)n
∫ ∞

0

Hn(
√
4πy a)e(ia2y)(4πy)n/2y(s/2)−1dy

= (2π)−s/2a−s−nΓ (s/2)

n∏
ν=1

(1 − s− ν).

Substituting s− n for s, we obtain (12.7).

The nonholomorphic form we need is

(12.8) θn(z, λ) = (4πy)−n/2
∑
ξ∈Q

λ(ξ)Hn(
√

4πy ξ)e(ξ2z/2),

where z ∈ H, λ ∈ L (Q), and y = Im(z). Since Hn(x) is a polynomial in x

of degree n, the sum is convergent. Clearly

(12.9a) θ0(z, λ) =
∑
ξ∈Q

λ(ξ)e(ξ2z/2) = θ(0, z; λ),

(12.9b) θ1(z, λ) =
∑
ξ∈Q

λ(ξ)ξe(ξ2z/2) = θ∗(z, λ),

where θ(0, z; λ) is as in (4.48b) with n = 1 and θ∗ as in (4.51), and so

θn(z, λ) is holomorphic in z for n ≤ 1. From (4.50b) and (4.52) we obtain

(12.9c) θ0(αz, λ) = hα(z)θ0(z, λ
α) for every α ∈ PΓ θ,

(12.9d) θ1(αz, λ) = hα(z)jα(z)θ1(z, λ
α) for every α ∈ PΓ θ.

Consequently θ0(z, λ) belongs to M 1/2 and θ1(z, λ) to S 3/2, as we already

observed in §§5.1 and 5.8. Now we have:

Lemma 12.2. Let the symbols hα(z) and λα be defined as in Theorem

4.12 in the one-dimensional case. Then for every α ∈ PΓ θ we have

(12.10) θn
(
α(z), λ

)
= hα(z)jα(z)

nθn(z, λ
α).

Proof. We first prove

(12.10a) (πi)−1δkθn(z, λ) = θn+2(z, λ), k = n+ 1/2,

where δk is the operator of (6.13b). To prove this, we put

(12.11) Kn(z) = Kn(ξ, z) = (4πy)−n/2Hn(
√
4πy ξ)e(ξ2z/2),

where ξ is fixed. Then our task is to prove that

(12.12) (πi)−1δkKn(z) = Kn+2(z),

which implies (12.10a). To make our formulas short, put Y =
√
4πy. Then

(πi)−1(∂/∂z)Kn(z)

= Y −ne(ξ2z/2)
{
nY −2Hn(Y ξ)− ξY −1H ′

n(Y ξ) + ξ2Hn(Y ξ)
}
.

Since δk = k(2iy)−1 + ∂/∂z, we have
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(πi)−1δkKn(z) = −2kY −2Kn(z) + (πi)−1(∂/∂z)Kn(z)

= Y −n−2e(ξ2z/2)
{− (n+ 1)Hn(Y ξ)− ξY H ′

n(Y ξ) + ξ2Y 2Hn(Y ξ)
}
.

By (12.4) we have Y ξHn+1(Y ξ) = Y 2ξ2Hn(Y ξ)− Y ξH ′
n(Y ξ), and by (12.5),

H ′
n+1(Y ξ) = (n+ 1)Hn(Y ξ). Therefore

(πi)−1δkKn(z) = Y −n−2e(ξ2z/2)
{
Y ξHn+1(Y ξ)−H ′

n+1(Y ξ)
}

= Y −n−2e(ξ2z/2)Hn+2(Y ξ)

by (12.4). This proves (12.12), and (12.10a) as well. Recall the operator

δmr defined by δmr = δr+2m−2 · · · δr+2δr in (6.13d). Let n = 2m + ν and

r = ν + 1/2 with ν = 0 or 1 and 0 < m ∈ Z. Then from (12.10a) we obtain

(12.12a) (πi)−mδmr θν(z, λ) = θn(z, λ).

Applying (πi)−mδmr to (12.9c, d) and employing (6.14c), we obtain (12.10).

This completes the proof.

12.3. This subsection concerns a formula for the Fourier transform of

Kn. We do not need this result in our later discussion, however. We have

K0(ξ, z) = e(ξ2z/2) andK1(ξ, z) = ξe(ξ2z/2), and so from (12.12) we obtain,

for 0 ≤ m ∈ Z and ν = 0 or 1,

(12.13) K2m+ν(ξ, z) = (πi)−mδmν+1/2Kν(ξ, z) = (πi)−mδmν+1/2ξ
νe(ξ2z/2).

Now we have an integral formula

(12.14)

∫
R

Kν(ξ, z)e(−ξη)dξ = (−iz)−1/2z−νKν

(
η, ι(z)

)
(η ∈ R),

where ι =

[
0 −1
1 0

]
. Indeed, if ν = 0, this is merely (4.30) with n = 1.

Applying ∂/∂η to it, we obtain the case ν = 1. Then applying (πi)−mδmν+1/2

to (12.14), from (12.13) and (6.14c) we obtain

(12.15)

∫
R

K2m+ν(ξ, z)e(−ξη)dξ = (−iz)−1/2z−m−νK2m+ν

(
η, ι(z)

)
(ν = 0 or 1, 0 ≤ m ∈ Z, η ∈ R).

12.4. Fixing a positive integer N divisible by 4, we put, for simplicity,

(12.16) Γ 0
N = Γ (2, N/2) =

{
γ ∈ Γ (1)

∣∣ bγ ∈ 2Z, cγ ∈ 2−1NZ
}
.

In addition, we will be considering Γ0(N/2).We also take a half-integral weight

k and a character ψ of (Z/NZ)× (which may be imprimitive) such that

(12.17) k = m+ 1/2 and ψ(−1) = (−1)m, 0 < m ∈ Z.

We then consider an element f of S k(2, N/2; ψ) (see §8.6), that is, an ele-

ment f of S k such that

(12.18) f‖k γ = ψ(dγ)f for every γ ∈ Γ 0
N .
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Next, we define η ∈ L (V ) with V of §11.1 by

(12.19) η

([
a b
c −a

])
= ω(a)ω(2c/N)η0(b),

where ω is the characteristic function of Z and

(12.19a) η0(b) =

⎧⎪⎨
⎪⎩

N−1
∑

t∈Z/NZ

ψ(t)e(−bt/2) if Nb ∈ 2Z,

0 otherwise,

with ψ(t) = 0 for t not prime to N. Since η0(b) depends only on b (mod 2Z),

we see that η ∈ L (V ). Moreover, a simple calculation shows that

(12.20) η(βαβ−1) = ψ(d2β)η(α) for every β ∈ Γ0(N/2).

Let us simply write Θ(z, w) for Θ(z, w; η) of (11.6) with this η. Then from

(12.20) and (11.9) we obtain

(12.21) Θ(z, βw)jβ(w)
−2m = ψ(d2β)Θ(z, w) for every β ∈ Γ0(N/2).

We have several aims: one is to prove Theorem 11.3(ii); the other is to make

preparations for the proof of our main theorem, Theorem 12.8 below. We thus

take f as above and define g by (11.10) with Γ =
{
γ ∈ Γ 0

N

∣∣ aγ − 1 ∈ NZ
}
.

Then from Theorem 11.3(i) and (12.21) we see that g ∈ M 2m(N/2, ψ2). Put

(12.22) g(w) =
∑
ξ∈Z

c(ξ)e(ξw).

We first note that g(ir) =
∑

ξ∈Z c(ξ)e−2πξr for 0 < r ∈ R. (We make these

choices of f and Γ for some definite reason, but actually our calculation is

valid for an arbitrary f ∈ S k and a suitable Γ, with some obvious modifica-

tions, about which we will be more explicit in our later discussion.) In view

of (8.2) we have

(12.23)

∫ ∞

0

g(ir)rm+s−1dr = (2π)−m−sΓ (s+m)
∑

0<ξ∈Z
c(ξ)ξ−s−m,

provided c(0) = 0 and the right-hand side is convergent, which is the case

if Re(s) > m + 1, because of the estimate of c(ξ) given in Lemma 6.2(ii).

Also, if c(0) �= 0, the integral of (12.23) is divergent for large Re(s), since

|g(ir)| > |c(0)|/2 for sufficiently large r. In the following subsection we will

show that the integral is indeed convergent for sufficiently large Re(s), and so

c(0) = 0 and (12.23) holds for Re(s) > m+ 1.

12.5. For ξ =

[
a b
c −a

]
∈ V and w = ir we have, by (11.3a) and (11.5),

[ξ, w] = −cr2 − 2air − b,
∣∣[ξ, w]∣∣2 = 4a2r2 + b2 + c2r4 + 2bcr2,

Rw(z)[ξ] = (−a2 − bc)z + (iy/2)(4a2 + b2r−2 + 2bc+ c2r2)
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= −a2z̄ − bcx+ (iy/2)(c2r2 + b2r−2),

and so

y(m−1)/2(
√
π r)mΘ(z, ir) = (−1)m

∑
(a,b,c)∈Q3

ω(a)η0(b)ω(2c/N)

· (πy)m/2(cr+br−1+2ai)me
(
(a2/2)z+(bc/2)x+(iy/4)(c2r2+b2r−2)

)
.

By (12.6) we have

(πy)m/2(cr + br−1 + 2ai)m

=
m∑

n=0

(
m
n

)
im−nHn

(√
πy(cr + br−1)

)
Hm−n

(√
4πy · a).

Therefore, putting

(12.24) An(z, r) =
∑

(b,c)∈Q2

η0(b)ω(2c/N)Hn

(√
πy(cr + br−1)

)
· e((bc/2)x+ (iy/4)(c2r2 + b2r−2)

)
,

(12.25) τ�(z) = y−�/2
∑
a∈Z

H�

(√
4πy · a)e(a2z/2),

we obtain

(12.26) y(m−1)/2(
√
π r)mΘ(z, ir)

= (−1)m
m∑

n=0

(
m
n

)
im−ny(m−n)/2τm−n(z)An(z, r).

Notice that τ�(z) is (4π)
�/2 times θ�(z, ω) of (12.8), and it is identically equal

to 0 if � is odd, because of (12.3).

We now need a formula

(12.27) i−n21/2π−n/2(y/r2)(n+1)/2An(z, r)

=
∑

(c,d)∈T
ψ̄(d)(cz̄ + d)ne

(
(ir2/(4y))|cz + d|2),

where T =
{
(c, d) ∈ 2−1NZ×Z

∣∣ dZ+NZ = Z
}
. To prove this, we first note

(12.28)

∫
R

exp
(− πp(u+ q)2

)
e(−uv)du = p−1/2e(qv) exp(−πv2/p)

for 0 < p ∈ R, q ∈ R, and v ∈ R. This follows easily from (4.28). Given

z = x + iy ∈ H, 0 < t ∈ R, and c ∈ R, take p = t2/y and q = cx in (12.28)

and multiply the result by exp(−πyc2t2). Then we obtain

(12.29)

∫
R

exp
(− πt2|cz + u|2/y)e(−uv)du

= (
√
y/t)e

(
cxv + (iy/2)(c2t2 + v2t−2)

)
.

This is the special case n = 0 of

(12.30) (
√
2π i)n

∫
R

exp(−πt2y−1|cz + u|2)(cz̄ + u)ne(−uv)du
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= (
√
y/t)n+1Hn

(√
2πy(ct+ vt−1)

)
e
(
cxv + (iy/2)(c2t2 + v2t−2)

)
(0 ≤ n ∈ Z, z = x+ iy ∈ H, c ∈ R, v ∈ R, 0 < t ∈ R).

The case n > 0 of (12.30) can be proved by induction on n, by applying

2πicz̄ − ∂/∂v to (12.29) and employing (12.4).

Before proceeding further, we consider a variation of the Poisson summa-

tion formula:

(12.31)
∑
d∈Z

ψ̄(d)h(d) =
∑

b∈(2/N)Z

η0(b)ĥ(b/2)

for a function h on R. Indeed, if f(x) = h(Nx), then f̂(x) = N−1ĥ(x/N).

By (4.27) with n = 1 and y/N in place of r we have
∑

m∈Z h(Nm + y) =∑
m∈Z f(N−1y + m) =

∑
n∈Z e(ny/N)f̂(n) = N−1

∑
n∈Z e(ny/N)ĥ(n/N).

Multiply this by ψ̄(y), take the sum over 1 ≤ y ≤ N, and replace n by Nb/2;

then we obtain (12.31).

Now put h(u) = (cz̄+ u
)n
e
(
(ir2/4y)|cz+ u|2). Then ĥ is given by (12.30)

with r2/2 in place of t2, and (12.31) combined with summation over c ∈
2−1NZ gives the desired (12.27).

12.6. Let Cn(z, r) denote the function of (12.27). Combining (11.10) with

(12.26), we obtain

(12.32) g(ir) = im
m∑

n=0

(
m
n

)
2−1/2π(n−m)/2

·
∫
Φ

f(z)τm−n(z)Cn(z, r)r
n−m+1yk−ndz.

Employing the right-hand side of (12.27), we have

(12.33)

∫ ∞

0

Cn(z, r)r
s+ndr

=
∑

(c,d)∈T

∫ ∞

0

ψ(d)(cz + d)n exp
(− (πr2/2y)|cz + d|2)rs+ndr.

Since rs+ndr = 2−1(r2)(s+n−1)/2d(r2), the last sum equals

2−1(2y/π)(s+n+1)/2Γ
(
(s+ n+ 1)/2

) ∑
(c,d)∈T

ψ(d)(cz + d)n|cz + d|−s−n−1

= 2−1(2/π)(s+n+1)/2Γ
(
(s+ n+ 1)/2

)
E

N/2
−n

(
z, (s+ n+ 1)/2; ψ

)
with E of (8.15). (The definition of T shows that d is always nonzero. Our

calculation becomes invalid if m = 0 and the term with c = d = 0 appears.)

We observe that the integral of (12.33) is absolutely convergent for sufficiently

large Re(s) for every n. Indeed, we have∫ ∞

0

∣∣Cn(z, r)
∣∣rn+σdr ≤ 2−1(2/π)(σ+n+1)/2yn/2

· Γ (
(σ + n+ 1)/2

)
E

N/2
0

(
z, (σ + 1)/2; ψ0

)
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for sufficiently large σ ∈ R, where ψ0 is the trivial character modulo N. Thus

from (12.32) and (12.33) we obtain, at least formally,

(12.34)

∫ ∞

0

g(ir)rm−1+sdr = im
m∑

n=0

(
m
n

)
2(s+n)/2−1π−(s+m+1)/2

· Γ (
(s+ n+ 1)/2

) ∫
Φ

f(z)τm−n(z)E
N/2
−n

(
z, (s+ n+ 1)/2; ψ

)
yk−ndz.

By (8.18) the last integral over Φ can be written

(12.35) 2LN(s+ 1, ψ̄)

∫
Φ

f(z)τm−n(z)E−n

(
z, (s+ n+ 1)/2; Γ, ψ

)
yk−ndz.

By (12.12a) we have τ� = (4π)�/2θ� and θ� = (πi)−tδtrθν , where � = 2t+ν, r =

ν + 1/2, ν = 0 or 1, and so θ� is slowly increasing at every cusp by Lemma

6.10. By Theorem 8.12(ii) the same is true with E−n

(
z, s; N, ψ

)
for every s

where the function is finite. Since f is a cusp form, the integral over Φ in

(12.34) is convergent for every such s. We can say the same for the integral

of (12.35) at least for sufficiently large Re(s). Replacing every factor of the

integrand by its absolute value, we find that
∫∞
0 |g(ir)|rσ+m−1dr is convergent

for sufficiently large σ, and so we can justify our formal calculation, and at

the same time we have proved that c(0) = 0. But this does not necessarily

mean that g is a cusp form.

12.7. Let us now prove Theorem 11.3(ii). By (11.9), for α ∈ SL2(Q) we

have

(g‖2m α)(w) =

∫
Φ

f(z)Θ(z, w; ηα)dz.

We see that ηα is a finite C-linear combination of functions of the form

η

([
a b
c −a

])
= ω1(a)ω2(b)ω3(c)

with ωi ∈ L (Q). We now repeat the calculation of §12.5 with this η in

place of η of (12.19) and an arbitrary f ∈ S k(Γ ). Then (12.26) is true with

An for which η0(b)ω(2c/N) is replaced by ω2(b)ω3(c), and with τ� replaced

by θ�(z, ω1). To carry out the calculation, we first have to modify (12.31)

as follows. Put ω′(b) = ω2(2b) and take positive rational numbers K and

M so that ω′ is essentially a function on MZ/KZ. If f(x) = h(x/K), then

f̂(x) = Kĥ(Kx), and so, by (4.27a),

K
∑
n∈Z

ĥ(Kn+Kr)=
∑
n∈Z

f̂(n+ r)=
∑
m∈Z

e(−mr)f(m)=
∑
m∈Z

e(−mr)h(m/K).

We can find a finite subset R of Q such that MZ =
⊔

r∈R(KZ+Kr). Then∑
b∈Q

ω2(2b)ĥ(b) =
∑
r∈R

∑
n∈Z

ω′(Kn+Kr)ĥ(Kn+Kr)
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=
∑
r∈R

ω′(Kr)
∑
n∈Z

ĥ(Kn+Kr).

Therefore,∑
b∈Q

ω2(2b)ĥ(b)=
∑
m∈Z

ζ(m)h(m/K) with ζ(m)=K−1
∑
r∈R

ω′(Kr)e(−mr).

Employing this instead of (12.31) we obtain the modification of (12.27) whose

right-hand side is∑
(c,d)∈Q2

ξ(c, d)(cz̄ + d)ne
(
(ir2/(4y))|cz + d|2)

with some ξ ∈ L (Q2). We eventually find that

(g‖2m α)(ir) =
∑
j∈J

m∑
n=0

∫
Φ

f(z)τj,m−n(z)Cj,n(z, r)r
n−m+1yk−ndz,

where J is a finite set of indices, τj,�(z) = θ�(z, λj,�) with λj,� ∈ L (Q), and

Cj,n(z, r) =
∑

(c,d)∈Q2

ξj,n(c, d)(cz̄ + d)ne
(
(ir2/y)|cz + d|2)

with ξj,n ∈ L (Q2). If n > 0, we see that
∫∞
0 Cj,n(z, r)r

s+ndr is convergent

for sufficiently large Re(s), but if n = 0, we have to be careful, since Cj,0(z, r)

has the constant term ξj,0(0, 0). Thus put

B =
∑
j∈J

ξj,0(0, 0)

∫
Φ

f(z)τj,m(z)ykdz.

Then our previous argument shows that∫ ∞

0

∣∣(g‖2m α)(ir) −Br1−m
∣∣rσdr

is convergent for sufficiently large σ. If m > 1, this implies that g‖2m α has

zero constant term. If m = 1 and 〈f, θ∗(z, η)〉 = 0 for every η ∈ L (Q), then

B = 0, since τj,1 is θ1(z, ω1) with ω1 ∈ L (Q) and θ∗ = θ1. Therefore we see

again that g‖2m α has zero constant term. This proves Theorem 11.3(ii).

We now state the first main theorem on the correspondence S k →M 2m.

Theorem 12.8. Let f(z)=
∑∞

ξ=1 λ(ξ)e(ξz/2)∈S k(2, N/2; ψ) with k =

m + 1/2, 0 < m ∈ Z, 0 < N ∈ 4Z and a character ψ modulo N such that

ψ(−1) = (−1)m. Given a square-free positive integer t, define a character χt

modulo tN by

χt(n) = ψ(n)

(
t

n

)
(n ∈ Z).

Then the following assertions hold:

(i) There exists an element gt(w) =
∑∞

n=0 ct(n)e(nw) of M 2m(N, ψ2)

such that ct(0) = 0 and

(12.36)
∞∑
n=1

ct(n)n
−s = LN (s−m+ 1, χt)

∞∑
ξ=1

λ(tξ2)ξ−s.
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(ii) The function gt can be obtained as a theta integral (11.10) with a

suitable η ∈ L (V ) and f(tz) in place of f there.

(iii) The function gt is a cusp form if m> 1or if m=1 and 〈f, θ1(z, μ)〉 =
0 for every μ ∈ L (Q), where θ1 is as in (12.9b).

Proof. We return to §12.6 with f as in our theorem. We took a suffi-

ciently small congruence subgroup Γ of Γ 0
N and put Φ = Γ\H. We can replace

Γ by a larger subgroup of Γ 0
N provided the integral of (12.35) is meaningful,

though the value of the integral is multiplied by an element of Q× that de-

pends on the choice of the group. As for τ�, we have θ� = (πi)−tδtrθν as

above, and so τ�(γz) = hγ(z)jγ(z)
�τ�(z) for every γ ∈ Γ (2, 2) by (4.20) and

(4.47). Therefore, in view of (8.16a) we can take Γ = Γ 0
N = Γ (2, N/2).

We now calculate the integral over Φ of (12.35) with this Γ. We put f(z) =∑∞
ξ=1 λ(ξ)e(ξz/2) and � = m− n. Since τ� is given by (12.25), we have

f(z)τ�(z) =

∞∑
ξ=1

∑
a∈Z

λ(ξ)eπi(ξ−a2)xe−π(ξ+a2)yy−�/2H�

(√
4πy · a),

and so ∫ 2

0

f(z)τ�(z)dx = 4
∞∑
a=1

λ(a2)e−2πa2yy−�/2H�

(√
4πy · a).

Let q = m− 1 + (s− n)/2. Then, employing (12.7) we obtain, for � = m− n,

(∗)
∫ ∞

0

∫ 2

0

f(z)τ�(z)dx y
qdy =

∞∑
a=1

4λ(a2)

∫ ∞

0

e−2πa2yy−�/2H�

(√
4πy · a)yqdy

= 22−�/2(2π)−(s+m)/2

�∏
ν=1

(s+m− ν)Γ
(
(s+ n)/2

) ∞∑
a=1

λ(a2)a−s−m.

Let Ξ =
{
x+ iy ∈ H

∣∣ 0 ≤ x < 2
}
. Then Ξ gives (P ∩Γ 0

N )\H, and as observed

in §9.3, ⊔γ∈R γΦ represents Ξ, where R = (P ∩ Γ 0
N )\Γ 0

N . Now

(f τ̄�y
q+2) ◦ γ = ψ(dγ)j

n
γ |jγ |−s−n−1f τ̄�y

q+2

for every γ ∈ Γ, and so∫ ∞

0

∫ 2

0

fτ �dx y
qdy =

∫
Ξ

fτ �y
q+2dz =

∑
γ∈R

∫
Φ

(f τ̄�y
q+2) ◦ γ dz

=

∫
Φ

f τ̄�y
q+2

∑
γ∈R

ψ(dγ)j
n
γ |jγ |−s−n−1dz

=

∫
Φ

f(z)τ�(z)E−n(z, (s+ n+ 1)/2; Γ, ψ)yk−ndz,

which is the integral of (12.35). If we replace ψ(dγ)j
n
γ |jγ |−s−n−1 by its abso-

lute value, then E−n is replaced by E0

(
z, (σ+1)/2; Γ ) with σ = Re(s), which

is finite and slowly increasing at every cusp for sufficiently large σ. Since f is
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a cusp form, our calculation is justified for sufficiently large Re(s). Combining

this result with (12.23) and (12.34), we find that

(2π)−m−sΓ (s+m)

∞∑
ξ=1

c(ξ)ξ−s−m

= im
m∑

n=0

(
m
n

)
2(s+n)/2−1π−(s+m+1)/2Γ

(
(s+ n+ 1)/2

)
· 2LN(s+ 1, ψ)

∫ ∞

0

∫ 2

0

fτm−ndx y
qdy,

where q = m− 1 + (s− n)/2. Notice that for � = m− n we have

Γ
(
(s+ n)/2

)
Γ
(
(s+ n+ 1)/2

) �∏
ν=1

(s+m− ν) = 21−s−nπ1/2Γ (s+m).

Also,
m∑

n=0

(
m
n

)
= 2m. Thus, employing (∗), we finally obtain

∞∑
ξ=1

c(ξ)ξ−s−m = 2m+3imLN (s+ 1, ψ)

∞∑
a=1

λ(a2)a−s−m,

since (2π)−s−mΓ (s + m) appearing on both sides can be cancelled. Thus

i−m2−m−3g gives g1 of our theorem, proving the case t = 1.

To prove the case with t > 1, we put ft(z) = f(tz) =
∑∞

ξ=1 μ(ξ)e(ξz/2).

By Lemma 8.17(i), ft ∈ S k(2, tN/2, χt) with χt as above. Applying our

result in the case t = 1 to ft, we find an element h(w) =
∑∞

n=1 C(n)e(nw) ∈
M 2m(2tN, ψ2) such that

(∗∗)
∞∑
n=1

C(n)n−s =

∞∑
n=1

χt(a)a
m−1−s

∞∑
ξ=1

μ(ξ2)ξ−s.

Since ft(z) =
∑∞

ξ=1 λ(ξ)e(tξz/2), we see that μ(ξ2) �= 0 only if t|ξ, in which

case μ(ξ2) = λ(tη2) with η = ξ/t. Thus
∑∞

ξ=1 μ(ξ
2)ξ−s= t−s

∑∞
η=1 λ(tη

2)η−s,

and so from (∗∗) we see that C(n) �= 0 only if t|n. Put gt(w) = h(w/t),

Then gt(w) =
∑∞

n=1 ct(n)e(nw) with ct(n) = C(tn), and by Lemma 8.17(i),

gt ∈ M 2m(t, 2N ; ψ2). Also, we have (12.36). It remains to prove that

gt ∈ M 2m(1, 2N ; ψ2). By Lemma 8.18, Γ0(2N) is generated by Γ (t, 2N)

and

[
1 1
0 1

]
, Since gt(w + 1) = gt(w), we obtain the desired fact. This

proves (i) and (ii), and (iii) as well, by virtue of Theorem 11.3(ii).

The above theorem excludes the case k = 1/2. We can actually determine

M 1/2 completely as follows.

Theorem 12.9. The space M 1/2 is spanned by the series θ0(az, λ) with

0 < a ∈ Q and λ ∈ L (Q), where θ0 is as in (12.9a), that is,
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θ0(az, λ) =
∑
ξ∈Q

λ(ξ)e(aξ2z/2).

After some preliminary observations in §12.10 and two lemmas, the proof

will be completed in §12.13.
12.10. Throughout this subsection we put k = 1/2. Thus m = 0. Define

g by (11.10) with f ∈ S k(Γ ). By Lemma 10.7, Θ as a function of z is

slowly increasing at every cusp, locally uniformly in w. Since f is a cusp

form, (11.10) is convergent, and so g is meaningful. Besides, the estimate of

Θ(z, w; ζ) in §11.6 is valid in the case m = 0, if we ignore the constant term,

which is y1/2. Therefore g is slowly increasing at every cusp.

For α in V of (11.1), s ∈ C, and w ∈ H put

(12.37) κ[α, w, s] = Im(w)2s|[α, w]|−2s,

where [α, w] is as in (11.3a). Let L0 be the operator of (6.13c) with k = 0.

Then

(12.38) L0κ[α, w, s] = 2s(1− 2s)κ[α, w, s]− 16s2 det(α)κ[α, w, s+ 1].

To make our calculation easier, we note that κ[α, γw, s] = κ[γ−1αγ, w, s] for

every γ ∈ SL2(R), which follows from (6.3) and (11.3c), and so

L0

(
κ[γ−1αγ, w, s]

)
= (L0κ)[α, γw, s]

by (6.14d). Therefore it is sufficient to verify (12.38) when α = diag[−a, a],
which can be done easily.

Put f(z) =
∑

ξ∈Q λ(ξ)e(ξ/2) and define two infinite series P and Q by

(12.39a) P (w, s) =
∑
α∈V

η(α)λ
( − det(α)

)
κ[α, w, s],

(12.39b) Q(w, s) =
∑
α∈V

η(α)λ
( − det(α)

)
det(α)κ[α, w, s+ 1],

where w ∈ H, s ∈ C, and η ∈ L (Q). Since λ(0) = 0, the sums are over

α such that det(α) < 0. These series are convergent for sufficiently large

Re(s), provided Im(w) > c with a constant c that depends on η. Indeed, by

Lemma 6.2(iii), |λ( − det(α)
)| = O(| det(α)|1/4), and so our task is to prove

the convergence of

(12.40)
∑

α∈V, det(α)<0

η(α)| det(α)|a|[α, w]|−2s

under those conditions on s and w, for any a ∈ R, ≥ 0. We may assume

that η is a characteristic function of a lattice in V. For α =

[
a b
c −a

]
∈ V

put ‖α‖ = (a2 + b2 + c2)1/2. Then, by (11.24) and (11.19) we have

|[α, w]|2 = 2Im(w)2
(
Pw[α]− det(α)

) ≥ 2Im(w)2Pw[α] ≥ 4−1‖α‖2,



12. MAIN THEOREMS ON THE CORRESPONDENCE 113

since det(α) < 0. Notice also that | det(α)| ≤ ‖α‖2. Therefore (12.39) is

majorized by a constant times
∑

0�=α∈L ‖α‖2a−2s for Re(s) > 0 with a lattice

L in V. Thus we obtain the desired convergence. Consequently P and Q define

holomorphic functions in s for Re(s) > b with some b ∈ R when Im(w) > c

with a positive constant c.

Lemma 12.11. The series P (w, s) and Q(w, s) can be continued as mero-

morphic functions in s to the whole s-plane with at most a simple pole at

s = 1. The residues of P and Q at s = 1 are Ag(w) and (−A/8)g(w), respec-
tively, where A is a nonzero constant and g is the function of (11.10) defined

with the present f, η, k = 1/2, and m = 0.

Proof. We prove this lemma by finding integral expressions for these

series. We take a sufficiently large even positive integer N, and replace Γ by

Γ (N), or rather, put Γ = Γ (N). We also put Γ∞ = Γ ∩P, Ψ = Γ∞\H, and
Φ=Γ\H. Let Θ0 denote Θ(z, w; η) of (11.6) with m = 0. We have

f(z)Θ0(z) = y1/2
∑
ξ∈Q

∑
α∈V

λ(ξ)η(α)e

(
2−1

(
ξ+det(α)

)
z+(iy/4)v−2|[α, w]|2

)

in view of (11.5), where y = Im(z) and v = Im(w), and so∫ N

0

f(z)Θ0(z)dx = Ny1/2
∑
α∈V

η(α)λ
( − det(α)

)
e
(
(iy/4)v−2|[α, w]|2).

Since Ψ is represented by
{
x+ iy

∣∣ y > 0, 0 ≤ x < N
}
, we have, using (8.2),∫

Ψ

fΘ0y
s+1/2dz =

∫ ∞

0

{∫ N

0

fΘ0dx

}
ys−3/2dy

= N

∫ ∞

0

∑
α∈V

η(α)λ
( − det(α)

)
exp

(− y(π/2)v−2|[α, w]|2)ys−1dy

= N(2/π)sΓ (s)P (w, s)

for Re(s) > b and Im(w) > c with some b and c. As observed in §9.13, Ψ
is represented by

⊔
γ∈R γΦ with R = Γ∞\Γ. By (11.8) we have (fΘ0)◦ γ =

|jγ(z)|fΘ0, and so∫
Ψ

fΘ0y
s+1/2dz =

∑
γ∈R

∫
Φ

(
fΘ0y

s+1/2
)
◦ γdz

=

∫
Φ

fΘ0

∑
γ∈R

|jγ(z)|−2sys+1/2dz =

∫
Φ

fΘ0E0(z, s; Γ )y1/2dz,

where E0 is the function of (9.12) with k = 0. Our calculation is justified for

the same reason as in the proof of Theorem 12.8. Thus

(12.41) N(2/π)sΓ (s)P (w, s) =

∫
Φ

fΘ0E0(z, s; Γ )y1/2dz.
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Now E0(z, s; Γ ) can be continued to a meromorphic function on the whole

s-plane in the sense of Theorem 9.9 with a simple pole at s = 1 with a

positive number, say ρ, as the residue. Besides, Lemma 9.8 shows that if

(s− s0)
bE0 is finite at s = s0, then (s− s0)

bE0 is slowly increasing at every

cusp locally uniformly in s. Since f is a cusp form, the last integral over Φ

defines a meromorphic function in s on the whole C. In addition, it has at

most a simple pole at s = 1 with residue

ρ

∫
Φ

f(z)Θ0(z, w; η)y
1/2dz = ρg(w).

Therefore from (12.41) we see that P (w, s) has at most a simple pole at

s = 1 with residue (2N)−1πρg(w). This proves our assertion on P with A =

(2N)−1πρ.

Next, to deal with Q(w, s), we take

(πi)−1∂f/∂z =
∑
ξ∈Q

ξλ(ξ)e(ξz/2)

in place of f. By the same technique as before we easily find that

(∗)
∫
Ψ

(πi)−1(∂f/∂z)Θ0y
s+3/2dz = −N(2/π)s+1Γ (s+ 1)Q(w, s).

We consider the operator δk of (6.13b) with k = 1/2. Then (πi)−1∂f/∂z =

(πi)−1δ1/2f + (4πy)−1f, and so the last integral over Ψ equals

(∗∗) (πi)−1

∫
Ψ

(δ1/2f)Θ0y
s+3/2dz + (4π)−1

∫
Ψ

fΘ0y
s+1/2dz.

Since (Θ0δ1/2f)◦ γ = j2γ |jγ |Θ0δ1/2f for every γ ∈ Γ, the previous technique

used for P produces∫
Ψ

(δ1/2f)Θ0y
s+3/2dz =

∫
Φ

(δ1/2f)Θ0E−2(z, s+ 1; Γ )y1/2dz.

By Lemma 6.10, δ1/2f is rapidly decreasing at every cusp. Thus, for the

same reason as for P, we see that Q(w, s) can be continued to a meromorphic

function on the whole s-plane. By Theorem 9.9, E−2(z, s+ 1; Γ ) is finite at

s = 1. Therefore from (12.41), (∗), and (∗∗) we see that Q(w, s) has at most a

simple pole at s = 1 with residue −(16N)−1πρg(w), and our proof of Lemma

12.9 is complete.

Lemma 12.12. Define g by (11.10) with f ∈ S k, k = 1/2. Suppose that

〈f, θ0(z, λ)〉 = 0 for every λ ∈ L (Q), where θ0 is as in (12.9a). Then g = 0.

Proof. We have shown in §12.10 that g is slowly increasing at every

cusp. Let the notation be as in §12.10 and Lemma 12.11. By (12.38) we have

L0P (w, s) = 2s(1− 2s)P (w, s)− 16s2Q(w, s). Taking the residues of P and

Q at s = 1, from Lemma 12.9 we obtain AL0g = −2Ag + (16A/8)g = 0, and

so L0g = 0. Thus g belongs to A0(0), and has an expansion
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g(u+ iv) = a+ cv +
∑

0�=h∈rZ
bhWk(hv, 0)e(hu)

with a, c, bh ∈ C; see (9.10) and (9.12a). By Lemma 9.2(ii) the last sum

is O(e−Bv) with B > 0 as v → ∞. Now our calculation of §12.7 is valid in

the present case with m = 0 under our assumption that 〈f, θ0(z, λ)〉 = 0. In

particular, with m = n = 0 we see that
∫∞
0 |g(ir)|rσdr <∞ for a sufficiently

large σ, which shows that a = c = 0. Since this is so for g◦α in place of

g for every α ∈ SL2(Q), we see that g is a cusp form. By Lemma 9.2(iv),

S0(0) = S 0 = {0}. Thus g = 0.

12.13. We now prove Theorem 12.9. In this proof we put k = 1/2.

We know that θ0(az, λ) belongs to M k. We have shown in (9.45a) that

M k = S k ⊕ Ek, and also in (9.49) that Ek is spanned by some series of

the type θ0(az, λ). Therefore it is sufficient to show that every element f

of S k orthogonal to all series of the type θ0(az, λ) is 0. Take such an f.

Then we can find q ∈ Q, > 0, such that f(qz) belongs to S k(Γ
′) with

Γ ′ =
{
γ ∈ Γ 0

N

∣∣ aγ − 1 ∈ NZ
}
, where 0 < N ∈ 4Z and Γ 0

N is as in

(12.16). Put f0(z) = f(qz). For each character χ of (Z/NZ)× such that

χ(−1) = 1 put fχ =
∑

γ∈R χ(aγ)f0‖k γ, where R = Γ 0
N/{±1}Γ ′. Then

fχ ∈ S k(2, N/2; χ) and #{χ}f0 =
∑

χ∈{χ} fχ, where {χ} is the set of

all such characters χ. Our aim is to show that fχ = 0 for every χ. For

a square-free positive integer t put fχ,t(z) = fχ(tz). By Lemma 8.17(i),

fχ,t ∈ S k(2, tN/2; ψt) with ψt(a) = χ(a)

(
t

a

)
. Moreover, our assumption

on f implies that 〈fχ,t, θ0(z, λ)〉 = 0 for every λ ∈ L (Q). Therefore, by

Lemma 12.12, the theta integral of fχ,t is 0. Our calculations in §§12.5
and 12.6 and the proof of Theorem 12.8 are valid in the present case with

fχ,t in place of f, and so the vanishing of the theta integral of fχ,t means

that (∗∗) in the proof of Theorem 12.8 is 0, and so
∑∞

ξ=1 μ(ξ
2)ξ−s = 0 if

fχ,t(z) =
∑∞

ξ=1 μ(ξ)e(ξz/2). The argument of the last part of the proof of

Theorem 12.8 shows that
∑∞

ξ=1 λ(tξ
2)ξ−s = 0 if fχ(z) =

∑∞
ξ=1 λ(ξ)e(ξz/2).

Since this is so for every square-free positive integer t, we obtain fχ = 0 as

expected. This completes the proof.

12.14. Theorem 12.8(i) was essentially given in [S73a, p. 458] in a some-

what different form, and later in [S87] it was generalized to the case of forms

with respect to congruence subgroups of SL2(F ) with a totally real algebraic

number field F. The difference between Theorem 12.8(i) and the corresponding

statement in [S73a] is caused by our choice of jkα in (5.1b) and of hγ in (4.40).

Our choice is more natural than (h′δ)
2k employed in [S73a], where h′δ is as in

(5.6). Also, generalizations of Theorem 12.8(ii, iii) and Theorem 12.9 in the

case of SL2(F ) were given in [S87]. To show that gt(w) =
∑∞

m=1 ct(m)e(mw)
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of Theorem 12.8(i) is a form of weight 2m, we employed in [S73a] the charac-

terization of such a form by the functional equations of
∑∞

m=1 χ(t)ct(m)e(mw)

for all Dirichlet characters χ. Such a characterization originated in Hecke

[H36], and Weil, inspired by my idea on the modularity of Q-rational ellip-

tic curves (as he implied in 1967 and 1986), proved the characterization of

the forms of S ν

(
Γ0(N)

)
, 0 < ν ∈ Z. It is easy to extend it to the forms of

S ν(N, ψ) with an arbitrary character ψ modulo N, and it was this charac-

terization that I employed in [S73a].

The methods of [S87], which we followed in Sections 11 and 12, were com-

pletely different. I calculate explicitly the theta integral (11.10), which I

believe, gives a shorter proof and better results. In fact, similar integrals had

been investigated by a few researchers, but their methods required that the

weight be sufficiently large. I found that this difficulty was avoidable by using

the operators ε and δk−2, and proving an equality of type (11.15). It seems

that there is a conceptual explanation of such an equality.

In any case, in the intervening years, no small number of authors published

papers on the correspondence, as can be seen from the references of [S87].

However, their connection with our main theorems is not so clear-cut, and so

we included in the references of the present book only those which may be

called truly relevant. The reader who is interested in those works can check

the papers listed at the end of [S87] and compare them with our theorems. I

may be allowed to say that not every paper there is reliable, and some have

serious gaps.

The main theorem of [S73a] was formulated for eigenfunctions of Hecke

operators of half-integral weight, but we stated Theorem 12.8 without such

operators. We will discuss them in the next section. We note that a few

examples of the correspondence f �→ g and also examples of the dimensions

of S k(Γ
0
N ) and S 2m

(
Γ0(N/2)

)
are given in [S73a, Section 4].

13. Hecke operators

13.1. We first introduce the notion of Hecke algebra in an abstract setting.

We say that two subgroupsD andD′ of a group are commensurable ifD∩D′
is of finite index in D and in D′. We now fix a multiplicative group G and a

subgroupD of G , and assume that αDα−1 is commensurable with D for every

α ∈ G . It is an easy exercise to show that #(DαD/D) = [D : D ∩ αDα−1]

and #(D\DαD) = [D : D ∩ α−1Dα] for every α ∈ G . Also we have

(13.0) If #(DαD/D) = #(D\DαD), then there exists a set {ζi}i∈I such that

DαD =
⊔

i∈I Dζi =
⊔

i∈I ζiD.

Indeed, let DαD =
⊔

i∈I Dξi =
⊔

i∈I ηiD. Since ξi ∈ DηiD, we have ξi =

δiηiεi with δi, εi ∈ D. Then we obtain the desired result with ζi = δ−1
i ξi.
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Let R denote the vector space over Q consisting of all formal finite sums∑
cαDαD with cα ∈ Q and α ∈ G . We introduce a law of multiplication

R × R → R which makes R an associative algebra as follows. Given u =

Dα0D and v = Dβ0D with α0, β0 ∈ G , take coset decompositions

(13.1) u = Dα0D =
⊔

α∈A Dα, v = Dβ0D =
⊔

β∈B Dβ.

We have Dα0Dβ0D =
⋃

β∈B Dα0Dβ =
⋃

α∈A, β∈B Dαβ, so that

(13.1a) Dα0Dβ0D =
⊔

ξ∈X DξD

with a finite set X. We then define the product u · v to be the element of R

given by

(13.2) u · v =
∑
w

μ(u · v, w)w,

where the sum is extended over all the different w = DξD ⊂ Dα0Dβ0D, and

(13.2a) μ(u · v, w) = #
{
(α, β) ∈ A×B

∣∣Dαβ = Dξ
}
.

To make this definition meaningful, we have to show that the right-hand side

is independent of the choice of A, B and ξ. Once this is done, we extend the

map (u, v) �→ u · v to a Q-bilinear map of R × R into R. Though this was

done in [S71], we present here a simpler proof.

Thus our task is to show that the above law is well-defined and associative.

For this purpose, we first consider the vector space M over Q consisting of

all formal finite sums
∑

γ cγDγ with cγ ∈ Q and γ ∈ G . Let u = Dα0D =⊔
α∈A Dα. Clearly Dα0Dγ =

⊔
α∈A Dαγ and this set depends only on u and

Dγ. Therefore, if we let u act on M by the rule

u ·
∑
γ

cγDγ =
∑
γ

∑
α∈A

cγDαγ,

then this is well defined independently of the choice of A and γ. We can also

let G act on M on the right by putting(∑
γ

cγDγ

)
ξ =

∑
γ

cγDγξ (ξ ∈ G ).

We can view R as a subspace of M by identifying Dα0D with
∑

α∈A Dα.

Then it is easy to see thatR as a subspace ofM consists of the elements x ∈M

such that xδ = x for every δ ∈ D. We now restrict the map R ×M → M

to R × R. Since (u · x)δ = u · (xδ), we see that u · x ∈ R if x ∈ R. Thus

we obtain a Q-bilinear map R×R → R. From our definition we see that if

u, v, A, B are as in (13.1), then

(13.3) u · v =
∑
α∈A

∑
β∈B

Dαβ.

The right-hand side, being an element of R, can be written
∑

ξ∈X mξDξD

with 0 ≤ mξ ∈ Z and X of (13.1a). Then clearly mξ = μ(u · v, w) for

w = DξD. Thus (13.3) coincides with (13.2), and so (13.2) is well defined.
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Now, for x = Dγ we have

u · (v · x) = u ·
∑
β∈B

Dβγ =
∑
α∈A

∑
β∈B

Dαβγ =
∑
ξ∈X

mξDξDγ = (u · v) · x.

By linearity we obtain u · (v ·y) = (u ·v) ·y for every y ∈ R, which proves the

associativity of the algebraR. Taking α0 or β0 to be 1, we see that D = D1D

is the identity element of R.

We denote R by R(D, G ) and call it the Hecke algebra of (D, G ). We

define a Q-linear map deg : R(D, G )→ Q by

(13.4) deg

(∑
α

cαDαD

)
=

∑
α

cα#(D\DαD).

Let A be a subset of G containing D which is closed under multiplication.

Then we easily see that theQ-linear span ofDαD for all α ∈ A is a subalgebra

of R(D, G ). We denote this subalgebra by R(D, A ) and call it the Hecke

algebra of (D, A ). As shown in [S71, Propositions 3.3 and 3.8], we have

(13.4a) deg(xy) = deg(x) deg(y) for every x, y ∈ R(D, G ),

(13.4b) If G has an anti-automorphism α �→ α∗ such that D∗ = D and

(DαD)∗ = DαD for every α ∈ A, then R(D, A ) is commutative.

13.2. The symbol R
(
Γ, GL+

2 (Q)
)
is meaningful for every congruence sub-

group Γ of Γ (1). We now take Γ of a special type and replace GL+
2 (Q) by a

smaller set as follows:

Γ =
{
γ ∈ Γ (1)

∣∣ aγ ∈ h, bγ ∈ tZ, cγ ∈ NZ
}
.

Here 0 < t ∈ Z, 0 < N ∈ Z, t|N, and h is a subgroup of (Z/tNZ)×; we
use the same letter h for the inverse image of h under the natural map

Z→ Z/tNZ. (In fact, we are interested only in the two special cases h = {1}
and h = (Z/tNZ)×.) We then consider R(Γ, Ξ) with

Ξ =
{
α ∈M2(Z)

∣∣ det(α) > 0, aα ∈ h, bα ∈ tZ, cα ∈ NZ
}
.

For 0 < n ∈ Z we denote by T ′(n) the sum of all different ΓαΓ with α ∈ Ξ

such that det(α) = n. Also, for two positive integers a and d such that

a|d and (a, N) = 1 we denote by T ′(a, d) the element ΓξΓ of R(Γ, Ξ) with

ξ ∈ Ξ ∩ Γ (1)diag[a, d]Γ (1). Such a ξ exists and ΓξΓ is uniquely determined

independently of the choice of ξ; see [S71, Proposition 3.32].

Lemma 13.3. (i) The algebra R(Γ, Ξ) is a polynomial ring over Q of the

elements of the following two types:

(1) T ′(p) for all prime factors p of N ;

(2) T ′(1, p) and T ′(p, p) for all prime numbers p not dividing N.
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(ii) Every ΓξΓ with ξ ∈ Ξ can be expressed as a product T ′(m)T ′(a, d)
with m|N∞, a|d, d prime to N.

(iii) T ′(m)T ′(n) = T ′(mn) if m|N∞ and n|N∞.

(iv) T ′(�m) = T ′(�)T ′(m) if � is prime to m.

(v) R(Γ, Ξ) is generated over Q by the T ′(n) for all positive integers n.

This is [S71, Theorem 3.34]. Here we write m|N∞ when the prime factors

of m divide N. In fact, these are formulated only when h is a subgroup

of (Z/NZ)×, but all the statements are valid for Γ and Ξ given as above,

as can be seen by verifying various statements of [S71], Proposition 3.32, in

particular, for such Γ and Ξ, which, if tedious, is straightforward. For this,

see the errata of the paperback edition of [S71] in 1994.

We note that

(13.5) If m|N∞, then T ′(m) = ΓσΓ with σ = diag[1, m].

This can be obtained by taking ΓσΓ as ΓξΓ of (ii).

We also note a basic formula

(13.6a) T ′(m)T ′(n) =
∑
d

d · T ′(d, d)T ′(mn/d2),

where d runs over all positive divisors of (m, n) prime to N. We also have an

equality of formal Dirichlet series with coefficients in R(Γ, Ξ) :

(13.6b)
∑

α∈Γ\Ξ/Γ

(ΓαΓ ) det(α)−s =
∞∑
n=1

T ′(n)n−s

=
∏
p|N

[
1− T ′(p)p−s

]−1 ∏
p�N

[
1− T ′(p)p−s + T ′(p, p)p1−2s

]−1
.

These are [S71, (3.3.6), (3.3.8)].

13.4. We now fix a half-integral weight k > 0 and consider R(Δ, Gk)

with the group Gk and its congruence subgroup Δ in the sense of §9.5. For

γ ∈ Γ θ we define an element �(γ) of Gk by �(γ) = (γ, jkγ ). Then � is an

injective homomorphism of Γ θ into Gk.

We also fix a congruence subgroup Γ of Γ (2) and put Δ = �(Γ ). Taking a

positive integer e, we consider ΔξΔ with ξ = (α, ek), α = diag[e−1, e], 0 <

e ∈ Q. We have then

(13.7) �(δ)ξ = ξ�(γ) if δ = αγα−1 with γ ∈ α−1Γα ∩ Γ.

Indeed, from (4.40) we see that hδ(αz) = hγ(z), and so jkδ (αz) = jkγ (z), and

we can easily verify (13.7).

Lemma 13.5. (i) With Γ, Δ, ξ, and α as above, for {ξν} ⊂ ΔξΔ we

have ΔξΔ =
⊔

ν Δξν if and only if ΓαΓ =
⊔

ν Γpr(ξν), and consequently

#(Δ\ΔξΔ)=#(Γ\ΓαΓ ).
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(ii) Let η = (β, fk) with β = diag[f−1, f ], 0 < f ∈ Q. Suppose ΓαΓ ·
ΓβΓ = ΓαβΓ. Then ΔξΔ ·ΔηΔ = ΔξηΔ.

Proof. We can take ξν = ξδν with δν = �(γν) with γν ∈ Γ. Suppose

ΔξΔ =
⊔

ν Δξν . Then ΓαΓ =
⋃

ν Γpr(ξν). Suppose Γαγ1 = Γαγ2. Then

γ2γ
−1
1 ∈ α−1Γα ∩ Γ, and so �(αγ2γ

−1
1 α−1)ξ = ξ�(γ2γ

−1
1 ) by (13.7). There-

fore ξ2ξ
−1
1 = ξδ2δ

−1
1 ξ−1 = �(αγ2γ

−1
1 α−1) ∈ �(Γ ) = Δ, and so Δξ2 = Δξ1.

This shows that ΓαΓ =
⊔

ν Γpr(ξν) and #(Δ\ΔξΔ) = #(Γ\ΓξΓ ). Con-

versely, suppose ΓαΓ =
⊔

ν Γαγν . Since Γαγν = pr(Δξν), we have Δξν �=
Δξμ if Γαγν �= Γαγμ. Also, since #(Δ\ΔξΔ) = #(Γ\ΓξΓ ), we obtain

ΔξΔ =
⊔

ν Δξν . This proves (i). To prove (ii), put ΓαΓ =
⊔

i∈I Γαi, ΓβΓ =⊔
j∈J Γβj , and ΓαβΓ =

⊔
h∈H Γεh. By (i) we have ΔξΔ =

⊔
i∈I Δξi, ΔηΔ =⊔

j∈J Δηj , and ΔξηΔ =
⊔

h∈H Δζh with ξi, ηj , and ζh such that pr(ξi) =

αi, pr(ηj) = βj, and pr(ζh) = εh. If ΓαΓ · ΓβΓ = ΓαβΓ, then there is only

one (i, j) such that Γαiβj = Γαβ, and so there is only one (i, j) such that

Δξiηj = Δξη. Thus ΔξΔ ·ΔηΔ = ΔξηΔ. This proves (ii).

Lemma 13.6. The symbols Γ and Δ being as in §13.4, let ξm = (αm, mk)

with αm = diag[m−1, m], 0 < m ∈ Z, and Tm = ΔξmΔ. Then TmTn = Tmn

if either m|N∞ or m is prime to n.

Proof. Put α = mαm and β = nαn. Our task is to show that ΓαΓ ·
ΓβΓ = ΓαβΓ in R

(
Γ, GL+

2 (Q)
)
. Indeed, if that were so, then ΓαmΓ ·

ΓαnΓ = ΓαmnΓ, which combined with Lemma 13.5(ii) proves that TmTn =

Tmn. Now ΓαΓ, ΓβΓ, and ΓαβΓ are terms of T ′(m2), T ′(n2), and T ′(m2n2).

Let ε ∈ ΓαΓ, δ ∈ ΓβΓ, and εδ ∈ Γ (1)diag[a, d]Γ (1) with positive integers

a and d such that a|d. Suppose m is prime to n; take a prime factor p of

a. If p|m, then β ∈ SL2(Zp), and so α ≺ pZ, a contradiction. Thus p �m,

and similarly p �n. Therefore, a = 1, and consequently εδ ∈ ΓαβΓ, that is,

ΓαΓβΓ ⊂ ΓαβΓ. Therefore, ΓαΓ · ΓβΓ = cΓαβΓ with 0 < c ∈ Z. Since

T ′(m2)T ′(n2) = T ′(m2n2) by Lemma 13.3(iv), we see that c = 1, and so

ΓαΓ · ΓβΓ = ΓαβΓ.

Next suppose m|N∞; then ΓαΓ = T ′(m2) by (13.5). From (13.5) and

Lemma 13.3(ii) we see that ΓβΓ = ΓσΓ · ΓτΓ, ΓσΓ = T ′(�2), �|N∞, τ =

diag[a, d], a|d with d prime to N. Since β = diag[1, n2], we see that a = 1,

and so τ = diag[1, h2] with h such that n = �h. Taking ΓαβΓ in place

of ΓβΓ, we have similarly by Lemma 13.3(ii) ΓαβΓ = T ′(m2�2)ΓτΓ. By

Lemma 13.3(iii), T ′(m2�2) = T ′(m2)T ′(�2), and so ΓαβΓ = ΓαΓ ·ΓβΓ. This

completes the proof.

13.7. So far we have used the symbol f‖kξ for ξ ∈ SL2(R) or ξ ∈ Gk.

When k ∈ Z, we extend this to ξ ∈ GL+
2 (R). Namely, for ξ ∈ GL+

2 (R) and

a function f on H we put
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(13.8a) f‖kξ = f‖k
{
det(ξ)−1/2ξ

}
.

This is consistent with what we defined in [S71, §2.1]. Then (6.12) is valid for

α ∈ GL+
2 (Q).

Let us now discuss the action of a Hecke algebra on modular forms of

integral or half-integral weight. We first note

(13.8b) #(Γ\ΓαΓ ) = #(ΓαΓ/Γ ) for every congruence subgroup Γ and α ∈
GL+

2 (Q).

Indeed, we have Γ ∩ {±1} = Γ ∩ αΓα−1 ∩ {±1} and
μ(Γ\H)[Γ : Γ ∩ αΓα−1] = μ

(
(Γ ∩ αΓα−1)\H)

,

which equals μ
(
(α−1Γα ∩ Γ )\H)

, since the measure on H is invariant under

the action of α−1. Thus [Γ : Γ ∩ αΓα−1] = [Γ : Γ ∩ α−1Γα], which gives

(13.8b).

Let us first consider the case k ∈ Z. Let Γ be a congruence subgroup

of Γ (1) and let α ∈ GL+
2 (Q). We take a decomposition ΓαΓ =

⊔
ν Γαν .

Then we put f |[ΓαΓ ]k =
∑

ν f‖kαν for f ∈ M k(Γ ). We easily see that

f |[ΓαΓ ]k ∈ M k(Γ ). We call [ΓαΓ ]k a Hecke operator. We have, for

f ∈M k(Γ ) and g ∈ S k(Γ ),

(13.9) 〈 f |[ΓαΓ ]k, g 〉 = 〈 f, g|[Γα−1Γ ]k 〉.
Indeed, by (13.8b) and (13.0), we can put ΓαΓ =

⊔
i∈I Γαi =

⊔
i∈I αiΓ with

some αi. Then Γα−1Γ =
⊔

i∈I Γα−1
i , and so by (6.12),

〈 f |[ΓαΓ ]k, g 〉 =
∑
i∈I
〈 f‖kαi, g 〉 =

∑
i∈I
〈 f, g‖kα−1

i 〉 = 〈 f, g|[Γα−1Γ ]k 〉,

which proves (13.9).

There is a traditional definition of Hecke operators acting on M k(N, ψ).

To be specific, take t = 1 and h = (Z/NZ)× in §13.2. Then Γ = Γ0(N) and

Ξ =
{
α ∈ M2(Z)

∣∣ det(α) > 0, (aα, N) = 1, cα ∈ NZ
}
. Let ΓαΓ =

⊔
ν Γαν

with α ∈ Ξ and det(α) = q. Then for f ∈M k(N, ψ) we put

f |[ΓαΓ ]k,ψ = qk/2−1
∑
ν

ψ
(
a(αν)

)
f‖kαν ,

and denote by T ′(n)k,ψ resp. T ′(a, d)k,ψ the sum of [ΓαΓ ]k,ψ for all ΓαΓ

involved in T ′(n) resp. T ′(a, d). We have

(13.9a) ψ
(
det(α)

)〈f [ΓαΓ ]k,ψ, g〉 = 〈f, g|[ΓαΓ ]k,ψ〉 if det(α) is prime to N

and f, g ∈ S k(N, ψ), and consequently, r[ΓαΓ ]k,ψ with any r such

that r̄2 = ψ
(
det(α)

)
is a self-adjoint operator.

To prove this, denote by ξ �→ ξι the main involution of M2(Q), that is,[
a b
c d

]ι
=

[
d −b
−c a

]
. Then f‖kξ−1 = f‖kξι, since ξ−1 = det(ξ)−1ξι. Now
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let α ∈ Ξ and det(α) = q with q prime to N. As shown above, we can put

ΓαΓ =
⊔

ν Γαν =
⊔

ν ανΓ with suitable αν . Clearly Γ ι = Γ and αι ∈ Ξ.

Besides, ΓαΓ = ΓαιΓ, since ΓαΓ = Ξ∩Γ (1)αΓ (1), which follows from [S71,

Proposition 3.32(i)]. (Γ, Ξ here correspond to Γ ′, Δ′ there.) Thus ΓαΓ =

ΓαιΓ =
⊔

ν Γαι
ν . Also, for ξ ∈ Ξ with det(ξ) = q we have a(ξ)d(ξ)−q ∈ NZ.

Therefore

ψ(q)
〈
f |[ΓαΓ ]k,ψ, g

〉
= qk/2−1

〈∑
ν ψ

(
a(αν)

)
f‖kαν , ψ(q)g

〉
= qk/2−1

〈
f,

∑
ν ψ̄

(
a(αν)

)
ψ(q)g‖kαι

ν

〉
= qk/2−1

〈
f,

∑
ν ψ

(
d(αν)

)
g‖kαι

ν

〉
=

〈
f, g|[ΓαΓ ]k,ψ

〉
,

since d(αν) = a(αι
ν). This proves (13.9a).

If α = q12 with q prime to N, then T ′(q, q) = ΓαΓ, and so we have

(13.9b) T ′(q, q)k, ψ = ψ(q)qk−2 if q is prime to N.

Let 0 �= f(z) =
∑∞

n=0 a(n)e(nz) ∈ M k(N, ψ). Suppose f |T ′(p)k, ψ = cpf

with cp ∈ C for every prime number p; then f |T ′(n)k, ψ = cnf with cn ∈ C

for every n ∈ Z, > 0, and

(13.9c)

∞∑
n=1

a(n)n−s = a(1)

∞∑
n=1

cnn
−s

= a(1)
∏
p

[
1− cpp

−s + ψ(p)pk−1−2s
]−1

;

see [S71, Theorem 3.43]. We call such an f aHecke eigenform, and say that

f is normalized if a(1) = 1, so that a(n) = cn. Somewhat more generally,

we have f |T ′(p)k, ψ = cpf for every p � r with a positive integer r if and

only if the following equality holds:

(13.9d)
∑

(n,r)=1

a(n)n−s = a(1)
∏
p�r

[
1− cpp

−s + ψ(p)pk−1−2s
]−1

.

Taking f = g in (13.9a), we obtain

(13.10) If 0 �= f ∈ S k(N, ψ), f |T ′(n)k, ψ = cnf, and n is prime to N,

then ψ(n)c̄n = cn.

13.8. Next suppose k /∈ Z. We put Δ = �(Γ ) with a congruence subgroup

Γ of Γ (2). Let ΔξΔ =
⊔

ν Δξν with ξ ∈ Gk. Given f ∈ M k(Δ), we put

(13.11) f |[ΔξΔ]k =
∑
ν

f‖kξν ,

where (f‖kξ)(z) = q(z)−1f(αz) if ξ = (α, q); see (9.19). We easily see

that f |[ΔξΔ]k ∈ M k(Δ). Extending this Q-linearly to R(Δ, Gk), we can

let R(Δ, Gk) act on M k(Δ). Clearly f |[ΔξΔ]k ∈ S k(Δ) if f ∈ S k(Δ).

Let us now consider the case ξ = (α, ek) with α = diag[e−1, e], 0 < e ∈ Q.

Then
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(13.12a) #(Δ\ΔξΔ) = #(ΔξΔ/Δ),

(13.12b) 〈 f |[ΔξΔ]k, g 〉 = 〈 f, g|[Δξ−1Δ]k 〉.
Indeed, #(Δ\ΔξΔ) = #(Γ\ΓαΓ ) by Lemma 13.5. Similarly, #(ΔξΔ/Δ) =

#(Δ\Δξ−1Δ) = #(Γ\Γα−1Γ ) = #(ΓαΓ/Γ ), and so we obtain (13.12a) from

(13.8b). Therefore we can prove (13.12b) in the same manner as for (13.9).

We now consider M k(2, N/2; ψ) of (8.11b) and (7.6) with a character ψ

modulo N, and define an operator Tψ
m on that space as follows. Let Δ = �(Γ )

with Γ = Γ (2, N/2) and let ΔξmΔ =
⊔

ν Δην with ξm as in Lemma 13.6, that

is, ξm = (αm, mk) with αm = diag[m−1, m].We see that if β ∈ Γ ·diag[1, n]Γ
with n ∈ Z, then aβ is prime to N. Therefore the a-entry of m · pr(ην) is

prime to N. Thus for f ∈M k(2, N/2; ψ) we put

(13.13) f |Tψ
m = mk−2

∑
ν

ψ(aν)f‖kην ,

where aν is the a-entry of m · pr(ην). We can easily verify that f |Tψ
m is well

defined and belongs to M k(2, N/2; ψ). Hereafter we make the convention

that any product of numbers or symbols involving a factor ψ(x) with x|N∞

means 0.

Theorem 13.9. Let f(z) =
∑∞

m=0 λ(m)e(mz/2) ∈ M k(2, N/2; ψ) and

let (f |Tψ
p )(z) =

∑∞
n=0 b(n)e(nz/2) with a prime number p. Then for 0 ≤ n ∈

Z we have

(13.13a) b(n) = λ(p2n) + ψ(p)

(
n

p

)
pk−3/2λ(n) + ψ(p2)p2k−2λ(n/p2),

where we understand that λ(n/p2) = 0 if p2 � n.

Proof. We have ξp = (αp, p
k) with αp = diag[p−1, p], and so ΓαΓ =

T ′(1, p2) with α = pαp = diag[1, p2].

Suppose p|N ; then degT ′(p2)=p2 and ΓαΓ =
⊔

νΓβν with βν=

[
1 2ν
0 p2

]
,

0 ≤ ν < p2; see [S71, Proposition 3.33]; notice that t in that proposition is

2. Thus ΓαpΓ =
⊔

ν Γγν with γν =

[
p−1 2p−1ν
0 p

]
. We have γν = αpεν

with εν =

[
1 2ν
0 1

]
. Let ην = (γν , p

k). Then �(εν) = (εν , 1) and ην =

(αp, p
k)(εν , 1) ∈ ΔξpΔ. By Lemma 13.5, ΔξpΔ =

⊔
ν Δην . Thus

f |Tψ
p (z) = p−2

∑
ν

f
(
(z + 2ν)/p2

)

= p−2

∞∑
m=0

λ(m)e(mz/2p2)

p2−1∑
ν=0

e(mν/p2) =
∞∑

n=0

λ(p2n)e(nz/2).

This gives the desired formula for b(n) when p|N.

Next suppose p � N. Then deg T ′(1, p2) = p2 + p, and Γ\ΓαpΓ can be

given by the following elements:
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βν =

[
p−1 0
0 p

] [
1 2ν
0 1

]
(0 ≤ ν < p2),

γh =

[
1 2h/p
0 1

]
=

[
1 0

psN/2 1

] [
p−1 0
0 p

] [
p 2h

−sN/2 q

]
(0 < h < p),

δ =

[
p 0
0 p−1

]
=

[
p2 −2t
N/2 d

] [
p−1 0
0 p

] [
p2d 2t
−N/2 1

]
.

Here for each h we take integers s and q so that shN + qp = 1, noting that

hN is prime to p. As for δ, we take d and t so that p2d+ tN = 1. To avoid

ambiguity, we can choose positive q and d. Define elements β∗ν , γ∗h, and δ∗

of Gk by

(13.14) β∗ν = (βν , p
k), γ∗h =

(
γh, ε

−1
p

(−h
p

))
, δ∗ = (δ, p−k).

Then these belong to ΔξpΔ. This is clear for β∗ν . To treat γ∗h, put σ =[
1 0

psN/2 1

]
and τ =

[
p 2h

−sN/2 q

]
. Then �(σ) = (σ, jkσ) and �(τ) =(

τ, jτ (z)
kε−1

q

(−sN
q

))
with the branch of jτ (z)

k such that limz→0 j
k
τ (z) >

0, by (4.40), (4.41a), and (5.1b). Since 4|N, we have

(−sN
q

)
=

(−sN
p

)
=(−h

p

)
and εq = εp, and so �(σ)ξp�(τ) =

(
γh, ε

−1
p

(−h
p

))
. As for δ, we note

that εd = 1 and

(
N

d

)
= 1, and we obtain δ∗ = (δ, p−k) ∈ ΔξpΔ in a similar

way. By Lemma 13.5, Δ\ΔξpΔ can be given by the elements of (13.14). Thus

f |Tψ
p = p−2

p2−1∑
ν=0

f
(
(z + 2ν)/p2

)

+ εpp
k−2ψ(p)

p−1∑
h=1

(−h
p

)
f(z + 2h/p) + ψ(p2)p2k−2f(p2z)

= p−2

∞∑
m=0

λ(m)e(mz/2p2)

p2−1∑
ν=0

e(mν/p2)

+ εpp
k−2ψ(p)

∞∑
m=0

λ(m)e(mz/2)

p−1∑
h=1

(−h
p

)
e(mh/p)

+ ψ(p2)p2k−2

∞∑
m=0

λ(m)e(mp2z/2).

The last sum on the next to last line is

(−m
p

)
times the Gauss sum of (2.4b),

and so

f |Tψ
p =

∞∑
n=0

λ(np2)e(nz/2) + pk−3/2ψ(p)

∞∑
m=0

λ(m)

(
m

p

)
e(mz/2)
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+ ψ(p2)p2k−2

∞∑
m=0

λ(m)e(mp2z/2).

Therefore we obtain the formula for b(n) as stated in our theorem.

Theorem 13.10. (i) Let f be a form as in Theorem 13.9, t a positive

integer, and p a prime number. Put μ = k − 1/2 and χt(a) = ψ(a)

(
t

a

)
for

a prime to N. Suppose that f |Tψ
p = ωpf with ωp ∈ C and that p|N or p2 � t.

Then

(13.15)

∞∑
n=1

λ(tn2)n−s

=
∑
p�n

λ(tn2)n−s · [1− χt(p)p
μ−1−s

][
1− ωpp

−s + ψ(p)2p2μ−1−2s
]−1

.

(ii) Suppose further that t has no nontrivial square factor prime to rN

with a fixed positive integer r and that f |Tψ
p = ωpf with ωp ∈ C for every

prime number p �r. Then

Lr(s− μ+ 1, χt)
∑

0<n∈Z,(n,r)=1

λ(tn2)n−s

= λ(t)
∏
p�r

[
1− ωpp

−s + ψ(p)2p2μ−1−2s
]−1

.

Proof. Take p as in (i). By Theorem 13.9, if p � n, we have

(∗) ωpλ(tn
2) = λ(tp2n2) + χt(p)p

μ−1λ(tn2),

(∗∗) ωpλ(tp
2mn2) = λ(tp2m+2n2) + ψ(p)2p2k−2λ(tp2m−2n2) (0 < m ∈ Z).

PutHn(X) =
∑∞

m=0 λ(tp
2mn2)Xm with an indeterminateX. AddingX times

(∗) and Xm+1 times (∗∗) for all m > 0, we obtain

ωpXHn(X) = Hn(X)−λ(tn2)+χt(p)p
μ−1λ(tn2)X +ψ(p)2p2k−2X2Hn(X),

and so we have, for p � n,

Hn(X)
[
1− ωpX + ψ(p)2p2k−2X2

]
= λ(tn2)

[
1− χt(p)p

μ−1X
]
.

Since
∑∞

n=1 λ(tn
2)n−s =

∑
p�n Hn(p

−s)n−s, we obtain (i). Then (ii) follows

immediately from (i).

Theorem 13.11. Let f(z) =
∑∞

m=1 λ(m)e(mz/2) ∈ S k(2, N/2; ψ) and

let μ = k − 1/2. Suppose that f |Tψ
p = ωpf with ωp ∈ C for every prime

number p �r with a fixed positive integer r. Then there is an element g(z) =∑∞
n=1 c(n)e(nz) ∈ M 2μ(N, ψ2) that is an eigenform of T ′(p)μ,ψ2 for every

prime number p, such that c(p) = ωp for every p � r, where T ′(p)μ,ψ2 is the

Hecke operator defined on M 2μ(N, ψ2). Moreover we have
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(13.16) Lr(s− μ+ 1, χt)
∑

0<n∈Z,(n,r)=1

λ(tn2)n−s

= λ(t)
∑

0<n∈Z,(n,r)=1

c(n)n−s.

Proof. Let Y be the set of all h ∈ M k(2, N/2; ψ) such that h|Tψ
p = ωph

for every p � r. From Lemma 13.6 we easily see that the operators Tψ
p for all

p form a commutative ring, and so Y is stable under it. Therefore by Lemma

2.12, Y contains an element that is an eigenform of Tψ
p for all p. This means

that replacing f by a suitable element, we may assume that f |Tψ
p = ωpf with

ωp ∈ C for every p. Take n so that λ(n) �= 0 and put n = tm2 with a square-

free t; define gt by (12.36). Take r = 1 in Theorem 13.10(ii) and compare it

with (12.36). Then we see that λ(t) �= 0, and the function g = λ(t)−1gt gives

the desired eigenform in M 2μ(N, ψ2). (The letter μ here is m in Theorem

12.8. As for the eigenforms in M 2μ, basic principles are explained in [S71,

Theorem 3.43].)

Lemma 13.12. Let p be a prime number not dividing N. Then

(13.17) ψ(p)2〈f |Tψ
p , g〉 = 〈f, g|Tψ

p 〉
for every f, g ∈ S k(2, N/2; ψ), and consequently ψ̄(p)Tψ

p is a self-adjoint

operator.

Proof. We can put ΓαpΓ =
⊔

ν Γαν =
⊔

ν ανΓ with some {αν} and

ΔξpΔ =
⊔

ν Δην with ην such that pr(ην) = αν . Then Γα−1
p Γ =

⊔
ν Γα−1

ν ,

and so Δξ−1
p Δ =

⊔
ν Δη−1

ν by Lemma 13.5(i). Now ξ−1
p = (α−1

p , p−k) =

δ∗ with δ∗ of (13.14), which belongs to ΔξpΔ. Thus ΔξpΔ = Δξ−1
p Δ =⊔

ν Δη−1
ν . Let aν resp. a′ν be the a-entry of pαν resp. pα−1

ν . Then a′ν is the

d-entry of pαν . Observing that the b-entry resp. c-entry of pαν is divisible by

2 resp. N/2, we obtain aνa
′
ν − p2 ∈ NZ, and so ψ(a′ν) = ψ(p2)ψ̄(aν). Thus

p2−k〈f |Tψ
p , g〉 = 〈

∑
ν ψ(aν)f‖kην , g〉 = 〈f,

∑
ν ψ̄(aν)g‖kη−1

ν 〉
= ψ̄(p2)〈f, ∑ν ψ(a

′
ν)g‖kη−1

ν 〉 = ψ̄(p2)p2−k〈f, g|Tψ
p 〉,

which proves our lemma.

Lemma 13.13. (i) Given f ∈ S k(N, ψ), �= 0, with k ∈ Z, and σ ∈
Aut(C), suppose f |T ′(m)k,ψ = cmf with cm ∈ C for a fixed m. Then cm ∈
Q, fσ ∈ S k(N, ψσ), and fσ|T ′(m)k,ψσ = cσmfσ.

(ii) Given f ∈ S k(2, N/2; ψ), �= 0, with k /∈ Z, and σ ∈ Aut(C), suppose

f |Tψ
p = ωpf with ωp ∈ C for a fixed prime number p. Then ωp ∈ Q, fσ ∈

S k(2, N/2, ψσ), and fσ|Tψσ

p = ωσ
p f

σ.

Proof. In Theorem 7.5(iia) we showed that fσ ∈ S k(N, ψσ) if k ∈ Z. By

Theorem 7.5(iib), S k(N, ψ) = Z⊗QC with Z = S k(N, ψ)∩M k(Qab). Also,
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by Theorem 7.5(iii), T ′(m)k,ψ sends Z into itself, and so its characteristic roots

are algebraic. Thus cm ∈ Q. Let f(z) =
∑∞

n=1 λ(n)e(nz) and f |T ′(m)k,ψ =∑∞
n=1 μ(n)e(nz). Then

(13.18) μ(n) =
∑

d|(m,n)

ψ(d)dk−1λ(mn/d2);

see [S71, (3.5.12)]. Applying σ to this equality, we see that
(
f |T ′(m)k,ψ

)σ
=

fσ|T ′(m)k,ψσ , and so we obtain (i). We can similarly prove (ii). The only

difference is that we employ (13.13a) instead of (13.18).

13.14. In [S73a] and also in a few later papers of ours we formulated

Hecke operators of half-integral weight in terms of Γ0(N) and the factor of

automorphy h′δ(z)
κ with h′δ of (5.6) and odd κ ∈ Z. The reason why we

have changed the formulation as we have done in the present book is that in

this way we can generalize the theory naturally to the Hilbert modular case,

whereas we cannot do so with the old formulation.



CHAPTER V

THE ARITHMETICITY OF CRITICAL

VALUES OF DIRICHLET SERIES

14. The theory on SL2(Q) for integral weight

14.1. The purpose of this section is to show that many of the main results

of the previous section on the forms of half-integral weight have analogues

in the case of integral weight, and to discuss their consequences. Thus in

this section k denotes a positive integral weight, unless otherwise stated.

The principal idea is to consider Hecke operators within SL2(Q). We fix a

positive integer N and a character ψ modulo N, and define M k(N, ψ) and

S k(N, ψ) as in (8.11d). Put Γ = Γ0(N) and take a prime number p. We

take a decomposition ΓαpΓ =
⊔

β∈B Γβ with αp = diag[p−1, p]. Then for

f ∈M k(N, ψ) we define a function f |Tψ
p on H by

(14.1) f |Tψ
p = pk−2

∑
β∈B

ψ(paβ)f‖kβ.

We easily see that f |Tψ
p is well defined and belongs to M k(N, ψ), and also

that Tψ
p = T ′(1, p2)k, ψ; however, we employ the symbol Tψ

p , since that will

suggest a similarity to the operator Tψ
p of (13.13) in the case of half-integral

weight, though we will later find that ψ̄(p)Tψ
p is a more natural object when

p � N. Thus, from (13.9a) we obtain

(14.2) ψ(p2)〈f |Tψ
p , g〉 = 〈f, g|Tψ

p 〉 if p �N

for every f, g ∈ S k(N, ψ), which implies that ψ̄(p)Tψ
p is a self-adjoint oper-

ator. This is an analogue of (13.17).

We keep the convention that any product of numbers or symbols involving

a factor ψ(x) with x|N∞, N > 1, means 0.

Lemma 14.2. Let f(z) =
∑∞

m=0 λ(m)e(mz) ∈ M k(N, ψ) and let f |Tψ
p

=
∑∞

n=0 b(n)e(nz) with a prime number p. Then for 0 ≤ n ∈ Z we have

b(n) = λ(p2n) + ψ(p)pk−2
(
δ(n/p)p− 1

)
λ(n) + ψ(p2)p2k−2λ(n/p2),

where δ(x) = 1 or 0 according as x ∈ Z or x /∈ Z, and we understand that

λ(n/p2) = 0 if p2 � n.
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Proof. Suppose p � N ; then we can take B of (14.1) to be the set con-

sisting of the following p2 + p elements:[
p−1 p−1j
0 p

]
(0 ≤ j < p2),

[
1 p−1h
0 1

]
(0 < h < p),

[
p 0
0 p−1

]
.

We then make calculations similar to and simpler than what was done in the

proof of Theorem 13.9. We have

f |Tψ
p = p−2

p2−1∑
j=0

f
(
(z + j)/p2

)

+ pk−2ψ(p)

p−1∑
h=1

f(z + p−1h) + ψ(p2)p2k−2f(p2z).

Since
∑p−1

h=1 e(mh/p) equals p−1 or −1 according as p|m or p � m, we obtain

f |Tψ
p =

∞∑
n=0

λ(np2)e(nz) + (p− 1)pk−2ψ(p)

∞∑
n=0

λ(np)e(npz)

− pk−2ψ(p)
∑
p�n

λ(n)e(nz) + ψ(p2)p2k−2
∞∑

n=0

λ(n)e(np2z).

Clearly
∑

p�n λ(n)e(nz) =
∑∞

n=0

{
λ(n)e(nz)−λ(np)e(npz)}, and so we obtain

the formula for b(n) as stated above when p �N. If p|N, the terms involving

ψ(p) don’t appear, and so b(n) = λ(p2n). This completes the proof.

Theorem 14.3. Let f be a form as in Lemma 14.2, r a positive integer,

and t a positive integer with no nontrivial square factor prime to rN. Suppose

f |Tψ
p = ωpf with ωp ∈ C for every prime number p not dividing r. Then

Ltr(2s− 2k + 2, ψ2) ·
∑

0<n∈Z, (n, r)=1

λ(tn2)n−s

= λ(t)Ltr(s− k + 1, ψ) ·
∏
p�r

[
1− ζpp

−s + ψ(p)2p2k−2−2s
]−1

,

where ζp = ωp − ψ(p)pk−2(p− 1).

Proof. Our argument is similar to the proof of Theorem 13.10. To make

our formulas short, put q = ψ(p)pk−2. Take a prime number p not dividing

r. Then for p � n we have, by Lemma 14.2,

(∗) ωpλ(tn
2) = λ(tp2n2) + q

(
δ(t/p)p− 1

)
λ(tn2),

(∗∗) ωpλ(tp
2mn2) = λ(tp2m+2n2) + q(p− 1)λ(tp2mn2)

+ ψ(p)2p2k−2λ(tp2m−2n2) (0 < m ∈ Z).

Put ε = 1−δ(t/p) and Kn(X) =
∑∞

m=0 λ(tp
2mn2)Xm with an indeterminate

X. Adding X times (∗) and Xm+1 times (∗∗) for all m > 0, we obtain

ωpXKn = Kn − λ(tn2) + q(p− 1)XKn − qpελ(tn2)X + ψ(p)2p2k−2X2Kn,
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and so we have Kn

[
1 − ζpX + ψ(p)2p2k−2X2

]
= λ(tn2)(1 + qpεX) with ζp

defined as in our theorem. Thus

Kn = λ(tn2)(1 + qpεX)
[
1− ζpX + ψ(p)2p2k−2X2

]−1
.

We have therefore∑
(n, r)=1

λ(tn2)n−s =
∑

(n, pr)=1

Kn(p
−s)n−s

=
∑

(n, pr)=1

λ(tn2)n−s · (1 + qεp1−s)
[
1− ζpp

−s + ψ(p)2p2k−2−2s
]−1

.

The factor 1 + qεp1−s is different from 1 only if p � trN, in which case it is

1 + ψ(p)pk−1−s. Take a prime number not dividing pr, and repeat the same

type of calculation with
∑

(n, pr)=1 λ(tn
2)n−s and that prime number. Then

we eventually obtain the desired equality of our theorem.

We now define, for a prime number p, an operator Rp acting on S k(N, ψ)

by

(14.3) Rp =

{
Tψ
p if p|N,

ψ̄(p)Tψ
p if p �N.

Then Rp is a self-adjoint operator if p � N. Since Rp is a constant times

T ′(1, p2)k,ψ , we see that the Rp for all prime numbers form a commutative

ring.

Theorem 14.4. Let P be a set of prime numbers and f a nonzero element

of S k(N, ψ) such that f |Rp = ξpf with ξp ∈ C for every p ∈ P. Then there

exists a normalized Hecke eigenform g(z) =
∑∞

n=1 c(n)e(nz) ∈ S k(N, ψ)

such that

(14.4) ξp =

{
c(p)2 if p|N,

|c(p)|2 − pk−1 − pk−2 if p �N,

provided p ∈ P. Conversely, let g(z) =
∑∞

n=1 c(n)e(nz) be a normalized

Hecke eigenform in S k(N, ψ). Then g|Rp = ξpg with ξp as in (14.4) for

every prime number p.

Proof. Let δ = 1 if p � N and δ = 0 if p|N. Given f as in the first

part of our theorem, let Y =
{
h ∈ S k(N, ψ)

∣∣ h|Rp = ξph for every p ∈ P
}
.

Then Y is stable under T ′(n)k,ψ for every n, since T ′(n)k,ψ commutes with

T ′(1, p2)k,ψ for every p. Therefore Lemma 2.12 guarantees a normalized Hecke

eigenform g in Y. From (13.6a) we obtain T ′(p)2=T ′(p2) + δpT ′(p, p). Since
T ′(p2) = T ′(1, p2) + δT ′(p, p), we see that

(14.5) T ′(1, p2) = T ′(p)2 − δ(p+ 1)T ′(p, p).

Suppose g|T ′(n)k,ψ = c(n)g. Then from (14.5) and (13.9b) we see that g|Tψ
p =

αpg with αp = c(p)2 − δψ(p)pk−2(p+ 1), and so we obtain (14.4) in view of

(13.10). The converse part can be easily proved by employing (14.5).
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Lemma 14.5. For every f ∈ S k(N, ψ), σ ∈ Aut(C), and a prime num-

ber p we have fσ ∈ S k(N, ψσ) and (f |Rp)
σ = fσ|Rp. In particular, if

f |Rp = ξpf with ξp ∈ C, then ξp ∈ Q and fσ|Rp = ξσp f
σ.

Proof. This is similar to Lemma 13.13, and can be proved in the same

way. The only point is that we employ the formula for b(n) in Lemma 14.2

instead of (13.13a).

Lemma 14.6. Let f(z) =
∑∞

m=1 λ(m)e(mz) ∈ S k(N, ψ) and let ϕ be a

character modulo r; let t be a positive integer with no nontrivial square fac-

tor prime to rN. Suppose f |Rp = ξpf with ξp ∈ C for p � r. Let g(z) =∑∞
n=1 c(n)e(nz) be a normalized Hecke eigenform in S k(N, ψ) such that

(14.4) holds for p �r. Put gϕ(z) =
∑∞

n=1 ϕ(n)c(n)e(nz). Then

(14.6) L(s− k + 1, ϕψ)

∞∑
n=1

ϕ(n)λ(tn2)n−s

= λ(t)D(s− k; g, gϕ)
∏
p|t

[
1 + (ϕψ)(p)pk−1−s

]−1
,

where D(s; ∗, ∗) is as in (8.23).

Proof. By (8.32) we have

D(s− k; g, gϕ) =

∞∑
n=1

ϕ(n)c(n)2n−s

= L(s− k + 1, ϕψ)

∞∑
n=1

ϕ(n)c(n2)n−s.

Taking t = 1 and g as f in Theorem 14.3 and substituting ϕ(n)n−s for

n−s, we find that

(∗) L(2s− 2k + 2, ϕ2ψ2)D(s− k; g, gϕ)

= L(s− k + 1, ϕψ)2
∏
p�r

[
1− ϕ(p)ζpp

−s + (ϕψ)(p)2p2k−2−2s
]−1

.

Substituting ϕ(n)n−s for n−s in the original formula of Theorem 14.3, we

obtain

Lt(2s− 2k + 2, ϕ2ψ2)

∞∑
n=1

ϕ(n)λ(tn2)n−s

= λ(t)Lt(s− k + 1, ϕψ)
∏
p�r

[
1− ϕ(p)ζpp

−s + (ϕψ)(p)2p2k−2−2s
]−1

.

Dividing this by (∗), we obtain (14.6).

14.7. Take f in Theorem 14.4 to be the eigenform of Theorem 8.23 and

Lemma 8.24, so that a(n) = λ(n). With αp and βp as in that lemma, we

have
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(14.7) LN(2s− 2k + 2, ψ2)

∞∑
n=1

λ(n2)n−s

= LN (s− k + 1, ψ)
∏
p

[
(1− α2

pp
−s)(1− β2

pp
−s)

]−1
.

Comparing this with the equality of Theorem 14.3, we obtain ζp = α2
p + β2

p.

Since αp + βp = cp and αpβp = ψ(p)pk−1, we obtain ζp = c2p − 2ψ(p)pk−1,

which produces ξp = |cp|2 − pk−1 − pk−2. Thus, once we assume f to be a

Hecke eigenform, Theorem 14.4 does not contain much new. The point of the

theorem is that we have an Euler product expression for
∑∞

n=1 λ(tn
2)n−s for

a wider class of functions than Hecke eigenforms. There is another aspect in

the theory, which will be discussed in the next section.

We defined in Section 5 modular forms of half-integral weight with respect

to congruence subgroups of Sp(n, Q). We can actually define Hecke opera-

tors on them and even associate an Euler product to an eigenfunction; see

[S95]. There is a parallel theory for forms of integral weight on Sp(n, Q),

which, in the case n = 1, concerns
∑∞

n=1 λ(n
2)n−s for a modular form∑∞

m=1 λ(m)e(mz) of integral weight we considered in Lemma 8.24 and are

considering now.

15. The eigenspaces of Rp

15.1. In this section k denotes a positive weight that is either integral or

half-integral. We mainly deal with the space of modular forms S k(ν, N/ν; ψ),

where ν = 1 if k ∈ Z and ν = 2 if k /∈ Z. We denote by F (ψ) the field

generated by the values of ψ. We begin with some easy facts.

Lemma 15.2. (i) Let f(z) =
∑∞

n=1 ane(nz/ν) ∈ S k(ν, N/ν; ψ). Put

fχ(z) =
∑∞

n=1 χ(n)ane(nz/ν) with a character χ. (Lemma 7.13 shows that

fχ ∈ S k(ν, N
′/ν; χ2ψ) with an integer N ′ determined as in that lemma.)

Then fχ|T χ2ψ
p = χ(p2)(f |Tψ

p )χ if k ∈ Z and fχ|Tχ2ψ
p = χ(p2)(f |Tψ

p )χ if

k /∈ Z, for every prime number p.

(ii) The space S k(ν, N/ν; ψ) is spanned by its F (ψ)-rational elements.

Proof. The first equality of (i) can easily be seen from the formula of

Lemma 14.2, and the second one from (13.13a). To prove (ii), put SN
ψ =

S k(ν, N/ν; ψ) for simplicity. By Theorem 7.5(iib) we can find a finite subset

A of SN
ψ ∩M k(Qab) that spans SN

ψ over Qab. By Theorem 7.5(v) there is a

finite extension K of F (ψ) contained in Qab such that every member of A is

K-rational. Then SN
ψ ∩M k(K) is stable under Gal

(
K/F (ψ)

)
by Theorem

7.5(iia). Therefore (ii) follows from Lemma 2.13.

15.3. We define an operator Rp acting on S k(ν, N/ν; ψ) for every prime

number p � N by
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(15.1) Rp =

{
ψ̄(p)Tψ

p if k ∈ Z,

ψ̄(p)Tψ
p if k /∈ Z.

If k ∈ Z, this is the same as what was defined in (14.3). We see from (13.17)

and (14.2) that Rp is a self-adjoint operator.

We note an easy consequence of Lemma 15.2(i):

(15.2) fχ|Rp = (f |Rp)χ if fχ is as in Lemma 15.2(i), p �N, and χ(p) �= 0.

15.4. Let f be a nonzero element of S k(ν, N/ν; ψ) such that f |Rp = ξpf

for almost all prime numbers p. We call {ξp} a system of R-eigenvalues of

weight k. Take another such system {ξ′p} defined with respect to the same

weight, but with a character that may or may not be ψ. We say that {ξp} is

equivalent to {ξ′p} if ξp = ξ′p for almost all p. Then we denote by Ξk the set

of all equivalence classes of systems of R-eigenvalues of weight k, and denote

an element of Ξk by a single letter ξ, which is a function defined on a set of

almost all prime numbers. We then put

(15.3) S(ξ) =
{
f ∈ S ∗

k

∣∣ f |Rp = ξpf for almost all p
}
,

(15.3a) S ∗
k =

⋃
N,ψ

S k(ν, N/ν; ψ),

(15.3b) Sψ(ξ) =
⋃

0<N∈νZ
S k(ν, N/ν; ψ) ∩S(ξ),

where the union in (15.3a) is taken over all possible N and ψ. We say that ξ

occurs in S k(ν, N/ν; ψ) if S(ξ) ∩S k(ν, N/ν; ψ) �= {0}.
For example, take f as above and put f(z) =

∑∞
n=1 ane(nz/ν) and

fχ(z) =
∑∞

n=1 χ(n)ane(nz/ν) with a character χ. By Lemma 7.13, fχ ∈
S k(ν, N

′/ν; ψ′) with a multiple N ′ of N and ψ′ = χ2ψ. Then (15.2) shows

that fχ|Rp = ξpfχ for almost all p, that is,

(15.4) f ∈ S(ξ) =⇒ fχ ∈ S(ξ) for every Dirichlet character χ.

Let ξ ∈ Ξk and σ ∈ Aut(C). Then ξσ as an element of Ξk can be

defined by (ξσ)p = ξσp for almost all p. Indeed, take a nonzero element

f of S(ξ) ∩ S k(ν, N/ν; ψ) as above. Then by Lemmas 13.13 and 14.5,

fσ ∈ S k(ν, N/ν; ψσ) and fσ|Rp = ξσp f
σ for almost all p, which gives the

desired fact. Thus

(15.4a) S(ξ)σ = S(ξσ) for every σ ∈ Aut(C).

Let us next discuss the connection of R-eigenvalues with Hecke eigenvalues

of integral weight. We first consider the case k /∈ Z. Let 0 �= f ∈ S(ξ) ∩
S k(2, N/2; ψ). Then f |Tψ

p = ωpf with ωp = ψ(p)ξp for p in a set P that

contains almost all prime numbers. As shown in the proof of Theorem 13.11,

we can find ωp even for p /∈ P and an element g(z) =
∑∞

n=1 cne(nz) of
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M 2k−1(N, ψ2) such that

(15.5)

∞∑
n=1

cnn
−s =

∏
p

[
1− ωpp

−s + ψ(p2)p2k−2−2s
]−1

.

Thus ξ corresponds to the set of Hecke eigenvalues {ωp} occurring in M 2k−1.

We have g ∈ S 2k−1 under the condition stated in Theorem 12.8(iii).

Next suppose k ∈ Z. Given a nonzero element f of S(ξ) with ξ ∈ Ξk,

take (N, ψ) so that f ∈ S k(N, ψ). Then by Theorem 14.4 there exists a

normalized Hecke eigenform g(z)=
∑∞

n=1 cne(nz) such that (14.4) holds for

almost all p. Therefore we can define Ξk to be the equivalence classes of {cp},
by saying that {cp} is equivalent to {c′p} if |cp|2 = |c′p|2 for almost all p.

Thus, for both integral and half-integral k, ξ corresponds to an eigenform of

integral weight.

15.5. Let F be a finite algebraic extension of Q contained in C. We call

F totally real if every isomorphic image of F into C is contained in R, and

call it totally imaginary if no isomorphic image of F into C is contained in

R. We call F a CM-field if it is a totally imaginary quadratic extension of a

totally real field. Let ρ denote the complex conjugation. Then the following

statements, in which F is a finite algebraic extension of Q contained in C,

can easily be verified.

(15.6a) F is either totally real or a CM-field if and only if F ρ = F and

ρσ = σρ on F for every ring-injection σ of F into C.

(15.6b) The composite of finitely many fields of type (15.6a) is also a field

of the same type.

(15.6c) Every subfield of a field of type (15.6a) is also a field of the same

type.

For ξ ∈ Ξk we denote by F (ξ) the smallest extension of Q that contains

ξp for almost all p, and by F (ξ, ψ) the composite of F (ξ) and F (ψ).

Lemma 15.6. (i) Given an element g(z) =
∑∞

n=1 cne(nz) of S k(N, ψ)

that is a normalized Hecke eigenform, let K be the field generated over Q by

the cp for all p �N. Then K is either totally real or a CM-field.

(ii) F (ξ) is a finite totally real algebraic extension of Q.

(iii) F (ξ, ψ) is totally real or a CM-field.

(iv) S(ξ) ∩S k(ν, N/ν; ψ) is spanned by its F (ξ, ψ)-rational elements.

Proof. By Lemma 13.13 and Theorem 7.5(v), K of (i) is a finite alge-

braic extension of Q. Let L be the field generated over Q by ψ(p)1/2 for all

p � N. Then L is a finite abelian extension of Q. Put αp = ψ̄(p)1/2cp with

any choice of ψ̄(p)1/2. From (13.10) we see that αp ∈ R. Let σ ∈ Aut(C).

Then gσ is a normalized Hecke eigenform contained in S k(N, ψσ), and
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ασ
p = [ψ̄(p)σ]1/2cσp ∈ R for the same reason. Since KL is generated over

L by the αp for all p � N, we see that (KL)ρ = KL and ρσ = σρ, which

proves (i).

To prove (ii), we first observe that ξp ∈ R, since Rp is self-adjoint. Thus

the point is
[
F (ξ) : Q

]
< ∞. If k ∈ Z, this follows from (14.4) and (i). If

k /∈ Z, we take g as in (15.5). Since ωp = ψ(p)ξp, the desired finiteness

follows from (i). Then (iii) follows immediately. To prove (iv), put SN
ψ =

S k(ν, N/ν; ψ). Since S(ξ)∩SN
ψ ∩M k(Qab) is stable under Rp, we can find

a finite set A of Qab-rational forms that spans S(ξ)∩SN
ψ . By Theorem 7.5(v)

there exists a finite algebraic extension K of F (ξ, ψ) such that every member

of A is K-rational; we may assume that K is normal over F (ξ, ψ). Then

S(ξ) ∩SN
ψ ∩M k(K) is stable under Gal

(
K/F (ξ, ψ)

)
. Therefore (iv) follows

from Lemma 2.13.

16. Main theorems on arithmeticity

The aim of this section is to prove some theorems on the special values

of various Dirichlet series such as DN (s; f, g) of (8.28). The main idea is

to compare such values with certain inner products of modular forms. We

note that by Lemmas 6.4 and 7.11 every element of S k (resp. N k) is rapidly

decreasing (resp. slowly increasing) at every cusp, and so 〈f, h〉 is meaningful

for every f ∈ N k and h ∈ S k, for the reason explained in §6.5. Throughout
this section, ρ denotes the complex conjugation, and G(χ) the Gauss sum

of a character χ defined under the convention of §2.7. We first prove two

theorems on the projection maps from N k to S k or its subspaces.

Theorem 16.1. For each weight k ∈ 2−1Z, > 0, there exists a C-linear

map pk of N k into S k with the following properties:

(16.1a) 〈f, h〉 = 〈pk(f), h〉 for every f ∈ N k and h ∈ S k;

(16.1b) pk(f)
σ = pk(f

σ) for every f ∈ N k and every σ ∈ Aut(C).

Proof. With a fixed congruence subgroup Γ and a fixed f ∈ N k(Γ ),

the map h �→ 〈f, h〉 for h ∈ S k(Γ ) is a C-linear map of S k(Γ ) into C,

and so there exists a unique g ∈ S k(Γ ) such that 〈f, h〉 = 〈g, h〉 for every

h ∈ S k(Γ ). Putting g = pk(f), we obtain the desired map pk of (16.1a)

since the replacement of Γ by a smaller group does not change g. Indeed,

take a congruence subgroup Γ ′ that is a normal subgroup of Γ. Then we

find an element g′ of S k(Γ
′) such that 〈f, h′〉 = 〈g′, h′〉 for every h′ ∈

S k(Γ
′). Take any γ ∈ Γ, and write ϕ‖α for ϕ‖k α for any function ϕ on

H and α ∈ Gk. Then g′‖γ ∈ S k(Γ
′), and for every h′ ∈ S k(Γ

′) we have

〈g′‖γ, h′〉 = 〈g′, h′‖γ−1〉 = 〈f, h′‖γ−1〉 = 〈f‖γ, h′〉 = 〈f, h′〉 = 〈g′, h′〉, and
so g′‖γ = g′. Thus g′ ∈ S k(Γ ), and g′ = g as expected.
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To prove (16.1b), given f ∈ N k, we consider the sum expression for f in

Lemma 7.8(ii). Then we can put f = g0 + Dk−2g∗ + cE2 where g0 is the

element of M k in that expression, g∗ is an element of Ck−2(Γ ) determined

suitably by that expression, c ∈ C, and E2 is the function of (7.10); cE2

is necessary only when k = 2. For h ∈ S k we have 〈Dk−2g∗, h〉 = 0 by

Corollary 6.9(i), and 〈E2, h〉 = 0 by (9.50). Thus 〈f, h〉 = 〈g0, h〉. Next, by
(9.45a) we can put g0 = t+ r with t ∈ S k and r ∈ Ek. Then 〈g0, h〉 = 〈t, h〉
for h ∈ S k. Since 〈f, h〉 = 〈t, h〉, we have t = pk(f). Replace f by fσ

with σ ∈ Aut(C). From Lemma 7.8(i) we see that g0 is replaced by gσ0 , and

gσ0 = tσ + rσ . We have tσ ∈ S k by Theorem 7.5(i), and rσ ∈ Ek by Theorem

9.26. Thus pk(f
σ) = tσ = pk(f)

σ. This proves (16.1b) and completes the

proof.

Lemma 16.2. Let ξ ∈ Ξk; suppose ξ occurs in S k(ν, N/ν; ψ). Then

there exist a C-linear map rNk,ψ of N k into S k(ν, N/ν; ψ) and also a C-linear

map rN,ξ
k,ψ of N k into S(ξ) ∩S k(ν, N/ν; ψ) with the following properties:

(16.2a) 〈f, h〉 = 〈rNk,ψ(f), h〉 for every f ∈ N k and h ∈ S k(ν, N/ν; ψ);

(16.2b) rNk,ψ(f)
σ = rNk,ψσ (fσ) for every f ∈ N k and every σ ∈ Aut(C);

(16.2c) 〈f, h〉=〈rN,ξ
k,ψ (f), h〉 for every f ∈N k and h∈S(ξ)∩S k(ν, N/ν; ψ);

(16.2d) rN,ξ
k,ψ (f)

σ = rN,ξσ

k,ψσ (fσ) for every f ∈ N k and every σ ∈ Aut(C).

Proof. For a fixed f ∈ N k, the map h �→ 〈f, h〉 is a C-linear map

of S k(ν, N/ν; ψ) into C, and so the existence of an element rNk,ψ(f) of

S k(ν, N/ν; ψ) satisfying (16.2a) is obvious. Thus (16.2b) is our problem.

We have clearly rNk,ψ(f) = rNk,ψ(g) if g = pk(f) with pk of Theorem 16.1,

and so it is sufficient to prove (16.2b) when f ∈ S k. Given f ∈ S k, take a

multiple K of N so that f ∈ S k

(
Γ (K)

)
. Define the map q : S k

(
Γ (K)

) →
S k

(
Γ (N)

)
as in Lemma 7.15. Then q(f)σ = q(fσ) for every σ ∈ Aut(C)

and 〈f, h〉 = 〈q(f), h〉 for every h ∈ S k

(
Γ (N)

)
. This means that to prove

(16.2b), we may assume that f ∈ S k

(
Γ (N)

)
.

As observed in the proof of Theorem 7.5(iv), S k

(
Γ (N)

)
is the direct

sum of S k(N, N ; χ) with some characters χ modulo N, and S k(N, N ; χ)

is orthogonal to S k(N, N ; χ′) if χ �= χ′. Therefore, to prove rNk,ψ(f)
σ =

rNk,ψσ (fσ), we may assume that f ∈ S k(N, N ; χ) for some χ. Then fσ ∈
S k(N, N ; χσ) by Theorem 7.5(iia). Put f(z) =

∑∞
n=1 c(n)e(nz/N) and

Pf = (ν/N)
∑N/ν

u=1 f(z+νu). By Lemma 7.14, Pf =
∑∞

n=1 c(Nn/ν)e(nz/ν) ∈
S k(ν, N ; χ) and 〈Pf, h〉 = 〈f, Ph〉 for every h ∈ S k

(
Γ (N)

)
. Clearly Ph =

h if h ∈ S k(ν, N/ν; ψ). Therefore rNk,ψ(f) = 0 if χ �= ψ, and rNk,ψ(f) = Pf

if χ = ψ. In either case we have rNk,ψ(f)
σ = rNk,ψσ (fσ).

Next, to find rN,ξ
k,ψ satisfying (16.2c, d), let ξ1, . . . , ξe be the elements of

Ξk that occur in S k(ν, N/ν; ψ) and let Vi = S(ξi) ∩S k(ν, N/ν; ψ). Since
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Rp is self-adjoint for every p, we easily see that 〈Vi, Vj〉 = 0 for i �= j, and

S k(ν, N/ν; ψ) =
⊕e

i=1 Vi. For ξ = ξi we let rN,ξ
k,ψ denote the composite of

rNk,ψ and the projection map of S k(ν, N/ν; ψ) to Vi. Then (16.2c) is clearly

satisfied, and from (16.2b), Theorem 7.5(iia), and (15.4a) we obtain (16.2d).

This completes the proof.

Lemma 16.3. Given f and g as in Lemma 8.22, suppose that they are

normalized Hecke eigenforms in S k(N, ψ) and S �(M, ϕ), respectively. Put

(16.3) DK(s; f, g) = LK(2s+ 2− k − �, ψϕ)
∑

(n,K)=1

a(n)b(n)n−s

with a common multiple K of N and M. Then DK(s; f, g) �= 0 for Re(s) ≥
(k + �)/2.

Proof. For t ∈ R put

A(s) = DK(s+ it; f, g)DK(s− it; fρ, gρ)DK(s; f, fρ)DK(s; g, gρ),

where fρ is defined by (5.14). Define αp, βp, γp, δp as in Lemma 8.22. Since

log
{∏

p(1− xpp
−s)−1

}
=

∑∞
m=1

∑
p m

−1p−msxm
p , we find that

(16.4) logA(s) =

∞∑
m=1

∑
p�K

m−1p−ms
∣∣αm

p + βm
p + ξmp + ηmp

∣∣2,
where ξp = γ̄pp

it and ηp = δ̄pp
it, provided A is holomorphic and the last

double infinite series is convergent at s. Putκ = (k + �)/2 and define DN by

(8.28). Then

DK(s; f, g) = DK(s− κ; f, g).

By Theorem 8.21, DK(s; f, g) is holomorphic on the whole C, except for

possible simple poles at s = 0 and s = −1, which may occur only if k = �

and ψϕ is trivial. If k = �, Γ̃ of (8.29) has Γ (s + 1) as a factor, and so

s = −1 cannot be a pole of DK . Thus s = 0 is the only possible pole of

DK . Therefore DK is holomorphic except for a possible simple pole at s = κ,

which may occur only if k = � and ψϕ is trivial. Consequently,

(16.5) A is holomorphic on C except for possible poles on Re(s) = κ.

Let Re(s) = σ be the line of convergence of the right-hand side of (16.4).

Since Γ̃ of (8.29) has many poles where DK(s; f, g) must have zeros, we see

that σ �= −∞. Suppose σ > κ; then A is holomorphic at s = σ, and for

real s > σ we have logA(s) ≥ 0, and so A(s) ≥ 1. Thus A(σ) ≥ 1, which

means that logA is holomorphic at s = σ, but that contradicts the well-known

fact that a Dirichlet series with nonnegative coefficients is not holomorphic

at the real point on the line of convergence. Therefore, σ ≤ κ. This implies

that A(s) = exp
[
logA(s)

] �= 0 for Re(s) > κ, and so DK(s; f, g) �= 0 for

Re(s) > κ.
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Suppose DK(κ + it; f, g) = 0 with t ∈ R; then DK(κ − it; fρ, gρ) = 0.

Since any pole of DK(s; ∗, ∗) is at most simple, we see that A is holomorphic

at s = κ. In view of (16.5), this means that A is holomorphic at every real

point, in particular at s = σ. We can now repeat the above argument. To

be explicit, for real s > σ we have logA(s) ≥ 0, and so A(s) ≥ 1. Thus

A(σ) ≥ 1, which means that logA is holomorphic at s = σ, and we obtain a

contradiction. Thus DK(s; f, g) �= 0 for Re(s) = κ. This completes the proof.

Theorem 16.4. Suppose 2 ≤ k ∈ Z; let ξ ∈ Ξk and let K be a finite

extension of F (ξ, ψ) that is totally real or a CM-field (cf. §15.5 and Lemma

15.6). Also let f, h, and p be K-rational elements of S(ξ)∩S k(N, ψ). Then

(16.6)
{〈f, h〉/〈p, p〉}σ

= 〈fσ, hσ〉/〈pσ, pσ〉
for every σ ∈ Aut(C) provided p �= 0. The equality holds even for an arbitrary

f ∈ S(ξ) ∩S k(N, ψ) if we replace fσ on the right-hand side by fρσρ.

Proof. By Theorem 14.4 there exist a multiple M of N and a normalized

Hecke eigenform g(z) =
∑∞

n=1 c(n)e(nz) ∈ S k(N, ψ) such that for every

p � M we have ξp = |c(p)|2 − pk−1 − pk−2 and f |Rp = ξpf for every f ∈
S k(N, ψ)∩S(ξ). Take μ = 0 or 1 so that μ−k ∈ 2Z. By Lemma 2.14 there

exists a character ζ such that ζ(−1) = 1, ζ2 is nontrivial, and the conductor

of ζ is prime to M. Let ϕ0 be the primitive character associated with ζ/ψ, r

the conductor of ϕ0, and ϕ the (possibly imprimitive) character modulo Mr

associated with ϕ0. Then ϕ(−1) = (−1)μ. We fix the symbols N, ψ, ξ, g, M,

and ζ. Then ϕ and r are determined.

We now take a positive integer t satisfying the following condition:

(16.7) t has no nontrivial square factor prime to rM.

Put then θt(z) = 2−1
∑

n∈Z ϕ(n)nμe(tn2z/2). By Lemmas 5.5 and 8.17, θt ∈
M �(2, 2tr

2M2; ϕt), where � = μ + 1/2 and ϕt(n) = ϕ(n)

(
t

n

)
. Given 0 �=

f(z) =
∑∞

n=1 λ(n)e(nz) ∈ S k(N, ψ) ∩S(ξ), put f0(z) = f(z/2). Then f0 ∈
S k(2, N ; ψ) and

D
(
2−1(s− k − 1/2); f0, θt) = (t/2)(−s−μ)/2

∞∑
m=1

ϕ(m)λ(tm2)m−s.

By Lemma 14.6 with rM as r there, we obtain

(16.7a) L(s− k + 1, ψϕ)

∞∑
m=1

ϕ(m)λ(tm2)m−s

= λ(t)D(s − k; g, gϕ)
∏
p|t

[
1 + (ψϕ)(p)pk−1−s

]−1
,

where gϕ(z) =
∑∞

n=1 ϕ(n)c(n)e(nz). By Lemma 7.13, gϕ ∈ S k(r
2M2, ψϕ2).

Using the symbol DK of Lemma 16.3, we have, with K = M,
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DM (s; g, gϕ) = L(2s+ 2− 2k, ψ2ϕ2)D(s− k; g, gϕ),

which is nonzero for Re(s) ≥ k.We evaluate our functions at s = k.Our choice

of ϕ shows that ψ2ϕ2 is nontrivial, and so L(1, ψϕ) �= 0 and L(2, ψ2ϕ2) �= 0.

Thus by Lemma 16.3, D(0; g, gϕ) �= 0, and we can conclude that D(−1/4;
f0, θt) is λ(t) times a nonzero number, whose explicit form is

(t/2)−(k+μ)/2DM (k; g, gϕ)L(1, ψϕ)
−1L(2, ψ2ϕ2)−1

∏
p|t

[
1 + (ψϕ)(p)p−1

]−1
.

We now evaluate (8.27) at s = −1/4 with (f0, θt) in place of (f, g) there.

Putting κ = (k + μ)/2, N0 = 2tr2M2, and ω = ψϕt, we obtain

(16.8) N0(4π)
−κΓ (κ)D(−1/4; f0, θt) = μ(Φ)〈θρtE, f0〉,

where E(z) = Ek−�

(
z, (μ − k)/2 + 1; Γ, ω̄

)
with Γ = Γ (N0, N0). Put p =

(k − μ)/2− 1. Then 0 ≤ p ∈ Z and E(z) = E3/2+2p(−p; Γ, ω̄). By (8.20) we

have

(−4π)−pε(0)E(z) = Dp
3/2E3/2(0; Γ, ω̄),

where ε(0)=
∏p−1

a=0(3/2+a). Since ω̄2 is nontrivial, E3/2(0; Γ, ω̄)∈M 3/2(Qab)

by Theorem 8.15(iii), and so π−pE(z) ∈ N k−�(Qab) by Lemma 7.8(i). Put

q(z) = π−pθρt (2z)E(2z). Then q ∈ N k(Qab), and 〈θρtE, f0〉 = 2kπp〈q, f〉 by
(6.12a). By Lemma 16.2, 〈q, f〉 = 〈rN,ξ

k,ψ (q), f〉. We have shown that 〈θρtE, f0〉
is λ(t) times a nonzero number, and so the same holds for 〈rN,ξ

k,ψ (q), f〉.
Once N, ψ, ξ, M, g, ζ, ϕ, and t are fixed, Γ does not depend on f. There-

fore rN,ξ
k,ψ (q) is also independent of f. Emphasizing the dependence on t and

f, put rN,ξ
k,ψ (q) = ht and λ(n) = λ(f, n). Then ht ∈ S k(Qab) by (16.2d), and

(16.9) 〈ht, f〉 = λ(f, t)w(t, ψ, ϕ, g)

for every f ∈ S k(N, ψ)∩S(ξ) with a nonzero number w(t, ψ, ϕ, g) given by

(16.9a) w(t, ψ, ϕ, g) =
2−kπ−pμ(Φ)−1N0(4π)

−κΓ (κ)(t/2)−κDM (k; g, gϕ)

L(1, ψϕ)L(2, ψ2ϕ2)
∏

p|t
[
1 + (ψϕ)(p)p−1

] .

This is independent of f. If f �= 0, then λ(f, n) �= 0 for some n. We can put

n = tm2 with m prime to rM and an integer t satisfying (16.7). Then (16.7a)

shows that λ(f, t) �= 0. Thus for every nonvanishing f ∈ S k(N, ψ) ∩ S(ξ)

we can find t such that 〈ht, f〉 �= 0, and so

(16.10) The ht for all t satisfying (16.7) span S k(N, ψ) ∩S(ξ).

Now take another f ′ ∈ S k(N, ψ) ∩S(ξ) and another t′ satisfying (16.7).

Then from (16.9) and (16.9a) we obtain

(16.11)
〈ht′ , f

′〉
〈ht, f〉 =

λ(f ′, t′)
λ(f, t)

· w(t
′, ψ, ϕ, g)

w(t, ψ, ϕ, g)
,
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(16.11a)
w(t′, ψ, ϕ, g)
w(t, ψ, ϕ, g)

= (t′/t)κ ·
∏

p|t
[
1 + (ψϕ)(p)p−1

]
∏

p|t′
[
1 + (ψϕ)(p)p−1

] .
Let σ ∈ Aut(C). By Theorem 7.5(iia) and (15.4a) we have S k(N, ψ)σ =

S k(N, ψσ) and S(ξ)σ = S(ξσ); also, λ(f, n)σ = λ(fσ, n). Taking ψσ, ϕσ,

and fσ in place of ψ, ϕ, and f, from (16.2d), Theorem 8.15(iii), and Lemma

7.8(i) we see that (ht)
σ takes the place of ht for fσ. Thus

〈(ht)
σ, fσ〉 = λ(fσ, t)w(t, ψσ, ϕσ, gσ).

From (16.11a) we see that{
w(t′, ψ, ϕ, g)/w(t, ψ, ϕ, g)

}σ
= w(t′, ψσ, ϕσ, gσ)/w(t, ψσ, ϕσ, gσ).

Therefore {〈ht′ , f
′〉/〈ht, f〉

}σ
= 〈(ht′)

σ, (f ′)σ〉/〈(ht)
σ, fσ〉.

Since ht is Qab-rational, (ht)
σρ = (ht)

ρσ. Let j ∈ S k(N, ψ) ∩ S(ξ). By

(16.10), we can find a finite set T of elements satisfying (16.7) such that

j =
∑

τ∈T aτhτ with aτ ∈ C. Then 〈j, f ′〉 = ∑
τ∈T aρτ 〈hτ , f

′〉, and{ 〈j, f ′〉
〈ht, f〉

}σ

=
∑
τ∈T

aρστ

{ 〈hτ , f
′〉

〈ht, f〉
}σ

=
∑
τ∈T

aρστ
〈(hτ )

σ, (f ′)σ〉
〈(ht)σ, fσ〉 =

〈jρσρ, (f ′)σ〉
〈(ht)σ, fσ〉 .

In particular, for f = ht we have

(∗) {〈j, f ′〉/〈ht, ht〉
}σ

= 〈jρσρ, (f ′)σ〉/〈(ht)
σ, (ht)

σ〉.
Take j and f ′ to be the same K-rational nonzero element p of S k(N, ψ) ∩
S(ξ) with K as in our theorem. Then pρσρ = pσ, and so{〈p, p〉/〈ht, ht〉

}σ
= 〈pσ, pσ〉/〈(ht)

σ, (ht)
σ〉.

Dividing (∗) by this, we obtain{〈j, f ′〉/〈p, p〉}σ
= 〈jρσρ, (f ′)σ〉/〈pσ, pσ〉,

which proves (16.6), since jρσρ = jσ if j is K-rational. This completes the

proof of Theorem 16.4.

16.5. Let 0 < k ∈ 2−1Z and Γ = Γ (N, N) with a positive integer N and

let ψ be a character modulo N. We put then

(16.12) Ck(z, s; Γ, ψ) =

{
L(2s+ k, ψ)Ek(z, s; Γ, ψ) if k ∈ Z,

L(4s+ 2k − 1, ψ2)Ek(z, s; Γ, ψ) if k /∈ Z

with Ek(· · · ) of (8.12); we assume N ∈ 2Z if k /∈ Z.

We are going to state some results about Ck(z, λ; Γ, ψ) for certain λ ∈
2−1Z belonging to the set Λk defined by
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(16.13a) Λk =
{
λ ∈ Z

∣∣ 1− k ≤ λ ≤ 0
}

if k ∈ Z,

(16.13b) Λk =
{
λ ∈ Z

∣∣ 1− k < 2λ ≤ 0
}

⋃{
λ ∈ 2−1Z

∣∣λ− k ∈ Z, 1− k ≤ λ < (1 − k)/2
}

if k /∈ Z.

For λ ∈ Λk we put

C∗k(z, λ; Γ, ψ) = αk,ψ,λCk(z, λ; Γ, ψ) with

(16.14) αk,ψ,λ =

⎧⎪⎪⎨
⎪⎪⎩

G(ψ)−1ikπ−k−λ if k ∈ Z,

G(ψ2)−1π−3λ−2[k] if k /∈ Z and λ ∈ Z,

G(ψ)−121/2i[k]π−k−λ if k /∈ Z and λ /∈ Z.

Theorem 16.6. Suppose that ψ2 is nontrivial if k /∈ Z and k + 2λ =

3/2 or 1/2. Then for every λ ∈ Λk the function C∗k (z, λ; Γ, ψ) belongs to

N k(Qab) and C∗k(z, λ; Γ, ψ)
σ = C∗k (z, λ; Γ, ψ

σ) for every σ ∈ Gal(Qab/Q).

Proof. In this proof Γ is always the same; therefore, suppressing Γ, we

write (z, s; ψ) for (z, s; Γ, ψ).

Case I: k ∈ Z. Let λ ∈ Λk. First suppose −k/2 < λ ≤ 0; put p = −λ and

κ = k − 2p. Then p ≥ 0 and κ > 0. By (8.20) we have

L(κ, ψ)Dp
κEκ(z, 0; ψ) = (−4π)−pεκ(0)Ck(z, λ; ψ).

Clearly εκ(0) ∈ Q×. Thus the desired result follows from Lemma 2.10, The-

orem 8.15(i), and Lemma 7.8(i).

Next suppose 1 − k ≤ λ ≤ −k/2. By (8.18), 2Ck(z, s; ψ) = EN
k (z, s; ψ),

and so the desired result for λ = 1 − k follows from Theorem 8.15(ii). If

λ > 1 − k, put p = λ + k − 1 and κ = k − 2p. Then p > 0 and κ > 0. By

(8.20) we have

Dp
κCκ(z, 1− κ; ψ) = (−4π)−pεκ(1− κ)Ck(z, λ; ψ).

and εκ(1−κ) ∈ Q×, and so the desired result follows from the case λ = 1−k

and Lemma 7.8(i).

Case II: k /∈ Z. Suppose λ ∈ Z and 1 − k < 2λ ≤ 0; put p = −λ and

κ = k − 2p. Then 0 ≤ p ∈ Z and 3/2 ≤ κ ∈ 2−1Z. By (8.20) we have

L(2[k]− 4p, ψ2)Dp
κEκ(z, 0; ψ) = (−4π)−pεκ(0)Ck(z, λ; ψ).

We see that 0 < 2[k] − 4p ∈ 2Z and εκ(0) ∈ Q×. By our assumption, ψ2

is nontrivial if κ = 3/2. Thus the desired result follows from Lemma 2.10,

Theorem 8.15(iii), and Lemma 7.8(i).

Next suppose λ− k ∈ Z and 1− k ≤ λ < (1− k)/2; put p = λ+ k− 1 and

κ = k − 2p. Then 0 ≤ p ∈ Z and 1 < κ ∈ 2−1Z. By (8.20) we have

Dp
κCk(z, 1− κ; ψ) = (−4π)−pεκ(1− κ)Ck(z, λ; ψ).
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Therefore this case can be settled by the same argument as before in view of

Theorem 8.15(iv). This completes the proof.

Theorem 16.7. Let ξ ∈ Ξk with 0 < k ∈ Z as in §15.4. Given f ∈
S(ξ)∩S k(N, ψ) and g ∈M �(M, ϕ) with any positive weight � < k, a divisor

M of N∞, and a character ϕ modulo M, define DN (s; f, g) by (8.28). For

κ ∈ 2−1Z put λ = κ − 1 − (k − �)/2. Assuming that λ ∈ Λk−� with Λ of

(16.13a, b), put

A(κ; f, g) = βDN (κ; f, g) with β = π−k−λΓ (λ+ k − 1)ᾱk−�,ω̄,λ,

where ω = ψϕ and α∗∗∗ is as in (16.14). Let 0 �= p ∈ S(ξ) ∩S k(N, ψ) as

in Theorem 16.4. Then[
A(κ; f, g)/〈p, p〉]σ = A(κ; fσ, gρσρ)/〈pσ, pσ〉

for every σ ∈ Aut(C).

Proof. From (8.27) we obtain

N0(4π)
−μΓ (μ)DN (κ; f, g) = μ(Φ)〈gρC, f〉,

where μ = λ+k−1, N0 is a positive multiple ofN that dividesMN, Φ = Γ\H,
and C(z) = Ck−�(z, λ; Γ, ω̄) with Γ = Γ (N0, N0). Since μ(Φ) ∈ πQ× by

(6.6), putting C∗(z) = C∗k−�(z, λ; Γ, ω̄), we have

Rπ−μ−1Γ (μ)ᾱk−�,ω̄,λDN(κ; f, g) = 〈gρC∗, f〉
with a constant R ∈ Q× independent of f and g. Therefore, from (16.2c)

we see that βDN (κ; f, g) = 〈r(gρC∗), f〉 with r = rN,ξ
k−�,ψ and β defined as

above. Thus we obtain the desired result from Theorem 16.4 and (16.2d).

16.8. Given the space S k(N, ψ) with k ∈ Z, let S ′
k(N, ψ) denote its

subspace spanned by the functions h(tz) with h ∈ S k(M, ψ) for all integers

t and M such that tM divides N and the conductor of ψ divides M. Let

S 0
k(N, ψ) be the orthogonal complement of S ′

k(N, ψ) in S k(N, ψ). We call

a normalized Hecke eigenform f in S k(N, ψ) primitive if it belongs to

S 0
k(N, ψ), and call N the conductor of f. If f is primitive, then clearly

fσ is primitive for every σ ∈ Aut(C). The basic facts on primitive forms

(often called newforms) can be found in Atkin-Lehner [AL70] (for trivial ψ),

Casselman [C73], and Miyake [Mi71].

Let g be a nonzero element of S k(N, ψ) such that g|T ′(p)k,ψ = cpg for

almost all p. Then we can find a primitive element f contained in S k(N, ψ)

such that f |T ′(p)k,ψ = cpf for almost all p.We then say that f is associated

to g.

For an arbitrary f(z) =
∑∞

n=1 c(n)e(nz) ∈ S k

(
Γ1(N)

)
and a primitive

character χ put

(16.15) D(s; f, χ) =

∞∑
n=1

χ(n)c(n)n−s,
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(16.16) A(m; f, χ) = (πi)−mG(χ)−1D(m; f, χ) (0 < m < k, m ∈ Z).

Since
∑∞

n=1 χ(n)c(n)e(nz) ∈ S k, from Theorem 8.2 we see that D(s; f, χ) is

an entire function, and so its value at any m ∈ Z is meaningful.

Theorem 16.9. Given a primitive f ∈ S k(N, ψ) and a primitive char-

acter χ, denote by Kf (resp. Kχ) the field generated over Q by the Fourier

coefficients of f (resp. the values of χ). Then for every σ ∈ Aut(C) we can

define two nonzero complex numbers u+(f
σ) and u−(fσ) with the following

properties:

(i) u±(fσ)ρ = ±u±(fσρ), where ρ is the complex conjugation.

(ii) A(m; f, χ) ∈ u±(f)KfKχ if χ(−1) = ±(−1)m for every m ∈ Z, 0 <

m < k.

(iii)
[
A(m; f, χ)/u±(f)

]σ
= A(m; fσ, χσ)/u±(fσ) for every σ ∈ Aut(C)

if m ∈ Z, 0 < m < k, and χ(−1) = ±(−1)m.

(iv) Put E(f) = i1−kπG(ψ)〈f, f〉. Then E(f) ∈ u+(f)u−(f)Kf and[
E(f)/

{
u+(f)u−(f)

}]σ
= E(fσ)/

{
u+(f

σ)u−(fσ)
}

for every σ ∈ Aut(C).

This was given in [S77] as an application of [S76]. In fact, the results of [S76]

can be derived from Theorem 16.4 by taking f there to be any normalized

Hecke eigenform and h to be an Eisenstein series, without assuming f to be

primitive.

If k = 2, the constants u±(fσ) are periods of the differential form fσdz

on Γ1(N)\H. For details, we refer the reader to [S77, Theorem 3].

Lemma 16.10. (i) Let f be a normalized Hecke eigenform in S k(N, ψ).

Then D(s; f, χ) �= 0 for Re(s) ≥ (k + 1)/2 for every character χ.

(ii) Let f be a nonzero element of S 2

(
Γ1(N)

)
and let 0 < M ∈ Z. Then

there exists a primitive character ϕ, whose conductor is prime to M, such

that D(1; f, ϕ) �= 0 and ϕ(−1) has a given signature.

Assertion (i) can be proved by the same technique as in the proof of Lemma

16.3. For details, we refer the reader to [S76, Proposition 2] and [S78, Propo-

sition 4.16]. As for (ii), the proof is given in [S77, Theorem 2] when f is

primitive. The condition that f is primitive is unnecessary, as explained in

the last four lines of page 213 and the first four lines of page 214 in [S77].

This type of nonvanishing for the zeta functions associated to the forms on

GL2(F ) with an arbitrary number field F was given by Rohrlich in [Ro89].

16.11. Let 0 �= f ∈ S(ξ)∩S k(2, N/2; ψ) with half-integral k. We assume

the following condition:

(16.17) k ≥ 3/2 : if k = 3/2, then 〈f, θ1(z, μ)〉 = 0 for every μ ∈ L (Q),

where θ1 is as in (12.9b).
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Then by Theorems 12.8 and 13.11 there exists a Hecke eigenform g(z) =∑∞
n=1 c(n)e(nz) ∈ S 2k−1(N, ψ2) such that (15.5) holds with ωp = ψ(p)ξp

for almost all p, as already explained in §15.4. Choosing g suitably, we may

assume that g is primitive. Clearly g is uniquely determined by f.

Theorem 16.12. Let f be as above and g the primitive form in S 2k−1

determined by f as above. For q ∈ N k put

(16.18) I(q, f) = 21/2i[k]−1πG(ψ)〈q, f〉.
Let u±(f) be as in Theorem 16.9. then

(16.18a)
[
I(q, f)/u−(g)

]σ
= I(qρσρ, fσ)/u−(gσ)

for every σ ∈ Aut(C).

Proof. Our argument is similar to the proof of Theorem 16.4. We take a

multiple M of N such that f |Rp = ξpf for every f ∈ S(ξ) ∩S k(2, N/2; ψ)

and every p �M. We also take a primitive character ϕ of conductor r and a

positive integer t such that

(16.19) ϕ(−1) = 1 and every prime factor of M divides r;

(16.20) t has no nontrivial square factor prime to r.

Such a ϕ of course exists. Put θt(z) = 2−1
∑

n∈Z ϕ(n)e(tn2z/2). By Lemmas

5.5 and 8.17 we see that θt ∈ M �(2, 2tr
2; ϕt), where � = 1/2 and ϕt(n) =

ϕ(n)

(
t

n

)
. Let 0 �= f(z) =

∑∞
n=1 λ(n)e(nz) ∈ S(ξ) ∩ S k(2, N/2; ψ). By

Theorem 13.11 we have

(∗) L(s− [k] + 1, χtϕ)
∞∑

m=1

ϕ(m)λ(tm2)m−s = λ(t)D(s; g, ϕ),

where χt is defined by χt(n) = ψ(n)

(
t

n

)
. Also, we have

(∗∗) D
(
2−1(s− [k]− 1); f, θt

)
= (t/2)−s/2

∞∑
m=1

ϕ(m)λ(tm2)m−s.

Combining (∗) with (∗∗), we obtain

(#) λ(t)(t/2)−s/2D(s; g, ϕ) = L
(
s− [k] + 1, χtϕ

)
D
(
2−1(s− [k]− 1); f, θt

)
.

The left-hand side of (∗∗) at s = 2k − 2 is D(s0; f, θt) with s0 = [k]/2− 1.

We now evaluate (8.27) with θt as g there at s = s0. Then

(16.21) N0(4π)
−κΓ (κ)D(s0; f, θt) = μ(Φ)〈θρtE, f〉,

where N0 = tr2N, κ = k − 1, Φ = Γ\H, and E(z) = E[k]

(
z, 0; Γ, ω̄

)
with

Γ = Γ (N0, N0) and ω = ψϕt.

We first assume that k > 3/2; the case k = 3/2 will be treated later.

Then 2k − 2 ≥ k, and so D(2k − 2, g, ϕ) �= 0 by Lemma 16.10(i), which
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combined with (#) shows that D(s0; f, θt) �= 0 provided λ(t) �= 0, since

L
(
s − [k] + 1, χtϕ

) �= 0 for s = 2k − 2. Now E ∈ N [k](Qab) by Theorem

8.15(i). We then proceed as in the proof of Theorem 16.4. To be explicit,

put ht = rN,ξ
k,ψ (θ

ρ
tE) with rN,ξ

k,ψ of Lemma 16.2 and λ(n) = λ(f, n). Then

ht ∈ S k(Qab) by (16.2d), and

(16.22) 〈ht, f〉 = λ(f, t)wt(ψ, ϕ, g)

for every f ∈ S k(2, N/2, ψ) ∩ S(ξ) with a nonzero number wt(ψ, ϕ, g)

independent of f given by

wt(ψ, ϕ, g) = R(2t)1/2π−[k] · D(2k − 2; g, ϕ)

L([k], χtϕ)
,

where R is an element of Q× independent of f. If f �= 0, then λ(f, n) �= 0 for

some n. We can put n = tm2 with m prime to r and an integer t satisfying

(16.20). Then (∗) shows that λ(f, t) �= 0. Thus for every nonvanishing f ∈
S k(2, N/2, ψ) ∩S(ξ) we can find t such that 〈ht, f〉 �= 0, and so we obtain

(16.23) The ht for all t satisfying (16.20) span S k(2, N/2, ψ) ∩S(ξ).

Let σ ∈ Aut(C); take fσ, gσ, and ϕσ in place of f, g, and ϕ, but with

the same t. By Theorem 8.15(i), Eσ takes the place of E, and by (16.2d),

hσ
t takes the place of ht. Define PN (m, χ) by (2.19). Then L([k], χtϕ) =

G(χtϕ)(πi)
[k]Pr([k], χtϕ). Thus employing (16.16), we have

wt(ψ, ϕ, g) = R(2t)1/2i[k]−1π−1 · G(ϕ)A(2k − 2; g, ϕ)

G(χtϕ)Pr([k], χtϕ)
.

By (2.4a) and Lemma 2.8 we have[
t1/2G(ψ)G(ϕ)/G(χtϕ)

]σ
= t1/2G(ψσ)G(ϕσ)/G(χσ

t ϕ
σ).

Put B(ψ) = 21/2i[k]−1πG(ψ). Since (−1)2k−2 = −1, from Theorem 16.9(ii)

and Lemma 2.10 we obtain[
B(ψ)wt(ψ, ϕ, g)/u−(g)

]σ
= B(ψσ)wt(ψ

σ, ϕσ, gσ)/u−(gσ).

Combining this with (16.22), we obtain[
B(ψ)〈ht, f〉/u−(g)

]σ
= B(ψσ)〈hσ

t , f
σ〉/u−(gσ).

Given h ∈ S(ξ) ∩ S k(2, N/2; ψ), we can put, by (16.23), h =
∑

t∈T atht

with a finite set T of elements t satisfying (16.20) and at ∈ C. Then 〈h, f〉 =∑
t∈T aρt 〈ht, f〉 and 〈hρσρ, fσ〉 = ∑

t∈T aρσt 〈hσ
t , f

σ〉. Therefore[
B(ψ)〈h, f〉/u−(g)

]σ
= B(ψσ)〈hρσρ, fσ〉/u−(gσ).

This proves (16.18a) for h ∈ S(ξ) ∩S k(2, N/2; ψ). Given an arbitrary q ∈
N k, we have 〈q, f〉 = 〈h, f〉 with h = rN,ξ

k,ψ (q), where rN,ξ
k,ψ is as in Lemma

16.2. In view of (16.2d) we obtain (16.18a).
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Next let us assume that k = 3/2. In this case 2k − 2 = 1 and D(1; g, ϕ)

may be 0. If D(1; g, ϕ) �= 0, then our argument in the case k > 3/2 can be

repeated. Suppose D(1; g, ϕ) = 0 with ϕ satisfying (16.19). Put gϕ(z) =∑∞
n=1 ϕ(n)c(n)e(nz). Then, by Lemma 7.13, gϕ∈S k(r

2N,ψ2ϕ2). By Lemma

16.10(ii) we can find a character ϕ1, whose conductor is prime to rM, such

that D(1; gϕ, ϕ1) �= 0 and ϕ1(−1) = 1. Since D(1; gϕ, ϕ1) = D(1; g, ϕϕ1),

taking ϕϕ1 in place of ϕ, we can employ our reasoning in the case k > 3/2

for k = 3/2. This completes the proof.

Remark. Theorem 16.12 is essentially the same as [S81, Theorem 1]. How-

ever, the constant appearing in the definition of I(q, f) in (16.18) is different

from that for the corresponding quantity in [S81]. The difference is caused

by the difference of the definition of modular forms of half-integral weight, as

explained in §5.2. There is another point that should be remembered: in the

definition of D(s; f, g) in (8.23) the exponent is −s− (k+ �)/2 instead of the

simpler −s chosen in [S81].

Theorem 16.13. Let k and � be half-integral weights such that k > � and

k ≥ 5/2; let f ∈ S(ξ)∩S k(2, N/2; ψ) with ξ ∈ Ξk and h ∈M �(2, N/2; ϕ).

Given an integer m such that m− k + � ∈ 2Z and −k − � ≤ m ≤ k − � − 2

put

B(m; f, h) = 21/2i[�]−1G(ϕ)−1π−m−[k]−1DN (m/2; f, h).

Let g be the primitive element of S 2k−1(N, ψ2) determined by f as in §16.11,
and u−(g) the constant defined in Theorem 16.9. Then[

B(m; f, h)/u−(g)
]σ

= B(m; fσ, hσ)/u−(gσ)

for every σ ∈ Aut(C).

Proof. Let λ = 1 + (m − k + �)/2 and κ = (m + k + �)/2. From (8.27)

we obtain

N(4π)−κΓ (κ)DN (m/2; f, h) = μ(Φ)〈hρC, f〉,
where C(z)=Ck−�(z, λ; Γ, ω̄) with ω=ψϕ. Put β=N(4π)−κΓ (κ)μ(Φ)−1ᾱ

with α = αk−�,ω̄,λ given by (16.14). We see that λ ∈ Z and 1−k = � ≤ λ ≤ 0,

and so λ belongs to the set Λk−� of (16.13a), and Theorem 16.6 is applica-

ble. We have βDN (m/2; f, h) = 〈hρC∗, f〉 with C∗(z) = C∗k−�(z, λ; Γ, ω̄).

Since κ + k ∈ Z, we have Γ (κ) ∈ π1/2Q×. Also, G(ω̄)
−1

= ω(−1)G(ω)−1.

With I(q, f) as in (16.18) we have γDN (m/2; f, h) = I(hρC∗, f) with γ =

21/2i[k]−1πG(ψ)β. Calculating γ explicitly and then applying Lemma 2.8 to

G(ψ)G(ϕ)/G(ψϕ), we obtain the desired formula from Theorem 16.12.

16.14. We add here two remarks.

1. In addition to Theorems 16.7 and 16.13 there is one more case of the

values of DN (s; f, h), that is, the case with f of half-integral weight k and h
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of integral weight ≤ k. In this case we can state the results similar to Theorem

16.13 and prove them in the same manner as an application of Theorems 16.6

and 16.12. We leave the details to the reader, as no new ideas are required.

Indeed, they were given in [S81, Theorem 3], though the reader is warned of

the difference in formulation noted in the remark before Theorem 16.13.

In addition to this, we can also investigate D(m; f, χ) for D of (8.30). This

is essentially a special case of Theorem 16.7 with a certain theta function in

place of g, but there are some exceptional cases which require some nontrivial

calculation. We refer the reader to [S91, pp. 604–605] and the paper of J.

Sturm cited there.

2. LetK be an imaginary quadratic field. Given λ ∈ L (K) and 0 < κ ∈ Z,

put

f(z) =
∑
ξ∈K

λ(ξ)ξκe(ξξ̄z) (z ∈ H).

Then we can show that f ∈ S κ+1. In this case we can connect < f, f > and

the special values D(m, f, χ) with h(τ) with τ ∈ K ∩ H and h ∈ M ν(Qab)

for a suitable ν. For this we refer the reader to [S76, §5] and [S07, §13].

17. Hilbert modular forms

17.1. The theory of modular forms can be developed with respect to

congruence subgroups of SL2(F ) with any totally real algebraic number field

F of finite degree. Such forms are traditionally called Hilbert modular

forms. Practically all the results we presented in this book for modular

forms on H, including those of half-integral weight, can be extended to the

case of Hilbert modular forms. Let us now briefly explain the basics of this

topic, emphasizing its difference from the case over Q.

With a fixed F, we denote by g the maximal order of F and d the

different of F relative to Q. We denote by a the set of all archimedean

primes of F. For each v ∈ a we denote by Fv the v-completion of F which

is naturally identified with R. We put Fa =
∏

v∈a Fv. Similarly we put

SL2(F )a =
∏

v∈a SL2(Fv), and we let SL2(F )a act on Ha in an obvious

fashion. For each element α ∈ SL2(F ) we can assign an element of SL2(F )a
whose components are all equal to α, which acts on Ha. In this way we can

let SL2(F ) act on Ha.

For every integral ideal n in F we put

(17.1) Γ (n) =
{
α ∈ SL2(g)

∣∣α− 1 ≺ n
}
.

By a congruence subgroup of SL2(F ) we mean a subgroup of SL2(F )

that has Γ (n) as a subgroup of finite index for some n. To define modular

forms, we need the notion of a weight. By an integral weight we mean an

element of Za, and by a half-integral weight we mean an element (kv)v∈a
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of Qa such that kv − 1/2 ∈ Z for every v ∈ a. Thus, if [F : Q] = 3 for

example, (−7/2, 1/2, 9/2) is a half-integral weight, but (3, 7/2, 4) is not. For

a half-integral k we put [k] = (kv − 1/2)v∈a.
For c = (cv)v∈a ∈ Ca we put ea(c) = e

(∑
v∈a cv) and also

(17.2) θ(z) =
∑
a∈g

ea(a
2z/2) (z ∈ H

a),

(17.3) Γ0 =
{
γ ∈ SL2(F )

∣∣ aγ ∈ g, bγ ∈ 2d−1, cγ ∈ 2d, dγ ∈ g
}
.

Then for every γ ∈ Γ0 there exists a function hγ(z) on Ha such that

(17.4a) θ(γz) = hγ(z)θ(z),

(17.4b) hγ(z)
4 =

∏
v∈a

j(γv, zv)
2,

where j(β, w) = cβw + dβ for β ∈ SL2(R) and w ∈ H; see [S85a]. Then we

define a factor of automorphy jkγ (z) for a weight k, γ ∈ Γ0, and z ∈ Ha by

(17.5) jkγ (z) =

⎧⎪⎨
⎪⎩

∏
v∈a

j(γv, zv)
kv if k ∈ Za,

hγ(z)j
[k]
γ (z) if k /∈ Za.

Given a congruence subgroup Γ of SL2(F ) contained in Γ0 and a weight

k, we denote by M k(Γ ) the set of all holomorphic functions f on Ha such

that f(γz) = jkγ (z)f(z) for every γ ∈ Γ, and we call such an f a Hilbert

modular form of weight k with respect to Γ. Here we assume that F �= Q.

In fact, if F �= Q, then we can show that every such f has an expansion

(17.6) f(z) =
∑
ξ∈a

c(ξ)e(ξz)

with a fractional ideal a in F and c(ξ) ∈ C such that c(ξ) = 0 if ξv < 0 for

some v ∈ a. In other words, we need condition (3.4d) only when F = Q.

Basically we can extend all definitions and results in the case F = Q to

the case F �= Q. The generalization of D(s, f) of (8.3) is

(17.7) [g× : t]−1
∑

ξ∈F×/t

c(ξ)
∏
v∈a

ξ−s−kv/2
v ,

where t is a subgroup of g× of finite index that makes the last sum meaningful;

the existence of such a t can be shown.

We encounter some phenomena which do not exist in the case F = Q. For

example, given σ ∈ Aut(C), we can define a function fσ on Ha by

(17.8) fσ(z) =
∑
ξ∈a

c(ξ)σe(ξz).

This is indeed a Hilbert modular form, but its weight is a transform of k by

σ in a natural way, and so it is not necessarily k.

Without going further, we merely mention some references. In the paper

[Kl28] Kloostermann gave some basic results on Hilbert modular forms of
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weight k in the case where the kv for all v ∈ a are equal, and treated

holomorphic Eisenstein series. The case of more general integral weights was

discussed in [S78], which includes the generalization of Theorem 16.9. This

was originally published in the Duke Mathematical Journal, but the typesetter

and copyeditor made an incredible number of mistakes. Though corrections

were later published in the same journal, I advise the reader to read the revised

version included in my Collected Papers, vol. III. The factor of automorphy hγ

as in (17.4a, b) was established in [S85a], and Eisenstein series were discussed

in [S85a] and [S85b]. The generalizations of Theorems 11.3 and 12.8 were

given in [S87]. The contents of §§14, 15, and 16 of the present book can

be viewed as special cases of [S91] which discusses the same problems in the

Hilbert modular case.



APPENDIX

A1. Proof of various facts

A1.1. Equality (3.7a) can be proved as follows. Since f(x+ iy) is a C∞

function of x invariant under x �→ x+m for every m ∈M, it has a Fourier

expansion

(A1.1) f(x+ iy) =
∑
h∈L

ch(y)e
(
tr(hx)

)
with C∞ functions ch of y, by virtue of a general principle on the Fourier

expansion of a function with C∞ parameters; also termwise partial differ-

entiation of (A1.1) can be justified. For the proof of these facts the reader

is referred to any textbook on Fourier analysis in Rn; they are also proved

in [S07, Theorem A2.2]. Put bh(y) = ch(y)e
( − i · tr(hy)). Then f(z) =∑

h∈L bh(y)e
(
tr(hz)

)
. Take the variable zμν = xμν+iyμν and apply ∂/∂z̄μν =

2−1(∂/∂xμν + i∂/∂yμν) to the last equality. Then

0 =
∑
h∈L

(i/2)(∂bh/∂yμν)e
(
tr(hz)

)
,

and so ∂bh/∂yμν = 0 for every (μ, ν), which means that bh is a constant.

Thus we obtain (3.7a).

A1.2. We next prove Lemma 3.3. First we observe that f(x + iy) =∑
h∈L c(h)e

(
i · tr(hy))e(tr(hx)), and so

(A1.2) e
(
i · tr(hy))c(h) = A

∫
Sa/M

f(x+ iy)e
(− tr(hx)

)
dx,

where Sa = Sn(R) and A = vol(Sa/M)−1. Taking y = (2π)−11n in (A1.2),

we obtain |c(h)| ≤ B exp
(
tr(h)

)
with a constant B independent of h. Now

from (3.6b) we obtain c(h)=c(taha) for every a ∈ U, and so

(∗) |c(h)| ≤ B exp
(
tr(taha)

)
for every a ∈ U.

Now suppose n > 1; let h be an element of L that is not nonnegative. Our

task is to show that c(h) = 0. We can find x = (xi)
n
i=1 ∈ Qn such that

txhx < 0. Replacing x by x + u with a “small” vector u, we may assume
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that x1x2 �= 0. Multiplying x by a positive integer, we may also assume

that x ∈ Zn. Let y = [−x2 x1 0 · · · 0] and b = xy; here y is a row vector

and so b ∈ Zn
n. Then b2 = 0 since yx = 0, and

(∗∗) tr(tbhb) = tr(ty · txhxy) = y · ty · txhx = (x2
1 + x2

2) · txhx < 0.

Put a = (1 + b)m with 0 < m ∈ Z. Since (1 + b)(1 − b) = 1, we have

1 + b ∈ GLn(Z), and so a ∈ U if m ∈ NZ with a suitably large integer N.

For such an m we have

tr(taha) = tr
(
t(1 +mb)h(1 +mb)

)
= p+mq +m2r

with p, q, r ∈ R, which are independent of m; in particular, r = tr(tbhb) < 0,

as shown in (∗∗). Now by (∗) we have |c(h)| ≤ B exp(p + mq + m2r) for

0 < m ∈ NZ. Making m large, we find that c(h) = 0 as expected.

Lemma A1.3. (i) Γ (1) is generated by the elements of the forms of (4.31),

and consequently Γ (1) is generated by ι and P ∩ Γ (1).

(ii) Let Γ ′ =
{
γ ∈ Γ (1)

∣∣ bγ ≡ cγ ≡ 0 (mod 2Zn
n)

}
. Then Γ ′ is generated

by the elements of the forms

(A1.3)

[
a 0
0 d

]
,

[
1 b
0 1

]
,

[
1 0
c 1

]
, b ≡ c ≡ 0 (mod 2Zn

n).

(iii) Let Γ ∗ be the subgroup of Γ (1) generated by the elements of the forms

(A1.4)

[
a 0
0 d

]
,

[
0 −1
1 0

]
,

[
1 b
0 1

]
, b ≡ 0 (mod 2Zn

n).

Then Γ ′ ⊂ Γ ∗.

Proof. We first prove (ii). For x ∈ Zn, let [x] denote the greatest common

divisor of its components. We put [0] = 0. Also, for a ∈ Zn
n let aj denote its

jth column and aji its (i, j)-entry. Now let γ =

[
a b
c d

]
∈ Γ ′. Our idea is to

reduce [a1] and [c1] by multiplying by elements of the forms listed in (A1.3).

Clearly [c1] is even, and so [a1] is odd, since γ ∈ SL2n(Z). First suppose

[a1] < [c1]. Considering

[
u 0
0 v

] [
a b
c d

]
instead of

[
a b
c d

]
with a suitable

u = tv−1 ∈ GLn(Z), we may assume that a11 > 0, a12 = · · · = a1n = 0.

Then a11 is odd and < [c1]. For each k we can find an integer s1k such that

|c1k +2s1ka
1
1| ≤ a11. Take any s ∈ Sn(Z) whose (1, k)-entry is such s1k, and put[

1 0
2s 1

] [
a b
c d

]
=

[
a b
p q

]
. Then we find [p1] ≤ [a1], and so [p1] < [a1],

since [p1] is even. Next assume that 0 < [c1] < [a1]. Then, first considering vc

with a suitable v ∈ GLn(Z), and then

[
1 2s
0 1

]
γ with a suitable s, we can

reduce this to the case [a1] < [c1]. Repeating these procedures, we obtain an
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element, written again as γ =

[
a b
c d

]
, with c1 = 0. Then [a1] = 1. For the

same reason as above, we may assume that a11 = 1, a12 = · · · = a1n = 0. Since
tad− tcb = 1, we see that d11 = 1. Then left multiplication by diag[u, v] with

a suitable v ∈ GLn(Z) produces d1 = t ( 1 0 · · · 0 ) without changing

a1 and c1. Furthermore, left multiplication by

[
1 2s
0 1

]
with a suitable s

produces b1 = 0. We obtain in this way an element of the form⎡
⎢⎣
1 r 0 s
0 a′ 0 b′

0 t 1 u
0 c′ 0 d′

⎤
⎥⎦

with a′, b′, c′, d′ of size n − 1. From the relations tbd = tdb and tac = tca

we obtain s = t = 0, and from tda− tbc = 1 we obtain r = u = 0. Thus our

matrix in question is of the form

(A1.5)

⎡
⎢⎣
1 0 0 0
0 a′ 0 b′

0 0 1 0
0 c′ 0 d′

⎤
⎥⎦

with

[
a′ b′

c′ d′

]
∈ Sp(n− 1, Z), b′ ≡ c′ ≡ 0 (mod 2Zn−1

n−1). The proof of (ii) is

therefore completed by induction on n, since if

[
a′ b′

c′ d′

]
is of a type belonging

to (A1.3), then so is the matrix of (A1.5).

To prove (i) and (iii), we note

(A1.6)

[
0 −1
1 0

]
=

[
1 −1
0 1

] [
1 0
1 1

] [
1 −1
0 1

]
,

(A1.7)

[
1 0
−b 1

]
=

[
0 −1
1 0

] [
1 b
0 1

] [
0 −1
1 0

]−1

.

In view of (A1.7) we obtain (iii) immediately from (ii). As for (i) we employ

the same type of argument as in the proof of (ii). Since we have ι in (4.31), we

can use it in addition to the matrices of (A1.3) without congruence conditions,

again in view of (A1.7). Now left multiplication by ι changes (a, c) into

(−c, a). We first assume that 0 < [a1] ≤ [c1] and repeat the above argument

with the following modification: take s1k ∈ Z so that 0 ≤ c1k + s1ka
1
1 < a11, and

use s instead of 2s. Then we can reduce the problem to the case [c1] ≤ [a1],

and further to the case c1 = 0, and eventually to (A1.5). If

[
a′ b′

c′ d′

]
= ιn−1,

then (A1.5) does not belong to the three types of (4.31), but applying (A1.6)

to ιn−1 and employing (A1.7), we can justify our induction.

A1.4. As noted in §4.5, formulas (4.12) and (4.13) are equivalent to (4.17)

and (4.18). Therefore our result of §4.9 shows that (4.15) holds for γ of
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(4.31). Thus, by Lemma A1.3(i) we have

(A1.8) ϕ
(
tμγ(z)

−1u, γz; r, s) = ζ · jγ(z)1/2ϕ(u, z; r′′, s′′)
for every γ ∈ Γ (1) with some r′′, s′′, and ζ ∈ T, since it is easy to see that

(A1.8) is “associative” with respect to successive applications of elements of

Γ (1). Thus our task is to determine r′′ and s′′. For this purpose we first note
that if w ∈ Hn, f(u) = ϕ(u, w; r, s), and � = wp′+ q′ with p′, q′ ∈ Zn, then

(A1.9) f(u+�)=f(u)e
(
2−1 · tp′q′−tsp′+trq′+t�(w−w)−1(u+2−1�)

)
.

This follows from (4.4). Observe that r and s are determined modulo Zn

by this formula. For γ ∈ Γ (1), z ∈ Hn, and m = zp+ q with p, q ∈ Zn put

� = tμγ(z)
−1m, w = γ(z), and

g(u) = f
(
tμγ(z)

−1u
)
= ϕ

(
tμγ(z)

−1u, w; r, s
)
.

If γ =

[
a b
c d

]
, then γ−1=

[
td −tb
−tc ta

]
by (1.2b), μγ(z)

−1=μ(γ−1, w) by

(1.14), and z = tz = t(−tcw + ta)−1 · t(tdw − tb), and so

(A1.9a) � = t(−tcw + ta)(zp+ q) = t(tdw − tb)p+ t(−tcw + ta)q.

Thus � = wp′ + q′ with p′ = dp − cq and q′ = aq − bp. From (4.11) we

obtain (w − w̄)−1 = μγ(z)(z − z̄)−1 · tμγ(z), and so from (A1.9) we obtain

g(u+m) = g(u)e(X) with

X = 2−1 · tp′q′ − tsp′ + trq′ + tm̄(z − z̄)−1(u+ 2−1m).

Since tda− tbc = 1 and tpσp− t{σ}p ∈ 2Z for every p ∈ Zn and σ ∈ Sn(Z),

a straightforward calculation shows that

2−1 · tp′q′ − tsp′ + trq′ ≡ 2−1 · tpq − ts1p+
tr1q (mod Z)

with

[
r1
s1

]
= tγ

[
r
s

]
+

1

2

[ {tac}
{tbd}

]
.

Thus

(A1.10) g(u+m)=g(u)e
(
2−1 · tpq−ts1p+

tr1q+
tm̄(z−z̄)−1(u+2−1m)

)
.

If r′′ and s′′ are as in (A1.8), then they are determined modulo Zn by formula

(A1.9) with f replaced by g, which is formula (A1.10). Therefore r′′ ≡ r1
and s′′ ≡ s1 (mod Zn). This combined with (4.5) proves (i) of Theorem 4.4.

Next assume that both {tac} and {tbd} belong to 2Zn. Then we can put

(A1.11) ϕ
(
tμγ(z)

−1u, γz; 0, 0
)
= λγjγ(z)

1/2ϕ(u, z; 0, 0)

with a constant λγ ∈ T. For k = zr+s with r, s ∈ Rn, from (4.3) we obtain

θ(u + k, z; 0, 0) = e
(− 2−1 · trzr − tr(u + s)

)
θ(u, z; r, s),

which combined with (4.2) shows that
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e
(− tk̄(z − z̄)−1(u+ k/2)

)
ϕ(u + k, z; 0, 0) = e(2−1Y )ϕ(u, z; r, s)

with Y = −2 · tk̄(z − z̄)−1(u+ k/2) + t(u+ k)(z − z̄)−1(u+ k)

− trzr − 2 · tr(u + s)− tu(z − z̄)−1u.

We can easily verify that Y = −trs, and so we obtain

(A1.12) ϕ(u, z; r, s) = e
(
2−1A(u, z; r, s)

)
ϕ(u+ k, z; 0, 0)

with A(u, z; r, s) = trs− t(z̄r+s)(z−z)−1(2u+zr+s).

Put w = γ(z), v = μγ(z)
−1u, and k′ = μγ(z)

−1k. Taking k = zr+ s in place

of m = zp+ q in (A1.9a), we find that k′ = wr′ + s′ with r′ = dr − cs and

s′ = as− br. Therefore, combining (A1.11) and (A1.12), we obtain

ϕ
(
γ(u, z); r′, s′

)
= e

(
2−1A(γ(u, z); r′, s′)

)
ϕ(v + k′, w; 0, 0)

= e
(
2−1A(γ(u, z); r′, s′)

)
λγjγ(z)

1/2ϕ(u + k, z; 0, 0)

= e
(
2−1B

)
λγjγ(z)

1/2ϕ(u, z; r, s)

with B = A(γ(u, z); r′, s′)−A(u, z; r, s).

We have B = tr′s′− trs− tk̄(z− z̄)−1(2u+ k) + tk̄′(w− w̄)−1(2v+ k′). Using

again (4.11), we see that the last two terms cancel each other. Since

[
r′

s′

]
=

tγ−1

[
r
s

]
, exchanging (r, s) for (r′, s′) and writing hγ(z) for λγjγ(z)

1/2, we

obtain (ii) of Theorem 4.4, or rather (4.18).

Finally, to prove (iii) of Theorem 4.4, we observe that λ4
γ = 1 for the first

two types of elements of (A1.3). As for the third type, making substitutions

z �→ z − 2c and z �→ −z−1 in (4.34a), we find that

θ
(
z(2cz + 1)−1) = ± det(2cz + 1)1/2θ(z) if c ∈ Sn(Z)

with θ of (4.19). Thus λγ = ±1 for the third type. (Theorem 4.7(2), which

will be proven in §A1.6, gives a stronger result.) The proof of Theorem 4.4 is

now complete.

A1.5. Let us now prove (1) of Theorem 4.7. To simplify the notation,

suppress the subscript γ, and put L = Zn, A = L/tdL, B = L/dL, and

s[x] = txsx for s ∈ Qn
n and x ∈ Qn. Since c · td = d · tc, we see that

c · tdL ⊂ dL. Therefore x �→ cx sends A into B. Since γ ∈ SL2n(Z), we

have cL+ dL = L, and so the map is surjective. Comparing the orders of the

groups, we find that the map gives an isomorphism of A onto B. If y = cx,

we have, by (1.2a),

bd−1[y] = tcbd−1c[x] = (tad− 1)d−1c[x]

= tac[x]− d−1c[x] ≡ −d−1c[x] (mod 2),



156 APPENDIX

since the diagonal elements of tac are even. This shows that the two sums of

(4.25) are the same.

From (4.22a) we see that hαγ = hγ for α = diag[a, d] ∈ Γ (1) and every

γ ∈ Γ θ. Therefore, to prove (2) and the first equality of (1), we may assume

that det(d) > 0. Under this assumption, put w = td−1z(cz + d)−1 and p =

bd−1. Then, by (1.2a),

(γz − p)(cz + d) = az + b− bd−1(cz + d) = az − b · tc · td−1z

= (a · td− b · tc) · td−1z = td−1z,

and so γ(z) = w + p. With θ of (4.19) we thus have

(A1.13) hγ(z)θ(z) = θ(γz) = θ(w + p) =
∑
x∈L

e
(
(1/2)(w + p)[x]

)
.

Putting x = v + dg with v ∈ B and g ∈ L, we find

(A1.14) θ(w + p) =
∑
v

∑
g

e
(
(p/2)[v + dg] + (w/2)[v + dg]

)
=

∑
v

e
(
(p/2)[v]

)
θ
(
0, z(cz + d)−1d; d−1v, 0),

since p[v + dg] ≡ p[v] (mod 2). Now (4.34) shows that

det(−iz)1/2θ(0, z; r, s) = e(trs)θ(0, −z−1; −s, r).
Put z = iτ1n with 0 < τ ∈ R and observe that

lim
τ→0

τn/2θ(0, iτ1n; r, s) = e(trs)δ(s),

where δ(s) = 1 or 0 according as s ∈ L or s /∈ L. Taking the limit of τn/2

times (A1.13) combined with (A1.14) as τ tends to 0, we obtain (4.25).

A1.6. To prove (2) of Theorem 4.7, given γ ∈ Γ θ, assume that det(d) −
1 ∈ 2Z. In view of (4.21) and (4.22a), replacing γ by γ · diag[e, e] with
e = diag[−1, 1n−1] if necessary, we may assume that det(d) > 0. Put f =

det(d), g = fd−1, and s = −fd−1c. Then g ≺ Z, s ∈ Sn(Z), f is odd,

−fs = gd · tc · tg, and {d · tc} ∈ 2Zn by (4.6), and so by (4.7) the diagonal

elements of s are even. Denote by λ the first sum of (4.25) and put σ =

hγ(z)
2/jγ(z). Then σ = λ2/ det(d). Now

λ =
∑
x∈A

e
(
s[x]/(2f)

)
= [tdL : fL]−1

∑
x∈L/fL

e
(
s[x]/(2f)

)
.

By Lemma 2.3 we can find u ∈ Zn
n such that det(u) is a positive integer prime

to f and tusu − diag[r1, . . . , rn] ≺ fZ with ri ∈ Z. We can take ri to be

the (i, i)-entry of tusu. Then ri ∈ 2Z by (4.7), and

λ = f1−n

n∏
ν=1

f∑
x=1

e
(
rνx

2/(2f)
)
.
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Put rν/f = 2bν/aν with relatively prime integers aν and bν ; take aν > 0.

Then
f∑

x=1

e
(
rνx

2/(2f)
)
= (f/aν)

aν∑
x=1

e
(
x2bν/aν

)
= f

(
bν
aν

)
ε(aν)a

−1/2
ν

by Theorem 2.6, where ε(a) is εa of (0.6). Thus we obtain

λ = f

n∏
ν=1

(
bν
aν

)
ε(aν)a

−1/2
ν .

Since cL + dL = L, we have sL + fL = gL. For a prime number p put

Lp = Zn
p . Then gLp = Lp if p � f. If p|f, then tuLp = uLp = Lp, and hence

tugLp = tusuLp + fLp. From this we easily see that the elementary divisors

of g are { (f, rν) }nν=1 . Since aν = |f/(f, rν)| and d = fg−1, we thus know

that the aν are exactly the elementary divisors of d and

λ = det(d)1/2
n∏

ν=1

(
bν
aν

)
ε(aν),

so that σ = λ2/ det(d) =

( −1
det(d)

)
, which proves (2) of Theorem 4.7.

A2. Whittaker functions

A2.1. We need some Whittaker (or confluent hypergeometric) func-

tions:

(A2.1) τ(y; α, β) =

∫ ∞

0

e−yt(1 + t)α−1tβ−1dt,

(A2.2) V (y; α, β) = e−y/2 Γ (β)−1 yβ τ(y; α, β).

Here 0 < y ∈ R and (α, β) ∈ C2. The integral of (A2.1) is convergent for

Re(β) > 0, and so defines a holomorphic function of (α, β) under that condi-

tion; also it can be shown that V (y; α, β) can be continued to a holomorphic

function of (α, β) on the whole C2. We have also

(A2.3)
[
τ(y; α, β)/Γ (β)

]
β=0

= 1.

For these and the following two lemmas, the reader is referred to [S07, Section

A3].

Lemma A2.2. (i) For every compact subset K of C2 there exist two pos-

itive constants A and B depending only on K such that

|ey/2V (y; α, β)| ≤ A
(
1 + y−B

)
if (α, β) ∈ K.

(ii) V (y; 1− β, 1− α) = V (y; α, β).

Lemma A2.3. If Re(α+ β) > 1 and z = x+ iy ∈ H, then∑
m∈Z

(z +m)−α(z +m)−β = iβ−α(2π)α+β
∑
n∈Z

e(nx+ i|n|y)gn(y; α, β),
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where gn is given by

(A2.4) Γ (α)Γ (β)gn(y; α, β) =

⎧⎪⎪⎨
⎪⎪⎩

nα+β−1 τ(4πny; α, β) if n > 0,

|n|α+β−1 τ(4π|n|y; β, α) if n < 0,

Γ (α+ β − 1)(4πy)1−α−β if n = 0.

Here, for v ∈ C× and α ∈ C we define vα by

vα = exp(α log(v)), −π < Im[log(v)] ≤ π.

Then vα+β = vαvβ , vmα = (vα)m for m ∈ Z, and (uv)α = uαvα provided

arg(u), arg(v), and arg(u) + arg(v) are all contained in the interval (−π, π]
for suitable choices of arg(u) and arg(v).

From Lemma A2.2(ii) we obtain

(A2.5) τ(y; 1− β, 1− α)/Γ (1− α) = yα+β−1τ(y; α, β)/Γ (β).

This combined with (A2.3) gives

(A2.6) τ(y; 1, β)/Γ (β) = y−β.

Lemma A2.4. (i) Given (α, β) ∈ C2 and A ∈ R×, put σ = α − β and

λ = β(1 − α). Define a function fA(y) for 0 < y ∈ R by

(A2.7) fA(y) =

{
V (2Ay; α, β) if A > 0,

|2Ay|−σV (|2A|y; β, α) if A < 0.

Then fA satisfies the differential equation

(A2.8) y2f ′′(y) + σyf ′(y) + (λ +Aσy − A2y2)f(y) = 0.

Moreover, if f is a solution of (A2.8) and f(y) = O(yB) with B ∈ R as

y →∞, then f is a constant multiple of fA.

(ii) With the same notation as in (i), define a function ϕA on H by

(A2.9) ϕA(x+ iy; σ, λ) = eiAxfA(y).

Let ε and δσ be as in (6.13a, b). Then

(A2.10) εϕA(z; σ, λ) =

{
λ(4Ai)−1ϕA(z; σ − 2, λ+ 2− σ) if A > 0,

(4Ai)−1ϕA(z; σ − 2, λ+ 2− σ) if A < 0,

(A2.11) δσϕA(z; σ, λ) =

{
iAϕA(z; σ + 2, λ+ σ) if A > 0,

(λ+ σ)iAϕA(z; σ + 2, λ+ σ) if A < 0.

Proof. Since (1 + t)α = (1 + t)α−1 + (1 + t)α−1t, from (A2.1) we obtain

(∗1) τ(y; α+ 1, β) = τ(y; α, β) + τ(y; α, β + 1).

Also, we easily see that

(∗2) (∂/∂y)τ(y; α, β) = −τ(y; α, β + 1),
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(∗3) (∂/∂y)2τ(y; α, β) = τ(y; α, β + 2).

Since
∫∞
0 (∂/∂t)

[
e−yt(1 + t)αtβ

]
dt = 0 for Re(β) > 0, we have

(∗4) βτ(y; α+ 1, β) = yτ(y; α+ 1, β + 1)− ατ(y; α, β + 1)

for such β, and even for any β by meromorphic continuation.

Now we have

y(∂/∂y)2τ(y; α, β) = yτ(y; α, β + 2) by (∗3)
= yτ(y; α+ 1, β + 1)− yτ(y; α, β + 1) by (∗1)
= βτ(y; α+ 1, β) + (α− y)τ(y; α, β + 1) by (∗4)
= βτ(y; α, β) + (β + α− y)τ(y; α, β + 1) by (∗1).

Thus we obtain{
y(∂/∂y)2 + (α+ β − y)∂/∂y − β

}
τ(y; α, β) = 0.

From this we easily see that fA is a solution of (A2.8).

Let f be a solution of (A2.8) such that f(y) = O(yB) as y →∞. Putting

f ′ = df/dy, we have

(yσf ′)′ = yσ(f ′′ + σy−1f ′) = yσ(A2 −Aσy−1 − λy−2)f = O(yC)

with C ∈ R as y → ∞. It follows that yσf ′, as well as f ′, is O(yD) with

D ∈ R. Put h = fAf
′ − f ′Af. Then h′ = fAf

′′ − f ′′Af = −σy−1h, and so

h = ay−σ with a constant a. From Lemma A2.2(i) and (∗2) we see that both

fA and f ′A are O(e−|A|y/2) as y →∞. Therefore we have a = 0, which means

that f/fA is a constant. This completes the proof of (i). Formulas (A2.10)

and (A2.11) can be verified by employing (∗1), (∗2), and (∗4).
Lemma A2.5. For every compact subset K of C2 we have

lim
y→∞ ey/2V (y; α, β) = 1

uniformly for (α, β) ∈ K.

Proof. From (∗4) we obtain

V (y, α+ 1, β) = V (y, α+ 1, β + 1)− αy−1V (y, α, β + 1).

Since this is consistent with the desired formula, it is sufficient to prove it

for α in a compact subset K1 of C and β in a compact subset K2 of
{
β ∈

C
∣∣Re(β) > 0

}
. If Re(β) > 0, we have

ey/2V (y; α, β) = Γ (β)−1

∫ ∞

0

e−x(1 + y−1x)α−1xβ−1dx,

and so

ey/2V (y; α, β)− 1 = Γ (β)−1

∫ ∞

0

e−x
[
(1 + y−1x)α−1 − 1

]
xβ−1dx.

We can find two positive numbers A and B such that
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∣∣(1 + y−1x)α−1
∣∣+ 1 ≤ AxB for x ≥ 1, y ≥ 1, and α ∈ K1.

Indeed, take m > 1 so that Re(α) < m for every α ∈ K1. Then for x ≥
1, y ≥ 1, and α ∈ K1 we have |(1 + y−1x)α−1| ≤ (2x)m. Now, given ε > 0,

we can find C ≥ 1 such that

A|Γ (β)−1|
∫ ∞

C

e−x|xB+β−1|dx ≤ ε for β ∈ K2.

For every η > 0, we can find (a small) h > 0 such that

|tα−1 − 1| < η for α ∈ K1 and |t− 1| ≤ h.

Take η = ε/M with M = Maxβ∈K2

∣∣Γ (
Re(β)

)
/Γ (β)

∣∣, and let D = C/h. Then

we can find D ≥ 1 such that∣∣(1 + y−1x)α−1 − 1
∣∣ ≤ ε/M for x ≤ C, y ≥ D, and α ∈ K1.

Then, for y ≥ D, α ∈ K1, and β ∈ K2 we have∣∣∣∣Γ (β)−1

∫ ∞

0

e−x
[
(1 + y−1x)α−1 − 1

]
xβ−1dx

∣∣∣∣
≤ εM−1

∣∣∣∣∣Γ (β)−1

∫ C

0

e−xxβ−1dx

∣∣∣∣∣+A

∣∣∣∣Γ (β)−1

∫ ∞

C

e−x|xB+β−1|dx
∣∣∣∣ ≤ 2ε.

This proves our lemma.

A3. Eisenstein series of half-integral weight

A3.0. In this section we denote by μ the Moebius function. This is

defined for m ∈ Z, > 0, and μ(m) �= 0 if and only if m is square-free, in

which case μ(m) = (−1)r, where r is the number of prime factors of m; in

particular, μ(1) = 1. We have

(A3.0a)
∑
d|m

μ(d) =

{
1 if m = 1,

0 if m > 1,

(A3.0b)

∞∑
n=1

μ(n)θ(n)n−s =
∏
p

[
1− θ(p)p−s

]
for every C-valued multiplicative function θ defined for 0 < m ∈ Z, where

p runs over all prime numbers.

Lemma A3.1. Let χ0 be a primitive character modulo r, and χ a char-

acter modulo rs with 0 < s ∈ Z such that χ(n) = χ0(n) for n prime to s.

Then for any integer q we have
rs∑

n=1

χ(n)e(nq/rs) = G(χ0)
∑

0<c|(s,q)
cμ(s/c)χ0(s/c)χ̄0(q/c),
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where G(χ0) denotes the Gauss sum of (2.3), and (s, q) the greatest common

divisor of s and q. We put G(χ0) = 1 if χ0 is trivial, as we did in (2.15).

Proof. For 0 < c ∈ Z we have

(∗)
rc∑

n=1

χ0(n)e(nq/rc) =

{
0 if c �q,

cχ̄0(q/c)G(χ0) if c|q.
Indeed, the left-hand side equals

r∑
m=1

χ0(m)

c∑
a=1

e
(
(m+ ar)q/rc

)
=

r∑
m=1

χ0(m)e(mq/rc)

c∑
a=1

e(aq/c),

which is 0 if c �q, and is cχ̄0(q/c)G(χ0) by (2.3a) if c|q. By (A3.0a) we have
rs∑

n=1

χ(n)e(nq/rs) =
rs∑

n=1

( ∑
d|(n,s)

μ(d)

)
χ0(n)e(nq/rs).

Putting n = md and s = cd, we see that the last sum over n equals∑
d|s

μ(d)χ0(d)

rc∑
m=1

χ0(m)e(mq/rc),

which combined with (∗) gives the desired result.

A3.2. Our next aim is to investigate the analytic nature of Ek(z, s; Γ, ψ)

of (8.12) with k /∈ Z. Let γ =

[ ∗ ∗
cN d

]
∈ Γ = Γ (M, N) with d > 0. By

(4.40), jkγ (z)
−1 = (cNz + d)−kεd

(
2cN

d

)
, and so by Lemma 8.7 and (8.12a)

we have

(A3.1) Ek(z, s; Γ, ψ) = ys
∞∑
d=1

ψ(d)
∑
c∈Z

(
2cN

d

)
εd(cNz + d)−k|cNz + d|−2s.

Notice that the terms for even d are 0, which we keep in mind in our calcu-

lation. Fixing N and ψ, we put

(A3.2) E′(z, s) = (−iNz)−kEk

(− (Nz)−1, s; Γ, ψ
)
,

since this is easier than the original Ek(z, s). From (A3.1) we easily obtain

(A3.3) E′(z, s) = ikysN−k−sE∗(z, s) with

E∗(z, s) =
∞∑
d=1

∑
b∈Z

ψ(d)

(−2Nb

d

)
εd(dz + b)−k|dz + b|−2s.

Putting b = dm+ � with m ∈ Z and 1 ≤ � ≤ d, we obtain

E∗(z, s) =
∞∑
d=1

ψ(d)εdd
−k−2s

d∑
�=1

(−2N�

d

)∑
m∈Z

(
z+ �

d +m
)−k∣∣z+ �

d +m
∣∣−2s

.

Applying Lemma A2.3 to the last sum with α = k + s and β = s, we find

that
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(A3.4) E∗(z, s) = i−k(2π)2s+k
∑
n∈Z

αn(s)e(nx+ i|n|y)gn(y; k + s, s)

with αn(s) =

∞∑
d=1

(−2N
d

)
εdd

−k−2sψ(d)

d∑
�=1

(
�

d

)
e(�n/d).

If n = 0, the last sum over � is nonzero only if d = u2 with an odd u > 0,

in which case εd = 1. Denoting Euler’s function by ϕ, we see that the last

sum
∑d

�=1 equals ϕ(u2) = u2
∏

p|u(1 − p−1) = u2
∑

v|u μ(v)v
−1 by (A3.0b).

Therefore, putting u = vw, we have

α0(s) =
∑
v,w

ψ(v2w2)(vw)2−2k−4sμ(v)v−1

=
∑
w

ψ(w2)w2−2k−4s
∑
v

μ(v)ψ(v2)v1−2k−4s.

Thus in view of (A3.0b) we obtain

(A3.5) α0(s) = LN (4s+ 2k − 2, ψ2)/LN (4s+ 2k − 1, ψ2).

The formula for αn with n �= 0 can be given as follows.

Lemma A3.3. Let t be a positive or negative square-free integer. Put

κ = 2k and λ = 1/2− k, and define primitive characters ω1 and ω2 by

ω1(a) =

(
2tN

a

)
ψ(a) for (a, tN) = 1,

ω2(a) = ψ(a)2 for (a, N) = 1.

Then, for n = tm2 with 0 < m ∈ Z, we have

LN(4s− 2λ, ω2)αn(s) = LN(2s− λ, ω1)βn(s) with

βn(s) =
∑

μ(a)ω1(a)ω2(b)a
λ−2sb2−κ−4s,

where the last sum is extended over all ordered pairs of positive integers a, b

prime to N such that ab divides m.

Proof. Let r and u be odd positive integers. Assuming r to be square-

free, put Gn,r,u =

ru2∑
m=1

(
m

ru2

)
e(mn/ru2). By Lemma A3.1 and (2.4a) we have

Gn,r,u = εrr
1/2

∑
0<c|(u2,n)

cμ(u2/c)

(
u2/c

r

)(
n/c

r

)
.

Put u2 = ac. Since μ(a) = 0 unless a is square-free, we can put u = ab with

0 < b ∈ Z. Thus

Gn,r,u = εrr
1/2

∑
a,b

ab2μ(a)

(
n/b2

r

)
,

where (a, b) is taken under the conditions ab = u and ab2|n, and so
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αn(s) =
∑
r,u

(−2N
ru2

)
ψ(ru2)μ(r)2(ru2)−k−2sεrGn,r,u

=
∑
r,a,b

(−2N
r

)
ε2rμ(r)

2ψ(ra2b2)(ra2b2)−k−2sr1/2ab2μ(a)

(
n/b2

r

)
,

where (r, a, b) is taken under the conditions that r and a are square-free,

(rab, N) = 1, and ab2|n. Put n = tm2 as in our lemma. Then ab2|n only if

b|m. Put m = bh; then a|th. Put ω′(r) =
(
2tN

r

)
ψ(r). Then we see that

ε2r

(−2N
r

)(
n/b2

r

)
ψ(r) =

{
0 if (th, r) �= 1,

ω′(r) if (th, r) = 1,

and so

αn(s) =
∑
b|m

ψ(b)2b2−κ−4s
∑
a|th

μ(a)ψ(a)2a2λ−4s
∑

(r,th)=1

μ(r)2ω′(r)rλ−2s.

By (A3.0b) we have∑
a|th

μ(a)ψ(a)2a2λ−4s =
∏
p|th

(
1− ψ(p)2p2λ−4s

)
,

∑
(r,th)=1

μ(r)2ω′(r)rλ−2s =
∏

p�thN

(
1 + ω1(p)p

λ−2s
)

=
LN(2s− λ, ω1)

LN(4s− 2λ, ω2)

∏
p|th,p�N

1− ω1(p)p
λ−2s

1− ω2(p)p2λ−4s
.

Notice that ω1(p) = 0 if p|t and p � N. Therefore we obtain

LN(4s−2λ, ω2)αn(s)=LN (2s−λ, ω1)
∑
b|m

ψ(b)2b2−κ−4s
∏

p|h,p�N

[
1−ω1(p)p

λ−2s
]
.

The formula of our lemma follows immediately from this.

Lemma A3.4. Let R(s, χ) = (r/π)(s+ν)/2Γ
(
(s + ν)/2

)
L(s, χ) with a

nontrivial primitive character χ modulo r and ν = 0 or 1 determined

by χ(−1) = (−1)ν . Then for any compact subset J of R there exists a

constant CJ independent of r and χ such that |R(s, χ)| ≤ CJ r2+|σ|/2 for

Re(s) = σ ∈ J.

Proof. If Re(s) = σ > 1, we have, by (8.10a),

|R(1− s, χ̄)| = |R(s, χ)| ≤ (r/π)(σ+ν)/2Γ
(
(σ + ν)/2

)
ζ(σ).

Therefore it is sufficient to prove the desired estimate for −1 < σ < 2. For

this we use (8.10d) (with χ in place of ψ), which can be written

R(s, χ) = P (s, χ) +W (χ)P (1− s, χ̄),

P (s, χ) =

∫ ∞

1

g(y, χ)y(ν+s−2)/2dy,

where g(y, χ) =
∑∞

n=1 χ(n)n
ν exp(−πn2y/r). Observe that
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|g(y, χ)| ≤
∞∑
n=1

ne−πny/r = e−πy/r(1− e−πy/r)−2.

Substituting tr/π for y, we obtain∣∣P (s, χ)
∣∣ ≤ (r/π)(σ+ν)/2

∫ ∞

π/r

e−t(1− e−t)−2t(σ+ν−2)/2dt.

To prove our estimate, we first assume r > π. Decompose the last integral into

two parts over the intervals (1, ∞) and (π/r, 1). The first part is a continuous

function in σ independent of r and χ. As for the second part, we have

e−t(1− e−t)−2 ≤ At−2 for 0 ≤ t ≤ 1 with a constant A. Thus∫ 1

π/r

e−t(1− e−t)−2t(σ+ν−2)/2dt ≤ A

∫ 1

π/r

t(σ+ν)/2−3dt ≤ B + Cr2−(σ+ν)/2

if −1 ≤ σ ≤ 2, with constants B and C independent of r and χ. Therefore

|P (s, χ)| ≤ Dr2 for −1 ≤ σ ≤ 2 with a constant D independent of r and χ.

Next, if r < π, then the estimate of the integral over (0, ∞) gives the desired

result. Once P (s, χ) is majorized, then replacing (s, χ) by (1 − s, χ), we

obtain the estimate of P (1− s, χ). Adding these, we can complete the proof.

Theorem A3.5. Let κ = 2k and λ = 1/2− k. For z ∈ H and s ∈ C put

F ′(z, s) = LN(4s−2λ, ω2)E
′(z, s)·

{
Γ (s)Γ

(
s+ (1− λ− λ0)/2

)
(κ ≤ 1),

Γ (s+ k)Γ
(
s+ (λ0 − λ)/2

)
(κ ≥ −1),

where λ0 = 0 or 1 according as λ is even or odd. Then (2s− λ− 1)F ′(z, s)
can be continued as a holomorphic function to the whole s-plane. Moreover,

for any compact subset K of C there exist two positive constants u and v

depending on K such that

(A3.6)
∣∣(2s− λ− 1)F ′(z, s)

∣∣ ≤ u(yv + y−v) (y = Im(z))

for every s ∈ K and every z ∈ H. The factor 2s−λ−1 is unnecessary either

if (|κ|+ 1)/2 is even or ψ2 is nontrivial.

Remark. If κ = ±1, the two expressions for the product of two gamma

factors are identical.

Proof. We first consider the case κ ≥ 1. By (A2.4), (A3.3), (A3.4),

(A3.5), and Lemma A3.3, we have

(A3.7) (2π)−k−2sNk+sy−sF ′(z, s) =
∑
n∈Z

e(nx+ |n|iy)|n|2s+k−1An(y, s),

where we understand that |0|2s+k−1 = 1, and

(A3.7a) An(y, s) = LN(2s− λ, ω1)βn(s)Γ
(
s+ (λ0 − λ)/2

)
· Γ (s)−1 ·

{
τ
(
4πny; s+ k, s

)
(n > 0),

τ
(
4π|n|y; s, s+ k

)
(n < 0),
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(A3.7b) A0(y, s) = LN(4s+ κ− 2, ω2)Γ
(
s+ (λ0 − λ)/2

)
· Γ (s)−1Γ (2s+ k − 1)(4πy)1−k−2s.

Clearly, An(y, s) for every n ∈ Z is meromorphic on the whole s-plane. Now

we have

(∗) Γ
(
s+ (λ0 − λ)/2

)
Γ (s)

=

c∏
a=1

(s+ a− 1),

where c = (λ0 − λ)/2. We have also

Γ (2s+ k − 1)LN(4s+ κ− 2, ω2)

= Γ (2s+ k − 1)L(4s+ κ− 2, ω2)
∏
p|N

[
1− ω2(p)p

2−κ−4s
]
.

Therefore the only possible pole of A0(y, s) may occur at s = λ/2 + 1/4 or

(λ + 1)/2 when ω2 is trivial. The pole at s = λ/2 + 1/4 is cancelled by

1− 22−κ−4s; the pole at s = (λ+ 1)/2 is cancelled by the factor s+ c− 1 if

λ is odd, and by the factor 2s−λ− 1 if λ is even. Thus (2s−λ− 1)A0(y, s)

is entire, and by Lemma A3.4, is bounded by g(yh + y−h) with constants g

and h depending only on K. The factor 2s−λ− 1 is unnecessary if λ is odd

or ω2 is nontrivial. If λ is even and ω2 is trivial, then the residue of A0(y, s)

at s = (λ+ 1)/2 is an element of y−1/2Q×.
To study An(y, s) for n �= 0, first note that βn(s) is entire, and |βn(s)| ≤

γ|n||δ|Re(s)+ε with constants γ, δ, ε independent of n. Let n = tm2 as in

Lemma A3.3, and let ω1(−1) = (−1)η with η = 0 or 1. Since ψ(−1) =

(−1)[k] = (−1)λ, we see that λ − η is even if and only if n > 0. Suppose

n > 0. Then η = λ0 and

(∗+) An(y, s) = Γ
(
s+ (η − λ)/2

)
βn(s)L(2s− λ, ω1)

∏
p|N

[1− ω1(p)p
λ−2s]

· Γ (s)−1τ(4πny; s+ k, s).

By Lemma A2.2(i), the last product Γ (s)−1τ(4πny; s+ k, s), when s ∈ K, is

bounded by

C(4πny)−Re(s)Max
(
1, (4πny)B

)
,

where B and C are constants that depend on K but not on n. The first

line of factors of (∗+) is an entire function of s, except when ω1 is trivial and

s = λ/2 or s = (λ+1)/2. (This can happen only if λ is even.) But either pole

is cancelled by the factor 1−2λ−2s or 2s−λ−1. Therefore (2s−λ−1)An(y, s)

is entire, and by Lemma A3.4, |(2s − λ − 1)An(y, s)| ≤ unv(yw + y−w) for

s ∈ K with constants u, v, w depending only on K.

Next suppose n < 0. Then λ− η is odd, and so λ0 + η = 1. Thus

(∗−) An(y, s) = βn(s)Γ
(
s+ (η − λ)/2

)
L(2s− λ, ω1)

∏
p|N

[
1− ω1(p)p

λ−2s
]

· Γ (s+ k)−1τ(4π|n|y; s, s+ k)
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· Γ (s+ k)Γ
(
s+ (λ0 − λ)/2)

Γ
(
s+ (η − λ)/2

)
Γ (s)

.

Notice that 0 ≤ k − (η − λ)/2 = (λ0 − λ)/2 ∈ Z. Therefore, by the same

reasoning as in the case n > 0, we see that (2s − λ − 1)An(y, s) is entire.

Actually the factor 2s−λ−1 is unnecessary. Indeed, the pole at s = (λ+1)/2

may occur only if ω1 is trivial, in which case λ is odd, and so 0 < λ0−λ ∈ 2Z

and Γ
(
s + (λ0 − λ)/2

)
/Γ (s) = 0 at s = (λ + 1)/2. Thus An(y, s) is entire

for n < 0 and
∣∣(2s − λ − 1)An(y, s)

∣∣ ≤ u′|n|v′(yw′ + y−w′) for s ∈ K with

constants u′, v′, w′ depending only on K. Taking the infinite sum of (A3.7),

we obtain the desired result for k > 0.

The case k < 0 can be treated in a similar fashion. However, our real aim

is to prove Theorem 8.14, which is our task in the next subsection.

A3.6. Put k′ = −k and λ′ = 1/2− k′; let λ′0 be 0 or 1 according as λ′

is even or odd. Assuming that k > 0, denote by F ∗k′ the function F ∗ defined

with k′ and χ0ψ̄ in place of k and ψ, where χ0 is the primitive character

modulo 4. Then we can easily verify that λ′ = 1− λ, λ′0 = 1− λ0, and from

(8.13a) we obtain

(A3.8) F ∗k′(z, s) = ykF ∗(z, s̄− k).

This reduces the proof of Theorem 8.14 to the case k > 0. Thus we assume

k > 0 in this subsection. Let the symbols be as in that theorem. Given α ∈
SL2(Q), put γ =

[
0 −1
N 0

]
α. From (A3.2) we see that jα(z)

−kEk(αz, s) =

ikjγ(z)
−kE′(γz, s) with a suitable branch of j−k

γ , and so

(A3.9) jα(z)
−kF ∗(αz, s) = ik(2s− λ− 1)jγ(z)

−kF ′(γz, s).

Therefore the first part of Theorem 8.14 concerning analytic continuation of

F ∗ follows immediately from Theorem A3.5. Thus the remaining point is

the estimate of |jα(z)−kF ∗(αz, s)|. If cγ = 0, the desired fact follows from

(A3.6). Suppose cγ �= 0. Then Im(γz) = y|cγz+ dγ |−2 ≤ c−2
γ y−1, and so if y

is sufficiently large, then Im(γz) < 1 and (A3.6) shows that∣∣(2s− λ− 1)jγ(z)
−kF ′(γz, s)

∣∣ ≤ 2uy−v|cγz + dγ |2v+k

for s ∈ K. This proves that F ∗(z, s) is slowly increasing at every cusp locally

uniformly in s.

It remains to prove that F ∗(z, s) is nonvanishing at s = (λ + 1)/2 if

(|κ| + 1)/2 is odd and ψ2 is trivial. In view of (A3.8) we may assume that

k > 0. Then λ is even. As noted in the proof of Theorem A3.5, A0(y, s)

has nonzero residue at s = (λ + 1)/2, which gives the desired result. This

completes the proof of Theorem 8.14.
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A3.7. Let us now prove the last part of Theorem 8.10(ii), which states

that F (z, s) is slowly increasing at every cusp, locally uniformly in s. Our

technique is similar to and simpler than that in the proof of Theorem A3.5. We

need to examine the Fourier expansion of jγ(z)
−kF (γz, s) for every γ ∈ Γ (1).

In view of (8.14a) we have only to check the expansion for a fixed (p, q).

Suppose k > 0 for simplicity; then we use the result in [S07, p. 134]. As

noted in lines 7 and 8 from the bottom of that page, the expressions there are

meaningful for every s ∈ C, and so we have

(#) F (z, s) = a(s)ys + b(s)y1−k−s +
c(s)ys

Γ (s)

∑
0�=t∈Z

e
(
(tx + i|t|y)/N)

Dt(y, s)

for z = x+ iy, and∣∣Dt(y, s)
∣∣ ≤ 2

∑
0<n|t

n2σ+k−1 ·
{∣∣τ(4πty/N ; s+ k, s)

∣∣ if t > 0,∣∣τ(4π|t|y/N ; s, s+ k)
∣∣ if t < 0

for σ = Re(s), where a(s), b(s), and c(s) are entire functions of s, and τ is

as in (A2.1). (The properties of a(s) and b(s) can be seen from [S07, Theorem

3.4]; c(s) = ghs with some constants g and h.) Let K be a compact subset

of C. Employing Lemma A2.2(i), we see that the last term of (#) for s ∈ K

is majorized by

2|c(s)|
∣∣∣∣1 + Γ (s+ k)

Γ (s)

∣∣∣∣
∞∑
t=1

α
(
1 + (4πty/N)β

)
t2σ+ke−2πty/N ,

where α and β are positive constants depending only on K. Then we easily

see that F (z, s) for s ∈ K satisfies (6.9a). This proves the case k > 0. The

case k ≤ 0 can be handled in a similar way.

There is an alternative proof. Indeed, EN
k (z, s− k; p, q), up to some easy

factors, can be obtained as the integral
∫∞
0 Ψ(z, t)ts−1dt, where

Ψ(z, t) =
∑

0�=(m,n)∈Z2

λ(m, n)(mz̄ + n)k exp
(− πt|mz + n|2/y)

with λ ∈ L (Q2); see [S07, pp. 64–65], [S73a, pp. 462–463]. We can make an

estimate of Ψ in an elementary way, and we eventually obtain the desired

property of F (z, s). This was done in [S73a, pp. 463–464].

A3.8. We will now prove (iii) and (iv) of Theorem 8.15 which concern the

case 3/2 ≤ k /∈ Z.We assume that k > 3/2 or ψ2 is nontrivial. Then Ek(z, s)

is finite at s = 0. (Indeed, the factor 2s−λ− 1 in Theorem 8.14 is necessary

only if ψ2 is trivial, and it is 0 at s = 0 only if k = 3/2.) By (A3.3), E′(z, 0) =
ikN−kE∗(z, 0), and E∗(z, 0) can be obtained from (A3.4). By (A2.3) and

(A2.4) the nth term of E∗(z, 0) for n > 0 is (−2πi)kαn(0)n
k−1Γ (k)−1e(nz),

but it is 0 for n < 0, since τ(y; α, k) is finite. The term for n = 0 is also

0, since Γ (2s + k − 1)Γ (s + k)−1Γ (s)−1 = 0 for s = 0. Thus E∗(z, 0) has

a Fourier expansion of the form
∑∞

n=1 cne(nz). Since it is slowly increasing
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at every cusp, it belongs to M k by Lemma 6.4(i). By (8.13), Ek(z, 0) ∈
M k(M, N ; ψ̄). To prove a more precise result as stated in Theorem 8.15(iii),

put

E′(z, 0) = ikN−kE∗(z, 0) =
∞∑
n=1

An(ψ)e(nz)

with An(ψ), which, by (A2.3), (A2.4), Lemma A3.3, and (A3.4) can be given

as

An(ψ) = (2π/N)knk−1Γ (k)−1βn(0)LN ([k], ω1)/LN(2[k], ω2).

Employing the symbol PN (m, χ) = G(χ)−1(πi)−mLN (m.χ) of (2.19), we can

put

An(ψ) = n−1(2πn/N)kΓ (k)−1βn(0)(πi)
−[k] · G(ω1)PN ([k], ω1)

G(ω2)PN (2[k], ω2)
.

Since Γ (k) ∈ π1/2Q×, we see that πk−[k]Γ (k)−1 ∈ Q×. Let χt(a) =

(
2tN

a

)
with t as in Lemma A3.3. Take a square-free positive integer t0 such that

2tN/t0 is a square. (We are considering only positive n.) Then G(χt) = t
1/2
0 ,

and so (2n/N)k ∈ G(χt)Q
×. Thus

i[k]An(ψ) = R0βn(0)G(χt)G(ψχt) · PN ([k], ψχt)

G(ψ2)PN (2[k], ψ2)

with a rational number R0 independent of ψ. Multiplying by G(ψ), we obtain

i[k]G(ψ)An(ψ) = R0βn(0) · G(χt)G(ψχt)

G(ψ)
· G(ψ)G(ψ)

G(ψ2)
· PN ([k], ψχt)

PN (2[k], ψ2)
.

Take σ ∈ Gal(Qab/Q) and apply σ to each factor. By Lemmas 2.8 and 2.10

we find the images of the last three factors; βn(0)
σ can easily be found from

Lemma A3.3. We eventually find that[
i[k]G(ψ)An(ψ)

]σ
= i[k]G(ψσ)An(ψ

σ).

Thus writing E′(ψ) for E′(z, 0), we obtain[
i[k]G(ψ)E′(ψ)

]σ
= i[k]G(ψσ)E′(ψσ).

Returning to Ek(z, 0; Γ, ψ), we see from (A3.2) that E′(ψ) = fX with

f(z) = Ek(z, 0; Γ, ψ) and the operator X defined in Lemma 7.6(ii). Define a

character ϕ by ϕ(d) =

(−1
d

)[k]

, and take an integer s prime to MN so that

e(1/MN)σ = e(s/MN). Then (i[k])σ = ϕ(s)i[k], and so by (2.17), E′(ψ)σ =

ϕ(s)ψ(s)σE′(ψσ). Since f ∈ M k(M, N ; ψ̄) as noted above, Lemma 7.6(ii)

shows that ϕ(s)ψ(s)σ(fσ)X = (fX)σ = E′(ψ)σ , and so (fσ)X = E′(ψσ),

which means that fσ = Ek(z, 0; Γ, ψ
σ), that is,

(A3.10)
[
Ek(z, 0; Γ, ψ)

]σ
= Ek(z, 0; Γ, ψ

σ).

This completes the proof of Theorem 8.15(iii).
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A proof of (A3.10) was given in [St80]. However, the methods of the paper

are very involved, and the exposition is sketchy with many undefined symbols,

and therefore it is almost impossible to follow. Here we have given a simpler

proof with different ideas. The proof of [St80] uses the results on E′(z, s)
in [S75], which we reproduced here as Lemma A3.3, (A3.7), and (A3.7a, b).

What we need in addition is Lemma 7.6(ii) and our discussion on the behavior

of An(ψ) under σ, whereas [St80] requires at least eight pages of calculations.

For these reasons, we merely let the reader know the existence of the paper,

with no further comments.

A3.9. To prove (iv) of Theorem 8.15, put sk = 1 − k. By (A3.2) we can

reduce the problem to F ′ whose Fourier expansion is given by (A3.7). Let us

first show that An(y, sk) = 0 if n < 0. Since sk �= (λ + 1)/2, the first line of

(∗−) is finite at s = sk, and the same is true for the second line. As for the

third line, since λ ≤ −1, we have 0 ≥ 1 + (λ − λ0)/2 = sk + (η − λ)/2, and

so Γ
(
s+ (η − λ)/2

)
has a pole at s = sk. This shows that An(y, sk) = 0 for

n < 0.

As to An for n > 0, we note that by (A2.6) the factor τ(4πny; s +

k, s)/Γ (s) at s = sk equals (4πny)k−1. Returning to E′(z, s), put

D(z, s; ψ) = L(4s+ 2k − 1, ψ2)E′(z, s).

Then from (A3.7) we see that

2−kNπ−1D(z, sk; ψ) =

∞∑
n=0

Bn(ψ)e(nz),

where B0(ψ) = L(1 − 2[k], ψ2) and Bn(ψ) = L(1 − [k], ω1)βn(sk) if n > 0.

Notice that ω1(−1) = ψ(−1) = (−1)[k]. The function is nonzero, since

B0(ψ) �= 0. From Lemma 2.10 and the formula for βn in Lemma A3.3

we see that Bn(ψ) ∈ Qab and Bn(ψ)
σ = Bn(ψ

σ) for every n ≥ 0 and

every σ ∈ Gal(Qab/Q). Thus
[
2kπ−1D(z, sk; ψ)

]σ
= 2kπ−1D(z, sk; ψ

σ).

Now let C∗k (Γ, ψ) be as in Theorem 8.5(iv) and let the symbol X be as

in Lemma 7.6(ii). By (A3.2) we have E′(z, s) = Ek(z, s; Γ, ψ)
X , and so

C∗k(Γ, ψ)
X = 2ki[k]G(ψ)−1π−1D(z, sk; ψ). Given σ ∈ Gal(Qab/Q), take an

integer t prime to N so that e(1/N)σ = e(t/N). Let a character χ be de-

fined by χ(d) =

(−1
d

)[k]

ψ̄(d). Then Lemma 7.6(ii) shows that (fσ)X =

χ(t)σ(fX)σ for f = C∗k (Γ, ψ), since ψ̄ here is ψ there. Observe that

χ(t)σ
[
i[k]G(ψ)−1

]σ
= i[k]G(ψσ)−1 by (2.17). Therefore[

C∗k (Γ, ψ)
σ
]X

= χ(t)σ
[
2ki[k]G(ψ)−1π−1D(z, sk; ψ)

]σ
= 2ki[k]G(ψσ)−1π−1D(z, sk; ψ

σ) = C∗k (Γ, ψ
σ)X ,

and so C∗k(Γ, ψ)
σ = C∗k(Γ, ψ

σ). This completes the proof of Theorem 8.15(iv).
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A3.10. Let us now prove Theorem 8.16(i). We assume that k = 1/2 and

ψ2 is trivial, and so λ = 0 and (λ + 1)/2 = 1/2. Since ψ(−1) = (−1)[k],
we have ψ(a) =

(
q
a

)
with a square-free positive integer q. The question is

the value of F ∗(z, s) at s = 1/2, but we first look at F ′ of (A3.7). In the

proof of Theorem A3.5 we have seen that An(y, s) with n < 0 is finite at

s = (λ + 1)/2. Let R =
∏

p|N (1 − p−1). From (A3.7b) we see that A0(y, s)

has residue Ry−1/2/8 at s = 1/2.

As for An with n > 0, we need to investigate the residue of (∗+) at s = 1/2,

which is nonzero if and only if ω1 is trivial, which is the case if and only if

2tNq is a square, that is, 2Nq = tν2 with an integer ν. Thus t is determined

by N and ψ. For n = tm2 as in Lemma A3.3 put m0 = m/(m, N). Then

βn(1/2) =
∑
ab|m0

(ab)−1 =
∑
c|m0

c−1
∑
a|c

μ(a) = 1

by (A3.0a). Thus the first line of (A3.7a) has residue Rπ1/2/2 at s = 1/2.

The second line of (∗+) gives (4πny)−1/2 by (A2.6). Thus, by (A3.7) the

residue of F ′(z, s) at s = 1/2 is

(2π)3/2N−1/2y1/2
∑
m∈Z

e(tm2z)Ry−1/2/8 = (8N)−1/2π3/2R
∑
m∈Z

e(tm2z).

(Notice that
∑

m∈Z e(tm2z) = 1 + 2
∑∞

m=1 e(tm
2z).) Now

F ∗(z, s) = (2s− 1)(−iNz)−1/2F ′
(− (Nz)−1, s

)
.

Put A = (8N)−1/2π3/2R, v = 2t/N, and f(z) = A
∑

m∈Z e(vm2z/2). Then

the residue of F ′
(− (Nz)−1, s

)
at s = 1/2 is f(−z−1), and so F ∗(z, 1/2) =

2(−iNz)−1/2f(−z−1). Using the notation of Lemma 7.11, we have f(z) =

Aθv(z, λ), where λ is the characteristic function of Z, viewed as an element

of L (Q). Therefore, by that lemma, F ∗(z, 1/2) = π3/2θv(z, ν) with a Qab-

valued element ν of L (Q). This proves Theorem 8.16(i).

If F ∗ is defined without the factor LN(4s− 2λ, ψ2), then the value belongs

to π−1M 1/2(Qab).
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character, 6

CM-field, 135

commensurable, 116

conductor, 10

confluent hypergeometric

function, 157

congruence subgroup, 13

congruence subgroup (of Gk), 72

constant term, 68

critical (eigenvalue), 68

cusp, 31

cusp-class, 74

cusp form, 29, 68

Dirichlet character, 6

Dirichlet L-function, 11

divisor, 41

eigenform, 66

eigenvalue, 66

Eisenstein series, 54, 55, 73

equivalent (systems of eigenvalues), 134

Fourier coefficient, 14

Fourier expansion

(of a modular form), 14

Fourier expansion

(of an eigenform), 68

Fourier transform, 19

fractional divisor, 41

Gauss sum, 7, 8

half-integral weight, 24

Hecke algebra, 118

Hecke eigenform, 122

Hecke operator, 121

Hilbert modular forms, 147

imprimitive character, 10

inner product, 34

integral weight, 24

Jacobi’s theta function, 22

Laplace-Beltrami operator, 35

Maass form, 66

Moebius function, 160

modular form

(of half-integral weight), 25

modular form

(of integral weight), 13

nearly holomorphic modular

form, 40

normalized (eigenform), 122

Poisson summation formula, 19

primitive character, 9

primitive cusp form, 143

primitive matrix, 5

primitive vector, 4

principal character, 7

Rankin’s transformation, 63

rapidly decreasing, 32

regular (cusp-class), 74

R-eigenvalues, 134

Riemann’s theta function, 15

Siegel upper half space, 1

slowly increasing, 32

symplectic group, 1

theta series (of an

indefinite quadratic form), 91

theta integral, 98

trivial character, 7

weight (of a modular form), 24

Whittaker function, 157

Z-lattice, x
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