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PREFACE

It was forty years ago that my “Introduction to the arithmetic theory of au-
tomorphic functions” appeared. At present the terminology “modular form”
can be counted among those most frequently heard in the conversations of
mathematicians, and indeed, there are many textbooks on this topic. How-
ever, almost all of them are at the elementary level, and not so interesting
from the viewpoint of the reader who already knows the basics. So, my inten-
tion in the present book is to offer something new that may satisfy the desire
of such a reader. Therefore we naturally assume that the reader has at least
rudimentary knowledge of modular forms of integral weight with respect to
congruence subgroups of SLy(Z), though we state every definition and some
basic theorems on such forms.

One of the principal new features of this book is the theory of modular
forms of half-integral weight, another the discussion of theta functions and
Eisenstein series of holomorphic and nonholomorphic types. Thus we have
written the book so that the reader can learn such theories systematically.
However, we present them with the following two themes as the ultimate
aims:

(I) The correspondence between the forms of half-integral weight and those
of integral weight.

(IT) The arithmeticity of various Dirichlet series associated with modular
forms of integral or half-integral weight.

The correspondence of (I) associates a cusp form of weight k& with a mod-
ular form of weight 2k — 1, where k is half an odd positive integer. I gave
such a correspondence in my papers in 1973. In the present book I prove a
stronger, perhaps the best possible, result with different methods.

As for (II), a typical example is a Dirichlet series

oo
D(s; f,9) = L(2s+2,w) Y _ anbyn = *F0/2

n=1
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obtained from a cusp form f(z)=) ",

other form g¢(z) = Y07 by exp(2minz) of weight ¢, where L(s, w) is the
L-function of a Dirichlet character w determined by f and g. In the crudest
form, our main results show that there exists a constant A(f) that depends on
[y k, £, w, and an integer k such that D(k; f, g)/A(f) is algebraic if a,, and
b, are algebraic, for infinitely many different g. We can of course consider
D(s; f, x) = Yoy x(n)ay,n™* with a Dirichlet character y and ask about
the nature of D(m; f, x) for certain integers m.

an, exp(2minz) of weight k and an-

Though we eventually restrict our modular forms to functions of one com-
plex variable, some of our earlier sections provide an easy introduction to the
theory of Siegel modular forms, since that gives a good perspective and makes
our proofs of various facts more transparent. Also, since our second theme
concerns the arithmeticity, we naturally discuss the rationality of the Fourier
coefficients of a modular form, and how the form behaves under the action of
an automorphism of the field to which the coefficients belong. This is a delicate
problem, particularly when it is combined with the group action. Therefore,
a considerable number of pages are spent on this problem. Another essential
aspect of our theory is the involvement of the class of functions which we
call nearly holomorphic modular forms, especially nonholomorphic Eisenstein
series.

As for D(m; f, x), we only state the results without proof, and cite two of
my papers published in 1976 and 1977. My original plan was to make the book
self-contained even in this respect by including the proof, but an unexpected
accident made me abandon the idea. Possibly I may be excused by saying
that once the reader acquires some elementary results in earlier sections of
the present book, those two papers will be easy to read, and so the exclusion
of the proof is not a great loss. Also, I allowed myself to quote some standard
facts discussed in my books of 1971 and 2007 without proof, since I thought
it awkward to reproduce the proof of every quoted fact.

It is my great pleasure to express my heartfelt thanks to my friends Koji
Doi, Tomokazu Kashio, Kamal Khuri-Makdisi, Kaoru Okada, and Hiroyuki
Yoshida, who read my manuscript and helped me eliminate many misprints
and improve the exposition.

Princeton
September 2011 Goro Shimura
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NOTATION AND TERMINOLOGY

0.1. For a set X we denote by #X or #(X) the number of elements of X
when it is finite, and put #X = #(X) = oo otherwise.

We denote by Z, Q, R, and C the ring of rational integers and the fields
of rational numbers, real numbers, and complex numbers, respectively. Also,
Q and Q,;, mean the algebraic closure of Q in C and the maximal abelian
extension of Q in Q, respectively. We put

(0.1) T={zeC]||z|=1}.

We denote by Aut(C) the group of all ring-automorphisms of C.

Given an associative ring A with identity element and an A-module X,
we denote by A* the group of all invertible elements of A, and by X" the
A-module of all m x n-matrices with entries in X; we put X™ = X{" for
simplicity. For an element y of XJ* or X! we denote by y; the ith entry
of y. The zero element of A" is denoted by 0] or simply by 0. When we
view A7 as a ring, we usually denote it by M, (A). We denote the identity
element of M, (A) by 1, or simply by 1. The transpose, determinant, and
trace of a matrix x are denoted by 'z, det(z), and tr(z). For X € A and
an ideal B of A we write X < B if all the entries of X belong to B. For square
matrices z1, ..., x, we denote by diag[xy, ..., ;] the square matrix with
Z1, ..., x, in the diagonal blocks and 0 in all other blocks.

We put GL,(A) = My (A)*, SLy(A) = {o € GL,(A) | det(a) = 1} if A'is
commutative, and

(0.2) Sn(A) ={T € M,(A)|'T =T}.

For T € S, (A) and X € A", we put T[X] = ‘XTX; we also put T'(x, y) =
teTy for x,y € A". For h = th € M, (C) we write h > 0 if h is positive
definite, and we write h > k if h —k > 0. Throughout the book we put

(0.3) e(c) = exp(2mic) (ceC).

0.2. We define the Legendre-Jacobi symbol (T) for 0 <n—1¢€ 2Z and
n

m € Z as follows. Let n = q; - -- ¢s with odd prime numbers g;. Then we put
S
m m
(0.4) (_) -1I <_>
n o1 \4j

m
where <—> is the quadratic residue symbol, and we understand that the
4aj

ix



x NOTATION AND TERMINOLOGY

product means 1if n =1 (even when m = 0). Clearly (T) =0 if mZ+nZ #
n

!

li
Z and (mm > = (@) (ﬁ> . If n <0 and n is prime to 2m, we put
n n n

(0.5) (T) _ Im] (ﬁ) :
n m \ |n|
where we understand that |0|/0 = 1. We also put, for every odd integer d,
1 if d—1e€4Z,
Ed:{z‘ it d+1€4Z.

(0.6)

Thus 53 = (%) for odd d.

0.3. For a finite-dimensional vector space V over Q, by a Z-lattice in V
we mean a finitely generated Z-submodule of V' that spans V over Q. We also
denote by .Z (V') the set of all C-valued functions A for which there exist two
Z-lattices L and M in V such that A(z) =0 for x ¢ L and A(z) for x € L
depends only on the coset x + M.

For example, take V = Q" and put L = Z". Given r, s € Q", define a
function A5 on V by A.s(x) = 0if 2 —r ¢ L and A\ s(x) = e(*ws) for
x—r € L. Then clearly A\, s € Z(V). Let us now show that .Z(V) is spanned
over C by A for all (r, s).

Given A € Z(V), we can find positive integers g and h such that A\(x) =0
for x ¢ g7'L and A(z) for x € g~'L depends only on z + hL. Let R and
S be complete sets of representatives for g~'L/L and h~!L/L, respectively.
For r € R let p, = ;.\, where &, is the characteristic function of r+ L. Then
A= crhbr and p.(r +y) for y € L depends only on y + hL. Now for
each s € S the map y +— e('ys) defines a function on L/hL, and the space of
functions on L/hL is spanned by such functions e(*ys) for all s € S, and so we
can put pu,(r+y) =Y cqcrse('ys) for y € L with ¢, s € C. Consequently
A= cr D scs Crs€(="7s)Ar s, which proves the italicized statement above.

0.4. If ¢ is an isomorphism of a field F' onto K, then for = € F we denote
by x? the image of x under o. If 7 is an isomorphism of K onto another
field, then o7 denotes the composite of o and 7 defined by 277 = (z7)7. We
will define the action of o on various objects X such as Dirichlet characters
and modular forms, but the action will always be written X7, and the rule
X7 = (X?9)7 is universal.



CHAPTER 1

PRELIMINARIES

1. Symplectic groups and symmetric domains

1.1. Though the principal aim of this book is to discuss various topics
on modular forms of one complex variable, we first introduce the so-called
Siegel modular forms defined on a certain space §),,, called the Siegel upper
half space of degree n and defined by (1.12) below, since these will make
our exposition easier. Besides, what we need about them are some formal
identities, which are not complicated, and we find no reason for avoiding
them.

For 0 < n € Z and a commutative ring A with identity element we put

0o -1,
(1.1a)  Sp(n, A) = {a € GLyy,(A) | tovwa = L}, L=lp = [ 1, 0 :|v

(L1b)  Gp(n, A) = {a € GLan(A) |'over = v(a) with v(a) € A%},

Clearly Sp(n, A) and Gp(n, A) are subgroups of GLa,(A). In particular, the

group Sp(n, A) is called the symplectic group of degree n over A. Notice

1

that ‘awa = v(a)e if and only if av-a = v(a), since 1= = —i. We easily

see that

a-td—b-tc="tda —he = v(v),
(1.2a) 7[‘; Z}EGp(n, A) :>{ ™

a-'b, c-d, tac, 'bd € S, (A),
td tb]

_la 0 -1 _ —1
(1.2b) ’Y[C d}EGp(n, 4) = v =v) |:tc ty

(1.2¢) {Z Z] € Sp(n, A) < tac ="‘ca, tbd = tdb, *da — 'bc = 1,

< a-b=b-ta,c-td=d-tc,a-'d—b-tc=1,
(1.2d) vEGp(n, A) — 'y eGpn, A), v('y) =v(v),
(1.2¢) =11 =—1, 12 =—1y,, and 1€ Sp(n, A).
Given « € Gp(n, A), put v = diag[v(a)l,, 1,]. Then clearly v € Gp(n, A)
and v(y) = v(a), and so v 'a € Sp(n, A). In this way we see that

(1.3) Every element of Gp(n, A) is the product of an element of Sp(n, A)
and an element of the form diaglel,, 1,] with e € A*.

G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 1
DOI 10.1007/978-1-4614-2125-2_1, © Springer Science+Business Media, LLC 2012



2 I. PRELIMINARIES

If n =1, noting that ¢~ -tauwa = det(a)1s for every o € My(A), we see that
(1.4a) Sp(1, A) = SLo(A),  Gp(1, 4) = GLa(A),
(1.4Db) v(a) = det(a) for o € Gp(1, A).

1.2. We will eventually define the action of Sp(n, R) on $),,, but we first

define more generally the action (in a weak sense) of Gp(n, C) on S,,(C). For

o= {Ccl Z] € M, (C) with a of size n we hereafter put a = ao = a(a), b=

bo = b(a), ¢ = ¢o = c¢(a), and d = d, = d(a), whenever there is no fear of
confusion. Then for z € S,,(C) and « € Gp(n, C) we put

(15a)  pa(2) = ple, 2) = caz +da;  jal2) = j(a, 2) = det [pa(2)],
(1.5b) a(z) = az = (apz + ba)(Caz +do) 1,

where a(z) is defined only when g, (z) is invertible. We will often write az
for a(z). To see the nature of a(z), put p = anz + by and ¢ = p1a(2). Using

the relations in (1.2a), we easily see that *pq = ‘qp, and so pg—* € S, (C) if
q is invertible. Therefore, if «(z) is defined, then «a(z) € S,,(C), and

(16) SHEHEE!

Given z € S,(C) and « € Gp(n, C), suppose « [ﬂ = [l{)} A with w € C?

and A € GL,(C); then we easily see that az is defined, az = w, A\ = pq(2),
and (1.5b) holds.

Next suppose «, 5 € Gp(n, C) and both az and B(az) are meaningful;
then applying S to (1.6), we obtain

A HE O e )
and so (Ba)(z) is meaningful and
(17) psa(2) =ns(@ial), dsa(2)=ds(02)ia(2). and (Ba)(z)=Blaz).
Moreover, if 2’ € S,(C) and a2’ is defined, then
o TR )
Calling this product W and forming *W W, we obtain
(19) YN = 2) = ol 02 — a2t (2).

If dz = (dz;;) denotes the differential of the variable matrix z = (z;;) on
Sn(C), then from (1.9) we obtain

(1.10) v(a)dz = e (2)d(az) pa(2).

We now put
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(1.11) Gp*(n, R) = {a € Gp(n, R) | v(a) > 0},
(1.11a) Gp*(n, Q) =GL2pn(Q)NGpT(n, R),
(1.12) Hn = {2 € 5,(C) |Im(z) > 0}.

Every element z of £),, can be written z = z 4+ iy with z € S,(R) and
0 <y € Sn(R), and vice versa. Hereafter, whenever we write z = x + iy for
z € 9, we always take x and y in that sense.

Lemma 1.3. Let X be the set of all X € C2" such that

(1.13) EX1X =0 and i-'X:X > 0.

(i) The map (z, p) — 1
(i) aXB C X for every a € Gp*(n, R) and 8 € GL,(C).

Then the following assertions hold:
“ ] W gives a bijection of $, X GL,(C) onto X.

PRrROOF. That the image of the map of (i) is indeed in X can easily be seen.
Given X = {‘Z] with g, h € C?, we have (1.13) if and only if

ns
(%) thg=1tgh and i(*hg—tgh) > 0.
Therefore, for 0 # x € CT we have

0 <i-tz(*hg —'gh)z = i(*(ha)gz — '(gz)hz),
and so gz # 0 and hx # 0. Thus both g and h are invertible. Put z = gh™ .
Then () shows that 'z =z and (2 —2) =i-th~'(*hg—tgh)h~! > 0, and so

Z € Hp. Since X = h, we see that our map is surjective. The injectivity

z
1
and (ii) are obvious.

z

1 € X

1.4. Let z € 9, and a € GpT(n, R). Then by Lemma 1.3(i),
By (ii) of the same lemma, « [i] € X, and so by (i) we can put « [ﬂ =

[T} p with unique w € $,, and p € GL,(C). Thus az is meaningful and

1

w = az; consequently (1.5b) and (1.6) hold. Since we have 1 = p(aa™!, 2) =

po(a12)u(a™t, 2), we obtain
(1.14) pla™t, 2) = po(a=t2)™! and jla™!, 2) = ja(a"tz)~h

Taking the complex conjugate of (1.6) in this case, we obtain

(1.15) a [ ] [?] Ha(2),
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since « is a real matrix. This means that we can let an element « of
Gp™(n, R) act on the set {2 ’ z € 5’9”}, and view @z as the image of

N

under «. Thus «(Z) = aZ = @z, pa(Z) = caZ + doa = pa(2), and jo(2) =
det [1a(2)] = ja(z). Taking z as 2’ in (1.9), we obtain

(1.16) Im(az) = 1kua(z)illm(z)ua(z)*1 if o€ Sp(n, R).

1.5. We note here how an element of Gp*(n, R) belonging to several
special types acts on z € §,,:

(1.17a) {ré" 10 ] cz=rz (0<reR),
(1.17b) [8 2} czaz-ta (d='a"! € GL,(R)),
(1.17¢) [1& 1b ] cz—z+b (be Sp(R)),

(1.17d) [8 Z} czevaz-ta+bdt (d=ta"'eGL,(R), tbd€ S, (R)),

(1.17¢) {2 8] oz =bz bt (e=-""1eGL,(R)).

We also note that Sp(n, R) acts transitively on $,, that is, given z and
w in Ny, there exists an element o of Sp(n, R) such that az = w. Indeed,
given z = x + iy € 9, take a € GL,(R) so that a-fa = y and put
8= [(1) T} {8 taol} . Then B € Sp(n, R) and B(il,) = z. Similarly we
can find v € Sp(n, R) such that v(il,) = w. Then az =w with a =~

2. Some algebraic and arithmetic preliminaries

2.1. We begin with some easy facts on Z% and SL,(Z). We call an element
v= (v, ..., v,) of Z. primitive if the v; have no common divisors other
than +1. Given such a v, put M = Z. /Zv. Then M has no torsion elements
and is finitely generated over Z, and so it must be a free Z-module. Thus
M has a Z-basis {y;}7™,. Let u; be an element of Z. that represents y;.
Then we can easily verify that {uj, ..., Uy, v} is a Z-basis of Z.. Clearly
m =mn— 1. Let a be the square matrix whose rows are uq, ..., U, v. Then
a € GL,(Z), which proves the “only-if”-part of the first of the following
statements:

(2.1) An element v of ZL is primitive if and only if v is the last row of an

element of GL,(Z). Moreover, if n > 1, this is true with SL,(Z) in
place of GL,(Z).

The “if”-part is obvious. If n > 1 and det(«) = —1, then by replacing u,
by —uq, we obtain an element of SL,(Z).
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Generalizing the idea of (2.1), we call an element x of Z" with m < n
primitive if there is an element y of Z]'~™ such that {z} € GL,(Z). Notice

that if an element x of Z]" is primitive, then axzf is primitive for every
a € GLy(Z) and B € GL,(Z).

Lemma 2.2. (i) Let Q,, denote the subgroup of GL,(Q) consisting of all
the upper triangular matrices. Then GL,(Q) = QnSL,(Z).

(ii) Let W, be the set of all primitive elements of ZY, such that we-w = 0.
Then W,, = [0 1,]Sp(n, Z).

(iii) Let Py, or simply P, denote the subgroup of Sp(n, Q) consisting of

all the elements of the form [8 Z], where a, b, d are of size n. Then

Sp(n, Q) = P - Sp(n, Z).
(iv) Sp(n, Q) is generated by P and .

Proor. We first prove (i) by induction on n. It is trivial if n = 1. Given
£ € GL,(Q),n>1,let = be the last row of £. Then = =qy with 0 # g € Q
and a primitive element y of Z1. By (2.1) we can find an element o of SL,,(Z)

1]a, sothat za=t = [0

whose last row is 3. Then y = [0} q]. Thus we

n—1
can put ot = [8 ﬂ with r € QZ:% and s € Q' By induction we find

T € Qu 1 and o € SL, 1(Z) such that r = 70. Then &a~! - diaglo™!, 1] €
Q@n, which proves (i).
Asfor (ii), clearly [0 1,]Sp(n, Z) C W,,. Let o € W,,. Since « is primitive,

there exists an element a€.5Ly,(Z) of the form a= [éﬂ with some y € Z5,,.

u
Then OzL’tOz[ :

_ty O] with w, v € Z". Since av - ‘o € GLay(Z), we see

that v € GL,(Z). Put 8 = diag[-v~1, 1,]. Then Bar-ta -8 = [f (1)"]

with z € Z. If [a b] is the upper half of Sa, then z = —a -0+ b-ta. Put
_p.t
= {(1)" bl a} . Then yBar-ta-tB3-ty =1, and so yBa € Sp(n, Z). Now
we see that [0 1,]v8 =[0 1,], and so [0 1,]ySa = [0 1,]Ja = x, which
proves (ii).
To prove (iii), let £ € Sp(n, Q). By (i) we have £ = na with 1 € Qa,, and

a € SLop(Z). Put n = [ and £ = f g with a, b, ..., r, s of size

a b
0 d
n. Then d=t[r s] = [0 1,]a, which is primitive. Since ¢ € Sp(n, Q), we
easily see that d~![r s] € W,,. By (ii) we can put [0 1,Ja =[0 1,]3 with

B € Sp(n, Z). Put v =aB". Then [0 1,]y=[0 1], andso v = [8 1U ]
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with u, v of size n. Thus nvy = [l(l)} 2} with w, z of size n. Now & =na =

nvB, and so ny = £B871 € Sp(n, Q). Therefore, 1y € P, which proves (iii).

Finally, as will be shown in Lemma A1.3(i) of the Appendix, Sp(n, Z) is
generated by ¢ and P N Sp(n, Z). This fact combined with (iii) proves (iv)
and completes the proof.

Lemma 2.3. Let f be an odd integer and s an element of Sy, (Z). Then
there exist an element u of My (Z) and a diagonal element d of M, (Z) such
that *usu —d < fZ and det(u) is a positive integer prime to f.

PrROOF. We can reduce the problem to the following statement, in which
p is an odd prime number and Z,, is the ring of p-adic integers:

(2.2) Given s € S,(Zyp), there exists an element T of GLn(Z,) such that
trsT is diagonal.

Indeed, given s and f as in our lemma, employing (2.2), for each prime
factor p of f we take 7, € GLy(Z,) such that ‘r,s7, is diagonal. We
can find v € M, (Z) and a diagonal matrix d such that v — 7, < fZ, and
d —'1ps7, < fZ, for every p|f. Replacing u by w + fv with a suitable
v € My,(Z), we may assume that det(u) > 0. Then u has the required
properties of our lemma.

We now prove (2.2) by induction on n. The case n =1 or s =0 is trivial.
Assuming that n > 1 and s # 0, put s = (si;) and }_, ; si;Z, = 0Z, with
0 +# o € Z,. Replacing s by o~ !s, we may assume that o = 1. Suppose s;; €

Z for some i; we may assume that ¢ = 1. Then we can put s = [% Z] with
1 —a'b
0 ]-nfl

with e = d—ba=1b. Clearly e € S,,—1(Z,). Applying induction to e, we obtain

a = s11. Put v = } . Then v € GL,(Z,) and 'ysy = diag]a, €]

the desired conclusion. Next suppose s;; ¢ Z, for every i. Then changing

. s s
the numbering, we may assume that sio € Z;. Put a = [811 812} and
21 S22

_ -1
s = [tcg) Z] . Then a € GLy(Z,). Putting v = [102 16:L_2b

v € GL,(Z,), and *ysy = diag[a, d — *ba~'b]. Thus again induction gives the
desired fact. This completes the proof.

] , we see that

2.4. We need two types of Gauss sums. The first type is defined with re-
spect to a Dirichlet character (or simply, a character) modulo a positive
integer r, by which we mean a function x : Z — T belonging to one of the
following two types:

(i) r=1 and x(a) =1 for every a € Z;
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(ii) » > 1 and x is a homomorphism of (Z/rZ)* into T, which we view
as a function on Z by putting

x(a (mod rZ)) if a is prime to r,
(a) = o .
0 if @ is not prime to r.

We call x of type (i) the principal character. We say that x is trivial if
it is of type (i) or x(a) =1 for every a prime to r. We call x primitive if it
is of type (i), or it is a nontrivial character for which there is no character &
modulo a proper divisor s of r such that y(a) = &(a) for every a prime to
r. We will say more about characters in §2.7, but we first define Gauss sums.
We put e(z) = exp(2miz) for z € C as we did in (0.3). Let x be a
primitive Dirichlet character modulo an integer r > 1. Then we put

(2.3) Zx e(a/r)

and call it the Gauss sum of y. Since x(r) =0, we can use . _ 1 in place
of 3" _, . We note here three well-known facts:

(2.3a) ZX e(sa/r) =X(s)G(x) for every s € Z,
(2.3b) rG(x) = G = x(-1)G(X),
(2.3¢) GO =

The proof is easy; see [S71, Lemma 3.63] or [S10, (3.8a, ¢, d)], for example.
There is a classical result about G(x) when X = x. Namely,

ivr i x(—1) = —1.

In particular, if x(z) = (E> with an odd prime number p, then
p

{ NG if p—1€4Z,

Gx) =1 . .

iv/p it p—3 €4z

The simplest proof of (2.4a) follows from the functional equation of the Dirich-
let series > 2, x(n)n~*. This is explained in [S07, p.40] when x(—1) = —1,
but the same method is applicable to the other case. In fact, by the same
technique Hecke determined the Gauss sum of a Hecke character associated

(2.4b)

with a quadratic extension of an arbitrary algebraic number field; see [S97,
(A6.3.4)].

2.5. The second type of Gauss sum, denoted by G(a, b), is defined for
relatively prime integers a and b and given by
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|6

(2.5) G(a, b) = Ze(axz/b),

r=1

where ZLblzl can be replaced by erZ/bZ .

Define the Legendre-Jacobi symbol (T) as in (0.4). For two positive odd
n

integers m and n we have

(2.6) (%) (%) =—-1 <= m=n=3 (mod 4),
(2.7) <71) =—-1 <= n=3 (mod4).

To prove these, we first note that

(2.8) (1-’) (2) ——1 < p=q=3 (mod4)

q D
for two different odd prime numbers p and ¢. This follows easily from the
quadratic reciprocity law. To prove (2.6) in general, put m = py---p, and
n = qp---qs with odd prime numbers p; and ¢;. Then

(G =TI () (%)

By (2.8) we can eliminate from the right-hand side any p; or ¢; thatis =1

(mod 4). Let p resp. o be the number of 4’s resp. j’s such that p, — 3 € 4Z

resp. ¢; — 3 € 4Z. By (2.8), (%) (%) = (—1)?, which is —1 if and only

if both p and o are odd, that is, if and only if m = n = 3 (mod 4). Thus

we obtain (2.6). Similarly we have <71> = ﬁ <q_]1) = (—1)7?, and so we
obtain (2.7). =
Theorem 2.6. If b is odd and positive, then
(2.9) G(a, b) = (%) eoV/b,
where ey, =1 if b—1€4Z and e, =i if b—3 € 4Z.
ProOOF. We first prove
(2.10) G(a, cd) = G(ad, ¢)G(ac,d) if ¢, d€Z and cZ+ dZ =Z.

Indeed, the map (y (mod ¢), z (mod d)) — dy+cz (mod cd) gives a bijection
of (Z/cZ) x (Z/dZ) onto Z/ch, and so for b = cd we have

Z Z a(dy + c2)?/b)

YEZ/CZ 2€Z/dZ

= Z e(ady?/c) Z e(acz?/d) = G(ad, ¢)G(ac, d),

YEZ/CZ 2€Z/dZ
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which proves (2.10). Now suppose (2.9) is true for G(x, ¢) and G(x, d) (with
positive ¢ and d). Then

Gla, b) = <acd>( >sced\/_ <%)WE

d
with n = <—) (g) gccq. If ¢ =d =3 (mod 4), then by (2.6), n = —i%2 =1,
c

and b—1 € 4Z.If ¢c—1 € 4Z, then b—d € 4Z and n = ¢4 = &p; similarly n = g
if d—1 € 4Z. Thus we obtain (2.9) for b = cd. This means that it is sufficient
to prove (2.9) when b = p™ with an odd prime number p and 0 < m € Z.
Suppose m > 1; since the map (y (mod p™~1), z (mod p)) — oy 4+ pmTly
(mod p™) gives a bijection of (Z/p™~1Z) x (Z/pZ) onto Z/p™Z, we have
G(a, p™) = 5 1 e(ayz/p )>-?_, e(2ayz/p). The last sum over 1 <z <p
equals p if yepZ. For y ¢pZ we have P e(ayz/p) =>" _ e(w/p) =0.
Therefore

=p Z e(ap®u®/p™) = pG(a, p™?)

for m > 1. If m = 2 in partlcular, we see that G(a, p?) = p. Thus for
0 < n € Z we obtain G(a, p?*) = p" and G(a, p***!) = p"G(a, p). Therefore
our problem can be reduced to the formula

(2.11) Gla, p) = <%)sp\/p.

To show this, put x(y) = v, Dividing the set {y €z | 0<y< p} into the
p

set of quadratic residues modulo p and that of nonresidues we see that
P

G(a,p)—z e(a®/p) = Zx e(ay/p) +Z (ay/p)

z=1 y=1
Z e(au/p) = x(a)G(x),

and so (2.11) follows from (2.4b). This completes the proof.

Remark. We can determine G(a, b) even for odd negative b as follows.
We first take ¢ = —1 in (2.10) and obtain

(2.12) G(a, —d) = G(—a, d),

since G(z, —1) =1 for every = € Z. Therefore, if b is odd and negative, then
G(a, b) = G(a, —|b]) = G(—a, |b]) by (2.12), and so by (2.9) we obtain

@19 G = (5 aoBi= () (5 )

Applying (2.7) to the factor (
0>b+ 1€ 2Z we have

-1
|T>’ we can give another formula. Thus, for
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(2.14) Gla, b) = <%|> ' ()T,
where ¢/(b) =1 if b—3 € 4Z and ¢'(b) = —i if b—1 € 4Z.

2.7. Let xo be the principal character as defined in §2.4. We define its
Gauss sum G(xo) by

(2.15) G(xo) = 1.

Let x be a character modulo an integer r > 1 that is not primitive. We
then call x imprimitive. If x is nontrivial, then we can find a character
X" modulo a proper divisor ¢ of r, > 1, such that x(a) = x/(a) for every a
prime to 7. Moreover, among such characters x’ there is a unique one that
is primitive. We then call x’ the primitive character associated with Yy,
and call ¢ the conductor of . If x is trivial, we call the principal character
Xo the primitive character associated with Yy, and define the conductor
of x to be 1. In both cases, given Y, we take the primitive character x’
associated with x, and define the Gauss sum G(x) by G(x) = G(x/)-

For 1 <i <m let x; be a Dirichlet character modulo r;, and let r be the
least common multiple of the r;. Then we denote by X1 - xm the character
modulo 7 defined by (x1--Xxm)(a) = x1(a) - xm(a) for a prime to 7.

Let Aut(C) denote the group of all ring-automorphisms of the field C. For
o € Aut(C) we can define a character x¢ modulo r; by x7(a) = xi(a)? for
every a. Then we have:

Lemma 2.8. Put q(x1, ---, Xm) = G(x1) - G(xm)/G(x1" " Xm)- Let K
be the field generated over Q by the values x;(a) for all i and all a. Then
q(X1s - 5 Xm) belongs to K, and for every automorphism o of Q we have
(2.16) q(x1 -+ xm)” = q(XT5 - Xo)-

PRrROOF. Let ¢ = e(1/N) with a multiple N of 7y - - - r,,. We take N so that
xi(a) € Q(C) for every i and a. Given o, we can find an integer ¢ prime to
N such that e(a/N)? = e(ta/N). Then from (2.3) we obtain

(2.17) X(t)7G(x)7 = G(x7)

for every character xy modulo N. Formula (2.16) is an immediate consequence
of this fact. Suppose o is the identity map on K; then x¢ = x; for every i,

and so q(x1, -+ Xm)? = q(X1s -+, Xm). This shows that ¢(x1, ..., xm) €
K, and our proof is complete.

To state an easy application of (2.17), for every primitive or imprimitive
character modulo N and every q € Z, put

(2.17a) [x. d) Z x(n)e(ng/N).
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Then from (2.17) we can easily derive

(2.17b)  [x, 9] € Qub and [x, q]7 =[x, ¢] for every o € Gal(Qan/Q).

In fact, we will give an explicit form of [x, ¢] in Lemma A3.1 of the Appendix,
which implies (2.17b).

2.9. Given a primitive or an imprimitive Dirichlet character x, we put

(2.18a) L(s, x) = Zx(n)n_s,
n=1
(218b)  Lu(s,x) =L(s, ) [[ 1= xp ] = > x(n)n %,

p|N (n, N)=1
where 0 < N € Z. The function of (2.18a) is called the Dirichlet L-function
of x. We will state some of its analytic properties in §8.3. For the moment
we just note that L(m, x) and L(1—m, x) for a positive integer m such that
x(—1) = (=1)™ is meaningful. Then we put

(2.19) Py(m, x) = G(x)~"(mi) "™ Ly(m, x).

Lemma 2.10. Let x and m be as above. Then Px(m, x) € Qb and
L(1 —m, x) € Qap. Moreover, for every o € Gal(Qan/Q) we have

(220) PN(m7 X)U = PN(ma Xo)a
(2.21) L(1—=m, x)? = L(1—m, x7).

PROOF. We can easily reduce the problem to the case where y is primitive

and N = 1. Then
d

2-m!(2mi) " G(X)L(m, x) = md' " L(1 —m, X) = — > _X(a)Bm(a/d),

a=1
where d is the conductor of x and B,, the mth Bernoulli polynomial. If yx
is principal, this means

2-n!(2wi)"™¢(n) =n¢(1 —n) = —B,

for 0 < n € 2Z, where B, is the nth Bernoulli number. This formula is
ancient. The preceding one was first noted by Hecke in 1940. For the proof
and other formulas for L(m, x) and L(1—m, x) we refer the reader to Section
4 of [S07]. Our lemma now follows from these formulas. Notice that the
complex conjugate of x7 is (%), and G(Y) = dx(—1)G(x)~* by (2.3b).

Lemma 2.11. Let V' be a finite-dimensional vector space over a field F
and let W =V @p K with a finite or an infinite extension K of F. Let End(V)
denote the algebra of all F-linear transformations of V. Given a subset A of
End(V), for each a € A denote by & the K -linear extension of o to W. Then

ﬂaeAKer {ﬂaeAKer )} Qr K.
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PRrROOF. Take a basis {y;}ic; of V over F' and also a basis B of K over
F.For a € Aput ay; = 3 ,c;pfy; with pf; € F. Let w = 3, jcyi €
(Naca Ker(@) with ¢; € K. Then there is a finite subset E of B such that
Ci = Y ecptice With a; € F for every i € I. Then for a € A we have
0=au= ZeeEezi,jel aiep$sys, and s0 Y5 cped i aieps; = 0 for every
j.- Thus > c;aicpi; = 0 for every j and every e € E. Now u = ) _peve
with ve = > . aieyi. We have v, € V and ave = Zi,jeI aepf;y; = 0, and
80 Ve € [,ea Ker(a), which proves our lemma.

Lemma 2.12. Let V, F, and End(V') be as in Lemma 2.11. Suppose that
V # {0} and F is algebraically closed. Let R be a subspace of End(V'), # {0},
whose elements are mutually commutative. Then V has a nonzero element u
that is an eigenvector of every element of R.

PrOOF. We prove this by induction on the dimension of R. Let 0 # « € R.
We can take an eigenvector v of « and put av = cv with ¢ € F. (This settles
the case where dim(R) = 1.) Let W = {z € V ’ ax = cx}. Then W # {0},
since v € W. Assuming that dim(R) > 1, take a subspace S of R so that
R =Fa& S. Since the elements of S commute with «, we easily see that W
is stable under S. By the induction assumption we can find an element u of
W that is an eigenvector of every element of S. Since au = cu, this proves
our lemma.

Lemma 2.13. Let K be a finite Galois extension of a field FF and W a
vector space over K of finite dimension; let G = Gal(K/F). Suppose there is
an action of G on W, written (x, o) + x% for x € W and o € G, such that
(ax)? = a’2° for a € K and x € W. Then W =V @p K with V = {y €
W|y" =y for every o € G}.

PROOF. Let B be a basis of K over F, and Y a finite set of elements of
V that are linearly independent over F. Suppose ), B,yey apyby = 0 with
apy € F. Then ZbeB,er apyb?y = 0 for every o € G. Since det[b7]y., # 0,
we obtain Zer apyy = 0 for every b € B, and so apy = 0 for every b and y.
If W has dimension n over K, then W is a vector space of dimension n-#B
over F, and so #Y < n. Given any x € W, put 2, = Y .07z for b € B.
Then z, € V. Since det[b?]p» # 0, = is a K-linear combination of the z.
This shows that V' has dimension n over F, and we can find Y such that
#Y = n. This proves our lemma.

Lemma 2.14. Given a positive integer M and x =0 or 1, there exists a
primitive character x such that M is prime to the conductor of x, x(—1) =
(—1)%, and x? is nontrivial.

PRrROOF. Since there exist infinitely many prime numbers p such that p —
1 € 8Z, we can find such a p prime to M. Let ¢ be a character modulo p
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of order p— 1. Take xy = if k =1 and x = ¢? if kK = 0. Then y has the
desired properties.

3. Modular forms of integral weight

3.1. In this book we assume that the reader has some notion of modular
forms of integral weight with respect to a congruence subgroup of SLy(Z),
though we try to make our exposition as self-contained as possible. As to
their well-known properties, sometimes we will only state them, dispensing
with the proof. To define modular forms on $,,, we first put e(c) = exp(2mic)
for ¢ € C, as we did in (0.3). Next, for k € Z, o € Gp™(n, R), and a function
f 9 — C we define f|ga: $, — C by

(3.1) (fllxa)(2) = ja(2) " f(az) (2 € ).

From this definition and (1.7) we obtain

(3.2a) fle(clon) =™ f  (ce RX),

(3.2b) (fllkeB) = (fllka)lx B if a, B €Gp™(n, R).
For a positive integer N put

(3.3) I'(N)={vy€Sp(n, Z)|y— 12, < NZ}.

(For the symbol < see §0.1.) By a congruence subgroup of Sp(n, Q),
or simply, a congruence subgroup, we mean a subgroup I' of Sp(n, Q) that
contains I'(N) as a subgroup of finite index for some N. If I" and I" are
congruence subgroups and I" C I/, we call I" a congruence subgroup of I".
Given a congruence subgroup I' and k € Z, we denote by .#(I") the set of
all functions f : $,, — C satisfying the following conditions:

(3.4a) f is holomorphic;

(3.4b) fllxy = f for every v € I';
(3.4¢) f is holomorphic at every cusp.

An element of .#;(I") is called a (holomorphic) modular form of weight
k with respect to I'. Condition (3.4c) is necessary only when n = 1, in which

case it means the following condition:
oo

(3.4d) For every a€SLy(Q) we have jo(2)7" f(a(z)) = an(m)e(mz/ra)
m=0
with 0 <rq € Z and co(m) € C.
In fact, if this is satisfied for every a € SLy(Z), then it holds for every
a € SLy(Q). Indeed, by Lemma 2.2(iii) every element « of SLy(Q) can be

written o = By with § € SLy(Z) and ~ of the form v = LT) ﬂ Therefore

(3.4d) for a = B can easily be derived from the case with 5 in place of «.
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For 3 € Gp(n, Q) we easily see that 37113 is a congruence subgroup,
and A (I')||xB = A (B~ 'B) provided v(8) > 0. We put

(3.5) My = ) #(D(N)).
N=1
3.2. Let us now explain why (3.4c) is unnecessary if n > 1. Let I" be a
congruence subgroup of I'(1). Then I'(N) C I" for some N € Z, > 0, and so
there is a Z-lattice M in S, (Z) and also a subgroup U of SL,(Z) of finite
index such that

1, b a 0
e wlpeager {[5 o
Therefore if f € .#),(I"), then by (1.17b) and (1.17c) we have

(3.6a) f(z+b) = f(z) for every b e M,
(3.6b) flaz -ta) = f(z) for every a € U.

Let S = 5,(Q) and L = {h € S|tr(hM) C Z}. Then L is a Z-lattice in S
and (3.6a) guarantees an expansion of the form
(3.7a) f(z)= Z c(h)e(tr(hz))

heL
with ¢(h) € C. This will be proven in §A1.1 of the Appendix. We often put
(3.7b) f(z) = c(h)e(tr(hz))

hes
by defining ¢(h) to be 0 for h € S, ¢ L. Usually we call the right-hand side of
(3.7a) or (3.7b) the Fourier expansion of f, and call the ¢(h) the Fourier
coefficients of f.

an}cF.

Lemma 3.3. Suppose n > 1; let f be a holomorphic function on $, of
the form (3.7a) satisfying (3.6b) with a subgroup U of SL,(Z) of finite index.
Then we have (3.7a) with c(h) # 0 only if h is nonnegative.

The proof will be given in §A1.2 of the Appendix. Similar results can be
proved for the Fourier expansion of an automorphic form of a more general
type; see [S97, Propositions A4.2 and A4.5] and [S00, Proposition 5.7]. In
fact, we do not need Lemma 3.3 in this book, since the modular forms in our
later treatment in the case n > 1 will always be given explicitly, and so they
have expansions of type (3.7a) with ¢(h) # 0 only for nonnegative h.



CHAPTER 1I

THETA FUNCTIONS AND FACTORS OF AUTOMORPHY

4. Classical theta functions

4.1. We define the classical theta function 6 and its modification ¢ by

(4.1) O(u, z; 7, 5) = Z e(27! - 'gzg+'g(u+s)),
g—reL"
(4.2) o(u, z;r, s) =e(271 - fu(z —2)u)b(u, z; 1, s).

Here u e C", z € ,,, and 1, s € R". To prove the convergence of the infinite
series of (4.1), put ¢ = h+r with h € Z™ and y = Im(z); take compact
subsets U of C™ and Z of $,,. Then for fixed r, s € R", v € U, and z € Z
we easily see that

Re(mi-'gzg +2mi-tg(u+s)) = —m - Thyh + 'hv + w

with v € R™ and w € R in some compact sets depending on r, s, U, and Z.
Let A be the smallest eigenvalue of 7y. Then 7 - thyh > X - thh, and so the
sum of (4.1) is majorized by

n

Z exp(—=A-*hh +'ho +w) = ev H Z exp(—Mk? + kv;),

hezZn j=1keZ
where v; is the jth component of v. Therefore we see that the right-hand
side of (4.1) is locally uniformly convergent on C" x £),,, and so defines a
holomorphic function in (u, z).

The function O(u, z; r, s) is called Riemann’s theta function. By purely

formal calculations we can easily verify

(4.3)  Ou+za+b, 2z s)
=e(—2""taza—"a(u+b+s))0(u, z; r+a, s+b)  (a, b€ R"),
(44) O(u+za+b, z;m s)

=e(—2""taza—"au+'rb—"sa)0(u, z; 7, s) (a, beZ™),

(4.5)  O(u, z;r+a, s+b)
=e('rb)0(u, z; 7, s) = O(u+b, z; 7, 5) (a, b€ Z™).
G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 15
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The function 6(u, z; r, s) was introduced by Riemann for the purpose of
studying abelian integrals on an algebraic curve. In fact, these theta func-
tions are essential in the geometric investigation of abelian varieties. In the
present book, however, we merely employ them as a technical tool for study-
ing automorphic forms of several types. The reader who is interested in their
geometric and other aspects may be referred to [S98] and earlier articles by
various authors cited there.

4.2. Let us now put
(46) If=1"={yerq)|{a, by} ={c, 'dy} =0 (mod 2Z™)},

where {s} is the column vector consisting of the diagonal elements of s. Notice
that a. - 'b, and ¢, - 'd, belong to S, (Z) by (1.2a). We note an easy fact:

(4.7) For s € S,,(Z) we have
tesz € 27 for every x € " < {s} € 22"
= {'ysy} € 2Z™ for every y € Z".
Clearly I'(2) C I'?. Put F(x, y) =z -ty for x, y € ZL. By (1.2c) we have
F((z, y)y) — F(z, y) = zay - 'by - 'z + yey - 'dy - Ty + 22by - Pey - Ty
for v € I'(1), and so we see that
(4.8a) I ={yerI(1) |F((x, y)y) — F(z, y) € 2Z for every =, y € Z} }.

This shows that I'? is a subgroup of I'(1). Taking ! in place of ~, from
(1.2b) we see that

(4.8b) r'={yerq)| {faye,} = {'byd,} = 0 (mod 2Z")}.
We can let Sp(n, R) act on C™ x §,, by the rule
(4.9)  y(u, 2) = (*py(2)"tu, v2) for v € Sp(n, R), u € C", and z € H,.

From (1.7) we obtain (5v)(u, z) = B(’y(u, z)) for B, v € Sp(n, R); also 1a,
gives the identity map on C" x ),,.

Lemma 4.3. (i) u(2)"tey, € S, (C) for every v € Sp(n, R) and z € $,,.
(ii) Let w(u, 2) ='u(z —2)"tu for u€ C" and z € §,,. Then

(4.10) k(v(u, 2)) — k(u, 2) = —tupy(2) " tequ
for every v € Sp(n, R).

PROOF. Put p.(u, v) = tu(z — 2)~tv for u,v € C". Then p,(u,v) =
p2(v, u) and k(u, z) = p,(u, v). From (1.16) we obtain

(4.11) (v2 = 72) 7! = py(2)(z = 2) 7" - Ty (2)

for every v€Sp(n, R). Therefore
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Pyz (P (2) 7, tan (2) o) = tuuw(Z)‘l(vz —92) 7"y (2) M
2 () e
Since fi4(2) = p(2) — cy(z — 2), we have b (2) - Ty (2) 71 —(z—2)-

tey -ty (2)7t Thus

P (1 (2) 70, B (2)710) = i, 0) =~ e -y (2) Mo

Since the left-hand side is symmetric in (u, v), we see that ‘c, - u,(2)~1 €
Sn(C), which proves (i). Putting u = v, we obtain (ii). Here we add a more
direct proof of (i). We have ¢, - ‘uy(2) = ¢y2 - tey + ¢y - tdy € S, (C), as can
be seen from (1.2a). Thus g, (2) tey = py(2) Loy -ty (2) -ty (2) 71 € S,(C)
as expected.

Theorem 4.4. (i) For every v € I'(1) we have
(412)  0(v(u, 2); 7, 8) = - Gy (2)2e(27 - upy () eyu)(u, 25 7, ")

with a constant ¢ € T depending on r, s, v, and a suitable choice of a branch

of j,(2)'/2, and
o 1 [ {tac}
L"] = [s] 3 [{tbd} ’
where the symbol {*} is defined in §4.2.

(ii) For every ~ € I'% there is a holomorphic function h.(z) in z € $Hy,
written also h(v, z), such that h.(2)? = (- j,(2) with a constant ( € T and

(4.13)  0(v(u, 2); 7, 8)
= e(2*1(trs tr’s’))hw(z)e(2*1 otuuﬂ,(z)*lcﬂ,u)ﬂ(u, zyr', s

/
with {;,} =ty {;} .
(iii) hy(2)* = jy(2)? if v € I'(2).
These formulas are classical (see [KP92], for example). We will give a
shorter proof by proving (4.12) for some special v in §4.9, and the remaining

statements in Section Al of the Appendix.
Putting u = 0, from (4.12) and (4.13) we obtain

(4.14) 00, vz; 7, 8) = C - §,(2)Y/20(0, z; 7", s") if € (1),
(4.15)  6(0, vz; 7, s) = e(27 (*rs — ') ) hay(2)0(0, 25 1/, §') if eI,
where (r”, s") is as in (4.12) and (r/, ¢') is as in (4.13).

4.5. Put q(u, z) = e(27! - 'u(z — z)"'u). Then from (4.10) we obtain
(4.16) q(v(u, 2)) = q(u, 2)e( =271 tup, (2) " Lequ).

We now consider ¢ of (4.2). Since ¢(u, z;r, s) = q(u, 2)0(u, z; r, s), we
easily see that (4.12) and (4.13) are equivalent to
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(4.17) e (V(u, 2); 1, 8) = ¢ Gy (2)P(u, 2507, "),
(4.18) o(v(u, 2);r, s) = e(27 ('rs — 1)) hy(2)p(u, 25 17, 8').
Thus the transformation formulas for ¢ under (u, z) — 7(u, z) are simpler

than those for 6. It is mainly for this reason that we consider ¢ in addition
to 6.

4.6. Let us now put

(4.19) 0(z) = > e(27"-"gzg) (2 € Hn).
gezn
Then 6(z) = 6(0, z; 0, 0) = »(0, z; 0, 0), and so from (4.13) we obtain
(4.20) 0(vz) = hy(2)0(2) (veI?),
and consequently
(421) BB, 2) = hs(r2)hs (2) (8, € I?).
Clearly 6(az-'a)=0(z+0b)=06(z) for a € GL,(Z) and b € 25,,(Z), and so
(4.22a) ho =1 for a = diagla, ‘ta™!], a € GL,(Z),
(4.22D) hs =1 for 8= Ll) ﬂ . be25,(2),
(4.22¢) h_., = h, forevery v € I'’.

In the following theorem we will see that h2 coincides with j, if v € I'(4).
For every congruence subgroup I" of I'? we denote by .# /2(I") the set of all
holomorphic functions f on §,, such that f? € .#; and

(4.23) f(vz) = hy(2)f(z) forevery ~vel.

In fact, the condition f? € .# follows from (4.23) if n > 1. Indeed, if (4.23)
is satisfied, then f(yz)? = j,(2)f(2)? for every v € I' N I'(4), which implies
that f? € .#1.If f € #1/5(I"), then f has expansion (3.7a) with ¢(h) # 0
only for nonnegative h. Indeed, from (4.22a, b) we see that f satisfies (3.6a,
b) for suitable M and U, and so we have at least an expansion of type (3.7a).
If n > 1, Lemma 3.3 gives the desired result. If n = 1, the condition f2? € .#;
implies condition (3.4d), as will be explained in §5.1. In fact, we will introduce
in §5.1 modular forms of weight k for an arbitrary k € 271Z and will discuss
(3.4d) in that context. We put

(4.24) My =) A12(T(2N)).

Theorem 4.7. (1) If v € I’ and det(d,) # 0, then
(4.25) zhi% hy(z) = Z e(— tmd;lcwx/Q) = Z e(txbyd;lx/Q),

z€A z€B
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where A =Z"/'d,Z" and B = Z"/d.Z".

(2) If v € I'Y and det(d,) is odd, then h,(z)* = (_—1>]7(z) In

det(d)

particular, h(2)? = j,(2) for every v € I'(4).

(3) h.(2) = det(—iz)'/? with the branch of the square root such that h,(z) >
0 for Re(z) =

(4) Let a € Gpt(n, Q) and r(2) = ju(2)'/? with any choice of a branch.
Then there is a congruence subgroup A of I'? such that

h(aya™, az) = r(yz)h(y, 2)r(z)~!
for every v € A.

We will prove the first two assertions in Section Al of the Appendix; (3)
will be proven in §4.9 and (4) in §5.3. Clearly (2) implies Theorem 4.4(iii).
Once (2) of the above theorem is established, we see from (4.14) and (4.15)
that 6(0, z; r, s) as a function of z belongs to .# 1,y if r, s € Q". If n =1,
condition (3.4d) for 6(0, z; r, 5)? follows from (4.14).

We will often consider det(—iz)*'/? in our later treatment. We use the
convention that it always means the function as in (3) above and its inverse.

4.8. Let us now recall some elementary facts on Fourier analysis. For
fe€LY(R") we define its Fourier transform f by

(4.26) f@) = | F@)e(-"zy)dy (x € R"),

where we consider z and y column vectors, so that ‘zy = >"'_ x,y,, and
dy is the standard volume element of R™. Then f is a continuous function.
If f is continuous, then we have
(4.27) Y fr+g)= > f(he('hr) (reR"),

gezn hezn
provided both sides converge absolutely and uniformly. This is called the
Poisson summation formula (see [S07, Theorem 2.3|, for example). If we
exchange f for f, then we obtain
(4.27a) S fr+g) =Y f(he(-"hr) (r e R").

gezn hezn

It is well known that the function exp(—nz?) is its own Fourier transform,

that is,

(4.28) /Rexp(—mcg)e(—xt)dx = exp(—t?).

For a short proof, see [S07, pp.14-15]. An n-dimensional version of (4.28)
can be given as follows:

(4.29) /Rn exp (— whlz])e(—"vz)dz = det(h)™1/2 exp (—7wh™'v])
(veR™, 0< hesS,(R)),
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where h[z] = ‘zhz. This can be proved by taking a real matrix « such that
taha = 1, and replacing x by a~ 'z, which reduces the problem to (4.28).
From this we obtain

(4.30) / e(27'z[z])e(—"vz)dx = det(fiz)*lme( — 27127 1))
R‘n,
(veR"™ z € Hy).
Indeed, if z = ih with 0 < h € S,(R), this is exactly (4.29). Now the left-
hand side of (4.30) is convergent and defines a holomorphic function in z;

the right-hand side is clearly holomorphic in z. Since they coincide on “the
imaginary axis” of £),,, we obtain (4.30) on the whole §,,.

4.9. We now prove formula (4.12) for the elements y of I'(1) of the forms
a 0 10 0 -1
s oo bl B
If v = diag[a, d] € I'(1), then d ="ta"! € GL,(Z) and ~(z) = az-'a, and so
we easily see that

(4.32) O(au, az -ta; r, s) = 0(u, z; tar, a=1s).
Next, if v = [é ﬂ € I'(1), then »=5b and 7(z) = 2z + b. Observing that
txbr/2="x{b}/2 (mod Z) if x€Z™ (with {*} defined as in §4.2), we obtain

(4.33) O(u, z+b; 7, s) =e( =27 ('rbr + ' {b}))0(u, 2; r, s + br +271{b}),
0 -1

1 0
—2~1. To discuss this case, we first put v = y —u — s in (4.30) with real

vectors y, u, s, and consider the Fourier transform f of the function f(z) =
e(27'z[z] 4+ 'z(u + s)). Then (4.30) shows that

which is (4.12) for the present ~. Finally, if v = [ } , then ~(z2) =

fly) = det(—iz) " 2e(— 27127y — u — s)).
Applying the Poisson summation formula (4.27) to the present case we obtain
(4.34) det(—iz)/2e(27 2 [u])0(u, z; 1, s) = e(*rs)0(z"tu, —z7 1 —s, 1)

for real u, and so for all u € C™, since both sides are holomorphic in u.
Consequently, we know that (4.12) holds for v of the forms of (4.31). Taking
u=r=s=0 in (4.34), we obtain

(4.34a) det(—i2)1/20(z) = 0(—z71),
which gives Theorem 4.7(3).

4.10. Let us now look more closely at the special case n = 1. In this case
our function takes the form
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(4.35) O(u, z; 1, 8) = Z e(2_1(m + 722+ (m+7)(u+ s)),
meZ

where u € C, z € 91, and r, s € R; in particular,

(4.36) 0(z) =0(0, 2 0,0) = Y _ e(m?z/2).

meZ

The function of (4.35) satisfies the differential equation

020(u, z; 1, s) 99(u, z; 1, s)
4, — s =Ami—————.
(4.37) ou2 g 0z
Also, we have
(4.38) r'=reur@ .= [? _01] '
Indeed, that I'(2)UI'(2). C I'? can easily be seen. Suppose v = {Ccl 2 er’

and a ¢ 2Z. Then ¢ € 2Z and ad — 1 € 2Z. Thus d ¢ 2Z and b € 2Z, and so
v € I'(2). Suppose v € I'? and ~ ¢ I'(2). Then a € 2Z, and so b ¢ 2Z. Since
b = a,,, we see that ¢ € I'(2). This proves (4.38).

From Theorem 4.7(3) we obtain

(4.39) h(z) = (—iz)/?,

where the branch of (—iz)!/? is chosen so that it is a positive real number if
z =1y with 0 < y € R. We use this convention throughout the present book.
Let us now show that

(4.40) h%z)zﬁf(%)(cz—i—d)l/z if 7:@ Z}EF(Q).

Here the branch of (cz 4+ d)'/? is taken so that —7/2 < arg(cz + d)'/? < /2,
which means that

Vd if d>0,
(4.41a) lim (cz + d)'/? = ¢ i\/]d] if d<0 and ¢ >0,
— i/ |d] ifd<0 and ¢ <0;

2
f) is the symbol defined in (0.4) and (0.5), and &4 is defined by (as already
done in (0.6))

(4.41b)

1 if d—1€e4Z,
TN i d41e4z.

To prove (4.40), let us assume c¢ # 0, since the case ¢ = 0 is easy. Take the
branch of (cz+ d)'/? as specified, and let ¢ = lim,_,(cz + d)'/2. By Theorem
4.7(2), h,(2)? = +4,(z), and so we can put h(z) = n(cz+d)/? with n such
that n? = £1. By (4.25) we obtain
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|d]

ng = Z e(—c?/( Z —2cy?/d) = G(—2c, d)

z€Z/dZ y=1

-2
with G(x. %) of (2.5). Suppose d > 0; then by (2.9), nd'/? = (Tc>sdd1/2,
2
and so n = ¢ <§>, which proves (4.40) when d > 0. If d < 0, employing

2
(2.13), we obtain ¢n = _il e_qy/|d|. Comparing this with (4.41a), we

obtain the desired result. We can also use the fact h, = h_,. However, for
all practical purposes we need the formula only when d > 0; in fact, it is not
advisable to use it when d < 0.

By (4.5), 6(u, z; 7, s) up to a factor of T depends only on r, s modulo Z.
In particular, there are four functions determined by r, s € {0, 1/2}. We can
replace 1/2 by —1/2 by multiplying the function by a root of unity. Now the
explicit forms of these four functions are given as follows:

(4.42a) 6(u, 2z; 0,0) = Z e(m?z/2)e(mu),
meZ

(4.42b) 6(u, 2; 0, 1/2) = > (—=1)™e(m’z/2)e(mu),

meZ
(4.42¢) O(u, 2 1/2,0) = Y e((2m +1)z/8)e((2m + 1)u/2),

meZ
(4.42d) O(u, 2 1/2, =1/2) = =i » (- ((2m + 1)%2/8)e((2m + 1)u/2).

meZ

These were introduced by Jacobi, and so it is natural to call them Jacobi’s
theta functions. They are traditionally denoted by 9, (u, z) with 0 < v < 3,
but the numbering depends on the author. Formulas (4.3), (4.4), (4.5), and
(4.13) are of course valid for these, and the explicit transformation formulas
for ¥, are given in any textbook on elliptic functions. We do not need these
¥, in this book, but we note them here for the purpose of giving a perspective
that the functions 49, and their transformation formulas are merely special
cases obtained by taking n to be 1 and substituting 0 or £1/2 for r or s,
and this point is worthy of emphasis.

We add here a few facts about 90/0u. Namely, put

(4.43) 0%(z; r, 8) = (2mi) =190 /0u)(0, z; 7, s).

Then

(4.44) 0*(z;r, s) = Z (m+r)e(27 (m+r)?z + (m+71)s),
meZ

and from (4.13) we immediately obtain

(4.45) 0% (vz; 1, s) = e((rs —1's')/2)jy (2)hy(2)0% (25 17, 8') if €T,
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where [/ s'] =[r s]y. In particular, put 6*(z) = 6*(z; 0, 0); then

(4.46) 0*(z) = Z me(m?z/2),
meZ
(4.47) 0" (v2) = jy(2)h(2)0%(2) if ~ e I°.
4.11. Returning to the case with n > 1, we consider the functions of the
forms
(4.484a) o(u, z; A) = e(27! ~tu(z —2) ") 0(u, z; ),
(4.48b) O(u, 2 ) = > M&e(27" - 126 + "u).

£eQn
Here u € C™ and z € §),, as before; A is an element of the set .Z(Q") defined
in §0.3. By our explanation in §0.3, 6(u, z; A) is a finite C-linear combination
of O(u, z; r, s) with r, s € Q", and such a 6(u, z; r, s) is a special case of
(4.48b). We now reformulate Theorems 4.4 and 4.7 as follows.

Theorem 4.12. Let P be the group defined in Lemma 2.2(iii). For o €
PI? and X\ € £(Q") we can define a holomorphic function he(2) on $, and
an element \* of Z(Q™) with the following properties:

(4.49a) e(alu, 2); A) = ha(2)e(u, z; AY).

(4.49b) ha(2)? = (ja(2) with ¢ € T.

(4.49¢) ho(z) = | det(dy)|Y? if acP.

(4.494d) Bpar(2) = hy(2)ha(T2)h(2) if p€ P and 7€ I°.

(4.49¢) et = (A))"if pe P and T T°.

(4.49f) For each \ the set {a € I'? | XY = A} is a congruence subgroup.
(4.49g) Let a € Sp(n, Q) and r(2) = jo(2)'/? with any choice of a branch.

Then for every X € Z(Q™) there exists an element u of £ (Q™) such
that ¢ (a(u, 2); A) = r(2)p(u, 2; p).

PROOF. We already have h,(z) for v € I'’. Formula (4.18) (or rather
its C-linear combination) means that A7 can be determined by (4.49a). For

p= 8 Z]EPwehaveﬁ(u z) = ("d"'u, az - fa+bd™') and q(B(u, 2)) =

q(u, z) by (4.16), and so ¢(B(u, 2), A) = @(u, z; N) with X () =e(27'-1¢-
tdbE)N(dE). Thus putting hg(z) = |det(d)|'/? and N\ = |det(d)|~/%e(27" -
Lt dbE)N(dE), we have (4.49a) with 8 in place of a. We can easily verify that
hgs(z) = hg (Bz)hg(z) and NP = (\)P for B/, 8 € P.If v € '’ N P, then
h, =1 by (4.22a, b), and so it coincides with h., defined for 7 as an element of
P. The same is true for A7, as it is determined by (4.49a). Now given o« = vy
with B € P and v € I'?, we define h, and A\* by h,(z) = hg(y2)h,(2) and
A = (A8)7. These are well defined, since we have shown the consistency on
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I'? N P. Then formulas (4.49a, b, c, d, e) can be verified in a straightforward
way. To prove (4.49f), it is sufficient to show that given r, s € Q", there is
a congruence subgroup I" such that <p(’y(u, z); T, s) = hy(2)p(u, z; r, s) for
every v € I For that purpose take a positive integer m so that mr, ms € Z".
Then for v € I'(2m?) we have rs — /s’ € 2Z in (4.13), and so (4.18) gives
the desired result. As for (4.49g), since Sp(n, Q) is generated by P and ¢ as
noted in Lemma 2.2(iv), successive applications of (4.49a) with elements of P
and ¢ as « establish (4.49g). This completes the proof.

Putting v =0 in (4.48a, b) and (4.49a), we obtain

(4.50a) ©(0, z; A) = 0(0, z; \) Z MEe(27h - ¢28),
£eQn
(4.50b) 0(0, az; A) = ha(2)0(0, 2; \*)  for every o € PI'’.

The factors of automorphy p(z) and j,(z) are defined for every v €
Sp(n, Q) and the “associativity” of the type (1.7) holds on the whole group
Sp(n, Q), but in the case of hy(z) it is defined only for a € PI'? and the
associativity holds only to the extent given by (4.49d, e). However, these are
sufficient for practical purposes, though we always have to be careful about
our calculation involving hq(z).

4.13 As generalizations of (4.43) and (4.47) when n = 1, we put
(4.51) 0" (2, N) = Y _Mée(€%2/2) (2 €, A e Z(Q)).

£eQ
Since 0*(z, \) = (2mi)~1(9¢/0u)(0, z; ), from (4.49a) we obtain
(4.52) 0*(az, \) = ha(2)ja(2)0%(2, \*)  for every o€ PI'?.

5. Modular forms of half-integral weight

5.1. By a weight (of a modular form) we mean an element of 27 'Z; we
call it an integral weight if it belongs to Z and a half-integral weight
otherwise. To make our formulas short, for a weight k£ and « € Sp(n, Q) we
hereafter put

(5.1a) k] = { k—1/2 ifk¢Z,
k() = jal2)" it k €2,
(51b) ja( ) - {ha(Z)ja(Z)[k] if k ¢ Z.

Here we assume that o € PI'Y when k ¢ Z. We also put
(5.2) Gp*(n, Q) = {a € Gp(n, Q)| v(e) > 0}.

For k, a as in (5.1b) and a function f on $, we define a function f||ya on
Hn by
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(5.3a) (fllxe)(z) = j&(2) " f(a(2)).
This is the same as (3.1) if k € Z and « € Sp(n, Q). Notice that

(5.3b) Flle(=1) = (1) F.
Also, from Theorem 4.7(2) we see that
-1
: ik (z) = %)t if k¢ Z,yerl? 2Z.
(5.3c)  j " (=) (det(dﬁ)jw(z) if k¢ Z,veI?and det(d,) ¢
As for the analogue of formula (3.2b), from (1.7) and (4.21) we obtain

(5.4) Flle(v8) = (flley)llxd if v,6 € I’ and k ¢ Z.

In fact, the last formula can be extended to the cases covered by (4.49d, e).

Suppose k ¢ Z. The symbols j¥(z) and f||xa are defined with no am-
biguity if o € PI'%. However, we will have to consider an arbitrary a €
Gp™(n, Q). For that purpose we make the following convention: Whenever
we write jo(2) kK f(az) for a € Gpt(n, Q), the symbol j(2)~% means any
branch of the function. There is no danger in doing so, since the statement in
each case is valid with any choice of a branch.

Let I' be a congruence subgroup of Sp(n, Q). For an integral weight k
we defined .} (I") in §3.1. Suppose now k is half-integral and I" C I'.
We then define .Z(I") to be the set of all holomorphic functions f € $,
such that f||y = f for every v € I and f? € .# ;. The last condition is
automatically satisfied if n > 1. Indeed, by Theorem 4.7(2), f2|l2x v = f? for
every v € I'NI'(4), and so f? € .# oy, since condition (3.4c) is unnecessary
if n > 1. We call an element of .#(I") a modular form of weight k with
respect to I

Suppose n = 1 and k is half-integral. Let f be a holomorphic function
on §; such that f|xy = f for every v € I Then f? € .# 4 if and only
if (3.4d) is satisfied with any choice of a branch of (cz + d)~*. Indeed, for
such an f satisfying (3.4d) we have f?||or, v = f2 for every v € I' N I'(4),
since (hw(z)jw(z)k*1/2)2 = j,(2)%F for v € I'(4), and (3.4d) is satisfied with
(2, 2k) in place of (f, k), and so f? € . o.

Conversely, suppose f2 € .#9, and f|xy = f for every v € I. Let

a € SLy(Q) and let 7(z) be a branch of j,(2)*. Let v = [é T] with
0 < m € 4Z. We can find m such that vy € 'Na ' T'ana I(4)a. Put § =
aya~! and k = 2k. Then k € Z, da = o, and js(a2)"ju(2)" = jsa(2)® =
Jary (2)" = jal(72)%]y(2)", which means that hs(az)"r(z) = r(y2)hs(2)".

Put g( ) =r(z)" 1f(az) Since 6 € I'NI'(4) and hy, =1, we have g(yz) =
r(12)" f(an(2) = r(12) ' f(6a(2)) = r(32) 'hs(az)* flaz) = 4r(z)"!
flaz) = £g(z). Thus g(z + m) = £g(z), and so g(z + 2m) = g(z). Con-
sequently we can put g(z) = > ., c(v)q(z)” with c(v) € C and ¢(2) =
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e(z/(2m)). If f* € M, then (3.4d) applied to f? implies that ¢ as a func-
tion of ¢(z) has no singularity at ¢(z) = 0. Then the same must be true for
g(z), and so ¢(v) =0 for v < 0. Thus f satisfies (3.4d).

We now put

(5.5) My = | ) #:(T(2N)).

N=1
Let k and ¢ be weights. Then for f € .#} and g € #y, we easily see that
f9 € My

Also, 0(0, z; X) € M /5 for every A € Z(Q"). This follows from (4.49a)
and (4.49f) if n > 1. Now suppose n = 1. Putting v = 0 in (4.49¢g), we find
that (3.4d) is satisfied with k = 1/2 and f(z) = 6(0, z; \) as expected.

If n=1, (2, \) belongs to .# 3/, for every A € £(Q"). To show this,
we first note that 6*(vyz, ) = jg/z(z)ﬁ*(z, A) for « in a suitable congruence
subgroup, which follows from (4.52) and (4.49f). Since 6*(z, \) = (2mi)~!
(8¢/0u)(0, z; \), from (4.49g) we obtain 0*(az, \) = ja(2)%/20*(z, i), and
so 0*(z, A) satisfies (3.4d) with k = 3/2. Thus 0*(z, A) € A 3/5.

Let f € .#} with half-integral & and n > 1. From (4.22a, b) we see that
(3.6a) and (3.6b) hold for f with suitable M and U. Therefore we have an
expansion of f of the form (3.7a) or (3.7b). Thus we can speak of the Fourier
expansion of f in the case of half-integral k. If n = 1, we have shown that
f satisfies (3.4d).

5.2. For k € Z our definitions of f||ra and .#(I") in Section 3 are
standard, but the case of half-integral k is not so clear-cut. Indeed, for
half-integral & we could have defined f||xa by (f|lx @)(2) = ha(2)2* f(az)
instead of (5.3a). The reason for adopting (5.3a) is that its natural gener-
alization to the Hilbert modular case is the best definition. This of course
requires a clarification, but without going into details here we refer the reader
to Section 17 of the present book and [S87].

The factor of automorphy k., of (4.40) is different from what we introduced
in [S73a], which has been employed by many researchers and which is given
by

(5.6) hh(z)=c;" 5 (cz + d)*/?

b a 2b
d c/2 d
v € I'(2) and hy(2z) = h5(z). In the present book for various reasons, we
develop the theory by using h, of (4.40). The formulation in terms of hj of
(5.6) can easily be obtained by means of the equality h(2z) = hj(2).

for 6= Ccl €I'(1) with c€4Z. For such a § put v = [ } . Then

5.3. Let us now prove Theorem 4.7(4). Let o and r(z) be as in that
statement. We first assume that « € Sp(n, Q). Put Ay = {fy er? | AV = )\}
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for A € Z2(Q"). By (4.49f), Ay is a congruence subgroup of Sp(n, Q). Now
take A to be the characteristic function of Z™ and take also p as in (4.49g).
Let v € A, Na'Axa and § = aya~!. Then da = ay, X0 = \, pu¥ =
p, and p(da(u, 2); A) = hs(az)p(alu, 2); A) = hs(az)r(z)p(u, z; p). This
equals p(ay(u, 2); \) = r(v2)p(v(u, 2); ) = r(v2)hs (=)p(u, 2 r). Since
o(u, z; 1) is a nonzero function, we obtain hs(az)r(z) = r(yz)h,(z). This
proves Theorem 4.7(4) for a € Sp(n, Q).

By (1.3) every element of Gp*(n, Q) is the product of an element of
Sp(n, Q) and an element 3 of the form 8 = diaglel,, 1,] with 0 < e € Q.
Therefore we easily see that it is sufficient to prove Theorem 4.7(4) when o
is such a (; we may even assume that e € Z. Thus our task is to show that
h(ByB~Y, Bz) = h,(2) for v in a suitable congruence subgroup. Suppose n =

a b a eb

1 and v = [c d] € I'(2e); then ByB~1 = L_lc d} € I'(2), and from

(4.40) we see that h(ByB8~%, Bz) = (g)hy(z), and so h(ByB~1, Bz) = h,(2)
if d—1 € 4eZ, which gives the desired result.

If n > 1, the proof is more involved and requires some facts on the Gauss
sum of a quadratic form as in (4.25). We refer the reader to [S00, Theorems
6.8 and 6.9], whose proof is given in [S00, §A2.9]. Howeve,r we need Theorem
4.7(4) only for the proof of the following lemma, which we employ only when
n =1 in the present book.

Lemma 5.4. Let k be an integral or a half-integral weight. Given o €
GpT(n, Q) and f € My, put g(2) = jo(2) " f(ez). Then g € M}.

For integral k this was already noted in §3.1. If k is half-integral, this is
an immediate consequence of Theorem 4.7(4), and so the proof may be left
to the reader.

Lemma 5.5. Let ¢ be a primitive or an imprimitive character modulo r,
and let (—1) = (-1 )” with p=20 or 1. Put k= (2u+1)/2 and
(5.7) Op(z) =271 Z Y(m)mte(m?z/2).
meZ
Then 6y € A}, and
(5.8)  Oyllky=1(dy)0y for every v € I'(2) such that c, € 2r°Z,

-1
(5.9) O |l {S 77(0) ] = p(=1)r~Y2G()0; if ¢ is primitive.

PROOF. Notice that 27137 of (5.7) can be replaced by >~ if ¢ is
not the principal character. If » = 1, then 1 is the principal character and
0y = 2710 with 0 of (4.36), and so (5.8) and (5.9) in that case follow from
(4.20). Here we prove (5.8) when 1 is primitive; the general case will be
settled after the proof of Lemma 7.13. Assuming that » > 1 and p = 0, for
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s € Zput fo(z) =, cpe(ms/rie(m?z/2). Then fy(z) = 6(0, z; 0, s/r).
Let v = [z Z] € I'(2) with ¢ € 2r?Z. By (4.15) we have

(5.10) Fullijay = e — ds? [ (2r2)0(0, 2 cs/r, ds /1)
=0(0, z; 0, ds/r) = fas.
Now by (2.3a) we have

Y b($)fs(2) = G) Y d(m)e(m?z/2) = 2G()0,(2).
s=1 meZ
This combined with (5.10) shows that

G(W)0pll1j2y = Zz/?(s)fsnlm = Zws)fds = 2G () ¥ (d)0y.

This proves (5.8) when w = 0, since G(¢ ) 7é 0 as can be seen from (2.3c).
Next, suppose p = 1; let gs(z) = 0*(z; 0, s/r) with 6* of (4.44). Then k =
3/2 and >.L_, 1(s)gs = 2G(¢)0y. Also, we see from (4.45) that gs||x v = gas.
Therefore we obtain (5.8) when g = 1 in the same manner as in the case
w=0.

As for (5.9) when p = 1, from (4.45) we obtain g4(:2) = j¥(2)0*(z; s/r, 0),
and so

2G (V)0 (—1/1r22) = jk(r?2) Z@(s)@*(ﬁz; s/r, 0)

s=1
= (r?2) Z Z P(s)(rm + s)e((rm + 5)%2/2) = r2h=lik )05(2).
s=1mecZ
1 _
For a= {S g ] we have j¥(z)=1r*j*(2) and so 9¢||ko¢=r1/2G(z/J)7101/;

w( 1)r _1/26'(1/})01; by (2.3b, c), which gives (5.9) for u = 1. The case
=0 can be proved by employing (4.15) instead of (4.45).

3
5.6. We note here an interesting special case. Take ¢(m) = (E) and
put
(5.11) n(z) = 0,(2/12) = Zl <E>e(m 2/24).
In this case r = 12 and G(p) = 2/3 by (2.4a), and so from (5.9) we obtain
N2t = n. Also, m? — 1 6 247 for every integer m prime to 6, and so
n(z+ 1) = e(1/24)n(z). Employing these relations we can easily prove
oo
(5.12) n(z) = A(2)V** = e(z/24) ] (1 - e(n2)),
n=1

where A(z) = e(2) [Th; (1 - e(nz))24. We leave the proof to the reader. In
fact, it was explained in [S07, p. 19]. We also note an easy fact:
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(5.12a) nll1j2v=mn for every v € I'(1) such that b,, ¢, € 24Z.

Lemma 5.7. For every congruence subgroup I' of I'? and k € 277 we
have A, (I') = {0} if k <0 and #o(I") = C.

PROOF. Since f2 € # o, for f € My, it is sufficient to treat the case
k € Z.If n =1, our assertions are well known, and so we assume that n > 1.
We do not need this lemma for our later treatment, but we prove here that

M (I') = {0} if k<0.For a € SL2(Q) put o, = [Zo‘i” Zo‘i”

p(z) = z1, for z € H;. Then o, € Sp(n, Q), p(2) € Hn, 0u (p(z)) :p(a(z)),
and j(0a, p(2)) = ja(2)". Let f € .#y(I') with a congruence subgroup
I of Sp(n, Q) and 0 > k € Z. Put I} = {a € SLQ(Z)‘UQ € F} and
9(z) = f(p(z)) for z € H1. Then I7 is a congruence subgroup of SL3(Q) and
(ank a)(p(z)) = (f”k Ua)<p(z))7 and so g”nk(s = g for 6 € I'1. Moreover,
since fl|xoq € A1, we see that ¢ satisfies (3.4d). Therefore g € 4 (I1),
and so g = 0. This means that f(p(z)) =0 for every z € 1. Given w € ),
as shown at the end of Section 1, we can find an element of the form g =

[(1] i g tao—1] with @ € GL,(R) and s € S,(R) such that §(il,) = w.

Since GL,(Q) and S,(Q) are dense in GL,(R) and S, (R), respectively, we
can find an element § of P that is in any small neighborhood of /3. In other
words, the set {6(2’1n) ’ 0 € P} is dense in §),,. Put f1 = f||x 0. Then f1 € 4,
and so f1(p(z)) = 0, which means that f(d(i1,)) = 0. Since this is so for every
6 € P, we obtain f =0 as expected.

5.8. Let f € .4} with 0 < k € 27'Z. Given a € Sp(n, Q), by Lemmas
5.4 and 3.3 we have
Ja(2)Fflaz) = Z ca(h)e(tr(hz)), S = 5,(Q),
0<hesS
with co(h) € C. We call f a cusp form if c¢,(h) # 0 only when h > 0
for every «, and we denote by .7 (I") the set of all cusp forms contained in
A (). We put

(5.13) k= J (T (2N)).

N=1
From our definition and Lemma 5.4 we easily see that if f € .7, then
ja(2) 7 f(az) € F} for every a € Gpt(n, Q). Clearly .7, = {0}.

We note that 0*(z, \) € .73/, for every A € £(Q). Indeed, since I'(1) is
generated by ¢ and I'(1) N Py, from (4.52) we see that j,(2)~3/26*(az, \) =
0*(z, p) with some pu € Z(Q) for every a € SL2(Q). Clearly 6*(z, u) has 0
as its constant term, and so 6*(z, A) € /3/5.

Lemma 5.9. Let f(z) = Y., cqc(h)e(tr(hz)) € #(I') with k € 27'Z
and a congruence subgroup I', where S = S, (Q). Put

; put also
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(5.14) folz) = Zme(tr(hz)).
hes
Then f,(z)=f(—2) and f,€. M (cTe") with e=diag|—1,, 1,]. Moreover,
(5.15) k) = i (=),
(5.16) follka= (fllka’)p

for a € Sp(n, Q), whenever jk(z) is defined, where o/ =ecae™!.

PrROOF. Clearly, f,(z) = f(—2) and o' € Sp(n, Q); also, o’ € PI'? if

a € PI'?. Moreover, —a(z) = a/(—2), jo(2) = jor(—Z), and

(5.17) folaz) = F(— =) = F(@'(—2)).

Take 0 as f. Then 6, = 6 and (5.17) shows that if a € I'?, then h(2)0(2) =
ha' (—Z)0(2), and 80 hy(2) = he/(—Z), which is also true for « € P because of
(4.49¢). Thus hy(2) = ha(—2) for every a € PI'? by (4.49d), and we obtain
(5.15). Then (5.16) follows immediately from (5.15). Take a in el'e™! in
(5.17). Then o/ € I' and we obtain f,(az) = j* (=2)f(—2) = jk(2)f,(2),
and so f, € M (e'="1) as expected. This completes the proof.

6. Holomorphic and nonholomorphic modular forms on $);

6.1. Hereafter we will mainly be concerned with functions on $)1, and so
we write simply ) for $;. We also put

(6.1a) GL3 (R)={aeGLy(R)| det(c)>0},
(6.1b) GL; (Q)=GL3 (R)NGLx(Q),
(6.1c) P={aeSLy(Q)|ca =0}

Hereafter we work with GL2(R) and $1; the group P is P, (with n =1) of
Lemma 2.2(iii).
Formulas (1.10) and (1.16) in the case n =1 take the forms:

(6.2) d(az) = jo(2)"2dz for every a € SLy(R),
(6.3) Im(az) = |jo(2)]7%Im(z) for every a € SLo(R).

Writing simply y = Im(z), from (6.2) and (6.3) we see that y~2dz A dz is
invariant under SL2(R). Since dz A dzZ = —2idx A dy, we obtain

(6.4) (y~2dx ANdy)oa =y 2dz ANdy for every o€ SLa(R).

Thus the form y~2dzAdy gives a measure on § invariant under SLs(R). To
make our formulas short, we put

(6.5) dz = y~2dxdy,
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and define a measure p on $) by

(6.52) 1(A) = / d-

for A C 9. It is well known that M(F(l)iﬁ) = 7/3, and so
(6.6) w(I\$) = [[(1) : {£1}"|x/3 if I'c I'(1).

Lemma 6.2. Let f € M), andlet f(z)=> - cme(mz/N) with ¢, € C
and 0 < N € Z. Then the following assertions hold:

(i) There exists a positive number A such that |f(2)| < A(1 +y~%) on the
whole $), where y = Im(z). Moreover, if [ is a cusp form, then A can be
chosen so that |f(2)| < Ay=*/% on the whole .

(ii) cm = O(m").

(iil) ¢ = O(m*/2) if f is a cusp form.

PROOF. For the proof of these facts when k € Z the reader is referred to
[SO7, Lemmas 1.7 and 1.8]. To prove (i) when k ¢ Z, take (f?, 2k) as (f, k)
in (i). Then we obtain the desired fact for (f, k). To prove (ii) and (iii), we
first note, for 0 < m € Z,

N
Nep, exp(—2mmy/N) = / f(z)e(—mz/N)dz.
0
Take y = 1/m. Then (ii) and (iii) follow from (i).

Results of the same type as the above lemma hold in the case n > 1. The
case of cusp form is easy, but there are some nontrivial technical problems in
the case of non-cusp forms; see [S00, Proposition A6.4 and formula (A6.7)]
and the proof given there.

6.3. The notion of a cusp can be defined for a certain class of discrete
subgroups of SLy(R) that includes congruence subgroups of SL2(Q). Since
we deal only with such congruence subgroups in this book, a cusp is a point
of QU {oc}, and vice versa. Then the map a — «a(o0) with a € SLy(Q)
is a bijection of SLy(Q)/P onto Q U {00}, and so I'\(Q U {oo}) is the set
of I'-equivalence classes of cusps, which is in one-to-one correspondence with
I'\SL3(Q)/P. We often use P\SL2(Q)/I instead, by considering the inverse
map.

For a congruence subgroup I' of SLy(Z) and a weight k we denote by
Cx(I') the set of all C* functions f(z) on $ such that

(6.7) fllev=f forevery v € I
we assume that I' C I'? if k ¢ Z. Then from (6.3) we see that

(6.8) |y*/2 f(2)| is a [-invariant function on ).



32 II. THETA FUNCTIONS AND FACTORS OF AUTOMORPHY

Therefore we consider more generally a C*° function f(z) satisfying (6.8) for
some I" and k. We say that such an f is slowly increasing or rapidly
decreasing at every cusp according as the following condition (6.9a) or
(6.9b) is satisfied:

(6.9a) For every a € SLa(Q) there exist positive constants A, B, and ¢
depending on f and o such that

[Tm(az)*? f(az)| < Ay® if y = Im(z) > B.

(6.9b) For every a € SLo(Q) and ¢ € R, > 0, there exist positive constants
A and B depending on f, a, and ¢ such that

Tm(az)*/2 f(az)| < Ay=¢ if y =Im(z) > B.

Notice that these are conditions on |f], rather than on f. Since SLy(Q) =
I'(1)P by Lemma 2.2(iii), we can find a finite set X such that

(6.10) SLy(Q)= | | r¢p, X c ().

¢ex
Then we easily see that condition (6.9a) or (6.9b) is satisfied for every o €
SLo(Q) if it is satisfied for every o € X. Also, if f satisfies (6.9a) or (6.9b),
so does jg(2)~* f(B2) for every B € GL; (Q).

Since |Tm(az)*/2 f (az)| is invariant under z +— z+m with a positive integer
m and the set {x + 1y | 0 <z <m, B <y < B} is compact for every B’ < B,
we easily see that changing A in (6.9a, b) suitably, we can replace B in (6.9a,
b) by an arbitrary positive number.

We will be considering a function f(z, s) of (z, s) € $ x D, also written
fs(2), with a domain D in C such that f,(z) for each fixed s as a function of
z satisfies (6.8) with the same I'" and k. If for every compact subset K of D,
fs satisfies condition (6.9a) for s € K with A, B, and ¢ depending only on
K and «, then we say that f is slowly increasing at every cusp locally
uniformly on D (or locally uniformly in s).

Lemma 6.4. (i) Let f be a holomorphic function on $ belonging to Cy(I').
Then f € My if and only if [ is slowly increasing at every cusp.

(ii) For [ asin (i), f € Sk if and only if f is rapidly decreasing at every
cusp.

(iii) An element of M 1. (I") is a cusp form if the constant term of the Fourier
expansion of je(2)~Ff(£2) is O for every & in the set X of (6.10).

(iv) Let f be an element of C(I") that is slowly increasing at every cusp.
Then there exist two positive constants A and ¢ such that

Y2 fe+iy)| < A(y* +y~°)  for every x +iy € 9.
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(v) If an element f of Cx(I') is rapidly decreasing at every cusp, then
[Tm(2)*/2 f(2)| is bounded on the whole ).

PROOF. Given a holomorphic f satisfying (6.7), for a € SLy(Q) put
9(2) = ja(2)7%f(az). Then go~y = +g for every v € a”'I'a N P. Now
(a7'T'an P){£1}/{£1} is a cyclic group generated by an element of the

form (1) tla with 0 <t € Q. Therefore g(z + 2t,) = g(2), and so g(z) =

Y mez Ca(m)e(mz/rq) with ro = 2t, and co(m) € C. Suppose f is slowly
increasing at every cusp. Then [g(z)| < Ay® for y > B as in (6.9a). Put
q = e(z/ra) and h(q) = Y, cz ca(m)q™. Since |q| = exp(—2my/ra), we see
that limg—,0 ¢h(¢) = 0, which means that co(m) = 0 for m < 0. Thus f
satisfies (3.4d), and so f € .#}. Suppose f is rapidly decreasing at every
cusp. Then limg_,o h(g) =0, and so ¢, (0) = 0. Thus f € ..

Conversely, given f €., let jo(2)7Ff(az)=Y"_ ca(m)e(mz/ry) as in
(3.4d). Put g=e(z/rs). Then j *f(az)=h(q) with h(g)=>_"_,ca(m)g™.
Since h is a holomorphic function for |¢| < 1, there is a constant A such that
|h(q)] < A for |¢| < 1/2. Thus f is slowly increasing at every cusp. Next
suppose f € .%k; then ¢,(0) = 0, and so |h(q)| < A’|q| for |g| < 1/2 with a
positive constant A’. Consequently, |Tm(az)*/2 f(az)| < Ay*/? exp(—27y/ra)
if y > B with a suitable B, and so f satisfies (6.9b). Assertion (iii) is clear.

To prove (iv), put

(6.10a) T={z+iyeCllz] <1/2,y>1/2}.

Since T contains a fundamental domain for I'(1)\$), we can find a finite subset
E of I'(1) such that

(6.10b) H=|]JIeT.
e€ekE
Then |Im(e2)*/2f(ez)| < A-Im(z)° for every € € E and z € T with some
A and c. Given z € §), we can put z = yew with some v € I', ¢ € E, and
w € T. Then [Im(2)*2f(2)| = [Im(yew)*/? f(yew)| = |Im(sw)*/? f(cw)| <
*

A - Im(w)e. Let (ye)~! = [r Z] If r = 0, then Im(w) = Im(z) since

(yve)~t e L(1)N P. If r # 0, then Im(w) = Im(2)|rz + s|~2 < Im(z)~!. Thus
[Im(2)*/2 f(2)| < A(Im(z)¢ + Im(2)~¢), which proves (iv).

If f is asin (v), then |[Im(e2)*/2f(ez)| < Ay~ for every ¢ € Fand z €T
with some A and ¢ > 0. Then we easily see that [Im(e2)*/2f(£2)| is bounded
on 7. Since |Im(z)k'/2f(z)| is a I'-invariant function on $) and ) = (. I'eT,
we obtain (v). This completes the proof.

6.5. Given f, g € Ci(I"), we put
(6.11) (f 9) ZM@)‘l/fgykdz, P=TI\9.
@
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The integral over @ is formally meaningful, since fgy* is I'-invariant, as can
be seen from (6.3). We call (f, g) the inner product of f and g if the
integral is convergent, in which case we easily see that the quantity of (6.11)
is independent of the choice of I

The integral is convergent if fg is rapidly decreasing at every cusp. Indeed,
by Lemma 6.4(v), |y* fg| is bounded on the whole $), which implies that the
integral of (6.11) is convergent, since f(p y~2dxdy < co. We easily see that

(6.12) (fllka, gllka)y = (f, 9)

for every a € SLy(Q). Here, if k ¢ Z, then we either assume that o € PI"?,
or put fllxa = kja(2) *f(az) with x € T and any choice of a branch of
ja(2)7%. We also note an easy fact:

(6.12a) th(f(tz), g(tz)) = (f, g) if 0<teQ.

Lemma 6.6. The inner product (f, g) is meaningful for every f, g €
AM 12, even when neither f nor g is a cusp form.

PROOF. In this proof we put k = 1/2. Take I" C I'(2) so that f, g €
A (I), and take T and E as in (6.10a, b). For each € € E put f.(z) =
je(2) 7% f(ez) and g.(z) = j-(2) "% g(ez) with any choice of a branch of j.(z)~*.
Then f., g- € 4. by Lemma 5.4, and so by Lemma 6.2(i), |fege| < Ac on T
with a constant A.. Since I"\$) is covered by | J,. €T, we have

Z/ |fg|ykdz—2/ | fay® \oe dz

eclE eckE
Now \fgy"'\ oe= yklfage\ < Acy* on T, and so

Z A, / y*2dxdy = Z A, /OO y =3 2dy < oco.

c€E ccE 1/2
This proves our lemma.

6.7. We put y = Im(z) and view it as a real-valued function on $) as we
have done in previous sections. For k& € R we define differential operators
€, 0, and L acting on C'*° functions f on $) by

(6.13a) ef = —y?0f )0z,

(6.13D) uf =y HO[0:) 0 ) = 5o+ oL

(6.13¢) Ly = 46,_pe = — (88; ;2) +22ky§ — 45y — k,
and define also 67 for 0 < p € Z inductively by

(6.13d) Pt = Gpyopdl, Of =0y, 09 =1.

For every o € GL$ (R) these operators satisfy
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(6.14a) e(fllk ) = (ef)llr—2
(6.14b) Ok (fllx @) = Ok f)llk+2 o,
(6.14c) Oy (fllk @) = (Ol k+2p
(6.14d) Li(fllk o) = (Lef)llk o

Here f||xa for k ¢ Z can be defined by (f||r @)(2) = ja(2) 7% f(az) with any
choice of a branch of j,(2)~*. Then we define (f||x12p @)(2) With j,(2)~*=2P
= ja(2)Fja(2)72P for every p € Z. From (6.13c) we easily obtain

(6.14e) Li—2e =e(Li — k +2), L2060k = 0 (L + k).

To prove the above formulas, we first note that

615) 2= Diain, Lfian =

Employing (6.3) and (6.15), we have
, —k
Ok (flle o) =y=*(0/02)(y*ja " faz)) = y~*(0/02) (y(az)"ja” f(az))
._k - —_ ._k e

=y Mo (0/02)((y"f) 0 @) =y ja" 1 {(0/02)(y" )} (az)

= ja" 2ylaz)"H{(0/02)(y* ) Haz) = (k. f)llk+20r,
which gives (6.14b). Formula (6.14a) can be proved in a similar way. Then
(6.14c) and (6.14d) follow immediately from (6.14a, b).

From (6.2) we easily see that y~2(dz? + dy?) is a Riemannian metric on

$ invariant under SLy(R). Therefore —Lj is exactly the Laplace-Beltrami
operator with respect to this metric.

z)ja(2)

Theorem 6.8. Let f € Ci(I') and h € Cr_o(I") with a congruence sub-
group I'. Then

(6.16) (f, Or—2h) = (ef, h),
provided fh, f-0x_oh and (ef)h are rapidly decreasing at every cusp.

PRrROOF. Replacing I' by I' N I'(4) if necessary, we may assume that I" C
I'(4). Then I' has no elements of finite order other than 1. Throughout the
proof, we put y = Im(z). For 0 < r € R put
(6.17) T.={zef|y>r}, M,={zef|y=r}.

Take a finite subset X of I'(1) as in (6.10). Then I'\(Q U {oc}) is repre-
sented by {f(oo) |§ € X}. Put Q¢ = £'I¢N P for each ¢ € X. Then
Qe = {y € I'|7&(00) = &(00) }. Now I'\($HUQU {o0}) can be viewed as
a compact Riemann surface. We can find a sufficiently large r such that the
set £(Qe\Ty) for £ € X can be embedded in I'\$) without overlap. Let K be

the complement of ;¢ x £(Qe\T;) in I'\$). Then K is a compact manifold
with boundary, and
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K=Y &(Be), Be=Qe\M,.

cex

Let ¢ be a I'-invariant C*° 1-form on $). Then

Jeto= o= X Jy oo

fex
Given f and h as in our theorem, take ¢ = fhy*~2dz. Then
= (0/02)(fhy*=2)dz N dz
= {(0f/02)hy* =2 + f(On/Dz)y"2 +

(—i/2)(k — 2) fhy*=3}dz A dz.
Since dz A dz = —2idz A dy and (9f/0z) = (3f/0%), we see that
(

(6.18) (20)"tdp = ef - hy**dx Ady — f - (Ok_2h)y"2dx A dy.
Thus
/ ef - hy*4dx A dy — / [ (Sp_oh)y*2dx A dy = (26)~ Z/ pok.
gex

We now take the limit when r — oo. By our assumption the left-hand side
converges to p(I\9){(ef, h) — (f, dk—2h)}. We have ¢ o & = pe(z)dz with
pe(z) = M_Z(fhykfz) o £. Notice that y|pe(2)| = |fhy* | o & Now Qg is
(1) tf] with 0 < t¢ € Q, and so Q¢\M,
can be identified with the line Segment {:v +r | 0<z< tg}. Thus

’/BEW%

Suppose fh is rapidly decreasing at every cusp; then |pe(z + iy)| < Aey™°
with positive constants A¢ and ¢ for sufficiently large y. Therefore we obtain
our theorem.

generated by a matrix of the form

|p§ x +ir)|de.

Corollary 6.9. (i) Let I' be a congruence subgroup and let f € %). Then
(f, Ok—2h) =0 for every h € Cr—o(I") such that both h and dx_oh are slowly
mcereasing at every cusp.

(ii) Let feCk(I"). Suppose both f and ef are rapidly decreasing at every
cusp and Lif = 0. Then f € Y.

(iii) Let f, g € Cx(I"). Then under a suitable condition (see the following
PROOF) we have

(6.19) (£ Lrg) = {Lx [, 9),
(6.20) (. L) > 0.
PRrROOF. Let f and h be asin (i). Then, by Lemma 6.4(ii), both fh and

fok—oh are rapidly decreasing at every cusp. Since f is holomorphic, we have
ef =0, and so (f, dx_2h) = 0 by (6.16). This proves (i). Next let f be as



6. HOLOMORPHIC AND NONHOLOMORPHIC MODULAR FORMS ON $; 37

in (ii). Then 0p_oef = 47 'Lyf = 0, and so (ef, ef) = (f, dk_2cf) = 0 by
(6.16). Thus £f = 0, which means that f is holomorphic, and so f € .7
by Lemma 6.4(ii). As for (iii), we have, by (6.16), (f, 0x—2c9) = (ef, eg) =
(0k—2¢ef, g), which gives (6.19). To justify the last sequence of equalities, we
need some conditions on f and g as stated in Theorem 6.8, which are often
easy to verify, and so we leave the precise statements to the reader. If we take
f =g, then (f, Lipf) = 4{ef, ef) > 0, which proves (6.20). This completes
the proof.

Remark. In Corollary 6.9(ii) the condition on ef is unnecessary. This
will be explained after the proof of Lemma 9.3.

Lemma 6.10. If f € #(I"), then §,f for every p € Z,> 0, belongs
to Cryop(I), and is slowly increasing at every cusp. Moreover, it is rapidly
decreasing at every cusp if f € Y.

PrROOF. That 6} f € Chiop(I") follows from (6.14c). Let « € I'(1) and
9(2) = ja(2) " f(az) = 3,,cz calm)e(mz/ry) as in (3.4d). By (6.14c) we
have jo(2) %207 f)(az) = 87g(z), and by induction on p we easily see
that ovg =>"_ a,y " (0/9z)P""g with a, € C, and so

v

&hg(z) = Za,,y_” Z co(m)(2mim/ra )P e(mz/ry).
v=0 m=0

Since co(m) = O(m*) by Lemma 6.2(iii), we can easily verify the inequality
of (6.9a) for 61g. If f € .7k, then ¢,(0) = 0, and so §fg satisfies (6.9b).
Thus we obtain our lemma.

6.11. We have been discussing modular forms as functions on §. Instead,
we can treat them as functions on SLy(R) or its covering. Let us explain the
idea in the case k € Z for simplicity. Put K = {o& € SLy(R) |t04a =15} and
p(&) = jg(i)*1 for £ € K. Then p is a continuous homomorphism of K into
T. Given f € Ci(I'), define a function f on SLy(R) by f(a) = (f]|x @)()

for o € SLy(R). Then f(ya) = f(a) for every v € I' and f(a€) = p(€)f(a)
for every ¢ € K. In this way we can associate with f a function on I'\G
belonging to a representation p of K.

One consequence of this association is that the action of the differential
operators ¢ and d, corresponds to that of some elements of the universal
enveloping algebra il of the Lie algebra of SLs(R). This approach gives a
certain conceptual perspective, and even clarifies some technical points, espe-
cially when we deal with higher-dimensional Lie groups and symmetric spaces.
In this book, however, we stay within the traditional framework of functions
on $). The reader who is interested in the higher-dimensional cases and also in
the Lie-theoretical treatment of this topic is referred to the author’s articles as
follows: the operators in the higher-dimensional cases are discussed in [S94],
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[S00, Sections 12 and A8], and [S04, Section A1]; the connection with &l is
explained in [S90, Section 7], and [S02, vol. IV, pp. 739-740].

In particular, (6.16) formulated on a Lie group G can be given in the form
(6.21) Xf-hdy=— f-Xhdpu,

G G

where X is an element of the Lie algebra of G. However, in almost all papers
and textbooks this is proved under the condition that f and h have compact
support, or under a similar strong condition, which makes its application
impractical. The fact under a much weaker condition is given in [S00, p. 287,
Lemma AS8.3].



CHAPTER III

THE RATIONALITY AND EISENSTEIN SERIES

7. The rationality of modular forms

7.1. We employ the symbols Q and Q. defined in §0.1, which are the
algebraic closure of Q in C and the maximal abelian extension of Q in Q.
We also denote by Aut(C) the group of all ring-automorphisms of C, and for
o € Aut(C) and x € C we denote by x° the image of = under o. Thus, for
7€ Aut(C) the product o7 is defined by 2°7 = (27)7. These are consistent
with what we said in §0.4. Given two subfields K and L of a field M, we
denote by K L their composite, that is, the subfield of M generated by K and
L.

Putting H* = HU QU {oo}, we recall the basic fact that for a congruence
subgroup I' of SL2(Q) the orbit space I'\$H* has a structure of compact
Riemann surface, which can naturally be viewed as an algebraic curve defined
over C; for this the reader is referred to [S71]. (In the present book we mean
by an algebraic curve a nonsingular projective curve.) We denote by % (I)
the field of all I'-invariant meromorphic functions on $ which can be viewed
as meromorphic functions on the compact Riemann surface I'\$*, and put

oo

(7.0) = | “(T(N)).

N=1
If f € o, we can put
(7.1) f(z)= Z ane(nz/t)

no<nez
with ng € Z,0 <t € Z and a, € C. For a subfield ¢ of C we denote
by o/ (®P) the set of all f € % such that a, € @ for every n, and put
(I, D) = (@) Naty(I). If eto(I") = Cety (I, @), then the curve I'\$H* has
a model over ¢. Now we have:

Theorem 7.2. (i) % (I'(N)) = Ca(I'(N), Q) for every N € Z, > 0.
(ii) Given o € Aut(C) and f € o/ as in (7.1), there exists an element f°
of < such that
(7.2) fo(z) = Z aZe(nz/t).

no<neZz

G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 39
DOI 10.1007/978-1-4614-2125-2_3, © Springer Science+Business Media, LLC 2012
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(iii) @ (I") = Coh (I, Qap) for every congruence subgroup I' of SL2(Q).

PRroOOF. The first assertion is proved in [S71, Proposition 6.9]. To prove
(ii), let o7 denote the set of all formal infinite sums of the form (7.1). We
easily see that & is a field containing «%. For f € &/ as in (7.1) and o €
Aut(C) define f? € &/ by (7.2). Clearly f — f? is an automorphism of
. Let f € o (I'(N)). By (i) we can put f = (>, cugn)/ (X2, dvhy) with
finitely many elements c,,d, € C and g,, h, € %(F(N), Q). Viewing
this expression of f as an equality in &% and applying ¢ to it, we obtain
f7 =02, 090/ (32, d7hy), since g = g, and hj = h,. This shows that
17 € o, which proves (ii). As for (iii), a detailed discussion about the fields
of definition for I'\$* is given in [S71, Section 6.7], which includes (iii); see
especially Propositions 6.27 and 6.30 of the book.

7.3. We next consider .#;, with 0 < k € 27'Z and define f for f € .#,.
In fact, we do this for a more general class of functions. Namely we consider
a weight k£ > 0 and a function f on $ such that

(7.3a) f)= >0 Y cal®)(my) “e(éz), y=1Im(2),

0<€€Q a=0
(7.3b) flley=f forevery veT,

where 0 < m € Z, ¢,(§) € C, and I' is a congruence subgroup of SL2(Q),
which is contained in I'? if k ¢ Z. One more condition:

(7.3¢c) For every a € SL2(Q) the function jo(2) *f(az) can be written in
the form (7.3a).

Since (7.3b) implies that f(z +t) = f(z) for some ¢t € Z, > 0, we have
cq(§) # 0 in (7.3a) only for t£ € Z. Then we denote by A7 (I") the set of all
f satisfying (7.3a, b, ¢), and put

(7.3d) N =Un= A (P@RN)), A =Ung AT

For a subfield ¢ of C we denote by A4} (P) the set of all f € A7 such that
¢q(§) in (7.3a) belongs to @ for every a and &; we then put A7(I, ) =
AN ATH(P). We also use these symbols with .47} in place of 47", when
m is not specified, or rather .4} is understood in the sense of (7.3d). Clearly
M, = N; notice that (7.3c) implies (3.4d) if f € .#%. We call an element
of ¥} a nearly holomorphic modular form of weight k. If an element
of A% belongs to A% (P), then we call it #-rational. We put A4y (P) =
M, ﬂ:/i/k(@), ///k(l“, @) = ///k(l“) ﬂ///k(gp), Yk(gli) = Y ﬂ//k(ds), and
Sy, @) = SK(I) N M 1 (D).

7.4. Let I' be a congruence subgroup of I'(1) such that C«%4 (I, Q) =
(). Then the curve I'\$)* has a Q-rational model V' whose function-field
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over Q can be identified with 2% (I, Q). We then denote by Vi the algebraic
curve I'\$)* over C in which V is embedded. By a divisor on V& we mean
as usual a formal finite sum A = ZPGVC cpP with cp € Z. We write A = A’
if A" =3 pey,cpP and cp > cjp for every P. We also consider a sum
B = ZPEVC dpP with dp € Q; we call it a fractional divisor on V. Given
a divisor A we put

(7.4) L(A) = {0} U {0 # g € & (I C) |div(g) - —A},
(7.4a) L(A, &) = L(A) N (T, §),

where div(g) is a divisor of g and @ is a subfield of C. It is well known that
if A is @-rational, then

(7.4b) L(A) = L(A, &) ®4 C.

By Theorem 7.2 we can take I'(IN) as I'; then we denote V by V. Let
p be the natural projection map of Viy onto Vi. Then p is defined over Q,
since it corresponds to the injection % (I'(1), Q) — <A (I'(N), Q). Let Cy
be the divisor that is the sum of all inequivalent cusps of I'y viewed as points
of (Vn)c. Then Cj is the point on V; represented by oo, which is Q-rational.
We have p~1(C;) = unxCy with a positive integer py, and so Cy is a Q-
rational divisor on V. Now, for 0 # f € .4 (I'(N)) with k € Z we can
define the divisor of f, written div(f), as a fractional divisor on (Vi)c; see
[S71, §2.4]. We can even define div(f) for f € .#;(I'(N)) with N € 2Z and
k ¢ Z. We merely put div(f) = (1/4)div(f*), which is well defined, since
f* € M4, (I'(N)) as can be seen from Theorem 4.4(iii).

Theorem 7.5. Let k be a weight > 0, and let 2 denote any of the three
symbols M, N, and . For o € Aut(C) and f € N} given by (7.3a) define
f? as a formal infinite series by
(7.5) Fo()= Y Y cal€)(my)e(é2).

0<€€Q a=0
Then the following assertions hold:

(i) We have 2, = Z1(Q) ®q C, and consequently for every f € Zj and
o € Aut(C) the series of (7.5) is convergent and defines an element of 2.

(ii) For two positive integers M and N put

I'(M,N)={yeI(l)|by € MZ, ¢, € NZ}.

(This is clearly a congruence subgroup of I'(1).) Given a character b modulo
MN, assuming that M, N € 27 if k ¢ Z, put

(7.6) 2i(M., N:w) = {f € Zi| fllxy = ¢(d;)f for every v € (M, N)}.

Then (ila) Zip(M, N; ¢)° = Z(M, N; ¢?); (iib) Zx(M, N; ) is spanned
by its Qap-rational elements.
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(iii) For every subfield @ of C containing Qay, the set 2y (P) is stable under
[ (caz +do) Fflaz) for every a € GL3 (Q).

(iv) Zi is spanned by Zi(M, N; 1) for all combinations of (M, N, ).

W) If f(2) = Dceqel§)e(§z) € Ak, then the coefficients c(§) belong to a
field that is finitely generated over Q.

PROOF. Before starting our proof, we note that 25 (M, N; 1) # {0} only
if (—1) = (=1, since f||x(—1) = (—1)¥] £. Now we prove the statements of
our theorem first for .#; and .. The case of 4}, will be treated in §7.9. We
take n and A of (5.12) and assume that 24| N. By Theorem 4.7(2) and (5.12a),
ke My, (F(N)7 Q) for every weight k£ > 0. Clearly A has no zeros in $), and
so div(A) considered on V; is Cy. Since e(z/N) is the local parameter at co on
(Vn)c and (Viv)c is a Galois covering of (V1)c, we see that div(A) considered
on Vy is NCx. Thus div(n) considered on Vy is (N/24)Cy. Suppose f €
M1 (I(N)). Put g = f/n** and Dy = (kN/12)Cn. Then g € 4 (I'(N))
and div(g) = div(f)—div(n**) = —Dy, and so g € L(Dy). Conversely, given
g € L(Dy), we easily see that gn®* € ., (I'(N)). Moreover, f € .#,(Q)
if and only if g € % (Q), and so 4 (I'(N), Q) = {gn** ’g € L(Dn, Q)}.
Thus from (7.4b) we obtain

(7.7) M1 (I(N)) = 4 (I'(N), Q) ®q C

for every weight k at least when 24|N. Therefore # ), = .#1,(Q) ®q C, and
so every element f of .Zy is asum f =) _,aq, with a finite subset A of
C and ¢, € #1(Q). Then for o € Aut(C) we see that f defined by (7.5)
equals ) 4 a”qa, which belongs to .#. This proves (i) for .#}. Also, if f
is as in (v), then the ¢(§) are contained in the field generated by all a € A
over Q. This proves (v).

To discuss .k, we have to be careful about the contribution of cusps to
the divisor in question. To simplify the matter, put t,(z) = n(az)/n(z) for
a € I'(1). Then t,(2)? = (ja(z) with a root of unity ¢, tas(z) = ta(B2)ts(2)
for a, B € I'(1), and by (5.12a), t,(2) = ha(2) if € I'(24). Put

(7.7a) glwa = ta(z)"**g(az)

for a function g on $. Let f € .7} (F(N)) with N € 24Z. Then for every
o € I'(1), we see that flre € S, (I'(N)) and flra = D07 ca(n)e(nz/N)
with ¢q(n) € C, and so we see that div(f) > Cn, where div(f) is considered
on Vy. The above argument about g = f/n** with f restricted to . (F(N))
shows that . (I'(N)) = {gn**|g € L(Dy — Cn)} and % (I'(N), Q) =
{9n** | g € L(Dnx — Cn, Q)}. Thus from (7.4b) we obtain

(7.7b) ZK(I(N)) = Z,(I'(N), Q) ®q C
if 24|N. This proves (i) for .7.
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As for (iii), we note that GLj (Q) is generated by ¢, P, and the elements
diagfe, 1] with 0 < e € Q, by Lemma 2.2(iv) and (1.3). Thus it is sufficient
to prove (iii) for « of three such types. The cases with the latter two types
are easy. We also note that 2% (Qap) is stable under ¢. (In fact 2% (Qap) is
stable under GL3 (Q); see [S71, Theorem 6.23].) Now let f € . 1(Qab)-
Then flyt € A4y by Lemma 5.4, f/n** € o/(Qap), and (flr0)/(1**[x ) =
(f/n**) o1 € (Qap). Since 7|1 = n?*, we see that flt € A (Qap).
Thus we obtain (iii) for .#. Since k(Qab) = A 1(Qab) N Sk and S, is
stable under f — f|r ¢ as noted at the end of §5.8, we obtain (iii) for ..

To prove (iv), we observe that f — f||xy for v € I'(N, N) for even
N defines an action of I'(N, N)/I'(N) on Zj(I'(N)) with 2" = .# or ..
(This is so even for 4%, provided (iii) is established for .4%.) Now the map
7+ a5 is a homomorphism of I'(N, N) into (Z/NZ)* whose kernel is I'(N),
and so 2, (I'(N)) as a representation space of I'(N, N)/I'(N), or rather of
(Z/NZ)*, can be decomposed as the direct sum of 2% (N, N; ¢) with the
characters 1) modulo N such that 1(—1) = (—1)[¥], from which we can easily
derive (iv). As for (ii), we first prove:

Lemma 7.6. (i) Given o€ Aut(C), three positive integers M, N, K such
that K € MZNNZ, and v € I'(M, N), there exists an element § € I'(M, N)
such that dg — dy € KZ and f7||xy = (f|lx B)7 for every f € M (I'(K)),
where we assume that both M and N are even if k ¢ Z.

(ii) For f € M (M, N; )N A 1,(Qab) with k ¢ Z and even M, N, define
fX by fX(2) = (—iNz2)7%f( — (N2)7Y). Then X € (2, MN;4¢p) N

M 1,(Qap), with p(d) = <%), and for every o € Gal(Qap/Q) we have

(k]

-1

()X =x(s)7(fX)7, where x(d) = (d) (7> and s is an integer prime
to MN such that e(1/MN)° =e(s/MN).

PrOOF. We put G = GL2(Q) and define the adelization G of G as usual;
see [ST71, §6.4] or [S97, Section 8]. We also put Gay = GL$ (R) and define
subgroups Ga, U, and Uy of Ga by
(7.7¢) Ga+r ={z€Ga|ra€Gat}, U=0Gay [1, GL2(Zy),

(7.7d) UN:{x€U|xp71-<NZp for every p},

where x4 resp. x, denotes the archimedean component resp. p-component of
x, and Hp is the product over all prime numbers p. Notice that I'(1) =
SLy(Q)NU and I'(N) = SLy(Q) NU(N). We can let Gay act on 2% (Qap)
as a group of automorphisms; see [S71, Theorem 6.23]. This action can be ex-

tended to the graded algebra ZZO:O . (Qab), where o, (Qup) is the @ (Qap)-
linear span of 1. (Qap). This is explained in [S07, Section A5]. Namely, there
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is an action of Gay on > 50 . (Qup), written (z, f) + fI* for x € Gay

and f € o, (Qap), with the following properties:

(7.8a) The map f — fI1 gives a Q-linear map of </, (Qay) onto itself.

(7.8b) (f[w])[y] = fley] (fg)[w] = flalgle],

(7.8¢) flol = (coz+do) " flaz) if a € GLT(Q).

(7.8d) fl = U if w = diag[1, t=1] with t € [, Z;. where {t} is the image
of t under the canonical homomorphism of Q onto Gal(Qan/Q) and
1 is understood in the sense of (7.5).

(7.8¢) For f, g € @ (Qab), g # 0, we have fl/gll = (f/g)7®) with r(x)
defined in [ST1, §6.6].

(7.8f) Given f € (Qup), there exists M € Z, > 0, such that fI*! = f for
every v € Upy.

(7.8¢) If t € [1,Z,,s € Z,0 < N € Z, and st, —1 € NZ, for all prime
numbers p, then e(1/N)iH = e(s/N).

We put 4 (D(N), Qu) = {f € (Qus) | fly = f for every 7 € I(N)}
and prove

(7.9) fl=f for every f € o, (I'(N), Qun) and w € Uy N SL2(Q)a.

To prove this, given f € 4y (F(N), Qab), take M as in (7.8f). We may
assume that N|M. Put Wy = Uy N SL2(Q)a. By strong approximation (see
[S71, Lemma 6.15]), SL2(Q)a = Wi SL2(Q), and so if w € Wy, then w =
yy with y € Wiy and v € SL2(Q). We see that v € Uy N SL2(Q) = I'(N)
and fl¥ = f by (7.8f). Thus fl*I = fW = 01 = ||, v = f, which proves
(7.9).

In view of (7.7) it is sufficient to prove (i) of our lemma when f €. (I'(K),
Q). Let o € Aut(C) and v € I'(M, N). We can find ¢ € 1, Z} suchthat o =
{t} on Qap. Put u = diag[1, t~!]. Again by strong approximation, uyu~! =
zf with @ € Wi and € SLya(Q). Then dg —d, € KZ, € I'(M, N), and
flwrl = fleful By (7.8c¢, d), flul = fllx~y and by (7.9), fleBu] — flBu) —
(fllx )™ = (fllx B)1} = (fllx B)°. This proves (i) for integral k.

Suppose k ¢ Z and M, N € 2Z;let f € 41 ('(K), Q). Put m =k—1/2.
Then 07 1f € 7, (F(K), Q), and the above argument with f replaced by
0=1f shows that (07'f)|lmy = (07 f)|lm B)". We have (071 f)7||lmy =
Oll1727) M)y O )llm B = Olliy2 8)" (flli B), and O]l j2y = Oll1/2 B
= 0, and so we obtain our lemma when k ¢ Z. This completes the proof of
(1).
As for (ii), fX € 1 (Quab) by Theorem 7.5(iii). Now take t € [1,Z; and
s € Z so that 0 = {t} on Q. and st, — 1 € MNZ, for all prime num-

bers p. Then e(1/MN)? = e(s/MN) by (7.8g). Put a = L(\)/. Ol} LU =
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diag[1, t7!], and v = diag[t !, t]. Take v € I'(1) so that v —v, < MNZ, for
all prime numbers p. Then au = vua. Put g = 072 f. Then g € % (Qup)-

(K]
-1
Since %% € (2, 2; ¢) with p(d) = <7> , we see that goe = x(d:)g

for every ¢ € I'(M, N), where x = 9. By (7.9), go~y = g, and so
(goa)? = glovl = glvuel — (gor)7oa = x(d,)7g” 0a = X(s)797 0. Now 6(—
(Nz)™1) = (—iNz)Y/20(Nz), and so (§%*)X = §?#(Nz). Since 67 = 6, we have
[(629)X]7 = [(02k)”]X. We have fX = (0?*)Xgoa = 6?*(Nz)goa. We easily
see that goaod = y(ds)goa for every § € I'(1, MN) and 6?*(Nz) belongs
to . #1(2, N; op) with p as in our lemma. Thus X € .#(2, MN; 1p), and
(f¥)7 = (0**)%(goa)” = X(5)70*"(Nz)g” o = X(s)7(f7)~. This proves (i)
and completes the proof.

7.7. We now prove Theorem 7.5(iia) for .#j and ;. Put K = MN.
Given o€ Aut(C), fe# (M, N; ), and yeI'(M, N). take B I'(M, N)
as in Lemma 7.6. Then f7||xv = (f||x8)7 = ¥(dg)? f7 = ¢¥(d,)? f?, and so
fe e M (M, N; ), which proves Theorem 7.5(iia) for .# . Then the case
of 7} follows immediately. Theorem 7.5(iib) will be proven in §7.9.

To prove Theorem 7.5 for A7, we first put

1 [
(7.10) Ey(2) = gg mt > < > d> e(nz),
n=1 *0<d|n
(7.11) Dy = (2mi)~t6,, DE = (2mi)P6sE,

where 0j, and 4§} are the differential operators defined in §6.7. Taking the
logarithmic derivative of the expression A(z) = e(z) [[—; (1 — e(nz))24, we
easily find that

(712) A_1D12A = —24F,.

Therefore by (6.14b), Es|2y = Es for every v € I'(1), and so from (7.10)
we see that Fy satisfies (7.3a, b, ¢) with I' = I'(1) and k& = 2. Thus E; €
A3 (I(1), Q). Also, E; is an Eisenstein series as will be shown in (8.14e).

Lemma 7.8. For every subfield @ of C and every congruence subgroup
I of I'(1), which is assumed to be contained in I'? if k ¢ 2Z, the following
assertions hold:

(i) The operator D sends N"(I, @) into JV,ZF;I’;(F, ®); in particular, it
sends M (I, @) into N}, o (I, D). Moreover, (D} f)” = D} f7 for every o €
Aut(C).

(ii) Every element f(z) of N%(I, @) can be written in the form

(k/2)—1 .
D By if k€ 2Z,

f(2) = Z Dzingp N {c 2 2 z]“
0<p<k/2 if k¢ 27
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with g, € M y—op(I', D) and c € P.
(iii) Ny =My if k<2.

PRrROOF. Denote by A; the set of all functions f of the form

(7.13) F(2) = Eaco(my) ™ fulz)
with holomorphic functions f, on . We note that
(7.14) Dy (my)~® = e(my) 7P with c € Q* if k> a >0,

which can easily be verified. From the definition of Dy and (6.14b), we easily
see that (i) is true if p = 1. Then the general case can be proved by induction
on p. To prove (iii), suppose f of (7.13) belongs to A% (I, ®); suppose also
k € Z for the moment. For v € SL2(Q) we have (yov)~% = [j,]?*y~* and
37 = jy — 2icyy, and so
t
(7.15) Flley =D _(my) =52 7* Gy — 2icy9)*(fa o),
a=0
which can be written EZ:O(Wy)_“ ga~ With holomorphic functions g.. View-

1 t

ing this as a polynomial in y~" and comparing the coefficients of y~*, we

obtain g, = jit_k(ft o7), that is, gy = fi|lk—2t7, because the function

y~! is an algebraically independent variable over the field of meromorphic
functions on $. In particular, g,y = f; if v € I', and so fi|gx—2ty = f: for
~ € I. By condition (7.3c), giy has a Fourier expansion finite at oo for every
v € SL2(Q). This shows that fi € A j_2:(I"). Therefore, if t > 0 and f; # 0,
then k > 2t. Consequently, t = 0 if k < 2, which proves (iii).

We prove (ii) for f € AL(I, &) as above with f; # 0 by induction on ¢. We
have seen that f; € .#_2¢(I"). This combined with the definition of A}(I, )
shows that f; € M _2:(I, ). Suppose k = 2t; then f; € A o(I, P) = P.
From (7.14) we see that DY ' Ey = b(my) ™t + ¢ with b€ Q% and ¢ € A;_;.
Put p = f — (fi/b)Dy ' Ey. Then p € :/V,z_l(]“, ®). In particular, if k = 2,
then p € A5(L, ®)NAg = M o(I', §), which settles the problem. If k > 2, we
apply induction to p. Thus we obtain (ii) when k = 2¢. It remains to consider
the case k > 2t > 0. Then f; € Ao (I, P), and by (7.14) we see that
D! . fr=c(my) "t fi+r with c€ Q% and r € Ay_q. Put g= f—c 1Dt _,, fi.
Then g € JV,zfl(F, @), and applying induction to g, we can complete the
proof of (ii).

So far we have assumed k € Z. The case k ¢ Z can be proved in the same
way; we have only to make the meaning of f||x«a or Jy k precise, which can
easily be done. Our proof is now complete.

7.9. We now return to Theorem 7.5 and prove the assertions concerning
N Given o € Aut(C) and f as in (7.3a), define f7 formally by (7.5).
Clearly FE§ = E,. Also, we can easily verify that (Dyf)? = Dy f? for every
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f € Ny, and so (DY f)? = D? f7 for every p. Since Theorem 7.5(i) for .4,
was proved, from Lemma 7.8(ii) we obtain Theorem 7.5(i) for .4%. As for
(iii), it is sufficient to prove it for « = diagfe, 1] with 0 < e € Q, a € P, and
a € I'(1). The first two cases are clear. If o € I'(1), we have Es||s v = Eq,
and so the desired result follows from Lemma 7.8(ii), (6.14c), and Theorem
7.5(iii) for A y.

To prove Theorem 7.5(iia) for .4}, we consider the sum expression for f as
in Lemma 7.8(ii), and take v and 8 in I'(M, N) as in the first paragraph of
§7.7. Since they are independent of the weight k, we have (szngp)gﬂk v =
(Di—apgp)lley = Dy, (97 lk—2p7) = D5, (gplle—2p B)7 by (6.14c); sim-
ilarly (D37 )|y = DY (Ball2 )7, and so 7y = (f]xB)°
from which we obtain Theorem 7.5(iia) for .#%. Theorem 7.5(iv) for .4}, was
proved in the paragraph above Lemma 7.6.

It remains to prove Theorem 7.5(iib). From Lemma 7.8(ii) and (7.7) we

obtain
(7.16) Ne(I(N)) = A(I(N), Q) ®q C if 24|N.
We apply Lemma 2.11 to the present setting with 2 (F(NO), Qab) , Qap, and
C as V, F, and K in that lemma, where Ny = 24M N; we also take {a}
there to be the set of the maps f — fllxy — ¢¥(dy)f for all v € I'(M, N).
Then W =V ®@r K = 2, (I'(No)) by (7.7), (7.7b), and (7.16). By The-
orem 7.5(iii) that is already proved, V is stable under these maps. Then
Naca Ker(@) = Zi (M, N; 4) and (), 4 Ker(a) = Zi (M, N; 1) N Z5(Qab)-
Therefore Lemma 2.11 gives Theorem 7.5(iib), and the proof of Theorem 7.5
is now complete.

We add here two remarks. First, in (5.14) we defined f, for f € #.
If we mean by p the complex conjugation in C, then this coincides with f*
defined by (7.5). However, we employ f, in addition to f” for some notational
reasons.

Next, we assumed 24|N in (7.7) and (7.7b) merely for expediency. In fact,
we can prove better and more comprehensive results as follows.

Theorem 7.10. Let 2 denote M, ., or N as in Theorem 7.5 and let
k €27'Z, > 0. Then the following assertions hold.

(i) For every congruence subgroup I' of I'(1) the set Zi(I") is spanned by
its Qap-rational elements, provided I' C I'? if k ¢ Z.

(ii) Let I' denote any one of the groups I'n(N), I'1(N), I'(M, N), and
I'(N) with positive integers M and N, where I'b(N) = {y € I'(1) | ¢, € NZ}
and I''(N) = {y € IL(N) |dy — 1 € NZ}. Then Zi,(I') = 2x(I', Q) ®q C,
provided I' C I'? if k ¢ Z.

Proor. To prove (i), take a multiple Ny of 24 so that I'(Ny) C I'. We then
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apply Lemma 2.11 to the present setting by taking 2% (F(NO)7 Qab), Q.b,
and C to be V, F, and K in that lemma. We also take {a} there to be the set
of the maps f — f|lgy— f forall v € I. Then W =V ®@p K = 25 (I'(No))
by (7.7), (7.7b), and (7.16). By Theorem 7.5(iii), V is stable under these
maps. Then (., Ker(a@) = 25(I") and [ ¢ 4, Ker(a) = Zx (I, Qab), and so
we obtain (i) from Lemma 2.11.

acA

Given I as in (ii), we note
(7.17) Zp(I)° = Zi(I') for every o € Aut(C).

This is included in Theorem 7.5(iia) if I' is IH(N) or I'(M, N), because
%k(FO(N)) = Zi(1, N; XO) and ,%”k(F(M, N)) = Zir(M, N; X0)7 where
Xo is the trivial character. Now, as shown in the proof of Theorem 7.5(iv),
2 ((N)) is the sum of 23 (N, N; 1) for all characters ¢ of (Z/NZ)* such
that ¢(—1) = (=1, and so (7.17) for I' = I'(N) follows from Theorem
7.5(iia). Also, (7.17) for 2" = A follows from Lemma 7.8(ii) combined with
(7.17) for 2 = .4 . Therefore we have only to prove (7.17) for = .4 or .
when I' = I'1 (N). Clearly

M (TI(N)) = {f € i (D(N)) | flliy = f for every 5 € T (N)}.

Let f € #(I1(N)),y € I(N), and ¢ € Aut(C). Taking M = 1 and
N = K in Lemma 7.6(i), we have f7|ry = (f||xB3)7 with some § € I'1(N).
Then we find that f7||,y = f7, and so f € .# (I (N)), which proves (7.17)
when 2,(I") = 4 (I''(N)). The case of .7}, follows from this immediately,
since /] = S.

To prove (ii), in view of (i), it is sufficient to show that 2 (I, Qap) is
spanned by its Q-rational elements. Take a Qap-basis B of 25(I', Qab). By
Theorem 7.5(v) and Lemma 7.8(ii) we can find a finite extension K of Q
contained in Q,p such that every member of B is K-rational. By (7.17),
2, K)° = Z,(I, K) for every o € Gal(K/Q). Therefore Z5(I', K) =
Zi(I, Q) ®q K by Lemma 2.13. This proves (ii) and completes the proof.

Lemma 7.11. FEvery element of A}, is slowly increasing at every cusp.

ProoOF. Given f € A%, take the expression for f as in Lemma 7.8(ii).
By Lemma 6.10, Dﬁ_gpgp is slowly increasing at every cusp. Now take Fs in
place of ¢ in the proof of Lemma 6.10. Then from the expression (7.10) we
easily see that 6% Fs is slowly increasing at every cusp, and so we obtain our
lemma.

Lemma 7.12. Given 0 <t € Q, put 0,(z, \) = 6(0, tz; \) with O(u, z; \)
as in (4.48b). Then for o € Sp(n, Q) and 7(z) = ja(2)"/? there exists an
element (1 of Z(Q™) such that O¢(az, \) = r(2)0:(z, p). Moreover, if X\ is
Qab-valued, then so is p.
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PROOF. Put 3=diag[tl,, 1,]a-diag[tl,, 1,]7t. Then B€Sp(n, Q), t-a(z)
= B(tz), jg(tz) = ja(z), and O, (az, X) = 0(0, B(tz); A) = r(2)0(0, tz; u) with
p € Z(Q") determined for A and 8 by (4.49g). This proves the first part
of our lemma. Suppose A is Qap-valued; then 0;(z, A) € .#1/2(Qab), and so
0:(z, ) belongs to .41 /2(Qap) by Theorem 7.5(iii). This completes the proof
when n = 1, since the quoted theorem concerns only that case. However, a
similar fact is true in the case n > 1 too, as proved in [S00, Theorem 7.11].
We will later employ this lemma only in the case n = 1.

Lemma 7.13. (i) Let f(z) = > ane(nz/v) € M (v, N/v; ¢), where
O<NeZ v=1ifkeZ and v=2 if k¢ Z; we assume N € 47 if
k ¢ Z. Let s be the conductor of ¥. Given a character x modulo rt, where
0 <teZandr is the conductor of x, put g(z) =~ x(n)ane(nz/v). Let
to be the product of all the prime factors of t. Then g€ .# 1. (v, M/v; x*),
where M is the least common multiple of N, t3, r%, and 7s.

(i) Given [ as in (i), put h(z) = 32, =1 ane(nz/v) with a positive
integer t. Define to as in (). Then h € # (v, M/v; 1), where M is the least
common multiple of N and t3.

ProoF. We first prove (i) when x is primitive, that is, when ¢ = 1.

For ueZ let &(u) = [é Vul/r

} . Using (2.3a), we easily see that G(Y)g =
o a bv a b
S XLt 1= |yt | er apyand = 10
with a’ = a + Mcu/r, b = b+ du(l — ad)/r — cd*>u®>M/r?, and d' = d —
cd*>uM /r. Then ~' € I'(v, M/v), d' —d € sZ, and &(u)y = v'€(d?u). Assum-

ing that k € Z for the moment, we have

(%) Fllrg(u)y = fllev'€(d®u) = o (d) fllr&(d*u),

and so
gllw—Zx ) Fll1€ (u ZX ) Fllk€(d*u) = 9 (d)x(d*)G(x)g,

which proves ( ) when k € Z and t = 1.
If k ¢ Z, we have to justify (%) by checking (4.40) for h., and h.,. First
suppose r is odd; then M = 4r2q with ¢ € Z, and so d — d’ € 4qcZ. Thus

B Mc\  (4qc\  [(4qc\ [ Mc . .
Edsd/and(d>(d>(d/)<d/),fromwhlchweobta1n

(*). Next suppose r is even; then r = 2% with a > 1 and an odd ry. Thus
M = 22%r2q with q € Z and d — d’' € 4qcZ, and so we obtain (*) in this case
too. This completes the proof of (i) when ¢ = 1.

We next prove (ii). Taking the prime decomposition of ¢, we can reduce the

problem to the case where ¢ is a prime number. Assuming this to be so, put

0:) = S auneltnz/v) and ) = | o *4/" ] Then £, slnta) = .
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Define the matrices v and 4 in the above proof of (i) with ¢ in place of r
and M defined as in (ii). Then v, v € I'(v, M/v), n(u)y = v'n(d*u), and
we find that f|[xn(u)y = fllxy'n(d*u) = ¥(d) f||xn(d*v). Since d is prime to
t, we easily see that tf||y = ¥(d)tl, and so ¢ € (v, M/v; ). We have
clearly h = f — ¢, from which we obtain (ii).

Finally to prove (i) in the general case, we have only to observe that it can
be obtained by combining (ii) and the special case of (i) in which ¢ = 1. This
completes the proof.

In the proof of Lemma 5.5 we proved (5.8) only when ¢ is primitive. That
result combined with Lemma 7.3(ii) settles the case of imprimitive ).

Lemma 7.14. For f(z) = Y.~ c(n)e(nz/N) € M (I'(N)) with N €
vZ, put (Pf)(z) = (v/N) ZN/V (z 4+ vu), where v is as in Lemma 7.13.

Then (Pf)(z) = Zn oc(Nn/v)e(nz/v), and (Pf, h) = (f, Ph) for every
h € .Zk(I'(N)). Moreover, if f € #1(N, N; ), then Pf € M1 (v, N; ).

PROOF. The first equality for (Pf)(z) is easy. Next, for h € .7 (I'(N))

we have, by (6.12),
N/v N/v

(Pf, h V/N<Zf +vu), >:(V/N)<f,uz_:lh(z—yu)>:(f,Ph).

a bv

Suppose f € (N, N; ¢). Given v = [Nc i

] € I'(N, N) define ~' =

Ne d
we see that 7/ € I'(N, N), d — d’ € veNZ, and (x) in the proof holds with

/ /
[ a b as in the proof of Lemma 7.13 with =1 and M = vN. Then

&(u) = [(1) Vlu} , and so
N/v N/v
(POl = W/N) Y fllséu)y = ¢(d)(v/N) > fllré(d*u) = ¢(d) Pf.
u=1 u=1

Now (Pf)(z +v) = Pf, and I'(v, N) can be generated by I'(N, N) and
£(1), as will be proven in Lemma 8.18. Therefore Pf € .# (v, N; 1), which
completes the proof.

Lemma 7.15. Let K be a multiple of N, and A a complete set of repre-
sentatives for I'(N)/I'(K); suppose N € 2Z if k ¢ Z. For f € M (I'(K))
put q(f) = #(A) 'Y caflley. Then q(f) € Ak (T(N)), q(f)” = q(f°)
for every o € Aut(C), and (f, h) = (q(f), h) for every h € Z,(I'(N)).

PROOF. That q(f) € #(I'(N)) is easy. For h € .4 (I'(N)) we have,
by (6.12)

). 1 = # A (3 by 1) =) (5 S o) = (7,

YEA YEA
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Let o € Aut(C). Then the proof of Lemma 7.6(i) shows that the element
there can be chosen so that v — § gives an automorphism of I'(N)/I'(K).
Writing 3., for 3, we obtain q(f?) = #(A)~! ZWGA folley = #(A)~ ! ZA&A
(flleB+)7 = q(f)?. This completes the proof.

8. Dirichlet series and Eisenstein series

8.1. We are going to consider various types of Dirichlet series associated
with modular forms. In order to study their analytic properties, the gamma
function I'(s) is essential, and so we first recall its basic properties:

(8.1a) I'(s) s a meromorphic function on the whole C.

(8.1b) I'(s)~! s an entire function.

(8.1c) I'(s+1) =sI'(s).

(8.1d) The set of poles of I' consists of 0 and all negative integers, and each

pole is of order 1.
(8.1e) I'n)=Mn-1)! if 0<nelZ
These are well known. We will often be using
(8.2) I(s)a™*® :/ e "7 ldt if a€ C, Re(a) >0, and Re(s) > 0.
0

Here a™® = exp(—sloga) with the standard branch of loga for Re(a) >
0. Indeed, the formula is well known for 0 < a € R. Now the integral is
meaningful for Re(a) > 0, and defines a holomorphic function of a. Since it
coincides with I'(s)a™® for 0 < a € R, we obtain (8.2) as stated.

Given f(z) = > cqace(§z) € 4 with an integral or a half-integral
weight k, we put, ignoring ag,

(8.3) D(s, )= act™*,

£>0
(8.4) R(s, f) = (2m)~°(s)D(s, f).

We can put f(z) = > °_cme(mz/N) as in Lemma 6.2. Then D(s, f) =
Ny > cmm™ %, and so from (ii) of the same lemma, we see that the right-
hand side of (8.3) is convergent for Re(s) > k+ 1, and so D(s, f) is holomor-
phic for such s.

For z =4y with 0 < y € R we have f(iy) —ao = Z§>o age=2™%Y and so
in view of (8.2) we obtain

(8.5) / [f(iy) — ao]y*'dy = (2m)*I'(s) > _ac&™* = R(s, f)

0 £>0
for Re(s) > k + 1. Termwise integration is justified, since the series for such
s is absolutely convergent. Fixing a positive integer N, put
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(8.6) f#(z) = N7 (—iz)F (= (N2)7Y),

where the branch of (—iz)~* is taken so that it is real and positive if z €
HNiR. By Lemma 5.4, f# € .4}, and so we can put f#(z) = > oceq bee(€z).
Thus D(s, f#) and R(s, f#) are meaningful.

Theorem 8.2. In the above setting R(s, f) and R(s, f#) can be continued
as meromorphic functions to the whole s-plane with the following properties:
bo
s—k
(8.7b) R(k — s, f) = N5=F/2R(s, f#).

(8.7a) N*/2R(s, f) = 4oy + an entire function,
s

In particular, R(s, f) is an entire function if ag = by = 0.

This is a standard theorem first proved by Hecke in a somewhat different
formulation. For the proof, see [S07, Theorem 3.2].

8.3. For a Dirichlet character ¢ and a positive integer N we put, as we
did in §2.9,
(8.8) Ly(s,v)= > w(nn ",
(n,N)=1
where the sum is extended over the positive integers n prime to N. If ¢ is
primitive, then Li(s, ¢) is the L-function of %, and is usually denoted by
L(s, ). Let x be the primitive character associated with . Then

(8.9) Ly(s, ¢) = L(s, ) [[ (1 = x(p)p™°).

p|N
Thus the analytic properties of Ly (s, ¥) can be reduced to those of L(s, x),
which can be summarized as follows. Let r be the conductor of x and let
x(—1) = (=1)” with v =0 or 1. Put

(8.10) R(s, x) = (r/m)“+2 0 ((s +v)/2) L(s, x)-
Then R(s, x) as a meromorphic function of s can be continued to the whole
C, and satisfies the functional equation

(8.10a) R(s, x) = W(x)R(1 — 5,X) with W(x)=i""r 2G(x),

where G(x) is defined by (2.3). Notice that |[WW(x)| = 1 because of (2.3c).
Moreover, R(s, x) is entire except when y is the principal character, in which
case it is holomorphic on C except for simple poles at s = 0 and 1, with
residues 1 and —1 respectively.

These are well known, and in fact, can be obtained from Theorem 8.2 by
taking f to be 6y of (5.7). For simplicity we treat here the case of nontrivial
x. (If x is the principal character, then L(s, x) = ((s), and its functional
equation is well known.)



8. DIRICHLET SERIES AND EISENSTEIN SERIES 53

The notation being as in Lemma 5.5, put f(2) = 0, (z/7), f*(2) = 0;(2/7),
1
a= [2 g ] ,and w = Y(—1)r"Y2G(¢). Since jE(z) = r*j#(2), we have

F(=1/2)r=F 5 (z/r) ™" = 0y (=1/r2)j5(z/r) 7" = (Oyllka)(z/r). By (5.9) this
can be written
(8.10b) f(=1/2)27"(—iz) 2 = wf*(2).
Take N = 1 in (8.6). Then the left-hand side of (8.10b) is i =¥ f#. Thus f# =
Ywft = W) f* with W(y) of (8.10a). We see that R(s, f) = (2m)°I'(s)
Doy Y(n)nt (n?/2r)7% = (r/m)*I(s) 352 h(n)n” "%, and so
(8.10c) R((s+v)/2, f) = R(s, ¥).
By (8.7b) we have R(k — s, f) = R(s, f¥) = W(¥)R(s, f*). Substituting
(s+v)/2 for k — s, we obtain (8.10a) with ¢ in place of x.

We add here a formula that will be needed in Section A3. In [SO07, p.20] it
was shown that

R(k— s, ) = / Fliy)yh oy + / )y dy,

and so
(8:10d)  R(s, ¥) :/ f(iy)y(5+”*2)/2dy+W(w)/ Friy)y 9 2 dy.
1 1

We have f(iy) = > oo, ¢(n)n” exp(—mn?y/r) and f*(iy) is the series of the

same type with 1 in place of .

8.4. There are two types of Eisenstein series with respect to SLa(Q). The
first type can be defined for both integral and half-integral weights, but the
second type can be defined only for integral weights. There is also the question
whether the series involves a complex variable, which is usually denoted by s.
In this book we first define the series with s, and specialize s to an element
of 271Z. We begin our discussion with two easy lemmas:

Lemma 8.5. + The series D g4, pyeze Mz +n|~7 with a fived z € C, ¢
R, is convergent for 2 < o € R.

PROOF. Let L =Zz+7Z. For 0 < n € Z let Q,, be the parallelogram on the
plane C whose vertices are £(nz +n) and +(nz —n). Then there are exactly
8n points of L lying on the sides of @),,. Take » € R, > 0, so that the circle
|z| = r is inside Q1. Then [¢| > nr for any £ of such 8n points, and so for
o >0 we have Y e [§]77 < D000, 8n(nr) 7 =87 33 n' =7, which is
convergent for o > 2 as expected.

8.6. For two positive integers M and N we put (as we did in Theorem 7.5)
(8.11) I'(M,N)={yerIQ)|b,€ MZ, c, € NZ}.
We also put
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(811a)  Iy(N)=I(1,N), I1(N)={ye€Io(N)|a,—1€ NZ}.

These are traditional. Notice that the condition a, —1 € NZ is equivalent
to dy —1 & NZ. For a character 1 modulo M N we put

(8.11b) (M, N; 6)={f e | fller=1b(dy)f for every ve F(M, N)},
(8110) yk(Ma N; w):ykm%k(Ma Nv 1][))’
(811d) %k(Na w):%k(la N; 1/’)7 yk(Na w):yk(la Nv 1/’)7

where we assume that M, N € 2Z if k ¢ Z. In fact, (8.11b) and (8.11¢) are
included in (7.6). Since flx(—1) = (—=1)*If, we have . (M, N; ) = {0}
if (—1) # (=1)*. Observing that v ~ a, (mod N) gives an isomor-
phism of Iy(N)/I(N) onto (Z/NZ)* (if N > 1), we see that ./ (I1(N))
resp. .71, (It (V) is the direct sum of . (N, 1) resp. .7 (N, ) for all char-
acters 1 modulo N.

For two characters ¢ and x modulo N we have

(8-11e) (MK(N, ¥), Sk(N, X)) =0 if x # .
This can be seen by taking « of (6.12) to be an element 7 of IH(N) such
that 1(dy) # x(dy).

Lemma 8.7. Put I' = I'(M, N) and I['x, = I' N P with fired M and N;
put also

M _

{{(c,d)eNszyMcz+dzzz,d>o} if MN > 1,
M —

{(1,0}U{(c,d) EZXZ|cZ+dZ=2,d>0} if MN =1.
Then each coset I'noar in I'no\I' contains an element v such that (¢, dy) €
WM, and the map Foocv +— (cy, dv) with such a 7y gives a bijection of I \I"
onto W

PRrROOF. Since I'no= {7€F| (0, 1)y==£(0, 1)} and I' is generated by —1
and [é ]\14} , we easily see that the map from I'\,\I" to W can be defined
as described above and that it is injective. Conversely, let (¢, d) € W} with

MN > 1. Then d is prime to Mec¢, and so we can find a, b € Z such that

ad — Mbc=1. Put v= [(2 bg/l

(¢, d), which proves our lemma when M N > 1. The case M N =1 requires only
an additional observation that (1, 0) corresponds to ['xt.

] . Then v €I and our map sends I 7y to

8.8. The first type of Eisenstein series is defined for any weight & and
a congruence subgroup I' = I'(M, N) with some M and N; we assume that
M e€2Z and N € 2Z it k¢ Z. We put I'xc = PN I and
(812) Ek(z7 8) = Ek(z> S5 Fa 77[1) = Z w(d’y)ysuk v

YEL T
or more explicitly,
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(8.122)  By(s s Do) =y S w(dy)i(e) ()
YELN\T

Here z € 9,5 € C,y = Im(z), ¥ is a character modulo M N such that
Y(—1) = (=) and j% is as in (5.1b). Clearly the sums of (8.12) and
(8.12a) are formally well defined. By Lemma 8.7, for o = Re(s) these sums are
majorized by y° ZO#C, 1)z |cz+d|~2°~% which is convergent for 20+k > 2
by Lemma 8.5. Thus Ei(z, s) is defined as a holomorphic function of s at
least for Re(s) > 1 — k/2. Moreover, we easily see that

(8.13) Ei(yz, s) = (dy) ' jE(2) Ex(z, s) for every v €I,
(8.13a) E_i(z, s T, 0) =y*Er(z, 5 — k; I, xov),

where yo is the principal character if k¥ € Z and xo(d) = (_Tl) if k¢ Z; we
use (5.3c¢) for the proof of (8.13a).

8.9. The second type of Eisenstein series is defined for an integral weight
k. For k € Z, a positive integer N, and (p, q) € Z* we put
(8.14) €N(z, s;p,q) =y* Z (mz+n)Fmz+n|"* (2€89,s€cC),
(m,n)
where the sum is taken over all (m, n) € Z? such that 0 # (m, n) = (p, q)
(mod NZ?). From Lemma 8.5 we see that the series of (8.14) is convergent
for Re(2s) + k > 2. Also, we can easily verify that

(8.14a)  jy(2)7*€N (vz, sip, @) = €N (2, 55 (p, q)y) for every € I'(1),
(8.14b) eN (2 50, 9) =y €Y (2,5 — k; p, q),

(8.14c)  €N(rz, s;p, q) = ZTSQSQN(Z, s;rp, ¢ +iN) (0<reZ),
i=1
(8.14d)  €iN(z, s; hp, hq) = R FEY (2, s5p,9)  (0<h € Z).

Theorem 8.10. (i) If k € Z, there is a real analytic function F(z, s) of
(2, 8) €9 % C which is holomorphic in s and coincides with

s(s = 1)I'(s+ k)€Y (2, s;p, q)

for Re(2s) + k > 2, where k' = Max(k, 0). The factor s(s—1) is unnecessary
if k#0. If k=0, then I'(s)& (2, s; p, q) has residue TN~2 at s =1, and
—0(p/N)d(q/N) at s =0, where 6(x) =1 if x € Z, and 6(x) =0 otherwise.
(ii) For every fixed s € C, F(z, s) as a function of z belongs to Cj, (F(N))
Moreover, F(z, s) is slowly increasing at every cusp locally uniformly in s.

ProOOF. In view of (8.14b) it is sufficient to prove the case k > 0. The
first assertion can be proved in a rather elementary way as an application of
Theorem 8.2. For details, the reader is referred to [S07, Theorem 9.7]. The
first part of (ii) follows from (8.14a), since &Y (z, s; p, q¢) depends only on



56 III. THE RATIONALITY AND EISENSTEIN SERIES

(p, q) modulo NZ?. The second part of (ii) will be proven in §A3.7 of the
Appendix.

Notice that ¢ (z, 0; p, ¢) is meaningful for k > 0. In particular, put
(8.14e) Ei(z) =271(2mi)"*€L(z, 0; 0, 0) (2 <k e2Z).

Then Ey € #1(Q) if k > 2; Ey is exactly the function of (7.10); see [S07,
§9.2].

8.11. For k€ Z,0 < N € Z, and a primitive or an imprimitive character
v modulo N such that 1(—1) = (—=1)*, we put
(8.15)  EN(z, s;¢) =y Z Y(n)(mNz+n)"F|mNz+n|~%,
0#(m, n)€Z?
where we put ¢ (n) = 0 if n is not prime to N. Notice that the sum over
(m, n) is 0 if (—1) # (—1)*. Again Lemma 8.5 guarantees the convergence
of (8.15) for Re(s) > 1 — k/2. We easily see that

N
(8.16) EN(z, 5 ¢) =Y (@)€Y (2, 5 0, q),

q=1
and so from (8.14a) we obtain

(8.16a)  jy(2)"*EN(vz, 85 ¢) = ¥(a,)EY (2, s; ) for every v € IH(N).
From (8.16) and Theorem 8.10 we immediately obtain

Theorem 8.12. (i) There is a real analytic function Fy(z, s) of (z, s) €
9 x C such that Fy(z, s) = s(s — 1) (s + k') EN (2, s; ¥) for Re(2s) +k > 2,
where k' = Max(k, 0); moreover Fy is holomorphic in s. The factor s(s —1)
is unnecessary if k # 0 or 1 is nontrivial. If k =0 and 1 is trivial, then
L(s)EY (2, s; 1) has residue TN~2p(N) at s =1, and —6(1/N) at s = 0,
where ¢ is Fuler’s function.

(i) For every fized s € C, Fy(z, s) as a function of z belongs to Cy, (F(N)),
and is slowly increasing at every cusp locally uniformly in s.

8.13. Returning to (8.12) with k € Z, by Lemma 8.7 we have
(8.17) Ei(z, s; I, ) = y* Z Y(d)(cz + d) F|ez + d| 7

(c,d)ew M

for I' = I'(M, N). Let us now assume that M|N and ¢ is a character modulo
N. Given mNz+n asin (8.15), put (m, n) = £r(m’, n’) with 0 < r € Z and

relatively prime m’ and n’ such that n’ > 0. If ¥(n) # 0, then (m'N, n') €
WM. Therefore we find that

(8.18) EY (2, 8;4) = 2Ln (25 + k, ) Ex(2, 85 I, 9),

and so the analytic properties of Ey(z, s; I, ¢) can be obtained from those
of Ly (s, ) and EN(z, s; 1). We note here only its residue at s = 1.
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(8.19) For I' = I'(M, N) and 1 as above and k > 0, E(z, s; I', ) has
nonzero residue at s =1 only if k=0 and ¥ is trivial, in which case
the residue is (3/m)N 1 I~ +p~H~L

This follows from Theorem 8.12, since if x¢ is the principal character, then

(819a)  Ln(2, x0) = ¢TI n(1-p7?) and ((2) =72/6.

The case k ¢ Z is more complex and difficult. Indeed, we have the following
theorem which will be proven in §A3.6 of the Appendix.

Theorem 8.14. Suppose k ¢ Z and I' = I'(M, N) with N € MZ C 2Z;
put k =2k, A\ = (1 —k)/2, and Ao =0 or 1 according as A is even or odd.
For z€ $ and s € C put

F*(z,8) = (2s — A — 1)L (45 — 2\, ¥2)Ex (2, s; T, 9)
P (s+ (- A= )/2) (5 <1),
I(s+k)(s4+ (Ao —AN)/2) (k>-1).
Then F*(z, s) can be continued as a holomorphic function of s to the whole
s-plane. Moreover, for any fized s € C, F*(z, s) as a function of z belongs
to Cr(I'(N)). Moreover, F*(z, s) is slowly increasing at every cusp, locally
uniformly in s. The factor 2s—A—1 is necessary only if (|k|+1)/2 is odd and
Y? is trivial, in which case F*(z, s) at s = (A +1)/2 is a nonzero function
on £, whose nature is described in Theorem 8.16 below when k > 0.

Theorem 8.15. (i) If 0 < k € Z, then Ex(z, s; I, v) with I’ = I'(M, N)
and 1 as in (8.12) is finite at s =0 and Ex(z, 0; I', 1) belongs to A (Quap)
except when k = 2 and 1 s trivial, in which case it is a nonholomorphic
element of N3} (Qap). Moreover, Ex(z, 0; I, )% = Ey(z, 0; I, 1) for every
o € Gal(Qab/Q).

(ii) If 0 < k € Z, then E}Y (2, s; 1) is finite at s = 1—k and EN (2, 1—k; )
belongs to w M 1,(Qan) except when k = 2 and N = 1, in which case it is a
nonholomorphic element of m.A}(Quap). Moreover,

(FGW) " m B (21— ks )} = MGW7) B (2, 1— ks )

for every o € Gal(Qan/Q), where G(¢) is the Gauss sum defined in §2.7.

(i) If 3/2 < k ¢ Z, then Ex(z, s; I, ¢) of (8.12) is finite at s = 0,
and Ey(z, 0; T, 1) belongs to A x(Qan) except when k = 3/2 and ? is
trivial. Moreover, when it belongs to M1 (Qap) we have Ex(z, 0; I, )7 =
Ei(z, 0; I, ¢7) for every o € Gal(Qan/Q).

(iv) If 3/2 < k ¢ Z, then Ln(4s + 2k — 1, ?)Ey(2, s; I, ) is finite at
s = 1 —k and its value at s = 1 — k is ® times a nonzero element of
M 1,(Qap) except when k = 3/2 and ? is trivial. Denote this Quy,-rational
element times 25iFIG ()" by Ci(T, ), that is,
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Ci(I, ) = 28MG ()~ [Lv (4s + 2k — 1, ) Ey(z, 83 T, ¥)]

s=1—k"
Then C(I, ¥)7 = Ci(I, ¥7) for every o € Gal(Qan/Q).
PROOF. Suppose k € Z. From (8.16) and (8.18) we obtain
2(mi) "Ly (k, V) Bk (2, 0; T, 9) = Zw i) FeN (2, 0,0, g).

Let A(¢)) denote the right-hand side times G(v)~!, and let o € Aut(C).
n [S07, (9.4)] we gave a Fourier expansion of (mi) *€N(z, 0; p, ¢), which
shows that A(¢)) is Qap-rational. Applying o to the expansion and employing
(2.17b), we find that A(x))? = A(x?). Combining this with Lemma 2.10, we
obtain (i). Assertion (ii) can be derived similarly from (8.16) and [S07, (9.14)].
In the case k ¢ Z assertion (iii) will be proven in §A3.8 and (iv) in §A3.9 of
the Appendix.

Notice that 4s + 2k — 1 becomes 3 —2k at s=1—k,and 0 >3 —2k €
27 if k > 3/2. Since I'(s/2)Ly(s, ¥?) is finite for Re(s) < 0, we see that
Lx(m, ¥?) = 0 for every m € 2Z, < 0. Thus Ly(4s + 2k — 1, %) = 0 at
s = 1 — k. For this reason, Theorem 8.15(iv) cannot be given as a statement
on the value of Ey(z, s; I', ¥) at s = 1 —k. Similarly, Theorem 8.15(ii) cannot
be stated in terms of Ey(z, s; I', ) at s =1 —k.

Theorem 8.16. Let the notation be as in Theorem 8.14 with k ¢ Z;
suppose that k > 0, X is even, and 1* is trivial. Then F*(z, s) is nonzero
at s = (AN+1)/2, and the following assertions hold:

(i) If k = 1/2, then X\ = 0, and F*(z, 1/2) belongs to ©/2 1 /2(Qab).
More precisely, F*(z, 1/2) = 73/2 > oecq wu(€)e(te?z/2) with 0 <t € Q and a
Q.b-valued element o of £(Q).

(ii) If k > 1/2, then k = 2p+1/2 with 0 < p € Z, and F*(z, (A +1)/2)
belongs to w2 P NP (Qup).

PROOF. Assertion (i) will be proven in §A3.10 of the Appendix. To prove
(ii), we take the operator &7 of (6.13d) and D}, of (7.11). Then we have

(8.20)  DVYEy(z, s; I ) = (—4m) Pep(s)Eptop(z, s — p; I, ) with

p—1

er(s) = H(s +k+a)=T(s+k+p)/I(s+k).

a=0
(This is true even for integral k.) Indeed, we can easily verify (by induction
on p, for example) that &1y = (2i) Per(s)y* P. By (6.14c), 84 (y®||xy) =
(P M kt2py = (20) Peg(s)y* P||ky2py for every v € I, and so we obtain
(8.20) at least formally. To justify termwise differentiation of the infinite series
of (8.12), we note a well-known principle on the validity of (d/dz) >_. c 4 f+(2)
= ZweA df/dx. If it is applied to (8.12) p times, then we see that (8.20) holds
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at least for sufficiently large Re(s). Since 4} commutes with 9/9s, we easily
see that the left-hand side of (8.20) is meromorphic in s when Ei(z, s) is
defined, and the same is true with the right-hand side. This proves (8.20) in
the domain of s in which both sides of (8.20) are meaningful as meromorphic
functions. (There are alternative methods that are applicable to the case of
many complex variables instead of a single z. We refer the reader to Lemma
A in [S02,vol. III, p. 922].)

Now in the setting of (ii) put —A\ = 2p. Then 0 < p € Z and k = 2p +
1/2, and so from (8.20) we obtain (2i)p5f/2E1/2(z, s+p) = eoEi(z, s) with
o =I'(s+k)/I'(s+p+1/2). Let F}} denote F* of Theorem 8.14. Then,
after verifying the cancellation of all gamma factors, we see that F}(z, s) =
(Zi)péf/QFl*/z(z, s+p), and therefore F}? (z, (A\+1)/2) = (Qi)péf/zFl*/z(z, 1/2)
= (—47r)PDf/2F1*/2(z7 1/2). By Lemma 7.8(i) we see that Fj(z, (A +1)/2)
belongs to 7r3/2+p</1/,f(Qab). This proves (ii) and completes the proof.

Lemma 8.17. Let 0 <m € Z and [ € 4 (M, N; 1)) in the notation of
§8.6; suppose 2|M and 2|N if k ¢ Z. Then the following assertions hold.
(i) Put g1(z) = f(mz) and g2(z) = f(z/m). Then g1 € M (M, mN; x)

and go € M (mM, N; x), where x =1 if k € Z and x(a) = (%)zﬁ(a) if

k ¢ Z. Moreover, gs € M ,(mM, N/m; x) if 2m|N.

(ii) The map f — fllxe is a bijection of A (M, N; ) onto M (N, M;
w1 and (fllk o)k = (DM,

(i) For f € M 1(2, K/2;4¢) with k ¢ Z and 0 < K € 4Z define f7 by
f7(2) = f(—=4/Kz2)j*(2)7Y. Then f — f7 is a bijection of M 1(2, K/2; )

onto o#1(2, K/ Q) uhere 6(a)= (5 ) (o)™ and (77 = (-1 (/4.
(iv) The forms g1, g2, fllkt and f7 belong to Ly, if f € L.

Proor. For a= [Ccl Z] el'(M, mN) with d >0 put g = [c/am ”;b} .
Then B € I'(M, N) and gi(az) = f(B(mz)) = w(d)jg(mz)f(mz). We have
clearly jl[gk](mz) :jgﬂ(z) and hg(mz) = <%>ha(z) by (4.40). Thus ¢ €

M (M, mN; ) in view of Lemma 5.4. As for go, taking [c;ln b/dm in
place of (3, we obtain the desired results in the same way. To prove (ii), put
§ =171y for v € I'(M, N). Then § € I'(N, M) and as = d, and so (ii)
can easily be verified. In the proof of (i) suppose 2m|N; then we see that
92 € M ,(mM, N/m; x). Now, to prove (iii), take M = 2, N = K/2,and m =
K/4. Then go(z) = f(42/K) and f7 = g¢o|/k¢. Thus g2 € A 1(K/2,2; X)

with x(a) = (%)wa), and 7 € .404(2, K/2 1) by (). Now (f7)7(z) =
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f(2)i%(—4/Kz)"1jk(2)~1. We easily see that jL ( 4/KZ)]Lk]( ) = (—4/K)¥
and h,(—4/Kz)h,(z) is (4/K)"? times an element t of T. Taking z = iy
with y > 0, we find that t = 1, and so j*(—4/K2)j*(z) = (-1)F(4/K)F,
which completes the proof of (iii). Assertion (iv) follows immediately from
the last statement of §5.8.

Lemma 8.18. Let M, N, K be positive integers such that K € MNZ.

Then I'(M, N) can be generated by {1 ]\14} , L{] ﬂ , and I'(K, K).

PROOF. This is not so easy as it looks. We put U = [[, SL2(Z,,), E(M) =
Hp EP(M)> E/(N) = Hp E;;(N)a and D(M, N) = Hp Dp(Mv N), where p
runs over all prime numbers and

son={]y {]|rema}. s ={[] {]

Dyp(M, N) = {y € SLy(Zp)|by € MZ,, ¢, € NZ,}.
Then D(M, N) can be generated by E(M), E'(N), and D(K, K). To prove
this, we first note that D,(M, N) = D,(K, K) if ptK. Thus it is sufficient to
show that D,(M, N) is generated by E,(M), £, (N), and D,(K, K) if p|K.
If pt MN, then D,(M, N) = SLy(Z,), and the fact is easy to verify, noting

R M A T

Suppose p|MN and let o = [CCL Z] € Dp(M, N). Then a € Z) and

a b 1 0]fa 0 1 ba!
[c d}:[a_lc 1] [0 a‘l} [0 1 }’
and so we obtain the desired fact. Now put
H=T[,Hy,, Hy,={weDy(K K)|w-1<KZ,}.
Then H is a normal subgroup of U. Let 5 € I'(M, N). Since € D(M, N),
we have B = w1 uy with w; € E(M)U E'(N)U D(K, K). By strong
approximation in SL2(Q) (see [S71, Lemmas 1.38 and 6.15] or [S10, Theorem

ce NZp}7

10.21], for example) we can put u; = v;v; with 4; € SL2(Q) and v; € H.
If u; € E(M), then clearly we can take ; of the form ~; = {1 Mb} with
b € Z; similarly, if u; € E'(N), then we can take v; = with ¢ € Z. If

Nc 1
u; € D(K, K), then ~; —u; < KZ, for every p|K, and so v; € I'(K, K). Put
¥ =91 Ym-. Then we see that 3 = vz with z € H, thatis, v~ '8 € I'(K, K).
This proves our lemma.

This lemma can be generalized to the case of Sp(n, F') with an arbitrary
algebraic number field F'; see [S93, Lemma 3b.4].
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8.19. Let us add some technical and historical remarks on the Eisenstein
series discussed in this section. Let Ej(z, s) denote any function belonging to
types (8.12), (8.14), and (8.15). If the series expressing Ey(z, s) is absolutely
convergent at s = 0, then obviously Fj(z, 0) is a holomorphic function in z,
which one can define without the parameter s. For example, if it is of type
(8.12) with k € Z, the functionis 3 . \r ¢(dy)jE(2) ", which is meaning-
ful only for k& > 3. In order to include the cases k = 1 and 2, Hecke introduced
in [H27] the parameter s and proved that Ej(z, s) can be continued analyt-
ically to a neighborhood of 0, and obtained the explicit forms of the Fourier
expansions of the value at s = 0. Similar results in the case of half-integral
weight were obtained by Maass. However, neither Hecke nor Maass investi-
gated analytic continuation of Ei(z, s) as a meromorphic function in s on
the whole complex plane.

Analytic continuation of Ek(z, s), especially in the case k = 0, was in-
vestigated by several researchers, Rankin [Ra39] for example. The proof of
the fact alone is not difficult. However, it is important to show that Ej(z, s)
is slowly increasing at every cusp locally uniformly in s, which guarantees
the convergence of the integral of the type (8.27) below, a highly nontrivial
fact that almost all authors took for granted without proof. I found that the
Fourier expansion of Fj involving both 2z and s was also important, and
confluent hypergeometric functions were quite effective in obtaining such ba-
sic pieces of information. In fact, I investigated such Fourier expansions in
[S75], and eventually similar expansions, as well as analytic continuation, of
Eisenstein series on $),,. In §A2 of the Appendix we will give an exposition of
confluent hypergeometric functions, and employing them, we will discuss in
the next section various properties of Ej(z, s) in the context of eigenforms of
the operator Ly, of (6.13c).

8.20. For f € .#} with k € 27'Z we put
(8.21) f2)= > up(€el&).
0<£€eQ
Let f e 4 (K, M; ) and g € 4 (K', M'; p) with characters ¢ and ¢.
We naturally assume (see §8.6)

(8.22) P(-1) = (=DF,  p(=1) = (=)

We now define a Dirichlet series D(s; f, g) by

(8:23) D(si f.9)= Y np(©ng()&> 02,
0<£€Q

By Lemma 6.2 the right-hand side is convergent for Re(s) > (k + £)/2 + 1.
Thus D(s; f, g) is holomorphic for such s. We assume:

(8.24) k> 1 and f is a cusp form.
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To find an integral expression for (8.23), we first take g, defined by (5.14)

with n =1 and g in place of f there, and observe that
29p(2) = 3 Y s (&) g (m)e?E e 2mE Y
0<€ 0<n

for z = x 4+ dy. We can find a positive integer N such that ¢ and ) are
characters modulo N, f € # (N, N; ¢), and g € # (N, N; ¢). Then f(z)
and g(z) depend only on z (mod NZ), and both p¢(§) and p4(§) are nonzero
only when ¢ € N~'Z. Thus

/ F@a@de =N S up(©ng(€)e .

0<¢eN-17Z
Multiplying this by y*T*+0/2=1 and employing (8.2), we find that

(8.25) / / f(2)gp(z )dm o TEHO/2=1 gy

= N(4m) =5~ B+02 (s + (k + €)/2) D(s; £, g)
for Re(s) > (k+4¢)/2+ 1, since termwise integration is justified in view of the
convergence of (8.23). Put I' =I'(N, N), [ o =PNI, ¥ =1,,\$, and & =
I'\$. Since { z+iy |0 < 2 < N} represents ¥, the left-hand side of (8.25) can
be written [, faoy*tE+H0/2+1d2. Let A be a complete set of representatives
for I''o\I'. Then | |, 4 a® represents ¥, and so (replacing s + (k +£)/2 + 1

by s)
[remtra=3 [ Sdz/qb{a;(f%yﬂoa}dz,

a€cA
provided [, | fgoy°ldz < oo.
Taking g as f of (5.16), we see that g, € .# (N, N; ¢). For o € I' we
easily verify that

(Tov") 0 0 = w(da) 5 0(2)  ja(2)P*2 fgpy® with

e (W)(d)(%> it keZand (¢ 7,

(8.26)
(e)(d) otherwise.
Thus the last integral over @ can be written
-1
IR [ (2) P25y dlz

acA

= / f9oEk—e(2,5—k; I, w)ykdz
@

with Fj_, of (8.12). Notice that w(—1) = (—1)*~4 by (8.22). Substituting
s+ (k+4¢)/2+1 for s, we obtain
(8.27) N(4m)=s==H020 (s + (k4 £)/2) D(s; [, g)

_ / JT B st (=R 2+ L T, o)ytde
b
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for Re(s) > (k+¢)/2+ 1.

The expression of a series of type (8.23) by an integral of type (8.27) was
first given in [Ra39] by Rankin when g = f, and k € Z. Thus this technique
may be called Rankin’s transformation. We will later use this transfor-
mation at various places.

Let us now put
Ly(2s+2, w) itk—0eZ,
Ly(4s+3,w?) ifk—(¢72Z,
if k—0eZ,

(828)  Zn(s; f,9) = D(s; f, g)- {

1
_ kol k1

8.29) I'(s)=1I" — | I 1+—— -

(8.29) I'(s) (5+ 2 > <S++ ) > F(s—l—%—&-%) itk—(¢7,

where Ag is 0 or 1 according as [k — €] is even or odd.

Theorem 8.21. Under (8.24) the product I'(s)Zn(s; f, g) can be contin-
ued to the whole s-plane as a meromorphic function, which is holomorphic
except for possible simple poles at the following points: s =0 only if k =1/
and @ is trivial; s = —1 onlyif k=¢ € Z and N =1; s = —1/4 only if
V2@? is trivial and k — € — 1/2 € 2Z. The residue of In(s; f, g) at s =0
is w2 TRD(k) =Y g,, f)ro, where 1o is a positive rational number that depends
on the choice of the levels of f and g.

PROOF. Suppose k — ¢ € Z; then by Theorem 8.12, s(s — 1)I'(s + k —
OEYN ,(z, s; w) is entire in s; moreover, for each fixed s the product as a
function of z is slowly increasing at every cusp locally uniformly in s. Since
f is a cusp form, we see that

s(s+1)Ln(2s +2, w)[(s+ 1+ (k—10)/2)

times the right-hand side of (8.27) is meaningful for the reason explained in
86.5; s(s+ 1) is unnecessary if k # ¢ or w is nontrivial. From the reasoning
there we also see that the integral is convergent locally uniformly in s. Suppose
k = ¢ and w is trivial; then a pole may occur at s = 0 and s = —1. By
Theorem 8.12 we find that the residue of Zn(s; f, g) at s =0 is

N7 (k) (4m)* (@) (g, ) - 27 eN2p(N).

By (6.6), u(®) € 7Q, and so we obtain the residue as stated in our theorem.

Next suppose k — ¢ ¢ Z. We apply Theorem 8.14 to Ej_g(---) in (8.27).
Define &, A, and F*(z, s) as in that theorem. Then we find that « = 2k —
20, A= —[k— (], and F*(z, s+ ({ — k)/2+ 1) equals

(2s+1/2)LN(4s+3,w2)r(s+%)r(s+§ + %)EH (z s+5E+1T w).
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Then we obtain the results in this case as stated in our theorem. This com-
pletes the proof.

If f and g of §8.20 are eigenfunctions of Hecke operators of integral weight,
then D(s; f, g) has an Euler product that can be given as follows.

Lemma 8.22. Let f(z) = >.°7 a(n)e(nz) € Sk(N, ) and g(z) =
Yool ob(n)e(nz) € A o(M, @) with k, ¢ € Z. Suppose that these are nor-
malized eigenfunctions of Hecke operators in the sense that we can put

S atmyn= =] [1 - alp)p~ +vp)p" 5],

Z b(m)n == =[] [1 - b)p~* +e(@)p* 1 ~°] 7,

where ]_[p means the product over all the prime numbers p (see [S71,Theorem
3.43]). Taking an indeterminate X, put, for each prime number p,
X2 —a(p)X +¢(p)p" ' = (X — ) (X = By),
—bP)X + o) = (X — ) (X —6,)

with complex numbers a,, Bp, Yp, 0p. Then

oo

Lym(2s+2—k—0,¢9) > a(n)b(n)n™*

n=1

=TT (1 — aprop*)(1 — apdpp=*) (1 = Byrop =)L — Bydpp )]

PROOF. We have >0 (a(p™)X" = (1 —a(p)X + 1&(10)10’“_1)(2)_17 and so

Z(GZ - B;L)Xn =(1- apX)*l -(1- BpX)il
n=0
= (o — Bpp{[(l —opX)(1 - BpX)]_l = (ap — Bp) Z a(p™) X"
n=0

Thus we obtain a(p”) = (ap™ — 82HY)/(ap — B,) if ap # fp. Similarly,
b(p") = (7{?“ = 0™/ (v = 0p) i Y # Gp. Now 3201 a(m)b(m)m™* =
Hp { Zn:O b(p’ﬂ)p " } a‘nd

(g~ )0 — 0) D2l () X" = D (gt — gt - 5 X
n=0 n=0
_ % oy B + Bpdp
1—appX 1—0p0,X  1—=087pX  1—0p0,X
_ (2 = Bp) (vp — 8p) (1 — apBpypdpX?) .
(1= appX)(1 — apdp X) (1 — BpypX)(1 — B0, X)
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This gives the desired result when oy, # 3, and , # J,,. However, we have
n

a(p") = Yoy an'Bl and b(p™) = Y150} unconditionally, and so our
result is a formula for Y07 (i ap ™ 8L) (321 vp~65) X ™, which is valid
even if o, # (3, or 7y, # dp. This completes the proof.

Theorem 8.23. Given f(z) =Y., a(n)e(nz) € S(N, ) and a prim-
itive or an imprimitive Dirichlet character x, put

(830) s f, x) = Ln(2s — 2k +2, x*¢) > x(n)a(n®)n"*

n=1
and x(—1) = (=1)* with p = 0 or 1. Put also I'(s) = I'(s/2)I((s +
1)/2)((s — k — 1+ X)/2), where Ao = 0 or 1 according as k — p — 1
is even or odd. Then I'(s)P(s; f,x) can be continued to a meromorphic func-
tion on the whole complex plane, which is holomorphic except for a possible
simple pole at s = k, that occurs only if >x? is trivial and k —p — 1 € 27Z.

PROOF. Put 6;(z) = 2713, x(m)m*e(m?z). Then 6;(z) = 6,(2z)
with 6, of (5.7). Suppose x is defined modulo r; then by Lemmas 5.5 and
8
8.17, 61 € M (2, 4r% x1), where £ = p+1/2 and x1(a) = (a>x(a). We
then see that -
D(s: f.0) = > x(m)a(m?)m=2*~5-12,
m=1
and so "
@(37 faX) :L(2872k+27 szz)D(s/2ik/27 1/47 fa 91)
Comparing this with (8.28), we find that
@(s; faX) = @M(s/2ik/27 1/47 f> 01)3

where M is the least common multiple of N and 4r2. Thus we obtain the
desired result from Theorem 8.21.

The above theorem was essentially given in [S75, Theorem 1], which stated
that another pole at s = kK — 1 might occur, but that is not the case as shown
here. The pole at s = k& can indeed happen; see Theorem 2 and the discussion
on page 97 of that paper. Notice that if k—p—1 € 27Z, then (¢x)(—1) = —1,
and so ¥y is nontrivial.

Lemma 8.24. Suppose that f of Theorem 8.23 is a normalized Hecke
eigenform as in Lemma 8.22; define «, and B, as in that lemma. Then

As: £,x) =[] [ = x@)a2p™*)(1 = x(p)apBpp~=) (1 — x(0)B2p~*)] .

P



66 III. THE RATIONALITY AND EISENSTEIN SERIES

PrOOF. We have >_°7 | x(n)a(n?)n=% = IL, {3 o x(p)™a(p*™)p=2ms},
and

(p — Bp) D a(p*™)X™ = (aZmFt — gimityxm
m=0 m=0
@p Bp _ (ap — Bp)(1 + apBpX)

l-a2X 1-p2X (1-a2X)(1-p2X)

—1
= (O‘p - Bp)(l - a?;/@ng){(l - %2))0(1 - apoX)(l - BIQ)X)} .
Thus we obtain the desired equality. The result is valid even if «, = 3, for
the reason explained at the end of the proof of Lemma 8.22.

Comparing this with the case f = ¢ in Lemma 8.22, we obtain

oo
(8.31) L(s—k+1,x¥)%(s; f,x) = L(2s — 2k + 2, x*¢?) Z x(n)a(n)’n=*

n=1

= L(2s — 2k + 2, X*¢?)D(s — k; f, h),
(8.32) L(s —k+1,x¢) Y x(n)a(n®)n* = 3 x(n)a(n)*n"*,
n=1 n=1

where h(z) =377 | x(n)a(n)e(nz). By Lemma 7.13, h € .%;(M, ¢x?) with
a multiple M of N, and so the analytic continuation of D(s, f, h) follows
from Theorem 8.21. Therefore we can derive the analytic continuation of
9(s; f,x) also by combining this with (8.31), but this gives a weaker result
than Theorem 8.23, because of the factor L(s — k + 1, xv).

9. Eisenstein series as automorphic eigenforms

9.1. Given a congruence subgroup I" of I'(1) and a weight k (not neces-
sarily > 0) we consider a C* function f on $ satisfying the following three

conditions:
(9.1a) flley = f for every v € I';
(9.1b) Lif = Mf with A € C, where Ly, is as in (6.13c);

(9.1c) f is slowly increasing at every cusp, that is, f satisfies (6.9a).

Such an f is called an automorphic eigenform, or simply, an eigenform
of Lj, belonging to the eigenvalue A. It is also called a Maass form, as Maass
introduced this type of function and made some fundamental contributions in
[Ma49] and [Ma53]. We denote by (I, A) the set of all such functions f.
We naturally assume that I" ¢ I'? if k ¢ Z. We put

(9.2) A (N) = G Ay (M(2N), A).
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By (6.14d), for every f € 2(\) and a € SLa(Q), we see that j,(2) 7 f(az) €

A (X). This is clear if k € Z, but if k ¢ Z, then we have to invoke Theorem
4.7(4); cf. Lemma 5.4. If f is holomorphic, then Ly f = 40;_2ef = 0, since
e = —y20/0%, and so from Lemma 6.4(i) we see that

(9.3) A\ consists of the holomorphic elements of Ai(0).

As the title of this section indicates, we are mainly interested in the signifi-
cance of Eisenstein series among eigenforms in general; we will not investigate
much about the so-called cusp eigenforms, though we will define them and
prove a few of their elementary properties.

If f e Ax(I, M), we have f(z 4+ b) = f(z) for b € NZ for some positive
integer N, for the same reason as in (3.6a). Therefore, putting r = N1, we
see that f(x + iy) as a function of = has a Fourier expansion
(9.4) fla+iy) =Y enly)e(hz)

herZz
with C* functions cp(y) of y. It should be noted that h may be negative.
Moreover, termwise partial differentiation is valid (see [S07, §A2]), and so
(0/0x)*(0/0y)" f(x +iy) = Y (2mih)*(8/0y) en(y)e(hx)
herz
for every a and b. Therefore, applying Ly to (9.4), we find that ¢, is a
solution of the differential equation

(9.5) (y2(d/dy)? + ky - d/dy — Am*h*y? + 2mhky + X)c(y) = 0.

If h # 0, the solutions of this equation are given by Whittaker functions,
which we use in the form

(9:6) V(y; a, B) = e v I(5) " yP /Oo e V(L4 1) P,
0

where 0 < y € R and (a, ) € C?. The last integral is convergent for Re(3) >
0. In fact, V(y; a, ) can be defined as a holomorphic function of («, 8) on
the whole C2. In §A2 of the Appendix we give an exposition of some basic
facts on this function.

Given k and )\ € C, we take (a, 3) € C? so that

(9.7) k=a-—p, A=6(1-a),
and define a function Wy (¢, A) for ¢t € R* by
V(4nt; a, B) if ¢>0,
(9.8) Wi(t, \) = Lk _
[Amt| "V (|4nt|; 5, «) if ¢ <O0.
If (a, B) is a solution of (9.7), then the other solution is (1 — 8, 1 —«) (which
may be equal to («, 3)), but Wi(¢, A) is determined by k& and A, since

Viy; 1 = 8,1 —a) = V(y; o, B), as will be shown in Lemma A2.2 of the
Appendix.
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Returning to ¢p(y) of (9.4), we have
1/r

(9.9) en(y)=r ; f(z +iy)e(—hzx)dz,

and so (9.1c) implies that ¢, (y) = O(y®?) as y — oo with B € R. By Lemma
A2.4 of the Appendix every solution ¢ of (9.5) such that ¢(y) = O(y?) as y —
oo is a constant times Wi (hy, A), and vice versa. Thus ¢, (y) = bWy (hy, )
with by € C, and so
(9.10) fla+iy) =bo(y) + D oaWi(hy, Ne(ha)
0#£herZ

with a C* function by. We call this the Fourier expansion of f, and by
the constant term of f. (The word “constant” is used with respect to the
variable z, and bo(y) may involve y nontrivially.) Let a € SL2(Q). Then
ja(2) 7 f(az) belongs to 2 (A), and so has a Fourier expansion of the type
(9.10). We call f a cusp form if the constant term of j, ()% f(az) is 0 for
every a € SLy(Q), and we denote by Gy (\) the set of cusp forms of 2 (N),
and put S, (I, A) = A, (I, ) N Gr(N).

Taking h =0 in (9.5), we obtain a differential equation

(9.11) y2bl) + kyby + Abg = 0,

which is easy to solve. Indeed, let X2 + (k — 1) X + X = (X — p)(X — q) with
p,q € C, and p # ¢ if and only if 4\ # (k — 1)2; if 4\ = (k — 1)2, then
X2+ (k—1)X + X = (X —p)? with p = (1 —k)/2. With these p and ¢
equation (9.11) has linearly independent solutions as follows:

(9.12a)  yP and y? with p+q=1—Fk and pg= X if 4\ # (k — 1)?,
(9.12b) yP and yPlogy with p= (1 —k)/2 if 4\ = (k —1)2.

Thus by is a C-linear combination of these two functions in each case. We
call the eigenvalue A critical in the latter case.

Lemma 9.2. For f, by, and by, as in (9.10), the following assertions hold:
(i) There exist two positive constants M and m such that |b,| < M|h|F/2>+m
for every h € rd, # 0. Moreover, we can take m =0 if f is a cusp form.
(ii) There exist positive constants A, B, and C' such that
v Wby, M| < Ae”PYif y > C.
0#£herZ
(iil) S (N) consists of all the elements of Ap(N) that are rapidly decreasing

at every cusp.
(iv) 6(0) = S
PRrROOF. We have Y
,
bWi(hy, ) =r f(z + iy)e(—hz)dz,
0
and so by Lemma 6.4(iv) we have
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(9.13) Y%/ 26, Wi (hy, A)| < A(y® +y7°)

with positive constants A and ¢ independent of h. In Lemma A2.5 of the
Appendix we will show that lim, .. €¥/2V (y; a, 8) = 1. Thus we can find
a constant d > 1 such that [V (y; a, B)] > 27'e %2 and |V (y; B, a)| >
271e7¥/2 if y > d, and so by (9.8) we obtain

27l 2mhy if h >0 and 47hy > d,

27t 2 | 4nhy|~F if h < 0 and 47|hly > d.
Dividing (9.13) by this, we can find a positive constant M independent of h
such that

[bn| < Me2mMluy =2y 4 y=¢) - {

(9.14)  [Wi(hy, )| = {

1 if h >0 and 47hy > d,
|hy|® if h <0 and 4x|hly > d.

Taking y = d/|27h|, we obtain |b,| < M’e?|h|*/?>*¢ with a constant M’
independent of h. This proves the first part of (i).

By Lemma A2.2(i) of the Appendix we have, for any positive number yo,
(9.15) V(y; o, B) + V(y; B, a)| < Are™/? for y > yo
with a positive constant A;. Combining this with (i), we obtain

yk/2 Z |thk(hy, >\)| < Agy/? Z |h|f/24m e =2mlhly
0#£herZ 0#£herZ
for y > 1/2 with a constant A > 0. Put |h| = rn with 0 < n € Z. Then
the last sum is majorized by 2r®e="™"Y Z:c’:l n%e~ ™™ with an integer a >
k/2+ m. We have Y7 n%" = zP,(x)/(1 — z)*™! with a polynomial P, of
degree a — 1, and so we obtain the estimate of (ii).

If f e Ai(N\), then (ii) is applicable to f||ra for every a € SL2(Q). If
f € Sk(A) in particular, (ii) implies that f is rapidly decreasing at every
cusp. Conversely, if an element f of 2A;(\) is rapidly decreasing at every
cusp, then from (9.9) with h = 0 we see that lim, o, y°bo(y) = 0 for every
c € R, and so by = 0. Thisis so for f||xa in place of f for every a € SLa(Q).
Thus f € &x(A). This proves (iii).

Returning to (i), suppose f is a cusp form; then Lemma 6.4(v) combined
with (iii) shows that |y*/2f| is bounded on $), and so we can take ¢ = 0 in
(9.13). Thus |by| < M|h|*/2, which proves the last part of (i).

As for (iv), we have . C &4(0) by (9.3) combined with (iii). Let f €
S5(0). As will be shown in Lemma 9.3 below, ef is rapidly decreasing at
every cusp. Therefore, by Corollary 6.9(ii), f € .#). This proves (iv) and
completes the proof.

Remark. For h > 0 and A = 0 we have Wy(hy, 0) = V(4dwhy; k, 0) =
e~ 2™ by (A2.3) of the Appendix, and so Wi (hy, 0)e(hx) = e(hz). Thus the
Fourier expansion of an element of .Z, is a special case of (9.10), and (i) of
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Lemma 9.3. Let € and 0y be as in (6.13a, b). Then the following asser-
tions hold:

(i) e (I, A) C Ao (e, A=k +2).

(ii) 5k2[k(F, )\) - Q[k+2(F*, A+ k)

(iii) These inclusions are true with & in place of 2.

(iv) &k(I, A) contains a nonholomorphic function only if 0 < X € R.

For the moment we have I', = I'* = I'. In §9.5 we will generalize the notion
of A congruence subgroup, and explain the meaning of I, and I™*.

ProOOF. Let f € (I, \). Then, from (6.14a, b, e) we easily see that ef
and Jf satisfy (9.1a, b) with & and A modified as in (i) and (ii). Thus
our task is to show that they are slowly increasing at every cusp. We see
that Wi (hy, Ne(hz) equals pa(x +iy; k, A) of (A2.9) of the Appendix with
A = 27h, and so from (A2.10) and (A2.11) of the Appendix we obtain

(8mih)~'A  if h >0,
(8mih)~'  if h <0,
2mih if h >0,
2mih(A + k) if h <0.

e{Wi(hy, Ne(hz)} = Wi_a(hy, A+ 2 — k)e(hx) - {

5 {Wi(hy, Ne(ha)} = Wisa(hy, A+ k)e(ha) - {
Therefore, if f is as in (9.10), then

ef =ebo+ Y cnWi_a(hy, A+ 2 — k)e(hz)
h#£0

with ¢;, = (8mih)~*Aby, if h > 0 and ¢, = (8mih)~ by, if h < 0. By Lemma
9.2(1), |en| = M'|h|F=2/2+™ with positive constants M’ and m. Since the
technique of the proof of Lemma 9.2(ii) is applicable to ef — by, we have
yF=2/2| e f —cbg| = O(e=BY) as y — oo with some B > 0. Observe that by is
a function of the same type as by with (k—2, A+2—k) in place of (k, A). These
are applicable to e(f||r) with any « € SL2(Q). Since e(f||xa) = (ef)|k—2 @
by (6.14a), we see that ef is slowly increasing at every cusp. Thus ef €
Ap_o(I, A—k+2), which is (i). The proof of (ii) can be given in a similar way.
Suppose f € Sy (I, \). Then by = 0, and so [y*=2/2(cf)|x_2a| = O(e~BY)
as y — oo. Thus ef is rapidly decreasing at every cusp, and the same is
true with dy f. This proves (iii). To prove (iv), let 0 # f € &, (I, A). Then,
by (6.19), Mf, f) = (f, Lif) = (Luf, f) = M, f); also, (f, Lif) > 0 by
(6.20). Therefore, in view of Lemma 9.2(iv) we obtain (iv). This completes
the proof.

Returning to Corollary 6.9(ii), we see that the assumption on ef is unnec-
essary in view of (iii) of the above lemma.

Theorem 9.4. The vector space A (I, A) is finite-dimensional.
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PROOF. We first note that given 0 < r < 1 and two positive integers a
and p, we have

oo
(9.16) Zmu "< Cyppta? for 0<az<r

with a constant C,, independent of p and z. Indeed,

(oo}
zmz ny(§)r
n=

n=0

for 0 < a <, which proves (9.16). Next, take a finite subset X of I'(1) such
that § = JI'XT with T = {z +iy € C||z| < 1/2,y > 1/2}, as we did
in the proof of Lemma 6.4. By Lemma 9.2(iii) and Lemma 6.4(v), |y*/2f| is
bounded on $). Given f € &i(I, \) and ¢ € X, put My = Max. e g|y /2 f(2)|
and k€ = D osnerz breWi(hy, Ne(hz) with the same r for all { € X
and all f € Gy (I, \). Since |y*/2(f||x&)| = |(y*/2 ) 0 €] < My, from (9.9) we
obtain y*/2|by, ¢ Wi (hy, \)| < My. Dividing this by (9.14) and employing the
technique of a few lines below (9.14), we find that |bs ¢| < BMy|h|*/? with
a constant B independent of h,&, and f. Fix an integer p > 1 and suppose
bre =0 for all £ € X and all h such that |h| < rp. Then by (9.15),

W2 (k)] < y*/2 > |bneWil(hy, N)| < DMy Y |h|F/2e 2k
[h|>p [h|=rp
for y > 1/2 with a constant D independent of f and . The last sum is
majorized by 27% Zf;:p m®e 2™ with a positive integer a > k/2. By (9.16)

this is < 2r2Cp%e=2™"PY for y > 1/2 with some C independent of p. Thus
(9.17) ly*/2(f||x€)| < 2r*CDMp eV for y > 1/2.

Now, given z € $, take v € I', £ € X, and w € T so that z = y§w. Then
Y 2 f(2)] = [y f(véw)| = \v"/Q(fllkﬁ)( )|, where v = Im(w). Therefore,
by (9.17) we have

(9.17a)  [y*/2f(2)| < 2r°CDM pte= 2P < 2r2C, 1 DMpte P,

since v > 1/2. The last quantity of (9.17a) tends to 0 as p — oo. Thus if p
is sufficiently large, we obtain My = 0. This means that for f € S,(I, \) if
bre =0 for all £ € X and all h such that |h| < rp with a large enough p,
then f = 0. This shows that dim [y (I} A)] is finite. Since an element of
A (I, X)/S(I, A)is determined by the constant terms of f||z§ for all £ € X,
we see that dim [y (I, \)/Sk(I, A)] < 2#(X). This proves our theorem.

9.5. So far it was unnecessary to specify a branch of j* for an arbitrary «
in SLo(Q) when k ¢ Z, but in the following treatment, that is not satisfactory.
To make it more specific, for a weight k& we define a group Gy as follows:
Gy = SLy(Q) if k € Z. If k ¢ Z, Gy, consists of all couples («, ¢q), where
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a € SLy(Q) and ¢ is a holomorphic function on $ such that ¢(z)? = tj,(2)%*
with a root of unity ¢. We make G a group by the law of multiplication

(9.18) (o, (e, ¢') = (ad, q(c/2)q (2)).

We define a projection map pr: G — SL2(Q) by pr(a, q) = « if k ¢ Z, and
take the identity map to be pr if k£ € Z. We put P, = {a € Gy |pr(a) € P}.
(This is different from what was defined in Lemma 2.2(iii), since we are in the
one-dimensional case.) Notice that Py is isomorphic to P x Ty, where Ty is
the group of all roots of unity. Thus P is commutative.

If I' is a congruence subgroup of 1'%, then the map ~ + (v, ]1‘/) for k ¢ Z
with jlj as in (5.1b) is an injection of I" into G. We identify I" with its image
under this map, and view I as a subgroup of Gy.

For & = (v, ¢) € Gk, z € $, and a function f on § we put a¢ = a, be =
by, ce = ¢y, d¢ = d, J?(Z) =q(2), £z = vz, and

(9.19) (fllx&)(z) = a(z)~ ' f(v2).
From (9.18) we easily obtain

(9.19a) Fllk(€n) = (Fllx&)llxn-

We also define elements &, of Gy_» and €* of Gjio by
(9.20) &=y, 0557, &=y, a45)

Then from (6.14a, b) we obtain

(9.21) e(flled) = (E€fllk-28e,  Ok(flIx) = (O f)llk428"-
We easily see that (6.12) is valid for « € Gj. Also, we have

(9.21a) Let the notation be as in Theorem 7.5, and let @ be a subfield of
C containing Qap. Then Zj(P) is stable under the map [ — f||x€
for every £ € Gy,.

This follows immediately from Theorem 7.5(iii).

By a congruence subgroup of GG we mean a subgroup I" of G} that
contains I'(N) (viewed as a subgroup of G},) for some even N as a subgroup
of finite index, and such that pr restricted to I" is injective. For such a I’
and €& € G we see that 1671 is a congruence subgroup of Gy. This follows
from Theorem 4.7(4).

Given a congruence subgroup I' of G, we can define (I, \) by (9.1a,
b, ¢). If I'(N) C I" as above, then (I, \) C 2,(I'(N), A), and so what
we have done in §9.1 is applicable to the elements of (I, A); also, Sk (I", A)
can be defined in an obvious fashion. Lemma 9.2 and Theorem 9.4 are valid
in this generalized sense. In Lemma 9.3 we take I, = {f* |§ € F} and
r* = {5* | ¢ e F}. These are congruence subgroups of Gi_2 and Gi42.
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We note here an alternative way of treating factors of automorphy of non-
integral weight. In [S74] we developed an axiomatic (and algebraic) theory
of automorphic forms of an arbitrary weight. The advantage of this method
is that we can prove a certain trace formula for Hecke operators, which is
quite practicable. Indeed, in [N77] Niwa computed the traces of some Hecke
operators of half-integral weight, and investigated the structure of Hecke alge-
bras effectively. Though we do not discuss this theory here, those researchers
interested in the computation of the trace of a Hecke operator of half-integral
weight may be encouraged to look at [S74].

9.6. Given a congruence subgroup I" of G, we put I oo = P,y NI and

(9.22) Be(z, s )= Y oleo,
€l \I"

where z € 9, s € C, and y = Im(z); we assume that jf =1 for v € I'x.
Then the sum of (9.22) is formally well defined, and convergent for Re(s) >
1 —k/2 by Lemma 8.7. This series is called the Eisenstein series of I

Let I be a congruence subgroup of G} contained in I', and let I} =
I'" N Py. Then we easily see that
(9.23) [loo : TL)ER(z, i T) = > Ei(z, 8 T')||ka

acl’\I'
Take a multiple N of 4 so that I'(IN) C I'. Let ¥}, be the set of all characters
¥ modulo N such that ¥(—1) = (—1)/*. Then we easily see that
(924)  2#(W)Ei(z, 5 T(N)) = Y Ei(z, 5 I'(N, N), ).
PYeEY

This combined with (9.23) reduces the problems on analytic properties of
Ei(z, s; I') to those of Ej(z, s; I'(N, N), v). Therefore from Theorems 8.12
and 8.14 we see that FEj(z, s; I') can be continued as a meromorphic function
of s to the whole complex plane. We will give more precise statements in
Theorem 9.9.

In view of (9.21) we can easily verify, by termwise differentiation, that

(9.25a) eBy(z, s; I') = (—si/2)Ex—2(z, s + 1; I,),
(9.25b) 6kBi(z, 5 1) = (= (s + k)i/2) Epya(z, s — 1; '),
(9.25¢) LiyEy(z, 8T =s(1—k—s)Ex(z, s; ).

Strictly speaking, termwise differentiation is first justified for sufficiently large
Re(s), but meromorphic continuation of both sides guarantees the equalities
on the whole s-plane. For more details, see the paragraph below (8.20).
Given a congruence subgroup I' of G}, the projection map pr gives a
bijection of P \Gy/I" onto P\SL2(Q)/pr(I"), which corresponds to the pr(I")-
equivalence classes of cusps as observed in §6.3. We call each coset P&l
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with & € Gy a cusp-class of I, and call it regular if ji = 1 for every
n € P, NENE~L. This is the condition on PL&T and is independent of the
choice of &. Then Ey(z, s; E1¢71) is well defined.

Lemma 9.7. Let I" be a congruence subgroup of Gy, Y a complete set of
representatives for Pu\Gr/I, and Y the set of all £ € Y such that P&l is
regular. Then the following assertions hold:

(i) Let f € (I, N) and &€ € Y. Then the Fourier expansion of fl[r&™?
has a nontrivial constant term only if £ €Y.

(i) For & n €Y we have

Ey(z, 8; E0EN) k€0~ = Seqy® + fen(8)y" 72+ D7 gen(h, s, y)e(ha),
0#h€EPZ
where ¢y is Kronecker’s delta, fe, and ge, are meromorphic functions in s,
and 0 <p € Q.

PROOF. Put Iy = (671 Let o € P, NI and B = pr(a). Then B €
Pnpr(le),andso 8 ==+ [é ﬂ with b € Q. Thus y*|, a = (j%)~'y*. Since
flle € ta = fllx € in the setting of (i), f|lx&~' has a nontrivial constant

term only if j* = 1. This proves (i). To prove (ii), for a € Q define an element
r(a) of Py by

(9.26) r(a) = ( [é ﬂ , 1).

Then r(Q) N I¢ = r(gZ) with 0 < ¢ € Q. (This is because I'(N) C I" for
some even N.) Take a subset @ of I" so that 1 ¢ ¢ and ¢ U {1} is a complete
set of representatives for (P, NI¢)\I¢/r(¢Z). Then 1 and the elements ¢r(a)
with ¢ € @ and a € ¢qZ represent (P, N I¢)\I: without overlap. Therefore
Ee(z si Te) =5+ > > y'leer(gm).
pEDP mEZ

For a fixed ¢ € ® put ¢ = ¢, and d = d,. Then ¢ # 0 and jE(2)/(cz+d)* €
T, and so

Z v |k or(gm) = ty*c= 257k Z (z+ctd+gm)FE+ctdrgm)®

meZ meZ
with an element ¢ € T determined by (. By Lemma A2.3 of the Appendix
the last sum over Z has an expansion of the form

i~k(2rm/q)%tF Z e(¢ 'n(z+c'd)+q nliy)gn(q 'y; s+ k, s)
neZ

with g, as in (A2.4). For n = 0, from (A2.4) we obtain y'~257Fh(s) with
a meromorphic function h(s). Multiplying by ty*c2*"* and taking the sum
over all ¢ € @, we obtain the Fourier expansion of Ey(z, s; I¢) as stated in
our lemma in the case £ = .
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Next, let £ #n € Y. Let Z be a complete set of representatives for (P N
T\~ 1/(r(Q) N I},). Then the elements (r(a) with ¢ € Z and r(a) €
r(Q)N I, represent (P, NIe)\{I'n~! without overlap, because of the following
simple fact:

(9.27) If o € SLy(Q) and « [é gﬂ a~! € P with x € Q%, then a € P.

Indeed, suppose x # 0 and « Loz ot = [v . Then ¢, = ve, and

{0 1 0
Ca® + do = vdy. If ¢, # 0, then v =1 and =z = 0, a contradiction. This
proves (9.27). Therefore the same argument as above establishes the Fourier
expansion of E(z, s; I¢)||xén~'; the only new feature is that y® does not
appear. This proves (ii) and completes the proof.

Lemma 9.8. Let Q be a finite set of functions q(z, s) of the form q(z, s)
= E(z, s)||lk o with E of type (8.12a) or (9.22) and « € Gy, and let g(z, s) =
quQ fq(8)a(z, s) with meromorphic functions fq on C. Then, for every sg €
C there exists an integer m and a neighborhood V' of sy such that (s —
$0)™g(z, s) is a real analytic function on $ x V' that is holomorphic in s,
and, as a function of z, is slowly increasing at every cusp, locally uniformly
in s € V. In particular, if g is finite at s = sg, then g(z, so) is an element
of Ar(X) with X\ = so(1 — k — so).

PrOOF. In view of (9.23) and (9.24), it is sufficient to prove our lemma
when ¢ = E||xa with a function E of type (8.12). Then our first assertion
follows immediately from Theorems 8.12 and 8.14. From (9.25¢) and (6.14d)
we obtain Lig(z, s) = s(1 —k —s)g(z, s), and so Lrg(z, so) = Ag(z, so) with
A =s0(l—k—sp)if g is finite at s = s9. Moreover, those theorems show that
m and V can be taken in such a way that (s —s9)™g(z, s) is slowly increasing
at every cusp, locally uniformly in s € V. This shows that g¢(z, so), if finite,
belongs to A (). This proves our lemma.

Theorem 9.9. Given a congruence subgroup I' of Gy, there exist a non-
zero entire function A(s) and a real analytic function B(z, s) on $ x C holo-
morphic in s such that A(s)Ey(z, s; I') = B(z, s). Moreover, Ey(z, s; I')
is holomorphic in s except at the points given in (1),(2), (1), (2'), and (3")
below, and Ey(z, s; I') has a pole as described in (4).

(1) k€ Z and —k/2 <Re(s) < (1 —k)/2.

(2) k€ Z and s is an integer such that s < —(k+v)/2, where v is 0 or
1 determined by k+ v € 27Z.

(') k¢ Z and (1 —2k)/4 <Re(s) < (1 —k)/2.

(2") k¢ Z and s is an element of 47'Z such that 0 > 2s+k —1/2 € Z.

(3") k¢ Z and |k| —1/2 € 2Z; then Ex(z, s; I') has at most a simple pole
at s = (3 —2k)/4.
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(4) If k=0, then Eo(z, s; I') has a simple pole at s =1, and the residue
is w1 times a positive rational number.

PRrROOF. By (9.23) and (9.24) our problem can be reduced to the func-
tions of type (8.12). Therefore the existence of A(s) and B(z, s) follows from
Theorems 8.12 and 8.14 combined with those formulas.

Suppose k € Z. We employ Theorem 8.12 and (8.18), which involves a
character v such that ¢(—1) = (—1)*. Thus ¥(—1) = (~1)” with v as in
(2). Let ¢’ be the primitive character associated with . It is well known
that L(s, ¢’) can be 0 only if 0 < Re(s) < 1 or 0 > s+ v € 2Z. We have
Ln(25+ k, v) in (8.18), and so we have to consider 1 — '(p)p~2*~F, which
becomes 0 only if Re(2s + k) = 0. Therefore Ly(2s + k, v)) = 0 only if
—k/2 <Re(s) < (1—k)/20r 0>2s+k+v e 2Z. Thus, from (8.18), (9.23),
and (9.24) we see that Ej(z, s; I') is finite except at the points of (1) and (2).

Suppose k = 0; then EY (2, s; x0) = 2¢(2s)Eq (z, s; F(l)) by (8.18), where
X0 is the principal character. From Theorem 8.12 we see that Ey (z, s; F(l))
has a simple pole at s = 1 with residue m/[2¢(2)], which equals 3/7. This
combined with (9.23) proves (4).

Next suppose k ¢ Z. We employ Theorem 8.14, in which Ly (4s—1+2k, ¥?)
appears. In this case N > 1. For the same reason as in the case k € Z we see
that it becomes 0 only if (1 —2k)/4 < Re(s) < (1—k)/20r 0 >4s—1+2k €
27Z. Also, a factor 2s — A — 1 appears in Theorem 8.14, where A\ = 1/2 — k.
This is necessary only if |k|4+ 1/2 is odd. Thus Ex(z, s; I') may have a simple
pole at s = (3 — 2k)/4 if |k| + 1/2 is odd. Therefore we have conditions
(1), (2"), and (3') when k ¢ Z. This completes the proof.

9.10. Let I' be a congruence subgroup of G and X a finite subset of Gy,
such Ehat Gr = Ueex 1’6 Py (This is consistent with (6.10). Then we can
take Y = {¢! ‘5 € X} in Lemma 9.7.) Let f € A,(I, A) and g € Ay (I, ).
Assuming that both A\ and p are noncritical, denote by {p} the set {p, ¢}
with p, ¢ such that p+qg=1—k and pg = \. Then for each £ € X we put

(9.284a) fllx€ = Z ap.¢y” + nonconstant terms,
pe{pix

(9.28Db) gllk€ = Z bp,ey? + nonconstant terms
pE{P}tu

with ap¢, bp e € C. If both A and p are critical, we put
(9.28c¢) fllx€ = acy? + a'gyp log y + nonconstant terms,
(9.28d) 9llk§ = bey? + beyP logy + nonconstant terms

with ag, be, a’g, b’5 € C, where p = (1—k)/2. We also put Q¢ = PNpr(¢71T¢€)
and R = ﬂ£€X Qe.
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Theorem 9.11. With f and g as above, suppose . = X\ and X\ is not
critical. Fixz one p € {p}x and put ¢ =1—k — p. Then

(9.29a) > ve(lp.ebge — gcbpe) =0,
ex
where ve = [{£1}Q¢ : {il}R]_l. If X\=p and X\ is critical, then
(9.29b) > ve(aeb; — agbe) = 0.
ex

PROOF. The idea of the proof is the same as in the proof of Theorem 6.8.
Define T, and M, as in (6.17), and take a sufficiently large r so that the sets
E(Qe\T)) for £ € X can be embedded into I"\$ without overlap. Also, take a
union J of small neighborhoods of elliptic fixed points on I'\$). Let K be the
complement of (Jgc x §(Qe\T;) U J in I'\§). Then K is a compact manifold
with boundary, and

OK =) £(Q¢\M,) — 0.

e X
Let ¢ be a 1-form on $) that is C°° and [-invariant. Then

(9.30) /KdeZ/aKsO:;(Vg/BTSOOf—/aJ%

where B, = R\ M, with a natural orientation. Take ¢ = f-£g-y*~2dz. Then
by (6.18) with g as h, we have

do = (20)" f - Lyg - y"dz + 2icf - eg - y*2dz

with dz viewed as a 2-form. Putting similarly ¢ = g-ef - y*~2dz, we find
that
dp +dp = (20)7(f - Lrg — Li.f - 9)y"dz =0,

since Lpf = Af and Lipg = Ag. Applying (9.30) to this form, we obtain

ZVé/BT(W-H/J)Of—/M(@—&-z/J)ZO.

gex
We now take the expansions (9.28a, b) into consideration. We have ¢ o0& =
fllx&-(gllx €)y*2dz, and a similar formula holds for 1) o&. Fix one p € {p}
and put ¢ =1—k — p. Then for u =\ we have {p}, = {p, ¢}, and so

2ip 0 & = (ap,cy” + aq.cy?) (Pbp.cy? ™ + Gba.cy™ )yt 2dz
-+ nonconstant terms,

— 201 0 & = (bp,ey? + bgey?) (Dap,ey? ™ + Gag ey )y 2dz
-+ nonconstant terms.

Since fBr ye(dx + dy) = — foh r®dx with a constant h > 0 independent of &,
we have
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h
/ 2i(p+ 1) 0 & = (p— q)(apebge — agebpe) / dx + nonconstant terms.
B, 0

By Lemma 9.2(ii) the sum of the nonconstant terms of (9.28a, b, ¢, d) are
O(e~%) as y — oo with some ¢ > 0, and so the same is true for the non-
constant terms of ¢ o & and 9 o€, and even for their integrals over B,.. We
have g —p =1—k —2p # 0, since A\ is noncritical. Therefore, taking the
limit as 7 — oo and making J shrink to the elliptic points, we obtain (9.29a).
When A is critical, the constant terms involving logy cancel each other, and
so equality (9.29b) can be proved in a similar way. Our proof is now complete.

9.12. We put
(9.31a) N(A) = {g € Ae(N) | (f, g) =0 for every f € S(N)},
(9.31b) M (L, A) = {g € (L, A)| (f. g) =0 for every f € &Si(I, \)},

where I' is a congruence subgroup of Gj. The inner product (f, ¢g) is mean-
ingful in view of (9.1¢), Lemma 9.2(iii), and what we said in §6.5. From (6.12)
we see that 9 (A\)||x o = Nk (A) for every a € Gi. We have also

(9.32a) A (A) = Gr(N) & Ni(N),
(932b) Q’[k(Fa )‘) = Gk(ra >‘) D mk(ra )‘)7
(9.33) My (L, ) = Me(A) N Ak (L N

Indeed, (9.32b) is easy, since (I, \) is of finite dimension, as proved in
Theorem 9.4. Clearly the left-hand side of (9.33) contains the right-hand
side. To prove the opposite inclusion, let g € M (I, A) and f € &g(N). Take
a normal congruence subgroup A of I' so that f € &x(A, A). By (9.32b),
g = p+q with p € 6,(A, N\) and g € NM(A, \). For v € I' we have
9= 9lky = plle v+ qllxy. We easily see that p|lxy € Sx(A, A) and gl[xy €
MNi(A, A) by virtue of (6.12), and so (9.32b) with A in place of I' shows
that pllry =p and q|lxy = ¢, and so p € S(I, ) and ¢q € N (I, \). By
(9.32b), g = g € Mp(AQ, V), and so (g, f) = 0, which shows that g € DMi(N).
This proves (9.33). Since 2 () is the union of 2 (I, A) for all I, we obtain
(9.32a) from (9.32b) and (9.33).

9.13. Lemma 9.8 shows that a function of type Ex(z, s; I')|| ke, if finite,
belongs to A, (A) with A = s(1—k—s). We are going to show that the function
actually belongs to 91 (), and moreover, M () is generated by such functions
for almost all values of .

To prove the first statement, given f € Sx(A1) with any A\ € C, take an
even integer N > 2 so that f € &, (I'(N), \;). We have expansion (9.10)

with 7 = 1/N. Since the constant term of f is 0, we have fo d:v =0, and
so [;° fo F(z)dxy*tFt2dy = 0. Let I'(N)oo = Py N I'(N), LP = I'(N)x\9,
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and @ = I'(N)\$. Then we see that fooofoN -y~ 2daxdy = [, ---dz. Since
¥ can be given by | | cp7® with R = I'(N)oo\I'(N), we have by Rankin’s
transformation, at least formally,

0= / Ty rde = Z/ (]Eys+k) o~ydz
12 ler’®
— [T X FC >y 4z = [ TEE (e 1)y
¢ YER ¢
This can be justified for sufficiently large Re(s). Indeed, Ej (z, S; F(N)) is
majorized by
v 1iy(2)| 72 = Eo(z, 03 T(N))
YER
for o € R, which, if finite, is slowly increasing at every cusp. Since f,
being an element of &y ()\1), is rapidly decreasing at every cusp, our formal
calculation is justified for sufficiently large ¢. Combining this with (9.23), for
every f € 6(A1) and every congruence subgroup I" of G, we have
(9.34) f(2)Ex(z, s; T)y*dz =0
I\
at least for sufficiently large Re(s). By Lemma 9.8, for every sg € C there is an
integer m and a neighborhood V of sg such that (s—s¢)™ Ej(z, s; I') is slowly
increasing at every cusp, locally uniformly in s € V. Therefore the left-hand
side of (9.34) is meaningful as a meromorphic function of s on the whole C,
and also is valid whenever Ej(z, s; I') is finite at s. Thus Ey(z, s; I'), if finite
at s, belongs to Mi (A1) with any Ay € C. For the moment )\; is unrelated to
s, but we will eventually take A1 = s(1 —k — s).

9.14. Let I' be a congruence subgroup of Gy. Taking Y as in Lemma 9.7,
we denote by & (') the C-linear span of Ej(z, s; EI'¢71)|[1 & for all £ €Y.
Given sg € C, we denote by &[so, I'] the subset of €, (I") consisting of all
g(z, s) in €,(I") that are finite at s = s, and put €(so, I') = {g(z, 30)‘
g € €lso, I'}. We also denote by & [so, I'] the set of all g € &(I') that
have at most a simple pole at s, and by &} (so, I") the set of the residues at
s of the elements of &} [sg, I']. Let us now prove

(9.35)  €k(so, I') + € (so, I') C Mi(I, A) with A= s0(1 — k — s0).

Indeed, from Lemma 9.8 it follows that both &g(so, I') and €} (s, I') are
contained in A (I, A). Now the elements of € (I") are functions of the type
g(z, s) of Lemma 9.8, and so formula (9.34) can be generalized to
(9:36) F(2)g(z, s)y*dz =0

s
for every f € Gx(A1) with any A; € C in the sense that the left-hand side is
meromorphic in s on the whole C, and is valid whenever g(z, s) is finite at
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s. This shows that € (sg, I') C Ni(I, ). Considering (s — sg)g instead of g,
we see similarly that & (so, I') C 9 (I, A), and so we obtain (9.35).

Lemma 9.15. (i) The symbols being as in §9.14, we have dim & (I") = #Y.

(ii) The map g(z, s) — g(z, so) is a bijection of €x[so, I'] onto Ex(so, I'),
provided so # (1 —k)/2.

(iil) €x(I") = €x[so, I'] if Re(so) > (1 — k)/2 except in the following two
cases: (a) so =1 and k=0; (b) so = (3 —2k)/4 and |k| —1/2 € 2Z.

PRrOOF. Let g(z, s) = dey ceEy(z, 8,607 1)k € with ¢¢ € C. Suppose
g € €r[so, I']. Then from Lemma 9.7 we obtain, for every n €Y,

9(z, so)len™! = cyy™ + (Z Cgfgn)(so)yl_k_sﬂ T

ey
If s9 # (1 —k)/2, then sg # 1 — k — sp, and so if g(z, s9) = 0, we have
¢, =0 for every n €Y. This proves (ii). In particular, if g =0, then ¢ =0
for every ¢ € Y, which proves (i). Assertion (iii) follows immediately from
Theorem 9.9.

Theorem 9.16. (i) The notation being as in §9.14, suppose that € (I") =
Ex[so, I'] = €k[80, '] and so # (1 — k)/2; let X = so(1 — k — sg). Then
Ne(I, A) = Ex(so, I') and dimNg (I, A) = #Y.

(ii) In the setting of (i) let feUx(L, A) and f|| & =aey®™ —&—a’{yl_k’_s‘)—l—
nonconstant terms. If ag =0 for every £ €Y, then f is a cusp form.

ProOF. Given f € Ax(I, \) and g € Ax (I, N), for each £ € Y put

flle&t = agy® + a'gylfkfso + nonconstant terms,
gllk €1 = bey™ + béyl_k‘_‘g0 + nonconstant terms.
(We can consider such expansions even for £ € Y, but the constant term is

0 by Lemma 9.7(i) if £ ¢ V.) By Theorem 9.11 (with X = {{71[£ € Y}) we
have

(9.37) Z Ve—1 (aggé — aégg) = O,
Eey

where v, is as in that theorem. Moreover, the map

(9.38) [ (ag, ag)eey

gives an injection of Ax (I, \)/Sr(I, \) into C?*, where K = #Y. A sim-
ilar statement holds with A in place of A. By Lemma 9.15 and our as-
sumption, dim € (sg, I') = dim €,(Sp, I') = k. Each nonzero element g
of € (S0, I') defines a nontrivial linear relation on (ag, a;) by (9.37), since
¢€r(50, I') N Sk(A) = {0} by (9.32b) and (9.35). Therefore the elements
of €,(50, I') produce & linearly independent relations on (ae, a'g), which
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means that dim 9 (1, A) = dim [, (I, A)/S (I, A)] < k. Since € (so, I') C
Ny (I, A), this proves (i).

Let f be asin (ii). By (i) we can put f(z) = g(z, so) + h(z) with ¢ €
(s, I') and h € Sy (I, A). Take this g as g in the proof of Lemma 9.15.
Then our assumption a¢z = 0 means ¢ = 0 in that lemma, and so g = 0.
This proves (ii).

Theorem 9.17. The notation being as in §9.14, define a CY -valued func-

tion E on 9 x C by Ei(z, s; I') = (Ek(z, s E0EY) |k §)§ey. Then there

exists an End(CY)-valued meromorphic function ®y(s, ') such that
(9.39a) Ew(z, ;1) = Pp(s, "Ex(z, 1 =k — s; '),
(9.39D) B(1—k — s, 1) y(s, ') = 1.

Moreover, there is a diagonal element A of End(CY), depending only on I’
and Y, whose diagonal entries are positive integers such that

(9390) @k(s, F)A . t@k(l —k—35, F) = A.

PROOF. Put Iy = £I¢7 ! and Ee(s) = Ey(z, s; I¢)|k & By Lemma 9.7,
for £, n €Y we have

(9.40a) Be(s)len™t = beny® + fen(s)y' ="+ -
with meromorphic functions f¢, on C, and so

(9.40b)  Ee(1—k—s)len " = 0eny' F 7 + fen(L =k —s)y* +--- .
Therefore
(0.41) {Egu ke =Y el k- s>E<<s>}||kn1

CeYy
=0- ys + {557] — Z f§<(1 — k- s)fgn(s)}ylks +---
CeYy

We can easily find a nonempty open subset W of C such that €, (I") =
Crls, Il = Els, [ = €[l —k — s, '] = &l — k — 5, I, fgn(].*kfs)
is finite, and s # (1 — k)/2 for every s € W. Then by Theorem 9.16(i) the
left-hand side of (9.41) without |n~! for such an s belongs to (I, \)
with A = s(1 — k — s). By Theorem 9.16(ii) it must be a cusp form, and so

> Jec(l =k =) fen(s)= ey and Be(1 =k —s) =} fec(l =k = $)Ec(s)
ey cey
for every s € W. Writing @ (s, I') for the matrix [fe,(s)], we obtain (9.39a,
b). Next, E¢(1 — k — 3) belongs to 24 (I, A), and so from (9.37), (9.40a), and
(9.40b) with ¢ in place of £ we obtain

Z V=t (5571501 = Jen($)fen(1 =k — 5)) =0.

ney
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Let A = diag[v,,-1],cy. Viewing this as an element of End(CY"), we obtain
(9.39¢). This completes the proof.

Theorem 9.18. The notation being as in Theorem 9.17, suppose A =
p? with p = (1 — k)/2. Given a congruence subgroup I' of Gy, let €} (I)
denote the space spanned by (0g/0s)(z, u) for g € Exlu, I') and EY(I") the
space consisting of (8g/0s)(z, p) for all g € E[p, I'] such that g(z, p) = 0.
Further let k4 resp. k_ be the multiplicity of 1 resp. —1 in the eigenvalues of
Dr(u, I'). Then #Y = kq + ki, dim €, (u, I') = k4, dim €YU(I") = k_, and

@;C(F) C N (I )\) = @k(u, F) S GQ(F).

Moreover, € (u, I') consists of the elements of Ny (I, \) that do not involve
y*logy.

PRrROOF. Put k=#Y. By Lemma 9.15(iii), €, (") = Ex[u, I'] and so every
function appearing in this proof is finite at s= pu; also, dim &[u, I']=k by
Lemma 9.15(1). We easily see that the elements of ) (I") satisfy (9.1a, b), and
also (9.1c), in view of Lemma 9.8. Also, equality (9.34) holds with an element
g(z, s) of E[u, '] in place of Ex(z, s; I'), and the integral is uniformly conver-
gent in a neighborhood of s=pu. Therefore we see that (0g/9s)(z, p) € Nk (N),
and so € (I") C Ng(I, A). From (9.39b) we obtain @ (i, I')> = 1. Thus the
eigenvalues of @y (p, I') are £1. Let E¢(s) be as in the proof of Theorem 9.17.
Then from (9.40a) we obtain

Ee(p)llkn™" = (den + fen(p))y* + -+,
(0Ee/0s)()llxn™" = (den — fen(p))y" logy + (dfen/ds)(u)y* + - -

for every &, n€Y. Let g(z, 8) = > ¢cy ceBe(s) € €lp, I'] with c¢ € C. Put
¢ = (c¢)eey. Then g(z, u) =0 if and only if '@y (u, I')c = —c, which means
that dim € (u, I') =k — k_ =ry. If '@y (u, I')c= —c, then g(z, u) =0 and
(0g/0s)(z, w)|lkn~' =2¢c,y* logy + by, - y* + - -+ with some b,, which shows
that dim €{(I")=r_. Since no element of & (u, I') involves y* logy, we see
that € (u, I') and €Y(I") form a direct sum.

Next, the notation being as in (9.28¢, d), consider the map f +— (ag, a%)gey
defined for f € (I, A). This sends A, (I, A) into C?* with kernel & (I, \).
Let d be the dimension of the image space. Then d = dim M (I, A\) and
(9.29b) shows that d < 2k — d, and so d < k. Since €(pu, I') & EX(I") is
a subspace of 9 (I, A) of dimension Ky + k_ = Kk, we can establish all the
statements of our theorem.

Theorem 9.19. Let A = so(1 — k — s9) with so € C. The notation being
as in §9.14, suppose that so # (1—k)/2, A € R, and € (I") = €} [sq, I']. Then
dim‘ﬁk(F, )\) = #Y and ‘th(l“, )\) = ka(S(), F) SV QEZ.(S(), F)
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PROOF. Put k = #Y. For p € €,(I') denote by p(p) the residue of p
at s = sg. Then p is a C-linear map of & (I") onto €5 (so, I') with kernel
Ei[so, I'], and so by Lemma 9.15(i,ii), dim € (s, I') +dim €} (sg, I') = k. Let
h € €x(so, I') N Ef(so, I'). Then h(z) = g(z, so) = p(p) with g € Ex[so, I']
and p € Ey(I'). Put g =) .0y acEe(s) and p = ) .oy beEe(s) with ag, be €
C and E¢(s) = Ex(z, s; E0E Y| & By (9.40a) we have, for n €Y,

Alan™ = any™ + 3 acfen(so)y'™ 7% + -
33%
=0-y°+ Z be [Ressso fen(s)]y' TF7%0 4+ -+,

£eY
and so a, =0 for every n € Y. Thus h =0, and consequently, €,(so, I') and
€ (s0, I') form a direct sum of dimension k. Take again the map of (I, A)
into C%* with kernel & (I, \) given by (9.38). Let m = dim M (I, \), which
is the dimension of the image space of (9.38). Since A\ = ), relation (9.37)
shows that m < 2k — m, and so m < k. We have seen that the left-hand side
of (9.35) has dimension &, and so we obtain our theorem.

Corollary 9.20. Let I' and Y be as in Lemma 9.7. Then dimMNy (I, \) =
#Y for every .

Proor. If X is critical, this is included in Theorem 9.18. Suppose A is
not critical. Let so be a solution of X2 + (k — 1)X + A = 0. Then the other
solution is 1 — k — sg. Replacing sg by 1 — k — s¢ if necessary, we may assume
that Re(sg) > (1 — k)/2. Excluding cases (a) and (b) of Lemma 9.15(iii),
we obtain dim 9, (I, A) = #Y from Theorem 9.16. In cases (a) and (b) we
obtain the desired result from Theorem 9.19.

9.21. We now return to holomorphic modular forms on §). Given a congru-
ence subgroup I" of Gy, we denote by .#,(I") resp. -« (I") the set of elements
f of My, resp. ), such that f||xy = f for every v € I'. This is consistent
with what we already have if k € Z or if k ¢ Z and I' C I"?. We have then
(9.42a) A 1,(I") consists of the holomorphic elements of A (I, 0),

(9.42b) (") = S,(I, 0).
These follow immediately from (9.3) and Lemma 9.2(iv). We put
(943a) &) ={f €. #K(I)]

(f, g) =0 for every g € .Z%(I')},
(9.43b) D

Theorem 9.22. For every congruence subgroup I' of Gy with k > 0 we
have
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(9.44) () = M o (I') N N(0),
(9.45a) My =Sy D E,

(9.45D) M) = S 1(D) & &(D),
(9.46) &) = M (I') N &0, T) if k> 1,
(9.47) E () =¢L(0, ) if k>2 or k=1,
(9.48) &1y2(I') = €] 5(1/2, I).

PRrOOF. By (9.42b) the right-hand side of (9.44) is contained in &(I").
Conversely, let f € &,(I") and g € &, (I, 0) with any I" C I'. Let R be a
complete set of representatives for I'"\I". Then by (6.12) we have

T g) = 34 glea) = <f, Zguka> 0,

a€ER a€ER

since Y cr9llka € &x(I, 0) = S%(I") by (9.42b). Thus f € Ny (0), which
proves (9.44). Formula (9.45b) follows immediately from the definition of
&r(I"). Then clearly (9.45a) holds. Take sp =0 in Lemma 9.15 and Theorem
9.16(i); then we find that €, (0, I') = N (I, 0) for k > 3/2, which combined
with (9.44) proves (9.46) for such k. Next, take k£ =1 in Theorem 9.18. Then
ANN(T, 0) = A#1NE1 (0, I'), which gives (9.46) for k = 1. Formulas (9.47)
and (9.48) will be poven in the proof of the following theorem.

Theorem 9.23. Let Ey(z, s) denote the analytic continuation of any se-
ries of type (8.12) or (9.22) with k > 0. Then the following assertions hold:

(i) Ex(z, s) is finite at s = 0.

(ii) Ex(z, 0) belongs to M1, (Qap) if k>2 or k=1.

(iii) If k = 2, then E3(z, 0; I'(N, N), 1) belongs to .#2(Qan) except when
W s trivial, in which case it belongs to A3 (Quap)-

(iv) If k = 3/2, then E3/o (z, 0; I'(N, N), ¢) belongs to M 5/5(Qan) except
when % is trivial.

(v) If k = 1/2, then E\/5(z, s; I') has at most a simple pole at s = 1/2,
and the residue belongs to W_l,//ll/g(Qab). More explicitly, the residue is of
the form =t > oecq A&)e(t&?2/2) with 0 <t € Q and a Qap-valued element
X of 2(Q).

PrROOF. By (9.23), (9.24), and Theorem 7.5(iii) the problems can be re-
duced to the case of Ex(z, s; I, ¢). Assertions (i), (ii), and (iv) follow from
Theorem 8.15(iii) if 3/2 < k ¢ Z. Suppose k € Z; then (8.18) reduces the
problem to EY(z, s; ¢). Indeed, since 1(—1) = (—=1)*, we have Ly (k, 1) €
78Q), by Lemma 2.9, and so we obtain (i) and (ii) from Theorem 8.15(i).
Combining these results with (9.46), we obtain (9.47). Assertion (iii) follows
from Theorem 8.15(i).

Suppose k = 1/2; let F* be as in Theorem 8.14. Then
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F*(z,8) = (2s = 1)I"(s)['(s + 1/2)Ln(4s, ¥*)E12(2, s T, ).

By Lemma 2.10, Ly (2, 1?) € 72Q_;,- Therefore from Theorem 8.16(i) we see
that Fy(z, s; I, ©) has at most a simple pole at s = 1/2, and the residue
is 77! times a Qap-rational theta series as given in that theorem. Thus
we obtain (v), and see that €, (I") = €5[1/2, I'] and €;(1/2,I') C A ().
Therefore, by Theorem 9.19, My (I, 0) = €4(1/2, I') & €;(1/2, I'). Thus, to
prove (9.48), it is sufficient to show that the only holomorphic element of
¢,(1/2, I') is 0. For that purpose, take h(z) = g(z, 1/2) with g € €,[1/2, I'].
Put g =3 ccy acEe(s) with a¢ € C as in the proof of Theorem 9.19. Then
hllgn~t = a,y'/?+c,+- -+ with ¢, € C for every n € Y. If h is holomorphic,
then a, =0 for every n € Y, and so h = 0 as expected. This proves (9.48)
and completes the proof of our theorem.

From (v) above and (9.48) we obtain

(9.49) &1/2(I') is spanned by some functions of the form 3 .. q A€)e(tE%2/2)
with 0 < t € Q and an element A of £(Q).

We also note that

(9.50) &N (z, 0; p, q) belongs to Ny, (F(N), 0) if k> 0. In particular, Ey(2)
defined by (8.14e) belongs to Ny (I'(N), 0).

In view of (8.14d) we may assume that (N, p, q) = 1. Then there exist
relatively prime integers py and ¢qo such that (po, qo) — (p,q) € NZ2 We
have &Y (z, s;p, q) = €N (z, s; po, qo), and (8.14a) reduces the problem to
@M (z, 5,0, 1). From (8.16) we see that
o(N)EN (2,5 0,1) = ZEkzsd)
Yew
where ¥ is the set of all characters modulo N such that ¢(—1) = (—1)*.
Notice that @(N) =#(¥) =1 and k € 2Z if N < 2. By (8.18) we obtain
P(N)EN (2,5 0,1) =2 > Ly (2s+k, ¥)Ex(z, s; I, ¥),
PeW
which together with (9.35) proves (9.50).

9.24. We note here one of the easiest cases of @i (s, I') of (9.39a, b). Take
I' =TI(l) and 0 < k € 2Z. Let x( denote the principal character. Then
(8.18) shows that

2¢(2s + k)Ey, (z, s; I'(1), Xo) = El(z, s; x0) = €4(2, 5; 0, 1).
The Fourier expansion of €} (z, s; 0, 1) is a special case of the formula given
in [SO7, p. 134]. Employing it, we obtain

Es (Z s F(l) XO) — ys + yl—k:—sﬂ.z'—k'QQ—k-—Qs F(2S +k— 1)<(28 +k - 1)

I'(s)['(s+k)((2s + k)
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-+ nonconstant terms.

Put &(s) = 7%/2I(s/2)¢(s). Since I'(s)I'(s — 1/2) = ©'/222725'(25 — 1), we
have

(9.51) Ep(z, s; I'(1), xo) = y* + ®i (s, I'(1))y' " *+ nonconstant terms
k. £2s+k—1) I'(s+Fk/2)°

E2s+k)  T(s)I'(s+k)
Then the relation &y, (s, F(l))@k (1 —k—s, F(l)) = 1 means the well-known
equality (1 — s) = &(s) combined with the fact that the map s+—1—k —s
transforms I'(s)'(s + k)I'(s + k/2)~2 (which is a rational expression in s)
into its inverse.

with @ (s, I'(1)) =

Lemma 9.25. Given f € My, a € Gy, and o € Aut(C), there exists an
element 5 of Gy, such that (f||xa)” = f7||x0-

PrROOF. We first prove the case k € Z. Since SL2(Q) = PI'(1), it is

sufficient to prove the cases o € I'(1) and « is of the form « = é 11) or
o= [8 col . The first case is included in Lemma 7.6. The latter two cases
can easily be verified. Now suppose k ¢ Z; let f € 4 and v = («, p) € Gy.
Then f2 € # 2 and we find 8 € SL2(Q) such that (f2|2ra)® = (f2)7|2x5-
We easily see that ((f||k’y)")2 = ((f?|l2r)? with a root of unity (. Therefore

(flley)? = folle(B, q) with a suitable (8, ¢) € Gj. This completes the proof.

Theorem 9.26. For every weight k > 0 the space & is spanned by its
Q-rational elements.

ProOF. This follows from (9.49) if £ = 1/2. Since the cases k = 3/2 and
k = 2 require special considerations, we first assume k > 2 or k£ = 1. Our
task is to show that & for such a k is spanned by Q-rational elements. By
(9.23) and (9.24), & is spanned by Ej(z, 0; I'(N, N), ¢)|[xa for all choices
of (N, ¢) and a € Gj. By Theorem 9.23(ii) and (9.21a), such a function is
Q.p-rational. To obtain the desired result, it is sufficient to show that &} is
stable under the action of Aut(C) defined by (7.2). Indeed, assuming such
a stability, take a Qap-rational element f(z) = > ..qc(§)e(£z) of &. Let
K be the field generated over Q by the ¢(£). By Theorem 7.5(v), [K : Q]
is finite. Put G = Gal(K/Q) and g, = > .5(bf)? for b € K. Then g; is
a Q-rational element of &; and f is a finite K-linear combination of g, for
some b, and so & is spanned by Q-rational elements. Thus our problem is to
show that { Ey(z, 0; I'(N, N), LZJ)Hka}U belongs to &% for every o € Aut(C).
This is indeed so by Lemma 9.25, Theorem 8.15(i), and Theorem 8.15(iii).
This completes the proof in the case £ > 2 or k = 1.
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Next suppose k = 2. By (9.46), &(I") consists of the holomorphic elements
of &(0, I'), and the nonholomorphic elements belong to .#3. Therefore, in-
cluding such nonholomorphic elements, we observe that the space spanned
by E» (z, 0; I'(N, N), w)||2a is stable under Aut(C). For this, in addition to
Theorem 8.15(i), we need Lemma 9.25 for f € .#%. The statement in the two
cases of the elements of P are easy, and so we have only to check the case
a € I'(1). Then expressing f in the form f = g+ cEy with g € #9, c € C,
and the function Fy of (7.10), we easily obtain the desired result. Thus
U, €2(0, I') is stable under Aut(C), and its subset consisting of the holomor-
phic elements is also stable under Aut(C) as expected.

Finally suppose k = 3/2. We invoke the result of Pei in [P82, 84], in which
a subset .7 of &3/, with the following properties is given: (i) .% consists of
Qap-rational elements, and is stable under Gal(Qan/Q); (ii) &3/2 is spanned
by the elements of the form f||3/oa with f € % and « € SLy(Q). Therefore
our argument in the case k > 2 is applicable and we obtain the desired result.
This completes the proof.



CHAPTER 1V

THE CORRESPONDENCE BETWEEN FORMS
OF INTEGRAL AND HALF-INTEGRAL WEIGHT

10. Theta series of indefinite quadratic forms

In this section we will associate a certain theta function with an indefinite
quadratic form, and prove its automorphy properties. In later sections we
will employ the function in various ways. We consider the set S, (A) defined
by (0.2) with A = Z, Q, or R, and put S[z] = ‘xSz and S(z, y) = tzSy for
xz,y € C" and S € S, (R). We begin with some easy facts.

Lemma 10.1. For two elements S and P of Sp,(R)NGL,(R) the following
three conditions are mutually equivalent:

(i) P>0 and PS™1P=S.

(i) There exists an element A of GL,(R) such that P = *AA and S =
YAT, ;A with nonnegative integers p and q such that p+q = n, where I, , =
diag[1,, —14]. (We of course ignore 1, or 1, if p or ¢ is 0.)

(i) There exists a direct sum decomposition R" = W @& W' such that
Slx] > 0 and Px = Sx for x € W, S[y] <0 and Py = —Sy for y € W', and
S(x,y)=0 for x €W and y € W'.

PROOF. Given P and S as in (i), take B € GL,(R) so that P = 'BB, and
put T =*tB~1SB~!. Then!T' =T and T~! = BS™'-!B = BP~'SP~!'.'B =
tB~1SB~! = T, and so the eigenvalues of T are 1. Therefore we can find
an element C of GL, (R) such that ‘CC = 1,, and C~'TC = I, , with some
p and ¢ as in (ii). Putting A = 'CB, we obtain (ii). Next, given (p, q)
and A as in (ii), let X resp. Y denote the subspace of R™ counsisting of the
elements of R™ whose last ¢ resp. first p coordinates are 0. Let W = A71X
and W' = A~'Y. Then we obtain (iii). Finally suppose W and W' are taken
as in (iii); then we can find an element U of GL,(R) such that UX = W
and UY = W’. We see that 'USU = diag|G, —H] with 0 < G € S,(R) and
0 < H € S4(R). Then ‘UPU = diag|G, H], and so P >0 and ‘UPS~'PU =
YUPU(tUSU)™ - tUPU = diag|G, —H] = 'USU. Thus we obtain (i) and our
proof is complete.

10.2. For S € S,(R) N GL,(R) we put

G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 89
DOI 10.1007/978-1-4614-2125-2_4, © Springer Science+Business Media, LLC 2012
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(10.1) 0(S) = {a € GL,(R) |'aSa = 5},
(10.2) P(S)={P e S.(R)|P>0, PS'P =5}

Then we can show that 9B(S) is a symmetric space that is O(S) modulo
a compact subgroup as follows. First take A € GL,(R) and nonnegative
integers p and ¢ so that S ='AI, ;A and put Py = *AA. By Lemma 10.1,
Py € B(S). (Thus B(S) # 0.) Put K = O(S)NO(Fy). Since O(Fp) is compact,
K is a compact subgroup of O(S). In view of Lemma 10.1, it is an easy exercise
to show that a — faPya for a € O(S) gives a bijection of K\O(S) onto JB(S).
(We do not need this fact in our later treatment, however.)

10.3. We fix two elements S and P of S,,(R)NG L, (R) such that P € PB(5).
For z =z +iy € $ and v € SLy(R) we put

(10.3) R(z) = xS+ iyP,
| ayly bS8
(104) 0'7 = |:C,YSI d,y]_,n .

Then clearly R(z) € §,, and

-1
|1, 0 ayl, byl, | |1, O
S KT I v |
Therefore we easily see that o, € Sp(n, R) and the map ~ — o, is a homo-
morphism of SLy(R) into Sp(n, R). Moreover we have

(10.6) R(z) — R(z) = 2iyP,
(10.7) oy (R(z)) = R('y(z)),
(10.8) J(oy, R(2)) = 5y (2)P55 (2)",

where p and ¢ are determined by S as in Lemma 10.1(ii). Formula (10.6)
is obvious. To prove the last two formulas, take A as in Lemma 10.1(ii) and
put Z = diag[z1,, —z1,]. Then we easily see that R(z) = "AZA, and so for

a b
v = [c d] we have

R(z)| [ al, bS|['AZA] [a-'AZA+b-'AL,,A] [ 'AXA
1 T les Tt di, || 1. |T| eA,zA+dl, |T|A7vA
with X =diag[(az + b)1,, —(aZ + b)1,] and Y =diag[(cz + d)1,, (cZ + d)1,],

and so Rl(f)} _ {t A. diag[’)’(zﬁp - WL;]A} A=y A

Oy

In
Recalling formula (1.6), we obtain (10.7) and also

(10.9) (o, R(2)) = A~' - diag[jy (2)1p, j(2)14]A.

_ [RW(Z))} A diagjy (2)1p, 44 (2)16)A.
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Taking the determinant, we obtain (10.8).

10.4. We now assume that S € 5,(Q). Then the map v — o, sends
SLy(Q) into Sp(n, Q). We then consider the function ¢(u, Z; A) of (4.48a)
with v € C", Z € ,, and A € Z(Q"). Put

(10.10) f(u, z; A) = ¢(u, R(2); A).
Here z € 9. More explicitly
(10.11)  §(u, 2; A) = e((4iyP)"[u]) > M&e(27'R(2)[¢] + "¢u).

ceqQn
Put

(10.12) Mg = {y € SLy(Q) |0y € P, I}

with P, of Lemma 2.2(iii) and I'? of (4.6). Then P, Mg = Ms. Take positive
integers r and s so that 7S < 2Z and sS™! < 2Z. Then o, € I if
v € I'(r, s); see (8.11) for the notation. Also o, = diag[S, S~'|t, € P,IY.
Thus

(10.12a) I'(r,s)C Mg and o, € Msg.
If v € Mg and ¢ = o, then from (10.7) and (4.49a) we obtain
(10.13) ("M u, v(2); A) = he (R(2))f(u, 2; A7),

where M, = (o4, R(2)). Also, from (10.8) and (4.49b) we see that
(10.14) ho(R(2)) = ky(cz + d)P/?(cz +d)9?  with k., € T.
10.5. Let S, P, and R(z) be as in §10.3 with S € S,(Q). Put V = R",
Ve = C™, and
(10.15) Vg ={x € Vc|Pz =Sz}, Vg ={zeVc|Pr=-S5z}.
We consider a C-valued polynomial function xy on V given by
(10.16) x©) = T[ (pse) ] Crso™  (c€V).
re{p} re{r}
Here {p} resp. {7} is a finite subset of V§ resp. Vg; 0 < ¢, € Z, 0 <m, € Z.
We assume: S(p, p') =0if p, p’ € {p} and p #£ p'; S(r, 7)) =0if 7, 7" € {7}
and 7 # 7’5 Slp] = 0if ¢, > 1; S[r] = 0 if m, > 1. We then put
(10.17) F(z ) = [z A ) = D MOx(§)e (27 R(2)[8)),
gev
where z € $ and A € Z(Q"). We call f(z, A\) a theta series associated
with S. Take A as in Lemma 10.1(ii). Then we easily see that

(10.18) Az =1,,Az if x€V3 and Ay=-1I,,Ay if yeVs;

(10.19) the last ¢ resp. first p coordinates of Az are 0 if x € Vér resp. & €
Vs .
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We define a factor of automorphy J29(z) as follows:

i (P—a)/2|; q .
al® alz f € 27,
(10.20) JPa(z) = Ja(2) lja(2)] if n

ha(2)P™ja(2)[* if n¢ 22,

where a € SLy(Q) if n € 2Z and o € P I'% if n ¢ 2Z; h, is defined in
Theorem 4.12. Notice that p — g — n € 2Z. In the following theorem S and
x are fixed.

Theorem 10.6. Let v€SLy(Q) if n€2Z and v PIY if n¢2Z. Then
for Xe Z(Q™) we can define an element X\ of £ (Q™) such that

(10.21) F(1(2), A) = 31(2) 55 (=) T29(2) f (2, N),
where (=3 1 Lo and m=3_ ., m;. Moreover, A7 is independent of X
and {"YGSLQ(Q) | )\7:)\} contains a congruence subgroup of SLa(Q).

PROOF. From (10.14) we see that h, (R(z)) is J£9(z) times an element of
T. Therefore we can reformulate (10.13) in the form

(10.22) F(EM b, 4 (2); N) = JP(2)f(u, 2 A7)

with a well-defined \Y € £(Q") for v € Mg N PI'%. Suppose n € 2Z;
then Jp(2) = J§9(vz)JD9(2) for every S, v € SL2(Q). By Lemma 2.2(iv),
SLy(Q) is generated by P and ¢. Since (10.22) is valid for 7 € P and v = ¢, we
can define A7 by (10.22) for every v € SL2(Q) when n € 2Z. Next suppose
n ¢ 27Z. Then a similar reasoning establishes (10.22) for every v € SLy(Q)
if we replace JP'? and ¥ by J' = jﬂ,(z)”/z‘mq/2 and some element \ €
Z(Q"). Here X" depends on the choice of J'. Therefore, if we take J' = J29(z)
as defined by (10.20), then (10.22) is valid for v € PI"? with a well-defined
A7 when n ¢ 2Z. Thus (10.22) can be extended to v € SLy(Q) or v € PI'?;
we call this extended formula (10.22).

We will derive (10.21) by applying some differential operators to (10.22)
and putting u=0. We first treat the case with x(¢) = (*pS¢)*(*75¢)™, and
will add a comment in a more general case at the end of the proof. Put
Dy=%""(52);0/0u; for z€ Ve and g(u) = e((4iyP)*[u] + *¢u). Then

(10.23) (DD g)(0) = (2mi)“+ ™ (€).

To prove this we first observe that D, B[u] = 2B(Sz, u) for every B € S,,(R).
Then

(Dag)(u) = 2mi{S(€, @) + (2iyP) " (Sz, u) }g(u),
(D2g)(u) = (2m0)2{S(€, z) + (2iyP)~*(Sz, u)}*g(u)
+ 27 (2iy P) "1 [Sx]g(u).
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Now P~ 1[Sx] = taPx = £'xSx for 2 € Vci. Therefore, by our assumption
S[r] = 0 if m,; > 1, we obtain (D™g)(0) = (2mi)™S(r, )™ for 0 < m € Z.
Also, D,D,g involves P~!(S7, Sp), which equals *rPp = 7Sp = 0. Thus we
obtain (10.23), and consequently termwise differentiation of (10.11) gives

(10.24) (DEDT){f(u, 23 N}, _y = @7) T (2, A).
On the other hand,
(10.25) (DD {F( Mt 2 0) )

= Jy(2) "Gy (2) T (DRDTH( My, vz N).
Indeed, in view of (10.9) and (10.19) we have
'M1Sp ="A - diagljy (2)1p, jy(2)14] 1 PATIS
="A - diagljy(2)1p, Jy(2)Lg] " Ip.eAp = jy(2) 71 S,
and similarly tM;lsT =Jy (2)71573 and so (10.25) holds. Therefore, applying
Df;D;” to (10.22) and putting u = 0, we obtain
—m .
@m0) 7y (2) "Gy (2) T fyz A) = (2m) TIR(2) f (2, A7),

which can be written in the form (10.21). When yx is defined in the most
general form, we apply [] o Dﬁ” [I, D7~ to (10.22). In view of our assumption

that *pSp’ = 787" = 0, we obtain (10.21) in the general case.
Clearly M7 is independent of y. The last assertion will be proven in §10.10.

Lemma 10.7. Let the symbols be as in §10.5 and Theorem 10.6. Then
f(z, A) is slowly increasing or rapidly decreasing at every cusp, locally uni-
formly in the parameters p and T of (10.16), according as £ = m = 0 or
L+m > 0.

PROOF. Let a € SLy(Q) and k =£¢+m + (p+ ¢)/2. Then by (10.21),
[Im(az)"/2 f(az, A)| = Im(2)"/2f (2, X*)],

and so our task is to make an estimate of | f(z, u)| for an arbitrary p € Z(Q™).
Clearly it is sufficient to treat the case in which p is the characteristic function
of L =7". Let x be a homogeneous polynomial function of £ € V' of degree
d. Then we can find a positive constant C' such that |x(¢)] < CP[£]%? for
every £ € V. Since \e(2_1R(z)[§])| = exp(—myP[¢]), we have

> x(€)e(2'R( )[5])‘ < CY P2 exp (- myPle]).

gel 1337

Suppose d = 0. Then we see that |f(z, )] < C’ for y > 1/2 with a constant
C’. Thus f(z, \) is slowly increasing at every cusp. Suppose d > 0. Since L
is discrete in V and {¢ € V|P[§] < 1} is compact, {{ € L|P[§] <l}isa
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finite set, and so we can find a positive constant M such that P[¢] > M for
0 # &£ € L. Therefore if d > 0, we have

|/ (2, W) < Cexp(=mMy/2) Y PE]*? exp (~myP[E]/2) < Coexp(~mMy/2)

£el

if y > 1/2 with a positive constant Cy. This shows that f(z, \) is rapidly
decreasing at every cusp. Since we can take the same C' when the parameters
p and 7 of (10.16) stay in compact sets, we obtain the desired local uniformity
in p and 7.

Lemma 10.8. For v = {i Z

] € I'(2) define o by (10.4). Suppose
O',YEF,? and 0 < d—1 € 2Z; then

1026 fo, ) = (LG ) Ty

If S < Z in particular, (—1)? det(bcS) can be replaced by (—1)2 det(S).

(z €9).

PROOF. Since bS < Z, ¢S™' <Z, and adl,—(bS)(cS™1)=12,, we see that
det(bS) is prime to d. By Theorem 4.7(1) we have h(o., Z) = kj(0., Z)'/?
with

k=d "> e(bS[z]/(2d)), lim j(o,, Z)'/* >0,
X elisia/ea). e
where Z is a variable on £),,. Since d is odd, putting « = 2y with y € Z"/dZ",
we obtain
k=d™2 Y e(2bS[yl/d).
yezn /dZn

By Lemma 2.3 there exist an element « of M,(Z) and r; € Z such that
tabSa — diag[ry, ..., r,] < dZ and det(«) is a positive integer prime to d.
Clearly we may assume that the diagonal elements of tabSa are 71, ..., Tp.
Then

n d
k=d"? H Z e(2ry?/d).

i=1y=1
and det(a)? det(bS) —ry -+ -7, € dZ. By Theorem 2.6 we have

) (A2 - (3] (25,

Now (0., R(z)) is given by (10.9). Therefore, by (4.40) we obtain
h(oy. R(2)) = EZQ(MﬁW(@m(@q,

which gives (10.26). If S < Z, we can replace —bcS by S, since be+ 1 € dZ.
This completes the proof.
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Theorem 10.9. Given 0 < S € S,,(Z), put
(10.27) f)= ) x(©e(27'5gz) (2 9)

cezn
with x as in (10.16) such that {t} = 0. Then f € M} with k=(+n/2, { =

Zpe{p}ﬁp, and f € S if £ > 0. Moreover, if v= [CCL Z] eI'(l), bS < 2Z,
cS™1<2Z, and d > 0, then

(10.28) 102 = (S5 o (212

PROOF. Since bec € 4Z, d is odd. Take S = P and 7 = () in Theorem
10.6; take also A to be the characteristic function of Z™. Then our f(z) is
f(z, A), or rather, f(z)=f(0, z; \) with § of (10.11). Therefore we have

FOMT u, v25 A) = h(oy, 29)f(u, 25 A)

for v € I'’. Now h(c, 25) is determined by Lemma 10.8. Then the applica-
tion of Df; produces j, (2)* as explained in the proof of Theorem 10.6, and so
we obtain (10.28). Also, from (10.21) we see that f satisfies condition (3.4d).
That f € & if £ > 0 can easily be seen. This proves our theorem.

The fact that a theta series of type (10.27) belongs to .4 was proved by
Hecke and Schoeneberg when n is even. A general formula for both even and
odd n was given in [S73a]. There is a paper cited in [S73a] that treated the
case of odd n, but its proof is erroneous.

10.10. Let us now prove the last assertion of Theorem 10.6. Take an

g} € I'(r, s) with d > 0

and positive even integers r and s such that rs € mZ and o, € Fg. Put
bc = mt. Since mt + 1 =bc+ 1 € dZ, we have
((—1)p det(ch)> _ ((—1)pt” det(mS)> _ ((—1)’1m” det(mS)> _
d d d

if d—1 € 4m" det(mS)Z. By Lemma 10.8, we have h(o., R(z)) = JP(z) for
such a =, that is, for v in a sufficiently small congruence subgroup. Also, our
proof of (10.21) shows that \” does not depend on ¥, that is, A7 is determined
by (10.22). Since h(o,R(z)) = J29(z) for v as above, comparing (10.22)
with (10.13), we have A = A7 for o = 0, where \? is determined by (4.49a).
Therefore the last assertion of Theorem 10.6 follows from (4.49f).

integer m so that mS < Z. Suppose v = [Z

10.11. If S of §10.3 has signature (m, 2) with 0 < m € Z (that is, (p,q)
above is (m, 2)), then the symmetric space associated with 3(.S) in the sense
of §10.2 is a noncompact hermitian symmetric space, and so has a complex
structure. Here, however, without proving this in a precise form, let us merely
show that (S) can be parametrized by some complex variables.
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For that purpose, we take, instead of S € S(R™), a vector space V over R of
dimension m+ 2, and take also an R-bilinear symmetric form S: V xV — R
that has signature (m, 2). We put Vo = V ®g C and extend S to a C-valued
C-bilinear form on Vo x Vi, using the same letter S. For v € V¢ we can
define its complex conjugate v € Vi in an obvious way. We now put

(10.29) 9(S) = {veVc|S] =0, S(v, v) <0},

where S[v] = S(v, v). Taking 1,2 as S, we see that 9(S) # 0. Given
v e YWS), put u=v+0,u =iv—iv, W = Ru+ Ru/, and W' = {y €
V| S(y, W) = 0}. Since S[u] < 0, S[u'] < 0, and S(u, u/) = 0, we see that
dim(W) =2,V =W W', S is negative definite on W, and S is positive defi-
nite on W’. Let Wg = W®grC, Then We = Cv+Co. Define P, : VxV — R
so that P, = =S on W x W, P, =S on W x W' and P,(W, W') = 0. Then
P, is positive definite, and we have W§ = Vg and W¢ = V5 in the sense of
(10.15) with respect to (S, P,); also, we have

(10.30) P,[¢] — S[€] = —4S(v, v)71[S(&, v)|? for every £ € V.

Indeed, given £ € V, we can find ¢ € C and z € W’ such that £ = cv+¢cv+ 2.
Then S(&, v) = &S(v, ©) and P,[¢] — S[§] = —2S[cv + év] = —4ceS(v, v), and
so we obtain (10.30). By Lemma 10.1, the matrices representing S and P,
with respect to an R-basis of V' are of the type described in (i) of that lemma.

11. Theta integrals

11.1. In the setting of §10.11 let us consider the special case m = 1 by
taking

(11.1) V={zeMy(R)|tr(z) =0}, S(z,y)=-2""tr(zy) (z,ycV).

Thus S[¢] = —a® — be = det (&) for ¢ = {(cl ba} € V. We put

(11.2a) p(w)

o] aw=]y B wesus),

1 —w 0 -1 ow
(11.2b) 6wl =25(¢ pw) (V).
Then we have
(11.3a) (€, w] = cw? —2aw —b if &= [Ccl _ba] ev,
(11.3b) yp(w)y ™t = jy(w)p(yw) iy € SLy(R),

(11.3¢) 1€y, w] = Gy (), yu] iy € SLa(R).
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Formula (11.3a) is easy. As for the latter two formulas, we can easily verify

0 -1

that p(w) = {w [w 1] and y~! =71ty with « = [1 0 } for v €

SLy(R). Thereflore
wtwn = [ V]l 1= g2 | b 1

which gives (11.3b). The left-hand side of (11.3¢) equals 25 (v~ !¢y, p(w)) =
25 (&, yp(w)y™1) = 245 (w)2S (&, p(yw)) by (11.3b), and so we obtain (11.3c).

Clearly p(w) € Vc and S[p(w)] = 0. Also, a direct calculation shows
(11.4) S(p(w), pw)) = 27w — w)? = —2Im(w)? < 0,
and so p(w) € Y(9).

11.2. For v = p(w) define P, as in §10.10 and put Ry (z) = xS + iy P, for
z=x+1iy € $. Then for £ € Vi we have
(11.5) Ru(2)[¢] = Slelz +iy(Pu[€] - S[€))

= det(&)z + 27 iy - Im(w) ~2[[¢, w]|?,

because of (10.30), (11.2b), and (11.4). We have seen that V5 = W¢ =

Cv + Cv in §10.11, and so P,v = —Sv and P,v = —S7.
We now consider a function of the form

(11.6)  O(z, w; ) = Im(2)"/Im(w) > Y~ n(€)[€, @]™e(27" Ru(2)[€])-
Eev

Here 0 <m € Z, (z, w) € Hx $H, and n € L(V). This is y'/? times a special
case of (10.17). Indeed, we have S[p(w)] = 0 and [¢, w] = 25(&, p(w)), and
P,p(w) = —Sp(w) as noted above, and so Im(w)~2™[¢, w]™ is a special case
of x(¢) = (*158)™ of (10.16). Notice that p = 1 and ¢ = 2 in the present
case. We put

L7 k=m+1/2, =) =h (i) (ye ).

This is consistent with (5.1b). Then from Theorem 10.6 we obtain

(11.8) O(vz, w; n) = jE(2)O(z, w; n) for every v €I’

with a sufficiently small congruence subgroup I" of I'. (The factor y'/? in
(11.6) eliminates |j,|.) Also, from (11.3c) we easily obtain

(11.9) O(z, fw; n) = jg(w)%’@(z, w; 77/3) for every (€ GL;(Q),

where 7°(¢) = n(BEA™L). In the rest of this section we assume m > 0.
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Theorem 11.3. (i) Given f € #(I") with k=m+1/2,0<m € Z, and
a congruence subgroup I' for which (11.8) holds, put

(11.10) g(w) = / F(2)8(, wi nyfdz, =TI\,

where dz is as in (6.5). Then the integral is convergent and g belongs to
%Zm-

(ii) In the setting of (i) suppose that f is a cusp form. Then g is a
cusp form at least in the following two cases: (a) m > 1; (b) m =1 and
(f, 0*(z, n))y =0 for every p € .£(Q), where 0* is as in (4.51).

We call the expression on the right-hand side of (11.10) a theta integral.
The proof of (i) will be completed in §11.7 and (ii) will be proven in §12.7.

11.4. In this subsection we assume that every integral is convergent. The
convergence will be proven in the next subsection. Now we need to compute
(0/0w)O(z, w; n). We have (9/0w)[¢, w]™ = 2mS (&, q(w))[€, w]™ !, where
q(w) = Op(w) /0w, as we defined in (11.2a). Writing simply p and ¢ for p(w)
and ¢g(w), we obtain, from (11.5) and (10.30),

(0/0w) Ry (2)[§] = iy(9/0w) Py[¢]
= —4iy(9/0w){S(p, p) 1S (& p)S(E, P)}
= 4iyS(&, p){S(p, p)"2S(p, DS(& p) — S(p, P) ' S(&, D}
=iy - Im(w) %S (€, ) (&, r)  with

(11.11) r=S(p, @)p — S(p, p)q = 2Im(w)?q — 2ilm(w)p,
since S(p, q) = —2iIm(w). Notice that
(11.12) S(p, ¢) = S(p, ) =S5(p, r) = 0.

Thus, putting F = e(?‘lRw(z)[g]) for simplicity, we have
(11.13) (0/0w)O(z, w; n) = —miy'/2Im(w) =21 Z

eV
+2my1/21m<w>*2m2 (€[, @™ 'S, O F
Eev
(77/2) 3/21m —2m— 42 }5(57 r)E'
Eev

We need an auxiliary series H defined by

(11.14) H(z, w; n) = y3/?Im(w )72m72
Y n@)lE @l S(E re(2 Ru())),
gev

and also the operator §;_o = (k — 2)(2iy) = + 9/9z on § defined in (6.13b).
Writing simply H for H(z, w; 1), we are going to prove
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(11.15) (0/0w)O(z, w; ) = —2id,_oH.
Indeed, since R, (z) = xS + iy P,, we have, by (10.30),

(0/02) R (2)[§] = 271(S = P)l¢]
=25(p,p) HIS(&, p)P = 47 Im(w) (¢, w][§, w],

and so
(11.16) Op_oH = (2 — k)(2iy)*1H + (0/0z)H
= (k — 2)(i/2)y"/*Im(w) =22 3 " n(©)[¢, w]" 'S¢, r)E

gev

(32/4) 1/21m —2m— QZ m 15(5, )
Eev

— (mi/4)y*/*Tm(w)~2m=4 Y " (¢ w]S(E, r)E
Lev

The last line times —2i equals the last line of (11.13). Substituting (11.11)
into 7 of the first two terms of the right-hand side of (11.16) and multiplying
by —2i, we obtain the first two terms on the right-hand side of (11.13). This
proves (11.15). Now g(w) is u(®) times (f, O(z, w; 1)), and so dg/dw is
w(P) times

(11.17) (9/0w)(f. Oz, w: m)) = (F. (9/0w)O/z, w; n))
= “2i(f, p_aH) = ~2i(S_oH, f) = ~2i(H, <f)

by (6.16). This is 0, since f is holomorphic. Thus g(w) is holomorphic in w.
By Lemma 10.7, ©(z, w; n) is rapidly decreasing locally uniformly in w, and
so the first equality of (11.17) is justified.

11.5. Since m > 0, O(z, w; n) is rapidly decreasing at every cusp as a
function in z by Lemma 10.7. Every element of .# is slowly increasing
at every cusp, and so the integral of (11.10) is convergent. Similarly, H of
(11.14) is a special case of (10.17), since r € V5 and S(p, r) = 0, and so
by Lemma 10.7, H is rapidly decreasing at every cusp. Also, as can be seen
from (11.13) or (11.16), (3/0w)O and &,_oH are rapidly decreasing at every
cusp. Therefore all the inner products appearing in (11.17) are meaningful;
also the last equality of (11.17) can be justified, since the conditions stated in
Theorem 6.8 are satisfied.

To study the nature of g beyond its holomorphy, we first put g(w) =

g(w, n). From (11.9) we obtain g(w, 1)|2m B=g(w, n°) for every € SLy(Q).
Put A = {5 € SL2(Q |77ﬁ = 77}. Then A is a congruence subgroup and
gll2m 6 = g for every § € A. Therefore, in view of Lemma 6.4, to show that
g € Mom, it is sufficient to show that ¢ is slowly increasing at every cusp.
For that purpose, we take T and E as in (6.10a, b) As shown there, I'\$ is
covered by |J_c €T, and so the integral over @ is majorized by »__. | Jor |
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Thus, putting f.(z) = j.(2) ¥ f(e2), our question is reduced to the estimate
of [, f-(2)O(z, w; n)y*dz, or rather, to the problem of showing that

/ F(2)8(z, w; n)yFde

as a function of w satisfies (6.9a) (with 2m and h in place of k and f there)
for every f € 4. Fixing f, let a € SLy(Q). Then

Im(aw)™h(cw) = Im(w /f 2)ja(w)2"O(z, aw; n)yFdz

w)m/Tf(z)Q(z, w; na)ykdz

with n* as in (11.9). Our task is to make an estimate of O(z, w; () for
¢ € Z(V), when Im(w) is sufficiently large. It is sufficient to treat the case in
which ( is the characteristic function of a lattice L in V. Then © is invariant
under w — w+2p with a positive number p. Thus our estimate will be made
under the condition

(11.18) [Re(w)] <p and Im(w)>gq

with a positive constant ¢. Changing the notation, write P, for P, of (11.5).
For & = [Z _ba} €V put ||€] = (a® + b* + ¢?)V/2. In §11.7 we will prove

(11.19) Pyl¢] > 8 'Im(w)~2||€||* under (11.18),
(11.20) €, w]]” < A-Tm(w)*[¢]? under (11.18),

with a constant A depending only on p and a sufficiently large ¢.
We need two more easy facts. The first one is:

(11.21) For 0 < m € Z there is a constant By, depending only on m such
that Y v_y N™e N < B,t=™71 for 0 <t < 1.

Indeed, Y %¥_; Nz = 2F,,(z)(1 —2)~™"! with a polynomial F}, of degree
Max{m — 1, 0}. This can be obtained by applying x - d/dx successively to
z/(1—z)=>%_, zV. Putting x = e~* and observing that #/2 <1—e~" for
0 <t <1, we obtain the desired inequality.

Next, for L =7Z" and 0 < N € Z we have

(11.22) #{5 € L’Max1<y<n|§u = } < C,N" 1 with a constant C,, de-
pending only on n.

The proof is left to the reader, as it is completely elementary.

11.6. For ¢ in the set of (11.22) we have N < ||€]|2 < nN?2, and so for
0<me€Zand y>1/2 we have
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(11.23) D[l exp (= ytlléll®) < exp(—yt/2)) €™ exp (= ytli€]*/2)

el el
< Cpexp(—yt/2) Y N""'(n'/2N)™ exp(—ytN/2)
N=1
oo
=n™/2Cy exp(—yt/2) > N ' exp(—tN/4)
N=1

< gmtnpm/200 B ™ exp(—yt/2)

for 0 <t <4, by (11.21). We apply this to O(z, w; ¢) with the characteristic
function of L = V N M3(Z) as ¢. (Thus n = 3.) Since |e(27'Ry(2)[¢])] =
exp ( — myP,[€]), we have, by (11.6), (11.19), and(ll.?())

0(z, w; Q)] <y Im(w) =2 Y " |[¢, w]|™ exp (— 7y Pu(¢])
¢eL
< A2y N lg ™ exp (— (m/8)yTIm(w) ~2]|€]1%).
el

Applying the estimate of (11.23) to this, we find that, under (11.18),
10(z, w; Q)| < Dy!PIm(w)>™ exp ( — (r/16)yTm(w)2)

with a constant D that depends only on m. (We take z in T, and so y > 1/2.)
Now f(2) is bounded on T" and k =m + 1/2, and so
<E- Im(w)3m+6 / e—ayym—ldy

w)’”] [ 10160 ws it 3

with a = (7/8)Im(w)~2 and a constant E. Replacing f1°/°2 by [,° and noting
that [~ e~ ®y™~1dy = I'(m)a~"™, we see that

w)’n\ [ 10166 ws ta:

with a constant F, which proves that g of (11.10) is slowly increasing at every
cusp, and so g € A o, as stated in Theorem 11.3(i).

o0

< F - Im(w)®™ ¢

11.7. It remains to prove (11.19) and (11.20). By (11.5) we have
(11.24) Py¢] = det(§) + 27 m(w) 2| [€, w \ :
Put u = Re(w) and v = Im(w). Then a direct calculation shows that
(=) [ wHQ = w|* + 4a?|w|* + bv? — dacu|w|? — 2bc(u? — v?) + dabu,
and so

202 Py fg] = |I¢, wl]|” = 2(a? + bejv?

= w|* + 4a?|w|?* + b% — 2a*v? — 2bcu® — 4acu|w|? + 4abu.
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We are assuming (11.18). Thus |u| < p, and so —2bcu? > —2[271b - 2p?c|
—(4719? + 4p*c?). Similarly —daculw|? > —(a? + 4p?c?)|w|? and 4abu
—(8p?a? + 271b?). Therefore

207 P, [€] > a®(3|w|? — 2v% — 8p?) + 47107 + A (Jw[* — 4p*|w|* — 4p*).

We easily see that the right-hand side is > 47!(a? + b? + ¢?) for sufficiently
large v, which proves (11.19).

As for (11.20), viewing [, w] as the inner product of the vectors (e, a, b)
and (w?, —2w, —1), we find that

2
&, wl” < €l (Jw]* + dfwl* + 1),
from which we obtain (11.20). This completes the proof of Theorem 11.3(i).

12. Main theorems on the correspondence

12.1. We need nonholomorphic modular forms involving the Hermite poly-
nomial H,(x) defined by

(12.1)  Hp(x) = (—1)"exp(z?/2)(d/dz)" exp(—2?/2) (0<neZ).
This is a polynomial of degree n with coefficients in Z. We easily obtain
(12.1a)  (—=ve)"H,(v/cx) = exp(cz?/2)(d/dx)"™ exp(—cz?/2) (c>0).

Here are some basic formulas on H,, in which H} (z) = (d/dx)H,(x) :

(12.2) Hy(z) =1 Hy(z) =z,

(12.3) Hy (=) = (=1)"Hy(2),

(12.4) Hp1(z) = 2Hy,(z) — H (x),
(12.5) H! () = nH,_1(x),

(12.6) @iy =3 (’,j) * Hy(y) Ho (),

(12.7) /OOOH (\/Amy a)e(ia’y)y™/D " dy

=2""2(2m) %207 ((s — n)/2) H(s —v) (Re(s)>n, a>0).
v=1
The first three are easy; (12.5) can be derived from (12.4) by induction on
n. As for (12.6), putting £ = e=*%/2, we have (z + iy)"E = (—20/0Z)"F =
) z@/@y (—0/0z)"~*E, which gives the desired result. The case
n =20 of (12.7)
o

; e(iaQy)y(s/Q)_ldy = I'(s/2)(2n)"%/%a"® (Re(s)>0),
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which follows from (8.2). Applying d"/da™ to this, we obtain, by (12.1a),

(o9}
(=" /0 Hy,(/Amy a)e(ia’y)(dmy)"/ >y /2~ dy

n
= (2m) = 2a= " (s/2) [T (1 = s = v).
v=1
Substituting s —n for s, we obtain (12.7).
The nonholomorphic form we need is
(12.8) On(z, X) = (4my) ™"/ Y " M) Ho (/Amy £)e(€22/2),
3le)

where z € 9, € Z(Q), and y = Im(z). Since H,(z) is a polynomial in z
of degree n, the sum is convergent. Clearly

(12.9a) Oo(z, A) = Y A(©)e(£22/2) = 0(0, z; M),
£eqQ

(12.9b) 01(z, \) = > ME)e(€%2/2) = 0%(z, V),
£eQ

where 6(0, z; A) is as in (4.48b) with n = 1 and #* as in (4.51), and so
0, (z, A) is holomorphic in z for n < 1. From (4.50b) and (4.52) we obtain
(12.9¢) Oo(az, ) = ha(2)0p(2, A*) for every o € PI'?,

(12.94d) 01(az, ) = ha(2)ja(2)01(2, A*) for every o € PI'?.

Consequently 0o(z, A) belongs to .#1,, and 01(z, A) to /5,5, as we already
observed in §§5.1 and 5.8. Now we have:

Lemma 12.2. Let the symbols ho(z) and X* be defined as in Theorem
4.12 in the one-dimensional case. Then for every o € PI'? we have

(12.10) 0y, (a(z), )\) = ha(2)ja(2)"0n (2, AY).
ProOF. We first prove
(12.10a) (78) L0k 0n (2, X) = Opia(z, ), kE=n+1/2,

where ¢y is the operator of (6.13b). To prove this, we put
1211)  Ku(2) = Kal€, 2) = (dmy) /2 Ho(/T7g €)el22/2),
where ¢ is fixed. Then our task is to prove that
(12.12) (1) 10k K (2) = Knga(2),
which implies (12.10a). To make our formulas short, put ¥ = y/47y. Then
(mi)~1(0/02) Kn(2)
Y ne(€22/2) {nY P H,(VE) — €Y T HL(YE) + EH,(VE)).
Since &y = k(2iy)~! + 0/9z, we have
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(i) LR K (2) = —2kY 2K, (2) + (i) ~1(0/02) K, (2)
=Y " 2e(%2/2){ — (n+ 1) H,(YE) — YV H, (YE) + E2Y?H, (YE) }.

By (12.4) we have Y¢H,, 11 (Y€) = Y2¢2H,,(YE) — YEH! (YE), and by (12.5),
H) (YE) = (n+ 1)H,(YE). Therefore

(mi) "ok Kn(2) = V" %e(E2/2){YEHnsa (YE) — H, 1 (YE) |
=Y ""2e(6%2/2) Hny2(YE)

by (12.4). This proves (12.12), and (12.10a) as well. Recall the operator
o defined by 07 = dpqam—2+ - 0pp20, in (6.13d). Let n = 2m + v and
r=v+1/2with v =0 or 1 and 0 < m € Z. Then from (12.10a) we obtain

(12.12a) (i) ~™6m0, (2, A) = O,(z, A).

Applying (7i)~™6 to (12.9¢, d) and employing (6.14c), we obtain (12.10).
This completes the proof.

12.3. This subsection concerns a formula for the Fourier transform of
K,. We do not need this result in our later discussion, however. We have
Ko(&, 2) = e(£22/2) and K1 (€, 2) = £e(£22/2), and so from (12.12) we obtain,
for 0<meZand v=0 orl,

(12.13)  Komiu(§, 2) = (mi) 07 p Ko (€, 2) = (wi) 7572 567 e(€22/2).

Now we have an integral formula

(12.14) / K, (€ 2)e(—En)dé = (—iz) 2K, (1, () (nE€R),

where + = L 01] Indeed, if v = 0, this is merely (4.30) with n = 1.

Applying 9/9n to it, we obtain the case v = 1. Then applying (mi)~ O
0 (12.14), from (12.13) and (6.14c) we obtain

(12.15) / Ko (€, 2)e(—€n)dé = (=iz) 227" Ko (1, 1(2))
R
(v=0o0r1,0<meZ neR).
12.4. Fixing a positive integer N divisible by 4, we put, for simplicity,
(1216) Iy =I(2, N/2)={yeI(1)|b, €2Z,c, € 27'NZ}.

In addition, we will be considering I'h(N/2). We also take a half-integral weight
k and a character ¢ of (Z/NZ)* (which may be imprimitive) such that

(12.17) k=m+1/2 and ¢(—-1)=(-1)™, 0<mecZ

We then consider an element f of .74 (2, N/2; ¢) (see §8.6), that is, an ele-
ment f of .#} such that

(12.18) flley=v(dy)f forevery ~eTy.
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Next, we define n € Z(V) with V of §11.1 by

b
(12.19) a([2 2,]) =et@mtemm,
where w is the characteristic function of Z and
N7UONT g(te(—bt/2)  if Nbe 22,
(12.19a) no(b) = teZ/NZ
0 otherwise,

with 1 (t) = 0 for ¢ not prime to N. Since 79(b) depends only on b (mod 2Z),
we see that n € Z(V). Moreover, a simple calculation shows that

(12.20) n(Baf™") = y(dF)n(a) for every S € IH(N/2).

Let us simply write O(z, w) for ©(z, w; ) of (11.6) with this 7. Then from
(12.20) and (11.9) we obtain

(12.21)  O(z, Bw)jg(w) 2™ = w(d%)@(z, w) for every S € I'h(N/2).

We have several aims: one is to prove Theorem 11.3(ii); the other is to make
preparations for the proof of our main theorem, Theorem 12.8 below. We thus
take f as above and define g by (11.10) with I" = {fy ery | ay—1e€ NZ}.
Then from Theorem 11.3(i) and (12.21) we see that g € # 9, (N/2, 1?). Put
(12.22) g(w) =Y c(§)e(éw).

£€Z
We first note that g(ir) = > .4 c(&)e 2™ for 0 < r € R. (We make these
choices of f and I" for some definite reason, but actually our calculation is
valid for an arbitrary f € .} and a suitable I, with some obvious modifica-

tions, about which we will be more explicit in our later discussion.) In view
of (8.2) we have

(12.23) / glir)r™ ™ dr = (2m) " (s +m) Y e(§)ET,
0 0<E€Z

provided ¢(0) = 0 and the right-hand side is convergent, which is the case
if Re(s) > m + 1, because of the estimate of ¢(§) given in Lemma 6.2(ii).
Also, if ¢(0) # 0, the integral of (12.23) is divergent for large Re(s), since
lg(ir)| > |c(0)|/2 for sufficiently large r. In the following subsection we will
show that the integral is indeed convergent for sufficiently large Re(s), and so
¢(0) = 0 and (12.23) holds for Re(s) > m + 1.

b

12.5. For £ = {Z } € V and w =ir we have, by (11.3a) and (11.5),

[€, w] = —cr? — 2air — b, |[§, w]|2 = 40?72 + b + A1t + 2ber?,
Ry (2)[€] = (—a? — be)z + (iy/2)(4a? + b2r=2 + 2bc + c2r?)
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= —a’z = bex + (iy/2)(c*r® + b*r?),
and so
y D2 (Er)m Oz i) = (1) Y w(a)ne(b)w(2e/N)
(a,b,c)€Q?
- (my) ™2 (er+br~" 4 2ai) e ((a?/2)z+ (be/2)w+ (iy /4) (P2 +br2)).

By (12.6) we have

(my)™/? (cr +br=" + 2ai)™
= Z (Z) im_nHﬂ (\/7T_y(cr + b’l“_l))Hm—n( V 47ry : a)'
n=0

Therefore, putting

(1224)  An(z,r)= > mo(b)w(2e/N)H, (yay(er +br=1))

(b,c)eQ2
( be/2)x + (iy/4)(c*r? + b2r_2)),
(12.25) =y~ 2> Hy(\/Ary - a)e(a®z/2),
a€Z

we obtain
(12.26) ym=D2( /7)™ O(z, ir)

—(_1\m - m\ -m—n, (m—n)/2

=(-1) 2(71)@ y Tm—n(2)An (2, 7).

Notice that 7,(z) is (47)%/? times 0y(2, w) of (12.8), and it is identically equal
to 0 if £ is odd, because of (12.3).
We now need a formula

(12.27) Y2 /2 (y fp2) (D2 A (2 )
Z P(d)(cz + d)"e((ir?/(4y))|cz + d|?),
(¢,d)eT

where T' = {(c, d) € 27'NZ X Z | dZ+ NZ = Z}. To prove this, we first note

(12.28) / exp (— mp(u+ q)?)e(—uv)du = p2e(qu) exp(—mv? /p)
R
for 0 < p € R,q € R, and v € R. This follows easily from (4.28). Given
z=x+iy€ N 0<teR, and c € R, take p=12/y and ¢ = cx in (12.28)
and multiply the result by exp(—myc?t?). Then we obtain
(12.29) / exp (— mt?|cz + ul?/y)e(—uv)du
R
= (Vy/t)e(cav + (iy/2)(*t?* + v*t72)).

This is the special case n =0 of

(12.30) (\/ﬁi)”/ReXp(—ﬁto_ch—&—u\g)(cé—&—u)”e(—uv)du
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= (\/ﬂ/t)”“Hn(\/Zﬁy(ct + vt_l))e(cxv + (iy/2)(c*? + th_Q))
0<neZ,z=z+iyeN,ceR,veR, 0<teR).

The case n > 0 of (12.30) can be proved by induction on n, by applying
2micz — 0/0v to (12.29) and employing (12.4).

Before proceeding further, we consider a variation of the Poisson summa-
tion formulas:

(12.31) Y od@nd) = Y mo®)h(b/2)
dez be(2/N)Z

for a function h on R. Indeed, if f(z) = h(Nz), then f(z) = N~ h(z/N).
By (4.27) with n =1 and y/N in place of r we have )  _,h (Nm +y) =

Ymez [Ny +m) = 3, cqe(ny/N)f(n) = N7'32, cpe(ny/N)h(n/N).
Multiply this by ¢ (y), take the sum over 1 < y < N, and replace n by Nb/2;
then we obtain (12.31).

Now put h(u) = (CZ+u)ne((ir2/4y)|cz+u|2). Then h is given by (12.30)
with 72/2 in place of t?, and (12.31) combined with summation over ¢ €
271 NZ gives the desired (12.27).

12.6. Let C,(z, ) denote the function of (12.27). Combining (11.10) with
(12.26), we obtain
m

(12.32) gir) wZ( ) o-1/2, (n—m)/2

/ F(2)Tmn(2)Cr(z, r)yrm=mTlyk=ndy,
Employing the right-hand side of (12.27), we have
(12.33) / Cn(z, r)r*T"dr
0

= > / Y(d)(cz + d)" exp (= (wr® /2y)|ez + d* )t dr.

(c,d)eT
Since rstndr = 271 (r2)(stn- 1)/zd(rz) the last sum equals
271 (2y/m) D20 (s +n+ 1) /2 Z Y(d)(cz +d)"|cz +d| 7571

(c,d)eT
“1(2/m) DD (s + 4 1) /2) BN (2, (s +n+1)/2; )

—n

with E of (8.15). (The definition of T' shows that d is always nonzero. Our
calculation becomes invalid if m = 0 and the term with ¢ =d = 0 appears.)
We observe that the integral of (12.33) is absolutely convergent for sufficiently
large Re(s) for every n. Indeed, we have

(oo}
/ ‘C’n(z7 r)‘r”‘*"dr < 2_1(2/7T>(0+n+1)/2 n/2
0

T((0+n+1)/2)EY? (2, (0 +1)/2; to)
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for sufficiently large o € R, where 1) is the trivial character modulo N. Thus
from (12.32) and (12.33) we obtain, at least formally,
m

(1234) /O\ g(,l',r,>,rm—1+3d,r — im Z (7’::’) 2(3+7l)/2—1ﬂ.—(s+m+1)/2

n=0
I((s+n+1)/2) /45 f(Z)Tm_n(Z)EiV/LQ (2, (s +n+1)/2; ¢)y*"dz.

By (8.18) the last integral over @ can be written
(12.35) 2Ln(s+1, JJ)/ F@)rm—n(2)E-n(2, (s +n+1)/2; I, ¥)y* "dz.
@

By (12.12a) we have 7, = (47)%/20, and 0, = (7i)~*6%0,,, where £ = 2t+v, r =
v+1/2, v =0 or 1, and so 6, is slowly increasing at every cusp by Lemma
6.10. By Theorem 8.12(ii) the same is true with E_,, (z, s; N, z/J) for every s
where the function is finite. Since f is a cusp form, the integral over @ in
(12.34) is convergent for every such s. We can say the same for the integral
of (12.35) at least for sufficiently large Re(s). Replacing every factor of the
integrand by its absolute value, we find that [, |g(ir)[r"t™1dr is convergent
for sufficiently large o, and so we can justify our formal calculation, and at
the same time we have proved that ¢(0) = 0. But this does not necessarily
mean that ¢ is a cusp form.

12.7. Let us now prove Theorem 11.3(ii). By (11.9), for a € SL2(Q) we
have

(gll2m a)(w) = [Pf(z)e(z, w; n)dz.

We see that n® is a finite C-linear combination of functions of the form

([0 L)) = er@etnae

with w; € Z(Q). We now repeat the calculation of §12.5 with this n in
place of 7 of (12.19) and an arbitrary f € 4(I"). Then (12.26) is true with
A,, for which 7 (b)w(2¢/N) is replaced by wa(b)ws(c), and with 7, replaced
by 6¢(z, w1). To carry out the calculation, we first have to modify (12.31)
as follows. Put w'(b) = wa(20) and take positive rational numbers K and
M so that w' is essentially a function on MZ/KZ. If f(z) = h(z/K), then
f(z) = Kh(Kz), and so, by (4.27a),

KY h(Kn+Kr)=>" f(n+r)=>_ e(-mr)f(m)=Y_ e(—mr)h(m/K).

neZ neZ meZ meZ
We can find a finite subset R of Q such that MZ = [ |, . z(KZ + Kr). Then

ng 2b ZZ (Kn+Kr) (Kn—l—Kr)

beQ rERNEZ
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= Zw’(Kr) Z hKn+Kr).

reR nez
Therefore,
ZWQ 2b ZC h(m/K) with {(m 1Zw (Kr)e(—mr).
beQ meZ reR

Employing this instead of (12.31) we obtain the modification of (12.27) whose
right-hand side is
Y. &l d)ez+d)e((ir/ (4y))lez +dI?)
(c,d)eQ?
with some ¢ € £ (Q?). We eventually find that

(g||2m Z’I“ ZZ/f T]m n ) ]n(z r) e m+1 k= ndz

jed n=0
where J is a finite set of indices, 7;¢(2) = (2, Aj¢) with X;, € £(Q), and
> &anle, d)(cz +d)"e((ir? y)|cz + d?)
(c,d)eQ?
with &, € Z(Q?). If n > 0, we see that fo Cjn(z, 7)rstdr is convergent

for sufficiently large Re(s), but if n = 0, we have to be careful, since C; o(z, r)
has the constant term & 0(0, 0). Thus put

B= Zgjooo/f 2)Tjm(2)y"dz.

jed
Then our previous argument shows that

/ ‘(gHQm a)(i’l“) — Brl—m’rodr
0

is convergent for sufficiently large o. If m > 1, this implies that g¢||2,, o has
zero constant term. If m =1 and (f, 0*(z, n)) =0 for every n € £(Q), then
B =0, since 7j,1 is 61(z, w1) with w1 € Z(Q) and 6* = ;. Therefore we see
again that g|2m o has zero constant term. This proves Theorem 11.3(ii).
We now state the first main theorem on the correspondence .y — A o, .

Theorem 12.8. Let f(z)zzgil A&)e(Ez/2) € Sk (2, N/2; ¢) with k =
m+1/2,0 <m € Z,0 < N € 4Z and a character ¢ modulo N such that

Y(=1) = (=1)™. Given a square-free positive integer t, define a character x:
modulo tN by

t

wln) =)L) (nez).

Then the following assertions hold:
(i) There exists an element g (w) = >.oo ci(n)e(nw) of M am(N, ¢?)
such that ¢ (0) =0 and

(12.36) D eln)n Tt =Ly(s—m+1, x) > AtEH)E
=1

n=1
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(ii) The function g: can be obtained as a theta integral (11.10) with a
suitable n € Z(V) and f(tz) in place of f there.

(iii) The function g; is a cusp form if m> lor if m=1 and (f, 61(z, n)) =
0 for every p € Z(Q), where 0y is as in (12.9b).

PrOOF. We return to §12.6 with f as in our theorem. We took a suffi-
ciently small congruence subgroup I" of I'y and put @ = I"\$). We can replace
I" by a larger subgroup of I'{; provided the integral of (12.35) is meaningful,
though the value of the integral is multiplied by an element of Q* that de-
pends on the choice of the group. As for 7,, we have 6, = (mi)~%6!0, as
above, and so 7(vz) = h(2)j,(2)’7(2) for every v € I'(2, 2) by (4.20) and
(4.47). Therefore, in view of (8.16a) we can take I' = I'y = I'(2, N/2).

We now calculate the integral over @ of (12.35) with this I. We put f(z) =
Zg‘;l A(€)e(€z/2) and £ =m — n. Since 7¢ is given by (12.25), we have

Fmz) = 3 ST AE)eme e ety 2 g, (\/amy - a),

£=1a€cZ

| 1R = 43 M)y R (o).

Let ¢ =m — 1+ (s —n)/2. Then, employing (12.7) we obtain, for £ =m —n,

and so

() /OOO/O f(2)me(z)deydy Z4x\(a2)/oooe2”“29y£/2Hz(\/47ry -a)y’dy
YA o=t [’}
= 22-4/2(97)~(s+tm)/2 H(s +m —v)I'((s+mn)/2) Z AMa?)a=*™.

v=1
Let = = {z+iyeH ’ 0 <z <2}. Then = gives (PNIY)\$, and as observed
in §9.3, | | 7@ represents =, where R = (P N I'})\I'y. Now
(fTey®™2) 0y = 1p(dy) 5 g5 | =5 f ey ™2
for every v € I', and so

oo 2
/ / fﬂd:cyqdy:/ [Tey™?dz = Z/(fﬁyq“)ovdz
0 0 = e

YER

- /43 Fry? S w(d )l

YER

B /@f(zm(z)E,n(z, (s+n+1)/2; I, ¢)y" "dz,

which is the integral of (12.35). If we replace w(dy)jﬁ\jw\_s_”_l by its abso-
lute value, then E_,, is replaced by Eq (2, (o+1)/2; I') with ¢ = Re(s), which
is finite and slowly increasing at every cusp for sufficiently large o. Since f is
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a cusp form, our calculation is justified for sufficiently large Re(s). Combining
this result with (12.23) and (12.34), we find that

(2m) " (s +m) Y (e
e=1

_ mZ( ) 9(s+n)/2-1 7(S+m+1)/2F((s+n+1)/2)

2
: 2LN(S + 17 ¢)/ / me—ndx yqd?h
0 0

where ¢ =m — 1+ (s —n)/2. Notice that for £ =m —n we have
¢
I'((s+n)/2)I((s+n+1)/2) H(s—i—m—y) =215 r 2P (s + m).

v=1
Also, Z (

n=0

s 3

) = 2™, Thus, employing (x), we finally obtain

[M]¢

(€)M = 2" Ly (s + 1, ) Y Aa)a T,
a=1

o
Il
—

since (2m)~*"™I'(s + m) appearing on both sides can be cancelled. Thus
i~m27™3¢g gives g; of our theorem, proving the case t = 1.

To prove the case with ¢ > 1, we put fy(z) = f(tz) = Zgil n(&)e(€z/2).
By Lemma 8.17(i), f: € S1(2, tN/2, x+) with x: as above. Applying our
result in the case t = 1 to f;, we find an element h(w) = > 7 C(n)e(nw) €
M 3 (2tN, ?) such that

() Y Clmn = xila)a™ 'y u(€)E
n=1 n=1 e=1

Since fi(z) = Zg‘;l M&)e(téz/2), we see that (&%) # 0 only if ¢|¢, in which
case fu(€%) = A(tn”) with 5 = £/t. Thus 37227 | p(€2)§™° =17 32,21 A(tn*)n~*,
and so from (#*) we see that C(n) # 0 only if tln. Put g:(w) = h(w/t),
Then g (w) =Y.~ ci(n)e(nw) with ¢;(n) = C(tn), and by Lemma 8.17(i),
gi € Moam(t, 2N; %), Also, we have (12.36). It remains to prove that
gt € Mam(1,2N; %), By Lemma 8.18, I1(2N) is generated by I'(t, 2N)
and [é ” , Since gi(w + 1) = g+(w), we obtain the desired fact. This
proves (i) and (ii), and (iii) as well, by virtue of Theorem 11.3(ii).

The above theorem excludes the case k = 1/2. We can actually determine
A 12 completely as follows.

Theorem 12.9. The space .# /5 is spanned by the series Op(az, \) with
0<aeQand X € Z(Q), where 0y is as in (12.9a), that is,
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Oo(az, \) = Z M&)e(at?z/2).
£€Q
After some preliminary observations in §12.10 and two lemmas, the proof
will be completed in §12.13.

12.10. Throughout this subsection we put k = 1/2. Thus m = 0. Define
g by (11.10) with f € k(I'). By Lemma 10.7, © as a function of z is
slowly increasing at every cusp, locally uniformly in w. Since f is a cusp
form, (11.10) is convergent, and so ¢ is meaningful. Besides, the estimate of
O(z, w; ¢) in §11.6 is valid in the case m = 0, if we ignore the constant term,
which is y'/2. Therefore ¢ is slowly increasing at every cusp.

For a in V of (11.1), s € C, and w € § put

(12.37) Klo, w, 5] = Im(w)?*|[a, w]| 2%,

where [a, w] is as in (11.3a). Let Lo be the operator of (6.13c) with k = 0.
Then

(12.38) Lok[a, w, s] = 2s(1 — 2s)k[a, w, s] — 1652 det(a)k|a, w, s+ 1].

1

To make our calculation easier, we note that x[a, yw, s] = k[y tavy, w, s] for

every v € SLa(R), which follows from (6.3) and (11.3¢c), and so

Lo(kly oy, w, s]) = (Lok)[o, yw, ]

by (6.14d). Therefore it is sufficient to verify (12.38) when o = diag[—a, a],
which can be done easily.
Put f(z) = > ccq ME)e(§/2) and define two infinite series P and @ by

(12.39a) P(w, s) = Z n()A( — det(a)) ke, w, s],
acgV
(12.39b)  Q(w, s) = Z n(a)A( — det()) det(a)r[e, w, s + 1],
acV

where w € §,s € C, and n € Z(Q). Since A(0) =0, the sums are over
a such that det(«) < 0. These series are convergent for sufficiently large
Re(s), provided Im(w) > ¢ with a constant ¢ that depends on 7. Indeed, by
Lemma 6.2(iii), |A( — det())| = O(| det(c)|'/*), and so our task is to prove
the convergence of
(12.40) Y nla)det(e)||fa, w]| 7>

a€eV, det(a)<0
under those conditions on s and w, for any a € R, > 0. We may assume
that n is a characteristic function of a lattice in V. For a = {Ccl _ba} eV
put ||af| = (a® + b% 4 ¢®)Y/2. Then, by (11.24) and (11.19) we have

o, ]2 = 2Im(w)? (P, o] — det(a) > 2Im(w)? P, [a] > 471|al %
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since det(a) < 0. Notice also that |det(a)| < |la||>. Therefore (12.39) is
majorized by a constant times >, ,cp [|r]|22=2% for Re(s) > 0 with a lattice
L in V. Thus we obtain the desired convergence. Consequently P and ) define
holomorphic functions in s for Re(s) > b with some b € R when Im(w) > ¢
with a positive constant c.

Lemma 12.11. The series P(w, s) and Q(w, s) can be continued as mero-
morphic functions in s to the whole s-plane with at most a simple pole at
s = 1. The residues of P and Q at s =1 are Ag(w) and (—A/8)g(w), respec-
tively, where A is a nonzero constant and g is the function of (11.10) defined
with the present f,n, k=1/2, and m = 0.

PrOOF. We prove this lemma by finding integral expressions for these
series. We take a sufficiently large even positive integer N, and replace I" by
I’(N), or rather, put I' = I'(N). We also put I, = I'NP, ¥ =1,\9, and
P=I"\$. Let Oy denote O(z, w; n) of (11.6) with m = 0. We have
P80 =7 3 5 Nt (27 (¢ det(e) =+ i/

£eQacV
in view of (11.5), where y = Im(z) and v = Im(w), and so

N
| @601 = Ny 3 n(e)A( - det(a)e((in/ )0 2a, )
0 aceV
Since ¥ is represented by {x + iy ‘ y>0,0<zx< N}, we have, using (8.2),

o] N
\/u7f90ys+1/2d2:\/0 {A f@odx}ySS/Zdy
= N/ Z — det(a)) exp ( — y(m/2)v™2[a, w]|2)y571dy

= N@2/m)*I'(s)P(w, s)

for Re(s) > b and Im(w) > ¢ with some b and c. As observed in §9.13, ¥
is represented by || .pv® with R = I';;)\I". By (11.8) we have (f6g)oy =
4+ (2)|f 60, and so

/ fOuy*t1/2dz = Z/ (fOoy*™/?)ordz

YER

/f@o Z 4 (2)| "2y T/ 2dz = / fOuEy(z, s; Iy/?dz,
YER ¢
where Ej is the function of (9.12) with & = 0. Our calculation is justified for
the same reason as in the proof of Theorem 12.8. Thus

(1241) N/ TEPw. s) = [ fOuu(z. s D)yt Pz,
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Now Ey(z, s; I') can be continued to a meromorphic function on the whole
s-plane in the sense of Theorem 9.9 with a simple pole at s = 1 with a
positive number, say p, as the residue. Besides, Lemma 9.8 shows that if
(s — 50)"Ep is finite at s = s, then (s — s9)°Ep is slowly increasing at every
cusp locally uniformly in s. Since f is a cusp form, the last integral over &
defines a meromorphic function in s on the whole C. In addition, it has at
most a simple pole at s =1 with residue

p/ F(2)60(z, w; n)y*/*dz = pg(w).
b

Therefore from (12.41) we see that P(w, s) has at most a simple pole at
s =1 with residue (2N)~!7pg(w). This proves our assertion on P with A =
(2N)"tmp.
Next, to deal with Q(w, s), we take
(mi)10f /02 =) EA(©)e(€2/2)
£€Q
in place of f. By the same technique as before we easily find that

(%) /W (i) "H(0f /02)O0y*T/2dz = —N(2/m)* "' T'(s + 1)Q(w, s).

We consider the operator dx of (6.13b) with k = 1/2. Then (7i)~10f/0z =
(mi) 101 /2f + (4my) ' f, and so the last integral over ¥ equals

(%) (mi)! / (61 )/)O0y™¥/2dz + (4m) ! / Oy 2dz,
v v

Since (B /2f)oy = j3|j7|(9051/2f for every « € I, the previous technique
used for P produces

/(51/2f)9098+3/2dz = /(61/2f)@oE_2(z, s+1; INy'/?dz.
v @

By Lemma 6.10, d;/2f is rapidly decreasing at every cusp. Thus, for the
same reason as for P, we see that Q(w, s) can be continued to a meromorphic
function on the whole s-plane. By Theorem 9.9, E_5(z, s+ 1; I') is finite at
s = 1. Therefore from (12.41), (%), and (xx) we see that Q(w, s) has at most a
simple pole at s = 1 with residue —(16N)~*mpg(w), and our proof of Lemma
12.9 is complete.

Lemma 12.12. Define g by (11.10) with f € S, k = 1/2. Suppose that
(f, 00(z, A)) =0 for every X\ € Z(Q), where Oy is as in (12.9a). Then g = 0.

PrROOF. We have shown in §12.10 that g is slowly increasing at every
cusp. Let the notation be as in §12.10 and Lemma 12.11. By (12.38) we have
LoP(w, s) = 2s(1 — 2s)P(w, s) — 1652Q(w, s). Taking the residues of P and
Q@ at s =1, from Lemma 12.9 we obtain ALyg = —2Ag + (16A/8)g = 0, and
so Log = 0. Thus g belongs to 2o (0), and has an expansion
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glu+iv) =a+cv+ Z b Wi (hv, 0)e(hu)
0#£herZ

with a, ¢, by, € C; see (9.10) and (9.12a). By Lemma 9.2(ii) the last sum
is O(e=Bv) with B > 0 as v — co. Now our calculation of §12.7 is valid in
the present case with m = 0 under our assumption that (f, 6o(z, A)) = 0. In
particular, with m = n = 0 we see that [, |g(ir)|r?dr < oo for a sufficiently
large o, which shows that a = ¢ = 0. Since this is so for goa in place of
g for every a € SLy(Q), we see that ¢ is a cusp form. By Lemma 9.2(iv),
60(0) = yo = {O} Thus g = 0.

12.13. We now prove Theorem 12.9. In this proof we put k = 1/2.
We know that 6p(az, A) belongs to .#j. We have shown in (9.45a) that
My = Sk ® 8, and also in (9.49) that & is spanned by some series of
the type 6p(az, A). Therefore it is sufficient to show that every element f
of ) orthogonal to all series of the type 0p(az, A) is 0. Take such an f.
Then we can find ¢ € Q, > 0, such that f(gz) belongs to “,(I"") with
I'" = {y € I'Y|ay, — 1 € NZ}, where 0 < N € 4Z and I} is as in
(12.16). Put fo(z) = f(gz). For each character x of (Z/NZ)* such that
x(=1) = 1 put fy = > px(ay)folry, where R = I3 /{+1}I". Then
fx € Fr(2, N/2; x) and #{x}fo = er{x} fx, where {x} is the set of
all such characters x. Our aim is to show that f, = 0 for every x. For
a square-free positive integer ¢ put fy+(z) = fy(tz). By Lemma 8.17(i),

t
fxt € Li(2,tN/2; 9y) with ¢i(a) = x(a)| — ). Moreover, our assumption
a

on f implies that (fy¢, Oo(z, A)) = 0 for every A € Z(Q). Therefore, by
Lemma 12.12, the theta integral of f,; is 0. Our calculations in §§12.5
and 12.6 and the proof of Theorem 12.8 are valid in the present case with
fx,t in place of f, and so the vanishing of the theta integral of f, ; means
that (+x) in the proof of Theorem 12.8 is 0, and so Y .2, u(€%)§~° = 0 if
Frt(2) = 222, m(€)e(§2/2). The argument of the last part of the proof of
Theorem 12.8 shows that Zgil AtE2)E* =0 if f(z) = Zgil A(€)e(€z/2).
Since this is so for every square-free positive integer ¢, we obtain f, =0 as
expected. This completes the proof.

12.14. Theorem 12.8(i) was essentially given in [S73a, p.458] in a some-
what different form, and later in [S87] it was generalized to the case of forms
with respect to congruence subgroups of SLo(F) with a totally real algebraic
number field F. The difference between Theorem 12.8(i) and the corresponding
statement in [S73a] is caused by our choice of j¥ in (5.1b) and of h. in (4.40).
Our choice is more natural than (h%)?* employed in [S73a], where hj is as in

case of SLy(F) were given in [S87]. To show that g,(w) = >~ ¢;(m)e(mw)
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of Theorem 12.8(i) is a form of weight 2m, we employed in [S73a] the charac-
terization of such a form by the functional equations of Y ~_, x(t)c:(m)e(mw)
for all Dirichlet characters x. Such a characterization originated in Hecke
[H36], and Weil, inspired by my idea on the modularity of Q-rational ellip-
tic curves (as he implied in 1967 and 1986), proved the characterization of
the forms of .7, (IH(N)), 0 < v € Z. It is easy to extend it to the forms of
(N, 1) with an arbitrary character ¥ modulo N, and it was this charac-
terization that I employed in [S73a).

The methods of [S87], which we followed in Sections 11 and 12, were com-
pletely different. I calculate explicitly the theta integral (11.10), which I
believe, gives a shorter proof and better results. In fact, similar integrals had
been investigated by a few researchers, but their methods required that the
weight be sufficiently large. I found that this difficulty was avoidable by using
the operators € and d;_2, and proving an equality of type (11.15). It seems
that there is a conceptual explanation of such an equality.

In any case, in the intervening years, no small number of authors published
papers on the correspondence, as can be seen from the references of [S87].
However, their connection with our main theorems is not so clear-cut, and so
we included in the references of the present book only those which may be
called truly relevant. The reader who is interested in those works can check
the papers listed at the end of [S87] and compare them with our theorems. I
may be allowed to say that not every paper there is reliable, and some have
serious gaps.

The main theorem of [S73a] was formulated for eigenfunctions of Hecke
operators of half-integral weight, but we stated Theorem 12.8 without such
operators. We will discuss them in the next section. We note that a few
examples of the correspondence f + g and also examples of the dimensions
of (I'}) and Fay, (IH(IN/2)) are given in [S73a, Section 4].

13. Hecke operators

13.1. We first introduce the notion of Hecke algebra in an abstract setting.
We say that two subgroups D and D’ of a group are commensurable if DND’
is of finite index in D and in D’. We now fix a multiplicative group ¢ and a
subgroup D of ¢, and assume that aDa~! is commensurable with D for every
a € 4. It is an easy exercise to show that #(DaD/D) = [D : D N aDa™ 1]
and #(D\DaD) = [D : D Na~1Da] for every a € 4. Also we have

(13.0) If #(DaD/D) = #(D\DaD), then there exists a set {(;}icr such that
DaD = ||;c; DG = Ui GD.

Indeed, let DaD = | |,c; D& = |;c;mD. Since & € DD, we have § =
0;m;€; with 0;, ; € D. Then we obtain the desired result with ¢(; = 5;1&.
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Let R denote the vector space over Q consisting of all formal finite sums
S caDaD with ¢, € Q and a € ¢. We introduce a law of multiplication
R x R — R which makes R an associative algebra as follows. Given u =
DagD and v = DBy D with ag, By € ¢, take coset decompositions

(13.1) u= DagD =||,c, Do, v=DpyD = |_|,8€B D
We have DagDpyD = UBeB DagDp = UaeA,ﬁeB Dap, so that
(13.1a) DagDpoD = | Jgex DED

with a finite set X. We then define the product u-v to be the element of &
given by

(13.2) w-v= Zu(u~v, w)w

where the sum is extended over all the different w = DED C DagD By D, and
(13.2a) wlu - v, w):#{(a, /B)EAXB|D046:D§}.

To make this definition meaningful, we have to show that the right-hand side
is independent of the choice of A, B and £. Once this is done, we extend the
map (u, v) — u-v to a Q-bilinear map of R x N into R. Though this was
done in [S71], we present here a simpler proof.

Thus our task is to show that the above law is well-defined and associative.
For this purpose, we first consider the vector space 9 over Q consisting of
all formal finite sums ¢, Dy with ¢, € Q and v € 4. Let u = DagD =
|lyeca Do Clearly DagDy = | |, 4 Day and this set depends only on v and
D~. Therefore, if we let u act on 9t by the rule

u- ZCWD’)/ Z Z cyDary,
v a€A
then this is well defined mdependently of the choice of A and . We can also
let ¢4 act on 9 on the right by putting

(Z%Dv)ﬁ = e D¢ (Ee€9).

We can view R as a subspace of M by identifying DagD with ), D
Then it is easy to see that R as a subspace of 91 consists of the elements x € I
such that =0 = x for every § € D. We now restrict the map R x 9 — M
to M x R. Since (u-x)0 = u - (xd), we see that u-2 € R if x € R. Thus
we obtain a Q-bilinear map R x R — R. From our definition we see that if
u, v, A, B are as in (13.1), then
(13.3) u-v= Z Z Dag.

a€A BEB
The right-hand side, being an element of R, can be written dex meDED
with 0 < m¢ € Z and X of (13.1a). Then clearly m¢ = p(u - v, w) for
w = DED. Thus (13.3) coincides with (13.2), and so (13.2) is well defined.
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Now, for x = Dy we have
u-(v-x)=u- ZDny: Z ZDaB’yz ngDfD'y:(u-v)-x.
BeB acApBeB cex

By linearity we obtain u-(v-y) = (u-v)-y for every y € R, which proves the
associativity of the algebra Q. Taking «ag or Sy to be 1, we see that D = D1D
is the identity element of *R.

We denote 91 by (D, ¢4) and call it the Hecke algebra of (D, ¢). We
define a Q-linear map deg: R(D, ¥) — Q by

(13.4) deg (Z caDaD> = ca#(D\DaD).

Let @ be a subset of ¢4 containing D which is closed under multiplication.
Then we easily see that the Q-linear span of DaD for all a € &7 is a subalgebra
of R(D, 4). We denote this subalgebra by R(D, <) and call it the Hecke
algebra of (D, <7). As shown in [S71, Propositions 3.3 and 3.8], we have

(13.4a) deg(zy) = deg(x)deg(y) for every x,y € R(D, 4),

(13.4b) If 4 has an anti-automorphism o — o* such that D* = D and
(DaD)* = DaD for every o € o7, then R(D, o) is commutative.

13.2. The symbol 9%(]“, GL;(Q)) is meaningful for every congruence sub-
group I" of I'(1). We now take I of a special type and replace GL] (Q) by a
smaller set as follows:

I'={yerQ|a, e, b, €tz c, € NZ}.

Here 0 <t € Z,0 < N € Z, t|N, and § is a subgroup of (Z/tNZ)*; we
use the same letter h for the inverse image of h under the natural map
Z — Z/tNZ. (In fact, we are interested only in the two special cases h = {1}
and h = (Z/tNZ)*.) We then consider R(I', =) with
Z={a € My(Z)| det(a) >0, aq €b, by € tZ,cq € NZ}.

For 0 < n € Z we denote by T"(n) the sum of all different I'al” with a € =
such that det(a) = n. Also, for two positive integers a and d such that
ald and (a, N) = 1 we denote by T'(a, d) the element I'¢I" of R(I, =) with

¢ € N I'(1l)diaga, d]I'(1). Such a £ exists and I'€1" is uniquely determined
independently of the choice of &; see [S71, Proposition 3.32].

Lemma 13.3. (i) The algebra R(I, =) is a polynomial ring over Q of the
elements of the following two types:

(1) T'(p) for all prime factors p of N;
(2) T'(1, p) and T'(p, p) for all prime numbers p not dividing N.
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(il) Bvery I'ED with € € = can be expressed as a product T'(m)T'(a, d)
with m|N°°, a|d, d prime to N.

(iii) T(m)T"(n) = T'(mn) if m|N>° and n|N®°.

(iv) T'(¢m) = T'(6)T' (m) if £ is prime to m.

(v) R(I, &) is generated over Q by the T'(n) for all positive integers n.

This is [S71, Theorem 3.34]. Here we write m|N° when the prime factors
of m divide N. In fact, these are formulated only when b is a subgroup
of (Z/NZ)*, but all the statements are valid for I and = given as above,
as can be seen by verifying various statements of [S71], Proposition 3.32, in
particular, for such I' and =, which, if tedious, is straightforward. For this,
see the errata of the paperback edition of [S71] in 1994.

We note that

(13.5) If m|N°°, then T'(m) = I'ol" with o = diag[1, m].

This can be obtained by taking I'oI" as '€ of (ii).
We also note a basic formula

(13.6a) T'(m)T' (n) = Z d-T'(d, d)T'(mn/d?),
d

where d runs over all positive divisors of (m, n) prime to N. We also have an
equality of formal Dirichlet series with coefficients in R(I, =) :

(13.6b) Z (Fal’)det(a)* = Z T' (n)yn=*

Q€M\E/T
=TI -7ep ] I -7 + T o]
pIN PN

These are [S71, (3.3.6), (3.3.8)].

13.4. We now fix a half-integral weight & > 0 and consider (A, G})
with the group Gy and its congruence subgroup A in the sense of §9.5. For
v € I'? we define an element £() of Gy by £(v) = (v, ]5) Then ¢ is an
injective homomorphism of I'? into Gy.

We also fix a congruence subgroup I' of I'(2) and put A = ¢(I"). Taking a
positive integer e, we consider A(A with & = (a, €F), a = diagle™!, ¢], 0 <
e € Q. We have then

(13.7) 06 =¢&l(y) if d=aya"t with yea ' I'anT.

Indeed, from (4.40) we see that hs(ez) = h,(2), and so j§(az) = j¥(z), and
we can easily verify (13.7).

Lemma 13.5. (i) With I, A, &, and « as above, for {§,} C AEA we
have AEA = ||, A&, if and only if I'al = ||, I'pr(&,), and consequently
A(M\AEA)=#(I\TaT).



120 IV. THE CORRESPONDENCE BETWEEN MODULAR FORMS

(i) Let n = (B, f¥) with B = diag[f~', f],0 < f € Q. Suppose I'al -
I'BI' =T'apI. Then AEA - AnA = AEnA.

ProoF. We can take &, = &0, with 0, = £(v,) with 7, € I. Suppose
AEA = ||, AE,. Then I'al’ = |, I'pr(&). Suppose I'aryy = I'ayz. Then
Yoyt € a ' Tan T, and so £(ayayy fa~)E = (v t) by (13.7). There-
fore &&;1 = €0207 61 = L(ayayy tat) € (') = A, and so A& = A,
This shows that I'al’ = ||, I'pr(&,) and #(A\ALA) = #(I\I'¢I7). Con-
versely, suppose I'al’ = | |, I'ay,. Since 'y, = pr(AE,), we have A, #
AE, if Tay, # Tay,. Also, since #(A\ALA) = #(I'\I'E1), we obtain
AEA = | |, A&, This proves (i). To prove (ii), put I'al” = | |;c; I'oy, I'BI" =
Ujes 185, and I'aBI" = | |, c g I'en. By (i) we have ALA = | |, ; AE;, AnA =
Ljes Any, and AdnA = |, ey AG with &, n;, and ¢, such that pr(§;) =
a;, pr(n;) = By, and pr(¢y) = ep. If I'al' - I'BI" = I'a ST, then there is only
one (7, j) such that I'a;8; = '3, and so there is only one (7, j) such that
A&in; = Aén. Thus AEA - AnA = AnA. This proves (ii).

Lemma 13.6. The symbols I and A being as in §13.4, let &, = (i, mF)
with oy, = diagm=t, m], 0 <m € Z, and T,,, = A&, A. Then T, %, = Tonn
if either m|N® or m is prime to n.

Proor. Put a« = ma,, and 8 = na,. Our task is to show that I'al -
I'BI' = I'afl' in R(I, GL3(Q)). Indeed, if that were so, then o, I -
I'a, I’ = 'y I, which combined with Lemma 13.5(ii) proves that ¥,,%,, =
Tun- Now I'al’, I'ST, and I'aBI are terms of T'(m?), T'(n?), and T'(m?*n?).
Let ¢ € I'al, 6 € I'AIN and €6 € I'(1)diag[a, d]I'(1) with positive integers
a and d such that a|d. Suppose m is prime to n; take a prime factor p of
a. If plm, then § € SLy(Z,), and so a < pZ, a contradiction. Thus p{m,
and similarly p{n. Therefore, a = 1, and consequently e € I'afI, that is,
Ial’BI' C I'apI. Therefore, I'al’ - I'GI" = cl'afI’ with 0 < ¢ € Z. Since
T'(m?)T"(n?) = T'(m?n?) by Lemma 13.3(iv), we see that ¢ = 1, and so
ol - TBI = Fafl

Next suppose m|N>°; then I'al’ = T'(m?) by (13.5). From (13.5) and
Lemma 13.3(ii) we see that I'3I" = I'ol" - I'tI', I'cl" = T'(¢?), {|N*>®°, 7 =
diag[a, d], a|d with d prime to N. Since (3 = diag[l, n?], we see that a = 1,
and so 7 = diag[l, h?] with h such that n = ¢h. Taking I'aBI" in place
of I'BI', we have similarly by Lemma 13.3(ii) I'afSI’ = T'(m?¢*)I'tI. By
Lemma 13.3(iii), T"(m?¢?) = T'(m?)T"(¢?), and so I'afI' = ['al - I'BI". This
completes the proof.

13.7. So far we have used the symbol f||x¢ for & € SLa(R) or € € Gy.
When k € Z, we extend this to & € GL (R). Namely, for ¢ € GL (R) and
a function f on $ we put
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(13.8a) Fllsg = flle{ det(€) 12}
This is consistent with what we defined in [S71, §2.1]. Then (6.12) is valid for
a € GLI(Q).

Let us now discuss the action of a Hecke algebra on modular forms of
integral or half-integral weight. We first note

(13.8b) #(I'\I'al') = #(I'al’/T") for every congruence subgroup I' and « €
GL3 (Q).

Indeed, we have I' N {£1} = I'Nal'a~' N {£1} and
p(\D) [ F'nala ] = p((I'Nala™')\H),

which equals p((a ' I'aNI")\$), since the measure on § is invariant under
the action of a~!. Thus [I" : ' Nal'a™!] = [[": I' N a~'I'a], which gives
(13.8b).

Let us first consider the case k € Z. Let I'" be a congruence subgroup
of I'(1) and let o € GL3(Q). We take a decomposition I'al’ = | |, Iq,.
Then we put f|[I'al]y, = Y, fllkow for f € 4 (I"). We easily see that
flllally € A(I). We call [I'al'|; a Hecke operator. We have, for
f e M) and g€ 74(D),

(13.9) (fllCalle, g) = (f, glll'a™ Tk ).

Indeed, by (13.8b) and (13.0), we can put 'al” = | |;c;
some «;. Then I'a™'I" = J,.; I'a; ", and so by (6.12),

(ATalhe 9) = S Fleas 9) — Z<f, glwart) = (f, gllTa ),
i€l icl
which proves (13.9).

There is a traditional definition of Hecke operators acting on .Z (N, ©).
To be specific, take ¢t =1 and h = (Z/NZ)* in §13.2. Then I = IH(N) and
Z = {a € My(Z)| det(a) >0, (a0, N) =1, cq € NZ}. Let I'al’ = | |, I'ov,
with « € £ and det(a) = g. Then for f € .# (N, 1) we put

fHFO‘F 7qk/2 121/) a(ow) f”kaua

and denote by T'(n)k. resp. T'(a, d)kﬂ/, the sum of [I"al'y . for all I'al®
involved in T'(n) resp. T'(a, d). We have

(13.9a) ¥ (det(a))(f[alky, 9) = (f, glllalky) if det(a) is prime to N
and f, g € SK(N, ), and consequently, r[I'ally., with any r such
that 7% = 1p(det(a)) is a self-adjoint operator.

FOéi = |—|ieI OéiF with

To prove this, denote by § +— &' the main involution of M>(Q), that is,
{a Z] = [ d b] Then flx&~" = f|[x€", since £~ = det(€)~'¢*. Now

C —C
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let o € = and det(a) = ¢ with ¢ prime to N. As shown above, we can put
I'al’ = ||, I'a, = ||, o, I'" with suitable «,. Clearly I'* = I" and o' € =.
Besides, I'al' = I'a' T, since I'al’ = ENT'(1)al’(1), which follows from [S71,
Proposition 3.32(1)]. (I, £ here correspond to I, A’ there.) Thus I'al’ =
I'o'I' =| |, I'et,. Also, for & € = with det(§) = ¢ we have a(§)d(§)—q € NZ.
Therefore

V(@) (fI[Tal iy, g) = ¢"*7 (2, ¢(alaw)) fllrew, ¥(a)g)
=¢"* N, 3, v(alaw)v(@)gllkay) = ¢*>7H(f, 32, ¢(d(ew))gllkas,)
= (f, glll'al k),
since d(a,,) = a(ct). This proves (13.9a).
If o = ¢l with ¢ prime to N, then T"(q, q) = I'al, and so we have
(13.9b) T'(q, )k, v = V(q)q" 2 if q is prime to N.

Let 0# f(2) =Y.~ a(n)e(nz) € 4 (N, ¥). Suppose f|T'(p)k, v = cpf
with ¢, € C for every prime number p; then f|T'(n)g, 4 = ¢, f with ¢, € C
for every n € Z, > 0, and

(13.9¢) Z a(n)n™° =a(l) Z cpn”?
n=1 n=1
s C1_9g1—1
=a() ] [1—cop* + @]
P
see [S71, Theorem 3.43]. We call such an f a Hecke eigenform, and say that
f is normalized if a(1) = 1, so that a(n) = ¢,. Somewhat more generally,
we have f|T'(p)k,¢ = cpf for every p {r with a positive integer = if and
only if the following equality holds:

(13.94d) Z a(n)n™* = a(1) H [1 —eppt + ¢(p)pk_1_28]
(n,r)=1 pir
Taking f =g in (13.9a), we obtain

(13.10) If 0 # f € Zw(N,¢), fIT'(n)k,y = cnf, and n is prime to N,
then ¥(n)é, = cy.

-1

13.8. Next suppose k ¢ Z. We put A = £(I") with a congruence subgroup
I' of I'(2). Let AA =], AL, with € € Gy. Given f € 4 (A), we put

(13.11) Fl1AgA], ZfHkﬁm

where (f||x€)(2) = q(z)7 ' f(az) if € = (a, q); see (9.19). We easily see
that f|[AEA], € A1 (A). Extending this Q-linearly to (A, Gy), we can
let R(A, Gi) act on A (A). Clearly f|[A(A] € S(A) if f e Sr(A).

Let us now consider the case & = (a, ) with a = diagle™!, ¢], 0 < e € Q.
Then
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(13.12a) H(A\AEA) = #(AEA/A),
(13.12b) (fI[AEALk, g) = (f, gllAE~ Al ).
Indeed, #(A\AEA) = #(I'\I'al’) by Lemma 13.5. Similarly, #(ALA/A) =
HF(A\AETTA) = #(I\Ta™'T") = #(I'al’/T), and so we obtain (13.12a) from
(13.8b). Therefore we can prove (13.12b) in the same manner as for (13.9).
We now consider .Z (2, N/2; ¢) of (8.11b) and (7.6) with a character 1
modulo N, and define an operator T¥ on that space as follows. Let A = ¢(I)
with I' = I'(2, N/2) and let A¢,,, A = | |, An, with &, as in Lemma 13.6, that
is, &m = (am, mF) with a,, = diag[m™!, m]. We see that if 8 € I'-diag[1, n]I"
with n € Z, then ag is prime to N. Therefore the a-entry of m - pr(n,) is
prime to N. Thus for f € .# (2, N/2; 1) we put

(13.13) AT =mF=2> " w(a) fllenw,

where a, is the a-entry of m -pr(n,). We can easily verify that f|TY is well
defined and belongs to .#(2, N/2; v). Hereafter we make the convention
that any product of numbers or symbols involving a factor ¢(x) with «|N*°
means 0.

Theorem 13.9. Let f(z) = > ~_ Am)e(mz/2) € M 1(2, N/2; ¢) and

let (fITV)(2) = Yone o b(n)e(nz/2) with a prime number p. Then for 0 <n €
Z we have

(1303 800) = 2GP0) + 00 2 ) 2N0) + BN/,
where we understand that \(n/p?) =0 if p?{ n.

PrROOF. We have &, = (a,, p*) with «a, = diag[p~!, p], and so I'al’ =
T'(1, p?) with a = pa, = diag|[1, p?].

Suppose p|N; then degT”(p*)=p* and I'al'=| | I'8, with 3, = [é 2?}
0 < v < p?; see [ST1, Proposition 3.33]; notice that ¢ in that proposition is
2. Thus I'ay, I’ = ||, Iy, with v, = [pol 2pply] . We have v, = ape,

1 2v

with ¢, = [ ] Let 7, = (7, p*). Then {(c,) = (c,, 1) and 7, =

0 1
(ap, pk)(fm 1) € A A. By Lemma 13.5, A A = ||, An,. Thus
f1%5(2) 2Zf (z +2v)/p?)
p°—1 o0
=p2 Z )\(m)e(mz/2p2) Z e(ml//pz) _ Z A(an)e(nz/Q),
m=0 v=0 n=0

This gives the desired formula for b(n) when p|N.
Next suppose p { N. Then deg7’(1, p?) = p*> + p, and I'\I'a,,I” can be
given by the following elements:
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[n—1
_|p 0111 2v 9

(1 2h 1 0] [p~* 0 2h
Th= 10 1/p} - [psN/Q 1] [pO p} [—sﬁf/Q q} (0 <h<p)
s—|p 0 } { p? Qt] {pl 0} { p*d Qt}
10 pt| T [N/2 d 0 p||-N/2 1]

Here for each h we take integers s and ¢ so that shN + gp = 1, noting that
hN is prime to p. As for 6, we take d and t so that p?d+tN = 1. To avoid
ambiguity, we can choose positive ¢ and d. Define elements 3, v;, and 6*
of Gy, by

: . 1 f—h « _
1) 5= G = (mes' () T =0,
Then these belong to A¢,A. This is clear for 3. To treat ~;, put o =

{sz{W ﬂ and 7 = {S?V/Q 2;}- Then £(0) = (o, j&) and £(r) =

—sN
<T, jT(z)k5q1< fl >> with the branch of j,(2)* such that lim, o j*(z) >

_sN —sIN
0, by (4.40), (4.41a), and (5.1b). Since 4|N, we have ( f} ) - ( 289 ) -

(%h) and g, = €y, and so £(0)§,4(T) = (’Ym 5;1 (%)) As for 9, we note

N
that ¢4 = 1 and E) =1, and we obtain §* = (8, p~*) € A, A in a similar
way. By Lemma 13.5, A\ A&, A can be given by the elements of (13.14). Thus

1T =p72 > f((z+20)/p%)
v=0
k-2 —(-h 2k—2
bt 20 3 (2F) e+ 20/ + 01 72)
h=1 .
=p2 Z A(m)e(mz/2p?) Z (mv/p®)
m=0 v=0 - -
ph—2
Y(p Z A(m)e(mz/2) Z( ) ) (mh/p)

The last sum on the next to last line is <ﬂ> times the Gauss sum of (2.4b),
p

and so

f1Z8 = Z AMnp?)e(nz/2) + pF=3/24( Z A(m ( ) (mz/2)
m=0

n=0
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p?h—2 Z A(m)e(mp?z/2).
Therefore we obtain the formula for b(n) as stated in our theorem.

Theorem 13.10. (i) Let f be a form as in Theorem 13.9, t a positive
t

integer, and p a prime number. Put p =k —1/2 and xi(a) = ¥(a) (—> for
a

a prime to N. Suppose that f\‘IZ‘f = w,f with w, € C and that p|N or p*{t.
Then

(13.15) ZA (tn*)n—*

—Z)\tn 1= xe )T ] [ = wpp T p(p) PP
pin
(ii) Suppose further that t has no nontrivial square factor prime to rN
with a fized positive integer r and that f|T;f = wpf with w, € C for every
prime number ptr. Then
L.(s—pn+1, xt) Z A(tn?)n=*
0<n€Z,(n,r)=1
= A [ [t —wop™ +0(p)?p* 7]~

pir

-1

1

ProOOF. Take p asin (i). By Theorem 13.9, if p{n, we have

() wpAlin?) = A(tp*n?) + X ()"~ A(tn?),
() wpA(tp®™n?) = A(tp*™+2n?) + ¢ (p)?p*  2A(tp*2n?) (0 <m € Z).

Put H,(X) = > °_ A(tp?*™n?)X™ with an indeterminate X. Adding X times
(x) and X™*! times (x*) for all m > 0, we obtain

wWp X Hy(X) = Ho(X) — A(tn2) + xe(p)p"IA(tn2) X +4(p)*p** 2 X2 H,, (X),
and so we have, for p1{n,
Hy(X)[1 = wpX 4+ ¢(p)?p* 2 X?] = Mtn?)[1 — xe(p)p" 1 X].

Since Y07 A(tn?*)n=° = > pin Hn(p™)n™*, we obtain (i). Then (ii) follows
immediately from (i).

Theorem 13.11. Let f(z) =Y.~ A(m)e(mz/2) € .Z,(2, N/2; ¥) and
let w=k—1/2. Suppose that f|S§’ = wpf with w, € C for every prime
number ptr with a fized positive integer r. Then there is an element g(z) =
S c(n)e(nz) € Mau(N, ¢p?) that is an eigenform of T'(p), g2 for every
prime number p, such that c(p) = w, for every pir, where T'(p), 4> is the
Hecke operator defined on # 2, (N, ¥?). Moreover we have
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(13.16) Lo(s—p+1, xt) Z Atn?)n=*
0<n€Z,(n,r)=1
= \(¢) > e
0<n€Z,(n,r)=1

PROOF. Let Y be the set of all h € .#(2, N/2; ) such that h|TY = w,h
for every p{r. From Lemma 13.6 we easily see that the operators T;f for all
p form a commutative ring, and so Y is stable under it. Therefore by Lemma
2.12, Y contains an element that is an eigenform of T;f for all p. This means
that replacing f by a suitable element, we may assume that f |S§’ = wp f with
wy € C for every p. Take n so that A(n) # 0 and put n = tm? with a square-
free t; define g; by (12.36). Take r = 1 in Theorem 13.10(ii) and compare it
with (12.36). Then we see that A(t) # 0, and the function g = \(¢)"'g; gives
the desired eigenform in .#2, (N, 1?). (The letter p here is m in Theorem
12.8. As for the eigenforms in .#5,, basic principles are explained in [S71,
Theorem 3.43].)

Lemma 13.12. Let p be a prime number not dividing N. Then

(13.17) D) (fIT), 9) = (f, 9IZ})

for every f, g € Lk(2, N/2; ), and consequently z/;(p)‘l;f is a self-adjoint
operator.

Proor. We can put ', I” = ||, ', = ||, @, I" with some {c,} and
A& A = |, An, with 7, such that pr(n,) = a,. Then Fa;lf =1, a,?t,
and so A TA = ||, An, ! by Lemma 13.5(i). Now &' = (a, ', p") =
6* with 0* of (13.14), which belongs to A&,A. Thus ALA = ALTA =
L|, An, L. Let a, resp. al, be the a-entry of pa, resp. pa;'. Then a, is the
d-entry of pa,. Observing that the b-entry resp. c-entry of pa,, is divisible by
2 resp. N/2, we obtain a,a!, — p?> € NZ, and so ¥ (a,) = 1 (p*)i(a,). Thus

v

PRFIZY, 9) = (2, (@) fllenw, ) = (f, 2o, ¥lan)gllen, )
=0@*)(f, X, v(a)gllen ') = v (@*)pP* (S, 9ITY),

which proves our lemma.

Lemma 13.13. (i) Given f € (N, ), # 0, with k € Z, and o €
Aut(C), suppose f|T'(m)k,p = cmf with ¢, € C for a fited m. Then ¢y, €
67 [ € yk(Nv ’(/}U)7 and fU‘T,(m)k‘ﬂ/J” = C'rgnfc;'

(ii) Given f € Lk(2, N/2; 1), #0, with k ¢ Z, and o € Aut(C), suppose
f|$§’ = wpf with w, € C for a fized prime number p. Then w, € Q, f7 ¢
Se(2, N/2,47), and f7|TY" = w? f°.

PRrROOF. In Theorem 7.5(iia) we showed that f7 € (N, ¢¥7)if k € Z. By
Theorem 7.5(iib), (N, ¢) = Z@gC with Z = (N, )N (Qap). Also,
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by Theorem 7.5(iii), T"(m)x, sends Z into itself, and so its characteristic roots
are algebraic. Thus ¢, € Q. Let f(z) = > o0 A(n)e(nz) and f|T"(m)g.y =
>0 p(n)e(nz). Then

(13.18) pm) = 3 (A mn/d2);

d|(m,n)

see [ST1, (3.5.12)]. Applying o to this equality, we see that (f\T'(m)k’w)a =
foT" (M), o, and so we obtain (i). We can similarly prove (ii). The only
difference is that we employ (13.13a) instead of (13.18).

13.14. In [S73a] and also in a few later papers of ours we formulated
Hecke operators of half-integral weight in terms of I'H(/N) and the factor of
automorphy hj(z)" with hj of (5.6) and odd x € Z. The reason why we
have changed the formulation as we have done in the present book is that in
this way we can generalize the theory naturally to the Hilbert modular case,
whereas we cannot do so with the old formulation.



CHAPTER V

THE ARITHMETICITY OF CRITICAL
VALUES OF DIRICHLET SERIES

14. The theory on SL;(Q) for integral weight

14.1. The purpose of this section is to show that many of the main results
of the previous section on the forms of half-integral weight have analogues
in the case of integral weight, and to discuss their consequences. Thus in
this section k denotes a positive integral weight, unless otherwise stated.
The principal idea is to consider Hecke operators within SL2(Q). We fix a
positive integer N and a character v modulo N, and define .Z (N, ) and
Zk(N, ¥) as in (8.11d). Put I' = IH(NV) and take a prime number p. We
take a decomposition I'a,l" = UBEB I'g with «a, = diag[p~?', p]. Then for

f € (N, 1) we define a function f\T;/’ on § by
(14.1) FITY =972 d(pag) fllib.

BEB
We easily see that f\T;/’ is well defined and belongs to .# (N, 1), and also
that T;" = T'(1, p?)y, y; however, we employ the symbol T;;”, since that will
suggest a similarity to the operator T;f of (13.13) in the case of half-integral
weight, though we will later find that i(p)TI')w is a more natural object when
p1 N. Thus, from (13.9a) we obtain

(14.2) VE)FITY, 9) = (f. 9lTy) if ptN

for every f, g € (N, ), which implies that i(p)T;" is a self-adjoint oper-
ator. This is an analogue of (13.17).

We keep the convention that any product of numbers or symbols involving
a factor ¢ (x) with |N*°, N > 1, means 0.

Lemma 14.2. Let f(z) = Y,  A(m)e(mz) € M (N, ¢) and let f|T,Y

m=0

= > ,b(n)e(nz) with a prime number p. Then for 0 <n € Z we have
b(n) = A(p*n) + 1 (p)p*~*(3(n/p)p — 1)A(n) + 1 (p*)p**~2A(n/p?),

where §(x) =1 or 0 according as © € Z or x ¢ Z, and we understand that
An/p*) =0 if p*{n.

G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 129
DOI 10.1007/978-1-4614-2125-2_5, © Springer Science+Business Media, LLC 2012
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PROOF. Suppose p 1 N; then we can take B of (14.1) to be the set con-
sisting of the following p? + p elements:

-1 —1; -1
PP 2 L p—h p 0
< .
We then make calculations similar to and simpler than what was done in the
proof of Theorem 13.9. We have

p’—1

AT =p=2 Y f((z+5)/p%)

J=0
PP (p Zf (z+p " h) + o (*)p* 2 f(°2).
Since 22;11 e(mh/p) equals p—1 or —1 according as p|m or p{m, we obtain

AT =" Anple(nz) + (p — 1)p" ¢ (p Z/\ (np)e(npz)

n=0 n=0
—p"=2(p) Z)\ e(nz) +¥(p p2k- 22)\ npz
pin
Clearly 3, A(n)e(nz) = S’ o {A\(n)e(nz)—A(np)e(npz) }, and so we obtain
the formula for b(n) as stated above when pfN. If p|N, the terms involving
¥(p) don’t appear, and so b(n) = A(p?>n). This completes the proof.

Theorem 14.3. Let f be a form as in Lemma 14.2, r a positive integer,
and t a positive integer with no nontrivial square factor prime to r\N. Suppose
f|TZ;¢ =w,f with w, € C for every prime number p not dividing r. Then

Lir(25 — 2k + 2, 4?) - > A(tn?)n~*

O<n€Z( r)=1
1

=AO) Ly (s—k+1, ¢ H[ —Gp +(p )2p 2h—2— 23] 7

where ¢, = wp — Y(p)p* 2 (p — 1).

PRrROOF. Our argument is similar to the proof of Theorem 13.10. To make
our formulas short, put ¢ = 1 (p)p*~2. Take a prime number p not dividing
r. Then for ptmn we have, by Lemma 14.2,

() wpA(tn?®) = A(tp?n?) + q(d(t/p)p — 1) A(tn?),
(**) )\(thm 2) — )\(tp%”*'g 2) + q( _ 1))\(tp2m 2)
+ ¢(p)2p*2A(tp*™?n?) (0 <m e Z).
Put ¢ = 1-6(t/p) and K,,(X) = Y oo, A(tp*™n?) X™ with an indeterminate
X. Adding X times () and X™*! times (*x) for all m > 0, we obtain

wp XKy, = K, — ANtn?) + q(p — )X K, — gpe\(tn?) X + ¢ (p)?p*2X2K,,
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and so we have K, [1 — (X + 1(p)?p**72X2| = A(tn?)(1 + qpeX) with ¢,
defined as in our theorem. Thus

Kn:)\(tn2>( +qux)[1_<—pX_~_,(/}( )2 2k— 2X2]
We have therefore

Z A(tn?) = Z K,(p~*)n™*°

1

(n,r)=1 (n,pr)=1
Z A( tn (14 qsp )[1 —Cp + W(p )2 2k—2— 25]
(n,pr)=1

The factor 1+ gep~* is different from 1 only if p { trN, in which case it is
1+ (p)p*~17*. Take a prime number not dividing pr, and repeat the same
type of calculation with Z (n, pr)=
we eventually obtain the desired equality of our theorem.

L A(tn?)n~* and that prime number. Then

We now define, for a prime number p, an operator R, acting on . (N, )
by .
(14.3) = {ZC” l.f pIN.

P(p)T i ptN.
Then R, is a self-adjoint operator if p { N. Since R, is a constant times
T'(1,p?)k, ¢, we see that the R, for all prime numbers form a commutative
ring.

Theorem 14.4. Let*P be a set of prime numbers and f a nonzero element
of Lk(N, ) such that f|R, =&pf with &, € C for every p € B. Then there
exists a normalized Hecke eigenform g(z) = Y oo c(n)e(nz) € (N, ¢)

such that ) .
(14.4) ‘= c(p) if pIN,

| T L@ - =i i,
provided p € PB. Conversely, let g(z) = > -, c(n)e(nz) be a normalized
Hecke eigenform in (N, ¢). Then g|R, = &g with &, as in (14.4) for
every prime number p.

PrROOF. Let 6 =1 if pt N and § = 0 if p|N. Given f as in the first
part of our theorem, let Y = {h € .%}(N, v) | h|R, = &h for every p € B}.
Then Y is stable under T7(n)y . for every n, since T”(n)y,» commutes with
T'(1, p*)i,y for every p. Therefore Lemma 2.12 guarantees a normalized Hecke
eigenform g in Y. From (13.6a) we obtain 7" (p)?=T"(p?) + dpT’(p, p). Since
T'(p?) =T'(1, p?) + 8T'(p, p), we see that
(14.5) T'(1, p?) =T'(p)* = d(p+ DT"(p, p).

Suppose g|T"(n)g,y = ¢(n)g. Then from (14.5) and (13.9b) we see that g|T)¢ =
apg with a, = ¢(p)? — 6¢(p)p*~2(p + 1), and so we obtain (14.4) in view of
(13.10). The converse part can be easily proved by employing (14.5).
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Lemma 14.5. For every f € Zk(N, 1), o € Aut(C), and a prime num-
ber p we have f7 € SR(N,¥°) and (f|R,)” = f°|Rp. In particular, if
fIRy =& f with &, € C, then & € Q and f7|R, = &7 f°.

PRrOOF. This is similar to Lemma 13.13, and can be proved in the same
way. The only point is that we employ the formula for b(n) in Lemma 14.2
instead of (13.13a).

Lemma 14.6. Let f(z) => >, A(m)e(mz) € L,(N, ¥) and let ¢ be a
character modulo r; let t be a positive integer with no nontrivial square fac-
tor prime to rN. Suppose f|R, = &,f with & € C for ptr. Let g(z) =
S L c(n)e(nz) be a mormalized Hecke eigenform in (N, 1) such that

n=1

(14.4) holds for ptr. Put g,(z) = >, ¢(n)c(n)e(nz). Then

(14.6)  L(s—k+1,00) > o(n) -
n=1
XOD(s = ks 9, 90) [T [1+ (e0) o)1
[t
where D(s; *, %) is as in (8.23). !
PRrOOF. By (8.32) we have
D(s—k; g, gp) = z:go(n)c(n)znfS
n=1
=L(s—k+1, o) Z o(n)e(n®)n=*.
n=1

Taking ¢ = 1 and ¢ as f in Theorem 14.3 and substituting ¢(n)n=* for
n~*%, we find that

() L2s -2+ 2 @2)D(s — ki g, g,)
=L(s—k+1, L,O’(/JQHD— P)Cp° + () (p)?p 2k223] 1
pir

Substituting ¢(n)n=* for n~* in the original formula of Theorem 14.3, we

obtain .

Li(2s — 2k + 2, 92 Y (n) =

n=1
_ —1
=AMt Li(s —k+1, 00) [T [1 = e0)Gp~* + (o) (p)*p*272] .

ptr
Dividing this by (), we obtain (14.6).

14.7. Take f in Theorem 14.4 to be the eigenform of Theorem 8.23 and
Lemma 8.24, so that a(n) = A(n). With «, and (5, as in that lemma, we
have
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(14.7) Ly(2s — 2k +2, ¢?) i A(n?)n=*
n=1
=Ly(s—k+1, )] [Q-a2p~*)1 - B2p*)] "

Comparing this with the equality of Theorem 14.3, we obtain (, = a?) + 52.
Since a, + B, = ¢, and a3, = ¥(p)p*~!, we obtain (, = c?) — 2¢(p)pF1,
which produces &, = |c,|? — pF~1 — pF=2. Thus, once we assume f to be a
Hecke eigenform, Theorem 14.4 does not contain much new. The point of the
theorem is that we have an Euler product expression for Y2 | A(tn?)n~* for
a wider class of functions than Hecke eigenforms. There is another aspect in
the theory, which will be discussed in the next section.

We defined in Section 5 modular forms of half-integral weight with respect
to congruence subgroups of Sp(n, Q). We can actually define Hecke opera-
tors on them and even associate an Euler product to an eigenfunction; see
[S95]. There is a parallel theory for forms of integral weight on Sp(n, Q),
which, in the case n = 1, concerns Y .-, A(n?)n™% for a modular form
S A(m)e(mz) of integral weight we considered in Lemma 8.24 and are

m=1
considering now.

15. The eigenspaces of R,

15.1. In this section k& denotes a positive weight that is either integral or
half-integral. We mainly deal with the space of modular forms .7 (v, N/v; ),
where v = 1if k € Z and v = 2 if k ¢ Z. We denote by F(¢) the field
generated by the values of ¥. We begin with some easy facts.

Lemma 15.2. (i) Let f(z) = >.°° ane(nz/v) € (v, N/v; ¢). Put
fx(z) = 3007 x(n)aye(nz/v) with a character x. (Lemma 7.13 shows that
fx € Lk(v, N'Jv; x*) with an integer N’ determined as in that lemma.)
Then flTX = x(0*)(fITY)x if k € Z and f|TXY = x(*)(fIT9)x f
k ¢ Z, for every prime number p.

(ii) The space Sy (v, N/v; ) is spanned by its F(v)-rational elements.

PRrROOF. The first equality of (i) can easily be seen from the formula of
Lemma 14.2, and the second one from (13.13a). To prove (ii), put ,5”7{2' =
1k (v, N/v; 1) for simplicity. By Theorem 7.5(iib) we can find a finite subset
A of Yﬁ N A (Qap) that spans 5”2}[ over Qup. By Theorem 7.5(v) there is a
finite extension K of F'(¢) contained in Q.1 such that every member of A is
K-rational. Then 5”2}[ N4 1,(K) is stable under Gal(K/F(¢)) by Theorem
7.5(iia). Therefore (ii) follows from Lemma 2.13.

15.3. We define an operator R, acting on . (v, N/v; 1) for every prime
number p{ N by
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Y(p)Ty i ke,
Tl eI it kg Z
If k € Z, this is the same as what was defined in (14.3). We see from (13.17)

and (14.2) that R, is a self-adjoint operator.
We note an easy consequence of Lemma 15.2(i):

(15.1)

(15.2) fy|Rp = (fIRp)x if fy is as in Lemma 15.2(1), ptN, and x(p) # 0.

15.4. Let f be anonzero element of .y (v, N/v; ¢) such that f|R, =&, f
for almost all prime numbers p. We call {¢,} a system of R-eigenvalues of
weight k. Take another such system {¢,} defined with respect to the same
weight, but with a character that may or may not be . We say that {&,} is
equivalent to {{} if §, = £, for almost all p. Then we denote by =} the set
of all equivalence classes of systems of R-eigenvalues of weight k, and denote
an element of =% by a single letter &, which is a function defined on a set of
almost all prime numbers. We then put

(15.3) S(&) ={f eS| fIRy, = & f for almost all p},
(15.3a) St = Sk, NJv; 0),
N
(15.3b) Gy = (J Lnlv. Nviy)n&(g),
O0<Nevz

where the union in (15.3a) is taken over all possible N and . We say that ¢
occurs in (v, N/v; ) if (&) Nk (v, N/v; ) # {0}.

For example, take f as above and put f(z) = Y.~ an,e(nz/v) and
fx(z) = Y07 x(n)ane(nz/v) with a character x. By Lemma 7.13, f, €
Fk(v, N'/v; ') with a multiple N’ of N and 1’ = x?%. Then (15.2) shows
that fy|Rp = & fy for almost all p, that is,

(15.4) fe6(§) = fy € S(E) for every Dirichlet character x.

Let £ € Z; and o € Aut(C). Then &7 as an element of =) can be
defined by (£7), = &7 for almost all p. Indeed, take a nonzero element
f of 6(&) N Sk(v, N/v; 1) as above. Then by Lemmas 13.13 and 14.5,
f7 € kv, NJv; %) and f7|R, = £ f7 for almost all p, which gives the
desired fact. Thus

(15.4a) S(£)7 =6(&7) for every o € Aut(C).

Let us next discuss the connection of R-eigenvalues with Hecke eigenvalues
of integral weight. We first consider the case k ¢ Z. Let 0 # f € &(§) N
Z1(2, N/2; ¢). Then f\‘Z;f = wpf with w, = ¥(p)&, for p in a set P that
contains almost all prime numbers. As shown in the proof of Theorem 13.11,

we can find wy, even for p ¢ P and an element g(z) = > 7 cpe(nz) of
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M a1.—1(N, 1?) such that
(oo}
(15.5) > ean =[] [1—wpp™ + 0(p*)p* %] -
n=1 P
Thus £ corresponds to the set of Hecke eigenvalues {w,} occurring in .4 o _1.
We have g € .#9,_1 under the condition stated in Theorem 12.8(iii).

Next suppose k € Z. Given a nonzero element f of &(§) with £ € =y,
take (N, ©) so that f € Zk(N, v). Then by Theorem 14.4 there exists a
normalized Hecke eigenform g¢(z) =37, che(nz) such that (14.4) holds for
almost all p. Therefore we can define =}, to be the equivalence classes of {c,},
by saying that {c,} is equivalent to {c,} if |c,|* = |¢]|?* for almost all p.
Thus, for both integral and half-integral k, & corresponds to an eigenform of
integral weight.

15.5. Let F' be a finite algebraic extension of Q contained in C. We call
F totally real if every isomorphic image of F' into C is contained in R, and
call it totally imaginary if no isomorphic image of F' into C is contained in
R. We call F a CM-field if it is a totally imaginary quadratic extension of a
totally real field. Let p denote the complex conjugation. Then the following
statements, in which F' is a finite algebraic extension of Q contained in C,
can easily be verified.

(15.6a) F is either totally real or a CM-field if and only if FP = F and
po =ap on F for every ring-injection o of F into C.

(15.6b) The composite of finitely many fields of type (15.6a) is also a field
of the same type.

(15.6¢) Every subfield of a field of type (15.6a) is also a field of the same
type.

For ¢ € =), we denote by F(§) the smallest extension of Q that contains
&p for almost all p, and by F(§, 1) the composite of F'(§) and F(¢).

Lemma 15.6. (i) Given an element g(z) = Y > | cpe(nz) of k(N, )
that is a normalized Hecke eigenform, let K be the field generated over Q by
the ¢, for all ptN. Then K is either totally real or a CM-field.

(ii) F(&) is a finite totally real algebraic extension of Q.

(iil) F(&, ©) is totally real or a CM-field.

(iv) 6(&) N Sk (v, N/v; ) is spanned by its F(§, v)-rational elements.

ProOOF. By Lemma 13.13 and Theorem 7.5(v), K of (i) is a finite alge-
braic extension of Q. Let L be the field generated over Q by w(p)l/ 2 for all
p{N. Then L is a finite abelian extension of Q. Put «, = 1/_1(p)1/2cp with
any choice of (p)'/2. From (13.10) we see that a;, € R. Let o € Aut(C).
Then ¢° is a normalized Hecke eigenform contained in .7 (N, ¥?), and
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ag = [h(p)?]'/2cg € R for the same reason. Since KL is generated over
L by the a, for all pt N, we see that (KL)”? = KL and po = op, which
proves (i).

To prove (ii), we first observe that §, € R, since R, is self-adjoint. Thus
the point is [F(§) : Q] < cc. If k € Z, this follows from (14.4) and (i). If
k ¢ Z, we take ¢ as in (15.5). Since w, = ¥(p),, the desired finiteness
follows from (i). Then (iii) follows immediately. To prove (iv), put .7} =
kv, N/v; ). Since &(§) ﬂyl/]\f N A 1, (Qab) is stable under R, we can find
a finite set A of Qap-rational forms that spans &(&) QY{Z’. By Theorem 7.5(v)
there exists a finite algebraic extension K of F'(, ¢) such that every member
of A is K-rational; we may assume that K is normal over F'(&, ¢). Then
S(&)N.Y N LK) is stable under Gal(K/F(&, v)). Therefore (iv) follows

from Lemma 2.13.

16. Main theorems on arithmeticity

The aim of this section is to prove some theorems on the special values
of various Dirichlet series such as Zn(s; f, g) of (8.28). The main idea is
to compare such values with certain inner products of modular forms. We
note that by Lemmas 6.4 and 7.11 every element of .}, (resp. .#%) is rapidly
decreasing (resp. slowly increasing) at every cusp, and so (f, h) is meaningful
for every f € A% and h € %k, for the reason explained in §6.5. Throughout
this section, p denotes the complex conjugation, and G(x) the Gauss sum
of a character x defined under the convention of §2.7. We first prove two
theorems on the projection maps from A% to .} or its subspaces.

Theorem 16.1. For each weight k € 27'Z, > 0, there exists a C-linear
map pr of Ny into S with the following properties:

(16.1a) (f, by = (pr(f), h) for every f € N} and h € S;
(16.1b)  pr(f)° =pr(f?) for every f € A% and every o € Aut(C).

Proor. With a fixed congruence subgroup I' and a fixed f € A% (),
the map h +— (f, h) for h € Z,(I') is a C-linear map of .4(I') into C,
and so there exists a unique g € %, (I") such that (f, h) = (g, h) for every
h € Z,(I'). Putting g = pi(f), we obtain the desired map py of (16.1a)
since the replacement of I' by a smaller group does not change ¢. Indeed,
take a congruence subgroup I that is a normal subgroup of I. Then we
find an element ¢’ of .7, (I") such that (f, h') = (¢’, h') for every h' €
Lk(I"). Take any v € I, and write ¢|la for ¢||; o for any function ¢ on
$H and o € Gg. Then ¢'||y € S,(I"), and for every h' € 4 (I"") we have
(ol ) = (g Wl = {f, Wl ) = (Flls 1) = (£, 1) = (g, ), and
so ¢'|ly=¢'. Thus ¢’ € Sk(I'), and ¢’ = g as expected.
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To prove (16.1b), given f € 4%, we consider the sum expression for f in
Lemma 7.8(ii). Then we can put f = go + Di_29« + cE2 where gg is the
element of .Z}, in that expression, g. is an element of Cy_o(I") determined
suitably by that expression, ¢ € C, and Es is the function of (7.10); cFEs
is necessary only when k = 2. For h € ) we have (Dg_29., h) = 0 by
Corollary 6.9(i), and (E2, h) = 0 by (9.50). Thus (f, h) = (go, h). Next, by
(9.45a) we can put go =t+r with t € . and r € &;. Then (go, h) = (t, h)
for h € . Since (f, h) = (t, h), we have t = pr(f). Replace f by f°
with o € Aut(C). From Lemma 7.8(i) we see that go is replaced by ¢7, and
9§ =17 +r?. We have t7 € .}, by Theorem 7.5(i), and r° € & by Theorem
9.26. Thus pr(f?) = t° = pr(f)?. This proves (16.1b) and completes the
proof.

Lemma 16.2. Let & € Zy; suppose & occurs in (v, N/v; ). Then
there ea:ist a C-linear map v, of N}, into (v, N/v; ¢) and also a C-linear
map rk w of Nk into &(&) N Lk (v, N/v; 1) with the following properties:
(16.2a) (f,h) = (rY 1/)(f> L) for every f e N and h € Ly(v, N/v; ¥);
(16.2b) r,i\fw(f) = e (f7) for every f € Ny and every o € Aut(C);
(16.2¢) (f,h)y=(r j(f) ) for every feNy and he &(&) NSk (v, N/v; );
(16.2d) r,ivf(f) k 1/)0 (f”) for every f € N and every o € Aut(C).

PrOOF. For a fixed f € A%, the map h — (f, h) is a C-linear map
of Zi(v, N/v; ) into C, and so the existence of an element r,i\fw(f) of
kv, N/v; 1) satistying (16.2a) is obvious. Thus (16.2b) is our problem.
We have clearly r,i\fw(f) = r,]c\{w(g) if g = pr(f) with pp of Theorem 16.1,
and so it is sufficient to prove (16.2b) when f € .. Given f € .7, take a
multiple K of N so that f € % (F(K)) Define the map q : .7 (F(K)) —
Zk(I(N)) as in Lemma 7.15. Then ¢(f)? = ¢(f?) for every o € Aut(C)
and (f, h) = (q(f), h) for every h € #;(I'(N)). This means that to prove
(16.2b), we may assume that f € .74 (I'(N)).

As observed in the proof of Theorem 7.5(iv), ./ (I'(N)) is the direct
sum of (N, N; x) with some characters y modulo N, and .7 (N, N; x)
is orthogonal to .Zk(N, N; ') if x # X'. Therefore, to prove ré\"w(f)" =
r,]ch,(f"), we may assume that f € .7, (N, N; x) for some x. Then f7 €
Zk(N, N; x?) by Theorem 7.5(iia). Put f(z) = > .7, c¢(n)e(nz/N) and
Pf=(v/N) ZN/V (z4vu). By Lemma 7.14, Pf = > | ¢(Nn/v)e(nz/v) €
kv, N5 x) and (Pf, h) = (f, Ph) for every h € .7} (I'(N)). Clearly Ph =
h if h € .Zk(v, N/v; ¢). Therefore r,]xw(f) =0if x # 1, and r,]xl/)(f) =Pf
if x = . In either case we have ré\"w(f)" = Tllc\{w (f9).

Next, to find r,ivf satisfying (16.2c, d), let &, ..., & be the elements of
Z} that occur in % (v, N/v; v) and let V; = &(&) N L, (v, N/v; ). Since
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R, is self-adjoint for every p, we easily see that (V;, V;) = 0 for ¢ # j, and
Sk(v, NJv; ¢) = @;_, Vi. For & = & we let r,ivf denote the composite of
Tﬁw and the projection map of Zx (v, N/v; ¥) to V;. Then (16.2¢) is clearly
satisfied, and from (16.2b), Theorem 7.5(iia), and (15.4a) we obtain (16.2d).
This completes the proof.

Lemma 16.3. Given f and g as in Lemma 8.22, suppose that they are
normalized Hecke eigenforms in (N, ¥) and % ¢(M, ), respectively. Put

(163)  Dx(s; f,9) =Lx@2s+2—k—0,99) > a(n)b(nn
(n,K)=1
with a common multiple K of N and M. Then Dk (s; f, g) # 0 for Re(s) >
(k+10)/2.
ProOF. For t € R put
As) =Dk (s+it; f, 9)D k(s —it; fo, 9p)DK (s [, [o)DK (S5 95 9p),

where f, is defined by (5.14). Define a, 35, 7p, 0p as in Lemma 8.22. Since
log { TT,(1 —app~*) 1} =30, >, mpT ey, we find that

oo

— —ms m m m m 2
(16.4) log A(s) = Z Zm p |ap + By + &+ %,
m=1 ptK
where &, = ,p and 7, = Sppit, provided A is holomorphic and the last
double infinite series is convergent at s. Put x = (k + ¢)/2 and define P by
(8.28). Then

Dk (s; f, 9) = Ir(s —#; f, 9).
By Theorem 8.21, Zk(s; f, g) is holomorphic on the whole C, except for

possible simple poles at s = 0 and s = —1, which may occur only if k£ =/
and ¢ is trivial. If & = ¢, I" of (8.29) has I'(s + 1) as a factor, and so
s = —1 cannot be a pole of Zk. Thus s = 0 is the only possible pole of

P . Therefore © i is holomorphic except for a possible simple pole at s = &,
which may occur only if £ = /¢ and ¥ is trivial. Consequently,

(16.5) A is holomorphic on C except for possible poles on Re(s) = k.

Let Re(s) = o be the line of convergence of the right-hand side of (16.4).
Since I" of (8.29) has many poles where D (s; f, g) must have zeros, we see
that ¢ # —oo. Suppose o > k; then A is holomorphic at s = o, and for
real s > o we have log A(s) > 0, and so A(s) > 1. Thus A(c) > 1, which
means that log A is holomorphic at s = ¢, but that contradicts the well-known
fact that a Dirichlet series with nonnegative coefficients is not holomorphic
at the real point on the line of convergence. Therefore, ¢ < k. This implies
that A(s) = exp [log A(s)] # 0 for Re(s) > &, and so D (s; f, g) # 0 for
Re(s) > k.
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Suppose D (k + it; f, g) = 0 with ¢t € R; then Dg(k — it; f,, g,) = 0.
Since any pole of D i (s; *, *) is at most simple, we see that A is holomorphic
at s = k. In view of (16.5), this means that A is holomorphic at every real
point, in particular at s = 0. We can now repeat the above argument. To
be explicit, for real s > o we have log A(s) > 0, and so A(s) > 1. Thus
A(o) > 1, which means that log A is holomorphic at s = o, and we obtain a
contradiction. Thus D (s; f, g) # 0 for Re(s) = . This completes the proof.

Theorem 16.4. Suppose 2 < k € Z; let £ € 5y and let K be a finite
extension of F(&, 1) that is totally real or a CM-field (c¢f. §15.5 and Lemma
15.6). Also let f, h, and p be K-rational elements of S(§) NSk (N, ). Then

(16.6) {(f, 1)/, p)}7 = (f7, h7)/(p°, p°)

for every o € Aut(C) provided p # 0. The equality holds even for an arbitrary
fe6()NSL(N, ) if we replace f7 on the right-hand side by fror.

Proor. By Theorem 14.4 there exist a multiple M of N and a normalized
Hecke eigenform g(z) = Y7, ¢(n)e(nz) € Zk(N, ) such that for every
pt M we have &, = |c(p)|? — p*¥~1 — p*=2 and f|R, = &,f for every f €
(N, Y)NGS(€). Take p =0 or 1 so that p—k € 2Z. By Lemma 2.14 there
exists a character ¢ such that ((—1) = 1, ¢? is nontrivial, and the conductor
of ¢ is prime to M. Let ¢o be the primitive character associated with /v, r
the conductor of g, and ¢ the (possibly imprimitive) character modulo Mr
associated with ¢g. Then ¢(—1) = (—1)*. We fix the symbols N, ¢, £, g, M,
and (. Then ¢ and r are determined.

We now take a positive integer t satisfying the following condition:

(16.7) t has no nontrivial square factor prime to rM.

Put then 6;(z) =271 ., o(n)n*e(tn?z/2). By Lemmas 5.5 and 8.17, 6; €
t

M (2, 2tr2 M?; ¢;), where £ = p+ 1/2 and @;(n) = (p(n)<g> Given 0 #

f(2) =300 Mn)e(nz) € Sk(N, ) N &(E), put fo(z) = f(2/2). Then fo €
Zk(2, N; ¢) and

D27 (s — k —1/2); fo, 0;) = (t/2)(7=71)/2 Z o(m)A(tm?)ym=*.

m=1
By Lemma 14.6 with rM as r there, we obtain

(16.7a)  L(s—k+1, vp) > @m)A(tm?*)m ™
m=1
g1
= \t)D(s —k; g, 9) [ [1 + o))" ],
plt
where g,(z) = Y.7 | p(n)c(n)e(nz). By Lemma 7.13, g, € % (r?M?, ¢p?).
Using the symbol ® i of Lemma 16.3, we have, with K = M,
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Du(s; 9, 90) = L(2s +2 — 2k, ¥2*0*)D(s — k; g, gy),

which is nonzero for Re(s) > k. We evaluate our functions at s = k. Our choice
of ¢ shows that ¥?¢? is nontrivial, and so L(1, 1) # 0 and L(2, 1%¢?) # 0.
Thus by Lemma 16.3, D(0; g, g,) # 0, and we can conclude that D(—1/4;
fo, 0¢) is A(t) times a nonzero number, whose explicit form is

171
(t/2)~ T2 (ks g, 9,) L(1, @) L(2, 2*) T [T [1+ (W) ()p™']
plt
We now evaluate (8.27) at s = —1/4 with (fo, 0:) in place of (f, g) there.
Putting x = (k + p)/2, No = 2tr?M?, and w = 1), we obtain

(16.8) No(4m)="I'(k)D(=1/4; fo, 01) = W(@)(O7E, fo),

where E(z) = Ep—¢(z, (0 — k)/2 4 1; I, @) with I' = I'(Ny, No). Put p =
(k—p)/2—=1.Then 0 < p € Zand E(z) = E3/o19,(—p; I, ©). By (8.20) we
have

(—4m)Pe(0)E(z) = D?

3/2E3/2(0; F7 (I}),

where £(0)=T]"_{(3/2+a). Since @? is nontrivial, Es/5(0; T, @) € 4 3/5(Qan)
by Theorem 8.15(iii), and so m PE(z) € A%_¢(Qab) by Lemma 7.8(i). Put
4(2) = 7700 (22) E(22). Then g € H3(Quo), and {07, fo) = 2572 (g, ) by
(6.12a). By Lemma 16.2, (g, f) = (r,]x;f(q), f). We have shown that (0 E, fo)
is A(t) times a nonzero number, and so the same holds for <r,ivf (@), f)-
Once N, ¥, &, M, g, , ¢, and t are fixed, I" does not depend on f. There-

fore r,ivj (¢) is also independent of f. Emphasizing the dependence on ¢ and

f, put r,ivj(q) = hy and A(n) = A(f, n). Then h; € .7, (Qap) by (16.2d), and

(16.9) (hes £) = (S, w(t, ¥, ¢, 9)

for every f € (N, ¥v)NGS (&) with a nonzero number w(t, ¥, ¢, g) given by

27k a =P (@) Ny (4m) =~ (k) (t/2) "D n(k; g, 9,)
L(1, o) L(2, $2¢*) [ 1, [1 + (V) (p)p~?]

This is independent of f.If f # 0, then A(f, n) # 0 for some n. We can put

n = tm? with m prime to rM and an integer t satisfying (16.7). Then (16.7a)

shows that A(f, t) # 0. Thus for every nonvanishing f € (N, ¥) N &(E)
we can find ¢ such that (h:, f) # 0, and so

(16.9a) w(t, ¢, ¢, g) =

(16.10) The hy for all t satisfying (16.7) span (N, ) N S(&).
Now take another f’ € .7;(N, ¢) N &(&) and another t' satisfying (16.7).
Then from (16.9) and (16.9a) we obtain

<ht’7 f/> _ )‘(f/7 t/) . w(t/v ’(/}7 ¥, g)
<hta f> >‘(f> t) w(t’ 7/}’ 2 g) 7

(16.11)
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wt', b, ¢, 9) (/1) [L: [1+ @) )p~!]
w(t, ¥, @, g) L 1+ @e)(p)p~]
Let o € Aut(C). By Theorem 7.5(iia) and (15.4a) we have . (N, ¥)7 =

LE(N, ¥7) and &(§)7 = G(£7); also, A(f, n)? = A(f?, n). Taking ¢7, 7,
and f7 in place of 9, ¢, and f, from (16.2d), Theorem 8.15(iii), and Lemma
7.8(i) we see that (h:)? takes the place of hy for f. Thus

<(ht)07 fa> = )‘(fga t)w(ta wga Qoga gg)'
From (16.11a) we see that
{w(t', ¥, o, g)/w(t, ¥, ¢, 9)}" =w(t', ¥7, ¢7, g7)/w(t, ¥7, ¢, 7).
Therefore

(16.11a)

{{he, £/ (he, )37 = ((he )7 (F)7) /{(Re)7, ).

Since h; is Qap-rational, (hy)?? = (h)??. Let j € Sx(N, ) N &(&). B
(16.10), we can find a finite set T of elements satisfying (16.7) such that
j= ZTET arh, with a, € C. Then (j, f') = ZTGT a?(h-, f'), and

G, 7 or (hr, [7) po ()7, (F1)7) _ GP7%, (1))
{<ht7 f>} a TEE:T { (he, f } Z 7, f7) ((he), fo)
In particular, for f = h; we have

() {Gs £/ ey he) YT = (P72, (F1)7)/{(he), (he)).

Take j and f’ to be the same K-rational nonzero element p of (N, ¥)N
S(€) with K as in our theorem. Then p*?? = p?, and so

{0 p)/{hes he) 7 = (07, 7) /{(he), (Re)7).
Dividing (*) by this, we obtain
{6, ), p)}" = (G7, ()) /s p7),

which proves (16.6), since j??? = j° if j is K-rational. This completes the
proof of Theorem 16.4.

16.5. Let 0 < k€27 'Z and I = I'(N, N) with a positive integer N and
let ¢ be a character modulo N. We put then

L(2s+ k, ¥)Ey(z, s; I, ) if keZ,
(16.12)  Ci(z, s I, ¥) = 2 :

L(4s+2k —1,Y*)Ex(z, s; I, ¢) it k¢ Z
with Ex(---) of (8.12); we assume N € 2Z if k ¢ Z.

We are going to state some results about Ci(z, A; I, ¥) for certain A €
2717 belonging to the set Aj defined by
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(16.13a) Apy={A€Z|1-k<A<0} if keZ,
(16.13b)  Ap={A€Z|1-k<2X<0}
U{re2'Z|A-keZ 1-k<A<(1—-k)/2} if k¢ Z
For A € Ay, we put
Ci(z, N I ¥) = apypaCr(z, X; I, ¢) with
G(1p)~tikp=F=A if k€ Z,
(16.14)  apypa =4 G@p?) " ta—3r21H if k¢ Zand \cZ,
G(p) 12V 2Fa=k=2 " if k¢ Z and \ ¢ Z.

Theorem 16.6. Suppose that ? is nontrivial if k ¢ Z and k + 2\ =
3/2 or 1/2. Then for every X\ € Ay the function C}(z, A\; I, ¢) belongs to
N(Qab) and Ci(z, \; I, )7 = Ci(z, X; I, ¥7) for every o € Gal(Qan/Q).

PRroOF. In this proof I' is always the same; therefore, suppressing I', we
write (z, s; @) for (z, s; I, ).

Case I: k € Z. Let A € A. First suppose —k/2 < X < 0; put p=—X\ and
k =k —2p. Then p >0 and x > 0. By (8.20) we have

L(k, )DEEx(z, 0; ¢) = (—4m) Pex(0)Cr(z, A; 9).

Clearly €,,(0) € Q*. Thus the desired result follows from Lemma 2.10, The-
orem 8.15(i), and Lemma 7.8(i).

Next suppose 1 —k < X\ < —k/2. By (8.18), 2Cy(z, s; 1) = EY (2, s; 9),
and so the desired result for A = 1 — k follows from Theorem 8.15(ii). If
A>1—k,put p=A+k—1and Kk =k —2p. Then p >0 and x > 0. By
(8.20) we have

DeC(z, 1 — k; ¥) = (—4m) Pe,(1 — K)Cr(z, A; ).

and €,(1—k) € Q*, and so the desired result follows from the case A =1—k
and Lemma 7.8(i).

Case II: k ¢ Z. Suppose A € Z and 1 —k < 2X\ < 0; put p = —X and
k=4k—2p. Then 0 <peZand 3/2 <k € 271Z. By (8.20) we have

L(2[k] — 4p, ¥?)DPE,(z, 0; ¥) = (—4m) P, (0)Cr (2, A; ).

We see that 0 < 2[k] — 4p € 2Z and £,(0) € Q*. By our assumption, >
is nontrivial if x = 3/2. Thus the desired result follows from Lemma 2.10,
Theorem 8.15(iii), and Lemma 7.8(i).

Next suppose A—k € Zand 1 —k <A< (1—k)/2;put p=A+k—1 and
k=k—2p. Then 0 <peZand 1< ke 2 1Z By (8.20) we have

DECk(z, 1 — 5 ) = (—4m) Pen(l — K)C(z, X ).
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Therefore this case can be settled by the same argument as before in view of
Theorem 8.15(iv). This completes the proof.

Theorem 16.7. Let £ € =} with 0 < k € Z as in §15.4. Given f €
SN k(N, ) and g € M (M, ©) with any positive weight £ < k, a divisor
M of N*°, and a character ¢ modulo M, define Pn(s; f, g) by (8.28). For
k€ 27VZ put X =k —1— (k —{)/2. Assuming that X € Ax_y with A of
(16.13a, b), put

A(w; f,9) = BIn(k; [, 9) with 8=7m"F AP\ +k = 1)ayron,

where w = Y and Qe s as in (16.14). Let 0 # p € 6(§) N L(N, ) as
in Theorem 16.4. Then

[Alss £, 9)/ (0. P))7 = Alws £, 9°77)/ (07, p7)
for every o € Aut(C).
PRrOOF. From (8.27) we obtain

No(4m) ™I ()Dn (55 f. ) = 1(P){9,C. f),
where p = A+k—1, Ny is a positive multiple of N that divides M N, ¢ = '\ $,
and C(z) = Cr_¢(2z, \; I, @) with I" = I'(Np, Ny). Since u(P) € mQ* by
(6.6), putting C*(z) = C_,(z, A\; I, @), we have
R P D (p)an—e.ox2n(k; £, 9) = (9,C*, )
with a constant R € Q* independent of f and g¢. Therefore, from (16.2c)

we see that 82y (k; f, g) = (r(g,C*), f) with r = r,iv_’%w and 3 defined as
above. Thus we obtain the desired result from Theorem 16.4 and (16.2d).

16.8. Given the space .71 (N, ¥) with k € Z, let .7} (N, ¢) denote its
subspace spanned by the functions h(tz) with h € .7 (M, ) for all integers
t and M such that tM divides N and the conductor of 1 divides M. Let
SV(N, 1) be the orthogonal complement of .7} (N, 1) in .7, (N, v). We call
a normalized Hecke eigenform f in .7 (N, ¢) primitive if it belongs to
SV(N, 1), and call N the conductor of f.If f is primitive, then clearly
f7 is primitive for every o € Aut(C). The basic facts on primitive forms
(often called newforms) can be found in Atkin-Lehner [AL70] (for trivial ),
Casselman [C73], and Miyake [Mi71].

Let g be a nonzero element of .7,(N, ¢) such that ¢|T'(p)x,, = cpg for
almost all p. Then we can find a primitive element f contained in .7 (N, )
such that f|T"(p)k,p = cpf for almost all p. We then say that f is associated
to g.

For an arbitrary f(z) = > ., c(n)e(nz) € #,(I1(N)) and a primitive
character y put

(16.15) D(s; £, x) = Y _ x(n)e(n)n”*,

n=1
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(16.16) A(m; f, x) = (7)) "™G(x)"*D(m; f, x) (0<m <k, meZ).

Since Y07 | x(n)c(n)e(nz) € 7, from Theorem 8.2 we see that D(s; f, x) is
an entire function, and so its value at any m € Z is meaningful.

Theorem 16.9. Given a primitive f € (N, ) and a primitive char-
acter x, denote by Ky (resp. K, ) the field generated over Q by the Fourier
coefficients of f (resp. the values of x). Then for every o € Aut(C) we can
define two nonzero complex numbers uy(f7) and u_(f7) with the following
properties:

(i) ux(f7)P = 2ug(f°°), where p is the complex conjugation.

(i) A(m; f, x) € ux(f)Ks Ky if x(—1) = £(=1)™ for every m € Z, 0 <
m < k.

(i) [AGm; £, x)fus(1)]° = Alms £7, x%)Jus(f7) for every @ € Aut(C)
if meZ,0<m<k, and x(—1) = £(-1)".

(iv) Put B(f) = '"*1G(6)(f. f). Then E(f) € us (Hu_(H)Ks and

(BN {us(Hu-(H}]7 = B {us(F7)u(F)}
for every o € Aut(C).

This was given in [S77] as an application of [S76]. In fact, the results of [ST6]
can be derived from Theorem 16.4 by taking f there to be any normalized
Hecke eigenform and h to be an Eisenstein series, without assuming f to be
primitive.

If k = 2, the constants ug (f?) are periods of the differential form f7dz
on I'1(N)\$. For details, we refer the reader to [S77, Theorem 3].

Lemma 16.10. (i) Let f be a normalized Hecke eigenform in 7 (N, 1).
Then D(s; f,x) # 0 for Re(s) > (k+1)/2 for every character x.

(ii) Let f be a nonzero element of 3(I'1(N)) and let 0 < M € Z. Then
there exists a primitive character ¢, whose conductor is prime to M, such
that D(1; f, ) #0 and @(—1) has a given signature.

Assertion (i) can be proved by the same technique as in the proof of Lemma
16.3. For details, we refer the reader to [S76, Proposition 2] and [S78, Propo-
sition 4.16]. As for (ii), the proof is given in [S77, Theorem 2] when f is
primitive. The condition that f is primitive is unnecessary, as explained in
the last four lines of page 213 and the first four lines of page 214 in [S77].
This type of nonvanishing for the zeta functions associated to the forms on
GLy(F) with an arbitrary number field F' was given by Rohrlich in [Ro89].

16.11. Let 0 # f € &(&)NS%(2, N/2; ¢) with half-integral k. We assume
the following condition:

(16.17) k > 3/2 : if k = 3/2, then (f, 01(z, n)) = 0 for every u € £(Q),
where 01 is as in (12.9b).



16. MAIN THEOREMS ON ARITHMETICITY 145

Then by Theorems 12.8 and 13.11 there exists a Hecke eigenform g(z) =
S0 c(n)e(nz) € Fap_1(N, ¢?) such that (15.5) holds with w, = ¥(p)¢,
for almost all p, as already explained in §15.4. Choosing ¢ suitably, we may
assume that ¢ is primitive. Clearly ¢ is uniquely determined by f.

Theorem 16.12. Let f be as above and g the primitive form in o1
determined by [ as above. For q € N} put

(16.18) I(q, ) = 227G () g, f).
Let uy(f) be as in Theorem 16.9. then
(16.18a) [L(a, £)/u(9)])" = 1(a*°?, £7)/u—(97)

for every o € Aut(C).

PrROOF. Our argument is similar to the proof of Theorem 16.4. We take a
multiple M of N such that f|R, =&, f for every f € &(§)N.Sk(2, N/2; )
and every ptM. We also take a primitive character ¢ of conductor r and a
positive integer ¢ such that
(16.19) o(—1) =1 and every prime factor of M divides r;

(16.20) t has no nontrivial square factor prime to r.

Such a ¢ of course exists. Put 0y(z) =271 _, ¢(n)e(tn®z/2). By Lemmas
5.5 and 8.17 we see that 0, € .# (2, 2tr?; ¢;), where £ = 1/2 and ¢;(n) =

go(n)(%) Let 0 # f(z) = Y02 An)e(nz) € () N.7k(2, N/2; ). By
Theorem 13.11 we have -
() L(s — [k]+1, xe) Y _ o(m m=* = A(t)D(s; g, ¢),

m=1

t
where y; is defined by x:(n) = ¥(n) (—> Also, we have
n

oo

() D27Ms = [k] = 1); f, 60) = (/2)7/2 Y p(m)A(tm®)m ™.
m=1

Combining (x) with (xx), we obtain
(#) AD(t/2)7*/2D(s: g, ) = L(s = [k] + 1, xe) D(27 (s — [K] = 1); [, 0).
The left-hand side of (xx) at s = 2k — 2 is D(so; f, 0¢) with so = [k]/2 — 1.
We now evaluate (8.27) with 0; as g there at s = sg. Then
(16.21) No(4m)="I'(k)D(so; f, 0:) = u(®) (AL E, f),
where Ng = tr’N, k = k — 1, = I'\$, and FE(z) = Epyy (z, 0; I (I)) with
I' = I'( Ny, No) and w = ¥;.

We first assume that k& > 3/2; the case k = 3/2 will be treated later.
Then 2k — 2 > k, and so D(2k — 2, g, ¢) # 0 by Lemma 16.10(i), which
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combined with (#) shows that D(so; f, 8;) # 0 provided A(t) # 0, since
L(s — [kl + 1, x¢¢) # 0 for s = 2k — 2. Now E € A[47(Qab) by Theorem
8.15(i). We then proceed as in the proof of Theorem 16.4. To be explicit,
put hy = r,?{;f(@tpE) with r,ivj of Lemma 16.2 and A(n) = A(f, n). Then
h; € yk(Qab) by (16.2d), and

(16.22) (he, ) = A, we (¥, @, 9)

for every f € (2, N/2,v) N &(£) with a nonzero number wy (v, ¢, g)
independent of f given by
_ plapi/2-t . PCE =29, ¢)
wt(wv 2 g) R(2t) m L([k], thp) ’
where R is an element of Q* independent of f.If f # 0, then A(f, n) # 0 for
some n. We can put n = tm? with m prime to r and an integer ¢ satisfying
(16.20). Then (x) shows that A(f, ¢t) # 0. Thus for every nonvanishing f €
K2, N/2, ¢) N &(€) we can find ¢ such that (h:, f) # 0, and so we obtain

(16.23) The hy for all t satisfying (16.20) span 7 (2, N/2, ) N S(§).

Let o € Aut(C); take f?, g7, and ¢° in place of f, g, and ¢, but with
the same t. By Theorem 8.15(i), £ takes the place of F, and by (16.2d),
h{ takes the place of h;. Define Py(m, x) by (2.19). Then L([k], xtp) =
G(x+)(mi)F P.([K], xt). Thus employing (16.16), we have
G(p)AQRk —2; 9, ¢)

_ 1/2;[k]-1,_—1
w (¥, @, g) = R(2t)"/=0 T G(xep) Pr (K], xe0)

By (2.4a) and Lemma 2.8 we have

[H2G()G(0)/Glxp)]” = t2G(7)G(¢7) /G ¢7).
Put B(y) = 2Y/%ilFl=17G(3)). Since (—1)?*~2 = —1, from Theorem 16.9(ii)
and Lemma 2.10 we obtain
[B)we(v, @, 9)/u—(9)]" = B )we(v?, ¢, g°)/u-(g°).
Combining this with (16.22), we obtain

[B)he, £)/u—(9)])” =BT, f7)/u(g°)

Given h € 6(§) N 7%(2, N/2; v), we can put, by (16.23), h = >, cpaihy
with a finite set T of elements ¢ satisfying (16.20) and a; € C. Then (h, f) =
> ieT al(hy, f) and (hPoP  f°) = ZteT 7(hg, f°). Therefore

[B)(h, f)[u—(9)]" = B@7)(n7?, f7)/u-(g°).

This proves (16.18a) for h € &(&) N 7% (2, N/2; ¢). Given an arbitrary g €
Nk, we have (g, f) = (h, f) with h = er( ), where rk;f is as in Lemma
16.2. In view of (16.2d) we obtain (16.18a).
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Next let us assume that k& = 3/2. In this case 2k — 2 =1 and D(1; g, @)
may be 0. If D(1; g, ¢) # 0, then our argument in the case k > 3/2 can be
repeated. Suppose D(1; g, ) = 0 with ¢ satisfying (16.19). Put g,(z) =
> ¢(n)e(n)e(nz). Then, by Lemma 7.13, g, €.%(r2N,1)*¢?). By Lemma
16.10(ii) we can find a character o1, whose conductor is prime to rM, such
that D(1; gy, 1) # 0 and ¢1(—1) = 1. Since D(1; g,, ¢1) = D(1; g, wp1),
taking @i in place of ¢, we can employ our reasoning in the case k > 3/2
for k = 3/2. This completes the proof.

Remark. Theorem 16.12 is essentially the same as [S81, Theorem 1]. How-
ever, the constant appearing in the definition of I(g, f) in (16.18) is different
from that for the corresponding quantity in [S81]. The difference is caused
by the difference of the definition of modular forms of half-integral weight, as
explained in §5.2. There is another point that should be remembered: in the
definition of D(s; f, g) in (8.23) the exponent is —s — (k4 ¢)/2 instead of the
simpler —s chosen in [S81].

Theorem 16.13. Let k and ¢ be half-integral weights such that k > ¢ and
k>5/2;let fe&E)NSk(2, N/2;v) with £ € 5 and h € A (2, N/2; ).
Given an integer m such that m —k+/0 € 2Z and -k — {0 <m < k—{—2
put

B(m; f, h) = 2Y2l0-1G (o) ta=m= =1 gn (m/2; f, h).

Let g be the primitive element of a_1(N, ¥?) determined by f as in §16.11,
and u_(g) the constant defined in Theorem 16.9. Then

[B(ms £, h)/u—(9)]" = B(m; £, h7)/u—(g°)
for every o € Aut(C).

PROOF. Let A=1+ (m —k+¢)/2 and k = (m + k + £)/2. From (8.27)
we obtain

N(4m)~"I'(k)Zn(m/2; [, h) = W(@)(h0C, f),

where C(2)=Cl_¢(z, \; I, @) with w=1¢. Put 8= N(4r) ~*['(k)u(®) la
with @ = ap_r,a given by (16.14). We see that A € Zand 1-k =/¢ < A <0,
and so A belongs to the set Ax_p of (16.13a), and Theorem 16.6 is applica-
ble. We have 89n(m/2; f, h) = (h?C*, f) with C*(z) C oz, N T ).

Since x + k € Z, we have I'(k) € 7'/2Q*. Also, G(©) b w(=1)G(w)™ L.
With I(q, f) as in (16.18) we have v@n(m/2; f, h) = I(hPC*, f) with v =
21/2iF=17G(¢) 8. Calculating v explicitly and then applying Lemma 2.8 to
G()G(9)/G(yp), we obtain the desired formula from Theorem 16.12.

16.14. We add here two remarks.
1. In addition to Theorems 16.7 and 16.13 there is one more case of the
values of P (s; f, h), that is, the case with f of half-integral weight k and h
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of integral weight < k. In this case we can state the results similar to Theorem
16.13 and prove them in the same manner as an application of Theorems 16.6
and 16.12. We leave the details to the reader, as no new ideas are required.
Indeed, they were given in [S81, Theorem 3|, though the reader is warned of
the difference in formulation noted in the remark before Theorem 16.13.

In addition to this, we can also investigate Z(m; f, x) for 2 of (8.30). This
is essentially a special case of Theorem 16.7 with a certain theta function in
place of g, but there are some exceptional cases which require some nontrivial
calculation. We refer the reader to [S91, pp.604-605] and the paper of J.
Sturm cited there.

2. Let K be an imaginary quadratic field. Given A € Z(K)and 0 < k € Z,
put

F(2) =D Mé)Ere(¢éz)  (z€9).
EeK
Then we can show that f € .%,;1. In this case we can connect < f, f > and
the special values D(m, f, x) with h(7) with 7€ KN$ and h € 4, (Quap)
for a suitable v. For this we refer the reader to [S76, §5] and [S07, §13].

17. Hilbert modular forms

17.1. The theory of modular forms can be developed with respect to
congruence subgroups of SLy(F') with any totally real algebraic number field
F of finite degree. Such forms are traditionally called Hilbert modular
forms. Practically all the results we presented in this book for modular
forms on §, including those of half-integral weight, can be extended to the
case of Hilbert modular forms. Let us now briefly explain the basics of this
topic, emphasizing its difference from the case over Q.

With a fixed F, we denote by g the maximal order of F' and 0 the
different of F' relative to Q. We denote by a the set of all archimedean
primes of F. For each v € a we denote by F, the v-completion of F' which
is naturally identified with R. We put Fa = [[,c, Fo. Similarly we put
SLy(F)a = [l,caSL2(F,), and we let SLo(F)a act on £ in an obvious
fashion. For each element a € SLy(F) we can assign an element of SLo(F)a
whose components are all equal to «a, which acts on $2. In this way we can
let SLy(F) act on H2.

For every integral ideal n in F' we put

(17.1) I'(n)={aeSLy(g)|a—1<n}.

By a congruence subgroup of SLy(F) we mean a subgroup of SLy(F)
that has I'(n) as a subgroup of finite index for some n. To define modular
forms, we need the notion of a weight. By an integral weight we mean an
element of Z?, and by a half-integral weight we mean an element (k,)yea
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of Q? such that k, — 1/2 € Z for every v € a. Thus, if [F : Q] = 3 for
example, (—=7/2, 1/2, 9/2) is a half-integral weight, but (3, 7/2, 4) is not. For
a half-integral k& we put [k] = (ky — 1/2)vca.

For ¢ = (¢y)peca € C* we put ey(c) = e(Zuea ¢y) and also

(17.2) 0(z) = Zea(azz/Q) (z € H%),

acg
(17.3) Io={y€SLy(F)|ay€g,by€207}, ¢, €20, d, € g}.

Then for every « € I} there exists a function h.(z) on 2 such that

(17.4a) 0(7z) = hy(2)6(2),
(17.4b) h7(2)4 = Hj(%n zv>27

where j(8, w) = cgw + dg for § € SLa(R) and w € 9; see [S85al. Then we
define a factor of automorphy ],’;(Z) for a weight k, v € Iy, and z € H* by
[Ti(w, 2 if ke z?,
(17.5) iR (z) =S vea
hy(2)iM(z)  if k¢ Z2.
Given a congruence subgroup I" of SLo(F) contained in I and a weight
k, we denote by (") the set of all holomorphic functions f on $H2 such
that f(yz) = jE(2)f(z) for every v € I', and we call such an f a Hilbert
modular form of weight k& with respect to I'. Here we assume that F' #£ Q.
In fact, if F' # Q, then we can show that every such f has an expansion
(17.6) f(z) = clé)e(éz)
£€a
with a fractional ideal a in F' and ¢(§) € C such that ¢(§) =0 if & < 0 for
some v € a. In other words, we need condition (3.4d) only when F = Q.
Basically we can extend all definitions and results in the case FF = Q to
the case F' # Q. The generalization of D(s, f) of (8.3) is
(17.7) ERERD SR (IN | F et
ceFx [t vea
where t is a subgroup of g* of finite index that makes the last sum meaningful;
the existence of such a t can be shown.
We encounter some phenomena which do not exist in the case F' = Q. For
example, given o € Aut(C), we can define a function f? on $H* by
(17.8) 17(z2) =) e(€)7e().
£€a
This is indeed a Hilbert modular form, but its weight is a transform of k& by
o in a natural way, and so it is not necessarily k.
Without going further, we merely mention some references. In the paper
[K128] Kloostermann gave some basic results on Hilbert modular forms of
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weight &k in the case where the k, for all v € a are equal, and treated
holomorphic Eisenstein series. The case of more general integral weights was
discussed in [S78], which includes the generalization of Theorem 16.9. This
was originally published in the Duke Mathematical Journal, but the typesetter
and copyeditor made an incredible number of mistakes. Though corrections
were later published in the same journal, I advise the reader to read the revised
version included in my Collected Papers, vol.IIl. The factor of automorphy .,
asin (17.4a, b) was established in [S85a], and Eisenstein series were discussed
in [S85a] and [S85b]. The generalizations of Theorems 11.3 and 12.8 were
given in [S87]. The contents of §§14, 15, and 16 of the present book can
be viewed as special cases of [S91] which discusses the same problems in the
Hilbert modular case.
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A1l. Proof of various facts

A1l.1. Equality (3.7a) can be proved as follows. Since f(x + iy) is a C™
function of x invariant under z — x + m for every m € M, it has a Fourier
expansion
(A1.1) fla+iy) = en(y)e(tr(ha))

heL
with C*° functions ¢, of y, by virtue of a general principle on the Fourier
expansion of a function with C°° parameters; also termwise partial differ-
entiation of (Al.1) can be justified. For the proof of these facts the reader
is referred to any textbook on Fourier analysis in R"; they are also proved
in [SO7, Theorem A2.2]. Put by(y) = cn(y)e( —i- tr(hy)). Then f(z) =
> her brn(y)e(tr(hz)). Take the variable z,, = x,, +iy,, and apply 8/0z,, =
271(0/0z,, +i0/0y,) to the last equality. Then
0="> (i/2)(0bn/0yyu )e(tr(h2)),
heL

and so Oby /0y, = 0 for every (p, v), which means that b, is a constant.
Thus we obtain (3.7a).

A1.2. We next prove Lemma 3.3. First we observe that f(x + iy) =
Sner c(h)e(i-tr(hy))e(tr(hz)), and so
(A1.2) e(i-tr(hy))c(h) = A/ f(z+iy)e( — tr(ha))dz,
Sa/M
where S, = S, (R) and A = vol(Sa/M)~!. Taking y = (27)~'1,, in (A1.2),
we obtain |c(h)| < Bexp (tr(h)) with a constant B independent of h. Now
from (3.6b) we obtain c(h)=c(*aha) for every a € U, and so

(*) lc(h)| < Bexp (tr(*aha)) for every a € U.

Now suppose n > 1; let h be an element of L that is not nonnegative. Our
task is to show that ¢(h) = 0. We can find = = (2;)",; € Q™ such that
tzhe < 0. Replacing = by z + v with a “small” vector u, we may assume

G. Shimura, Modular Forms: Basics and Beyond, Springer Monographs in Mathematics, 151
DOI 10.1007/978-1-4614-2125-2, © Springer Science+Business Media, LLC 2012
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that xy2x2 # 0. Multiplying x by a positive integer, we may also assume
that @ € Z™. Let y = [—22 21 0 --- 0] and b = xy; here y is a row vector
and so b € Z". Then b?> =0 since yzr = 0, and

(xx) tr(tbhb) = tr(ty - txhay) = y - ty - txhe = (22 + 22) - tzha < 0.

Put ¢ = (1 +b)™ with 0 < m € Z. Since (1 + b)(1 —b) = 1, we have
1+b€ GL,(Z), and so a € U if m € NZ with a suitably large integer N.
For such an m we have

tr(‘aha) = tr(*(1 + mb)h(1 4+ mb)) = p + mq + m?r

with p, ¢, 7 € R, which are independent of m; in particular, r = tr(*bhb) < 0,
as shown in (xx). Now by (x) we have |c(h)| < Bexp(p + mq + m?r) for
0 < m € NZ. Making m large, we find that ¢(h) = 0 as expected.

Lemma A1.3. (i) I'(1) is generated by the elements of the forms of (4.31),
and consequently I'(1) is generated by ¢ and PN I(1).

(ii) Let I" = {v € I'(1)|by = ¢, =0 (mod 2Z) } . Then I"" is generated
by the elements of the forms

(A1.3) [8 Cﬂ, [ ] {(1: } b=c=0 (mod 2Z").

(iii) Let I'™* be the subgroup of I'(1) generated by the elements of the forms
a 0 0 -1 1 b N .,
w [0 ] Y] veo morzam
Then IV C I'*.
ProoOF. We first prove (ii). For = € Z"™, let [x] denote the greatest common

divisor of its components. We put [0] = 0. Also, for a € Z" let a’ denote its

Z] € I"". Our idea is to

reduce [a'] and [c¢!] by multiplying by elements of the forms listed in (A1.3).
Clearly [c!] is even, and so [a!] is odd, since v € SLa,(Z). First suppose

jth column and a{ its (¢, j)-entry. Now let v = {Ccl

1 1 Lo u Of|la b]. a b . .
[a'] < [¢!]. Considering [O v} L d] instead of L d] with a suitable
u = 't € GL,(Z), we may assume that a] > 0,a3 = -+ = al = 0.

Then a} is odd and < [¢!]. For each k we can find an integer s}, such that
lc} 4+ 2stal| < al. Take any s € S,,(Z) whose (1, k)-entry is such st, and put
1 0|]a b a b 1 1 1 1

= . <
[28 1] [c d] [p q} Then we find [p'] < [a'], and so [p'] < [a'],
since [p'] is even. Next assume that 0 < [c'] < [a']. Then, first considering vc

with a suitable v € GL,(Z), and then [é

reduce this to the case [a'] < [c!]. Repeating these procedures, we obtain an

2 . .
18] ~v with a suitable s, we can
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element, written again as v = [CCL b] , with ¢! = 0. Then [a'] = 1. For the

d

same reason as above, we may assume that al =1, a} = .-+ =al = 0. Since
tad —tch = 1, we see that d} = 1. Then left multiplication by diag[u, v] with
a suitable v € GL,(Z) produces d' = (1 0 --- 0) without changing
a' and c¢!'. Furthermore, left multiplication by [(1) 218} with a suitable s
produces b' = 0. We obtain in this way an element of the form

1 » 0 s

0 o 0V

0 t 1 wu

0 ¢ 0 d

with o', o', ¢, d’ of size n — 1. From the relations *bd = ‘db and ‘ac = ‘ca
we obtain s =t = 0, and from ‘da — *bc = 1 we obtain r = v = 0. Thus our
matrix in question is of the form

1 0 0 O
(AL5) 0 o 0V
' 00 1 0
0 ¢ 0 d
I /
with {z, Z,] € Sp(n—1,Z),b =c =0 (mod 2Z"~1). The proof of (ii) is

/ /
therefore completed by induction on n, since if CCL, Z,} is of a type belonging

to (A1.3), then so is the matrix of (A1.5).
To prove (i) and (iii), we note

I s S P [ |

1 o] [o —1][t »][o —1]"
(ALT) [b 1}[1 o] [0 1} L 0] '
In view of (A1.7) we obtain (iii) immediately from (ii). As for (i) we employ
the same type of argument as in the proof of (ii). Since we have ¢ in (4.31), we
can use it in addition to the matrices of (A1.3) without congruence conditions,
again in view of (A1.7). Now left multiplication by ¢ changes (a, ¢) into
(—c, a). We first assume that 0 < [a!] < [c!] and repeat the above argument
with the following modification: take s} € Z so that 0 < cj + sjal < al, and
use s instead of 2s. Then we can reduce the problem to the case [c'] < [a'],

!/ /

and further to the case ¢; = 0, and eventually to (A1.5). If Z, Z, =lp_1,
then (A1.5) does not belong to the three types of (4.31), but applying (A1.6)
to tn—1 and employing (A1.7), we can justify our induction.

A1l.4. Asnoted in §4.5, formulas (4.12) and (4.13) are equivalent to (4.17)
and (4.18). Therefore our result of §4.9 shows that (4.15) holds for ~ of
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(4.31). Thus, by Lemma A1.3(i) we have

(AL8) ey (2) T, vz 8) = G gy (2) P, 2517, 87)
for every v € I'(1) with some r”, s” ) and ¢ € T, since it is easy to see that
(A1.8) is “associative” with respect to successive applications of elements of
I'(1). Thus our task is to determine r” and s”. For this purpose we first note
that if w € 9., f(u) = p(u, w; r, s), and £ = wp'+¢" with p’, ¢ € Z™, then
(AL9)  flutl)=f(u)e(27t-tp'q —tsp/+irg +H(w—w) "  (u+271)).

This follows from (4.4). Observe that r and s are determined modulo Z™
by this formula. For v € I'(1), z € $,,, and m = zp+ ¢ with p, ¢ € Z" put
=" (2)"tm, w=~(z), and

g(u) = f(*py(2) ") = o(Ppy(2) tu, wi T, 8).

Iy=|_ g then y="=1| 4 ~| by (1.2b), py(2)"" =p(y™", w) by
(1.14), and z =tz = (~tew + ta)~! - {(*dw — *b), and so
(A1.9a) L="~tcw+"ta)(zp+q) =(tdw — tb)p + ! (—tcw + ta)q.

Thus ¢ = wp' + ¢ with p’ = dp — ¢q and ¢ = aq — bp. From (4.11) we

obtain (w —w)™t = p(2)(z — 2)71 - tuy(2), and so from (A1.9) we obtain
g(u+m) = g(u)e(X) with
X =2"t.Yq —tsp +trq +'m(z — 2) " (u+271m).

Since ‘da — tbc = 1 and 'pop — H{o}p € 2Z for every p € Z™ and o € S, (Z),
a straightforward calculation shows that

2—1 _tp/q/ _ tsp/ + trq’ = 2—1 . tpq _ t81p—|- t7‘1(] (mod Z)
. | | 1 {tac}
win |7 =0 g fadt]
Thus
(A1.10)  g(ut+m)=g(u)e(27" - 'pg—"tsip+irig+im(z—z)"Hu+2"1m)).

If +" and s are as in (A1.8), then they are determined modulo Z™ by formula

(A1.9) with f replaced by g, which is formula (A1.10). Therefore r” = ry

and s’ =s; (mod Z™). This combined with (4.5) proves (i) of Theorem 4.4.
Next assume that both {*ac} and {*bd} belong to 2Z". Then we can put

(AL1L) o'y (2) M, 725 0, 0) = Ayjs (2)20(u, 2; 0, 0)

with a constant A, € T. For k = zr+s with r, s € R", from (4.3) we obtain
O(u+k, 2 0,0)=e(—27"-Trzr —r(u+s))0(u, z; 7, s),

which combined with (4.2) shows that
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e(—'k(z—2) " Hu+k/2)p(u+k, 2;,0,0) =e27'Y)p(u, z; 7, 5)
with YV =-2-tk(z—2) " (u+k/2) + (u+k)(z—2) " u+k)
—trzr —2-tr(u+s) — tu(z — 2) " tu.

t

We can easily verify that Y = —*rs, and so we obtain

(A1.12) o(u, z;r, s) =e(27A(u, z; 7, 8))p(u+k, 2,0, 0)
with  A(u, z; 7, 8) = trs — H(zZr+s)(z—2) "1 (2u+2r+s).
Put w = 7(2), v = py(2) tu, and k' = p(2) " 'k. Taking k = zr+s in place

of m=zp+q in (Al.9a), we find that &' = wr’ + s with " = dr — cs and
s’ = as — br. Therefore, combining (A1.11) and (A1.12), we obtain

o(v(u, 2); ', ') =e(27 T A(v(u, 2); 7', 8)) (v + K, w; 0, 0)
= e(27 A( (u, 2); 7', ) My ()2 p(u + , 25 0, 0)
=e(271B)A\5y(2) 2p(u, 2 1, 5)
with B = A(y(u, 2); v/, ") — A(u, z; 1, s).
We have B = tr's’ —trs —tk(z — 2) "' (2u + k) + k' (w — w) " (2v + k'). Using
again (4.11), we see that the last two terms cancel each other. Since ;: =

ty—1 {Z} , exchanging (r, s) for (, s') and writing h-(z) for A,j,(2)"/2, we

obtain (ii) of Theorem 4.4, or rather (4.18).

Finally, to prove (iii) of Theorem 4.4, we observe that )\i =1 for the first
two types of elements of (A1.3). As for the third type, making substitutions
2+ z—2c and z+— —z~!in (4.34a), we find that

0(2(2cz +1)71) = £ det(2cz + 1)1/20(2) if c€ S,(Z)

with 6 of (4.19). Thus A, = %1 for the third type. (Theorem 4.7(2), which
will be proven in §A1.6, gives a stronger result.) The proof of Theorem 4.4 is
now complete.

A1.5. Let us now prove (1) of Theorem 4.7. To simplify the notation,
suppress the subscript 7, and put L = Z", A = L/'dL, B = L/dL, and
slz] = twsx for s € Q and x € Q™. Since ¢-'d = d - 'c, we see that
¢-'dL C dL. Therefore x — cz sends A into B. Since vy € SLs,(Z), we
have ¢L +dL = L, and so the map is surjective. Comparing the orders of the
groups, we find that the map gives an isomorphism of A onto B. If y = cx,
we have, by (1.2a),

bd~[y] = tebd~te[z] = (*fad — 1)d~c[z]

= tac[z] — dte[r] = —d~c[x] (mod 2),
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since the diagonal elements of ac are even. This shows that the two sums of
(4.25) are the same.

From (4.22a) we see that hoy = h, for o = diagfa, d] € I'(1) and every
v € I'Y. Therefore, to prove (2) and the first equality of (1), we may assume
that det(d) > 0. Under this assumption, put w = ‘d~'z(cz +d)~! and p =
bd—1. Then, by (1.2a),

(vz—p)(cz+d) =az+b—bd " (cz+d)=az—b-'c-'d 1z
=(a-'d—b-tc) - tdlz =td"1z,
and so y(z) = w+ p. With 6 of (4.19) we thus have
(AL13)  hy(2)0(2) = 0(v2) = O(w +p) = Y _ e((1/2)(w + p)[a]).

reLl
Putting « = v+ dg with v € B and g € L, we find
(A1.14)  O(w+p) = ZZ (p/2)[v + dg] + (w/2)[v + dg))

= Z (p/2)[v])0(0, z(cz +d)~'d; d”'v, 0),
since plv + dg] = p[v] (mod 2). Now (4.34) shows that
det(—i2)'/20(0, z; r,s) = e('rs)0(0, —z~1; —s, r).

Put z =71, with 0 < 7 € R and observe that
lirrb 720(0, it1,; 7, 5) = e(‘rs)d(s),
T—

where §(s) = 1 or 0 according as s € L or s ¢ L. Taking the limit of 77/2
times (A1.13) combined with (A1.14) as 7 tends to 0, we obtain (4.25).

A1.6. To prove (2) of Theorem 4.7, given v € I’ assume that det(d) —
1 € 2Z. In view of (4.21) and (4.22a), replacing v by ~ - diagle, e] with
e = diag[—1, 1,,_1] if necessary, we may assume that det(d) > 0. Put f =
det(d), g = fd=!, and s = —fd~'c. Then g < Z, s € S,(Z), f is odd,
—fs=gd-tc-tg, and {d-'c} € 2Z" by (4.6), and so by (4.7) the diagonal
elements of s are even. Denote by A the first sum of (4.25) and put o =
h~(2)?/jy(2). Then o = A?/det(d). Now

A= elsle]/2) =[dL: fLI7H Y e(sle]/(2).
€A z€L/fL

By Lemma 2.3 we can find u € Z? such that det(u) is a positive integer prime
to f and 'usu — diag[ry, ..., rp] < fZ with r; € Z. We can take 7; to be
the (i, i)-entry of ‘usu. Then r; € 2Z by (4.7), and

n f
A= fi—n H Ze(rl,:vQ/(Qf))

v=1zx=1
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Put r,/f = 2b,/a, with relatively prime integers a, and b,; take a, > 0.
Then

f ay b
> el (20) = (Fla) Y- elatu o) = £ (1) stas)a

rx=1 =1

by Theorem 2.6, where (a) is &, of (0.6). Thus we obtain

T (b ~1/2
A= f£[1 (Z) e(ay)a; /2.
Since cL + dL = L, we have sL + fL = gL. For a prime number p put
L, = 7Z7. Then gL, = L, if ptf. If p|f, then 'uL, = uL, = L,, and hence
fugL, = 'usuL, + fL,. From this we easily see that the elementary divisors
of g are {(f, r,)}._,. Since a, = |f/(f, r,)| and d = fg~', we thus know
that the a, are exactly the elementary divisors of d and

A = det(d)'/? 1:[ (Z—) e(ay),

-1
so that o = A2/ det(d) = <d—w)>, which proves (2) of Theorem 4.7.
e

A2. Whittaker functions

A2.1. We need some Whittaker (or confluent hypergeometric) func-
tions:

(A2.1) 7(y; «, B) :/ e V1 + 1) 1P a,
0

(A2.2) Vg a, B) =e V20 (B) 1y 7(y; o, B).

Here 0 < y € R and (a, 3) € C2. The integral of (A2.1) is convergent for
Re(8) > 0, and so defines a holomorphic function of (o, 3) under that condi-
tion; also it can be shown that V' (y; «, 8) can be continued to a holomorphic
function of («, 3) on the whole C2. We have also

(A2.3) [7(y; o, B)/T(B)] gy = 1.
For these and the following two lemmas, the reader is referred to [S07, Section
A3].

Lemma A2.2. (i) For every compact subset K of C? there exist two pos-
itive constants A and B depending only on K such that

e¥/2V (y; o, B) < AL +y~7) if (o, ) € K.
Lemma A2.3. If Re(a+ ) > 1 and z=x+ iy € 9, then

Z (z4+m)"EZ +m) P =if~>@2r)2th Z e(nx +ilnly)gn(y; o, B),
meZ nez
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where g, 1s given by

=L r(4rny; a, B) if n>0,
(A24) T()(B)gnly; o, B) = { [n|*TP 1 r(4n|nly; B, a) if n<0,
Ia+ B —1)(4my)t—oF if n=0.

Here, for v € C* and « € C we define v* by
v* = exp(a log(v)), —m < Im[log(v)] < .

Then vo+8 = vf ™ = (v*)™ for m € Z, and (uv)® = u®v® provided
arg(u), arg(v), and arg(u) + arg(v) are all contained in the interval (—m, 7]
for suitable choices of arg(u) and arg(v).

From Lemma A2.2(ii) we obtain

(A25)  7(y; 1-B,1—0a)/T(1—a) =yt lr(y; o, B)/T(B).
This combined with (A2.3) gives

(A2.6) T(y: 1, B)/T(B) =y~ ".
Lemma A2.4. (i) Given (a, 8) € C? and A € R*, put 0 = a — 3 and
A = B(1 — ). Define a function fa(y) for 0 <y € R by
V(2Ay; «a, B) if A>0,
(A2.7) faly) = Y .
12Ay| "7V (|24|y; B, o) if A<O.
Then fa satisfies the differential equation
(A2.8) v f"(y) + oyf'(y) + (A + Aoy — A%®) f(y) = 0.

Moreover, if f is a solution of (A2.8) and f(y) = O(y?) with B € R as
y — oo, then f is a constant multiple of fa.
(ii) With the same notation as in (i), define a function ¢4 on $ by
(A2.9) pale+iy; 0, X) = €47 fa(y).
Let € and 6, be as in (6.13a, b). Then
MN4A)top(z;0 =2, A +2—0) if A>0,
(A2.10) epa(z; 0, A) = ( 21 eal )
(4A43)  pa(z;0—2,A+2—-0) i A<O,
i1Apa(z; 0+ 2, A+ 0) it A>0,
(A2.11)  dopa(z; 00 A) = : .
A+ 0)idpa(z; 0+2, A\ +0) if A<O.

PROOF. Since (1 + )% = (1+¢)*" 1 + (1 +¢)* !¢, from (A2.1) we obtain

(x1) T(y; o+ 1, ) =7(y; o, B) +7(y; @, B+1).

Also, we easily see that

(x2) @/0y)r(y; o, B) = —7(y; @, B+ 1),
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(+3) (0/0y)*r(y; . B) = 7(y: @, B+2).
Since [;°(9/0t)[e V! (1 4 t)*t?]dt = 0 for Re(B) > 0, we have
(x4) Br(y; a+ 1, B)=yr(y; a+1, B+1) —ar(y; a, B+1)

for such B, and even for any 8 by meromorphic continuation.
Now we have

y(8/0y)*7(y; o, B) = y7(y; a, B+2) by (x3)

(3
(

=yr(y; a+1, B+1) —y7(y; a, B+ 1) by (x1)
=pBr(y; a+ 1, 8)+ (a—y)7(y; o, B+ 1) by (x4)
=p7(y; @, B) + (B+a—y)7(y; a,B+1) by (x1).

Thus we obtain

{y(0/0y)* + (a+ B —y)9/dy — B}7(y; &, B) = 0.

From this we easily see that f4 is a solution of (A2.8).

Let f be a solution of (A2.8) such that f(y) = O(y®) as y — oo. Putting

= df /dy, we have

W) =y (" + oy ' ') =y (A — Aoy ™' = \y~?)f = O(y°)

with C € R as y — oo. It follows that y°f’, as well as f’, is O(y”) with
D € R. Put h = faf’ — fi4f. Then b/ = faf"” — fif = —oy~'h, and so
h = ay~? with a constant a. From Lemma A2.2(i) and (*2) we see that both
fa and f’y are O(e~141¥/2) as y — co. Therefore we have a = 0, which means
that f/fa is a constant. This completes the proof of (i). Formulas (A2.10)
and (A2.11) can be verified by employing (1), (*2), and (*4).

Lemma A2.5. For every compact subset K of C? we have
lim ey/QV(y; a, f)=1
Y—00
uniformly for (o, 8) € K.
PROOF. From (x4) we obtain
Viy,a+1,8)=V(y, a+1,8+1) —ay 'V(y, o, B+ 1).

Since this is consistent with the desired formula, it is sufficient to prove it
for a in a compact subset Ky of C and S in a compact subset Ko of {5 €
C|Re(B) > 0}. If Re() > 0, we have
V(g )= 1) [ ey e e,
0
and so

V2V (y; o, f) —1=T(B)"" /00 e " [(1 +y )l — 1] 2 ldx.
0

We can find two positive numbers A and B such that
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’(1+y‘1x)a_1’—|—1 <AzB for x>1,y>1,and a € K;.

Indeed, take m > 1 so that Re(a) < m for every a € K;. Then for = >
1,y > 1,and o € K; we have |(1 +y~tz)*"1| < (22)™. Now, given ¢ > 0,
we can find C' > 1 such that

o
A‘F(B)71|/ e %|2BTPYde < e for e K.
c
For every n > 0, we can find (a small) h > 0 such that
[te=t — 1] <n for a € Ky and |t — 1| < h.

Take n =e/M with M = MaxﬂeKz‘F(Re(ﬁ))/F(ﬁ) ,and let D = C/h. Then

we can find D > 1 such that
|(14+y ta)et—1|<e/M for 2 <C,y>D, and a€ K.

Then, for y > D, a € K1, and § € K> we have

’F(ﬁ)—l /OOO e [(L4+y o) —1]2fda

c
rg)—t /0 e %P da

This proves our lemma.

<eM™! +A‘F(ﬁ)1/ e B de| < 2e.
c

A3. Eisenstein series of half-integral weight

A3.0. In this section we denote by p the Moebius function. This is
defined for m € Z, > 0, and p(m) # 0 if and only if m is square-free, in
which case u(m) = (—1)", where r is the number of prime factors of m; in
particular, p(1) = 1. We have

1 ifm=1,
(A3.0a) 2_m(d) = { 0 ifm>1
dlm ’

(A3.0b) > )b~ =[] [1 - 0]

for every C-valued multiplicative function 6 defined for 0 < m € Z, where
p runs over all prime numbers.

Lemma A3.1. Let xo be a primitive character modulo v, and x a char-
acter modulo rs with 0 < s € Z such that x(n) = xo(n) for n prime to s.
Then for any integer q we have

ZX e(ng/rs) = G(xo) D culs/c)xo(s/c)Xola/c);

0<el(s,q)
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where G(xo) denotes the Gauss sum of (2.3), and (s, q) the greatest common
divisor of s and ¢. We put G(xo) =1 if xo is trivial, as we did in (2.15).

PRrROOF. For 0 < ¢ € Z we have
0 if ctq,
(%) Xo(n)e(ng/rc) = ¢ _ .
nzl exo(q/c)G(xo) if ¢|g.
Indeed, the left-hand side equals

c

Z Xo(m Z (m+ar)q/re) = Z Xo(m)e(mg/rc) Ze(aq/c),

a=1 a=1
Wthh is 0 if ch, and is cxo(q/c)G (XO) by (2.3a) if c|g. By (A3.0a) we have

T8

S x(n)e(ng/rs) = S (3 ut@)xatmetuars).

n=1 n=1 d|(n,s)

Putting n = md and s = cd, we see that the last sum over n equals

> u(d)xo(d) Z Xo(m)e(mg/rc),

d|s
which combined with () gives the desired result.
A3.2. Our next aim is to investigate the analytic nature of Ey(z, s; I, ¢)

of (8.12) with k ¢ Z. Let v = Lj\f Z‘J € I' = I'(M, N) with d > 0. By

(4.40), jlj(z)*l = (cNz+d) Feq <%) , and so by Lemma 8.7 and (8.12a)

we have

(A3.1) Ex(z, s; I y) = ysi w(d)z 2N ca(cNz +d)~*|cNz +d| 725,
o d=1 cEZ d

Notice that the terms for even d are 0, which we keep in mind in our calcu-
lation. Fixing N and 1, we put

(A3.2) E'(z,5) = (—iNz)""Ep(— (N2)71, s; I, ),
since this is easier than the original Fy(z, s). From (A3.1) we easily obtain

(A3.3) E'(z, s) = i*y*N=F"*FE*(z, s) with

=3 Zw(d)(2évb>sd(dz b)Y F|ds 4+ b2

d=1beZ
Putting b = dm + £ with m € Z and 1 < /{ < d, we obtain

0o d
)= w(d)egd > (—_Qd]\w) S (b +m) e+ S am|
=1

(=1 meZ
Applying Lemma A2.3 to the last sum with « = k+ s and 8 = s, we find
that



162 APPENDIX

(A3.4) E*(z,s) =i F@2m)2stk E an(s)e(nx +i|nly)gn(y: k+ s, s)
nez
d

with o (s) = i <2N >5dd_’“_23¢(d) > <§) e(fn/d).

d=1 (=1

If n =0, the last sum over ¢ is nonzero only if d = u? with an odd u > 0,
in which case €4 = 1. Denoting Euler’s function by ¢, we see that the last

sum Yy, equals o(u?) = u? [L.(1=p") =u*>,, mw)v~" by (A3.0b).
Therefore, putting v = vw, we have

a0(s) = 3 o (0Pu) (o) p(o)o

_ Z ¢(w2)w272k745 Z M(U)¢(U2)U172k745.
Thus in view of (A3.0b) we obtain
(A3.5) ap(s) = Ly(4s + 2k — 2, ¢?)/Ln(4s + 2k — 1, 9?).
The formula for «, with n % 0 can be given as follows.

Lemma A3.3. Let t be a positive or negative square-free integer. Put
k =2k and A =1/2 — k, and define primitive characters wy and ws by

arla) = (2% )vla) for fat3) = 1.

wa(a) = (a)? for (a, N) =1.
Then, for n =tm? with 0 < m € Z, we have
Ln(4s — 2\, wa)an(s) = Ly(2s — A, w1)Bn(s) with
Bals) = pla)wi(a)wa (b)a™~2p2 4,

where the last sum is extended over all ordered pairs of positive integers a, b
prime to N such that ab divides m.

PROOF. Let r and u be odd positive integers. Assuming r to be square-
2
Tu

free, put Gy ry = Z (%)e(mn/ruz). By Lemma A3.1 and (2.4a) we have
U

m=1

G =errt 3 antutfe)(L0) (2L9).

0<c|(u?,n)

Put u? = ac. Since p(a) =0 unless a is square-free, we can put u = ab with

0 <beZ. Thus
Ie. — epl/2 Zabzu(a) n/b*
n,r,u T - r )
a,

where (a, b) is taken under the conditions ab = u and ab?|n, and so
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ru

tn(s) = (”f )¢<ru2>u<r>2<m2>“Sean,r,u

T,

=y (_iN)5?/1(7‘)21/)(7“@21)2)(rasz)_k_erl/gabgu(a)(n/b2>,

r
r,a,b

where (r, a, b) is taken under the conditions that r and a are square-free,

(rab, N) =1, and ab?|n. Put n = tm? as in our lemma. Then ab?|n only if

2tN
blm. Put m = bh; then alth. Put w'(r) = (T)w(r) Then we see that

and 5o Eg<%N> <%62)¢(r){aou’(r) 11(:}1:))#11

Oén(s) = Z¢(b)262—m—43 Zu(a)w(a)2a2k—4s Z /L(T‘)Qw/(’f‘)T')\_Qs.

blm alth (r,th)=1
By (A3.0b) we have

> ula)p(a)® e =TT (1= v(p)*p™ "),

alth plth
Z /1,(7‘)2&),(7‘)7”)\725 _ H (1 +wl(p)p)\72s)
(r,th)=1 pithN

A—2s

_ Ly(2s— A, w1) H 1—wi(p)p
LN(4S — 2)\7 OJQ)

_ 2A—4s
plth,ptN L= walplp )
Notice that wi(p) =0 if p|t and pt N. Therefore we obtain

LN(4872>‘3 WQ)Oén(S) :LN(287>\, wl)z w(b)2b2*f€*45 H [17W1(p)p)\725] )
bim plh,ptN
The formula of our lemma follows immediately from this.

Lemma A3.4. Let R(s, x) = (r/m)t)/20((s + v)/2)L(s, x) with a
nontrivial primitive character x modulo v and v = 0 or 1 determined
by x(—1) = (=1)”. Then for any compact subset J of R there exists a
constant Cy independent of r and x such that |R(s, x)| < Cyr?*t1el/2 for
Re(s) =0 € J.

PrOOF. If Re(s) = o > 1, we have, by (8.10a),
IR(L— s, Q)| = |R(s, )| < (r/m)@/2T (0 +1)/2)C(0).

Therefore it is sufficient to prove the desired estimate for —1 < o < 2. For
this we use (8.10d) (with x in place of ), which can be written

P(s, x) :/ g(y, )y 2dy,
1

where g(y, xX) = > ne, x(n)n” exp(—mn?y/r). Observe that
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oo
l9(y, X)| < Z ne”™W/T = = mY/T(1 — e7TY/T) 72,
n=1

Substituting t¢r/m for y, we obtain

]P(S, X)’ < (r/7r)(0+v)/2/ e (1 — e—t)—Qt(a-&-y—Q)/th.

/7
To prove our estimate, we first assume r > m. Decompose the last integral into
two parts over the intervals (1, co) and (7/r, 1). The first part is a continuous
function in o independent of r and yx. As for the second part, we have
e (1 —e )2 < At72 for 0 <t <1 with a constant A. Thus

/1 et (1 — et 2t 2 < A/l fot)/2-34y < B4 Op2(ot1)/2
T/r /T
if —1 < o < 2, with constants B and C independent of r and y. Therefore
|P(s, x)| < Dr? for —1 < o < 2 with a constant D independent of r and x.
Next, if r < 7, then the estimate of the integral over (0, co) gives the desired
result. Once P(s, x) is majorized, then replacing (s, x) by (1 — s, x), we
obtain the estimate of P(1 — s, x). Adding these, we can complete the proof.

Theorem A3.5. Let kK =2k and A\=1/2—Fk. For z € ) and s € C put
I(s)I(s+(1=X=X)/2) (k<1),

I(s+ k) (s+(Xo—N)/2) (k>-1),
where A\g =0 or 1 according as A is even or odd. Then (2s — A — 1)F'(z, s)
can be continued as a holomorphic function to the whole s-plane. Moreover,

for any compact subset K of C there exist two positive constants u and v
depending on K such that

(A36)  |@s—A—DF(z )| <uly”+y™)  (y=In(2))

F'(z, s) = Ln(4s—2\, w2)E'(z, s){

for every s € K and every z € . The factor 2s—\—1 is unnecessary either
if (|| +1)/2 is even or ¥? is nontrivial.

Remark. If kK = £1, the two expressions for the product of two gamma
factors are identical.

ProOF. We first consider the case x > 1. By (A2.4), (A3.3), (A3.4),
(A3.5), and Lemma A3.3, we have

(A3.7) (2m) R 2NRTR Y=o Rz, 5) = ) e(na + [nliy)[n]* T Ay, 5),
nez
where we understand that [0[2***~! =1, and

(A37a)  Au(y, 5) = L(25 — X, w1)Ba(5)T(5 + (o — 1)/2)
()1 {T(47Tny; s+ k, s) (n>0),
T(47inly; s, s+ k) (n<0),
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(A3.7b) Ao(y, s) = Ly(4s+ K =2, wa) (s + (Ao — N)/2)
~D(s)70(2s + k — 1) (4my) L —F—2s,
Clearly, A, (y, s) for every n € Z is meromorphic on the whole s-plane. Now

we have

where ¢ = (Ag — A)/2. We have also
F(QS + k — 1)LN(4S + K — 2, LL)Q)

=I'(2s+k—1)L(4s + Kk — 2, wo) H 1 — wa(p)p? "],
pIN

a=1

Therefore the only possible pole of Ay(y, s) may occur at s = A\/2 4 1/4 or
(A +1)/2 when wy is trivial. The pole at s = A/2 + 1/4 is cancelled by
1 — 2275745 the pole at s = (A + 1)/2 is cancelled by the factor s+ ¢ — 1 if
A is odd, and by the factor 2s — A—1if A is even. Thus (2s — A —1)Ao(y, s)
is entire, and by Lemma A3.4, is bounded by g¢(y" + y~") with constants g
and h depending only on K. The factor 2s — A — 1 is unnecessary if A is odd
or wy is nontrivial. If A is even and ws is trivial, then the residue of Ay(y, )
at s = (A4 1)/2 is an element of y~1/2Q*.

To study A, (y, s) for n # 0, first note that S, (s) is entire, and |8, (s)| <
’y|n||5|Re(‘(")’LE with constants «, , ¢ independent of n. Let n = tm? as in
Lemma A3.3, and let wi(—1) = (—1)" with n = 0 or 1. Since ¢(—-1) =
(=) = (=1)*, we see that A\ — 7 is even if and only if n > 0. Suppose
n > 0. Then n = g and
(+4)  Anly, ) = I'(s + (1= N)/2)Ba(5)L(25 = X, wi) [T[1 = wi(@)p* ]

pIN
-I(s)"'r(4mny; s + k, ).

By Lemma A2.2(i), the last product I'(s) 17 (4mny; s+k, s), when s € K, is
bounded by
C(4mny)~Rel®)Max(1, (4mny)?),
where B and C are constants that depend on K but not on n. The first
line of factors of (x+) is an entire function of s, except when wy is trivial and
s=A/2o0r s = (A+1)/2. (This can happen only if A is even.) But either pole
is cancelled by the factor 1—2*72% or 2s—A—1. Therefore (2s—A—1)A,(y, s)
is entire, and by Lemma A3.4, |(2s — A — 1)A,(y, s)| < un”(y* +y~ ") for
s € K with constants u, v, w depending only on K.
Next suppose n < 0. Then A\ — 7 is odd, and so A\g +7n = 1. Thus
(=) Any, ) = Bl (s + (0 = N/2)L(25 =\, 1) [] [1 = r (o>
p|N
~I(s+ k) tr(dr|n|y; s, s + k)



166 APPENDIX

I'(s+ k) (s+ (Ao —A)/2)
I'(s+ (n—X)/2)I(s)

Notice that 0 < k — (n — A)/2 = (Ao — A)/2 € Z. Therefore, by the same
reasoning as in the case n > 0, we see that (2s — A — 1)A,(y, s) is entire.
Actually the factor 2s—A—1 is unnecessary. Indeed, the pole at s = (A+1)/2
may occur only if wj is trivial, in which case A is odd, andso 0 < \g—\ € 2Z
and I'(s + (Ao — A)/2)/I'(s) = 0 at s = (A + 1)/2. Thus A, (y, s) is entire
for n <0 and [(2s — A — 1)An(y, 5)| < Wl (g 4y~ for s € K with
constants ', v/, w’ depending only on K. Taking the infinite sum of (A3.7),
we obtain the desired result for k£ > 0.

The case k < 0 can be treated in a similar fashion. However, our real aim
is to prove Theorem 8.14, which is our task in the next subsection.

A3.6. Put k' = —k and N =1/2—Fk; let \j be 0 or 1 according as N
is even or odd. Assuming that k > 0, denote by F}, the function F'* defined
with & and xo¢ in place of k and v, where g is the primitive character
modulo 4. Then we can easily verify that A’ =1 — X A\j =1 — Ao, and from
(8.13a) we obtain

(A3.8) Fi(z, 8) =y F*(2, 5 — k).

This reduces the proof of Theorem 8.14 to the case k > 0. Thus we assume

k > 0 in this subsection. Let the symbols be as in that theorem. Given «a €

SLy(Q), put v = L(\)/. 01] a. From (A3.2) we see that j,(2) *Ex(az, s) =

i*jy(z)"FE'(y2, s) with a suitable branch of j;*, and so
(A3.9) Ja(2)FF*(az, s) = i*(2s — A = 1)j,(2) FF'(yz, s).

Therefore the first part of Theorem 8.14 concerning analytic continuation of
F* follows immediately from Theorem A3.5. Thus the remaining point is
the estimate of |j,(2) ¥ F*(az, s)|. If ¢, = 0, the desired fact follows from
(A3.6). Suppose ¢, # 0. Then Im(y2) = yleyz +d, |72 < c;gy_l7 and so if y
is sufficiently large, then Im(yz) < 1 and (A3.6) shows that

|25 = X = 1) () FF/ (72, )| < 2uy~"leyz + d[24

for s € K. This proves that F*(z, s) is slowly increasing at every cusp locally
uniformly in s.

It remains to prove that F*(z, s) is nonvanishing at s = (A 4+ 1)/2 if
(k| +1)/2 is odd and 9? is trivial. In view of (A3.8) we may assume that
k > 0. Then X is even. As noted in the proof of Theorem A3.5, Ay(y, s)
has nonzero residue at s = (A 4 1)/2, which gives the desired result. This
completes the proof of Theorem 8.14.
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A3.7. Let us now prove the last part of Theorem 8.10(ii), which states
that F(z, s) is slowly increasing at every cusp, locally uniformly in s. Our
technique is similar to and simpler than that in the proof of Theorem A3.5. We
need to examine the Fourier expansion of j.(2) *F(vz, s) for every v € I'(1).
In view of (8.14a) we have only to check the expansion for a fixed (p, q).
Suppose k > 0 for simplicity; then we use the result in [S07, p.134]. As
noted in lines 7 and 8 from the bottom of that page, the expressions there are
meaningful for every s € C, and so we have

(#) F(z,8) =a(s)y® +b(s)y! k= + C](fﬁ Z e((tx + i\t|y)/N)Dt(y, s)
(s) 0#£teZ
for z = x + iy, and

Di(y, s)] <2 ) n27tht.

0<nlt

|T(47rty/N; s+ k, 5)| if t >0,
|T(4n|tly/N; s, s+ k)| if t<0

for o = Re(s), where a(s), b(s), and c(s) are entire functions of s, and 7 is
asin (A2.1). (The properties of a(s) and b(s) can be seen from [SO7, Theorem
3.4]; ¢(s) = gh® with some constants g and h.) Let K be a compact subset
of C. Employing Lemma A2.2(i), we see that the last term of (#) for s € K

is majorized by
o0

F(;‘(‘F)]f) Za(l + (47Tty/N)ﬁ)t20+k6_27rty/N,
S
t=1

where o« and (8 are positive constants depending only on K. Then we easily
see that F(z, s) for s € K satisfies (6.9a). This proves the case k > 0. The
case k <0 can be handled in a similar way.

2|e(s)]|1 +

There is an alternative proof. Indeed, Q‘EkN (2, s — k; p, q), up to some easy
factors, can be obtained as the integral fooo U(z, t)t*~Ldt, where

U(z, t)= Z A(m, n)(mz +n)* exp (— wtlmz +n|?/y)
0#(m,n)€Z?
with A € Z(Q?); see [S07, pp. 64-65], [S73a, pp. 462-463]. We can make an
estimate of ¥ in an elementary way, and we eventually obtain the desired
property of F(z, s). This was done in [S73a, pp. 463-464].

A3.8. We will now prove (iii) and (iv) of Theorem 8.15 which concern the
case 3/2 < k ¢ Z. We assume that k > 3/2 or ¢? is nontrivial. Then Ej(z, s)
is finite at s = 0. (Indeed, the factor 2s — A\ — 1 in Theorem 8.14 is necessary
only if 1?2 is trivial, and it is 0 at s = 0 only if k = 3/2.) By (A3.3), E'(z, 0) =
i*N=FE*(z, 0), and E*(z, 0) can be obtained from (A3.4). By (A2.3) and
(A2.4) the nth term of E*(z, 0) for n > 0 is (—2mi)*a,, (0)n*~1I'(k)~le(nz),
but it is 0 for n < 0, since 7(y; «, k) is finite. The term for n = 0 is also
0, since I'(2s +k — 1)['(s + k)" *I'(s)™! = 0 for s = 0. Thus E*(z, 0) has
a Fourier expansion of the form )~ | c,e(nz). Since it is slowly increasing
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at every cusp, it belongs to .# by Lemma 6.4(i). By (8.13), Ex(z, 0) €
M, (M, N; z/;) To prove a more precise result as stated in Theorem 8.15(iii),
put
E'(2,0) = i*N"FE*(2,0) = Y Ay (v)e(nz)
n=1
with A, (1), which, by (A2.3), (A2.4), Lemma A3.3, and (A3.4) can be given
as
An(¢) = (27 /N)*n* 1 (k)= 8,(0) Lv ([K], w1)/ L (2[k], w2).

Employing the symbol Py (m, x) = G(x) ™ (7i) "™ Ly (m. x) of (2.19), we can

put
G(w1)Pn ([K], w1)

An(9) =0 @mn/N)RL (k)= Au(O) i) - e N oy

2tN
Since I'(k) € 7'/2Q*, we see that 7¢I '(k)~1 € Q*. Let x¢(a) = <—>
a

with ¢ as in Lemma A3.3. Take a square-free positive integer t; such that
2tN/to is a square. (We are considering only positive n.) Then G(x:) = t(l)/Q,

and so (2n/N)k € G(x:)Q*. Thus
i[k]An(w) = RoBn(0)G(x¢)G(¥xe) - G(;Aggg[i](’;fz](t)w%

with a rational number Ry independent of . Multiplying by G(v), we obtain
: Gx)GWxi) GW)GH)  Pn([k], ¥xi)
MG () An (1) = RoBn(0) - - - ’ .
A= RoBaO) =G0y TG Pl )
Take o € Gal(Qap/Q) and apply o to each factor. By Lemmas 2.8 and 2.10
we find the images of the last three factors; f,,(0)? can easily be found from
Lemma A3.3. We eventually find that

(MG A )] = iHG7) An (7).
Thus writing E’ () for E’(z, 0), we obtain

[HGW)E @)]” =iMGw)E (07).
Returning to Ej(z, 0; I, ¢), we see from (A3.2) that E'(y) = fX with

f(z) = Ex(z, 0; T, ¥) and the operator X defined in Lemma 7.6(ii). Define a
EERNL
character ¢ by p(d) = - ) > and take an integer s prime to M N so that

e(1/MN)° = e(s/MN). Then (i*)7 = ¢(s)il*], and so by (2.17), E'(¢)° =
©(s)Y(s)7E' (7). Since f € (M, N; 1)) as noted above, Lemma 7.6(ii)
shows that ¢(s)i(s)7(f7)* = (f¥)7 = E'(¢)7, and so (f7)* = E'(y7),
which means that f7 = Ej(z, 0; I, 7), that is,

(A3.10) [Ei(z, 0; I, ¥)]7 = Ei(z, 0; T, 4°).

This completes the proof of Theorem 8.15(iii).
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A proof of (A3.10) was given in [St80]. However, the methods of the paper
are very involved, and the exposition is sketchy with many undefined symbols,
and therefore it is almost impossible to follow. Here we have given a simpler
proof with different ideas. The proof of [St80] uses the results on E’(z, s)
in [S75], which we reproduced here as Lemma A3.3, (A3.7), and (A3.7a, b).
What we need in addition is Lemma 7.6(ii) and our discussion on the behavior
of A,,(¢)) under o, whereas [St80] requires at least eight pages of calculations.
For these reasons, we merely let the reader know the existence of the paper,
with no further comments.

A3.9. To prove (iv) of Theorem 8.15, put s = 1 — k. By (A3.2) we can
reduce the problem to F’ whose Fourier expansion is given by (A3.7). Let us
first show that A, (y, sx) = 0 if n < 0. Since sy # (A + 1)/2, the first line of
(x—) is finite at s = si, and the same is true for the second line. As for the
third line, since A < —1, we have 0 > 1+ (A — A\g)/2 = sk + (n — A)/2, and
so I'(s 4+ (7 — A)/2) has a pole at s = sj,. This shows that A, (y, s;) = 0 for
n < 0.

As to A, for n > 0, we note that by (A2.6) the factor 7(4mny; s +
k,s)/I(s) at s = s; equals (47ny)*~!. Returning to E'(z, s), put

D(z, s; ) = L(4s + 2k — 1, v} E'(z, s).
Then from (A3.7) we see that

Q_kNﬂ'_lD(Z, Sk; ) = Z By (1)e(nz),
n=0

where Bo(¢) = L(1 — 2[k], ¥?) and B, (v)) = L(1 — [k], w1)Bn(sk) if n > 0.
Notice that wi(—1) = ¢(—1) = (—1)¥l. The function is nonzero, since
By(¢) # 0. From Lemma 2.10 and the formula for £, in Lemma A3.3
we see that B,(¢¥) € Qb and B, (¢)° = B,(¥) for every n > 0 and
every o € Gal(Qab/Q). Thus [28771D(2, sp; w)]g = 2k7r=1D(2, sp; 7).
Now let C} (I, ¢) be as in Theorem 8.5(iv) and let the symbol X be as
in Lemma 7.6(ii). By (A3.2) we have E'(z, s) = Ex(z, s; I, 1)*, and so
CHI, )X = 28 G ()1~ D(z, sp; ). Given o € Gal(Qan/Q), take an
integer ¢ prime to N so that e(1/N)° = e(t/N). Let a character x be de-
I3

fined by x(d) = <71) ¥(d). Then Lemma 7.6(ii) shows that (f7)¥ =
X7 (%) for f = C{(I, ), since 9 here is @ there. Observe that
x(®)7 [iF1G(y)~1]" = iMG(y7)~! by (2.17). Therefore

X Tk 1 o
[Cr(T )] = x()7 [24MG() "I D(z, 885 )]
= 28iMG(Y) " ta T D (2, sy 07) = Cr (I, ¥7)%,
andso C} (I, ¥)7 = Cy (I, ¥7). This completes the proof of Theorem 8.15(iv).
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A3.10. Let us now prove Theorem 8.16(i). We assume that k& = 1/2 and
¢? is trivial, and so A = 0 and (A + 1)/2 = 1/2. Since (—1) = (=1)*]
we have ¢(a) = (%) with a square-free positive integer ¢. The question is
the value of F*(z, s) at s = 1/2, but we first look at F’ of (A3.7). In the
proof of Theorem A3.5 we have seen that A, (y, s) with n < 0 is finite at
s=(A+1)/2. Let R = [, x(1 —p~1). From (A3.7b) we see that Ag(y, s)
has residue Ry~1/2/8 at s = 1/2.

As for A, with n > 0, we need to investigate the residue of (x+) at s = 1/2,
which is nonzero if and only if w; is trivial, which is the case if and only if
2tNgq is a square, that is, 2Nq = tv? with an integer v. Thus ¢ is determined
by N and 1. For n = tm? as in Lemma A3.3 put mg = m/(m, N). Then

Bn(1/2) = Z (ab)~! = Z ¢t Zu(a) =1
ab|mg c|lmo alc
by (A3.0a). Thus the first line of (A3.7a) has residue Rr'/2/2 at s = 1/2.
The second line of (¥+) gives (47ny)~/? by (A2.6). Thus, by (A3.7) the
residue of F'(z, s) at s =1/2 is
(2m)3/2 N—1/2y1/2 Z e(tm?z)Ry~'/?/8 = (8N)"V/2x3/?R Z e(tm?z).
meZ meZ
(Notice that Y- ., e(tm?z) =14+23" " e(tm?z).) Now

F*(z,s) = (25 — 1)(—=iNz)"V2F' (- (N2)7L, s).

Put A = (8N)~/273/2R, v = 2t/N, and f(z) = A, .z e(vm?z/2). Then
the residue of F'( — (Nz)™!, s) at s =1/21is f(—2z7'), and so F*(z, 1/2) =
2(—iNz)~'/2f(—z~1). Using the notation of Lemma 7.11, we have f(z) =
Ab,(z, A), where X is the characteristic function of Z, viewed as an element
of Z(Q). Therefore, by that lemma, F*(z, 1/2) = 73/26,(z, v) with a Qap-
valued element v of Z(Q). This proves Theorem 8.16(i).

If F* is defined without the factor Ly (4s— 2\, 1?), then the value belongs
to 7 A 1/2(Qab)-
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automorphic eigenform, 66

character, 6

CM-field, 135

commensurable, 116

conductor, 10

confluent hypergeometric
function, 157

congruence subgroup, 13

congruence subgroup (of Gy), 72

constant term, 68

critical (eigenvalue), 68

cusp, 31

cusp-class, 74

cusp form, 29, 68

Dirichlet character, 6

Dirichlet L-function, 11

divisor, 41

eigenform, 66

eigenvalue, 66

FEisenstein series, 54, 55, 73

equivalent (systems of eigenvalues), 134

Fourier coefficient, 14
Fourier expansion

(of a modular form)7 14
Fourier expansion

(of an eigenform)7 68
Fourier transform, 19
fractional divisor, 41
Gauss sum, 7, 8
half-integral weight, 24
Hecke algebra, 118
Hecke eigenform, 122
Hecke operator, 121
Hilbert modular forms, 147
imprimitive character, 10
inner product, 34
integral weight, 24

INDEX

Jacobi’s theta function, 22
Laplace-Beltrami operator, 35
Maass form, 66
Moebius function, 160
modular form

(of half-integral weig,‘ht)7 25
modular form

(of integral weight), 13
nearly holomorphic modular

form, 40
normalized (eigenform), 122
Poisson summation formula, 19
primitive character, 9
primitive cusp form, 143
primitive matrix, 5
primitive vector, 4
principal character, 7
Rankin’s transformation, 63
rapidly decreasing, 32
regular (cusp—class), 74
R-eigenvalues, 134
Riemann’s theta function, 15
Siegel upper half space, 1
slowly increasing, 32
symplectic group, 1
theta series (of an

indefinite quadratic form)7 91
theta integral, 98
trivial character, 7
Weight (of a modular form)7 24
Whittaker function, 157
Z-lattice, x
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