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Preface

This book is devoted to an exposition of the theory of polynomially convex sets.Acompact
subset of CN is polynomially convex if it is defined by a family, finite or infinite, of
polynomial inequalities. These sets play an important role in the theory of functions of
several complex variables, especially in questions concerning approximation. On the one
hand, the present volume is a study of polynomial convexity per se, on the other, it studies
the application of polynomial convexity to other parts of complex analysis, especially to
approximation theory and the theory of varieties.

Not every compact subset of CN is polynomially convex, but associated with an
arbitrary compact set, say X, is its polynomially convex hull, X̂, which is the intersection
of all polynomially convex sets that contain X. Of paramount importance in the study
of polynomial convexity is the study of the complementary set X̂ \ X. The only obvious
reason for this set to be nonempty is for it to have some kind of analytic structure, and
initially one wonders whether this set always has complex structure in some sense. It is
not long before one is disabused of this naive hope; a natural problem then is that of giving
conditions under which the complementary set does have complex structure. In a natural
class of one-dimensional examples, such analytic structure is found. The study of this class
of examples is one of the major directions of the work at hand.

This book is not self-contained. Certainly it is assumed that the reader has some
previous exposure to the theory of functions of several complex variables. Here and there
we draw on some major results from the theory of Stein manifolds. This seems reasonable
in the context: Stein manifolds are the natural habitat of the complex analyst. We draw
freely on the elements of real variables, functional analysis, and classical function theory.
At certain points in the text, parts of algebraic topology and Morse theory are invoked. For
results in algebraic topology that go beyond what one could reasonably expect to meet in
an introductory course in the subject, precise references to the textbook literature are given,
as are references for Morse theory. In addition, it is necessary to invoke certain results from
geometric measure theory, particularly some of the seminal work of Besicovitch on the
structure of one-dimensional sets, work that is quite technical. Again, precise references
are given as required.

Chapter by chapter, the contents of the book can be summarized as follows. Chap-
ter 1 is introductory and contains the initial definitions of the subject, develops some of the
tools that will be used in subsequent chapters, and gives illustrative examples. Chapter 2
is concerned mainly with general properties of polynomially convex sets, for the most
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part properties that are independent of particular structural requirements. Chapter 3 is a
systematic study of the polynomial hull of a one-dimensional set that is connected and has
finite length or, more generally, that is contained in a connected set of finite length. For ex-
ample, in this chapter, it is found that a rectifiable arc is polynomially convex, a result that,
despite the simplicity of its formulation, is not at all simple to prove. Also in this chapter
the theory of polynomially convex sets is applied to the study of one-dimensional varieties,
especially to questions of analytic continuation. Chapter 4 continues the study of the poly-
nomially convex hull of one-dimensional sets, this time admitting sets more general than
those considered in Chapter 3, sets that are sometimes termed geometrically 1-rectifiable.
Chapter 5 studies three distinct subjects that do, though, have some connections with one
another. The first concerns certain isoperimetric properties of hulls. Next, we present some
results on removable singularities. Finally, the hulls of surfaces in strictly pseudoconvex
boundaries are considered. Chapter 6 is devoted to approximation questions, mostly on
compact sets, but with some consideration of approximation on unbounded sets. Chap-
ter 7 applies ideas of polynomial convexity to the study of one-dimensional subvarieties
of strictly pseudoconvex domains, for example the ball. In part, the motivation for this
work comes from the well-developed theory of the boundary behavior of holomorphic
functions. Chapter 8 is devoted to some additional topics that either further the subject of
polynomial convexity itself or are applications of this theory.

As it stands, the book is not short, but it has been necessary to omit certain topics
that might naturally have been considered. For example, it is with real reluctance that I
omit all discussion of the hulls of two-spheres or of the hulls of sets fibered over the unit
circle. The former omission is explained by the highly technical nature of the subject, the
latter by a perception that the subject has not yet achieved its definitive form.

Acknowledgments are in order. For many years the mathematics department of the
University of Washington has proved to be an excellent place for my work; to it I am truly
thankful. Mary Sheetz of that department has been unflaggingly good-humored as she
helped with the manuscript of this book, often in the face of very frustrating difficulties.
The work on this book was supported in part by the Royalty Research Fund at the University
of Washington. Norman Levenberg read much of the text in manuscript and made many
helpful suggestions, all of which I appreciated but not all of which I followed. I am indebted
to V.M. Gichev, Mark Lawrence, and Jean-Pierre Rosay for permission to include as yet
unpublished results of theirs. Other friends and colleagues have made useful comments
and suggestions; to all I express my thanks.

The reader will note the great influence of the work of Herbert Alexander on our
subject. Over the course of his career, Alexander made many penetrating contributions to
the theory of polynomial convexity. His friends and colleagues, who looked forward to
his further development of the subject, were appalled to learn of his untimely death at the
age of 58, to learn that a distinguished colleague and good friend had been so prematurely
taken away. The man is gone but not forgotten; his work will endure.

Edgar Lee Stout
Seattle
May Day, 2006
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Index of Frequently
Used Notation

A⊥ the space of measures orthogonal to the algebra A.

bE the boundary of the set E.

BN the open unit ball in CN .

BN(z, r) the open ball of radius r centered at the point z ∈ CN .

BN(r) the open ball of radius r centered at the origin in CN .

C (X) the space of continuous C-valued functions on the spaceX.

D(M ) the space of compactly supported functions of class C ∞
on M .

Dp(M ) the space of compactly supported forms of degree p and
class C ∞ on M .

Dp,q(M ) the space of compactly supported forms of bidegree (p, q)
and class C ∞ on M .

Dp(M ) = Dp ′(M ) the space of continuous linear functionals on Dp(M ).

Dp,q(M ) = D (p,q)′(M ) the space of continuous linear functionals on D (p,q)(M ).

GN,k(C) the Grassmannian of all k-dimensional complex-linear sub-
spaces of CN .

GN,k(R) the Grassmannian of all k-dimensional real-linear subspaces
of RN .

Ȟ ∗ Čech cohomology.

H
p

deR(M ) the pth de Rham cohomology group of the manifold M .

�z the imaginary part of the complex number z.

kBM(z, w) the Bochner–Martinelli kernel.

L Lebesgue measure.

O(M ) the algebra of functions holomorphic on the complex man-
ifold M .

PN(C) N -dimensional complex projective space.
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P(X) the algebra of functions on the set X uniformly approx-
imable by polynomials.

Psh (M ) the space of plurisubharmonic functions on the complex
manifold M .

�z the real part of the complex number z.

R-hull X the rationally convex hull of X.

R(X) the algebra of functions on X uniformly approximable by
rational functions without poles on X.

Sn the unit sphere in Rn+1.

TN the torus {(z1, . . . , zN) ∈ CN : |z1| = · · · = |zN | = 1}.
UN the open unit polydisk in CN .

U(N) the unitary group.

�p p-dimensional Hausdorff measure.

ω(z) the differential form dz1 ∧ · · · ∧ dzN .

ω[k](z) the differential form dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzN .

‖f ‖X = sup{|f (x)| : x ∈ X}.
Ê the polynomially convex hull of the compact set E.

X � Y X is a relatively compact subset of Y .

∅ the empty set.
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Chapter 1

INTRODUCTION

Introduction. The first chapter is introductory. It presents some of the basic
notions of our subject, it assembles some of the tools and techniques that will
be used throughout the text, and it presents some examples. Section 1.1 intro-
duces the notion of polynomial convexity and the related notion of rational
convexity. Section 1.2 is an introduction to the abstract theory of uniform
algebras. Section 1.3 summarizes some parts of the theory of plurisubhar-
monic functions. Section 1.4 is devoted to the Cauchy–Fantappiè integral,
a very general integral formula in the setting of the theory of functions of
several complex variables, whether on CN or on complex manifolds. Sec-
tion 1.5 contains a proof of the Oka–Weil approximation theorem based on
the Cauchy–Fantappiè formula. Section 1.6 presents several examples, some
of which indicate the pathology of the subject, others of which are results that
will find application in the sequel. Section 1.7 gives an example of a hull with
no analytic structure.

1.1. Polynomial Convexity

The subject of this monograph is the theory of polynomially convex sets, which are defined
as follows. We use the usual notation that CN is the N -dimensional complex vector space
of N -tuples of complex numbers.

Definition 1.1.1. A compact subset X of CN is polynomially convex if for each point
z ∈ CN \X there is a polynomial P such that

|P(z)| > sup{|P(x)| : x ∈ X}.
Here and throughout this work polynomials are understood to be holomorphic poly-

nomials. By considering the power series expansions of entire functions it is evident that
in this definition we obtain precisely the same class of sets if we replace polynomials by
entire functions on CN .

An associated notion is that of rational convexity.
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Definition 1.1.2. A compact subset X of CN is rationally convex if for every point z ∈
CN \X there is a polynomial P such that P(z) = 0 and P−1(0) ∩X = ∅.

These definitions are meaningful in CN for allN ≥ 1. ForN = 1, the sets in question
are easily understood. Every compact subset of the plane is rationally convex: IfX ⊂ C is
compact and if x ∈ C \X, then the zero locus of the polynomial P given by P(z) = z− x
contains the point x and misses X. Thus, X is rationally convex. Polynomial convexity is
only a little more complicated: The compact subset X of C is polynomially convex if and
only if C \X is connected. If C \X is connected, and if x ∈ C \X, then Runge’s theorem
provides a polynomial P such that P(x) = 1 and |P | < 1

2 on X, so X is polynomially
convex. On the other hand, if C \X is not connected, it has a bounded component, sayD.
The maximum principle implies that for every point x ∈ D and for every polynomial P ,
|P(x)| ≤ sup{|P(z)| : z ∈ X}, so X is not polynomially convex.

The last argument hints at the utility of introducing certain hulls. In this connection
it is helpful to use the notation ‖P ‖X = sup{|P(x)| : x ∈ X}.
Definition 1.1.3. IfX is a compact subset of CN , the polynomially convex hull ofX is the
set X̂ = {z ∈ CN : |P(z)| ≤ ‖P ‖X for every polynomial P }. The rationally convex hull
of X is the set R-hull X of points z ∈ CN such that for every polynomial P , if P(z) = 0,
then the zero locus P−1(0) meets X.

It is clear that the polynomially convex hull of a compact set is compact. Only
slightly less evident is the compactness of the rationally convex hull of a compact set. That
R-hull X is compact follows from the equality

R-hull X = ∩P {z ∈ CN : |P(z)| ≥ inf
x∈X |P(x)|},

in which the intersection is taken over all polynomials P . This exhibits R-hull X as a
closed set. It is bounded and therefore necessarily compact.

The rationally convex hull R-hull X is a subset of the polynomially convex hull X̂.
We have seen that for a compact subset X in the plane, X̂ is the union of X and all

the bounded components of C \ X. The description of the polynomially convex and the
rationally convex hulls of sets in CN is much more complicated than in the planar case.
As we shall see, there are characterizations of these hulls, but none of them is very simple.

IfX is a compact subset of CN , then there are certain algebras of functions naturally
associated with X. First there is C (X), the algebra of all continuous C-valued functions
on X. Two subalgebras of C (X) are central to our work.

Definition 1.1.4. Let X be a compact subset of CN . The algebra P(X) is the uniformly
closed subalgebra of C (X) that consists of all the functions that can be approximated
uniformly on X by polynomials. The algebra R(X) is the uniformly closed subalgebra
of C (X) that consists of all the functions that can be approximated uniformly on X by
rational functions r(z) of the form p(z)/q(z) with p, q polynomials, q zero-free on X.

Plainly P(X) ⊂ R(X).
In addition to the algebras P(X) and R(X), certain other algebras can be associated

naturally to a compact subsetX of CN . The first of these is denoted by O(X) and consists
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of all the continuous functions f onX such that for some sequence {Vj }j=1,... of neighbor-
hoods ofX in CN and for some sequence {fj }j=1,... of functions fj ∈ O(Vj ), j = 1, . . . ,
the sequence {fj }j=1,... converges uniformly on X to f . (Here and throughout we use the
notation that for an open subset V of CN or a complex manifold, O(V ) denotes the algebra
of functions holomorphic on V .) The algebraA(X) is the subalgebra of C (X) that consists
of the functions holomorphic on the interior of X. Thus, if the interior of X is empty, then
A(X) = C (X). If D is a bounded open set in CN , then A(D) is often used to denote the
algebra A(D̄).

Runge’s theorem implies that if X is a compact, polynomially convex set in the
plane, then P(X) = R(X) = O(X). The analogous statement is correct in CN ; this is the
content of the Oka–Weil approximation theorem proved in Section 1.5 below. In general,
for compact sets in the plane the algebras R(X) and A(X) differ, though Mergelyan’s
theorem [311] implies that if X is polynomially convex, then the two are equal. This does
not extend to CN .

There are simple examples of polynomially convex sets in CN. For example, every
compact convex set is polynomially convex. If K ⊂ CN is a compact, convex set, then
for each point z ∈ CN \ K , there is a real-valued real-linear functional � on CN = R2N

with � < 1 on K and with �(z) = 1. The functional � is the real part of a complex-linear
functional L on CN . The entire function F = eL satisfies |F(z)| > ‖F‖K . Thus the setK
is polynomially convex as claimed.

Important examples among the convex sets are the closed balls and polydisks. The
(open) ball of radius r centered at zo ∈ CN is the set

BN(z
o, r) =

{
z ∈ CN : |z− zo| = ( N∑

j=1

|zj − zoj |2
)1/2

< r

}
.

Similarly, the (open) polydisk of polyradius r = (r1, . . . , rN ) centered at zo is the set

UN(zo, r) = {z ∈ CN : |z1 − zo1| < r1, . . . , |zN − zoN | < rN }.
The use of BN and UN to denote, respectively, the open ball of center 0 and radius one and
the open polydisk of polyradius (1, . . . , 1) and center 0 will be used consistently below.

Another class of examples is this: Every compact subset of RN is a polynomially
convex subset of CN . To prove this assertion, letX ⊂ RN be a compact set. The Weierstrass
approximation theorem implies that if x ∈ RN \ X, then there is a polynomial P with
P(x) = 1 > ‖P ‖X. Consequently, X̂ ∩ RN = X. If w = u + iv ∈ CN with u, v ∈
RN, v �= 0, then the entire function F defined by F(z) = �Nj=1e

−(zj−uj )2 satisfies

|F | ≤ 1 on RN and |F(w)| = ev2
1+···+v2

N > 1, so w is not in X̂. Thus, X = X̂.
Certain graphs are polynomially convex:

Theorem 1.1.5. If X is a compact polynomially convex subset of CN , and if f ∈ P(X),
then the graph of f is a polynomially convex subset of CN+1.

In particular, if f is a function continuous on the closed unit disk and holomorphic
on its interior, then the graph of f is a polynomially convex subset of C2.
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Proof. Denote by� the graph {(z, f (z)) : z ∈ X} of f . The set� is compact. Let (zo, ζo) ∈
CN+1 \ �. If zo /∈ X, then there is a polynomial P on CN such that |P(zo)| > ‖P ‖X,
so if we consider P as a function on CN+1, it shows that (zo, ζo) /∈ �̂. If zo ∈ X, then
ζo �= f (zo). Let c = |ζo−f (zo)|. There is a polynomialQ such that ‖Q−f ‖X < c/4.Let

� = {(z, ζ ) ∈ CN × C : z ∈ X and |ζ −Q(z)| ≤ c/2}.
This is a compact polynomially convex subset of CN × C, and it contains �, for if

(z, ζ ) ∈ �, then |ζ −Q(z)| = |f (z)−Q(z)| < c/4. Also, (zo, ζo) /∈ �, for

|ζo −Q(zo)| ≥ |ζo − f (zo)| − |f (zo)−Q(zo)| > 3c/4.

That is, the compact polynomially convex subset � contains � and not the point
(zo, ζo), so (zo, ζo) /∈ �̂.

The result is proved.

Apolynomially convex subsetX of CN can be written as the intersection∩PP−1(Ū),
U the open unit disk in C, where the intersection extends over all the polynomials P that
are bounded by one in modulus on X. A consequence of this simple observation is that if
� is a neighborhood of X, then there are finitely many polynomials P1, . . . , Pr such that
the set � = ∩j=1,...,rP

−1
j (Ū) satisfies X ⊂ � ⊂ �. Relatively compact sets of the form

� are called polynomial polyhedra. Thus, an arbitrary polynomially convex set can be
approximated by polynomial polyhedra. This is not unlike the process of approximating
arbitrary compact convex sets in RN by compact convex polyhedra.

The following simple construction yields examples of rationally convex sets. Fix a
polynomially convex subset X of CN , fix a family F of open subsets of C, and for each
� ∈ F , let P� be a polynomial. The set

Z = ∩�∈FX \ P−1
� (�)

is a compact, rationally convex set contained in X.
The Oka–Weil approximation theorem implies that this construction can be gener-

alized by replacing each of the polynomials P� by a function f� that is holomorphic on
a neighborhood—which may well depend on �—of the set X.

There is a natural way to identify P(X) with P(X̂), and R(X) with R(R-hull X).
Consider first the case of P(X). If X is a compact subset of CN , there is a natural

extension of each function f ∈ P(X) to a function f̂ ∈ C (X̂). To construct f̂ , note
that because f ∈ P(X), there is a sequence {Pj }j=1... of polynomials that converges
uniformly on X to f . If y is any point of X̂, then the sequence {Pj (y)}j=1... is a Cauchy
sequence and so converges. The limit of this sequence is defined to be f̂ (y). The value
f̂ (y) is independent of the choice of the sequence of polynomials. This construction gives
an extension of f ∈ P(X) to a function f̂ defined on all of X̂. By uniform convergence,
f̂ is continuous and lies in P(X̂). By way of the identification of f with f̂ , the algebra
P(X) can be identified naturally with the algebra P(X̂).

A similar construction works for R(X). If f ∈ R(X) then there is a sequence of
rational functions rj = pj/qj for certain polynomials pj and qj , qj zero-free on X,
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that converges uniformly on X to f . If y ∈ R-hull X, then for each j , qj (y) �= 0,
and the sequence rj (y) converges. To see convergence, it suffices to note that for each
y ∈ R-hull X and for each rational function r = p/q, q zero-free on X, we have
|r(y)| ≤ ‖r‖X: If for some choice of polynomials p and q, q zero-free onX, p(y)/q(y) =
1 > ‖p/q‖X, then the polynomial p − q vanishes at y but not at any point of X, which
contradicts having y ∈ R-hull X. Thus again, each function f ∈ R(X) extends in a
natural way to a function f̂ on R-hull X, and the extended function lies in R(R-hull X).
In this way R(X) is naturally identified with R(R-hull X).

Certain formal properties of polynomially convex sets are evident. For example, the
intersection of an arbitrary family of polynomially convex sets (or rationally convex sets)
is polynomially convex (or rationally convex).

A union of polynomially convex sets is generally not polynomially convex. There
is a curious problem here. It is a result of Kallin [195], which is proved below in Theo-
rem 1.6.20, that a disjoint union of three closed balls is polynomially convex, but she also
shows that the disjoint union of three disjoint closed polydisks need not be polynomially
convex. In the same negative direction, Khudaiberganov and Kytmanov [212] have given
an example of three disjoint closed ellipsoids the union of which is not polynomially con-
vex. Mueller [253, 254] also exhibited a nonpolynomially convex disjoint union of three
ellipsoids. Whether a disjoint union of four closed balls in CN is polynomially convex
remains an open question. Rosay [295] has constructed three disjoint convex sets in C2

whose union is not polynomially convex.

One can consider polynomial convexity in certain natural infinite-dimensional set-
tings. A formulation is as follows. Denote by � an index set of arbitrary cardinality. The
product space C� has the natural product topology. On this space one can speak of poly-
nomials as the functions that are represented as polynomials in (finitely many) of the
coordinate projections. With these polynomials, one can introduce formally the notion of
polynomially convex compact subsets of C�. An instance of the use of this notion is the
paper of Stolzenberg [342].

1.2. Uniform Algebras

The present section is devoted to the theory of uniform algebras, which provides some
tools useful in the study of polynomial convexity. For an extensive treatment of the general
theory of uniform algebras see [136] or [345].

Although this section is devoted to the theory of uniform algebras, we shall require
one fact from the general theory of commutative Banach algebras, the Gel’fand–Mazur
theorem. We shall take the shortest possible path to this theorem, for our interests are not
in the general theory.

Definition 1.2.1. A Banach algebra is a C-algebra, A , with identity that at the same time
is a complex Banach space with respect to a norm ‖ · ‖ that satisfies ‖xy‖ ≤ ‖x‖ ‖y‖ for
all x, y ∈ A and that satisfies ‖1‖ = 1, where on the left of this equation, 1 denotes the
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multiplicative identity of A , while on the right it denotes the multiplicative identity of the
field R.

The multiplicative inequality for the norm implies that multiplication in A is jointly
continuous, i.e., that the map (x, y) �→ xy from A × A to A is continuous.

If λ is a complex number, we shall often identify it with the element λ · 1 of A , so
that we regard C as a subalgebra of A .

Fix now a Banach algebra A with identity.

Definition 1.2.2. A −1 denotes the multiplicative group of invertible elements of the alge-
bra A .

Lemma 1.2.3. The group A −1 is open in A .

Proof. First, A −1 contains the open ball of radius 1 centered at 1: If ‖a−1‖ < 1, then the
series

∑∞
n=0(−1)n(a − 1)n converges in A by comparison with the geometric series. If

we write a = 1+(a−1), we recognize that the sum of the series is a−1, whence a ∈ A −1.
If a is an arbitrary element of A −1, then for each x ∈ A , x = a[(a−1x − 1) + 1]. The
element a is invertible, and, provided x is near a, the element a−1x−1 has norm less than
one, so (a−1x − 1) + 1 is invertible. Thus, when x is near a, x is also invertible: A −1

is open.

The map a �→ a−1 is continuous on A −1 as follows from the formula just exhibited
for a−1. That formula shows that on the open ball B = {a ∈ A : ‖a − 1‖ < 1}, the
map a �→ a−1 is the composition of the continuous map x �→ ∑∞

n=0(−1)nxn with the
continuous map a �→ a− 1. Thus a �→ a−1 is continuous on the ball B. This implies that
it is continuous everywhere.

Definition 1.2.4. The spectrum of the element a of A is the set

σA (a) = {λ ∈ C : λ− a is not invertible in A }.
The openness of the set A −1 implies that the spectrum of a is a closed subset of C. It

is also bounded: If |λ| > ‖a‖, then a− λ = λ(λ−1a− 1). The element a− λ is invertible,
because ‖λ−1a − 1‖ < 1. Thus σA (a) ⊂ {ζ ∈ C : |ζ | ≤ ‖a‖}.

It is more complicated to show that σA (a) is not empty.

Lemma 1.2.5. The spectrum of an element a ∈ A is a nonempty compact subset of C.

Proof. Argue by contradiction: Let a ∈ A , and suppose σA (a) to be empty, so that for all
λ ∈ C, λ− a is invertible.

Fix a continuous linear functional φ on the Banach space A . The function � de-
fined by �(λ) = φ((λ − a)−1) is a complex-valued function defined on all of C. It is a
holomorphic function, as can be seen by computing the derivative directly:

(�(λ+ h)−�(λ))/h = φ((λ+ h− a)−1 − (λ− a)−1)/h

= −φ((λ+ h− a)−1(λ− a)−1).

As h → 0, the last quantity tends to −φ((λ − a)−2), and � is found to be differentiable
at λ.
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Thus, � is an entire function on C that satisfies limλ→∞�(λ) = 0. It follows
from the maximum principle that � vanishes identically. In particular, �(0) = −φ(a−1)

vanishes. This is true for all choices of φ, so, by the Hahn–Banach theorem, a−1 is the
zero element of A . This is impossible. We have reached a contradiction, so σA (a) is
necessarily nonempty.

We can now prove the Gel’fand–Mazur theorem:

Theorem 1.2.6. A commutative Banach algebra that is a division ring is (isomorphic to)
the field of complex numbers.

Recall that a division ring is a ring containing more than one element in which the
set of nonzero elements is a multiplicative group.

Proof. If the commutative Banach algebra with identity A is a division ring, then for each
a ∈ A , the spectrum σA (a) is necessarily a singleton: If λ ∈ σA (a), then λ − a is not
invertible. By hypothesis A is a division ring, so this implies that a = λ. The map from A
to C that takes a ∈ A to the unique element of σA (a) is an isomorphism of C-algebras,
so the result is proved.

A special class of Banach algebras is the class of uniform algebras.

Definition 1.2.7. A uniform algebra on the compact Hausdorff space X is a uniformly
closed, point-separating subalgebra with identity of the algebra C (X).

The condition of point separation is understood in the sense that given distinct points
x, x′ ∈ X, there is a function, f , in the algebra such that f (x) �= f (x′).

The algebra C (X) itself is a uniform algebra on the space X.
Other examples of uniform algebras that will play important roles in this work are

the algebras A(D) introduced in the preceding section. In particular, there are the ball
algebra A(BN) and the polydisk algebra A(UN). The special case of the ball algebra (or
the polydisk algebra) whenN = 1 is the disk algebraA(U).More generally, for a compact
set X ⊂ CN , the algebras P(X), R(X), O(X), and A(X) are uniform algebras on X.

If A is a uniform algebra on a compact space X with the uniform norm given by

‖f ‖X = sup{|f (x)| : x ∈ X},
then ‖ · ‖X is a norm on A. It satisfies ‖fg‖X ≤ ‖f ‖X ‖g‖X for all f, g ∈ A, so that
with this norm, A is a normed algebra. The algebra A is supposed to be closed, so it is
complete in the norm ‖ · ‖X. Thus, equipped with the norm ‖ · ‖X, A is a commutative
Banach algebra with identity.

Given a commutative Banach algebra A, a fundamental problem is to determine the
characters of A, i.e., to determine the nonzero C-linear functionals ϕ on A that satisfy
ϕ(fg) = ϕ(f )ϕ(g). In general, this is a very difficult problem, but in the case of the full
algebra C (X), the answer is easy to obtain.

Theorem 1.2.8. If X is a compact Hausdorff space and ϕ is a character on the algebra
C (X), then there is a unique point x ∈ X for which ϕ(f ) = f (x) for each f ∈ C (X).

Proof. Notice that a character ϕ on any commutative Banach algebra with identity neces-
sarily satisfies ϕ(1) = 1.
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Assume there to be no x ∈ X such that ϕ(f ) = f (x) for each f ∈ C (X). The
compactness of X implies the existence of a finite set of functions g1, . . . , gr ∈ C (X)
such that for each j , ϕ(gj ) = 0 and such that for each x ∈ X, gj (x) �= 0 for some
choice of j = 1, . . . , r. If hj = gj/∑r

j=1 gj ḡj , then 1 = ∑r
j=1 gjhj . This leads to the

contradiction that 1 = ϕ(1) = ϕ(
∑r
j=1 gjhj ) =

∑r
j=1 ϕ(gj )ϕ(hj ) = 0. Uniqueness is

evident, so the result is proved.

The result just proved implies that each nonzero multiplicative linear functional ϕ
on C (X) satisfies |ϕ(f )| ≤ ‖f ‖X and so is of norm no more than one. In particular, it is
continuous. The norm actually is one, for ϕ(1) = 1.

It is a simple matter to see that, more generally, each character on an arbitrary
uniform algebra is continuous and is of norm one. For this purpose, note that if f ∈ A
satisfies ‖f ‖X < 1 and if ϕ is a character ofA, then |ϕ(f )| < 1.Otherwise, ϕ(f ) = cwith
|c| ≥ 1. For some ε > 0 and for all x ∈ X, we have |f (x)| < 1 − ε, for ‖f ‖X < 1. The
series 1

c

∑∞
j=0

(f
c

)j therefore converges uniformly onX to an element g ∈ A that satisfies
1 = (c−f )g.This yields a contradiction, for it implies that 1 = ϕ(1) = (c−ϕ(f ))ϕ(g) =
0. Thus, each character of a uniform algebra is continuous and of norm one.

Using the boundedness property just established, we obtain the following basic result.
The notation f̂ used in it is that established in the last section, so that f̂ is the natural
extension of f ∈ P(X) to an element of C (X̂).

Theorem 1.2.9. If X is a compact subset of CN , then every character of P(X) is of the
form f �→ f̂ (z) for a unique z ∈ X̂.
Proof. In light of the natural identification of P(X) with P(X̂), it suffices to suppose
that X is polynomially convex.

The functions in P(X) separate points on X, so the point z is uniquely determined,
if it exists.

To prove the existence of the desired z, fix a character ϕ of P(X). Let z ∈ CN be the
point with coordinates (ϕ(Z1), . . . , ϕ(ZN)), whereZj denotes the j th coordinate function
on CN. The point z is in X: Let P be a polynomial. That ϕ is linear and multiplicative
implies that ϕ(P ) must be P(ϕ(Z1), . . . , ϕ(ZN)) = P(z).We have |ϕ(P )| ≤ ‖P ‖X, so
the point z must lie in X; by assumption X is polynomially convex. The polynomials are
dense in P(X) by definition, so for every f ∈ P(X), the value ϕ(f ) must be f (z). The
proof is complete.

A similarly direct proof shows that if X is a compact, rationally compact subset of
CN , then each character of the algebra R(X) is of the form f �→ f (z) for a unique point
z in X.

A simple application of the preceding fact is the following.

Theorem 1.2.10. A compact subset X of CN is polynomially convex if P(X) = C (X). It
is rationally convex if R(X) = C (X).

Proof. Granted that P(X) = C (X), it follows that each character of the algebra P(X)

is evaluation at a unique point of X, for these evaluations are the characters of C (X).
However, it was shown above that the characters of P(X) are precisely the evaluations
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at points of the polynomially convex hull X̂. Thus, X = X̂; X is polynomially convex as
claimed.

The case of R(X) follows the same lines, for the characters of R(X) are point
evaluations at points of R-hull X.

It is important to recognize that an element of a uniform algebra A on a compact
space is invertible if and only if no character of A annihilates it. To this end, let g ∈ A,
and suppose that no character, χ , of A satisfies χ(g) = 0. Then g is invertible in A.
Suppose not. Denote by (g) the principal ideal in A generated by g. It is contained in a
maximal ideal, say m, of A. The ideal m is closed: If not, its closure is an ideal, and it is
proper, because it is disjoint from the open unit ball in A centered at the identity. Thus m
is necessarily closed. The field A/m has the quotient norm ‖ · ‖q given by

‖h+ m‖q = inf {‖h+ g‖X : f ∈ m}.
According to the Gel’fand–Mazur theorem, this quotient field is isomorphic to C. Conse-
quently, the quotient map A→ A/m is a character of A that annihilates g.

It is occasionally useful to know that a rationally convex set in CN can be realized in
CN+1 as a polynomially convex set. This is an observation of Rossi [302], which depends
on the result obtained in the last paragraph.

Theorem 1.2.11. IfX is a compact rationally convex subset of CN , then there is a function
ψ defined and of class C∞ on all of CN such that ψ |X ∈ R(X) and such that the graph

�ψ = {z ∈ CN+1 : zN+1 = ψ(z1, . . . , zN), (z1, . . . , zN) ∈ X}
is a polynomially convex subset of CN+1.

Remark. It was Basener [44] who noted that ψ can be chosen to be of class C ∞.

As shown by the example of a compact set X in C for which C \ X has infinitely
many components, the function ψ cannot generally be chosen to be a rational function.

Proof. The algebra R(X) is a subset of the algebra C (X) and so is separable. Let f1, . . .

be a countable dense subset of R(X). Without loss of generality, each fn is rational, say
fn = pn/qn with pn and qn polynomials, qn zero-free on X. For n = 1, . . . define εn by
taking ε1 = 1 and requiring that εn decrease rapidly to zero. In particular, we suppose that

εn max{‖q−1
n ‖X, ‖q1q

−1
n ‖X, . . . , ‖qn−1q

−1
n ‖X, 1} < 2−(n+1)εn−1.

For each n, let ϕn be a function defined and of class C∞ on CN that agrees on a neighbor-
hood, which depends on n, ofX with q−1

n . Define the functionψ byψ =∑j=1,... εnϕn. If

εn decreases to zero fast enough,ψ will be defined and of class C ∞ on CN . The restriction
ψ |X does lie in R(X).We shall show that the closed subalgebra A of R(X) generated by
the polynomials and the function ψ is all of R(X).

The polynomials pn all lie in A, so it suffices to show that each of the functions q−1
n

lies in A. If q−1
1 is not in A, then there is a character χ of A that annihilates q1. This leads

to the equation

χ(q1ψ − ε1) = χ
( ∑
j=2,...

εnq1q
−1
n

)
,
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which implies that

−ε1 = χ
( ∑
j=2,...

εnq1q
−1
n

)
.

Because χ is of norm one, the choice of the quantities εn implies that this equality is
impossible. Thus, q−1

1 ∈ A. Inductively, q−1
2 , q−1

3 , . . . all lie in A. It follows that, as
claimed, A = R(X).

That�ψ is polynomially convex is seen in the following way. The algebraA = R(X)
is generated by the polynomials and the function ψ, and so is isomorphic to the algebra
P(�ψ). However, X is rationally convex, so each character of R(X) is evaluation at a
point ofX, whence each character of P(�ψ) is evaluation at some point of �ψ . It follows
that �ψ is polynomially convex, as desired.

As a consequence of the boundedness of characters, it follows that characters of
uniform algebras admit representing measures.

Definition 1.2.12. If A is a uniform algebra on the compact Hausdorff space X, and if ϕ
is a character of A, then a representing measure for ϕ is a finite regular Borel measure µ
on X of total mass one such that for each f ∈ A, ϕ(f ) = ∫

X
f (x) dµ(x).

The Hahn–Banach and Riesz representation theorems imply the existence of representing
measures: If ϕ is a character for the algebra A, then because it is of norm one, the Hahn–
Banach theorem implies that it extends to a continuous linear functional ϕ̃ on C (X), ϕ̃ also
of norm one. The Riesz representation theorem provides a finite regular Borel measure µ
on X, µ of total mass one, such that

∫
X
f (x) dµ(x) = ϕ̃(f ) for every f ∈ C (X). We

have 1 ∈ A, ϕ(1) = 1, and ‖µ‖ = 1, so µ is necessarily a positive measure.
From time to time in the sequel it will be useful to consider possibly complex-valued

measures ν that satisfy ϕ(f ) = ∫
X
f (x) dν(x) for all f ∈ A. Such a measure will be

referred to as a complex representing measure.
An argument more complicated than the one just given yields the existence of rep-

resenting measures with an additional property that is often important.

Definition 1.2.13. If A is a uniform algebra on the compact Hausdorff space X, and if ϕ
is a character of A, then a Jensen measure for ϕ is a positive finite regular Borel measure
µ on X such that for each f ∈ A, log|ϕ(f )| ≤ ∫

X
log|f (x)| dµ(x).

The standard example is the measure 1
2π dϑ on the unit circle, which is a Jensen

measure for the character on the disk algebraA(U) that evaluates functions at the origin: If
f ∈ A(U), then by the classical inequality of Jensen, log|f (0)| ≤ 1

2π

∫ π
−π log|f (eiϑ )| dϑ.

More generally, if D is a bounded domain1 in the plane, and if w ∈ D, let µw be the
harmonic measure (supported by bD) for the pointw. Thus, for each function u continuous
on D̄, harmonic on D, u(w) = ∫ u(z) dµw(z). If f ∈ A(D), then the subharmonicity of
log|f | onD implies that log|f (w)| ≤ ∫ log|f (z)| dµw(z), so µw is a Jensen measure for
the point w (with respect to the algebra A(D)).

It is easily seen that a Jensen measure is a representing measure. Let µ be a Jensen
measure for the character ϕ ofA. If f ∈ A is invertible, so that 1/f ∈ A, then log|ϕ(f )| ≤

1In this work the word domain will be reserved for connected open sets.
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∫
X

log|f (x)| dµ(x), and log|ϕ(1/f )| ≤ ∫
X

log|1/f (x)| dµ(x). It follows that for each
invertible element of A, log|ϕ(f )| = ∫

X
log|f (x)| dµ(x). Then for f = u + iv ∈ A, it

follows that �ϕ(f ) = log|ϕ(ef )| = ∫
X
u(x) dµ(x). Consequently, ϕ(f ) = ∫

X
f dµ(x),

i.e., µ is a representing measure.
That Jensen measures exist was established by Bishop [59].

Theorem 1.2.14. If A is a uniform algebra on the compact Hausdorff space X, then for
each character ϕ of A there exists a Jensen measure.

Bishop proved a somewhat stronger statement:

Theorem 1.2.15. If A is a uniform algebra on the compact Hausdorff space X, if ϕ is a
character of A, if X1, . . . , Xn are disjoint compact subsets of X, and if α1, . . . , αn are
positive numbers with

∑n
j=1 αj = 1 such that for eachf ∈ A, |ϕ(f )| ≤ ‖f ‖α1

X1
· · · ‖f ‖αnXn ,

then there is a Jensen measure µ for ϕ with the additional property that µ(Xj ) ≥ αj for
each j = 1, . . . , n.

Notice that from ‖µ‖ = 1,µ(Xj ) ≥ αj , and α1 +· · ·+αn = 1 followsµ(Xj ) = αj
for each j .

The proof of these two theorems depends on a geometric form of the Hahn–Banach
theorem: If A and B are disjoint nonempty convex sets in a Banach space X, and if A is
open, there exists a real-valued continuous R-linear functional λ on X such that for some
c ∈ R, λ(x) < c ≤ λ(y) for every x ∈ A and every y ∈ B. This is a standard result, which
can be found, e.g., in [309].
Proof. We first prove the existence of Jensen measures. Fix a character ϕ on the uniform
algebra A. Let C1 be the cone of negative continuous functions on X; this is an open
convex set in the space CR(X) of real-valued continuous functions on X. Let C2 be the
set C2 = {h ∈ CR(X) : for some f ∈ A with ϕ(f ) = 1 and for some r > 0, rh(x) ≥
log|f (x)| for all x ∈ X}. The set C2 is closed under multiplication by positive numbers.
It is also closed under addition. Given h, h′ ∈ C2 with associated functions f, f ′ ∈ A and
associated real numbers r, r ′ as in the definition ofC2, there is no loss in assuming that both
r and r ′ are rational, say r = p/q and r ′ = p′/q ′. Then max{p, p′}(h+h′) ≥ log|f pf ′p′ |,
so h + h′ ∈ C2. Moreover, the cones C1 and C2 are disjoint: If h ∈ C1 ∩ C2, then for
some positive ε, h < −ε on X, and rh ≥ log|f | for some f ∈ A with ϕ(f ) = 1.
Then 1 = ϕ(f ), but |f | ≤ erh < e−rε < 1. This contradicts the bound on characters:
|ϕ(f )| ≤ ‖f ‖X. Thus, the cones are disjoint.

The separation theorem provides a continuous linear functional λ on CR(X) that
separates the convex sets C1 and C2, so there is a finite regular Borel measure µ of total
mass one such that∫

X

h(x) dµ(x) < 0 (h ∈ C1) and
∫
X

h(x) dµ(x) ≥ 0 (h ∈ C2).

The former inequality implies that µ is a positive measure. From the latter inequality we
deduce that µ is a Jensen measure for ϕ. To do this, let f ∈ A. If ϕ(f ) = 0, the desired
inequality holds. Suppose, therefore, that ϕ(f ) = 1. (Replace f by f/ϕ(f ) if necessary.)
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Let h ∈ CR(X) satisfy h ≥ log|f |. Then 0 = log|ϕ(f )| ≤ ∫
X
h(x) dµ(x). Because∫

X

log|f (x)| dµ(x) = inf
h>log|f |

∫
X

h(x) dµ(x),

it follows that, as desired,

log|ϕ(f )| ≤
∫
X

log|f (x)| dµ(x),

i.e., that µ is a Jensen measure. Thus, Jensen measures always exist.
The more refined result also follows from the separation theorem. Given finitely

many closed subsets X1, . . . , Xn and positive numbers α1, . . . , αn as in the statement of
the theorem, so that for each f ∈ A, |ϕ(f )| ≤ ‖f ‖α1

X1
· · · ‖f ‖αnXn , introduce a third cone

C3 by

C3 =
{
h ∈ CR(X) :

n∑
j=1

max
Xj
αjh < 0

}
.

The cone C3 contains the cone C1, for all the α’s are positive.
The cones C2 and C3 are disjoint: If h ∈ C2 ∩C3, there is f ∈ Awith ϕ(f ) = 1 and

with rh ≥ log|f | on X for some positive r . This leads to a contradiction, though: From
|ϕ(f )| ≤ ‖f ‖α1

X1
· · · ‖f ‖αnXn , it follows that

0 = log|ϕ(f )| ≤
∑
αj‖f ‖Xj ,

which contradicts h ∈ C3. Thus C2 ∩ C3 is empty.
As before, it follows from the separation theorem and the Riesz representation the-

orem that there is a positive measure µ of total mass one such that
∫
X
h(x) dµ(x) ≥ 0 for

h ∈ C2 and
∫
X
h(x) dµ(x) < 0 for h ∈ C3. The measure µ is a Jensen measure.

If µ(Xj ) < αj , we reach a contradiction as follows. Denote by g the function that
is αj − 1 on the set Xj and αj on X \Xj . For any continuous function h with h < g, we
have

∑n
j=1 maxXj αjh < 0, whence

∫
X
h(x) dµ(x) < 0. This is true for each choice of

h, so
∫
X
g(x) dµ(s) ≤ 0. But then

0 ≥
∫
X

g(x) dµ(x) = αj − µ(Xj ) > 0.

Thus, as claimed, µ(Xj ) ≥ αj . The result is proved.

An entirely different proof of the existence of Jensen measures has been given by
Duval and Sibony [107].

As a first, very simple, application of Jensen measures in the theory of polynomial
convexity we have the following result.
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Theorem 1.2.16. If X ⊂ CN is compact and if P(X) contains a real-valued function, f ,
then X is polynomially convex if and only if each fiber f−1(t), t ∈ R, is polynomially
convex. If X is polynomially convex, then P(X) = C (X) if and only if for each t ,
P(f−1(t)) = C (f−1(t)).

Proof. Let zo ∈ X̂, and let µ be a Jensen measure carried by X for the point zo so that
for all polynomials P , log|P(zo)| ≤

∫
X

log|P | dµ. The same inequality persists when P
is replaced by any g ∈ P(X), provided we understand by g(zo) the value at zo of the
natural extension of g to X̂. We will show that the measure µ is concentrated on a fiber
f−1(t) for some t ∈ R. Suppose not. There is then a decomposition

f (X) = (f (X) ∩ (−∞, ro]) ∪ (f (X) ∩ (ro,∞)) = E′ ∪ E′′

such that the sets f−1(E′) and f−1(E′′) both have positive µ measure.
Suppose f (zo) ∈ E′. (If not, replace f by 2ro−f .) There is a sequence {pn}n=1,... of

polynomials in one variable such that for all n, |pn| ≤ 1 on f (X) and such that pn(t)→ 1
for t ∈ E′ and pn(t)→ 0 for t ∈ E′′. If gn = pn ◦ f , then gn ∈ P(X), and we have

0 = lim
n→∞ log|gn(zo)| ≤ lim

n→∞

∫
X

log|gn| dµ = −∞,

a contradiction.
Thus the Jensen measure µ is concentrated on a fiber f−1(t) for some t ∈ R. Under

the assumption that the fibers of f−1 are all polynomially convex, it follows that the point
xo lies in X as we wished. Thus, polynomial convexity of the fibers of f−1 implies the
polynomial convexity of X.

The converse is shorter: If X is polynomially convex, then for every f ∈ P(X)

and each t ∈ R, the fiber f−1(t) is polynomially convex, for it is the intersection of the
polynomially convex sets {x ∈ X : |f (x)− t | ≤ ε} for ε > 0.

To prove the final statement of the theorem suppose that for each t , P(f−1(t)) =
C (f−1(t)). If P(X) �= C (X), then there are nonzero finite regular Borel measures
µ supported by X such that

∫
g dµ = 0 for all g ∈ P(X). Let E be the set of all such

measures that have norm not more than one. The setE is a convex set that is compact when
endowed with the relative weak* topology obtained by regarding the space of measures
onX as the dual of the space of continuous functions onX. By the Krein–Milman theorem
[309], E is the closed convex hull of its extreme points. In particular, it has extreme
points. Let µ be one. The measure µ is concentrated on one of the fibers f−1(t). If it is
not, decompose R into two mutually disjoint measurable sets S and T such that µ has
positive mass on each of the sets f−1(S) and f−1(T ). There is a sequence {pj (t)}j=1,...
of polynomials each bounded by one on the compact set f (X) such that f ◦pj converges
pointwise to the characteristic function of f−1(S). For each g ∈ P(X),

0 =
∫
g(x)pj (f (x)) dµ(x).

The integral tends, as j → ∞, to
∫
f−1(S)

g(x) dµ(x). Thus, the measure µ|f−1(S) is
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orthogonal2 to P(X). It follows that the measure µ|f−1(T ) is also orthogonal to P(X).
Both of these measures lie in E and, by hypothesis, neither is the zero measure, so we
have a contradiction to the assumption that µ is an extreme point of E.

It follows that the measure µ is concentrated on a fiber f−1(t). Every continuous
function on this fiber is approximable uniformly by polynomials, so µ is necessarily the
zero measure. This also is a contradiction, and the theorem is proved.

For an arc λ in the complex plane, P(λ) = C (λ) by Mergelyan’s theorem. Conse-
quently, in the preceding theorem the real-valued function f can be replaced by a function
in P(X)whose values are restricted to lie in an arc in C. Indeed, it suffices for the function
f to satisfy P(f (X)) = C (f (X)), a condition satisfied by every compact set without
interior that does not separate the plane.

The book [139] discusses Jensen measures in detail. In the paper [75] a very general
approximation theorem for Jensen measures is proved. In a sense that can be made precise,
Jensen measures can be approximated by holomorphic images of Lebesgue measure on
the unit circle.

An important notion in the general theory of uniform algebras is that of boundary.

Definition 1.2.17. If A is a uniform algebra on the compact space X, then the subset E of
X is a boundary for A if ‖f ‖X = sup{|f (x)| : x ∈ E} for every f ∈ A.

It is plain that the space X is itself a boundary for A; often there are smaller bound-
aries. Notice that if E is a closed boundary for A, and if ϕ is a character for A, then there
are representing measures and Jensen measures for ϕ that are concentrated on E.

Remark 1.2.18. Alexander [13] observed that the proof of Theorem 1.2.14 yields a more
general statement: IfA is a uniform algebra on the compact Hausdorff spaceX and� ⊂ X
is a closed boundary for A, and if σ is a positive measure of total mass one on X, then
there exists a positive measure µ of total mass one on � such that∫

log|f (x)| dσ(x) ≤
∫

log|f (x)| dµ(x)

for all f ∈ A. We shall call such a measure µ a Jensen measure for the measure σ .

Rather than appeal to the proof of Theorem 1.2.14, the existence ofµ can be deduced
from the existence of Jensen measures as follows. The positive measure σ is assumed to
have norm not more than one, so it lies in the weak* closed convex hull of the unit
point masses concentrated at points of X: There is a net {σα}α∈A of measures of the form
σα = ∑n(α)

j=1 λα,j δxα,j with xα,j a point of X, with δxα,j the unit point mass at xα,j , and
with the λ’s nonnegative numbers with sum one that converges in the weak* sense to σ .
For each choice of α and j , let µα,j be a Jensen measure for the point xα,j supported by

the boundary �, and let µα = ∑n(α)
j=1 λα,jµα,j . By passing to a subnet if necessary, we

2A measure µ is said to be orthogonal to a uniform algebra A on a compact space X if
∫
f dµ = 0 for all

f ∈ A. In this case, we write µ ∈ A⊥. A measure orthogonal to A is also said to be an annihilating measure
for A.



1.2. Uniform Algebras 15

can suppose that the net {µα}α∈A converges in the weak* sense to a measure µ. Then for
f ∈ A and for δ > 0,∫

log(δ + |f (x)|) dσ (x) = lim
α∈A

∫
log(δ + |f (x)|) dσα(x)

≤ lim
α∈A

∫
log(δ + |f (x)|) dµα(x) =

∫
log(δ + |f (x)|) dµ(x).

This inequality holds for all δ > 0, so∫
log|f (x)| dσ(x) ≤

∫
log|f (x)| dµ(x),

and µ is seen to be a Jensen measure for σ .

The simplest example of nontrivial boundary arises in the context of the algebra
A(D),D a bounded open subset of CN . According to the maximum modulus theorem, the
topological boundary ofD is a boundary forA(D). A thinner example is the distinguished
boundary for the polydisk algebra. If by T we denote the unit circle in the complex plane,
then for each function f in the polydisk algebra A(UN), ‖f ‖

U
N = ‖f ‖TN , so that the

torus TN is a boundary for the polydisk algebra. It is easy to see that no closed boundary
for A(UN) is smaller than TN . The dimension of TN is N , while that of the topological
boundary bUN of UN is 2N − 1.

Uniform algebras have unique minimal closed boundaries:

Theorem 1.2.19. IfA is a uniform algebra on the compact spaceX, then there is a unique
minimal closed boundary for A.

The minimal closed boundary for A is called the Shilov boundary for A, for it was
G.E. Shilov who introduced it. The following proof of its existence is that given in [180].

Proof. Denote by � the intersection of all closed boundaries forA. This is a certain closed
subset of X and so is compact. It is plainly contained in every closed boundary for A, so
if � is a boundary, then it is the Shilov boundary for A.

That it is a boundary depends on the following observation: Iff1, . . . , fq are elements
of A, and if U = {x ∈ X : |f1(x)|, . . . , |fq(x)| < 1}, then either U meets every closed
boundary for A or else for every closed boundary �, � \ U is a boundary. To see this,
assume that �o is a closed boundary for A but that the closed set �o \ U is not one. Thus
there is a function f ∈ A with ‖f ‖X = 1 but |f | < 1 on the compact set �o \ U.We can
replace f by a high power, f k , of it and achieve that |f | < η on �o \U , where η > 0 is so
small that η|fj | < 1 on �o \U for each j = 1, . . . , q. Then |ffj | < 1 on �o \U , and the
same inequality holds on U . The set �o is a boundary for A, so it follows that |ffj | < 1
on all of X. This implies that the points at which |f | takes the value one must lie in U , so
U meets each boundary, as desired.

To see that the set � is a boundary for the algebraA, suppose it is not, so that there is
an element f ∈ A such that ‖f ‖X = 1 but ‖f ‖� = r < 1.LetE = {x ∈ X : |f (x)| = 1}.
The set E is compact and nonempty. If xo ∈ E, there is a boundary, say �o, that misses
the point xo. Then for finitely many functions f1, . . . , fq in A, the set Uxo = {x ∈ X :
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|f1(x)|, . . . , |fq(x)| < 1} is a neighborhood of xo that is disjoint from �. Accordingly, by
the last paragraph, � \ Uxo is a boundary for A. Applying this process a finite number of
times yields finitely many open sets U1, . . . , Us of the form just considered the union of
which covers the set E and such that � \ ∪sj=1Uj is a boundary for A. This is impossible,
because ‖f ‖X = 1 and ‖f ‖�\∪sj=1Uj

< 1. The theorem is proved.

Definition 1.2.20. If A is a uniform algebra on a compact space X, then the point x ∈ X
is a peak point for A if f (x) = 1 and |f | < 1 on X \ {x}. The subset E of X is a peak set
for A if there is f ∈ A with f = 1 on E and |f | < 1 on X \ E.

Each peak point is contained in the Shilov boundary, and each peak set meets the
Shilov boundary.

In general, there are no peak points for A: A peak point is a closed subset of X of
typeGδ , i.e., it is the intersection of a countable family of open sets. The general compact
space contains no points that are sets of typeGδ . This problem is essentially irrelevant for
our purposes, for we shall work almost exclusively on compact subsets of CN , which are
metrizable. Points in a metrizable space are Gδ’s.

Remark. IfX ⊂ CN is a compact, polynomially convex set, and if zo ∈ X is a peak point
for P(X), one cannot conclude that there is a polynomial P such that P(zo) = 1 and
|P(z)| < 1 for z ∈ X \ {zo}. A simple example is this. Let �+ and �− be, respectively,
the closed disks {ζ ∈ C : |ζ − i| ≤ 1} and {ζ ∈ C : |ζ + i| ≤ 1}. These two disks are
externally tangent at the origin, and if X is their union, then the origin is a peak point
for P(X). To see this, define f+ on �+ by f+(ζ ) = eiζ , and define f− on �− by
f−(ζ ) = e−iζ . These functions agree at the origin, and on �+ \ {0}, |f+| < 1, and on
�− \ {0}, |f−| < 1. By Mergelyan’s theorem, the function F on X that agrees with f+
on �+ and with f− on �− lies in the algebra P(X).

However, there is no polynomial P with P(0) = 1 and |P | < 1 onX \ {0}. Suppose
there is. Let u = �P , v = �P . The peaking hypothesis implies that the partial derivative
uy(0) = ∂u

∂y
(0) vanishes and that the directional derivative Dαu = grad u · α of u in

the direction of the vector (1, 1) also vanishes at the origin. From this we find that the
partial derivativeux(0) also vanishes. The Cauchy–Riemann equations yield that the partial
derivatives vx and vy vanish at the origin, and finally, we conclude that the derivativeP ′(0)
vanishes. Consequently,P(ζ ) = 1+ζ qQ(ζ ) for some integer q > 1 and some polynomial
Q with Q(0) �= 0. That P is of this form implies that P maps X onto a neighborhood of
the point 1 ∈ C, so |P | does not attain its maximum over X at the origin. Contradiction.

There are local notions of peak point and peak set that occasionally are useful.

Definition 1.2.21. The set E ⊂ X is a local peak set for the uniform algebra A on the
compact set X if there is a neighborhood U of E in X such that for some f ∈ A, f = 1
on E and |f | < 1 on U \ E.

The notion of local peak point is defined in a similar way.
An important result is that restrictions of uniform algebras to peak sets are closed.

Definition 1.2.22. IfA is an algebra of C-valued functions on a set S, and if So is a subset
of S, the restriction algebra A|So is the algebra of all restrictions f |So for f ∈ A.
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Theorem 1.2.23. [55] Let A be a uniform algebra on the compact space X. If E ⊂ X is
a peak set for A, then the algebra of restrictions A|E is closed in C (E), and for each
f ∈ A, there is f̃ ∈ A such that f̃ |E = f |E and ‖f̃ ‖X = ‖f ‖E .

Granted that A|E is closed in C (E), the open mapping theorem of Banach space
theory implies the existence of a constant C such that for each f ∈ A, there is g ∈ A with
g|E = f |A and with ‖g‖X ≤ C‖f ‖E . Part of the conclusion of the theorem is that C can
be taken to be one.

Proof. By hypothesis there is a function ϕ ∈ A such that ϕ = 1 on E and |ϕ(x)| < 1
for all x ∈ X \ E. Consider an f ∈ A, which we assume to satisfy ‖f ‖E = 1. By
replacing f by ϕqf for a large positive integer q, we can suppose that ‖f ‖X < 3

2 . For
all n = 1, . . . , let En = {x ∈ X : |f (x)| < 1 + 2−n}. There is then fn ∈ A with
fn|A = 1 = ‖fn‖X and |fn| < 1 on X \ En. For a large positive integer ν(n), the
function f ν(n)n is identically one on E and satisfies |f ν(n)n f | < 2−n on X \ En. For
f̃ we can take the sum f̃ = ∑n=1,... 2

−nf ν(n)n f : If |f (x)| ≤ 1, then |f̃ (x)| ≤ 1. If

|f (x)| > 1, choose no such that x ∈ Eno but x /∈ Ek for any k > no. Then |f̃ (x)| <
(1 + 2−no)

∑
n=1,...,no 2−n + 2−no∑

n=no+1,... 2
−n = 1. Thus, f̃ is a norm-preserving

extension of f |E.
That A|E is closed in C (E) is now easily proved. Let {fn}n=1,... be a sequence in

A such that the sequence of restrictions {fn|E}n=1,... converges in C (E) to g. Suppose
‖fn− g‖E ≤ 2−(n+1). Then ‖fn+1 − fn‖E < 2−n, and by the preceding paragraph, there
is a function hn ∈ A with hn|E = (fn+1 − fn)|E and ‖hn‖ < 2−n. Accordingly, the
series f1 +∑n=1,... hn converges inA to an element f̃ with f̃ |E = g. This completes the
proof.

The spectrum plays an important role in the general theory of uniform algebras.

Definition 1.2.24. If A is a uniform algebra on the compact Hausdorff space X, then the
spectrum, �(A), of A is the set of all characters of A endowed with the weak* topology,
so that a net {ϕι}ι∈I in�(A) converges to ϕ ∈ �(A) if for each f ∈ A, the net {ϕι(f )}ι∈I
converges to ϕ(f ).

Alternatively, a neighborhood basis of ϕ ∈ �(A) is provided by the sets of the form

W(f1, . . . , fr ; ε) = {ψ ∈ �(A) : |ψ(f1)− ϕ(f1)|, . . . , |ψ(fr)− ϕ(fr)| < ε}
in which r ranges through the positive integers, f1, . . . , fr range through A, and ε ranges
through (0,∞).

The space �(A) is evidently a Hausdorff space. It is also compact, as can be seen in
the following way. Denote by CA the Cartesian product of A copies of the complex plane
endowed with the product topology. (As a set, CA is the set of all functions from A into
C.) Define a map η : �(A) → CA by η(ψ) = {ψ(f ) : f ∈ A}. By the definition of the
topologies, the map η is continuous. It is plainly one-to-one. The set η(�(A)) is a subset of
the product

∏
f∈A Ūf if Ūf = {ζ ∈ C : |ζ | ≤ ‖f ‖X}, which, by the Tychonov theorem,

is a compact space. The range of η is closed: Let {zf : f ∈ A} be a limit point of η(�(A)).
Thus for some net {ψι}ι∈I in �(A), ψι(f ) → zf for each f ∈ A. Define a functional
ϕ : A → C by ϕ(f ) = zf . This functional is linear and multiplicative, and it lies in
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�(A), for ϕ(1) = 1. As a closed subset of a compact space, η(�(A)) is itself compact.
To conclude that �(A) is compact, it is enough to notice that η is a homeomorphism, as
follows from the continuity of the inverse, η−1. This map is continuous, for if {η(ψι)}
converges to η(ϕ), then ψι(f )→ ϕ(f ), so that ψι → ϕ in �(A).

The spectra of the algebras P(X) and R(X) have been identified above with the
spaces X̂ and R-hull X, respectively. It is usually difficult to determine a concrete repre-
sentation for the spectrum of a uniform algebra.

If A is a uniform algebra on the compact space X, and if�(A) is its spectrum, there
is a representation of A in C (�(A)), the Gel’fand transform, which is constructed in this
way. The map, which is the Gel’fand transform, f �→ f̂ is defined by the condition that for
f ∈ A, f̂ (ϕ) = ϕ(f ). The definition of the topology on�(A) implies that f̂ is a continuous
function. The algebra Â of Gel’fand transforms is a uniform algebra on�(A). To see this,
let x �→ εx be the map that takes x ∈ X to the character εx on A given by εx(f ) = f (x).
This is a continuous map. If f ∈ A, then ‖f ‖X = supx∈X|εx(f )| ≤ supϕ∈�(A)|f̂ (ϕ)|, so
that ‖f ‖X ≤ ‖f̂ ‖�(A). But also, if α ∈ C satisfies |α| > ‖f ‖X, then f −α is invertible in
A, so (f − α)g = 1 for a certain g ∈ A. This implies 1 = (f̂ − α)ĝ, so f̂ omits the value
α. Consequently, ‖f ‖�(A) ≤ ‖f ‖X. The two norms are seen to be the same. It follows that
the Gel’fand transform is an isometry, and that the algebra Â of transforms is a uniform
algebra on �(A).3

In the case of the algebra P(X), the Gel’fand transform is the natural extension of
f ∈ P(X) to a function on the hull X̂, which was given above.

If A is a uniform algebra on the compact space X with spectrum �, then for each
f ∈ A, the spectrum of f is the set f̂ (�).

A simple fact about uniform algebras is that holomorphic functions operate:

Theorem 1.2.25. If A is a uniform algebra, if f ∈ A, and if ϕ is holomorphic on a
neighborhood of σA(f ), then ϕ ◦ f ∈ A.

Proof. LetD be a bounded open set in C that contains σA(f ) and on the closure of which
ϕ is holomorphic. Assume bD to be smooth, so that for a suitable orientation of bD,

ϕ(z) = 1

2πi

∫
bD

ϕ(ζ )

ζ − z dζ

for z ∈ D. For each fixed ζ ∈ bD, the function (ζ − f )−1 belongs to A, for ζ /∈ σA(f ).
The map ζ �→ (ζ −f )−1 from C\σA(f ) toA is continuous, so ϕ ◦f can be approximated
uniformly by Riemann sums for the A-valued integral

1

2πi

∫
bD

ϕ(ζ )

ζ − f dζ.

These Riemann sums are in A, so ϕ ◦ f ∈ A as claimed.
A multivariate extension of this result will be obtained below as a consequence of

the Oka–Weil theorem. The formulation of this extension will be in terms of functions
3Care is required here. The Gel’fand transform is naturally defined for all commutative Banach algebras. In

general, it is not an isometry, though, as we have just seen, it is in the case of uniform algebras.
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holomorphic on a neighborhood of the joint spectrum of several elements of the algebra
A, which is defined as follows.

Definition 1.2.26. If A is a uniform algebra and f1, . . . , fr ∈ A, the joint spectrum of
the set {f1, . . . , fr} is the subset

σA(f1, . . . , fr ) = {(χ(f1), . . . , χ(fr)) : χ a character ofA}
of Cr .

Alternatively phrased, σA(f1, . . . , fr ) is the image of the spectrum�(A) ofA under
the map f̃ : �(A)→ Cr defined by f̃ (χ) = (f̂1(χ), . . . , f̂r (χ)). This map is continuous,
so the joint spectrum is compact.

In general, the joint spectrum is not polynomially convex; it is when f1, . . . , fr
generate A.

We conclude this section on general uniform algebras with a remark about logarithms,
which is essentially a theorem of Bruschlinsky [74]. If X is a compact space that satisfies
the condition that the Čech cohomology group Ȟ 1(X,Z) vanishes, then every continuous
zero-free function f on X has a logarithm.

The shortest route to this conclusion is via sheaf theory. Let CX and C ∗
X denote,

respectively, the sheaf of germs of continuous C-valued functions and the sheaf of germs
of continuous zero-free C-valued functions on X. There is then an exact sequence of
sheaves

0 → Z → CX
E→ C ∗

X → 0

in which the map E is the exponential map given by E(f ) = e2πif . The associated
cohomology sequence contains the segment

· · · → C (X)→ C ∗(X) E→ Ȟ 1(X,Z)→ Ȟ 1(X,CX)→ · · · .
The group Ȟ 1(X,CX) vanishes, for the sheaf CX is fine. Consequently, there is an iso-
morphism

(1.1) Ȟ 1(X,Z) = C ∗(X)/E(C (X)).

In particular, when the cohomology group Ȟ 1(X,Z) vanishes, each zero-free continuous
function is an exponential.

This result can be established by a longer argument that appears to avoid the sheaf-
theoretic formalism. Assume Ȟ 1(X,Z) to vanish, and consider a zero-free f ∈ C (X).
There is a finite open cover U = {U1, . . . , Uq} of X such that for each j , there is gj ∈
C (Uj ) such that on Uj , f = e2πigj . For each choice of j, k, the difference gj − gk = γjk
is a continuous Z-valued function onUjk = Uj ∩Uk . The γjk define a Z-valued 1-cocycle
associated with the covering U of X. The vanishing of Ȟ 1(X,Z) = 0 implies that this
cocycle is a coboundary: There are continuous Z-valued functions γj on Uj for each j
such that γjk = γj − γk . Define g̃j by g̃j = gj − γj . The functions g̃j and g̃k agree on
Ujk so that there is a continuous function g onX that satisfies g = g̃j onUj . The function
g satisfies f = e2πig; f is an exponential.
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An immediate consequence of the equality (1.1) is that if X is a compact space and
if Y is a closed subset of X such that the map Ȟ 1(Y,Z) → H 1(X,Z) induced by the
inclusion Y ↪→ X is an isomorphism, then a zero-free function f on X has a continuous
logarithm exactly when the restriction f |Y of f to Y has a logarithm.

1.3. Plurisubharmonic Functions

Plurisubharmonic functions play an important role in the theory of polynomial convexity.
Although polynomially convex sets are defined in terms of polynomial inequalities, it
turns out that they can as well be defined in terms of plurisubharmonic functions. In this
section we recall the notion of plurisubharmonic function and establish some of the more
immediate connections between these functions and polynomial convexity. We shall see
further relations of this kind as the theory develops.

It will be convenient to preface our discussion of plurisubharmonic functions with
some remarks about integration on balls and spheres.

For p = 1, . . . and r > 0, denote by Vp(r) the volume of the r-ball in Rp, i.e., the
Lebesgue measure of the set {x ∈ Rp : |x| < r}. (Here |x| denotes the Euclidean norm,
so that |x| = (x2

1 + · · · + x2
p)

1/2.) We shall show that

(1.2) Vp(r) = πp/2

�(
p
2 + 1)

rp,

where �(t) denotes the Eulerian integral
∫∞

0 e−sst−1 ds (�t > 0), which satisfies the
functional equation �(t + 1) = t�(t) and takes the values n! at t = n + 1 and π1/2 at
t = 1

2 .
The formula (1.2) is correct for p = 1, 2, as we know from elementary geometry or

from calculus. Assuming it true for a given value of p, we prove it for p + 2:

Vp+2(r) =
∫
|x|<r

dx

=
∫
x2
p+1+x2

p+2<r
2

{∫
x2

1+···+x2
p<r

2−x2
p+1−x2

p+2

dx1 · · · dxp
}
dxp+1dxp+2.

Passing to polar coordinates in the (xp+1, xp+2)-space and using the induction hypothesis
and the functional equation for the �-function leads to

Vp+2(r) = 2π
∫ r

0
Vp(
√
r2 − s2)s ds

= 2π
πp/2

�(
p
2 + 1)

∫ r
0
(r2 − s2)p/2s ds

= πp/2+1

�(
p+2

2 + 1)
rp+2.
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This proves the formula (1.2).
It is curious that the induction from p to p+ 2 is so easy, while that from p to p+ 1,

which can be carried out, involves much more complicated integrals.

The calculation just given shows that the volume of the ball BN(0, r) in CN is π
N

N ! r
2N ,

that of BN , π
N

N ! .
The boundary, bBN , of the ball BN is the unit sphere S2N−1. On S2N−1 there is

a unique positive measure σ with σ(S2N−1) = 1 that is invariant under rotations. It is
determined by the condition that for every continuous C-valued function g on S2N−1,

(1.3)
∫

SN−1
g(z) dσ(z) = N !

πN

∫
Bn

g

(
z1

|z| , . . . ,
zN

|z|
)
dL (z).

(Here, and often in the sequel, L denotes the Lebesgue measure on the underlying Eu-
clidean space.) This is clear: The right side of (1.3) defines a rotation-invariant functional
ψ on the space C (S2N−1) of continuous functions on S2N−1 that satisfiesψ(1) = 1. There
is only one such functional.

Denote by dS the surface area measure on S2N−1. The measure dS is rotation invari-
ant and so differs from dσ by a constant. The polar-coordinates formula for integration on
CN gives

πN

N ! =
∫ 1

0

∫
S2N−1

r2N−1 dS dr = 1

2N

∫
S2N−1

dS,

whence
∫
S2N−1 dS = 2πN

(N−1)! , i.e., the area of S2N−1 is 2πN
(N−1)! . It follows that dσ =

(N−1)!
2πN

dS.

There is another integration formula for odd-dimensional spheres, which involves
the unitary group, U(N). Let dg denote the Haar measure4 on U(N) normalized to have
total mass one, so that dg is the unique positive measure on U(N) that is U(N)-invariant
and of total mass one. Let T denote the circle {(eiϑ , 0, . . . , 0)}, which is contained in bBN .
Then for an integrable function F on bBN ,

(1.4)
∫
bBN

F dS = πN−1

(N − 1)!
∫
U(N)

∫
g(T )

F ds dg,

in which ds denotes arc length along the various circles g(T ). The case of integrable F
follows from the case of continuous F . For the continuous case, it is sufficient to note
that the right-hand side of (1.4) is a U(N)-invariant functional of F and so, to within a
constant, is integration against dS. The constant is evaluated by taking for F the function
identically one.

We now turn to the theory of plurisubharmonic functions itself. We begin with the
definition.

Definition 1.3.1. A function u defined on a domain � in CN with values in [−∞,∞) is
plurisubharmonic if it is upper semicontinuous and if for each complex line λ in CN , the
restriction u|(� ∩ λ) is subharmonic on the open subset � ∩ λ of the line λ.

4A good discussion of Haar measure is given by Nachbin [257].
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Thus an upper semicontinuous function u is plurisubharmonic on� if for every pair
of vectors a and b in CN with a ∈ �,

(1.5) u(a) ≤ 1

2π

∫ π
−π
u(a + reiϑb) dϑ

for all sufficiently small r > 0. For a function of class C 2, this is equivalent to the condition
that the Levi form

Lu(z;w) =
∑

j,k=1...,N

∂2u

∂zj ∂z̄k
(z)wj w̄k

be nonnegative for each point z ∈ �. The C 2 function u is said to be strictly plurisubhar-
monic if its Levi form is positive definite at each point of its domain.

From the inequality (1.5) it follows that plurisubharmonic functions are subharmonic
in the usual sense of potential theory: By that inequality and the integration formula (1.4),
we get that if u is plurisubharmonic and r is a small positive number, then

(1.6) u(zo) ≤ (N − 1)!
2πN

∫
bBN

u(zo + rz) dS(z).

The function u is upper semicontinuous, so u is seen to be a subharmonic function on the
space R2N = CN .

Notice that if we integrate the inequality (1.6) against r2N−1dr , 0 < r < R, we
obtain

(1.7) u(zo) ≤ N !
πNR2N

∫
BN(zo,R)

u(z) dL (z).

The notion of plurisubharmonic function extends immediately to complex manifolds.
If M is a complex manifold, then the real-valued function u on M is plurisubharmonic if
it is plurisubharmonic with respect to every set of local holomorphic coordinates in M .

For detailed treatments of the theory of plurisubharmonic functions see [157], [180],
or [287].

Among the plurisubharmonic functions are the functions log|f | and |f | for holomor-
phic f . The set of all plurisubharmonic functions on a complex manifold is a convex cone:
If u and v are plurisubharmonic functions with common domain, then for nonnegative
constants α and β, the function αu+ βv is also plurisubharmonic.

The elementary theory of plurisubharmonic functions parallels that of subharmonic
functions rather closely. In particular, plurisubharmonic functions enjoy the following
properties:

A. If {uj }j=1,... is a monotonically decreasing sequence of plurisubharmonic functions
defined on a domain�, then the function u defined by u(z) = limj→∞ uj (z) is also
plurisubharmonic.
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B. If {uα}α∈A is an arbitrary collection of plurisubharmonic functions on a domain �,
and if u(z) = supα∈Auα(z), then the upper regularization of u defined by

u∗(w) = lim
ε→0+
(
sup|w−z|<εu(z)

)
is plurisubharmonic or else identically +∞.

C. A plurisubharmonic function on a connected open set in CN is either identically
−∞ or else is locally integrable with respect to Lebesgue measure on CN .

D. If u is a plurisubharmonic function on the domain�, there is a decreasing sequence
{uj }j=1,... of functions of class C ∞ on � with u(z) = limj→∞ uj (z) for all z and
with the property that if K is a compact subset of �, then all but finitely many of
the functions uj are plurisubharmonic on a neighborhood ofK . (In general, it is not
possible to have the functions uj plurisubharmonic on all of �. In this connection,
see [119] and the references cited there.)

E. If u is a plurisubharmonic function on a domain � and if χ : R → R satisfies
χ ′, χ ′′ ≥ 0, then χ ◦ u is plurisubharmonic on �.

A slightly less well known result concerning plurisubharmonic functions is the fol-
lowing result, which is in essence a result of Hartogs [161].

Theorem 1.3.2. Let � be a domain in CN , let K be a compact subset of �, and let g be a
continuous function on �. If {uk}k=1,... is a sequence of plurisubharmonic functions that
is locally uniformly bounded on � and that satisfies

lim sup
k→∞

uk(z) ≤ g(z) f or all z ∈ �,

then for each ε > 0 there is a kε such that for k > kε and z ∈ K , uk(z) < g(z)+ ε.
Proof. (See Hörmander [180].) We first suppose that the function g is constant. Without
loss of generality, we can suppose that the sequence is uniformly bounded on �. It can
then be supposed that g = C with C < 0 and that each uk is negative on �.

Choose a δ < 1
3 dist(K,CN \�). If zo ∈ K , then by (1.7),

uk(zo) ≤ N !
πNδ2N

∫
BN(zo,δ)

uk(z) dL (z).

Fatou’s lemma implies that

lim sup
k→∞

∫
BN(zo,δ)

uk(z) dL (z) ≤
∫

BN(zo,δ)

C dL (z).

Thus there is k(zo) large enough that for k > k(zo),∫
BN(zo,δ)

uk(z) dL (z) <
πNδ2N

N ! (C + ε/2).
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If |w − zo| < r for an r < δ, then, because the u’s are negative, we have, for large k,

uk(w) ≤ N !
πN(δ + r)2N

∫
BN(w,δ+r)

uk(z) dL (z)

≤ N !
πN(δ + r)2N

∫
BN(zo,δ)

uk(z) dL (z)

≤ δ2N

(δ + r)2N (C + ε/2).

This is less than C + ε. Thus, for each zo ∈ K , we have found a neighborhood of zo
on which uk ≤ C + ε provided k is big enough. Compactness now implies the result.

Having established the result when the function g is constant, we derive the general
case. Let K , ε, and g be as given in the theorem. Because the function g is continuous,
compactness yields finitely many compact setsE1, . . . , Eq with unionK and correspond-
ing constants c1, . . . , cq such that for each j and all x ∈ Ej , g(x) < cj < g(x) + ε/2.
By the special case of the result that we have proved, there is an integer kj such that
uk(x) < cj + ε/2 if j > kj , x ∈ Ēj . With k > max{k1, . . . , kq}, we have that for all
x ∈ K , uk(x) < g(x)+ ε. The theorem is proved.

Remark 1.3.3. There is an immediate extension of the preceding result in which the open
subset� of CN is replaced by a connected complex manifold. This extension follows from
the theorem, because each compact subset of a complex manifold M is contained in a
finite union of coordinate patches in M .

A different treatment of this result was given by Lelong [219].

Associated with a compact subsetX of a complex manifold M is its hull with respect
to the family of plurisubharmonic functions on M , which is denoted by Psh-hullM X and
is defined by

Psh-hullM X = ∩u{z ∈ M : u(z) ≤ supXu},
in which the intersection is taken over the family of all functions u plurisubharmonic
on M . It is not evident from the definition that the set Psh-hullM X is compact. In this
connection, see Corollary 1.3.12 below.

Theorem 1.3.4. For a domain � in CN , the following conditions are equivalent:

(a) −log dist(z,CN \�) is a plurisubharmonic function of z, z ∈ �.

(b) There is a continuous plurisubharmonic function � : � → R such that for each
c ∈ R, the sublevel set �c = {z ∈ � : �(z) < c} is a relatively compact subset
of �.

(c) For each compact subsetK of�, the hull Psh-hull�K is a relatively compact subset
of �.

This is a standard result; see [157], [180], or [287].
The function � of part (b) is called a plurisubharmonic exhaustion function for �.
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Definition 1.3.5. A domain that possesses the equivalent properties (a), (b), and (c) is said
to be pseudoconvex.

One of the central problems of complex analysis for the first half of the twentieth
century was the Levi problem, the problem of showing that the class of pseudoconvex
domains in CN coincides with the class of domains of holomorphy. This identity was
finally established in the early 1950s by Oka, by Bremermann, and by Norguet. Recent
treatments of this result are considerably simpler than the original ones. See in particular the
development given by Range [287]. Although we do not include the details of the solution
of the Levi problem, the result will be invoked at several points in the development below.

The notion of Runge domain will be used frequently below. Recall the definition.

Definition 1.3.6. If M is a complex manifold, the domain � in M is a Runge domain if
O(M )|� is dense in O(�).

A basic property of pseudoconvex domains is this:

Theorem 1.3.7. If � : �→ R is a continuous plurisubharmonic exhaustion function for
�, so that each sublevel set �c = {z ∈ � : �(z) < c} is relatively compact in �, then
each of the regions �c is a Runge domain in �.

For this result, one can consult [180].
A fundamental connection between polynomial convexity and plurisubharmonic

functions is established by the following result. The original source of the result is not
clear.

Theorem 1.3.8. If X is a compact, polynomially convex subset of CN , then there is a
nonnegative plurisubharmonic function, v, on CN with limz→∞ v(z) = ∞, with X =
v−1(0), and with the additional properties that v is of class C ∞ on CN and strictly
plurisubharmonic on CN \ X. The function v can be chosen to satisfy v(z) = |z|2 for z
near infinity. Conversely, if v is a nonnegative plurisubharmonic function on CN such that
limz→∞ v(z) = ∞, then the set v−1(0) is polynomially convex.

Proof. (See [127].) Fix a nonnegative function χ of class C∞ on R with the properties that
χ(t) = 0 if t < 1

2 and χ(1) = 1. Require also that χ ′ and χ ′′ be nonnegative and strictly
positive on t > 1

2 . Given a point z ∈ CN \X, there is a polynomial Pz such that Pz(z) = 1
and |Pz| < 1

4 on X. The function |Pz|2 is of class C∞ and is plurisubharmonic. If εz > 0
is sufficiently small, then the function ηz defined by ηz(w) = χ(|Pz(w)2| + εz|w|2) is
plurisubharmonic and of class C∞ on CN . It vanishes on a neighborhood of X, and is
strictly plurisubharmonic on a neighborhoodWz of the point z. A countable number of the
neighborhoodsWz, sayW1, . . . , cover CN \X. Let η1, . . . be the associated functions. If
{δj }j=1,... is a sequence of positive numbers that decrease sufficiently rapidly to zero, then
the function u defined by u = ∑j=1,... δj ηj is a nonnegative plurisubharmonic function

of class C∞ with X as its zero set that is strictly plurisubharmonic on CN \X. It satisfies
limw→∞ u(w) = ∞.

To obtain the function v of the statement of the theorem, fix an R > 0 so large
that the set X is contained in the ball BN(R). Let η : R → [0,∞) be a smooth function
with η(t) = 0 on [0, R) and with η(t) = t2 when t > 3R. Require also that η′ and η′′
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be nonnegative. Let ρ : R → [0, 1] satisfy ρ(t) = 0 if t > 3R and ρ(t) = t when
t ∈ [0, 2R). The function v we desire can be defined by v(w) = η(|w|) + ερ(|w|)u(w)
for a sufficiently small positive ε.

This completes the proof of one implication of the theorem.
We defer the proof of the final statement of the theorem for the moment; it will be

contained in a more general result, Theorem 1.3.11, below.
The preceding argument provides a result somewhat more general than the one stated

in that CN can be replaced by a general complex manifold: If M is a complex manifold
with strictly plurisubharmonic exhaustion function �, and if X is a compact subset of M
that is O(M )-convex, then there is a nonnegative plurisubharmonic function v on M that
is of class C ∞ on M and that satisfies v−1(0) = X and the further condition that v = �
off a compact subset of M .

It is important to notice that Theorem 1.3.8 does not exhibit every polynomially con-
vex set as the zero locus of a nonnegative smooth function that is strictly plurisubharmonic
on all of CN or even on a neighborhood of the set. Sets for which such functions exist are
quite special. See the discussion of totally real sets in Chapter 6.

On domains of holomorphy, plurisubharmonic functions can be approximated by
plurisubharmonic functions of particularly simple form. The following result was stated
by Bremermann [71].

Theorem 1.3.9. If � is a domain of holomorphy in CN , and if u is a continuous plurisub-
harmonic function on �, then for each compact subset K of � and for every ε > 0, there
are finitely many holomorphic functions f1, . . . , fr on � such that for suitable positive
constants cj ,

u(z) ≤ max
j=1,...,r

cj log|fj (z)| ≤ u(z)+ ε.

In the event that � is a Runge domain in CN , the holomorphic functions fj can be
taken to be polynomials.

Proof. (Sibony [330].) Introduce the domain �∗ in CN+1 defined by

�∗ = {(z, w) ∈ CN × C : |w| < e−u(z)}.
This domain is pseudoconvex and so a domain of holomorphy.

For zo ∈ �, define the function fzo by fzo(w) =
∑∞
k=0 e

ku(zo)wk, which is defined
and holomorphic in the planar domain {w ∈ C : |w| < e−u(zo)}. The domain �∗ is a
domain of holomorphy, so there is a function F ∈ O(�∗) with F(zo,w) = fzo(w) for all
w ∈ C with |w| < e−u(zo). The functionF admits an expansionF(z,w) =∑∞

k=0 ak(z)w
k

with coefficients ak ∈ O(�) that satisfy

lim sup
k→∞

log |ak(z)|
k

≤ u(z)

for all z ∈ � by Hadamard’s formula for the radius of convergence of a power series.
The theorem of Hartogs established above, Theorem 1.3.2, implies that for ε > 0,

there is ko large enough that for k > ko,
log|ak(z)|

k
≤ u(z)+ε for all z ∈ K . By the choice of
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F , lim supk→∞
log|ak(zo)|

k
= u(zo), whence by continuity, lim supk→∞

log|ak(z)|
k

> u(zo)−
ε for all z in a neighborhood of zo. By compactness, a finite number of choices of the point
zo will yield a cover of K by the corresponding neighborhoods. The theorem follows.

Corollary 1.3.10. If X is a compact subset of CN and xo ∈ X̂, then for each Jensen
measure µ for xo carried by X and for each plurisubharmonic function u defined on a
neighborhood of X̂,

u(xo) ≤
∫
u(z) dµ(z).

Proof. By the monotone convergence theorem, it suffices to prove that the desired in-
equality holds when u is a continuous plurisubharmonic function. Accordingly, let u be
such a function, and let ε > 0 be given. By the preceding theorem, there are polynomi-
als P1, . . . , Pr and positive constants c1, . . . , cr such that on a neighborhood of X̂ the
inequalities

u− ε < max
j=1,...,r

cjPj < u

are satisfied. Then for each k,∫
u(z) dµ(z) ≥

∫
max
j=1,...,r

cj log|Pj | dµ ≥ cklog|Pk(xo)|.

It follows that, as desired,

u(xo) ≤
∫
u(z) dµ(z).

We can now complete the proof of Theorem 1.3.8. What remains to be proved is the
final assertion. It is a consequence of a more general fact:

Theorem 1.3.11. If X is a compact subset of CN , then X̂ coincides with Psh-hullCN X.

Proof. For every polynomial P , the function |P | is plurisubharmonic on CN , whence the
inclusion X̂ ⊃ Psh-hullCN X.

For the reverse inclusion, let p be a point of X̂. There is a Jensen measure µ for p
supported byX. The corollary just proved shows that for every plurisubharmonic function
u on CN , u(p) ≤ ∫

X
u(x) dµ(x), which implies the inequality u(p) ≤ supXu(x), whence

p ∈ Psh-hullCN X. The theorem is proved.

More generally, if� ⊂ CN is a pseudoconvex domain andX is a compact subset of
�, then the O(�)-convex hull of X coincides with Psh-hullX.

Corollary 1.3.12. If X ⊂ CN is a compact set, then Psh-hullCN X is compact.

We finish this section with a further simple remark about the relation of polynomially
convex sets and pseudoconvexity: The interior of a polynomially convex set is pseudo-
convex. In fact, the result is more general: In [180, Corollary 2.5.7], it is observed that if
{�α}α∈A is a family of domains of holomorphy, then the interior of ∩α∈A1�α is a domain
of holomorphy.
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1.4. The Cauchy–Fantappiè Integral

In this section we derive a very general integral formula, the Cauchy–Fantappiè formula,
which yields explicit multidimensional integral formulas of Cauchy type in a wide vari-
ety of settings. This integral will be applied in the next section to derive the Oka–Weil
approximation theorem and at other points in the sequel.

The general integral formula can be formulated on an arbitrary complex manifold.
Thus, let M be an N -dimensional complex manifold, which might be a domain in CN .
Let f = (f1, . . . , fN) : M → CN be a holomorphic map and let ϕ = (ϕ1, . . . , ϕN) :
M → CN be a smooth map. The precise degree of smoothness is not important here; it
suffices for ϕ to be of class C 2. Define forms ω′(ϕ) and ω(f ) by

ω′(ϕ) =
N∑
j=1

(−1)j−1ϕj ∂̄ϕ1 ∧ · · · ∧ ̂̄∂ϕj ∧ · · · ∧ ∂̄ϕN

and
ω(f ) = df1 ∧ · · · ∧ dfN .

(The hat indicates the omission of the term under it.) Thus, ω(f ) is a holomorphic form
of bidegree (N, 0), and ω′(ϕ) is a form of bidegree (0, N − 1). Set

ϕ · f = ϕ1f1 + · · · + ϕNfN,
so that ϕ · f is a smooth complex-valued function on M . On the manifold

Mϕ·f = {z ∈ M : ϕ(z) · f (z) �= 0},
define the Cauchy–Fantappiè form �ϕ;f by

�ϕ;f = ω′(ϕ) ∧ ω(f )
(ϕ · f )N .

The main result about these forms is given by the following statement.

Theorem 1.4.1. Let M be a complex manifold of dimension N , let ϕ,ψ : M → CN be
C 2 maps, and let f : M → CN be a holomorphic map.

(a) The forms (ϕ · f )−Nω′(ϕ) and (ψ · f )−Nω′(ψ) are ∂̄-closed on Mϕ·f and Mψ ·f ,
respectively.

(b) There is a form  of bidegree (0, N − 2) on Mϕ·f ∩ Mψ ·f such that

∂̄ = (ϕ · f )−Nω′(ϕ)− (ψ · f )−Nω′(ψ).

The application of this result is based on the following reformulation.
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Corollary 1.4.2.

(a) The forms �ϕ·f and �ψ ·f are ∂̄-closed and d-closed.

(b) On Mϕ·f ∩ Mψ ·f ,

�ϕ·f −�ψ ·f = ∂̄ ( ∧ ω(f )) = d ( ∧ ω(f )) ,
i.e., the forms�ϕ·f and�ψ ·f are ∂̄- and d-cohomologous on their common domain
of definition.

Before we proceed to the proof of the theorem, a few remarks are in order about the
forms involved.

If H is the form given by H =∑N
j=1 ϕjdfj , then ∂̄H =∑N

j=1 ∂̄ϕj ∧ dfj , so that

(∂̄H)N−1 = (N − 1)!
N∑
j=1

∂̄ϕ1 ∧ df1 ∧ · · · ∧ ̂̄∂ϕj ∧ d̂f j ∧ · · · ∧ ∂̄ϕN ∧ dfN,

whence
H ∧ (∂̄H)N−1 = (−1)

N(N−1)
2 (N − 1)!ω′(ϕ) ∧ ω(f ).

The forms ω′(ϕ) and ω(f ) admit natural expressions as determinants. Given differ-
ential forms αjk , 1 ≤ j, k ≤ N , define the determinant of forms

det (αjk) = det

∣∣∣∣∣∣∣
α11 . . . α1N
...

...

αN1 αNN

∣∣∣∣∣∣∣
to be
∑
σ∈SN

ε(σ )ασ(1)1 ∧· · ·∧ασ(N)N , where the summation is over SN , the symmetric
group of degree N , and where ε(σ ) denotes the sign of the permutation σ . We understand
that all the members of a given column are forms of the same degree. Thus, if for each k,
αjk is a form of degree dj , then det (αjk) is a form of degree d1 + · · · + dN . In particular,
some of the columns may consist of functions, which are forms of degree zero. It must be
borne constantly in mind that the formal properties of these determinants differ from those
of determinants with entries from commutative rings.

Short calculations show that

ω(f ) = 1

N ! det

∣∣∣∣∣∣∣
df1 . . . df1
...

...

dfN dfN

∣∣∣∣∣∣∣
and

ω′(ϕ) = 1

(N − 1)! det

∣∣∣∣∣∣∣
ϕ1 ∂̄ϕ1 . . . ∂̄ϕ1
...

...
...

ϕN ∂̄ϕN ∂̄ϕN

∣∣∣∣∣∣∣ .
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Lemma 1.4.3. If ϕ̃j = ϕj
ϕ·f , then ω′(ϕ̃) = (ϕ · f )−Nω′(ϕ).

Proof. By definition,

ω′(ϕ̃) =
N∑
j=1

(−1)j−1 ϕj

ϕ · f ∂̄
(
ϕ1

ϕ · f
)
∧ · · · ∧

̂
∂̄

(
ϕj

ϕ · f
)
∧ · · · ∧ ∂̄

(
ϕN

ϕ · f
)

= (ϕ · f )−(2N−1)
N∑
j=1

(−1)j−1ϕj [ϕ · f ∂̄ϕ1 − ϕ1∂̄(ϕ · f )] ∧ · · · ∧ [̂j ]

∧ · · · ∧ [ϕ · f ∂̄ϕN − ϕN ∂̄(ϕ · f )].

We have ∂̄(ϕ · f ) ∧ ∂̄(ϕ · f ) = 0, which implies that this sum contains two kinds
of nonzero terms: those that contain exactly one factor ∂̄(ϕ · f ) and those that contain no
such factors. The latter terms have sum

(ϕ · f )−N
N∑
j=1

(−1)j−1ϕj ∂̄ϕ1 ∧ · · · ∧ ̂̄∂ϕj ∧ · · · ∧ ∂̄ϕN ,

so the lemma will be proved if we can show that the sum of the terms of the former kind
is zero. This can be done in the following way.

Except for a factor of −(ϕ · f )N−2, the sum of the terms of the first kind is

N∑
j=1

(−1)j−1ϕj

N∑
k=1,
k �=j

∂̄ϕ1 ∧ · · · ∧ ∂̄ϕk−1 ∧ ϕk∂̄(ϕ · f ) ∧ · · · ∧ ∂̄ϕj−1 ∧ ̂̄∂ϕj
∧ ∂̄ϕj+1 ∧ · · · ∧ ∂̄ϕN .

In this we can replace ∂̄(ϕ · f ) by fk∂̄ϕk + fj ∂̄ϕj to find that the sum is

N∑
j=1

N∑
k=1,
k �=j

(−1)j−1ϕjϕk∂̄ϕ1 ∧ · · · ∧ ∂̄ϕk−1 ∧ [fk∂̄ϕk + fj ∂̄ϕj ] ∧ · · ·

∧ ∂̄ϕj−1 ∧ ̂̄∂ϕj ∧ ∂̄ϕj+1 ∧ · · · ∧ ∂̄ϕN .
Fix a pair of integers p and q with 1 ≤ p < q ≤ N , and consider the coefficient of

ϕpϕq in the last sum. It is

{(−1)p−1∂̄ϕ1 ∧ · · · ∧ ∂̄ϕp−1 ∧ ̂̄∂ϕp ∧ ∂̄ϕp+1 ∧ · · · ∧ ∂̄ϕq−1

∧ [fp∂̄ϕp + fq ∂̄ϕq ] ∧ ∂̄ϕq+1 ∧ · · · ∧ ∂̄ϕN }
+ {(−1)q−1∂̄ϕ1 ∧ · · · ∧ ∂̄ϕp−1 ∧ [fp∂̄ϕp + fq ∂̄ϕq ] ∧ ∂̄ϕp+1 ∧ · · · ∧ ∂̄ϕq−1

∧ ̂̄∂ϕq ∧ ∂̄ϕq+1 ∧ · · · ∧ ∂̄ϕN }.
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The terms in braces differ by sign, so their sum is zero. The lemma is proved.

The proof we give for Theorem 1.4.1 is based on geometric notions. Given ϕ and ψ
as in the theorem, introduce ϕ̃ and ψ̃ by

ϕ̃ = (ϕ · f )−1ϕ and ψ̃ = (ψ · f )−1ψ,

so that ϕ̃ · f = 1 = ψ̃ · f .
Consider the map H : [0, 1] × M → CN × CN given by

H(t, z) = (t ϕ̃(z)+ (1 − t)ψ̃(z), f (z)) .
With coordinates ξ = (ξ1, . . . , ξN) on the first factor of CN × CN and coordinates ζ =
(ζ1, . . . , ζN) on the second, the range of H is contained in the complex submanifold5

V = {(ξ, ζ ) ∈ CN × CN : ξ · ζ = ξ1ζ1 + · · · + ξNζN = 1} of CN × CN , and H is a
smooth homotopy through V connecting the maps �̃ = (ϕ̃, f ) and "̃ = (ψ̃, f ) of M
into V .

Introduce the holomorphic (2N − 1)-form η on CN × CN by

η =
N∑
j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξN ∧ dζ1 ∧ · · · ∧ ζN .

The form η is not closed, for dη = Ndξ1 ∧ · · · ∧ dξN ∧ dζ1 ∧ · · · ∧ dζN . However, if
ι : V → CN × CN denotes the inclusion, then ι∗η, as a holomorphic form of maximal
degree on V , is closed. The function f is holomorphic, so Lemma 1.4.3 shows that

�ϕ;f = ω′(ϕ) ∧ ω(f )
(ϕ · f )N = �̃∗η = �̃∗ι∗η

and

�ψ;f = ω′(ψ) ∧ ω(f )
(ψ · f )N = "̃∗η = "∗ι∗η.

The form ι∗η is a closed form on V , and the maps �̃ and "̃ are homotopic through V , so
it follows that the forms �ϕ;f and �ψ;f are cohomologous:

(1.8) �ϕ;f = �ψ;f + dα
for a suitable form α. (This conclusion is based on the homotopy formula for forms,
which we explain below.) The result (1.8) is sufficient to yield the general integral formula
below, but it is not quite the result (b) of the theorem. To obtain the result (b), it seems
to be necessary to examine the mechanism of the homotopy formula, rather than merely
invoke the final result.

5Denote by πξ the projection of V into the first factor of C
N . The range of πξ is C

N \{0}, and πξ has maximal

rank. For ξ0 ∈ C
N \{0}, the fiber π−1

ξ (ξ0) is the affine subspace {ζ ∈ C
N : ξ0 · ζ = 1} of C

N . We see that V

is a holomorphic fiber bundle over C
N \{0}. It is called the Leray fibration. A projective version of this bundle

was introduced by Leray [221].
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The setting for the homotopy formula for forms is this. Fix a smooth n-dimensional
manifold N and a form µ on N × R, µ of degree p ≥ 1. Write

(1.9) µ = µ1 + dt ∧ ν,
where t is the coordinate on R. The form µ1 is of degree p, ν of degree p − 1, and we
assume that µ1 does not involve dt . Denote by E r the space of forms of degree r , and
define an operator

I : E p(N × R)→ E p−1(N )

as follows. For each t ∈ R, let ιt : N → N ×R be the embedding given by ιt (x) = (x, t).
Then ιt∗ denotes the induced map of tangent spaces. Given a p-form µ on N × R,
decompose it according to (1.9) and then for p − 1 vector fields X1 . . . , Xp−1 on N , set

Iµ(X1, . . . , Xp−1) =
∫ 1

0 ν(ιt∗X1, . . . , ιt∗Xp−1) dt .

Theorem 1.4.4. (Homotopy formula for forms.) For a p-form µ on the product N × R,

ι∗1µ− ι∗0µ = d(Iµ)+ I (dµ).
Proof. We can use a partition of unity to reduce to the situation in which the support of µ
is contained in a coordinate patch.

Suppose that in terms of local coordinates x1, . . . , xn on N ,

µ = f dxI = f dxi1 ∧ · · · ∧ dxip .
Then because dµ = θ + ∂f

∂t
dt ∧ dxI with θ independent of dt ,

I (dµ) =
(∫ 1

0

∂f

∂t
(·, t) dt

)
dxI = f (·, 1)dxI − f (·, 0)dxI = ι∗1µ− ι∗0µ.

In this case, Iµ = 0, and the result is seen to be correct.
If, on the other hand, for some J = (j1, . . . , jp−1),

µ = f dt ∧ dxJ ,
then ι∗0µ = 0 = ι∗1µ. Also,

I (dµ) = I
(
−

n∑
j=1

∂f

∂xj
dt ∧ dxj ∧ dxJ

)
= −

n∑
j=1

(∫ 1

0

∂f

∂xj
(·, t) dt

)
dxj ∧ dxJ ,

and

d(Iµ) = d
(∫ 1

0
f (·, t)dt

)
dxJ =

n∑
j=1

∫ 1

0

∂f

∂xj
(·, t) dt) dxj ∧ dxJ .

These equations give I (dµ)+ d(Iµ) = 0, so the theorem is proved.
A corollary of this is the fact used above that if µ is closed, then ι∗1µ− ι∗2µ is exact.

Another corollary, which is the form in which we shall use the result, is this:
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Corollary 1.4.5. If N and N ′ are smooth manifolds, and if ϕ0, ϕ1 : N → N ′ are
smoothly homotopic smooth maps, then for any closed formµ on N ′, ϕ∗0µ−ϕ∗1µ is exact.

The proof will yield a bit more than we have stated.

Proof. The hypothesis that ϕ0 and ϕ1 are smoothly homotopic means that there is a smooth
mapH : N ×R → N ′ withH(x, 0) = ϕ0(x),H(x, 1) = ϕ1(x). If ι0, ι1 : N → N ×R

are the inclusions as above, then ϕ0 = H ◦ ι0 and ϕ1 = H ◦ ι1, whence

ϕ∗0µ− ϕ∗1µ = ι∗0H ∗µ− ι∗1H ∗µ.

The homotopy formula for forms shows that this is dI (H ∗µ) + I (dH ∗µ). Granted that
µ is closed, H ∗µ is also closed. This finishes the proof of the lemma.

Notice that if the form µ is closed, the proof gives an explicit formula for a form
with differential ι∗1µ− ι∗0µ.

We can now obtain the ∂̄-exactness statement (b) of Theorem 1.4.1. To do this, we
apply the construction in the proof of the homotopy formula to find an explicit expression
from which (b) will follow. The pullback of the form η on V (or CN × CN) by the map
H : M × R → CN × CN is

H ∗η =
N∑
j=1

(−1)j−1
[
t
ϕj

ϕ · f + (1 − t) ψj
ψ · f

]
d

[
t
ϕ1

ϕ · f + (1 − t) ψ1

ψ · f
]
∧ · · ·

· · · ∧ [j ] ∧ · · · ∧ d
[
t
ϕ
N

ϕ · f + (1 − t) ψN
ψ · f

]
∧ ω(f ).

The form ω(f ) has bidegree (N, 0), so all the terms dϕk and dψk in this expression can
be replaced by ∂̄ϕk and ∂̄ψk respectively. We can then write

H ∗η = F(z, t)µ ∧ ω(f )+ dt ∧ ν ∧ ω(f ),
whereF is a function,µ a form that does not involve dt , and ν a form of bidegree (0, N−2)
that depends on t . In terms of the operator I considered above, we have

�ϕ;f −�ψ;f = d(IH ∗η) = ∂̄
{∫ 1

0
ν dt

}
∧ ω(f ),

where by
∫ 1

0 ν dt we mean the (0, N − 2)-form obtained by integrating the coefficients of
ν with respect to t . Call this form  . It is a (0, N − 2)-form with

(1.10) ∂̄ = (ϕ · f )−Nω′(ϕ)− (ψ · f )−Nω′(ψ),

and our proof is complete.

We are now able to prove a very general integral representation formula. Denote by

cN the constant cN = (−1)
1
2N(N−1)

(N−1)!
(2πi)N

.
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Definition 1.4.6. If M is a complex manifold, if z ∈ M , and if f1, . . . , fr ∈ O(M ), then
f1, . . . , fr are said to generate the ideal Iz if z is the only common zero of the f ’s and if,
in addition, in terms of local coordinates ζ1, . . . , ζN defined near z, the matrix of partial

derivatives
(
∂fj
∂ζk

)
1≤j≤n
1≤k≤N

has rank N at z.

When r = N , the rank condition is the condition that df1 ∧ · · · ∧ dfN not vanish
at z.

Theorem 1.4.7. Let M be anN -dimensional complex manifold, letD ⊂ M be a relatively
compact smoothly bounded domain, and let f1, . . . , fN ∈ O(M ) generate the ideal Iz,
z ∈ D. If ϕ1, . . . , ϕN are smooth functions on M such that ϕ · f does not vanish on bD,
then for every F ∈ O(M ),

F(z) = cN
∫
bD

F�ϕ;f .

Proof. By taking ψ = f̄ = (f̄1, . . . , f̄N ) in Corollary 1.4.2, we find that the forms �ϕ;f
and �f̄ ;f are ∂̄ cohomologous on a neighborhood of bD: For some smooth (N,N −
2)-form χ defined near bD, �ϕ;f − �f̄ ;f = ∂̄χ , whence, by the holomorphicity of
F and type considerations, F�ϕ;f = F�f̄ ;f + d(Fχ). Stokes’s theorem implies that
cN
∫
bD
F�ϕ;f = cN

∫
bD
F�f̄ ;f . By hypothesis, df1 ∧ · · · ∧ dfN = ω(f ) is not zero at

z, so a neighborhood of z is mapped biholomorphically onto a neighborhood of 0 in CN

by f . The form F�f̄ ;f is closed on M \ {z}, so Stokes’s theorem yields cN
∫
bD
F�ϕ;f =

cN
∫
{ζ∈M :|f (ζ )|=ε} F�f̄ ;f . In the integral on the right make the change of variable w =

f (ζ ) to obtain

cN

∫
bD

F�ϕ;f = cN
∫
|w|=ε

F
(
f−1(w)

)
�w̄;w.

We have�w̄;w = ω′(w̄)∧ω(w)
|w|2N = ε−2Nω′(w̄)∧ω(w) on |w| = ε, so that the last integral is

ε−2N
{∫

|w|=ε
{F(f−1(w))− F(z)}ω′(w) ∧ ω(w)

}
+ ε−2NF(z)

∫
|w|<ε

Nω(w̄) ∧ ω(w),

as follows from Stokes’s theorem and the equality dω′(w̄) = Nω(w̄). The first of these
terms tends to zero as ε → 0, for the area of |w| = ε is const ε2N−1, the coeffi-
cients of ω′(w̄) ∧ ω(w) are O(w), and |F(f−1(w)) − F(z)| → 0 as ε → 0. From

ω(w̄) ∧ ω(w) = (−1)
1
2N(N−1)dw̄1 ∧ dw1 ∧ · · · ∧ dw̄N ∧ dwN, we obtain the value of

ε−2NF(z)
∫
|w|<ε Nω(w̄)∧ω(w) to be (−1)

1
2N(N−1)(2i)NN πN

N ! F(z), and the theorem is
proved.

Given the vast literature of the subject, one must be hesitant to assign authorship
to this theorem. Theorem 1.4.1 seems first to have been formulated by Koppelman [210].
Gleason [144] has given a more general integral formula, which he obtained by quite dif-
ferent methods, andAı̌zenberg [2] has given a formula for domains in CN that is essentially
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equivalent to the formula above. There is also a paper of Harvey [164] that takes a very
general view of integral formulas. Conceptually, it is rather near Gleason’s work, though
in detail it is entirely distinct. Finally, mention must be made of the earlier seminal work
of Leray [221] in which the notion of Cauchy–Fantappiè form seems first to have been
introduced. Leray’s work was developed further by Norguet [266].

The literature of integral formulas has grown enormously in recent years. We refer
the interested reader to the book of Aı̌zenberg and Juzhakov [3], which has an extensive list
of references, to that of Griffiths and Harris [155], and to the encyclopedia paper by Henkin
[169]. The reports in the Norguet seminars, e.g., [267], contain much interesting material
on integral formulas. The subject of integral formulas in several complex variables has
now developed to the point that it is entirely reasonable to speak of “the method of integral
formulas’’ as Henkin does [169].

A special case of the Cauchy–Fantappiè integral is important to notice: the Bochner–
Martinelli formula.

This integral formula is valid on a bounded domain D ⊂ CN on which Stokes’s
theorem is valid. It is obtained by fixing a pointw ∈ D and letting the holomorphic map f
in the Cauchy–Fantappiè formula be the translation given by f (z) = z−w and the smooth
map ϕ be the conjugate of f , so that ϕ(z) = w − z. Then ϕ(z) · f (z) = |z−w|2, and the
Cauchy–Fantappiè formula yields the integral formula that for g holomorphic on D̄,

(1.11) g(w) = cN
∫
bD

g(z)
ω′(z− w) ∧ ω(z)

|z− w|2N .

This is the Bochner–Martinelli integral formula for the domainD. In the one-dimensional
case, N = 1, this is just the usual Cauchy integral formula for the domain D.

It is worth observing that to obtain the Bochner–Martinelli formula, not all of the
details of the proof of the full Cauchy–Fantappiè formula are necessary. In essence, we
need only the remark that the form kBM(z, w) = ω′(z−w)∧ω(z)

|z−w|2N is closed where it is defined.
Then Stokes’s theorem can be applied exactly as in the proof of the Cauchy–Fantappiè
formula to yield the formula. As for the degree of smoothness on bD, all that is required
is that Stokes’s theorem be valid on D.

The Bochner–Martinelli formula, like the Cauchy integral formula, reproduces holo-
morphic functions from their boundary values.

It is well to point out explicitly that the hypothesis that g ∈ C 1(D̄) is still in force
in the formula (1.11). However, for some domains, this formula can be established under
milder regularity hypotheses on g. LetD be a domain with C 1 boundary, so that for some
C 1 function,Q, defined on a neighborhood V of bD,D ∩V = {w ∈ V : Q(w) < 0} and
dQ �= 0 on bD. If g ∈ A(D) and if z ∈ D, then for sufficiently small ε > 0, the corollary
yields

g(z) = cN
∫
{Q=−ε}

g(w)kBM(z, w).

We can take the limit as ε→ 0+ to obtain the desired formula (1.11). The formula (1.11)
will hold for g ∈ A(D) under conditions on bD less stringent than that it be of class C 1,
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but of course, the weaker the hypothesis, the more involved the proof becomes. We shall
not pursue the question of establishing the Bochner–Martinelli formula under the weakest
possible hypotheses.

The formula (1.11) was given in [237] and in [67]. There seems to have been a minor
controversy about the priority of the discovery of the formula. See [67, p. 652, note added
in proof] and [240, p. 117].

There is the following important difference between the Cauchy integral formula in
one variable and the Bochner–Martinelli formula. If f is an arbitrary integrable function
on the curve γ in C, then the function F given by F(z) = 1

2πi

∫
γ
f (ζ )
ζ−z dζ is holomorphic

off γ , as is clear from the holomorphy in z of the Cauchy kernel 1
ζ−z for fixed ζ . The

corresponding integrals of Bochner–Martinelli type do not have the analogous property.
If D is a bounded smoothly bounded domain in CN , then given an integrable function g
on bD, the function G given by

G(z) = cN
∫
bD

g(w)kBM(z, w)

is, generally speaking, not holomorphic anywhere in CN\bD.
It is, however, harmonic there. This is most easily seen from the expression (1.11).

Write G(z) = G1(z)+ · · · +GN(z) with

Gj(z) = (−1)j−1cN

∫
bD

g(w)
w̄j − z̄j
|w − z|2N dw̄1 ∧ · · · ∧ d̂w̄j ∧ · · · ∧ dw̄N ∧ ω(w).

For fixedw, 1
|w−z|2N−2 is harmonic in CN\{w}. The same is therefore true of its derivative

∂
∂zj

1
|w−z|2N−2 = (N − 1)

w̄j−z̄j
|w−z|2N . Consequently, each of the functions Gj is harmonic

off bD.

It is sometimes useful to express the Bochner–Martinelli integral as an integral against
the surface area measure on bD. The next lemma allows this. It is useful to use the notation
that ω[k](z) denotes the form dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzN . The form ω[k](z̄) is defined in
a similar way.

Lemma 1.4.8. Let D be a bounded domain in CN with bD of class C 1 and with C 1

defining functionQ. As functionals on C (bD),

ω[k](z) ∧ ω(z̄) = (−1)k−1+ 1
2N(N−1)(2i)N

∂Q

∂zk
|grad Q|−1dS

and

ω[k](z̄) ∧ ω(z) = (−1)k−1+ 1
2N(N−1)(2i)N

∂Q

∂z̄k
|grad Q|−1dS.

The statement means that for every continuous function f on bD, the integral of f
against the differential form on the left is the same as the integral of f against the measure
on the right.

The two formulas are equivalent by complex conjugation.
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Proof. Denote by ι the inclusion bD ↪→ Cn. At a point of bD where ι∗dzk �= 0, we have
∂Q
∂zk

�= 0, and conversely. Near such points, bD is given by

yk = H(z1, . . . , zk−1, xk, zk+1, . . . , zN)

or else by
xk = H(z1, . . . , zk−1, yk, zk+1, . . . , zN).

Consider the former case, and let

�(z1, . . . , zk−1, xk, zk+1, . . . , xN) = (z1, . . . , zk−1, xk + iH, zk+1, . . . , zN).

Then

�∗ι∗(ω[k](z) ∧ ω(z̄))
= �∗ι∗ω[k](z) ∧ dz̄1 ∧ · · · ∧ dz̄k−1 ∧ (dxk − idH) ∧ dz̄k+1 ∧ · · · ∧ dz̄N ,
= �∗ι∗ω[k](z) ∧ dz̄1 ∧ · · · ∧ dz̄k−1 ∧

(
1 − i ∂H

∂xk

)
dxk ∧ dz̄k+1 ∧ · · · ∧ dz̄N .

However,Q is a defining function for bD, so ∂H
∂xk

= − ∂Q
∂xk

[
∂Q
∂yk

]−1
, whence

�∗ι∗(ω[k](z) ∧ ω(z̄)) = 2i
∂Q

∂zk

[
∂Q

∂yk

]−1

�∗ι∗ω[k](z) ∧ dz̄1 ∧ · · · ∧ dz̄k−1(1.12)

∧ dxk ∧ dz̄k+1 ∧ · · · ∧ dz̄N .
To complete the proof, compute the pullback�∗dS of the volume form. It is given by

�∗dS = ±
(
i

2

)N−1

J�dz1 ∧ dz̄1 ∧ · · · ∧ dzk−1 ∧ dz̄k−1 ∧ dxk(1.13)

∧ dzk+1 ∧ dz̄k+1 ∧ · · · ∧ dzN ∧ dz̄N ,
where the Jacobian J� is given by

(1.14) J� =
√

1 + |grad H |2 =
∣∣∣∣ ∂Q∂yk
∣∣∣∣−1

|gradQ|

and where the sign is+ if the parameterization� is orientation-preserving,− if orientation-
reversing. If we compare (1.12) and (1.13) using (1.14), we find that

�∗ι∗ω[k](z) ∧ ω(z̄)] = ±(−1)k−1+ 1
2N(N+1)(2i)N

∂Q

∂zk

∣∣∣∣ ∂Q∂yk
∣∣∣∣(1.15)

×
[
∂Q

∂yk

]−1

|gradQ|−1�∗dS.
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The final observation is that along the part of bD where ∂Q
∂yk
> 0, � is orientation-

reversing, along the part where ∂Q
∂yk

< 0, � is orientation-preserving. To verify this, it
suffices to verify that for fixed z1, . . . , zk−1, zk+1, . . . , zN , the partial map

xk �→ (z1, . . . , zk−1, xk + iH (z1, . . . , zk−1, xk, zk+1, . . . , zN) , zk+1, . . . , zN)

is orientation-preserving when ∂Q
∂yk

< 0, orientation-reversing in the contrary case. This
means that the matter reduces to a question in the plane, and then the result is easily verified.

Thus, in (1.15) on the right we have ±
∣∣∣ ∂Q∂yk ∣∣∣ [ ∂Q∂yk ]−1 = 1, so the lemma is proved.

The lemma implies that if f is a function on bD and if F : CN \ bD → C is the
Bochner–Martinelli integral of f , then

(1.16) F(w) = (N − 1)!
πN

∫
bD

f (z)

|z− w|2N
1

| gradQ|
N∑
k=1

∂Q

∂zk
(z)(zk − wk) dS(z).

In terms of the vector field $ defined on a neighborhood of bD by

$ = 1

| gradQ|
N∑
k=1

∂Q

∂zk

∂

∂zk
,

the integral (1.16) is

(1.17) F(w) = −(N − 2)!
πN

∫
bD

f (z)$
1

|z− w|2(N−1)
dS(z).

This formula goes back to [238]. We are implicitly supposing that N ≥ 2. The correct
version in the plane is the classical formula

1

2πi

∫
bD

f (ζ )
dζ

ζ − z = 1

2π

∫
bD

f (ζ )

(
∂

∂ν
+ i ∂
∂τ

)
log|ζ − z| ds(ζ ).

See [277, p. 110].
The vector field $ has a clear geometric meaning. If zk = x2k−1 + ix2k , then a

calculation shows that

$ = 1

4| gradQ| (grad Q+ iJgrad Q)

if J denotes the complex structure operator on CN , i.e., the operator on vector fields
determined by J ∂

∂x2k−1
= ∂
∂x2k

and J ∂
∂x2k

= − ∂
∂x2k−1

. The vector grad Q
|grad Q| is the outer unit

normal to bD, and Jgrad Q
|grad Q| is a unit vector that is tangent to bD. The former vector field

we denote by ∂
∂ν

, the latter by ∂
∂τ

. Expressed in these terms, the formulas (1.16) and (1.17)
are equivalent to

(1.18) F(w) = −(N − 1)!
4πN

∫
bD

f (z)

(
∂

∂ν
+ i ∂
∂τ

)
1

|z− w|2(N−1)
dS(z).
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The integral
∫
bD
f (z) ∂

∂ν
1

|z−w|2(N−1) dS(z) is the double layer potential with moment f ;
such integrals play a role in potential theory. See, e.g., [246].

These formulas suggest a natural way of defining the Bochner–Martinelli integral of
a measure: If µ is a finite regular Borel measure on bD, the Bochner–Martinelli integral
of µ is the harmonic function on CN \ bD defined by

(1.19) F(w) = −(N − 2)!
4πN

∫
bD

(
∂

∂ν
+ i ∂
∂τ

)
1

|w − z|2(N−1)
dµ(z).

There is the obvious possibility of replacing the measure µ by more general functionals,
e.g., by distributions or by analytic functionals, granted suitable smoothness properties
for bD.

To conclude this section on integral formulas, we notice that implicit in what we have
done above is a proof of an integral representation formula for smooth but not necessarily
holomorphic functions. For this, fix a bounded domainD in CN with bD of class C 2, and
fix a function f that is defined and of class C 2 on a neighborhood of D̄. Let w be a point
of D. We have noted above that the form ω′(w−z)∧ω(z)

|z−w|2N is d- and ∂̄-closed on CN \ {w}. If
Dε denotes the domain obtained from D by excising from D the closed ball of radius ε
centered at the point w, then by Stokes’s theorem,

(1.20)
∫
bD

f (z)
ω′(z− w) ∧ ω(z)

|z− w|2N −
∫
{z:|z−w|=ε}

f (z)
ω′(w − z) ∧ ω(z)

|z− w|2N

=
∫
Dε

∂̄f (z) ∧ ω
′(z− w) ∧ ω(z)
|z− w|2N .

Passing to the limit as ε→ 0+ yields the formula

(1.21) f (w) = cN
(∫
bD

f (z)
ω′(z− w) ∧ ω(z)

|z− w|2N −
∫
D

∂̄f (z) ∧ ω
′(z− w) ∧ ω(z)
|z− w|2N

)
.

In the planar case,N = 1, this formula is habitually referred to as the generalized Cauchy
integral formula.

1.5. The Oka–Weil Theorem

The approximation theorem of Runge states that if K is a compact subset of the complex
plane, then every function holomorphic on a neighborhood of K can be approximated
uniformly on K by rational functions with poles off K . When K is polynomially convex,
the rational approximating functions can be chosen to be polynomials.

A natural N -dimensional analogue of Runge’s theorem is the Oka–Weil theorem,
which is formulated as follows.

Theorem 1.5.1. If the compact set K in CN is polynomially convex and if f is a function
holomorphic on a neighborhood of K , then given ε > 0 there is a polynomial P with
‖f − P ‖K < ε.
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In classical function theory, Runge’s approximation theorem is often derived by
examining the Riemann sums for certain Cauchy integrals. An analogous process based
on the Cauchy–Fantappiè integral can be used to obtain the Oka–Weil approximation
theorem in CN .

The integral formula we need for this purpose is one valid on convex domains in CN .
Fix a convex function Q of class C 2 on CN . Thus, given holomorphic coordinates

z1, . . . , zN on CN with zj = x2j−1 + ix2j , the real Hessian matrix

HQ =
(
∂2Q

∂xj∂xk

)
1≤j,k≤2N

is nonnegative:
∑N
j,k=1

∂2Q
∂xj ∂xk

(z)yj yk ≥ 0 for all z ∈ CN and all y ∈ R2N . (For the theory

of convex functions, see [182, 293].)
Let D = {z ∈ CN : Q(z) < 0}, so that D is an open convex subset of CN ,

which we assume to be nonempty. Then dQ is zero-free on bD. To see this, assume Q
to take its minimum at the point z0 ∈ D, and consider a point w0 ∈ bD. The function
h : (0,∞) → R given by h(t) = Q(z0 + t (w0 − z0)) is convex and satisfies h(0) =
Q(z0) < 0 = Q(w0) = h(1). Thus, h′ is not identically zero in (0, 1). Because h is
convex and of class C 2, h′′ ≥ 0, so h′ is nondecreasing on (0, 1), whence h′(1) �= 0. This
implies that dQ(w0) �= 0.

Introduce the complex gradient ∇CQ : CN → CN given by

∇CQ =
(
∂Q

∂z1
, . . . ,

∂Q

∂zN

)
.

This is a map of class C 1 with the property that if w ∈ D and z ∈ bD, then

∇CQ(z) · (z− w) =
N∑
j=1

∂Q

∂zj
(z)(zj − wj) �= 0,

for if zj = x2j−1 + ix2j as above, and wj = y2j−1 + iy2j , then

�(∇CQ(z) · (z− w)
) = 1

2

2N∑
j=1

∂Q

∂xj
(z)(xj − yj ).

Thus the equation of the real tangent plane to bD at z is �(∇CQ(z) · (z − w)
) = 0; by

convexity, this plane does not pass through D.
IfQwere of class C 3 rather than C 2, the general Cauchy–Fantappiè integral formula

would yield that for F ∈ A(D), w ∈ D,

(1.22) F(w) = cN
∫
bD

F(z)
ω′(∇CQ(z)) ∧ ω(z)
[∇CQ(z) · (z− w)]N .

This formula is correct with Q only of class C 2. Given that Q is of class C 2, then
on a large ball in CN , Q can be approximated in the C 2 sense by functions Q̃ of class
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C∞. The formula is correct if Q̃ replaces Q in it. But because the formula involves only
second-order derivatives of Q, and Q̃ approximates Q in the C 2 sense, the formula is
correct withQ.

The formula (1.22) is implicit in the paper of Leray [221]; see also [266]. The formula
was derived ab initio by Aı̌zenberg [2] using Stokes’s theorem, though Aı̌zenberg gave the
details only in C2. An explicit derivation of it from Leray’s work is given in [346].

It is of interest to note, following [2], that the formula (1.22) does not require the
full hypothesis of convexity; it is sufficient forD to be lineally convex in the sense that at
each point z ∈ bD, the maximal complex subspace of the tangent space Tz(bD) is disjoint
from D. Analytically, this is simply the condition that if G is a defining function for bD,
then for no z ∈ bD does ∇CG(z) · (z−w) = 0 for some w ∈ D. This geometric property
is weaker than convexity.

The form ω′(∇CQ) ∧ ω(z) that appears in formula (1.22) admits an expression in
terms ofQ and its derivatives as follows.

Lemma 1.5.2. The forms ∂Q ∧ (∂̄∂Q)N−1 and

(−1)
1
2N(N−1)(N − 1)!ω′(∇CQ) ∧ ω(z)

coincide.

Proof. The proof is a direct calculation: IfQj = ∂Q
∂zj

, then

∂Q ∧ (∂̄∂Q)N−1 =
( N∑
j=1

Qjdzj

)
∧ (N − 1)!

N∑
j−1

∂̄Q1 ∧ dz1

∧ · · · ∧ [j ] · · · ∧ ∂̄QN ∧ dzN

= (N − 1)!(−1)
1
2 (N−1)(N−2)

N∑
j=1

Qjdzj ∧ ∂̄Q1

∧ · · · ∧ [j ] ∧ · · · ∧ ∂̄QN ∧ dz1 ∧ · · · ∧ [j ] ∧ · · · ∧ dzN
= (N − 1)!(−1)

1
2N(N−1)ω′(∇CQ) ∧ ω(z).

The lemma is proved.

The constant cN is (−1)
1
2N(N−1)

(N−1)!
(2πi)N

, so the Cauchy–Fantappiè formula (1.22) can
be written as

(1.23) F(w) = (−1)N−1

(2πi)N

∫
bD

F(z)
∂Q ∧ (∂∂̄Q)N−1

[∇CQ(z) · (z− w)]N .

The integral formula we have for convex domains assumes a particularly simple form
in the special case of the ball BN . The ball admits the strictly convex defining functionQ
given byQ(z) = |z|2 − 1.
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With this choice of Q and with 〈w, z〉 again the Hermitian inner product on CN ,
equation (1.23) and Lemma 1.4.8 yield the formula

(1.24) F(w) = (N − 1)!
2πN

∫
S2N−1

F(z)dS(z)

(1 − 〈w, z〉)N
for F ∈ A(BN) and w ∈ BN . This formula is often referred to as the Cauchy integral
formula for the ball or, alternatively, as the Szegő integral representation for the ball.

The formula (1.24) seems to have appeared in function theory surprisingly late. It
does not appear in the classical book of Osgood or that of Bochner and Martin on the
theory of functions of several complex variables. It is contained in some work of Hua
from the 1940s and 1950s. In this connection, see Hua’s book [184]. A direct derivation of
the formula (1.24), which depends on the theory of Hilbert spaces with kernel functions,
was given by Bungart [76]. Neither Bungart’s derivation of the formula nor that of Hua
exhibits it as an instance of the Cauchy–Fantappiè formula.

We now take up the proof of the Oka–Weil theorem. The proof depends on a division
lemma.

Lemma 1.5.3. If P is a polynomial in N complex variables, there exist polynomials
p1, . . . , pN in 2N complex variables such that for all z,w ∈ CN,

P (z)− P(w) =
N∑
r=1

(zr − wr)pr(z, w).

Proof. One can give purely algebraic proofs for this. Alternatively, it is an immediate
consequence of the fundamental theorem of calculus:

P(z)− P(w) =
∫ 1

0

∂

∂t
P (w + t (z− w)) dt =

N∑
r=1

(zr − wr)
∫ 1

0
Pr (w + t (z− w)) dt,

wherein we use the notationPr to denote the derivative ofP with respect to the rth variable.
The integrals here are polynomials in z and w.

Notice that this simple analytic process yields a corresponding decomposition for
arbitrary functions holomorphic on a convex domain in CN .

Proof of the Oka–Weil theorem. Let the function f is holomorphic on the bounded
neighborhood W of K . Given ε, we are to find a polynomial P with ‖f − P ‖K < ε.
The assumption thatK is polynomially convex implies the existence of a finite number of
polynomials, sayf1, . . . , fq , such that for each j , |fj | < 1

2 onK but max1≤j≤q |fj (z)| > 1
for each z ∈ bW . (The boundary bW is compact, for D is bounded.) Assume that among
the fj there are enough functions to guarantee that if F(z) = (f1(z), . . . , fq(z)

)
, then F

is one-to-one and regular on CN . The unit polydisk Uq is convex, so there is a smoothly
bounded convex domain D with F(K) ⊂ D ⊂ Uq . (For D we can take the domain
{ζ ∈ Cq : |ζ1|2l + · · · + |ζq |2l < c} for suitably large positive integral l and for c suitably
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near, but less than, one.) We can assume in addition that bD meets the manifold F(W)
transversally. For some smooth strictly convex functionQ defined on Cq ,D = {ζ ∈ Cq :
Q(ζ) < 0} and dQ �= 0 on bD. If ζ ∈ bD, the quantity

∑q

j=1Qj(ζ )(ζj − ηj ) vanishes

for no point η in D. (We useQj to denote ∂Q
∂ζj

.)

The function fj is a polynomial, so there are polynomials fjk such that for z,w ∈
CN,

fi(z)− fj (w) =
N∑
k=1

(zk − wk)fjk(z, w).

Then

q∑
j=1

Qj (F (z))
(
fj (z)− fj (w)

) = N∑
k=1

(zk − wk)
q∑
j=1

fjk(z, w)Qj (F (z))

=
N∑
k=1

(zk − wk)ϕk(z, w)

if ϕk(z,w) =∑q

j=1 fjk(z, w)Qj (F (z)).
For a fixed w ∈ {w ∈ W : Q(F(w)) < 0}, the Cauchy–Fantappiè integral formula

gives

(1.25) f (w) = cN
∫
b{z∈W :F(z)∈D}

f (z)
ω′(ϕ) ∧ ω(z)(

N∑
k=1
(zk − wk)ϕk(z, w)

)N
if ω′(ϕ) is the form

N∑
k=1

(−1)k−1ϕk(z,w)∂̄zϕ1(z, w) ∧ · · · ∧ [k] ∧ · · · ∧ ∂̄zϕN(z,w),

which has coefficients that depend polynomially on w. Taking Riemann sums in the inte-
gral, (1.25) yields that on K , f admits uniform approximation by functions of the form

r0∑
r=1

f (z(r))hr(w)

[
N∑
k=1

(z
(r)
k − wk)ϕk(z(r), w)

]−N
,

where hr is a polynomial and z(1), . . . , z(r0) are some points in b{z ∈ W : F(z) ∈ D}.
What has to be seen then is that a function g of the form

g(w) =
(
N∑
k=1

(z
(r)
k − wk)ϕk(z(r), w)

)−1
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admits polynomial approximation on K . The map F is polynomial, so it is sufficient to
see that the function gζ given for fixed ζ withQ(ζ) = 0 by

gζ (η) =
( q∑
j=1

Qj̄ (ζ )(ζj − ηj )
)−1

can be approximated uniformly on compacta inD by polynomials. However, this is clear:
IfE is such a compact set, there is a ballB that containsE and on which gζ is holomorphic
because gζ is holomorphic off a certain affine hyperplane in Cq that is disjoint from D.
We are done, for gζ admits a power series expansion in B.

This theorem was proved by Weil [361] and Oka [271]. The present approach using
Cauchy–Fantappiè integrals has been noticed by several mathematicians. See [287].

It is worth dwelling on two of the ingredients of the proof of the Oka–Weil theorem.
One is the possibility of division provided by Lemma 1.5.3.

This kind of division is possible much more generally: If D ⊂ CN is a domain
of holomorphy, then for each function f holomorphic on D, there exist functions gj
holomorphic on D ×D such that

(1.26) f (z)− f (w) =
N∑
j=1

gj (z, w)(zj − wj).

For this kind of division to hold, it is not necessary that D be a domain of holomorphy.
A theorem of Ortega [274] shows that for the decomposition (1.26) to be possible for
all functions f , it is necessary and sufficient that the envelope of holomorphy of D be
one-sheeted.

The second main ingredient of the proof of the Oka–Weil theorem is the hypothesis
of convexity: The compact set on which approximation is to occur needs to be convex
with respect to the proposed algebra of approximating functions. This is a situation that
often arises.

The general principle is that when the conditions of convexity and division are
satisfied, the mechanism of the proof given above for the Oka–Weil theorem can be invoked
to yield an approximation theorem.

A particular case of this situation arises in connection with rational convexity. What
emerges is that if K is a compact rationally convex subset of CN , then every function f
that is holomorphic on a neighborhood of K can be approximated uniformly on K by
rational functions with no poles on K .

The proof of this assertion runs as follows. Let K be a rationally convex compact
subset of CN , which we suppose to be a subset of the polydisk UN . Let F be holomorphic
on the bounded neighborhoodW ofK . By compactness and rational convexity, there exist
finitely many polynomialsp1, . . . , pr such that for eachx ∈ bW , minj |pj (x)| < 1

2 and for
each x ∈ K , minj |p(x)| > 2. Let q = N+r , and letF be the rational map from CN to Cq

given byF(z) = (z1, . . . , zN ,
1

p1(z)
, . . . , 1

pr (z)
). The mapF is holomorphic on the open set

Wo = W \ {z : p1(z) · · ·pr(z) = 0}. If x ∈ bWo, then lim inf z→x,z∈Wo ‖f (z)‖ ≥ 2. The
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mapF carries a neighborhood ofK biholomorphically onto a closed complex submanifold
M of the polydisk Uq . Choose a strictly convex domain D with bD smooth and with
F(K) ⊂ D ⊂ Uq that has the property that M is transversal to bD. We can write

1

pj (z)
− 1

pj (w)
= pj (w)− pj (z)

pj (z)pj (w)

and then decompose the numerator as

pj (w)− pj (z) =
N∑
k=1

(zk − wk)pj,k(z, w)

with polynomials pj,k to obtain a decomposition

1

pj (z)
− 1

pj (w)
=

N∑
k=1

(zk − wk)fjk(z, w)

with fjk the rational function pjk(z, w)/pj (z)pj (w). If we denote byQ a strictly convex
defining function for the domain D, then our situation is precisely parallel to that of the
proof of the Oka–Weil theorem given above. We can execute a parallel argument using
Riemann sums to approximate the appropriate Cauchy–Fantappiè integral and discover
that the function f can be approximated uniformly on K by rational functions.

The Oka–Weil theorem will be used repeatedly in the rest of this work. As a first
application, we deduce a geometric fact about polynomially convex sets.

Corollary 1.5.4. If the compact polynomially convex set X in CN is of the form X =
X′ ∪ X′′ with X′ and X′′ disjoint and compact, then each of X′ and X′′ is polynomially
convex.

Proof. The sets X′ and X′′ are both compact, so there are disjoint open sets V ′ and V ′′
with V ′ ⊃ X′ and V ′′ ⊃ X′′. If V = V ′ ∪ V ′′, and if f = 1 on V ′, f = 0 on V ′′, then
f is holomorphic on V . From the Oka–Weil theorem, it follows that there is a polynomial
P such that ‖P − f ‖X < 1

4 . Consequently, the polynomially convex hull X̂′′ is disjoint
from X′. From the inclusion X̂′′ ⊂ X, the set X′′ is seen to be polynomially convex. In a
similar way, X′ is polynomially convex.

Another result in the same spirit is this:

Corollary 1.5.5. IfX is a compact polynomially convex subset of CN , then every compo-
nent of X is also polynomially convex.

By a component of X we understand a maximal connected subset of X.

Proof. This observation is a consequence of the preceding corollary, of the result that
an arbitrary intersection of polynomially convex subsets is polynomially convex, and the
elementary topological fact [252, p. 17] or [261, p. 107], that in a locally compact Hausdorff
space, X, each component Xo of X is the intersection of all the open and closed subsets
of X that contain it.
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A related result is the following.

Corollary 1.5.6. [24] If X is a compact subset of CN and E is a component of X̂, then
E = Ê ∩X.

Proof. We can write E = ∩j=1,...Kj , where each Kj is an open and closed subset of X̂,
for E is a component of X. As noted above, each of the sets Kj is polynomially convex.
By the Oka–Weil theorem, for every ε > 0, there is a polynomial P such that |P − 1| < ε
onKj and |P | < ε on X̂ \Kj . If µ is a Jensen measure supported inX for a point s ∈ Kj ,
then µ must be concentrated on Kj ∩ X. It follows that Kj ⊂ K̂j ∩X, so the two sets
must be equal, for Kj is polynomially convex. Consequently, the set E is polynomially
convex.

It is shown in Section 1.2 that if f is an element of the uniform algebra A and if ϕ is
a function holomorphic on a neighborhood of the spectrum σA(f ), then ϕ ◦ f ∈ A. The
Oka–Weil theorem implies an extension of this result:

Theorem 1.5.7. If A is a uniform algebra, if f1, . . . , fr ∈ A, and if ϕ is holomorphic
on a neighborhood of the joint spectrum σA(f1, . . . , fr ), then the function g defined by
g = ϕ(f1, . . . , fr ) is in A.

Proof. If the functions f1, . . . fr generateA, then σA(f1, . . . , fr ) is polynomially convex.
The Oka–Weil theorem provides a sequence {Pj }j=1,... of polynomials with Pj → ϕ

uniformly on σA(f1, . . . , fr ). The functions Pj (f1, . . . , fr ) lie in A, so the same is true
of ϕ(f1, . . . , fr ).

In case the functions f1, . . . , fr do not generate A but A is finitely generated, let
f1, . . . , fr , fr+1, . . . , fs generateA, and let π : Cs → Cr be the projection. The function
ϕ ◦ π is holomorphic on a neighborhood of σA(f1, . . . , fs), so by the last paragraph, the
function ϕ ◦ π(f1, . . . , fs) = ϕ(f1, . . . , fr ) is in A.

The case that the algebraA is not finitely generated requires a more involved argument
based on a lemma of Arens and Calderón [39]:

Lemma 1.5.8. LetA be a uniform algebra, let f1, . . . , fr ∈ A, and let� be an open set in
Cr that contains σA(f1, . . . , fr ). There exist fr+1, . . . , fs ∈ A such that if π : Cs → Cr

is the projection, then π(σA(f1, . . . , fs))̂ ⊂ �.

Proof. The set σ̂A(f1, . . . , fr )\� is compact. Let zo ∈ σ̂A(f1, . . . , fr )\�. The functions
f̂1 − zo1, . . . , f̂r − zor have no common zero on the spectrum of A, so the ideal generated
by them is all of A. In particular, there are functions g1, . . . , gr in A such that

1 = (f1 − zo1)g1 + · · · + (fr − z0
r )gr .

This equation continues to hold in the subalgebraB ofA generated by f1, . . . , fr , g1, . . . ,

gr . The joint spectrum σB(f1, . . . , fr , g1, . . . , gr ) is polynomially convex. If η : C2r →
Cr is the projection onto the first r coordinates, then η(σB(f1, . . . , fr , g1, . . . , gr )) does
not contain the point zo and so omits a neighborhood of it. Thus, by compactness, we can
find a finite number of functions fr+1 . . . , fs in A such that if C is the subalgebra of A
generated by f1 . . . , fs , then the projection π : Cs → Cr onto the first r coordinates
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takes the polynomially convex set σ̂C(f1, . . . , fs) into �. Because σ̂C(f1, . . . , fs) ⊃
σA(f1, . . . , fs), the lemma is proved.

Proof of Theorem 1.5.7 concluded. Let � be an open set in Cr that contains the joint
spectrum σA(f1, . . . , fr ), and let ϕ ∈ O(�). Choose fr+1, . . . , fs as in the lemma, so that
σ̂A(f1, . . . , fs) projects under π into �. The function ϕ ◦ π is holomorphic on π−1(�),
and so can be approximated uniformly on σ̂A(f1, . . . , fs) by polynomials. Then as above,
it follows that the function ϕ(f1, . . . , fr ) is in A. The theorem is proved.

It should be noted that the general result proved by Arens and Calderón contains
Theorem 1.5.7 as a special case but is more general in that it applies to arbitrary com-
mutative Banach algebras, not only uniform algebras. There is a yet more general result,
the so-called holomorphic functional calculus, which provides homomorphisms from al-
gebras of holomorphic functions into commutative Banach algebras. This is developed in
detail in the books [69] and [345].

One consequence of Theorem 1.5.7 that we shall need in the sequel is a version of
the Shilov idempotent theorem:

Theorem 1.5.9. IfA is a uniform algebra with spectrumX, and if there is a decomposition
X = X′ ∪ X′′ of X into the union of two mutually disjoint closed (and therefore open)
subsets, then there is an element f ∈ A with f = 1 on X′ and f = 0 on X′′.

This depends on a simple lemma:

Lemma 1.5.10. Let Y be a compact space and A an algebra of continuous functions on
Y that contains 1 and that separates points on Y . If Y ′ and Y ′′ are disjoint closed subsets
of Y , then there is a finite subset F = {h1, . . . , hr} of A such that the map F : Y → Cr

given by F(y) = (h1(y), . . . , hr (y)) satisfies F(Y ′) ∩ F(Y ′′) = ∅.
Proof. If y′ ∈ Y ′ and y′′ ∈ Y ′′, there ishy′,y′′ ∈ A such thathy′,y′′(y′) = 0 andhy′,y′′(y′′) =
2. By compactness, there is a finite collection Fy′ in A such that each h ∈ Fy′ satisfies
|h| < 1

2 on a neighborhood of y′ and such that for each y′′ ∈ Y ′′, max {|h(y′′)| : h ∈
Fy′ } > 3

2 . For the family F of the theorem we can take the union of a finite number of
the families Fy′ for y′ ∈ Y ′.
Proof of Theorem 1.5.9. Apply the lemma to the algebra A: There are finitely many
elements, f1, . . . , fr ofA such that ifF : X→ Cr is the map with coordinates f1, . . . , fr ,
then F(X′) ∩ F(X′′) = ∅. The set F(X) is the joint spectrum σA(f1, . . . , fr ), and if we
define g to be 1 on a neighborhood of F(X′) and 0 on a neighborhood of F(X′′), then g
is holomorphic on a neighborhood of F(X), so by Theorem 1.5.7, the composition g ◦ F
lies in A.

The theorem is proved.

1.6. Some Examples

We turn now to a few examples that will serve to exhibit some of the complexities involved
in the theory of polynomially convex sets.
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1.6.1. Metric Conditions

A natural first question is whether there are purely metric conditions that are sufficient to
guarantee polynomial convexity. The question is natural, but there is no major result in
this direction.

The obvious metric conditions to impose are in terms of the Hausdorff measures
induced on CN by the Euclidean metric. For each real number p ≥ 0, introduce the
constant γp = 2p�(p/2+1)

πp/2
.

Definition 1.6.1. For a positive real number p, the p-dimensional Hausdorff measure of
the subset E of RN is the number �p(E) defined by �p(E) = limε→0+ �

p
ε (E), where

�
p
ε (E) = inf

{
γp
∑
j=1,... d

p
j }, in which the infimum is extended over all countable col-

lections {B1, B2, . . . } of sets Bj of diameter dj that cover E and for which dj is no more
than ε. The 0-dimensional Hausdorff measure of a set is understood to be its cardinality
if this cardinality is finite, ∞ otherwise.

The set function �p is an outer measure on RN with respect to which all Borel sets
are measurable.

The constant γp is introduced so that on setsE in RN , theN -dimensional Hausdorff
measure agrees with Lebesgue measure. More generally, for a smooth p-dimensional
submanifold M of RN , the p-dimensional measure is the usual volume computed with
respect to the Riemannian metric on M induced from the Euclidean metric on RN . For a
rectifiable curve in RN , the length coincides with the one-dimensional measure.

If in the definition of the Hausdorff measures�p the sets Bj are required to be balls
instead of being allowed to be arbitrary sets, the resulting construction yields the spherical
measure S p. For each p there is the inequality �p ≤ S p ≤ 2p�p.

We shall need few of the properties of the Hausdorff measures. It will be useful to
notice, though, that if h : RN → RM satisfies the Lipschitz condition |h(x) − h(x′)| ≤
C|x − x′|, then �p(h(S)) ≤ Cp�p(S) for each S ⊂ RN. This is immediate from the
definition. In particular, Lipschitz maps carry sets of zero p-dimensional measure to sets
of zero p-dimensional measure.

A set E with �1(E) = 0 is said to be a set of zero length.
An introduction to the theory of Hausdorff measures is in [337], a more extensive

introduction is given in [114], and a comprehensive treatment can be found in the treatise
[115] of Federer.

The first fact we establish is very simple:

Theorem 1.6.2. A compact subset X of CN with �1(X) = 0 is polynomially convex and
satisfies P(X) = C (X).

Proof. To prove this, it suffices, because of the Stone–Weierstrass theorem, to show that
P(X) contains enough real-valued functions to separate the points of X.

Let x, y be distinct points of X. There is a linear functional ψ on CN that satisfies
ψ(x) �= ψ(y). The set X has zero length, so the image ψ(X) also has zero length. It is
compact and totally disconnected, i.e., its only connected subsets are points, so there exist
disjoint open subsets of the plane, Vx and Vy , such that ψ(x) ∈ Vx and ψ(y) ∈ Vy and
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such that Vx ∪ Vy ⊃ ψ(X). Because ψ(X) does not separate the plane, Runge’s theorem
provides a polynomial P such that |P | is small on Vx ∩ ψ(X) and |P − 1| is small on
Vy ∩ψ(X). Consequently, P(X) contains a real-valued function that is zero at x and one
at y. The result follows.

Plainly, a set E with �1(E) nonzero but finite need not be polynomially convex, as
is shown by every smooth simple closed curve in the complex plane.

Corollary 1.6.3. IfX is a compact polynomially convex subset of CN , and if E is a subset
of CN with zero length such that the set Y = X ∪ E is compact, then Y is polynomially
convex, and P(Y ) = {f ∈ C (Y ) : f |X ∈ P(X)}.
It is not required that the set Ē have zero length; it could have positive 2N -dimensional
measure.
Proof. Suppose Y not to be polynomially convex and let zo ∈ Ŷ \ Y . Thus zo /∈ X.
Therefore there is a polynomial P such that �P < −1 on X and �P(zo) > 1.We have
P(Ŷ ) ⊂ P(Y )̂ . The setE has length zero and the polynomial P is locally a Lipschitz map
from CN to C, so the set P(E) also has zero length. Consequently, there is an xo ∈ (0, 1)
such that the line Lxo = {xo + iy : y ∈ R} is disjoint from the set P(Y ) and so disjoint
from P(Y )̂ . Let S+ and S− be the parts of P(Y )̂ to the right and to the left, respectively,
of the line Lxo . Then Ŷ = [Ŷ ∩P−1(S+)]∪ [Ŷ ∩P−1(S−)] = T + ∪T −. The sets T + and
T − are both open and closed subsets of Ŷ , and so each is polynomially convex. We have
zo ∈ T +. The polynomial convexity of E ∩ T + implies that zo ∈ E, which contradicts
the hypothesis that zo /∈ Y . The set Y is thus polynomially convex, as claimed.

It remains to show that P(X ∪ E) = {f ∈ C (X ∪ E) : f |X ∈ P(X)}. Suppose,
to this end, that µ is a finite regular Borel measure on Y that is orthogonal to P(Y ).
If zo ∈ Y \ X, then there is a polynomial P such that P(zo) = 1 and �P < −1 on
X. It follows that if U is an open and closed subset of P(X ∩ E) ∩ {�P > −1} that
contains the point 1, then P(P (Y )) contains a function g such that g = 1 on U , g = 0
on P(Y ) \ U . Then for all positive integers m we have 0 = ∫ [g ◦ P ]m dµ. If we let
m→ ∞, then, by Lebesgue’s dominated convergence theorem, µ(P−1(U)) = 0. This is
true for all neighborhoods U of P(zo) = 1 and for all polynomials of the kind considered,
so the measure µ is carried by the set X. Consequently, for every measure µ ∈ P(Y )⊥,∫
g dµ = 0 if g ∈ C (Y ) satisfies g|X ∈ P(X).

The corollary is proved.

There are results for rational convexity analogous to the preceding ones about poly-
nomial convexity. Before giving them, it is convenient to recall certain results about the
algebra R(X) for compact subsetsX of the plane. First we need an approximation theorem
in the plane, the Hartogs–Rosenthal theorem [163].

Theorem 1.6.4. If X is a compact subset of the plane with measure zero, then R(X) =
C (X).

Proof. If for the compact planar setX of Lebesgue measure zero, R(X) differs from C (X),
then the Hahn–Banach and Riesz representation theorems yield a nonzero finite regular
Borel measure µ on X such that

∫
X
r(ζ ) dµ(ζ ) = 0 for every rational function r with no
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poles on X. In particular, the Cauchy transform, µ̃, of µ defined by

µ̃(z) =
∫
X

dµ(ζ )

ζ − z
vanishes when z ∈ C \X.

The theorem is thus a consequence of the following lemma.

Lemma 1.6.5. If ν is a finite regular Borel measure on C, then the Cauchy transform of ν
is locally integrable on C. If it vanishes almost everywhere, then ν is the zero measure.

Proof. That ν̃ is locally integrable is a consequence of Fubini’s theorem: If � is a disk of
finite radius in the plane, then∫

�

|ν̃(z)| dL (z) ≤
∫
X

∫
�

dL (z)

|ζ − z| d|ν|(ζ ),

so that the local integrability of ν̃ follows from the local integrability of 1/z.
That ν is the zero measure when ν̃ = 0 almost everywhere can be shown by proving

that for every compactly supported smooth function g on the plane,
∫
g dν = 0. This is

so, for the function g can be expressed by the generalized Cauchy integral formula as

(1.27) g(z) = 1

π

∫
C

∂g

∂ζ̄
(ζ )
dL (ζ )

ζ − z ,

whence

(1.28)
∫
g(z) dν(z) = − 1

π

∫
∂g

∂ζ̄
(ζ )ν̃(ζ ) dL (ζ ).

The function ν̃ vanishes almost everywhere, so this quantity is zero. The proof is complete.

Another proof of this theorem is contained in Lemma 5.1.3.

Two important facts emerge from the ideas of the proof just given.

Corollary 1.6.6. If ν is a finite measure on the plane and E is a compact set in the plane,
then ν̃ = 0 a.e. [dL ] off E implies that supp ν ⊂ E, and moreover, ν̃ = 0 a.e. [dL ] off
E if and only if ν annihilates the algebra R(E).

Proof. Suppose that ν̃ vanishes off the set E. Apply the formula (1.28) to a smooth func-
tion on C that has compact support and that vanishes on a neighborhood of E. The con-
clusion is that

∫
g dν = 0 for all such functions g, whence the support of ν is contained

in E.
If ν is orthogonal to R(E), then ν̃ vanishes at every point of C \ E. Conversely,

if ν̃ vanishes a.e. [dL ] off E, then ν is supported by E, as follows from the preceding
paragraph. If f is a rational function with no poles on X, write, for z ∈ E,

f (z) = 1

2πi

∫
bD

f (ζ )

ζ − z dζ
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for a suitable domain D that contains E and on whose closure f is holomorphic. Then∫
f dν = −1

2πi

∫
bD

f (ζ )ν̃(ζ ) dζ = 0,

so ν is orthogonal to R(X).

We will need a few additional facts about the algebra R(X) for a compact subset X
of the plane. We shall not go deeply into this subject; much more information about these
algebras can be found in the books [378], [136], and [345].

We need to determine the Cauchy transform of a product ϕµ for a compactly sup-
ported smooth function ϕ on C. The answer is given by

ϕ̃µ = ϕµ̃− σ̃ ,
where σ is the measure determined by dσ = − 1

π
µ̃
∂ϕ
∂z̄
dL . This follows from a direct

calculation of σ̃ (w):

σ̃ (w) = − 1

π

∫
C

µ̃(z)
∂ϕ

∂z̄
(z)

1

z− w dL (z)

= − 1

π

∫
C

∫
∂ϕ

∂z̄
(z)

1

z− w
1

ζ − z dµ(ζ ) dL (z)

= − 1

π

∫ ∫
C

{ 1

z− w + 1

ζ − z
} 1

ζ − w
∂ϕ

∂z̄
(z) dL (z) dµ(ζ )

=
∫

1

ζ − w {ϕ(w)− ϕ(ζ )} dµ(ζ ).

(The last step is an application of the generalized Cauchy integral formula.) This gives the
result.

It now follows that measures in R(X)⊥ have the decomposition property: Such a
measure can be decomposed into a sum of measures with small support each of which is
also in R(X)⊥. Let U1, . . . , Ur be a collection of open sets in C with ∪j=1,...,rUj ⊃ X.
If µ ∈ R(X)⊥, then µ = ∑j=1,...,r µj , where each µj ∈ R(X)⊥, and suppµj ⊂
Ūj ∩ X. To see this, let ϕj be a smooth function on C with support in Uj , chosen so that∑
j=1,...,r ϕj = 1 on X. Define a measure µj by

dµj = ϕjdµ− 1

π

∂ϕj

∂z̄
dL .

Then µ = µ1 + · · · + µr . If σj is defined by

dσj = − 1

π
µ̃
∂ϕj

∂z̄
dL ,

then µ̃j = ϕj µ̃− σ̃j , which vanishes off Ūj ∩X and so µ̃j ∈ R(Ū ∩X)⊥ ⊂ R(X)⊥.
Dually, for compact subsets X of the plane, the algebra R(X) has the localization

property: If X = ∪j=1,...,rVj , where each Vj is an open subset of X, then the function
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f ∈ C (X) belongs to R(X) if for each j , f |V̄j ∈ R(V̄j ). This is so, for if f /∈ R(X), then
there is a measure µ ∈ R(X)⊥ with

∫
f dµ �= 0. According to the previous paragraph,

µ can be decomposed as a sum of measures µj ∈ R(X)⊥ with suppµj ⊂ V̄j ∩X. Then∫
f dµ =∑∫ f dµj = 0. Contradiction.

Note: The localization property just established is a purely one-dimensional phenomenon;
there is no analogue inCN , for Kallin [194] has constructed compact polynomially convex
setsX for which the polynomial algebraP(X) is not a local algebra. See also the discussion
in [345].

Some additional properties of the algebras R(X) are given in Chapter 6.

Theorem 1.6.7. If X is a compact subset of CN with �2(X) = 0, then X is rationally
convex and satisfies R(X) = C (X).

Proof. Let x and y be distinct points of the set X. There is a complex linear functional
ϕ on CN such that ϕ(x) �= ϕ(y). The set ϕ(X) is a compact subset of the plane that has
measure zero, so by the Hartogs–Rosenthal theorem,R(ϕ(X)) = C (ϕ(X)). Consequently,
R(ϕ(X)) contains a real-valued functiongwithg(ϕ(x)) �= g(ϕ(y)). The compositiong◦ϕ
lies in R(X), so that R(X) contains a real-valued function that separates x and y. The
Stone–Weierstrass theorem implies that R(X) = C (X), whence X is rationally convex.

Corollary 1.6.8. If X is a rationally convex subset of CN and E is a subset of CN of zero
two-dimensional Hausdorff measure such that the set Y = X ∪E is compact, then the set
Y is rationally convex, and R(Y ) = {f ∈ C (Y ) : f |X ∈ R(X)}.
The corollary implies in particular that the union of a polynomially convex set and a set
of zero two-dimensional Hausdorff measure is rationally convex if it is compact.

Proof. Let zo ∈ R-hull Y . We shall show that if zo /∈ X, then zo ∈ E. This is so, for
if zo /∈ X, then because X is rationally convex, there is a polynomial P that is zero-
free on X but that vanishes at zo. The set P(E) has area zero, so it follows from the
localization property above and the theorem of Hartogs and Rosenthal that there is a
function g ∈ R(P (Y )) with g(0) = 1 and |g| < 1 on P(E) \ {0}. Consequently, if µ
is a representing measure for the point zo with respect to the algebra R(Y ), µ supported
by Y , then necessarily µ is supported by P−1(0). If T is an affine automorphism of CN

that leaves the point zo fixed but is sufficiently near the identity, then the polynomial
QT = P ◦T has the properties we have required of P , so it follows that each representing
measure µ as above is also supported onQ−1

T (0). But the intersection of all these zero loci
is zo. Consequently, zo ∈ E, and Y is seen to be rationally convex.

We can now see that R(Y ) consists precisely of those continuous functions on Y
that restrict to X as elements of R(X). To this end, consider a measure µ ∈ R(Y )⊥. Fix
a point zo ∈ Y \ X. There is a polynomial P with P(zo) = 0 and |P | > 1 on X. The
set P(E) has zero planar measure, for the set E has two-dimensional measure zero. It
follows that the algebra R(P (Y )) contains a function g with g = 1 on a neighborhood U
of zo in P(Y ), and with |g| < 1 on P(Y ) \ U . (Again, use the localization property and
the Hartogs–Rosenthal theorem.) It follows as in the case of polynomial convexity that
the measure µ must be supported by X. Thus if g ∈ C (Y ) satisfies g|X ∈ R(X), and if
µ ∈ R(Y )⊥, then

∫
g dµ = 0. This is correct for every choice of µ, so g ∈ R(Y ).
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As concerns Theorems 1.6.4 and 1.6.7, there is a measure-theoretic nicety to be
remarked. For Theorem 1.6.4, what is required is not really that �1(X) = 0 but only that
for each linear functionalψ on CN , the setψ(X)have zero length. It would suffice forψ(X)
to have zero length for almost all choices of ψ or, indeed, even forN linearly independent
choices of ψ.A parallel remark holds for Theorem 1.6.7. Sets E in RN with the property
that for almost all projections π : RN → RN of rank p the p-dimensional measure of
π(E) is zero are said to be sets of p-dimensional integral-geometric measure zero. This is
not precisely the class of subsets E of vanishing p-dimensional Hausdorff measure. For
the comparison of the Hausdorff measures and the integral-geometric measures, see [114]
and [115].

1.6.2. Arcs and Cantor Sets

It is possible to construct some examples of complicated polynomially convex hulls fol-
lowing a procedure used by Wermer [367] and Rudin [307]. The method is based on
the observation that if h is a bounded measurable function with bounded support in the
plane, then the convolution of h with the Cauchy kernel is continuous on the Riemann
sphere and holomorphic off the support of h. That is, for a bounded measurable function
h on C with bounded support E, the function H defined on the Riemann sphere C∗ by
H(z) = ∫

E
h(ζ )
ζ−z dL (ζ ) is continuous. We have already observed that the function H

is locally integrable. Morera’s theorem implies that it is holomorphic on the set C \ E.
It is also holomorphic at infinity. That it is continuous on C∗ is a standard fact about
convolutions, which can be proved as follows. Suppose h(z) = 0 when |z| > R. Let
ε > 0. Choose a continuous function g on the plane with compact support such that∫
{|ζ |<2R}

∣∣ 1
ζ
− g(ζ )∣∣ dL (ζ ) < ε. If z, z′ ∈ C satisfy |z|, |z′| < R, then

|H(z)−H(z′)| ≤ ‖h‖∞
∫
{|ζ |<R}

∣∣∣∣ 1

ζ − z − 1

ζ − z′
∣∣∣∣ dL (ζ )

≤ ‖h‖∞
∫
{|ζ |<R}

{∣∣∣∣ 1

ζ − z − g(ζ − z)
∣∣∣∣+ |g(ζ − z)− g(ζ − z′)|

+
∣∣∣∣ 1

ζ − z′ − g(ζ − z′)
∣∣∣∣} dL (ζ ).

The first and third terms contribute at most πR2ε‖h‖∞, and the contribution of the
middle term can be made arbitrarily small by making |z − z′| small. Consequently, the
function H is continuous.

It is clear that limz→∞H(z) = 0 and that limz→∞ zH(z) =
∫
h(ζ ) dL (ζ ). Thus,

if the function h is nonnegative and positive on a set of positive measure, then H is not
constant on the sphere.

Now fix a bounded measurable function h with bounded support such that the asso-
ciated function H is not constant. DefineG on C∗ byG(z) = zH(z). Also, let α ∈ C \E
be a point where H does not vanish, and define the function F by F(z) = H(z)−H(α)

z−α . Let

� : C∗ → C3 be the map �(z) = (F (z),G(z),H(z)). This map is continuous and is



54 Chapter 1. Introduction

holomorphic on C∗ \E.Moreover, it is one-to-one, and so a homeomorphism of the two-
sphere C∗ onto the set � = �(C∗). To see that it is one-to-one, let z, z′ be distinct points
of C∗. If H(z) = H(z′) and G(z) = G(z′), then either z = z′ or else H(z) = H(z′) = 0.
In the latter case, F(z) �= F(z′), whence the assertion.

The set �, which is topologically a two-sphere, has the property that if P is a
function holomorphic on a neighborhood in C3 of �, then every value that P assumes on
� is assumed also at some point of� = �(E). For this, suppose thatP ◦� does not vanish
on the set E but that it does have zeros on C∗. There are only finitely many of these zeros,
and we can write P ◦� = pq where p is the polynomial that vanishes at the zeros of P ◦�
that lie in the finite plane, each counted with multiplicity, and q is a function continuous
and zero-free on C, holomorphic on C∗ \ E. The function q is continuous and zero-free
on C and so has a logarithm there. But this is impossible, for q necessarily vanishes at the
point at infinity. Contradiction.

The property of � established in the preceding paragraph is stronger than the state-
ment that � is contained in the rationally convex hull of the set �.

Appropriate choices of the initial function h lead to some surprising examples. For
example, if h is the characteristic function of a compact, perfect,6 totally disconnected
subset of C that has positive Lebesgue measure, then the set � is a set homeomorphic
to the Cantor set, and its polynomially convex hull and its rationally convex hull both
contain �.

Similarly, if h is the characteristic function of an arc in the plane that has positive
Lebesgue measure, then we obtain an arc,�, in C3 with �̂ and R-hull � both containing�.

It is obvious, but perhaps worth noting, that we have identified neither the polyno-
mially convex hull nor the rationally convex hull of �.

If we start with a totally disconnected, perfect subsetE of C∗, and if h is its character-
istic function, then, withH andG as above, the map" = (G,H) : C∗ → C2 is no longer
one-to-one, but the set"(E) is seen without difficulty to be a perfect, totally disconnected
set the rational and polynomially convex hulls of which contain the set"(C∗). (Note that,
topologically, "(E) is the set obtained from E by collapsing the subset E ∩H−1(0) to a
point.)

We finish this discussion by mentioning some other examples of the kind of phe-
nomenon we have been discussing. First, Bagby and Gauthier [42] have found an arc
in CN , N ≥ 2, that has finite 2-dimensional measure but that is not rationally convex.
Vitushkin [359] has exhibited a Cantor set in C2 the polynomially convex hull of which
contains an open set. Building on Vitushkin’s construction, Byčkov [78] produced a Can-
tor set the polynomially convex hull of which is the closure of a domain. Sibony [333]
found a set of Hausdorff dimension one with hull the closure of an open set. (A set E has
Hausdorff dimension p if p = inf {s : �s(E) = 0}.) Globevnik in [146] constructs an arc
in the boundary of the unit ball in C6 that is not polynomially convex; it is the boundary
of an analytic disk contained in the ball. Finally, Jöricke [192] has constructed a Cantor
set in bB2 that is neither polynomially convex nor rationally convex.

6A perfect set is one each point of which is a limit point. All compact perfect totally disconnected subsets of
R
N are homeomorphic to the usual middle-third set of Cantor.
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1.6.3. Lipschitz Graphs

In the preceding section we applied the Cauchy–Fantappiè integral to obtain the Oka–Weil
theorem. In this section we apply it to obtain two other approximation theorems, which
yield additional classes of polynomially convex sets.

Theorem 1.6.9. Let X be a compact subset of RN , and let ψ : X → RN be a map that
satisfies the Lipschitz condition

|ψ(x)− ψ(x′)| ≤ c|x − x′|
for all x, x′ ∈ X and for some fixed c ∈ [0, 1). If �ψ denotes the graph {x + iψ(x) :
x ∈ X} in CN , then every continuous function on �ψ can be approximated uniformly by
polynomials.

Theorem 1.6.10. Let X be a compact set in CN , and let R = (R1, . . . , RN) : X → CN

be a map that satisfies the Lipschitz condition |R(z)−R(z′)| < c|z− z′| for all z, z′ ∈ X
and some fixed c ∈ [0, 1). Every continuous function onX can be approximated uniformly
by polynomials in z1, . . . , zN and z̄1 + R1, . . . , z̄N + RN .

Theorem 1.6.10 was established by Weinstock [364] under the hypothesis that the
map R is of class C 1. His paper contains a note added in proof that shows, following a
remark of Browder, Cole, and Wermer, that the result can be obtained under the Lipschitz
hypothesis of the stated theorem. The result, under more stringent regularity hypotheses,
is given in [183]. Theorem 1.6.9 was proved by Frih and Gauthier [134] with methods
derived from those of the proof of the earlier Theorem 1.6.10 by Weinstock, Wermer,
Browder, and Cole.

Throughout the discussion of Theorems 1.6.9 and 1.6.10, we assume that the maps
ψ and R are defined on all of RN and CN , respectively, and satisfy a Lipschitz condition
with constant c on the entire space. That this is permissible is a consequence of a theorem
of Kirszbraun: A Lipschitz map from a set E ⊂ Rn to Rm has an extension to a map from
Rn to Rm with the same Lipschitz constant. For this fact, we refer to [115, p. 201]. That a
Lipschitz map from E into Rm admits a Lipschitz extension to all of Rn with a somewhat
larger Lipschitz constant is a rather elementary point, which can be found in [115, p. 202].

Theorem 1.6.10 implies the approximation result of Theorem 1.6.9 for maps ψ that
satisfy the stronger condition |ψ(x)−ψ(x′)| ≤ k|x− x′| for some k ∈ [0, 1

2 ). To see this,
letX ⊂ RN be compact, and letψ : X→ RN satisfy a Lipschitz condition with Lipschitz
constant k ∈ [0, 1

2

)
. Apply Theorem 1.6.10 to the set �ψ and the map R : �ψ → CN

given by R(z) = 2iψ(x) if z = x + iy with x, y ∈ RN . The map R satisfies a Lipschitz
condition with constant less than one on �ψ , so it follows that polynomials in z1, . . . , zN
and z̄1+R1, . . . , z̄N+RN are dense in C (�ψ). We have z̄j+Rj (z) = xj−iyj+2iψj (x),
whence on the set �ψ, z̄j + Rj (z) = zj . Thus, the polynomials are dense in C (�ψ) as
claimed.

The condition that the Lipschitz constants be strictly less than one is necessary in both
theorems: If R(z) = −z̄, then R satisfies a Lipschitz condition of constant one on all of
CN , but polynomials in z1, . . . , zN are generally not dense in C (X), X ⊂ CN compact. A
corresponding example for Theorem 1.6.9 is provided by the map ψ : R2 → R2 given by
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ψ(x1, x2) = (x2,−x1). Then �ψ = {(ζ,−iζ ) : ζ ∈ C}, and on compact sets of �ψ with
nonvoid interior (in �ψ) we cannot approximate all continuous functions by polynomials.

Corollary 1.6.11. With X and ψ as in Theorem 1.6.9, the graph �ψ is polynomially
convex.

Corollary 1.6.12. With X and R, as in Theorem 1.6.10, the set

XR = {(z1, . . . , zN , z̄1 + R1(z), . . . , z̄N + RN(z)) : z ∈ X}
in C2N is polynomially convex and satisfies P(XR) = C (XR).

For the approximation assertion, note that Theorem 1.6.10 implies that every con-
tinuous function on XR can be approximated by polynomials.

Proof of Theorem 1.6.9. The mapψ of the theorem is defined on all of RN with Lipschitz
constant c ∈ [0, 1). Impose for the moment the further condition that ψ be a map of class
C 2. Given ψ , construct the map ϕ : CN × CN → CN given by

(1.29) ϕj (z,w) = z̄j + 2iψj (�z)− w̄j − 2iψj (�w).
Set �(z,w) = (z − w) · ϕ(z,w) = ∑N

j=1(zj − wj)ϕj (z, w). Let �j = ϕj/�
N , and

introduce the Cauchy–Fantappiè form �ϕ;z−w.
The function � satisfies

(1.30) ��(z,w) ≥ 1 − c2

2
|z− w|2,

as can be seen by using the two inequalities

2|a| |b| ≤ |a|2 + |b|2 and 2|a| |b| ≤ c2|a|2 + 1

c2
|b|2

together with the Lipschitz condition satisfied by ψ to write

��(z,w) ≥ |z− w|2 − |� z− �w|2 − c2|� z−�w|2 = (1 − c2)|� z−�w|2

and

��(z,w) ≥ |z− w|2 − c2|� z− �w| − |� z−�w|2 = (1 − c2)|� z− �w|2,
whence the desired inequality. We also have the estimate

(1.31) |�j(z,w)| ≤ (1 + 2c)

(
1 − c2

2

)−N
|z− w|1−2N,

which follows from (1.30) and the definition of �j , using the Lipschitz condition on the
map ψ . The estimate (1.31) implies that for fixed w, �j (·, w) is locally integrable and
that for a compact set E,

(1.32) supw∈CN
∫
E

|�j(z,w)| dL (z) <∞.
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With these facts at our disposal, arguing as at the end of Section 1.4 yields that if g
is a function on CN of class C 1 with compact support, then

(1.33) g(w) = −cN
∫

CN
∂̄g(z) ∧�ϕ;z−w.

Next, there is an analogue for our kernel of Lemma 1.6.5, which concerns measures
with identically vanishing Cauchy transforms. Specifically, the following result holds:

Lemma 1.6.13. If µ is a finite regular Borel measure on CN with compact support, then
for almost every z ∈ CN and for each j = 1, . . . , N , the integral

∫ |�j(z,w)| d|µ|(w) is
finite. If

∫
�j(z,w) dµ(w) = 0 for almost all points z and each j = 1, . . . , N , then µ is

the zero measure.

Proof. The support, E, of µ is a compact set, so by (1.32),∫ ∫
E

|�j(z,w)| dL (z) d|µ|(w) <∞,

whence by Fubini’s theorem, for almost every point z ∈ E, ∫ |�j(z,w)| d|µ|(w) <∞.
It is evident that for every w ∈ CN\E, this integral is finite, so we have the first assertion
of the lemma.

Assume now that
∫
�j(z,w) dµ(w) = 0 for almost every z ∈ CN . We proveµ = 0.

To do this, it suffices, by duality, to prove that for every compactly supported C 1 function
g on CN,

∫
g dµ = 0. By equation (1.33) applied to g,∫

g(w) dµ(w) = −cN
∫ { ∫

CN
∂̄g(z) ∧�ϕ;z−w

}
dµ(w)

= −cN
N∑
j=1

(−1)j−1
∫

CN

{∫
�j(z,w) dµ(w)

}
∂g(z) ∧ ∂zϕ1

∧ · · · ∧ ∂̂zϕj ∧ · · · ∧ ∂zϕN ∧ ω(z)
= 0.

The lemma is proved.

Proof of Theorem 1.6.9 concluded. If the theorem is false, there is a finite regular Borel
measure µ on �ψ with

∫
f dµ = 0 for every f in the algebra P(�ψ), µ not the zero

measure.
On the set �ψ, z̄j + 2iψj (�z) = zj , so that for fixed w, ϕj (·, w) ∈ P(�ψ).

Consequently, for fixed w, �(·, w) ∈ P(�ψ). For ν = 1, . . . , let

Qν(z,w) =
(
�(z,w)+ 1

ν

)−1
.

Because ��(z,w) ≥ 0, Runge’s theorem implies thatQν(·, w) lies in P(�ψ), for 1
ζ

can
be approximated uniformly by polynomials on compacta in the half-plane �ζ > 0. We
have limν→∞Qν(z,w) = �−1(z, w) for each z �= w.
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If w ∈ CN is a point for which
∫ |�j(z,w)| d|µ|(z) exists, then∫

�j(z,w) dµ(z) = lim
ν→∞

∫
ϕj (z,w)Q

N
ν (z,w) dµ(z) = 0,

for by hypothesis,µ annihilates the algebraP(�ψ).The symmetry�j(z,w) = −�j(w, z)
implies that for almost everyw,

∫
�j(w, z) dµ(z) = 0,whence, by Lemma 1.6.13,µ = 0,

as we wished to show.
To complete the proof, we have to pass from the case of ψ’s of class C 2 to ψ’s that

satisfy a Lipschitz condition.
In this case, the argument proceeds essentially as above. The issue is to see that if

µ is a measure on �ψ that annihilates P(�ψ), then it annihilates each of the functions
�j(z,w) for fixed w, and then to deduce that µ is the zero measure.

This depends on a smoothing process. Let χ be a nonnegative even function on RN

with compact support and with
∫
RN
χ = 1, and for ε > 0, let χε(x) = ε−Nχ(x/ε). Given

the Lipschitz map ψ , put

ψε(x) = χε ∗ ψ(x) =
∫

RN
χε(y)ψ(x − y) dL (y).

The map ψε is smooth, and it satisfies the same Lipschitz condition as ψ :

|ψε(x)− ψε(x′)| =
∣∣∣∣∫

RN
χε(y)

(
ψ(x − y)− ψ(x′ − y)) dL (y)∣∣∣∣ ≤ c|x − x′|.

As ε → 0, ψε converges to ψ uniformly on compacta in RN . Construct the functions
�ε and �εj and the form �ψε ;z−w associated with the map ψε as �,�j , �ϕ;z−w were

associated to ψ . There is a bound |�εj (z,w)| ≤ C|z − w|1−2N for an absolute constant

C. The first-order derivatives of the maps ψε are bounded uniformly in ε, and given a C 1

function g with compact support, we can write, for a measure µ,∫
X

g dµ =
∫
X

{ N∑
j=1

(−1)j−1
∫
CN
�εj (z, w)Sε(z) dL (z)

}
dµ(w),

where Sε is a certain function bounded independently of the index ε. This follows from
the representation (1.33) for g in terms of the kernel �ψε ;z−w together with the uniform
boundedness of the first derivatives of the functions ψε. Apply Fubini’s theorem to get∫

X

g dµ =
N∑
j=1

(−1)j−1
∫
CN

{∫
X

�εj (z, w) dµ(w)

}
Sε(z) dL (z).

Pass to the limit as ε → 0+ to find that for some bounded function S,∫
g dµ =

N∑
j=1

(−1)j−1
∫
CN

{∫
X

�j (z,w) dµ(w)

}
S(z) dL (z).
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The analysis used in the C 2 case applies equally well in the present case to show that if µ
is orthogonal to the algebra P(�ψ), then

∫
�ψ
�j (z,w) dµ(z) = 0 for almost all w, and

hence, by the symmetry �j(z,w) = −�j(w, z), it follows that µ is the zero measure.
This completes the proof of Theorem 1.6.9.

The proof of Theorem 1.6.10 can be executed in precisely parallel steps, working
this time with the functions

ϕj (z,w) = z̄j + Rj (z)− w̄j − Rj (w)
and constructing the associated �,�j , and the kernel �ϕ;z−w.

In connection especially with Theorem 1.6.9, it is worth remarking that ifψ : RN →
RN is of class C 1 and satisfies |ψ(x)−ψ(x′)| ≤ c|x−x′| for all x, x′ ∈ R, some c ∈ [0, 1),
then �ψ is a C 1 manifold and is totally real in the sense of the following definition:

Definition 1.6.14. The k-dimensional C 1 submanifold M of the open set � in CN is
totally real at the point p ∈ M if the R-affine subspace of CN through p and tangent at
p to M contains no complex line.

Equivalently, in terms of the J operator that defines the complex structure on CN ,
M is totally real at p if for no nonzero tangent vector v ∈ TpM is Jv ∈ TpM , so that
TpM ∩ JTpM = {0}.

Observe that total reality is an open condition in the sense that if M is totally real at
a point, it is totally real in a neighborhood of the point.

The total reality of �ψ is seen as follows. Set "(x) = x + iψ(x), so that �ψ =
"(RN). Suppose that "(0) = 0 and that the tangent space T0�ψ is not totally real. Then
there is v ∈ T0�ψ such that Jv ∈ T0�ψ, v �= 0. The tangent space T0�ψ is d"0(R

N)

if d"0 denotes the differential at 0 of ". If M denotes the matrix
[ ∂ψj
∂xk
(0)
]N
j,k=1, then

d"0(x) = x + iMx. The tangent vector v is d"0(x0) for some x0 ∈ RN , and Jv is
d"0(y0). Thus

x0 + iMx0 = i(y0 + iMy0),

which yields x0 = −M2x0. The hypothesis that |ψ(x)− ψ(x′)| ≤ c|x − x′| implies that
the matrixM is of norm no more than c: |Mx| ≤ c|x|, which leads to |x0| ≤ c2|x0|. This
is not possible unless x0 = 0, which yields v = 0. Thus, as claimed, �ψ is totally real.

Corollary 1.6.15. If � is a totally real submanifold of CN and if p0 ∈ �, then there is a
compact neighborhood K of p0 in � that is polynomially convex and satisfies P(K) =
C (K).

Proof. Assume first that dim� = N . Choose holomorphic coordinates on CN such that
p0 = 0 and T0� = RN . Thus, near 0, � is a graph � = {x + iϕ(x) : x ∈ RN } with
ϕ(0) = 0 and dϕ(0) = 0. From dϕ(0) = 0 follows |ϕ(x) − ϕ(x′)| < 1

2 |x − x′| when
x, x′ ∈ RN , |x − x′| < δ. The result is a consequence of Theorem 1.6.9.

If dim� < N , fix p0 ∈ �. In a neighborhood U of p0 in CN , there is a C 1 totally
real submanifold of dimension N that contains � ∩ U, so the result in this case follows
from the N -dimensional case.
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It is to be emphasized that Corollary 1.6.15 is entirely local. For example, the torus
TN in CN is totally real and so locally polynomially convex. It is not polynomially convex.
Indeed, there is no compact N -dimensional topological manifold in CN that is polynomi-
ally convex. See Corollary 2.3.5 below.

Totally real manifolds are locally polynomially convex—this was derived above
as a consequence of the local approximation theorem and a general fact from functional
analysis. It is well to notice that there is a direct route to the result, one that does not require
the analysis that went into the proof of the approximation theorem.

Consider initially the case of N -dimensional totally real submanifolds of CN . Thus,
let� ⊂ CN be anN -dimensional totally real submanifold of class C 1. Suppose 0 ∈ � and
T0� = RN . Near 0, � is the graph of a functionϕ : RN → RN withϕ(0) = 0, dϕ(0) = 0.
Consequently, there is a constant r0 > 0 so small that if x′, x′′ ∈ RN satisfy |x′|, |x′′| ≤ r0,
then |ϕ(x′)− ϕ(x′′)| < 1

2 |x′ − x′′|. Let z0 = x0 + iy0 ∈ CN\� with |x0| ≤ r0. Set

P(z) =
N∑
j=1

(
zj − (x0

j + iϕj (x0))
)2

=
N∑
j=1

(
((xj − x0

j )
2 − (yj − ϕj (x0))

2)+ 2i(xj − x0
j )(yj − ϕj (x0))

)
.

Then

P(z0) = −
N∑
j=1

(
y0
j − ϕj (x0)

)2
,

which is strictly negative, because z0 /∈ �. If z = x+ iy ∈ � with |x| ≤ r0, then, because
y = ϕ(x), we have

�P(z) =
N∑
j=1

(xj − x0
j )

2 − (ϕj (x)− ϕj (x0))
2,

and this quantity is strictly positive, for

N∑
j=1

(
ϕj (x)− ϕj (x0)

)2 ≤ 1
4 |x − x0|2.

Thus, the point z0 is not in the polynomially convex hull of �r0 = {z ∈ � : |x| ≤ r0}.
If z0 ∈ CN satisfies |x0| > r0, then z0 is not in �̂r0 either, and we conclude that �r0 is
polynomially convex.

If � has dimension less than N , again let 0 ∈ �. There is an N -dimensional totally
real manifold �̃ with 0 ∈ �̃ and with �̃ containing a neighborhood of 0 in�. Let K̃ ⊂ �̃
be a compact neighborhood of 0 ∈ �̃ that is polynomially convex. There is considerable
latitude in the choice of �̃, so finitely many �̃’s exist, say �̃1, . . . , �̃q , with associated
K̃1, . . . , K̃q , such that the polynomially convex set K̃1 ∩ · · · ∩ K̃q is a neighborhood of 0
in �.
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Corollary 1.6.16. Let f be a function of class C 1 on the complex plane. If ∂̄f does not
vanish at the point (0, f (0)), then there is a compact neighborhood K of 0 ∈ C such that
polynomials in z and f are dense in C (K).

This result was first proved by Wermer [370].

Proof. The hypothesis implies that the graph �f = {(z, f (z)) : z ∈ C} is totally real near
0, whence the result.

There is an N -dimensional version of this due to Weinstock [364].

Corollary 1.6.17. If the Jacobian determinant det
[ ∂fj
∂z̄k
(0)
]N
j,k=1 of the C 1 map f : CN →

CN does not vanish, then there is a compact neighborhood K of 0 ∈ CN such that the
polynomials in z1, . . . , zN , f1, . . . , fN , are dense in C (K).

Proof. With the given hypotheses, the graph �f = {(z, f (z)) ∈ C2N : z ∈ CN } is
totally real near the point (0, f (0)). Assume without loss of generality that f (0) = 0. It
is sufficient to show that the tangent plane T0�f is totally real. Denote by D′ the matrix[ ∂fj
∂zk
(0)
]N
j,k=1 and by D′′ the matrix

[ ∂fj
∂z̄k
(0)
]N
j,k=1. The tangent plane T0�f is the plane

{(z,D′z+D′′z̄) : z ∈ CN },
as follows from the decomposition d = ∂ + ∂̄ . We will show that this plane is totally real.
In the contrary case, there exists w ∈ T0�f , w �= 0, such that Jw ∈ T0�f . This implies
the existence of α, β ∈ CN with α = iβ and D′α +D′′ᾱ = iD′β + iD′′β̄. Substituting
the first of these into the second yields

iD′β − iD′′β̄ = iD′β + iD′′β̄.

The matrix D′′ is nonsingular, so β must be zero, and this means that α is 0. Thus, T0�f
is totally real, and the corollary is proved.

Other approximation theorems in the spirit of Theorem 1.6.9 have been given by
Sakai [315] and Weinstock [365].

It was shown above that totally real manifolds are locally polynomially convex and
that each continuous function on such a manifold can be approximated locally uniformly
by polynomials. In special cases, uniform approximation can occur on manifolds that are
not totally real. A simple example is the following.

Let � = {(z, w) ∈ C2 : w = z2 + z̄2 + 2zz̄}. This is a smooth quadratic surface in
C2 that is totally real except at the origin, where the tangent plane is the z-axis. Let �1
be the compact disk {(z, w) ∈ � : |z| ≤ 1}, a neighborhood in � of the origin. The disk
�1 is polynomially convex and satisfies P(�1) = C (�1). The polynomial convexity is
a consequence of the equality of these two algebras. That each continuous function on
�1 can be approximated by polynomials is equivalent to the observation that if A is the
subalgebra of C (Ū) generated by z and x2, z = x + iy, then A = C (Ū), as follows from
Theorem 1.2.16: The element g of A given by g(z) = x2 is real-valued, so A = C (Ū) if
and only if for each t ∈ R, P(g−1(t)) = C (g−1(t)). For each t , the fiber Et = g−1(t),
if not empty, is either a compact vertical interval or the disjoint union of two (possibly
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degenerate) such intervals. In either case, P(Et ) = C (Et ), as follows from Mergelyan’s
theorem, whence the equality of P(�) and C (�).

1.6.4. Certain Unions

A union of polynomially convex sets is generally not polynomially convex. There is,
however, an important result that affirms the polynomial convexity of a union of two
polynomially convex sets under suitable hypotheses. It goes back to work of E. Kallin [195,
196] and is often referred to as Kallin’s lemma. See also [345], [128], and [276].

An ingredient of the proof of Kallin’s lemma is a fact about peak points for polynomial
algebras on the plane.

Lemma 1.6.18. If X is a compact, polynomially convex subset of the complex plane, then
every point of bX is a peak point for the algebra P(X).

Proof. Without loss of generality, assume that the origin is a point of bX and that X is a
subset of the open unit disk.

Let {zk}k=1,... be a sequence in C\X that converges to the origin, and for each k, letλk
be an arc in the Riemann sphere from zk to infinity that missesX. Fix a point zo ∈ X \ {0},
and for each k, let �k be a branch of log (z − zk) defined on C \ λk , the �k chosen so that
the sequence �k(zo) converges. The sequence {�k}k=1,... converges pointwise on X \ {0}
to a continuous branch of log z. We shall denote the limit function by log z.

The function ψ defined by ψ(z) = log z
log z−1 , z ∈ X \ {0}, ψ(0) = 1, is continuous

on X, and is holomorphic on the interior of X. Moreover, ψ(0) = 1 > |ψ(z)| for all
z ∈ X \ {0}. Mergelyan’s theorem shows that ψ ∈ P(X), so 0 is a peak point for the
algebra P(X). The lemma is proved.

A disjoint union of two compact, convex subsets of CN is polynomially convex,
because the sets can be separated by a linear functional. Kallin’s lemma is an analogous
result for polynomially convex sets that can be separated in a suitable sense by polynomials:

Theorem 1.6.19. LetX1 andX2 be compact, polynomially convex subsets of CN . Letp be a
polynomial such that the polynomially convex subsets Yj = (p(Xj ))̂ , j = 1, 2, of C meet
at most at the origin, which is a boundary point for each of them. If the setp−1(0)∩(X1∪X2)

is polynomially convex, then the set X = X1 ∪X2 is polynomially convex. If, in addition,
P(X1) = C (X1) and P(X2) = C (X2), then P(X1 ∪X2) = C (X1 ∪X2).

The hypothesis that P−1(0) ∩ (X1 ∪ X2) is polynomially convex is satisfied in
particular when this set is empty.

Proof. Let x ∈ (X1 ∪ X2)̂ , and let µ be a representing measure for x supported by the
set X1 ∪X2. We have p((X1 ∪X2)̂ ) ⊂ (p(X1 ∪X2))̂ ⊂ Y1 ∪ Y2, so p(x) ∈ Y1 ∪ Y2.
(Note that the set Y1 ∪ Y2 is polynomially convex.)

If p(x) �= 0, suppose p(x) ∈ Y1. Mergelyan’s theorem provides a function g ∈
P(Y1 ∪ Y2) with g(p(x)) = 1 and g|Y2 = 0. For every polynomial q and for each
positive integer k,
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|qk(x)| = |qk(x)g(p(x))| ≤ ‖q‖kX1

∫
|g ◦ p| dµ.

Take the kth roots of both sides and let k → ∞ to reach |q(x)| ≤ ‖q‖X1 , so that x ∈ X̂1
= X1.

If p(x) = 0, let g ∈ P(Y1 ∪ Y2) satisfy g(0) = 1, |g| < 1 on (Y1 ∪ Y2) \
{0}. For each polynomial q, q(x) = q(x)[g(p(x))]k = ∫ q[g ◦ p]k dµ, which tends to∫
p−1(0)∩(X1∩X2)

q dµ as k → ∞. Consequently, x ∈ (p−1(0) ∩ (X1 ∩X2))̂⊂ X1 ∪X2.
It follows that X1 ∪X2 is polynomially convex.

For the second part of the theorem, let µ be a measure onX1 ∪X2 that is orthogonal
to the algebra P(X1 ∪X2), so that for every polynomial q we have

∫
q dµ = 0.

We first show that µ|(X1 \ p−1(0)) ∈ P(X1)
⊥, so that because P(X1) = C (X1),

µ|(X1 \ p−1(0)) is the zero measure. For this, let h ∈ P(Y1 ∪ Y2) be the function with
h|Y2 = 0 and with h(z) = z, z ∈ Y1. If hn = h1/n, n = 1, . . . , then hn ∈ P(Y1 ∪ Y2), as
follows from Mergelyan’s theorem, and for every polynomial q, 0 = ∫ (hn ◦ p)q dµ→∫
X1∩p−1(0) pq dµ. Thus, as desired,µ|(X1 \p−1(0)) is the zero measure. In the same way,

µ|(X2 \ p−1(0)) is the zero measure.
We now have that the measure µ is concentrated on the set

(X1 ∪X2) \ ((X1 \ p−1(0)) ∪ (X2 \ p−1(0)) = (X1 ∪X2) ∩ p−1(0).

Because P(X1) = C (X1), it follows that µ = 0, so, as claimed, P(X1 ∪ X2) =
C (X1 ∪X2).

The paper of dePaepe [276] gives a useful survey of the applications of this result.
As an atypically simple application of Theorem 1.6.19, notice that the union of two

closed balls with disjoint interiors is polynomially convex, even if they have a point in
common.

More generally, if X1 and X2 are convex sets that intersect only at one point, say
the origin, and if X1 and X2 have the property that for some linear functional ϕ on CN ,
�ϕ ≤ 0 on X1, �ϕ ≥ 0 on X2, and �ϕ−1(0) meets X1 only in a point, then the union
X1 ∪X2 is polynomially convex.

It is not true in general that the union of two compact, convex sets that share only
one point is polynomially convex. Various examples are known, and Section 8.1 below
gives a systematic discussion of a class of examples. A simple example is this: Let X1 =
{z ∈ C2 : z1 = z̄2, |z2| ≤ 2} and X2 = {z ∈ C2 : z1 = 2z̄2, |z2| ≤ 2}. Each of these sets
is compact and convex, and they intersect only at the origin. Their union, X = X1 ∪ X2,
is not polynomially convex. To see this, let ψ : C \ {0} → C2 be the map given by
ψ(ζ ) = (ζ, 1/ζ ). If A is the annulus {ζ ∈ C : 1 ≤ |ζ | ≤ √

2}, then the inner boundary
of A goes under ψ into X1, and the outer boundary of A goes into X2. Consequently,
X̂ ⊃ ψ(A), and X is seen not to be polynomially convex.

The original application of the theorem is a result of Kallin [195]:

Theorem 1.6.20. A union of three mutually disjoint closed balls is polynomially convex.
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Proof. We consider first the case thatN = 2. Let the balls beB1,B2, andB3 with respective
radii r1 = 1 ≥ r2 ≥ r3. By proper choice of coordinates, we can suppose that B1 is the
closed unit ball centered at the origin. With a further unitary change of coordinates, we
can suppose the center of B2 to be (α, 0) for some α ∈ C. Then by rotations in the z1 and
z2 axes, we can suppose that the center of B3 is the point β = (β1, β2) with β1 and β2
real. This transformation brings the center of B2 to the point (γ, 0) for a γ ∈ C.

Introduce the polynomial ϕ given by ϕ(z) = z2
1 +z2

2. Let z = x+ iy with x, y ∈ R2.
The polynomial ϕ carriesB1 onto the closed unit disk in C, and we shall show that �ϕ > 1
on B3. For this, notice that because �ϕ is pluriharmonic, its minimum over the closed ball
B3 occurs on bB3. We therefore consider the constrained extremal problem min �ϕ(z)
subject to z ∈ bB3. That is, we seek the minimum of �ϕ(z) subject to |z − β|2 = r2

3 .
Treat this problem by the method of Lagrange multipliers: The minimum of �ϕ(z) subject
to |z − β|2 = r2

3 is achieved when grad �ϕ(z) = λgrad |z − β|2 for some choice of the
multiplier λ, which is equivalent to the system (in which zj = xj + iyj )

x1 = λ(x1 − β1),

−y1 = λy1,

x2 = λ(x2 − β2),

−y2 = λy2.

This system admits solutions only when λ = −1 or when y1 = y2 = 0. The case λ = −1
leads to xj = βj/2, which is impossible, for we are considering only points on bB3, which
is given by |x−β|2 +|y|2 = r2

3 . This equation cannot be satisfied when x = β/2, because
|β| > 1+ r3, for B1 and B3 are disjoint. Thus, the solution to our extremal problem occurs
when y = 0. We are then looking at min(x2

1 +x2
2) subject to |x−β|2 = r2

3 . This minimum
is (|β| − r3), which is greater than 1, again because B1 and B3 are disjoint. Thus, �ϕ > 1
on B3.

In addition, the sets ϕ(B1) and ϕ(B2) intersect at most at a point: We want to see
that |ϕ| ≥ 1 on B2 and that only one value of ϕ on B2 has modulus one. By the minimum
principle, the modulus of ϕ assumes its minimum overB2 on bB2. Notice also that because
(z1, z2) ∈ bB2 implies (z1, e

iϑz2) ∈ bB2 for all ϑ ∈ R, it follows that the minimum of
|ϕ| on bB2 occurs when arg z2

2 = arg z2
1 + π , which means that z2 = i z1|z1| |z2|. Thus, the

minimum of |ϕ| on B2 is the square root of the minimum of∣∣∣∣z2
1 − z2

1

|z1|2 (r
2
2 − |z1 − γ |2)

∣∣∣∣ = |z1|2 − r2
2 + |z1 − γ |2

subject to |z1 − γ | ≤ r2. If F(z1) = |z1|2 − r2
2 + |z1 − γ |2, then the unique critical point

of F in the plane is at the point γ /2, which, as above, is not in the disk |z1 − γ | ≤ r2.
Thus, the minimum occurs on the boundary, and we want the minimum of |z1|2 on B2.
This minimum is (|γ | − r2)2, and it occurs at a unique point. It follows that, as desired,
ϕ(B2) meets ϕ(B1) at most in a single point.

Theorem 1.6.19 applied to the polynomially convex setsX1 = B1 andX2 = B2∪B3
implies that ∪Bj is polynomially convex.
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We must finally deduce the result in CN from the result in C2. To do this, consider
three mutually disjoint closed balls B1, B2, and B3 in CN . We can choose coordinates
such that B1 is the closed unit ball in CN and such that the radii of B2 and B3 are both not
more than one. Moreover, we can suppose the centers of B1 and B2 to lie in the subspace
� = {z ∈ CN : z3 = · · · = zN = 0} of CN . If B ′

j = Bj ∩�, then ∪jB ′
j is polynomially

convex, because this union is the union of three disjoint closed balls in the copy � of
C2. If π is the orthogonal projection of CN onto �, then for every compact subset E of
π−1(∪B ′

j ), the hull Ê is contained in π−1(∪B ′
j ), whence ∪Bj is polynomially convex.

Granted the polynomial convexity of ∪Bj , the equality of P(∪Bj ) and A(∪Bj )
follows from the Oka–Weil theorem.

For further discussion of unions of convex sets see the work of Mueller [253–255].
An analysis rather like the one just used together with Theorem 1.6.19 implies that

certain additional unions of balls are polynomially convex.

Theorem 1.6.21. The union X of a finite number of closed balls with mutually disjoint
interiors centered at points of RN ⊂ CN is polynomially convex and satisfies P(X) =
A(X).

The polynomial convexity ofX is a result of Khudaiberganov [205]. See also [336].
Notice that the closed balls of the theorem need not be disjoint, but because they have
disjoint interiors, by pairs they intersect at most in singletons. No three of them can have
a common point. In some cases their union is connected.

Proof. The proof is by induction on the number of balls. One ball is polynomially convex.
Suppose, therefore that the union of n closed balls with disjoint interiors centered at points
of RN is polynomially convex. Given n+ 1 such balls, without loss of generality we can
assume that one of them is BN and that the others have radius not more than one. We
will show that if P(z) is the polynomial given by P(z) = z2

1 + · · · + z2
N , if a ∈ RN is

of norm greater than one, and if r ∈ (0, 1], then �P ≥ 1 on the closed ball B̄N(a, r).
Granted this, Kallin’s lemma, Theorem 1.6.19, implies that the union,X, of our n+1 balls
is polynomially convex.

Accordingly, let z ∈ bBN(a, r) with a ∈ RN , |a| > 1, and 0 < r ≤ 1. Then, with
z = x + iy, x, y ∈ RN , �P(z) = |x|2 − |y|2 = |x|2 + |x − a|2 − r2 = 2|x|2 − 2x · a +
|a|2 − r2 ≥ 2|x|2 −2|x||a|+ |a|2 − r2. The quadratic ϕ(t) = 2t2 −2t |a|+ |a|2 − r2 takes
its minimum when t = |a|/2. For our purposes, t = |x| varies through the interval from
|a| − r to |a| + r . We have |a|/2 ≤ |a| − r because |a| > 1, r ∈ (0, 1], and |a| ≥ r + 1,
so it follows that

�P(z) ≥ 2(|a| − r)2 − 2|a|(|a| − r)+ |a|2 − r2 = (|a| − r)2 ≥ 1.

Thus X is seen to be polynomially convex. The final statement of the theorem is a conse-
quence of two corollaries of the proof of Theorem 1.6.19:

Corollary 1.6.22. WithX1, X2, and p as in Theorem 1.6.19, if µ is a measure onX1 ∪X2
that annihilates P(X1∪X2), there is a decompositionµ = µ0+µ1+µ2 withµ0, µ1, and
µ2 concentrated on p−1(0)∩(X1∪X2), onX1 \p−1(0), and onX2 \p−1(0), respectively,
and with each of µ0, µ1, and µ2 orthogonal to the polynomials.
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Corollary 1.6.23. With X1, X2, and p as in Theorem 1.6.19,

P(X1 ∪X2) = {f ∈ C (X1 ∪X2) : f |X1 ∈ P(X1) and f |X2 ∈ P(X2)}.

The former of these two corollaries implies the latter: If f ∈ C (X1 ∪ X2) is not in
P(X1 ∪ X2), there is a measure µ carried by X1 ∪ X2 that annihilates P(X1 ∪ X2) but
that does not annihilate f . Decompose µ as µ = µ0 + µ1 + µ2 in accordance with the
first corollary. The function f lies in both P(X1) and P(X2), so the measures µ0, µ1,
and µ2 all annihilate f , and we have a contradiction.

For the proof of Corollary 1.6.22, simply note that it is proved in the penultimate
paragraph of the proof of Theorem 1.6.19.

To finish the proof of Theorem 1.6.21, we need to see that P(X) = A(X), which
follows by induction, using Corollary 1.6.23.

1.6.5. The Effect of Proper Maps

It is sometimes useful to have information about the effect of holomorphic maps on the
convexity properties of a set. It is surely not generally true that the holomorphic image of a
polynomially convex set is again polynomially convex. However, for proper holomorphic
maps, there is a useful result. (Recall that a map f : X→ Y is proper if for each comapct
subset K of Y , the set f−1(K) is a compact subset of X.)

Theorem 1.6.24. If F : CN → CN is a proper holomorphic map, and if X ⊂ CN is
a compact set, then the set X is polynomially convex if and only if the set F−1(X) is
polynomially convex, and P(X) = C (X) if and only if P(F−1(X)) = C (F−1(X)).

The proof of this depends on some information about proper holomorphic maps. If
� and�′ are domains in CN , and if F : �→ �′ is a proper holomorphic map, then there
is a positive integerµ, the multiplicity of F , with the property that for every z ∈ �′ outside
some fixed analytic subvariety7 V ⊂ �′, the fiber F−1(z) consists of exactly µ distinct
points. The algebra O(�) is integral over O(�′) in the sense that for each f ∈ O(�),
there are functions g0, g1, . . . , gµ−1 in O(�′) such that f µ +∑µ−1

j=0 f
jgj ◦ F = 0. The

functions gj are determined by the condition that if z ∈ �′ is a point with µ distinct
preimages under F , then gj (z) is, to within a sign, the (µ − j)th elementary symmetric
function of the values f assumes on the fiber f−1(z). (Thus, g0(z) is, to within sign,
the product of all the values f assumes on the fiber F−1(z), and gµ−1(z) is their sum.)
This geometric situation is described by saying that the triple (�, F,�′) is an analytic
cover. The theory of these is developed in detail in books that discuss analytic varieties,
e.g., [158].

Proof of the theorem. Suppose thatX is polynomially convex. If y ∈ CN \F−1(X), then
F(y) /∈ X, so there is a polynomial P with P(F(y)) = 1 but |P |X < 1. The function

P ◦ F shows that y /∈ F̂−1(X).

7A brief summary of some basic facts about varieties is given at the beginning of Section 3.2 below.
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Conversely, suppose the set Y = F−1(X) to be polynomially convex. If y ∈ CN \X,
then the set S = F−1(y) is disjoint from Y , and the set S ∪ Y is polynomially convex.
The Oka–Weil theorem provides a polynomial P with P = 1 on S and |P | < 1

2 on
Y . As described in the paragraph above, P satisfies a monic polynomial equation with
coefficients of the form gj ◦ F for functions gj holomorphic on CN . If the multiplicity of
the map F is µ, then the coefficient of Pµ−1 in this equation, call it gµ−1 ◦ F , satisfies
gµ−1 ◦F(y) = −µ and |gµ−1 ◦F | < µ/2 onX. Accordingly,X is polynomially convex.

If P(Y ) = C (Y ), then for every f ∈ C (X), there is a sequence {Pk}k=1,... of
polynomials that converges to f ◦ F . Each of these polynomials is integral over O(CN).
Denote by pk the coefficient of Pµ−1

k in the monic equation over O(CN) satisfied by Pk ,
so that off a subvariety in CN , pk(z) is simply the sum of the values of Pk on F−1(z). Then
{ gk
µ
}k=1,... is a sequence of holomorphic functions on CN—generally not polynomials—

that converges uniformly to f . This implies that P(X) = C (X).
Finally, suppose that P(X) = C (X). In this case, the algebra P(Y ) contains all the

functions g ◦ F , g ∈ C (X). From this point, argue by duality, as in previous situations.
If P(Y ) �= C (Y ), then there are nonzero measures σ on Y such that

∫
Y
P (z) dσ(z) = 0

for all polynomials P . Choose such a σ that is an extreme point of the unit ball in the
space of all such orthogonal measures. Because P(X) = C (X), the measure σ has to be
concentrated on a fiberF−1(x) for an x ∈ X. This fiber is a finite set. There are polynomials
on CN that take arbitrarily prescribed values at the points of a finite set, so it follows that
the measure σ must be the zero measure. Consequently, P(Y ) = C (Y ).

In the theorem just proved, we have a proper holomorphic map from CN to CN . The
parallel result in the case of proper holomorphic maps from CN to CM with M > N is
correct, but the proof requires some deeper results from analytic geometry than have been
used in the proof just given.

The following example of Wermer [369] complements the preceding result. Define
� : C2 → C3 by

�(z,w) = (z, zw, zw2 − w).
One verifies without difficulty that� is injective, is regular, and is not proper. (That it is not
proper can be seen by noting that �( 1

n
, n) = ( 1

n
, 1, 0), which shows that the �-preimage

of the (compact) closed unit tridisk in C3 is not compact.)
The image�(Ū2) of the closed unit bicylinder, call it�, is not polynomially convex:

The point (0, 1, 0) ∈ C3 does not lie in �, but � contains the points �(eiϑ , e−iϑ ) =
(eiϑ , 1, 0), ϑ ∈ R, which constitute a circle, γ . The polynomially convex hull of γ is
the disk D = {(z, 1, 0) : z ∈ Ū}, which passes through the point (0, 1, 0), so � is not
polynomially convex. In [369] Wermer determines the hull of �; it is the union � ∪D.

This example turned out to be important in an entirely different context: In [117],
Fornæss constructed a complex manifold M that is not a Stein manifold but that is a union
M = ∪k=1,...�k of domains with �k ⊂ �k+1 for all k and with each domain �k a Stein
manifold. This construction draws on the example just given. Another construction of such
a manifold is given in [120]. The existence of such examples contrasts with the situation in
CN , where a domain that is the union of an increasing sequence of domains of holomorphy
is itself a domain of holomorphy.
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1.7. Hulls with No Analytic Structure

If a subsetX of CN is not polynomially convex, it is important to understand the structure
of the set X̂ \ X. The only obvious explanation for the presence of points in this set is
related to analytic structure.

Definition 1.7.1. LetX be a compact subset of CN . If x ∈ X, an analytic disk inX through
x is a nonconstant map ψ : U → X with x ∈ ψ(U) and with the property that for every
polynomial P , the composition P ◦ ψ is holomorphic on U.

We shall say that a set E ⊂ CN contains an analytic disk if there is a nonconstant
analytic map ϕ : U → CN with ϕ(U) ⊂ E.

In all the simple examples that come to mind, the presence of points in X̂ \ X is
associated with the existence of analytic disks. It was entirely natural to suppose that in the
general case, the complementary set X̂ \X should consist of a complex-analytic manifold
or more generally of a complex-analytic variety, or at least that it should contain analytic
disks in great plenitude. Stolzenberg [340] demonstrated the matter to be much more
complicated than this by constructing a compact set X in C2 such that the nonempty set
X̂\X contains no analytic disk. In the forty-odd years since its discovery, other, essentially
simpler, examples of the same general phenomenon have been discovered: See the papers
of Alexander [25], Basener [44], Duval and Levenberg [106], and Wermer [372, 374].
Levenberg’s paper [222] contains a survey of the general subject

In this section we give the example of Duval and Levenberg:

Theorem 1.7.2. If K is a compact, polynomially convex subset of BN , N ≥ 2, then there
is a compact subset X of bBN such that X̂ ⊃ K and such that the set X̂ \K contains no
analytic disk.

Corollary 1.7.3. There are compact subsetsX of CN ,N ≥ 2, such that X̂ \X is not empty
but contains no analytic disk.

Granted the theorem, it follows immediately that if� is an arbitrary bounded domain
in CN , N ≥ 2, and ifK is a polynomially convex subset of �, then there exists a compact
subset Y of b� such that Ŷ ⊃ K and Ŷ \ K contains no analytic disk. To see this, let
R > 0 be so large that the ball BN(R) contains �̄. The theorem provides a compact set
X contained in bBN(R) such that X̂ ⊃ K and X̂ \K contains no analytic disk. The local
maximum modulus principle, which is proved below, Theorem 2.1.8, implies that for the
set Y we can take X̂∩b�. Notice that there is absolutely no condition whatsoever imposed
on b� in this construction.

The proof of Theorem 1.7.2 depends on two simple lemmas:

Lemma 1.7.4. If X ⊂ CN is a polynomially convex set, and if E ⊂ X is polynomially
convex, then for every holomorphic function f defined on a neighborhood of X, the set
E ∪ (X ∩ f−1(0)) is polynomially convex.8

8The general fact is that if V is any analytic variety in a neighborhood ofX, thenE∪ (X∩V ) is polynomially
convex. This is immediate from the stated lemma, granted some standard information about varieties: If V
is a subvariety of the neighborhood � of X, then by shrinking � if necessary, we can suppose it to be a
polynomial polyhedron and so a domain of holomorphy. Every analytic subvariety of a domain of holomorphy
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Proof. Consider a point x /∈ E ∪ (X ∩ f−1(0)). By replacing f by f/f (x) if necessary,
we can suppose f (x) = 1. The Oka–Weil theorem implies that f |X ∈ P(X). Also,
because x /∈ E and E is polynomially convex, there is a polynomial p with p(x) = 1 and
‖p‖E < 1

2 . If for large integral n, h = pnf , then ‖h‖E∪(f−1(0)∩X) < 1 and h(x) = 1,
whence x /∈ (E ∪ (f−1(0) ∩X))̂ . The lemma is proved.

Lemma 1.7.5. If K ⊂ BN is a polynomially convex set, and if {Qj }j=1,... is a sequence
of polynomials such that all the sets Zj = B̄N ∩Q−1

j (0) are disjoint from K , then there

is a compact subset X of bBN such that X̂ ⊃ K and X̂ ∩ Zj = ∅ for all j = 1, . . . .

Proof. The set X is constructed as the intersection ∩k=1,...Xk of a decreasing sequence of
compact subsets Xk of bBN such that for each k, K ⊂ int X̂k and X̂k ∩

(∪kj=1Zj
) = ∅.

The sets Xk are constructed inductively. To begin with, the set K ∪ Z1 is polynomially
convex, so there is a polynomial F1 with

�F1 < −1 on K and �F1 > 1 on Z1.

Define X1 to be {�F1 ≤ 0} ∩ B̄N .
For the inductive step, assume X1 ⊃ X2 ⊃ · · · ⊃ Xn to be compact subsets of bBN

such that for suitable polynomials F1, . . . , Fn, Xk = {�Fk ≤ 0} ∩ B̄N and such that X̂k
is disjoint from Zj for 1 ≤ j ≤ k ≤ n. We require also that K ⊂ {�Fk < 0} for each k.
With this arrangement, let Ln = {�Fn ≥ 0} ∩ B̄N . This set is polynomially convex, and
by Theorem 1.6.19, the set K ∪ Ln is also polynomially convex, for �Fn < 0 on K .

The setK ∪Ln∪Zn+1 is polynomially convex. Consequently, there is a polynomial
Fn+1 such that �Fn+1 < −1 onK , and �Fn+1 > 1 onLn∪Zn+1. The setXn+1 is defined
by Xn+1 = {�Fn+1 ≤ 0} ∩ bBN . We have that X̂n+1 = {�Fn+1 ≤ 0} ∩ B̄N .

This completes the construction of the sets Xn and the proof of the lemma.

Proof of Theorem 1.7.2. The theorem is proved by applying the preceding construction
with a judiciously chosen sequence of polynomialsQj .

For x ∈ BN \ K choose a polynomial Px with Px(x) = 0 and �Px < −1 on K .
If x = (x1, . . . , xN), let Px,j (z) = P 2

x (z) + ε(zj − xj ). For sufficiently small ε, the
polynomials Px,j form a set of local coordinates in a ball Bx centered at x whose closure
is disjoint from K . By making the balls sufficiently small, we can ensure that Pj,x(Bx) is
disjoint from Pj,x(K).

Countably many of the balls Bx , say {Bk}k=1,..., cover BN \ K . Let the associated
polynomials Px,j be Pk,1, . . . , Pk,N . For each choice of k and j , let {αm,k,j }m=1,... be
a sequence dense in the open subset of Pk,j (Bk) of the plane. Define Qm,k to be the
polynomial

Qm,k(z) =
N∏
j=1

[Pk,j (z)− αm,k,j ].

The polynomialQm,k vanishes on a variety Vm,k that misses K . For the sake of notation,
relabel theQm,k asQ1,Q2, . . . and relabel the Vm,k correspondingly. Let Zk = Vk ∩ B̄N.

is the intersection of the zero loci of a family of functions holomorphic on the domain.
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By the preceding lemma, there is a compact subset X of bBN such that X̂ ⊃ K and
X̂ ∩ Zn = ∅ for all n = 1, . . . .

There can be no nonconstant holomorphic map ϕ : U → BN with ϕ(U) ⊂ X̂ \ K .
Each point of bBN is a peak point for the algebra P(X), so by the maximum principle
any such function would have to carry U into X̂∩BN . There would then be a nonconstant
map,ψ , from a disk into one of the balls Bx ; forψ take the restriction of ϕ to a sufficiently
small disk about the origin. SupposeQn to be one of theQ’s associated with the ball Bx .
Because X̂ is disjoint from the associated variety Zk , it follows that for j = 1, . . . , N ,
the functions Px,j ◦ψ have to omit all values in a dense subset of Px,j (Bx). Accordingly,
they are constant. The Px,j constitute local holomorphic coordinates in Bx , so we have a
contradiction to the assumption that ϕ is nonconstant.

The theorem is proved.



Chapter 2

SOME GENERAL
PROPERTIES OF
POLYNOMIALLY
CONVEX SETS

Introduction. The main properties of polynomially convex sets discussed in
this chapter are of a general character in that they do not depend on particular
structural properties of the sets involved. Section 2.1 contains some of the
information about polynomially convex sets that can be derived from the
theory of the Cousin problems. Section 2.2 contains two characterizations of
polynomially convex sets. Section 2.3 brings the geometric methods of Morse
theory and algebraic topology to bear on polynomial convexity. Section 2.4
is devoted to some results for various classes of compacta in Stein manifolds
that are parallel to results for polynomially convex subsets of CN .

2.1. Applications of the Cousin Problems

The study of the Cousin problems has played a central role in the development of the
theory of holomorphic functions of several complex variables, and the solutions of these
problems find many applications in function theory. The present section is devoted in the
main to some applications of these problems in the theory of polynomial convexity.

A natural setting in which to study the Cousin problems is that of Stein manifolds.
Recall that anM-dimensional complex manifold M is a Stein manifold if it possesses the
following properties:
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(a) Holomorphic functions separate points: If x and y are distinct points of M , then
there is an f ∈ O(M ) with f (x) �= f (y).

(b) For each point x in M , there are M functions f1, . . . , fM ∈ O(M ) such that
df1∧· · ·∧dfM does not vanish at x. Thus, the globally defined functions f1, . . . , fM
provide local holomorphic coordinates near x.

(c) The manifold M is holomorphically convex in the sense that for each compact set
X ⊂ M , the O(M )-convex hull O(M )-hullX defined by

O(M )-hullX = {x ∈ M : |f (x)| ≤ ‖f ‖X for all f ∈ O(M )}
is compact.

Examples are the closed, complex submanifolds of CN . For such a manifold M , the
points (a) and (b) of the definition are evident; the holomorphic convexity, point (c), is not
at all simple, though it follows from some standard results in function theory: It suffices
to know that a closed complex submanifold M of CN is the intersection of the zero loci
of the functions in O(CN) that vanish on it, for then if X is a compact subset of M , the
set X̂ is contained in M . It follows that the O(M )-hull of X is contained in the compact
set X̂, and so is compact.

By the fundamental embedding theorem for Stein manifolds [158], [180], the closed
complex submanifolds of CN are, to within biholomorphic equivalence, the only examples:
Every M-dimensional Stein manifold is biholomorphically equivalent to a closed complex
submanifold of some CN . (It suffices to take N = 2M + 1; better results are known.)

The formulation of the Cousin problems is as follows.1 The context is a complex
manifold M , perhaps a domain in CN . For the first Cousin problem, or the additive
Cousin problem, we are given an open covering U = {Uα}α∈A of M and for each index
α ∈ A a meromorphic function fα . It is supposed that fα − fβ is holomorphic on the
intersection Uα,β = Uα ∩ Uβ , and it is required to find a function f meromorphic on
M such that for all indices α, f − fα is holomorphic on Uα . This is the problem of
finding a meromorphic function with prescribed poles, i.e., the multivariate analogue of
the problem solved by the classical Mittag-Leffler theorem. An alternative formulation is
in terms of holomorphic functions only. For each pair α, β of indices inA, there is given a
holomorphic function gα,β ∈ O(Uα,β); it is required to find holomorphic functions gα on
Uα such that gα − gβ = gα,β on Uα,β . For the desired gα’s to exist, it is plainly necessary
that gα,β − gα,γ + gβ,γ = 0; this is the cocycle condition. The existence of the desired
gα’s for every choice of functions gα,β that satisfy the cocyle condition and for all choices
of the open covering U is the vanishing of the first cohomology group H 1(M ;O) of M
with values in the sheaf O of germs of holomorphic functions on M .

For the second Cousin problem, or multiplicative Cousin problem, we are again
given an open covering U = {Uα}α∈A and for each index α a holomorphic function fα .
It is required that the quotient fα/fβ be holomorphic and zero-free in Uα,β , and we ask
for a holomorphic function f such that for each α the quotient f/fα is holomorphic and

1The name derives from the work of Pierre Cousin, who, in his thesis [92], studied these problems.
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zero-free on Uα . This is the problem of finding a holomorphic function with prescribed
zeros, which is the higher-dimensional analogue of the problem solved by the Weierstrass
theorem in the theory of functions of one complex variable. An alternative formulation is
the following. We are given zero-free holomorphic functions gα,β on Uα,β , and we ask for
zero-free holomorphic functions gα on Uα such that for all α, β, gα/gβ = gα,β on Uα,β .
Again, for there to be a solution, the obvious cocycle condition gα,βg−1

α,γ gβ,γ = 1 must be
satisfied. The existence of the desired gα’s for every choice of functions gα,β that satisfy
the cocyle condition is the vanishing of the first cohomology group H 1(M ;O∗) of M
with values in the sheaf O∗ of germs of zero-free holomorphic functions on M .

These Cousin problems are not universally solvable. However, it is a standard result
in the theory of functions of several complex variables that the first Cousin problem is
solvable on every domain of holomorphy in CN and, more generally, on every Stein
manifold.

The second Cousin problem is not universally solvable on domains of holomorphy;
there is a topological condition. IfD is a domain of holomorphy in CN or a Stein manifold,
then the second problem of Cousin is universally solvable on D if and only if the second
integral cohomology group Ȟ 2(D;Z) vanishes.

The relation between the second Cousin problem and the vanishing of the second
integral cohomology can be spelled out in concrete terms as follows. Given the open
covering U = {Uα}α∈A for D and given functions fα ∈ O(Uα) such that fαf

−1
β = fα,β

is holomorphic and zero-free on Uαβ , we pass to a refinement {Vα}α∈A′ . Thus, there is a
map ι : A′ → A such that for all α ∈ A′, Vα ⊂ Uια . For each α ∈ A′, we let fα be
fια|Vα . The refinement {Vα}α∈A′ can be chosen fine enough that for all α, β ∈ A′, there is
a holomorphic determination of log (fα/fβ) on Vαβ . Set

cα,β,γ = 1

2πi
log (fα/fβ)+ log (fβ/fγ )+ log (fγ /fα).

The function cα,β,γ is a locally constant Z-valued function, and 2πicα,β,γ is a determina-
tion of log 1. The collection {cα,β,γ }α,β,γ∈A′ is a 2-cocycle for the covering {Vα}α∈A′ with
values in Z, for

cβ,γ,δ − cα,γ,δ + cα,β,δ − cα,β,γ = 0

for all choices of α, β, γ, δ ∈ A′. It therefore determines an element of the cohomology
group Ȟ 2(D,Z). If this group is zero, then assuming we have chosen the covering {Vα}α∈A′
to be sufficiently fine, this cocycle {cα,β,γ }α,β,γ∈A′ is a coboundary: There exist continuous
Z-valued functions mα,β on Vαβ with

cα,β,γ = mβ,γ −mα,γ +mα,β.
Define hα,β ∈ O(Vα,β) by

hα,β = 1

2πi
log(fα/fβ)−mα,β.

Then hβ,γ−hα,γ+hα,β = 0. Thus, {hα,β}α,β∈A′ determines an element in the cohomology
group Ȟ 1(D,O), which, by assumption, vanishes, because M is a Stein manifold. Thus,
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there are functions hα ∈ O(Vα) with

hα − hβ = hα,β −mα,β.
We now define gα ∈ O(Vα) by

gα = fαe−2πihα .

On Vαβ these functions satisfy

gα/gβ = (fα/fβ)e−2πi(hα−hβ) = 1.

Therefore the function G defined by the condition that G = gα on Vα is a well-defined
holomorphic function on D with the property that G/fα is holomorphic and zero-free on
Vα . Thus, our multiplicative Cousin problem is solved.

Thorough treatments of the Cousin problems are given in [158] and [180]. The third
memoir of Oka [273] is still well worth reading for its treatment of the second Cousin
problem.

The first application of the Cousin problems in our study of polynomial convexity is
to a characterization of polynomially convex sets in terms of certain families of analytic
hypersurfaces, a result that goes back to Oka [272]. By an analytic hypersurface in a
complex manifold we understand a closed set that is locally defined by the vanishing
of a single holomorphic function. In general, an analytic hypersurface will not be defined
globally by the vanishing of a single holomorphic function; as just noted, the second Cousin
problem is generally not solvable. An analytic hypersurface � is termed principal if it is
the zero locus of a holomorphic function. (Note: In this formulation it is not required that
there be a holomorphic function F on the manifold whose zero locus is the hypersurface�
and that satisfies, in addition, the condition that if g is a function holomorphic on an open
setW in the manifold that vanishes onW ∩�, then g = F g̃ for a function g̃ holomorphic
on W . Briefly put, F is not required to generate the ideal sheaf of functions vanishing
on �.)

Definition 2.1.1. A continuous family of principal analytic hypersurfaces in a complex
manifold M is a family {Vt }t∈[0,1) of principal analytic hypersurfaces in M such that
there exists a continuous function F : [0, 1) × M → C with the property that for each
t ∈ [0, 1), F(t, ·) is a nowhere locally constant function holomorphic on M the zero locus
of which is the hypersurface Vt .

As an example, let Y ⊂ CN be a polynomially convex set. If zo ∈ CN \ Y , there is a
polynomial P with |P | < 1 on Y and P(zo) = 1. Define F(t, z) = P(z)− 1+ log(1− t)
for t ∈ [0, 1). If Vt denotes the zero locus of F(t, ·), then {Vt }t∈[0,1) is a continuous family
of principal analytic, indeed, algebraic, hypersurfaces in CN each member of which is
disjoint from Y that contains the point zo and that diverges to infinity in the sense of the
following definition.

Definition 2.1.2. A continuous family {Vt }t∈[0,1) of principal analytic hypersurfaces in a
complex manifold M diverges to infinity as t → 1− if for each compact subset K of M ,
there is a tK ∈ [0, 1) large enough that for all t ∈ [tK, 1), the variety Vt is disjoint fromK .



2.1. Applications of the Cousin Problems 75

There are two characterizations of polynomially convex sets in terms of continuous
families of principal analytic hypersurfaces, one global, the other local. The former is the
simpler.

Theorem 2.1.3. [272] (See also [341].) LetX ⊂ CN be a compact set. The point zo ∈ CN

does not lie in the polynomially convex hull ofX if and only if there is a continuous family
{Vt }t∈[0,1) of principal analytic hypersurfaces in CN such that zo ∈ Vo, Vt ∩ X = ∅ for
all t , and Vt diverges to infinity as t → 1−.

It is a simple matter to verify the following corollary.

Corollary 2.1.4. Let X ⊂ CN be a compact set. The point zo ∈ CN does not lie in the
polynomially convex hull of X if and only if there is a continuous family {Vt }t∈[0,1) of
principal analytic hypersurfaces in CN such that zo ∈ Vo, Vt ∩ X = ∅ for all t , and, for
some to ∈ [0, 1), there is a polydisk � containing X that is disjoint from the variety Vto .

Proof. Assume the theorem, and consider a compact subset X, which we assume to be
contained in the open unit polydisk UN . Suppose there to be a continuous family {Vt }t∈[0,1)
of principal analytic hypersurfaces in CN defined by the continuous function F : [0, 1)×
CN → C such that Vt ∩X = ∅ for all t , such that zo ∈ Vo, and such that V1/2 ∩ ŪN = ∅.
Define F̃ : [0, 1)× CN → C by

F̃ (t, z) =
{
F(t, z) if t ∈ [0, 1

2 ],
F ( 1

2 , ze
1−2t
1−t ) for t ∈ [ 1

2 , 1).

If {Ṽt }t∈[0,1) is the continuous family of principal analytic hypersurfaces defined
by the function F̃ , then it diverges to infinity in CN and shows that zo is not in X̂. The
corollary is proved.

Proof of Theorem 2.1.3. By the discussion immediately after Definition 2.1.1, we need
only verify the if direction of the theorem. To this end, let X be a compact subset of CN .
Suppose that zo ∈ CN \X and that {Vt }t∈[0,1) is a continuous family of principal analytic
hypersurfaces in CN that diverges to infinity for which each Vt is disjoint fromX but with
zo ∈ Vo.

If some variety in the family {Vt }t∈[0,1) meets X̂, then compactness implies the
existence of a τo ∈ [0, 1) such that Vτo meets X̂ but for no t > τo does Vt meet X̂. Let
the continuous family {Vt }t∈[0,1) be defined by the function F : [0, 1) × CN → C as
in Definition 2.1.1. Let S be the subset of (τo, 1) that consists of those t for which 1

F(t,·)
is approximable uniformly on X̂ by polynomials. The set S is not empty, for it contains
all t sufficiently near 1: For t near 1, 1

F(t,·) is holomorphic on a polydisk centered at the

origin and large enough to contain X̂. On this polydisk the holomorphic function 1
F(t,·) can

be approximated uniformly on compact sets by polynomials. The set S is also closed in
(τo, 1): If for tj → to ∈ (τo, 1), each tj ∈ S, then because F(tj , ·) converges uniformly on
X̂ to F(tto , ·), and because each 1

F(tj ,·) is uniformly approximable on X̂ by polynomials,

it follows that 1
F(to,·) is uniformly approximable on X̂ by polynomials. Finally, S is open.
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This is so, for if to ∈ S, then for t with |t − to| small and for z ∈ X̂,

1

F(t, z)
= 1

F(to, z)

∑
j=0,...

(
F(to, z)− F(t, z)

F (to, z)

)j
= 1 +O(F(t, z)− F(to, z))

F (to, z))
.

Because to ∈ S and |F(t, x)−F(to, x)| is uniformly small when x ∈ X̂ and t− to is small,
it follows that t ∈ S when t − to is small. That is, S is open. Consequently, S = (τo, 1).

If t > τo is close to τo, then the function 1
F(t,·) is approximable uniformly on

X̂ by polynomials. However, granted that t is sufficiently near τo, there will be points

y ∈ X̂ at which 1
|F(t,y)| >

∥∥∥ 1
F(t,·)
∥∥∥
X

. This leads to the existence of polynomials P with

|P(y)| > ‖P ‖X, a contradiction.
The conclusion is that none of the varieties Vt meet X̂. In particular, zo /∈ X̂.
There is a local version of the theorem stated above.

Theorem 2.1.5. [272] (See also [341].) Let X be a compact subset of CN , let zo ∈ CN ,
and let U be an open set in CN . If there is a continuous family {Vt }t∈[0,1) of principal
analytic hypersurfaces in U with the properties that

(a) zo ∈ Vo,
(b) there is a neighborhood � of X such that each Vt is disjoint from �,

(c) {Vt }t∈[0,1) diverges to infinity in U , and

(d) the set of t ∈ [0, 1) for which Vt meets X̂ is compact,

then the point zo does not lie in X̂.

A special case of this result is the following.

Corollary 2.1.6. LetX ⊂ CN be a compact set, let� be an open set that contains X̂, and
let zo be a point of�. The point zo is not in X̂ if there exists a continuous family {Vt }t∈[0,1)
of principal analytic hypersurfaces in� that diverges to infinity in� and that satisfies the
conditions that zo ∈ Vo and Vt ∩X = ∅ for all t ∈ [0, 1).
Corollary 2.1.7. Let X be a compact subset of CN . If xo ∈ CN , then xo /∈ X̂ if and only if
there exist a polynomially convex set Y and an open set � containing Y such that X ⊂ Y
and for some continuous function F : [0, 1] ×�→ C that is holomorphic and nowhere
locally constant in its second variable, F(0, x) = 0, F−1(0) ∩ X = ∅, and for t near 1,
Y ∩ {z : F(t, z) = 0} = ∅.

Proof. The necessity of the condition is a consequence of Corollary 2.1.4. Its sufficiency
follows from the local description of hulls, Theorem 2.1.5.

Proof of Theorem 2.1.5. The proof of this theorem is technically more involved than the
rather elementary proof of Theorem 2.1.3, for it involves the solution of an additive Cousin
problem.

Assume the statement false, so that zo ∈ X̂.
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The hypotheses of the theorem provide a continuous function F : [0, 1)× U → C

that defines the family {Vt }t∈[0,1). We begin with a special case of the theorem, that in
which the function F is defined and holomorphic on a neighborhood�×U of [0, 1)×U
in CN+1 for some connected, simply connected open set� in C that contains the half-open
interval [0, 1) as a closed subset. Let W ′ = �× U ⊂ CN+1, and put W ′′ = �×�. Let
τ = sup{t ∈ [0, 1) : Vt ∩ X̂ �= ∅}, and fix to ∈ (τ, 1). Note that by (d), Vτ meets X̂.
The set W = W ′ ∪ W ′′ is a neighborhood of the polynomially convex set [0, to] × X̂
in CN+1. Let Wo � W be a polynomial polyhedron that contains [0, to] × X̂. Define a
set of data for the additive Cousin problem on Wo by taking f ′ = 0 on Wo ∩ W ′ and
f ′′ = 1

F(ζ,z)
for (ζ, z) ∈ Wo ∩W ′′. There is a solution to this Cousin problem: There is a

function f meromorphic onWo such that f − f ′ is holomorphic onWo ∩W ′ and f − f ′′
is holomorphic onWo ∩W ′′.

For all t > τ , the function f (t, ·) is holomorphic on a neighborhood of X̂, but
when t is sufficiently near τ , it assumes values at points of X̂ greater in modulus than the
supremum of its modulus on X. By the Oka–Weil approximation theorem, this remark
implies the existence of polynomials P such that ‖P ‖X < ‖P ‖X̂, a contradiction. Thus,
zo cannot lie in X̂; the theorem is proved under the assumption that the initial function F
that defines the continuous family {Vt }t∈[0,1) is analytic in the parameter t .

In case it is merely continuous, there are two ways to finish the proof. The first, and
simpler, is to remark simply that if U ′ is a large, relatively compact open subset of U
and if to ∈ [0, 1) is very near 1, then the function F can be approximated uniformly on
[0, to] × Ū by functions that are holomorphic on U ′ and are polynomials in t . This leads
to a new continuous family of principal analytic hypersurfaces to which the preceding
analysis applies.

A second, more difficult, approach to the continuous case is to invoke work of
Narasimhan [258] to find solutions of Cousin I problems that depend continuously on
parameters.

Above we have used the notion of continuous family of principal analytic hypersur-
faces. It is possible to give a more general formulation of the notion of continuous family
of hypersurfaces or divisors. Fix a complex manifold M that has complex dimensionM .
Recall that a divisor D on M is a locally finite family {Vj }j=1,... of irreducible analytic
hypersurfaces in M together with an assignment of an integer mj to each Vj . Given a
divisor D and given a compactly supported smooth form β of bidegree (M − 1,M − 1)
on M , a pairing 〈D, β〉 is defined by

〈D, β〉 =
∑
j=1,...

mj

∫
Vj

β.

(If Vj is a manifold, there is no difficulty about the definition of the integral; Vj can,
however, have singular points in which case the integral is understood to be the integral
over the open set of nonsingular points in Vj . The theory of integration on analytic sets was
given by Lelong [218]. An exposition of this theory is given in [343].) If S is a topological
space, a family {Ds}s∈S of divisors on M indexed by S is said to be weakly continuous
if for each compactly supported, smooth form β of bidegree (M − 1,M − 1) on M , the
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function ψ defined on S by ψ(s) = 〈Ds , β〉 is continuous on S. The relation between the
continuous families of analytic hypersurfaces considered above and the weakly continuous
families of divisors just defined are explored in detail in the paper [231]. See also [232].

Our next result is a local maximum principle for polynomially convex sets, which is
due to Rossi [303].

Theorem 2.1.8. IfX is a compact set in CN , ifE is a compact subset of X̂, if U is an open
subset of CN that contains E, and if f ∈ O(U), then ‖f ‖E = ‖f ‖(E∩X)∪bE .

Here b denotes the boundary operator with respect to the set X̂.
We present two proofs of this theorem. The first follows classical lines, the second

is an argument of J.-P. Rosay [299].

First Proof of Theorem 2.1.8. Suppose the result false, so that there is a compact set
E ⊂ X̂ for which there exists a function f holomorphic on a neighborhood of E that for
some point p ∈ E satisfies 1 = ‖f ‖E = f (p) > ‖f ‖(E∩X)∪bE. Choose then a compact
set Ẽ in CN with Ẽ ∩ X̂ = E and int Ẽ ∩ X̂ = E \ bE. The set Ẽ can be chosen small
enough that f is holomorphic on a neighborhood of it.

The function f is nonconstant on the component of int Ẽ that contains the point
p, so the open set f (int Ẽ) contains an interval [1, 1 + δ] for some δ > 0. For (t, z) ∈
[1, 1+δ]× intE define F(t, z) to be f (z)− t . Let Vt be the zero locus of the holomorphic
function F(t, ·).

Write X̂ =⋂j=1,2,... �j , where each�j is an open set in CN and where�j+1 � �j .
For all sufficiently large j the intersectionVt∩�j is a closed subset of�j . To see this,

suppose not. For all large j , let qj ∈ �j \Vt be a limit point of Vt ∩�j . By compactness,
we can suppose that qj → q ∈ Ẽ. The point q lies in Ẽ \ int Ẽ, for each Vt ∩ int Ẽ is
closed. By continuity, f (qj ) = tj , and, without loss of generality, tj → to ∈ [1, 1 + δ].
The point q lies in each �j and so in X̂. Consequently, q ∈ X̂ ∩ (Ẽ \ intE) = bE. This,
however, contradicts the choice of p. Thus for sufficiently large j , the set Vt ∩ �j is a
closed subset of �j for all t .

Fix a large positive integer jo. Let Uo be the component of int Ẽ ∩�jo that contains
the point p, and set Ṽt = Vt ∩ Uo. This is a continuous family of principal analytic
hypersurfaces in Uo. We have p ∈ V1 and Vt ∩ X̂ = ∅ for all t > 1, because |f | ≤ 1 on
E ∩ X̂, and Vt ∩ X̂ ⊂ E. It follows that Vt is disjoint from a neighborhood of X̂.

The preceding theorem implies that p /∈ X̂, so the result is proved.

Second Proof of Theorem 2.1.8. If the theorem is false there is a function f holomorphic
on U such that for some point p ∈ intE and for some δ ∈ (0, 1), f (p) = 1 > δ >

‖f ‖(E∩X)∪bE . Define the plurisubharmonic function ũ on a neighborhood V of X̂ by

ũ =
{

max{|f |, δ} near E,

δ off E.

Let ρ be a plurisubharmonic function on CN with ρ = 0 on X, ρ > 0 on CN \ X.
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Theorem 1.3.8 provides such a ρ. Now define the plurisubharmonic function u on CN by

u =
{

max{ũ, Cρ} on V ,

Cρ off V ,

for a large positive constant C. If C is large enough, u is a well-defined function plurisub-
harmonic on all of CN with u(p) = 1 and |u| < 1 on X. Thus, p /∈ Psh-hullX. This hull,
however, is the same as X̂ by Theorem 1.3.11, so we have a contradiction. The proof is
complete.

The second proof as presented is surely shorter than the first. However, it does
depend on the identification of the hull with respect to plurisubharmonic functions with
the polynomially convex hull, which in turn depends on some deep function-theoretic
considerations. On balance, it is hard to say which of the proofs is actually the simpler
when considered from the perspective of the structure of the entire theory.

Corollary 2.1.9. With f and E as in the preceding theorem,

(2.1) bCf (E) ⊂ f (bE ∪ (E ∩X)).
Proof. If there is a point ζo ∈ bC(f (E)) \ f (bE ∪ (E ∩ X)), then by considering ϕ ◦ f
where ϕ(ζ ) = 1

ζ−ζ1 for a ζ1 near ζo but not in f (E), we get a function that violates the
maximum principle just proved.

Corollary 2.1.10. If E is a compact subset of X̂, then E ⊂ (bE ∪ (E ∩X))̂ .

The corollary follows from the theorem by taking the function f to be a polynomial.

There is a local characterization of rationally convex hulls somewhat akin to the local
characterization of polynomially convex hulls, which was found by Stolzenberg [341].

Theorem 2.1.11. IfX is a compact subset of CN , if� is an open set that contains R-hull X,
and if Ȟ 2(R-hull X;Z) = 0, then every analytic hypersurfaceV in� that meets R-hull X
also meets X.

Note that here we are dealing with a single analytic hypersurface, rather than with
a family, as in the polynomially convex case, and note also that it is not assumed that the
hypersurface is principal.

Proof. Let V be an analytic hypersurface in �, so that for each point p ∈ V there is a
neighborhood U of p on which there exists a holomorphic function fp the zero locus of
which is U ∩ V . Suppose V disjoint from X. The hypothesis that Ȟ 2(R-hull X;Z) = 0
implies that there is an open set�o ⊂ � such thatV ∩�o is the zero locus of a holomorphic
function f on�o. Moreover, if we shrink�o slightly, we can suppose that the function f
can be approximated uniformly on � by rational functions. Accordingly, if p ∈ V , there
is a rational function r = P/Q, P andQ polynomials that are relatively prime, such that
R(p) = 0 but r is zero-free on a neighborhood of X. It follows that the polynomial P is
zero-free on X but vanishes at the point p. Thus, p is not in R-hull X.

Without the topological assumption that the group Ȟ 2(R-hull X;Z) vanishes, this
result can fail. An example is given by Stolzenberg [341] based on an earlier example of
Wermer [369].
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Corollary 2.1.12. If X is a compact subset of CN with Ȟ 2(R-hull X;Z) = 0, and if E is
a compact subset of R-hull X, then E ⊂ R-hull (bE ∪ (E ∩X)).
In this, b denotes the boundary operator with respect to R-hull X.

Proof. If zo ∈ E \ R-hull (bE ∪ (E ∩X)), then there is a polynomial P that is zero-free
on R-hull (bE ∪ (E ∩ X)) but that vanishes at zo. Denote by Z the zero locus of P , an
algebraic hypersurface in CN .

Write R-hull X = ∩j=1,...�j , where the sets �j are open in CN and satisfy �j �
�j+1 for all j . Denote by Zj the component of the intersection Z ∩ �j that contains
the point zo. The set Z∞ = ∩j=1,...Zj , as the intersection of a decreasing sequence
of connected sets, is connected. It is contained in E, for it is connected, it meets E,
it is contained in R-hull X, and it is disjoint from bE. It is also disjoint from E ∩ X.
Consequently, Z∞ ⊂ E \X. By compactness there is an index jo such that Zjo ∩X = ∅.
This contradicts the preceding theorem.

Our next result concerns local peak points and sets in the sense introduced in Sec-
tion 1.2.

Theorem 2.1.13. LetX be a polynomially convex subset of CN . If the setE is a local peak
set for the algebra P(X), it is a peak set for P(X).

Recall that the hypothesis that E is a local peak set for P(X)means that there exist
a neighborhood U of E in X and a function f ∈ P(X) such that f |E = 1 and |f | < 1
on U \ E. That it is a peak set means that there is g ∈ P(X) with g|E = 1 and |g| < 1
on X \ E.

This theorem is due to Rossi [303]; its proof was subsequently simplified by Stolzen-
berg [341].

Because of Theorem 1.2.11, the analogue of Theorem 2.1.13 obtained when the
polynomially convex setX is replaced by a rationally convex set Y , and the algebra P(X)

is replaced by the algebra R(Y ), is also true.
A peak set E for the algebra P(X), X a polynomially convex set, is itself a poly-

nomially convex set. The restriction algebra P(X)|E is the algebra P(E). (Recall The-
orem 1.2.23.)

An extension of this theorem was found by Allan [30].

Theorem 2.1.14. Let X be a polynomially convex set in CN , let E be a closed subset
of X, let U be a relatively open subset of X that contains E, and let h be a continuous
function on U such that h = 1 on E and |h| < 1 on U \ E. Assume h to be of the form
H◦f, where f = (f1, . . . , fn) : X → Cn and, for each j , fj ∈ P(X). The function H is
to be a function holomorphic on a neighborhood in Cn of the compact set f(U). There is
then a function g ∈ P(X) that peaks on the set E.

Theorem 2.1.13 is an immediate corollary of Theorem 2.1.14. The corresponding
result is correct also for the algebras R(X).

A very special case of this theorem, which was noted by Rossi [303], is this:

Corollary 2.1.15. Let X, E, and U be as in the preceding theorem. If there is f ∈ O(U)
with f = 1 on E and |f | < 1 on U \ E, then E is a peak set for P(X).
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The proof depends on the following elementary lemma.

Lemma 2.1.16. [303] Let Y be a compact subset of CN , let S be a closed subset of Y , and
let U be a neighborhood of S in CN . Let h ∈ O(U) satisfy h = 0 on S and �h < 0 on
(U ∩ Y ) \ S. If there is a function f holomorphic on a neighborhood of Y that is zero-free
on Y \ S and such that for a suitable function g holomorphic on U , f = hegh on U , then
there is f̃ holomorphic on a neighborhood of Y such that f̃ |S = 1 and |f̃ | < 1 on Y \ S.

Proof. In the set U we have h = f e−gh = f eg1f = f + f 2g2 for suitable functions g1
and g2 holomorphic on U . This gives that on (Y \ S) ∩ U ,

0 > �h > �f −M|f |2

ifM = supU |g2|. (Should g2 be unbounded on U initially, we can shrink U to a relatively
compact open subset to ensure the finiteness ofM .) This inequality implies that the range
of f on the set U is contained in the exterior of the open disk with radius 1

2M centered
at 1

2M . The function f vanishes on S and is zero-free on Y \ S, so it follows that for the
desired peaking function f̃ we can take ε

ε−f for a small positive ε.

Proof of Theorem 2.1.14. Cover the set E by a finite collection C1, . . . , C�, of open
subsets of X, where for each k, Ck ⊂ U is given by

Ck = {x ∈ X : |fj (x)− αjk| < rjk, 1 ≤ j ≤ n}
∩ {x ∈ X : |fµ(x)| < 1 forµ = µk, µk + 1, . . . , µk+1}

with µ1 = n + 1 and µ1 < µ2 < · · · < µ�+1. The αjk are suitable complex numbers
and the numbers rjk are suitable positive numbers. Set M = µ�+1. For µ in the range
n+ 1, . . . , µk+1, fµ is an element of P(X). Define f̃ : X→ CM by

f̃ = (f1, . . . , fn, fn+1, . . . , fµ�+1).

The setW on which the functionH is defined and holomorphic is open and contains
the compact set f(U), so the numbers rjk can be chosen small enough that the closure of
each of the polydisks

�j = �(αj , rj ) = {z ∈ Cn : |zk − αjk| < rjk for k = 1, . . . , n}
is contained inW . Put B = 1 + max1≤j≤M ‖fj‖X.

For j = 1, . . . , �, let

Vj = {z ∈ CM : (z1, . . . , zn) ∈ �j, |zi | < 1 for µj−1 < i ≤ kj and |zi | < B otherwise},
an open polydisk in CM . Put V = ∪�j=1Vj , and define H1 ∈ O(V ) by H1(z) =
H(z1, . . . , zn). On f̃ (X)∩V, |H1| ≤ 1 with equality only on f̃(S), whereH1 = 1. The set
bV ∩ f̃(X) is a compact subset of f̃(U)∩{z ∈ V : |H1|(z)| < 1}. Consequently, there is an
open neighborhoodV ′ of f̃(X)\V such thatV ′∩V ⊂ {z ∈ Cn : |H1(z)| < 1}. The set f̃(X)
is polynomially convex, so there is a polynomial polyhedron�o with f̃(X) ⊂ �o � V ∪V ′.



82 Chapter 2. Some General Properties of Polynomially Convex Sets

Put�′ = �o ∩V ′ and� = �o ∩V . The function ϕ = H1 − 1 is holomorphic on�∩�′,
and its real part is negative there. Accordingly, because the first Cousin problem is solvable
on�o, there are functions λ ∈ O(�) and λ′ ∈ O(�′) such that on�∩�′, log ϕ = λ−λ′.
Thus, ϕ = eλ/eλ′ on � ∩�′. Next, set g = eλ ∈ O(�), g′ = eλ′ ∈ O(�′). Solve Cousin
I again to obtain u ∈ O(�) and u′ ∈ O(�′) with (log ϕ)g−1 = u − u′. We then have
heg

′u′ϕ = egu on � ∩�′. Thus, the function p ∈ O(�o) defined by

p =
{
egu on �,

heg
′u′h on �′,

is well defined. The preceding lemma provides an F ∈ O(�) that peaks on f̃(E). The
function f = F ◦ f̃ lies in P(X) and peaks on the set E. The theorem is proved.

Corollary 2.1.17. Let X be a polynomially convex subset of CN , and let f, g ∈ P(X). If
E is a compact subset of X and U is a neighborhood of E in X such that f = g �= 0 on
E and |f | < |g| on U \ E, then E is a peak set for P(X).

Proof. Apply Theorem 2.1.14 with the map x �→ (f (x), g(x)) from X to C2 and H the
function given by H(z1, z2) = z1/z2.

Corollary 2.1.18. Let X be a polynomially convex subset of CN , and let f, g ∈ P(X).
Denote byM(f, g) the set {x ∈ X : |f (x)| ≥ |g(x)|}. If K is a component ofM(f, g) on
which g is zero-free, then K meets the Shilov boundary for P(X).

Proof. Suppose first that V is an open subset of X with the property that V ∩M(f, g)
is open and closed in M(f, g) and contains the set K . Thus, for x ∈ V \ M(f, g) we
have |f (x)| < |g(x)|. By choosing V small enough we can ensure that g is zero-free on
V̄ \M(f, g). Choose a point xo ∈ V ∩M(f, g) at which the function |f/g| attains its
supremum, say λ, over V . We can suppose that f (xo) and g(xo) are both positive. Then
the function h defined on V by h = 1

2

(
1 + f

λg

)
peaks on a set E in V that contains the

point xo. This set is a peak set for P(X) by Theorem 2.1.12, so it must meet the Shilov
boundary for P(X). This is true for every choice of the open set V . It follows thatK itself
must meet the Shilov boundary for P(X), as we wished to prove.

Corollary 2.1.19. Let X be a polynomially convex subset of CN , and let f, g ∈ P(X). If
|f | > |g| on the Shilov boundary for P(X), and ifK is a component ofM(g, f ) = {x ∈
X : |g(x)| ≥ |f (x)|}, then f vanishes at some point of K .

Proof. If not, denote byU an open and closed subset ofM(g, f ) that containsK ,U chosen
small enough that f is zero-free on Ū . Then |g/f | > 1 on M(g, f ) ∩ U , but |g/f | < 1
on U \M(g, f ). But then as above, U contains a peak set for the algebra P(X) and so
meets the Shilov boundary for P(X). This is true for all choices of U , so the set K itself
must meet the Shilov boundary for P(X).

We shall need below the local peak point theorem for general uniform algebras,
which can be deduced easily from Theorem 2.1.14:

Theorem 2.1.20.[303] Let A be a uniform algebra on the compact space X, which is the
spectrum ofA. Let xo ∈ X. If there is fo ∈ A with fo(xo) = 1 and |fo| < 1 onU \{xo} for
some neighborhood U of xo, then there is g ∈ A with g(xo) = 1 and |g| < 1 on X \ {xo}.
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Proof. By compactness and the hypothesis that the algebra A separates points onX, there
exist functions f1, . . . , fr in A such that for each j , fj (xo) = 1 and for all x ∈ X \ U ,
minj=1,...,r |f (x)| < 1

2 . Let V be a neighborhood of the point (1, . . . , 1) ∈ Cr+1 such that
if f= (fo, . . . , fr ) : X → Cr+1, then f−1(V ∩ σA(fo, . . . , fr )) ⊂ U . Let V ′ be an open
subset of Cr+1 that contains σA(fo, . . . , fr ) \ U and is disjoint from a neighborhood of
the point xo. By Lemma 1.5.8, there are additional elements fr+1, . . . , fs ofA such that if
π : Cs+1 → Cr+1 is the projection onto Cr+1, then π(σA(fo, . . . , fs )̂ ) ⊂ V ∪V ′. Define
H ∈ O(Cs+1) byH(z) = zo. Theorem 1.5.7 applied toH , thought of as being defined on
the open setπ−1(V ), yields a function g ∈ P(σ (fo, . . . , fs )̂ ) that peaks at the point yo =
(fo(xo), . . . , fs(xo)). The function g̃ ∈ C (X) defined by g̃(x) = g(fo(x), . . . , fs(x)) lies
in A and peaks at the point xo.

The theorem is proved.

2.2. Two Characterizations of Polynomially Convex Sets

In the preceding section we saw characterizations of polynomially convex sets and ratio-
nally convex sets based on the theory of the Cousin problems, results that were obtained
early in the study of polynomial convexity. The present section is devoted to two more
recent characterizations of polynomially convex hulls, one obtained by Duval and Sibony
[107], the other by Poletsky [280].

We begin with the characterization of Duval and Sibony, which is couched in terms
of the theory of currents. It is convenient to begin by recalling the notion of current.

We shall not need very much of the highly developed theory of currents in this
section, but it will be well to recall the general definition. If M is an n-dimensional C ∞
manifold, then D(M ) is the subspace of C ∞(M ) that consists of the functions with
compact support. For p = 0, . . . , we have the spaces E p(M ) of smooth p-forms on
M . The space E p(M ) contains the subspace Dp(M ) of the compactly supported p-
forms on M . Thus D(M ) = D0(M ). If M is a complex manifold, we have also the
spaces E p,q(M ) of all smooth forms of bidegree (p, q) and its subspaceDp,q(M ), the
space of compactly supported forms of bidegree (p, q). A current of dimension p and
of degree n − p on M is a C-linear functional T on the space Dp(M ) that has the
following continuity property: If {αj }j=1,... is a sequence in Dp(M ) such that for some
fixed compact setK ⊂ M , suppαj ⊂ K for all j and if, in addition, αj converges to 0 in
the sense that for each set of local coordinates in M , the sequences of coefficients of αj
in these coordinates, as well as the sequences of the derivatives of all fixed orders of these
coefficients, converge to 0 uniformly on compacta in the domain of the coordinate system,
then the sequence {T (αj )}j=1,... converges to zero.2 The space of currents of dimension
p (and degree n− p) on M is denoted by Dp ′(M ) . When M is a complex manifold of
complex dimension N , a current of bidimension (p, q) and bidegree (N − p,N − q) is

2It is not evident from this description, but the space Dp does admit the structure of a locally convex
topological vector space with respect to which Dp ′ is the space of continuous linear functionals. For the details,
consult [320].
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a C-linear functional on Dp,q(M ) with the indicated continuity property. Equivalently,
a T in Dp,q ′(M ) can be thought of as an element of Dp+q ′(M ) that annihilates all the
(p + q)-forms except those of bidegree (p, q). If T is a current of dimension p, then the
support of T is the smallest closed subsetK of M with the property that T (α) = 0 for all
α ∈ Dp(M ) that vanish on a neighborhood of K .

The spaceE p(M ) is in a natural way a topological vector space. WhenM is a domain
in RN , the topology is that of uniform convergence on compact sets for the coefficients of
the forms as well as their derivatives of all orders. The topology in the case of a general
manifold is the natural extension of this. With respect to this topology, E p(M ) is a Fréchet
space. Its dual is the space E p ′(M ) that consists of all compactly supported currents of
dimension p. This is a natural extension of viewing the space of compactly supported
distributions on Rn as the dual space of the space C ∞(Rn).

If T ∈ Dp ′(M ), then bT is the element of Dp−1′(M ) defined by the equation
bT (α) = T (dα) for all α ∈ Dp−1(M ). The current T is closed if bT = 0. The formalism
of the exterior differential is extended to currents by way of the definition that for T ∈
Dp ′(M ), dT = (−1)p+1bT . Thus, d : Dp ′(M ) → Dp−1′(M ). In addition, one has
operators ∂ and ∂̄ acting on currents: If T ∈ Dp,q ′, then ∂T ∈ Dp−1,q ′(M ) is defined
by ∂T (α) = (−1)p+q+1T (∂α) for all α ∈ Dp−1,q(M ). The operator ∂̄ is defined in the
analogous way. There is also the twisted differential dc. It is evident from the definition
that d = ∂ + ∂̄; the operator dc is defined by dc = −i(∂ − ∂̄). Then ddc = 2i∂∂̄ .

A standard example is the current of integration over M , under the assumption that
M is an oriented n-dimensional manifold. This is the current [M ] ∈ Dn′(M ) defined by
[M ](α) = ∫M α for all compactly supported smooth n-forms α on M . Another example
is provided by a differential form β of degree n − p with locally integrable coefficients.
The associated current is the functional Tβ defined by Tβ(α) =

∫
M β ∧ α.

The usual notation is that if M is an n-dimensional manifold, then

Dp(M ) = Dn−p ′(M ),

and that if M is an N -dimensional complex manifold, then

Dp,q(M ) = D(M )N−p,N−q ′.
With this notation, ∂̄ carries Dp,q(M ) to Dp,q+1(M ), and when we regard E p,q(M ) as a
subspace of Dp,q(M ) via the identification of the (N−p,N−q)-form β with the current
Tβ defined at the end of the preceding paragraph, the two possible interpretations of ∂̄β
coincide.

There are notions of positive form and positive current on a complex manifold.

Definition 2.2.1. If M is anN -dimensional complex manifold, an element ϕ ∈ E p,p(M )

is said to be positive if whenever local holomorphic coordinates z1, . . . , zN are chosen in
an open set and αj , j = 1, . . . , N − p, are (1, 0)-forms defined in the domain of these
coordinates with continuous compactly supported coefficients, then∫

M
ϕ ∧ iα1 ∧ ᾱ1 ∧ · · · ∧ iαN−p ∧ ᾱN−p ≥ 0.

For (1, 1)-forms, there is a particularly simple criterion: The (1, 1)-form
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ϕ = i
∑

j,k=1,...,N

ϕjkdzj ∧ dz̄k

is positive if and only if the matrix [ϕjk]j,k=1,...,N is positive semidefinite.

Definition 2.2.2. A current T in DN−p,N−p(M ) is said to be positive if for all non-
negative functions f ∈ D(M ) and for all forms α1, . . . , αp ∈ D1,0(�), the quantity
T (f iα1 ∧ ᾱ1 ∧ · · · ∧ iαp ∧ ᾱp) is nonnegative.

Perhaps the simplest example of a positive current is the current [λ] of integration
over the complex line λ in CN .

Among the positive currents are the positive forms: If β ∈ E N−p,N−p(M ) is a
positive form, then the associated element Tβ ∈ DN−p,N−p(M ) is positive.

If T ∈ Dp,p(M ) is positive, and β ∈ E q,q(M ) is a positive form, then the exterior
product T ∧ϕ ∈ DN−p−q,N−p−q(M ), which is defined by T ∧ϕ(α) = T (ϕ ∧α), is also
positive.

Our application of positive currents will be through the following fact:

Lemma 2.2.3. If T ∈ DN−1,N−1(M ) is a positive current with compact support that is
not the zero current, and if the function u is of class C 2 and strictly plurisubharmonic on
the support of T , then T (ddcu) > 0.

Proof. Because T is not the zero current, there is a (1, 1)-form α with compact support
such that T (α) > 0. The function u is strictly plurisubharmonic, so if we write

ddcu = 2i
∑

j,k=1,...,N

ujkdzj ∧ dz̄k,

then the matrix [ujk]j,k=1,...,N is positive definite on the support of T . Consequently, for a
sufficiently large positive constantC, the formCddcu−α is positive on a neighborhood of
suppT , whence T (Cddcu− α) ≥ 0. This implies that T (ddcu) is positive, for T (α) > 0.

Definition 2.2.4. If � is a domain in CN and T ∈ DN−p,N−p(�) is a positive current,
then the mass of T is defined to be |T | = T (βp) with β the form i

2

∑
j=1,...,N dzj ∧ dz̄j .

Note that because T is by definition a functional on compactly supported forms, we
must understand by T (βp) the supremum of the numbers T (χβp), where χ ranges over
all smooth compactly supported functions on � with values in [0, 1].

References for the theory of currents are [115], [290], and [320]. The theory of
positive currents is developed in [219] and in [220].

We now turn to the characterization of polynomially convex sets found by Duval and
Sibony. Denote by δx the positive measure of unit mass with support the singleton {x}.
Theorem 2.2.5. [107] For a compact set X in CN and a point x ∈ CN , the following are
equivalent:

(a) x ∈ X̂.

(b) There is a positive current T ∈ DN−1,N−1(C
N) such that ddcT = µ − δx for a

probability measure µ supported in X.
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The conclusion in part (b) is that for each C∞ function ϕ on CN ,∫
ϕ dµ− ϕ(x) = T (ddcϕ).

That (b) implies (a) is a consequence of a more general result:

Theorem 2.2.6. [107] If X is a compact subset of CN , if T ∈ DN−1,N−1(C
N \ X) is

positive and has bounded support, and if ddcT is negative in CN \X, then the support of
T is contained in X̂.

Proof. If x ∈ supp T \ X̂, then by Theorem 1.3.8, there is a nonnegative smooth plurisub-
harmonic function u on CN that vanishes on a neighborhood of X̂ and that is strictly
plurisubharmonic where it is positive, which includes a neighborhood of the point x. We
then have that

0 < T (ddcu) = (ddcT )(u) ≤ 0,

which is impossible.
We have supp ddcT ⊂ supp T , so this result yields that (b) implies (a).
That (a) implies (b) is a consequence of a more precise statement:

Theorem 2.2.7. [107] LetX be a compact subset of CN , let xo ∈ X̂, and let µ be a Jensen
measure for xo supported in X. There is a positive current T of bidimension (1, 1) and
with bounded support such that ddcT = µ− δxo .
Proof. Fix an R > 0 large enough that X̂ ⊂ BN(R).

By a flat disk contained in BN(R) we shall understand a disk that is contained in the
intersection of BN(R) with a complex line in CN .

Introduce the class Ko of currents of bidimension (1, 1) of the form S = gD[D],
whereD is a flat disk contained in BN(R) and where gD is the Green function forD, so that
if cD is the center ofD, then gD is nonnegative and harmonic onD \ {cD}, gD vanishes on
bD, and, with� denoting the Laplacian in the complex line that containsD,�gD = δcD .
(On the unit disk U in C, the Green function is −log |z|.) Thus, for a smooth two-form α
on CN , S(α) = ∫

D
gDα. This integral exists, for gD has a logarithmic singularity at cD .

Let K denote the cone generated by the set Ko. We shall show that µ− δxo lies in
the weak* closure of the cone ddcK = {ddcS : S ∈ K } in the dual space of the space
E 1,1(CN). In the contrary case, there is a weak* continuous linear functional on the dual
space of E 1,1(CN) that separates µ− δxo from the cone ddcK . Weak* continuous linear
functionals are point evaluations [309, p. 66], so there is a function ϕ ∈ C ∞(CN) such
that
∫
ϕ dµ− ϕ(xo) < 0 ≤ T (ddcϕ) for all T ∈ K .

This condition implies that ifD is a flat disk in BN(R), then
∫
D
gDdd

cϕ is nonneg-
ative. Because this happens for all disks D̃ contained in the line λ that containsD and that
are contained in BN(R), it follows that the Laplacian of ϕ on λ ∩ BN(R) is nonnegative.
Thus, ϕ is subharmonic on λ ∩ BN(R), and ϕ is plurisubharmonic on BN(R). It satisfies∫

ϕ̃ dµ < ϕ̃(xo),
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which is impossible by Corollary 1.3.10, forµ is a Jensen measure for xo. Thus, as claimed,
µ− δxo lies in the weak* closure of the cone ddcK .

Consequently, there is a net {ddcTγ }γ∈� in ddcK that converges in the weak* sense
toµ−δxo . For each ϕ ∈ C∞(CN), there are γo ∈ � andM > 0 such that |ddcTγ (ϕ)| ≤ M
for γ > γo. Apply this to the function |z|2. Each Tγ is of the form

Tγ =
∑
j=1,...

λ
γ

j g
γ

j [Dγj ]

for some choice of positive numbers λγj and some choice of flat disks Dγj contained in

BN(R). For each γ and j , gγj denotes the Green function associated with the disk Dγj .
Thus,

ddcTγ (|z|2) =
∑
j=1,...

λ
γ

j

∑
r=1,...,N

i

2

∫
D
γ
j

g
γ

j dzr ∧ dz̄r .

It follows that if νγr is the positive measure defined by∫
f dν

γ
r =

∑
j=1,...

λ
γ

j

i

2

∫
D
γ
j

fg
γ

j dzr ∧ dz̄r ,

then for γ > γo, the measures νγr are uniformly bounded in norm. They are supported
in BN(R). By passing to a suitable subnet, we can suppose that each of the nets {νγr }γ∈�
converges in the weak* topology on the space of measures on BN(R), viewed as the dual
space of the space C (BN(R)), to a measure νr . The measures νr are nonnegative.

We now have that the current T of bidimension (1, 1) given by

T

( ∑
j,k=1,...,N

αj,kdzj ∧ dz̄k
)

=
∑

r=1,...,N

∫
αr,r dνr

has support in BN(R), satisfies T (ddcϕ) = ∫ ϕ dµ− ϕ(xo), and is positive.
This completes the proof of the theorem and with it the proof of Theorem 2.2.5.

Duval and Sibony give the following example. Let X be a compact subset of CN

for which there is a bounded holomorphic map f : U → CN for which the radial limit
f ∗(eiϑ ) lies inXwhenever it exists. Suppose that f (0) = 0 and that 0 /∈ X. The maximum
principle implies that the image f (U) is contained in X̂; it is an analytic disk in X̂ that
passes through the origin. A current of the kind provided by the preceding theorem is
defined by

T (α) = i

2

∫
U

log|z| f ∗α

for all two-forms α on CN . In general, the integral
∫
U
f ∗α does not exist: If

α =
∑

r,s=1,...,N

ar,sdzr ∧ dz̄s,
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then ∫
U

f ∗α = −2i
∑

r,s=1,...,N

∫
U

ar,s(f (z))f
′
r (z)f

′
s (z) dL (z).

This integral typically does not exist, for the derivatives f ′
r are generally not square-

integrable.
However, the integral

∫
U

log|z||g′(z)|2 dL (z) does exist for an arbitrary bounded
holomorphic function g on U.3

A particular case of this situation is that in which g ∈ H∞(U) vanishes at the origin
and X is the set �̄f \ �f with �f the graph of f , �̄f its closure.

Next we take up the characterization of polynomially convex sets found by Poletsky:

Theorem 2.2.8. If X is a compact subset of CN , then the point xo ∈ CN belongs to X̂
if and only if for each bounded pseudoconvex Runge domain � ⊂ CN that contains X,
for every neighborhood W of X that is contained in �, and for every ε > 0, there is a
holomorphic map f from a neighborhood of the closed unit disk in C to� with f (0) = zo
and with f (eiϑ ) ∈ W for all points eiϑ ∈ bU \ E for a subset E of bU of measure less
than ε.

Note that the domain of the function f is allowed to vary.
Not every bounded Runge domain in CN is pseudoconvex: BN \ {0} is a Runge

domain but is not pseudoconvex.
One direction in the proof of this theorem is based on a study of certain disk func-

tionals. For the introduction of these, it is convenient to use the notation that for a complex
manifold M and for each point zo ∈ M , F (M , zo) is the family of all holomorphic
maps f to M that are defined on a neighborhood of Ū and that satisfy f (0) = zo. (The
neighborhood is allowed to depend on the map.)

Definition 2.2.9. If M is a complex manifold and u is an R-valued Borel function on M ,
then the associated Poisson functional of M evaluated at u is the function û : M → R

defined by

(2.2) û(z) = 1

2π
inf

f∈F (M ,z)

∫ π
−π
u(f (eiϑ )) dϑ.

Two useful properties of û are that û ≤ u and that if u ≥ 0, then û ≥ 0. These two
combine to yield that if u is nonnegative, then û vanishes wherever u does.

A fundamental result about the Poisson functional is this:

Theorem 2.2.10. If u is an upper semicontinuous function on the complex manifold M ,
then the Poisson functional û is plurisubharmonic on M .

3Indeed, let g be a function in the Hardy class H 2(U) with power series expansion g(z) =∑k=0,1,... akz
k ,

so that
∑
k=0,1,... |ak |2 <∞. Then∫

U

log|z| |g′(z)|2 dL (z) = 2π
∑
k=1,...

k2|ak |2
∫ 1

0
r2k−1logr dr = −π

2

∑
k=1,...

|ak |2,

which is finite.
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As stated, for arbitrary complex manifolds, this theorem is due to Rosay [298].
The result had previously been obtained by Lárusson and Sigurdsson [213] for certain
manifolds. For domains in CN , the result was given by Poletsky [278]. It was Poletsky [279]
who first recognized the relevance of such a result to polynomial convexity. See also the
treatment of this point given in [213].

A notable aspect of Theorem 2.2.10 is that it is one of a very small number of known
theorems valid on completely arbitrary complex manifolds.

A derivation of Theorem 2.2.8 from Theorem 2.2.10 is not long: First, let X ⊂ CN

be a compact set, let � be a bounded pseudoconvex Runge domain that contains X, and
let zo ∈ �. Assume that for each neighborhood W of X and for each ε > 0 there is
ϕ ∈ F (�, zo) with f (eiϑ ) ∈ W for all eiϑ outside a subset of the unit circle of measure
less than ε. If P is polynomial, then the function |P ◦ϕ| is subharmonic on a neighborhood
of Ū , so

|P(zo)| = |P(ϕ(0))| ≤ 1

2π

∫ π
−π

|P(ϕ(eiϑ )| dϑ ≤ ‖P ‖W + ε‖P ‖�.

Because this is true for all choices of ε and all choices of the open set W , it follows that
|P(z)| ≤ ‖P ‖X, i.e., zo ∈ X̂.

For the opposite implication, suppose zo to lie in X̂, and fix an open set W ⊂ �

that contains X. Let u be the upper semicontinuous function on � that is 0 on W and 1
on � \ W . The associated function û is nonnegative and vanishes on X. Consequently,
it vanishes at the point x, because of the identity of Psh-hull� X and the hull of X with
respect to the functions holomorphic on �. The domain � is a Runge domain, so this
latter set coincides with the polynomially convex hull X̂. This means that if ε > 0, there
is ϕ ∈ F (�, x) with 1

2π

∫ π
−π u(ϕ(e

iϑ )) dϑ < ε. Because u = 1 on � \ W , the point
ϕ(eiϑ ) lies inW except when the point eiϑ lies in a set of measure at most ε.

We now turn to the proof of Theorem 2.2.10, following [278]. In fact, we shall give
the proof only in the case that the manifold M in question is a domain in CN . By restricting
to domains in CN , we avoid having to invoke some major results from analytic geometry
on which the full argument of Rosay depends.

Fix a domain � in CN and an upper semicontinuous function on �.
To prove that the Poisson functional û is plurisubharmonic, it is necessary to show

that it is upper semicontinuous, which can be established rather easily.

Lemma 2.2.11. If u is an upper semicontinuous function on �, then û is upper semicon-
tinuous.

Proof. Fix a point zo ∈ � and an ε > 0. By definition, there is an f ∈ F (�, zo) with

1

2π

∫ π
−π
u(f (eiϑ )) dϑ < û(z0)+ ε.

For z ∈ � near zo, define fz ∈ F (�, z) by fz(ζ ) = f (ζ ) + z − zo. With this notation,
fzo = f . We have

û(z) ≤ 1

2π

∫ π
−π
u(fz(e

iϑ )) dϑ.
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As z → zo, the maps fz converge uniformly on Ū to f , and it follows from the upper
semicontinuity of u and Fatou’s lemma that when z is sufficiently near zo,

1

2π

∫ π
−π
u(fz(e

iϑ )) dϑ <
1

2π

∫ π
−π
u(f (eiϑ )) dϑ + ε.

Accordingly, lim supz→zo û(z) ≤ û(zo), and û is seen to be upper semicontinuous.

To complete the proof of the theorem, it is necessary to establish the subaveraging
property of û:

Lemma 2.2.12. If z ∈ �, and if a ∈ CN is near the origin, then

û(z) ≤ 1

2π

∫ π
−π
û(z+ eiϑa) dϑ.

Proof. In this proof we consistently use the notation that T is the unit circle in the complex
plane.

Fix z ∈ � and a ∈ CN , a so near the origin that for all ζ ∈ C with |ζ | ≤ 1, the point
z + ζa is in �. Fix an ε > 0. Let F1 : Ū × T → CN be a function with the property that
for each eiϑ ∈ T, F1(·, eiϑ ) ∈ F (�, z+ eiϑa) and

1

2π

∫ π
−π
u(F1(e

iψ , eiϑa)) dψ < û(z+ eiϑa)+ ε.

Such a function exists: By the definition of û, for each eiϑ ∈ T there is a corresponding
element of F (�, z+ eiϑa). The function F1 obtained in this way need have no particular
regularity properties. A major part of the proof that follows consists in showing how to
smooth F1.

As a function of ϑ , the quantity û(z + eiϑa) need not be continuous, but it is mea-
surable. Accordingly, there is a function v ∈ C (T) such that v(eiϑ ) ≥ û(z + eiϑa),
and

1

2π

∫ π
−π
v(eiϑ ) dϑ ≤ 1

2π

∫ π
−π
û(z+ eiϑa) dϑ + ε.

Let |v| < A. Having fixed v, choose τo > 0 small enough that |v(eiϑ ) − v(eiϑ ′
)| < ε if

|eiϑ − eiϑ ′ | < τo. Because the function u is upper semicontinuous, for each eiψ ∈ T there
exist τ(eiψ) ∈ (0, τo) and r(eiψ) ∈ (0, 1) such that if

Fψ(ζ, e
iψ ′
) = F1(r(e

iψ)ζ, eiψ)+ (z+ eiψ ′
a)− (z+ eiψa),

then Fψ(·, eiψ ′
) ∈ F (�, z+ eiψ ′

a), and

1

2π

∫ π
−π
u(Fψ(e

iϑ , eiψ
′
)) dϑ ≤ v(eiψ)+ 2ε

when |eiψ − eiψ ′ | < τ(eiψ).
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Choose finitely many mutually disjoint closed circular arcs Ij ⊂ T with Ij centered
at eiψj and of length �j , �j < τ(eiψj ). Require that the measure of T \ ∪j=1,...Ij be less
than ε/(2A).

Define F2 : Ū × T → C by

F2(ζ, e
iψ) =

{
Fψj (ζ, e

iψ) when ψ ∈ Ij ,
z+ eiψa otherwise.

Then F2(·, eiψ) ∈ F (�, z+ eiψa), and for ψ ∈ Ij ,
1

2π

∫ π
−π
u(F2(e

iϑ , eiψ)) dϑ < v(eiψj )+ 2ε < v(eiψ)+ 3ε,

which implies that

1

2π

∫ π
−π

{
1

2π

∫ π
−π
u(F2(e

iϑ , eiψ)) dϑ

}
dψ <

1

2π

∫ π
−π
û(z+ eiϑa) dϑ + 3ε.

Let the intervals Ij be indexed by the integers mod m for a suitable m and in such
a way that Ij is between Ij−1 and Ij+1. Denote by Kj the open interval between Ij and

Ij+1. Let the endpoints of Kj be eiψ
′′
j and eiψ

′
j+1 with eiψ

′′
j an endpoint of Ij and eiψ

′
j+1

an endpoint of Ij+1. DivideKj into three subintervalsK ′
j , K

′′
j , andK ′′′

j . The intervalK ′
j

is to abut Ij , K ′′′
j is to abut Ij+1, and K ′′

j is to lie between K ′
j and K ′′′

j . The intervals K ′
j

andK ′′′
j are to be short: For eiψ ∈ K ′

j , we require that |eiψ − eiψj | < τ(eiψj ) and that for

eiψ ∈ K ′′′
j , |eiψ − eiψj+1 | < τ(eiψj+1).

Let η be a nonnegative continuous function on T that is bounded by one, that is
identically one on each Ij , and that vanishes on each K ′′

j .

Define F3 : Ū × T → C by

F3(ζ, e
iψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F2(ζ, e

iψ), eiψ ∈ ∪j Ij ,
F2(η(e

iψ)ζ, e
iψ ′
j )+ (z+ eiψa)− (z+ eiψ ′

j a), eiψ ∈ K ′
j ,

z+ eiψj a, eiψ ∈ K ′′
j ,

F2(η(e
iψ)ζ, e

iψ ′′
j+1)+ (z+ eiψa)− (z+ eiψ ′′

j+1a), eiψ ∈ K ′′′
j .

The function F3 is continuous on Ū×T, and for all ψ , F3(·, eiψ) ∈ F (�, z+ eiψ).
Moreover, if the intervals K ′

j and K ′′′
j are short enough, then

1

2π

∫ π
−π

{
1

2π

∫ π
−π
u(F3(e

iϑ , eiψ)) dϑ

}
dψ ≤ 1

2π

∫ π
−π
û(z+ eiψa) dψ + 5ε.

We want now to replace F3 by a function F4 that is holomorphic. For this, introduce,
for each positive integer n, the function fn : Ū × (C \ {0})→ C by

fn(ζ, ξ) = 1

n

n−1∑
m=0

m∑
k=−m

[
1

2π

∫ π
−π
{
F3(ζ, e

is)− (z+ eisa)}e−iks ds] ξk + z+ ξa.
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For a fixed ζ and for ξ = eiψ ∈ T, this is, aside from the term z + ξa, the nth Cesàro
mean of the Fourier series for the continuous function g given by g(eiψ) = F3(ζ, e

iψa).
It follows that as n→ ∞, fn(ζ, eiψ) converges to F3(ζ, e

iψ) uniformly on Ū × T. Thus,
for n sufficiently large,

1

2π

∫ π
−π

{
1

2π

∫ π
−π
u(fn(e

iϑ , eiψ)) dϑ

}
dψ <

1

2π

∫ π
−π
û(z+ eiψa) dψ + 6ε.

Let n = no be large enough that this inequality holds.
The function fno(ζ, ·) is holomorphic on C \ {0} and has a pole of order not more

than no at the origin. We rid ourselves of this pole in the following way: Note that fno(0, ·)
is holomorphic at the origin. If k > no, then the function F4 : Ū × Ū → C given by
F4(ζ, ξ) = fno(ξ

kζ, ξ) is holomorphic as a function of the two complex variables ζ
and ξ , and F4(0, ξ) = z + ξa. Also, because the map (eiϑ , eiψ) �→ (ei(ψ+kϑ), eiϑ ) is a
bianalytic map of T × T onto itself that preserves area,
(2.3)

1

4π2

∫ π
−π

∫ π
−π
u(F4(e

iϑ , eiψ)) dϑdψ = 1

4π2

∫ π
−π

∫ π
−π
u(F4(e

i(ψ+ϑ), eiϑ )) dϑdψ.

We have

1

4π2

∫ π
−π

∫ π
−π
u(F4(e

iϑ , eiψ)) dϑdψ = 1

2π

∫ π
−π

{
1

2π

∫ π
−π
u(fn0(e

iϑ , eiψ)) dϑ

}
dψ

≤ 1

2π

∫ π
−π
û(z+ eiψa) dψ + 6ε,

(2.4)

so it follows from (2.3) and (2.4) that for some choice of ψ ,

1

2π

∫ π
−π
u(F4(e

i(ψ+ϑ), eiϑ )) dϑ ≤ 1

2π

∫ π
−π
û(z+ eiψa) dψ + 6ε.

If now h : Ū → Ū2 is the holomorphic map ξ �→ (eiψξ, ξ), then F4 ◦ h ∈ F (�, z), and
the inequality (2.4) can be rewritten as

1

2π

∫ π
−π
u(F4 ◦ h(eis)) ds ≤ 1

2π

∫ π
−π
û(z+ eiψa) dψ + 6ε,

which implies that û has the subaveraging property.
This completes the proof of Theorem 2.2.10.

Poletsky [281] has obtained an analogue of Theorem 2.2.10 on domains in Banach
spaces.

Auseful property of the function û is that it is the greatest plurisubharmonic minorant
of the function u:

Corollary 2.2.13. [278] If u is an upper semicontinuous function on the domain� in CN ,
and if v is a plurisubharmonic function on � with v ≤ u, then v ≤ û.
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Proof. Let z ∈ D, and let ε > 0. There is an f ∈ F (�, z) with the property that

1

2π

∫ π
−π
u(f (eiϑ )) dϑ < û(z)+ ε.

It follows that

v(z) ≤
∫ π
−π
v(f (eiϑ )) dϑ ≤

∫ π
−π
u(f (eiϑ )) dϑ ≤ û(z)+ ε,

for v is plurisubharmonic. This inequality is correct for all ε > 0 and all z ∈ �, so v ≤ û.
As we have noted above, û ≤ u, so the corollary is proved.

2.3. Applications of Morse Theory and Algebraic Topology

Our next results depend on well-known parts of Morse theory and algebraic topology.
There is no possibility of our developing from the beginning the material we need from
these disciplines; we refer the reader to standard sources for it. For Morse theory, one can
consult the books of Milnor [247] and Hirsch [174], for algebraic topology, the books of
Massey [241] and Spanier [338].

The property of polynomial convexity imposes significant restrictions on the topol-
ogy of a subset of CN . The first step in this direction was taken by Browder [72], based
on work of Serre [323] according to which if � ⊂ CN is a Runge domain of holomorphy
then Hp(�;C) = 0 for p ≥ N . Browder’s result is that if X is a compact, polynomially
convex subset of CN , then the Čech cohomology groups Ȟ p(X;C) vanish when p ≥ N .
This result implies that no compact orientableN -dimensional topological manifold in CN

is polynomially convex; it yields no information in the case of nonorientable manifolds.
More recent contributions to the study of the topology of polynomially convex sets have
been made by Alexander [23] and Forstnerič [127].

The first main theorem of this section concerns the homotopy structure of CN \ X
for a polynomially convex subset X of CN and is due to Forstnerič [127].

Theorem 2.3.1. If X is a compact polynomially convex subset of CN, N ≥ 1, then for
p = 0, . . . , N − 1, the pth homotopy group πp(CN \X) vanishes.

The case p = 0 is trivial: The complement of a polynomially convex set is connected.
The case p = 1 is the statement that the complementary set CN \ X is simply

connected provided that N ≥ 2.
The homotopy result Theorem 2.3.1 is the best possible result [127]: For a polyno-

mially convex subset X of CN , the homotopy groups πp(CN \ X) need not vanish when
p = N, . . . , 2N − 1. This is easily seen: Each compact subset of RN is polynomially
convex. If Y is a subset of RN that consists of a disjoint union of spheres of dimensions
0, 1, . . . , N − 1, then Y is a polynomially convex subset of CN for which the homotopy
groups πp(CN \ Y ) are not zero in the range p = N, . . . , 2N − 1.

The proof of Theorem 2.3.1 depends on Morse theory.
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The context for Morse theory is a smooth manifold M , say of dimension d. On
such a manifold a Morse function is a function u with only isolated critical points each of
which is nondegenerate in the sense that at each point, the Hessian matrix

(
uxj xk
)
j,k=1,...,d ,

computed with respect to some, and hence with respect to every, set of local coordinates is
nonsingular. The index or Morse index of a nondegenerate critical point of u is the number
of negative eigenvalues of this Hessian. This number is independent of the choice of local
coordinates.

Morse functions exist in great abundance on every manifold. See [174]. A smooth
real-valued function on a compact manifold can be approximated arbitrarily closely in
the C k topology by Morse functions. The appropriate result in the noncompact setting
is approximation in what is called the strong topology, which involves asymptotically
improving approximation at infinity. For the precise formulation, one can consult [174,
p. 147].

We need the following lemma.

Lemma 2.3.2. If u is a strictly plurisubharmonic function of class C 2 on a complex man-
ifold M of dimension N , then the index of each nondegenerate critical point of u is at
most N .

Proof. The problem is local, so we suppose M to be a domain in CN that contains the
origin. Let the origin be a nondegenerate critical point for u. If the Hessian has N + 1
negative eigenvalues, then the real linear subspace of CN on which the Hessian is negative
definite contains a complex line, sayλ. The restriction ofu to λ is subharmonic, but because
its Hessian at 0 is negative definite, 0 is a strict local maximum for u|λ. This contradicts
the maximum principle for subharmonic functions.

Proof of Theorem 2.3.1. Fix a polynomially convex subset X of CN and a neighborhood
U of X. There is then a strictly plurisubharmonic function � on CN with the properties
that � < 0 on X, � > 0 on CN \ U , and �(z) = |z|2 for large z ∈ CN. To construct ρ,
recall that Theorem 1.3.8 provides a smooth nonnegative plurisubharmonic function vwith
X = v−1(0), with v(z) = |z|2 for large z, and with v strictly plurisubharmonic offX. If u is
a smooth, nonpositive function on CN with compact support, u strictly plurisubharmonic
on a neighborhood of X that is contained in U , then for a sufficiently small positive δ, the
function v + δu can be taken for ρ. Moreover, ρ can be assumed to be a Morse function,
so that it has only finitely many critical points, each of which is nondegenerate. For each
real t , let Xt be the set {z ∈ CN : −ρ(z) < −t}, so that Xt is a sublevel set of the Morse
function −ρ. The index of each critical point of ρ is no more than N , so those of −ρ are
all at least N . Let the critical values of ρ be t1 < t2 < · · · < tr with corresponding Morse
indices 2N − mk , so that 2N − mk ≤ N . The index of the critical value of −tk of −ρ is
then mk ≥ N .

A fundamental result of Morse theory [247] is that the homotopy type of Xs does
not change as s ranges through one of the intervals (−tk+1,−tk). If t ∈ (−tk,−tk−1) and
s ∈ (−tk+1,−tk), then Xt has the homotopy type of Xs to which a cell of dimension
mk ≥ N has been attached. The adjunction of a cell of dimension mk to Xs has no effect
on the homotopy groups πj in the range 0 ≤ j ≤ N−1. Thus, for all t > 0, the homotopy
groups πj (Xt ) in the range 0 ≤ j ≤ N−1 are the same as the homotopy groups ofXR for
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large positive R. But by the choice of u, for large positive R, XR is {z ∈ CN : |z| > R2},
so that πj (XR) vanishes in the range 0 ≤ j ≤ 2N − 2.

The conclusion is that the complementary set CN \X is a union∪k=1,...�k of domains
�k with �k ⊂ �k+1 and with πj (�k) = 0, 0 ≤ j ≤ N − 1. Consequently, πj (CN \ X)
vanishes in the same range. The theorem is proved.

This kind of Morse-theoretic argument was used by Andreotti and Frankel [35] and
by Andreotti and Narasimhan [37].

We now turn to some corollaries of Theorem 2.3.1.

Corollary 2.3.3. IfX is a compact polynomially convex subset of CN, N ≥ 2, then forp =
1, . . . , N−1, the pth singular homology group with integral coefficients,Hp(CN \X;Z),
vanishes, and there is an isomorphism

HN(C
N \X;Z) � πN(CN \X;Z).

Proof. Because H1(C
N \ X;Z) is the abelianization of π1(C

N \ X), it follows that the
former group vanishes when the latter one does. The corollary then follows from the
theorem because of the Hurewicz isomorphism theorem [338], which says that for a space
E such that for a fixed k ≥ 2, πk−1(E) = 0, necessarily πk(E) = Hk(E;Z). This covers
the cases p = 2, 3, . . . , N .

Corollary 2.3.4. If X is a compact polynomially convex subset of CN, N ≥ 2, and if G
is an abelian group, then for p = 1, . . . , N − 1, the pth singular homology group with
coefficients fromG,Hp(CN \X;G), vanishes, as does thepth singular cohomology group
Hp(CN \X;G).
Proof: The result for homology with coefficients in an arbitrary abelian group G follows
from the result with coefficients in Z by the universal coefficients theorem for homology, the
cohomology result from the corresponding universal coefficients theorem for cohomology.
(For these universal coefficients theorems see [241] or [338].)

We need a form of the Alexander duality theorem [241] or [338]: If A is a closed
subset of Rn, then H̃q(Rn \A;G) = Ȟ n−q−1(A;G). Here Ȟ ∗ denotes Čech cohomology,
and H̃∗ denotes the reduced homology group, so that H̃q = Hq if q ≥ 1 and there is an
exact sequence 0 → H̃0 → H0 → G → 0. More generally, if M is an n-dimensional
orientable manifold and A and B are compact subsets of M with A ⊃ B, there is an
isomorphism of relative groups

Hq(M \ B,M \ A;G) = Ȟ n−q(A,B;G).
With B the empty set, this gives Hq(M ,M \ A;G) = Ȟ n−q(A;G). The long exact
homology sequence of the pair (M ,M \A) shows that ifHq(M ;G) = Hq+1(M ;G) =
0, e.g., as whenM = Rn or whenM is contractible, thenHq(M \A;G) = Hq+1(M ,M \
A;G), and we reach

Hq(M \ A;G) = Ȟ n−q−1(A;G).
Corollary 2.3.5. No N -dimensional compact topological manifold in CN , orientable or
not, is polynomially convex.
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As noted above, in the orientable case this result was observed by Browder [72]. The
nonorientable case was given by Duchamp and Stout [104].

Proof. If � is a compact, N -dimensional submanifold of CN , then by Alexander duality,
ȞN(�;Z) = HN−1(C

N \�;Z). If � is polynomially convex, the latter group vanishes.
However, the former group is Z or Z2, depending on whether � is orientable or not.
That HN(M ,Z) = Z in case M is orientable follows from the Poincaré duality theorem
[241, p. 208] and the isomorphism H0(M ,Z) = Z. That for a connected, compact,
nonorientable manifold M of dimension n, Hn(M ,Z) = Z2 is a standard result that
seems not to be written explicitly in either [241] or [338]. It follows immediately from
things found there: By compactness, all the homology groups of M are finitely generated.
Because M is not orientable, Hn(M ,Z) = 0 [241, p. 213, Exercise 4.8]. The universal
coefficients theorem in cohomology gives

(2.5) 0 → Ext(Hn−1(M ,Z),Z)→ Hn(M ,Z)→ Hom(Hn(M ;Z),Z)→ 0.

Therefore Ext(Hn−1(M ;Z),Z) = Hn(M ;Z). The torsion subgroup of Hn−1(M ,Z) is
Z2 [241, p. 214, Exercise 4.9], so for a suitable nonnegative integer r ,

Hn(M ;Z) = Ext(Zr ⊕ Z2,Z).

The latter group is Z2.4

Corollary 2.3.6. If X is a compact, polynomially convex subset of CN , then for every
abelian group G, Ȟ p(X;G) = 0 if p ≥ N.

Let us be clear about the analytic, as opposed to the topological, content of this
statement. If K ⊂ Rn, then Ȟ q(K;G) = 0 for all q ≥ n [241, p. 222]. Thus the analytic
content of the corollary lies in the cases p = N, . . . , 2N − 1.

Proof: The space CN \ X is arcwise connected, so H0(C
N \ X;G) = G, and H̃0(C

N \
X;G) = 0. Thus by Alexander duality, Ȟ 2N−q−1(X;G) = 0 when q = 0, . . . , N − 1,
which is Ȟ p(X;G) = 0, p ≥ N .

The preceding corollary has a consequence for polynomially convex subsets of the
boundary of the ball or of certain more general domains:

4We need to use the universal coefficients theorem in cohomology, which involves the Ext functor, so it seems
well to recall some of the properties of this functor. To every pair A and B of abelian groups is associated the
abelian group Ext(A,B). It enjoys the following properties:

(a) Ext(Zp,Z) = Zp .

(b) Ext(F,Z) = 0 if F is a free abelian group.

(c) For abelian groups A1, . . . , An, B, Ext(⊕n
j=1Aj ,B) = ⊕n

j=1 Ext(Aj , B).

(d) If B is a divisible abelian group, then Ext(A,B) = 0 for all abelian groups A. (A group G is divisible if
for each g ∈ G and each positive integer n, there is h ∈ G with nh = g.)

(e) If F is an abelian group of countable rank, then Ext(F,Z) = 0 implies that F is free.

Of these, (a), (b), and (c), (d) are among the very first facts in the theory of Ext. Point (e) is a rather substantial
result. References are [241] and [173].
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Corollary 2.3.7. LetD be a bounded domain in CN, N ≥ 2, such that bD is a connected
topological manifold with H1(bD;Z) = 0. If X is a compact polynomially convex subset
of bD, then bD \X is connected.

Notice that there is no smoothness requirement whatsoever on the manifold bD.

Proof. The domainD is bounded, so bD is a compact oriented manifold, whence the exact
homology sequence of the pair (bD, bD \A) and the Alexander duality theorem yield the
equality H̃0(bD \ X;Z) = H 2N−2(X;Z). By the preceding corollary, the latter group
vanishes, so the corollary is proved.

We return to the general theme suggested by this corollary below; see Theorem 2.4.8
and Theorem 2.4.11.

The paper [113] of Eroshkin contains some additional information about the homo-
topy structure of bD \K , K a compact set, for certain domains D in C2.

These topological results for polynomially convex sets imply corresponding results,
with a shift of indices, for rationally convex sets in CN , because, by Theorem 1.2.11,
each rationally convex subset of CN is homeomorphic to a polynomially convex subset
of CN+1.

Corollary 2.3.8. For a compact, rationally convex subset X of CN and for every abelian
group G, Ȟ p(X;G) = 0 if p ≥ N + 1.

Proof. IfX is homeomorphic to the compact polynomially convex subset Y of CN+1, then
Ȟ p(X;G) = Ȟ p(Y ;G), and the latter group vanishes whenp ≥ N+1 by Corollary 2.3.6.

Corollary 2.3.9. IfX is a rationally convex set in CN, N ≥ 2, andG is an abelian group,
then forp = 1, . . . , N−2, the singular homology and cohomology groupsHp(CN \X;G)
and Hp(CN \X;G) vanish.

Remark. For N = 2, the only assertion is that the groups in dimension 0 vanish, and
this is just the statement that CN \ X is connected, which we know it to be from other
considerations.

Proof. By Alexander duality, Ȟ 2N−q−1(X;G) � H̃q(CN \X;G). Thus, the latter groups
vanish when N − 2 ≥ q. The cohomology result follows from the universal coefficients
theorem.

Corollary 2.3.10. No M-dimensional compact topological manifold in CN with M ≥
N + 1 is rationally convex.

Compact manifolds of dimension N in CN can be rationally convex, as the N -
dimensional torus TN shows.

In the preprint [379], Zeron invesigates the homotopy properties of sets of the form
M \X withM a complex manifold and X a compact intersection of Stein domains.

The work above allows us to detect points in the polynomially convex hull of a
compact subset of CN in the following way. Consider a compact set X in CN and a
compact subset E in CN \X. The question is, when does E intersect X̂? Various answers
are available, depending on which homology or cohomology theory is used.
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Denote by ι the inclusion E ↪→ CN \ X, by ι′′ the inclusion CN \ X̂ ↪→ CN \ X,
and, provided E ∩ X̂ = ∅, by ι′ the inclusion E ↪→ CN \ X̂.

Fix an abelian group of coefficients.

Corollary 2.3.11. [127] IfE is a manifold, and if for some q ∈ {1, . . . , N−1} the induced
map ι∗ : Hq(E;G)→ Hq(C

N \X;G) is not the zero map, then the set E meets X̂.

Proof. If not, then because the induced map ι∗ : Hq(E;G) → Hq(C
N \ X;G) between

singular homology groups is the composition ι′′∗ ◦ ι′∗, and Hq(CN \ X̂;G) = 0, we have a
contradiction.

Corollary 2.3.12. If for some q ∈ {1, . . . , N−1} the induced map ι∗ : Ȟ q(CN \X;G)→
Ȟ q(E;G) is not the zero map, then E meets X̂.

Proof: If not so that E ⊂ CN \ X̂, then because Ȟ q(CN \ X̂;G) = 0 and ι∗ = ι′∗ ◦ ι′′∗,
we reach a contradiction.

The first result of this kind was given by Alexander [23] and was based on de Rham
cohomology for manifolds.

Recall that the pth de Rham cohomology group of a smooth manifold M is the
group HpdeR(M ) defined by

H
p

deR(M ) = {closed smooth p-forms on M }
{exact smooth p-forms on M } .

De Rham’s theorem asserts that the group HpdeR(M ) is isomorphic to the singular co-
homology group Hp(M ;R). (If we are working with complex-valued forms rather than
real-valued ones, then HpdeR(M ) is isomorphic to Hp(M ;C).)

Corollary 2.3.13. If X and E are smooth compact manifolds such that for some q ∈
{1, . . . , N − 1} the induced map ι∗ : HqdeR(C

N \X)→ H
q

deR(E) is not the zero map, then
E meets X̂.

The condition of the last corollary can be rephrased as the requirement that there be
a closed q-form on CN \ X that when integrated over some q-cycle in the manifold E
yields a nonzero result.

Because of Corollaries 2.3.8 and 2.3.9, the last three corollaries have evident ana-
logues in which polynomially convex hulls are replaced by rationally convex hulls. The
index q must then be restricted to the set {1, . . . , N − 2} rather than to {1, . . . , N − 1} as
in the case of polynomial convexity.

The hypotheses of the last corollary imply restrictions on the dimensions of X and
E. Denote by d the dimension of X and by e that of E. Because the map ι∗ : HqdeR(C

N \
X) → H

q

deR(E) is not the zero map, the latter group cannot be zero. Thus, q ≤ e.
Also, by de Rham’s theorem, the group HqdeR(C

N \ X) is isomorphic to the singular
cohomology groupHq(CN \X;C), which, because the coefficients in question are from a
field, is isomorphic to the singular homology groupHq(CN \X;C). By Alexander duality,
this group is isomorphic to the Čech cohomology group Ȟ 2N−q−1(X;C). It follows that
2N − q− 1 ≤ d or 2N − d− 1 ≤ q. The corollary requires that q ≤ N − 1. The upshot is
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that the hypotheses of the last corollary can be satisfied only when the dimensions d and
e satisfy N ≤ d and e ≥ q. In particular, 2N − 1 ≤ d + e.

There is a notion of linked manifolds to which the preceding corollaries are related.

Definition 2.3.14. Given mutually disjoint smooth, compact, oriented manifolds M and
N in RN with dim M = p, dim N = q, p + q = N − 1, the linking number,
L (M ,N ), of M and N is given by

L (M ,N ) =
∫
M×N

ψ∗θ,

where ψ : RN × RN → RN is the difference map ψ(x, y) = x − y and where θ is some
smooth closed (N − 1)-form on RN \ {0} such that

∫
SN−1 θ = 1.

Stokes’s theorem implies that this linking number is independent of the choice of the
form θ and also that the path M × N of integration in the definition can be replaced by
any path homologous in RN × RN \ ψ−1(0) to it.

The linking number satisfies L(M ,N ) = (−1)pq+1L(N ,M ).

The linking number L(M ,N ) is the degree of the map ψ : M ×N → RN \ {0}.
For degree theory one can consult [96] or [88].

If the two manifolds M and N , of dimensionsp andq, respectively, are linked, i.e., if
the linking number L (M ,N )does not vanish, then there are closedq-formsµon RN\M
for which

∫
N µ �= 0, so that Corollary 2.3.13 applies. This is so, for the linking hypothesis

implies that for some smooth closed (N−1)-form θ on RN \{0}, the integral
∫
M×N ψ∗θ

is nonzero, as we see in the following way. Write ψ∗θ =∑|J |+|K|=N−1AI,J dx
I ∧ dyJ

where the coefficientsAI,J are smooth functions on RN×RN \ψ−1(0). If ι : M ×RN →
RN × RN is the inclusion, then

ι∗ψ∗θ =
∑

|I |=p,|J |=q
AI,J dx

I ∧ dyJ ,

as follows from degree considerations. Define µ ∈ E q(RN \ M ) by

µ =
∑
|J |=q

(∫
N

∑
|I |=p

AI,J dx
I

)
dyJ .

By Fubini’s theorem,5 ∫
M×N

ι∗ψ∗θ =
∫
N
µ.

Because L (M ,N ) �= 0, it follows that
∫
N µ �= 0. Also, the form µ is closed. This is

so, for because dψ∗θ = 0, we have that on RN × RN \ ψ−1(0),

N∑
k=1

∑
|I |=p,|J |=q

∂AI,J

∂xk
dxk∧dxI∧dyJ = (−1)p+1

N∑
j=1

∑
|I |=p,|J |=q

∂AI,J

∂yj
dxI∧dyj∧dyJ .

5The version of Fubini’s theorem that we are using is stated carefully in the appendix to this section.
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The form on the left is of degree p + 1 in x and q in y, that on the right of degree p in x
and q + 1 in y. Accordingly, both are zero. We see that µ is closed as desired, for

dµ =
∑
|J |=q

(∫
N

∂AI,J

∂yj
dxI
)
dyj ∧ dyJ = 0.

As an example of the foregoing, consider the case of two spheres in CN , N ≥ 2.
First identify CN with R2N and then write M for 2N to simplify notation. Consider the
spheres S′ and S′′ given by

S′ = {x = (x1, . . . , xd, 0, . . . , 0) ∈ RM : x2
1 + · · · + x2

d = 1}
and

S′′ = {x = (0, . . . , 0, xd, . . . , xM) ∈ RM : (xd − 1)2 + x2
d+1 + · · · + x2

M = 1}.
The sphere S′ has dimension d − 1, S′′ dimensionM − d . One of d − 1 andM − d

is at least two; we suppose it to be d − 1, whence d ≥ 3.
These two spheres are linked. For this, it suffices to show that if ϑ denotes the closed

form 1
|x|2M
∑
j=1,...,M(−1)j−1xjω[j ](x) in which, for each j ,

ω[j ](x) = dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxM,
then the integral

∫
S′×S′′ ψ∗ϑ is nonzero. Here and below ψ denotes the difference map

ψ(x, y) = x − y from RM × RM to RM . The form ϑ does not satisfy
∫
SM−1 ϑ = 1; the

value of this integral isM times the volume of the unit ball in RM .
If S′

r denotes the sphere of radius r concentric with S′, then the integral
∫
S′
r×S′′ ψ∗ϑ

is independent of r , r > 0, by Stokes’s theorem.
The desired result follows from Stokes’s theorem and the observation that S′ ×S′′ ⊂

RM × RM is the boundary of the set S′ ×� if � denotes the open manifold

� = {(0, . . . , 0, yd, yd+1, . . . , yM) ∈ RM : (yd − 1)2 + y2
d+1 + · · · + y2

M > 1}.
The form ψ∗ϑ is given by

ψ∗ϑ = |x − y|−M
2M∑
j=1

(−1)j−1(xj − yj )ω[j ](x − y).

On S′ × � we have xd+1 = · · · = xM = y1 = · · · = yd−1 = 0. For large s > 0,
let Ds denote the set of (x, y) for which x ∈ S′, and y = (0, . . . , 0, yd, . . . , yM) ∈ �
with y2

d + · · · + y2
M ≤ s2. The form ψ∗ϑ is closed, so Stokes’s theorem implies that

0 = ∫
bDs
ψ∗ϑ . If�s denotes the part of bDs consisting of the points (x, y) ∈ S′ ×�with

|y| = s, then on �s we have |x − y|−2M ≤ 1
2 s

−2M. The x-integration is over the fixed
sphere S′, and for fixed x ∈ S′, the y-integration is over part of a sphere of dimension
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M − d and radius s. Consequently, for each fixed x ∈ S′, the corresponding y-integral is
bounded by const s−2MsM−d , which tends to 0 as s → ∞. It follows that if

�+ = {(0, . . . , 0, yd+1, . . . , yM) : y2
d+1 + · · · + y2

M ≥ 1} = b� ∩ {y ∈ RM : yd = 0},
then ∫

S′×S′′
ψ∗ϑ =

∫
S′×�+

ψ∗ϑ.

On S′ × �+, yd = 0, so that for x ∈ S′ and y ∈ �+, |x − y|2 = (1 + |y|2).
Consequently,∫

S′×S′′
ψ∗ϑ = (−1)M

{∫
S′

d∑
j=1

(−1)j−1xj dx1 ∧ · · · d̂xj ∧ · · · ∧ dxd
}

×
{∫

�+

dyd+1 ∧ · · · ∧ dyM
(1 + |y|2)M/2

}
.

This number is not zero, so the linking number L (S′,S′′) is not zero.
Suppose now that dim S′ > dim S′′. The inclusion ι : S′′ ↪→ CN \ S′ induces a

nontrivial map fromHM−d
deR (CN \S′)→ HM−d

deR (S′′). The same conclusion is correct if de
Rham cohomology is replaced by singular cohomology. But then Corollary 2.3.12 implies
that if�′ is any topological (d−1)-sphere homologous to S′ in CN \S′′, then S′′ meets �̂′.
And, having replaced S′ by�′, we can now replace S′′ by any topological (2N−d)-sphere
�′′ homologous in CN \�′ to S′′.

As noted already, there are analogous conclusions concerning rationally convex hulls,
once the dimensions have been restricted appropriately.

The next corollary can be derived from the preceding results on linking or, as we
shall do, from Corollary 2.3.6.

Corollary 2.3.15. [23] Let E be a real d-dimensional subspace of CN , d ≥ N + 1, and
let E⊥ be the real orthogonal complement of E in CN , so that as a real vector space
CN = E ⊕ E⊥. Let X be a compact subset of E, and let D be a bounded component of
E \X. If f : X→ E⊥ is a continuous function, then the polynomially convex hull of the
graph of f projects under the orthogonal projection π : E ⊕ E⊥ → E onto a set that
contains D. If d ≥ N + 2, then the rationally convex hull of the graph of f projects onto
a set in E that contains D.

The dimension restriction in this proposition is necessary. IfD is any bounded domain
in CN , and if f : bD → CN is the map f (z) = z̄, then the graph of f is polynomially
convex.

It is not true that the polynomially convex hull of a graph is necessarily a graph, as
the following example [20] shows.

Let ϕ be the function defined on bB2 by ϕ(z1, z2) = |z1|, and denote by �ϕ its graph,
the set {(z1, z2, w) ∈ C3 : |z1|2 + |z2|2 = 1, w = |z1|}. If (z1, z2, |z1|) ∈ �ϕ , then the
point (eiϑz1, e

iϑz2, |z1|) is also in �ϕ . Thus, if P is a polynomial, then for each point
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(z1, z2) ∈ B2 and for each ζ ∈ C with |ζ | ≤ 1, we have |P(ζz1, ζ z2, |z1|)| ≤ ‖P ‖�ϕ .
Consequently, for each t ∈ [0, 1], the point (0, 0, t) lies in the polynomially convex hull
of �ϕ . It follows that �̂ϕ is not a graph over a set in C2.

To prove the corollary above, we need a simple fact about differential forms.

Lemma 2.3.16. Let X be a compact subset of RN , let π : RN × Rk → RN be the
orthogonal projection, and let Y ⊂ RN ×Rk be a compact set carried homeomorphically
onto X by π . If θ is a smooth p-form defined and closed on a neighborhood of X, and if
π∗θ is exact on a neighborhood of Y , then θ is exact on a neighborhood of X.

Proof. Let the form θ be defined, smooth, and closed on the neighborhood U of X in RN ,
and let � be a neighborhood of Y in RN × Rk on which π∗θ is exact, say π∗θ = dψ for
a smooth (p − 1)-form ψ . The map π |Y is a homeomorphism, so there is a continuous
map f : X → Rk such that the map η : X → RN × Rk given by η(x) = (x, f (x)) is
the inverse of π |Y . The Tietze extension theorem provides an extension, denoted again
by f , of the map f to a map f : RN → Rk such that if η : RN → RN × Rk is the map
x �→ (x, f (x)), then π ◦η = id on all of RN . The map f can be approximated by a smooth
map f1 in such a way that, with η1(x) = (x, f1(x)), which satisfies π ◦ η1 = id on RN ,
η1 carries a neighborhood U1 of X into �. Then θ = (π ◦ η1)

∗θ = η∗1(π∗θ) = d(η∗1ψ).
Thus θ is exact on some neighborhood of X.

Proof of Corollary 2.3.15. With notation as in the statement of the corollary, we suppose
for convenience that 0 ∈ D. Fix a smooth, closed form θ of degree d− 1 on E \ {0} that is
not exact. Denote by π : CN → E the orthogonal projection. The form π∗θ is closed (and
smooth) on CN \ π−1(0). Denote by �f the graph of the function f . The polynomially
convex set �̂f is contained in CN\π−1(0), so θ is exact on some neighborhood of �̂f . There
are two ways to see this. One is to note that the set �̂f is the intersection of a decreasing
sequence {Wj } of polynomial polyhedra contained in CN \ π−1(0). As a polynomial
polyhedron, each Wj is a Runge domain in CN and so has vanishing cohomology with
coefficients in C in degree greater than or equal to N by the theorem of Serre quoted at
the beginning of this section. De Rham’s theorem implies that θ is exact on each of the
Wj . Alternatively, we know by Corollary 2.3.6 that Ȟ d−1(�̂f ;C) vanishes. It follows that
if c is a cohomology class in Hd−1(�;C), � a neighborhood of �̂f , then under the map
Hd−1(�;C) → Hd−1(�̂f ;C) induced by the inclusion, the class c is taken to the zero
element. This implies that it induces the zero element in Hd−1(�′;C) for all sufficiently
small neighborhoods �′ of �̂f . Applied to the cohomology class in Hd−1(�;C) induced
by the form π∗(θ), we again conclude that π∗θ is exact on some neighborhood of �̂f . The
preceding lemma implies that θ is exact on a neighborhood, say V , ofX, for the projection
π is a homeomorphism from �f onto X. There is then an open setDo � D, 0 ∈ Do, with
bDo a smooth manifold that is contained in V . The form θ is exact on bDo, so Stokes’s
theorem implies that

∫
bDo
θ = 0. However, this is impossible, for the hypothesis that θ

is not exact implies that if � ⊂ Do is a small sphere centered at 0, then
∫
�
θ �= 0. The

sphere� and the manifold bDo are homologous inE\{0}, so we have a contradiction. The
part of the corollary concerning polynomial convexity is proved. The assertion concerning
rationally convex hulls follows in a similar way.
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Some particular cases of the last corollary are these.

A. Let f be a continuous function on a compact connected topological (2N − 1)-
manifold �, for example a sphere, in CN , N ≥ 2. The manifold � splits CN into
two components Di and De, the bounded and unbounded components of CN \ �,
respectively, and the corollary implies that the polynomially convex hull of the graph
of f projects onto a compact set in CN that contains the component Di .

B. If D is a relatively compact domain in CN whose closure is polynomially convex,
then given a continuous C-valued function f on bD, the hull �̂f ⊂ CN×C projects
onto D̄.

C. For another example, take S2 to be the unit 2-sphere in R3 ⊂ C2 and let f be a
real-valued function on S3. The polynomially convex hull of the graph of f projects
onto the closed unit ball in R3.

Some further examples in this setting have been given by Jimbo and Sakai in their pa-
per [189].

Under rather general conditions, it is possible to say something about the size of the
complementary set X̂ \X. These results are due to Alexander [7].

Theorem 2.3.17. [7] If X ⊂ CN is a compact set with Ȟ p(X;G) �= 0 for some p ≥ N
and some abelian group G, then Ȟ p+1∗ (X̂ \X;G) �= 0.

The space X̂ \X is locally compact; Ȟ p+1∗ (X̂ \X;G) denotes its cohomology with
compact support.

Proof. The proof consists simply in writing the exact cohomology sequence for the pair
(X̂,X):

· · · → Ȟ p(X̂;G)→ Ȟ p(X;G)→ Ȟ
p+1∗ (X̂ \X;G)→ · · · .

By Corollary 2.3.6, the group Ȟ p(X̂;G) is zero, which implies that the nonzero group
Ȟ p(X;G) injects into the group Ȟ p+1∗ (X̂ \X;G), so the latter group is not zero. Done.

Corollary 2.3.18. The topological dimension of X̂ \X is at least p + 1.

For dimension theory see [185].
There are the expected rationally convex versions of the preceding results.

Theorem 2.3.19. If X ⊂ CN is a compact set with Ȟ p(X;G) �= 0 for some p ≥ N + 1
and some abelian group G, then Ȟ p+1∗ (R-hull X \X;G) �= 0.

Corollary 2.3.20. The topological dimension of R-hull X \X is at least p + 1.

In the case of manifolds, additional information is available.

Theorem 2.3.21. [7] If � is a compact submanifold of CN of dimension p ≥ N , then the
topological closure of �̂ \� in CN contains all of �.

Proof. We assume, without loss of generality, that � is connected. Introduce the group
G that is Z or Z2 according as � is or is not orientable. The cohomology groups in the
following argument all have coefficients from G; we suppress the coefficient group. That
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� is p-dimensional implies that Hp(�) �= 0. Again, the proof of the theorem involves
formal cohomology calculations involving the exact cohomology sequences of several
pairs and excision.6

For the proof, put A = (�̂ \ �)¯ and Y = � ∩ A, and assume, for the sake of
contradiction, that Y �= �.

The hypothesis that Y �= � implies that Ȟ q(Y ) = 0 for q ≥ p. The general fact here
is that a closed proper subset A of a compact connected n-dimensional manifold satisfies
Ȟ q(A;Z) = 0 for all q ≥ n. See [241, p. 222] for the orientable case; the corresponding
fact for nonorientable manifolds and coefficients from Z2 is indicated in [241, p. 223,
Example 6.5].

In the exact cohomology sequence for the pair (�̂,�) there is the segment

· · · → Ȟ p(�̂)→ Ȟ p(�)→ Ȟ p+1(�̂,�)→ Ȟ p+1(�̂)→ · · · .
By Corollary 2.3.6, Ȟ p(�̂) = Ȟ p+1(�̂) = 0, so the group Ȟ p+1(�̂,�) is not zero; it is
isomorphic to the nonzero group Ȟ p(�). Excision yields the isomorphism Ȟ p+1(�̂,�) =
Ȟ p+1(A, Y ). The exact cohomology sequence for the pair (A, Y ) contains the segment

· · · → Ȟ p(Y )→ Ȟ p+1(A, Y )→ Ȟ p+1(A)→ Ȟ p+1(Y )→ · · · .
As already noted, the hypotheses imply that Ȟ p(Y ) = Ȟ p+1(Y ) = 0. Thus the two groups
Ȟ p+1(A, Y ) and Ȟ p+1(A) are isomorphic, and the latter group is found not to vanish.
Next, consider the exact cohomology sequence of the pair (�̂, A):

· · · → Ȟ p+1(�̂)→ Ȟ p+1(A)→ Ȟ p+2(�̂, A)→ Ȟ p+2(�̂)→ · · · .
The extremities are zero, so Ȟ p+2(�̂, A) �= 0. Invoking excision yields Ȟ p+2(�̂, A) =
Ȟ p+2(�, Y ) again, so the latter group is not zero. Finally, consider the exact cohomology
sequence of the pair (�, Y ):

· · · → Ȟ p+1(Y )→ Ȟ p+2(�, Y )→ Ȟ p+2(�)→ · · · .
Again, the extremities are zero, whence Ȟ p+2(�, Y ) = 0. We have reached a contradic-
tion, so the result is proved.

The rationally convex version of the last result is correct; the proof follows the same
lines as the proof just given:

Theorem 2.3.22. If � is a compact submanifold of CN of dimension p ≥ N + 1, then the
topological closure of R-hull � \� in CN contains all of �.

A final corollary of Theorem 2.3.1: It implies the existence of Cantor sets and arcs in
CN that are not polynomially convex, for it implies that in CN, N ≥ 2, ifX is polynomially
convex, then CN \X is necessarily simply connected. Examples have been given of setsE

6The excision axiom for cohomology is this: If U is open in X and Ū is contained in the interior of A, A a
subset ofX, then the inclusion of pairs (X\U,A\U) ↪→ (X,A) induces an isomorphism of relative cohomology
groups Hq(X,A;G) = Hq(X \ U,A \ U ;G) for every coefficient group G.
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in RN, N ≥ 3, homeomorphic to the Cantor set or to an arc for which the complementary
domain CN \ E is not simply connected. Such wild arcs were found by Artin and Fox
and are described in [177]. For the Cantor sets in question, see the paper of Blankinship
[65]. See also the paper of Blankinship and Fox [64]. A comprehensive discussion of these
matters is given in the book of Rushing [312]. Recall that an essentially simpler, analytic
way of obtaining such examples of nonpolynomially convex arcs and Cantor sets is given
in Section 1.6.

2.3.A. Appendix on Fubini’s Theorem

We have used above and shall use in the sequel a general version of Fubini’s theorem set
in the context of smooth maps between manifolds. A careful treatment of the theorem is
given in the book of Sulanke and Wintgen [353]. The result is as follows.

Theorem 2.3.23. Let Y be an m-dimensional smooth, oriented manifold, and let X be an
n-dimensional smooth, oriented manifold. Assume m ≥ n. Let ϕ : Y → X be a mapping
of class C 1 with the property that the set of critical values of ϕ is a set of measure zero.
Let � be an n-form on X, and let ω be an (m − n)-form on Y . Let the function f be
defined and Lebesgue measurable on Y . If the integral

∫
Y
fω∧ϕ∗� exists as a Lebesgue

integral, then for almost all x ∈ X, the integral F(x) = ∫
ϕ−1(x)

f ω exists (we understand
F(x) = 0 when x /∈ ϕ(Y )), the function F defined on X in this way is measurable, and∫

Y

fω ∧ ϕ∗� =
∫
X

F�.

Various comments are required about this statement.

Remark 1. The manifolds X and Y are assumed oriented; there is the issue of how the
fibers ϕ−1(x) are to be oriented. In case the manifoldsX and Y are complex manifolds and
ϕ is a holomorphic map, then the orientation on the fibers ϕ−1(x) is the natural orientation
on them as complex manifolds.

Remark 2. A special case is that in which X and Y have the same dimension, say n. In
this case, if f is a measurable function on Y and � is a smooth form on X, then∫

Y

f ϕ∗� =
∫
X

[ ∑
y∈ϕ−1(x)

e(y)f (y)

]
�,

in which the quantity e(y) is 1 ifϕ preserves orientation at x,−1 if it reverses orientation. In
particular, the sum

∑
y∈ϕ−1(x) e(y)f (y) defines a measurable function on the manifoldX.

Remark 3. In the event that X and Y are manifolds of class C ∞ and ϕ is also of class
C∞, Sard’s theorem implies that the set of critical values of ϕ is of measure zero. The
same conclusion can be drawn under less-stringent regularity assumptions. For the sharp
result, one can consult Federer’s book [115].
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2.4. Convexity in Stein Manifolds

Some of the results of the last section have analogues in the setting of arbitrary Stein mani-
folds. These developments were found in the papers ofAlexander [23] and Forstnerič [127].

We shall use the basic result that if M is a closed complex submanifold of CN , then
for each compact subset X of M , the sets O(M )-hullX and X̂ coincide. This is true, for
as we have already noted, O(M )-hullX ⊂ X̂. These two sets are equal, because each
f ∈ O(M ) is the restriction of a function holomorphic on all of CN .

The analogue of rational convexity in the general Stein manifold is less evident than
is the analogue of polynomial convexity. The first notion natural in this setting is that of
meromorphic convexity: A compact subsetX of the Stein manifold M is meromorphically
convex if for each point z ∈ M \X, there is a holomorphic function f on M with f (z) = 0
and with f zero-free on X. The second natural notion is that of convexity with respect to
hypersurfaces: The compact subset X of M is convex with respect to hypersurfaces if for
each point z ∈ M \ X there is an analytic hypersurface Z with z ∈ Z and Z ∩ X = ∅.
If, as in CN , every hypersurface Z is the zero locus of a holomorphic function on M ,
the two notions evidently coincide. A Stein manifold M satisfies the condition that each
hypersurface is the zero locus of a holomorphic function if the integral cohomology group
Ȟ 2(M ;Z) vanishes or, more generally, if each element Ȟ 2(M ;Z) is of finite order;
these are purely topological conditions. For a discussion of these two analogues of rational
convexity in the context of Stein manifolds, see the paper of Colţoiu [91] and those of
Hirschowitz [175] and [176].

Basic results about the topology of Stein manifolds, which are based on Morse theory,
were given by Andreotti and Frankel [35] and by Andreotti and Narasimhan [36]:7

Theorem 2.4.1. If M is a Stein manifold of dimension N , and if � ⊂ M is a Runge
domain that is itself a Stein manifold, then

(a) Hk(M ;Z) = 0 for k > N , and HN(M ;Z) is free.

(b) Hk(M , �;Z) = 0 for k > N , and HN(M , �;Z) is torsion-free.

(c) The natural homomorphism HN(�;Z) → HN(M ;Z) is injective, whence the
natural homomorphism HN(M ;R)→ HN(�;R) is surjective.

(d) If HN(M ;Z) = HN−1(M ;Z) = 0, then Hk(�;Z) = 0 for all k ≥ N , and
HN−1(�;Z) is torsion-free.

As concerns statement (a), the example of (C∗)N , the N -fold Cartesian product of
the punctured plane with itself, shows that in general,HN(M ;Z) does not vanish.Another
example of this phenomenon is provided by the complexifiedN -sphere ŠN = {z ∈ CN+1 :
z2

1 + · · · + z2
N+1 = 1}, which satisfies HN(ŠN ;Z) = Z �= 0.

Proof. Part (a) is proved as follows. Let Q be a smooth, strictly plurisubharmonic ex-
haustion function that is a Morse function with the property that each critical value occurs

7In fact, the results of Andreotti and Frankel and of Andreotti and Narasimhan are somewhat more general
than the following theorem in that some of them deal with complex spaces instead of manifolds.
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at a single critical point. Recall that, as we saw in the preceding section, the index of
each critical point of Q is not more than N . Thus, if mk denotes the number of critical
points of index k, then mk = 0 for k > N . On the other hand, the Morse inequalities
[174, p. 162] yield that for every field F, dimFHk(M ;F) ≤ mk . Thus, for k > N , we
have Hk(M ;F) = 0. The universal coefficients theorem in homology8 gives

Hk(M ;F) = Hk(M ;Z)⊗ F ⊕ Tor(Hk−1(M ;Z);F),

whence Hk(M ;Z) ⊗ F = 0. This is correct for every field F, so Hk(M ;Z) = 0 when
k = N + 1, N + 2, . . . .Also, the vanishing of HN+1(M ;Z)⊗ F implies the vanishing
of Tor(HN(M ;Z);F). Apply this with F the finite field Zq = Z/(qZ) for a prime q to
find that Tor(HN(M ;Z);Zq) = 0. Because for every group G, Tor(G,Zq) is the set of
elements g ∈ G with qg = 0, it follows that the group HN(M ;Z) is torsion-free. The
proof that it is, in fact, free will be concluded after the proof of part (b) of the theorem.

We now look at the proof of assertion (b). Part (a) implies the first assertion of (b)
for k > N + 1, as follows from the exact homology sequence of the pair (M , �), which
contains the segment

(2.6) · · · → Hp(M ;Z)→ Hp(M , �;Z)→ Hp−1(�;Z)→ · · · .

By the part of (a) that has been proved already, for p ≥ N + 1,

Hp+1(M ;Z) = 0 = Hp(�;Z),

so for p ≥ N + 2, we find that Hp(M , �;Z) = 0. The vanishing of HN+1(M , �;Z)

seems to require more.
Let K ⊂ � be a compact set and K ′ ⊂ M be a compact neighborhood of �̄ in

M . The domain � is a pseudoconvex Runge domain in M , so the O(�)-hull of K is a
compact subset of �; it is the same as the O(M )-hull of K . We suppose, therefore, that
K is O(M )-convex. Let V and V ′ be open subsets of M with K ⊂ V ⊂ � ⊂ K ′ ⊂ V ′.

The manifold M embeds in a suitable Cd as a closed complex submanifold. The
O(M )-convex set K is polynomially convex in Cd , so Theorem 1.3.8 provides a non-
negative smooth function u on M that is strictly plurisubharmonic on M \ K and that

8We need to use the universal coefficients theorem in homology, which involves the Tor functor, so it seems
well to recall some of the properties of this functor. To every pairA, and B of abelian groups is associated a third
group Tor(A,B), which has the following properties:

(a) Tor(A,B) is naturally isomorphic to Tor(B,A).

(b) If A or B is torsion-free, then Tor(A,B) = 0.

(c) For any abelian group A, Tor(A,Zn) = {a ∈ A : na = 0}.
(d) If A′, A′′, and B are abelian groups, then Tor(A′ ⊕ A′′, B) = Tor(A′, B)⊕ Tor(A′′, B).
(e) If {Gγ }γ∈� is a directed set of abelian groups with direct limit G and B is another abelian group, then

Tor(G,B) is the direct limit of the groups Tor(Gγ , B).

References are [241] and [173].
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satisfies u−1(0) = K .9

Let v be a smooth, nonnegative, strictly plurisubharmonic exhaustion function for
the domain � that satisfies v < 1 on V . Let U be a relatively compact open set in � with
V̄ ⊂ U . There is a smooth function χ on M that takes values in the interval [0, 1] and that
satisfies χ = 0 on M \U and χ = 1 on V . For every sufficiently large positive constantC,
the function ϕ defined by ϕ = Cu+χv is a strictly plurisubharmonic exhaustion function
for M . By replacing ϕ by a suitable smooth function that is sufficiently near it, we can
suppose that ϕ is a Morse function for the manifold M .

For t ∈ R, let M ϕ
t = {z ∈ M : ϕ(z) < t}, which is a relatively compact subset

of M . For sufficiently large values of C and for s ∈ (0, 1) close enough to one, we have
K ⊂ M ϕ

s � �. And if then S is large enough, we have K ′ ⊂ M ϕ
S . Without loss of

generality, we can suppose that s and S are regular values for ϕ. The pair (M ϕ
S ,M

ϕ
s ) is

an approximation to the pair (M , �).
The continuity property of singular homology—see [241, Proposition 6.1, p. 62]—

shows that to infer the vanishing of the relative group Hk(M , �;Z) for any particular
index k, it suffices to establish the vanishing of the relative group Hk(M

ϕ
S ,M

ϕ
s ;Z) for

all the choices of ϕ as above: The group Hk(M , �;Z) is the direct limit of the groups
Hk(M

ϕ
S ,M

ϕ
s ;Z).

That the group Hk(M
ϕ
S ,M

ϕ
s ;Z) vanishes in the range k > N is proved as follows.

(For the rest of this paragraph, we omit the superscript ϕ for simplicity of notation.) Let
Mt = {ϕ < t}, and fix regular values s and S for ϕ with s < S. We have the following
exact homology sequence for the pair (MS,Ms):

· · · → Hp+1(MS;Z)→ Hp+1(MS,Ms;Z)→ Hp(Ms;Z)→ Hp(MS;Z)→ · · · .
For p ≥ N + 1, the groups Hp+1(MS;Z) and Hp(Ms;Z) vanish, which implies that
the relative groups Hp(MS,Ms;Z) vanish in the range p ≥ N + 2. Also, for coeffi-
cients in a field F, we have HN(MS;F) = HN(Ms;F) = 0, so, by the exact homology
sequence of the pair (MS,Ms) with coefficients in F, HN+1(MS,Ms;F) = 0. The uni-
versal coefficients theorem applied as it was applied in the proof of part (a) yields that
HN+1(MS,Ms;Z) vanishes and also that HN(MS,Ms;Z) is torsion-free. The groups
HN+1(M , �;Z) and HN(M , �;Z) are the direct limits of these groups, so the proof of
part (b) is complete. (Recall the property (e) of Tor stated in the footnote above.)

The proof of assertion (a) of the theorem is now concluded as follows. The issue
is to see that HN(M ;Z) is not only torsion-free but actually free. Let ρ be a strictly
plurisubharmonic exhaustion function for M that is also a Morse function and for which
every positive integer is a regular value. For each positive integer p let�p be the sublevel
set �p = {z ∈ M : ρ(z) < p}. These are all Runge domains in M , and each is a Runge
domain in the next. The singular homology groups of the �’s are all finitely generated.
By the part of (a) that we have proved, we know that HN(�p;Z) is torsion-free, and
by (b) the relative groups HN(�p,�p−1;Z) are torsion-free. Because these groups are
finitely generated and torsion-free, they are free. The exact homology sequence for the

9Instead of invoking the embedding theorem at this point, we could instead rewrite the proof of Theorem 1.3.8
in the present context to obtain the function u.
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pair (�p,�p+1) contains the segment

0 → HN(�p−1;Z)→ HN(�p;Z)→ HN(�p,�p−1;Z)→ · · · .
It follows thatHN(�p,�p−1;Z) contains a subgroup Fp−1, which is necessarily free, for
which there is an exact sequence

0 → HN(�p−1;Z)→ HN(�p;Z)→ Fp−1 → 0,

so that
HN(�p;Z) = HN(�p−1;Z)⊕ Fp−1.

Iterating this process, starting with p = 2, gives

(2.7) HN(�p;Z) = HN(�1;Z)⊕ F1 ⊕ F2 ⊕ · · · ⊕ Fp−1.

The group HN(M ;Z) is the direct limit of the groups HN(�;Z); the preceding equation
shows this direct limit to be a free abelian group. Thus, part (a) is proved.

For the proof of (c), use the exact homology sequence (2.6) again. By (b),HN(�;Z)

injects intoHN(M ;Z). For the final assertion of (c), write the exact cohomology sequence
of the pair (M , �) with coefficients in R:

· · · → HN(M ;R)→ HN(�;R)→ HN+1(M , �;R)→ · · · .
To see that HN(M ;R) → HN(�;Z) is surjective, it is enough to show that the group
HN+1(M , �;R) vanishes. For this, use the universal coefficients theorem in cohomology:

0 → Ext(HN(M , �;Z);R)→ HN+1(M , �;R)→ Hom(HN+1(M , �;Z);R) = 0.

The Ext group is zero because R is a divisible group, and the Hom group is zero because
the relative group HN+1(M , �;Z) is zero. Thus, HN+1(M , �;R) = 0, as we wanted.
Point (c) is proved.

Under the hypotheses of (d), the sequence (2.6) yields HN(�;Z) = 0 and the
isomorphism of the group HN−1(�;Z) with the torsion-free group HN(M , �;Z), so (d)
is established.

Theorem 2.4.2. [127] Let M be a Stein manifold of dimension N ≥ 2, and let X be a
compact O(M )-convex subset of M .

(a) For every abelian group G, the inclusion M \X ↪→ M induces isomorphisms

Hk(M \X;G) = Hk(M ;G)
for 0 ≤ k ≤ N − 2.

(b) If HN(M ;R) = 0, then also HN−1(M ;R) = HN−1(M \X;R).

(c) If HN−1(M ;Z) = HN(M ;Z) = 0, then for every abelian group G,

HN−1(M \X;G) = HN−1(M ;G).
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Proof. Consider first the assertion (c), so that HN−1(M ;Z) = HN(M ;Z) = 0. The
compact O(M )-convex set X has a neighborhood basis of Stein Runge domains � such
that �̄ is a compact manifold with boundary. All the homology groups of such an � are
finitely generated. We fix attention on one of these domains. Theorem 2.4.1(d) gives that
Hk(�;Z) = 0 for all k ≥ N . AlsoHN−1(�;Z) is torsion-free. It is free and so isomorphic
to Zr for some nonnegative integer r , for it is a finitely generated abelian group. LetG be
an abelian group. The universal coefficients theorem in cohomology gives the sequence

(2.8) 0 → Ext(HN−1(�;Z),G)→ HN(�;G)→ Hom(HN(�;Z),G)→ 0.

The vanishing of Hp−1(�;Z) and Hp(�;Z) for p > N yields that Hp(�;G) = 0 for
p ≥ N + 1. The group HN(�;G) also vanishes: The Hom term in the sequence (2.8)
vanishes, because, by Theorem 2.4.1,HN(�;Z) = 0. The Ext term also vanishes, because
HN−1(�;Z) is a free abelian group. The vanishing of all the groups Hp(�;G), p ≥ N,
implies the vanishing of the groups Hp(X;G) for all p ≥ N .

Alexander duality yields Hk(M ,M \ X;G) = H 2N−k(X;G) = 0 in the range
k = N, . . . , 2N . The exact homology sequence of the pair (M ,M \ X) now yields the
isomorphism of the groups Hk(M ;G) and Hk(M \X;G) in the range 1 ≤ k ≤ N − 1.

For assertion (a), the argument just given, in the range 1 ≤ k ≤ N − 2, yields the
result.

For assertion (b), we have thatHN(�;R) = 0, because of point (c) of Theorem 2.4.1.
From this it follows that HN(X;R) = 0. Alexander duality then yields

HN(M ,M \X;R) = HN(X;R) = 0,

and then the result follows from the exact homology sequence of the pair (M , X) with
coefficients in R.

Corollary 2.4.3. If X ⊂ M is O(M )-convex, then M \X is connected.

Proof. Take k = 0 in assertion (a).

Corollary 2.4.4. IfX is a compact subset of M , then M \X has only one component that
is not relatively compact in M .

Proof. Let Y ⊂ M be an O(M )-convex subset of M that containsX. The set M \Y has
only one component, sayW , and each unbounded component of M \X must meetW .

There is a theorem about relative homology for a pair of O(M )-convex sets in M .

Theorem 2.4.5. [127] Let M be a Stein manifold of dimension N ≥ 2, and let X and Y
be compact O(M )-convex subsets of M with Y ⊂ intX. For every abelian groupG and
for 0 ≤ k ≤ N − 1, the relative homology group Hk(M \X,M \ Y ;G) vanishes.

Proof. Let U be a neighborhood of Y with Ū ⊂ intX, and let V be a neighborhood of X.
We shall construct a smooth strictly plurisubharmonic exhaustion function � on M

that is a Morse function with the properties that (a) � < 0 on Y and � > 0 on M \ U ,
(b) � < 1 onX, � > 1 on M \V , and (c) 0 and 1 are regular values for �. Assume for the
moment that we have such a �.
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For t ∈ R, let M t = {z ∈ M : �(z) > t}. We then have that M \U ⊂ M 0 ⊂ M \Y
and M \ V ⊂ M 1 ⊂ M \ X. The Morse indices of −� are all at least N , so if t is a
regular value for −�, then for any field F of coefficients,Hk(M t ;F) = 0 for k in the range
0 ≤ k ≤ N − 1. As before, the universal coefficients theorem yields that Hk(M t ;Z) = 0
and that HN(M t ;Z) is torsion-free. The exact sequence for the pair (M 0,M 1) yields
that Hp(M 0,M t ;Z) = 0 in the range 0 ≤ p ≤ N − 1.

Passing to the limit asU shrinks to Y andV toX now yieldsHk(M \X,M \Y ;Z) =
0 as desired.

The construction of � is similar to constructions we have already used. Choose
smooth strictly plurisubharmonic functions ϕ and ψ on M with the properties that ϕ < 0
on Y , ϕ > 0 on M \ U , and ψ < 0 on Y , ψ > 0 on M \ V . Require also that both 0
and 1 be regular values for both ϕ and ψ . Let ψ̃ = Cψ + 1 for a positive constant C large
enough that ψ̃ < 0 on U . Compose ψ̃ with a smooth function on R that is 0 on (−∞, 0]
and is strictly convex on (0,∞). This gives ψ1, which is smooth and plurisubharmonic
on M , that is 0 on Ū , and that is strictly plurisubharmonic where it is positive. It also
has property (b). Now let χ be a smooth function with values in [0, 1] that is identically
1 where ψ1 ≤ 1

3 and is identically 0 where ψ1 ≥ 2
3 . The function � = ψ1 + εχϕ has the

desired properties if ε > 0 is sufficiently small.

The next theorem concerns strictly pseudoconvex domains. If M is a Stein manifold,
the relatively compact domain � ⊂ M is strictly pseudoconvex with boundary of class
C k , k = 2, 3, . . . ,∞, or ω, if there is a strictly plurisubharmonic function Q defined
and of class C k on a neighborhood W of �̄ such that dQ �= 0 on b� and such that
� = {z ∈ W : Q(z) < 0}. (As usual, the case k = ω is understood to be the real-analytic
case.) These domains can be characterized locally along the boundary: The relatively
compact domain � in M with boundary of class C k is strictly pseudoconvex if for each
point p ∈ b�, there is a neighborhood Wp on which there is a strictly plurisubharmonic
functionQp of class C k such that dQp �= 0 on b�∩Wp and such that�∩Wp = {z ∈ Wp :
Qp(z) < 0}.This characterization is given in [287, p. 61]. Another global characterization
of strictly pseudoconvex domains is contained in results of Fornæss [118], Henkin [170],
and Forstnerič [122]:

Theorem 2.4.6. If � is a strictly pseudoconvex domain with boundary of class C k , 2 ≤
k ≤ ∞ or k = ω, in the Stein manifold M , then there is a domain W in CN for suitably
large N such that for some complex submanifold N of W , a neighborhood �′ of �̄ in
M is biholomorphically equivalent to N under a biholomorphic map � such that for
some strictly convex subdomain � of CN with boundary of class C k contained inW , N
is transverse to b�, and � is carried by � onto N ∩�.

The original treatments of this result by Fornæss and Henkin dealt with the cases
k = 2, 3, . . . ,∞. The real-analytic case was deduced from the C ∞ case by Forstnerič.

An important fact is that each point of the boundary of a strictly pseudoconvex
domain � is a peak point for the algebra O(�̄) of functions holomorphic near �̄.

Corollary 2.4.3 implies a useful result for strictly pseudoconvex domains:

Corollary 2.4.7. If � is a strictly pseudoconvex domain with boundary of class C 2 in a
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Stein manifold, then the boundary of � is connected.

Proof. The domain � is connected by hypothesis—by the convention that domains are
connected open sets. Also, because � is strictly pseudoconvex, there is a strictly pseudo-
convex functionQ defined near b� such that b� = {Q = 0}, dQ does not vanish at any
point of b�, andQ < 0 on the part of � on which it is defined.

For ε > 0 small let�ε be the strictly pseudoconvex domain defined byQ < ε. This
set is connected, because it is a small deformation of the domain �. If ε is small enough,
then �̄ is O(�ε)-convex. Also, by Corollary 2.4.3, �ε \ �̄ is connected, so the same is
true of �ε \ �. Because b� is the intersection of the connected, compact sets �̄ε \ �, it
follows that b� is connected.

The following result was found by Forstnerič [127]. For balls, it is due to Alexan-
der [7].

Theorem 2.4.8. If � is a strictly pseudoconvex domain with boundary of class C 2 in a
Stein manifold M of dimension N ≥ 2, then for every abelian group G and for every
compact subset X of b�, if X† = O(�̄)-hullX, then the inclusion b� \ X ↪→ �̄ \ X†

induces an isomorphism

Hk(b� \X;G)→ Hk(�̄ \X†;G)
for k = 0, . . . , N − 2.

Proof. Let Q be a strictly plurisubharmonic defining function of class C 2 for �, so that
for some neighborhood W of �̄, � = {z ∈ W : Q(z) < 0}. Replacing W by a sublevel
set {Q < ε} for a small positive ε lets us supposeW to be a Stein domain in which � is a
Runge domain such that �̄ is O(W)-convex.

The domain �̄ is O(W)-convex, which implies that X† is the O(W)-convex hull
of X. Also, because each point of b� is a peak point for the algebra O(�̄), we have that
X† ∩ �̄ = X.

A neighborhood of b� inW can be identified with a neighborhood of the zero section
of the normal bundle to the embedding b� ↪→ W . Let π be the projection. There is then
a neighborhood Eo of b� such that each of the fibers π−1(z) ∩ Eo, z ∈ b�, is a convex
domain in the fiber of the normal bundle over the point z.

Let χ be a smooth nonnegative function on b� with χ−1(0) = X. Use the function
χ to define a subset E of Eo by

E = {z ∈ Eo : |Q(z)| < χ(π(z))}.
This is an open neighborhood of b� \X and, granted the proper choice of χ , so that E is
thin enough, we have E ∩X† = ∅.

Put U = (� \ X†) ∪ E and V = W \ (�̄ ∪ E). This gives U ∪ V = W \ X† and
U ∩ V = E.

The definition of V implies that V can be deformed intoW \�̄ by a homeomorphism
ofW \X†. Thus for every group G of coefficients and for all nonnegative integers k,

Hk(W \X†, V ;G) = Hk(W \X†,W \ �̄;G).
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The latter group vanishes for k with 0 ≤ k ≤ N −1, as follows from Theorem 2.4.5.
(Note that, as stated, that theorem does not apply in this situation, because X† is not
contained in the interior of �̄. To circumvent this difficulty, replace �̄ by �̄ε with �ε the
sublevel set {Q < ε} and then pass to the limit as ε decreases to 0.)

By excision,

Hk(W \X†, V ;G) = Hk(W \ (X† ∪ (V \ E)), V \ (V \ E);G).
The definitions yield that V \ (V \ E) = E andW \ (X† ∪ (V \ E)) = U . Thus

0 = Hk(W \X†, V ;G) = Hk(U,E;G).
The exact homology sequence for the pair (U,E) contains the segment

· · · → Hk+1(U,E;G)→ Hk(E;G)→ Hk(U ;G)→ Hk(U,E;G)→ · · · ,
so for k = 0, 1, . . . , N − 2, Hk(E;G) = Hk(U ;G). The domain E is homotopically
equivalent to b�\X, andU to �̄\X†, so for 0 ≤ k ≤ N−2, we have the desired equality
Hk(b� \X;G) = Hk(�̄ \X†;G). The theorem is proved.

A simple example from [127] shows that the range of the last theorem cannot be
extended to include the case k = N − 1: If X = bBN ∩ RN = SN−1, then, as a subset of
RN , X is polynomially convex. We have that HN−1(B̄N \ X;Z) = 0, but by Alexander
duality, HN−1(bBN \X;Z) = HN−1(X;Z) = Z.

The first version of this result was given by Alexander [7]; it was set in the con-
text of the ball BN in CN . Recall Corollary 2.3.7. The case k = 0 for arbitrary strictly
pseudoconvex domains in Stein manifolds is in [26].

Corollary 2.4.9. With M ,�, andX as in the theorem, each component of �̄\O(M )-hullX
contains exactly one component of b� \X.

Corollary 2.4.10. With M ,�, andX as in the theorem, ifX is O(M )-convex, then b�\X
is connected.

A completely different proof of this result is contained in [301].
It will be important for us at one point below to have a version of the preceding

theorem for certain domains that are not necessarily strictly pseudoconvex.

Theorem 2.4.11. Let D be a bounded domain in CN with bD a topological sphere. Let
X ⊂ bD be a compact set such that X̂ ∩ bD = X and D̄ ⊃ X̂. Then for 0 ≤ p ≤ N − 2,
Hp(bD \ X;Z) = Hp(D \ X̂;Z). In particular—the case p = 0—the boundary of each
component of D \ X̂ contains precisely one component of bD \X.
It is to be emphasized that the sphere bD is here subject to no regularity condition. In
particular, the domain D might be any bounded convex domain.

Proof. [7] Fix a p with 0 ≤ p ≤ N − 2. The boundary bD is a (2N − 1)-dimensional
manifold, so Alexander duality gives Hp(bD \ X;Z) = Ȟ 2N−2−p(X;Z). Denote by E
the cone on the manifold bD, so that E is the space obtained from the product bD×[0, 1]
by collapsing the subset bD × {1} to a point. If we identify each point z ∈ bD with the
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corresponding point {z} × {0} in E, we obtain a topological sphere of dimension 2N . By
a small abuse of notation, we shall denote this sphere by E ∪D. Fix a q ≥ N . There is an
exact sequence in cohomology

· · · → Ȟ q(X̂;Z)→ Ȟ q(E ∪ X̂, X̂;Z)→ Ȟ q+1(E ∪ X̂;Z)→ Ȟ q+1(X̂;Z)→ · · · .
The extremities are zero for q ≥ N , so in this range, Ȟ q(E∪X̂, X̂;Z) = Ȟ q+1(E∪X̂;Z).
By excision, Ȟ q+1(E ∪ X̂, X̂;Z) = Ȟ q+1(E,X;Z). There is also the exact sequence

· · · → Ȟ q(E,Z)→ Ȟ q(X;Z)→ Ȟ q+1(E,X;Z)→ Ȟ q+1(E,Z)→ · · · .
Again, the extremities are trivial, because E is contractible, so

Ȟ q(X,Z) = Ȟ q+1(E ∪ X̂;Z).

If we concatenate the equalities we have obtained, we find that Ȟ q(X;Z) = Ȟ q+1E ∪
X̂;Z) in the range q ≥ N . Alexander duality applied in the sphere E ∪D yields

Ȟ q+1(E ∪ X̂;Z) = H2N−2−q(E ∪D \ (E ∪ X̂);Z) = H2N−2−q(D \ X̂;Z).

In this, take q = 2N − 2 − p, which satisfies q ≥ N because 0 ≤ p ≤ N − 2, to find that
Ȟ 2N−2−p(X;Z) = Hp(D \ X̂;Z). The former group is Ȟp(bD \X;Z), as was noted at
the outset, so the proof is concluded.

As a consequence of Corollary 2.4.9 there is a further result about the hulls of sets
in the boundary of strongly pseudoconvex domains.

Theorem 2.4.12. If � is a strictly pseudoconvex domain with boundary of class C 2 in
a Stein manifold, and if X is a compact subset of b�, then (b(O(�̄)-hullX)) ∩ � ⊂
O(�̄)-hull bb�X.

The notation bb�X used here is understood to indicate the relative boundary of X with
respect to the manifold b�, so that

bb�X = {x ∈ b� : each neighborhood of x contains points of X and points of b� \X}.
This result was obtained by Basener [46], though he stated it only in the case of

the ball.

Proof. If the theorem is false, there exist a compact subset X of b�, a point x ∈
(b(O(�̄)-hullX)) ∩ �, and a polynomial p with p(x) = 1 and ‖p‖bX ≤ 1

2 . Put Y =
{z ∈ b� : |p(z)| ≤ 3

4 }. If V denotes the component of � \ O(�̄)-hullY that contains the
point x, then V̄ contains a unique component, say U , of b� \ X. The set U is connected
and is a subset of b� \ bb�X, so either U ⊂ X or U ⊂ b� \X. Each of these alternatives
leads to a contradiction.

Suppose first that U ⊂ X. Let z ∈ V , and let Z denote the algebraic variety
p−1(p(z)). The maximum principle implies that if q is a polynomial, then |q(z)| ≤
‖q‖Z∩bV . Because bV ⊂ Ū ∪ {w ∈ � : |p(w)| = 3

4 }, it follows that |q(z)| ≤ ‖q‖Ū .
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Thus, V ⊂ O(�̄)-hull Ū ⊂ O(�)-hullX. The set V is open and x ∈ V , so this contradicts
x ∈ b(O(�̄)-hullX).

Alternatively, U could be contained in b� \ X. Let L = (O(�̄)-hullX) ∩ V̄ . If
m = ‖p‖L, then because x ∈ L, necessarily m > 3

4 . Fix a y ∈ L that satisfies p(y) = m.
Define the set T by T = {z ∈ L : |p(z)| = |p(y)|}. The set T is a subset of the set
(O(�̄)-hullX) ∩ V , because |p| > 3

4 on T , but bV ⊂ Ū ∪ {z ∈ �′ : |p(z)| = 3
4 } and

(O(�̄)-hullX)∩U ⊂ bb�X. We have |p| ≤ 1
2 on the latter set. Thus T is a local peak set

for O(�̄). Consequently, T is a peak set for O(�̄). This is impossible, for T ⊂ V ⊂ �.
The theorem is proved.

Corollary 2.4.13. With � as in the preceding theorem, if {Uj }j=1,... is a sequence of
mutually disjoint open subsets of b�, then

O(�̄)-hull [b� \ ∪j=1,...Uj ] = ∩j=1,...O(�̄)-hull (b� \ Uj).
Proof. There are only countably many of the Uj . It suffices to consider the case in which
there are only finitely many.

Plainly O(�̄)-hull (b� \ ∪j=1,...,nUj ) ⊂ ∩j=1,...,nO(�̄)-hull (b� \ Uj).
For the opposite inclusion, let x ∈ b(∩j=1,...,nO(�̄)-hull (b� \ ∪Uj)

)
. We have

n < ∞, so there is an index j with x ∈ b
(
O(�̄)-hull (b� \ Uj) ∩ �

)
. Thus by the

preceding theorem, x ∈ O(�̄)-hull (bb�(b� \ Uj)). That the sets Uj are disjoint implies
that bb�(b� \Uj) ⊂ b� ∪j=1,...,n Uj , so x ∈ O(�̄)-hull (b� \ ∪j=1,...,nUj ) as claimed.

As a particular example, suppose that� is the unit ball BN , and eachUj is a spherical
cap, i.e., one of the two components of bBN \ �, where � is a real hyperplane in CN

that meets BN . If {Uj }j=1,... is a sequence of mutually disjoint caps in bBN , then the
polynomially convex hull

(∩j B̄N \Uj
)̂

is the intersection of the convex sets (bBN \Uj )̂ .
This implies that if 0 ∈ (∩j B̄N \ Uj

)̂
, then at least one of the caps Uj contains a

hemisphere.

Corollary 2.4.14. With � as in the preceding theorem, if E ⊂ b� is a compact, totally
disconnected set, then for each x ∈ �, there is a compact set Ex ⊂ b� \ E with x ∈
O(�̄)-hullEx.

Proof. The set E is compact and totally disconnected, so for each δ > 0, there is a finite
collectionUδ1 , . . . , U

δ
n of mutually disjoint open subsets of b� each of which has diameter

less than δ and whose union covers the setE. If δ is small enough, then x ∈ O(�̄)-hull (�̄\
Uδj ) for each j , and so, by Corollary 2.4.13, x ∈ O(�̄)-hull (�̄ \ ∪j=1,...,nU

δ
j ).

We have obtained some information about the cohomology, with constant coeffi-
cients, of the complements of polynomially convex sets. It is useful to have information
about the Dolbeault cohomology10 of these domains; via the Dolbeault isomorphism, this
yields information about the corresponding sheaf cohomology with values in the sheaf
of germs of holomorphic functions or holomorphic forms. Rather than the polynomially
convex sets, we will deal with the more general class of Stein compacta:

10Recall that for a complex manifold M , the Dolbeault groupHp,q(M ) is the quotient of the space of ∂̄-closed
(p, q)-forms by the subspace of ∂̄-exact (p, q)-forms.
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Definition 2.4.15. A Stein compactum in a complex manifold M is a compact subsetX of
M such that there is a sequence {Uj }j=1,... of Stein domains in M with X = ∩j=1,...Uj .

Stein compacta have also been called Sδ’s in the literature. Polynomially convex sets
and rationally convex sets are the simplest examples in CN .

Our goal is to obtain an understanding of the Dolbeault cohomology of sets of the
form M \X with M a Stein manifold and X a Stein compactum in M .

In addition to the most familiar Dolbeault cohomology groupsHp,q(M ) for a com-
plex manifold M , there are the groupsHp,qc (M ) of Dolbeault cohomology with compact
support. The group Hp,qc (M ) is the quotient of the space of compactly supported ∂̄-
closed (p, q)-forms modulo the subspace of forms of the form ∂̄β, where β is a smooth
(p, q − 1)-form with compact support. If X is a compact subset of M , there is also the
bounded cohomology group Hp,q� (M \ X), that is, the quotient of the space of smooth
∂̄-closed (p, q)-forms α on M \ X whose support is a relatively compact subset of M
modulo the subspace of forms of the form ∂̄β, where the support of the smooth (p, q−1)-
form β on M \X is a relatively compact subset of M . In the terminology of general sheaf
cohomology, Hp,q� (M \ X) is the Dolbeault cohomology with supports in the family �
of closed subsets of M \ X that have compact closure in M . The family � has these
properties: (1) Each element of � is a closed subset of M \X. (2) Each closed subset of
each element of an element of � is an element of �. (3) � is closed under the formation
of finite unions. (4) Each element of � has a closed neighborhood that belongs to �. The
family� is a paracompactifying family of subsets of M \X in the sense of general sheaf
theory. See [150].

In the next of our results and at certain points in the rest of our work, it will be
necessary to invoke a result that compares the cohomology of a manifold computed with
smooth forms with the cohomology computed with currents. The context is this: Fix
attention on a smooth manifold N . We then have the space of forms E p(N ) and the
space Dp(N ) of currents, the dual space of E n−p(N ) if n is the dimension of N .
Similarly, if M is a complex manifold, we have the space E p,q(M ) of smooth forms
and the corresponding space Dp,q(M ). There are also the space Dp(N ) of compactly
supported p-forms on N , the space Kp(N ) dual to E n−p(N ), the space Dp,q(M )

of compactly supported (p, q)-forms on M and the space Kp,q(M ) of currents with
compact supports, which is dual to the space E N−p,N−q(M ). In each of these settings,
we have inclusions:

E p(N ) ↪→ Dp(N ),

E p,q(M ) ↪→ Dp,q(M ),

Dp(N ) ↪→ Kp(N ),

Dp,q(M ) ↪→ Kp,q(M ).

The fact that is required is this:

Theorem 2.4.16. (Smoothing cohomology) The maps at the cohomology level induced by
the above inclusions are all isomorphisms.
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These results are exercises in abstract sheaf cohomology together with an analogue
of the Poincaré lemma or the Dolbeault lemma for currents. Details are given in [155].

For Stein manifolds there are the following vanishing theorems:

Theorem 2.4.17. If M is an N -dimensional Stein manifold, then

(a) Hp,q(M ) = 0 for all p = 0, 1, . . . and q = 1, 2, . . . , and

(b) Hp,qc (M ) = 0 for all p = 0, 1, . . . and q = 0, 1, . . . , N − 1.

Statement (a) is a consequence of Cartan’sTheorem B and the Dolbeault isomorphism
theorem, or, alternatively, it can be proved directly as in [180]. Statement (b) is a theorem
of Cartan and Schwartz, and is closely related to the Serre duality theorem. See Serre’s
papers [322, 323]. The derivation of (b) from (a) is quite short; the main point is a lemma
from functional analysis:

Lemma 2.4.18.[322] If E
u→ F

v→ G is an exact sequence of locally convex topological
vector spaces and continuous maps, and if the range of v is closed, then the dual sequence

G∗ v∗→ F ∗ u∗→ E∗ is also an exact sequence.

In this statement, E∗, F ∗, and G∗ denote the dual spaces of E, F , and G, and the
maps u∗ and v∗ are the transposed maps.

Proof. It is to be shown that if ϕ ∈ F ∗ satisfies u∗ϕ = 0, then ϕ = v∗ψ , for someψ ∈ G∗.
That u∗ϕ = 0 implies that ϕ induces a continuous linear functional on the quotient space
F/u(E). (Note that u(E) is closed, for it is the kernel of the continuous linear map v.) The
quotient space F/u(E) is isomorphic to the closed subspace v(F ) ofG. Thus, ϕ induces a
continuous linear functional on v(F ). The Hahn–Banach theorem implies that this induced
functional extends to an element, ψ of G∗. It satisfies v∗ψ = ϕ. The lemma is proved.

With this lemma in hand, the derivation of the statement about the vanishing of the
compactly supported Dolbeault cohomology can be given as follows.

Fix a q with 1 ≤ q ≤ N − 1. The Dolbeault group Hp,q(M ) vanishes, because M
is a Stein manifold, so the sequence

E p,q−1 ∂̄→ E p,q(M )
∂̄→ E p,q+1(M )

is exact. Also, the range of ∂̄ : E p,q(M ) → E p,q+1(M ) is closed: It is the kernel of
the continuous map ∂̄ : E p,q+1(M )→ E p,q+2(M ). This implies that the corresponding
sequence of dual spaces

E p,q+1(M )∗ ∂̄∗→ E p,q(M )∗ ∂̄∗→ E p,q−1(M )∗

is exact. The dual of the space E p,q(M ) is the subspace Kp,q of Dp,q that consists of all
compactly supported currents of bidegree (N − p,N − q). It follows that each ∂̄-closed
(N − p,N − q)-current is ∂̄-exact, because the dual of the map

∂̄ : E p,q(M )→ E p,q+1(M )
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is the map
(−1)p+q+1∂̄ : DN−p,N−q−1(M )→ DN−p,N−q(M ).

By the result on smoothing cohomology, Theorem 2.4.16, the inclusion of Dp,q(M )

in Kp,q(M ) induces an isomorphism of cohomology groups with compact supports. This
proves that the cohomology groups Hp,qc (M ) vanish in the range 1 ≤ q ≤ N − 1.
That Hp,0c (M ) = 0 is evident: The only holomorphic form with compact support is the
zero form.

It is also important to apply Lemma 2.4.18 to the sequence

O(M )→ E 0,0(M )
∂̄→ E 0,1(M ).

The lemma implies the isomorphism

(2.9) O(M )∗ = KN,N(M )/∂̄KN,N−1(M ).

Again, the cohomology group KN,N(M )/∂̄KN,N−1(M ) is isomorphic to the Dolbeault
group HN,N−1

c (M ) by the abstract de Rham theorem. The pairing that establishes this
duality is that induced by the pairing of holomorphic functions f on M with compactly
supported (N,N)-forms α given by 〈 f, α〉 = ∫M f α. This argument applies, mutatis
mutandis, to yield that if �p(M ) denotes the space of holomorphic p-forms on M , then
�p(M )∗ is the group HN−p,N

c (M ).

Corollary 2.4.19. A compactly supported (N − p,N)-form α on M is ∂̄β with β a
compactly supported (N−p,N−1)-form if and only if

∫
M f α = 0 for all f ∈ �p(M ).

For complements of Stein compacta in Stein manifolds, there are the following
vanishing results:

Theorem 2.4.20. IfX is a Stein compactum in theN -dimensional Stein manifold M , then

(a) Hp,q(M \X) = 0 for all p ≥ 0 and all q with 1 ≤ q ≤ N − 2.

(b) Hp,qc (M \X) = 0 for all p ≥ 0 and all p with 2 ≤ q ≤ N − 1.

(c) Hp,q� (M \X) = 0 for all p ≥ 0 and all q with 0 ≤ q ≤ N − 2.

(d) If X is O(M )-convex, then Hp,N−1
� (M \X) = 0 for all p ≥ 0.

Information is also available aboutHp,N−1(M \X) andHp,Nc (M \X): With respect
to the natural locally convex topologies on them, these spaces are Hausdorff spaces. We
shall not go into the details of these latter results.

These results are well known; it is not clear what the original sources may be. The
proof below is that in [87]. See also the paper of Rosay and Stout [301]. Lupacciolu [228]
has obtained related sheaf-theoretic results.

In the proof of these vanishing results, we need to use a theorem that is a generalization
to complex manifolds of a theorem of Hartogs in CN . The result was obtained in [322].
Ehrenpreis [109] gave a generalization of the result.
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Theorem 2.4.21. Let M be a complex manifold with Hp,1c (M ) = 0, and let X be a
compact subset of M such that M \X is connected. If α ∈ �p(M \X), then there is an
α̃ ∈ �p(M ) that agrees with α on M \X.

This theorem applies in particular when M is a Stein manifold.
If p = 0 the result is that holomorphic functions extend through the compact set X.

In CN this can be proved using the Bochner–Martinelli integral.

Proof. Let U be a relatively compact neighborhood of X in M , and let λ be a smooth
function on M that is identically one on a neighborhood of M \U and is identically zero on
a neighborhood ofX. Then ∂̄λ∧α, extended by zero throughX, is a compactly supported,
∂̄-closed (p, 1)-form on M . The hypotheses of the theorem provide a compactly supported
(p, 0)-form β with ∂̄β = ∂̄λ ∧ α. If α̃ = λ ∧ α − β, then ∂̄ α̃ = 0, so α̃ ∈ �p(M ), and
α̃ agrees with α near infinity. The set M \ X is connected, which implies that α̃ = α

throughout M \X. The theorem is proved.

We now turn to the proof of Theorem 2.4.20.

Proof. We will use the notation that Z p,q denotes the space of ∂̄-closed (p, q)-forms, and
Z
p,q
c the space of ∂̄-closed (p, q)-forms with compact support. Similarly, in connection

with statements (c) and (d) of the theorem, Z
p,q
� (M \X) is the space of ∂̄-closed (p, q)-

forms on M \X whose supports are relatively compact subsets of M .
By hypothesis, we can writeX = ∩j=1,...Uj , where eachUj is a smoothly bounded,

strictly pseudoconvex domain and Uj+1 is relatively compact in Uj . For all j , let λj ∈
C∞(M ) vanish identically on a neighborhood of M \ Uj and be identically one on a
neighborhood of Ūj+1.

Fix an α ∈ Z p,q(M \X) for a q in the range 1 ≤ q ≤ N − 2.
The form ∂̄λj ∧α extends by 0 throughX to give a ∂̄-closed (p, q)-form on M with

support in Uj . It follows that there is a (p, q − 1)-form βj on M with support in Uj such
that ∂̄βj = ∂̄λj ∧α. Then the form (1− λj )α extends by zero throughX to a (p, q)-form
on all of M . The (p, q)-form βj − (1 − λj )α on M has compact support, so there is a γj
with ∂̄γj = βj − (1 − λj )α, γj with compact support.

Suppose now that q = 1. The form γj − γj+1 is holomorphic on M \ Uj , so
because this set is connected—recall Corollary 2.4.3—there is a form hj on M such that
γj − γj+1 = hj on M \ Uj . We can define a form γ by

γ = γ1 +
∞∑
j=1

(γj+1 − γj )+ hj .

This sum is locally finite, so there is no difficulty about its convergence. On M \ Um
we have

∂̄γ = ∂̄γ1 +
m∑
j=1

(∂̄γj+1 − ∂̄γj ) = ∂̄γm+1 = βm+1 + (1 − λm+1)α = α.

This proves the assertion (a) when q = 1.
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For N ≥ 3 and q > 1, the argument is inductive. We have ∂̄(γj+1 − γj ) = 0 on
M \Uj , so since Ūj is a Stein compactum in M , there is a (p, q−1)-form gj on M \ Ūj
with ∂̄gj = γj+1 − γj . Then (1 − λj−1)gj extends by zero through Uj as a smooth form,
and we have γj+1 − γj = ∂̄((1 − λj−1)gj ) on M \ Uj−1. The form γ defined by

γ = γ1 +
∞∑
j=1

[
γj+1 − γj − ∂̄((1 − λj−1gj )

]
satisfies ∂̄γ = α.

The proof of (c) follows exactly the same lines: If we begin with a ∂̄-closed (p, q)-
form α on M \ X the support of which is a relatively compact subset of M , then our
construction yields a form γ with support a relatively compact subset of M .

For (b), if α ∈ Z p,q(M \ X), 1 < q < N , extend α through X by zero. There is
β ∈ E p,q(M )with compact support that satisfies ∂̄β = α. The form β satisfies ∂̄β = 0 in
Uj for large j . Put β ′ = β− ∂̄(λj γj )with λjγj extended by zero outsideUj . The form β ′
so defined is a smooth form with suppβ ′ a relatively compact subset of M \X. It satisfies
∂̄β ′ = ∂̄β = α, so (b) is proved.

It remains finally to prove (d). Given that X is O(M )-convex, the sets Uj can be
taken to be Runge domains in M . Then the space�(M )|Uj is dense in O(Uj ). The form
∂̄λ∧ α, which is compactly supported in Uj , is orthogonal to�(Uj ), and so is ∂̄βj for an
(N,N − 1)-form βj with compact support in Uj . The argument now continues as before.



Chapter 3

SETS OF FINITE LENGTH

Introduction. This chapter is devoted to a fairly self-contained discussion
of the polynomially convex hull of a connected set of finite length or, more
generally, a set that is contained in a connected set of finite length. One result
that finally emerges in this chapter is that each rectifiable arc in CN is polyno-
mially convex. Much of the chapter is devoted to preliminaries from classical
function theory and from real analysis. Section 3.1 contains a statement of one
of the principal results of the chapter and some remarks about it. Section 3.2
assembles well-known information about one-dimensional analytic varieties.
Section 3.3 contains geometric preliminaries concerning Hausdorff measures,
integration, and sets of finite length. Section 3.4 is devoted to some essential
results on conformal mapping and related issues. Section 3.5 establishes the
subharmonicity of certain functions naturally associated with the polynomi-
ally convex hull of a compact set. Section 3.6 shows that the polynomially
convex hull of a connected set of finite length is a one-dimensional variety.
Section 3.7 shows that this hull has finite area. Section 3.8 applies the preced-
ing theory to the continuation of one-dimensional varieties and, vice versa,
this theory of continuation to the study of hulls.

3.1. Introduction

Simple examples show that some smooth curves in CN are polynomially convex, while
others are not, so two natural questions arise: One would like to characterize the polyno-
mially convex curves, and for those that are not polynomially convex, one would like a
description of the hulls. As the most immediate example, suppose � to be a simple closed
curve in CN that is the boundary of a Riemann surface R embedded as a bounded subset of
CN . If P is a polynomial on CN , then P |R is holomorphic, so by the maximum principle,
R is contained in the polynomially convex hull of �. Does �̂ contain anything other than
R? If we know only that � is not polynomially convex, is the hull a Riemann surface or,
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more generally, an analytic variety?
In this chapter and the next we study the hulls of smooth curves and, more generally,

of sets of finite length and related questions. The theory is not simple but can now be said
to be in nearly definitive form. The present state of the theory is the culmination of a long
development by several mathematicians, a development that has spanned almost half a
century. The centerpiece of the work is the following theorem, which motivates almost
everything in the present chapter.

Theorem 3.1.1. Let Y be a compact polynomially convex subset of CN , and let � be
a subset of CN contained in a compact connected set of finite length such that � ∪ Y is
compact. The polynomially convex hull �̂ ∪ Y has the property that the complementary set
̂(� ∪ Y )\(�∪Y ) either is empty or else is a purely one-dimensional analytic subvariety of

CN \(�∪Y ). If the map Ȟ 1(�∪Y ;Z)→ Ȟ 1(Y ;Z) induced by the inclusion Y ↪→ �∪Y
is an isomorphism, then the algebra P(� ∪ Y ) consists of all the continuous functions f
on � ∪ Y with f |Y ∈ P(Y ).

It may seem unnatural to impose the hypothesis that the set � be contained in a set
of finite length. Examples show, though, that it cannot be entirely abandoned: There are
compact sets E of finite length for which Ê \ E is not a variety. See [15].

Important contributions related to this theorem have been made by Wermer [368],
Bishop [57], Royden [306], Stolzenberg [342], Alexander [6], Björk [62], Gamelin [137],
Aupetit and Wermer [41], and Seničkin [321].

Corollary 3.1.2. A rectifiable arc � in CN is polynomially convex and satisfies P(�) =
C (�).

This apparently simple case of the result is not at all easy to establish, even when the
arc is required to be smooth.

Corollary 3.1.3. If � is a rectifiable simple closed curve in CN , then �̂ \ �, if not empty,
is a purely one-dimensional subvariety of CN \ �.

The corollary raises as many questions as it answers: What can be said about the
varietyV = �̂\�? How many global branches does it have? Does it have finite area? Does
it have finite topological type? Is there some version of Stokes’s theorem in the setting of
the corollary? These are all natural questions; we shall eventually see their answers.

In the context of Theorem 3.1.1, the variety ̂(Y ∪ �) \ (Y ∪ �) need not have finite
area.

Example. Let B be an infinite Blaschke product with the point 1 as the sole limit point of
its zeros. For example,B(z)might be

∏∞
k=2

z−αk
1−αkz with αk = 1− 1

k2 . Let Y be the compact,

polynomially convex subset {(eiϑ , w) ∈ C2 : |ϑ | ≤ π
4 , |w| ≤ 1} of C2. If � denotes the

analytic arc {(eiϑ , B(eiϑ )) : π4 ≤ ϑ ≤ 7π
4 }, then by the theorem, Ŷ ∪ � \ (Y ∪ �) is

a one-dimensional variety. It contains at least the graph {(z, B(z)) ∈ C2 : |z| < 1}. (In
fact, these two sets are equal, but this is not yet evident.) The function B has infinitely
many zeros, so every value in the unit disk U in C outside a set of zero area is assumed
infinitely often. (This is a standard fact about infinite Blaschke products; in fact, the result
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is stronger: Every value outside a set of zero logarithmic capacity is assumed infinitely
often. See [356, p. 324].) Accordingly, the area of the graph of B, which is the value of
the integral

∫
U
(1 + |B ′|2), is infinite.

Similar examples can be based on functions other than Blaschke products. For ex-
ample, let φ : U → U \ {0} be a uniformizing map, chosen to be analytic on bU \ {1}.
Let λ be a short open arc in bU that contains 1. If Y is the compact polynomially convex
subset (λ̄× Ū)∪ ({0} × Ū) of C2 and � is the set {(eiϑ , φ(eiϑ )) : eiϑ ∈ bU \ λ}, then the
polynomially convex hull of Y ∪� contains the graph of φ and so cannot have finite area.
Note that the function φ is zero-free and so is surely not a Blaschke product.

Example. [217] LetB be the infinite Blaschke product considered in the preceding example
with αk = 1 − 1

k2 . Define F by F(z) = 1
16 (1 − z)4B(z), and let V ⊂ U2 be the analytic

variety given by V = {(z1, z2) ∈ U2 : z2
1 = F(z2)}. This is an analytic subvariety of the

unit bidisk, which, by the maximum principle, is contained in the polynomially convex
hull of the set � = {(z1, z2) : |z2| = 1, z2

1 = F(z2)}. The set � consists of two simple
closed curves joined together at single point; topologically it is a figure-eight curve. It is
smooth except at the point (0, 1), the point at which the two curves come together. The
curve � also has finite length.

This is so, for logarithmic differentiation yields

(3.1) (1 − z)4B ′(z) = (1 − z2)

∞∑
k=1

Bk(z)(1 − α2
k )
(1 − z)2
(1 − αkz)2 ,

in which Bk is the Blaschke product given by Bk(z) = B(z)/
z−αk
1−αkz . From 0 < αk < 1

and |z| < 1, we conclude that

|(1 − z)/(1 − αkz)| ≤ 1 +
∞∑
n=1

|αnk − αn+1
k | = 1 + αk < 2.

Consequently, the series (3.1) converges uniformly on the disk, and, because

F ′(z) = 1

4
(1 − z)3B(z)+ 1

16
(1 − z)4B ′(z),

we see that F ′ is continuous on Ū, which implies that � has finite length.
According to Theorem 3.1.1, the polynomially convex hull of� is a one-dimensional

variety that must containV .Again, as we shall recognize later, the set �̂\� is the varietyV .
See Corollary 3.6.2. This variety has a branch point over each zero ofB and so necessarily
has infinite genus; it is not of finite topological type.

3.2. One-Dimensional Varieties

The main effort in this chapter is devoted to finding and determining the properties of
one-dimensional analytic sets in polynomial hulls, so it seems well to begin by recalling
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precisely some facts about these varieties. By now there are many good sources for this
material: [85], [157], [158], [199], [225], [259].

Analytic varieties are defined as follows.

Definition 3.2.1. If � is an open set in CN , then an analytic variety in � (or subvariety
of �) is a closed subset V of � with the property that for each point z ∈ V there is a
neighborhoodWz of z on which there is defined a collection FV,z of holomorphic functions
with the property that V ∩Wz = ∩f∈FV,z

f−1(0).

It is one of the more immediate consequences of the Weierstrass preparation theorem
that by shrinking the neighborhoodWz the family FV,z can be replaced by a finite collection
of functions.

Analytic varieties are also called analytic sets.
If X is an analytic variety in the open set U in CN , then a point z ∈ V is said to be

a regular point if there is a neighborhood Wz of z in the ambient CN such that X ∩W is
a complex submanifold of Wz. The point z is a singular point of V if it is not a regular
point. The set of singular points is closed and is an analytic subset of U . The set of regular
points ofX is denoted byXreg, the set of singular points byXsing.Note that, by definition,
an isolated point of an analytic variety is a regular point.

The notion of analytic set is plainly a local one, so we can speak freely of analytic
subsets of complex manifolds.

An analytic subset X of a complex manifold is one-dimensional if the set Xreg is a
one-dimensional complex manifold together with the set, possibly empty, of the isolated
points of X. The set of singular points of a one-dimensional analytic variety is discrete.

If X is an analytic subvariety of a complex manifold, then O(X) denotes the space
of holomorphic functions on X. By definition, a function f defined on the variety X is
holomorphic if for each x ∈ X, there is a neighborhood Vx of x in the ambient complex
manifold on which there is defined a holomorphic function Fx with Fx |(Vx ∩ X) =
f |(Vx ∩ X). Such a function is necessarily continuous on X and holomorphic on the
complex manifold Xreg. In general, a function g that is continuous on X and holomorphic
on Xreg is not holomorphic on X. It is an important fact, which is not so easy to prove,
that the space O(X) is closed under uniform convergence on compacta in X. That is to
say, if {fj }j=1,... is a sequence in O(X) that converges uniformly on compacta in X to
the (necessarily continuous) function f , then f is holomorphic on X. A proof of this is
given in [158]. The result is originally due to Grauert and Remmert [154]; Bungart and
Rossi [77] gave a simpler proof.

We shall need a rather technical fact about one-dimensional varieties. The setting is
this: Z is a compact subset of CN with polynomially convex hull Ẑ, and π1 : CN → C is
the coordinate projection onto the z1-axis in CN . Let� be a component of π1(Ẑ) \π1(Z),
and let �n be an open subset of � such that � \ �n is a discrete subset of �. For each
z ∈ � the fiber Ẑ ∩ π−1

1 (z) contains at most n points, and for each z ∈ �n this fiber
contains exactly n points.

Lemma 3.2.2. If Vn = Ẑ ∩ π−1
1 (�n) is a one-dimensional complex submanifold of the

open set π−1
1 (�n), then the set V = Ẑ ∩ π−1

1 (�) is a one-dimensional subvariety of
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π−1
1 (�) on which each element of the algebra P(Ẑ) is holomorphic.

Proof. Start with the obvious remark that ifW ′ is an analytic subvariety of an open set U
in CN , and ifW is a closed subset of U that differs fromW ′ by a closed discrete subset of
U , thenW is also a subvariety of U .

By definition, we have to exhibit the set V as a local intersection of the zero loci of
holomorphic functions.

For every function f holomorphic on CN , define F̃f : π−1
1 (�)→ C by

F̃f (z) =
∏

wj∈π−1
1 (π1(z))∩V

{f (z)− f (wj )}.

The function F̃f is holomorphic on π−1
1 (�n), as follows from the theory of symmetric

functions. It is locally bounded at all points of π−1
1 (�), so it extends to be holomorphic

on all of π−1
1 (�). Denote this extended function by Ff . The function Ff plainly vanishes

on the closure in π−1(�) of the set π−1
1 (�n).

If p is a point in π−1
1 (�n) not in Ẑ, then there is a polynomial f with f (p) = 1 and

|f | < 1 on π−1
1 (π1(p)) ∩ Ẑ. For this f , the function Ff does not vanish at p. We have,

therefore, that the variety Ṽ = ∩f∈O(CN)F
−1
f (0) differs from the closure in π−1

1 (�) of the

set Ẑ∩ϕ−1(�n) by at most a discrete subset of π−1
1 (�) contained in the set π−1

1 (�\�n).
Consequently, the set Ẑ ∩ π−1

1 (�) is a variety, as we wished to show.

That the elements of the algebra P(Ẑ) are holomorphic on the variety V is a con-
sequence of the closure of the space O(V ) under local uniform convergence and the fact
that each polynomial on CN is holomorphic on V . The polynomials are dense in P(Ẑ),
so the assertion follows.

3.3. Geometric Preliminaries

This section is devoted to some properties of sets of finite length and to some further
properties of Hausdorff measures that will be essential in the sequel.

To begin we present some results on the structure of continua of finite measure that
were found by Besicovitch [51] in the course of his profound investigations of planar sets
of finite length.

Recall that an arc is a homeomorphic image of the closed interval [0, 1]. An open
arc is a homeomorphic image of the open interval (0, 1).

Definition 3.3.1. A topological space Y is arcwise connected if for every pair of distinct
points of Y there is an arc in Y that contains both of the points.

We shall use the notation that in Rn, B(r) denotes the open ball of radius r centered at the
origin and B(x, r) the open ball of radius r centered at the point x.

Lemma 3.3.2. If the connected subset E of Rn contains points x and y with |x − y| = r ,
then �1(E ∩ B(r)) ≥ r.
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Proof. For fixed x, let χ : Rn → [0,∞) be the map χ(y) = |y − x|. If the connected
subset E of Rn that contains x and y with |x − y| = r satisfies �1(E ∩ B(x, r)) < r ,
then χ omits certain values in the interval [0, r], for χ is a Lipschitz map with Lipschitz
constant 1. Suppose χ to omit the value ro ∈ (0, r). Then there is a decomposition of
E as the union of the two sets E′ and E′′, where E′ is the subset of E consisting of the
points at distance less than ro from x, and E′′ is the set of those points at distance greater
than ro from x. The sets E′ and E′′ are mutually disjoint open and closed subsets of E, in
contradiction to the connectedness of E.

Theorem 3.3.3. [51] A connected subset of Rn of finite length is arcwise connected.

Proof. Let E be a connected subset of Rn that has finite length. The set E is connected,
so if x and y are arbitrary points of E, then for every ε > 0 there is a finite sequence
{xj }j=1,...,m(ε) of points in E with x1 = x, xm(ε) = y and with |xj − xj+1| < 2ε for each
j . This is so, because for fixed x and ε, the set of y’s for which such a sequence exists is
both open and closed in the connected set E.

Let L = �1(E). Fix points a, b ∈ E and fix an η > 0. Let {x′j }j=1,...,m′(η) be a finite
sequence of points of E as just described: x′1 = a, x′

m′(η) = b, and |x′j − x′j+1| < 2η.We
will replace this sequence with a new one obtained by discarding some of the terms x′j in
the following way. Put x1 = x′1 = a. Then x2 is the x′j with largest index j that satisfies
η < |x′j − x1| < 2η. Having constructed x1, . . . , xd , stop if xd = b. If not, let xd+1 be the
x′j with largest index such that η < |x′j − xd | < 2η. We are led finally to a new sequence
{xj }j=1,...,m(η).

From this new sequence, construct the polygonal pathP that consists of the segments
[xj , xj+1], j = 1, . . . , m(η). This path P has all of its vertices in the set E. Also, it is an
arc. Otherwise, two of its segments, say [xp, xp+1] and [xq, xq+1], would have to intersect
at a point interior to both of these segments. The existence of such an intersection would
contradict the construction of the points xj . Thus, P is an arc. Moreover, the length of P
does not exceed 4L. This is so, for by Lemma 3.3.2,�1(E ∩B(xj , η/2)) ≥ η/2. If L(P )
denotes the length of the arc P , then L(P ) ≤ 2ηm(η). The balls B(xj , η/2) are mutually
disjoint, so �1(E) > 1

2m(η)η, and we have L(P ) ≤ 4L as desired.
We perform this construction for a sequence of η’s that decreases to zero, say for

η = 1/n, n = 1, 2, . . . . Let the associated polygonal arcs be Pn. The arcs Pn have
uniformly bounded lengths; let λn be the length of Pn. By passing to a subsequence if
necessary, we can suppose that λn → λo.

For each n = 1, . . . , let ψn : [0, 1] → Rn be the mapping given by ψ(t) =
ψ̃(tλn), where ψ̃ : [0, λn] → Rn is the parameterization of Pn by arc length fixed so
that ψn(0) = a. The functions ψ̃n satisfy |ψ̃n(t) − ψ̃(t ′)| ≤ |t − t ′|, so ψn satisfies
|ψn(t) − ψn(t ′)| ≤ λn|t − t ′| ≤ 4L|t − t ′|. The Arzelà–Ascoli theorem implies that a
subsequence of {ψn}n=1,... converges uniformly on [0, 1], say to ψ . The function ψ is
continuous, and its range is a subset of E. Moreover, ψ(0) = a, and ψ(1) = b.

To complete the proof, we have to show how to construct from ψ a homeomorphism
from [0, 1] into E that connects a and b. To do this, construct inductively a sequence
{Ij }j=1,... of closed subintervals of [0, 1] as follows. The interval I1 is one of the longest
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closed subintervals of [0, 1] with the property that ψ identifies the endpoints of I1. Let
I2 be one of the longest closed intervals contained in the complement [0, 1] \ I1 with the
property that ψ identifies the endpoints of I2. Continue this process. Either it terminates
at some step because the complementary set contains no closed interval with endpoints
identified by ψ or else it generates an infinite sequence {Ij }j=1,... of mutually disjoint
closed intervals the endpoints of each of which are identified by the map ψ . Let J be the
space obtained from [0, 1] by collapsing each of the intervals Ij to a point. The space J
with the quotient topology is homeomorphic to [0, 1]. We can define a map ψ̃ : J → E by
requiring that the value of ψ̃ at any point of J that corresponds to one of the intervals Ij
be the common value assumed by ψ at the endpoints of Ij . At points of J corresponding
to points of [0, 1] not in one of the intervals Ij , ψ̃ takes the value assumed there byψ . The
map constructed in this way is continuous and injective; it is an arc in E that connects a
and b.

Theorem 3.3.4. If λ is an arc in Rn, then the length of λ is the same as its one-dimensional
Hausdorff measure.

By the length of λ, to be denoted by �(λ), we understand the usual supremum of the lengths
of inscribed polygonal paths.

Proof. If λ is rectifiable, let ψ : [0, �(λ)] → λ be a parameterization of λ by arc length.
The mappingψ satisfies |ψ(s)−ψ(s′)| ≤ |s− s′| for all s, s′ ∈ [0, �(λ)]:ψ is a Lipschitz
map with Lipschitz constant one. Thus, ψ does not increase one-dimensional Hausdorff
measure. Because �1([0, �(λ)]) = �(λ), we reach �1(λ) ≤ �(λ).

For the reverse inequality, let the endpoints ofλ be a and b. Let a = p1, p2, . . . , pn =
b be a partition of λ such that the points pj all lie on λ and for each j , pj is between pj−1
and pj+1. Denote by λj the subarc of λ with endpoints pj and pj+1. By Lemma 3.3.2,

n−1∑
j=1

|pj+1 − pj | ≤
n−1∑
j=1

�1(λj ) = �1(λ),

which implies that �(λ) ≤ �1(λ). The theorem is proved.

Theorem 3.3.5.[51] IfE is a connected set of finite length in Rn, thenE = F ∪∪j=1,...λj ,
where the λj are mutually disjoint open rectifiable arcs and the set F has length zero and
where each point of F is in the closure of the set ∪j=1,...λj .

Proof. For a subset S of E and a point y ∈ E, denote by δS(y) the infimum of the lengths
of the arcs in E that connect y to a point of S.

To prove the theorem, construct a sequence {λj }j=1... of arcs in E as follows. Let
λ1 be any fixed arc in E. To construct λ2, choose a point y2 ∈ E such that δλ1(y2) >
3
4 supz∈Eδλ1(z). Let λ2 be an arc in E that connects y2 to a point in the arc λ1. The arc
λ2 is to have only one point in common with λ1, that point an endpoint of λ2. Next, let
y3 be a point in E such that δλ1∪λ2(y3) >

3
4 supz∈Eδλ1∪λ2(z). Let λ3 be an arc in E that

connects the point y3 to the set λ1 ∪ λ2. The arc λ3 is to have only one point, an endpoint,
in common with λ2 ∪ λ2. We repeat this process. If it stops in a finite number of steps, we
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are done. If not, then because the interiors of the arcs λj are disjoint and�1(E) <∞, we
see that �1(λj )→ 0 as j → ∞.

It is to be shown now that the set F = E \ ∪j=1,...λj is a set of zero length. Set
Eo = ∪j=1,...λj .

The construction of the λ’s implies that F ⊂ Ēo \ Eo.
Define �n and γn by �n = λ1 ∪ · · · ∪ λn and γn = λn+1 ∪ λn+2 ∪ · · · . Then

�1(γn)→ 0 as n→ ∞, and limn→∞�1(�n) ≤ �1(E).
Fix an n. Let x1 be a point of Ēo \Eo at maximal distance from �n, and let d1 be this

distance. Let x2 be a point of Ēo \ (Eo ∪ B(x1, 2d1)) at maximal distance, d2, from �n.
Proceeding inductively, let xk+1 be a point of Ēo \ (Eo ∪ B(x1, 2d1) ∪ · · · ∪ B(xk, 2dk))
at maximal distance, dk+1, from �n. The balls B(xk, 2dk) cover Ēo \ Eo, and the balls
B(xk, dk) are mutually disjoint and are disjoint from �n. For each k,�1(γn∩B(xk, dk)) ≥
dk , as follows from Lemma 3.3.2. Thus

∑
j dj ≤ �1(γn). As n→ ∞, �1(γn)→ 0, so

because for every n, Ē \ E ⊂ ∪k=1,...B(xk, 2dk), we find that �1(Ēo \ Eo) = 0. The
theorem is proved.

We shall often need the following inequality, which is called Eilenberg’s inequality.

Theorem 3.3.6. If X is a metric space and f : X → R is a Lipschitz map with Lipschitz
constant K , then for α ≥ 0,∫ ∗

R

�α(f−1(t)) dt ≤ K�α+1(X).

The integral is the upper integral; in fact, t �→ �α(f−1(t)) is measurable, so that this
upper integral is simply the usual integral, but we shall not enter into the proof of this.

This theorem is due to Eilenberg [110]. See also the paper by Eilenberg and Har-
rold [111].

Proof. Fix a doubly indexed family {En,j }n,j=1,... of subsets of X such that for each n,
X = ∪j=1,...En,j , such that for all n and j , the diameter, diam En,j , of En,j is less than
1/n, and such that

lim
n→∞ γα+1

∑
j=1,...

(diam En,j )
α+1 = �α+1(X).

(Recall the definition of the Hausdorff measures given in Definition 1.6.1.) ByχS we denote
the characteristic function of the set S ⊂ R. The function χf (En,j ) is a Borel measurable
function. Define ψ by

ψ(t) = lim inf
n→∞

∑
j=1,...

(diamEn,j )
αχf (En,j )

(t).

This also is a measurable function.
By the definition of �α ,

�α(f−1(t)) ≤ lim inf
n→∞ γα

∑
j=1,...

(
diam (En,j ∩ f−1(t))

)α
.
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We have
(
diam (En,j ∩ f−1(t)

)
)α ≤ (diamEn,j )αχf (En,j )(t), so by Fatou’s lemma,∫

R

ψ(t) dt ≤ lim inf
n→∞ γα

∑
j=1,...

(diamEn,j )
α

∫
R

χf (En,j )
(t) dt.

Now
∫
R
χf (En,j )

(t) dt is the measure of the set f (En,j ), which is not more than
diam f (En,j ). Thus ∫

R

ψ(t) dt ≤ (γα/γα+1)K�
α+1(X).

The result now follows from the following lemma:

Lemma 3.3.7. For p ≥ 0, γp ≤ γp+1.

Proof. We have that γp = 2p�( p2 +1)
πp/2

, so γp/γp+1 =
√
π

2
�(
p
2 +1)

�(
p
2 + 3

2 )
. Now apply the formula

∫ π/2
0

cosm−1 t sinn−1 t dt = 1

2

�(m2 )�(
n
2 )

�(m2 + n
2 )

with m = p + 2 and n = 1. (The quantity on the right side of the preceding equation
is the beta function B(m2 ,

n
2 ).) The evaluation of the integral on the left is a problem in

elementary calculus when m and n are integers. For real values of these parameters, the
evaluation is more involved and can be found in [375, p. 256]. We find that for p ≥ 0,
γp/γp+1 = ∫ π/20 cosp+1 t dt . The integral is a decreasing function of p, and for p = 0,
its value is one. Thus, γp/γp+1 ≤ 1 as desired.

Often the applications we make of Theorem 3.3.6 will occur when α = 0. The
0-dimensional measure of a set is simply the number of points in the set.

A much more general theorem, with correspondingly elaborate proof, is available:

Theorem 3.3.8. If X and Y are metric spaces and if f : X → Y is a Lipschitz map, then
for A ⊂ X and for 0 ≤ k <∞ and 0 ≤ m <∞,∫ ∗

Y

�k(A ∩ f−1(y)) d�m(y) ≤ C(m, k)(Lip(f ))m�k+m(A).

The constant C(m, k) is explicitly given and depends only on m and k. Lip(f )
denotes the Lipschitz constant of f . In [115, p. 188], this result is stated with additional
hypotheses on X or on Y . These hypotheses were subsequently shown to be unnecessary
in the paper [94].

In the sequel we will need to have estimates for the size of the set of k-planes that
have certain properties. It is to this kind of estimate that we now turn.

Denote by GN,k = GN,k(C) the Grassmannian of k-dimensional complex linear
subspaces of CN for k = 0, 1, . . . , N . Thus, GN,1 is the projective space PN−1(C). In a
natural way these Grassmannians have the structure of compact complex manifolds; they
can be realized as complex submanifolds of complex projective spaces of sufficiently high
dimension. For details in this direction one can consult [155].
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For us it is important to consider the Grassmannians as homogeneous spaces of the
unitary group. For each k there is a natural action of the unitary group U(N) on GN,k
defined by the condition that for g ∈ U(N) and L ∈ GN,k , gL is the k-plane g(L) ob-
tained by moving L with the transformation g. Using this action, we can define a map
π : U(N) → GN,k . Let Lo ∈ GN,k be the copy of Ck contained in CN that is de-
fined by the vanishing of the coordinate functions zk+1, . . . , zN . The map π is defined by
πg = gLo. The stability group of Lo is, by definition, the subgroup U(N;Lo) of U(N)
consisting of all the g ∈ U(N) that carryLo to itself. If we identifyU(N)with the space of
N × N complex matrices u = (ajk)j,k=1,...,N such that u−1 = ūT , then the element

u ∈ U(N) carries Lo to itself when and only when it is of the block form
[
u′ 0
0 u′′
]

with u′ ∈ U(k) and u′′ ∈ U(N − k). Thus, if we identify U(k) with the subgroup of
U(N) consisting of the matrices of the form

[
u′ 0
0 I

]
and U(N − k) with the subgroup

of U(N) consisting of the matrices of the form
[
I 0
0 u′′
]

with u′ and u′′ as above,
then we have an identification of GN,k with the space of cosetsU(N)/(U(k)⊕U(N−k)).

Denote by µ the Haar measure on U(N) normalized so that U(N) has total measure
one. Thus,µ is the unique regular Borel measure onU(N) that is invariant under translation
by elements of the group and that satisfies µ(U(N)) = 1. The group of N × N unitary
matrices is a submanifold of CN×N of (real) dimensionN2. The restriction toU(N) of the
N2-dimensional Hausdorff measure on CN×N induced by the Euclidean metric agrees, to
within a constant factor, with the Haar measure µ on U(N). The problem of determining
the constant is precisely the problem of determining �N

2
(U(N)). This can be done; see

[317]. We shall not require the result.

The measure µ on U(N) enables us to construct a measure νk on GN,k by the
condition that for a Borel set E in GN,k , νk(E) = µ(π−1(E)). The measure νk has the
property of being invariant under the action of U(N) on GN,k . The measure νk also has
total mass one.

With the natural measure νk on GN,k , we can discuss the measure of sets of k-planes
that have various geometric properties. This kind of problem is genuinely interesting; we
refer the reader to the encyclopedia volume of Santalò [317] for a systematic treatment of
this and related topics. Our needs are modest; we start with the following estimate.

Lemma 3.3.9. There are constants c(N, k) such that the measure (with respect to νk) of
the set of k-planes in GN,k that meet the ball BN(z, r) centered at z ∈ CN and of radius

r is bounded by c(N, k)
(
r
|z|
)2(N−k)

.

Proof. For z ∈ CN and r > 0 our problem is to estimate the quantity νk(I (z, r)),
where I (z, r) = {L ∈ GN,k : L ∩ BN(z, r) �= ∅}. This is the same as estimating
µ(Ĩ (z, r)), where Ĩ (z, r) = {g ∈ U(N) : gLo ∩ BN(z, r) �= ∅}. Without loss of
generality, z = c = (c, 0, . . . , 0) with c > 0. The k-plane g(Lo) meets BN(c, r) if and
only if dist(g(Lo), c) < r , which is the same as the condition that dist(Lo, g−1(c)) < r . Let
{e1, . . . , eN } be the usual orthonormal basis for CN so that {e1, . . . , ek} is an orthonormal
basis for Lo, and {ek+1, . . . , eN } is an orthonormal basis for the orthogonal complement
L⊥
o of Lo. If g is identified with the unitary matrix (aj,k)1≤j,k≤N , then g−1 is identified
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with the matrix (āk,j )1≤j,k≤N . Thus, with 〈 , 〉 the Hermitian inner product on CN ,

dist(g−1(c), Lo) =
( N∑
s=k+1

|〈 g−1(c), es〉|2
)1/2

=
( N∑
s=k+1

c2|a1,s |2
)1/2

.

We have therefore to estimate the Haar measure of the setE(c, r) of unitary matrices
(aj,k)1≤j,k≤N with

∑N
s=k+1 |a1,s |2 <

(
r
c

)2
. The set E(c, r) is open and so is measurable.

For the estimate, introduce the map η : U(N)→ bBN defined by

η((aj,k)1≤j,k≤N) = (a1,1, . . . , a1,N ).

Under η, the set E(c, r) is carried onto the set

S(c, r) =
{
ζ ∈ bBN : |ζk+1|2 + · · · + |ζN |2 <

( r
c

)2
}
.

The set S(c, r) is the r
c
-neighborhood of the sphere

S2k−1 = {ζ ∈ bBN : ζk+1 = · · · = ζN = 0}.
One can compute the volume of this neighborhood explicitly. However, because S(c, r) is
the product of S2k−1 and a 2(N − k)-dimensional ball of radius less than 2( r

c
), the volume

of S(c, r) is bounded by const( r
c
)2(N−k) with the constant depending only on N and k. It

now follows that µ(Ĩ (c, r)) < const( r
c
)2(N−k), and the lemma is proved.

It is possible to determine precisely the measure of the set of k-planes in CN that
meet a given ball; it is a polynomial of degree N − k in

(
r
|z|
)2 if r is the radius of the ball

and z the center. This determination is a rather involved calculation with invariant forms
on U(N) and a fibration process together with Fubini’s theorem. It can be found in the
paper [349].

The following theorem was obtained by Shiffman [326]. See also [342] and [60].

Theorem 3.3.10. There exist constants kN, N = 2, . . . , such that for every set E ⊂
CN \ BN , ∫ ∗

GN,N−k
�α(E ∩ L) dνN−k(L) ≤ kN�2k+α(E)

for α ≥ 0 and for 0 < k < N .

Again, the integral is the upper integral, as it must be since we permit the set E to
be arbitrary.

Proof. As a preliminary, notice that for each set S ⊂ CN \ BN ,∫ ∗

GN,N−k
(diam (S ∩ L))α dνN−k(L) ≤ aN(diam S)2k+α
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for a suitable constant aN . This is so, for∫ ∗

GN,N−k
(diam (S ∩ L))α dνN−k(L) ≤ (diam S)ανN−k({L ∈ GN,N−k : L ∩ S �= ∅}).

The set S is contained in a ball of diameter twice the diameter of S, so the estimate in the
preceding lemma yields∫ ∗

GN,N−k
(diam (S ∩ L)α dνN−k(L) ≤ aNdiam Sα(diam S)2k = aN(diam S)2k+α.

Now to prove the lemma, use the set functions �pε defined by

�pε (S) = inf

{
γp
∑
j=1,...

(diam Sj )
p : S ⊂ ∪j=1,...Sj , diam Sj < ε

}
,

so that �p(S) = limε→0+ �
p
ε (S) = sup�pε (S).

Consider a covering of the setE of the lemma by subsets Sj of CN \BN of diameter
not more than ε such that

γ2k+α
∑
j=1,...

(diam Sj )
2k+α ≤ �2k+α

ε (E)+ ε.

We have, for suitable constants k′N and kN , that∫ ∗

GN,N−k
�αε (E ∩ L) dνN−k(L) ≤

∑
j

∫ ∗

GN,N−k
(diam (Sj ∩ L))α dνN−k

≤
∑
j

(diam Sj )
ανN−k({L ∈ GN,N−k : L ∩ Sj ) �= ∅}

≤ k′N
∑
j

(diam Sj )
2k+α

≤ kN�2k+α(E)+ ε.

These inequalities are correct for every choice of ε, so the theorem is proved.

3.4. Function-Theoretic Preliminaries

In this section we assemble in a rather summary way certain function-theoretic results that
are needed in the development below.

To begin with, we collect some results from Hp-theory. The definition is this.
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Definition 3.4.1. The function f holomorphic on the unit disk U belongs to the pth Hardy
space on the disk, f ∈ Hp(U), 0 < p <∞, if the quantity

‖f ‖p = lim
r→1−

{∫ π
−π

|f (reiϑ )|p dϑ
}1/p

is finite.

By definition, H∞(U) is the space of all bounded holomorphic functions on U.
In the range 1 ≤ p < ∞, the functional ‖ · ‖p is a norm on Hp(U) with respect to

which this space is a Banach space. The norm on H∞(U) is ‖f ‖∞ = supz∈U|f (z)|; with
respect to this norm, H∞(U) is a commutative Banach algebra.

For the elementary parts of the theory of these Hardy spaces one can consult [311].
More extensive treatments are given in [140], [151], and [178].

We shall frequently need the result that for f ∈ Hp(U), 0 < p ≤ ∞, the radial
and nontangential limits limr→1− f (re

iϑ ) = f ∗(eiϑ ) exist for almost all ϑ . Moreover,
for 0 < p <∞, if fr is defined by fr(eiϑ ) = f (reiϑ ), then the functions fr converge, as
r → 1−, in the Lp sense to the function f ∗.

For a function f ∈ Hp(U), the boundary function f ∗ is logarithmically integrable,
as follows from Jensen’s inequality

log|f (0)| ≤
∫ π
−π

log|f ∗(eiϑ )| dϑ.

Thus for an f ∈ Hp(U), 0 < p ≤ ∞, f not identically zero, the boundary function
f ∗ vanishes only on a set of measure zero.

In discussing conformal maps we shall frequently encounter holomorphic functions
with derivative in H 1(U).

Theorem 3.4.2. [291] If f ∈ O(U) and f ′ ∈ H 1(U), then f extends continuously to Ū,
and f |bU is absolutely continuous and of bounded variation. The total variation, var bUf ,
of f around the boundary of the disk is given by

var bUf =
∫ π
−π

|f ′(eiϑ )| dϑ.

Proof. The function f ′ belongs to H 1(U), so the radial limits f ′(eiϑ ) exist for almost all
ϑ ∈ R. Fix a ϑo for which this limit exists. For r ∈ (0, 1),

f (reiϑ ) = f (reiϑo)+ ir
∫ ϑ
ϑo

eisf ′(reis) ds,

so for r, r ′ ∈ (0, 1) we have

|f (reiϑ )− f (r ′eiϑ )| ≤ |f (reiϑo)− f (r ′eiϑo)| +
∣∣∣∣ir ∫ ϑ

ϑo

eis
[
f ′(reis)− f ′(r ′eis)

]
ds

∣∣∣∣
≤ |f (reiϑo)− f (r ′eiϑo)| + r

∫ π
−π

|f ′(reis)− f ′(r ′eis)| ds.
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From this we find that |f (reiϑ )− f (r ′eiϑ )| → 0 uniformly in ϑ as r, r ′ → 1−. Thus, f
extends continuously to the closure of U. Moreover,

(3.2) f (eiϑ ) = f (eiϑo)+ i
∫ ϑ
ϑo

f ′(eis) ds,

which implies that f |bU is absolutely continuous and of bounded variation.
To verify the formula for the variation of f on bU, begin by recalling that

var bUf = sup
n−1∑
j=0

|f (eiϑj+1)− f (eiϑj )|,

in which the supremum is extended over all n = 1, . . . and over all choices of ϑj with
0 = ϑ0 < · · · < ϑn = 2π .

Fix ε > 0. For n = 1, . . . , there are positive numbers rn that increase to 1 and
numbers zn,k , k = 1, . . . , K(n), with |zn,k| = rn and with the property that for fixed
n, the numbers zn,k are distributed cyclically around the circle |z| = rn. We require,
moreover, that

var bUf ≥
K(n)−1∑
k=1

∣∣∣∣f (zn,k+1

rn

)
− f
(
zn,k

rn

)∣∣∣∣ > var bUf − ε,

that, with Ln the length of the curve f ({|z| = rn}),

Ln ≥
K(n)−1∑
k=1

|f (zn,k+1)− f (zn,k)| > Ln − ε,

and that∣∣∣∣∣∣
K(n)−1∑
k=1

|f (zn,k+1)− f (zn,k)| −
K(n)−1∑
k=1

∣∣∣∣f (zn,k+1

rn

)
− f
(
zn,k

rn

)∣∣∣∣
∣∣∣∣∣∣ < ε.

With these choices, we find that var Uf ≥ Ln − 3ε, i.e., that

var bUf ≥
∫ π
−π

|f ′(rneiϑ )| dϑ − 3ε.

Let n→ ∞ and then ε→ 0+ to find that

var bUf ≥
∫ π
−π

|f ′(eiϑ )| dϑ.

The reverse inequality is simpler:

n−1∑
j=1

|f (eiϑj+1)− f (eiϑj )| ≤
∫ π
−π

|f ′(eiϑ )| dϑ,
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whence

var bUf ≤
∫ π
−π

|f ′(eiϑ )| dϑ.
Consequently, the two quantities are equal.

Corollary 3.4.3. With the notation of the preceding theorem, d
dϑ
f (eiϑ ) = ieiϑf ′(eiϑ ).

Proof. Differentiate both sides of the equality (3.2).

This corollary implies that d
dϑ
f (eiϑ ) vanishes at most on a set of measure zero.

For absolutely continuous functions and functions of bounded variation, one can
consult [311].

A further result in the direction of Theorem 3.4.2 is this:

Theorem 3.4.4. [282] If f is holomorphic on U and f ′ ∈ H 1(U), then for E ⊂ bU,
�1(E) = 0 if and only if �1(f (E)) = 0.

Proof. By the preceding theorem, f is absolutely continuous on bU, so�1(E) = 0 implies
�1(f (E)) = 0.

The proof in the opposite direction runs as follows. First, by regularity, it is enough to
deal with setsE that are compact. We have that for almost all ϑ , ieiϑf ′(eiϑ ) = d

dϑ
f (eiϑ ),

so if f = u + iv, then both u and v are absolutely continuous, and we can suppose that
the quantity

d

dϑ
u(eiϑ ) = −�(eiϑf ′(eiϑ ))

is not zero at any point of E. (If this cannot be achieved with the initially given f , replace
f by if .) Let F = {ϑ ∈ [0, 2π ] : eiϑ ∈ E}, a compact set. Denote the characteristic
function of F by χF . The functions |u′| and |χFu′| are both integrable over [0, 2π ], so
almost every point of [0, 2π ] is a Lebesgue point for each of them: For almost every ϑ ,

lim
t→0

1

t

∫ ϑ+t
ϑ

|u′(t)| dt = |u′(ϑ)|,

and

lim
t→0

1

t

∫ ϑ+t
ϑ

|χF (t)u′(t)| dt = |χF (ϑ)u′(ϑ)|.
Fix a ϑo ∈ F with u′(eiϑo) �= 0. Then

lim
t→0+

1

t

∫
(ϑo,ϑo+t)\F

|u′(t)| dt = lim
t→0+

1

t

∫ ϑo+t
ϑo

|u′(t)|(1 − χF (t)) dt = 0.

The set (ϑo, ϑo+ t)\F is a disjoint union of open intervals, so the last equations imply that

�1(u((ϑo, ϑo + t) \ F)) = o(t) when t → 0+.

Also, the function u is continuous and satisfies u(ϑo + t)− u(ϑo) = u′(ϑo)+ o(t), so the
interval u((ϑo, ϑo + t)) is of length t |u′(ϑo)| + o(t). Consequently, for small positive t ,

�1(u((ϑo, ϑo + t) ∩ F)) ≥ �1(u((ϑo, ϑo + t))−�1(u((ϑo, ϑo + t) \ F))
> t |u′(ϑo)| − o(t).
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We have therefore that

�1(f (E)) ≥ �1(�f (E)) = �1(u(F )) > 0.

The theorem is proved.

From conformal mapping theory we shall need to use the Riemann mapping theorem
and certain of its extensions. According to this theorem, a simply connected domain in the
plane with nonempty boundary (with respect to the plane) is biholomorphically equivalent
to the open unit disk.ARiemann mapχ : U → D is uniquely determined by the valueχ(0)
and the value of Argχ ′(0). When the domain in question is bounded by a simple closed
curve, there is an extension of the conformal map to the boundary due to Carathéodory.

Theorem 3.4.5. IfD is a bounded simply connected domain in C with bD a simple closed
curve, and if χ : U → D is a conformal mapping as provided by the Riemann mapping
theorem, then χ extends to a homeomorphism from Ū to D̄.

For planar domains there are various elementary characterizations of simple connec-
tivity. The definition of simple connectivity is that the fundamental group vanishes. For a
domain D in C, this is equivalent to the condition that the complement of D in the Rie-
mann sphere be connected. Alternatively, the condition is equivalent to the condition that
each zero-free continuous (or holomorphic) function have a continuous (or holomorphic)
square root on D, which, in turn, is equivalent to the condition that each such function
have a continuous (or holomorphic) logarithm on D. These various elementary notions
of simple connectivity are discussed in detail in several modern books on the theory of
functions of a complex variable. See, e.g., [311]. For a thoroughgoing discussion from the
point of view of set-theoretic topology, see Newman’s book [263].

A general principle is that the smoother the boundary of the domain D in Theo-
rem 3.4.2, the smoother the boundary values of the Riemann mapping function χ . This
is not a subject we shall pursue in detail, but we do need information about the case of
rectifiable boundaries. The classical result in this case is due to F. and M. Riesz [292].

Theorem 3.4.6. IfD is a bounded simply connected domain in C and if bD is a rectifiable
simple closed curve, then the derivative of a Riemann mapping function χ : U → D is in
the Hardy space H 1(U).

Proof. The proof of this is quite short.

For n = 1, 2, . . . , let ηn = ei 2π
n .

According to Carathéodory’s extension of the Riemann mapping theorem, the func-
tion f extends continuously to Ū. Define Fn : Ū → R by

Fn(z) =
n∑
j=1

|f (zηj−1
n )− f (zηjn)|.

As a sum of subharmonic functions on U, the function Fn attains its maximum on the
boundary of the disk: There is zn,o ∈ bU with Fn(z) ≤ F(zn,o) for all z ∈ bU. The value
F(zn,o) is the length of a polygon inscribed in the rectifiable simple closed curve bD; it
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does not exceed the length, �(bD), of bD. Thus, uniformly in n and z, Fn(z) ≤ �(bD).
In particular, for r ∈ (0, 1), Fn(r) ≤ �(bD). For fixed r , Fn(r) is the length of a polygon
inscribed in the simple closed curve {f (reϑ) : ϑ ∈ R}, whose length is

∫ π
π

|f ′(reiϑ )| dϑ .
Because

lim
r→1−

Fn(r) =
∫ π
−π

|f ′(reiϑ )| dϑ,

the derivative f ′ is in the Hardy space H 1(U) as claimed.

It is useful to notice that the proof just given yields another result:

Corollary 3.4.7. If f is holomorphic on the unit disk and continuous on its boundary, and
if f has bounded variation on the boundary of the disk, then f ′ ∈ H 1(U).

Another result on conformal mappings, which is a natural extension of the last the-
orem, is the following. See [282].

Theorem 3.4.8. Let D be a bounded simply connected domain in the plane, and let χ :
U → D be a Riemann map. The derivative χ ′ is in H 1(U) if and only if the boundary of
D has finite one-dimensional Hausdorff measure.

Proof. If f ′ ∈ H 1(U), then by Theorem 3.4.2 the function extends continuously to bU
and is absolutely continuous and of bounded variation, which implies that bD has finite
length.

The converse depends on the Riesz theorem above, Theorem 3.4.6. Assume that bD
has finite length. Suppose, as we may with no loss of generality, that 0 ∈ D, that f (0) = 0,
and that f ′(0) > 0.

LetK be a positive number greater than four times the length of bD. For n = 1, . . . ,
let �n,1, . . . , �n,ν(n) be finitely many disks of radius not more than 1/n whose union,
call it �(n), covers bD. Require also that the sum of the radii of �n,j , for fixed n, be
not more than K . This is possible by the definition of the one-dimensional Hausdorff
measure and the relation between Hausdorff measure and spherical measure. (Recall the
remarks in Section 1.6.) The domainD is simply connected and bounded, so its boundary
is connected. We can, therefore, assume �(n) to be connected, which implies that each
bounded component of its complement is simply connected. Let Dn be the component of
D \�(n) that contains the origin. The�n,j ’s can be chosen small enough that for each n,
Dn is a relatively compact subset of Dn+1.

The boundary of the domain Dn consists of the union of a finite number of circular
arcs. We modifyDn to obtain a new domainD′

n ⊂ Dn as follows. For each n, let the finitely
many points inbDn at which two or more circular arcs meet be denoted byvn,1, . . . , vn,µ(n).
For each j = 1, . . . , µ(n), let Wk be a small closed disk centered at vn,j , and let D′

n =
Dn \ ∪j=1,...,µ(n)Wj . The W ’s are to be very small; in particular, W ’s corresponding to
different subscripts are to be disjoint. The domainD′

n is a subdomain ofDn. If at each stage
theW ’s are small enough, thenD′

n is a relatively compact subdomain ofD′
n+1. Moreover,

its boundary is a simple closed curve that is the union of finitely many circular arcs. Its
length is less than K , provided we make theW ’s small enough.

For each n let gn be the conformal map from U toD′
n with gn(0) = 0 and g′n(0) > 0.

The gn’s constitute a normal family; suppose gn → g uniformly on compacta in U. Then
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g(0) = 0 and g′(0) ≥ 0. The function g maps U onto D. This is so, for if E is a compact
subset of D, then for r ∈ (0, 1) sufficiently large, E ⊂ gn(rU) for all sufficiently large n.
Thus, the image g(rbU) of the circle rbU surrounds E, whence g(U) ⊃ E. Not only is g
surjective, it is injective: If g(z) = g(z′) for distinct points z, z′ ∈ U, then for sufficiently
large values of n there will be points wn near z and w′

n near z′ with gn(wn) = gn(w
′
n),

contradicting the injectivity of gn.
The function g is therefore the conformal map f .
For r ∈ (0, 1) let �n(r) be the length of the curve gn(rbU):

�n(r) = r
∫ π
−π

|g′n(reiϑ )| dϑ.

For fixed n, the quantity �n(r) increases with r to �n(1), which is the length of bD′
n.

Therefore for all n and all r , �n(r) < K. On the other hand, for fixed r we have

lim
n→∞ �n(r) = lim

n→∞ r
∫ π
−π

|g′n(reiϑ )| dϑ →
∫ π
−π

|f ′(reiϑ )| dϑ.

Thus f ′ ∈ H 1(U), as we wished to show.

We shall need below the notion of sets of uniqueness for subharmonic functions:

Definition 3.4.9. LetD be a domain in the plane. The subsetE of D̄ is a set of uniqueness
for subharmonic functions on D if the function identically −∞ is the only subharmonic
function u on D such that limz→e, z∈D u(z) = −∞ for every e ∈ E.

Lemma 3.4.10. If E ⊂ D̄ is a set of uniqueness for subharmonic functions on D and if
E = ∪j=1,...Ej , then one of the sets Ej is a set of uniqueness for subharmonic functions
on D.

Proof. If not, then for each j = 1, . . . there is a subharmonic function ũj on D such
that limz→e ũj (z) = −∞ for each e ∈ Ej . Define uj to be max{ũj , 0}, which is also a
subharmonic function. If u =∑j=1,... cj uj for a sufficiently rapidly decreasing sequence
{cj }j=1,... of positive numbers, then u is subharmonic on D and has limit −∞ at each
point of E, contradicting the assumption that E is a set of uniqueness.

The next lemma provides an important class of examples.

Lemma 3.4.11. LetD be a bounded simply connected domain in C such that the boundary
bD has finite length. If E is a subset of bD that has positive length, then E is a set of
uniqueness for subharmonic functions on D.

Proof. The domainD is simply connected, so there is a Riemann map χ : U → D. Theo-
rem 3.4.8 implies that χ ′ ∈ H 1(U) and that χ |bU is absolutely continuous. Consequently,
χ maps subsets of bU that have zero measure into subsets of bD of zero length.

The set E ⊂ bD has positive length, so the set χ−1(E) = E∗ ⊂ bU has positive
measure.

Let u be a subharmonic function on D such that limz→e,z∈D u(z) = −∞ for all
e ∈ E. The subharmonic function u ◦ χ satisfies u ◦ χ(z) → −∞ as z ∈ U tends to
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E∗. Because E∗ has positive measure, this implies that u ◦ χ ≡ −∞. Thus, E is a set of
uniqueness, as required.

We shall also need a theorem of Lindelöf [224] about the boundary behavior of
holomorphic functions:

Theorem 3.4.12. Let γ : [0, 1] → U ∪ {1} be an arc with γ (1) = 1. If f is a bounded
holomorphic function on U such that the limit limt→1− f (γ (t)) exists, call it L, then the
radial limit f ∗(1) = limt→1− f (t) exists and is L.

Recall that the existence of the radial limit for a bounded holomorphic function on
U implies the existence of the nontangential limit.

There is no assumption in this theorem about how f (γ (t)) approaches the point L
as t → 1−. The approach could be highly tangential or oscillatory.

Proof. It entails no loss of generality to suppose that the limit L is 0 and that ‖f ‖U ≤ 1.
Introduce the function h ∈ H∞(U) by h(z) = f (z)f̄ (z̄). We shall show that h has radial
limit 0 at 1.

Suppose first that �γ (t) > 0 on an interval (to, 1) for some to ∈ (0, 1). Let �
be the domain in the plane bounded above by the curve γ |[to, 1), bounded below by the
curve γ̄ (t)|[to, 1], and bounded on the left by the vertical segment—which may be a single
point—connecting γ (to) to γ̄ (to). The domain � is simply connected and is bounded by
a simple closed curve. Let ϕ : U → � be a Riemann map. The map ϕ extends to a
homeomorphism, still denoted by ϕ, of Ū onto �̄. Without loss of generality, ϕ(1) = 1.
Then the function h◦ϕ is bounded and holomorphic on U, and it has continuous boundary
values. Therefore h ◦ ϕ is continuous on Ū. (This is so, for by Fejér’s theorem the Fourier
series of h ◦ ϕ is uniformly Cesàro summable to h ◦ ϕ. This provides a sequence of
holomorphic polynomials that converges to h ◦ ϕ uniformly on bU, whence h ◦ ϕ is in
A(U). Alternatively h ◦ ϕ is the Poisson integral of its continuous boundary values and
so is continuous on the closed disk.) The function h ◦ ϕ is continuous on Ū, and ϕ is a
homeomorphism on Ū, so the function h is continuous on �̄. Consequently, the radial limit
f ∗(1) exists and is 0.

Consider now the case of a general arc γ . Suppose without loss of generality that
γ (0) = 0. If γ ([0, 1]) contains an interval (to, 1) for some to < 1, we are done. In the
contrary case, let aj , bj ∈ (0, 1) be the points such that [0, 1] \ γ ([0, 1]) is the union of
the open intervals (aj , bj ). For each j , let aj = γ (αj ) and bj = γ (βj ). Thus, for each
j, �γ > 0 on (αj , βj ) or else �γ < 0 on this interval. In either case, we denote by�j the
relatively compact subdomain in U that contains the interval (aj , bj ) and that is bounded
by the simple closed curve that is the union of the two arcs γ ([αj , βj ]) and γ̄ ([αj , βj ]).
The function h is bounded on�j by maxt∈[aj ,bj ] |f (γ (t))|2. The function h therefore has
the radial limit 0 at the point 1, for f (γ (t))→ 0 when t → 1−. The proof is complete.

There is a result on the extension of a bounded holomorphic function to the closure
of the disk that is based on a metric restriction of the total cluster set of the function at the
boundary.

If f is a complex-valued continuous function defined on a domain D in C, and if
z ∈ bD, then the cluster set off at z, denoted byCz(f ), is the set of all limits limn→∞ f (zn)
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along sequences {zn}n=1,... inD that converge to the point z. If f is bounded, its cluster set
Cz(f ) is a compact subset of the plane; in general, it is a compact subset of the Riemann
sphere. If Cz(f ) is a single point, then f extends continuously to z. There is a global
notion of cluster set. If f is defined on the domain D in C, the total cluster set of f at
bD, denoted by CbD(f ), is the set of pointsw ∈ C that are limits limn→∞ f (zn) for some
sequence {zn}n=1,... inD that approaches bD. If f is bounded, this is a compact subset of
C; if bD is connected, it is a connected set.

A theorem we shall need in the sequel was proved by Alexander [16] and, indepen-
dently, by Pommerenke [283].

Theorem 3.4.13. If f is a holomorphic function defined on U and if its total cluster set at
bU has finite one-dimensional Hausdorff measure, then f extends continuously to Ū.

Proof. [16] We shall show that for a fixed z ∈ bU the cluster set Cz(f ) is a singleton, so
that f extends continuously to the point z.

As a connected set of finite length, the global total cluster set CbU(f ) is bounded, so
the function f lies inH∞(U). If f is not constant, then the set CbU(f ) contains more than
one point. Consequently, its projection on the x-axis is an interval or else its projection on
the y-axis is an interval. Suppose CbU(f ) projects onto the interval [a, b], a < b, in the
x-axis.

The hypothesis that CbU(f ) has finite length implies that for almost all c ∈ [a, b],
the line Lc through c and perpendicular to the x-axis meets CbU(f ) in a finite set. (Recall
Theorem 3.3.6.) Fix c ∈ (a, b) such thatLc∩CbU(f ) is a finite set, sayE = {p1, . . . , pn},
and such that f ′ vanishes at no point of f−1(Lc). The latter condition excludes at most
countably infinitely many choices for c. We assume the points pj to be indexed such that
�pj < �pj+1.

For j = 1, . . . , n, let λ+j and λ−j be the open intervals in Lc \ E that abut the point

pj from above and below, respectively. Thus λ+j = λ−j+1.

Notice that if � is a component of C \ CbU(f ), then f : f−1(�)→ � is a proper
holomorphic map, and each point in� is covered by f the same number of times as every
other point, due account being taken of multiplicities. Consequently, for each j , there are
multiplicities m±

j such that each point of λ±j has m±
j preimages in U under the map f .

(Some of these multiplicities may be zero.) We see now that each of the points pj has at
most finitely many preimages in U under f , for if Mj = max{m+

j , m
−
j }, and if f−1(pj )

contained more thanMj points, then because f ′ vanishes at none of these preimages, some
points of λ+j or λ−j would be covered more than Mj times, a contradiction. Denote by Ẽ

the set f−1(E) = f−1({p1, . . . , pn}), a finite subset of U.
Fix j and let λ be a nonempty component of f−1(λ+j ). This is a certain open arc in

U, for no critical value of f lies in the line Lc. Let S′ and S′′ be the cluster sets of λ at its
two ends. These are compact, connected subsets of Ū. Initially there is no evident reason
for them not to intersect or, perhaps, to coincide. Consider a q ∈ S′ ∩ U. We claim that q
lies in the set Ẽ. If not, then f (q) ∈ λ+j , which implies that q ∈ λ. This is impossible, for

λ is an open arc carried by f injectively onto λ+j .
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Thus each of the sets S′ and S′′ consists of one of the points of Ẽ or else of a
connected subset of bU. If S′ is a connected subset of bU, then necessarily S′ is a point.
Otherwise, it is an arc at almost every point of which the bounded holomorphic function
f has nontangential limit f ∗. The geometry of the situation implies that these boundary
limits can be only the points pj or pj+1. Thus f ∗ assumes some value on a set of positive
measure in bU. It is therefore a constant. This is a contradiction, so each of S′ and S′′ is a
point, and λ̄ is an arc in Ū.

For some choice of j , one endpoint of one of the λ’s generated by the process above
must be the point z. Otherwise, if W is the part of U in a disk of small radius centered at
z, then f (W) is a connected open set that can meet Lc only at the points pj and so cannot
meet it at all. That is, f (W) lies on one side of the line Lc. This implies that the whole
cluster set CbU(f ) lies on one side of Lc, in contradiction to the way we have chosen c.

Thus we have produced a curve, say γc, in U that terminates at z and along which f
has a limit, which lies in the line Lc.

We now repeat this whole construction with c replaced by a c′ ∈ (a, c). We get a
new curve γc′ in U that terminates at z and along which the function f has a limit, which
lies in the line Lc′ .

We have reached a contradiction to the theorem of Lindelöf given above, Theo-
rem 3.4.12. The theorem is proved.

This proof is very much in the geometric spirit of the present book. The proof given
by Pommerenke is completely different.

Note that in this theorem there is no hypothesis that the function f is univalent.
The theorem does imply a result about conformal mapping: IfD is a simply connected

domain with boundary of finite length, then each Riemann map from U to D extends
continuously to Ū. This result is also a corollary of Theorem 3.4.8.

To continue, we need a theorem of R.L. Moore [251] from plane topology.
Define a triode to be a compact space that is the union of three arcs that are disjoint

except that there is one point x common to all of them, and it is an endpoint of each of
them. Thus a triode is homeomorphic to the letter Y. The point x is called the emanation
point of the triode, and the arcs that define the triode are called the rays of the triode.

Theorem 3.4.14. A family of mutually disjoint triodes in the plane is countable.

Moore proves a more general theorem: He uses a more general notion of triode—
the arcs are replaced by irreducible continua, and his conclusion is stronger. The stated
theorem suffices for our purposes.

The proof of this theorem depends on a lemma:

Lemma 3.4.15. Let γ1, γ2, and γ3 be disjoint arcs in the unit circle. Let T ′ and T ′′ be
triodes contained in the closed unit disk, say T ′ = λ′1 ∪ λ′2 ∪ λ′3 and T ′′ = λ′′1 ∪ λ′′2 ∪ λ′′3 .
Let the emanation points x′ and x′′ of T ′ and T ′′, respectively, lie in U. Assume that one
endpoint of each of λ′1 and λ′′1 to lie on γ1, one endpoint of each of λ′2 and λ′′2 to lie on
γ2, and one endpoint of each of λ′3 and λ′′3 to lie on γ3. Then T ′ and T ′′ have a point in
common.

Proof. Draw a picture! An analytic proof involves a careful argument based on the Jordan
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curve theorem, which we omit.

Proof of the theorem. Suppose G to be an uncountable family of mutually disjoint triodes
in the plane. Without loss of generality, we can suppose that the diameter of each arc in
each triode in G is at least 2. The set G is uncountable, so there is a point, say the origin, that
is a cluster point for the set of emanation points for the triodes in G in the sense that every
neighborhood of the origin contains the emanation point of uncountably many elements of
G . Thus, uncountably many elements of G have their emanation point in the unit disk U.
We suppose that all elements of G have this property, which implies that every ray of every
triode in the collection G meets bU. Replace G by the set of triodes, still denoted by G ,
obtained as follows: Replace each T = λ1 ∪ λ2 ∪ λ3 in G by the triode T ′ = λ′1 ∪ λ′2 ∪ λ′3
in which each λ′j is the minimal subarc of λj that connects the emanation point of T to
bU. After all these reductions, G consists of uncountably many disjoint triodes all with
emanation point in the open disk U and all with their rays arcs that hit bU in a single point.

The set G is uncountable, so there are three disjoint arcs γ1, γ2, and γ3 with the
property that for uncountably many elements T of G , T has an endpoint in each of the
γ ’s. We have constructed a configuration whose existence contradicts the lemma, so the
theorem is proved.

Corollary 3.4.16. [18] (a) If E is a connected subset of C with finite length, then, with at
most countably many exceptions, each point ofE lies in the boundary of at most two of the
components of the complement of E in the Riemann sphere. (b) If� is a simply connected
domain in C with b� of finite length, and if χ : Ū → Ū is a Riemann map, then except
for at most a countable set, each point p ∈ b� is the image of at most two points under
the map χ .

Proof. Let the components of C∗ \ E be �1, . . . . The set E is connected, so each �j is
simply connected. Let ϕj : U → �j be a Riemann map. According to Theorems 3.4.8
and 3.4.2, the function ϕj extends continuously to Ū. Suppose zo ∈ E to lie in the boundary
of each of�p, �q , and�r for three distinct integersp, q, and r . Fix points zp, zq, zr ∈ bU
such that ϕp(zp) = ϕq(zq) = ϕr(zr ) = zo. Let Lp be the closed radial segment in U that
connects zp to 1

2zp, and similarly for radial segments Lr and Lq . Then the sets ϕp(Lp),
ϕq(Lq), and ϕr(Lr) are disjoint except for the coincidence of one of their endpoints with
the point zo. Their union forms a triode Tzo . Moreover, by their construction, different
choices of the point zo lead to disjoint triodes.

Thus the result (a) follows from Moore’s theorem, Theorem 3.4.14.
Statement (b) of the theorem is proved by a similar argument.

In the discussion of analytic structures below, we shall need to draw on a theorem of
Radó:

Theorem 3.4.17. [286] If the continuous function f defined on a domain D in C is holo-
morphic on D \ f−1(0), then it is holomorphic on all of D.

Proof. [198] The theorem is a local result, so it suffices to suppose that the function f
is defined and continuous on the closed unit disk Ū. Let � = U \ f−1(0). We shall
show that if g is holomorphic on a neighborhood of �̄, then on �, |g| ≤ ‖g‖�̄∩bU. This
is so, for if k is a positive integer, then because f = 0 on b� ∩ U, if z ∈ �, then
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|gk(z)f (z)| ≤ ‖gkf ‖�̄∩bU. Take the kth root of both sides and let k → ∞ to find the
desired inequality. It follows that � is dense in U. Otherwise, for some w’s in U \ �̄, the
function g given by g(z) = 1/(z−w) would be holomorphic on �̄ but would not satisfy
‖g‖� ≤ ‖g|�̄∩bU.

We can now see that �f is harmonic in U. Let {Pk}k=1,... be a sequence of holomor-
phic polynomials with the property that on bU, |�(Pk−f )| ≤ 1/k for k = 1 . . . . Then on
bU we have the inequalities |e(Pk−f )| ≤ e1/k and |e−(Pk−f )| ≤ e1/k . These inequalities
therefore persist throughout U, so that �Pk → �f uniformly on U. Thus, �f is harmonic
on U. Similarly, �f is harmonic on U. Consequently, the function f is a complex-valued
harmonic function on U that is holomorphic on the dense open set �. This implies that f
is holomorphic throughout U, and the theorem is proved.

The extension of this theorem to functions of several variables is immediate by
considering one-dimensional slices and invoking Hartogs’s theorem.1

3.5. Subharmonicity Results

Fix a compact polynomially convex subset X of CN . Denote by � the Shilov boundary
for the algebra P(X), so that � is the smallest closed subset of X with the property that
�̂ = X. For a function ϕ ∈ P(X), we are going to study the set ϕ−1(ϕ(X) \ ϕ(�)) and
certain subharmonic functions naturally associated with it, the point being that in some
circumstances this set has the structure of a one-dimensional analytic variety.

It will be convenient to introduce the sets γ = ϕ(�) and� = ϕ(X) \ γ . The set γ is
compact, � open and bounded. The set � need not be connected; it could have infinitely
many components. It is a union of components of C \ γ . (The latter point is easily seen:
If �o is a component of C \ γ that contains a point of ϕ(X) but is not contained in ϕ(X),
then for points w ∈ �o \ ϕ(X) the function 1/(ϕ − w) lies in P(X), as follows from
the Oka–Weil approximation theorem. If w is suitably chosen, this function attains its
maximum at a point of X \ �. Contradiction.)

There are a few simple facts to be noted in this setting.

Lemma 3.5.1. If p ∈ b�, then ϕ−1(p) meets �.

Proof. If not, then p would have to lie in the open set C \ γ , which precludes its lying
in b�.

Lemma 3.5.2. If {Vα}α∈A is a neighborhood basis for the point p ∈ ϕ(X), then the sets
ϕ−1(Vα), α ∈ A, constitute a neighborhood basis for the fiber ϕ−1(p).

Proof. This is an immediate consequence of the compactness of our situation.

1The appeal to Hartogs’s theorem here is not precise. The theorem of Hartogs in question is the rather difficult
result that an arbitrary, a priori not even measurable, function is holomorphic if it is holomorphic in each variable
separately. This general result is rarely needed. What is needed much more frequently, as in the case at hand,
is the result that a continuous function that is holomorphic in each variable separately is holomorphic. This is a
very simple remark that has no standard name.
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Lemma 3.5.3. If E is a compact, polynomially convex subset of C, then the set ϕ−1(E) is
a compact polynomially convex subset ofX, and P(ϕ−1(E)) is the closure in C (ϕ−1(E))

of the restriction algebra P(X)|ϕ−1(E).

Again, this is immediate.

The next result is the first of several subharmonicity results

Lemma 3.5.4. If f ∈ P(X), then the function λϕ,f defined on ϕ(X) by

λϕ,f (p) = max
ϕ−1(p)

ln |f |

is upper semicontinuous and is subharmonic on �.

Proof. For the semicontinuity of λϕ,f , let c be a real number. It is to be shown that the
sublevel set {p ∈ ϕ(X) : λϕ,f (p) < c} is open. This is correct, though, because f is
continuous on X, and because of Lemma 3.5.2.

For the subharmonicity assertion, we are to show that if a ∈ �, and if r > 0 is small
enough that the disk U(a, r) is a relatively compact subset of �, then λϕ,f satisfies the
inequality

λϕ,f (a) ≤ 1

2π

∫ 2π

0
λϕ,f (a + reiϑ ) dϑ.

The local maximum modulus theorem implies that the Shilov boundary for the al-
gebra P(ϕ−1(Ū(a, r))) is contained in the set ϕ−1(bU(a, r)). Let zo ∈ ϕ−1(a), and let
ν be a Jensen measure for the point zo with respect to the algebra P(ϕ−1(Ū(a, r))) that
is carried by ϕ−1(bU(a, r)). Define the measure ν∗ on bU(a, r) by the condition that for
each continuous function g on C,

∫
g dν∗ = ∫ g ◦ ϕ dν.

The measure ν∗ is a Jensen measure on bU(a, r) for the point a with respect to the
algebra P(Ū(a, r)), for if P is a polynomial on C, then

log|P(a)| = log|P ◦ ϕ(zo)| ≤
∫

log|P ◦ ϕ| dν =
∫

log|P | dν∗.

The measure ν∗ satisfies
∫
(z − a)k dν∗ = 0 for k = 1, . . . . Assume for notational

convenience that a = 0 and r = 1. Thus
∫
zk dν∗ = 0, k = 1, . . . . The measure ν∗ is real,

so
∫
z̄k dν∗ = ∫ 1

zk
dν∗ = 0, k = 1, . . . . If dϑ denotes Lebesgue measure on bU, then the

measure µ given by dµ = dν∗ − 1
2π dϑ satisfies

∫
zk dµ = 0 for all integers k and so is

the zero measure. Thus, dν∗ = 1
2π dϑ . This, combined with the inequality derived above,

completes the proof that the function λϕ,f is subharmonic on �.

Fix now a point a ∈ �, and fix an r > 0 small enough that the closed disk Ū(a, r)

is contained in �. Let zo be a point of the fiber ϕ−1(a), and let σ be a representing
measure for the point zo with respect to the algebra P(ϕ−1(Ū(a, r))), σ supported by
the set ϕ−1(bU(a, r)). Such a measure exists, for the Shilov boundary of the algebra
P(ϕ−1(Ū(a, r))) is contained in the set ϕ−1(bU(a, r)).
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Lemma 3.5.5. If f ∈ P(X), then the function F defined on U(a, r) by

F(ζ ) =
∫
ϕ−1(bU(a,r))

ϕ(z)− a
ϕ(z)− ζ f (z) dσ (z)

is holomorphic on U(a, r), takes the value f (zo) at the point a, and satisfies

|F(ζ )| ≤ max
ϕ−1(bU(a,r))

|f |.

Moreover, if ζo ∈ bU(a, r) is a point at which the nontangential limit

F ∗(ζo) = lim
ζ→ζo

F (ζ )

exists, then |F ∗(ζo)| ≤ maxz∈ϕ−1(ζo)
|f (z)|.

The bounded holomorphic function F has nontangential limit at almost every point
of bU(a, r) by Fatou’s theorem.

Proof. The holomorphicity of F is evident. It is also clear that F(a) = f (zo).
To prove F bounded, it is a convenience to suppose that a = 0 and that r = 1, so

that we are working on the open unit disk U. Thus,

F(ζ ) =
∫
ϕ−1(bU)

ϕ(z)f (z)

ϕ(z)− ζ dσ(z).

The measure ϕ dσ is orthogonal to P(ϕ−1(Ū)), because ϕ(zo) = 0. Consequently, be-
cause for fixed ζ ∈ U, the function f/(1 − ζ̄ ϕ) is in P(ϕ−1(Ū)), we have

F(ζ ) =
∫
ϕ−1(bU)

( 1

ϕ(z)− ζ + ζ̄

1 − ζ̄ ϕ(z)
)
ϕ(z)f (z) dσ (z)

=
∫
ϕ−1(bU)

1 − |ζ |2
|ϕ(z)− ζ |2 f (z) dσ(z),

for |ϕ| = 1 on ϕ−1(bU). Thus

|F(ζ )| ≤ ‖f ‖ϕ−1(bU)

∫
ϕ−1(bU)

1 − |ζ |2
|ϕ(z)− ζ |2 dσ(z).

The analysis given in the last proof shows that the measure σ∗ on bU given by∫
h dσ∗ = ∫ h ◦ ϕ dσ is normalized Lebesgue measure on the circle. Thus, the final

integral above is the Poisson integral of the function identically one on bU, so its value is
one. This gives the desired bound that |F | ≤ ‖f ‖ϕ−1(bU).

Finally, let ζo ∈ bU be a point for which F ∗(ζo) exists. By the semicontinuity
property of the function λϕ,f established in the last lemma, if ε > 0, then there is a
neighborhood U of ζo in ϕ(X) such that for ζ ∈ U , |λϕ,f (ζ )| ≤ λϕ,f (ζo) + ε. This
implies that |F ∗(ζo)| ≤ eλϕ,f (ζo) as desired, for

|F(ζ )| ≤ 1

2π

∫
bU

1 − |ζ |2
|z− ζ |2 |f (z)| dϑ(z).
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For ζ near ζo and eiϑ ∈ bU \ U , the integrand is small, and for z ∈ bU ∩ U , we have
|f (z)| ≤ (1 + δ)maxϕ−1(ζ0)

|f | for a small δ > 0.

Subharmonicity has been applied in the study of polynomially convex sets and, more
generally, in the theory of Banach algebras by several authors. In this direction see the
papers of Bishop [59], Vesentini [358], Wermer [373], Aupetit and Wermer [41], Seničkin
[321], and the book of Alexander and Wermer [28].

The following lemmas and their corollaries are developed following Seničkin [321].

Consider the n-fold Cartesian product Xn of X with itself, which is a compact,
polynomially convex subset of CNn. It contains the compact set Ynϕ defined by

Ynϕ = {(w1, . . . , wn) ∈ Xn : ϕ(w1) = · · · = ϕ(wn)}.
Lemma 3.5.6. The set Ynϕ is polynomially convex.

Proof. For i, j = 1, . . . , n, define functions Lij ∈ P(Xn) by

Lij (w1, . . . , wn) = ϕ(wi)− ϕ(wj ).

Each of the zero sets L−1
ij (0) is polynomially convex, so their intersection, the set Ynϕ , is

also polynomially convex.
Define a map η : Ynϕ → C by η(w1, . . . , wn) = ϕ(w1) = · · · = ϕ(wn). This map

carries Ynϕ onto ϕ(X).

Lemma 3.5.7. Under the map η, the Shilov boundary for the algebra P(Y nϕ ) is carried
into the set γ .

Recall that γ = ϕ(�), � the Shilov boundary for P(X), and that � = ϕ(X) \ γ .

Proof. We shall show that the set Ynϕ \ η−1(�) is a boundary for the algebra P(Y nϕ ).

Let πk : Ynϕ → X be the projection given by πk(z1, . . . , zn) = zk . Let a ∈ � be

η(zo) for a zo = (z0
1, . . . , z

o
n) ∈ Ynϕ . Let � be a disk centered at a that is a relatively

compact subset of �.
The algebra P(Y nϕ ) is the uniform closure in C (Y nϕ ) of the set of functions h of the

form

h =
L∑
j=1

n∏
k=1

gjk ◦ πk,

where the functions gjk range through P(X), and L = 1, . . . .
Each of the functions gjk corresponds to a function Gjk ∈ H∞(�) by the process

of Lemma 3.5.5, and h corresponds in the same way to a functionH . For almost all points
ζ ∈ b�, the radial limitsG∗

jk(ζ ) exist for each choice of j, k, as do the radial limitsH ∗(ζ ).
Fix a ζ at which all of these limits exist, and denote the limit G∗

jk(ζ ) by cjk .
Introduce the function h1 given by

h1 =
L∑
j=1

( n∏
k=2

cjk
)
gj1.
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Then by Lemma 3.5.5, h1 corresponds to the function H1 given by

H1 =
L∑
j=1

( n∏
k=2

cjk
)
Gj1,

and by the same lemma, |H ∗
1 (ζ )| ≤ maxϕ−1(ζ ) |h1|. Choose z′1 ∈ ϕ−1(ζ ) to satisfy

|h1(z
′
1)| = maxϕ−1(ζ ) |h1|.
Now set

h2 =
L∑
j=1

( n∏
k=3

cjk
)
gj1(z

′
1)gj2.

The function h2 corresponds to the function H2 given by

H2 =
L∑
j=1

( n∏
k=3

cjk
)
gj1(z

′
1)Gj2.

We have that H ∗
2 (ζ ) = h1(z

′
1) and

|H ∗
2 (ζ )| ≤ max

ϕ−1(ζ )
|h2|.

Choose z′2 ∈ ϕ−1(ζ ) such that |h2(z
′
2)| = maxϕ−1(ζ ) |h2|. Thus, |H ∗

1 (ζ )| ≤ |h2(z
′
2)|.

Iterate this process to find, finally, that |H ∗
1 (ζ )| ≤ |hn(z′n)| with

hn =
L∑
j=1

n−1∏
k=1

gjk(z
′
k)gjn

for some choice of points z′1, . . . , z′n−1 ∈ ϕ−1(ζ ).

The function H̃ = ∑L
j=1
∏n
k=1Gjk has boundary limit H̃ ∗(ζ ), which is H ∗

1 (ζ ).

Also, hn(z′n) = h(z′) if z′ = (z′1, . . . , z′n). It follows that |H̃ ∗(ζ )| ≤ |h(z′)|. This is
true for almost all ζ ∈ b�, so, by Lemma 3.5.5, |h(a)| = |H(a)| ≤ maxϕ−1(b�) |h| ≤
maxϕ−1(ϕ(X)\�) |h|.

This analysis works for all a ∈ �, so ϕ−1(�) is disjoint from the Shilov boundary
for P(Y nϕ ), as we wished to show.

If g is an arbitrary element of P(X), define G ∈ P(Y nϕ ) by

G(w) = G(w1, . . . , wn) =
∏

1≤i<j≤n
[g(wi)− g(wj )].

For n = 1, . . . , define the function dn,g : ϕ(X)→ [0,∞) by

dn,g(x) = max
w1,...,wn∈ϕ−1(x)

|G(w)|.
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Recall that πj : Ynϕ → X is the projection (w1, . . . , wn) �→ wj . We have that ϕ ◦ π1 ∈
P(Y nϕ ). Because

dn,g(x) = max
w∈ϕ◦π−1

1 (x)

|G(w)|,

Lemma 3.5.4 implies the following statement.

Lemma 3.5.8. The function ln dn,g is upper semicontinuous on ϕ(X) and subharmonic
on �.

Corollary 3.5.9. The diameter of the set g(ϕ−1(x)) is an upper semicontinuous function
on X and is logarithmically subharmonic on �.

Corollary 3.5.10. The transfinite diameter of the set g(ϕ−1(x)) is an upper semicontinuous
function on X and is logarithmically subharmonic on �.

Recall the definition of the transfinite diameter: If E is a compact subset of the
complex plane, define

dn(E) = max
z1,...,zn∈E

{ ∏
1≤j<k≤n

|zj − zk|
}1/(n2).

For fixed E, the functions dn(E) decrease; their limit is the transfinite diameter τ(E) of
E. The transfinite diameter of a set coincides with its logarithmic capacity. (See [356].)

3.6. Analytic Structure in Hulls

The results of the preceding section imply the presence of one-dimensional varieties in
certain polynomially convex sets.

Theorem 3.6.1. Let X be a compact subset of CN , N > 1, let ϕ ∈ P(X), and let � be a
component of ϕ(X̂) \ ϕ(X). If there is E ⊂ �̄ that is a set of uniqueness for subharmonic
functions on � such that for each e ∈ E the fiber ϕ−1(e) ∩ X̂ is finite, then the set
ϕ−1(�) ∩ X̂ is a one-dimensional analytic subvariety of CN \X.

This theorem, as stated, is due to Seničkin [321], who was working in the formally
more general context of general uniform algebras. A very similar result was obtained by
Aupetit and Wermer [41].

Proof. For each k = 1, . . . , let

E′
k = {e ∈ E : ϕ−1(e) ∩ X̂ consists of exactly k points}.

By hypothesis E′ = ∪k=1,...E
′
k is a set of uniqueness for subharmonic functions on�, so,

by Lemma 3.4.10, one of the sets E′
k is a set of uniqueness. Let n′ be the smallest integer

such that E′
n′ is a set of uniqueness. The function dn′,ϕ is subharmonic on � and lower

semicontinuous on �̄. It is identically −∞ on E′
n′ , and so is identically −∞ on �. Thus,

for each z ∈ �, the fiber ϕ−1(z) ∩ X̂ consists of at most n′ points.
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For k = 1, . . . , n′, let

Ek = {z ∈ � : ϕ−1(z) ∩ X̂ contains exactly k points}.
Then ∪k=1,...,n′Ek = �, so one of the sets Ek is a set of uniqueness for subharmonic
functions on �. Let n be the least integer such that En is a set of uniqueness. Thus, as
above, each fiber ϕ−1(z) ∩ X̂, z ∈ �, contains no more than n points.

We shall show that �n, the set of z ∈ � for which ϕ−1 contains n points, is open
and that the set � \�n is a discrete subset of �.

To do this, begin by fixing a point zo ∈ �n and a disk � centered at zo, � so small
that �̄ ⊂ �. Fix f ∈ P(X) that assumes n distinct values on the fiber ϕ−1(zo), say
f (ϕ−1(zo)) = {p1, . . . , pn}. For a small δ > 0, let�j,δ be the disk of radius δ centered at
the point pj . These disks have mutually disjoint closures, for δ is small. By Lemma 3.5.2,
as W runs through a neighborhood basis of the point zo, the sets ϕ−1(W) run through
a neighborhood basis for the fiber ϕ−1(zo). Consequently, if � is small enough, then
f (ϕ−1(�)) ⊂ ∪j=1,...,n�j,δ .

For each j , the set Sj = ϕ−1(�̄) ∩ f−1(�̄j,δ) is polynomially convex, and the
Shilov boundary for the algebra P(Sj ) is contained in the set ϕ−1(b�) ∩ f−1(b�j,δ).

The (restriction to Sj of the) function f lies in P(Sj ), and the set f (Sj ) contains the point
pj ∈ �j,δ , so f (Sj ) ⊃ �j,δ . Similarly, ϕ(Sj ) ⊃ �. That the sets Sj are disjoint implies
that for each point z ∈ �, the fiber ϕ−1(z) consists of exactly n points. This shows that
the set �n is open in C.

For each j = 1, . . . , n, let ψj : �→ Sj be the map that satisfies ϕ ◦ψj = id on�.
Each of the functionsψj is holomorphic in�. To see this, fix a disk�a,ε centered at a ∈ �
that is a relatively compact subset of �. Let µ be a representing measure with respect to
the algebra P(Sj ) for the point ψj (a) carried on ϕ−1(b�a,ε) ∩ Sj . Denote its projection
to b�a,ε by µ∗ so that for all continuous functions h on b�a,ε,

∫
h dµ∗ = ∫ h ◦ ϕ dµ. If

g ∈ P(Sj ), then for r = 1, . . . we have

0 =
∫
(ϕ − a)rg dµ =

∫
(z− a)rg ◦ ψj (z) dµ∗(z).

Applied with g the function identically one, we see by the reality of µ that µ∗ is 1
2π dϑ if

ϑ denotes the angular variable on the circle |z−a| = ε. We then see, by taking r = 1, that
the function g ◦ ψj satisfies 1

2πi

∫
|z−a|=ε g ◦ ψj (z) dz = 0. This is true for each choice

of the disk �a,ε, so by Morera’s theorem, g ◦ ψj is holomorphic on �. This is true in
particular when g is one of the coordinate functions on CN . Thus ψj itself is holomorphic
on�. The holomorphicity of the functions ψj implies that the open subset ϕ−1(�n) of X̂
is a one-dimensional complex submanifold of CN \ (X̂ \ ϕ−1(�n)).

With f the function considered above, define H̃ : �n → C by

H̃ (z) =
∏

1≤j<k≤n
(f (ψj (z))− f (ψk(z)))2.

This function is holomorphic on �n, and it tends to zero as z tends to a boundary point of
�n contained in�. Thus if we setH(z) = H̃ (z), z ∈ �n, andH(z) = 0, z ∈ �\�n, then
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H is continuous on � and holomorphic off its zero set. Radó’s theorem, Theorem 3.4.17,
shows thatH is holomorphic throughout�. The zero locus ofH is a discrete subset of�,
so � \�n is a discrete subset of �.

That ϕ−1(�) is a one-dimensional subvariety of CN \(X̂\ϕ−1(�)) is a consequence
of Lemma 3.2.2 in the following way.

Define � : X̂ → CN+1 by �(z) = (z1, . . . , zN , ϕ(z)). The set �(X̂), which is
the graph of ϕ, is polynomially convex because the set X̂ is. With πN+1 : CN+1 → C

the projection πN+1(z1, . . . , zN+1) = zN+1, Lemma 3.2.2 applies to show that �(X̂) ∩
π−1
N+1(�) is a one-dimensional variety in CN+1\(�(X̂)\π−1

N+1(�)) on which each element
of P(�(X̂)) is holomorphic.

This implies that ϕ−1(�) ∩ X̂ is an analytic subvariety of CN \ (X̂ \ ϕ−1(�)) on
which each element of P(X̂) is holomorphic.

Theorem 3.6.1 is proved.

Corollary 3.6.2. With X, ϕ, �, and E as in the preceding theorem, if for each point e of
E, the fiber ϕ−1(e) ∩ X consists of at most n points, then for each point ζ ∈ �, the fiber
ϕ−1(ζ ) ∩ X̂ consists of at most n points.

A second corollary to the preceding theorem concerns the second example of Sec-
tion 3.1. There the polynomially convex hull of a certain figure-eight curve denoted by
� was considered. It is evident that the hull �̂ contains the variety V = {(z1, z2) : z2

1 =
F(z2), |z1| < 1}. It is less evident that �̂ \ � is V . But this equality follows from Corol-
lary 3.6.2: Ifπ : C2 → C is the projection onto the first coordinate, then the set�maps in a
generically two-to-one way onto the unit circle. The same is therefore true of �̂\π−1(bU).

Because V maps in a generically two-to-one way onto the disk, it follows that V = �̂ \�.
As a further application of the criterion of Theorem 3.6.1, we consider hulls with

finite area.

Theorem 3.6.3. IfX is a compact subset of CN such that X̂ \X has finite two-dimensional
Hausdorff measure, then X̂ \X is a one-dimensional analytic subvariety of CN \X.

This result was found independently by Alexander [10], Basener [45], and Sibony
[331]. Alexander discusses also the situation in which X̂ \X has σ -finite two-dimensional
measure. Basener and Sibony give conditions under which a polynomial hull contains
analytic varieties of dimension greater than one.

Proof. Having fixed a point xo ∈ X̂ \ X, we show that X̂ \ X has the structure of a one-
dimensional variety near xo. Suppose coordinates to have been chosen such that xo is the
origin. Let ro > 0 be small enough that the closed ball B̄N(ro) is disjoint from the set X.
The local maximum principle implies that if E = X̂ ∩ bBN(ro), then Ê = X̂ ∩ B̄N(ro).
Call the latter set E1. The function � defined on CN by �(z) = |z| satisfies a Lipschitz
condition on all of CN , so Eilenberg’s inequality, Theorem 3.3.6, implies that if ro is chosen
properly, the set E1 = �−1(ro) ∩ X̂ has finite one-dimensional measure.

Because �2(E1) = 0, the set E1 is rationally convex, which implies the existence
of a polynomial P with P(0) = 0 and with P zero-free on E1. Let � be the component
of C \ P(E1) that contains the origin.
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We shall show that � contains a set S of positive measure with the property that for
each point s of S, the set P−1(s)meets BN(ro)∩ X̂ in a finite set. To do this, set u = �P .
Eilenberg’s inequality implies that for almost all t ∈ R the fiber Ft = u−1(t)∩X̂∩BN(ro)

has finite length. Choose a t such thatFt has finite length and such that the lineLt = {t+iς :
ς ∈ R} meets the domain �. Eilenberg’s inequality applied again yields that for almost
every point t + iς ∈ Lt ∩�, the fiber P−1(Lt + iς) ∩ BN(ro) ∩ X̂ is a finite set.

Let �∗ be the set of z ∈ � for which the fiber �z = P−1(z) ∩ BN(ro) ∩ X̂ is finite.
If �∗

k is the subset of �∗ for which this fiber consists of k distinct points, then, since the
Lebesgue outer measure, which is defined on the family of all subsets of the plane, is
countably subadditive, one of the sets �∗

k , say �∗
n, has positive outer measure.

The subharmonic function ln dn+1 introduced at the end of the preceding section
assumes the value−∞ on the set�∗

n. The set on which it takes the value−∞ is measurable,
for ln dn+1 is an upper semicontinous, hence measurable, function. This set has positive
area, so ln dn+1 takes the value −∞ identically. This implies that every one of the fibers
�z contains at most n points.

That the set BN ∩ X̂ is a one-dimensional variety is now seen to be a consequence
of Theorem 3.6.1.

Note that for the preceding argument to work, it suffices to assume not that X̂\X has
finite two-dimensional measure but only that this set has locally finite two-dimensional
measure. On the other hand, granted the local maximum principle, the latter result is a
consequence of the result we proved.

We can now prove the fundamental Theorem 3.1.1.

Proof of Theorem 3.1.1. SetX = Y ∪�, a set that is rationally convex by Corollary 1.6.8.
Assume to begin with that the set � is connected.
Fix a point p ∈ X̂ \X. We are to show that X̂ has the structure of an analytic variety

near p. Because Y is polynomially convex and � has finite length, there is a polynomial
P with �P < −1 on Y and with P(p) = 1. The polynomial P can be chosen so that
P(p) /∈ P(�). To construct such a P , choose first a polynomial Q such that �Q < −2
on Y and Q(p) = 0. The set X is rationally convex, so there is a polynomial R such that
0 /∈ R(X) andR(p) = 0. IfM is sufficiently large and positive, then �(MQ+ ζR) < −2
on Y for all choices of ζ ∈ C with |ζ | < 1. No matter what the choice of M and ζ ,
(MQ+ ζR)(p) = 0. The function H = (MQ)/R is holomorphic on a neighborhood of
X, so the set H(�) has zero area in C. If −ζ ∈ C \ H(�), |ζ | < 1 but ζ �= 0, then the
polynomial Pζ = MQ+ζR vanishes at p but at no point ofX. For the desired polynomial
P , take 1 + Pζ .

Let �+ be the open right half-plane {ζ ∈ C : �ζ > 0}.
Fix a large positive constant K , K so large that P(X) ⊂ {ζ ∈ C : |ζ | < K}. Let IK

denote the interval [−iK, iK] in the imaginary axis. The set S = IK ∪ (�+ ∩ P(�)) is
compact. It is also connected. Otherwise, P(�) ∩�+ would have a compact component,
which would imply that � is not connected. Consequently, each bounded component of
C \ S is simply connected. Let � be the component of C \ S that contains the point 1.

The boundary of � has finite length, and it is connected and not disjoint from �+.
Consequently, by Theorem 3.3.6, Eilenberg’s inequality, there is a set E ⊂ b� ∩�+ that
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has positive length and that has the property that for every e ∈ E, the fiber P−1(e) ∩ � is
a finite set.

Because of Lemma 3.4.11, Theorem 3.6.1 implies that the set X̂ \X has the structure
of a one-dimensional variety near the point p. The point p ∈ X̂ \X was chosen arbitrarily,
so the theorem is proved, under the supplementary hypothesis that the set � is connected.

In case � is not connected, we proceed as follows. Let p ∈ Ŷ ∪ � \ (Y ∪�). Choose
a connected set �′ of finite length that contains � and such that Y ∪ �′ is compact. If
p /∈ �′, we are done. If, on the other hand, p ∈ �′, replace �′ by the set �′′ obtained in
this way. Let δ > 0 be a small positive number, so small that the ball BN(p, δ) is disjoint
from Y ∪ �. Let q be some point of BN(p, δ) \ �′. Then �′′ is the set that agrees with �′
outside the ball BN(p, δ) and that in B̄N(p, δ) is obtained by projecting BN(p, δ) ∩ �′
radially onto bBN(p, δ) from the point q. The set �′′ obtained in this way contains � and
is connected. Moreover, Y ∪ �′′ is compact.

It remains only to establish the last assertion of Theorem 3.1.1. The map

(3.3) H 1(Y ∪ �;Z)→ H 1(Y ;Z)

is assumed to be an isomorphism, and we are to prove that P(Y ∪�) = {f ∈ C (Y ∪�) :
f |Y ∈ P(Y )}. What has to be seen is that Y ∪� is polynomially convex, for granted this,
P(Y ∪ �) = R(Y ∪ �), so that the result follows from Corollary 1.6.8.

The hypothesis that the map (3.3) is an isomorphism means that each zero-free
continuous function on Y ∪ � that has a continuous logarithm on Y necessarily has a
continuous logarithm on Y ∪ �. (Recall the discussion at the end of Section 1.2.)

If Y ∪ � is not polynomially convex, then Ŷ ∪ � \ (Y ∪ �) is a one-dimensional
variety. Denote it by V .

The set Y is polynomially convex, so there is a polynomial P such that �P < −1 on
Y and 0 ∈ P(V ). The set P(�) has zero area, so the polynomial can be chosen so that 0 /∈
P(Y ). Then P is a zero-free continuous function on Y ∪� that has a continuous logarithm
on Y . Accordingly, it has a continuous logarithm on Y ∪ �. Then it has a continuous
logarithm on an open set � containing Y ∪ �. This logarithm must be holomorphic on �
because P is holomorphic there.

The boundary of the variety V lies in the set�, which implies a contradiction to the
argument principle: The function P |V ∈ O(V ) vanishes at some points of V , but it has a
logarithm off a sufficiently large compact subset of V .

This completes the proof.

3.7. Finite Area

The main goal of the present section is the result that if the connected set � has finite
length, then the variety �̂ \ � has finite area. To establish this, we need some preliminary
information about the area of varieties.

The area of a complex submanifold of a domain in CN is given by a classical formula
of Wirtinger.
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Introduce the (1, 1)-form ω = 1
2i

∑N
j=1 dz̄j ∧ dzj .

To begin with, let ϕ : D → CN be a holomorphic map from the domain D in C

into CN . Assume ϕ′ zero-free and ϕ injective. The map ϕ has coordinates (ϕ1, . . . , ϕN)

for certain functions ϕj holomorphic on D.

Lemma 3.7.1. The area of the image ϕ(D) is
∫
D
ϕ∗ω.

Proof. To prove this formula, it suffices to show that for every ζo ∈ D,

lim
r→0+

1

A(r)

∫
{|ζ−ζo|<r}

ϕ∗ω = 1,

in which A(r) the area of the set ϕ(U(ζo, r)).
For this we can suppose coordinates chosen in C such that ζo = 0 and in CN such

that ϕ(0) is the origin. Then by a unitary change of coordinates in CN , we can suppose that
ϕ(D) is tangent at 0 to the z1-axis, i.e., that ϕ′1 �= 0 but that ϕ′2(0) = · · · = ϕ′N(0) = 0. A
final change of coordinates in C lets us suppose that ϕ′1(0) = 1.

Then ∫
{|ζ |<r}

ϕ∗ω = 1

2i

∫
{|ζ |<r}

(1 +O(r)) dζ̄ ∧ dζ = πr2 +O(r3).

Also, if ϕj = u2j−1 + iu2j , and if ζ = ξ + iη, then

A(r) =
∫
{ξ2+η2<r2}

{ ∑
1≤µ<ν≤2N

D2
µν

}1/2

dξ dη,

in which Dµν is the Jacobian determinant ∂(uµ,uν)
∂(ξ,η)

. Thus, with our normalizations, for ζ
near 0,D12(ζ ) = 1+O(|ζ |), andDµν(ζ ) = O(|ζ |)when (µ, ν) �= (1, 2). Consequently,
A(r) = πr2 +O(r3). From this the lemma follows.

Corollary 3.7.2. If V is a one-dimensional subvariety of an open set in CN , then the area
of the set of regular points of V is

∫
Vreg
ω.

We have remarked that the area of a k-dimensional submanifold of RN coincides with its
k-dimensional Hausdorff measure. For a one-dimensional subvariety of (an open set in)
CN , the set of singular points is discrete and so has vanishing 2-dimensional measure.
Consequently, for such a variety V , �2(V ) = ∫

Vreg
ω. This last integral we define to

be
∫
V
ω.

The integral
∫
Vreg
ω is the sum

∑N
j=1

1
2i

∫
Vreg

dz̄j ∧ dzj . If πj denotes the projection

of CN onto the j th coordinate axis, then the j th of these integrals is
∫
πj (V )

�o(π−1
j (ζ )) dζ̄

∧ dζ .

Corollary 3.7.3. The area of a 1-dimensional subvariety V of an open set in CN is the sum
of the areas of the projections, counted with multiplicities, of V onto the coordinate axes.
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There is no analogue of this result in the geometry of real submanifolds.
Notice that the form ω is exact: ω = dϑ with ϑ = i

2

∑N
j=1 z̄j dzj . This has the

surprising, if simple, consequence that if V is a one-dimensional variety and if � is a
domain in V for which Stokes’s theorem holds, then the area of � is given by a boundary
integral: �2(�) = ∫

b�
ϑ . Again, there is no analogue of this in real geometry.

We have presented these results on areas in the case of one-dimensional varieties,
which is the case used in the sequel. There are natural analogues for k-dimensional sub-
varieties. A full exposition of this theory is given in [343].

It is now possible to prove the finiteness-of-area result stated above. There is an
apparently more general statement that does not refer to polynomial convexity.

Theorem 3.7.4. If V is a one-dimensional subvariety of a bounded open set in CN such
that the set V̄ \ V is contained in a connected set of finite one-dimensional measure, then
V has finite area.

Alexander [17] proved this result under the assumption that V̄ \ V is a rectifiable
simple closed curve; the general case was established by Lawrence [217]. A generalization
is given in the next chapter.

Proof. Let � be a connected set of finite length that contains V̄ \ V . Let F be a function
holomorphic on a neighborhood of �̂. The set F(�) is a connected subset, say γ , of C.
The complementary set C\γ consists of one unbounded component,�0, and of countably
many bounded components�j , j = 1, . . . , each of which is simply connected. For each
j = 1, . . . , letmj be the multiplicity of the map F |(V ∩F−1(�j )). We are going to show
that
∑
j=1,... mj area�j <∞.

The proof of this depends on a lemma, which goes back to the work of Alexander [7].

Lemma 3.7.5. If S ⊂ b�j ∩b�k is a set of positive length such that�0(F−1(ζ )∩�) = n
for all ζ ∈ S, then |mj −mk| ≤ n.

Proof. We shall show that if ζ ∈ S, thenF−1(ζ )∩(V \�) contains at mostmj points. If not,
let this set contain distinct pointsw1, . . . , wq with q > mj . Associated with each pointwk
is a neighborhoodWk in V \� that is mapped properly onto a neighborhood of ζ in C. This
implies that certain points in �j are covered at least q times, which is impossible, for the
multiplicity of F over Cj ismj . Thus, for each ζ ∈ S, F−1(ζ )∩ (� ∪V ) contains at most
n + mj points. The set S is a set of uniqueness for subharmonic functions on the simply
connected domain�k , because it has positive length, so it follows from Corollary 3.6.2 that
the multiplicity of F over�k is not more than n+mj . Thus,mk−mj ≤ n. Symmetrically,
mj −mk ≤ n, so, as claimed, |mj −mk| ≤ n.

We continue with the proof of the theorem as follows.
Consider a positive number ρ, and set

A(ρ) =
∑
j=1,...

min(mj , ρ)area�j .

This sum is finite.
Let η : C → R be the projection η(s+ it) = s. There is a set S ⊂ R of zero measure

such that for all s ∈ R \S, the fiber η−1(s)∩γ is a finite set, for the set γ has finite length.
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By Fubini’s theorem,

area�j =
∫
�j

dL (w) =
∫

R\S

∫
η−1(s)∩�j

dt ds.

For all s ∈ R \ S, the set η−1(s) ∩�j is a finite union of mutually disjoint intervals. Let
these be (s + iαj,1(s), s + iβj,1(s)), . . . , (s + iαj,νj (s)(s), s + iβj,νj (s)(s)) with each α
strictly less than the corresponding β. Then∫

η−1(s)∩�j
dt =

νj (s)∑
j=1

{βj,k(s)− αj,k(s)}.

Fubini’s theorem assures us that this sum is a measurable function of s. We have now that

(3.4) A(ρ) =
∫

R\S
min(mj , ρ)

{ ∑
j=1,...

{ νj (s)∑
k=1

{βj,k(s)− αj,k(s)}
}}
ds.

Introduce the notation that for ζ ∈ γ , j ′ζ and j ′′ζ are the indices j for which ζ ∈ b�j . By

Lemma 3.4.16, almost all [d�1] ζ ∈ γ belong to at most two of the boundaries b�j . (For
this count, we have to include b�0.) It follows that the integrand in (3.4) is∑

ζ∈η−1(s)

±(min(mj ′(ζ ), ρ)− min(mj ′′(ζ ), ρ))ζ.

By the lemma,

|min(mj ′(ζ ), ρ)− min(mj ′′(ζ ), ρ)| ≤ �0(F−1(ζ ) ∩ �)
for almost all ζ . Also, on the set γ , |ζ | is bounded, say by K . This leads to

A(ρ) ≤ K
∫

R\S

∑
ζ∈η−1(s)

�0(F−1(ζ ) ∩ �) ds

= K
∫

R\S
�0((η ◦ F)−1(s) ∩ �) ds

≤ KC�1(�)

if C is the Lipschitz constant of the map η ◦ F on �.
The right-hand side of this is independent of ρ, so by letting ρ → ∞, we find that∑

j=1,... mj area�j is finite.
If we apply the result concerning F in the N cases that F runs through the pro-

jections onto the coordinate axes of CN , we find that the areas of the projections of the
variety V , counted with multiplicities, have finite sum, so the area of V itself is finite by
Corollary 3.7.3. The theorem is proved.

Notice that the proof implies the bound that areaV ≤ N(diam�)�1(�), for without
loss of generality, the set � can be supposed to contain the origin, in which case it is
contained within the ball centered at the origin of radius diam�.
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Corollary 3.7.6. If� ⊂ CN is a compact subset of a compact connected set of finite length,
then �̂ has finite two-dimensional measure.

Proof. If �o is a connected set of finite length that contains �, then �̂o ⊃ �̂.

In particular, if γ is a rectifiable simple closed curve, its hull has finite area.
Implicit in what we have done is the result that a one-dimensional variety has locally

finite area. There are much simpler, direct routes to this fact. The corresponding statement
for higher-dimensional varieties is also correct. For these results, see, e.g., [343].

3.8. The Continuation of Varieties

In this section we establish some results on the continuation of one-dimensional analytic
varieties. In part this work draws on the results of the preceding sections concerning hulls,
and in part it is used to obtain further results about polynomial hulls of sets of finite length.

For this discussion, a standard result about currents on Rn or on manifolds will be
needed.

Theorem 3.8.1. If T is a current of degree n on Rn that is closed, then T is of the form
T (α) = c ∫

Rn
α for some constant c.

Proof. The current T is a continuous linear functional acting on compactly supported
smooth forms of degree n on Rn with the property that for each compactly supported
smooth (n− 1)-form β, T (dβ) = 0. This means that there is a distribution φ on Rn such
that for each n-form α = Adx1 ∧· · ·∧dxn, T (α) = φ(A). The condition that T be closed
is the condition that for each compactly supported (n − 1)-form β = ∑n

j=1 Bjω[j ](x),
φ
(∑N

j=1(−1)j−1 ∂Bj
∂xj

) = 0. (As usual, we are using the notation that ω[j ](x) = dx1 ∧
· · · ∧ dxj−1 ∧ [j ] ∧ dxj+1 ∧ · · · ∧ dxn.)

Let {χε}ε>0 be a smooth approximate identity with the property that suppχε is
contained in {x ∈ Rn : |x| < ε}. Let gε be the convolution φ ∗χε. Thus gε is a function of
class C∞ with the property that for each smooth function A on Rn with compact support,

lim
ε→0+

∫
Rn
A(x)gε(x)dx = φ(A).

Moreover, for each derivative, Dα , Dα(φ ∗ χε) = (Dαφ) ∗ χε = φ ∗ (Dαχε).
The condition bT = 0 implies that if β =∑n

j=1 Bjω[j ](x) is a compactly supported
(n− 1)-form on Rn, then

0 =
∫

Rn

n∑
j=1

(−1)j−1 ∂Bj

∂xj
(x)gε(x)dx.

This equation is correct for each choice of β and so implies, by an integration by parts, that∫
Rn
H(x)

∂gε

∂xj
(x)dx = 0
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for each compactly supported function H and for each j . Thus, grad gε = 0, whence gε
is a constant, say cε. We therefore reach the equality

φ(H) = lim
ε→0+

cε

∫
Rn
H dx

for allH . Therefore the limit limε→0+ cε exists; call it c. We then have that T (α) = c ∫
Rn
α

for all compactly supported n-forms. The theorem is proved.
The extension to manifolds is important and immediate.

Corollary 3.8.2. If M is an orientablen-dimensional smooth manifold and ifT is a current
of degree n on M that is closed, then there is a locally constant function g on M such
that for all compactly supported smooth n-forms α on M , T (α) = ∫M gα.

We now turn to the main subject of this section. The first result is a very special case
of a general theorem proved by King [206].

Theorem 3.8.3. Let � be a bounded domain in CN , let E ⊂ � be a relatively closed
set with �2(E) = 0, and let V1, . . . , Vq be one-dimensional analytic subvarieties of
� \ E each of which has finite area. If there are positive integers m1, . . . , mq such that
b(m1[V1] + · · · +mq [Vq ]) = 0, then the relative closure V1 ∪ · · · ∪ Vq ∩� of the union
V1 ∪ · · · ∪ Vq is a one-dimensional subvariety of �.

Explicitly written, the condition on the boundary is that for each compactly supported
1-form α defined on �,

m1

∫
V1

dα + · · · +mq
∫
Vq

dα = 0.

The proof of this result depends on some preparatory lemmas. The first is an elemen-
tary fact from the theory of distributions.

Lemma 3.8.4. Let W be an open set in the plane, and let h be a locally integrable func-
tion on W . If for every compactly supported function g of class C∞ on W the integral∫
W
∂g
∂z̄
(z)h(z) dz̄ ∧ dz vanishes, then there is a holomorphic function h̃ onW that agrees

with h almost everywhere.

Proof. Suppose first that h is smooth. Then for a compactly supported smooth function g
onW , we have

0 =
∫
W

d(ghdz) =
∫
W

{
∂g

∂z̄
(z)h(z)+ g(z)∂h

∂z̄
(z)

}
dz̄ ∧ dz.

We have then that
∫
W
g(z) ∂h

∂z̄
(z) dz̄ ∧ dz = 0. This is true for every choice of g, so the

function h satisfies the Cauchy–Riemann equations and so is holomorphic.
When h is only locally integrable, we apply the preceding observation to a reg-

ularization of h. Let {χε}ε>0 be a smooth approximate identity on C, say χε(z) =
ε−2χ(z/ε), where χ is a compactly supported, even, nonnegative function of class C ∞
with
∫
C
χ dz̄ ∧ dz = 1. Fix an εo > 0 and define hε for ε < εo on the domain

W2εo = {z ∈ W : dist(z, bW) < 2εo}
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by

hε(z) = h ∗ χε(z) =
∫
W

h(z− ζ )χε(ζ ) dζ̄ ∧ dζ =
∫
W

h(ζ )χε(z− ζ ) dζ̄ ∧ dζ.

The function hε is defined and smooth on W2ε, and, by Fubini’s theorem, it satisfies the
condition that

∫
W2ε

∂g
∂z̄
hε = 0 for every smooth function g with compact support in W2ε.

Therefore hε is holomorphic in W2ε. Moreover,
∫
W2ε

|hε − h| → 0 as ε → 0+. The L1

convergence of {hε} onW2ε implies uniform convergence on compacta contained inW2ε.
Thus, h does indeed agree almost everywhere with a holomorphic function, as we wished
to show.

The next lemma contains the main step in the proof of the theorem.

Lemma 3.8.5. Let � be an open set in CN of the form � = W × W ′, where W is an
open set in the plane and W ′ is an open set in CN−1. Let E ⊂ � be a relatively closed
set with �2(E) = 0. Let V1, . . . , Vq be one-dimensional analytic subvarieties of � \ E
each of which has finite area. If the projection π : CN → C onto the z1-plane carries
V1 ∪ · · ·∪Vq ∪E properly ontoW , and if for some positive integersm1, . . . , mq , we have
b(m1[V1]+ · · ·+mq [Vq ]) = 0, then the relative closure of V1 ∪· · ·∪Vq in� is contained
in a one-dimensional subvariety of �.

Proof. SetV = V1∪· · ·∪Vq.The mapπ carriesV ∪E properly ontoW , so it carries the set
E onto a closed subset ofW , which has zero area. Thenπ carries the varietyV \π−1(π(E))

properly ontoW \π(E), and for each j , it carries Vj \π−1(π(E)) properly ontoW \π(E).
Consequently, for some positive integerµj , the fibers π−1(z1)∩Vj for z1 ∈ W \E contain
µj points, if multiplicities are counted appropriately.

Fix a j , and consider the current π∗[Vj ] onW defined by

π∗[Vj ](β) = [Vj ](π∗β) =
∫
Vj

π∗β.

Because Vj ∩ π−1(π(E)) is a set of vanishing two-dimensional measure, we can invoke
Fubini’s theorem to write∫

Vj

π∗β =
∫
Vj \π−1(π(E))

π∗β = µj
∫
W\π(E)

β,

so π∗[Vj ] = µj [W ], and we find that

π∗(m1[V1] + · · · +mq [Vq ]) = (m1µ1 + · · · +mqµq)[W ].
Denote the integer m1µ1 + · · · +mqµq by ν.

For j = 2, . . . , N , we will now produce a function Pj ∈ O(�) of the form

(3.5) Pj (z) = zνj + aj,1(z1)z
ν−1
j + · · · + aj,ν−1(z1)zj + aj,ν(z1)

with coefficients aj,k holomorphic on W such that P−1
j (0) ⊃ V . To do this, define a

polynomial Pj (z1, X) in the indeterminate X for z1 in the open set W \ π(E) by the
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condition
Pj (z1, X) =

∏
r=1,...,q

P
(r)
j (z1, X),

where for each r = 1, . . . , q, the polynomial P (r)j (z1, X) is associated with the variety Vr
and is defined by

P
(r)
j (z1, X) =

∏
[(X − (w(r,k)(z1))j )]µj .

In the latter product, the product extends over all the pointsw(r,k)(z1) in the fiber π−1(z1)

that lie in the variety Vr , each included according to its multiplicity, and (w(r,k)(z1))j

denotes the j th coordinate of the point w(r,k)(z1). Thus, P (r)j (z1, X) is a polynomial of
degreemrµr , and the total degree of Pj (z1, X) is ν. The polynomial Pj (z1, X) can be ex-
panded into the form (3.5). The coefficients are then the elementary symmetric functions of
the numbers (w(r,k)(z1))j , taken with the indicated multiplicities. These are well-defined
functions on the domainW ; we claim they they are holomorphic. To establish the holomor-
phicity of the coefficients, we need to recall that the elementary symmetric functions can be
expressed as polynomials with integral coefficients in the power sums of the (w(r,k)(z1))j ,
i.e., as polynomials in the functions σp given, for p = 0, 1, . . . , by

σp(z1) =
∑[

(w(r,k)(z1))j
]p
.

These power sums are holomorphic on W \ π(E). That is to say, if we define ψj,p :
CN → C by ψj,p(z) = z

p
j , then

∑
z∈π−1(z1)∩Vr ψj,p(z) is a holomorphic function on

W \ π(E). That this function is holomorphic on W \ π(E) is proved by the standard
argument involving the Cauchy integral formula and the residue theorem in one variable
that is used in treating the Weierstrass preparation theorem and the Weierstrass division
theorem. That it continues holomorphically through all of W is contained in the next
lemma.

Lemma 3.8.6. If f is holomorphic on π−1(W), and if sf,p is defined on W \ π(E) by
sp,f (z1) =∑w∈π−1(z1)∩V m(w)f

p(w), where m(w) is mj if w ∈ Vj , then sf,p, which is
holomorphic onW \ π(E), extends holomorphically through all ofW .

Note that the value m(w) is well defined outside a subset of V1 ∪ · · · ∪ Vq of mea-
sure zero.

Proof. It is in this lemma that the hypothesis that b(m1[V1] + · · · +mq [Vq ]) = 0 is used.
The function sf,p is defined and holomorphic on W \ π(E), and it is locally bounded on
W , and so a fortiori is locally integrable. To prove that it extends holomorphically through
all of W , we need only show that

∫
W
sf,p∂̄g ∧ dz1 = 0 for all smooth functions g on W

that have compact support. But this is immediate: If g is a smooth function on W with
compact support, then by hypothesis we have

0 =
q∑
j=1

mj

∫
Vj

f p d((g ◦ π)dz1) =
q∑
j=1

mj

∫
Vj

f pπ∗∂̄(gdz1)

=
∫
W

∑
w∈π−1(z)

mj (w)f
p(w) ∂̄g ∧ dz1 =

∫
W

sf,p ∂̄g ∧ dz1,
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so that, as desired, the function sf,p continues holomorphically into all ofW .
We now know that the coefficients aj,k in the polynomial (3.5) extend to be holo-

morphic in the domain W . We shall denote these extensions again by aj,k . If we set, for
j = 2, . . . , N , Pj (z) = Pj (z1, zj ), then Pj ∈ O(�), and the intersection P−1

2 (0) ∩ · · · ∩
P−1
N (0) is a one-dimensional subvariety of� that contains V . This completes the proof of

Lemma 3.8.5.
To prove the theorem we need the notion of clear coordinate system.

Definition 3.8.7. If S is a subset of CN and p is a point of S, then a coordinate system
with linear coordinates ζ1, . . . , ζN centered at p is said to be a clear coordinate system
with respect to the set S if for each j = 1, . . . , N , there is a neighborhood Wj of p such
that the function ζj carriesWj ∩ S properly into a neighborhood of 0 ∈ C.

Lemma 3.8.8. If E ⊂ CN is a closed set that satisfies �3(E) = 0, and if p ∈ E, then
there is a clear set of coordinates at p with respect to E.

The proof we give will establish more: There are many such sets of clear coordinates.

Proof. Without loss of generality, we can suppose p to be the origin. Theorem 3.3.10 im-
plies that for almost allL ∈ GN,N−1, the setE∩L has zero length. Consequently, there are
linear coordinates ζ1, . . . , ζN centered at the origin such that for each j = 1, . . . , N , the
set Lj = ζ−1

j (0) meets E in a set of zero length.
We fix our attention on a particular choice of j , say j = 1. The setLj meetsE in a set

of length zero, so there is a small sphere S of dimension 2N − 3 centered at the origin and
contained inL1 that is disjoint fromE. The sphere S is defined as the set {(0, ζ2, . . . , ζN) ∈
CN : |ζ2|2+· · ·+|ζN |2 = r2} for some small positive r . The setE is closed. Consequently,
ifW1 = {(ζ1, . . . , ζN) ∈ CN : |ζ1| < δ, and |ζ2|2 +· · ·+ |ζN |2 = r2} for a small positive
δ, thenW1 is a neighborhood of 0 with the property that the coordinate function ζ1 carries
E ∩W1 properly to the disk of radius δ in C. The other coordinates are treated similarly;
the lemma is proved.

Proof Theorem 3.8.3. Let V = V1 ∪ · · · ∪ Vq . Fix a point z ∈ V̄ ∩�.
Because�3(V̄ ∩�) = 0, there is a set of clear coordinates for the set V̄ ∩� centered

at z. Let these coordinates be z1, . . . , zN . Apply Lemma 3.8.5 to find a one-dimensional
subvarietyW in a neighborhood �(z) of z with V ∩�(z) ⊂ W .

Consider the current T defined on Wreg to be the restriction of the current∑q

j=1mj [Vj ], so that for a 2-form α defined onWreg and having compact support in this
surface, T (α) =∑n

j=1mj
∫
Vj
α. This current is closed: dT = 0, so by Corollary 3.8.2 it

is of the form T (α) =∑k ck[Wreg,k], where theWreg,k are the components of the complex
manifold Wreg and the ck are suitable constants. The only k for which ck is not zero are
those for which the associated Wreg,k contains a branch of one of the Vj , and, granted
that Wreg,k does contain a branch of Vj ∩ �, it follows that the constant ck has to be the
associated integer mj . If we let W ′

reg be the union of the components of Wreg for which
the associated ck is not zero, then we have W ′ ⊃ ∪jVj , and the equality of the currents∑
k ck[Wreg,k] and

∑
j mj [Vj ∩�] implies that the setsW ′

reg and ∪jVj ∩�(z) coincide.

Consequently, the set ∪jVj ∩�(z) coincides with the union of the global branches ofW
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that contain branches of some Vj ∩�.We now see that, as claimed, the set ∪jVj ∩� is
a variety.

The theorem is proved.

The next result concerns curves that are invariant under complex conjugation. It was
found by Alexander [4]. Let τ : CN → CN be the conjugation operator given by

τ(z1, . . . , zN) = (z̄1, . . . , z̄N ),

an antiholomorphic involution of CN .

Theorem 3.8.9. If � ⊂ CN is a domain that is invariant under the action of τ , and if V
is a one-dimensional subvariety of � \ RN that is invariant under the action of τ , then
V̄ ∩� is a one-dimensional subvariety of �.

With the additional assumption that V has finite area, the result was established
earlier by Shiffman [328].

Proof. The problem is to prove that near a point x of V̄ ∩�∩RN , the set V̄ has the structure
of a one-dimensional variety. Fix such a point x, and choose an r > 0 small enough that the
closed ball B̄(r) centered at x and of radius r is contained in �. By choosing r properly,
we shall have that bB(r) ∩ V \ RN is a locally finite family of open analytic arcs and
simple closed curves. Set Y = V̄ ∩ B̄(r), and denote by � the Shilov boundary of the
algebra P(Y ), so that � is the smallest closed subset of Y whose polynomially convex
hull coincides with the polynomially convex hull of Y .

We shall show that � = Y ∩ bB(r) = V̄ ∩ bB(r). By the maximum principle,
� ∩V ∩B(r) = ∅. Further, no point of � can lie in RN ∩B(r), as we see in the following
way. Suppose� to meet RN∩B(r). There is then a polynomialP such that ‖P ‖�∩bB(r) < 1

2
but 1 = ‖P ‖� = P(y) for some point y ∈ Y ∩ RN ∩ B(r). Introduce the polynomial
Q given by Q(z) = P(z)P (z̄), a polynomial real on RN that satisfies Q(y) = 1 and
‖Q‖�∩bB(r) < 1

4 . The maximum principle implies that Q(V̄ ∩ B̄(r)) is contained in the
set {ζ ∈ C : |ζ | ≤ 1

4 } ∪ [0, 1]. The point y lies in the closure of the set V ∩ B(r), so
there are points z in V near the point y. For such a point z, we have that Q(z) is in the
interval ( 1

4 , 1], so there is a polynomial in one variable, say p, such that p(Q(z)) = 1 but
|p ◦Q| < 1 on the set V̄ ∩Q−1(Q(z)), in contradiction to the maximum principle. Thus
� = Y ∩ bB(r) = V̄ ∩ bB(r).

Next, for n = no, no + 1, . . . for some sufficiently large no, its choice depends on
the value of r , let

Xn = � ∪ {z ∈ CN : dist(z, � ∩ RN) < 1/n}̂ .
By Theorem 3.1.1, the polynomially convex hull X̂n has the property that the set Wn =
X̂n \Xn is either empty or else is an analytic variety. The setWn contains

B(r) ∩ V \ {z ∈ CN | dist(z, � ∩ RN) < 1/n}̂ ,
and so it is not empty. The intersection of an arbitrary family of varieties is itself a variety, so
the set of points z ∈ CN that lie in all but finitely many of the setsWn is a one-dimensional
analytic subvariety,W , of B(r) that contains B(r) ∩ V and consequently B(r) ∩ V̄ .
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We have now shown that B(r) ∩ V̄ is contained in the subvariety W of B(r). We
have to show thatB(r)∩ V̄ actually is a subvariety ofB(r). Each of the setsXn is invariant
under the reflection τ , so the same is true of the varietyW . The set of singular points of the
variety W is discrete, so if B(r ′) is a ball centered at the point x of W and of sufficiently
small radius, then B(r ′) � B(r), and the point x is the only possible singular point of the
variety W in B(r ′). In addition, W ∩ B(r ′) has a finite number of global branches, say
W ∩ B(r ′) = W1 ∪ · · · ∪Wq , each of which is irreducible at the point x. We show that
V ∩B(r ′) is a union of some, perhaps all, of theWj . For each j , V ∩Wj is either empty or
else is open inWj . In the latter case, let y ∈ Wj be a point of V̄ \V . The point y lies in RN .
Near y, RN splitsWj into two pieces. We have thatWj is invariant under the reflection τ ,
forW is τ -invariant, and the variousWj ’s meet only at x. The set V is invariant under τ ,
so it follows that near x, V ∩Wj agrees withWj \RN . Consequently, V ∩Wj is dense in
Wj , soWj \ RN ⊂ V . Thus V ∩ B(r ′) is a union of some of the setsWj . The theorem is
proved.

Corollary 3.8.10. [149] Let� be an open subset of CN that contains the open analytic arc
λ as a closed subset. If S1 and S2 are irreducible one-dimensional subvarieties of � \ λ
such that λ ⊂ S̄1 and λ ⊂ S̄2, then either S1 and S2 coincide or else S1 ∪ λ ∪ S2 is a
subvariety of �.

Proof. The arc λ is an open analytic arc and a closed subset of �. It follows that there is
a domain �′ that contains λ and that is a subdomain of � in which there are holomorphic
coordinates ζ = (ζ1, . . . , ζN) such that λ is the � ζ1 coordinate axis. Denote by Rζ the
component of the submanifold of�′ on which ζ1, . . . , ζN are all real-valued that contains
λ. There is an antiholomorphic reflection, say �, of a neighborhood of Rζ that leaves Rζ
fixed pointwise. By shrinking�′ we can suppose � to be defined on all of�′ and that�′ is
invariant under the reflection �. Let S′1 = S1∩�′ and similarly for S′2. LetV1 be the variety
S′1 ∪ �(S′1), V2 the variety S′2 ∪ �(S′2). According to Theorem 3.8.9, V1 and V2 extend to
analytic subvarieties of �′. They are necessarily irreducible, for S1 and S2 are supposed
to be irreducible. Their intersection contains the arc λ, so they coincide. At this point,
there are two possibilities. It may happen that S1 = S2, and we are done. Alternatively,
S1 = �(S2), and then, S2 = �(S1). In this case, we have that S1 ∪ λ ∪ S2 is a variety. The
proof is complete.

We will indicate also the proofs of the following two corollaries, though they draw
on some points in algebraic and analytic geometry whose development lies beyond the
scope of the present work.

Corollary 3.8.11. (Tornehave—see [327].) If V is a one-dimensional subvariety of the
unit polydisk UN such that V̄ \ V ⊂ TN , then there is an algebraic curve � in CN with
V = � ∩ UN .

Here, as usual, TN is the distinguished boundary of the polydisk.

Proof. We shall use C∗N to denote the N -fold product of the Riemann sphere with itself.
The proof of the corollary uses the antiholomorphic reflection of ρ : C∗N → C∗N given
by ρ(z1, . . . , zN) = (1/z̄1, . . . , 1/z̄N ) with the conventions that 1/0 = ∞ and 1/∞ = 0.
The involution ρ has the torus TN as its fixed-point set. Under the exponential mapping a
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neighborhood of a point p ∈ TN is equivalent to a neighborhood of a point p̃ ∈ RN with
a piece of TN corresponding to a piece of RN .

LetV ⊂ UN be a one-dimensional variety as in the statement of the corollary. The set
ρV is a one-dimensional subvariety of C∗N \TN , for ρ is antiholomorphic. Theorem 3.8.9
implies that the set V ∪ ρ(V ) is a one-dimensional subvariety of C∗N .

The result now follows from a theorem of Chow [158, p. 170], according to which
subvarieties of the projective spaces PM(C) are algebraic. (To be sure, for N > 1, C∗N
is not a projective space, but it embeds into P2N−1(C) under the Segre embedding, which
embeds a product of projective spaces into a projective space. The Segre embedding is
discussed in [256].)

Corollary 3.8.12. [327] If R is a connected Riemann surface and f1 and f2 are mero-
morphic functions on R such that |fj (p)| → 1 as p → ∞, j = 1, 2, then f1 and f2 are
algebraically related.

Explicitly, there is a nonzero polynomial P in two variables such that P(f1, f2) = 0
on R.

Proof. The hypothesis implies that each of the functions f1, f2 has at most finitely many
poles in R. Accordingly, there is a neighborhood � of T2 in C2, which we can take to
be invariant under the antiholomorphic involution ρ used in the preceding corollary, such
that under the map F : R → C∗2 given by F(p) = (f1(p), f2(p)), the Riemann surface
R \F−1(�) is carried properly into� \T2. By the proper mapping theorem for varieties
(see [158, p. 162]), the image F(F−1(�)) is a subvariety of � \ T2. Call this variety
V . Then V ∪ ρ(V ) is a subvariety of � \ T2, and it is invariant under the action of the
involution ρ used in the preceding lemma. Consequently, V ∪ ρ(V ) ∩ � is a subvariety
of�. It follows that the closure of the set F(R)∪F(ρ(R)) in C∗2 is a subvariety of C∗2,
and the corollary follows again from Chow’s theorem.

Next we apply the Bochner–Martinelli kernel to study the boundaries of bounded
varieties.

If w ∈ CN , then the Bochner–Martinelli kernel

kBM(z, w) = |z− w|−2Nω′(z− w) ∧ ω(z)
is a closed form of degree (2N − 1) on the manifold CN\{w}, and it is not exact, for

1 = cN
∫
{z : |z−w|=1}

kBM(z, w).

Thus, it determines a nonzero element [kBM(·, w)] in the de Rham cohomology group
H 2N−1

deR (CN\{w}). By de Rham’s theorem, this group is isomorphic to the singular group
H 2N−1(CN \{w};C), which is isomorphic toH 2N−1(S2N−1;C)� C, so each element of
H 2N−1

deR (CN \{w}) is a complex multiple of the class determined by the Bochner–Martinelli
kernel KBM(·, w).
Definition 3.8.13. If V is an analytic variety in an open set � in CN (or in a complex
manifold), the boundary of V is the set bV = V̄ \ V .
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The set bV is closed; in the event that the open set � is bounded, the boundary bV is
compact. In the latter case, V is contained in the polynomially convex hull b̂V .

Recall that a compact subset X of CN is said to be convex with respect to varieties
of dimension p if for each point zo ∈ CN \X there is a purely p-dimensional subvariety
V of CN that is disjoint from X but that contains zo. A related notion is that of convexity
with respect to p-dimensional set-theoretic complete intersections:

Definition 3.8.14. A compact subset X of CN is convex with respect to p-dimensional
set-theoretic complete intersections if for each point zo ∈ CN \X there is a holomorphic
map F : CN → CN−p such that the fiber F−1(0) is purely p-dimensional and contains
zo but is disjoint from X.

Convexity with respect to p-dimensional set-theoretic complete intersections is the
same as convexity with respect to p-dimensional manifolds that are set-theoretic complete
intersections.

One case of these notions is familiar: In CN convexity with respect to varieties of
dimension N − 1 is simply the notion of rational convexity, as we have noted above. The
condition of convexity with respect to set-theoretic complete intersections of dimension
N−1 is equivalent in CN to the condition of convexity with respect to (N−1)-dimensional
varieties, because the second Cousin problem is universally solvable on CN . Whether this
equivalence persists in all dimensions is not clear.

However, convexity with respect to one-dimensional varieties is equivalent to the
condition of convexity with respect to one-dimensional complete intersections. This is so,
for it is known that every one-dimensional complex submanifold of CN is a set-theoretic
(and, indeed, an ideal-theoretic) complete intersection. This is a deep result found in [121];
we cannot enter into the details here, nor shall we use the result below.

Theorem 3.8.15. If V is a purely k-dimensional subvariety of a bounded domain in CN

with �2k(bV ) = 0, then Ȟ 2k−1(bV ;Z) �= 0.

This theorem, with the coefficients Z replaced by coefficients in C, was obtained
in [148].

Proof. We shall prove the theorem only in the case that V is a manifold. The proof in the
general case runs along precisely the same lines but requires a less-standard version of
Stokes’s theorem than the one we use, which can be found, e.g., in [343]

Thus, we suppose V to be a purely k-dimensional submanifold of the bounded open
set � in CN with �2k(bV ) = 0. We will construct a holomorphic map f : CN → Ck

such that 0 ∈ f (V ) and 0 /∈ f (bV ). To do this, suppose 0 ∈ V and that the tangent space
T0V is Ck . Let π : CN → Ck be the orthogonal projection. The set π(bV ) has measure
zero in Ck , so there is a point a ∈ π(V ) near 0 such that a /∈ (π)(bV ). In this case, we
take f = π − a.

Write f = (f1, . . . , fk), so that the functions f1, . . . , fk are holomorphic on CN ,
they have a common zero in V , and they have no common zero near bV . We shall show
that the map f/|f | from bV to S2k−1 is not homotopic to a constant map.

With ω(f ) = df1 ∧ · · · ∧ dfk and ω′(f̄ ) = ∑k
j=1(−1)j−1f̄j df̄1 ∧ · · · ∧ d̂f̄j ∧

· · · ∧ df̄k, we let θ be the form given by θ = |f |−2kω′(f̄ ) ∧ ω(f ). That is to say,
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θ = f ∗kBM(z, 0), where kBM is the Bochner–Martinelli kernel on Ck .
Choose a sequence {�j }j=1,... of domains in CN with�j � �j+1, with ∩�j = bV ,

and such that V ∩ �j is a domain on which Stokes’s theorem is applicable. (For this, it
suffices that b�j be smooth and transversal to the manifold V .) Let �j = b(�j ∩V ). For
large j , ∫

�j

θ =
∫
�j+1

θ

by Stokes’s theorem, for θ is a closed form. For large j , these integrals are nonzero.
This is so, for because f−1(0) avoids a neighborhood of bV , the set

S = {z ∈ V : f (z) = 0}
is a compact variety in CN and so is finite. Let S= {p1, . . . , ps}. For small ε > 0 and each
j = 1, . . . , s, letWj be the component of the set where |f | < ε that contains pj . We have
by Stokes’s theorem that when j is large,∫

�j

θ =
s∑
j=1

∫
bWj

θ =
s∑
j=1

ε−2k
∫
Wj

ω(f̄ ) ∧ ω(f ),

and this quantity is not zero.
It follows that the map f from �j to Ck \ {0} is not homotopic to a constant. The

same is therefore true of the map f/|f | from �j to S2k−1 for large j : The map f/|f |
from CN \ f−1(0) to S2k−1 is continuous. If it were homotopic to a constant on bV , then
it would be homotopic to a constant on a neighborhood of bV in CN and so would be
homotopic to a constant on �j for large j . The preceding paragraph implies, therefore,
that f/|f | is not homotopic to a constant on V.

To conclude the argument, we must invoke some dimension theory. The standard ref-
erence is the classic of Hurewicz and Wallman [185]. The hypothesis that �2k(bV ) = 0
implies that the topological dimension of bV is not more than 2k − 1, by [185, Theo-
rem VII.3, p. 164]. Since the map f/|f | from bV to S2k−1 is not homotopic to a constant,
it follows that Ȟ 2k−1(bV ;Z) �= 0 by [185, Corollary, p. 150].

The theorem is proved.

In the case of one-dimensional varieties, which we shall use below, there is an
essentially simpler derivation of the result of Theorem 3.8.15 than the one given above:
We are to show that if V is a one-dimensional subvariety of a bounded domain in CN

such that �2(bV ) = 0, then the group Ȟ 1(bV ;Z) does not vanish. As in the proof of
Theorem 3.8.15 given above, we have a holomorphic function f on CN that assumes the
value zero at some points of V but that is zero-free on bV . If Ȟ 1(bV,Z) = 0, then there is
a branch of logf defined on a neighborhood of bV . Then f has a logarithm on the curves
�j for large j . By the argument principle, this is incompatible with f ’s vanishing at some
points of V .

Remark. There is an extension of a weakened version of the preceding result to a slightly
different class of boundaries: If in Theorem 3.8.15 it is assumed that bV is convex with
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respect to (N − k)-dimensional complete intersections, then Ȟ 2k−1(bV ;C) = 0. The
convexity hypothesis implies the existence of a map f : CN → Ck that vanishes at some
point of V but at no point of V. We now use the domains �j , the manifolds �j , and the
form θ constructed above.

That
∫
�j
θ �= 0 implies that the form θ represents a nonzero element [θ ]j in the de

Rham cohomology class H 2k−1
deR (�j ). The map H 2k−1

deR (�j )→ H 2k−1
deR (�j+1) induced by

the inclusion �j+1 ↪→ �j carries [θ ]j to [θ ]j+1.

Now H 2k−1
deR (�j ) � Ȟ 2k−1(�j ;C) � Ȟ 2k−1(�̄j ;C). Thus, the nonzero element

[θ ]j ∈ H 2k−1
deR (�j ) corresponds to a nonzero element [θ ]ǰ ∈ Ȟ 2k−1(�̄j , C), and under

the map ιj,j+1 : Ȟ 2k−1(�̄j ,C) → Ȟ 2k−1(�̄j+1,C) induced by the inclusion �̄j+1 ↪→
�̄j , [θ ]ǰ goes to [θ ]ǰ+1. The compact space bV is the inverse limit of the system of compact
spaces �̄j , j = 1, . . . , with the natural inclusions, so Ȟ 2k−1(bV ;C) is the direct limit of

the groups Ȟ 2k−1(�j ;C). The elements [θ ]ǰ+1 taken together give a nonzero element of
this group, so Ȟ 2k−1(bV ;C) �= 0, as we claimed.

These results may be thought of as a geometric version of a simple observation in
classical function theory: Let g be a bounded holomorphic function on the unit disk. If the
global cluster set of g at bU is nowhere dense, then it separates the plane.

Remark. The relation between the condition that�2k(bV ) = 0 and the condition that bV
be convex with respect to (N − k)-dimensional complete intersections cases is not clear.
We know that a compact set that has vanishing two-dimensional measure is rationally
convex and so convex with respect to (N − 1)-dimensional complete intersections. More
seems not to be known.

Examples. We have already seen examples of the phenomena of the last two theorems.
In Section 1.6.2 we have exhibited arcs and Cantor sets that are of the form bV for one-
dimensional varieties in bounded domains of C3. If E is an arc or a Cantor set that is bV
for a one-dimensional subvariety of a bounded domain in CN , then the cohomology group
Ȟ 1(bV ;C) vanishes, so the setE cannot be rationally convex; in particular, it cannot have
vanishing two-dimensional measure.

We will next establish a result on the continuation of one-dimensional varieties. This
work must be preceded by a lemma about logarithms on thin subsets of RN .

Lemma 3.8.16. If X is a compact subset of RN with zero two-dimensional Hausdorff
measure and if E is a compact subset of X, then every zero-free function on E extends to
a zero-free function on X.

Proof. If f ∈ C (E) is zero-free, then for some δ > 0, |f (x)| ≥ δ for all x ∈ E. There is
a function f ′ that is continuous on all of RN that agrees with f on E and that is of class
C∞ on {x ∈ RN : |f ′(x)| < δ/2}. Then the set f ′(X) ∩ U(δ/2) is a set with area zero in
C, so there are α’s in C with |α| arbitrarily near zero such that f ′ − α is zero-free onX. If
α is sufficiently small then |f/(f ′ − α)| < 1

2 on E. Thus, for some continuous function h
onE, f (f ′ −α)−1 = eh on the setE. If h′ ∈ C (X) agrees onE with f , then the function
(f ′ − α)eh′ is a continuous, zero-free function on X that agrees on E with h. The lemma
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is proved.

Corollary 3.8.17. IfX is a compact subset of RN with zero two-dimensional measure, then
for each compact subset E of X, the natural map Ȟ 1(X;Z)→ Ȟ 1(E;Z) is surjective.

The corollary follows from the lemma because of the theorem of Bruschlinsky dis-
cussed at the end of Section 1.2.

Remark. The preceding lemma and its corollary are special cases of much more general
results in dimension theory. See [185].

Theorem 3.8.18. LetD be a bounded domain in CN , let E be a compact subset of D̄, and
let V be a one-dimensional subvariety of D \ E. If �2(E) = 0, if Ȟ 1(E;Z) = 0, and if
E ∩ bD is a single point, then V̄ ∩D is a one-dimensional variety.

Note that in this result there is no hypothesis of smoothness on the boundary bD
nor is there a pseudoconvexity hypothesis on D. For D = BN , the result was given Y.
Xu [376].

An example of this result occurs when D is the unit ball in CN and E is an arc with
zero two-dimensional measure that meets the boundary of the ball in a single point.

Corollary 3.8.19. Let D be a bounded domain in CN , and let λ be a rectifiable arc with
endpoints in bD, interior inD, and let V be a purely one-dimensional subvariety ofD \λ.
If there is a point p ∈ λ such that for some neighborhood U of p in D, (V ∪ λ) ∩ U is a
one-dimensional subvariety of U , then V ∪ λ is a one-dimensional subvariety of D.

Corollary 3.8.20. IfD is a strictly pseudoconvex domain in CN with bD of class C 2, and
if V ⊂ D is a purely one-dimensional variety with �2(bV ) = 0, then no open subset of
bV is totally disconnected.

Proof. Suppose E ⊂ bV to be an open set of bV that is totally disconnected. Fix p ∈ E.
There is then an open connected set � in CN with p ∈ � and such that b� ∩E = ∅. The
intersection V ∩� is not empty, for p ∈ bV . Theorem 3.8.18 implies thatW = V̄ ∩� is
an analytic subvariety of �. This is impossible, for there is a function f holomorphic on
a neighborhood of D̄ that satisfies f (p) = 1 > |f (z)| for all z ∈ D̄ \ {p}. The corollary
is proved.

Proof of Theorem 3.8.18. The set E ∩ bD is a point, which we assume to be the origin,
so there is a domain � ⊂ D such that E ⊂ �, such that 0 ∈ b�, such that b� \ {0} is a
real-analytic hypersurface, say�, that meetsV in a subset ofVreg that is a one-dimensional
real-analytic submanifold of �, and such that E ∩ b� = {0}. Let Vo = V ∩�. We have
that (V̄ \ V ) ∩� = (V̄o \ Vo) ∩�.

For a small ε > 0, let B̄(ε) be the closed ball of radius ε centered at 0, and let
�ε = (V ∩ b�) \ B̄(ε). Also, we let � = V̄o ∩ b�, a compact set.

Lemma 3.8.21. Vo ⊂ �̂.

Proof. Suppose not, so that there is a point, zo, in Vo \ �̂. Thus, there is a polynomial P
with �P < −1 on �̂ but with P(zo) = 0. The set P(E) in C also has measure zero, for
�2(E) = 0. Accordingly, if we replace P by P −α for a suitably chosen small α /∈ P(E),
we can suppose that P is also zero-free on E. Then P has a logarithm on E because
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Ȟ 1(E;Z) is assumed to be zero, and it also has a logarithm on �, for �P < 0 there. The
set E meets � at a single point, so P has a logarithm on the set E ∪ �. This implies that
for a sufficiently large compact subset K of Vo that contains zo, the polynomial P has a
logarithm on Vo \ K . But P vanishes at zo, and we have reached a contradiction to the
argument principle. The lemma is proved.

We now continue with the proof of the theorem.

The set ̂
�ε ∪ B(ε) \ (�ε ∪ B(ε)), which we shall denote by Wε, contains �̂, which,

in turn, contains Vo. Accordingly,Wε is a variety. Also, for δ < ε,Wε = Wδ \B(ε). From
�ε ∪ B(ε) ⊃ �δ ∪ B(δ) follows Wε ⊃ Wδ \ B(ε). Denote by W the subset of � that
consists of all the points that are contained in Wε for all sufficiently small ε > 0. The set
W is locally the intersection of a sequence, and so is a one-dimensional subvariety of �.
It contains the subvariety Vo of � \ E and so it contains V̄o ∩�.

The reverse inclusion also holds: W ⊂ V̄o ∩ �. To establish this, it is enough to
show that ifW ′ is a branch of the subvarietyW \ E of � \ E, thenW ′ ⊂ Vo. Given such
a branch W ′, we see that the set bW ′ = W ′ \ W ′ has to contain a simple closed curve
contained in �. This is so, for, because bW ′ ⊂ � ∪E, necessarily�2(bW ′) = 0, whence,
by Theorem 3.8.15, Ȟ 1(bW ′;Z) �= 0. The set E satisfies Ȟ 1(E;Z) = 0, and it meets �
only at the point 0. Because � is a real-analytic one-dimensional submanifold of �, the
only way for Ȟ 1(bW ′;Z) not to vanish is for bW ′ to contain a simple closed curve. Let
γ ⊂ �̄ be a simple closed curve contained in bW ′.

There is a point z1 ∈ γ \{0} such that for some neighborhoodU of z1 in CN , γ ∩U is
an analytic arc that is contained in a connected one-dimensional complex submanifold,�,
ofU . The variety V meets� along the arc λ, so� and V coincide near λ. In addition, bW ′
abuts λ, so necessarily, near λ,W ′ is contained in Vo, as follows from Theorem 3.8.14.

We have that each global branch of W \ E is contained in Vo and, a fortiori, in V̄o.
Consequently, W ⊂ V̄o. Thus, the two sets W and V̄o ∩ � coincide, and the latter set is
found to be a variety. The proof is complete.

Corollary 3.8.22. Let D be a bounded domain in CN , let E ⊂ � be a compact set with
�2(E) = 0 and Ȟ 1(E;Z) = 0. If V is a one-dimensional subvariety of�\E, then V̄ ∩�
is a one-dimensional subvariety of �.

A special case of this corollary was found by Alexander [17]:

Corollary 3.8.23. Let D be a domain in CN , and let E ⊂ D be a compact set of finite
length that is totally disconnected. If V ⊂ D \E is a one-dimensional variety, then V̄ ∩D
is a one-dimensional subvariety of D.



Chapter 4

SETS OF CLASS A1

Introduction. In this chapter we discuss the hulls of a class of sets with
finite length more general than those contained in connected sets. Section 4.1
is introductory. Section 4.2 assembles some results from geometric measure
theory for use in subsequent sections. Section 4.3 introduces the class A1 of
sets that are the main object of study in this chapter. Section 4.4 establishes the
finiteness of the area of certain one-dimensional varieties. Section 4.5 contains
a version of Stokes’s theorem. Section 4.6 introduces a useful multiplicity
function. Section 4.7 contains a bound on the number of global branches of
a hull.

4.1. Introductory Remarks

In our discussion of the hull of a set of finite length there has so far always been the
hypothesis that the set in question lies in a connected set of finite length. Examples show
that for general sets of finite length, the hull can be very complicated and need not be
a variety. It has turned out, though, that the hypothesis is unduly restrictive. Dinh and
Lawrence have shown how to deal with the hulls of certain more general sets. This chapter
is mainly an exposition of these ideas. One easily appreciated result that emerges from
this work is that if X is any compact subset of bBN of finite length, then X̂ \ X is a
one-dimensional variety. (See the very end of Chapter 7.)

Much of this work seems to require some decidedly nontrivial parts of geometric
measure theory. The next section is devoted to a résumé of what is needed—the statement
of the relevant definitions and statements of results.

169
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4.2. Measure-Theoretic Preliminaries

The context is that of a class A1 of sets, which properly includes the connected sets of
finite length. The definition requires some preliminary notions. References for most of this
material are Federer’s book [115] and the volume [114] of Falconer.

Definition 4.2.1. A set E ⊂ RN is k-rectifiable, k = 1, . . . , if it is of the form E = f (S)
with S ⊂ Rk a bounded set and f : S → RN a Lipschitz map.

Definition 4.2.2. A set E ⊂ RN is countably (�k, k)-rectifiable if it is measurable and
if there is a countable family of k-rectifiable sets whose union contains almost all [d�k]
of E.

Definition 4.2.3. A set E ⊂ RN is (�k, k)-rectifiable if�k(E) <∞ and E is of the form
E = Eo ∪ ∪j=1,...Ej with Eo a set of zero k-dimensional measure and with each Ej ,
j = 1, . . . , a k-rectifiable set.

Thus, a set E ⊂ RN is (�k, k)-rectifiable if it is countably (�k, k)-rectifiable and if
�k(E) is finite.

The definition of (�k, k)-rectifiable set is equivalent to the condition that E =
Eo∪∪j=1,...Ej , whereEo is a set of zero k-dimensional measure and eachEj , j = 1, . . . ,
is a subset of a C 1-submanifold of RN . This equivalence is not simple; it is established in
[115, Theorem 3.2.29].

We will have to invoke the structure theorem at certain points below. A subset P of
RN with �k(S) < ∞ is said to be purely (�k, k)-unrectifiable if it contains no (�k, k)-
rectifiable set T with �k(T ) > 0. The condition of being purely (�k, k)-unrectifiable is
equivalent to the condition that for almost every orthogonal projection π : RN → RN of
rank k, the set π(T ) satisfies �k(π(T )) = 0.

There is the following fundamental result:

Theorem 4.2.4. If S ⊂ RN has finite k-dimensional measure, then there is a decompo-
sition S = R ∪ P with R a countably (�k, k)-rectifiable set and P a purely (�k, k)-
unrectifiable set.

This is a very deep result, due in the case that k = 1 for sets in the plane to Besicovitch,
and in the general case to Federer. For the result of Besicovitch, one can consult [114,
p. 289]. The general case is in [115, Theorem 3.3.13].

We need the notion of density.

Definition 4.2.5. For a subsetE of RN , the k-dimensional density ofE at a point x ∈ RN

is the number

 k(�k�E, x) = lim
r→0+

α(k)−1r−k�k(E ∩ B(x, r))

if this limit exists.

In this and below,B(x, r) denotes the ball of radius r centered at x in the ambient Euclidean
space, and α(k) is the volume of the unit ball in Rk . Also, �k�E is the measure defined
by (�k�E)(S) = �k(E ∩ S).
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Definition 4.2.6. For a subset E of RN , the upper k-dimensional density of E at a point
x ∈ RN is the number

 ∗k(�k�E, x) = lim sup
r→0+

α(k)−1r−k�k(E ∩ B(x, r)).

If in the last definition we replace lim sup by lim inf, we obtain the lower k-
dimensional density of E at x, which is denoted by  k∗(�k�E, x).

There are two notions of tangent cone that will be important in the sequel. For
their definition it is convenient to fix some notation involving cones. If L is a real line
passing through a point a ∈ RN , and if τ is a positive real number, then by C(a,L, τ) we
understand the solid cone with axis L, vertex a, and aperture τ . If a, v ∈ RN , and τ ∈ R,
τ > 0, then we put

C(a, v, τ ) = {y ∈ RN : for an r > 0, |r(y − a)− v| < τ }.
Thus, if L is the line that contains v, then C(a, v, τ ) is one nappe of the cone C(a,L, τ).

Definition 4.2.7. If E is a subset of RN and x ∈ E, then the tangent cone of E at x is
the set

Tan(E, x) = {v ∈ RN : for all ε > 0 there are r > 0 and

y ∈ E with |x − y| < ε and |r(y − x)− v| < ε}.
The (�k, k)-tangent cone of E at x is the set

Tank(�k�E, x) = ∩{Tan(F, x) : F ⊂ E,  k(�k�(E \ F), x) = 0}.
In particular, Tank(�k�E, x) ⊂ Tan(E, x).

By definition,

Tan(E, x) = {v ∈ RN : for all ε > 0 there exist

y ∈ E ∩ C(x, v, ε) with |x − y| < ε}.
Introduce the notation that for a set E ⊂ RN , a point a ∈ RN , a vector v ∈ RN , and an
ε > 0,

E(a, v, ε) = E ∩ C(a, v, ε).
The following lemma makes it possible to describe the spaces Tan1:

Lemma 4.2.8.[115, p. 252] The vector v lies in Tan1(�1�E, x) if and only if

(4.1)  ∗1(�1�E(x, v, ε), x) > 0

for every ε > 0.

Proof. Assume the inequality (4.1) to hold. Suppose that F ⊂ E is a set such that

(4.2)  1(�1�(E \ F), x) = 0.
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Then there is c > 0 so small that for all small r > 0, E(x, v, ε)∩B(x, r) is a set of length
at least cr . Thus F must meet C(x, v, ε) ∩ B(x, r) for all small r > 0, so v ∈ Tan(F, x).
This is so for all F of the kind considered, so x ∈ Tan1(��E, x).

Conversely, suppose v ∈ Tan1(�1�E, x). Thus, v ∈ Tan(F ) if  1(E \ F, x) = 0.
If c denotes the operator of complementation, then E ∩ C(x, v, ε) = E \ C(x, v, ε)c, so
we have v ∈ Tan(E \ C(x, v, ε), x). This is a contradiction. The proof is complete.

The following is a basic theorem in the subject.

Theorem 4.2.9.[115, Theorem 3.2.19] If E ⊂ RN is (�k, k)-rectifiable and �k-measur-
able, then for almost all [d�k] points x ∈ E,

 k(�k�E, x) = 1,

and the (�k, k)-tangent cone Tank(�k�E, x) is a k-dimensional vector subspace of RN .

Theorem 4.2.10. If E ⊂ RN satisfies �1(E) <∞, then the upper density satisfies

 ∗1(�1�E, x) ≤ 1

for almost all [d�1] x ∈ E.

In the plane this is a theorem of Besicovitch [50]. The proof Besicovitch gives applies
equally well to sets in RN for any N ≥ 2.

Theorem 4.2.11. If E ⊂ RN is a set with �1(E) < ∞, then E is countably (�1, 1)-
rectifiable if and only if for almost all [d�1] x in E,  ∗1(�1�E, x) =  1∗(�1�E, x).

In the plane, this also is due to Besicovitch [50]. The case N > 2, which requires an
approach essentially different from Besicovitch’s, is due to E.F. Moore [250].

4.3. Sets of Class A1

By definition, sets of class A1 are sets with simple geometric tangent cones:

Definition 4.3.1. A closed subset E of an open subset of RN is of class A1 if it is locally
(�1, 1)-rectifiable and if for almost every [d�1] point x ∈ E, the tangent cone Tan(E, x)
is a one-dimensional real vector subspace of RN .

The notion of sets of class A1 extends immediately to subsets of manifolds. If M is
a Riemannian manifold and E a closed subset of an open subset of M , then E is of class
A1 if for each x ∈ E, there is a neighborhood U of x on which there are coordinates with
respect to which E ∩U is of class A1. One verifies that this condition does not depend on
the choice of local coordinates.

A compact set of class A1 has finite length.
Sets of class A1 are also called geometrically 1-rectifiable.

There is the following extension of Theorem 3.1.1, which is one of the main reasons
for introducing sets of class A1.
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Theorem 4.3.2. Let Y be a compact polynomially convex subset of CN , and let � be a
bounded closed subset of CN \ Y that is of class A1. The set ̂(� ∪ Y ) \ (� ∪ Y ) either is
empty or else is a purely one-dimensional subvariety of CN \ (� ∪ Y ). If the map

Ȟ 1(� ∪ Y ;Z)→ Ȟ 1(Y ;Z)

induced by the inclusion Y ↪→ � ∪ Y is an isomorphism, then the algebra P(� ∪ Y )
consists of all the continuous functions f on � ∪ Y with f |Y ∈ P(Y ).

There is an extension of the preceding statement, the first version of which was given
by Alexander [15]. The present version was given by Dinh [100] and by Lawrence [215].

Corollary 4.3.3. Let Y ⊂ CN be a polynomially convex set, and for each j = 1, . . . ,
let �j be a closed and bounded subset of CN \ Y of class A1. Let � be a closed and

bounded subset of CN \ Y that is contained in ∪j=1,...�j . If z ∈ ̂(Y ∪ �) \ (Y ∪ �), then
there exist an open subset U of CN and in U a purely one-dimensional subvariety Z with
z ∈ Z ⊂ ̂(Y ∪ �).

The proof of this corollary is based on the observation that if z is a point in X̂ for
some compact subset X of CN , then there are compact subsets Y of X with the property
that z ∈ Ŷ and that Y is minimal with respect to this property, so that if Y ′ is a proper,
closed subset of Y , then z /∈ Ŷ ′.
Proof. LetK ⊂ Y ∪� be a compact set minimal with respect to the condition that z ∈ K̂ .
Let �′ = K \ Y . According to the Baire category theorem, there is a k such that �k
contains an open subset W of �′. Let Y ′′ = K̂ \W , which is polynomially convex, and
let �′′ = W \ Y ′′. Then Y ′′ ∪ �′′ contains K ∪W and so z ∈ ̂(Y ′′ ∪ �′′). By the choice of
K , z /∈ Y ′′. Theorem 4.3.2 implies that ̂(Y ′′ ∪ �′′) has the structure of a one-dimensional
variety. The corollary is proved.

A simple example of the phenomenon contemplated in the preceding corollary is the
following. Take Y to be the empty set, and define �k, k = 1, . . . ,∞, to be the circle
{(eiϑ , 1

k
) : ϑ ∈ R} when k < ∞ and �∞ to be the limit circle {(eiϑ , 0) : ϑ ∈ R}.

The hull of the set X = ∪k=1,...,∞�k is the union of the disks bounded by the circles �k .
Neither Theorem 3.1.1 nor Theorem 4.3.2 applies in this situation. The corollary just given
provides analytic varieties through each point of X̂ \X.

We begin the study of sets of class A1 with two simple observations.

Lemma 4.3.4. A closed subset of a set of class A1 is itself of class A1.

Proof. Let the closed subset E of the open set� in RN be (�1, 1)-rectifiable and have the
property that for almost every [d�1] x ∈ E the tangent Tan(E, x) is a real line.

Let K be a closed subset of E. Plainly K is locally (�1, 1)-rectifiable. And for
all x ∈ K , Tan(K, x) ⊂ Tan(E, x), so for almost all x ∈ K , the tangent Tan(K, x) is
contained in a real line. The result follows now from Theorem 4.2.9.

Lemma 4.3.5. If E ⊂ RN is a compact set of class A1 and� is a diffeomorphism from a
neighborhoodW of E onto an open subset of a closed submanifold of an open set in RM ,
then the set �(E) is a set of class A1.
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Proof. The set�(E) is locally (�1, 1)-rectifiable. The differential of� carries Tan(E, x)
onto Tan(�(E),�(x)), and d�x is injective. If x is a point for which Tan(E, x) is a line,
the tangent Tan(�(E),�(x)) is d�x(Tan(E, x)), so the lemma is proved.

We can now exhibit some nontrivial sets that belong to the class A1.

Theorem 4.3.6. A connected set of finite length in RN is a set of class A1.

This was proved by Alexander [22] and by Dinh [101]. It implies that Theorem 4.3.2 is an
extension of Theorem 3.1.1.

Proof. Let X denote the set in question. We have proved in Theorem 3.3.5 that X is
(�1, 1)-rectifiable. It is also measurable. Thus, Theorem 4.2.9 implies that for almost
all [d�1] points x ∈ X, the (�1, 1)-tangent cone Tan1(�1�X, x) is a one-dimensional
vector subspace of RN . We are to prove that for almost all [d�1] x ∈ X, the tangent
cone Tan(X, x) is a one-dimensional vector subspace of RN . The space Tan1(�1�X, x) is
almost surely a real line, and by definition, Tan1(�1�X, x) ⊂ Tan(X, x). Thus, what is to
be proved is that if v ∈ Tan(X, x), then v ∈ Tan1(�1�X, x). Without loss of generality,
suppose |v| = 1.

By Lemma 4.2.8, it is enough to prove that for every ε > 0,

(4.3)  ∗1(�1�E(X, v, ε), x) > 0.

This is simple to verify because of connectivity. Fix an ε ∈ (0, 1), and choose a sequence
{xk}k=1,... in E(X, v, x) with xk = x + rkvk , where vk → v, |vk| = 1, and rk → 0 as
k → ∞, rk > 0 for all k. Because X is connected and contains both x and xk , the total
length of the part of X that lies in the truncated set E(X, v, x) ∩ B(x, 2rk) is at least
const rk with the constant depending on ε but not on k. This implies (4.3), and the result
is proved.

Another class of examples of sets of class A1 was found by Lawrence [215]. See
also [99].

Theorem 4.3.7. If D ⊂ CN is a bounded strictly convex domain with boundary of class
C 2, if z ∈ D, and if E ⊂ bD is compact a set of finite length with z ∈ Ê, then any subset
E′ of E that is minimal with respect to the property that z ∈ Ê′ is a set of class A1.

In this statement the condition of strict convexity is the condition that the real Hessian of
a defining function for D be positive definite at each point of bD.

To prepare for the proof of this result, let us establish some notation. We suppose
that 0 ∈ bD and thatQ is a strictly convex function of class C 2 that is a defining function
for D so that D = {Q < 0} and dQ �= 0 on bD.

Under the assumption that 0 ∈ E, we are going to show that  1∗(�1�E, 0) = 1.

Lemma 4.3.8. There are holomorphic linear coordinates on CN with respect to which

(4.4) Q(z) = �P(z)+ 1

2
(|z|2 + ρ(z))

with P(z) a quadratic polynomial and with the remainder ρ a function of class C 2 that
satisfies ρ(z) = o(|z|2) for z→ 0.
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Proof. The Taylor expansion ofQ about the origin gives an expansion

Q(z) = �P(z)+ 1

2
L(z)+ r(z)

with a holomorphic quadratic polynomial P , with a remainder term r(z) that is o(|z|2),
and with L the Levi form ofQ at 0:

L(z) = z̄Mzt

with the matrixM the positive definite Hermitian symmetric matrixM = [ ∂2Q(0)
∂zj ∂z̄k

]
. If we

set z = Uζ for a suitable unitary transformation U , then the corresponding expansion of
Q in the ζ -coordinates will be

Q(Uζ) = �P̃ (ζ )+ 1

2
L̃(ζ )+ r̃(ζ ),

and the Levi form L̃(ζ ) will be a diagonal matrix with positive diagonal entries. Then a
further transformation of the form ζj = djηj will bringQ, in terms of the η coordinates,
into the desired form.

Polynomial convexity enters the proof of the theorem by way of the following lemma.
Notice that according to the expansion (4.4), �P(z) < 0 when z ∈ bD, z near 0.

Lemma 4.3.9. If c > 0 is small, then the surface H with equation �P = −c meets E in
at least two points.

Proof. If H meets E in at most one point, then set

E+ = E ∩ {z ∈ CN : �P(z) ≥ −c}
and

E− = E ∩ {z ∈ CN : �P(z) ≤ −c}.
The polynomially convex sets ̂�P(E+) and ̂�P(E−) meet at most at a single point, say
p, which is −c + it for some real t . Kallin’s lemma, Theorem 1.6.19, implies that the set
Ê is the union of the sets Ê+ and Ê−. Then the point z must lie in the hull of one of E+
and E−, which contradicts the minimality assumption. The lemma is proved.

Proof of Theorem 4.3.7. Introduce the function ψ given by

ψ(z) =
√
|z|2 + ρ(z).

If η > 0, then ψ satisfies a Lipschitz condition with Lipschitz constant 1 + η on a
small neighborhood of the origin. This is so, for a short calculation shows that if W is a
small neighborhood of the origin, then onW \ {0}, |grad ρ| < 1 + η. For this compute as
follows: Except at 0,

|gradψ(z)|2 = |grad (|z|2 + ρ(z))|2
4(|z|2 + ρ(z)) .
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Now grad |z|2 = 2z. The function ρ is of class C 2, because all the other terms in the
equation (4.4) are of class C 2. Moreover, ρ(z) = o(|z|2), so grad ρ(0) = 0. Therefore
no matter how small η > 0 may be, if z ∈ W \ {0} and W is sufficiently small, we have
|grad ρ(z)| < η|z|, and then

|grad (|z|2 + ρ(z))|2 ≤ 4|z|2(1 + η)2,
and we get

|gradψ(z)|2 ≤ 4|z|2(1 + η)2
4(|z|2 + ρ(z)) ≤ (1 + η)2.

Eilenberg’s inequality, Theorem 3.3.6, now implies that, for small r > 0,

(4.5)
∫ r

0
�0(E ∩ ψ−1(t)) dt ≤ (1 + η)�1(E ∩ {z : ψ(z) < r}).

The function Q vanishes on E, so for z ∈ E, ψ(z) = t when �P(z) = −t2/2. Thus,
for small r , the integrand in the integral (4.5) is at least two by Lemma 4.3.9. We have,
therefore, that when r > 0 is small,

(4.6) 1 ≤ 1 + η
2r

�1(E ∩ {z : ψ(z) < r}).

Because η(z) = o(|z|2) we can write ψ(z) = |z| + o(|z|). Thus, if m > 0 is small, then
for small r > 0, we have

E ∩ {z : ψ(z) < r} ⊂ E ∩ BN(r(1 +m)),
and (4.6) gives

1 ≤ (1 + η)
2r

�1(E ∩BN(r(1+m)) = (1+η)(1+m) 1

2r(1 +m)�
1(E ∩BN(r(1+m))).

By letting r → 0+ we find that

1

(1 + η)(1 +m) ≤  1∗(E, 0).

This is correct for all small m and all small η, so, as claimed, 1∗(E, 0) ≥ 1. The theorem
is proved.

For future reference, we note that the analysis of the preceding proof is localized at
a point of the set E. Thus, there is a formally stronger result: Let E ⊂ bD, D ⊂ CN a
strictly convex domain with 0 ∈ Ê. IfE is minimal with respect to the latter condition, and
if p ∈ E has a closed neighborhood B in E that has finite length, then B is of class A1.

The next lemma shows that the generic projection of a set of class A1 is again of
class A1.
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Lemma 4.3.10. [101] IfE ⊂ CN is a compact set of class A1, then for almost every linear
functional ϕ on CN , the subset ϕ(E) of C is a set of class A1.

Proof. Almost every linear functional on CN is of the form z �→ α1z1 + · · · + αNzN for
some choice of α1, . . . , αN ∈ C with α1 �= 0. Consequently, it suffices to show that for
almost every linear functional ϕ of the form

(4.7) ϕα(z) = z1 + α2z2 + · · · + αNzN,
the set ϕ(E) is a set of class A1 in C. (Almost every is here understood with respect to the
Lebesgue measure on the CN−1 in which α = (α2, . . . , αN) lies.)

From the definition, it is clear that no matter what the choice of α, the set ϕα(E) is
(�1, 1)-rectifiable. What is to be established is that at almost every point in ϕα(E), the
tangent to ϕα(E) is a line. As noted immediately after Definition 4.2.3, the set E is of the
form E = Eo ∪∪j=1,...Ej with Eo a set of zero length and with each of the other sets Ej
a subset of a C 1 curve. Thus, it suffices to prove the lemma under the assumption that the
set E is an arc of class C 1. In this case, each tangent Tan(E, x) is a line (except for the
case that x is an endpoint of E).

Introduce the set S of all points (x, α) ∈ E×CN−1 for which the tangent Tan(E, x)
is a line transversal to the C-affine hyperplane ϕ−1

α (ϕα(x)). We shall show that if � =
�1 × �2N−2 is the product measure, then the set S is of full measure with respect to �.
What is immediate is that for a fixed x ∈ E other than an endpoint, the set

Sx = {α ∈ CN−1 : Tan(E, x) is transversal to ϕ−1
α (ϕα(x))}

is of full measure in CN−1. Fubini’s theorem implies then that the set S is of full measure
in E × CN−1. Fubini’s theorem applied once more implies that for almost every α, the
C-affine hyperplane ϕ−1

α (ϕα(x)) is transversal to almost every one of the tangent spaces
Tan(E, x). Thus for almost every α ∈ CN−1, the tangent Tan(ϕα(E), y) is a line for almost
every y ∈ ϕα(E).

The lemma is proved.
The next lemma shows that the generic linear functional on CN carries a compact

set of class A1 almost injectively into the plane.

Lemma 4.3.11.[101] If E ⊂ CN is a (�1, 1)-rectifiable set, then for almost every linear
functional ϕ on CN , there is a subset Sϕ of C of zero length such that ϕ|(E \ ϕ−1(S)) is
one-to-one.

Proof. A (�1, 1)-rectifiable set is a union of a set of zero length and a countable family of
sets each contained in a one-dimensional C 1 submanifold of CN , so we can suppose that
the set E is itself a C 1 submanifold of CN .

Because almost every linear functional ϕ on CN is of the form ϕ(z) =∑N
j=1 βjzj

with β1 �= 0, it is sufficient to consider linear functionals of the form ϕ = ϕα for α ∈ CN−1

and ϕα as in (4.7). For a fixed α, let

Tα = {ζ ∈ C : ϕ−1
α (ζ ) contains at least two points}.
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We are to prove that for almost all α, the set Tα is a set of zero length. To do this, introduce
the set Pα = {(x, y) ∈ E × E : x �= y and ϕα(x) = ϕα(y)}, and notice that �1(Tα) > 0
implies that �1(Pα) > 0. Define the setQ by

Q = {(x, y, α) : x, y ∈ E, x �= y, and ϕα(x) = ϕα(y)}.
We shall prove that�2N−1(Q) = 0. To do this, let the projection η : Q→ E be given by
η(x, y, α) = x. The range of η is the set E, which has σ -finite one-dimensional measure.
Each fiber η−1(x) for x ∈ E is the set

Qx = {(x, y, α) : y ∈ E \ {x} and ϕα(y) = ϕα(x)},
which has the structure of a C 1 manifold of dimension 2N−3. Therefore�2N−1(Q) = 0.
Define the projection µ : Q → CN−1 by µ(x, y, α) = α. We have �2N−3(Q) = 0, so
Eilenberg’s inequality implies that for almost all α ∈ CN−1, the 1-dimensional measure
of the fiber µ−1(α) is zero. That is, the set Pα has zero length, whence so also does the set
Tα . The result is proved.

Theorem 4.3.12. [101]. See also [216, 217]. If D is a bounded domain in C with bD a
(�1, 1)-rectifiable set, and if E ⊂ bD is a set of positive length at each point x of which
the tangent space Tan(bD, x) is a real line, then there is a domain � ⊂ D such that b�
is a rectifiable simple closed curve that contains a subset E′ of E of positive length.

In the proof of this, we shall use Stolz angles.

Definition 4.3.13. For ϑ ∈ R and η ∈ (0, 1), the Stolz angle with vertex eiϑ and aperture
η is the open convex hull of the disk of radius η centered at the origin of C together with
the point eiϑ . It will be denoted by K(eiϑ , η).

Thus, K(eiϑ , η) is a figure with the shape of an ice cream cone.
Given a Stolz angle K(eiϑ , η), the truncated Stolz angle K(eiϑ , η, r), which is

defined for r ∈ (η, 1), is the part of K(eiϑ , η) that lies outside the circle centered at
the origin and of radius r .

Proof. By hypothesis,bD is (�1, 1)-rectifiable, so there are rectifiable simple closed curves
γ1, . . . in C such that �1(bD \ ∪j=1,...γj ) = 0. Without loss of generality, one of them,
say γ , contains the setE. We suppose thatD is contained in the bounded component of γ :
If necessary, we can replace D by a suitable component of D \ γ . If no such component
lies in the interior of γ and contains in its boundary a subset of E of positive length, then
some component of D \ γ that lies in the exterior of γ can be used; the analysis given
below would require only technical alterations to suit this case. Denote byW the interior
of γ .

The domain W is bounded and simply connected with a rectifiable simple closed
curve as boundary, so if ϕ : U → W is a Riemann map, then ϕ extends continuously
to a homeomorphism from Ū to W ∪ γ = W̄ . The derivative ϕ′ belongs to the Hardy
space H 1(U).

The rectifiable simple closed curve γ has a tangent at almost every point; at almost
every [d�1] point x of E, the tangents Tan(bD, x) and Tan(γ, x) coincide.
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Withϕ′∗ the boundary value function ofϕ′, the function log|ϕ′∗| is integrable because
the derivative ϕ′ is in H 1(U), so that ϕ′∗ vanishes only on a set of measure zero. Also, by
Theorem 3.4.4, a subset F of bU satisfies �1(ϕ(F )) = 0 if and only if �1(F ) = 0.

Fix a compact subset S of bU of positive length. We require that ϕ(S) ⊂ E, that ϕ′∗
vanish at no point of S, and that for all points eiϑ ∈ S, the tangents Tan(bD, ϕ(eiϑ )) and
Tan(E, ϕ(eiϑ )) coincide. The set ϕ(S) has positive length. Because the function ϕ′ is of
class H 1, if we replace S by a suitable compact subset of it that still has positive length,
then we can suppose that |ϕ′| is bounded on the domain ∪eiϑ∈SK(eiϑ , η) for any given
small η.

The function ϕ satisfies ieiϑϕ′(eiϑ ) = d
dϑ
ϕ(eiϑ )—recall Corollary 3.4.3, which

implies that if eiϑ ∈ S, then the radial curve r �→ ϕ(reiϑ ) approaches the point ϕ(eiϑ )
along a trajectory that is orthogonal to the tangent Tan(bD, ϕ(eiϑ )). Consequently, there
are η > 0 and r > 0 small enough that for a subset S1 of S of positive length, the open
subset V of U given by

V = ∪eiϑ∈S1
K(eiϑ , η, r)

is contained in D. Let V ′ be a component of V such that bV ′ contains a subset S2 of S
of positive length. By its construction, V ′ is a simply connected domain in U on which ϕ′
is bounded and with boundary a rectifiable simple closed curve. Thus, ϕ(V ′) is a simply
connected domain in D with b(ϕ(V ′)) a rectifiable simple closed curve in D ∪ E that
meets the set E in a set of positive length.

The theorem is proved.

Corollary 4.3.14. The set E is a set of uniqueness for subharmonic functions on D.

This is a consequence of Corollary 3.4.11.

Corollary 4.3.15. If E is a subset of C of class A1, then almost every [d�1] point of E
belongs to the boundary of at most two components of C \ E.

Proof. In the contrary case there is a subset Eo of E with positive length such that for
distinct components V , V ′, and V ′′ of C \ E, each of bV , bV ′, and bV ′′ contains Eo. By
Theorem 4.3.13 there is a domain D ⊂ V that is bounded by a rectifiable simple closed
curve that meets E in a set Eo of positive length. Then there is a domain D′ ⊂ V ′ that is
bounded by a rectifiable simple closed curve that meets Eo in a set E′

o of positive length.
Finally, there is a domain D′′ ⊂ V ′′ that is bounded by a rectifiable simple closed curve
that meetsE′

o in a set of positive length. Thus, the triple intersection S = bD∩bD′ ∩bD′′
is a set of positive length. Each point p of S is accessible by an arc in each of D ∪ {p},
D′ ∪ {p}, and D′′ ∪ {p}. This implies to the existence of uncountably many mutually
disjoint triodes in C, and so contradicts Moore’s theorem, Theorem 3.4.14.

Lemma 4.3.16. If the closed set E of the open set � in CN is of class A1, and if Eo is
a subset of E with positive length, then almost every real-linear functional ϕ : CN → R

satisfies �1(ϕ(Eo)) > 0.

Proof. The set Eo has positive length, so there is an arc γ of class C 1 that contains a
subset E1 of Eo of positive length. Thus, it suffices to prove the result when E is an arc of
class C 1.
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Fix a point p ∈ E1 at which the lower density is one. Almost every real-linear
functional ϕ on CN has the property that dϕ = ϕ carries the tangent line to γ at p to a line
in C. Fix such a ϕ. Suppose coordinates to have been chosen so that p is the origin of CN .
There is a C 1 arc γ ′ contained in γ and containing p as an interior point that is carried
diffeomorphically by ϕ onto a neighborhood of 0 ∈ R. The set ϕ(E1 ∩ γ ′) has positive
length. The lemma is proved.

Lemma 4.3.17. If E ⊂ C is a compact set of class A1, then almost every [d�1] point of
E lies in the boundary of a component of C \ E.

Proof. Let π : C → L be the orthogonal projection of C onto the real line L in C. The
set E has finite length, so the integral

∫
L
�0(π−1(s)∩E) d�1(s) is finite, which implies

that for almost all s ∈ L, the fiber Es = E ∩ π−1(s) is finite. If p ∈ Es and Es is finite,
then p lies in the boundary of at least one component of C \ E.

Thus, if Eo ⊂ E is the set of points contained in the boundary of no component of
C \ E, then for all projections π : C → C with one-dimensional range, the set π(E) has
zero length.

Because E is a set of class A1, for any subset Y of E of positive length there is
a projection from C to a real line in C that carries Y to a set of positive length, so we
conclude that the set E must have length zero.

The lemma is proved.

Corollary 4.3.15 and Lemma 4.3.17 will be used in the study of the multiplicity
function introduced in Section 4.6 below.

We can now prove the result stated above about hulls.

Proof of Theorem 4.3.2. We place ourselves in the context of Theorem 4.3.2, so that Y is
a compact polynomially convex subset of CN , and� is a closed, bounded subset of CN \Y
that is of class A1. SetX = � ∪ Y . We are to show that X̂ \X is a purely one-dimensional
analytic set.

For this, fix a point p ∈ X̂ \X. We shall show that in the vicinity of p, the set X̂ has
the structure of a purely one-dimensional variety.

Let W be a compact polynomial polyhedron that is a neighborhood of Y and that
does not contain p. Let �′ = � \W , a compact set of class A1. The argument at the
beginning of the proof of Theorem 3.1.1 provides a polynomial P such that �P < 0 on
W , P(p) = 1, and 1 /∈ P(�′).
Lemma 4.3.18. The polynomial P can be chosen so that the subset P(�′) of C is of
class A1.

Proof. Introduce the graph map� : CN → CN+1 by�(z) = (z, P (z)). By Lemma 4.3.5,
the set �(�′) is of class A1. Consequently, by Theorem 4.3.10, for almost every linear
functional ϕ on CN+1, the subset ϕ(�(�′)) of C is of class A1. The functional ϕ is of the
formϕ(z1, . . . , zN+1) =∑N+1

j=1 cj zj . If we take c1, . . . , cN very small and cN+1 very near
1, then ϕ ◦� is a polynomial that is very near to P and that has the properties we desire,
except for assuming the value 1 at the point p. A small modification of ϕ ◦�—multiply
it by 1/cN+1—yields the polynomial we seek. The lemma is proved.
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Denote by� the component of C\P(X) that contains the point 1. This is a bounded
set, and �1(b� ∩ {ζ ∈ C : �ζ > 0}) is positive. Theorem 4.3.12 and Lemma 3.4.11
imply that b� ∩ {ζ ∈ C : �ζ > 0} contains a set E of positive length that is a set of
uniqueness for subharmonic functions. We have P−1(E) ⊂ �′ and �1(�′) is finite, so it
follows that for almost all [d�1] ζ ∈ E, the fiber P−1(ζ ) ∩ �′ is finite. Consequently, by
Theorem 3.6.1, the set Ŵ ∪ �′ \ (W ∪ �′) is a one-dimensional variety.

Let r > 0 be so small that BN(p, 2r)∩ (W ∪�′) = ∅, whence BN(p, 2r)∩ Ŵ ∪ �′
is a one-dimensional variety. Because X̂ ⊂ Ŵ ∪ �′, we have that BN(p, 2r) ∩ X̂ is
contained in a one-dimensional variety, so B̄N(p, r) ∩ X̂ has finite area. By the local
maximum principle, this set is contained in the set bBN(p, r) ∩ X̂, so by Theorem 3.6.3,
BN(p, r) ∩ X̂ is a variety.

The final assertion of the theorem is proved as is the final assertion of Theorem 3.1.1.

4.4. Finite Area

We know that the hull of a compact setX of class A1 consists ofX together with a possibly
empty one-dimensional variety. We have seen in Chapter 3 that if the set X is contained
in a connected set of finite length, then the variety in question has finite area. There is
a corresponding result when X is only supposed to be of class A1. This is contained in
a more general fact about varieties with boundary a set of class A1 that was found by
Dinh [101] and, in a slightly less general form, by Lawrence [215]; it is an extension of
Theorem 3.7.4.

Theorem 4.4.1. If X is a closed subset of class A1 of an open set � in CN , and if V is a
closed one-dimensional subvariety of � \X, then the area of V is locally finite in �.

This is a local result, so the corresponding statement with CN replaced by an arbitrary
complex manifold endowed with a Hermitian metric is also correct.

The following lemma is a small variation of Lemma 3.7.5.

Lemma 4.4.2. LetE be a closed subset of the open subset� of CN that is of class A1. Let
V be a one-dimensional analytic subvariety of�\E, and letp ∈ E. LetP be a polynomial
such that for some bounded neighborhood U of p, P carries U ∩ (E ∪ V ) properly into
the open disk � in C and such that the set P(E ∩ Ū ) is of class A1. Let C and C′ be two
components of� \ P(E ∩U) with�1(bC ∩ bC′) > 0. Let m and m′ be, respectively, the
multiplicities of the map P : P−1(C)∩ V → C and P : P−1(C′)∩ V → C′. If there are
a subset S of bC ∩ bC′ of positive one-dimensional measure and a positive integer n such
that for each point ζ ∈ S, the fiber P−1(ζ ) ∩E, which we shall denote by Eζ , consists of
n points, then |m−m′| ≤ n.

Proof. The polynomialP is constant on no branch ofV ∩U , and the compact setP(E∩U)
is a set of class A1. By Theorem 4.3.12, there are rectifiable simple closed curves γ and
γ ′ contained in C ∪ S and C′ ∪ S, respectively, such that γ ∩ γ ′ is a subset So of S of
positive length. We shall show that if ζ ∈ So, then V ∩ (P−1(ζ ) ∩ V ) contains at most m
points. Suppose, to the contrary, that the set V ∩ (P−1(ζ ) ∩ V ) contains m + 1 distinct



182 Chapter 4. Sets of Class A1

points, say a1, . . . , am+1. There are then disjoint neighborhoodsWj of the points aj each
of which is mapped properly onto a fixed neighborhood Wζ of ζ . This implies that for
some points ζ ′ inC, the fiber P−1(ζ ′)∩V contains more thanm points, which contradicts
the choice of m as the multiplicity of P on V over C. Consider now the Jordan domain
C′′ bounded by the curve γ ′, a subdomain of C′. The set (V ∪E) ∩ P−1(γ ′) is compact,
and its polynomially convex hull contains the variety P−1(C′′) ∩ V . Moreover, for each
ζ ∈ γ ′ ∩ So, the set P−1(ζ ) meets (V ∪ E) ∩ P−1(γ ′) in a set containing not more than
m+ n points. The set γ ′ ∩ So has positive length, so Corollary 3.6.2 implies that the set

[(V ∪ E) ∩ P−1(γ ′)]̂ \ (V ∪ E) ∩ P−1(γ ′)

is a one-dimensional analytic variety mapped properly onto C′′ with multiplicity not more
than m + n by P . Consequently, m′ ≤ n + m, so that m′ − m ≤ n. Symmetrically,
m−m′ ≤ n, so |m−m′| ≤ n as desired .

Proof of Theorem 4.4.1. We suppose the origin to lie inX and show that near 0, the variety
V has finite area.

To do this, start by recalling that by invoking Lemma 3.8.8, we can suppose the
coordinates z1, . . . , zN on CN are clear at the origin with respect to the set V ∪X. Thus,
if πj : CN → C is the projection πj (z) = zj , then for each j , there is a neighborhood
Wj of the origin with the property that πj carriesWj ∩ (V ∪X) properly onto its image, a
subset of the unit disk U in C. The proof of Lemma 3.8.8 shows that almost all coordinate
systems have this property, so by Lemma 4.3.11, we can suppose, in addition, that each of
the sets πj (X ∩ B̄N(δ)), for a small, positive δ, is of class A1.

Fix attention on π1, which we shall denote by π . Fix the holomorphic coordinate
w = s + it on C. The set π(W1 ∩ X) is a closed subset of U of finite length. Let the
components of U \ π(W ∩ X) be �j , j = 1, . . . , and let mj be the multiplicity of the
map π : V ∩ π−1(�j ) → �. We shall show that if K is a compact subset of U, then∑
j=1,... mj area(K ∩�j) is finite. Once we have this, then because the other coordinate

projections π2, . . . , πN can be treated in a similar way, it will follow that near the origin,
V has finite area.

Thus, fix a compact subset K of U. Choose r ∈ (0, 1) large enough that K ⊂ rU.
The number r can be chosen such that there are points p ∈ U of modulus r that do not lie
in π(X), for the set π(X) has finite length. Denote by S+r the closed half of the circle rbU
that lies in the closed half-plane �w ≥ 0. We assume this semicircle to be disjoint from
π(W1 ∩X). Consequently, S+r is contained entirely in one of the components�j , say�0.

Let �+
r be the half-disk {w : |w| < r, �w > 0}. Fix a positive number ρ, and

consider the sum

(4.8) A(ρ) = min(m0, ρ) area�0 +
∑
j=1,...

min(mj , ρ)area(�j ∩�+
r ).

We have

area (�j ∩�+
r ) =

∫
�j∩�+

r

dL (w).
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Let η : C → R be the projection η(w) = s. For all s > 0 the set ∪j b�j ∩ {�w > s} has
finite length, so there is a set S ⊂ R of zero length such that for all s > 0, s ∈ R \ S, the
set η−1(s) ∩ ∪j b�j is finite.

Then

A(ρ) = min(m0, ρ) area�0 +
∑
j=1,...

min(mj , ρ)
∫

R\S

{∫
η−1(s)∩�j

dt

}
ds.

An argument like the one in the proof of Theorem 3.7.4 shows this sum to be bounded
uniformly in ρ, so

∑
j=1,... mj area(�j ∩�+

r ) <∞, whence∑
j=1,...

area(�j ∩K ∩�+
r ) <∞.

This bound has been derived under the assumption that the semicircle S+r is disjoint
from π(W1 ∩ X). If this condition is not satisfied, we fix a point p of modulus r that is
not in the set π(W1 ∩X). There is a diffeomorphism ψ of the plane onto itself that leaves
a neighborhood of K fixed pointwise, that carries Ū onto itself, and that carries an arc in
the circle {w : |w| = r} that contains p onto the semicircle S+r . Having ψ , we replace π
by ψ ◦π in the analysis just given to obtain the finiteness of

∑
mj area(�∩K ∩�+

r ). In
the same way,

∑
mj area(�j ∩K ∩�−

r ) is finite if �−
r is {w : |w| < r,�w < 0}.

The theorem is proved.

Corollary 4.4.3. If X ⊂ CN is a compact set of class A1, then �2(X̂) <∞.

4.5. Stokes’s Theorem

We now take up the question of Stokes’s theorem. Let � be a bounded domain in CN , let
� be a closed subset of class A1 of the domain �, and let V be a purely one-dimensional
subvariety of � \�. By Theorem 4.4.1, we know that the variety V has locally finite area
in�, so the current [V ] of integration over V is defined as a functional on smooth 2-forms
with compact support in �. If α is such a form, then [V ](α) = ∫

V
α. The boundary b[V ]

of the current [V ] is the current acting on smooth 1-forms with compact support in �
by the condition that if α is such a form, then b[V ](α) = [V ](dα). The support of b[V ]
is a closed subset of (V̄ \ V ) ∩ �; it can be a proper subset of this set, as, for example,
when V̄ \ V contains isolated points. The problem that Stokes’s theorem solves is that of
understanding the nature of the current b[V ] in more or less concrete terms.

The following theorem can be regarded as a provisional version of Stokes’s theorem.
We continue with the notation we have just established.

Theorem 4.5.1. There are measurable functionsBj , j = 1, . . . , 2N,defined and bounded
by one in absolute value on� such that for every smooth 1-form α =∑j=1,...,2N aj (z)dxj
on � with compact support,

(4.9) b[V ](α) =
∫
�

{ ∑
j=1,...,2N

aj (z)Bj (z)
}
d�1(z).
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Alternatively phrased, if  B is the measurable vector (B1, . . . , B2N) and 〈  B(x), α(x)〉
is the value of the one-form α(x) on the vector  B(x), then

b[V ](α) =
∫
�

〈  B(x), α(x)〉 d�1(x).

A version of Stokes’s theorem in this general setting was first obtained by Lawrence
[216, 217]. A result in the context of sets of class A1 was given by Dinh [101]. Their
formulations are more refined than the result just stated; we will discuss them at the end
of this section.

We consider in Theorem 4.5.10 below the special case that V̄ \ V is a rectifiable
simple closed curve.

Proof. The problem is local, and it is independent of the choice of holomorphic coordinates.
Accordingly, we suppose 0 ∈ �, and we suppose z1, . . . , zN to be a clear set of coordinates
at 0 for the set V ∪ �. (Recall Lemma 3.8.8.) We can suppose that no zj is constant on
any branch of V . Choose neighborhoodsW1, . . . ,WN of the origin with the property that
if πj : CN → C is the j th coordinate projection, then πj carries Wj ∩ (V ∪ �) properly
onto its image, which is contained in a disk in the plane, which, after an additional change
of coordinates, we can suppose to be the unit disk. As in the proof of Theorem 4.4.1, we
suppose πj (� ∩ W̄j ) to be a set of class A1.

We consider the projection π1, which, as a notational convenience, we rename π .
Let φ = �π , so that φ(z) = x1.

Fix attention on a form a dx1 with coefficient a a smooth function on CN with support
inW1.

The set of singularities Vsing of V is at most countably infinite, and almost every
point in φ(Vreg) is a regular value of φ|Vreg ∩W1. Thus, for a subset E of R of measure
zero, if t ∈ R \ E, then φ−1(t) ∩ V ∩ W1 is a disjoint union of open analytic arcs. By
enlarging E with at most a countable set, we can suppose that E contains all the points
φ(z) for z ∈ Vreg ∩W1 at which the differential d(π |Vreg) vanishes.

Fubini’s theorem implies that

b[V ](a dx1) =
∫
V

d(a dx1) =
∫

R

{∫
φ−1(t)∩V∩W1

da

}
dt.

We must specify the orientation on the fibers φ−1(t) for which this is correct. The manifold
Vreg, as a complex manifold, has a natural orientation, and the holomorphic projection
π |Vreg is orientation-preserving. Thus, the orientation on φ−1(t) in the integral formula
just given is the orientation that makes π |φ−1(t) orientation-preserving as a map to the
line Lt = {t + is : s ∈ R} when the positive direction on this line is declared to be the
direction of increasing s. Note that for almost all t ∈ R, the fiber φ−1(t) has finite length:
By Eilenberg’s inequality, Theorem 3.3.6,

∫ ∗
R
�1(φ−1(t) ∩ V ∩W1) dt ≤ �2(V ∩W1).

Write U \ π(� ∩ W1) = �1 ∪ · · · , where the �’s are the components of the set
U \ π(� ∩W1). They are bounded domains with b�j ⊂ π(� ∩W1 ∪ bU); they need not
be simply connected. For each j , letmj be the multiplicity of π |(V ∩W1) over�j . Some
of the mj may be zero.
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For almost every t ∈ R, the vertical line Lt introduced above meets π(� ∩W1) in a
finite set. (Eilenberg’s inequality gives

∫
R
�0(Lt∩π(�∩W1)) dt ≤ �1(π(�∩W1)) <∞.)

Thus, by enlarging the set E by at most a null set, we can suppose that for each t ∈ R \E,
the line Lt meets π(� ∩W1) at most in a finite set.

For each j , the set Lt ∩�j is a finite union ∪k=1,...,ν(t,j)Lt;j,k of mutually disjoint
open intervals.

By hypothesis, the projection π |V is unbranched over Lt for t /∈ E. For such t ,
π−1(Lt;j,k) consists of mj open arcs, each of finite length, say

π−1(Lt;j,k) = ∪κ=1,...,mj λt;j,k,κ .

Thus, for t ∈ R \ E, ∫
φ−1(t)∩V∩W1

da =
∑
j,k,κ

∫
λt;j,k,κ

da.

The arc λt;j,k,κ has finite length, so it has definite endpoints, say e+
t;j,k,κ and e−

t;j,k,κ ,

with the labeling chosen so that the point π(e+
t;j,k,κ ) lies above the point π(e−

t;j,k,κ ) in the
line Lt . Accordingly, ∫

λt;j,k,κ
da = a(e+

t;j,k,κ )− a(e−t;j,k,κ ).

We have therefore reached the equality

(4.10) b[V ](a dx1) =
∫

R

∑
j,k,κ

{
a(e+

t;j,k,κ )− a(e−t;j,k,κ )
}
dt.

The endpoints e±
t;j,k,κ at which the function a does not vanish all project into

π(� ∩W1) under the projection π , though they may not all lie in �.
We need the observation that for each j and k and for almost every fixed t , the

endpoints e+
t;j,k,κ are distinct for distinct values of κ and that a similar observation holds

for the endpoints e−. It suffices to treat the e+. To do this, suppose, for the sake of
contradiction, that there are a set So ⊂ R of positive measure and a choice of j and k
such that for each t ∈ So, two of the points e+

t;j,k,κ coincide. By Theorem 4.3.12 there is a
rectifiable simple closed curve J that bounds a simply connected domain�(So) contained
in �j such that J ∩ b�j has positive length and for each point ζ ∈ J ∩ b�j , two of the
endpoints e+

t;j,k,κ with t = �ζ coincide, and moreover, the segment Lt;j,k approaches ζ
through the domain �(So).

Let P be a polynomial that separates points in the fiber π−1(ζ )∩V for some ζ ∈ �j
for which this fiber consists of mj distinct points. The Riemann removable singularity
theorem implies that there is a function Q bounded and holomorphic on �j such that for
all ζ ∈ �j for which the fiber π−1(ζ ) ∩ V consists of mj distinct points

Q(ζ) =
∏

[P(zj )− P(zk)]2
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in which the product is extended over all points zj , zk ∈ π−1(ζ ) with zj �= zk .
If, for a fixed t, j, and k, two of the points e+

t;j,k,κ coincide, then limQ(ζ) = 0, where
the limit is taken as ζ ∈ Lt;j,k approaches the top endpoint of Lt;j,k . Thus, the top half of
Lt;j,k is an open arc in �j along which the bounded holomorphic functionQ approaches
0. The theorem of Lindelöf, Theorem 3.4.12, together with a conformal mapping of �j
to the unit disk shows that Q necessarily has nontangential limit 0 at the top endpoint of
Lt;j,k . If this happens for a set of t’s that constitute a set of positive length, then Q must
vanish identically, in contradiction to the choice of P .

Thus, by enlarging E yet again by a null set if necessary, we can suppose that for all
t /∈ E and for all j, k, the endpoints e+

t;j,k,κ are distinct, as are the endpoints e−
t;j,k,κ .

Consider a point w ∈ V̄ with π(w) ∈ π(�) ∩ Lt for t /∈ E. There are three possi-
bilities. 1o: No arc λt;j,k,κ terminates at w. 2o: Exactly two of the arcs λt;j,k,κ terminate
at w. 3o. Exactly one of the arcs λt;j,k,κ terminates at w. In the first case, no e±

t;j,k,κ is the
point w, so w does not enter into the sum on the right of equation (4.10). In the second
case, at least for almost all t ∈ R, the projections under π of the two arcs approach the
point π(w) from above and below (or below and above), respectively through the line
Lt , for the points e+(t; j, k, κ) for fixed t, j, and k are distinct for distinct κ’s. In either
case, w is e+

t;j,k,κ and e−
t;j ′,k′,κ ′ for some choice of j, k, κ and j ′, k′, κ ′. In this case, the

corresponding terms in the sum under the integral in equation (4.10) cancel. We are left
with

(4.11)
∑
j,k,κ

a(e+
t;j,k,κ )− a(e−t;j,k,κ ) =

∑
z∈φ−1(t)∩W1∩�

ε(z)a(z),

where for each z, the number ε(z) is −1, 0, or 1. More precisely, ε(z) = 1 if z is an e+,
and ε(z) = −1 if z is an e−. If z is neither an e+ nor an e− or if it is both an e+ and an
e−, then ε(z) = 0. This equation is correct for almost all t ∈ R. Consequently,

|b[V ](a dx1)| ≤ sup�∩W1
|a|
∫

R

�0(φ−1(t) ∩ � ∩W1) dt

≤ ‖a‖�∩W1�
1(� ∩W1).

(4.12)

The preceding inequality implies that the current b[V ] extends to a functional acting
on forms of the form a dx1 with the function a merely continuous.

The Riesz representation theorem applied to the functional a �→ b[V ](a dx1) on
the space of continuous functions on � ∩W1 with compact support yields a locally finite
regular Borel measure µ1 on � ∩W1 such that

b[V ](a dx1) =
∫
�∩W1

a(z) dµ1(z)

for all forms of the kind we are considering.
We now show that dµ1 = B1d�

1�(� ∩W1) with B1 a function satisfying |B1| ≤ 1
a.e. [d�1]. For this, fix p ∈ � ∩W1, and let ρ > 0 be small enough that the closure of the
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ball bBN(p, ρ) is contained inW1. We have that

|µ1(BN(p, ρ))| ≤
∣∣∣∣ ∫
(φ(p)−ρ,φ(p)+ρ)

{ ∑
φ−1(t)∩BN(p,ρ)

ε(z)

}
dt

∣∣∣∣ ≤ �1(BN(p, ρ) ∩ �).

This is correct for all ρ > 0 and all choices of p ∈ �∩W1, so the measureµ1 is absolutely
continuous with respect to �1�(� ∩ W1), and the Radon–Nikodym derivative dµ1

d�1�� is

bounded in modulus by one. We have therefore that µ1 = B1�
1�(�∩W1) with |B1| ≤ 1.

We have been working with the projection π = π1; the other projections πj are
handled in a similar way.

We have proved that when acting on forms with support near the origin, the current
b[V ] has the stated structure. The theorem is proved.

Let us fix a compact set � of class A1 in the domain� and a purely one-dimensional
subvariety V of � as in Theorem 4.5.1, so that there are bounded measurable functions
Bj on � for which, with  B the vector with entries Bj ,

b[V ](α) =
∫
�

〈  B(x), α(x)〉 d�1(x)

for all smooth 1-forms α on � with compact support. If u and f are smooth functions on
CN with f = 0 on �, then

0 = b[V ](d(uf )) = b[V ](udf + f du) =
∫
�

u(x)〈  B(x), df (x)〉 d�1(x).

This is correct for every choice of u, so 〈  B(x), df (x)〉, as a function of x, vanishes a.e.
[d�1] on �.

In the case that � is a simple closed curve of class C 1, the vector  B(x) is almost
everywhere tangent to �. Otherwise, by a theorem of Lusin there is a compact subsetE of
� of positive length on which  B is continuous. There is then a fixed vector β ∈ CN such
that for all x in a subset Eβ of positive length,  B(x) is very near β. There is a C 1 function
f that vanishes on � and whose gradient is not orthogonal to β. For this function f , the
quantity 〈  B(x), df (x)〉 does not vanish a.e. [d�1]. Thus, when � is a simple closed curve
of class C 1, the vector  B(x) of Theorem 4.5.1 is a.e. [d�1]-tangent to �.

We now turn our attention to the version of Stokes’s theorem for varieties bounded
by rectifiable simple closed curves. To reach an understanding of this theorem requires
considerable further effort; several preliminaries are required.

In [6], Alexander introduced the useful notion of ample adjacency:

Definition 4.5.2. If X is a closed subset of C, the components � and �′ of C \ X are
amply adjacent if there are an interval I = [a, b] ⊂ R, a compact subsetK of I of positive
length, and positive numbers c < c′ such that I × {c} ⊂ �, I × {c′} ⊂ �′, and the set
E = (K ×[c, c′])∩X is a subset of b�∩ b�′ that is mapped homeomorphically onto the
set K by the projection of C onto the x-axis.
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The condition that� and�′ be amply adjacent should be thought of as a generaliza-
tion of the condition that their boundaries share an arc that is not vertical. In this description,
the x-axis has a preferred role. One could consider a similar condition in which one allows
any real line to replace the x-axis. As we shall see, the notion formalized in the definition
suffices for our purposes.

Let π : C → R be the projection onto the x-axis.

Theorem 4.5.3. [6] If X ⊂ C is a compact set such that
∫
R
�0(π−1(x) ∩ X) dx < ∞,

then given two components � and �′ of C \X, there exists a finite sequence �1, . . . , �s
of components of C \ X with �1 = �, �s = �′ and with �j and �j+1 amply adjacent
for each j = 1, . . . , s − 1.

For the proof of this result, a measure-theoretic lemma is needed:

Lemma 4.5.4. LetX be a second-countable topological space, let Y be a set, let f : X→
Y be a function, and let µ be a nonnegative measure on a σ -algebra of subsets of Y . If
for every open set V in X, the set f (V ) is measurable with respect to µ, then for almost
every [dµ] y ∈ Y , the image under f of each neighborhood of every point of f−1(y) has
positive measure.

Proof. Let U be the open subset of X that consists of all the points in X that have neigh-
borhoods V such that f (V ) has measure zero. Because the space X is second-countable,
there is a countable family {Vj : j = 1, . . . } of open sets with union U and with the
property that for each j , f (Vj ) is a µ-null set. Then f (U) = ∪j=1,...f (Vj ) is a null set,
and the lemma is proved.

Proof of Theorem 4.5.3. With no loss of generality we suppose �′ to be the unbounded
component of C\X. Choose a, b, c ∈ R such that the interval [a, b]×{c} is contained in�
and such that for some compact subsetK of [a, b] of positive length,�0(π−1(x)∩X) ≤ s
for all x ∈ K .

The proof is by induction: We prove the following proposition for s = 0, 1, . . . .
P(s): If Y ⊂ C is a compact set, if � is a component of C \ Y , if a, b, c ∈ R satisfy
[a, b] × {c} ⊂ �, and if there is a compact subset K of [a, b] of positive length such that
for all x ∈ K ,�0(π−1(x))∩Y ≤ s, then� can be connected to the unbounded component
of C \ Y by a finite chain of amply adjacent components.

The statement P(0) is true; in this case, � is the unbounded component of C \ Y .
We shall show that P(s − 1) implies P(s). To do this, assume the statement P(s − 1)
to be true.

Let Y , a, b, c, and K be as in the statement P(s).
It could be that for a subset Ko of K of positive length, �0(π−1(x) ∩ Y ) ≤ s − 1

for all s ∈ Ko, in which case the validity of P(s − 1) implies that, as desired, � can be
connected to the unbounded component of C \ Y with a finite chain of amply adjacent
components of C \ Y .

Thus, we suppose that for every x ∈ K , the fiber Yx = Y ∩π−1(x) has cardinality s.
By Lemma 4.5.4, there is a point xo ∈ K such that the fiber Yxo consists of s distinct points
each of which has a neighborhood that projects under π onto a set of positive length. Let
Yxo = {(xo, y1), . . . , (xo, ys)} with y1 < · · · < ys . Choose numbers c1, . . . , cs+1 with
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c1 < y1 < c2 · · · < cs < ys < cs+1 and with the number c one of the cj . By shrinking
the interval [a, b] if necessary, we can suppose that each of the intervals [a, b] × {cj } lies
in C \ Y .

LetWi be the component of C\Y that contains [a, b]×{ci}, and letRi be the rectangle
Ri = [a, b] × [ci, ci+1]. If for each i, π(Ri ∩ Y ) ⊃ K , then π |(K × [ci, ci+1] ∩ Y ) is
injective and hence a homeomorphism. Thus, each pair Wi,Wi+1 is amply adjacent, and
we can take the appropriateW ’s for the desired chain of amply adjacent domains.

The remaining case is that for some j ∈ {1, . . . , s}, the set π(Rj ∩ Y ) ∩ K is a
proper subset ofK . ThenWj = Wj+1. PutK ′ = π(Ri ∩Y )∩K . If Y ′ = Y \ intWj , then
π is at most (s − 1)-to-one on Y ′ over points of K ′. Let �′ be the component of C \ Y ′
that contains �. Apply P(s − 1): There is a sequence �′

1, . . . , �
′
q of amply adjacent

components of C \ Y ′ that connects �′ to the unbounded component of C \ Y ′. We can
delete any repetitions that occur in this sequence. LetW be the component of C \ Y ′ that
contains intRi . If no �′

j is W , then the �′
j ’s are components of C \ Y , and we are done.

If �′
k isW , then the sequence �′

1, . . . , �
′
k−1,W,�

′
k+1, . . . , � works.

The theorem is proved.

An important fact is the irreducibility of the variety �̂ \ � when � is a rectifiable
simple closed curve:

Theorem 4.5.5. [17] If � is a rectifiable simple closed curve in CN , then the analytic
variety �̂ \ � has only one global branch.

A generalization of this result is given in Section 4.7 below.

Corollary 4.5.6. If γ is a rectifiable simple closed curve in CN , and if V is a bounded,
purely one-dimensional subvariety of CN \ γ , then V has a single global branch, and
γ ∪ V is polynomially convex.

Proof of Theorem 4.5.5. Let ϕ : CN → C be a linear functional that is constant on no
global branch of the variety V . Denote by �j , j = 0 . . . , the components of C \ ϕ(�)
with �0 the unbounded component.

Let K be a subset of b�0 of positive length with the properties that for each point
p ∈ K , the fiber ϕ−1(p)∩ � contains exactly s points and that each point of K lies in the
boundary of a fixed �j with j > 0, say �1.

Each point of K is covered by s points of �, so ϕ maps V ∩ ϕ−1(�1) in an at most
s-to-one way onto �1.

On the other hand, if Vo is a global branch of V , then V̄o \Vo contains �, so if p ∈ K
and ϕ−1(p) ∩ � = {w1, . . . , ws}, then near each of the points wj there is a point of Vo.
This implies that the points in�1 nearK are covered s times under ϕ by Vo and hence that
all of � is covered s times by Vo. The set �1 is covered at most s times by V ∩ ϕ−1(�).
Consequently, V must coincide with Vo over �1, and therefore V must be Vo, whence V
is irreducible.

The theorem is proved.

A major ingredient of the proof of Stokes’s theorem for rectifiable simple closed
curves is the following result.
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Theorem 4.5.7. [17] Let � be a rectifiable simple closed curve in CN , and let V be a
bounded purely one-dimensional subvariety of CN \�. There is an orientation on�with the
following property: IfP is a polynomial on CN and if for every component�k of C\P(�),
mk denotes the multiplicity of the proper holomorphic map P |(V ∩P−1(�k))→ �k , then
for every k and for every pointw ∈ �k ,mk is the index of the curveP(�) about the pointw.

If we regard � as a map from the unit circle T to CN , so that P ◦ � : T → C \ {w}
is a continuous map, then the index in question is the integer 1

2πi

∫
T

d(P ◦�)
P ◦� , which will be

denoted by µk . According to the theorem, this index is always nonnegative.

Proof. One special case of the assertion of Theorem 4.5.7 is evident: If �o denotes the
unbounded component of C \ �, then mo and µo both vanish.

For an oriented closed curve γ in C, we denote by Ind(γ, z) the index of γ about the
point z ∈ C \ γ , which is the integer 1

2πi

∫
γ
dζ
ζ−z .

The theorem is a statement about all polynomials. It is plainly true of polynomials
that are constant on the variety V = �̂ \ �, so we restrict our attention from this point on
to polynomials that are nonconstant on V .

There is a simple argument that shows that if for every polynomial P there is an
orientation on � for which for every component �k of C \ P(�) the multiplicity of P |V
over�k agrees with the index of the curveP ◦� about every point of�k , then the statement
of the theorem is correct. The argument runs as follows. Fix an orientation on � that works
for the fixed polynomial P . Let P1 be a second polynomial that is not constant on V . It
is enough to show that when � is given the orientation that works for the polynomial P ,
we have Ind(P1 ◦ �, z) ≥ 0 for all z ∈ C \ P1(�). To this end, suppose there to be a point
q ∈ C \P1(�) for which Ind(P1 ◦�, q) < 0. Let −µ be this index, so that µ > 0. Choose
a p such that ν = Ind(P ◦�, p) > 0, and introduce the function F = (P −p)µ(P1 −q)ν .
Integrate over �:

1

2πi

∫
�

dF

F
= µInd(P ◦ �, p)+ νInd(P1 ◦ �, q) = µInd(P ◦ �, p)+ ν(−µ) = 0.

Thus, F has a logarithm on �. Consequently, by the argument principle, the number of
zeros of F in V coincides with the number of poles of F . There are no poles, so there are
no zeros. This is a contradiction, for F vanishes at the point p because µ > 0.

Thus, to prove the theorem, we have only to show that for each polynomial non-
constant on V , there is an orientation of � for which the multiplicities coincide with the
winding numbers.

A further reduction is possible. Fix a polynomial P that is nonconstant on V , and
suppose there to be an orientation on � and a component � of C \ P(�) such that the
multiplicity of F over � coincides with the index Ind(P ◦ �, z) for each z ∈ �, and
that these numbers are greater than zero. Then over every component of C \ P(�) the
multiplicity agrees with the index. For this, let�j be some other component of C \P(�).
Choose points p ∈ � and q ∈ �j such that the fibers V ∩ P−1(p) and V ∩ P−1(q) are
contained in the set of regular points of V and such that both p and q are regular values of
P |V . Letm be the multiplicity of P over�, andmj that over�j . Let ν = Ind(P ◦�, p),
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νj = Ind(P ◦ �, q), and define F by f = (P−p)νj
(P−q)ν . Again integrate over �:

1

2πi

∫
�

dF

F
= νj Ind(P ◦ �, p)− νInd(P ◦ �, q) = νj ν − ννj = 0.

Thus,F has a logarithm on�, and the number of zeros ofF onV is the same as the number
of poles. The function F has m zeros of order νj and mj poles of order ν. By hypothesis
m = ν, so νj = mj , and we are done.

To conclude the proof, it is enough to prove the following lemma.

Lemma 4.5.8. IfP is a polynomial nonconstant on V , and if� is a component of C\P(�)
that is amply adjacent to the unbounded component,�o, of C\P(�), then the multiplicity
of P over � agrees with the index Ind(P ◦ �, z) for each z ∈ �.

The proof of this lemma is based on a further simple observation:
Fix an oriented closed curve γ in C, which we regard as a continuous map from the

unit circle T into C, though we shall also speak of γ as a subset of C. Let R be a closed
rectangle in C with interior Ro. We assume that γ is disjoint from both the top and the
bottom edges of R and that it meets the vertical sides of R. We also assume the bottom
edge of R to lie in the unbounded component of C \ γ . Let L1, . . . , Ls be the open arcs
in T with the property that each Lj is carried by the map γ to a curve in Ro in such a way
that γ takes the endpoints of Lj to opposite vertical edges of R. For each j , let γj be the
restriction of γ to the closure of Lj , so that the set γj is a subset of R. Several of the sets
γj can coincide. That γ is oriented implies that it is meaningful to say that γj goes from
the left side of R to the right side or from the right side to the left. With this configuration,
we have the following fact.

Lemma 4.5.9. Let γk go from the left side of R to the right side of R for k = 1, . . . , s1,
and from the right side of R to the left side of R for k = s1 + 1, . . . , s. If z is a point in the
top edge of R, and if s2 = s − s1 then Ind(γ, z) = s1 − s2.

We give an analytic proof of this assertion, but a drawing of the situation makes the
result clear.

Proof. Assume without loss of generality that z is the origin. Let T be the cut in the plane
from the origin to the point at infinity obtained by connecting z to the center of the bottom
side of R and proceeding from there to the point at infinity along the ray parallel to the
negative imaginary axis.

Let λ be the branch of the logarithm function defined on C \ T that is real on the
positive real axis. Let λ̃ be the branch of the logarithm function defined on R \ {0} that
agrees with λ on the left side of R and so satisfies λ̃ = λ+ 2πi on the right side of R.

For k = 1, . . . , s, let σk be an arc in C \ (Ro ∪ T ) that connects the endpoints of
γk and that is oriented so that the curve αk = γk + σk is closed. Then Ind(αk, 0) = 1 or
−1 according as γk goes from the left edge of R to the right edge or the other way round.
We have that γ = α1 + · · · + αs + γo for a closed curve γo in C \ (Ro ∪ T ). Because
γo lies in the simply connected domain C \ T , its index around the origin is zero, whence
Ind(γ, 0) = Ind(α1, 0)+· · ·+ Ind(αs, 0). This quantity is s1 − s2, so the lemma is proved.
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Proof of Lemma 4.5.8. Let �o be the unbounded component of C \ P(�), and let � be a
component of C \ P(�) that is amply adjacent to �o.

Ample adjacency provides a rectangle R = [a, b]× [c, d] with interior Ro such that
the bottom edge of R lies in �o, the top edge in �, and that has the property that for a
certain compact setK1 ⊂ [a, b] of positive length that contains both the points a and b as
limit points, each vertical line x = t for t ∈ K1 meets P(�) ∩ R in a single point. These
points of intersection constitute a compact setK that projects homeomorphically ontoK1
under the projection onto the x-axis. Moreover, there is an integer s such that for each
point p ∈ K , the fiber P−1(p) ∩ � consists of s distinct points.

Construct two rectifiable simple closed curves Jo ⊂ �o ∪ K and J ⊂ � ∪ K as
follows. The set [a, b] \K1 consists of mutually disjoint open intervals (x′j , x′′j ). For each
j , R′

j is the smallest rectangle of the form [x′j , x′′j ] × [δ′j , δ′′j ] such that R′
j ⊂ R, and

R′
j ⊃ P(�) ∩ ([x′j , x′′j ] × [c, d]). Then R′

j consists of two points in K together with a
bottom arc contained in�o and a top one contained in�. Form the two simple closed curves
Jo ⊂ �̄o and J ⊂ �̄ as follows: Jo is the union ofK , the bottom arcs just constructed, and
the bottom arc of R. The curve J is formed similarly, using the top arcs. The rectifiability
of � implies that of Jo and J . We have Jo ∩ J = K and Jo ∪ J ⊃ bR. Let W be the
closure of the domain bounded by the curve J .

If we shrink R appropriately, we shall have that the set P−1(R) ∩ �̂ consists of s
mutually disjoint, closed, relatively open subsetsA1, . . . , As ofP−1(R)∩�̂ each of which
is mapped homeomorphically onto W̄ by P . To see this, note that if we shrink R to a point
p of K , then the preimage P−1(R) ∩ �̂ shrinks to the fiber P−1(p) ∩ �̂, which consists
of s points. Thus, if R is small enough, then P−1(R) ∩ �̂ will be the union of s mutually
disjoint sets, each open and closed in P−1(R) ∩ � and each of which maps injectively
onto W̄ .

Fix a point p ∈ K with a < �p < b. The set P−1(p) ∩ �̂ consists of s points,
p1, . . . , ps , all of which are in �.

Let �k be the shortest open subarc of � that contains pk and both of whose endpoints
lie over bR. By construction, the endpoints of �k lie over the vertical edges of R. If the
indexing is chosen so that pk ∈ Ak , then by connectedness, �k ⊂ Ak .

With this configuration, � ∩ Ak ∩ P−1(Ro) = �k . Otherwise, there is a point q ∈
(Ak \�k)∩� that lies overRo. Let γ be the shortest open arc in� through q with endpoints
over bR. The existence of γ together with the hypothesis that both a and b are limit points
of K implies the existence of points in K that are covered by at least (s + 1) points in �
under the map P . This is a contradiction.

Next, each of the arcs �k has an endpoint over each of the horizontal edges of R.
Suppose that �k does not. Then the curve P(�k) does not separate Jo from J . The local
maximum principle implies that if

Z = (P−1(bR) ∪ �) ∩ Ak,
then Ak ⊂ Ẑ. Because Jo and J are in the same component of C \ P(Z), and Jo is in
the unbounded component of C \ P(Z), Ẑ can have no points over J . This contradicts
Ak ⊂ Ẑ.
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Thus, our situation is that P−1(Ro) ∩ � is the union of s open subarcs �1, . . . , �s
of � each with endpoints lying in opposite vertical sides of R with, say s1 going from left
to right and s2 going from right to left.

By Lemma 4.5.9, Ind(P ◦ �, z) = s1 − s2 for each z ∈ �. We shall show that, for
a suitable orientation on �, s2 = 0, whence s = s1 = Ind(P ◦ �, z). The multiplicity of
P |�̂ \ � over � is s, so Lemma 4.5.8, and with it Theorem 4.5.7, is proved.

That there is an orientation with respect to which s2 = 0 is seen in the following
way. First, note that changing the orientation of � has the effect of interchanging s1 and
s2. Thus, it is sufficient to show that not both s1 and s2 can be positive. Therefore, for the
sake of deriving a contradiction, suppose that P(�1) goes from left to right, P(�2) from
right to left. Let β1 be the open arc J ∩Ro and let β2 be the open arc obtained by removing
the endpoints from the arc bR ∩ J . The endpoints of β1 (and of β2) lie in bR.

Let�′
k = P−1(β1)∩Ak , an open arc in CN that has the same endpoints as �k . Orient

it so that the first point of �′
k is the first point of �k , whence the last points coincide, too.

Form a simple closed curve �′ by replacing the arc �k in � by �′
k for k = 3, . . . , s. Thus,

�′ = (� \ ∪{�k : k = 3, . . . , s}) ∪ ∪{�′
k : k = 3, . . . , s}.

We shall show that

(4.13) �̂′ \ �′ = �̂ \ (∪{Ak : k = 3, . . . , s} ∪ �).
To do this, introduce, for small ε > 0, the rectangle Rε = [a + ε, b − ε] × [c, d]. The
rectangle Rε plays for �′ the same role as R does for �: The bottom edge of R lies in the
unbounded component of C \P(�′), and ifKε = K ∩Rε andKε,1 = K1 ∩ [a+ ε, b− ε],
then the vertical line x = t for t ∈ Kε,1 meets Kε exactly once at a point with two
P -preimages in �′, one in �1, one in �2. In this case, s = 2, s1 = s2 = 1.

The set �̂′\�′ is empty or else has a single analytic branch, as shown in Theorem 4.5.5.
If V is the right-hand side of (4.13), then V̄ \V ⊂ �′, so V̄ \V is a one-dimensional

analytic subset of �̂′ \ �′, whence V = �̂′ \ �′. The equality (4.13) is established.
Now let p be a point in the top edge of Rε, and put Po = P − p. We have

1

2πi

∫
P ◦�′

dPo

Po
= Ind(P ◦ �′, p) = s1 − s2 = 0.

This integral vanishes, so the polynomial Po has a logarithm on �′, so that the number of
zeros on V of Po is the same as the number of poles. The function Po has no poles, so it
has no zeros. However, �̂′ contains two points over p, one inA1, one inA2, so Po has two
zeros. Contradiction.

We have shown that � can be oriented so that s2 is zero, so the proof of Lemma 4.5.8
is complete, and Theorem 4.5.7 is proved.

The version of Stokes’s theorem for varieties bounded by rectifiable simple closed
curves is this:

Theorem 4.5.10. Let� be a rectifiable simple closed curve in CN , and letV be a bounded,
one-dimensional subvariety in CN \�. There is an orientation on � such that b[V ] = [�].
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Explicitly, if α is a smooth 1-form on CN , then
∫
V
dα = ∫

�
α, in which, on the

right, � is given the orientation-prescribed by the theorem.
As we see below, the orientation in question is that given by the last theorem.
Notice that since V̄ \ V is a subset of �, the variety V is known to have finite area

by Theorem 4.4.1.
Recall that the case of a simple closed curve of class C 1 has been discussed in the

remarks immediately following the proof of Theorem 4.5.1.

This theorem was first obtained by Lawrence [216,217] as a consequence of his gen-
eral version of Stokes’s theorem for polynomial hulls of connected sets of finite measure.
Lawrence’s development draws more heavily on the geometric theory of currents than
does the present one.

As a corollary, we have the following elegant criterion:

Corollary 4.5.11. The rectifiable simple closed curve γ in CN is polynomially convex if
and only if there is a holomorphic 1-form α on CN such that

∫
γ
α �= 0.

The 1-forms contemplated in this statement are of the form α =∑j=1,...,N aj (z)dzj

with coefficients holomorphic on the whole of CN .

Proof of Corollary 4.5.11. If γ is not polynomially convex, then γ̂ \γ is a one-dimensional
subvariety of CN \γ that satisfies the current equation b[V ] = [γ ] for a suitable orientation
of γ . If α is a holomorphic 1-form on CN , then

∫
γ
α = b[V ](α) = [V ](dα) = ∫

V
dα,

and this quantity vanishes, because the holomorphic 2-form dα on the one-dimensional
variety V vanishes.

Conversely, if γ is polynomially convex, fix a parameterization h : [0, L] → γ by
arc length, so that h′(t), which exists for almost all t ∈ [0, 1], satisfies |h′| = 1 a.e. [dt] on
[0, L]. Let g be a homomeorphism of γ onto the unit circle in C. Thus the winding number

1
2πi�γ arg g is ±1. Suppose it to be 1. There is a polynomial P with ‖P − g‖γ < 1

2 ,
for the curve γ is polynomially convex. This polynomial satisfies 1

2πi

∫
γ
dP
P

= 1. Let

W ⊂ CN \ P−1(0) be a compact polynomially convex set that contains γ in its interior.
Let Q be a polynomial such that ‖Q − 1/P ‖W < 1

2

{‖ d(P◦h)
dt

‖[0,L]�1(γ )
}−1. We then

have that

1 = 1

2πi

∫
γ

dP

P
= 1

2πi

∫
γ

(
1

P
−Q
)
dP + 1

2πi

∫
γ

QdP.

The first integral on the right is less than 1, so the second integral on the right is not zero:
QdP is a holomorphic 1-form on CN with nonvanishing integral around γ .

The corollary is proved.

This corollary extends immediately to rectifiable simple closed curves in Stein man-
ifolds: If M is a Stein manifold and γ is a rectifiable simple closed curve in M , then γ is
O(M )-convex if and only if there is a holomorphic 1-form α on M such that

∫
γ
α �= 0.

This is evident, because each Stein manifold is biholomorphically equivalent to a complex
submanifold of CN for a suitableN , and holomorphic 1-forms on complex submanifolds of
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CN extend to holomorphic 1-forms on CN . Much more complicated is the corresponding
problem in PN .

A natural regularity problem presents itself at this point: If the polynomially convex
hull of the rectifiable simple closed curve γ of CN is γ ∪ V for a necessarily irreducible
subvariety V of CN \ γ , and if some further smoothness condition is imposed on γ , for
example, if γ is of class C p or C p,α , how smooth is the pair (V , γ )? Good results of
this kind are known. Some can be found in the papers of Harvey [165] and Chirka [84]. It
should be noted also that the theory of minimal surfaces contains many boundary regularity
results that apply in the present setting. See in this connection the treatise of Nitsche [265].
Certain boundary regularity results are given in Section 7.2 below.

One particularly useful special case of our theory is that in which γ is a real-analytic
simple closed curve and V a one-dimensional subvariety of CN \ γ with V̄ \ V = γ .
In this case, V continues through γ as a one-dimensional variety that contains γ . This is
easily seen: The curve γ is real-analytic and so admits a real-analytic parameterization:
There is a real-analytic map ϕ from the unit circle bU onto γ with γ ′ nowhere vanishing
on bU. The map ϕ extends to a holomorphic map from an annular domainR in C into CN .
Call the extended map ϕ. If R is thin enough, ϕ will be one-to-one on R and its derivative
will not vanish on R: If R is small enough, ϕ will embed R as a one-dimensional complex
submanifold—call it R̃—of an open set � in CN . The variety V abuts the manifold R̃
along γ , so near γ , V is contained in R̃, as follows from Corollary 3.8.10. This provides
the desired analytic continuation of V . In this situation, γ may not be a subset of the set
of regular points of the extended variety, which we call call V ′. However, if p ∈ V ′ lies
in γ , then the irreducible branch of the germ of V ′ at p that contains the germ at p of γ is
nonsingular.

The next lemma is a preparatory step for the proof of Theorem 4.5.10.

Lemma 4.5.12. If � is oriented as in Theorem 4.5.10 and if P is a polynomial on CN , then
for every smooth 1-form ϑ on C,

(4.14) [�](P ∗ϑ) = b[V ](P ∗ϑ).

Proof. Let �j , j = 0, . . . , be the components of C \ P(�), with �0 the unbounded
one. Let the integer mj be the multiplicity of the map P |(P−1(�j ) ∩ V ), which, by
Theorem 4.5.7, is the index of the curve P ◦ � about each point w ∈ �j .

There is no loss in generality in assuming the form ϑ to have compact support. Thus,
let

ϑ = α(ζ )dζ + β(ζ )dζ̄
with α and β smooth, compactly supported functions on C. We treat first the form ϑ ′ =
α dζ . To do this, apply the generalized Cauchy integral formula to write that

α(ζ ) = 1

2πi

∫
C

α̃(η)

η − ζ dη ∧ dη̄

with α̃ = ∂α
∂η̄

.
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We then compute∫
�

P ∗(αdζ ) =
∫
�

P ∗
{(

1

2πi

∫
C

α̃(η)

η − ζ dη ∧ dη̄
)
dζ

}
= 1

2πi

∫
C

α̃(η)

{∫
�

P ∗
(
dζ

η − ζ
)}
dη ∧ dη̄

= −
∫

C

α̃(η) Ind(P ◦ �, η) dη ∧ dη̄

= −
∑
j=0,...

mj

∫
�j

α̃(η) dη ∧ dη̄.

On the other hand,

b[V ](P ∗(αdζ )) =
∫
V

d(P ∗(αdζ ))

=
∫
V

P ∗
(
∂α

∂ζ̄
dζ̄ ∧ dζ

)
=
∫
V

P ∗(α̃dζ̄ ∧ dζ )

= −
∑
j=0,...

mj

∫
�j

α̃ dζ ∧ dζ̄ .

We have found that [�](P ∗ϑ ′) = b[V ](P ∗ϑ ′). A similar calculation with ϑ ′′ = β(ζ )dζ̄
based on the representation

u(z) = 1

2πi

∫
C

ũ(ζ ) dζ ∧ dζ̄
ζ̄ − z̄

for a solution of the equation ∂u = ũ (with ũ smooth and compactly supported) shows
that [�](P ∗ϑ ′′) = b[V ](P ∗ϑ ′′), whence

(4.15) [�](P ∗ϑ) = b[V ](P ∗ϑ).

Equation (4.15) holds for all choices of the polynomial P and all choices of the
smooth 1-forms ϑ on C, so the lemma is proved.

Proof of Theorem 4.5.10. By Theorem 4.5.1, there are bounded Borel functions B ′
j and

B ′′
j on � such that for every smooth 1-form α, if α =∑j=1,...,N α

′
j dzj + α′′j dz̄j , then

(4.16) b[V ] =
∫
�

( ∑
j=1,...,N

α′jB ′
j + α′′j B ′′

j

)
d�1.

Also, we know by Lemma 4.5.12 that for every polynomial P and every smooth 1-form
α on C, ∫

�

P ∗α = b[V ](P ∗α).
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The functional I defined on smooth 1-forms by

I (α) =
∫
�

α

extends to a functional on the space B1 of 1-forms on CN with bounded measurable coef-
ficients. Call this extended functional Ĩ . Similarly, the functional B on 1-forms defined by

B(α) =
∫
�

( ∑
j=1,...,N

α′jB ′
j + α′′j B ′′

j

)
d�1

extends to a functional, denoted by B̃, on B1.

Lemma 4.5.13. If Eo ⊂ � is a set with �1(Eo) > 0, there is a subset E of Eo with
�1(E) > 0 such that if α ∈ B1 vanishes a.e. [d�1] on � \ E, then Ĩ (α) = B̃(α).
Proof. The curve � is rectifiable and�1(E) > 0, so there is an arc λ of class C 1 such that
�1(λ∩Eo) > 0. SetE1 = λ∩�. Let g : [0, L] → λ be an arc-length parameterization of
�, so that

∣∣ dg
dt

∣∣ = 1 everywhere. Set Fo = g−1(λ ∩ Eo), a compact subset of [0, L] with
positive length. Let to ∈ Fo be a point of metric density for Fo, so that

lim
δ→0

�1(Fo ∩ (to − δ, to + δ))
2δ

= 1.

Introduce new unitary coordinatesw1, . . . , wN chosen such that for each j , d
dt
wj ◦g(to) =

rj > 0. Put r = min rj , j = 1, . . . , N . Then for all δ > 0,

�1({wj ◦ g(t) : t ∈ Fo ∩ (to − δ, to + δ)}) > 0,

and there is a δo > 0 so small that each coordinate function wj is injective on the set
{g(t) : t ∈ Fo ∩ (to − δo, to + δo)}.

Next, invoke Theorem 4.3.11 to find a linear functionalφj on CN and a small positive
η with |φj (w)−wj | < η|w| for allw ∈ CN and such that for some subset Sj of the plane
of zero length, φj is injective on � \ φ−1

j (Sj ). If η is small enough, then for sufficiently

small δ1 > 0, d
dt
�(φj ◦ g(t) > r/4 for t ∈ [to − δo, to + δo]. Note that

(to − δ1, to + δ1) ∩ g−1(φ−1(Sj ) ∩ �)
is a null set contained in Fo.

Thus, if we set F = [to − δ1, to + δ1] ∩ Fo and E = g(F ), then (a) E ⊂ Eo, (b) φj
is injective on a subset of � that contains E, (c) E is compact, and (d) �1(E) > 0.

There are bounded measurable functions C′
j and C′′

j such that for a smooth 1-form
β =∑j=1,...,N β

′
j dwj + β ′′

j dw̄j ,

B̃(β) =
∫
�

( ∑
j=1,...,N

β ′
jC

′
j + β ′′

j C
′′
j

)
d�1.
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Apply the formula
∫
�
P ∗ϑ = b[V ](P ∗ϑ), valid for all polynomials P and all smooth

1-forms ϑ on C in the case that P = φj and ϑ = f (ζ )dζ for a smooth function f on C.
If φj (w) =∑k=1,...N bjkwk , it yields∫

�

( ∑
k=1,...N

f ◦ φjbjk
)
dwk =

∫
�

( ∑
j=1,...,N

f ◦ φjbjkC′
k

)
d�1.

This equation is true for every choice of smooth or continuous function f on C. Let h̃ be a
function continuous on the set E. The function φj is injective on � \ φ−1(S) for a subset
S of the plane of zero length, and we have E ⊂ (� \ φ−1(S)), so there is a uniformly
bounded sequence {fn} of smooth functions on the plane with fn → 0 off φj (E) and with
fn → h̃ on E. Thus for every bounded measurable function h on E,∫

E

h
∑

k=1,...,N

bjk dwk =
∫
E

h
∑

k=1,...,N

bjkC
′
k d�

1.

Apply this formula with h replaced by hcij , where [cij ] is the inverse of the matrix [bjk].
(By its construction, [bjk] is a small perturbation of the identity.) Because∑

j=1,...,N

cij bjk = δik,

we get ∫
E

h dwk =
∫
E

hC′
k d�

1

for each k. Similarly for each k,∫
E

h dw̄k =
∫
E

hC′′
k d�

1.

This completes the proof of the lemma.

In the context of the lemma, we shall write that
∫
E
α = (b[V ]�E)(α).

Proof of Theorem 4.5.10 concluded. Letm be the supremum of the numbers�1(E), the
supremum taken over all measurable subsets E of � such that for all 1-forms α,

∫
E
α =

(b[V ]�E)(α). Let {Fk} be a sequence of measurable subsets of � with �1(Fk) > m− 1
k

and with
∫
Fk
α = (b[V ]�Fk)(α) for all α. The set Fo = ∪kFk is a measurable subset

of � with
∫
Fo
α = (b[V ]�Fo)(α) for all α. If m = �1(�) the theorem is correct. If

not, then the lemma provides a measurable set F ⊂ � \ Fo with �1(F ) > 0 and with∫
F
α = (b[V ]�F)(α) for all α. We have reached a contradiction to the definition ofm, for

�1(F ∪ Fo) > m. The theorem is proved.

Lawrence [216, 217] and Dinh [101] established very general versions of Stokes’s
theorem. Their formulations are in terms of currents; the more general version is that
of Dinh:
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Theorem 4.5.14. Let � be a domain in CN and let the closed subset X of � be of class
A1. If V ⊂ � \X is a purely one-dimensional analytic subvariety, then the current b[V ]
is locally rectifiable with multiplicity 0 or 1 almost everywhere [d�1].

Stated without the terminology of currents, this means the following: There exists
a measurable field  T of unit vectors defined almost everywhere [d�1] on X with the
properties that for almost every [d�1] x ∈ �, the vector  T (x) lies in the tangent line
Tan(X, x) and for every smooth 1-form α on � with compact support,

(4.17) b[V ](α) =
∫
X

µ(x)〈  T (x), α(x)〉 d�1(x)

for a measurable function µ that takes the values 0 and 1.
A proof of this result, essentially that given by Lawrence [215–217], can be executed

as follows; the essential point, granted the development given above, is an appeal to a deep
theorem about currents.

First, we need to formalize the notion of rectifiable current. Doing so depends on a
few preliminaries from multilinear algebra.

Let V be an N -dimensional real inner product space. For each p = 0, 1, . . . , there
is the pth exterior power

∧
p V of V . The elements of

∧
p V are the p-vectors of V . By

definition,
∧

0 V is the field R, and for p > N ,
∧
p V = 0. In the direct sum

∧
V =⊕

p=0,1,...
∧
p V there is an associative multiplication such that if v ∈ ∧p V and w ∈∧

q V , the product v ∧ w lies in
∧
p+q V . This exterior multiplication has the properties

that c(v ∧ w) = (cv ∧ w) = v ∧ (cw) for all c ∈ R and v ∧ w = (−1)pqw ∧ v all
v ∈ ∧p V , and all w ∈ ∧Vq for all p and q. The space

∧
p V is endowed with the

inner product with the property that if u1, . . . , uN is an orthonormal basis for V , then
the products ui1i2...ip = ui1 ∧ · · · ∧ uip with 1 ≤ i1 < · · · < ip ≤ N constitute an

orthonormal basis for
∧
p V . Note that dimR

∧
p V = (N

p

)
. A p-vector v ∈ ∧p V is

simple if v = v1 ∧ · · · ∧ vp for some choice of vectors v1, . . . , vp ∈ V . The simple
vectors are also called decomposable vectors. For example, the 2-vector u13 + u23 − u12
is simple: it is the exterior product (u1 + u2) ∧ (u1 + u3). The oriented p-dimensional
vector subspaces of V are in one-to-one correspondence with the simple unit p-vectors
of V . The correspondence is established as follows. Let L be an oriented p-dimensional
subspace of V , and let v1, . . . , vp, taken in that order, be a positively oriented orthonormal
basis for L. Then L corresponds to the p-vector v1 ∧ · · · ∧ vp. One verifies that this is a
one-to-one correspondence, and that it is independent of the choices.

If we start this process with V replaced by its dual space V ∗, we obtain the exterior
algebra

∧
V ∗. The elements of

∧
p V

∗ are the p-covectors ofV . They are linear functionals
on
∧
p V , and we have in a natural way that

∧
p(V

∗) = (∧p V )∗. There is a natural bilinear
pairing 〈, 〉 :∧p V ⊕∧p V ∗ → R given by 〈v, α〉 = α(v).

We can now define the rectifiable k-currents. For this, fix a measurable set E ⊂ RN

that is (�k, k)-rectifiable. At almost every [d�k] point this set has a tangent plane, Tx(E).
Choose a measurable orientation on E, by which we understand an orientation on each
of the tangent planes Tx(E) that varies measurably in the point x. To each Tx(E) is then
associated a unit k-vector, to be denoted by  T (x), by the process described above. If,
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finally, µ is a measurable function on E with values in the nonnegative integers, then we
can define a current S by the condition that for every smooth k-form α,

S(α) =
∫
E

µ(x)〈  T (x), α(x)〉 d�k(x).

A current of this form is said to be a rectifiable k-current.
Another class of currents is that of integral currents: The space Ik of integral k-

currents is the space of all rectifiable k-currents T such that bT is a rectifiable (k − 1)-
current. There is an alternative characterization of the integral currents as follows.

The definition depends on certain seminorms. Given ϕ ∈ ∧∗
p, the quantity ‖ϕ‖∗ is

defined by
‖ϕ‖∗ = sup{ϕ(v) : v is a simple p-vector of unit length}.

Given ap-form α on a domainD in RN , for each x ∈ D, the value α(x) is an element
of
∧
p Tx(R

N)∗, and so has a norm ‖α(x)‖∗ in accordance with the preceding definition.
If T is a k-current on a domain D, then the mass normMMM(T ) of T is given by

MMM(T ) = supα|T (α)|,
where the supremum is extended over all k-forms α on D with supx∈D‖α(x)‖∗ < 1.

The following theorem characterizes the integral currents:

Theorem 4.5.15. [115, Theorem 4.2.16] The compactly supported k-current on RN is an
integral current if and only if T is rectifiable andMMM(bT ) is finite.

This is a complicated result the proof of which will not be given here.
As an example, if D is a bounded domain in R2 bounded by a rectifiable simple

closed curve, then the current [D] of integration over D is an integral 2-current. If D is a
bounded domain in R2 bounded by a nonrectifiable simple closed curve, then [D] is not
an integral current.

For our immediate purposes, the example of interest is that of integration over a one-
dimensional analytic variety. Let � be a domain in CN , and let � be a one-dimensional
subvariety of � with finite area. If Vreg denotes the set of regular points of V , then for a
smooth two-form α on CN , [V ](α) = ∫

Vreg
α. With ω = 1

2i

∑N
j=1 dzj ∧ dz̄j , we have

seen in Lemma 3.7.1 that for a function f on �,

[V ](f ω) =
∫
Vreg

fω =
∫
Vreg

f (z) d�2(z).

If α is a smooth two-form on Vreg, we have that∫
Vreg

α =
∫
Vreg

(
α/ω
)
ω.

A comment about the quotient α/ω may be in order. The form ω vanishes at no point
of Vreg, so there is a function g such that α = g ω. This function g is denoted by the
quotient α/ω.
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Given a two-form α = ∑N
r,s=1 arsdzr ∧ dz̄s , we can determine the function α/ω

on Vreg by working with a biholomorphic parameterization ϕ : U → V of a disk in Vreg.
Given such a ϕ, we have∫

ϕ(U)

α =
∫

U

ϕ∗α

=
∫

U

(∑
r,s

ars(ϕ(ζ ))ϕ
′
r (ζ )ϕ

′
s(ζ )

)
dζ ∧ dζ̄

=
∫

U

{∑
r,s ars(ϕ(ζ ))ϕ

′
r (ζ )ϕ

′
s(ζ )

|ϕ′(ζ )|2
}
|ϕ′(ζ )|2dζ ∧ dζ̄ .

(4.18)

Note thatϕ∗ω = 1
2i

∑N
j=1 ϕ

′
j (ζ )ϕ

′
j (ζ ) dζ∧dζ̄ = 1

2i |ϕ′|2dζ∧dζ̄ . The vectorϕ′(ζ )/|ϕ′(ζ )|
is tangent to V at ϕ(ζ ) as is the vector iϕ′(ζ )/|ϕ′(ζ )|, and these two vectors, in that order,
give a positively oriented orthogonal basis for the tangent space of V at ϕ(ζ ). The quantity
in braces in the last integral is 2i

〈
ϕ′(ζ )
|ϕ′(ζ )| ∧ iϕ′(ζ )

|ϕ′(ζ )| , α(ϕ(ζ ))
〉
. We have thus exhibited the

current [V ] as a rectifiable 2-current.

With these preliminaries in hand, we now turn to the proof of Theorem 4.5.14. First
we consider a bounded, one-dimensional subvariety V of CN \ � with the compact set �
of class A1. The current [V ] of integration over V is a rectifiable 2-current, as we have
just seen. We will study the current boundary b[V ], which is supported in �.

According to Theorem 4.5.1, there is a measurable vector  B = (B1, . . . , B2N) on �
such that for every smooth 1-form α =∑2N

j=1 ajdxj on CN ,

(4.19) b[V ](α) =
∫
�

2N∑
j=1

Bj (z)aj (z) d�
1(z).

The functionsBj are all bounded by one. This does not by itself exhibit b[V ] as a rectifiable
current; we do not see immediately that  B is of the form µ  T with the multiplicity function
µ a measurable integer-valued function on � and with  T a unit vector tangent almost
everywhere [d�1] to �. The proof of Theorem 4.5.1 as it stands does not yield this refined
information.

However, the representation (4.19) for b[V ] does let us show [V ] to be an integral
current, by way of Theorem 4.5.15, for it implies easily that the seminorm MMM(b[V ]) is
finite, whence [V ] is an integral 2-current, which implies that b[V ] is rectifiable. By what
we have above, the mass of b[V ] is given by

MMM(b[V ]) = sup

∣∣∣∣ ∫
�

2N∑
j=1

Bj (x)αj (x) d�
1(x)

∣∣∣∣,
in which the supremum is taken over all 1-formsα =∑2N

j=1 αj dxj satisfying |〈v, α(x)〉| ≤
1 for all simple 1-vectors v of unit length and for all x ∈ CN . Every 1-vector, i.e., every
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vector, is simple, so duality shows that the forms in question are simply those for which
{∑2n

j=1 αj (x)
2}1/2 ≤ 1 for all x. Consequently, the integral on the right of the last equation

is bounded by maxx∈�{∑2N
j=1 Bj (x)

2}1/2�1(�). The functions Bj are bounded by one, so
we reach

MMM(b[V ]) ≤ √
2N�1(�).

We have proved that the current [V ] is an integral current, so b[V ] is a rectifiable
current.

We need to see that the multiplicity function associated with this current assumes
a.e. [d�1] the value 0 or 1. Suppose this is false, so that there is a compact set E ⊂ �

of positive length on which µ ≥ 2. We can suppose that µ assumes the constant value m
on E. Then because the vector  T is measurable, we can suppose that it is continuous on
E by Lusin’s theorem. By passing to a smaller E, still of positive length, we can suppose
that if x, y ∈ E, then |  T (x) −  T (y)| < 1

3m . Fix a point xo ∈ E. Let ϕ : CN → R be

the real-linear functional given by ϕ(x) = x ·  T (xo). Choose holomorphic coordinates
z1, . . . , zN on CN with zj = x2j−1 + ix2j , and with x1 = ϕ(z). There is a measurable
vector  B on � such that

b[V ]
( 2N∑
j=1

aj (x)dxj

)
=
∫
�

2N∑
j=1

Bj (x)aj (x) d�
1(x).

Apply this with the form g dϕ for a smooth function g on CN to get∫
�

µ(x)〈  T (x), g(x)dϕ〉 d�1(x) =
∫
�

B1(x)g(x) d�
1(x).

This equation holds for all choices of the smooth function g on CN . If we apply it to a
sequence of such functions that decreases monotonically to the characteristic function of
the set E, we find that

m

∫
E

〈  T (x),  T (xo)〉 d�1(x) =
∫
E

B1(x) d�
1(x).

We have |B1| ≤ 1 a.e. [d�1], m ≥ 2, |  T (xo)| = 1, and |  T (x)−  T (xo)| < 1
3m a.e. [d�1]

on E, so we have a contradiction. Thus, as desired, µ(x) ≤ 1 a.e. [d�1].
We have so far been considering the case of a compact set � of class A1 that contains

bV for a bounded, purely one-dimensional variety V . The more general case in which
we have a domain D and in D a closed set � of class A1 that contains the set bV for a
subvariety V of D \ � follows immediately. In this case, we consider the current [V ] as
acting on 2-forms α onD with suppα � D. We are to show that there is a measurable field
 T of unit vectors on � with  T (x)-tangent to � a.e. [d�1] and a measurable multiplicity
function µ on � that assumes only the values 0 and 1 such that

b[V ](α) =
∫
�

µ(x)〈  T (x), α(x)〉 d�1(x)
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for every smooth 1-form α with suppα � D.
This follows from the version of the theorem already established. By using a partition

of unity, we need only consider forms α with small support. If x ∈ �, then for almost all
small positive r , the set V ∩ bBN(x, r) is a real-analytic one-dimensional submanifold of
bBN(x, r) \� that has finite length. Fix such an r . The set bV ∩ B̄N(x, r) is a compact set
of class A1. When restricted to forms α with support a compact subset of BN(x, r), the
current b[V ] has the stated form, as follows from the version of Stokes’s theorem already
established.

If we restrict attention to the case that � is a rectifiable simple closed curve that
is the boundary of the bounded one-dimensional subvariety V of CN \ �, the results we
have been discussing now do not immediately imply the earlier result, Theorem 4.5.10.
It is possible to derive that earlier result from Theorem 4.5.14, but such a proof seems
to require a further excursus through nontrivial parts of the geometric theory of currents.
Such a derivation was given in [216, 217]. This development also requires the result of
Theorem 4.5.7.

4.6. The Multiplicity Function

In [216,217] Lawrence introduced a multiplicity function that is useful in the study of the
boundaries of one-dimensional varieties.

Definition 4.6.1. Let E be a closed subset of an open set � in CN , and let V be a one-
dimensional subvariety of � \ E. For r > 0 and for z ∈ E, let mr(z;V ) be the number
of irreducible branches of the variety V ∩ (BN(z, r) \E) each of whose closures contain
the point z.

Thus, mr(z;V ) is a nonnegative integer or else ∞. As a function of r , mr(z;V ) is
nonincreasing.

Definition 4.6.2. With the notation of the preceding definition,

m(z;V ) = lim
r→0+

mr(z;V ).

The multiplicity m(z;V ) will usually be denoted simply by m(z); in practice it will
be clear which variety is under discussion

The function m is measurable on the set E as is seen from the following description
of it. For each k, fix a locally finite covering of the set E by balls of radius 1/k, and
partition E into a family of mutually disjoint measurable subsets Ek,j each of which is
contained in one of the balls. Define a function µk on E by the condition that µk(z) be the
number of branches of the set B ∩ V that contain z in their boundary, where B is the one
of the balls that contains the set Ek,j in which x lies. The function µk is measurable, and
m(z) = limk→∞ µk(z), so m is a measurable function.

A basic fact about the multiplicity function m is that there is a universal almost
everywhere bound on it when the set X is restricted to be of class A1.



204 Chapter 4. Sets of Class A1

Theorem 4.6.3. [216, 217] If � is an open subset of CN , if X is a closed subset of � that
is of class A1, and if V is a one-dimensional subvariety of � \ X, then for almost every
[d�1] x ∈ X, m(x) ≤ 2.

Proof. Start by recalling that, according to Theorem 4.4.1, the area of V is locally finite
in �. The problem is local, so we can suppose that � is bounded, that V has finite area,
and that the set X̄ has finite length and is of class A1. By Lemma 4.3.10, almost every
linear functional φ on CN carries X̄ to a set of class A1; moreover, almost every such φ is
constant on no global branch of the variety V . Fix a φ with these two properties.

Let the components of C \ φ(X̄) be �0, . . . . By Lemma 4.3.15, almost every point
of φ(X̄) lies in b�j for at most two values of j . In addition, by Corollary 4.3.17, almost
every point of φ(X̄) lies in b�j for some choice of j .

Let Y ⊂ φ(X) be a set with �1(Y ) > 0, with the property that every point y ∈ Y
belongs to b�j for some j , and with the property that for all y ∈ Y , the fiber φ−1(y)∩ X̄
is finite. The latter condition can be achieved because X̄ has finite length.

If Yj = Y ∩ b�j , then by Theorem 4.3.12 there are a compact subset Y ′
j ⊂ Yj such

that �1(Y ′
j ) > 0 and a domain Dj contained in �j with bDj a rectifiable simple closed

curve that contains Y ′
j . Denote by λj the multiplicity of φ over Dj , so that for all points

ζ ∈ Dj , the fiber φ−1(ζ )∩ V contains λj points taking multiplicities into account; for all
but countably many points ζ ∈ Dj , the fiber φ−1(ζ ) ∩ V contains λj distinct points.

For almost all points ζ ∈ bDj , the fiber φ−1(ζ )∩ φ−1(Dj ) ∩ V contains λj points.
Let y ∈ Y ′

j be such a point, and let φ−1(y) ∩ X = {w1, . . . , ws}. Let δ > 0 satisfy

δ < 1
2 min1≤j<k≤s |wj − wk|.
If r > 0 is small enough, then each of the balls BN(wj , δ)meets at most one branch

of the variety φ−1(Dj ) ∩ V .
Fix a small r > 0. The sets φ−1(B1(y, r))∩BN(wj , ε) for varying ε > 0 constitute

a neighborhood basis for the point wj , and V ∩ φ−1(B1(y, r)) ∩ BN(wj , ε) meets only
one sheet of V ∩ φ−1(Dj ).

If w1 ∈ V̄ \ V , let V ′
r be a branch of φ−1(B1(y, r)) ∩ BN(w1, ε) ∩ φ−1(Dj ). Then

φ(V ′
r ) is an open connected subset of B1(y, r) whose boundary contains y. It has to be

a component of B1(y, r) ∩ Dj : Only one component, C, of B1(y, r) ∩ Dj has y in its
boundary, so φ(V ′

r ) = C. The set φ−1(B1(y, r)) ∩ BN(w1, δ) meets only one sheet of
φ−1(Dj )∩V , so there is only one branch of φ−1(B1(y, r))∩BN(w1, δ)∩ φ−1(Dj ). The
point y is in bDj for at most two distinct values of j , so for all choices of the indices j
and k, almost every point w of X ∩ φ−1(bDj ∩ bDk) satisfies m(w) ≤ 2.

Denote by S the set of points x ∈ X at whichm(x) > 2. If�1(S) > 0, then because
the set X belongs to the class A1, there is a φ of the kind we have been using such that
�1(φ(S)) > 0. If we take for the Y of the discussion above a compact subset of φ(S) of
positive length, we get a contradiction to what we have done, so the theorem is proved.

There is an analytic continuation result phrased in terms of the multiplicity m:

Theorem 4.6.4. [217] If � is a domain in CN , if λ is a rectifiable arc in �̄ with interior
contained in �, and if V is a one-dimensional subvariety of � \ λ such that m(z;V ) = 2
a.e.[d�1] on λ, then � ∩ V̄ is a subvariety of �.
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The proof of this theorem depends on a preliminary lemma:

Lemma 4.6.5. If V ′ and V ′′ are irreducible analytic subvarieties of BN and if λ ⊂ bBN
is an open analytic arc that is an open subset of both bV ′ and bV ′′, then V ′ = V ′′.
Proof. The open arc λ is real-analytic, so there is a real-analytic parameterization g :
(0, 1) → λ. By shrinking λ, we can suppose that g is real-analytic on an open interval
that contains [0, 1], that g′ is zero-free on this larger interval, and that g extends to be
holomorphic on the open subset U of C. Shrinking U a little allows us to suppose that bU
is a smooth simple closed curve and also that g is holomorphic on a neighborhood of Ū .
The open arc λ splits g(U) into two components, of which, by the maximum principle, at
most one lies in BN . A priori, both might lie outside BN , though we will see that this does
not happen.

Then g(U) is an analytic subvariety of CN \ g(bU). Fix a point p ∈ λ. There is a
neighborhood � of p in CN on which there are holomorphic functions fj , j = 1, . . . , r ,
for which g(U) ∩� = ∩j=1,...,rf

−1(0).
We will show that if the function f ∈ O(�) vanishes on g(U), then it vanishes

on the part of V ′ in � near λ. For this purpose, use the notation that �+ is the open
right half-plane. Because λ is open in bV ′, there is a linear functional ϕ on CN with
�ϕ < 0 on bV ′ \ λ and with ϕ(λ) ∩�+ not empty. The functional ϕ carries (bV ′ \ λ)̂
into the left half-plane. Consequently, by Theorem 4.3.2, the hull b̂V ′ has the structure of
a one-dimensional variety near the points of λ ∩ ϕ−1(�+). For the generic choice of ϕ,
there is a finite set E ⊂ λ with the property that ϕ|(λ \ E) is one-to-one and regular in
that d(ϕ|(λ \ E)) does not vanish anywhere. Given a ϕ with these properties, the part of
ϕ(λ \ E) that lies in �+ consists of a finite number of open real-analytic arcs. The map
ϕ|(V ′ ∩ϕ−1(�+ \ϕ(bV ′)) is proper over each component of�+ \ϕ(bV ′). LetWo be one
of the components of �+ \ ϕ(λ) that is contained in ϕ(V ′) and that abuts the unbounded
component of�+ \ ϕ(λ) along an open arc, γ . The map ϕ is injective on λ ∩ ϕ−1(γ ), so
by Theorem 3.6.1 is injective overWo. Let ψ : Wo → V ′ ∩ ϕ−1(Wo) be the map inverse
to ϕ.

By hypothesis the function f vanishes on g(U). Consequently, f ◦ ψ tends contin-
uously to zero at the arc γ ⊂ bWo. Accordingly, it vanishes identically on Wo. The set
g(U) thus contains an open subset of V ′. Thus near λ, g(U) coincides with V ′. Similarly,
near λ, the set g(U) coincides with V ′′. Consequently, V ′ and V ′′ meet in an open set; the
irreducibility hypothesis implies that they coincide.

The lemma is proved.

Proof of Theorem 4.6.4. Because of Theorem 3.8.18, the only case of interest is that in
which both endpoints of λ lie in b�. Also, because of the same result, it suffices to prove
that V continues analytically through one point of λ. The problem is a local one, so we
can suppose that � = BN(2).

Notice to begin with that for almost every r ∈ (0, 2), the set Yr = λ∪ (bBN(r)∩V )
is a set of class A1. This is so, for, first of all, no matter what the value of r ∈ (0, 2), the
set Yr is compact. Eilenberg’s inequality implies that for almost all r , the set λ ∩ bBN(r)
is finite and that the set Yr has finite length, because by Theorem 4.4.1, the variety V
has locally finite area in �. Because the variety V has only countably many singularities,
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Sard’s theorem yields that for almost all r , the intersection V ∩ bBN(r) is a real-analytic,
one-dimensional closed submanifold of bBN(r)\λ. If we choose r to satisfy both of these
conditions, then the set Yr is a (�1, 1)-rectifiable set and at every point of Yr \λ the tangent
is a real line. Thus, we can suppose that we are working on the unit ball BN and that the
set X = V̄ ∩ bBN is of class A1. Note, though, that with these reductions, the set λ ∩ BN
may not be an arc; it may be a union of at most finitely many subarcs of the originally
given arc. We now change notation and denote the closure of the set λ ∩ BN by λ.

Lemma 4.6.6. The set X ∪ λ ∪ V is polynomially convex.

Proof. What is to be proved is that (X∪ λ)̂ isX∪ λ∪V . If not, then becauseX∪ λ is of
class A1, the set (X∪λ)̂ \(X∪λ) is in any case an analytic subvariety,W , of CN \(X∪λ)
that contains V . LetWo be a global branch ofW not contained in V . By Theorem 3.8.15,
W̄o \Wo must meet X in an analytic arc that is an open subset ofX. Lemma 4.6.5 implies
thatW must be contained in V . Contradiction.

Proof of Theorem 4.6.4 concluded. We are going to show that V ⊂ X̂. Plainly V ⊂
{X ∪ λ}̂ . Thus, if V is not contained in X̂, then λ is not contained in X̂.

If λ is not contained in X̂, there is a polynomialQ with �Q < 0 on X that satisfies
�Q > 0 at some points of λ. Theorem 4.3.11 implies the existence of a subsetEo of C that
has zero length and that has the further property thatQ is injective from (X∪λ)\Q−1(Eo)

toQ(X ∪ λ) \ Eo.
Let W be a component of C \Q(X ∪ λ) that is contained in Q(V ) and that meets

the open right half-plane, and let J = {ζ = ξ + iηo : a ≤ ξ ≤ b} be a horizontal interval
contained in W . There is a subset S of J of positive length with the property that if Lζ
is the vertical line in C through the point ζ ∈ S, then Lζ meets Q(λ) in a finite set. This
finite set partitions Lζ into a finite number of open intervals, two infinite in length, the
others finite. For each ζ ∈ S, let Iζ be the topmost of these finitely many intervals that is
contained in the set Q(V ), and let Wζ be the component of Q(V ) that contains Iζ . The
set Q(V ) \ Q(X ∪ λ) has only countably many components, so there is a subset of S,
which we shall denote by S, with positive length and with the property that for a fixed
componentWo ofQ(V ) \Q(X ∪ λ) and a fixed componentW+

o of C \Q(X ∪ λ) that is
not contained inQ(V ), each interval Iζ for ζ ∈ S is contained inWo and the top endpoint
of Iζ is contained in bW+

o . If necessary, we can shrink S further in such a way that for
each ζ ∈ S, the top endpoint of Iζ lies outside the set Eo. In addition, by shrinking the
set S by at most a countably infinite set, we can suppose that each of these top endpoints
lies in the boundary of no component of C \ Q(X ∪ λ) other than Wo and W+

o . (Recall
Theorem 3.4.16.)

To continue, let x ∈ λ be a point with m(x, V ) = 2 taken by Q to one of the
top endpoints considered in the last paragraph. Let B be a small connected open set that
contains x, B small enough that Q(B) is contained in the half-plane �ζ > 0 and B ∩ V
has two components. We suppose γ = bB ∩ V to be a smooth one-dimensional set with
finite total length and λ ∩ B to be the interior of the subarc λo of λ.

Under the mapQ, the set V ∩ bB \ λ is taken intoQ(V ). LetW1 be the component
of C \Q(λo ∪ γ ) contained inWo that containsQ(x) in its boundary. The map
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Q : Q−1(W1) ∩ V → W1

is proper and so is proper on each branch of the variety V ∩Q−1(W1). There are at least
two of these branches by the choice of B. Accordingly, some points inW1 are covered at
least twice byQ|V .

By construction, there is a set of positive length in bWo over which Q|(X ∪ λ) is
injective. This set of positive length is a set of uniqueness for subharmonic functions on
Wo. Consequently, by Corollary 3.6.2,Q is injective on V ∩Q−1(Wo).

We have reached a contradiction, so, as claimed, λ ⊂ X̂.
The set X̂ \X is a purely one-dimensional subvariety of CN \X, and we have shown

it to be V ∪ int λ. The lemma is proved.

Corollary 4.6.7. If � is a rectifiable simple closed curve in CN , then the variety �̂ \� has
at most one global branch.

Proof. Let V1 and V2 be distinct global branches of �̂ \ �. By Theorem 3.8.15, each of
the sets V̄1 \ V1 and V̄2 \ V2 contains �, so m(z;V1 ∪ V2) ≥ 2 for every z ∈ �. By
Lemma 4.6.3, m = 2 a.e. [d�1] on γ . Theorem 4.6.4 implies that V1 ∪ V2 ∪ � is a
subvariety of CN . The space CN contains no compact subvarieties of positive dimension,
so we have a contradiction. The corollary is proved.

This corollary was established above in Theorem 4.5.5 by entirely different methods.
A more general result in the same vein is given in Theorem 4.7.1 below.

There is a local version of this corollary:

Lemma 4.6.8. If � is a rectifiable simple closed curve and �̂ \ � is not empty, then for
each p ∈ � and for every neighborhood U of p, there is one and only one component Vo
of the variety V ∩ U such that V̄o contains an arc λ in � that contains the point p in its
interior. Every other branch of V ∩ U meets λ in a set of length zero.

Proof. If V1 and V2 are branches of U ∩ V such that both V̄1 and V̄2 contain an arc λ ⊂ �
with p an interior point of λ, then the multiplicity function m is 2 a.e. [d�1] on λ, so
V1 ∪ V2 continues through the interior of the arc γ to form a one-dimensional variety
W . By the maximum principle, �̂ is contained in the hull of a proper subset of �, which
is a contradiction, for rectifiable arcs are polynomially convex. This establishes the first
assertion of the lemma.

For the second assertion, there are two cases. If there is a global branch Vo of U ∩V
that contains an arc λ in � that contains p in its interior, then every other branch W of
U ∩ V meets λ in a totally disconnected set, possibly the empty set. Otherwise, there
is a branch W such that W̄ meets λ in an arc. Then Vo ∪ W continues through this arc,
and we again have a contradiction. Thus, for every W , W̄ meets λ at most in a totally
disconnected set. Call this set T . Theorem 3.8.23 implies that W continues analytically
through W̄ ∩ λ as a one-dimensional subvariety. Let λ be a rectifiable arc in the variety
W that contains a subset T ′ of T of positive length. The set λ ∪ γ is a set of class A1. If
q ∈ T ′ is a set of metric density for T ′, and if δ is sufficiently small, then the subvariety
(Vo ∪ (W \ λ)) ∩ BN(q, δ) has multiplicity at least three on the set T ′ of positive length
contained in γ ∪ λ. This contradicts Theorem 4.6.2.
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The theory of the multiplicity function implies a vector-valued analogue of a classical
theorem of F. and M. Riesz, Theorem 3.4.6.

Theorem 4.6.9. If E is a compact subset of CN of finite length and f : U → CN \E is a
proper, holomorphic map onto a bounded subvariety V of CN \E, then f ′ belongs to the
Hardy class H 1(U).

In this statement we are implicitly using the convention that a CN -valued holomorphic
function belongs to the Hardy class H 1(U) when each of its components belongs to this
class in the usual sense.

The hypotheses of the theorem are redundant in that granted that f : U → CN \E is
a proper holomorphic map, the image f (U) is automatically an analytic variety, as follows
from Remmert’s proper mapping theorem in analytic geometry [259].

This result was obtained by Lawrence [216,217]; the case that the cluster set of f at
bU is contained in a rectifiable simple closed curve was found earlier by Globevnik and
Stout [149].

The following lemma implies that we need only consider the case that the map f is
essentially injective. Recall that a finite Blaschke product is a function h on C of the form

h(z) = eiϑ
m∏
j=1

z− αj
1 − ᾱj z

with αj ∈ U. It is a standard exercise in function theory to show that a proper holomorphic
map from U to itself is a finite Blaschke product.

Lemma 4.6.10.[347] With f as in Theorem 4.6.9, there is a factorization f = η ◦ b with
b a finite Blaschke product and with η : U → CN \ E a proper holomorphic map that is
one-to-one off a discrete subset of U.

Proof. This lemma depends on the fact, which we shall not prove here, that there exist
a Riemann surface R, a proper holomorphic map ψ : U → R, and a holomorphic map
η : R → V with these properties: ψ is proper, there is a discrete subset S of V such that
η carries R \ η−1(S) biholomorphically onto V \E, and f = η ◦ψ . For the pair (R, η),
one takes the normalization of the variety V . Normalizations are treated, for example, in
[259]. In the case at hand that V is one-dimensional, one can give a relatively simple ad
hoc construction of R using the theory of fractional power series. The existence of R and
ψ shows that to prove the lemma, it is sufficient to prove it in the case that V is nonsingular.

Let us therefore assume V to be a one-dimensional manifold. The map f is proper,
so there is an integer µ, the multiplicity of f , such that, due attention being paid to
multiplicities, each point of V has µ preimages in U under f . Define the function F on
R by F(ζ ) = �{z ∈ U : f (z) = ζ } in which each factor z is taken as many times as
indicated by the multiplicity of f at z. This function F is holomorphic and bounded on R.

The map b = F ◦ f : U → U is proper and so is a finite Blaschke product. The
derivative b′ has a finite number of zeros in U, so there is an annulusA = {z ∈ C : 1−ε <
|z| < 1 + ε} on such that

b : b−1(U ∩ A)→ U ∩ A
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is a covering map. Consequently, F−1(U∩A) is a finite union of annuli. We can therefore
form the double, V ∗, of V , which is a compact Riemann surface V together with an
anticonformal involution ρ such that V ∗ = V ∪ ρ(V ) together with a finite number of
analytic simple closed curves. The function f extends by reflection to a holomorphic
function, still denoted by f , from the Riemann sphere, C∗, onto V ∗ that satisfies the
functional equation f ◦κ = ρ ◦f , where κ denotes the anticonformal involution z �→ 1/z̄
of C∗.

The map F gives a covering of U ∩ A by the set F−1(U ∩ A), so F extends by
reflection to a meromorphic function, denoted by F , on the compact surface V ∗. The
extended map F satisfies the functional equation F ◦ ρ = κ ◦ F .

To see that V is a disk, it suffices to see that V ∗ is a sphere. If V ∗∗ is the universal
covering space of V ∗ with projection h, then f : C∗ → V ∗ lifts to f ∗ : C∗ → V ∗∗,
so V ∗∗ is compact. The only compact simply connected Riemann surface is, to within
conformal equivalence, the Riemann sphere. Uniformization theory shows that the only
Riemann surface with the sphere as its universal covering space is the sphere itself: V ∗ is
the sphere.

Thus, the map f is a proper holomorphic map from U to itself; such a map is a finite
Blaschke product.

The lemma is proved.

The proof of Theorem 4.6.9 depends on a result from the theory of functions of a
real variable:

Theorem 4.6.11. Let f : [a, b] → R be a continuous function. The integer-valued func-
tion N(·, f ) defined on R by N(t, f ) = �0(f−1(t)) is measurable, and the integral∫
R
N(t, f ) dt is the total variation of f on the interval [a, b].

In this context, the function N(·, f ) is called the Banach indicatrix of the function
f . For the theorem one can consult [171, p. 270].

Proof of Theorem 4.6.9. Without loss of generality, we can suppose that the set E is
the global cluster set of the map f . As such, it is connected. (Recall the discussion of
cluster sets immediately preceding Theorem 3.4.13.) It has finite length, so the theorem of
Alexander and Pommerenke, Theorem 3.4.13, implies that f extends to be continuous on
Ū. We shall denote this extended map by f . What is to be proved is that the total variation
of the function f on bU is finite. (Recall Corollary 3.4.7.)

According to Lemma 4.6.3, the multiplicity function m(z;V ) is almost everywhere
not more than 2. If z ∈ E satisfies m(z;V ) = 1, then f−1(z) is a singleton. Suppose not,
so that for two distinct points ζ1 and ζ2 of bU, f (ζ1) = f (ζ2). If �j is a small disk in
C about the point ζj , then because f is one-to-one off a discrete set, the sets f (�1) and
f (�2) showm(z;V ) to be at least two, contrary to hypothesis. Similarly, ifm(z;V ) = 2,
then f−1(z) consists of at most two points. That is to say, the fibers f−1(z) for z ∈ E have
almost surely [d�1] cardinality at most two.

Let ϕ : CN → R be a real-linear functional. The function ϕ satisfies a Lipschitz
condition with Lipschitz constant, say Kϕ , so by Eilenberg’s inequality,
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R

�0(ϕ−1(t) ∩ E) dt ≤ Kϕ�1(E).

Consider now ϕ ◦ f : bU → E. Because the fibers f−1(z) have, for z ∈ E, almost
surely cardinality no more than two, it follows that the fibers (ϕ ◦ f )−1(t), for t ∈ R,
almost surely satisfy �0((ϕ ◦ f )−1(t ∩ bU)) ≤ 2�0(ϕ−1(t)), whence for t ∈ ϕ(E),
�0((ϕ ◦ f )−1(t) ∩ bU) ≤ 2�0(ϕ−1(t)). Accordingly,∫

R

�0((ϕ ◦ f )−1(t) ∩ bU) dt ≤ 2
∫
R

�0(ϕ−1(t) ∩ E) dt <∞.

Banach’s theorem on the indicatrix quoted above implies that the function ϕ ◦ f is of
bounded variation. Apply this with ϕ running through the 2N real-orthogonal projections
of CN onto its real cooridnate axes to reach the conclusion that f is of bounded variation,
as we wished to show.

For a map from the disk to CN with boundary values in smooth simple closed curves,
more can be said than is given by Theorem 4.6.9. Let � be a rectifiable simple closed curve
in CN , and let f : U → CN \ � be a bounded proper holomorphic map from U onto the
variety V . By the preceding theorem, the map f extends to a continuous map, also denoted
by f , from Ū to CN , and the extended map is of bounded variation on bU.

Theorem 4.6.12. [149] If the multiplicity of f is one, then f : bU → � is a homeomor-
phism.

The multiplicity in question is the cardinality of the generic fiber f−1(f (ζ )) for
ζ ∈ U.

This theorem has the following corollary:

Corollary 4.6.13. Let g : U → CN \� be a proper holomorphic map. If g has multiplicity
p, then g : bU → � is a p-fold covering map.

Proof. Factor g as above: g = f ◦ ϕ, where ϕ : U → U is a finite Blaschke product, and
f is a normalization map. Thus f : bU → bU is a homeomoprhism by the theorem. The
map ϕ : bU → bU is a p-fold covering map, so the corollary is proved.

To prove the theorem, we need two lemmas. In them we shall use T to denote bU.

Lemma 4.6.14. Let � be a simple closed curve, and let f : T → � be a continuous
surjective map. Assume f to be constant on no interval.

(a) If there is a dense set K ⊂ � such that for all p ∈ K , the fiber f−1(p) contains at
most two points, and if there is a point p ∈ � such that the fiber f−1(p) is a single
point, then f is a homeomorphism from T onto �.

(b) If there is a dense subset K of � such that for all points p ∈ K , the fiber f−1(p)

consists of two points, then f is two-to-one.

Proof. Consider first case (a). Let the point p1 ∈ � be a point such that the fiber
f−1(p1) = {1} ∈ T. Suppose that f (q1) = f (q2) for distinct points q1, q2 ∈ T. Let
ϕ : [0, 1] → T be the exponential map given by ϕ(t) = e2πit , and let ψ : [0, 1] → �
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be a map that satisfies ψ(0) = ψ(1) = p1 and that is a homeomorphism of (0, 1) onto
� \ {p1}. There is then a unique map f̃ : [0, 1] → [0, 1] with ψ ◦ f̃ = f ◦ ϕ. We have
f̃ (0) = 0 and f̃ (1) = 1 or else f̃ (0) = 1 and f̃ (1) = 0. Assume the former case to obtain.
Let ϕ(t1) = q1, ϕ(t2) = q2 for t1, t2 ∈ (0, 1), t1 < t2. Then f̃ (t1) = f̃ (t2). The map
f̃ has the property that for a dense set S of points in the interval (0, 1) the fiber f̃−1(s)

consists of at most two points for each s ∈ S. The graph of f̃ meets the horizontal line
y = f̃ (t1) = f̃ (t2) in two points. The function f̃ is constant on no interval, so there are
points s ∈ (t1, t2) such that f̃ (s) > f̃ (t1) = f̃ (t2) or else such that f̃ (s) < f̃ (t1) = f̃ (t2).
The density hypothesis yields a y1 in the interval between f̃ (t1) and s such that f̃−1(y1)

consists of at most two points. By continuity, if f̃ (s) < f̃ (t1), then the value y1 is taken by
f̃ in each of the intervals (0, t1), (t1, s), and (s, t2). If f̃ (s) > f̃ (t1), the value y1 is taken
by f̃ in each of the intervals (t1, s), (s, t2), and (t2, 1). This contradicts the assumption
that the fiber of f̃ over y1 consists of only two points. Case (a) is proved.

For case (b) a very similar argument works. Suppose for the sake of deriving a
contradiction that there is a point p3 ∈ � such that the fiber f−1(p3) contains three
distinct points q2, q2, and q3. Let p2 ∈ � be a point such that the fiber f−1 consists of
two points, say 1 and −1. Let λ+ and λ− be, respectively, the top and bottom halves of T.
There are two cases: Either all three of q1, q2, and q3 lie in λ+, for else two of them, say
q2 and q2, lie in one of λ±, and q3 lies in the other. In the case that q1 and q2 lie in λ+, an
analysis strictly parallel to the proof of case (a) shows that in fact, some of the values in
the dense set K are assumed three times, contrary to hypothesis. In the case that all three
of the q’s lie in λ+, we see that some values in K are assumed at least four times.

The lemma is proved.

Lemma 4.6.15. Let � be a simple closed curve. If f : T → � is a continuous two-to-one
map, then either f is homotopic to a constant or else it is a (two-sheeted) covering map.

Both cases can occur.

Proof. It is a convenience to suppose that � = T.
The map f is two-to-one: For each p ∈ T, the fiber f−1(p) consists of two distinct

points.
If f is not surjective, it is homotopic to a constant, so from here on we suppose f to

be surjective.
Suppose f−1(1) = {−1, 1}. Let λ+ and λ− be, respectively, the top and bottom

halves of T. We consider two cases: It may be that f (λ+) = T or it may be that f (λ+) is
a proper subset of T.

We shall show that in the case that f (λ+) is a proper subset of T, the map f is
homotopic to a constant. If f (λ+) �= T, then f (λ+) is an arc contained in T. Let its
endpoints be p′ and p′′. One of p′ and p′′ must be the point 1. Suppose not. Let q ′ and q ′′
be points of λ+ that satisfy f (q ′) = p′ and f (q ′′) = p′′. Because the point 1 is not one of
the endpoints of f (λ+), it is an interior point, and it is necessarily contained in the image
under f of the arc from q ′ to q ′′ in λ+. But this implies that f−1(1) has cardinality at least
three. Thus 1 is an endpoint of f (λ+).

The continuous map f maps λ+ onto an arc L in T, and it takes both endpoints of
λ+ to one endpoint, 1, of L. Let the other endpoint of L be p0.
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Every point of the interior ofL is covered at least twice (and therefore exactly twice)
by f . The map f is two-to-one, so (λ−) can meet f (λ+) only at the endpoints of L, at 1
and p0.

We conclude that the change in the argument Arg f of f over λ+ is zero, as is that
over λ−. Consequently, the change in Arg f over the whole of T is zero, and f is found
to be homotopic to a constant.

Thus, if f is not homotopic to a constant, then f (λ+) = f (λ−) = T. The hypothesis
that f is two-to-one implies that f carries the interior of λ+ homeomorphically onto T\{1}
and also carries the interior of λ− homeomorphically onto T \ {1}.

Thus the change�λ+ Arg f along λ+ (moving from 1 to −1) is 2πε+ with ε+ either
1 or −1. Similarly, �λ− Arg f (moving from −1 to 1) is 2πε− with ε− either 1 or −1.
If ε+ε− = −1, then �T Arg f = 0, so there is a branch of logf defined on T, and
f is homotopic to a constant. If ε+ε− = 1, so that ε+ = ε−, then f is a two-sheeted
covering map.

The lemma is proved.

Proof of Theorem 4.6.12. The map f : bU → � has the property that for almost all
p ∈ �, the fiber f−1(p) contains at most two points. Also, it is constant on no interval.
If there is one point p ∈ � such that the fiber f−1(p) consists of a single point, then by
Lemma 4.6.14, f is a homeomorphism, and we are done.

Assume, therefore, that each fiber f−1(p), p ∈ �, contains at least two points. Then
by Lemma 4.6.14, f is exactly two-to-one, and by Lemma 2, f |bU is either homotopic to
a constant or else is a two-sheeted covering map.

The map f |bU cannot be homotopic to a constant: The curve � is rectifiable and
so rationally convex. There is, therefore, a polynomial, P , that is zero-free on � but that
vanishes at some point, perhaps several, of V . The function P ◦ f is continuous on Ū and
has a zero in U. Consequently, �bUArgP ◦ f is not zero. However, if the map f |bU is
homotopic to a constant, so isP ◦f , whence the variation�bUP ◦f is zero. Contradiction.
Thus, f |bU is not homotopic to a constant.

We have now reached the conclusion that if f |bU is not one-to-one, then it is a
two-sheeted covering map. The latter case is untenable. For in this case, as above, there
is a polynomial P such that P−1(0) ∩ � = ∅ but P−1(0) ∩ V �= ∅. We can suppose the
zeros of P on V to lie in Vreg. Moreover, because f is assumed to have multiplicity one,
we can suppose that each point of P−1(0) ∩ V is covered only once by f and that df
is zero-free on f−1(P−1(0)). Stokes’s theorem implies that the integral 1

2πi

∫
�
dP
P

is the
number of zeros of P |V .

On the other hand, because f |bU is a two-sheeted covering and is of bounded vari-
ation.

1

2πi

∫
�

dP

P
= 2 · 1

2πi

∫
bU

d(P ◦ f )
P ◦ f .

The quantity on the right is 2ν if ν is the total number of zeros of P ◦f in U. By the choice
of the polynomial P , the function P ◦f has the same number of zeros on U as P has on V .

We have reached a contradiction, and the theorem is proved.
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4.7. Counting the Branches

The question we are going to consider next concerns the number of global branches of the
variety X̂ \ X. Alexander [17] proved that if � is a rectifiable simple closed curve, then
the variety �̂ \ � is irreducible: It has a single global branch. Recall Theorem 4.5.5.

For certain choices of X, the variety X̂ \X will have infinitely many branches, as in
the case of a closed rectifiable curve in the plane that crosses itself infinitely often.

There is a sharp general result in this direction:

Theorem 4.7.1. If X is a compact subset of CN with finite length and if V is a bounded
purely one-dimensional subvariety of CN \ X, then the number of global branches of V
does not exceed the rank of the group Ȟ 1(X;Z).

This statement, with the additional hypothesis that X is connected, was obtained by
Lawrence [217].

Note that in the statement of the theorem there is no hypothesis of regularity for the
set X beyond the condition that it be of finite length.

The analysis given below will show the rank in question to be the number of simple
closed curves contained in X.

Corollary 4.7.2. If X ⊂ CN is a compact set of class A1, then the number of global
branches of X̂ \X does not exceed the rank of the cohomology group Ȟ 1(X;Z).

The proof of the theorem depends on a preliminary analysis of sets with finite length
that satisfy Ȟ 1(X;Z) �= 0.

Lemma 4.7.3. IfX is a compact set every component,K , of which satisfies Ȟ 1(K;Z) = 0,
then Ȟ 1(X;Z) = 0.

Proof. We assume that Ȟ 1(K;Z) = 0 for every component K of X, and we show that
Ȟ 1(X;Z) = 0 by showing that every zero-free continuous function f is an exponential.
To do this it suffices to show that each component ofK is contained in an open and closed
subset ofX on which f has a logarithm. LetK be a component ofX. There is a continuous
function gK on X such that on K , f = egK . Let UK = {x ∈ X : |f e−gK − 1| < 1

2 }, an
open neighborhood of K .

The set K is the intersection of all the open and closed subsets of X that contain it,
because it is a component of X. Let VK ⊂ UK be an open and closed subset of X that
contains K . On VK , f e−gK is an exponential, and so the same is true of f . Thus f is an
exponential on all of X.

Lemma 4.7.4. If X is a compact subset of RN with finite length and with Ȟ 1(X;Z) �= 0,
then X contains a simple closed curve.

Proof. By Lemma 4.7.3, we can suppose X to be connected. It is therefore arcwise con-
nected by Theorem 3.3.3. We shall prove that if X contains no simple closed curve, then
every zero-free continuous function on X is of the form eg for a function g continuous
on X.

Suppose, therefore, that X contains no simple closed curve. The set X is arcwise
connected, but more is true: Because it contains no simple closed curve, for every pair x, y
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of distinct points in X, there is a unique arc in X with endpoints x and y. Fix a base point
xo in X, and for every y ∈ X \ {xo}, let λy be the arc with endpoints xo and y.

Fix a zero-free continuous function f on X that is normalized to satisfy f (xo) = 1.
For each y ∈ X, let gy be the continuous function on λy with gy(xo) = 0 and with f = egy
on λy . Define the function g : X→ C by g(xo) = 0 and g(y) = gy(y) for all y ∈ X\{xo}.
The function g is well defined and satisfies f = eg on X.

The continuity of g is elementary, albeit a bit fussy, to establish. Let the sequence
{yn}n=1,... in X converge to yo. We shall prove that g(yn)→ g(yo). Notice that g(yn) =
g(yo)+ εn + 2πikn with εn → 0, and with kn an integer.

Fix δ > 0 so small that f has a continuous logarithm,Lf , on the setX∩B̄(yo, 2δ) and
so small that, in addition, δ < |xo − yo|. We normalize Lf so that Lf (yo) = gyo(yo). The
finite-length hypothesis implies that only finitely many of the components ofX∩B̄(yo, 2δ)
meet the concentric ball B̄(yo, δ). We have therefore that for all large n, yn lies in the
component Y of X ∩ B̄(yo, 2δ) that contains yo. Suppose that Y contains all of the points
yn. The set Y is compact, connected, and has finite length, so it is arcwise connected.
For each n, let �n be the arc in X that connects yo and yn. This arc is contained in Y .
The assumption that X contains no simple closed curves implies that the arcs �n and λyo
meet either at a single point or else in an arc. In either case, let xn be the first point in
λyo , traveling from xo toward yo, that lies in �n. The subarc [xo, xn] of λyo taken together
with the subarc [xn, yn] is an arc in X connecting xo and yn, and so is λyn . We have that
g(xn) = Lf (xn), so g = Lf on the subarc [xo, xn] of λyo . It then follows that g = Lf
on the subarc [xn, yn] of �n. Consequently, g(yn) = Lf (yn). The proof is complete, for
Lf (yn)→ Lf (yo) = g(yo).
Lemma 4.7.5. If the compact subset X of RN satisfies �1(X) <∞ and if X contains m
simple closed curves, then the rank of Ȟ 1(X;Z) is at least m.

Proof. Let the compact subset C of X be the union of m distinct simple closed curves.
The map Ȟ 1(X;Z)→ Ȟ 1(C;Z) induced by the inclusion of C inX is surjective—recall
Corollary 3.8.17, so the rank of Ȟ 1(X;Z) is at least as large as the rank of Ȟ 1(C;Z),
which is at least m.

Lemma 4.7.6. If X is a compact subset of CN of finite length and if CN \ X contains a
bounded, one-dimensional variety, then X contains a simple closed curve.

Proof. If V ⊂ CN \ X is a bounded, one-dimensional variety, then by Theorem 3.8.15,
Ȟ 1(bV ;Z) �= 0. The result follows from Lemma 4.7.4, because V̄ \ V ⊂ X, and the
natural map Ȟ 1(X;Z)→ Ȟ 1(V̄ \ V ;Z) is surjective.

If the X of this lemma is not required to have finite length, it may not contain a
simple closed curve, as shown in Section 1.6.2.

The proof of the theorem will use the following fact.

Lemma 4.7.7. Let� be a bounded domain in CN , and letE ⊂ � be a compact, connected
subset of � of finite length that contains only finitely many simple closed curves whose
union, denoted by Eo, is connected. If V ⊂ � \E is a purely one-dimensional subvariety,
then V̄ ∩� \Eo is a one-dimensional subvariety of� \Eo and each global branch of the
extended variety contains a unique branch of the variety V .
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Proof. If λ is a component of E \ Eo, then λ̄ meets Eo in only one point. The set E \ λ
is compact, and �1(λ̄) = 0. Moreover, Ȟ 1(λ̄;Z) = 0, so Theorem 3.8.18 implies that
V extends through λ. This is true for every choice of λ, so V continues analytically as a
one-dimensional variety through E \ Eo. Denote this continued variety by V ′.

The set V is the complement in V ′ of the closed subset E \ Eo of V ′ and

Ȟ 1(E \ Eo;Z) = 0,

so each global branch of V ′ remains connected when the set E \Eo is removed. Thus, V ′
can contain at most one global branch of V .

Proof of Theorem 4.7.1. We can suppose that X = bV , because by Lemma 3.8.17, the
natural mapH 1(X,Z)→ H 1(bV,Z) is surjective. Let the rank of Ȟ 1(X;Z) be r , which
we take to be finite. Then by Lemma 4.7.5, X contains at most r simple closed curves.
Accordingly, there are only finitely many components of X that contain a simple closed
curve; denote them by X1, . . . , Xs . Thus, s ≤ r . Put Y = ∪j=1,...,sXj .

To begin with, we are going to show that the variety V continues analytically through
the set X \ Y . This is so, for if U is an open subset of CN that contains Y , then there is an
open and closed subset of X, say Y ′, with Y ⊂ Y ′ ⊂ U . The set X \ Y ′ is open and closed
in X, and it satisfies Ȟ 1(X \ Y ′;Z) = 0, so by Theorem 3.8.18, the variety V continues
through X \ Y ′. This is correct for every choice of U and every choice of Y ′ ⊂ U , so V
continues holomorphically to a variety V ′ in CN \ Y . Each global branch of V ′ contains
a unique global branch of V , because the set X \ Y cannot disconnect any branch of V ′.

We have that Ŷ ⊃ V ′. Moreover, as a set of finite length with only finitely many
components, Y is contained in a connected set of finite length, which implies that the set
Ŷ \ Y is a bounded analytic subvariety of CN \ Y . Call itW .

Denote by � the union of the simple closed curves contained in Y , which is the
same as the union of the simple closed curves contained in X. The variety W continues
analytically through Y \ �. To see this, denote by Fα, α ∈ A, the components of Y \ �.
None of the Fα’s is a point. Each therefore has positive length, so there are only countably
many of them. Also, for each α ∈ A, the set ∪β∈(A\{α})Fβ is closed in CN \ Y . Moreover,
because each Fα is disjoint from �, each set F̄α meets � in at most one point. The group
Ȟ 1(F̄α;Z) vanishes, so the varietyW continues holomorphically through Fα . Denote by
W1 the variety obtained by continuing W through Y ∩ �. Again, the global branches of
W1 each contain a unique global branch of the varietyW , soW = Ŷ \ Y ⊂ �̂ \ �.

The proof concludes by showing that the variety� = �̂ \�, which containsW ′, has
at most r global branches.

Let �o be the minimal closed subset of � whose polynomially convex hull contains
that of �. Thus, �o is a compact subset of �. It is the union of some of the simple closed
curves that make up�. This is seen to be so as follows. The set�o is contained in a compact
connected set of finite length, so �̂o \�o is a variety, which we denote by �o. The variety
�o contains the variety �. If �o is not a union of simple closed curves, let �1 ⊂ �o be
the union of all the simple closed curves in �o. The analysis given above applies, mutatis
mutandis, to show that �o continues holomorphically through �o \ �1, which contradicts
the minimality of �o. Thus, as claimed, �o is a union of a finite number, not more than r ,
of simple closed curves.
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If the variety V has more than r global branches, then so does the variety �o. If T
is a global branch of �o, then T̄ \ T contains a simple closed curve. Thus, there are two
distinct branches, say T1 and T2, of�o such that T̄1 ∩ T̄2 contains one of the simple closed
curves, say C, that constitute �o.

Theorem 4.6.4 implies that T1 ∪ T2 ∪ C is a variety. From this we see that if �′
o is

the union of the simple closed curves other than C that constitute �o, then C ⊂ �̂′
o, so �̂′

o

is �̂. This contradicts the minimality of �o. Thus, the variety � has at most r branches.
The theorem is proved.



Chapter 5

FURTHER RESULTS

Introduction. This chapter treats some further results in the theory of polyno-
mial convexity, which are rather loosely related but draw substantially on the
work of the preceding chapters. Section 5.1 discusses isoperimetric questions
in the context of polynomial convexity. Section 5.2 considers some ques-
tions in the theory of removable singularities for holomorphic functions and
their boundary values. Section 5.3 treats certain convexity problems for two-
dimensional surfaces in three-dimensional strictly pseudoconvex boundaries.

5.1. Isoperimetry

The motivation for most of the work in the present section stems from the classical isoperi-
metric inequality. If γ is a simple closed curve of length L(γ ) in the plane that bounds a
domain� of area A(�), then 4πA(�) ≤ L(γ )2. A much more general result is true: IfX
is a compact connected subset of the plane, then

(5.1) 4πL (X) ≤ [�1(bX)
]2
.

Here L denotes planar Lebesgue measure; it is the same as �2, the two-dimensional
Hausdorff measure in the plane. The inequality (5.1), and various generalizations of it, can
be found in [115].

There are extensions of the isoperimetric inequality (5.1) in many directions. The
present section is devoted to some results of this general flavor in the context of polynomial
convexity.

A proof of the inequality (5.1) can be given rather quickly. The proof of the general
result depends on the classical case of a domainD bounded by a rectifiable simple closed
curve. The following simple proof of that result was given by Komatu [209].

Denote by U∗ the complement in the Riemann sphere of the closed unit disk. Let ϕ
be a conformal map from the domain U∗ to the complement in the Riemann sphere of D̄
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that satisfies ϕ(∞) = ∞, so that ϕ has a Laurent expansion of the form

ϕ(z) = αz+
∞∑
j=0

αjz
−j .

ForR > 1 denote byDR the set C∗ \ϕ(RU∗) and by �R the boundary ofDR , which is the
image under ϕ of the circle of radius R centered at the origin. As R → 1+, the area ofDR
approaches the area of D, and the length of �R , which is

∫
{|z|=R} |ϕ′(z)| |dz|, approaches∫ π

−π |ϕ′(eiϑ )| dϑ—recall Theorem 3.4.8, which is the length of bD. Consequently, we can
suppose that bD is real-analytic.

Recall that if C is a smooth simple closed curve in the plane, then the area bounded
by C is given by the integral 1

2i

∫
C
z̄ dz. Apply this to the domain D and use the parame-

terization ϕ of bD to compute the integral. A direct calculation gives

A = π
[
|α|2 −

∞∑
j=0

j |αj |2
]
.

We can also use the parameterization ϕ to compute the length of bD. The map ϕ is
conformal, so ϕ′ is zero-free, whence ϕ′ = g2 for some function g holomorphic in U∗.
The function g has the Laurent expansion g(z) =∑∞

j=0 βjz
−j , so

(5.2) L =
∫ π
−π

|ϕ′(eiϑ )| dϑ =
∫ π
−π

|g(eiϑ )|2 dϑ = 2π
∞∑
j=0

|βj |2.

The theorem is proved, for βo = α because g2 = ϕ′. We therefore have that L2 ≥
4π2|α|2 ≥ 4πA. Note that equality holds when α1 = α2 = · · · = 0, i.e., whenD is a disk.

Having this result for domains bounded by simple closed curves, we can deduce the
general inequality (5.1).

We can supposeX not to separate the plane: IfX separates the plane, then adjoining
to X the bounded components of C \ X neither decreases the area of X nor increases the
length of bX.

If L (X) = 0 we are done. And if L (X) > 0 and the interior, intX, of X is empty
we are also done, for in this case, X = bX, and L (X) > 0 implies �1(bX) = ∞.

Accordingly, we assume that intX is not empty and that�1(bX) <∞. Let�j , j =
1, . . . , be the countably many components of intX. Each �j is simply connected by the
next lemma.

Lemma 5.1.1. If Y is a polynomially convex subset of the plane, then each component of
intY is simply connected.

Proof. Suppose the component� of intY is not simply connected, so that there is a simple
closed curve γ in� that is not null-homotopic in�. By the Jordan curve theorem, γ splits
the plane into two components; letD be the bounded one. ThenD ⊂ γ̂ , so the polynomial
convexity of Y implies that D ⊂ Y . The domain D meets �, but γ is not null-homotopic
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in � so D cannot be contained in �. We have reached a contradiction to the assumption
that � is a component of intY .

We now complete the proof of (5.1). For each j = 1, . . . , let φj : U → �j be a
conformal mapping as provided by the Riemann mapping theorem. For each j , b�j ⊂ bX,
so�1(b�j ) <∞. It follows that φj extends continuously to Ū, that φj |bU is of bounded
variation, and that φ′j belongs to the Hardy space H 1(U).

We will prove that φj |bU is one-to-one and so a homeomorphism. If it is not, then
there is a point p in b�j such that p = φj (q ′) = φj (q ′′) for some choice of q ′, q ′′ ∈ bU,
q ′ �= q ′′. With no loss of generality, q ′ = −1, q ′′ = 1. The set φj ([−1, 1]) is a simple
closed curve, call it γ , contained in�j ∪ {p}. LetD be the bounded component of C \ γ .
By the maximum principle, D ⊂ X. The map φj is a homeomorphism of U onto �j , so
it carries one component of U \ [−1, 1], say U+, the open upper half of U, onto D. If
ϑ ∈ (0, π), then as r → 1−, the point φj (reiϑ ) approaches b�j through D. This implies
that limr→1− φj (re

iϑ ) = p. This happens for all ϑ ∈ (0, π), so φj must be constant. This
is impossible, so φ|bU is one-to-one as claimed.

Next, if j �= k, then �̄j∩�̄k , if not empty, is a singleton. Suppose, to the contrary, that
there are two distinct points,p and q, in �̄j∩�̄k = b�j∩b�k . Letφj (−1) = p = φk(−1)
and φj (1) = q = φk(1). The set φj ([−1, 1]) ∪ φk([−1, 1]) is a simple closed curve,
which we shall denote by λ. LetD be the bounded component of C \ λ. Again,D ⊂ X by
polynomial convexity, and D meets both �j and �k . But this is impossible, for �j and
�k are components of the interior ofX. Thus, the set �̄j ∩ �̄k contains at most one point.

For each j , φj |bU is a homeomorphism of bU onto b�j , so the latter set is a simple
closed curve, which is rectifiable, for�1(bX) <∞. The classical isoperimetric inequality
yields 4πL (�̄j ) ≤ [�1(b�j )]2. Sum over j to get

4π
∑
j=1,...

L (�̄j ) ≤
∑
j=1,...

[�1(b�j )]2 ≤
[ ∑
j=1,...

�1(b�j )

]2

.

By pairs, the sets �̄j meet at most in singletons, so

∑
j=1,...

L (�̄j ) = L (∪j=1,...�̄j ).

This quantity is L (X), for if not, the set X \ ∪j=1,...�j has positive area and consists
entirely of boundary points of X. This is impossible: The set bX is assumed to have finite
length. Also, the sets b�j meet, by pairs, only in singletons, so

∑
j=1,... �

1(b�j ) =
�1(∪j=1,...b�j ) ≤ �1(bX). The theorem is proved.

The main results of the present section begin with a theorem of isoperimetric type
for hulls due to Alexander [8]. Let πj , j = 1, . . . , N , denote the projection of CN onto
the j th coordinate axis.
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Theorem 5.1.2. If X is a compact subset of bBN with 0 ∈ X̂, then

N∑
j=1

L (πj (X̂ ∩ BN)) ≥ π.

The sets πi(X̂ ∩ BN) are σ -compact and so measurable.
In [8] Alexander applies this result to obtain a new proof of Hartogs’s theorem about

the holomorphicity of separately holomorphic functions.
The proof of Theorem 5.1.2 depends on a quantitative version of the Hartogs–

Rosenthal theorem. Recall Theorem 1.6.4: If E is a compact subset of the plane with
area zero, then R(E) = C (E). Because of the Stone–Weierstrass theorem, the equality
R(E) = C (E) holds if and only if z̄ ∈ R(E).

Lemma 5.1.3. If E is a compact subset of C, then

inf
f∈R(E)

supz∈E |z̄− f (z)| ≤ (L (E)/π)1/2.
The quantity on the left of this inequality is the distance in C (E) from the function

z̄ to R(E).
In case E has zero area this inequality gives the Hartogs–Rosenthal theorem.

Proof. Let ϕ be a function of class C ∞ on the plane with compact support that on a
neighborhood of the set E satisfies ϕ(z) = z̄. The generalized Cauchy integral formula
yields that for z ∈ E,

z̄ = − 1

π

∫
E

dL (ζ )

ζ − z − 1

π

∫
C\E

∂ϕ

∂ζ̄
(ζ )
dL (ζ )

ζ − z .

The second integral, as a function of z, is an element of R(E). The lemma follows therefore
from an estimate of Ahlfors and Beurling [1]:

Lemma 5.1.4. If E is a compact subset of C, then∣∣∣∣∫
E

dL (ζ )

ζ − z
∣∣∣∣ ≤ (πL (E)

)1/2
.

Proof. By a rigid motion in the ζ -plane, we can suppose that z = 0 and that the integral
J = ∫

E
dL (ζ )
ζ

is positive. With this normalization of the problem, denote by E+ the part

of the set E that lies in the right half-plane. By passing to polar coordinates ζ = ρeiϑ , we
see that

J ≤
∫
E+

cosϑ dρ dϑ.
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Let �(r, ϑ) be the length of the set of points ζ ∈ E+ with Arg ζ = ϑ and |ζ | ≤ r . If
�(ϑ) = �(∞, ϑ), then∫

E+
cosϑ dρ dϑ =

∫ π/2
−π/2

�(r, ϑ) cosϑ dϑ

≤
(∫ π/2

−π/2
cos2 ϑ dϑ

)1/2 (∫ π/2
−π/2

�2(ϑ) dϑ

)1/2

=
(
π

2

∫ π/2
−π/2

�2(ϑ) dϑ

)1/2

.

Also, for fixed ϑ , �(r, ϑ) ≤ r , so∫
ρ dρ ≥

∫
�(r, ϑ) d�(r, ϑ) ≥ �2(ϑ)

2
.

Thus

L (E) ≥ L (E+) =
∫
E+
ρ dρdϑ ≥ 1

2

∫ π/2
−π/2

�2(ϑ) dϑ.

We reach therefore the desired inequality

J ≤
(
π

2

∫ π/2
−π/2

�2(ϑ) dϑ

)1/2

≤ (πL (E)
)1/2
.

The lemma is proved.

Proof of Theorem 5.1.2. It is enough to prove the inequality with BN replaced by B̄N .
For each ε > 0 and each j , let rj be a rational function on the plane that is holomorphic
on the set πj (X̂) and that satisfies

|z̄− rj (z)| ≤
(
L (πj (X̂)+ ε)/π

)1/2
for all z ∈ πj (X̂ ∩ B̄N). If fj = rj ◦ πj , then fj is holomorphic on a neighborhood of
X̂. Consequently, by the Oka–Weil theorem, it lies in the algebra P(X). The function
g =∑N

j=1 zjfj also lies in P(X), and, because it vanishes at the origin, a point of X̂, it is

not invertible in this algebra. For z ∈ X, the function h given by h(z) =∑N
j=1 zj (z̄j −fj )

satisfies h(z) = 1 − g(z). The Cauchy–Bunyakowski–Schwarz inequality and the choice
of fj give

‖1 − g‖X ≤
( N∑
j=1

(L (πj (X̂)+ ε))/π
)1/2

.
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Because the function 1 − g is not invertible in P(X), the left side of the last inequality
must be at least one (recall the proof of Lemma 1.2.3), so the theorem follows.

The following result, which is due to Alexander [9], gives some information about
representing measures.

Theorem 5.1.5. LetX be a compact, polynomially convex subset of CN , let xo be a point of
X, and let f be an element of the algebra P(X) that vanishes at xo. If µ is a representing
measure for xo with support in X, then for t ≥ 0,

µ{x ∈ X : |f (x)| ≥ t} ≤ 1

2πt
�1(Ct ∩ f (X))

if Ct denotes the circle of radius t centered at the origin.

Proof. Fix a t > 0 and an ε > 0. By the regularity of the measure �1 on Ct , there is a
function u defined and of class C ∞ on the circle Ct that satisfies 0 < u ≤ 1 there, that
is identically one on an open set V of Ct that contains the intersection Ct ∩ f (X), and,
finally, that satisfies ∫ π

−π
u(teiϑ ) dϑ <

1

t
{�1(Ct ∩ f (X))+ ε}.

The function u extends through the disk tU as a harmonic function, which will also be
denoted by u. Let v be the conjugate harmonic function that satisfies v(0) = 0. This
function has smooth boundary values. The function F = u+ iv is holomorphic in the disk
tU, and along the set V it assumes values in the line {1 + is : s ∈ R}, so the reflection
principle implies thatF extends to be holomorphic in C\(Ct \V ). The continued function,
again denoted byF , is holomorphic onf (X). The compositionF ◦f is therefore an element
of P(X).

The measure µ is a representing measure for the point xo, so

F(0) = F(f (xo)) =
∫
F ◦ f dµ.

But also,

F(0) = u(0) = 1

2π

∫ π
−π
u(teiϑ ) dϑ <

1

2πt
{�1(Ct ∩ f (X))+ ε}.

The function F satisfies the functional equation F(z) = 2 − F( t2
z̄
) because of the

reflection process used to extend it beyond the disk tU. We have that �F > 0 on the disk
tU. Because �F ◦ f ≥ 1 on {x ∈ X : |f (x)| ≥ t}, we therefore reach∫

�F ◦ f dµ ≥ µ{x ∈ X : |f (x)| ≥ t}.

We now have that for every ε > 0,

µ{x ∈ X : |f (x)| ≥ t} ≤ 1

2πt
{�1(Ct ∩ f (X))+ ε},
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which implies the result.

Auseful corollary of the preceding theorem depends on an integration by parts process
from abstract measure theory. Its formulation requires the notion of the distribution function
of a measurable function.

Definition 5.1.6. If µ is a σ -finite measure defined on a σ -field F of subsets of a set X,
and if f is a nonnegative F -measurable function on X, then the function M defined on
[0,∞] defined byM(t) = µ{x ∈ X : f (x) ≥ t} is the distribution function of f .

In the context of this definition, one has the integration formula that for every real-
valued increasing function ϕ of class C 1 on [0,∞) with ϕ(0) = 0,

(5.3)
∫
X

ϕ ◦ f dµ =
∫ ∞

0
ϕ′(t)M(t) dt.

This is a standard result in integration theory; its proof is given in [171, p. 421].
We apply this integration by parts formula as follows.

Corollary 5.1.7. With X, µ, and f as in the preceding theorem,

π

∫
|f |2 dµ ≤ L (f (X)).

Proof. Theorem 5.1.5 says that the distribution functionM of |f | satisfies

2πtM(t) ≤ �1(Ct ∩ f (X)).
The corollary results by integrating this inequality over the interval [0,∞), invoking the
formula (5.3) with ϕ(t) = t2, and, finally, using Eilenberg’s inequality.

Aparticular case of this corollary is the statement that if f is in the disk algebraA(U),
then π

∫ π
−π |f (eiϑ )|2 dϑ ≤ L (f (Ū)), a result of Alexander, Taylor, and Ullman [27].

To continue, we need the projection lemma, Lemma 5.1.9 below, which is based on
some further preliminaries from real-variable theory.

Lemma 5.1.8. [19] If f is a real-valued absolutely continuous function on an interval
(a, b) in R, and if K is a compact subset of (a, b), then f ′ = 0 almost everywhere on K
if the set f (K) has measure zero.

Proof. Assume not. By shrinkingK if necessary, and perhaps replacing f by −f , we can
suppose that f ′ exists and is positive at every point of K . Let χK be the characteristic
function of the setK . Almost every point ofK is a Lebesgue point for both |f ′| and f ′χK ;
fix such a point, say c. For ε > 0, let Jε denote the interval (c − ε, c + ε). As ε→ 0, the
quantityQ(ε) satisfies

Q(ε) = 1

2ε

∫
Jε\K

|f ′(t)| dt

= 1

2ε

∫
Jε

|f ′| dt − 1

2ε

∫
K

|f ′|χK dt
→ f ′(c)− f ′(c) = 0.
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Write f (t) = f (c)+f ′(c)(t− c)(1+ρ(t))with ρ(t) = o(t− c) as t → c. Choose ε > 0
small enough that |ρ(t)| < 1

3 if |t | ≤ ε. Then

f (Jε) ⊃ (f (c − ε), f (c + ε))
⊃
(
f (c)− εf ′(c)

(
1 − 1

3

)
, f (c)+ εf ′(c)

(
1 + 1

3

))
,

so that the length of the interval f (Jε) is at least 2εf ′(c)
(
1 − 1

3

)
. Also, the length of the

set f (Jε \ K) is bounded by
∫
Jε\K |f ′(t)| dt , which is not more than 2εQ(ε). However,

f (K∩Jε) ⊃ f (Jε)\f (Jε \K), so the length of f (K∩Jε) is at least the measure of f (Jε)
minus the measure of f (Jε \K). This difference is bounded below by 4εf ′(c)

3 −2εQ(ε) =
2ε
( 2f ′(c)

3 − Q(ε)). The quantity Q(ε) is small when ε is small, so if ε is small enough

that Q(ε) < f ′(c)
3 , we have that the measure of f (K ∩ Jε) is at least 2ε

3 f
′(c), which is

greater than 0. This contradicts the assumption that f (K) has measure zero. The lemma
is proved.

Besicovitch [51, 52] has constructed sets of positive length in the plane that project
onto every line in the plane as a set of measure zero. Alexander’s projection lemma implies
that such sets are not contained in continua of finite length:

Lemma 5.1.9. [19] If K is a connected set of finite length in the plane, then for every
compact subset E of K of positive length, the orthogonal projection of E onto one of the
coordinate axes is a set of positive measure.

Proof. Let π1 and π2 denote the orthogonal projections of the plane onto the coordinate
axes. The set K is connected, so Theorem 3.3.5 implies that there is a rectifiable arc in K
that contains a compact subset of E of positive length. That is to say, it suffices to suppose
K to be a rectifiable arc. If ϕ = (ϕ1, ϕ2) : [0, L] → R2 is a parameterization of K by arc
length, then |ϕ(t)− ϕ(t ′)| = |t − t ′| for all t, t ′ ∈ [0, L]. Thus ϕ′ exists and has modulus
one almost everywhere. Moreover, each of the coordinate functions ϕ1 and ϕ2 is absolutely
continuous.

The set E′ = ϕ−1(E) is a compact subset of [0, L] of positive measure.
If the projections of the set E on both coordinate axes are of measure zero, then the

sets ϕ1(E
′) and ϕ2(E

′) are both sets of zero length. The preceding lemma implies then that
ϕ′1 and ϕ′2 both vanish almost everywhere on E′. But then ϕ′ vanishes almost everywhere
on E′, which contradicts |ϕ′| = 1 almost everywhere on [0, L]. The lemma is proved.

The next result is a quasi-isoperimetric inequality for arbitrary polynomially convex
sets that was found by Alexander [23].

By a unitary coordinate system for CN we shall understand a set of C-linear func-
tionals on CN that constitute an orthogonal basis for the dual space CN

∗
when that space

is given the Hermitian inner product dual to the standard inner product on CN .
By duality, the choice of a unitary coordinate system on CN is equivalent to the choice

of a unitary frame, i.e., to the choice of an N -tuple {v1, . . . , vN } of mutually orthogonal
unit vectors in CN . The collection of all such unitary frames is denoted by VN(C), or,
because we will deal only with complex vector spaces, by VN . There is a natural transitive
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action of the unitary group U(N) on VN ; VN is a homogeneous space of U(N). This
action is given by the condition that if γ ∈ U(N) and v = (v1, . . . , vN) ∈ VN , then
γ v = (γ v1, . . . , γ vN). If we fix an element vo of VN , there is a map η : U(N) → VN
given by η(γ ) = γ vo. In a natural way, VN has the structure of a real-analytic manifold;
this structure will not be necessary for what follows. It will be important, though, to notice
that VN is a closed subset of theN -fold product of the unit sphere S2N−1 in CN with itself
and so is a compact space. The map η is continuous. A measure β is defined in VN by the
condition that for each Borel set E ⊂ VN , β(E) = µ(η−1(E)), in which µ denotes the
normalized Haar measure on U(N). The measure β is a positive measure of total mass
one and is invariant under the action of U(N) described above.

There is a map η′ : VN → S2N−1 defined by η′((v1, . . . , vN)) = vN . If σ denotes
the unitarily invariant positive measure of total mass one on S2N−1, then for a Borel subset
F of S2N−1, σ(F ) = β(η′−1

(F )). A subset E of VN has measure zero with respect to β
exactly when the image set η′(E) has measure zero with respect to σ .

Denote by J the element of U(N) that multiplies each vector in CN by i.

Lemma 5.1.10. If E is a subset of S2N−1 of measure zero, then for almost every v =
{v1, . . . , vN } ∈ VN , vk /∈ E and Jvk /∈ E for all k = 1, . . . , N .

Proof. What is to be shown is that if Ak denotes the set of v ∈ VN for which vk ∈ E,
then β(Ak) = 0, and that if A′

k is the set of v ∈ VN for which vk ∈ J−1E, then also
β(A′

k) = 0. It is enough to show that β(AN) = 0. That this quantity vanishes is evident,

for because AN = η′−1
(E), it follows that 0 = σ(E) = β(η′−1

(E)) = β(AN).
Theorem 5.1.11. If X is a compact subset of CN , then for almost all unitary coordinate
systems {φ1, . . . , φN } on CN ,

4π
N∑
k=1

�2(φk(X̂)) ≤ (�1(X))2.

The case of the unit circle in C shows the constant to be best possible.
For the proof we require a lemma about projections in Rn. For this, fix a collection

L1, . . . , Lr of mutually orthogonal subspaces of Rn of dimensions d1, . . . , dr with d1 +
· · · + dr ≤ n. Let R be the orthogonal complement in Rn of the sum of the Lj ’s, so that
there is a direct sum decomposition Rn = L1 ⊕ · · · ⊕ Lr ⊕ R. For j = 1, . . . , r , let ηj
be the orthogonal projection from Rn onto Lj , and let ηr+1 be the orthogonal projection
onto R.

Lemma 5.1.12. If E is a (�1, 1)-rectifiable subset of Rn, then

r∑
j=1

[�1(ηj (E))]2 ≤ [�1(E)]2.

Proof. Assume first that the set E is contained in a rectifiable arc, γ . Let g : [0, L] → γ

be the arc-length parameterization of γ . Write g = (g1, . . . , gr , gr+1), where for each j ,
gj = ηj ◦ g. Let the set S ⊂ [0, L] correspond to the set E under the parameterization g.
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Then�1(E) = ∫
S
|g′(t)|dt . For each j we have

∫
S
|g′j (t)|dt ≥ �1(ηj (E)). The Cauchy–

Bunyakowski–Schwarz inequality yields that for every vector c = (c1, . . . , cr ) ∈ Rr ,

r∑
j=1

cj

∫
S

|g′j (t)| dt ≤
( r∑
j=1

|cj |2
)1/2( r∑

j=1

(∫
S

|g′j (t)| dt
)2)1/2

≤ ‖c‖�1(E).

The inequality holds for all choices of the vector c ∈ Rn, so by duality,{ r∑
j=1

{∫
S

|g′j (t)| dt
}2}1/2

≤ �1(E).

The last inequality implies the statement of the lemma, for∫
S

|g′j (t)| dt ≥ �1(ηj (E)).

Thus, we have the lemma when the set E is contained in a rectifiable arc. However,
this implies the general case immediately, for in the general case, the hypothesis that E
is (�1, 1)-rectifiable implies that almost all [d�1] of E is contained in the union of a
countable family of rectifiable arcs. Thus for every ε > 0, there is a subset Eε of E such
that�1(E \Eε) < ε and Eε is contained in a rectifiable arc. Consequently, the inequality
of the lemma holds for the set Eε, and the inequality necessarily holds for the set E itself.

Much more general results of this kind are known. See [24] and [115].

Proof of Theorem 5.1.11. The only case of interest is that in which�1(X) is finite, so we
assume this condition from here on.

According to the structure theorem, Theorem 4.2.4, there is a representation X =
R∪P in whichR is (�1, 1)-rectifiable, andP is purely unrectifiable, so that the orthogonal
projection of P onto almost every real line in CN has length zero.

The set P is purely unrectifiable, so Lemma 5.1.10 implies that for almost all unitary
N -frames v = {v1, . . . , vN } in CN , if φk ∈ CN

∗
is given by φk(z) = 〈 z, vk〉 with 〈 , 〉

the standard Hermitian product on CN , then for each k, �φk and �φk take P to sets of
measure zero in the real line. We shall show that the conclusion of the theorem holds for
such a choice of unitary coordinate system.

The main step in the proof is contained in the following lemma.

Lemma 5.1.13. If Z is a component of X̂ and if Y = Z ∩X, then

4π
N∑
k=1

�2(φk(Z)) ≤ [�1(Y )]2.

Proof. That the set Z is connected implies that φ̂k(Z) is connected, whence C \ φ̂k(Z) is
connected, and, finally, bφ̂k(Z) is connected.



5.1. Isoperimetery 227

We have that Y = Z ∩ X, so Corollary 1.5.6 implies that Z = Ŷ . Thus bφ̂k(Z) ⊂
φk(Y ).

Now

(5.4) bφ̂k(Z) = bφ̂k(Z))∩φk(Y ) ⊂ [bφ̂k(Z))∩φk(Y ∩R)]∪[bφ̂k(Z))∩φk(Y ∩P)].
The projections of φk(Y ∩ P) to the x- and y-axes both have measure zero by

the choice of the unitary coordinate system we are working with. Consequently, by the
projection lemma, Lemma 5.1.9, �1(φk(Y ∩ P)) = 0. Thus, �1(bφ̂k(Z)) ≤ �1(φk(Y ∩
R)). The set Y ∩ R is countably (�1, 1)-rectifiable, because the set R is. Lemma 5.1.12
implies, withm = 1 and with the orthogonal decomposition of CN induced by the φ’s, that

[�1(Y )]2 ≥ [�1(Y ∩ R)]2 ≥
N∑
k=1

[�1(φk(Y ∩ R))]2.

The classical isoperimetric inequality, inequality (5.1), gives

[�1(bφ̂k(Z))]2 ≥ 4π�2(φk(Z)),

so, as desired,

[�1(Y )]2 ≥
N∑
k=1

�1(bφ̂k(Z)) ≥ 4π
N∑
k=1

�2(φk(Z)).

The proof of the theorem concludes in the following way. Let {Zα}α∈A be the collec-
tion of components of X̂, and for eachα, letYα = Zα∩X. Denote byA′ the countable subset
of A that consists of those α for which �1(Yα) > 0. Plainly

∑
α∈A′ �1(Yα) ≤ �1(X).

For each α ∈ A′ we have

4π
N∑
k=1

�2(φk(Zα)) ≤ [�1(Yα)]2.

Sum over α ∈ A′ and interchange the order of summation to find that

4π
N∑
k=1

∑
α∈A′

�2(φk(Zα)) ≤
∑
α∈A′

[�1(Yα)]2.

With Z = ∪α∈A\A′Zα , we have

X̂ = Z ∪ ∪α∈A′Zα.

The setZ has two-dimensional measure zero. This is so, for ifα ∈ A\A′, then�1(Yα) = 0,
so by Theorem 1.6.2 the set Yα is polynomially convex. This implies thatZα ⊂ X, whence
Z ⊂ X. Necessarily �2(Z) = 0, because �1(X) <∞.
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Thus for each k = 1, . . . , N ,

4π�2(φk(X̂)) ≤
∑
α∈A′

�2(φk(Zα)).

Sum over k to get

(5.5) 4π
N∑
k=1

�2(φk(X̂)) ≤
N∑
k=1

∑
α∈A′

�2(φk(Zα)) ≤ [�1(X)]2.

The theorem is proved.

The next theorem was established independently by several mathematicians. See
[24], [126], [215], and [280].1

Theorem 5.1.14. If E is a compact subset of the sphere bBN(r) such that 0 ∈ Ê, then
�1(E) ≥ 2πr .

The constant is best possible, as shown by the example of a slice of the ball BN by a
complex line that passes through the origin.

In [280] Poletsky considers the corresponding problem in which the ball is replaced
by a cube.

Proof. [24] It suffices to treat the case that r = 1. Fix a compact subset X of bBN
with the property that X̂ contains the origin. Without loss of generality we suppose the
standard unitary coordinate system to be one for which the inequality of Theorem 5.1.11
is correct. Let µ be a representing measure for the origin with support contained in the set
X. Corollary 5.1.7 implies that for j = 1, . . . , N ,

π

∫
|zj |2 dµ(z) ≤ �2(πj (X̂)).

Sum on j , note that
∑N
j=1 |zj |2 = 1 on the support ofµ, and invoke Theorem 5.1.11

to obtain the desired inequality.
There is an alternative proof of Theorem 5.1.14 that stems from [126] and [215]. It

depends on some integral-geometric considerations. We will not derive the required result
from integral geometry, so to that extent the following discussion remains incomplete.
This proof is based on a simple lemma.

Lemma 5.1.15. Almost every real hyperplane through the origin meets E in at least two
points.

Proof. The length of S is finite, so almost every complex hyperplane through the origin
of CN misses S, as follows from the theorem of Shiffman, Theorem 3.3.10. Denote by �
the collection of all such complex hyperplanes, a subset of the Grassmannian GN,N−1(C).

1It is a commonplace that mathematical discoveries frequently are made independently and simultaneously by
more than one person. Four independent simultaneous discoveries is an extreme case, however. The explanation
in the present case is that these four solutions were offered at about the same time for a problem proposed by the
author of this monograph in a web-based list of problems in several complex variables.
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Denote by �̃ the collection of all real hyperplanes in CN through the origin such that
L ∩ iL is in �. The set �̃ is of full measure in the real Grassmannian G2N,2N−1(R) of
real hyperplanes through the origin, as is seen by considering the map G2N,2N−1(R) →
GN,N−1(C) given by L �→ L ∩ iL. This is a smooth surjective map of constant rank;
Fubini’s theorem implies that �̃ is of full measure because the set � is of full measure in
GN,N−1(C).

Suppose now that the real hyperplaneL belongs to �̃ and meetsE in only one point.
LetLo be the complex hyperplane through the origin that is contained inL. ThusLo divides
L into two disjoint half-spaces, only one of which meets E. We can therefore move the
complex hyperplane Lo continuously to infinity through the half-space of L that contains
no point of Ê. This contradicts Oka’s characterization of the polynomially convex hull,
given that 0 ∈ Ê.

Second proof of Theorem 5.1.14. The integral-geometric result we need is this: Denote
by O(n+ 1) the group of real orthogonal transformations acting on Rn+1. These transfor-
mations leave the unit sphere Sn invariant. Let dg denote the Haar measure on O(n+ 1)
normalized so that the volume of O(n+ 1) is one. If γ is a rectifiable arc contained in Sn,

then for an explicitly given constant cn, which depends only on n,

�1(γ ) = cn
∫

O(n+1)
�0(γ ∩ g(�)) dg

if � denotes the (n− 1)-sphere Sn ∩ {xn+1 = 0}. The same result holds if γ is a (�1, 1)-
rectifiable set that is measurable. In particular, it is correct when γ is a compact (�1, 1)-
rectifiable set. This Crofton-like formula can be found, in a much more general form, in
[115, Theorem 3.2.48]. It is also contained in generality sufficient to treat the case that X
is a rectifiable simple closed curve in the more accessible work of Santalò [317].

If we apply this integral-geometric result to the set E, we obtain Theorem 5.1.14
as follows. Assume that E is minimal with respect to the property that 0 ∈ Ê. Then by
Theorem 4.3.7,E is (�1, 1)-rectifiable. With S now the (2N−2)-sphere bBN ∩{yN = 0},
we have for each g ∈ O(2N) that �0(E ∩ g(S)) ≥ 2, so the formula just given yields
�1(E) ≥ 2c2N . We have to evaluate the constant c2N . This can be done by choosing for
the set E the intersection of bBN with the z1-axis. In this case, �1(E) = 2π , and for
almost all g ∈ O(2N), the number �0(E ∩ g(S)) equals 2. Consequently, c2N = π , and
the proof is complete.

Corollary 5.1.16. If E is a compact subset of bBN(r) with 0 ∈ Ê, then�2(Ê ∩BN(r)) ≥
πr2.

Proof. By the local maximum principle, if s ∈ (0, r), then 0 ∈ [bBN(s) ∩ Ê ]̂ , which
implies that�1(bBN(s)∩ Ê) ≥ 2πs. The result now follows from Eilenberg’s inequality,
Theorem 3.3.6.

In particular, if V is a one-dimensional variety in BN(r) that passes through the
origin, then �2(V ) ≥ πr2.

This last result goes back, for nonsingular V , to Rutishauser [313]. See also the paper
of Bishop [60].
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We conclude this section with an estimate for hulls due to Sibony [332]. In connection
with Sibony’s result, it is convenient to use the notation that if E is a compact subset of
CN and z is a point of CN , then χ(z,E) = max{|z− e| : e ∈ E}.
Theorem 5.1.17. LetE be a compact subset of CN with 0 /∈ E. If there is a Jensen measure
for the origin with E as its support, then �1(E) ≥ 2χ(0, E).

Explicitly, the hypothesis is that every relatively open subset of E has positive mea-
sure with respect to the Jensen measure.

Applied to the case of a set E ⊂ bBN with 0 ∈ Ê, Sibony’s result gives that
�1(E) ≥ 2. This bound is not sharp; see Theorem 5.1.14 above. A simple example shows
the constant in Sibony’s theorem to be best possible in general: Let T be the triangle in C

with vertices at the points i, δ − iδ, and −δ − iδ for a small positive δ. If ν is harmonic
measure on bT for the origin, then ν is a Jensen measure for the origin the support of
which has length only a little more than 2 when δ is small. In this case χ(0, bT ) = 1.

Proof. Fix a Jensen measure µ for the origin that has E as its support.
We suppose �1(E) < ∞. By Theorem 3.3.10, almost every complex hyperplane

through the origin of CN missesE. Fix such a hyperplane, sayL. LetL⊥ be the orthogonal
complement of L in CN , and let π : CN → L⊥ be the orthogonal projection.

Let ν denote the measure π∗µ, so that ν is the measure on L⊥ defined by
∫
g dν =∫

g ◦ π dµ for all continuous functions on L⊥. This is a Jensen measure for the origin in
L⊥ that has π(E) as its support. Let a ∈ L⊥ be a point with |a| = sup{|π(x)| : x ∈ E}.
We identify L⊥ with C by identifying the point ζ ∈ C with the point ζa.

Let � be the real line in L⊥ through the origin and the point a, and for x in the
segment [0, a], let �⊥x be the real line in L⊥ through the point x and orthogonal to �.

For each x in the open segment (0, a) the line �⊥x meets π̂(E) in at least two points.

To see this, suppose �⊥x to meet π̂(E) in only one point, say αa, α ∈ C. Define the function

g on π̂(E) by the condition that g be zero on the part of π̂(E) on one side (in L⊥) of �⊥x
and that g(ζa) be ζ − α when ζa is in π̂(E) but on the other side of �⊥x . This function

lies in the algebra P(π̂(E)) by Mergelyan’s theorem. Its value at the origin is −α. The
measure ν is a Jensen measure for the origin supported by π(E), so we have

−∞ < log|α| ≤
∫

log|g| dν,

which is impossible, for g vanishes on an open subset of π(E), and π(E) is the support
of ν, so that this open set has positive measure with respect to ν.

Let η be the orthogonal projection of L onto �. Thus, for each x ∈ (0, a) we have
�0((η ◦ π)−1(x)) ≥ 2. Theorem 3.3.6 yields

2|a| ≤
∫
[0,a]

�0((η ◦ π)−1(x)) dx ≤ �1(E).

Thus, as desired, �1(E) ≥ 2χ(0, E).
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5.2. Removable Singularities

In this section we bring the theory of polynomial convexity to bear on the study of re-
movable singularities. For holomorphic functions, the general question can be phrased in
this way: If � is a domain in CN , and if X is a closed subset of �, what conditions on X
guarantee that every function holomorphic on � \ X continues holomorphically into all
of �? In the plane, every domain is a domain of holomorphy, so the question is without
interest there. In CN with N ≥ 2, Hartogs’s theorem ensures that whenever X is compact
and � \ X is connected, each f ∈ O(� \ X) extends holomorphically through X. Thus,
the interest in the problem lies in the case of closed sets X without compact components.

There is a boundary version of this problem that concerns the boundary values of
holomorphic functions. For its treatment some preliminaries onCR-functions are required;
we begin with them. We then formulate and study the notion of removable singularity
for CR-functions. The section ends with some results about removable singularities for
holomorphic functions.

Consider to begin with an open set � in CN , N ≥ 2, and in � an orientable real
hypersurface � of class C 1.

Definition 5.2.1. The function f of class C 1 on the surface � satisfies the tangential
Cauchy–Riemann equations, in symbols ∂̄�f = 0, if Xf = 0 for every vector field X de-
fined and of class C 1 on� that is tangent to� and that is of the formX =∑N

j=1 αj (z)
∂
∂z̄j
.

When � is the boundary of a domain, we will generally write ∂̄b rather than ∂̄� .
The tangency condition in this definition is that Xh = 0 for each smooth function h

that vanishes on �. Vector fields of the form X = ∑N
j=1 αj (z)

∂
∂z̄j

are said to be of type

(0,1).
In the context of the preceding definition, it is easy to give reformulations of the

condition that a smooth function satisfy the tangential Cauchy–Riemann equations. We
give two: one a differential condition, one an integral condition.

Theorem 5.2.2. With � and f as in Definition 5.2.1, each of the following conditions is
equivalent to the condition that ∂̄�f = 0:

(a) df ∧ ι∗ω(z) = 0 with ω(z) the form dz1 ∧ · · · ∧ dzN , and with ι∗ the map on forms
induced by the inclusion of � in CN .

(b)
∫
�
f ∂̄α = 0 for every smooth (N,N − 2)-form α on CN whose support meets �

in a compact set.

Both of these are local conditions.

Proof. The equivalence of the conditions (a) and (b) is immediate: For every smooth
(N − 2)-form ϑ whose support meets � in a compact set, we have

0 =
∫
�

f ∂̄(ω(z) ∧ ϑ) =
∫
�

df ∧ ω(z) ∧ ϑ,

which implies that (a) and (b) are equivalent.
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Next, suppose ∂̄�f to vanish. Fix a pointp in� and choose holomorphic coordinates
on CN with respect to which p is the origin and such that the tangent plane to� is the real
hyperplane with equation yN = 0. At 0 we have

df =
∑

j=1,...,N−1

aj dzj +
∑

j=1,...,N−1

bj dz̄j + c dxN

for suitable constants aj , bj , and c. For k = 1, . . . , N − 1, the vector ∂
∂z̄k

is tangent to �
at 0, so each of the b’s must be zero. The form df ∧ ι∗ω(z) therefore vanishes at 0, so that
the condition (a) is seen to hold.

Conversely, if df ∧ ι∗ω(z) = 0, then computing again at 0 in the coordinates used
above, we find that

ι∗
( ∑
j=1,...,N−1

bjdz̄j

)
∧ ι∗ω(z) = 0,

which implies the existence of a linear relation among the forms
∑
j=1,...,N−1 bj ι

∗dz̄j and
ι∗dzj , j = 1, . . . , N − 1. However, at 0, the form ι∗

(
dz̄1 ∧ · · · ∧ dz̄N−1 ∧ dz1 ∧ · · · ∧

dzN−1 ∧ dxN
)

is, to within a nonzero constant multiple, the volume form on �, so the
1-forms ι∗dz1, . . . , ι

∗dzN−1, ι
∗dz̄1, . . . , ι

∗dz̄N−1, ι
∗dxN are linearly independent. Thus

the bj ’s are all zero, and this implies that ∂̄�f = 0.
The theorem is proved.

The preceding result serves to motivate the notion of continuous CR-function.

Definition 5.2.3. The continuous function f on � satisfies the weak tangential Cauchy–
Riemann equations on �, in symbols ∂̄�f = 0, if

∫
�
f ∂̄α = 0 for every smooth form α

of bidegree (N,N − 2) on CN whose support meets � in a compact set.

An analogous definition can be given for functions that are only locally integrable
with respect to surface area measure on �.

It is evident that there are some CR-functions on �: If F is holomorphic on a
neighborhood of �, then F |� is a CR-function. Another class of CR-functions consists
of the continuous functions on � that can be approximated uniformly on compact subsets
of � by holomorphic functions. In fact, because the integral condition above is local, it
suffices that the approximation be possible only locally, i.e., on a neighborhood of each
point of �. A theorem of Baouendi and Trèves [43] implies that these are the only CR-
functions on �. An approximation theorem obtained by Chirka [83] also yields this fact.

It is a useful fact that certain restrictions of CR-functions are CR-functions:

Lemma 5.2.4. Let � be a C 1 real hypersurface in the domain � in CN , and let M be a
complex submanifold of � that is transversal to �. If f is a continuous CR-function on
�, then f |(� ∩ M ) is a CR-function on � ∩ M .

Proof. The problem is entirely local, and, by induction, it suffices to suppose that M is
a complex hypersurface. Thus, we can suppose that M is defined by the vanishing of a
single holomorphic function: M = {z ∈ � : F(z) = 0} for some F ∈ O(�) with dF
zero-free along M .
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Fix a point po ∈ � ∩ M , and let µ be a smooth (N − 1, N − 3)-form on CN with
support contained in a small neighborhood of po.

Let ϕ be a nonnegative function on the plane with compact support, with integral
one, and with the property that it is constant on a neighborhood of the origin. Define χε
by χε(z) = ε2ϕ( 1

ε
|z|), so that {χε}ε>0 is a smooth approximate identity on the plane. By

hypothesis, F−1(0) is transversal to �, so F−1(ζ ) is transversal to � near po when ζ is
sufficiently near the origin. Then

0 =
∫
�

f ∂̄

(
µ ∧ F ∗

(
χε(ζ ) ∧ i

2
dζ̄ ∧ dζ

))
=
∫

C

{∫
F−1(ζ )

f ∂̄µ

}
χε(ζ )

i

2
dζ̄ ∧ dζ

→
∫
�∩M

f ∂̄µ.

This is true for every choice of µ, so the restriction of f to � ∩ M is a CR-function as
claimed.

We should note that this restriction result is also an immediate consequence of the
approximation theorems mentioned above.

The CR-functions arise naturally as the boundary values of holomorphic functions:

Theorem 5.2.5. If � is a bounded domain in CN with connected boundary of class C 1,
then the continuous function f on b� is of the form F |b� for a function F ∈ A(�) if and
only if f satisfies the weak tangential Cauchy–Riemann equations on b�.

Recall that A(�) is the algebra of functions continuous on �̄, holomorphic in �.
The history of Theorem 5.2.5 is complicated, and we shall not go into it in detail.

A result of this kind, in the case of real-analytic data, was published in the early 1930s
by Severi [324]. For strictly pseudoconvex domains in C2, it is contained in the paper of
Kneser [208]. The result as stated in Theorem 5.2.5 seems to have first been proved by
Weinstock [363]. For surveys of the history of this subject see the papers of Range [288]
and Fichera [116].

The hypothesis that the boundary is connected is necessary in the last theorem. There
is, however, a result, due to Weinstock [362], for domains with disconnected boundary
that is in the spirit of the theorem just stated:

Theorem 5.2.6. If � is a bounded domain in CN with b� of class C 1, then f ∈ C (b�)
is of the form F |b� for a function F ∈ A(�) if and only if

∫
b�
fβ = 0 for each smooth

form β of bidegree (N,N − 1) that is defined and ∂̄-closed on a neighborhood of �̄.

It is not difficult to derive Theorem 5.2.6 from Theorem 5.2.5. For this, let � and
f be as in Theorem 5.2.6. Denote by �0, . . . , �s the components of b�, indexed in such
a way that each �j , j ≥ 1, is in the bounded component of CN\�0. Then each �k , for
k �= j , is in the unbounded component of CN\�j , provided j �= 0. For each j , let �j
denote the bounded component of CN\�j . The hypotheses of Theorem 5.2.6 imply that
f | �j is a CR-function, so by Theorem 5.2.5, there is Fj ∈ A(�j ) with Fj = f on �j .
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We will use the Bochner–Martinelli integral to show that Fj = F0 on �j . This is so, for
if ζ ∈ �j , and k �= 0, j , then ∫

�k

f (z)kBM(z, ζ ) = 0,

which implies, because
∫
b�
f (z)kBM(z, ζ ) = 0, that

F0(ζ ) = cN
∫
�0

f (z)kBM(z, ζ ) = cN
∫
�j

f (z)kBM(z, ζ ) = Fj (ζ ).

In the planar case, N = 1, Theorem 5.2.6 says that if D is a bounded domain in the
plane with smooth boundary, then a continuous function f on bD extends holomorphically
through D if

∫
bD
f α = 0 for every holomorphic 1-form α on a neighborhood of D̄. This

is an entirely classical result. The corresponding result for relatively compact domains D
with smooth boundary in Riemann surfaces was established by Royden [305]. Formally
the criterion is the same: If D is a relatively compact domain in a Riemann surface R
with bD of class C 1, then f ∈ C (bD) extends holomorphically through D if and only if∫
bD
f α = 0 for every holomorphic 1-form α on a neighborhood of D̄ in R.

Proof of Theorem 5.2.5. That the condition is necessary is quickly seen. It is sufficient to
show that if F ∈ A(�), then for smooth (N,N − 2)-forms ϕ on CN with small support,∫
b�
F ∂̄ϕ = 0. For this purpose, fix a point p ∈ b� and let Up be a small neighborhood

of p in CN . Let ϕ ∈ E N,N−2(CN) have support a compact subset of Up. Denote by �ε
the surface obtained by translating b� ε units along the inner normal to b� at p. Then∫
b�
F ∂̄ϕ = limε→0+

∫
�ε
F ∂̄ϕ, and for each ε > 0, the latter integral is zero, for F is

holomorphic on a neighborhood of �ε ∩ suppϕ and so is a smooth CR-function on a
neighborhood in �ε of �ε ∩ suppϕ. Thus, the necessity of the condition is proved.

The scheme for proving that a continuous CR-function f extends to an element of
A(�) is to show that the Bochner–Martinelli integral

F(ζ ) = cN
∫
b�

f (z)kBM(z, ζ )

is holomorphic on CN\b� and vanishes on CN\�̄. Granted this, a result on the jump
behavior of the Bochner–Martinelli integral implies that F ∈ A(�) with F = f on b�.

To prove that F is holomorphic, define an (N,N−2)-formL on CN\{z : zN = ζN },
for fixed ζN , by

(5.6) L = (−1)N−1

(N − 1)(zN − ζN)
1

|z− ζ |2N−2

N−1∑
j=1

(−1)j−1(z̄j − ζ̄j )ω[j,N ](z̄) ∧ ω(z),

in which ω[j,N ](z̄) = dz̄1 ∧ · · · ∧ d̂ z̄j ∧ · · · ∧ dz̄N−1. By type, dL = ∂̄L, and we verify
by direct calculation that off the complex hyperplane ζN = zN ,

dL = kBM(z, ζ );
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L is a primitive for kBM. (Martinelli [239] introduced this primitive.) We now compute
∂F

∂ζ̄N
on CN\b�. It is

(5.7)
∂F

∂ζ̄N
(ζ ) = ∂

∂ζ̄N
cN

∫
b�

f (z)kBM(z, ζ ) = cN
∫
b�

f (z)
∂

∂ζ̄N
kBM(z, ζ ).

In the last integral, we understand by ∂

∂ζ̄N
kBM(z, ζ ) the form obtained by differenti-

ating the coefficients of kBM(z, ζ ) with respect to ζ̄N .
Off the set where zN = ζN ,

(5.8)
∂

∂ζ̄N
kBM(z, ζ ) = ∂

∂ζ̄N
dL = d ∂

∂ζ̄N
L = dz

{
(−1)N−1

ω′[N ](z̄− ζ̄ ) ∧ ω(z)
|z− ζ |2N

}

if we write ω′[N ](z̄ − ζ̄ ) for the form
∑N−1
j=1 (−1)j−1(z̄j − ζ̄j )dz̄1 ∧ · · · ∧ d̂ z̄j ∧ · · · ∧

dz̄N−1. The equation (5.8) has been derived under the assumption that zN �= ζN , but it is
meaningful and correct on CN \ {ζ }. Insert (5.8) into (5.7) to get

(5.9)
∂F

∂ζ̄N
(ζ ) = cN

∫
b�

f (z) d

{
(−1)N−1ω′[N ](z̄− ζ̄ ) ∧ ω(z)

|z− ζ |2N
}
.

The integral vanishes, for the d can be replaced by ∂̄ by type, and the function f is
assumed to be a CR-function.

Thus, F is seen to be holomorphic on CN \b�. By Hartogs’s theorem, the restriction
ofF to the unbounded component of CN \�̄ extends holomorphically to all of CN . Because
F → 0 at infinity, F vanishes on the unbounded component of CN \ �̄.

We have finally to show that F |� assumes continuously the boundary values f . That
this is so is a consequence of the following jump formula:

Theorem 5.2.7. Let � ⊂ CN be a bounded domain with boundary of class C 1. If f ∈
C (b�), and if

F(ζ ) = cN
∫
b�

f (z)kBM(z, ζ ),

then, with νζ the outer unit normal to b� at ζ ∈ b�,

lim
s→0+

[F(ζ − sνζ )− F(ζ + sνζ )] = f (ζ )

uniformly in ζ .

Proof. Fix ζ ∈ b�, and fix c ∈ (0, 1). There is an η > 0 small enough that if z, z′ ∈ b�
satisfy |z − ζ | < η and |z′ − ζ | < η, then |〈 z − z′, νζ 〉| < c|z − z′| if we denote by 〈 , 〉
the Hermitian inner product on CN .
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Fix f ∈ C (b�), and fix an ε > 0. Because cN
∫
b�
kBM(z, ζ ) = 1 if ζ ∈ � and = 0

if ζ ∈ CN \ �̄, we have that for ζ ∈ b�,

F(ζ − sνζ )− F(ζ + sνζ )− f (ζ )

= cN
∫
b�

{f (z)− f (ζ )}
[
ω′(z̄− (ζ̄ − sν̄ζ ))
|z− (ζ − sνζ )|2N − ω′(z̄− (ζ̄ + sν̄ζ ))

|z− (ζ + sνζ )|2N
]
∧ ω(z).

(5.10)

If we write νζ = (νζ,1, . . . νζ,N ), then

ω′(z̄− (ζ̄ ± sν̄ζ ))) =
N∑
j=1

(−1)j−1((z̄j − ζ̄j )± sνζ,j )dz̄1 ∧ · · · ∧ [j ] ∧ · · · ∧ dz̄N

=ω′(z̄− ζ̄ )± s
N∑
j=1

(−1)j−1ν̄ζ,j dz̄1 ∧ · · · ∧ [j ] ∧ · · · ∧ dz̄N .

Call the second form on the right of the last equation sϑζ .
Choose η′ ∈ (0, η) small enough that |f (z) − f (z′)| < ε when z, z′ ∈ b� satisfy

|z− z′| < η′.
Decompose the integral on the right of (5.10) as∫

b�

=
∫
b�\BN(ζ,η′)

+
∫
b�∩BN(ζ,η

′)
= I ′(s)+ I ′′(s).

It is clear that I ′(s) tends to 0 as s → 0+, uniformly in ζ ∈ b�; the main analysis must
focus on I ′′(s). For this, write

I ′′(s) = J ′(s)+ J ′′(s),

in which

J ′′(s) = cN
∫
b�∩BN(ζ,η

′)
{f (z)−f (ζ )}

[ −sθζ
|z− (ζ − sνζ )|2N − sθζ

|z− (ζ + sνζ )|2N
]
∧ω(z),

and

J ′(s) = cN
∫
b�∩BN(ζ,η

′)
{f (z)−f (ζ )}

[
ω′(z̄− ζ̄ )

|z− (ζ − sνζ )|2N − ω′(z̄− ζ̄ )
|z− (ζ + sνζ )|2N

]
∧ω(z).

On b� ∩ BN(ζ, η
′), |〈 z− ζ, νζ 〉| < c|z− ζ |, so

(5.11) |z− ζ ± sνζ |2 > (1 − c)(|z− ζ |2 + s2).

Consequently, the J ′′(s) is majorized by

const ε
∫
b�∩BN(ζ,η

′)

s

(|z− ζ |2 + s2)N
dS(z)
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with a constant that is independent of η′, provided η′ is sufficiently small. The term J ′(s)
is majorized by

(5.12) const ε
∫
b�∩BN(ζ,η

′)

|z− ζ |∣∣|z− ζ − sνζ |2N − |z− ζ + sνζ |2N
∣∣

|z− ζ − sνζ |2N |z− ζ + sνζ |2N dS(z).

The integrand here is bounded by const s

(|z−ζ |2+s2|)N , as we see in the following way: Write

|z− ζ ± sνz|2N = [〈z− ζ ± sνz, z− ζ ± sνz〉]N
= [|z− ζ |2 ± 2�s〈z− ζ, νz〉 + s2]N.(5.13)

Expand this by the multinomial theorem to get a sum of terms of the form

|z− ζ |2p(±s�〈z− ζ, νζ 〉)qs2r

with 0 ≤ p, q, r , and p + q + r = N . In the numerator of (5.12) the |z − ζ |2N occurs
with a plus and with a minus sign and so cancels. It follows that the numerator in (5.12) is
a sum of finitely many terms each of which is bounded by a term of the form

const |z− ζ |2p+1(s|z− ζ |)qs2r = const |z− ζ |2p+q+1sq+2r

with p + q + r = N and with p ≤ N − 1. The latter inequality entails q + r ≥ 1. It
follows that J ′(s) is bounded by a finite sum of terms of the form

const ε
∫
b�∩BN(ζ,η

′)

s|z− ζ |2p+q+1sq+2r−1

(|z− ζ |2 + s2)2N
dS

≤ const ε
∫
b�∩BN(ζ,η

′)

s

(|z− ζ |2 + s2)N
dS.

Thus, what is to be proved is that the quantity

J (s) =
∫
b�∩BN(ζ,η

′)

s

(|z− ζ |2 + s2|)N dS(z)

is bounded uniformly in s. The quantity η′ is small, so the path of integration is essentially
a (2N − 1)-ball of radius η′. Thus,

J (s) < const
∫
x∈R2N−1

s

(|x|2 + s2)N
dL (x).

If we replace x by sy in this integral, we find that

J (s) < const
∫

R2N−1

dL (y)

(|y|2 + 1)N
<∞.

The proof is complete.

Remark. It should be emphasized that the analysis in this proof is entirely local, so there
is a local statement parallel to the statement of the theorem.

For some remarks on the history of this kind of result, see Fichera [116].
At this point, we have a complete proof of Theorem 5.2.5.



238 Chapter 5. Further Results

Corollary 5.2.8. Let � be a bounded domain in CN with boundary of class C 1. If f is
continuous on b�, then with F : CN \ b�→ C the Bochner–Martinelli integral of f , the
function F |� extends continuously to �̄ if and only if F |(CN \ �̄) extends continuously
to CN \�.

We shall need some information on the local behavior of solutions of ∂̄f = u.
The setting we have to consider is this: Let � be an oriented real hypersurface in BN of
class C 1, and let f be a continuous CR-function on �. Suppose that � divides BN into
two domains, �+ and �−. Consider a solution F of the current equation ∂̄F = f [�].
(Here [�] denotes the current of integration over the manifold �, which we take to be
oriented as the boundary of the domain �−.) That there is such a solution follows from
the assumption that f satisfies the tangential CR-equations: If α is a smooth compactly
supported (N,N −2)-form on BN , then because f is aCR-function,

∫
�
f ∂̄α = 0. This is

the assertion that the current f [�] is ∂̄-closed, so F does indeed exist, by Theorem 2.4.17.
The current F satisfies the condition that ∂̄F = 0 in BN \�. Accordingly, on BN \�, F
is a holomorphic function.2

We shall establish the following regularity result:

Theorem 5.2.9. IfF = 0 in�+, then the holomorphic functionF |�− extends continuously
to �− ∪� and assumes the values f continuously along �.

Proof. [83] The proof of this result depends on comparing the solution F with a particular
solutionU of the equation ∂̄S = f [�] that we construct explicitly enough that its behavior
can be analyzed.

Assume that the hypersurface � is defined in the somewhat larger ball BN(R) for
an R > 1.

The construction ofU is based on the solution of ∂̄ given in the appendix to the present
section. It is shown there, equation (5.28), that if u is a smooth ∂̄-closed (0, 1)-form on a
neighborhood of B̄N(R), then the function U defined by

U(z) = cN
∫

BN(R)

u(ζ ) ∧K(ζ, z)

satisfies ∂̄U = u in BN(R) if by K(ζ, z) we denote the kernel dT (ζ, z) − ω′(ζ−z)∧ω(ζ )
|ζ−z|2N

with T as in the appendix to this section, so that T (ζ, z) is smooth in (ζ, z) ∈ B̄N × BN .
We will prove that the function U defined by

(5.14) U(z) = cN
∫
�∩BN

f (ζ )K(ζ, z)

2The assertion thatF is a holomorphic function in BN \� is understood in this sense. We have that ∂̄F = f [�].
Define the functional χ on D(BN \�) by χ(ϕ) = F(ϕ( i2 )Nω(z̄) ∧ ω(z)). Then because supp ∂̄F = �,

χ

(
∂ϕ

∂z̄j

)
= F
(
∂ϕ

∂z̄j

(
i

2

)N
ω(z̄) ∧ ω(z)

)
= F
(
∂̄

((
i

2

)N
(−1)j−1ϕω[j ](z̄) ∧ ω(z)

))
= 0.

Thus, the distribution χ satisfies ∂χ
∂z̄j

= 0 on BN \ � for all j = 1, . . . , N . By the regularity theorem for

distribution solutions of the Cauchy–Riemann equations, there is a holomorphic function Fo on BN \ � with
χ(g) = ∫ gFo for all g ∈ D(BN \�).
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satisfies the current equation ∂̄U = f [�] in BN . Observe that U is integrable on BN .
Let us denote the current f [�] by u; u ∈ D0,1(BN(R)).
Denote by uε the regularization of u that is constructed as follows. Let {χε}ε>0

be a smooth approximate identity on CN centered at the origin, so that for each ε, χε
is a smooth function on CN with support in the ball BN(ε), with integral one, and with
χε(−ζ ) = χε(ζ ). The action of the current u on forms α ∈ DN,N−1 is this. There
are distributions ϕj on BN(R) such that u = ∑N

j=1 ϕjdz̄j in the sense that for each

α =∑N
j=1 ajω[j ](z̄) ∧ ω(z) ∈ DN,N−1(BN(R)),

u(α) =
N∑
j=1

(−1)j−1ϕj (aj ).

For each j , let ϕεj be the convolution ϕj ∗χε, which is a smooth function on a neighborhood

of B̄N as soon as ε is sufficiently small. For all small ε > 0, the form uε =∑N
j=1 ϕ

ε
j dz̄j

is ∂̄-closed on a neighborhood of B̄N , because convolution and differentiation commute.
It follows that the equation ∂̄S = uε has in BN the solution Uε given by

Uε(z) = cN
∫

BN(R)

uε(ζ ) ∧K(ζ, z).

For an α ∈ DN,N−1(BN), we have that

(5.15) lim
ε→0+

∫
BN

uε(z) ∧ α(z) =
∫
�∩BN

f (z)α(z).

We also have uε(z) = ∂̄z
∫
BN
uε(ζ ) ∧K(ζ, z), so that by Stokes’s theorem,∫

BN

uε(z) ∧ α(z) =
∫

BN

∂̄z

{∫
BN

uε(ζ ) ∧K(ζ, z)
}
∧ α(z)

=
∫

BN

∫
BN

uε(ζ ) ∧K(ζ, z) ∧ ∂̄α(z)

=
∫

BN

uε(ζ )

∫
BN

K(ζ, z) ∧ ∂̄zα(z)
ε→0+→

∫
�

f (ζ )K(ζ, z)∂̄zα(z).

(5.16)

The equations (5.15) and (5.16) show that, as desired, the function U defined in
equation (5.14) satisfies the current equation ∂̄U = f [�].

The proof of the theorem concludes as follows. We have the given solution F of
∂̄F = f [�], which satisfies F = 0 on�+, and we have the solution U given by equation
(5.14), which satisfies the same equation. Then ∂̄(F − U) = 0, so F = U + H for
a holomorphic function H . We also know that the jump of U across � is f : Recall the
remark immediately following the proof of Theorem 5.2.7. We have therefore that the jump
of F across � is f , and that F assumes continuously the boundary values f from �−.
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Having established some of the theory of CR-functions on hypersurfaces, we can
introduce the notion of removable singularity for CR-functions.

Definition 5.2.10. Let� be a domain in the complex manifold M such that b� = X ∪�,
where X is a closed subset of b� and � is a closed C 1-submanifold of M \X. The set X
is said to be a removable set for CR-functions if for each continuous CR-function on �
there is a function F continuous on � ∪� and holomorphic on � with F |� = f .

In this definition no growth condition is imposed on the function f near the excep-
tional set X, nor is the manifold � supposed to have finite area.

Convexity enters the theory of removable sets as follows.

Theorem 5.2.11. [87, 226, 348] Let X be a compact, O(M )-convex subset of the Stein
manifold M , and let � be a bounded domain in M . Assume that � = b� \ X is a real
hypersurface of class C 1, that � \ X is connected, and that M \ (�̄ ∪ X) is connected.
If f is a continuous CR-function on �, then there is a function F holomorphic on � \X
and continuous on � ∪ (� \X) that agrees on with f on �.

Proof. Consider the current f [�] defined on M \ X by f [�](β) = ∫
�
fβ for all β ∈

DN,N−1(M \X). The condition that f be a CR-function is the condition that the current
f [�]be ∂̄-closed. The support of this current is a bounded subset of M . By Theorem 2.4.20,
H

0,1
� (M \ X) = 0, so the result on smoothing cohomology, Theorem 2.4.16, provides a

current u on M \ X with support a bounded subset of M such that ∂̄u = f [�]. (Note
that at this point, rather than invoking the general result on smoothing cohomology, it is
sufficient to observe that the proofs of parts (c) and (d) of Theorem 2.4.20 apply equally
well when the given data are taken to be currents of the appropriate degrees rather than
smooth forms.)

We have ∂̄u = 0 off �, so there is a holomorphic function F on M \ (� ∪X) with
the property that u(α) = ∫ Fα for all (N,N)-forms on M whose support is a compact
subset of M \ (� ∪X). The support of u is relatively compact in M , so the holomorphic
function F necessarily vanishes on M \ (�̄∪X). The function F |(� \X) is the function
we seek: Theorem 5.2.9 implies that it assumes the boundary values f along �.

The theorem is proved.

For domains in CN , there is a relatively explicit formula for the extension provided
by Theorem 5.2.11 in terms of the Bochner–Martinelli integral. For this, let �, X, and
f be as in the statement of Theorem 5.2.11 with M = CN . Let F be the holomorphic
extension of f into � \ X̂. Fix a point w ∈ � \ X̂. There is a polynomial P such that
P(w) = 1 and ‖P ‖X < 1. For every s less than but sufficiently near one, the function F
can be represented in the domain �s = � ∩ {z : |P(z)| > s} by the Bochner–Martinelli
formula:

F(w) = cN
∫
b�s

F (z)kBM(z, w)

= cN
∫
b�s∩b�

f (z)kBM(z, w)+ cN
∫
b�s∩�

F(z)kBM(z, w).

(5.17)

The Bochner–Martinelli kernel is ∂̄-exact in CN \ VP,w if
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VP,w = {z : P(z) = P(w)}.
We can give an explicit (N,N − 2)-form ϑP,w on CN \ VP,w that satisfies

∂̄zϑP,w = kBM(z, w)

on CN \ VP,w. For this, recall that Lemma 1.5.3 provides polynomials pr , r = 1, . . . , N ,
in two N -dimensional variables such that P(z)− P(w) =∑N

j=1(zj − wj)pj (z, w).
This decomposition gives rise to the desired ∂̄-primitive by the following purely

algebraic construction.
We have constructed above, equation (5.6), a primitive for the Bochner–Martinelli

kernel. A permutation of the variables in that formula leads to the result that if εj is suitably
chosen, 1 or −1 for each j = 1, . . . , N , then the form

(5.18) Mk(z,w) = εk

|z− w|2N−2

N∑
j=1
j �=k

(−1)j−1(zj − wj)ω[j,k](z̄) ∧ ω(z)

satisfies ∂̄zMk(z,w) = (zk − wk)kBM(z, w). If we multiply both sides of equation (5.18)
by pk(z,w) and sum on k, we discover that if

ϑP,w = 1

P(z,w)

N∑
k=1

pk(z,w)Mk(z,w),

then ∂̄zϑP,w = kBM(z, w), so that ϑP,w is a ∂̄- and d-primitive for kBM in CN \ VP,w.
The primitiveϑP,w leads to the sought formula, because we can use Stokes’s theorem

in equation (5.17) to write

cN

∫
b�s∩�

F(z)kBM(z, w) = cN
∫
b�∩{z:|P(z)|=s}

f (z)ϑP,w,

so that

(5.19) F(w) = cN
∫
b�s

F (z)kBM(z, w)+ cN
∫
b�∩{z:|P(z)|=s}

f (z)ϑP,w.

In fact, this argument requires somewhat more attention. First, since we want to integrate
over the locus�∩ {|P | = s}, the number s needs to be chosen to be a regular value of the
function |P | on �. Almost all values of s will satisfy this condition. More serious is the
condition that b� and the level set |P | = s meet transversely. If we impose the condition
that b� \ X be a manifold of class C 2, rather than of class C 1, then the sharp version of
Sard’s theorem provides the necessary transversality condition for almost all values of s.
With the hypothesis that b�\X is merely of class C 1, there are technical complications to
be dealt with in the indicated line of argument. We will not proceed further in this direction.

A special case of Theorem 5.2.11 concerns strictly pseudoconvex domains.
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Corollary 5.2.12. If � is a relatively compact, strictly pseudoconvex domain in CN with
boundary of class C 2, and if X ⊂ b� is a compact set that is O(�̄)-convex, then X is
removable for CR-functions.

Proof. The set X is O(�̄)-convex, so b� \X is connected by Corollary 2.4.10. Thus, the
corollary follows from Theorem 5.2.11.

In particular, a subset of bBN is removable for CR-functions if it is polynomially
convex.

More generally, there is the following result.

Corollary 5.2.13. If � is a relatively compact strictly pseudoconvex domain in CN with
boundary of class C 2, and ifX ⊂ b� is a compact set, then every CR-function on b� \X
extends holomorphically into � \ O(�̄)-hullX.

Proof. Let�′ be a strictly pseudoconvex domain in CN that contains� in such a way that
�̄ is O(�′)-convex. If � is a component of � \ O(�̄)-hull X, then by Corollary 2.4.9,
b�∩b� is connected. Consequently,�\ (�̄∪O(�̄)-hullX is connected. Theorem 5.2.11
implies that f |(b� ∩ b�) extends holomorphically into �. The corollary is proved.

Corollary 5.2.14. Let � be a domain in CN , and let p ∈ b� be a point near which b�
is a manifold of class C 2 that is strictly pseudoconvex. If f is a continuous CR-function
defined on the part of b� nearp, then there is a neighborhoodW ofp in CN such that there
is a holomorphic function F defined on � ∩W that assumes continuously the boundary
values f near p.

Proof. LetW ′ be a neighborhood of p in CN on which there is a strictly plurisubharmonic
function Q that defines b� ∩ W ′ so that Q = 0 on b� ∩ W ′, dQ �= 0 there, and Q is
negative on W ′ ∩�. Denote by P the Levi polynomial associated with Q at the point p,
so that

P(z) =
N∑
j=1

∂Q

∂zj
(p)(zj − pj )− 1

2

N∑
j,k=1

∂2Q

∂zj∂zk
(p)(zj − pj )(zk − pk).

The Taylor expansion ofQ about the point p is

(5.20) Q(z) = 2�P(z)+ LQ(p; z− p)+ o(|z− p|2),
in whichLQ(p; ·)denotes the Levi form ofQ atp. The strict pseudoconvexity ofQ implies
that LQ(p; z− p) ≥ const |z− p|2. Thus, for z ∈ � near p, �P(z) > 0. It follows from
Theorem 5.2.11 that if we let Eε = {z : �P(z) = ε}, then for small, negative values of ε,
the function f continues from the component of b� \ Eε that contains p, call it �ε, into
the component of � \ Eε that abuts �ε.

As a consequence of this remark, we see that if� is an orientable strictly pseudocon-
vex hypersurface in a complex manifold, and if f is a continuous CR-function on�, then
there is a one-sided neighborhood of � in the ambient manifold into which f continues
as a holomorphic function. In particular, if � is a bounded strictly pseudoconvex domain
in CN with boundary of class C 2, and if X is a compact subset of b�, then there is a
neighborhoodW of b� \X in �̄ \X such that f continues holomorphically intoW ∩�.
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To be sure, there are more-direct routes to the results of Corollary 5.2.14 and the last
paragraph than the one we have followed.

It is useful to notice that the analysis above entails the following convexity observa-
tion:

Lemma 5.2.15. Let � be a strictly pseudoconvex domain in CN with boundary of class
C 2. If p ∈ b�, then there are holomorphic coordinates defined on a neighborhood of p
with respect to which b� is strictly convex near p.

Proof. Let Q be a strictly plurisubharmonic defining function of class C 2 for �. Near
p, Q has the expansion (5.20). With coordinates w1, . . . , wN defined near p by w1 =
z1, . . . , wN−1 = zN−1, wN = P(z), we have

Q(w) = 2�wN + LQ(p;w − w(p))+ o(|w − w(p)|)2.
The Levi form is positive definite, so with respect to the w-coordinates, Q is strictly
convex, whence the lemma.

In general, the converse of Theorem 5.2.11 fails. There is, however, a converse, for
two-dimensional strictly pseudoconvex domains.

Theorem 5.2.16.[351] If� is a bounded, strictly pseudoconvex domain in C2 with bound-
ary of class C 2, the compact subset X of b� is removable if and only if it is convex with
respect to the algebra of functions holomorphic on a neighborhood of �̄.

The theorem applies in particular to the case of the ball:

Corollary 5.2.17. A compact subset X of bB2 is a removable set if and only if it is poly-
nomially convex.

The proof of Theorem 5.2.16 is based on a result of Słodkowski [335]:

Theorem 5.2.18. If� is a pseudoconvex domain in a two-dimensional Stein manifold M ,
and if X is a compact subset of M \�, then � \ O(M )-hullX is pseudoconvex.

Proof. [301] If � \ O(M )-hullX is not pseudoconvex, then by a suitable choice of
coordinates on an open set in �, we can suppose that Ū2 ⊂ �, that Ū2 is O(M )-convex,
that the origin is in O(M )-hullX, that for some choice of functions ϕj holomorphic on
the closed unit disk Ū each of which is bounded by 1

2 , the set

E = {∪j=1,...(ζ1, ϕj (ζ1)) : |ζ1| = 1}
is a compact subset of � \ O(M )-hullX, and that limj=1,...(0, ϕj (0)) exists and is the
origin.

For large j , the function Fj defined by Fj (ζ1, ζ2) = 1
ζ2−ϕj (ζ1) is holomorphic on a

neighborhood of Ū2 ∩ O(M )-hullX and satisfies

(5.21) |Fj (0, 0)| > ‖Fj‖bU2∩O(M )-hullX.

The set Ū2 ∩O(M )-hullX is O(M )-convex, so Fj can be approximated uniformly there
by functions holomorphic on M . If the approximation is good enough, the approximating
functions will satisfy an inequality like (5.21), which violates the local maximum principle.
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Simple examples show that the analogous statement in C3 is false. This proof does
show that the polynomially convex hull X̂ can be replaced by the rationally convex hull of
X. That rationally convex hulls enjoy this property was noted by Lupacciolu [228], who
also considered the possibility of replacing the polynomially convex hull X̂ by the compact
set Y that is the intersection of all the Stein domains in C2 that contain X. Lupacciolu’s
paper establishes, by sheaf-theoretic methods, a natural analogue of the theorem in the
N -dimensional case.

Corollary 5.2.19. If � is a strictly pseudoconvex domain in C2 with b� of class C 2, and
if X is a compact subset of b�, then � \ O(�̄)-hullX is pseudoconvex.

Proof of Theorem 5.2.16. We know that if X is O(�̄)-convex, then it is removable.
Conversely, suppose that the compact subsetX of b� is removable. We are to prove

that X is O(�̄)-convex. Assume it is not. Let �̃ be a strictly pseudoconvex domain with
boundary of class C 2 obtained by pushing the boundary of� out slightly along b�\X and
leaving b� fixed at each point of the setX. If the domain �̃ is sufficiently near�, the sets

O(�̄)-hullX and O( ¯̃�)-hullX coincide, so the setW = �̃\O(�̄)-hullX is pseudoconvex,
whence there is a function f holomorphic onW that continues into no larger domain. The
function f |(b� \X) is a CR-function on b� \X that does not continue through all of �.
This contradicts the assumed removability of X.

Theorem 5.2.11 lets us exhibit some examples of removable sets.

Theorem 5.2.20. [351] If ε > 0, there is a removable set X ⊂ bBN such that the area of
bBN \X is less than ε.

Proof. For a small η > 0, let S be a compact totally disconnected subset of the unit circle
in the plane whose complement in the circle has measure less than η. Let

Y = {reiϑ : r ∈ [0, 1], eiϑ ∈ S},

a compact subset of the closed unit disk. Mergelyan’s theorem implies that P(Y ) = C (Y ).
If YN denotes the N -fold Cartesian product of Y with itself, then P(YN) = C (YN), so
every compact subset of YN is polynomially convex. If η is chosen sufficiently small at the
outset, then the subset bBN \ YN of bBN has measure less than ε, and the set bBN ∩ YN
is polynomially convex and so removable.

The preceding construction was suggested to the author by N. Sibony. A different
construction of sets with the desired property is given in [351].

There is a metric criterion for removability:

Theorem 5.2.21. If D is a bounded strictly pseudoconvex domain in CN , N ≥ 2, with
boundary of class C 2, and if E ⊂ bD is a compact set with �2N−3(E) = 0, then E is
removable.

This result was stated in [230]. Results of this kind are known for more general
domains; see [227] and [87].

The proof of this depends on a lemma from the theory of Hartogs series:
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Lemma 5.2.22. Let R > 1 and let f : BN(R)→ C be defined and satisfy

(a) f |BN ∈ O(BN), and

(b) for almost all z ∈ BN , the function gz defined by gz(ξ) = f (ξz) is holomorphic in
|ξ | < R/|z|.

Then f ∈ O(BN(R)).

Proof. Let the power series expansion of f in BN be f (z) = ∑α cαz
α . Define F :

BN × U → C by

F(z, ξ) = f (ξz) =
∑
α

cαz
αξ |α| =

∑
k=0,1,...

bk(z)ξ
k

with bk ∈ O(BN) the function given by bk(z) =∑|α|=k cαzα .
By the theory of Hartogs series [360, p. 120], the function F extends to be holomor-

phic in the domain
{(z, ξ) ∈ BN × C : |ξ | < R̃(z)}

with the function R̃ determined by

− ln R̃(z) = lim sup
z′→z

lim sup
k→∞

1

k
ln |bk(z′)|,

and − ln R̃(z) is a plurisubharmonic function of z. The series defining F converges in
|ξ | < 1 for all z ∈ BN , so R̃(z) ≥ 1 for all z ∈ BN . Moreover, for almost all z ∈ BN ,
the series converges in |ξ | < R/|z|. Thus, for almost all z ∈ BN , R̃(z) ≥ R. The upper
semicontinuity of R̃(z) as a function of z implies that R̃(z) ≥ R for all z.

Thus, F ∈ O(BN ×RU), which implies that the power series expansion of f about
the origin converges in BN(R), and the lemma is proved.

With the preceding lemma, we can establish an analogue of Theorem 5.2.21 in the
case of certain convex domains.

Lemma 5.2.23. Let D be a bounded convex domain in CN such that bD = � ∪ �′ with
�′ a closed convex subset of a real hyperplane H in CN and with � a strictly convex
closed submanifold of class C 2 of CN \ H . Let E be a closed subset of � of (2N − 3)-
dimensional measure zero. If f is a continuous CR-function on � \ E, then f continues
holomorphically through D.

Proof. To begin with, note that the function f continues holomorphically into the set
D \ �̂′ ∪ E by Theorem 5.2.11. Call this extension F̃ . Note that � ∩ �̂′ ∪ E = E.

The proof of the corollary is an induction: If N = 2, the corollary is a consequence
of Theorem 5.2.11, for because �′ is convex and E has zero length, the union �′ ∪
E is polynomially convex by Corollary 1.6.3. Assume now that the corollary is true in
dimension N and consider the (N + 1)-dimensional case. Let z ∈ D. There are complex
affine hyperplanes � in CN passing through z that meet E in a set of zero (2N − 3)-
dimensional measure; indeed, by Theorem 3.3.10 almost all the hyperplanes through z
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have this property. Fix such a �. The N -dimensional domain � ∩ D is a domain of the
kind contemplated in the statement of the lemma, so by the inductive hypothesis, the
function f |(� ∩ (bD \ E)) continues holomorphically through � ∩ D, say as F�. The
value F�(z) is independent of the choice of �. This is so, for any two complex affine
hyperplanes, � and �′, through z meet in a complex affine plane L of codimension two
through z. If �2N−3(� ∩ E) = �2N−3(�′ ∩ E) = 0, then the extensions F� and F�′
agree almost everywhere on L ∩ �, and so they agree on L ∩D, whence their values at z
coincide. Thus we have obtained a well-defined function, call it F , on D.

The function F agrees with the function F̃ near � \ E and so is holomorphic on an
open subset of D. In fact, F is holomorphic on all of D. In the proof of this we suppose,
as a notational convenience, that BN ⊂ D and that F ∈ O(BN). We shall show that if
p ∈ D, then F is holomorphic on a neighborhood of p. For this, let [0, p] be the straight
line segment connecting the origin and the point p. Let

τo = sup{τ ∈ (0, 1) : F is holomorphic on a neighborhood of the interval [0, τp]}.
We have τo > 0, since f ∈ O(BN). Let τ1 ∈ (0, τo) be a point with

|τo − τ1| < dist(τ1p, bD).

Set p1 = τ1p.
The function F is holomorphic in a ball BN(p1, r) for some r > 0, and if R =

dist(p1, bD), then for almost every C-affine hyperplane� through p1, F is holomorphic
on the (N − 1)-dimensional ball � ∩ BN(p1, R). The preceding lemma implies that F
is holomorphic on BN(p1, R), which is a neighborhood of the point τop. It follows that
τo = 1, and then that F is holomorphic on a neighborhood of p.

The lemma is proved, for F assumes the boundary values f along � \ E.

Proof of Theorem 5.2.21. Consider a point p ∈ bD. With respect to suitable local coordi-
nates, bD is strictly convex in a neighborhood of p, so the lemma provides a ball BN(p, ε)

such that the function f continues holomorphically into the intersection D ∩ BN(p, ε).
Finitely many of these balls cover bD, so in this way, we obtain a continuation of f into
D \K for a sufficiently large compact subset K of D. It follows that f continues into all
of D, and the theorem is proved.

Theorem 5.2.16 provides a characterization of the removable sets in the boundary
of a two-dimensional strictly pseudoconvex domain. This characterization is valid only in
the two-dimensional case, but there is a characterization in the higher-dimensional case, a
characterization due to Lupacciolu [229]. See also [87].

Theorem 5.2.24. Let � be a bounded strictly pseudoconvex domain in CN , N ≥ 3, with
boundary of class C 2. A compact subsetX of b� is removable if and only if the Dolbeault
cohomology group H 0,1(CN \X) vanishes.

Lupacciolu also gives intrinsic characterizations of removable sets, characterizations
that are phrased in terms of the cohomology of the set X itself rather than in terms of its
complement.
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There is the following noteworthy difference between the characterization in dimen-
sion two and that in the higher-dimensional case. In C2, the question of removability for
a given set X depends on which strictly pseudoconvex boundary it is considered to lie in.
In the higher-dimensional case, removability is an absolute notion; it is independent of
which particular strictly pseudoconvex boundary may contain the set.

A simple example shows that in the two-dimensional case the removability of a set in
the boundary depends on which boundary is considered. LetQ(z,w) = (|z|2−1)2+|w|2.
ThenQ−1(0) is the circleK = {(eiϑ , 0) : ϑ ∈ R}. A short calculation shows that nearK ,
dQ vanishes only onK and that the Levi form ofQ is positive definite on a neighborhood
of K . Thus, if for small positive r we put Dr = {(z, w) : Q(z,w) < r2}, then Dr is
a strictly pseudoconvex domain with smooth boundary. Its boundary contains the circle
Cr = {(√1 + reiϑ , 0) : ϑ ∈ R}. The circle Cr is convex with respect to the algebra
O(D̄r ), for the latter algebra contains all polynomials in z and 1/z, and the linear span
of these functions is dense in C (Cr). Thus, Cr is removable for DR . However, Cr is also
contained in the boundary of the ball BN(

√
1 + r), and it is not polynomially convex.

Consequently, it is not a removable set for this ball.

We continue our discussion of CR-functions with a version of Radó’s theorem
valid in the context of CR-functions on strictly pseudoconvex hypersurfaces. Recall—
Theorem 3.4.17—that a function f continuous on a planar domain and holomorphic off
f−1(0) is holomorphic on the whole domain. There is an extension of this in which f−1(0)
is replaced by a larger set:

Theorem 5.2.25. [344] Let f be a bounded function defined and holomorphic on the open
set U \ X, where X ⊂ U is a closed set. Also assume f to be nonconstant on some
component of U \X. If the global cluster set CX(f ) at X is contained in a subset E of C

that has zero logarithmic capacity, then f continues holomorphically into all of U.

Proof. [66] The cluster set of f at X is compact, so we can suppose E to be compact.
The set E is a compact set of zero logarithmic capacity, so there is an Evans function for
E, which is a function u harmonic on the complement in the Riemann sphere of E that
tends to +∞ at E. (For the Evans function, one can consult [356].) The function u ◦ f is
harmonic on U \ f−1(E) and tends continuously to +∞ at the points of f−1(E). Thus,
f−1(E) is a set of capacity zero and so a removable set for bounded harmonic functions.
Consequently, f continues holomorphically through the set X.

IfE consists of a single point, this argument provides a different proof of the classical
theorem of Radó.

A version of Radó’s theorem for CR-functions is the following.

Theorem 5.2.26. Let � be a connected strictly pseudoconvex hypersurface of class C 2

in an open set in CN , N ≥ 2. Let X be a proper, closed subset of �, and let E ⊂ C be a
set of zero logarithmic capacity. Let f ∈ C (� \ X) be bounded and be nonconstant on
some component of � \X, and let it satisfy the tangential Cauchy–Riemann equations on
� \X. If the global cluster set CX(f ) is contained in the setE, then the function f extends
uniquely to all of � as a continuous CR-function.

This theorem, for E a singleton, was proved by Rosay and Stout [301], where a parallel
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result is obtained in which the strict pseudoconvexity hypothesis is weakened. The result
as stated was given by Alexander [23], who, in the same paper, also gives a result of this
general flavor for bounded measurable CR-functions.

Proof. The cluster set CX(f ) is compact, so there is no loss of generality in assuming that
E is compact, so that it has an Evans function, say u. We replace the set X with the set
X ∪ f−1(E), which is again a proper closed subset of � and which has the property that
f is constant on no component of � \X.

Consider initially the two-dimensional case, N = 2. Suppose to begin with that X
has no interior in �.

The problem is local and� is strictly pseudoconvex, so we work near a point p ∈ X
near which holomorphic coordinates have been chosen such that for a strictly convex
domain D contained in {�zN > 0}, bD = � ∪ �, where � is a compact subset of the
real hyperplane {�zN = 0}, and � ⊂ � is a convex surface, which is a neighborhood in
� of p.

With this arrangement, set K = � ∪ (X ∩ �). That X has no interior in � implies
that D \ K̂ is not empty. The function f is defined and continuous onD \K and satisfies
the tangential Cauchy–Riemann equations there. If W is a component of D \ K̂ , then by
Theorem 2.4.11, it abuts a unique component CW of bD \K . Theorem 5.2.11 implies that
f |CW extends holomorphically through W . In this way, we obtain a function F defined
and holomorphic on the set� = D \ K̂ that assumes continuously the boundary values f
along bD \ K . We shall see that Radó’s theorem, which, as noted after Theorem 3.4.17,
applies in CN , implies thatF continues holomorphically throughD and then that it assumes
continuous boundary values along �. This will imply that f extends continuously to all
of �, so that the theorem follows in the two-dimensional case.

Notice that F(�) ∩ E = ∅: If zo ∈ � satisfies F(zo) ∈ E, introduce the variety
V = {z ∈ � : F(z) = F(zo)}. We have that bV ⊂ bD∪K̂ . On bD\K̂ , f omits the values
inE, so bV ⊂ K̂ . This implies that V ⊂ K̂ , contradicting zo ∈ D \ K̂ . The function u ◦F
is pluriharmonic on�, and if z ∈ X∩b� satisfies �zN > 0, then u◦F(ζ )→ ∞ as ζ ∈ �
tends to z. This is correct, because we know that u ◦ f (ζ ) → ∞ as ζ → z, ζ ∈ � \ X.
Choose a large positiveM , and let g be a function holomorphic on D̄ with g(z) = 1 and
|g| < 1 on D̄ \ {z}. If v(ζ ) = M + m(�g(ζ ) − 1), then v ≤ u ◦ F on bD \ (� \ X),
if m > 0 is big enough, because u ◦ F → ∞ at the points of X in �. Then v ≤ u ◦ F
on �, too. To see this, let zo ∈ �. There is a polynomial P with P(zo) = 1 > ‖P ‖K̂ .
Consequently, the boundary of the subvariety {ζ : P(ζ ) = 1} ∩ � lies in bD ∩ (� \ X),
on which v ≤ u ◦ F . Therefore,

M = lim inf
ζ→z,ζ∈� v(ζ ) ≤ lim inf

ζ→z,ζ∈�u ◦ F.

In this,M can be arbitrarily large, so, as claimed, u ◦ F(ζ )→ ∞ as ζ → z, z ∈ b�.
The rest of the analysis depends on a lemma from [301]:

Lemma 5.2.27. Let D be a bounded pseudoconvex domain in C2. Let K ⊂ bD be a
compact set with K̂ ∩ bD = K . SetD′ = D \ K̂ . If U is a neighborhood ofK in C2, then
there is an open set � ⊂ D′ that contains the intersection of D′ with some neighborhood
of K̂ and such that if v is a plurisubharmonic function on D′, then sup�v ≤ supD′∩Uv.
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Proof. Let W1 be a neighborhood of K̂ , and let W2 be a neighborhood of bD \K , these
neighborhoods chosen so that W1 ∩ W2 ⊂ U . Because the domain D is pseudoconvex,
the same is true of the open set D′ = D \ K̂ . Accordingly, D′ can be exhausted by
smoothly bounded strictly pseudoconvex domains. In particular, there is such a domain,
D1, a relatively compact subset ofD′, withD1 ⊂ D′ \(W1 ∪W2). Set� = (D′ \D̄1)∩W1.

This is the intersection of D′ with a neighborhood of K̂ . At points of b� \ (K̂ ∪ U), b�
is strictly pseudoconcave as seen from �. We show that if v is plurisubharmonic on D′,
then ‖v‖� ≤ ‖v‖U∩D′ . To do this, fix p ∈ �. Let W3 be a small strictly pseudoconvex
neighborhood of K̂ with p /∈ W3 and with W̄3 ∩D̄1 = ∅. Put�p = �\Wp. The boundary
of�p consists of points inU , of strictly pseudoconcave points (as seen from�p) contained
in bWp, and of strictly pseudoconcave points in b�. A plurisubharmonic function on D′
cannot assume a local maximum, with respect to the set�p, at any strictly pseudoconcave
point of b�p, so v(p) ≤ ‖v‖D′∩U . The lemma is proved.

Corollary 5.2.28. If lim supζ→z,ζ∈� v(ζ ) ≤ M for all z ∈ b� ∩ K , then this inequality
is correct for all z ∈ b� ∩D.

We now resume the proof of the theorem itself. We will show that

lim
ζ→zo,ζ∈�

−u ◦ F(ζ ) = −∞

for all zo ∈ b� ∩D. To do this, fix a large positive constant A. The function v1 given by
v1(z) = −u◦F(z)+A�zN is plurisubharmonic on�. For z ∈ b�∩�, lim supζ→z v1(ζ ) ≤
0, and for z ∈ bD ∩K ∩ {zN > 0}, u ◦ F(ζ )→ ∞ as ζ → z, ζ ∈ �. We therefore have
that lim supζ→z,ζ∈� v1(ζ ) = −∞. The last corollary yields lim supζ→z,ζ∈� v1(ζ ) ≤ 0,
whence

lim sup
ζ→z,ζ∈�

−u ◦ F(ζ ) ≤ −A�zN .

If we let A→ ∞, we obtain that h ◦F → −∞ at the points of b�∩D. Thus, the cluster
set of F along the set b� ∩ D is contained in the set E. Radó’s theorem implies that F
continues holomorphically through all ofD. Moreover, we find that K̂ ∩D has no interior
and that F(K̂ ∩D) ⊂ E.

We have proceeded under the assumption that X ∩ bD has no interior in bD. This
hypothesis can be removed in the following way. If the set X ∩ bD has interior, let p be a
boundary point of this interior. The only place in the argument given above at which the
assumption that X ∩ bD had no interior was used, was to be sure that � is nonempty. If,
though, p is in the boundary of the interior ofX, the corresponding set� is still nonempty,
and the analysis can proceed as above. We find that F extends to be holomorphic in all of
D and that X̂ ∩D has no interior. We now have a contradiction, for if X has interior, then
X̂ has interior, too.

We finally see that F has continuous boundary values. This is so, for if z ∈ X,
and if C ′

z(f ) denotes the cluster set of f |(� \ X) at z and C ′′
z (F ) denotes the cluster set

of F |D at z, then C ′′
z (F ) is a connected set contained in the totally disconnected set E.

Because C ′
z(f ) ⊂ Cz(F ), f extends continuously to the point z, and we are done with the

two-dimensional case.
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The result in the higher-dimensional case is deduced by a slicing argument using
induction on the dimension. We assume, therefore, that the theorem is correct in CN ,
N ≥ 2. Consider the (N + 1)-dimensional case. Thus, � is a strictly pseudoconvex
hypersurface of class C 2 in an open set in CN+1, and X ⊂ � is a closed set. The function
f is a continuousCR-function on� \X that is not constant on some component of� \X.
We work near a point p ∈ X that lies in the boundary of a component of � \X on which
f is nonconstant. Fix coordinates in CN near p so that with respect to these coordinates,
� is strictly convex near p. Let D ⊂ CN+1 be a convex domain with bD = � ∪ �,
where � is a compact, convex set in a real hyperplane in CN+1 and � is a neighborhood
of p in �. We are going to define a holomorphic function F on D. To do this, fix a point
z ∈ D. Choose a C-affine N -plane L in CN+1 through z that meets � in a set that has a
component on which f is nonconstant. Because p lies in the boundary of a component
of � \ X on which f is not constant, and because we can find an affine copy of CN in
CN+1 that passes through three prescribed points, it is possible to find the desired L. The
inductive hypothesis implies that f extends continuously to all of �∩L as a CR-function
and that the set L∩X is nowhere dense in � ∩L. As a continuous CR-function on L∩�,
f |(L ∩ �) extends holomorphically through the slice L ∩ D; we denote this extension
by FL. Then we define F(z) to be FL(z). Because the value of FL(z) is independent of
L, the function F is well defined on D. It is bounded by the supremum of |f | on � \ X.
It is also holomorphic. It assumes continuously the boundary values f along � \ X. We
have to see that F has continuous boundary values. To do this, it is enough to show that at
any point q ∈ � \ X, the cluster set of F , as a function on D, is contained in the cluster
set of f , a function on � \ X, at the point q. (This containment will imply the equality
of the two sets.) Accordingly, let {zk}k=1,... be a sequence in D that converges to q such
that the limit limk=1,... F (zk) exists. Call this limit w. For each k, let Lk be an affine copy
of CN contained in CN+1 that passes through the point zk and that is nearly parallel to
the complex tangent plane T C

q . When k → ∞, the diameter of the intersection Lk ∩ D
shrinks to zero. By rotating Lk slightly about the point zk if necessary, we can suppose
that for large k, the set Lk ∩ � is not contained in X. Set ck = F(zk). The level set
Vk = {z ∈ Lk : F(z) = ck} meets L∩�. By hypothesis, the set X is nowhere dense in �,
so there is a point z′k in � \X near enough to Vk that |f (z′k)− ck| < 2−k . Thus, {z′k}k=1,...
is a sequence in � \ X that converges to q along which f tends to w: The number w lies
in the cluster set of f at q. We have, therefore, that the cluster set of f at q contains the
cluster set of F at q. As in the two-dimensional case, this implies that F has continuous
boundary values along �.

To conclude the proof, let � be a maximal connected open subset of � into which
f continues as a continuous CR-function. The argument we have just used implies that�
can have no boundary points in �, so � = �, and the theorem is proved.

There is a rather extensive literature concerning removable sets for CR-functions.
For this, we refer to the papers of Chirka and Stout [87], Stout [351], and to the references
cited in them. More recent developments are given in the Habilitationsschrift [284] of
Porten.

There is a relation between removable sets for CR-functions and removable sets for
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holomorphic functions:

Theorem 5.2.29. [350] A compact subset X of b�, � a bounded strictly pseudoconvex
domain in CN with boundary of class C 2, is removable (for CR-functions) if and only if
the set X† = � ∩ O(�̄)-hullX is removable (for holomorphic functions).

Proof. Assume first that the set X† is removable for holomorphic functions. If f is a CR-
function on b�\X, then by Theorem 5.2.13, there is a function F holomorphic on�\X†

that assumes continuously the boundary values f along b� \ X†. Because the set X† is
removable for holomorphic functions, F continues holomorphically into all of �, and the
set X is seen to be removable for CR-functions.

Conversely, let X be removable for CR-functions, and let f ∈ O(� \X†). We will
prove that f continues holomorphically into all of�. (Note that f is not assumed to have
boundary values in any sense along b� \X.)

Construct two strictly pseudoconvex domains�+ and�− with�+ ⊃ � ⊃ �−,�+
obtained by deforming b� outward a little bit along b�\X,�− obtained by deforming b�
inward a little bit along b�\X. The setX itself is to be left fixed under these deformations,
so that b�+ ∩ b� = X = b�∩ b�−. Moreover, the domain �− is to contain the set X†.

There is an open cover of�+ that consists of the sets� and�+\�̄−. The function f
is holomorphic on the intersection of these two sets, so there are functions f− ∈ O(�) and
f+ ∈ O(�+ \ �̄−) such that3 f = f+−f−. The functionf+|(b�\X) is a CR-function
and so, because X is removable, continues holomorphically, say as F+, to an element of
O(�). We now have that on �, f = F+ − f−. The function F+ − f− is holomorphic
in �, so the set X† is seen to be removable for holomorphic functions. This completes
the proof.

The theory of removable sets in the boundary can be applied to show that certain
sets are removable for holomorphic functions.

Theorem 5.2.30. If X is a closed subset of CN , N > 1, that is homeomorphic to the real
line, then every f ∈ O(CN \ X) continues through X as a function holomorphic on all
of CN .

It is to be emphasized that in this statement no smoothness at all is imposed on the
homeomorphic copy X of R; it may have locally positive 2N -dimensional measure at
every point.

The result, in case N ≥ 3, was obtained in [87] by methods that do not yield the
case N = 2. That case was settled by Santillán [318], whose proof, which works in all
dimensions, is given below.

The proof is entirely local, so the theorem remains correct if CN is replaced by any
other N -dimensional complex manifold.

The proof depends on a topological fact about Euclidean spaces and certain of their
subdomains:

Definition 5.2.31. A topological space Y is unicoherent if whenever Y = T ∪ T ′ with T
and T ′ connected, closed subsets of Y , the intersection T ∩ T ′ is connected.

3We are using here that the additive Cousin problem is solvable on strictly pseudoconvex domains.
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Theorem 5.2.32. If � is a connected manifold such that each continuous map from � to
a circle is homotopic to a constant, then � is unicoherent.

As a consequence of this theorem, every Euclidean space is unicoherent, as is each
space of the form RN \ E for a finite subset E of RN , N ≥ 3.

Proof. [89] If � is not unicoherent, then there exist connected, closed sets A and B in
� such that � = A ∪ B but A ∩ B is not connected. Write A ∩ B = C ∪ C′ with C
and C′ disjoint closed subsets of �. Denote by q a nonnegative continuous function on �
that vanishes identically on C and is constantly one on C′. Then define fA : A→ T and
fB : B → T by

fA(x) = eπiq(x) and fB(x) = e−πiq(x),
respectively. These two functions agree on the set A ∩ B. We can, therefore, define a
function g : � → T by g(x) = fA(x) when x ∈ A and g(x) = fB(x) when x ∈ B. This
map is well defined and continuous. By hypothesis, it is homotopic to a constant map, so
there is a continuous map g̃ : � → R with g = eπig̃ . This is impossible, though: On C,
q = 0, so there is an integer µ such that on C, g̃ = 2µ. Because the set A is connected
and eπig̃ = fA there, it follows by continuity that on all A, g̃ = q + 2µ. Similarly, on the
set B, g̃ = q + 2ν for an integer ν. Thus, we have that on C, g̃ = 2µ, on C′, g̃ = 1 + 2ν:
An even integer is odd. This is impossible, so A ∩ B is connected, as desired.

Proof of Theorem 5.2.30. [318] Let x ∈ X, and let λ ⊂ X be an arc that contains x in its
interior. Let the endpoints of λ be a and b.

Choose a nonnegative function Q defined and of class C ∞ on CN \ {a, b} that
vanishes identically on the interior of λ, that is greater than one onX \λ, and that satisfies
Q(z)→ ∞ when z→ ∞. Denote by r , r ∈ (0, 1), a regular value of Q. Thus the set �
defined by � = Q−1(r) is a closed (2N − 1)-dimensional submanifold of CN \ {a, b}. It
is also a bounded subset of CN with closure �̄ = � ∪ {a, b}. There is no reason for � to
be connected.

Let W be the component of CN \ �̄ that contains the interior of λ. The set W is a
bounded, open, connected subset of CN that contains the point x. LetW∞ be the unbounded
component of CN \ W̄ , and then letWo = CN \ W̄∞. The setWo is bounded and open and
contains the point x. Also, bWo ⊂ W̄∞ \W∞ = bW∞. Finally, W̄∞ ∩ W̄o = bWo.

The setWo is connected. To see this, letV be a component ofWo. Then bV ⊂ bWo =
bW∞. Let y ∈ bV \ {a, b}. Near y, bV is a smooth manifold, so if B is a sufficiently small
ball centered at y, then bV splits B into two components, one of which lies in W∞, the
other inW . Each component ofWo meets the connected setW , soWo is connected.

More is true: bWo is connected, for we have W̄o∪W̄∞ = CN and W̄o∩W̄∞ = bWo =
bW∞, so that unicoherence implies that bWo is connected. In the same way, Wo \ {a, b}
is connected.

Theorem 5.2.11 implies that the restriction f |bWo \ {a, b}, which is a CR-function,
extends holomorphically through all of Wo and so, in particular, through a neighborhood
of x. The theorem is proved.

Whether the analogous statement for topological copies of R2 in C3 is true remains
an open question.
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The “�2N−3 theorem,’’ Theorem 5.2.21, implies an analogous theorem for holo-
morphic functions, which was proved by Shiffman [326]: If X is a closed subset of CN

and �2N−2(X) = 0, then X is removable for holomorphic functions. Alternatively, the
envelope of holomorphy of CN \X is CN . To see this, fix a function f ∈ O(CN \X). By
Eilenberg’s inequality, �2N−3(X ∩ bBN(R)) = 0 for almost all R > 0. Fix such an R.
Theorem 5.2.21 implies that theCR-function f |(bBN(R)\X) continues holomorphically
into BN(R). This is true for arbitrarily large R, so f continues holomorphically into all of
CN , which was to be shown. (An earlier version of this result was found by Caccioppoli
[79].) More is true:

Theorem 5.2.33. If X is a closed subset of CN such that

(5.22) lim inf
R→∞

�2N−2(X ∩ BN(R))

πN−1

(N−1)!R2N−2
< 1,

then X is removable for holomorphic functions.

This result in the case N = 2 was obtained in [349]. The case of arbitrary N was
obtained in [216].

For the case N = 2 of the theorem, we can give a complete proof based on the tools
at our disposal. The case N > 2 requires methods beyond the scope of what we have
developed; we will only sketch this argument.

In treating the case N = 2, we will use the following lemma.

Lemma 5.2.34. If X is a closed subset of C2 such that

lim inf
R→∞

�2(X ∩ B2(R))

πR2
< 1,

then for each z ∈ C2,

lim inf
R→∞

�2(X ∩ B2(z, R))

πR2
< 1.

Proof. This follows immediately from the inclusion B2(z, R) ⊂ B2(R + |z|).
Proof of Theorem 5.2.33 (N = 2). The setX has locally finite two-dimensional measure,
so the set C2 \ X is connected and dense in C2. The lemma implies that to prove the
theorem, it suffices to show that each f ∈ O(C2 \ X) continues holomorphically into

a neighborhood of the origin. Set α = lim infR→∞ �2(X∩B2(R))

πR2 . Eilenberg’s inequality,
Theorem 3.3.6, shows that for R > 0,

(5.23) αR2 �2(X ∩ B2(R)) ≥
∫ ∗

[0,R]
�1(X ∩ {z : |z| = r}) dr

for infinitely manyR’s. For suchR’s there are r ∈ (0, R)with�1(X∩{z : |z| = r}) < 2πr .
Fix such an r . Theorem 5.1.14 implies that the origin is not in the polynomially convex hull
of the setX∩bB2(r). Consequently, by Theorem 5.2.11, the CR-function f |(bB2(r)\X)
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continues holomorphically into a neighborhood of the origin. The theorem in the case
N = 2 follows from this.

An outline of the proof of the case N > 2 of the theorem is as follows. It depends
on a general fact about envelopes of holomorphy, which is due to Lawrence [216, 217].

Lemma 5.2.35. Let D be a domain of holomorphy in CN , and let X ⊂ D be a closed
subset of D with the property that (∗) if W ⊂ D is a connected open set, then W \ X is
connected. The envelope of holomorphy of the domain D \X is one-sheeted.

The closed subsets ofD that have the property (∗) are the closed sets that have topological
dimension not more than 2N − 2. That subsets of topological dimension not more than
2N−2 have the property is contained in [185, Theorem IV.4, p. 48]. That sets of dimension
2N − 1 do not have the property seems not to be contained in the standard books on
dimension theory. It is in [29, Kor. I, p. 208]; see also the earlier paper [129, p. 78]. In
particular, if the setX has finite or locally finite (2N−2)-dimensional Hausdorff measure,
then it has the property (∗). This is easily seen directly, without appeal to dimension theory.

Proof. If the result is incorrect, then becauseD is a domain of holomorphy, there is a finite
sequence {Bj }j=1,...,r of balls each contained in D with Br = B1 and with the property
that each Bj meets its predecessor in a nonempty set and the further property that for each
j there is fj ∈ O(Bj ) such that fj = fj+1 on Bj ∩ Bj+1 but f1 �= fr and, moreover,
f1|(B1 \X) = F |(B1 \X) for some F ∈ O(D \X).

This is impossible: By induction, fj |(Bj \X) = F |(Bj \X). This is true for j = 1.
If it is true for a given j , then because Bj+1 \ X is connected and fj+1|(Bj ∩ Bj+1) =
fj |(Bj ∩Bj+1) and fj = F onBj \X, it follows that fj+1 = F onBj+1\X. In particular,
fr agrees with F = f1 on Br . Contradiction.

Thus, if � = D \ X, the envelope of holomorphy �̃ of � is a domain in CN that
satisfies � ⊂ �̃ ⊂ D.

There is then the following result, found by Lawrence [216]:

Theorem 5.2.36. IfD is a domain of holomorphy in CN , and ifX is a closed subset ofD of
locally finite (2N − 2)-dimensional Hausdorff measure, then the envelope of holomorphy
ofD \X is the domainD \E, where E denotes the union of all the (N − 1)-dimensional
analytic subvarieties of D contained in X.

We cannot give the full details of the proof of this result. The general lines of the argument
are as follows. Set � = D \ X, and let �̃ be the envelope of holomorphy of �. By the
preceding lemma, �̃ is a domain in CN that satisfies � ⊂ �̃ ⊂ D. The set E = D \ �̃ is
a closed subset ofD that is a pseudoconcave set in the sense of Oka. It follows from work
of Oka that, becauseE has locally finite (2N −2)-dimensional measure, it is necessarily a
variety. For details about Oka’s work on pseudoconcave sets, we refer to Nishino’s volume
[264], which is devoted mainly to an exposition of Oka’s ideas.

Theorem 5.2.36 yields Theorem 5.2.33 in the case N ≥ 2, because if V ⊂ CN is a
variety of codimension (N−1), then for every ε > 0 and all largeR,�2N−2(V ∩BN(R)) >

(1 − ε) πN−1

(N−1)!R
2N−2. This is a result of Bishop [60, 85].

A theorem in the spirit of this result but set in the context of compact manifolds was
obtained by Lawrence [216]. Its statement depends on a simple observation: Let M be a
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compact complex manifold endowed with a smooth Hermitian metric, g. Let �pg denote
the p-dimensional Hausdorff measure derived from the distance function associated with
g. There is a constant cp > 0 such that �pg (Z) ≥ cp if Z is a p-dimensional subvariety
of M .

Theorem 5.2.37. Let M be an N -dimensional compact complex manifold endowed with
a Hermitian metric, g. Let�pg denote the p-dimensional Hausdorff measure derived from
the distance function associated with g. IfX is a closed subset of M such that�2N−2

g (X)

is strictly less than the greatest lower bound of the areas of complex hypersurfaces in M ,
then X is removable for meromorphic functions on M .

That is, if F is a function meromorphic on M \ X, then F extends to a function
meromorphic on the whole of M .
Example. In the complex projective space PN(C) endowed with the Fubini–Study metric,
the complex hypersurfaces with minimal area are the copies of PN−1(C) contained in
PN(C). If [z0 : · · · : zN ] are homogeneous coordinates on PN(C), the surfaces in question
are the linear varieties defined by the vanishing of some linear form φ in the coordinates
z0, . . . , zN . Their volume is π(N−1)/(N − 1)!. Thus, if X is a subset of PN(C) with
�2N−2
FS (X) < π(N−1)/(N − 1)!, then X is removable for meromorphic functions. (For a

discussion of the Fubini–Study metric on projective spaces one can consult [256].)

5.2.A. Appendix: A solution of ∂̄f = u

In this brief appendix, we bring the formalism of Cauchy–Fantappiè forms to bear on the
problem of solving ∂̄f = u for a ∂̄-closed (0, 1)-form. There is a vast literature of this
problem; everything we need lies very near the surface.

We know that for any compactly supported smooth ∂̄-closed form u of bidegree
(0, 1) on CN , N ≥ 2, the equation ∂̄f = u has a smooth, compactly supported solution.
If we invoke the integral formula (1.21), we find that a solution is given by

f (w) = cN
∫

CN
u(z) ∧ ω

′(z− w) ∧ ω(z)
|z− w|2N .

In writing this formula, we have used the a priori information that a compactly
supported solution of ∂̄f = u exists; one can verify directly that the given function f does
satisfy this equation.

The solution of ∂̄f = u in case u does not have compact support is more complicated
than the case of compact support. Consider a bounded domain D in CN with smooth
boundary and a (0, 1)-form u defined, smooth, and ∂̄-closed on a neighborhood of D̄.
Suppose f to be a smooth function that satisfies ∂̄f = u on a neighborhood of D̄. The
function f admits a representation based on the Bochner–Martinelli formula.

f (z) = cN
{∫
bD

f (ζ )
ω′(ζ − z) ∧ ω(ζ )

|ζ − z|2N −
∫
D

∂̄f (ζ ) ∧ ω
′(ζ − z) ∧ ω(ζ )

|ζ − z|2N
}
.
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The form ω′(ζ−z))∧ω(ζ )
|ζ−z|2N is the Cauchy–Fantappiè form �ζ̄−z̄;ζ−z. If ϕ is a smooth

map from a neighborhood of D̄ to CN such that ϕ(ζ ) · (ζ − z) does not vanish when ζ is
near bD, then the difference�ϕ;ζ−z−�ζ̄−z̄;ζ−z is ∂̄- and d-exact where it is defined: For

a form  of bidegree (N,N − 2), �ϕ;ζ−z − �ζ̄−z̄;ζ−z = d = ∂̄ . It follows that
(5.24)

f (z) = cN
{∫
bD

f (ζ )�ϕ;ζ−z −
∫
bD

f (ζ ) d −
∫
D

∂̄f (ζ ) ∧ ω
′(ζ − z) ∧ ω(ζ )

|ζ − z|2N
}
.

By Stokes’s theorem,
∫
bD
f (ζ ) d = − ∫

bD
u(ζ ) ∧ , so the representation (5.24) is

f (z) = cN
{∫
bD

f (ζ )�ϕ;ζ−z +
∫
bD

u(ζ ) ∧ −
∫
D

u(ζ ) ∧ ω
′(ζ − z) ∧ ω(ζ )

|ζ − z|2N
}
.

(5.25)

If �ϕ;ζ−z happens to depend holomorphically on z, so that the first integral in (5.25) is
holomorphic, then the function U defined by

(5.26) U(z) = cN
{∫
bD

u(ζ ) ∧ −
∫
D

u(ζ ) ∧ ω
′(ζ − z) ∧ ω(ζ )

|ζ − z|2N
}

satisfies ∂̄U = u.

We are going to look at this general process in the particular case of forms defined
on balls.

Fix an R > 0 and a smooth ∂̄-closed (0, 1)-form on a neighborhood of B̄N(R). With
ϕ : CN → CN the map ϕ(ζ ) = ζ̄ , we have that ϕ(ζ ) · (ζ − z) = |ζ |2 − 〈 z, ζ 〉. In this
case, the first integral in (5.25) is the Cauchy integral∫

bBN(R)

f (ζ )
ω′(ζ̄ ) ∧ ω(ζ )
(R2 − 〈 z, ζ 〉)N ,

which is holomorphic in BN(R). Thus in this case, we have the representation (5.26) for
a solution U of ∂̄f = u.

We have to obtain some information about the form that appears in this case. The
mechanism of the Cauchy–Fantappiè forms established in Chapter 1 would permit us to
determine  explicitly with a bit of calculation. For our purposes, there is no need to
perform these calculations. The construction given in Section 1.4 shows to be a smooth
(N,N − 2)-form defined on the manifold

W = (CNζ × CNz ) \ {(ζ, z) ∈ CN × CN : ζ = z or |ζ |2 = 〈 z, ζ 〉}
that depends smoothly on z ∈ BN(R) when ζ ∈ bBN(R). Let us denote this form by  B,
so that we have the representation

(5.27) U(z) = cN
{∫
bBN(R)

u(ζ ) ∧ B −
∫

BN(R)

u(ζ ) ∧ ω
′(ζ − z) ∧ ω(ζ )

|ζ − z|2N
}
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for a function U that satisfies ∂̄U = u on BN(R). Given that the initial form u is smooth
on a neighborhood of B̄N(R), the function U is smooth in BN(R).

We are interested in one further transformation of this formula. The form  B is of
the form

 B =
∑

1≤j<k≤N
θj,kωj,k(ζ̄ ) ∧ ω(ζ )

with functions θj,k that are smooth in (ζ, z) ∈ bBN(R)×BN(R). They can be extended to
be smooth functions on B̄N(R)×BN(R). These extensions yield an extension of the form
 to a smooth form, which we shall denote by T , on B̄N(R)× BN(R). Stokes’s theorem
yields ∫

bBN(R)

u(ζ ) ∧ BN(R) =
∫

BN(R)

u(ζ ) ∧ dT .

We therefore have that the solution U is given by

(5.28) U(z) = cN
{∫

BN(R)

u(ζ ) ∧ dT −
∫

BN(R)

u(ζ ) ∧ ω
′(ζ − z) ∧ ω(z)
|ζ − z|2N

}
.

5.3. Surfaces in Strictly Pseudoconvex Boundaries

In our work on removable singularities we have seen the importance of considering subsets
of the boundary of the ball that are polynomially convex. We are now going to show that
certain surfaces contained in the boundary of the two-dimensional ball, or, more generally,
in the boundary of a two-dimensional strictly pseudoconvex domain, �, are convex with
respect to the algebra O(�̄). This line of investigation was initiated by Jöricke [190], who
proved that a totally real disk in the boundary of B2 is a removable set for CR-functions.
It is therefore polynomially convex by Theorem 5.2.16. As she noted, her proof yielded
a corresponding result for totally real disks in two-dimensional strictly pseudoconvex
boundaries.

Fix a relatively compact strictly pseudoconvex domain�with boundary of class C 2

in a two-dimensional Stein manifold M . We consider compact two-dimensional subman-
ifolds with boundary in b�, and we seek conditions under which they are O(�̄)-convex.

Theorem 5.3.1. A compact totally real disk � of class C 2 in b� is O(�̄)-convex.

Explicitly, the hypothesis on � is that there is a closed two-dimensional totally real
submanifold � of class C 2 of an open neighborhood of b� for which there exists a C 2

diffeomorphism ψ from a neighborhood of Ū in C onto � that carries Ū onto �.

Corollary 5.3.2. A compact totally real disk of class C 2 contained in bB2 is polynomially
convex.

If a totally real manifold � ⊂ b� is O(�̄)-convex, then, because each continuous
function on� can be approximated uniformly on� by functions holomorphic on a neigh-
borhood of�, each continuous f on� can be approximated uniformly on� by functions
holomorphic on a neighborhood of �̄. We have not yet proved this approximation result;
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it is in Corollary 6.5.8 below. When �̄ is polynomially convex, e.g., in the case of the ball,
we get polynomial approximation.

It should be observed that Theorem 5.3.1 is a result in two dimensions: There are
simple examples of nonpolynomially convex totally real disks in the boundary of bB3. One
such example is this: Start by noticing that the two-sphere S = R3 ∩ bB2 = {(z1, z2) ∈
C2 : |z1|2 + |z2|2 = 1, �z2 = 0} is totally real except at the points on S where z1 = 0,

i.e., at the points (0,±1). Introduce the function ψ given by ψ(z) = [ z̄−2
z−2

]1−|z|2 . This

function is smooth on a neighborhood of |z| ≤ 1, and it satisfies ∂̄ψ(0) �= 0. In addition,
|ψ | is identically one, and ψ = 1 on |z| = 1. Thus the surface � = {(z1, z2, z3) ∈ C3 :
|z1|2 + |z2|2 = 1,�z2 = 0, and z3 = ψ(z1)} is a totally real two-sphere contained in
bB3(

√
2). The sphere � contains the circle γ = {(eiϑ , 0, 1) : ϑ ∈ R}, which bounds

the disk D = {(z1, 0, 1) : |z1| ≤ 1}. The circle γ splits � into two totally real disks;
denote one of them by �. Thus, � is a totally real, smooth disk contained in bB3(

√
2)

with b� = γ ; it is not polynomially convex.4

There are now three proofs for Theorem 5.3.1: The original argument of Jöricke
combined with Theorem 5.2.16, a subsequent one of Forstnerič and the author [128], and
a slightly more recent one found by Duval [105]. None of these proofs is very simple.
In the developments of this section, we follow Duval’s approach; it seems to be the most
accessible, though it does draw essentially on some nontrivial results from the classical
theory of ordinary differential equations.

Our context will be a bit more general than that of Theorem 5.3.1 in that we shall
admit a finite number of nontotally real points. Thus, we have a relatively compact strictly
pseudoconvex domain � with boundary of class C 2 contained in the two-dimensional
Stein manifold M . In b�, we fix a compact two-dimensional submanifold�with (possibly
empty) boundary that we assume to be totally real except for a finite number of complex
tangents. Denote by�∗ the set of totally real points of�. On�∗ we define a field of lines
by the condition that for every p ∈ �,

(5.29) Lp = Tp� ∩ T C
p (b�),

in which Tp(�) denotes the tangent space of � at p, and T C
p (b�) denotes the maximal

complex subspace of Tp(b�) that passes through p. Thus, T C
p (b�) is the unique complex

line through p that is tangent to b�. This line field defines a foliation of �∗ the leaves
of which are those curves that are everywhere tangent to the lines Lp. That is, a curve
x : (a, b) → b� is contained in a leaf of the foliation if and only if for all t ∈ (a, b),
the derivative x′(t) lies in the line Lx(t). This gives a foliation of class C 1 of �∗, which
is called the characteristic foliation of �. The analysis below depends on studying the
characteristic foliation.

A neighborhood of a totally real point of � is foliated smoothly by the leaves of the
characteristic foliation; points at which� has a complex tangent are singular points for it.

4The totally real disk� and the holomorphic diskD have the same boundary but are otherwise disjoint. This
kind of configuration does not exist in C

2 as shown by Duchamp and Forstnerič [103].
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Given a set X ⊂ b�, the essential hull of X is the set

esshull-X = O(�̄)-hullX \X,
which is a compact subset of O(�̄)-hullX. The local maximum principle implies that the
essential hull of X is contained in the O(�̄)-hull of the set X ∩ esshull-X.

The main theorem here is the following, due to Duval [105].

Theorem 5.3.3. The essential hull of� cannot intersect a leaf of the characteristic foliation
at a point at which � is totally real without crossing it.

We shall see later—Theorem 5.3.13—what happens near certain points where � is not
totally real.

The proof of this theorem depends on the characterization of hulls given by Oka.
There is a technicality we have to deal with because we are working on a general two-
dimensional Stein manifold rather than in C2. Recall that ifX is a compact subset of CN and
x ∈ CN \X, then x /∈ X̂ if and only if there is a continuous function F : [0, 1]×CN → C

such that if for each t ∈ [0, 1], Vt denotes the analytic variety {z : F(t, z) = 0}, then
x ∈ V0, Vt ∩X = ∅ for all t ∈ [0, 1], and, finally, for an R > 0 so large that X ⊂ BN(R),
V1 ∩ BN(R) = ∅. We shall need the analogous statement in our context.

Lemma 5.3.4. Let R be anN -dimensional Stein manifold,N ≥ 1, and letX be a compact
subset of R. The point x does not belong to O(R)-hullX if and only if there are a compact,
O(R)-convex set Y ⊂ R with X ⊂ Y and a continuous function f : [0, 1] × R → C

such that for all t ∈ [0, 1] the function f (t, ·) is holomorphic and, with Wt = {z ∈ R :
f (t, z) = 0}, we have that x ∈ W0,Wt ∩X = ∅ for all t , andW1 ∩ Y = ∅.

We obtain this result as a consequence of the Oka result in CN by using a very special
case of the Michael selection theorem:

Theorem 5.3.5. If E and F are Fréchet spaces and u : E → F is a continuous linear
surjective map, then there is a continuous map ς : F → E such that u ◦ ς is the identity
on F .5

The general Michael selection theorem is a theorem in topology; it has nothing to do with
linear spaces. See the paper [245]. The version just stated, for which a short proof has been
given in [308], is a considerably easier result than the general version. The theorem is also
contained in [70, Proposition 12, p. II.35].

Proof of Lemma 5.3.4. We invoke the embedding theorem for Stein manifolds to suppose
that R is a closed complex submanifold of CM for some M . With this understanding, a
compact subset of R is O(R)-convex if and only if it is polynomially convex.

Thus, suppose that X ⊂ R is convex with respect to O(R) and so polynomially
convex. If x /∈ O(R)-hull X, then by the result of Oka there is a continuous function
F : [0, 1] × CM that is holomorphic in the second variable for a fixed value of the first
variable and such that with Vt the zero locus of F(t, ·), we have x ∈ V0, Vt ∩ X = ∅

5The question of when ς can be chosen to be linear has been investigated. In general, it is impossible to find
a ς that is linear; under special circumstances a linear ς does exist. See [248]. In general, the selection ς cannot
even be chosen to be homogeneous: See [308].
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for all t , and F−1(1, ·)(0) ∩ BM(R) = ∅ for a large R > 0. The function f defined by
f = F |([0, 1] × R) is the function required by the lemma, with Y = R ∩ B̄M(R).

Conversely, we must show that if the function f of the statement of the lemma exists,
then x /∈ X̂. For this, let us change our point of view slightly. Consider f as a continuous
map ϕ : [0, 1] → O(R), so that for all t ∈ [0, 1] and all z ∈ R, ϕ(t)(z) = f (t, z).
The restriction map � : O(CM)→ O(R) is a continuous, surjective linear map between
Fréchet spaces.According to the Michael selection theorem, it admits a continuous section:
There is a continuous map ς : O(R)→ O(CM) such that for all g ∈ O(R), ςg|R = g.
If we define F : [0, 1] × CM → C by F(t, z) = (ςϕ(t))(z), then F , used in connection
with Corollary 2.1.7 and the result that the polynomially convex hull of X is contained in
R, shows that x is not in the polynomially convex hull of X. The lemma is proved.

Below it will be necessary to have the notion of positive intersection for a totally
real surface and a complex line. For this, start by considering a totally real two-plane π in
C2 and a complex line λ, both passing through the origin, and meeting transversally there.
The complex line has a natural orientation induced on it from the complex structure on C2.
If an orientation is established on π , we can speak of π and λ intersecting positively or
negatively in the following way. Let e1 and e2, taken in that order, be a positively oriented
basis for λ over R, and let f1 and f2, in that order, be one for π . If then e1, e2, f1, f2, with
the vectors taken in that order, is a positively oriented basis for C2 = R4 over R, then λ and
π intersect positively. In the contrary case, they intersect negatively. The corresponding
definition is meaningful for transversal intersections of oriented totally real manifolds and
complex manifolds in C2; one considers the intersections of the associated tangent spaces.

There are simple examples: Let π be the real subspace {(x1, 0, x3, 0) : x1, x3 ∈ R},
and let λ1 = {(z, iz) : z ∈ C} = {(x1, x2,−x2, x1) ∈ R4}, λ2 = {(z,−iz) : z ∈ C} =
{(x1, x2, x2,−x1) ∈ R4}. The planes π and λ1 meet positively at the origin and π and λ2
meet negatively there.

Lemma 5.3.6. Let D be a strictly convex domain in C2 with boundary of class C 2 that
is contained in the half-space �z2 > 0 and whose boundary contains the origin. Let �
be a totally real surface of class C 2 contained in bD and passing through the origin. If α
and β are small complex numbers, then the complex line Lαβ with equation z2 = αz1 +β
meets � in at most two points.

Proof. The tangent T0� is a totally real two-plane that meets the z1-axis in a real line. By
a rotation about the origin in the z1-plane, we can suppose that this line is the real x1-axis.
When α and β are small, Lα,β meets bD in a point or in a small convex curve, Cα,β , or
else in the empty set. If this intersection is a convex curve, denote by C′

α,β its projection
into the z1-plane, so that Cα,β is a graph over C′

α,β .
Near the origin, the surface � is given by an equation z2 = g(z1) with a function

g of class C 2 that vanishes at the origin and satisfies gz̄1(0) �= 0. Write g = h + ik with
real functions h and k. Because the x1-axis is tangent to � and gz̄1(0) �= 0, we have that
g(z1) = (A+ iB)x2+O(|z1|2)withA = hx2(0) andB = kx2(0), where one ofA andB is
not zero. An intersection of the line Lα,β with� corresponds to a solution of the equation
g(z1) = αz1 + β that lies on the curve C′

α,β . That is, we are considering solutions of the
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equation (A + iB)x2 +O(|z1|2) = αz1 + β. When α and β are small, there are at most
two solutions to this equation on the curve C′

α,β .

LetD be a strictly convex domain in C2 with boundary of class C 2 contained in the
half-space �z2 > 0. Let� be a totally real two-dimensional surface of class C 2 contained
in bD that passes through the origin. Assume � to be oriented. This orientation induces
a natural orientation on the leaves of the characteristic foliation: Given a point p ∈ �,
let v1 and v2 lie in Tp(�) and give, in that order, a positively oriented basis for Tp(�).
A nonzero vector v-tangent to the leaf of the characteristic foliation though p is positive
if the triple v1, v2, J v is a positively oriented basis for Tp(bD). Here we denote by J the
complex structure on C2, so that Jv can be identified with iv.

Let x and y be points of� that lie near the origin and that lie on the same leaf of the
characteristic foliation. Assume� to be oriented in such a way that the direction along the
leaf in question from x to y is the positive direction. By the preceding lemma, the complex
line λx,y through the points x and y meets� only at x and y. The total reality of� implies
that this intersection is transversal.

Lemma 5.3.7. The intersection of λx,y with � at x is positive, that at y is negative.

As an example, consider the torus T2 = {(eiϑ1 , eiϑ2) : ϑ1, ϑ2 ∈ R}, which is
contained in the boundary of the ball B2(

√
2). The characteristic foliation consists of the

subgroup � = {(eiϑ , e−iϑ ) : ϑ ∈ R} and its cosets. If we denote by λ the complex line
through the points (1, 1) and (i,−i), then a calculation shows that λ meets the torus T2

at no other points and that its intersection with T2 at (1, 1) is of opposite sign from its
intersection at (i,−i). (Without specifying an orientation on T2, we cannot say which is
positive, which negative.)

Proof. Fix a strictly pseudoconvex defining function Q of class C 2 for the domain D, so
that D = {Q < 0}.

Let γ defined on [0, 1] be a C 1 parameterization of the arc of the characteristic
leaf connecting x and y. The curve γ satisfies a differential equation, which is obtained
as follows. For all t , γ ′(t) lies in T C

γ (t)(bD). This line is orthogonal to the complex line
spanned by the normal to bD. Thus γ ′(t) · gradQ(γ (t)) = 0 = γ ′(t) · J gradQ(γ (t)), in
which · is the real inner product on CN .

The curve γ was assumed to be of class C 1; in fact, it is of class C 2: The functionQ
is of class C 2, so the vector fields gradQ and JgradQ are of class C 1. If we choose local
coordinates x = (x1, x2) in the surface �, then the equation satisfied by γ can be written
in the form x′ = g(x) for a function g of class C 1. Consequently, x′ is of class C 1, so x
is of class C 2.

Choose a vector v(t) along γ such that for each t , the pair v(t) and γ ′(t) taken in
that order constitute a positively oriented basis for the tangent space Tγ (t)�. We choose
v(t) to be orthogonal to γ ′(t) for each t . By definition, v(t), γ ′(t), and Jγ ′(t) constitute a
positively oriented basis for Tγ (t)bD. This means that if Nγ(t) is the outer unit normal to
bD at γ (t), then the vectors v(t), γ ′(t), J γ ′(t), andNγ(t) form a positively oriented basis
for Tγ (t)C2.
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The signs of intersection are defined independently of the choice of holomorphic
coordinates. We choose new orthogonal coordinates for C2 such that x is the origin, such
that−e4 = (0, 0, 0,−1) is the outer unit normal to bD at x, and such that γ ′(0) = e1. Then
Jγ ′(0) = e2. The vector v(0) is tangent to bD but orthogonal to γ ′(0), so it is a linear
combination of e2 and e3: v(0) = (0, v2(0), v3(0), 0). Because the ordered quadruple
v(0), e1, e2,−e4 is a positively oriented basis for the tangent space T0C2, the determinant
det[v(0), e1, e2,−e4], by which we understand the 4 × 4 determinant with the indicated
columns, is positive. This implies that v3(0) < 0.

We now show that the intersection of � and λ at the origin is positive.
The point x is the origin, so the vectors y and Jy constitute a positive basis for the

tangent space of the complex line λx,y at every point. The positivity assertion we are to
prove is that det[v(0), e1, y, Jy] > 0, i.e., that

(5.30) det

⎡⎢⎢⎣
0 1 y1 −y2
v2 0 y2 y1
v3 0 y3 −y4
0 0 y4 y3

⎤⎥⎥⎦ > 0.

In this determinant, we are writing v2 and v3 for v2(0) and v3(0), respectively; we retain
this notation for the rest of the proof. By transversality, this quantity is not zero. Moreover,
it changes continuously when y moves along the characteristic leaf in question. Thus, to
establish the inequality (5.30), it is enough to establish the corresponding equality when the
point y is replaced by a point γ (t)with t a little larger than 0. By hypothesis, γ ′(0) = e1, so

γ (t) = (t + o(t), γ2(t), γ3(t), γ4(t)),

and the coordinates γ2(t), γ3(t), and γ4(t) are all O(t2) as t → 0, because γ is of class
C 2. What must be shown then is that

(5.31) v3[γ2(t)γ3(t)− (t + o(t))γ4(t)] − v2[γ 2
3 (t)+ γ 2

4 (t)] > 0.

Because ν3(0) is negative, and γ2(t) and γ3(t) are O(t2) as t → 0, the inequality (5.31)
will be proved if we can show that γ4(t) > const t2 for a positive constant and for t positive
and small.

To do this, use the differential equation satisfied by γ . As we noted above, γ satisfies
γ ′(t) · gradQ(γ (t)) = 0 = γ ′(t) · J gradQ(γ (t)). Explicitly written, this is the system
of equations

γ ′
1Q1 + γ ′

2Q2 + γ ′
3Q3 + γ ′

4Q4 = 0,

−γ ′
1Q2 + γ ′

2Q1 − γ ′
3Q4 + γ ′

4Q3 = 0.

In this system, all the derivatives ofQ are evaluated at γ (t). Solve these equations for γ ′
4

in terms of γ ′
1 and γ ′

2:

(5.32) γ ′
4 = −γ ′

1(Q1Q4 −Q2Q3)− γ ′
2(Q2Q4 +Q1Q3)

Q2
3 +Q2

4

.
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Because D ⊂ {�z2 > 0}, Q4 is negative at the origin and so is bounded above by a
negative quantity on a neighborhood of the origin. We need to estimate Q1(γ (t)) for t
small and positive. Write

Q1(γ (t)) = Q1(t + o(t), γ2(t), γ3(t), γ4(t)) = Q1(t, 0, 0, 0)+ o(t).
We have thatQ11(0) > 0, because the functionQ is strictly convex, so fromQ1(t, 0, 0, 0) =∫ t

0 Q11(τ, 0, 0, 0) dτ , it follows that for small positive t , Q1(t, 0, 0, 0) > const t for a
positive constant. Thus, from (5.32), we deduce that γ ′

4(t) > const t—recall that γ ′
1(t) =

1+o(1), thatQ4 is negative, and that the derivativesQ1,Q2, andQ3 vanish at the origin,
as does γ ′

2.
We have now shown that the intersection of λx,y with � at x is positive. A parallel

argument, now moving x toward y along γ , shows the intersection at y to be negative.
The lemma is proved.

Return to the general setting:M is a two-dimensional Stein manifold,� is a relatively
compact, strictly pseudoconvex domain with boundary of class C 2 in M , and � is a
compact totally real two-dimensional submanifold with boundary of class C 2 of b�.

The following lemma depends on Oka’s characterization of hulls.

Lemma 5.3.8. The point p of � does not lie in the essential hull of � if there exist two
continuous families {Vt }t∈[0,1) and {Wt }t∈[0,1) of analytic curves in a neighborhood �′ of
�̄ with these properties:

(a) V0 andW0 meet� transversally at the pointp and with opposite signs of intersection.

(b) For t > 0, the varieties Vt andWt are disjoint from the intersection of the essential
hull of � with �.

Proof. Let F,G : [0, 1)×�′ → C be the functions that define the curves {Vt }t∈[0,1) and
{Wt }t∈[0,1), respectively. For ease of notation, let ft ∈ O(�′) be the function F(t, ·), gt
the function G(t, ·).

That V0 andW0 intersect� transversally at p and with opposite signs of intersection
implies that f0 and g0 provide local holomorphic coordinates on a neighborhood of p and
that, near p, the surface� can be described by an equation of the form g0 = h ◦ f0 with h
a diffeomorphism of class C 2 defined near the origin in C that reverses orientation at the
origin and so satisfies |hz̄(0)| > |hz(0)|.

We show that if ε > 0 is small and if b = εhz̄(0), then the curves Ca defined by the
equation

(f0 − a)(g0 − h(a))+ b = 0

as a runs through a small neighborhood of 0 ∈ C fill out an open set of the form U \ �
for a suitable neighborhood U of p in M .

We must see that for a near the origin in the complex plane, the curve Ca avoids �
near the point p. In doing this, it is convenient to set ξ = f0, η = g0, so that ξ and η are
holomorphic coordinates near the pointp. On�, η = h(ξ). Using the linear approximation
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to h at a leads to

η − h(a)
hz̄(a)

(ξ − a) = |ξ − a|2 + hz(a)

hz̄(a)
(ξ − a)2 + o((ξ − a)2).

The quantity on the right of the preceding equation lies in the right half-plane when a and
ξ are near zero, because |hz̄| > |hz| near the origin. This implies that in a neighborhood
of the point p, the curves Ca miss �, as desired.

Having this observation, we can conclude the proof as follows. To show that p is
not in the set esshull-�, we must find a neighborhood U of p such that no point of U \�
is in the hull of �. To do this, it is enough to show that each of the curves Ca of the
last paragraph can be swept out of � through a continuous family of analytic curves in
accordance with the criterion of Oka’s characterization of hulls. Construct explicitly a
family {Wt }: W0 is the curve Ca . The family {Wt } continues from here with the curves
with equation (f0 − ta)(g0 − h(ta))+ b = 0 with t going from 1 to 0. These curves are
followed by the curves with equation ftgt + b = 0 with t going from 0 to a small positive
u, u small enough that these curves all avoid� nearp. Next come the curves with equation
fugu+ tb = 0 as t varies from 1 to 0. Finally, take the curves with equation ftgt = 0 as t
goes from u to 1. The continuous family {Wt } of curves described in this way shows that
the essential hull of � avoids a small neighborhood of p, so the lemma is proved.

Proof of Theorem 5.3.3. The analysis is local. Fix a point p ∈ � that lies in a leaf γ of
the characteristic foliation but with the property that, locally, the essential hull of � does
not meet both sides of the leaf.

The domain � is strictly pseudoconvex, so there are local holomorphic coordinates
on a neighborhood of p with respect to which� is convex. Thus, for distinct points x and
y in b� near p we denote by�(x, y) the domain in the complex line through x and y that
is the intersection of this line with a slightly bigger, fixed convex domain. The domain
�(x, y) is holomorphically equivalent to a disk. As x and y tend to p, �(x, y) tends to a
domain in the complex line through p and tangent there to b�.

Suppose� to have been assigned an orientation. In the event that� is not orientable,
we assume that we are given an orientation of a neighborhood in � of the point p. Orient
the leaves of the foliation as described above.

Denote by γ ′ a leaf of the foliation near γ and parallel to it. By hypothesis, γ ′ can be
chosen to be disjoint from the essential hull of � in the vicinity of p. Let α : [0, 1] → �

be a short C 1 arc connecting p to a point p′ ∈ γ ′, taking α(0) = p, α(1) = p′, and that
lies entirely, except for its endpoint p, on the same side of γ as does γ ′.

Fix a point x ∈ γ that precedes p in the order along γ , and fix a corresponding
point x′ in γ ′ that precedes p′. Let β : [0, 1] → � be a C 1 arc of γ ′ from x′ to p′, with
β(0) = x′.

We are now going to define a continuous family {Vt } of analytic curves. We start with
the family �(x′, α(t)) with 0 ≤ t ≤ 1. The family continues with the disks �(β(t), p′)
starting at t = 0. At t = 1, we have arrived at the complex tangent �(p′, p′). The final
segment of the family {Vt } is obtained by translating�(p′, p′) into the complement of �
along the normal to b� at p′.
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Next construct a similar family {Wt } of analytic curves of the same kind, starting this
time from a point y ∈ γ that succeeds p and a corresponding point y′ in γ ′ that succeeds
p′ along γ ′. In this construction, we work with a parameterization β̃ of the arc from y′ to
p′ in γ ′ that starts from p′.

The curves Vo and Wo meet transversally at p with opposite signs of intersection,
and the curves Vt andWt are disjoint from the essential hull of � when t > 0.

Lemma 5.3.8 implies that the pointp is not in the essential hull of�, and the theorem
is proved.

The first application of Theorem 5.3.3 is to the polynomial convexity of totally real
disks. Consider a compact two-manifold with boundary that is a compact disk,�, of class
C 2, in b�, � a strictly pseudoconvex domain in a two-dimensional Stein manifold. That
� is a compact manifold with boundary yields a slightly larger, open disk �̃ that is a
C 2-submanifold of an open subset of b� in which � lies.

The leaves of the characteristic foliation of �̃ are curves γ such that for all t , γ ′(t) ∈
Tγ (t)�∩T C

γ (t)b�. On the disk �̃ there are everywhere-nonzero vector fieldsX such that for

all points y ∈ �̃, the vectorXy is tangent to the leaf through y of the characteristic foliation.
Thus, the solution curves of the differential equation y′ = Xy are contained in leaves of
the foliation. The Poincaré–Bendixson theory from ordinary differential equations implies
that all of the integral curves for this foliation are arcs, homeomorphs of the interval [0, 1],
with endpoints on b�̃.6 If, in this case, the hull of � is not empty, then its essential hull,
esshull-�, is a nonempty compact subset of�. Then there are leaves of the characteristic
foliation of �̃ that miss this essential hull, and it is possible to find at least one such leaf,
say γ , with the property that γ meets the essential hull of � but the essential hull lies on
one side of γ . According to Theorem 5.3.3 this does not happen. The conclusion is that,
as claimed, � is O(�̄)-convex. Theorem 5.3.1 is proved.

The preceding argument can be formulated more generally.

Corollary 5.3.9. If � is a totally real submanifold of an open subset of b� on which the
characteristic foliation can be defined as the level curves of a real-valued function, then
compact subsets of � are polynomially convex.

Proof. Let the level sets of the real-valued functionϕ on� be the leaves of the characteristic
foliation. IfX ⊂ � is compact but not O(�̄)-convex, then ϕ attains its maximum over the
compact set esshull-X at some point x ∈ esshull-X. The set esshull-X then meets the leaf
ϕ−1(ϕ(x)) and lies on one side of it. This is a contradiction.

In general, totally real compact annuli contained in strictly pseudoconvex boundaries
are not convex. As a simple example, let C ⊂ bB2 be the circle on which z2 = 0. The
polynomially convex hull of C is the closed unit disk in the z1-axis. If the annulus A is
chosen to be a thin ribbon in bB2 centered alongC, thenA cannot be polynomially convex.
Such a ribbon can be chosen to be totally real.

6The precise formulation of the required result from the theory of Poincaré and Bendixson is this: Consider
the first-order ordinary differential equation y′ = f (y) on the simply connected planar domain D. Assume f
does not vanish onD. If y = y(t) is a solution of the equation defined on its maximal interval of definition, then
the curve y(t) does not remain in any compact subset of D when t approaches either endpoint of the interval of
definition of y(t). For the details of this result, one can consult Hartman’s book [160, p. 156].
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Notice that the totally real annulus A in the preceding example is not contained in
any totally real disk contained in bB2; such a disk could not be polynomially convex,
contradicting Theorem 5.3.1.

Alexander [21] has given some nontrivial examples of polynomially convex annuli
in strictly pseudoconvex boundaries. As Duval [105] remarked, these can be exhibited in
the context of Theorem 5.3.3. For relatively prime positive integers p and q denote by
Ep,q the ellipsoid in C2 given by

Ep,q = {z : p|z1|2 + q|z2|2 < 1}.

These domains are strictly pseudoconvex, and each contains the torus

T =
{(

eiϕ√
2p
,
eiψ√

2q

)
: ϕ,ψ ∈ R

}
in its boundary. The leaves of the characteristic foliation in this case are the circles{(

eipϑ√
2p
,
e−iqϑ√

2q

)
: ϑ ∈ [0, 2π ]

}
in the torus T and their translates. That is to say, if π(z,w) = zpwq , then the characteristic
foliation of T corresponds to the fibration of T in circles defined by the map π : T → K if
K is the circle {ζ ∈ C : |ζ | = (2p)−p/2(2q)−q/2}. If λ is an arc inK , which is necessarily
a proper subset of K , then π−1(λ) ∩ T is an annulus in T .

The integers p and q are relatively prime, so the fibers π−1(eiα)∩ T are connected.
If now λ is an arc in K , then the annulus A = π−1(λ) ∩ T is polynomially convex, for
the leaves of the characteristic foliation are in this case defined by the real function log π
on A.

For ζ ∈ K , the fibers Fζ = π−1(ζ ), are polynomially convex and satisfy P(Fζ ) =
C (Fζ ), so by Theorem 1.2.16 and the remarks following its proof, we find that P(A) =
C (A). In fact, that earlier result can be invoked to give a proof of the polynomial convexity
of the annulus A that is essentially simpler than the one just outlined, which depends on
Theorem 5.3.3. This approach is near that of Alexander.

Alexander’s paper [21] also contains a polynomial convexity result for totally real
disks contained in cylinders: With T the unit circle in the plane, denote byM the cylinder
T × C ⊂ C2, a smooth real hypersurface that is not strictly pseudoconvex.

Theorem 5.3.10. Every smooth, totally real compact disk� inM is polynomially convex.

Proof. Define π : M → C to be the projection onto the first factor: π(eiϑ , w) = eiϑ .
The integral curves for the characteristic foliation forM are the curves contained in

the fibers π−1(eiβ) for some real β. This is easily seen. With real coordinates (x, y, u, v)
on C2 = R4, M is defined by the equation x2 + y2 = 1. At a point (x, y, u, v) ∈ M , the
unit normal to M is the vector (x, y, 0, 0). The condition that the curve γ in M given by
γ (t) = (x(t), y(t), u(t), v(t)) be complex-tangential is that the vector γ ′(t) be Hermitian
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orthogonal to the normal to M at γ (t) for all t . With · the real inner product on R2, this
orthogonality condition is expressed by the equations

(x′(t), y′(t)) · (x(t), y(t)) = 0 = (x′(t), y′(t)) · (−y(t), x(t)),
which together imply that x′(t) = y′(t) = 0. It follows that the integral curves of the
characteristic foliation are contained in the fibers of π .

Each fiber Fα = π−1(eiα) ∩� is polynomially convex. If it is not, then it separates
the plane λα = {eiα} × C into several components, whence, by Alexander duality, the
cohomology group Ȟ 1(Fα,Z) does not vanish. The compact disk� is contained in a larger
open, totally real disk �̃, which contains the fiber Fα . The set �̃ \ Fα is not connected,
since Ȟ 1(Fα,Z) �= 0. However, by the Poincaré–Bendixson theorem, each integral curve
of the characteristic foliation of �̃ is an arc with endpoints in b�̃. Moreover, each such
characteristic curve is contained in a plane π−1(eiβ) for some β. Thus, if p ∈ � \ Fα ,
then p can be connected to b�̃ by a curve that misses Fα . This is impossible under the
assumption that Fα disconnects the disk �̃. Consequently, Fα is polynomially convex.

Now introduce the map � : C2 → C2 given by �(ζ1, ζ2) = (eiζ1 , ζ2). This map
exhibits R × C as the universal covering space of T × C. The set � is contractible, so
�−1(�) is a disjoint union of subsets of R×C each of which is carried diffeomorphically
onto� by�. Denote by�′ one of these sets. Fix a positive integerm large enough that�′
is contained in the product (−2mπ, 2mπ) × C. If �m(ζ1, ζ2) = �(ζ1/(4m), ζ2), and if
" : C2 → C2 is the map given by"(z1, z2) = (z4m

1 , z2), then"◦�m(ζ1, ζ2) = �(ζ1, ζ2).
The map�m carries the set�′ diffeomorphically onto a subset�′′ of T×C, which, under
the projection of T×C onto T, is carried onto a proper subset of T. The map" is a proper
holomorphic map from C2 to itself, so � is polynomially convex if and only if �′′ is
polynomially convex. That�′′ is polynomially convex follows directly, though, for under
the projection onto T, the set� is carried into a compact subset S of T that is polynomially
convex and that satisfies P(S) = C (S). Consequently—recall Theorem 1.2.16—�′′ is
polynomially convex if and only if each of the fibers Sz1 = {(z1, z2) ∈ �′′ : z1 ∈ S} is
a polynomially convex set that satisfies P(Sz1) = C (Sz1). These fibers do not separate
the plane {z1} × C, as follows from the analysis of the fibers Fα given above. Thus �′′
is polynomially convex and satisfies P(�′′) = C (�′′). We know then that the disk �
possesses the same properties. Done.

We have examined above the behavior of the essential hull near totally real points.
We will consider next the situation near points that are not totally real. This analysis begins
most naturally with a study of the geometry of a surface near a point at which the surface
is not totally real. This study is entirely local, so we consider a two-dimensional surface�
in C2. Precisely, we suppose that � is a two-dimensional closed submanifold of an open
set in C2, � of class C 1. If p ∈ �, then there are only two choices for the tangent plane
Tp(�), which we view as a two-dimensional real-affine subspace of C2 that passes through
p: Tp(�) can be a complex line, in which case we say that � has a complex tangent at
p, or else Tp(�) is totally real, and we say that � is totally real at p. If � has a complex
tangent at p, we say that � is complex at p.

It is a classical theorem of Levi-Civita, which is proved below—seeTheorem 6.1.12—
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that surfaces that have complex tangents at every point are complex manifolds.

In the Grassmannian G4,2(R) of real two-dimensional subspaces of C2, the complex
one-dimensional subspaces of C2 constitute a real-analytic subset of dimension two; in
particular, they are nowhere dense: The totally real subspaces of C2 constitute a dense,
open subset in G4,2(R). We have therefore that the set of totally real points in our manifold
�, if not empty, is an open subset of�. That the set of complex lines through the origin in
C2 is a real-analytic set of dimension two in G4,2(R) is immediate. Identify C2 with coor-
dinates z1, z2 with R4 coordinates x1, . . . , x4 where z1 = x1 + ix2, z2 = x3 + ix4. Define
the operator J : R4 → R4 to be the complex structure on C2, so that J (x1, . . . , x4) =
(x2,−x1, x4,−x3). This is a real-linear transformation; it induces a real-analytic isomor-
phism, denoted by J̃ , of G4,2(R) onto itself. The elements of G4,2(R) left fixed by J̃ are
the complex lines in G4,2(R). The equation J̃ (π) = π is an analytic equation the solutions
of which are the complex lines.

The only case we will deal with below is that of isolated complex tangents. We
suppose from here on that � is of class C 2. There is a classification of isolated complex
tangents in the following terms. Let p ∈ � be a point at which � is complex. We can
choose coordinates on C2 such that p is the origin and then write � as a graph over its
tangent plane, at least locally near the origin: For some C-valued function h of class C 2

defined on a neighborhood of 0 ∈ C and vanishing at the origin,� is given near the origin
by an equation z2 = h(z1). The condition that � be tangent at the origin to the z1-axis
is the condition that the differential dh vanish at the origin. We consider only certain
nondegenerate cases: Suppose that not all the second-order derivatives of h vanish at the
origin, so that near the origin, � is given by the equation

(5.33) z2 = az2
1 + bz̄2

1 + cz1z̄1 + o(z2
1)

for some constants a, b, and c not all of which are zero. If in equation (5.33), the quantities
b and c are zero, then by hypothesis the quantity a is not zero, and if α2 = a, then with
z′1 = αz1 and writing z1 for z′1, the equation (5.33) is

(5.34) z2 = z2
1 + o(z2

1).

Similarly, if c = 0 and a = 0, then equation (5.33) is equivalent to

(5.35) z2 = z̄2
1 + o(z2

1).

If c = 0 and neither a nor b is zero, then replacing z1 by eiϑz1 for ϑ such that e−2ϑb > 0
and then replacing z2 by z2 − (ae2iϑ − be−2iϑ )z2

1 brings the equation (5.33) into the form
z2 = γ (z2

1 + z̄2
1) + o(z2

1) with γ > 0. The further change of variables z1 = z1/γ then
transforms the equation into the form

(5.36) z2 = (z2
1 + z̄2

1)+ o(z2
1).

When c �= 0, if we replace z2 by cz2, then the equation is brought into the form z2 =
az2

1 + bz̄2
1 + zz̄1 + o(z2

1). With a change of variable that replaces z1 by eiϑz1 as before,
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we can arrange for b to be positive. Then replacing z2 by z2 − (ae2iϑ − be−2iϑ )z2
1 brings

the equation into the form

(5.37) z2 = γ (z2
1 + z̄2

1)+ z1z̄1 + o(z2
1)

with γ > 0.
We can now formulate the following basic notions. Fix a point p ∈ � at which � is

complex and that is isolated among the complex points of �.

Definition 5.3.11. If near p with respect to suitable local coordinates, � is given by the
equation (5.37) with γ ≥ 0, then p is said to be an elliptic point, a parabolic point, or a
hyperbolic point according as γ ∈ [0, 1

2 ), γ = 1
2 , or γ ∈ ( 1

2 ,∞).
This classification was introduced in the present context by Bishop [61].

Elliptic points are not polynomially convex; parabolic points may or may not be
polynomially convex; and hyperbolic points are polynomially convex. More precisely, if
p ∈ � is an elliptic point, then no neighborhood of p in� is polynomially convex; if p is
a hyperbolic point, then small neighborhoods of p in � are polynomially convex. As for
parabolic points, some have polynomially convex neighborhoods in �; some do not.

It is easy to see that the quadratic model of an elliptic point does not have polynomially
convex neighborhoods. In this case, the surface is defined by the equation z2 = z1z̄1 +
γ (z2

1 + z̄2
1), and the surface is contained in the three-dimensional space C × R. It is a

convex surface that contains the boundaries of the ellipses

�τ = {(z1, τ ) : (1 + 2γ )x2
1 + (1 − 2γ )x2

2 = τ } ⊂ C × {τ }
for τ > 0. Thus, no neighborhood of 0 ∈ � is polynomially convex. The general elliptic
point is a small perturbation of this quadratic model. If p is such a point, then there is a
continuous map F : [0, 1] × Ū → C2 such that for every t ∈ (0, 1] the partial function
F(t, ·) is holomorphic and nonconstant in U, such that for every z ∈ U, F(0, z) = p,
and such that F([0, 1] × bU) ⊂ �. Thus, for small t the disks F({t} × U) lie in the
polynomially convex hull of small neighborhoods of p in �, and we see that p has no
polynomially convex neighborhoods in�. This result was established by Bishop [61] and
elaborated on by Kenig and Webster [203, 204]. See also the work of Forstnerič [124].

The situation for parabolic points can be illustrated by two simple examples.
For a nonpolynomially convex parabolic point, consider the surface � given by the

equation z2 = x2
1 + x4

2 in which the origin is a parabolic point. If ε > 0, then � contains
the curve γε = {(z1, ε) : x2

1 + x4
2 = ε} and so contains its polynomially convex hull γ̂ε,

which is the closure of a domain in the complex line with equation z2 = ε. Thus, no small
neighborhood of 0 ∈ � is polynomially convex.

The example given at the very end of Section 1.6.3 is an example of a polynomially
convex parabolic point.

We shall say nothing more about parabolic points. For a penetrating analysis of them,
which includes a theory of onions, the reader can consult the paper [191] of Jöricke.

Hyperbolic points are polynomially convex:
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Theorem 5.3.12. [128] If p is a hyperbolic point in the C 2 surface � in C2, then there is
a compact subset X of � that contains p in its interior such that P(X) = C (X), whence
X is polynomially convex.

Proof. Choose coordinates such that p is the origin and the z1-axis is the tangent plane to
� at 0. Thus the part of � near the origin is given by an equation

(5.38) z2 = z1z̄1 + γ (z2
1 + z̄2

1)+ r(z1)

for a γ ∈ ( 1
2 ,∞) and for a remainder term r(z1) that is o(z2

1) as z1 → 0.
Define a map� : C2 → C2 by�(z1, z2) = (z1, z1z2 +γ (z2

1 +z2
2)). This is a proper

holomorphic map of C2 onto itself, the generic fiber�−1(z1, z2) of which consists of two
distinct points. It carries the two totally real planes defined by

V1 = {(ζ, ζ̄ ) : ζ ∈ C},
V2 = {(ζ,−γ−1ζ − ζ̄ ) : ζ ∈ C},

injectively onto the surface �o given by the equation z2 = z1z̄1 + γ (z2
1 + z̄2

1), though for
what follows we do not need to verify this.

We will construct surfaces S1 and S2 that are tangent to V1 and V2 at the origin and
that are carried onto neighborhoods of the origin in � by �. To construct S1, which is to
be a small perturbation of V1 near the origin, we let

S1 = {(ζ, ζ̄ + f (ζ )) : ζ ∈ C}
with f a function to be determined that vanishes at the origin. The condition that � carry
a neighborhood of 0 ∈ S1 into a neighborhood of 0 ∈ � is the condition that f satisfy the
quadratic equation

(5.39) γf (ζ )2 + (ζ + 2γ ζ̄ )f (ζ )− r(ζ ) = 0.

The roots of this equation are given by

f (ζ ) = 1

2γ

{
−(ζ + 2γ ζ̄ )±

√
(ζ + 2γ ζ̄ )2 + 4γ r(ζ )

}
.

We want f (ζ ) = o(ζ ) when ζ → 0, so we choose the plus sign in this equation. In this
way, we obtain a function f that is of class C 1 away from the origin and that satisfies
f (0) = 0 and df (0) = 0. The function f is also of class C 1 near the origin. To see this,
write √

(ζ + 2γ ζ̄ )2 + 4γ r(ζ ) = (ζ + 2γ ζ̄ )+ q(ζ ).
The function q satisfies the equation

q2 + 2(ζ + γ ζ̄ )q = 4γ r.

Differentiation of this equation with respect to ζ leads to

2(ζ + γ ζ̄ + q)qζ = 4γ rζ − 2q.
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The right-hand side of this is o(ζ ), so qζ → 0 as ζ → 0. Thus, qζ is found to be continuous
at the origin. In the same way the derivative qζ̄ is also continuous there. The function f

therefore is of class C 1.
The construction of the surface S2 follows the same lines. It is to be given by

S2 = {(ζ,−γ−1ζ − ζ̄ + g(ζ )) : ζ ∈ C}
with g(ζ ) = o(ζ ), ζ → 0. The condition that �(S2) ⊂ � is the condition that g satisfy
the quadratic equation

(5.40) γg2(ζ )− (2γ ζ̄ + ζ )g(ζ )− r(ζ ) = 0.

The quadratic formula yields

g(ζ ) = 1

2γ

{
(2γ ζ̄ + ζ )±

√
(2γ ζ̄ + ζ )2 + 4γ r(ζ )

}
,

in which we want the minus sign to obtain so that g(ζ ) = o(ζ ), ζ → 0. As before, g is
plainly of class C 1 away from the origin, and its derivatives are found to be continuous at
the origin by an argument like that used to prove f to be of class C 1.

For small δ > 0, the disks S1(δ) and S2(δ) defined by

Sj (δ) = Sj ∩ {(z1, z2) ∈ C2 : |z1| ≤ δ}, j = 1, 2,

are polynomially convex and satisfy P(Sj (δ)) = C (Sj (δ)), for the surfaces S1 and S2
are totally real and therefore locally polynomially convex. Recall Corollary 1.6.15.

The surfaces S1(δ) and S2(δ) meet only at the origin, as follows from the condition
that γ > 1

2 .
Define now a function ψ : C2 → C by

ψ(z) = 1

4
(z2

1 − z2
2)+ εz1z2.

We are going to show that ψ takes S1(δ) and S2(δ) into sectors in the plane that meet only
at the origin. For this purpose, notice that if ζ = ξ + iη, then because f (ζ ) = o(ζ ) when
ζ → 0,

ψ(ζ, ζ̄ + f (ζ )) = iξη + ε(ξ2 + η2)+ o(ζ 2).

This implies that
ψ(S1) ⊂ {u+ iv ∈ C : |v| ≤ Cu}

for some positive constant C. In particular, the set ψ(S1(δ)) is contained in the right half-
plane. The analysis ofψ(S2(δ)) is similar but a little more involved algebraically. Because
g(ζ ) = o(ζ ) when ζ → 0, we have that

ψ(ζ,−γ−1ζ − ζ̄ + g(ζ ))
= 1

4

{
−( 1

γ 2
+ 2

γ

)
ξ2 − ( 2

γ
− 1

γ 2

)
η2 + 2(2 − 1

γ 2
)ξηi

}
− εζ
{

1

γ
ζ + ζ̄

}
+ o(ζ 2).
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Because γ > 1
2 , the values of ψ , for small ζ and sufficiently small positive ε, are seen to

lie in the closed left half-plane.
Because ψ−1(0) = {0}, a polynomially convex set in C2, Theorem 1.6.19 implies

that the union S1(δ) ∪ S2(δ) is polynomially convex and that

P(S1(δ) ∪ S2(δ)) = C (S1(δ) ∪ S2(δ)),

provided δ is small enough.
Now suppose that E ⊂ � is a small neighborhood of the origin, small enough that

the set E∗ = �−1(E) is contained in S1(δ) ∪ S2(δ). Thus, the set E∗ is polynomially
convex and satisfies P(E∗) = C (E∗). The result now follows from Theorem 1.6.24.

We shall now examine what happens in the vicinity of a hyperbolic point in a surface
contained in a strictly pseudoconvex boundary.

To begin with, we examine the characteristic foliation near an isolated complex
tangent of a two-dimensional surface contained in a strictly pseudoconvex boundary. To
this end we consider a two-dimensional surface � in C2 that passes through the origin,
that is tangent to the z1-axis there, and that is of class C 2. We suppose � to be contained
in b� for a strictly pseudoconvex domain�with boundary of class C 2. LetQ be a strictly
plurisubharmonic defining function for b�. Let � be described near the origin by the
equation

z2 = z1z̄1 + γ (z2
1 + z̄2

1)+ r(z1),

in which r(z1) = o(z2
1), z1 → 0. We are interested in curves in � lying near the origin

and tangent to the line field Lp that we have defined above. (For p ∈ �, the line Lp
is the intersection of Tp� and T C

p (b�).) Any curve in � that lies near the origin is the
lift to � of a curve in the z1-axis. Thus, consider a curve C in the z1-axis with real
parametric representation x(t) = (x1(t), x2(t)). If the remainder function r is given by
r(z) = s1(z) + is2(z) with real-valued functions s1 and s2, then the curve C lifts to the
curve C̃ in � with the real parametric representation

(5.41) x̃(t) = (x1(t), x2(t), (1+2γ )x2
1+(1−2γ )x2

2+s1(x1(t), x2(t)), s2(x1(t), x2(t))
)
.

For x̃(t) to lie in b�we must haveQ(x̃(t)) = 0. The condition that the tangent of the curve
C̃ lie in the complex subspace of the tangent space to b� is that the x̃′(t) be orthogonal to
the vector JgradQ(x̃(t)), which is the condition that
(5.42)
−Q2x

′
1 +Q1x

′
2 −Q4[2(1+2γ )x1x

′
1 +2(1−2γ )x2x

′
2 +s1(x1, x2)

′]+Q3s2(x1, x2)
′ = 0,

in which we are writingQj for the derivative ∂Q
∂xj

, and the derivativesQj are understood

to be evaluated at the point x̃(t). If for j = 1, 2 we use the Taylor expansion of first order
forQj , i.e., if we write

Qj(x) =
4∑
k=1

Qjk(0)xk + q̃j (x)
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with q̃j (x) = o(|x|), we find that the equation (5.42) can be rewritten as

−[Q21(0)x1 +Q22(0)x2 +Q23(0)x3 +Q24(0)x4 + q̃1(x)]x′1
+ [Q11(0)x1 +Q12(0)x2 +Q13(0)x3 +Q14(0)x4 + q̃2(x)]x′2
−Q4(0)[(2(1 + 2γ )x1x

′
1 + 2(1 − 2γ )x2x

′
2 + s1(x1, x2)

′]
+Q3(0)s2(x1, x2)

′ = 0.

(5.43)

The second-order Taylor expansion about the origin of the functionQ is

Q(x) =
4∑
j=1

Qj(0)xj + 1

2

4∑
j,k=1

Qjk(0)xj xk + p̃(x)

with p̃(x) = o(|x|2). In this, Q1(0) = Q2(0) = 0 because the complex line z2 = 0 is
tangent at the origin to b�. The equationQ(x̃) = 0 now implies that

0 = Q3(0)((1 + 2γ )x2
1 + (1 − 2γ )x2

2 + s1(x1, x2))+Q4(0)s2(x1, x2)

+ 1

2

4∑
j,k=1

Qjk(0)xj xk + p(x1, x2),
(5.44)

in which p(x1, x2) = p̃(x), and x3 and x4 are expressed in terms of x1 and x2 by means of
the parameterization given in (5.41). From (5.44) we deduce thatQ11(0) = −Q3(0)(2(1+
2γ )) and Q22(0) = −Q3(0)(2(1 − 2γ )), whence Q11(0) +Q22(0) = −2Q3(0), which
implies that Q3(0) �= 0, for the strict plurisubharmonicity of Q implies that Q is strictly
subharmonic on the line z2 = 0 near the origin, so that the partial Laplacian Q11 +Q22
is positive at the origin. Equation (5.44) also implies that the partial derivatives Qjk(0)
vanish if either of j and k is bigger than two.

It follows that the equation (5.43) can be rewritten as

0 = [Q3(0)(2(1 − 2γ ))x2 −Q4(0)(2(1 + 2γ ))x1 + ϕ1(x1, x2)]x′1
+ [−Q3(0)(2(1 + 2γ ))x1 −Q4(0)(2(1 − 2γ ))x2 + ϕ2(x1, x2)]x′2,

(5.45)

in which

ϕ1(x1, x2) = q1(x1, x2)−Q4(0)s1,1(x1, x2)+Q3(0)s2,1(x1, x2)

and

ϕ2(x1, x2) = q2(x1, x2)−Q4(0)s1,2(x1, x2)+Q3(0)s2,2(x1, x2)

with sj,k = ∂sj
∂xk

. Also, qj (x1, x2) = q̃j (x1, x2, x3, x4) with x3 and x4 expressed in terms

of x1 and x2 by way of the parameterization of C̃.
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The solution x =
[
x1
x2

]
of this equation is the solution of the system

(5.46) x′ = Ax + E(x)
with A the matrix given by[

Q3(0)(2(1 + 2γ )) Q4(0)(2(1 − 2γ ))
−Q4(0)(2(1 + 2γ ) Q3(0)(2(1 − 2γ ))

]
and

E(x) =
[−ϕ1(x1, x2)

ϕ2(x1, x2)

]
.

The determinant of the matrixA is 4(Q3(0)2 +Q4(0)2)(1−4γ 2), the sign of which
is that of the quantity 1 − 4γ 2, because as we noted above,Q3(0) �= 0.

From here on we restrict ourselves to the hyperbolic case, the case that γ ∈ ( 1
2 ,∞),

which implies that the matrix A has distinct real eigenvalues of opposite sign. It follows
that the origin is a saddle point for the equation x′ = Ax. In this case, there are two integral
curves that pass through the origin; they are straight lines and are the separatrices for the
equation. They divide the plane into four domains each of which is foliated by the other
integral curves of the equation, which are branches of hyperbolas.

The equation (5.46) is a small perturbation of the equation x′ = Ax, so the geometry
of its integral curves is qualitatively similar to that of the integral curves for the latter
equation. Specifically, the vector E(x) is of class C 1 near the origin, and it and its deriva-
tives of first order vanish at the origin. In Hartman’s book [160, Theorem 7.1, p. 244], it is
implied that there is a homeomorphism (which may not be of class C 1) of the origin that
leaves the origin fixed and that carries the integral curves of the equation (5.46) onto the
integral curves of the equation x′ = Ax.

The separatarices of x′ = Ax correspond under this homeomorphism to the two
integral curves of equation (5.46) that pass though the origin; these are the separatrices
for (5.46).

By lifting this local geometry of the equation (5.46) back to the surface�, we obtain
in the vicinity of the origin two characteristic curves that pass through the origin; these
are the separatrices at the origin. They divide a small neighborhood of the origin in �
into four domains, each of which is foliated by characteristic curves. Near the origin in �
the geometry of the characteristic curves is topologically the same as that of the integral
curves of the constant-coefficient equation x′ = Ax.

With this local analysis of the geometry of the characteristic foliation near a hy-
perbolic point in mind, we return to the setting of Theorem 5.3.3, so that � is a strictly
pseudoconvex domain in a two-dimensional Stein manifold M , b� is of class C 2, and �
is a compact two-dimensional manifold with boundary contained in b�.

Theorem 5.3.13. [105] If p ∈ � is a hyperbolic point that lies in the essential hull of
�, then this essential hull must meet at least two of the sectors of � determined by the
separatrix at p near the point p.
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Proof. Let p ∈ � be a hyperbolic point, and suppose the essential hull of � to meet only
one of the sectors determined by the separatrix at p in the vicinity of p. Denote this sector
by S; we take it to be defined only on a neighborhood of p.

The problem is a local one; we can choose coordinates near p in M with respect to
which b� is strictly convex.

The plane tangent to � at p is a complex line; denote it by λ. As a complex line,
λ has a natural orientation. We orient � so that the orientation on it is consistent with
the orientation on λ. Having oriented �, we have an induced orientation on the leaves of
the characteristic foliation as in the proof of Theorem 5.3.3. The tangent plane Tp(b�) is
disjoint from the (open) sector S, and the same will be true of any real hyperplane obtained
by moving it by a small rotation about the point p. Fix such a nearby hyperplane, say L.
The complex line in L that passes through p contains a small analytic disk� that contains
p and that meets b� in a convex curve. The intersection of � with � at p is positive, for
the intersection of two complex lines is positive. If we fix a point q in � ∩�, then there
is a neighborhood V of p in� such that for every p′ ∈ V̄ , the intersection of the complex
line λq,p′ with � at p is positive.

By Theorem 5.3.3, the essential hull of � does not touch the separatrices in the
boundary of the sector S near p, so if V is small enough, it will not meet V̄ ∩ bS.

Consequently, if γ is a leaf of the foliation that passes through the point p, then γ
meets the essential hull of � at most at the point p (within V ).

In fact, V̄ ∩ S̄ is disjoint from the essential hull except possibly at the point p.
Let us assume this for the moment. The local maximum principle then implies that

the essential hull of� is contained in the essential hull of (� \V )∪ {p}. Consequently, if
�′ is a small totally real disk in b� that avoids� \V and the boundary of which contains
an arc of the characteristic foliation, then it follows from Theorem 5.3.3 that the essential
hull of (� \ V ) ∪�′ does not contain p.

Thus, to complete the proof, it suffices to establish the assertion above that V̄ ∩ S̄
is disjoint from the essential hull except possibly at the point p. To do this, we argue by
contradiction, using Lemma 5.3.8. Let γ be a leaf of the characteristic foliation that passes
near p in the sector S, and let q be the last point, in the sense of the natural orientation on
γ , of the intersection of γ with the essential hull of �.

Introduce a curve α(t), 0 ≤ t ≤ 1, connecting q through V to a point po near p but
outside the sector S. Also, let β(t), 0 ≤ t ≤ 1, be a curve that lies in γ and connects the
point q to a point q ′ just a little farther along γ than q.

Associate with these two curves two continuous families {Vt }0≤t≤2 and {Wt }0≤t≤2
of analytic curves as follows. For t ∈ [0, 1], Vt is the disk �(po, α(t)) for the point po.
Thus, V1 is the complex tangent to b� at po. We then obtain the curves Vt , 1 ≤ t ≤ 2, by
translating V1 into the complement of�. Similarly,Wt , 0 ≤ t ≤ 1, is the disk�(q, β(t)).
Thus, W1 is the complex tangent to b� at q ′. In the range 1 ≤ t ≤ 2, Wt is obtained by
translating W1 into the complement of �. These curves show, by way of Lemma 5.3.8,
that the point q does not lie in the essential hull of �, and the theorem is proved.

As a corollary of the preceding result, we have the convexity of disks totally real
except for a finite number of hyperbolic points:
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Corollary 5.3.14. [128] If� is a compact C 2 disk with boundary in b� that is totally real
except for a finite number of hyperbolic points, then � is O(�̄)-convex.

Proof. [105] The proof depends on a study of the separatrices at the hyperbolic points.
According to the theorem of Poincaré and Bendixson, a separatrix at a given hyperbolic
point can terminate at another hyperbolic point or, alternatively, must go to the boundary
of the disk. They cannot create a cycle. Accordingly, the union of all the separatrices is
formed of a finite number of trees. Among these there are terminal trees, which are defined
as those with the property that their complement, which is a union of simply connected
domains, has at most one component that is not totally real.

Terminal trees exist, as can be seen in the following way. Given a tree, T , associate
to it the set bT , a certain finite subset of the boundary of �. Then (a) the components of
bT correspond bijectively to the components of � \ T , (b) the totally real components of
�\T correspond to components of b�\bT that contain boundary points of no other tree,
and (c) if T and T ′ are two trees, then a component of b� \ bT cannot meet a component
of bT ′ without containing it. Consider now a tree T in the union of the separatrices in�. If
it is not terminal, then one of the components of� \ bT contains the boundary of another
tree, T1. If T1 is terminal, done. Otherwise, one of the components of b� \ T1 contains the
boundary of a further tree, T2. In a finite number of steps, we arrive at a terminal tree.

Now fix a terminal tree T . Each component of � \ T is a topological disk that is
totally real or else admits at most one hyperbolic point. On the totally real disks in the
complement of T , the characteristic foliation is defined by the level sets of a function,
so it follows that the essential hull does not meet any totally real component of � \ T .
Consequently, it can meet � at the hyperbolic points or at points of the nontotally real
component,�1, of�\T . Then the essential hull meets only one of the sectors determined
by the hyperbolic points. Consequently, by Theorem 5.3.13, the essential hull of � meets
� only in�1 \ (V1 ∪ · · · ∪ Vs), where the Vj are small disks about the hyperbolic points.
The local maximum principle implies that the essential hull of � is contained in that of
�1. In this way, the problem is reduced to a disk with at least one fewer hyperbolic point
than �. Iterating the process leads finally to the conclusion that the essential hull of �
misses �, whence it must be empty. The corollary is proved.

Our work so far in this section has shown that certain disks are convex. We have not
yet established that they have the approximation property that each continuous function on
them can be approximated uniformly by holomorphic functions. This issue will be settled
in Section 6.5 of the next chapter.

A corollary that emerges from the work above is that not all smooth simple closed
curves in b�, � a strictly pseudoconvex domain in C2, bound totally real disks that are
contained in b�. If γ ⊂ b� is a smooth curve that is b� for a smooth totally real disk in
b�, then because � is A(�)-convex, γ cannot be the boundary of a variety in �.



Chapter 6

APPROXIMATION

Introduction. The present chapter is devoted in the main to some approx-
imation theorems for continuous functions defined on totally real sets. The
approximation results established here are of a global nature. Section 6.1 con-
tains preparatory material on totally real sets and manifolds. Section 6.2 in-
troduces holomorphically convex compacta and develops some of their main
properties. Section 6.3 contains a result on uniform approximation on com-
pacta in totally real sets. Section 6.4 presents some material on the algebras
R(X) for planar compacta X for use in the following section. Section 6.5
considers algebras on smooth manifolds and analytic varieties. Section 6.6
contains results on tangential approximation.

6.1. Totally Real Manifolds

Before proceeding to the study of approximation per se, it is important to obtain some
information about totally real manifolds and certain more general sets.

A useful generalization of the notion of totally real manifold is that of totally real
set, defined as follows.

Definition 6.1.1. A closed subset X of a complex manifold M is said to be a totally real
set if there is a neighborhood U of X in M on which is defined a nonnegative strictly
plurisubharmonic functionQ of class C 2 such that X = {p ∈ U : Q(p) = 0}.

One of the important facts about totally real sets is that they have fundamental
neighborhood bases consisting of Stein domains. That this is so depends on the solution of
the Levi problem: A complex manifold is a Stein manifold if and only if there is a strictly
plurisubharmonic exhaustion function for it. That is, the complex manifold M is a Stein
manifold if and only if there is a C 2 strictly plurisubharmonic functionQ on M such that
for each t ∈ R, the sublevel set Mt = {p ∈ M : Q(p) ≤ t} is compact. For this we refer
to [180].
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The following result was obtained by Harvey and Wells [167].

Theorem 6.1.2. Let M be a complex manifold, and let X ⊂ M be a totally real set. If
U is a neighborhood of X in M , there exists a neighborhood V of X, V ⊂ U , that is a
Stein manifold. Moreover, there exists a fundamental set B of neighborhoods of X each
member of which is a Stein domain and which has the properties that (a) if U , V ∈ B and
U ⊂ V , then O(V ) is dense in O(U) and (b) each compact subset of X is O(V )-convex
for every V ∈ B.

Proof. LetQ be a C 2 strictly plurisubharmonic function on the neighborhoodW0 of X in
M such thatX = {p ∈ W0 : Q(p) = 0}. Denote by E the set of all positive functions ε of
class C 2 onW0 that tend to zero at infinity, i.e., that are small off compact sets inWo, and
such thatQ− ε is strictly plurisubharmonic. The set E is nonempty, for if the derivatives
of ε of first and second order are sufficiently small, thenQ−ε is strictly plurisubharmonic.
For ε ∈ E , let Vε = {p ∈ W0 : Q(p) < ε(p)}. We shall see that B = {Vε}ε∈E has the
properties we seek.

First of all, each Vε is a neighborhood of the setX. Also, each Vε is a Stein manifold,
for the function χε given on Vε by χε(p) =

(
ε(p)−Q(p))−1 is a C 2 plurisubharmonic

exhaustion function for Vε. It is plainly of class C 2, and that it is an exhaustion function
follows immediately, for χε tends to +∞ at infinity in Vε, i.e., is large off compact subsets
of Vε. Finally, to see that Vε is a Stein domain, we verify that χε is plurisubharmonic. This
is so, for χε is the composition of the plurisubharmonic function Q− ε and the function
−1/t , which is increasing and convex on the set (Q− ε)(Vε).

That the family B is a neighborhood basis for the set X can be seen as follows.
Fix a neighborhood V0 of X in W0, and let {Uj }j=1,... be a locally finite covering of W0
by open sets Uj with Uj � W0. Choose C∞ functions ϕj on W0 such that ϕj ≥ 0,∑
j=1,... ϕj = 1, and suppϕj � Uj . Let {cj }j=1,... be a sequence of positive numbers, and

set ε =∑j=1,... cj ϕj . If the cj ’s are small enough, thenQ−ε is strictly plurisubharmonic
onW0 and is positive onW0\V0. Thus Vε, which is {p ∈ W0 : Q(p) < ε(p)}, is contained
in V0. The family B is seen to be a neighborhood basis for the set X.

To complete the proof of the theorem, we have to show that our family B enjoys the
properties (a) and (b).

To prove (a), we are to show that if Vε1 , Vε2 ∈ B with Vε1 ⊂ Vε2 and if K is a
compact subset of Vε1 , then every function f ∈ O(Vε1) can be approximated uniformly
on K by functions in O(Vε2). To do this, it is enough to find an O(Vε2)-convex compact
set K1 with K ⊂ K1 ⊂ Vε1 . We are using here that if N is a Stein manifold and S ⊂ N
is a compact, O(N )-convex set, then each function g holomorphic on a neighborhood of
S can be approximated uniformly on S by functions holomorphic on all of N .1 Denote
by χ a strictly plurisubharmonic exhaustion function for the domain Vε2 with χ < 0 on
K . We have that Vε1 = {p ∈ W0 : Q(z) < ε1(z)} for some ε1 ∈ E . The setK is compact,

1This is an extension of the Oka–Weil theorem and can be derived from it as follows. The Stein manifold N
can be supposed to be a closed submanifold of a C

N for some N . The set S is then polynomially convex. If f
is holomorphic on the neighborhood � of S in N , then there is a polynomial polyhedron � in C

N such that
�∩N ⊂ �. The function f |(�∩N ) extends as a holomorphic function, say F on�. The Oka–Weil theorem
provides uniform approximation of F on S by polynomials.
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so for c ∈ (0, 1) sufficiently near 1, K ⊂ {p ∈ W0 : Q(p) < cε1(p)}. The function
Q − cε1 is positive on the set Y = {p ∈ Vε2 : χ(p) ≤ 0 and Q(p) ≥ ε1(p)}. Thus, for
large C > 0, the function χ̃ = χ +C(Q− cε1) is positive on Y . The function χ̃ is strictly
plurisubharmonic on Vε2 and is an exhaustion function for Vε2 , for χ is an exhaustion
function for Vε2 andQ is bounded on Vε2 . Then K ⊂ {p ∈ Vε2 : χ(p) ≤ 0} ∩ {p ∈ Vε2 :
χ̃(p) ≤ 0}. The set on the right is the intersection of two O(Vε2)-convex sets and so is
O(Vε2)-convex. This establishes (a).

For the proof of (b), let K ⊂ X be compact. Notice that if Vε1 ∈ B, then Vε1 ⊃ Vε
for certain functions ε with 0 < ε ≤ c, c a positive constant, that satisfy K = {p ∈ W0 :
ε(p) = c}. That this is so is evident if we recall the proof that B is a neighborhood basis
for X. Now let Vε1 ∈ B. There is a function ε of the special kind just described such that
Vε1 ⊃ Vε and K is O(Vε)-convex. Because O(Vε1) is dense in O(Vε) by (a), this implies
that K is O(Vε1)-convex: With ε a function chosen as above, the set K is

{p ∈ Vε : c +Q(p) ≤ ε(p)} = {p ∈ Vε :
(
ε(p)−Q(p))−1 ≤ c−1}.

The function (ε−Q)−1 is, as we saw above, a strictly plurisubharmonic exhaustion function
for Vε, so its sublevel sets, e.g., K , are O(Vε)-convex.

The theorem is proved.
Next we show totally real manifolds to be totally real sets. To do this, we first show

that a set is totally real if it is locally totally real.

Lemma 6.1.3. Let M be a complex manifold and X a closed subset of M . The set X
is totally real provided that for each p ∈ X, there is a neighborhood Up of p in M on
which there is a nonnegative strictly plurisubharmonic functionQp of class C 2 such that
X ∩ Up = {q ∈ Up : Qp(q) = 0}.
Proof. Let {Uα}α∈A be a locally finite collection of open sets in M withX ⊂ ∪α∈AUα = U
such that for each α there is a nonnegative strictly plurisubharmonic functionQα of class
C 2 defined on Uα with X ∩ Uα = {p ∈ Uα : Qα(p) = 0}. Let {χα}α∈A be a partition of
unity onU with χα ≥ 0, supp χα � Uα , χα of class C∞. If we understand χαQα to be zero
on U\Uα , then Q =∑α∈A χαQα is a well-defined nonnegative function of class C 2 on
U , and its zero set isX. If we compute in local holomorphic coordinates z = (z1, . . . , zN)

in U , we find that for p ∈ X and w ∈ CN\{0},
N∑
r,s=1

∂2Q

∂zr∂z̄s
(p)wrw̄s >

∑
α∈A

χα(p)

N∑
r,s=1

∂2Qα

∂zr∂z̄s
(p)wrw̄s > 0.

Thus, if V ⊂ U is a sufficiently small neighborhood of X, then Q is strictly plurisubhar-
monic on V . The set X is thus seen to be a totally real set.

It is now easy to prove that a closed totally real submanifold � of dimension k and
class C p, p ≥ 2, of a complex manifold M is a totally real set. By the foregoing lemma, it
suffices to show that� is locally a totally real set. For this purpose, fix p ∈ �, and choose
local holomorphic coordinates (z1, . . . , zN) on a neighborhood of p in M in which p is
the origin and in which T0� = {z : y1 = · · · = yk = zk+1 = · · · = zN = 0}. Thus, near



280 Chapter 6. Approximation

0, � has a parameterization

yr = ϕr(x′) r = 1, . . . , k,

zs = ϕs(x′) s = k + 1, . . . , N,

where we write x′ for (x1, . . . , xk) ∈ Rk . The functions ϕj vanish at the origin as do their
gradients. DefineQ near the origin by

Q(z) =
k∑
r=1

|yr − ϕr(x′)|2 +
N∑

s=k+1

|zs − ϕs(x′)|2,

where z = x+ iy with x, y ∈ RN . The functionQ is nonnegative, and its zero locus is the
manifold �. We have ϕj (0) = 0 and grad ϕj (0) = 0, so the Taylor expansion of ϕj about
the origin is ϕj (x′) = qj (x′)+ o(|x′|2) for a suitable homogeneous quadratic polynomial
qj . Thus, the Taylor expansion ofQ about the origin is

Q(z) = y2
1 + · · · + y2

k + |zk+1|2 + · · · + |zN |2 + o(|z|2).
The function Q is strictly plurisubharmonic near the origin, for the quadratic polynomial
y2

1 + · · · + y2
k + |zk+1|2 + · · · + |zN |2 is strictly plurisubharmonic. Consequently, � is a

totally real set.
The argument just given does depend on having � be of class at least C 2, and it

establishes somewhat more than has been stated: If the manifold is of class C p, 2 ≤
p ≤ ∞, then there is a nonnegative strictly plurisubharmonic functionQ of class C p on a
neighborhood of� in M such that� is the zero locus ofQ. Moreover, if� is real-analytic,
thenQ can be taken to be real-analytic.

Nothing we have done so far bears on the case of totally real submanifolds of class
C 1, and, as usual, the analysis required in the C 1 case is more involved than that required
in the case of smoother manifolds. We are going to treat a somewhat more general result
than simply the case of C 1 totally real manifolds. There are two reasons for doing this.
First, the result we give seems to be the definitive result of its kind, and second, the proof
we give is not essentially more complicated than is the result in the case of C 1 totally real
manifolds. The argument below is not long, but it is also not self-contained, for it draws
on the Whitney extension theorem. The formulation of this result is recalled at the very
end of this section. We shall work with q-convex functions in the sense of the following
definition.

Definition 6.1.4. IfQ is a function of class C 2 on the domainD in CN such that the matrix[
∂2Q
∂zr∂z̄s

]
r,s=1,...,N

has at each point at least N − q + 1 positive eigenvalues, then Q is

called q-convex.

Thus, a 1-convex function is strictly plurisubharmonic, and every C 2 function is
(N + 1)-convex. The condition of being q-convex is independent of the choice of local
holomorphic coordinates and so is well defined for functions defined on complex mani-
folds.
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It is well to issue a warning at this point: The terminology concerning q-convex
functions is not absolutely fixed, and one must approach the literature with this in mind.

Definition 6.1.5. If � is a submanifold of class C 1 of an open set in CN , the CR-dimen-
sion of � at p ∈ � is the dimension over C of the largest complex affine subspace of CN

through p and tangent at p to �.

Thus, if� is totally real at p, its CR-dimension at p is zero. If� is a d-dimensional
complex submanifold of CN , then at each of its points, its CR-dimension is d .

The following theorem was formulated and proved by Chirka [86]. It is an extension
of earlier results of several authors. See in particular [289] and [186].

Theorem 6.1.6. Let M be a complex manifold of dimensionN , let� be a closed subman-
ifold of M of class C s , s = 1, 2, . . . ,∞, and let E ⊂ � be a closed subset of � at each
point of which the CR-dimension of � is not more than n. There then exists a functionQ
on M with the following properties: (a)Q is nonnegative and has E as its zero set. (b)Q
is of class C s+1 on M and of class C∞ on M \�. (c) At each point of E, the Levi form
ofQ has at least N − n positive eigenvalues.

Thus, the functionQ is (n+1)-convex on a neighborhood of the setE. In particular,
if� is a totally real submanifold of class C 1, there is a strictly plurisubharmonic function
of class C 2 on a neighborhood of � that is nonnegative and that has � as its zero locus.

Proof. We deal first with the local problem. Let p ∈ �. There is a neighborhood Wp of
p in M in which M is defined by the vanishing of k, k = 2N − dim�, real-valued
functions of class C s defined on Wp : � ∩Wp = {q ∈ Wp : ϕ1(q) = · · · = ϕk(q) = 0}
with dϕ1 ∧ · · · ∧ dϕk nonzero at each point ofWp. We denote by ϕ̃1, . . . , ϕ̃k functions in
C s(M ) and of class C ∞(M \�) that vanish on �, that satisfy dϕ̃j = dϕj , 1 ≤ j ≤ k,
at the point p, and that satisfy the further condition that their derivatives of order s + 1,
Dαϕ̃j with |α| = s + 1, are estimated by |Dαϕ̃j (q)| = o

(
dist(q,�)−1

)
. The Whitney

extension theorem provides the functions ϕ̃j when it is applied to the jets {f (j)α }|α|≤s given

by f (j)α = Dαϕj |�.
Once we have the functions ϕ̃j , the argument proceeds as follows. Consider the

functionQp defined byQp =∑k
j=1 ϕ̃

2
j . This function is of class C s+1 on M and of class

C∞ on M \�. (That it is of class C s+1 on M is contained in the lemma given immediately
below.) It is nonnegative, and, in a sufficiently small neighborhoodW ′

p of the point p, the
zero locus ofQp coincides with �.

We can compute the Levi form ofQp at points of �: If q ∈ �, then ϕ̃j (q) = 0, so,
in terms of local coordinates on M ,

∂2ϕ̃2
j

∂zµ∂z̄ν
(q) = 2

∂ϕ̃j

∂zµ
(q)
∂ϕ̃j

∂z̄ν
(q),

which implies that

∑
µ,ν

∂2Qp

∂zµ∂z̄ν
(q)wµw̄ν = 2

k∑
j=1

∣∣ N∑
µ=1

∂ϕ̃j

∂zµ
(q)wµ

∣∣2,
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a nonnegative quantity. That is,Qp is plurisubharmonic inW ′
p ifW ′

p is sufficiently small.
In addition, when p ∈ E, the Levi form of Qp has at least N − n positive eigenvalues:
By hypothesis, the CR-dimension of� is not more than n at any point of�. Now T C

q (�)

is orthogonal, in the Hermitian sense, to the gradients of the defining functions ϕ̃j , so the
complex linear span of these gradients has dimension at least N − n at points q ∈ � near
p. The explicit computation of the Levi form of Qp at points of � given above implies
it to be positive definite on the complex linear span of the gradients of the functions ϕ̃j .
Thus, granted that p ∈ E, the functionQp is (n+ 1)-convex on a neighborhood of p.

It remains now only to glue these local solutions of our problem together with a
partition of unity to obtain a nonnegative functionQ′ on M that is of class C ∞ on M \�,
of class C s+1 on M , and that is plurisubharmonic near � with zero locus �.

To do this, for each p ∈ �, let Qp be a function as constructed above, and let Vp
be a neighborhood of p in M on which Qp is plurisubharmonic and on which its Levi
form is positive definite on the orthogonal complement of T C

q (�) when q ∈ E ∩ Vp. Let
{Wα}α∈A be a locally finite family of open sets in M with union that covers �. Assume
that for each α, Wα ⊂ Vp(α) for some p(α) ∈ �; let Qα be the associated function
Qp(α). LetW0 = M \�. There is a family {χα}α∈A∪{0} of nonnegative functions of class
C∞ with supp χα a closed subset of Wα for each α such that

∑
α∈A∪{0} χα = 1 on M .

Define Q0 ∈ C∞(M ) to be the function identically 1. Then Q′ = ∑α∈A∪{0} χαQα is a

nonnegative function on M that is of class C∞ on M \� and of class C s+1 on M . Its
zero locus is �, and it is plurisubharmonic on a neighborhood of �. Moreover, at points
p ∈ E, the Levi form is positive on the orthogonal complement of T C

p (�) and so Q is
(n + 1)-convex on a neighborhood of the set E. If, finally, Q′′ is a nonnegative function
of class C∞ on M that has E as its zero locus and that vanishes to sufficiently high order
on E, then the functionQ = Q′ +Q′′ will serve as the function we seek, and the theorem
is proved subject only to the proof of the following fact from calculus:

Lemma 6.1.7. LetE be a closed subset of the open subsetU of RN that has finite (N−1)-
dimensional measure. Let ψ be a function of class C s , s a positive integer, on U that is
of class C s+1 on U \ E. If ψ vanishes on the set E and satisfies the condition that for
x ∈ U \ E,

Dαψ(x) = o(dist(x, E)−1)

for all multi-indices α with |α| = s + 1, then ψ2 is of class C s+1.

Proof. Set g = ψ2. We first show that if α is a multi-index with |α| = s + 1, then Dαg,
which is defined on U \ E, extends continuously through E. For this, write

Dαψ2 =
∑

β+γ=α
cβγD

βψDγψ

=
∑

β+γ=α,β �=0,α

cβγD
βψDγψ + (c0α + cα0)ψD

αψ

= I + (c0α + cα0)ψD
αψ.

In this the term I is continuous on all of U , for, by hypothesis, ψ is of class C s on U , and
the summands of I involve derivatives of order not more than s. Also, the term ψDαψ
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tends continuously to 0 at E, sinceDα = o(dist(x, E))−1, and, because ψ vanishes on E,
ψ(x) = O(dist(x, E).

We have thus shown the existence of a continuous functionGα onU that agrees with
Dαg on U \ E. It has to be shown that the derivative Dαg exists at points of E and that
its values coincide on E with those of Gα . We first treat the one-dimensional case of this
point. In this case, the set E is a finite set; it suffices to treat the case that it consists only
of the origin. Because gs+1 extends continuously through the origin, we can write

gs(x)− gs(0) =
∫ x

0
gs+1(τ ) dτ = xgs+1(τ (x))

for a function τ that satisfies |τ(x)| ≤ |x|. It follows that

gs+1(0) = lim
x→0

(gs(x)− gs(0))/x = lim
x→0

gs+1(τ (x)) = lim
x→0

gs+1(x),

so the one-dimensional case of the lemma is proved.
We now consider the N -dimensional version of the result. Consider a point y ∈ E,

which, without loss of generality, we suppose to be the origin. Consider also a multi-index
α with |α| = s + 1. We suppose that Dαg = ∂

∂x1
Dβg for a multi-index β with |β| = s.

Let η : RN → RN−1 be the projection given by η(x1, . . . , xN) = (x2, . . . , xN). By
hypothesis,�N−1(E) is finite, so for almost every x′ ∈ RN−1, the setE∩η−1(x′) is finite.
Consequently, we can choose a sequence of points {y(n)}n=1,... in RN−1 that converges to
the origin such that the line η−1(x′) meets E in a finite set. (Recall Eilenberg’s theorem,
Theorem 3.3.6.) We then have that if e1 is the unit vector (1, 0, . . . , 0), then

Dβg(y(n) + he1)−Dβg(y(n)) =
∫ h

0
Gα(y

(n) + τe1) dτ.

Take the limit of this as n→ ∞ to find that

Dβg(h, 0, . . . , 0)−Dβ(0, . . . , 0) =
∫ h

0
Gα(τ, 0, . . . , 0) dτ,

whence ∂
∂x1
Dβg(0) exists and has the value Gα(0) as is shown by an analysis parallel to

the analysis given for the one-dimensional case. The lemma is proved.

We have seen that totally real submanifolds are the zero loci of strictly plurisubhar-
monic functions, i.e., are totally real sets. There is a result in the reverse direction: Totally
real sets are contained locally in totally real manifolds. This is a result of Harvey and Wells
[168]. Precisely, they prove the following fact.

Theorem 6.1.8. LetQ be a nonnegative strictly plurisubharmonic function of class C k+1,
k ≥ 1, on the open set U in CN , and let E be its zero set. For each z0 ∈ E there is a
neighborhood Uz0 of z0 in which there is a totally real submanifold � of class C k with
� ⊃ E ∩ U0.

Proof. We may suppose that z0 = 0. The nonnegative function Q vanishes on the set E,
so gradQ also vanishes there. It follows that the Taylor expansion ofQ about the origin is
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Q(z) = 1

2

{ N∑
r,s=1

∂2Q

∂zr∂z̄s
(0)zr z̄s +

N∑
r,s=1

∂2Q

∂zr∂zs
(0)zrzs +

N∑
r,s=1

∂2Q

∂z̄r∂z̄s
(0)z̄r z̄s

}
+ o(|z|2).(6.1)

The matrix
[
∂2Q
∂zr∂z̄s

(0)
]

is positive definite, so, by making a nonsingular linear change of

coordinates on CN , we can suppose that ∂2Q
∂zr∂z̄s

(0) = 2δrs , where δrs is the Kronecker
delta. With this choice of coordinates,

Q(z) = |z|2 +�(ztSz)+ o(|z|2)

with S the matrix
[
∂2Q
∂zr∂zs

(0)
]

and with z taken as a column and with zt as its transpose.

We shall construct below a nonsingular linear transformation A : CN → CN such

that if ζ = Azwith ζ = ξ + iη, ξ , η ∈ RN , then the Hessian matrix
[
∂2Q
∂ξr∂ξs

(0)
]

is positive

definite at 0.
With this we are done: Near zero, the functions ∂Q

∂ξr
, 1 ≤ r ≤ N , have linearly

independent gradients, so the set � of their common zeros is a manifold of class C k near
0. The tangent space T0� is the totally real space spanned by the vectors ∂

∂η1
, . . . , ∂

∂ηN
, so

� is totally real near 0. Finally, � contains E, for gradQ vanishes on E.
Thus, it remains to find the linear transformation A. Let z = x + iy ∈ CN with

x, y ∈ RN , and let τ be the column vector τ = [ xy ] ∈ R2N . ExpressQ in terms of τ :

(6.2) Q(τ) = |τ |2 + τ tT τ + o(|τ |2) = τ t (I + T )τ + o(|τ |2),
in which the real symmetric 2N × 2N matrix T is defined by the equality τ tT τ = �ztSz.
If S is given by S = A + iB with real matrices, then T has the block form

[
A −B
−B −A

]
.

Let J denote the 2N × 2N real orthogonal matrix that corresponds to the real linear
transformation on CN defined by multiplication by i, so that J = [ 0 −I

I 0

]
.

If v = [ ab ] is an eigenvector of T with eigenvalue λ, so that T v = λv, then
T (Jv) = T [−ba ] = [ −Ab Ba−Ba Ab

] = −λ [−ba ] = −λ(Jv), so Jv is also an eigenvector of T ,
with eigenvalue −λ. We can therefore choose an orthonormal family in R2N that consists
of eigenvectors of T , say v1, . . . , vN , that correspond to positive eigenvalues λ1, . . . , λN ,
respectively. Denote byC the matrix with respect to the standard basis {e1, . . . , e2N }of R2N

of the linear transformation C̃ : R2N → R2N determined by C̃(ej ) = vj , j = 1, . . . , N ,
and C̃(eN+j ) = Jvj , j = 1, . . . , N . We have J (ej ) = eN+j , so C̃ is complex linear from
CN to itself. The new coordinates σ we want are determined by σ = C−1τ . Because the
matrix C is orthogonal, C−1 = Ct . If Q̃(σ ) = Q(Cτ), then

Q̃(σ ) = (Cσ)t (I + T )(Cσ)+ o(|σ |2)
= σ tσ + σ t (CtT C)σ + o(|σ |2)
= σ tσ + σ tDσ + o(|σ |2),

(6.3)
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providedD denotes the diagonal matrix with diagonal entries λ1, . . . , λN ,−λ1, . . . ,−λN .
Take σ = ξ + iη, ξ , η ∈ RN . On the real space η = 0, the Taylor expansion of Q̃ is

Q̃(ξ) = 1

2

N∑
r,s=1

∂2Q̃

∂ξr∂ξs
(0)ξrξs + o(|ξ |2),

and by (6.3), this is
N∑
r=1

(1 + λr)ξ2
j + o(|ξr |2),

which is positive for small ξ . Thus, as we wished, the matrix
[
∂2Q̃
∂ξr ∂ξs

]
r,s=1,...,N

is positive

definite.
There is a result analogous to this theorem valid for q-convex functions. For this we

refer to Iordan [186] and to Chirka [86].
The theorem just proved shows that totally real sets cannot be too big:

Corollary 6.1.9. If E is a totally real set in a complex manifold M of dimension N , then
the N -dimensional measure of E is locally finite.

The theorem also implies that certain sets cannot be totally real. For example, every
C 1 arc in the complex plane is a totally real set, but a rectifiable curve that has a corner,
e.g., the graph {(t, |t |) : −1 ≤ t ≤ 1}, is not a totally real set.

In Theorem 6.1.8 we have seen that totally real sets are locally contained in totally
real manifolds. In some contexts it would be useful if there were a global result of the same
kind. There is no such result, as an example given by Chaumat and Chollet [81] shows.
This example depends on a criterion for totally real immersions.

Lemma 6.1.10. If M is anN -dimensional C 1-manifold, then a map F = (f1, . . . , fN) :
M → CN of class C 1 immerses M as a totally real immersed submanifold of CN if and
only if F ∗ω = df1 ∧ · · · ∧ dfN is nowhere zero on M .

Here, as usual, ω denotes the form dz1 ∧ · · · ∧ dzN on CN .

Proof. Assume first that F ∗ω is not zero at p ∈ M . This implies that the smallest complex
subspace of the tangent space TF(p)CN containing dF(TpM ) is the whole space TF(p)CN

itself. The image dF(TpM ) is a real subspace of dimension no more than N , so that
necessarily, dimRdF(TpM ) = N and dF(TpM ) is totally real. Thus, F is a totally real
immersion.

The converse is clear: If F is a totally real immersion, then for each p, dF(TpM )

is an N -dimensional totally real subspace and ω does not vanish on it.

Example 6.1.11. [81] Define ϕ : R3 → C3 by

ϕ(ξ1, ξ2, ξ3) = (ξ1 cos ξ3, ξ1 sin ξ3, ξ2e
iξ3/2).

This is a real-analytic map from R3 into the real subspace {z ∈ C3 : y1 = y2 = 0} of C3,
and it is an immersion on R3\{ξ : ξ1 = 0}. The immersion is totally real, by the previous
lemma, for
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ϕ∗ω = −ξ1e
iξ3
2 dξ1 ∧ dξ2 ∧ dξ3,

which is nowhere zero on R3\{ξ : ξ1 = 0}. The map ϕ exhibits the domain D = {ξ ∈
R3 : ξ1 ∈ (0, 2), ξ2 ∈ (−1, 1), ξ3 ∈ R} as the universal cover of its image �, which
is a totally real, three-dimensional submanifold � of an open set in C3. The domain D
contains the infinite strip S = {ξ ∈ R3 : ξ1 = 1,− 1

2 ≤ ξ2 ≤ 1
2 , ξ3 ∈ R}, which is carried

by ϕ onto a compact set M that is a Möbius band. To see that the image is a Möbius
band, consider ϕ on the rectangle R = {ξ ∈ S : 0 ≤ ξ3 ≤ 2π}. On R, ϕ is one-to-one
except that the images of the intervals ξ1 = 1, − 1

2 ≤ ξ2 ≤ 1
2 , ξ3 = 0, and ξ1 = 1,

− 1
2 ≤ ξ2 ≤ 1

2 , ξ3 = 2π , coincide but are traced out in opposite directions. Thus, M is a
Möbius band. Let � be the disk {z ∈ C3 : x2

1 + x2
2 ≤ 1, y1 = y2 = z3 = 0}, and define

X to be the compact set M ∪ �. The disk � and the Möbius band M meet in the circle
� = {z ∈ C3 : x2

1 + x2
2 = 1, y1 = y2 = z3 = 0}. We have that X\{0} ⊂ �, that � is

contained in the totally real manifold {y1 = y2 = y3 = 0}, and that a neighborhood of � in
the real plane {z ∈ C3 : y1 = y2 = z3 = 0} is contained in �. It follows that X is locally
a totally real set, and so, by Lemma 6.1.3, it is a totally real set: There is a neighborhood
U of X on which there is a nonnegative strictly plurisubharmonic functionQ of class C 2

with X as its zero locus.
However, the set X is not contained in a totally real submanifold of an open set in

C3: It is not contained in any three-dimensional C 1-manifold. Suppose that �o is a three-
dimensional C 1 submanifold that containsX. The tangent bundle T�o, when restricted to
the disk�, is trivial, because� is contractible, and thus, in particular, T�o|� is trivial. At
each point p ∈ �, Tp�o contains both TpL and TpM , where L denotes the real two-plane
that contains the disk�. This is impossible, becauseM is not orientable. The bundle T�o
is trivial near the circle �, so there is a neighborhood of � in � on which there exists
a zero-free three-form  of class C 1. Denote by ξ a C 1 vector field on a neighborhood
of � such that at each point p ∈ �, ξp is the inner normal to the circle � in (the real
two-plane containing) the disk �. If the two-form  ξ is the contraction  �ξ , then  ξ
gives an orientation on the Möbius bandM , at least near the circle �. Contradiction.

Sakai [316] has exhibited a broad class of totally real sets: If D1 and D2 are dis-
joint strictly pseudoconvex domains in a complex manifold, then the intersection of their
closures, if not empty, is a totally real set.

We have been considering totally real manifolds. In contrast to these, there are sub-
manifolds of CN that provisionally may be called totally complex. These are the subman-
ifolds M for which the tangent spaces TxM are all complex-affine subspaces of CN .
Totally complex submanifolds are, in fact, complex submanifolds:

Theorem 6.1.12. If M is a C 1 submanifold of a domain in CN such that for each
p ∈ M , the tangent plane TpM is a complex affine subspace of CN , then M a complex
submanifold.

This result is due to Levi-Civita [223]. The following proof follows [132].

Proof. We recognize immediately that M must be of even (real) dimension, for its tangent
spaces are of even (real) dimension. The proof consists in exhibiting M locally as the
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graph of a holomorphic map.
To this end, fix a point p0 ∈ M . By choosing coordinates on CN appropriately, we

can suppose that p0 is the origin in CN and that T0M is Ck = {z ∈ CN : zk+1 = · · · =
zN = 0}. We can represent M near 0 as the graph of a C 1 map: There is a neighborhood
V of 0 in Ck such that for some f = (fk+1, . . . , fN) : V → CN−k , M is, near 0, the
graph of f , i.e., locally M is {z = (z′, z′′) ∈ Ck × CN−k : z′′ = f (z′)}. The map f is
of class C 1. For z′ ∈ V , denote by dfz′ the linear map Ck → CN−k that is tangent to
f . The tangent plane T(z′,f (z′))M is then the set {(z′, f (z′))+ (z, dfz′(z)) : z ∈ Ck}, the
translate by

(
z′, f (z′)

)
of the graph of dfz′ . By hypothesis, T(z′,f (z′))M is a complex-affine

subspace of CN , so the graph of the linear map dfz′ is a complex-linear subspace of CN .
We show in the lemma below that this implies that dfz′ is complex linear. But the complex
linearity of dfz′ for z′ ∈ V is precisely the condition that f satisfy the Cauchy–Riemann
equations. It follows that f is holomorphic in V , as we wished.

Lemma 6.1.13. If L : Ck → Cm is a real-linear map, then L is complex linear if and only
if the graph G = {(z, L(z)) : z ∈ Ck} is a complex subspace of Ck × Cm.

Proof. Granted that L is R-linear, G is a real-linear subspace of Ck × Cm, and if L is
complex-linear, then G is a complex subspace.

Assume, conversely, that G is complex-linear. Then, if z ∈ Ck , because G is a
complex subspace, both i

(
z, L(z)

)
and
(
iz, L(iz)

)
belong to G , and we have iL(z) =

L(iz), whence L is C-linear, as desired.
The theorem can be regarded as a regularity theorem: Under the assumption that a

C 1 manifold has complex tangents, it is necessarily complex-analytic.

There is a relatively simple extension of what we have just done to the case of
manifolds that are locally the graphs of Lipschitz mappings. Thus, consider an open set U
in Ck and on U a Cm-valued function f that satisfies |f (z)− f (z′)| ≤ λ|z− z′| for some
constant λ and all z, z′ ∈ U . Let � be the graph of f , a closed submanifold of U × Cm.
As a Lipschitz function, f is differentiable at almost every point of U by Rademacher’s
theorem [337]. If z ∈ U is a point at which f has a differential, then � has a tangent plane
at
(
z, f (z)

)
. If at almost every point z ∈ U the tangent plane T(z,f (z))� is a complex affine

subspace of CN , then � is a complex manifold. As above, we find that at the points z ∈ U
such that T(z,f (z))� is complex, the differential df is complex linear.

Thus, our assertion comes to establishing the following assertion: LetD be a domain
in Ck and let g : D → C be a Lipschitz function such that for almost all z ∈ D, the
differential dgz : CN → C is complex linear. Then g is holomorphic. That the function g
satisfies a Lipschitz condition implies that its partial derivatives are bounded. By a standard
regularity theorem, to prove that g is holomorphic, it suffices to show that if φ is a smooth
function on D with compact support, then

(6.4)
∫
D

g
∂φ

∂z̄j
ω(z̄) ∧ ω(z) = 0

for each j = 1, . . . , N .
That this suffices is easily seen. First, let h be a smooth function on D such that for
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all φ smooth and compactly supported on D,

(6.5)
∫
D

h
∂φ

∂z̄j
ω(z̄) ∧ ω(z) = 0.

By Stokes’s theorem we deduce that
∫
D
∂h
∂z̄j
φω(z̄) ∧ ω(z) = 0. This happens for all φ,

so ∂h
∂z̄j

must be the zero function. If now h is bounded and measurable and satisfies (6.5),

extend h to all of CN by taking h = 0 on CN\D. The extended function is still bounded and
measurable. Let {χε}ε>0 be a smooth approximate identity on CN , so that χε ∈ C∞(CN),
χε ≥ 0, suppχε ⊂ BN(0, ε), and

∫
CN
χε = 1. Put hε(z) =

∫
CN
h(z − ζ )χε(ζ )dL (ζ ).

This function is smooth, and it satisfies (6.5) and so is holomorphic on D. Moreover,
hε(z)→ h(z) for almost every z ∈ CN . Because |hε(z)| is bounded by the supremum of
h on CN , h must be holomorphic.

We revert to our function g and show that it satisfies the condition (6.4). Consider
the case j = 1. The integral is

∫
D
gdφ ∧ ω[1](z̄)∧ ω(z), and by Stokes’s theorem2 this is

− ∫
D
φdg ∧ ω[1](z̄) ∧ ω(z). By hypothesis, dg is complex linear almost everywhere and

so is of the form

dg =
N∑
j=1

∂g

∂zj
dzj .

This means that dg ∧ ω(z) = 0 almost everywhere by type considerations, whence the
integral vanishes.

This result can be summarized by saying that a manifold that is locally a Lipschitz
graph and almost all of whose tangents are complex planes is necessarily a complex
manifold. A much more general result of this kind has been given by King [206]; it
characterizes complex-analytic varieties within the space of rectifiable currents in terms
of complex tangents.

6.1.A. Appendix on the Whitney Extension Theorem

In this short appendix we recall the formulation of the Whitney extension theorem.
The formulation is in terms of jets. Let X be a closed set in the open set � of RN . A

jet of order k on X is a collection {fα}|α|≤k of continuous functions on X indexed by the
multi-indices α = (α1, . . . , αN), each αj a nonnegative integer, subject to the condition
that |α| = |α1|+ · · ·+ |αN | ≤ k. The case that k = ∞ is admitted. The question answered
by the Whitney extension theorem is, given a jet {fα}|α|≤k of order k on X, is there a
function F of class C k on a neighborhood of X with DαF |X = fα for each α with
|α| ≤ k? The result is the following.

2Our use of Stokes’s theorem is not quite standard, but is easily justified. What is at issue is that if f is a

Lipschitz function on R
n and ψ is a smooth compactly supported function on R

n, then
∫
Rn
f (x)

∂ψ
∂x1
(x)dx =

− ∫
Rn

∂f
∂x1
(x)ψ(x)dx. By Fubini’s theorem the left integral is

∫
Rn−1 {

∫
R f (x)

∂ψ
∂x1
(x)dx1}dx2 · · · dxn. By the

Lebesgue theory of integration by parts, [171], the inner integral is
∫
R
∂f
∂x1
(x)ψ(x)dx1, so another application

of Fubini’s theorem yields the result.
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Theorem 6.1.14. Given a closed set X in the open set � in RN and given a jet {fα}|α|≤k
of order k <∞, there is F ∈ C k(�) that is of class C ∞ on �\X with DαF |X = fα for
each α with |α| ≤ k if and only if for each α,

fα(x) =
∑

|β|≤k−|α|

1

β!fα+β(y)(x − y)β + o(|x − y|k−|α|),

where the o-term is uniform when y is restricted to any compact set in X. If the jet is of
infinite order, the necessary and sufficient condition for F to exist is that for every integer
m ≥ 0,

fα(x) =
∑
|β|≤m

1

β!fα+β(y)(x − y)β + o(|x − y|m),

where for given m, the o-term is uniform when y is restricted to any compact subset of X.

The proof of the theorem yields a bit more than stated in the case of finitely smooth
functions: Ifβ is a multi-index with |β| > k, then |DβF(x)| = o(dist(x,X))dist(x,X)|β|−k
for x ∈ �\X with the o-term uniform when x is restricted to any compact set in �.

If we are in CN , it is natural to deal with derivatives ∂/∂zj and ∂/∂z̄k . Given a closed
subsetX of the open set� in CN , consider a family {fαβ} of continuous functions indexed
by pairs of multi-indices α, β with |α| + |β| ≤ k < ∞. Then there is F ∈ C k(�) with
∂ |α|+|β|F/∂zα∂z̄β |X = fαβ if and only if for each α, β,

fαβ(z) =
∑

|µ|+|ν|≤k−|α|−|β|

1

µ!v!fα+µ,β+ν(w)(z− w)
µ(z− w)ν + o(|z− w|)k−|α|−|β|

with the o-term uniform when w is restricted to any compact set in X. There is a similar
formulation for C∞ functions.

This complex version of the theorem is a purely formal consequence of the real
version.

The Whitney extension theorem is proved in Malgrange’s monograph [233] on dif-
ferentiable functions and in Federer’s work [115]. See also [260].

6.2. Holomorphically Convex Sets

In addition to the notions of polynomially convex and rationally convex set, there is a
notion of holomorphically convex set that is sometimes useful.

For the definition of these sets, a preliminary definition is required. For a set X in a
complex manifold M the algebra of germs of functions holomorphic on X is the set of
equivalence classes in the union ∪O(V ), in which the union is extended over all open
subsets V of M that contain the set X, defined by the equivalence relation ∼X given by
the condition that if f ∈ O(V ) and f ′ ∈ O(V ′), then f ∼X f ′ if there is a neighborhood
V ′′ of X with V ′′ ⊂ V ∩ V ′ such that f |V ′′ = f ′|V ′′. The equivalence classes are called
germs of functions holomorphic on X. The set of these germs is a C-algebra with the
evident operations of addition and multiplication; it is denoted by OOO(X).
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Definition 6.2.1. A compact subset X of a complex manifold M is holomorphically con-
vex if every nonzero C-algebra homomorphism χ : OOO(X) → C is of the form χ([f ]) =
f (p) for some p ∈ X.

In this definition, we use the notation that [f ] is the element of the algebra OOO(X)
corresponding to the function f defined on a neighborhood of X. The elements of OOO(X)
are not, properly speaking, functions. Nonetheless, one can assign a value [f ](x) to a germ
[f ] ∈ OOO(X) for any x ∈ X, for if g is holomorphic on a neighborhood of X and satisfies
[g] = [f ], then the functional value g(x) depends only on the equivalence class [f ].

The homomorphism χ of the definition is called a character of the algebra OOO(X).
Other notions of holomorphically convex set appear in the literature; one must take

care when reading.
For any compact set X in CN , we denote by specOOO(X) the space of characters of

OOO(X) endowed with the weak* topology. This is a compact space.

Lemma 6.2.2. If X is a compact subset of CN , then specOOO(X) is the spectrum of the
uniform algebra A of functions uniformly approximable on X by functions holomorphic
on varying neighborhoods of X.

Proof. If ρ : OOO(X) → A is the restriction map, then by definition ρ has dense range,
so that the dual map ρ∗ : specA → specOOO(X) is injective. It is also surjective. To see
this, note that for each character χ of OOO(X), χ([f ]) ∈ f (X) for each f holomorphic
on a neighborhood: Otherwise, the element [f − χ([f ])] of OOO(X) is invertible, which is
impossible, because χ annihilates it. It follows that |χ([f ])| ≤ ‖f ‖X for every function
f holomorphic on a neighborhood of X. This bound implies that χ extends to a character
χ̃ of A. We have ρ∗χ̃ = χ . Thus, ρ∗ is surjective. It is also continuous, as follows from
the definitions of the topologies on specOOO(X) and specA. Therefore, by compactness, it
is a homeomorphism, and the lemma is proved.

Corollary 6.2.3. If X is a compact connected set in CN , then specOOO(X) is connected.

Proof. If specOOO(X) = specA is not connected, then the uniform algebra A contains
a function that assumes the values 0 and 1 and no others, as follows from the Shilov
idempotent theorem. (Recall Theorem 1.5.9.) It follows that the same is true of the algebra
OOO(X), which is impossible given that X is connected.

A simple class of holomorphically convex sets is the class of compact, totally dis-
connected subsets of CN . That these sets are holomorphically convex is easily seen. If X
is any compact totally disconnected subset of CN , then the algebra A is all of C (X). This
is so, for if X = X′ ∪ X′′ is a decomposition of X into a union of mutually disjoint open
(and therefore closed) subsets, then the function g that is one onX′, zero onX′′ extends to
be holomorphic on a neighborhood of X. Thus, A contains enough real-valued functions
to separate the points of X, and the Stone–Weierstrass theorem implies that A = C (X).
Consequently, if X is totally disconnected, then for each character χ of OOO(X), there is a
point x ∈ X for which χ([f ]) = f (x) for all f holomorphic on a neighborhood ofX. That
is, X is holomorphically convex. We know that not every compact, totally disconnected
set is rationally convex.

That for an arbitrary compact set X ⊂ M and that for every character χ of OOO(X),
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|χ(f )| ≤ ‖f ‖X, implies that each χ has the following continuity property: If� is an open
set containing X, then f �→ χ([f ]) is a continuous linear functional on OOO(�).

A compact set in CN that is an intersection of domains of holomorphy is holomor-
phically convex, but the converse of this statement is not true. (Examples are given in [63],
[54], [275], and [339].) There is a result of this general flavor, which involves Riemann
domains and was stated by Birtel [53, 54].

To recall the notion of Riemann domain, fix a complex manifold M . A Riemann
domain over M is a pair (�, π) consisting of a complex manifold � and a locally
biholomorphic map π : �→ M . (The map π is not required to be surjective.)

If M is a Stein manifold, the envelope of holomorphy (�̃, π) of a domain � in M
is a Riemann domain over M for which �̃ is a Stein manifold. More precisely, if � is
a domain in M , there exists a Riemann domain (�̃, π) over M with the properties that
(a) �̃ is a Stein manifold and (b) there is a biholomorphic map ι from � onto a domain
in �̃ such that π ◦ ι is the identity map on � and such that for each f ∈ O(�), there is
a unique f̃ ∈ O(�̃) such that f = f̃ ◦ ι. The Riemann domain (�̃, π) is the envelope of
holomorphy of �. For domains in Stein manifolds, the envelope of holomorphy exists; it
is unique to within isomorphisms of Riemann domains. One of the standard constructions
for the envelope of holomorphy of a domain� is that as a set, �̃ is the set of all characters
of the algebra O(�), i.e., the set of all continuous, nonzero C-linear maps O(�) → C

that are multiplicative. (Note that O(�) is not a uniform algebra, so the previously given
definition of character of a uniform algebra is not applicable here.) The space �̃ is endowed
with the weak∗ topology, so that a net {χα}α∈A converges to χo if and only if for each
f ∈ O(�), χα(f ) → χo(f ). We shall denote by spec O(�) the space of all characters
of O(�) endowed with the weak* topology. The inclusion map ι : � → �̃ is the map
that takes the point z ∈ � to the evaluation functional εz given by εz(f ) = f (z). That
the space �̃ constructed in this way is indeed a Stein manifold is a decidedly nontrivial
point in the theory of functions. This theory is developed in detail in the book of Gunning
and Rossi [158]. In the case that M is CN , the associated map π : �̃ → CN is the
map χ �→ (χ(z1|�), . . . , χ(zN |�)) if we understand z1, . . . , zN to be the coordinate
functions on CN . When working over a general Stein manifold, the description of the
projection is a little more complicated than in the case of CN . Because M is a Stein
manifold, every character of the algebra O(M ) is of the form f �→ f (p) for a fixed
p ∈ M . The restriction map ρ : O(M ) → O(�) given by ρ(f ) = f |� therefore
induces a continuous map ρ∗ : �̃→ M . This map is the projection π : �̃→ M of the
definition of the envelope holomorphy. It must be and can be verified that the projection
π defined in this way is locally biholomorphic. For f ∈ O(�), the function f̃ ∈ O(�̃)
with f = f̃ ◦ ι is defined by f̃ (χ) = χ(f ) for each character χ of O(�).

The papers [53, 54] contain a characterization of holomorphically convex sets in
terms of envelopes of holomorphy as follows. In this connection, one should also consult
the paper [166], which is closely related to the characterization.

Theorem 6.2.4. The compact connected subsetX of CN is holomorphically convex if and
only if for every sequence {�j }j=1,... of bounded domains in CN with �j ⊃ �̄j+1 for all
j and with ∩j=1,...�j = X, we have X = ∩j=1,...πj (�̃j ).
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Proof. Fix a neighborhood basis {�j }j=1,... for X as in the statement of the theorem.
Because X = ∩j=1,...�j and �j ⊂ πj (�̃j ) for all j , we have for all choices of the set X
that X ⊂ ∩j=1,...πj (�̃j ).

Suppose the set X to be holomorphically convex, and let p ∈ ∩j=1,...πj (�̃j ). We
will show that p ∈ X.

To this end, introduce the uniform algebra Aj for each j defined to be the uniform
closure on �̄j of the algebra of functions f |�̄j , where f runs through all the functions
holomorphic on varying neighborhoods of �̄j . For each pair of integers j and k with
j ≤ k, there is the restriction homomorphism ρj,k : Aj → Ak given by ρj,kf = f |�̄k for
each f ∈ Aj . There are also maps ρj : Aj → OOO(X) defined by ρj (f ) = [f ], in which
[f ] denotes the germ on X of the function f , which is holomorphic on �j .

For each j , let Z̃j : specAj → CN be the joint spectrum map given by

Z̃j (χ) = (χ(z1|�̄j ), . . . , χ(zN |�̄j )).
For m = 1, . . . , define the set Tm by

Tm = {{χj }j=1,... :χj ∈ specAj , and for 1 ≤ j ≤ m, ρ∗j,j+1χj+1 = χj and Z̃j (χj ) = p
}
.

The setTm is a closed and hence compact subset of the product space
∏
j=1,... specAj .

It is not empty: By hypothesis there is ψ ∈ �̃m+1 with πm+1(ψ) = p. If σj,k : Aj →
O(�k) is given for k > j by σj,k(g) = g|�k , then σ ∗

m,m+1(ψ) = χm ∈ specAm.
(This χm is not the zero functional, for 1 = ψ(1) = ψ(σm,m+1)(1) = σ ∗

m,m+1(ψ)(1).)

Then Z̃m(χm) = p. And if for k ≤ m, χk = ρ∗k,k+1χk+1, then for all r, 1 ≤ r ≤ m,

Z̃r (χr) = Z̃r (ρr,r+1χr+1) = p. Thus, Tm is not empty.
The sets Tm are nested: Tm ⊃ Tm+1. Let {χj }j=1,... ∈ ∩m=1,...Tm; compactness

implies that this intersection is not empty.
Define the functional χ on OOO(X) by χ([f ]) = χj (fj ) if fj ∈ O(�j ) and the germ

of fj on X is the germ [f ]. This functional is well defined: If fj ∈ �j , fk ∈ O(�k)
and [fj ] = [fk] = [f ] ∈ OOO(X), then there is an n such that �n ⊂ �j ∩ �k and
fj |�n = fk|�n. Then χn(fj |�n) = χn(ρj,nfj ) = (ρ∗j,nχn)(fj ) = χjfj . Consequently,
χ is well defined.

The functional χ of the last paragraph is a character on OOO(X), so, because X is
assumed to be holomorphically convex, there is q ∈ X such that χ([f ]) = f (q) for all q.
That is, χj (fj ) = fj (q) if fj ∈ OOO(�j ). However, this means that Z̃j (χj ) = q.We have
p = q, for p = Z̃(χj ).

Thus, we have shown that ifX is holomorphically convex, thenX = ∩j=1,...πj (�̃j ).
Conversely, suppose X = ∩j=1...πj (�̃j ), and let χ be a character of OOO(X). Define

χj ∈ spec O(�j ) by χj (f ) = χ([f ]) if f ∈ O(�j ). Let rj,k : O(�j )→ O(�k) be the
restriction map defined for j ≤ k. The dual map r∗j,k carries �̃k to �̃j , and r∗j,k(χk) = χj ,
so that Z̃j (χj ) = Z̃k(χk). Thus, the point p = Z̃k(χk) lies in ∩j=1...πj (�̃j ). Note that if
[f ] ∈ OOO(X), then χ([f ]) = χj ([fj ]) if the germ onX of the element fj of O(�j ) is [f ].
In particular, Z̃(χ) = χj (Z̃j ) = p.
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From this fact follows that for each polynomial P , χ(P ) = P(p), but to see that for
every [f ] ∈ OOO(X) we have χ([f ]) = f (p) requires further discussion. Suppose, for the
sake of deriving a contradiction, that χ is not the point evaluation εp at the point p. Let r∗k :
specOOO(X)→ �̃k be the map dual to the restriction map. The space specOOO(X) is connected
since X is, so the set r∗k (specOOO(X)) is also connected. There is a k such that r∗k (εp) �=
r∗k (χ), for if not, χ = εp, contrary to the hypothesis. The set r∗k (specOOO(X)) cannot be
contained in �k—we are here identifying �k with its canonical image in �̃k , because
the projection πk : �̃k → CN is the identity map on �. Thus, because r∗k (specOOO(X)) is
connected and contains the point r∗k (χ), which is not in �k , the set r∗k (specOOO(X)) has to
contain a point of b�k . This is impossible, for πk(r∗k (specOOO(X))) ⊂ �k . Contradiction,
and χ is found to be εp as desired.

The theorem is proved.
Compact connected holomorphically convex sets in CN are also characterized as the

compact connected sets that have neighborhood bases of a particularly useful form:

Theorem 6.2.5. The compact connected subsetX of CN is holomorphically convex if and
only if for every open set U in CN that contains C, there is a domain � with envelope of
holomorphy (�̃, π) such that X ⊂ � ⊂ π(�̃) ⊂ U .

In the terminology introduced by Stensønes [339], connected holomorphically con-
vex sets are those compact connected sets that have nonschlicht Stein neighborhood bases.

Proof. Suppose first thatX is holomorphically convex and that U is an open subset of CN

that containsX. Choose a sequence of domains�1 ⊃ �2 ⊃ · · · with�1 ⊂ U , with�j+1
relatively compact in �j , and with ∩k=1,...�k = X. That X is holomorphically convex
implies that if (�̃k, πk) is the envelope of holomorphy of �k , then ∩k=1,...πk(�k) = X.
We shall show that for all sufficiently large k, the set πk(�̃k) is contained in U .

Without loss of generality, we assume U to be bounded, so that bU is compact. It is
sufficient to prove that for some k, the set πk(�̃k) ∩ bU is empty. Assume, for the sake
of contradiction, that for each k there is a point pk in πk(�̃k) ∩ bU . Let p̃k ∈ �̃k satisfy
πk(p̃k) = pk . By passing to a subsequence if necessary, we can assume that the sequence
{pk}k=1,... converges to a point p ∈ bU .

Each f ∈ O(�k) has a unique extension to a function f̃ ∈ O(�̃k). The map
f �→ f̃ (p̃k) is a continuous linear functional, which is multiplicative, on the space O(�k),
so by the Hahn–Banach and Riesz representation theorems, there is a finite regular Borel
measure µk with compact support on �k such that for all f ∈ O(�k),

f̃ (p̃k) =
∫
f dµk.

The measure µk is not unique; it can be chosen to have total mass one, in which case it is
positive.

The collection of measures µk , all thought of as measures on �1, has weak* limit
points; denote byµ such a limit point. We can suppose that in fact, the sequence {µk}k=1,...
converges in the weak* sense to µ. Thus if g is any continuous function on �1, then∫

g dµ = lim
k

∫
g dµk.
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The support of µ is contained in the set X.
The measure µ is not the zero measure, for 1 = ∫ 1 dµk → ∫ dµ. It is also multi-

plicative on the space OOO(X): If f and g are holomorphic on a neighborhood of X, then
f, g ∈ O(�k) for all large k, and we have that∫

fg dµk =
∫
f dµk

∫
g dµk,

which implies that ∫
fg dµ =

∫
f dµ

∫
g dµ.

The assumed holomorphic convexity of X implies the existence of a point q ∈ X such
that for all f ∈ OOO(X), ∫

f dµ = f (q).

On the other hand, if we denote by zj the j th coordinate function on CN , and if
p = (p(1), . . . , p(N)) and q = (q(1), . . . , q(N))), then we have that

p(j) = lim
k

∫
zj dµk =

∫
zj dµ = q(j),

so that p = q. This is impossible, though, since p ∈ bU and q ∈ X.
Thus, for all large k, we have πk(�̃) ⊂ U .
For the other direction of the proof, it suffices to argue nearly verbatim as in the last

paragraph of the proof of Theorem 6.2.4.

It should be noted that the first part of the proof just given is essentially analytic
and not merely topological, as one might expect. This is necessary, for one can perfectly
well have a compact set Y in RN that is of the form Y = ∩j=1,...Wj with {Wj }j=1,... a
decreasing sequence of open connected sets such that for some neighborhood U of X,
eachWj meets RN \ U .

Corollary 6.2.6. The compact connected subsetX of CN is holomorphically convex if and
only if there is a neighborhood V of X such that for each z ∈ V \ X, there is a function
holomorphic on a neighborhood of X that cannot be continued holomorphically into a
neighborhood of the point z.

By using some standard results on Stein manifolds, the preceding result can be ex-
tended to the case that the setX is contained in a Stein manifold. In addition to the embed-
ding theorem for Stein manifolds, it will be necessary to use a theorem about holomorphic
retractions:

Theorem 6.2.7. If M is a closed submanifold of the Stein manifold M ′, then there is a
neighborhood � of M in M ′ on which is defined a holomorphic retraction � : �→ M .

That is to say, � is a holomorphic map from � to M that satisfies �(p) = p for
all p ∈ M . The existence of this holomorphic retraction is a theorem of Docquier and
Grauert [102]. See also [158]. We shall not give its proof here.
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Consider a complex submanifold M of CN ; M is a Stein manifold. IfX is a compact
subset of M , there are the algebras OOOM (X) of germs on X of functions holomorphic
on M , and OOOCN (X) of germs on X of functions holomorphic on CN . These are not
in general isomorphic algebras. One must ask therefore about the relation between the
condition that X be holomorphically convex with respect to M and the condition that it
be holomorphically convex with respect to CN . The relation is as expected:

Theorem 6.2.8. The spectrum of OOOM (X) is X if and only if the spectrum of OOOCN (X)

is X.

Alternatively put, the set X is holomorphically convex with respect to M when and
only when it is holomorphically convex with respect to CN .

Proof. The gist of the matter is contained in an algebraic decomposition of OOOCN (X)

induced by the holomorphic retraction � : � → M of a neighborhood � of M in CN

onto M . For this decomposition, consider a function f holomorphic on a neighborhood
ofX in CN . On a possibly smaller open set in CN we can write f = f ◦ �+ (f − f ◦ �),
which gives the equation [f ] = [f ◦ �] + [f − f ◦ �] in OOOCN (X). The germ [f − f ◦ �]
lies in the ideal III M (X) that consists of the germs of functions f such that if f is defined
on the open set V in CN that contains X, then f |(V ∩ M ) = 0. We define an operator
R : OOOM (X)→ OOOCN (X) by R[f ] = [f ◦ �]. There is then the decomposition

(6.6) OOOCN (X) = ROOOM (X)⊕III M (X).

With this mechanism in hand, we can see that if X is holomorphically convex with
respect to M , then it is holomorphically convex with respect to CN . To do this, consider a
character χ of OOOCN (X). Then χ ′ given by χ ′([f ]) = χ([f ◦�]) is a character of OOOM (X).
The setX is supposed to be holomorphically convex with respect to M , so there is a point
xo ∈ X with χ ′([f ]) = f (xo) for all [f ] ∈ OOOM (X). If now g ∈ OOOCN (X), decompose it
in accordance with the decomposition (6.6), so that [g] = [g ◦ �] + [g − g ◦ �]. Because
the second summand vanishes onX, χ([g]) = χ [g ◦�] = χ ′([g|M ]) = g(xo): For every
[g] ∈ OOOCN (X), χ([g]) = g(xo), so X is holomorphically convex with respect to CN .

In the opposite direction, suppose X to be holomorphically convex with respect
to CN .

There is an algebra homomorphism r : OOOCN (X)→ OOOM (X) defined by the condi-
tion that if f is holomorphic on a neighborhoodU in CN ofX, then r([f ]) = [f |(M∩U)].
This is a well-defined homomorphism with kernel the ideal III M (X). The restriction map
is surjective, because if [f ] ∈ OOOM (X), then [f ] = r([f ◦ �]).

Suppose we are given a character χ of OOOM (X). The composition χ ′ given by
χ ′([f ]) = χ(r[f ]) is a character of OOOCN (X), and so is of the form χ ′([f ]) = f (xo)

for some xo ∈ X. Then we have that for [g] ∈ OOOM (X), χ([g]) = χ ′[g ◦ �] = g(xo), so
as claimed, X is holomorphically convex with respect to M

It is now possible to deduce the expected extension of Theorem 6.2.4 to the case of
compacta in Stein manifolds:

Theorem 6.2.9. The compact connected subsetX of the Stein manifold M is holomorphi-
cally convex if and only if there is a sequence �j of domains in M with �j ⊃ �k when
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j ≤ k and with ∩j�j = X such that if for each j , (�̃, πj ) is the envelope of holomorphy
of �j , then ∩jπj (�̃j ) = X.

Proof. Without loss of generality, let M be a closed submanifold of CN for a suitable
N . Let X be a compact subset of M that is holomorphically convex with respect to M .
It is therefore holomorphically convex with respect to CN , so by Theorem 6.2.4, there
is a decreasing sequence {�j }j=1,... of domains in CN with intersection X such that if
(�̃j , πj ) is the envelope of holomorphy of �j , then ∩j=1,...πj (�̃j ) = X.

LetWj be the component of π−1
j (M ) that contains the set ιj (X) if ιj : �j → �̃j is

the holomorphic injection provided by the definition of envelope of holomorphy. ThenWj
is a Stein manifold, and (Wj , πj |Wj) is a Riemann domain spread over the manifoldM . Let
�′
j be the component of�j∩M that containsX. Under ιj ,�′

j is carried biholomorphically

onto a domain�′′
j inWj . The domain�′′

j has an envelope of holomorphy (�̃′′
j , π

′′
j ), which

is a Riemann domain overW ′. Then (�′′
j , πj ◦ π ′′

j ) is the envelope of holomorphy of �′
j ,

and πj ◦ π ′′
j (�̃

′′
j ) ⊂ πj (�̃j ), so the intersection of the domains πj ◦ π ′′

j (�̃
′′
j ) is X.

For the converse: If there is a decreasing sequence �j of domains in M with in-
tersection X such that the intersection of the projections of the envelopes of holomorphy
of the �j ’s is X, then the argument in the last paragraph of the proof of Theorem 6.2.4,
suitably modified, yields that each character of OOOM (X) is evaluation at a point of X.

The theorem is proved.
We have considered connected holomorphically convex sets. This is essentially all

that is necessary because of the following simple fact:

Theorem 6.2.10. The compact subset X of the Stein manifold M is holomorphically
convex if and only if each of its components is holomorphically convex.

Proof. First, X is holomorphically convex if and only if each open and closed subset of
X is holomorphically convex. For this, suppose X = X′ ∪ X′′ to be a decomposition of
X as a union of disjoint open and closed subsets. There is then a decomposition OOO(X) =
OOO(X′) ⊕ OOO(X′′) with the operations in the direct sum taken coordinatewise. If χ is a
character of OOO(X), then one of the maps [f ] �→ χ(([f ], 0)) and [f ] �→ χ((0, [f ]))
from OOO(X′) and OOO(X′′), respectively, to C is not the zero map. Suppose the first not to
be zero, and denote it by χ ′. It is a character of OOO(X′). If X′ is holomorphically convex,
then χ ′ is of the form χ ′([f ]) = f (x′) for some x′ ∈ X′. Thus, if both X′ and X′′ are
holomorphically convex, then so is X. Conversely, if X is holomorphically convex, and
if χ ′ is a character of OOO(X′), then [f ] �→ χ([f |X′]) is a character of OOO(X) and so must
be of the form [f ] �→ f (xo) for some point xo ∈ X. The point xo must lie in X′, so X′ is
holomorphically convex.

Next, if {Xj }j=1,... is a sequence of compact sets each of which is holomorphically
convex, then the intersection X = ∩j=1,...Xj is also holomorphically convex: Let χ be
a character of OOO(X). For each j define χj : OOO(Xj ) → C by χj ([f ]) = χ([f |X]). The
functional χj so defined is a character of OOO(Xj ) and so is of the form χj ([f ]) = f (xj )
for some point xj in Xj . In fact, the points xj all coincide and all lie in X. It follows that
χ is evaluation at the point xj , so X is holomorphically convex.

IfX is holomorphically convex, then each of its open and closed subsets is holomor-
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phically convex, and each component Y of X is an intersection ∩j=1,...Xj of open and
closed subsets Xj of X as noted in the discussion of Theorem 1.5.5. It follows that Y is
holomorphically convex.

Conversely, suppose each component ofX to be holomorphically convex and χ to be
a character of OOO(X). For every decompositionX = X′ ∪X′′ withX′ andX′′ open, closed,
and disjoint, χ induces the zero functional on one of OOO(X′), OOO(X′′) and a character on the
other. Let {Xα}α∈A be the family of all open and closed subsets of X such that χ induces
a character on OOO(Xα). The intersection Xo = ∩α∈AXα is not empty, for if it were, then
by compactness there would be a finite number of the Xα’s, say Xαj , j = 1, . . . , s, with
empty intersection. If Yα = X \ Xα , then Yα is open and closed, and ∪j=1,...,rYαj = X.
If we define sets Zj , j = 1, . . . , s, by Z1 = Yα1 , and Zj = Yαj \ ∪k=1,...,j−1Zk , then the
sets Zj are mutually disjoint open and closed subsets of X with ∪j=1,...,rZj = X. The
functional χ induces the zero functional on each OOO(Yj ), so it induces the zero functional
on each OOO(Zj ), and so is the zero functional. Contradiction. Thus the set Xo is not empty.

The set Xo is connected. If not, there is a decomposition X = X′ ∪ X′′ with X′
and X′′ disjoint open and closed subsets of X with both of the sets Xo ∩X′ and Xo ∩X′′
nonempty. The character χ induces a character on one ofOOO(X′),OOO(X′′), say on the former.
Then X′ is an Xα , so Xo ⊂ X′, contradicting Xo ∩X′′ �= ∅. Thus, Xo is connected.

Moreover, the set Xo is a component of X: If X1 is a connected subset of X that
properly contains Xo, then for suitable α, we have X = Xα ∪ Yα with Xα and Yα both
open and closed inX, and withX ⊂ Xα andX1 ∩Yα �= ∅, forXo is the intersection of the
Xα’s. This implies the decompositionX1 = (X1 ∩Xα)∩ (X1 ∩Yα) ofX into the union of
two nonempty open and closed subsets, contradicting the assumed connectedness of X1.
Thus, Xo is a component of X.

The character χ induces a character χo on OOO(Xo) by the following condition: If f
is holomorphic on a neighborhood W of Xo, then there is an Xα with Xo ⊂ Xα ⊂ W .
Denote by χα the character on OOO(Xα) induced by χ , and define χo([f ]) to be the number
χα([f ]α) with [f ]α denoting the germ of f on Xα . The functional χo is well defined: Its
definition does not depend on the choice of Xα . The set Xo is a component of X, so it
is holomorphically convex by hypothesis, whence there is xo ∈ Xo such that χo([f ]) =
f (xo) for all f ∈ OOO(Xo).

It follows that the original character χ of OOO(X) is given by χ([f ]) = f (xo) for all
f holomorphic on a neighborhood of X. The theorem is proved.

Note that this theorem gives a (rather involved) alternative proof of the observation
above that each compact totally disconnected set is holomorphically convex.

Harvey and Wells [166] have given a sheaf-theoretic characterization of holomor-
phically convex sets:

Theorem 6.2.11. For a compact subset X of the Stein manifold M , the following three
conditions are equivalent:

(a) X is holomorphically convex.

(b) For each coherent analytic sheaf F on each neighborhood V ofX, the cohomology
groups Ȟ p(X;F ) vanish for p = 1, . . . .
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(c) For p = 1, . . . , the cohomology groups Ȟ p(X;R) vanish whenever the sheaf R
is a sheaf of relations on a neighborhood, V , of X, i.e., whenever R is the kernel of
a sheaf homomorphism ϕ : Op → Oq on V for some choice of positive integers p
and p.

We shall not prove this result here, nor shall we use it below.
C. Laurent-Thiébaut [214] has given a characterization of holomorphically convex

sets in terms of Dolbeault cohomology:

Theorem 6.2.12. The compact subset X of a Stein manifold is holomorphically convex if
and only if the groups H(0,q)(X) vanish in the range 1 ≤ q.

The condition thatH(0,q)(X) vanish is the condition is that each smooth (0, q)-form
that is defined and ∂̄-closed on a neighborhood of X be ∂̄-exact on a possibly smaller
neighborhood of X.

It has been seen above that polynomially convex sets, rationally convex sets, and
Stein compacta are subject to various topological conditions. Holomorphically convex sets
are subject to similar restrictions:

Theorem 6.2.13.[166] IfX is a compact holomorphically convex subset of theN -dimensional
Stein manifold M , then Ȟ p(X;Z) = 0 for p > N .

Proof. This depends on the result that for an N -dimensional Stein manifold N , the co-
homology groups Ȟ p(N ;Z) vanish in the range N + 1 ≤ p. These groups vanish, for
according to Theorem 2.4.1, Hp(N ,Z) = 0 when p > N , and HN(N ,Z) is free. The
universal coefficients theorem for cohomology implies that ȞN(N ,Z) = 0. It follows
that if the compact subset Y of N is O(N )-convex, then Ȟ p(Y ;Z) = 0 whenN+1 ≤ p,
for Y is the intersection of Stein domains in the fixed manifold N .

A compact holomorphically convex set is not necessarily an intersection of Stein
domains, but Theorem 6.2.9 in essence shows that such a set, if connected, is the inverse
limit of a sequence of O(N )-convex compacta that lie in varying Stein manifolds. This
was the idea used by Harvey and Wells in proving Theorem 6.2.13.

The proof of the theorem goes as follows. Suppose first that X is connected. By
hypothesis, X is holomorphically convex, so there is a decreasing sequence �j , j =
1, . . . , of open sets in M with intersection X such that if (�̃j , πj ) is the envelope of
holomorphy of �j , then ∩jπj (�̃j ) = X. For each j , let ιj : �j → �̃j be the canonical
injection, and let Y ′

j ⊂ �̃j be the compact set ιj (X). Let Yj be the O(�̃j )-hull of Y ′
j .

Because �̃j is a Stein manifold, Yj is compact.
For each j = N + 1, . . . , Ȟ p(Yj ;Z) = 0; from this it is to be deduced that

Ȟ p(X;Z) = 0.
For each pair of positive integers j and k with j ≤ k, there is the restriction map

ρj,k : O(�j )→ O(�k). It induces a dual map ρ∗j,k : �̃k → �̃j . These dual maps satisfy
ρ∗j,k = ρ∗j,m◦ρ∗m,k if j ≤ m ≤ k and the condition that ιj = ρ∗j,k◦ιk . They also satisfyπk =
πj ◦ ρ∗j,k , for the projections πj : �̃j → M are simply the duals of the restriction maps

rj : O(M )→ O(�j ). Thus, if χ ∈ �̃k , then for f ∈ O(M ), πk(χ)(f ) = f (πk(χ)) =
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χ(f |�k), and πjρ∗j,k(χ)(f ) = f (πj (ρ
∗
j,k(χ))) = ρ∗j,k(χ)(f |�j) = χ((f |�j)|�k) =

χ(f |�k).
For k ≥ j , the map ρ∗j,k carries Yk into Yj , for ρj,k(Y ′

k) = Y ′
j because Y ′

j = ιj (X) =
ρ∗j,k ◦ ιk(X) = ρ∗j,k(Y ′

k).

Introduce the product space Y = ∏j=1,... Yj , a compact Hausdorff space. Let L
be the closed subset of Y that consists of sequences {yj }j=1,... with the property that for
k ≥ j ,ρ∗j,k(yk) = yj . This nonempty set is the inverse limit of the inverse system {Yj , ρ∗j,k}
of compact spaces. By the continuity property of Čech cohomology, for all nonnegative
integers q, Ȟ q(L;Z) is the direct limit of the system Ȟ q(Yj ;Z). These groups vanish
when q ≥ N + 1, so Ȟ p(L;Z) = 0 when p ≥ N + 1.

The space L is homeomorphic to X. To prove this, introduce the continuous map
η : X → Y by the prescription that for x ∈ X, η(x) ∈ Y is the sequence {ιj x}j=1,....
As noted above, ιj |�k = ρ∗j,k ◦ ιk , so η(x) does lie in L. The map η is continuous, as
follows from the definition of the product topology. It carriesX onto L: If {yj }j=1,... ∈ L,
then the point x = πj (yj ) is independent of j , and it lies in X for X = ∩jπj (�̃j ). We
have η(x) = {yj }j=1,.... Finally, η is injective: If η(x) = η(x′) for x, x′ ∈ X, then for
every function f holomorphic on a neighborhood ofX, f (x) = f (x′), which implies that
x = x′. Consequently, η is a homeomorphism, so the topology of X is the same as that of
L. In particular, the integral cohomology groups of the two spaces coincide.

The theorem is proved in the case that X is connected.
The case of general, not necessarily connected, sets X follows from cohomological

formalities. If X = X′ ∪ X′′ is a decomposition of X into disjoint open, closed subsets,
then there is the corresponding direct sum decomposition Ȟ p(X;Z) = Ȟ p(X′;Z) ⊕
Ȟ p(X′′,Z). Thus, Ȟ p(X,Z) vanishes if and only Ȟ p(Y ;Z) vanishes for every open and
closed subset Y of X.

A component Y ofX is the intersection of a decreasing sequence of open and closed
subsets of X, so it follows that if Ȟ p(X;Z) = 0, then Ȟ p(Y ;Z) = 0.

Conversely, it is to be shown that if each component Y of X satisfies Ȟ (Y ;Z) = 0,
then Ȟ (X;Z) = 0. Denote by {Yα}α∈A the collection of components of X, and assume
that for each α ∈ A, Ȟ p(Yα;Z) = 0. For each pair E,F of subsets of X with E ⊂ F ,
let ιE,F : E → F be the inclusion and let ι∗E,F : Ȟ p(F ;Z)→ Ȟ p(E,Z) be the induced

map of cohomology. By hypothesis, each of the maps Ȟ p(X;Z)→ Ȟ p(Yα;Z) is the zero
map. Consequently, if c ∈ Ȟ p(X;Z), then for all α, ι∗X,Yα (c) = 0. It follows that for some
sufficiently small open and closed subset V of X that contains Yα , we have ι∗X,V (c) = 0.
A finite number of these open and closed subsets V , which can be taken to be mutually
disjoint, cover the compact set X, say Vj , j = 1, . . . , s. The group Ȟ p(X;Z) is equal
to ⊕j=1,...,sȞ

p(Vj ;Z), so the cohomology class c is zero: Ȟ p(X;Z) = 0. Note: It is
not claimed here that the groups Ȟ p(Vj ;Z) all vanish, only that the elements ι∗Z,Vj (c)
are zero.

The theorem is proved.

Corollary 6.2.14. If X is a compact holomorphically convex subset of the Stein manifold
M with dimM = N , then Ȟ p(M ;Z) = Ȟ p(M \X;Z) when p < N − 1.
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Proof. Alexander duality gives that for p < N , Ȟ p(M ;M \ X;Z) = 0. The exact
cohomology sequence for the pair (M ,M \X) then yields the result.

It would be reasonable to expect at this point a homotopy result in the spirit of
Theorems 2.3.1 and to the effect that certain of the homotopy groups of the complementary
set CN \ X vanish when X is holomorphically convex. It seems that nothing is known
in this direction, and there is the following example: No matter how large N is, for a
compact holomorphically convex subset X of CN , the fundamental group π1(C

N \ X)
need not vanish. This is immediate from the fact that, as noted in Section 2.3, there are
Cantor sets, i.e., compact, perfect, totally disconnected subsets of RN for allN ≥ 2 whose
complement is not simply connected although every compact, totally disconnected set is
holomorphically convex.

6.3. Approximation on Totally Real Manifolds

In the two preceding sections, we have discussed the two general classes of sets that will
be central to the approximation theorems of this section. We now turn to the approximation
results themselves.

The first result goes back to a paper of Hörmander and Wermer [183]. The present
form of the result was found by Harvey and Wells [167].

Theorem 6.3.1. If� is a closed totally real submanifold of class C 1 of an open set in CN ,
and if f ∈ C (�), then f can be approximated uniformly on compacta in � by functions
holomorphic on a neighborhood of �.

An extension of this result was given by O’Farrell, Preskenis, and Walsh [270] based
on a method of Berndtsson [49].

Theorem 6.3.2. Let X be a compact holomorphically convex set in CN , and let Xo be
a closed subset of X for which the complementary set X \ Xo is a totally real subset of
the manifold CN \ Xo. A function f ∈ C (X) can be approximated uniformly on X by
functions holomorphic on a neighborhood of X if and only if f |Xo can be approximated
uniformly on Xo by functions holomorphic on X.

It is not assumed in this statement that the totally real setX \Xo has finite area in any
dimension, though, by Corollary 6.1.9, it is known to have locally finite N -dimensional
measure.

Corollary 6.3.3. If X is a polynomially convex subset of CN and Xo is a closed subset
of Xo that is also polynomially convex and for which the complementary set X \ Xo is
contained in a totally real submanifold of class C 1 of CN \ Xo, then P(X) = {f ∈
C (X) : f |Xo ∈ P(Xo)}.

A concrete application of the theorem is given in the following example from [270].
Let Y = {(reiϑ , re3iϑ ) : ϑ ∈ R, r ∈ [ 1

2 , 2]}, a certain smooth totally real annulus in
C2, and let X = Y ∪ T2 with T2 the unit 2-torus. The intersection Y ∩ T2 is the circle
γ = {(eiϑ , e3iϑ ) : ϑ ∈ R}. The set X \ γ is a totally real manifold, and one verifies
that the set X is rationally convex. For this point, verify that if po = (zo, wo) ∈ C2 \ X,
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then one of the polynomials P1, . . . , P4 defined by P1(z, w) = z − zo, P2(z, w) =
w − wo, P3(z) = zwo − zow, and P4(z) = z3wo − z3

ow does not vanish on X. The
polynomials P1 and P2 suffice to show that R-hull X is contained in the product S of two
copies of the closed annulus {ζ ∈ C : 1

2 ≤ |ζ | ≤ 2}. If po ∈ S \ X and |zo| �= |wo|, then
P3 vanishes at po but not on X. If po ∈ S \ X and |zo| = |wo|, then P4 vanishes at po
but not on X. According to Theorem 6.3.2, every continuous function g on X for which
g|γ is approximable uniformly by functions holomorphic onX can itself be approximated
uniformly on the whole of X by functions holomorphic on X, and so, by the rational
convexity of X, by rational functions. It follows that R(X) = C (X), for every function
continuous on γ can be approximated uniformly by polynomials in z1 and 1/z1. These
polynomials are holomorphic on a neighborhood of X.

The following preliminary lemma shows that in the proof of Theorem 6.3.2 it suffices
to suppose that the set X is connected.

Lemma 6.3.4. Let X be a compact subset of CN , and let Y be a closed subset of X. Let
{Xα}α∈A be the set of components of X, and let Yα = Xα ∩ Y for each α ∈ A. Assume
(*) that for each α, every f ∈ C (Xα) that can be approximated uniformly on Yα by
functions holomorphic on Xα can be approximated uniformly on all of Xα by functions
holomorphic on Xα . Then every f ∈ C (X) that can be approximated uniformly on Y by
functions holomorphic onX can be approximated uniformly on the whole ofX by functions
holomorphic on X.

Proof.Assumef ∈ C (X) to be approximable uniformly onY by functions holomorphic on
X. Then for eachα,fα = f |Xα is uniformly approximable onYα by functions holomorphic
onXα , and so by (*),fα is uniformly approximable onXα by functions holomorphic onXα .

Let ε > 0. For all α, let gα be holomorphic on Xα and satisfy ‖gα − fα‖Xα < ε/2.
Let Uα be an open subset of CN containing Xα on which gα is defined. The set

{z ∈ Uα ∩X : |gα(z)− f (z)| < ε}
contains an open and closed subset, say Zα , ofX that contains the componentXα . A finite
number of the sets Zα cover X. If we define the function g by the condition that g = gα
near Zα , then g is holomorphic on a neighborhood of X and satisfies |f − g| < ε on X.

The lemma is proved.

The proof of Theorem 6.3.2 depends on the apparatus of the Cauchy–Fantappiè
theory.

Recall that for a domain D in CN and smooth maps ϕ, f : D → CN with f
holomorphic, the Cauchy–Fantappiè kernel�ϕ;f is defined by�ϕ;f = [ϕ · f ]−Nω′(ϕ)∧
ω(f )withω(f ) = df1∧· · ·∧dfN andω′(ϕ) =∑N

j=1(−1)j−1∂̄ϕ1∧· · ·∧[j ]∧· · ·∧∂̄ϕN .

The dot notation is here used in the sense that if a, b are points in CN , then a · b =∑N
j=1 ajbj . In the development below, the Cauchy–Fantappiè theory will be applied in

particular with f (z) = z − ζ and with ϕ replaced by a smooth map s : D → CN that
depends in a C 1 way on a parameter ζ . We begin with a lemma about the forms �ϕ;f :

Lemma 6.3.5. Let U and D be open sets in CN , and let s : U ×D → CN be a function
of class C 1 that satisfies s(ζ, z) · (z− ζ ) �= 0 when z �= ζ . Assume that
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(a) for each compact subsetK ofU×D, there is a constantCK such that for (ζ, z) ∈ K
|s(ζ, z) · (z− ζ )| ≥ CK |z− ζ |2,

and

(b) |s(ζ, z)| ≤ CK |z− ζ |.
Then for all g ∈ C∞(CN) with supp g a compact subset of U , and for all z ∈ D,

g(z) = −cN
∫

CN
∂̄g(ζ ) ∧�s(ζ,z);ζ−z.

Note that if z ∈ D \ U , then both sides are zero. The constant cN is the constant that

appeared in Section 1.4: cN = (−1)
1
2N(N−1)

(N−1)!
(2πi)N

.

Proof. This is a simple calculation. We can assume z ∈ U . Then∫
CN
∂̄g(ζ ) ∧�s(ζ,z);z−ζ = lim

ε→0+

∫
U∩{ζ :|z−ζ |>ε}

∂̄g(ζ ) ∧�s(ζ,z);z−ζ

= − lim
ε→0+

∫
bBN(z,ε)

g(ζ )�s(ζ,z);ζ−z

= −g(z) lim
ε→0+

∫
bBN(z,ε)

�s(ζ,z);ζ−z

= −c−1
N g(z).

(The integral that appears in the next-to-last line is, except for the factor cN , the Cauchy–
Fantappiè integral of the holomorphic function identically one, and so has the value c−1

N

independently of ε.)

Proof of Theorem 6.3.2. By Lemma 6.3.4 it is enough to treat the case in which the setX
is connected. Recall that by Theorem 6.2.10, a component of a compact holomorphically
convex set is holomorphically convex.

The argument is by duality: It is enough to show that if µ is a measure on X that
annihilates the algebra OOO(X),3 then supp µ ⊂ Xo. The first step in the proof is to remark
that the problem can be localized away from the set Xo. We show that if µ is orthogonal
to OOO(X), then each point xo ∈ X \Xo has a neighborhood U with |µ|(U) = 0.

Fix a point xo ∈ X \ Xo. By hypothesis, the set X \ Xo is totally real, so by The-
orem 6.1.8 there is a neighborhood U ′ of xo such that for some totally real submanifold
W ′ of U ′ of class C 1, which we take to be disjoint from Xo, X ∩ U ′ ⊂ M ′. By shrinking
U ′ a bit if necessary, we can suppose as a matter of convenience that dimW ′ = N . The
manifoldW ′ is of class C 1, so we can choose holomorphic linear coordinates on CN with
respect to which xo is the origin and with respect to which the tangent space ofW ′ at 0 is

3There is an abuse of notation here: One integrates functions, not germs; the elements of OOO(X) are germs. It
seems unlikely that confusion will arise from this abuse of language.
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given by y1 = · · · = yN = 0. Thus, by shrinking U ′ further to obtain the open set U , we
can suppose that W = W ′ ∩ U is given by an equation y = g(x) with g an RN -valued
function on a neighborhood of 0 ∈ RN that is of class C 1 and that satisfies g(0) = 0 and
dg(0) = 0.

Following Berndtsson [49] we find neighborhoods Uo ⊂ U of 0 and U1 of X in CN

and maps s, t : Uo × U1 → CN with the following properties:

(a) s and t are of class C 1,

(b) for each compact subset K of Uo × U1 there is a constant CK such that

|s(ζ, z) · (ζ − z)| ≥ |ζ − z|2

when (ζ, z) ∈ Uo × U1,

(c) |s(ζ, z)| ≤ CK |ζ − z| when (ζ, z) ∈ K ,

(d) for ζ ∈ Uo and z ∈ X, s(ζ, z) = t (ζ, z), and

(e) for ζ ∈ Uo, the partial function t (ζ, ·) is holomorphic on a neighborhood of X.

The utility of these maps is shown by the following conclusion of the proof, granted
the existence of maps s and t with properties (a)–(e). We show that if g is a smooth function
on CN with support contained in Uo, then

∫
X
g(z) dµ(z) = 0: By Lemma 6.3.5,∫

X

g(z) dµ(z) = −cN
∫
X

{∫
CN
∂̄g(ζ ) ∧�s(ζ,z);ζ−z

}
dµ(z)

= −cN
∫
X

{∫
Uo

∂̄g(ζ ) ∧�t(ζ,z);ζ−z
}
dµ(z)

= 0,

because the inner integral in the next-to-last equation is holomorphic on a neighbor-
hood of X by property (e). The support of the measure µ must lie outside Uo, because∫
CN
g(z) dµ(z) = 0 for all choices of g. It follows that supp µ ⊂ Xo as desired.
The main effort of the proof is to construct the maps s and t with the properties

(a)–(e).
We are to construct maps s, t : Uo × U1 → CN . We begin with a more modest

construction: We construct a map s0 : Uo × Uo → CN , and then we will use the solution
of a suitable Cousin I problem to extend it to a larger set. We take z = x+iy and ζ = ξ+iη
both initially restricted to the domain Uo.

Define so : Uo × Uo → CN by

so(ζ, z) = ζ̄ + 2ig(ξ)− (z̄+ 2ig(x)).

Then
so(ζ, z) · (ζ − z) = |ζ − z|2 + 2i(g(ξ)− g(x)) · (ζ − z),
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and therefore, because g is of class C 1 and dg(0) = 0,

|so(ζ, z) · (ζ − z)| > 1

2
|ζ − z|2

when ζ and z are near the origin. If z ∈ W , then so(ζ, z) = ζ̄ + 2ig(ξ) − z. Define
to : Uo × Uo → CN by

to(ζ, z) = ζ̄ + 2ig(ξ)− z,
which is holomorphic in z.

Introduce the function H1 : Uo × Uo → C by

H1(ζ, z) = (ζ̄ + 2ig(ξ)− z) · (ζ − z).

If Ar is the annular domain given by Ar = {z ∈ CN : r ≤ |z| ≤ 2r}, then if r > 0 is
small, we have �H1(ζ, z) > 0 when |ζ | is small and z lies in a neighborhood, which we
shall call V , of Ar ∩W .

By hypothesis, the set X is holomorphically convex and connected, so by Theo-
rem 6.2.4, there is a decreasing sequence {�j }j=1,... of domains CN with ∩j=1,...�j = X
and, if (�̃j , πj ) denotes the envelope of holomorphy of �j , with ∩j=1,...πj (�̃j ) = X.
We can suppose the �’s to satisfy the condition that (Ar \ V ) ∩ πj (�̃j ) = ∅. We do
not need the entire sequence; the main point is that there is a domain � with envelope of
holomorphy (�̃, π) such that π(�̃) ∩ (Ar \ V ) = ∅ but π(�̃) ⊃ X.

Write �̃ = �+ ∪ �− with �+ = {p ∈ �̃ : |π(p)| > r} and �− = {p ∈ �̃ :
|π(p)| < 2r}.

For each ζ near 0, there are functions h̃+ζ ∈ O(�+) and h̃ζ ∈ O(�−) such that for

p ∈ �̃ with π(p) ∈ Ar ,

log H1(ζ, π(p)) = h+ζ (p)− h−ζ (p),

because Cousin I problems are solvable on the Stein manifold �̃. Moreover, the functions
h−ζ and h+ζ can be chosen to depend in a C 1 way on the parameter ζ near zero. For this
additional point, see the appendix to the present section.

With ι : � → �̃ the inclusion map that exhibits �̃ as the envelope of holomorphy
of �, define domains �+ and �− in CN by �+ = ι−1(�+) and �− = ι−1(�−), and
define functions h+ and h− on �+ and �−, respectively, by h+(ζ, z) = h+ζ (ι(z)) and

h−(ζ, z) = h−ξ (ι(z)). If U ′
o ⊂ Uo is a sufficiently small neighborhood of the origin, then

we define a function on U ′
o × (�+ ∪�−),

H(ζ, z) =
{
H1e

h− on U ′
o ×�−,

eh
+

on U ′
o ×�+.

The function H is of class C 1 in ζ near zero and is holomorphic in z, z ∈ �− ∪�+.
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There is a decomposition

H(ζ, z) =
N∑
j=1

tj (ζ, z)(ζj − zj )

with each tj of class C 1 in ζ , ζ near zero, and holomorphic in z, z near X.
The possibility of this decomposition is seen in the following way. Let �o be a

domain in CN with X ⊂ �o ⊂ �− ∪�+ and with the further property that if (�̃o, η) is
the envelope of holomorphy of �o, then η(�̃o) ⊂ �− ∪�+. The manifold U ′

o × �̃o is a
Stein manifold; it is the envelope of holomorphy of U ′

o×�o. Define functions ζ1, . . . , ζN
on U ′

o to be the coordinate functions and η1, . . . ηN to be the coordinates of the map η.
For each ζ ∈ U ′

o, the partial function H(ζ, ·) is holomorphic on �o and so extends
holomorphically to �̃o. Denote this extended function by H̃ . The function ζj − ηj is

holomorphic on U ′
o × �̃o. BecauseH(ζ, z) = eh−ζ (ζ̄ − 2ig(ξ)− z) · (ζ − z) on U ′

o ×U ′
o,

we have
H̃ (ζ, p) = eh−ζ (p)(ζ̄ − 2ig(ξ)− η(p)) · (ζ − η(p))

on U ′
o × η−1(U ′

o) ⊂ U ′
o × �̃o. And on the set (U ′

o × �̃o) \ (U ′
o × η−1(U ′

o)), the functions
ζj − ηj have no common zero. Thus, if (ζo, po) ∈ (U ′

o × �̃o) \ (U ′
o × η−1(U ′

o)), then
there is a neighborhoodWo of (ζo, po) on which there are holomorphic functions ci with
1 =∑j=1,...,N cj (ζ, p)(ζj − ηj (p)). Then inWo,

H̃ (ζ, p) =
∑

j=1,...,N

H̃ (ζ, p)cj (ζ, p)(ζj − ηj (p)).

Thus, ζj − ηj are holomorphic functions on the Stein manifold U ′
o × �̃o with the

property that there exists an open cover {Vj }j=1,... of U ′
o × �̃o such that in each Vj there

are holomorphic C 1(U ′
o)-valued functions Gj,1, . . . ,Gj,N with

H̃ =
∑

k=1,...,N

Gj,k(ζ − p)(ζk − ηk(p)).

Theorem 6.3.13 of the appendix to this section provides holomorphic C 1(U ′
o)-valued

functions G1, . . . ,GN on U ′
o × �̃o that satisfy

H̃ (ζ, p) =
∑

k=1,...,N

Gj (ζ, p)(ζj − ηj (p)).

Restricted toU ′
o×�o, this gives the desired decomposition on a neighborhood ofU ′

o×X.
Denote by t (ζ, z) the vector (t1(ζ, z), . . . , tN (ζ, z)).
For ζ and z both near the origin, define the function ψ by

ψ(ζ, z) = t (ζ, z)−Heh−(ζ + 2ig(ξ)− z).
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With this definition, we have that ψ(ζ, z) · (ζ − z) = 0.
For ζ and z both near the origin, define the map s1 by

(6.7) s1(ζ, z) = eh−(ζ̄ + 2igξ)− z̄− 2ig(x)+ ψ(ζ, z).
For ζ and z both near the origin, we have

s1(ζ, z) · (ζ − z) = e−h−(|ζ − z|2 + 2i(g(ξ)− g(x)) · (ζ − z)+ ψ(ζ, z) · (ζ − z)
> const |ζ − z|2.

Now let α be a smooth function on CN with support contained in a small neighborhood
of the origin and that is identically one on a neighborhood of the origin, and define s by

s(ζ, z) = α(z)s1(ζ, z)+ (1 − α(z))t (ζ, z).
Then s(ζ, z) · (ζ − z) > const |ζ − z|2 when ζ is near the origin and z is near X. Also,
s(ζ, z) < const |ζ − z| on compacta in the domain of definition of s, as follows from
ψ(ζ, ζ ) = 0. That this is so is seen without difficulty: Fix ζ , and set z = −εψ̄(ζ, ζ )+ ζ
with ε small. We have ψ(ζ, z) · (ζ − z) = 0, so

ψ(ζ,−εψ̄(ζ, ζ )+ ζ ) · ψ̄(ζ, ζ ) = 0,

which gives 0 = ψ(ζ, ζ )(εψ̄(ζ, ζ )+O(ε2). Letting ε→ 0 shows that ψ(ζ, ζ ) = 0.
The maps s and t have the properties (a)–(e) that we require, and the theorem is

proved.

Example 6.3.6. The setX of Example 6.1.11 is a compact totally real set. It is not contained
in a totally real manifold. However, by Theorem 6.3.2, every continuous function on X
can be approximated uniformly by functions holomorphic on varying neighborhoods of
X. This approximation is not implied in any obvious way by Theorem 6.3.1.

6.3.A. Appendix on Certain Vector-Valued Function-Theoretic
Problems

Our object in this appendix is to discuss two results used in the proof of Theorem 6.3.2
concerning the dependence on parameters of solutions of certain function-theoretic prob-
lems.

We begin with Cousin I problems depending on parameters. This kind of problem
can be considered in the context of solving ∂̄ with parameters; the approach followed here,
which was developed by Bishop and others, is to regard the problem as one concerning
vector-valued functions. This approach seems to offer the most direct route to the particular
results we need. However, we will not give full details for the development. In a certain
sense they are elementary, depending, as they do, only on some relatively simple parts of
Banach space theory. Nonetheless, the full details of what we need are rather elaborate,
and we will not give them.

One of the principal results of this appendix is the following statement, which was
an essential tool in the proof of the approximation theorem Theorem 6.3.2.
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Theorem 6.3.7. [56] Let M be a Stein manifold, let � be a domain in RM , and let
{Uα}α∈A be an open cover of M . For all α, β ∈ A let the function4 fα,β : Uα,β ×�→ C

be of class C p, p ∈ {1, . . . ,∞}, and for each x ∈ �, let the partial function fα,β(·, x) be
holomorphic. If the functions fα,β satisfy the cocycle condition that fα,β+fβ,γ+fγ,α = 0,
then there are functions Fα : Uα ×�→ C of class C p such that Fα(·, x) is holomorphic
for all x ∈ � and such that fα,β = Fα|Uα,β − Fβ |Uα,β .

That is, the cocycle {fα,β}α,β∈A is a coboundary.
We are going to exhibit this result as a consequence of a more general theorem of

Bishop [56]. The formulation of this theorem requires a preliminary definition.

Definition 6.3.8. IfE is a Fréchet space and {en}n=1,... is a sequence inE, then the series∑
n=1,... en converges absolutely if for every continuous seminorm ‖ · ‖ on E the series∑
n=1,... ‖en‖ converges.

Theorem 6.3.9. Let F be a Fréchet space, and let {Mi}i=1,... be a sequence of complex
manifolds. For each i let ϕi : Mi → F be a holomorphic map. There exist a sequence
{bn}n=1,... in F and a sequence {Pn}n=1,... of rank-one mutually orthogonal projections of
F to itself with these properties:

(i) For all i,
∑∞
n=1 Pn ◦ ϕi converges on Mi to ϕi .

(ii) For all n, Pnbn = bn, so that Pn ◦ ϕi = ϕ(n)i bn for a ϕ(n)i ∈ O(Mi ).

(iii)
∑∞
n=1 ϕ

(n)
i converges absolutely in O(Mi ).

(iv) For every continuous seminorm ‖ · ‖ on F , the sequence {‖bn‖}n=1,... is bounded.

That the Pn are orthogonal means that Pn ◦ Pm = 0 when m �= n.
For a Fréchet space E there are various equivalent ways of defining E-valued holo-

morphic functions defined on a complex manifold. A convenient one is this:

Definition 6.3.10. A function f : UN → E is holomorphic if there is an expansion

f (z) =
∑
α

eαz
α

in which the summation is over all N -tuples α of nonnegative integers, in which each
coefficient eα is an element of E, and in which zα is the usual monomial zα1

1 · · · zαNN . It is
assumed, moreover, that for every continuous seminorm ‖ · ‖ on E, the series

∑
α ‖eα‖zα

converges absolutely for each z ∈ UN .

With this local definition in mind, the notion of holomorphic E-valued function on a
complex manifold is immediate: If M is a complex manifold, then f : M → E is
holomorphic if its restriction to every coordinate polydisk in M is holomorphic in the
sense of the definition just given. Grothendieck [156] has given a thorough discussion of
vector-valued holomorphic functions, which includes examples.

4Recall that in this kind of situation, Uα,β denotes the intersection Uα ∩ Uβ .
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We are particularly interested in the special case that the Fréchet spaceE is the space
of C p functions on a domain in RN . Here the seminorms that define the topology are the
seminorms ‖ · ‖p,K defined for each compact subset K of � by

‖g‖p,K = max ‖Dβg‖K,
where Dβg is the derivative of order β of g, and the maximum is extended over all the
derivatives of order not more than p.

The following is a simply verified fact.

Lemma 6.3.11. If M is a complex manifold and � is a domain in RN , then f : M →
C p(�) is holomorphic if and only if the function F : M × � → C given by F(z, x) =
f (z)(x) is of class C p and for each x ∈ �, the partial function f (·, x) is holomorphic
on M .

The derivation of Theorem 6.3.7 from Theorem 6.3.9 depends on a functional-
analytic lemma.

Lemma 6.3.12. [56] If E′ and E′′ are Fréchet spaces and ϕ : E′ → E′′ is a surjective
continuous linear mapping, then for every sequence {e′′}n=1,... in E′′ such that the series∑
n=1,... e

′′
n converges absolutely, there is a sequence {e′n}n=1,... in E′ such that for all n,

ϕ(e′n) = e′′n, and such that the series
∑
n=1,... e

′
n converges absolutely.

Proof. The space E′ is a Fréchet space, so its topology is defined by a sequence of semi-
norms.Accordingly, there is a sequence {‖·‖k}k=1,... of seminorms that defines the topology
and that is increasing in that ‖ · ‖k ≤ ‖ · ‖k+1 for all k = 1, . . . . Such a sequence is called
a defining sequence of seminorms for E′.

The map ϕ is surjective and so open. Consequently, for each k, the set {ϕ(y) : y ∈
E′, ‖y‖k < 1} contains the set {z ∈ E′′ : ‖z‖′′k < 1} for some seminorm ‖ · ‖′′k on E′′.
For each k, choose j (k) with

∑∞
n=j (k) ‖e′′n‖′′k < 2−k . Thus,

∑∞
k=1
∑∞
n=j (k) ‖e′′n‖′′k < ∞.

Without loss of generality, the j (k) can be assumed to be strictly increasing in k.
If n satisfies j (k) ≤ n < j (k + 1), choose e′n ∈ E′ with ϕ(e′n) = e′′n and ‖e′n‖k ≤

‖e′′n‖′′k . With k(n) the least value of k for whichn < j(k+1), we have
∑∞
n=1 ‖e′n‖k(n) <∞.

For all p, ‖e′n‖p ≤ ‖en‖′k when k > p, so it follows that for all p the series
∑∞
n=1 ‖e′n‖p

converges, whence the series
∑∞
n=1 e

′
n converges absolutely in E′. The lemma is proved.

Theorem 6.3.7 can be deduced from Theorem 6.3.9 as follows. We are given an open
covering of M and an associated set of Cousin I data with values in C p(�). There is no
loss of generality in assuming the open cover to be countable and indexed by the positive
integers. Thus {Ui}i∈N is an open cover of M , and fi,j is a holomorphic function on Ui,j
with values in C p(�). The functions fi,j satisfy the cocycle condition. Choose elements
bn ∈ C p(�) and mutually orthogonal rank-one projections Pn of C p(�) such that for
all i and j ,

∑
n Pn ◦ fi,j converges on Ui,j to fi,j ; for all n, Pn ◦ fi,j = f

(n)
i,j bn with

f
(n)
i,j ∈ O(Ui,j ); for all i and j , the series

∑∞
n=1 f

(n)
i,j converges absolutely in O(Ui,j );

and, finally, the sequence ‖bn‖ is bounded for every continuous seminorm ‖ · ‖ on C p(�).
By hypothesis, M is a Stein manifold, so C-valued Cousin I problems are solv-

able on it. In particular, the range of the continuous linear mapping δ : ⊕i∈NO(Ui) →
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⊕i,j∈NO(Ui,j ) given by δ({gi}i∈BN
) = {gi |Ui,j − gj |Ui,j }i,j∈N is the space, which we

shall denote by Z , of all {hi,j }i,j∈N with hi,j ∈ O(Ui,j ) that satisfy the cocycle condition.
This is a closed subspace of the product ⊕i,j∈NO(Ui,j ).

Because the functions f (n)i,j satisfy
∑∞
i,j=1 ‖f (n)i,j ‖C < ∞ for every compact subset

C of Ui,j , the sequence {f (n)i,j } in ⊕i,jO(Ui,j ) is absolutely convergent and so lifts: There

is {f (n)j }j∈N ∈ δ−1(f
(n)
i,j )with

∑ ‖f (n)j ‖ <∞ for every continuous seminorm ‖ · ‖ on the
space ⊕i∈NO(Ui).

If now F (n)j ∈ O(Uj ,C p(�)) is given by F (n)j = f (n)j bn, we have that

fi,j =
∑
n

f
(n)
i,j =

∑
n

(f
(n)
i − f (n)j )bn =

∑
n

F
(n)
i −

∑
n

F
(n)
j .

Theorem 6.3.7 is therefore proved, assuming Theorem 6.3.9.

We are not going to prove Theorem 6.3.9 but instead refer to Bishop’s paper [56] for
the details.

We also need to discuss the solution of a decomposition problem. A general result
sufficient for our purposes is this:

Theorem 6.3.13. Let M be a Stein manifold and � a domain in RM , let h1, . . . , hr ∈
O(M ), let F ∈ O(M ,C p(�)), and let {Ui}=1,... be an open cover of M . If for each
i there are ti = (ti,1, . . . , ti,r ) ∈ Or (Ui,C p(�)) such that in Ui , F = ∑k=1,...,r ti,khk ,
then there are t ∈ Or (M ,C p(�)) such that on all of M , F =∑k=1,...,r tkhk .

First, we notice that the corresponding statement is true if the space C p(�) is replaced
by C so that we are dealing with C-valued holomorphic functions rather than vector-
valued functions. To see this, we suppose that F ∈ O(M ) and that for each i, there are
gi,k ∈ O(Ui) such that

∑
k=1,...,r gi,khk = F in Ui . Define gi,j ;k ∈ O(Uij ) by

gi,j ;k = gi,k|Uij − gj,k|Uij .

Then
∑
k=1,...,r gi,j ;khk = 0 onUij . Thus, if Rh is the sheaf on M defined by the condition

that for every open set V ⊂ M ,

R(V ) = {g ∈ Or (V ) : g1h1 + · · · + grhr = 0},

then the holomorphic vectors gi,j = (gi,j ;1, . . . , gi,j ;r ) are elements of Rh(Uij ). They
satisfy the cocycle condition gi,j + gj,k + gk,i = 0.

The sheaf Rh, which is the sheaf of relations among the functions h1, . . . , hr , is
coherent by one of Oka’s theorems, see [157], so the cohomology group H 1(M ,Rh)

vanishes: There are g̃j ∈ Rh(Uj )with g̃i |Uij − g̃j |Uij = gij for all i, j . OnUij , gi− g̃i =
gj − g̃j , so if G = (G1, . . . ,Gr) with Gk = gk − g̃k on Uk , then G is a well-defined
element of Or (M ) that satisfies

∑
j=1,...,r Gkhk = F .

The crux of this argument is the vanishing of the cohomology group H 1(M ,Rh).
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The case of C p(�)-valued holomorphic functions follows the same general route.
Introduce the sheaf Rh;p defined by

Rh;p(V ) =
{
g ∈ Or (V ,C p(�)) :

∑
k=1,...,r

gkhk = 0

}
.

An argument entirely parallel to the one just given shows that if the cohomology group
H 1(M ,Rh;p) vanishes, then there existsG ∈ Op(M ,C p(�)) such that

∑
k=1,...,r Gkhk= F .

That the group H 1(M ,Rh;p) vanishes is proved in Bishop’s paper [56]. The key is
again Theorem 6.3.9 together with some further functional analysis. We refer to that paper
for the details.

Mazzilli [242] has given a discussion of division problems that is based on integral
formulas.

6.4. Some Tools from Rational Approximation

We are now going to establish some tools from the theory the algebras R(X) on planar
compacta X, tools that will be used below in our further discussion of approximation
results.

We start with a theorem of Bishop [55].

Theorem 6.4.1. If X is a compact subset of C, then C (X) = R(X) if and only if almost
every point of X is a peak point for R(X).

The almost every of the statement is in the sense of planar Lebesgue measure.
A corollary of this theorem is the Hartogs–Rosenthal theorem, Theorem 1.6.4, which

has already been proved by other means.

Proof. It is plain that if C (X) = R(X), then every point of X is a peak point for R(X).
For the opposite implication, let P denote the set of peak points for R(X), and

suppose that R(X) �= C (X). There is then a nonzero measure µ supported on X that
is orthogonal to R(X). The measure µ annihilates R(X), so the Cauchy transform µ̂

vanishes on C \ X. Also, because µ is not the zero measure, the function µ̂ is not almost
everywhere zero, as follows from Lemma 1.6.5. Consequently, there is a set E ⊂ X of
positive Lebesgue measure such that µ̂ vanishes at no point of E. Because the measure
µ is finite and so assigns nonzero mass to at most countably many points, the set E can
be supposed to contain no point to which µ assigns nonzero mass. We shall show that
E ⊂ X \ P , which contradicts the hypotheses of the theorem.

Suppose for the sake of contradiction that there is a point zo ∈ P ∩ E. Let δ denote
the unit point mass concentrated at the point zo. Put c = µ̂(zo), a nonzero quantity. We
show that the measure ν defined by ν = (z− zo)−1µ− cδ is orthogonal to R(X). This is
equivalent to showing that if f is a rational function on C without poles on X, then

(6.8)
∫
f (z)

z− zo dµ(z) = cf (zo).
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To establish this equality, write f (z) = {(f (z) − f (zo))/(z − zo)}(z − zo) + f (zo) to
find that ∫

f (z)dµ(z)

z− zo =
∫
f (z)− f (zo)
z− zo dµ(z)+ f (zo)

∫
dµ(z)

z− zo .
Because (f (z)−f (zo))/(z−zo), as a function of z, is in R(X), the first integral vanishes,
so we have the desired formula (6.8). There is f ∈ R(X) with 1 = f (zo) > |f (z)| for all
z ∈ X \ {zo}, for by hypothesis, zo ∈ P . For all n = 1, . . . ,

c =
∫
f n(z)

z− zo dµ(z).

As n → ∞, the integrals on the right tend to zero, so necessarily c = 0. But c �= 0, and
the proof is complete.

The next result, due to Alexander [5], is in the spirit of the observation made in
Section 1.6 that the algebras R(X) on planar compacta are locally determined algebras.

Theorem 6.4.2. If X is a compact subset of the plane with X = ∪j=1,...Xj where each
Xj , j = 1, . . . , is a compact set with C (Xj ) = R(Xj ), then C (X) = R(X).

Proof. Because for each j , C (Xj ) = R(Xj ), each Xj has empty interior, and the set X
itself has empty interior by the Baire category theorem.

Suppose that C (X) �= R(X). There is then a nonzero finite measureµwith (minimal,
closed) support S ⊂ X that is orthogonal to R(X): That the measure µ is orthogonal to
R(X) implies that the Cauchy transform µ̂ vanishes on C \X and so on C \ S, for every
point of C \S is a limit point of C \X. The Baire category theorem implies that one of the
sets S ∩ Xj contains an open subset U of S. By the decomposition property introduced
in Section 1.6.1, the orthogonal measure µ can be decomposed as the sum µ = µ′ + µ′′
with µ′ and µ′′ both nonzero measures on S orthogonal to R(S), µ′′ supported in U , and
with suppµ′ \ suppµ′′ nonempty. Because C (Xj ) = R(Xj ), µ′′ is necessarily the zero
measure. Thus, µ = µ′, which contradicts the choice of S as the support of µ.

Theorem 6.4.3. There is a compact subsetX of the plane with the properties that R(X) �=
C (X) but the only Jensen measures for R(X) are point masses.

It seems that the first example of this phenomenon was found by McKissick in his
thesis [243, 244]. The details of this example can be found in the book [345]. They are
complicated; a considerable simplification has been effected by Körner [211]. The example
of McKissick goes far beyond the result stated in the theorem in that it is an example of
a compact set X in the plane for which R(X) �= C (X), but R(X) is normal in the sense
that if E and F are mutually disjoint closed subsets of X, then there is f ∈ R(X) with
f |E = 1 and f |F = 0.

The construction contained in the following proof of the theorem was given by
Browder [73].

Proof. The set X will be exhibited as an intersection ∩n=0,...Xn of an inductively con-
structed sequence of compact subsets of the plane. ForX0 take the unit square {z = x+iy :
0 ≤ x, y ≤ 1}. If X0, . . . , Xn−1 have been constructed, denote by Sn the collection of all
Gaussian integers p = α + iβ, α, β ∈ Z, for which the point 2−np lies in the interior of
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Xn−1. Then let Gn be the union of all the open squares with centers 2−np for a p ∈ Sn
and with sides of length 2−3n+1. The set Xn is defined to be Xn−1 \Gn.

The setsXn are compact and constitute a decreasing sequence. The setX is compact,
nonempty, and of positive area. That the area is positive is a consequence of the observation
that the sum of the areas of the sets Gn is less than one: The set Gn is the union of not
more than 22n squares each of which has area 2−6n+2. The setX also has the property that
R(X) �= C (X). For each n the set Xn is a certain closed domain with piecewise smooth
boundary: It is obtained from the squareX0 by removing a finite number of smaller squares.
Thus, if the measure νn is defined on Xn by

∫
g dνn = ∫

bXn
g(z) dz, then because the

sum of the lengths of the perimeters of squares that constitute all the Gn’s is finite, the
measures νn are bounded uniformly in norm. Let ν be a weak∗ limit point of this sequence
of measures. The measure ν is supported in X, and it is not the zero measure:∫

z̄ dν(z) = lim
n→∞

∫
z̄ dνn(z) = lim

n→∞

∫
Xn

dz̄ ∧ dz = 2i AreaX �= 0.

Thus, as claimed, ν is not the zero measure. It does, however, annihilate the algebra R(X),
for if the rational function R has no poles on X, then it has no poles on some Xn, and for
all m ≥ n,

∫
R dνm = 0.

What has to be shown to complete the proof is that the only Jensen measures for the
algebra R(X) are the point masses at points of X.

This depends on an arithmetic fact:

Lemma 6.4.4. For all x ∈ X, there exist infinitely many n’s for which there are pn ∈ Sn
such that

max{|�(x − 2−npn)|, |�(x − 2−npn)|} < 21−n.

We assume this lemma for the moment and complete the proof of the theorem.
Consider a point x ∈ X, and define the function un by

un(z) = cn(log 2 − log |z− qn|) = cnlog

∣∣∣∣ 2

z− qn
∣∣∣∣

with cn = [log 2 − log |x − qn|
]−1 for a sequence qn of points such that for each n,

qn = pn2−n for a pn ∈ Sn, and |x − qn| < 21−n. This function is harmonic on a
neighborhood of the setX. Let µ be a measure onX that is a Jensen measure for the point
x with respect to the algebra R(X). We have |z− qn| ≥ 2−3n for all n and all z ∈ X and
|x − qn| < 21−n, so

0 ≤ un(z) ≤ log 2 + log 23n

log 2 + log 2n−1
< 4

for all z ∈ X. Also, un(x) = 1, and un(z) → 0 for all z ∈ X \ {x}. For the latter point,
note that qn → x, so |z− qn| is bounded away from zero. Thus,

1 = un(x) ≤
∫
un(z) dµ(z)→ µ({x}),
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and µ is seen to be the point mass concentrated on the point x. The theorem is proved,
subject only to the verification of the lemma.

Remark. The proof just given did not use the full hypothesis that the measureµ is a Jensen
measure: It suffices for µ to satisfy the weaker condition that log | ∫ g dµ| ≤ ∫ |log g| dµ
for all invertible elements of the algebra R(X). Such measures are called Arens–Singer
measures. They satisfy log | ∫ g dµ| = ∫ |log g| dµ for all invertible elements g of R(X)

Proof of Lemma 6.4.4. It will be a notational convenience to use in this proof the notation
that ‖ · ‖∞ is the norm on C defined by ‖x + iy‖∞ = max{|x|, |y|}. Thus for zo ∈ C and
r > 0, the ball {z ∈ C : ‖z − zo‖∞ < r} is the open square in C centered at the point zo
and of side 2r . Denote this ball byQ(zo, r).

The proof of the lemma is executed by showing that if x ∈ X, then for any n > 3
that is not divisible by 3, the desired pn exists. It is sufficient to show that for such n,
x ∈ Q̄(p2−n, 2−n).

Fix an n > 3 that is not divisible by 3.
We consider two cases. First it may be that

Q̄(x, 2−n) ∩Q(p2−m, 2−2m) = ∅
for allm < n and all p ∈ Sm. In this case, any Gaussian integer p with p2−n ∈ Q̄(x, 2−n)
will work.

In the contrary case that there is a Gaussian integer p such that

2−3m < ‖p2−n − q2−m‖∞ < 2−3m + 2−n

for some m < n, q ∈ Sm, and ‖p2−n − x‖∞ ≤ 2−n, we show that p ∈ Sn. If not, there
are k < n and r ∈ Sm such that

‖p2−n − r2−k‖∞ < 2−3k.

Then

0 ≤ ‖r2−n − q2−m‖∞
≤ ‖r2−k − p2−n‖∞ + ‖p2−n − q2−m‖∞
≤ 2−3k + 2−3m + 2−n

(6.9)

with r ∈ Sk, q ∈ Sm, and k,m < n. Without loss of generality, let k ≤ m. Then

‖q2−m − r2−k‖∞ > 2−3k

because q ∈ Sm, so

(6.10) ‖q − r2m−k‖∞ > 2m−3k.

If m > 3k, then because we are computing the distance between Gaussian integers in the
supremum norm ‖ · ‖∞, (6.10) implies

‖q − r2m−k‖∞ ≥ 1 + 2m−3k.
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Then (6.9) and (6.10) imply 1 < 2−2m + 2m−n, which is impossible, since n > m ≥ 1.
If, on the other hand, m ≤ 3k, then ‖q − rm−k‖∞ > 0, so as above,

‖q − rm−k‖∞ ≥ 1.

In this case, it follows that

1 ≤ 2−m + 2m−3k + 2m−n.

There are now two cases. First, it may be that 2m−3k and 2n−m are both 1
2 . In this case,

m − 3k = 1 = n − m, which implies that n is divisible by 3, which contradicts the
hypothesis about n. Alternatively, 2−m and 2m−3k are both 1

2 . In this case, k = m = 1,
which is impossible, for S1 contains a single element.

This completes the proof of the lemma and of the theorem.

6.5. Algebras on Surfaces

There are some striking results about approximation on compact two-dimensional mani-
folds, possibly with boundary. With a little extra effort, this work can be executed in the
setting of uniform algebras on surfaces generated by smooth functions rather than in that
of polynomial approximation on embedded surfaces, so it is this more general context in
which we shall work initially.

Consider a compact two-dimensional manifold �, perhaps with boundary, of class
C 1. Let A be a uniform algebra on � that is generated by functions of class C 1, so that
the subalgebra A1 of A that consists of all the functions in A of class C 1 is dense in A.

Definition 6.5.1. The exceptional set of � is the complement of the set of points p with
the property that there exist functions f1 and f2 in A1 such that the differential df1 ∧ df2
does not vanish at p.

We shall use consistently the notation that E is the exceptional set.

Lemma 6.5.2. [130] If � is the spectrum of A, then every point of � \ E is a peak point
for A.

Proof. The proof depends on the result that local peak points are peak points—recall
Theorem 2.1.20.

Let p be a point of� \E. Choose local real coordinates x1, x2 on a neighborhood of
the point p with respect to which p is the origin. The point p is not in the essential set, so
there are f1, f2 in A1 such that the form df1 ∧ df2 does not vanish at the point p. The f ’s

can be chosen to vanish at p. Let F be the column vector
[
f1
f2

]
. If J denotes the Jacobian

matrix [∂fj /∂xk] evaluated at p, then

F(q) = Jx(q)+ o(x(q)).
The matrix J is invertible, so this equation can be solved approximately for the vector x.
Using this solution, compute the norm ‖x(q)‖2: With t denoting transpose,

(6.11) ‖x(q)‖2 = x(q)tx(q) = F(q)t (J−1)tJ−1F(q)+ o(‖x(q)‖).
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The quantity F(q)t (J−1)tJ−1F(q) is a polynomial in the functions f1 and f2, and so
lies in the algebra A1. Call this element g. The equation (6.11) implies that there is a
neighborhoodU of p so small that g(U \{p}) is contained in the right half-plane. We have
g(p) = 0. If h is an entire function that takes the value one at the origin and is strictly less
than one in modulus at every other point of the closed right half-plane, then the function
h ◦ g lies in A and achieves a local maximum at the point p. We are to conclude from this
that there is a function in the algebra A that peaks at the point p. Because � is assumed
to be the spectrum of the algebra A, the local peak point theorem, Theorem 2.1.20, yields
this conclusion.

Given a measureµ on� and given a continuous function g on�, the measure g∗µ is
the measure on the complex plane, which has compact support, defined by

∫
ϕ d(g∗µ) =∫

�
ϕ ◦ g dµ.

The following theorem of Freeman [130] is basic for much of what follows.

Theorem 6.5.3. If � is the spectrum of A, then for every f ∈ A1 and every µ ∈ A⊥, the
Cauchy transform of the measure f∗µ vanishes almost everywhere [dL ] on C \ f (E),
whence supp f∗µ ⊂ f (E).

This result is not simple. There is, though, a relatively simple result of the same
flavor in the context of general uniform algebras.

Lemma 6.5.4. If B is a uniform algebra on the compact space X that is its spectrum,
and if µ is a measure on X that annihilates B, then for every g ∈ B, g∗µ annihilates the
algebra R(g(X)).

Proof. The set g(X) is the spectrum σBg, so r ◦ g ∈ B for every rational function r on the
plane that has no poles on g(X). Thus

0 =
∫
X

r ◦ g(x) dµ(x) =
∫
g(X)

r(z) d(g∗µ)(z).

Consequently, g∗µ annihilates R(g(X)).
Thus, the essential content of Theorem 6.5.3 is the vanishing of the Cauchy transform

of f∗µ a.e. [dL ] on f (X) \ f (E).
Proof of Theorem 6.5.3. We are to show that

(6.12)
∫

1

ζ − z d(f∗µ)(ζ ) = 0 a.e. [dL ] off f (E).

The integral on the left is
∫
�

1
f (x)−z dµ(x). The measure f∗µ is a finite measure, so

|f∗µ| = f∗|µ| is a finite measure on C, and, by Lemma 1.6.5,∫
d|µ(x)|

|f (x)− z| =
∫

C

d|f∗µ|(ζ )
|ζ − z| <∞ a.e. [dL ].

We restrict attention to those z ∈ C for which this integral is finite. Also, for almost every
point z ∈ C, the fiber f−1(z) is a finite set, as follows from Eilenberg’s inequality and
the finiteness of the area of �, and Sard’s theorem implies that almost every value of f
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is a regular value for f . Thus, to prove the theorem, it is enough to deal only with points
z ∈ C\f (E) for which f−1(z) is a finite set and for which, with f = u+ iv, the functions
u and v give real coordinates at each point of the fiber f−1(z).

Fix a z ∈ C \ f (E) with these properties. We are going to construct a sequence {fn}
in A such that limn→∞ fn = 1

f−z and |fn| ≤ 2
|f−z| a.e. [d|µ|]. The construction of this

sequence is based on a lemma that is easily stated but whose proof is rather involved:

Lemma 6.5.5. There are functions h and h1 in A such that h = (f − z)h1 and h(�) ⊂
{0} ∪ {ζ ∈ C : |ζ − 1| > 1}.

Let us assume the lemma for the moment and proceed to the construction of the
functions fn. For n = 1, . . . , let

φn(ζ ) = 1

ζ

(
1 − 1

(ζ − 1)2n

)
.

The function φn is holomorphic on the whole plane except for a pole at the point ζ = 1.
If |ζ − 1| > 1, then φn(ζ ) → 1

ζ
, and |φn(ζ )| < 2

ζ
. Theorem 1.2.25 implies that the

function fn = (φn ◦ h)h1 lies in A. For all n we have |fn| ≤ 2
|f−z| , and as n → ∞,

fn → 1
h
h1 = 1

f−z .
With these functions, the proof of the theorem concludes with an application of the

Lebesgue dominated convergence theorem: Because the function
∣∣ 2
f−z
∣∣ is integrable with

respect to the measure µ, we can write∫
d(f∗µ)(ζ )
ζ − z =

∫
dµ(x)

f (x)− z = lim
n→∞

∫
fn(x) dµ(x) = 0.

The proof of Lemma 6.5.5 depends on a result about finding a holomorphic function
with prescribed zeros, the solution of a multiplicative Cousin problem, which is a small
variation of a result given by Rossi [303, Theorem 2.4]:

Lemma 6.5.6. Let X be a compact, polynomially convex set in CN , let U be an open set
in CN , and let g ∈ O(U). Assume that the set {z ∈ X ∩ U : �g(z) ≥ 0} is closed in
CN (or, equivalently, in X). There is then an open setW in CN that contains X on which
there is defined a holomorphic function ψ that is zero-free on X \U and such that ψ/g is
holomorphic and zero-free onW ∩ U .

Proof. LetU ′ be a relatively compact neighborhood of {z : �g(z) ≥ 0}∩X whose closure
is contained in U . Denote by W ′ a neighborhood of X \ U ′ such that W ′ ∩ Ū ′ ⊂ {z :
�g(z) > 0}. Let W ′′ be a neighborhood of X \ W ′ with W̄ ′′ ⊂ U ′. Then W ′ ∪ W ′′ is
an open set that contains X. The set X is polynomially convex, so there is a polynomial
polyhedron � with X ⊂ � ⊂ W ′ ∪W ′′. As a polynomial polyhedron, � is a domain of
holomorphy. We have that�∩U ′ ⊂ {z : �g(z) > 0}, because�∩ bU ′ ⊂ W ′ ∩ Ū ′. Also,
� ∩ {g = 0} is closed in �.

Choose a locally finite cover {Vj }j=0,1,... of � as follows. Take V0 = U ′ ∩ �,
Vj ∩ {z : g(z) = 0} = ∅ for all j �= 0, and V0 ∩ Vj ⊂ {z : �g(z) > 0} for all
j �= 0. Then ∪j=1,...Vj ∩ V0 ⊂ {z : �g(z) > 0}, so the function log g has a well-defined
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determination on this set. Denote by h a branch of log g defined on this set. Define a set of
Cousin II data associated with the cover {Vj }j=0,1,... by f0 = g, and fj = 1 if j > 0. Then
fj/fk ∈ O∗(Vjk) for all choices of j and k. Define brancheshjk of 1

2πi log fj/fk as follows:
hjk = 0 unless one of j, k is zero, and hj0 = −h, h0j = h. With these determinations
the quantities cijk = hij +hjk +hki all vanish. Thus—recall the discussion of the second
Cousin problem at the beginning of Section 2.1—there is a function ψ ∈ O(�) such that
for each index j = 0, 1, . . . , ψ/fj is holomorphic and zero-free on Vj . This completes
the proof.

Proof of Lemma 6.5.5. For the proof of this lemma, it is convenient to suppose � to be
a C 1 submanifold of a Euclidean space and to use the distance function on the ambient
space to compute distances on �.

Fix attention on a p ∈ f−1(z). There are functions g1, g2 ∈ A1 such that dg1 ∧ dg2
does not vanish at p. Accordingly, near p in �,

(6.13) dg1 ∧ dg2 = Adf ∧ df̄ with A = ∂g1

∂f

∂g2

∂f̄
− ∂g1

∂f̄

∂g2

∂f
.

That this quantity does not vanish implies that one of the derivatives with respect to f̄
does not vanish. Suppose ∂g2/∂f̄ (p) �= 0. The first-order Taylor expansion of g2 about p
in terms of f and f̄ is

(6.14) g2(q) = g2(p)+ ∂g2

∂f
(p)(f (q)− z)+ ∂g2

∂f̄
(p)(f (q)− z)+ r(q),

in which the remainder term r(q) is o(1)|f (q)− z| = o(1)dist (p, q). Define the polyno-
mial G(z1, z2) by

(6.15) G(z1, z2) = −
[
∂g2

∂f̄
(p)

]−1

(z1 − z)
[
(z2 − g2(p))− ∂g2

∂f
(p)(z1 − z)

]
,

so that

G(f (q), g2(q)) = −|f (q)− z|2 −
[
∂g2

∂f̄
(p)

]−1

(f (q)− z)r(q),

as follows from (6.14). The function G(f (q), g2(q)) is divisible by f (q) − z in A, and,
because r(q) = o(dist (q, p)), we have that �G(f (q), g2(q)) < 0 when q is confined
to a suitable deleted neighborhood of p in �. Thus it is a solution to our problem on a
neighborhood of the point p.

The fiber f−1(z) is finite; let its points be p1, . . . , pr . Perform the preceding con-
struction at each of the pointspj to obtainG1, . . . ,Gr withGj constructed using functions
g1,j , g2,j . Set ϕj = g2,j . For j = 1, . . . , r , letWj be a neighborhood of pj small enough
that �Gj(f (q), ϕj (q)) < 0 for q ∈ Wj \ {pj }. By making Wj small enough, we can
suppose that f |Wj is a homeomorphism. For each j , let W ′

j be a compact neighborhood
of pj contained in the interior ofWj .



318 Chapter 6. Approximation

There are finitely many functionsϕr+1, . . . , ϕs inA such that if g = (f, ϕ1, . . . , ϕs) :
� → Cs+1, then g(� \Wj) ∩ g(W ′

j ) = ∅.
The set g(�) is the joint spectrum σA(f, ϕ1, . . . , ϕs). In the event that A admits a

finite number of generators, we can suppose that among the ϕ’s there is a set of genera-
tors, in which case this joint spectrum is polynomially convex. In general, it will not be
polynomially convex.

For each j = 1, . . . , r , let Vj be an open set in Cs+1 that is disjoint from g(� \Wj)
and with Vj ⊃ g(W ′

j ). The sets g(W ′
j ) are mutually disjoint, so we can suppose the sets

Vj to be mutually disjoint. We have g(pj ) ∈ Vj and �Gj < 0 on Vj ∩ g(� \ {pj }).
Define a holomorphic functionGo on V = ∪j=1,...,sVj by the condition that on Vj ,

(6.16) Go(z0, . . . , zs) = Gj(zo, zj ),
whereGj is the polynomial associated with ϕj asG(z1, z2) in (6.15) is associated with the
construction of the initial function g2. The function Go is well defined and holomorphic
in V . It satisfies Go(f−1(z)) ⊂ V and V ∩Go(� \ f−1(z) ⊂ {�Go < 0}.

If the joint spectrum σA(f, ϕ1, . . . , ϕs) were polynomially convex, we could invoke
Lemma 6.5.6. However, it typically is not, and a further step, based on the Arens–Calderón
approximation process of Lemma 1.5.8, has to be used. Let� be a relatively compact open
subset of Cs+1 with f−1(z) ⊂ � and �̄ ⊂ V . The set g(�) \� is compact, and the sets
g(�) \� and � ∩ {�Go ≥ 0} are disjoint. Let D′ be a neighborhood of g(�) \� that is
disjoint from � \ {�Go ≥ 0}. The set D′ ∪� is a neighborhood, D, of g(�).

There are elements ϕs+1, . . . , ϕt of A such that under the orthogonal projection
ϕ : C t+1 → Cr+1, the polynomially convex hull σA(f, ϕ1, . . . , ϕt )̂ is carried into D.
The set

ϕ(σA(f, ϕ1, . . . , ϕt )̂ ) ∩� ∩ {go ≥ 0}
is closed in Cr+1, and the function Go ◦ ϕ is holomorphic on ϕ−1(�). The set

σA(f, ϕ1, . . . , ϕt )̂ ∩ {ζ ∈ ϕ−1(�) : �Go ◦ ϕ(ζ ) ≥ 0}
is closed in C t+1.

Let � : � → Ct+1 be the joint spectrum map given by

�(p) = (f (p), ϕ1(p), . . . , ϕt (p)).

By Lemma 6.5.6 there exists a function ψ holomorphic on a neighborhood�′ of the joint
spectrum σA(f, ϕ1, . . . , ϕt )without zeros on�′ \π−1(�) such thatψ/Go ◦ϕ is zero-free
on π−1(�) ∩ σA(f, ϕ1, . . . , ϕt ).

The function ho defined on � by

ho(p) = ψ(f (p), ϕ1(p), . . . , ϕt (p))

is in A because of Theorem 1.5.7. We obtain the desired function h of the lemma by
modifying ho slightly. First, we can choose ψ such that ho takes the value one at each
point of the fiber f−1(z): If the initially chosen ψ does not yield this, replace it by ηψ
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with η a suitable zero-free entire function. Because of (6.16), arg Go ◦ ϕ ◦�(q)→ π as
q → f−1(z), so the same is true of arg ψ ◦�.

The function f gives local coordinates near each point of the fiber f−1(z), so �
carries a neighborhood of f−1 homeomorphically into C t+1. If we shrink �, then

�(� \ f−1(z)) ∩ ϕ−1(�) ⊂ {�Go < 0}.
Becauseψ has no zeros on�(�)\ϕ−1(�), if we multiplyψ by a sufficiently large positive
constant, we shall have |ψ | > 2 on�(�)\�. Thusψ maps�(�) into {ζ ∈ C : |ζ −1| >
1 ∪ {0}. By shrinking �′ a little if necessary, we can suppose that �′ \ ϕ−1(�) is disjoint
from the complex hyperplane {(zo, . . . , zt ) ∈ C t+1 : zo = z}, so ψ is divisible by zo − z,
for Go ◦ ϕ has this property in ϕ−1(�). That is,

ψ(zo, . . . , zt ) = (zo − z)ψ1(zo, . . . , zt )

for a function ψ1 holomorphic on �′. If h1 = ψ1 ◦� and h = (f − z)h1, then h and h1
lie in A and are as required by the lemma.

The proof of Theorem 6.5.3 is now complete

In the following theorem we continue the notation thatA is a uniform algebra on the
compact surface �, possibly with boundary, of class C 1 that is generated by functions of
class C 1. It is supposed that � is the spectrum of A. The set E is the exceptional set.

Theorem 6.5.7. [130] The algebraA contains the ideal IE of all functions continuous on
� and vanishing on E.

Proof. For this proof, denote by B the algebra generated by the functions of the form
ϕ ◦f , where f runs throughA and, for fixed f , ϕ runs through the collection of functions
continuous on C that vanish on f (E). We take B not to contain the identity. The algebra
B is closed under complex conjugation and is contained in the ideal IE of C (�). It also
separates points on the set � \ E, as follows from Lemma 6.5.2. The Stone–Weierstrass
theorem implies that the algebra B is dense in the algebra IE .

Suppose now that µ ∈ A⊥. We shall show that necessarily µ ∈ B⊥. If f and g are
in A, then gµ ∈ A⊥, so by Theorem 6.5.3, supp f∗(gµ) ⊂ f (E). Consequently, if ϕ is
continuous on the plane and vanishes on f (E), then

0 =
∫
C

ϕ d(f∗(gµ)) =
∫
�

ϕ ◦ f d(gµ) =
∫
�

(ϕ ◦ f )g dµ =
∫
�

g d((ϕ ◦ f )µ).

This equation holds for all choices of g, so the measure (ϕ ◦ f )µ is orthogonal to A. Thus
each measure (ϕ ◦ f )µ is orthogonal to A, so the measure µ lies in B⊥, and the theorem
is proved.

As an application, we have the following corollary, which settles a point left open in
Section 5.3.

Corollary 6.5.8. [128] If � is a strictly pseudoconvex domain with boundary of class C 2

in a Stein manifold of dimension two, and if� is a compact C 2 disk contained in b� that
is totally real except for a finite number of hyperbolic points, then O(�)|� is dense in
C (�). In particular, if � ⊂ C2 and �̄ is polynomially convex, then P(�) = C (�).
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A special case is that in which � is contained in bB2, when P(�) = C (�).

Proof. According to Theorem 5.3.1, the disk� is O(�̄)-convex. The exceptional set is the
finite set H of hyperbolic points, and the theorem just proved shows that O(�) contains
the ideal IH of all continuous functions on � that vanish at each point of H . It follows
that O(�) = C (�).

The next lemma will be used below.

Lemma 6.5.9. Let A be a uniform algebra on the compact space X. If there is a dense
subalgebra Ao of A such that for each f ∈ Ao and each measure µ that annihilates A,
f∗µ = 0, then A = C (X).

Proof. The hypotheses imply that for f ∈ Ao,

0 =
∫
z̄ d(f∗µ)(z) =

∫
f̄ (x) dµ(x).

Thus, for all f ∈ Ao, f̄ ∈ A. Consequently, the algebra A is closed under conjugation,
whence, by the Stone–Weierstrass theorem, A = C (X).

Freeman gave some further corollaries of Theorem 6.5.3.

Corollary 6.5.10. [130] If the essential set is totally disconnected or if it has zero area,
then A = C (�).

Proof. Suppose first that E has measure zero. Fix a measure µ ∈ A⊥. If f ∈ A is of
class C 1, then the Cauchy transform of the measure f∗µ vanishes off the set f (E) ⊂ C,
which has zero planar measure. Consequently, the measure f∗µ is the zero measure by
Lemma 1.6.5. The result follows from the preceding lemma.

If the set E is totally disconnected, again fix a measure µ ∈ O(�)⊥. The algebra
O(�) contains the ideal IE , so the measure µ must be concentrated on the set E, and it
is orthogonal to the uniformly closed subalgebra B of C (E) generated by the restrictions
f |E, f ∈ A. The spectrum of B is the set E: If χ is a character of B, then f �→ χ(f |E)
is a character of A, so there is a unique point s ∈ � such that χ(f ) = f (s) for all f ∈ A.
Because B contains the ideal IE , the point s must lie in E, so E is indeed the spectrum
of B.

The set E is totally disconnected, so it admits decompositions of the form E = E′ ∪
E′′ withE′ andE′′ disjoint open and closed subsets ofE. By Lemma 1.5.9, there are finitely
many functions f1, . . . , fr in A such that if F = (f1, . . . , fr ), then F(E′)∩ F(E′′) = ∅.
If U ′ and U ′′ are disjoint open sets in Cr with U ′ ⊃ F(E′) and U ′′ ⊃ F(E′′), then the
function g that is 1 onU ′ and 0 onU ′′ is holomorphic on the joint spectrum σB(f1, . . . , fr ),
and so g◦F ∈ B. It follows thatB contains enough real-valued functions to separate points
on E so that B = C (E). Then µ must be the zero measure, for it annihilates B.

The corollary is proved.

Freeman in [130] gives the following example. Let To be a compact totally discon-
nected subset of the interval [− 1

2 ,
1
2 ] of positive length. Let T ⊂ Ū be the set of all points

z = x + iy with x ∈ To. The set E is neither totally disconnected nor of zero area. Let go
be a smooth function on R with g′o = 0 on the set To and nowhere else. Define g ∈ C (Ū)
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by g(x + iy) = go(x), and let A be the closed subalgebra of C (Ū) generated by z and g.
The exceptional set for the algebraA is the set T : ∂g

∂z̄
vanishes on T and nowhere else on Ū.

The set � = {(z, g(z)) : z ∈ Ū} is polynomially convex, as follows from Theorem 1.2.16,
and, by the same theorem, P(�) = C (�), so that A = C (Ū).

Thus, the exceptional set of an algebra of the kind contemplated in Theorem 6.5.3
need not be totally disconnected or of measure zero for the algebra to coincide with the
algebra of all continuous functions on the surface.

The following corollary is implicit in Freeman’s paper [130], though it is not stated
there.

Corollary 6.5.11. If � is a real-analytic, two-dimensional compact submanifold of CN

that is polynomially convex, then P(�) = C (�).

Proof. Suppose without loss of generality that � is connected. The set �c of points at
which � is not totally real is a real-analytic subset of �: With ι the inclusion � ↪→ CN ,
it is the set on which all the two-forms ι∗ϑ , ϑ a holomorphic two-form on CN , vanish.
Accordingly, either it is of dimension not more than one or else it is the whole of�. In the
former case, it has two-dimensional measure zero, and Freeman’s result, Corollary 6.5.10,
yields that P(�) = C (�). (This conclusion also follows, albeit less directly, by invoking
Theorem 6.5.12 below.)

In the latter case, each tangent space to� is a complex line, and so by the theorem of
Levi-Civita, Theorem 6.1.12,� is a complex submanifold of CN . The maximum principle
precludes the existence of compact, complex submanifolds of CN , so the corollary is
proved.

There is a further theorem about approximation on two-dimensional manifolds, a
result whose interest lies in part in the absence, which we are going to establish eventually,
of an analogue on manifolds of higher dimension; it is special to the two-dimensional case.
The result was found by Anderson and Izzo [34].

Theorem 6.5.12. If� is a compact two-dimensional manifold of class C 1, ifA is a uniform
algebra on � generated by a family of functions of class C 1 with � as its spectrum and
for which almost every point is a peak point for the algebra A, then A = C (X).

Here almost every is understood with respect to the surface area measure derived
from a fixed Riemannian metric on �.

We shall see in Theorem 6.5.20 below that one cannot prove such a result for three-
dimensional manifolds! The first such example seems to be that of Basener [44], which is
a polynomially convex 3-sphere � in C6 every point of which is a peak point for P(�)

but for which P(�) �= C (�).
It is well to understand something about the context of Theorem 6.5.12. It was a

conjecture current in the 1950s and early 1960s that ifA is a uniform algebra on a compact
space X, if X is the spectrum of A, and if every point of X is a peak point for A, then
A is C (X). This conjecture, called the peak point conjecture, was shown to be false by
Cole in his thesis [90]. (See also [345].) A more concrete counterexample was constructed
a bit later by Basener [44], whose example is a rationally convex subset of bB2. Bishop’s
theorem, Theorem 6.4.1, shows that the peak point conjecture is correct for the algebras
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R(X) on planar compacta, and Theorem 6.5.12 gives some further examples in which the
peak point conjecture is valid.

Corollary 6.5.13. Let� be an open set in CN , let� be a two-dimensional closed subman-
ifold of � of class C 1, and let X be a compact subset of �. If X is polynomially convex
and if almost every point ofX, with respect to the two-dimensional Hausdorff measure on
CN , is a peak point for P(X), then P(X) = C (X).

A simple argument yields the following result, which contains this corollary as a
special case.

Corollary 6.5.14. Let X be a compact subset of a two-dimensional manifold � of class
C 1. IfA is a uniform algebra onX generated by a family of C 1 functions on�, ifX is the
spectrum of the algebra A, and if almost every point of X is a peak point for the algebra
A, then A = C (X).

Proof. We may suppose � to be compact (and without boundary): If � is not compact,
the compact subset X of � is contained in a relatively compact domain � in �, and � is
diffeomorphic under a C 1 diffeomorphism, say ψ , to a domain�o in a compact manifold
�o that is without boundary. SetXo = ψ(X). Denote by F a family of C 1 functions on�
that generates A. Let Fo be the collection of all C 1 functions fo on �o with the property
that for some f ∈ F , fo ◦ ψ agrees on a neighborhood of X with f . Denote by Ao the
uniform algebra on Xo generated by the family Fo. Finally, let B be the uniform algebra
on �o consisting of all the continuous functions g on �o such that g ◦ ψ ∈ A.

By Lemma 6.5.15 below, the spectrum of B is �o, and because almost every point
of X is a peak point for A, almost every point of �o is a peak point for B. The algebra
B is C (�o) if and only if the algebra A is C (X). The corollary now follows by applying
Theorem 6.5.12 to the algebra B.

The following general result about uniform algebras was found by H.S. Bear [47]:

Lemma 6.5.15. Let X be a compact space and let Y be a closed subset of X. Suppose
B to be a uniform algebra on Y for which each character is of the form g �→ g(y) for
some y ∈ Y . If B̃ denotes the subalgebra of C (X) that consists of all the functions f with
f |Y ∈ B, then every character of B̃ is of the form g �→ g(x) for some x ∈ X.

Proof. Let χ be a character of B̃. If B̃E denotes the ideal in B̃ consisting of all the functions
that vanish on E, then χ |B̃E is a character of the algebra B̃E , and so is either the zero
functional or else is the character g �→ g(x) for some point x ∈ X \ Y .5 In the former
case, χ induces a nonzero complex homomorphism of the quotient algebra B̃/BE , which
is naturally identified with the algebra B: The restriction ρ : B̃ → B given by ρg = g|E
is a surjective homomorphism with kernel IE , the ideal of continuous functions onX that

5We established in Section 1.2 that all the characters of the algebra C (Z) for a compact space Z are point
evaluations at points of Z. In the case at hand, we are dealing with the algebra Co(X \ Y ) of all continuous
functions that vanish at the point at infinity on the locally compact space X \ Y . Every character on this algebra

extends to a character of the algebra C
†
o (X \ Y ) obtained by formally adjoining an identity to Co(X \ Y ), which

can be identified in a natural way with the algebra C ((X \ Y )∗) of all continuous functions on the one-point
compacitification (X \ Y )∗ of X \ Y . From this it follows, as we are using above, that each nonzero character of
Co(X \ Y ) is a point evaluation at a point of X \ Y .
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vanish on E. Thus, χ induces a character on the algebra A and so is evaluation at a point
of Y by hypothesis.

The proof of Theorem 6.5.12 requires a preliminary analysis of algebras on disks:

Theorem 6.5.16. Let A be a uniform algebra on the closed unit disk Ū in C generated by
a family F of functions of class C 1. If A contains the function z and if the spectrum of A
is Ū, then with

E =
{
p ∈ Ū : ∂f

∂ζ̄
(p) = 0 for all f ∈ F

}
,

A = {g ∈ C (Ū) : g|E ∈ R(E)}.
In the case that F is a singleton, this result is due to Wermer [371]; the general case

is in [34].
That A contains the function z implies that A contains the disk algebra A(U).

Proof. Let µ be a measure on U that is orthogonal to A. According to Theorem 6.5.3,
the Cauchy transform µ̂ of the measure µ vanishes a.e. [dL ] on C \ E. It follows that
suppµ ⊂ E. The function µ̂ vanishes almost everywhere off E, so µ is orthogonal to the
algebra R(E), and, consequently, A ⊃ {f ∈ C (Ū) : f |E ∈ R(E)}.

If the function f ∈ C 1(Ū) satisfies ∂f

∂ζ̄
= 0 on E, then f |E ∈ R(E), as follows

from the generalized Cauchy integral formula: Without loss of generality, f is defined on
all of C and has compact support. Then there is the representation

(6.17) f (w) = 1

2πi

∫
C

∂f

∂ζ̄
(ζ )
dζ ∧ dζ̄
ζ − w = 1

2πi

∫
C\E

∂f

∂ζ̄
(ζ )
dζ ∧ dζ̄
ζ − w ,

which implies that f is uniformly approximable on E by rational functions, e.g., by
Riemann sums for the integral.

This completes the proof of Theorem 6.5.16.
The proof of Theorem 6.5.12 requires a further lemma.

Lemma 6.5.17. IfX is a compact subset of CN with the properties that (a)X is polynomially
convex, and (b) each point of X is a peak point for the algebra P(X), then every closed
subset Y of X has properties (a) and (b).

Proof. Let Y be a closed subset of X. Plainly each point of Y is a peak point for P(Y ).
What needs to be shown is that Y is polynomially convex. The set X is polynomially
convex, so Ŷ ⊂ X. If x ∈ X \ Y , then, because x is a peak point for P(X), it does not lie
in Ŷ . Done.

Proof of Theorem 6.5.12. Because of the argument in the proof of Corollary 6.5.14, it is
enough to suppose that the manifold� is without boundary. Denote by A1 the subalgebra
of A that consists of functions of class C 1. By hypothesis, A1 is dense in A. The theorem
is proved by showing that for each f ∈ A1 and for each measure µ on � that annihilates
A, the measure f∗µ is the zero measure, whence the result by Lemma 6.5.9.

With E the exceptional set of the algebra A, Theorem 6.5.3 implies that the Cauchy
transform of the measure f∗µ vanishes on C \ f (E), so that supp f∗µ ⊂ E. It suffices
therefore to show that R(f (E)) = C (f (E)).
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Let Cf denote the critical set of the function f . By Sard’s theorem the set f (Cf )
has zero area and so satisfies R(Cf ) = C (Cf ) and, a fortiori, R(Cf ∩E) = R(Cf ∩E).

Now consider a point p ∈ � that is not a critical point for f . There is a compact
neighborhood Vp of p in �′ that is mapped diffeomorphically by f onto a compact disk
�p in the plane centered at f (p), Vp so small that a neighborhood of Vp is mapped
diffeomorphically by f onto a neighborhood of�p. Denote by ψ : �p → Vp the inverse
of the map F |Vp, and let Bp be the subalgebra of C (�p) generated by functions of the
form g ◦ ψ with g ∈ A. The algebra Bp contains the function z, and we shall show that
the spectrum of Bp is �p.

To prove the latter statement, observe that Bp is isomorphic to the uniform algebra
Ap on Vp generated by the restrictions g|Vp as g runs through A. Proving that �p is the
spectrum of Bp is equivalent to proving that Vp is the spectrum of Ap. If χ is a character
of Ap, then g �→ χ(g|Vp) is a character of A, so, because � is the spectrum of A, there
is a unique point qχ ∈ � such that for all g ∈ A, χ(g) = g(qχ ). For every α ∈ C \�p,
the function z − α is invertible in Bp, so for every such α, f − α is invertible in Ap.
This implies that f (qχ ) ∈ �p or, equivalently, that qχ ∈ f−1(�p). It is also evident
that qχ cannot be a peak point for A that lies outside Vp: If it is, then for some h ∈ A,
h(qχ ) = 1 > ‖h‖Vp , which is impossible, because χ is of norm one as a linear functional
on Ap.

Thus, we have that the spectrum of Ap can be identified with the union of Vp and a
subset K of �, necessarily compact, that consists entirely of nonpeak points for A. That
K is compact follows from the observations that the spectrum of Ap is compact and that
Vp is open in this spectrum, for f carries a neighborhood of Vp diffeomorphically onto
a neighborhood of �p. Then Lemma 1.5.10 implies the existence of a finite family of
functions g1, . . . , gr inA such that the joint spectrum σAp(g1, . . . , gr ) is the union of two
compact sets Z′ and Z′′ with Z′ the image of Vp under the map q �→ (g1(q), . . . , gr (q))

from the spectrum ofAp to Cr and Z′′ the image of the complement of Vp in the spectrum
under the same map. By Theorem 1.5.7 there is a function in Ap that is zero on Vp and
greater than one in modulus on the rest of the spectrum of Ap. This is impossible, so the
spectrum of Ap is, as claimed, Vp, and that of the algebra Bp is �p.

Theorem 6.5.16 now implies that the algebra Bp consists of all of g ∈ C (�p)
for which g|f (Vp ∩ E) ∈ R(f (Vp ∩ E)). Because almost every point of � is a peak
point for the algebra A, almost every [dL ] point of �p is a peak point for the algebra
Bp. This implies that almost every [dL ] point of f (Vp ∩ E) is a peak point for the
algebra R(f (Vp) ∩ E), so that by Bishop’s criterion, Theorem 6.4.1, R(f (Vp ∩ E)) =
C (f (Bp ∩ E)). Countably many of the sets Vp cover � \ (Cf ∩ E). Thus, we have
exhibited the compact set f (E) as a countable union of closed sets Sj each of which
satisfies R(Sj ) = C (Sj ). Theorem 6.4.2 implies that R(f (E)) = C (f (E)), and the
theorem is proved.

One situation to which Theorem 6.5.12 applies is that of two-dimensional surfaces
in strictly pseudoconvex hypersurfaces.

Theorem 6.5.18. [34] Let � be an open set in CN , and let � be a closed, strictly pseu-
doconvex hypersurface of class C 2 contained in �. If � is a compact two-dimensional
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submanifold of class C 2, possibly with boundary, of �, then the set of points of� at which
� is not totally real has zero two-dimensional measure. If � is polynomially convex, then
P(�) = C (�).

It is not assumed in this theorem that � is compact.
The proof of this requires a general fact about differentiable functions.

Lemma 6.5.19. [34] Let M be an n-dimensional manifold of class C 1, and let E ⊂ M
be a compact set. Define the subset E∗ of M by

E∗ = {x ∈ M : df (x) = 0 f or all f ∈ C 1(M ) with f |E = 0}.
The set E \ E∗ has n-dimensional measure zero.

Proof. Without loss of generality, assume the manifold M to be an open subset of Rn.
Denote by I 1

E the set of those f ∈ C 1(M ) that vanish onE. For each j = 1, . . . , n,
let E∗

j be the set of those points x ∈ E for which Djf (x) �= 0 for each f ∈ I 1
E . (Here

Dj denotes the operator ∂/∂xj .) The theorem will be proved if it can be shown that for
each j , the set E∗

j has measure zero. We treat the case j = 1.

Take coordinates (t, y) on Rn with t ∈ R and y ∈ Rn−1. For each y ∈ Rn−1, let
E(y) be the set {t ∈ R : (t, y) ∈ E}, and let E∗

1 (y) be the set of those t ∈ R for which
(t, y) ∈ E(y) and the partial derivativeD1f (t, y) = 0. The setE∗

1 (y) contains every limit
point of E(y). The points in E(y) that are not limit points of E(y) are at most countable
in number, so for each y, the set E(y) \E∗

1 (y) is countable, whence, by Fubini’s theorem,
the set E \ E1 has measure zero. The lemma is proved.

Proof of Theorem 6.5.18. Suppose the setE of points at which� is not totally real to have
positive two-dimensional measure. By the last lemma, there is then a point p ∈ � \ b�
such that df (p) = 0 for all f ∈ C 1(�)with f |E = 0. LetM be the set of all such points.
The point p can be chosen to be a point of metric density for the set M , i.e., a point at
which the two-dimensional density ofM is one. For this, one can invoke Theorem 4.2.9.
A much simpler approach is to appeal to the result that almost every point is a Lebesgue
point for the characteristic function ofM . (See [311].)

The surface � is strictly pseudoconvex, so there is a neighborhood �o of p in CN

on which there is a strictly plurisubharmonic function Q of class C 2 such that � ∩�o =
{z ∈ �o : Q(z) = 0} and such that dQ does not vanish on � ∩�o.

Choose holomorphic linear coordinates z1, . . . , zN on CN such that the point p is
the origin and such that the tangent to � at the origin is the z1-axis. By shrinking �o if
necessary, we can suppose that the part of � in �o is a graph over the domain D in the
z1-axis: There are functions g2, . . . , gN of class C 2 defined on D such that

� ∩�o = {(z, g2(z), . . . , gN(z)) : z ∈ D}
and such that dgj (0) = 0 for each j .

If the function q is defined on D by

q(z) = Q(z1, g2(z1), . . . , gN(z1)),



326 Chapter 6. Approximation

then q vanishes identically.

Use the chain rule to compute from this the value of ∂2q
∂z1∂z̄1

(0). The result is the
equation

0 = ∂2q

∂z1∂z̄1
(0) = ∂2Q

∂z1∂z̄1
(0)+

N∑
j=2

∂Q

∂zj
(0)

∂2qj

∂z1∂z̄1
(0).

Each of the functions
∂gj
∂z̄1

vanishes on the set in D that corresponds to the set of points of

� ∩� at which � is not totally real. Consequently, d
∂qj
∂z̄1

vanishes at p. This implies that

0 = ∂2q

∂z1∂z̄1
(0) = ∂2Q

∂z1∂z̄1
(0),

which violates the assumed strict plurisubharmonicity of the functionQ.
The first part of the theorem is now proved. The second assertion follows from

Theorem 6.5.12.

As was stated immediately after the formulation of Theorem 6.5.12, there is no direct
analogue of that result for three-dimensional manifolds. This is shown by a construction
of Izzo [187]. The following example is a minor modification of one of Izzo’s.

Theorem 6.5.20. There is a submanifoldX of bB6 = S11 of class C∞ that is diffeomorphic
to S1 × S2, that is polynomially convex, and that satisfies P(X) �= C (X).

Note that because X ⊂ bB6, every point of X is a peak point for the algebra P(X).
And by Theorem 6.5.12, if � is a compact two-dimensional submanifold of X of class
C 1, then P(�) = C (�). (By Lemma 6.5.17, every compact subset ofX is polynomially
convex.) This example also shows that a polynomially convex subset X of bBN need not
satisfy P(X) = C (X). Theorem 6.5.23 below implies that there can be no example of
this kind with X a real-analytic manifold.

In [187] Izzo gave an example of a smooth submanifold � with boundary in bB5
that is diffeomorphic to bU × Ū—and so is a solid three-dimensional doughnut—that is
polynomially convex and that does not satisfy P(�) = C (�). He also gives an example
of a compact polynomially convex subset E of bB3 for which P(E) �= C (E).

Proof. Denote by S∗ the Riemann sphere. LetE ⊂ C be a compact set contained in a small
neighborhood of the origin for which R(E) �= C (E) but for which each Jensen measure
is a point mass at a point of E. (Such an example was constructed in Theorem 6.4.3.) Let
� be a nonnegative C∞ function on C∗ that vanishes, together with all its derivatives, on
the set E and is otherwise zero-free. By Theorem 1.2.11, there is a function g ∈ C ∞(C∗)
such that R(E) is generated by g and the function z. Let ϕ ∈ C∞(C∗) satisfy ϕ(z) = z
on a neighborhood Uo of E. Choose a neighborhood U1 of E that satisfies Ū1 ⊂ Uo. We
can suppose that the function g satisfies g(z) = 1/z on C∗ \ Ū1. Fix two distinct points α
and β of E, and define ψ(z) = z−α

z−β for z ∈ C∗.
Let A be the subalgebra of C (C∗) that consists of all continuous functions f with

f |E ∈ R(E) and byA the subalgebra of A generated by the five functions ϕ, g, �ψ, �ψ̄ ,
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and �. In fact,A = A . To establish this, note first thatA separates the points of C∗: If z, z′
are distinct points of C∗, there are three cases: If z, z′ ∈ E, then ϕ(z) �= ϕ(z′). If z ∈ E and
z′ ∈ C∗ \E, then �(z) �= �(z′). Finally, if z, z′ /∈ E, then �(z) and �(z′) are both nonzero.
If they are equal, then �(z)ψ(z) �= �(z′)ψ(z′). Thus, A is seen to separate points on C∗.
The algebra A contains the three real-valued functions �, ��ψ , and ��ψ , which separate
points on C∗ \ E, so by the Stone–Weierstrass theorem A ⊃ {g ∈ C (C∗) : g|E = 0}.
Now, finally, A = A . If not, there is a nonzero measure µ on C∗ with

∫
g dµ = 0 for all

g ∈ A but for which
∫
f dµ �= 0 for some f ∈ A . Because A contains all continuous

functions on C∗ that vanish on E, µ is supported by E. The measure µ annihilates the
subalgebra ofA generated by g and z, which, restricted toE, is R(E). Thus,µ annihilates
A , contrary to hypothesis.

Next, the characters of the uniform algebra A are all of the form f �→ f (z) for
some necessarily unique z ∈ C∗, as follows from Lemma 6.5.15.

If we suppose E to be contained in a sufficiently small neighborhood of the origin,
and if we replace ϕ, g, and � by cϕ, cg, and c� for suitably small positive c, we can suppose
that 1

2 < 1− (|ϕ|2 +�2|ψ |+�2|ψ̄ |2 +�2) on all of C∗ and, in addition, that 0 < 2|g| < 1
2

on C. This implies the existence of a positive function r of class C ∞ on C∗ such that

(6.18) |g(z)|2r2(z)+ r−2(z) = 1 − (|ϕ|2 + �2|ψ |2 + �2|ψ̄ |2 + �2).

(Regard this equation as a quadratic equation for r2. It has two solutions, both positive
on C. With A = 1 − (|ϕ|2 + �2|ψ |2 + �2|ψ̄ |2 + �2), the smaller of the two solutions is
1+O(|z|−2)

1−A for z→ ∞. The positive square root of this solution therefore gives the desired
function r . This process does yield a function of class C ∞ on all of C∗.)

Now define a map F : C∗ × C → C6 by

F(z,w) =
(
ϕ(z), g(z)r(z)w,

w̄

r(z)
, �(z)ψ(z), �(z)ψ̄(z), �(z)

)
.

By the definition of F , |F(z, eiϑ )| = 1 for all z ∈ C∗ and all ϑ ∈ R, so F carries C∗ × bU
into bB6. By construction, F is injective. It is also of constant real rank three: on U0
dϕ �= 0, and on C∗ \ Ū1, dg �= 0. Thus, F(C∗ × bU) is a submanifold of bB6 of class
C∞. Call this manifold �. It is diffeomorphic to the product S2 × S1 of spheres.

The manifold � is polynomially convex. We prove this by showing that every char-
acter of P(�) is point evaluation at a point of �, for which it suffices to show that every
Jensen measure for P(�) is a point mass.

For this, take coordinates ζ1, . . . , ζ6 on C6 and introduce the closed subalgebra Q
of P(�) generated by the functions ζ1, ζ4, ζ5, ζ6 and the product ζ2ζ3. This algebra is
isomorphic to the algebra A under the isomorphism � : A → Q given by the condition
that for all f ∈ A ,

(�f )(ϕ(z), g(z)r(z)eiϑ ,
e−iϑ

r(z)
, �(z)ψ(z), �(z)ψ̄(z), �(z)) = f (z)

for all z ∈ C∗ and all ϑ ∈ R. Thus, for ζ ∈ �, �(f (ζ )) = f (F−1(ζ )). The map
� : A → P(�) induces a map �∗ from the spectrum of P(�) to the spectrum of A
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given by�∗χ(f ) = χ(�f ) for all characters χ on P(�) and all f ∈ A . The restriction
of �∗ to �, which is naturally a subset of the spectrum of P(�), is given by

�∗F(z, eiϑ ) = z.
Suppose now that µ is a Jensen measure for the algebra P(�), and define µ∗, a

measure on C, by ∫
g dµ∗ =

∫
g ◦�∗ dµ.

On �, the map �∗ is given by �∗(F (z, eiϑ )) = z, so for f ∈ A , we have that∫
log |f | dµ∗ =

∫
log |f ◦�∗| dµ

≥ log |χ(f ◦�∗)|
= log |χ(�f )|.

The map f �→ χ(�f ) is a character of A , and the last equations show µ∗ to be a Jensen
measure for it. Thus, µ∗ is a point mass, say concentrated on the point z ∈ C∗. It follows
that µ is concentrated on the circle γz = {F(z, eiϑ ) : ϑ ∈ R}. It is multiplicative on
P(�), and so on the restriction algebra P(�)|γz. This restriction algebra is dense in
C (γz), because it contains the functions ζ2|γz and 1

ζ2
|γz. Consequently, µmust be a point

mass concentrated on some point of γz.
Every Jensen measure for P(�) is a point mass at some point of �, so every

character of this algebra is point evaluation at some point of �. Consequently, as desired,
� is polynomially convex.

Finally, P(�) �= C (�). To see this, choose a measure ν on C∗ that annihilates A .
The measure ν is concentrated on the set E. Define a measure ν̃ on � by

(6.19)
∫
h dν̃ =

∫
E

∫ π
−π
h(F (z, eiϑ )) dϑdν.

The measure ν̃ is not the zero measure. It is supported in the set F(E), and it annihilates
the algebra P(X): IfM(ζ) = ζ k1

1 · · · ζ k6
6 is a monomial, thenM vanishes on the support

of ν̃ unless k4, k5, k6 are all zero. And because M|� contains a factor of ei(k2−k3)ϑ , the
integral on the right of (6.19), with h replaced byM , vanishes because of the ϑ integration
unless k2 = k3. Finally, when k2 = k3, and k4 = k5 = k6 = 0, the integral on the right of
(6.19) is

2π
∫
E

ϕk1(z)gk2(z) dν(z),

which vanishes because ν is orthogonal to A .
The theorem is proved.

There is a strong approximation result on compact real-analytic subsets of CN to
which we now turn our attention. Before proceeding to the statement, it seems well to
recall a few ideas from the theory of real-analytic sets. This theory is largely parallel to
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the theory of complex-analytic sets, but it does have its own twists. The books [259] and
[115] develop the theory of real-analytic sets.

To begin with, a real-analytic set in an open set � in RN is a closed subset X of �
with the property that for each x ∈ X, there is a neighborhood Vx of x contained in � on
which there are finitely many real-analytic functions f1, . . . , fr such that

Vx ∩X = {y ∈ Vx : f1(y) = · · · = fr(y) = 0}.
Important examples are the real-analytic submanifolds of open subsets of RN and the
complex-analytic subvarieties of open sets in CN . The notion of real-analytic set is a local
notion, so the idea extends immediately to subsets of real-analytic manifolds. If X is a
real-analytic subset of an open set �, then a point x ∈ X is said to be a regular point (of
dimension d) if there is a neighborhood Vx of X contained in � such that Vx ∩ X is a
real-analytic submanifold of Vx (of dimension d). The set of regular points ofX is denoted
by Xreg. A point x ∈ X is a singular point of X if it is not a regular point. The set of
singular points is denoted by Xsing. The set Xreg is plainly open in X; Xsing closed. The
dimension of a real-analytic setX is the largest integer d such thatX has regular points of
dimension d . A real-analytic subset of a real-analytic manifold is irreducible if it is not a
union of two distinct real-analytic subsets of the ambient manifold.

The metric properties of real-analytic sets are similar to those of complex-analytic
sets. If V is a real-analytic variety of dimension d in an open set in RN , then the measure
of V in dimension d is locally finite: Each compact subset E of V satisfies �d(E) < ∞
and �d−1(Vsing ∩ E) <∞.A source for these estimates is [115, Section 3.4.10].

A fundamental complicating fact about Xsing is that it is not necessarily an analytic
set. This contrasts with the situation for complex-analytic sets. For an example, see [259,
pp. 106–107].

We shall need below the following result, which serves in our context to compensate
for the possible nonanalyticity of the set Xsing. We do not give the proof here but refer
instead to the work of Narasimhan [259, Section 1 of Chapter 2, especially Proposition 5]
for it. The result is essentially related to the possibility of realizing a pure-dimensional
analytic set locally as an analytic cover.

Lemma 6.5.21. LetX be an irreducible real-analytic subvariety of dimension d in the open
set � in Rn. If p ∈ Xsing, there exists a neighborhood V of p in Rn on which are defined
real-analytic functions δ and f1, . . . , fn−d such that δ does not vanish identically on V but
does vanish onXsing∩�, the functions f1, . . . , fn−d vanish onV ∩�, and the differentials
df1, . . . , dfn−d are linearly independent at each point of X \ {x ∈ X : δ(x) = 0}.

The principal result we obtain about approximation in the context of real-analytic
sets is the following:

Theorem 6.5.22. [352] If X is a compact, real-analytic subvariety of CN that is holo-
morphically convex, then every continuous C-valued function on X can be approximated
uniformly by functions holomorphic on (varying) neighborhoods of X.

Corollary 6.5.23. If X is a compact, polynomially convex, real-analytic subset of CN ,
then P(X) = C (X).
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This corollary was proved, under the additional hypothesis that each point of X is a
peak point for P(X), by Anderson, Izzo, and Wermer [33].

In contrast with Theorem 6.5.20, there is the following particular case:

Corollary 6.5.24. IfX is a compact polynomially convex real-analytic subset of CN , then
P(X) = C (X).

In this connection, recall Corollary 6.5.11.

Corollary 6.5.25. If X is a compact rationally convex real-analytic subset of CN then
R(X) = C (X).

In connection with Theorem 6.5.22, Freeman’s result from [131] should be recalled.
It implies that if X is a compact, real-analytic submanifold of CN that is holomorphically
convex, then every f ∈ C (X) that vanishes on the set of nontotally real points of X
can be approximated uniformly by elements of OOO(X). This statement is a special case of
Freeman’s general result.

The proof of Theorem 6.5.22 depends on two results that we will state here and prove
in appendices at the end of this section.

The first of these is due to Diederich and Fornæss [98].

Theorem 6.5.26. A compact real-analytic subvariety of CN contains the germ of no
complex-analytic variety of positive dimension.

The proof of this theorem is given in Appendix 6.5.A below.
The second is a detail, sufficient for our purposes and with a relatively simple proof,

in a more extensive theory of analytic disks with boundary in a prescribed manifold. For
details of the general theory we refer to [172, 285].

Theorem 6.5.27. If � is a closed real-analytic submanifold of an open set in CN and if
the CR-dimension of� is constant and greater than zero at each point, then given a point
p ∈ �, there is a continuous map ϕ : Ū × [0, 1] → CN with the properties that for each
value of t ∈ [0, 1], the function ϕ(·, t) is holomorphic on U, that ϕ carries bU × [0, 1]
into �, that ϕ(·, t) is not constant for some t ∈ [0, 1], that for all ϑ , the partial function
ϕ(eiϑ , ·) extends to be holomorphic in U, and, finally, that the partial function ϕ(·, 0) takes
only the value p.

Appendix 6.5.B contains a proof of this fact.
We now begin the preparations for the proof of Theorem 6.5.23. We start by estab-

lishing some notation that will be used consistently. Fix a real-analytic subset X of an
open set � in CN . The symbol Xc will be used to denote the subset of Xreg at which
this manifold is not totally real. Thus, Xc is a closed real-analytic subset of Xreg. The set
X∗ = Xsing ∪Xc is a closed subset of X. Because Xsing is not necessarily a real-analytic
set, the set X∗ may not be a real-analytic set.

We need the following observation. Recall that the CR-dimension of a real subman-
ifold � of an open set in CN at a point p ∈ � is the dimension (over C) of T C

p �. The
manifold � is a CR-manifold if this dimension is constant.

Lemma 6.5.28. If � is a closed submanifold of class C 1 of an open subset of CN , then
there is an open subset of � on which the CR-dimension of � is constant.
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Proof. Let the real dimension of � be d, and for the integers j = 1, 2, . . . , [ d2 ], let �j be
the set of points p in � at which dim T C

p (�) ≥ j . Each of these is a closed set, because
for a given positive integer q, the Grassmannian of all q-dimensional vector subspaces of

CN is compact. We have � = �0 ⊃ �1 ⊃ · · · ⊃ �[ d2 ]. Let k be the largest integer for
which �k = �. If k = [ d2 ], we are done, for then dim T C

p � is constant on all of �. If

k < [ d2 ], then the CR-dimension of � is constant on the open subset � \�k−1 of �.

Lemma 6.5.29. If X is a compact, holomorphically convex, real-analytic subset of CN ,
and if� is a component ofXreg, then the set�o of points of� at which the CR-dimension
is zero is everywhere dense in �.

Granted that �o is dense in �, the complement � \ �o is a nowhere dense, real-
analytic subset of �.

Proof. To see that �0 is dense, denote by �k the subset of � at which the CR-dimension
is k. If �0 is not dense in �, then, by Lemma 6.5.28, there is a positive integer k such
that �k contains an open subset of �. The set �k is a real-analytic submanifold of an
open set � in CN , and it has constant positive CR-dimension. Fix a point p ∈ �k and let
ϕ : Ū × [0, 1] → CN be the continuous function provided by Theorem 6.5.27. We will
prove that the set ϕ(Ū × [0, 1]) is contained in �.

For the latter point define, for each (z, t) ∈ U × [0, 1], the linear functional Lz,t on
the space OOO(X) of germs of holomorphic functions on X by

Lz,t (f) = 1

2πi

∫
|ζ |=1

f(ϕ(ζ, t))
ζ − z dζ

for all f ∈ OOO(X). These functionals are plainly linear.
Also, for each choice of z ∈ U and each choice of f, the quantityLz,t (f) depends real-

analytically on t ∈ (0, 1) because the function ϕ(ζ, ·) is, for fixed ζ ∈ bU, holomorphic in
U. They are also multiplicative. To see this, let f, g ∈ OOO(X). There is then a ballB centered
at the point p small enough that there are representatives f and g of the germs f and g,
respectively, that are defined and holomorphic in B. By continuity, if δ > 0 is sufficiently
small, then ϕ(Ū×[0, δ]) is contained in B. For such values of z and t , the Cauchy integral
formula implies that Lz,t (fg) = Lz,t (f)Lz,t (g). Each ϕ(ζ, ·) is holomorphic in U when
ζ ∈ bU, so this equality must persist for all values of (z, t) ∈ U × [0, 1]. That is to
say, each of the functionals Lz,t is a character of the algebra OOO(X). By hypothesis, X is
holomorphically convex, so the set ϕ(Ū × [0, 1]) is found to lie in X.

If t ∈ [0, 1] is a value for which ϕ(·, t) is nonconstant, then the set ϕ(Ū × {t})
contains the germ of a one-dimensional complex-analytic variety. Theorem 6.5.26 implies
that X can contain no germ of a complex-analytic variety; we have a contradiction, so, as
claimed, the set �0 of totally real points of �0 is dense in �0.

Note that the argument given above shows that the dimension of no compact holo-
morphically convex real-analytic subset of CN exceedsN ; this is the best possible bound.

Lemma 6.5.30. [33] IfX is a real-analytic subset of dimension d of the open set� in RN ,
and if dim Xc < d , then for each x ∈ X, there is an open set U contained in � such that
for some real-analytic subset Y of � of dimension less than d, (X∗ ∩ U) ⊂ Y .
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Proof. If x /∈ X∗, take U to be disjoint from X∗ and take Y to be the empty set.
If x ∈ X∗, choose a small neighborhoodU of x such thatX∩U has the decomposition

X∩U = Z1 ∩· · ·∩Zs into irreducible components,Zj of dimension dj . Suppose dj = d
when j = 1, . . . , r and dr+1, . . . , ds to be less than d. We can suppose U to be small
enough that for each j , Lemma 6.5.21 applies to each of the sets Zj at the point x. Thus,
there are real-analytic functions δj and fj,1, . . . , fj,n−dj defined onU associated with each
Zj . If�j is the zero set of δj , then (Zj )sing ⊂ �j ∩Zj , and, for fixed j , the differentials
of the functions fj,1, . . . , fj,n−dj are linearly independent at each point of Zj \ �j . By
the definition of the set (Zj )c, there is a finite family �j of real-analytic functions on U
such that (Zj )c ⊂ ∩g∈�j g−1(0). Let Yj = �j ∪ Y ′

j , where Y ′
j is the variety defined by

the functions in�j together with the functions fj,k , k = 1, . . . , n− dj . For the set Y take
the union of all the Y ′

j together with all the pairwise intersections Zj ∩Zj ′ for distinct Zj
and Zj ′ with j, j ′ ≤ r together, finally, with the union of all Zj with r + 1 ≤ j ≤ s. The
set Y so defined is an analytic set of dimension less than d that satisfies X∗ ∩ U ⊂ Y .

An inductive argument yields the next lemma.

Lemma 6.5.31. [33] Let X be a d-dimensional real-analytic subset of the open set � in
RN . If x ∈ X, there exist r > 0 and real-analytic varieties Y1, . . . , Yd in the ball B(x, r)
such that with Yo = X∩B(x, r), we have (a) Y ∗

j−1 ⊂ Yj ⊂ Yj−1 and (b) dim Yj ≤ d−j .

Proof. The set Xc has no interior in X by Lemma 6.5.29, so dim Xc < d . Let x ∈ X. If
x ∈ X\X∗, let r > 0 be small enough that BN(x, r)∩X∗ = ∅, and take Y1 = ∅. If x ∈ X∗,
invoke the preceding lemma to find an r1 > 0 small enough that there is an analytic set
Y1 in the ball BN(x, r1) with dim Y1 < d and BN(r1, x) ∩ X∗ ⊂ Y1 ⊂ BN(x, r1) ∩ X.
With this choice of Y1, both the properties (a) and (b) of the lemma hold. Now proceed by
induction. Assume that Y1, . . . , Yk have been constructed as in the statement of the lemma,
Yj a subvariety of the ball BN(x, rj ) for positive, decreasing radii rj . If x ∈ Yk\Y ∗

k , choose
rk+1 > 0 small enough that BN(x, rk+1)∩ Y ∗

j = ∅, and take Yk+1 = ∅. If x ∈ Y ∗
k , choose

rk+1 > 0 and Yk+1 as in the previous lemma such that BN(x, rk+1) ∩ Y ∗
k ⊂ Yk+1 ⊂

BN(x, rk+1) ∩ Yk , dim Yk+1 < d − k. Then (a) and (b) hold for j ≤ k + 1. For the r of
the lemma, take the smallest of the rj generated in this process. The lemma is proved.

Proof of Theorem 6.5.22. In the rest of the proof, it will be helpful to use the notation
that if Z is a real-analytic set with regular set Zreg and singular set Zsing, then Zcreg is the
subset of Zreg at which Zreg is not totally real, and Z∗ is the set Zcreg ∪ Zsing. The set Z∗
is a closed subset of Z and so is compact if Z is compact.

Theorem 6.3.2 implies that ifX is a compact, real-analytic, holomorphically convex
subset of CN , then each continuous function onX that vanishes onX∗ can be approximated
uniformly onX by elements of OOO(X), whence, ifµ is a measure onX orthogonal to OOO(X),
then suppµ ⊂ X∗.

Let the dimension of X be d , which we assume to be positive.
If x ∈ X, then by Lemma 6.5.31 there is a ball BN(x, r) centered at x and small

enough that for a sequence Y0, . . . , Yd of real-analytic subvarieties of BN(x, r), we have
Y0 = BN(x, r) ∩ X, and Y ∗

k−1 ⊂ Yk ⊂ Yk−1 for each k = 1, . . . , d. Define Zk to be the
compact set (X \ BN(x, r)) ∪ Yk .

The sets Zk are holomorphically convex. This assertion is proved inductively. It is
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true when k = 0, for then Zk = X. We assume, therefore, that Zk is holomorphically
convex and show under this hypothesis that Zk+1 is holomorphically convex. That is, we
show that if χ is a character of OOO(Zk+1), then χ is evaluation at some point of ZK+1. The
character χ of OOO(Zk+1) induces a character of OOO(Zk) by restriction, so there is a unique
point x ∈ Zk such that for all f ∈ OOO(Zk), χ(f) = f(x). We show the point x to lie in Zk+1.

This is based on the inequality |ψ(f)| ≤ ‖f‖Zk+1 , valid for all charactersψ ofOOO(Zk+1)

and all f ∈ OOO(Zk+1).
An argument parallel to one used above shows that Y ck,reg is a nowhere dense, analytic

subvariety ofYk,reg. The approximation theorem, Theorem 6.3.2, implies that each function
continuous onZk that vanishes on (X \BN(x, r))∪Y ∗

k can be approximated uniformly on
Zk by functions holomorphic on a neighborhood of Zk . It follows that if q ∈ Zk \Zk+1 =
Yk \ Yk+1, then there is an h ∈ OOO(Zk) with h(q) = 1 > ‖h‖Zk+1 . Thus, as claimed, the
point x corresponding to the character χ lies in Zk+1, whence Zk+1 is holomorphically
convex.

We now have the sequence X = Zo ⊃ Z1 ⊃ · · · ⊃ Zd in which each Zk is
holomorphically convex, and, moreover, as the preceding argument shows, each Zk is
convex with respect to OOO(Zk−1) in the sense that for each point p ∈ Zk−1 \ Zk , there is
h ∈ OOO(Zk−1) with h(p) = 1 > ‖h‖Zk .

The following lemma applied inductively implies that for each k, OOO(X) is dense
in OOO(Zk) in the sense that if g is holomorphic on a neighborhood of Zk , then g can be
approximated uniformly in Zk by functions holomorphic on X.6

Lemma 6.5.32. Let A and B be compact holomorphically convex subsets of CN with
B ⊂ A and with B convex with respect to OOO(A) in the sense that if p ∈ A \ B, there is
a function f holomorphic on a neighborhood of A such that f (p) = 1 > ‖f ‖B . Then
each function g holomorphic on B can be approximated uniformly on B by functions
holomorphic on A.

This lemma is essentially a version of the Oka–Weil theorem.

Proof. Let O(A) be the closure in C (A) of the algebra of restrictions f |A with f holo-
morphic on A, and let B be the closure in C (B) of the algebra of restrictions f |B with
f ∈ O(A). That A is holomorphically convex implies that the spectrum of the algebra
O(A) is the set A itself, and because B is OOO(A)-convex, the spectrum of the algebra B is
the set B. If we denote by πj the j th coordinate function on CN thought of as an element
of the algebra B, then the joint spectrum σB(π1, . . . , πN) is the set B.

A function g holomorphic on a neighborhood of B is thus holomorphic on the
joint spectrum σB(π1, . . . , πN), so by the holomorphic functional calculus—recall The-
orem 1.5.7, the function g lies in B, which is the statement of the lemma.

Proof of Theorem 6.5.22 concluded. Consider a measure µ on X that is orthogonal to
OOO(X). We know it to be supported in X∗. We show that if suppµ ⊂ Zk , then suppµ ⊂
Zk+1. But because µ is orthogonal to OOO(Zk), the support of µ must be contained in the

6Note that in this work we have never introduced a topology on the space of germs OOO(Y ) for a compact set
Y ⊂ C

N , so the preceding assertion must not be read as the assertion that the topological space OOO(X) is dense
in the topological space OOO(Zk). These spaces of germs do admit natural topologies, and with respect to these
topologies, the approximation assertion is not the assertion of the density of OOO(X) in OOO(Zk).
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set (X \ BN(x, r)) ∪ Y ∗, which is a subset of Zk . Iteration of this process leads to the
conclusion that suppµ is contained in the union of X \ BN(x, r) and a finite set and so
must be contained, in fact, in X \ BN(x, r). For each x ∈ X, there is an r > 0 for which
this conclusion holds, so µ must be supported by the empty set, i.e., µ must be the zero
measure.

The theorem is proved.

6.5.A. Appendix: Holomorphic Varieties in Compact Real Varieties

This appendix is devoted to the proof of the theorem of Diederich and Fornæss quoted
above, Theorem 6.5.26

Proof of Theorem 6.5.26. This result is a consequence of the maximum principle. The
proof breaks naturally into two parts, the first local, the second global.

Let X be a compact, real-analytic subvariety of CN that contains the germ of a
complex-analytic variety of positive dimension. Then X contains the germ of a complex-
analytic manifold, call it M , of positive dimension. Let p ∈ M . Suppose, for the sake of
notation, thatp is the origin. There is then a polydisk UN(r) centered at the origin on which
is defined a real-analytic function χ such thatX∩� = {z ∈ U : χ(z) = 0}. (LocallyX is
defined by the vanishing of a finite number of real-valued, real-analytic functions. For χ
take the sum of their squares.) We can choose r small enough that in UN(r), the function
χ has a power series expansion

χ(z) =
∑
α,β

cαβz
αz̄β

with coefficients cαβ that satisfy cβα = cαβ .
We shall show thatX contains a complex-analytic subvariety of UN(r) that contains

the germ at 0 ofM .
Introduce the function χ̃ : UN(r)× UN(r)→ C defined by

(6.20) χ̃(z, w) =
∑
α,β

cαz
αw̄β,

which is real-analytic, holomorphic in z, and antiholomorphic in w.
Let the dimension of M at 0 be d . There is a polydisk UN(r ′) ⊂ UN(r) on which

are defined holomorphic functions ϕ1, . . . , ϕn, n = N − d, that define M ∩ UN(r ′) as
a complex submanifold of UN(r ′). In particular, dϕ1 ∧ · · · ∧ dϕn vanishes at no point
of UN(r ′).

The function χ̃ vanishes on the diagonal of X × X, and the functions �j given by
�j(z,w) = ϕi(z)−ϕj (w) vanish on the part of the diagonal ofM×M in UN(r ′)×UN(r ′).
Moreover, these functions have nonvanishing differential. Consequently, we can write near
M ×M that

χ̃(z, w) =
∑

j=1,...,n

{
cj (z, w)�i(z, w)+ c̄j (z, w)�̄j (z, w

}
)
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with real-analytic coefficients cj . This implies that when w ∈ M ,

χ̃(z, w) =
∑

j=1,...,n

cj (z, w)ϕj (z)+ c̄j (z, w)ϕ̄j (z),

whence χ̃(·, w) = 0 on M ∩ UN(r) for every w ∈ M . Define V1, a complex-analytic
subvariety of UN(r), by

V1 = ∩w∈M∩UN(r ′){z ∈ UN(r) : χ̃(z, w) = 0}.

Symmetry implies that because χ̃ = 0 on V1 × (M ∩ UN(r ′)), necessarily χ̃ = 0 on
(M ∩ UN(r ′))× V1. Thus, if V2 is the complex subvariety

V2 = {z ∈ UN(r) : χ̃(z, w) = 0 for all w ∈ V1}
of UN(r), then V2 is contained in X and containsM ∩ UN(r ′).

This completes the local part of the proof.
For the global part of the proof, let W be the union of all the germs of complex-

analytic subvarieties of positive dimension contained in X. If W is nonempty, let p be a
point of the closure ofW at maximal distance from the origin. Let UN(p, r) be a polydisk
centered at the point p throughout which the defining function χ admits a power series
expansion as above. Choose a point q ∈ W at distance ε frompwith ε small in comparison
with r . The power series expansion of χ about p can be rearranged to yield a power series
expansion of χ about the point q. This rearranged power series converges in UN(q, r−ε).
By the local part of the argument, there is an analytic variety V in UN(q, r − ε) that is
contained in X and so in W . There is a function f holomorphic on CN such that |f |
assumes its maximum over W̄ at the point p. If ε is small in comparison with r , then |f |
will assume its maximum over V at an interior point of V , contradicting the maximum
principle.

Theorem 6.5.26 is proved.

6.5.B. Appendix on Lifting Disks

The proof of Theorem 6.5.27 requires some preliminaries.
To begin with, we introduce certain spaces that will be convenient for our purposes.

Definition 6.5.33. A1 is the space of all C-valued functions on the unit circle that have
absolutely convergent Fourier series.

Thus, u ∈ A1 if

(6.21) u(eiϑ ) =
∞∑

k=−∞
αke

ikϑ

with ‖u‖1 =∑k |αk| finite.
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Definition 6.5.34. A1,0 is the subspace of A1 comprising the functions of the form (6.21)
with α0 = 0, and A+

1 is the subspace of A1 that consists of the functions of the form (6.21)
with αk = 0 when k < 0.

Alternatively, A1,0 consists of the functions in A1 whose Poisson integrals vanish at
the origin, and A+

1 is the set of functions in A1 that continue holomorphically into the unit
disk. We set A+

1,0 = A+
1 ∩ A1,0, so that A+

1,0 can be identified with the space of functions
holomorphic on U whose power series expansions about the origin converge absolutely
on Ū and that vanish at the origin.

The space A1 is a Banach space with the norm ‖ ·‖1 and is, moreover, a commutative
Banach algebra, for if u, v ∈ A1, then uv ∈ A1 and ‖uv‖1 ≤ ‖u‖1‖v‖1, as a short
calculation verifies. It is not difficult to verify that each character of the Banach algebra A1
is of the form u �→ u(eiϑo) for a fixed point eiϑo ∈ T, so the spectrum of A1 is naturally
identified with T. (As we have done before, we use T to denote the unit circle.) Note that
A1 is not a uniform algebra; it is a proper dense subalgebra of C (T).

A fact basic for our purposes is that multiple power series operate on the algebra A1:

Lemma 6.5.35. Let
∑
α cαz

α be a power series with complex coefficients that is convergent
in the polydisk UN(R) for some R > 0. If f1, . . . , fN are elements of A1 that satisfy
‖fj‖1 < R for j = 1, . . . , N , then the series

∑
α cαf

α converges in the sense of the norm
‖ · ‖1 in A1.7

Here f α = f α1
1 · · · f αNN .

Proof. For such a choice of f1, . . . , fN , the series
∑
α |cα|‖f1‖α1

1 · · · ‖fN‖αN1 converges,
which implies the convergence of the series

∑
α cαf

α in A1.

It will be convenient to use the notation that if B is a Banach space with norm ‖ · ‖
and if ε > 0, then ε − ballB is the open ball in B centered at the origin and of radius ε.
Also, if n is a positive integer, Bn is the direct sum of n copies of B with itself normed
with the norm ‖ · ‖n given by

‖(b1, . . . , bn)‖n = max
1≤j≤n ‖bj‖.

Consider now a function F ∈ O(UN(r)) with power series expansion
∑
α cαz

α

about the origin. Lemma 6.5.35 allows us to define a function F from the product

r − ballAN1 = r − ballA1 × · · · × r − ballA1

(N factors) into A1 by
F(f1, . . . , fN) =

∑
α

cαf
α.

Thus, the map F is analytic as a map from a neighborhood of the origin in AN1 to A1.
7This is a rather weak result, though it is enough for our purposes. It suffices to suppose not that each ‖fj ‖1

is less than R but only that each of the supremum norms ‖fj ‖T is less than R. This is a consequence of the

lemma and the spectral radius formula, according to which ‖f ‖T = limn→∞ ‖f n‖1/n
1 for each f ∈ A1. This

kind of formula, which we have not proved and will not prove, holds in an arbitrary Banach algebra.
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Definition 6.5.36. The linear operator T : A1 → A1 is defined by the condition that if
u = ∑k αke

ikϑ ∈ A1, then T u(eiϑ ) = ∑k βke
ikϑ with βk given by βk = 0 if k = 0,

βk = −iαk if k > 0, and βk = iαk if k < 0.

The map T is continuous with norm one. If u =∑k αke
ikϑ ∈ A1, then

u+ iT u = αo + 2
∑
k=1,...

αke
ikϑ

is the element of A+
1 that is the boundary value of the function f given by f (z) =

αo + 2
∑
k=1,... αkz

k , which is holomorphic on the unit disk. Note that f (0) = α0. The
operator T restricts to the space A1,0 as an isometry of A1,0 onto itself.

The operator T is called the conjugation operator, and T u the conjugate of u.

We now turn to the problem that is our main concern,
Fix a closed real-analytic CR-submanifold � of an open set � in CN . Assume �

to be of dimension d and suppose the CR-dimension of � to be p > 0. Thus, for each
x ∈ �, dim T C

x � = p. Consider a point xo ∈ �.
We begin by considering a special case: Suppose that d = N + p, the generic case.

Choose coordinates z1, . . . , zN with zj = xj + iyj on CN such that xo is the origin and
such that

(6.22) T0� = C
p
z1,...,zp × R

N−p
xp+1,...,xN .

Thus, near the origin, � is given as a graph: For j = p + 1, . . . , N ,

(6.23) yj = gj (z1, . . . , zp, xp+1, . . . , xN)

with the gj real-analytic functions that satisfy gj (0) = 0 and dgj (0) = 0.
We consider the following lifting problem: Given a continuous map ϕ : Ū×[0, 1] →

Cp for which ϕ(·, t) is holomorphic on U for all t ∈ [0, 1] with range sufficiently near the
origin and with ϕ(z, 0) = 0 for all z ∈ Ū, find a continuous map ϕ̃ : Ū×[0, 1] → CN that,
for each t ∈ [0, 1], is holomorphic in the first variable on U and that satisfies π ◦ ϕ̃ = ϕ if
π : CN → Cp is the natural orthogonal projection and the further condition that ϕ̃ carry
bU × [0, 1] into �. Using the space A1 introduced above, we shall prove the existence of
such a map under certain conditions.

Fix ϕ = (ϕ1, . . . , ϕp) ∈ A+p
1 . We seek ψ = (ψ1, . . . , ψN−p) ∈ AN−p

1 such that for
all ϑ ∈ R, the point (ϕ(eiϑ ), ψ(eiϑ )) lies in �. If we set ψ = u + iv with v(0) = 0, so
that ψj = uj + ivj with real-valued functions uj and vj , we want a ψ that satisfies the
conditions that for j = p + 1, . . . , N ,

(6.24) vj (e
iϑ ) = gj (ϕ1(e

iϑ ), . . . , ϕp(e
iϑ ), up+1(e

iϑ ), . . . , uN(e
iϑ ))

for all ϑ ∈ R. For the functions ψ to extend holomorphically through U, they must satisfy
in addition the conditions that vj = T uj with T the conjugation operator T . Because
T 2u = −u + u(0), equation (6.24) leads to the following nonlinear equation for uj ,
j = p + 1, . . . , N :

(6.25) −uj + uj (0) = T [gj (ϕ1, . . . , ϕp, up+1, . . . , uN)],
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which can be solved using the implicit function theorem.
The functions gj , j = 1, N−p, are real-analytic by hypothesis, so they admit power

series expansions
gj (z, x) =

∑
α,βγ

cj ;αβγ zαz̄βxγ

with α and β running through the p-tuples of nonnegative integers and γ running through
the (N − p)-tuples of nonnegative integers. Because the function gj is real-valued, the
coefficients satisfy cj ;αβγ = cj ;αβγ . Let Ro > 0 be small enough that the series converge
when

max{|z1|, . . . , |zp|, |xp+1|, . . . , |xN |} < Ro.
Then for any choice of functions h ∈ Ap1 , h

′ ∈ An−p1 with max{‖h‖1,p, ‖h′‖1,n−p} < R0
and for any choice of j = 1, . . . , n− p, the function defined by

�j(h, h
′) =

∑
α,β,γ

cj :αβγ hαh̄βh′γ

is in A1. In this way, we obtain a function

� = (�p+1, . . . , �N) : (Ro − ballAp1 )× (R0 − ballAN−p
1 )→ AN−p

1 ,

which is analytic. The function� carries (Ro−ballAp1,0)× (R0 −ballAN−p
1,0 ) intoAN−p

1,0 .
Also, if h′ is real, �(h, h′) is also real, i.e., is a vector of real-valued functions.

We define " : (Ro − ballAp1,0)× (R0 − ballAN−p
1,0 )→ A

N−p
1,0 by

"(h, u) = u+ T�(h, u).
As a composition of analytic maps, the function " is analytic.

By �An1 we understand the real subspace of An1 that consists of n-vectors of real-
valued functions. We shall use similar notation in varying situations below.

Theorem 6.5.37. For R1 > 0 sufficiently small, there is a unique continuous map

u : (R1 − ballAp1,0)→ R0 − ball�AN−p
1,0

such that u(0, 0) = 0 and such that "(f, u(f )) = 0. The function u is analytic.

Proof. To establish this, notice first that" does take (Ro−ballAp1,0)×(R0−ball�AN−p
1,0 )

to �AN−p
1,0 . To invoke the implicit function theorem we verify that the partial derivative

Du"(0, 0) : �AN−p
1,0 → �AN−p

1,0 is a linear topological isomorphism. This derivative is a
continuous linear map; what is to be verified is that it is an isomorphism—that it is injective
and surjective. We have that

(Du")(0, 0) = Id + (DuT�)(0, 0).
Thus, to verify that (Du")(0, 0) is an automorphism, it suffices to show that the norm of
(DuT�)(0, 0) is less than one. The operator T has norm one, so it is enough to show that
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(Du�)(0, 0) has norm less than one, which is immediate, for this derivative is the zero
map. To verify this claim, we have to show that for each j there is a bound

�j(0, u) = o(‖u‖1).

For this, note that
�j(0, u) =

∑
γ

cj ;00γ u
γ

and that, because cj ;αβγ = 0 unless |α| + |β| + |γ | > 1, this series yields the bound

‖�(0, u)‖1 ≤ const ‖u‖2
1

for some positive constant, the inequality valid when ‖u‖1 is small. Thus, (Du")(0, 0) is
an isomorphism.

The existence and uniqueness of the continuous function u together with the fact that
it is analytic follows from the implicit function theorem in Banach spaces, which can be
found in [96, p. 151].

We can now give the proof of the main result about lifting disks:

Proof of Theorem 6.5.27. We work initially in the generic case so that the machinery
assembled above applies. The nondegenerate case will be handled by a simple reduction
to the generic case. We have the real-analytic CR-manifold � of an open subset of CN

that passes through the origin and that is defined near the origin by the system of equations
(6.23) so that the tangent space at the origin is given by (6.22). Define f : Ū → Cp by
f (w) = (w,w, . . . , w). This is holomorphic in U. Let F : bU → Cp be f |bU, so that
F(eiϑ ) = (eiϑ , . . . , eiϑ ). The map F lies in A+p

1,0 . For sufficiently small R1, we have the
analytic map

u : (R1-ballAp1,0)→ �AN−p
1,0

constructed above that satisfies "(h, u(h)) = 0 and u(0, 0) = 0. Fix δ > 0 small enough
that δF ∈ R1-ballAp1,0. Thus, for all t ∈ (−1, 1), the function u(tδF ) ∈ AN−p

1,0 is defined.
We can therefore define a map

ϕ : Ū × (−1, 1)→ Cp × CN−p

by
ϕ(w, t) = (tδf (w),H(w, t))

in which the CN−p-valued function H is specified as follows: For fixed t ∈ (−1, 1) the
partial functionH(·, t) is the holomorphic function U(·, t)+ iV (·, t)with real part U that
satisfies

U(eiϑ , t) = u(tδF )(eiϑ ),
V (·, t) is the RN -valued harmonic conjugate of U(·, t) that vanishes at the origin and so
satisfies

V (eiϑ , t) = T (u(tδF ))(eiϑ ).
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For each t ∈ (−1, 1), ϕ(·, t) is holomorphic in U, and ϕ(·, 0) takes the entire disk to the
origin. We also have that ϕ̃(eiϑ , t) ∈ � . This is by construction: The function u satisfies
the equation "(δtF, u(δtF )) = 0 in Ap1,0 ×AN−p

1,0 , so that

T [u(δtF, δtF )] = �(δtF, u(δtF )).
From this it follows that if V = (Vp+1, . . . , VN), then

Vj (e
iϑ , t) =

∑
α,β,γ

cj ;αβγ (δtF (eiϑ ))α(δtF (eiϑ )β [u(δtF, δtF )(eiϑ )]γ .

Thus, we have that for t real and near zero,

ϕ(eiϑ , t) = (δtF (eiϑ ), u(δtF, δtF )(eiϑ )+ ig(δtF (eiϑ ), u(δtF, δtF )(eiϑ )),
which means that ϕ̃(·, t) ∈ �.

Finally, ϕ(eiϑ , ·) is real-analytic on (−1, 1), so it extends holomorphically into a
neighborhood of the origin.

The theorem is proved in the generic case.
The nongeneric case is handled as follows. (See [285].) Consider a real-analyticCR-

submanifold of CN of positiveCR-dimension. Let the real dimension of� be d and let the
CR-dimension be p. Suppose � to contain the origin. Let � be the minimal C-subspace
of CN that contains the tangent space T0�. The dimension of � is p + d = n. By a
suitable choice of coordinates, we can suppose � = Cnz1,...,zn . Let π : CN → Cn be the
orthogonal projection. Under π , a sufficiently small neighborhood of the origin in � is
carried bianalytically onto a generic CR-submanifold,�′, of a neighborhood of the origin
in Cn.

The map π |� is bianalytic on a neighborhood W of the origin onto �′. It therefore
has an inverse map η : �′ → W , which is real-analytic. Moreover, π is holomorphic, so
its differential dπ = π is C-linear on the complex tangent spaces T C

z (�) for z ∈ � near
the origin. That is to say, π |W is a CR-map. Consequently, dη is complex linear on the
complex tangent spaces T C

z (�
′), z ∈ �: If η = (η1, . . . , ηN), then each of the functions

ηj satisfies the tangential Cauchy–Riemann equations on �′.
It follows that the map η extends to a holomorphic mapH defined on a neighborhood

of �′ and taking values in CN .
If we have this holomorphic mapH , then because by the generic case of the theorem,

which has already been established, there is a map ϕ : Ū × [0, 1] → �′ with the desired
properties, the composition H ◦ ϕ is a map of the required kind.

The existence of the holomorphic extension H of η is a consequence of a theorem
of Tomassini [355]. In fact, we need only a local version: For our purposes, it is sufficient
to have an extension of η into a neighborhood of the origin. This extension is provided
immediately by the Cauchy–Kovalevsky theorem [181]: It is desired to solve the differ-
ential equation ∂̄Hj = 0 near the origin in Cn subject to the Cauchy condition Hj = ηj
on �′. The surface �′ is not noncharacteristic for the operator ∂̄ , because it is a CR-
manifold of positive CR-dimension. However, the condition that ηj satisfy the tangential
CR-equations on �′ is the compatibility condition required to guarantee the existence of
the desired function Hj . For full details, see the paper of Tomassini.
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6.6. Tangential Approximation

It is a classical result of Carleman [80] that if η and f are continuous functions on the
real axis in the complex plane with η positive, then there is an entire function F such that
|F(x)− f (x)| < η(x) for all x ∈ R. It is striking that in this theorem, the function η can
decay to zero arbitrarily rapidly at infinity, while the function F can increase arbitrarily
rapidly or oscillate wildly at infinity. Carleman noted that in his result one can replace
the real line by a locally rectifiable curve in C that goes to infinity in both directions or,
indeed, by certain systems of such curves.

The present section is devoted to some more-recent results in the direction of Car-
leman’s work. We begin with a result in the plane in which the real line in Carleman’s
theorem is replaced by more general sets. Then it will be shown that in CN , one can ob-
tain the same kind of tangentially improving approximation on RN . Finally, an analogue
of Carleman’s theorem will be obtained for certain unbounded locally rectifiable curves
in CN .

It will be a convenience to have the following terminology.

Definition 6.6.1. A closed subset X of CN admits tangential approximation if for every
f ∈ C (X) and for every positive continuous function η on X, there is an entire function
F such that |f (x)− F(x)| < η(x) for all x ∈ X.

Connected sets in the plane that admit tangential approximation are often called
Carleman continua.

There is a general principle that applies in the discussion of tangential approximation:

Lemma 6.6.2. The closed subset X of CN admits tangential approximation if and only
if for each f ∈ C (X) there is an entire function F such that |F(x) − f (x)| < 1 for all
x ∈ X.

Proof. Suppose that every f ∈ C (X) can be approximated to within one by an entire
function. Given f ∈ C (X) and a positive continuous function η on X, there is an entire
function g such that �g(x) < ln η(x). There is then an entire function h such that |h(x)−
f (x)e−g(x)| < 1 for all x ∈ X. Thus, the entire function F defined by F(x) = eg(x)h(x)
satisfies |F(x)− f (x)| < |eg(x)| < η(x).

Keldych and Lavrentieff [202] characterized the planar sets that admit tangential
approximation. To state their characterization, it is useful to introduce the following notion.

Definition 6.6.3. An open subsetW of the plane such thatW ∪ {∞} is a connected subset
of the Riemann sphere is locally connected at infinity if there is a function r : (0,∞)→
(0,∞) with limt→∞ r(t) = ∞ and with the property that for every w ∈ W there is an
arc in W ∪ {∞} that connects w to the point at infinity and that lies in {ζ ∈ C : |ζ | >
r(|w|)} ∪ {∞}.

This condition is equivalent to the condition that the subset W ∗ = W ∪ {∞} of the
Riemann sphere be locally connected at the point {∞} in the usual sense of set-theoretic
topology: For each neighborhood V of {∞} inW ∗, there is a connected neighborhood V ′
of ∞ inW ∗ with V ′ ⊂ V .
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It is evident that if X is a closed subset of C such that the set (C \ X) ∪ {∞} is
connected, then C\X has no bounded components. In the event that C\X has no bounded
components, the set C\X is locally connected at infinity if and only if for every closed disk
� in C, the union of the bounded components of the complement of � ∪X is bounded.

Theorem 6.6.4.[202] A closed subset of C admits tangential approximation if and only if
it has no interior, C \ X has no bounded components, and C \ X is locally connected at
infinity.

There is a related theorem of Arakelyan [38] that concerns uniform approximation
on sets that may have interior.

Theorem 6.6.5. If X is a closed subset of C, every continuous function on X that is
holomorphic on intX is uniformly approximable onX if and only if the complement in the
Riemann sphere of the set X is connected, and C \X is locally connected at infinity.

There are simple examples of sets in the plane that do not admit tangential approxi-
mation.

Example 6.6.6. Let E be the closed subset of the plane defined by

E =
{
x + iy ∈ C : x ∈ R, y = 1

n
, n = 1, . . .

}
∪ R,

a union of a sequence of horizontal lines. The complement of this set is locally connected
at infinity, so E admits tangential approximation. If we adjoin to the set E the intervals
In = {n+ iy ∈ C : 1

n
≤ y ≤ 1

n+1 }, n = 1, . . . , we obtain a closed, nowhere dense subset,
X, of the plane whose complement is not locally connected at infinity, so that, according
to Theorem 6.6.4, X does not admit tangential approximation.

In light of Lemma 6.6.2, the theorem of Arakelyan contains that of Keldych and
Lavrentieff.

As an example in the direction of Theorem 6.6.4, there is a result of Roth [304].

Corollary 6.6.7. If the closed, nowhere dense subset X of C is a union of rays of the form
Lϑ = {ρeiϑ : ρ ≥ rϑ } with each rϑ ≥ 0, then X admits tangential approximation.

Such a set can perfectly well have infinite area.
Fuchs [135] has given an exposition of the classical approach toArakelyan’s theorem.

A remarkably simple proof of the sufficiency of the hypotheses of the theorem was found
by Rosay and Rudin [300]:

Proof of Theorem 6.6.5. If the complement ofX is locally connected at infinity, there is an
increasing sequence {�k}k=1,... of closed disks in C with union the entire plane and with the
property that�k+1 contains all the bounded components of C\(X∪�k). Define a sequence
{Xk}k=1,... of subsets of C by the prescription that X0 = X, and Xk = �k ∪ X ∪ H̄k ,
k = 1, . . . , in which Hk denotes the union of the bounded components of C \ (�k ∪X).
By definition, the set C \Xk has no bounded components.

Let f ∈ C (X) be holomorphic on the interior of X, and let ε be a positive real
number. We will define a sequence of functions hn inductively. Take h0 = f . Suppose
h0, . . . , hn have been defined with hk continuous on Xk , holomorphic on its interior.
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Let Dn be a closed disk with �n+1 ∪ H̄n+1 ⊂ Dn ⊂ �n+2. Denote by ψ a smooth
function on C with 0 ≤ ψ ≤ 1, ψ = 1 on Dn and ψ = 0 in C \ �n+2. By Mergelyan’s
theorem, there is a polynomial P with

(6.26) |hn − P | < ε2−n

on Xn+1 ∩�n+1, and

1

π

∫
Xn

∣∣(hn − P)(ζ )∂ψ
∂ζ̄
(ζ )
∣∣dL (ζ )
|ζ − z| < ε2−n

for all z ∈ C. (Note that the integrand has compact support; its support is contained in the
annular set �n+2 \Dn.)

Define rn on C by

rn(z) = 1

π

∫
Xn

(hn − P)(ζ )∂ψ
∂ζ̄
(ζ )
dL (ζ )

ζ − z
and hn+1 on Dn ∪Xn+1 by

hn+1 = ψP + (1 − ψ)hn + rn.
The function rn is holomorphic in Dn, because the integrand vanishes on Xn ∩ Dn. The
function hn+1 is well defined, since 1 − ψ = 0 in Dn. It is continuous on Xn+1 and
holomorphic on the interior of this set. As for the holomorphy of hn+1, this function is
plainly holomorphic at points of the interior of Xn+1 that lie in Dn. For the points in
intXn+1 \Dn, use the fact that there, ∂̄rn = (hn − P)∂̄ψ .

Equation (6.26) and the bound |rn| < ε2−n combine to yield that on Xn,

|hn+1 − hn| = |(P − h)ψ + r| < ε2−n+1.

Thus the limit F(z) = limn→∞ hn(z) exists uniformly on compacta in C and satisfies

|F(z)− f (z)| < ε
on X.

That the conditions of Arakelyan’s theorem are necessary is easily proved. Fix a
closed subset X of C on which each function f ∈ A(X) can be approximated uniformly
by entire functions. If C \X has a bounded component, say V , let w be a point of V , and
let f (z) = 1

z−w . This function is in A(X), but it cannot be approximated uniformly on
X by entire functions. Suppose, indeed, that there are entire functions Fk with Fk → f

uniformly on X. By the maximum principle, the uniform convergence of the sequence
{Fk}k=1,... on bV implies the uniform convergence on V̄ . From this it follows that there
is a function g ∈ A(V̄ ) with g(z) = 1

z−w on bV . Then (z − w)g(z) is in A(V̄ ), equals
one on bV , and is zero at w. Contradiction. Suppose now that C \ X has no bounded
components but that it is not locally connected at infinity. Thus there exist r > 0 and
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a sequence {zn}n=1,... in CN with |zn| → ∞, and with the property that any arc in the
Riemann sphere that misses X and that connects zn to the point at infinity must meet the
circle Kr = {z ∈ C : |z| = r}. For each n, let Dn be the component of C \ (X ∪Kr) that
contains zn. EachDn is bounded. By passing to a subsequence of the zn’s if necessary, we
can suppose theDn’s to be mutually disjoint. We require that r < |z1| < |z2| < |z3| < · · ·
and that |zn| > 1

2 supz∈Dn |z|. Mittag-Leffler’s theorem provides a meromorphic function g
on the plane with simple poles at the points zn, with no other poles, and with residue z2

n at zn.
The function g|X is continuous on X and holomorphic on its interior. Suppose F to be an
entire function that is uniformly within 1 of g onX. SetM = sup|z|=r{1+|F(z)|+|g(z)|}.
If h(z) = (z − zn)(F (z)− g(z)), then h is continuous on X, holomorphic on its interior.
On bDn, we have |h(z)| < 2|zn|M , and the value of h at zn is z2

n. Thus, by the maximum
principle |z2

n| ≤ 2|zn|M . Because zn → ∞, this is impossible for large n, so the function g
cannot be approximated uniformly on X by entire functions. This construction was given
by Fuchs [135]; it is somewhat simpler than the corresponding construction of Arakelyan.

We now take up the problem of tangential approximation in CN . The desideratum is
a characterization of the closed subsets of CN that admit tangential approximation. Such
a characterization is far beyond our grasp, but there are some results in this direction. We
begin by considering RN contained in CN .

Theorem 6.6.8. The subset RN of CN admits tangential approximation.

It seems that this theorem was first given by Hoischen [179], who proved somewhat more:
If the given function f is of class C p on RN , then f and all its derivatives of order not more
than p can be approximated tangentially on RN . Hoischen’s proof makes use of integral
kernels. Theorem 6.6.8 was found independently by Scheinberg [319], whose method was
also to use integral kernels. Scheinberg noted in his paper that the theorem entails the
(previously known) solution of certain nonclassical Dirichlet problems:

Corollary 6.6.9. If f is a continuous function on R, there is a function u harmonic on the
upper half-plane that assumes continuously the boundary values f .

Proof. Given f ∈ C (R), the theorem provides an entire function F such that |F(x) −
f (x)| < 1 for all x ∈ R. The Poisson integral of the bounded function F − f , call it u,
is a harmonic function on the upper half-plane with boundary values F − f . Thus, F − u
solves the Dirichlet problem on the upper half-plane with boundary values f .

Our proof of Theorem 6.6.8 is based on the methods of polynomial convexity and
Oka–Weil approximation; in spirit it is entirely classical and very close to the process used
by Carleman.

We will need to use certain Saturn-like sets: For ρ > 1, let

Xρ = B̄N ∪ {x ∈ RN : |x| ≤ ρ},
a compact set in CN . That Xρ is polynomially convex follows from Kallin’s lemma, The-
orem 1.6.19: Let P be the polynomial given by P(z) = z2

1 + · · · + z2
n. Then P(Xρ) =

Ū∪[0, ρ], and Kallin’s lemma can be invoked to show that the setXρ = B̄N ∪\(Xρ \BN)
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is polynomially convex. The approximation result Theorem 6.3.2 yields that P(Xρ) =
C (Xρ) ∩ P(B̄n). A much simpler route to the latter conclusion is provided by Corol-
lary 8.1.27 below.

Proof of Theorem 6.6.8. We prove that if f ∈ C (RN), then there is an entire function F
on CN such that |F(x)− f (x)| < 1 for all x ∈ RN .

To do this, introduce the sequence {Sk}k=1,... of sets defined by

Sk = B̄N(k) ∪ (B̄N(k + 1) ∩ RN).

These sets are polynomially convex and satisfy P(Sk) = A(Sk).
Fix a small positive c. The Weierstrass approximation theorem provides a polynomial

P1 with |P1(x)− f (x)| < c when x ∈ RN , |x| ≤ 1. By Tietze’s extension theorem, there
is ψ1 ∈ C (RN) with |ψ1| < c and with

ψ1(x) = P1(x)− f (x) for x ∈ RN, |x| = 1.

DefineQ1 ∈ P(S1) by

Q1(z) =
{
P1(z), z ∈ B̄N,

f (z)+ ψ1(z), z ∈ RN, 1 ≤ |z| ≤ 2.

There is a polynomial P2 such that |P2 −Q1| < c/2 on S1.
If z ∈ B̄N , then |P2(z)− P1(z)| < c/2; if x ∈ RN , |x| ≤ 1, then

|P2(x)− f (x)| ≤ |P2(x)− P1(x)| + |P1(x)− f (x)| < c/2 + c;
and if x ∈ RN , 1 ≤ |x| ≤ 2, then

|P2(x)− f (x)| ≤ |P2(x)− f (x)− ψ1(x)| + |ψ1(x) < c/2 + c.
Inductively, suppose that polynomials P1, . . . , Pn have been chosen with the prop-

erties that

|Pk − Pk−1| < c/2k on BN(k − 1),

|Pk(x)− f (x)| < c + c/2 + · · · + c/2k−1, x ∈ RN, |x| ≤ k,

and

|Pk(x)− f (x)| < c/2k−1, x ∈ RN, |x| = k.
Let then ψn ∈ C (RN) satisfy ψn = Pn − f on |x| = n and |ψn| < c/2n−1 everywhere.
Require also that the support of ψn be in |x| < n+ 1

2 . DefineQn ∈ P(Sn) by

Qn =
{
Pn on BN(n),

f + ψn on {x ∈ RN : n ≤ |x| ≤ n+ 1}.
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Let Pn+1 be a polynomial with |Pn+1 −Qn| < c/2n+1 on Sn.
With this construction, we have that on BN(n), |Pn+1−Pn| = |Pn+1−Qn| < c/2n+1.

If x ∈ RN with |x| ≤ n, then

|Pn+1(x)− f (x)| < c + c/2 + · · · + c/2n.
For x ∈ RN with n ≤ |x| ≤ n+ 1,

|Pn+1(x)− f (x)| ≤ |Pn+1(x)− f (x)− ψn(x)| + |ψn(x)| ≤ c/2n + c/2n−1.

We now define the function F to be the sum of the series P1 +∑∞
n=1{Pn+1 − Pn}.

This series converges uniformly on compacta in CN , so F is an entire function. And if
x ∈ RN and no > |x|, then

|F(x)− f (x)| ≤ |Pno(x)− f (x)| +
∞∑
n=no

|Pn+1(x)− Pn(x)| < 3c.

The quantity c can be taken less that 1
3 , so we have constructed an entire function that is

uniformly to within one of f on RN . The conclusion of the theorem now follows from
Lemma 6.6.2.

Another generalization of Carleman’s theorem goes back to a theorem of Alexander
[11], according to which a closed subset of CN that is homeomorphic to R and that
has locally finite one-dimensional measure admits tangential approximation. In his paper,
Alexander indicated that certain stronger results could be obtained by his methods. We
shall work in the context of locally rectifiable dendrites.

Definition 6.6.10. A subsetX of Rn is a locally rectifiable dendrite if it is closed, connected,
has locally finite one-dimensional measure, and satisfies Ȟ 1(X,Z) = 0.

We shall need some information about about the geometry of locally rectifiable
dendrites.

Lemma 6.6.11. If X is a locally rectifiable dendrite in CN , then every compact subset of
X is contained in a compact connected subset of X.

Proof. First of all, X is arcwise connected. Note that if X is compact, then this result is
contained in Theorem 3.3.3. We shall use this result. We consider in the following the
case that X is not compact, i.e., not bounded. Let x ∈ X, and denote by A(x) the subset
of X consisting of all the points y ∈ X to which x can be connected by an arc. The
set A(x) is open: Suppose y ∈ A(x). By Eilenberg’s theorem there are r > 0 such that
X ∩ bBN(y, r) is a finite set. The set X is connected, so it has no compact components.
Thus, each component of BN(y, r) must approach bBN(y, r). Because this sphere meets
X in a finite set, there can be only finitely many components of X ∩ B̄N(y, r), and each
must be open in X ∩ B̄N(y, r). Each of these components is arcwise connected, by the
earlier result cited above. It follows that A(x) is open in X. A similar argument proves it
to be closed. Thus, X is arcwise connected as claimed.

If nowK is a compact subset ofX, let� be a closed ball that containsK and with the
property that b�∩X is a finite set. As in the last paragraph,X∩� has only finitely many
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components, say K1, . . . , Ks . If qj is a point in Kj , and if λj is an arc in X that contains
qj and qj+1 for j = 1, . . . , s1, then the union of the Kj ’s and the λj ’s is a compact,
connected subset of X that contains K .

It is not difficult to characterize the locally rectifiable dendrites:

Lemma 6.6.12. A closed, connected subset X of RN with locally finite length satisfies
Ȟ 1(X,Z) = 0 if and only if it contains no simple closed curves.

Proof. If the closed connected subset X of RN satisfies Ȟ 1(X,Z) = 0, then by Corol-
lary 3.8.17, Ȟ 1(C,Z) = 0 for every compact subset C of X. Thus, X can contain no
simple closed curve

The proof of Lemma 4.7.4 provides the reverse implication.

The main result to be proved in this context is the following.

Theorem 6.6.13. For j = 1, . . . , let Xj be a locally rectifiable dendrite in CN . If the
collection {X1, . . . } is locally finite, and if the Xj are mutually disjoint, then the union
Y = ∪j=1,...Xj admits tangential approximation.

The locally finite condition is the condition that no compact subset of CN meet more than
finitely many of the sets Xj .

There may be finitely many or at most countably infinitely many of the Xj .
As stated, the theorem applies when X is a connected set of finite length with zero

first integral cohomology, a special case of Theorem 3.1.1. That earlier result will be used
in the present developments.

The arrangement of the proof that follows is very similar to the treatment found in the
paper of Gauthier and Santillan [141]; it depends essentially on the work ofAlexander [11].

We begin with a lemma:

Lemma 6.6.14. Let X be a closed subset of CN with zero two-dimensional measure such
that for every compact subset K of CN , the union

∪{Ŝ \X : S a compact subset of K ∪X}
is bounded. If E is a polynomially convex subset of CN with the property that for every
compact subset K of X ∪ E, the hull K̂ is contained in X ∪ E, then for every f ∈ C (X)
that can be approximated uniformly on X ∩ E by polynomials, and for every positive
continuous function η onX, there is an entire function F such that |F(x)− f (x)| < η(x)
for every x ∈ X.

Example 6.6.6 provides an example in which the condition imposed on X is not satisfied.

Corollary 6.6.15. If X is a closed subset of CN of two-dimensional measure zero that
satisfies K̂ ⊂ X for every compact subset K of X and with the property that for every
compact set T of CN , the set ∪{Ŝ \X : S is a compact subset of T ∪X} is a compact set,
then the set X admits tangential approximation.

The corollary follows by taking E to be the empty set in the lemma.

Proof of Lemma 6.6.14 . Construct a sequence {�k}k=1,... of closed balls centered at the
origin as follows. For all k, the interior of �k+1 contains �k , and the radius of �k is at
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least k. Moreover, �1 contains Ŝ \ S for every compact subset S of X. Having chosen
�1, . . . , �n, we choose the ball �n+1 large enough that it contains Ŝ whenever S is a
compact subset of �n ∪X.

By hypothesis, there is a polynomial P0 with |P0 − f | < 1
2η on E ∩ X. Let h0 ∈

C (E ∪X) satisfy h0 = P0 on E and |h0 − f | < 1
2η on�1 ∩X. The set (�1 ∩X) \E has

two-dimensional measure zero, so E ∪ (�1 ∩X) is rationally convex by Corollary 1.6.8.
Moreover, h0 ∈ P(E ∪ (�1 ∩ X)), because E is polynomially convex. Thus, there is a
polynomial P1 such that

|P1 − P0| < 1

2
min{η(x) : x ∈ �1 ∩X}

on E ∪ (�1 ∩X).
Having chosen polynomialsP1, . . . , Pn and functionsh1, . . . , hn−1 withhk ∈ A(�k∪

(�k+1 ∩X)), let hn+1 ∈ A(�n∪ (�n+1 ∩X)) satisfy hn+1 = Pn on�n and |hn+1 −f | <
1

2n+2 η on �n+1 ∩X. Let Pn+1 be a polynomial such that

(6.27) |Pn+1 − Pn| < 1

2n+1
min{η(x) : x ∈ �n ∩X}

on �n and

|Pn+1 − Pn| < 1

2n+3
η

on �N+1 ∩X. Equation (6.27) implies that the sequence {Pn}n=1,... converges uniformly
on compacta in CN to an entire function F . If x ∈ X, then for sufficiently large n, the
point x lies in �n, and we have the estimate

|F(x)− f (x)| ≤ |F(x)− Pn(x)| + |Pn(x)− hn(x)| + |hn(x)− f (x)|
≤ |F(x)− Pn(x)|�n +

1

2n+1
η(x)+ 1

2n+2
η(x).

If n is large enough, the final sum is less than η(x). The lemma is proved.

Proof of Theorem 6.6.13. We are given a locally finite collection {Xj }j=1,... of mutually
disjoint locally rectifiable dendrites in CN , and we are to prove that their union,X, admits
tangential approximation. If K is any compact subset of X, it meets only finitely many of
the Xj ’s and so is contained in a connected set of finite length. It satisfies Ȟ 1(K,Z) = 0,
so by Theorem 3.1.1, it is polynomially convex.

To prove the theorem, it suffices, by Corollary 6.6.15, to show that if � is a closed
ball in CN , then the set

H(�,X) = ∪{Ŝ \X : is a compact subset of � ∪X}
is bounded.

The set X contains no simple closed curves, but � ∪ X can contain simple closed
curves not contained in �. Such a simple closed curve will be called a �-loop. If R ∈ R
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is sufficiently large, then BN(R) contains all the �-loops. To see this, choose an Ro such
that BN(Ro) contains the ball� and such that bBN(Ro) contains only finitely many points
of X, say p1, . . . , ps. Each �-loop L that meets CN \ B̄N(Ro) gives rise to a collection
of open arcs, the components of L \ BN(ro). These arcs are mutually disjoint, and their
endpoints lie among the points pj . Because the setX contains no simple closed curve, two
such arcs can share at most one endpoint. There are only finitely many possible endpoints,
so there can be only finitely many of the arcs. In the same way, we see that only a finite
number of �-loops can meet CN \ B̄N(Ro). Because �-loops are compact, a sufficiently
large ball centered at the origin will contain them all.

That the set H(�,X) is bounded is now a simple consequence of the following
lemma of Alexander [11]:

Lemma 6.6.16. If BN(Ro) contains all the�-loops, then for every R > Ro and for every
compact set K ⊂ � ∪ (X ∩ BN(R)), the hull K̂ is contained in B̄N(Ro) ∪ (X ∩ B̄N(R).

Proof. For t ≥ Ro, put
Yt = � ∪ (X ∩ B̄N(t))

and
At = Yt \ YRo .

Then Yt = YRo ∪ At .
We shall show that for t > Ro, Ŷt = ŶRo ∪ At . For this, notice that

ŶRo ⊂ Ŷt ⊂ ̂[YRo ∪ At ],
so what is to proved is that the set Zt = ŶRo ∪ At is polynomially convex.

According to Theorem 3.1.1, Ẑt \ Zt , if not empty, is a one-dimensional analytic
subvariety of CN \Zt . Suppose this variety not to be empty, and let V be one of its global
branches. We will show that V̄ \ Zt is an analytic subvariety of CN \ Yt . (Note that V is
a subset of CN \ Yt so that V̄ \ Zt is contained in CN \ Yt .) Set Q = ŶRo \ YRo . The set
Q is a one-dimensional variety. We show that near a point x ∈ Q ∩ V̄ , the set V has the
structure of a one-dimensional variety. Because YRo ⊂ Yt , whence ŶRo ⊂ Ŷt , our x lies in
the set Ŷ \ Yt , which is a variety. We also have that Ŷt \ Yt ⊃ Q, so near x, the germ at
x of the set Q is a union of the branches of the germ at x of the variety Ŷ \ Yt . Because
V ∩Q = ∅, the germ at x of the set V̄ is a union of some other branches of the germ at
x of Ŷ \ Yt . Consequently, near x, V̄ = V ∪ {x}, and we have that near ŶRo \ Yt , V̄ is a
variety.

Set W = V̄ \ Yt . Then W̄ \W ⊂ Yt . If z ∈ V ⊂ W , then z /∈ Zt , and so z /∈ ŶRo .
Consequently, there is a polynomial P with P(z) = 0 and �P < 0 on ŶRo . If P vanishes
identically on W , then it vanishes on W̄ , whence P−1(0) ∩ YRo = ∅, and then W̄ ⊂ At .
This is impossible, for At has area zero. Thus, P is nonconstant onW , which implies that
P(W) is a neighborhood of 0 ∈ C. The set P(X) has measure zero in the plane, so there
is α ∈ P(W) \ P(X) arbitrarily near the origin.

Set P ′ = P − α. If α is chosen correctly, we have that (a) �P ′ < 0 on ŶRo ,
(b) P ′(z′) = 0 for a z′ ∈ W , and (c) 0 /∈ P(At ). By (a), P ′ has a continuous logarithm on
ŶRo and so on YRo . By (c), this logarithm extends to a continuous logarithm on all of Yt ,
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because all the�-loops are contained in BN(Ro). Because P ′ vanishes at a point ofW but
has a logarithm on the set Yt , which contains W̄ \W , we have reached a contradiction to
the argument principle, and the lemma is proved.

This concludes the proof of Theorem 6.6.13

There are immediate extensions of some of the results obtained above to results
on tangential approximations on sets in Stein manifolds, results that follow simply by
invoking the embedding theorem. Thus, for example, if the closed subset X of the Stein
manifold M is a locally rectifiable dendrite, then for each pair of continuous functions f
and η on X with η positive, there is a function F ∈ O(M ) with |F(x) − f (x)| < η(x)
for all x ∈ X.

In a similar vein, it is evident that there is an analogue of Theorem 6.6.8 in which
CN is replaced by BN and RN by RN ∩ BN .

In addition to the results on asymptotic approximation given above, Frih and Gauthier
[133] have discussed asymptotic approximation on products of dendrites that are piecewise
C 1, and Kasten and Schmieder [197] have given some other results in this direction.

Some other results on tangential approximation have been obtained, but we shall
not present their details, for the methods involved in their derivation depend on methods
completely different from those developed here.

Nunemacher [268, 269] obtains tangential approximation on totally real C 1 man-
ifolds in domains in CN . In this work, the domain of definition of the approximating
function varies.

Manne [234] obtains tangential approximation of a function and its derivatives of
order not more that p on a smooth totally real submanifold of CN . The approximating
functions are here defined on a fixed domain. In [236], he extends this work to the context
of Whitney functions defined on totally real sets in CN . Finally, in [235], he discusses
tangential approximation on the union of two totally real, real-linear subspaces of CN .



Chapter 7

VARIETIES IN STRICTLY
PSEUDOCONVEX DOMAINS

Introduction. This chapter is devoted to the study of one-dimensional sub-
varieties of strictly pseudoconvex domains. The motivation comes in good
measure from the highly developed theory of the boundary behavior of holo-
morphic functions; the present chapter may be regarded as presenting some
results toward an analogous geometric theory for varieties. Section 7.1 con-
tains work on interpolation, which serves as a tool in the subsequent sections.
Section 7.2 treats boundary regularity questions. Section 7.3 considers bound-
ary uniqueness results.

7.1. Interpolation

This section is devoted to the subject of interpolation, not with the intention of giving
a detailed treatment of the subject but rather with the goal of developing certain tools
essential in the next section. The initial steps in the subject are best taken in the context of
general uniform algebras. The notions considered here are given in the following definition.

Definition 7.1.1. Let A be a uniform algebra on the compact space X, and let E ⊂ X be
a compact subset.

(a) E is an interpolation set if given ϕ ∈ C (E), there is f ∈ A with f |E = ϕ.

(b) E is a peak-interpolation set if given ϕ ∈ C (E), ϕ not identically zero, there is
f ∈ A with f |E = ϕ and |f (x)| < supE |ϕ| for all x ∈ X \ E.

There is a considerable theory concerning interpolation sets. Some of this theory
in the general setting of uniform algebras can be found in [345]. For results concerning
interpolation on the ball in CN we refer to [310].
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Arguments involving interpolation often proceed by duality and involve the study of
measures orthogonal to the algebra A (annihilating measures), as the following theorem
suggests.

Theorem 7.1.2. Let A be a uniform algebra on the compact metrizable space X, and let
E ⊂ X be a compact set.

(a) If for every neighborhood U of E, there is fU ∈ A with fU |E = 1, ‖fU‖X < 4
3 ,

‖fU‖X\U < 1
3 , then E is a peak set.

(b) If E is a peak set, then A|E is closed in C (E).

(c) If E is a peak set and an interpolation set, then E is a peak-interpolation set.

(d) The set E is a peak-interpolation set if and only if µE = 0 for all measures orthog-
onal to A.

(e) If E is an interpolation set and if each point of E is a peak set, then E is a peak-
interpolation set.

The results (a)–(d) are due to Bishop [55, 58], and the result (e) is a theorem of
Varopoulos [357].

Proof of (a). We construct inductively a sequence {Vi}∞i=1 of neighborhoods of E and a
corresponding sequence {fi}∞i=1 in A. For V1 we take an arbitrary neighborhood of E,
and for the associated f1 we take an element of A with f1 = 1 on E, ‖f1‖X < 4

3 and
‖f1‖X\V1 <

1
3 . Having constructedV1, . . . , Vn−1 and correspondingf1, . . . , fn−1 ∈ A, let

Vn =
{
x ∈ Vn−1 : |fj (x)| < 1 + 1

2n3
for j = 1, . . . , n− 1

}
,

and letfn ∈ A satisfyfn = 1 onE,‖fn‖X < 4
3 , and‖fn‖X\Vn < 1

3 . Putf =∑∞
n=1 2−nfn.

This function belongs to A and satisfies f = 1 on E. If x �∈ V1, then |fn(x)| < 1
3 for all

n, so |f (x)| < 1
3 . If x ∈ Vn \ Vn+1, then |fj (x)| < 1

3 for j > n, and |fj (x)| < 1 + 1
2n3

for j = 1, . . . , n− 1. This gives

|f (x)| ≤
n−1∑
j=1

2−j
(

1 + 1

2n3

)
+ 4

2n3
+ 1

3

∞∑
j=n+1

1

2j

=
(

1 − 1

2n−1

)(
1 + 1

2n3

)
+ 4

2n3
+ 1

2n3
< 1.

If x ∈ Vn for every n, then |fn(x)| ≤ 1, so |f (x)| ≤ 1. It follows that the function f
is bounded by 1 and assumes values of modulus one only on a subset of V1. The function
1
2 (1 + f ) is bounded in modulus by 1 and peaks on a subset of V1 that contains E.

The neighborhood V1 of E was chosen arbitrarily, so we have proved that E is an
intersection of peak sets. Because X is metrizable and compact, the set E is a countable
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intersection of peak sets. If now gj ∈ A peaks on the set Ej and if
⋂
j=1,... Ej = E, then

g =∑∞
j=1 2−j gj ∈ A peaks on E.

This completes the proof of (a).

Proof of (b). Assertion (b) is contained in Theorem 1.2.23.

Proof of (c). For (c), recall that if E is a peak set and an interpolation set, then for each
f ∈ C (E), Theorem 1.2.23 provides g ∈ Awith g|E = f and with |f | ≤ ‖g‖E . If ϕ ∈ A
peaks on E, then ϕg interpolates f on A and satisfies |ϕg|(x) < ‖f ‖E when x ∈ X \ E.

Proof of (d). If E is a peak-interpolation set and if µ is a measure orthogonal to A, we
are to see that for each closed set E0 ⊂ E, µ(E0) = 0. The set E0 is closed and E is a
peak-interpolation set, so there is f ∈ A with f |E0 = 1, |f | < 1 onX \E0. The measure
µ is orthogonal to A, so for each n = 1, 2, . . . ,

0 =
∫
f ndµ.

By the dominated convergence theorem this yields µ(E0) = 0, as we wished to prove.
Conversely, assume the closed subset E of X to have the property that for every

annihilating measure µ of A, µE = 0. We are to see that E is a peak-interpolation set.
The first step of the proof is to show that given f ∈ C (E)with ‖f ‖E = r < 1, there

is f̃ ∈ A with ‖f̃ ‖X < 1 and f̃ = f on E.
Denote by ρ : A → C (E) the restriction map given by ρg = g|E. If by A(s) we

denote the open ball of radius s, center 0 in A, we have to see that f ∈ ρA(1). We first
show that f ∈ ρA(r), the closure of ρA(r) in C (E). If not, then by the Hahn–Banach
and Riesz representation theorems, there is a finite regular Borel measure µ1 on E with∫
f dµ1 > 1 and | ∫ g dµ1| < 1 for all g ∈ A(r).

Define a linear functional ψ on A by ψ(g) = ∫ g dµ1. We have |ψ(g)| < 1 when
‖g‖X < r , so the function ψ has norm no more than 1

r
, whence, by the Hahn–Banach

and Riesz representation theorems, there is a finite regular Borel measure µ2 on X with
‖µ2‖ ≤ 1

r
and with ψ(g) = ∫ g dµ2 for g ∈ A.

The measure µ = µ1 − µ2 is orthogonal to A, and so, by hypothesis, µE = 0.
However, this is impossible, for∣∣∣∣∫

E

f dµ

∣∣∣∣ ≥ ∫
E

f dµ1 − r‖µ2‖ > 1 − rr−1 = 0.

Thus, f ∈ ρA(r) is claimed.
Consequently, there is a functionf1 ∈ Awith ‖f1‖X < r and ‖f−f1‖E < (1−r)/2.

By the same argument, there is f2 ∈ A with ‖f2‖X < (1 − r)/2 and ‖f1 − f2‖E < (1 −
r)/22. We iterate this process to find a sequence {fk}∞k=1 in A with ‖fk‖X < (1− r)/2k−1

and |f −∑n
k=1 fk| < (1 − r)/2n. It follows that we can define f̃ ∈ A by f̃ =∑∞

k=1 fk

and that the function so defined satisfies ρf̃ = f and ‖f̃ ‖X < r+∑∞
k=2(1−r)/2k−1 = 1.

It is worth noting that this argument depends only on the linear structure ofA and not
on its multiplicative structure. Consequently, it is valid for any closed subspace of C (X).
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If g ∈ C (E) and � is a positive continuous function on X with � > g on E, then
there is g∗ ∈ A with g∗|E = g and |g∗| < � on X. For this consider the closed subspace
B = {g ∈ C (X) : �g ∈ A} of C (X). This subspace is closed because � is bounded
away from zero. We have that B⊥ = {�µ : µ ∈ A⊥}, which implies that each ν ∈ B⊥
satisfies νE = 0. Apply the first part of the proof to B to conclude that there is g0 ∈ B
with ‖g0‖X < 1 and g0 = g/� on E. Then the function g∗ = g0� is in A, g0� = g on
E, and ‖g0�‖X < �.

We have therefore that if U is a neighborhood of E, there is f ∈ A with f = 1 on
E, ‖f ‖X < 4

3 , and ‖f ‖X\U < 1
3 , whence, by (a), E is a peak set.

We now know that E is an interpolation set and a peak set, so by (c), it is a peak-
interpolation set; (d) is proved.

Proof of (e). For this, it suffices to prove that, with the hypotheses of (e), for every
measure µ orthogonal to A, the measure µE is also orthogonal to A, for then, because E
is an interpolation set, µE = 0, whence the result by (d). The argument we give for this is
a simplification due to S.J. Sidney of the proof of Varopoulos. (See [145].)

We will use the terminology that a compact set S ⊂ X is a set of type ε(c) if it
is an interpolation set and if for each f ∈ C (S), there is f ∗ ∈ A with f ∗|S = f and
‖f ‖X ≤ c‖f ‖S . Banach’s open mapping theorem implies that each interpolation set is of
type ε(c) for some c. A peak-interpolation set is a set of type ε(1).

Fix µ ∈ A⊥, and let η > 0 be given. By the regularity of µ, there is a compact set
K ⊂ X \ E with |µ|(X \ (E ∪K)) < η. By assumption, each point of E is a peak point
for A, so if x ∈ E and V is a neighborhood of x, then there is f ∈ A such that f peaks
at x and |f | < η on X \ V . Compactness yields a finite family f1, . . . , fn of elements of
A and a corresponding family of measurable sets E′

1, . . . , E
′
n such that E = ∪nj=1E

′
j and

such that |fj − 1| < η on E′j , and |fj | < η on K . For each j , let Ej ⊂ E′
j be a compact

set such that

|µ|(∪nj=1E
′
j \ Ej) < η.

The setE is of type ε(c), so the same is true of the unionE1 ∪· · ·∪En. Accordingly, there
exist functions ϕj ∈ A with ‖ϕj‖X ≤ c and with ϕj = e2πijk/n on X.

Define the function �r by

�r =
(

1

n

n∑
j=1

e−2πijr/nϕj

)2

.

On the set Er we have that �j = δj,r , and therefore on Er ,

∣∣∣∣ n∑
j=1′

�jfj − 1

∣∣∣∣ = |fr − 1| < η.
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This is correct for all r , and so the inequality is correct on the union E1 ∪ · · · ∪En. Also,

n∑
j=1

|�j | = 1

n2

n∑
j=1

(
n∑
k=1

e2πijk/nϕk

n∑
r=1

e−2πijr/nϕ̄r

)

= 1

n2

n∑
k,r=1

n∑
j=1

e2πij (k−r)/nϕkϕ̄r

= 1

n

n∑
k=1

|ϕk|2 ≤ c2.

Finally, set g =∑n
j=1�jfj , which is an element ofAwith the properties that ‖g‖X ≤ c2,

that |g − 1| ≤ η on E1 ∪ · · · ∪ En, and that |g| ≤ ηc2 on K .
In the preceding construction, η > 0 is at our disposal. By performing the construc-

tion for a sequence of η’s that converges to zero, we obtain a corresponding sequence
{gn}n=1,... of elements in A that is uniformly bounded and that tends pointwise a.e. [dµ]
to the characteristic function of the set E. Each of the measures gnµ lies in A⊥, so the
measure µE is also orthogonal to A, as we wished to show.

This completes the proof of (e) and the proof of Theorem 7.1.2.

The following corollary of the preceding theorem will be used below.

Corollary 7.1.3. If the compact subset E of X is the union of a sequence {Ej }∞j=1 of
peak-interpolation sets, then E is a peak-interpolation set.

Proof. If µ ∈ A⊥, then |µ|(Ej ) = 0 for each j , whence |µ|(E) = 0.

Having the general notion of peak-interpolation set, one would like to have char-
acterizations of peak-interpolation sets in various explicit situations. This is possible in
the case of the unit disk in the complex plane, where the Rudin–Carleson theorem gives
a characterization of the peak-interpolation sets for the disk algebra: The compact subset
E of the unit circle is a peak-interpolation set for the disk algebra A(U) if and only E
has zero length. This result can be found, for example, in [178]. There are no nontrivial
domains D in CN with N ≥ 2 for which there is known a characterization of the peak-
interpolation sets for the algebra A(D). In spite of this, there are some substantial results
for interpolation on polydisks and on strictly pseudoconvex domains. For the former, we
refer to [308]. For interpolation results for the ball algebra A(BN), one can consult [310].
Results on strongly pseudoconvex domains generally parallel those on the ball.

In the work below on one-dimensional subvarieties of strictly pseudoconvex do-
mains, we shall need to use a particular class of peak-interpolation sets on strictly pseu-
doconvex domains, a class determined by metric conditions. The result in question was
found by Davie and Øksendal [93] and is the most general metric condition known to be
sufficient for interpolation on strictly pseudoconvex domains.

Let D ⊂ CN be a domain with boundary of class C 1. For each point p ∈ bD,
there is the complex tangent space T C

p (bD), which is identified with the complex affine
hyperplane through p that is contained in the real affine hyperplane through p and tangent
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to bD at p. This real hyperplane is identified with Tp(bD). In Tp(bD) there is the real
orthogonal complement Tp(bD)#T C

p (bD) of T C
p (bD). IfNp denotes the real line that is

real orthogonal to bD at p, and if NC
p is the complex line that contains it, then Tp(bD)#

T C
p (bD) can be identified with NC

p ∩ Tp(bD). This space may be denoted by JNp with
J the complex structure on CN . There is then the real orthogonal decomposition

Tp(bD) = T C
p (bD)⊕ JNp.

Let π ′′
p and π ′

p be the orthogonal projections of CN onto T C
p (bD) and JNp, respectively.

For E ⊂ CN , we introduce two numbers:

Definition 7.1.4. The quantities d ′′p(E) and d ′p(E) are defined by

d ′′p(E) = diameterπ ′′
p(E) = sup{|w − w′|, w,w′ ∈ π ′′(E)}

and
d ′p(E) = diameterπ ′

p(E) = sup{|w − w′| : w,w′ ∈ π ′(E)},
respectively.

Definition 7.1.5. A subset E of bD is null in the sense of Davie and Øksendal if given
ε > 0, there is a sequence {Vj }∞j=1 of open sets each of diameter less than ε such that for
some pj ∈ Vj ∩ E,∑

j

d ′pj (Vj ) < ε,
∑
j

(
d ′′pj (Vj )

)2
< ε, and E ⊂

⋃
j

Vj .

Thus, the condition is that the set E admit fine coverings with certain metric proper-
ties.

We have formulated the notion of being null in the sense of Davie and Øksendal
for domains in CN . It is evident, though, that the condition is local and is independent of
the particular choice of coordinates. Accordingly, the notion is meaningful for sets in the
boundary of a domain in a complex manifold.

The theorem of Davie and Øksendal is the following.

Theorem 7.1.6. If D is a strictly pseudoconvex domain with boundary of class C 2 in a
Stein manifold and if the compact set E ⊂ bD is null in the sense of Davie and Øksendal,
then it is a peak-interpolation set for A(D).

The gist of the matter is contained in the following construction.

Lemma 7.1.7. LetD ⊂ CN be a bounded, strictly convex domain with bD of class C 2. If
the compact subset E of bD is null in the sense of Davie and Øksendal, then given ε > 0
and a neighborhood U of E, there is f ∈ A(D) with ‖f ‖D ≤ 2, |f | < ε on bD \U , and
f | E = 1.

Proof. LetQ be a strictly convex defining function of class C 2 forD, so thatD = {Q < 0}
and dQ �= 0 on bD.
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Define H : CN × CN → C by

H(z,w) =
N∑
j=1

∂Q

∂zj
(z)(zj − wj).

The function H is of class C 1, and convexity yields the estimates that for some positive
constants m andM ,

m|z− w|2 < �H(z,w) < M|z− w|2
for z ∈ bD, w ∈ D.

If z = (z1, . . . , zN) with zj = x2j−1 + ix2j , and if wj = u2j−1 + iu2j , then

�H(z,w) = 1

2

N∑
j=1

{
− ∂Q

∂x2j
(z)(x2j−1 − u2j−1)+ ∂Q

∂x2j−1
(z)(x2j − u2j )

}
= (J gradQ(z), x − u),

where x = (x1, . . . , x2N), u = (u1, . . . , u2N), J is the complex structure on CN , and ( , )
denotes the real inner product on R2N = CN .

For z ∈ bD and Wz a sufficiently small neighborhood of z, we have that for any
subset V ofWz, if z ∈ V and if w ∈ V ∩ bD, then

|H(z,w)| ≤ |�H(z,w)| + |�H(z,w)| ≤ M|z− w|2 + |(J gradQ(z), x − u)|.
In this,

|z− w|2 ≤ (d ′z(V ))2 + (d ′′z (V ))2.
Also, we can write

x − u = π ′
z(z− w)+ π ′′

z (z− w)+O(|z− w|2),
because z,w ∈ bD. The vector J gradQ is orthogonal to T C

z (bD), so

|H(z,w)| ≤ M[(d ′z(V ))2 + (d ′′z (V ))2] + | gradQ(z)|d ′z(V )
≤ M̃[(d ′z(V ))2 + (d ′′z (V ))2]

for a suitable constant M̃ .
For n > M̃ , set En = {z ∈ E : BN(z,

1
n
) ⊂ Wz, m [dist(z, bU)]2 > 1

n

}
. Then

E = ∪En.
For every n, let {V (n)j }∞j=1 be a sequence of open sets of diameter less than 1

n
such

that every point ofEn is contained in infinitely many of theV (n)j and such that for a suitable

choice of zn,j ∈ V (n)j ,

∞∑
j=1

{
d ′zn,j (V

(n)
j )+

[
d ′′zn,j (V

(n)
j )
]2}

< εn−22−n−2.

Relabel the V (n)j for n > M̃ , j = 1, 2, . . . , as V1, V2, . . . , and for all j , choose nj such

that Vj = V n(j)i for some i, and set then zj = znj,i .
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With cj = d ′zj (Vj )+
[
d ′′zj (Vj )

]2
, set

Br(w) =
r∏
j=1

H(zj , w)

2nj cj +H(zj , w) .

For w ∈ D, we have |Br(w)| ≤ 1. If w ∈ D \ V , then

�H(zj , w) > m|zj − w|2 > 1

nj
,

so ∞∑
j=1

∣∣∣∣1 − H(zj , w)

2nj cj +H(zj , w)
∣∣∣∣ ≤ ∞∑

j=1

2nj cj
2nj cj + 1

nj

≤
∞∑
j=1

2n2
j cj <

ε

2
.

This estimate implies that if B(w) = limr→∞ Br(w), then |B(w)− 1| < ε on D \ V .1

Also, if w ∈ D \ E, then

∞∑
j=1

2nj cj
|2nj cj +H(cj , w)| ≤ 1

m[dist (E,w)]2
∞∑
j=1

2nj cj .

The series on the right converges, so limr→∞ Br(w) exists at every point of D \ E, and
B ∈ C (D \E). Finally, limr→∞ Br(w) = 0 if w ∈ E, for w lies in infinitely many of the
Vj . If z ∈ Vj , then because Vj ⊂ Wzn,j , and therefore

|H(zj , w)|
|2nj cj +H(zj , w)| ≤ M̃ cj

2nj cj
<

1

2
,

we have limr→∞ Br(w) = 0 as claimed. For the function f of the lemma, we take 1−B.
The lemma is proved.

We now show how to deduce Theorem 7.1.6 from the result on convex domains that
we have established. This deduction involves the solution of a Cousin I problem.

Proof of Theorem 7.1.6. Let M be a Stein manifold, letD ⊂ M be a relatively compact
strictly pseudoconvex domain with boundary of class C 2, and let E ⊂ bD be a compact
subset that is null in the sense of Davie and Øksendal. To prove thatE is a peak-interpolation
set for A(D), we shall show that if p ∈ E, then there is a neighborhood U of p in bD
with the property that if µ is a measure on D orthogonal to A(D), then for every compact
subset K of U , µ(E) = 0. This means that the variation of |µ| over U is zero, so the

1Given
∑∞
j=1 |1 − bj | < ε

2 , write bj = 1 + δj , so that �|δj | < ε
2 . Then,∣∣∣∣( ∞∏

j=1

bj

)
− 1

∣∣∣∣ = ∣∣∣∣( ∞∏
j=1

1 + δj
)
− 1

∣∣∣∣ ≤ e�δj − 1 < eε/2 − 1 < ε

when ε is small.
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support of µ is disjoint from U . Finitely many of the neighborhoods U cover the set E,
so |µ|(E) = 0, and E is recognized to be a peak-interpolation set.

Let Q be a strictly plurisubharmonic defining function for D, which we can take to
be defined on all of M , so that bD = {Q = 0}, dQ �= 0 on bD, and D = {Q < 0}. For
small ε > 0, we let Dε be the domain {Q < ε}, which is also a Stein domain.

Fix attention on a pointp ∈ E. The strict pseudoconvexity ofD implies the existence
of an open set � in M that contains p and on which there are holomorphic coordinates
z1, . . . , zN with respect to which the domain� = �∩D is strictly convex with boundary
of class C 2.

Let Bp and B ′
p be concentric balls in the z-coordinate system centered at p with

B̄p ⊂ B ′
p and with B ′

p ∩ bD ⊂ bD ∩ b�.

Let�′ be a strictly convex domain with b�′ ⊃ bD∩ B̄ ′
p and with�′ ⊃ b� \ (bD∩

B̄p). Thus, �′ is obtained from � by pushing the boundary of � outward a little along
b� \ B̄p.

The setE is null in the sense of Davie and Øksendal, so the same is true of the subset
E ∩ B̄ ′

p. Consequently, if K ⊂ E ∩ B ′
p is a compact set, there is a function g ∈ A(�′)

with g = 0 on K and �g > 0 on �̄′ \ K . A branch of ln g is defined and continuous on
�̄′ \K and satisfies the condition that � ln g → −∞ at points of K .

If ε > 0 is small enough, then ln g is defined and holomorphic on Dε ∩ (B ′
p \ B̄p).

The setsD−
ε = Dε ∩B ′

p andD+
ε = Dε \ B̄p constitute an open cover forDε. Because the

additive Cousin problem is solvable on the domain Dε, there are functions h+ ∈ O(D+
ε )

and h− ∈ O(D−
ε ) with ln g = h+|(B ′

p \ B̄p) − h−|(B ′
p \ B̄p). Accordingly, we obtain a

well-defined function g1 on D by setting

(7.1) g1 =
{

ln g + h− on D ∩ B ′
p,

h+ on D \ B̄p.

This function g1 is holomorphic onD and is continuous on D̄\K . In addition,�g1 → −∞
at points of K . Moreover, �g1 is bounded above, say �g1 < M for some M > 0.
The function g2 = g1/(g1 −M) is holomorphic on D, is continuous on bD \ K , tends
continuously to the value 1 atK , and has modulus strictly less than 1 at all points of D̄ \K .
Thus, the function g2 is in A(D) and peaks on K .

Consequently, if µ is a measure orthogonal to A(D), then

0 =
∫
gk2 dµ →

k→∞ µ(K).

We thus have that for every compact subset K of Bp ∩ bD and for every measure µ
orthogonal to A(D), µ(K) = 0. It follows that the set E is a peak-interpolation set, as we
were to prove.

As an example, we have the following.

Corollary 7.1.8. If the compact subset E of bD satisfies �1(E) = 0, then E is a peak-
interpolation set.



360 Chapter 7. Varieties in Strictly Pseudoconvex Domains

Proof. To say that E is a set of zero length means that given δ, ε > 0, it is possible to
cover E by a sequence of balls B1, . . . , each of which has diameter less than δ and the
sum of whose diameters is no more than ε. Such a set is plainly null in the sense of Davie
and Øksendal.

A classical theorem of F. and M. Riesz states that if the finite regular Borel measure
µ on the unit circle is orthogonal to the disk algebra, then µ is absolutely continuous
with respect to the arc-length measure on the circle. For this, one can consult [178]. The
theorem of Davie and Øksendal implies corresponding results on strictly pseudoconvex
domains:

Theorem 7.1.9. Let D be a bounded strictly pseudoconvex domain in CN with bD of
class C 2, and let µ be a finite regular Borel measure with support in bD. The measure
µ is absolutely continuous with respect to the one-dimensional Hausdorff measure�1 on
CN if µ is orthogonal to the algebra A(D) or is a representing measure for a point in D.

Proof. By regularity it suffices to show that for compact sets E of zero length, µ(E) = 0.
For such anE, Theorem 7.1.6 provides a ϕ ∈ A(D) that peaks onE. Becauseµ ∈ A(D)⊥,
we have that 0 = ∫ ϕndµ→ µ(E). Similarly, if µ is a representing measure for p0 ∈ D,
so that

∫
g dµ = g(p0) for all g ∈ A(D), then µ(E) = 0: We can choose a peak function

g for E with g(p0) = 0. Then again 0 = ∫ gn dµ→ µ(E).

Certain curves in bD are peak-interpolation sets. In this connection it is convenient
to introduce the following definition.

Definition 7.1.10. If D is a domain in CN with bD of class C 1, the submanifold � of
bD is said to be complex-tangential if it is of class C 1 and if, in addition, at each point
p ∈ �, the tangent space Tp(�) is contained in the complex tangent space T C

p (bD). A
submanifold � of bD is said to be complex-transverse if for no point p ∈ � is Tp(�)
contained in T C

p (bD).

Theorem 7.1.9 is sufficient to show that smooth curves in strictly pseudoconvex
boundaries that are complex-tangential are peak-interpolation sets, for such a curve is
easily seen to be null in the sense of Davie and Øksendal.

Theorem 7.1.11. Let D be a bounded strictly pseudoconvex domain in CN with bD of
class C 2, and let γ : R → bD be a curve of class C 1. If K ⊂ R is a compact set with
γ ′(t) ∈ T C

γ (t)(bD) for almost every [d�1] t ∈ K , then γ (K) is a peak-interpolation set
for A(D).

In particular, if γ ′ is always complex tangential, then every compact subset of γ (R)
is a peak-interpolation set.

Proof. We will show that γ (K) is null in the sense of Davie and Øksendal, which will
imply the result. Fix ε > 0. For t0 ∈ K ,

γ (t) = γ (t0)+ γ ′(t0)(t − t0)+ o(|t − t0|)
with the o-term uniform in t and t0 (when both are restricted to lie in K). Consequently,
if L is a short interval centered at t0 ∈ K , then the projection of γ (L ∩ K) into T C

γ (t0)

has diameter bounded by C.length L for some constant C. Also, the diameter of the
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projection of γ (L ∩ K) into JNγ (t0) is o(lengthL), for γ ′(t0) ∈ T C
γ (t0)

. Thus if K =
(L1 ∩ K) ∪ · · · ∪ (Ls ∩ K), where the Lj are short intervals with mutually disjoint
interiors, then for points tj ∈ Lj ∩K ,∑

j

{d ′γ (tj )γ (Lj ∩K)+ (d ′′γ (tj )γ (Lj ∩K))2}

≤
∑
j

{ε · const(lengthLj )+ const(lengthLj )
2}

with constants that are independent of the partition. The inequality∑
j

(lengthLj ) < �
1(K)+ δ,

which is correct for arbitrarily small positive δ if the intervalsLj are chosen appropriately,
implies that the quantity

∑
j {· · · } can be made as small as we wish by taking theL’s short.

The curve γ = {(eit , 0) : t ∈ [−π, π]} ⊂ bB2 is not complex-tangential, and is not
a peak-interpolation set. (It is the boundary of the analytic disk � = {(z, 0) : |z| < 1} in
bB2 and so is not the zero set of any f ∈ A(B2).) One can verify directly that γ is not null
in the sense of Davie and Øksendal.

There is a general result that shows complex-tangential manifolds of whatever di-
mension to be peak-interpolation sets.

Theorem 7.1.12. If D is a bounded strictly pseudoconvex domain in CN with boundary
of class C 2 and if� is a closed submanifold of bD of class C 1 that is complex-tangential,
then � is a peak-interpolation set for A(D).

We will not prove this theorem here; it and the general circle of ideas around it are
discussed in [310]. The converse is also true, i.e., interpolation manifolds of class C 1 are
necessarily complex tangential.

The following convexity observation arises naturally in the present context. Suppose
D to be a strictly pseudoconvex domain in CN with bD of class C 2. There is then a
neighborhoodW of D̄ on which is defined a strictly plurisubharmonic functionQ that is a
defining function forD in thatD = {z ∈ W : Q(z) < 1} and dQ �= 0 on bD. For c, c′ ∈ R

with 1 ≤ c < c′ ≤ co for a sufficiently small co, the domain Dc = {z ∈ W : Q(z) < c}
is a Runge domain in Dco . If E ⊂ bD is a peak-interpolation set for A(D), then the set
E is convex with respect to the algebra O(Dc) for c slightly larger than 1. This is so, for
granted that E is a peak-interpolation set for A(D), it is, in particular, a peak set for this
algebra. Accordingly, it is convex with respect to the algebraA(D): By hypothesis, there is
a function g ∈ A(D)with g|E = 1 and |g| < 1 on D̄ \E. There exist such peak functions
that take values only in the half-plane �ζ > 1

3 , for if g is any peak function for E, then
so is 1

3 (2 + g). For such a g, the function 1/g lies in A(D), assumes the value 1 on E,
and assumes values of modulus greater than 1 on D̄ \ E. Thus, E is convex with respect
to the algebra A(D) and so with respect to the algebra O(D̄) of functions holomorphic on
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neighborhoods of D. (The latter conclusion depends on the approximation result, which
we do not prove here, that for a strictly pseudoconvex domainD, O(D̄) is uniformly dense
inA(D). For this result one can consult the book of Range [287].) A function holomorphic
on a neighborhood of D̄ can be approximated by functions holomorphic in Dco , so, as
claimed, the set is O(Dco)-convex. In particular, we have the following:

Corollary 7.1.13. IfE is a peak-interpolation set in bBN or in the boundary of a bounded,
strictly convex domain in CN with boundary of class C 2, then E is polynomially convex.

As a special case, we consider rectifiable curves in the boundary.

Corollary 7.1.14. If γ is a rectifiable curve in bD, D a bounded, strictly pseudoconvex
domain with bD of class C 2, and if at almost every [d�1] point p of γ the tangent to
γ is complex-tangential, then γ is a peak-interpolation set for A(D) and is convex with
respect to the algebra of functions holomorphic on D̄.

Proof. To see that γ is a peak-interpolation set, consider a measure µ on bD that is
orthogonal to A(D). We shall show that the variation of µ over γ is zero. We know µ to
be absolutely continuous with respect to �1.

Let T ⊂ γ be the set of points at which γ does not have a tangent or at which the
tangent is not complex tangential. The set T is of zero length, so |µ|(T ) = 0.

The rectifiability of the curve γ implies that there is a sequence {γj }j=1,... of C 1 arcs
with the property that the set S = γ \ ∪j=1,...γj has length zero. Thus, |µ|(S) = 0. Fix a
j . IfK ⊂ γj \ T ∩ γ is a compact set with no isolated points, then at each point ofK , the
tangent to γj is the same as the tangent to γ and so is complex tangential there. Thus, by
Theorem 7.1.11, K is a peak-interpolation set, whence |µ|(K) = 0.

Thus, as desired, the variation of the measure µ on γ is zero, so γ is a peak-
interpolation set, and the corollary is proved.

A stronger convexity result is proved below in Corollary 7.1.18.
As we have remarked, with D strictly pseudoconvex with boundary of class C 2,

each compact submanifold� of bD that is complex-tangential is a peak-interpolation set,
and so, by Corollary 7.1.13, convex with respect of the algebra O(D̄). In the ball case,
complex-tangential submanifolds of the boundary are polynomially convex. For curves of
class C 2, a single point of complex tangency suffices to guarantee convexity, as shown by
Forstnerič [125]:

Theorem 7.1.15. LetD be a bounded strictly pseudoconvex domain in CN with boundary
of class C 2, and let γ be a simple closed curve of class C 2 in bD. If there is a point in γ
at which γ is complex-tangential, then γ is convex with respect to O(D̄).

This is a theorem about curves of class C 2: Rosay [296] has given an example to
show that if γ is assumed to be only of class C 1, the conclusion of the theorem can fail.

Proof. [296] By the embedding theorem of Fornæss and Henkin, Theorem 2.4.6, we can
supposeD to be a bounded convex domain. Let γ ⊂ bD be a simple closed curve of class
C 2 with the property that for some point p ∈ γ the tangent Tpγ is contained in the space
T C
p (bD). We shall show γ to be polynomially convex.
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For this purpose, let g : [−1, 1] → bD be a C 2 parameterization of γ with g(0) = p
and with g(−1) = g(1).

As a matter of notational convenience, we suppose thatD ⊂ BN and that the pointp is
the point (1, 0, . . . , 0). We can also assume that g′(0) = (0, 1, 0, . . . , 0) ∈ T C

(1,0,...,0)(bD).
Let g = (g1, . . . , gN).

For ε ∈ R define ϕε : [−1, 1] → C by ϕε(t) = g1(t) + iεg2(t), a planar curve of
class C 2.

Lemma 7.1.16. There are arbitrarily small ε ∈ R, points to ∈ (0, 1), and h > 0 such that

(a) �ϕε(t) ≤ 1 − h when to ≤ |t | ≤ 1,

(b) d
dt
�ϕε(t) > 0 when −to ≤ t < 0,

(c) d
dt
�ϕε(t) < 0 when 0 < t ≤ to, and

(d) the set ϕε([−1, 1]) meets the line �ζ = 1 − h in only one point.

Proof. Write the Taylor expansion of ϕε about 0 ∈ R:

ϕε(t) = ϕε(0)+ ϕ′ε(0)t +
1

2
ϕ′′ε (0)t2 + o(t2).

We have thatϕε(0) = 1 andϕ′ε(0) = iε. We can obtain some information about the second-
order derivatives as follows. Introduce real coordinates on CN by zj = x2j−1 + ix2j , and
let gj (t) = β2j−1(t)+ iβ2j (t).

LetQ be a strictly convex defining function of class C 2 for the domainD normalized
so that Qx1(1, 0, . . . , 0) = 1. Differentiation of the equation Q(g(t)) = 0 twice at t = 0
leads to β ′′

1 (0) = −q with q the number Qx3x3(g(0)), which is positive, because Q is
strictly convex. Thus, the Taylor expansion of ϕε about 0 is

ϕε(t) =
{

1 − 1

2
qt2 + o(t2)+ εO(t2)

}
+ iε{t +O(t2)}.

We now see that there are εo > 0 and to ∈ (0, 1) such that for |ε| < εo and |t | < to,
�ϕε is strictly increasing on (−to, 0) and strictly decreasing on (0, to). Fix ho > 0 small
enough that �g1(t) < 1 − 2ho if |t | > to. If |ε| < ho, then

�ϕε(t) = �{g1(t)+ iεg2(t)} < 1 − ho.
Put ε1 = min(εo, ho). For h ∈ (0, ho) and |ε| < εo, each of the curves ϕε([−to, 0))

and ϕε((0, to])meets the line �ζ = 1−h in one and only one point, say 1−h+ ip−(t) and
1 − h+ ip+(t), respectively. We have d

dt
�ϕε(t)

∣∣
t=0 = ε > 0, so p−(ε1) < 0 < p+(ε1),

and p−(−ε1) > 0 > p+(−ε1). Thus, by continuity, there is an ε2 ∈ (−ε, ε) such that
p+(ε2) = p−(ε2).

The lemma is proved.

Proof of Theorem 7.1.15 concluded. Fix ε and h such that the curve ϕε meets the line
�ζ = 1 − h in exactly one point, say ζo. Let γ+ be γ ∩ ϕ−1

ε ({�ζ ≥ 1 − h}) and
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γ− = γ ∩ ϕ−1
ε ({�ζ ≤ 1 − h}). The arcs γ+ and γ− are polynomially convex and satisfy

P(γ±) = C (γ±). Kallin’s lemma, Theorem 1.6.19, implies thatγ is polynomially convex
and satisfies P(γ ) = C (γ ). The theorem is proved.

Recall that for a subvariety V of a domain in CN , bV denotes the set V̄ \ V .

Theorem 7.1.17. [22] Let D be a bounded strictly pseudoconvex domain in CN with
boundary of class C 2, and let V be an irreducible one-dimensional subvariety of D. If B
is an open subset of bV with �1(B) < 0, then at almost every point of B, the tangent to
bV is complex transverse.

Note that for a point z ∈ V , the set bV is minimal with respect to the condition z ∈
b̂V , so the set B is of class A1 as remarked immediately after the proof of Theorem 4.3.7,
and at almost every point its tangent is a real line.

Proof. Suppose the statement is false. As a set of class A1, the set B is the union of a set
Bo of length zero and a countable collection B1, . . . of sets Bj each of which is contained
in an arc of class C 1. Thus, the assumption implies the existence of an arc of class C 1, say
λ, such that the set So = λ∩B has positive length and at each point p of this intersection
the tangent to λ is transverse to T C

p (bD). Each compact subset of So is, therefore, a peak-
interpolation set. Let S be a compact subset of So of positive length. Because the set S is a
peak-interpolation set for the algebraA(D), there exists a function F ∈ A(D)with F = 0
on S and F zero-free on D̄ \ S. This leads to the following contradiction.

Fix a small ball BN(p, δ) in CN centered at a point p ∈ S of metric density for
the restriction of �1 to S. By Lemmas 4.3.10 and 4.3.11 there is a linear functional π
on CN that carries the set S ∩ BN(p, δ) to a subset of the plane of class A1, that carries
the set S ∩ BN(p, δ) onto a set of positive length, and that is constant on no branch
of V ∩ BN(p, δ). By Theorem 4.3.14 there is a component � of π(V ∩ BN(p, δ)) for
which the set T = b� ∩ πS is a set of uniqueness for subharmonic functions on �. The
projection π carries π−1(�) ∩ V properly onto � as a q-fold branched cover for some
positive integer q.

There is a unique bounded holomorphic function h on�with the property that for all
ζ ∈ �, h(ζ ) =∏F(w), where the product extends over all the points w ∈ π−1(�∩ V ),
each w counted according to its multiplicity. The function h tends to zero at the points of
T , and so h is identically zero. This implies that the function F vanishes at some points
of V , a contradiction to the construction of F as a function that vanishes only on the set
S, a subset of bD.

The theorem is proved.

Corollary 7.1.18. If γ is a rectifiable simple closed curve in bD,D a strictly pseudoconvex
domain with boundary of class C 2, and if γ is complex tangential at all points of a set of
positive length, then γ is O(D̄) convex.

Proof. SupposeD to be strictly convex, in which case we are to prove γ to be polynomially
convex. If γ is not polynomially convex, then γ̂ \γ is a purely one-dimensional subvariety
of D. If V is an irreducible branch of γ̂ \ γ , then bV = γ , and the preceding theorem
implies that at almost every [d�1] point of γ , γ is complex transverse. Contradiction.
(Note that γ̂ \ γ has but one branch by Theorem 4.5.5. That rather involved result is not
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needed here.) If D is only strictly pseudoconvex rather than convex, the proof can be
concluded by invoking the Fornæss–Henkin embedding theorem.

7.2. Boundary Regularity

This section is concerned with the regularity at the boundary of one-dimensional varieties
in strictly pseudoconvex domains.

We begin with certain regularity questions for hulls of smooth curves. This investi-
gation depends ultimately on boundary regularity results for functions of one variable. In
particular, the following theorem is essential:

Theorem 7.2.1. LetD be a domain in C, let p ≥ 1 be an integer, and let λ be an open arc
of class C p in bD that is an open subset of bD. Let g be holomorphic in D and assume
continuous boundary values along λ. If g|λ ∈ C p(λ), then the derivatives of g of order
not more than p extend to be continuous on D ∪ λ.

Proof. To begin with, we can suppose that bD is of class C p and that g ∈ A(D). This is
so, for the problem is local along λ. If the condition is not satisfied, then fix a compact
subsetK of λ, and letD′ ⊂ D be a domain with boundary of class C p such that bD∩bD′
contains a neighborhood in λ of the set K . If we prove the theorem for g|D′ and with λ
replaced by the interior of the set λ ∩ bD′, we shall be done.

Thus, the function g has the representation as a Cauchy integral: IfG is the Cauchy
integral of g, then

G(z) = 1

2πi

∫
bD

g(ζ )dζ

ζ − z =
{
g(z) if z ∈ D,
0 if z ∈ C \ D̄.

Write

G(z) = G1(z)+ 1

2πi

∫
λ

g(ζ )dζ

ζ − z ,
so that the function G1 is holomorphic on C \ (bD \ λ). Consequently,

(7.2) G′(z) = G′
1(z)+

1

2πi

∫
λ

g(ζ )dζ

(ζ − z)2 .

Integration by parts shows that for z /∈ bD,

(7.3) G′(z) = G′
1(z)+

1

2πi

∫
λ

g1(ζ )dζ

(ζ − z) + 1

2πi

g(e+)
(e+ − z) −

1

2πi

g(e−)
(e− − z) ,

in which the points e+ and e− are the endpoints of λ and g1 is a function continuous on λ.
Denote the sum of these two boundary terms by G2(z), so that G2 is holomorphic on the
Riemann sphere except for poles at e+ and e−. We now have that

G′
1(z)+G2(z)+ 1

2πi

∫
λ

g1(ζ )dζ

ζ − z =
{
g′(z) if z ∈ D,
0 if z ∈ C \ D̄.
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It is a result from classical function theory, which is contained in Theorem 5.2.7, that
the jump of the integral G3(z) = 1

2πi

∫
λ
g1(ζ )dζ
ζ−z across λ is the function g1, uniformly on

compact subsets of λ. Now if p is a point in λ and p+
ε and p−

ε are the points at distance ε
from p along the normal at p to λ with p−

ε ∈ D and p+
ε /∈ D, then for small ε > 0,

(7.4) g′(p−
ε ) =

{
G′

1(p
−
ε )+G2(p

−
ε )+G3(p

−
ε )
}−{G′

1(p
+
ε )+G2(p

+
ε )+G3(p

+
ε )
}
.

Thus limε→0+ g
′(p−

ε ) = g1(p), uniformly on compacta in λ, and g′ is seen to extend to
be continuous on D ∪ λ. If p = 1, we are done. Otherwise, iterate the process p times to
find that the pth derivative of g extends continuously to λ.

The theorem is proved.

A geometric version of the preceding theorem was given by Chirka [84].

Theorem 7.2.2. LetD be a domain in CN , and let λ′ be an arc of class C p, p ≥ 1, in CN

with endpoints in bD and interior, λ, inD. If V is a purely one-dimensional subvariety of
� \ λ, then either V̄ ∩D is a purely one-dimensional subvariety ofD or else there is a set
E contained in λ with �1(E) = 0 and with the property that near points of λ \E, the set
V ∪ (λ \ E) has the structure of a two-dimensional manifold of class C p with boundary.
In the latter case, V is nonsingular near λ \ E.

A simple example shows the necessity of considering the exceptional set E. Let f
and g be polynomials in one variable such that f (0) = f (1) = g(0) = g(1) = 0, such
that df is zero-free on |z| = 1, and such that f and g jointly separate points on |z| = 1. If
γ is the image of the unit circle under the map ϕ = (f, g), then γ is a real-analytic simple
closed curve in C2 with hull ϕ(Ū). This set is neither a variety nor a two-dimensional
manifold with boundary in a neighborhood of the origin in C2.

Proof. The problem is entirely local, so we suppose 0 ∈ λ. Because the set V ∪λ has van-
ishing 3-dimensional measure, by Theorem 3.8.8 there are many sets of clear coordinates
at the origin for the set V ∪ λ. Choose such a set of coordinates that has the property that
if π is the orthogonal projection of CN onto the z1-axis, then π carries a neighborhood
of 0 in λ diffeomorphically onto a curve γ of class C p through the origin. Require also
that π be constant on no global branch of V . We are working with clear coordinates with
respect to the set V ∪ λ, so there is a neighborhood U of the origin with the property that
π carries V̄ ∩U properly onto the subset π(V̄ ∩U) of the disk U1 centered at the origin.
By shrinking further if necessary, we can suppose that the curve γ separates the disk U1
into two domains U ′

1 and U ′′
1 . Let V ′ = V ∩U ∩ π−1(U ′

1) and V ′′ = V ∩U ∩ π−1(U ′′
1 ).

Then V ′ and V ′′ are analytic covers over U ′
1 and U ′′

1 , respectively, say of multiplicities
m′ and m′′. The labeling can be chosen so that m′ ≥ m′′. Not both of m′ and m′′ can be
zero, because π is not constant on any global branch of V . For every p ∈ λ, π−1(p) ∩ V
is a discrete, possibly empty, subset of V , again because π is constant on no branch of V .
Thus, if p ∈ λ and a ∈ π−1(p) ∩ V , there is a neighborhood Wa of a in V such that π
exhibitsWa as an analytic cover over the set π(Wa).

Assume now that N = 2. The variety V ′ is then the zero locus of a Weierstrass
polynomial with coefficients holomorphic on U ′

1. That is to say, there is a function P1
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holomorphic on U ′
1 × C of the form

P1(z1, z2) = zm′
2 + b1(z1)z

m′−1
2 + · · · + bm′−1z2 + bm′(z1)

such that V ′ is the variety on which P1 vanishes. If V ′′ is not empty, there is a similar
polynomial P2 of degreem′′ whose zero locus is V ′′. The coefficients bk of P1 are bounded
holomorphic functions on the domain U ′

1, and as such, they have nontangential limits at
almost every point of the curve λ. If�′ is the discriminant of the polynomial P1, then�′ is
a bounded holomorphic function on U ′

1 that vanishes on the set of points over which there
are fewer thanm′ points inV . The function�′ does not vanish identically, so it has nonzero
nontangential limits at almost every point of λ. Denote by E′ the subset of λ consisting of
the endpoints of λ together with the points at which �′ fails to have a nontangential limit
or else where this limit is zero. In case that m′′ �= 0, we perform a similar construction
over U ′

1 and get an associated subsetE′′ of λ. LetE = E′ ∪E′′, again a set of zero length.
Fix attention on a point p ∈ λ \ E. There are points pj ∈ U ′

1 such that pj → p

and �′(pj ) → �′(p) �= 0. By passing to a subsequence of the pj if necessary, we can
suppose that the polynomials P1(pj , z2), each of which is a monic polynomial of degree
m′ in z2, converge to a polynomial P1(p, z2).

The zeros of the polynomial P1(p, ·) are the z2-coordinates of the points lying over
p in V̄ ∩ U . There are m′ such points. Let π−1(p) ∩ V̄ ∩ U = {p1, . . . , pm′ }. Choose
mutually disjoint neighborhoods Wj of the points pj contained in U such that π carries
Wj ∩V ′ properly onto the open set π(Wj ∩V ′) in the plane. Those points pj that do not lie
in λ lie in V ; they do not concern us. The multiplicity of π |(Wj ∩ V ′) must be one. If the
point pj lies in λ, it is the limit of a sequence in V ′. The domain π(Wj ∩V ′) abuts λ along
an open interval J containing p, and Wj ∩ V ′ is the graph of a function fj holomorphic
on this domain that assumes continuous boundary values along J . These boundary values
are of class C p, for the graph of f1 over the boundary is of class C p. It follows that near
p the set λ ∪ V ′ is a C p manifold with boundary.

If the multiplicity m′′ is not zero, a similar analysis can be carried out to show that
for points p ∈ γ \E, if p ∈ π−1(p)∩U ∩ V̄ , then either p ∈ V , or else the set λ∪ V ′′ is
a C p manifold with boundary near p.

Consider now a point q in λ such that both λ ∪ V ′ and λ ∪ V ′′ are C p manifolds
with boundary. By construction there is a neighborhood W of π(q) in C on which there
is a function h of class C p that is holomorphic on W ∩ (U ′

1 ∪ U ′′
1 ) and whose graph is

a neighborhood in V̄ of q. The function h continues holomorphically into all of W by
Morera’s theorem, so in this case, q is a regular point of V .

The theorem is proved in the case N = 2.
The N -dimensional case is deduced from the 2-dimensional case as follows. We

have the projection π as in the first paragraph of the proof and the sets U , U ′
1, U ′′

1 and the
varieties V ′ and V ′′ with the associated multiplicitiesm′ andm′′,m′ ≥ m′′, not both zero.

Let � be a linear functional on CN with the property that for a choice of p′ ∈ U ′
1 and

p′′ ∈ U ′′
1 , if m′′ �= 0, the map � carries the set E = (π−1(p′) ∩ V ′) ∪ (π−1(p′′) ∩ V ′′)

injectively into C.
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Consider the map φ : CN → C2 given by

φ(z) = (π(z), �(z)).
There is a neighborhood W of 0 ∈ CN small enough that λ ∩W is an arc carried diffeo-
morphically onto an open arc λ′ of class C p in a neighborhoodW0 of 0 ∈ C2 and V ∩W
is carried by φ onto a subvariety of Wo. Moreover, because � separates points of the set
E, φ is biholomorphic off a discrete subset of V ∩W .

The two-dimensional case applies to λ′ and φ(V ∩W): Either the variety φ(V ∩W)
continues through λ′ as a variety, or else there is a set S ⊂ λ′ of length zero such that
(φ(V ∩ W) ∪ λ′) \ S is a C p manifold with boundary. In the former case, V continues
holomorphically through λ, and in the latter, (V ∪ λ) \ φ−1(S)) ∩ W is a C p manifold
with boundary.

The theorem is proved.

Corollary 7.2.3. If γ ⊂ CN is a simple closed curve of class C p, p ≥ 1, that is not
polynomially convex, then there is a subset E of γ with�1(E) = 0 and with the property
that the set γ̂ \ E is a C p manifold with boundary near γ \ E.

When V is a subvariety of a strictly pseudoconvex domain, V̄ cannot be a variety at
points in the boundary because of the maximum principle, so in this case by the theorem
just proved, if bV is a simple curve of class C p,p ≥ 1, then V̄ is a manifold with boundary
near most points of bV . In this case, at least when p ≥ 2, there can be no exceptional set,
as a result of Forstnerič [125] shows:

Theorem 7.2.4. LetD be a bounded strictly pseudoconvex domain with boundary of class
C 2 in CN , let V be an irreducible one-dimensional subvariety of D, and let bV , which is
contained in bD, be a simple closed curve of class C p, p ≥ 2. There is neighborhoodW
of bV in V̄ that is a two-dimensional C p manifold with boundary such that W ∩ V is a
one-dimensional complex manifold.

Proof. Let γ be the curve bV so that γ̂ = V̄ . According to Theorem 7.1.15, γ is complex
transverse at each of its points.

Fix a point p ∈ γ . The problem is local, so we can suppose that bD is strictly convex
at p, that p is the origin, that T0bD = {�z1 = 0}, and that near the origin D is contained
in the half-space �z1 ≥ 0. With this configuration, T C

0 bD = {z1 = 0}, and the tangent
space T0γ is transverse to {z1 = 0}. Accordingly, if π is the orthogonal projection of CN

onto the z1-axis, π carries T0γ onto a real line in the z1-plane. There are a disk U in the
z1-plane and a polydisk U ′ in CN−1

z2,...,zN
such that π carries D̄ ∩ (U × U ′) properly to U .

Under π , if U and U ′ are small enough, γ ∩ (U × U ′) is carried diffeomorphically (of
class C p) onto an open arc λ in U that is tangent at the origin to the x1-axis (x1 = �z1)
and that separates U into two domains U+ and U− with U+ contained in {�z1 ≥ 0}. The
map π carries (V ∪ γ ) ∩ (U × U ′) properly to U , and π(V ∩ (U × U ′)) is contained in
U+. Therefore π : V ∩ (U × U ′)→ U+ is an analytic cover. This map is injective on γ
(near the origin), so the multiplicity of the analytic cover is one, whence V ∩ (U ×U ′) is a
graph overU+, say the graph of the function f . The function f is holomorphic, because its
graph is an analytic set. It follows that V ∩ (U ×U ′) is nonsingular, and it has continuous
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boundary values along the C p curve π(γ ∩ (U × U ′), and these boundary values are of
class C p—they are the function inverse to the C p function π |γ . Also, by the regularity
theorem for holomorphic functions proved above, the derivatives of order not more than
p of f extend continuously to the boundary near π(p), so near p, V is found to be a
manifold with boundary of class C p, as claimed.

The theorem is proved.

Corollary 7.2.5. If V is an irreducible one-dimensional subvariety of a strictly pseudo-
convex domain D with bD of class C 2, and if bV is a simple closed curve of class C 2,
then V has only finitely many singular points.

Given a planar domain� and given a boundary pointp of�, there may or may not be
an arc contained in�∪{p} that has p as an endpoint. If there is such an arc, then p is said
to be arcwise accessible from �. If � is a bounded, simply connected domain bounded
by a simple closed curve, then a Riemann map U → � extends to a homeomorphism
between Ū and �̄, so every point of b� is arcwise accessible from �.

We shall consider the question of arcwise accessibility of points of bV from V

when V is a one-dimensional subvariety of BN or more generally of a bounded strictly
pseudoconvex domain. The precise definition is this:

Definition 7.2.6. IfD is a domain in CN and V is a subvariety ofD, then the point p ∈ bD
is arcwise accessible from V if there is an arc in V ∪ {p} with p as an endpoint.

We shall also refer to a point that is arcwise accessible from V as a point that is
accessible from V for the sake of brevity.

It is a simple remark of Alexander’s that if V is a one-dimensional variety in an
arbitrary bounded domain, then some points inbV are accessible. IfV is nonsingular, and so
a Riemann surface, the uniformization theorem provides a uniformizing map ϕ : U → V .
The map ϕ is bounded and holomorphic and so has radial limits at almost every point of
bU. If eiϑ is a point of the unit circle at which the radial limit ϕ∗(eiϑ ) = p exists, then
the radial image Iϑ = {ϕ(reiϑ ) : r ∈ [0, 1)} ∪ {p} contains an arc that exhibits p as a
point accessible from V . The point is that Iϑ is the image of the interval [0, 1] under a
continuous map and so is locally connected and thus arcwise connected. For an accessible
but thorough discussion of the set-theoretic topology involved here, one can consult [159].
If V has singular points, then there are a Riemann surface R and a surjective holomorphic
map η : R → V that carries R \ η−1(Vsing) biholomorphically onto Vreg. (Here R is
the normalization of V .) If ϕ : U → R is a uniformizing map, then η ◦ ϕ is a bounded
holomorphic map on U with limits almost surely in bV , and the argument finishes as in
the nonsingular case.

When�1(bV ) is finite, every point is accessible fromV , as shown byAlexander [22].
In fact, his result is stronger in that it is local:

Theorem 7.2.7. LetD be a bounded strictly pseudoconvex domain in CN with bD of class
C 2, and let V be an irreducible one-dimensional subvariety of D. If p ∈ bV is a point
such that for some ball BN(p, r) about p, the set (bV ) ∩ BN(p, r) has finite length, then
p is accessible from V .

Proof. The domainD is strictly pseudoconvex and the problem local, so we can supposeD
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to be strictly convex. Let po ∈ bD be a point such that for some ball BN(po, ηo) centered
at po, the set bV ∩ BN(po, ηo) has finite length.

Introduce the affine function g on CN given by g(z) = 〈z − po, ν〉, where ν is the
outer unit normal to bD at po. Then �g(z) > 0 when z ∈ D̄ \ {po}. For a real number t ,
let Lt be the horizontal line in C that passes through the point it . Choose a point qo in V ,
choose a c > 0, and choose an η1 ∈ (0, ηo) such that g carries bV \ BN(po, η1) into the
half-plane above the line Lc and �g(qo) < c.

For almost all t ∈ (0, c), �1(bV ∩ BN(po, ηo)) <∞, so the set g−1(Lt ) meets bV
in a finite set. Choose a strictly decreasing sequence {δn}n=1,... of positive numbers with
limit zero and with �g(qo) > δ1. Require that for all n, V ∩ g−1(Lδn) ⊂ Vreg, that dg
vanish at no point of V ∩ g−1(Lδn), and that the set Fn = g(bV ∩ BN(po, η1)) ∩ Lδn be
finite.

For each n, let Vn be the part of the variety V taken by g into the half-plane below
the line Lδn . The point po lies in bVn for all n.

Each Vn has only finitely many branches. To see this, denote by λj , j = 1, . . . ,
the finitely many mutually disjoint intervals that compose the set Lδn \ Fn. If λ is one of
these, and if� is the component of g(V ) \ g(BN(po, η1)) that contains λ, then over� the
variety V is an analytic cover with projection g, and so is finitely sheeted. Moreover, g
carries each component of V ∩ g−1(λ) onto λ as a covering map, and so must be injective
there. It follows that V ∩ g−1(λ) has finitely many components. These components are
analytic arcs, so no two distinct global branches of Vn can meet along any component of
V ∩ g−1(λ). The upshot of this is that each Vn has a finite number of branches. Moreover,
the closure of each such branch, say Vn,k , of Vn meets one of the components of g−1(λ)

for some choice of λ: Pick a point zo in some global branch of Vn. The point po can be
joined to our initial point qo with an arc in V . This arc has to stay in V̄n,k until it comes
to the first of its points projected into Lδn by g. Thus, V̄n,k meets g−1(λ) for a suitable
choice of λ. Define now W1 to be some branch of Vδ1 with po ∈ bW1. This is possible,
for V1 has only finitely many branches and po ∈ bV . Let q1 be some point in W1. Then,
let W2 be some branch of the part of W1 carried by g into the half-plane below Lδ2 with
po ∈ bW2, and let q2 be a point of W2. We iterate this procedure to obtain a decreasing
sequenceW1 ⊃ W2 ⊃ · · · and points qk inWk .

Let γ1 be an arc in V that connects qo to q1, and for k = 1, . . . , let γk be an arc in
Wk that connects qk to qk+1. The union � of the γk’s together with the point po contains
an arc in V ∪ {po} that connects qo to po.

The point po is thus seen to be accessible from V , and the theorem is proved.

A notion stronger than accessibility is that of nontangential accessibility:

Definition 7.2.8. If D is a bounded domain in CN and V is a subvariety of D, then the
point p is nontangentially accessible from V if bD has a tangent plane at p and if there
is an open cone K in CN with vertex p and axis the normal to bD at p such that for
some r > 0, the intersection K ∩ BN(p, r) is contained in D and there is an arc λ in
{p} ∪ (V ∩K) with p as an endpoint.

The question of nontangential accessibility is more delicate than that of accessibility.
For it there is the following result:
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Theorem 7.2.9. Let D be a bounded strictly pseudoconvex domain in CN with boundary
of class C 2. Let V ⊂ D be an irreducible one-dimensional subvariety. If E is an open
subset of bV that is a continuum of finite length, then almost every [d�1] point of E is
nontangentially accessible from V .

This is a result of Alexander’s [22].

7.3. Uniqueness

The following uniqueness theorem was established by Lawrence [215], generalizing earlier
versions due to Alexander [22] and Globevnik and Stout [147]. It can be regarded as a
geometric analogue of the result from classical function theory to the effect that two
bounded holomorphic functions on the unit disk with boundary values coincident on a
subset of the unit circle of positive length necessarily coincide throughout the disk.

Theorem 7.3.1. LetD be a bounded strictly pseudoconvex domain in CN with boundary of
class C 2. Let V1 and V2 be irreducible one-dimensional subvarieties ofD. Assume there to
be an open set� ⊂ bD such that�1(bVj∩�) <∞ for j = 1, 2. If�1(bV1∩bV2∩�) > 0,
then V1 = V2.

The hypotheses of this theorem cannot be essentially weakened. Globevnik and
Stout [147] constructed distinct subvarieties V ′ and V ′′ of the ball BN , N ≥ 2, each of
which is an immersed copy of the open unit disk and each of which has finite area, indeed
arbitrarily small area, and that satisfy V̄ ′ \ V ′ = bBN = V̄ ′′ \ V ′′.

Another example is this:

Example. Alexander [22] constructed proper holomorphic maps ϕ1 and ϕ2 from U to B2
such that with Vj = ϕj (U), the set bV2 is a connected set of finite measure, the set bV1
has σ -finite linear measure, the sets bV1 and bV2 meet in a set of positive length, but the
varieties V1 and V2 are distinct. This construction is the following.

The variety V2 is the disk given by

V2 = {(ζ, 0) : ζ ∈ C, |ζ | < 1}.
The varietyV1 is more complicated. LetS be the spiral {r(ϑ)eϑ : 0 ≤ ϑ}with r the function
given by r(ϑ) = ϑ/(1 + ϑ). The domain U \ S is simply connected. Let f : U → U \ S
be a Riemann map chosen so as to extend continuously to Ū \ {1}; the absolute value |f |
extends continuously to Ū and satisfies |f (1)| = 1. There is a holomorphic function g on
U such that |g| extends continuously to Ū and satisfies |g| = √1 − |f |2 on bU. For g one
can take

g(z) = exp

{
1

2π

∫ π
−π
eiϑ + z
eiϑ − z log

√
1 − |f (eiϑ )|2 dϑ

}
,

so that g(z) = eu+iv with u the Poisson integral of log
√

1 − |f (eiϑ )|2.
With this choice for f and g, define ϕ1 : U → B2 by ϕ1(z) = (f (z), g(z)), a proper

holomorphic map. Denote its range byV1. The set V̄1\V1 is the setϕ1(bU\{1})∪(bU×{0}),
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which has σ -finite one-dimensional measure. The sets V̄1 \ V1 and V̄2 \ V2 meet in the
circle bU×{0}, which is a connected set of positive length, but the varieties V1 and V2 do
not coincide.

To justify the preceding analysis, it is necessary to show that the integral∫ π
−π

log
√

1 − |f (eiϑ )|2 dϑ

exists. This can be done, but the details are not perfectly simple.
A simpler alternative construction is the following. Consider the function f de-

fined by

f (z) = exp

{
i

{(α
π

)
log

(
i
1 + z
1 − z

)
+ βi
}1/2 }

,

in which α = 2(c − c′) and β = 2c′ for positive numbers c and c′ with c′ < c. The
logarithm is taken to be defined on the plane cut down the negative imaginary axis and
to be normalized by log1 = 0. The square root function is defined on the same slit plane
and satisfies

√
1 = 1. The geometry of this mapping from the disk to the plane can

be understood by considering it as a composition. The linear fractional map z �→ i 1+z
1−z

carries U onto the upper half-plane with the point 1 ∈ bU going to the point at infinity.
The logarithm carries the upper half-plane to the infinite strip of width π bounded below
by the x-axis. The effect of the constants α and β is to shift this infinite strip upward and
make its boundary lines, lines parallel to the x-axis, be the lines through the points c′i
and ci. Denote this strip by S . The square root function carries S onto the domain in
the first quadrant bounded above by a branch of the hyperbola xy = c and below by the
corresponding branch of the hyperbola xy = c′. Call this curvilinear strip S ′. (To confirm
this, it is simplest to note that the map z �→ z2 carries the hyperbola xy = k into the
horizontal line through the point 2ki.) Finally, the exponential map z �→ eiz carries the
strip S ′ into U, in such a way that as z ∈ S ′ approaches ∞ through the first quadrant,
the point eiz circles infinitely often around the origin and approaches bU. In particular, the
modulus |f | is continuous on Ū. The argument of f is not.

We will show now that the continuous function
√

1 − |f |2 on bU is |g| for a function
g holomorphic and bounded on U whose modulous extends continuously to Ū. Any such
function g satisfies g(1) = 0. To verify the existence of g, it is necessary to verify that

(7.5)
∫ π
−π

log(1 − |f |2(eiϑ )) dϑ <∞.

(If this integral is finite, a choice for the function g is given by g = eu+iv , where the
harmonic function u is the Poisson integral of 1

2 log(1 − |f |2) and v is some harmonic
conjugate of u. The function g is uniquely determined to within a factor of eiθ , which is
determined by the value of v(0).)

That the integral in (7.5) exists is easily seen. Note first that

(7.6) log

(
i
1 + eiϑ
1 − eiϑ

)
= log

− sin ϑ

1 − cosϑ
,
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which is log
∣∣ sin ϑ

1−cosϑ

∣∣ if −π < ϑ < 0 and is log
∣∣ sin ϑ

1−cosϑ

∣∣+ πi if 0 < ϑ < π . Thus∫ 0

−π
log(1−|f |2(eiϑ )) dϑ =

∫ 0

−π
log

(
1 − exp

{
2�i
{

2α

π
log

− sin ϑ

1 − cosϑ
+ βi
}1/2
})
dϑ.

Now
{ 2α
π

log − sin ϑ
1−cosϑ + βi}1/2 = a + ib with ab = c′, so

�
{

2α

π
log

− sin ϑ

1 − cosϑ
+ βi
}1/2

= b = c′/a = c′�
{

2α

π
log

− sin ϑ

1 − cosϑ
+ βi
}−1/2

,

which, for ϑ negative but close to 0, is about const
{
αlog − sin ϑ

1−cosϑ

}−1/2, so that for these

values of ϑ , |f |2(e−ϑ) ∼ exp{− const
{
log
∣∣ sin ϑ

1−cosϑ

∣∣}−1/2 with a positive constant.
For ϑ near 0,

log

(
1 − exp

{
− const

(
log

∣∣∣∣ sin ϑ

1 − cosϑ

∣∣∣∣)−1/2
})

∼ log
const

log 1
|ϑ |
.

Because the singularity at 0 of log log 1
|ϑ | is integrable, we have that log(1 − |f |2) is

integrable on (−π, 0).
A similar analysis gives its integrability on (0, π).
This completes the discussion of the example.

Notice that the points of the circle bU × {β} are not accessible from the variety
V = {(f (z), g(z)) : |z| < 1}.

Theorem 7.3.1 requires some convexity condition on the domain D, as an example
given in [147] shows.

The uniqueness result, Theorem 7.3.1, is an immediate consequence of a result, which
is due to Lawrence [215], on the multiplicity function introduced in Section 4.6.

Theorem 7.3.2. LetD be a bounded strictly pseudoconvex domain in CN with boundary
of class C 2. If V is a one-dimensional subvariety ofD with�1(bV ) <∞, then for almost
every [d�1] point z of bV , the multiplicity m(V ; z) is one.

Proof. By definitionm(z;V ) ≥ 1 for every z ∈ bV , and we know from Theorem 4.6.3 that
m(z;V ) ≤ 2 a.e. [d�1]. We suppose therefore, for the sake of deriving a contradiction,
that m(z;V ) = 2 on a subset of bV of positive length.

Without loss of generality, we can suppose that the domain D is strictly convex.
Fix attention on a compact set E ⊂ bV of positive length with m(z;V ) = 2 for all

z ∈ E. The set bV is minimal with respect to the condition that p ∈ b̂V for all p ∈ V near
bD, so bV is a set of class A1 by Theorem 4.3.7. Thus, we can suppose that at every point
of E, the tangent Tan(bV, z) is a real line. Moreover, by Theorem 7.1.17 we can suppose
that this line is complex transverse. By Lemmas 4.3.4, 4.3.10, 4.3.11, and 4.3.16, we know
that by shrinking E a bit if necessary, we can find a C-linear functional ϕ on CN that is
injective on E and for which�1(ϕ(E)) > 0 and ϕ(E) is of class A1. Let the components
of C \ ϕ(E) be �j , j = 0, . . . , with �0 the unbounded component.
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Lemma 7.3.3. If�p is a component of C\ϕ(E) such that b�p∩ϕ(E) has positive length,
then V ∩ ϕ−1(�p) has one and only one branch, sayWp, such that bWp meets E in a set
of positive length.

Proof. SupposeW ′ andW ′′ to be distinct branches ofV ∩ϕ−1(�p) such that�1(bW ′ ∩E)
and �1(bW ′′ ∩ E) are both positive. We have ϕ(W ′) = �p = ϕ(W ′′), so

�1(bϕ(W ′) ∩ bϕ(W ′′) ∩ ϕ(E)) > 0,

and then, because ϕ is injective on E,

�1(bW ′ ∩ bW ′′ ∩ E) > 0.

The unionW ′∪W ′′ is a bounded subvariety of CN \ϕ−1(ϕ(bV )), and ϕ|(W ′∪W ′′)→ �p
is a proper holomorphic map. BecauseW ′ �= W ′′, the generic fiber ϕ−1(ζ ) ∩ (W ′ ∪W ′′)
contains at least two points. This is impossible, for ϕ(E)∩ b�p is a set of positive length
and so is a set of uniqueness for subharmonic functions on �p. (Recall Corollary 3.4.11.)

Corollary 7.3.4. If W is a branch of V ∩ ϕ−1(�p) with �1(ϕ(bW) ∩ ϕ(E)) > 0, then
ϕ|W is biholomorphic onto �p.

As a consequence,W is nonsingular.

Proof. We know from the proof of the lemma that ϕ|W is injective and proper as a map
to �p. Thus there is a holomorphic map χ : �p \ ϕ(Wsing)→ W inverse to ϕ|Wreg. The
map χ continues through ϕ(Wsing) by the Riemann removable singularity theorem, for it
is bounded. The extended map is the inverse of ϕ|W , so the latter map is biholomorphic
as claimed.

Proof of the theorem concluded. The lemma implies that there are components, say �1
and �2, of C \ ϕ(E) such that branches W1 and W2 of ϕ−1(�1) ∩ V and ϕ−1(�2) ∩ V ,
respectively, are mapped biholomorphically onto �1 and �2 and such that b�1 ∩ b�2 ∩
ϕ(E) contains a set S0 of positive length.

By Theorem 4.3.12 there are rectifiable simple closed curves γ1 and γ2 that bound
simply connected domains D1 and D2, respectively, contained in �1 and �2 with the
property that γ1∩γ2 contains a subset S1 of S0 of positive length. There are conformal maps
ψj : U → Dj , j = 1, 2, as provided by the Riemann mapping theorem. By Theorem 3.4.6,
the derivatives ψ ′

j lie in the Hardy classH 1(U). The domainDj is the image of a domain
W ′
j in Wj under the map ϕ, and there are biholomorphic maps ηj : U → W ′

j with
ϕ ◦ ηj = ψj .

Under the map ψj , the set S1 corresponds to a set of positive length in the circle bU.
At almost every point eiϑ of ψ−1(S1) the derivative ψ ′

j has nontangential limit ψ ′
j (e

iϑ ).

For such a point eiϑ , the curve γj has a tangent at the point ψj (eiϑ ).
The variety V has finite area, because bV is of class A1. Consequently, the domains

W ′
j have finite area. It follows that the derivatives η′j satisfy

(7.7)
∫

U

|η′j (ζ )| dL (ζ ) =
∫ 2π

0

∫ 1

0
|η′j (reiϑ )| r dr dϑ <∞,
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so for almost all values of ϑ , the integral
∫ 1

0 |η′j (reiϑ )| rdr is finite. Thus, for almost all

values of ϑ the radial image ηj ([0, eiϑ ]) has finite length. Moreover, for almost all values
of ϑ , the limit limr→1− η

′
j (re

iϑ ) = η′j (eiϑ ) is not zero, as follows by differentiating the
equation ψj (ζ ) = ϕ ◦ ηj (ζ ) and passing to the radial limit and then recalling that the
boundary values ψ ′

j (e
iϑ ) are almost everywhere nonzero.

Consider now a point z0 ∈ E with ϕ(z0) = ψ1(e
iϑ1) = ψ(eiϑ2) for points eiϑj at

which the limitsψ ′
j (e

iϑj ) exist and are nonzero. By changing coordinates suitably, we can

suppose that z0 is the origin in CN , whence ϕ(z0) = 0, and also that the points eiϑj are
both the point 1 ∈ bU. By the last paragraph, we can also assume that the radial limits
η′j (1) both exist and are zero-free. Under ϕ, the tangent Tan(V , 0) is carried to the tangent
T0γ1, which must coincide with the tangent T0γ2. Call this line �.

The curvesLj = ψj ([0, 1]) lie inDj , so they approach the origin in C from opposite
sides of the line �, and the approach is tangent to the normal to the line �.

The curves Lj lift to the curves L̃j = ηj ([0, 1]) inW ′
j ∪ {0}. That is, ϕ(L̃j ) = Lj .

Let λ be the complex line in CN that contains the line Tan(V , 0).
Let χ be a linear functional on CN with χ−1(0) = T C

0 (bD) and with �χ > 0 on
the domainD. Thus, the function χ is constant on neither of the curves L̃j . It carries them
into curves in the plane that approach the origin from the right half-plane.

The curves L̃j project orthogonally into the complex line λ as curves L̃∗
j . We can

write that for t ∈ [0, 1],
ηj (t) = ηj (1)+ (1 − r)η′j (1)+ o(1 − r) = (1 − r)η′j (1)+ o(1 − r).

The line λ is the line Cη′j (1), so the curve L∗
j is the curve (1 − t)η′h(1) + o(1 − r) for a

suitable remainder term. Consequently, the curves L∗
j are carried by the linear functional

ϕ to curves that approach the origin in C from opposite sides of the line �.
Let σ : C → λ be the map inverse to ϕ|λ. (Note that ϕ is not constant on λ, because

Tan(bV, 0) is complex transversal. The map h = χ ◦ σ is a nonsingular linear map of C

onto itself. It carries the curves ϕ(L∗
j ), which approach the origin from opposite sides of

the line �, onto the curves χ(L∗
j ), which approach the origin from the same side of the

line h(�) = χ(Tan(V , 0)). The map h is conformal, so we have a contradiction, and the
theorem is proved.

The next result was found by Lawrence [215] and depends essentially on the pre-
ceding result. See also [99].

Theorem 7.3.5. IfD is a domain in CN with boundary of class C 2 that is strictly convex,
and if X ⊂ bD is a compact set with �1(X) < ∞, then X̂ \ X is an analytic subvariety
of CN \X.

By virtue of the embedding theorem of Fornæss and Henkin, Theorem 2.4.6, there
is an analogue of this theorem in which the domainD is taken to be strictly pseudoconvex
and polynomial convexity is replaced by convexity with respect to the algebra of functions
holomorphic on a neighborhood of D̄.

Proof. Fix a point x ∈ X̂ \X. It is to be shown that near x, the set X̂ \X has the structure
of a one-dimensional variety. To begin with, let E ⊂ X be a compact set with x ∈ Ê and
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minimal with respect to this property. The set E is of class A1 by Theorem 4.3.7, so by
Theorem 4.3.2 the set Ê \ E is a one-dimensional variety. Consequently, X̂ \ X contains
varieties through x.

Let U be a small open set that contains x and that is relatively compact in D. Only
finitely many irreducible subvarieties of D contained in X̂ \ X can meet U . To see this,
denote by d a positive number less than the distance from U to bD. If V is an irreducible
subvariety ofD contained in X̂ \X that meets U , then b̂V meets U , whence�1(bV ) > d

by the result of Sibony, Theorem 5.1.17.
Now suppose there are infinitely many distinct irreducible subvarieties Vj , j =

1, . . . , ofD contained in X̂ \X that meet the set U . The preceding paragraph implies that
for each j , �1(V̄j \ Vj ) is a least d . The finiteness of �1(X) < ∞ implies that two of
the sets V̄j \ Vj must meet in a set of positive measure. Theorem 7.3.1 implies that these
two varieties must coincide, contradicting their choice as distinct subvarieties. Thus, the
set X̂ \ X contains only finitely many irreducible subvarieties of D that meet the set U .
LetW be their union.

Consider now the set (X̂ \W)∩U . If this set is not empty, let y be one of its points.
By the first paragraph of the proof, X̂ \ X contains a subvariety that passes through the
point y. This contradicts the choice ofW . Consequently,W ∩U is a neighborhood of the
initially chosen point x that has the structure of a variety.

The theorem is proved.

The following corollary was announced in the remarks that introduce Chapter 4.

Corollary 7.3.6. If X is a compact subset of bBN with �1(X) < ∞, then X̂ \ X is a
one-dimensional subvariety of BN .

Corollary 7.3.7. If D is a bounded, strictly pseudoconvex domain in CN that is polyno-
mially convex and that has boundary of class C 2, and if E ⊂ bD is a compact set of finite
length that satisfies Ȟ 1(E,Z) = 0, then E is polynomially convex.

The corollary applies in particular when the set E is totally disconnected.

Proof. If not, Ê \E is a variety, V . Because�1(E) is finite, we must have Ȟ 1(bV,Z) �= 0
by Theorem 3.8.15. However H 1(E,Z) = 0 implies that Ȟ 1(bV,Z) = 0, and we have a
contradiction.



Chapter 8

EXAMPLES AND
COUNTEREXAMPLES

Introduction. In this chapter we discuss some additional questions related to
polynomial convexity, topics that are concerned with polynomial convexity
per se and also topics that depend on the application of the ideas of polynomial
convexity. Section 8.1 discusses the polynomial convexity of unions of linear
spaces passing through the origin. Section 8.2 is devoted to the study of
pluripolar graphs. Section 8.3 considers certain deformations of polynomially
convex sets. Section 8.4 concerns sets with symmetries.

8.1. Unions of Planes and Balls

The question broached here is, under what conditions does the union of a family of linear—
perhaps R-linear—subspaces of CN have the property that its intersection with B̄N is
polynomially convex?

We begin with the complex case. A finite union of C-linear subspaces of CN is
an analytic variety, so its intersection with any closed ball or, more generally, with any
polynomially convex set is polynomially convex. Certain nontrivial infinite unions of
complex lines through the origin are known to be polynomially convex as well. This
seems first to have been noticed by Sibony and Wong [334]. Alexander [13] introduced
a notion of projective capacity that is well suited to the discussion of such unions. The
definition of this capacity requires some preliminaries.

Consider the projection π : CN \ {0} → PN−1. For a set S ⊂ PN−1 we denote by
YS the set B̄N ∩ π−1(S) ∪ {0}, a certain subset of the closed unit ball, which is circled
in the sense that if z ∈ YS , then for all ϑ ∈ R, the point eiϑz is also in YS . Indeed, if
ζ ∈ C, |ζ | ≤ 1, then ζz ∈ YS . The set YS is called the truncated cone over S. Conversely,
if Y ⊂ B̄N is a compact subset with the property that for each z ∈ Y and each ζ ∈ C,
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|ζ | ≤ 1, we have ζz ∈ Y , then Y = YS if S = π(Y \ {0}). The set YS is compact if and
only if the set S is compact.

The definition of projective capacity depends on the notion of normalized homoge-
neous polynomial and on some simple facts about them.

Definition 8.1.1. A homogeneous polynomial p of degree d on CN is said to be normal-
ized if ∫

S2N−1
log|p(z)| dσ(z) = d

∫
S2N−1

log|z1| dσ(z)

with dσ the element of normalized surface area on the sphere S2N−1 = bBN .

The motivation for this rather arbitrary-appearing definition comes from the consideration
of the two-dimensional case. Homogeneous polynomials of two variables factor into linear
factors: If q(z1, z2) is a homogeneous polynomial of degree d, then there is a representation

(8.1) q(z1, z2) = C
d∏
j=1

(αj z1 + βjz2).

If we impose the conditions that |αj |2 + |βj |2 = 1 and that C > 0, then C is uniquely
determined. We will say that q is C-normalized if C = 1. A homogeneous polynomial of
two variables isC-normalized exactly when it is normalized: With q(z1, z2) given by (8.1),

∫
S3

log|q(z)| dσ(z) = logC +
d∑
j=1

∫
S3

log|αjz1 + βjz2| dσ(z)

= logC + d
∫

S3
log|z1| dσ(z).

(The second equality follows from the unitary invariance of the measure σ .) Thus, for
homogeneous polynomials of two variables, being C-normalized is the same as being
normalized. It is not generally true that homogeneous polynomials of more than two
variables factor into linear factors, so the notion ofC-normality is not meaningful for them.

Observe that the product of normalized polynomials is a normalized polynomial.
The integral

∫
S2N−1 log|z1| dσ(z) can be evaluated without difficulty:

Lemma 8.1.2. For N ≥ 2,∫
S2N−1

log|z1| dσ(z) = −1

2

{
1 + 1

2
+ · · · + 1

N − 1

}
.

Proof. Denote the integral by IN ; its evaluation is based on the general integration formula
that for g ∈ C (S2N−1),∫

S2N−1
g(z) dσ(z) = (N − 1)!

πN−1

∫
BN−1

{
1

2π

∫ π
−π
g(z′,
√

1 − |z′|2eiϑ ) dϑ
}
dL (z′),
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which can be proved using the usual formula for surface integrals together with the pa-
rameterization BN−1 × (−π, π) $ (z′, ϑ) �→ (z′,

√
1 − |z′|2eiϑ ) ∈ bBN for (almost all

of) bBN . A different derivation of the formula is given in [310, p. 15]. Applied with the
integrand log|zN |, this formula gives

IN = (N − 1)!
2πN−1

∫
BN−1

log(1 − |z′|2) dL (z′).

If we pass to spherical coordinates in CN and use the expansion log(1− x) = −∑∞
k=1

xk

k
valid for −1 ≤ x < 1, we find that

IN = −1

2
(N − 1)

∞∑
k=1

1

k(k +N − 1)
= −1

2

N−1∑
k=1

1

k
.

We shall need the following estimate.

Lemma 8.1.3. If p is a homogeneous polynomial of degree d with ‖p‖BN
= 1, then∫

S2N−1
log|p(z)| dσ(z) ≥ d

∫
S2N−1

log|zN | dσ(z).

Proof. Denote by η : S2N−1 → C the projection given by η(z) = zN . There is an integral
formula1 that, with z′ = (z1, . . . , zN−1) and with σζ the normalized surface area measure
on the sphere η−1(ζ ) when |ζ | < 1, is given by

(8.2)
∫

S2N−1
g(z) dσ(z) =

∫
|ζ |<1

{∫
η−1(ζ )

g(z′, ζ ) dσζ (z′)
}
A(ζ ) dL (ζ )

for each continuous function g on S2N−1. Here A is a fixed smooth positive function on
the open unit disk in the ζ -plane.

The statement of the lemma is invariant under unitary changes of variables, so without
loss of generality, we can suppose that p(z) = zdN + q(z) with q(z) a homogeneous
polynomial of degree d each summand of which is divisible by one of zj , 1 ≤ j ≤ N − 1.

1This formula is a consequence of Fubini’s theorem: If

Θ = z̄1dz̄2 ∧ · · · ∧ dz̄N ∧ dz1 · · · ∧ dzN
= ±z̄1dz̄2 ∧ · · · ∧ dz̄N−1 ∧ dz1 ∧ · · · ∧ dzN−1 ∧ dz̄N ∧ dzN
= Θ ′ ∧ dz̄N ∧ dzN ,

then, to within a constant factor, integrating a function g on S
2N−1 against the formΘ is the same as integrating

against the measure dσ . Fubini’s theorem yields the formula∫
S2N−1

gΘ =
∫
|ζ |<1

{∫
η−1(ζ )

gΘ ′
}
dζ̄ ∧ dζ,

from which the formula (8.2) follows.
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Thus, because σζ is a Jensen measure for the point (0, . . . , 0, ζ ), we have∫
log|p(z)| dσ(z) =

∫
|ζ |<1

{∫
η−1(ζ )

log|ζ d + q(z′, ζ )| dσζ (z′)
}
A(ζ ) dL (ζ )

≥ d
∫
|ζ |<1

log|ζ |A(ζ ) dL (ζ ).

But also,∫
S2N−1

log|zdN | dσ(z) = d
∫
|ζ |<1

{∫
η−1(ζ )

log|ζ | dσζ (z′)
}
A(ζ ) dL (ζ )

= d
∫
|ζ |<1

log|ζ |A(ζ ) dL (ζ ),

so the lemma is correct.

Corollary 8.1.4. If p is a homogeneous polynomial of degree d, then∫
S2N−1

log|p(z)| dσ(z) ≥ log‖p‖S2N−1 + d
∫

S2N−1
log|zN | dσ(z).

Corollary 8.1.5. If p is a normalized homogeneous polynomial, then

‖p‖S2N−1 ≤ 1.

Definition 8.1.6. If E ⊂ S2N−1 is compact, then

(8.3) mk(E) = inf {‖p‖E : p is a normalized polynomial of degree k}.
The numbers mk satisfy

0 ≤ mk(E) ≤ ‖zk1‖BN
= 1 and mk+k′(E) ≤ mk(E)mk′(E).

The following elementary lemma will enable us to understand the asymptotic be-
havior of the numbers mk(E).

Lemma 8.1.7. If {αk}k=1,... is a sequence of nonnegative numbers that satisfy αk+k′ ≤
αk + αk′ , then limk→∞ αk

k
exists and is inf k

αk
k

.

Proof. Let c = inf k
αk
k

. Choose an ε > 0 and then a ko such that c ≤ αko
ko
< c + ε. The

α’s satisfy αpko ≤ pαko , so for all positive integers p we have
αpko
pko

≤ αko
ko

≤ c + ε. For

large n, write n = pko + r with 0 ≤ r < ko. Then αn
n

≤ αpko
n

+ αr
n

, and when n is large,
this is not more than c + ε. The lemma follows.

Corollary 8.1.8. The limit limk→∞[mk(E)]1/k exists.

Definition 8.1.9. The projective capacity of a compact subset E of S2N−1 is the number
limk→∞[mk(E)]1/k .
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The projective capacity of a compact subset E of S2N−1 will be denoted by pcapE.
The notion of projective capacity of subsets of projective space is defined in terms

of the projective capacity on S2N−1.

Definition 8.1.10. If S ⊂ PN−1 is a compact set, then

pcap S = pcap(π−1(S) ∩ S2N−1).

These projective capacities are monotone set functions that are invariant under the
action of the unitary group and that satisfy pcapE ≤ 1.

A simple estimate shows some sets to have positive projective capacity.

Lemma 8.1.11. If E ⊂ S2N−1 is compact, then

(8.4) pcapE ≥ exp

{
1

σ(E)

∫
S2N−1

log|zN | dσ(z)
}
.

Proof. If p is a normalized polynomial of degree d, then because |p| ≤ 1 on SN−1,

d

∫
S2N−1

log|zN | dσ(z) =
∫
S2N−1

log|p(z)| dσ(z) ≤
∫
E

log|p(z)| dσ(z)
≤ σ(E)log‖p‖E.

It follows that ∫
S2N−1

log|zN | dσ(z) ≤ σ(E)log[md(E)]1/d ,
which implies the inequality of the lemma.

Thus, subsets of S2N−1 of positive area have positive projective capacity. In partic-
ular, we have the following estimate:

Corollary 8.1.12. The projective capacity of PN−1 satisfies

pcap PN−1 ≥ exp
∫

S2N−1
log|zN | dσ(z) = exp

{
−1

2

N−1∑
k=1

1

k

}
.

The sum in the last equation satisfies
∑N−1
k=1

1
k

= logN + γ + o(1) with γ Eu-

ler’s constant, which is 0.5772 . . . . Thus, pcap PN−1 ≥ 1√
N
e−

γ
2 +o(1). Also, the poly-

nomial q(z) = (z1 · · · zN)s , which is of degree Ns, satisfies ‖q‖S2N−1 = N−Ns/2, so
mNs(P

N−1) ≤ N−Ns/2, whence pcap PN−1 ≤ 1√
N

, and we have that

(8.5)
1√
N
e−

γ
2 +o(1) ≤ pcap PN−1 ≤ 1√

N
.

By identifying the projective capacity on P1 with the elliptic capacity of Tsuji [356],
Alexander showed the projective capacity of P1 to be e−1/2. The value of pcap PN for
other values of N was determined to be exp

(− 1
2

∑N−1
j=1

1
j

)
in the paper [188].

The following result of Alexander is the main theorem relating projective capacity
and polynomial convexity.
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Theorem 8.1.13. [13] Let S be a compact subset of PN−1. If pcap S = β > 0, then
ŶS ⊃ B̄N(β). Conversely, if YS ⊃ B̄N(r), then pcap S ≥ r(pcap PN−1).

There is a gap between the sizes of the balls considered in the last two statements
of the theorem. Whether this gap exists in nature is not clear; its appearance may be an
idiosyncrasy of the proof.

It is important to recognize that this theorem does not characterize the subsets S of
PN−1 for which the truncated cone is polynomially convex.

The proof of Theorem 8.1.13 requires two lemmas.

Lemma 8.1.14. If E ⊂ S2N−1 is a compact set and p is a homogeneous polynomial of
degree d, then ‖p‖S2N−1 ≤ ‖p‖E

[pcapE]d .
Proof. It is enough to prove the inequality whenp is normalized, so that by Corollary 8.1.5,
‖p‖S2N−1 ≤ 1. By definition, pcapE = inf [mk(E)]1/k , so the definition of mk(E) yields

1 ≤ ‖p‖E
md(E)

≤ ‖p‖E
[pcapE]d ,

whence the result.

Lemma 8.1.15. If E ⊂ S2N−1 is a compact, circled set and p = p0 + · · · + pd is a
polynomial of degree d with each pk homogeneous of degree k, then ‖pk‖E ≤ ‖p‖E .

Proof. If z ∈ E and λ ∈ C, then p(λz) =∑d
k=0 λ

kpk(z), so

|pk(z)| =
∣∣∣∣ 1

2π

∫ π
−π
e−ikϑp(eiϑz) dϑ

∣∣∣∣ ≤ ‖p‖E.

Proof of the theorem. We first show that if |z| ≤ pcap S, then z ∈ ŶS . LetE = YS∩S2N−1.
If p = po + · · · + pd is a polynomial of degree d with the pk homogeneous of degree k,
then, for z �= 0,

|p(z)| ≤
d∑
k=0

|z|k
∣∣∣∣pk ( z|z|

)∣∣∣∣ ≤ d∑
k=0

|z|k ‖p‖E
[pcapE]k ≤ ‖p‖E 1

1 − |z|
pcapE

.

Apply this with pn in place of p, take the nth root of both sides, and let n → ∞ to find
that |p(z)| ≤ ‖p‖E . Thus, z ∈ ŶS .

Conversely, suppose Ê ⊃ BN(r). If p is a homogeneous polynomial of degree
d, then

‖p‖E ≥ ‖p‖BN(r)) = rk‖p‖BN
,

whence, for each positive integer k,

mk(E)
1/k ≥ r[mk(PN−1)]1/k,

which yields

r ≤ pcapE

pcap PN−1

as desired.
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Sibony and Wong [334] were the first to obtain a result in the spirit of Theorem 8.1.13.
They based their analysis on a notion of capacity due to Ronkin, the �-capacity, which is
discussed in [294]. Among their results is the following: With homogeneous coordinates
[z1 : z2] on P1, let the compact setE be contained in the set {[1 : z2] : z2 ∈ C} ⊂ P1. Then
ŶE ⊃ {(z1, z2) ∈ C2 : M|z1|+ |z2| ≤ capE√

1+M2
}, whereM = max{|z2| : [1 : z2] ∈ E} and

cap denotes the logarithmic capacity on the plane.

Theorem 8.1.13 shows the importance of projective capacity for the theory of poly-
nomial convexity. In applications it will be important to understand more clearly the nature
of the sets of vanishing projective capacity. A first result in this direction is that the class
of these sets is stable under the formation of countable unions:

Theorem 8.1.16. [13] If S1, . . . are compact subsets of PN−1 with union the compact set
S, and if pcap Sj = 0 for each j , then pcap S = 0.

Proof. Suppose for the sake of contradiction that pcap S > 0. For k = 1, . . . , let Ek =
π−1(Sk) ∩ S2N−1, and let E = π−1(S) ∩ S2N−1. The set S, and therefore the set E, has
positive projective capacity, so Ê contains a closed ball B̄N(r) for some r > 0. Denote by
σr the normalized surface area measure on bBN(r). Remark 1.2.18 applied to the algebra
P(YS), which has Shilov boundary E, yields a Jensen measure µ for the measure σr : µ
is a positive measure of total mass one carried by the set E that satisfies∫

log|f (z)|dσr(z) ≤
∫

log|f (z)| dµ(z)

for all f ∈ P(YS). For some k, µ(Ek) > 0. We shall show that this Ek has positive
projective capacity.

If p is a homogeneous polynomial of degree n, then with θ = µ(Ek),∫
log|p(z)| dµ(z) ≤ θ log‖p‖Ek + (1 − θ)log‖p‖S2N−1 .

We also have∫
log|p(z)| dσr(z) =

∫
log|p(rz)| dσ(z) =

∫
log|p(z)| dσ(z)+ nlogr,

so

(8.6)
∫

log|p(z)| dσ(z) ≤ −nlogr + θ log‖p‖Ek + (1 − θ)log‖p‖S2N−1 .

Recall—Corollary 8.1.4—that

(8.7) log‖p‖S2N−1 + n
∫

log|zN |dσ(z) ≤
∫

log|p(z)| dσ(z).

It follows from (8.7) and (8.6) that if c = exp
{
(−logr − ∫ log|zN | dσ(z))/θ

}
, then

‖p‖S2N−1 ≤ cn‖p‖Ek .
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This inequality, used as in the proof of Theorem 8.1.13, yields that Ek has positive pro-
jective capacity.

There is a useful characterization of sets of vanishing projective capacity, found by
Alexander [13].

Theorem 8.1.17. A compact subset of PN has vanishing projective capacity if and only if
it is locally a pluripolar set.

Recall that a subset E of a complex manifold is locally a pluripolar set if for each
point p ∈ E there is a neighborhood V of p on which there is a plurisubharmonic function
u with E ∩ V ⊂ u−1(−∞), u not identically −∞ near p. If there is a plurisubharmonic
function u defined on the whole manifold and not identically −∞ with E ⊂ u−1(−∞),
thenE is a pluripolar set. It is a theorem of Josefson [193] that in CN a locally pluripolar set
is pluripolar. There can be no such theorem on PN or on any compact complex manifold,
because, by the maximum principle, there are no nonconstant plurisubharmonic functions
on a compact manifold. In the plane the compact pluripolar sets are the compact sets of
zero logarithmic capacity. An alternative proof of Josefson’s theorem is given in [207].

The proof of Theorem 8.1.17 requires a lemma.

Lemma 8.1.18. [14] If E is a nonpluripolar compact subset of the connected complex
manifold M , then for every compact subset X of M there is a constant θ ∈ (0, 1) such
that for every f ∈ O(M ),

(8.8) ‖f ‖X ≤ ‖f ‖θE‖f ‖1−θ
M .

Proof. If the lemma is false, there exists a sequence {fn}n=1,... in O(M )with ‖fn‖M = 1
and ‖fn‖X ≥ ‖fn‖1/n

E . With the functions fn we construct a plurisubharmonic function u
on M with u = −∞ on E but u not identically −∞, contradicting the assumption that E
is nonpluripolar.

To construct u, note that log|fn| is negative, since |fn| < 1. Thus, there are positive
constants cn such that maxX cnlog|fn| = −1. Letϕn = cnlog|fn| andϕ = lim supn=1,... ϕn.
The function ϕ is not identically −∞, because if it were, the result of Hartogs, Theo-
rem 1.3.2, and the remark immediately after its proof would yield that cnlog|fn| → −∞
uniformly on compacta, contradicting maxX cnlog|fn| = −1. Consequently, there are a
point x ∈ X and a number q > −∞ such that for a sequence {nj }j=1,... that increases
to ∞, ϕnj (x) > q. The sum u = ∑j=1,... ϕnj /j

2 is therefore a nonconstant plurisub-
harmonic function on M that assumes the value −∞ on the set E. (The function u is
plurisubharmonic, because it is the limit of a decreasing sequence of plurisubharmonic
functions.) This contradicts the assumption that E is nonpluripolar.

Proof of the theorem. There are two proofs that a compact locally pluripolar set in PN

has zero projective capacity, both due to Alexander [13, 14]. One of them is quite short,
but invokes the theorem of Josefson quoted above. It is as follows. With π : CN+1 \
{0} → PN the usual projection, if S is a compact locally pluripolar subset of PN , then
π−1(E) is a locally pluripolar subset of CN+1 and so, by Josephson’s theorem, there is
a plurisubharmonic function u on CN+1 with u−1(−∞) ⊃ π−1(S), u not identically
−∞. Because the polynomially convex hull of the compact set YS coincides with its hull
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with respect to plurisubharmonic functions by Theorem 1.3.11, it follows that ŶS does not
contain an open ball centered at the origin: If it did, then because u is identically −∞ on
an open set, it would have to be identically −∞. Theorem 8.1.13 implies now that π−1(S)

has zero projective capacity and that S itself therefore has zero projective capacity. This
completes the first proof. The second proof is longer and invokes some of the ideas of
Josefson’s proof. We refer to [13] for it.

For the proof in the opposite direction, Alexander again gave two proofs, one in each
of the cited papers. The proof given in [14] is this. We have a compact subset S of PN

that we assume not to be locally pluripolar. Consequently, the setXS = YS ∩S2N+1 is not
locally pluripolar in CN+1 \ {0}. This is contained in Lemma 8.1.21, proved, in somewhat
more generality, below. It follows that the set XS is not a pluripolar subset of BN+1(2).
Lemma 8.1.18 provides a θ ∈ (0, 1) such that for all f ∈ O(BN+1(2)),

‖f ‖BN+1 ≤ ‖f ‖θXS‖f ‖1−θ
BN+1(2)

.

If f is a homogeneous polynomial of degree k, this yields

‖f ‖S2N+1 ≤ 2k/ϑ‖f ‖XS .
This inequality, with an argument like that used in the proof of Theorem 8.1.13, implies
that X̂S contains a ball centered at the origin. The proof is complete.

The notion of plurisubharmonic function extends to functions defined on analytic
varieties:

Definition 8.1.19. If V is an irreducible analytic subvariety of a complex manifold M ,
the function u : V → [−∞,∞) is plurisubharmonic if for each z ∈ V , there is a
neighborhood�z of z in M on which there is defined a plurisubharmonic function ũ such
that ũ|(V ∩ �z) = u|(V ∩ �z) and u is not identically −∞ on any neighborhood in V
of z.

Thus, a plurisubharmonic function on an analytic variety is plurisubharmonic on the set
of manifold points of V .

There is the corresponding notion of pluripolar subset of a variety:

Definition 8.1.20. If V is an analytic variety in a complex manifold, the subset E of V is
locally pluripolar if for every z ∈ E, there is a neighborhood Vz of z in V such that for
some function u plurisubharmonic on Vz and not identically −∞ near z, E ⊂ u−1(−∞).
If E ⊂ u−1(−∞) for a plurisubharmonic function u defined on all of V and nowhere
locally identically −∞, then E is pluripolar

Lemma 8.1.21. [249] Let V be an irreducible analytic subvariety of the open set � of
PN−1. IfE is a compact, circled subset of the variety π−1(V ), thenE is locally pluripolar
in π−1(V ) if and only if the compact set π(E) is locally pluripolar in V .

Note that π−1(V ) is an analytic subvariety of the open set π−1(�).

Proof. It is clear that if π(E) is a locally pluripolar subset of V , thenE is locally pluripolar
in π−1(V ).
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For the opposite implication assume E to be locally pluripolar in V , and let E∗ be
the cone {λz : λ ∈ C \ {0}, z ∈ E}. The set E∗ is locally pluripolar in π−1(V ), because
E is. Fix a p ∈ π(E), which we take to have projective coordinates [1 : 0 : · · · : 0]. Let
Lt be the C-affine hyperplane {t} × CN−1 in CN . Fix a point q ∈ L1 with π(q) = p. The
set L1 ∩ E∗ is pluripolar in L1 ∩ π−1(V ) in a neighborhood of q, because E is locally
pluripolar in V .

Let now u be a plurisubharmonic function on a neighborhood Wq of q in L1 that
assumes the value −∞ on E∗ ∩ Wq but that is not identically −∞ near q in L1. With
homogeneous coordinates [z1 : · · · : zN ] in PN−1, define ũ near q by

ũ

([
1 : z2

z1
: · · · : zN

z2

])
= u
(

1,
z2

z1
, . . . ,

zN

z2

)
.

The function ũ is plurisubharmonic near p in V , vanishes on the part of π(E) near p, and
is not constantly −∞.

Thus, π(E) is locally pluripolar in V .

Theorem 8.1.22. [249] (See also [14].) Let V be an irreducible analytic subvariety of
PN−1. If S ⊂ V is a compact subset that is not locally pluripolar in V , then ŶS contains
a neighborhood of 0 in π−1(V ∪ {0}).
Proof. By Lemma 8.1.21, the compact set XS = π−1(S) ∩ S2N−1 is nonpluripolar in the
subvariety π−1(V ) of CN \ {0}. It is therefore nonpluripolar in CN and therefore in the
ball BN(2). Thus, by Lemma 8.1.18 there is a θ ∈ (0, 1) such that for all f ∈ O(BN(2)),
‖f ‖π−1(V )∩S2N−1 ≤ ‖f ‖θXS‖f ‖1−θ

π−1(V )∩BN(2)
. If f is a homogeneous polynomial of degree

d , this yields
‖f ‖π−1(V )∩S2N−1 ≤ cd‖f ‖XS

if c = 21/θ . It follows that if z ∈ π−1(V ) satisfies |z| < 1/c, then for a polynomial
p = p0 + · · · + pd with each pj homogeneous of degree j ,

|p(z)| ≤
d∑
k=0

|z|k
∣∣∣∣pk( z|z|

)∣∣∣∣ ≤ d∑
k=0

|z|kck‖p‖XS ≤ ‖p‖XS (1 − |z|c)−1.

As in the proof of Theorem 8.1.13, this implies that z ∈ X̂S .

Theorem 8.1.17 makes it possible to give examples of Theorem 8.1.13. If S ⊂ PN−1

is an analytic variety, then π−1(S) ∪ {0} is an analytic variety in CN , and consequently,
the truncated cone YS is polynomially convex in B̄N . Varieties are locally pluripolar sets.

With one exception, every complex line through the origin in C2 can be given by
an equation z2 = αz1 for an α ∈ C. The number α is the slope of the line. If E ⊂ P1 is
a set of lines whose slopes compose a compact set of positive logarithmic capacity, then
the polynomially convex hull ŶE contains a ball centered at the origin. As a particular
example, if E is the set of all complex lines in C2 with slope in the interval [1, 2], then ŶE
contains a ball centered at the origin. The same is true if E consists of all lines with slope
in the set K obtained from the usual Cantor middle-third set by shifting it one unit to the
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right (in order to get a compact subset of C \ {0}), for the Cantor middle-third set formed
on the interval [0, 1] is known to have positive logarithmic capacity [262, pp. 145–148].

To pursue this example a little further, introduce the notion of the polynomial enve-
lope of a closed, not necessarily bounded subset of CN .

Definition 8.1.23. If X is a closed subset of CN , then the polynomial envelope of X is the
set ∪{Ê : E ⊂ X, E compact}.
For compact X, this is just the ordinary polynomially convex hull X̂ that we have worked
with. In case X is closed but not compact, its polynomial envelope is not compact; it may
or may not be closed in CN .

As an example, let � be the cubic surface in C2 with equation z2 = z2
1z̄1, a two-

dimensional real submanifold of C2. The pertinent observation, which is attributed to J.
Wiegerinck in [354], is that if r > 0, then the disks �r = {(rζ, r3ζ ) : |ζ | ≤ 1} satisfy
b�r ⊂ �, so that ∪r>0�r is contained in the polynomial envelope of �. For each r ∈ R,
let λr be the complex line in C2 that contains �r . The set �̂ contains �r and therefore
contains the disk λr ∩ B̄2, provided r ≥ 1. The subset S = {λr}r≥1 of P1 is a set of positive
projective capacity, so by Theorem 8.1.13, the truncated cone YS contains a neighborhood
of the origin. The set � is invariant under the transformation (z1, z2) �→ (ρ3z1, ρz2) for
each ρ > 0, so the same is true of its polynomial envelope. This set contains an open set;
it must be the whole of C2.

As shown above, if X ⊂ C2 is a union of complex lines through the origin and if
the set of slopes of these lines constitute a set of positive capacity, then the polynomial
envelope of X is all of C2.

We now turn to unions of real planes. A special case of this topic is contained in
the discussion of isolated complex tangents of surfaces earlier, where the polynomial
convexity of hyperbolic points derives finally from the local polynomial convexity of a
certain associated union of totally real planes. The general question is this: Given two
R-linear subspaces of CN , are compact subsets of their union polynomially convex?

In the case of the union of two totally real subspaces of maximal dimension that meet
only at the origin, the situation is completely understood from work of Weinstock [366].

We say that a totally real R-affine subspace of CN is maximally real if its real
dimension is N . Each totally real R-affine subspace of CN of dimension less than N is
contained in many maximally real subspaces. Every maximally real R-linear subspace of
CN is obtained from RN by applying a C-linear automorphisms of CN to RN . In general,
this automorphism cannot be chosen to be unitary.

It is immediate that every compact subset of every totally real R-linear subspace E
of CN is polynomially convex and satisfies P(X) = C (X): Without loss of generality
E is maximally real. Then there is a nonsingular complex N × N matrix A such that
E = ARN . The set Y = A−1X is polynomially convex and satisfies P(Y ) = C (Y ),
for it is contained in RN . Consequently, the set X is polynomially convex and satisfies
P(X) = C (X).

Consider two maximally real R-linear subspaces of CN , say E and E′, with the
property that E ∩ E′ = {0}. There is a C-linear automorphism of CN that carries E′ to
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RN ; it preserves polynomial convexity. Thus, the general question to be considered is
this: Under what conditions on the maximally real subspace E of CN is it true that every
compact subset of RN ∪ E is polynomially convex?

Let us fix a maximally real R-linear subspace E of CN with the property that RN ∩
E = {0}. There is then a direct sum decomposition of real vector spaces CN = RN⊕E. Let
v1, . . . , vN be vectors in E that constitute a basis for E over R. If we write vk = v′k + iv′′k
with vectors v′k, v′′k ∈ RN , then {v′′1 , . . . , v′′N } is a basis for RN , because RN and E jointly
span CN over R. It follows that there is an N × N real matrix A with Av′′k = v′k for
k = 1, . . . , N . Consequently, E is expressible in the form E = (A + iI )RN . In this
representation E determines the matrix A uniquely.

For anN ×N real matrixA, we denote byMA the R-linear subspace (A+ iI )RN of
CN . The spaceMA is totally real if and only if i is not an eigenvalue of A: If Av = iv for
some nonzero vector in RN , then v and iv belong to (A+ iI )RN , and (A+ iI )RN is not
totally real. Conversely, if for some v = v′ + iv′′ both v and iv lie in (A+ iI )RN , so that
v = Ax + ix and iv = Ay + iy for some choice of x and y, then necessarily x = −Ay,
and y = Ax, so A(x − iy) = i(x − iy), and i is found to be an eigenvalue of A.

The local polynomial convexity of the union RN ∪ MA at the origin depends on
the spectrum of the matrix A. The analysis will be carried out in terms of the structure
of the real Jordan canonical form for A. That this is reasonable may be suggested by the
following observation. If S is a nonsingular real N × N matrix, then S−1(A+ iI )RN =
(S−1AS+iI )RN , so every compact subset of RN∪MA is polynomially convex if and only
if every compact subset of RN ∪MS−1AS is polynomially convex for every nonsingular
real N ×N matrix S.

The principal result is this:

Theorem 8.1.24.[366] IfA is a realN×N matrix, then every compact subset of RN ∪MA
is polynomially convex if and only if A has no purely imaginary eigenvalue of modulus
greater than one. If all compact subsets of RN ∪MA are polynomially convex, then for
every compact subset Xof RN ∪MA, P(X) = C (X).

Thus, generically in A, the compact subsets of the configuration RN ∪ MA are
polynomially convex.

Corollary 8.1.25. If ‖A‖ < 1, then compact subsets X of RN ∪ MA are polynomially
convex and satisfy P(X) = C (X).

Proof of the theorem. Suppose A to have no purely imaginary eigenvalues of modulus
greater than one.

Because all the compact subsets of RN∪MA are polynomially convex when and only
when all the compact subsets of RN ∪MS−1AS are for every nonsingular S, it is sufficient
to consider the case in which the matrixA is in real Jordan canonical form [329]: For every
real N × N matrix A there is a real nonsingular N × N matrix S such that S−1AS is in
real Jordan form. That is, S−1AS is of block diagonal form
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(8.9) S−1AS =

⎡⎢⎢⎢⎣
D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dp

⎤⎥⎥⎥⎦ ,
in which the Dj are mj ×mj matrices and all entries in S−1AS outside the Dj are zero.
We shall denote by [D1, . . . , Dp] the block diagonal matrix on the right of equation (8.9).
Each Dj is of one of two forms: Aλ or Cs,t . The matrices Aλ are defined for λ ∈ R and
are of the form

Aλ =

⎡⎢⎢⎢⎣
λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . λ 1

0 · · · · · · 0 λ

⎤⎥⎥⎥⎦ .
The λ’s that occur are the real eigenvalues of A.

The matrices Cs,t are defined for s, t ∈ R; the ones that occur in our situation are
those with s + it an eigenvalue of A, which implies |t | ≤ 1 if s = 0, because of the
restriction that A have no purely imaginary eigenvalue with modulus greater than one.
They are of block form Cs,t =

[
Aj,k
]
, where each Aj,k is a 2 × 2 block. For each j ,

Aj,j =
[
s −t
t s

]
and Aj,j+1 =

[
1 0
0 1

]
.

All the other blocks Ai,j are zero.
For a compact subsetX of RN ∪MA, there are compact setsX′ ⊂ RN andX′′ ⊂ MA

such that X = X′ ∪ X′′. Both X′ and X′′ are polynomially convex; the problem is to see
that their union is. This is accomplished by considering some special cases and then using
the Jordan form to put them together to obtain the general result.

We show first that ifA is in the Jordan canonical formAλ,λ ∈ R, then the conclusions
of the theorem are true. To see this, consider first the case λ > 0 and proceed by induction.
Consider the polynomial p defined by p(z) = z2

N . For all N , p(RN) ⊂ [0,∞). If N = 2,
then for z ∈ (A+ iI )R2, z = (Aλ+ iI )y for some y ∈ R2. Then p(z) = ((λ+ i)y2)

2, so
�p(z) = 2λy2

2 , which is strictly positive unless y2 = 0. We have that p−1(0) ∩ R2 = {0}
and that p−1(0) ∩MA is the real line {(λ+ i)y1 : y1 ∈ R}. Consequently, p−1(0) ∩X is
polynomially convex and satisfies P(p−1(0)∩X) = C (p−1(0)∩X). By Kallin’s lemma,
Theorem 1.6.19, the set X is polynomially convex and satisfies P(X) = C (X). That is,
the theorem is true whenN = 2 andA is of the formAλ with λ > 0. Suppose now that the
result is correct in CN−1 with matrices A = Aλ with λ > 0. Let p(z) be the polynomial
z2
N . Then p(X′) ⊂ R. If z = (A+ iI )y with y ∈ RN , then again �p(z) ≥ 0 with equality

only when yN = 0. We have that

p−1(0) ∩X = X ∩ (((RN × {0}) ∪MA) ∩ {yN = 0}),
an (N−1)-dimensional configuration to which the induction hypothesis applies: p−1(0)∩
X is polynomially convex and satisfies P(p−1(0)∩X) = C (p−1(0)∩X). Consequently,
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Kallin’s lemma applies again to yield the polynomial convexity of X together with the
equality P(X) = C (X). The case λ < 0 follows the above lines if we use −p instead
of p.

If λ = 0 a different argument is necessary. In this case, we set q(z) = (A0 − iI )z · z,
in which we are using the notation that for w,w′ ∈ CN , w · w′ = w1w

′
1 + · · · + wNw′

N .
For x ∈ RN , we have

q(x) = (A0 − iI )x · x = −ix · x + A0x · x,
so that �q(x) < 0 unless x = 0. Also q−1(0) ∩X = {0}. If z ∈ MA, say z = (A0 + iI )y
with y ∈ RN , then

�q(z) = �[(A2
0 + I )y · (A0 + iI )y] = (A2

0 + Iy) · y,
so

�q(z) =
∑

j=1,...,N−2

(yj + yj+2)yj + y2
N−1 + y2

N

= 1

2

∑
j=1,...,N−2

(yj + yj+2)
2 + 1

2
(y2

1 + y2
2 + y2

N−1 + y2
N),

which is positive unless y = 0. Kallin’s lemma again yields thatX is polynomially convex
and satisfies P(X) = C (X).

Now we consider the case that A = Cs,t . First, suppose that s �= 0. If N = 2, let
p(z) = s(z2

1 + z2
2). We have p(RN) ⊂ R, and for z ∈ MA, say z = (Cs,t + iI )y with

y ∈ R2, we find that �p(z) = 2s(y2
1 + y2

2), which is not zero unless y = 0. Again X is
found to be polynomially convex and to satisfy P(X) = C (X). Assume now thatN = 2k
and that the result holds in C2k−2. With p(z) = s(z2

N−1 + z2
N), we have p(X′) ⊂ R,

p(X′′) ⊂ {0} ∪ {w ∈ C : �w > 0},
and

p−1(0) ∩ (RN ∪MA) ⊂ (RN−2 × {0}) ∪MA′

withA′ the matrix obtained fromA by suppressing the bottom two rows and the rightmost
two columns of A. The union on the right of the last inclusion is a configuration in CN−2

to which the induction hypothesis applies, so the result we seek again follows.
If s = 0, then necessarily |t | ≤ 1, and the argument is parallel to the one just given,

using p(z) = z2
1 + z2

2 in the case that N = 2 and p(z) = z2
N−1 + z2

N when N = 2k > 2.
We now consider the general case: The matrixA is in the real Jordan canonical form

A = [D1, . . . , Dp] with each of the blocks Dk of size nk × nk and n1 + · · · + np = N .
There is a corresponding orthogonal decomposition CN = Cn1 ⊕· · ·⊕Cnp . For each k =
1, . . . , p, let ηk : CN → Cnk be the orthogonal projection. IfX ⊂ RN ∪MA is a compact
set, then ηk(X) ⊂ Rnk ∪ (A + iI )Rnk is a compact subset that is polynomially convex
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and that satisfies P(ηk(X)) = C (ηk(X)). It follows that P(X) contains enough real-
valued functions to separate the points of X, whence, by the Stone–Weierstrass theorem,
P(X) = C (X), and then X is polynomially convex. (Recall Theorem 1.2.10.)

We must show, conversely, that if the matrix A has an eigenvalue that is purely
imaginary and of modulus greater than one, then RN ∪MA is not polynomially convex. To

this end, suppose iσ with σ > 1 to be an eigenvalue forA. Set r = r(σ ) =
√
σ+1
σ−1 , a certain

positive number. Let v ∈ CN be an eigenvector for A associated with the eigenvalue iσ ,
and define ϕ : C \ {0} → CN by

ϕ(ζ ) = ζv + ζ−1v̄.

This map carries the unit circle in the ζ -plane into RN , for ϕ(eiϑ ) is the real vector
eiϑv+e−iϑ v̄. It is more complicated to verify but true that ϕ carries the circleKr of radius
r centered at the origin of the ζ -plane into the R-linear subspace MA. To establish this,
write v = v′ + iv′′ with v′ and v′′ real vectors. Then ϕ(reiϑ ) is found to be the vector(

r + 1

r

)
(cosϑ v′ − sin ϑ v′′)+ i

(
r − 1

r

)
(sin ϑ v′ + cosϑ v′′) = T ′ + iT ′′.

It is then to be verified that T ′ = AT ′′. This follows after a brief calculation, using the
equations Av′ = −σv′′ and Av′′ = σv′, which follow from Av = iσv. Thus if �(r)
denotes the annulus {ζ ∈ C : 1 ≤ |ζ | ≤ r}, then the boundary of the annulus ϕ(�(r)) is
contained in RN ∪MA. The full annulus ϕ(�(r)) is not contained in RN ∪MA, but its
boundary is, so the union RN ∪MA is not polynomially convex.

Weinstock in [366] goes somewhat further than the results of this theorem in that
he describes the polynomial envelope of the noncompact set RN ∪ (A + iI )RN when
the matrix A has purely imaginary eigenvalues of modulus greater than one. It is a set
fibered by annuli like the ones used above or by higher-dimensional analogues of them.
Its dimension depends on the number of purely imaginary eigenvalues of modulus greater
than one. For the details, we refer to Weinstock’s paper. A somewhat different treatment
of this hull in the two-dimensional case is given in [354].

The two-dimensional case of Theorem 8.1.24 is the simplest. There the matrix A of
the theorem is a real 2 × 2 matrix; its Jordan canonical form is

[
s −t
t s

]
. The configuration

R2 ∪MA is polynomially convex unless traceA = 0 and detA > 1, i.e., unless s = 0 and
|t | > 1.

The study of unions of more than two totally real planes gives rise to new phenomena:
The polynomial envelope of the union of a finite number of totally real planes can be all
of the ambient CN . Such unions were first discussed by Thomas [354], who showed that
in C2 there are three totally real planes that pair-by-pair meet only at the origin and are
locally polynomially convex but such that the polynomial envelope of their union is all
of C2. Thomas also obtained similar results in CN . Gourlay [153] found that in CN there
are (N + 1) maximally real planes whose union has all of CN as its polynomial envelope.
Gourlay [152] also exhibited some examples of countably infinite unions of totally real
planes through the origin in C2 that are locally polynomially convex.
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We now turn our attention to the union of a ball and a real plane. Such a configuration
may or may not be polynomially convex. If the plane is RN , we can deal with sets more
general than balls.

The union of a compact subset of RN and a symmetric polynomially convex subset
of CN is polynomially convex:

Theorem 8.1.26. IfX is a compact subset of RN and if Y is a polynomially convex subset
of CN that is symmetric with respect to RN , then X ∪ Y is polynomially convex, and

P(X ∪ Y ) = {f ∈ C (X ∪ Y ) : f |Y ∈ P(Y )}.
That the set X ∪ Y is polynomially convex was established by Chirka and Smirnov [336].

The symmetry condition of the theorem is the condition that if z = x + iy ∈ Y with
x, y ∈ RN , then z̄ = x − iy ∈ Y . This symmetry condition cannot be entirely abandoned
in the theorem: If X = [−1, 1] ⊂ R and Y is the upper half of the unit circle—a set that
is not symmetric, then the union X ∪ Y is not polynomially convex.

Proof. Fix a w ∈ CN \ (X ∪ Y ). We have w /∈ Y , so w̄ /∈ Y , and there is therefore a
polynomial P with |P | < 1

4 on Y and with P(w) = 1 = P(w̄). Then the polynomial Q
given by Q(z) = 1

2 {P(z) + P(z̄)} is real on RN and satisfies Q(w) = 1, |Q| < 1
4 on Y .

Every compact subset of RN is polynomially convex, so there is a polynomial R such that
R(w) = 1 and |R| < 1

2 on X.
Two cases are to be considered. First, it may be that 1 /∈ Q(X ∪ Y ). In this case,

Runge’s theorem is enough to show that w /∈ X̂ ∪ Y . If 1 ∈ Q(X ∪ Y ), then there is a
polynomial in one variable, sayp(t), such thatp(Q(w)) = 1 and |p(Q(z))| < 1

2 maxY |R|+1
on (X ∪ Y ). Then the polynomial (p ◦Q)R takes the value 1 at w and is less than one in
modulus at the points of X ∪ Y . Thus, X ∪ Y is polynomially convex as claimed.

To show that the algebra P(X∪Y ) is as stated in the theorem, it is sufficient to show
that if µ is a measure on X ∪ Y that is orthogonal to all polynomials, then the variation of
µ on the set X \ Y is zero.

To do this, it is enough to show that if xo ∈ X \ Y , then there is a neighborhood of
xo on which the total variation of µ is zero. The point xo is a peak point for the algebra
P(X ∪ Y ), as follows from Rossi’s local peak point theorem, Theorem 2.1.13, and the
observation that if F(z) = exp

{∑N
j=1(zj − zoj )2

}
, then F |(X ∪ Y ) ∈ P(X ∪ Y ), and F

has the point xo = (xo1 , . . . xoN) as a local peak point. Consequently, there is g ∈ P(X∪Y )
with g(xo) = 0 and |g| < 1 on (X∪Y )\{xo}. By the assumed symmetry of Y , the function
h defined by h(z) = g(z̄) is in P(X ∪ Y ). The function f = 1

2 (g + h), which lies in
P(X ∪ Y ), peaks at xo, and is real on X. We have that f (X ∪ Y ) ⊂ rŪ ∪ [−1, 1] for a
suitable r ∈ (0, 1).

Mergelyan’s theorem provides ϕ ∈ P(f (X∪Y )) that vanishes on f (X∪Y )\ (r, 1]
and that is strictly positive on (r, 1]. The function p = ϕ ◦ f is in P(X ∪ Y ).

If µ is a measure supported by X ∪ Y that is orthogonal to all polynomials, then for
every polynomial P , ∫

Pp dµ = 0.
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The support of the measure p dµ is a compact subset of RN , and by the Weierstrass
approximation theorem, polynomials approximate all continuous functions on compact
subsets of RN . Consequently, p dµ is the zero measure, which implies that the variation
of the measure µ over the set where p �= 0 is zero.

We have shown that for every measure on X ∪ Y orthogonal to P(X ∪ Y ), and for
every point x ∈ X \ Y , there is a neighborhood of x on which the total variation of µ
vanishes. Thus, µ is supported by Y : µ ∈ P(Y )⊥, and the theorem is proved.

Corollary 8.1.27. If B1, . . . , Br are closed balls in CN with mutually disjoint interiors
and with centers in RN , and ifX is a compact subset of RN , then the set Y = X∪∪rj=1Bj
is polynomially convex and satisfies

P(Y ) = {f ∈ C (Y )|f is holomorphic on the interior of each Bj }.
Proof. We need only recall that, by Theorem 1.6.21, the union of the balls Bj is polyno-
mially convex.

In particular, if X is a compact subset of RN and T : CN → CN is a nonsingular,
C-linear transformation, then T (B̄N)∪ T (X) is polynomially convex. When T is unitary,
so that T (B̄N) = B̄N , the conclusion is that B̄N ∪ T (X) is polynomially convex. It would
be natural to ask whether, for an arbitrary nonsingular linear transformation T : CN →
CN , the set B̄N ∪ T (X) is polynomially convex. It turns out that this set need not be
polynomially convex. When T runs through the group of linear automorphisms of CN ,
the R-linear subspace T (RN) runs through the space Gtr

2N,N ofN -dimensional totally real

R-linear subspaces of CN . The subspaces T (RN) with T unitary are special: They are the
Lagrangian subspaces of CN , i.e., the N -dimensional real subspaces L of CN with the
property that if � is the form dz1 ∧ dz̄1 + · · · + dzN ∧ dz̄N and if ι : L ↪→ CN is the
inclusion, then ι∗� = 0. The form � is invariant under the action of the unitary group,
so because it induces the zero form on RN , it induces the zero form on T (RN) for every
unitary transformation T . That conversely, a Lagrangian subspace of CN is T (RN) for
some unitary T can be seen from a calculation: If v1, . . . , vN is a basis over R for L that is
orthonormal with respect to the real inner product on CN = R2N , then the condition that�
induce the zero form on L implies that the vectors v1, . . . , vN are orthogonal with respect
to the Hermitian inner product on CN . This implies that there is a unitary transformation
of CN that carries RN onto L.

The two-dimensional case is the easiest to examine. Fix a real 2-plane L in C2 that
passes through the origin. By a unitary transformation it can be moved to a real 2-plane
Lλ that is given by the equation z2 = λz̄1 with λ ∈ [0, 1]; λ is uniquely determined.
That this is so is an exercise in linear algebra: L is given by an equation of the form
A′z1 + B ′z2 + A′′z̄1 + B ′′z̄2 = 0. A unitary change of coordinates yields coordinates,
again denoted by z1 and z2, with respect to which the equation of L is

(8.10) z2 = Az̄1 + Bz̄2.

If A = 0, then we have the equation z2 = Bz̄2, which defines a three-dimensional real
subspace of C2, contrary to hypothesis. Accordingly, we assume from here that A �= 0.
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If B = 0, we reach the form z2 = µz̄1 with µ ≥ 0 by a rotation in the z1-plane. Thus,
we suppose L to be given by the equation (8.10) in which neither A nor B is zero. Then
a rotation in the z1-axis allows the assumption that A ≥ 0. We seek a real number λ and

a unitary matrix U =
[
a β

−β̄ ᾱ
]
, |α|2 + |β|2 = 1, such that if L′ is the two-dimensional

plane {(z, λz̄) : z ∈ C}, then U carries L′ onto L. This leads to the homogeneous system
of linear equations for α and β̄

(A− λ)α − B̄β̄ = 0,

Bλα + (Aλ+ 1)β̄ = 0,
(8.11)

which has a nonzero solution if and only if det
[
(A−λ) −B̄
Bλ Aλ+1

]
= 0. This is a quadratic

in λ with real coefficients and with real, positive discriminant. Thus, there are two real
solutions, one positive, one negative. For the positive solution, there is a vector (α, β̄) of
length one that solves the system (8.11). This solution leads to a unitary matrix U that
carries the 2-plane L′ onto L. If the λ we have lies in (0, 1], we are done. If it is in (1,∞),
we interchange z1 and z2. The uniqueness assertion is immediate.

If λ = 0, then L is a complex line, and if λ = 1, then L is a Lagrangian plane.
In these cases, for every compact subset Y of L, the set B̄2 ∪ Y is polynomially convex.
For λ ∈ (0, 1), Chirka and Smirnov [336] have observed that compacta in B̄2 ∪ Y need
not be polynomially convex. To see this, consider the map g : C \ {0} → C2 given by
g(ζ ) = (ζ, λ/ζ ). We have that g(eiϑ ) = (eiϑ , λe−iϑ ) ∈ L, and that ‖g(eiϑ )‖ = √

1 + λ2.

Also, ‖g(√λeiϑ )‖ = √
2λ. Because λ ∈ (0, 1), we have

√
2λ <

√
1 + λ2. It follows that

the set
B̄2(

√
2λ) ∪ {(eiϑ , λe−iϑ ) : ϑ ∈ R)}

is a compact subset of B̄2(
√

2λ) ∪ L that is not polynomially convex.

8.2. Pluripolar Graphs

The result to be proved in this section is that holomorphic functions are characterized
as those functions that have pluripolar graphs. (Recall the discussion of pluripolar sets
immediately after the formulation of Theorem 8.1.17.)

The first result of this section is due to Shcherbina [325]:

Theorem 8.2.1. If f is a continuous function on a domain in CN , then f is holomorphic
if and only if its graph is pluripolar.

It is a simple remark that if the function ϕ is subharmonic and not identically −∞
on a domainD in C, then ϕ does not vanish identically on any arc contained inD. At one
point below, we will need a stronger result: A polar set in C has zero length. A sharper
result is that a polar set in C has Hausdorff dimension zero, i.e., that if E is a polar set in
C, and α > 0, then �α(E) = 0. This result can be found in Tsuji’s book [356]. In RN ,
there is a analogous statement: A polar set in RN has Hausdorff dimension not more that
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N − 2. (For this, one can consult [40, Theorem 5.9.6].) In particular, for a pluripolar set
E in CN , �α(E) = 0 if α > 2N − 2.

Lemma 8.2.2. If X ⊂ CN is a compact, polynomially convex set and E ⊂ CN is a
compact, pluripolar set, then {X ∪ E}̂ \X is a pluripolar set.

Proof. In fact, the set {X ∪ E}̂ \ X is contained in ϕ−1(−∞) if ϕ is a plurisubharmonic
function on CN withE ⊂ ϕ−1(−∞). Suppose not for the sake of deriving a contradiction.
Then there is a point p ∈ {X ∪ E}̂ \ X with ϕ(p) > −∞. There is a plurisubharmonic
function v with v(p) > supXv, because p /∈ X . For small ε > 0, we have v(p)+εϕ(p) >
supX(v + εϕ). Having fixed ε, v(p)+ εϕ(p) > supE(v + εϕ), because ϕ = −∞ on E.
It follows that the point p is not in the hull of X ∪ E with respect to plurisubharmonic
functions, whence the lemma, by Theorem 1.3.11.

Lemma 8.2.3. If D is a domain in C and f = u + iv is a function with both u and
v real-valued and harmonic, then the graph of f is a pluripolar set if and only if f is
holomorphic.

For the rest of the present discussion, we shall use the notation that for a function g,
�g denotes the graph of g.

Proof. The problem is local, so it is enough to treat the case that D is the open unit disk
U. If f is holomorphic, then log|w− f (z)| is a plurisubharmonic function onD× C that
assumes the value −∞ on �f , so this graph is pluripolar.

Conversely, suppose�f to be pluripolar, say�f ⊂ ϕ−1(−∞) for a plurisubharmonic
function ϕ on C2 that is not identically −∞.

Let ṽ be the harmonic conjugate of u on U with ṽ(zo) = v(zo) for some fixed point
z0 ∈ U.

For small t ∈ R, let

�t = {z ∈ U : ṽ(z)+ t = v(z)}.
For small values of t outside a set of zero length, the set�t is the disjoint union of a locally
finite family of analytic curves. Thus, the graph �u+i(ṽ+t), which is a Riemann surface,
meets the graph �f in a system of analytic curves. The function ϕ is −∞ on �f , so it
assumes the value −∞ on an arc in�t and so on all of�t , because an arc in the Riemann
surface �t is a nonpluripolar set in that surface. This is true for a set of t’s of positive
length. Consequently, ϕ assumes the value −∞ on a set of positive three-dimensional
measure in C2. Such a set is nonpluripolar in C2, so ϕ is identically −∞. Contradiction.

Proof of Theorem 8.2.1. As above, if f is holomorphic, its graph is pluripolar.
To prove the opposite implication, begin with the case N = 1. The result is local,

so we suppose that D is the open unit disk in C, that f is continuous on Ū, and that �f is
pluripolar.

Suppose that f is not holomorphic. Under this hypothesis, by Lemma 8.2.3 if f =
u + iv, then one of u and v is not harmonic. Suppose u not to be harmonic. Let ũ be
continuous on Ū, harmonic on U, and equal to u on bU. Because u is not harmonic, there
is a point zo ∈ U at which u and ũ differ; suppose u(zo) < ũ(zo). Put

C = max{supU|u(z)| , supU|v(z)|}



396 Chapter 8. Examples and Counterexamples

and
K = {(z, w) ∈ Ū × C : ũ ≤ �w ≤ 3C, and |v(z)| ≤ C}.

This set is polynomially convex, for by its definition, it coincides with its hull with respect
to plurisubharmonic functions on C2. To see this, consider a pointpo = (zo, wo) ∈ C2\K .
If |zo| > 1, then po /∈ Psh-hullK . If |zo| ≤ 1 and |�wo| > 3C or |�wo| > C, then again
wo /∈ Psh-hullK . Finally, if |zo| ≤ 1, |�wo| ≤ C, and �wo < ũ(zo), choose a function
u∗ harmonic on all of C such that

sup
z∈Ū

|u∗(z)− ũ(z)| < 1

2
(ũ(zo)−�wo).

Then u∗(zo) − �(zo) > 1
2 (ũ(zo) − �wo) > 0, so again po is found not to lie in the hull

Psh-hullK , and K is found to be polynomially convex as claimed.
Define the domain U by

U = {(z, w) ∈ U × R : ũ(z) ≤ u ≤ u(z)+ 2C},
in which we are taking w = u + iv. Define g(z, u) = v(z) for z ∈ U and u ∈ R. Then
supU|u| ≤ C, so ũ(z) ≤ u(z)+ 2C ≤ 3C on U . The graph of g is therefore contained in
�f ∪ K , whence �̂g ⊂ �̂f ∪K . Corollary 2.3.15 implies that, with π the projection of
C2 onto C × R, π(� ∪K) ⊃ U . By the choice of ũ, the set

Ũ = {(z, u) ∈ U × R : u(z) < u < ũ(z)}
is not empty. Also, K ∩ Ũ is empty, so

π
(

̂�f ∪K) \K) ⊃ Ũ .
The set on the left is pluripolar by Lemma 8.2.2. Let ϕ be a plurisubharmonic function on
C2 that takes the value −∞ identically on this set.

Denote by V a neighborhood of zo in C such that u(z) < ũ(z) for all z ∈ V .
For each a ∈ C, consider the line λa = {(z, w) ∈ C2 : z = a}, and let

Ea = ( ̂(�f ∪K) \K) ∩ λa.
For each a ∈ V , the projection of Ea on the line λa ∩ {v = 0} contains a segment, so for
all a ∈ V , �1(Ea) > 0. A polar set in C has length zero, so Ea is not polar. This implies
that ϕ = −∞ on all of λa . Consequently, ϕ = −∞ on an open subset of C2, whence it is
identically −∞ on all of C2.

This contradiction establishes the result in the case N = 1.
The deduction of the general case from the caseN = 1 is a standard slicing argument.

Assume the graph of the continuous function f : D → C to be pluripolar for the domain
D in CN . Let the plurisubharmonic function ϕ on CN+1 assume the value −∞ on �(f ).
For almost all points ζ ′ = (ζ2, . . . , ζN+1) in CN , the function ϕ1 defined by ϕ1(η) =
ϕ(η, ζ1, . . . , ζN) is subharmonic and not identically −∞ on its domain of definition. For
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any such choice of ζ ′, the partial function η �→ f (η, ζ1, . . . , ζN) is holomorphic on its
domain of definition by the caseN = 1 of the theorem. Continuity implies that this partial
function is holomorphic on its domain of definition for every choice of ζ ′ ∈ CN : f is
holomorphic in z1. Similarly, it is holomorphic on the other variables, so by Hartogs’s
theorem f is holomorphic.

The theorem is proved.

The theorem of Shcherbina just proved should be compared with the much earlier
theorem of Hartogs [162], according to which if f is a continuous function on a domain
D in the plane with the property that the domain (D × C) \ �f is pseudoconvex, then
f is holomorphic. In fact, the theorem of Hartogs is somewhat more general than this. It
has burgeoned into the theory of pseudoconcave sets, for which we refer to the book of
Nishino [264].

An extension of Theorem 8.2.1 to multifunctions has been given by Shcherbina; an
alternative derivation has been given by Edigarian [108]. The formulation is this:

Theorem 8.2.4. LetD be a domain in CN , leta1, . . . , am be continuous C-valued functions
on D, and let

P(z,w) = zm + a1(w)z
m−1 + · · · + am−1(w)z+ am(w).

The set
� = {(z, w) ∈ C ×D : P(z,w) = 0}

is pluripolar if and only if each of the functions a1, . . . , am is holomorphic.

Proof. [108] If the functions aj are holomorphic, then� is pluripolar, forP is holomorphic
on C ×D.

Suppose, conversely, that � is pluripolar. The proof that the coefficients aj are holo-
morphic is by induction on the degree m of the polynomial P . The case m = 1 is correct
by Theorem 8.2.1. Assume therefore that the theorem is correct for all degrees strictly less
than m. We fix a point wo ∈ D and prove the coefficients aj to be holomorphic near wo.
There are two cases: It may be that the polynomial P(·, wo) has at least two distinct roots,
or it may be that the polynomial P(·, wo) has a single root of degree m.

In the former case, let z1, . . . , zr be the distinct roots of P(·, wo), zk a zero of
multiplicitymk , so thatm1 +· · ·+mk = m. Let�1 be a small disk in the z-plane centered
at z1 and containing no other zero of P(·, wo). There is a neighborhoodW1 of wo inD so
small that for each w ∈ W1, the polynomial P(·, w) has m1 zeros in �1. Let these zeros
be ζ1,k , k = 1, . . . , m1. Define P1 by

P1(z, w) =
∏

k=1,...,m1

(z− ζ1,k) = zm1 + a1,1(w)z
m1−1 + · · · + a1,m1(w).

The zero locus ofP1 is a pluripolar subset of C×W1, and so the coefficients a1,1, . . . , a1,m1

are holomorphic inW1 by induction.
We treat the other zeros z2, . . . , zr in the same way and obtain for j = 1, . . . , r,

polynomials Pj (·, w) that are defined and holomorphic on C × Dwo for a neighborhood
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Dwo of wo contained in D. We have that � ∩ (C ×Dwo) is the set on which the product
P1 · · ·Pr vanishes. Because the coefficients of each Pj are holomorphic, and because
the Pj and also P are monic, it follows that P is the product of the Pj , and then that
the coefficients aj of P are polynomials in the coefficients of the Pj and are, therefore,
holomorphic near wo.

We have now to treat the case that the polynomialP(·, wo) has a unique zero, perforce
of degree m. Let E ⊂ D be the closed subset of D consisting of the points w at which
P(·, w) has a root of order m. We know the coefficients aj of P are holomorphic off the
set E. If E is a pluripolar set, we are done, for the functions aj automatically continue
through E. Suppose, therefore, that E is not pluripolar.

Introduce the functions ϕk , k = 0, . . . , m, by

ϕk(z,w) = ∂kP

∂zk
(z, w),

a monic polynomial in z of degree m− k.
We have that

ϕm−2(z, w) = m!
2
z2 + (m− 1)!a1(w)z+ (m− 2)!a2(w).

Let �(w) be the discriminant of this quadratic:

�(w) = [(m− 1)!a1(w)]2 − 4
m!
2
(m− 2)!a2(w).

The function � is continuous, it vanishes on the set E, and is holomorphic off E. Conse-
quently, Radó’s theorem, Theorem 3.4.17, implies that � is holomorphic. Then because
E is not pluripolar, � is identically zero, which implies that

a2(w) = (m− 1)

2m
a1(w)

2,

which yields

ϕm−2(z, w) = m!
2

(
z+ a1(w)

m

)2

.

We now prove by downward induction that

(8.12) ϕp(z,w) = m!
(m− p)!

(
z+ a1(w)

m

)m−p
.

For p = m, m − 1, and m − 2, we have this fact. Suppose the formula to be true when
p is replaced by p + 1. Then, because ϕp+1 is the derivative of ϕp with respect to z, we
have by the inductive hypothesis that for some function cp(w) that is independent of z,

ϕp(z,w) = m!
(m− p)!

(
z+ a1(w)

m

)m−p
+ cp(w).

By evaluating ϕp at (0, w), we find that
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cp(w) = − m!
(m− p)!

(
a1(w)

m

)m−p
+ p!am−p(w),

so that

ϕp(z,w) = m!
(m− p)!

(
z+ a1(w)

m

)m−p
− m!
(m− p)!

(
a1(w)

m

)m−p
+ p!am−p(w).

The function cp is continuous onD and vanishes on the setE. Moreover, it is holomorphic
off its zero set. Consequently, by Radó’s theorem, it is holomorphic onD, and, because E
is not pluripolar, it vanishes identically.

We have therefore established the equation (8.12). From it and Theorem 8.2.1 we
find that the function a1 is holomorphic. The form established for cp and the vanishing of
cp now imply that ap is holomorphic for each p.

The theorem is proved.

8.3. Deformations

The operation of passing to the polynomially convex hull exhibits certain continuity prop-
erties, which we will treat in this section.

To begin with, there is the simple semicontinuity observation: If X is a compact set
and if U is a neighborhood of X̂, then there is a neighborhood V ofX such that if Y ⊂ V ,
Y compact, then Ŷ ⊂ U . This is evident: For V take any polynomial polyhedron contained
in U that contains X (and hence X̂).

Simple examples show that a small perturbation of a set does not necessarily lead to
a small perturbation of the hull.

Example. Let γ be a smooth function defined on the unit circle in the plane that takes the
value 1 at the point −1 and that vanishes on the right half of the circle. For t ≥ 0, let γt
be the graph of the function tγ , so that γt = {(eiϑ , tγ (eiϑ ) : ϑ ∈ R}. This is a family of
smooth deformations of the unit circle in the z1-plane, i.e., of the curve γ0. The curve γ0
is not polynomially convex; its hull is the closed unit disk in the z1-plane. All the curves
γt for t > 0 are polynomially convex: They are smooth, so the hull γ̂t , if it differs from
γt , is the union of γt and a purely one-dimensional variety, Vt . We must have V̄t ⊃ γt ,
because smooth arcs are polynomially convex. Thus, the closures of the two varieties Vt
and V0 share an open analytic arc, the part of the unit circle in the open right half-plane.
According to Corollary 3.8.10, the varieties V0 and Vt coincide or else are contained in
a one-dimensional variety. Neither case can occur in the present situation, so each Vt is
polynomially convex. A small deformation can destroy the hull.

A second example was given by Forstnerič [123]:

Example. LetXε = {(z1, z2) ∈ C2 : z2 = ε|z1|2 and |z1| ≤ 1}. The setX0 is polynomially
convex: It is the closed unit disk in the z1-plane. However, for ε > 0, the set Xε is not
polynomially convex, for it contains the boundary of the analytic disk {(z1, δ

2ε) : |z1| ≤ δ}.
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In the opposite direction, there is the following simple observation: If we have a
sequence {Xj }j=0,... of compact sets such that for every neighborhood � of X0, Xj ⊂ �
for all sufficiently large j , and if {xj }j=1,... is a sequence of points with xj ∈ X̂j that
converges to a point x0, then x0 ∈ X̂0. To see this, note that the set E = ∪j=0,...Xj is
compact. For each j = 1, . . . , let µj be a representing measure for the point xj that is
supported in the set Xj . The set of all measures of total mass not more than one carried
by the compact set E is compact when it is endowed with the weak* topology. If µ0 is a
weak* limit point of the sequence {µj }j=1,..., then µ0 is a representing measure for x0,
and it is supported in the set X0. Thus, x0 ∈ X̂0.

There are positive results about smooth deformations of certain polynomially con-
vex sets.

The context is this. We fix a compact set Y in CN , and two neighborhoods U and U1
of Y withU1 � U . Fix a function χ ∈ C 2(CN)with χ = 0 on a neighborhood of CN \U ,
χ = 1 on a neighborhood of Ū1. Let ϕ : U → CN be a map of class C 2. We consider
then the map � : CN → CN defined by

(8.13) �(z) = z+ χ(z)ϕ(z).
The C 2 norm of the function χϕ is understood to be

‖χϕ‖2 = max ‖Dα(χϕ)‖U ,
in which the maximum is extended over all derivativesDα with respect to the underlying
real coordinates of order not more than two. If the C 2 norm of χϕ is sufficiently small,
then� is a diffeomorphism of CN onto itself: It is plainly a proper map, and, granted that
χϕ is small in the C 2 sense, it is regular. Consequently, it is one-to-one. It follows that it
is a C 2 diffeomorphism.

That � is a diffeomorphism of class C 2 requires a short argument. First, since �
is regular and proper, the set �(CN) is both open and closed in CN , so � is surjective.
We have only to verify that it is injective. For this, notice that because � is regular, the
determinant of its Jacobian is never zero and so must be either everywhere positive or else
everywhere negative. That � is the identity near infinity implies that this determinant is
everywhere positive. Thus,� is orientation-preserving. Now fix a point w ∈ CN . We will
show that the fiber �−1(w) is a singleton. Suppose not, and let {w1, . . . , wq} = �−1(w)

for some q ≥ 2. (The regularity implies that this fiber is discrete, and properness then
implies that it is finite.) Choose R > 0 so large that for each j , |wj | < R. Consider the
integral

I = cN
∫
{z∈CN :|z|=R}

�∗kBM(z, w)

with kBM the Bochner–Martinelli kernel and cN the constant that appears in the Bochner–
Martinelli integral formula. The map� is the identity map near the sphere {z ∈ CN : |z| =
R}, so the integral simply evaluates the function identically one at the point w: I = 1. On
the other hand, Stokes’s theorem yields that for small r > 0,
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I =
q∑
j=1

cN

∫
bBN(wj ,r)

�∗kBM(z, w).

The map � is regular, so if r is small enough, � carries a neighborhood of the closed
ball B̄N(wj , r) onto a neighborhood of the point w. Let �−1

j be the inverse of � defined

on a neighborhood of B̄N(w.r) that satisfies �−1
j (w) = wj . We can use �−1

j to change
variables in each of the integrals on the right of the preceding sum to find that the j th of
them is equal to

cN

∫
�(bBN(wj ,r))

kBM(z, w) = 1.

Thus I = q. However, we already know that I = 1, so q = 1, and � is found to be
injective and so a diffeomorphism (of class C 2) as desired.

Theorem 8.3.1. [123] Let X be a polynomially convex subset of CN that is totally real.
If � : CN → CN is a map of the form (8.13) with the C 2 norm of χϕ sufficiently small,
then the set �(X) is polynomially convex.

We shall abbreviate this statement by saying that all sufficiently small compactly
supported C 2 perturbations of X are polynomially convex.

Corollary 8.3.2. If X is a polynomially convex subset of a totally real submanifold of an
open subset of CN , then all sufficiently small compactly supported C 2 perturbations of X
are polynomially convex.

In particular, a small C 2 perturbation of any compact subset of RN in CN is poly-
nomially convex.

The main point of the theorem is the following observation.

Lemma 8.3.3. If the compact subset Y of CN is totally real and polynomially convex, then
there is a nonnegative strictly plurisubharmonic function of class C 2 on CN whose zero
locus is Y .

Proof. The set Y is totally real, so there is a bounded open set V on which is defined a
nonnegative strictly plurisubharmonic function ρ′ of class C 2 with Y as its zero locus. The
polynomial convexity of the set Y implies the existence of a polynomial polyhedron W
with Y ⊂ W ⊂ W̄ ⊂ V . The set W̄ is polynomially convex, so by Theorem 1.3.8 there is
a nonnegative plurisubharmonic function ρ′′ on CN with W̄ as its zero locus. Moreover,
ρ′′ can be chosen to be strictly plurisubharmonic on CN \ Y .

Given the functions ρ′ and ρ′′, define ρ by ρ = Cρ′′ + ψρ′, where C is a large
positive constant and ψ is a nonnegative smooth function on CN that is identically one
on W and vanishes on a neighborhood of CN \ V . We understand the function ψρ′ to be
extended by zero outside V . For all choices of C and ψ , the function ρ is nonnegative,
of class C 2 on CN , and vanishes exactly on the set Y . If ψ is chosen first and then C is
chosen sufficiently large, then ρ will also be strictly plurisubharmonic on CN .

Proof of the theorem. The proof is very short. The given setX is polynomially convex and
is totally real, so by the lemma, there is a nonnegative strictly plurisubharmonic function
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on CN with X as its zero locus. If the C 2 norm of the map χϕ in (8.13) is small enough,
then ρ ◦�−1 is a strictly plurisubharmonic function on CN with the set �(X) as its zero
locus. Thus, �(X) is polynomially convex.

There is a perturbation result for strictly pseudoconvex domains: IfD is a bounded,
strictly pseudoconvex domain with boundary of class C 2 in CN such that D̄ is polynomially
convex, then sufficiently small C 2 perturbations of D̄ are also polynomially convex. The
proof of this follows precisely the lines of the proof just given, once we recall that there is
a C 2 defining function forD that is defined and strictly pseudoconvex on a neighborhood
of D̄.

In [123] Forstnerič also obtains a result about the polynomial convexity of perturba-
tions of certain other more general sets.

In [12] Alexander discusses the hulls of deformations of bidisks and spheres, and
Bedford in [48] treats the stability of the hulls of deformations of the two-dimensional
torus T2.

8.4. Sets with Symmetry

If a compact subsetX of CN has symmetry properties, it is to be expected that the hull X̂will
exhibit analogous symmetry properties and that an a priori knowledge of this symmetry will
be of some assistance in determining X̂. In the present section some particular examples
of this kind will be exhibited.

One kind of symmetry that a compact set can have is invariance under a closed,
and so compact, subgroup of the unitary group U(N). Any compact group � of linear
automorphisms of CN is conjugate in GL(N,C) to a subgroup ofU(N). To see this, letGbe
a compact subgroup GL(N,C). BecauseG is compact, there is aG-invariant inner product
〈 , 〉G on CN . (If 〈 , 〉 is the standard inner product on CN , let 〈z,w〉G = ∫

G
〈gz, gw〉 dg,

where dg is the Haar measure on G.) Let u1, . . . , uN be an orthonormal basis for CN

with respect to the inner product 〈 , 〉G. The matrix of any U ∈ G with respect to the basis
u1, . . . , uN is unitary. Denote by P the change of basis matrix from the basis u1, . . . , uN
to the standard basis e1, . . . , eN for CN , so that if T is a linear transformation of CN with
matrix A with respect to the u-basis and matrix B with respect to the standard basis, then
A = P−1BP . The conjugated group G′ = P−1GP is a subgroup of U(N).

The first observation is this:

Lemma 8.4.1. If the compact subsetX of CN is invariant under the action of the compact
subgroup � of U(N), then so are the hulls X̂ and R-hull X.

Proof. It is easiest to remark that the sets complementary to these sets are invariant under the
action of �. For this, suppose that x /∈ X̂, so that there is a polynomial p with p(x) = 1 >
‖p‖X. If x′ = γ (x), γ ∈ �, then p′ = p ◦ γ−1 is a polynomial with p′(x′) = 1 > ‖p′‖X,
so x′ /∈ X̂. If y /∈ R-hull X, there is a polynomial q with q(y) = 0 /∈ X. If y′ = γ (y) for
a γ ∈ �, then q ′ = q ◦ γ−1 is a polynomial that vanishes at y′ but not on γ−1(X) = X.

We can determine the polynomially convex hull of the unitary group U(N), which
we identify with the set of unitary matrices contained in the space CN×N ofN×N matrices
with complex entries.



8.4. Sets with Symmetry 403

The groupU(N) is anN2-dimensional real-analytic submanifold of the 2N2-dimen-
sional real manifold CN×N . It is, moreover, totally real: Because multiplication by a
unitary matrix induces a complex-linear automorphism of CN×N , it is enough to verify
the total reality of U(N) at a single point. For this point, we choose the identity IN .
The exponential map E : CN×N → CN×N is given by the usual exponential series:

E(A) = ∑k=0,...
Ak

k! , which is a holomorphic map that carries 0 ∈ CN×N to IN , and a
short calculation shows that the differential of this map at the origin is the identity map.
Thus, E effects a biholomorphism of a neighborhood of 0 ∈ CN×N onto a neighborhood
of IN ∈ CN×N . The map carries the space u(N) of skew Hermitian matrices into U(N).
The space u(N) is a totally real, real-linear subspace of CN×N of real dimension N2, so a
neighborhood of 0 ∈ u(N) is carried onto a neighborhood of IN ∈ U(N). The total reality
of U(N) follows.

We know that no N2-dimensional compact submanifold of CN×N is polynomially
convex, so U(N) has nontrivial hull, which we know to have topological dimension at
least N2 + 1. We shall see that, in fact, Û (N) is the closure of an open, convex subset
of CN×N .

If A is an N × N matrix, we understand the notation A ≥ 0 to mean that the
eigenvalues of A are all nonnegative. With this notation, there is a simple description of
the hull. In this connection, see [184, 377].

Theorem 8.4.2. For N = 1, . . . ,

Û (N) = {A ∈ CN×N : IN − Ā∗A ≥ 0}.
Denote by SU(N) the special unitary group, which consists of all the unitary matrices

A with detA = 1, a certain closed subgroup of U(N).

Corollary 8.4.3. For N = 1, . . .

ŜU(N) = {A ∈ CN×N : IN − Ā∗A ≥ 0 and detA = 1}.
The corollary is immediate: The function det is holomorphic on CN×N , so the locus

on which it is identically one is an analytic variety, in fact, a complex submanifold of CN .
The group SU(N) is the intersection of U(N) with this variety, so the result follows.

The cases of N = 1 are particularly simple: U(1) is the circle group T with hull the
closed unit disk, and SU(1) is just the point 1.

Proof of the theorem. The group U(N) contains the torusΘ that consists of the diagonal
N × N matrices with diagonal entries eiϑ1 , . . . , eiϑN with ϑ1, . . . , ϑN ∈ R. Necessarily
Û (N) contains Θ̂ . The latter set is the set of all diagonal (N ×N)-matrices with diagonal
entries of modulus not more than one. Fix attention on anA ∈ CN×N such that IN−Ā∗A ≥
0. Thus the eigenvalues of Ā∗A are no more than one, so the eigenvalues ofA are no more
than one in modulus. There are unitary matrices U and V such that A = UDV with D a
diagonal matrix. The groupU(N) is invariant under left and right multiplication by unitary
matrices, so the same is true of its hull. Thus, because the diagonal matrixD = U−1AV −1

has diagonal entries of modulus not more than one and so lies in Û (N), the matrix A also
lies in Û (N).
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Conversely, if IN − Ā∗A ≥ 0 fails, then A has an eigenvalue, say λ1, of mod-
ulus greater than one. There is a unitary matrix U such that U−1AU = T with T =
[tjk]j,k=1,...,N an upper triangular matrix with t11 = λ1. LetU be the matrix [ujk]j,k=1,...,N
and let U−1 = [vjk]j,k=1,...,N . Define the linear polynomial P on CN×N by the condition
that if Z is the matrix [zjk]j,k=1,...,N then

P(Z) =
∑

s,t=1,...,N

us1zst v1t .

Then P(A) = λ1, but |P(Z)| ≤ 1 for every unitary matrix Z. Thus, A /∈ Û (N), and the
theorem is proved.

The proof just given shows Û (N) to be convex with respect to linear polynomials,
so it is the closure of a convex domain. Alternatively, the convexity of Û (N) follows from
the simple observation that

IN − (τ Ā∗A+ (1 − τ)B̄∗B) = τ(IN − Ā∗A)+ (1 − τ)(IN − B̄∗B).

Theorem 8.4.4. If � is a compact subgroup ofU(N), then �̂ is a multiplicative semigroup
of CN×N .

We know that Û (N) is the set of matrices {A ∈ CN×N : I − Ā∗A ≥ 0}. The hull
of � is a subset of this set, and the assertion of the theorem implies that this hull is closed
under matrix multiplication. In particular, Û (N) is closed under matrix multiplication.

This is a special case of more general results concerning the maximal ideal space of
an invariant uniform algebra on a compact group, which can be found in Gichev’s paper
[143] and the references given there.

Corollary 8.4.5. If �̂ contains a matrix A with ‖A‖ < 1, then 0 ∈ �̂.

For the proof of the theorem, we will evaluate C-valued polynomials inN2 variables
on N × N matrices. This requires a word of explanation. If we label the N2 complex
variables on which the polynomial P depends as zj,k , 1 ≤ j , k ≤ N , and let the N × N
matrixA have entries aj,k , thenP(A) is understood to be the number obtained by replacing
in P(z) the variable zj,k by the entry aj,k of A.

Proof of Theorem 8.4.4. We work with the characters of the algebra P(�). Each such
character χ is determined by the condition that there be a unique matrix Aχ ∈ �̂ such that
for every polynomial P on CN×N , χ(P ) = P(Aχ). Let ϕ and ψ be characters of P(�)

with associated matricesAϕ andAψ . Define a functional ϕ ∗ψ by ϕ ∗ψ(P ) = P(AϕAψ).
This is a well-defined linear functional on the space of polynomials. It extends to a character
of P(�). To see this, let µϕ and µψ be representing measures for ϕ and ψ with support
in �. We have that for every polynomial P ,∫

�

∫
�

P (AB) dµϕ(A) dµψ(B) =
∫
�

{∫
�

P (AB) dµϕ(A)

}
dµψ(B)

=
∫
�

P (AϕB) dµψ(B)
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= P(AϕAψ)
= ϕ ∗ ψ(P ).

This equality implies that |ϕ ∗ ψ(P )| ≤ ‖P ‖� , so the functional ϕ ∗ ψ extends to a
continuous linear functional on P(�). The functional P �→ P(AϕAψ) is multiplicative
on polynomials, so the extended functional ϕ ∗ ψ is multiplicative on P(�). It follows
that if A,B ∈ �̂, then AB ∈ �̂, i.e., that �̂ is a multiplicative semigroup.

As an example, the unitary group U(N) contains the torus  considered above that
consists of the diagonal matrices with unimodular entries on the diagonal. The polyno-
mially convex hull of this torus is the set of diagonal matrices with diagonal entries of
modulus no more than one, which is a semigroup under matrix multiplication.

A compact subgroup of U(N)may be polynomially convex. Each finite subgroup is
an example. A continuous example is the group � of 2 × 2 matrices with diagonal entries
eiϑ and e−iϑ . If Z = [zj,k]j,k=1,2 is the generic 2 × 2 matrix and if the polynomial P is
defined on C2×2 by P(Z) = z1,1z2,2, then the variety V = {Z ∈ C2×2 : P(Z) = 1} meets
Û (2) along the subgroup � and nowhere else. It follows that � is polynomially convex.

If the compact subset X of CN is invariant under the action of the finite group �,
there is not much to be said about the hull, beyond the remark that it, too, is invariant under
the action of �. There is, though, a procedure that, in principle, can be applied. Denote by
C�[z] the ring of polynomials on CN that are invariant under the action of the group �.
This ring is finitely generated as an algebra over C; let g1, . . . , gr be a set of generators
for it. The mapG : CN → Cr determined byG(z) = (g1(z), . . . , gr (z)) carries X onto a
compact subset Y of Cr . The compact subset G−1(Ŷ ) of CN is the polynomially convex
hull of X.

For infinite groups, we begin with Hartogs sets.

Definition 8.4.6. A compact subset Y of CN+1 = CN × C is a Hartogs set if it has the
property that for each point (z, ζ ) ∈ Y , the points (z, eiϑζ ) are in Y for all ϑ ∈ R. It is
a complete Hartogs set if for each point (z, ζ ) ∈ Y , the points (z, ηζ ) are in Y for every
choice of η ∈ C with |η| ≤ 1.

A complete Hartogs set Y is of the form {(z, ζ ) : z ∈ X, |ζ | ≤ r(z)} for some
compact subset X in CN and some R-valued function r on X. In this situation, Y is said
to be the complete Hartogs set over X defined by the function r . The condition that Y be
compact implies that the function r satisfies lim supx→xo r(x) ≤ r(xo) for all xo ∈ X, i.e.,
that r is upper semicontinuous.

The maximum principle in one variable implies that if Y ⊂ CN+1 is a Hartogs set,
then Ŷ is a complete Hartogs set.

More is true: If Y is a complete Hartogs set over the compact subset X in CN , then
Ŷ is a complete Hartogs set over X̂. To see this, note that Ŷ ⊂ X̂ × C: If (z, ζ ) ∈ Ŷ , but
z /∈ X̂, then there is a polynomial P in N variables such that P(z) = 1, and ‖P ‖X < 1.
Then P , considered as a polynomial on CN+1, satisfies P(z, ζ ) = 1 > ‖P ‖Y . Thus,
Ŷ ⊂ X̂ × C. It follows that Ŷ is a complete Hartogs set over X̂.

There is a characterization of the polynomially convex hulls of Hartogs sets over
polynomially convex sets:
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Theorem 8.4.7. Let the compact subset Y of CN+1 be the complete Hartogs set over
the compact polynomially convex subset X of CN defined by the function r on X. The
polynomially convex hull Ŷ is the complete Hartogs set Z over X defined by the function
ρ̃ given by ρ̃(x) = inf ρ(z), where ρ runs through the family of functions defined on a
neighborhood of X that satisfy ρ(x) > r(x) when x ∈ X and the condition that −log ρ
be plurisubharmonic on a neighborhood of X.

The analysis of Hartogs sets is based on the theory of Hartogs domains. Recall that
a Hartogs domain is a domainD in CN+1 such that if (z, ζ ) ∈ D with z ∈ CN and ζ ∈ C,
then for all ϑ ∈ R, the point (z, eiϑζ ) also belongs to D. The domain D is a complete
Hartogs domain if (z, ζ ) ∈ D implies (z, ηζ ) ∈ D for all η ∈ C, |η| ≤ 1. If D is a
complete Hartogs domain in CN+1, there is a domain � ⊂ CN on which there is defined
a positive lower semicontinuous function ρ such that

D = D�;ρ = {(z, ζ ) ∈ �× C : |ζ | < ρ(z)}.
If D = D�;ρ is a complete Hartogs domain in CN+1, then each function f holomorphic
on D admits an expansion f (z, ζ ) = ∑∞

ν=0 fν(z)ζ
ν in which the coefficients fν are

holomorphic on �. This has the consequence that if � is a Runge domain in CN , then
D�;ρ is a Runge domain in CN+1. The basic fact we use concerning Hartogs domains is
that if� is a domain of holomorphy in CN , then the Hartogs domainD�;ρ is a domain of
holomorphy if and only if −log ρ is plurisubharmonic. The theory of Hartogs domains is
developed in the standard texts on several complex variables, for example, [287].

Proof of Theorem 8.4.7. LetY ⊂ CN+1 be the complete Hartogs set over the polynomially
convex set X in CN defined by the function r .

Suppose, to begin with, that� ⊂ CN is a Runge domain of holomorphy that contains
X and that ρ is a function on � that satisfies ρ > r on X and for which −log ρ is
plurisubharmonic. The Hartogs domain D�;ρ is then a domain of holomorphy and so is
holomorphically convex: IfE ⊂ D�;ρ is compact, then its hull with respect to the algebra
O(D�;ρ) is a compact subset of D�;ρ . This shows that X̂ is contained in the set Z of the
statement of the theorem, because D�;ρ is a Runge domain, so that the O(D�;ρ)-hull of
E is the polynomially convex hull Ê.

For the opposite inclusion, notice that the polynomially convex hull Ŷ is an intersec-
tion ∩j=1,...Wj of Hartogs domains of holomorphy each of which is a Runge domain. We
supposeWj � Wj+1. Let the point (zo, ζo) be inX×C and satisfy ρ(zo) < |ζo| for some
function ρ defined on a neighborhood of X for which −log ρ is plurisubharmonic and for
which ρ(zo) > r(zo). Thus, for large j , the point (zo, ζo) is outside �j . Fix a sufficiently
large index j , and, having fixed j , fix a function f ∈ O(�j ) that has �j as its domain of
holomorphy. The function f admits an expansion of the form

f (z, ζ ) =
∑
ν=0,...

fν(z)ζ
ν

with coefficients holomorphic in the domainW ′
j = Wj ∩ (CN ×{0}). Denote by R(z) the

radius of convergence of this series. For fixed z, Hadamard’s formula gives
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1

R(z)
= lim sup

ν→∞
|fν(z)|1/ν .

If R(zo) were as large as |ζo|, then, by Hartogs’s theorem, Theorem 1.3.2, we would have
that for large values of ν, |fν(z)|1/ν ≤ 1

R(zo)
+ ε for all z near zo. This would imply

that f extends holomorphically outside of �j , a contradiction. The function −logR is
plurisubharmonic on �j , and R ≥ r on X. Thus, the point (zo, ζo) does not lie in the set
Z, and the theorem is proved.

Another group action that we consider is the action of the N -dimensional torus TN

on CN given by the condition that if γϑ = (eiϑ1 , . . . , eiϑN ) ∈ TN , then

γϑ(z) = (eiϑ1z1, . . . , e
iϑN zN)

for all z ∈ CN .

Definition 8.4.8. A subset X of CN is a Reinhardt set if it is invariant under the action of
the group TN on CN . It is a complete Reinhardt set if for each point z ∈ X and for each
ζ ∈ Ūn, the point (ζ1z1, . . . , ζNzN) is in X.

Again by the maximum principle in one variable, the polynomially convex hull of a
compact Reinhardt set is a complete Reinhardt set.

The discussion of hulls of Reinhardt sets involves the notion of convexity with
respect to monomials. We shall understand by holomorphic monomial a function of the
formM(z) = zα1

1 · · · zαNN with α1, . . . , αN nonnegative integers.

Definition 8.4.9. A compact subset X of CN is monomially convex if

(8.14) X = {z ∈ CN : for all holomorphic monomialsM, |M(z)| ≤ ‖M‖X}.
The description of the hull of a Reinhardt set depends on certain logarithmic represen-

tations of the set. To introduce these, denote by K the collection of all nonempty subsets
of the set {1, . . . , N}. ForK ∈ K , let C(K) ⊂ CN consist of all the points z with zp �= 0
if and only if p ∈ K . Thus, for example, C({2, 3}) = {(0, z2, z3, 0, . . . , 0) : z2z3 �= 0}.
For K = {r1, . . . , rk} ∈ K , define �K : C(K)→ Rk by

�K(z) = (log|zr1 |, . . . , log|zrk |).
The main fact about the polynomial hulls of Reinhardt sets was obtained in [97] by

deLeeuw:

Theorem 8.4.10. If X ⊂ CN is a compact complete Reinhardt set, then the following are
equivalent:

(a) X is polynomially convex,

(b) X is convex with respect to holomorphic monomials, and

(c) for each K ∈ K , the set �K(X) is convex if not empty.
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Proof. We begin by showing that (c) implies (b). For this, note that for each K ∈ K , the
set �K(C(K)) is a linear subspace of Rk: If x = �K(z) and x′ = �K(z′)with z, z′ ∈ C(K),
then x + x′ = �K(w) if w is the point in C(K) with coordinates z1z

′
1, . . . , zNz

′
N , and, for

t ∈ R, tx = �K(zt1, . . . , ztN ) for any determination at all of the powers.

That X is a complete Reinhardt set implies that if x ∈ �K(X) and if y ∈ Rk satisfies
yj ≤ xj for each j , then y ∈ �K(X).

We now suppose that for each K ∈ K , the set �K(X) is convex and show that
X is monomially convex. Thus, suppose we are given zo ∈ CN \ X, so that �K(zo) /∈
�K(C(K) ∩ X). Call the latter set YK . The set YK is convex by hypothesis, so it can be
separated from the point �K(zo) by a real linear functional: There is a real linear functional
on Rk such that ϕ(�K(zo)) = 1 and ϕ < 1 on �K(C(K) ∩ X). The functional ϕ is
necessarily nonpositive on the negative cone {a ∈ Rk : a1, . . . , ak < 0}. Consequently,
with · the standard inner product on Rk , there is an α ∈ Rk with nonnegative coefficients
such that ϕ(x) = x · α. If z ∈ C(K) and K = {n1, . . . , nk}, then

ϕ ◦ �K(z) = α1log|zn1 | + · · · + αklog|znk |.

Thus, if g(z) = |zn1 |α1 · · · |znk |αk , then g(zo) > ‖g‖YK . This inequality remains correct
if we decrease the α’s a little, so we can suppose that they are all rational with the same
denominator, say αj = µj/d for positive integers µj and d , d independent of j . If
M(z) = zµ1

n1 · · · zµknk , thenM is a monomial that is bigger in modulus at zo than on C(K)∩X.
We have that ‖M‖C(K)∩X = ‖M‖X. To see this, suppose z ∈ X has nonzero coordinates
zn1 , . . . , znk . If z′ is the orthogonal projection of z into C(K), then z′ ∈ C(K) ∩ X,
and because M(z) = M(z′), it follows that ‖M‖C(K)∩X ≥ |M(z′)| = |M(z)|. Thus
‖M‖C(K)∩X ≥ ‖M‖X, so the two must be equal. Thus, X is monomially convex.

If X is monomially convex, it is, a fortiori, polynomially convex. That is, the impli-
cation (b) implies (a) is immediate.

It remains to show that polynomial convexity implies the convexity properties (c).
Assume that X is polynomially convex. Fix K ∈ K and z, z′ ∈ C(K) ∩ X. We are to
prove that the segment [�K(z), �K(z′)] is contained in �K(X). The domainX is a Reinhardt
domain, so there is no loss in assuming that the nonzero coordinates of z and of z′ are
positive. Put λj = log

zj

z′j
if j ∈ K . Otherwise, let λj = 0. For t = σ + iτ ∈ C,

if σ < 0, then the point z(t) = (z′1eλ1t , . . . , z′NeλN t ) is in X. If p is a polynomial,
define p∗(t) = p(z(t)), a certain exponential polynomial, which is bounded in the strip
S in the t-plane defined by 0 ≤ σ ≤ 1. The Phragmén–Lindelöf principle implies that
‖p∗‖S = ‖p∗‖bS . If σ ∈ [0, 1], then z(t) ∈ X, so ‖p∗‖S ≤ ‖p‖X. In particular, if
σ = 0 or 1, then z(σ ) ∈ X. The set �K(C(K) ∩ X) is seen to be convex because
�K(z(σ )) = σ�K(z)+ (1 − σ)�K(z′).

The theorem is proved.

It is a classical result that complete logarithmically convex Reinhardt domains are
the domains of convergence of power series. There is a corresponding result for Reinhardt
sets:
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Theorem 8.4.11. If
∑
α cαz

α is a power series in N variables that converges absolutely
precisely on the compact subset X of CN , then X is a polynomially convex complete
Reinhardt set. Conversely, if the compact subsetX of CN is a polynomially convex complete
Reinhardt set, then there is a power series that converges absolutely at the points ofX and
that converges nowhere else.

This result was found by Almer [31] and rediscovered by deLeeuw [97].

Proof. First, suppose X to be a polynomially convex complete Reinhardt set in CN . It
is therefore monomially convex. Let m1,m2, . . . be an enumeration of the monomials
such that if mk is a monomial of degree d , then k ≤ CdN , C a constant independent of
k and d . For each k, let rk = ‖mk‖X. The series

∑
k

1
k2
mk(z)
rk

converges absolutely on X.

If z ∈ CN \ X, then for some ko, |mko(z)| > rko . The series then contains the subseries∑∞
j=1

1
µ(ko,j)2

[mko (z)
rko

]j , in which µ(ko, j) denotes the index of the monomial mko(z)
j in

the given enumeration. Thus, µ(ko, j) ≤ C(koj)
N , and the terms of the subseries are

seen not to tend to zero. Consequently, if we rearrange the series
∑
k

1
k2
mk(z)
rk

into a power
series, we obtain a power series whose set of absolute convergence is the set X.

The proof in the opposite direction is a minor variant of the standard proof that the
domain of convergence of a power series is a logarithmically convex Reinhardt domain.
Let
∑
α cαz

α be a power series in N variables that has the compact subset X of CN as its
set of absolute convergence. The set X is plainly a Reinhardt set. It is also monomially
convex and so polynomially convex. To see this, we use the criterion of Theorem 8.4.10.
Using the observation that a closed set E in RN is convex if and only if it is midpoint
convex in the sense that if x, y lie in E then so does the midpoint of the segment [x, y],
we see that what has to be proved is that if the series converges absolutely at z and at
w, then it converges at the point u = (u1, . . . , uN) that has coordinates uj satisfying
|uj |2 = |zj ||wj |. Because |ab| ≤ 1

2 (|a|2 + |b|2), this is clear, for given any multi-index
α = (α1, . . . , αN), ∣∣uα1

1 · · · uαNN | ≤ 1

2

(|zα1
1 · · · zαNN | + |wα1

1 · · ·wαNN |).
The theorem is proved.

The final notion of symmetry that we shall consider is that possessed by stars.

Definition 8.4.12. A star with center the origin in Rn is a set carried into itself by the
homothety x �→ rx for every r ∈ [0, 1]. A star domain is a star that is an open set.

In the case of stars, there need not be a group of symmetries, but the homotheties in
question do constitute a semigroup.

A star domain need not be bounded.
Every convex domain that contains the origin is a star domain with star center the

origin, and every compact convex set that contains the origin is a star with center the
origin. For example, in CN a closed 2N-dimensional cube with one vertex at the origin is
a compact star with star center the origin.

IfX ⊂ CN is a compact star with star center the origin, then the polynomially convex
hull X̂ is another such set. Also, if K1, . . . , Km are compact convex subsets of CN each
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of which contains the origin, then K = ∪j=1,...,mKj is a star with star center the origin.

Star domains are Runge domains. This observation goes back at least to Almer [31];
it has been rediscovered several times. See [82]. The proof we give is one given by El
Kasimi [112].

Theorem 8.4.13. If D ⊂ CN is a star domain with star center the origin, then D is a
Runge domain.

Proof. LetD be a star domain with star center the origin. We are to prove that if f ∈ O(D),
then f is uniformly approximable on compacta in D by polynomials. If not, there are a
compact set K ⊂ D and a function f ∈ O(D) such that for some finite regular Borel
measure µ carried byK ,

∫
f dµ �= 0, but

∫
P dµ = 0 for every polynomial P . Introduce

the function ϕ defined on a neighborhood of the interval [0, 1] in C by

ϕ(ζ ) =
∫
f (ζx) dµ(x).

This function is holomorphic on a neighborhood of the closed interval [0, 1], it vanishes
when |ζ | is small, but, by hypothesis, it does not vanish at the point 1. This contradiction
establishes the theorem.

It is easy to determine the envelope of holomorphy of a star domain. To this end,
let D ⊂ CN be a star domain with star center the origin. Let {Xk}k=1,... be a sequence of
compact stars with star center the origin, with each Xk a subset of the interior of Xk+1,
and with ∪k=1,...Xk = D.

Theorem 8.4.14. [112] The set D̃ = ∪j=1,...X̂k is a pseudoconvex star domain with star
center the origin into which every f ∈ O(D) extends holomorphically.

Thus, D̃ is the envelope of holomorphy of D. In particular, the envelope of holo-
morphy of a star domain is single-sheeted.

Proof. ThatXk is contained in the interior ofXk+1 implies that D̃ is a domain. To see that D̃
is an open set, argue as follows. Consider a point zo ∈ D̃. Thus, zo ∈ D̂k for some k. There
is a representing measure µ for zo with support in Xk . By hypothesis, Xk ⊂ intXk+1, so
for w ∈ CN , w near 0, the measure µw defined on CN by∫

g(z) dµw(z) =
∫
g(z+ w) dµ(z)

is supported in intXk+1 and satisfies∫
P(z) dµw(z) = P(zo + w)

for all polynomials P . This implies that zo + w ∈ X̂k+1. The set D̃ thus contains a
neighborhood of zo, and D̃ is found to be open. It is plainly a star with star center the
origin. It is, moreover, holomorphically convex: LetX be a compact subset of D̃. We want
to show that the O(D̃)-hull of X is compact. For this, note that the hull in question is the
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polynomially convex hull X̂, because D̃ is a Runge domain, and thatX is contained in the
interior of X̂j for sufficiently large j . Thus, D̃ is holomorphically convex.

We have to see that each f ∈ O(D) extends holomorphically into the domain D̃.
To do this, fix a j > 1 and choose a sequence {Pk}k=1,... of polynomials that converges
uniformly on Xj to f . This sequence necessarily converges uniformly on X̂j , which is a
neighborhood of X̂j−1. In this way, we obtain an extension of f to a holomorphic function
on D̃. The theorem is proved.

IfD is a bounded star domain with star center the origin that is proper in the sense that
each real ray emanating from the origin meets bD in a single point, then A(D̄) = P(D̄),
i.e., each f ∈ C (D̄) that is holomorphic on D is uniformly approximable on D̄ by
polynomials. This can be seen by the following short argument. Given f ∈ A(D̄), define
fr by fr(z) = f (rz), r ∈ [0, 1). The domain D is proper, so rD̄ ⊂ D when r ∈ [0, 1).
This implies that f ∈ P(D̄), for D is a Runge domain.

Without the hypothesis thatD is a proper star domain, the conclusion of the previous
paragraph can fail, as an example of El Kasimi [112] shows.

We finish this discussion of star sets with a result on the polynomial convexity of D̄.

Theorem 8.4.15.[112] If D is a bounded, proper star domain with star center 0, and if D
is a domain of holomorphy, then D̄ is polynomially convex.

Proof. If D̄ is not polynomially convex, then for r ∈ [0, 1) sufficiently near 1, the hull
(rD̄)̂ is not contained in D̄. However, D is its own envelope of holomorphy, and we
constructed the envelope of holomorphy of D in Theorem 8.4.14 as ∪j=1,...X̂j in which
{Xj }j=1,... is a suitable sequence of compacta in D that exhausts D. Thus, for each j ,
X̂j ⊂ D. Because (rD̄)̂ ⊂ Xj for large j , the set (rD̄)̂ is contained in D after all.
Contradiction. It follows that D̄ is polynomially convex.

El Kasimi [112] pointed out the following consequence:

Corollary 8.4.16. If D is a domain of holomorphy in CN with bD of class C 1, then for
every p ∈ bD, there is a ball B such that p ∈ bB and B ∩D is a polynomially convex set.

Proof. For B take a ball centered on the inner normal to bD at p that contains p. If bB is
small enough, then B ∩D is a bounded, proper star domain of holomorphy, so its closure
is polynomially convex.

Example. The truncated cone. For α ∈ (0,∞), let Ỹα = {z ∈ CN : |y|2 ≤ α|x|2}. That
is, with z = (z1, . . . , zN) and zj = xj + iyj , z ∈ Ỹα if and only if y2

1 + · · · + y2
N ≤

α(x2
1 + · · · + x2

N). Thus, the set Ỹα is a star with star center the origin; it is a conical
neighborhood of RN \ {0}. These cones are nested: Ỹα ⊂ Ỹβ if α ≤ β. Let Yα be the cone
Ỹα truncated by bBN , so that

Yα = Ỹα ∩ B̄N,

which is a compact set. We shall show that the truncated cone Yα is polynomially convex
if and only if α ≤ 1. If α > 1, then Ŷα contains a ball BN(r) for some positive r .

To see that Yα is polynomially convex when α ∈ (0, 1], introduce the polynomial
P given by P(z) = z2

1 + · · · + z2
N . Thus, with · the real inner product on CN = R2N ,
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P(z) = |x|2 − |y|2 − 2ix · y. If z ∈ Yα , then |y|2 ≤ α|x|2, so �P(z) ≥ (1 − α)|x|2 ≥ 0,
and if z ∈ CN \Yα , then |y|2 > α|x|2, so that �P(z) < (1−α)x2. Fix a z ∈ CN \Yα , say
z = x + iy, and let �z be the ray x + iτy for τ ∈ [1,∞). We have that, when τ ∈ (1,∞),
�P(x + iτy) ≤ (1 − τ 2α)|x|2 < (1 − α)|x|2. Thus, P(�z) is a curve in C \ P(Yα) that
connects P(z) to infinity. Consequently, z /∈ Ŷα . We have shown Yα to be polynomially
convex when α ∈ (0, 1].

We now have to see that when α > 1, the hull Ŷα contains a ball centered at the
origin. As we have noted, Yα ⊃ Y1. If ϕ(ζ ) = (ζ, iζ ), then ϕ(C) ⊂ bỸ1. We have that for
every polynomial P ,

P(0) = 1

2πi

∫
|ζ |= 1

2

P(ζ, iζ )
dz

ζ
,

so that 0 ∈ (Y1 ∩ bBN(1/2))̂ . Let γ be the circle {( 1
2e
ϑ , i2e

iϑ ) : ϑ ∈ R}. If w =
(w1, w2) ∈ CN lies near the origin, then the measure µw defined by∫

g dµw = 1

2πi

∫
|ζ |= 1

2

g(ζ + w1, iζ + w2)
dz

ζ

for g ∈ C (CN) is supported on the translate, γw, by w of the circle γ , and it satisfies∫
P dµw = P(w)

for all polynomials P . Since α > 1, it follows that for some sufficiently small r > 0, each
of the curves γw for w with |w| < r is contained in Yα . Consequently, the polynomially
convex hull of Yα contains BN(r), as we claimed.

Now let us consider the open cone�α , which is defined to be the interior of the closed
cone Ỹα . This domain is not a star domain in the sense of our definition, for it does not
contain the origin. It is, however, invariant under the multiplicative group of homotheties
z �→ rz for r ∈ (0,∞). It is also invariant under the natural action of the real orthogonal
group O(N) on CN . We propose to compute the envelope of holomorphy of �α .

For α ∈ (0, 1), the boundary of �α is strictly pseudoconvex except at the origin,
and Q(z) = |y|2 − α|x|2 is a strictly plurisubharmonic defining function for �α in that
�α = {z : Q(z) < 0}, so for α in this range, �α is a domain of holomorphy. Because we
have �1 = ∪α∈(0,1)�α , the domain �1 is also a domain of holomorphy. (The union of a
monotonically increasing sequence of domains of holomorphy in CN is itself a domain of
holomorphy.)

For α ∈ (1,∞), the domain �α is not a domain of holomorphy. Its envelope of
holomorphy is CN . To see this, fix a β ∈ (1, α). The function Q defined by Q(z) =
β|x|2 − |y|2 is strictly plurisubharmonic on b�β \ {0}, and CN \�β is the set {z ∈ CN :
Q(z) ≤ 0}: The boundary of the domain CN \ �̄β is strictly pseudoconvex except at the
origin.

Consider an f ∈ O(�α). The restriction f |b�β satisfies the tangential Cauchy–
Riemann equations on b�β \ {0}. This restriction continues holomorphically through all
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of CN \�̄β , as we see in the following way. LetD be the domain (CN \�̄β)∩BN . We have

bD = (b�β ∩ BN) ∪ ((CN \�β) ∩ bBN).

Let � = (CN \ �̄β) ∩ bBN . If E(z) = ez2
1+···+z2

N , then E(0) = 1, and |E(z)| < 1 on �.
Accordingly, the polynomially convex hull �̂ does not contain the origin. The set �̂ ∪ {0}
is polynomially convex. The function f |b�β ∩BN continues holomorphically intoD \ �̂
by Theorem 5.2.11. This means that each f ∈ O(�α) continues holomorphically into
BN(δ) \ {0} for some positive δ, and so, because of the invariance of �α under the maps
z �→ rz for r > 0, it follows that each f ∈ O(�α) continues holomorphically into all of
CN : CN is the envelope of holomorphy of �α when α ∈ (1,∞).

We will pursue the study of these cones �α a little further. We denote by T the
homothety of CN given by T (z) = 2z and the group of homotheties generated by T
by �. Denote by H the quotient manifold (CN \ {0})/�. Under the quotient map π :
CN \ {0} → H , the domain �α goes onto a domain �′

α in H . For α ∈ (0, 1), �′
α

is a strictly pseudoconvex domain �′
α in the quotient manifold, H , the domain �1 is a

domain of holomorphy in H with Levi flat boundary, and for α > 1, the domain �α has
Levi concave boundary. The quotient manifold H is a Hopf manifold; it is nonalgebraic.
See [199].

For α ∈ (0, 1), the domain �′
α is a Stein manifold and so has a rich supply of

holomorphic functions. In the rangeα > 1, the domain�′
α has no nonconstant holomorphic

functions, and the only meromorphic functions on it are the restrictions of meromorphic
functions on H . This we can see as follows. Suppose f to be a meromorphic function
on �′

α . Then F = f ◦ π is a nonconstant meromorphic function on the cone �α. We
have remarked above that the envelope of holomorphy of �α is all of CN , so, if f is
holomorphic, rather than meromorphic, then F continues holomorphically to all of CN ,
say as the function F̃ . The function F̃ is invariant under the action of the group �, so
F̃ is of the form f̃ ◦ π for a function f̃ holomorphic on the compact manifold H . This
is impossible, and we see that �α , for α ∈ (1,∞), admits no nonconstant holomorphic
functions. The situation for meromorphic functions is similar: If f is meromorphic, then
the function F continues to all of CN as a meromorphic function, which we denote by F̃ ,
because for a domain in CN , the envelope of holomorphy coincides with the envelope of
meromorphy. The extended function F̃ is invariant under the action of the group �, and so
is of the form F̃ = f̃ ◦π for some function f̃ meromorphic on H . Note, finally, that there
are some nonconstant meromorphic functions on H , for if P and Q are homogeneous
polynomials of degree d, d > 0, on CN , then the quotient R = P/Q is constant on the
orbits of the group � and so descends to a function meromorphic on H .

For more on the hulls of cones (and wedges) see the paper [297] of Rosay.

We conclude this section with some brief descriptions of other work that has been
done on hulls of sets that admit symmetries.

A. In [373], Wermer considered the hull of a compact set X invariant under the action
of the circle group given by (z1, z2) �→ (eiϑz1, e

−iϑ z2).
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B. Gamelin in [138] describes the polynomially convex hull of a compact set X in
C2 that is invariant under the group of automorphisms of the form (z, w) �→
(eiϑz, eiαϑw) for various choices of α < 0.

C. Debiard and Gaveau [95] consider the action of SU(2) on C3 defined as follows.
Identify C3 with the vector subspace of the space C2×2 of 2 × 2 complex matrices
that consists of the matrices Z of the form Z = [ z1 z3z3 z2

]
. With SU(2) the group

of all 2 × 2 complex matrices with determinant one, SU(2) acts on C3 by taking
U ∈ SU(2) and Z ∈ C3 to the matrix UZUt with Ut the transpose of Z.

D. Anderson [32] considers the action of SU(2) on C3 introduced by Debiard and
Gaveau in C above and determines the polynomially convex hulls of compact subsets
X of C3 that are invariant under this action.

E. Sacré [314] studies the N -dimensional analogues of the problems considered by
Debiard and Gaveau and by Anderson mentioned in C and D.

F. Gichev and Latypov [142] discuss the orbits {γ (x) : γ ∈ �} for� a closed subgroup
of U(N) for a fixed point x ∈ CN . In particular, a characterization is given of the
case in which this orbit is polynomially convex.

G. Gichev [143] studies the maximal ideal spaces of subalgebras of C (G),G a compact
group, that areG-invariant. This involves the study of the polynomially convex hulls
of compact subgroups of the unitary group.

H. Bou Attour and Faraut [68] study the hulls of compactG-invariant sets in CN when
G is the isotropy subgroup for the origin in the group of automorphisms of a bounded
symmetric domain of tube type.

I. Kaup and Zaitsev [201] study the orbits of points under certain compact groups
acting on bounded symmetric domains.

J. Kaup [200] determines the G-invariant compact polynomially convex sets conta-
ianed in a bounded symmetric domain G/K .
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