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Preface

This book can be considered a continuation of The Regularity of Minimal Surfaces
by Ulrich Dierkes, Stefan Hildebrandt and Anthony Tromba, Volume 340 of the
Grundlehren der Mathematischen Wissenchaften.

The central theme is the study of branch points for minimal surfaces with the
goal of providing a new approach to the elementary question of whether minima of
area or energy must be immersed.

One of the main difficulties with the current theory of branch points is the trans-
parency and sophistication of the proofs of the main theorems. For example, Osser-
man’s original 1970 cut and paste proof, that absolute minima are free of interior
branch points remains, for the most part, open only to experts. Furthermore, before
the appearance of this volume, no complete proof has appeared in one place.

In the 1960’s the development of global nonlinear analysis and the idea of doing
calculus or analysis on infinite dimensional manifolds had created a great deal of
excitement, especially through the pioneering work of Jim Eells, Dick Palais and
Steve Smale.

The goal of this book is to develop entirely new and elementary methods, in the
spirit of global analysis, to address this beautiful question via energy (Dirichlet’s
energy) as opposed to area. We will do something that rarely, if ever, has been done
in the calculus of variations, namely calculate arbitrarily high orders of derivatives
of energy. This method also applies to boundary branch points for minimal surfaces
with smooth, but not analytic boundaries, a question that heretofore has not been
addressed.

We wish to thank Stefan Hildebrandt for assisting with reworking part of the
manuscript, but all errors are the sole responsibility of the author. A very special
thanks must go to Daniel Wienholtz, whose brilliant insights led to the resolution
of the boundary case for smooth curves, and finally to Fritz Tomi, who worked on
the exceptional branch point case and pointed out potential difficulties in applying
these methods to this case.

My career owes a great debt to all of these wonderful mathematicians.

Santa Cruz, USA Anthony Tromba
August 2011
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Chapter 1
Introduction

The classical problem of Plateau, although by far not the oldest problem in the
Calculus of Variations, is certainly one of the best known. The mathematical formu-
lation of the problem of finding a least area surface of the topological type of the
disk spanning a closed contour goes back to Weierstrass. In particular, Weierstrass
formulated the existence of the solution of the least area problem as a solution to a
system of non-linear partial differential equations:

Set

B={weC:|w| <1}
and
C={weC:|w|=1}=0B.

A closed Jordan curve I' in R is a subset of R? which is homeomorphic to 9 B.

Given a closed Jordan curve I" in R? we say that X : B — R is a solution of
Plateau’s problem for the boundary contour I” (or: a minimal surface spanned in I7)
if it fulfils the following three conditions:

(i) X € C°%(B,R* NC%(B,RY;
(i1) The surface X satisfies in B the equations
AX =0 (1.1)
1Xul? = 1Xu1%, (Xu, Xy) =0 (1.2)

(iii) The restriction X|C of X to the boundary C of the parameter domain B is a
homeomorphism of C onto I".

From the classical point of view, one of the difficulties in minimizing the area
functional

Ap(X) :/ IXu A Xyl du dv
B

is that among all those surfaces X satisfying (iii) A is invariant under the action
of the infinite dimensional diffeomorphism group of B. By replacing area by en-
ergy one reduces the symmetry group to the finite dimensional conformal group of
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2 1 Introduction

the disk. Miraculously, the absolute minima of area and energy are the same. The
Weierstrass equations (1.1) and (1.2) are then the variational equations of Dirichlet’s
energy.

The problem of the existence of a minimum of area spanning I" remained open
for a half a century until it was solved by Jesse Douglas (1931) and Tibor Rad6
(1930). For all his work on the Plateau problem, Douglas was awarded one of the
first two Fields Medals of Mathematics (shared with Lars Ahlfors) at the Interna-
tional Congress of Mathematicians in Oslo in 1936.

Jesse Douglas (1897-1965)

Given the fact that the absolute minima of area and energy are the same, we can
formulate the classical problem of Plateau as follows:

Given a closed Jordan curve I" in R?, a mapping X : B — R? is said to be of class
CrNifXe H21 (B, R%), and if its trace X |C can be represented by a weakly mono-
tonic, continuous mapping ¢ : C — I" of C onto I" (i.e., every L, (C)-representative
of X|C coincides with ¢ except for a subset of zero 1-dimensional Hausdorff mea-
sure).

Let

1
D(X)=Dg(X) := 5/1;(|Xu|2+ 1X,1?) du dv (1.3)

be the Dirichlet integral of a mapping X € H21 (B,R%). Then we define the vari-
ational problem P(I") associated with Plateau’s problem for the curve I" as the
following task:

Minimize Dirichlet’s integral D(X), defined by (1.3), in the class C(I").

In other words, setting

e(I"):=inf{D(X) : X € C(I")}, (1.4)
we are to find a surface X € C(I") such that
D(X) =e(I') (1.5)

is satisfied.
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In his solution, Douglas minimized an energy essentially equivalent to Dirichlet’s
energy, which later proved to be a very powerful method for dealing with minimal
surfaces of arbitrary topological type and connectivity.

Almost from the beginning, the question arose as to whether the absolute mini-
mizers were immersed or not. A point p where X is not immersed, i.e.

Xu(p)=Xy(p)=0

is called a branch point. It follows easily that interior branch points are isolated.
In 1932 Douglas [1] and in 1942 Courant [1] thought that they had found absolute
minizers which had branch points. We should note here that from the early 1930s
until his death in 1972 Courant worked on and popularized the field of minimal
surfaces.

The example of Douglas was refuted in 1933 by Rad6 while Courant’s exam-
ple survived until the pioneering work of Robert Osserman in 1970, and then of
Gulliver-Osserman and Royden in 1973.

In his now classic paper, Osserman constructed a discontinuous parameter trans-
formation allowing a reparametrization of a minimal surface in a vicinity of an inte-
rior branch point, such that the area of the surface can be reduced. He had to distin-
guish between true and false branch points (the latter are those which have a neigh-
bourhood whose image is still an embedded surface), but in his proof he overlooked
some difficulties appearing for false branch points. In 1973, both H.W. Alt [1] and
R. Gulliver [2] independently extended Osserman’s line of argument to surfaces
which are absolute minimizers of prescribed mean curvature with least energy and
also treated the case of false branch points. The joint work of Gulliver, Osserman
and Royden [1] in 1973 proved that all minimal surfaces bounded by rectifiable Jor-
dan curves do not have any false branch points, even if they do not minimize the
Dirichlet energy.

This difficult work has remained open mostly to experts in the field. For more
historical comments, see the Scholia (Chap. 9).

In this book we give proof of the fact that in R* any solution of Plateau’s prob-
lem which is a relative minimizer of Dirichlet’s integral D or, equivalently, the area
functional A, is an immersion in the sense that it has no interior or (with mild as-
sumptions) boundary branch points. This fact can easily be proved for planar bound-
aries (Dierkes, Hildebrandt and Sauvigny [1]), while the corresponding result in R”
is false for n > 4 according to a famous example of Federer. Therefore it remains to
prove the assertion for a nonplanar boundary curve I" in R3. The proof given here
is based on the observation that one can compute any higher derivative of Dirichlet’s
integral in the direction of so-called (interior) forced Jacobi fields, using methods
of complex analysis such as power series expansions and Cauchy’s integral theorem
as well as the residue theorem. These Jacobi fields lie in the kernel of the second
variation of D; they also play a fundamental role in the index theory and the Morse
theory of minimal surfaces. So, in a very strong sense, this book is about energy
and the fact that it can be reduced in the presence of an interior or boundary branch
point. This is in the spirit of Douglas’ original approach to the Plateau problem.
Since area is less than or equal to energy, reducing energy means that you can also
reduce area. In this connection we must mention the work of Beeson [1].
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Although the computations in this book are sometimes tedious, they are simple
in principle. The main analytical idea is to find, using function theory, paths so that
the calculation of higher order derivatives of Dirichlet’s energy, through the use of
Cauchy’s integral theorem, along these paths reduces to a few manageable terms. In
a sense, we are doing calculus on infinite dimensional manifolds. In order to convey
to the reader a feeling for the methods to be applied, we begin by calculating the
first five derivatives of Dirichlet’s integral in the direction of special types of forced
Jacobi fields, thereby establishing that a relative D-minimizing solution of Plateau’s
problem cannot have certain kinds of interior branch points. These introductory cal-
culations will be carried out in Chap. 2 as a warm up for the general case, together
with an outline of the variational procedure to be used in the sequel. These calcula-
tions are made transparent by shifting the branch point that is studied into the origin,
and by bringing the minimal surface into a normal form with respect to the branch
point w = 0 with an order n. Then also the index m of this branch point can be de-
fined, with m > n. Furthermore, w = 0 is called an exceptional branch point if there
is an integer k > 1 such that m + 1 = x(n + 1). This notion is related to that of the
false branch point, but it is a weaker notion. It will turn out that it is particularly dif-
ficult to exclude that a relative minimizer of D can have an exceptional branch point
at w = 0. In fact, we are only able to exclude exceptional branch points for weak
relative minimizers of A in C(I"). However, we do present conditions under which
a minimal surface with an exceptional branch point cannot be a relative minimizer
of D. In the non-exceptional case, one can “always” reduce energy (and area), and
surprisingly the monotonicity of a minimal surface on the boundary plays no role in
being able to do so.

In Chap. 2 it is described how the variations 7 (t) of a minimal surface X are
constructed by using interior forced Jacobi fields. This leads to the (rather weak)
notion of a weak minimizer of D. Any absolute or weak relative minimizer of D
in C(I") will be a weak D-minimizer, and the aim is to investigate whether such
minimizers can have w = 0 as an interior branch point. This possibility is excluded
if one can find an integer L > 3 and a variation 2([) of X, |t] < 1, suchthat E(¢) :=
D(2 (1)) satisfies

ED0)=0 forl<j<L-—1, E®(0) <0.

It will turn out that the existence of such an L depends on the order n and the index
m of the branch point w = 0.

In our first chapter, this idea is studied by investigating the third, fourth and
fifth derivatives of E(¢) at t = 0. Here one meets fairly simple cases for testing the
technique demonstrating its efficacy. Furthermore, the difficulties are exhibited that
will come up generally.

The first case of a general nature is treated in Chap. 3. Assuming that n 41 is even
and m + 1 is odd (whence w = 0 is non-exceptional) it will be seen that £ m+1)(0)
can be made negative while £ DO)=0forl < Jj <m, and so X cannot be a weak
minimizer of D.

The general situation is studied in Chaps. 4 to 7. In Chap. 4 is shown that w =0
cannot be a non-exceptional branch point of a weak relative minimizer of D. We
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derive simple formulae for the first non-vanishing derivatives of Dirichlet’s energy
and show that they can be made negative. Such a result is no longer true for an
exceptional branch point w = 0, apart from some special cases. In Chaps. 5, 6 and
7 it is proved that a weak relative minimizer of A in C(/") cannot have exceptional
interior branch points if I" is a smooth closed Jordan curve in R3.

In Chap. 8 we study boundary branch points of a minimal surface X with a
smooth boundary contour. In particular we first show that X cannot be a weak rel-
ative minimizer of D if it has a boundary branch point whose order n and index m
satisfy the condition 2m — 2 < 3n (Wienholtz’s theorem).

‘We then will show that if the torsion and curvature of I" are both non-zero, then
a priori 2m + 2 < 6(n + 1). As a consequence it follows that X is not a minimizer
in the non-exceptional cases; i.e. m + 1 # k(n + 1), k =2 or 3. This is a partial
resolution to boundary regularity for smooth contours. Considering only the Taylor
expansion about a branch point, we then argue that the question of whether a min-
imal surface with an exceptional boundary branch point is or is not a minimum is
not decidable.

In conclusion, if the boundary contour is C* or more simply if a minimal surface
X is C* witha non-exceptional interior or boundary branch point, we can find a C*®
surface ¥ which is C* close to X having less energy and area. This is much stronger
than what was previously known and indicates the power of using derivatives as
opposed to cut and paste constructions.

In the Scholia (Chap. 9) we describe some of the history of the main results
of this book. Finally, we note that some of the introductory material also appears
in Dierkes, Hildebrandt and Tromba [1], but we include it for completeness. The
author wishes to thank Stefan Hildebrandt for reworking the manuscript and for his
encouragement, the Max Planck Institute in Leipzig for their support, Frau Birgit
Dunkel for her excellent typing of the manuscript and finally my wife Inga without
whose love and support this book could not have been written.



Chapter 2
Higher Order Derivatives of Dirichlet’s Energy

2.1 First Five Variations of Dirichlet’s Integral and Forced
Jacobi Fields

In this chapter we take the point of view of Jesse Douglas and consider minimal sur-
faces as critical points of Dirichlet’s integral within the class of harmonic surfaces
X : B — R3 that are continuous on the closure of the unit disk B and map B = S
homeomorphically onto a closed Jordan curve I" of R3. It will be assumed that I
is smooth of class C*° and nonplanar. Then any minimal surface bounded by I
will be a nonplanar surface of class C (B, R3 ), and so we shall be allowed to take
directional derivatives (i.e. “variations”) of any order of the Dirichlet integral along
an arbitrary C°°-smooth path through the minimal surface.

The first goal is to develop a technique which enables us to compute variations
of any order of Dirichlet’s integral, D, at an arbitrary minimal surface bounded by
I', using complex analysis in the form of Cauchy’s integral theorem. This will be
achieved by varying a given minimal surface via a one-parameter family of admissi-
ble harmonic mappings. Such harmonic variations will be generated by varying the
boundary values of a given minimal surface in an admissible way and then extending
the varied boundary values harmonically into B. From this point of view the admis-
sible boundary maps B = §' — I" are the primary objects while their harmonic ex-
tensions B — R3 are of secondary nature. This calls for a change of notation: An ad-
missible boundary map will be denoted by X : 9 B — I", whereas X is the uniquely
determined harmonic extension of X into B;i.e. XecC O(E, R3) nC 2(B , R3) is the
solution of

AX=0 inB, )A((w)zX(w) for w € 0B.

Instead of X we will occasionally write HX or H (X) for this extension, and
~ 1 ~ N
D(X) = —f VX -VXdudv
2 g

is its Dirichlet integral.
In the sequel the main idea is to vary the boundary values X of a given minimal
surface X in the direction of a so-called forced Jacobi field, as this restriction will

A. Tromba, A Theory of Branched Minimal Surfaces, 7
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-25620-2_2, © Springer-Verlag Berlin Heidelberg 2012


http://dx.doi.org/10.1007/978-3-642-25620-2_2
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enable us to evaluate the variations of D at X by means of Cauchy’s integral theo-
rem. In order to explain what forced Jacobi fields are we first collect a few useful
formulae.

Let us begin with an arbitrary mapping X € C (8B, R") and its harmonic ex-
tension X € C (B, R3). Then X is of the form

X(w)=Re f(w) 2.1)
where f is holomorphic on B and can be written as
f=X+iX* with X, =X"and X, = — X" (2.2)
We also note that
F(w)=2Xyw) = Xu(w) —iXy(w) inB. (2.3)

Conversely, if f is holomorphic in B and X =Re f then f’ and X, are related
by the formula f' = 2X,; in particular, X,, is holomorphic in B. This simple, but
basic fact will be used repeatedly in later computations.

Let us introduce polar coordinates r, 6 about the origin by w = re'?, and set
?(r, 0) = X (re'?). Then a straightforward computation yields

iwX = % [1?9(1,9) n i?,(l,e)] 2.4)
whence
2Re{iw)2w(w)} ‘w =T == 0 SX () =Y,0) 2.5)
since

Y(1,0) = X (') = X (') =: Y (0).

If X € C*®(S',R?) maps S! homeomorphically onto I" then Yy (0) is tangent to I”
at Y (0),i.e. Yg(0) € Typ)I", and so the left-hand side of (2.5) is tangent to I".

Consider now a continuous function 7 : B — C that is meromorphic in B with
finitely many poles in B, and that is real on d B. Then t can be extended to a mero-
morphic function on an open set £ with B C £2, and t is holomorphic in a strip
containing d B. It follows from (2.5) that

2Re {iw}%w(w)r(w)} ) =@ Yy(0) € Ty T (2.6)

Suppose now that X is a minimal surface with finitely many branch points in B.
These points are the zeros of the function F(w) := }A(w(w) which is of class C*
on B and holomorphic in B. If t(w) has its poles at most at the (interior) zeros
of the function w F'(w), and if the order of any pole does not exceed the order of
the corresponding zero of wF (w), then the function K(w) = lw)A( (w)t(w) is
holomorphic in B and of class C (B, R%). We call i :=Re K an inner forced
Jacobi field /1 : B — R3 at X with the generator .

If one wants to study boundary branch points of X it will be useful to admit
factors t(w) which are meromorphic on B, real on 3B, with poles at most at the
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zeros of wF (w), the pole orders not exceeding the orders of the associated zeros of
wF (w). Then
h:=ReK with K(w):=iwFw)t(w), weB, F:=X,, (2.7)

is said to be a (general) forced chobi field /1 : B — R3 at the minimal surface X,
and 7 is called the generator of /. .
The boundary values /g1 of a forced Jacobi field & are given by

o i0 i0 1 i v (10
h(@) :=h(e'"")=ReK (e )=Et(e )Yp(0), Y(©6):=X(e"). (2.8)

Using the asymptotic expansion of F (w) = X, (w) at a branch point wo € B having
the order A € N, we obtain the factorization
F(w) = (w—wy)*G(w) with G(wg) #0, 2.9

and, using Taylor’s expansion in B or Taylor’s formula on d B respectively, it follows
that G(w) = G(u, v) is a holomorphic function of w in B and a C*°-function of
(u, v) € B. It follows that any forced Jacobi field h:B—R3is of class C*° (B, R?)
and harmonic in B.

Denote by J ()A( ) the linear space of forced Jacobi fields at X, and let Jo()A( ) be the
linear subspace of inner forced Jacobi fields. The importance of J ()A( ) arises from
the fact that every forced Jacobi field h at X annihilates the second variation of D,
ie.

8’D(X,h)=0 forallhe J(X).

In the present section we only deal with inner forced Jacobi fields, and so we only
prove the weaker statement (cf. Proposition 2.1):

82D(X,h)y=0 forall h € Jo(X).

The existence of forced Jacobi fields arises from the group of conformal automor-
phisms of B and from the presence of branch points; the more branch points X has,
and the higher their orders are, the more Jacobi fields appear — this explains the
adjective “forced”. To see the first statement we consider one-parameter families of
conformal automorphisms ¢(-, 1), |[t| <€,€ >0 of B with

wr ew,t)=w+tn(w)+o() and ¢(w,0)=w,e(w,0)=n(w). (2.10)
Type I:
p1(w, 1) =Dy
with a(f) € R, ®(0) =0, @ (0) = a. Then ¢1(w, t) = w + tiwa + o(¢), and so
n(w) =iwa withaeR.
Type II:
Pr(w,1) = %

with B(1) € R, B(0) = 0, B(0) = b.
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Then @y (w, t) = w + tn2(w) + o(t) with na(w) =ib + ibw?, and so
b
n(w)=iw (— + bw) with b € R.
w

Type III:
w —y()

p3(w, 1) = m

with y (£) e R, y(0) =0, y (0) = c.
Then @3 (w, 1) = w + tn3(w) + o(t) with n3(w) = —c + cw?, whence

. fic .
n(w)=iw (— — lcu)> .
w
We set

71(w) :=a, 7 (w) ::b-(l+w), 3(w) ::c-(i—iw), (2.11D)
w w

with arbitrary constants a, b, c € R. For w = ¢'? € 9B we have
71(w) =a, 7 (w) =2bcosoh, 73(w) = —2c¢sind,
and so t;, j =1,2,3, are generators of the “special” forced Jacobi field h j=
Re K, defined by
K;(w):=iwF(w)tj(w), weB, F:i=X,, (2.12)

which are inner forced Jacobi fields for any minimal surface X bounded by I'. If
we vary X by means of ¢ = ¢1, ¢2, 93 with o :=Regp, B :=Img, ie. p(w,t) =
a(u,v,t)+if(u,v,t), setting

Z(w, 1) :=X(pw, 1) = X(au,v,1), Bu,v, 1)),

we obtain
L= Rop="LR. )= Rule P + Xyl PIf
dt dt dt
=2Re X, (9)¢.
and so
Ly =2Re{X,,¢(0)}.
dr =0
For ¢ = ¢; we have ¢(0) =n;, hence
dii(w,z)) » =2Re{iwX,,(w)tj(w)} =2k j(w). (2.13)

Let us now generate variations Z@), |t < 1, of a minimal surface X using any inner
forced Jacobi field & € Jo(X) We write Z (t) = 7 (-, t) for the variation of X and
Z(t) for the variation of the boundary values X of X, and start with the definition
of Z(t). Then 7 (¢) will be defined as the harmonic extension of Z(7), i.e.

Z(t) = H(Z(1)). (2.14)
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First we pick a smooth family y (t) = y (-, ), |[t| < §, of smooth mappings y (¢) :
R — R with y (0) = idr which are “shift periodic” with the period 27, i.e.

y(©0,00=6 and y(@+27,1)=y(@,1)+21 foroeR.  (2.15)
Setting o (0,1) :=y(6,t) — 0 we obtain
y(@.,0)=0+0(6,1) witho(0,0)=0and o (0 +2m,1) =0(0,1)
and
Y9 (0,t) =140p(0,t) =14 09,(0,0)t + 0(2).
Choosing § > 0 sufficiently small it follows that
y9(0,t) >0 for (0,1) e R x (=4, 9).
Now we define the variation {Z(¢)}};|<s of X by
Z(@"?, 1) =X (7O = X(cosy (0, 1), siny (0, 1)). (2.16)
Then
%Z(em, 1= [—f(u @7 OD)siny 6, 1) + Ry (@) cos y (6, z)] Vi (6,1).
By (2.4) we have
i X, (%) = % [Xg(@) n if(,(l,e)]
if we somewhat sloppily write X (r, 0) for X (re'?) and X (0) for X(1,6) = X (¢'?).
This leads to
— X, (" ODysiny (0, 1) + X, (€7 D) cosy (0, 1) = Xg(y (0, 1))

whence
0 0 N @0
EZ(E 1) =Xg(y(0,1)v9(8, 1) o @.1)
On account of
Z,t):= Z(eie, H=X(y@,1)) (2.17)

we have
Zp(0,1) = Xo(y(£,0)) - vo (0, 1),

and so it follows that
d

ot

0

. 0
ZE Hy=—27@0,t) =
(e, 1) o7 @, 59

ZO,1)-¢0,1)
with

— yl(e’ t)
vo(0,0)

¢0,1): (2.18)
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Defining the family {¢(¢)}|;|<s of 2m-periodic functions ¢ (¢) : R — R by ¢(¢) :=
¢ (-, 1), we have

3
5 20 =8 ZWe =2 h(). (2.19)

Now we consider the varied Dirichlet integral
~ 1 ~ N
E(@t):=D(Z())= 5/ VZ(t)-VZ(t)dudv. (2.20)
B

Then

d A d

—E(@)=| VZ(t) - V—Z(t)dudv.

dt(),/B() g 20 dudy

Since the operations % and H commute, we have

iZt—H iZt
a0 = <dt ())

and therefore

d A d
—E@)=| VZ#)-VH| —Z() ) dudv.
GE0 = [ V20 v (§20) avay
Since AZ(1) =0, an integration by parts leads to

iE(t) = /‘2” i2(t) h(t)do ith h(t) = 3Z(l‘) (2.21)
dt "o or ' W ot ' ’

For brevity we write in the following computations Z instead of Z(t). We have
. 1 ~ -
W2y = E(Zr —iZy)
if we write Z(r, 0) for Z(w)|w:,e,-9, cf. (2.4), and also
dw=iwdd forw=¢"ecdB.
Then on dB:
W2y - Zydw =i(wZy) - (WZy) do
= jI@r —iZ9)-(Zy —iZ9)dO
1~ & [ A A A oA
52026~ 22 2, ~ 2o 2o) | a0,
2 4
and so
2Re[wZy - Zy pdwl =2, - Zg $pd6 on dB.
Furthermore, 29 = Zg on dB as well as h = ¢pZyg (see (2.19)), and so (2.21) leads

to the formula

iE(t) - 2Re/ wZ ) - Z(O)wd (1) dw (2.22)
dt Sl
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where the closed curve S! is positively oriented. This formula will be the start-
ing point for calculating all higher order derivatives %E (t) and, in particular, of

j;, E) = dt,, E() | . In order to evaluate the latter expressions for any n, it will
be essential that we can choose ¢ (¢) and any number of ¢-derivatives of ¢ () in an
arbitrary way. This is indeed possible according to the following result:

Lemma 2.1 By a suitable choice of y(0,1) =60 + o (0,1) with 6 € C*® on R x
(=6,8),0(0,0)=0and o (0 + 2m,t) =0 (0,t) we can ensure that the variation
of the boundary values of the minimal surface X, defined by Z(0,t) := X (y(0,1)),
leads to “test functions” ¢ (0, t) in formula (2.22) such that the functions

b (0) ——¢(9 D)_ v=012....n

can arbitrarily be prescribed as 27 -periodic functions of class C*°.

Proof Let us first check that, given ¢y, ¢1, ..., ¢, the computation of o, and so of
y, can be carried out in a formal way. Consider the Fourier expansion of the function
o (6, t) which is to be determined:

o0,1) = %ao(t) + Z[ak (t) coskB + by (t) sink6]. (2.23)
k=1

From o (6, 0) = 0 it follows that
ap(0) =ax(0) =br(0) =0 fork eN.
Furthermore,

v

0, (6) = 8— o (6,0) = ay"(0) + Z[a,ﬁ”)(O) coskf + b\ (0)sink6].  (2.24)

Hence if D;/o(6,0) are known for v =1,2,...,n, one also knows all derivatives
Dy D} o (0,0) =0, (0) from the defining (2.18) for o which amounts to
0,1t
$0,1) = L.
14+04(0,1)
By differentiation with respect to r we obtain
Ort 0109t
¢ = - R
l+os (1+40p)
Ottt 207109; 01001t 20; (Ut6)2
D1 = -

I+05 (14092 (I1+00)?  (1409)°
etc. Setting r = 0 and observing that oy (6, 0) = 0 it follows that
=¢o=19,

=¢1 +o10],
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= ¢2 +2020( + 0105 — 20 (01/)2,

/ /
ovr1=¢y + fu(ol,...,00,0(,...,0,).
Here f, is a polynomial in the variables o7, ..., o), 0{, el a,ﬁ. This shows that,
given ¢g, @1, ..., ¢,, we can successively determine o1, 02, ..., 0,41. On account

of (2.23) we then obtain
Ay:=al"0),  Al:=a"0), BY:=b"(0) forkeN.
Defining

n+1 n+l1

ax (1) —Z _A . b —Z _B :

(2.23) furnishes the function y(Q, t) =6 4 o(0, t) with the desired properties. Fur-
thermore, the construction shows that this procedure leads to a C*°-function o that
is 2 -periodic with respect to 6. g

Let us inspect a variation 2(t) = H(Z(t)) of a minimal surface XecC *(B,R3)
as we have just discussed. It is the harmonic extension of a variation Z(¢) of the
boundary values X of X, given by (2.15) and (2.16). Clearly, Z (t) is not merely an
“inner variation” of X, generated as a reparametrization Xoo (1) with a perturbation
o(t) =idz+th + --- of the identity idgz on B, but the image 7 (t)(B) will differ
from the image )A((B). Only the images Z(7)(S') and X (S') of the boundary S! =
d B will be the same set X, but described by different parametrizations Z(r) : §' —
Yand X:§' - ¥.

Definition 2.1 We call such a variation Z(t) a boundary preserving variation of
X (for |t| <« 1).

Note: If X € C(I") then any boundary preserving variation Z(t) (with 7] < 1)
lies in C(I').

Definition 2.2 We say that X is a weak relative minimizer of D (with respect to
its own boundary) if £(0) < E(¢) holds forAany Variation E(t) = D(Z(t)) of D by
an arbitrary boundary preserving variation Z(¢) of X with || < 1.

If X e C(I") is a weak relative minimizer of D in C(I") with respect to some
C*-norm on B, then X clearly is a weak relative minimizer of D in the sense of
Definition 2.2.

Let us return to formula (2.19) which states that

0
EZO) =@ (t)Z(1)g.
According to (2.5) we have
Z(t)g =2ReliwZy (w, 1)]|

we=eif?
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and since ¢ is real-valued it follows that

0 oA
5720, 1) =2ReliwZy (w, N (O, D1y yio- (2.25)
Since % and the harmonic extension H commute we obtain
0 o _
EZ(I) = H{2Re[iwZ(t)y¢ ()]} in B (2.26)

having for brevity dropped the w, except for the factor iw (as this would require a
clumsy notation). Then, by

2 =2 A0
ar ow” T dw ’

QJ|Q_;

it follows that

—Z(t)w = (H{ZRe[sz(t)w¢(t)]}> . (2.27)

Now a straightforward differentiation of (2.22) yields

dzE 4Re 9Z(1) Z d
rE0=are [ w220 ROECL

+2Re/ WZ (O - ZO)wei (1) dw. (2.28)
Sl

From (2.22) and (2.28) we obtain

Proposition 2.1 Since X=2 (0) is a minimal surface we have

dE 0)=0 (2.29)
E = .

and
d2E(0)—4R/ ox Xptd (2.30)
a2 7 eslw ar [ eV '
w

with T := ¢ (0). If T is the generator of an inner forced Jacobi field attached to )A(,
then

2E
W(O) =0. (2.31)

This means that
82D(X,h) =0 forallhe Jy(X), (2.32)
i.e. for all inner forced Jacobi fields h= Re[iw Xy, (w) T (w)].

Proof We have X w " )A(A w = 0 since X is a minimal surface, and so (2.29) and (2.30)
are proved. Secondly, % is holomorphic in B, as it is an inner forced Jacobi field, and

the w-derivative of any harmonic mapping is holomorphic whence {%}w is holo-
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morphic in B. Thus the integrand of f g1 (-..) dw in (2.30) is holomorphic. Hence
this integral vanishes, since Cauchy’s integral theorem implies . 98,0 - dw=0

for any r € (0, 1) and then [ (...) dw =1lim, .1 g faB,(())(' .)dw =0 as the inte-
grand (...) is continuous (and even of class C°°) on B. O

Now we want to compute %E (#), and in particular %(O) if T = ¢(0) is the
generator of an inner forced Jacobi field. Differentiating (2.28) it follows

43 B dZ(1) dZ(1)
ﬁE(t)_4Re/Slw{ o }w{ o }w¢>(t)dw

.
+4Re/ w{a Z(t)} S Z() o () dw
SI

ar?

YA .
+8Rg/lw{ } 2w (1) dw
S

at

+2Re/ wZ ) - Z()wdu () dw. (2.33)
Sl

Proposition 2.2 Since X = Z(0) is a minimal surface we have
d°E 3% & 3
—0)=—4Re | w Xyy  Xpuw? dw (2.34)
dt?’ s1
if T := ¢(0) is the generator of an inner forced Jacobi field at X.

Proof The fourth integral in (2.33) vanishes at t = 0 since
ZO)w - ZO0)w = Xu - Xu =0.
The integrand of the second integral in (2.33) is

37 .
W(O) cw Xy T (W)

which is holomorphic in B since the w-derivative of a harmonic mapping is holo-
morphic and h = Reli w)A(w'c] is an inner forced Jacobi field. So also the second
integral in (2.33) vanishes on account of Cauchy’s integral theorem. Next, using
(2.27), we obtain

a2t
{a “}w

This implies

5 .
|:w {EZ(”}W : Z(;)w} ‘IZO

= w[iw)A(wr]w . )A(w

29y |Re[iwf(wr]} = liwXyTlw. (2.35)
ow

t=0

A A

=iwXy Xt +iwXpw - XoT +iw? Xy - Xwtw =0
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since )A(w . )A(w =0, which also yields wa . )A(w =0. Thus

9 )
[w {Ezu)}w : Z(t)wi| L:o =0 (2.36)

and so the third integral in (2.33) vanishes for r = 0. Finally, by (2.35),

EZI iit
({ar ()}w'{ar ()}w>

=[iwXyly - [[wXyTly
=[i Xyt +iwXpw? +iwXptwl [ Xet +iwXpw? +iwXytw]

2 v 2
= w* XpwT”,

t=0

A A

using again X, - Xy, =0and X, - Xpw =0, ic.

95 Z(t) 95 Z(t) 2X w - X2 (2.37)
_ . = —W . T . .
at » Lot =0 v
Thus the first integral in (2.33) amounts to
—4Re/ w3)2ww . war3dw. O
Sl

In order to simplify notation we drop the 7 in (2.33) and write
d? A A oA
—F =Re 4/ WZy - Ziwd dw +4f Wiy Ly dw
de3 sl sl

+8/ wZ;w . 2w¢>, dw + 2/ wa . 2w¢t, dwi| .
S1 S1

Differentiation yields
d* s A . A
—F =Re 12/ wZ,tw~th¢dw +4/ mew-Zw(Pdw
dt* sl sl
+ 12/ wZw  Zewdr dw + 12/ WZiw - Zuwdr dw
sl sl

+12/1 wztw . 2w¢tt dw + 2/1 wiw . 2w¢ttt dU)i|
S S
=Rell1 + L+ 1+ 14+ 15+ Ig). (2.38)

We have I5(0) = O since Z ) - Z 0) = )A( Xw =0. Moreover by Cauchy’s
theorem, I>(0) = 0 since both me|t 0= [Z,,,(O)]w and wX 7 are holomorphic.
On account of (2.36) we also get I5(0) = 0. Finally, taking (2.17) into account, we
see that

10) =12 / 0 Ko - K ?21 (0) dw,
Sl

and we arrive at
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Proposition 2.3 Since X = Z(0) is a minimal surface we have
d*E . . "
W(O) =12Re 1 Ziw(0) - [wZy (0)T + w Xy (0)] dw
S
- lZRe/ w3 X pw - Xwwt ¢ (0) dw, (2.39)
s!

provided that T = ¢ (0) is the generator of an inner forced Jacobi field at X.

Finally, as an exercise, we even compute (0) Differentiating (2.38) it follows
that
d5E 2
—5 =Re Z I; (2.40)
j=1
with
=16 wzmw th¢ dw, L= 12/ wzttw : Zttw¢ dw,
st s!
=4/1 wzltttw : w¢> dw, Iy:= 16/1 wzmw : 2w¢t dw,
S N

—48 / Wi Zouty dw,  Ig:=24 / WZitw - Zudu dw,

)

I .= 24/ wztw : 2[w¢tt dw, Iy := 16/ wztw : Zw¢ttt dw,
N
19 = 2/1 wzw . 2w¢tttt dw.
S

13(0) vanishes by Cauchy’s theorem since both Zm 0), and wX wT are holomor-
phic provided that t = ¢ (0) is the generator of a forced Jacobi field at X. Further-
more, I3(0) = 0 because of (2.36), and Xw . }A(w = 0 implies I9(0) = 0. Thus we
obtain by (2.37):

Proposition 2.4 Since X is a minimal surface we have

d&PE . . .
ﬁ(O) = 16Rt%/l Zittw(0) - [wZy (0)T + wXy e (0)] dw
S

+ 12Re/1 Zi1w(0) - [wzttw(o)f
S

+ 4w Z1y (00 (0) + 2w X 1y (0)] dw

—24Re/ W X ww - Xww? ¢ (0) dw (2.41)
Sl

provided that T = ¢ (0) is the generator of an inner forced Jacobi field at X.
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Note also that in (2.39) and (2.41) we can express Zw (0) by (2.35) which we
write as

Ziw(©0) = [iwXytlw. (2.42)

The values of E”(0) and E’’(0) in (2.30) and (2.34) depend only on 7 = ¢(0) and
not on any derivatives of ¢ (¢) at r = 0; in this sense we say that £ (0) and E"(0) are
intrinsic. As we shall see later, this reflects important facts, namely: The Dirichlet
integral D has an intrinsic second derivative d?D, and an intrinsic third derivative
d?D in the direction of forced Jacobi fields.

Let us try to show that a nonplanar weak relative minimizer X of D cannot have
a branch point in B. To achieve this goal, a somewhat naive approach would be to

compute sufficiently many derivatives E)(0) := %(O) and to hope that one can

find some first non-vanishing derivative, say, E %) (0) 0, whereas E)(0) = 0 for
j=1,2,..., L — 1. Then Taylor’s formula with Cauchy’s remainder term yields

E(t) = E(0) + LL!E(L)(W)[L for |t <1, 0<® <1,
that is,
D(Z(1)) = D(X) + %E(“(ﬁz)#,
and we infer for some ¢ with 0 < |¢| < 1 that
() D(Z@)) < D(X) if L odd =2¢+ 1> 3 and EZ*+D(0) £0,
and
(i) D(Z(t)) < D(X) if L even =2¢ >4 and E?Y(0) < 0.

Let us see under which assumption on X this approach works for L = 3. Note that
an arbitrary branch point wo € B of a minimal surface X can be moved to the origin
by means of a suitable conformal automorphism of B. Hence it is sufficient for
our purposes to show that a minimizer X of D in C(I'") does not have w =0 as a
branch point. Therefore we shall from now on assume the following normal form
of a nonplanar minimal surface X (cf. Dierkes, Hildebrandt and Sauvigny [1],
Sect. 3.2):

X has w =0 as a branch point of order n, i.e.
Xpw) =aw” +o(w") asw — 0.

Choosing a suitable Cartesian coordinate system in R3 we may assume that X, can
be written as

XoW) = (A" + Aw"™ ™ + o Rpw™ + Rpw™ 40, m>n, (243)

with A; € C2, R; € C, A1 #0 and R, # 0 for some integer m satisfying m > n;
the number m is called the index of the branch point w = 0 of X given in the normal
form (2.43). Note that a surface X can also be brought into the normal form (2.43)
(with n =0) if X is regular at w = 0.
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Lemma 2.2 The normal form (2.43) satisfies

Ai-A; =0, A= - A1 fork=1,2,...,2(m —n),

1 (2.44)
At Aom—ony1 = _ER’%“
and therefore
wa(w) : )A(ww(w) =(m— n)ZRanme—Z 4+, Ry #0. (2.45)

Proof Equation (2.43) implies
Xuww) - Xpw) = > p(w) + RZw>™) + O(lw*" ™) asw—0
where p(w) is a polynomial of degree 2¢ in w with £ := m — n which is of the form
p(w)=A1- A1 +2A; - Ayw+ QA1 - A3 + Ay - Ar)w?
+ QA1 - As+2A45 - AW 4+ QA1 - As + 245 - Ay + Az - Ap)w?

4+ QAL Ap 1 +2A0 - Agp+ -+ 24000 - Ap+ Agyr - Agp)w*

=co+ciw+cow? + - + cppw?t, cjeC.

Since )A(w . )A(w =0 we obtain
co=ci==cp-1=0, cy+R:=0.

Let (A’, A”) := A’ - A” be the Hermitian scalar product of two vectors A’, A” € C2.
The two equations co =0 and ¢; =0 yield A; - A; =0 and A; - Ay =0 which are
equivalent to

(A1, A)=0 and (A, A;)=0.
Since Aj # 0 and A # 0 this implies
Ay =ApA; forsome Ay € C,
and so we also obtain
Ar-Ay=23A1- A1 =0.
On account of ¢; = 0 it follows A - A3 =0, and thus it follows
(A1, A1)=0 and (A3, A;)=0
whence
Az =A3A; for some A3 € C,
and so
Ay - Az =ApA3A1- A1 =0.
Then ¢3 =0 yields A - A4 = 0, therefore
(A1, A1) =0 and (A4, A;)=0;



2.1 First Five Variations of Dirichlet’s Integral and Forced Jacobi Fields

consequently

Ag=AgA1 for some Ay € C.

21

In this way we proceed inductively using co =0, ..., c2¢—; = 0 and obtain Ay =
MApfork=1,2,...,2(m —n). Since A; - A; =0 it follows that

Aj-Ar=0 forl<j, k<2(m—n).

Then the equation ¢y + R,z,, =0 implies 2A; - Appy1 + R,,z1 =0,1ie.

1
Al - Aom—n)+1 = —5 Ry,

Furthermore, from

Xw(w) = (Alwn + Azw”""l + .4 A2n1_2n+]w2m—n e,

we infer

XpwW) = @A 1w 4o 4+ @m —n) Ao _gnp w7 4

mRuw™ 4.
Then (2.46) implies

Xy (W) - Xy () = [20(2m — n) Ay - Agyy—opt1 +m*R2Tw™ =2 ...

and by (2.47) we arrive at

Xy (W) - Xy (w) = [—n(2m — n)R% +m*R2 w2 ...

which is equivalent to (2.45).

Ryw™ + -

(2.46)

(2.47)

)

’

0

Theorem 2.1 (D. Wienholtz) Let X be a minimal surface in normal form with a
branch point at w = 0 which is of order n and index m, n < m, and suppose that
2m —2 < 3n (or, equivalently, 2m +2 < 3(n + 1)). Then we can choose a generator
T of a forced Jacobi field h such that E® 0) <0, and so X is not a weak relative

minimizer of D.

Proof Define the integer k by
=02m+2)-2(n+1).
Because of m > n and 2m — 2 < 3n it follows that
l<k<n+1.
Let

10:=cw " rowt, 1= cwF +owk,

and set

() t:=rifk=n+1;
(1)) t:=€r9+ 711, >0,if k <n—+1;

ceC,
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In both cases 7 is a generator of a forced Jacobi field at X , since wX w(w) has a zero
of order n + 1 at w =0, and Im7 =0 on d B. By (2.45) it follows for w € B that

w3 Xy (W) - Xy (W) = (m — n)>R2w?"+! 4 ...

where + - - - always stands for higher order terms of a convergent power series. In
case (i) one has
Pw)=Aw 30D 4.
and so
w3 X (W) - X (W) T (w)* = (m — n)*RE,Aw ™ + f(w)

where f(w) is holomorphic in B and continuous on B. Then formula (2.34) of
Proposition 2.3 in conjunction with Cauchy’s integral theorem yields

E®(0) = —4Re[27i(m —n)*R2c?] ifk=n+1.

With a suitable choice of ¢ € C we can arrange for E &) (0) < 0 since R,;, # 0 and
(m—n)?>1. R R
In case (ii) we write w3 X - Xpw as

w3 Xy (W) - Xy (w) = (m — n)* REw?™ 1 4 f(w),

where
o
f(w) := w2 Zajwj, ajeC.
o

From

3 =3 43628t + 3eror] + 7}
it follows that

g(w) = w Xy (w) - Xy ()T (w)

is meromorphic in B, continuous in {w : p < |w| < 1} for some p € (0, 1), and its
Laurent expansion at w = 0 has the residue

Resy—o(g) = 3626‘3(1’)1 — n)zR,zn +e3lank, 1<k=<n.
Cauchy’s residue theorem together with formula (2.34) of Proposition 2.3 then im-
ply
E®(0) = —4Re{2mi[3e’c>(m — n)*R2 + €ay ]} fork <n+ 1.
By an appropriate choice of ¢ € C and € with 0 < € < 1 we can achieve that
E® (0) < 0 also in case (ii). O

The following definition will prove to be very useful.

Definition 2.3 Let X be a minimal surface in normal form having w = 0 as a branch
point of order n and of index m. Then w = 0 is called an exceptional branch point
if m+4+1=k(m+ 1) for some k € N; necessarily « > 1.
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Remark 2.1 If2m —2 < 3n,i.e.2(m+1) <3(n+ 1), then w = 0 is not exceptional,
because (m + 1) =k (n + 1) with « > 1 implies 2« (n + 1) < 3(n + 1) and therefore
2k < 3 which is impossible for k € N with k > 1.

Remark 2.2 Now we want to show that the notion “w = 0 is an exceptional branch
point” is closely related to the notion ‘w =0 is a false branch point™. To this end
we choose an arbitrary minimal surface Z(g“) ¢ € B, in normal form without { =0
being a branch point, i.e. Z= Reg where g : B — C? is holomorphic and of the
form

8(0)=2(0) + (Bo¢ + B> +---,Cel" +--), Bo#0, Ce #0, k > 1.

Consider a conformal mapping w — ¢ = ¢(w) from B into B with ¢(0) = 0 which
is provided by a holomorphic function

pw)y=aw+---, a#0, weB.

Then X(w) = Re f(w) with f(u)) = g(¢" T (w)), w € B, is a minimal surface
X : B — R such that X (0) = Z(0) and

f(W):X(0)+(a’1+lBown+l+"', IJK("+1)CKU)K(”+1)+"').

Thus we obtain for X,, = % f/ that

Xpw) = (Ajw" + -, Ryw™ 4---), A1 #0, Ry #0,

and so X (w), w € B, is a minimal surface in normal form which has the branch
point w =0 of order n and index m :=«x(n + 1) — 1, Whence w = 0 is exceptional.
Clearly X is obtained from the minimal immersion Z (¢) as a false branch point
by setting X:=Zo @"t1. As the “false parametrization” X of the regular surface
S:= Z(B) is produced by an analytic expression ¢ = ¢"T!(w) we call w =0 an
“analytic false branch point”.

Let X be a minimal surface with w = 0 a branch point of order n. Now, if we
know that the image under X of a small neighbourhood U of 0 is an analytic regular
(embedded) surface 8, then w = 0 is a false branch point and it is not hard to see
that w = 0 is also analytically false.

To this end, let Y : U — 8 be a C>% smooth regular conformal parametrization
of f. Then

(p:=Y_loX

is conformal and we may presume holomorphic. Since X has a branch point of order
n, ¢ locally has the form

(P(Z) =an+1w”+l + ...

’

where a1 # 0.

Therefore, there is a holomorphic function v defined on a neighbourhood V. C U
of 0 such that ¢ = ¥"*! and we may assume ¥ : V — (V) is biholomorphic.
Then

Y—l o )2 — ¢n+l
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implying that
Y 'oXoy (w)=w"!
or
Xoy '(w)=Y@"

i.e. w = 0 is locally analytically false.

In Remark 2.1 we have noted that w = 0 cannot be “exceptional” if 2m —n < 3n,
and so it cannot be an “analytic false branch point”.

It will be useful to have a characterization of the non-exceptional branch
points, the proof of which is left to the reader.

Lemma 2.3 The branch point w = 0 is non-exceptional if and only if one of the
following two conditions is satisfied:
(1) There is an even integer L with

(L-—Dn+1)<2m+1)<Ln+1). (2.48)
(ii) There is an odd integer L with

L-1Dmn+1D)<2m+1)<Ln+1). (2.49)
We say that w = 0 satisfies condition (T1) if either (2.48) with L even or (2.49) with
L odd holds.

In Theorem 2.1 it was shown that E® (0) can be made negative if 2m — 2 < 3n.
Therefore we shall now assume that 2m — 2 > 3n. It takes some experience to realize
that the right approach to success lies in separating the two cases “w = 0 is non-
exceptional” and “w = 0 is exceptional”. Instead one might guess that the right
generalization of Wienholtz’s theorem consists in considering the cases

(L—Dn<2m—-2<1Ln, LeN, withL>3 (Cp)
and hoping that one can prove
EVDO0)=0 forl<j<L—-1, EP©0)<0

using appropriate choices of forced Jacobi fields in varying the minimal surface X.
Unfortunately this is not the case. To see what happens we study the two cases

3n<2m—2<4n (Cq)
and
4n <2m—2<5n (Cs)

by computing E® (0) in the first case and E® (0) in the second one. We begin by
treating special cases of (C4) and (Cs), where we can proceed in a similar way as
before with E®)(0) for 2n <2m — 2 < 3n.

The case (C4) with2m —2=4p, p e N.
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Proposition 2.5 If wZ;,(0)T + wX ¢, (0) is holomorphic, then

E®0) = —12Re/

; w3 X ww - Xww?2¢: (0) dw. (2.50)

Proof Since Z,w (0) is holomorphic in B, the integrand of the first integral in (2.39)
is holomorphic, and so this integral vanishes. g

Remark 2.3 In case (C4) with 2m — 2 = 4p the branch point w = 0 is non-
exceptional. To see this we note that p < n whence

2m+2=4(p+1)<4(n+1)
and therefore
n+l<m4+1<2m+1).

Also note that n =1, 2, 3 are not possible since n = 1 would imply p < 1; n =2
would mean p =1 whence 6 =3n <4p =4; and n =3 would imply p <2, and so
9=3n <4p =_8. Finally 3n <4p and n > 4 yields p > 3.

Theorem 2.2 If 3n < 2m — 2 = 4p < 4n for some p € N, then one can find a
variation Z(t) of X such that E® (0) < 0, whereas E(f)(O) =0forj=1,2,3.

Proof First we want to choose 7 = ¢ (0) and ¢, (0) in such a way that the assumption
of Proposition 2.5 is satisfied. To this end, set

t(w):=(a—ib)w P~ 4+ (a +ib)wPt!,

which clearly is a generator of a forced Jacobi field. By (2.43) we get

wXyy (w)T (w)
= (@ —ib)(A1w" " + Agw" P o Agy o T
mem—p + .. ) + ((1 + l-b)(Alwll+p+2 + e mem+p+2 + . )

By (2.35) it follows

wZ(w, 0)7 (w)
= w[iwf(w(w)r(w)]wt(w)
—i(a—ib)*((n— p)AW" 2P £ (n— p+ DA 4.
+@m—n— p)Ayn_onp w?™ T n— p)Ruw™ TP 4,

Note that 2m — 2 =4 p impliesm —2p — 1 =0, whence n —2p — 1 < 0 because of
m>n,but2m—n—-2p—1=m—2p—1)+ (m —n) =m —n > 0. Thus the third
component above has no pole, while the first (vectorial) component has a pole at
least in the first term, but no pole anymore from the (2m — 2n + D™ term on. These
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poles will be removed by adding wX w®:(0) to wZ;(0)T with an appropriately
chosen value of ¢, (0). We set

¢ (0):= Y
=1
with
Y1 (w) :=—i(n — p)(a —ib)*rew 272
+i(n— p)a+ib)*rw?rPt?

where Ay = A; A1 (cf. Lemma 2.2). The number s is the index of the last term
(n—p+s)As w" 2P~ where n —2p+5 — 1 is non-negative. Now wZ,w Oyt +
wX w¥1 has no pole associated to A, and poles of the same order or less associated
to Ay, k <s.Choose ¥, so that there is no pole associated to A;. Continue to define
Y so that all poles are removed.

Note that

w}?w(w):(Alwn+l+A2wn+2+'_.+A2m72n+]w2m—n+l_I__”’mem—i-l_'_”')
and
A1-Ar=0 fork=1,2,...,2m —2n.

ThAerefore, w)A(wqﬁ,(O) = w}:(w [ + 2 + -+ + ] removes all poles from
wZ;y(0)T. Consequently wZ;, (0)t + wX ¢, (0) is holomorphic, and so we have

E®(0) =—12Re/ W Xw - XwwT ¢ (0) dw.
Sl

Formula (2.45) yields

w3 Xy () - X (w) = (m — n)*RE w4
The leading term in ¢, (0) is that of v;, and

Yi(w) =—i(n — p)a —ib)>w P2 4 ...
Furthermore,
2w) = (a—ib)w P2 4.,

and so

2 (W) (w, 0) = —i(a — ib)*(n — ppw P+ 4 ...
Noticing that 2m + 1= (2m +2) — 1 =4(p + 1) — 1, and setting

Kk :=12(m —n)*(n — p)>0

we obtain

d
E®(0) =k Re |:i(a - ib)4R,%l/ —w} — 2wk Re[(a — ib)*R2]
sl w
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and an appropriate choice of a and b yields E®(0) < 0. Finally we note that
E@@©) =0 and E®(0) = 0 for the above choice of 7 (t). The first statement
follows from Proposition 2.1. To verify the second, we recall formula (2.34) from
Proposition 2.2:

E® ()= —4Re /

1 w3wa ~wat3dw.
S

From the preceding computations it follows that
W3 Xy (W) - Xy (W) T3 (W) = (m — )2 R2 (a — ib)> w130 4D
and, by assumption, 2m — 2 = 4p, whence
2m+1-3(p+1)=4p+3-3(p+DH=p>1;
therefore E® (0) = 0. Il

Remark 2.4 Under the special assumption that 2m — 2 = 4p we were able to carry
out the program outlined above for L = 4. However, applying the method from
Theorem 2.2 to cases when 2m — 2 = 0 mod 4 one seems to get nowhere. However,
trying another approach similar to that used in the proof of Theorem 2.1, one is
able to handle the case (C4) under the additional assumption 2m — 2 = 2 mod 4
by considering the next higher derivative, namely E®(0) instead of E®(0), cf.
Theorem 2.4 stated later on. This seems to shatter the hope that one can always
make E©)(0) negative, with EG)(0) =0 for 1 < j < L — 1, if (Cy) is satisfied.
In fact, by studying assumption (C5) we shall realize that (Cy) is probably not the
appropriate classification for developing methods that in general lead to our goal.
Rather the case (Cs) will teach us that one should distinguish between the cases
“exceptional” and “non-exceptional” using the classification given in Lemma 2.3
for this purpose.

Let us mention that, assuming (C4), the branch point w = 0 is non-exceptional
according to Lemma 2.3, since 3n < 2m — 2 < 4n implies
3n+1)<3n+4<2m+2<4n+1).

Let us now turn to the investigation of (Cs) by means of the fifth derivative E® (0).

Lemma 2.4 [f f(w) := wztw(O)r + w)A(wd), (0) is holomorphic, then
Ziw(0) = {iwliwX ]t +iwXwe (0)}w, osh)
Zuw(©0) - Xy = = Zp (0) - Z1y (0) = w? Xy - Xppup 72
Proof By (2.27) we have
Ziw = 2H[Re(twZ )T}
whence

Ziw = 2H[Re((wZppp + iwZyd)
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and therefore
Zuw(0) = 2H[Re(if) by = (i}
={iwZw(O)T +iwX e (0)}.
By (2.35),
Ziw(0) =[wXyTlw,
and so
Ziw () = {iw[iwX 7wt +iwXyd: (0)}y.
It follows that
Zirw(0) - X = {iwli XoT + iwXpwT +iwXwTwlt +iwXwd (0)}y - Xuw.

From )A(w . )A(w = 0 one obtains )A(w . wa =0, and then

Xoww - X = —Xuw - Xuw.
This leads to
Zitw(0) - Xy = —w? Xy - Xy T2
= w Xy - Xuw?> = —Z1y(0) - Z1 (0),
taking (2.37) into account. Il

Proposition 2.4 and Lemma 2.4 imply
Proposition 2.6 If f(w) := wa(O)t +wX w®:(0) is holomorphic, then

E®(0)=12Re / (W Z111 (0) - Ziru(O)T + 4w Zy10(0) - Z1y (0)pr ()] dw.  (2.52)
Sl

We are now going to discuss the envisioned program for the case (Cs) using the
simplified form (2.52) for the fifth derivative £ ® (0). It will be useful to distinguish
several subcases of (Cs):

(a) 5n <2m+ 2,
(b) 5n>2m +2.

In case (a) we have 5n < 2m + 2 < 5n + 4, that is,
2m+2=5n+a, O0<a<3.
Therefore (a) consists of the four subcases
2m —5n=0,1,—-1, -2. (2.53)

In case (b) we have 5n > 2m + 2, and (Cs) implies 2m + 2 > n + 4, whence 5n >
n + 4, and so we have n > 1 in case (b).
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Case (a) allows an easy treatment based on the following representation of 2m + 2
which we apply successively for @ =0, 1, 2, 3 to deal with the four cases (2.53). We
write

an+1)+pBn=2m+2
witho :=2m 42 —5n,8:=5— o where 0 <« <3 and 8 > 2. Then we choose
T:=19+¢€t1, €>0,
where
0:=cw " +cw", 1 :=cw "'+t ceC.

With an appropriate choice of ¢,(0) we obtain by an elimination procedure similar
to the one used in the proof of Theorem 2.2 that f := wi,w(O)t + w)A(w¢, 0) is
holomorphic. Here and in the sequel we omit the lengthy computations and merely
state the results. As f is holomorphic one can use formula (2.52) for E ) (0); we
investigate the four different cases of (2.53) separately, but note that always

ED©Oy=0, j=1,...,4.
@) 2m—5n=0,1<n<4.0Only (i) n =2 and (ii) n = 4 are possible. This leads
to

i) n=2,m=5,(m+1)=2(n+1),1ie. w=0is exceptional;
(i) n =4, m =10, hence m + 1 %0 mod (n + 1), and so w = 0 is not exceptional.

For (i) we obtain E®(0) = 0 + o(¢), whereas (ii) yields
E®(0) = 12Re[27i - 360 - €2 - O R2] + 0(€?)
which can be made negative by appropriate choice of ¢. Thus the method is incon-
clusive for (i), but gives the desired result for (ii).
(II) 2m — Sn =1, 1 <n <4. Then necessarily either (i) n = 1 or (ii) n = 3. Here,

W) n=1,m=3, m+1=2(n+1),ie. w=0is exceptional;
(i) n=3,m=28,and m + 1 %0 mod (n + 1), hence w = 0 is not exceptional.

For (i) it follows that E©(0) = 0+ o(€), i.e. the method is inconclusive, while for
(ii) one gets

E®(0)=12-Re[27i - 250 - €3 - O R2] + o(€?),

and so E(0) < 0 for a suitable choice of c.

(D) 2m —5n =—1,1 <n <4.Theneither () n =1 or (i) n = 3, i.e.

(i) n=1,m=2,andsom + 1#0mod (n + 1), i.e. w =0 is not exceptional;
(i) n=3,m="7,whencem +1=2(n+ 1), i.e. w =0 is exceptional.
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For (i) we have 2m — 2 < 3n, and this case was already dealt with in the positive
sense by using £ (0), cf. Theorem 2.1. For (ii) the method is again inconclusive
since one obtains

E®(0) =0+ o(e).

(AV)2m — 5n = -2, 1 <n <4. Then either (i) n = 2 or (ii) n =4, that is,

(i) n=2,m=4,whence m + 1 #£0mod (n + 1), i.e. w = 0 is not exceptional;
(i) n=4,m=9,andsom + 1 =2(n+ 1), i.e. w =0 is exceptional.

In case (i) we have 3n = 2m — 2 < 4n, i.e. condition (C4) holds, and this case will be
tackled by Theorem 2.4, to be stated later on. Case (ii) leads to E 3 (0) =04 o(1)
as € — 0 which is once again inconclusive.

Conclusion The method is inconclusive in all of the exceptional cases. In the non-
exceptional cases it either leads to the positive result E®)(0) < 0 for appropriate
choice of c, or one can apply the cases (C3) or (Cs4), and here one obtains the
desired results E® (0) < 0 or E® (0) < 0 respectively (see Theorems 2.1 and 2.4).

Now we turn to case (b). We first note that (C5) together with (b) implies 4(n +
1) <2m+2 <5n.Henceeither (1)) 2(n + 1) =m+ 1l,or(i)4(n+1) <2m+2 <
Sn. Therefore, w = 0 is exceptional in case (i) and non-exceptional in case (ii).
Furthermore we have

2m+2=4n+k with4 <k <n,
where k =4 is case (i) and 4 < k < n is case (ii).

In order to treat case (b) which in some sense is the “general subcase” of (Cs)
we use

Ti=c-(ew ™ +w X))+ (cw" +wh).
Choosing ¢, (0) appropriately we achieve that f is holomorphic, and so E® (0) is
given by (2.52). Moreover, E)(0) =0 for 1 < j < 4. It turns out that
E®(0) =12 -Re[2mic’e*y R2 ]+ o(e*), €>0,
with

y =(m—n)(k —4)° Bn+ %(k—Z)]

and y = 0in case (i), whereas y > 0 in case (ii).
Thus the following result is established:

Theorem 2.3 Suppose that (Cs) and (b) hold, hence 4n + 4 <2m + 2 < 5n. This
implies 2m + 2 = 4n + k with 4 <k < n. For k = 4 the branch point w = 0 is
exceptional, and the method is nonconclusive. If, however, 4 < k < n, then T = ¢ (0)
and ¢;(0) can be chosen in such a way that E® (0) < 0 and EYV(0) = 0 for j =
1,...,4.

Next, we want to prove that the remaining cases of (C4) lead to a conclusive
result also for the remaining possibility 2m — 2 # 4p for some p e Nwith 1 < p <
n. Because of 3n <2m — 2 < 4n we can write 2m —2 =4p +k with 0 < k < 4 (the
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case k = 0 was treated before). Since k must be even, we are left with k = 2, and we
recall that w = 0 is a non-exceptional branch point in case (Cy).

Theorem 2.4 Suppose that 3n <2m —2=4p+2 <4n with 1 < p < n holds (this
is the subcase of (Cys) that was not treated in Theorem 2.2). Then t = ¢(0) and
¢:(0) can be chosen in such a way that

EDO0)=0 forj=1,...,4, E®(0) <0.

Proof This follows with
ti=cw F+ew P H+e W +ew!t), €>0,
and setting
—(0) ;= €22 (n — pw 2Pt L e2@n4+1—p—kw PHHO £
Then E/(0)=0for 1 < j <4 and
E®(0) =12-Re[2mic e* R y] + o(e*),
where the contribution from the last complex component is
(m —n)>(m —2p — 1)* +4(m —n)*(m —2p — 1)(m —k — p)
—8(1— p)(m — p)m —n)(m —k — p)
—4m —n)(m —2p — D[(n —p)m —p+ 1)+ (m — p)2n—p —k+ 1D].
We must add to this the contribution of the first complex components arising from
the term Z;;,,(0) - Z;4,(0)¢, (0) which is
4m —m)22m —n—p—k)n—p)>+Cm—n—2p—D(n—p)n+1—k)
+QCm—n—-2p—1Dm—-—p)2n—p—k+1].
It follows that y > 0. Thus one can make E ) (0) < 0 for a suitable choice of ¢. [

Let us return to the case (C4) : 3n < 2m — 2 < 4n which splits into the two
subcases 2m — 2 =0 mod 4 and 2m — 2 =2 mod 4. The first one was dealt with by
E@W (0), cf. Theorem 2.2, the second by E ® (0), see Theorem 2.4. Combining both
results we obtain

Theorem 2.5 Let X be a minimal surface in normal form having the branch point
w = 0 with the order n and the index m such that (C4) holds. Then X cannot be a

weak minimizer of D in C(I").

We want to show how to calculate the fourth derivative assuming

2m+2=3n+1)+r, 1<r<n. (2.54)
The new approach consists in choosing the generator 7 = ¢ (0) as
T=10+1 witht:=ecw " +ecw" !,

N —— (2.55)
1 =cw  +cw, ceC.

We need the following auxiliary result:
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Lemma 2.5 Forany v € N and a € C we have

(2H[Re(aw ™) ]}y = vaw"~™' on B. (2.56)

Proof On S' one has w™" = w" whence

aw™’ =aw’ =aw’ onS!
and therefore
Re(aw™") =Re(@w"’) on S'.
Consequently
2H[Re(aw™")] =2H[Re(@w”)] on B.
This implies
{2H[Re(aw™ ")}y = {2H[Re(@w”)]},, on B.

Finally, since aw" is holomorphic in C, it follows that

d
{2H[Re@w")}w = d—(aw”) =vaw"~! onB. O
w
Now we calculate E® (0) using the formulae (2.37) and (2.39):

E®(0) = 12Re / 21w (©) - w20 (0)7 + w K sy (0)] duw
SI

+ 12Re / W Z(0) - Z1y (0)h; (0) dw. (2.57)
Sl

From
wXy = (A" e A T g Ry )
it follows that

2m—2n+.__’mem—n+._.)

+ C(Alwn_H_r +---+ Azm_2n+1w2m_”_r+1 +oe, mem+1—r 4.0

w)A(wr =ce(A1+ -+ Aop—on+1w

+g(w), gw):=wXyw)-[ecw" T +cw].

The expression g(w) is “better” than the sum 77 + T3 of the first two terms T, T
on the right-hand side of this equation, in the sense that it is built in a similar way
as T1 + T except that it is less singular. In the sequel this phenomenon will appear
repeatedly, and so we shall always use a notation similar to the following:

wf(wr =T + T, + (better).

This sloppy notation will not do any harm since in the end we shall see that each of
the two integrands in (2.57) possesses exactly one term of order w™! as w-terms of
least order, and no expression labelled “better” is contributing to them.
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Using (2.35) one obtains

2m—2n—1 +.e,

Zi(0) =ice(Ay+ -+ (2m — 2n) Agpy_op 41w
(m—n)Ryuyw" "4
+ic(n+1—-r)Aw" " +--.
+@m—n+1=7r)Agy_gpp w4
m+1—=r)Ryw" ™" +--.) + (better).

This implies
WZ(0)T = ic?€(Aow ™ + -+ 2m — 2n) Aspy—opp w3
(m—n)Ryuyw" 2" ..
+icte(n+1—r)Aw™ +---
+@m—n+1—=r)Ap_gp 1w "
(m+1—r)Ryw™ """ +...) + (better).

Recall that Ay = A¢Aj for k=1, ...,2m — 2n. In order to remove all poles in the
first two components of

= wZw )T + wX ey (0)
one chooses ¢;(0) in a fashion similar to that used in the proof of Theorem 2.2:
¢:(0) := —ic*aetw 2 iCZE(I’l +1-— r)w_”_l_r + .-
Then
f=ic?€®(...2m —2n) Apm—spr 1w (m = n)Rpw T )
+ icze(. .2m—-—n+1-— r)Azm_anwzm*z”*’ 4.
2(m —n) R, w7 4 ...) + (better).

k]

Here and in the sequel, ... stand for non-pole terms with coefficients A; with j <
2m — 2n.
The first two components of f (i.e. the expressions before the commata) are holo-

morphic; the worst pole in the third component is the term with the power w” 2"~ 1;

note that
1
yi=m-—2n—1= 5[(2m+2) —4(n+ 1] <O0.
Thus Lemma 2.5 yields
{H[Re(Ryw”" )}y = —y Rpw ™77\,
Using a formula established in the proof of Lemma 2.4 one obtains
Ziw(0) = —c2€2(...(2m — 2n)(2m — 3n — 1) Appy—op w372,

m—-—n)2n+1—mRuyw?” " +-.)

—cPe(...2m —n)2m —2n —r)Agy_onp w2
(m—n)m —n—r)Ruw" ") + (better).

’
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It follows that

Ziw(0) - [wZ1y ()T + wX 1 (0)]

= {—ic4e3(m - n)z(m —n— r)R,%quf1 4+ )4+ 0(63)

since

2m —3n—r —-2=0C2m+2)—B3(n+ 1) +r]—1=-—1.
A straightforward calculation shows

wZ1y(0) - Z1y (0); (0)
= {ic463(m — n)z(n +1— r)R,znw_1 + .-} +0(63).

Thus one obtains by (2.57) that

E®(0) =126 Re/ ikc4R,2nd—w +o0(e?)
sl w
with
ki=(m—n)m+1—r)—2(m—n)>(m—n—r).
Since

m—n—r=%{(2m+2)—2(n+1)—2r}=%(n+1—r)

it follows that k£ = 0.

This shows us that the leading term of some derivatives, may in fact, be zero. We
conclude this section with a formula for the fifth derivative (the calculation of which
we leave as an exercise for the reader), assuming

2m+2=4n+1)+r
where
dn+4<2m+2<5n+1).
Setting our generator 7 := ec/z"T! 4+ ¢/z" we obtain
E>(0) = 12Re[2micoe*y R2]1 4 O(€) (2.58)
where
y =5m —n)>(m —2n — 1)> > 0.

We want to show that it often is possible to estimate the index m of an inte-
rior branch point wo of a minimal surface X € C(I") with the aid of a geometric
condition on its boundary contour I". Following an idea by J.C.C. Nitsche, we use
Radé’s lemma for this purpose (Dierkes, Hildebrandt and Sauvigny [1] Sect. 4.9),
which states the following. If f € C%(B) is harmonic in B, f(w) # 0 in B, and
VI f(wg) =0at wo € B for j =0,1,...,m, then f has at least 2(m + 1) different
zeros on 0 B.
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We can assume that the minimal surface X is transformed into the normal form
with respect to the branch point wo = 0 having the index m. If the contour I is
nonplanar, then X3 (w) # X2 := X3(0), whence m < oo and

X3 (w) = X3 4+ Re[cw™ ™ + 0(w™ )] forw — 0

with ¢ € C \ {0}. Hence f := X3 — X(3) satisfies the assumptions of Radd’s lemma,
and therefore f has at least 2(m 4 1) different zeros on d B. Hence the plane IT :=
{(xl,xz, HeRd: 3= XS} intersects I in at least 2(m + 1) different points. If
m = oo then even I" C I1, and so we obtain:

Proposition 2.7 [f the minimal surface Xeer ) possesses a branch point wy € B
with the index m, then there is a plane II in R3 which intersects I in at least
2(m + 1) different points. Consequently, if every plane in R3 intersects I in at most
k different points, then the index m is bounded by

2m+2 <k.
This result motivates the following

Definition 2.4 The cut number ¢(I") of a closed Jordan curve I' in R3 is the
supremum of the number of intersection points of I" with any (affine) plane I7
inR3,ie.

c(I") ;= sup{t(I" N IT) : IT = affine plane in R3}. (2.59)
It is easy to see that

4<c¢(I') < o0, (2.60)

and for any nonplanar, real analytic, closed Jordan curve the cut number c(I") is
finite.

We can rephrase the second statement of Proposition 2.7 as follows:

Proposition 2.8 The index m of any interior branch point of a minimal surface
X € C(I") is bounded by

2m+2<c(l). 2.61)

If n is the order and m the index of some branch point, then 1 <n < m. On the
other hand, ¢(I") =4 implies m < 1, and ¢(I") = 6 yields m < 2. Thus we obtain

Corollary 2.1

(1) If c(I") = 4 then every minimal surface Xe C(I") is free of interior branch
points.

(i) If c(I") = 6 then any minimal surface X e C(I") has at most simple interior
branch points of index two; if X has an interior branch point, it cannot be a
weak minimizer of D in C(I").
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Proof (i) follows from 1 <n < m < 1, which is impossible. (ii)) 1 <n <m <2
implies n = 1 and m = 2 for an interior branch point wg of X , whence 2n <2m —
2 < 3. Thus condition (C3) is satisfied, and therefore the last assertion follows from
Theorem 2.1. Il

Corollary 2.2 Let X € C(I") be a minimal surface with an interior branch point of
order n, and suppose that the cut number of I' satisfies c(I") <4n + 3. Then X is
not a weak minimizer of D in C(I").

Proof By (2.61) we have
2m+2 <4n+3;
hence either
2n+4<2m+2<3n+4&2n<2m-—2<3n
or
3n+4<2m+2<4dn+43n<2m-—-2<4n
hold true, i.e. either (C3) or (Cy) is fulfilled. In the first case the assertion follows

from Theorem 2.1, in the second from Theorem 2.5. Il

Finally, we mention Catalan’s surface (picture on our cover) which has a branch
point at w =0, with n =1 and m = g Thus, 2m — 2 < 3n, and so Wienholtz’s
theorem applies. The normal form for X, is

A j Z 2z 1
Xy = <%(eZ —e 9,e2 —e"2,1— E(eZ +e_z)) .

Summary

In this section we have calculated derivatives of Dirichlet’s energy with respect to
various generators t. In general it will be extremely difficult to calculate higher
order derivatives using an arbitrary choice of generators. Remarkably, with the ap-
propriate choice of generators, the higher order derivatives can be simply calculated
and the results are independent of the first complex components of Xuw. We show
this in the next three chapters.



Chapter 3
Very Special Case; The Theorem for » 4+ 1 Even
and m + 1 Odd

In this chapter we want to show that a (nonplanar) weak relative minimizer X of
Dirichlet’s integral D that is given in the normal form cannot have w =0 as a
branch point if its order n is odd and its index m is even. Note that such a branch
point is not exceptional since n 4 1 cannot be a divisor of m + 1. We shall give the
proof only under the assumptions n > 3 since n = 1 is easily dealt with by a method
presented in the next section. (Moreover it would suffice to treat the case m > 6 since
2m — 2 < 3n is already treated by the Wienholtz theorem. So 2m > 3n + 2 > 11,
i.e. m > 6 since m is even.)

3.1 The Strategy of the Proof

The strategy to find the first non-vanishing derivative of E(¢) at + = 0 that can be
made negative consists in the following four steps:

(I) Guess the candidate L for which EX)(0) < 0 can be achieved with a suitable
choice of the generator t = ¢(0).
(II) Select ng ¢(0),B8 > 1, so that the lower order derivatives E W0, j =
1,2,...,L — Lvanish, (D := &%)
(ITIT) Prove that

d
ED(0) = Re/ LkR2 Y —Re(2mictkR2)
s! w

where ¢ # 0 is a complex number which can be chosen arbitrarily, and k € C
is to be computed.
(IV) Show that k #£ 0.

Remark 3.1 In order to achie\(e (IT) one tries to choose D,’S ¢(0),>1,insuch a
way that the integrands of E/)(0) for j < L are free of any poles and, therefore,
free of first-order poles. To see that this strategy is advisable, let us consider the
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case L = 5; then we have to achieve E@ (0) = 0. Recall that E® (0) consists of
two terms, one of which has the form

I:= 12Re/ {2H[Reif 1}y f dw
Sl

where
fri=wliwXytlwt + wXuwe,(0).
Assume that f had poles, say,

fw)y=gw)+h(w), gw)= Zajw_j, h = holomorphic in B,
j=1
and h € C°(B). Then, by Lemma 2.5,
(2H[Reiflw(w) =g"w) +h (W), g"w):=—i ) jauw ",
j=1

Thus, I =12 -{I; + I, + I3}, with
I ::Re/ g¥gdw, L ::Re/ hgdw, I ::Re/ (g*h+Hhh)dw.

st st st
The worst term is /;; one obtains

I =R —ijajw law b dw=2 jla;|> >0

1 e[sl .Z( ijajw'” agw™") dw nZ]laﬂ >
Jje=1 j>1

and I3 = 0. Hence, in order to achieve I = 0, one would have to balance I, against
I > 0 which seems to be pretty hopeless.

Let us now apply the “strategy” to prove

Theorem 3.1 Let X bea nonplanar minimal surface in normal form that has w = 0
as a branch point of odd order n > 3 and of even index m > 4. Then, by a suitable

choice of T = ¢ (0) and D;g ¢(0), one can achieve that
E™D0)<0 and EP©0)=0 forl<j<m.

Proof Set N:=L -1, M:=L—(a+B+1)=N—(e+p8),hence L — 1=
o + B+ M. By Leibniz’s formula,

N-B N
DM 2w Zulp) =D M DN P72, (D*Z,)Df .
pETee alfI(N—B—a) ! W s

a=0 =0

Since

D,E(t):ZRe/ WZ () Z()w ¢ (1) dw,
Sl



3.1 The Strategy of the Proof 39
we can use Leibniz’s formula to compute E @) (1) from
ED @) = 2Re/sl wDN{[Zy (1) - Zyy ()] (1)} dw.
We choose L :=m + 1; then L > 5 as we have assumed m > 4. It follows that
EDO)y=J1+h+ 73 (3.1
where the terms Jq, J, J3 are defined as follows: Set
TP .= w(DZ(0)), D’ $(0). (3.2)

Then,

Ji = 4Re/ [DE'Z(0)]y - (wX 1) dw
Sl

+4.(L— 1)Re/ [Df2ZO)]w f dw
sl

L-3 (L —1)!
! o
4 mRefsl[Dt ZO)lw - gL-m-1dw, (3.3)

M>L(@L-1)
Fi=T"0 4+ 70 = [ Z,(0)]7 + wX e (0),

. v!
g = Z c;ﬂT“’ﬂ with cgg 1= 151

patprv=L—-1
a+p=v B!

3(L=1)

. 2L —1)! M5
I = MZZ WR&:/SI[Q ZO)]y - hy dw

+2(L—1)(L—-2) Re/ [Z,(0)]w - T3 dw, (3.4)
Sl

|

M M
h = M, ° TO(,L*]*M*O(,
M ;w( DL 1M =)

YM,ax):=1 fora=M, Y(M,a):=2 fora# M,
J3 :=4(L — l)Re/

S

wZ1(0) - X0y DE2¢(0) dw
1
+2Re/ wX, - Xy DE719(0) dw. (3.5)
Sl

We have J3 = 0 since )A(w . )A(w =0and f,w(O) . )A(w = 0 on account of formula (36)
in Dierkes, Hildebrandt and Tromba [1], Chapter 6.1.
Now we proceed as follows:

Step 1. We choose t = ¢ (0) and Df ¢(0) for B > 1 in such a way that f and
g1—m—1 are holomorphic. Then the integrands of the three integrals in J; are holo-
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morphic because all w-derivatives [Dtj 7 (0)],, of the harmonic functions D,j 7 (1)
are holomorphic. Then it follows that J; = 0, and thus we have

ED(0) = Js. (3.6)

Step 2. Then it will be shown that E (L) (0) reduces to the single term

2.m! A A
ED0) = %Re/ wlD"*Z(0)w - [D"*Z(O)]wrdw  (3.7)
EEY s
which can be calculated explicitly; it will be shown that
2-m! .
ED0) = Ty ReQ@i <k - R2) (3.8)
(5)1(3)!
where « is the number
k=it a—ib)Em — 1)*(m —3)%...3% .17 (3.9)
if the generator T = ¢(0) is chosen as
T(w):=(a —ib)w 2 + (a +ib)w>. (3.10)

For a suitable choice of (a — ib) one obtains E &) (0) < 0. Furthermore the construc-
tion will yield E/)(0) =0for1 <j <L —1.

Before we carry out this program for general n > 3, m > 4, n = odd, m = even,
we explain the procedure for the simplest possible case: n =3 and m = 4.

From the normal form for X w With the order n and the index m of the branch
point w = 0 we obtain

wXyp = (AW o Ao T e Ry ) (B
Choosing 7 according to (3.10) it follows from
[Z:(0)]w = ((wXyT)u
that
[Z:(0)]y = (a —ib)(i(n — DAjw" %+ inAdw" ' + ...
+i@m—n— 1Ay a1 w2 i(m = DRyw" 7 4 )
+ (better). (3.12)

Here, (better) stands again for terms that are similarly built as those in the preceding
expression but whose w-powers attached to corresponding coefficients are of higher
order. Then

wIZ ()]t = (a — ib)2(i(n — AW +inAgw" 2 + ..
+i@m—n—1DAym_on 1w " 4 i(m— DRyw" T )

+ (better). (3.13)
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Since this term is holomorphic we have the freedom to set ¢, (0) = 0. Then f(w) =
wZy (0)T + wXy ¢y (0) is holomorphic, and Proposition 2.6 in Chap. 2 yields

E®0) = 12Re/ W Z11w(0) - Zirw (0)T dw. (3.14)
Sl
(This follows of course also from the general formulae stated above.)
From formula (2.51) following Lemma 2.4 we get
Ziw(0) = {iw[iw Xy T Ty = i{wZ(0)T}w,
and so
Ziw(©0) = —(a —ib)*((n — D(n = 3)Aw" ™ + ...
+@m—n—1Q2m—n—3)Ay opiw "4
(m —1)(m —3)Ruw" 4+ --) + (better). (3.15)
Since n — 3 =0 and m = 4, this leads to
Ziw(©) - Zuw(0) = (a — ib)*(m — 1)*(m = 3)*Rp, + -+, (3.16)
and by (3.14) we obtain for L=m + 1 =75:

ED0)=E®0) =12- Re/ (a —ib)>(m —1)*(m — 3)2R,2nd—w
sl

=12-Re[2mi(a —ib)>(m — 1)>(m —3)*R2], m=4. (3.17)

Now we turn to the general case of an odd » > 3 and an even index m > 4.

Step 1. The pole-removal technique to make the expressions f and gr_p—1 in the
integral J\ holomorphic.

We have already seen that f(w) is holomorphic if we set ¢;(0) = 0. In fact, we
set

n—1

DPp0) =0 forl<p< andforﬁ>%(L—3) (3.18)

and prove the following

Lemma 3.1 By the pole-removal technique we can inductively choose Df ¢ (0) for
B < %(L — 3) such that g, is holomorphic for v=20,1,..., %(L — 3). Then the
derivative [Dty 7 (0)]y is not only holomorphic, but can be obtained in the form

A 1
(D! Z(0)], = {igy—1}w fory=12,..., E(L —1). (3.19)

Suppose this result were proved. Since in J; there appear only g, withv =L —
M —1 where J(L—1) <M <L —3,ie 2<v<3(L-3),all integrands in J;
were indeed holomorphic, and so J; = 0. Thus it remains to prove Lemma 3.1.
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Proof (of Lemma 3.1) By definition we have

go= chpT™F, TP :=w[DfZ(0)],Df$(0), (320
a+pB=v
and ¢ (0) = 7.
The expressions w[D{Z(0)],,T have no pole for o < %, and we make the
important observation that there are numbers ¢, ¢’ such that
n—1

w[D,” Z(0)]wt = (cA+ -+, ¢ Rpyw™ " +--2).

Thus, a pole in w[Df‘Z(O)]wr may arise at first for ¢ = %(n + 1); then we have, say

%(”'H) 5 _ -1 / m—n—2
w[D; ZO)]wt =(Arw™ " +---,cRuw + ). (3.21)

ntl
This requires a non-zero D, > ¢(0) in case that cAj # 0 if we want to make g Lt
pole-free. Now we go on and discuss the pole removal for v = %(n + 3), %(n +

5)eee A (L —=3).

Observation 3.1 Since m is even, n is odd, and m > n, we have

m=n+2k+1), k=0,1,2,..., (3.22)

and theref()re
1 (L 3) l (“l 2) 1 (”’ 2‘( 1)' (3'23)

Thus, form =n+1,all g, with2 <v < %(L — 3) are pole-free if we set Df¢(0) =
0 for all B > 1; cf. (3.18). For m = n + 3, we have to choose D,ﬂgb(O) appropriately
for B = %(n + 1) while the other Dl’3 ¢(0) are taken to be zero. For m =n + 5,
we must also choose D;‘} ¢ (0) appropriately for 8 = %(n + 3) whereas the other
D;g ¢(0) are set to be zero. In this way we proceed inductively and choose Df} ¢ (0)
in a suitable way for 8 = %(n + 1), %(n +3),..., %(n 4 2k — 1) in case that m =
n + 2k + 1 while all other Df ¢ (0) are taken to be zero according to (3.18).

Observation 3.2 The pole-removal procedure would only stop for some g, with
%(n +1)<v< %(L — 3) if the w-power attached to Aj;;—2,41 became neg-
ative. We have to check that this does not happen for v < %(L — 3). Since at

the «-th stage in defining [D;"Z (0)],, the w-powers have been reduced by 2«,
we must check that the terms 7%# have no poles connected with As,,_s,41 if
a+p < %(L — 3). Looking first only at 7% = w[Df‘Z(O)]wr for a < %(L —3),
we must have

1
2m—n—2a0=2m—-n+1-2(a+1)>0 foragE(L—3),
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which is true since
1
2m—n+1—2~§(L—l)=m—n+l>O.

‘We must also check that during the process no pole is introduced into the third com-
plex component. Again we first look at 7% for o < %(L — 3). Then the order of
the w-power at the R,,-term is

m—-2a0—-—1=m+1)-2a+1)>m+1)—(L-1)=1,

and so there is no pole.

Let us now look at the pole-removal procedure. For m =n + 1 all g, with 2 <
v < %(L — 3) are pole-free if we assume (3.18). If m = n + 3 we have to make

1
81ns1) pole-free. To this end it suffices to choose D/} (n+l)¢(0) appropriately; it

need have a pole at most of order (n + 2) in order to remove a possible pole of
790 o = L(n + 1), cf. (3.21).

If m =n+5, we have to choose Dl’3 ¢ (0) appropriately for g = %(n +1)and g =

1 L
L(n +3). The derivative D? """ (0) will be taken as before, while D" (0)
is to be chosen in such a way that

81 sn) = 73 (0+3).0 + 7Ll30+D) + TO,%(}H—S)
2

becomes holomorphic. Since

1 A Lm+1)
71200 — [ 2,01, D" $(0)

=(@i(n—1)(a—ib)Ajw" "+,
. . me1 Lo+
ilm—1)(a—ib)Ryw + ) Dy ¢ (0)
— (cA1w_3 +...’C’mem—”—3 +-)

1
. .. 1(n+3 .
with some constants ¢, ¢’, the derivative D,2 = )¢>(O) in

A 1 3
TO, %(n+3) =wXy th (n+: )¢ (0)

should have a pole of order n + 4, while a pole of lower order than n + 4 is needed

1 R
to remove a possible singularity in the first term 73(0+3).0 _ w[D} (n+3)Z O)]yt.
In this way we can proceed inductively choosing the poles of Df ¢ (0) always at
most of order

n—1

n+2</3— >=2,8+1 for%(n+l)§ﬂ§%(L—3). (3.24)

This is the crucial estimate on the order of the pole of Df} ¢(0) in order to ensure
that these derivatives play no role in the final calculations.
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Observation 3.3 Consider the last complex component of
1 1
7 (n+1) 4 )
81an = WD ZO))wt +wXuD 9 (0).

The lowest w-power attached to R,, in the first termis 1| +m — (n+ 1) —2=m —
n — 2 > 1 (since in this case m > n + 3 according to Observation 3.1). The lowest
w-power associated to R, in the second termis | +m — (n+2)=m —n—1 >
m — n — 2. Continuing inductively we see that the lowest w-power attached to R,
in any g, arises from t = ¢(0) and not from any Df} ¢(0). 0

This ends the proof of Step 1, and we have found that EX)(0) = J,. Now we
come to

Step 2. The integral J; is a linear combination of the real parts of the integrals
Luyp == f WD} Z(O)]u - (D Z(O)]wDf $ (0) dw (3.25)
s

Wherelga,yg%(L—l) and B =(L — 1) — o — y. Then we have

1
B=0 ifandonlyifa:y:E(L—l):%. (3.26)
This implies
2-m! m . mo
= vy Re/ w[D; Z(O)]w - [Df Z(0)]ywT dw (3.27)
(Z)E) s

because of the following

Lemma 3.2 We have

1
Ioyp =0 forlga,ygE(L—l) and 1<B=m—-a—y. (3.28)

Proof Let us first show that the product of the last complex components of
[D¥Z(0)],, and [D,y 7 (0)]w and of wa ¢ (0) have a zero integral. In fact, this prod-
uct has the form

const(w Ry w™ 2% - Rypyw™ ™2 + .. )y(w P14
= const R2 w!t2m=2+B+n=1 L .. — const-R2 + - --
sincea+pB+y=L—1=m.
The same holds true for the scalar product of the first two complex components,

multiplied by thﬁ ¢ (0). To see this we assume without loss of generality that o >
y. Denote by P*? the expression

P = w[CY - CY +CY - C

where C{, C5 and Cf , C;’ are the first two complex components of [D?Z (0)]w and
[Dty Z (0)], respectively.
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Case 1. If 2y <2a < n then

P*” = w(constA; w2 4 ... 4 const Ao —on+1 w2

- (const Agw" ™2 4 -+ + const Apy—opp w40

with j, £ <2m —2n + 1.

Case 2. If 2y <n <2« then
P*” =w(constA; +---+ constAzm,anwzm_" +--)
- (const Agw" ™% + .. + const Agm_2n+1w2’"—”_2” +--9)

with j, £ <2m —2n + 1.

Case 3. If n <2« and n < 2y then

P*” =w(constAj +--- 4 const Az, 2,41 w2y )

-(constAy +---+ constAgm_Znszm_”_zV + 0.

Let u(«, ) be the lowest w-power appearing in P*Y Df} ¢(0). Recalling o + 8 +
y = m we obtain the following results:

Case 1. wl,y)=142m -2y —2a -2 —1

=242m—-2(x+B+y+1)
=2+42m—2(m+1)=0.

Case 2. u(w, y) is either zero as in Case 1, or
ul,y)=142m—n—-2y -2 —1
=242m—n—-2(y+B+1)
=242m—n—-2m+1—a)=20—n>0.

Case 3. As in Case 2 we have u(w, y) > 0.

This proves Iyyp =0 for 1 <o,y <% and 1 < B =m — a — y, which yields

Lemma 3.2. O

Thus we have arrived at (3.27), and a straightforward computation leads to (3.8)
and (3.9); so the proof of Theorem 3.1 is complete. O



Chapter 4

The First Main Theorem; Non-exceptional
Branch Points; The Non-vanishing of the L™
Derivative of Dirichlet’s Energy

Let us state our main goal: Assuming that Xe@N)isa nonplanar minimal surface
in normal form having w = 0 as a branch point of order n and index m, we want
to show that X cannot be a weak relative minimizer of Dirichlet’s integral D in
the class C(I"). Unfortunately this goal cannot be achieved for all branch points but
only for non-exceptional ones and special kinds of exceptional ones. In this chapter
we investigate the non-exceptional branch points, while in Chaps. 5 and 6 we deal
with the exceptional ones. The main result of the present section — our First Main
Theorem - is the following

Theorem 4.1 Let X € C*°(B,R3) be a nonplanar minimal surface in normal form
having w = 0 as a non-exceptional branch point of order n and index m. Then X is
not a weak relative minimizer of D.
Recall that w = 0 is said to be non-exceptional if and only if
m—+1£0mod (n+1).

According to Lemma 7.3 in Sect. 7.1 this is the case if either

L-1)n+1)<2m+1)<L(n+1) withaneven L >4, 4.1
or

(L-Dn+1)<2(m+1)<Lm+1) withanodd L > 3. 4.2)

The strategy to prove Theorem 4.1 as outlined in Sects. 7.1 and 7.2 is to construct a
variation Z(t) |t| < to, of X such that E@) = D(Z(t)) satisfies

E(j)(0)=0 forl <j<k—1 forsomek>3 aswellas

4.3)
E®0)#£0 ifkisodd, or E®(0) <0 ifkiseven,
where
®) at
EY(t):=—E(t
(1=~ E@®)
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48 4 The First Main Theorem; Non-exceptional Branch Points

denotes the k™™ derivative of E (). Here 7 (1) is defined as the harmonic extension of
boundary ValuesAZ(t) onto the disk B, where Z (6, t) are defined via the boundary
values X (0) of X by the formula Z(0, 1) := X (y (6, t)) with

y(@,1)=0+0(0,1)

where o0 € C* is 2 -periodic in 0 and satisfies o (6, 0) = 0. One obtains

iE(z) = 2Re/ WZ () - Z(O)wd (1) dw
dl Sl

with test functions ¢(6,¢) that are 2m-periodic in 6 and such that ¢,(0) :=
Dy o0, t)| can arbitrarily be chosen as C°°-functions which are 27 -periodic.
Then E'(0) = 0 and if ¢ (0) is chosen as the boundary value function 7|0 B of the
generator T of an inner forced Jacobi field h attached to X, i.e.

$(6,0) =1('?),

then also E”(0) = 0. As we have obtained in Chaps. 2 and 3, ¢(0) will always be
chosen in this way, and so the Laurent expansion of 7 (w) is of the form

T(W)= ~— 4o with<n+1.
w

The derivatives
¢y =D/p(-.1)|,_y=D;$(0)

are appropriately chosen as boundary values of meromorphic functions such that
the pole-removal technique (as explained in Chaps. 2 and 3) can be applied. With
a slight misuse of notation we write t and ¢, both for the corresponding meromor-
phic functions and their boundary values. The trick in computing E/(0) consists
in making as many terms of the integrand as possible to be boundary values of
holomorphic functions. Consequently, their complex line integrals over S! vanish
in virtue of Cauchy’s integral theorem and (4.3) can be achieved for k = L.
This idea works very well in case (4.2) where L is odd, and we obtain

Theorem 4.2 Suppose that X satisfies the assumptions of Theorem 4.1 while n,m
fulfil condition (4.2). Then we can achieve (4.3) for k = L.

The situation now is as follows: There is a well-defined Diophantine polynomial
pr(x,y), called the minimal surface polynomial of rank L, which is independent
of the specific minimal surface X satisfying (4.1), such that the following can be
proved:

Proposition 4.1 Suppose that X satisfies the assumptions of Theorem 4.1 while
n, m fulfil (4.1). Then there is an integer r such that

2m+2=(L-1(n+1D)+r, O0<r<n+l, (4.4)
and for

Ti=ecw " M+ 5cw +ecw" +5cw”, €>0,8>0, ceC, 4.5)
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and for suitable choices of Df (@) O) with1 < B < %(L —2) and Df¢(0) =0 for
B> %(L — 2) we obtain for L > 4 that

d
E<L>(0)=Re{eL—1f]cLK%’JrO(eL)} where k :=it " pr(n,m), (4.6)
S
while ED(0)=0for1<j<L—1.

Thus we can achieve (4.3) fork =L if L >4 and py(n,m) #0.If pp(n,m) =0
then (4.6) leads to nothing, and we do not see how (4.3) can be achieved. Yet by
modifying our choice of T and Df} ¢ (0) we obtain variations Z(, €) of X depending
on ¢t and on € > 0 such that

E(t,€) := D(Z(t, €))

satisfies the following

Proposition 4.2 Under the preceding assumptions there are sequences {t¢} and {€,}
with 0 <ty — 0 and 0 < €y — O such that

E(ty, €r) < E(0,0) = D(X) for £ e N. “4.7)

Thus X is not a weak relative minimizer of D.

Finally, according to Theorem 2.5 in Chap. 2 and by virtue of the observation
that (Cy) is equivalent to (73), we know that X cannot be a weak relative minimizer
of D if n, m satisfy (4.1) with L = 4. In conjunction with Proposition 4.1 and 4.2
we arrive at

Theorem 4.3 Suppose that X satisfies the assumptions of Theorem 4.1 while n, m
fulfil condition (4.1). Then X cannot be a weak relative minimizer of D.

Clearly, Theorem 4.1 is now a consequence of Theorems 4.2 and 4.3. Thus it re-
mains to prove Theorem 4.2 and Propositions 4.1 and 4.2. We note that Theorem 4.2
is proved for L = 3,5 and Theorem 4.3 for L = 4 (cf. Theorems 4.1, 4.2, 4.4 and
4.5). Thus it suffices to consider (4.1) for L > 6 and (4.2) for L > 5. We begin with

The first main case: L is an odd integer > 5 satisfying (4.2)

CaseI: 2m +2=L(n+ 1), L an odd integer > 5. Here we choose
t=cw " tew"!, ceC. (4.8)
The, by now, standard computations yield

wZw(0)T =ic?(Aow™ + -+ + (2m — 2n) App—gp iy w™™ "

(m —n)Ruw" 21 4.0,
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Set A = Ay, u € C. Note that the number of terms that could possibly contain
poles in the first two complex components are associated with coefficients Ay, £ <
2m — 2n. This follows from the fact that

2m —3n—1=2m+1)—-3n+1)=(L—-3)(n+1)>0.
Consider the expression
[ i=wZi, ()7 +wXy 6 (0). 4.9)

We can make it holomorphic by eliminating the poles of wZ(0)T step by step
with an appropriate choice of ¢;(0) which has the form

#:(0) := —ipc?w™ 2" + i @ Ew? ! 4 pole terms of lower order. (4.10)
Consider the formulae (7.1)—(7.5) in Sect. 7.2. We have
ED©O)=J1 + 1+ I3,

and J3 = 0 because of )A(w . )A(w =0 and Z,w(O) . Xw = 0. We continue to select
Df ¢(0) in such a way that all integrands in J; are holomorphic, and so J; = 0.
This is summarized in

Lemma 4.1 By the pole-removal technique we can inductively choose D{S ¢(0) for
B < %(L — 3) such that g, is holomorphic for v=20,1,..., %(L — 3). Then the
holomorphic derivative [D,V Z (0)]y can be obtained in the form

A 1
(D! Z(0)], = ligy_}w fory=12,..., E(L —1). 4.11)

(Note that this result is the analogue to Lemma 3.1 of Chap. 3, and it will be proved
in a similar way.)

Proof The pole-removal process can be carried on as long as the w-power attached
to A2n—2n41 does not become negative. At the oth stage in defining DY Z(0) the
powers are reduced by «(n + 1); so we must check whether
1
2m —n+1—am+1)=>0 foraSE(L—3).

In fact, this is even true for o < %(L + 1) since

2m—n+l—[%(L+l)i|(n+l)=%{4m—2n+2—(L+1)(n+l)}

=%{2(2m+2)—2—2n—(L+1)(n+1)}
:%{(2m+2)—3(n+1)}>0.

From (4.10) it follows that
2w Z1 (0, (0) =263 (W Ayw ™" + -+, ).
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Thus we have to choose

G (0) := =23 2w 4 (4.12)

in order to remove the pole in (4.12).

We make four observations, which we call our “Fundamental Computational

Principles™:

1.

2.

The highest pole order of w[DfZ (0)]yw7 is at most n and thus strictly less than
2n + 1.

Inductively we see that the order of the leading pole term in Dlﬂ ¢ (0) needed to
remove the poles in the first complex components of g, is just (8 + 1)n + 1 with
B = v; more precisely,

DP ¢ (0) := const- A (—i)fwFTD-1 L
which is a consequence of the fact that
D! ¢(0) = B1(—i)Pt(tw + (n + Dr/w)P + . (4.13)
To see this we focus on the term
wZ, ()DL $(0) for p= %(L - 3);

the other terms yield the same result. Then the third complex component of g,
has the leading term

const Ry, w™ ! (—i)fw™"F D=1 = const R, w™ " F D
with 8 = v. But
m—nB+)=m+1)—B+Dn+1)+8
= 520+ 1) =28+ D+ D)+
1
=E[L—2(/3+1)](”+1)+ﬁ2n+1+/3>0

for B < L(L - 3).

. For 8 > %(L — 3) we may assume Df}(p(O) =0.
. In general, as we have seen, with one generator l/z'”rl Cm+2=k(n+1),k

odd), derivatives Dty ¢(0), y > 1 do not affect the calculation of the L™ deriva-
tive; if we have two generators l/w”“, 1/w” the Dtyqb(O), y > 2 are incon-
sequential, and for three generators 1/w”t!, 1/w”, 1/w® we may ignore the
Dty ¢(0), y > 3. This formula follows immediately from (4.13), since the lead-
ing term of 7y, + (n + 1)T/w is zero. O

Thus we have found

ED(0) = .

Next we prove as in Chap. 3:
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Lemma 4.2 For the integrals 1y,p defined by (3.25) of Chap. 3 we have

1
lyyp =0 forl<a, ysE(L—l), B>1l,a+B+y=L—1. (4.14)
This implies

2(L-1)! Re/ w[DMZ(0)]y, - [DM Z(0))wt dw  for M := %(L— .
s!

EPO ==
(4.15)

Proof We simply count orders of zeros and poles. The lowest w-power of
[D%Z(0)],, and [D} Z(0)],, is

m—am+1) and m—ym-+1) respectively.

Thus the lowest w-power arising from the third complex components in

R . 1
w[D}Z(0)]y - [Dt}/Z(O)]thIB(b(O)a a+B+y=L-1 1< y= E(L -1
isby (n+ 1)L =2m +2

Cm+1)—(@+y)n+DH)—B+DHn—-1
=@2m+2)—(a+B+y)n+DH+(B—-—n-1
=8—-1>0 forp=>1.
Thus there is no pole arising from the third component. What about the first two
components? The “dangerous” contributions, by construction, are of the form

const A j - Agy—op w27y (ED=(EFDn 4

)

or y interchanged with «. Then

2m—n—ym+1)— B+ n
=2m+2—(y+B8+Dn+1)—n+B+1)-2
=Cm+2)—(y+B+2)n+1)+p
=C2m+2)—(L—-—a+Dn+1D+8
=(a@—1Dmn+1)+B=>p sincea>1,

and similarly for « interchanged with y. Thus there are no poles arising from the
first two complex components. O

Lemma 4.3 In (4.15) the contribution of the scalar product coming from the first
two complex components is zero.

Proof This contribution has as worst pole term an expression of the form
COIIStAj X A2m—2n+1wzm_n_[(L_l)/2](n+l)_(n+l)+l,
where j is some index between 1 and 2m — 2n. The power

2m—n—[(L—1)/2)(n+1)
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arises from the fact that, in the expressions [D;"Z (0], powers are reduced by
a(n + 1) from their initial expression Xu= (Ajw" +---, Ryw™ + - - ). However,

2m—n—[(L—D/2m+D—@m+1+1
:%{4m—2n—(L—1)(n+1)—2n}

=%{(2m+2)—(14—1)(n+1)+2m—4n—2}

:%{(n+1)+2m—4n—2}.

Since we assume %(L —1)=M > 1, we have L > 3 and therefore

(m+D+2m—dn—2y=2m+2) -3+ =(L-3)n+1)>0. O

Lemma 4.4 In (4.15) the only contribution of the scalar product coming from the
product of the last complex components is the term

M
poRnctw™ with po =i [ [lm + 1) — €(n + D). (4.16)
=1

Proof First one realizes that the lowest w-power of

(y — D!
alpl

DY ZO)lw=1{i Y. wD{Z(0))w DY ¢(0)

a+p=y—1 w

in the last complex component occurs strictly in the first term w[D} -1z O]yt

since the pole associated with Df; ¢(0) is of the order (8 + 1)(n + 1) + 1.

To prove (4.16) we start with R,w”*!, multiply by 7, which in the leading
term is equivalent to dividing by w”"*!, and then differentiate obtaining i(m —
n)R,,w™ "~ Continuing this process M times we obtain for the third complex
component of [D,M 7 O]y, M = %(L — 1), the expression

M
1o RucMw™ MY with pg =i [Tlom + 1) — € + D).
=1
But

1
m—M(n~|—1)=§{2m—(L—1)(n+1)}

- %{(2m+2) —(L-Dm+1)—2}= %(n — .

Thus the third complex component of [D,M Z 0]y with M = %(L — 1) has the form
poc™ Ry w172 4 higher order terms.

From this we infer the assertion of Lemma 4.4. O
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By virtue of (4.15) and Lemmas 4.3 and 4.4 we arrive at

Proposition 4.3 [f2m +2=Ln + 1), L odd and > 5, then by the choice T =
cw""’1 +cw"t! ¢ € C, and by suitable choices of D{SQS(O) for B > 1 we obtain
ED©)=0for j=1,...,L —1and

2(L — 1)! d 1
ED©0) = 2L -t Re/ kcFRZEE D M= (L —1), (4.17)
MIM! gl w 2
with
=il Ym —n)2m —2n— D*m —3n—2)>...(m — Mn — (M — 1))

Sincem +1=3L(n+1)=M(@m+ 1)+ 3(n+ 1), we have
1
m—Mn—(M—1)=m+1—M(n+l)=§(n+l)>O,
and therefore k # 0. Hence
2-(L-1)! . L2
W Re [ZJTIKC Rm]<0 (418)

for a suitable choice of c. Thus we have proved Theorem 4.2 in the case 2m + 2 =
L(n+1).

E®M(0) =

Remark 4.1 The beautiful formula (4.17) tells us that for the case 2m +2 = L(n+1)
there is a Diophantine polynomial py (x, y) such that « = L1 pL(n,m), and that
pL(n,m) # 0. Note that p; only depends on L, m and n and not on the specific
minimal surface.

Remark 4.2 When we treated the case n odd, m even in the preceding section, we
omitted the special case n = 1. We note that this case is included in Proposition 4.3,
since then we have n 4+ 1 = 2 and therefore 2m +2=L(n + 1) with L =m + 1.

Case II: L is odd and 2(m + 1) = (L — 1)(n + 1) + r with 0 < r < n. Here we
choose

Ti=ecw " N+ cdwT +ecwt + 8w withe >0, §>0, andceC.
(4.19)

Then we prove the following result which is the analogue of Proposition 4.3:

Proposition4.4 If L isodd,2m+2=(L—1)(n+1)+r,0 <r <n,and t is chosen
by (4.19), then by a suitable choices of ij(l)(O) for B > 1 we obtain EY)(0) =0 for
j=1,...,L—1and
2-(L-1)! d 1
ED©0) = 2 E=DY Re/ 3cL/<R,2n—w +0(@h), M:= S =1,
w
(4.20)

where the constant k depends only on L,r,m,n, k = L1 P (m,nt), the minimal
surface polynomial.
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A To begin our discussion, again we have E®(0) = Jy + Jo + J3, and J3 = 0 since
X is a minimal surface. Furthermore we can show the analogue of Lemma 4.1: The
8y—1 are holomorphic fory =1,2, ..., %(L — 1) if we choose ¢, meromorphic on
B,realon S ! and such that
$(0) = —ipc?w " —is2em+1—rw T 4 (if Ay = pA))
4.21)

and then inductively ng ¢ (0) for B > 1, following the construction of Lemma 4.1:
D ¢(0) = const -(ec) P+ (—i)Pw~FFDn1
+ const-ePPTL(—iPw= P14 forB < %(L —3) (4.22)
and
Dfd)(O) =0 forp=> %(L —1). (4.23)
This implies J; = 0, and we are left with

ED(0) = Js. (4.24)

In order to reduce J; to two terms we can use the following

Lemma 4.5 After the pole-removal procedure we obtain

w[DZZ(0)], - [D} Z(0)]., DL $(0)
=l HCwP 2+ )+ 0D + Ple, w) (4.25)

fora+B+y+1=L,0<a,y < %(L— 1), 1<B8< %(L—3),wheretheremain—
der term P (€, w) involves terms of lower order in €, but is holomorphic in w, i.e.
fsl P(e,w)dw =0, and C €C.

Proof (i) First we look at the contribution from the third components to the left-
hand side of (4.25). At each stage of the pole-removal process we are essentially
successively dividing by w”*! and w” (since the multiplication by w balances dif-
ferentiation in considering the order of the resulting exponents) and removing poles
in the first two complex components. If we wish to look at terms of order /=1 we
need to consider one contribution from §cw ™" in the definition of T = ¢ (0) or const
w ™"~ 1" in the definition of ¢, (0). A greater contribution from §cw ™" would result
in a larger exponent in w but a lower exponent in €.

If this contribution comes from the Df ¢ (0)-term, then the leading power of the

contribution from the product of the last complex components of (4.25) will be
1+2m —(e+y)n+1)—Bn—r—1
=Q2+2m)—(@+B+y)n+1)—r+p-2=p-2. (4.26)

If, however, the contribution arises from [Df‘i ) ]w, [D,y V4 (0)]w, then the leading
power from the product of the two last components of (4.25) will be
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1+2m —(e+y—-Dm+1)—r—B+1)n—-1
=QC2+2m)—(a+B+y)n+1)—r+p—-1=-1. (4.27)

Notethat 8 —2>0for>2and § —1>0for g > 1.
The first two complex components of [D¥Z(0)],, are (Fy +---) € C?. Thus, if

the worst contribution of §cw™" arises from the Df ¢ (0)-term, the leading term of
the contributions of the first two components to (4.25) is of the form

€a+ﬁ+y[Fa . Azm_2n+l]w1+2m—n—y(n+l)—ﬁn—r—l
+€a+ﬁ+y[Fy - Ao Jw!TIm—n=e (it D=pn—r—1
But, fora > 1,
14+2m—n—ym+1)—Bn—r—1
=24+2m—-(y+p+Dn+1)+p—r—1
=2m+2—L—-a)n+1)—r+@B—-1)
>Cm+2)—(L-Dn+1)—r+B-1D=p-1>0 ifg>1,
and similarly
1+2m—n—amn+1)—Bn—r—1>p—-1>0 ify>1landp>1.
Furthermore, if y =0,then =L — 1 —a > %(L — 1) whence Df}qﬁ(O) =0, and so
the left-hand side of (4.25) is zero, i.e. (4.25) holds trivially, and similarly for « = 0.

If the worst contribution arises either from [Df‘Z (0)]y or from [D,y A (0)]w, then
the leading power will be the minimum of the two numbers

I+2m—n—(y—-Dm+1)—r—(B+Hn—1,
1+42m—n—(a—-1)n+1)—r—(B+1n—-1.
But
14+2m—n—(y -1+ —-B+n—r—1
=2+2m—(y+B+1D(n+1)—r+p
=242m—(L—a)(n+1)—r+§8
>C2m+2)—(L-Dn+1)—-r+B=>0,
and the same lower bound holds for the other term. Therefore, no pole comes from
the first two complex components, and Lemma 4.5 is proved. O

An immediate consequence of Lemma 4.5 is, by Cauchy’s theorem:

Lemma 4.6 Under the hypotheses of Lemma 4.5 and the additional assumption
B = 2 we obtain

/ WIDEZ(O) ]y - [D] 2O DL $(0) dw = O(eL). (4.28)
Sl
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Proposition 4.5 Under the assumptions of Proposition 4.4 we obtain EY)(0) =0
forj=1,...,L—1andwith M =1(L —1):

2(L —1)!
(L=D! 11 g

ERO ==

e {/ w[DMZ(0)],, - [D{”i(())]wr} dw
Sl

+(L— 1)Re/ w[DMZ(0)], - [DM ' Z(0)]0¢: (0) dw 4+ O (D).
Sl

(4.29)

Proof According to Lemma 4.5, the left-hand side of (4.25) has poles only for § =0
and g = 1. Inspecting formula (3.4) in Chap. 3, this leaves just two terms for J>, and
by virtue of (4.24) we arrive at (4.29). O

Equation (4.29) is the fundamental formula, or normal form for odd order deriva-
tives of Dirichlet’s energy. To show that we can actually calculate (4.29) we need
the following critical lemma:

Lemma 4.7 If L is either odd or even and r is defined by either (4.1) or (4.2), then
taking our generator as T = ceJw" T +8c/w’ +c+w" ! +5cw”, we can calculate
the leadlng terms (in € and w) of the last complex component of w[Df‘Z O]y for
either k < £51 (L odd), or k=% — 1 (L even) by

ckikék[m—i- l—(n+Dlm+1-2@m+1D]-...
0 41— k@ + DR, w™H1—k@+D
+8ckike Uk m+1 -+ Dl-...-Im+ 1=k =D+ 1]
m+1=—Gk=Dm+1)— r]mem“*(k*“("“)*’. (4.30)

Proof By induction. The statement is clearly true for k = 1. Assume it is true for £,
and let us show that it holds for k + 1.

By definition:
w[Df Z(0)]y¢
=R  m+ D) =+ D).

Jm+1—k(n + 1)]R,wm - kEDO+D (4.31)
+ 8k bk m+ 1=+ D] m+1— (k=D +1)]
Im4+1— (k=@ +1) —r]R,wm T HOFD=r (4.32)
+ 8K ke [(m+ 1) —(n+ D] - ...
m 41— k(n + D]R,wm T -kO+D=r (4.33)

+ 82K ke = kim +1 =+ D]...Im+1 = (k— D(n+ 1]
qm+1—Gk—=1Dm+1) —r]Ryw™H1-k=Dor+D=2r (4.34)
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using the fact that all derivatives w[D{‘Z (0)],, depend only on ¢ and ¢, (and not on
higher derivatives in 7 of ¢) we get (using ¢; = —8c%€i(n + 1 — r)/w"T17) that

kw[ D1 Z(0) ] (4.35)
=8k km+1—(m+D]-...
qm+1—(k—=1Dm+ DIn+1—r)Rywm 1 -ko+D=r (4.36)

— 82k ek = m +1 = (n+ D] - ...
m+1—Gk=2n+1) —r](n+ 1 —r)Rw" T &=De+D=2r =4 37)

Now (4.32) 4+ (4.36) equals (since [m+ 1 —(k—1)(n+1)—r]—[(n+1)—r]=
[m+1—k(n+ 1]

S ke kIm +1—(m+ D]...Im+ 1 —k(n + DRw" T k00— (4 3g)
and (4.32) + (4.36) + (4.33) equals

SRk k+ D[m+1—=m+D]...[(m+ 1 —k(n + D]R,w™H1—ket+h—r
(4.39)

Since (4.34) and (4.37) are lower order terms we see that the leading terms of the
last complex component

w[Df T Z(0)]y = [wIDf Z(O0)lwe + wIDf ™" Zwilw (4.40)
= (4.31) + (4.39) which proves the lemma. O

We can now prove a theorem stating explicitly the L™ derivative of Dirichlet’s
energy if L is odd.

Proposition 4.6 If L > 3 is odd, r < n, the minimal surface polynomial Py, (m,n, )
(we include T to indicate the dependence of the minimal surface polynomial on the
generator t. (cf. (4.20))) does not depend on r and is given by

Pr(m,n,r)=: Pr(m,n)

= Lz[m—n]z[wm—z(nﬂ)]z....
=)
()
L—1 2
-|:1+m— <T> (n+l)] . 441

Remark Compare this with Wienholtz’s formula (Theorem 2.1) of Chap. 2 and for-
mula (2.58) of Chap. 2. We thus have beautiful formulae for the L™ derivative
(L odd) of Dirichlet’s energy.

Theorem 4.4 If L > 3 is odd, r < n, the L™ derivative of Dirichlet’s energy is given
by

d
ED () = L! Re/(ScL -iL’lPL(m,n)an—w + 0(eh). (4.42)
w
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Proof The proofs of Proposition 4.6 and formula (4.42) follows from Lemma 4.6,

since we have an explicit formula for the last complex component of [Dk VA (O)]w By
L—

Lemma 4.7, we have, setting k = % and k = 3 formulae for w[D 2 7 )]

L3
and w[D, ? Z(0)]y.
Using these formulae we obtain that the last complex component of

L— L—
2

w?[D 7 O]y - [D, 20

=T i — P+ m = 2(n 4+ D] -
i L—-1 2 2 2—(L—1 1
: 1+m—<T>(n+1)} Ry w?m 2= (=Dt
+8(L — D el 2 m —n? - ...

€

rem= (55 oo Trome (5 o)
f1+m—{—)+D]| |1+m—|—— )@+ 1
L 2 2

[ L-3

~l+m—<T>(n+l)—ri|

- Rpyw?n 2= L=+ D= 4 termg of lower order in w. (4.43)

Thus the last complex component of

w?[D ,2 Z(O)]y - [D TZ( 0)]wé

2
=cLil Yl im —np?- ... |:l +m — (%) (n+ 1)}

. R, w2 LoD (4.44)
L-1,L-1 2 L-1 ’

+8cti [m —n] -...~|:l+m—<T)(n+1)}

- Ryw?mt2=(L=D+D—r (4.45)

L.-L—1_L—-1 2 |: <L_3> ]2
+6(L —1)c™i € [m—nl-...-|14+m— > n+1)

om-(552)e] fom-(52)en-

- Ryyw?n 2= L=DOHD=r 4 terms of lower order in w. (4.46)

Moreover the LCC (last complex component) of

L— L—

WD, 2Oy - [D 2 Z(O0)w
L—2.1-2 L—2 2 [ <L_3> ]2
=6c" %I € [m—nl-...-|14+m— — n+1)

: [1 +m— <LT_1) (n+ 1)}me2m+2—<L—2><"+l>

+ terms of higher order in w
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yielding that the LCC of

L—1
2

(L — DYw?[D, = Z(O)]w - [D, > Z(0)]w:(0)

L:L—1_L-1 2 |: <L_3> :|2
=—6(L—1)c~i € [m—n]*-...-|li+m— 5 n+1)

L—-1
~|:1+m—<T>(n+l)i|(n+l—r)

- Ryw? 2= (L=D@+D=r 4 terms of higher order in w. (4.47)

L-3
2

Noting that

L-3 L—1
|:1+m—<T>(n+l)—ri|—(n+1—r)=|:1+m—<T)(n+l):|
we see that (4.46) + (4.47) equals

S(L—Dctit el m—n)?- ... [1 +m— (%) (n+ 1)]

c Rpyw?n T2 L=DHD=r 4 termg of higher order in w (4.48)

and adding this to (4.45) yields that the LCC of

Lo, Lol L3
w(D,* 2Oy {1D,* ZO)ué + (L= DID, > ZO)]uty )}
equals
L, L-1:L—1 2 L1 2
6Lc"e i [m—nl*-...-|14+m— — n+1)| Ry/w+---
yielding Proposition 4.6 and Theorem 4.4. U

For L > 5, the same argument as in Lemma 4.3 shows that the L™ derivative
does not depend on the first complex components of X,.

The second main case: L is an even integer > 6

As we have stated at the beginning we must prove Propositions 4.1 and 4.2 in order
to verify Theorem 4.3, which then completes the proof of Theorem 4.1. Recall that
we now have

m+2=(L—-1)(n+1)+r, 1<r<n, Leven. (4.49)

We will use the following modification of formulae (3.1)—(3.5) of Chap. 3, employ-
ing the same definitions for g, TA, hs,and ¥ (M, o) as before

EDO) =014+ h+ I+ I+ Js (4.50)
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with

J1 :=4Re/ w[D,Lflz(O)]w Xyt dw;
Sl

L2 4w -y
._ - M5 ) 7
L= ) M!(L_M_l)!Re/Sl[Dt ZO)w - gr—pm—1dw, s:=LJ2;
M=s+1
Jyom XEZ DL / [DSZ(0)] d
3TN — g P e S dw
2(L —1)! .
+¥Re[ D7 Z(0)]y -ho dw, o=s—1=L/2—-1;
O'!O'! st

o
ho =Y W (o, a)w[DF Z(0) 1y Df $(0),
a=0
B=L-1)—(—-1)—a=L—-—s5s—aqa;
|
Z c;ﬂT"‘”g withc(‘;ﬂ = a\’)—ﬁ' a+B8+v=L—-1;
a+p=v
TP .= w(DZZ(0)),, D} ¢ (0);
s—2

2(L — 1) A
=MX:: VI e/SI[D, Z(0)]y - hyr dw

(L-1

+—'Re/ WZiw(0) - Zry(ODE3¢0) dw, a+B+M=L—1;
(L—3)' Sl

Js :=4(L — 1)Re/ wZ1(0) - X0y DE2¢(0) dw
Sl

+ 2Re/ wX, - Xy DF19(0) dw.
Sl

The, by now, standard reasoning yields J5 =0, and J; = 0 if T = ¢(0) is the gener-
ator of an inner forced Jacobi field. We choose

Ti=cew " N+ 8cw " +cewt +scw”, €>0, §>0, 4.51)
c € C, and ¢, (0) meromorphic, real on S I and

—2n—1

é0(0) == —ipc*e’w —isten+1—rw ™™+ (4.52)

if Ao = Ay, p € C. Then the pole-removal process leads to the following analogue
of Proposition 4.4 which is just Proposition 4.1:

Assertion Under the assumption (4.49) the construction yields £ D@Oy=0for1 <
j<L—1and

dw
E<L>(0)=eL—1Ref L=l ek e R — +0(eL) (4.53)
st

where the constant k depends only on L, r, n, m.
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Although this is more or less straightforward from what we have already done
in case II, a few remarks are appropriate. With our construction, J, = 0 since the
integrands are holomorphic. The pole-removal is achieved by suitable choices of
DP$(0) for 1 < B < L/2 — 1, while we can set D’$(0) =0 for > L/2—1.In
Ju, the fact that § > 3, together with a minor variant of Lemma 3.1 in Chap. 3 show
that J; = O(eL). This leaves the two terms of J3.

Thus, we arrive at a formula for the L™ derivative, L even:

Proposition 4.7 Tuking generators as above, if L is even, the L™ derivative is given

by
4L-1! ,_ .
(L) _ =T )s L-1 M
EY(0) = MM — 1)!6 Re/w[Dt Z(0)]w
AIDM1Z(0)]wp + (M — 1)DM2Z(0)¢, (0)} dw (4.54)
2(L—1)!

M — 1)v(M—1)v6L_1Re/w[DfM_12(O)]w'[Df”‘li(o)]w@(O)

(4.55)
where M = L/2 4+ O(el).

The following lemma, (the analogue of Lemma 2.5 in Chap. 2) allows us to
compute (4.57).

Lemma 4.8 Suppose that f (w) is a meromorphic function in B which is of the form

fw)=ehw)+e ' g(w) (4.56)
with
N 00
h(w) =z_:w—’ and g(w):lg;vbkwk, N eN. (4.57)
Then
/ (2H[Re ifw - f dw = —27e>""Nayby + O(€>). (4.58)
Sl

Proof By Chap. 2, Lemma 2.5, we have
{2H[Re(ajw ™)}y = ja;w/~".
This implies

N 00
(2H[Re(i )]}y =€’ Zj(—i)a,-w/—l + 7! Z kibrw ™!

j=l1 k=N
Multiplication with f yields
(2H[Re( N - f =€V i Naybyw™ + e h(w) + k(w, €)

where h(w) is meromorphic, and k(w, €) is holomorphic. Integration over S' leads
to (4.58). O
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This says that, in evaluating (4.54), we take N times the product of the pole and
zero terms of the highest and lowest orders respectively. We now state a version of
Lemma 4.7 which unfortunately complicates the branch point story:

Lemma 4.9 Ifk = L/2, the §-linear term ofw[sz(O)]w is given by

Scki*e* " ktm —nl-...-Im+1— (k= D(n+1)]
Am+1= (k=D +1) —r]Ryw™ k=Dt D—r (4.59)

Proof Exactly as in Lemma 4.7. g

This now immediately implies (together with Lemma 4.8) that the e/~! term
of (4.54) and (4.55) is zero; i.e. k = 0. This result appears as rather surprising to
the author, even though we saw that this is true for the fourth derivative. Hence,
we must either consider another generator, e.g. T = ce/w" ! + Sc/w' + -+, s =
n+14+r)/2.

In this case we calculate the 82 terms of the L™ derivative or we could consider
the (L + 1)% derivative with our original generator T = ce/w" ! 4 §c¢/w”. This last
possibility can be carried out but it is, in fact quite technical and so we leave this for
the appendix. The simplest route is to change generators and show that, with this
change, the L™ derivative can be made negative while all lower order derivatives
vanish. We begin with the fourth derivative.

From Proposition 2.3 of Chap. 2 we have

d*E . . .
W(O) = 12Re/51 Zw(0) - [wZy (0)T + wX e (0)] dw

— 12Re f W Xpw - Xww? ¢ (0) dw. (4.60)
Sl

Take the generator T = ce/w" ! +8c/w’ +---+s=m+14r)/2. Then2m +2 =
2(n+ 1) +2s and

¢ =—8icce(n+1—s)Ruw "1+ _822i(n+ 1 —s)Rpw > +---. (4.61)

We now evaluate the §2-terms of the fourth derivative. Now the §2-term of the last
complex component of w[Z;,(0)],, is given by

i€>(m — n)Ryyw!' M2 +D (4.62)

(there is no §-linear pole).
Using Lemma 4.8, the first term of (4.60) equals

—12Re/ ie2c*8?(m —n)*(1 +m — 25)R2 Jw dw + - -- (4.63)
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whereas the second term of (4.60) equals
—12Re/(m - n)ztz(j)tRinmH dw—+---
= +36Re/ ic*e?8?(m —n)*(n+1—5)R2 jwdw +---.  (4.64)

Noting that 1 +m —2s =n + 1 — s, we obtain
d*E 4,202 2 2 3

W(O) =424Re [ ic"e 6" (m —n)*(n+1—s)R,,,/wdw+ O(€’) (4.65)
which can be made negative for an appropriate choice of c.

This completes the discussion of the fourth derivative with the new generators.

The disadvantage of these generators, in general, is that we must calculate both
with ¢, (0) and ¢, (0), and here our results (as the reader may verify) are independent
of D;g ¢(0), B > 2. Now using the same reasoning as in Proposition 4.5, we obtain
the following normal form result.

Proposition 4.8 (Normal form) Suppose L is even, thenn+14r is even 2m+2 =
(L=2y(n+1)+m+1+7r)). Let s = (n+ 1 4+ r)/2 and consider the generator
T =ce/w" ! +8/w® +cew" ! + 8w’ Then all the derivatives of E of order lower
than L vanish and the L'™ derivative has the form:

4(L - 1! L2 5
£ = i e 2
L/2—14 L/2-2 5

AP ZO)Jwt + (L/2 = DD, “Z(0)1¢:(0)

L/2—-1)(L/2-2 =35
4 L= D@D 5123501 6000} dw

2
2(L - 1)! Lt
(L/2—DL/2— 1)3Re/w[Dz Z(0)]w

AP 2016 (0) + (L/2 — DIDE* 72 Z(0)]wepr (0)} dw. (4.66)

This result does not depend on the first complex components.
Again, we obtain
L L-2 L2, p2 W L-1
E”(0)=Re € c"6°%kR,— ¢ +0( ") (4.67)
sl w

where k =iL-1p, (m,n, t), Pr(m,n, t) the minimal surface polynomial (includ-
ing T here to demonstrate dependence on the choice of generator).
We now have:

Proposition 4.9 Suppose L > 4 is even. Then n + 1 +r is also even and s = (n +
1 +r)/2 is an integer. Let T := ce /w" ! + c8/w® + 1 € w'™! +cSw*. Then
—L!
[m —n]?
(L/2—1DUL/2-1)
A4+m—L2-Dn+DP0+1—s). (4.68)

Py(m,n,t) =
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As a direct consequence we obtain the analogue of Theorem 4.2, namely

Theorem 4.5 Suppose that X satisfies the assumption of Theorem 4.1, while n, m
satisfy condition (4.1). Then with the choice of generator as in Proposition 4.9, we
can achieve (4.3) for L even.

Noting Theorem 4.4, we see that we have proved Theorem 4.1, which was our
main goal.

Remark If w =0 is exceptional, r = (n + 1) and s = n + 1 and so formula (4.68)
shows that the leading term of the Lt (even) derivative is zero.

We are now ready to proceed with the proof of Proposition 4.9.

Lemma 4.10 Suppose k < L/2. Then the 82 term of the third complex component
ofw[DfZ(O)]w is given by

k)(k—1
l-k( )( )6k72ck82

: ox Ry F= k=D 0+D=2s (4.69)

where
ok=[m-—n]l...[1l4+4m—GC-—-Dn+DI[1+m—(k—-2)(n+1)—2s]. (4.70)

Proof (by induction on k). By (4.61), this holds for k = 2. Suppose the statement
holds for k. Then we have:

w[DF 201 = w{[DF2(0)1u6 0) + KIDI™' 2(0) 1ty (0)

k(k—1)
2

(D221 0] (4.71)

.
Here
dpO)=t=cecw "V 4 5cw ™ +...,
510 = —c28i (4 1 — 0= _ 22 | — gy e D
and
$i(0) =2%€8%i%(n + 1 — 5)2w = (HIF2) Lo

By hypothesis the 5 term of the last complex component of w[Df Z(0)]y is given
by (4.69).

From the ecw™ "1 term of ¢ (0), we see that there is, by the induction hypothe-
sis, a contribution to the 82 term of the last complex component of w [Df 7 ) ]wed (0)
of the form:

k(k — 1
%ikazek”ck“pmmwf, (4.73)

where £ :=14+m—(k—1)(n+1) — 2s.
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From Lemma 4.7, we know the leading §-linear term of w[Dl{‘Z O]y, yielding
k% ke 1k m—nl - [14+m— (k— D(n+ 1]
M+m—k—1D0n+1)—sIRuwt. (4.74)
We now consider the leading 82 term of the last complex component of
kw[D*1Z(0)]w¢y (0). Since ¢;(0) has only §-linear or §2-terms, the 82 term of
w[Df‘1 Z(0)]w¢:(0) does not contribute. We only have a contribution from the 80
and é terms which yield:

—ki* 2 — ][l m— (k= D+ D]-(n+ 1 — )Ry’
—k(k = )ik k=182 m —n] - [+ m — (k= 2)(n + 1)]
M4m—Gk=2m+1) —s]-(n+1—s5)Ruw’. (4.75)

We must finally consider @wwﬁ”z(m]w@, (0). Here, since ¢;(0) only
has a 82A-leading term, only the 8%-term of the last complex component of
w[Df_zZ (0)]@+: (0) contributes, namely:
k(k — Di* ek =182m —n)- ... - [14+m— (k —2)(n+ D]
~(n+1—=s)Ruuwt. (4.76)
Now, wonderfully, the second term of (4.75) + (4.76) equals

—kk—=Di* A2 m—n] - [I+m— (k=D (n+1)]
-(n+1—=s)Ruwt. 4.77)

Now let us consider the sum of (4.77) + (4.73). Equation (4.77) can be written as

Mz’"c"“e"_lSz[m —nl- o [l4+m—(k—1D@+ 1]

2
2+ 1) = 2s]Rywt, (4.78)
and (4.73) is
@ikckﬁek_l[m —nl-.. o [l+m—(k—=D@n+ D]
Al4+m—(k=2)(n+1) —2s|Rywt. (4.79)

This sum equals

@ikck“ekflsz[m —nl-.. o [l4+m—k—1D@+ D]

Al +m—k(n+ DIRyw®, (4.80)
and for the remaining two terms, the sum of the first term of (4.75) + (4.74) is
ki* 82 m —n] [+ m — (k= D+ 1)]
[14+m—k@+ DIR,w® (4.81)
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and the sum of (4.81) and (4.80) is

k(k+1
K+ D) ok bt k152
2
Now multiplying by & (i.e. taking the derivative) yields the lemma. 0

m=nl-...-[l+m—k(n+1)]Ruw’.

Using formula (4.66) and the independence from the first complex components,
we are ready to prove Proposition 4.9. Noting that there is neither a § nor a 82 pole
in

[DE7 2001w (0) + (L/2 — DIDE722(0) 1 (0)
+ B0 (5 22) 103 2001w ) (4.82)
2 2 2 t w¥rtt :

we apply Lemma 4.8 and multiply the 82 zero term of w[D/*Z(0)],, by the 8

pole. Applying Lemma 4.10 we see that the 8° term of w[DtL/zz(O)]w is

7”2@;2 —D LIl L 2y .

[4+m—=(L/2—=Dn+DIn+1-s)Ryw", (4.33)
v=14+m—(L/2-2)(n+1)—2s=n+1-—sy,
and the §° pole of (4.82) is

QLR VL2l 2y — ][4+ m = (L)2 — D (n + D Rpyw! T L2040
(4.84)

Now we have
1+m—L/2(n+1)=%{”—(n+1)}=—%(n+l—r),
but
s=m+1+4+r)/2, n+l—-s=m+1-r)/2.
Thus
l+4m—-L2n+1)=—(n+1—ys).
Hence, the first term of (4.66) yields the integral

2L — 1)
(L/2—DIL/2—1

R2
X Re/(L/Z— Delil=182el2 2 qwy  (4.85)
! w

where

w=[m—-nP-... [l+m—(L2-Dn+DPu+1-ys). (4.86)

What about the second term of (4.66)?
First we consider the term

(L—1)! L/2—15 L2145
L2- DL/ D) Re/51 w[D, Z(0)]y - [D; Z(0)]w¢: (0) dw. (4.87)
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Again, since no 8Y_terms of ¢:(0) contribute, we need to consider only the § and
8%-terms of

w[DF* Z(0)],. (4.88)

The é-linear term of the last complex component of (4.88) yields a contribution to

the integrand of (4.87)

—28%(L/2 = Dclit el 20 Rw ! = 82t el 2R wT 41 (4.89)

Or:i=[m—nl*-...-[l+m—(L/2=2)n+DP-[14+m—(L/2=Dn+1)]
4m—(L/2=1)mn+1)—sl(n+1—s);
Ori=[m—nlP-...-[l+m—(L2-=Dn+DP0+1-s).
Now only the 8%-terms of

L2124 L/2-2 5
t

w[D Z(0)]y and w[D; Z0)]y

contribute to the §2-term of the last complex component of

(L/2 = DwIDF* Z(0)]w - [DE* 72 Z(0) 1w (0)

and this is

2(L/2 — D&%t el 2o3R,,w (4.90)
=[m—nP ...-[l+m—(L/2-2)(n+ D]
+m—=(L2=Dn+Dln+1—s)>
However, the first term of (4.89) + (4.90) equals

—2(L)2 =D&ttt 2m —n)? - ...
M+m—=(L2=Dn+DPn+1—s). 4.91)

Again the L™ derivative does not depend on the first complex components. For
L > 6 this follows as in Lemma 4.3. We leave L = 6 to the reader.

Adding (4.91), the second term of (4.89) and (4.85) proves (4.68) and thus Propo-
sition 4.9.

The reader should also note that formula (4.68) agrees with formula (4.65), for
the case L =4.



Chapter 5
The Second Main Theorem: Exceptional Branch
Points; The Condition k > [

In this and the next chapter we want to prove our Second Main Theorem, namely the
following result:

Theorem 5.1 Suppose that I is a closed rectifiable Jordan curve in R3, and let
X € C(I'") be a minimal surface having wo € B as an exceptional branch point.
Then X is not a C° relative minimizer of Ain C(I).

Before we turn to the proof we make the following

Remark 5.1 If I' is a planar curve then no minimal surface Xe C(I') has interior
branch points.

Proof We may assume that I” lies in the xi, xz-plane, identified with C, and by the
maximum principle we obtain

X(w) = (X' (w), X*(w), 0).

(See Sect 4.11 of Dierkes, Hildebrandt and Sauvigny [1].) It follows that f := X'+
iX? provides a strictly conformal or anticonformal mapping w +— f(w) from B
onto the inner domain §2 of I" in C; in particular we have f’(w) # 0 for w € B, and
therefore X w(w) #O0. Il

Remark 5.2 Clearly a minimal surface X e@I)is planar if and only if I is planar.
Therefore it suffices to prove Theorem 5.1 under the additional hypothesis that the
exceptional branch point wy is the origin and XeClN)isa nonplanar minimal
surface in normal form at w = 0.

In the following discussion we shall suppose this situation, but dispense with
the assumption X € C(I"); instead we assume X € C*°(B, R3). To formalize these
requirements we state

A. Tromba, A Theory of Branched Minimal Surfaces, 69
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Condition (N) Let X € C°(B,R%) bea nonplanar minimal surface in normal form
at the exceptional branch point w = 0 of order n and index m, m >n > 1, i.e.

m+1=0mod (n + 1).
From here on, up to and including Theorem 5.10, we assume that Condition (N)

is satisfied. .
Consider the Taylor expansion of X,, on B at w =0:

o o
Xp)= (> Ajw ™= N Rjuw/ |, (5.1)
j=1 j=m

A;eC? R;eC, Ay #0, Ry #0, Aj-A; =0,
Aj:)»jA] f0rj=1,...,2m—2n,

1
Ay Aypopy1 = _ER’"'

Then

o0 o0
wX (W) = ZAjw"+j,Zijj+l . 5.2)

Jj=1 Jj=m
Becauseof n + j =(n+ 1) + (j — 1) we have
(n+j)#0mod (n+ 1) & (j — 1) #0mod (n + 1).
Suppose that
A;=0 forall j e Nwith (j —1)#0mod (n + 1). (5.3)
This implies
R; =0 forall j >m with (j +1)# 0mod (n + 1). 5.4)

If this were not the case we consider the smallest integer v > m such that (v+1) #£0
mod (n + 1) and R, # 0. Since (m + 1) =0 mod (n + 1), it follows that (m + 1) +
wv+1)=2+m—+v=£0mod (n + 1). Consider the equation

0=w?X, X, =[w? XL XL +w?X2 X214+ w?X3 X3 (5.5)

The expression ¥ (w) :=[...] in (5.5) is a sum of terms A - A;w"™/™"¥5; thus, by
virtue of (5.3), the power w? with

p=n+j+n+s=2n+j+s=2+D+G-D+G—-1)

can only have a coefficient different from zero if p = 0 mod (n + 1). By (5.5)
it follows that also w?X} X3 is a sum of the form Xc,w” with ¢, = 0 if
p # 0mod (n + 1). On the other hand, for py = (m + 1) + (v + 1) we have
¢py =2Ru R, #0 and p; # 0mod (n + 1), a contradiction.

Thus (5.3) implies (5.4), which means that, in (5.2), only those w-powers can
appear whose exponents are divisible by (n 4+ 1), and we have obtained:
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Observation 5.1

(i) If (5.3) holds then wX,, (w) is of the form

oo
wXy, (w) = Z Fjw/ D, (5.6)
j=1

Fj € C* with Fy = (A;,0), and

o
X(w) = Xo +Re2ﬁjw1<"+“ (5.7)
j=1

with Xo e R? and Fj = F;/j(n + 1).

@ii) If (5.3) does not hold, there is an index jy € N with jo — 1 £ 0mod (n + 1)
such that Aj, #0 as well as A; =0 for all j € N with j < jo and j — 15
Omod (n +1).

We now define two “indices” k, 1 € N := N U {oo} as follows:

Definition 5.1 If there is an integer j with (j — 1) #20mod (n + 1), A; # 0, and

A1 - A; =0, then k is the least integer of this kind; otherwise we set k = oo.
Secondly, if there is an integer j with (j — 1) Z0mod (n + 1), A; #0, Ay -

A #0, then [ is the least integer of this kind.

Observation 5.2

(i) If k =1 = oo then we have (5.3), therefore (5.4) and consequently (5.6). Other-
wise k # [, and at least one of them is finite.
(ii) We havel > 2m —2n + 1.

Proof of (ii) Since A;-Aj=0for1 <j<2m—2nand 2m —-2n+1)—1=
2m+1) —2(n+1)=0mod (n + 1), it follows that [ > 2m —2n + 1. Il

Observation 5.3 We have
Ag - A1 70 if k < oo,
and
Al-Aj#£0 ifl < oo.

Proof From k < oo and Ay - A} =0, Ax # 0 we infer
A = AAp with A #0.
Since A - Aop—on+1 = —%ern # 0, it follows that
1
Ag - Aop—opt1 = —E)»erz,, #0.

Secondly, I < co implies A - A; # 0 by the definition of /. g
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Suppose now that we are not in the situation when k =1 = oo. Then k # [, and
so at least one of the “indices” k, [ is finite. We distinguish three different cases:

case (A): 2m+2+4+(k—1)<2n+1)+{—-1);
case B): 2m+2+4+(k—-1)>2mn+1)+1—1);
case (C): 2m+2+Gk—-—D=2m+1D)+{—-1)=:y.

Observation 5.4 If not k =/ = oo we have
k<oo, <00 in case (A),
<00, k<oo in case (B),

k <ooand! < oo incase (C).

Consider now the expressions
2 %1 o1 292 2
Y(w) =wX,(wX,(w)+w X, (wX; (w),
x(w) =w’X; X3 (w)

and inspect the term with the lowest w-power in ¥ (w) whose exponent is not divis-
ible by (n 4+ 1). By Observations 5.3 and 5.4 it is

T(w) :=2Ag - App—opp1w?T2HE=D i case (A),
T(w):=2A; - Ajw?r2+0=D in case (B),
T(w)=cy -wY in case (C)
provided that
¢y i=2(Ag - Agm—2n+1 + A1+ Ap) #0.
We distinguish the two subcases (C1) and (C2) of (C), defined by
(Cly:cy #0; (C2):cy, =0.

By (5.5) we have ¥ (w) + x(w) =0 on B, and so T (w) in ¥ (w) must be compen-
sated by a term 7*(w) in x (w) in cases (A), (B), and (C1):

T(w)+ T*(w) =0.
The term T*(w) has to be of the form
T*(w) = 2R, Ryw> ™" with R, #0

where v is the smallest integer j > m such that R; # 0 and (j +2) #0mod (n +1).
Thus we make

Observation 5.5 If not k =/ = oo then:
incase (A): 2+4+m+v=2m+1)+(k—1), k <oo, R, #0;
incase B): 24m+v=2n+1)+(—-1),l <00, R, #0;

incase (Cl): 24+m+v=2m+1)+k—-1)=2mn+1)+((—1)and
k <oo, l <00, R,#0.
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In case (C2) the smallest integer v introduced above may or may not exist; in the
second case we set v := 0o. Then we have

incase (C2): 24+m+v>2m+1)+Gk—-—1)=2m+1)+U—-1).

Now we introduce the integer m as v in cases (A), (B), and (C1), while in case
(C2), v is not suited to define m € N; instead we set m :=m + (k — 1) in this case.
In other words we have the following
Definition 5.2 If not k =/ = oo then m € N is defined by

24m4+m:=2m+1)+*k—1) in case (A),
24m+m:=2n+1)+U—-1) in case (B),
24m+m:=2m+ 1)+ *k—-1)=2(n+1)+({—1) incase (C).

Then the preceding discussion leads to

Observation 5.6 If not k =1 = oo then we have
incase (A): k<oo, [ <00, m=v <00, Ry #0;
incase B): [ <oo, k<o0,
in case (C): k<oo, [ <00,
Furthermore, in case (C)
Rz=0% Ay - Aom-on+1 +A1- A1 =0
and in any case: Ry #0 & m =v.
Proposition 5.1 Suppose that notk =1 = co. Then m € N is defined, and we obtain
the following:
(1) In all cases (A), (B), (C) we have
(n+0 —(+m)=(m—n) = 1. (5.8)
(1) Ifk = £, then neither (A) nor (C) can hold, i.e. we are in case (B).
@iii) If (A) or (C) holds, then
L—k>14+m, 5.9
Il+m>m+k)+@m+1). (5.10)

Proof (i) In case (A) or (C) we have
l+m =2+ D+ -1 —-0+m)=0n+L)—(m—n),
and in case (B),
m+m=2n+4L—1,
whence

n+80)— (A +m)=m-—n.
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(i1) is obvious.
(iii) Since the branch point is exceptional we have
1+m>2(n+1).
If (A) or (C) hold, then
2m+24+ k-1 <2+ 1D)+-1

whence
m+D+*k-1D=20+DH+C—-D—-0+m)=({—-1),
and so
L—k>m+1.
Furthermore,

l+m=0+m)+Gk—-1D>20+D+*k-1D=m+k)+®m+1). O

Recall that, by assumption, (m + 1) =0 mod (n 4 1), and that m > n > 1. Thus
we have

m+1=pm+1) forsome peNwithp>2, (5.1D)
and in particular
m+1>2n+1)m=>2n+1>3. (5.12)
Furthermore we have m > m and m + 1 £ 0 mod (n + 1). Therefore,
A4+m)y—(1+m)>0 and (1+m)—(1+m)z£0mod®n+1).
Thus there are integers I" and s with I" > 0 and 0 < s < n + 1 such that
I+m)—(A+m)y=In+1)+s,

and we obtain

Proposition 5.2 Suppose that not k =1 = co. Then there are integers I’ and s with
I'>0and 0 <s <n+ 1 such that

@+D=m+D+Tn+1)+s. (5.13)

Proposition 5.3 The number

_2(m+1)

=T (5.14)

is an even integer with L > 4.

Proof Because of (5.11) we have L =2p > 4. O
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Definition 5.3 If not k = = oo we distinguish the three cases

M s=3m+1),
I 0<s<3im+1),
) f(n+1) <s<@m+1).

In cases (I) and (II), i.e. for 0 < s < %(n + 1), we set
L:=L+2r+1; (5.13)

here L is an odd integer 2_5.
In case (III) we define L as

L:=L+2I+2. (5.16)

From (5.13) and (5.14) it follows
2m+1)=Ln+1)+2'n+1)+2s

whence
2(m+1) 2s
—=L+2N+——, 0 1.
PR (L+ )+n+1 <s<n-+
Here L 4 21" is even, and 0 < nzﬁ < 2. Hence nzﬁ is an integer if and only if

s = % Thus we obtain

Proposition 5.4 Exactly in case (1), the quotient 2(m + 1) /(n + 1) is an integer; in
fact, it is the odd integer L. In other words:
2m+1)

. L1
= m if and only if s = 2(11 +1). 5.17)

=~

Proposition 5.5 [fnot k =1 = oo we have
k=1=I'(n+1)+s (5.18)
in case (A) or (C), and
L—1=2m+D+T =2)(n+ 1) +s (5.19)

in case (B).

Proof In case (A) or (C) we have
24+m+m=2m+1)+(k—1)

whence

@+D=m+D)+&k=D"Z m+ D+ Fn+1)+s,

which yields (5.13).
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If (B) holds then

2+ 1)+ —-1) = m+1)+@m+1)

O 2m+ 1)+ M+ 1) +s. O

From Definition 5.3 we immediately infer

Proposition 5.6 Suppose that not k =1 = co. Then we have:

) Ifs < %(n + 1) then L is odd, and

+TI. (5.20)

+T. (5.21)

Suppose that not k =/ = oo.

In Chap. 4 we have seen that a minimal surface X e C(I") cannot be a weak
relative minimizer of D in C(I") if w = 0 is a non-exceptional branch point of X.
The analogous statement is not true if w = 0 is exceptional. In a first example we
will indicate why our method can fail, and then a second example will show that the
method has to fail.

Primary Example To give the reader some insight to the methods we will be
using, let us consider as an example the special case k =2, =6,n=1,m = 3.
Here we are in case (C) with

2m+2+ (k—1)=2(n+1)+ - 1), m=m+ (k—1)=4.
Consider the expansion of wX w(w), which is given by
wXyW) = (Ajw? + Ayw® + -+ Agw” + -, Rsw* + Ryw’ + ),
and choose the generator t as
Ti=cw 2+ 8cw ! +cw? +dcw!
where § € C denotes an arbitrary parameter. Note that
Ay = 1A,
since k = 2. Furthermore we choose ¢, (0) as
$:(0) == —ircPw 3 —ic*sw ™ + ixctw’ + isctw’
= —i(A+ 8w+

Since 1 +m =2(1 + n) (and so w = 0 is an exceptional branch point), one checks
that EV)(0) =0 for 1 < j < 4. Let us now consider E®(0). Here I' = 0,5 =
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I,L=4and L =L +2I" + 1=25. A straightforward computation yields

E®0) = 12Re/

dw
CSK—
s1

w

with

k=3R4 + 48R3 — AR3)* —4(3R4 + 48R3 — AR3)2R3(A + 8)
+16R3(L+8)%, R3 #0.
We note that the last term in this expression stems from the first complex compo-
nents of Z,,(0), and so E®(0) may depend on these components. However, if we
set § := —X, we obtain k = (3R4 — SR31)? and therefore k £ 0 if A # 3R4/(5R3).
In the second case E©(0) can be made negative while in the first case E ®) 0) =0,
and so no general statement can be made. In fact, this observation indicates a prin-
cipal drawback of our method as we shall see from the next example that has been

communicated to us by F. Tomi. To explain this example we need two observations,
pointed out by Tomi.

Observation 5.7 Let G be an open, convex set in R3, and w be a closed smooth
2-form on G. Suppose Fi, F» € Cl(B, R3) satisfy F1|0 B = F,|0B. Then

/Ff‘w:/Fz*a).
B B

Proof There is some smooth 1-form 1 on G such that w = dn. Then

fFﬁo:/ F}kdr;:/d(F]’-kn)zf Fin, j=12,

B B B 9B
/ F["n:/ Fin. O
JB JB

Consider a minimal graph M over a convex domain £2 in R,

and

M ={x =(x],x2,x3) eR3: 3 =w(x],x2), (x],xz) € 2}

and let n = (n1,n2,n3) : G — S% C R3 be a unit vector field on the convex cylinder
G := £ x R ¢ R? which is obtained by vertical translation from the normal field of
M . Then we have div n = 0 on G whence the 2-form

W= nldx2 Adx® + nzdx3 Adx!+ n3d)c1 A dx?
is closed. This leads to
Observation 5.8 Let . X € C°°(B, R?) be a minimal surface with no branch point
on 0B such that X(B) C M where M is a minimal graph as considered before.

Furthermore, let Y e CY(B,R?) be an arbitrary surface with Y(B) C G such that
the boundary values X := X|yp, Y := Y|yp satisfy (i) X =Y, or more generally
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(ii) Y = X o ¢ where ¢ is a diffeomorphism of S' = 3B that is homotopic to the
identity idg1. Then,

D(X)=A(X) < A(Y) < D(Y).

Proof Because of X (B) C M we can assume that the Gauss mapN:B — S2CR3
of X satisfies N =n o X, whence

AX) = / X*o.
B
Furthermore we infer from |n| = 1 that

/ Yo < A(Y),
B

/)A(*a)zv/‘ Yo
B B

on account of Observation 5.7. This implies A()A( ) < A(f/ ). In case (ii) we can ex-
tend ¢ : S' — S! to a diffeomorphism ¢ of B onto itself, and so the preceding
reasoning yields

and in case (i) it follows

AX) <AY 0 9).

However, A(f/ o) = A(I? ), and so we obtain the desired inequality. O
Now we turn to the

Secondary Example Let F : C — R3 be a rescaling of Enneper’s surface, given
by

N 1 1 1 1
F =-R - 39‘ 3 ’_2 s C.
(2) 3 e(z 361’ z<z+3.64z> 8Z> zZE€

We introduce the branch points w =0 and w = —% in Fo f by means of

2
f(w):u)2 (w—i—%) =w4+3w3+<§> w?.

Setting X:=Fo flg we obtain a minimal surface XecC O(B,R?) which has a
single branch point at w = 0 of order n = 1 and index m = 3; yet because of the
branch point w = —3/4 outside of B, the expansion of X (w) does not proceed with
powers of w? alone, but odd powers of w appear. Therefore the branch point w =0
of X is not globally analytically false.

On the other hand, by a corresponding property of Enneper’s surface (cf. Nitsche
[1], §92), it follows that X (B) lies on a minimal graph M as described before, and
S0 we have the minimum property stated in Observation 5.8.
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Furthermore one computes that

. 1{9 1 3\7T° 3

Xw(w)=§<§w+9w2+4w3—§|:w<w+§>:| <2w+§>,
D w4 9w - dwd 4 T 5 dwt >
2w w? w” 3 wlw 3 w 2

81 3 527 4
_w‘ —w DECEEY .
32 16

Considering w)A(w(w) it follows A =2Aj andso A =2, k=2, m =3, m =4,
Ry =81/32, Rw=3Z ie.

3R4 —5R31=0.

Thus we are in the situation of our Primary Example where the method fails to prove
E®)(0) < 0; we only have E©(0) = 0 together with E/)(0) =0, j =1,...,4,and
a further calculation shows E(© (0) > 0, in agreement with Observation 5.2.

What can we infer from Tomi’s example? The following Conjecture might seem
plausible, as it would be analogous to the First Main Theorem: If Xisa nonplanar
minimal surface with w = 0 as an exceptional branch point of order n and D()A( ) <
D(I?) for all smooth Y =B — R3 with

1Y = Xllcog e < 1

and such that the boundary values are related by Y = Xog, 9 a C ®diffeomorphism
of 3B onto itself, then X is globally analytically false, i.e. there is a minimal surface
Xo € C®(B, R?) such that X (x) = Xo(w"*!) on B.

Tomi’s example shows that there is an (absolute) minimizer X of A (which then
also is a D-minimizer) compared with all YecC OO(E, R3) such that ¥ = X o o,
¢ : 9B — 0B a diffeomorphism with ¢ ~ idyp, such that the power series ex-
pansion about the branch point w = 0 of order n contains powers w” with p =0
mod (n 4 1). Hence the Conjecture is not true, and so we have to give up the hope
that for exceptional branch points one can prove a result that is as strong as that for
non-exceptional branch points derived in Chap. 4.

Observation 5.9 Later on we will be reducing energy of a minimal surface in a
neighbourhood of a branch point. So what can we infer from Tomi’s example lo-
cally? Consider an immersed minimal surface X of the form

~ - 1 -
X(w):Re(A1w+ Az,;,+1w2’"+‘+~~-,—R,;,w’"“+-~>

1
2m+1 m+1
with m > 1. In a sufficiently small neighbourhood of w = 0, X is absolutely area
minimizing above the x!, x2-plane. Now we introduce a branch point z = 0 by com-

posing X with ¢, given by

0@ :=7"""+pz% «aeN, a=n+k a=£0mod(n+1).
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A brief computation shows that Xo ¢ has the exceptional branch point z =0 of
order n and index m with

l+m=0+m)(n+1), l+m=mmn+1)+a.
Thus
24m+m=0Cm+1n+1)+a.
Moreover, one computes that
[I—1=02m—-1)(n+1)4+«, whencel—1z£0mod (n+1).
Then it follows
2+ D+ -D=Cm+ D+ +a=0Cm+2)+ (k—1).

Thus, for the exceptional branch point z = 0 of X (¢(2)) we are in case (C). Note
also that we have k <[ since

k=oa—n, I=Cm—-—1n+1D)+a+1>k.

Reversing the argument, we see that an exceptional branch point with oo >k >/
cannot be an analytically false branch point. Thus, this example, together with The-
orem 5.2 below indicates the importance of the assumption

k>1 withl <oo0
in order to reduce energy if w = 0 is an exceptional interior branch point.

In fact, ir appears impossible to calculate derivatives in the exceptional case with-
out the assumption k > /. Even in this case there appears to be no simple formula
for the first non-vanishing derivative.

To set the stage for the general theory, we prove a theorem for exceptionally

branched minimal surfaces that is analogous to what we have proved in the non-
exceptional case, but more restrictive.

Theorem 5.2 Assume that we are in case (1). Then L is an odd integer given by
L =2(m+2)/(n+1). Suppose also that k > 1, | < co. Then, for an appropriate
choice of ¢(t), we have

EDO)=0 fori<j<L, ED0) <o.
Proof Since k > £, we obtain

1—
n+k>n+€>§L(n+l)=l+m.

‘We choose
ri=cw " et (= 9(0)).

In forming E(“)(O) fora < %(Z — 1), no poles arise on the Ax-term; we may take

DPyp©)=0 forall B> 1
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and we can achieve
Ziw(0) = ((wX T,
~ ~ 1 —
[DYZ(0)]y, = {in‘”Z(O)wr}w fora < E(L —1).

If we use the formula for E &) (0), L odd (see Chap. 4), we are left with only one
term, namely

(L-1)

ED(0) = 2M'M‘ Re,/s1 w[DM Z(0)], - [DM Z(0)] dw

1 —
with M = E(L —1).

Since the first two complex components of w[DtM 7 (0)]y are of the form
consth(Ajw’(f(”H) +-), k;>0,

the contribution to the above integral comes only from the product of the third com-
ponent of [DZM Z(0)],, with itself. Thus we obtain

+ 2(L=1) T T dw
(L) — L—1 L 2p2
EY(0) = o Re/ i“"ctn Rm—w (5.22)
with
ni=m+1—-m+1)m+1-2n+1)..(m+1—-—Mmn+1)). (5.23)

Hence ED (0) can be made negative by an appropriate choice of ¢, provided that
k>¢. d

Observation 5.10 As in the non-exceptional case, of n is odd and m is even and
k > £, then above we have a formula for the (1 + m)™ derivative of Dirichlet’s
energy, which can be made negative while all lower order derivatives vanish.

In general however, this appears not to be possible in the exceptional case, and it
remains an open question whether such a formula can be achieved. Thus, in general,
we need to argue indirectly, that some first non-vanishing derivative can be made
negative.

Now we begin with the general discussion.

Theorem 5.3 (Normal form) Suppose that L is odd, k > 1, and s < (n + 1)/2, and
set

ri=ecw "D fecuw™ 4y, yeR, (5.24)
DL p(0) =" {sc”lifw—f +S(E)F+1(—i)FwS} , (5.25)
and choose D,r +1¢(0) as necessitated by the pole-removal technique, namely

DIt y0) = —e! 12 41 —5)sw= "D 4. (5.26)
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Assertion:

(i) We have

2(L-1)

ED(0) = o et 0D + 0@ + 0Dy (527)

where J is given by

Jpi= Re/ w[DM Z(0)],, - {[D,’”Z(O)]wr
S/

+ m[DzNZ(O)]wa“aﬁ(O)} dw (5.28)

with M := (L —1)/2, N:=L/2 — 1.
(ii) Furthermore, EV(0)=0for j=1,...,L —1.

(iii) In addition, since the only non-constant generators are 1/7"* and 1/7°, it fol-
lows as in our Fundamental Computational Principles of Chap. 4, D] ¢ (0) are
chosen to be zero for 1 < j < I', and D] $(0) for j > I' + 1 play no role in
the computation of E®)(0). One shows first that D,r +2¢ (0) has poll terms too
low to contribute to the §-linear terms of the Zth derivative. Inductively, it then
follows that all higher order derivative also do not contribute

(iv) Under the assumption k > 1, the €L~ -term of (5.27) depends only on the last
complex component of Zuw 0).

The proof of this theorem is deferred until later.
The following lemma will be crucial for our reasoning.

Lemma 5.1 The last complex component of w[DlM 7 O]y has a §-linear term of
the form

LA =1 MiMg R w15, (5.29)
If
M!
K — m(nﬂ—s)u;ﬁo (5.30)
with

u=m+1—m+1))m+1-2n+1))(m+1-3n+1))...(n+1)
then EL(0) #0.
Proof Apply Theorem 5.3. Then,

the last complex component of w[DtM 7 O ]w

=iMMieM g Rgw® + X2 =1 s Ry 15y - (5.31)
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where
kii=(m+1—m+1D))m+1-2m+1)m+1-3m+1))...s,
and using (5.26), we find

the last complex component of w[DtM 7 O)]wt

& N > 1"+1
v PP 2Ok b e 0)

— iMCM+1{€M+lk] me—(n-‘rl—s) + eL/2+FK8me—S

2M
NI + 1!
Therefore, the integrand of (5.28) equals

L2 (n 41— s)Sme_‘Y]} +--- (5.32)

2clel—1;L-1 { (ky Rs)

M! -1 L L—1¢2
k= ———— 4+ 1—5)u8 | R bw™ ' + O(eL) + 07182 + - ..
NI + 1)! 539
This implies E©)(0) # 0. O

If (5.30) does not hold we cannot conclude that E (L) (0) # 0. It may be that
by inductive methods, one can show that in fact (5.3O)Ais equal to zero. The in-
ductive hypothesis is that the §-linear term of w[D,H'k Z(0)]w, k =1 is given by
%-me]erf(kfl)(nJrl)fs where

£ = eItk ki (" +K! [
(k= DI+ D!
M+m—k—-Dn+DII+m—(*k—-Dn+1)—s]

Setting k = L /2 proves that k = #jﬂ),(n + 1 — s)u. However, we will be able to

m—nj-...

prove that if E Z(0) vanishes identically then E L+ (0) can be made negative. We
formulate this result as follows:

Theorem 5.4 Let k > | be satisfied. Suppose that L is odd, and assume that
EWL () = 0 for all choices of t, D,F¢>(O), D,FH¢(0) which ensure that EY)(0)
forj=1,..., L — 1. Then E(ZH)(O) can be made negative, while all lower order
derivatives of E(t) at t =0 vanish.

Proof Choose t as in (5.24) and set
DI$(0) =" |5cf+1ifw—f +S(E)F+1(—i)FwS},
(5.34)
DIF+1¢(O) = EF {wCF+2iF+lw—S +E(E)F+2(_l)r+lwé}

+ all those terms needed to remove poles.
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If we calculate E(L+D (0) for w = 0, as above, we would obtain the result that

E(Z“)(O) _ eZ—lékaL+ld_w +onl
w
If kK # 0, we can choose ¢ so that E(L‘H)(O) < 0. Thus, we may assume that the
5-linear term does not contribute to the (L + 1) derivative. We call this assump-
tion (V).
To proceed further we need another normal form theorem whose proof we defer
as well.

Theorem 5.5 (Normal form) Suppose k > 1. If L is odd (< 2s < n + 1), and under
assumption (V) with t, D,FCD(O), Df+1¢(0) chosen as in Theorem 5.4 and w =
=3y (n+1—5s), we have:

_ T _ _ _
ETHD () = WJZH + 0L + 018 + 0 w?)  (5.35)

M\ (M +
with

Jii ::Re/ w[DMT1Z(0)],
Sl

s
' {[Df 2Ol + )

(DN Z(0)1, D] +‘¢<0>} dw,

1 —
M = E(L —1), N:=L/2-1, providedthat2s # (n+1).

Note that the value of E (Z‘H)(O) depends only on the last complex component
of Xy .

The choice of w is made to ensure that the term in D,F +1 ¢ (0) of order el is used
to kill a pole. By the Fundamental Computational Principles of Chap. 4, all higher
order derivatives Df} ¢(0), B > I" + 1 do not affect the final result.

We defer the proof of Theorem 5.5 until later and proceed with the proof of
Theorem 5.4.

Recall that
(DM Z(0)], = {Re H[w(D,MZ(O))wr + N!(F—_"_l)!(DtNZ(O))wa“d)(O)] }w
(5.36)
Consider the last complex component of
N M! N
wlDM 2]yt + - w[DY Z(0)1 D 1 (0); (5.37)

NI(I"+ 1!
the e-term of order O (eM*1) of this expression is given by

iMMALMAL G Ry =(t1=9) 4
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and since, by assumption (5.30) vanishes and 1 +m = I"(n + 1) + (1 + m), there
are no other poles in (5.37) with a lower order €. Choose

w:=—-8yn+1-—ys). (5.38)

Then, as in the non-exceptional case, E (ZH)(O) does not depend on D,ﬁ ¢ (0) for
B > I' + 1. Moreover, with the above choice of w, the e-term of order O (eL/2+7' 1)
is given by

MAGML2AT=Tgantl=s 4 .. 220, (5.39)

i.e. it has a zero of order n + 1 — s in w. Then E(Z“)(O) reduces to
4L
M!(M +1)!

4T
T MM +1)!
+ 0Ly + 0(eE716%) + 0(eL 1Py, (5.40)

ETD () = Jrp + 0D

T T T d
Re/ LI 41 — )k R Y
S! w

which can be made negative for sufficiently small € > 0 and an appropriate choice
of c.
Now we turn to the case “L is even”. There we are in case (III), i.e.

n+1<2s<2n+2.
Here L is defined by L = L 4+ 2I" 4+ 2, and so
L—1=L+2I+1>L.
Consequently, if we want to achieve
ECD0y£0, EVO0)=0 forj=1,...,L -2,

we will have E)(0) = 0. B B

In the following discussion, the derivatives E L=D©) and ED (0) will play the
roles of E((0) and E+D(0) respectively in the preceding case where L was
assumed to be odd (< case (I) or (II)).

We further note that in the term corresponding to (5.32), the dominant pole term
in w is now the one of order s (instead of order (n + 1 — s)). Our procedures for
“L even” will parallel those for “L odd”, except L is replaced by L — 1, and L + 1
by L.

Theorem 5.6 (Normal form) Suppose that L is even, k > I, and define t and
Dl ¢(0) by

ti=ecw "D pecuw 4y, yeR,

DIg0):=e" (8" il w™* +85@ (=) w'),
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and choose D{gqb(O) for B>1T +1 asin (5.26). Then

2(L —1)!
(M!)?

where Ji is given by (5.28), but M := L/2—1,N:=L/2—1.

ET-D(0) = I+ 0@ + 0%

Now we define a new « € C, similar toAthe x defined earli_er, by the observation
that the last complex component of w[D,M Z(0)]y (with M = L/2—1) has a §-linear
term of the form

MMM sR i +1=s ...
We now obtain the analogue of the Lemma 5.1, which is proved in the same way.
Lemma 5.2 Suppose that k > [ and
M!
NN+ 1)
Then EL=D(0) # 0.

(n+1—s)u#0 with M:=(L/2) — 1. (5.41)

—th . . .
Thus we turn to the Lt derivative. We formulate this result as follows:

Theorem 5.7 Suppose that L is even, k > | holds, and assume that E (L~ 1)(O)
Jor all appropriate choices of T etc. which ensure EDO)=0forj=1,..

0
—2.
Then E)(0) can be made negative, together with EY)(0) =0 for j =1, .. -1

hl t~|

Proof We essentially proceed in the same way as in the case “L odd”. We need

Theorem 5.8 (Normal form) Let k > I be satisfied. If L is even we define t by
(5.24) and set
DI =8 el iy = 48l @) =iy 'w 4 -+,

(5.42)
DtF+1¢(O) — w6F+lcF+1iF+1

w—S + EEFJ’_I (E)F+l (_i)l"+l w&‘
+ other terms required to remove poles.

As in Theorem 5.5, we have assumption (V); i.e. for w = 0, the §-linear term

—th . . .. .
of the L derivative vanishes, otherwise it follows automatically that we can make

EL(0) <0.
Finally, we choose o = —y8(n + 1 — s) and obtain:
T 4(L —1)! T_ T T
LYy — = g 2 _L—-1 L 2 _L—1
E (O)_M!(M+l)!JL+]+O(8 € )+ 0 )+ O0(we" ") (543)

with Jp_ | given by (5.35), and M := (L/2)—1,N :=(L/2) — 1.
Moreover, any 8-linear term in (5.43) does not depend on the first complex com-
ponents of Z(0).

Again, the proof will be deferred until later.
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Back to the proof of Theorem 5.7. Here we may assume that (5.41) does not hold;
we have chosen
w:=—m+1-ys)ys,
so that we may invoke the Fundamental Computational Principles of Chap. 4.
It follows that the order of the pole of D,F +2¢(0) isn+sandnotn+ s+ 1,
further implying that for g > I" 41, D,ﬂ ¢(0) does not contribute any §-linear terms
to E)(0). The only 8-linear term of order e ~! remaining is

M - _M M+15 7 .
MM + 1)! L+1_M1(M+1),R3/S1w[131 Z0)]-¢dw,  (5.44)

where
; — < . GM—Hkl me—(n+l—s)

M!
L/2+T _ _ 4.
+ € SRm|:K N!(F+1)!(n+1 s),u:|w + >
Since n 4 1 < 2s, the pole term of largest order in the last complex component of ¢
would be w™*, but since (5.41) does not hold, the only leading pole term is

€M+1k1 me—(n+1—s)‘

(Remember that 1 +m =14+ m + I'(n + 1) 4+ s.) Again, the choice of  assures
that the term of order €£/2=1+1" in the last complex component of [D,M +tlz 0]y is
of the form

MM L2=1HT s ),

Thus E©) (0) reduces to

E(Z)(O) — MR&:/ Ez—lcziz—lgklpﬁmd_w
M\ (M + 1)! sl w
+ 0% ™ + oW + 0(eh).
This shows that E© (0) can be made negative. O

Remark 5.3 Before going on to prove the normal form theorems, we note that al-
though we cannot prove theorems on non-vanishing of E)(0) for j =L —1,L,
L + 1 in case (A) or (C) it remains true that for L odd all derivatives of order j < L

vanish, and for L even that all derivatives of order j < L — 1 vanish.

Now we outline the proofs of the normal form theorems, i.e. Theorems 5.3, 5.5,
5.6 and 5.8. On a first reading, you may wish to skip this and move directly on to
Theorem 5.9. We have to work out

ED@©) and ELTD©0) for“T odd” (Theorems 5.3 and 5.5)
and

E(Z*])(O) and E(Z)(O) for “L even” (Theorems 5.6 and 5.8).
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So as not to repeat the arguments unnecessarily, we do one “lower derivative” and
one “higher derivative”, namely:

ED (0) incase “L odd” (Theorem 5.3)
and
ED(0) incase“L even” (Theorem 5.7).

We begin by writing down a general formula for E @ (0) in case that L is odd
(for a proof, see Sect. 7.2, (7.1)-(7.5)).
We have

EDO)=J1 4+ + J3

where the terms Ji, J», J3 are defined as follows:
Set

TP .= w[D*Z(0)], DF ¢ (0).
Then,

Ji :=4Re/ [DE'Z(0)]y - (wXwT) dw
Sl
+4.-(C - l)Re/ [DE2Z(0)]w f dw
Sl

L-3 (Z—l)' .
+4 fRe/ (DM 7))y - g7 7 dw, (545
fIZ ML -M-1) Jg ! Ol - 8737 ©45)
M>3(L-1)

fi=T 4 7O = w[Z,(0)]w7 + wX ey (0),

. v! —
gy = Z C(‘;ﬁT“’ﬂ w1thc(‘;ﬂ :Zﬁ,a—kﬁ—i-v:L—l;

a+p=v A

LT-1n  —
: 2(L —1)! o7 A
b= Y gRe/ [DMZ(0)],y - hyy dw
s1

£ M'M!

M=2

+2(L-1)(L-2) Re/ [Z:(0)]w - TVE3 qw, (5.46)

Sl
M R
_ M! T
h— — M,(x _ _ Ta,L—l—M—a’
M (;)w( )a(L—l—M—a)!

Y(M,a):=1 fora=M, y(M,a):=2 fora+#M;
Jy=4(L — l)Re/ wZ1(0) - Xy DF26/(0) dw
Sl

+2Re/ wXy - X DL (0) dw. (5.47)
Sl
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We have J3 = 0 since )A(w . )A(w =0 and th ) - }A(w = 0 on account of formula
(2.51) in Sect. 2.1.

We set D,]¢(0) =0 for 0 < j < I', and assume that T = ¢ (0), Dtrq’)(O), and
D,F +1¢)(0) are given by (5.25)—(5.26). As in the non-exceptional case, the proof of
the normal forms essentially (but not entirely) consists in counting orders of pole
terms. Considering (5.45) we know from the examples of Chap. 2 that X, is al-
ways holomorphic, as are [Df‘i(O)]w, and ¢, (0) is chosen in such a way that

fi=wlZ(0)]wt 4+ wXyey (0)

is holomorphic. Now we turn to

Proposition 5.7 Suppose k > . Then the §-linear terms in the integrands of (5.45)
are holomorphlc ift, DF ¢(0), DF +1¢(0) are chosen as in Theorem 5.4, and there-

fore J1 = 0 (L7182, whence E(L)(O) J2+0(6 —1s2y,

Before proceeding with the proof of Proposition 5.7, we shall make some obser-
vations, analogs of which are valid for all the normal form theorems.

1. If in Theorem 5.3, we had set § = 0, and considered only iterations by t, then
in (5.45) no poles ever form on the first complex components (FCC). Thus, for
B >0, we may take all 6° pole terms of D’g ¢(0)=0.

2. If § =0, the L' derlvatlve contains only terms of order e” Wthh are in general,
impossible to calculate.

3. By taking 8 # 0, as in Theorem 5.3, all §-linear poles that develop on the A s’
do so only for j < 2m — 2n + 1. Since, for these Aj, A; = A; A1, all of these
poles may be removed as in the non-exceptional case.

4. For 8 >1T, D{B ¢ (0) are polynomials in § with (by (5.1)) no constant term.

5. In calculating the " derivative, we consider only the §-linear terms.
6. The order of the § linear poles of D[j ¢ (0) are bounded by n 4 1 + s, the 6° poles
are of order n + 1.

We now need a sequence of lemmata.

Lemma 5.3 Let k > [. Then the exponents of the terms in the FCC ofw[Df‘z(O)]w,
o < (L — 1)/2 that do not contain § (or w), are always greater than or equal to
m+1). If a # I + 1), the Df}qb(O) can be chosen so that exponents of the &
linear terms in the F CC of w[ DY 2(0)],1) are greater than or equal to (n + 1). Most
significantly, the order of the §-linear pole terms of Df ¢ (0) is boundedbyn+1+s
and §-linear pole terms formed in the expression

L‘Xﬁ:“ (L —M—1)!
alL—M—1—a)!

wlDZZ(0)].,, DF ¢ (0) (5.48)
a=0

may be removed. There are no 5° poles.
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Proof The statement about f is clearly true for 8 =0, I, I" 4 1, and is true for
a=0,...,(I" +1). Suppose @ = I" + 2. Then, since k > [, we have an expansion
w[DI 1 Z0)wp =€ - (1841w + 28 Apsaw" 15 438 Agy w2 4
+c8Apm_gppwE=P0FD=s L, (5.49)
Define
Dtquﬁ(O) = —el e s+ _ ercz5An+2w_s +erc1cz5)»n+2w_s 4.

Then w[Df‘Z (0)]y, has an expansion of the form

2n+42—s 4.

el

and so our assertionis trueforao =1 +2,8=1,T + 1.
Now suppose the lemma is true forallo, ' + 1 <a <J —-1,8<J -2

(caApy3w

F+2<a—1<(L-1))2.

‘We must show it is true for o = J.
So consider

P - &= 5 N
w[D; lZ(O)]w¢+m;w[D, 201D/ $(0) + wZ, D} $(0).

(5.50)

By induction, the lowest power of the §-linear term in the FCC of w[DtJ 17 O]
is (n + 1). Thus w[D,J_IZ(O)]wd) has no é-linear pole in the F'CC, and thus this
term makes no contribution to Dtj _1¢>(O). In

w[D] ' Z(0)], (5.51)

let us consider the lowest power associated to Aoy, —2,+1, A7 and Ag.
By definition we have that

(=D =2m+1)-20+1)+T(n+1)+s.
Since we are at an exceptional branch point we have
m+1>2n+1).
Thus,
I-D=1+m+T'(n+1)+s, (5.52)
and since k > [
k=—D>14+m+T'(n+1)+s. (5.53)
Therefore the exponent associated to A; in (5.51) is greater than or equal to
I-D+d+n)—L2+T -1)n+1)
Z1l+m+T"+Dm+D+s—A+m) - —Dn+1D)=2n+2+s
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and thus the exponent associated to Ay is also greater than 2(n + 1) + 5. We must
check the order of the exponent of Aopy—opy1.Since B>, a<L/2—1(a+B<
L/2+T'). Thus in w[D¥ Z(0)]y, Azm—2n+1 is associated to w”, where

UE(L—I)(n—l—l)—(%—1>(n+1)=%(n+1)22(n+1).

Similarly for the other terms of (5.50). Thus, no pole forms on Aj;;—2,+1 and all
8-linear poles are removable. This completes the proof of Lemma 5.3. 0

Lemma 5.4 [n (5.48), no §-linear poles or 8° form in the last complex component.

Proof First consider the term
w[D! ' Z(0)1

where J —1<L/2+ 1T — 1.
Here, we have an expansion of the last complex component of the form

c1 Rmw™ + 28 R w'?
where vi>1+4+m—(J —1)(n+1). But
l+m=14m+T(n+1)—+s.

Therefore
V121+m+(r+1)(n+1)+S—(§+F—1>(n+1)=2n+2+s.
Furthermore
V221+m—[(%—1—1‘—1)—(F+1):|(n+1)—s=2(n+1)—s.

Therefore in (5.48), the term (5.51) has no §-linear pole in the last complex compo-
nent. What about the other terms of (5.48)?

Now Df¢(0)=0for0<ﬂ <IN IfB+a<(L-— 1)/2=L/2 + I', then in
(5.48) consider a non-zero term

w[D? Z(0)]wDf § (0). (5.54)

fg>r,a< L/2—Al andif B>+ 1,a <L/2—-2.1f B =TI, the last complex
component of w[D{ Z(0)],, has an expansion of the form

Clmen+]+S 4 02men+1 +c36w2(n+])7s (555)
and if 8 > (I" + 1) the expansion has the form
c1 Riw™ 15 0o R w2 D 4 3803t D=5,

Thus, (5.54) has no pole. O
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Lemmas 5.3 and 5.4 now prove Proposition 5.7.
We now proceed with the proof of Theorem 5.3. The basic idea is to arrange the

—th o . . - .
L derivative terms into those with holomorphic integrands and those with poles

at w = 0. Among the latter we ignore those terms D,] ¢(0), j > T + 1, as in the
non-exceptional case. We also have:

Lemma 5.5 All the terms in the value of Zth derivative of the form
w[Df Z(O)w - [D] Z(0)]u D ¢ (0) (5.56)

yv,a < (L —1)/2, I <B < (L —3)/2 do not contribute to the value of the Zth
derivative.

Proof By Lemma 5.3, the constancy of the order of the §-linear pole of DF ¢ (0),
B = (I" +1) implies that we may ignore all terms of (5.56) where 8 > (I"+1). First,
let us consider the last complex components of w[D{Z(0)],, and w[Dty Z(O0)]w
which take the forms

Ctiz Rﬁwn+l+s + Cg6w2(n+l)fs + Cg: Rm wn+l ,

c’f Ryw" 1+ 4 c;8w2("+1)_s + c]3/ Rw" .
Multiplying these out and considering the order of the pole of Df} ¢ (0), the result

follows. By Lemma 5.3 if « or y is less than I" + 1 the first complex components
of w[D¥Z(0)],, are of the form Cw"*! + C'w"*! 4 ...,

C-A=C-C=0, C-C'#0, C' A #0.
If o or y is greater than or equal to (I” + 1) the expansion is of the form
Crw"™! + w4 Crsw S
Ci-A=C-C1 =0, Cy A1 =0, C' A #0.

This immediately implies that the only possible contribution is of order O (eL~152).
O

Consider now the following sum in first term on the right-hand side of the defi-
nition of J; in formula (5.46):

2(L-1)

o
Mo R fs wDZOlw

(L-1)

M! A
-{Z—w(m,oo[D;’Z(())]wD%(O)} dw, M= (5.57)

a!p!
With regard to the contribution of the last complex component to (5.57), the growth

estimates of Lemma 5.3 ensure that Df ¢ (0) for B > I' 4 1 play no role. Thus (5.57)
equals
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2(L —1)! s s
MM Re/gl w[D;" Z(O)]w - [D;” Z(0)]wT dw
M L o .
* WRC,/SI wlD; " Z(O)]w - [D;” Z(0)]w Dy ¢(0) dw
2M! o s "
" (L/2—1)!(F+1)1R6/S. w[D;" ZO)]w - [D;" Z(0)]wD; ™ ¢ (0) dw,
N=L/2-1. (5.58)

From formula (5.31) we know that the last complex component of
w[DMZ(0)], = iM MM k) Rpw® + €L/ 1es Ryw™ 15} 4+
whereas w[DtL 2z (0)], has a last complex component expansion of the form
L2122y Rppw™ 15 4 €27 e Ry 175 ). (5.59)

Multiplying the expressions, we see that D! ¢ (0) contributes only a term of order

0] (62_152) and therefore can be ignored.
Thus we are left with only two terms in (5.58), our normal form. It remains

to show that the §-linear terms of the FCC of (5.58) do not contribute to the Z“‘
derivative. This follows as in Lemma 5.5 and the proof of Theorem 5.3 is complete.

Now we write down a general formula for E (L) (0) in case that L is even (see
Chap. 4, formula (4.66)). We have

EDO) =Ty + o+ Js + Ja+ T (5.60)

with Ji, ..., Js5 defined as follows:

N :=4Re/ w[DE'Z(0)]y - Xt dw;
S]

-2 -
B AT - 1)! s -
h= L e o 2Ot s
M=5+1
E::Z/Z;
]-—4(Z_1)!R DSZ(0 s_1d
3—m € Sl[ t ()]w'gs—l w
2(L —1)! .
L= Dlpe f [D7 2Oy - hodw,
olo! sl

o=5—1=L/2—1=M,

he =Y (0. 0)w[ DY Z(0)]w D) ¢ (0), (5.61)

a=0

B=(L-1)—GF—1)—a=L—-5—a;
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s—1

2_ M 5
vim 3 S Re [ 1D 2O,
M=2

+MRef W24 (0) - Z1p (0)DE3¢(0) dw
(Z—S)' sl tw rw t )

a+B+M=L-1;
Js = 4(L — I)Re/ wZ10 (0) - X0y DE26(0) dw
Sl

+ 2Re/ wXuw - XwDE9(0) dw.
Sl

We have Js = 0 because of formula (2.36) in Chap. 2. Moreover, as for the case
“L odd”, we obtain J; = 0 and J>» = O(8?) since the §-linear and w-linear terms in
the integrands are holomorphic. Thus we have

ED©0) = J5 + Js + 0718 + 0(eE1w?) + 0(eh). (5.62)

Now, using the same reasoning as in L odd, J; = O (eL718%) + O (e 1w?) +
0(eb). And again, as in the case of L odd, in J3 all terms involving D;gcj)(O), B>
(I' + 1) do not contribute §-linear terms. For § > (I" + 1), it follows from our
Fundamental Computational Principle that D,F + ¢(0) is used to kill a pole and the
only other generator is ¢/z" 1.

These considerations yield normal form Theorem 5.8, and the same arguments
show that it does not depend on the FCC.

Now we summarize the principal results of the preceding discussion in

Theorem 5.9 Let X € C (B, R3) be a nonplanar minimal surface with the excep-
tional branch point w = 0 of order n and index m. Suppose that X is given in normal
form at w =0, let L be the integer 2(m + 1)/(n + 1), and let k, 1 € N be the indices
of X introduced in Definition 5.1. Then we have:

(1) If k =1 = oo then the Taylor expansion of X has the form

o0
X(w)=Xo+ReY Fjw/ "™V forweB (5.63)
j=l1
with Xo € R3 and Fj e C3.
(ii) Ifnotk =1= 00, and k > 1 is satisfied, then the following holds:
Given €9 > 0 and p € No, there is a C°- "-diffeomorphism ¢ of 9B onto itself
such that the harmonic extension Y € C®(B,R¥ of Y ;=X o with X = X|33
satisfies

¢ —idys ||Cu(337R2) < €0, Yy — XHCM(E,R}) < €0 (5.64)
and

DY) < D(X).
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In other words, X cannot be a relative minimizer of D “with respect to its own
boundary”.

Remark 5.4 We first note that the assumption “X € C*(B,R%” in the previ-
ous discussion is only needed when we consider the varied energy functional
E(t) produced by variations of the boundary values X = X|s5. The assumption
“X e C*®(B, R3)” suffices for the definition of n,m, L, k, [, m given at the begin-
ning of this chapter.

Secondly we observe that it is not relevant that the parameter domain of the
minimal surface X € C (B, R?) in Theorem 5.9 is the unit disk B;(0). Instead we
could take any other disk B’ = B, (0). For instance, if the minimal surface X : B —
R3 is merely of class CO%(B1,R3), we may take B, (0) with 0 <r < 1 as domain B
to which Theorem 5.9 is applied.

These two observations will be used in the proof of the next result.

In the sequel, I" will again denote a closed, rectifiable Jordan curve, and C(I") is
the usual class of disk-type surfaces Z : B — R? bounded by I'.

Theorem 5.10 Let X € C(I") be a nonplanar minimal surface X:B—>R3 in nor-
mal form at the exceptional branch point w = 0, having the indices k,l € N as
introduced in Definition 5.1. Then we have:

@) kA;él (i.e. k =1 cannot happen);
(i) X is not a relative minimizer of A in C(I') if k > [ is satisfied.

Proof As X € C®°(B,R%), the indices k,! € N are well defined.
(1) Suppose that k =/ = co. Then X (w) for w € B is given by (5.63), according
to Theorem 5.9 and Remark 5.4. Set

1 2
w,1 =rexp <m2ni> , wf =rexp <n—+12m’) forO<r <1,

w! :=exp LZm’ w? :=exp LZm' 8 =|w! —w?| >0
. n+1 ’ . n+1 L) n - k)

and note that w,l, wf € B; w!, w? € 9 B; furthermore,

1 2

|w —wr1|=1—r, |w —w3|=1—r.

Since the boundary values X = Xlon yield a homeomorphism from 9 B onto I”, we
have

€(8y) :==inf{| X (w") — X(w")| :w’,w” € 9B and |[w’ — w"| =6,} > 0.
Therefore,
0<e@n) <IXw" — Xw?)
<X = X))+ X w") — X))+ X w?) - Xw?)].
Since (w!)" ! = (w2)"*!, we infer from (5.63) that X (w') = X (w?), and so,

0<e@y) <|Xwh—XwhH+1Xw?) - Xw?)| -0
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as r — 1, a contradiction. Consequently, at least one of the indices &,/ has to be
finite, hence k # [, and so it makes sense to require that k > [ holds on B for X.

(ii) Fix some r € (0, 1) and set B’ := B,(0) CC B and X' := )A(lg/. Then the
indices k, [, n, m, L for X' e C>®(B’, R3) are the same as for )A( and so X’ satisfies
k > 1. By Theorem 5.9 and Remark 5.4 there is a C*°-diffeomorphism ¢ : BB/
3B’ of 3B’ onto itself such that the harmonic extension Z : B’ — R3 of X 0 ¢ =
X o¢:9B — R3 to B’ satisfies

Dy/(Z) < D/ (X). (5.65)
Assume that ¢ is given by
b (re'?y =re'r®

with a 27 -shift periodic function y € C*°(R). Then we define a C*°-diffeomorphism
¥ : T — T of the annulus

={weC:r<lw| <1}
onto itself by setting
U (w):=pe? @ forw=pe? €T,
and we note that
v (w)=¢(w) forwedB.
Set

7 (w) forw € B,

" — (5.66)
X(Ww)) forweT=B\B.

X*(w) := {

We have 2(1})) = )A((w) for w e dB’, and ¥ is a diffeomorphism from 9B onto
itself. Then X* € C(I") N C°(B, R?), and we have

AXY) =Ap(Z)+ Ar(X o W). (5.67)
Since ¥ : T — T is a diffeomorphism and X is conformal, we have

Ar(X o W) = Ar(X) = Dr (X). (5.68)
Furthermore, the inequality A g < Dps together with (5.65) yields

Ap(2) < Dp/(2) < Dp/(X') = Dp:(X). (5.69)
Combining (5.65)—(5.69), we arrive at
A(X*) < Dp/(X) + Dr(X) = D(X) = A(X),

taking the conformality of X into account. This completes the proof of (ii). g
Corollary 5.1 Let Xe C(I") be a nonplanar minimal surface X : B — Rinnormal
form at w = 0 which is a relative minimizer of D. Then w = 0 can only be an

exceptional branch point of X if the indices k, 1 € N satisfy k # [ and k > [ does not
hold.
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Remark 5.5 On account of this corollary and of Remarks 5.1 and 5.2, Theorem 5.1
will be proved if we can show that w = 0 cannot be an exceptional branch point
which does not satisfy k > [. This will be proved in the next chapter where we
derive a new local representation Y:=Xo ¥~ ! with possibly new indices K, I/, but
n =n,m' =m,L = L, such that k' = oco. Then either /' = 0o or I’ < o0o. In the
latter case we will be able to show that X cannot be a minimizer of A in € (I'). Thus
it remains to show that not k¥’ =’ = oo. This cannot be so easily excluded as in
Theorem 5.10(i), since the local minimal surface Y: B, (0) — R3 might not satisfy
a Plateau boundary condition. However, w = 0 is now a “false branch point” of X s
and this can be excluded by the reasoning of Gulliver/Osserman/Royden [1]. We
give our own brief proofs of this result in the care of smooth boundaries in Chap. 7.



Chapter 6
Exceptional Branch Points Without
the Condition k > [

Now let X € C(I") bea nonplanar minimal surface in normal form at the exceptional
branch point w = 0 with k # [ which does not satisfy k > /. We have

XowW) = (Ajw" + Ayw" ™+ Ryw™ + )
withm > n, A1 #0, R;; # 0. As in Chap. 5 we introduce C; and C} € R? by
Cj:=Aj, C;:=0 ifA;-A;=0,
C;:=0, C}::AJ- ifA;j-A; #0.
Set
Oi=G-D+m+1);

then

w)A(U)(w)Z(Alwn+1+ZCjw@j+ZC}w@j,mem+l+-~->_
j>1 j>1

Lemma 6.1 We have C'; =3, A1 + /Ay

Proof A1 and A, are linearly independent since A; - A} =0, A CA # 0, and
dimc C?2 =2. O

Write C; = A;Ay. Then we have
wf(w(w) = (A] (Z)ij@j +Z)‘/jw@j> _l’_zl Zv}w@j’ mem-i-l +)
J j J

Let us introduce the holomorphic function g(w) by

n+1

_ RV 1,0
gw)=-— +Z[(A,+AJ.)/@,]U) J. (6.1)
j>1
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So we can write

gw) = w" My (w)

where 1 (w) is a holomorphic function on B which can be written as

1
Yi(w) = il + Y2 (w),

where ¥ (w) is a holomorphic function on B of the form
Yo (w) =ajw +agw? + -

Therefore, close to w = 0, we can extract the (n + 1)th root of {r{(w), i.e. there
is a neighbourhood B, (0) of w =0, 0 < p < 1, and a holomorphic mapping ¢ :

B,(0) — C with ¢(0) = [1/(n + 1)]#T > 0 such that
¢" T (w) =y (w) forw € B,(0).
Introduce the holomorphic function ¥ : B,(0) — C by
Y(w) :=we(w) forw e B,(0). (6.2)
We have ¥ (0) = 0 and ¥’(0) > 0 because of
¥ (w) = p(w) + we' (w).

Thus the mapping w + (w) is biholomorphic on B, (0) for 0 < p < 1, and its in-
verse ¥~ ! is a well-defined holomorphic map on B, 0y, 0 < p’ < 1, with ¢ (0) =0.
We obtain the Taylor expansion

vl z)=ciz+--- withep #0,
and from z = ¥ (w) it follows
Zn+l — wn+1¢n+l(w) — wn+ll//1 (w) — g(w) for |w| <p.

Using the transformation w = ¥ ~1(2) on B/ (0), we can introduce a new minimal
surface Y : B,y (0) — R3 by setting

Yi=Xoy L (6.3)
Then we obtain the local expansion
Y(2) =Xo+Re(A; " + A1y (). Ry, 2" ) (6.4)
with A; #0, R/, #0, and y (z) := az?™ "+ ...

Thus we arrive at

Proposition 6.1 There is a biholomorphic mapping ¥ from a neighbourhood of
w =0, satisfying ¥ (0) =0, such that Y = X oy~ : B, (0) — R3 with0 < p’ <« 1
is a mapping in normal form at the exceptional branch point w = 0 which satisfies
k' =o0.

Now we are going to verify



6 Exceptional Branch Points Without the Condition k > / 101

Proposition 6.2 Consider the minimal surface Y=Xo Vil B, (0) — R3, 0 <
o' K 1, from Proposition 6.1 with the new indices kK, eN. Then we have: Either
k' =1' = 00, or else there is a mapping X* € C(I") such that A(X*) < A(X).

Proof Choose r; and r, with 0 < r; <rp < p’ and set

B':=B,,(0), B" = B,,(0), T:=B"\B ={zeC:ri <|z| <r)}.

Moreover, we apply Theorem 5.9 and Remark 5.4 of Chap. 5 to Y, assuming that
we have not k' =1’ = co. Then, for any € > 0, there is a C*°-diffeomorphism ¢ of
9 B’ onto itself such that

lé — idaB’”cl(aB//,R% < €0, (6.5)

and that the harmonic extension Z € C®(B',R3) of Z:=Y o ¢ with ¥ := 1?|3B/
satisfies

Dp/(Z) < Dy (Y). (6.6)
Let ¢ be represented by
p(rei?y =re'v® (6.7)
with a 27 -shift periodic function y € C*°(R). Because of (6.5) we have
1
ly' (@) — 1] <8(ep) < — with lim 8(ep) =0. (6.8)
4 €—=+0
Now we define a mapping ¥ : T — T of the annulus T onto itself by setting
W(z):=re?"?  forz=re'? withr; <r <nr,

7r.0) =1 — u(ly @) + 1),  pu(r) = —

rn—r
We note that, for any r € [r1, r;], ¥ provides a one-to-one mapping of the circle

9 B, (0) onto itself; thus ¥ yields a one-to-one mapping from 7T onto itself. Further-
more,

r

W, (re'?) = 70 {1 +ir— - [y (©) — 9]} ,

Wy (re'?y = iryp(r,0)e!7 "9,

Fix some sufficiently small €y > 0. Then the Jacobian Jy of ¥ is positive on T,
taking (6.8) into account, and therefore ¥ is a diffeomorphism of 7 onto itself
which satisfies

V() =¢(z) forlz|=r, V(z) =z forlz|=r.
Define Y* : B” — R3 by

7(2) forz e B/,

Y(W(z) forzeT. (6.9)

Y*(2) == {
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Then Y* € Hzl(B”, R3) N COB”,R?), Y*(z) = ¥ (z) for z € 9B”, and
Apr(Y*)=Ap(Z)+ Ar(Y o W). (6.10)
From (6.6) and the conformality of Y we infer
Ap(Z) < Dp(Z) < Dp(¥) = Ap(¥), (6.11)
and we also have
Ar(Y o) = Ar(Y) (6.12)

since ¥ is a diffeomorphism from 7 onto itself. By virtue of (6.10)—(6.12) we arrive
at

Apr(Y*) < Ap(Y) + Ar(Y) = Apn(Y). (6.13)

Recall that ¥ = X o ¥ ~! for the biholomorphic mapping ¥ ! : B,/ (0) - B and set
U :=v¢~(B”) cC B. Then

Yoyly=Xlg and Y* oyl =Xl
where dU is regular and real analytic. It follows that

Y*(y(w)) forweU
X(w) forwe B\U

defines a surface X™* € G(I"), and we obtain from (6.13) and (6.14)

X*(w) := { (6.14)

AX*) = Ay(Y* o) + Apu(X)
=Ap(Y*) + Apu(X)
< Apr(¥) + AB\U(}A()
=Ap(X oy ™)+ Apu(X)
=Ay(X) + Apu(X) = AX).

This completes the proof of Proposition 6.2. U

Suppose now that in Proposition 6.2 we have the case k' =1’ = 0o. This means
there is a biholomorphic mapping ¥ : B,(wo) — C, 0 < p <« 1, with 1 (0) = 0 such
that )A’(z) = )A((w’1 (2)) satisfies

o0
Y()=Yo+Re) Fiz/"D forzeBy(0), 0<p <1,
j=1

where Fy # 0.

This means that w = 0 is a “locally analytically false” branch point of X, and in
particular, w = 0 is a false branch point of X. However, this is impossible for Xe
C(I"), according to the results of Gulliver/Osserman/Royden [1] which we might
use here (cf. Sect. 6 of [1], in particular Theorem 6.16). Thus we obtain
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Proposition 6.3 For X € C(I') and the mapping Y =Xo V! from Proposition 6.1,
we do not have k' =1' = oo.

From Propositions 6.1-6.3 we infer:
Theorem 6.1 Let X € C(I') bea nonplanar minimal surface X : B — R3 innormal
form at the exceptional branch point w = 0, and suppose that the condition k > [

does not hold. Then X is not an absolute minimizer of Ain C(I).

Combining this theorem with results in Chap. 5, namely Remarks 5.1 and 5.2 and
Theorem 5.10, the Second Main Theorem (= Theorem 5.1 of Chap. 5) is proved.



Chapter 7
New Brief Proofs
of the Gulliver—-Osserman—Royden Theorem

7.1 The First Proof

We would like to present very much simplified proofs of versions of the Gulliver—
Osserman—Royden (GOR) theorem [1], in the case I is C 2@ smooth. In the first
proof instead of employing a topological theory of ramified coverings used in
(GOR), we introduce a new analytical method of root curves. The surprising as-
pect of this proof is that it connects the issue of the existence of analytical false
interior branch points with boundary branch points. We should note that this fact
was also observed by F. Tomi [1] who has found his own very brief proof of (GOR)
in the case I" € C%® which we also include. We first state our main

Theorem 7.1 If)A( eC(IN), " e C*?, isa CO relative minimum of area then w =0
cannot be an analytically false branch point, and thus X cannot have w =0 as a
branch point.

We begin by defining the set:
R={peS'|X(p)=X(). q€B’).

Lemma 7.1 If X € @(I'), R # S'.

Proof Suppose R = S'. Consider a linear function £ = R3> — R given by £(x) =
Ya;x;. Then for a fixed a = (ay, az, a3), the planes are parallel and for b large posi-
tive these planes do not intersect X (B). Decrease b until there is a first point of inter-
section; i.e. L()A((p)) +b =0 forsome p € B. Then forall p € B, L()A((p)) +b<0.
Noting that k (p) := L(X (p)) + b is a harmonic function, then by the strong maxi-
mum principle for harmonic functions, ¥ cannot have an interior maximum. There-
fore p e S' and L(X(g)) +b <O forall g € BY. But L(X(p)) +b=L(X(p")) +b
for some p’ € BY, a contradiction, proving Lemma 7.1. O

From what we have proved already, we know that if XeCI)isaC O-Arelative
minimum with an exceptional branch point at w = 0, then near w =0 X(w) =
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Y (g(w)) for some locally defined (near w = 0) embedded minimal surface Y. More-
over

Xy = (A1g'(w) + A1 p'(w), Ruy' (w)). (7.1)
We now have:

Lemma 7.2 IfI" € C>%(B), then g, p, y are in C>%(B). If I' is real analytic then
g, p, y are real analytic.

Proof If I' € C>“, then XecC 2’°‘_(§) and if I" is real analytic X has a real analytic
extension to a neighbourhood of B. Since A; - A| =0, we have
(A1-ADg'(w) e CH(B).
Similarly for p and y. The analytic case follows analogously. 0
We begin the proof of Theorem 7.1 by first ruling out analytically false interior

branch points in the case X has no boundary branch points. This case is quite easy
to prove and gives some geometric understanding as to why Theorem 7.1 is true.

Proposition 7.1 If Xe C(I) is a CV relative minimum of area with an analytically
false branch point at w = 0, as above, and if g’ #0 on S', then R = S'.

By Lemma 7.1 we know that R = S! is impossible, thus we obtain:

Theorem 7.2 If X e c(n), 1;' e Ccre, X a CY relative minimum of area where
g#0and g #0on S', then X cannot have w = 0 as an analytically false branch
point, and thus a C° relative minimum of area cannot be branched at all.

Lemma 7.3 Under the hypothesis of Theorem 7.2, R # (.

To facilitate the proof of Lemma 7.3, we introduce:

A:={0:[0,1] - C | o analytic, embedded, o (1) € U, where U is the unbounded
component of C \ g(S!), o(0) =0, o avoids the image of the zeros of g’

(see remark below) other than 0 and o is transverse to g(S 1)}.

Remark 7.1 The interior zeros g’ are countable and since g is holomorphic on B
and C? on S, the zeros of g’ are nowhere dense and this image has Hausdorff 1-
dimension zero, Jiang [1]. Thus, Tomi-Tromba [1], the image of these zeros does
not disconnect R?.

Then, for all o € A, g_1 (o]0, 1]) is a one-dimensional submanifold of B trans-
verse to S'. We now construct what we call the root curves of o € a.
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Lemma 7.4 The equation g(w) = o(t) generates (n + 1) analytic root curves,
0j(t),1 <j<@m+1),each analyticon 0 <t < 1 and satisfying

0;(0)=0, g(oj() =u

gloj(®)=0o() Vj

p(oj(®) = ploi(t)) Vi, j (7.2)
y(oj(®)=y(oi(t)) Vi, j

g(0j(1) =g(oi(t)) Vi, j

for all t such that o;(t) € B.

Proof Along o (t), we may define the (n + 1)th roots of o (t), namely &;(¢),...,
Er1(0), & " =05 (7). About a neighbourhood of 0, and since w — we(w) is a
local diffeomorphism, the {o;} are the (n + 1) solutions to the equation

we(w) =& (7). (7.3)

For t > 0, g~'(o (1)) is a one-dimensional manifold and the {o;(¢)} constitute
(n + 1) components of g_l(o (t)). By constructing g maps each o;(¢) diffeomor-
phically onto its image, and near w =0

Xw)=YEw),  lop@]"" =g@) (7.4)
for some Y. This implies that, near w =0, p(w) = p(g(w)), y (w) = y(g(w)) and
from this (7.2) follows by analyticity. g

From (7.2) we immediately have:

Lemma 7.5
X(oj () = X(0;(1)) (1.5)
foralli, j such that 0;(t),0(t) € B.

Lemma 7.6 For each index j, thereisat;,0<t; <1 suchthatoj(t;) € st

Proof If not o;(t) € BY for all ¢, hence o (1) € B. Thus g(o;(1)) =0 (1) € U and
g maps an interior point of B to a point in the unbounded component of C \ g(S'),
a clear impossibility. g

Thus there must be an index t and a first time #; such that o;(¢;) € § L By (7.5)
and monotonicity o (f;) € BO, for all j # 7. Thus o, (f;) € R and R # @, proving
Lemma 7.4.

The next two lemmas conclude the proofs of Proposition 7.1 and Theorem 7.2.

Lemma 7.7 R is open and non-empty.

Lemma 7.8 Under the hypotheses of Theorem 7.2 R is closed.
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The basic idea is to show that each o € A generates a point of R. To achieve this
we construct a map

AL RS
For each o € a, there is an index 7, a root curve o; and a first time 7; such that #;
is the first time o7 hits S1, and for all indices JF#T,0(t) € B, for if oj(ty) € st,
(7.5) would violate boundary monotonicity of X. Now 1, depends smoothly on o,
i.e. 0 — t;(0) is smooth. By smooth we mean the following: If 4 : [0, 1] — C,
h(0) =0 is analytic and small in any C" norm, r > 3, then (o + ) € A. Then

s+ ty (0 + sh)
is C!. We define the map
P A->R
by
@(0)=o0.(tr) € S.
Proof of Lemma 7.7 Let o € A be fixed, p = o (t;). Furthermore, let (7, w) be a

normal bundle of S' such that the derivative of the projection map Dx(p) : R> —
T,S ! has the property that

o.(tr) € Ker Dr(p).
Given an analytic map /, define i, (¢) by

Dg(p)h(t) = h(1). (7.6)
We have @ (o) = o, (t;(0)), thus
D& (0)h = h(t:(0)) + 0, (t:(0)) Dt (o).
Since 77 (07 (0)) = 07 (1:(9)),
Dr - D®(o)h = DP(0)h = Drth,(t;(0)).
IfveT,S 1 is arbitrary, pick 4 so that

he(t:(0)) =v.

Then D®(0)h = v and D@ is surjective implying that the range of @ is open, and
Lemma 7.7 is proved. 0

Proof of Lemma 7.8 Assume we have a sequence oy (f7,) —> p € S . We claim
that all other root curves must be bounded away from S'. Clearly {o}” (te,)} J £ T
cannot have an accumulative point on S' other than p, since by (7.5) this would
violate monotonicity. Also p cannot be an accumulation point since g is a local
diffeomorphism and (7.2) would be violated.

By picking a subsequence, we may assume that o;"(t;,, ), i # T, converge to
Pls ..., pn € B, n the order of the branch point w = 0. Let pg = p. By changing
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variables we may assume that around each py, £ # 0

g(w) =a¢(w— p)™ +g(p).

Let V be a neighbourhood of g(p) and Wy of p with g : Wy — V a diffeomorphism
and Wy, £ # 0 neighbourhoods of p; such that W, ¢ g~!(V), and W, N S! # C. Let
N be large enough so that GT]X] (tzy) € Wo, and if j # n, O']N (tzy) € W, for some
L. Let T = 1N5,07 1= Ur/yv. Let 6; be a C*° embedded mapping agreeing with o,
outside Wy, 6, (¢;) = p and the image of &; avoiding the pre-image of the image of
the interior zeros of g’. By approximation, we may assume that &; is analytic. Let
0 :=g(67). Then p =6;(t;) = @(6) € R, and so R is closed. This completes the
proof of Lemma 7.8 and Theorem 7.2. g

We now want to prove Theorem 7.1 by finding a way to apply Theorem 7.2
to a disk of radius slightly less than 1, even though X restricted to the boundary
of this disk need not be monotonic. Thus monotonicity must be replaced by other
conditions. This is the content of Lemmas 7.10 and 7.11. Let py, ..., p¢ be the finite
number of branch points of X on S! and Wy, ..., W, neighbourhoods so that the
boundary expansion

Xw(w) = (w— p;)Fj(w). (7.7)

Fj(pj)#0,holds. Let K C SUK = ~UW;)nN S!, ~ meaning “complement of”
and define

Ag ={oceA|o(t;) e K}. (7.8)

‘We now have:

Lemma 7.9 For j # t define
I;(K) := inf {dist(o}(t;), shy (7.9)
ogEeag

where dist := distance.
Then, forall j € t,1;(K) > 0.

Proof Suppose the contrary. Let {oc™} € O be a sequence with dist(oj’.” (t,,). S 0.
By passing to a subsequence we may assume that o' (f;,) - p € S I and
O’]’-’:n (tz,) >q €S I By monotonicity and (7.5), p = ¢. Since p is not a branch point
either g, p, y (cf. (7.1)) must have a non-vanishing derivative at p, say p’(p) # 0.
Then p is locally one to one, but p(ai”':(trm)) = p(oy. (tr,)), implying that for m
large aj’.":, (tr,) = o7, (tz,), a contradiction. O

Now let W = Wy for some k, Ay~ defined as was Ag, and 1;(WN S1) defined
as was 1;(K) (cf. (7.9)) (i.e. WN s! replaces K).

Lemma 7.10 For W sufficiently small, and for all j # t
;(wnsh>o.
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Since the proof of Lemma 7.10 is a bit technical, let us first complete the proof
of Theorem 7.1, assuming Lemmas 7.9 and 7.10.

Proof of Theorem 7.1 Let {r,} be a sequence of radii converging to 1 from be-
low with g|S;,, # 0 and ¢’|S,, # 0, S, the circle of radius r,,. It follows from
Lemmas 7.9 and 7.10, that for m sufficiently large, no two root curves can simulta-
neously hit S;,,. Let R,, :=={p e R, |)A((p) = )A((q), where ¢ is in the interior of the
disk of radius r,,}. Then Theorem 7.2 and previous lemmas can be applied to this
situation to conclude that R, = S,,, and thus w = 0 cannot be a branch point, thus

proving Theorem 7.1. O

Proof of Lemma 7.10 Assume that on W, ¢ = g,

pw)=w—q) p(w)+c (7.10)

p(q) #0, r odd, 5 € C'. Identify ¢ with 0 in the Poincaré upper half-plane 7. On
H, the mapping z — 7" divides any disk centred at O into r disjoint open sets on
which z — 7" is one to one.

Since near 0, z — z" p(z) can be written as w(z)", z — w(z) a local diffeomor-
phism, we immediately obtain:

Lemma 7.11 There are v = 3 pairwise disjoint open sets §21, ..., $2,, with W=
U82;, for W sufficiently small, and p is one to one on each £2;.

We now prove Lemma 7.10. Assume W has been chosen so that Lemma 7.11
applies. Choose a neighbourhood V of ¢ so that a component of p~!(V) C W.
Now suppose 1;(W N S!) =0, and let 0™ € Ay g with o (t3.) = pm € W and
dist(a}” (7)), Sy — 0. By passing to a subsequence we may assume p,, — p. Then
P = q, otherwise the argument in Lemma 7.9 would yield a contradiction. Thus, we
may assume that for some path o we have:

() or(tz) e WN S
(ii) For some j #1,0(t;) € 22 N p~L(V).
(iii) For some sq, 0¢ (s) € 21 N p~ (V) for all s > 59, and oj(s) e N o~ (V).

To complete the proof of Lemma 7.10, we argue as before. Let 6, be a C*° path
such that

(iv) 6:(0),0:(t:) =q.
(v) 0:(2) =0 (1), Vs < s0.
(Vi) Gcls0, e € 21N p~ (V).
(vii) p(6¢[s0, tz]) is embedded.
(viii) &; avoids the inverse image of the p image of S'.
(ix) 07 () avoids the zeros of g’ for t < t;. This can be done since the zeros of
g’ in the interior are countable. Take any 6., then one has uncountably many
disjoint variations fixing ¢, and thus, infinitely many miss the zeros of g’.
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Let 6; be an analytic approximation to G; so that g(6¢[0, so]) is an embed-
ding, 6; a root curve close to o; for 0 < s < s9, 6¢[0, %] and with (iv) and
(vi)—(ix) holding for &;. By (7.5), p(6.(t)) = p(6,(t)) for all ¢. Thus for ¢t > so,
Gi(t) € p~ (V) c W. Since 6,[0, ] is embedded, it follows that 6,10, t;] is also
embedded.

As s — t, let g1 € W be any limit point. Then

plq) =(q1 —q) plg1) +c=p(g)+c=c.

Thus g = ¢1. If we define 6;(t;) = ¢, then &; is continuous on [0, #;]. Now &, and
67 may be viewed as the boundary of an open disk D with boundary component 0
and g, and 6, (0, t;) and 6 (0, t;). From (7.5) it follows that if we look at the images
of the intervals (0, #;) by 6; and &, and the values of X on these images we obtain

X16,0,t;) =X |00, 1;)

and since this is true for all admissible variations 6, of & we see thatforz, 0 <t < t;
the normal derivatives of X also agree. By identifying 5, (¢) and 6. (¢) for0 <t <t,,
X (D) is a smooth closed minimal submanifold of R? with boundary points X 0
and X (g). Thus, by the convex hull property of minimal surfaces, X (D) lies within
the convex hull of X (0) and X (¢), i.e. on the straight line joining X (0) and X (q), a
clear impossibility, and Lemma 7.10 is proved. d

7.2 Tomi’s Proof of the Gulliver-Osserman—-Royden Theorem

F. Tomi has generously allowed us to include his proof of the theorem of Gulliver—
Osserman—Royden. His proof does not use the fact that X is a minimum. For the
sake of generality, Tomi works with a domain which is a Riemann surface M with
k boundary components. Thus, he considers minimal surfaces of genus greater than
one. For those unfamiliar with these concepts, assume k =1, M = B.

Let M be a compact Riemann surface with boundary M and X : M — R> a
minimal surface spanning a collection I" = I U - - U I'; of pairwise disjoint Jordan
curves I7q,..., I} of class C Li je. X is harmonic and conformal (up to branch
points) in int(M), continuous on M, and X : dM — I is bijective. It follows then
that X € C1*(M) and that X is immersed on M up to finitely many branch points
in the interior and on the boundary of M (Nitsche [1]).

We follow the papers of Gulliver as to the basic definitions and the terminology.

Definition 7.1

(1) Two different points p, g € int(M) are called equivalent if they are both regular
for X and there are disjoint open neighbourhoods V of p and W of ¢ and a
diffeomorphism A : V. — W such that X (p) = X (¢) and X|W = (X|V) o h.

(i1) The surface X is called ramified if it admits a pair of equivalent points. A point
p € M is called a ramified point if each neighbourhood of p contains a pair of
equivalent points.
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(iii) A set S C M is defined as the set of all points p € dM such that there is a
point g € int(M) and a sequence of equivalent pairs (py, gn), n € N, in int(M)
with the property that p, — p, g, — g (n — 00).

Since the tangent planes of the surface X coincide in equivalent points and the
tangent planes extend smoothly into branch points, the tangent planes also are iden-
tical in limit points of equivalent points, whether the limit points are regular or not.

We would like to show that under suitable assumptions ramification does not
occur. We thus exclude false branch points in particular since such points are clearly
ramified points. We shall prove the following theorem which is a special case of
Gulliver’s Theorem 8.9 in (Gulliver [1]). Our proof takes serious advantage of the
differentiability of the surface up to the boundary.

Theorem 7.3 Let ' =11 U --- U Iy be a collection of pairwise disjoint Jordan
curves in R3 of class C Lu o< n < 1, and such that each I'; contains at least one
extreme point of I', i.e. a point in the boundary of the convex hull of I" relative to
the affine subspace of R of minimal dimension containing I". Then any minimal
surface X : M — R3 such that X : 9M — T is bijective is not ramified.

Corollary 7.1 If I' is a single Jordan curve of class C* then any minimal surface
spanning I is not ramified.

The theorem (and hence the corollary) is an easy consequence of the following

Proposition 7.2 If X is ramified then there is a component C; of dM such that each
point of C; is either in S or it is a branch point of X.

Let us quickly deduce the theorem from the proposition: let I; be the component
of I' such that I; = X(C;). By assumption, I} contains an extreme point p; of
I', p;i = X(z;) with z; € C; and hence z; € S or z; is a branch point. Let then P be a
supporting plane in p; for I" and hence for X (M). If z; € S we may apply the strong
maximum principle for harmonic functions and in case that z; is a branch point
Hopf’s boundary point lemma to conclude that X (M) is contained in P, in particular
I" C P.Identifying P with R? we may repeat the argument in one dimension lower,
implying that I” is contained in a line, a contradiction.

Proof of Proposition 7.2 Let us recall the local behaviour of a minimal surface
around a branch point. To begin with let p € int(M) be such a point. We introduce a
system of Cartesian coordinates (xp, x2, x3) in R3 such that X (p) is the origin and
the plane x3 = 0 is the tangent plane IT of X in X (p). Then, with respect to a local
conformal coordinate system w = u + iv around p one has the representation.

X, =aRew” +bImw™” + o(w™),
(7.11)
Xy =—almw™ +bRew™ +o(w™)
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where a, b € R3 with |a| = |b| > 0, {(a,b) =0, a3 = b3 =0 and m € N is the order
of the branch point. Considering a, b as vectors in R* we obtain from (7.11) by
integration

= (X1, Xa) = — ! l(a Rew" ! + bImw”™ ) + o™,  (7.12)

From (7.11) and (7.12) we conclude that there is a disk D, = {(x1, x2) € I1| xf +
x% <r?}and a neighbourhood U of p € M such that X(U\{p}) is an (m + 1)-
sheeted graph over D, i.e. X is regular on U\{p}, )A((U\{p}) = D,\{0} and the
degree of )A(|U\{p} is m + 1 on D,\{0}. Corresponding representations hold in
case p is a boundary branch point, but with the following modification: the local
conformal (u, v)-coordinate system is located in the upper half-plane v > 0 so that
v = 0 corresponds to d M, the order m of the branch point is even, and the orthogonal
projection of X (U N dM) on IT divides the disk D, into two regions such that the
degree of X is 2m + 1 on one of them and 1 >m on the other one. g

Lemma 7.12 If X is ramified then the set S is not empty.

Proof Let p,q € int(M) be a pair of equivalent points and let us choose a path
« : [0, 1] - M such that «([0, 1)) C int(M), ¢ (0) = p, (1) € 9M and such that
avoids the finite set X 1 (X (B)), where B denotes the set of branch points of X. Let
us consider a maximal corresponding path 8 : [0, T) — int(M), 0 < t < 1, such that
B(0) =g and («(t), B(?)) is a pair of equivalent points for ¢ € [0, T), in particular
a(t) # B().

Case 1. T < 1. If there is a sequence t,, — T (n — 00) and a point w € M with
B(t;,) — w, then clearly w € § since «(t,) — «(t) € int(M). In the other case that
no such sequence (#,) exists, the curve g remains in a compact subset of int(M) and
there is a sequence s, — 7 and a point w € int(M) such that B(s,) - w(n — o).
Since X (w) =1lim X (B(s,)) = lim X («(s,,)) = X («¢(7)), w must be a regular point
of X since otherwise a(t) € X! (X (B)). Since X is injective in a neighbourhood of
a(7) it follows that a(7) # w and since both points are regular for X there are dis-
joint open neighbourhoods U of «(t) and V of w such that X (U) as well as X (V)
are graphs over some common domain in the common tangent plane of X («(7))
and X (w). Since a(s,) € U and B(s,) € V for sufficiently large n the two graphs
coincide on some open set and hence are identical, in particular X (U) = X (V). It
follows that B(1) = (X|V) ™' (X («(t))) for t € [s,, T) and that B(¢) can be extended
beyond t such that «(¢) and S(¢) are equivalent. So 8 was not maximal and we have
shown that S is not empty provided t < 1.

Case 2. T = 1. Again, we consider first the case that for some sequence #, — 1 one
has B(t,) - w (n — oo) for some w € dM. Because of X (x(1)) =1lim X (a(t,)) =
lim X (B(#,)) = X (w) one has «(1) = w since X|dM is injective. But then «(1) = w
is a branch point since X could not be injective on any neighbourhood of «(1) = w,
contradicting the choice of «. Therefore 8(,) — w € int(M) for some w and some
sequence t, — 1, which shows that «(1) € S. Il
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Lemma 7.13 S is open in 0M.

Proof Let p € S. According to the definition of S there are ¢ € int(M) and a se-
quence of equivalent pairs (p,,g,) such that p, — p, g, = g (n — 00). The
points p, g may be regular or not but their tangent planes coincide and there are
disjoint neighbourhoods U of p and V of ¢ and a disk D, of radius r and cen-
tre xo = X(p) = X(g) in the common tangent plane such that the representa-
tions (7.11) and (7.12) hold in U and V and X (U) as well as X (V) are multi-
graphs over D,\{xo}, respectively, as described above. Since p, € U and g, € V
for large n there is an open subset 2 of D,\{xo} such that some sheet of X (U)
coincides with some sheet of X (V) over £2. By analyticity (or ellipticity) we con-
clude that X (U) is completely contained in X (V). Let now z € (U\{p}) N dM and
(zn) a sequence in (U\{p}) Nint(M) with z, — z and let us choose neighbour-
hoods U, of z,, U, C (U\{p}) Nint(M) such that X (U,) is a single-valued graph
over some open set §2, C D, C \{xo}. By what we have shown, X(U,) is con-
tained in some sheet of X (V) and hence coincides with some graph X (V,,), where
V, is a suitable component of XIV)"1(82,). Defining w, := (X|V,) "1 (X (z,)),
clearly z, and w,, are equivalent and, passing to a subsequence, we may assume that
wy, > weVC int(M), showing that z € S. Il

Once the following lemma is proved, Proposition 7.2 and hence Theorem 7.3 are
established.

Lemma 7.14 A boundary point p of S in dM is a branch point and an isolated
point of IM\S.

Proof The set S being open as shown in Lemma 7.13, S is a denumerable union of
open intervals in d M. A boundary point of S therefore either is an endpoint of one of
the intervals forming S or it is a limit point of such endpoints. Below we shall show
that each such endpoint is a branch point of X, implying that there are only finitely
many endpoints and hence only finitely many components of S. Then, of course,
each boundary point of S is an endpoint of some subinterval of S. Accordingly,
we now consider a boundary point p of some component of S. Then there is a
sequence (p,) in S and a sequence of equivalent pairs (z,, wy,) in int(M) such that
pn— p (n —> o0) and d(z,, pn) < % for some metric d on M. Eventually passing
to a subsequence, we may also assume that w, - w € M (n — 00). In case w €
int(M), p would belong to S. Therefore w € dM and since X (w) = lim X (w,) =
lim X (z,) = X (p) it follows that w = p and hence p is a branch point since X is not
one-to-one on any neighbourhood of p. We now employ the representations (7.11)
and (7.12) with the corresponding normalizations. We may furthermore assume that
all points (u, 0) € U with u > 0 belong to S. We must show that this also holds for
(u,0) € U with u < 0 provided that U is appropriately chosen. Recall that XU) =
D,, a disk in the tangent plane of radius r and centre 0 = X (0). From (7.11) and
(7.12), using (a b) =0 and |a|> = |b|* one computes



7.2 Tomi’s Proof of the Gulliver-Osserman—Royden Theorem 115

O 2o iy2 & v
%Ix(pe’ T =2(X, X))

_ 2 1 <|a|2 pZ(m—H)) o <p2(m+1)) -0 (7.13)
m+1 p

for z = pe!’ € U provided that the radius » and hence U are sufficiently small.
Equation (7.13) shows that the level sets |)A(| =5, 0 <s <r,are curves of class C',
in fact radial graphs with respect to the (p, 8)-coordinates and, since |)A( | =r on
dU Nint(M), each level set |)A(| = s connects two points (u:r, 0) and (u;, 0) on
UNJM, where uj >0 and u; <0, 0 <s < r. Hence we may parametrize each
level set as a curve

aS:[Oﬂl]_) U7 (XS(O)Z(M;'_, O)a ax(l)z(u;vo)v
. (7.14)
as([0,1)={zeU||X(@)|=s}, O<s<r

We now come to the central argument of our proof. Let z = (1,0) e U N M
with u > 0 be given, |)A((z)| =s5€(0,r), i.e. u = u}. We showed in the proof of
Lemma 7.14 that when z € S the points z,, in a corresponding sequence of equiva-
lent pairs (z,, wy,) with z,, — z may be chosen arbitrarily, if only sufficiently close
to Z. We use this freedom of choice by choosing z,, on the level curve |)A( | =s,
ie. 7y, = ag(ty) with t, > 0, t, - 0 (n — 00). Since the corresponding equiva-
lent points wy, also are in U and satisfy X (w;,) = X (z,,), it follows from (7.14) that
wy = o5 (Ty,) for some 1, > 0. It cannot be that 7,, < t,, for infinitely many n, because
then w, — o, (0) = z for a subsequence, implying that z is a branch point, contra-
dicting the fact that O is the only branch point of X in U. We may therefore assume
that 0 < t, < 1, for all n. For some fixed N € N let us now repeat the construction
of a maximal curve S pointwise equivalent to a,|[tn, 1], i.e. B : [ty, T) — int(M),
Bs(tn) = w, = as(ty) and (ax(2), Bs(1)), are equivalent pairs for all 7 € [ty, 7).
Since X (B;(t)) = X (as(t)), Bs parametrizes a portion of o, as follows from (7.14),
and hence

Bs (1) = as ((1))

for some continuous ¢ with ¢(1y) = Ty > ty. We claim that

o) >1t, telty,1). (7.15)

If there were a first value o with ¢(0) = o one could choose an arbitrary
sequence o, — o (n — o0), 0, < o, producing a sequence of equivalent pairs
(as(@(on)), as(on)) such that as(on) — ag(0), ag(@(on)) — ag(0) (n — 00).
Thus a, (o) is a branch point in U\{0}, a contradiction. Finally, we would like to
show that By reaches the endpoint of a, i.e.

th_r)n p)=1. (7.16)

If not, there is a sequence t, — 7 (n — 00) such that ¢(t,) > T (n — o0) with
T < 1. It follows from (7.15) that T < T'. In case T = T we obtain the same contra-
diction as above, namely that o (7) ought to be a branch point. If, on the other hand,
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we had t < T then the pair (o5 (7), as(T)) of different regular points in int(M) is
the limit of the sequence of equivalent pairs (o5 (), a5 (@(t,)) = Bs(tn)), n — o0,
and the curve S, could be extended beyond t by the same argument already used in
the proof of Lemma 7.12. Since t is maximal, (7.16) and consequently

lim ot (¢ (1)) = o5 (1) (7.17)

are proved. Repeating an argument from above we can exclude that T = 1 because
then o (1) is a branch point. Therefore we have t < 1, a3(t) € int(M) and by
(7.16) there is a sequence of equivalent pairs (o (), Bs(t,) = a5 (@(t,))) such that
as(ty) = as(t), Bs(th) — as(1). This proves that os (1) € S. Since o (1) = (u; , 0)
with u; < 0 and s € (0,r) may be arbitrarily chosen we have shown that some
interval (—e&, 0) with ¢ > 0 belongs to S. O



Chapter 8
Boundary Branch Points

In this chapter we first show that Dirichlet’s integral possesses intrinsic second
and third derivatives at a minimal surface X on the tangent space Ty M of M :=
H?(@B,R") of X = X|3B on the space J(X) of forced Jacobi fields for X. In par-
ticular it will be seen that J (X ) is a subspace of the kernel of the Hessian D2E(X)
of Dirichlet’s integral E(X) defined in (8.1) below, and an interesting formula (see
(8.16)) for the second variation of Dirichlet’s integral is derived.

Secondly we prove that, for a sufficiently smooth contour I" in R3, not only the
order, but also the index of a boundary branch point of a minimal surface X € C(I")
can be estimated in terms of the fotal curvature of I' if curvature and torsion of I
are nowhere zero.

Then we prove Wienholtz’s theorem, which states a condition under which a min-
imizer for Plateau’s problem cannot possess a boundary branch point. In particular
we show: If n is the order and m the index of a boundary branch point of X such
that 2m — 2 < 3n (equivalently 2m + 2 < 3(n + 1)) then X cannot be a minimizer
of Dirichlet’s integral of area. The key idea of the proof will be to again compute
the third derivative of Dirichlet’s integral, D, in an intrinsic way on J (}A( ), thereby
showing that the formula for £ 3 0) = %D(z (t))| o derived in Chap. 2 is valid
in the presence of boundary branch points as well.

Finally, we show that in the presence of a non-exceptional boundary branch point,
a minimal surface spanning a sufficiently smooth contour with non-zero curvature
and torsion cannot be a minimum for either energy or area.

Towards these goals, we first show that if the boundary contour I" C R” is of
class C™t7 r > 3, the space J—C;/Z(E, R") of harmonic surfaces from B into R",
mapping S! =3B to I', is a C” manifold, in fact, a C"-submanifold of the space
F3/2(B, R") of harmonic mappings from B into R”. Instead of the dimension n = 3
we do this for arbitrary dimension n. Here it is essential that we operate in the con-
text of a manifold since the third derivative of any real-valued C3-smooth function
is seen to be well defined as a trilinear form on the kernel of the Hessian of this
function at any critical point. We shall use the symbol D for the total derivative or
the Fréchet derivative. Therefore we need another notation for Dirichlet’s integral;
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instead of D we employ the symbol E and consider E as a function of boundary
values X : S! — R” (instead of their harmonic extension X), i.e.

1 f n A A s
E(X) :=§/(XM-XL,~|—XU-XU)dudv for X e H'/2(S",R").  (8.1)
B

It is a well-known fact that R” carries a C"°-Riemannian metric g with respect to
which I' is totally geodesic, i.e. any g-geodesic o : (—1,1) = R" with o (0) € I”
and 0/ (0) € Ty (0)I” remains on I'". Let (p, v) > exp pV denote the exponential map
of g; it is of class C"*#. Via harmonic extension we identify the space

M:=H*S', I

of H?-maps from S' to I with the space }C?/z(E, R™). In order to show that M

is a submanifold of H?(S', R") we need to identify the tangent space Tx M for
X e H*(S', I).
Definition 8.1 We define the tangent space Tx M of M at X € H>(S', I') as
TxM :={Y € H(S",R") : Y (¢!?) € Ty (o), 6 €R}.

Clearly Tx M is a Hilbert subspace of H>(S!, R"). Our goal is to show that the

map
D(Y)(s) :=expyy) Y(5), s=e",
is a local C"-diffeomorphism about the zero 0 € H>(S!, R") mapping a neighbour-
hood of zero in Tx M onto a neighbourhood of X in M. Towards this goal we have:
Theorem 8.1 If ¢ € C"t3(R", R"), then ® : H*(S!, R") — H?*(S', R") defined by
DY) :=¢oVY isof class C". Furthermore,
D" @y (1, ..., km)(s) = D"y (5y(A1(0), ..., Am(s)) forO<m <r.

The proof of this theorem will be a consequence of the following

Lemma 8.1 Ler L™(R",R") be the space of m-linear maps from R" into R",
and suppose that f € C3(R", L™ (R", R")). Then the map F : H*(S',R") —
LM(H*(SY, R"), H2(S', R")) defined by

Y FY)O1, .., dp)(s) := fFY () (A1), ..., Am(s))
is continuous. Moreover, if f € C* then F € C', and the derivative of Y +— F(Y) is

A= df (Y (s)(A(s), A1(S), ..., Am(s)).

Proof Recall that H?(S',R") is continuously and compactly embedded into
C'(S', R™). Assume for simplicity that

I jlle <1, 1Yl <20 Y llp2 <2,
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and consider the difference

119

[F(Y) = F)IO,s s Am)(8) = [F (Y (5)) — FX N1 (), -+ Am(5)).
Then
d -
T FX) = FDI0, - An) ()
=df (Y)Y )R, ey Am(8)) —df T DT ()1 (5), -, A (5))
+Y L)) = FEENIOE), - 21 () (), A1 (9), s (s))
j=1
=df (Y(s)(Y'(s) = Y () (A1 (5), -, Am(5))
+df (Y (5)) = df (Y (NI ()1 (), -+, A (5))
+ ) LX) = FEENIRS),o, K(5), s Am(5).
j=I1

Since f is Lipschitz continuous, we have
sup| f (¥ (5)) — f(¥ ()] < constsup|Y (s) — ¥ (s)]
s N
<const||Y — I7||H1,

and therefore

D L)) = FAEDIR), -, (), -, A (s))

j=1

m
<const Y [[Y =¥l |2; ()],
j=1
from which it follows that

m
Y FE) = FDI. o A )| < const][Y = ¥ 2.
j=I1 L2
Furthermore, the Lipschitz continuity of df implies
ldf (V)" =YY Outs s )l 2 < const]|Y =Vl o,
Idf (¥) —df MIX )1, Am)lz2 < const|[Y — Y|l 2.
Summarizing these estimates we obtain
d - -
”—[F(Y)—F(Y)]()q ..... Am)|| <const||Y — Y| y2.
ds L2
In the same manner we infer
d? - .
’—Z[F(Y)—F(Y)](M ,,,,, Am)||  =constl|Y — Y| g2,
ds L2
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since f,df, and d? f are Lipschitz continuous, using

d? -
W[F(Y) — FMIA, ..., Am)(S)

=d?fFY ()X DA () = V()1 (5), - o Am(s))
+df (Y )X () = V() R1E), s A (8))
+ ) df Y)Y () = Y (DR1(S), ... M (5), o A ()
j=I
+ [ F Y)Y (5)) = d* FT )T GNDIT ) A1E), -y A (5))
+[df (Y (5)) — df (Y (SHIT () A1(5), - -y A (5))

+ Y MdF Y () = df TN )01 A5(5), - A (5))

Y L) = FEEDIE). - M) ). A (5))

Jok=1,j<k
m
+ Z[df(Y(S))(Y/(S)) —df V)Y ENIR(s), -, Ais), ., Am (8)).
j=1
The estimates above prove that F maps H2(S', R") continuously into the space
L (HA (S RY), HA(S', R™)).
If f e C*thendf € C3 and d*> f € CZ, and Taylor’s theorem yields
fw+h)— fuw)—dfwh=ru,h)yh,h)

where
1
r(u,h)(h, h) :=/ (11— t)[dzf(u +th) — dzf(u)](h, h)dt.
0

Since f is in C* we obtain
7 (e, ) (., 1) || g2 < comst |||, for ||l g2 < 1.

This shows that the mapping F is differentiable, and its derivative DF(Y) at Y €
H?(S',R") is given by

(DFE(Y)h)(s) =df (Y (s)h(s).
Since df € C3, the first part of the lemma yields DF € C°. 0

Proof of Theorem 8.1 Applying Lemma 8.1 to f = d™¢ successively to m =
0,1,..., r — 1, we infer that D®, D2, ..., D" @ exist and are continuous. O
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Theorem 8.2 M = H2(S!, I') is a C"-submanifold of H*(S', R").

Proof Since H>(S',R") c C!(S,R"), the set M is closed in H2(S', R"). Consider
the map Y +— @ (Y) defined by

D(Y)(s) :=expy (s Y(s) for X € HA(S', 1),

which is of class C" by virtue of Theorem 8.1.

Since @ (0) is the identity map, the inverse function theorem implies that @ is a
local C"-diffeomorphism about 0. Moreover, as the Riemannian metric g is totally
geodesic with respect to I”, we see that @ maps Tx M into M. Since @ is also locally
invertible, it provides a coordinate chart for M as a submanifold of H>(S', R"). [J

Before we can apply the preceding results to Plateau’s problem we need an ab-
stract functional analytic reasoning which shows that a C3-function E : M — R on
a C"-smooth submanifold M of a Hilbert space 3, r > 3, possesses intrinsic first,
second, and third order derivatives for any critical point x of E (i.e. DE(x) = 0).
To prove this we need a few prerequisites.

By E € C3(M) we mean that E extends to a C>-map on a neighbourhood of
every point x € M. Equivalently we can use coordinate charts as follows. From
the definition of a submanifold it follows that about each point x € M there is a
C" -diffeomorphism p : V — V' from a neighbourhood V of x in H onto a neigh-
bourhood V' of 0 in H with p(x) = 0 such that p(V N M) is an open subset of a
fixed subspace Hy of H. Then “E € C3(M)” means that E o is of class C> for any
such chart (p, V) where v is the inverse of p. For x € M with the image 0 = p(x)
we define the tangent space T,y M of M at x by

I:M = Dy (0)[Ho] C K,

i.e. as the image of J{y under the mapping provided by the derivative D (0). This
definition of 7, M does not depend on the choice of the chart (p, V).
As each h € Ty M can be written as h = D (0)h with h € Hy, we define

DE(x)h := D(E o ¥)(0)h,

which again can be shown to be independent of the choice of the chart.
A point x € M is a critical point of E : M — R if DE(x) = 0. At a critical point
x of E there is a well-defined bilinear form

D’E(x): T:M x T,M - R
defined by
D?E(x)(h, k) := D*(E o ¥)(0)(h, k)
for h=Dy(0)h, k=DyOk: h keHo.

This is the Hessian (bilinear form), which again does not depend on the choice of
the chart (p, V), as we will shortly show. Surprisingly, there is also a third intrin-
sic derivative D3E(x), but this is intrinsically defined only on the kernel K, of
D?E(x),i.e.on

Ky :={heTiM:D*E(x)(h,k)=0forall k € T, M}.
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Let us state this formally as

Theorem 8.3 At a critical point x of E € C3(M) there is an intrinsically defined'
second derivative D*E(x) : TeM x T,M — R, and a third derivative D3E(x) :
K, x Ky x Ky — R defined as a trilinear map on the kernel K, of D?E (x).

To prove this we have to show that, with respect to any transition map ¢ : U — U
on U C M fixing the critical point x € U of E, the second and third derivatives of
E o ¢ depend only on the first derivative of ¢ and are independent of D?¢(x) and
D3¢ (x). Since we may choose the critical point x as the origin 0, the theorem is a
consequence of the following

Lemma 8.2 Let U be an open subset of a Hilbert space and suppose that 0 € U is
a critical point of E € C3(U). Assume also that K is the kernel of the Hessian of E
at0and ¢ : U — U is a C>-diffeomorphism of U onto itself with ¢(0) = 0. Then

D*(E 0 9)(0)(k1, k2) = D*E(0)(Dg(0)k1, De(0)k2),
and furthermore, if De(0)k; € K, j =1,2,3, then
D*(E 0 9)(0)(k1, ka, k3) = D* E(0)(Dg(0)k1, Dp(0)k2, Dp(0)k3).

Proof Repeatedly using the chain rule we see that
(i)  D(E o) (x)(h) = DE(¢(x)) Do(x)h.
(i)  D(E o @)(x)(h,k) = D*E(¢(x))(Dg(x)h, De(x)k)
+ DE(p(x))D*¢(x)(h, k).

(iii) D3 (E o @)(x)(h.k,£) = D*E(p(x))(Dg(x)h, Dp(x)k, Dp(x)L)
+ D2E(p(x))(D*¢(x)(h, £), De(x)k)
+ D2E(p(x))(Dp(x)h, D*¢(x)(k, £))
+ D2E(p(x))(D*¢(x)(h, k), D(x)t)
+ DE(p(x))D3p(x)(h, k, £).

Set k1 :=h, ky :=k, k3 := £ and note that DE(0) = 0. Then the first assertion
follows from (ii) and ¢(0) = 0. The second claim is a consequence of (iii) noting
that ¢(0) =0, DE(0) =0, and by assumption Dgp(0)k; € K, 1 < j <3. Il

Now we shall apply the preceding result to Dirichlet’s integral E : H2(S', R") —
R defined by (8.1). Recall the assumption I" € Cc™t7 r > 3, By Theorem 8.2 it

! An intrinsic derivative D* f (x) of amap f : M — R on a subspace o of the tangent space Tx M
is an r-linear form 0™ — R of 6" =0 x --- x o which is defined independently of the choice of
any coordinate chart.
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follows that M := H2(S!, I') is a C”-submanifold of H2(S', R"), and since E :
H?*(S',R") — R is of class C, it follows immediately that the restriction E|M is
of class C". Let us simply write E instead of E|M, i.e. we view E as a function of
class C"(M).

We wish now to calculate the intrinsic third derivative in the direction of certain
specific elements of the kernel of D2E(X) : TxM x TxM — R, namely the forced
Jacobi fields, in the case that X € H 2(S L ) is a minimal surface. By the results
of Stefan Hildebrandt we know that X € C"t0%(B, R") and therefore also X €
Ccrtoo (st R™) forall @ € (0, 1).

Besides assuming that I" € C"*7 we make another standing assumption on I,
namely that the total curvature || -k ds of I' satisfies

1
/ kds <-mr, (8.2)
r 3

which implies r > 6. Then the generalized Gauss—Bonnet formula (Wienholtz [3])
implies

2 Z v(w;)+mw Z V(&) +2m < %nr

w;€B {x€dB

where v(w;) are the orders of the interior branch points w; of a (branched) min-

imal surface X € C(I"), and v(¢x) are the orders of its boundary branch points,
k=1,...,q.Suppose that ¢ > 1. Then

v(Gk) =r/3-2. (8.3)

Recall the definition of a forced Jacobi field of a minimal surface X:B>R3
which we now generalize to a minimal surface X : B — R" with n > 3 which has
the interior branch points wy, ..., w, and the boundary branch points {1, ..., ¢,.
The generator t of a forced Jacobi field Y for X is a meromorphic function on B
with poles possibly at w = 0 and at the branch points of X whose orders are at most
v(w;)atw; #0,v(0) + 1 at w =0, v(¢;) at {;, and which is real on 9 B. Then the
forced Jacobi field Y of X with the generator T is a mapping Y : B — R" of the
form

Y =2B8Re(iwX,7) with B €R,
and
Y =BXpt|g: ST > R"

are its boundary values. From the regularity of X and (8.3) we infer as in Sect. 7.1
that certainly Y € Hz(Sl, R™), f/w IS CO(E, R™), and clearly Y € Tx M. The space
of forced Jacobi fields of X is denoted by J ()A( ).

We shall show that the forced Jacobi fields are in the kernel of the Hessian of
E : M — R, and we will compute the second and third derivative of E in these
directions.
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Computation of D’E and D’E  Let 2(p) : R" — T, I" be the C"*®-smooth
orthogonal projection of R” onto the tangent space T),I" for p € I'. We extend
2(p) to a C"0-smooth mapping p — £2(p) from R” into L(R",R"). We then
can write the first derivative of E at X € M = H3(S', I') as

DE(X) = f (2(X)X,, h)d6, X, =radial derivative of X. (8.4)
S]

A slight generalization of Theorem 8.1 yields that {X — 2(X)} e C" (M, H 2(st,
L(R",R")), M = H*(S', I), if we take Theorem 8.2 into account. Clearly, X isa
critical point of E if and only if

)X, =0. (8.5)

X will be a solution to Plateau’s problem if X is also a monotonic map from S'
onto I'.
The derivative of £2 (X)X, is given by

h> 2X)h, + DRX)h[X,], (8.6)

and so the Hessian of E is
D2E(X)(h, k) = / (.Q(X)fz, + D_Q(X)h[f(,], k)deo. 8.7)
Sl

It follows that the kernel of (8.6) is just the kernel of the Hessian D*E(X) of E
at X.

Claim The forced Jacobi fields of X lie in the kernel of D*E(X). To see this we
first note that

X022 (X)m = (m, Xg)Xg form e R". (8.8)

Differentiating this in the direction of a tangent vector h € TyM, M = H 2(S tr ),
we obtain

2(Xg, ho)2(X)Im] + | Xp* DR(X)(h)[m] = (m, hg) X + (m, Xo)ho.  (8.9)
Thus the kernel of (8.6) is the kernel of

b |Xo| 72 (X, , ho) Xo + (X, Xo)ho — 2(Xo, ho) 2(X) X, } + 2(X)h,.
From (8.5) we infer

(X,,Xg)=0 and (X)X, =0,
and (8.8) yields
2(X)hy = |Xo| 7 (hr. Xo) Xo.
Thus 4 is in the kernel of (8.6) if and only if
X012 (X, ho) Xo + (Xo, hr) Xo) =0
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that is, if and only if

(X, ho) + (Xo, hy) =0, (8.10)

since the zeros of Xg(0) are isolated because of the asymptotic expansion of X, at
branch points wy € B.

On S' =3B we have
iwX, = %(Xg +iX,),  iwh, = %(he +ihy),
implying that
(Xy. o) + (Xo, hy) = —4Im{w* (X, b)) @.11)
If / is a forced Jacobi field we have
h=pXgt|g and h=2Re(BiwX,1)
with 8 € R and t the generator of h. Since wX, T is holomorphic on B, it follows
hy = BliwXyTlw.
Hence, if w € B is not a branch point of X, we obtain
By (w) = Bli Xy (W) T + iw Xy (W) T (W) + iw Xy (w) Ty (w)].
On the other hand, a minimal surface X satisfies
(X, Xu) =0
and therefore also
(X (W), b (w)) =0
if w € B is not a branch point of X, and by continuity of hy on B it follows
(Xu,hp)=0 ifheJX). (8.12)

From (8.10), (8.11) and (8.12) we infer that for a forced Jacobi field hits boundary
values 4 lie in the kernel of (8.6) and therefore in the kernel Ky of the Hessian
D?E(X). This proves the claim, and we have established

Proposition 8.1 If X is a minimal surface with X € M = H2(S', I") then the
boundary values h of any h € J(X) lie in the kernel Kx of the Hessian D*E (X) of
E at X, that is, h € Ty M and

D*E(X)(h,k)=0 forallk e TxM.

Remark 8.1 We would like to point out that D?E(X) has been defined for branched
minimal surfaces without making normal variations of X.
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Before we compute D3 E(X) we give a geometric interpretation of
D*E(X)(h,h) =8*E(X, h),

i.e. of the second variation of E at X in direction of h € Tx M. An integration by
parts yields

/vﬁvﬁmm:/ (ﬁ,,h)d@—/(AA,fz)dudv
B St B
_ / (hy, h)dO (8.13)
Sl

since Ah =0. Away from branch points on ' we set
h=aXy and b= (h,, Xp).
By (8.8) we have
2(X)hy = 1Xo| 7 (hy, Xo) Xo,
and so
(h, 2(X0hy) = (aX9, bX)|Xg| 7 = ab = (hy,aXe) = (hy. )
and by continuity it follows
(hy,h) = (h, 2(X)h,) onS'.
On account of (8.7) and (8.13) it follows that

D2E(X)(h,h)=/ |w}|2dudv+/ (h, D2(X)h[X,1)d6. (8.14)
B S1

In order to simplify the boundary term we return to (8.9) where we insert m = X,
Since (X, Xg) =0 we have 2(X)X, =0 on S1, and so two terms in (8.9) vanish.
We are left with

DR(X)h[X,]=|Xg|>(X,. ho)Xy.
Since h = a Xy (away from branch points), we have
he =aXgg +ag Xy
whence
(Xy.ho) =a(X,. Xoo).
This implies
(h, D2(X)h[X,]) = |Xg|"*(aXp,a(X,, Xp9)Xo) = a*(X,, Xoo)
= |hI*|Xo| (X, Xo0) = |h|*kg

where

kg :=1Xo|"2(X,, Xo6) (8.15)
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is the signed geodesic curvature of I' in the minimal surface X, i.e. the interior
product of the curvature vector of I with the unit vector |}A(r|_1f(r, since |Xg| =
|X,| on S'.

Thus we infer from (8.14) the following result which was independently obtained
by R. Bohme and A. Tromba:

Proposition 8.2 If X is a minimal surface with X € M = H*(S', I') then, for any
h e TxM, we obtain

2 2 2
D E(X)(h,h):/B|Vh| du dv+/s1 ke|h|?do, (8.16)

where kg is the signed geodesic curvature (8.15) of the boundary contour I' in the
minimal surface X.

Now we proceed to compute the intrinsic third derivative D3 E (X). Let us return
to formula (8.9) which will be differentiated in the direction of a vector k € Tx M.
This yields

2(hg, ke)2(X)m + 2(Xg, hg) D2(X)[kIm
+2(Xg, ko)DR2(X)[h]m + | Xg|> D*2(X) (h, k)m
= (m, hg)kg + (m, kg)hg.
Choosing m := X, we see that
2(Xp. ho) D2(X)(K)[X,]+2(Xg, ko) D2(X)(W)[X,]
+1Xp P D*R2(X) (. K)[X,] = (X, ho)ko + (X, ko).

By (8.7) we may write for 4, k in the kernel of D?E(X) (and therefore in the kernel
of (8.6))

DRX)W[X,1=-2X)h,,  DQX)R[X]1=-2X)k,, (8.17)
then obtaining
~2(Xp, ho)2(X)ky — 2(Xg. ko) 2(X)h,
+1XoIPD*Q2(X)(h, )[X,1 = (X, ho)ko + (X,, kodhg.  (8.18)
Setting in (8.9) m = 12, we get
2(Xg, hg)2(X)k, + |Xg1> D2 (X)[hlky = (kr, ho) X + (kr, Xg)ho. (8.19)
Commuting 4 and k it follows also
2(Xp, ko) 2(X)h, + | Xp|* DR2(X)[k1h, = (hyr, ko) Xg + (hr, Xg)ko. (8.20)
Adding (8.19) and (8.20) to (8.18) we see that
|Xo2D22(X)(h, k)X, + | Xe|> D2(X)[hk, + | Xo|> DR (X)[k1h,
= (X,, ho)ko + (X, ko)ho + (hy, ko) Xo + (hy, Xo)ko
+ (kr, o) Xo + (kr, Xg)ho. (8.21)
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By (8.10) we have
(Xg,h,)=—(X,, hg) and (Xp, k) =—(X,, ke).
Therefore (8.21) reduces to
1XoH{D>2(X)(h, k)X, + D2(X)[hlk, + D2(X)[k]h,}
= {{hy, ko) + (kr, ho)} Xo. (8.22)

Suppose now that A, k, £ lie in the space J (X) of forced Jacobi fields. By (8.7) we
have

D?E(X)(h, £) = / (DR(X)h[X, ]+ 2(X)h,, £)d6. (8.22))
SI
Differentiating this in the direction of k it follows

D3E(X)(h, £, k) =f (D*Q2(X)(h, k)[ X1+ DRIk, + DR2(X)[k]A,, £)d0,
g (8.23)
which by (8.22) yields

D3E<X)<h,z,k>=f1{<ﬁr,k9>+<12r,h9>}|xe|*2<xe,2>de. (8.24)
S

Actually there are two more terms on the right-hand side of (8.24) which come from
the derivatives £’ and &’ of £ and h. We have to show that these terms are zero if £
and h are forced Jacobi fields. The additional ¢'-term is

/ (DL(X)h[X, 1+ 2(X)h,, £')do.
Sl
It vanishes since

D (X)h[X,]1+ 2(X)h, =0,

as h is a forced Jacobi field.
The second additional term becomes

/S RUNCs ORRCE SHPT

if we write £ = AXy = Re{)niwf(w} and integrate by parts. But £ is holomorphic
in B and so the Cauchy—Riemann equations yield

J ~ 0 —~
—— X — (A Xp) =0.
89( 9)+ar( 9)

This equation extends to the boundary S' = 8B, and so the second additional term
vanishes too.

The two expressions (8.23) and (8.24) yield the intrinsic third derivative of E at
X. We synonymously write
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L %)= DEX)h
W( - ( s

°F (X) = D*E(X)(h, k), (8.25)
dhak

PEX) =D3EX)(h, £, k).

dhaLIk

Suppose that h, k, £ € J ()A( ) have the generators t, p, X; we shall write 7, p, A also
for the boundary values t|¢1, plg1, Algi:

h®) =1(0)Xe(®), so h(w)=2Re(iwt(w)Xy,w)),
k(0) = p(0) X (6), k(w) = 2Re(iwp (w) Xy (w)), (8.26)
£6) = 1(0)Xg(6), £(w) = 2Re(iwi(w) Xy (w)).

Then (8.24) becomes

D3E(X)(h, £, k) =/ {(hy, ko) + (kr, ho)}1(O) dO. (8.27)
S]

On S! we have d6 = ?—5 and
Qwhy, =h, —ihg, 2wk, =k, —ike
whence
(hy, ko) + (ky, hg) = —4Tm(w>hyky).
Furthermore,
fzw (iwf(wr)w = i(wr)A(ww + )A(wr + w)A(wrw),
fw = (wXwp)w =i (o Xuww + Xup + wXupw).

Since )A(w . )A(w =0and )A(w . }A(ww =0 it follows that
whyky = —w*tp Xy - Xuw
and consequently
(hy, ko) + ky, ho) = 4Im(w*To Xy - Xip)-

This implies

DYE(X)(h. £.k) =4/ m(w*tp Xy - Xipw)h do
s1
=4Im w4fp)\)?ww . )%ww do
s1
4 A A~ dw
=4Im w T,O)\‘Xu)w . wa._’
sl Lw
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and we arrive at

A

D3E(X)(h, £,k) = —4Re/ W3t X pw - Xww dw
Sl

=4 f Im(w*tpA X ww - Xww) d6. (8.28)
Sl

It follows from (8.23) that the right-hand side of (8.28) is the integral of a continuous
function. If we wish to apply the residue theorem to evaluate the integral in (8.28)
we have to get a better grip on the integrand. To this end we impose an additional
standing assumption: n = 3, i.e. we consider boundary contours only in R3.

First we wish to understand what the generators t of forced Jacobi fields for
a minimal surface X with a boundary branch point wg € S! are. By means of a
rotation we can move wy to the point w = 1. Thus we make the following further
standing assumption:

Assumption Xe C(I") is a minimal surface in the unit disk B with the boundary
branch point w = 1 of order n, and the boundary contour I' € C? has a total curva-
ture k(") 1= fF Kk (s) ds satisfying 3k (") < mr. It is also assumed that I € cr,

r > 2, which implies X € C"to#(B,R?®),0<B < 1,andn <r/3 —2.

It is easy to verify that

4
(w) ::ﬂ(iw+1> . BeR, (8.29)

w—1

is a meromorphic function on B Witp a pole of order £ at w = 1 such that t(w) €
R for w e S! \_{1}. If £ <n then X,,(w)t(w) is holomorphic in B and at least
continuous on B since we have the asymptotic expansion
Xow)=aw—1)"+o(w—11") asw—1, we B\{l}
witha € C3, a#0, anda -a =0. (8.30)

Thus 7 generates a forced Jacobi field for X. Consider the conformal mapping ¢ :
B\ {—1} — X, defined by

w7 =@(w) i=—i we B\ {-1}, (8.31)

+1
which maps B = {w € C: |w| < 1} onto the upper half-plane
H:={zeC:Imz> 0}

and takes S\ {—1} onto the real line R such that ¢(1) =0, ¢(i) = 1, p(—1) = oo.
The inverse ¥ := ¢~ ! is given by
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We write z =x + iy with x =Rez and y =Imz, while w =u +iv,u =Rew,v =
Imw. From (8.31) we infer

1w+l
z_lw—l
and so
0::101//:%. (8.32)
z

Transforming the minimal surface X (w) to the new parameter z, we obtain

Y(2) =X (2) (8.33)
which has the branch point z =0 on R = dJ{ with the asymptotic expansion
Y.(2) =b7" +0(|z|") asz—0, z€H\ {0},
beC3\ {0}, b-b=0.

Choosing a suitable coordinate system in R3 we may assume that I?Z (z) can be
written in the normal form

Y.(2) = Ai1Z" +o(z") (8.34)

with Ay = (a1 +ib1); ar, b1 € R, |a1|* = |b11> #0; a1 - by =0, a1 = (n + Daey,
e1 =(1,0,0), @ > 0, where ay, b span the tangent space to X at X (1). Let us recall
that the order of any boundary branch point is even; thus we can set

n=2v withveN. (8.35)
Now we wish to write I}Z in the more specific form
YD) = (A" + o 4 App1 2" + 012", R +0(121"*))  (8.36)
with
Ry, #0. (8.37)

By Taylor’s theorem and (8.34) we can achieve (8.36) for any m € N with m > n
and such that ¥ € C"*+2(3, R?).

However, it is not at all a priori obvious that one can also achieve (8.37). This
fact is ensured by the following

Proposition 8.3 Suppose that Y € C3nHO ¢, R3) and that both the torsion T and
the curvature k of I' are non-zero. Then there isan m e Nwithn+1<m+1<
3(n + 1) such that

Y2(2) = Ruz™ + 0(1zI™Y)  for |zl < 1 and Ry, #0. (8.38)

Proof Otherwise we have

Y2(z) = 0(zP" ). (8.39)
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Let y(s) = (y1(5), y2(s), y3(s)) be the local representation of I" with respect to its
arc-length parameter s such that y (0) = Y (0) and y’(0) = ¢;. By (8.34) and (8.35)
we have

Ye(x,0) = (n + Daeix” + 0" Y, n=2v,
and so s and x are related by s = o (x) with
o' (x) =Y, (x)] = [(n + Dax" + 0"+ ],
whence
o(x)=ax"' £ O"?) asx — 0. (8.40)

Then Y (x) = y(o(x)) for |x| < 1, and therefore the third component Y3 of Y is
given by

Y3 (%) = y3(0 () = p3(ax" T + 0(x"?))  forx — 0.
Because of (8.39) we have Yf(x) = O (x¥13) as x — 0, which implies
Y} =0 asx—0. (8.41)
On the other hand
y(s)=y'(0)s + O(s*) ass— 0.
Consequently
73 (x) = 74 (0)ax" ™ + 0(x"*?) asx — 0.

On account of (8.41) and o > 0 it follows )/3/ (0) = 0. Thus we can write
y3(s) = —)/3 "(0)s> + O(s®) ass— 0,
which implies
i) = )/3//(0)(12 22 L 0?3 asx — 0.

By (8.41) and @ > 0 we obtain y3'(0) =0, and we have

J/3(S)=6 W(O)s +0(@™ ass— 0.

Hence,
V()= y/”(om* 33 L 03 asx — 0,

and then y3”(0) = 0 on account of (8.41) and & > 0. Thus we have found
y3(0) =0, y3 (0) =0, 3 (0) =

and so the three vectors y’(0), ¥”(0), y””(0) are linearly dependent. This will con-
tradict our assumption x (s) # 0 and 7(s) # 0. To see this we introduce the Frenet
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triple T'(s), N(s), B(s) of the curve I satisfying T =y, T'=y”, T" = 3", and

T = kN
N =—«T + 1B
B = —1N.

Then T3(0) =0, T5(0) =0, T5(0) =0, and from T’ = kN and & # 0 it follows

that N3(0) =0. Since
/ 1 ' / 1 "
N=\|\-)T+-T
K K

we obtain N /3 (0) = 0 whence t(0)B3(0) = 0. Because of T #£ 0 it follows that
B3(0) =0, and so T(0), N(0), B(0) are linearly dependent. This is a contradiction
since (T, N, B) is an orthonormal frame, hence the assumption (8.39) is impossi-
ble. O

Remark 8.2 Note thatn <r /3 —2 implies 3n 4+ 6 < r < r + 7. Thus the assumption
Y € C3HO(H, R3) is certainly satisfied if we assume 3« (I") < 7r and I" € C"17.
Thus we have a lower bound on r and upper bounds on n and m. We call the number
m in (8.38) with n < m < 3n + 3 the index of the boundary branch point z = 0 of
Y, or of the boundary branch point w =1 of X.

Assumption In what follows we assume that the assumptions and therefore also
the conclusions of Proposition 8.3 are satisfied.

Proposition 8.4 [fm + 1 #0mod (n+ 1) (i.e. if z = 0 is not an exceptional branch
point of Y) then the coefficient R, in (8.38) satisfies
Re R, =0, (8.42)
i.e. Ry, is purely imaginary, and therefore
2
R, <0 (8.43)
since Ry, # 0. If we write (8.38) in the form
YS(Z) =RnZ" + Rm-HZm—"_l + Rm+2zm+2 + 0(|Z|m+2) Jor|z] K1 (3.44)
and if 2m — 2 < 3n, then we in addition obtain that
ReRy+1=0 and, ifn>2,also ReRy42=0. (8.45)
Finally, independent of any assumption on m, we have
Aj=pjAy, j=1,...,min{n+1,2m —2n}, with u; € R (8.46)
for the coefficients A in the expansion (8.36).

Remark 8.3 The relations (8.46) are in some sense a strengthening of the equations
Aj=x;jA;, j=1,...,2m—2n, with1; eC

which hold at an interior branch point w = 0 of a minimal surface X in normal form.
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Proof of Proposition 8.4 (i) From (8.44) we infer

R R R,
Y3(x) =Re [ —Z2 "+ 4 Sl m+2 + Dmt2 m+3 +o(x™3) for x — 0.
m—+1 m—+2 m+3
(8.47)
On the other hand,
Y3(x) = y3(ax" " +o(x"t1)

and y (0) =0, y'(0) = e3 whence also y3(0) = y3/ (0) = 0. As pointed out before it is
then impossible that both y3'(0) = 0 and y;”(0) = 0 because this would imply that
T (0), N(0), B(0) are linearly dependent. Thus we obtain

1
y3(s) = W‘“(O)sk + 0" ass —0,y®(0) #0,

for k =2 or k = 3. Therefore
1
Vi) = Ey;k) 0)aFxKO+D ok Dy a5 x — 0. (8.48)

Comparing (8.47) and (8.48) it follows that Re R,,, # 0 implies m + 1 =k(n + 1)
for k =2 or k = 3, which is excluded by assumption. Thus Re R,,, = 0, and we have

Ryt Ru+2
Y3 —R m+l  m+42 m m+3 m—+3
(x) e(m—+ 2x +—m+3x +o(x )

1
= E)/k(o)akxk("H) + o Dy asx — 0. (8.49)

Suppose now that 2m — 2 < 3n, which is equivalent to
2m <3n (8.50)
since n is even, and so
m+2<m~|—3§%n+3<3(n~|—1).
Thus, for k =3, (8.49) can only hold if
ReR;,4+1 =0 and ReRj,47=0.

Furthermore, (8.50) yields also

3 n =2n-+2 n=2
m+2<m+3§§n+3—(2n+2)~|—(1—§){<2n+2 when Iy

Hence it follows in this case that always Re R;,+1 = 0 while Re R,,,+> = 0 holds for
n>2.

(i) From Y, (x) =2Re )A’z (x,0), (8.49) and (8.36) it follows that
Ye(x) =2Re(A1x" 4+ + App1x” 4+ 0(x), 0(x*"))
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whence

A A
Y(x)=2Re (n——l—l 1x”+1 +- 4 —Znnflxz’”l +o(x?th), 0(x2”+1)> .

Furthermore,
y(s) =ers + O(sz) ass — 0
and
o) =bix" N b X o) asx — 0

with b1, ..., byy1 € R, ae; =bje; = ;21 Re Ay Then

Y(x) =y (0 (x) = Gr1x" M - by x? e + 0 ).
Comparing the coefficients we get

2ReAj=m+ j)bjer witha=by>0forl<j<n+1.

ThenRe A; = (('; i]i))lg Re Ay, and so

ReAj=ujReAy forj=2,...,n+1
with
n+j bj
T+l o
Set Aj:=aj+ibj;aj:=ReA;, bj:=ImA; € R". We know from Lemma 2.2 of
Chap. 2that A; = 1A for j =1,...,2m —2n with A; € C hence

Wj: 2<j<n+1.

aj=ReAij)a; —(Imij)by for2<j<2m—2n
and
aj=pja; for2<j<n+1.

From |V,| = |Y,| it follows that |b;| = |ai| = "l > 0, and Yy - ¥y = 0 yields
ay - by = 0; thus we obtain ImA; =0for j =2,...,n+1 whence A; = u; € R and
Aj=pjAsforl <j<min{n+1,2m — 2n}. O

Let us now return to formula (8.28) for D3 E (X)(h, k, £) in the direction of forced
Jacobi fields (with the boundary values) A, k, £; note that (8.28) is symmetric in
h, k, £. We already know that (8.28) is the integral of a continuous function; but we
need to understand (8.28) at a level where we can apply the residue theorem. To this
end we consider the conformal mapping (8.31) defined by

wr—>z=<p(w):=—i311, weB\ (1), (8.51)

which has the derivative
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Using the inverse

14
I w=Y(2):= 1_ZZ
we obtain
oW @) =—01-i2? (8.52)
or sloppily
dz i )
(1 —=i7)%
dw 2( iz)

From (8.33) we get )A((w) = ?((p(w)), whence

wa = Azz(¢)(¢/)2 + 1}z(‘P)‘PN-
From I?Z . I?Z =0 it follows I?Z : I?ZZ =0, and then

~

Xuww - Xuw = V22 (0) - Ve () (@), (8.53)
which we sloppily write

4
A A A oA dz
Xww - Xww =Yzz . Yzz (%) .

Lemma 8.3 Assuming 2m — 2 < 3n (i.e. 2m < 3n) we obtain the Taylor expansion

(Voo V)@ =) Q2" + R(2) (8.54)
j=0

withs =Gn—1)—C2m—=2)=0Gn—=2m)+1>1, R(z) = 0(z>"), where Qo=
(m—n)zR?n <0andImQ;=0for 0<j<s.
Proof From 2m — 2 < 3n we infer 2m < 3n since n is even. Thus s > 1 and 2m —
2n + 1 <n + 1. Consider the Taylor expansion

V.(2) = (A1 + Ao + - RpZ™ + Ry 2" )

where “4--.” indicates further z-powers plus a remainder term. As for interior
branch points we have

Al Ayn-onp1 =—R},/2 (8.55)

and

Ap - Adm—ons1 + A1 Ad—2py2 = —Rpu Ryt (8.56)

By (8.43) we have Ri < 0 whence A - Aypy—2n+1 € R. Since 2 <2m —2n <n
it follows Az = oA with uy € R on account of (8.46). Then (8.55) implies A» -
Am—2n+1 € R, and furthermore R, R;,+1 € R in virtue of (8.43) and (8.45). Then
(8.56) yields Aj - Azp—2n+2 € R, and we arrive at

}A/ZZ(Z) ) I}zz(Z) = QOszi2 + leszl 4+
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with Qg = (m — n)erzn, and Qg < 0 as well as Q1 € R, since Q; is a real linear
combination of A1 - Aoym—2n+42, A2 - Aom—2n+1, and R, R, 4+1. Suppose now that
s =3n—2m + 1> 1. In order to show ImQ; =0 for 2 < j <5, we note that
by (8.53)

43 A A oA dz \*
TPAW Xy * Xypw = ToAY 7 - Yoz | w—1)
dw
where 1, p, A are generators of forced Jacobi fields with the pole w = 1. Further-
more, by (8.51),

dz 2w 1477
— = = 8.57
Yaw T wr 2 2 (8.57)
Thus
N ~ 1 A N
Im(rpkw4X,Uu} cXpw) = 6 Im[zpA(1 + 12)4YZZ - Y. (8.58)

By (8.28) the left-hand side of (8.58) is a continuous function on S', and thus the
right-hand side must be continuous in a neighbourhood of 0 in  for all generators
7, p, A of forced Jacobi fields ﬁ, 12, [ with poles at w = 1.

Suppose now thatnotall Q; with2 < j <sarereal,s = 3n—1)— (2m —2), and
let J be the smallest of the indices j € {2, ..., s} with the property that Im Q ; # 0.
Then we choose A, p, T such that the sum of their pole orders at w = 1 equals
(J 4+ 1)+ (2m — 2) < 3n. Transforming A, p, T from w to z it follows for z =x €
R = 9K that

Im[zpr(1 42247, - V.,]

z=xeR
1
=+ x2)4,31 (Im Qy)— + (terms continuous in x), (8.59)
X

B1 € R\ {0}. This is clearly not a continuous function unless Im Q ; = 0, a contra-
diction, therefore no such J exists. O

Now we want to evaluate the integral in (8.28) by applying the residue theorem
to this and we state
Proposition 8.5 Let t be given by (8.29), and consider the function
f) =t w! Xpw @) - Xpu(), weB, (8.60)

which has a continuous imaginary part on S 1= 3B. Then there is a meromorphic
function g(w) on B with a pole only at w = 1 such that

() Im[f(w) —g(w)]=0forwe S' =93B;
(i) f — g is continuous on B.

Proof Setting w =¥ (z) = (1 +iz)/(1 —iz) we obtain

! 3 2047 >
fW ()= Rf(w(z)) (I +297Y:(2) - Yz (2).
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By (8.54) of Lemma 8.3 we see that, in a neighbourhood of z = 0 in 3, we can

write the right-hand side as
S
Y>> B0 + G
j=0 ¢;

with Bj eR, Qj €eR,0<l; <@Bn~—1)— (@2m—2)=s, and a continuous term
G(2). Set

g(2) = Z Z B0zl forz eI\ {0}

Jj=01;=1
and

~ +1

c) = 2ewn =33 4,0, ( - )
j=01;=1
Clearly f and g satisfy (i) and (ii). O
Corollary 8.1 We have
/Sl [f(w) — g(w)]dO = =27 resy— 0%. (8.61)

Proof For w =¢'? € S! we have df = dw/(iw), whence

dw
/ [f (w) — g(w)]dO :f Lf(w) —g(w)]-——
s1 Ky rw

5 { f(w) —g(w) }
=2wresy—gy ————
w
= —27T reSy—0 {@}

w

since f(w)/w is holomorphic at w = 0. O
Since Img =0 on S! we obtain
Corollary 8.2 We have
g(w)
Im f(w) df =2 Imres,,—g (8.62)
w

Furthermore we have
—4Re{w’ 3 Xy - Xy dw) = (=) Refiw* 3 Xy - Xy} d6
=4Im{w*t3 X pw - Xww)} d0 =4Im f(w) d6.
Then (8.28) and Corollary 8.2 imply

D3E(X)(h, h, h) = —87 Imresy—o {M} . (8.63)
w
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Remark 8.4 We note the following slight, but very useful generalization of the three
preceding results. Namely, if X has other boundary branch points than w = 1 we are
allowed to change t by an additive term having poles of first order at these branch
points. Then Proposition 8.5 as well as Corollaries 8.1 and 8.2 also hold for the new
f defined by (8.60) and the modified 7. This observation is used in order to ensure
that the forced Jacobi field / generated by t produces a variation 7 M, t| k1, of
X which is monotonic on 9B = S!.

Now we turn to the evaluation of D3E(X)(h, h, h) using formula (8.63). We
distinguish three possible cases: There is an [ € N such that

(i) 2m — 1 =3I, then [ is odd;
(i) 2m — 2 =3I, in this case [ is even;
(iii)) 2m =3I, here [ is again even.

Since 2m < 3n it follows [ < n for (i) and (ii), whereas [ < n in case (iii).
Case (i). Choose T as

1:=Br1+et™ and B>0, €>0, and

(8.64)
w+1\ 1 _
n=<, ):2, weB\ (1),

w—1

w=1Y(z), we B\{—1},z e H\{0}. We will choose 7* as a meromorphic function
that has poles of order 1 at the boundary branch points different fromw =1orz =0
respectively. Then close to w = 1 or z = 0 respectively we have

~ ~ 1 ~ ~
t3w4xww Xpw = 1_67:3(] + Z2)4YZZ Yz
@54 B

m—-m?R2L 4 60+ 060
16 Z

with a continuous G(z).
Choose

_B 2p2 (;wt1
gw)==(m—n) Rm(zw_l)

and let fl(w) = Re(iw)A(w (w)t(w)) be the forced Jacobi field generated by t, h :=
h|g1. Then by Proposition 8.5 and Corollaries 8.1 and 8.2 we obtain

8 ' 1
DYEX)(h, h 1) = — % B m — )P R2 Tm {resy_y - (20—
16 w\w-—1

_ l 30, \2p2
=578 (m —n)* Ry, + 0(e). (8.65)
Since R2, < 0 this yields for 0 < € < 1 that
D3E(X)(h,h,h) < 0.
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Case (ii). Here we have 3/ = 2m — 2 < 3n whence [ < n. Since both [/ and n are
even we obtain / + 1 < n whence n > 2. Moreover, 2m — 1 =2+ 1)+ (I — 1). Set

r::erl+ﬁtz+e3r*, B>0, €>0,

w1\ ] 1!
=i + , Tpi= P + , % asin Case (i).
w—1 w—1

(8.66)

Note also that both / + 1 and / — 1 are odd. We then have that
= ,B3r; + 3,82‘(22‘[16 + 3/362r12r2 + 0(63)
— ,33Z—2m+5 4 3ﬂ2z—2m+3 + 3/362Z—2m+1 + 0(63)

for z close to zero, but this does not add a contribution to (8.63).
By the same procedure as in Case (i) we find for 4 = Re(iw X, 7) that

D3E(X)(h,h, h) = %nezﬂ(m —n)2R2 4+ 0(e?), (8.67)
which implies
D3E(X)(h,h,h) <0 for0<e < 1.
Case (iii). Now we have 2m = 3/, [ = even. We have two subcases.

(@) If I =n we write 2m — 1 =21+ (Il — 1) and set

w41\ w+ 1\
=11 , =li——]),
w—1 w—1

Ti:ﬂT1+GT2+63T*, B >0, e >0.

(8.68)

b) Ifl <nwewrite2m —1=2(I —1)4+ (I + 1) and set

w41\ w41\
T1:=|1 , Tyi=11 s
w—1 w—1

T:=e1 + B+ T

(8.69)

Then our now established procedure yields

3 %37‘[[362(7’1’1 - n)zan + 0(€3) in Subcase (a),
D3E(X)(h, h, h) = (8.70)
137B%(m —n)?R% + O(€?)  in Subcase (b).

This again implies D3E(X)(h, h, h) <0 for 0 <€ < 1 and h = Re(iw X, 7).

Remark 8.5 The choice of 7* has to be carried out in such a way that the varia-
tion Z(t) of X produced by h = Re(iwX,7) furnishes a monotonic mapping of
dB = S' onto the boundary contour I". The details on how this can be achieved
by the formulae (8.64), (8.66), (8.68) and (8.69) can be found in the thesis of D.
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Wienbholtz [2]. The complete proof is technically quite involved and will be omitted
here. We discuss our own approach when considering shortly the fourth, fifth and
sixth derivatives at a boundary branch point. We remark here that, at an exceptional
branch point, using only the generator t*, derivatives of Dirichlet’s energy up to
order 7 vanish. This observation allows us to ignore 7* for derivatives up to order 8,
for if there is another branch point which is not exceptional one considers the lowest
order derivative which is non-negative.

In conclusion we have

Theorem 8.4 (D. Wienholtz) If X is a minimal surface in C(I") with I' €
crt, 3f1“K ds < mr, having a boundary branch point of order n and index m
satisfying the Wienholtz condition 2m — 2 < 3n, then X cannot be an HZ(SI, R3)—
minimizer for Dirichlet’s integral E(X) defined by (8.1), and thus X cannot be an
H3/2(B, R®)-minimizer of area.

We now proceed to consider the cases 2m —2>3n,m+1#k(n+ 1), k=2,3.
Our plan is to proceed by considering three main additional cases 3n < 2m —2 < 4n,
4dn < 2m — 2 < 5n, and 5n < 2m — 2 < 6n. These will then include all non-
exceptional cases 2m + 2 < 6n + 6. Within the three main cases there will be sub-
cases; e.g. we begin with 2m — 2 < 4(n — 1). In this regard we need a strengthening
of Proposition 8.4:

Proposition 8.6 If in Proposition 8.4, 3n <2m — 2 < 4n, then
ReRy4+s=0, 0<s<2n-—m. (8.71)
If2m — 2 > 4n, then
ReR,+5s=0, 0<s<@Bn+1)—m. (8.72)

Proof is given below following Lemma 8.6.

We now discuss how to take variations of X so that we can calculate both the
fourth and fifth derivatives of Dirichlet’s energy. For simplicity of exposition we
will now be assuming I" in C*° smooth.

In 3 we write z = x + iy. Again parametrizing I" by y we have that

Y(x)=yoo(x)
where
o) =bx" M 4 b x T o) asx — 0. (8.73)
We next define a 1-parameter family of maps o, 0gp = o, by
01 (x) 1= 0 (x) +1§(x) + (1% /2)p(x)

where & and p are C° smooth maps chosen in part, so that x — o;(x) remains one
to one with o3 (£00) = +00. Assuming that this is possible, we define

@ (x) =0 (or (x)). (8.74)
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Clearly ¢, will not be differentiable (in x or ¢) everywhere. Now define a mapping
¢ (1) by

¢ (1) (x) := (dg:/d1)/(d i /dx) (8.75)
which is defined for those x for which d¢;/dx # 0. We now have:

Lemma 8.4 At all points where

oy + &, + (12/2) px #0,

5 (8.76)
(1) =[§ +1pl/lox +t&x + (17/2) px].
Proof Since o (¢;(x)) = o;(x) we have
o' (¢t (x)) - (dg;/dt) = do;/dt =& +1p
and
o' (@i (1)) - (dgy/dx) = 0 + & + (12 /2) s
The result now follows. 0

We shall see that the computations in Chaps. 2 and 3 of the fourth and fifth
derivatives of Dirichlet’s energy in the direction of forced Jacobi fields remain valid
in the case at hand. A A A

We begin by selecting our variation Z(¢) of X. We define Z(¢) first on the real
line in 3, and then via (8.51) it is defined on S', and finally, by harmonic extension
to B.

The mapping Z(t) on R C I is defined by

Z(t) =y 00i(x) =y 00 0 (0 o1 (x)) = X (¢ (x)) (8.77)
and on ! via (8.14) and on B by harmonic extension. Then ¢ > Z(t) is C*>°-smooth
and Z(0) = X.

Lemma 8.5
Z:=27'(t) =dZ(t)/dt = X' (¢;(x))(d g, /dr)
= X(p:(X))xp = Z(0)x 9.

Proof Chain rule. O

Now ¢; induces a one-parameter family on § ! via (8.14) and therefore a map-
ping ¢ (introduced as ¢ in Chaps. 2 and 3). We have

Lemma 8.6

2
¢ = Fiw(dz/dw) = § (1 i )
&1 = priw(dz/dw)

where ¢; denotes the derivative with respect to t.

(8.78)
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Proof

Z'(t)=¢Z(t)
=Z(t)x¢ (Lemma 8.2)

=Re(diwZ,) =Re (&iwzzﬁ)
dw
=Re(Z(1).9).

Proof of Proposition 8.6 'We have

R R R
Y3(x) =Re (%x””rl + ngme + mT—F;me + 0(xm+3)) for x — 0.
m m m

On the other hand,

Y3 (x) = p3(ax™" +o(x"th)
and y (0) =0, y"(0) = e3 whence also y3(0) = y;(0) = 0. It is then impossible that
both y3'(0) =0 and y;”(0) = 0. Thus we obtain

1
Y3x) = Ey;k)(O)akxk(”H) +o(x* Dy ag x — 0.

Set m = m + s. It follows that Re Ry; # 0 implies m + 1 = k(n + 1) for k =2 or
k =3, which is excluded by assumption. Thus Re Ry = 0. g

Formula (8.32) allows us to use the formulae for the fourth (and later the fifth)
derivative of Dirichlet’s energy in the direction of forced Jacobi fields; i.e. ¢ is a
generator of a forced Jacobi field.

We now have from Chaps. 2 and 3, this time using, for convenience subscripts to
denote derivatives in t, z, ... etc.

Proposition 8.7 Assuming s > 4, X = Z(0) a minimal surface and ¢ (0) = 1, a gen-
erator of a forced Jacobi field, the fourth derivative of Dirichlet’s energy is given by

d*E . . .
W(O) = 12Re/s1 Z1w(0) - [wZ;y (0)T + wX ¢ (0)] dw
+12Re / WZ (0) - Zw (0)y (0) dw. (8.79)
Sl

Now restating formula (8.79) on the upper half-plane, we have:

Proposition 8.8 If Z(1), X (1), Y as above, then

d*E dz \ - A A
W(O) = 12Re/ (w%> Z117(0) - [Z:(0)T + Y0, (0)] dO

L d
+ 12Refr2yZZ Y., (wﬁ) $:(0) do. (8.80)
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Proof For the second term of (8.80) we have from (8.78)

$:(0) dw = ¢, <d“’) W _ s (dw) a6

d_z iw d_z
and
5 R .o 3 A dz dw
Ziw(0) = (wXyT)w = (wXyd(0))y = <Yz¢(0)d— —)
w dz /,
S A d
= (V.(0)w = (YZ¢><0>>Zd—Z.
w
Then

. , 5 , dz\* o o 5 (dz\?
th(o) ' th(o) = (Yz¢(0))z : (Yz¢(0))z (@) Yzz ! Yzz¢(0) <E> .

Thus,
WZ (0) - Zyy (0)y (w) dw = ¢ (0)* Y, - ¥, (wj—;) L

proving Proposition 8.8 for the second term in (8.34). The expression for the first
term follows similarly. d

dz 1472
w— =
dw 20

(formulae (8.51) and (8.52)) we obtain another formula for the fourth derivative,
namely:

Given that

d*E . . .
Vi 6Im/ (1429 Z412(0) - [Z42(0)T + Y,¢,(0)] dO
dt sl

+6Im/ (14 22)Y,, - Y..12¢,(0) db. (8.81)
Sl

In order to show that (8.80) can be made negative, while all lower order derivatives
vanish, we need:

Proposition 8.9 Referring to formula (8.74) & and p can be chosen as C*° smooth
functions, so that

(a) E(x) =70y, wheret =) 1;,7; =;/z/, j odd B; €R,

and

(b) ¢ (0) =0/ +Y a;/P T a0 €R, j <n,

where each sum above is finite, i.e. T, ¢:(0), are meromorphic functions on H (and
consequently on B).
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Proof From Lemma 8.4, we have

(1) (x) = [E(x) + 1p(X)]/[0x + tEx + (12/2) px]. (8.82)
Now choose
g(X) = TO0y,

where 7 is a meromorphic function on B, real on S!, such that 7 w(0)7T is holomor-
phic. This choice assures that o; is monotonic for small # > 0, and that ¢ (0) = 7 is
a generator of a forced Jacobi field.

An easy calculation shows that

$1(0) = p/oy — EEc/0] = p/ox — (TTx + T (01 /01). (8.83)
Write 0, = ax"g(x), g(0) = 1 and 0y, = anx”' f(x), f(0) =1, where f and g
are (by Taylor’s theorem) C°° smooth. Thus
¢:1(0) = p/ax"g(x) — Tt — (nT°/x)(f/8)

— plax"g(x) — 11, — (n7%/x) + (%) (nt2/x).

Now
2n
g—f=Y dix/ +h(x)x*,
j=1
where h € C"~@"*2) Thus h € C"~3". Let
o1 := —{h()x?" ax" (nt?/x)
and p = p| + p1.
Now
2 i 2 i
P (XL djxl)ne?/x 3L dj/x LA
ax"g g g ax"g
) .
Zjil d;./x/

= — dy, /¥ 4 dy, [x* 4 p) Jax"g

Yt al x4 ha(x)
= == 3, X i fax"g

Choose p| = p} + p2, p2 = —ax"ha(x). Continue in this manner. Then

$:(0) = —t1y —nt?/x + - (8.84)

where + - - - are meromorphic functions, real on S ! with poles of lower order. [

Remark 8.6 In order to ensure monotonicity for the variations o; we need to account
for other possible zeros of oy. In order to adjust for this we use Wienholtz’s trick
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of adding to the definition of 7 terms t* of the form «/z — zy, @ > 0, where z*
is a point in R where oy (z*) = 0. These terms will not, as in the case of the third
derivative, affect the final calculation of the fourth derivative since n > 2. We shall
later discuss the monotonicity question.

We are now ready to apply (8.84) and the fact that ¢ (0) = t to the formula for
the fourth derivative (8.81).

Theorem 8.5 Suppose 3n <2m —2 <4(n —1). Then

d*E © <0
—(0) <
dr#

for an appropriate choice of t.

Proof The trick will be to show that the methodology developed in Dierkes, Hilde-
brandt and Tromba [1] also applies to this case. Here we chose 7 := /2"~ + p/z"
when2m —2=3mn— 1) +r,r <(n—1).

Consider the expression

Z12(0)T + Y. ¢,(0). (8.85)

Both the first and third complex components have poles, yet its real part 2 (0)T +
Y:9:(0) has no pole. The last complex component may have poles of the form
Z/,LjRj/ZEj,Kj >0, j <m+2,s <2n— m where necessarily Re R; = 0 and
the first complex component has pole terms of the form Z” ViAj /zk/', j<n+1,
kj > 0, and no pole forms on A, 2, since in the Taylor expansion A, , has an
initial exponent 2n + 1.

Now 7 — Z () is sufficiently smooth as is

x> Z(1)(x) = X (¢ (x)) =y 00r(1).

Therefore
A +{ 2O + Lt — (Yo vj4,/24. Y ki) |

is a global meromorphic function on B and I, yet its real part le O + IA/xqb, 0
is continuous. Thus from Chaps. 2 and 3

2@ = {1+ D) 27 + Ve = (Y w4/, ZmRi/z@,-)]}z .

This remarkable formula shows that, unlike removing poles as in the interior case,
the smoothness of the contour I" implies that the only poles that form in (8.85) are
purely imaginary, allowing us to make the computations exactly as in the interior
case, again using the fact that A; - Ay =0,1 < j, k <2m —2n.

We have T = €B/z" ! + 1 /7" and from (8.76)

—¢(0)=(n—r + DeB?u/" T + €2/
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Consider the first term in (8.81). Noting that, as in the third derivative, the first
complex components play no role, we obtain

(1425 Z44(0) - [Z1(0)T + Vi (0)] =23 B2 pu(m —n — r)(m — n)>R% Jz + -+
(8.86)

Given that 1 +z2 =2iw and ¢ = iw¢ %, it follows that the left-hand side of (8.86)
has a zero of order at least two at w = 0.

Set Cy := 263ﬁ3u(m —n—r)(m— n)erzn/z.

Now

6Im / (142524 (0) - [Z12(0)T + Y., (0)] dO

A N S d
=6t [ 142240 120 + T2 01 - €1 | .

The integrand is continuous and we can apply, as before, the Cauchy residue theo-
rem to conclude that the first term of (8.81) equals

—12n63ﬂ3u(m—n—r)(m—n)ZImRes (iw R,zn)
w—1 w=0

=127 B3 pu(m —n —r)(m —n)*R2 + - - (8.87)
where + - - - means higher terms in €. One sees that
Y., Yoo =(m—n)?R:7¥" 2 (8.88)

Then from Proposition 8.2, it follows that in the second term of (8.81) no pole is
attached to any R; if Re R; # 0. Then, by exactly the same reasoning, the second
term of (8.81) is equal to

—6ne3ﬂ3u(n —r+3)(m— n)zR,%, 4.
However, 2m — 2 =3(n — 1) 4+ r, whence
2im—n—r)=2m—-2-2m—-1)—-2r=m—1-—r),
yielding that (8.87) equals
6ﬂe3ﬁ3u(n —1—=r)(m-— n)2 + .-

and thus the sum of the two terms of (8.81) equals —24me3 B3 ur(m —n)?.
Finally, we determine that
d*E
W(O) = 24w B3 ur(m —n)?R2 + - (8.89)
from which it immediately follows that if we can choose p negative, then since

R,Zn < 0 the derivative (8.79) can be made negative for sufficiently small € and we
have proved the theorem. g
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Now we have:

Proposition 8.10 Forr < (n —1),8 > 0, and n < 0, the variation oy can be made
monotonic.
Proof We have

o (x)=0 +tto, + (t2/2)p + tT40y.

For ease of exposition let us assume that X has only one other boundary branch
point at z* € R. We take

t=€B/" /7 + 1.

and 7, = v/(z — z%); v > 0. Write o, = ax” + O(|x"*!]),a > 0 and

d
=0 =0 +1(to)x + (t2/2) px + 1 (1,0 . (8.90)

Near x =0 (8.90) equals
oy +atPe +1BO(Ix]) +tapx""" "' +1pO(x|""")
+1(t/2)px +1CLO(Ix|" ). (8.91)

Assume p and B are fixed, say 8 = 1, u = —1. Choose € > 0 fixed so that the fourth
derivative is negative. Then we see that (8.90) equals

ox +at(e —x" Y 4 10(|x]) +1(t/2py). (8.92)

Pick an interval of radius €] < €/2 <« 1 and ¢ > 0 small enough so that O (|x|) +
%|t - px| < €/4. Then on [—€1, €1] we have (8.92), and therefore (8.90) is strictly
positive.

Now denote by ¢ the order of the branch point z*. Near z = z*, (1,0y)x

vCa(z — 292+ 0(lz — ZI°7Y), €2 > 0, 0 = C3(z — 294 (C3 > 0) +
O0(z — 2"t + (roy)y = 1Cy(z — 29 +10(|z — z*19), and (12/2)py =
t(t/2)px.
Then near z = z*
d
S0 =i - 20z =Y+ Ciz — )
+ 0(z = " tH +1(1/2) ps. (8.93)

Pick an interval I := [z* — €3, z* + €3] so that for z € R in this interval

(G C3(z—z9'4+ 0(z —z*[“t) > 0;
(ii) vC2(z =29 2+ 0(lz—2*1*"1) >0

and 0 <t < (UC2/4K)€§72, where k = sup |px| on 1.

Then for ¢ sufficiently small (d/dx)o; > 0on [—€q, €1]U[z* — €2, 2" + €;]. Since
o, > 0 on the complement of the union of these two intervals and S! is compact,
we can choose ¢ small enough so that o; is monotonic. This concludes Proposi-
tion 8.10. d
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Thus we have shown

Theorem 8.6 If Xo is a minimal surface with a boundary branch point of even order
n and index m, where 2m — 2 < 4(n — 1), then )A(o cannot be a minimum of either
energy or area, i.e. there is a C* surface X with less energy and area than that of
Xo. If Xo maps S' monotonically onto I', X can be chosen to map S' monotonically
onto I'.

‘We would now like to move on to the cases 3n < 2m — 2 < 4n (here we are still
in the non-exceptional situation where m + 1 % 2(n + 1)) and 4n < 2m — 2 < 5n.
For both these situations we need to consider the fifth derivative in the direction of
forced Jacobi fields. In this case, for ease of exposition, we omit the mention of .

Proposition 8.11
dS—f =Re29:1,- (8.94)
with i
=16 ; WZiw - Ziwd dw, L= 12/5l WZiw  Zirw® dw,
=4/S1 wZ it Zw® dw, Iy = 16/S1 wZiiw  Zwde dw,
48/Sl WZitw * Zewdr dw, g = 24/S1 wZiw -+ Zwhu dw,  (8.95)
I; = 24/ wa . Z,qut, dw, Iy = . wZ,w . 2wd~>m dw,

Iy := 2/1 wzw : Zw‘ismt dw.
N
15(0) vanishes by Cauchy’s theorem since both Zm 0)y and wf( T are holomor-
phic provided that T = ¢(0) is the generator of a forced Jacobi ﬁeld at X. Further-
more, I3(0) = 0 because of (8.81), and X Xw =0 implies 19(0) =
Thus we obtain from Chaps. 2 and 3

Proposition 8.12 Since X is a minimal surface we have
d°E . . . .-
W(O) = 16Rf>f1 Ziw(0) - [wZy (0)¢(0) + wX¢; (0)] dw
s
+12Re / Zitw(0) - [wZi1y (0)$(0)
S

+ 4w Z11 (0)1 (0) + 2w X by (0)] dw
—24Re / w3 X ww - Xwwd ()¢ (0) dw (8.96)
Sl

provided that ¢ (0) is the generator of an inner forced Jacobi field at X.
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Lemma 8.7 If f(w) := wZ,(0)T + wXyuy (0) is holomorphic, then

Ziw(0) = {iwliw Xy t]w$(0) + iw Xy (0)}w, (8.97)

and
thw(o) : )A(w = _2tw(0) . 2[11}(0) = wz)?ww : }A(wwrz- (8.98)
Proof The proofs of (8.97) and (8.98) are in Lemma 2.4 of Chap. 2. O

Since 2m — 2 > 4n, 2,Z (0)T 4+ Y;¢:(0) has no pole in the last complex compo-
nent. Since Zx (0)T 4+ Y ¢:(0) has no pole, the only possible poles are imaginary;
ie. ZvjA;j/2, vj € R, j<n+1or ZViA /24 = (Zv)/4,iEv]/Z"). Thus
v} =0and so f(w) is holomorphic.

As a consequence if f(w) is holomorphic, we have a formula for the fifth deriva-
tive, namely

Proposition 8.13 If f(w) := w Z,(0)$(0) + wX: (0) is holomorphic, then

d5E A N ~
T =12Re / [ 2110 (0) - Zern (0 (0)
Sl

+ 4w Z11(0) - Z1y (001 (0)] dw. (8.99)
As we did with the fourth derivative, we can write (8.99) in the notation of the

upper half-plane in order to aid in further computations.
Noting that

z. _7 dz 7 _z dz (5_ 1 dw

ttw — ttzdwa tw — tzdw’ - iw dz )
-1 dw dz 1+22

=T 7P -— = , df =dw/iw,
o iw dz o wdw ( 2i > w/iw

we obtain: if f(w) above is holomorphic

dSE 2
F(O) = 6Im/0 (1422 Z112(0) - [Z1 (0)$ (0) + 4Z,-(0)¢p; (0)] dB. (8.100)

We are now ready to compute this integral, or at least terms of a certain e-order.
We first consider the situation 4n < 2m — 2 < 5n. Then

2m —3=4n+r, n>r>0odd. (8.101)

Here we set t = Be/7" + /7", T = ¢(0). Then formula (8.84) applies to give us
¢:(0). Since 2m — 2 >4n +2,2m — 3 > 4n + 1, and this implies that the f(w) of
Lemma 8.7 is in fact holomorphic.

Then, we have that the last complex component of

Z12(0)¢(0) + X, (0) (8.102)
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equals
ﬂ262(m — )Ry 7" 2!
+2Bpe(m —n) Ry !
+ uz(m — )Rz !
+ higher order terms in powers of z. (8.103)
Moreover, the last complex component of Zi - equals
B2 (m —2n — 1)(m — n) Ry ™22
+2e(m—n)(m—n—r — D)Ry7" "2
+u2(m—n)(m —2r — )Ry7" 22
+ higher order terms in powers of z. (8.104)
The last complex component of 2ttz ) - 2,, -(0) equals
Bet(m —2n — 1)%(m — n)>R2 244
+4€*uB?(m —n)?(m —n — r — 1)2R2 2m=2n=2r—4
+ (m —n)?(m — 2r — 1)2R2 P44
+4B8%3u(m —2n — 1)(m —n)>(m —n —r — R P34
282312 (m — n)2(m — 2n — 1)2Rr2nz2m—2n—2r—4
+dedBm —n)2(m —n —r — 1)(m —2r — )RE 2" =3r—4
+ higher order terms in z.
Thus, the last complex component of Z,Z 0) - Z,z (0)¢ (0) equals
Bruetm —n)?>(m —2n — DH{(m —2n — 1) +4(m —n —r — 1)}Ryn/z
+ 0(65) + terms with no poles in z, (8.105)
and the last complex component of 2,;2 (0) - Z:;(0)¢: (0) equals
—Betum —2n — 1) (m —n)>(n — HREZ"T AL (8.106)
where
2m —4n —r —4=—1.

Thus, noting again that the relation A; - A; =0, 1 <1, j < 2m — 2n implies that
the first complex components do not contribute to the €* terms in the derivative, we
have

dE 4.4 2 2, R 5
W(O)=6ﬁ € u(im—n) y(m—Zn—l)Im/[l—i—Z ]]/76194-0(6 )

(8.107)
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where

yi=[m-2n—-1)+4m—-—n—r—1)—4(n —r)]
= [5(m —2n—1)].

Again, using the fact that 1 4 z> = 2iw we may apply the same analysis as in the
fourth derivative to conclude that

d&PE

—=(0)= —£c*Res [R,%,l (w—_lﬂ +0(d) (8.108)
w=0

w\w+1
where & := 607r/34,u(m — n)z(m —2n — 1)2 > 0. Therefore, in the case 4n < 2m —
2 < 5n, the fifth derivative of Dirichlet’s energy is

I’ 452 5

ﬁ(O)zée R, +O0(e) (8.109)
which (since R,,z1 < 0) can be made negative for small €.

Noting that with u > 0 and with sgn 8 = sgn b, (cf. (8.73)), it follows as before
that the variation ¢, is monotone if by = 0 choose 7 = B/z" + u/r" + y /7"~ L.
Then the fifth derivative is unchanged but monotonicity is preserved. Thus we have
proved:

Theorem 8.7 If Xo is a minimal surface spanning a smooth contour with a bound-
ary branch point of order n and index m, where 4n < 2m — 2 < 5n, then )A(o cannot
be a minimum of either area or energy; i.e. there is a C* surface X spanning I
with less area or energy. If Xo maps S' monotonically onto T, X will also map S!
monotonically onto I'.

Next, we revisit the cases left over from considerations of the fourth derivative,
namely

(A) 2m —2=4n—4orm=2n—1,
B) 2m —2=4n — 2 or m = 2n.

In both cases m > 2(n — 1) + 1, and so Lemma 8.4 applies and formulae (8.96)
and (8.99) for the fifth derivative hold.
We can write

2m —3=2m—1)+2n—-2)+1 (Case A)
or
2m —-3=2n—-1)+2(n—-3)+3 (CaseB).
Thus for both (A) and (B) we can write
2m — 3 =2ky + 2ky + 1,
ki=m—1),kp=m—2)and ris 1 or3.
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With these generators we will need to consider the first as well as the last complex
components. We can consider both cases simultaneously by writing our generator t
as

¢(0) =1 :=Be/ZN + v/ 4+ p)7,

2k +2ky +r=2m —3,r > 0, 0dd, r < ky. Then ¢,(0) is determined by (8.84).

We see that since in both cases (A) and (B), 4r < 4k, < 4k; < 2m — 2, the fourth
derivative as well as the second and third, with this choice of 7, vanish identically.
In (A) in order to ensure that r < k>, we need to assume that n > 2. Thus, in the
following considerations we omit the cases n = 2, m = 3, m = 4. However, the case
n =2, m = 3 cannot occur by Wienholtz’s result since here 2m —2 =4 < 6 =
3n. Hence we omit n = 2, m = 4, and we therefore (in (A)) assume that n > 4. In
case (B),if n=4,m =8, and thus r = (n — 1), not r < (n — 1). Thus we leave
consideration of this case until after of looking at case (B). With these exceptions
we consider cases (A) and (B) simultaneously.
_We first evaluaAte only ttle last complex components of ZZ 0, Z,Z 0), th ) -
Z11z(0)¢(0) and Z;;:(0) - Z;z(0)¢(0).

Now the last complex component of Z;,(0) equals

Be(m — k) Rnz" 1 4y (m — k) Ruz™ 2 + p(m — r)Rpz" "', (8.110)
The last complex component of Zz (0)¢ (0) equals
€2B2(m — k) Ruz™ 21 4+ Bye@m — ki — ko) Ry M1 %21
+ Bep@m — ki — r)RuZ" M1 4y (m — ko) Rz 22!
+ 02(m = r)RpZ" 7 4 yp@m —ky — r) Ry R 8.111)
Also we have, from (8.84)
—$1(0) = B2*(n — k)2~ P eBy (2n — ki — kp)z~T1TRHD
+Bepn —ky —r)z” D 4 200 k)R 2 PR FD L
(8.112)

(we ignore the term 02). A
Therefore, the last complex component of Z;,(0)¢ (0) + X, ¢;(0) equals

B (m — n)Ryz" 171 £ 28y e(m — )R,z Rk
+2Bepm —m) Ry 2 — m) Ry
—i—Z)/,o(m—n)Rmz’”_kZ_’_1 4o, (8.113)
Thus, the last complex component of Zi -(0) is
B*e*(m — n)(m — 2k; — DRyz" 172
+2Bye(m —n)(m — ki —ky — )R, 2" i—k=2
+2Bep(m —n)(m — ki —r — )Ry z" F17772
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+ Vz(m —n)(m — 2ky — I)Rmzm_2k2_2
+2yp(m —m)m —ky —r = DRy" 22 (8114

To make the next computations somewhat simpler, we ignore terms involv-
ing p%, y*, p*. Adopting this strategy, we see that the last complex component of
Z11z(0) - Z11z(0) equals

Bt (m — n)*(m — 2ky — 1)? R, 22—~
+A4B22 Y2 (m — ) (m — ky — ky — 1)? R g2 2 —2hemd
+48%2yp(m —n)2(m —ky —ky — 1)(m —ky — r — 1)R2 2~ 2ki—ka—r—4
+4,36y2p(m —n)m—ki—ky—D(m—ky—r — l)anzzm_ZkZ_k‘_r_4.
(8.115)

_ Now computing only the €2p2y?p terms of the last complex component of
Z11z(0) - Z112(0)¢ (0), we obtain

422y p{m —n)*(m — ki —ky — 1)°
+m—n’m—ki—ky—D(m—k —r—1)
+m=—n’m—ko—ki—D)(m—ks—r —D}Rn/z.  (8.116)

Finally the last complex component of —an ) - Zt 2(0)¢:(0) (only the B 2)/262 P
terms) equals

By p{(m —n)(m —ka —r — D(m — k2)(n — k1)
+ (m —n)(m —2ky — I)(m —r)(n — k1)
+2m—n)Ym —ky —r —1)(m —k1)(2n —k; —kp)
+2m—n)(m —ky —r — 1)(m —kp)2n — ky — kp)
+2m —n)(m —ky —ky — D)(m —r)2n —k; — kp)
+(m—n)Y(m —2ky—1)(m —k;)2n —ky —r)
+2m—n)Ym —ky —ky — 1)(m —ky)(2n — ko — 1)
+2m —n)(m —ky —r — 1)(m —k1)(n — kp)
+m—n)(m —2k; — 1)(m —r)(n — k2)} (R /2). (8.117)

In these formulae we need only substitute the relevant values for case (A) or
case (B). We begin with case (A). In this case we have the following values: k| =
m—1D,kb=mn—-2),2m—-2=4mn—- 1), r=1,(m—-k1 —kr—1)=1, m —
k—r—1)=m—-1),m—-2ki—1)=0,(m—n)=m—-1),m—k)=m+1),
m—k)=n,(n—k))=1,(n—k))=2,2n—k;—ky)=3,2n—ky—r)=(m+1),
(m —ky —r — 1) = (n — 2). Substituting these values into (8.117) we see that the
last complex component of Z,Z ) - Z,Z (0)9 (0) equals

4(n — D(2n* —4n +2)B%*y*pR2 Jz 4+ - . (8.118)
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On the other hand the last complex component of Z, -(0) - ZZ (0)¢:(0) equals

(n — 1){22n° + 6n — 28)B%€*y>pR2 /2. (8.119)

m

Therefore the leading term of the last complex component of
Z112(0) - Zuz(0)(0) +4Z112(0) - Z1 (00, (0)

equals

4(n — 1){—20n> — 10n 4 30}8%%y2pR2 /2. (8.120)

As mentioned, with these generators, we must consider the contribution of the first
complex components arising from the term th(o) . ZZ (0). Calculating this we get
a final result of 2(n — 1){—24n> 4 12n + 3} and —24n? + 12n + 3 is clearly negative
forn > 1.

Let & :=4(n — 1){—24n2 4+ 12n + 3} and take 8 > 0 and p < 0. Then, as in the
fourth derivative the variation o; is monotonic. The same analysis as before yields
that the fifth derivative of Dirichlet’s energy is

d°E
—5 (0= —2wEB%%py R + O(Y). (8.121)

Since R,%l < 0 and p < 0, the derivative is negative for sufficiently small €. There-
fore, with the exception of n =2, m = 4, case (A) is proved.

What about case (B), n # 4?7 Then we have: m =2n, ki = — 1), ko =n — 2,
r=3withn—1>3,and (m—k; —ky—1) =2, m—ky—r—1)={n-2),
m—2k—1)=3,m—-2ki—1)=1,m—n)=n,m—ky))=m+2),m—k) =
m+D), n—k)=1,(n—k)=2,2n—ki —k))=3,2n—kar—r)=m—1),
m—-—ki—r—1)=m-23).

Then Z,t 2(0) - Z,t :(0)¢ (0) has the leading term of the last complex component
equal to

B>’y pldn(4n® — 4m)}R;, /2 (8.122)
and the leading term of the last complex component of V4 11z (0) - Z 1z(0)¢; (0) equals
—n{23n% 4+ 10n — 108} 8%€>y%pR2 /2. (8.123)

Thus, the leading term of the integrand arising from the last complex component
of

Z1120) - Z112(0)¢(0) + 42412 (0) - Z-(0) (0)
is
4n{—19n* — 14n 4 108} %>y 2 pR? /2. (8.124)

Calculating the contribution from the first complex components we obtain a final
answer of 2n{—24n2% + 7n + 85}. Now & := 2n{—24n% + 7n + 85} < 0 for n > 4.
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Take 8 > 0, p <0, ensuring the monotonicity of ;. Then

dSE 222 2 3
—5 0 =21Ep°ypR] + 0(e) <0 (8.125)

for € sufficiently small.
We have one case remaining, namely n =4, 2m — 2 =4n — 2, m = 8. Here
2m —3=13=4.34 1. Take k =3, r = 1 and generator

t: B/ + /7 (8.126)

Then an explicit calculation shows that

d&°E 4.3 p2 4
W(O)sz'réﬂ € uR;, + O0(") (8.127)

where & := (16).
Then, again, for € > 0 sufficiently small,

5

Thus, we have proved Theorem 8.2 in cases (A) and (B) with the exception of
n=2m=4.

We would now like to discuss the case 5n <2m — 2 < 6n(2m +2) < 6(n + 1).
We first need a revision of Proposition 8.9, which is proved in the same way.

Proposition 8.14 Consider a variation of o
0 (x) 1= 0 (x) +1E(x) + (12 /2)p(x) + (3 /3)n(x). (8.128)
Then p can be chosen as in Proposition 8.8 and 1 can be chosen so that
G (0) =27 (1, +n1/x)> + - (8.129)

where + - - - are meromorphic functions on JH with poles at z = 0 of lower order. We
start by assuming 2m — 4 < 6n — 2 and taking a generator of the form ce?/z" +
ye/z]” + 8/zk2, ki =n—1, ko < ky. Then the derivatives Df}¢(0) do not contribute
to the sixth derivative. We then have a sixth derivative given by

d°E .
@i ©=40Re [ 21,0
A0 Zuw ©FO) + 20210041 0) + w20 003 (0) | dw

+60Re [ Zuw 0+ {1020 050 + 202, 03O | .
(8.130)

Again, changing variables to the upper half-plane, we have
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d°E 5 A
W(O) = ZOIm (1 +z )ZmZ(O)

N 2008 0) + 22120091 (0) + 20011 (0) | a9

+30Im / (142 2120) - { 2z 40 0) + 22100 0) | .

(8.131)
Lemma 8.8
2> Re{Z;12(0)¢(0) + 22,2 (0)¢ (0) + Z-(0)bys (0)} (8.132)
is smooth.
Proof We have
Z'(t) = X (@1 (x))x 9,
Z"(t) = [X (91 (x)x Pl + X (@1 (x)x .
Atr=0
Z"(0) = (Xx¢)x¢d + X1 (0).
Similarly
Z"(0) =[(XcP)x ¢ + Xx01x@ + 2[Xx01:¢: (0) + X ¢4 (0)
=Z"(0)x¢ +2Z'(0)x¢;(0) + X1 (0).
Since x — Z"'(¢) is smooth
x> Z"(0)x¢p +2Z'(0)xh: (0) + Z,(0)¢h;, (0) =: A
is smooth. But
20 =Re{Zi1:(0)$ (0) + 22 (0): (0) + Z; (0); (0)}
proving the lemma. U

We now calculate the sixth derivative as we have calculated the fourth, noting
that any poles of

Zi12(0)$(0) +2Z,:(0); (0) + Z:(0)¢p1 (0)

are purely imaginary.

In all subsequent equalities we first consider only the last complex component.
Since we are interested in the y§-terms we will ignore the y2 and §2-terms in our
calculations. We then have

2,:(0) = €m = m) Rz~ + ey (m — ky) Ry "1
+8(m — ko) Ry 27! (8.133)
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and
—¢/(0) =y (n — kD) Rpz” "1HD 4862 (n — ky) Rz~ HEHD
+8ye(2n — ki — ko) Rypz~ kit (8.134)
Furthermore
Zz(0)¢ + Z:(0)¢; (0)
— E4(’,'1 _ n)RmZm—Zn—l + 263]/(771 _ n)RmZm—n—kl—l
+2€28(m — )Rz 27"V 4 2ey8(m — n)Rpz" M%7 (8.135)

Thus, we have

Zit2(0) = €*(m —n)(m — 2n — )R, 2" "2
+ 2]/63(m —n)Ym—n—ky — 1)Rmzm_"_k‘_2
+28€2(m —n)(m —n — ky — 1) Rz " k22
+2y8e(m —n)(m —k; —ky — 1) Rypz™k1—k2=2 (8.136)

and hence

Z112(0)p = €%(m —n)(m — 2n — 1) R,z 32
+2y€(m —n)(m —n—ky — 1)Rz"~"k2=2
+28e*(m —n)(m —n — ky — )Ry 2" hi—k=2
+ye(m—n)(m —2n — )R, "2 =2
+2y8€3(m —n)(m —n —ky — )Ry " Ri—ke=2
+8e*(m —n)(m —2n — )Ry 7"~k 2
+2y83(m —n)(m —n — ki — )R, 7" " Ri—ke=2
+8e*(m —n)(m —2n — 1)R,,g" 2k 2
+2y8€3(m —n)(m —n —k; — DRyZ" "R k=2 (8.137)
and
—221:(0)¢1(0) =267y (m — n)(n — k1) Rpyg" "1 72
+2e*8(m — n)(n — ky) Ry 222
+263y8(m — ko) (n — k) Ry 2" "Rk =2
+263y8(m — ki)(n — ka) Ry 2" "Rk =2
+263y8(m —n)2n — ki — ko) Ry "Rk 72 (8.138)
Additionally, since
G (0) =4y 8€>(n — k1) (n — ky) - "Rtk 4 (8.139)
then

200y (0) = 4€3y8(n — k1) (n — k) Ry g™~ Hhihat2) (8.140)
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We are setting 2m — 4 =4n + ky + ko, or

m=2n+[(ky + k2)/2] + 2. (8.141)
Keeping this in mind, we see that
Z1120)¢ +2Z,,(0) 1 (0) + Z(0) b1 (0) (8.142)

has only a y-linear pole or a pole containing no y or § terms. .
Using the fact that in evaluating the derivative, we multiply the zeros of Z;;(0)
by the poles of (8.142) to obtain all §y-terms, we must then multiply the § linear
zeros of the z-derivative of (8.142) by the y poles of (8.142) and the product of the
y 8 zeros of the derivative of (8.142) by the poles of (8.142) contain no § or p terms.
Let us first simplify the yé zeros of (8.142). From (8.137)—(8.139) we have the
8 zeros of (8.142) equal to the product of 7" ~*17%2=2 apnd
2y8€3(m —n)(n — ki —ky — 1) Ry +2y8€>(m —n)(m —n — ky — 1) Ry
+2y8e3(m —n)(m —n — ki — )Ry — 2y8€>(m — k1) (n — k2) Ry
—2y8€>(m — ko) (n — k1) Ry — 2y8€>(m — n)(2n — ki — ko) Ry
—2y8€3(n — k1) (n — ko) Ry — 2y8€>(n — k1) (n — ko) Run. (8.143)
Adding these in steps, we first obtain
2y8€3(m —n)(m —2n — )Ry, +2y8€3(m —n)(m —n — ks — 1) R,y
+2y8€3(m —n)(m —n —k; — 1)R,, — 2y8€>(m — n)(n — ko) Ry
—2y8€>(m — n)(n — ki) Ry,
=6y8e>(m —n)(m —2n — 1)Ryy,. (8.144)
The pole term of (8.142) containing neither y nor §-terms is
eS(m —n)(m —2n — )Ry 72. (8.145)
Thus, we have a contribution to the first term of the integrand of the sixth derivative
arising from the product of the derivative of the y§ zeros of (8.142) and the poles of
(8.142) equalling
6y8e’(m —n)>(m —2n — 1)*>(m —n —ky —ky —2)R2z™!
=3y8€”(m —n)*(m —2n — 1)>2m — 2n — 2(ky — ky) —4)R% 77!
=3y8”(m —n)*(m —2n —1)>(n —ky + DR ™! (8.146)
(since 2m —4 =4n+ k1 + kp, and k1 = (n — 1)).
What about the § zero of the derivative of (8.142) multiplied by the y pole of
(8.142)? From (8.137) and (8.138) the § zero of (8.142) is
28€*(m —n)(m —n — ky — 1) Ryyg™ 222
+8et(m —n)(m —2n — )R, z" 2 k272
—28¢*(m — n)(n — kp) Ry "2 k=2
=38e*(m —n)(m —2n — )R, 7" 222, (8.147)
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Since the y pole of (8.142) is (from (8.137) + (8.138))
3)/65(m —n)(m —2n — )R,z hi=2
we obtain a second (and final contribution) equal to
9y8¢?(m —n)2(m —2n — 1)*(m —2n —ky — 2)R% 77!
= gy&g(m —n)?(m —2n—1)*(n—ky — HREz™ L. (8.148)

Now we look at the second term of the sixth derivative. Consider the last complex
component of the product

Z112(0) - Z12(0)
= eg(m — n)z(m —2n —
+4ye’(m—n)?(m —2n — 1)(m —n —ky — )R Fm—3n—ki=4
+48€%(m — n)2(m —2n — 1)(m —n — ky — 1)R2,Z2m—3n—ke—4
+4y8€3(m —n)>(m —2n — 1)(m — ky — ky — 1) R2 22—k —ka=4
+8y8€3(m —n)2(m —n —ky — 1)(m —n — ky — 1)R2 22—k —ka=4,

1)2R31Z2m—4n—4

(8.149)
Thus the y 8 term of Zy;.(0) - Zy1-(0)¢p; (0) is
—4y8e®(m —n)*(m —2n —1)(m —n —ky — )(n — k2)R% /z
—4y8°(m —n)?(m —2n — 1)(m —n —ka — 1)(n — k))R% /2
—y8e®(m —n)*(m —2n — 1)>Q2n — ky — k)R /z. (8.150)

Moreover

2Z112(0) - Z12(0) (0)
=8y8€e”(m —n)*(m —2n — 1)(n — k) (n — k) R% /z
=4y8¢°(m —n)*(m —2n — 1)(n — k1) (n — k) R% /2
+4y8e’(m —n)(m —2n — )(n —ka)(n —k2)R2 /z.  (8.151)

Thus, one easily sees that (k;j =n — 1)

Z1120) - Z11z(0)y +2Z112(0) - Z12(0)byy
=—5m —n)*(m —2n—1)*(n —ky +1). (8.152)
Considering the formula for the sixth derivative, we multiply the sum of (8.146) and
(8.148) by 20 and (8.152) by 30 to obtain
60y 8€®(m —n)*(m —2n — 1)*(n — ko + 1)R2 /2
+90y8€?(m —n)*(m —2n —1)*(n —kay — DR2 /2
— 150y8€°(m —n)*(m —2n — 1)’(n —ka + DR2 /2
= —180y8€°(m —n)*(m —2n — 1)’R2 /2.
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It is not hard to see that, with this choice of generators, the sixth derivative does
not depend on the first complex components. Choosing § < 0, y > 0 we can ensure
monotonicity and make the sixth derivative negative.

We now consider the last cases. We start with the case 2m — 4 = 6n — 2, or
m = 3n + 1, and begin by assuming n > 4. We choose the generator

Ti=eyc/ZM +¢8/7%,
ki=m—1),kp=3,ky <k;. Then2m —5=6n—-3=6(n—1) + 3.
In this case, since A; =A; A1 =A;(1,i),1 < j <2m — 2n and the real part of
Z112(0)¢ (0) +2Z4(0)¢: (0) + Z(0)h1: (0) (8.153)

(cf. (8.132)) has no poles, it follows that the first complex components of (8.153)
have no poles. Since m > 3(n — 1) + 2, the last complex component also has no
poles, and (8.153) is holomorphic.

Using our general formula for odd order derivatives, and recalling that (cf.
Lemma 2.4, Chap. 2)

Z1z(0) - Z(0) = —Z1,(0) - Z(0),

we obtain the following formula for the seventh derivative of Dirichlet’s energy,
namely

1 d’E

10 g7 O =Re f (14 2 Z1112(0) - Z112(0)$ (0)] d6 =: (D)

+6Re / (14 D) Z1112(0) - 2112 (001 (0)] d6 =: (E)
+6Re / (14 2)[Z1112(0) - Z1;(0)¢(0)] dO =: (F)
+2Re f (1 4+ 29[ Z111:(0) - Z;(0) 11 (0)1 d6 =: (G)

180 5 A )
* (E) Re/(l + 29[Z112(0) - Z112(0)¢1:(0)] dO =: (H)

+ (%()) Re/(l + 29[ Z112(0) - Z12 (00, (0)] d6 =: (I).
(8.154)
We begin our calculations, again calculating only the last complex components:
Z12(0) =€y (m —kD)RnZ" M7 4 8(m — k)R %271 (8.155)
and
~¢1(0) = €2y?(n — k) Rz 21D 182 (n — k) Ry, 2~ 2D
+ey8(2n — ki — k) Rz~ R1tkath) 4 (8.156)
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We may further ignore the 52, 83, ... terms. Thus

ZZ 0)¢ + 21 0¢:(0) = 62)/2(m — n)Rmzm_2k1—1

+2ey8(m —n) Ry il 4 (8.157)
whence
ZI,Z(O) =2y8e(m —n)(m — ki —ky — )R, z"F17k2=2
+ 2y m —n)(m —2k; — DRuZ" M2 4. (8.158)
and

Zi2(0)p = €3> (m — n)(m — 2k; — DR,z k172
+ 29283 (m —n)(m — ki —ky — 1) R,,z" k2
+€2y28(m —n)(m —2k; — DRyZ" k224 ... (8.159)
We need to evaluate
Zi1z(0)¢(0) + 2Z2(0)¢p; (0) + Z(0) 1, (0).
First,

—221:(0)¢(0) = 2> y> (m — k1) (n — k1) Ry 224172
+262y28(m — ko) (n — ki) Ry 2" 217072
+2¢y %y (m — k1) (2n — ky — kp) Rz k=2
(8.160)
Noting that (cf. (8.129)) ¢, (0) = 27 (t; 4 nt/x)> + - - - we have
011 (0) = 4282 (n — k1) (n — ka)z~FkiTha+D) 4 00,252y — fp)2,~ Chithat2)
+2933(m — k)22 4 (8.161)
Thus (8.153) equals
2y28€2(m — n)(m — ky — ky — D) Ry 2"~ 21—k2=2
(A): + y28€2(m — n)(m — 2ky — 1) R,z 21—ke=2 (8.162)
+ 263 (m — n)(m — 2ky — )R,z ~3h1-2

+
—292628(m — ko) (n — k1) Ry~ 2k1—ka=2

(B): —29228(m — k) (2n — ky — ko) Rz~ 2ki—ka=2  (8.163)
—2p7€(m — ki) (n — kp) Ry 172

4y2€8(n — ki) (n — ko) Ry zm—2k17ke=2
(©): +2y2%€28(n — k1)?R, 7"k —ka=2 (8.164)
+2y2e28(n — k1)* Ry 2" 172,
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Adding (A) + (B) + (C) we see that (8.153) equals
3y2e28(m — n)(m — 2n — 1) Ry 7"~ 2—ke—2
+y33m —n)(m — 2n — DRz" 172 (8.165)
yielding that
Zi112(0) = 3y2€25(m — n)(m — 2n — 1)(m — 2k; — ko — 2) R~ 21~k —3
+ 9363 (m — n)(m — 2n — 1)(m — 3k; — 2) Ry F173 4.
(8.166)
Thus, again ignoring 8%, 8°, ... terms
Z1112(0) - Z114:(0)
=6y 8(m —n)>(m —2n — 1)>(m — 2k; — ks — 2)(m — 3k; —2)
.RmZZm—Skl —kr—6
+10€m — n)2(m — 2n — 1)2(m — 3ky — 2)2Rpz?" %176 (8.167)
This implies that the integrand of (D) is
Zi11z(0) - Zu11z(0)$(0)
=6y%°8(m —n)>(m — 2n — 1)>(m — 2k; — 2)(m — 3k — 2) R, 2" k1 ~k2—6
+ 1008 (m — n)2(m — 2n — 1)2(m — 3ky — 2)2 Ry 2" —0k1 k=6
+ 7€ (m —n)>(m —2n — D)*>(m — 3k; —2)*Rp 22" =0 4 ... (8.168)
Using (8.166) and (8.159) we see that
Z1112(0) - Z1:(0)
=2y%*s(m —n)>(m —2n — 1) (m —ki —ka — 1)(m — 3k —2) Ry 2"~ *1—k=5
+3y*e*s(m —n)>(m —2n — 1) (m — 2ky — ko) (m — 2k — 1) R,z 2"~ #1—k2=3
+ 933 (m —n)2(m —2n — 1)(m — 3ky —2)(m — 2k; — DRy 22" K175 ...
(8.169)
Thus, we obtain the integrand of (E):
6Z1112(0) - Z1yz(0); (0)
= —(y%°%8) - {12(m —n)>(m —2n — )(m —ky —ky — 1)
c(m—=3—k —2)(n—ky)
+18(m — n)>(m — 2n — 1)(m — 2k; — ko — 2)(m — 2k; — 1)(n — k1)
+ 6(m — n)2(m —2n—1)(m — 3k —2)(m — 2k; — 1)(2n — k1 — k2)}
. R, 7 —0ki—ka=6
—67%(m —n)?(m — 2n — 1)(m — 3k; — 2)(m — 2k — 1)(n — k1)
N i T (8.170)
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Furthermore, working towards the integrand of (F) we have

6Z1112(0) - Z;2(0)
=338{18(m — n)(m — 2n — 1)(m — 2k; — k» — 2)(m — k1)
+6(m —n)(m —2n — 1)(m — 3k, — 2)(m — kp)} Rz 3k —-ka—4
+6y*e*(m —n)(m —2n — 1)(m — 3ky — 2)(m — ky) R 22" =4,
(8.171)
Using formula (8.161) for ¢4 (0) we get the integrand of (F):

Z1112(0) - Z12(0) 11 (0)
=y%€%5{36(m — n)(m — 2n — 1)(m — 2k; — ko — 2)(m — k1) (n — k1)?
+12(m —n)(m —2n — 1)(m — 3k; — 2)(m — k2)(n — k1)?
+24(m — n)(m — 2n — 1)(m — 3k; — 2)(m — k1) (n — k1) (n — k)
+12(m —n)(m —2n — 1)(m — 3k; — 2)(m — k) (n — k1)) Ry 22"~ Oki—ka=6
+ 12977 (m —n)(m —2n — 1)(m — 3ki —2)(m — k1) (n — k1)? Ry 22"~ 75170,
(8.172)
We now evaluate the integrand of (G). As, in the case of ¢;(0) and ¢ (0) it is not
hard to see that
¢111(0) = 67 (T +n7/x)° + - - (8.173)
yielding that

¢111(0) = —18)/3633(11 — k) (n — ky)z K1k 3
—6y338(n— k)RS _6ytet(n — k)PS0 (8.174)

Hence, we obtain the integrand of (G) as

—y%€%8{36(m — n)(m — 2n — 1)(m — 2k; — ko — 2)(n — k1)?
+36(m —n)(m —2n — 1)(m — 3k; —2)(n — k1)*>(n — k»)
+12(m — n)(m — 2n — 1)(m — 3k — 2)(n — k1) } Ry 22" —0k1—k2=6
—1297€7(m — n)(m — 2n — 1)(m — 3ky — 2)(n — k1) Rypz?" k170,
(8.175)

Adding the integrands of first (G) to (F) and then this sum to (E) and then to (D) we
get the sum (G) + (F) + (E) 4+ (D) equal to
y0e®8{—18(m — n)>(m — 2n — 1)>(m — 3k —2)(n — k1)
—18(m —n)>(m —2n — 1)%(m — 2k; — ko — 2)(n — k)
—6(m —n)*(m — 3ky —2)(m — 2k — 1)(n — k2)
+6(m —n)>(m —2n — 1)>(m — 2k; —ka — 2)(m — 3k; — 2)
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+ (m —n)2(m — 2n — D2(m — 3ky — 2)2} R, 2"~ Ok1 k=6

+ 7€ {(m = n)*(m —2n — 1)>(m — 3k — 2)°

—6(m —n)*(m —2n — 1)(m — 3k; —2)(m — 2k; — 1)(n — k1)

+12(m —n)(m —2n — 1)(m — 3k; —2)(m — k1) (n — k1)?

—12(m —n)(m —2n — 1)(m — 3k —2)(n — k1) Y Rpz?" " 7M170.  (8.176)
Notingthatn —k1 =1,n—ky=n—-3,m=3n+1,m—-3k; —2=2,m—2k1 — 1=
n+2,m—2ky —ky —2 =n—2, we see that the integrand of (E) 4 (F) + (G) + (D)
equals

y0e®8{—36(m — n)>(m — 2n — 1)*> — 18(m — n)>(m — 2n — 1)*(n — 2)

—12m—n)?m+2)(n—=3)+12(m —n)*(m —2n — 1)*(n +2)
+4(m — n)?(m — 2n — 1)?} R, 22" 0k —ka=6 (8.177)
+y7edm —n)>m —2n— 1> = 12(m —n)*(m —2n — H(n +2)
+48(m —n)(m —2n—1)(n+1)
—24(m —n)(m —2n — D}R, 22" =6 4 ... (8.178)
Let us now focus on the coefficients of y6668 R, 72 —06ki—k2—6 Rewriting these
coefficients we have
—(m —n)*(m —2n — 1)2(36)

—(m —n)*(m —2n — 1)*(18n — 36)

—12(m —n)*(n+2)(n — 3)

+ (m —n)*>(m — 2n — 1)>(12n + 28) (8.179)

which equals

—(m —n)>(m —2n — 1)*(6n — 28)
—12(m —n)*(n+2)(n —3), (8.180)

which is the integrand of (E) + (F) + (G) + (D).
Calculating the coefficient of y6668Rmz2’"*6k"k2’6 in Z,,Z(O) . Z,Z 04 (0),
the integrand of (H), we obtain
4(m —n)*(m — 2k — 1)>(n — ki) (n — k2)
+2(m —n)*(m —2k; — 1)*(n — kp)?
+8(m —n)*(m —2ky — 1) (m —ky —ko — 1)(n — k) (8.181)
which simplifies to
4(m —n)*(n+2)*(n —3)
+2(m —n)’(n+2)?
+16(m —n)*(n +2)(n — 1). (8.182)
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Multiplying this by (180/40) we obtain
18(m — n)*(n + 2)*(n — 3)?
+9(m —n)*(n +2)?
+72(m —n)*(n +2)(n — 1). (8.183)

Now the coefficient of yéeG(SR,%lzz’”*le —k2=6 ip th ) - 2,1(0)45,,,(0), the inte-
grand of (I) is

—6(m —n)(m — 2ky — 1)(m — ko) (n — ky)*
—36(m —n)(m — ky)(m — ki —ky — D)(n — k1)*(n — k2)
— 18(m — n)(m — 2ky — 1)(m — k) (n — k1) (n — k)
—120m —n)(m — k) (m — ki —ky — D)(n — k1)’
—6(m —n)(m —2k; — 1)(m — ko) (n — ky)? (8.184)
which simplifies to
—(m —n)(180n> — 366n> — 372n + 144). (8.185)
Multiplying this by 6 we get
—(m —n)(1080n° — 219612 — 22321 + 1464). (8.186)
Simplifying (8.183) we have
(m — n)(36n* +90n> — 684n — 324). (8.187)
Simplifying (8.180) we have
—(m —n)(12n* — 720 — 40n%> — 158n — 72). (8.188)
Summing (8.186)—(8.188) we obtain
(m —n)(24n* — 936n> + 22001 + 1706n — 1706). (8.189)

We wish to show that this cannot vanish for even n. So set n = 2p, then (8.189)
equals

4(m — n)(384p* — 7484 p + 8800p + 3412p — 1706). (8.190)

With our chosen generators, there is a contribution from the first complex compo-
nents arising from the product Ay - Agy,—2,41 in the terms Zgy; - Zi,bir, Zissz -
Z.bi1t, and Zy; - Zi, e No first complex components contributions arise from
terms containing ¢-derivatives of order higher than one. We note that the contribu-
tion of these terms is divisible by four. A straightforward calculation shows that the
sum of this contribution and (8.190) is

24n* — 936n° + 7564n% + 3482n — 13322. (8.191)



8 Boundary Branch Points 167

We need to show that for n even this cannot be zero. Since 7 is even, every term in
(8.191), except the last, is divisible by four, and so (8.191) can never vanish.

If (8.191) should be negative, we choose y > 0 and y < 0; if positive, y > 0
and § > 0. In either case, we have a monotonic variation which makes the seventh
derivative negative for 2m —4 =6n — 2, n > 4.

We thus have three remaining cases, n =2, m =4, m =7 and n =4, m = 13.
In the first, with generator T = yc/x, the fourth and all lower order derivatives
vanish, and the fifth derivative is negative. For n = 2, m = 7 with the same generator
the eighth derivative can be made negative. For n = 4, m = 13 with the generator
T = yc/x3, the seventh derivative can be made negative.

Thus, such branched minimal surfaces cannot be minima. This concludes the
proof of the fact that C* minimal surfaces which have a non-exceptional branch
point spanning a contour with non-zero torsion and curvature, cannot be weak rela-
tive minima for Dirichlet’s energy or area in any C” topology.

The culmination of the work of the preceding chapters shows that in order to
prove that minimal surfaces with an exceptional branch point cannot be a minima
requires the existence of a Taylor expansion with the property that, after a change
of variables, k > [ and there exists an m > m, with Ry # 0 and 1 + m not an integer
multiple of 1+ n without a convergent Taylor series (the analytic case); this appears
to be impossible.

In fact, if all R; =0, j > m, or if for all j > m, the only non-zero R; are those
for which j + 1 =k(n + 1), k € N, then, using the generator 1/z", the methods of
this book would yield a curve along which all of the derivatives of Dirichlet’s energy
are zero (one chooses ¢, = 1/z" for all ¢ small; thus Df} ¢(0) =0 for all B > 0, and
the result easily follows). Thus, in the exceptional case, finding criteria to determine
whether or not the surface is a minimum is analogous to finding criteria to determine
if 0 is a minimum for

e’l/xz, x >0,
fx)=10, . x =0,
te /X7 x <.

In this regard we refer the reader to the example of Gulliver [4], a minimal surface
with an atypical boundary branch point. It is unknown if this surface is a minimum.

In this book we have put forward the argument that forced Jacobi fields are the
key to understanding the fact that branched minimal surfaces cannot, in most cases,
be minima. If this insight is correct, then from the above remarks, it would appear
that for a C®°, but not analytic, minimal surface X with an exceptional boundary
branch point, the question of whether or not X can be a minimum is not decid-
able. So it is perhaps only in this situation that the original guesses by Douglas and
Courant (see Scholia) concerning the existence of branch points for minimizers may
turn out to be correct.

The analytic case, on the other hand, was, as previously mentioned, worked out
by White [1], who showed that analytic surfaces in C(I") with a true boundary
branch point cannot be minima. The methods of this book apply to this case. First,
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if X e C(I), X, by Tomi’s proof (Sect. 6.1) cannot have an analytically false bound-
ary branch point. Thus, the integer I (Chap. 5) is defined and one can use interior
methods to prove the absence of branch points for C? weak relative minima in the
exceptional case also.



Chapter 9
Scholia

The solution of Plateau’s problem presented by J. Douglas [1] and T. Radé [1]
was achieved by a — very natural — redefinition of the notion of a minimal sur-
face X : 2 — R3 which is also used in our book!: Such a surface is a harmonic and
conformally parametrized mapping; but it is not assumed to be an immersion. Con-
sequently X may possess branch points, and thus some authors speak of “branched
immersions”. This raises the question whether or not Plateau’s problem always has
a solution which is immersed, i.e. regular in the sense of differential geometry. Cer-
tainly there exist minimal surfaces with branch points; but one might conjecture that
area minimizing solutions of Plateau’s problem are free of (interior) branch points.
To be specific, let I" be a closed, rectifiable Jordan curve in R3, and denote by C(I")
the class of disk-type surfaces X : B — R3 bounded by I" which was defined in
Chap. 1. Then one may ask: Suppose that X € C(I") is a disk-type minimal surface
X : B — R3 which minimizes both A and D in C(I"). Does X have branch points
in B (orin B)?

Rad¢ [1], pp. 791-795, gave a first answer to this question for some special
classes of boundary contours I", using the following result:

If X (w) vanishes at some point wo € B then any plane through the point Py :=
X (wo) intersects I' in at least four distinct points.

This observation has the following interesting consequence: Suppose that there
is a straight line £ in R3 such that any plane through L intersects I in at most
two distinct points. Then any minimal surface X € C(I") has no branch points in B.
In fact, for Py ¢ £, the plane [T determined by Py and £ meets I” in at most two
points, and for Py € £ there are infinitely many such planes.

In particular: If I' has a simply covered star-shaped image under a (central or
parallel) projection upon some plane Iy, then any minimal surface X € C(I') is
free of branch points in B.

Somewhat later, Douglas [2], pp. 733, 739, 753, thought that he had found a
contour I" with the property that any minimal surface X € C(I") is branched, namely

'We now denote a minimal surface by X and no longer by X, i.e. we no longer emphasize the
difference between a surface X and its boundary values X.

A. Tromba, A Theory of Branched Minimal Surfaces, 169
Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-25620-2_9, © Springer-Verlag Berlin Heidelberg 2012
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a curve whose orthogonal projection onto the x', x2-plane is a certain closed curve
with a double point.

Rado [2], p. 109, commented on this assertion as follows: A curve I" with this
x!, x?-projection can be chosen in such a way that its x!, x3-projection is a simply
covered star-shaped curve in the x!, x3-plane; thus no minimal surface in €(I") has
a branch point.

In 1941, Courant [1] is believed to have found a contour I" for which some min-
imizer of Dirichlet’s integral in C(/") has an interior branch point. This assertion
is not correct, as Osserman [2], p. 567, pointed out in 1970. Moreover, in [2] he
described an ingenious line of argument which seemed to exclude interior branch
points for area minimizing solutions of Plateau’s problem. For this purpose he dis-
tinguished between true and false branch points (cf. Osserman [1], p. 154, Defini-
tion 6; and, more vaguely, [2], p. 558): A branch point is false, if the image of some
neighbourhood of the branch point lies on a regularly embedded minimal surface;
otherwise it is a true branch point. Osserman’s treatment of the false branch points is
incomplete, but contains essential ideas used by later authors, while his exclusion of
true branch points is essentially complete (see also Gulliver—Osserman—Royden [1],
p- 751, D. Wienholtz [1], p. 2). The principal ideas of Osserman in dealing with true
branch points wg are the following: First, the geometric behaviour of the minimal
surface X in the neighbourhood of wy is studied, yielding the existence of branch
lines. Then a remarkable discontinuous parameter transformation G is introduced
such that X := X o G lies again in C(I") and has the same area as X, but in addi-
tion X has a wedge, and so its area can be reduced by “smoothing out” the wedge.
Osserman’s definition of G is somewhat sloppy, but K. Steffen has kindly pointed
out to us how this can be remedied and the construction of the area reducing surface
can rigorously be carried out.

Osserman’s paper [2] was the decisive breakthrough in excluding true branch
points for area minimizing minimal surfaces in R, and it inspired the succeeding
papers by R. Gulliver [1] and H.-W. Alt [1], [2], which even tackled the more difficult
branch point problem for H-surfaces and for minimal surfaces in a Riemannian
manifold (Gulliver). Nearly simultaneously, both authors published proofs of the
assertion that area minimizing minimal surfaces in C(I") possess no interior branch
points (and of the analogous statement for H -surfaces).

Gulliver’s reasoning runs as follows: Let us assume that woy = 0 is an interior
branch point of the minimal surface X € C(I"), X : B — R>. Then there is a neigh-
bourhood V CC B of 0 in which two oriented Jordan arcs y1, y» € C 110,11, B)
exist with 1 (0) = y2(0) =0, [y} (0)| = 1, 1 (0) # 1, (0), X (11 (1)) = X (y2(1)), and
such that (X, A X)) (y1(2)), (Xy A Xy)(y2(2)) are linearily independent for 0 <z <1.
One can assume that dV is smooth, and that y1, y» meet dV transversally at dis-
tinct points ¥ (€), y2(€),0 < € < 1. Then there is a homeomorphism F : B, — V
with F(it) = y1(t), F(—it) = y»(t) for 0 <t <€, and F € C%(B, \ {0}) where
B¢ := B.(0) = {w € C: |w| < €}. Define a discontinuous map G : B. — Be such
that {iz : 0 <t <1} and {—it : 0 <t < 1} are mapped to i and —i respectively;
+€/2 are taken to zero; on the segments of discontinuity [—¢/2, 0] and [0, € /2] are
each given two linear mappings by limiting values under approach from the two
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sides; G is continuous on a neighbourhood of d B, with G|yp, =idyp,; and G is
conformal on each component of B \ I\imaginary axis, where I, is the interval
[—€/2, €/2] on the real axis. Thus X o F o G is continuous and piecewise CZ. Now
define

(XoFoGoF Hw) forweV,

X(w) ::{X(w) forwe B\ V.

Then X is continuous and piecewise C 2 and X € C(I"). The metric

ds®:=(dX,dX)=adu*+2bdudv+cdv?,
a=X, b=XuXy), c=X,%

induced on B by pulling back the metric induced from R? along X has bounded,
piecewise smooth coefficients. It follows from the uniformization theorem of Mor-
rey ([1], Theorem 3) that there exists T : B — B with L? second derivatives, which
is almost everywhere conformal from B with its usual metric to B with its induced
metric, and 7 may be extended to a homeomorphism B — B.

Now define X := X o T; then X € C(I"), A(X) = A(X), and (X, X,) =0 a.e.
on B, and consequently

infe(ryD = infe(rA = D(X) = A(X) = A(X) = D(X).

Thus X is D-minimizing, and so its surface normal N is continuous on B. On the
other hand, the sets X (B) and X (B) are the same, and so X (B) has an edge, whence
N cannot be continuous, a contradiction.

This reasoning requires two comments. First, D. Wienholtz in his Diploma the-
sis [1], p. 3 (published as [2]), noted that Gulliver’s discontinuous map G : B — Be
does not exist, since its existence contradicts Schwarz’s reflection principle. A rem-
edy of this deficiency would be to set up another definition of G or T, such as used
in Alt [1], pp. 360-361, or in Steffen—Wente [1], p. 218, or by a modification of the
definition of G in Gulliver-Lesley [1], p. 24.

Secondly, the application of one of Morrey’s uniformization theorems from [1]
is not justified, as this requires besides a, b, ¢ € L°(B) the assumption

ac—b>=1, *)
and this demands the existence of constants A1, Ap € R with 0 < A; < A, such that
MIE + 1] < aW)E> + 2b(w)En + c(w)n® < ME” + 1] (*%)

for all (£, n) € R2 and for almost all w € B. However, X (w) = X (w) on B \'V, and
X might have another branch point wj € B \ V; then a(wg) = b(w() = c(wg) =0,
and so neither (*) nor (**) were satisfied.

There is another possibility to correct this deficiency. Suppose that X is quasi-
conformal in the sense that

X, 1>+ 1Xu1? <k|Xu AXy|l (ae.on B)

holds for some constant ¥ > 0. Then it follows

a,|b|,c <kvac— b2,
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and thus the quadratic form
do? = o du’® +2B8dudv+vy dv?
with
a 8 b c
o= —, =—, Y= —
ac —b? ac —b? ac —b?
satisfies ||, |B], |Y| < k and ay — ,32 = 1. Hence one can apply Morrey’s ﬁrs_t
uniformization theorem (as quoted above), obtaining a homeomorphism 7" from B
onto Bwith 7,7~ ! e H21 (B, B) such that the pull-back T*do?is a multiple of the

Euclidean metric dsez, i.e

T*do? = ). ds?
whence

T*ds* =k ds?

with L :=Avac—b2, G:=aoT, b:=boT, é:=coT.

Now one can proceed for X :=X o T as above. It remains a question as to
whether X can be constructed in such a way that it is quasiconformal. This would
be the case for Gulliver’s construction described before, except that Gulliver’s G
cannot exist on account of the reflection principle. Hence the definition of G must
be modified, say, as in Gulliver-Lesley [1]. Then, one might proceed as follows:
One decomposes B¢ \ [—€/2, €/2] in finitely many triangular domains E such that
the mappings G|z are C I_diffeomorphisms. Choosing F appropriately, one has to
convince oneself that X o @ with @ := F o G o F~! is quasiconformal if X is a.e.
conformal and |D®|, |D® | < const.

Alt’s method to exclude true branch points (worked out in detail by D. Wienholtz
[1], [2]) eventually uses the same contradiction argument as Gulliver, namely to de-
rive the existence of an energy minimizer X € @(I") with a discontinuous normal
N. The construction of X is different from Gulliver’s approach. Alt defines a new
surface X on B, which is quasiconformal, and by reparametrization a new surface
X =X ot is obtained which is energy minimizing with respect to its boundary
values. Here Morrey’s lemma on e-conformal mappings is used as well as an elab-
oration of Lemma 9.3.3 in Morrey [1].

The non-existence of false branch points for solutions X of Plateau’s problem
was proved by R. Gulliver [2], HW. Alt [2], and then by Gulliver—Osserman—
Royden in their fundamental 1973 paper [1]. Here one only needs that X|; 5 is one to
one, and this observation is used by Alt as well as by Gulliver—-Osserman—Royden,
while Gulliver also employs the minimizing property of X. K. Steffen pointed out
to us that Osserman’s original paper [2] already contains significant contributions to
the problem of excluding false branch points, and it even is satisfactory if, for some
reason, an inner point of X cannot lie on the boundary curve I, say, if I" lies on the
surface of a convex body. It should be mentioned that Gulliver [1] in the proof of
this Theorem 5.1, Case [ (S = ), once again uses Morrey’s uniformization theorem.

Furthermore, in Sect. 6 of their paper, Gulliver-Osserman—Royden proved a
rather general result on branched surfaces X : B — R"* n > 2, such that X|y5 is
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injective, which implies the following: A minimal surface X € C(I") has no false
boundary branch points (see [1], pp. 799-809, in particular Theorem 6.16).

In 1973, R. Gulliver and E.D. Lesley [1] published the following result which we
cite in a slightly weaker form: If I is a real analytic and regular contour in R3,
then any area minimizing minimal surface in C(I") has no boundary branch points.

To prove this result they extend a minimizer X across the boundary of the param-
eter domain B as a minimal surface, so that a branch point wg on d B can be treated
as an inner point. Then the same analysis of X in a small neighbourhood of wq can
be carried out, and wy is either seen to be false or true. To exclude the possibility of
a true branch point, they apply the method from Gulliver’s paper [1], except that a
new discontinuous “Osserman-type” mapping G is described, which is appropriate
for this situation. A detailed presentation of this approach or, what might be easier,
of Osserman’s reasoning applied to boundary branch points, would be desirable. In
a different way, the latter was worked out by B. White [1], see below.

The elimination of the possibility of false branch points in the Gulliver-Lesley
paper is achieved by using results from the theory of “branched immersions”, cre-
ated by Gulliver, Osserman, and Royden. In fact, one can even apply the result on
false boundary branch points quoted above.

The theory of branched immersions was extended by Gulliver [2], [3], [5] in
such a way that it applies to surfaces of higher topological type (minimal surfaces
and H -surfaces in a Riemannian manifold).

K. Steffen and H. Wente [1] showed in 1978 that minimizers of

1
Eo(X) ::/ |:§|VX|2 4+ 0(X) - (Xu A Xv):| dudv
B
in C(I") subject to a volume constraint V (X) = const with
1
V(X):= 5/ X -(XunXy)dudv
B

have no interior branch points. Their work in particular applies to minimal sur-
faces. While their treatment of true branch points essentially follows Osserman [2],
they simplified, in their special situation, the discussion of false branch points by
Gulliver—Osserman—Royden [1] and Gulliver [2].

In 1980, Beeson [1] showed that a minimal surface in C(I"), given by a local
Weierstrass representation, cannot have a true interior branch point if it is a C'-local
minimizer of D in C(I"). (According to D. Wienholtz, Beeson’s proof does not work
for C¥-local minimizers with k > 2.) In this paper Beeson considers higher order
derivatives of a localized energy. Later on, in 1994, M. Micallef and B. White [1]
excluded the existence of true interior branch points for area minimizing minimal
surfaces in a Riemannian 3-manifold, and in 1997, B. White [1] proved that an
area minimizing minimal surface X : B — R" n > 3, cannot have a true branch
point on any part of d B which is mapped by X onto a real analytic portion of I,
even if n > 4. This is quite surprising as X may have interior branch points if n > 4
(Federer’s examples). However, White pointed out that, for any & < oo, one can find
CK-curves I'" in R* that bound area minimizing disk-type minimal surfaces with true
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boundary branch points, and Gulliver [4] found a C*°-curve in R® bounding an area
minimizer with a true boundary branch point.

It is a major open question to decide whether or not an area minimizing minimal
surface of disk-type in R can have a boundary branch point assuming that it is
bounded by a (regular) C k_or C®-contour I, rather than by an analytic one.

We furthermore mention the paper of H.-W. Alt and F. Tomi [1] where the non-
existence of branch points for minimizers to certain free boundary problems is
proved and the work of R. Gulliver and F. Tomi [1] where the absence of inte-
rior branch points for minimizers of higher genus is established. Specifically, they
showed that such a minimizer X : M — N cannot possess false branch points if X
induces an isomorphism on fundamental groups.

In 1977-81, R. Bohme and A. Tromba [1], [2] showed that, generically, every
smooth Jordan curve in R”, n > 4, bounds only immersed minimal surfaces, and
admits only simple interior branch points for n = 3, but no boundary branch points.
“Generic” means that there is an open and dense subset in the space of all sufficiently
smooth « : S! — R” defining a Jordan curve I', for which subset the assertion
holds. This result is based on the Bohme—Tromba index theory, which is presented
in Dierkes, Hildebrandt and Tromba [2].

A completely new method to exclude the existence of branch points for min-
imal surfaces in R> which are weak relative minimizers of D was developed by
AJ. Tromba [1] in 1993 by deriving an intrinsic third derivative of D in the di-
rection of forced Jacobi fields. He showed that if X € C(I") has only simple interior
branch points satisfying a Schiiffler condition (a condition which had been identified
as generic by K. Schiiffler [1]), then the third variation of D can be made negative,
while the first and second derivatives are zero, and so X cannot be a weak rela-
tive minimizer of D in C(I"). D. Wienholtz in his Doctoral thesis [3] generalized
Tromba’s method to interior and boundary branch points of arbitrary order, satisfy-
ing a “Schiiffler-type condition”, by computing the third derivative of D in suitable
directions generated by forced Jacobi fields. We note that Wienholtz’s results also
refer to boundary branch points of minimal surfaces in R”, n > 3, but they do not
apply to Gulliver’s R®-example (see Wienholtz [3], p. 244).

These results raised the question whether branch points of any order could pos-
sibly be excluded by looking at even higher order derivatives of Dirichlet’s integral.
Such an approach was quite new since variations of higher order for multiple inte-
grals had rarely been studied. In fact, S.S. Chern was known to have told his stu-
dents: “There is no geometric problem in which there is a need to study more than
four derivatives.”

Let us consider derivatives of area A and of Dirichlet’s integral D at some mini-
mal surface X which is not immersed, i.e. which has branch points. The first deriva-
tive of A is already a nontrivial matter, as | X, A X,| appears in the denominator
when one differentiates A, and the computation of higher order variations of A
might seem hopeless. On the other hand, the conformally parametrized regular ex-
tremals of A and D agree, and one even knows that infe(ryA = inferyD. This
suggests that one might be able to study higher order variations of D. At first glance
this might seem to be trivial since the integrand is quadratic; but Plateau’s bound-
ary condition is highly non-linear, and so the computation of higher derivatives of
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D turns out to be quite complicated if one also varies X on the boundary. A first
difficulty is that, beyond the order 3, higher order derivatives of D are not intrinsic,
e.g. they are not multilinear forms on a tangent space of the manifold of surfaces
spanning a given contour. A second difficulty, reflecting the first, is the great com-
plexity of calculating variations of D beyond the second. Only the special form of
the variations, employed in this book, together with the use of Cauchy’s integral
theorem and the residue formula, made it possible to succeed. Hence it is not clear
how this method could be applied to other integrals than D, and so an application to
H -surfaces or to minimal surfaces in a Riemannian manifold seems presently to be
excluded.

The approach to branch points of minimal surfaces, presented in this book, was
discovered and developed by A.J. Tromba, with minor revisions by S. Hildebrandt
for presentation in this volume. The somewhat indirect concept of true and false
branch points is replaced by the concept of exceptional and non-exceptional branch
points, which is formulated in terms of the order n and the index m of a branch
point:

either m+1=0mod (n+1), or m+1#0mod (n+ 1).

The advantage of the results in Chap. 8 is that they apply to C°°-contours and not
only to real analytic boundary curves, but since not all boundary branch points are
excluded, they presently do not cover the results of Gulliver—Lesley and B. White.



Appendix
Non-exceptional Branch Points; The Vanishing
of the L™ Derivative, L Even

We discuss how to demonstrate that a minimal surface X with a non-exceptional
branch point at w = 0 of order n, L even cannot be a minimum, if we consider the
generator 7 :=c € w~ "D 4 ew" ! 4 8cw ™" +5cw’. As we have observed, the
e =1 term of the L™ derivative is zero.

Here we need a trick. Going to the next highest derivative gives us additional
parameters to work with, allowing us to show that, with appropriate choices, the
leading €~ ~! term of the (L + 1)% derivative is negative. This implies

ED0) = 0(h), (A.1)
and this remains true if we change the choice for 7 to
T:=cew " 4w + scw +3cw +p, ceC. (A.2)
We infer
2m+1)=L(n+1)—(m+1—-r), L =even,
and so n + 1 — r is even, which implies that
I1<r<n-—1. (A.3)
Next we define a meromorphic ¢, (0), real on § ! such that

$:(0) ;= —ipc?w " —isten+ 1 —Nw " T+ yPFwT 4+

(A4
y:=A/mn+1-r),
with an arbitrary A € C. Then it follows
W Z11w (0)$ (0) + 2w Z1y (0) = 27 (A A W™ +ipd2n+2 —r)A,w™ -+,...)

+23E3 WA w4, L),
For simplicity, we shall assume, for the moment, that § = 0. This does not alter
(A.1). This leads to the definition.
¢ (0) = =23 2w —inePw T 4 (A.5)
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and inductively to
D;B¢(O) =P [consteP Ty =FHDn=1 L constef~1y=F-Dn—r=1 4 .
forl<pB<L/2—1. (A.6)
Now we write the formula for E£+1(0) in a different order as
EEDO) =l + I+ L+ B+ L+ 1Is+ I
with
Iy := 4Re/S1 w[DEZ(0)],t dw;

L—1

4L! M5

I = Z mRe/Slw[D, Z(0)wgr_mdw, s:=L/2;
M=s+2

I aL! R. / [DTHQ(O)] d

= e S o :

2T G+ DL —s— 1) W , §L—s—1aw
2L! A

I :Z_Re/ w[D[SZ(O)]w‘hsdw, a+pB=s;
sls! st
2L! A

Isy:=——Re | wlD7Z(O)]y -hodw, o=s—1=L/2—1, =L—0—q;
G!U! s
— 2L

Is:= ZZM!M!RG[SI w[DtMZ(O)]w'thU), B=L—-—M—uqu;
M=

o= g Zw(0) - X DE19(0) d

6_(L—1)‘ eSlw tw() w g ¢() w

+2Re/ wXy, - Xy DE$(0) dw.
Sl

The standard reasoning yields Iy = 0, I¢ = 0, and the pole-removal process yields
that g7 s is holomorphic; thus also 7] = 0.

Lemma A.1 We have Is = O (™). This leaves us with

EXDO) =L+ L+ I+ O(eh). (A7)

Proof We begin by considering the contribution of the last complex component to
Is. Since o < M, we have in

M
wIDM ZO)w -hu, =Y chiy (M. o)[DF Z(0)1, Dl $(0),  (A8)
a=0
that B=L—-M—a>L—-2(s—2)=L—2(L/2—-2)>4.
We will show that there is no pole associated with a term that has €”, y < L — 1,
as a coefficient. We have

w[DM 2(0)] - [D? Z(0)],y = consteM Tyl F2m—(@tMntl)
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In order to achieve a coefficient of order €”, y < L — 1, we must consider the
contribution from the second term of (A.6),

consteP Ty =B=bn=r=1 " pr o 4 p=1L.

The order of the w-term will then be

1+42m—M+a)n+1)—(B—Dn—r—1
=Cm+2)-M4a+B-1)n+DH)+PB-1)—r-2
=r+B-3)-rzl

thus there is no pole.

The lowest w-powers associated to €2 in (DM Z(0)),, are of the order m —
(M —=2)(n+1).

Considering the order of the largest pole in Df ¢(0) with coefficient ¢#*! and
looking at the total contribution to a pole of order e/~! in (A.8), we obtain a term
of the form

M=2+a+(B+1) ) 14+2m—(M=2) (n+1)—a(n+D—(B+Dn—1

const e = constel Ty A1,

so again there is no pole.
What about the first two complex components? In the first case from above we
get terms of the form (j <2m — 2n):

M+a+p—1 I+2m—n—a(n+1)—(B—Dn—r—1
9

conste (Aj - Agp—onyrw

and
1+2m—n—ar+1)—(B—-—Dn—r—1

=24+2m—n—amn+1)—Pn+n—r-2
=24+2m—an+1)—Bn+1D)+B—r—2
=24+2m—-(L-M)n+1)+B—1r—-2
=242m—(L-Dr+DH+M-Dn+1D)+p—r—-2
=r+M-1Dn+D)+B—-r-2
=M-1Dn+1)+B-22m+1)+2=n+3

since M > 2 and k > 4.
Again, there is no pole, and similarly for the second case from above. This com-
pletes the proof of Lemma A.1. 0

Lemma A.2 We have

I3 =0("h) (A9)

with a real number T > 0.
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Proof We have n > 2 because, by (A.3),
n—1—-r>0, n—1—r=even, r >1.

We begin by considering what comes from the first two complex components in the
products

wD; Z(0)]w - [Df Z(0)]wt, wID{Z(O)y - [D; ' Z(O)]wei (0), ... (A.10)
s=1L/2.
(i) First we have to understand [ D; 7 0)]w:

5 . (s=D! s B
[D;Z(O)]y={2HRe|i Y 215! w[D} Z(0)] Dy ¢ (0)

o+p=s—1 w

= {2 Re [iw(D; ' 2007 +i(s = D22 u () + -+

w

=20 Re[C P TRy + ' T @ 2R + -]
where T}, T, are real constants with 75 > 0, and
ylzz—%(n+l—r)<0, yz::%(3n+l—r)>0.
Recall that
{2H[Re(aw ™)1}y = vaw" L.
Hence,
{2H [Re(csexisTlR,,,w”1 B A /e
+—§f_%“QBmen+~~ﬂ]w
=S (=D U TIRu(—yDw " o 4 (=1 Ty + - -
+ 8BTS 2D Ry w4
Renaming (=)t Ty as Ty, (—1)* Ty as Ty, and y» T» > 0 as T, we obtain
[DSZ(0))y =€ i TIRyw " .o 4 55Ty
+o o+ CETETIDR W T (A.11)
whence

wlDSZ(O0)]y - [DZ(0)]w = GL 7V e|L L 2T o | Ry 2w + -
+ 25 e U R w? + -+ ) + Ol

Withy::—)q—1+y2=%(n+l—r)+%(3n+l—r)—l=2n—r.
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(i)

(iii)

Multiplication by t yields

WD Z ()] - [DZ(0)]wt = (cle|FeX it T T | Ry Pw? ~FD
+2clclF e B Ty Ry w2~ D L

+ 0(eh)
wherey —(n+1)=Q2n—r)—(n+1)=m—-1)—r>0andy, —(n+1) =
Im—1-r=0.
Thus, we obtain
/ w[DZ(0)]y, - [DSZ(0)]tdw = O(eh). (A.12)
Sl

Next we claim that there is no contribution of order e£~! or lower which comes
from any of the complex components of the terms in (A.10) which are indicated
by ..., thatis, from

w[D! Z(0)1w[D; P Z(0)1,Df $(0) for g > 1. (A.13)
Recall that ¢, (0) is defined so that
WZ11w(0)T + 2w Z1 (0)1 (0) + w X ypre (0)
has no poles. As noted in (A.5),
b (0)=—icden+1—rpw 1" =23 23w 1

+ terms with lower order poles. (A.14)
Using this we see that

wID}ZO)]w - [D] > Z(0)1w D¢ (0)

has no pole associated with coefficients of order % or lower, and similarly for
all g > 2.

Now we investigate in the second term of (A.10) what contribution comes from
the third complex component of the terms involved. This contribution, C, is

C:fw~[EseSi“T1Emw’7’"l o+ TP Ty
+ cS6S72iS71 T2meV271 + .. ]
. [l-x—les—lcs—lRmT3wy3 4. ] . (—iEz,chz w—2n—l + VCZw—r 4. )

where y3 1= %(r +n+1)and T3 > 0.
This leads to

C= /[y|c|LciL_leL_lT1 T3\ Ry Pw?? 7" 4.

+ VC|C|LiL_IEL_1 T4R, 3wV~ 4 ...

_ CL+1€L71iL71T2T3MR31w)/2+V372n71] + .. + O(EL)
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and
1 1
y3—)/1—r=§(r+n+1)+§(n+l—r)—r=n—r+1>O,

1 1
y2+)/3—2n—1:5(3n+1—r)—1+§(r+n+1)—2n—1=0,
and y3 — r > 0. Thus we obtain
C=o0(h). (A.15)

Now we have to study the contributions coming from the first complex compo-

nents.
(iv) The first term of (A.8) will have a lowest w-power of the form

€ - (Aj - Ap_opy)w”
for some j <2m — 2n and
y=14+2m+n—smn+1)—(mn+1)

= %{2(2m+2)—2n—L(n+1)+2n_4}
1
= 5{[(2m+2)—(L_ D+ D]+ [Q2m+2) — (n+ 1) —4])

1
= E{r—i—(L—2)(n—i—1)—|—r—4}.
Since L > 6 it follows that
1
y > 5{2r+4(n+1)—4}=r+2n>0.

(v) Similarly the second term of (A.10) is harmless, and what we have seen in (ii)
also applies to the other terms (A.13) of (A.10).

Inspecting (i)—(v) we obtain the assertion of Lemma A.2. [l

We now need to investigate I4, which is defined as

o

2L! o5 o! as B
Iy = mRe/Sl w[D; Z(0)]y, - ;}mw(a,a)[Dt Z0)]wD; ¢(0) ¢ dw
(A.16)

witho=s—1=L/2—1landae+pB+0 =L whence2<8<L/2+1.
Lemma A.3 The terms in (A.16) with 8 > 3 are of the order O (eh).

Proof We need to show that the terms with 8 > 3 and coefficients €“~! have no
poles.
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(i) For example, if we consider the lowest order zero of the last complex compo-
nent of w[ Dy Z(0)],, with coefficient €7, this is a term of the form

conste? w! Mo+l

Multiplication by const e*w™ %"+ and then by const ef~ 1y~ (B=Dn—r-1
yields

constel ~1w?
with
y=l+2m—om+1)—am+1)—B—-n—(r+1)
=p-3>0,
i.e. there is no pole.

If, on the other hand, we consider the contribution of €fT 1y~ (B+Dn—1 4nq
consider also the term with coefficient €22 in [D{ Z(0)]y,, that is

Const€a72wm7(a72)(n+l),

the total product will again be of the form const ¢~ ~! w? with

y=14+2m—om+D—(@=-2n+D)—-F+1D)—-—B+Dn—-1
=B-2>0,

again there is no pole.

(i) What about the first complex components? The worst terms are of the form
const(A j - Agy—apt1)w! T2 TnmetD=(Frhn=l

and

1+2m4+n—amn+1)—B+1Hn—1
=14+2m+n—m+1)—Bn—n—1
=l+2m—-—anm+1)—Bn+1)+8—-1
=Q+2m)—(a+pn+1)+p-2
=Q+2m)— L2+ +1)+-2
>(L-Da+D)—-L2+Dn+1)+B-2
=(L/12-2)n+D+B-2>-220
sincea +pB8=L/2+1.

This completes the proof of Lemma A.3. U

From (A.5) and Lemma A.3 we infer

2L . R
L= WRe/Sl w[D? Z(0)]y - [D? Z(0)]wérs (0) dw + O(eL).  (A.17)
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In the product w[Dy7 7 )] - [D;’Z (0)]y we can ignore the contributions from the
first complex components, and from the last one we obtain (as in the case 2m + 2 =
L(n+ 1), L odd) the contribution

L
i PR2 W -+ 0T, o= S-1 20=L-2,
with

ki=m—n)(m+1=-2n+1)---m+1—0c®m+1))>0
and
y=142m—(L-2)n+1)=n+r.
We obtain for the integrand on the right-hand side of (A.17) the expansion
2 T2 R2 w4 O (D).
Thus we infer that

2(L —1)! d
[4:—¥RC/‘ CL+16L71iL71k2)»R,2n_w+0(6L). (AIS)
olo! sl w

We must now investigate I5. The first term of I, is (omitting constants)

/ wIDY* 20, - DL 2016 (0) dw.
Sl

The term thL/zflz(O) has a highest order pole of the form kleL/zw_%("'H_’),
ki # 0, arising from the generator ce/w"*!.
The term w[DtL/ZHZ(O)]w is of the form kzeL/z’lw%("H’r)’l and therefore

has a zero of order %(n — 1 —r) yielding a contribution to I, of the form

ekl f kikaR2 /w dw
Sl

but we know nothing about k». However, the other terms in /> do not contribute,
as the pole terms in Df ¢, B > 0, arising from ce/ w"t1 have orders too low to
contribute. The lack of information about k> means that we also have no information
about the sum I, + 14, which could have a zero ¢! term, yielding absolutely
nothing.

The trick, in this case, is to choose § # 0, p # 0. Then we see that the (L + 1)
derivative is of the form I + I4 + O(el). Suppose that in this sum the e£~!p8
term is zero for all choices of pd. Then, if we choose A := —ip§(2n + 2 — r), the
A linear terms in the higher order derivatives Df ¢, B > 2, no longer contribute to
the €L~ ! terms in I, + I4. However, this means that there is no cancellation due to
these derivatives, implying that k, # 0 and also that I3 = O (e’) as well. Hence, if
k = koyky # 0, it follows that

2. (L —1)!

E(L-‘rl)(o) - _ =
sist

d
Re/1 eL—ch“iL—lKan% +0Eh) (A9
N

where k # 0.
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Then by an appropriate choice of ¢ and € > 0 we can make E L1 (0) negative.
Hence there is a real v > 0 such that

ELtD0)y= -2 (L + Dlve 1 + 0(eh), (A.20)
whereas
ED0) = 0(h). (A21)

Now we want to prove Proposition 4.2 of Chap. 4, using (A.20) and (A.21). In
addition we need the following auxiliary result to be verified later.

Lemma A.4 Foroa=2,3,...,L there are constants b, € R such that
EEH0) = byel @ 4 0 (el 1), (A22)
Proof of Proposition 4.2 Let us write Z (t, €) instead of 7 () in order to express the
dependence of Z on ¢ and €, and set
E(t,€) := D(Z(t,€)) (A.23)

and so E(0,0) = D(X). Applying Taylor’s theorem with respect to ¢ and recalling
that E(/)(O, €)=0for1 <j<L-—1,0<c¢€ <¢yand some €y > 0 we obtain

E(t,e)=DX) + ELH 0, e)tht® + Rt € A24
(t.€) ()Z(H), 0. €) (t.e)  (A24)
where the remainder R(, €) can be estimated by

[R(t,€)| < M|t if |t] <ty and 0 < € < €, (A.25)

for some constant M > 0 and some sufficiently small #y > 0. Choosing ¢y > 0 suf-
ficiently small, we may assume the following, taking (A.20)—(A.22) into account:

There are positive numbers v, a, ¢2, ..., cr, such that for 0 < € < €y we have
1 1
—‘E(L)(O, €) <aet, 71'E(L+1)(0, €) < —vel™l,
L! | (L+1)! (A.26)

mE<L+a)(O,E) Sco(eLch*l'
o).

From (A.24)-(A.26) we infer for 0 <t < fp and 0 < € < €q that

a=2

Setting ¢ :=2aev~! and choosing €* := min{eg, (2a) ' vto} we obtain for 0 < € <
€* that

(ea —vi)el=1il = —qeltl = —plgl+1,~L 2L

= —bGZL with b =2Ly=Lgltl 5 o
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and

L
aneL—oH-ltL-i-a + Mt2L+l < M*62L+l

a=2

with

This yields
v * 2L 2ae *
E(t,e)<D(X)+ (M"e —b)e fort=—and0<e <e€™.
v

Choosing €, := min{e*, (2M*£)~'b} and 1, := 2ae;,v~" we obtain
€ — 10, te—> 40 and E(ty,€) < D()A()

Thus Proposition 4.2 of Chap. 4 is proved. d

Therefore the proof of Theorem 4.1 in Chap. 4 is complete as soon as we have
verified Lemma A.4.

Before we do that let us mention that Proposition 4.2 of Chap. 4 can certainly not
be derived from (A.20) and (A.21) alone as one sees by the following

Example The function
F@) =121t —e)? =€*> =2t +1*

satisfies f”(0) =2¢€% and f””(0) = —12¢, but still # = 0 is even a global minimizer
for f. This shows the need of further information, e.g. on the higher order Taylor
coefficients, in order to ensure that the minimal surface X is not a local minimizer.

Instead of Lemma A.4 we state a somewhat stronger result which immediately
yields the desired result.

Lemma A.5 Let L beevenand Q .= L +2k+2,k=0,1,...,L — 1. Then

ECVO0)=0(") and EQP0)=0(") forp:=L—(k+1). (A27)

Proof We argue only for those terms of the integrands that come from the last com-

plex components, as the reasoning for the first is similar (as usual). Furthermore we

prove the statement only for £(€)(0) since the reasoning for £~ (0) is the same.
Recall that

E@ )= capyRe fs WD Z(O))w - (D} ZO)w D $(0) dw, ¥ <a.

Consider only those terms of D;3 ¢(0) arising from the term ¢?w ™" in the defini-

tion (A.4) of ¢, (0) since these will contribute the lowest order e-terms.
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For y + 8 < L/2 — 1 the sum

> capywlD! Z(0)1w Dl $(0) (A.28)

has no pole. We will only consider the terms with 8 =0, 1 since for 8 > 1 the pole
orders decrease.
Let us investigate the term

/2—1 5

wDE* ' ZO0)] - IDE* ' Z(0)]uh: (0). (A.29)

The term [D,Q /2-1 Z(O)]w has no pole, and terms of order €”, v < L/2, contribute
only holomorphic terms to the third complex component. Thus, if we can show that

any term in [D,Q/Q_IZ(O)]wq&[ (0) of order €” with v < L/2 — (k + 1) contributes

no poles, then the minimal order p of any e-coefficient will be
u=L/2+L/2—(k+1)=L—(k+1),

as claimed. Now

[DF* Z(0)1,,

= {20 Re| (D 20t + (DF 22000t +-+]]

The key fact is that in order to obtain one additional contribution from ¢, (0) (no €)

we need to go down two derivatives. Thus, in general, our construction shows that

in the formulation of [DtL Y/ (0)], dropping down 2p orders in the derivatives

of Z yields a contribution of p additional ¢;(0)-terms. Choose p so that v +2p =
L/2 + k + 2, implying that

p>k+1.
Then the contribution of the last complex component to (A.29) is
61)Rmwl+m—[L/2+(k—2p)](n+1)—pr—r’ V< L/2 _ (k + 2)

The w-exponent is equal to

1
Y= 5{(2171 +2)-(L-Dr+D+[22p k) —1n+1)—2pr —2r}

- %{r +@p—2k—Dm+1)—2(p+ Drlh

But 2p > 2k + 2; therefore

y 2 3l Qo+ D+ D =2+ Dr) = (o + Dn—r + 1)

and so y > 0.

Fory =L/24s,0 <s <k, the same argument shows that for u < L/2 — (s +2)
no pole-term with a coefficient €/ arises in (A.28). This completes the proof of the
lemma. O
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