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Introduction

The n-dimensional metaplectic group S̃p(n, R) is the twofold cover of the symplec-
tic group Sp(n, R), which is the group of linear transformations of X = Rn × Rn

that preserve the bilinear (alternate) form

[( x
ξ ) , ( y

η )] = −〈x, η〉 + 〈y, ξ〉. (0.1)

There is a unitary representation of S̃p(n, R) in the Hilbert space L2(Rn), called
the metaplectic representation, the image of which is the group of transformations
generated by the following ones: the linear changes of variables, the operators of
multiplication by exponentials with pure imaginary quadratic forms in the expo-
nent, and the Fourier transformation; some normalization factor enters the defini-
tion of the operators of the first and third species. The metaplectic representation
was introduced in a great generality in [28] – special cases had been considered
before, mostly in papers of mathematical physics – and it is of such fundamental
importance that the two concepts (the group and the representation) have become
virtually indistinguishable. This is not going to be our point of view: indeed, the
main point of this work is to show that a certain finite covering of the symplectic
group (generally of degree n) has another interesting representation, which enjoys
analogues of most of the nicer properties of the metaplectic representation. We
shall call it the anaplectic representation – other coinages that may come to your
mind sound too medical – and shall consider first the one-dimensional case, the
main features of which can be described in quite elementary terms.

It may not be an exaggeration to claim that among the foundational objects
of classical analysis, the one-dimensional Gaussian function e−πx2

occupies one
of the foremost positions: it is central in Fourier analysis and special function
theory, everywhere in probability and, through its appearance in theta functions,
it is basic in modular form theory as well. With the help of some of its satellites
– the Heisenberg representation and Bargmann–Fock transform, the metaplectic
representation, the Weyl calculus – it lies again at the core of fundamental methods
of harmonic analysis or partial differential equations; it is also the basis of some
mathematical techniques used in quantum field theory.

A starting point of the present work might be the fact that there is an alter-
native to this function, leading to a different kind of analysis but with a possibly
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wide range of influence too: this is the Bessel function |x| 12 I− 1
4
(π x2), which lies in

the null space of the (formal) harmonic oscillator. It has at infinity the considerable
growth of the more obvious function |x|− 1

2 eπx2
: therefore, it cannot, in general,

occur in integrals on the real line of the usual type. Actually, the development
of the present analysis requires that we stray away from the usual one in several
aspects. Possibly the only mathematical object which will remain as it stands, at
least formally, is the Heisenberg representation: but a new notion of integral –
not destroying the invariance under translations – will be needed, and the Fourier
transformation and associated Weyl calculus of operators will be replaced by some
different, quite parallel objects; finally, the usual L2 scalar product will have to be
changed to an indefinite pseudoscalar product.

Turning to the n-dimensional case, let us first recall that the role of the ho-
mogeneous space Sp(n, R)/U(n) in analysis is well documented. On one hand, it
is the set of complex polarizations of X , i.e., the set of complex structures on
this space such that the symplectic form appears as the imaginary part of some
(Hilbert) scalar product on X ; on the other hand, it is a Hermitian domain (Siegel’s
domain), a natural place for analysis in Bergman’s style. What is more important
here is that one may realize the space L2(Rn) as a space of vector-valued functions
on Siegel’s domain, in a way that makes the metaplectic representation appear as
quite natural. To introduce the anaplectic representation, we substitute for Siegel’s
domain a finite covering Σ(n) of the space U(n)/O(n) of real polarizations of X ,
i.e., the space of Lagrangian subspaces of X . Again, we consider a certain space of
vector-valued functions on Σ(n), getting in a natural way a new representation of
some covering of the symplectic group as a result. These functions can in turn be
identified with scalar functions on Rn: however, in contradiction to the metaplectic
case, the class of functions on Rn which enter the new analysis consists only of
functions which extend as entire functions on Cn. The one–dimensional case of
this analysis coincides with the one hinted at above. A common point of the meta-
plectic and anaplectic representations is that each of the two groups of operators
normalizes the group of operators arising from the Heisenberg representation: the
latter one is formally the same in both cases. The anaplectic representation (only)
can be enriched by a rotation of ninety degrees in the complex coordinates on Cn,
an operation that corresponds to the matrix

(−i I 0
0 i I

)
.

The development of anaplectic analysis calls for mathematical techniques
rather different from the usual ones, as it depends as much on elementary real
algebraic geometry as on Hilbert space methods. Some of the main questions that
have to be tackled concern the analytic continuation of functions, and depend on a
careful examination of the singularities of certain fractional-linear transformations;
homotopy considerations often play a role too.

Except in the one-dimensional case, it seems unlikely that one could define
a space of functions on Rn, invariant under the full anaplectic representation, and
on which an invariant pseudoscalar product could be defined. However, anaplectic
analysis is not concerned solely with representation by the same name. In anaplec-
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tic analysis, the spectrum of the harmonic oscillator L is Z rather than n
2 + N,

and the usual creation and annihilation operators become raising and lowering
operators; also, unless n = 1, all the eigenspaces of L are infinite-dimensional.
Provided that n ≡/ 0 mod 4, one can build, in a way unique up to normalization,
a pseudoscalar product on the space generated by the eigenfunctions of L just
alluded to, with respect to which the infinitesimal generators of the Heisenberg
representation are self-adjoint.

Despite its many similarities with the usual analysis, anaplectic analysis dif-
fers from it in two major respects. First, there is no natural embedding of, say,
the group of one-dimensional anaplectic transformations into the group of two-
dimensional ones, that would generalize what is obtained, in the usual analysis, by
regarding one of a pair of variables as a parameter. On the other hand, there is in
the usual analysis a class of quite simple functions, to wit the exponentials with a
second-order polynomial (the real part of which has a positive-definite top-order
part) in the exponent, which resists all operations taken from the Heisenberg repre-
sentation or the metaplectic representation. No comparable class can be described
in such simple terms in anaplectic analysis. This is why non-trivial identities can
sometimes be obtained by calculations the analogues of which, in the usual anal-
ysis, would not produce anything interesting: examples will occur in Section 10.

In the last chapter, we imbed the one-dimensional anaplectic analysis into
a one-parameter family of analyses. There is one such analysis for every complex
number ν mod 2, ν /∈ Z: the case when ν is an integer should be regarded as
leading to the usual analysis, the case when ν = − 1

2 mod 2 is that considered
in Section 1. In each case, there is a translation-invariant concept of integral, an
associated Fourier transformation and ν-anaplectic representation. When ν is real,
ν /∈ Z, there is on the basic relevant space Aν a pseudoscalar product, invariant
both under the Heisenberg representation and under the ν-anaplectic representa-
tion: besides, this latter representation, when restricted to the space of even, or
odd, functions on Aν (this depends on whether ν ∈]−1, 0[+2 Z or ν ∈]0, 1[+2 Z), is
unitarily equivalent to one of the representations of the universal cover of SL(2, R)
as made explicit in [18]; not surprisingly, the series that occurs here is one which
does not occur in the Plancherel theorem for the group under consideration.

It is our hope, and belief, that anaplectic analysis will prove useful in several
domains: in quantum mechanics (especially in relativistic quantum mechanics),
in partial differential equations, in special function theory. Let us only observe to
start with that a mathematical analysis based on a harmonic oscillator unbounded
from below cannot fail to help in questions in which we would like to have time
circulate just as well in two directions. Also, the pseudoscalar product which oc-
curs in the one-dimensional anaplectic analysis has a striking similarity to that
which plays a role in the covariant formulation [5, p. 384] or [3, p. 68] of quantum
electrodynamics. Concerning the possibility of using anaplectic analysis in partial
differential equations, this only has, as yet, the status of wishful thinking. We
have, however, initiated the study of the anaplectic Weyl calculus: though we have
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mostly dealt, up to now, with its more formal aspects only, one may expect that
some kind of new pseudodifferential analysis will eventually emerge. Under the
name of “Krein spaces”, the subject of linear spaces with an indefinite metric is
currently under much scrutiny, in particular in connection with spectral problems
of an unusual type (cf. for instance [19]); such a kind of problems has also been
considered by several authors [1, 2] for reasons having to do with PT -symmetry.
Anaplectic analysis certainly provides a special domain of research related to this
question, with a rich harmonic analysis of its own. Also, when it is completed, the
anaplectic pseudodifferential analysis might be a useful tool for this kind of prob-
lems in general. Some possible connection between the one-dimensional anaplectic
pseudodifferential analysis and a variant of the Lax–Phillips scattering theory for
the automorphic wave equation has been briefly hinted at at the end of Section 10.
Finally, but this goes beyond our current projects, there is the question whether
some version of the anaplectic representation could be developed in the case of local
fields such as the fields of p-adic numbers or their quadratic extensions, thus follow-
ing in the steps of Weil’s celebrated paper [28] on the metaplectic representation.

Let me apologize to M. Gell–Mann and Y. Ne’eman [8] for my choice of a
title: I simply could not resist its poetic appeal. On the other hand, the first section
of this volume will show that no other choice was possible.



Chapter 1

The One-dimensional
Anaplectic Representation

In this chapter, we introduce one-dimensional anaplectic analysis in an elementary,
though probably somewhat puzzling, way. The trick is to relate the functions u on
the real line to be considered – they all extend as entire functions – to uniquely
defined 4-tuples of functions. This is not as strange as it might seem, especially in
connection with the study of the Fourier transformation: in mathematical tables
dealing with this transform, functions are always split into their even and odd
parts. Here, the introduction of the four functions f0, f1, fi,0, fi,1 (cf. Definition
1.1) is up to some point a matter of convenience, since the last two can be obtained
from the first two by analytic continuation. The first ones are not exactly the even
and odd parts of u: however, f0 (resp. f1) characterizes the even (resp. odd) part
of u, while enjoying better estimates near +∞. The first example, in Proposition
1.2, will make matters clear. A fundamental definition is that (Proposition 1.16)
of the linear form Int which substitutes for the notion of integral: in connection
with the Heisenberg representation – which is formally defined in the usual way –
it makes it possible to define the anaplectic Fourier transformation, from which it
is easy (Theorem 1.20) to obtain the anaplectic representation in general.

However, the proof of some major facts (including the characterization, given
in Theorem 1.8, of the space A), requires that one should construct the anaplec-
tic representation as the direct sum of two representations taken from the full
non-unitary principal series of SL(2, R). This is the object of Section 2: also, the
decomposition (cf. Proposition 2.3) of analytic vectors of such a representation
into their entire and ramified parts will play a role in several parts of this work. It
is the characterization given in Theorem 1.8 that prepares the way for the defini-
tion of the anaplectic representation in the n-dimensional setting, to be developed
in Chapter 2. We suggest that the reader satisfy himself with a look at the defini-
tion ((2.3) and (2.6)) of the representation πρ,ε, at the statements of Proposition
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2.3 and of Theorems 2.9–2.11, otherwise jump directly from Section 1 to Section
3 or even Section 4, using the technical Section 2 mostly for reference. Another
possibility is to continue the reading of Section 1 with that of Sections 11 and 12,
coming back only later to the n-dimensional case.

Possibly the most specific feature of the one-dimensional anaplectic repre-
sentation (which extends to the higher-dimensional case) is that it includes the
complex rotation R such that (Ru)(x) = u(ix): note that rotations by angles
�= πn

2 , n ∈ Z, are not permitted in general . Since the conjugate, under R, of the
operator A = π

1
2 (x + 1

2π
d
dx) – also called the annihilation operator in the usual

analysis because of its effect on the ground state x �→ e−πx2
of the harmonic oscil-

lator – is the “creation” operator A∗, the distinction between A and A∗, usually
so essential, blurs out, and the spectrum of the anaplectic harmonic oscillator is
Z instead of 1

2 + N.

1 The one-dimensional case

A representation π of a Lie group G in some complex linear space H is a homo-
morphism π from G to the group of linear automorphisms of H: we shall usually
concern ourselves with non-unitary representations.

Consider the Hilbert space H = L2(R). Given u ∈ H and (y, η) ∈ R2, the
function π(y, η)u defined as

(π(y, η)u)(x) = u(x − y) e2iπ(x−y
2 )η (1.1)

still lies in L2(R). An elementary calculation shows that one has

π(y, η)π(y′, η′) = π(y + y′, η + η′) eiπ (−y η′+y′ η). (1.2)

Enlarging the group R2 to the so-called Heisenberg group which is the set-theoretic
product R2 × S1 endowed with the law of composition defined as

(y, η ; eiθ). (y′, η′ ; eiθ′
) = (y + y′, η + η′ ; ei(θ+θ′−y η′+y′ η)), (1.3)

one gets a unitary representation, the Heisenberg representation. Denoting as Q
and P the (unbounded) self-adjoint operators on L2(R) that consist respectively
in multiplying by x or taking (2iπ)−1 times the first-order derivative, one may also
write, in the sense of Stone’s theorem relative to one-parameter groups of unitary
operators,

π(y, η) = e2iπ (η Q−y P ) : (1.4)

we shall also use this notation later, outside the context of unitary operators, then
taking it as a definition of the operator on the right-hand side.
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Still with the same Hilbert space H = L2(R) as before, consider instead of
R2 the group SL(2, R): it is generated by the elements(

a 0
0 a−1

)
, ( 1 0

c 1 ) ,
(

0 1−1 0

)
, (1.5)

where a is an arbitrary positive number and c is an arbitrary real number. It is im-
possible to find a representation of SL(2, R) in L2(R) such that the automorphisms
π(g) associated to the three transformations above should be respectively:

(i) the transformation u �→ v, v(x) = a− 1
2 u(a−1x);

(ii) the multiplication by the exponential exp (iπcx2);
(iii) e−

iπ
4 times the Fourier transformation F , normalized as

(Fu)(ξ) =
∫ ∞

−∞
u(x) e−2iπxξ dx. (1.6)

To see this is immediate, since the fourth power of
(

0 1−1 0

)
is the unit matrix,

while F4 = I: despite appearances, dropping the factor e−
iπ
4 in the definition of

the transformation (iii) would only make matters worse, though it is a little bit
harder to see. The difficulty is that if some matrix g ∈ SL(2, R) can be written as
g = g1 . . . gk, where all factors are of the special type described in (1.5), the prod-
uct π(g1) . . . π(gk) depends on the decomposition chosen, not only on g: however,
the corresponding indeterminacy in such a definition is not that bad, since the
unordered pair ± π(g1) . . . π(gk) depends only on g. To remedy it completely, one
constructs a group “more precise” than SL(2, R), namely the metaplectic group
S̃L(2, R), a twofold covering of SL(2, R): this means a connected Lie group to-
gether with a homomorphism: S̃L(2, R) → SL(2, R), the kernel of which has two
elements. That such a group exists is a consequence of the fact that the funda-
mental group, in the topological sense, of SL(2, R), is Z (since SL(2, R) has the
homotopy type of its compact subgroup SO(2)), of which Z/2Z is a quotient group:
the two elements of S̃L(2, R) which are sent to some given g ∈ SL(2, R) by the
homomorphism in question are said to lie above g. One can then show that there
exists a unitary representation Met of S̃L(2, R) in L2(R), the metaplectic represen-
tation, such that, given g ∈ SL(2, R), the unordered pair ± π(g) as defined above
should coincide with the pair {Met(γ1), Met(γ2)}, where {γ1, γ2} is the pair of
points in the metaplectic group lying above g.

To proceed towards the anaplectic representation, we may start from a com-
plexification of the Heisenberg representation (1.1): that is, we want to substitute
for the generic pair (y, η) ∈ R2 a pair of complex numbers; elements of the complex-
ified Heisenberg group will then be triples (y, η ; ω) with (y, η) ∈ C2 and ω ∈ C×.
Of course, it is clear that, in this case, π(y, η) can no longer operate within the
space L2(R), and that we must substitute for this space an appropriate space A of
entire functions of one variable; also, it is impossible to preserve unitarity. So as to
introduce the anaplectic representation, and above all to connect it to the Heisen-
berg representation, it is suitable to introduce first the definition of a certain space
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A, which is to play the role of a set of analytic vectors of the anaplectic represen-
tation. It will be clearly explained in the remark following the proof of Theorem
2.9 why the use of analytic vectors, at least at this first stage, is essential.

Definition 1.1. Let us say that an entire function f of one variable is nice if on one
hand f(z) is bounded by a constant times some exponential exp (πR|z|2), on the
other hand the restriction of f to the positive half-line is bounded by a constant
times some exponential exp (−πεx2): here, R and ε are assumed to be positive.
The space A consists of all entire functions u of one variable with the following
properties:

(i) the even part ueven of u coincides with the even part of some nice function f0

satisfying the property that the function z �→ f0(iz) + i f0(−iz) is nice too;
(ii) the odd part uodd of u coincides with the odd part of some nice function f1

such that the function z �→ f1(iz) − i f1(−iz) is nice as well.

It will be proven below (Corollary 1.7) that given u ∈ A, a pair (f0, f1) satisfying
the above properties is of necessity unique: for short, we shall refer to the pair
(f0, f1) as the C2-realization of u. We shall go one step further, associating with
u the C4-valued function (indifferently written in line or column form), called the
the C4-realization of u,

f = (f0, f1, fi,0, fi,1) (1.7)

with

fi,0(z) =
1 − i

2
(f0(iz) + i f0(−iz)),

fi,1(z) =
1 + i

2
(f1(iz) − i f1(−iz)). (1.8)

All four components of f are thus nice functions in the sense of Definition 1.1.

Here is a basic example.

Proposition 1.2. Set, for x real,

φ(x) = (π |x|) 1
2 I− 1

4
(π x2), (1.9)

with [17, p. 66]

Iν(t) =
∑
m≥0

( t
2 )ν+2m

m ! Γ(ν + m + 1)
(1.10)

for t > 0. The function φ lies in A.

Proof. Clearly, φ extends as an entire even function. Note [17, p. 139] that it has
the considerable growth of |x|− 1

2 eπx2
as |x| → ∞. Set, however, for x > 0,

ψ(x) = 2
1
2 π− 1

2 x
1
2 K 1

4
(π x2)

= (π x)
1
2 [I− 1

4
(π x2) − I 1

4
(π x2)]. (1.11)
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From (1.10), this is the restriction to (0,∞) of an entire function, the even part of
which coincides with φ: but now (loc. cit.), ψ(x) goes to zero, as x → ∞, just like
x− 1

2 e−πx2
. On the other hand, for x > 0,

ψ(±ix) = (π x)
1
2 [I− 1

4
(π x2) ∓ I 1

4
(π x2)], (1.12)

as can be seen from a careful use of (1.10), so that

ψ(ix) + i ψ(−ix) = (1 + i)ψ(x). (1.13)

Consequently φ ∈ A: note that the C4-realization of φ is (ψ, 0, ψ, 0). �

We shall prove presently that the map (f0, f1) �→ u introduced in Definition
1.1 is one-to-one, and we take this opportunity to prove at the same time a few
related lemmas which will be put to use later. All this is related to the Phragmén–
Lindelöf lemma, an extension of the maximum principle to angular regions which
can be found in many textbooks, including [26, p. 496]:

Lemma 1.3. Let f be an entire function of one variable, let S be the sector defined
by the inequality |Arg z| ≤ α π

2 for some α ∈]0, 2[, and let δ ∈]0, α−1[. Assume
that one has |f(z)| ≤ exp(|z|δ) if z ∈ S and |z| is sufficiently large. Then, if the
restriction of f to the boundary of S is bounded, f is bounded in S. Moreover, if
f(z) goes to zero as z goes to infinity along any of the two sides of the sector, f(z)
goes to zero in a uniform way as z goes to infinity while staying in S.

Lemma 1.4. Let f be an entire function satisfying some estimate

|f(z)| ≤ C eπR|z|2 , z ∈ C, (1.14)

together with some estimate

|f(x)| ≤ C e−2πδx2
, x > 0. (1.15)

Then there exists θ0 > 0 such that

|f(xeiθ)| ≤ C e−πδx2
, x > 1, |θ| ≤ θ0. (1.16)

Proof. With some A > 0 to be chosen later and an arbitrary γ > 1, set

Φ(z) = exp (2π(δ + iA)e
iπ
2γ z2) f(z e

iπ
4γ ), (1.17)

a function considered in the sector |Arg z| ≤ π
4γ and satisfying the estimate

log+ |Φ(z)| ≤ C |z|2 for z in this sector with |z| large. When z = |z| e− iπ
4γ , one

has
|Φ(z)| ≤ e2πδ|z|2 |f(|z|)| ≤ C;

when z = |z| e
iπ
4γ , one has

|Φ(z)| ≤ C exp
(

2π|z|2
(

δ cos
π

γ
− A sin

π

γ
+

R

2

))
,
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a bounded expression if A is chosen large enough. Then, by the Phragmén–Lindelöf
lemma, Φ is bounded in the whole sector and, for 0 < Arg z < π

2γ , one has

|f(z)| ≤ C exp (−2π Re ((δ + iA)z2)) : (1.18)

when z = |z|eiθ, 0 ≤ θ ≤ π
2γ , one has

Re ((δ + iA)z2) = |z|2 Re ((δ + iA)e2iθ)

= |z|2 (δ cos 2θ − A sin 2θ)

≥ δ

2
|z|2 (1.19)

if θ is small enough. The same holds if − π
2γ ≤ θ ≤ 0, considering instead the

function z �→ f(z̄). �

In a similar way, one can prove the following:

Lemma 1.5. Let g be a function defined and holomorphic in some angular sector
around the positive half-line, satisfying for some pair of positive constants C, R
and every z ∈ C the estimate

|g(z)| ≤ C e2πR|z|. (1.20)

Assume that, for some δ > 0, one has the inequality

|g(x)| ≤ C e−2πδx, x > 0 : (1.21)

then, there exists θ0 > 0 such that

|g(x eiθ)| ≤ C e−πδx, x > 1, ‖θ| ≤ θ0. (1.22)

Lemma 1.6. Let f be an entire function such that, for some pair of positive con-
stants C, R,

|f(z)| ≤ C eπR|z|2 , z ∈ C. (1.23)

If there exists δ > 0, such that

|f(x)| + |f(ix)| ≤ C e−πδx2
, x ∈ R, (1.24)

the function f is identically zero.

Proof. By Lemma 1.4,

|f(x eiθ)| ≤ C e−2πδx2
, x > 1, 0 ≤ θ ≤ θ0 : (1.25)

now the half-width of the sector θ0 ≤ Arg z ≤ π
2 is < π

4 , so that the Phragmén–
Lindelöf lemma applies and shows that f(z) goes to zero, as |z| → ∞, in a uniform
way in the first quadrant. The same goes with the three other quadrants, so that
the lemma is a consequence of Liouville’s theorem. �
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Corollary 1.7. Let u ∈ A, the space of entire functions introduced in Definition
1.1. Then the pair of nice functions f0, f1 the existence of which is asserted there
is unique.

Proof. Taking the difference of any two such pairs, one remarks that if f0 is nice,
odd and if the function z �→ f0(iz) + if0(−iz) = (1 − i) f0(iz) is nice too, then
f0 = 0 according to the lemma that precedes; something similar goes with f1. �

We now show how the vector (f0, f1, fi,0, fi,1) can be rebuilt from the knowl-
edge of u ∈ A. We shall postpone to the next section the proof that, given an
entire function u satisfying some global estimate |u(z)| ≤ C eπR|z|2 , the additional
properties expressed below in terms of the pair (w0, w1) whose definition follows
characterize the fact that u lies in A.

Theorem 1.8. Let u ∈ A. Set, for σ real and large enough,

w0(σ) =
∫ ∞

−∞
e−πσx2

u(x e−
iπ
4 ) dx,

w1(σ) =
1 − i

2

∫ ∞

−∞
e−πσx2

xu(x e−
iπ
4 ) dx. (1.26)

On the one hand, each of these two functions extends as a holomorphic function,
still denoted as w0 ( resp. w1), in some strip |Im σ| < ε. On the other hand, for
|σ| large enough, w0(σ) and w1(σ) admit the convergent expansions

w0(σ) =
∑
n≥0

an σ−n |σ|− 1
2 , w1(σ) =

∑
n≥0

bn σ−n−1 |σ|− 1
2 (1.27)

so that, for R large enough, w0 ( resp. w1) extends as a holomorphic function,
denoted as w̃0 ( resp. w̃1), in the part of the Riemann surface of the square root
function lying above the set |z| > R: the two continuations of the two functions
under consideration are related by the equations, valid for σ real and large,

w̃0(σ eiπ) = −i w0(−σ), w̃1(σ eiπ) = −i w1(−σ). (1.28)

Finally, the C4-realization of u can be obtained, in terms of w0 and w1, by the
formulas (involving semi-convergent only integrals in the first two cases), valid for
x > 0 only,

f0(x) = 2−
1
2 x

∫ ∞

−∞
w0(σ) eiπσx2

dσ,

fi,0(x) = 2−
1
2 x

∫ ∞

−∞
w0(σ) e−iπσx2

dσ,

f1(x) =
∫ ∞

−∞
w1(σ) eiπσx2

dσ,

fi,1(x) =
∫ ∞

−∞
w1(σ) e−iπσx2

dσ. (1.29)
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Proof. Let (f0, f1, fi,0, fi,1) be the C4-realization of u. Since the even part of u
coincides with that of f0 and the odd part of u coincides with that of f1, one can
substitute f0 (resp. f1) for u in the integral defining w0 (resp. w1). Using Lemma
1.4 together with the global estimate of u, one sees that the integral

w+
0 (σ) =

∫ ∞

0

e−πσx2
f0(x e−

iπ
4 ) dx (1.30)

can also be written, for σ real and large, as

w+
0 (σ) =

1 + i

2
1
2

∫ ∞

0

e−iπσx2
f0(x) dx : (1.31)

this makes it possible to write

w0(σ) − 2
1
2

∫ ∞

0

e−iπσx2
f0(x) dx =

∫ ∞

0

e−πσx2
[f0(x e

3iπ
4 ) + i f0(x e−

iπ
4 )] dx

= (1 + i)
∫ ∞

0

e−πσx2
fi,0(x e

iπ
4 ) dx. (1.32)

With a new deformation of contour, made possible by a new application of Lemma
1.4, this time to the function fi,0, one finds that, for large σ,

w0(σ) = 2
1
2

∫ ∞

0

[e−iπσx2
f0(x) + eiπσx2

fi,0(x)] dx. (1.33)

The same method, starting from the identity

1 − i

2

∫ ∞

0

e−πσx2
x f1(x e−

iπ
4 ) dx = −1 + i

2

∫ ∞

0

eiπσx2
x f1(−ix) dx, (1.34)

shows that
w1(σ) =

∫ ∞

0

x [e−iπσx2
f1(x) + eiπσx2

fi,1(x)] dx. (1.35)

Since the four components of f are nice in the sense of Definition 1.1, the equations
(1.33) and (1.35) show that w0 and w1 indeed extend as holomorphic functions in
some open strip containing the real line.

The expansion of w0(σ) for large σ can be derived directly from (1.26): indeed,
the estimate |u(z)| ≤ C exp (πR|z|2) and Cauchy’s inequalities make it possible
to write

ueven(x e−
iπ
4 ) =

∑
k≥0

ck x2k (1.36)

with |ck| ≤ C (2πR)k

k ! : since
∫∞
−∞ e−πσx2

x2k dx = Γ(k+ 1
2 ) (πσ)−k− 1

2 , the expansion

(1.36) can be integrated term-by-term against e−πσx2
dx, leading to the first series

expansion (1.27) as soon as σ > 2R; the same goes with w1(σ) for large σ. We
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now prove (1.28), which will also imply the validity of these series expansions for
−σ large.

To do this, we go back to (1.26) and, for large σ, accompany, up to θ = π,
the change σ �→ σ eiθ by the change of contour x �→ x e−

iθ
2 , ending up, with

ui(x) = u(ix), with the pair of equations

w̃0(σ eiπ) = −i

∫ ∞

−∞
e−πσx2

ui(x e−
iπ
4 ) dx,

w̃1(σ eiπ) =
1 − i

2

∫ ∞

−∞
e−πσx2

xui(x e−
iπ
4 ) dx. (1.37)

Now, if u ∈ A is associated to the vector (f0, f1, fi,0, fi,1), it is immediate to check
(more about it in Proposition 1.13, which does not depend on any previous result)
that ui is associated to the vector (fi,0, −i fi,1, f0, −i f1): using (1.33) and (1.35)
and comparing the results obtained if one utilizes the C4-realization of u or that
of ui, one obtains the relation (1.28).

The inversion formulas (1.29) are obtained from (1.33) and (1.35), using the
change of variable y = x2

2 followed by the Fourier inversion formula. �

Examples. (i) Take for some non-negative integer n, and x ∈ R,

u(x) = |x|2n+ 1
2 In− 1

4
(πx2), (1.38)

so that u extends as an entire even function. One finds if σ > 0, using [17, p.
66, 91],

w0(σ) = 2 (−1)n

∫ ∞

0

e−πσx2
x2n+ 1

2 Jn− 1
4
(πx2) dx

= (−1)n 2n− 1
4 π−n− 5

4 Γ
(

n +
1
4

)
(1 + σ2)−n− 1

4 . (1.39)

Clearly, for σ > 1,
w̃0(σ eiπ) = −i w0(σ) = −i w0(−σ), (1.40)

which confirms (1.28). Using (1.29), one finds for x > 0

f0(x) = (−1)n 2
1
2 π−1 x2n+ 1

2 Kn− 1
4
(πx2), (1.41)

and it is indeed immediate to check that the even part of the continuation of f0 as
an entire function coincides with u, and that the conditions of Definition 1.1 are
satisfied. Thus u ∈ A: the particular case when n = 0 is the function π− 1

2 φ, where
φ is the function introduced in Proposition 1.2.

(ii) More generally, with n = 0, 1, . . . and j ∈ Z, one defines two (disjoint) classes
in A by the consideration of the functions

|x|2(j+n)+ 1
2 In−j− 1

4
(π x2) and |x|2(j+n)+ 1

2 In−j+ 3
4
(π x2). (1.42)
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Indeed, setting u(x) = |x|λ Iρ(π x2), assuming that ρ + λ
2 = 2n or 2n + 1 with

n = 0, 1, . . . so that u should be analytic and even, one finds [17, p. 91]

w0(σ) = 2 (−i)ρ+ λ
2

∫ ∞

0

xλ e−πσx2
Jρ(πx2) dx

= (−i)ρ+ λ
2 Γ

(
ρ +

λ + 1
2

)
π

−1−λ
2 (1 + σ2)

−1−λ
4 P−ρ

λ−1
2

(
σ√

1 + σ2

)
, (1.43)

where the Legendre function involved is even (resp. odd) in the case when −ρ+ λ−1
2

is an even (resp. odd) integer [17, p. 170]. On the other hand, the continuation w̃0

can be found from the expression [17, p. 47]

w0(σ) = 2−ρ (−i)ρ+ λ
2 π

−1−λ
2

Γ(ρ + λ+1
2 )

Γ(1 + ρ)
σ−ρ− 1+λ

2

(
1 +

1
σ2

)− ρ
2− 1+λ

4

× 2F1

(
λ + 1

4
+

ρ

2
,
1 − λ

4
+

ρ

2
; ρ + 1;

1
1 + σ2

)
(1.44)

since, if σ > 1, 1
1+(σ eiθ)2 can never be a real number > 1 so that, in the continuation

process, the argument of the hypergeometric function remains in a domain where
this function is uniform: this makes it possible to conclude.

(iii) On the other hand, the function u(x) = e−πx2
does not belong to A. For w0,

as obtained by an application of (1.26), is given for σ > 1 as w0(σ) = (σ − i)−
1
2 :

indeed, this function extends as an analytic function in the strip |Im σ| < 1.
However, following the determinations of the square root, one notices that, for
σ > 1, one has the relation w̃0(σ eiπ) = −w0(−σ) rather than the relation (1.28). A
large class of entire functions not in A is the class M of multipliers of A introduced
in Proposition 1.15 below which, as proven there, only intersects A trivially.

(iv) If the four components of the C4-realization of some function in A are all less,
on the positive half-line, than a multiple of exp(−πεx2) for some specific ε, it is
clear that they can all be multiplied without harm by any even entire function of
z globally less than a multiple of exp(πa|z|2) for some a < ε: the same goes, as a
consequence, for the function in A we started out with.

As an explicit example of function in A obtained in this way, take for some
θ ∈]0, π

4 [ the function defined for x ∈ R as

u(x) = π
1
2 |x| I− 1

4
(πx2 cos θ) I− 1

4
(πx2 sin θ). (1.45)

Note that this is the product of two factors, each of which is a rescaled version of
the function φ from Proposition 1.2: also note that we explicitly discard the case
when the two rescaling factors would be the same. Applying (1.26), one finds with
the help of [10, p. 95] the equation

w0(σ) = 2
1
2 π− 3

2 (sin 2θ)−
1
2 Q− 3

4

(
σ2 + 1
sin 2θ

)
, (1.46)
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where the function Q− 3
4

is the Legendre function of the second species defined for
t > 1 as

Q− 3
4
(t) =

Γ(1
4 )Γ(1

2 )

2
1
4 Γ(3

4 )
t−

1
4 2F1

(
5
8
,
1
8
;
3
4
; t−2

)
: (1.47)

it is analytic for t > 1. It is immediate that the equation (1.28) linking the two
continuations of w0 is satisfied. Using the equation (1.29) again, we find for x > 0,
using [17, p. 194], that

f0(x) = 2π− 3
2 (sin 2θ)−

1
2

∫ ∞

0

Q− 3
4

(
σ2 + 1
sin 2θ

)
cos (πσx2) dσ

=
(

2
π

) 1
2

x K 1
4
(πx2 cos θ) I− 1

4
(πx2 sin θ). (1.48)

Of course, this is the result we expected: but the proof above also shows that u is
no longer in A in the case when θ = π

4 , since then the function w0 in (1.46) ceases
to be analytic at σ = 0.

As a matter of fact, this example may be connected to the family in the
example (i), since one has the so-called Neumann series [17, p. 125]

u(x) =
∑
n≥0

(−1)n

n ! Γ(3
4 + n)

(
sin 2θ

2

)2n− 1
4

(πx2)2n+ 1
4 I2n− 1

4
(πx2). (1.49)

(v) Other examples of functions lying in A, or not lying in that space, will be given
in Remark 1.2, at the end of this section.

One last pair of lemmas in the Phragmén–Lindelöf spirit will be useful later.

Lemma 1.9. Let g be an entire function of one variable such that, for some pair
of positive constants C, R, the estimate

|g(z)| ≤ C e2πR|z|, z ∈ C, (1.50)

holds. If |g(x)| is less than C e−πδ|x| for some δ > 0 or if |g(x)| + |g(ix)| goes to
zero, as x is real and goes to ±∞, g is identically zero.

Proof. In the first case, we argue just as in the proof of Lemma 1.6, starting from
Lemma 1.5 in place of Lemma 1.4, thus ending up with an application of the
Phragmén–Lindelöf lemma in some angle of half-width < π

2 . The second case is
easier. �

Lemma 1.10. Let f be an entire function satisfying some estimate

|f(z)| ≤ C eπR|z|2 , z ∈ C, (1.51)
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together with some estimate

|f(x)| ≤ C e−2πδx2
, x > 0. (1.52)

Assume, moreover, that for every ε > 0, there exists C > 0 such that

|f(±ix)| ≤ C eπεx2
, x > 0. (1.53)

Then, for every β ∈ [0, π
2 [, f(z) goes to zero, as |z| → ∞ and |Arg z| ≤ β, in a

uniform way.

Proof. Since the function z �→ f(z̄) satisfies the same assumptions as f , one may
interest oneself in the sector 0 ≤ Arg z ≤ β only. Set

Φε(z) = f(z) exp (πε z2 e−iα) (1.54)

for some ε ∈]0, δ[ and some α ∈ [0, π
2 [ to be determined later. From Lemma 1.4,

one gets
|Φε(x eiθ)| ≤ C e−π(δ−ε)x2

, x > 0, 0 ≤ θ ≤ θ0. (1.55)

On the other hand,
|Φε(ix)| = |f(ix)| e−πε x2 cos α (1.56)

goes to zero as x → ∞ so that, as an application of the Phragmén–Lindelöf lemma,
Φε(x eiθ) goes to zero, as x → ∞, uniformly for θ0 ≤ θ ≤ π

2 . Now, with z = x+ iy,

Re (z2 e−iα) = (x2 − y2) cosα + 2xy sin α (1.57)

is ≥ 0 provided that x
y ≥ 1−sin α

cos α , an expression that is less than cos β
sinβ if α is chosen

close enough from π
2 . �

Proposition 1.11. For any complex y, η, the transformation

π(y, η) = e2iπ (η Q−y P )

defined by the equation (1.1) preserves the space A.

Proof. Abbreviating π(y, 0) = e−2iπyP as τy, one may verify that τyu is given, in
the C2-realization, as

(h0,h1)=
(

1
2
(τy f0 +τ−yf0 +τyf1−τ−yf1),

1
2
(τyf0−τ−yf0 +τyf1 +τ−yf1)

)
:

(1.58)
then, the other two components of the C4-realization of the same function are

(hi,0, hi,1) =
(

1
2
(τiy fi,0 + τ−iy fi,0 + i τiy fi,1 − i τ−iy fi,1),

1
2
(−i τiy fi,0 + i τ−iy fi,0 + τiy fi,1 + τ−iy fi,1)

)
: (1.59)
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as a consequence of Lemma 1.4, all the components are nice in the sense of Defini-
tion 1.1. We also need the explicit formulas relative to π(0, η) = e2iπηQ abbreviated
as τη : the C4-realization g of τη u is given as

(g0,g1)=
(

1
2
(τη f0 +τ−ηf0 +τη f1−τ−ηf1),

1
2
(τη f0−τ−η f0 +τηf1 +τ−η f1)

)
(1.60)

and

(gi,0, gi,1) =
(

1
2
(τ iη fi,0 + τ−iη fi,0 − i τ iη fi,1 + i τ−iη fi,1), (1.61)

1
2
(i τ iη fi,0 − i τ−iη fi,0 + τ iη fi,1 + τ−iη fi,1)

)
. �

Proposition 1.12. On analytic functions of x on the real line, define the operator
Q as the operator of multiplication by x, and the operator P as 1

2iπ
d
dx . The space

A is preserved under the action of the algebra generated by Q and P .

Proof. In the C4-realization, the operator Q or P expresses itself as f �→ h with

h(z) = (z f1(z), z f0(z), z fi,1(z), −z fi,0(z)) (1.62)

in the first case, and

h =
1

2iπ
(f ′

1, f ′
0, −f ′

i,1, f ′
i,0) (1.63)

in the second one. �

Obviously, the multiplication by z preserves the space of nice functions in-
troduced in Definition 1.1, and the same holds for the operation of taking the
derivative by virtue of Lemma 1.4 (together with Cauchy’s integral formula for
the derivative).

It is immediate to check how some basic symmetries on A transfer to the
C4-realization: the formulas below thus constitute a proof that the symmetries
under examination do preserve A.

Proposition 1.13. Define the linear operators R (for rotation) and R2 by the
equations

(R2 u)(z) = u(−z), (Ru)(z) = u(iz) ; (1.64)

define the antilinear operator C (for conjugation) by the equation

(Cu)(x) = ū(x) if x ∈ R or (Cu)(z) = u(z̄), z ∈ C. (1.65)

The operations R2, R, C transfer respectively, in the C4-realization, to the oper-
ations

f = (f0, f1, fi,0, fi,1) �→ h = (h0, h1, hi,0, hi,1) (1.66)
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with (
h0
h1

hi,0
hi,1

)
=

(
f0
−f1
fi,0
−fi,1

)
or

(
fi,0

−i fi,1
f0

−i f1

)
or

(
Cf0
Cf1

Cfi,0
Cfi,1

)
. (1.67)

We can now define the scalar product on A, at the same time proving that
it is non-degenerate.

Proposition 1.14. Let ( | ) be the scalar product on A defined, in the C4-realiza-
tion, as

(h |f ) (1.68)

= 2
1
2

∫ ∞

0

(
h̄0(x)f0(x) + h̄1(x)f1(x) + h̄i,0(x)fi,0(x) − h̄i,1(x)fi,1(x)

)
dx.

This scalar product is non-degenerate.

Proof. Obviously, the subspaces of A consisting of all even (resp. odd) functions
are orthogonal with respect to ( | ). On Aeven, the scalar product is positive-
definite. On the other hand, it follows from (1.62) and (1.68) that the operator Q
is self-adjoint with respect to ( | ): the non-degeneracy of the scalar product on
the odd part of A is then a consequence of its non-degeneracy on the even part
together with the equation (Q2u|u) = (Qu|Qu). �
Proposition 1.15. Let M denote the space of all entire functions m satisfying for
some pair (R, C) of positive numbers the estimate

|m(z)| ≤ C eπR|z|2 , z ∈ C (1.69)

and the property that, for every ε > 0, one has for some C > 0 the estimate

|m(x)| + |m(ix)| ≤ C eπεx2
, x ∈ R. (1.70)

Then, for every u ∈ A, the product mu belongs to A as well. The intersection
M ∩ A reduces to zero.

Proof. If u ∈ A is associated to the vector f as before, the function mu is then
associated to the vector h, with

h0(z) = meven(z) f0(z) + modd(z) f1(z),
h1(z) = modd(z) f0(z) + meven(z) f1(z) (1.71)

and

hi,0(z) = meven(iz) fi,0(z) − i modd(iz) fi,1(z),
hi,1(z) = i modd(iz) fi,0(z) + meven(iz) fi,1(z), (1.72)

which proves the first part.
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Since the assumptions relative to m are invariant under the symmetry R2

introduced in Proposition 1.13, one may, in the proof of the second part, deal
separately with the even and odd parts of m; in view of Proposition 1.12, one may
even consider only the case when m is even. Thus, assuming this to be the case,
and that m ∈ M ∩ A, let f , reducing in this case to (f0, 0, fi,0, 0), be the vector
associated with m. Since m is the even part of f0, (1.8) yields the equations

(1 − i) f0(ix) = (1 + i) fi,0(x) − 2i m(ix),
(1 − i) f0(−ix) = 2 m(ix) − (1 + i) fi,0(x), (1.73)

which show, since m ∈ M, that |f0(ix)| is, for every ε > 0, a O(eπεx2
) as x → ±∞.

Lemma 1.10 thus shows that f0(z) goes to zero, as |z| → ∞, in any closed sector
contained in the half-plane Re z > 0. Exchanging the roles of f0 and fi,0, and using
the result already obtained for f0, one finds that f0(z) also goes to zero, as |z| → ∞,
in any closed sector contained in the quadrant defined by −π < Arg z < −π

2 or
π
2 < Arg z < π. One concludes with the help of the Phragmén–Lindelöf lemma
together with Liouville’s theorem. �

We now define a substitute for the notion of integral, to wit a translation-
invariant linear form on A.

Proposition 1.16. If f = (f0, f1, fi,0, fi,1) is the C4-realization of some function
u ∈ A, set

Int [u] = 2
1
2

∫ ∞

0

(f0(x) + fi,0(x)) dx. (1.74)

For every y ∈ C, with (e−2iπ yP u)(z) = u(z − y), one has

Int [e−2iπ yP u] = Int [u]. (1.75)

Proof. Set v = e−2iπyP u. From the proof of Proposition 1.11, one has

2
1
2 Int [v] =

∫ ∞

0

[f0(x − y) + f0(x + y) + fi,0(x − iy) + fi,0(x + iy)] dx (1.76)

+
∫ ∞

0

[f1(x − y) − f1(x + y) + i fi,1(x − iy) − i fi,1(x + iy)] dx.

The second line is∫ y

−y

f1(z) dz + i

∫ iy

−iy

fi,1(z) dz =
∫ y

−y

f1(z) dz −
∫ y

−y

fi,1(iz) dz (1.77)

=
∫ y

−y

1 + i

2
(f1(z) − f1(−z)) dz = 0.
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Now that Int [v] reduces to the first line of the equation above, one can write

2
1
2 Int [v − u] =

∫ 0

−y

f0(z) dz −
∫ y

0

f0(z) dz +
∫ 0

−iy

fi,0(z) dz −
∫ iy

0

fi,0(z) dz

=
∫ y

0

[f0(−z)− f0(z) + i fi,0(−iz) − i fi,0(iz)] dz, (1.78)

which reduces to zero since

fi,0(iz) − fi,0(−iz) = i (f0(z) − f0(−z)). (1.79)
�

From Proposition 1.15, an entire function such as y �→ e−2iπxy lies in M, thus
is never in A: however, it may serve as a multiplier of such a function.

Definition 1.17. Given x ∈ R, define the function ex ∈ M as ex(y) = e−2iπxy. For
any u ∈ A, the anaplectic Fourier transform Fana u of u is defined as

(Fana u)(x) = Int [ex u]. (1.80)

In view of (1.71), (1.72), a fully developed version of the preceding definition is

(Fana u)(x) = 2
1
2

∫ ∞

0

f0(y) cos 2πxy dy − 2
1
2 i

∫ ∞

0

f1(y) sin 2πxy dy (1.81)

+ 2
1
2

∫ ∞

0

fi,0(y) cosh 2πxy dy − 2
1
2 i

∫ ∞

0

fi,1(y) sinh 2πxy dy.

It will be shown later that the transformation Fana preserves the space A. In
anaplectic analysis, the function φ introduced in Proposition 1.2 is just as basic
as the Gaussian function in usual analysis. In particular,

Proposition 1.18. The function φ is normalized, i.e., (φ |φ) = 1. One has
Fana φ = φ.

Proof. The first part is a consequence of (1.68), (1.11), (1.13) and of the formula
[17, p. 101] ∫ ∞

0

(K 1
4
(πt))2 dt = 2−

3
2 π. (1.82)

Using (1.81) and (1.13), one finds

(Fana φ)(x) = 2 π− 1
2

∫ ∞

0

y
1
2 K 1

4
(π y2) (cos 2πxy + cosh 2πxy) dy. (1.83)

This integral can be computed, even though it could hardly be found from the
inspection of books devoted to special functions. Instead, consider the harmonic
oscillator, acting on functions of x,

L = π x2 − 1
4π

d2

dx2
, (1.84)
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where the first term on the right-hand side stands for the operator of multiplication
by π x2. Using the differential equation of Bessel functions

K ′′
ν (t) +

1
t

K ′
ν(t) −

(
1 +

ν2

t2

)
Kν(t) = 0, (1.85)

it is a routine matter to check that Lφ = 0. Using an integration by parts and
this equation, one sees, splitting the integrand of the right-hand side of (1.83) as
a sum of two terms, that the first of the two integrals thus obtained satisfies the
differential equation(

πx2− 1
4π

d2

dx2

)(∫ ∞

0

y
1
2 K 1

4
(πy2)cos2πxydy

)
=

1
4π

d

dy
[y

1
2 K 1

4
(πy2)](y=0),

(1.86)
a non-zero constant; the same integration by parts, with cosh in place of cos, would
lead to the negative of that constant. Adding the two equations, one sees that the
function Fana φ is also a (generalized) eigenfunction of the harmonic oscillator,
corresponding to the eigenvalue 0. Since both φ and Fana φ are even functions,
they are proportional. From (1.10), one finds

φ(0) =
2

1
4 π

1
4

Γ(3
4 )

(1.87)

and from (1.83) and [17, p. 91],

(Fana φ)(0) = 2−
1
4 π− 3

4 Γ
(

1
4

)
. (1.88)

The two results agree as a consequence of the duplication formula of the Gamma
function [17, p. 3]

Γ(z) Γ
(

z +
1
2

)
= (2π)

1
2 2

1
2−2z Γ(2z). (1.89)

�

We shall see in the next section that the spectrum of the harmonic oscillator
in the space A is Z, and that all its eigenfunctions can be built from φ with the
help of a pair of raising and lowering operators, which substitute for the usual
creation and annihilation operators.

We are now in a position to give a characterization of the anaplectic repre-
sentation, first giving the definition of the anaplectic group itself.

Definition 1.19. The anaplectic group SLi(2, R) is the subgroup of SL(2, C) gener-

ated by SL(2, R) together with the element
(
−i 0
0 i

)
. In other words, a matrix in

SL(2, C) will lie in SLi(2, R) if and only if all its entries are real, or all its entries
are pure imaginary.
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Remark 1.1. A maximal compact subgroup of SLi(2, R) consists of the union of
two disjoint circles: the subgroup SO(2), and the class

(−i 0
0 i

)
SO(2) consisting

of all matrices of the kind
(−i cos θ i sin θ

i sin θ i cos θ

)
with θ ∈ R. Now, if one considers the

canonical embedding of these two circles in SU(2), a maximal compact subgroup
of SL(2, C) homeomorphic to the 3-sphere S3, one finds that they are linked in a
non-trivial way (just like two fibers of the Hopf fibration, or two adjoining elements
of a chain). Indeed, consider the set of matrices(

a − (1−a2−b2)
1
2 i −b

b a + (1−a2−b2)
1
2 i

)
∈ SU(2), a, b ∈ R, a2 + b2 ≤ 1,

(1.90)
a homeomorphic image of the unit disk. The boundary of this set is just the first
circle SO(2), while the intersection of this set with the second circle reduces to the
point

(−i 0
0 i

)
corresponding to the center of the disk. Thus, topologically speaking,

even though the anaplectic group is simpler than the metaplectic group (it is an
honest linear group, while the definition of the latter one involves some covering
space), there is still some non-trivial topology remaining in its embedding into
SL(2, C).

The following theorem, which sums up the main properties of the one-dim-
ensional anaplectic representation, will be proved in the next section.

Theorem 1.20. There is a unique representation Ana of the anaplectic group in
the space A with the following properties:

(i) if g ∈ SL(2, R) is one of the first two matrices from the set of generators given
in (1.5), and if u ∈ A is given in its realization as a scalar-valued function,
the associated transformation Ana(g) is given on u by the same formula as
in the case of the metaplectic representation;

(ii) one has Ana
((

0 1−1 0

))
= Fana;

(iii) one has Ana
((−i 0

0 i

))
= R, as introduced in Proposition 1.13.

When restricted to the subgroup SL(2, R) of the anaplectic group, this representa-
tion is pseudo-unitary, i.e., it preserves the scalar product introduced in Proposition
1.14.

Finally, given (y, η) ∈ C2, and with e2iπ (ηQ−yP ) = π(y, η) as defined in (1.1)
and (1.4), one has

Ana(g) e2iπ (ηQ−yP ) Ana(g−1) = e2iπ (η′Q−y′P ) (1.91)

if g =
(

a b
c d

)
∈ SLi(2, R) and g ( y

η ) =
(

y′

η′

)
. The transformations e2iπ (ηQ−yP )

with (y, η) ∈ R2 also preserve the scalar product.

Observe, from Proposition 1.13, that the transformation R is not pseudo-
unitary: instead, given v and u ∈ A, one has (Rv |Ru) = (R2 v |u).

Remark 1.2. The anaplectic representation does not extend as a holomorphic rep-
resentation of the group SL(2, C): however, given u ∈ A, one can always define
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Ana(g)u for g in some complex neighborhood of SL(2, R) in SL(2, C), depending
on u. For instance, considering the basic function φ used throughout this section,
one can define, as an element of A,

(Ana(
(

a 0
0 a−1

)
)φ)(x) = a− 1

2 φ(a−1x) or (Ana(( 1 0
c 1 ))φ)(x) = φ(x) eiπcx2

(1.92)
not only for a > 0 or c ∈ R, but also for a = eiθ, θ ∈ R, |θ| < π

4 or |Im c| < 1.
Indeed, the function w0 associated with φ by means of (1.26) is the function
σ �→ C (1 + σ2)−

1
4 (with C = 2−

1
4 π− 3

4 Γ(1
4 )); that associated with the first (resp.

the second) of the two functions above is

σ �→ C e−
iθ
2 (σ2 + e−4iθ)−

1
4

(
resp. σ �→ C [1 + (σ − c)2]−

1
4

)
: (1.93)

that each of these two functions is associated to some element of A is a consequence
of Theorem 1.8. The same shows (taking θ = π

4 or c = i) that, on the contrary,
the entire function defined for x > 0 as x �→ (π x)

1
2 J− 1

4
(πx2) or the function

x �→ φ(x) e−πx2
does not lie in A.

Remark 1.3. Let us anticipate a point which will be of importance only later, but
which may already be helpful for a good comprehension. There exist two theories
of the anaplectic representation and related concepts: the one we are developing,
and another one, based on the introduction of a space A�, analogous to the one
in Definition 1.1 but for which the properties of f0 and f1 are exchanged. Though
certainly similar, the two theories, as will be shown at the end of Section 7, are
not equivalent in the representation-theoretic sense.

In particular, in this context, the median state φ (introduced in Proposi-
tion 1.2) of the harmonic oscillator (1.84) would have to be replaced by the odd
(analytic) function

φ�(x) = −(π |x|) 1
2 (sign x) I 1

4
(π x2) : (1.94)

observe that this function does not lie in A (it lies in A�). On the other hand, it is
still an eigenfunction, corresponding to the eigenvalue 0, of the harmonic oscillator.
The function φ� will show up again – without our having done anything to invite
it – at the end of Section 10.
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2 Analytic vectors of representations of SL(2, R)

This rather technical section is needed at various places in this work, to start with
the proof of the converse of Theorem 1.8: it will also make it possible to com-
plete the proof of Theorem 1.20, and to show that the one-dimensional anaplectic
representation decomposes as a sum of two well-known irreducible representations.

Remark 2.1. The representation πρ,ε to be introduced presently will be needed,
in the present work, only for the values of ρ which are integers or half-integers: it
is the pairs (− 1

2 , 0) and (1
2 , 1) that are needed for the understanding of the one-

dimensional anaplectic representation; the other quoted values of the parameter ρ
will be needed in Sections 3 and 6. It is possible, to some extent, to develop some
analogue of the one-dimensional anaplectic representation based on the use of the
pairs (ρ, ε) and (ρ+1, 1−ε) for general values of ρ. However, unless ρ = − 1

2 , the
operators that substitute for the operators Q and P of position and momentum
do not generate a finite-dimensional Lie algebra. Still, some of the theory subsists,
and though we have decided against taking this more general case here, we have
refrained, in some lemmas, from specializing the parameter ρ when this did not
lead to any significant simplification: this may save space on another occasion. Let
us also mention that if, instead of the two pairs (− 1

2 , 0) and (1
2 , 1), one considers

the two pairs (− 1
2 , 1) and (1

2 , 0), one ends up with the analysis briefly reported
about in Remark 1.3.

For every real number σ �= 0, and α ∈ C, let us set

〈σ〉α = |s|α sign s. (2.1)

It will be convenient, too, to set

|σ|αε =

{
|σ|α if ε = 0,

〈σ〉α if ε = 1.
(2.2)

Let us recall the definition of the full non-unitary principal series [14, p. 38]:

(π̂ρ,ε(
(

a b
c d

)
)w)(σ) = | − bσ + d|−1−ρ

ε w

(
aσ − c

−bσ + d

)
, ρ ∈ C, ε = 0, 1 ,

(2.3)

in which w is a function on the real line: we also abbreviate π̂ρ,0 as π̂ρ. Recall
that it is unitary in the case when Re ρ = 0, in which case the Hilbert space to use
is L2(R) (this is the case of the two principal series). So far as questions related
to unitarity are concerned, we shall be more interested, however, in the case of the
complementary series, i.e., ρ real �= 0, −1 < ρ < 1, and ε = 0: the representation
is then unitary on the Hilbert space defined by the norm ‖| ‖|ρ such that

‖|w‖|2ρ =
∫ ∞

−∞
|(|D|−

ρ
2 w)(σ)|2 dσ, (2.4)
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with D = 1
2iπ

∂
∂σ : here, |D|− ρ

2 stands for the operator of convolution by the
Fourier transform of the function s �→ |s|− ρ

2 .
We prefer to consider instead of the Hilbert space just defined its image under

the inverse Fourier transform: we shall thus set w = v̂ = Fv, where our convention
regarding the normalization of F has been made in (1.6). The new Hilbert space
is then the space Hρ consisting of all (classes of) measurable functions v on R

such that
‖v‖2

ρ =
∫ ∞

−∞
|s|−ρ |v(s)|2 ds < ∞, (2.5)

and we denote as πρ the unitary representation on Hρ defined as

πρ(g) = F−1 π̂ρ(g)F , g ∈ SL(2, R). (2.6)

Let us remind the reader, at this point, that the operator of multiplication
by the function s �→ |s|−ρ is an intertwining operator from the representation
πρ to the representation π−ρ. On the Fourier side, it transfers to the operator
(intertwining the representation π̂ρ and the representation π̂−ρ) of convolution by
a distribution which coincides, for σ �= 0, with the function

σ �→ πρ− 1
2
Γ(1−ρ

2 )
Γ(ρ

2 )
|σ|−1+ρ : (2.7)

when 0 < ρ < 1, this locally summable function is just the distribution we are
looking for; when −1 < ρ < 0, the latter should be understood as the derivative,
in the distribution sense, of the (locally summable) function

σ �→ 1
2

πρ− 1
2
Γ(1−ρ

2 )

Γ(2+ρ
2 )

〈σ〉ρ. (2.8)

Let us first make the space of C∞-vectors of the representation π̂ρ explicit.
Assuming that w lies in this space, set w1 = |D|− ρ

2 w. Since π̂ρ(( 1 0
c 1 )) is just the

operator of translation by the vector c ∈ R, and the operator |D|− ρ
2 commutes

with translations, the function w1 must lie in the intersection of all Sobolev spaces
on the real line. Applying the Cauchy–Schwarz inequality to the integral giving w
in terms of F−1w = |s| ρ

2 F−1w1, where the function s �→ (1 + s2)k (F−1w1)(s)
lies in L2(R) for all k, shows that w is a C∞ function on R in the usual sense.
Next, since the space of C∞-vectors of the representation π̂ρ is preserved under
the transformation associated with the matrix

(
0 −1
1 0

)
, the function

σ �→ |σ|−1−ρ w

(
− 1

σ

)
(2.9)

extends as a C∞ function near 0 as well. Actually, it is easily seen that the
two conditions just found, namely that both functions w and π̂ρ(

(
0 −1
1 0

)
)w lie in

C∞(R), characterize the sought-after space.
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We now characterize the operator Lρ which is the generator, in the sense of
Stone’s theorem, of the one-parameter unitary group associated with the restric-
tion of the representation πρ to the subgroup K = SO(2) of SL(2, R), in other
words the operator such that

exp(it Lρ) = πρ

((
cos t

2 − sin t
2

sin t
2 cos t

2

))
. (2.10)

Thus, Lρ = F−1 L̂ρ F , with

L̂ρ w =
1
i

d

dt

∣∣∣∣
t=0

π̂ρ

((
cos t

2 − sin t
2

sin t
2 cos t

2

))
. (2.11)

From (2.3), one immediately gets, in the case when w ∈ C∞
0 (R), the equation

L̂ρ w = − 1
2i

[
(σ2 + 1)

d

dσ
+ (ρ + 1)σ

]
w (2.12)

so that, when acting on some appropriate subspace of Hρ,

Lρ = − 1
2π

s
d2

ds2
+

ρ − 1
4π

d

ds
+ πs. (2.13)

The generalized eigenfunctions, corresponding to real (generalized) eigenval-
ues, of the first-order differential operator L̂ρ, are given as

wk
ρ(σ) = (1 + σ2)−

ρ+1
2 −k (1 − iσ)2k

= (1 + σ2)−
ρ+1
2

(
1 − iσ

1 + iσ

)k

, (2.14)

where the second fractional power is a principal determination on the plane cut
along the negative real half-line; the corresponding eigenvalue is any real number k.

On the other hand, using (2.3), one finds

(
π̂ρ

((
cos t

2 −sin t
2

sin t
2 cos t

2

))
wk

ρ

)
(σ)=(1+σ2)−

ρ+1
2 −k (1− iσ)2k

(
e

it
2 |σ sin t

2 +cos t
2 |

σ sin t
2 +cos t

2

)2k

:

(2.15)

this is the same as eitk wk
ρ(σ) if and only if k is an integer. This shows that

the self-adjoint extension of L̂ρ given by Stone’s theorem is that for which a
complete orthogonal set of eigenfunctions is the sequence (wk

ρ)k∈Z above, the
kth-eigenfunction corresponding to the eigenvalue k.

The corresponding sequence of eigenfunctions of Lρ, denoted as (vk
ρ)k∈Z, is

defined by the equation vk
ρ = F−1 wk

ρ .
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We now come back to the general case of the full non-unitary principal series
(π̂ρ,ε) as recalled in (2.3), in which, for the time being, ρ could be an arbitrary
complex number: we still set

πρ,ε(g) = F−1 π̂ρ,ε(g)F , g ∈ SL(2, R). (2.16)

Despite the fact that the representation π̂ρ,ε is generally non-unitarizable,
one may nevertheless introduce the space Ĉ∞

ρ,ε of all functions w ∈ C∞(R) which
satisfy the property that the function

σ �→ |σ|−1−ρ
ε w

(
− 1

σ

)
is C∞ near 0 (2.17)

as well. In the case when ρ is real, 0 < |ρ| < 1, and ε = 0, it coincides, as remarked
in (2.9), with the space of C∞-vectors of the representation π̂ρ discussed above.
Under the inverse Fourier transformation, the space Ĉ∞

ρ,ε transfers to a space of
distributions v = v(s) of course denoted as C∞

ρ,ε.

The operator π̂ρ,ε(g) preserves the space Ĉ∞
ρ,ε for every g =

(
a b
c d

)
: that

it does so when g =
(

0 −1
1 0

)
, in which case we set π̂ρ,ε(g)w = w1, is just the

condition (2.17). Since

(π̂ρ,ε(g)w)(σ) = | − bσ + d|−1−ρ
ε w

(
aσ − c

−bσ + d

)
= | − aσ + c|−1−ρ

ε w1

(
−bσ + d

−aσ + c

)
, (2.18)

the inequality

(−bσ + d)2 + (−aσ + c)2 = (a2 + b2)
(

σ − ac + bd

a2 + b2

)2

+
1

a2 + b2

≥ 1
a2 + b2

(2.19)

and the condition (2.17) show that if w ∈ Ĉ∞
ρ,ε, the function π̂ρ,ε(g)w is C∞ on

the real line for every g ∈ SL(2, R): that it lies in the space Ĉ∞
ρ,ε too is found

after applying π̂ρ,ε(
(

0 −1
1 0

)
) again.

One still defines the operator L̂ρ,ε by the same formula as (2.11), after sub-
stituting π̂ρ,ε for π̂ρ: only it is to be understood that, on the σ-side, all operators
are to act on the space Ĉ∞

ρ,ε (no Hilbert space is present in general in the picture).
The result of the computation is that L̂ρ,ε is always given by the formula (2.12),
whether ε = 0 or 1. One may check that, indeed, L̂ρ,ε preserves the space Ĉ∞

ρ,ε by
observing that this operator commutes with the operator π̂ρ,ε(

(
0 −1
1 0

)
) involved in

(2.17): only, do not forget that, when ε = 1, the square of the transformation just
alluded to is not the identity, but minus the identity.
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For every integer k ∈ Z, one sets

wk
ρ,0(σ) = (1 + σ2)−

ρ+1
2 −k (1 − iσ)2k

wk
ρ,1(σ) = (1 + σ2)−

ρ+2
2 −k (1 − iσ)2k+1 : (2.20)

in both cases, one gets a function in the space Ĉ∞
ρ,ε.

Under the map π̂ρ,ε

((
cos t

2 − sin t
2

sin t
2 cos t

2

))
, the function wk

ρ,0 transforms to eikt wk
ρ,0

and the function wk
ρ,1 transforms to ei(k+ 1

2 )t wk
ρ,1. It is easily seen that the se-

quence (wk
ρ,ε)k∈Z constitutes a sequence of eigenfunctions of the operator L̂ρ,ε

acting within the space Ĉ∞
ρ,ε, the kth-eigenfunction so defined corresponding to

the eigenvalue k (resp. k + 1
2 ) in the case when ε = 0 (resp. 1); there is no other

eigenvalue, and each eigenspace is one-dimensional.
The image under F−1 of the space Ĉ∞

ρ,ε is denoted as C∞
ρ,ε; also, one sets

Lρ,ε = F−1 L̂ρ,ε F and vk
ρ,ε = F−1 wk

ρ,ε. (2.21)

Provided that Re ρ > −1, vk
ρ,ε is a locally summable function: in particular,

v0
ρ,0(s) =

2 π
ρ+1
2

Γ(ρ+1
2 )

|s|
ρ
2 K ρ

2
(2π|s|) (2.22)

and

v0
ρ,1(s) =

(
1 − 1

2π

d

ds

)
v0

ρ+1,0(s)

=
2 π

ρ+2
2

Γ(ρ+2
2 )

[
|s|

ρ+1
2 K ρ+1

2
(2π|s|) + 〈s〉

ρ+1
2 K ρ−1

2
(2π|s|)

]
. (2.23)

In the next section, we shall indicate how, imitating the procedure well-known
in the case of the harmonic oscillator, one can inductively build the sequences
(vk

ρ,0)k∈Z and (vk
ρ,1)k∈Z with the help of creation operators. This can only be done

if one tackles two such sequences simultaneously, which is another reason why
piecing together two irreducible representations, as we have done in Section 3 and
as we shall do again in the next one, is essential to our purpose.

In view of the important role played by the spaces Ĉ∞
ρ,ε and C∞

ρ,ε, the following
characterization of the latter space is useful.

Proposition 2.1. Assume that Re ρ > −1 and ρ /∈ Z. Then v ∈ C∞
ρ,ε if and only

if v is a function on the real line with the following properties:

(i) v is C∞ outside 0;
(ii) v and its derivatives are rapidly decreasing at infinity;
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(iii) near 0, v admits an expansion

v(s) ∼ a0 + a1s + a2s
2 + · · ·

+ |s|ρε (b0 + b1s + b2s
2 + · · · ) (2.24)

where any specified derivative of the remainder shall be O(|s|N ) with N as
large as one pleases provided the expansion is pushed far enough.

Proof. The case when ε = 0 was treated (for a rather different purpose) in [24,
Prop. 2.1]: for the sake of completeness, let us give a proof of the case when ε = 1.
First, from the expansion

2 |s|
ρ
2 K ρ

2
(2π |s|) = π− ρ

2 Γ
(
−ρ

2

)
Γ
(

2 + ρ

2

)

×

⎡⎣−∑
m≥0

(πs)2m

m! Γ(− ρ
2 + m + 1)

+ |πs| ρ
∑
m≥0

(πs)2m

m! Γ(ρ
2 + m + 1)

⎤⎦ , (2.25)

and from (2.23), one sees, writing |s|ρ+1 = 〈 s〉ρ s and s |s|ρ−1 = 〈 s〉ρ, that each
of the functions v0

ρ+2j,1 with j = 0, 1, . . . satisfies near s = 0 the expansion
(2.24). Take now an arbitrary function v in the space C∞

ρ,1, and let w = F v. The
Taylor expansion near σ = 0 of the function (cf. (2.17))

(π̂ρ,1

((
0 −1
1 0

))
w)(σ) = 〈σ 〉−1−ρ w

(
− 1

σ

)
(2.26)

can be written if so wished as

〈σ 〉−1−ρ w

(
− 1

σ

)
∼ (1 − iσ) (1 + σ2)

−ρ−2
2

(
β0 + β1 σ2 (1 + σ2)−1 + · · ·

)
−σ (1 − iσ) (1 + σ2)

−ρ−4
2

(
γ0 + γ1 σ2 (1 + σ2)−1 + · · ·

)
(2.27)

(expand the even and odd parts of the product of the left-hand side by (1− iσ)−1

in the manner indicated), from which one gets the expansion at infinity

i w(σ) ∼(1 − i σ) (1 + σ2)
−ρ−2

2
(
β0 + β1 (1 + σ2)−1 + · · ·

)
+σ (1 − i σ) (1 + σ2)

−ρ−4
2

(
γ0 + γ1 (1 + σ2)−1 + · · ·

)
. (2.28)

Then, using the relation (F v0
ρ,1)(σ) = (1−iσ) (1+σ2)

−ρ−2
2 , one gets the expansion

i v(s) ∼β0 v0
ρ,1(s) + β1 v0

ρ+2,1(s) + · · ·

+
1

2iπ

d

ds

(
γ0 v0

ρ+2,1(s) + γ1 v0
ρ+4,1(s) + · · ·

)
, (2.29)
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which leads to (i) and (iii) since a remainder term from the expansion (2.28) of w at
infinity, on the other hand, can only contribute to v some extra term differentiable
on the real line as many times as one pleases. That v is rapidly decreasing at
infinity can also be seen from (2.28) since, apart from the first one, all the terms
in this expansion of w are summable, even the more so after one has taken their
derivative any number of times; setting apart a finite number of terms will work
in the same way in connection with a derivative of v.

In the reverse direction, we observe that the non-smooth part of the expansion
near s = 0 of the function v0

ρ,1 starts with a term like 〈 s 〉ρ and the expansion of
d
ds v0

ρ+2,1 starts with a term like 〈 s 〉ρ s, in both cases with non-zero coefficients;
also, in both cases, the terms that follow are the same, multiplied by some even
power of s. Assuming (i),(ii) and (iii) to hold, this makes it possible to successively
choose the coefficients β0, β1, . . . , γ0, γ1, . . . so as to recover an expansion near
s = 0 of the kind (2.29), where the remainder, if pushed far enough, will be as
many times differentiable on the real line as one pleases, while still being rapidly
decreasing at infinity. The argument above linking the behaviors of v near 0 and
that of w near ∞ can then be reversed. �

Even though the representation πρ,1 is not unitarizable, one may consider on
C∞

ρ,ε, in the case when ρ is real, 0 < |ρ| < 1, the Hermitian form defined as

(v1 | v2)ρ,ε =
∫ ∞

−∞
|s|−ρ

ε v̄1(s) v2(s) ds : (2.30)

it is positive-definite only in the unitarizable case, in which it is just the scalar
product associated with (2.5). It transfers to the space Ĉ∞

ρ,ε as

(w1 |w2)∧ρ,ε = (−i)επ
1
2+ρ Γ(1−ρ+ε

2 )
Γ(ρ+ε

2 )

∫ ∞

−∞

∫ ∞

−∞

w̄1(σ)w2(τ)
|σ − τ |1−ρ

ε

dσ dτ, (2.31)

a genuine integral only when 0 < ρ < 1, but an expression that can still be
given a meaning when 0 < |ρ| < 1, and is easily shown to be invariant under the
representation π̂ρ,ε.

We now introduce a space obviously related to the notion of analytic vectors,
though it also makes sense in the absence of any useful Banach space structure.

Definition 2.2. Given ρ ∈ C and ε = 0 or 1, we denote as Ĉω
ρ,ε the space of

real-analytic (complex-valued) functions w = w(σ) on R such that the function
(defined for σ �= 0)

w1(σ) = |σ|−1−ρ
ε w

(
− 1

σ

)
(2.32)

extends as an analytic function on R too.
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Proposition 2.3. Assume that ρ ∈ C, ρ is not an integer, and Re ρ > −1. The
image of the space Ĉω

ρ,ε under the inverse Fourier transformation F−1 is the space
Cω

ρ,ε of functions v on R\{0} with the following properties:

(i) there exist two entire functions vent and vram (corresponding to the entire
part and the ramified part of v) such that

v(s) = vent(s) + |s|ρε vram(s), s ∈ R; (2.33)

(ii) there exists R > 0 and C > 0 such that

|vent(s)| + |vram(s)| ≤ C e2πR|s|, s ∈ C; (2.34)

(iii) there exist δ > 0 and C > 0 such that

|v(s)| ≤ C e−2πδ|s|, s real, |s| > 1. (2.35)

Proof. The map w �→ (1 + iσ)w, is an isomorphism from Ĉω
ρ,ε onto Ĉω

ρ−1,1−ε.
On the other hand, using Lemma 1.5 and Cauchy’s integral formula to evaluate
v′(s), the conditions (2.33)–(2.35) associated to the pair (ρ, ε) transfer to the same
conditions, in association to the pair (ρ−1, 1−ε), under the map v �→ (1+ 1

2π
d
ds) v.

It is thus no loss of generality to assume that ε = 0 and that Re ρ is as large as
one pleases: this will be tacitly assumed so as to let us feel more secure, as it will
sometimes transform semi-convergent only integrals into genuine ones.

Next, if w lies in Ĉω
ρ,ε, so do its even and odd parts though, of course,

the representation π̂ρ,ε does not preserve the corresponding decomposition of this
space: we may thus prove the direct part (properties of v = F−1w ∈ Cω

ρ,ε in
terms of those of w) under the additional assumption that w has a definite parity
indexed by η (η = 0 if w is even, 1 if w is odd). Then, we shall first prove that
there exist two entire functions vent and vram such that

v(s) = vent(s) + sρ vram(s) (2.36)

for s > 0 and that v satisfies the estimate

|v(s)| ≤ C e−2π δs, s > 1 : (2.37)

observe that, of necessity (since ρ is not an integer), vent must then have the
parity associated with η, and vram that associated with ε + η mod 2. Next, we
shall show that v, initially regarded as a function on ]0,∞[, admits an extension
ṽ as a function on the Riemann surface of the logarithm; finally, we shall prove
that there exist positive constants C, R such that

|ṽ(seiθ)| ≤ C e2π R s (2.38)

for all s > 1 and θ ∈ R.
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Thus, assuming that Re ρ is large, start from a given function w ∈ Ĉω
ρ,0,

with the parity associated with η, so that there exists a function h holomorphic
in the complement of some disk centered at zero with a radius < R, with a finite
limit at infinity, such that

w(σ) = |σ|−1−ρh(σ), σ ∈ R, |σ| ≥ R : (2.39)

observe that the conditions just stated are equivalent to the condition (2.32) of
Definition 2.2 as seen with the help of the Laurent expansion of w. We then split
the integral defining v = F−1 w as the sum of three terms,

v(s) =
∫ −R

−∞
e2iπsσ w(σ) dσ +

∫ R

−R

e2iπsσ w(σ) dσ +
∫ ∞

R

e2iπsσ w(σ) dσ, (2.40)

denoted as I1(s), I2(s), I3(s): obviously, I2(s) extends as an entire function of s,
satisfying an estimate with the same right-hand side as (2.38).

Lemma 2.4. Assume that Re ρ > −1, ρ /∈ N, and let h(σ) =
∑

n≥0 anσ−n, an
absolutely convergent series for σ ≥ R′, some positive number < R. Consider the
(possibly improper) integral

F (s) =
∫ ∞

R

e2iπsσ σ−1−ρh(σ) dσ. (2.41)

Set, for s ∈ C,

χ(s) =
∑
n≥0

an
Γ(ρ + 1)

Γ(ρ + n + 1)
(2iπs)n,

ψ(s) =
∑
n≥0

an

n∑
j=1

Γ(ρ + j)
Γ(ρ + n + 1)

R−ρ−j (2iπs)n−j , (2.42)

and, for s ∈ R\{0},
B0(s) =

∫ ∞

R

e2iπsσ σ−1−ρ dσ, (2.43)

an improper integral if Re ρ ≤ 0 (recall that Re ρ > −1). Then, χ and ψ are both
entire functions, and satisfy the estimate

|χ(s)| + |ψ(s)| ≤ C e2πR′′|s|, s ∈ C (2.44)

for some R′′ with R′ < R′′, which may be assumed to be < R; next, one has

B0(s) = B∞
0 (s) − B0

0(s), (2.45)

where the function B0
0 extends as an entire function satisfying, given any R′′ < R,

the estimate
|B0

0(s)| ≤ C e2π(2R−R′′)|s|, s ∈ C, (2.46)
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and, for s ∈ R\{0},

B∞
0 (s) =

1
2

π
1
2+ρ

[
Γ(− ρ

2 )
Γ(1+ρ

2 )
|s|ρ + i

Γ(1−ρ
2 )

Γ(2+ρ
2 )

〈s〉ρ
]

. (2.47)

Finally,
F (s) = χ(s)B0(s) + ψ(s) e2iπRs (2.48)

for s ∈ R\{0}.

Proof. Since |an| ≤ C R′n, one may write, whenever R′′ > R′,∑
n≥0

|an|
Γ(ρ + 1)

Γ(ρ + n + 1)
(2π|s|)n ≤ C

∑
n≥0

R′n (2π|s|)n

(ρ + 1) · · · (ρ + n)

≤ C

⎛⎝1 +
∑
n≥0

(2πR′|s|)n

(n − 1) !

⎞⎠
≤ C e2πR′′|s|, (2.49)

which yields the estimate regarding χ. In the same way, with R′′ = (RR′)
1
2 ,∑

n≥0

|an|
n∑

j=1

Γ(ρ + j)
Γ(ρ + n + 1)

(2π|s|)n−j R−ρ−j

≤ C
∑
n≥0

R′n
n∑

j=1

(2π|s|)n−j R−ρ−j

(ρ + j) · · · (ρ + n)

≤ C R−ρ
∑
n≥0

(
R′′

R
)n

n∑
j=1

(2π|s|R′′)n−j

(n − j) !

≤ C e2πR′′|s| R1−ρ(R − R′′)−1. (2.50)

This completes the estimate concerning ψ.
The integral B0(s), for a given value of ρ, can be connected, if Re ρ > 0, to

the same integral where ρ−1 is substituted for ρ, by means of an obvious integra-
tion by parts: in this way, we can satisfy ourselves with proving all facts concerning
this function only in the case when −1 < Re ρ < 1. Then, B∞

0 (s), as expressed
in (2.47), is just the finite part of the improper integral

∫∞
0

e2iπsσ σ−1−ρ dσ, i.e.,

B∞
0 (s) = limε=0

[
ε−ρ

ρ
+
∫ ∞

ε

e2iπsσ σ−1−ρ dσ

]
(2.51)

(still involving an improper integral), and B0
0(s), which is the finite part of the

same integral taken from 0 to R, clearly extends as an entire function of s satis-
fying the estimate

|B0
0(s)| ≤ C e2πR|s|, s ∈ C. (2.52)
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Setting

Bn(s) =
∫ ∞

R

e2iπsσ σ−1−ρ−n dσ, (2.53)

one has

Bn(s) = e2iπRs
n∑

j=1

Γ(ρ + j)
Γ(ρ + n + 1)

(2iπs)n−j R−ρ−j + (2iπs)n Γ(ρ + 1)
Γ(ρ + n + 1)

B0(s)

(2.54)
for all n ≥ 0, as one can see by induction; next, if s is real and > 0,

F (s) =
∑
n≥0

an Bn(s), (2.55)

which yields the sought-after decomposition of F (s). �

End of Proof of Proposition 2.3. We apply Lemma 2.4 to the function I3(s) and
to the function

I1(s) = (−1)η

∫ ∞

R

e−2iπsσ σ−1−ρ h(σ) dσ, (2.56)

both only defined for s > 0. With the notations of Lemma 2.4, remarking that

χ(−s) = (−1)η χ(s), (2.57)

one thus has

I3(s) = χ(s) (B∞
0 (s) − B0

0(s)) + ψ(s) e2iπRs,

I1(s) = χ(s) (B∞
0 (−s) − B0

0(−s)) + (−1)η ψ(−s) e−2iπRs, (2.58)

and the only functions of s which fail to be entire on the right-hand sides of the
two equations are B∞

0 (±s): however,

e
iπρ
2 B∞

0 (s) + e−
iπρ
2 B∞

0 (−s) = 0, (2.59)

as it follows from (2.47) together with the duplication formula (1.89) of the Gamma
function. Adding the two equations that precede, one finds that (2.33) is satisfied
for s > 0 provided one defines

vram(s) = (1 − eiπρ) (s−ρB∞
0 (s))χ(s), (2.60)

vent(s) = I2(s) − χ(s) (B0
0(s) + B0

0(−s)) + ψ(s)e2iπRs + (−1)ηψ(−s)e−2iπRs.

Since s−ρB∞
0 (s) is a constant for s > 0, it is clear that vram and vent, initially

defined for s > 0, extend as entire functions of s, with the parity prescribed in
(iv). Also, the estimate (2.38) follows from the estimates, established in lemma
2.4, concerning the functions χ and ψ. In this direction, only the estimate (2.37),
regarding the exponential decrease of ṽ near the real positive half-line, remains to
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be proved. Choose δ > 0 such that R − δ > R′ and small enough so that σ + iδ′

should remain, when 0 ≤ δ′ ≤ δ and −R ≤ σ ≤ R, in a domain where w extends
as a holomorphic function: we can then write

ṽ(s) =
∫ ∞

−∞
e2iπs(σ+iδ) w(σ + iδ) dσ, (2.61)

which leads to (2.37).
In the reverse direction, we now establish the properties of

w(σ) =
∫ ∞

−∞
e−2iπ sσ v(s) ds (2.62)

as a consequence of the properties of v stated in Proposition 2.3. Again, one may
assume that Re ρ is large: however, in view of a formula which will have subsequent
use, it is better not to assume that ε = 0. We first note that the pair of functions
vent and vram whose existence is asserted in (2.33) is of necessity unique. Next, if
v̌(s) = v(−s), the function v̌ has a decomposition similar to (2.33) with

(v̌)ent = (vent)∨ and (v̌)ram = (−1)ε (vram)∨ : (2.63)

consequently, so do the even and odd parts of v. On the other hand, the estimate
(2.35) also holds for veven and vodd if it does for v. We may thus work under
the additional assumption that v (or w) has the parity associated with η: then,
again, vent (resp. vram) has the parity associated with η (resp. ε + η mod 2).

From (2.62), rewritten as

w(σ) =
∫ ∞

0

[(−1)ηe2iπ sσ + e−2iπ sσ] v(s) ds, (2.64)

one sees that, to start with, w is indeed analytic on the real line. We still have to
show that there exists some function h = h(σ) holomorphic for large |σ|, with a
finite limit at infinity, such that

w(σ) = | − σ|−1−ρ
ε h(σ) for σ ∈ R, |σ| large. (2.65)

We shall show presently that the function w, considered on ]0,∞[, ad-
mits a holomorphic continuation w̃ to the part of the Riemann surface of the
logarithm lying above the complement of some disk centered at zero: setting
h̃(σ) = (−1)εσ1+ρw̃(σ), the remaining problems will be to show that, for large
σ > 0, h̃(σ eiπ) = σ1+ρ w(−σ), in other words that

w̃(σ eiπ) = (−1)ε+η+1e−iπρw(σ), σ > 0 and large, (2.66)

and that, as σ > 0 goes to ∞, h̃(σ eiφ) admits a finite limit independent of φ.
Starting from (2.64), we take advantage of Lemma 1.5 to write

w(σ) =
∫ ∞

0

(−1)ηe2iπseiθ0 σ ṽ(seiθ0) eiθ0 ds

+
∫ ∞

0

e−2iπse−iθ0 σ ṽ(se−iθ0) e−iθ0 ds, (2.67)
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then of (2.34) to write, for σ > 0 and large,

w(σ) = i

∫ ∞

0

e−2πsσ [(−1)η ṽ(s e
iπ
2 ) − ṽ(s e−

iπ
2 )] ds. (2.68)

Using (2.33) together with parity considerations, one remarks that

(−1)ηṽ(s e
iπ
2 ) − ṽ(s e−

iπ
2 ) = (−1)η [e

iπρ
2 − (−1)ε e−

iπρ
2 ] sρ vram(is)

= (−1)η 2πi1−ε

Γ( ε+ρ
2 ) Γ(2−ε−ρ

2 )
sρ vram(is) (2.69)

so that
w(σ) = − 2π iε

Γ( ε+ρ
2 ) Γ(2−ε−ρ

2 )

∫ ∞

0

sρ e−2πsσ vram(−is) ds, (2.70)

an equation obviously valid even in the case when v has no definite parity. A
contour deformation using (2.34) yields for σ > 0 large and arbitrary φ ∈ [0, π]
the equation

w̃(σ eiφ) = − 2π iε

Γ( ε+ρ
2 ) Γ(2−ε−ρ

2 )

∫ ∞

0

sρ e−2πsσ vram(−is e−iφ) e−i(1+ρ)φ ds : (2.71)

indeed, if φ0 is the least upper bound of all φ ∈ [0, π] such that (2.71) holds for
some given σ > 2R, then it holds also when φ = φ0 in view of the estimate (2.34).
Next, another deformation of contour makes it possible to write also

w̃(σeiφ0)=− 2πiε

Γ( ε+ρ
2 )Γ(2−ε−ρ

2 )

∫ ∞

0

sρe−2πσse−i(φ1−φ0)
vram(−ise−iφ1)e−i(1+ρ)φ1 ds

(2.72)
provided that φ0 ≤ φ1 < φ0 + π

2 , which implies (using complex continuation in
order to substitute σ ei(φ1−φ0) for σ in the last equation) that (2.71) holds with φ1

substituted for φ0: thus φ0 = π, in which case, comparing (2.71) to (2.70), one just
finds (2.66). Also, (σ eiφ)1+ρ w̃(σ eiφ) goes to some finite constant independent of
φ as σ → ∞, as the change of variable s �→ s

σ shows. �

Observe that any v ∈ Cω
ρ,ε is characterized by any of the two terms vent and

s �→ |s|ρε vram(s) from the decomposition (2.33) or, which amounts to the same, a
non-zero v ∈ Cω

ρ,ε cannot reduce to either one of the two terms above. For, in the
first case, the entire function vent has to be exponentially decreasing at ±∞ on
the real line (a consequence of (2.35)), thus vent = 0 according to Lemma 1.9. The
second case is proved in the same way.

Proposition 2.5. Assume that ρ ∈ C, ρ is not an integer, and Re ρ > −1; let
ε = 0 or 1. Let v � be an entire function, satisfying for some pair C, R of positive
constants the estimate

|v �(s)| ≤ C e4πR|s|, s ∈ C. (2.73)
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Consider the function w defined for large σ > 0 by the equation

w(σ) = − 2π iε

Γ( ε+ρ
2 ) Γ(2−ε−ρ

2 )

∫ ∞

0

sρ e−2πsσ v �(−is) ds : (2.74)

it extends as a holomorphic function w̃ on the part of the Riemann surface of the
logarithm lying above the complement of some disk centered at zero, satisfying the
equation

w̃(σ e2iπ) = e−2iπρ w̃(σ). (2.75)

In order that there should exist a function v ∈ Cω
ρ,ε such that vram = v �, it is

necessary and sufficient that w (defined for large σ > 0) should extend as an
analytic function (still denoted as w) on the real line, satisfying for large σ > 0
the equation

w̃(σ eiπ) = (−1)ε+1 e−iπρ w(−σ). (2.76)

If such is the case, the function v is given as v = F−1w.

Proof. All that needs being done is showing that w satisfies the condition (2.65):
it suffices to rework the very last part of the proof of Proposition 2.3, that begins
at the equation (2.70), after one has broken down, for simplicity, v � into its even
and odd parts. �

Examples. 1) If we apply (2.74) with ε = 0 and

v �(s) = −π
ρ+1
2

Γ(ρ
2 )Γ(2−ρ

2 )
Γ(ρ+1

2 )
s−

ρ
2 I ρ

2
(2πs) s > 0, (2.77)

we find [17, p. 91]

w(σ) =
2 π

ρ+3
2

Γ(ρ+1
2 )

∫ ∞

0

s
ρ
2 e−2πsσJ ρ

2
(2πs) ds

= (1 + σ2)−
ρ+1
2 . (2.78)

2) If we apply (2.74) with ε = 1 and

v �(s) = π
ρ+2
2

Γ(1+ρ
2 )Γ(1−ρ

2 )
Γ(ρ+2

2 )
s

1−ρ
2

[
I ρ−1

2
(2πs) − I ρ+1

2
(2πs)

]
s > 0, (2.79)

we find (loc. cit.)

w(σ) = −2i π
ρ+4
2

Γ(ρ+2
2 )

∫ ∞

0

s
ρ+1
2 e−2πsσ

[
J ρ−1

2
(2πs) + i J ρ+1

2
(2πs)

]
ds

= (1 + σ2)−
ρ+2
2 (1 − iσ). (2.80)
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Thus, in the first case, w coincides with the function introduced in (2.20) as w0
ρ,0;

in the second case, it agrees with the function w0
ρ,1: of course, this is only for

the purpose of showing the practical value of the “inversion formula” provided by
Proposition 2.5, since the function v � we started from is none other, in the first
case, than the function (v0

ρ,0)
ram, as can be verified from (2.22); in the second

case, v1 = (v0
ρ,1)ram, a consequence of (2.23).

The following is a converse to Theorem 1.8, leading to a characterization of
the space A which will make the higher-dimensional generalization possible.

Theorem 2.6. Let u be an entire function of one variable, such that |u(z)| ≤
C eπR |z|2 for some pair (C, R) of positive constants. Recalling (1.26), set, for σ
real and large enough,

w0(σ) =
∫ ∞

−∞
e−πσx2

u(x e−
iπ
4 ) dx,

w1(σ) =
1 − i

2

∫ ∞

−∞
e−πσx2

xu(x e−
iπ
4 ) dx, (2.81)

and assume that the functions w0 and w1 extend as analytic functions on the real
line and admit when |σ| is large the convergent expansions (1.27). Then u ∈ A.

Proof. In view of Definition 2.2, the validity of the series expansions under con-
sideration show that the function w0 lies in the space Ĉω

− 1
2 ,0

and that w1 lies in

Ĉω
1
2 ,1

. Set v0 = F−1 w0 ∈ Cω
− 1

2 ,0
and v1 = F−1 w1 ∈ Cω

1
2 ,1

. Using the decomposi-
tion of the functions v0 and v1 into their entire and ramified parts as provided
by Proposition 2.3, we set

f0(x) = 2−
1
2 x vent

0

(
x2

2

)
+ vram

0

(
x2

2

)
,

f1(x) = vent
1

(
x2

2

)
+ 2−

1
2 x vram

1

(
x2

2

)
, (2.82)

so that the functions f0 and f1 extend as entire functions. Using (2.33), in the
present case

v0(s) = vent
0 (s) + |s|− 1

2 vram
0 (s),

v1(s) = vent
1 (s) + 〈s〉 1

2 vram
1 (s), (2.83)

a pair of equations valid for every real number s, we find that, on the positive
half-line, one has

f0(x) = 2−
1
2 x v0

(
x2

2

)
, f1(x) = v1

(
x2

2

)
: (2.84)
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by the same considerations, we find that the functions fi,0 and fi,1, defined ac-
cording to (1.8), are given as

fi,0(x) = 2−
1
2 x v0

(
−x2

2

)
, fi,1(x) = v1

(
−x2

2

)
, x > 0. (2.85)

Applying the results of Proposition 2.3 again, it follows that the four functions
f0, f1, fi,0, fi,1 are nice in the sense of Definition 1.1. Next, we use (2.70), in this
case

w0(σ)=2
1
2

∫ ∞

0

s−
1
2 e−2πsσvram

0 (−is)ds =2
∫ ∞

0

e−πσx2
vram
0

(
− ix2

2

)
dx,

w1(σ)=−2
1
2 i

∫ ∞

0

s
1
2 e−2πsσvram

1 (−is)ds =−i

∫ ∞

0

e−πσx2
x2vram

1

(
− ix2

2

)
dx.

(2.86)

Since, in view of (2.82), one has

(f0)even(x e−
iπ
4 ) = vram

0

(
− i x2

2

)
, (f1)odd(x e−

iπ
4 ) =

1 − i

2
x vram

1

(
− i x2

2

)
,

(2.87)
the equations (2.81) will remain valid if, in the first (resp. the second) one, one
substitutes for the function u the function f0 (resp. f1). By an elementary prop-
erty of the Laplace transformation, it follows that the even part of u coincides
with that of f0 and that the odd part of u coincides with that of f1. �

It will be handy in the sequel to have an explicit expression of

πρ,ε(g)v = F−1 π̂ρ,ε(g)F v. (2.88)

Proposition 2.7. Assume that ρ ∈ C, ρ �= 0, and that −1 < Re ρ < 1. Let
g =

(
a b
c d

)
, and let v ∈ C∞

ρ,ε. If b = 0, one has

(πρ,ε(g)v)(s) = |a|−1+ρ
ε e2iπ c

a s v(a−2s). (2.89)

If b �= 0, one has

(πρ,ε(g)v)(s) =
∫ ∞

−∞
e

2iπ
b (ds+at) kρ,ε(b; s, t) v(t) dt, (2.90)

with

kρ,0(b; s, t) = |b|−1

[
4 cos

πρ

2
char(st < 0)

(
−s

t

) ρ
2

Kρ

(
4π

|b|
√
−st

)
(2.91)

+
π

sin πρ
2

char(st > 0) (
s

t
)

ρ
2

(
J−ρ

(
4π

|b|
√

st

)
− Jρ

(
4π

|b|
√

st

))]
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and

kρ,1(b; s, t) = b−1

[
4i sin

πρ

2
char(st < 0) 〈s〉

ρ
2 |t|−

ρ
2 Kρ

(
4π

|b|
√
−st

)
− iπ

cos πρ
2

char(st > 0) 〈s〉
ρ
2 |t|−

ρ
2

(
J−ρ

(
4π

|b|
√

st

)
+ Jρ

(
4π

|b|
√

st

))]
. (2.92)

Proof. In the case when b = 0, the result immediately follows from the equation

(F πρ,ε(g)v)(σ) = |a|1+ρ
ε (F v)

(
a2
(
σ − c

a

))
, (2.93)

itself a consequence of (2.3). Assuming b �= 0, and starting from (2.3) again, we
find

(πρ,ε(g)v)(s) =
∫ ∞

−∞
v(t) dt

∫ ∞

−∞
| − bσ + d|−1−ρ

ε exp 2iπ

(
sσ − t

aσ − c

−bσ + d

)
dσ

= |b|−1−ρ
ε

∫ ∞

−∞
v(t)Aρ,ε(b; s, t) e

2iπ
b (ds+at) dt (2.94)

with

Aρ,ε(b; s, t) =
∫ ∞

−∞
| − σ|−1−ρ

ε e2iπ(sσ+ t
b2σ

) dσ, (2.95)

a semi-convergent integral in view of the assumptions made about Re ρ. We thus
need a lemma:

Lemma 2.8. If st < 0,

Aρ,0(b; s, t) = 4 cos
πρ

2
|b|ρ |s|

ρ
2 |t|−

ρ
2 Kρ

(
4π

|b|
√
−st

)
and

Aρ,1(b; s, t) = 4i sin
πρ

2
|b|ρ 〈s〉

ρ
2 |t|−

ρ
2 Kρ

(
4π

|b|
√
−st

)
. (2.96)

If st > 0,

Aρ,0(b; s, t) =
π

sin πρ
2

|b|ρ |s|
ρ
2 |t|−

ρ
2

(
J−ρ

(
4π

|b|
√

st

)
− Jρ

(
4π

|b|
√

st

))
and

Aρ,1(b; s, t) = − iπ

cos πρ
2

|b|ρ 〈s〉
ρ
2 |t|−

ρ
2

(
J−ρ

(
4π

|b|
√

st

)
+ Jρ

(
4π

|b|
√

st

))
. (2.97)



2. Analytic vectors of representations of SL(2, R) 37

Proof. One must evaluate, for s ∈ R and β ∈ R, the integral

I =
∫ ∞

0

σ−1−ρe2iπ(sσ− β
σ ) dσ : (2.98)

for complex s and β with Im s > 0, Im β < 0, one has [17, p. 85]

I = 2 (−is)
ρ
2 (iβ)−

ρ
2 Kρ(2 (−2iπs)

1
2 (2iπβ)

1
2 ). (2.99)

Following with care the complex determinations, one then finds

I = 2 e−
iπρ
2 s

ρ
2 β− ρ

2 Kρ(4π
√

sβ) if s > 0, β > 0 (2.100)

and (using also [17, p. 66–67])

I = 2 s
ρ
2 |β|−

ρ
2 Kρ(−4iπ

√
−sβ)

=
π

sin πρ
s

ρ
2 |β|−

ρ
2

(
e

iπρ
2 J−ρ(4π

√
−sβ) − e−

iπρ
2 Jρ(4π

√
−sβ)

)
(2.101)

if s > 0, β < 0; the two other cases can be obtained by complex conjugation. �

End of Proof of Proposition 2.7. All that needs being done is plugging the results
of Lemma 2.8 in (2.94). �

The following theorem proves the existence of the anaplectic representation
of the group SL(2, R) in the space A as asserted in Theorem 1.20, at the same
time showing the equivalence between this representation and the direct sum of a
pair of classical irreducible representations.

Theorem 2.9. There is a unique representation Ana of the group SL(2, R) in the
space A satisfying the conditions (i) and (ii) of Theorem 1.20. It is equivalent to
the direct sum of irreducible representations π− 1

2 ,0 ⊕ π 1
2 ,1, restricted to the space

Cω
− 1

2 ,0
⊕ Cω

1
2 ,1

. The intertwining operator is given by the map Θ: (v0, v1) �→ u,
as defined in (2.82), to be completed by the equations ueven = (f0)even, uodd =
(f1)odd.

Proof. The net result of Theorems 1.8 and 2.6, together with Definition 2.2, is
that the operator (v0, v1) �→ (f0, f1) defined in (2.82) is a linear isomorphism
from Cω

− 1
2 ,0

⊕Cω
1
2 ,1

onto the space A, when functions lying in the latter space are

expressed in their C2-realization. Next, we show that this operator Θ intertwines
the representation π− 1

2 ,0⊕π 1
2 ,1 with a representation of SL(2, R) on A satisfying

the properties (i) and (ii) of the statement of Theorem 1.20, hence taken as a
definition of the anaplectic representation. Let us start with the more difficult
one: it follows from Proposition 2.7 that, for s > 0, one has

(π− 1
2 ,0(

(
0 1−1 0

)
) v0)(s) =

∫ ∞

−∞
|s|− 1

2

[
char (t < 0) e−4π

√
s|t| (2.102)

+ char (t > 0) (cos 4π
√

st − sin 4π
√

st)
]

v(t) dt
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and

(π 1
2 ,1(

(
0 1−1 0

)
) v1)(s) = i

∫ ∞

−∞
|t|− 1

2

[
char (t < 0) e−4π

√
s|t| (2.103)

− char (t > 0) (cos 4π
√

st + sin 4π
√

st)
]

v(t) dt.

It is obvious how to extract the ramified parts of the two functions of s just made
explicit: setting s = x2

2 , where we assume that x > 0 as well, and making the
change of variable t = ± y2

2 on each of the two half-lines, one obtains

(π− 1
2 ,0(

(
0 1−1 0

)
)v0)ram

(
x2

2

)
=
∫ ∞

0

y

[
v0

(
y2

2

)
cos2πxy+v0

(
−y2

2

)
cosh2πxy

]
dy

(2.104)
and

2−
1
2 x (π 1

2 ,1(
(

0 1−1 0

)
) v1)ram

(
x2

2

)
= −2

1
2 i

∫ ∞

0

[
v1

(
y2

2

)
sin 2πxy + v1

(
−y2

2

)
sinh 2πxy

]
dy (2.105)

or, using (2.84) and (2.85),

(π− 1
2 ,0(

(
0 1−1 0

)
) v0)ram

(
x2

2

)
= 2

1
2

∫ ∞

0

[f0(y) cos 2πxy + fi,0(y) cosh 2πxy ] dy

(2.106)
and

2−
1
2 x (π 1

2 ,1(
(

0 1−1 0

)
) v1)ram

(
x2

2

)
= −2

1
2 i

∫ ∞

0

[f1(y) sin 2πxy + fi,1(y) sinh 2πxy ] dy. (2.107)

According to (2.82), what remains to be done is checking that the last two functions
of x > 0 just computed agree respectively with the even and odd parts of the
function Fana u: this follows from (1.81).

To check that the transformation (v0, v1) �→ u also intertwines the restric-
tions of the anaplectic representation and of the representation π− 1

2 ,0 ⊕ π 1
2 ,1 to

the subgroup of SL(2, R) consisting of all matrices
(

a b
c d

)
with b = 0 is an easy

matter, in view of the formulas, displayed in Proposition 2.7,(
π− 1

2 ,0

((
a 0
0 a−1

))
v0

)
(s)= |a|− 3

2 v0(a−2s),
(
π 1

2 ,1

((
a 0
0 a−1

))
v1

)
(s)=〈a〉− 1

2 v1(a−2s),(
π− 1

2 ,0 ((1 0
c 1))v0

)
(s)=e2iπcsv0(s),

(
π 1

2 ,1 ((1 0
c 1))v1

)
(s)=e2iπcsv1(s) :

(2.108)
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using (2.82) to extract the even and odd parts of the function corresponding to
the pair (π− 1

2 ,0 (
(

a 0
0 a−1

)
) v0, π 1

2 ,1 (
(

a 0
0 a−1

)
) v1), we only have to check that the

ramified part (in Cω
− 1

2 ,0
) of the function s �→ v0(a−2s) is the function s �→

|a| vram
0 (a−2s) and that the ramified part (in Cω

1
2 ,1

) of the function s �→ v1(a−2s)

is the function s �→ |a|−1 vram
1 (a−2s): this takes care of the first of the two matrices

considered in (2.108), while what concerns the second one is even simpler. �

Remark 2.2. The use of the map u �→ ui has been found to be essential in the
whole development of anaplectic analysis, as it made the consideration of the four-
vector (f0, f1, fi,0, fi,1) possible: then, allowing real translations in the picture
also demands that translations by pure imaginary numbers should be considered
as well. This is why we have been led to the use of entire functions or, equiva-
lently, to the consideration of analytic vectors only of the pair of representations
(π− 1

2 ,0, π 1
2 ,1). Of course, some enlargement (for instance, using C∞ vectors rather

than analytic vectors) would be possible, but then the functions u would cease to
live on the complex plane, only on the union R∪ i R. One should also remark that
complex rotations x �→ λx, |λ| = 1, do not preserve the space A unless λ4 = 1.

For a later use, we compute the image under Θ of the pair (v0
− 1

2 ,0
, 0), where

the first function was defined in (2.22):

v0
− 1

2 ,0(s) =
2 π

1
4

Γ(1
4 )

|s|− 1
4 K 1

4
(2π |s|) =

2
1
2 π

5
4

Γ(1
4 )

|s|− 1
4 (I− 1

4
(2π |s|) − I 1

4
(2π |s|)) :

(2.109)
then, (2.33) yields

(v0
− 1

2 ,0)
ent(s) = −2

1
2 π

5
4

Γ(1
4 )

|s|− 1
4 I 1

4
(2π |s|),

(v0
− 1

2 ,0)
ram(s) =

2
1
2 π

5
4

Γ(1
4 )

|s| 14 I− 1
4
(2π |s|), (2.110)

so that, for x > 0, (2.82) gives

f0(x) =
2

1
4 π

5
4

Γ(1
4 )

x
1
2 (−I 1

4
(π x2) + I− 1

4
(π x2)) (2.111)

and, finally,

Θ
(

v0
− 1

2 ,0

0

)
= (f0)even =

2
1
4 π

3
4

Γ(1
4 )

φ, (2.112)

with φ as introduced in Proposition 1.2.
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We may now complete the proof of Theorem 1.20.

Theorem 2.10. The anaplectic representation of SL(2, R) in A is pseudo-unitary
with respect to the (pseudo-)scalar product introduced in Proposition 1.14, and so
is the Heisenberg representation in the same space. Defining R as in Proposition
1.13, there is a unique extension of the anaplectic representation as a representa-
tion of the group SLi(2, R) such that the condition (iii) of Theorem 1.20 should
be satisfied. The equation (1.91) defining the adjoint action of operators from the
anaplectic representation on those from the Heisenberg representation is valid.

Proof. The representation π− 1
2 ,0 ⊕ π 1

2 ,1 preserves the pseudo-scalar product on
the space Cω

− 1
2 ,0

⊕ Cω
1
2 ,1

defined, if u = ( u0
u1 ) and v = ( v0

v1 ), by the equation

(u|v) = (u0|v0)− 1
2 ,0 + (u1|v1) 1

2 ,1

=
∫ ∞

−∞
[|s|

1
2
0 ū0(s) v0(s) + |s|−

1
2

1 ū1(s) v1(s)] ds. (2.113)

Thus,

(v|v)=
∫ ∞

0

[s
1
2 |v0(s)|2 +s

1
2 |v0(−s)|2 +s−

1
2 |v0(s)|2−s−

1
2 |v0(s)|2]ds

=2
1
2

∫ ∞

0

[
x2

2

∣∣∣∣v0

(
x2

2

)∣∣∣∣2 +
x2

2

∣∣∣∣v0

(
−x2

2

)∣∣∣∣2 +
∣∣∣∣v1

(
x2

2

)∣∣∣∣2− ∣∣∣∣v1

(
−x2

2

)∣∣∣∣2
]

dx.

(2.114)

Using (2.84) and (2.85), one sees that this reduces to

(v|v) = 2
1
2

∫ ∞

0

[|f0(x)|2 + |fi,0(x)|2 + |f1(x)|2 − |fi,1(x)|2] dx, (2.115)

which is just the definition (1.68) of (f |f ), where f is the C4-realization of the
image of v under the intertwining operator Θ.

Next, we verify (1.91) in the case when g ∈ SL(2, R), which can be done
by looking only at the action of generators of this group. The only non-trivial
equations to be proven are

Fana e2iπ ηQ = e−2iπ ηP Fana, Fana e2iπ yP = e2iπ yQ Fana, (2.116)

which can be done in the usual way, starting from Definition 1.17 of the anaplectic
Fourier transformation and using the invariance of the linear form Int under
translations.

To show that the Heisenberg representation is pseudo-unitary reduces, thanks
to (1.91), to the fact that the operators e2iπ ηQ with η ∈ R preserve the scalar
product. Now, this is a consequence of Proposition 1.14 defining the scalar prod-
uct together with the fact (a straightforward if tedious verification) that, with
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(g0, g1, gi,0, gi,1) as defined in (1.60) and (1.61), one has |gi,0|2 − |gi,1|2 = |fi,0|2 −
|fi,1|2.

Some remaining details concerning the operator R must still be checked.
From (2.89), the image, under the representation π− 1

2 ,0 ⊕ π 1
2 ,1, of the matrix −I,

is the operator (v0, v1) �→ (v0, −v1): under the intertwining operator (2.82), it
transfers to the operator (f0, f1) �→ (f0, −f1), which is the expression, in the C2-
realization, of the symmetry operator u �→ ǔ. This shows that R2 = Ana(

(−1 0
0 −1

)
)

and, to complete the proof that Ana extends as a representation of the group
generated by SL(2, R) together with the matrix

(−i 0
0 i

)
, we must still show that

RAna
((

a b
c d

))
R−1 = Ana

((
a −b
−c d

))
(2.117)

for every
(

a b
c d

)
∈ SL(2, R). The case when b = 0 is immediate in view of the

condition (i) taken from the statement of Theorem 1.20 (and used towards the
definition of the anaplectic representation). What remains to be done is checking
the equation

(RFana ǔ)(x) = (Fana Ru)(x). (2.118)

Now, (1.67) gives the C4-realization of Ru in terms of that of u: then, the
expanded version (1.81) of the anaplectic Fourier transformation yields

(Fana Ru)(x) = 2
1
2

∫ ∞

0

fi,0(y) cos 2πxy dy − 2
1
2

∫ ∞

0

fi,1(y) sin 2πxy dy

+ 2
1
2

∫ ∞

0

f0(y) cosh 2πxy dy − 2
1
2

∫ ∞

0

f1(y) sinh 2πxy dy,

(2.119)

and a similar calculation gives the left-hand side of (2.118). Finally, extending
(1.91) to the case when g ∈ SLi(2, R) is immediate, and we have already signalled
that the pseudo-unitarity of the anaplectic representation ceases to hold when
extending it from SL(2, R) to SLi(2, R).

This concludes the proof of Theorem 2.10, accordingly that of Theorem 1.20
as well. �

The infinitesimal version

Ana(g)Q Ana(g−1) = dQ − b P, Ana(g)P Ana(g−1) = −c Q + a P, (2.120)

where g =
(

a b
c d

)
, of the relation (1.91), is of course valid too, and can be proved

(though other ways of doing it are possible) by differentiation of (1.91) along the
generator of a one-parameter subgroup of SL(2, R): going the other way around
(from the infinitesimal relation to its exponentiated version) would of course be
prevented by the lack of unitarity. In particular, one obtains the familiar-looking
relations

Fana QF−1
ana = −P, Fana P F−1

ana = Q. (2.121)
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Starting from the function φ as defined in Proposition 1.2, we now study the
harmonic oscillator L, introduced in (1.84), in the anaplectic setting.

Theorem 2.11. The spectrum of the harmonic oscillator in the space A is Z, and
for every j ∈ Z the eigenspace corresponding to the eigenvalue j is generated by
the function φj , with

φj = A∗j φ if j ≥ 0, φj = A|j| φ if j ≤ 0, (2.122)

where the operators A∗ and A are defined by the usual equations

A∗ = π
1
2

(
x − 1

2π

d

dx

)
, A = π

1
2

(
x +

1
2π

d

dx

)
. (2.123)

The functions φj , j ∈ Z are pairwise orthogonal with respect to the (pseudo)-
scalar product (1.68). The function φ is normalized and one has (φk+1 |φk+1) =
(k + 1

2 ) (φk |φk) and (φ−k |φ−k) = (−1)k (φk |φk) for k ≥ 0.

Proof. One has φ0 = φ, a function in the kernel of L as mentioned in the proof
of Proposition 1.18, and the usual formal argument then shows that L φj = j φj

for every j ∈ Z. With the help of the matrix decomposition, valid for 0 < t < π,

gt : =
(

cost sint
−sint cost

)
=
(

1 0
cotant 1

)(
0 1
−1 0

)(
(sint)−1 0

0 sint

)(
1 0

cotant 1

)
,

(2.124)
one finds, for every u ∈ A, and t ∈]0, π[,

(Ana(gt)u)(x) = eiπ x2cotan t Fana (y �→ (sin t)
1
2 u(y sin t) eiπ y2cotan t)(x) (2.125)

so that

−1
i

d

dt

∣∣∣∣
t= π

2

(Ana(gt)u)(x) =
[
π x2 − 1

4π

d2

dx2

]
(Fana u)(x) (2.126)

or, using the group property,

L = −1
i

d

dt

∣∣∣∣
t=0

Ana
((

cos t sin t
− sin t cos t

))
. (2.127)

If one compares this equation to (2.10) (noting that here, t substitutes for t
2 ) and

one makes use of the equivalence between the representations Ana and π− 1
2 ,0 ⊕

π 1
2 ,1 provided by Theorem 2.9, one sees, from the argument developed between

(2.20) and (2.21), that the operator L has no eigenfunctions besides those already
found: the ones corresponding to even (resp. odd) eigenvalues are the images, under
the appropriate intertwining operator, of eigenvalues of the operator L− 1

2
(resp.

L 1
2
) in the space Cω

− 1
2 ,0

(resp. Cω
1
2 ,1

). In each case, the eigenvalue of the operator
L± 1

2
to consider is half the corresponding eigenvalue of L.



2. Analytic vectors of representations of SL(2, R) 43

That φ is normalized was proved in Proposition 1.18. That the φj ’s are
pairwise orthogonal can most quickly be seen from the fact that the ones with an
even (resp. odd) j arise from eigenfunctions of the operator L− 1

2 ,0 (cf. (2.13)) or
L 1

2 ,1 under the intertwining operator Θ, and the fact that this latter operator lets
the pseudo-scalar products on Cω

− 1
2 ,0

⊕ Cω
1
2 ,1

and on A correspond to each other

(2.115). The computation of (φk |φk), based on the relations A∗A = L − 1
2 and

AA∗ = L + 1
2 , is done in the usual way: that the result is different is of course a

consequence of the shift in the eigenvalues. �

The following pair of technical propositions will be useful towards the end of
Section 6.

Proposition 2.12. Given any complex number ρ such that ρ /∈ Z and Re ρ > −1,
and ε = 0 or 1, each of the two operators

R = 1 − 1
2π

d

ds
and T = 1 +

1
2π

d

ds
(2.128)

operates from C∞
ρ,ε to C∞

ρ−1,1−ε and from Cω
ρ,ε to Cω

ρ−1,1−ε. Each of the two op-
erators

R†
ρ =

1
2π

(
s

d

ds
+ 2πs − ρ

)
and T †

ρ =
1
2π

(
−s

d

ds
+ 2πs + ρ

)
(2.129)

acts from C∞
ρ,ε to C∞

ρ+1,1−ε and from Cω
ρ,ε to Cω

ρ+1,1−ε. If ρ is real and −1 < ρ <
0, one has

(v1 |R v2)ρ,1−ε = (R†
ρv1 | v2)ρ+1,ε (2.130)

and
(v1 |T v2)ρ,1−ε = (T †

ρv1 | v2)ρ+1,ε (2.131)

whenever v1 ∈ C∞
ρ,1−ε and v2 ∈ C∞

ρ+1,ε.

Proof. With some restrictions on Re ρ, one could use Proposition 2.1 for the first
part, only noting that

|s|ρε = |s|ρ−1
1−ε s,

d

ds
|s|ρε = ρ |s|ρ−1

1−ε ,(
s

d

ds
− ρ

)
|s|ρε = 0. (2.132)

However, for general values of ρ, one must go back to the definition (2.17) of
the space Ĉ∞

ρ,ε and, with R̂ = F RF−1, T̂ = F T F−1, R̂†
ρ = F R†

ρ F−1, T̂ †
ρ =

F T †
ρ F−1, one must compute

R̂ = 1 − iσ, T̂ = 1 + iσ, (2.133)

R̂†
ρ = − 1

2π

(
σ

d

dσ
− i

d

dσ
+ ρ + 1

)
, T̂ †

ρ =
1
2π

(
σ

d

dσ
+ i

d

dσ
+ ρ + 1

)
.
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Obviously, the four operators just made explicit preserve the space of C∞ (or
analytic) functions on the real line; also (going back to (2.17)), one may check the
identities

|σ|−ρ
1−ε (R̂w)

(
− 1

σ

)
= i R̂

(
|σ|−1−ρ

ε w

(
− 1

σ

))
,

|σ|−2−ρ
1−ε (R̂†

ρw)
(
− 1

σ

)
= −i R̂†

ρ

(
|σ|−1−ρ

ε w

(
− 1

σ

))
, (2.134)

and the same goes with the pair (T̂ , T̂ †
ρ ).

The second part of Proposition 2.12 is obtained from (2.30), with the help of
an integration by parts, also using (2.132) again. �

The importance of the four operators discussed (or their images under the
commutation by the Fourier transformation) stems in particular from the following
formulas, connecting the eigenfunctions of various operators Lρ,ε as introduced in
(2.20) and (2.21).

Proposition 2.13. One has

R vk
ρ,0 = vk

ρ−1,1, R vk
ρ,1 = vk+1

ρ−1,0,

T vk
ρ,0 = vk−1

ρ−1,1, T vk
ρ,1 = vk

ρ−1,0 (2.135)

and

R†
ρ vk

ρ,0 = − 1
2π

(ρ − 2k + 1) vk−1
ρ+1,1, R†

ρ vk
ρ,1 = − 1

2π
(ρ − 2k) vk

ρ+1,0,

T †
ρ vk

ρ,0 =
1
2π

(ρ + 2k + 1) vk
ρ+1,1, T †

ρ vk
ρ,1 =

1
2π

(ρ + 2k + 2) vk+1
ρ+1,0. (2.136)

Finally, one has the identities

T †
ρ−1 R = R T †

ρ , R†
ρ−1 T = T R†

ρ. (2.137)

Proof. Using (2.21), one is reduced, in order to prove (2.136), to a corresponding
set of equations in which all operators should be replaced by their hat-covered
versions, and the v’s by the corresponding w’s: since the latter ones were made
explicit in (2.20), the verification is straightforward, and so is that of the last pair
of equations. �



Chapter 2

The n-dimensional
Anaplectic Analysis

A definition of the space A which generalizes to the n-dimensional setting is
obtained with the help of Theorem 1.8. There, the fact that an entire function u
lies in A is expressed in terms of the behavior of its pair (w0, w1) of quadratic
transforms, and of the analytic continuation thereof. Something similar will be
taken as a definition of the space A(n) in Section 4, but it is essential to realize that
this is far from a straightforward generalization. Indeed, starting with functions
on Rn, one ends up, under the quadratic transformation, with pairs of functions
(the second one vector-valued) on some space Symn of dimension n(n+1)

2 : thus,
except in the one-dimensional case, the quadratic transformation can only identify
the space of functions on Rn under consideration with a very small space (cf.
Remark 5.2) of functions on Symn. Also, the (non-unitary) representation theory
of the symplectic group is not as helpful in the n-dimensional case as in the one-
dimensional one.

The first section of this chapter is the easy one. We introduce the function
Φ which is the rotation-invariant function in the null space of the n-dimensional
harmonic oscillator. In just the same way that, in the usual analysis, all Hermite
functions can be obtained by applying differential operators with polynomial coef-
ficients to the rotation-invariant Gaussian function, we here obtain the “anaplectic
Hermite functions”. There is, however, a major novelty (and difficulty) in the fact
that the null space of the harmonic oscillator is now infinite-dimensional, whereas
its classical counterpart is generated by a single ground state.

Serious work starts in Section 4. Representing functions on Rn by their
quadratic transforms, which live on Symn, we are faced with the problem of letting
fractional-linear transformations associated with symplectic matrices act on this
space. As will be recalled in Section 6, there is a well-defined non-singular action of
the symplectic group by holomorphic transformations of the Siegel domain which
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is the complex tube Symn + i R
n(n+1)

2 , and this action can be used to provide a
definition of the metaplectic representation. Here, the action is more troublesome
since it is quite singular. We must then first add to the space Symn its “points at
infinity”, i.e., compactify it by means of a Cayley transform, next move to some
finite cover of the result. This leads to the correct definition of the space A(n): it
is, however, not trivial to prove (Theorem 4.18) that the function Φ lies in that
space.

Section 5 is concerned with the definition and study of the anaplectic rep-
resentation. Section 6 points to both resemblances and differences between the
metaplectic and anaplectic representations. A Hecke style theorem exists in con-
nection with the spherical decomposition of the anaplectic Fourier transformation.
On the other hand, far from being invariant by the anaplectic action of the max-
imal compact subgroup of the symplectic group, the “median state” Φ of the
harmonic oscillator transforms in a complicated way: we make some calculations
explicit in the two-dimensional case.

There is no question that the anaplectic representation is a more complicated
object than the metaplectic representation. This can be seen from the fact that, in
the usual analysis, there is a class of very simple functions, namely the Gaussian
functions, that is stable under all metaplectic transformations. Nothing of the
sort exists in the anaplectic analysis. Nevertheless, the anaplectic analysis has a
coherence of its own, which will show again, in a striking way as we hope, in
Section 10, devoted for the most part to the one-dimensional anaplectic Weyl
calculus (which also makes use of the space A(2)): some of this coherence subsists
in the higher-dimensional case.

3 The anaplectic harmonic oscillator in dimension ≥ 2

First, we need to generalize Proposition 2.3 by the consideration of integral values
of the parameter ρ: we also need to consider the case when ρ is half an integer
≥ 1

2 , but this case has already been taken care of by Proposition 2.3. There is no
change in the definition of the space Ĉω

ρ,ε of analytic functions w on the real line
which satisfy the property that the function

σ �→ |σ|−1−ρ
ε w

(
− 1

σ

)
is analytic near 0 (3.1)

as well. We are really interested only in the pairs (ρ, 0) with ρ = 0, 1, . . . and
(ρ, 1) with ρ = 1, 2, . . . . The result depends on the parity of ρ + ε.

Proposition 3.1. Let the pair (ρ, ε) with ρ = 0, 1, . . . and ε = 0 or 1 be given.
In the case when ρ + ε is even, the image of the space Ĉω

ρ,ε under the inverse
Fourier transformation F−1 is the space Cω

ρ,ε of functions v on R\{0} with the
following properties:
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(i) there exist two entire functions vent and vram (corresponding to the entire
part and the ramified part of v) such that

v(s) = vent(s) + sρ (log (2π|s|) vram(s), s ∈ R ; (3.2)

(ii) there exists R > 0 and C > 0 such that

|vent(s)| + |vram(s)| ≤ C e4πR|s|, s ∈ C ; (3.3)

(iii) there exist δ > 0 and C > 0 such that

|v(s)| ≤ C e−2πδ|s|, s real, |s| > 1. (3.4)

In the case when ρ + ε is odd, the condition (i) must be replaced by the
condition

(i)′ there exist two entire functions vent and vram such that

v(s) = vent(s) + |s|ρε vram(s), s ∈ R (3.5)

(so that there is in the case when ρ + ε is odd no change from the statement
of Proposition 2.3, originally valid only for Re ρ > −1, ρ not an integer).

Proof. Before we give it, let us note that a modification, or suppression, of the
factor 2π within the logarithm would not change the ramified part of u (it is the
one we are mostly interested in), only its entire part. There are few changes to be
made in order to prove Proposition 3.1, along the lines of that of Proposition 2.3.
In the proof of the direct part (properties of v = F−1 w under the assumption
that w ∈ Ĉω

ρ,ε), we may still, without loss of generality, consider only the case
when ε = 0, and the only change occurs in Lemma 2.4. Indeed, we must now set

B∞
0 (s) = Pf

∫ ∞

0

e2iπsσ σ−1−ρ dσ

= lim δ→0

[
(2iπs)ρ

ρ !
log δ +

ρ−1∑
k=0

(2iπs)k

k ! (k − ρ)
δk−ρ +

∫ ∞

δ

e2iπsσ σ−1−ρ dσ

]
(3.6)

where the symbol Pf stands for “finite part”. From [10, p. 335],

∫ ∞

δ

e2iπsσ σ−1−ρ dσ =
(2iπs)ρ

ρ !

[
Γ(0,−2iπδs)− e2iπδs

ρ−1∑
m=0

(−1)m m !
(−2iπδs)m+1

]
(3.7)

with
Γ(0,−2iπδs) = −γ − log (2π|s|) − log δ +

iπ

2
sign s + o(δ) (3.8)
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so that, up to some error term which goes to 0 as δ → 0, one has∫ ∞

δ

e2iπsσ σ−1−ρ dσ ∼ (2iπs)ρ

ρ !

(
1 +

1
2

+ · · · + 1
ρ

)
− (2iπs)ρ

ρ !

(
γ + log (2π|s|) + log δ − iπ

2
sign s

)
+

δ−ρ

ρ !

ρ−1∑
m=0

m∑
j=0

m !
j !

δj−m−1 (2iπs)j−m−1+ρ : (3.9)

setting k = j − m − 1 − ρ, one can write the last sum as

1
ρ !

ρ−1∑
k=0

(2iπs)k δk−ρ

ρ−1∑
m=ρ−k−1

m !
[m − (ρ − k − 1)] !

=
ρ−1∑
k=0

(2iπs)k δk−ρ ρ !
(ρ − k) k !

.

(3.10)

This finally yields

B∞
0 (s) =

(2iπs)ρ

ρ !

(
1 +

1
2

+ · · · + 1
ρ
− γ − log (2π|s|) +

iπ

2
sign s

)
. (3.11)

Since, if ρ is even,

1
2

(B∞
0 (s) + B∞

0 (−s)) =
(2iπs)ρ

ρ !

(
1 +

1
2

+ · · · + 1
ρ
− γ − log (2π|s|)

)
(3.12)

whereas, if ρ is odd,

1
2

(B∞
0 (s) + B∞

0 (−s)) =
iπ

2
(2iπ|s|)ρ

ρ !
, (3.13)

a look at the part of the proof of Proposition 2.3 that immediately follows the
proof of Lemma 2.4 yields the desired result.

The following special cases are illuminative: set, as in Section 2, w0,0(σ) =
(1 + σ2)−

1
2 and w1,0(σ) = (1 + σ2)−1 so that w0,0 ∈ Ĉω

0,0 and w1,0 ∈ Ĉω
1,0. Then

1
2

(F−1 w0,0)(s) = K0(2π|s|)

= −γ I0(2π|s|) + 2
∑
n≥1

1
n

I2n(2π|s|) − log (π|s|) I0(2π|s|) (3.14)

and
(F−1 w1,0)(s) = π e−2π|s| : (3.15)

the condition (i) or (i)′ is indeed satisfied; also, (F−1 w0,0)ram(s) = −2 I0(2π|s|)
and (F−1 w1,0)ram(s) = π e−2πs.
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In the reverse direction, the proof of Proposition 2.3 adapts without modifi-
cation in the case when ρ + ε is odd, so we assume that it is even. Again, we may
assume that v, or w = F v, has the parity associated with η = 0 or 1: then, vent

(resp. vram) still has the parity associated with η (resp. ε+η). Following the part
of the proof of Proposition 2.3 that starts at (2.62), the first modification occurs
at (2.69), which must be replaced by

(−1)ηṽ(s e
iπ
2 ) − ṽ(s e−

iπ
2 )

= (−1)η sρ vram(s)
[
e

iπρ
2

(
log (2πs) +

iπ

2

)
− (−1)ε e−

iπρ
2

(
log (2πs) +

iπ

2

)]
:

(3.16)

since ρ + ε is even, the bracket on the right-hand side reduces if ε = 0 to
−iπ cos πρ

2 , and if ε = 1 to −iπ sin πρ
2 . Thus, in all cases,

w(σ) = −π
(
cos

πρ

2
+ sin

πρ

2

) ∫ ∞

0

sρ e−2πsσ vram(−is) ds, (3.17)

which leads after the same changes of contour as in Section 4 to the equation, valid
for large σ,

w̃(σ eiπ) = (−1)η+1 w(σ), (3.18)

in our present case just the same as (2.66). �

Next, we note that Proposition 2.7, devoted to the explicit calculation of the
transformations πρ,ε(g), g ∈ SL(2, R), still applies without modification in the
case when ρ is half an integer. Assuming thus that ρ = 0, 1, . . . , one notes that
there is no change from (2.89) in the case when g =

(
a b
c d

)
with b = 0. On the

contrary, the integral kernel kρ,ε(b; s, t) that occurs in (2.90) is now given by the
equations

kρ,0 =
2 (−1)

ρ
2

|b| |s
t
|

ρ
2

×
[
2 Kρ

(
4π

|b|
√
−st

)
char (st < 0) − π Yρ

(
4π

|b|
√

st

)
char (st > 0)

]
,

kρ,1 =
2iπ

b
(−1)

ρ+2
2 〈s〉

ρ
2 |t|−

ρ
2 Jρ

(
4π

|b|
√

st

)
char (st > 0) (3.19)

if ρ is even, and

kρ,0 =
2π

|b| (−1)
ρ+1
2

(s

t

) ρ
2

Jρ

(
4π

|b|
√

st

)
char (st > 0),

kρ,1 =
2i (−1)

ρ−1
2

b

(
〈s〉
|t|

) ρ
2

(3.20)

×
[
2 Kρ

(
4π

|b|
√
−st

)
char (st < 0) − π Yρ

(
4π

|b|
√

st

)
char (st > 0)

]
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if ρ is odd: here Yρ denotes, in the usual way [17, p. 66], the second solution of
Bessel’s differential equation, the use of which cannot be avoided in the case when
ρ is an integer so that Jρ and J−ρ are proportional. To prove the equations that
precede, the easiest way is to take the limit as ρ tends to some integer of the
integral kernels as made explicit in Proposition 2.7.

We now proceed towards a description of the eigenfunctions of the anaplectic
harmonic oscillator

L(n) = π |x|2 − 1
4π

n∑
j=1

∂2

∂x2
j

, (3.21)

which is formally the same as the usual harmonic oscillator in dimension n: how-
ever, just as in the one-dimensional case, we are interested in its eigenfunctions
of a quite different nature. Recall that the eigenfunctions of the usual harmonic
oscillator are the so-called Hermite functions: suffice it to say that the linear space
they generate coincides with the set of products of the function x �→ exp(−π |x|2)
by arbitrary polynomials in the variables xj . We first generalize and analyze this
notion.

Definition 3.2. Define on Rn the analytic function

Φ(x) = |x|
2−n

2 In−2
4

(π |x|2). (3.22)

The anaplectic Hermite functions are the images of Φ under arbitrary differential
operators in the algebra C[x, ∂

∂x ] generated by the operators of multiplication by
xj and the operators ∂

∂xj
, 1 ≤ j ≤ n.

In Section 2, we described the anaplectic Hermite functions in the one-
dimensional case, and we shall tacitly assume that n ≥ 2 in what follows. In
the n-dimensional case, the anaplectic Hermite functions are not quite as easy to
visualize as the usual Hermite functions: for, on one hand, they are not the prod-
ucts of some fixed function by polynomials; on the other hand, the tensor product
of n eigenfunctions of the one-dimensional anaplectic harmonic oscillator is not
an n-dimensional anaplectic Hermite function. For a good understanding of the
anaplectic Hermite functions, we need to reduce the operator L(n) by means of
the action of the group O(n), which commutes with it. Recall that, if one identifies
Rn\{0} with the product (0,∞)× Sn−1 by the use of “polar coordinates” (r, ξ),
one can write the usual Laplacian

∑ ∂2

∂x2
j

as

∆ =
∂2

∂r2
+

n − 1
r

∂

∂r
+

1
r2

∆Sn−1 , (3.23)

where ∆Sn−1 is the Laplace–Beltrami operator on the unit sphere of Rn. The
spectral decomposition of L2(Sn−1) calls for the very classical use of spherical
harmonics: let us recall (cf. for instance [27, p.324]) that, given � = 0, 1, . . . a
spherical harmonic of degree � is the restriction to the sphere of any harmonic
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polynomial homogeneous of degree �. Denote as Pol(n, �) the space of all poly-
nomials on Rn homogeneous of degree �, and denote as Harm(n, �) its subspace
consisting of harmonic polynomials: one has the direct space decomposition

Pol(n, �) = ⊕[ 	
2 ]

p=0 |x|2p Harm(n, � − 2p), (3.24)

where |x|2p stands for the operator of multiplication by that function. From the
equation (3.23), it follows that if Y� ∈ Harm(n, �), its restriction Y � to the unit
sphere is an eigenfunction of ∆Sn−1 for the eigenvalue −�(� + n − 2): also, all
eigenfunctions can be obtained in this way. A function u on Rn\{0} written in
polar coordinates as

u(r, ξ) = f(r)Y �(ξ), (3.25)

where Y � is a spherical harmonic of degree �, satisfies in Rn\{0} the equation
L(n)u = κ u for some κ ∈ R if and only if the function f satisfies the differential
equation

f ′′(r) +
n − 1

r
f ′(r) −

[
�(� + n − 2)

r2
+ 4π2 r2 − 4πκ

]
f(r) = 0. (3.26)

Any function u ∈ C∞(Rn\{0}) which is a simultaneous eigenfunction of the
pair (L(n), ∆Sn−1) (this makes sense since the use of polar coordinates makes it
possible to consider that ∆Sn−1 acts on functions defined on Rn\{0}) for the
pair of eigenvalues (κ, −�(� + n − 2)), with � = 0, 1, . . . , is a function of the kind
(3.25). Indeed, for a given �, let (Y �,m)1≤m≤d	

be an orthonormal basis of the
space of spherical harmonics of degree � and, for r > 0 and ξ ∈ Sn−1, write
u(rξ) =

∑
m fm(r)Y �,m(ξ) with

fm(r) =
∫

Sn−1
u(rη)Y

�,m
(η) dσ(η). (3.27)

Computing the left-hand side of (3.26) with f replaced by fm and using (3.23)
together with the equation ∆Sn−1 Y �,m = −�(� + n − 2)Y �,m, one finds, as a
consequence of the equations L(n) u = κ u and ∆Sn−1 u = −�(� + n − 2)u, that
fm satisfies the equation (3.26). Now, this equation is of Fuchs type, and the roots
of its indicial equation are � and 2 − n − �: when n ≥ 2, only the root � is non-
negative for � ≥ 0. Solving the equation by means of indeterminate coefficients,
one finds the following:

Lemma 3.3. Let κ ∈ Z and let � = 0, 1, . . . . The linear space Eκ,� of analytic
functions u on Rn which are joint eigenfunctions of the pair (L(n), ∆Sn−1) for the
pair of eigenvalues (κ, −�(�+n−2)) consists of the functions u(r, ξ) = f(r)Y �(ξ),
in which Y � is an arbitrary spherical harmonic of degree � and f is a solution
of (3.26) of the form f(r) = r� h( r2

2 ), where h is analytic in a neighborhood of
[0,∞[. Given �, the space of such functions f is one-dimensional.
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The anaplectic Hermite functions introduced in Definition 3.2 can be char-
acterized as follows.

Theorem 3.4. The linear space of anaplectic Hermite functions is generated by the
union of the spaces Eκ,� with κ ∈ Z, � = 0, 1, . . . , and κ + � even.

Remarks 3.1. (i) An anaplectic Hermite function may coincide with an ordinary
Hermite function, but only under the assumption that n ≡ 0 mod 4: in this
case, for every � = 0, 1, . . . and j = 0, 1, . . . , the functions in the space Eκ,�

are Hermite functions in both the ordinary and the anaplectic sense whenever
κ = n

2 + � + 2j. Since every ordinary Hermite function can be obtained from the
ground state of the usual harmonic oscillator by the application of some operator in
the algebra C[x, ∂

∂x ], it follows that, in the case when the dimension is divisible by
4, all usual Hermite functions are also anaplectic Hermite functions. For instance,
if n = 4, an application of (3.45) below shows that (

∑
A∗

j
2)Φ = −2

3
2 e−π|x|2

and
∑

A2
j Φ = −2

3
2 eπ|x|2 : these two anaplectic Hermite functions correspond

respectively to κ = 2 and −2, and the first one is also, of course, an ordinary
Hermite function.
(ii) Theorem 3.4 is also valid in the one-dimensional case. Note that, in this case,
the notion of spherical harmonic still makes sense as the restriction of a harmonic
polynomial: the condition that κ + � should be even excludes, as it should, the
function φ� introduced at the end of Section 1 and, more generally, all functions
in the space A�. The function φ� will reappear at the end of Section 10.

In order to prove Theorem 3.4, we first substitute for the operators xj ,
∂

∂xj

the operators

A∗
j = π

1
2

(
xj −

1
2π

∂

∂xj

)
, Aj = π

1
2

(
xj +

1
2π

∂

∂xj

)
, (3.28)

which generate the same algebra.
Next, if u(r, ξ) = f(r)Y �(ξ), where Y � is a spherical harmonic of degree �,

if Y� is the homogeneous extension of Y � to Rn of degree �, which is a harmonic
polynomial, and if f(r) = r� h( r2

2 ), one has, reverting to the coordinates xj ,

u(x) = h

(
|x|2
2

)
Y�(x) : (3.29)

also, the equation (3.26) can be rewritten, in terms of h, as[
s

d2

ds2
+ (� +

n

2
)

d

ds
− 4π2 s + 2πκ

]
h(s) = 0 : (3.30)

let us denote the differential operator on the left-hand side as Mn,κ,�.
The proof of Theorem 3.4 requires several lemmas which will also be useful

later (Section 8), which explains why these are stated in a more precise way than
what would really be needed for our present purpose. In the first one, we link
solutions of the equation (3.30) relative to the pair (κ, �) or to the pair (κ±1, �+1).
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Lemma 3.5. Given an analytic function h on the real line, and � ≥ 0, set

(∂h)(s) = π
1
2

(
h(s) +

1
2π

h′(s)
)

,

(δ� h)(s) = π
1
2

[
s

(
h(s) +

1
2π

h′(s)
)

+
n
2 + � − 1

2π
h(s)

]
,

(∂�h)(s) = π
1
2

(
h(s) − 1

2π
h′(s)

)
,

(δ�
� h)(s) = π

1
2

[
s

(
h(s) − 1

2π
h′(s)

)
−

n
2 + � − 1

2π
h(s)

]
. (3.31)

If the equation Mn,κ,� h = 0 is satisfied, then both equations Mn,κ+1,�+1 ∂�h = 0
and Mn,κ−1,�+1 ∂h = 0 are; in the other direction, if any of these two latter
equations is satisfied and if, moreover, the equation Mn,κ,� h = 0 is satisfied at
the origin, it is satisfied at every point of [0,∞[. If the equation Mn,κ,� h = 0 is
satisfied, both equations Mn,κ+1,�−1 δ�

� h = 0 and Mn,κ−1,�−1 δ� h = 0 are.

Proof. A straightforward computation yields the equations(
d

ds
+ 2π

)
Mn,κ,� = Mn,κ−1,�+1

(
d

ds
+ 2π

)
,(

d

ds
− 2π

)
Mn,κ,� = Mn,κ+1,�+1

(
d

ds
− 2π

)
, (3.32)

as well as the equations(
s

d

ds
− 2πs +

n

2
+ � − 1

)
Mn,κ,� = Mn,κ+1,�−1

(
s

d

ds
− 2πs +

n

2
+ � − 1

)
,(

s
d

ds
+ 2πs +

n

2
+ � − 1

)
Mn,κ,� = Mn,κ−1,�−1

(
s

d

ds
+ 2πs +

n

2
+ � − 1

)
.

(3.33)

The lemma immediately follows. �
Lemma 3.6. Given Y� ∈ Harm(n, �) with � ≥ 0, and α ∈ Cn, set

S−
α Y� =

(n

2
+ � − 1

)−1

〈α, ∇Y� 〉,

S+
α Y� = 〈α, x〉 Y� − |x|2

2
S−

α Y�, (3.34)

where 〈α, ∇Y� 〉 =
∑

j αj
∂Y	

∂xj
, and the function S−

α Y� is to be interpreted as
zero in the case when � = 0, even if n = 2. Then,

S−
α Y� ∈ Harm(n, � − 1), S+

α Y� ∈ Harm(n, � + 1). (3.35)
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Proof. Since ∆Y� = 0, one has

∆ (S+
α Y�) = 2 〈α, ∇Y� 〉 − n S−

α Y� − 2 〈x, ∇ (S−
α Y�) 〉, (3.36)

which reduces to zero as a consequence of Euler’s identity relative to the function
S−

α Y�. �

It will be convenient to denote as h� Y� the function on the right-hand side
of (3.29):

(h � Y�)(x) = h

(
|x|2
2

)
Y�(x). (3.37)

Lemma 3.7. Given α ∈ Cn, set Aα =
∑

j αj Aj , A�
α =

∑
j αj A∗

j . Then, for any
function u ∈ Eκ,�, one has

Aα u ∈ Eκ−1,�−1 ⊕ Eκ−1,�+1, A�
α u ∈ Eκ+1,�−1 ⊕ Eκ+1,�+1 : (3.38)

more precisely, in the case when u = h � Y�, the decompositions just quoted can
be made explicit as

Aα u = T−
α u + T +

α u, A�
α u = T �

α

−
u + T �

α

+
u, (3.39)

with

T−
α (h � Y�) = (δ� h) � S−

α Y�, T+
α (h � Y�) = (∂h) � S+

α Y�,

T �
α

−
(h � Y�) = (δ�

� h) � S−
α Y�, T �

α

+
(h � Y�) = (∂�h) � S+

α Y�. (3.40)

Proof. Since [L(n), Aα] = −Aα and [L(n), A�
α] = A�

α, one has

Aα (h � Y�) ∈ Ker (L(n) − κ + 1) and A�
α (h � Y�) ∈ Ker (L(n) − κ − 1).

(3.41)
Writing for short

Z�−1 = S−
α Y�, Z�+1 = S+

α Y�, (3.42)

so that

〈α, x〉 Y� =
|x|2
2

Z�−1 + Z�+1, (3.43)

one has

Aα (h � Y�) = π
1
2

[
〈α, x〉 +

1
2π

〈
α,

∂

∂x

〉](
h

(
|x|2
2

)
Y�

)
= π

1
2 h

(
|x|2
2

)
〈α, x〉 Y� +

1
2π

1
2

[
〈α, x〉h′

(
|x|2
2

)
Y� + h

(
|x|2
2

)
〈α, ∇Y�

]
=
[
π

1
2 h

(
|x|2
2

)
+

1
2π

1
2

h′
(
|x|2
2

)]
×
(
|x|2
2

Z�−1 + Z�+1

)
+

1
2π

1
2

(n

2
+ � − 1

)
h

(
|x|2
2

)
Z�+1, (3.44)
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which leads to the expression (3.39) of Aα (h � Y�), once the notation of the
present lemma and that of Lemma 3.5 have been sorted-out. The same goes for
the function A�

α (h � Y�).
That T +

α (h � Y�) lies in Eκ−1,�+1 and the three analogous statements is
a consequence of Lemma 3.5. �

Proof of Theorem 3.4. First, the function Φ itself lies in E0,0, i.e., is invariant
under rotations and an eigenfunction of L(n) for the eigenvalue 0: this follows
most easily from its definition (3.22) together with the differential equation (3.30).
Then, that all anaplectic Hermite functions lie in the space linearly generated by
all spaces Eκ,� with κ + � even follows from (3.38).

In the reverse direction, we use induction with respect to �. First, we show
that every function in some space Eκ,0 with κ even is an anaplectic Hermite
function. The operator

∑
A∗

j
2 (resp.

∑
A2

j ) commutes with rotations and sends
the space Eκ,0 into Eκ+2,0 (resp. Eκ−2,0), and all spaces under consideration are
one-dimensional: we only need to show that if u(x) = h( |x|

2

2 ) is analytic, non-
zero and satisfies the equation L(n)u = κ u for some κ = 0, 2, . . . , it cannot be
annihilated, say, by the operator∑

A∗
j
2 = π |x|2 +

1
4π

∆ −
∑

xj
∂

∂xj
− n

2
. (3.45)

In terms of the function h = h(s) such that u(x) = h( |x|
2

2 ), the pair of operators∑
A∗

j
2 and L(n) − κ can be written as

∑
A∗

j
2 =

1
2π

[
s

d2

ds2
+
(n

2
− 4πs

) d

ds
+ 4π2s − πn

]
,

L(n) − κ = − 1
2π

[
s

d2

ds2
+

n

2
d

ds
− 4π2s + 2πκ

]
: (3.46)

using the pair of differential equations
∑

A∗
j
2 u = 0, (L(n)−κ)u = 0 in the same

way as the one we would use to compute the resultant of two polynomials, lowering
the order of one equation at each step, we find that a non-zero solution can exist
only if 2κ = n − 4 and h(s) = C s

2−n
2 e2πs, or 2κ = −n and h(s) = e2πs: the

second case can be discarded since we are only interested in the case when κ ≥ 0,
and the first one, when not reducing to the second one (when n = 2) can be
discarded because h would be non-analytic near 0. When κ = 0,−2, . . . , it works
in the same way, only replacing the operator

∑
A∗

j
2 by

∑
A2

j .
We are now in a position to start the induction with respect to �. Let v ∈

Eκ′,�+1 for some � = 0, 1, . . . with � + 1 + κ′ even. If κ′ ≥ 0, we set κ′ =
κ + 1 and will show that v is a linear combination v =

∑
A∗

j wj , each wj lying
in the space Eκ,�: similarly, if κ′ < 0, we would set κ′ = κ − 1 and use the
operators Aj instead of the A∗

j ’s ; let us consider the first case only. By Lemma
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3.3, one has v(x) = g( |x|
2

2 )X �+1(x) for some polynomial X �+1 ∈ Harm(n, � + 1).
Define h as the solution of the differential equation π

1
2 (h − 1

2π h′) = g, i.e.,
∂� h = g, such that (Mn,κ,� h)(0) = 0, i.e., (� + n

2 )h′(0) + 2πκ h(0) = 0: this is
indeed possible for some appropriate choice of the constant of integration since
2π (� + n

2 + κ) �= 0 (as � ≥ 0, κ ≥ −1 and � + κ is even). Since g is a solution
of the equation Mn,κ+1,�+1 g = 0, it follows from Lemma 3.5 that h satisfies the
equation Mn,κ,� h = 0.

For every j = 1, . . . , n, apply Lemma 3.6 to the harmonic polynomial ∂ X 	+1

∂xj
,

of degree �. Denoting as (j) the jth vector of the canonical basis of Rn, one has
(since X �+1 is harmonic)

∑
j

S−
(j)

∂ X �+1

∂xj
=
(n

2
+ � − 1

)−1 ∑
j

∂

∂xj

(
∂ X �+1

∂xj

)
= 0 (3.47)

so that ∑
j

S+
(j)

∂ X �+1

∂xj
=
∑

j

xj
∂ X �+1

∂xj
= (� + 1)X �+1 : (3.48)

consequently, Lemma 3.7 implies that∑
j

A∗
j (h � ∂ X �+1

∂xj
) = (∂� h) �

∑
j

S+
(j)

∂ X �+1

∂xj

= (� + 1) g � X �+1 = (� + 1) v : (3.49)

this concludes the proof since, for every j, the function h � ∂ X 	+1

∂xj
lies in Eκ,�. �

We now connect the radial part of an anaplectic Hermite function, also a
joint eigenfunction of the pair (L(n), ∆Sn−1) of the kind introduced in Lemma
3.3, to the spaces of analytic vectors of the representations πρ,ε.

Theorem 3.8. Assume n ≥ 2, and let � = 0, 1, . . . . If Y� is a harmonic polynomial
homogeneous of degree � and u(x) = h( |x|

2

2 )Y�(x) is a joint eigenfunction of the
pair (L(n), ∆Sn−1) for the pair of eigenvalues (κ, −�(�+n−2)) with κ+� an even
integer, so that u is an anaplectic Hermite function according to Theorem 3.4, the
function h is the ramified part of some function in the space Cω

n−2
2 +�, � mod2

.

Proof. Whatever the value of (ρ, ε), one may define, as in (2.20),

wk
ρ,ε(σ) = (1 + σ2)−

ρ+1+ε
2 −k (1 − iσ)2k+ε (3.50)

and the function vk
ρ,ε = F−1 wk

ρ,ε, which lies in Cω
ρ,ε. Set ρ = n−2

2 + �, and
hk

ρ,ε = (vk
ρ,ε)

ram. It suffices to prove, for every k ∈ Z, the equations

Mn,2k,� hk
ρ,0 = 0 and Mn,2k+1,� hk

ρ,1 = 0 (3.51)
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since, up to the multiplication by some constant, each of these two equations has
only one solution analytic near zero. It is immediate that the function w = wk

ρ,ε

satisfies the differential equation[
(1 + σ2)

d

dσ
+ (ρ + 1)σ + 2k + ε

]
w = 0, (3.52)

so that its inverse Fourier transform v = vk
ρ,ε satisfies the equation[

s
d2

ds2
+ (1 − ρ)

d

ds
− 4π2s + 2π (2k + ε)

]
v = 0. (3.53)

According to Proposition 2.3 and Proposition 3.1, in the case when ρ + ε /∈ 2Z,
the function s �→ |s|ρε h(s) must satisfy the same equation; in the case when
ρ + ε ∈ 2Z, it is the part involving the factor log |s| of the image of the function
s �→ sρ (log |s|)h(s) under the same differential operator that must vanish. In both
cases, we find the equation[

s
d2

ds2
+ (1 + ρ)

d

ds
− 4π2s + 2π (2k + ε)

]
h = 0, (3.54)

which is exactly the sought-after equation. �
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4 Analysis on the space of Lagrangian
subspaces of R2n

The first thing to do, so as to generalize the anaplectic analysis to the n-dim-
ensional setting, is to define an appropriate space A(n), generalizing the space
A of analytic functions introduced, in dimension 1, in Definition 1.1; also, we
need to define the proper notion of anaplectic integral, generalizing the linear
form Int defined in Proposition 1.16. Though the space A has, according to
Section 1, several possible definitions, the proper definition of the n-dimensional
generalization A(n) must be based on Theorem 1.8.

Most of the difficulties of the n-dimensional case are linked to the analysis of
fractional-linear transformations on the space of symmetric matrices. We denote
as Γn the cone of positive-definite matrices in the linear space Symn of all real
symmetric matrices of size n × n, a subspace of the space SymC

n, consisting of
symmetric matrices with complex entries. If σ ∈ Symn, we shall also write σ � 0
to mean that σ lies in Γn, and we shall denote as I the identity matrix of the
appropriate size. On the space SymC

n, we shall use the norm σ �→ ‖σ‖ which is
the operator norm associated to the canonical norm | | on Cn.

Definition 4.1. Given any entire function u on Cn with the property that for
some C > 0, one has |u(z)| ≤ C eπR|z|2 for all z ∈ Cn, we define the quadratic
transform, or Q-transform of u, as the pair of functions defined on the part of
Γn + i Symn characterized by the condition Re (σ − R I) � 0 as follows: (Qu)0
is the scalar function defined as

(Qu)0(σ) =
∫

Rn

e−π 〈σx,x〉 u(x e−
iπ
4 ) dx, (4.1)

and (Qu)1 is the Cn-valued function defined as

(Qu)1(σ) =
∫

Rn

(I + i σ)x. e−π 〈σx,x〉 u(x e−
iπ
4 ) dx, (4.2)

in other words the function the jth component of which is

(Qu)(j)1 (σ) =
∫

Rn

(
xj + i

∑
k

σjk xk

)
e−π 〈σx,x〉 u(x e−

iπ
4 ) dx, j = 1, . . . , n.

(4.3)

As a preparation for the study of the action of fractional-linear transforma-
tions on the quadratic transform of u, we need a combinatorial lemma, best proved
with the help of Wick’s theorem, a tool more familiar in connection with Feynman
diagrams [9].

Lemma 4.2. For every multi-index α ∈ Nn, the function of τ ∈ Γn defined as

Iα(τ) = (det τ)−
1
2

∫
Rn

e−π〈τ−1x,x〉 xα dx (4.4)
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is a polynomial in the entries of the matrix τ . Also, for every τ ∈ SymC

n,

(2π)|α| |Iα(τ)| ≤ 21− |α|
2

Γ(|α|)
Γ( |α|

2 )
(max |τjk|)

|α|
2 , (4.5)

where the Gamma ratio is to be understood as 1
2 in the case when α = 0. Given

a multi-index β and an index j = 1, . . . , n, set

Jβ, j(τ) = (det τ)−
1
2

∫
Rn

e−π〈τ−1x,x〉 xβ (τ−1x)j dx : (4.6)

the first part of the statement concerning the function Iα holds just as well for
Jβ, j, and the inequality (4.5) is still valid for this function after one has replaced
|α| by |β| − 1.

Proof. Given N ≥ 1 and 2N distinct letters 1, . . . , 2N , a pairing of the set
{1, . . . , 2N} is any unordered partition � of this set into blocks with two elements
each: thus, the number of possible pairings of such a set is 1.3. . . . (2N − 1), a
number denoted as (2N − 1) ! ! by physicists. If a value ki in the set {1, 2, . . . , n}
is ascribed to each letter i, a pairing of the set {1, . . . , 2N} is compatible with
this assignment of values if the two letters in any given block are assigned the same
value. Clearly, there is no pairing compatible with the given assignment unless, for
each j = 1, . . . , n, the number of letters assigned the value j is an even number
2Nj: if such is the case (then, of course,

∑
Nj = N), the number of pairings

compatible with the assignment is
∏

j(2Nj −1) ! !. Wick’s theorem is the fact that
the value of the integral ∫

Rn

e−π |x|2 xk1 · · ·xk2N dx (4.7)

coincides with (2π)−N times the number of pairings of the set {1, . . . , 2N} com-
patible with the assignment of values i �→ ki. Of course, this is immediate to see
since ∫

Rn

e−π |x|2 xk1 . . . xk2N dx =
∏
j

(
− 1

π

d

dλj

)Nj∣∣∣∣
λj=1

∫ ∞

−∞
e−πλj x2

j dxj

= (2π)−N
∏
j

(2Nj − 1) ! !, (4.8)

but it is very useful when Feynman diagrams are considered.
Given α ∈ Nn with |α| = 2N , fix any sequence j1, . . . , j2N of integers in

[1, n] such that the number of such integers equal to 1 is α1,. . . the number of
such integers equal to n is αn, so that, after a change of variables,

Iα(τ) =
∫

Rn

e−π|x|2 (τ
1
2 x)j1 · · · (τ

1
2 x)j2N dx. (4.9)
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Let ω ∈ O(n) be such that τ
1
2 = ω µ ω−1, where µ is diagonal with entries

µ1, . . . , µn: after an orthogonal change of variables, one finds

Iα(τ) =
∑

k1,...,k2N

(ωj1,k1 µk1) · · · (ωj2N ,k2N µk2N )
∫

Rn

e−π|x|2xk1 · · ·xk2N dx.

(4.10)
Using Wick’s theorem, one can write

(2π)N Iα(τ) =
∑

k1,...,k2N

∑
�

(ωj1,k1 µk1) · · · (ωj2N ,k2N µk2N ), (4.11)

where � describes the set of all pairings of {1, . . . , 2N} compatible with the
assignment i �→ ki: the effect of the sum over � is simply to put the right
coefficient ((2π)N times the value of the integral immediately above) in front of
the sum that follows. One can commute the two summations, writing instead

(2π)N Iα(τ) =
∑
�

∑
assignments i�→ki

compatible with �

(ωj1,k1 µk1) · · · (ωj2N ,k2N µk2N ), (4.12)

where, this time, � runs through all pairings of {1, . . . , 2N}. Describe the generic
pairing � as the collection of sets {a�, b�}, with 1 ≤ � ≤ N . The term associated
with � in the sum (4.12) is thus obtained when choosing all assignments i �→ ki

such that ka	
= kb	

for all �: we denote as r� the common value of these two
numbers. Finally, the term associated with � in the sum (4.12) can be written as

∑
r1,...,rN∈[1,n]

N∏
�=1

ωj a	
, r	

µ2
r	

ωj b	
, r	

: (4.13)

since τ = ω µ2 ωtranspose, one has

N∑
r	=1

ωj a	
, r	

µ2
r	

ωj b	
, r	

= τj a	
, j b	

, (4.14)

so that the term we are interested in from the sum (4.12) reduces to
∏

� τj a	
, j b	

.

Also, if α �= 0 and τ ∈ SymC

n,

(2π)|α| |Iα(τ)| ≤ (|α − 1|) ! ! (max |τjk |)
|α|
2

= 21− |α|
2

Γ(|α|)
Γ( |α|

2 )
(max |τjk|)

|α|
2 , (4.15)

which completes the proof of the part of the lemma concerning Iα.
The integral defining Jβ, j(τ) can be non-zero only if |β| is odd, say 2N −1.

Since
(τ− 1

2 x)j =
∑

k

(τ−1)jk (τ
1
2 x)k, (4.16)
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it is immediate that
Jβ, j(τ) =

∑
k

(τ−1)jk Iβ+(k)(τ), (4.17)

denoting as (k) the multi-index of length 1 with a 1 at the kth place. Thus, going
back to (4.9), we must associate with β a sequence j1, . . . , j2N−1 as explained
there, substituting for the last integer j2N an index k free to run from 1 to n.
Using the result of the preceding computation, as reported right after (4.14), we
must extract from each term

∏
� τj a	

, j b	
, in which it is no loss of generality to

assume that jb	
> ja	

for every �, the only factor τj a	
, j b	

for which b� = k,
and sum it against (τ−1)jk, ending up with δa	, j : this completes the proof of the
lemma. �

As an example of this recipe, in any dimension,

(det τ)−
1
2

∫
e−π〈τ−1x,x〉xr1 xr2 xr3 xr4 dx

=
1

4π2
[τr1,r2 τr3,r4 + τr1,r3 τr2,r4 + τr1,r4 τr2,r3 ] . (4.18)

Corollary 4.3. Let u be an entire function on Cn satisfying for some pair of
constants the estimate |u(z)| ≤ C eπR |z|2 . The functions defined, for τ ∈ Symn

such that det τ �= 0 and τ−1 − R I � 0, as

τ �→ (det τ)−
1
2 (Qu)0(τ−1)

and the vector-valued one

τ �→ (det τ)−
1
2 (Qu)1(τ−1) (4.19)

extend as analytic functions, denoted as (Qinv u)0 and (Qinv u)1 respectively, to
the neighborhood of 0 in SymC

n defined by the inequalities max |τjk| < 2π
nR .

Proof. If u(x) =
∑

α∈Nn cα xα, one has if τ−1 − R I � 0 the series expansion

(Qinv u)0(τ) = (det τ)−
1
2

∫
Rn

e−π〈τ−1x,x〉 u(x e−
iπ
4 ) dx

=
∑

α∈N
n

|α| even

cα e−
iπ |α|

4 Iα(τ). (4.20)

On the other hand, one has u(z) =
∑

α∈Nn cα zα, where the assumption relative
to u and Cauchy’s integral formula on the polydisk with radii (ρ, . . . , ρ) make it
possible to write |cα| ≤ C ρ−|α| eπnRρ2

: by Stirling’s formula,

|cα| ≤ C
(πnR)

|α|
2

Γ( |α|
2 )

, α �= 0. (4.21)
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The convergence of the series (4.20) in the neighborhood of 0 indicated follows
from these inequalities together with the inequalities (4.5) and a new application
of Stirling’s formula. The proof is similar for what concerns the function (Qinv u)1:
only, it is the terms with |α| odd from the series expansion of u which will play
a role now since, with the notation used in (4.17),

(Qinv u)(j)1 (τ)
∑

α∈N
n

|α| odd

cα e−
iπ |α|

4
[
Iα+(j)(τ) + i Jα, j(τ)

]
. (4.22)

�

We now need to recall the following basic facts (cf. for instance [16]) regarding
the symplectic group Sp(n, R), the subgroup of SL(2n, R) whose elements g are
characterized as follows. Consider the symplectic form [ , ] which is the bilinear
form on R2n×R2n = (Rn×Rn)× (Rn×Rn) such that [( x

ξ ) , ( y
η )] = −〈x, η〉+〈y, ξ〉:

a linear transformation g of R2n lies in Sp(n, R) if and only if one has [gX, gY ] =
[X, Y ] for every pair (X, Y ) of vectors of R2n. Writing matrices of size (2n)×(2n)
in block-form, with all blocks of size n × n, one can characterize the fact that a
matrix g = ( A B

C D ) lies in Sp(n, R) by the condition that g−1 =
(

D′ −B′

−C′ A′

)
,

denoting as A �→ A′ the transposition map. This can be made explicit as

AD′ − BC′ = I, AB′ = BA′, CD′ = DC′ (4.23)

or, equivalently,

D′A − B′C = I, A′C = C′A, B′D = D′B. (4.24)

It is then an elementary thing to verify that if such is the case, and if a matrix
σ ∈ Symn is such that the matrix −B′ σ + D′ is invertible, then the matrix
(A′ σ − C′)(−B′ σ + D′)−1 is also symmetric.

This fractional-linear transformation on the argument of functions on Symn

will enter our definition of the anaplectic representation.

Lemma 4.4. Let ( A B
C D ) ∈ Sp(n, R). Assuming B �= 0, let ε > 0 be the smallest

non-zero eigenvalue of the matrix BB′. For σ ∈ Γn such that σ−ε−
1
2 ‖D ‖ I � 0,

the matrix σB − D is invertible. If A �= 0, the matrix σA − C is invertible if
σ − ε′−

1
2 ‖C ‖ I � 0, denoting as ε′ the smallest non-zero eigenvalue of AA′. If

B = 0 (resp. A = 0), the matrix D (resp. C) is invertible.

Proof. Regarding BB′ as a positive-definite endomorphism of its image Im (BB′),
one may define (BB′)−1 as well as (BB′)−

1
2 : for any z ∈ Im B′, one has z =

B′ (BB′)−1 Bz since the difference between the two sides lies in Im B′ ∩KerB =
{0}, which implies that

|z| = |B′ (BB′)−1 Bz| = |(BB′)−
1
2 Bz| ≤ ε−

1
2 |Bz|. (4.25)
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Next, we observe that KerB ∩ KerD = {0} since A′D − C′B = I. Given x ∈
Rn, x �= 0, set x = y + z with y ∈ KerB and z ∈ Im B′: then

〈 (σ B − D)x, Bz〉 = 〈σ Bz, Bz〉 − 〈Dx, Bz〉
= 〈σ Bz, Bz〉 − 〈B′Dx, z〉
= 〈σ Bz, Bz〉 − 〈D′Bx, z〉
= 〈σ Bz, Bz〉 − 〈Bz, Dz〉. (4.26)

Thus

|(σ B − D)x| |Bz| ≥ ‖ σ−1 ‖−1 |Bz|2 − |Bz| |Dz|
≥ ‖ σ−1 ‖−1 |Bz|2 − |Bz| ‖D ‖ |z|

≥
[
‖ σ−1 ‖−1 − ε−

1
2 ‖D ‖

]
|Bz|2, (4.27)

where we have used (4.25). Since Bz = Bx, one sees that, under the condition
σ−ε−

1
2 ‖D ‖ I � 0, one has (σ B−D)x �= 0 if Bx �= 0: but, since KerB ∩KerD =

{0}, (σ B − D)x cannot vanish either if Bx = 0 since this would imply Dx = 0
as well.

The part concerning the matrix σA−C follows from the fact that the matrix
( A B

C D )
(

0 I
−I 0

)
=
(−B A
−D C

)
lies in Sp(n, R) just as well. �

Corollary 4.5. Given a symplectic matrix ( A B
C D ), the open subset of Symn con-

sisting of all real symmetric matrices σ such that −B′ σ+D′ is invertible is dense
in Symn.

Proof. Let σ0 ∈ Symn be arbitrary. The matrix(
σ0 −I
I 0

) (
A B
C D

) (
0 I
−I σ0

)
=
(
−σ0 B + D σ0 A − C + σ0 B σ0 − D σ0

−B A + B σ0

)
(4.28)

lies in Sp(n, R) too, so that, applying Lemma 4.4, the matrix τ (−σ0 B + D)+ B
is invertible whenever τ ∈ Γn is such that τ − R I � 0 with R large enough.
Taking τ = (σ0 −σ)−1 with σ0 −σ in Γn with a norm < R−1, we conclude that
(σ0 − σ)−1 (−σ0 B + D) + B is invertible, and so is, consequently, −σ B + D. �

A full description of the singularities of the fractional-linear transformation
σ �→ (A′ σ − C′) (−B′ σ + D′)−1, which will enter the definition of the anaplectic
representation, is now required. Note that this is the transformation associated
to the inverse of g if one defines (g, σ) �→ g.σ = (C + D σ) (A + B σ)−1 when
g = ( A B

C D ). This would be a group action of Sp(n, R) in Symn if it were not for
the fact that it is not everywhere defined. It is so, however, in the case when B = 0,
in which it reduces to σ �→ D−1 (σ − DC′)D′−1. Writing a matrix g ∈ Sp(n, R)
as g = g1 g2, where the upper-right block of g1 is zero, reduces the analysis of
the fractional-linear transformation associated to g−1 to that associated to g−1

2 .
Thus, the following lemma makes a first reduction of the problem possible.



64 Chapter 2. The n-dimensional Anaplectic Analysis

Lemma 4.6. Given g = ( A B
C D ) ∈ Sp(n, R), there exists a matrix Ω in the compact

group Sp(n, R) ∩ O(2n) (isomorphic to U(n) [11, p. 453] under the map R+iS �→(
R S
−S R

)
, where R and S are the real and imaginary parts of the unitary matrix

R + iS), such that the upper right block of the matrix g Ω is zero.

Proof. Set R = A′ (AA′ + BB′)−
1
2 , S = −B′ (AA′ + BB′)−

1
2 : this makes sense

since, applying an observation made in the beginning of the proof of Lemma 4.4
to the matrix g−1 =

(
D′ −B′

−C′ A′

)
, we note that KerB′ ∩ KerA′ = {0}. Using

(4.23), one checks that R′R + S′S = I, R′S = S′R, which is one of the (two)
ways to check that the matrix Ω =

(
R S
−S R

)
lies in the group Sp(n, R) ∩ O(2n).

Applying again the equation AB′ = BA′, one sees that, indeed, the upper-left
block AS + BR of the product g Ω is zero. �

Next, we desingularize, by means of the Cayley transform [16, p. 35] and com-
pactification, the action of the compact group Sp(n, R) ∩ O(2n): the verification
of the following proposition is straightforward.

Proposition 4.7. Let Σ: = U(n) ∩ SymC

n, and let Σreg be the dense subset
consisting of all matrices in Σ whose set of eigenvalues does not include 1. The
Cayley map σ �→ Z = (σ − i I) (σ + i I)−1 is a one-to-one map from Symn

into Σ, the image of which is exactly Σreg ; the inverse map is Z �→ i (I +
Z) (I −Z)−1. The (almost always defined, cf. Corollary 4.5) action of the compact
subgroup Sp(n, R) ∩ O(2n) of Sp(n, R) on Symn extends as an action on the
compactification of this space, as follows. The generic element of this group is
the matrix Ω =

(
R S
−S R

)
, where R and S are the real and imaginary parts of

a generic matrix R + i S in the group U(n) and, under conjugation under the
Cayley transform, the action of such a matrix transfers as the map Z �→ (R −
i S)Z (R + i S)−1, an action without singularities on the whole of Σ.

As a consequence of the group action, the compactification Σ can be iden-
tified with the homogeneous space U(n)/O(n), and it has a natural base point.
It is also immediate that this space can be identified with the set of Lagrangian
subspaces (of dimension n) of R2n: it suffices to associate with the class of the
matrix R+ i S ∈ U(n) the linear subspace of Rn⊕Rn ∼ Cn which is the image of
Rn under R+ i S, since the canonical symplectic form on Rn⊕Rn vanishes when
evaluated on pairs (Rx⊕Sx, Ry ⊕Sy) in view of the relation −S′ R +R′ S = 0.
The map Z �→ detZ from Σ onto S1 is a fibration [20, p. 31], the fiber of which
can be identified with the homogeneous space SU±(n)/O(n) ∼ SU(n)/SO(n), a
simply connected space, so that (loc. cit., p. 91) the map det induces an isomor-
phism from the fundamental group π1(Σ) onto π1(S1) ∼ Z.

The space U(n)/SO(n), a twofold covering of Σ, can be identified with the
space of oriented Lagrangian subspaces of R2n. Giving a point in this space above
some point Z ∈ Σ is tantamount to choosing one of the two square roots of det Z.
We shall need, mostly, the n-fold covering Σ(n) of Σ, which is the space suitable
for a definition of (det Z)

1
n .
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Definition 4.8. Noting that Σ, as a smooth submanifold of U(n), is an analytic
space, we shall say that a dense open subset of Σ, or of any of the finite covering
spaces of Σ, is connected in the strong sense if its complementary is contained in
some analytic subset of codimension ≥ 2. An admissible function on Σ(n) shall be
any partly defined analytic function on Σ(n), with a domain of definition connected
in the strong sense.

Remark 4.1. Our demands regarding the domain of definition of F may look a
little technical: they are made so as to ensure that any finite set of admissible
functions should have a common connected dense domain.

The group Sp(n, R) ∩ O(2n) ≈ U(n) acts on Σ(n) if n = 1 or 2, but
for no other value: for, under the action made explicit in Proposition 4.7, detZ
transforms to (det (R + i S))−2 detZ, which, given R + i S ∈ U(n), only makes
it possible to define, in a canonical way, the square root of the determinant of
(R − i S)Z (R + i S)−1 in terms of that of detZ. On the other hand, when
n = 1, one might use instead of U(n) the quotient of this group by {±I}. To
get at the nth root of the determinant, we must substitute for U(n), minimally,
the n-fold covering of the group U(n)/{±I}: however, representation-theoretic
reasons will impose later that we use instead the n-fold covering U (n)(n) of
U(n). A point in U (n)(n) is characterized by a point R + i S in U(n) to-
gether with an nth root of det (R + i S). The map R + i S �→

(
R S
−S R

)
ex-

tends as an isomorphism from U (n)(n) onto the n-fold covering Sp(n)
comp(n, R) of

Spcomp(n, R) = Sp(n, R) ∩ O(2n). Finally, this covering is a maximal compact
subgroup of the n-fold covering Sp(n)(n, R) of Sp(n, R) (recall that the twofold
covering of Sp(n, R) is the metaplectic group). To make matters perfectly clear,
as will be needed in the next section, if a point of Sp(n)

comp(n, R) is characterized
by a member of Spcomp(n, R) together with the value (det (R − i S))

1
n of some

nth root of det (R − i S)), it should act on Σ(n) as the map Z# �→ Z#
1 inducing

on Σ the map Z �→ Z1 = (R − i S)Z (R + i S)−1 and completely characterized
by the equation (det Z#

1 )
1
n = (det (R − i S))

2
n (detZ#)

1
n .

As a homogeneous space of U(n), Σ has an invariant measure dµ(Z), unique
up to normalization: it will be convenient to characterize its restriction to the dense
subset Σreg in terms of the inverse Cayley transform σ = i (I + Z) (I − Z)−1 of
Z. As can be found in [16, p. 33], the jacobian of the transformation σ �→ τ =
(C + D σ) (A + B σ)−1, where defined, is (det (A + B σ))−n−1: thus, specializing
to the case when the symplectic matrix under consideration is the matrix Ω that
occurs in Proposition 4.7 and noting that, in that case,

det (τ ± i I) = (det (R + S σ))−1 det (R ± i S) det(σ ± i I), (4.29)

one sees that one can take, as a U(n)-invariant measure on Σ,

dµ(Z) = (det (I + σ2))−
n+1
2 dm(σ), (4.30)

where dm is a Lebesgue measure on the linear space Symn.
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The action of the full symplectic group on Σ is not as simple as that of
the maximal compact subgroup considered in Proposition 4.7: however, it is still
non-singular, as shown by the following lemma together with Lemma 4.6 and the
observation that if g = ( A 0

C D ) ∈ Sp(n, R), g.σ = D σ D′ + C D′.

Lemma 4.9. Given A ∈ GL(n, R), the function f on Σ which transfers and
extends the transformation σ �→ A′ σ A of Symn is analytic. Given C ∈ Symn,
the function h on Σ which transfers and extends the transformation σ �→ σ − C
is analytic as well. Both analytic homeomorphisms keep the matrix Z = I fixed.
The direct images of the invariant measure dµ on Σ under the diffeomorphisms
f and h are given by the equations

f∗ dµ

dµ
= |detA|n+1

(
|det (I − f(Z))|
|det (I − Z)|

)n+1

,

h∗ dµ

dµ
=
(
|det (I − h(Z))|
|det (I − Z)|

)n+1

. (4.31)

Proof. Set P = (AA′)−1, a positive-definite symmetric matrix, which shows (use
the spectral decomposition of P ) that the matrix I + I−P

I+P Z is invertible if Z
is unitary: note that we allow ourselves the fractional notation when dealing with
commuting matrices. One has

(
I − P

I + P
+ Z

) (
I +

I − P

I + P
Z

)−1

= (I + P )−1 [I − P + (I + P )Z] [I + P + (I − P )Z]−1 (I + P ), (4.32)

hence, since I + P = A′−1 (A′ + A−1),

(A′ + A−1)
(

I − P

I + P
+ Z

) (
I +

I − P

I + P
Z

)−1

(A′ + A−1)−1

= A′ [I + Z − P (I − Z)] [I + Z + P (I − Z)]−1 A′−1

= [A′ (I + Z) − A−1 (I − Z)] [A′ (I + Z) + A−1 (I − Z)]−1 : (4.33)

when det (I − Z) �= 0, i.e., when Z lies in the image Σreg of the Cayley map,
this can also be written as

[A′ (I + Z)(I − Z)−1 A − I] [A′ (I + Z)(I − Z)−1 A + I]−1, (4.34)

which is just the definition, according to Proposition 4.7, of the matrix f(Z) in
the case : however, the new formula

f(Z) = (A′ + A−1)
(

I − P

I + P
+ Z

) (
I +

I − P

I + P
Z

)−1

(A′ + A−1)−1 (4.35)
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defines f(Z) as a non-singular function of Z on the whole of Σ. Still, we must
show that the right-hand side of (4.35) lies in Σ for every Z ∈ Σ: however, the
tiresome verification can be dispensed with, remembering that Σreg is a dense
subset of Σ.

In just the same way, given C ∈ Symn, the matrix I + C
2i I−C Z, is invertible

since ‖ C
2i I−C ‖ < 1 (again, use the spectral decomposition of C), and we consider

the matrix

(2i I + C)
[
− C

2i I + C
+ Z

] [
I +

C

2i I − C
Z

]−1

(2i I − C)−1, (4.36)

which depends analytically on Z ∈ Σ. In the case when Z ∈ Σreg, it can also be
written as

[−C + (2i I + C)Z ] [2i I − C + C Z ]−1

= [i (I + Z) − (C + i I) (I − Z) ] [i (I + Z) + (−C + i I) (I − Z) ]−1

=
(

i
I + Z

I − Z
− C − i I

) (
i
I + Z

I − Z
− C + i I

)−1

, (4.37)

which is just the definition of h(Z) in this case.
That f and h keep the unit matrix in Σ fixed is seen by direct inspection

of the equations (4.35) and (4.36).
The computation of the Radon–Nikodym derivatives of the measures f∗ dµ

and h∗ dµ with respect to dµ is an immediate consequence of (4.30) together with
the equation dm (A′ σ A) = |detA|n+1 dm(σ) and the observation that, if Z is
the Cayley transform of σ, one has det (I + σ2) = | det 1

2 (I − Z) |−2. �
Corollary 4.10. There is a unique homomorphism χ from Sp (n, R) into the
group of analytic automorphisms of Σ which extends the homomorphism from
Sp (n, R) ∩ O(2n) into the latter group provided by Proposition 4.7, and reduces
to the transformation f or h when dealing with one of the two special elements
of Sp (n, R) considered in Lemma 4.9: this action of Sp (n, R) on Σ extends the
transfer, under the Cayley map, of the partially defined action (g, σ) �→ g.σ =
(C + D σ) (A + B σ)−1 of the symplectic group on Symn. There is a unique con-
tinuous homomorphism χ̃ from the group Sp(n)(n, R) into the group of analytic
automorphisms of Σ(n) with the following property: given g̃ ∈ Sp(n)(n, R) above
some point g ∈ Sp (n, R), the analytic automorphism χ̃(g̃) of Σ(n) lies above the
analytic automorphism χ(g) of Σ.

Proof. The part concerning χ follows from Corollary 4.5, Lemma 4.6, Proposition
4.7 and Lemma 4.9. We have already shown, in the remark that followed Definition
4.8, how to let the canonical maximal compact subgroup of the metaplectic group
operate on Σ(n). Extending this action to an action of the full group Sp(n)(n, R)
only requires that one should lift to an action on Σ(n) the action on Σ of sym-
plectic matrices of the kind

(
A 0
0 A−1

)
with A = A′ > 0, or of the kind ( I 0

C I ) with
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C = C′: this is possible in a unique way since each of these two sets of matrices is
homeomorphic to a linear space, namely Symn. �

We now rephrase Corollary 4.3 in a way suitable to our needs, combining
it with the use of the Cayley map. First, we note that if Z ∈ Σreg is such that
det (I + Z) �= 0, the eigenvalues µj of the unitary matrix Z can be uniquely
written as µj = e−iθj with −π < θj < π: since this leads to a determination of
the argument of detZ, the set of such matrices Z naturally imbeds into Σ(n).
Setting τ = −i (I−Z)(I +Z)−1, so that Z should be the image under the Cayley
map of the matrix τ−1, one sees that the eigenvalues of the real symmetric matrix
τ−1 are the numbers

i
1 + µj

1 − µj
= cotan

θj

2
, (4.38)

so that the condition τ−1 −R I � 0 which occurs in Corollary 4.3 can be written
as 0 < tan θj

2 < 1
R .

Theorem 4.11. Let u be an entire function on Cn satisfying for some pair of
constants (C, R) the estimate |u(z)| ≤ C eπR|z|2 . Let V + be the set of matrices
Z ∈ Σreg the eigenvalues of which can be written as µj = e−iθj with 0 < θj < π

and 0 < tan θj

2 < 1
R : when Z ∈ V +, the matrix τ ∈ Symn defined as τ =

−i (I −Z)(I +Z)−1 is invertible and satisfies the condition τ−1 −R I � 0, which
makes it possible to define

(K u)0(Z) = |det (I − Z)|− 1
2 (Qu)0(i (I + Z)(I − Z)−1)

and the vector-valued function

(K u)1(Z) = |det (I − Z)|− 1
2 (Qu)1(i (I + Z)(I − Z)−1). (4.39)

The functions (K u)0 and (K u)1, hereafter referred to as the K-transforms of u,
extend as analytic functions to the neighborhood V of I in Σ consisting of all
matrices Z whose eigenvalues can be written as e−iθj with −π < θj < π and
| tan θj

2 | < 2π
nR .

Proof. In terms of the eigenvalues of Z as denoted above, those of the real sym-
metric matrix τ = −i (I −Z)(I + Z)−1 are the numbers tan θj

2 : thus, in the case
when τ−1 − R I � 0, one has

(K u)0(Z) =
∣∣∣∣det

I + i τ

2

∣∣∣∣ 12 (Qinv u)0(τ)

= 2−
n
2 (det (I + τ2))

1
4 (Qinv u)0(τ), (4.40)

so that it follows from Corollary 4.3 and the fact that the map Z �→ τ is analytic
in V that (K u)0(Z) extends as an analytic function of Z in the mentioned
neighborhood of the identity matrix: note here that all entries of a positive real
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symmetric matrix are majorized by its greatest eigenvalue. The same works of
course with the other Q-transform of u. We shall also use the inversion formula

(Qu)0(σ) = 2
n
2 (det (I + σ2))−

1
4 (K u)0((σ − i I)(σ + i I)−1), (4.41)

valid when Z = (σ − i I)(σ + i I)−1 lies in V +. �

Remark 4.2. It is important to realize that, under the Cayley map, the image Z
of a matrix σ will go to the identity matrix in Σ if and only if each eigenvalue
of σ goes to ±∞: the theorem that precedes thus goes much further than the
Definition 4.1 of the Q-transforms of u, originally given under the assumption
that all eigenvalues of σ (here, σ = τ−1) are close to +∞. Note that the func-
tion (Qu)0 (resp. (K u)0) lives on a part of Symn (resp. Σ): the domain of the
second one is small enough, so that one may regard it as well, as explained just
before the statement of Theorem 4.11, as defined in some neighborhood of the base
point of Σ(n).

Definition 4.12. Let u be an entire function on Cn, satisfying for some pair (C, R1)
of positive numbers the estimate |u(z)| ≤ C eπR1 |z|2 for every z ∈ Cn. Let
(Qu)0(σ) and (Qu)1(σ) be its Q-transforms, as defined in (4.1) and (4.2) under
the assumption that σ ∈ Symn is such that σ − R1 I � 0. Let (K u)0(Z) and
(K u)1(Z) be the functions of Z ∈ Σ defined, under the assumption that the
matrix Z is close enough to the identity matrix, in Theorem 4.11.

We shall say that the function u lies in the space A(n) if the following
condition is realized: the functions (K u)0 and (K u)1 initially defined in some
neighborhood of the base point of Σ, also regarded, as explained before Theorem
4.11, as defined in a neighborhood of the base point of Σ(n), extend as admissible
functions on the space Σ(n): recall from Definition 4.8 that this means that they
can be given a dense and open domain of definition, connected in the strong sense,
in which they are to be analytic functions.

If u ∈ A(n) and if the domain of definition of (K u)0 contains the point
eiπ I = e−iπ I (cf. Definition 4.8), we set

Int [u] = 2
n
2 (K u)0(e−iπ I). (4.42)

Remark 4.3. The image, under the Cayley map, of the origin of Symn, is the
point −I = eiπ I ∈ Σ: the equation (4.42) may thus be considered as a version of
what might seem to be the more natural equation Int [u] = (Qu)0(0) ; however,
the Cayley map sends Symn into Σ, not Σ(n) (unless n = 1) and it may not
be possible in general to use (4.41) to find a natural analytic extension of (Qu)0
to some open dense subset of Symn. For instance, in the two-dimensional case,
Theorem 4.19 will give the example of an important function u whose K-transform
(defined on the twofold cover Σ(2) of Σ) is regular at the point

(
eiπ 0
0 eiπ

)
but

singular at the point
(

eiπ 0
0 e−iπ

)
.
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Theorem 4.13. Let u ∈ A(n). For every A ∈ GL(n, R), the function v on Cn

defined as v(x) = |detA|− 1
2 u(A−1x) lies in A(n) too. For every C ∈ Symn, the

function w on Cn defined as w(x) = u(x) eiπ 〈Cx,x〉 lies in A(n) as well.

Proof. It is immediate, from Definition 4.1, that if σ − R I � 0, one has

(Q v)0(σ) = |detA| 12 (Qu)0(A′ σ A),

(Q v)1(σ) = |detA| 12 (I + i σ) (A−1 + i A′ σ)−1 (Qu)1(A′ σ A). (4.43)

Let f be the analytic homeomorphism of Σ defined in Lemma 4.9, which is the
transfer, under the Cayley map, of the automorphism σ �→ A′ σ A of Symn. Using
Theorem 4.11, one sees that, whenever Z is the image, under the Cayley map, of
some σ ∈ Symn with σ − R I � 0 and R large enough, so that one should have
both σ − R I � 0 and A′ σ A − R I � 0, one has

(K v)0(Z) = |detA| 12
∣∣∣∣ det (I − f(Z))

det (I − Z)

∣∣∣∣ 12 (K u)0(f(Z)). (4.44)

Note, using (4.31), that this can also be written as

(K v)0(Z) =
(

f∗ dµ

dµ
(Z)

) 1
2(n+1)

(K u)0(f(Z)) : (4.45)

in particular, the extra factor extends as an analytic non-zero function on Σ. For
safety, one may also check this last fact from the equation (a consequence of (4.35)
with the notation of the proof of Lemma 4.9)

I−f(Z) = (A′+A−1)
[
I − (

I − P

I + P
+ Z) (I +

I − P

I + P
Z)−1

]
(A′+A−1)−1, (4.46)

which yields, after a short calculation,

|detA| 12
∣∣∣∣ det (I − f(Z))

det (I − Z)

∣∣∣∣ 12 =
∣∣∣∣det

A′ + A−1

2

∣∣∣∣− 1
2

×
∣∣∣∣det (I+

I − P

I + P
Z)
∣∣∣∣− 1

2

. (4.47)

How to make f a bijection of Σ(n) (rather than Σ) onto itself was indicated at
the end of the proof of Corollary 4.10. The same kind of computation works with
the function (K v)1, only putting in front of the right-hand side of the equation
playing the same role as (4.44) the extra linear operator (I+i σ) (A−1+i A′ σ)−1 =
2 (I+ I−P

I+P Z−1)−1 (A−1+A′)−1 corresponding to the operator in front of the right-
hand side of the second equation (4.43): after a straightforward computation, this
can also be written as

1
2

[
A + A′−1 − (A − A′−1) (f(Z))−1

]
, (4.48)

an expression which will be useful later.
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Concerning the function w, we find that

(Qw)0(σ) = (Qu)0(σ − C),

(Qw)1(σ) = (I + i σ) (I + i (σ − C))−1 (Qu)1(σ − C), (4.49)

so that, with h as defined in Lemma 4.9, and appealing to (4.31) again,

(Kw)0(Z) =
∣∣∣∣ det (I − h(Z))

det (I − Z)

∣∣∣∣ 12 (K u)0(h(Z))

=
(

h∗ dµ

dµ
(Z)

) 1
2(n+1)

(K u)0(h(Z)). (4.50)

One may also check that

(I − Z)−1 (I − h(Z)) =
(

I +
i C

2
(I − Z)

)−1

; (4.51)

in the equation for (Kw)1(Z), we need to put in the extra linear operator(
I − i C

2
+

i C

2
Z−1

)−1

= I +
i C

2
− i C

2
(h(Z))−1 (4.52)

in front of the right-hand side, as it follows from the second equation (4.49).
We note for future reference the following equation: if the domain of the

K-transforms of u ∈ A(n) contains the point eiπ I ∈ Σ(n), one has

Int [x �→ u(x) eiπ 〈Cx,x〉] = 2
n
2 (det (I + C2))−

1
4 (K u)0

(
eiπ I − i C

I + i C

)
: (4.53)

before proving it, we note that the eigenvalues of the matrix I−i C
I+i C cannot be real

numbers ≤ 0, so that they have arguments in ] − π, π[ ; as explained just before
Theorem 4.11, this matrix can thus be viewed as an element of Σ(n) rather than
Σ, which gives the matrix eiπ I−i C

I+i C a meaning as an element of the same covering
space. In order to prove (4.53), we write in the case when Z is the image under
the Cayley map of some matrix σ ∈ Symn such that σ � R I with R large,
using (4.50), (4.51) and (4.37),

(K (x �→ u(x) eiπ 〈Cx,x〉))0(Z)

=
[
det

(
I +

i C

2
(I − Z)

)]− 1
4
[
det

(
I − i C

2
(I − Z̄)

)]− 1
4

× (K u)0 ((−C + (2i I + C)Z) (2i I − C + C Z)−1) : (4.54)

this leads to (4.53) after one has noted that the question of determination of the
fourth roots that occurs in the last expression can be dealt with by means of a
homotopy argument, since C connects to the zero matrix in Symn. �
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Theorem 4.14. In the one-dimensional case, the space A(1) coincides with the
space A introduced in Section 2.

Proof. Assume that u ∈ A: in terms of the pair of functions (w0, w1) used in
Theorem 1.8, one has

(Qu)0(σ) = w0(σ), (Qu)1(σ) = (1 + i) (1 + i σ)w1(σ). (4.55)

Under the relation z = σ−i
σ+i the points of R with σ large correspond to the points

z = e−iθ of Σ = S1 with θ > 0 small: then, σ = cotan θ
2 . Under this condition,

the expansion at infinity of w0 provided by the above-mentioned theorem yields

(K u)0(e−iθ) =
(

2 cos
θ

2

)− 1
2 ∑

n≥0

an

(
tan

θ

2

)n

. (4.56)

Next, under the same conditions, (4.41) gives

(Qu)0(σ) =
(

2 sin
θ

2

) 1
2

(K u)0(e−iθ). (4.57)

Using (4.56) and (4.57), one first sees that since the function (Qu)0 is analytic on
the real line, the function (K u)0 extends as an analytic function to the neighbor-
hood of the base point of the universal cover of Σ characterized by the inequalities
−ε < θ < 2π for some ε > 0 (use the first of the two equations mentioned when
θ is close to 0, the second one in ]0, 2π[).

Assuming again that σ is large, we observe that when the real number r
goes from 1 to −1, the point rσ moves from σ to −σ in Symn. In the process,
the Cayley transform z of rσ moves along the path r �→ r (1+e−iθ)−(1−e−iθ)

r (1+e−iθ)+(1−e−iθ)
=

r−i tan θ
2

r+i tan θ
2
, so that the argument of z undergoes a change from the value −θ to the

value −(2π − θ). Thus, one has, starting from (4.41),

(Qu)0(−σ) =
(

2 sin
θ

2

) 1
2

(K u)0(ei (θ−2π)), (4.58)

it being understood that, in the right-hand side of this equation, it is now the
above-mentioned analytic extension of the function (K u)0 that is now being used.
The same formula links the functions (Qu)1 and (K u)1.

On the other hand, still for large σ, (1.27) yields

w̃0(σ eiπ) = −i σ− 1
2

∑
n≥0

(−1)n an σ−n = −i

(
tan

θ

2

) 1
2 ∑

n≥0

(−1)n an

(
tan

θ

2

)n

= −i

(
2 sin

θ

2

) 1
2

(K u)0(eiθ) (4.59)

so that the condition (1.28) from Theorem 1.8 is equivalent to

(K u)0(ei (θ−2π)) = (K u)0(eiθ). (4.60)
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It shows that the function (K u)0 satisfies the demands made in Definition 4.12, as
it extends in this case as an analytic function on Σ = S1. The same computations
are valid if interested instead in the function (K u)1.

The argument that precedes can be reversed, proving the identity of the
spaces A(1) and A.

In the particular case when w0(σ) = (1 + σ2)−
1
4 , which corresponds, up to

normalization, to the case when u is the median state of the anaplectic harmonic
oscillator, one may note that the function 2

1
2 (K u)0 reduces to the constant 1:

nothing so simple will, or can occur in the higher-dimensional case. Finally, our
present definition of the anaplectic “integral” coincides, in the one-dimensional
case, with that of Section 1. The argument goes as follows. From (4.42), one has
Int [u] = 2

1
2 (K u)0(e±iπ): from (4.57) and (4.55), this is the same as w0(0) the

value at σ = 0 of the analytic extension of w0 on the real line. To find this value,
we appeal to the equation (1.33), which provides an integral representation on the
whole real line of w0: setting σ = 0 in the right-hand side of this equation, we
find Int [u] as defined in (1.74). �
Theorem 4.15. For general n, any Gaussian function x �→ e−π Q(x), where Q(x)
is a quadratic function of x with a positive-definite real part, lies in A(n) if and
only if the dimension is divisible by 4.

Proof. Take a Gaussian function of the species indicated in the statement of the
theorem: in order to prove that it lies in A(n) there is no loss of generality, as a
consequence of Theorem 4.13, in assuming that u(x) = e−π |x|2 . One has, if σ � 0,
(Qu)0(σ) = (det (σ − i I))−

1
2 , and the other quadratic transform of u is zero.

Here,
(det (σ − i I))−

1
2 =

∏
j

(σj − i)−
1
2 = e

iπn
4

∏
j

(1 + i σj)−
1
2 , (4.61)

where, as a constant policy, square roots of complex numbers in the plane cut
along the negative half-line always have positive real parts: the function on the
right-hand side is analytic in the whole linear space Symn. Applying the definition
of (Qinv u)0 in Corollary 4.3, we find

(Qinv u)0(τ) = (det τ)−
1
2 (Qu)0(τ−1) =

∏
j

(1 − i τj)−
1
2 . (4.62)

If the eigenvalues µj = e−iθj of some matrix Z ∈ Σ satisfy 0 < θj < π one has,
using (4.38) and (4.41),

(K u)0(Z) =
∏
j

(2 cos
θj

2
)−

1
2

∏
j

(
1 − i tan

θj

2

)− 1
2

= 2−
n
2 (detZ)−

1
4 , (4.63)

a function which extends analytically to the n-tuple cover Σ(n) of Σ if and only
if n is divisible by 4. One should note that, if such is the case, whether one
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is dealing with the standard n-dimensional Gaussian function or a more general
one, the function (K u)0 is always globally defined on the whole of Σ(n), as a
consequence of Lemma 4.9. �

Remark 4.4. It follows from Remark 3.1 that if n ≡ 0 mod 4, e−π|x|2 is even
an anaplectic Hermite function; since n−2

4 ∈ − 1
2 + Z, the function Φ recalled in

Theorem 4.18 to follow is in this case an elementary (not only a Bessel) function
[17, p. 72]. Instead of a positive-definite quadratic form Q in the exponent, we
might as well have taken a negative-definite one: in the next section, it will be
shown that, quite generally, the space A(n) is invariant under the change x �→ ix.

In order to study our next, and main, example, we need a pair of lemmas.

Lemma 4.16. Assume that the dimension n is ≥ 2. The subset ∆ of Σ consisting
of matrices Z at least one eigenvalue of which is not simple is an analytic subset
of codimension 2.

Proof. We first make a few observations concerning the structure of eigenspaces of
matrices Z ∈ Σ, i.e., matrices which are both unitary and symmetric. The complex
conjugate of such a matrix is also its inverse, so that if ξ ∈ Cn is an eigenvector
of Z corresponding to the eigenvalue λ, one has λ̄ = λ−1 and Z−1 ξ̄ = λ−1 ξ̄ as
well as Z ξ = λ ξ: it follows that one has the two equations Z (Re ξ) = λRe ξ and
Z (Im ξ) = λ Im ξ. Next, assuming that the eigenvalue λ of Z has multiplicity
at least 2, one can find some complex two-dimensional linear subspace E of the
eigenspace of Z corresponding to the given eigenvalue with a basis consisting of
two vectors in Rn. Indeed, if the vectors Re ξ and Im ξ considered so far are
not proportional, there is nothing more to be done; if this is not the case, doing
the same as before with a new eigenvector η of Z corresponding to the same
eigenvalue and C-independent from ξ, we consider either the pair (Re η, Im η)
if these two vectors are independent, or a pair consisting of non-zero vectors, one
taken from the pair (Re ξ, Im ξ) and one from the pair (Re η, Im η). Next, we
observe that both E and the orthogonal subspace E⊥ of Cn are stable under
the action of Z and that each of them has a linear basis consisting of real vectors:
in particular, considering the restrictions of Z to each of these two subspaces, one
gets a unitary transformation (of E or E⊥) which is again symmetric in the sense
made possible by such a basis.

The set ∆ is of course an algebraic subset of Σ (it can be defined by the van-
ishing of the discriminant of the characteristic polynomial of Z), and its dimension
is one more than that of the set consisting, for any given λ ∈ C with |λ| = 1,
of all pairs (E, Y ) with the following properties: E should be a two-dimensional
subspace of Cn generated by a pair of vectors in Rn, and Y should be a unitary
and symmetric linear automorphism of E⊥. Now, the space of two-planes E has
dimension 2n− 4 and, for any given E, the set of unitary symmetric transforma-
tions of E⊥ has the dimension of Symn−2, i.e., (n−2)(n−1)

2 , which gives ∆ the
dimension n(n+1)

2 − 2.
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One may note that, when n = 2, the set ∆ reduces to the circle {Z =
eiφ I, φ ∈ R}, while Sym2 is three-dimensional. �

Contrary to Σ, Σ\∆ has a complicated fundamental group, the more so in
higher dimensions. However, we shall take advantage of the following:

Lemma 4.17. Let Z0 ∈ Σreg be a matrix with only simple eigenvalues. The se-
quence

π1 (Σreg ∩ (Σ\∆), Z0) −→ π1(Σ\∆, Z0) −→ π1(Σ, Z0) −→ 0 (4.64)

induced by the embeddings Σreg ∩ (Σ\∆) → Σ\∆ → Σ is exact.

Proof. The composition map : Σreg ∩ (Σ\∆) → Σ can be factored through the
space Σreg, homeomorphic to R

n(n+1)
2 , so that the corresponding composition

of homomorphisms is zero. Next, that the homomorphism in the middle of the
sequence above is onto is a consequence of Lemma 4.16, since ∆ cannot disconnect
Σ either globally or locally. We shall prove the following, which is slightly more
than what remains to be done.

Let β0 : t �→ Z(t), 0 ≤ t ≤ 1, be a continuous loop in Σ\∆, starting from a
point Z(0) ∈ Σreg: assume that the loop β0 is homotopically trivial as a loop in
Σ. Then, there exists a homotopy (βs)0≤s≤1 of loops at Z(0) in the space Σ\∆,
with the following two properties: for any pair (s, t), the matrices βs(t) and β0(t)
are proportional (by a scalar factor of modulus 1), and the image of β1 is entirely
contained in Σreg.

To start with, there exist uniquely defined numbers θ0
j , 1 ≤ j ≤ n, with

0 < θ0
1 < · · · < θ0

n < 2π, such that the eigenvalues of Z(0) are the numbers
µ0

j = e−i θ0
j . Since the eigenvalues of Z(t) are always distinct, they can be followed

up as continuous functions t �→ µj(t), 0 ≤ t ≤ 1 for j = 1, 2, . . . , n; also, one can
uniquely set µj(t) = e−i θj(t), θj being a continuous function : [0, 1] → R with
θj(0) = θ0

j . Of necessity, one has θ1(t) < · · · < θn(t) for all values of t. Since
|θ0

j − θ0
k| < 2π for every pair j, k and θj(t) − θk(t) /∈ 2π Z for j �= k, one has

|θj(t) − θk(t)| < 2π for every pair j, k and every t ∈ [0, 1].
As θn(t) − 2π < θ1(t) for all t and θ0

n − 2π < 0 < θ0
1, one can construct a

continuous function ω : [0, 1] → R with ω(0) = 0 and θn(t) − 2π < ω(t) < θ1(t)
for all t. We now show that one may also demand that ω(1) = 0, for which it
suffices to prove that θn(1) = θ0

n and θ1(1) = θ0
1 . Indeed, since β0 is a loop,

there is for every j an integer mj ∈ Z such that θj(1) − θj(0) = 2π mj . For any
pair (j, k), one has

2π (mj − mk) = (θj(1) − θj(0)) − (θk(1) − θk(0))
= (θj(1) − θk(1)) − (θj(0) − θk(0)), (4.65)

a number < 2π in absolute value since both terms are and they have the same
sign. Thus mj = m, a constant. Now, detZ(t) = e−i

∑
θj(t), a continuous deter-

mination of the logarithm of which is the function t �→ −i
∑

θj(t). As the loop
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t �→ Z(t) is homotopically trivial in Σ, one has

0 =
∑

θj(1) −
∑

θj(0) =
∑

(θj(1) − θj(0)) = 2π nm, (4.66)

so that m = 0.
Then, for every j,

0 < θ1(t) − ω(t) ≤ θj(t) − ω(t) ≤ θn(t) − ω(t) < 2π, (4.67)

so that, setting βs(t) = ei sω(t) Z(t), we are done. �

Theorem 4.18. In any dimension, the function Φ(x) = |x| 2−n
2 In−2

4
(π |x|2) intro-

duced in (3.22) lies in A(n). The K-transform of Φ is analytic on the part of Σ(n)

lying above Σ\∆.

Proof. We shall assume n ≥ 2, since the one-dimensional case has already been

treated. From [17, p. 84], setting Cn = 2
2−n

4 π
n
4 −1

Γ( n
4 ) , one has

Φ(x) = Cn

∫ 1

−1

e−π|x|2t (1 − t2)
n
4 −1 dt. (4.68)

Definition 4.1 implies that, for σ � 0, (QΦ)0(σ) is well defined (while the odd
Q-transform of Φ is zero) and that

(QΦ)0(σ) = Cn

∫ 1

−1

(1 − t2)
n
4 −1 dt

∫
Rn

e−π〈σx,x〉 eiπt |x|2 dx

= Cn

∫ 1

−1

(1 − t2)
n
4 −1 [det (σ − it)]−

1
2 dt

= Cn

∫ π
2

−π
2

cos
n−2

2 ω
∏
j

(σj − i sin ω)−
1
2 dω (4.69)

if {σ1, . . . , σn} is the set of (positive) eigenvalues of σ. Moving to the half-circle
γ from −i to i on the right of 0, one can write

(QΦ)0(σ) =
2 Cn

i

∫
γ

(1 + z2)
n−2

2

∏
j

(1 + 2σj z − z2)−
1
2 dz : (4.70)

it is understood (recalling that, for the time being, σj > 0 for every j) that, when
z ∈ γ, the arguments of 1+z2 and 1+2σj z−z2 are to be taken in ]− π

2 , π
2 [. After

a change of contour, made possible since, under the present assumptions regarding
σ, the zeros of 1 + 2σj z − z2 can only lie outside the strip 0 ≤ Re z ≤ 1, one
may transform the hyperelliptic integral above to

(QΦ)0(σ) = 2 Cn

∫ 1

−1

(1 − t2)
n−2

2

∏
j

(1 + 2i σj t + t2)−
1
2 dt. (4.71)
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This equation shows that the function σ �→ (QΦ)0(σ), initially defined for σ ∈ Γn,
extends as an analytic function on Symn, even as a holomorphic function on the
open subset of SymC

n consisting of matrices such that no eigenvalue σj of σ
should lie in the union of the closed half-lines from i to i∞ and from −i to
−i∞. At the same time, the last equation shows that (QΦ)0(−σ) = (QΦ)0(σ)
for all σ.

If Z = (σ− i I)(σ + i I)−1 is the image of σ ∈ Symn under the Cayley map,
the definition of the function (KΦ)0 given in Theorem 4.11 yields

(KΦ)0(Z) = |det (I − Z)|− 1
2 (QΦ)0(σ)

= 2−
n
2 (det (I + σ2))

1
4 (QΦ)0(σ), (4.72)

and the equation (4.71) provides a definition of the function (KΦ)0 as an analytic
function on the image Σreg of the Cayley map.

Next, we show that the function (KΦ)0 takes the same value at any pair
of matrices Z and eiφ Z, assuming that both matrices lie in the open set Σreg.
To do this, we go back to the expression in the middle of (4.69) of (QΦ)0(σ)
and transform it further, under the renewed assumption that σ ∈ Γn, setting
sinω = tanh ξ so that

(QΦ)0(σ) = Cn

∫ ∞

−∞

∏
j

(σj cosh ξ − i sinh ξ)−
1
2 dξ : (4.73)

since σj = cotan θj

2 if {e−iθ1 , . . . , e−iθn} is the set of eigenvalues of the Cayley
image Z of σ, one can write, provided that 0 < θj < π for all j,

(KΦ)0(Z) = 2−
n
2

∏
j

(sin
θj

2
)−

1
2 Cn

∫ ∞

−∞

∏
j

(
cosh ξ cotan

θj

2
− i sinh ξ

)− 1
2

dξ

= 2−
n
2 Cn

∫ ∞

−∞

∏
j

(
cosh

(
ξ − i θj

2

))− 1
2

dξ. (4.74)

Obviously, the last formula remains valid whenever −π < θj < π for every j.
On the other hand, a change of contour of integration ξ �→ ξ − i φ

2 is possible
provided that all numbers θj + φ remain in the interval ]− π, π[ as well, leading
to the required invariance. In particular, in the case when θj ∈]0, π[ for every j,
one may also write

(KΦ)0(Z) = 2−
n
2 Cn

∫ ∞

−∞

∏
j

(
cosh

(
ξ − i (θj − π)

2

))− 1
2

dξ : (4.75)

this last equation is actually valid under the sole assumption that θj ∈]0, 2π[ for
every j, thus provides an explicit integral expression of (KΦ)0 to the whole of Σreg.
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We now need to continue analytically the function (KΦ)0 from this open
dense subset of Σ to the part of the universal cover Σ(∞) of Σ lying above Σ\∆,
and to show that the resulting function is invariant under the covering map of the
identity of degree n. For the first part, we have to show that if two continuous
loops γ1 and γ2 within Σ\∆ are homotopic as loops within Σ, the analytic
continuation of (KΦ)0 along either loop ends up with the same final value. It
is no loss of generality to assume that the initial point Z0 of the loops under
consideration lies in Σreg. These two loops do not, generally, define the same
element of π1 (Σ\∆, Z0): however, there exists a loop β0 at Z0, within Σ\∆,
such that γ2 ∼ β0 γ1, where the right-hand side denotes the composition of loops
[20, p. 60]: of course, since γ1 and γ2 are homotopic as loops in Σ, the first factor
β0 is homotopically trivial as a loop in Σ. What has to be shown is that the
continuation of the function (KΦ)0 along such a loop yields the same value at the
initial and final points. Taking advantage of Lemma 4.17, we may substitute for
the loop β0 the loop β1 as introduced there: since the equation (4.75) provides a
global definition of (KΦ)0 in Σreg, it is clear that, continuing this function along
β1, one will reach the same value at the two endpoints.

Finally, the element of π1 (Σ, Z0) associated with the loop t �→ e2iπ t Z0, 0 ≤
t ≤ 1, is n times the canonical generator of this fundamental group: again, (KΦ)0
remains constant along any such loop.

The proof of Theorem 4.18 is over. Let us emphasize again, however, that
when restricted to Σreg, the function under study is analytic everywhere, without
our having to exclude the points of ∆: this is what made it possible to avoid the
very complicated discussion of the fundamental group of Σ\∆. Unless n = 1, the
continuation of (KΦ)0 to Σ(n) will have genuine singularities at some points of
this space lying above ∆. The following theorem will make matters especially clear
in this respect. �

Theorem 4.19. Assume that n = 2. When Z ∈ Σreg, denoting the eigenvalues of
Z as e−iθ1 and e−iθ2 with θ1 and θ2 in ]0, 2π[, one has

(KΦ)0(Z) =
1

2 cos θ1−θ2
4

2F1

(
1
2
,

1
2

; 1 ; − tan2 θ1 − θ2

4

)
. (4.76)

If Z# ∈ Σ(2) lies above the matrix Z just introduced but Z# �= Z (i.e., Z# lies
in the other sheet of the twofold cover of Σ), and under the additional assumption
that Z /∈ ∆, one has

(KΦ)0(Z#) =
1

2 | sin θ1−θ2
4 | 2F1

(
1
2
,

1
2

; 1 ; −cotan 2 θ1 − θ2

4

)
. (4.77)

Proof. The beginning of the computation is valid in any dimension. We temporar-
ily assume again that Z ∈ Σ has the eigenvalues e−iθj with 0 < θj < π. Starting
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from (4.73), one may write

(QΦ)0(σ) = Cn

∫ ∞

−∞
dξ
∏
j

∫ ∞

0

exp (−πtj (σj cosh ξ − i sinh ξ)) t
− 1

2
j dtj : (4.78)

using [17, p. 86], this can be written as

(QΦ)0(σ) = 2Cn

∫
Rn

+

(∏
tj

)− 1
2

K0

(
π
√

(
∑

tj)2 + (
∑

tj σj)2
)

dt. (4.79)

As seen after changing tj to τj tj in the integral that precedes, one has

(Qinv Φ)0(τ) : = (det τ)−
1
2 (QΦ)0(τ−1)

= (QΦ)0(τ), (4.80)

an equation to be used later.
Using (4.72) and performing in the integral (4.79) the change of variables

tj �→ tj sin θj

2 , one gets the final expression

(KΦ)0(Z) = 2
2−n

2 Cn

∫
Rn

+

(∏
tj

)− 1
2

K0

(
π

∣∣∣∣ ∑ tj e
iθj
2

∣∣∣∣ ) dt, (4.81)

an expression obviously valid whenever θj ∈] − π, π[ for every j.
We now specialize to the two-dimensional case, in which one can compute

(KΦ)0(Z) explicitly. Setting φ = θ1−θ2
2 and assuming max (|θ1|, |θ2|) < π, one

has

(KΦ)0(Z) =
1
π

∫ ∞

0

∫ ∞

0

K0

(
π
√

t21 + 2 t1t2 cos φ + t22

)
dt1 dt2√

t1t2
. (4.82)

Using the new variables t = t1−t2
2 ∈ R, r = 4 t1t2

(t1−t2)2
> 0, so that dt1 dt2√

t1t2
=

dt dr√
r(1+r)

, one finds

(KΦ)0(Z) =
1
π

∫ ∞

0

dr√
r(1 + r)

∫ ∞

−∞
K0

(
2π |t|

√
1 + r cos2

φ

2

)
dt

=
1
2π

∫ ∞

0

dr√
r(1 + r)(1 + r cos2 φ

2 )
(4.83)

or, performing the new change of variable x = 1
1+r and using [17, p. 54] the

integral representation of the hypergeometric function,

(KΦ)0(Z) =
1

2π cos φ
2

∫ 1

0

x− 1
2 (1 − x)−

1
2

(
1 + x tan2 φ

2

)− 1
2

dx

=
1

2 cos θ1−θ2
4

2F1

(
1
2
,

1
2

; 1 ; − tan2 θ1 − θ2

4

)
: (4.84)

this proves the equation (4.76).
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To compute (KΦ)0(Z#) in the case when Z# is a point above Σ\∆ in the
other sheet of Σ(2), we must use analytic continuation. With θ1 and θ2 distinct
and both in ]0, 2π[, we may assume that θ2 < θ1 < θ2 + π, since this can be
relaxed later, using analytic continuation; it is no loss of generality to assume that,
simply, Z =

(
e−iθ1 0

0 e−iθ2

)
. In the computation that follows, it is handy, taking

advantage of the invariance of the function (KΦ)0 under rotations Z �→ ei φ Z,
to set θ2 = 0: of course, one then does not have Z ∈ Σreg any longer, since
one of the two eigenvalues of Z becomes 1, and the matrix

(
e−iθ1 0

0 1

)
must be

interpreted as the point of Σ(2) which is the limit, as ε > 0 goes to 0, of the
matrix

(
e−i (θ1+ε) 0

0 e−i (θ2+ε)

)
. One can now make explicit a loop in Σ at Z, with an

image contained in Σ\∆, the class of which will be a generator of the fundamental
group of Σ at Z. This is the loop t �→ Z(t) defined as

Z(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ (1−4t) cos
θ1
2 −i sin

θ1
2

(1−4t) cos
θ1
2 +i sin

θ1
2

0

0 1

⎞⎠ if t ∈ [0, 1
2 ],

exp i θ1

(
3−4t

√
(2t−1)(2−2t)√

(2t−1)(2−2t) 0

)
if t ∈ [ 12 1].

(4.85)

Note that Z(1
2 ) =

(
eiθ1 0
0 1

)
. The first half of the path is the limit, as ε → 0,

of a path that lies entirely in Σreg (it is given explicitly, with a small abuse of
language, as the Cayley map of the path t �→

(
(1−4t) cotan

θ1
2 0

0 +∞

)
, where it is

essential to distinguish the entries +∞ and −∞ in the lower-right corner, which
would correspond to the same point of Σ but not to the same point of Σ(2)).
Along this path, the pair of arguments of the eigenvalues of Z(t) moves from
(−θ1, 0) to (−(2π − θ1), 0): consequently, the logarithm of detZ(t) moves from
−i θ1 to −i (2π − θ1). On the other hand, the trace i θ1 (3 − 4t) of the matrix in
the exponent of the definition of the second part of the path t �→ Z(t) decreases
by 2i θ as t goes from 1

2 to 1 so that, at t = 1, log det Z(t) reaches the value
−i (θ1 + 2π). Thus, the loop under examination indeed defines a generator of the
fundamental group π1(Σ, Z(0)).

Following up the function (KΦ)0 along the first half of the loop is easy, as
this path almost lies in Σreg: one simply has to perform the change θ1 �→ 2π − θ1

in (4.75), replacing also the ambiguous factor (cosh (ξ + i π
2 ))−

1
2 by the value

| sinh ξ|− 1
2 e−

iπ
4 sign ξ obtained by the limiting process as ε > 0 goes to 0. On

the other hand, the eigenvalues of the matrix
(

3−4t
√

(2t−1)(2−2t)√
(2t−1)(2−2t) 0

)
are

the numbers 2 − 2t and 1 − 2t: consequently, for 1
2 ≤ t ≤ 1, the eigenvalues

of the matrix Z(t) are the numbers eiθ1 (2−2t) and eiθ1 (1−2t). From what has
been said above concerning the first part of the loop, the pair of arguments of the
eigenvalues of Z(1

2 ) must be set at the values θ1 − 2π and 0 ; for 1
2 ≤ t ≤ 1, the

arguments relative to Z(t) must thus be set at the pair of values θ1 (2− 2t)− 2π
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and θ1 (1−2t), ending up at t = 1 with the pair of arguments (−2π, −θ1). Moving
along the loop t �→ Z(t) thus calls for substituting the pair (2π, θ1) for the pair
(θ1, 0). This finally leads to the equation (4.77) if one uses again the invariance of
the function (KΦ)0 under the map Z �→ e−i θ2 Z, which concludes the proof of
Theorem 4.19. �

One should note that, after it has been extended to the part of Σ(2) above
Σ\∆, the function (KΦ)0 is singular exactly on the closure of the set of points
above Σreg ∩ ∆ not in Σreg. Thus, the pullback in Σ(2) of ∆ ⊂ Σ is the disjoint
union of two circles, one of which is the exact singular set of this function.

To have some idea of the size and nature of the singularity, let us revert, in
the case when Z� lies in the second sheet of Σ(2), to coordinates relative to the
point σ ∈ Sym2 of which Z is the Cayley transform. We may set σ =

( p+q r
r p−q

)
:

then the determinant and trace of σ are p2−q2−r2 and 2p, and the discriminant
of the characteristic polynomial of σ is

disc (σ) = (σ1 − σ2)2 = 4 (q2 + r2). (4.86)

Still denoting as e−iθ1 and e−iθ2 the eigenvalues of Z one has

e−i (θ1−θ2) =
(σ1 − i) (σ2 + i)
(σ1 + i) (σ2 − i)

=
[1 + σ1 σ2 + i (σ1 − σ2)]2

(1 + σ2
1) (1 + σ2

2)
, (4.87)

so that

sin2 θ1 − θ2

2
=

disc (σ)
(1 + σ2

1) (1 + σ2
2)

=
4 (q2 + r2)

4 p2 + (1 − p2 + q2 + r2)2
, (4.88)

a quantity equivalent to disc (σ)
(1+p2)2 as disc (σ) → 0: note that this condition just

means of course that σ approaches ∆. If such is the case, we set x = cotan 2 θ1−θ2
4 ,

an expression which goes to infinity just like

1 + x =
1

sin2 θ1−θ2
4

∼ 4
sin2 θ1−θ2

2

∼ [4 + (tr σ)2]2

disc (σ)
. (4.89)

Finally, in view of the expansion [17, p. 48] of the hypergeometric function
at the argument −x with x > 1, one finds

(KΦ)0(Z�) =
1

2π2
(1 + x−1)

1
2

∞∑
m=0

(
Γ(m + 1

2 )
m !

)2

×
[
log x − ψ

(
m +

1
2

)
− ψ

(
1
2
− m

)
+ 2 ψ(m + 1)

]
(−x)−m, (4.90)

where ψ is the logarithmic derivative of the Gamma function. Thus, the size of
the singularity is that of the logarithm of disc (σ).
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5 The n-dimensional anaplectic representation

We here define and study the anaplectic representation of the group Sp(n)(n, R)
in the space A(n). Given u ∈ A(n), it will not be possible to define Ana(g)u for
every g ∈ Sp(n)(n, R), only for all g in some open dense subset of that group,
depending on u.

Let us comment briefly on this point, lest it should unduly worry the reader
and lead him to conclude that this disqualifies the object under study as a genuine
representation. Indeed, one may also regard the anaplectic representation as a
homomorphism into a group of only partially defined operators. In this way, this
is not too different from the case with more usual representations, for instance
the metaplectic representation. Consider the one-dimensional function x �→ e2iπx

and its transform under the metaplectic transformation associated with one of the
two points above some matrix g ∈ SL(2, R); let g = nak be the decomposition
of g associated with the usual Iwasawa decomposition G = NAK of the group
G = SL(2, R). Then, the transform under study will be an (analytic) function
on the real line for every g except for those such that k = ±

(
0 1−1 0

)
, since

the corresponding metaplectic transformation is either e−
iπ
4 F or e

iπ
4 F−1. Of

course, the answer to the difficulty (in the metaplectic case) lies in the fact that
the space of all analytic functions on the line is not a well-chosen one. The genuine
difficulty with the anaplectic representation is a “topological” one, and is linked
to the fact that it is not unitarizable: cf. Section 8, however, for steps towards
the construction of some appropriate pseudoscalar product. The constructions in
the present section rely on elementary algebraic geometry, not on Hilbert space
methods. It is clear, however, that at some point, it will be necessary to give a
characterization of appropriate spaces of analytic functions, or analytic functionals,
on Rn, with a more controlled behavior, by means of corresponding properties
of their K-transforms: Remark 5.2 below at least gives some indication in this
direction.

We must also emphasize the fact that our aim is not to construct the anaplec-
tic representation as an abstract one, i.e., up to equivalence. The space on which
it operates has to be realized as a space of functions on Rn, in a way which makes
the anaplectic representation and the Heisenberg representation act in a coherent
way.

That the anaplectic representation should be more singular than the meta-
plectic representation can be traced to several reasons, one of which has to do with
the fact that, corresponding to any “energy level” of the anaplectic harmonic os-
cillator, there is (unless n = 1) an infinite-dimensional eigenspace: contrary to the
ground state of the usual harmonic oscillator, which is invariant under all trans-
formations in the image, under the metaplectic representation, of the maximal
compact subgroup (isomorphic to U(n)) of the metaplectic group S̃p(n, R), the
median state Φ of the anaplectic harmonic oscillator is only invariant under the
action of the subgroup of Sp(n)(n, R) above the much smaller group O(n). This
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is the crux of the matter since, as will be seen, Φ does not admit partial anaplec-
tic Fourier transforms in any obvious sense, only a global one: in contrast, the
standard Gaussian function is invariant under all partial Fourier transformations.

We first recall from Corollary 4.10 that the partially defined action of the
symplectic group Sp (n, R) on Symn, as given just before Lemma 4.6, extends as
an analytic, fully regular action on Σ: one may also lift this as an action of the
group Sp(n) (n, R) on Σ(n). Set(

α β
β̄ ᾱ

)
= 2−

1
2

(
I i I
i I I

)
.

(
A B
C D

)
. 2−

1
2

(
I −i I

−i I I

)
, (5.1)

i.e.,

α =
1
2

(A − i B + i C + D), β =
1
2

(−i A + B + C + i D) : (5.2)

since ( A B
C D )−1 =

(
D′ −B′

−C′ A′

)
, one has

(
α β
β̄ ᾱ

)−1

=
(

ᾱ′ −β′

−β̄′ α′

)
, so that

α ᾱ′ − β β̄′ = I, −α β′ + β α′ = 0 (5.3)

or, equivalently,
ᾱ′ α − β′ β̄ = I, ᾱ′ β − β′ ᾱ = 0. (5.4)

With the help of Proposition 4.7 and Lemma 4.9, one may check that the action
(g, Z) �→ [g] (Z) of Sp (n, R) on Σ is given by the equation

[g−1] (Z) = (i β′ + ᾱ′ Z) (α′ − i β̄′ Z)−1. (5.5)

Exercising care, one may also denote as [g−1] the analytic homeomorphism of Σ(n)

associated with some element g−1 of Sp(n)(n, R) in conformity with Corollary
4.10.

The aim of the present section is to prove the existence of a representation
g �→ Ana (g) of the group Sp(n) (n, R) in the linear space A(n), characterized by
the equations, where Z stands for a point of Σ(n) not in the image under [g] of
the singular set of the K-transforms of u ∈ A(n),

(KAna (g)u)0(Z) =
(

[g−1]∗ dµ

dµ
(Z)

) 1
2(n+1)

(K u)0([g−1] (Z)),

(KAna (g)u)1(Z) =
(

[g−1]∗ dµ

dµ
(Z)

) 1
2(n+1)

×
[
α − i β ([g−1] (Z))−1

]
. (K u)1([g−1] (Z)) : (5.6)

note that, in the matrix α− i β ([g−1] (Z))−1 on the second line, and contrary to
its occurrence elsewhere in these two equations, [g−1] (Z) must be interpreted as
a point of Σ rather than Σ(n): in this section, we decided against the too heavy
notation Z# used elsewhere to distinguish such a point of Σ(n) from its projection
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Z in Σ. In the case when g reduces to the matrix
(

A 0
0 A′−1

)
with detA > 0 (resp.

( I 0
C I )), we shall be led to defining Ana (g) as one of the two transformations u �→ v

or u �→ w that occurred in Theorem 4.13: that the formulas above are correct in
this case will be checked in the proof of Theorem 5.10. In general, for a given g,
Ana (g)u will be defined only under some assumption relative to the singular set
of K u. Let us refer the reader to the beginning of this section for a discussion of
this point.

We now start the work necessary towards the completion of the announced
result: essentially, we need to construct the anaplectic Fourier transformation and
see its connection with the Heisenberg representation. First, we consider the op-
erator Θ connecting functions on some part of Symn to functions on some part
of Σ, defined as in Theorem 4.11 by the equation

(Θ w)(Z) = |det (I − Z)|− 1
2 w

(
i
I + Z

I − Z

)
: (5.7)

when using this operator, it will always be tacitly assumed that Z lies in the image,
under the Cayley transform, of the set of matrices σ ∈ Symn with σ − R I � 0
for some large R.

But first, we must fix the notation concerning a non-redundant set of coor-
dinates on the linear space Symn. If σ = (σjk)1≤j,k≤n, we set σ(jj) = σjj and, if
j �= k, σ(jk) = 2 σjk: thus, whether j �= k or not, σ(jk) is thought of as depending
on the unordered pair (j, k). In this way, we get coordinates on Symn, and we
note the equations

∂

∂σ(jk)
〈σx, x 〉 = xj xk,

∂

∂xk
〈σx, x 〉 = 2

∑
j

σjk xj . (5.8)

Lemma 5.1. Given j, � with 1 ≤ j, � ≤ n, let τ j� be the symmetric matrix such
that 〈τ j� x, x〉 = xj x� for all x ∈ Rn. One has for every C1 function w on
Symn the equation

Θ
(

∂w

∂σ(j�)

)
= D(j�) Θ w, (5.9)

where, denoting as V j�
Z the matrix

V j�
Z =

1
2i

(I − Z) τ j� (I − Z), (5.10)

one has

D(j�) = ∇V j	
Z

− 1
2

Re Tr ((I − Z)−1 V j�
Z )

= ∇V j	
Z

− 1
4

Im (I − Z)j� : (5.11)

the operator ∇V j	
Z

denotes the first-order derivative along the vector V j�
Z , tangent

to Σ(n) at Z.
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Proof. Let us abbreviate as τ the matrix τ j�. Using (4.50) and (4.36), we obtain

Θ (
∂w

∂σ(j�)
) =

d

dt
∣∣∣∣
t=0

[ ∣∣∣∣ det (I − ht(Z))
det (I − Z)

∣∣∣∣ 12 w(ht(Z))

]
(5.12)

with

ht(Z) = (2i I − t τ)
[

t τ

2i I − t τ
+ Z

] [
I − t τ

2i I + t τ
Z

]−1

(2i I + t τ)−1. (5.13)

Here, the analytic transformation ht can be regarded just as well as an
analytic automorphism of Σ or Σ(n), as explained in Corollary 4.10. Of course,
h0(Z) = Z, and we note that

V j�
Z : =

d

dt
∣∣∣∣

t=0

ht(Z) =
1
2i

(I − Z) τ j� (I − Z) : (5.14)

for safety, one may check that this is, as it should be, a vector tangent to Σ or
Σ(n) at Z since it is a symmetric matrix and its image under the multiplication
on the left by Z−1 is indeed antihermitian. On the other hand,

d

dt
∣∣∣∣

t=0

∣∣∣∣ det (I − ht(Z))
det (I − Z)

∣∣∣∣ 12 =
d

dt
∣∣∣∣

t=0

∣∣∣∣ det (I − t (I − Z)−1 V j�
Z )

∣∣∣∣ 12

= −1
2

Re Tr ((I − Z)−1 V j�
Z ). (5.15)

We also note, using the equation

(τ j�)rs =
1
2

(δjrδls + δjsδlr) (5.16)

for the entries of the matrix τ j�, that the vector (I − Z)−1 V j�
Z = 1

2i τ j� (I − Z)
satisfies

Tr ((I − Z)−1 V j�
Z ) = − i

2
(I − Z)j�. (5.17)

�

Remark 5.1. With the differential operator D(j�), we have the first instance of a
situation that will (fortunately) recur in the present section: the coefficients of this
operator are analytic functions defined on the whole of Σ. Therefore, there will be
no difficulty when the need arises to let such an operator act on functions defined
on some open subset of Σ or of any covering space of Σ.

Proposition 5.2. If u lies in A(n), so does Q� u = x� u for every � = 1, . . . , n.
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Proof. As an immediate consequence of Definition 4.1, one has if σ−R I � 0 with
R large enough

(Q (x� u))0(σ) = e−
iπ
4 ((I + i σ)−1 (Qu)1(σ))(�) (5.18)

(the �th component of the vector-valued function on the right-hand side): in other
words

(Q (x� u))0(σ) == e−
iπ
4

∑
k

(I + i σ)−1
�k (Qu)(k)

1 (σ)), (5.19)

denoting as (I + i σ)−1
�k the (�k)th entry of the matrix (I + i σ)−1. Also, using the

first of the two equations (5.8), one finds

(Q (x� u))1(σ) = −e−
iπ
4

π
(I + i σ) (Ru)(σ), (5.20)

where Ru is the vector-valued function such that

(Ru)(j)(σ) =
∂

∂σ(j�)
(Qu)0(σ), (5.21)

in other words

(Q (x� u))(j)(σ) = −e−
iπ
4

π

∑
k

(I + i σ)jk
∂

∂σ(k�)
(Qu)0(σ). (5.22)

According to Lemma 5.1, one has

(K (x� u))(j)(Z) = −e−
iπ
4

π

∑
k

(
− 2Z

I − Z

)
jk

D(k�) (K u)0(Z), (5.23)

and what remains to be done is showing that, for every r, the coefficients of the
operator

∑
k(I−Z)−1

rk D(k�) extend as analytic functions on Σ: indeed, when this
has been done, the equation just found, linking two functions defined in some part
of Σ, will automatically provide an extension of the left-hand side to the connected
dense open subset of Σ(n) where the right-hand side is defined and analytic.

In the operator under study, there is a scalar term
∑

k(I − Z)−1
rk (I − Z)k�

which has obviously no singularity on Σ, and a first-order operator which is the
derivative along the vector

∑
k(I −Z)−1

rk V k�
Z : this latter operator is obtained just

like the first-order part of the operator in (5.11), except for the fact that the matrix
τ j� ∈ Symn must be replaced by the matrix∑

k

(I − Z)−1
rk τk� =

1
2
[
E�r (I − Z)−1 + (I − Z)−1 Er�

]
, (5.24)

where E�r is the matrix with a 1 at the place indicated and zeros elsewhere: the
extra matrix I − Z which occurs on both sides in the right-hand side of (5.10)
is exactly what is needed so that this vector, when viewed in the Z-coordinates,
should become extendable as an analytic function on the whole of Σ, which finally
proves that Qk u lies in A(n). �
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Proposition 5.3. If u lies in A(n), so does P� u = 1
2iπ

∂
∂x	

u for every � = 1, . . . , n.

Proof. Using (4.1), an integration by parts and (5.8), we find

(Q (P� u))0(σ) = e−
iπ
4

∑
k

σ�k

∫
Rn

xk e−π 〈σ x,x〉 u(x e−
iπ
4 ) dx

= e−
iπ
4

(
σ

I + i σ
(Qu)1

)(�)

(σ), (5.25)

the �th component of the vector-valued function e−
iπ
4 σ (I + i σ)−1 (Qu)1(σ). On

the other hand,

(Q (P� u))(j)1 (σ) =
e−

iπ
4

2π

∫
Rn

(xj + i
∑

k

σjk xk) e−π 〈σ x,x〉 ∂

∂x�
(u(x e−

iπ
4 )) dx

=
e−

iπ
4

2π

∫
Rn

e−π 〈σ x,x〉 (u(x e−
iπ
4 ))

×
[
2π (xj + i

∑
k

σjk xk)
∑

r

σ�r xr − δj� − i σj�

]
dx, (5.26)

which may also be written, using (5.8) again, as

(Q(P�u))(j)1 (σ)=−e−
iπ
4

2π

[
2
∑

r

σ�r(
∂

∂σ(jr)
+ i
∑

k

σjk
∂

∂σ(kr)
)+δj� + iσj�

]
(Qu)0(σ).

(5.27)

We must study the transfer, under the operator Θ defined in (5.7), of the operators

Lj� = 2
∑

r

σ�r
∂

∂σ(jr)
+ δj�,

Mj� = 2
∑
kr

σ�r σjk
∂

∂σ(kr)
+ (σj�), (5.28)

where (σj�) stands for the corresponding operator of multiplication. Since the first
one is much easier to study than the second, we concentrate on the latter one. The
operator M (j�) = Θ Mj� Θ−1, expresses itself, as a consequence of Lemma 5.1, as

M (j�) = 2∇Xj	
Z
− Im β(Z) +

(
i
I + Z

I − Z

)
j�

(5.29)

with

Xj�
Z =

∑
kr

(
i
I + Z

I − Z

)
�r

(
i
I + Z

I − Z

)
jk

V kr
Z ,

β(Z) =
1
2

∑
kr

(
i
I + Z

I − Z

)
�r

(
i
I + Z

I − Z

)
jk

(I − Z)kr, (5.30)
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and we must show that the coefficients of the operator M (j�) extend as analytic
functions on Σ: again, the whole difficulty lies in the presence of coefficients of the
matrix (I − Z)−1.

First, using (5.16), we find that the linear combination

Aj� : =
∑
kr

(
i
I + Z

I − Z

)
jk

τkr

(
i
I + Z

I − Z

)
�r

(5.31)

has its entries given by the formula

(Aj�)pq =
1
2

[(
i
I + Z

I − Z

)
jp

(
i
I + Z

I − Z

)
q�

(
i
I + Z

I − Z

)
jq

(
i
I + Z

I − Z

)
p�

]
: (5.32)

it follows that the entries of the matrix

Xj�
Z =

1
2i

(I − Z)Aj� (I − Z) (5.33)

are given as

(Xj�
Z )rs =

i

4
[(I + Z)jr (I + Z)�s + (I + Z)js (I + Z)�r ] (5.34)

and, consequently, extend as analytic functions on Σ. Next, we write

β(Z) =
1
2

∑
r

(
i
I + Z

I − Z

)
�r

(i (I + Z))jr,

i

2

(
i
I + Z

I − Z
. (2 I − (I − Z))

)
�j

= i

(
i
I + Z

I − Z

)
�j

+
1
2

(I + Z)�j : (5.35)

remembering that the matrix i I+Z
I−Z is real – it is the inverse Cayley transform of

Z – we finally get

Im β(Z) =
(

i
I + Z

I − Z

)
�j

+
1
2

Im (I + Z)�j : (5.36)

therefore, the first term on the right-hand side will just annihilate, in (5.29), the
last singular term in the same equation; the remaining term 1

2 Im (I + Z)�j does
extend analytically to the whole of Σ. �

Corollary 5.4. All anaplectic Hermite functions lie in A(n).

Proof. This follows from Definition 3.2 and the last two propositions. �
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Theorem 5.5. Let u ∈ A(n). For every η ∈ Cn, the function uη defined as uη(x) =
u(x) e−2iπ 〈η,x〉 lies in A(n).

Proof. For σ ∈ Symn with σ − R I � 0 with R large enough, one has

(Quη)0(σ) =
∫

Rn

e−π 〈σx,x〉 exp (− 2π e
iπ
4 〈η, x〉) u(x e−

iπ
4 ) dx,

=
∫

Rn

e−π 〈σx,x〉 ∑
α∈Nn

(−2π e
iπ
4 η)α

α !
xα u(x e−

iπ
4 ) dx. (5.37)

Given any multi-index α = (α1, . . . , αn) ∈ Nn with an even length |α|, denote
as [α

2 ] the multi-index β ∈ Nn such that βj = [αj

2 ] for all j: then α = 2 [α
2 ] + γ

for some multi-index γ all components of which are 0 or 1, which we split as a
sum of multi-indices of length 2 in an arbitrary way. The first of the two equations
(5.8) then makes it possible to associate to each multi-index α ∈ Nn with an even
length a multi-index α̃ ∈ N

n(n+1)
2 with the following properties:

xα e−π〈σx,x〉 =
(
− 1

π

∂

∂σ

)α̃

e−π〈σx,x〉, |α̃| =
1
2
|α| and α̃ ! =

[α
2

]
! .

(5.38)
We must now check that the K-transforms of uη satisfy the hypotheses of

Definition 4.12. It is convenient, to that effect, to split u into its even and odd parts
and examine its K-transforms one at a time. So far as estimates are concerned,
we shall concentrate on the study of (K u)0 under the assumption that u is even:
the complications related to the study of the three other types of K-transforms
are of an inessential nature, only calling for the consideration of multi-indices of
possibly odd length rather than even, in which case another appeal to Proposition
5.2 may be needed. From Lemma 5.1, we get the identity

(K (xj x� u))0(Z) =
i

π
D(j�) (K u)0(Z) (5.39)

with D(j�) as defined there. Starting from (5.37), and noting that, from their
definition in Lemma 5.1, the operators D(j�) commute pairwise, we find, with α̃
as introduced in (5.38),

(K uη)0(Z) =
∑

α∈N
n

|α| even

(2π
1
2 e−

iπ
4 η)α

α !
Dα̃ (K u)0(Z) : (5.40)

finally, given any compact subset of the open, dense and connected subset Ω of
Σ(n) to which the K-transforms of u extend as analytic functions, there is some
constant C > 0 such that the estimate

| Dα̃ (K u)0(Z) | ≤
[α
2

]
! C

|α|
2 , (5.41)
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holds there, a consequence of the analyticity of the coefficients of the operator
D(j�) on the compact space Σ(n): the analyticity on Ω of the function (K uη)0
follows. �

Under the assumption that the point e±iπ I ∈ Σ(n) lies in the domain of
analyticity of the K-transforms of u, we shall exploit later the identity

Int [uη] =
∑

α∈Nn

(−2iπ η)α

α !
Int [x �→ xα u(x)], (5.42)

a consequence of (5.40) together with (5.39) and Definition 4.12: it is valid without
any assumption of parity regarding u.

Theorem 5.6. Let u ∈ A(n), satisfying the property that the point eiπ I ∈ Σ(n)

lies in the domain of analyticity of its K-transforms, and let x ∈ Rn. Setting
ux(y) = u(y) e−2iπ 〈x,y〉, so that the function ux lies in A(n) according to Theorem
5.5, we set

(Fanau)(x) = Int [ux] (5.43)

and call the transform u �→ Fanau the anaplectic Fourier transformation. The
function Fana u is well defined as an element of the space A(n). One has, for
every u ∈ A(n),

Fana

(
1

2iπ

∂u

∂xj

)
= xj (Fana u) and Fana (xj u) = − 1

2iπ

∂

∂xj
(Fana u).

(5.44)

Proof. That, for every x ∈ Cn, the function y �→ ux(y) lies in A(n) was proved in
Theorem 5.5. Then, by definition, Int [ux] = 2

n
4 (K ux)0(eiπ I), and we first prove

that, as a function of x, this is an entire function majorized by C eπR|x|2 for some
pair (C, R). Indeed, assuming, say, that u is even, we find, starting from (5.40)
and using (5.41) in the middle of the sequence that follows,

| Int [ux]| = 2
n
4

∣∣∣∣ ∑
α∈N

n

|α| even

(2π
1
2 e−

iπ
4 x)α

α !
Dα̃ (K u)0(eiπ I)

∣∣∣∣
≤ 2

n
4

∑
β∈Nn

β !
(2β) !

(4π C)|β| x2β

≤ 2
n
4 exp (4πC |x|2) : (5.45)

a similar estimate holds in the case when u is odd, using the analyticity property
of the vector-valued function (Fana u)1.

Next, we show that one has

(K (Fana u))0(Z) = (K u)0(eiπ Z),

(K (Fana u))1(Z) = −i (Ku)1(eiπ Z) : (5.46)
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one may observe at once that this amounts to a verification of (5.6) if one de-
cides that the anaplectic representation should associate the anaplectic Fourier
transformation to the matrix g =

(
0 I
−I 0

)
.

Starting from (5.42), one finds

(Fana u)(x) =
∑

α∈Nn

(−2iπ)|α|

α !
xα Int [y �→ yα u(y)]. (5.47)

We now prove the second equation (5.44). Let (j) be the multi-index of
length 1 with 1 at the jth place: from (5.47),

− 1
2iπ

∂

∂xj
(Fana u)(x) = − 1

2iπ

∑
β∈N

n

βj≥1

(−2iπ)|β|

β !
βj xβ−(j) Int [y �→ yβ u(y)] :

(5.48)
it suffices to set β = α + (j) to find the expression, again obtained from (5.47),
of (Fana (yj u))(x). The same trick works towards the proof of the first equation
(5.44).

Next, assuming σ � R I with R large, one can write (using (5.47))

(QFana u)0(σ) =
∫

Rn

e−π〈σx,x〉 (Fana u)(x e−
iπ
4 ) dx

=
∑
α

(−2iπ)|α|

α !
Int [y �→ yα u(y)]

∫
Rn

e−π〈σx,x〉 (x e−
iπ
4 )α dx

=
∑
α

(−2π e
iπ
4 )|α|

α !
Int [y �→ yα u(y)]

∫
Rn

e−π〈σx,x〉 xα dx, (5.49)

where the summability is ensured by the estimate

| Int [y �→ yα u(y)] | ≤
[α

2

]
! C

|α|
2 , (5.50)

a consequence of the definition (4.42) of the linear form Int together with (5.39)
and (5.41), and the easily proven inequality, valid when σ − R I � 0,∣∣∣∣∫

Rn

e−π〈σx,x〉 xα dx

∣∣∣∣ ≤ (π R)−
n+|α|

2

[α
2

]
!. (5.51)

The same estimates make it possible to write, under the same assumptions regard-
ing σ,

(QFana u)0(σ) = Int

[
y �→ u(y)

∑
α

(−2π e
iπ
4 y)α

α !

∫
Rn

e−π〈σx,x〉 xα dx

]

= Int
[
y �→ u(y)

∫
Rn

e−π〈σx,x〉 exp (−2π e
iπ
4 〈x, y〉) dx

]
= Int

[
y �→ u(y) (det σ)−

1
2 eiπ〈σ−1y,y〉

]
. (5.52)
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Thus, applying the definition contained in Theorem 4.11, we find, under the as-
sumption that Z lies in the domain denoted as V + there,

(KFana u)0(Z) = |det (I + Z)|− 1
2 Int

[
y �→ u(y) exp

(
π 〈(I − Z

I + Z
) y, y〉

)]
: (5.53)

we may then apply (4.53), finding as a result

(KFana u)0(Z) = |det (I + Z)|− 1
2 2

n
2 (det (I + C2))−

1
4 (K u)0

(
eiπ I − i C

I + i C

)
(5.54)

with C = 1
i

I−Z
I+Z ∈ Symn, which reduces, since then I−i C

I+i C = Z and det (I+C2) =
22n | det (I + Z) |−2, to the first of the two equations (5.46).

In order to prove the second equation, we start with a convenient expression
of (K u)1(Z) for u ∈ A(n) and Z ∈ V +: recalling (4.2), we find from (4.39) the
equation

(K u)1(Z) = |det (I − Z)|− 1
2

∫
Rn

(
− 2 Z

I − Z

)
x. exp

(
−iπ

〈(
I + Z

I − Z

)
x, x

〉)
u(x e−

iπ
4 ) dx (5.55)

or, extending, componentwise, the definition of the first Q-transform to the case
of vector-valued functions,

(K u)1(Z) = e
iπ
4

(
K
(

x �→ (− 2 Z

I − Z
)x. u(x)

))
0

(Z). (5.56)

To compute (QFana u)(j)1 (σ) according to (4.3), we have to insert, on the
second line of (5.52), the extra factor xj + i

∑
k σjk xk, which would also arise

from the application to the integral under the integral sign of the operator

− e− iπ
4

2π

[
∂

∂yj
+ i

∑
k σjk

∂
∂yk

]
: with the help of (5.8), this leads to the equation

(QFana u)(j)1 (σ) = −e
iπ
4 Int

[
y �→ u(y) (detσ)−

1
2 eiπ 〈σ−1y,y〉

∑
�

(
(σ−1)j� + i

∑
k

σjk (σ−1)k�

)
y�

]
(5.57)

or

(QFana u)(j)1 (σ) = e−
iπ
4 Int

[
y �→ u(y) (detσ)−

1
2 eiπ 〈σ−1y,y〉(
yj − i

∑
�

(σ−1)j� y�

)]
(5.58)
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or finally, in vector form,

(QFanau)1(σ)=e−
iπ
4 (detσ)−

1
2 Int

[
y �→(I− iσ−1)y.u(y)eiπ〈σ−1y,y〉

]
. (5.59)

From the last equation, applying again (4.39) and (4.53), we find for Z ∈ V +

the equation

(KFana u)1(Z) = |det (I − Z)|− 1
2 (QFana u)1

(
i
I + Z

I − Z

)
= |det (I − Z)|− 1

2 e−
iπ
4

(
det i

I + Z

I − Z

)− 1
2

2
n
4 (det (I + C2))−

1
4(

K
(

y �→ 2 Z

I + Z
y. u(y)

))
0

(
eiπ I − i C

I + i C

)
, (5.60)

with C = 1
i

I−Z
I+Z ∈ Symn: finishing the computation as was done right after (5.54)

and comparing the equations (5.60) and (5.56), one sees that the second equation
(5.46) is satisfied.

The proof of Theorem 5.6 is over. It is essential, at the same time, to remark
that the identities (5.18) and (5.20) used in the proof of Proposition 5.2, together
with (5.47), show that the knowledge of the Q, or K-transforms of u ∈ A(n) entails
that of the function u itself: note that we have not characterized, as this was not
needed, the image under the pair u �→ ((Qu)0, (Qu)1) of the space A(n). �

The space A(n) is invariant under the Heisenberg representation:

Theorem 5.7. Let u ∈ A(n). For every (y, η) ∈ Cn × Cn, the functions uη : x �→
u(x) e2iπ 〈η,x〉 and vy : x �→ u(x − y) lie in A(n). The singular set of the K-
transform of vy (i.e., the complement, in Σ(n), of the open set where both K-
transforms of vy are analytic) is independent of y, and the linear form Int, when
defined, is invariant under translations.

Proof. The fact that the first function lies in A(n) was the object of Theorem 5.5:
the proof also showed that the singular set of uη is independent of η. It relied,
essentially, on the fact that the coefficients of the operators D(j�), involved in the
proof of Proposition 5.2, are analytic on the whole of Σ: the same proof will do
for the function vy, only replacing the family of operators {D(j�)} by the family
of operators {L(j�), M (j�)}, the conjugates under Θ of the operators introduced
in (5.28). The equation (5.37) must be replaced by

(Q vy)0(σ) = e−iπ 〈σa,a〉
∫

Rn

e−π 〈σx,x〉 exp (−2π e
iπ
4 〈σy, x〉) u(x e−

iπ
4 ) dx,

= e−iπ 〈σa,a〉
∫

Rn

e−π 〈σx,x〉 ∑
α∈Nn

(−2π e
iπ
4 σy)α

α !
xα u(x e−

iπ
4 ) dx :

(5.61)
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then, for Z ∈ V +, the definition given in Theorem 4.11 yields

(K vy)0(Z) =
∑

α∈N
n

|α| even

(2π
1
2 e−

iπ
4 )|α|

α !

(
i
I + Z

I − Z
. y

)α

Dα̃ (K u)0(Z), (5.62)

a sum all terms of which, except the first one, vanish at Z = eiπ I so that, applying
the definition (4.42) of the linear form Int, one sees that Int [vy] = Int [u]. To
answer a possible question, let us note that it would not have been possible to
reduce the study of the operator u �→ vy to that of the operator u �→ uη by
an application of the obvious exponentiated analogue of (5.44) because, contrary
to the definition of vy, that of Fana u demands that the point eiπ I should lie
outside the singular set of the K-transform of u. �

As a generalization of Definition 1.19, we now introduce the general anaplectic
group.

Definition 5.8. The anaplectic group Spi(n, R) is the matrix group generated by

the symplectic group together with the element (in block-form)
(
−i I 0
0 i I

)
.

We now complete our list of generators of the anaplectic representation by
the definition of the transformation R of the space A(n) that shall eventually be
associated with the above matrix.

Theorem 5.9. Set ui(z) = u(i z), z ∈ Cn. The linear map R : u �→ ui is an
automorphism of the space A(n). The K-transforms of the function ui are given
by the equations

(K ui)0(Z) = (K u)0(Z−1),

(K ui)1(Z) = i Z (K u)1(Z−1). (5.63)

Here, in its occurrence as the argument of the K-transform of u, Z−1 is defined by
means of the global analytic automorphism of Σ(n) that extends the map Z �→ Z−1

from V + to V as introduced in Theorem 4.11.

Proof. Setting u(x) =
∑

α∈Nn cα xα, one finds as a consequence of Corollary 4.3
and with the notation of the proof there of the equation, valid if σ − R I � 0 for
some large R,

(Qu)0(σ) = (detσ)−
1
2 (Qinv u)0(σ−1) = (det σ)−

1
2

∑
α∈N

n

|α| even

cα e−
iπ |α|

4 Iα(σ−1).

(5.64)

To compute (Qui)0(σ), we must substitute for the argument x e−
iπ
4 of the func-

tion u under the integral in (4.20) the new value x e
iπ
4 so that we must multiply
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Iα(σ−1) by e
iπ |α|

2 , getting

(Qui)0(σ) = (detσ)−
1
2

∑
α∈N

n

|α| even

cα e
iπ |α|

4 Iα(σ−1) (5.65)

as a result. Consequently, for Z ∈ V +, the subset of Σ or Σ(n) introduced in
Theorem 4.11,

(K u)0(Z) = |det (I − Z)|− 1
2

∑
α∈N

n

|α| even

cα e−
iπ |α|

4 Iα

(
−i

I − Z

I + Z

)
,

(K ui)0(Z) = |det (I − Z)|− 1
2

∑
α∈N

n

|α| even

cα e
iπ |α|

4 Iα

(
−i

I − Z

I + Z

)
. (5.66)

Now, changing Z to Z−1 changes −i I−Z
I+Z to its negative: since, as it follows

from the proof of Lemma 4.2, the polynomial Iα is homogeneous of degree |α|
2

in the entries of its matrix argument, one finds that the first of the two equations
(5.63) is indeed satisfied. There are two new changes to consider if interested in
the vector-valued K-transform of ui in terms of that of u. First, from (4.2),
we have to change the extra matrix I + i σ to I − i σ, which amounts, in the
transformation from (K u)1(Z) to (K ui)1(Z), to inserting the extra matrix I−i τ

I+i τ

computed at τ = i I+Z−1

I−Z−1 , i.e., the matrix −Z: next, with obvious notations, one
has xu(x e−

iπ
4 ) = e

iπ
4 (xu)(x e−

iπ
4 ) but xu(x e

iπ
4 ) = e−

iπ
4 (xu)(x e

iπ
4 ) so that

we must also insert an extra factor −i in order to get a correct formula, finally
ending up with the second equation (5.63). Considering the analytic continuation
of (K ui)0 or (K ui)1 as characterized by this pair of equations, one sees that ui

lies in the space A(n). �

Now, we note that the symplectic group is generated by the set of matrices
of the species

(
A 0
0 A′−1

)
, ( I 0

C 0 ) together with the matrix
(

0 I
−I 0

)
. Indeed, from

Lemma 4.6, any matrix g in the symplectic group decomposes there as

g =
(

A1 0
C1 A′

1
−1

) (
R S
−S R

)
=
(

A1 0
0 A′

1
−1

) (
I 0

A′
1 C1 I

) (
R S
−S R

)
(5.67)

with a matrix
(

R S
−S R

)
associated to some unitary matrix R + i S.

Next, if S is invertible,(
R S
−S R

)
=
(

S 0
R S + R S−1 R

) (
0 I
−I 0

) (
I 0

S−1 R I

)
. (5.68)

Finally, even if S is not invertible, the matrix −R sin ε + S cos ε which occurs
in the product

(
R S
−S R

) (
cos ε I − sin ε I
sin ε I cos ε I

)
is for generic values of ε. Indeed, since
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S R′ = R S′, the matrix R′ S preserves Im (R′ R), and R′ (−R sin ε + S cos ε) is
generically invertible as an endomorphism of that space; similarly, S′ (−R sin ε +
S cos ε) is an invertible endomorphism of Im (S′ S) except for a finite set of values
of ε: finally, R′ R + S′ S = I.

Remark 5.2. We have not characterized the image of A(n) under the Q or K-
transforms: still, one may note that the scalar Q-transform of any u ∈ A(n)

must lie in the kernel of every differential operator of the kind ∂
∂σ(jk)

∂
∂σ(	m)

−
∂

∂σ(j	)

∂
∂σ(km)

, as a consequence of the first equation (5.8). What we need to know,
however, is that a function u is characterized by its pair of Q or K-transforms:
obviously, it amounts to the same, in this context, to use the transforms of one
or the other species, and we shall use the first ones. Denoting, for r > 0 as
urad(r) the average of the function u on the sphere of Rn centered at the origin
with radius r, it follows from (4.1) and the elementary properties of the Laplace
transformation that if u ∈ A(n) is such that (Qu)0(σ) = 0 for all σ � R I with R
large enough, then urad is identically zero. Using Lemma 5.1 and (5.18), one sees
that, assuming also that the vector-valued Q-transform of u vanishes under the
same assumption regarding σ, the radial part of the product of u by an arbitrary
polynomial must be zero too, thus u itself must be zero.

We are now in a position to state the main result of the present section. Before
doing so, let us refer the reader again to the slight abuse of language explained
right after (5.6): in the two equations below, [g−1](Z), as an argument of the
function (K u)0 or (K u)1, denotes an element of Σ(n); but in its last occurrence
in the second equation, it denotes the corresponding element of Σ = U(n) ∩ SymC

n.
The same could be said about the occurrence of Z as an argument of the Radon–
Nikodym derivative in both formulas, though in this case it does not really matter:
for all transformations [g−1] of Σ(n) associated with elements of Sp(n)

comp(n, R) (cf.
remark following Definition 4.8) are measure-preserving.

Theorem 5.10. Let g ∈ Sp(n)(n, R) and u ∈ A(n), and assume that the point
[g−1](I), as defined as an element of Σ(n) by (5.5) together with Corollary 4.10,
does not lie in the singular set of the pair K u : = ((K u)0, (K u)1). Then, there is
a unique function v ∈ A(n) such that the pair of equations introduced in (5.6)

(K v)0(Z) =
(

[g−1]∗ dµ

dµ
(Z)

) 1
2(n+1)

(K u)0([g−1] (Z)), (5.69)

(K v)1(Z) =
(

[g−1]∗ dµ

dµ
(Z)

) 1
2(n+1) [

α − i β ([g−1] (Z))−1
]
. (K u)1([g−1] (Z))

holds. Setting v = Ana(g)u, one gets a representation by means of partially defined
operators in the following sense: if g and g1 lie in Sp(n)(n, R), if I does not lie
in the image under [g] or under [g1 g] of the singular set of K u, one has

Ana(g1)Ana(g)u = Ana(g1 g)u. (5.70)
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This representation extends as a representation of the group Sp(n)

i
(n, R), the cov-

ering of the anaplectic group generated by Sp(n)(n, R) together with the matrix(
−e

iπ
2 I 0

0 e
iπ
2 I

)
, in which the transformation associated with this matrix is the trans-

formation R introduced in Theorem 5.9.
Finally, the anaplectic representation combines with the Heisenberg represen-

tation in a way which can be characterized by the following formulas, involving the
(vector-valued) infinitesimal operators Q = (xj)1≤j≤n and P = ( 1

2iπ
∂

∂xj
)1≤j≤n

of the latter one:

Ana
(

A B
C D

)
Q Ana

((
A B
C D

)−1
)

= D′ Q − B′ P,

Ana
(

A B
C D

)
P Ana

((
A B
C D

)−1
)

= −C′ Q + A′ P. (5.71)

Proof. What is left to do is only combining results already obtained here and
there, though there is quite a number of details to check. First, if Ana(g)u is well
defined, the singular set of its K-transform is included in the image under [g] of
the singular set of the K-transform of u: the two conditions before (5.70), which
mean that Ana(g)u and Ana(g1 g)u are well defined as elements of A(n), thus
imply that the left-hand side of this equation is well defined too.

We start with the verification of (5.69) for g in some set of generators of the
group Sp(n)(n, R). If g =

(
A 0
0 A′−1

)
with detA > 0 or g = ( I 0

C I ), we are dealing
with a matrix, in the symplectic group, that connects to the identity matrix by
means of a path within a set of matrices of the same species, so that it can also, in
a canonical way, be interpreted as an element of the covering group Sp(n)(n, R),
and there are no difficulties involved in the distinction between this space and the
symplectic group itself. The image, under the anaplectic representation, of these
two matrices, is defined as

(Ana
(

A 0
0 A′−1

)
u)(x) = (det A)−

1
2 u(A−1 x),

(Ana ( I 0
C I ) u)(x) = u(x) eiπ 〈Cx,x〉 : (5.72)

we now check that the equations (5.69) are correct in this case. In the first (resp. the
second) case, we have, with the recipe provided in (5.2), (α = 1

2 (A + A′−1), β =
i
2 (A′−1 − A)) (resp. (α = I + i C

2 , β = C
2 )), which makes it immediate to check

that [g−1] coincides in the two cases under study with the transformation f
(resp. h) introduced in the third line of (4.33) or the second one of (4.37): then,
the equations concerned with the scalar K-transforms were given in (4.45) and
(4.50); finally, the extra matrix α − i β ([g−1] (Z))−1 is the same as that which
occurred in the proof of Theorem 4.13, in (4.48) or (4.52).
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Let us consider now the matrix g =
(

0 I
−I 0

)
∈ Sp(n, R): it can also be

considered as an element of Sp(n)(n, R) if one writes it, in the usual way, as
g =

(
(cos π

2 ) I (sin π
2 ) I

−(sin π
2 ) I (cos π

2 ) I

)
. We associate with it the anaplectic Fourier transforma-

tion Fana: in this case, α = −i I, β = 0, which would lead us to setting [g−1](Z) =
−Z. However, from the remark following Definition 4.8, since (det ((cos π

2 +
i sin π

2 ) I))
1
2 = e

iπn
4 , [g−1] must be regarded more properly as the automorphism

of Σ(n) such that [g−1](Z) = eiπ Z: that the equations (5.69) are correct with
this meaning are then a consequence of (5.46).

The elements of group Sp(n)(n, R) considered so far constitute a set of gen-
erators in the case when the dimension is odd. What remains to be considered, as
a consequence of (5.67) and (5.68), but only in the case when n is even, is the
case of a matrix g =

(
A 0
0 A′−1

)
with detA < 0, and orthogonal if so wished.

One can extend the definition given in (5.72), but only after one has specified a
determination of a square root of detA, which requires of course that one should
substitute for the matrix g ∈ Sp(n, R) one of the two elements of the metaplectic
group above it: since Sp(n)(n, R) is a covering of the metaplectic group when n
is even, this choice can be made within the former group. There is then a unique
choice that makes the equations (5.69) valid.

In order to prove that our present definition of Ana(g) for g in a set of gener-
ators of the group Sp(n)(n, R) extends as a representation, we can then consider in-
stead the same problem dealing, in place of functions u ∈ A(n), with pairs (ψ0, ψ1)
of functions on Σ(n) (the second one vector-valued), subject to the transformations
characterized by the pair of equations (5.69). In view of Corollary 4.10, the first
of these two equations certainly defines a group action: what remains to be done
is tracing the effect of the extra linear factor in the second equation, and checking
that it leads to the equation (5.70) too. Setting

(
α2 β2

β̄2 ᾱ2

)
=
(

α1 β1

β̄1 ᾱ1

) (
α β

β̄ ᾱ

)
, one

has to check the equation

α2 − i β2 ([(g1 g)−1](Z))−1

=
(
α1 − i β1 ([g−1

1 ](Z))−1
) (

α − i β ([(g1 g)−1](Z))−1
)

(5.73)

or, setting W = [g−1
1 ](Z), the equation

α2 − i β2 ([g−1](W ))−1

=
(
α1 − i β1 W−1

) (
α − i β ([g−1](W ))−1

)
(5.74)

or, finally, the equation

α2 (i β′ + ᾱ′ W ) − i β2 (α′ − i β̄′ W )

= (α1 − i β1 W−1) [α (i β′ + ᾱ′ W ) − i β (α′ − i β̄′ W )], (5.75)
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where the difference of the coefficients of the matrices I, W and W−1 in the two
sides are given respectively as

i (α2 β′ − β2 α′) − i α1 (α β′ − β α′) + i β1 (α ᾱ′ − β β̄′),
α2 ᾱ′ − β2 β̄′ − α1 (α ᾱ′ − β β̄′) (5.76)

and

−β(α β′ − β α′). (5.77)

Using the equations α2 = α1 α + β1 β̄, β2 = α1 β + β1 ᾱ, together with (5.3), this
is the result of a straightforward computation.

In order to extend the representation Ana as a representation of Sp(n)

i
(n, R),

we have to check that R2 = Ana
((

eiπ I 0
0 eiπ I

))
, which is obvious by the very

definition of the transform on the right-hand side, and that

R Ana
((

A B
C D

))
= Ana

((
A −B
−C D

))
R, (5.78)

say for every ( A B
C D ) ∈ Sp(n, R) close to the identity so as not to have to distin-

guish between such a matrix and its interpretation as an element of Sp(n)(n, R).
Recalling (5.63), noting that the diffeomorphism Z �→ Z−1 of Σ or Σ(n) is
measure-preserving and that, under the map ( A B

C D ) �→
(

A −B
−C D

)
, the pair (α, β)

changes to (ᾱ, −β̄), we only have to verify the equation concerned with the vector-
valued K-transforms of the two sides of (5.78), which demands checking that

i Z [α − i β (α′ − i β′ Z−1) (i β′ + ᾱ′ Z−1)−1]

= [ᾱ + i β̄ (ᾱ′ + i β′ Z) (−i β̄′ + α′ Z)−1] × i (−i β̄′ + α′ Z) (ᾱ′ + i β′ Z)−1 :
(5.79)

applying (5.3) again, this is a straightforward task.
Finally, checking (5.71) can be done by a case-by-case verification, assuming

that ( A B
C D ) reduces to

(
A 0
0 A′−1

)
, ( I 0

C I ) or the element above
(

0 I
−I 0

)
that is

associated with the anaplectic Fourier transformation: in the last case, this is just
(5.44), while in the first two cases, it follows from (5.72).

Let us note that the version of (5.71) in which the Heisenberg representation
itself, rather than its infinitesimal version, is involved, is not more difficult to
ascertain. �
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6 Comparing the anaplectic and
metaplectic representations

In the last section, we introduced the anaplectic representation and anaplectic
Fourier transformation: to familiarize ourselves with it, we shall discuss here some
matters pointing both to resemblances and differences with the usual analysis. One
question that certainly calls for an answer is the reason why partial anaplectic
Fourier transforms, or whichever transformations take their place, are so much
harder to discuss than their classical counterparts; also, combining the new analysis
with the theory of spherical harmonics, we shall bring to light the analogue of
Hecke’s theorem.

So as to really understand the profound similarity between the anaplectic
and metaplectic representations, we shall start with a realization of the latter one
in terms fully comparable to our construction of the former one: though the fact
that the metaplectic representation is conveniently described through its action on
Gaussian functions could not escape anyone interested in it [22, 12], the following
does not seem (to our knowledge) to have been written in explicit terms.

Theorem 6.1. Given u ∈ L2(Rn) set, for σ ∈ SymC

n with Re σ � 0,

(M u)0(σ) =
∫

Rn

e−π 〈σx,x〉 u(x) dx,

(M u)1(σ) =
∫

Rn

(I + i σ)x. e−π 〈σx,x〉 u(x) dx, (6.1)

a definition which should of course be compared to (4.1), (4.2). The metaplectic
representation Met of S̃p(n, R) in L2(Rn) can be traced on the M-transforms
as follows. For every element g of the metaplectic group S̃p(n, R) above some
element ( A B

C D ) of the symplectic group, there is a continuous choice of a deter-
mination of the square root of det (i B′ σ + D′) for σ ∈ SymC

n with Re σ � 0,
such that, for every u ∈ L2(Rn), the following pair of equations, to be compared
to Theorem 5.10, should hold:

(MMet (( A B
C D )) u)0(σ)

= [det (i B′ σ + D′)]−
1
2 (M u)0((A′ σ − i C′) (i B′ σ + D′)−1),

(MMet (( A B
C D )) u)1(σ)

= [det (i B′ σ + D′)]−
1
2 (I + i σ) [i B′ σ + D′ + i (A′ σ − i C′)]−1

(M u)1((A′ σ − i C′) (i B′ σ + D′)−1). (6.2)

Proof. This is much easier than the corresponding theorem concerning the anaplec-
tic representation, partly (but not only) due to the fact that we may rely on the
already known existence of the metaplectic representation. Let us recall that it is
characterized by the fact that it associates with the matrices g =

(
A 0
0 A′−1

)
with



6. Comparing the anaplectic and metaplectic representations 101

detA > 0 or g = ( I 0
C I ) the same transformations (acting this time on L2(Rn))

as those defined in (5.72), and that it associates with the matrix
(

0 I
−I 0

)
, regarded

as the value at the time t = π
2 of the block-matrix

(
cos t sin t
− sin t cos t

)
in S̃p(n, R), the

transformation e−
iπn
4 F . It then suffices to verify the following two facts: first,

by a case-by-case study, that the equations (6.2) are correct whenever ( A B
C D ) has

one of the special three forms indicated; next, that the set of equations (6.2) is
compatible with the group structure.

For what concerns the first part, only the case of the matrix
(

0 I
−I 0

)
is really

different from the corresponding analysis in the proof of Theorem 5.10. One has
the equation

(M (e−
iπn
4 F u))0(σ) = e−

iπn
4 (det σ)−

1
2 (M u)0(σ) (6.3)

and, a consequence of

F ((I + i σ)x. e−π〈σx,x〉) = (detσ)−
1
2 (I − i σ−1)x. e−π〈σ−1x,x〉, (6.4)

the equation

(M (e−
iπn
4 F u))1(σ) = e−

iπn
4 (detσ)−

1
2

I − i σ−1

I + i σ−1
(M u)1(σ), (6.5)

from which checking the pair of equations (6.2) is immediate.
For the second part, the first thing to do is of course checking that the map

(g, σ) �→ (D σ+i C) (−i B σ+A)−1, with g = ( A B
C D ), is a group action. Now this is

the conjugate by the matrix
(

0 −I
I 0

)
of the map (g, σ) �→ (Aσ−i B) (i C σ+D)−1:

that this is an action follows from the fact [16, p. 32] that it corresponds to the
usual action Z �→ (AZ + B) (C Z + D)−1 on the generalized upper half-plane
SymC

n + i Γn. The rest can be proved in just the same way as was developed, in the
anaplectic case, between (5.73) and (5.76). All that has to be done concerns the
extra linear factor that occurs in the vector-valued M-transforms, and requires
that we should check the identity

[i B′
1 σ + D′

1 + i (A′
1 σ − i C′

1)]
−1 [I + i (A′

1 σ − i C′
1) (i B′

1 σ + D′
1)

−1]

× [i B′ (A′
1 σ−i C′

1) (i B′
1 σ+D′

1)
−1 +D′+i A′ (A′

1 σ−i C′
1) (i B′

1 σ+D′
1)

−1+C′]−1

= [i (A′
2 + B′

2)σ + C′
2 + D′

2]
−1 (6.6)

if
(

A2 B2
C2 D2

)
=
(

A1 B1
C1 D1

)
( A B

C D ), a straightforward task. �

Remark 6.1. The comparison between this presentation of the metaplectic repre-
sentation and the definition, in Theorem 5.10, of the anaplectic representation,
puts forward the role of polarizations of the phase space Rn×Rn, considered only
as a linear space with a symplectic structure (an alternate non-degenerate bilinear
form denoted as (X1, X2) �→ [X1, X2]), in both constructions. In the first case (cf.
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[4, 13] in connection with theta functions, [23, p. 218] in connection with pseu-
dodifferential analysis), a complex polarization means a (linear) complex structure
characterized by an automorphism J of the phase space such that J2 = −I sat-
isfying the extra conditions that J should preserve the symplectic form and that
the symmetric bilinear form (X1, X2) �→ [J X1, X2] should be positive-definite. A
real polarization is just a Lagrangian subspace of the phase space, i.e., a maxi-
mal linear subspace on which the symplectic form vanishes identically. Now, the
set of complex polarizations is just (loc. cit.) the complex tube consisting of all
σ ∈ SymC

n with Re σ � 0, and the set of real polarizations is the space Σ of
Proposition 4.7. Thus, Theorem 6.1 (resp. 5.10) is based on the realization of a
certain space of functions on Rn as a space of vector-valued functions on the set of
complex polarizations (resp. on some finite covering of the set of real polarizations)
of the phase space.

One of the most striking differences between the metaplectic representation
and the anaplectic one (when n ≥ 2) lies in their action on the ground state
(metaplectic case) or median state (anaplectic case) of the harmonic oscillator.
For the ground state is invariant, up to phase factors of absolute value 1, under
the image by the metaplectic representation of all elements above matrices in the
compact subgroup Spcomp(n, R): it will be seen that, on the contrary, some one-
parameter subgroups of this group lead, under the anaplectic representation, to a
quite non-trivial action on the median state: this is so even though the groups under
consideration also yield operators which commute with the harmonic oscillator.
The same phenomenon holds at all energy levels of the harmonic oscillator, and
the reason for this lies in the fact that eigenspaces of this operator are finite-
dimensional in the usual case, and always infinite-dimensional in the anaplectic
analysis. For simplicity, we shall consider here only the case when the dimension
is two.

Lemma 6.2. Assume that the dimension is 2 and set

Ljk = π xj xk − 1
4π

∂2

∂xj ∂xk
, Ω =

1
i

(
x1

∂

∂x2
− x2

∂

∂x1

)
(6.7)

and recall that the (formal ) harmonic oscillator is L = L11 + L22, an operator
which commutes with Ω, and that

A∗
j = π

1
2

(
xj −

1
2π

∂

∂xj

)
, Aj = π

1
2

(
xj +

1
2π

∂

∂xj

)
. (6.8)

The only non-trivial commutation relations among the four operators A1 − i A2,
A1 + i A2, A∗

1 − i A∗
2, A∗

1 + i A∗
2, are

[A1 − i A2, A∗
1 + i A∗

2] = [A1 + i A2, A∗
1 − i A∗

2] = 2. (6.9)

One has
2 L11 = A1 A∗

1 + A∗
1 A1, 2 L22 = A2 A∗

2 + A∗
2 A2 (6.10)
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and

(A1+i A2) (A∗
1−i A∗

2) = L+1−Ω, (A1−i A2) (A∗
1+i A∗

2) = L+1+Ω : (6.11)

in particular, setting

B∗ =
1
2

(A∗
1 − i A∗

2) (A1 − i A2), B =
1
2

(A∗
1 + i A∗

2) (A1 + i A2), (6.12)

one can see that the linear space generated by the (formal) operators B, B∗ and
Ω has the structure of the Lie algebra sl(2, R) since

[Ω, B] = 2 B, [Ω, B∗] = −2 B∗, [B, B∗] = Ω. (6.13)

Proof. The straightforward computations are made somewhat easier by the use of
the complex coordinate z = x1 +i x2, so that Ω = z ∂

∂z − z̄ ∂
∂z̄ L = π |z|2− 1

π
∂2

∂z ∂z̄
and

A1 − i A2 = π
1
2

(
z̄ +

1
π

∂

∂z

)
, A1 + i A2 = π

1
2

(
z +

1
π

∂

∂z̄

)
,

A∗
1 + i A∗

2 = π
1
2

(
z − 1

π

∂

∂z̄

)
, A∗

1 − i A∗
2 = π

1
2

(
z̄ − 1

π

∂

∂z

)
. (6.14)

Using (6.9) and (6.11), one finds

B∗ B =
1
4

(L − 1 − Ω) (L + 1 + Ω), B B∗ =
1
4

(L − 1 + Ω) (L + 1 − Ω). (6.15)

�

We here interest ourselves in the restriction of the anaplectic representation
of Spcomp(2, R) to the subspace Ker L of A(2) consisting of all functions in the
kernel of the anaplectic harmonic oscillator. This question has no analogue in clas-
sical analysis, for all eigenspaces of the harmonic oscillator are finite-dimensional:
in particular that corresponding to the lowest eigenvalue is one-dimensional. Here,
all such eigenspaces are infinite-dimensional, and within the space KerL, the ac-
tion of the afore-mentioned compact group remains to be analyzed: of course, the
decomposition of this space under the action of rotations is a special case of the
study made in Section 3 – though we shall make it even more explicit in this case
– and what is left is analyzing the group generated by an operator such as L11,
i.e., in some sense, the group t �→ exp (it L11). Of course, no Stone’s theorem is
available in the present context, since there is no Hilbert space structure in the
anaplectic analysis, but, at least on the germ level (cf. Theorem 5.10), this can be
defined as the map t �→ Ana(gt), with gt defined as below, in Proposition 6.4.
In particular, for t = −π

2 , we should get some anaplectic analogue of the partial
Fourier transformation with respect to the first variable.

We should warn against the emotional appeal, in the anaplectic environ-
ment, of such concepts as partial Fourier transformations. There is no natural
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embedding of the group of one-dimensional anaplectic operators into the group of
two-dimensional anaplectic operators that would “freeze” the remaining variable
in the way familiar in the usual analysis.

Lemma 6.3. Assume n = 2. Within the space KerL, the operators L11 and
1
2 (B+B∗) coincide. A linear basis of the subspace consisting of anaplectic Hermite
functions (cf. Section 3) is given as the family (Φj)j∈Z with Φ0 = Φ defined by
the equation Φ(x) = I0(π |x|2) and

Φj = B∗j Φ if j ≥ 0, Φj = B|j| Φ if j ≤ 0. (6.16)

Explicitly, one has, with x1 + i x2 = |x| eiθ, if j ≥ 0,

Φj(x) =
Γ(j + 1

2 )
Γ(1

2 )
Ij(π |x|2) e−2ij θ, (6.17)

and Φ−j = Φj.

Proof. Using the relations (a consequence of (6.14) and of the expression of L in
terms of the complex coordinate z)

[L, A1 ± i A2] = −(A1 ± i A2), [L, A∗
1 ± i A∗

2] = A∗
1 ± i A∗

2, (6.18)

it is immediate that [L, B] = [L, B∗] = 0 so that B and B∗ act as endomor-
phisms of KerL: when acting on an eigenfunction of Ω, B (resp. B∗) increases
(resp. decreases) the eigenvalue by 2 (a consequence of (6.13)) so that one has,
reverting to the complex coordinate z,

Φj(z) = gj(π zz̄) z−j z̄ j (6.19)

for some holomorphic function gj to be determined, with g0(ρ) = I0(ρ): it is no
loss of generality to assume that j ≥ 0. One immediately finds

(A1 − i A2)Φj = π
1
2 gj(π zz̄) z−j z̄ j+1

+ π
1
2 g′j(π zz̄) z−j z̄ j+1 − π− 1

2 j gj(π zz̄) z−j−1 z̄ j (6.20)

and, applying 1
2 (A∗

1 − i A∗
2) to the preceding result, one sees that the equation

(6.19) relative to Φj+1 will still be verified provided that

gj+1(ρ) =
1
2

[
−ρ

d2

dρ2
+ 2j

d

dρ
+ ρ − j(j + 1)

ρ

]
gj(ρ) : (6.21)

using the equation I ′j− j
ρ Ij = Ij+1 as well as the second-order differential equation

of modified Bessel functions (to be found in all books on special functions), we
end up with (6.17). �
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Using (6.15) and remembering that the functions Φj lie in KerL and satisfy
Ω Φj = −2j Φj , one sees that

B Φj = −
(

j − 1
2

)2

Φj−1 and B∗ Φ−j = −
(

j − 1
2

)2

Φ−(j−1) if j ≥ 1.

(6.22)
Of course, B∗ Φj = Φj+1 and B Φ−j = Φ−(j+1) under the same assumption.

If Ψ lies in KerL, one has (L11 + L22)Ψ = 0 and (as a consequence of
(6.10))

L11 Ψ =
1
2

(L11 − L22)Ψ =
1
4

(A1 A∗
1 + A∗

1 A1 − A2 A∗
2 − A∗

2 A2)Ψ

=
1
2

(A∗
1 A1 − A∗

2 A2)Ψ, (6.23)

which is just the same as 1
2 (B + B∗)Ψ as it follows from (6.12). This should

make the operator exp (it L11), considered within KerL, computable in principle,
in view of (6.13).

To do this, we shall make use of the generalized (projective) discrete series
of representations of SL(2, R), of which we hardly need to know more than the
definition. Recall that a projective representation π is just like a representation,
except for the fact that instead of an equation like π(g1)π(g) = π(g1g), one only
demands that one should have π(g1)π(g) = θ(g1, g)π(g1g), where θ(g1, g) is some
complex number of modulus 1. Under the assumption that τ > 0, consider the
Hilbert space of all holomorphic functions f in Π with

‖f‖2 :=
∫

Π

|f(z)|2(Im z)τ+1 dµ(z) < ∞. (6.24)

There exists a unitary projective representation π of SL(2, R) in this Hilbert
space, characterized up to scalar factors in the group exp(2iπτZ) by the fact that

(π(g)f)(z) = (−cz + a)−τ−1f

(
dz − b

−cz + a

)
(6.25)

if g =
(

a b
c d

)
and c < 0. In all this the fractional powers which occur are those

associated with the principal determination of the logarithm in the upper half-
plane.

Consider now the linear basis {H, X, Y } of sl(2, R) defined as

H =
(

1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, (6.26)

so that the triple above satisfies the same commutation relations as the triple
{Ω, B, B∗} in (6.13), and set

LH = dπ(H) =
d

dt

∣∣∣∣
t=0

π(exp t H) (6.27)
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and, in a similar way, LX = dπ(X), LY = dπ(Y ): explicitly, one has

LH = −2 z
d

dz
− (τ + 1), LX = − d

dz
, LY = z2 d

dz
+ (τ + 1) z : (6.28)

by construction, the three operators just defined, taken in this order, satisfy the
same commutation relations as the three operators Ω, B, B∗. On the other hand,
an easy computation yields the corresponding Casimir operators (when the oper-
ators in the latter triple are considered as acting only on KerL) as

−1
2

(LX LY + LY LX) − 1
4
L2

H =
1 − τ2

4
, −1

2
(B B∗ + B∗ B) − 1

4
Ω2 =

1
4
,

(6.29)
and it is immediate to check that in the case when τ = 0, which we assume from
now on, the algebras of formal differential operators generated by the two triples
{Ω, B, B∗} and {LH , LX , LY } are isomorphic. We now let the function Φ0, a
solution of the equation Ω Φ0 = 0, correspond to the function φ0(z) = z−

1
2 in

the upper half-plane (where the argument of z is chosen in (0, π)), since this is a
solution of the corresponding equation LH φ0 = 0: then, for j ≥ 1, we set

φj(z) =
(

z2 d

dz
+ z

)j

(z−
1
2 ) =

1
2
.
3
2

. . .

(
j − 1

2

)
zj− 1

2 ,

φ−j(z) =
(
− d

dz

)j

(z−
1
2 ) =

1
2
.
3
2

. . .

(
j − 1

2

)
z−j− 1

2 , (6.30)

and one verifies the equations

LX φj = −
(

j − 1
2

)2

φj−1, LY φ−j = −
(

j − 1
2

)2

φ−j+1, j ≥ 1, (6.31)

which are the analogue of (6.22).
With LX +LY = (z2 − 1) d

dz + z, the operator that corresponds to B + B∗,
one can compute the exponential exp ( it

2 (LX + LY )) : f �→ ft in an explicit way,
say for t in the range 0 ≤ t < π

2 . There is no need to state any definite Cauchy
problem to that effect, since we only want to use the result to guess a formula
regarding the exponential of the operator 1

2 (B + B∗). Still, we start with the
remark that if 0 < t0 < π

2 so that 0 ≤ tan t
2 ≤ λ0 < 1 when 0 ≤ t ≤ t0, the

open subset ω of the upper half-plane defined by the conditions

|z|2 − 1 + (λ−1
0 − λ0) Im z > 0, λ0 < |z| <

1
λ0

, z ∈ ω (6.32)

is non-void. Given a holomorphic function f in the upper half-plane, the differ-
ential equation ft = exp ( it

2 (LX + LY )) f can then be solved at least for z ∈ ω
and 0 ≤ t < t0 by the formula

ft(z) =
1

cos t
2

(1 − i z tan
t

2
)−1 f

(
z − i tan t

2

1 − i z tan t
2

)
(6.33)
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since the first condition (6.32) ensures that the argument of f on the right-hand
side of this equation lies in the upper half-plane: indeed, the imaginary part of the
argument has the sign of (Im z) (1−tan2 t

2 )+(|z|2−1) tan t
2 ≥ (tan t

2 ) [|z|2−1+

(λ−1
0 −λ0) Im z]. In particular, denoting as ζ

− 1
2

right the square-root of ζ−1 computed,
under the assumption that Re ζ > 0, with the usual rule in this half-plane, one
finds, recalling that φ0(z) = z−

1
2 ,

(φ0)t(z) =
1

cos t
2

z−
1
2

(
1 − i z tan

t

2

)− 1
2

right

(
1 − i z−1 tan

t

2

)− 1
2

right

: (6.34)

the second condition (6.32) makes it possible to expand each of the two factors as
a series, getting as a result

(φ0)t(z) =
1

π cos t
2

∑
m,n≥0

Γ(1
2 + m) Γ(1

2 + n)
m ! n !

(
i tan

t

2

)m+n

zm−n− 1
2 (6.35)

or, using the functions φj defined in (6.30),

(φ0)t(z) =
∑
j∈Z

cj(t)φj(z) (6.36)

with

c±j(t) =
1

π cos t
2

Γ(1
2 )

Γ(1
2 + j)

∞∑
m=0

Γ(1
2 + m) Γ(1

2 + j + m)
Γ(1 + j + m)

(i tan t
2 )2m+j

m !

=
(i tan t

2 )j

j ! cos t
2

2F1

(
j +

1
2
,
1
2
; j + 1;− tan2 t

2

)
(6.37)

for every j ≥ 0.

Proposition 6.4. Set gt =
(

cos t 0 − sin t 0
0 1 0 0

sin t 0 cos t 0
0 0 0 1

)
. For |t| < π

2 , one has the convergent

expansion

Ana(gt)Φ =
∑
j∈Z

(i tan t
2 )|j|

|j| ! cos t
2

2F1

(
|j| + 1

2
,
1
2
; |j| + 1;− tan2 t

2

)
Φj . (6.38)

Proof. We first prove that the sum of the series on the right-hand side, evaluated
at z ∈ C2 is absolutely convergent and (for |t| < π

2 ) majorized by C eπR |z|2 for
any R > 3

2 . Starting from the expression (6.17) of Φj(z), and using [17, p. 84], we
find

Φj(z) =
1
π

(z1 − i z2)2j (
π

2
)j

∫ π
2

−π
2

e−π (z2
1+z2

2) sin φ cos2j φ dφ : (6.39)
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using then the first expression (6.37) of the coefficients cj(t), we obtain∑
j≥0

|cj(t)| |Φj(z)|

≤ π− 1
2

cos t
2

∑
j≥0
m≥0

(
π |z|2

2

)j

eπ |z|2 Γ(1
2 + m) Γ(1

2 + j + m)
Γ(1

2 + j) Γ(1 + j + m)
| tan t

2 |2m+j

m !

≤ π− 1
2 eπ |z|2 ∑

j≥0

(
π |z|2

2 | tan t
2 |
)j

Γ(1
2 + j)

∑
m≥0

(tan
t

2
)2m, (6.40)

which leads to the absolute convergence of the series on the left-hand side and the
claimed estimate.

Next, we show that, denoting as Ψt the function on the right-hand side of
(6.38), so that in particular Ψ0 = Φ, one has

d Ψt

dt
= i L11 Ψt. (6.41)

By the very definition of the function (φ0)t above as a solution of the differential
equation d(φ0)t

dt = i
2 (LX + LY ) (φ0)t and the expansion (6.36), one has∑

j∈Z

c′j(t)φj =
i

2

∑
j∈Z

cj(t) (LX + LY )φj , (6.42)

which leads, in view of (6.31), to

∑
j∈Z

c′j(t)φj =
i

2

⎡⎣c0(t) (φ1 + φ−1) +
∑
j≥1

cj(t)

(
φj+1 −

(
j − 1

2

)2

φj−1

)

+
∑

j≤−1

cj(t)

(
φj−1 −

(
|j| − 1

2

)2

φj+1

)⎤⎦ : (6.43)

this is nothing but the shortest way to check that the complicated (hypergeometric)
coefficients cj(t) verify a certain collection of differential equations, one of which
is, for instance,

c′j(t) =
i

2

(
cj−1(t) −

(
j +

1
2

)2

cj+1(t)

)
j ≥ 2. (6.44)

In view of the analogous equations (6.22), relative to the sequence (Φj)j∈Z, and
of the fact that L11 Φj = 1

2 (B +B∗)Φj for every j ∈ Z, one finds the differential
equation (6.41) as a consequence of the definition of Ψt as the right-hand side
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of the expansion (6.38), the necessary estimates involved having been treated,
essentially, in the beginning of the present proof.

Under the assumption that |t| < π
2 , we are now in a position to define the

quadratic transforms (QΨt)p(σ) and (KΨt)p(Z) (where p = 0 or 1), the first
one for σ ∈ Sym2 with σ−R I � 0 for some R > 3

2 , the second one for Z ∈ Σ(2)

close enough from the identity matrix. The operator L11 transfers as an operator
on the scalar part of the Q-transform as the operator

i
∂

∂σ(11)
+ i

∑
k�

σ1k σ1�
∂

∂σ(k�)
+

i

2
σ11 = i

∂

∂σ11
+

i

2
M11 (6.45)

in terms of the set of operators introduced in (5.28): this is proved by an application
of (5.8) to the definition (4.1) of the scalar Q-transform. Next, Lemma 5.1 and
the proof of Proposition 5.3, between (5.29) and (5.36), make it possible to obtain
the transfer of the operator L11 as the operator

iD(11) +
i

2
M (11) = i

[
∇V 11

Z
− 1

4
Im (I − Z)11 + ∇X11

Z
− 1

4
Im (I + Z)11

]
(6.46)

acting on the scalar part of the K-transform. Recall from (5.10) that V 11
Z =

1
2i (I − Z) ( 1 0

0 0 ) (I − Z) and from (5.34) that X11 = i
2 (I + Z) ( 1 0

0 0 ) (I + Z).
Consequently, the operator L11 transfers to the operator

∇Ξ with Ξ = − (( 1 0
0 0 ) Z + Z ( 1 0

0 0 ) ) . (6.47)

On the other hand, note that g−1
t =

(
R S
−S R

)
with R = ( cos t 0

0 1 ) and S =
( sin t 0

0 0 ), so that (5.69), which we here recall, using Proposition 4.7, as

(KAna (gt)u)0(Z) = (K u)0
((

e−it 0
0 1

)
Z
(

e−it 0
0 1

) )
, (6.48)

yields

d

dt
[(KAna (gt)u)0(Z) ] = −i∇( 1 0

0 0 )Z+Z ( 1 0
0 0 ) [(KAna (gt)u)0(Z) ] : (6.49)

comparing this differential equation to (6.41) with the help of (6.47), we obtain
the claim of Proposition 6.4 since we do not have to worry about the vector-valued
parts of the K-transforms as we are dealing only with even functions here. �

Remarks 6.2. (i) From the result of Theorem 5.10 and the analysis of singularities
of the function (KΦ)0 in (4.84), it follows that the function Ana(gt)Φ is well
defined as an entire function satisfying the usual estimate not only for |t| < π

2 ,
but in fact for |t| < π. On the other hand, for t in this range of values, and z ∈ C,
the series on the right-hand side of (6.38), evaluated at z, is absolutely convergent
and its sum is majorized by 4

π (cos t
2 )−1 eπ(1+| tan t

2 |) |z|2 : this is a consequence of
the estimates

|Φj(z)| ≤ 2
π

(
π |z|2

2

)|j|
eπ |z|2 , j ∈ Z, z ∈ C (6.50)
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and |2F1 (|j| + 1
2 , 1

2 ; |j| + 1;− tan2 t
2 )| ≤ 1, where the last estimate follows from

the integral representation [17, p. 54] of the hypergeometric function, and the first
one is based on the expression (6.17) of Φj together with the classical integral
representation [17, p. 84] of the modified Bessel function Ij . As a consequence of
Proposition 6.4 and of [17, p. 40], one thus has in particular

Ana(g±π
2
)Φ = π

1
2

∑
j∈Z

(∓ i
2 )|j|

(Γ( |j|2 + 3
4 ))2

Φj : (6.51)

again, this is quite different from the usual analysis, in which the ground state of
the harmonic oscillator is invariant under partial Fourier transformations as well
as under the global Fourier transformation.

A closed formula for Ana(g π
2
)Φ will be given in the course of the proof of

Theorem 10.13.

(ii) The same works with the other energy levels of the (anaplectic) harmonic
oscillator: assuming that κ ∈ Z is even, so that (cf. Section 3) the space Ker (L−κ)
should contain a radial function, we start with such a function Φκ,0. How to
construct such a function was indicated in the proof of Lemma 3.6: if κ = 0, 2, . . . ,
and h1(t) = [ d2

dt2 + (1− 2t) d
dt + t− 1] h(t), then the function h1(π |x|2) will lie in

Ker (L− κ− 2) if the function h(π |x|2) lies in Ker (L− κ); something analogous
works on the other side of the spectrum of L, only replacing the operator

∑
(A∗

j )
2

used in the proof of Lemma 3.6 by
∑

A2
j . The operators B and B∗ also operate

within the space Ker (L − κ), and one defines, just as in Lemma 6.2,

Φκ,j = B∗j Φκ,0 if j ≥ 0, Φκ,j = B|j| Φκ,0 if j ≤ 0. (6.52)

Using (6.15), one finds, for j ≥ 1,

B Φκ,j = −(j−κ+1
2 ) (j+ κ−1

2 ) Φκ,j−1, B∗ Φκ,−j = −(j−κ+1
2 ) (j+ κ−1

2 ) Φκ,−j+1.
(6.53)

Since the second equation in (6.29) must be replaced by

−1
2

(B B∗ + B∗ B) − 1
4

Ω2 =
1 − κ2

4
, (6.54)

we must take this time τ = |κ| which leads, since the first operator in (6.28) is
−2 (z d

dz + τ+1
2 ) = −2 (z−

τ
2 ) (z d

dz + 1
2 ) (z

τ
2 ), to substituting for (6.30) the defining

set of equations φj(z) = Γ( 1
2+|j|)
Γ( 1

2 )
zj− τ+1

2 . Since, now, LX + LY = (z2 − 1) d
dz +

(τ + 1) z, the equations (6.33) and (6.34) must be replaced by

ft(z) =
(

cos
t

2

)−τ−1(
1 − i z tan

t

2

)−τ−1

f

(
z − i tan t

2

1 − i z tan t
2

)
(6.55)
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and

(φ0)t(z) =
(

cos
t

2

)−τ−1

z−
τ+1
2

(
1 − i z tan

t

2

)− τ+1
2

right

(
1 − i z−1 tan

t

2

)− τ+1
2

right

:

(6.56)
this finally leads, under the same conditions as before, to the expansion

Ana(gt)Φκ,0 =
∑
j∈Z

cj(t)Φκ,j (6.57)

with

c±j(t) =
Γ(1

2 ) Γ( τ+1
2 + j)

Γ(1
2 + j) Γ( τ+1

2 )
(i tan t

2 )j

j ! (cos t
2 )τ+1 2F1

(
j +

τ + 1
2

,
τ + 1

2
; j + 1;− tan2 t

2

)
(6.58)

for every j ≥ 0.
Proposition 6.4 has brought to light a major difference between the anaplectic

analysis and the usual one: on the contrary, the following shows a strong analogy,
the passage from the usual analysis to the anaplectic one only calling for the
replacement of the discrete series of SL(2, R) by the (full, non-unitary) principal
series.

Hecke’s theorem, in classical Fourier analysis on Rn, is the equation [7, 21]

F
(

h

(
|x|2
2

)
Y�

)
= h1

(
|x|2
2

)
Y�, (6.59)

where Y� denotes any harmonic polynomial homogeneous of degree �, and the
map h �→ h1 is given by the Hankel transformation

h1(s) = 2π i−�

∫ ∞

0

h(t)
(

t

s

)n−2
4 + 	

2

Jn−2
2 +�(4π

√
st) dt. (6.60)

In other words, setting k(t) = t
n−2

2 +� h(t) and k1(t) = t
n−2

2 +� h1(t), one has

k1(s) = 2π i−�

∫ ∞

0

k(t)
(s

t

)n−2
4 + 	

2
Jn−2

2 +�(4π
√

st) dt : (6.61)

in terms of the discrete series (Dm
2 +1)m=−1,0,...

of the metaplectic group S̃L(2, R)
as normalized in [25, p. 61] (we considered another realization of the same series
of representations in (6.25)), one has

k1 = in Dn−2
2 +�+1

((
0 1−1 0

))
k, (6.62)

where the matrix is to be interpreted as
(

cos π
2 sin π

2
− sin π

2 cos π
2

)
.
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We shall generalize Hecke’s formula to the anaplectic case: but first, we need
to make an observation concerning the expansion of Fourier transforms of functions
v ∈ Cω

ρ,ε. Under the Cayley map σ �→ e−i θ = σ−i
σ+i , 0 < θ < 2π, the condition

for w = F v to belong to the space Ĉω
ρ,ε given in Definition 2.2 transfers to the

fact that the function e−
iθ
2 �→ | sin θ

2 |−1−ρ
ε w(cotan θ

2 ) extends as an analytic
function on the whole circle, invariant (resp. changing to its negative) under the
map θ �→ θ + 2π mod 4π in the case when ε = 0 (resp. 1). Consequently, there
exists a unique sequence (ck)k∈Z of complex numbers, satisfying the estimate
|ck| ≤ C (1 + ε)−|k| for some ε > 0 and C > 0, such that, for every σ ∈ R,

w(σ) = (1 + σ2)−
ρ+1
2

∑
k∈Z

ck

(
1 − i σ

1 + i σ

)k

if ε = 0,

w(σ) = (1 + σ2)−
ρ+2
2

∑
k∈Z

ck

(
1 − i σ

1 + i σ

)k

(1 − i σ) if ε = 1. (6.63)

In the theorem that follows, we shall have to assume a little more, namely that
the function on the circle considered above extends as a holomorphic function (of
e

iθ
2 in general, or even eiθ in the case when ε = 0) on C\{0}. This is tantamount

to saying that the sequence (ck)k∈Z satisfies the following condition: given any
number M ≥ 1 there is some C > 0 such that |ck| ≤ C M−|k| for all k ∈ Z.

Theorem 6.5. Let Y� be a homogeneous harmonic polynomial of degree �; let ε = 0
or 1 according to whether � is even or odd. Let v ∈ Cω

n−2
2 +�,ε

and, setting ρ =
n−2

2 + � and w = F v, assume that the function e−
iθ
2 �→ | sin θ

2 |−1−ρ
ε w(cotan θ

2 )
extends as a holomorphic function on the punctured complex plane. Then the func-
tion of x ∈ Rn defined as u(x) = vram( |x|

2

2 )Y�(x) lies in the space A(n). Its
anaplectic Fourier transform can be obtained by the formula(

Fana

(
y �→ vram

(
|y|2
2

)
Y�(y)

))
(x) = vram

1

(
|x|2
2

)
Y�(x), (6.64)

where the function v1 is linked to v by the equation (to be compared to (6.62))

v1 = πn−2
2 +�,ε

((
0 1−1 0

))
v. (6.65)

Proof. Using the notation in (2.20), (2.21), which extends without modification
to the case when ρ is an integer, one derives from (6.63) the series expansion
v =

∑
k∈Z

ck vk
ρ,ε, so that, in a sense which will be analyzed at the end of the

proof,
u = c0 u0

� +
∑
k≥1

[ck uk
� + c−k u−k

� ] (6.66)

with

uk
� (x) = (vk

ρ,ε)
ram

(
|x|2
2

)
Y�(x) : (6.67)
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recall that � + ε is even. From now on, we shall assume that

Y�(x) = (x1 − i x2)� : (6.68)

this does not lead to any loss of generality since we can use the invariance of the
anaplectic Fourier transformation under rotations together with the fact that the
group O(n) acts irreducibly on the linear space of harmonic polynomials of a
given degree �. From the results of Section 3, in particular Theorem 3.8 and the
proof thereof, it follows that all the functions uk

� are anaplectic Hermite functions
in the sense of Definition 3.2: indeed, from (3.51), one sees that such a function
is an eigenvalue of the harmonic oscillator for the eigenvalue κ = 2k + ε so that,
from one assumption of Theorem 6.5, κ + � is even.

Lemma 6.6. For every � ≥ 0, setting ρ = n−2
2 + � with � + ε even, one has

u0
�+1(x) = (ρ + 1 − ε)−1

[
2π (−1)ε (x1 − i x2) −

∂

∂x1
+ i

∂

∂x2

]
u0

�(x). (6.69)

For every k = 0, 1, . . . , one then has

uk
� =

(
1
2

)k Γ(n
4 + �+ε

2 )
Γ(n

4 + �+ε
2 + k)

(∑
A∗

j
2
)k

u0
� ,

u−k
� =

(
−1

2

)k Γ(n
4 + �−ε

2 )
Γ(n

4 + �−ε
2 + k)

(∑
A2

j

)k

u0
� . (6.70)

One has

Fana uk
� =

{
(−1)k uk

� if � is even,

(−1)k (−i) uk
� if � is odd.

(6.71)

Proof. We first perform a certain number of calculations under the additional
assumption that ρ is an arbitrary complex number such that ρ + ε /∈ 2Z and
Re ρ > −1. A consequence of Proposition 2.12 is the following set of equations, in
which we assume that v is some element of Cω

ρ,ε:

(T †
ρ v)ram = R vram, (R v)ram = T †

−ρ vram,

(R†
ρ v)ram = T vram, (T v)ram = R†

−ρ vram; (6.72)

it is understood that, in what precedes, the ramified part of v makes reference
to the decomposition, provided by Proposition 2.3 or Proposition 3.1, of elements
of Cω

ρ,ε, while the ramified part of T †
ρ v or R†

ρ v is taken, according to Proposi-
tion 2.12, in the space Cω

ρ+1,1−ε, and that of T v or R v is taken in Cω
ρ−1,1−ε.

For instance, to prove the first of these four equations, it suffices to remark that
(|s|−ρ−1

1−ε )T †
ρ (|s|ρε) = R.

We first use this set of equations to prove (6.69). Proposition 2.13 gives

T †
ρ v0

ρ,0 =
ρ + 1
2π

v0
ρ+1,1, R†

ρ v0
ρ,1 = − ρ

2π
v0

ρ+1,0, (6.73)
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so that

(v0
ρ+1,1)

ram(s) =
2π

ρ + 1
R (v0

ρ,0)
ram(s), (v0

ρ+1,0)
ram(s) = −2π

ρ
T (v0

ρ,1)
ram(s),

(6.74)
a pair of equations that can be summed up as

(v0
ρ+1,1−ε)

ram(s) = (ρ + 1 − ε)−1

[
2π (−1)ε − d

ds

]
(v0

ρ,ε)
ram(s). (6.75)

This equation is also valid at any integral point ρ0 ≥ 0 with ρ0 + ε even, in view
of the fact that, if such is the case, one has

(vk
ρ0,ε)

ram(s) = Resρ=ρ0 ((vk
ρ,ε)

ram(s)) : (6.76)

to prove this relation, we use the defining relation

vk
ρ,ε(s) = (vk

ρ,ε)
int(s) + |s|ρε (vk

ρ,ε)
ram(s) (6.77)

together with the Taylor expansion

|s|ρε = |s|ρ0
ε |s|ρ−ρ0 = sρ0 [1 + (ρ − ρ0) log |s| + · · · ]. (6.78)

Noting that, for any smooth function v, one has(
∂

∂x1
− i

∂

∂x2

)[
(x1 − i x2)� v

(
|x|2
2

)]
= (x1 − i x2)�+1 v′

(
|x|2
2

)
, (6.79)

one finds (6.69) as a consequence of (6.75).
Next, Proposition 2.13 yields for every k = 0, 1, . . . the pair of relations

R T †
ρ vk

ρ,ε =
ρ + 2k + 1 + ε

2π
vk+1

ρ,ε , T R†
ρ v−k

ρ,ε = −ρ + 2k + 1 − ε

2π
v−k−1

ρ,ε . (6.80)

Using (under the renewed assumption that Re ρ > −1 and ρ + ε /∈ 2Z) the
equations (a consequence of (6.72), in which all ramified parts are taken with
respect to the space Cω

ρ,ε)

(R T †
ρ v)ram = T †

−ρ−1 R vram, (T R†
ρ v)ram = R†

−ρ−1 T vram (6.81)

and making the compositions of two differential operators involved on the right-
hand side explicit, one thus obtains the equations, valid for k = 0, 1, . . . ,

(ρ + 1 + 2k + ε)
(
vk+1

ρ,ε

)ram
=

1
2π

[
s

d2

ds2
+ (ρ + 1 − 4π s)

d

ds
+ 4π2 s − 2π (ρ + 1)

] (
vk

ρ,ε

)ram
, (6.82)

−(ρ + 1 + 2k − ε)
(
v−k−1

ρ,ε

)ram
=

1
2π

[
s

d2

ds2
+ (ρ + 1 + 4π s)

d

ds
+ 4π2 s + 2π (ρ + 1)

] (
v−k

ρ,ε

)ram
. (6.83)
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Again, these last two equations are still valid if ρ = 0, 1, . . . , and ρ + ε is even,
by the argument using (6.76).

On the other hand, for any smooth function v, one has the relations

∆
(

(x1 − i x2)� v

(
|x|2
2

))
= (x1 − i x2)� ∆

(
v

(
|x|2
2

))
+ 2� (x1 − i x2)� v′

(
|x|2
2

)
,(∑

xj
∂

∂xj

) (
(x1 − i x2)� v

(
|x|2
2

))
= (x1 − i x2)�

(∑
xj

∂

∂xj
+ �

)(
v

(
|x|2
2

))
: (6.84)

using also the expression (3.46) of the radial part of the operator
∑

A∗
j
2 and a

similar one concerning the operator
∑

A2
j , one finds(∑

A∗
j
2
) (

(x1 − i x2)� v

(
|x|2
2

))
= (x1 − i x2)� (D−v)

(
|x|2
2

)
,(∑

A2
j

) (
(x1 − i x2)� v

(
|x|2
2

))
= (x1 − i x2)� (D+v)

(
|x|2
2

)
, (6.85)

where

D− =
1
2π

[
s

d2

ds2
+
(n

2
+ � − 4πs

) d

ds
+ 4π2 s − 2π

(n

2
+ �
)]

,

D+ =
1
2π

[
s

d2

ds2
+
(n

2
+ � + 4πs

) d

ds
+ 4π2 s + 2π

(n

2
+ �
)]

: (6.86)

comparing this pair of operators to the ones occurring in (6.83), we obtain (6.70).
We first prove (6.71) in the case when � = 0: to start with, it follows

from (2.22) that the ramified part of the function v0
n−2

2 ,0
(s) is a constant times

|s|−n−2
4 In−2

4
(2π |s|), so that, according to the definition of the function Φ in Def-

inition 3.2, the function u0
0 agrees with Φ up to the multiplication by some

constant. Also, u0
0 is invariant under the anaplectic Fourier transformation, a

consequence of (4.81) together with (5.46). The equation (6.69), together with the
pair of equations (5.44), shows that the equation (6.71) is indeed the correct one
when � = 0: to derive the general case, involving possibly non-zero values of k,
one may rely on the pair of equations (6.70) together with

Fana A∗
j = −i A∗

j Fana, Fana Aj = i Aj Fana, (6.87)

again a consequence of (5.44). �
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End of Proof of Theorem 6.5. We now proceed to show, with the help of (6.70)
again, that u itself lies in A(n). In view of Definition 4.12, the main problem is to
transfer the operator

∑
A∗

j
2 or

∑
A2

j to an operator acting on the K-realization,
in the sense of Theorem 4.11, of functions in A(n).

Starting from the expression (3.45) of
∑

A∗
j
2, we use Definition 4.1 to observe

that the operator (π |x|2) of multiplication by the function indicated transfers to
the Q-realization (only scalar such transforms have to be considered here since we
are dealing with even functions only) as the operator i

∑
j

∂
∂σ(jj)

; using Lemma
5.1, we then obtain that the same operator transfers to the K-realization as the
operator i

[
∇ (I−Z)2

2i

+ 1
4 Im Tr Z

]
. Next, − 1

4π ∆ = Fana (π |x|2)F−1
ana transfers to

the latter realization, as a consequence of the first equation (5.46), as the operator
i
[
−∇ (I+Z)2

2i

− 1
4 Im TrZ

]
. Finally, the operator −

∑
xj

∂
∂xj

− n
2 transfers to the

first realization as the operator 2
∑n

j,k=1 σjk
∂

∂σ(jk)
+ n

2 , to the second one as the

operator ∇I−Z2 − 1
2 Re Tr Z, as seen after a short calculation using Lemma 5.1

again, also (5.16). Adding the results of the three computations that precede, we
see that the operator

∑
A∗

j
2 transfers to the K-realization as the operator

i
[
∇ (I−Z)2

2i

+ ∇ (I+Z)2
2i

]
+

i

2
Im TrZ + ∇I−Z2 − 1

2
Re TrZ

= 2∇I +
1
2

Tr Z = 2 Tr
∂

∂Z
− 1

2
Tr (Z−1) : (6.88)

note that the matrix I is a linear combination with complex coefficients of the two
matrices (I−Z)2

2i and (I+Z)2

2i , both in the tangent space to Σ(n) at Z: alternatively,
one may regard the derivative along the vector I as the operator

∑
∂

∂Z(jj)
, since we

are dealing with functions analytic on open subsets of Σ2, the complexification of
which agrees locally with SymC

n. Only the last addition has to be performed again
to find that

∑
A2

j transfers to 2∇Z2 + 1
2 Tr Z = 2 Tr (Z ∂

∂Z Z)− 1
2 TrZ. From the

estimate regarding the sequence (ck)k∈Z made explicit just before the statement
of the present proposition, it follows that the series (6.66) defining u converges
in the space A(n), since the corresponding series of K-transforms converges in the
space of functions analytic in the open subset of Σn) where the function (K u0

�)0
is analytic as a consequence of Theorem 4.18 and (6.69).

The Hecke-type formula announced in (6.64) finally follows from the equation

πn−2
2 +�,ε

((
0 1−1 0

))
vk

n−2
2 +�,ε

=

⎧⎨⎩(−1)k vk
n−2

2 +�,ε
if ε = 0,

(−1)k (−i) vk
n−2

2 +�,ε
if ε = 1,

(6.89)

obtained as a consequence of (2.20). �
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7 The dual anaplectic analysis

Eigenfunctions of the usual type of the harmonic oscillator L(n) with the same
parity correspond to eigenvalues of L(n) that differ by some even integer, since
even (resp. odd) such eigenfunctions can only correspond to eigenvalues κ with
κ − n

2 even (resp. odd). The same is the case with anaplectic Hermite functions,
except for the fact that the shift by n

2 is not present any more: this has been
shown in Theorem 3.4. In the usual analysis, there is nothing one can do about
this. However, as we shall see in the present short section, there exists a dual
anaplectic analysis, the development of which starts with the consideration of the
spaces Eκ,� of eigenfunctions of the pair (L(n), ∆Sn−1) with κ + � odd. Our
interest in this matter does not reduce to the need for completeness. Indeed, such
a kind of eigenfunctions of the harmonic oscillator may enter the picture whether
we want it or not: an example will arise in Theorem 10.14, to be preceded by
(10.73).

The first example of a function in E0,1 is the function x �→ x1 |x|−
n
2 In

4
(π |x|2).

Note that, in the one-dimensional case, it is a multiple of the function φ� introduced
in (1.94).

Theorem 7.1. Let x �→ 〈ξ, x〉 be an arbitrary non-zero real linear form on Rn.
The linear space consisting of all images of the odd function

Ψ�
ξ(x) = 〈ξ, x〉 |x|− n

2 In
4
(π |x|2) (7.1)

under arbitrary operators in the algebra C [x, ∂
∂x ] is generated by the union of the

spaces Eκ,� with κ ∈ Z, � = 0, 1, . . . and κ+ � odd. It contains the even function

Ψ�(x) = |x|
4−n

2 [In
4
(π |x|2) − In−4

4
(π |x|2)] (7.2)

and, unless n = 2, it could be generated in the same way after Ψ� has been
substituted for Ψ�

ξ.

Proof. Using the rotation operators xj
∂

∂xk
− xk

∂
∂xj

, one sees that it is no loss
of generality to assume that 〈ξ, x〉 = xj for some j, in which case we denote
Ψ�

ξ as Ψ�
j . That Ψ�

j lies in the null space of the formal harmonic oscillator is a

consequence of the equation (3.26) with f(r) = r
2−n

2 In
4
(π r2), � = 1 and κ = 0.

The proof of Theorem 3.4 adapts with trivial changes. Concerning the function
Ψ�, we only observe that one has

Ψ� = π− 1
2

n∑
j=1

A∗
j Ψ�

j , π
1
2 Ak Ψ� =

2 − n

2
Ψ�

k, (7.3)

as seen by a straightforward computation. �
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Remark 7.1. When n = 2, Ψ�(x) = −2
1
2 π−1 e−π|x|2, which explains why this

function is annihilated by the lowering operator Ak. More generally, the Gaussian
function x �→ e−π|x|2, which lies in Eκ,� with κ = n

2 and � = 0 when n is
even, is a dual anaplectic Hermite function if and only if n ≡ 2 mod 4: compare
Remark 3.1. When this is the case, all Hermite functions of the usual type are also
dual anaplectic Hermite functions.

To prepare for the definition of the dual anaplectic space (A(n))
�
, let us

introduce the (2n)-fold covering Σ(2n) of Σ, i.e., the space suitable for a definition
of (detZ)

1
2n , also a twofold covering of Σ(n). A loop φ �→ eiφ Z, 0 ≤ φ ≤ 2π in

Σ, lifts as a loop in Σ(n) but not in Σ(2n): the corresponding map: Σ(2n) → Σ(2n)

from the initial point of the path to its end point defines the unique non-trivial
covering automorphism ω

(2n)
(n) of Σ(2n) above the identity of Σ(n). The following

generalizes Definition 4.12.

Definition 7.2. Under the same initial assumptions regarding the analytic function
u on Cn as in Definition 4.12, we shall say that u lies in (A(n))

�
if the following

holds: the functions (K u)0 and (K u)1 extend as analytic functions in some open
subset of Σ(2n) connected in the strong sense and invariant under the automor-
phism ω

(2n)
(n) ; moreover, each of these two functions changes to its negative under

ω
(2n)
(n) .

Remark 7.2. Recall that the points eiπ I and e−iπ I of Σ(2n) are distinct. It is
necessary – for the sake of coherence with the parameter-dependent situation of
Section 11 – to generalize the definition (4.42) of the linear form Int, in the present
context denoted as Int�, according to the following normalization:

Int� [u] = 2
n
2 (K u)0(e−iπ I). (7.4)

The following generalizes Theorem 4.14.

Theorem 7.3. The space (A(1))
�

consists of all entire functions u of one vari-
able which satisfy the following condition: there is a C4-valued function f =
(f0, f1, fi,0, fi,1), the components of which are nice functions in the sense of
Definition 1.1, related by the equations (to be compared to (1.8), noting the sign
changes),

fi,0(z) =
1 + i

2
(f0(iz) − i f0(−iz)),

fi,1(z) =
1 − i

2
(f1(iz) + i f1(−iz)), (7.5)

such that the even part of u coincides with that of f0 and the odd part of u
coincides with that of f1. If such is the case, the 4-tuple f is unique. One has

Int� [u] = 2
1
2 i

∫ ∞

0

(f0(x) − fi,0(x)) dx. (7.6)
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Proof. We shall not rewrite the variant of the part of Section 2 needed to that
effect though, as pointed out in Remark 2.1, this is a straightforward if time-
consuming task. Since only a change of sign is required here and there, we shall
be satisfied with the verification that all that precedes works in the case when
u = φ�, the basic function of the dual anaplectic analysis introduced in (1.94).
Consider the function introduced in (1.11) and defined, for x > 0, by the equation
ψ(x) = 2

1
2 π− 1

2 x
1
2 K 1

4
(πx2). We now consider the 4-tuple f = (0, ψ, 0, ψ) instead

of the vector (ψ, 0, ψ, 0) considered in the proof of Proposition 1.2. The odd part
of ψ is just the function φ�, so that this function lies in the space A� introduced
in Remark 1.3. We have to show that it lies in the space (A(1))

�
according to

Definition 7.2.
Starting from Definition 4.1, we obtain, for σ > 0,

(Qφ�)1(σ) = (1 + i σ)
∫ ∞

−∞
x φ�(x e−

iπ
4 ) e−πσx2

dx

= −2
1
2 π (1 − i) (1 + i σ)

∫ ∞

0

x
3
2 J 1

4
(πx2) e−πσx2

dx

= −2
1
2 π− 1

2 Γ
(

3
4

)
(1 − i) (1 + i σ) (1 + σ2)−

3
4 . (7.7)

Then, from (4.39), if 0 < θ < π, recalling that σ = cotan θ
2 is the point of R

corresponding under the Cayley map to the point e−iθ ∈ S1,

(Kφ�)1(e−i θ) = −π− 1
2 Γ
(

3
4

)
(1 + i) e−

i θ
2 , (7.8)

indeed a function of Z = e−i θ that extends as a function on the twofold covering
of S1 and changes to its negative under the map θ �→ θ + 2π.

We finally check the normalization constant that enters the equation (7.6), to
be compared to (1.74). To do this, of course, we must use this time an even function
in A� = (A(1))

�
, for instance the function x �→ xφ�(x) which is associated to the

4-tuple h = (h0, 0, hi,0, 0) with h0(x) = xψ(x), i.e., h = (xψ, 0, −xψ, 0). One
has

(Q (xφ�))0(σ) =
∫ ∞

−∞
e−

iπ
4 x φ�(x e−

iπ
4 ) e−πσx2

dx

= 2i π
1
2

∫ ∞

0

x
3
2 J 1

4
(πx2) e−πσx2

dx

= 2
1
4 i π− 5

4 Γ
(

3
4

)
(1 + σ2)−

3
4 : (7.9)

hence, for 0 < θ < π,

(K (xφ�))0(e−i θ) = 2−
1
4 i π− 5

4 Γ
(

3
4

)
sin

θ

2
(7.10)
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and, in particular,

Int� [xφ�] = 2
1
2 (K (xφ�))0(e−i π) = 2

1
4 i π− 5

4 Γ
(

3
4

)
. (7.11)

On the other hand, the integral

2
1
2 i

∫ ∞

0

(f0(x) − fi,0(x)) dx = 4 π− 1
2 i

∫ ∞

0

x
3
2 K 1

4
(πx2) dx (7.12)

has the same value, according to [17, p. 91] again. �

The following analogue of Theorem 4.15 is immediate.

Theorem 7.4. The Gaussian function x �→ e−π|x|2 (or any function x �→ e−π Q(x),
where Q(x) is a quadratic function of x with a positive-definite real part) lies in
the space (A(n))

�
if and only if n ≡ 2 mod 4.

Proof. It suffices to use the equation (4.63), here recalled,

(K u)0(Z) = 2−
n
2 (detZ)−

1
4 , (7.13)

observing that the function on the right-hand side extends as an analytic function
on Σ(2n) if and only n is even: if n ≡ 0 (resp. n ≡ 2) mod 4, this function is
invariant (resp. changes to its negative) under the automorphism ω

(2n)
(n) of Σ(2n)

defined just before Definition 7.2. �

One can develop the dual anaplectic analysis in the same way as that used, in
Sections 4 and 5, for the anaplectic analysis: there are no changes worth mentioning
– apart from a sign change in the analogue of (1.72), which will be mentioned later
– except in the proof of the following analogue of Theorem 4.18.

Theorem 7.5. In any dimension n, the dual anaplectic Hermite functions intro-
duced in Theorem 7.1 lie in the space (A(n))

�
. The singular set of the K-transforms

of any such function is contained in the pullback of the set ∆ introduced in Lemma
4.16.

Proof. The analogue of Proposition 5.2, to the effect that the space A(n) is in-
variant under the algebra C [x, ∂

∂x ], works just as well for the space (A(n))
�
. In

particular, the one-dimensional case of Theorem 7.5 is thus a consequence of The-
orem 7.3. We first consider the case when n ≥ 3, since the case when n = 2 is
somewhat special. Indeed, from Theorem 7.1, we may in the first case reduce the
problem to proving that the function Ψ� lies in (A(n))

�
.
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Using [17, p. 84], one can write (7.2) as the integral

Ψ�(x) = 21−n
4 π

n
4 − 3

2

∫ 1

−1

e−π|x|2t

[
2π |x|2
n − 2

(1 − t2)
n
4 − 1

2 − (1 − t2)
n
4 − 3

2

]
dt

= −21−n
4 π

n
4 − 3

2

∫ 1

−1

(1 + t) (1 − t2)
n
4 − 3

2 e−π|x|2t dt. (7.14)

The same computation as in (4.69) leads, if σ � 0, to

(QΨ�)0(σ) = Dn

∫ 1

−1

(1 + t) (1 − t2)
n
4 − 3

2 [det (σ − it)]−
1
2 dt (7.15)

with Dn = −21−n
4 π

n
4 − 3

2 . Then, just as in (4.74), but with the extra factor
(1+ t) (1− t2)−

1
2 which becomes eξ when t = tanh ξ, one finds, with the notation

there,

(KΨ�)0(Z) = 2−
n
2 Dn

∫ ∞

−∞

∏
j

(
cosh

(
ξ − i θj

2

))− 1
2

eξ dξ (7.16)

if −π < θj < π for every j, or

(KΨ�)0(Z) = 2−
n
2 Dn i

∫ ∞

−∞

∏
j

(
cosh

(
ξ − i (θj − π)

2

))− 1
2

eξ dξ (7.17)

if θj ∈]0, 2π[ for every j, an assumption that covers the case when Z ∈ Σreg ∩
(Σ\∆).

With the help of Lemma 4.17 and of the proof of this lemma, the problem
of continuing analytically this integral reduces to the same problem along the
special paths φ �→ eiφ Z. The change of contour of integration ξ �→ ξ − iφ

2 shows
that along such a path, (KΨ�)0(Z) undergoes the multiplication by e−

iφ
2 : this

concludes the proof of Theorem 7.5 in the case when n �= 2.
The case when n = 2 is more complicated. We must consider instead of Ψ�

the odd function

Ψ�
1(x) =

x1

|x| I 1
2
(π |x|2) = 2

1
2 π−1 x1

sinh π|x|2
|x|2

= 2−
1
2 x1

∫ 1

−1

e−π|x|2t dt. (7.18)

Using Definition 4.1, one obtains the vector-valued part of the Q-transform
of Ψ�

1 as

(QΨ�
1)1(σ) = 2−

1
2 e−

iπ
4

∫
R2

(I + i σ)
(

x2
1

x1 x2

)
e−π 〈σx, x〉 dx

∫ 1

−1

eiπ |x|2t dt. (7.19)
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Setting σ = ( p r
r q ), one can write this as

(QΨ�
1)1(σ) = −2−

1
2 π−1 e−

iπ
4

(
(1 + i p) ∂

∂p + ir
2

∂
∂r

ir ∂
∂p + 1+i q

2
∂
∂r

)
V (σ) (7.20)

with

V (σ) =
∫

R2
e−π 〈σx, x〉 dx

∫ 1

−1

eiπ |x|2t dt =
∫ 1

−1

[det (σ − it)]−
1
2 dt, (7.21)

an equation valid when σ � 0. Hence

(QΨ�
1)1(σ) = 2−

3
2 π−1 e−

iπ
4

∫ 1

−1

(
(1 + i p) (q − i t) − i r2

r (t − 1)

)
[det (σ − it)]−

3
2 dt.

(7.22)
The vector in the integrand can be decomposed as(

(1 + i p) (q − i t) − i r2

r (t − 1)

)
= i

(
det (σ − i t) − (1 + i q) (1 − t) + (1 − t)2

i r (t − 1)

)
,

(7.23)
so that

(QΨ�
1)1(σ) = 2−

1
2 π−1 e

iπ
4

[(
1
0

)
(W0(σ) + W2(σ)) +

(
−1 − i q

i r

)
W1(σ)

]
(7.24)

with

W0(σ) =
∫ 1

−1

[det (σ − i t)]−
1
2 dt,

W1(σ) =
∫ 1

−1

(1 − t) [det (σ − i t)]−
3
2 dt,

W2(σ) =
∫ 1

−1

(1 − t)2 [det (σ − i t)]−
3
2 dt. (7.25)

Our problem is to first extend the three terms as analytic functions on the
whole space Sym2, next, after having expressed the results in terms of the Cayley
transform Z of σ and multiplied each term by |det (I −Z)|− 1

2 – recall that this
operation from functions of σ to functions of Z changes a Q-transform into the
corresponding K-transform – to analyse the analytic continuation of the linear
combination in (7.24) to Σ(4). The proof follows closely that of Theorem 4.18.
Denoting as σ1 and σ2 the eigenvalues of σ initially assumed to be positive-
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definite, and setting t = tanh ξ in the integrals that precede, we find

W0(σ) =
∫ ∞

−∞

∏
j=1,2

(σj cosh ξ − i sinh ξ)−
1
2

dξ

cosh ξ
,

W1(σ) =
∫ ∞

−∞

∏
j=1,2

(σj cosh ξ − i sinh ξ)−
3
2 eξ dξ,

W2(σ) =
∫ ∞

−∞

∏
j=1,2

(σj cosh ξ − i sinh ξ)−
3
2

e2ξ

cosh ξ
dξ. (7.26)

If the eigenvalues of the Cayley transform Z of σ are e−i θj , i.e., if σj = cotan θj

2 ,
this can be rewritten if 0 < θj < π as

W0(σ) =
(

sin
θ1

2
sin

θ2

2

) 1
2
∫ ∞

−∞

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 1
2 dξ

cosh ξ
,

W1(σ) =
(

sin
θ1

2
sin

θ2

2

) 3
2
∫ ∞

−∞

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 3
2

eξ dξ,

W2(σ) =
(

sin
θ1

2
sin

θ2

2

) 3
2
∫ ∞

−∞

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 3
2 e2ξ

cosh ξ
dξ. (7.27)

Notwithstanding the presence of cosh ξ in the denominator of two of the
integrands, the change of contour ξ �→ ξ + i ω

2 is still possible when |ω| < π,
leading to the expression

W0(σ) =
(

sin
θ1

2
sin

θ2

2

) 1
2
∫

Im ξ= ω
2

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 1
2 dξ

cosh ξ
, (7.28)

which makes it possible, if one chooses ω close to π, to cover the case when θ1

and θ2 both lie in ]0, 2π[, i.e, the case when Z ∈ Σreg. One has in this case
|det (I − Z)|− 1

2 = 1
2 (sin θ1

2 sin θ2
2 )−

1
2 , a scalar factor the multiplication by which

transforms each of the factors in front of the right-hand sides of (7.27) into a
function with an obvious analytic continuation to Σ. Our sole remaining problem
lies with the three integrals in (7.27), the second one accompanied, as indicated
by (7.24), by the vector

(−1−i q
i r

)
. This goes essentially like the end of the proof

of Theorem 4.18, starting with the use of Lemma 4.17, which reduces the problem
of analytic continuation to that along paths φ �→ e−i φ Z, originating at points
Z ∈ Σreg ∩ (Σ\∆). It is no loss of generality to assume that Z is diagonal, say
Z =

(
e−i θ1

e−i θ2

)
, in which case the extra vector in front of W1(σ) in (7.24) reduces,

on the path, to
(

−1−i e−i (θ1+φ)

0

)
, a vector which comes back to its initial value

when φ = 2π.
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There is, however, a novelty, in that in the continuation along such a path, we
shall have to cross poles of the function ξ �→ (cosh ξ)−1 in the integrands of W0(σ)
and W2(σ). Fortunately, the residues at ξ = iπ

2 (and, eventually, ξ = iπ
2 + i kπ),

to wit
∏

(sin θj

2 )−
1
2 and −

∏
(sin θj

2 )−
3
2 , cancel off in the sum W0(σ) + W2(σ)

in view of the extra factors in (7.27). To obtain the analytic continuation of an
integral such as (7.28) along the path indicated, we may accompany the change
θj �→ θj + i φ (which corresponds to the map Z �→ e−i φ Z) by the change of
contour ξ �→ ξ + i φ

2 , only jumping over the values φ = π + 2kπ, as made possible
by the analysis above of residues. When φ = 2π, we then obtain instead of the
right-hand side of (7.28) the expression(

sin
θ1

2
sin

θ2

2

) 1
2
∫

Im ξ= ω
2

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 1
2 dξ

cosh (ξ + i π)
, (7.29)

the negative of the preceding one: under the map ξ �→ ξ + i π, the same sign
change occurs in the functions eξ and e2ξ

cosh ξ from the integrals (7.27) defining
W1(σ) and W2(σ). This concludes the proof of Theorem 7.5. �

Remark 7.3. In the one-dimensional case, let � : u �→ u� be the linear operator:
A → A� defined in the C4-realization as (f0, f1, fi,0, fi,1) �→ (f1, f0, fi,1, fi,0). It
intertwines the two versions (on A and A�) of the Heisenberg representation: in-
deed, the equations (1.58) and (1.60) which express the operators from the Heisen-
berg representation in terms of the C4-realization lead to the formulas

τy u� = (τy u)�, τη u� = (τη u)�. (7.30)

However, the anaplectic and dual anaplectic representations are not equivalent,
as seen from the equation (Fana u)� = −F �

ana u�: it is understood that the dual
anaplectic Fourier transformation that occurs on the right-hand side should again
be defined by the equation (1.80), after the linear form Int has been replaced by
Int�. We now proceed towards the necessary verifications: uninteresting as they
are, these depend on rather extensive calculations which we now sum up.

The first point is to note that the C4-realizations

f = (f0, f1, fi,0, fi,1) and f̃ = (f̃0, f̃1, f̃i,0, f̃i,1)

of u ∈ A and Fana u are linked by the relations

f̃0(x) = 2
1
2

∫ ∞

0

[(cos 2πxy − sin 2πxy) f0(y) + e−2πxy fi,0(y)] dy,

f̃1(x) = 2
1
2 i

∫ ∞

0

[−(cos 2πxy + sin 2πxy) f1(y) + e−2πxy fi,1(y)] dy,

f̃i,0(x) = 2
1
2

∫ ∞

0

[e−2πxy f0(y) + (cos 2πxy − sin 2πxy) fi,0(y)] dy,

f̃i,1(x) = 2
1
2 i

∫ ∞

0

[−e−2πxy f1(y) + (cos 2πxy + sin 2πxy) fi,1(y)] dy. (7.31)
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This can be verified as a consequence of the results of Section 2. Express f in
terms of (v0, v1) ∈ Cω

− 1
2 ,0

⊕Cω
1
2 ,1

by means of (2.84) and (2.85), and do the same for

f̃ in terms of (ṽ0, ṽ1). According to Theorem 2.9, one has ṽ0 = π− 1
2 ,0(

(
0 1−1 0

)
) v0

and ṽ1 = π 1
2 ,1(

(
0 1−1 0

)
) v1, and the operators v0 �→ ṽ0 and v1 �→ ṽ1 involved here

were made explicit in (2.102) and (2.103). This, and some patience, leads to the
four equations (7.31). Now, set h = (h0, h1, hi,0, hi,1) = (f1, f0, fi,1, fi,0), the
C4-realization of u�. On one hand, the transform under F �

ana of this function is
given (compare (1.81)) as

(F �
ana u�)(x) = 2

1
2 i

∫ ∞

0

[
h0(y) cos 2πxy dy − i h1(y) sin 2πxy

− hi,0(y) cosh 2πxy − i hi,1(y) sinh 2πxy
]

dy, (7.32)

where we must explain the sign changes from the former reference. First, comparing
the definitions of Int and Int�, one sees the reason for the presence of the coefficient
2

1
2 i in front of the new integral, as well as the need for a global sign change of the

sum of the last two terms. However, there is still another sign change, in the term
concerning hi,1, due to the following reason: our derivation of (1.81) was based on
the use of the linear form Int and of the first equation of each of the two pairs
(1.71) and (1.72): now, in the dual anaplectic analysis, it is immediate that, so
that the formulas remain true, one should change the coefficient i that appears on
the right-hand side of the second formula to −i. On the other hand, the function
(Fana u)� can be obtained as the sum of the even part of f̃1 and the odd part of
f̃0, which leads to the negative of the preceding result.
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8 The pseudoscalar product in n-dimensional
anaplectic analysis

The anaplectic analysis does not reduce to a study of the anaplectic representa-
tion: it is also meant for providing an analysis on appropriate spaces of functions
containing the anaplectic Hermite functions, as introduced in Definition 3.2. It
is in this latter sense only that the present section provides an answer to the
construction of a “natural” pseudoscalar product, actually a unique one up to
normalization.

We start with the construction of a non-degenerate pseudoscalar product on
the linear subspace of A(n) generated by the anaplectic Hermite functions such
that, for every j, the operators Aj and A∗

j should be formally adjoint to each
other. We shall show that such a pseudoscalar product exists if and only if n ≡/ 0
mod 4: similarly, such a pseudoscalar product exists on the comparable subspace
of (A(n))

�
if and only if n ≡/ 2 mod 4. We tacitly assume that n ≥ 2 in this

section.
In the usual analysis, it is easy to define spaces of functions, such as S(Rn),

containing all Hermite functions and invariant under the Heisenberg representa-
tion: the situation is more complicated in the anaplectic analysis. Though the
definition of a Heisenberg-invariant linear space, on which the pseudoscalar prod-
uct would be meaningful, might still be possible, we have chosen to make a simpler
construction, based on the consideration of a pair of spaces: then, the Heisenberg
representation, restricted to the smaller of the two spaces involved and valued into
the larger one, will preserve the pseudoscalar product.

Let us start with the necessity of the condition n ≡/ 0 mod 4 (resp. n ≡/ 2
mod 4) in the anaplectic (resp. dual-anaplectic) analysis. Set

B∗ =
∑

A∗
j
2, B =

∑
A2

j , (8.1)

and recall from the beginning of the proof of Theorem 3.4 that

B∗ : Eκ, 0 → Eκ+2, 0, B : Eκ, 0 → Eκ−2, 0. (8.2)

If u ∈ Eκ,0, u(x) = h( |x|
2

2 ), one has (B∗u)(x) = h1(
|x|2
2 ), where the function h1

is given in terms of u by the equation (3.46): moreover, if h(0) = 1, it follows
from the equation (3.30) (with � = 0) that h′(0) = − 4πκ

n , so that h1(0) = −κ− n
2 .

Consequently, if fκ,0 denotes the (unique) function in Eκ,0 such that fκ,0(0) = 1,
one has

B∗ fκ,0 = −(κ +
n

2
) fκ+2,0. (8.3)

Similarly,
B fκ,0 = (

n

2
− κ) fκ−2,0. (8.4)

In particular, B∗ fκ,0 �= 0 when κ ≥ 0. On the other hand, assuming that we
are dealing with a pseudoscalar product for which the operators Aj and A∗

j are
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formally adjoint to each other for every j, we may compute (B∗ fκ,0 |B∗ fκ,0) as
(BB∗ fκ,0 | fκ,0): it follows from the preceding two equations that

BB∗ fκ,0 =
(
κ − n

2
+ 2

)(
κ +

n

2

)
fκ,0. (8.5)

As a consequence, (B∗ fκ,0 |B∗ fκ,0) = 0 in the case when κ = n
2 − 2

(this is an admissible value of κ in the case when n ≡ 0 mod 4, as indicated in
Theorem 3.4), so that the pseudoscalar product is zero when restricted to the one-
dimensional joint eigenspace of the pair (L(n), ∆Sn−1) generated by the function
fn

2 ,0: hence no non-degenerate pseudoscalar product satisfying our demands can

exist on A(n). The case of the dual anaplectic analysis (on (A(n))
�
) follows just as

well.
Denote as dσ the usual rotation-invariant measure on the sphere Sn−1 with

total mass 2 π
n
2

Γ( n
2 ) . For any pair (κ, �), recall that the equation (3.30) has only a

one-dimensional space of solutions analytic at 0, and that such a solution does
not vanish at 0 if not identically zero. We may thus use on the finite-dimensional
vector space Eκ,� the (Hilbert) norm defined as

‖ u ‖� = |h(0)|
[∫

Sn−1
|Y�(x)|2 dσ(x)

] 1
2

(8.6)

if u = h � Y�.

Lemma 8.1. If Y� is a harmonic polynomial, homogeneous of degree �, one has∫
Sn−1

|∇Y�|2 dσ(x) = � (n + 2� − 2)
∫

Sn−1
|Y�|2 dσ(x). (8.7)

Proof. Using the homogeneity, one may transform the left-hand side of the identity
to be proven into an integral on the unit ball, finding∫

Sn−1
|∇Y�|2 dσ(x) = (n + 2� − 2)

∫
Bn

∑
j

∣∣∣∣∂Y�

∂xj

∣∣∣∣2 dx. (8.8)

Since ∆Y� = 0, this reduces, by Stokes’s formula, to∫
Sn−1

|∇Y�|2 dσ(x) = (n + 2� − 2)
∑

j

∫
Sn−1

Y� xj
∂Y�

∂xj
dσ(x) (8.9)

= � (n + 2� − 2)
∫

Sn−1
|Y�|2 dσ(x). �

Theorem 8.2. Assume that n ≡/ 0 mod 4, and let E(n) = ⊕κ∈Z, �∈N

κ+� even
Eκ,� be the

linear space generated by all anaplectic Hermite functions on Rn. Consider on
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E(n) the pseudoscalar product characterized by the fact that the subspaces Eκ,�

corresponding to different pairs (κ, �) are pairwise orthogonal, together with the
equation, valid for u ∈ Eκ,�,

(u |u) = γκ,� ‖ u ‖2
� , (8.10)

where

γκ,� = 2−
n
2 (2π)−

n
2 −�

(
Γ
(n

2
+ �
))2 Γ(1 − n

4 + κ−�
2 )

Γ(n
4 + κ+�

2 )
: (8.11)

recall that the norm ‖ ‖� on Eκ,� has been defined in (8.6). The pseudoscalar
product so defined is non-degenerate on E(n) and, for every j, the operators Aj

and A∗
j are formally adjoint to each other with respect to it. The pseudoscalar

product is characterized by the last property up to the multiplication by an arbitrary
non-zero constant.

All that precedes goes as well with the linear space similarly defined in relation
to the dual anaplectic analysis, provided that n ≡/ 2 mod 4.

Proof. Assume that u ∈ Eκ,� is of the kind u = h �Y�, with the notation (3.37).
We have to show that, whenever v ∈ Eκ−1,�+1 ⊕ Eκ−1,�−1, one has (v |Aju) =
(A∗

jv |u): indeed, unless v lies in the direct sum indicated, both sides of the equa-
tion to be verified are zero, a consequence of Lemma 3.7. Thus, set

v = g1 � X �+1 + g2 � X �−1. (8.12)

In accordance with Lemma 3.6, set

xj Y� = Z�+1 +
|x|2
2

Z�−1,

xj X �+1 = T �+2 +
|x|2
2

T �, xj Y�−1 = S� +
|x|2
2

S�−2, (8.13)

where each of the polynomials Z�+1, Z�−1, T �+2, T �, S�, S�−2 is harmonic and
homogeneous of the degree indicated in the exponent.

From the equation (3.30), note that

h′(0) = − 2πκ

� + n
2

h(0), g′2(0) = −2π(κ − 1)
� + n

2 − 1
g2(0). (8.14)

Applying the polarized version of the definition of the pseudoscalar product given
in the statement of the present theorem together with Lemma 3.7, one gets on one
hand

π− 1
2 (v |Aju) = γκ−1,�+1 ḡ1(0) (h(0) +

1
2π

h′(0))
∫

Sn−1
X �+1

(x)Z�+1(x) dσ(x)

+ γκ−1,�−1 ḡ2(0)
n
2 + � − 1

2π
h(0)

∫
Sn−1

X �+1
(x)Z�−1(x) dσ(x).

(8.15)
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Now, h(0)+ 1
2π h′(0) = �+ n

2 −κ

�+ n
2

h(0). Also, since two spherical harmonics of different
degrees are always orthogonal, it follows from (8.13) that∫

Sn−1
X �+1

(x)Z�+1(x) dσ(x) =
∫

Sn−1
xj X

�+1
(x)Y�(x) dσ(x),∫

Sn−1
X �−1

(x)Z�−1(x) dσ(x) = 2
∫

Sn−1
xj X

�−1
(x)Y�(x) dσ(x), (8.16)

so that

π− 1
2 (v |Aju) = γκ−1,�+1

� + n
2 − κ

� + n
2

ḡ1(0)h(0)
∫

Sn−1
xj X

�+1
(x)Y�(x) dσ(x)

+ γκ−1,�−1

� + n
2 − 1
π

ḡ2(0)h(0)
∫

Sn−1
xj X

�−1
(x)Y�(x) dσ(x).

(8.17)

On the other hand, in the same way of proof,

π− 1
2 (A∗

jv |u) = γκ,�

(−(n
2 + �)
2π

)
ḡ1(0)h(0)

∫
Sn−1

T �
(x)Y�(x) dσ(x)

+ γκ,� (ḡ2(0) − 1
2π

ḡ′2(0))h(0)
∫

Sn−1
S�

(x)Y�(x) dσ(x)

= − γκ,�

� + n
2

π
ḡ1(0)h(0)

∫
Sn−1

xj X
�+1

(x)Y�(x) dσ(x)

+ γκ,�

κ + � + n
2 − 2

� + n
2 − 1

ḡ2(0)h(0)
∫

Sn−1
xj X

�−1
(x)Y�(x) dσ(x).

(8.18)

In order to show that the operators Aj and A∗
j are formally adjoint to each other

with respect to the given pseudoscalar product, it thus simply remains to check
the two equations

γκ−1,�+1

� + n
2 − κ

� + n
2

= −γκ,�

� + n
2

π
,

γκ−1,�−1

� + n
2 − 1
π

= γκ,�

κ + � + n
2 − 2

n
2 + � − 1

, (8.19)

an elementary task.
Since κ ± � is even (resp. odd) when considering the anaplectic (resp. dual

anaplectic) analysis, it is clear from a look at the coefficients γκ,� that the pseudo-
scalar product under consideration is always non-degenerate. More precisely, in the
case of the anaplectic analysis, set

k1 =
κ + �

2
+
[n
4

]
, k2 =

κ − �

2
−
[n
4

]
: (8.20)
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it is then immediate that the sign of γκ,� is that of ε1 ε2, where εj = 1 if kj is
non-negative or even, and εj = −1 if kj is negative and odd. The same goes in
the dual anaplectic analysis, setting this time

k1 =
κ + � + 1

2
+
[
n

4
− 1

2

]
, k2 =

κ − � − 1
2

−
[
n

4
− 1

2

]
. (8.21)

It is only in the one-dimensional case that the condition κ even (resp. κ odd) is
sufficient, in the anaplectic (resp. dual anaplectic) analysis, to ensure that γκ,� > 0:
this is the reason why, in this case, the restriction of the anaplectic representation
to the even (resp. odd) functions is unitarizable.

We now turn to the question of uniqueness, starting with an arbitrary non-
zero pseudoscalar product for which the operators Aj and A∗

j are adjoint to each
other for every j. In the anaplectic analysis – from now on in this section, we shall
satisfy ourselves with this case only – we may assume that the equation (8.10) is
valid for u in the one-dimensional space E0,0. Next, we show that if this equation
is valid for u ∈ Eκ,0 for a certain number κ, it is also valid for the pair (κ+2, 0):
indeed, with the notation from the beginning of this section, and recalling (8.3)
and (8.5), one finds

(fκ+2,0 | fκ+2,0) =
κ − n

2 + 2
κ + n

2

(fκ,0 | fκ,0), (8.22)

and it suffices to check the equation γκ+2,0 = κ−n
2 +2

κ+n
2

γκ,0. Substituting B for
B∗, one may instead move from a pair (κ, 0) to the pair (κ − 2, 0) so that the
equation (8.10) is now valid whenever � = 0 (in which case, of necessity, κ is
even).

To finish the proof, it remains to be shown that if (8.10) is valid for some pair
(κ, �), it is also valid for the pair (κ + 1, � + 1). Indeed, since, as a consequence of
our assumptions, the operators L(n) and ∆Sn−1 are formally self-adjoint on E(n)

there is no need to consider a pair of functions lying in two different spaces of the
decomposition E(n) = ⊕Eκ,�. Thus, let v1 = g1 � X �+1

1 and v2 = g2 � X �+1
2 be

two elements of Eκ+1,�+1. Going back to the end of the proof of Theorem 3.4, we
solve the equation ∂� h2 = g2 with h2 in the null space of the operator Mn,κ,�:
this can be done in the case when κ ≥ −1, and we have indicated in the proof of
Theorem 3.4 the modification to be done in the other case. Then h2 � ∂X 	+1

2
∂xj

lies
in Eκ,� for every j, and one has (3.49)

∑
j

A∗
j

(
h2 � ∂ X �+1

2

∂xj

)
= (� + 1) v2. (8.23)

Thus

(v2 | v1) = (� + 1)−1
∑

j

((
h2 � ∂ X �+1

2

∂xj

)
|Aj v1

)
, (8.24)
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a number which we can compute by assumption after we have substituted for Aj v1

its projection (cf. Lemma 3.7)

T−
(j) v1 = (δ�+1 g1) � S−

(j) X
�+1
1 =

(n

2
+ �
)−1

(δ�+1 g1) � ∂X �+1
1

∂xj
(8.25)

on the space Eκ,�. Recalling from Lemma 3.5 that (δ�+1 g1)(0) =
n
2 +�

2π
1
2

g1(0), we
obtain

(v2 | v1) = γκ,� (� + 1)−1 h̄2(0)
1

2π
1
2

g1(0)
∑

j

∫
Sn−1

∂X̄ �+1
2

∂xj

∂X �+1
1

∂xj
dσ(x). (8.26)

Using the equation

g2(0) = π
1
2

n
2 + � + κ

n
2 + �

h2(0), (8.27)

a consequence of the definition of the operator ∂� in Lemma 3.5 and of the equation
(3.30) relative to h2, and the equation

∑
j

∫
Sn−1

∂X̄ �+1
2

∂xj

∂X �+1
1

∂xj
dσ(x) = (� + 1)(n + 2�)

∫
Sn−1

X̄ �+1
2 X �+1

1 dσ(x), (8.28)

a polarized version of Lemma 8.1, we obtain

(v2 | v1) = γκ,� × 1
π

(n
2 + �)2

n
2 + � + κ

ḡ2(0) g1(0)
∫

Sn−1
X̄ �+1

2 X �+1
1 dσ(x) : (8.29)

this is the desired result since the coefficient in front of the right-hand side agrees
with γκ+1,�+1. �

Remarks 8.1. (i) Note that γ−κ,� = (−1)κ γκ,�.

(ii) In the case when n ≡ 0 mod 4, the coefficient γκ,� is still defined, in the
anaplectic analysis (i.e., when κ + � is even), if and only if κ − � = n

2 + 2j
for j = 0, 1, . . . : then, this coefficient is also non-zero. But the direct sum of the
corresponding spaces Eκ,� is nothing else, as observed in Remark 3.1, than the
space of usual Hermite functions. A variant, to wit that obtained by substituting
(−1)κ Γ(1−n

4 −κ+	
2 )

Γ( n
4 + 	−κ

2 )
for the – formally identical – fraction Γ(1−n

4 + κ−	
2 )

Γ( n
4 + κ+	

2 )
taken from

the right-hand side of (8.11), would make it possible to consider instead the mock -
Hermite functions, defined as the images of the usual Hermite functions under
the change of coordinates x �→ ix: though absolutely devoid of applications, this
observation is still necessary for a good comprehension.

While we are at it, let us briefly show that, in the case when n ≡ 0 mod 4, the
anaplectic and metaplectic representations coincide when both are regarded only
on the space generated by usual Hermite functions: in other words, the anaplectic
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analysis does not bring anything new in this case. Indeed, if u is such a function,
it follows from (4.42) together with some easy considerations starting from the
definition of (K u)0 in Theorem 4.11 that

Int [u] = limε→0

∫
Rn

u(x e−i( π
4 −ε)) dx = e

iπn
4

∫
Rn

u(x) dx. (8.30)

Then, the definition of Fana in Theorem 5.6 shows that Fana u = e
iπn
4 F u, where

the last transformation is also the image, under the metaplectic representation, of
the matrix

(
0 I
−I 0

)
. The rest of the assertion follows.

In Theorem 8.2, the pseudoscalar product (u |u), with u ∈ E(n), has been
defined in terms of the decomposition u =

∑
κ,� uκ,�. This double series is very

annoying so far as questions of convergence are concerned. We now show how to get
rid of the index κ, at the benign price of having to substitute (�, m), 1 ≤ m ≤ d�,
the dimension of the space of spherical harmonics of degree �, for �. In the process,
all the coefficients γκ,� will disappear.

The first thing to do is to separate the even and odd values of κ ∈ Z, setting
κ = 2k+ε, ε = 0 or 1: since E(n) is the space of anaplectic Hermite functions, κ+�
must be even, which means that ε is characterized as having the same parity as �.
For every � = 0, 1, . . . , let (Y �,m)1≤m≤d	

be an orthonormal basis of the subspace
of L2(Sn−1) consisting of spherical harmonics of degree �, and extend Y �,m as a
homogeneous polynomial Y�,m of degree �. According to Theorem 3.8, one has for
every pair (k, �) the equation u2k+ε,� = (vk

n−2
2 +�,ε

)ram � Y�, where the function

vk
ρ,ε was defined in (2.20), (2.21), and the harmonic polynomial Y�, dependent on

(k, �), can be decomposed as Y� =
∑

m αk,�,m Y�,m.
Instead of the decomposition of u considered so far, we now set

u =
∑
�,m

P�,m u, (8.31)

where
P�,m u =

∑
k

αk,�,m ((vk
n−2

2 +�,ε
)ram) � Y�,m. (8.32)

Setting
g�,m =

∑
k

αk,�,m vk
n−2

2 +�,ε
, (8.33)

a function in the space Cω
n−2

2 +�,ε
(do not forget that we are currently dealing with

functions u in the algebraic sum of the spaces Eκ,�), we may finally write

u =
∑
�,m

(g�,m)ram � Y�,m, (8.34)

where the ramified part is taken with a reference to the space Cω
n−2

2 +�,ε
.
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We shall presently show that (u |u) then reduces to an expression

(u |u) =
∑
�,m

c� (g�,m | g�,m)n−2
2 +�,ε, (8.35)

where the (pseudo-)scalar product on the right-hand side denotes that introduced
in (2.30). There is, however, a difficulty, in that the number n−2

2 + � which occurs
here at the place of ρ is generally far from being < 1: we thus first extend this
notion, without any change to the notation.

Lemma 8.3. Let a function v2 ∈ Cω
ρ,ε be given for all complex ρ with Re ρ > −1,

and assume that, as a function of ρ valued in C∞(R×), it is holomorphic in the
given half-plane; make the same assumptions regarding another function v1, only
changing ρ to ρ̄. Then, as a function of ρ, the expression (v1 | v2)ρ,ε, as defined
in (2.30) in the case when ρ is real and 0 < |ρ| < 1, extends as a holomorphic
function of ρ in the half-plane from which all the points such that ρ−ε = 1, 3, . . .
have been deleted.

Proof. Clearly, in view of the properties of v1 and v2 expressed in Proposition
2.1, and (in the case when ρ = ε = 0) in Proposition 3.1, the integral (2.30)
continues to make sense for any complex ρ with −1 < Re ρ < 1, thus providing
the sought-after continuation in the given strip. For ρ real with 0 < ρ < 1, we
switch to the expression (2.31), with w1 = F v1 and w2 = F v2. Since, when ρ
is complex with a positive real part, the integral∫ ∞

−∞

∫ ∞

−∞
|σ − τ |Re ρ−1 [(1 + σ2) (1 + τ2)]−

1
2 (Re ρ+1) dσ dτ (8.36)

is convergent, it follows from the estimates |wj(σ)| ≤ C (1 + σ2)−
1
2 (Re ρ+1) (a

consequence of (2.17)) that, under the given assumptions, the integral (2.31) makes
sense, and is a holomorphic function of ρ, in the half-plane Re ρ > 0. Locating
the poles of the coefficient in front of (2.31), one obtains the present lemma. �
Corollary 8.4. Assume n ≡/ 0mod 4, and let � = 0, 1, . . . , ε = 0 or 1 with ε + �
even. Then, for every k ∈ Z,

(vk
n−2

2 +�,ε
| vk

n−2
2 +�,ε

)n−2
2 +�,ε = π

n
2 +� Γ(1 − n

4 + k + ε−�
2 )

Γ(n
4 + k + ε+�

2 )
. (8.37)

Proof. Since, with ρ = n−2
2 + �, one necessarily has ρ − ε − 1 /∈ 2Z, one can use

analytic continuation, deriving this result from Lemma 8.3. �

Remark 8.2. Of course, even when Re ρ ≥ 1, the equation (2.30) remains valid
in the case when each of the two functions v1 and v2 is square-integrable with
respect to the measure |s|−ρ ds on the real line.

We now need to compute (vk
n−2

2 +�,ε
)ram(0), under the assumptions of Corol-

lary 8.4.
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Lemma 8.5. Assume Re ρ > −1 and ε = 0 or 1. One has

(v0
ρ,ε)

ram(0) =

⎧⎨⎩
πρ+ 3

2

sin π
2 (ε−ρ) × 1

Γ( ρ+2−ε
2 ) Γ( ρ+1+ε

2 )
if ρ − ε �= 0, 2, . . . ,

− 2 πρ+ 1
2

cos π
2 (ε−ρ) × 1

Γ( ρ+2−ε
2 ) Γ( ρ+1+ε

2 )
if ρ − ε = 0, 2, . . . .

(8.38)

Proof. From (2.22), (2.23) and (2.25), one finds that

(v0
ρ,ε)

ram(0) = πρ+ 1
2

Γ(−ρ+ε
2 )

Γ(ρ+1+ε
2 )

, ρ − ε �= 0, 2, · · · : (8.39)

this reduces to the first formula above after one has treated the Gamma function
on the top by the formula of complements. The second case is then an immediate
consequence of the residue formula (6.76). �
Corollary 8.6. Assume that n ≡/ 0 mod 4, and that ε+ � is even. For any k ∈ Z,
one has

(vk
n−2

2 +�,ε
)ram(0) = (−1)k εn × (−1)

ε−	
2

(2π)
n
2 +�

Γ(n
2 + �)

, (8.40)

with

εn =

{
1

2 cos πn
4

if n is odd,

− 1
π sin πn

4
if n ≡ 2 mod 4.

(8.41)

Proof. Consider first the case when k = 0. With ρ = n−2
2 + �, the condition that

ρ − ε �= 0, 2, . . . just means that n is odd (use the assumptions relative to n and
to ε + �). In this case, an application of the first equation (8.38) gives

(v0
n−2

2 +�,ε
)ram(0) = (−1)

ε−	
2

π
n+1

2 +�

cos πn
4

× 1
Γ(n

4 + �
2 + 1−ε

2 ) Γ(n
4 + �

2 + ε
2 )

, (8.42)

and one obtains the claimed formula as a consequence of the duplication formula
of the Gamma function; the same goes in the other case.

Set, as in (3.51), hk
n−2

2 +�,ε
= (vk

n−2
2 +�,ε

)ram. It has been found there that one

has Mn,2k+ε,� hk
n−2

2 +�,ε
= 0, where the differential operator involved was defined

in (3.30). As a consequence,

(hk
n−2

2 +�,ε
)′(0) = −2π (2k + ε)

� + n
2

hk
n−2

2 +�,ε
(0). (8.43)

Finally, using the equation (6.82), here giving(n

2
+ � + 2k + ε

)
hk+1

n−2
2 +�,ε

(0) =
n
2 + �

2π
(hk+1

n−2
2 +�,ε

)′(0) −
(n

2
+ �
)

hk+1
n−2

2 +�,ε
(0),

(8.44)
one finds that

hk+1
n−2

2 +�,ε
(0) = (−1)k hk

n−2
2 +�,ε

(0). (8.45)
�
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Theorem 8.7. Assume that n ≡/ 0 mod 4. Under the assumption that u ∈ E(n) is
given as the linear combination (8.34), here recalled for convenience,

u =
∑
�,m

(g�,m)ram � Y�,m, (8.46)

one has
(u |u) = ε2

n

∑
�,m

2� (g�,m | g�,m)n−2
2 +�,ε, (8.47)

with ε + � even and ε2
n =

{
1
2 if n is odd,

π−2 if n ≡ 2 mod4.

Proof. According to Theorem 8.2, and with the notation in (8.31)–(8.34), one has

(u |u) =
∑
k,�

γ2k+ε,� |(vk
n−2

2 +�,ε
)ram(0)|2

∑
m

|αk,�,m|2

= ε2
n

∑
k,�,m

2� π
n
2 +� Γ(1 − n

4 + k + ε−�
2 )

Γ(n
4 + k + ε+�

2 )
|αk,�,m|2, (8.48)

whereas

(g�,m | g�,m)n−2
2 +�,ε =

∑
k

|αk,�,m|2 (vk
n−2

2 +�,ε
| vk

n−2
2 +�,ε

)n−2
2 +�,ε. (8.49)

It suffices to compare the last expression to (8.48) and to make use of Corollary 8.4.
�

Remarks 8.3. (i) We have assumed n ≥ 2 throughout. However, one may check
with the help of (2.113), (2.82) and Theorem 2.9 that, in the one-dimensional
case, the expression of (u |u) above agrees with that introduced in Section 1.
Indeed, there are only two normalized “spherical” harmonics to be considered, to
wit Y0(x) = 2−

1
2 and Y1(x) = 2−

1
2 x, in which case, comparing (8.46) to (2.82),

one obtains the relations g0 = 2
1
2 v0, g1 = v1.

(ii) If, instead of the decomposition (8.46), the function u expresses itself as a
linear combination

u =
∑
�,p

(g�,p)ram � Y�,p, (8.50)

in which, for each �, the set of functions Y�,p is an arbitrary finite collection of
harmonic polynomials homogeneous of degree �, the equation (8.47) transforms to

(u |u) = ε2
n

∑
�

2�
∑
p,q

(g�,p | g�,p)n−2
2 +�,ε

∫
Sn−1

Ȳ�,p(x) Y�,q(x) dσ(x). (8.51)
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(iii) We shall also have to consider functions u given by the decomposition (8.46),
in which, for each pair (�, m), g�,m will be an arbitrary function in Cω

n−2
2 +�,ε

,

not necessarily a finite linear combination of the functions vk
n−2

2 +�,ε
as in (8.33).

Provided that the series on the right-hand side of (8.47) is convergent, it will
then still serve as a definition of (u |u): but one must first verify that the map
g �→ gram, g ∈ Cω

n−2
2 +�,ε

, is one-to-one; the argument given just before Proposition
2.5 applies just as well in the case when ρ + ε ∈ 2Z, Re ρ > −1.

Our aim is to define a pair of linear spaces of functions, containing E(n), such
that the operators of the Heisenberg representation map the smaller one into the
larger one, the definition of the pseudoscalar product on a pair of functions from
the larger space being possible. To start with, with the help of results of Section 3,
we shall study the operator of multiplication by e2iπ〈α,x〉, as expressed by means
of the series of the exponential. First, some algebra:

Lemma 8.8. Let Y� be a harmonic polynomial, homogeneous of degree �, and let
g ∈ Cω

n−2
2 +�,ε

, with � + ε even. Set u = gram � Y� and g = g(s). With the
notation of Lemma 3.6, one has the identity

〈α, x〉u = (sg)ram � S+
α Y� + gram � S−

α Y� : (8.52)

it is understood that the ramified part of a function h occurring in some expression
explicitly written in the form hram � Y�′ is always taken with a reference to the
Cω

n−2
2 +�′,ε′-theory, with �′ + ε′ even. In a similar way, one has for every β ∈ Cn

the equation

〈β,∇〉u =
[
s g′ −

(
n − 2

2
+ �

)
g

]ram

� S+
β Y� + (g′)ram � S−

β Y�. (8.53)

Proof. Before we give it, let us remind the reader that the definition, in Proposition
2.3, of the ramified part of some function v in the space Cω

ρ,ε, was dependent on
the choice of the pair (ρ, ε), even though we chose to dispense with making this
dependence explicit in the notation. Clearly, from (2.33), if v lies in this space,
it also lies in the space Cω

ρ−1,1−ε, but its ramified part in the latter space is the
function s �→ s vram(s) if vram is its ramified part in the first space. On the other
hand, vram is also the ramified part of the function s �→ s v(s) in the Cω

ρ+1,1−ε-
theory. The preceding justification works only if ρ + ε is not an even integer, but
the exceptional case is covered just as well with the help of Proposition 3.1.

Starting from Lemma 3.6, i.e.,

〈α, x〉 Y� = S+
α Y� +

|x|2
2

S−
α Y�, (8.54)

we write

〈α, x〉u(x) = gram

(
|x|2
2

)
(S+

α Y�)(x) +
|x|2
2

gram

(
|x|2
2

)
(S−

α Y�)(x), (8.55)
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where gram is the ramified part of g in the Cω
n−2

2 +�,ε
-theory. One obtains the first

formula with the help of the argument in the beginning of the present proof. For
the second one, starting from Lemma 3.6 again, we write

(〈β,∇〉u)(x) =
(

n − 2
2

+ �

)
gram

(
|x|2
2

)
(S−

β Y�)(x)

+ (gram)′
(
|x|2
2

)[
(S+

β Y�)(x) +
|x|2
2

(S−
β Y�)(x)

]
, (8.56)

and we observe, setting ρ = n−2
2 + �, that ρ gram +s (gram)′ is the ramified part of

g′ in Cω
ρ−1,1−ε and that (gram)′ is the ramified part of sg′−ρ g in Cω

ρ+1,1−ε. �

Under the same assumptions as in Lemma 8.8, one can give a formula for the
function 〈α, x〉j u, j = 0, 1, . . . , to wit

〈α, x〉j u =
∑

ι1=±1,...,ιj=±1

(sι+ g)ram � Sι1
α . . . Sιj

α Y : (8.57)

in the preceding expression, ι+ stands for the number of +1 ’s in the sequence
ι1, . . . , ιj . Of course, the ramified part is taken within the space Cω

n−2
2 +�+ῑ

where,
by definition, ῑ = ι1 + · · · + ιj = 2ι+ − j.

Consequently, if u =
∑

�,m (g�,m)ram � Y�,m, our aim is to define uα =
e2iπ〈α, Q〉 u by means of the series

e2iπ〈α, x〉 u =
∑

�

G� (8.58)

with

G� =
∑

j

(2π)j

j !

∑
ι1=±1,...,ιj=±1

∑
m′

(sι+ g�−ῑ,m′)ram � Sι1
α . . . Sιj

α Y�−ῑ,m′
, (8.59)

in which the index m′ characterizes the choice of an arbitrary vector in an or-
thonormal basis of the subspace of L2(Sn−1) consisting of spherical harmonics of
degree � − ῑ: of course there is no such index unless � − ῑ ≥ 0.

The functions (gα)ram�,m which enter the decomposition G� =
∑

m (gα)ram�,m �
Y�,m associated to the choice of an orthonormal basis of the space of spherical
harmonics of degree � can be obtained as linear combinations of the functions
(sι+ g�−ῑ,m′)ram, where, in view of the following lemma, the coefficients are all less

than (2π)j

j ! × 2
j−ι+

2 3
ι+
2 |α|j .

Lemma 8.9. With the notation of Lemma 3.6, one has∫
Sn−1

|S−
α Y�|2 dσ(x) ≤ 2�

n
2 + � − 1

|α|2
∫

Sn−1
|Y�|2 dσ(x),∫

Sn−1
|S+

α Y�|2 dσ(x) ≤ n + 3� − 2
n
2 + � − 1

|α|2
∫

Sn−1
|Y�|2 dσ(x). (8.60)
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Proof. From the inequality |〈α, ∇Y� 〉| ≤ |α| |∇Y�| and the definition of S−
α Y�

in Lemma 3.6, one finds, with the help of Lemma 8.1,∫
Sn−1

|S−
α Y�|2 dσ(x) ≤

(n

2
+ � − 1

)−2

|α|2 � (n + 2� − 2)
∫

Sn−1
|Y�|2 dσ(x),

(8.61)
which leads to the first inequality. From the second equation (3.34), one finds∫

Sn−1
|S+

α Y�|2 dσ(x) ≤ 2
[∫

Sn−1
|〈α, x〉 Y�|2 dσ(x) +

1
4

∫
Sn−1

|S−
α Y�|2 dσ(x)

]
,

(8.62)
which leads to the second inequality. �
Definition 8.10. We shall say that a real-analytic function u on Rn lies in the
space S•(Rn) if the following conditions hold:

(i) for every (�, m), the function u�,m defined on ]0, ∞[ by the equation

u�,m(
t2

2
) =

∫
Sn−1

u(tξ) Ȳ�,m(tξ) dσ(ξ) (8.63)

can be written as u�,m = (g�,m)ram for a (necessarily unique: cf. Remark
8.2) function g�,m ∈ Cω

n−2
2 +�,ε

;

(ii) one has for some constant C > 0 depending only on u the estimates∣∣∣∣ dp

dσp
(F g�,m)(σ)

∣∣∣∣ ≤ Cp+�+1 p ! (1 + σ2)−
1
2 ( n

2 +�+p). (8.64)

We shall say that the function u lies in the space S•(Rn) if the condition
(ii) is replaced by the condition (ii)′:∣∣∣∣[σ2 d

dσ
+
(n

2
+ �
)

σ

]p

(F g�,m)(σ)
∣∣∣∣ ≤ Cp+�+1 p ! (1 + σ2)−

1
2 ( n

2 +�) (1 + σ−2)−
p
2 .

(8.65)

Remarks 8.4. (i) Since the dimension d� = (2�+n−2)(n+�−3) !
(n−2) ! � ! of the space of spheri-

cal harmonics of degree � is a O(�n−2), the definition is independent of the choice,
for every � = 0, 1, . . . , of the orthonormal basis (Y �,m)m.

(ii) As will be proved presently, the space S•(Rn) is well adapted to the study of
an operator such as e2iπ〈α, Q〉, and the space S•(Rn) to that of the (translation)
operator e2iπ〈β, P 〉. What can be seen without difficulty, from Lemma 8.8, is that
the operator Q (resp. P ) is an endomorphism of the first (resp. the second) of
these two spaces. We now describe how these are related to each other.

The equation (8.63) leads to the series (8.46), and we define, as a generaliza-
tion of Theorem 6.5,

Fana u =
∑
�,m

(
πn−2

2 +�,ε(
(

0 1−1 0

)
) g�,m

)ram

� Y�,m. (8.66)
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The space S•(Rn) may not be contained in the space A(n), defined by completely
different means – we have not found it necessary to examine this seemingly difficult
question – so that we may not rely on the definition of the anaplectic Fourier
transformation as given there. We must of course not rely, then, on the properties
of the anaplectic Fourier transformation as given in Section 5: however, the only
fact needed in what follows is the equation Fana 〈β, P 〉F−1

ana = 〈β, Q〉, which can
be seen from an application of Lemma 8.8 and (8.66), only paying attention to
the fact that ramified parts have to be taken, in each instance, in the appropriate
space. From (2.3), one has

(F πn−2
2 +�,ε(

(
0 1−1 0

)
) g�,m)(σ) = | − σ|−

n
2 −�

ε (F g�,m)
(
− 1

σ

)
(8.67)

and, under the transformation w �→ w1, with w1(σ) = | − σ|−
n
2 −�

ε w(− 1
σ ), the

operator X = d
dσ transfers to (−1)ε Y� with Y� = σ2 d

dσ + (n
2 + �)σ. This shows

that the spaces S•(Rn) and S•(Rn) are the images of each other under the
anaplectic Fourier transformation.

(iii) Our third remark concerns the estimate of (g�,m | g�,m)n−2
2 +�,ε, as rendered

necessary towards the convergence of the series (8.47) defining (u |u). On one hand,
it follows from (2.31) and some elementary transformations of the coefficient in
front of the integral there that, unless n = 2 and � = 0,

(g�,m |g�,m)n−2
2 +�,ε

=
(−1)

	−ε
2 (−i)ε

4sin πn
4

(2π)
n
2 +�

Γ(n−2
2 +�)

∫ ∞

−∞

∫ ∞

−∞
|σ−τ |

n−4
2 +�

ε (F g�,m)(σ)(F g�,m)(τ) dσdτ.

(8.68)

On the other hand, one has∫ ∞

−∞

∫ ∞

−∞
|σ − τ |

n−4
2 +�

ε (1 + σ2)−
n
4 − 	

2 (1 + τ2)−
n
4 − 	

2 dσ dτ

≤ 2
n−4

2 +�

∫ ∞

−∞

∫ ∞

−∞
max (|σ|, |τ |)

n−4
2 +� (1 + σ2)−

n
4 − 	

2 (1 + τ2)−
n
4 − 	

2 dσ dτ

≤ 2
n−2

2 +� π

(
Γ(n

4 + �
2 − 1

2 )
Γ(n

4 + �
2 )

)2

≤ 2
n−2

2 +� π2. (8.69)

From the 1
Γ -factor in front of the right-hand side of (8.68), it is clear that

the series defining (u |u) converges in the case when u ∈ S•(Rn).
Also, since the pseudoscalar product (g�,m | g�,m)n−2

2 +�,ε is left unchanged
when g�,m is changed to its image under πn−2

2 +�,ε(
(

0 1−1 0

)
), the same can be said

in the case when u ∈ S•(Rn), and the map Fana from S•(Rn) to S•(Rn) defined
by (8.66) preserves the pseudoscalar product.
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(iv) As a last remark, all functions in the space E(n) lie in S•(Rn) (then, a
consequence of a preceding remark, also in S•(Rn)). Indeed, from the finite de-
composition (8.33) and the expression (2.20) of wk

n−2
2 +�,ε

= F vk
n−2

2 +�,ε
, one sees

that it suffices to prove the following lemma.

Lemma 8.11. For some absolute constant C > 0 one has∣∣∣∣ dp

dσp

(
(1 + σ2)−

ρ+1
2 −a (1 − i σ)2a

) ∣∣∣∣ ≤ C1+ρ+|a|+p p ! (1 + σ2)−
ρ+1+p

2 (8.70)

for every ρ > −1, 2a ∈ Z and p = 0, 1, . . . .

Proof. Use Cauchy’s formula

dp

dσp

(
(1 + σ2)−

ρ+1
2 −a (1 − i σ)2a

)
=

p !
2iπ

∫
|z−σ|= 1

2

(1 + z2)−
ρ+1
2 −a (1 − i z)2a

(z − σ)p+1
dz.

(8.71)
�

Proposition 8.12. Let u ∈ S•(Rn). For every α ∈ Cn the function uα =
e2iπ〈α, Q〉 u lies in S•(Rn) too. If α ∈ Rn, one has (uα |uα) = (u |u).

Proof. We first study the function uα, for small |α|, by means of the series (8.58).
The problem lies in giving suitable estimates for the functions dp

dσp F (gα)�,m,
where the functions (gα)ram�,m are the ones that enter the decomposition of G� as
defined right after (8.59). Since∣∣∣∣ dp

dσp
(F (sι+ g�−ῑ,m)(σ))

∣∣∣∣ = (2π)−ι+

∣∣∣∣ dp+ι+

dσp+ι+
(F g�−ῑ,m(σ))

∣∣∣∣
≤ (2π)−ι+ Cp+ι++�−ῑ+1 (p + ι+) ! (1 + σ2)−

1
2 ( n

2 +�−ῑ+p+ι+), (8.72)

one finds, writing ι+ − ῑ = j − ι+, observing that ι+ − ῑ ≥ 0 and using the
estimates regarding some coefficients proved just after (8.59), that∣∣∣∣ dp

dσp
(F (gα)�,m)(σ)

∣∣∣∣ ≤∑
j≥0

∑
ι1=±1,...,ιj=±1

∑
m′

(2π)j

j !
× 2

j−ι+
2 3

ι+
2 |α|j

(2π)−ι+ C(p+�+1)+(j−ι+) (p + ι+) ! (1 + σ2)−
1
2 ( n

2 +�+p). (8.73)

Now, the dimension of the space of spherical harmonics of degree �− ῑ is at most

C1 (1 + � − ῑ)n−2 = C1 (1 + � + j − 2ι+)n−2

≤ C1 (� + 1)n−2 (1 + j − ι+)n−2 ≤ C1 (� + 1)n−2 e(n−2)(j−ι+). (8.74)

On the other hand,

(C en−2)j−ι+ (p + ι+) ! ≤ (p + j) ! + Cj+1
2 (8.75)
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for some constant C2 depending only on (C, n). Thus,∣∣∣∣ dp

dσp
(F (gα)�,m)(σ)

∣∣∣∣ ≤ C1 Cp+�+1 (� + 1)n−2 (1 + σ2)−
1
2 ( n

2 +�+p)

∑
j≥0

(2
5
2 π |α|)j

j !
((p + j) ! + Cj+1

2 ) : (8.76)

this leads to the required estimates in the case when |α| ≤ 1
2 (2

5
2 π)−1, since the

last series can then be made explicit as

p ! (1 − 2
5
2 π |α|)−p−1 + C2 exp (2

5
2 π C2 |α|). (8.77)

Of course, the new constant C which makes the analogue of (8.64) has changed in
the move u �→ uα, but the domain of convergence of the series does not depend on
C, so that the operator e2iπ〈α, Q〉 can be iterated as many times as needed, and
is thus seen to act within the space S•(Rn) without any restriction on |α|. �

The preceding proposition also shows that the space S•(Rn) is invariant
under the action of translations. However, some more effort is needed in order
to combine the operators from the Heisenberg representation of the two different
species.

Definition 8.13. We shall say that a real-analytic function u on Rn lies in the space
S•• (Rn) if, with the same notation as in Definition 8.10, the following conditions
hold: for some constant C > 0 depending only on u and all integers p, q, �, r
such that p ≥ 0, q ≥ 0, p ≥ r and � ≥ 0, � + r ≥ 0, one has∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ � + r)σ]q

dp

dσp
(F g�,m)(σ)

∣∣∣∣
≤ C�+p+q+1 (p + q) ! (1 + σ2)−

1
2 ( n

2 +�+r) (1 + σ−2)−
q
2 . (8.78)

The first thing to note is that S•
• (Rn) ⊂ S•(Rn) ∩ S•(Rn): for the first

inclusion, take q = 0 and p = r; for the second one, take p = r = 0.
Next, we shall prove that anaplectic Hermite functions lie in the space

S•
• (Rn): this requires a pair of lemmas.

Lemma 8.14. Under the assumptions that p, q, �, r are integers such that p ≥
0, q ≥ 0, p ≥ r and � ≥ 0, � + r ≥ 0, one has for some absolute constant C > 0,∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ � + r)σ]q

dp

dσp
(1 + σ2)−

1
2 ( n

2 +�)

∣∣∣∣
≤ C�+p+q+1 (p + q) ! (1 + σ2)−

1
2 ( n

2 +�+r) (1 + σ−2)−
q
2 . (8.79)
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Proof. Set µ = 1
2 (n

2 + �). One sees by induction that

dp

dσp
(1 + σ2)−µ =

{∑p
m= p

2
ap

m (1 + σ2)−µ−m if p is even,∑p

m= p+1
2

bp
m σ (1 + σ2)−µ−m if p is odd,

(8.80)

with

bp+1
m = −2 (µ + m − 1) ap

m−1,

ap+1
m = 2 (µ + m − 1) bp

m−1 − 2
(

µ + m − 1
2

)
bp
m : (8.81)

now, µ ≥ 1
2 so that |µ + m − 1| ≤ µ + m, which is ≤ µ + p for m ≤ p: from the

last two equations it thus follows that

max

⎛⎝ p∑
m= p

2

|ap
m| ,

p∑
m= p+1

2

|bp
m|

⎞⎠ ≤ 42µ+p Γ(2µ + p)
Γ(2µ)

. (8.82)

Next, we show by induction on q that

[σ2 d

dσ
+ (

n

2
+ � + r)σ]q

dp

dσp
(1 + σ2)−µ

=

{∑
r
2≤m≤p+q Aq,p

m (1 + σ2)−µ−m if p + q is even,∑
r+1
2 ≤m≤p+q Bq,p

m σ (1 + σ2)−µ−m if p + q is odd :
(8.83)

here, the index m only runs through integers in both equations, and one has

Bq+1,p
m = (r − 2m)Aq,p

m + 2 (µ + m − 1)Aq,p
m−1, (8.84)

Aq+1,p
m = (r − 1 − 2m)Bq,p

m+1 + (4m + 2µ − r − 1)Bq,p
m − 2 (µ + m − 1)Bq,p

m−1.

Note that |r − 2m| + 2 |µ + m − 1| ≤ 2m − r + 2 (m + µ) ≤ 4m + 2µ + � ≤
4 (m+µ) ≤ 4 (µ+p+q) and that |r+1−2m|+ |4m+2µ−r−1|+2 |µ+m−1| ≤
(2m−r+1)+(4m+2µ−r−1)+2 (µ+m) = 8m+4µ−2r ≤ 8m+4µ+2� ≤ 8 (m+µ):
it follows that

max

(∑
m

|Aq,p
m | ,

∑
m

|Bq,p
m |

)
≤ 82µ+p+q Γ(2µ + p + q)

Γ(2µ)
. (8.85)

This implies the announced estimate in the case when |σ| ≥ 1, in view of the
inequality

Γ(ν + p)
Γ(ν)

≤ 8ν+p p ! (8.86)

valid if ν ≥ 0 and p = 0, 1, . . . . Indeed, if ν ≤ p, one has

Γ(ν + p)
Γ(ν)

≤ (2p − 1) !
(p − 1) !

≤ 4p p ! (8.87)
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by Stirling’s formula, while by the same, if ν ≥ p ≥ 1,

Γ(ν + p)
Γ(ν)

≤ (2ν)p =
(

2ν

p
. p

)p

≤ e2ν pp ≤ (e2)ν+ p
2 p ! . (8.88)

To prove (8.79) for small values of |σ|, another expression of the left-hand
side of (8.83) is needed: setting η = 0 if p is even, η = 1 if p is odd, one can see
that[

σ2 d

dσ
+
(n

2
+ �
)

σ

]q
dp

dσp
(1 + σ2)−µ = σq+η

p+q∑
m= p+η

2

Cq,p
m (1 + σ2)−µ−m (8.89)

with
Cq+1,p

m = (r + q + η − 2m)Cq,p
m + 2 (µ + m − 1)Cq,p

m−1. (8.90)

Again, |µ+m−1| ≤ µ+p+q when m ≤ p+q. On the other hand, |r+q+η−2m| ≤
max (�, p) + |q + η − 2m| ≤ 3 (µ + p + q) + 1. From all this one finds, by induction,
that ∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ � + r)σ]q

dp

dσp
(1 + σ2)−

1
2 ( n

2 +�)

∣∣∣∣
≤ C2µ+p+q Γ(2µ + p + q)

Γ(2µ)
σq (1 + σ2)−µ− p

2 , (8.91)

which implies (8.79) for |σ| ≤ 1, if one remarks also that µ + p
2 ≥ 1

2 (n
2 + � + p) ≥

1
2 (n

2 + � + r). �
Lemma 8.15. Given ρ ≥ 0, let Vρ be the linear space generated by all functions
of the kind ( d

dσ )j (1 + σ2)−
ρ+1
2 −m with j = 0, 1, . . . and m = 0, 1, . . . . If a and

b are two integers such that 0 ≤ a ≤ 2b, the function ψa,b defined as

ψa,b(σ) = (1 + σ2)−
ρ+1
2 −b (1 − i σ)a (8.92)

lies in Vρ.

Proof. If a = 1, one must have b ≥ 1 so that ψ0,b−1 ∈ Vρ. One can then write

ψ1,b = ψ0,b +
i

ρ + 1 + 2b

d

dσ
ψ0,b−1. (8.93)

Next, assume that for some a ≥ 1, the function ψa,b lies in Vρ whenever a ≤ 2b,
and consider a function ψa+1,b with a +1 ≤ 2b: then, to start with, the functions
ψa−1,b−1 and ψa−1,b lie in Vρ. Now, writing (1 − i σ)2 = − (σ2 + 1) + 2 − 2iσ,
one obtains

ψa+1,b = −ψa−1,b−1 + 2 ψa−1,b − 2i (1 + σ2)−
ρ+1
2 −b σ (1 − i σ)a−1 (8.94)
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and it only remains to prove that the last function on the right-hand side lies in
Vρ too. This follows from the equation

d

dσ
ψa−1,b−1+i (a−1)ψa−2,b−1 = − (ρ+1+2b) (1+σ2)−

ρ+1
2 −b σ (1−i σ)a−1, (8.95)

in which the second term on the left-hand side is present only if a �= 1. �
Proposition 8.16. All anaplectic Hermite functions lie in the space S•

• (Rn).

Proof. It suffices to show that this space contains every function of the kind gram �
Y� with w = Fg coinciding with the function wk

ρ,0 as made explicit in (2.20),
with ρ = n−2

2 + � and � even, as well as every function of the kind gram � Y�+1

with w = Fg coinciding this time with the function wk
ρ+1,1. We first show that

all the functions wk
ρ,0 and wk

ρ+1,1 lie in the space Vρ introduced in Lemma 8.15.
If k = 0, 1, . . . , this follows from this lemma and from the equations (2.20), here
rewritten for convenience:

wk
n−2

2 +�,0
(σ) = (1 + σ2)−

1
2 ( n

2 +�)−k (1 − i σ)2k,

wk
n−2

2 +�+1,1
(σ) = (1 + σ2)−

1
2 ( n

2 +�)−k−1 (1 − i σ)2k+1; (8.96)

when k ≥ 1, one may also write

w−k
n−2

2 +�,0
= wk

n−2
2 +�,0

, w−k
n−2

2 +�+1,1
= wk−1

n−2
2 +�+1,1

, (8.97)

so that the general case when k ∈ Z is taken care of, as the space Vρ is stable
under complex conjugation.

To settle the even case of the proposition, we thus have to show that, with

w =
(

d

dσ

)j

(1 + σ2)−
1
2 ( n

2 +�)−m, (8.98)

where j = 0, 1, . . . and m = 0, 1, . . . , and under the assumptions relative to the
set (p, q, �, r) taken from Definition 8.13, one has∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ � + r)σ]q

dp

dσp
w(σ)

∣∣∣∣
≤ C�+p+q+1 (p + q) ! (1 + σ2)−

1
2 ( n

2 +�+r) (1 + σ−2)−
q
2 . (8.99)

This is an immediate application of Lemma 8.14. Only, some shift in the
parameters is needed, replacing the set (p, q, �, r) there by the set (p′, q, �′, r′)
with p′ = p + j, �′ = � + 2m, r′ = r − 2m, so that the conditions p′ ≥ 0, q ≥
0, p′ ≥ r′, �′ ≥ 0, �′ + r′ ≥ 0 are still satisfied. Also, on the right-hand side, the
coefficient C�+p+q+1 (p + q) ! will have to be replaced by

C�+p+q+1 (p+ q) !×C2m+j (p + q + j) !
(p + q) !

≤ C�+p+q+1 (p+ q) !×C2m+j 8p+q+1+j j !,

(8.100)
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which is all right since, in the situation under discussion, the pair (m, j) is fixed.
The odd case of the proposition is taken care of in the same way, only observing
(because of the condition p′ ≥ r + 1 to be checked now in the case when m = 0,
so as to be able to substitute � + 1 for � in the exponent on the right-hand side
of (8.99)) that one now has j ≥ 1. �
Theorem 8.17. All the operators from the Heisenberg representation map the space
S•
• (Rn) into S•(Rn). They preserve the pseudoscalar product.

Proof. We already know that the operators e2iπ〈α, Q〉 preserve the space S•(Rn)
and that the operators e2iπ〈β, P 〉 preserve the space S•(Rn). It thus suffices to show
that, for |α| small in some absolute way (|α| < 2−

5
2 π−1 will do), the operator

e2iπ〈α, Q〉 preserves the space S•
• (Rn). The proof of this follows that of Proposition

8.12 with almost no change. One may rewrite (8.78) as∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ �)σ]q

dp

dσp
(F ((sι+ (g�−ῑ,m))(σ)

∣∣∣∣
≤ (2π)−ι+ C�−ῑ+p+ι++q+1 (p + ι+ + q) ! (1 + σ2)−

1
2 ( n

2 +�) (1 + σ−2)−
q
2 . (8.101)

The estimate (8.73) becomes∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ �)σ]q

dp

dσp
(F (gα)�,m)(σ)

∣∣∣∣ ≤∑
j≥0

∑
ι1=±1,...,ιj=±1

∑
m′

(2π)j−ι+

j !

× 2
j−ι+

2 3
ι+
2 |α|j C�−ῑ+p+ι++q+1 (p + ι+ + q) ! (1 + σ2)−

1
2 ( n

2 +�) (1 + σ−2)−
q
2 ,

(8.102)

and (8.76) is changed to∣∣∣∣ [σ2 d

dσ
+ (

n

2
+ �)σ]q

dp

dσp
(F (gα)�,m)(σ)

∣∣∣∣
≤ C1 Cp+q+�+1 (� + 1)n−2 (1 + σ2)−

1
2 ( n

2 +�)

× (1 + σ−2)−
q
2

∑
j≥0

(2
5
2 π |α|)j

j !
((p + j) ! + Cj+1

2 ) : (8.103)

the last series can also be made explicit, this time as

(p + q) ! (1 − 2
5
2 π |α|)−p−q−1 + C2 exp (2

5
2 π C2 |α|). (8.104)

That, in the present context, an operator such as e2iπ〈β, P 〉 e2iπ〈α, Q〉, with α
and β in Rn, preserves the pseudoscalar product is a consequence of Proposition
8.12 and Remark 8.4 (iii). �

As observed in Remark 8.4 (i), the definition of the space S•(Rn), though
associated to the choice of the canonical Euclidean structure on Rn, does not
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depend on the choice, for every � = 0, 1, . . . , of the orthonormal basis (Y�,m)m of
spherical harmonics; the same is true of the spaces S•(Rn) and S•

• (Rn). Moreover,
the pseudoscalar product does not depend on such a choice.

Another transformation easy to study is the transformation u �→ uλ with
uλ(x) = λ

n
2 u(λx), where λ > 0. If u is given by the series (8.46), one has

uλ =
∑

�,m fλ,m � Y�,m with

f�,m(s) = λ
n
2 gram

�,m (λ2s) : (8.105)

now, this function is just the ramified part, in the Cω
n−2

2 +�,ε
-theory, of the function

h�,m defined as
h�,m(s) = λ2− n

2 −� g�,m(λ2s). (8.106)

This provides a decomposition of the form (8.46) for the function uλ and, since
(h�,m |h�,m)n−2

2 +�,ε = (g�,m | g�,m)n−2
2 +�,ε as can be verified from the definition

of these expressions in Lemma 8.3, the transformation u �→ uλ preserves the
pseudoscalar product defined as an extension of (8.47). It is immediate, on the
other hand, that this transformation preserves each of the spaces S•(Rn), S•(Rn)
and S•

• (Rn).

Remark 8.5. One question which we shall leave unanswered at present is whether
the pseudoscalar product is left unchanged, on some appropriate space, by more
general operators from the anaplectic representation. It is true that, since the
infinitesimal generators Qj and Pk (j, k = 1, . . . , n) of the Heisenberg represen-
tation are formally self-adjoint, on E(n) or on any of the spaces introduced in
Definition 8.10 or 8.13, there may be some hope that their symmetrized quadratic
combinations, still in some sense the infinitesimal operators of the anaplectic repre-
sentation, might enjoy the same property. However, the problem has to do with the
construction of some invariant space of functions, on which the pseudoscalar prod-
uct would make sense. For all we know, it is not excluded that a space comparable
to those already introduced might do, in the case of transformations associated to
linear changes of coordinates. However, let us indicate some rough reason why it
is very unlikely that a space such as S•(Rn), S•(Rn) or S•

• (Rn) could have such
an invariance with respect to general transformations from the anaplectic repre-
sentation. Going back to Sections 4 and 5, one sees that the Q-transform of any
anaplectic Hermite function is analytic on the whole of Symn: in other words, the
K-transform of such a function is analytic on the subset of Σ, or Σ(n), denoted
as Σreg, in Proposition 4.7. This property is likely to hold also in the case of a
function taken from a space consisting of series of anaplectic Hermite functions –
though, in the case of the three spaces just referred to, we have not made such a
verification. But, except for the case of linear changes of coordinates, the equations
(5.69) from Theorem 5.10 show that, in general, the K-transform of the image of
the basic function Φ of Theorem 4.18 (the rotation-invariant median state of the
anaplectic harmonic oscillator) under some anaplectic transformation ceases to be
regular on Σreg, because it has singularities which are moved in the process.



Chapter 3

Towards the Anaplectic
Symbolic Calculi

In the first section of this chapter, we study the anaplectic analogue of the Barg-
mann–Fock realization of functions on the real line. It is, again, a realization by
means of functions of two variables: however, the differential equation that char-
acterizes the image of the transformation is associated to a second-order operator
rather than a first-order one (the gauge-transformed ∂

∂z -operator of the classical
theory). Just as in the usual analysis, the Bargmann–Fock transformation depends
on some additional structure: a harmonic oscillator or, equivalently, a complex
structure on the phase space (here, R2, as we consider only the one-dimensional
analysis) compatible in some sense with the symplectic structure. The same is
needed again, both in the usual analysis and here, when introducing the Wick
symbolic “calculus” of operators. As will be observed, the fact that there is, in the
anaplectic analysis, no fundamental difference between the raising and lowering op-
erators (in contradiction to the creation and annihilation operators of the classical
analysis), since they are conjugate to each other under the complex rotation by
ninety degrees, has an algebraically interesting consequence (cf. Proposition 9.11)
in the Wick calculus, and in the related notion of “Wick ordering” of operators.

Section 9 should not be regarded as an important one: only it answers some
very natural questions, besides stating and proving a few lemmas for a later use. All
practitioners of pseudodifferential analysis are familiar with the fact that the Wick
symbol of an operator is only a very smoothed up version of another species of
symbol, to wit the Weyl symbol, thus leading to a considerable loss of information
(which does not mean that the consideration of such a kind of Gaussian-regularized
symbol in pseudodifferential analysis is not helpful [22], but it should not be used
in place of the Weyl symbol in a systematic way).

The second section of this chapter should be regarded as an introduction
to the anaplectic analogue of the Weyl calculus: recall that, at least on Rn, the



148 Chapter 3. Towards the Anaplectic Symbolic Calculi

Weyl calculus is often considered as synonymous with pseudodifferential analysis.
A concept dual to that of Weyl symbolic calculus is that of Wigner function: in the
usual analysis, the Wigner function associated with a pair of functions on the real
line is a function of two variables with two possible interpretations, one of which
is as the Weyl symbol of the rank-one operator associated with the given pair of
functions. In anaplectic analysis, the corresponding concept is also important in
another respect. It provides the simplest bilinear operation from pairs of functions
in some appropriate subspace of A to functions in the space A(2): even the tensor
product is more difficult to deal with. In particular – though this is harder to prove
than the corresponding fact from classical analysis – the Wigner function of two
anaplectic Hermite functions of one variable is an anaplectic Hermite function of
two variables.

In higher dimension, however, the Weyl calculus has been hardly touched
upon, in Remark 10.5. It is of course only when the formal structure of the anaplec-
tic analysis has been completely elucidated that one can seriously hope to find for
this new pseudodifferential analysis a proper domain of application: one should
still consider all this, at present, as an exercise in harmonic analysis rather than
a new tool in partial differential equations. The main difficulty with anaplectic
analysis, more heavily felt in the higher-dimensional case, has already been ex-
perienced in Section 6, and is related to the fact that there is no class of very
simple functions, stable under the anaplectic representation, that would play the
role usually played by Gaussian functions: but this is also, after all, what makes
it the source of developments of possible independent interest, such as Corollary
10.12 or Theorem 10.14. Though it may be too early to tell, we also feel that
the approach to a possible extension of the Lax–Phillips scattering theory briefly
reported in Remark 10.4 may be promising.

9 The Bargmann–Fock transformation
in the anaplectic setting

The usual Bargmann–Fock transformation is an isometric linear transformation
from the space L2(R) to a subspace of L2(R2), to wit that consisting of functions
V on R2 which, in terms of the complex variable z = x + iy, become antiholo-
morphic after they have been multiplied by the function z �→ exp (π

2 |z|2). The
Bargmann–Fock transformation u �→ V is defined by the equation

V (x + iy) = (e2iπ (yQ−xP )χ |u) (9.1)

involving the scalar product in L2(R) (linear with respect to the second entry),
the Heisenberg transformation π(x, y) = e2iπ (yQ−xP ) introduced in (1.1), and the
normalized fundamental state χ(t) = 2

1
4 e−πt2 of the harmonic oscillator.
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The condition characterizing the functions V in the image of the Bargmann–
Fock transformation can be stated as the differential equation(

∂

∂z
+

πz̄

2

)
V = 0. (9.2)

Set

Λ = − 1
2π

[(
∂

∂x
− iπy

)2

+
(

∂

∂y
+ iπx

)2
]

= − 1
2π

[
∂2

∂x2
+

∂2

∂y2
− 2iπ

(
y

∂

∂x
− x

∂

∂y

)
− π2 (x2 + y2)

]
, (9.3)

so that

− 2
π

(
∂

∂z̄
− π z

2

)(
∂

∂z
+

π z̄

2

)
= Λ − 1. (9.4)

Consequently, for V in the image of the Bargmann–Fock transformation, one has
(Λ − 1)V = 0 but, of course, this second-order equation carries less information
than the equation (9.2).

Remark 9.1. The Bargmann–Fock transformation depends on the choice of the
canonical complex structure on R2 (any other specified complex structure com-
patible with the symplectic structure of R2, i.e., for which the imaginary part of
a product z z̄′ of complex coordinates should coincide with the value −xy′ + yx′

of the canonical two-form of R2 on the corresponding pair of points, would do just
as well, only changing χ to the ground state of some transformed version of the
harmonic oscillator).

We now study the analogue of the Bargmann–Fock transformation in the
anaplectic setting, substituting for L2(R) the space A together with its indefinite
scalar product, and for χ the function φ introduced in Proposition 1.2.

Proposition 9.1. Let φ be the median state of the harmonic oscillator introduced in
Proposition 1.2. Given u ∈ A, define the function U on R2 through the equation

U(x, y) = (e2iπ (yQ−xP )φ |u) (9.5)

involving the Heisenberg representation and the indefinite scalar product in A. The
function U extends as an antiholomorphic function of (x, y) in C2, after x and
y are given independent complex values. For some constant C > 0, the estimate
|U(x, y)| ≤ C exp (π(x2 + y2)) holds for every (x, y) ∈ R2. Moreover, U satisfies
the differential equation

Λ U = 0, (9.6)

with Λ as introduced in (9.3).
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Proof. Recall from the proof of Proposition 1.2 that the C4-realization of φ is
(ψ, 0, ψ, 0), with ψ as defined in (1.11). Combining (1.58) and (1.71) with the
definition (1.1) of π(x, y), we find that the C4-realization of eiπxy e2iπ (yQ−xP )φ
is the vector (h0, h1, hi,0, hi,1) with

h0(t) =
1
2

[ψ(t − x) e2iπyt + ψ(t + x) e−2iπyt],

h1(t) =
1
2

[ψ(t − x) e2iπyt − ψ(t + x) e−2iπyt],

hi,0(t) =
1
2

[ψ(t − ix) e2πyt + ψ(t + ix) e−2πyt],

hi,1(t) =
i

2
[−ψ(t − ix) e2πyt + ψ(t + ix) e−2πyt]. (9.7)

Since these four functions extend as entire functions of the complex variables x
and y, it follows from the definition, in Proposition 1.14, of the scalar product in
A, that the function U extends as an antiholomorphic function of (x, y) in C2.
The estimate concerning U(x, y) is obvious, in the case when y = 0, from the
relations (9.7) and the estimate of the function I± 1

4
(πx2) at infinity. In general,

if x + iy = r eiθ, set g =
(

cos θ − sin θ
sin θ cos θ

)
: one has Ana(g)φ = φ since, under the

intertwining operator Θ introduced in Theorem 2.9, this equation is equivalent to
the equation π− 1

2 ,0(g) v0
− 1

2 ,0
= v0

− 1
2 ,0

proved in (2.15). Using (1.91), one can then
write

U(x, y) = (Ana(g) e−2iπ rP φ |u) = (e−2iπ rP φ |Ana(g−1)u), (9.8)

which reduces the estimate of U(x, y) to that of U ′(r, 0), where U ′ is defined by
the same equation as U , only in association with the function Ana(g−1)u instead
of u. Set

F (x, y; t) = e−iπxy e2iπyt ψ(t − x) (9.9)

and observe after a straightforward calculation using the equation

ψ′′(t) − 4π2t2 ψ(t), (9.10)

which expresses that ψ, just like φ, lies in the kernel of the harmonic oscillator,
that[

∂2

∂x2
+

∂2

∂y2
+ 2iπ

(
y

∂

∂x
− x

∂

∂y

)
− π2 (x2 + y2)

]
F (x, y; t) = 0 : (9.11)

the same equation holds if F (−x,−y; t), F (ix,−iy; t) or F (−ix, iy; t) is substituted
for F (x, y; t). Thus, after having been multiplied by e−iπxy, the four functions in
(9.7) are annihilated by the second-order differential operator just introduced,
which, not forgetting the complex conjugation since the function e2iπ (yQ−xP )φ
occurs on the left of the scalar product that defines U(x, y), finishes the proof of
Proposition 9.1. �
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Remark 9.2. Let us emphasize that it is the equation ΛU = 0, not the fact that U
is an antiholomorphic function of two variables, that plays here the same role as
the antiholomorphy condition (9.2) of the usual Bargmann-Fock transformation.

To characterize the image of A under the map u �→ U defined in (9.5), we
need a number of lemmas. This is a little more cumbersome than one would like
since, in view of the absence of a genuine (positive) scalar product on A, one has
to use instead only that on Cω

− 1
2 ,0

, depending on Propositions 2.12 and 2.13 to
cover the other part Cω

1
2 ,1

as well, finally transferring everything on A with the
help of Θ.

Lemma 9.2. Let ρ ∈ C, ρ �= 0, −1 < Re ρ < 1. For every k ∈ Z, one has

|s|−ρ
ε vk

ρ,ε = πρ Γ(1−ρ+ε+2k
2 )

Γ(1+ρ+ε+2k
2 )

vk
−ρ,ε. (9.12)

Proof. From (2.22) and (2.23), one sees that the equation to be proved indeed
holds in the case when k = 0. Next, Proposition 2.12 implies that

T †
ρ−1 R vk

ρ,ε =
1
2π

(ρ + 2k + 1 + ε) vk+1
ρ,ε ,

R T †
−ρ vk

−ρ,ε =
1
2π

(−ρ + 2k + 1 + ε) vk+1
−ρ,ε : (9.13)

note that the two equations are related since, as observed in Proposition 2.12,
T †

ρ−1 R = R T †
ρ . Starting from the product-of-operators formula

|s|−ρ
ε

d

ds
|s|ρε =

d

ds
+

ρ

s
, (9.14)

we also note that

|s|−ρ
ε T †

ρ−1 |s|ρε = R (s), |s|−ρ
ε R |s|ρε = (s−1)T †

−ρ, (9.15)

where (s±1) is the operator of multiplication by s±1: consequently,

|s|−ρ
ε (T †

ρ−1 R) |s|ρε = R T †
−ρ. (9.16)

From (9.13), (9.16) and the case k = 0 of (9.12), one can derive (9.12), for every
k ≥ 0, by induction. The case when k < 0 is handled in a similar way, using
instead of the operators which occur in (9.13) the operators R†

ρ−1 T and T R†
−ρ,

which lower the energy level. �
Lemma 9.3. Let ρ ∈ R, 0 < |ρ| < 1. One has

(vk
ρ,ε | vk

ρ,ε)ρ,ε = πρ+1 Γ(1−ρ+ε+2k
2 )

Γ(1+ρ+ε+2k
2 )

. (9.17)
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Proof. From the definition (2.30) of the scalar product, together with the preceding
lemma, one finds, using Plancherel’s formula in the middle,

(vk
ρ,ε | vk

ρ,ε)ρ,ε = πρ Γ(1−ρ+ε+2k
2 )

Γ(1+ρ+ε+2k
2 )

∫ ∞

−∞
v̄k

ρ,ε(s) vk
−ρ,ε(s) ds

= πρ Γ(1−ρ+ε+2k
2 )

Γ(1+ρ+ε+2k
2 )

∫ ∞

−∞
w̄k

ρ,ε(σ)wk
−ρ,ε(σ) dσ, (9.18)

which leads to the formula indicated after one has made use of (2.20). �

Remark 9.3. As a consequence, (vk
ρ,0 | vk

ρ,0)ρ,0 > 0 for all k ∈ Z but (vk
ρ,1 | vk

ρ,1)ρ,1 >

0 if and only if k ≥ 0: for, otherwise, 2−ρ
2 + k and 2+ρ

2 + k are separated by the
integer k + 1 ≤ 0. Of course, this fits with the fact that πρ,ε is associated with a
definite scalar product if ε = 0, not if ε = 1.

Lemma 9.4. Let ρ ∈ R, 0 < |ρ| < 1. Given any v in the space Cω
ρ,ε, there exist

C > 0 and δ ∈]0, 1[ such that

|(vk
ρ,ε | v)ρ,ε| ≤ C δ|k|, k ∈ Z. (9.19)

Conversely, given any sequence (ak)k∈Z of complex numbers satisfying for some
pair C > 0, δ < 1 the estimate |ak| ≤ C δ|k| for every k ∈ Z, there is a unique
v ∈ Cω

ρ,ε such that (vk
ρ,ε | v)ρ,ε = ak for every k.

Proof. We first treat the case when ε = 0 to be in a position to use Hilbert space
methods. Let v ∈ Cω

ρ,0, v = F−1w. In view of (2.30), one has

(vk
ρ,0 | v)ρ,0 =

∫ ∞

−∞
v̄k

ρ,0(s) |s|−ρv(s) ds

=
∫ ∞

−∞
w̄k

ρ,0(σ) w1(σ) dσ (9.20)

with w1 = |D|−ρw ∈ Ĉω
−ρ,0 (a consequence of Proposition 2.3), or

(vk
ρ,0 | v)ρ,0 =

∫ ∞

−∞
(1 + σ2)−

ρ+1
2 −k (1 + iσ)2k w1(σ) dσ

=
∫ ∞

−∞
(1 + σ2)−

ρ+1
2

(
1 + iσ

1 − iσ

)k

w1(σ) dσ : (9.21)

recall (2.32) that the functions σ �→ w1(σ) and σ �→ |σ|ρ−1 w1(− 1
σ ) are analytic

on the real line. In particular, as σ ∈ C, |σ| → ∞, one has for some constant
C > 0 the estimate |w1(σ)| ≤ C (1 + |σ|2) ρ−1

2 .
Assume that k ≥ 0: for 0 < ε < 1, the integrand extends as a holomorphic

function in a neighborhood of the closed domain limited by the real axis and the
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parabola {σ = x + iε (1 + x2) : x ∈ R}, and we first check that one can move
the contour of integration from the real axis to the parabola by showing that, for
fixed k, the integral of the same function as above, taken on the vertical segment
{σ = A+ it

√
1 + A2 : 0 ≤ t ≤ ε

√
1 + A2}, goes to zero as A → ∞. Since, on this

segment, |dσ| =
√

1 + A2 dt and the integrand (for fixed k) is at most

C |1 + σ2|−
ρ+1
2 (1 + |σ|2)

ρ−1
2 ≤ C |1 + σ2|−1

= C |1 + A2 − t2(1 + A2) + 2iA
√

1 + A2 t|−1

= C (1 + A2)−1 |1 − t2 +
2iA√
1 + A2

t|−1, (9.22)

where the second factor is integrable on (0,∞), we are done. We thus come back
to (9.21), in which we interpret the integral, with the same integrand, as taking
place on the above-specified parabola, and estimate the result as k → ∞. From
the second expression (9.21), all that remains to be done, so as to complete the
proof of the first part of Lemma 9.4, in the case when k > 0, is to remark that
the supremum of |1+iσ

1−iσ | as σ lies on the parabola, is < 1, an elementary task.
In the case when k → −∞, the same proof works, only substituting −ε for ε.

In the other direction, we rely on the fact, mentioned just after (2.15), that
the sequence (wk

ρ,0)k∈Z is a complete orthogonal set in the Hilbert space consisting
of all w with |‖w ‖|ρ < ∞, i.e., with |D|− ρ

2 w ∈ L2(R). Thus v can be found as
v = F−1w provided that, defining w as

w =
∑
k∈Z

ak |‖wk
ρ,0 ‖|−2

ρ wk
ρ,0, (9.23)

we are able to show that w ∈ Ĉω
ρ,0. We abbreviate the expression above as

w =
∑
k∈Z

bk wk
ρ,0, (9.24)

where, in view of Lemma 9.3 and of Stirling’s formula (which proves that |‖wk
ρ,0‖|−1

ρ

≤C (1+ |k|)|ρ|), the sequence (bk)k∈Z satisfies the same hypothesis as the one we
have made about the sequence (ak)k∈Z. Then,

w(σ) =
∑
k∈Z

bk (1 + σ2)−
ρ+1
2

(
1 + iσ

1 − iσ

)k

(9.25)

and

|σ|−1−ρ w(− 1
σ

) =
∑
k∈Z

(−1)k bk (1 + σ2)−
ρ+1
2

(
1 + iσ

1 − iσ

)k

, (9.26)

and all that remains to be proven is that both functions extend as holomorphic
functions of σ to some neighborhood of the real line. Now, this comes from the
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fact that, given any positive number δ < 1, and A > 0, one has

sup−A≤x≤A

∣∣∣∣1 − i(x + iε)
1 + i(x + iε)

∣∣∣∣±1

=
∣∣∣∣1 + ε − ix

1 − ε + ix

∣∣∣∣±1

≤ δ−1 (9.27)

if ε > 0 is small enough. Alternatively, the last few lines can be replaced by the
argument immediately preceding the statement of Theorem 6.5. This concludes
the proof of Lemma 9.4 in the case when ε = 0, and we now treat the other case.

If −1 < ρ < 0, and v ∈ Cω
ρ,1, we use Proposition 2.13, then Proposition 2.12,

writing
(vk

ρ,1 | v)ρ,1 = (R vk
ρ+1,0 | v)ρ,1 = (vk

ρ+1,0 |R†
ρv)ρ+1,0 (9.28)

to find the required estimate, since R†
ρv ∈ Cω

ρ+1,0 according to Proposition 2.12.
In the case when 0 < ρ < 1, we use instead the equations

(vk
ρ,1 | v)ρ,1 = −2π (ρ − 2k − 2)−1 (R†

ρ−1 vk+1
ρ−1,0 | v)ρ,1

= −2π (ρ − 2k − 2)−1 (vk+1
ρ−1,0 |Rv)ρ−1,0. (9.29)

Finally, the same lines work in the reverse direction since, in view of (2.133)
and (2.134), the condition R†

ρv ∈ Cω
ρ+1,0 or Rv ∈ Cω

ρ−1,0 implies that v ∈ Cω
ρ,1:

in the first case, use Proposition 2.3 and observe that the operator R̂†
ρ is elliptic

on the real line. �
Proposition 9.5. Let (φj)j∈Z be the sequence of eigenfunctions of the anaplectic
harmonic oscillator introduced in Theorem 2.11. Given any function u ∈ A, the
set of scalar products of u against the functions φj satisfies for some constants
C > 0 and δ ∈]0, 1[ the estimate

|(φj |u)| ≤ C

[
|j|
2

]
! (2δ)

|j|
2 , j ∈ Z. (9.30)

Conversely, given any sequence (aj)j∈Z of complex numbers satisfying for some
C > 0 and δ ∈]0, 1[ the inequality

|aj | ≤ C

[
|j|
2

]
! (2δ)

|j|
2 , j ∈ Z, (9.31)

there exists a unique function u ∈ A such that aj = (φj |u) for all j.

Proof. Under the intertwining operator Θ: Cω
− 1

2 ,0
⊕Cω

1
2 ,1

→ A introduced in The-
orem 2.9, this is essentially a rephrasing of Lemma 9.4: only, we have to take care
of the normalization of the eigenvectors involved. Recall from Theorem 2.11 that,
for every j ≥ 0, one has φj = A∗jφ and φ−j = Ajφ with A∗ = π

1
2 (Q− iP ) and

A = π
1
2 (Q + iP ). Under the isomorphism Θ the operators Q and P transfer to

Θ−1 Q Θ = 2
1
2

(
0 1
s 0

)
and Θ−1 P Θ =

2
1
2

2iπ

(
0 d

ds

s d
ds + 1

2 0

)
(9.32)
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so that, with the notation of Proposition 2.12, the operators A∗ and A transfer
respectively to

Θ−1 A∗ Θ = (2π)
1
2

(
0 R
T †

ρ 0

)
and Θ−1 AΘ = (2π)

1
2

(
0 T

R†
ρ 0

)
. (9.33)

It has been shown in (2.112) that, with α = 2
1
4 π

3
4

Γ( 1
4 )

, one has

α Θ−1φ =

(
v0
− 1

2 ,0

0

)
: (9.34)

one can then see, using the set of formulas from Proposition 2.13, that, for k ≥ 0,
one has

α Θ−1 φ2k = 2k Γ(1
4 + k)
Γ(1

4 )

(
vk
− 1

2 ,0

0

)
,

α Θ−1 φ−2k = (−1)k 2k Γ(1
4 + k)
Γ(1

4 )

(
v−k
− 1

2 ,0

0

)
(9.35)

and, for k ≥ 1,

α Θ−1 φ2k−1 = (2π)−
1
2 2k Γ(1

4 + k)
Γ(1

4 )

(
0

vk−1
1
2 ,1

)
,

α Θ−1 φ−2k+1 = (2π)−
1
2 (−1)k 2k Γ(1

4 + k)
Γ(1

4 )

(
0

v−k
1
2 ,1

)
. (9.36)

The proposition is then a consequence of the characterization of the space
Cω

ρ,ε given in Lemma 9.4, and of the fact that the map Θ transforms the scalar
product on Cω

− 1
2 ,0

⊕ Cω
1
2 ,1

into that on A. �

Theorem 9.6. Let u ∈ A and let U(x, y) be the function defined on R2 in (9.5)
or its extension as an antiholomorphic function in C2. Recall that it satisfies for
(x, y) ∈ R2 the equation ΛU = 0, with Λ as introduced in (9.3). For some C > 0
and some δ ∈]0, 1[, the estimate

|U(z, iz)|+ |U(z,−iz)| ≤ C exp (
πδ

2
|z|2) (9.37)

holds for every z ∈ C. Conversely, let U be any antiholomorphic function in C2,
satisfying for (x, y) ∈ R2 the equation ΛU = 0. Assume moreover that, for some
C > 0 and some δ ∈]0, 1[, the inequality (9.37) holds. Then, there exists a unique
function u ∈ A such that U is associated to u under (9.5).
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Proof. Let (x, y) ∈ R2, and let z = x + iy. It is convenient, here, to set τz =
e2iπ (yQ−xP ), i.e., for any u ∈ A, (τzu)(t) = u(t − x)e2iπ(t− x

2 )y. Recalling that

A∗ = π
1
2

(
t − 1

2π

d

dt

)
and A = π

1
2

(
t +

1
2π

d

dt

)
, (9.38)

we note that, for every u ∈ A, one has the pair of equations(
∂

∂z̄
+

π z

2

)
τz u = −π

1
2 τz(Au),(

∂

∂z
− π z̄

2

)
τz u = π

1
2 τz(A∗u). (9.39)

Recalling Theorem 2.11, we thus find for every j ≥ 0 the equations(
∂

∂z
+

π z̄

2

)j

U(x, y) = (−1)j π
j
2 (τz φ−j |u),(

∂

∂z̄
− π z

2

)j

U(x, y) = π
j
2 (τz φj |u). (9.40)

In particular, this gives some of the Taylor coefficients of U at 0 ∈ R2 in terms
of the scalar products (φj |u), to wit((

∂

∂z

)j

U

)
(0) = (−1)j π

j
2 (φ−j |u),

((
∂

∂z̄

)j

U

)
(0) = π

j
2 (φj |u). (9.41)

As a consequence of Lemma 9.2, one thus finds for some pair C, δ with δ < 1,
and every j = 0, 1, . . . , the estimate∣∣∣∣

((
∂

∂x
− i

∂

∂y

)j

U

)
(0)
∣∣∣∣+∣∣∣∣

((
∂

∂x
+ i

∂

∂y

)j

U

)
(0)
∣∣∣∣ ≤ C

[
j

2

]
! (2π δ)

j
2 .

(9.42)
Since U extends as an antiholomorphic function of (x, y) ∈ C2, the two terms
on the left-hand side express the derivatives of all orders, evaluated at 0, of the
holomorphic functions of one variable z �→ U(z, iz) and z �→ U(z,−iz). Now, it
is an elementary fact, based on the use of Cauchy’s inequality

1
j !

|f (j)(0)| ≤ infR>0

(
R−j sup|z|=R |f(z)|

)
, (9.43)

valid for any entire function of one variable, and on Stirling’s estimate j−
j
2 e

j
2 ∼

1
j ! [ j

2 ] ! 2
j
2 , that the validity of the inequalities (9.42) is equivalent to that of (9.37).

All the arguments can be reversed, after we have proved that any antiholo-
morphic function U on C2, the restriction of which to R2 satisfies the differential
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equation Λ U = 0, is characterized by the pair of functions z �→ U(z, iz) and
z �→ U(z,−iz). Now, if one knows the Taylor expansion at 0 of these two functions,
one also knows, reverting to the notation z = x + iy for x, y real, all derivatives
( ∂

∂z )j U(0) or ( ∂
∂z̄ )j U(0) relative to the restriction of U to R2. Finally, writing

the differential equation as

2
π

∂

∂z

∂

∂z̄
U =

[
z

∂

∂z
− z̄

∂

∂z̄
+

π |z|2
2

]
U, (9.44)

one sees that, if j ≥ 0, k ≥ 0, one has

2
π

((
∂

∂z

)j+1 (
∂

∂z̄

)k+1

U

)
(0) =

(
j − k +

π

2
jk
) (( ∂

∂z

)j (
∂

∂z̄

)k

U

)
(0),

(9.45)
which makes it possible, by a descent process, to compute all mixed derivatives of
U at 0 in terms of the marginal ones above. �

The following proposition will play an essential role at the end of the next
section too. We wish to call the attention of the reader, especially the one interested
in special function theory, to the pleasant phenomenon that occurs on the first line
of (9.51) below: the integral to be computed appears as a sum of two integrals,
neither of which could be expressed in such elementary terms (they would require
the use of Struve’s functions [17, p. 113]).

Proposition 9.7. Let φ be the median state of the harmonic oscillator introduced
in (1.9). For every (y, η) ∈ R2, one has

(e2iπ(ηQ−yP ) φ |φ) = I0

(π

2
(y2 + η2)

)
(9.46)

where the pseudo-scalar product on the left-hand side is the one in A, introduced
in Proposition 1.14.

Proof. We first recall that Ana(kθ)φ = φ for every θ ∈ R, and kθ =
(

cos θ sin θ
− sin θ cos θ

)
:

this was proved in the proof of Proposition 9.1, just before (9.8). Then, it suffices,
as a consequence of (1.91), to prove (9.46) in the case when y = 0. Recall from

(2.111) and (2.112) that the C4-realization of φ is the vector f =
( f0

0
f0
0

)
with

f0(x) = 2
1
2 π− 1

2 x
1
2 K 1

4
(π x2), x > 0. (9.47)

We must apply (1.68), denoting as h the C4-realization of the function e2iπη Q φ:
in our present case, not forgetting that φ is even,

h0(x) = f0(x) cos 2πη x,

hi,0(x) = f0(x) cosh 2πη x, (9.48)
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and (
e2iπηQ φ |φ

)
= 2

1
2

∫ ∞

0

(cos 2πηx + cosh 2πηx) (f0(x))2 dx. (9.49)

From the expression of f0 recalled in (9.47) and [17, p. 98], one has

(f0(x))2 =
2

3
2

π
x

∫ ∞

0

K 1
2
(2πx2 sinh t) e−2πx2 cosh t dt

=
2

1
2

π

∫ ∞

0

(sinh t)−
1
2 e−2πx2et

dt (9.50)

and

(
e2iπηQ φ |φ

)
= π−1

∫ ∞

0

(sinh t)−
1
2 dt

∫ ∞

−∞
(e2iπηx + e2πηx) e−2πx2et

dx

=
2−

1
2

π

∫ ∞

0

e−
t
2 (sinh t)−

1
2

(
e

π
2et η2

+ e−
π

2et η2
)

dt

=
2
π

∫ 1

0

(
cosh

πη2s

2

)
ds√

1 − s2

= I0(
πη2

2
) (9.51)

according to [17, p. 84]. �

Proposition 9.8. With x, y ∈ R2, and z = x + iy, the anaplectic Bargmann–Fock
transform Φj(x, y) of the jth-eigenstate φj (in A) of the harmonic oscillator is
given by the equations, valid for j ≥ 0,

Φj(x, y) = (−1)j π
j
2

( z̄

2

)j

I0,j

(
π|z|2

2

)
,

Φ−j(x, y) = π
j
2

(z

2

)j

I0,−j

(
π|z|2

2

)
(9.52)

with

I0,j(t) =
(

d

dt
− 1

)j

I0(t) and I0,−j(t) =
(

d

dt
+ 1

)j

I0(t). (9.53)

Proof. Proposition 9.7, together with (9.5), shows that the anaplectic Bargmann–
Fock transform of the function φ itself is the function

Φ(x, y) = I0

(π

2
(
x2 + y2

))
. (9.54)
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Next, applying (9.40) with φ in place of u, one finds, for j ≥ 0,

Φj(x, y) = (τzφ |φj) = (φj | τzφ) = (τ−zφj |φ)

= π− j
2

(
− ∂

∂z̄
+

πz

2

)j

Φ(x, y)

= (−1)j π− j
2

(
∂

∂z
− πz̄

2

)j

Φ(x, y) (9.55)

and, similarly,

Φ−j(x, y) = π− j
2

(
∂

∂z̄
+

πz

2

)j

Φ(x, y). (9.56)

�

Remark 9.4. In relation to the characterization, given in Theorem 9.6, of the image
of the anaplectic Bargmann–Fock transformation, note that Φj(z, iz) is identically
zero if j < 0, and Φj(z,−iz) is zero if j > 0.

We now come to the question of defining the anaplectic analogue of the
Wick symbol, or Wick “symbolic calculus” of operators. Our definition – which,
as explained in the introduction of this chapter, can have at most limited value –
is modelled after one way of introducing the notion of Wick symbol in the usual
analysis, but such a comparison would be misleading if carried too far: for, in the
usual case, there is coincidence between the notion of Wick symbol and, in the
other direction, that of Wick ordering of an operator. It will turn out that this
coincidence ceases to hold in the anaplectic case: this is why we shall call the
species of symbol to be introduced now the coherent state symbol or CS-symbol.

Definition 9.9. Let T be a linear endomorphism of A. Recall that τz =e2iπ(yQ−xP )

if z = x+ iy. We define the CS-symbol of T as the function T on R2 such that
(abusing the notation (z, z̄), in the physicists’ way, to really mean (x, y))

T(z, z̄) = (τzφ |T (τzφ)). (9.57)

Proposition 9.10. The CS-symbol is covariant under the Heisenberg transform, i.e.,
if S is the CS-symbol of the operator S = τz′ T τz′−1 = τz′ T τ−z′ , one has

S(z, z̄) = T(z − z′, z̄ − z̄′). (9.58)

Also, the CS-symbol is covariant under the restriction of the anaplectic repre-
sentation to the subgroup SO(2) of SLi(2, R), i.e., setting

(
cos θ − sin θ
sin θ cos θ

)
. z =

eiθz, the CS-symbol of the operator Ana(g)T Ana(g−1) is the function z �→
T(g−1.z, g−1.z) whenever g ∈ SO(2).
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Proof. Recalling (1.2), one has τz′ τz = exp (iπ Im (z′z̄)) τz+z′ so that

S(z, z̄) = (τzφ | (τz′ T τ−z′)(τzφ))
= (τ−z′ τzφ |T (τ−z′ τz φ))
= (τz−z′φ |T (τz−z′φ)) (9.59)

since the two extra scalar factors of absolute value 1 on the two sides cancel off.
For the second part, we use the fact, shown on the occasion of the proof

of Proposition 9.1, that φ is invariant under the transformations Ana(g), g ∈
SO(2). Also, we use the equation (1.91) linking the Heisenberg and anaplectic
representations, noting that when g ∈ SO(2), the linear action of g on R2 that
occurs in (1.91) and the action z �→ g.z as defined in the proposition indeed
correspond under the map (x, y) �→ x + iy. Thus,

(τzφ |Ana(g)T Ana(g−1) τzφ) = (Ana(g−1) τzφ |T Ana(g−1) τzφ) (9.60)

= (τg−1.z Ana(g−1)φ |T τg−1.z Ana(g−1)φ)
= (τg−1.z φ |T τg−1.z φ)

= S(g−1.z, g−1.z). �

We now compute the CS-symbol of any operator in the algebra generated
by the operators Q and P or, which amounts to the same, A and A∗. Given
any polynomial in the formal indeterminates A and A∗, the associated Wick-
ordered operator is that obtained by letting the operator A act before A∗, and the
associated anti-Wick-ordered operator is that obtained by letting A∗ act before
A. For instance, given the polynomial E(A∗, A) = A∗j Ak, (where A∗, A are
considered as formal indeterminates), its associated Wick-ordered operator is the
operator A∗j Ak, and its associated anti-Wick-ordered operator is Ak A∗j .

Proposition 9.11. The CS-symbol of the operator A∗j Ak is

(τzφ |A∗j Ak τzφ) =
∑
�≥0

(
j
l

)(
k
l

)
(−1)� Γ(1

2 + �)
Γ(1

2 )
(π

1
2 z̄)j−� (π

1
2 z)k−� (9.61)

and the CS-symbol of the operator Ak A∗j is

(τzφ |Ak A∗j τzφ) =
∑
�≥0

(
j
l

)(
k
l

)
Γ(1

2 + �)
Γ(1

2 )
(π

1
2 z)k−� (π

1
2 z̄)j−�. (9.62)

Proof. It is a straightforward consequence of the definition (2.123) of the operators
A∗ and A, and of the definition of τz that

Aτz = τz A + π
1
2 z τz , A∗ τz = τz A∗ + π

1
2 z̄ τz . (9.63)
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By induction,

Ak τz =
k∑

�=0

(
k
�

)
(π

1
2 z)k−� τz A� and A∗j τz =

j∑
�=0

(
j
�

)
(π

1
2 z̄)j−� τz A∗�.

(9.64)
To conclude, it suffices, so as to prove (9.61), to write (τzφ |A∗j Ak τzφ) =

(Aj τzφ |Ak τzφ) and to use the first of the preceding equations, together with
the fact that τz is a pseudo-unitary operator on A, finally to use the result of
Proposition 2.11. The second equation is proved in the same way. �

Remarks 9.5: (i) It is essential to note that, despite the fact that the very definition
(9.57) of the CS-symbol looks like the definition of the Wick calculus in the usual
analysis, the CS-symbol treats the Wick and anti-Wick orderings on an absolutely
equal footing, as can be seen from Proposition 9.11. An a priori explanation of
this phenomenon lies in the existence of the basic symmetry R of A: as it follows
from the pair of equations (2.123), the conjugation by R changes A into i A∗

and A∗ into i A. This is in striking contrast with the usual analysis, in which the
creation and annihilation operators bear no such relation.

For the sake of comparison, let us consider the case of the usual Wick calculus,
in which the scalar product is that of L2(R) and the basic function χ is the
normalized Gaussian function χ(t) = 2

1
4 e−πt2 . Exactly the same proof as above,

together with the relation ‖A∗jχ‖2 = j ! and the annihilation relation Aχ = 0,
shows on one hand that

(τzχ |A∗j Ak τzχ)L2(R) = (π
1
2 z̄)j (π

1
2 z)k, (9.65)

on the other hand that

(τzχ |Ak A∗j τzχ)L2(R) =
∑
�≥0

(
j
l

)(
k
l

)
� ! (π

1
2 z)k−� (π

1
2 z̄)j−� : (9.66)

of course there is in this setting a definite privilege for the Wick ordering of oper-
ators.

(ii) In view of the commutation relations

[A, A∗j ] = j A∗j−1 and [A∗, Ak] = −k Ak−1, (9.67)

immediate by induction, one sees that if S is the CS-symbol of [A, T ], where T is
the CS-symbol of T , one has S = π− 1

2 ∂
∂z̄ T; similarly, the CS-symbol of [A∗, T ]

is S = −π− 1
2 ∂

∂z T.

(iii) If S = A∗jAk, one has RS R−1 = ij+k Aj A∗k in view of the relations just
recalled, so that, for every operator S with symbol S in the algebra generated
by A and A∗, the CS-symbol of RS R−1 is the function z �→ S(iz̄, iz): observe
that iz is not the conjugate of iz̄ and that, in this expression, S is implicitly
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extended as a holomorphic function of two independent variables. This relation
is not a relation of covariance and, recalling that R = Ana(

(−i 0
0 i

)
), the reason

why the proof of Proposition 9.10 does not apply to this case is that R does not
preserve the scalar product on A: instead, one always has (Rv |Ru) = (R2v |u),
where R2 is the parity transform.

The properties (ii) and (iii) can be generalized to the case when T is an
arbitrary linear endomorphism of A:

Proposition 9.12. Let T be the CS-symbol of an endomorphism T of A. The
CS-symbol of the commutator [A, T ] is π− 1

2 ∂
∂z̄ T, and the CS-symbol of the

commutator [A∗, T ] is −π− 1
2 ∂

∂z T. The CS-symbol of the operator RT R−1 is
the function z �→ T(iz̄, iz), after T has been extended as a holomorphic function
of two variables.

Proof. Starting again from the relation τz = e2iπ (yQ−xP ), one gets

[Q, T ] =
1

2iπ

d

dy′

∣∣∣∣
y′=0

(
e2iπy′ Q T e−2iπy′ Q

)
(9.68)

so that the CS-symbol of [Q, T ] is the function

1
2iπ

d

dy′

∣∣∣∣
y′=0

T(z − iy′, z̄ + iy′) =
1
2π

(
− ∂

∂z
+

∂

∂z̄

)
T(z, z̄); (9.69)

in a similar way, the CS-symbol of [P, T ] is the function 1
2iπ

(
∂
∂z + ∂

∂z̄

)
T. This

proves the first part.
For the second one, we are not entitled to the notation τz any longer, since

x and y will take complex values, and we revert to the notation π(x, y). It is a
straightforward task to check the relations

Rπ(x, ξ)R−1 = π(−ix, iy), R−1 π(x, ξ)R = π(ix,−iy), (9.70)

so that (remembering that R is not unitary, but self-adjoint) the symbol S of
RT R−1 is given, for z = x + iy with x, y real, as

S(x, y) = (π(x, y)φ |RT R−1 π(x, y)φ)

= (Rπ(x, y)φ |T R−1 π(x, y)φ)

= (π(−ix, iy)Rφ |T π(ix,−iy)R−1 φ)
= (π(−ix, iy)φ |T π(ix,−iy)φ) (9.71)

since φ is invariant under R. Such a function is the value on the pair (ix,−iy) of a
holomorphic function of two variables: it amounts to the same to say that it is the
value on the pair (x − iy, x + iy) of a holomorphic function of two variables. �
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10 Towards the one-dimensional anaplectic
Weyl calculus

The anaplectic analysis (not only representation) is quite different from the usual
analysis in many aspects. The most immediate deep difference shows itself in the
existence of invertible operators in the Lie algebra of the complexified Heisenberg
representation. Besides being of possible independent interest, the following fact
will be technically useful in the proof of Theorem 10.8.

Theorem 10.1. For every α ∈ C such that Re α �= 0, the operator Dα = P − α Q
is an automorphism of the space A.

Proof. Under the automorphism R of A introduced in Proposition 1.13, the
operator Dα transfers to i D−α: as a consequence, we may assume that Im α > 0.
Next, with g =

(
a b
c d

)
such that α = di+c

bi+a , it follows from (2.120) that

P − αQ = (a + bi)−1 Ana(g) (P − iQ)Ana(g−1) : (10.1)

it is thus no loss of generality to assume that α = i, which we do from now on.
Writing the equation Di v = u to be solved as Av = π

1
2 u, we note, as it

follows from Theorem 2.11, that this implies (φk | v) = π
1
2 (φk−1 |u) if k ≥ 1, and

(using also A∗A = L+ 1
2 ) (k + 1

2 ) (φk | v) = π
1
2 (φk−1 |u) if k ≤ 0. The estimates

which, according to Proposition 9.5, permit us to recognize a sequence of numbers
as being the sequence of scalar products of a function in A against the φj ’s make
it possible to conclude. �

In the present section, we concern ourselves with the problem of building a
good (Weyl style) symbolic calculus of operators in the anaplectic environment.
It is a good idea to start with one version of the defining formula of the ordinary
Weyl calculus:

Op(S) =
∫

R2
(F S)(y, η) exp (2iπ (ηQ − yP )) dy dη (10.2)

and to analyse its ingredients. In the usual case, this formula expresses the op-
erator Op(S) – say, acting on Schwartz’s space S(R)) – with symbol S as an
integral superposition of operators taken from the Heisenberg representation. This
rule makes the correspondence Op a covariant one under two distinct repre-
sentations. First, under the Heisenberg representation: the symbol of the opera-
tor e2iπ (ηQ−yP ) Op(S) e−2iπ (ηQ−yP ) is the function (or distribution) (x, ξ) �→
S(x− y, ξ − η). Next, recalling that Met is the metaplectic representation (revis-
ited in the beginning of Section 6), one has, for every g ∈ S̃L(2, R), the relation

Met(g)Op(S)Met(g−1) = Op(S ◦ g−1). (10.3)
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The second property holds provided one defines F as the symplectic Fourier
transformation (the one that commutes with all linear transformations of R2 in
SL(2, R), not only the orthogonal ones):

(F S)(x, ξ) =
∫

R2
S(y, η) e2iπ (xη−yξ) dy dη. (10.4)

In the anaplectic case, it is important to realize that this definition can only
work and be of interest if one goes anaplectic all the way: let us analyse the meaning
of the ingredients of the formula (10.2) in the anaplectic analysis. We are certainly
familiar with the Heisenberg representation, which is formally the same as in the
usual analysis: it satisfies the Heisenberg relation (1.2) as well as the covariance
relation (1.91), which is a good starting point. Now, the symbol S should lie in
A(2) or, to have a very general class of operators, in the dual of this latter space,
and the Fourier transformation should of course be the anaplectic one. But this
does not exhaust the list of ingredients of the formula (10.2). The most hidden one,
in some sense the one most difficult to deal with in a satisfactory way, is concerned
with the pointwise product of functions, which seems to occur on the right-hand
side when you apply the operator under consideration to a function χ and evaluate
the result at a given point. Now, the pointwise product is not a good operation
in the anaplectic analysis, and one should interpret instead the formula above in
a weak sense, i.e., one should aim at defining the scalar product (ψ |Op(S)χ)A:
recall from Proposition 1.14 that the scalar product, even though not a pre-Hilbert
one, is still non-degenerate. The answer, again taken from the usual Weyl calculus,
consists in writing this scalar product as the result 〈S, W (ψ, χ) 〉 of testing the
linear form S against some function W (ψ, χ) of two variables, called the Wigner
function of ψ and χ.

In the case of the usual analysis, the Wigner function W (ψ, χ) of a pair
(χ, ψ) of functions on the line, say in Schwartz’s space S(R), is the function on
R2 defined by

W (ψ, χ)(x, ξ) = 2
∫ ∞

−∞
ψ̄(x + t)χ(x − t) e4iπtξ dt. (10.5)

It enjoys a double status: first, it is the Weyl symbol of the rank-one operator
u �→ (ψ|u)χ; next, for every symbol S ∈ S′(R2), one has the identity

(ψ |Op(S)χ) =
∫

R2
S(x, ξ)W (ψ, χ)(x, ξ) dx dξ, (10.6)

which is exactly what we had in mind. By transposition, it is immediate that the
two covariance formulas mentioned above have versions which express instead the
covariance of the Wigner sesquilinear machine itself: we shall not display these
here, but their anaplectic analogues, to be displayed and proved in Proposition
10.4, are fully similar.
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From a certain point on, it will be necessary to consider functions lying in a
specific linear subspace of A: note that we have already come across this type of
function in Theorem 6.5.

Definition 10.2. A function u ∈ A will be said to lie in A0 if it satisfies the
following condition, to be compared to the one in Proposition 9.5: for any M > 0,
there exists some constant C > 0 such that

|(φj |u)| ≤ C

[
|j|
2

]
! M−|j|, j ∈ Z : (10.7)

it amounts to the same to say that u admits a series expansion u =
∑

j cj φj ,
where the coefficients satisfy, for M arbitrarily large, some estimate |cj | ≤
C ([ |j|2 ] !)−1 M−|j|. In an equivalent way, if Θ−1 u = ( v0

v1 ) and if w0 = F v0, w1 =
F v1, the functions θ �→ | sin θ

2 |−
1
2 w0(cotan θ

2 ) and θ �→ 〈sin θ
2 〉−

3
2 w1(cotan θ

2 )
extend as holomorphic functions on the punctured complex plane.

We generalize an alternative expression of (10.5) to the anaplectic setting,
and shall show that the Wigner function of any two functions in A0 is a function
(of two variables) in the space A(2). When this is done, we can claim – we shall
not return to this point – that we have defined, in a weak sense, the operator
Op(S) with symbol S, as a linear operator from A0 to the complex anti-dual of
that space, whenever S is linear form on A(2). The covariance of the calculus will
follow provided that we define the linear action of SL(2, R) on the dual space of
A(2) by duality.

Definition 10.3. Given χ and ψ ∈ A, the anaplectic Wigner function W (ψ, χ) is
the function on R2 defined as

W (ψ, χ)(x, ξ) = 2 (e4iπ(−x P+ξ Q) ψ̌ |χ)A, (10.8)

where the pseudo-scalar product on the right-hand side is the one introduced in
Proposition 1.14.

The first thing to note is that, in the usual analysis, this definition – with
the usual scalar product in place of the one in A – would agree with the above-
given ones: the verification is an easy matter, in view of the expression (1.1) of the
operator e2iπ(η Q−y P ).

From now on, we drop the subscript A to denote the pseudo-scalar product
in that space. The covariance properties of the anaplectic Wigner function are
expressed as follows:

Proposition 10.4. Let (y, η) ∈ R2 and g ∈ SL(2, R) be given. For any pair (ψ, χ)
of functions in A, one has

W (e2iπ (ηQ−yP ) ψ, e2iπ (ηQ−yP ) χ)(x, ξ) = W (ψ, χ)(x − y, ξ − η),

W (Ana(g)ψ, Ana(g)χ) = W (ψ, χ) ◦ g−1. (10.9)
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Proof. From Definition 10.3, one has

W (e2iπ (ηQ−yP ) ψ, e2iπ (ηQ−yP ) χ)(x, ξ)

= 2 (e4iπ(−x P+ξ Q) e2iπ(y P−η Q) ψ̌ | e2iπ(y P−η Q) χ), (10.10)

so that the first equation appears as a consequence of (1.2). On the other hand,

W (Ana(g)ψ, Ana(g)χ)(x, ξ) = 2 (e4iπ(−x P+ξ Q) Ana(g) ψ̌ |Ana(g)χ)

= 2 (Ana(g−1) e4iπ(−x P+ξ Q) Ana(g) ψ̌ |χ) :
(10.11)

according to Theorem 1.20, this is the same as 2 (e4iπ(−x′ P+ξ′ Q) ψ̌ |χ) provided
that

(
x′
ξ′

)
= g−1 ( x

ξ ). �

We shall now show that the Wigner function of any two functions in A0 lies
in A(2). This requires a number of lemmas.

Lemma 10.5. With Q = (x) and P = 1
2iπ

d
dx one has the identities, valid for

arbitrary pairs (ψ, χ) ∈ A:

W (ψ, Qχ) =
(

x − 1
4iπ

∂

∂ξ

)
W (ψ, χ), W (ψ, Pχ) =

(
ξ +

1
4iπ

∂

∂x

)
W (ψ, χ),

W (Qψ, χ) =
(

x +
1

4iπ

∂

∂ξ

)
W (ψ, χ), W (Pψ, χ) =

(
ξ − 1

4iπ

∂

∂x

)
W (ψ, χ).

(10.12)

Proof. One has the identities

W (ψ, e2iπ (−yP+ηQ) χ)(x, ξ) = e2iπ (xη−yξ) W (ψ, χ)
(
x − y

2
, ξ − η

2

)
, (10.13)

a consequence of Definition 10.3 and (1.2). Then,

W (ψ, Qχ)(x, ξ) =
1

2iπ

∂

∂η
∣∣

η=0

W (ψ, e2iπηQ χ)(x, ξ)

=
1

2iπ

∂

∂η
∣∣

η=0

(
e2iπxη W (ψ, χ)

(
x, ξ − η

2

))
, (10.14)

which yields the first desired result, and the second identity on the first line is
obtained in exactly the same way. The expression of the difference W ((η Q −
y P )ψ, χ) − W (ψ, (η Q − y P )χ) can be thought of as an infinitesimal version of
the first covariance relation stated in Proposition 10.4. �

Lemma 10.5, together with Theorem 10.1 (which shows in particular that
any odd function in A is the image of some even function in that space under



10. Towards the one-dimensional anaplectic Weyl calculus 167

an operator such as A) makes it possible to reduce the proof that the Wigner
function W (ψ, χ) of any two functions in A0 lies in A(2) to the case when χ
and ψ are even. Then, the Wigner function is even too: when applying Definition
4.12 of A(2) towards proving that it lies in that space, we may then dispense with
the study of the vector-valued K-transform of W (ψ, χ) and concentrate on the
study of (KW (ψ, χ))0.

Theorem 10.6. Let φ(x) = (π|x|) 1
2 I− 1

4
(π x2) be the median state of the harmonic

oscillator, as introduced in Proposition 1.2. One has

W (φ, φ)(x, ξ) = 2 I0(2π (x2 + ξ2)). (10.15)

Proof. This follows from Proposition 9.7. It should be compared to the equation
W (χ, χ)(x, ξ) = 2 exp (−2π (x2 + ξ2)) which, in the usual analysis, gives the Weyl
symbol of the operator of projection, in L2(R), on the space generated by the
normalized ground state χ(x) = 2

1
4 e−πx2

of the usual harmonic oscillator. �

Remark 10.1. Just like its analogue in the classical theory (to wit, the function
2 e−2π(x2+ξ2)), the function W (φ, φ) is normalized in the sense corresponding to
the pseudoscalar product introduced, in higher dimension – here 2 – in Section
8. Indeed, from Proposition 9.7, one has (W (φ, φ) |W (φ, φ)) = 2 (Φ |Φ) with
Φ(x, ξ) = I0(π(x2 + ξ2)). Now, going back to Theorem 8.7, one writes Φ =
gram
0,0 � Y0,0 with Y0,0 = (2π)−

1
2 (the normalized constant on the unit circle), so

that gram
0,0 (s) = (2π)

1
2 I0(2πs). From (3.14), one then finds that g0,0 = −(π

2 )
1
2 v0

0,0

so that, as shown in Corollary 8.4, (g0,0 | g0,0) = π2

2 . One concludes with the
help of (8.47). This remark may have possible significance in the future, when
the anaplectic pseudodifferential analysis is more fully developed: indeed, it would
be nice if, just as in the usual case, the pseudoscalar product on the space of
symbols would just correspond to the polarized form of some indefinite version
of a Hilbert–Schmidt squared norm. At present, this is true if one stays entirely
within the realm of anaplectic Hermite functions.

Theorem 10.7. Define, on R2, the pair of differential operators

Λ = 2π (x2 + ξ2) − 1
8π

(
∂2

∂x2
+

∂2

∂ξ2

)
, Ω =

1
i

(
x

∂

∂ξ
− ξ

∂

∂x

)
, (10.16)

the first one of which is simply the conjugate, under the change of variables
(x, ξ) �→ (2

1
2 x, 2

1
2 ξ), of the harmonic oscillator in two variables L(2) introduced

in (3.21). For every j ∈ Z, let φj be the eigenfunction in A, as introduced in
Proposition 2.11, of the one-dimensional harmonic oscillator corresponding to the
eigenvalue j. Then, given any pair of integers j, k, the Wigner function W (φj , φk)
is the analytic function on R2 characterized, up to normalization, by the eigen-
value equations

Λ W (φj , φk) = (j + k)W (φj , φk), Ω W (φj , φk) = (j − k)W (φj , φk). (10.17)
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Proof. Introduce on R2 the complex structure for which ζ = x + iξ is a complex
coordinate and set, in the usual way,

∂

∂ζ
=

1
2

(
∂

∂x
− i

∂

∂ξ

)
,

∂

∂ζ̄
=

1
2

(
∂

∂x
+ i

∂

∂ξ

)
. (10.18)

Introducing the operators

Right† = π
1
2

(
ζ̄ − 1

2π

∂

∂ζ

)
, Right = π

1
2

(
ζ +

1
2π

∂

∂ζ̄

)
,

Left† = π
1
2

(
ζ − 1

2π

∂

∂ζ̄

)
, Left = π

1
2

(
ζ̄ +

1
2π

∂

∂ζ

)
, (10.19)

and recalling that

A∗ = π
1
2 (Q − i P ), A = π

1
2 (Q + i P ), (10.20)

one derives from Lemma 10.5 the equations

W (ψ, A∗χ) = Right† W (ψ, χ), W (ψ, Aχ) = RightW (ψ, χ),

W (A∗ψ, χ) = Left† W (ψ, χ), W (Aψ, χ) = Left W (ψ, χ). (10.21)

On the other hand, noting that

Λ = 2π ζ ζ̄ − 1
2π

∂2

∂ζ ∂ζ̄
, (10.22)

one has the commutation relations

[Λ, Right†] = Right†, [Λ, Left†] = Left†,
[Λ, Right] = −Right, [Λ, Left] = −Left : (10.23)

the first of the two equations (10.17) follows after one has verified it directly, in
the case when j = k = 0, from the result of Proposition 9.7. The second one
is obtained from the expression Ω = ζ ∂

∂ζ − ζ̄ ∂
∂ζ̄

, from which the commutation
relations

[Ω, Right†] = −Right†, [Ω, Left†] = Left†,
[Ω, Right] = Right, [Ω, Left] = −Left (10.24)

follow. That the pair of eigenvalue equations as given has only a one-dimensional
space of analytic solutions is an easy matter too. �
Theorem 10.8. Let χ and ψ ∈ A0, and let W (ψ, χ) be the Wigner function of
the pair ψ, χ as introduced in Definition 10.3. The function W (ψ, χ) lies in the
space A(2). More precisely, the K-transform ((KW (ψ, χ))0, (KW (ψ, χ))1) of
W (ψ, χ), as introduced in Theorem 4.11, extends as an analytic function on the
open set of matrices Z# ∈ Σ(2) lying above Σ\∆, where we recall that ∆ is the
set of matrices in Σ(2) with a double eigenvalue (these are scalar matrices since
we are concerned here with the two-dimensional case).



10. Towards the one-dimensional anaplectic Weyl calculus 169

Proof. First recall from the observation following the proof of Lemma 10.5 that we
may assume that ψ and χ are even functions, and we have to study the analytic
continuation of the function (KW (ψ, χ))0. Using Definition 10.2, we write

ψ =
∑
j∈Z

bj φ2j , χ =
∑
k∈Z

ck φ2k, (10.25)

with the φj ’s as introduced in Theorem 2.11, and the sequences (bk) and (ck)
satisfying for every M > 0 the estimate |bk| + |ck| ≤ C (|k| !)−1 M−|k|. The
problem is to prove the convergence towards an analytic function, in the part
of Σ(2) above Σ\∆, of four series, one of which (the other three ones are quite
similar) is

∑
j≥0, k≥0 bj ck Left2j Right2k W (ψ, χ). The rest of the proof is similar

to that of Theorem 5.5: we show that an operator such as

Left2 = π

[
ζ̄2 +

1
π

ζ̄
∂

∂ζ
+

1
4π2

∂2

∂ζ2

]
(10.26)

transfers on the K-transform of a function on R2 as a first-order differential
operator with coefficients analytic throughout Σ(2). Concerning the first term on
the right-hand side of (10.26), this has already been proved in (5.39): the same
goes for the last term ∂2

∂ζ2 , which is the conjugate of a term such as the first one
under a (two-dimensional) anaplectic Fourier transformation, this latter operation
corresponding (cf. (5.46)) to a global analytic diffeomorphism of Σ(2). Next,

2 ζ̄
∂

∂ζ
= x

∂

∂x
+ ξ

∂

∂ξ
+ i

(
x

∂

∂ξ
− ξ

∂

∂x

)
: (10.27)

the sum of the last two terms is an infinitesimal generator of the (analytic) action
of the maximal compact subgroup of Sp(2, R). Finally, x ∂

∂x + ξ ∂
∂ξ transfers on

the Q-transform level to the operator −2
∑

j,k σjk
∂

∂σ(jk)
− 2, an operator already

considered in the proof of Proposition 5.3, which would have been written there
as −

∑
Ljj (cf. (5.28). This concludes the proof of Theorem 10.8. �

There is another approach to Theorem 10.8, based on a computation of the
Q-transform of the Wigner function of a general pair (ψ, χ), and on an attempt
(which proved too complicated) at finding the analytic continuation of the inte-
gral obtained as a result. We reproduce part of the argument, since it gives new
significance to a known identity involving hypergeometric functions, or Legendre
functions.

Lemma 10.9. Let v ∈ A, and assume that v satisfies, for some pair (C, ε) of
positive constants, the estimate

|v(x e−
iπ
4 )| ≤ C e−πε x2

, x ∈ R. (10.28)
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Then one has the identity

Int [v] =
∫ ∞

−∞
v(x e−

iπ
4 ) dx. (10.29)

Proof. Let (f0, f1, fi,0, fi,1) be the C4-realization of v: as shown in (1.33), one
has for large σ the equation∫ ∞

−∞
e−πσx2

v(x e−
iπ
4 ) dx = 2

1
2

∫ ∞

0

[e−iπσx2
f0(x) + eiπσx2

fi,0(x)] dx : (10.30)

now both sides of the equation extend as holomorphic functions of σ in some
half-strip {σ ∈ C : Re σ > −ε, |Im σ| < ε}. In particular, under the current
assumptions, the identity just recalled is still valid for σ = 0: this proves the
lemma, in view of the definition (1.74) of the linear form Int. �

The following lemma expresses a new connection between the anaplectic rep-
resentation and the Heisenberg representation.

Lemma 10.10. Let u ∈ A, satisfying for some pair of constants C, R the estimate
|u(z)| ≤ C eπR|z|2 . Let a, c be a pair of real numbers ≥ R + 1. Then the function
u1 defined as the (ordinary) integral superposition

u1 =
∫

R2
e−2π (a x2+c ξ2) e4π e

iπ
4 (−x P+ξ Q) u dx dξ (10.31)

lies in A and can be made explicit as

u1 =
1
2

(ac + 1)−
1
2 Ana(g1)u with g1 =

(ac−1
ac+1 − 2c

ac+1
2a

ac+1
ac−1
ac+1

)
. (10.32)

Proof. We abbreviate e
iπ
4 as κ and make u1 explicit as

u1(t) =
∫

R2
e−2π (a x2+c ξ2) u(t − 2 κ−1 x) e4π κ (t−κ−1 x) ξ dx dξ. (10.33)

Now ∫ ∞

−∞
e−2πcξ2

e−4π xξ e4π κ tξ dξ = (2c)−
1
2 e

2π
c (x−κ t)2 , (10.34)

so that

u1(t) = (2c)−
1
2 e

2iπ
c t2

∫ ∞

−∞
e−2πax2

e
2π x2

c e−
4π κ xt

c u(t − 2 κ−1 x) dx, (10.35)

a convergent integral since a − c−1 > R. The same inequality makes it possible
to use the deformation of contour associated with the translation x �→ x + κt

2 ,
followed by the change of variable y = −2x, ending up with the equation

u1(t) =
1

(8c)
1
2

e
2iπ t2

c

∫ ∞

−∞
e−

π
2 (a−c−1) (κt−y)2 e−

2πκ
c (κt−y)t u(κ−1y) dy (10.36)
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or

u1(t) =
1

(8c)
1
2

e−iπ ac−1
2c t2

∫ ∞

−∞
e

πκ
c (ac+1) ty e−π ac−1

2c y2
u(κ−1y) dy. (10.37)

Setting
v(y) = u(y) e−iπ ac−1

2c y2
eiπ ac+1

c ty, (10.38)

the function v lies in A according to Proposition 1.15, and it also satisfies the
condition that makes the application of Lemma 10.9 possible: hence

u1(t) =
1

(8c)
1
2

e−iπ ac−1
2c t2 Int [v]. (10.39)

Using Definition 1.17 of the anaplectic Fourier transformation, this is the same as

u1(t) =
1

(8c)
1
2

e−iπ ac−1
2c t2 Fana

(
y �→ u(y) e−iπ ac−1

2c y2
)(−ac − 1

2c
t

)
(10.40)

or, from the characterization of the anaplectic representation given in Theorem
1.20,

u1 =
1
2

(ac + 1)−
1
2

× Ana
((

1 0
1−ac
2c 1

) ( −2c
ac+1 0
0 −ac−1

2c

) (
0 1
−1 0

) (
1 0

1−ac
2c 1

))
, (10.41)

finally leading to the matrix g1 indicated in the statement of the lemma. �

We now need to transfer to the space Ĉω
− 1

2 ,0
the scalar product of two even

functions in A. If u1 and u2 are two such functions, let
(

w1
0

0

)
and

(
w2

0
0

)
be

associated to u1 and u2 respectively by the map (1.26), recalled in (2.81). By
Theorem 2.10, one has (u1 |u2)A = (w1

0 |w2
0)Ĥ− 1

2 ,0
where, as defined in (2.4),

(w1
0 |w2

0)Ĥ− 1
2 ,0

=
∫ ∞

−∞
w̄1

0(t) (|D| 12 w2
0)(t) dt : (10.42)

the variable denoted as t here was formerly denoted as σ, a letter reserved for
another use here.

Lemma 10.11. With the notation just introduced, set, for any number z �= 1 on
the unit circle,

f1(z) = |1 − z|− 1
2 w1

0

(
i
1 + z

1 − z

)
,

f2(z) = |1 − z|− 3
2 (|D| 12 w2

0)
(

i
1 + z

1 − z

)
. (10.43)
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The functions f1 and f2 extend as real-analytic functions on the unit circle. One
has

(w1
0 |w2

0)Ĥ− 1
2 ,0

=
2
i

∫
|z|=1

f̄1(z) f2(z)
dz

z
. (10.44)

If g1 =
(

a1 b1
c1 d1

)
∈ SL(2, R), setting

γ =
1
2i

(
i 1
−i 1

) (
a1 b1
c1 d1

) (
1 −1
i i

)
=
(

α1 β̄1
β1 ᾱ1

)
∈ SU(1, 1), (10.45)

one has

(π̂− 1
2 ,0(g1)w1

0 |w2
0)Ĥ− 1

2 ,0
=

2
i

∫
|z|=1

| − β̄1 z + ᾱ1|−
1
2 f̄1

(
α1 z − β1

−β̄1 z + ᾱ1

)
f2(z)

dz

z
.

(10.46)

Proof. That f1 is analytic on the unit circle was shown in Theorem 4.14, as
a consequence of the expansion (1.27) of the function w1

0 at infinity. Now, the
function |D| 12 w2

0 lies in Ĉω
1
2 ,0

, thus admits at infinity a convergent expansion of

the kind
∑

n≥0 an t−n |t|− 3
2 , from which the analyticity of the function f2 follows

as well. Under the (one-dimensional) Cayley transform t = i 1+z
1−z , or z = t−i

t+i , one
has 2

i |1 − z|−2 dz
z = dt, from which one finds (10.44) from (10.42).

From the definition of the representation π̂− 1
2 ,0 in (2.3), one has

(π̂− 1
2 ,0(g1)w1

0)(t) = | − b1 t + d1|−
1
2 w1

0

(
a1 t − c1

−b1 t + d1

)
, (10.47)

and it is a straightforward matter, using the Cayley map, to obtain (10.46) as a
consequence. �
Corollary 10.12. For every x > 0 one has

1 + x

2 2F1

(
1
4
,

1
2
; 1; 1 − x4

)
= 2F1

(
1
2
,

1
2
; 1; −

(
x − 1
x + 1

)2
)

. (10.48)

Proof. With φ(x) = (π |x|) 1
2 I− 1

4
(πx2), and

u(x, ξ) = W (φ, φ)(x, ξ) = 2 I0(2π (x2 + ξ2)), (10.49)

in other words, with the notation used in Theorem 4.18 (2-dimensional case),

u(x, ξ) = 2 Φ(2
1
2 x, 2

1
2 ξ), (10.50)

from which it is immediate, denoting as σ ∈ Sym2 a symmetric matrix such that
σ � R I for some large R, that

(Qu)0(2σ) = (QΦ)0(σ), (10.51)
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an identity connecting the quadratic transforms of u and Φ. Let e−iθ1 and e−iθ2

be the eigenvalues of Z = (σ− i I)(σ + i I)−1, and assume to avoid any discussion
of sign that θ1 and θ2 are positive and small, and θ1 > θ2. Since det (I − Z) =
4 sin θ1

2 sin θ2
2 , it follows from (4.84) that

(QΦ)0(σ) =
(sin θ1

2 sin θ2
2 )

1
2

cos θ1−θ2
4

2F1

(
1
2
,

1
2
; 1; − tan2 θ1 − θ2

4

)
. (10.52)

On the other hand, assuming from now on that σ = ( a 0
0 c ), the result of Lemma

10.10, together with (10.8), is that

(Qu)0(2σ) = (ac + 1)−
1
2 (Ana(g1)φ |φ)A. (10.53)

It has been verified in the proof of Proposition 9.5 that

Θ−1φ =
Γ(1

4 )

2
1
4 π

3
4

(
v0
− 1

2 ,0

0

)
(10.54)

with v0
− 1

2 ,0
as given in (2.22), and (2.20) gives

w0
− 1

2 ,0(t) = (F v0
− 1

2 ,0)(t) =
Γ(1

4 )

2
1
4 π

3
4

(1 + t2)−
1
4 . (10.55)

Then [17, p. 412]

(|D| 12 w0
− 1

2 ,0)(t) = F (2
3
4 π− 1

2 |s| 14 K 1
4
(2π |s|)) (t)

= 2−
1
4 π− 5

4 Γ
(

3
4

)
(1 + t2)−

3
4 . (10.56)

With the notation introduced just before Lemma 10.11, we thus set w1
0 = w2

0 =
w0

− 1
2 ,0

, which leads (with the notation of this lemma) to

f1(z) = 2−
3
4 π− 3

4 Γ
(

1
4

)
, f2(z) = 2−

7
4 π− 5

4 Γ
(

3
4

)
: (10.57)

consequently, f̄1(z) f2(z) = 1
4π . Applying Lemma 10.9, and noting that

α = ac − 1 − i (a + c), β = i (c − a), (10.58)

we obtain

(Qu)0(2σ) =
1

2iπ

∫
|z|=1

|i (c − a) z + ac − 1 + i (a + c)|− 1
2

dz

z
. (10.59)

In terms of θ1 and θ2, one has a = i 1+e−iθ1

1−e−iθ1 = 1

tan
θ1
2

, thus

ac − 1 =
cos θ1+θ2

2

sin θ1
2 sin θ2

2

, a + c =
sin θ1+θ2

2

sin θ1
2 sin θ2

2

, c − a =
sin θ1−θ2

2

sin θ1
2 sin θ2

2

. (10.60)
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Setting µ = tan θ1−θ2
4 and z = ei (ω+

θ1+θ2
2 ), we obtain

(Qu)0(2σ)
(sin θ1

2 sin θ2
2 )

1
2

=
1
2π

∫ 2π

0

∣∣∣∣1 +
2iµ

1 + µ2
eiω

∣∣∣∣− 1
2

dω

=
1
π

∫ π
2

−π
2

[
1 +

4µ2

(1 + µ2)2
− 4µ sin ω

1 + µ2

]− 1
4

dω

=
1
π

∫ 1

−1

[
1 +

4µ2

(1 + µ2)2
− 4µ ξ

1 + µ2

]− 1
4 dξ√

1 − ξ2

=
1
π

∫ 1

0

[
1 +

4µ2

(1 + µ2)2
− 4µ

1 + µ2
+

9µ η

1 + µ2

]− 1
4

η− 1
2 (1 − η)−

1
2 dη

=
1
π

∫ 1

0

[
(1 − µ)4

(1 + µ2)2
+

8µ η

1 + µ2

]− 1
4

η− 1
2 (1 − η)−

1
2 dη

=
1
π

(1 + µ2)
1
2

1 − µ

∫ 1

0

[
1 +

8µ(1 + µ2)
(1 − µ)4

η

]− 1
4

η− 1
2 (1 − η)−

1
2 dη

=
(1 + µ2)

1
2

1 − µ
2F1

(
1
4
,

1
2
; 1; −8µ(1 + µ2)

(1 − µ)4

)
. (10.61)

Comparing this result to (10.52), we obtain

2F1

(
1
2
,

1
2
; 1; −µ2

)
= (1 − µ)−1

2F1

(
1
4
,

1
2
; 1; −8µ(1 + µ2)

(1 − µ)4

)
(10.62)

for 0 < µ < 1, but one still has − 8µ(1+µ2)
(1−µ)4 < 1 if µ > −1, which makes it possible

to use analytic continuation to claim the validity of (10.62) for −1 < µ < 1. Note
that this equation provides the analytic continuation to all real values of µ of
the integral that led to the right-hand side of (10.62): it is in another attempt
at a proof of Theorem 10.8 that we were led to the series of transformations
which produced this identity. Setting x = 1+µ

1−µ , one obtains the aesthetically more
satisfying equation (10.48).

Using [17, p. 51] and [17, p. 52], one may write this equation as

P− 1
4

(
1 + x4

2x2

)
=
(

2x

1 + x2

) 1
2

P− 1
2

(
2x

1 + x2

)
. (10.63)

This last identity can also be found as a consequence of the equation (11) in [17,
p. 157], applied to the right-hand side, and of the first equation concerning Pµ

ν in
[17, p. 153], applied to the left-hand side. �

In the usual Weyl calculus, there is a simple link between the Weyl symbol f
of some operator and its integral kernel k, which may be expressed as the formula

k(s, t) = (F−1
2 f)

(
s + t

2
, s − t

)
, (10.64)
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where F−1
2 denotes the inverse partial Fourier transformation with respect to

the second variable. In the case of a rank-one operator, built from a pair of L2

functions, this can be written as

χ(s) ψ̄(t) = (F−1
2 W (ψ, χ))

(
s + t

2
, s − t

)
, (10.65)

an equation which can also be derived from (10.5).
As a preparation – among other reasons – towards the study of the tensor

product of two functions in the space A0, we now generalize this formula to the
case of the anaplectic analysis. Two important differences will appear. First, as
already mentioned, there is no genuine concept of partial Fourier transformation,
since “freezing” one of a pair of variables is not possible. However, as done in
Section 6, one may consider instead the anaplectic transformation Ana(g), with
g as introduced in Theorem 10.13 below: recall that this would yield exactly the
transformation F−1

2 if the metaplectic representation were used in place of the
anaplectic one.

In the anaplectic analysis, it will be necessary to add two or four terms of the
preceding kind, on the right-hand side, to obtain an analogue of (10.65). In the
null space of the formal harmonic oscillator, there are two linearly independent
functions φ and φ� (the odd one, introduced at the very end of Section 1): ulti-
mately, this will imply that the Wigner function contains more information than
the tensor product.

Theorem 10.13. Let ψ and χ lie in the space A0: then the tensor product χ⊗ ψ̄
lies in A(2). Moreover, assuming that ψ (resp. χ) has the parity associated with
δ = 0 or 1 mod 2 (resp. that associated with δ′ = 0 or 1), and setting g =(

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

)
, one has the identity

χ(s) ψ̄(t) =
1
4

∑
ε=±1
ε′=±1

εδ ε′ δ′
(Ana(g) W (ψ, χ) )

(
ε′ s + ε t

2
, ε′ s − ε t

)
. (10.66)

Proof. We first prove the identity above in the case when ψ = χ = φ, the ba-
sic function introduced in Proposition 1.2. Since Ana(g) is not really a partial
Fourier transformation, we must prove directly, in view of their immediate use, the
unsurprising formulas (in which x, ξ is taken as the pair of independent variables
on R2 and (ξ) stands for the operator of multiplication by ξ)

Ana(g)
∂

∂ξ
= −2iπ (ξ) Ana(g), Ana(g) (ξ) =

1
2iπ

∂

∂ξ
Ana(g) : (10.67)

these are an immediate consequence of (5.71). On one hand, W (φ, φ) satisfies
the equation 1

2iπ (x ∂
∂ξ − ξ ∂

∂x)W (φ, φ) = 0 (which expresses the invariance of

W (φ, φ) under rotations); on the other hand, W (φ, φ)(x, ξ) = 2 Φ(2
1
2 x, 2

1
2 ξ),
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with Φ as defined in Theorem 4.18, so that W (φ, φ) lies also in the null space
of the operator 2π (x2 + ξ2) − 1

8 π ( ∂2

∂x2 + ∂2

∂ξ2 ) (a transfer of the two-dimensional
harmonic oscillator). In view of (10.67), the image of W (φ, φ) under Ana(g), as
a function of (x, ξ), vanishes under the action of either of the operators

−x ξ +
1
4π

∂2

∂x ∂ξ
and π

(
2 x2 +

ξ2

2

)
− 1

4π

(
1
2

∂2

∂x2
+ 2

∂2

∂ξ2

)
. (10.68)

Finally, setting s = x+ ξ
2 , t = x− ξ

2 , one sees that, under this change of variables,
the operators in (10.68) transfer to

1
4π

[
s2 − t2 − 1

4π2

∂2

∂s2
+

1
4π2

∂2

∂t2

]
and π (s2 + t2) − 1

4π

(
∂2

∂s2
+

∂2

∂t2

)
(10.69)

respectively.
Hence, the function (s, t) �→ (Ana(g) W (φ, φ))( s+t

2 , s − t) lies in the null
space of the two formal standard harmonic oscillators Ls and Lt, with respect
to the two variables. It is not even with respect to s and t separately, but it
is globally even. Since the null space of the one-dimensional standard harmonic
oscillator is generated by φ and φ�, the function under consideration is a linear
combination of the functions φ ⊗ φ and φ� ⊗ φ�. Finally, the even part (with
respect to s, t or both) of the function (Ana(g) W (φ, φ))( s+t

2 , s − t) coincides
with a multiple of the function φ ⊗ φ. The normalization constant does not play
any role at present, and we may thus assume that the identity (10.66) is valid in
the case when ψ = χ = φ, granted that we shall prove a more precise result later.

Next, we show that the identity (10.66) is valid for every pair (ψ, χ) of
anaplectic Hermite functions, by showing that if it is true for such a pair, it is also
true for the pair obtained by applying the raising or lowering operator to either of
the functions ψ, χ: one of the four verifications goes as follows. In view of (10.21),
one has W (Aψ, χ) = Left W (ψ, χ). Then, in view of (10.67), one has

Ana(g)W (Aψ, χ) = π
1
2 Ana(g)

(
x − i ξ +

1
4π

(
∂

∂x
− i

∂

∂ξ
)
)

W (ψ, χ)

= π
1
2

(
x − 1

2π

∂

∂ξ
+

1
4π

∂

∂x
− ξ

2

)
Ana(g)W (ψ, χ), (10.70)

and the operator in front of the right-hand side transfers, under the change of
variables (s, t) �→ (x, ξ) = ( ε′ s+ε t

2 , ε′ s − ε t), to the operator ε π− 1
2 (t + 1

2π
∂
∂t ).

On one hand, Aψ has the parity associated with δ+1 mod 2 if ψ has the parity
associated with δ; on the other hand, this operator indeed transforms the function
(χ ⊗ ψ̄)(s, t) into the function (χ ⊗ Aψ)(s, t).

Finally, if ψ and χ lie in A0, and each of the two functions has some definite
parity, one may use the expansions (10.25) to obtain a convergent expansion of
the Q-transform of (χ ⊗ ψ̄)(s, t) in the domain {σ ∈ Sym2 : σ � R I} for some
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large R; at the same time, the equation (10.66), together with Theorem 10.8,
takes care of the convergence, in the space of functions analytic in the part of
Σ(2) above Σ\∆, of the corresponding series of K-transforms. This provides the
analytic continuation of the K-transform of (χ ⊗ ψ̄)(s, t), thus completing the
proof of Theorem 10.13. �

The link between W (φ, φ) and Φ, already used, can be written as W (φ, φ) =
2

1
2 Ana

(
A 0
0 A−1

)
Φ with A = 2−

1
2 ( 1 0

0 1 ): since g
(

A 0
0 A−1

)
g−1 =

(
B 0
0 B−1

)
with

B =
(

2− 1
2 0

0 2
1
2

)
, one has

2−
1
2 (Ana(g)W (φ, φ))(x, ξ) = (Ana(g)Φ) (2

1
2 x, 2−

1
2 ξ). (10.71)

We have seen in the proof of the last theorem that there exist two constants
C0 and C1 such that the identity

2−
1
2 (Ana(g)W (φ, φ))

(
s + t

2
, s − t

)
= C0 φ(s)φ(t) + C1 φ�(s)φ�(t) (10.72)

holds. Setting

Ψ(x1, x2) = C0 φ

(
x1 + x2

2
1
2

)
φ

(
x1 − x2

2
1
2

)
+ C1 φ�

(
x1 + x2

2
1
2

)
φ�

(
x1 − x2

2
1
2

)
,

(10.73)
this can be written as the simple equation Ψ = Ana(g)Φ. We shall find the values
of the two unknown coefficients by a comparison of the quadratic transforms of
the two sides, which will provide us with an opportunity to apply the definition of
the two-dimensional anaplectic representation from Theorem 5.10.

Theorem 10.14. The wave equation(
∂2

∂p2
− ∂2

∂q2
− ∂2

∂r2

)
f = 0 (10.74)

admits a solution satisfying on the plane q = 0 the initial conditions

f(p, 0, r) =
π− 3

2

2

(
Γ
(

1
4

))2

[4 p2 + (p2 − r2 − 1)2]−
1
4 ,

∂f

∂q
(p, 0, r) = 2 π− 3

2

(
Γ
(

3
4

))2

[4 p2 + (p2 − r2 − 1)2]−
3
4 , (10.75)

given by the equation

f(p, q, r) = (a − q)−
1
2 2F1

(
1
2
,

1
2
; 1; −a + q

a− q

)
, (10.76)

where
a =

1
2

√
4 p2 + (p2 − q2 − r2 − 1)2. (10.77)
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This solution is defined and analytic in the complement, in R3, of the branch of
hyperbola {(p, q, r) : r = 0, q =

√
p2 + 1}.

The coefficients that make the equation (10.73) valid are C0 = 2−
1
2 and

C1 = 2− 1
2

i π . If they are so chosen, one then has

f(p, q, r) = (QΨ)0
(( p+q r

r p−q

))
. (10.78)

Remark 10.2. Despite the fact that the function f is locally summable on R3, it
is not a solution, in the distribution sense, of the wave equation in the whole of
R3, only in its domain of analyticity. On the other hand, since the wave equation
is invariant under the change (p, q, r) �→ (p, −q, r), one can also find an explicit
solution of the Cauchy problem obtained after one has changed the coefficients in
front of the right-hand sides of the two equations (10.75) in an arbitrary way.

Proof. With f(p, q, r) as defined by (10.76), and (when q = 0) a =
1
2

√
4 p2 + (p2 − r2 − 1)2, one has, with the help of several formulas from [17, p.

40], together with the formula of complements,

f(p, 0, r) = 2F1

(
1
2
,

1
2
; 1; −1

)
a− 1

2 = (2π)−
3
2

(
Γ
(

1
4

))2

a− 1
2 (10.79)

and

∂f

∂q
(p, 0, r) =

1
2

[
2F1

(
1
2
,

1
2
; 1; −1

)
− 2F1

(
3
2
,

3
2
; 2; −1

)]
a− 3

2

= 2−
1
2 π− 3

2

(
Γ
(

3
4

))2

a− 3
2 . (10.80)

Setting

b =
1
2

√
4r2 + (p2 − q2 − r2 + 1)2, (10.81)

one has a =
√

b2 + q2. It follows that a − q > 0 (while the argument of the
hypergeometric function is always < 1) except when b = 0 and q > 0, i.e., r = 0
and q =

√
p2 + 1: this makes the domain of analyticity of the function f explicit,

as indicated.
Take the generic matrix in Symn to be

σ =
(

p + q r
r p − q

)
; (10.82)

also, with x = (x1, x2), set

U(x) = φ

(
x1 + x2

2
1
2

)
φ

(
x1 − x2

2
1
2

)
, U �(x) = φ�

(
x1 + x2

2
1
2

)
φ�

(
x1 − x2

2
1
2

)
.

(10.83)
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With s = x1+x2

2
1
2

, t = x1−x2

2
1
2

, one has

〈σ x, x〉 = (p + r) s2 + 2q st + (p − r) t2. (10.84)

Let us recall Definition 4.1 of the quadratic transform:

(QU)0(σ) =
∫

R2
e−π [(p+r) s2+2q st+(p−r) t2] φ(e−

iπ
4 s)φ(e−

iπ
4 t) ds dt; (10.85)

a similar definition holds for the Q-transform of U �, also an even function of the
pair of variables x1, x2, or s, t, even though, contrary to U , it is not even with
respect to s and t separately. The equation (10.85) and some obvious parity
considerations make it immediate that

∂

∂q

∣∣∣∣
q=0

(QU)0(σ) = 0 and (QU �)0 (( p r
r p )) = 0. (10.86)

On the other hand, in the case when q = 0, 〈σ x, x〉 reduces to (p +
r) s2 +(p− r) t2. At such points σ the computation of the integral (10.85) reduces
to computations from the one-dimensional case already made, and we get from
(1.26) and (1.39) (the latter one with n = 0) that

(QΨ)0 (( p r
r p )) =

π− 3
2

2

(
Γ
(

1
4

))2

(1 + (p + r)2)−
1
4 (1 + (p − r)2)−

1
4

=
π− 3

2

2

(
Γ
(

1
4

))2

[4 p2 + (p2 − r2 − 1)2]−
1
4 . (10.87)

Next,

∂

∂q

∣∣∣∣
q=0

(QU �)0(σ) = −2π

∫
R2

e−π [(p+r) s2+(p−r) t2] s t φ�(e−
iπ
4 s)φ�(e−

iπ
4 t) ds dt :

(10.88)
it is time to recall from (1.94) that

φ�(s) = −(π |s|) 1
2 (sign s) I 1

4
(π s2), (10.89)

an odd function, so that s �→ s φ�(e−
iπ
4 s) is an even function, coinciding for s > 0

with −e−
iπ
4 π

1
2 s

3
2 J 1

4
(π s2). With the help of [17, p. 91], one finds

∂

∂q

∣∣∣∣
q=0

(QU �)0(σ) = i 2
3
2 π− 1

2

(
Γ
(

3
4

))2

[4 p2 + (p2 − r2 − 1)2]−
3
4 . (10.90)

Comparing the Cauchy data, on the plane q = 0, of the function f , as given by
(10.79) and (10.80), and those of (QΨ)0, with Ψ as defined in (10.73), we obtain
that (10.78) can hold only if the coefficients C0 and C1 have the values indicated.
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Taking Remark 5.2 into account, the only point that remains to be proved is
that

f(p, q, r) = (QAna(g)Φ)0
(( p+q r

r p−q

))
. (10.91)

Since we already know that both sides extend as analytic functions in the comple-
ment, in the space Sym2, of some algebraic subset of dimension 1, it is sufficient
to prove this identity for (p, q, r) in an arbitrary non-void open subset of R3: we
shall assume that p is large and that |q| and |r| are small, so that the matrix σ
should be close to a large multiple of the identity matrix.

Let Z = σ−i I
σ+i I be the image of σ under the Cayley map. With our present

g = ( A B
C D ) as defined in the proof of Theorem 10.13, the equations (5.2) and (5.5)

give α = ( 1 0
0 i ), β = 0 and [g−1](Z) =

(
1 0
0 −i

)
Z
(

1 0
0 −i

)
. Here,

Z =
1

(p + i)2 − q2 − r2

(
p2−(q−i)2−r2 2i r

2i r p2−(q+i)2−r2

)
,

so that

[g−1](Z) =
1

(p + i)2 − q2 − r2

(
p2−(q−i)2−r2 2r

2r −p2+(q+i)2+r2

)
. (10.92)

An application of Theorem 5.10 and Theorem 4.19 leads to an expression of
(KAna(g)Φ)(Z) as some function of the ratio of the eigenvalues e−i θ1 and e−i θ2

of the matrix [g−1](Z) that occurs in (10.92). One finds that, for some order of
the two eigenvalues, one has

ei (θ1−θ2) =
i q − b

i q + b
, (10.93)

with b as defined in (10.81). However, the angle θ1−θ2
4 must be determined

mod π, and we have to decide which of the two equations (4.76) and (4.77) must
be taken. This can only be done by connecting the matrix g to the identity
through the path (gt)0≤t≤π

2
, where gt = ( A B

C D ) with A = D = ( 1 0
0 cos t ) and

C = −B = ( 0 0
0 sin t ), which implies β = 0 again and α =

(
1 0
0 eit

)
, so that

[g−1
t ](Z) =

(
1 0
0 e−it

)
Z
(

1 0
0 e−it

)
.

In the case when r = 0, all these computations simplify, since

[g−1
t ](Z) =

(
p+q−i
p+q+i 0

0 e−2it p−q−i
p−q+i

)
, (10.94)

the image under the Cayley map of the matrix
(

p+q 0

0 (p−q) cos t−sin t
(p−q) sin t+cos t

)
, provided that

p > q, which can be assumed. Theorem 4.19 thus implies that it is the equation
(4.76) that has to be used under the assumptions above, in which |r| and p− |q|
are small. In the case when r = 0, comparing the ratio of the eigenvalues of
the matrix in (10.94) taken at t = π

2 to the expression (10.93), one sees that



10. Towards the one-dimensional anaplectic Weyl calculus 181

e−i θ1 (resp. e−i θ2) actually denotes the upper-left (resp. lower right) entry of
that matrix. The equation (10.94) again then shows that, as t moves from 0 to
π
2 , the first eigenvalue e−i θ1 of [g−1

t ](Z) is a constant, θ1 being a small positive
number, while the argument θ2 of the inverse of the second eigenvalue moves
from a small positive number to a number close to π. Thus, at the end of the
path, sin θ1−θ2

2 < 0, and since, from (10.93), e
i (θ1−θ2)

2 = ± q+i b
a , one sees that

cos θ1−θ2
2 = − q

a , from which cos2 θ1−θ2
4 = a−q

2 a .
The equation (10.76) then follows from (4.76) together with the fact that if

σ ∈ Symn and Z ∈ Σ(2) are linked by the Cayley relation, the Q-transform of
Ψ at σ and the K-transform of this function at Z are linked by the relation
(recalling (4.39))

(KΨ)0(Z) =
1
2

(det (I + σ2))
1
4 (QΨ)0(σ) : (10.95)

with σ as in (10.82), det (I + σ2) = 4 a2. �

Remark 10.3. When (p, q, r) = (sinh ξ, cosh ξ, 0) describes the branch of hyper-
boloid which is the singular set of the function (QAna(g)Φ)0, the corresponding
point Z = eξ−i

eξ+i

(
1 0
0 −1

)
of the compactification Σ of Sym2 moves from

(−1 0
0 1

)
to

(
1 0
0 −1

)
. Thus, the closure of this branch in Σ, and a fortiori that in Σ(2),

is not a closed curve: the second one is just one half of the singular support of
the function (KAna(g)Φ)0, which, according to what was said at the very end
of Section 4, consists of one circle (in the appropriate parametrization: cf. end of
proof of Lemma 4.16). The other circle of interest there, half of which lies in the
Cayley image of Sym2 (the first sheet of Σ(2)), is defined here by the equations
r = 0, q = −

√
p2 + 1: it does not intersect the singular support of (KAna(g)Φ)0,

but it constitutes half of the singular support of (KAna(g−1)Φ)0.

Remark 10.4. Solutions of the wave equation (10.74) are of interest since [15] they
provide solutions of the equation ( ∂2

∂t2 + (∆ − 1
4 ))h = 0 involving the Laplace–

Beltrami operator ∆ on the upper half-plane Π, hence connect to the Lax–Phillips
scattering theory for the automorphic wave equation. More precisely, consider the
analytic diffeomorphism

(t, z) �→ σ =
( p+q r

r p−q

)
= e−t

(
1

Im z −Re z
Im z

−Re z
Im z

|z|2
Im z

)
(10.96)

from R ×Π to the cone C defined by the inequalities (p2 − q2 − r2 > 0, p > 0).
Under this change of variables, accompanied by the transformation h �→ f = e

t
2 h,

the wave equation (10.74) inside C relative to f is equivalent to the automorphic
wave equation above concerning h. It is also an essential part of the Lax–Phillips
theory that a solution h of the latter equation is characterized by its pair of
Cauchy data h0(z) = h(0, z) and h1(z) = ∂h

∂t (0, z).
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Any quadratic transform, in the style of Definition 4.1, leads to a solution
of (10.74): in particular, with any even-tempered distribution S on R2, one may
associate the function (compare (4.1))

f(p, q, r) =
∫

R2
S(x, ξ) e−π 〈σ( x

ξ ), ( x
ξ ) 〉 dx dξ. (10.97)

Noting that, under the change of coordinates (10.96), one has

〈σ ( x
ξ ) , ( x

ξ ) 〉 = e−t |x − z ξ|2
Im z

, (10.98)

one sees that the Cauchy data, on the upper half-plane, of the function h associ-
ated to f in the manner indicated above, are

h0(z) =
∫

R2
S(x, ξ) exp

(
−π

|x − z ξ|2
Im z

)
dx dξ,

h1(z) =
∫

R2
S(x, ξ) exp

(
−π

|x − z ξ|2
Im z

) [
π
|x − z ξ|2

Im z
− 1

2

]
dx dξ. (10.99)

Now, the pair of functions just made explicit has a nice interpretation in
terms of the Weyl calculus on the real line. Indeed, consider the two functions
ui(s) = 2

1
4 e−πs2

and u1
i (s) = 2

5
4 π

1
2 s e−πs2

, the normalized first two eigenstates
of the (usual, or metaplectic) harmonic oscillator. For any g =

(
a b
c d

)
∈ SL(2, R),

with z = ai+b
ci+d , set uz = Met(g)ui and u1

z = Met(g)ui, where the indeterminacy,
by the factor ±1, inherent in the fact that we have not singled out either of the two
points in the metaplectic group lying above g, is of no consequence in what follows.
Renormalizing the Weyl calculus Op as Op√

2 with Op√
2(S) = Op((x, ξ) �→

S(2
1
2 x, 2

1
2 ξ)), one has [25, p. 17]

h0(z) =
(
uz |Op√

2(S)uz

)
, h1(z) =

1
2
(
u1

z |Op√
2(S)u1

z

)
. (10.100)

This played a basic role in the development of automorphic pseudodifferential
analysis (loc. cit.). It has also been a major incentive towards the development of
anaplectic analysis and our interest in quadratic transforms in general. We have
some reasons to believe that, along similar lines, some connection can be found
between anaplectic pseudodifferential analysis and a variant of the Lax–Phillips
theory, putting forward the one-sheeted hyperboloid in place of the two-sheeted
one. Numerous unexpected facts, however, have occurred so far in the development
of anaplectic analysis: as a consequence, we shall refrain, as yet, from making any
conjecture as to whether this may be of any significance in connection with modular
form theory.

Remark 10.5. Let us finally discuss whether anything can be done in the higher-
dimensional case. Provided that n ≡/ 0 mod 4, a pseudoscalar product has been
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introduced in Section 8: it makes sense, in particular, on the space denoted as
S•(Rn) so that, making use of Theorem 8.17 and starting from two functions in
the space S•• (Rn), one can define their Wigner function by the equation

W (ψ, χ)(x, ξ) = 2n (e4iπ(−x P+ξ Q) ψ̌ |χ), (10.101)

a generalization of (10.8): the new coefficient 2n (instead of 2) is taken in analogy
with the corresponding formula from the usual analysis.

As a consequence of Proposition 8.16, this definition makes sense, in partic-
ular, in the case when φ and ψ are anaplectic Hermite functions. Lemma 10.5
generalizes, leading to the equation

W (ψ, Qj χ) =
(

xj −
1

4iπ

∂

∂ξj

)
W (ψ, χ), (10.102)

in which the operator Qj is the operator that multiplies functions of x by xj ,
and to the three other analogous equations.

Denote as Φ(n) the function denoted as Φ in Theorem 4.18, which is a
rotation-invariant function in the null space of the harmonic oscillator L(n), and set
Ψ = W (Φ(n), Φ(n)). One might expect that, as is the case in the one-dimensional
analysis (Theorem 10.6), the function (x, ξ) �→ Ψ(2−

1
2 x, 2−

1
2 ξ) should be a mul-

tiple of the function Φ(2n): however, we shall explain the reason why this is not
the case. The analogous fact, in the usual analysis, holds in any dimension (only
Gaussian functions are involved then).

Let us use the equation (10.102) and the related ones. Since the function
Φ(n) is annihilated by the infinitesimal generators Mjk = Qj Pk − Qk Pj of the
rotation group, computing the Wigner function W (Φ(n), Mjk Φ(n)) as well as
the one in which the operator Mjk acts on the left-hand side, one obtains that
the function Ψ is annihilated by two operators: first, the first-order differential
operator xj

∂
∂xk

−xk
∂

∂xj
+ξj

∂
∂ξk

−ξk
∂

∂ξj
, next a second-order differential operator

Njk which it is more difficult to take advantage of, and to which we shall come back
later. Consequently, the function Ψ is invariant under the linear transformations
associated with the matrices (in block-form) ( Ω 0

0 Ω ) with Ω ∈ SO(n). Next, the
function Φ lies in the null space of L(n): by the same trick, this leads again to a
pair of equations, to wit[∑

(x2
j + ξ2

j ) − 1
16π2

(
∂2

∂x2
j

+
∂2

∂ξ2
j

)]
Ψ = 0,

∑(
xj

∂

∂ξj
− ξj

∂

∂xj

)
Ψ = 0.

(10.103)
The first of these equations means that the function Ψ(2−

1
2 x, 2−

1
2 ξ) lies in the

null space of the harmonic oscillator L(2n) in 2n variables; the second one means
that Ψ is invariant under the one-parameter group of linear transformations, an
infinitesimal generator of which is associated to the matrix

(
0 I
−I 0

)
.

Now, except in dimension 1, a function Ψ of (x, ξ) invariant under the
linear transformations (x, ξ) �→ (Ωx, Ωξ) with Ω ∈ SO(n) as well as under the



184 Chapter 3. Towards the Anaplectic Symbolic Calculi

transformation (x, ξ) �→ (x cos θ − ξ sin θ, x sin θ + ξ cos θ) does not have to be
rotation-invariant. In dimension 2 (resp. ≥ 3), it only has to be of the kind F (α, β)
with α = 1

2 (|x|2 + |ξ|2) in both cases, and β = x1ξ2 − x2ξ1 (resp. 1
2

∑
j,k(xj ξk −

xk ξj)2). The equation Njk Ψ = 0 referred to above, in which, actually, Njk =
xj ξk −xk ξj + 1

16π2 ( ∂2

∂ξj ∂xk
− ∂2

∂ξk ∂xj
), becomes, in terms of (α, β), a second-order

equation which reduces to the equation β (∂2 F
∂α2 + ∂2 F

∂β2 − 16 π2 F ) + 2α ∂2 F
∂α ∂β = 0

when n = 2, to a comparable one in higher dimension: together with the condition
which expresses that the first equation (10.103) is satisfied, it should in principle
make the function Ψ computable as a series, in a way resembling that used in the
first part of Section 6; we have not completed the calculations.

Only observe that, as soon as n ≥ 2, F cannot be a function of α alone.
One may note that the method just developed gives a new proof of Theorem 10.6
(the one-dimensional case). Also, it may be useful to point again at the difference
of structure – already felt in Section 6 – between the function Φ(n) from the
anaplectic analysis and the Gaussian function of the usual analysis. Contrary to
the first one, the latter one is an eigenfunction of the partial harmonic oscillators
as well (in particular, it is invariant under the partial Fourier transformations):
this, ultimately, leads to the associated Wigner function being invariant under
the group Sp(n, R) ∩ O(2n), which is sufficient to ensure that it depends only on
|x|2 + |ξ|2.



Chapter 4

The One-dimensional Case
Revisited

It has been our claim, based on the fact that the image of the ground state of the
harmonic oscillator under the Heisenberg algebra is a dense subspace of L2(Rn),
that, in some sense, the harmonic oscillator leads in a natural way to a fairly
wide section of classical analysis. In the first section of the book, it has been
shown that, in the one-dimensional case, the same construction, starting with the
even function in the null space of the harmonic oscillator in place of the Gaussian
function, leads to a new species of analysis, to wit the anaplectic one: the spectrum
of the harmonic oscillator is then Z instead of 1

2 + N.
Our construction of the one-dimensional anaplectic analysis was based on

the consideration of the complementary series of representations of SL(2, R), as
described in Section 2: it was only after some transformations that we arrived at
the definition, given in Section 1, of the space A in terms of the C4-realization of
functions therein. As it turns out – but this is a fact that we discovered only long
after we had embarked on the whole project – this presentation of the anaplectic
analysis is just the one appropriate towards a more general theory, depending on
one (complex) parameter.

We here show that, for any complex number ν mod 2, starting with the ap-
propriate generalized eigenstate of the harmonic oscillator, one finds a new anal-
ysis, and a new space Aν . One has A− 1

2
= A but, for reasons to follow, the

parameter ν must not be confused with the parameter ρ from the beginning of
Section 2. We shall assume that ν /∈ Z: for any value of ν /∈ Z, the Heisenberg
representation and some appropriate representation of some covering of SL(2, R),
to be called the ν-anaplectic representation, preserve the space Aν .

The ν-anaplectic representation coincides with the anaplectic representation
from Section 1 in the case when ν = − 1

2 mod 2 and with the dual anaplectic
representation as developed, on the space A�, in Section 7, in the case when ν ∈
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1
2+2 Z. If ν is a real number, half of it (its restriction to the subspace of even or odd
functions according to whether ν ∈] − 1, 0[+2 Z or ν ∈]0, 1[+2 Z) is unitarizable
and is equivalent to a certain representation taken from the series denoted as
C

(τ)
q by Pukanszky in [18]. More precisely, the series of unitary representations

from (loc. cit.) that fits within the present considerations is the one for which
q = 3

16 : it does not participate in the Plancherel formula for the universal cover of
SL(2, R).

Our main interest in this development comes from the fact that it certainly
changed our point of view about the role of the anaplectic representation and
analysis in general, initially thought of as being dual to the usual analysis, but
given now a more considerable range. To put things into a different perspective, in
association with any complex number ν mod 2, there is a well-defined species of
mathematical analysis (including a concept of integral and Fourier transformation
and, in the case when ν ∈ R, a pseudo-scalar product) for which the spectrum of
the even part of the harmonic oscillator is 1

2 + ν + 2 Z; that of the odd part is
− 1

2 + ν + 2 Z. Only the case when ν ∈ Z is excluded: it corresponds to the usual
analysis.

11 The fourfold way and the ν-anaplectic

representation

Let L = π x2 − 1
4π

d2

dx2 be the standard harmonic oscillator. Near each of the two
endpoints ±∞ of the real line, the equation Lf = (ν + 1

2 ) f has two solutions,
one that behaves like |x|ν e−π x2

, the other like |x|−ν−1 eπ x2
: this is an immediate

consequence of the WKB method. It is only when ν = 0, 1, . . . that one can find
a solution of the equation on the whole real line (in this case a Hermite function)
equivalent to a constant times |x|ν e−π x2

as well near +∞ as near −∞. If ν /∈ N,
one must satisfy oneself with a solution with a good behavior near +∞ only, in
which case it will, of course, be extremely far from lying in L2(R). In [17, chapter
8], such a generalized eigenfunction is called a parabolic cylinder function, and the
solution of the equation Lf = (ν + 1

2 ) f normalized by the condition

f(x) ∼ (2 π
1
2 x)ν e−π x2

, x → +∞, (11.1)

is denoted as f(x) = Dν(2π
1
2 x).

Our first task in this section is to build an appropriate space Aν of entire
functions of one variable containing the function u that is the even part of the
function f just defined, and stable under the Heisenberg algebra. We refer to
Definition 1.1 for comparison: note that the definition that follows is exactly that
of A in the case when ν = − 1

2 .

Definition 11.1. Let ν /∈ Z, and consider the space of C4-valued functions f =
(f0, f1, fi,0, fi,1) with the following properties: each component of f is a nice
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function in the sense of Definition 1.1, and the components are linked by the
following equations:

fi,0(x) =
Γ(−ν)
(2π)

1
2

[
e−

iπ
2 (ν+1) f0(ix) + e

iπ
2 (ν+1) f0(−ix)

]
,

fi,1(x) =
Γ(−ν)
(2π)

1
2

[
e−

iπ ν
2 f1(ix) + e

iπν
2 f1(−ix)

]
. (11.2)

The space Aν is the image of the space of functions so defined under the map
f �→ u, where the even (resp. odd) part of u is the even part of f0 (resp. the odd
part of f1). We shall also refer to f as the C4-realization of u.

Remark 11.1: The space Aν depends only on ν mod 2: for if (f0, f1, fi,0, fi,1)
is a C4-realization of u when the parameter ν is considered, one may regard
(f0, f1, gi,0, gi,1), with

gi,0 = −((ν + 1)(ν + 2))−1 fi,0, gi,1 = −((ν + 1)(ν + 2))−1 fi,1, (11.3)

as a C4-realization of u in the space Aν+2. We shall always assume, however, that
a value of ν has been fixed: we do not make any limitation, to begin with, about
the value of ν, save for the standing assumption that it should not be integral.

One should also note that, when ν ∈ 1
2 + 2 Z, the space Aν coincides with

the space A� considered in Remark 1.3 and in Section 7: simply observe that
if (f0, f1, f̃i,0, f̃i,1) is the C4-realization of some function in A� in the sense of
Theorem 7.3, then (f0, f1, fi,0, fi,1), with fi,0 = 2 f̃i,0 and fi,1 = −2 f̃i,1, is a
C4-realization of the same function in A 1

2
, in the sense of Definition 11.1. The

normalisation to follow of the integral – and, as a consequence, that of the Fourier
transformation and of the whole analysis – is fully compatible, in the cases when
ν = ∓ 1

2 , with that formerly introduced in A and A� respectively.
Corollary 1.7, to the effect that the map f �→ u is one-to-one, immediately

extends: that ν /∈ 1 + 2 Z shows that f0 is unique; that ν /∈ 2 Z shows that f1

is. Unless ν ∈ − 1
2 + Z, the space Aν is not invariant under the complex rotation

by ninety degrees. However, the following holds:

Proposition 11.2. The map u �→ ui, with ui(x) = u(ix), is a linear isomorphism
from Aν to A−ν−1. If (f0, f1, fi,0, fi,1) is the C4-realization of u in the Aν-
analysis, that of ui in the A−ν−1-analysis is

(h0, h1, hi,0, hi,1) = Cν (fi,0, −i fi,1, f0, −i f1, ) (11.4)

with

Cν = 2ν+ 1
2

Γ(2+ν
2 )

Γ(1−ν
2 )

. (11.5)
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Proof. The equations (11.2) can be inverted as

f0(x) =
Γ(1 + ν)
(2π)

1
2

[
e

iπ ν
2 fi,0(ix) + e−

iπ ν
2 fi,0(−ix)

]
,

f1(x) =
Γ(1 + ν)
(2π)

1
2

[
e

iπ
2 (ν+1) fi,1(ix) + e−

iπ
2 (ν+1) fi,1(−ix)

]
. (11.6)

It is then immediate that the C4-valued function h defined above qualifies
as the C4-realization of some function in A−ν−1: that this function is just ui is
proved in a straightforward way, only relying on the duplication formula (1.89). �
Theorem 11.3. For any ν /∈ Z, the Heisenberg transformations π(y, η), with
(y, η) ∈ C2, preserve the space Aν . The C4-realizations h and g of π(y, 0)u
and π(0, η)u respectively are given in terms of the C4-realization of u by the
same relations as in Proposition 1.11.

Proof. For instance, we claim that

h0(x) =
1
2

(f0(x − y) + f0(x + y) + f1(x − y) − f1(x + y)),

h1(x) =
1
2

(f0(x − y) − f0(x + y) + f1(x − y) + f1(x + y)),

hi,0(x) =
1
2

(fi,0(x − iy) + fi,0(x + iy) + i fi,1(x − iy) − i fi,1(x + iy)),

hi,1(x) =
1
2

(−i fi,0(x − iy) + i fi,0(x + iy) + fi,1(x − iy) + fi,1(x + iy)) : (11.7)

the very tedious verification that the link between (h0, h1) on one hand, (hi,0, hi,1)
on the other hand, is still given by the equations (11.2), is of course straightforward;
that (π(y, 0)u)even (resp. (π(y, 0)u)odd) coincides with the even part of h0 (resp.
the odd part of h1) does not require a new verification. �

We define the Q-transform and the K-transform of a function u ∈ Aν by
the same formulas as the ones from Section 4:

(Qu)0(σ) =
∫ ∞

−∞
e−π σx2

u(x e−
iπ
4 ) dx, σ large (11.8)

and, for z on the unit circle, z = e−iθ with θ > 0 and small,

(K u)0(z) = |1 − z|− 1
2 (Qu)0

(
i
1 + z

1 − z

)
. (11.9)

Similarly, (cf. Definition 4.1),

(Qu)1(σ) =
∫ ∞

−∞
(1 + i σ)x e−π σx2

u(x e−
iπ
4 ) dx, (11.10)

and the transform from (Qu)1 to (K u)1 is the same as that from (Qu)0 to
(K u)0.



11. The fourfold way and the ν-anaplectic representation 189

Proposition 11.4. Let u ∈ Aν be associated with the four-vector f . The Q-
transform of u extends as an analytic function on the real line, given by the
equations

(Qu)0(σ) = e
iπ
2 (ν+ 1

2 )

×
[
2 cos

πν

2

∫ ∞

0

e−iπσ x2
f0(x) dx +

(2π)
1
2

Γ(−ν)

∫ ∞

0

eiπσ x2
fi,0(x) dx

]
(11.11)

and

(Qu)1(σ) = e
iπ ν
2

[
2i cos

πν

2

∫ ∞

0

(1 + i σ)x e−iπσ x2
f1(x) dx

+ i
(2π)

1
2

Γ(−ν)

∫ ∞

0

(1 + i σ)x eiπσ x2
fi,1(x) dx

]
. (11.12)

Proof. The proof is similar to the beginning of that of Theorem 1.8. We set w0 =
(Qu)0 (note that, for consistency with (1.26), we cannot use here the notation
w1 for (Qu)1) and

w+
0 (σ) =

∫ ∞

0

e−πσ x2
f0(x e−

iπ
4 ) dx = e

iπ
4

∫ ∞

0

e−iπσ x2
f0(x) dx,

w−
0 (σ) =

∫ ∞

0

e−πσ x2
f0(x e

3iπ
4 ) dx. (11.13)

With λ = e
iπ
4 (1 + eiπν), one has

w0(σ)−λ

∫ ∞

0

e−iπσ x2
f0(x) dx =

∫ ∞

0

e−πσ x2
[−eiπν f0(x e−

iπ
4 )+f0(x e

3iπ
4 )] dx

=
(2π)

1
2

Γ(−ν)
e

iπ
2 (ν+1)

∫ ∞

0

e−πσ x2
fi,0(x e

iπ
4 ) dx : (11.14)

with a new change of contour of integration in the last integral written, this leads to
the equation (11.11). The proof of (11.12) is the same, substituting µ = i (1+eiπν)
for λ. �

We can now generalize Theorem 1.8, as well as a part of Theorem 4.14.

Theorem 11.5. Let ν ∈ C, ν /∈ Z, and let u ∈ Aν . For a certain sequence (an)n≥0

of coefficients, one has for σ ∈ R with |σ| large enough the convergent expansion

(Qu)0(σ) = e−
iπ
2 (ν+ 1

2 ) sign σ
∑
n≥0

an σ−n |σ|− 1
2 , (11.15)

and a similar one for (Qu)1(σ).
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The C4-realization of u can be recovered, in terms of u, by the following four
formulas, valid for x > 0 and involving semi-convergent integrals:

f0(x) =
e−

iπ
2 (ν+ 1

2 )

2 cos πν
2

x

∫ ∞

−∞
(Qu)0(σ) eiπσ x2

dσ,

fi,0(x) = (2π)−
1
2 e−

iπ
2 (ν+ 1

2 ) Γ(−ν) x

∫ ∞

−∞
(Qu)0(σ) e−iπσ x2

dσ,

f1(x) =
e−

iπ (ν+1)
2

2 cos πν
2

∫ ∞

−∞

(Qu)1(σ)
1 + i σ

eiπσ x2
dσ,

fi,1(x) = (2π)−
1
2 e−

iπ (ν+1)
2 Γ(−ν)

∫ ∞

−∞

(Qu)1(σ)
1 + i σ

(σ) e−iπσ x2
dσ. (11.16)

The K-transform of u extends as a pair of analytic functions on the universal
cover of the circle Σ = {z : |z| = 1}, such that

(K u)0(eiθ) = e−iπ (ν+ 1
2 ) (K u)0(ei(θ−2π)),

(K u)1(eiθ) = e−iπ (ν+ 1
2 ) (K u)1(ei(θ−2π)). (11.17)

Proof. The validity of the pair of expansions (11.15) for σ real and large is proved
in just the same way as the corresponding one in Theorem 1.8: of course, for the
time being, the extra phase factor in front of the right-hand sides of (11.15) should
be regarded as a matter of convenience.

Again, we denote as w̃0 = (Q̃u)0 and (Q̃u)1 the holomorphic extensions of
w0 = (Qu)0 and (Qu)1, initially considered for σ real and large, to the part of
the Riemann surface of the square-root function lying above some set {z : |z| > R}
with a large R. The first equation (1.37) can be carried out without any change,
and the second one becomes

(Q̃u)1(σ eiπ) =
∫ ∞

−∞
e−πσx2

(1 − i σ)xui(x e−
iπ
4 ) dx. (11.18)

In other words, for large σ,

w̃0(σ eiπ) = −i (Qui)0(σ), (Q̃u)1(σ eiπ) =
1 − i σ

1 + i σ
(Qui)1(σ). (11.19)

Not forgetting that ui lies in A−ν−1 rather than Aν , we may use the result of
Proposition 11.2, coupled with that of Theorem 11.3, to find the following equation
after some straightforward calculations with the Gamma function:

w̃0(σ eiπ) = e−
iπ
2 (ν+ 3

2 )

[
(2π)

1
2

Γ(−ν)

∫ ∞

0

e−iπσ x2
fi,0(x) dx

+ 2 cos
πν

2

∫ ∞

0

eiπσ x2
f0(x) dx

]
, (11.20)
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in other words
(Q̃u)0(σ eiπ) = e−iπ (ν+1) (Qu)0(−σ) : (11.21)

in a similar way,
(Q̃u)1(σ eiπ) = e−iπ (ν+1) (Qu)1(−σ). (11.22)

The last two equations make it possible to derive the expansions (11.15) near −∞
from those near +∞.

The equations (11.16) can be obtained from (11.11) and (11.12) by inverting
a Fourier transformation.

From (11.9) and (11.16) it follows (since σ = cotan θ
2 corresponds to z =

e−iθ under the Cayley map, and |1−z| = 2 sin θ
2 for 0 < θ < 2π) that, for θ > 0

and small, one has

(K u)0(e−iθ) = 2−
1
2 e−

iπ
2 (ν+ 1

2 )
∑
n≥0

an

(
tan

θ

2

)n(
cos

θ

2

)− 1
2

. (11.23)

As explained in the proof of Theorem 4.14, if 0 < θ < 2π, the point e−i(2π−θ) ∈ Σ
can be reached as the image of −σ under the Cayley map, so that, using (11.21),

(K u)0(e−i (2π−θ)) = 2−
1
2 e

iπ
2 (ν+ 1

2 )
∑
n≥0

an

(
− tan

θ

2

)n(
cos

θ

2

)− 1
2

. (11.24)

On the other hand, the analytic extension of (K u)0 near z = 1 (cf. Theorem
4.11) leads, for θ > 0 and small, starting from (11.23) again, to

(K u)0(eiθ) = 2−
1
2 e−

iπ
2 (ν+ 1

2 )
∑
n≥0

an

(
− tan

θ

2

)n(
cos

θ

2

)− 1
2

. (11.25)

The first equation (11.17) follows; the second is proved in the same way. �

We now compute the K-transform of some basic function φν ∈ Aν . Since [17,
p. 326] D− 1

2
(2π

1
2 x) = π− 1

4 x
1
2 K 1

4
(π x2), one sees, comparing φ− 1

2 to the function

φ introduced in Proposition 1.2, that φ = 2
1
2 π− 1

4 φ− 1
2 : we have not deemed it

necessary to have the present normalization of φ− 1
2 (made for simplicity in the

definition of the C4-realization) agree, in the case when ν = − 1
2 , with that of φ

from Section 1; anyway, it is only when ν is real and ν ∈] − 1, 0[∪ 2 Z that the
even part of the ν-anaplectic representation to be introduced below turns out to
be unitarizable.

Theorem 11.6. Let ν /∈ Z, and let φν be the function in Aν the C4-realization of
which is the function

f (x) = (Dν(2π
1
2 x), 0, D−ν−1(2π

1
2 x), 0). (11.26)
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One has, for 0 < θ < 2π,

(K φν)0(e−iθ) =
2

ν−1
2 π

1
2

Γ(1−ν
2 )

e
i
2 (ν+ 1

2 ) θ. (11.27)

Proof. That the functions f0 and fi,0 taken from the components of f are linked
by the equation (11.2) is a consequence of [17, p. 325]. As given in [17, p. 330],
one has if ξ > 0 the equation∫ ∞

0

e−πξ x2
Dν(2π

1
2 x) dx =

2
ν−2
2

Γ(2−ν
2 )

(1 + ξ)−
1
2 2F1

(
−ν

2
,

1
2
;

2 − ν

2
;

ξ − 1
ξ + 1

)
:

(11.28)
thus, with the principal determination of the square root function in the right
half-plane,∫ ∞

0

e−iπσ x2
f0(x) dx =

2
ν−2
2

Γ(2−ν
2 )

(1 + i σ)−
1
2 2F1

(
−ν

2
,

1
2
;

2 − ν

2
;

σ + i

σ − i

)
,∫ ∞

0

eiπσ x2
fi,0(x) dx =

2
−ν−3

2

Γ(3+ν
2 )

(1 − i σ)−
1
2 2F1

(
1 + ν

2
,

1
2
;

3 + ν

2
;

σ − i

σ + i

)
.

(11.29)

Thus, after some calculations using the duplication formula of the Gamma func-
tion,

(Qφν)0(σ) = A (1 + i σ)−
1
2 2F1

(
−ν

2
,

1
2
;

2 − ν

2
;

σ + i

σ − i

)
+ B (1 − i σ)−

1
2 2F1

(
1 + ν

2
,

1
2
;

3 + ν

2
;

σ − i

σ + i

)
(11.30)

with

A = e
iπ
2 (ν+ 1

2 ) 2
ν
2 π

Γ(1+ν
2 ) Γ(1−ν

2 ) Γ(2−ν
2 )

, B = e
iπ
2 (ν+ 1

2 ) 2
ν
2 π

Γ(1−ν
2 ) Γ(− ν

2 ) Γ(3+ν
2 )

.

(11.31)
Now, if z = e−iθ, 0 < θ < 2π, one has for every u ∈ Aν ,

(K u)0(z) =
(

2 sin
θ

2

)− 1
2

(Qu)0

(
cotan

θ

2

)
, (11.32)

which leads to

(Kφν)0(e−iθ) = 2−
1
2

[
e−

iπ
4 e

iθ
4 A 2F1

(
−ν

2
,

1
2
;

2 − ν

2
; eiθ

)
+ e

iπ
4 e−

iθ
4 B 2F1

(
1 + ν

2
,

1
2
;

3 + ν

2
; e−iθ

)]
. (11.33)
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As unpalatable as they may seem, these computations offer two safeguards:
first, the fact that we already know the result in the case when ν = − 1

2 –
yes, (11.27) is compatible with the result in the last paragraph of the proof of
Theorem 4.14, taking into consideration the coefficient α from (9.35) – next, that
the function θ �→ (K φν)0(e−iθ) must extend as an analytic function near 0 in
view of Theorem 4.11. Now, in view of the singularities of the two hypergeometric
functions occurring in (11.33) near the point z = 1, this can only happen if the
two singularities cancel off. They do, thanks to the equation [17, p. 48]

2F1(
1 + ν

2
,

1
2
;

3 + ν

2
; e−iθ) =

Γ(3+ν
2 ) Γ(− ν

2 )
Γ(1

2 )
e−

iπ (ν+1)
2 e

i(ν+1) θ
2 (11.34)

+
Γ(3+ν

2 ) Γ(ν
2 )

Γ(1+ν
2 ) Γ(2+ν

2 )
(−i e

iθ
2 ) 2F1

(
−ν

2
,

1
2
;

2 − ν

2
; eiθ

)
:

the end of the computation is straightforward. �

Remark 11.2. As a consequence of [17, p. 330], the function φν itself, i.e., the
even part of the first component of its C4-realization (11.26), is characterized by
the rather simple integral expression, valid if −2 < Re ν < 0,

φν(x e−
iπ
4 ) =

π− ν
2

Γ(−ν)
e

iπν
4 eiπ x2

∫ ∞

0

e
iπ t2

2 t−ν−1 cos 2πxt dt. (11.35)

Besides the function φν introduced in Theorem 11.5, we now introduce, still
in the Aν-analysis, the odd function ψν+1 with the C4-realization

h(x) = (0, Dν+1(2π
1
2 x), 0, (ν + 1)D−ν−2(2π

1
2 x)). (11.36)

Again, the link (11.2) between the two non-zero components, which can be written,
since Γ(−ν)

ν+1 = −Γ(−ν − 1), as

Γ(−ν − 1)
(2π)

1
2

[e−
iπν
2 Dν+1(it) + e

iπν
2 Dν+1(−it)] = −D−ν−2(t), (11.37)

can be found in [17, p. 328].
In the next lemma and its proof, and in the proof of the proposition that

follows, we (abusively) abbreviate as Dµ, for any value of µ, the function x �→
Dµ(2π

1
2 x): no confusion can arise. Recalling that A = π

1
2 (x + 1

2π
d
dx ), A∗ =

π
1
2 (x − 1

2π
d
dx), note the relations

ADν = ν Dν−1, A∗ Dν = Dν+1 (11.38)

which, made explicit as

π
1
2 xDν(2π

1
2 x) + D′

ν(2π
1
2 x) = ν Dν−1(2π

1
2 x),

π
1
2 xDν(2π

1
2 x) − D′

ν(2π
1
2 x) = Dν+1(2π

1
2 x), (11.39)

can again be found in (loc. cit., p. 327).
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Lemma 11.7. In the Aν-analysis, for every j ∈ Z, the C4-realization of φν+2j is(
Dν+2j , 0, (−1)j Γ(ν + 2j + 1)

Γ(ν + 1)
D−ν−2j−1, 0

)
and that of ψν+2j+1 is(

0, Dν+2j+1, 0, (−1)j Γ(ν + 2j + 2)
Γ(ν + 1)

D−ν−2j−2

)
.

Proof. In the Aν+2j-analysis, the C4-realization of φν+2j is

(Dν+2j , 0, D−ν−2j−1, 0)

and that of ψν+2j+1 is

(0, Dν+2j+1, 0, (ν + 2j + 1)D−ν−2j−2).

On the other hand, Remark 11.1 indicates how to link the C4-realizations of the
same function in any pair of spaces Aµ and Aµ+2. Let us give one example of
such a calculation, say that corresponding to an odd function ψν+2j+1, under
the assumption that j ≥ 0. Only the second and fourth components of the C4-
realizations under consideration are non-zero: the second one is the same in both
cases while, in order to transform the fi,1-component with respect to the real-
ization in the Aν+2j-analysis into the corresponding one in Aν-analysis, we must
multiply it by (−1)j Γ(ν+2j+1)

Γ(ν+1) . �

Proposition 11.8. Let ν ∈ C\Z. The eigenfunctions of the (formal ) harmonic
oscillator L lying in the space Aν are exactly, up to the multiplication by arbitrary
constants, the functions φν+2j and ψν+2j+1 with j ∈ Z: the first (resp. the
second ) one corresponds to the eigenvalue ν +2j + 1

2 (resp. ν + 2j + 3
2 ). One has

the relations

Aφν+2j = (ν + 2j)ψν+2j−1, A∗ φν+2j = ψν+2j+1,

Aψν+2j+1 = (ν + 2j + 1)φν+2j , A∗ ψν+2j+1 = φν+2j+2. (11.40)

Proof. Since it is just as easy here as in Section 1 to show that the space Aν is
invariant under the symmetry u �→ ǔ, one may assume that one is dealing with an
eigenfunction of L with a definite parity. Now, a function φµ or ψµ+1 can only lie
in Aν if µ− ν ∈ 2 Z, as shown by the equations (11.17). In view of the expression
of L as a product of annihilation and creation operators, all that remains to be
done is checking the equations (11.40). In order to do this, we first observe that
if (f0, f1, fi,0, fi,1) is the C4-realization of some function u ∈ Aν , that of Au is
(Af1, A f0, A∗ fi,1, −A∗ fi,0) and that of A∗ u is (A∗ f1, A∗ f0, A fi,1, −Afi,0).
To see this, we just combine the two equations (1.62) and (1.63), still valid in
our case (they are also the infinitesimal version of (11.7) and the analogous one,
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though a direct proof is even easier). Let us then check, for instance, the equation
for Aψν+2j+1: the C4-realization of this function in Aν is

(ADν+2j+1, 0, A∗ (−1)j Γ(ν + 2j + 2)
Γ(ν + 1)

Dν−2j−2, 0)

= ((ν + 2j + 1)Dν+2j , 0, (−1)j Γ(ν + 2j + 2)
Γ(ν + 1)

Dν−2j−1, 0)

= (ν + 2j + 1) (Dν+2j , 0, (−1)j Γ(ν + 2j + 1)
Γ(ν + 1)

Dν−2j−1, 0), (11.41)

i.e., the C4-realization of the function (ν + 2j + 1)φν+2j . �

Here is a converse to Theorem 11.5, which extends Theorem 4.14.

Theorem 11.9. Let u be an entire function of one variable, satisfying for some
pair C, R of positive constants the estimate |u(z)| ≤ C eπR |z|2 : recall – as the
one-dimensional case of Theorem 4.11 – that, for θ > 0 and small, the functions
(K u)0(e−iθ) and (K u)1(e−iθ) are analytic functions of the variable z = e−iθ, and
assume that they extend as analytic functions on the universal cover of Σ = S1

satisfying the quasi-periodicity conditions (11.17). Then u lies in the space Aν .

Proof. It is no loss of generality to assume, in the present proof, that − 3
2 ≤

Re ν ≤ 1
2 (cf. Remark 11.1), a condition invariant under the change ν �→ −1− ν.

The proof splits into two quite similar parts according to the parity of u: we shall
assume first that it is an even function. Denote as z �→ z−( ν

2 + 1
4 ) the analytic

function on the real line (viewed as the universal cover of the unit circle) that
coincides with e

iθ
2 (ν+ 1

2 ) on the point z = e−iθ with 0 < θ < 2π: the condition
(11.17) means that (K u)0(z) is the product of z−( ν

2 + 1
4 ) by a function analytic

on the unit circle. We define the coefficients cn, n ∈ Z, by the equation

(K u)0(z) = z−( ν
2 + 1

4 )
∑
n∈Z

cn zn : (11.42)

note that |cn| ≤ C (1 + ε)−|n| for some pair of positive numbers C, ε. We shall
take advantage of Theorem 11.6 and rebuild the C4-realization (f0, 0, fi,0, 0) of
u by defining f0 as the sum of the series

f0(z) =
∑
n∈Z

cn 2n+ 1−ν
2 π− 1

2 Γ
(

1 − ν

2
+ n

)
Dν−2n(2π

1
2 z). (11.43)

We use when n > Re ν
2 the integral formula [17, p. 328]

Dν−2n(2π
1
2 z) =

e−πz2

Γ(−ν + 2n)

∫ ∞

0

t−ν+2n−1 e−( t2
2 +2π

1
2 zt) dt (11.44)
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and, when n < Re ν+1
2 , the formula (loc. cit.)

Dν−2n(2π
1
2 z) = (−1)n

(
2
π

) 1
2

eπz2
∫ ∞

0

e−
t2
2 cos

(πν

2
− 2π

1
2 zt

)
tν−2n dt.

(11.45)
We note, for large n, the Stirling estimate∣∣∣∣ Γ(1−ν

2 + n)
Γ(−ν + 2n)

∣∣∣∣ = π
1
2

∣∣∣∣ 21+ν−2n

Γ(− ν
2 + n)

∣∣∣∣ ≤ C 2−2n n−n+ 1
2+Re ν

2 en ≤ C 2−2n n−n+ 3
4 en

(11.46)
and, when −n is large, the estimate∣∣∣∣Γ(

1 − ν

2
+ n)

∣∣∣∣ ≤ C |n|−|n|−Re ν
2 e|n| ≤ C |n|−|n|+ 3

4 e|n|. (11.47)

From what precedes, there exist two sequences (an)n≥1 and (bn)n≤−1 such
that

∑
n≥1

cn 2n+ 1−ν
2 π− 1

2 Γ
(

1 − ν

2
+ n

)
Dν−2n(2π

1
2 z)

= e−πz2 ∑
n≥1

an

∫ ∞

0

t−ν+2n−1 e−( t2
2 +2π

1
2 zt) dt (11.48)

and ∑
n≤−1

· · · = eπz2 ∑
n≤−1

bn

∫ ∞

0

tν−2n e−
t2
2 cos

(πν

2
− 2π

1
2 zt

)
dt : (11.49)

moreover, one has the estimates

|an| ≤ C (1 + ε)−n 2−n n−n+ 3
4 en,

|bn| ≤ C (1 + ε)−|n| 2−|n| |n|−|n|+ 3
4 e|n|, (11.50)

so that ∑
n≥1

|an| t−Re ν+2n−1 ≤ C n
5
4 (n !)−1 (2 (1 + ε))−n t−Re ν+2n−1

≤ C

(
1 + t

5
2 exp

t2

2 (1 + ε)

)
: (11.51)

the same estimate holds for the sum
∑

n≤−1 |bn| tRe ν−2n. This shows the conver-
gence of the series (11.43) defining f0(z), at the same time proving that the entire
function f0(z) is bounded by some exponential of the kind C eπR |z|2 .
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Starting from f0 as defined in (11.43) and using Lemma 11.7, one finds
(changing n to −n as an index in the series)

fi,0(z) = Γ(−ν)
∑
n∈Z

c−n 2−n+ 1−ν
2 π− 1

2
Γ(1−ν

2 − n)
Γ(−ν − 2n)

D−ν−1−2n(2π
1
2 z), (11.52)

a series the coefficients of which, when estimated by means of Stirling’s formula,
behave in a way quite similar to those of the series for f0(z).

To analyze the behavior of f0(x) as x → ∞, we use for x > 0 the equation
(11.16):

Dν(2π
1
2 x) =

e−
iπ
2 (ν+ 1

2 )

2 cos πν
2

x

∫ ∞

−∞
(Qφν)0(σ) eiπσ x2

dσ, (11.53)

in which (a consequence of (11.33) together with (11.32))

(Qφν)0(σ) =
2

ν
2 π

1
2

Γ(1−ν
2 )

(1 + σ2)−
1
4

(
σ + i

σ − i

) 1
2 (ν+ 1

2 )

: (11.54)

it is understood that the fractional power on the right-hand side is that which
takes the value 1 at σ = +∞.

Transforming the semi-convergent integral (11.53) into a convergent one by
means of an integration by parts and using (11.43), we find for x > 0 the equation

−iπ x f0(x) =
e−

iπ
2 (ν+ 1

2 )

2
1
2 cos πν

2

∑
n∈Z

cn

×
∫ ∞

−∞
eiπσ x2 d

dσ

[
(1 + σ2)−

1
4

(
σ + i

σ − i

) 1
2 (ν+ 1

2 )−n
]

dσ. (11.55)

For 0 < δ1 < 1 one has 1−δ1
1+δ1

≤ |σ+iδ1+i
σ+iδ1−i | ≤

1+δ1
1−δ1

. With the help of the estimate
|cn| ≤ C (1+ε)−|n|, the contour deformation σ �→ σ+iδ1 makes it possible to verify
that, as x → +∞, one has |f0(x)| ≤ C e−πδx2

for some pair of positive constants
C, δ. The same estimate goes for the function fi,0(x). Finally, the function in
Aν, a C4-realization of which is (f0, 0, fi,0, 0), certainly coincides with the even
function u we started with, since the two functions have the same Q-transform:
now, if an entire function v(z) =

∑
k≥0 ak zk is bounded by some exponential

C eπR|z|2 , knowing the expansion, as σ → +∞, of σ
1
2 (Q v)(σ) (cf. Theorem 4.11

and Corollary 4.3, in the present easy one-dimensional case) as a power series in
σ−1, makes it possible to recover the coefficients ak.

In the odd case, nothing much is changed: only, we need to compute (just as
we did in Theorem 11.6 in the even case) the K-transform of a function such as
ψν+1. The proof of the following theorem will thus make the proof of the present
one complete. �
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Theorem 11.10. One has

(Kψν+1)1(e−iθ) = −e
iπ
4

2
ν−1
2 ν

Γ(1−ν
2 )

e
i
2 (ν− 3

2 ) θ. (11.56)

Proof. From (11.8) and (11.10), one has for every u ∈ Aν the identity

(QA∗ u)1(σ) = e
iπ
4 (1 + i σ)

(
Q
((

π
1
2 x2 − 1

2π
1
2

x
d

dx

)
u

))
0

(σ) : (11.57)

now the operator on the right-hand side can also be written as

π
1
2 x2 − 1

2π
1
2

x
d

dx
=

π− 1
2

2

(
L + A2 − 1

2

)
: (11.58)

it thus transforms the function φν into the function

v =
π− 1

2

2
(ν φν + ν(ν − 1)φν−2), (11.59)

a consequence of Proposition 11.8. This makes it possible to compute (Kψν+1)1 =
(KA∗ φν)1 since, using Theorem 11.6, one finds

(K v)0(e−iθ) =
π− 1

2

2

[
ν

2
ν−1
2 π

1
2

Γ(1−ν
2 )

e
i
2 (ν+ 1

2 ) θ + ν (ν − 1)
2

ν−3
2 π

1
2

Γ(3−ν
2 )

e
i
2 (ν− 3

2 ) θ

]

=
2

ν−3
2 ν

Γ(1−ν
2 )

e
i
2 (ν+ 1

2 ) θ (1 − e−iθ). (11.60)

To obtain (Kψν+1)1(e−iθ), we still have to multiply by e
iπ
4 (1 + i cotan θ

2 ) =
−2 e

iπ
4 e−iθ

1−e−iθ , getting the result announced. �

Definition 11.11. Given u ∈ Aν , we set

Int [u] = e
iπ
2 (ν+ 1

2 )

[
2 cos

πν

2

∫ ∞

0

f0(x) dx +
(2π)

1
2

Γ(−ν)

∫ ∞

0

fi,0(x) dx

]
. (11.61)

Remark 11.3. In view of (11.3), the definition of the linear form Int only depends
on ν mod 2: this is one of the reasons for the presence of the phase factor in front
of the right-hand side.

Theorem 11.12. The linear form Int is invariant under the (real or complex)
Heisenberg translations π(y, 0). In terms of the K-transform of u, one has

Int [u] = 2
1
2 (K u)0(e−iπ). (11.62)
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Proof. Writing

Int [u] = α

∫ ∞

0

f0(x) dx + β

∫ ∞

0

fi,0(x) dx, (11.63)

one notes the relation α = 2β Γ(−ν)

(2π)
1
2

cos πν
2 . One may then follow the proof of

Proposition 1.16, using the first and third relations (11.7) so that, with v =
π(y, 0)u,

Int [v] =
1
2

∫ ∞

0

[α (f0(x − y) + f0(x + y)) + β (fi,0(x − iy) + fi,0(x + iy))] dx

+
1
2

∫ ∞

0

[α (f1(x − y) − f1(x + y)) + i β (fi,1(x − iy) − fi,1(x + iy))] dx :

(11.64)

just as in the proof of Proposition 1.16, one writes the second line as

α

2

∫ y

−y

f1(z) dz − β

2

∫ y

−y

fi,1(iz) dz

=
α

2

∫ y

−y

f1(z) dz − β

2
Γ(−ν)
(2π)

1
2

∫ y

−y

[e−
iπν
2 f1(−z) + e

iπν
2 f1(z)] dz, (11.65)

an expression that reduces to zero in view of the relation between α and β. Then

Int [v − u] =
α

2

(∫ 0

−y

f0(z) dz −
∫ y

0

f0(z) dz

)
+

i β

2

(∫ 0

−y

fi,0(iz) dz −
∫ y

0

fi,0(iz) dz

)
=

1
2

∫ y

0

[α (f0(−z) − f0(z)) + i β (fi,0(−iz) − fi,0(iz))] dz, (11.66)

an expression which reduces to zero again in view of the same relation, together
with (11.2).

Using the expression (11.11) of the analytic extension of the function (Qu)0
to the whole real line, one sees that

Int [u] = (Qu)0(0) : (11.67)

that this agrees with 2
1
2 (K u)0(e−iπ) is immediate in view of (11.9) since, as the

points of Σ = S1 in the image of Sym1 = R under the Cayley map are the points
e−iθ with 0 < θ < 2π, the point 0 ∈ R is obtained as the inverse Cayley image
of the point z = e−iπ. �
Definition 11.13. The ν-anaplectic Fourier transformation Fν

ana is defined by the
equation

(Fν
ana u)(x) = Int [y �→ e−2iπ xy u(y)], u ∈ Aν . (11.68)
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It is of course the integral form Int from the ν-theory that has to be used
here: again, the transformation Fν

ana only depends on ν mod 2.

Theorem 11.14. The ν-anaplectic Fourier transformation is a linear automor-
phism of the space Aν . One has the equations

(K (Fν
ana u))0(z) = eiπ (ν+ 1

2 ) (K u)0(eiπ z),

(K (Fν
ana u))1(z) = eiπν (K u)1(eiπ z). (11.69)

Proof. Set v = Fν
ana u. From Theorem 11.3 (which sends us back to the equations

(1.60) and (1.61) from Proposition 1.11) and Definition 11.11, one finds

v(x) = e
iπ
2 (ν+ 1

2 )

[
2 cos

πν

2

∫ ∞

0

(f0(y) cos 2πxy − i f1(y) sin 2πxy) dy

+
(2π)

1
2

Γ(−ν)

∫ ∞

0

(fi,0(y) cosh 2πxy − i fi,1(y) sinh 2πxy) dy

]
. (11.70)

It is immediate that v extends as an entire function: using estimates of the kind

|e2πy (x+iξ)| ≤ eπ (ε y2+ε−1 x2), (11.71)

one sees also that, for complex z, v(z) is bounded by some function C eπR|z|2 .
Applying Theorem 11.9, the only remaining problem is computing the K-transform
of v. For σ > 0, one has∫ ∞

−∞
e−πσ x2

cos (2π x e−
iπ
4 y) dx = σ− 1

2 e
iπy2

σ ,∫ ∞

−∞
e−πσ x2

cosh (2π x e−
iπ
4 y) dx = σ− 1

2 e−
iπy2

σ , (11.72)

so that (11.8) yields

(Q v)0(σ) = e
iπ
2 (ν+ 1

2 ) σ− 1
2

[
2 cos

πν

2

∫ ∞

0

f0(y) e
iπy2

σ dy

+
(2π)

1
2

Γ(−ν)

∫ ∞

0

fi,0(y) e−
iπy2

σ dy

]
; (11.73)

similarly, ∫ ∞

−∞
e−πσ x2

x sin (2π x e−
iπ
4 y) dx = e

iπ
4 σ− 3

2 y e
iπy2

σ ,∫ ∞

−∞
e−πσ x2

x sinh (2π x e−
iπ
4 y) dx = e

iπ
4 σ− 3

2 y e−
iπy2

σ , (11.74)
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and

(Q v)1(σ) = e
iπν
2 σ− 3

2 (1 + i σ)
[
2 cos

πν

2

∫ ∞

0

y f1(y) e
iπy2

σ dy

+
(2π)

1
2

Γ(−ν)

∫ ∞

0

y fi,1(y) e−
iπy2

σ dy

]
. (11.75)

Comparing (11.73) and (11.75) respectively to (11.11) and (11.11), we obtain
for large σ the pair of relations

(Q v)0(σ) = σ− 1
2 (Qu)0(−σ−1),

(Q v)1(σ) = −i σ− 1
2 (Qu)1(−σ−1), (11.76)

from which the equations (11.69) follow, as a consequence of (11.15). �

Proposition 11.15. Let ν ∈ C\Z. The maps u �→ v, v(x) = a− 1
2 u(a−1x), a > 0

and u �→ w, w(x) = eiπcx2
u(x), c ∈ R, are linear automorphisms of Aν . With

z = e−iθ, let dθ = dz
iz be the rotation-invariant measure on Σ = S1. Define the

analytic automorphisms Fa and F c of the circle by the equations

Fa(z) =
(a2 + 1) z + a2 − 1
(a2 − 1) z + a2 + 1

, F c(z) =
(2 − ic) z + ic

−ic z + 2 + ic
, (11.77)

and note that, given any covering Σ̃ of Σ, finite or infinite, Fa and F c uniquely
lift up as analytic automorphisms of Σ̃ preserving the base point z = 1. The
transfer of the two maps u �→ v and u �→ w just introduced to the K-realization
is given by the equations (involving the Radon–Nikodym derivatives of Fa and F c)

(K v)0(z) =
(

F ∗
a dθ

dθ
(z)
) 1

4

(K u)0(Fa(z)),

(K v)1(z) =
1
2

(
a + a−1 − a − a−1

Fa(z)

) (
F ∗

a dθ

dθ
(z)
) 1

4

(K u)1(Fa(z)), (11.78)

and

(Kw)0(z) =
(

(F c)∗ dθ

dθ
(z)
) 1

4

(K u)0(F c(z)),

(Kw)1(z) =
1
2

(
1 +

ic

2
− ic

2 F c(z)

) (
(F c)∗ dθ

dθ
(z)
) 1

4

(K u)1(Fa(z)). (11.79)

Proof. It is immediate that if f = (f0, f1, fi,0, fi,1) is the C4-realization of u,
the function v (resp. w) admits the C4-realization x �→ a− 1

2 f(a−1x) (resp.
(eiπcx2

f0, eiπcx2
f1, e−iπcx2

fi,0, e−iπcx2
fi,1)).
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On the other hand, for large σ,

(Q v)0(σ) = a
1
2 (Qu)0(a2σ), (Q v)1(σ) = a

3
2

1 + i σ

1 + i a2σ
(Qu)0(a2σ),

(Qw)0(σ) = (Qu)0(σ − c), (Qw)1(σ) =
1 + i σ

1 + i (σ − c)
(Qu)1(σ − c). (11.80)

Under the Cayley transformation σ �→ z, the maps σ �→ a2σ and σ �→ σ − c
transfer to the maps given in (11.77): one may recopy (4.35) and (4.36), or redo
the calculation in this trivial case. A straightforward calculation shows that the
Radon–Nikodym derivatives of the transformations Fa and F c of the circle are
given as

F ∗
a dθ

dθ
=
(

a2 cos2
θ

2
+ a−2 sin2 θ

2

)−1

,
(F c)∗ dθ

dθ
=
(

1 − c sin θ + c2 sin2 θ

2

)−1

,

(11.81)

which makes it immediate to verify the equations (4.31) in this case:

F ∗
a dθ

dθ
= a2

∣∣∣∣1 − Fa(z)
1 − z

∣∣∣∣2 ,
(F c)∗ dθ

dθ
=
∣∣∣∣1 − F c(z)

1 − z

∣∣∣∣2 . (11.82)

The proof of (11.78) and (11.79) then follows that of (4.44) and (4.48) on one
hand, of (4.50) and (4.52) on the other hand. �

Consider the group G2 consisting of matrices
(

λ µ
ν ρ

)
such that the fractional-

linear transformation z �→ λ z+µ
ν z+ρ preserves the unit circle, in other words the group

of matrices characterized by the conditions

|λ|2 + |µ|2 = |ν|2 + |ρ|2, λ µ̄ = ν ρ̄. (11.83)

Since

1 = |λρ − µ ν|2 = |λ|2 |ρ|2 − 2 Re (λ µ̄ ν ρ̄) + |µ|2 |ν|2

= |λ|2 |ρ|2 − 2 |λ|2 |µ|2 + |µ|2 |ν|2 = |λ|2 (|ρ|2 − |µ|2) − |µ|2 (|λ|2 − |ν|2)
= (|λ|2 − |µ|2) (|λ|2 − |ν|2), (11.84)

one has |λ| �= |µ|: let G1 be the subset of G2 characterized by the condition
|λ| > |µ|, which implies |λ| > |ν| too. Writing the first of the two conditions
(11.83) as |λ|2 + |ν|2 |ρ|2

|λ|2 = |ν|2 + |ρ|2, or (|λ|2 − |ν|2) (|λ|2 − |ρ|2) = 0, one sees
that |λ = |ρ|, from which |µ| = |ν| too. The equation 1 = λρ − µ ν then yields
λ̄ρ̄ = |λ|2 |ρ|2 − λ̄ µ ρ̄ ν = |λ|2 (|ρ|2 − |µ|2) > 0, and µ̄ν̄ = −|µ|2 |ν|2 + λ µ̄ ρ ν̄ =
|ν|2 (|ρ|2 − |µ|2) > 0 as well, which (together with what precedes) implies that
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ρ = λ̄ and ν = µ̄. Finally, G1 consists of all matrices in SL(2, C) of the kind(
λ µ
µ̄ λ̄

)
. It is a group, isomorphic to SL(2, R) under the map

g �→ T g T−1, where T = 2−
1
2
(

1 i
−1 i

)
. (11.85)

The group G0, isomorphic to G1/{±I}, of transformations z �→ λ z+µ

µ̄ z+λ
of

the unit circle, is exactly the group of birational (in the z-“coordinate”) auto-
morphisms of the unit circle of topological degree +1. If g =

(
a b
c d

)
, we denote

as [g] the analytic automorphism just considered in association to the matrix(
λ µ
µ̄ λ̄

)
= T g T−1: it is readily checked that this is in complete agreement with the

equations (5.1) to (5.5) of the n-dimensional case. In an explicit way, one has(
λ µ
µ̄ λ̄

)
=

1
2

(
a − i b + i c + d −a − i b − i c + d
−a + i b + i c + d a + i b − i c + d

)
: (11.86)

in particular, with the notation of Proposition 11.15, [g] coincides with Fa in
the case when g =

(
a 0
0 a−1

)−1
, with F c in the case when g = ( 1 0

c 1 )−1; when

g =
(

0 1−1 0

)−1, [g] is the rotation z �→ −z = eiπz.
Let N = 1, 2, . . . or ∞, and consider the (2N)-fold cover of G0 (if N = ∞,

this means the universal cover), which can be identified to the N -fold cover G(N)

of G = SL(2, R). On the other hand, if Σ(2N) denotes the (2N)-fold cover of
Σ = S1, the preceding group can also be identified with the group of analytic
automorphisms of Σ(2N) lying above birational automorphisms of Σ of degree
+1. In particular (compare Corollary 4.10), the N -fold cover G(N) of G acts on
Σ(N), and we still denote as g �→ [g] the corresponding group homomorphism.

In Theorem 11.9, the K-transform of a function in Aν has been defined as
a pair of (everywhere analytic, in contradiction to the higher-dimensional case)
functions on Σ(∞): however, in view of the quasi-periodicity condition (11.17), we
may also, in the case when ν is rational, regard it as defined on Σ(N) provided
that N (ν

2 + 1
4 ) ∈ Z. All that precedes gives the following analogue of Theorem

5.10 a meaning.

Theorem 11.16. Let N = ∞ if ν /∈ Q; if ν ∈ Q, let N be either ∞ or any
integer ≥ 1 such that N (ν

2 + 1
4 ) ∈ Z. In accordance with (5.1), for every g ∈ G(N)

above some matrix
(

a b
c d

)
, set

(
α β

β̄ ᾱ

)
= S

(
a b
c d

)
S−1 with S = 2−

1
2 ( 1 i

i 1 ). Given

u ∈ Aν, there is a unique function v ∈ Aν such that, for every z ∈ Σ(N),

(K v)0(z) =
(

[g−1]∗ dθ

dθ
(z)
) 1

4

(K u)0([g−1] (z)),

(K v)1(z) =
(

[g−1]∗ dθ

dθ
(z)
) 1

4 [
α − i β ([g−1] (z))−1

]
. (K u)1([g−1] (z)). (11.87)

Setting v = Anaν(g)u, one defines a representation Anaν of G(N) in Aν .
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Let P = 1
2iπ

d
dx and let Q be the operator of multiplication by x, the argu-

ment of all functions in Aν under consideration. For any g ∈ G(N) above some
matrix

(
a b
c d

)
∈ G, one has the relations

Anaν(g)Q Anaν(g−1) = dQ − b P, Anaν(g)P Anaν(g−1) = −c Q + a P.
(11.88)

Proof. Based on Theorem 11.14 and Proposition 11.15, it follows the proof of The-
orem 5.10, though it is of course simpler in two respects: this is the one-dimensional
case, and the functions on Σ(N) under consideration have no singularities. On the
right-hand side of the second equation (11.87) and (11.69), one finds

Anaν

((
0 1−1 0

))
= e−iπ (ν+ 1

2 ) Fν
ana, (11.89)

where the matrix on the left-hand side is to be understood as the element

exp
π

2
(

0 1−1 0

)
of G(N). �
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12 The pseudoscalar product on Aν

In this last section, we define an invariant pseudo-scalar product on Aν . Also, we
shall identify the representation Anaν , acting on the even or odd (depending on
ν) part of Aν , with a unitary representation from Pukanszky’s list [18].

To harmonize the notation with those from (loc. cit.), we introduce the fol-
lowing linear basis of the Lie algebra of SL(2, R) or of any of its covering groups:

�0 =
1
2

(
0 −1
1 0

)
, �1 =

1
2

(
1 0
0 −1

)
, �2 =

1
2

(
0 1
1 0

)
. (12.1)

Next, we denote as H0, H1, H2 the infinitesimal operators of the ν-anaplectic
representation, normalized as

Hj = i
d

dt

∣∣∣∣
t=0

Anaν(et �j ) : (12.2)

our first task is to make these operators explicit. There is no question of domain
here: all the operators to be considered preserve the space Aν .

Proposition 12.1. One has

H0 = −1
2

L, H1 = − i

2

(
x

d

dx
+

1
2

)
, H2 = −1

2

(
π x2 +

1
4π

d2

dx2

)
.

(12.3)

Proof. One has

et �1 =
(

e
t
2 0
0 e−

t
2

)
, et (�0+�2) =

(
1 0
t 1

)
: (12.4)

now, by the very construction of the ν-anaplectic representation, one has

(Anaν(
(

e
t
2 0

0 e− t
2

)
)u)(x) = e−

t
4 u(e−

t
2 x), (Anaν(( 1 0

t 1 ))u)(x) = eiπt x2
u(x),
(12.5)

from which the computation of H1 and H0 + H2, follows.
Of course, the computation of H0 requires more care. Setting g = et �0 , one

has g =
(

cos t
2 − sin t

2
sin t

2 cos t
2

)
, and the matrix

(
α β
β̄ ᾱ

)
associated to g by the recipe

of Theorem 11.16 is the matrix
(

e
it
2 0

0 e− it
2

)
. Next, the matrix

(
λ µ

µ̄ λ̄

)
associated

to the matrix g−1 under the equation (11.86) is the matrix
(

e− it
2 0

0 e
it
2

)
, so that

[g−1](z) = e−it z for z ∈ Σ or in any covering space of Σ. The formulas in
Theorem 11.16 thus imply

(KAnaν(et �0)u)0 (z) = (K u)0(e−it z),

(KAnaν(et �0)u)1 (z) = e
it
2 (K u)1(e−it z) : (12.6)
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as a verification, one may note that e−π �0 =
(

0 1−1 0

)
, the matrix which gives

e−iπ (ν+ 1
2 ) Fν

ana under the ν-anaplectic representation, and that the equations
(12.6) indeed reduce to (11.69) when t = −π. One thus has the identities

(KH0 u)0(e−iθ) = i
d

dθ
(K u)0(e−iθ)),

(KH0 u)1(e−iθ) =
(
−1

2
+ i

d

dθ

)
(K u)1(e−iθ)). (12.7)

We must now transfer the harmonic oscillator to the K-realization. From
(11.11), we find for large σ, after an integration by parts, the identity

(QL u)0(σ) =
∫ ∞

−∞

(
−i π x2 − i

4π

d2

dx2

)
(e−πσ x2

) . u(x e−
iπ
4 ) dx

= i

[
(1 + σ2)

d

dσ
+

1
2

σ

]
(Qu)0(σ) : (12.8)

in view of the relation (K u)0(e−iθ) = (2 sin θ
2 )−

1
2 (Qu)0(cotan θ

2 ), valid for θ > 0
and small, and of the relation (1+σ2) d

dσ = −2 d
dθ , one finds that (KL u)0(e−iθ) =

M0 (θ �→ (K u)0(e−iθ)) where M0 expresses itself as the composition of operators

M0 =
(

sin
θ

2

)− 1
2

i

[
−2

d

dθ
+

1
2

cotan
θ

2

](
sin

θ

2

) 1
2

= −2i
d

dθ
. (12.9)

In a similar way, one finds that

(QL u)1(σ) =
∫ ∞

−∞

(
−i π x2 − i

4π

d2

dx2

)
(e−πσ x2

(1 + i σ)x) . u(x e−
iπ
4 ) dx

= i

[
(1 + σ2)

d

dσ
+

1
2

σ − i

]
(Qu)1(σ) : (12.10)

thus (KL u)1(e−iθ) = M1 (θ �→ (K u)1(e−iθ)) with M1 = M0 + 1. The first
equation (12.3) follows. �

Remark 12.1. In some sense (no Stone’s theorem is available here yet), one may
write

e−iπ (ν+ 1
2 ) Fν

ana = exp
(
− iπ

2
L

)
, (12.11)

a formula very close to the usual e−
iπ
4 F = exp (− iπ

2 L): the classical case roughly
corresponds to ν ∈ 2 Z – and, if one wishes to extend Proposition 11.2, the case
when ν + 1 ∈ 2 Z corresponds to the conjugate of the classical analysis under
the map u �→ ui – but there is a phase shift by the factor e

iπ
4 inherent in the

anaplectic analysis.
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The following proposition is the result of an immediate calculation.

Proposition 12.2. Set H+ = H1 + i H2, H− = H1 − i H2. One has

A∗ A = L − 1
2
, AA∗ = L +

1
2
, A2 = 2i H+, A∗2 = −2i H−. (12.12)

On the other hand, H2
1 − H2

2 − H2
0 = 3

16 .

Under the assumption that ν is real, ν /∈ Z, we can now build a pseudo-scalar
product on Aν , invariant under the ν-anaplectic representation.

We shall consider the case when ν ∈] − 1, 0[+2 Z, in which, as will be seen,
it is possible to build a pseudoscalar product on Aν positive-definite on (Aν)even.
In the case when ν ∈]0, 1[+2 Z, one can build a pseudoscalar product positive-
definite on (Aν)odd. To avoid routine developments, we shall specialize in the first
case.

In Theorem 12.3 below, we shall define the pseudoscalar product (u|u) where
u ∈ (Aν)even, in terms of the expansion (11.42) of the K-transform of u. This
would suffice to establish its existence and main properties. However, we deem it
preferable to first give a more natural definition, based on the already known case
when ν = − 1

2 . If u ∈ (A)even, the pseudoscalar product (u |u) in A = A− 1
2

can
be expressed as

(u |u) = − 1
4π

∫
R2

|σ − τ |− 3
2 (Qu)0(σ) (Qu)0(τ) dσ dτ : (12.13)

it is understood that the integral has to be interpreted in a regularized sense, as
defined between (2.7) and (2.8), or with the help of an integration by parts or, as
a third possibility, using analytic continuation with respect to the exponent. To
check this equation, one goes back to the fact that if u ∈ A is associated to the
pair ( v0

0 ) as in Theorem 2.9, one has, as given in (2.113),

(u |u) =
∫ ∞

−∞
|s| 12 |v0(s)|2 ds (12.14)

or, in terms of w0 = F v0,

(u |u) =
∫ ∞

−∞
w̄0(σ) (|D| 12 w0)(σ) dσ, (12.15)

where the operator |D| 12 was defined right after (2.4). Since (F |s| 12 ) (σ) =
− 1

4π |σ|− 3
2 , the equation (12.13) follows.

Transferring the result to the K-realization of u in place of the Q-realization,
we obtain

(u |u) = −2−
3
2

π

∫
S1×S1

|e−iθ − e−iη|− 3
2 (K u)0(e

−iθ) (K u)0(e−iη) dθ dη, (12.16)

with the same precautions concerning the meaning of the integral.
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We shall extend this expression to the case of the space (Aν)even, but some
modification has to be done first. If the matrix

(
λ µ
µ̄ λ̄

)
is linked to g ∈ SL(2, R)

by the equation (11.86), and if one sets e−iθ = [g](e−iθ1), it is immediate that
[g]∗ dθ1

dθ1
= |µ̄ e−iθ1 + λ̄|−2: setting also e−iη = [g](e−iη1), and using (11.87) together

with

[g](e−iθ1) − [g](e−iη1) =
e−iθ1 − e−iη1

(µ̄ e−iθ1 + λ̄) (µ̄ e−iη1 + λ̄)
, (12.17)

one can see that the right-hand of (12.16), considered for u ∈ Aν , is invariant under
the transformations Ana(g) with g of the form

(
a 0
c a−1

)
(there is no need for such

matrices to replace SL(2, R) by a covering group). However, it is not invariant
under the transformations associated with elements of G(N) above matrices in
SO(2) because such transformations [g] do not preserve the set {e−iθ : 0 < θ <
2π}. We thus substitute for (12.16) the following definition, some ingredients of
which will be defined immediately below:

(u |u) =
e

iπ
2 (ν+ 1

2 )

4π (sin πν) (cos πν
2 )

× limN1→∞
1

N1

∫
EN1

|e−iθ − e−iη|− 3
2 (K u)0(e

−iθ) (K u)0(e−iη) dθ dη. (12.18)

Though it is not really needed, it is assumed, for simplicity, that N1 goes to infinity
through the integers. The set EN1 is defined as the set of pairs (θ, η) such that
0 < θ < 2π N1, 0 < η < 2π N1, 0 < θ − η < 2π. The divergent integral is given
the meaning obtained by analytic continuation, replacing the exponent − 3

2 by λ
with Re λ > −1. It can be shown in a direct way – though there are a few lengthy
details in the proof – that (u |u), so defined, makes sense for every u ∈ Aν, and
that one obtains in this way a Hermitian form invariant under the restriction of the
ν-anaplectic representation to the subspace of even functions: there is no a priori
explanation for the phase factor, needed for reality and positivity, assuming that
ν ∈]−1, 0[. We shall be satisfied, however, with using this definition in a heuristic
way, computing with its help the scalar product of any two even eigenstates of the
ν-anaplectic harmonic oscillator: it is understood that the polarized form of (u |u)
which we are using is antilinear with respect to the function on the left.

Recalling Theorem 11.6, one has (K φν+2j)(e−iθ) = Cν+2j e
i
2 (ν+2j+ 1

2 ) θ, with

Cµ = 2
µ−1

2 π
1
2

Γ( 1−µ
2 )

. Set, for Re λ > −1,

Iλ(φν+2j , φν+2k) = Cν+2j Cν+2k

× limN1→∞
1

N1

∫
EN1

|e−iθ − e−iη|−λ e−
i
2 (ν+2j+ 1

2 ) θ e
i
2 (ν+2k+ 1

2 ) θ dθ dη. (12.19)

Performing the change of variables (θ, η) �→ (θ, ξ) = (θ, θ− η), the domain of the
variable ξ is (0, 2π) and, for given ξ, that of the variable θ, to wit (0, 2πN1) ∩
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(ξ, ξ+2πN1), differs very little from (0, 2πN1) since the integral is to be multiplied
by 1

N1
: this shows that Iλ(φν+2j , φν+2k) is zero if j �= k, and that

Iλ(φν+2j , φν+2j) = C2
ν+2j × 2π

∫ 2π

0

|e−iξ − 1|λ e−
i
2 (ν+2j+ 1

2 ) ξ dξ. (12.20)

The integral is to be found in [17, p. 8]:

2λ+1

∫ π

0

(sin ξ)λ e−i (ν+2j+ 1
2 ) ξ dξ = 2π

e−
iπ
2 (ν+ 1

2+2j) Γ(1 + λ)
Γ(1

2 (λ + ν) + j + 5
4 ) Γ(1

2 (λ − ν) − j + 3
4 )

.

(12.21)
Using analytic continuation, we thus find

(φν+2j |φν+2j) =
e

iπ
2 (ν+ 1

2 )

4π (sin πν) (cos πν
2 )

I− 3
2
(φν+2j , φν+2j)

=
1

4π (sin πν) (cos πν
2 )

C2
ν+2j (2π)2

(−1)j Γ(− 1
2 )

Γ(ν+1
2 + j) Γ(− ν

2 − j)

=
1
2

Γ(ν + 2j + 1), (12.22)

where the last expression occurs after some manipulations involving the formula
of complements and the duplication formula of the Gamma function. As a verifi-

cation, this gives (φ− 1
2 |φ− 1

2 ) = π
1
2

2 , an equation equivalent to the normalization
condition for φ ∈ A since, as already observed just before Theorem 11.6, one
has φ = 2

1
2 π− 1

4 φ− 1
2 . One should note that, since ν ∈] − 1, 0[, this is a positive

number, which explains our choice of the phase factor in the definition (12.18).
Since – for brevity – we have not given all details concerning the justification

of the formula just quoted, we shall use the result of the preceding computation
as a definition.

Theorem 12.3. Let ν ∈] − 1, 0[. For every u ∈ (Aν)even, thus characterized, in
the sense of (11.42), by the expansion

(K u)0(z) = z−( ν
2 + 1

4 )
∑
j∈Z

cj z−j, (12.23)

define (u |u) as the convergent series

(u |u) =
π

1
2

cos2 πν
2

∑
j∈Z

Γ(ν
2 + j + 1)

Γ(1+ν
2 + j)

|cj |2. (12.24)

This is a positive-definite scalar product on (Aν)even, which coincides when ν =
− 1

2 with the one defined in Section 1. It is invariant under the restriction to this
space of the ν-anaplectic representation. Finally, this latter representation, acting
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on the completion of (Aν)even with respect to the scalar product just introduced,
is unitarily equivalent with the representation C

(τ)
q taken from [18], with q = 3

16
and τ ∈ [0, 1[ characterized by the further condition τ ≡ − 1

2 (ν + 1
2 ) mod 1.

Proof. In view of Theorem 11.6, one may also write

u =
∑
j∈Z

2
1−ν
2 −j π− 1

2 Γ
(

1 − ν

2
− j

)
cj φν+2j . (12.25)

Since, for any u ∈ Aν , the K-transform of u is analytic on Σ(N), one has |cj | ≤
C (1 + ε)−|j| for some pair C, ε of positive constants, a fact already used in the
proof of Theorem 11.9: this proves the convergence of the series defining (u |u).
The verification that, when u reduces to some function φν+2j , the expression of
(u |u) given by (12.24) coincides with that given by (12.22) is again a consequence
of the duplication formula and of the formula of complements of the Gamma
function. It follows in particular that, when ν = − 1

2 , the new scalar product
coincides with the one we already know.

The invariance of the scalar product under transformations Anaν(g), g ∈
G(N) lying above some rotation matrix, is immediate. What remains to be checked
is the effect of the transformations Anaν(g) with g =

(
a 0
0 a−1

)
, a > 0 or g =

( 1 0
c 1 ). Since Anaν has already been constructed as a representation within the

space (Aν)even, it suffices, in view of (12.2), to show that the operators H1 and
H2 are formally self-adjoint within that space: using Proposition 12.2, one may
prove instead that A2 and (A∗)2 are formally adjoint to each other or, which
amounts to the same, that (A2 φν+2j |φν+2k) = (φν+2j | (A∗)2 φν+2k) for every
pair (j, k). Now, with the help of Proposition 11.8, one has

(A2 φν+2j |φν+2k) = δj−1,k (ν + 2j) (ν + 2j − 1) (φν+2j−2 |φν+2j−2),

(φν+2j | (A∗)2 φν+2k) = δj,k+1 (φν+2j |φν+2j), (12.26)

and the right-hand sides of these two equations coincide thanks to (12.22).
To compare the representation just discussed, after completion, with the ones

from Pukanszky’s list [18], we first recall, with the notation from the beginning
of the present section borrowed from (loc. cit.) – of course the notation there
does not refer to the ν-anaplectic representation, but to an arbitrary irreducible
unitary representation of the universal cover of SL(2, R) – that exp (−2iπ H0) =
Anaν(e2π�0) and, using the first equation (12.6), that one has the identity

(KAnaν(e2π�0)u)0(z) = (K u)0(e−2iπ z) : (12.27)

this is the same as eiπ (ν+ 1
2 ) (K u)0(z) as a consequence of (11.17). Now, in [18],

a certain number τ ∈ [0, 1[ is characterized by the equation exp (−2iπ H0) =
e−2iπ τ I: in our case, we must then take τ ≡ − 1

2 (ν + 1
2 ) mod 1, as indicated.

This implies that τ = − 1
2 (ν + 1

2 ) if ν ∈] − 1, − 1
2 ] and τ = − 1

2 (ν − 3
2 ) if
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ν ∈]− 1
2 , 0[: in both cases, τ (1−τ) < q = 3

16 , the number obtained in Proposition
12.2 from the consideration of the Casimir operator of the representation. This
proves the sought-after unitary equivalence with the representation C

(τ)
q ; also

recall from [18] that, since q ≤ 1
4 , the representation under study does not occur

in the Plancherel formula for the universal cover of SL(2, R). It is elementary
to verify that all values of τ ∈ [0, 1[ such that τ (1 − τ) < 3

16 are obtained in
this way. Only, note that all that precedes would break down if we had ν ∈]0, 1[
instead of ] − 1, 0[: in this case, we would find a unitary representation from the
consideration of the odd part of the ν-anaplectic representation, taking this time
τ ≡ − 1

2 (ν − 1
2 ) mod 1. �

It is now an easy matter to complete the invariant scalar product on (Aν)even
into an invariant pseudo-scalar product on Aν .

Theorem 12.4. Let ν ∈] − 1, 1[. For every u ∈ Aν , characterized by the pair of
expansions (cf. (11.42))

(K u)0(z) = z−
1
2 (ν+ 1

2 )
∑
j∈Z

cj z−j,

(K u)1(z) = z−
1
2 (ν− 3

2 )
∑
j∈Z

c′j z−j, (12.28)

define (u |u) as the convergent series

(u |u) =
π

1
2

Γ(1+ν
2 + j) cos2 πν

2

×
[
2 Γ
(ν

2
+ j + 1

)
|cj |2 + π

ν + 1 + 2j

ν + 2j
Γ
(ν

2
+ j
)
|c′j |2

]
. (12.29)

The pseudoscalar product so defined on Aν is invariant under the ν-anaplectic
representation as well as under the Heisenberg representation, and coincides with
the one already known when ν = − 1

2 . It is positive-definite on the space gener-
ated by even eigenfunctions of the harmonic oscillator L, as well as on the space
(orthogonal to the precedent ) generated by odd eigenfunctions of L with a positive
eigenvalue; it is negative-definite on the orthogonal complement of the sum of these
two spaces, i.e., on the space generated by odd eigenfunctions of L with a negative
eigenvalue.

Proof. Recall from (11.56) that

(Kψν+2j+1)1(z) = −e
iπ
4

2
ν−1
2 +j (ν + 2j)
Γ(1−ν

2 − j)
z−

1
2 (ν− 3

2 ) z−j. (12.30)

One now has

u =
∑
j∈Z

2
1−ν
2 −j Γ(

1 − ν

2
− j)

[
π− 1

2 cj φν+2j − e−
iπ
4

c′j
ν + 2j

ψν+2j+1

]
. (12.31)
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In particular, this leads to

(ψν+2j+1 |ψν+2j+1) =
2ν+2j−2 π

3
2

cos2 πν
2

(ν + 2j) (ν + 2j + 1)Γ(ν
2 + j)

Γ(1+ν
2 + j) (Γ(1−ν

2 − j))2

= −2ν+2j π
3
2

sin πν
(ν + 2j + 1)

(
Γ
(
−ν

2
− j
)

Γ
(

1 − ν

2
− j

))−1

=
1
2

Γ(ν + 2j + 2), (12.32)

an expression which should be compared to (12.22): note that this scalar product
is positive if j = 0, 1, . . . negative if j = −1,−2, . . . .

What remains to be done is to show that A and A∗ are adjoint to each
other in the space Aν : now, using Proposition 11.8, one gets

(Aφν+2j |ψν+2k−1) = δjk (ν + 2j) (ψν+2j−1 |ψν+2j−1),

(φν+2j |A∗ ψν+2k−1) = δjk (φν+2j |φν+2j), (12.33)

and the two right-hand sides are identical in view of (12.22) and (12.32); in the
same way,

(A∗ φν+2j |ψν+2k+1) = δjk (ψν+2j+1 |ψν+2j+1),

(φν+2j |Aψν+2k+1) = δjk (ν + 2j + 1) (φν+2j |φν+2j) : (12.34)

this concludes the proof of Theorem 12.4. �

In the next theorem, we generalize to the case of the ν-anaplectic analysis the
definition of the pseudoscalar product given, when ν = − 1

2 , in Proposition 1.14.
The only proof we could find depends on computations, but the result certainly
puts forward, again, the role played by the “fourfold” presentation of the analysis.

Theorem 12.5. Let ν ∈] − 1, 0[. For every u ∈ Aν, characterized by its C4-
realization as introduced in Definition 11.1, one has

(u |u) = 2
1
2

∫ ∞

0

[
|f0|2 + |f1|2 +

Γ(ν + 1)
Γ(−ν)

(|fi,0|2 − |fi,1|2)
]

dx. (12.35)

Proof. The proof consists in verifying that the polarized version, temporarily de-
noted as (( | )), of the right-hand side gives the correct result when applied to
any pair of eigenfunctions of the ν-anaplectic harmonic oscillator.

Let us denote as ∆ the logarithmic derivative (traditionally denoted as ψ)
of the Gamma function, i.e., ∆(z) = Γ′(z)

Γ(z) : the formula of complements of the
Gamma function can be written [17, p. 14] as

∆(z) − ∆(1 − z) = −π cotanπz. (12.36)
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Just as in Lemma 11.7 and its proof, we abbreviate as Dµ the function x �→
Dµ(2π

1
2 x). The computation starts from the equation (loc. cit., p. 330)∫ ∞

0

D2
µ dx = 2−

5
2

∆(1−µ
2 ) − ∆(−µ

2 )
Γ(−µ)

. (12.37)

With L = π x2 − 1
4π

d2

dx2 , we use Green’s formula∫ ∞

0

L h. f dx =
∫ ∞

0

h. L f dx +
1
4π

(h′(0) f(0) − f ′(0)h(0)), (12.38)

together with the following [17, p. 324]

Dν(0) = 2
ν
2

π
1
2

Γ(1−ν
2 )

, D′
ν(0) = −2

ν+1
2

π
1
2

Γ(− ν
2 )

. (12.39)

Since Dν+2j is an eigenfunction of L for the eigenvalue ν + 1
2 + 2j, this yields

after some trivial computations the result

(j − k)
∫ ∞

0

Dν+2j Dν+2k dx (12.40)

= 2π
1
2 . 2ν+j+k− 5

2

[
1

Γ(1−ν
2 − j) Γ(− ν

2 − k)
− 1

Γ(1−ν
2 − k) Γ(− ν

2 − j)

]
,

valid for any pair (j, k) ∈ Z2: similarly,

(k − j)
∫ ∞

0

D−ν−2j−1 D−ν−2k−1 dx (12.41)

= 2π
1
2 . 2−ν−j−k− 7

2

[
1

Γ(2+ν
2 − j) Γ(1+ν

2 + k)
− 1

Γ(2+ν
2 + k) Γ(1+ν

2 + j)

]
.

Since, as shown in Lemma 11.7, the C4-realization of the function φν+2j is
(Dν+2j , 0, (−1)j Γ(ν+2j+1)

Γ(ν+1) D−ν−2j−1, 0), we easily verify, using also

Γ(1+ν
2 + j) Γ(2+ν

2 + k)
Γ(−ν) Γ(ν + 1)

= (−1)j+k 2π

Γ(1−ν
2 − j) Γ(− ν

2 − k)
, (12.42)

that, if j �= k, one has ((φν+2j |φν+2k)) = 0.
The proof that ((ψν+2j+1 |ψν+2k+1)) = 0 is entirely similar.
Now, let us compute the values of the form (( | )) on pairs of identical

eigenfunctions of the ν-anaplectic harmonic oscillator, in which case we may start
from a direct application of (12.37). One has

((φν+2j |φν+2j)) = 2
1
2

[∫ ∞

0

D2
ν+2j dx +

(Γ(ν + 2j + 1))2

Γ(−ν) Γ(ν + 1)

∫ ∞

0

D2
−ν−2j−1 dx

]
.

(12.43)
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With the help of (12.37), this can be written as

1
4Γ(−ν−2j)

[
∆

(
1−ν

2
−j

)
−∆

(
−ν

2
−j
)

+∆

(
2+ν

2
+j

)
−∆

(
1+ν

2
+j

)]
,

(12.44)

an expression which, thanks to the functional equation (12.36), reduces to
1
2Γ(ν + 2j + 1). Now, this agrees with the scalar product (φν+2j |φν+2j), as seen
from (12.22). The same computation works when dealing with odd eigenstates of
L in the space Aν . �

Finally, the ν-anaplectic analysis should lead, eventually, to a Weyl-like sym-
bolic calculus of operators, which may start with the computation of a Wigner
function, this being defined, as an extension of Definition 10.3, as

W ν(ψ, χ)(x, ξ) = 2 (e4iπ(−x P+ξ Q) ψ̌ |χ)Aν . (12.45)

It satisfies the same covariance properties as those expressed in Proposition 10.4
in the case when ν = − 1

2 .

Proposition 12.6. One has

W ν(φν , φν)(x, ξ) = Γ(ν + 1) e−2π (x2+ξ2)
1F1 (−ν; 1; 4π (x2 + ξ2)). (12.46)

Proof. Our main interest in this proof is showing how easy it is to compute in the
ν-anaplectic analysis, in view of the fact that the Heisenberg representation is still
available.

First, we note that Lemma 10.5 extends with no change whatsoever to the
ν-anaplectic analysis, and that most of Theorem 10.7 does, by way of consequence:
the only argument from the proof of that theorem that does not is the computation
(with the notation there ) of Λ W ν(φν , φν). However, one sees immediately that

Λ = Right† Right + Left† Left + 1 : (12.47)

consequently, using (10.21),

Λ W ν(φν , φν) = W ν(φν , A∗ Aφν) + W ν(A∗ Aφν , φν) + W ν(φν , φν)
= (2ν + 1)W ν(φν , φν) (12.48)

so that, again, W ν(φν , φν) is an eigenfunction (with a new eigenvalue) of the
(rescaled, in the same way as in Theorem 10.7) harmonic oscillator in two variables.
Using the rotation invariance, one may write W ν(φν , φν) = f(2π (x2+ξ2)), where
the function f is an analytic function on [0, ∞[ satisfying the differential equation

f ′′(t) +
1
t

f ′(t) −
(

1 − (2ν + 1)
t

)
f(t) = 0 : (12.49)
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using this differential equation, and the already known value of f(0) = 2(φν |φν),
we arrive at the expression (12.46).

Needless to say, one could compute in just the same way, as in Theorem
10.7, the Wigner function of any two eigenfunctions of the ν-anaplectic harmonic
oscillator on the line. �

Remark 12.2. We shall stop short of developing a higher-dimensional ν-anaplectic
analysis for general values of ν However, let us just indicate that, if one sets

W ν(φν , φν)(x, ξ) = Γ(ν + 1) Φν (2
1
2 x, 2

1
2 ξ) (12.50)

(this is the needed rescaling transformation: cf. Theorem 10.13; the coefficient is
chosen so that Φν(0, 0) = 1), so that, a consequence of [17, p. 275]

Φν(x, ξ) = − sinπν

π

∫ 1

−1

e−π (x2+ξ2) t (1 + t)ν (1 − t)−1−ν dt. (12.51)

It is an easy matter, generalizing what has been done in Section 4, to follow the
continuation of the two-dimensional K-transform of Φν to the universal cover of
Σ = U(2) ∩ SymC

2 . For, starting in the same way as in the proof of Theorem 4.18,
we arrive at the following analogue of (4.74):

(KΦν)0(Z) =
2−

3
2

cos πν
2

∫ ∞

−∞
e(2ν+1) ξ

∏
j=1,2

(
cosh

(
ξ − i θj

2

))− 1
2

dξ : (12.52)

here, e−iθ1 and e−iθ2 are the eigenvalues of Z ∈ Σ, and we start under the as-
sumption that 0 < θj < π. With the method of Section 4, one then sees that
the function (KΦν)0 extends as an analytic function on the part of the universal
cover of Σ lying above the subset of matrices with only simple eigenvalues, and
that it is multiplied by the factor e−(2ν+1) iπ when Z is changed to Z e2iπ. In
other words, the function Z �→ (detZ)

1
2 (ν+ 1

2 ) (KΦν)0(Z) extends as an analytic
function on a connected dense open subset of Σ(2) (the twofold cover of Σ): the lo-
cation and nature of the singularities of this function is similar to those of (KΦ)0,
as described at the very end of Section 4.
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[27] A. Wawrzyńczyk, Group Representations and Special Functions, Reidel Pub. Co.,
Dordrecht–Boston–Lancaster, 1984.
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