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P R E FAC E T O T H E

F I R S T E D I T I O N

This book is an outgrowth and a considerable expansion of lectures given
at Brandeis University in 1967–1968 and at Rice University in 1968–1969.
The first four chapters are an attempt to survey in detail some recent
developments in four somewhat different areas of mathematics: geometry
(manifolds and vector bundles), algebraic topology, differential geometry,
and partial differential equations. In these chapters, I have developed vari-
ous tools that are useful in the study of compact complex manifolds. My
motivation for the choice of topics developed was governed mainly by
the applications anticipated in the last two chapters. Two principal top-
ics developed include Hodge’s theory of harmonic integrals and Kodaira’s
characterization of projective algebraic manifolds.

This book should be suitable for a graduate level course on the general
topic of complex manifolds. I have avoided developing any of the theory of
several complex variables relating to recent developments in Stein manifold
theory because there are several recent texts on the subject (Gunning and
Rossi, Hörmander). The text is relatively self-contained and assumes famil-
iarity with the usual first year graduate courses (including some functional
analysis), but since geometry is one of the major themes of the book, it is
developed from first principles.

Each chapter is prefaced by a general survey of its content. Needless to
say, there are numerous topics whose inclusion in this book would have
been appropriate and useful. However, this book is not a treatise, but
an attempt to follow certain threads that interconnect various fields and
to culminate with certain key results in the theory of compact complex
manifolds. In almost every chapter I give formal statements of theorems
which are understandable in context, but whose proof oftentimes involves
additional machinery not developed here (e.g., the Hirzebruch Riemann-
Roch Theorem); hopefully, the interested reader will be sufficiently prepared
(and perhaps motivated) to do further reading in the directions indicated.

v



vi Preface to the First Edition

Text references of the type (4.6) refer to the 6th equation (or theorem,
lemma, etc.) in Sec. 4 of the chapter in which the reference appears. If
the reference occurs in a different chapter, then it will be prefixed by the
Roman numeral of that chapter, e.g., (II.4.6.).

I would like to express appreciation and gratitude to many of my colleagues
and friends with whom I have discussed various aspects of the book during
its development. In particular I would like to mention M. F. Atiyah, R. Bott,
S. S. Chern, P. A. Griffiths, R. Harvey, L. Hörmander, R. Palais, J. Polking,
O. Riemenschneider, H. Rossi, and W. Schmid whose comments were all
very useful. The help and enthusiasm of my students at Brandeis and Rice
during the course of my first lectures, had a lot to do with my continuing
the project. M. Cowen and A. Dubson were very helpful with their careful
reading of the first draft. In addition, I would like to thank two of my
students for their considerable help. M. Windham wrote the first three
chapters from my lectures in 1968–69 and read the first draft. Without his
notes, the book almost surely would not have been started. J. Drouilhet read
the final manuscript and galley proofs with great care and helped eliminate
numerous errors from the text.

I would like to thank the Institute for Advanced Study for the opportunity
to spend the year 1970–71 at Princeton, during which time I worked on
the book and where a good deal of the typing was done by the excellent
Institute staff. Finally, the staff of the Mathematics Department at Rice
University was extremely helpful during the preparation and editing of the
manuscript for publication.

Houston Raymond O. Wells, Jr.
December 1972



P R E FAC E T O T H E

S E C O N D E D I T I O N

In this second edition I have added a new section on the classical finite-
dimensional representation theory for sl(2,C). This is then used to give
a natural proof of the Lefschetz decomposition theorem, an observation
first made by S. S. Chern. H. Hecht observed that the Hodge ∗-operator is
essentially a representation of the Weyl reflection operator acting on sl(2,C)
and this fact leads to new proofs (due to Hecht) of some of the basic Kähler
identities which we incorporate into a completely revised Chapter V. The
remainder of the book is generally the same as the first edition, except
that numerous errors in the first edition have been corrected, and various
examples have been added throughout.

I would like to thank my many colleagues who have commented on the
first edition, which helped a great deal in getting rid of errors. Also, I would
like to thank the graduate students at Rice who went carefully through the
book with me in a seminar. Finally, I am very grateful to David Yingst
and David Johnson who both collated errors, made many suggestions, and
helped greatly with the editing of this second edition.

Houston Raymond O. Wells, Jr.
July 1979
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P R E FAC E T O T H E

T H I R D E D I T I O N

In the almost four decades since the first edition of this book appeared,
many of the topics treated there have evolved in a variety of interesting
manners. In both the 1973 and 1980 editions of this book, one finds the first
four chapters (vector bundles, sheaf theory, differential geometry and elliptic
partial differential equations) being used as fundamental tools for solving
difficult problems in complex differential geometry in the final two chapters
(namely the development of Hodge theory, Kodaira’s embedding theorem,
and Griffiths’ theory of period matrix domains). In this new edition of
the book, I have not changed the contents of these six chapters at all, as
they have proved to be good building blocks for many other mathematical
developments during these past decades.

I have asked my younger colleague Oscar García-Prada to add an
Appendix to this edition which highlights some aspects of mathematical
developments over the past thirty years which depend substantively on the
tools developed in the first six chapters. The title of the Appendix, “Moduli
spaces and geometric structures” and its introduction gives the reader a
good overview to what is covered in this appendix.

The object of this appendix is to report on some topics in complex geome-
try that have been developed since the book’s second edition appeared about
25 years ago. During this period there have been many important devel-
opments in complex geometry, which have arisen from the extremely rich
interaction between this subject and different areas of mathematics and
theoretical physics: differential geometry, algebraic geometry, global analy-
sis, topology, gauge theory, string theory, etc. The number of topics that
could be treated here is thus immense, including Calabi-Yau manifolds
and mirror symmetry, almost-complex geometry and symplectic mani-
folds, Gromov-Witten theory, Donaldson and Seiberg-Witten theory, to
mention just a few, providing material for several books (some already
written).

ix



x Preface to the Third Edition

However, since already the original scope of the book was not to be a
treatise, “but an attempt to follow certain threads that interconnect various
fields and to culminate with certain key results in the theory of compact
complex manifolds…”, as I said in the Preface to the first edition, in the
Appendix we have chosen to focus on a particular set of topics in the theory
of moduli spaces and geometric structures on Riemann surfaces. This is
a subject which has played a central role in complex geometry in the last
25 years, and which, very much in the spirit of the book, reflects another
instance of the powerful interaction between differential analysis (differential
geometry and partial differential equations), algebraic topology and complex
geometry. In choosing the topic, we have also taken into account that the
book provides much of the background material needed (Chern classes,
theory of connections on Hermitian vector bundles, Sobolev spaces, index
theory, sheaf theory, etc.), making the appendix (in combination with the
book) essentially self-contained.

It is my hope that this book will continue to be useful for mathematicians
for some time to come, and I want to express my gratitude to Springer-
Verlag for undertaking this new edition and for their patience in waiting
for our revision and the new Appendix. One note to the reader: the Subject
Index and the Author Index of the book refer to the original six chapters of
this book and not to the new Appendix (which has its own bibliographical
references).

Finally, I want to thank Oscar García-Prada so very much for the
painstaking care and elegance in which he has summarized some of the
most exciting results in the past years concerning the moduli spaces of
vector bundles and Higgs’ fields, their relation to representations of the
fundamental group of a compact Riemann surface (or more generally of a
compact Kähler manifold) in Lie groups, and to the solutions of differen-
tial equations which have their roots in the classical Laplace and Einstein
equations, yielding a type of non-Abelian Hodge theory.

Bremen Raymond O. Wells, Jr.
June 2007
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CHAPTER I

M A N I F O L D S

A N D

V E C T O R BU N D L E S

There are many classes of manifolds which are under rather intense
investigation in various fields of mathematics and from various points of
view. In this book we are primarily interested in differentiable manifolds
and complex manifolds. We want to study (a) the “geometry” of manifolds,
(b) the analysis of functions (or more general objects) which are defined on
manifolds, and (c) the interaction of (a) and (b). Our basic interest will be the
application of techniques of real analysis (such as differential geometry and
differential equations) to problems arising in the study of complex manifolds.
In this chapter we shall summarize some of the basic definitions and results
(including various examples) of the elementary theory of manifolds and
vector bundles. We shall mention some nontrivial embedding theorems
for differentiable and real-analytic manifolds as motivation for Kodaira’s
characterization of projective algebraic manifolds, one of the principal results
which will be proved in this book (see Chap. VI). The “geometry” of a
manifold is, from our point of view, represented by the behavior of the
tangent bundle of a given manifold. In Sec. 2 we shall develop the concept of
the tangent bundle (and derived bundles) from, more or less, first principles.
We shall also discuss the continuous and C∞ classification of vector bundles,
which we shall not use in any real sense but which we shall meet a version
of in Chap. III, when we study Chern classes. In Sec. 3 we shall introduce
almost complex structures and the calculus of differential forms of type
(p, q), including a discussion of integrability and the Newlander-Nirenberg
theorem.

General background references for the material in this chapter are Bishop
and Crittenden [1], Lang [1], Narasimhan [1], and Spivak [1], to name a few
relatively recent texts. More specific references are given in the individual
sections. The classical reference for calculus on manifolds is de Rham [1].
Such concepts as differential forms on differentiable manifolds, integration
on chains, orientation, Stokes’ theorem, and partition of unity are all covered
adequately in the above references, as well as elsewhere, and in this book
we shall assume familiarity with these concepts, although we may review
some specific concept in a given context.

1



2 Manifolds and Vector Bundles Chap. I

1. Manifolds

We shall begin this section with some basic definitions in which we shall
use the following standard notations. Let R and C denote the fields of real
and complex numbers, respectively, with their usual topologies, and let K
denote either of these fields. If D is an open subset of Kn, we shall be
concerned with the following function spaces on D:

(a) K = R:
(1) E(D) will denote the real-valued indefinitely differentiable func-

tions on D, which we shall simply call C∞ functions on D; i.e., f ∈ E(D)

if and only if f is a real-valued function such that partial derivatives of all
orders exist and are continuous at all points of D [E(D) is often denoted
by C∞(D)].

(2) A(D) will denote the real-valued real-analytic functions on D;
i.e., A(D) ⊂ E(D), and f ∈ A(D) if and only if the Taylor expansion of f
converges to f in a neighborhood of any point of D.

(b) K = C:
(1) O(D) will denote the complex-valued holomorphic functions on

D, i.e., if (z1, . . . , zn) are coordinates in Cn, then f ∈ O(D) if and only if
near each point z0 ∈ D, f can be represented by a convergent power series
of the form

f (z) = f (z1, . . . , zn) =
∞∑

α1,...,αn=0

aα1,...,αn

(
z1 − z0

1

)α1 · · · (zn − z0
n

)αn
.

(See, e.g., Gunning and Rossi [1], Chap. I, or Hörmander [2], Chap. II, for
the elementary properties of holomorphic functions on an open set in Cn).
These particular classes of functions will be used to define the particular
classes of manifolds that we shall be interested in.

A topological n-manifold is a Hausdorff topological space with a countable
basis† which is locally homeomorphic to an open subset of Rn. The integer
n is called the topological dimension of the manifold. Suppose that S is one
of the three K-valued families of functions defined on the open subsets of
Kn described above, where we let S(D) denote the functions of S defined
on D, an open set in Kn. [That is, S(D) is either E(D),A(D), or O(D). We
shall only consider these three examples in this chapter. The concept of a
family of functions is formalized by the notion of a presheaf in Chap. II.]

Definition 1.1: An S-structure, SM , on a K-manifold M is a family of
K-valued continuous functions defined on the open sets of M such that

†The additional assumption of a countable basis (“countable at infinity”) is important
for doing analysis on manifolds, and we incorporate it into the definition, as we are less
interested in this book in the larger class of manifolds.
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(a) For every p ∈ M, there exists an open neighborhood U of p and a
homeomorphism h : U → U ′, where U ′ is open in Kn, such that for any
open set V ⊂ U

f : V −→ K ∈ SM if and only if f ◦ h−1 ∈ S(h(V )).

(b) If f : U → K, where U = ∪i Ui and Ui is open in M, then f ∈ SM
if and only if f |Ui ∈ SM for each i.

It follows clearly from (a) that if K = R, the dimension, k, of the
topological manifold is equal to n, and if K = C, then k = 2n. In either
case n will be called the K-dimension of M, denoted by dimKM = n (which
we shall call real-dimension and complex-dimension, respectively). A manifold
with an S-structure is called an S-manifold, denoted by (M, SM), and the
elements of SM are called S-functions on M. An open subset U ⊂ M and a
homeomorphism h : U → U ′ ⊂ Kn as in (a) above is called an S-coordinate
system.

For our three classes of functions we have defined

(a) S = E: differentiable (or C∞) manifold, and the functions in EM are
called C∞ functions on open subsets of M.

(b) S = A: real-analytic manifold, and the functions in AM are called
real-analytic functions on open subsets of M.

(c) S = O: complex-analytic (or simply complex) manifold, and the func-
tions in OM are called holomorphic (or complex-analytic functions) on open
subsets of M.

We shall refer to EM,AM , and OM as differentiable, real-analytic, and complex
structures respectively.

Definition 1.2:

(a) An S-morphism F : (M, SM) → (N, SN) is a continuous map, F :
M → N , such that

f ∈ SN implies f ◦ F ∈ SM.

(b) An S-isomorphism is an S-morphism F : (M, SM) → (N, SN) such
that F : M → N is a homeomorphism, and

F−1 : (N, SN) → (M, SM) is an S-morphism.

It follows from the above definitions that if on an S-manifold (M, SM)
we have two coordinate systems h1: U1 → Kn and h2: U2 → Kn such that
U1 ∩ U2 
= ∅, then

h2 ◦ h−1
1 : h1(U1 ∩ U2) → h2(U1 ∩ U2) is an S-isomorphism

on open subsets of (Kn, SKn).
(1.1)
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Conversely, if we have an open covering {Uα}α∈A of M, a topological man-
ifold, and a family of homeomorphisms {hα: Uα → U ′

α ⊂ Kn}α∈A satisfying
(1.1), then this defines an S-structure on M by setting SM = {f : U → K}
such that U is open in M and f ◦h−1

α ∈ S(hα(U ∩Uα)) for all α ∈ A; i.e., the
functions in SM are pullbacks of functions in S by the homeomorphisms
{hα}α∈A. The collection {(Uα, hα)}α∈A is called an atlas for (M, SM).

In our three classes of functions, the concept of an S-morphism and
S-isomorphism have special names:

(a) S = E: differentiable mapping and diffeomorphism of M to N .
(b) S = A: real-analytic mapping and real-analytic isomorphism (or

bianalytic mapping) of M to N .
(c) S = O: holomorphic mapping and biholomorphism (biholomorphic

mapping) of M to N .

It follows immediately from the definition above that a differentiable mapping

f : M −→ N,

where M and N are differentiable manifolds, is a continuous mapping of the
underlying topological space which has the property that in local coordinate
systems on M and N, f can be represented as a matrix of C∞ functions.
This could also be taken as the definition of a differentiable mapping. A
similar remark holds for the other two categories.

Let N be an arbitrary subset of an S-manifold M; then an S-function on
N is defined to be the restriction to N of an S-function defined in some
open set containing N , and SM |N consists of all the functions defined on
relatively open subsets of N which are restrictions of S-functions on the
open subsets of M.

Definition 1.3: Let N be a closed subset of an S-manifold M; then N is
called an S-submanifold of M if for each point x0 ∈ N , there is a coordinate
system h: U → U ′ ⊂ Kn, where x0 ∈ U , with the property that U ∩ N is
mapped onto U ′ ∩ Kk, where 0 ≤ k ≤ n. Here Kk ⊂ Kn is the standard
embedding of the linear subspaceKk intoKn, and k is called theK-dimension
of N , and n− k is called the K-codimension of N .

It is easy to see that an S-submanifold of an S-manifold M is itself an
S-manifold with the S-structure given by SM |N . Since the implicit function
theorem is valid in each of our three categories, it is easy to verify that the
above definition of submanifold coincides with the more common one that
an S-submanifold (of k dimensions) is a closed subset of an S-manifold
M which is locally the common set of zeros of n − k S-functions whose
Jacobian matrix has maximal rank.

It is clear that an n-dimensional complex structure on a manifold induces
a 2n-dimensional real-analytic structure, which, likewise, induces a 2n-
dimensional differentiable structure on the manifold. One of the questions
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we shall be concerned with is how many different (i.e., nonisomorphic)
complex-analytic structures induce the same differentiable structure on a
given manifold? The analogous question of how many different differentiable
structures exist on a given topological manifold is an important problem
in differential topology.

What we have actually defined is a category wherein the objects are
S-manifolds and the morphisms are S-morphisms. We leave to the reader
the proof that this actually is a category, since it follows directly from
the definitions. In the course of what follows, then, we shall use three
categories—the differentiable (S = E), the real-analytic (S = A), and the
holomorphic (S = O) categories—and the above remark states that each is
a subcategory of the former.

We now want to give some examples of various types of manifolds.

Example 1.4 (Euclidean space): Kn, (Rn,Cn). For every p ∈ Kn,U = Kn

and h = identity. Then Rn becomes a real-analytic (hence differentiable)
manifold and Cn is a complex-analytic manifold.

Example 1.5: If (M, SM) is an S-manifold, then any open subset U of
M has an S-structure, SU = {f |U : f ∈ SM}.

Example 1.6 (Projective space): If V is a finite dimensional vector space
over K, then† P(V ) := {the set of one-dimensional subspaces of V } is
called the projective space of V . We shall study certain special projective
spaces, namely

Pn(R) := P(Rn+1)

Pn(C) := P(Cn+1).

We shall show how Pn(R) can be made into a differentiable manifold.
There is a natural map π : Rn+1 − {0} → Pn(R) given by

π(x) = π(x0, . . . , xn) := {subspace spanned by x = (x0, . . . , xn) ∈ Rn+1}.
The mapping π is onto; in fact, π |Sn={x∈Rn+1:|x|=1} is onto. Let Pn(R) have
the quotient topology induced by the map π ; i.e., U ⊂ Pn(R) is open if
and only if π−1(U) is open in Rn+1 −{0}. Hence π is continuous and Pn(R)
is a Hausdorff space with a countable basis. Also, since

π |Sn : Sn −→ Pn(R)

is continuous and surjective, Pn(R) is compact.
If x = (x0, . . . , xn) ∈ Rn+1 − {0}, then set

π(x) = [x0, . . . , xn].
We say that (x0, . . . , xn) are homogeneous coordinates of [x0, . . . , xn]. If(
x ′

0, . . . , x
′
n

)
is another set of homogeneous coordinates of [x0, . . . , xn],

†:= means that the object on the left is defined to be equal to the object on the right.
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then xi = tx ′
i for some t ∈ R − {0}, since [x0, . . . , xn] is the one-dimen-

sional subspace spanned by (x0, . . . , xn) or
(
x ′

0, . . . , x
′
n

)
. Hence also π(x) =

π(tx) for t ∈ R − {0}. Using homogeneous coordinates, we can define a
differentiable structure (in fact, real-analytic) on Pn(R) as follows. Let

Uα = {S ∈ Pn(R): S = [x0, . . . , xn] and xα 
= 0}, for α = 0, . . . , n.

Each Uα is open and Pn(R) = ⋃n

α=0 Uα since (x0, . . . , xn) ∈ Rn+1 − {0}.
Also, define the map hα: Uα → Rn by setting

hα([x0, . . . , xn]) =
(
x0

xα
, . . . ,

xα−1

xα
,
xα+1

xα
, . . . ,

xn

xα

)
∈ Rn.

Note that both Uα and hα are well defined by the relation between dif-
ferent choices of homogeneous coordinates. One shows easily that hα is
a homeomorphism and that hα ◦ h−1

β is a diffeomorphism; therefore, this
defines a differentiable structure on Pn(R). In exactly this same fashion
we can define a differentiable structure on P(V ) for any finite dimensional
R-vector space V and a complex-analytic structure on P(V ) for any finite
dimensional C-vector space V .

Example 1.7 (Matrices of fixed rank): Let Mk,n(R) be the k×n matrices
with real coefficients. Let Mk,n(R) be the k × n matrices of rank k(k ≤ n).
Let Mm

k,n(R) be the elements of Mk,n(R) of rank m(m ≤ k). First, Mk,n(R)
can be identified with Rkn, and hence it is a differentiable manifold. We
know that Mk,n(R) consists of those k × n matrices for which at least one
k × k minor is nonsingular; i.e.,

Mk,n(R) =
l⋃
i=1

{A ∈ Mk,n(R) : det Ai 
= 0},

where for each A ∈ Mk,n(R) we let {A1, . . . , Al} be a fixed ordering of the k×k
minors of A. Since the determinant function is continuous, we see that
Mk,n(R) is an open subset of Mk,n(R) and hence has a differentiable structure
induced on it by the differentiable structure on Mk,n(R) (see Example 1.5).
We can also define a differentiable structure on Mm

k,n(R). For convenience
we delete the R and refer to Mm

k,n. For X0 ∈ Mm
k,n, we define a coordinate

neighborhood at X0 as follows. Since the rank of X is m, there exist
permutation matrices P,Q such that

PX0Q =
[
A0 B0

C0 D0

]
,

where A0 is a nonsingular m×m matrix. Hence there exists an ε > 0 such
that ‖A − A0‖ < ε implies A is nonsingular, where ‖A‖ = maxij |aij |, for
A = [aij ]. Therefore let

W = {X ∈ Mk,n : PXQ =
[
A B

C D

]
and ‖A− A0‖ < ε}.

Then W is an open subset of Mk,n. Since this is true, U := W ∩Mm
k,n is an
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open neighborhood of X0 in Mm
k,n and will be the necessary coordinate

neighborhood of X0. Note that

X ∈ U if and only if D = CA−1B, where PXQ =
[
A B

C D

]
.

This follows from the fact that[
Im 0

−CA−1 Ik−m

] [
A B

C D

]
=

[
A B

0 D − CA−1B

]
and [

Im 0
−CA−1 Ik−m

]
is nonsingular (where Ij is the j × j identity matrix). Therefore[

A B

C D

]
and

[
A B

0 D − CA−1B

]
have the same rank, but [

A B

0 D − CA−1B

]
has rank m if and only if D − CA−1B = 0.

We see that Mm
k,n actually becomes a manifold of dimension m(n+k−m)

by defining
h: U −→ Rm2+(n−m)m+(k−m)m = Rm(n+k−m),

where

h(X) =
[
A B

C 0

]
∈ Rm(n+k−m) for PXQ =

[
A B

C D

]
,

as above. Note that we can define an inverse for h by

h−1

([
A B

C 0

])
= P−1

[
A B

C CA−1B

]
Q−1.

Therefore h is, in fact, bijective and is easily shown to be a homeomorphism.
Moreover, if h1 and h2 are given as above,

h2 ◦ h−1
1

([
A1 B1

C1 0

])
=

[
A2 B2

C2 0

]
,

where

P2P
−1
1

[
A1 B1

C1 C1A
−1
1 B1

]
Q−1

1 Q2 =
[
A2 B2

C2 D2

]
,

and these maps are clearly diffeomorphisms (in fact, real-analytic), and so
Mm
k,n(R) is a differentiable submanifold of Mk,n(R). The same procedure

can be used to define complex-analytic structures on Mk,n(C),Mk,n(C), and
Mm
k,n(C), the corresponding sets of matrices over C.



8 Manifolds and Vector Bundles Chap. I

Example 1.8 (Grassmannian manifolds): Let V be a finite dimensional
K-vector space and let Gk(V ) := {the set of k-dimensional subspaces of V },
for k < dimKV . Such a Gk(V ) is called a Grassmannian manifold. We shall
use two particular Grassmannian manifolds, namely

Gk,n(R) := Gk(Rn) and Gk,n(C) := Gk(Cn).

The Grassmannian manifolds are clearly generalizations of the projective
spaces [in fact, P(V ) = G1(V ); see Example 1.6] and can be given a manifold
structure in a fashion analogous to that used for projective spaces.

Consider, for example, Gk,n(R). We can define the map

π : Mk,n(R) −→ Gk,n(R),

where

π(A) = π

⎛⎜⎜⎜⎜⎝
a1

·
·
·
ak

⎞⎟⎟⎟⎟⎠ := {k-dimensional subspace of Rn spanned by
the row vectors {aj } of A}.

We notice that for g ∈ GL(k,R) (the k × k nonsingular matrices) we have
π(gA) = π(A) (where gA is matrix multiplication), since the action of
g merely changes the basis of π(A). This is completely analogous to the
projection π : Rn+1 − {0} → Pn(R), and, using the same reasoning, we see
that Gk,n(R) is a compact Hausdorff space with the quotient topology and
that π is a surjective, continuous open map.†

We can also make Gk,n(R) into a differentiable manifold in a way similar
to that used for Pn(R). Consider A ∈ Mk,n and let {A1, . . . , Al} be the
collection of k × k minors of A (see Example 1.7). Since A has rank k,Aα
is nonsingular for some 1 ≤ α ≤ l and there is a permutation matrix Pα
such that

APα = [AαÃα],
where Ãα is a k × (n − k) matrix. Note that if g ∈ GL(k,R), then gAα is
a nonsingular minor of gA and gAα = (gA)α. Let Uα = {S ∈ Gk,n(R): S =
π(A), where Aα is nonsingular}. This is well defined by the remark above
concerning the action of GL(k,R) on Mk,n(R). The set Uα is defined by
the condition det Aα 
= 0; hence it is an open set in Gk,n(R), and {Uα}lα=1
covers Gk,n(R). We define a map

hα : Uα −→ Rk(n−k)

by setting
hα(π(A)) = A−1

α Ãα ∈ Rk(n−k),

where APα = [AαÃα]. Again this is well defined and we leave it to the reader
to show that this does, indeed, define a differentiable structure on Gk,n(R).

†Note that the compact set {A ∈ Mk,n(R) : AtA = I } is analogous to the unit sphere in
the case k = 1 and is mapped surjectively onto Gk,n(R).
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Example 1.9 (Algebraic submanifolds): Consider Pn = Pn(C), and let
H = {[z0, . . . , zn] ∈ Pn: a0z0 + · · · + anzn = 0},

where (a0, . . . , an) ∈ Cn+1 −{0}. Then H is called a projective hyperplane. We
shall see that H is a submanifold of Pn of dimension n− 1. Let Uα be the
coordinate systems for Pn as defined in Example 1.6. Let us consider U0 ∩H ,
and let (ζ1, . . . , ζn) be coordinates in Cn. Suppose that [z0, . . . , zn] ∈ H ∩U0;
then, since z0 
= 0, we have

a1
z1

z0
+ · · · + an zn

z0
= −a0,

which implies that if ζ = (ζ1, . . . , ζn) = h0([z0, . . . , zn]), then ζ satisfies
(1.2) a1ζ1 + · · · + anζn = −a0,

which is an affine linear subspace of Cn, provided that at least one of
a1, . . . , an is not zero. If, however, a0 
= 0 and a1 = · · · = an = 0, then it
is clear that there is no point (ζ1, . . . , ζn) ∈ Cn which satisfies (1.2), and
hence in this case U0 ∩ H = ∅ (however, H will then necessarily intersect
all the other coordinate systems U1, . . . , Un). It now follows easily that H
is a submanifold of dimension n− 1 of Pn (using equations similar to (1.2)
in the other coordinate systems as a representation for H ). More generally,
one can consider
V = {[z0, . . . , zn] ∈ Pn(C): p1(z0, . . . , zn) = · · · = pr(z0, . . . , zn) = 0},

where p1, . . . , pr are homogeneous polynomials of varying degrees. In local
coordinates, one can find equations of the form (for instances, in U0)

p1

(
1,
z1

z0
, . . . ,

zn

z0

)
= 0

pr

(
1,
z1

z0
, . . . ,

zn

z0

)
= 0,

(1.3)

and V will be a submanifold of Pn if the Jacobian matrix of these equations
in the various coordinate systems has maximal rank. More generally, V is
called a projective algebraic variety, and points where the Jacobian has less
than maximal rank are called singular points of the variety.

We say that an S-morphism
f : (M, SM) −→ (N, SN)

of two S-manifolds is an S-embedding if f is an S-isomorphism onto an
S-submanifold of (N, SN). Thus, in particular, we have the concept of differ-
entiable, real-analytic, and holomorphic embeddings. Embeddings are most
often used (or conceived of as) embeddings of an “abstract” manifold as a
submanifold of some more concrete (or more elementary) manifold. Most
common is the concept of embedding in Euclidean space and in projective
space, which are the simplest geometric models (noncompact and compact,
respectively). We shall state some results along this line to give the reader
some feeling for the differences among the three categories we have been
dealing with. Until now they have behaved very similarly.
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Theorem 1.10 (Whitney [1]): Let M be a differentiable n-manifold. Then
there exists a differentiable embedding f of M into R2n+1. Moreover, the
image of M,f (M) can be realized as a real-analytic submanifold of R2n+1.

This theorem tells us that all differentiable manifolds (compact and non-
compact) can be considered as submanifolds of Euclidean space, such
submanifolds having been the motivation for the definition and concept
of manifold in general. The second assertion, which is a more difficult
result, tells us that on any differentiable manifold M one can find a sub-
family of the family ε of differentiable functions on M so that this subfamily
gives a real-analytic structure to the manifold M; i.e., every differentiable
manifold admits a real-analytic structure. It is strictly false that differen-
tiable manifolds admit complex structures in general, since, in particular,
complex manifolds must have even topological dimension. We shall dis-
cuss this question somewhat more in Sec. 3. We shall not prove Whitney’s
theorem since we do not need it later (see, e.g., de Rham [1], Sternberg [1],
or Whitney’s original paper for a proof of Whitney’s theorems).

A deeper result is the theorem of Grauert and Morrey (see Grauert [1]
and Morrey [1]) that any real-analytic manifold can be embedded, by a
real-analytic embedding, into RN , for some N (again either compact or
non-compact). However, when we turn to complex manifolds, things are
completely different. First, we have the relatively elementary result.

Theorem 1.11: Let X be a connnected compact complex manifold and
let f ∈ O(X). Then f is constant; i.e., global holomorphic functions are
necessarily constant.

Proof: Suppose that f ∈ O(X). Then, since f is a continuous function
on a compact space, |f | assumes its maximum at some point x0 ∈ X and S =
{x: f (x) = f (x0)} is closed. Let z = (z1, . . . , zn) be local coordinates at x ∈ S,
with z = 0 corresponding to the point x. Consider a small ball B about z = 0
and let z ∈ B. Then the function g(λ) = f (λz) is a function of one complex
variable (λ) which assumes its maximum absolute value at λ = 0 and is
hence constant by the maximum principle. Therefore, g(1) = g(0) and hence
f (z) = f (0), for all z ∈ B. By connectedness, S = X, and f is constant.

Q.E.D.

Remark: The maximum principle for holomorphic functions in domains
in Cn is also valid and could have been applied (see Gunning and Rossi [1]).

Corollary 1.12: There are no compact complex submanifolds of Cn of
positive dimension.

Proof: Otherwise at least one of the coordinate functions z1, . . . , zn
would be a nonconstant function when restricted to such a submanifold.

Q.E.D.
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Therefore, we see that not all complex manifolds admit an embedding
into Euclidean space in contrast to the differentiable and real-analytic situ-
ations, and of course, there are many examples of such complex manifolds
[e.g., Pn(C)]. One can characterize the (necessarily noncompact) complex
manifolds which admit embeddings into Cn, and these are called Stein
manifolds, which have an abstract definition and have been the subject of
much study during the past 20 years or so (see Gunning and Rossi [1]
and Hörmander [2] for an exposition of the theory of Stein manifolds). In
this book we want to develop the material necessary to provide a charac-
terization of the compact complex manifolds which admit an embedding
into projective space. This was first accomplished by Kodaira in 1954 (see
Kodaira [2]) and the material in the next several chapters is developed partly
with this characterization in mind. We give a formal definition.

Definition 1.13: A compact complex manifold X which admits an
embedding into Pn(C) (for some n) is called a projective algebraic manifold.

Remark: By a theorem of Chow (see, e.g., Gunning and Rossi [1]), every
complex submanifold V of Pn(C) is actually an algebraic submanifold (hence
the name projective algebraic manifold), which means in this context that V
can be expressed as the zeros of homogeneous polynomials in homogeneous
coordinates. Thus, such manifolds can be studied from the point of view of
algebra (and hence algebraic geometry). We will not need this result since
the methods we shall be developing in this book will be analytical and not
algebraic. As an example, we have the following proposition.

Proposition 1.14: The Grassmannian manifolds Gk,n(C) are projective
algebraic manifolds.

Proof: Consider the following map:

F̃ : Mk,n(C) −→ ∧kCn

defined by

F̃ (A) = F̃

⎛⎜⎜⎜⎜⎝
a1

·
·
·
ak

⎞⎟⎟⎟⎟⎠ = a1 ∧ · · · ∧ ak.

The image of this map is actually contained in ∧kCn − {0} since {aj } is an
independent set. We can obtain the desired embedding by completing the
following diagram by F :

Mk,n(C) ∧kCn − {0}

Gk,n(C) P (∧kCn),

F̃

πG πp

F
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where πG, πP are the previously defined projections. We must show that F
is well defined; i.e.,

πG(A) = πG(B) =⇒ πP ◦ F̃ (A) = πP ◦ F̃ (B).
But πG(A) = πG(B) implies that A = gB for g ∈ GL(k,C), and so

a1 ∧ · · · ∧ ak = det g(b1 ∧ · · · ∧ bk),
where

A =

⎛⎜⎜⎜⎜⎝
a1

·
·
·
ak

⎞⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎝
b1

·
·
·
bk

⎞⎟⎟⎟⎟⎠ ,
but

πP (a1 ∧ · · · ∧ ak) = πP (det g(b1 ∧ · · · ∧ bk)) = πP (b1 ∧ · · · ∧ bk),
and so the map F is well defined. We leave it to the reader to show that
F is also an embedding.

Q.E.D.

2. Vector Bundles

The study of vector bundles on manifolds has been motivated primarily
by the desire to linearize nonlinear problems in geometry, and their use
has had a profound effect on various modern fields of mathematics. In
this section we want to introduce the concept of a vector bundle and give
various examples. We shall also discuss some of the now classical results
in differential topology (the classification of vector bundles, for instance)
which form a motivation for some of our constructions later in the context
of holomorphic vector bundles.

We shall use the same notation as in Sec. 1. In particular S will denote one
of the three structures on manifolds (E,A,O) studied there, and K = R or C.

Definition 2.1: A continuous map π : E → X of one Hausdorff space, E,
onto another, X, is called a K-vector bundle of rank r if the following
conditions are satisfied:

(a) Ep := π−1(p), for p ∈ X, is a K-vector space of dimension r (Ep is
called the fibre over p).

(b) For every p ∈ X there is a neighborhood U of p and a homeo-
morphism

h: π−1(U) −→ U ×Kr such that h(Ep) ⊂ {p} ×Kr,

and hp, defined by the composition

hp: Ep h−→{p} ×Kr proj.−→Kr,

is a K-vector space isomorphism [the pair (U, h) is called a local
trivialization].

For a K-vector bundle π : E → X,E is called the total space and X is called
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the base space, and we often say that E is a vector bundle over X. Notice
that for two local trivializations (Uα, hα) and (Uβ, hβ) the map

hα ◦ h−1
β : (Uα ∩ Uβ)×Kr −→ (Uα ∩ Uβ)×Kr

induces a map
(2.1) gαβ : Uα ∩ Uβ −→ GL(r,K),

where
gαβ(p) = hpα ◦ (hpβ)−1 : Kr −→ Kr.

The functions gαβ are called the transition functions of the K-vector bundle
π : E → X (with respect to the two local trivializations above).†

The transition functions gαβ satisfy the following compatibility conditions:
(2.2a) gαβ • gβγ • gγα = Ir on Uα ∩ Uβ ∩ Uγ ,
and
(2.2b) gαα = Ir on Uα,

where the product is a matrix product and Ir is the identity matrix of rank r.
This follows immediately from the definition of the transition functions.

Definition 2.2: A K-vector bundle of rank r, π : E → X, is said to be an
S-bundle if E and X are S-manifolds, π is an S-morphism, and the local
trivializations are S-isomorphisms.

Note that the fact that the local trivializations are S-isomorphisms is
equivalent to the fact that the transition functions are S-morphisms. In
particular, then, we have differentiable vector bundles, real-analytic vector
bundles, and holomorphic vector bundles (K must equal C).

Remark: Suppose that on an S-manifold we are given an open covering
A = {Uα} and that to each ordered nonempty intersection Uα ∩Uβ we have
assigned an S-function

gαβ : Uα ∩ Uβ −→ GL(r,K)

satisfying the compatibility conditions (2.2). Then one can construct a vec-
tor bundle E

π−→X having these transition functions. An outline of the
construction is as follows: Let

Ẽ =
⋃

α

Uα ×Kr (disjoint union)

equipped with the natural product topology and S-structure. Define an
equivalence relation in Ẽ by setting

(x, υ) ∼ (y,w), for (x, υ) ∈ Uβ ×Kr, (y,w) ∈ Uα ×Kr

if and only if
y = x and w = gαβ(x)υ.

†Note that the transition function gαβ(p) is a linear mapping from the Uβ trivialization
to the Uα trivialization. The order is significant.
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The fact that this is a well-defined equivalence relation is a consequence
of the compatibility conditions (2.2). Let E = Ẽ/∼ (the set of equivalence
classes), equipped with the quotient topology, and let π : E → X be the
mapping which sends a representative (x, υ) of a point p ∈ E into the first
coordinate. One then shows that an E so constructed carries on S-structure
and is an S-vector bundle. In the examples discussed below we shall see
more details of such a construction.

Example 2.3 (Trivial bundle): Let M be an S-manifold. Then

π : M ×Kn −→ M,

where π is the natural projection, is an S-bundle called a trivial bundle.

Example 2.4 (Tangent bundle): Let M be a differentiable manifold. Then
we want to construct a vector bundle over M whose fibre at each point is
the linearization of the manifold M, to be called the tangent bundle to M.
Let p ∈ M. Then we let

EM,p := lim
p ∈−−→

U ⊂M
open

EM(U)

be the algebra (over R) of germs of differentiable functions at the point p ∈ M,
where the inductive limit† is taken with respect to the partial ordering on
open neighborhoods of p given by inclusion. Expressed differently, we can
say that if f and g are defined and C∞ near p and they coincide on
some neighborhood of p, then they are equivalent. The set of equivalence
classes is easily seen to form an algebra over R and is the same as the
inductive limit algebra above; an equivalence class (element of EM,p) is
called a germ of a C∞ function at p. A derivation of the algebra EM,p
is a vector space homomorphism D: EM,p → R with the property that
D(fg) = D(f ) • g(p)+f (p) •D(g), where g(p) and f (p) denote evaluation
of a germ at a point p (which clearly makes sense). The tangent space to
M at p is the vector space of all derivations of the algebra EM,p, which
we denote by Tp(M). Since M is a differentiable manifold, we can find a
diffeomorphism h defined in a neighborhood U of p where

h: U −→ U ′ ⊂
open

Rn

and where, letting h∗f (x) = f ◦ h(x), h has the property that, for V ⊂ U ′,

h∗: ERn(V ) −→ EM(h
−1(V ))

is an algebra isomorphism. It follows that h∗ induces an algebra isomorphism
on germs, i.e., (using the same notation),

h∗: ERn,h(p)
∼=−→EM,p,

†We denote by lim→ the inductive (or direct) limit and by lim← the projective (or inverse)

limit of a partially ordered system.



Sec. 2 Vector Bundles 15

and hence induces an isomorphism on derivations:

h∗: Tp(M) ∼=−→Th(p)(Rn).

It is easy to verify that

(a) ∂/∂xj are derivations of ERn,h(p), j = 1, . . . , n, and that
(b) {∂/∂x1, . . . , ∂/∂xn} is a basis for Th(p)(Rn),

and thus that Tp(M) is an n-dimensional vector space over R, for each
point p ∈ M [the derivations are, of course, simply the classical directional
derivatives evaluated at the point h(p)]. Suppose that f : M → N is a
differentiable mapping of differentiable manifolds. Then there is a natural
map

dfp: Tp(M) −→ Tf (p)(N)

defined by the following diagram:

EM,p EN,f (p)

R

f ∗

Dp Dp ◦ f ∗ = dfp(Dp),

for Dp ∈ Tp(M). The mapping dfp is a linear mapping and can be expressed
as a matrix of first derivatives with respect to local coordinates. The coef-
ficients of such a matrix representation will be C∞ functions of the local
coordinates. Classically, the mapping dfp (the derivative mapping, differential
mapping, or tangent mapping) is called the Jacobian of the differentiable
map f . The tangent map represents a first-order linear approximation (at p)
to the differentiable map f . We are now in a position to construct the tangent
bundle to M. Let

T (M) =
⋃
p∈M

Tp(M) (disjoint union)

and define
π : T (M) −→ M

by
π(υ) = p if υ ∈ Tp(M).

We can now make T (M) into a vector bundle. Let {(Uα, hα)} be an atlas
for M, and let T (Uα) = π−1(Uα) and

ψα: T (Uα) −→ Uα × Rn

be defined as follows: Suppose that υ ∈ Tp(M) ⊂ T (Uα). Then dhα,p(υ) ∈
Thα(p)(Rn). Thus

dhα,p(υ) =
n∑
j=1

ξj (p)
∂

∂xj

∣∣∣∣
hα(p)

,

where ξj ∈ EM(Uα) (the fact that the coefficients are C∞ follows easily from
the proof that {∂/∂x1, . . . , ∂/∂xn} is a basis for the tangent vectors at a
point in Rn). Now let

ψα(υ) = (p, ξ1(p), . . . , ξn(p)) ∈ Uα × Rn.
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It is easy to verify that ψα is bijective and fibre-preserving and moreover
that

ψpα : Tp(M) ψα−→{p} × Rn proj.−→ Rn

is an R-linear isomorphism. We can define transition functions

gαβ : Uβ ∩ Uα −→ GL(n,R)

by setting
gαβ(p) = ψpα ◦ (ψpβ )−1 : Rn −→ Rn.

Moreover, it is easy to check that the coefficients of the matrices {gαβ}
are C∞ functions in Uα ∩ Uβ , since gαβ is a matrix representation for
the composition dhα ◦ dh−1

β with respect to the basis {∂/∂x1, . . . , ∂/∂xn}
at Thβ(p)(R

n) and Thα(p)(R
n), and that the tangent maps are differentiable

functions of local coordinates. Thus the {(Uα, ψα)} become the desired
trivializations. We have only to put the right topology on T (M) so that
T (M) becomes a differentiable manifold. We simply require that U ⊂ T (M)

be open if and only if ψα(U ∩ T (Uα)) is open in Uα × Rn for every α. This
is well defined since

ψα ◦ ψ−1
β : (Uα ∩ Uβ)× Rn −→ (Uα ∩ Uβ)× Rn

is a diffeomorphism for any α and β such that Uα∩Uβ 
= ∅ (since ψα◦ψ−1
β =

id×gαβ , where id is the identity mapping). Because the transition functions
are diffeomorphisms, this defines a differentiable structure on T (M) so that
the projection π and the local trivializations ψα are differentiable maps.

Example 2.5 (Tangent bundle to a complex manifold): Let X = (X,Ox)

be a complex manifold of complex dimension n, let

OX,x := lim
x ∈−−→
U ⊂X
open

O(U)

be the C-algebra of germs of holomorphic functions at x ∈ X, and let Tx(X)
be the derivations of this C-algebra (defined exactly as in Example 2.4). Then
Tx(X) is the holomorphic (or complex) tangent space to X at x. In local
coordinates, we see that Tx(X) ∼= Tx(Cn) (abusing notation) and that the
complex partial derivatives {∂/∂z1, . . . , ∂/∂zn} form a basis over C for the
vector space Tx(Cn) (see also Sec. 3). In the same manner as in Example 2.4
we can make the union of these tangent spaces into a holomorphic vector
bundle over X, i.e,. T (X) → X, where the fibres are all isomorphic to Cn.

Remark: The same technique used to construct the tangent bundles in
the above examples can be used to construct other vector bundles. For
instance, suppose that we have π : E → X, where X is an S-manifold and
π is a surjective map, so that

(a) Ep is a K-vector space,
(b) For each p ∈ X there is a neighborhood U of p and a bijective map:

h: π−1(U) −→ U ×Krsuch that h(Ep) ⊂ {p} ×Kr.
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(c) hp: Ep → {p} ×Kr
proj.−→Kr is a K-vector space isomorphism.

Then, if for every (Uα, hα), (Uβ, hβ) as in (b) hα ◦h−1
β is an S-isomorphism,

we can make E into an S-bundle over X by giving it the topology that
makes hα a homeomorphism for every α.

Example 2.6 (Universal bundle): Let Ur,n be the disjoint union of the
r-planes (r-dimensional K-linear subspaces) in Kn. Then there is a natural
projection

π : Ur,n → Gr,n,

where Gr,n = Gr,n(K), given by π(v) = S, if v is a vector in the r-plane S,
and S is considered as a point in the Grassmannian manifold Gr,n. Thus the
inverse image under π of a point p in the Grassmannian is the subspace of
Kn which is the point p, and we may regard Ur,n as a subset of Gr,n ×Kn.
We can make Ur,n into an S-bundle by using the coordinate systems of
Gr,n to define transition functions, as was done with the tangent bundle in
Example 2.4, and by then applying the remark following Example 2.5. To
simplify things somewhat consider U1,n → G1,n = Pn−1(R). First we note that
any point v ∈ U1,n can be represented (not in a unique manner) in the form

v = (tx0, . . . , txn−1) = t (x0, . . . , xn−1) ∈ Rn,

where (x0, . . . , xn−1) ∈ Rn − {0}, and t ∈ R. Moreover, the projection
π : U1,n → Pn−1 is given by

π(t (x0, . . . , xn−1)) = π(x0, . . . , xn−1) = [x0, . . . , xn−1] ∈ Pn−1.

Letting Uα = {[x0, . . . , xn−1] ∈ Pn−1: xα 
= 0}, (cf. Example 1.6), we see that

π−1(Uα) = {v = t (x0, . . . , xn−1) ∈ Rn: t ∈ R, xα 
= 0}.
Now if v = t (x0, . . . , xn−1) ∈ π−1(Uα), then we can write v in the form

v = tα

(
x0

xα
, . . . , 1

(α)
, . . . ,

xn−1

xα

)
,

and tα = txα ∈ R is uniquely determined by v. Then we can define the
mapping

hα: π−1(Uα) → Uα × R

by setting

hα(v) = hα(t (x0, . . . , xn−1)) = ([x0, . . . , xn−1], tα).
The mapping hα is bijective and is R-linear from the fibres of π−1(Uα) to
the fibres of Uα × R. Suppose now that v = t (x0, . . . , xn−1) ∈ π−1(Uα ∩Uβ),
then we have two different representations for v and we want to compute
the relationship. Namely,

hα(v) = ([x0, . . . , xn−1], tα)
hβ(v) = ([x0, . . . , xn−1], tβ)
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and then tα = txα, tβ = txβ , Therefore

t = tα

xα
= tβ

xβ
,

which implies that

tα = xα

xβ
tβ .

Thus if we let gαβ = xα/xβ , then it follows that gαβ • gβγ • gγα = 1, and thus by
the remark following Example 2.5, we see that U1,n can be given the structure
of a vector bundle by means of the functions {hα}, (the trivializations), and
the transition functions of U1,n

gαβ([x0, . . . , xn−1]) = xα

xβ
,

are mappings of Uα ∩ Uβ → GL(1,R) = R − {0}. These are the standard
transition functions for the universal bundle over Pn−1. Exactly the same
relation holds for U1,n(C) → Pn−1(C), which we meet again in later chapters.
Namely, for complex homogeneous coordinates [z0, . . . , zn−1] we have the
transition functions for the universal bundle over Pn−1(C):

gαβ([z0, . . . , zn−1]) = zα

zβ
.

The more general case of Ur,n → Gr,n can be treated in a similar manner,
using the coordinate systems developed in Sec. 1. We note that Ur,n(R) →
Gr,n(R) is a real-analytic (and hence also differentiable) R-vector bundle and
that Ur,n(C) → Gr,n(C) is a holomorphic vector bundle. The reason for the
name “universal bundle” will be made more apparent later in this section.

Definition 2.7: Let π : E → X be an S-bundle and U an open subset of
X. Then the restriction of E to U , denoted by E|U is the S-bundle

π |π−1(U): π−1(U) −→ U.

Definition 2.8: Let E and F be S-bundles over X; i.e., πE: E → X and
πF : F → X. Then a homomorphism of S-bundles,

f : E −→ F,

is an S-morphism of the total spaces which preserves fibres and isK-linear on
each fibre; i.e., f commutes with the projections and is a K-linear mapping
when restricted to fibres. An S-bundle isomorphism is an S-bundle homomor-
phism which is an S-isomorphism on the total spaces and a K-vector space
isomorphism on the fibres. Two S-bundles are equivalent if there is some
S-bundle isomorphism between them. This clearly defines an equivalence
relation on the S-bundles over an S-manifold, X.

The statement that a bundle is locally trivial now becomes the following:
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For every p ∈ X there is an open neighborhood U of p and a bundle
isomorphism

h: E|U ∼−→U ×Kr.

Suppose that we are given two K-vector spaces A and B. Then from
them we can form new K-vector spaces, for example,

(a) A⊕ B, the direct sum.
(b) A⊗ B, the tensor product.
(c) Hom(A,B), the linear maps from A to B.
(d) A∗, the linear maps from A to K.
(e) ∧kA, the antisymmetric tensor products of degree k (exterior algebra

of A).
(f) Sk(A), the symmetric tensor products of degree k (symmetric algebra

of A).

Using the remark following Example 2.5, we can extend all the above alge-
braic constructions to vector bundles. For example, suppose that we have
two vector bundles

πE: E −→ X and πF : F −→ X.

Then define
E ⊕ F =

⋃
p∈X
Ep ⊕ Fp.

We then have the natural projection

π : E ⊕ F −→ X

given by
π−1(p) = Ep ⊕ Fp.

Now for any p ∈ X we can find a neighborhood U of p and local
trivializations

hE: E|U ∼−→U ×Kn

hF : F |U ∼−→U ×Km,

and we define
hE⊕F : E ⊕ F |U −→ U × (Kn ⊕Km)

by hE⊕F (v+w) = (p, h
p

E(v)+hpF (w)) for v ∈ Ep and w ∈ Fp. Then this map
is bijective andK-linear on fibres, and for intersections of local trivializations
we obtain the transition functions

gE⊕F
αβ (p) =

[
gEαβ(p) 0
0 gFαβ(p)

]
.

So by the remark and the fact that gEαβ and gFαβ are bundle transition func-
tions, π : E⊕F → X is a vector bundle. Note that if E and F were S-bundles
over an S-manifold X, then gEαβ and gFαβ would be S-isomorphisms, and so
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E ⊕ F would then be an S-bundle over X. The same is true for all the
other possible constructions induced by the vector space constructions listed
above. Transition functions for the algebraically derived bundles are easily
determined by knowing the transition functions for the given bundle.

The above examples lead naturally to the following definition.

Definition 2.9: Let E
π−→X be an S-bundle. An S-submanifold F ⊂ E is

said to be an S-subbundle of E if

(a) F ∩ Ex is a vector subspace of Ex .
(b) π |F : F −→ X has the structure of an S-bundle induced by the

S-bundle structure of E, i.e., there exist local trivializations for E and F
which are compatible as in the following diagram:

E|U
∼

�� U ×Kr

F |U
i

��

∼
�� U ×Ks,

id × j
��

s ≤ r,
where the map j is the natural inclusion mapping of Ks as a subspace of
Kr and i is the inclusion of F in E.

We shall frequently use the language of linear algebra in discussing homo-

morphisms of vector bundles. As an example, suppose that E
f−→F is a

vector bundle homomorphism ofK-vector bundles over a spaceX. We define

Ker f =
⋃
x∈X

Kerfx

Im f =
⋃
x∈X

Imfx,

where fx = f |Ex . Moreover, we say that f has constant rank on X if rank
fx (as a K-linear mapping) is constant for x ∈ X.

Proposition 2.10: Let E
f−→F be an S-homomorphism of S-bundles over X.

If f has constant rank on X, then Ker f and Im f are S-subbundles of
E and F , respectively. In particular, f has constant rank if f is injective
or surjective.

We leave the proof of this simple proposition to the reader.
Suppose now that we have a sequence of vector bundle homomorphisms

over a space X,
· · · −→ E

f−→F
g−→G −→ · · · ,

then the sequence is said to be exact at F if Ker g = Imf . A short exact
sequence of vector bundles is a sequence of vector bundles (and vector
bundle homomorphisms) of the following form,

0 −→ E′ f−→E
g−→E′′ −→ 0,

which is exact at E′, E, and E′′. In particular, f is injective and g is surjective,
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and Im f = Ker g is a subbundle of E. We shall see examples of short
exact sequences and their utility in the next two chapters.

As we have stated before, vector bundles represent the geometry of the
underlying base space. However, to get some understanding via analysis of
vector bundles, it is necessary to introduce a generalized notion of function
(reflecting the geometry of the vector bundle) to which we can apply the
tools of analysis.

Definition 2.11: An S-section of an S-bundle E
π−→X is an S-morphism

s: X −→ E such that
π ◦ s = 1X,

where 1X is the identity on X; i.e., s maps a point in the base space into the
fibre over that point. S(X,E) will denote the S-sections of E over X. S(U,E)

will denote the S-sections of E|U over U ⊂ X; i.e., S(U,E) = S(U,E|U)
[we shall also occasionally use the common notation �(X,E) for sections,
provided that there is no confusion as to which category we are dealing with].

Example 2.12: Consider the trivial bundle M × R over a differentiable
manifold M. Then E(M,M × R) can be identified in a natural way with
E(M), the global real-valued functions on M. Similarly, E(M,M × Rn) can
be identified with global differentiable mappings of M into Rn (i.e., vector-
valued functions). Since vector bundles are locally of the form U × Rn,
we see that sections of a vector bundle can be viewed as vector-valued
functions (locally), where two different local representations are related by
the transition functions for the bundle. Therefore sections can be thought
of as “twisted” vector-valued functions.

Remarks: (a) A section s is often identified with its image s(X) ⊂ E;
for example, the term zero section is used to refer to the section 0: X −→ E

given by 0(x) = 0 ∈ Ex and is often identified with its image, which is, in
fact, S-isomorphic with the base space X.

(b) For S-bundles E
π−→X and E′ π ′−→X we can identify the set of

S-bundle homomorphisms of E into E′, with S(X,Hom(E,E′)). A section
s ∈ S(X,Hom(E,E′)) picks out for each point x ∈ X a K-linear map s(x):
Ex −→ E′

x , and s is identified with fs : E −→ E′ which is defined by

fs |Eπ(e) = s(π(e)) for e ∈ E.
(c) If E −→ X is an S-bundle of rank r with transition functions

{gαβ} associated with a trivializing cover {Uα}, then let fα: Uα −→ Kr be
S-morphisms satisfying the compatibility conditions

fα = gαβfβ on Uα ∩ Uβ 
= ∅.
Here we are using matrix multiplication, considering fα and fβ as column
vectors. Then the collection {fα} defines an S-section f of E, since each
fα gives a section of Uα ×Kr , and this pulls back by the trivialization to a
section of E|Uα . These sections of E|Uα agree on the overlap regions Uα∩Uβ
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by the compatibility conditions imposed on {fα}, and thus define a global
section. Conversely, any S-section of E has this type of representation. We
call each fα a trivialization of the section f .

Example 2.13: We use remark (c) above to compute the global sections
of the holomorphic line bundles Ek −→ P1(C), which we define as follows,
using the transition function g01 for the universal bundle U1,2(C) −→ P1(C)
of Example 2.6. Let the P1(C) coordinate maps (Example 1.6) ϕ̃ : Uα −→ C
be denoted by ϕ0([z0, z1]) = z1/z0 = z and ϕ1([z0, z1]) = z0/z1 = w so that
z = ϕ0 ◦ ϕ−1

1 (w) = 1/w for w 
= 0. For a fixed integer k define the line
bundle Ek −→ P1(C) by the transition function gk01 : U0 ∩U1 −→ GL(1,C)
where gk01([z0, z1]) = (z0/z1)

k. Ek is the kth tensor power of U1,2(C) for
k > 0, the kth tensor power of the dual bundle U1,2(C)∗ for k < 0, and
trivial for k = 0. If f ∈ O(P1(C), Ek), then each trivialization of f, fα
is in O(Uα, Uα × C) = O(Uα) and the fα ◦ ϕ−1

α are entire functions, say
f0 ◦ ϕ−1

0 (z) = ∑∞
n=0 anz

n and f1 ◦ ϕ−1
1 (w) = ∑∞

n=0 bnw
n. If z = ϕ0(p) and

w = ϕ1(p), then by remark (c), f0(p) = gk01(p)f1(p), for p ∈ U0 ∩U1 in the
w-coordinate plane, and this becomes
∞∑
n=0

an(1/w)n =f0 ◦ϕ−1
0 (ϕ0 ◦ϕ−1

1 (w)) = gk01(ϕ
−1
1 (w))f1 ◦ϕ−1

1 (w) = wk
∞∑
n=0

bnw
n.

Hence,

O(P1(C), Ek) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for k > 0,
C for k = 0 (Theorem 1.11),
homogeneous polynomials for k < 0.
in C2 of degree −k

When dealing with certain categories of S-manifolds, it is possible to
define algebraic structures on S(X,E). First, S(X,E) can be made into a
K-vector space under the following operations:

(a) For s, t ∈ S(X,E),
(s + t)(x) := s(x)+ t (x) for all x ∈ X.

(b) For s ∈ S(X,E) and α ∈ K, (αs)(x) := α(s(x)) for all s ∈ X.
Moreover, S(X,E) can be given the structure of an SX(X) module [where
the SX(X) are the globally defined K-valued S-functions on X] by defining

(c) For s ∈ S(X,E) and f ∈ SX(X),
f s(x) := f (x)s(x) for all x ∈ X.

To ensure that the above maps actually are S-morphisms and thus S-sections,
it is necessary that the vector space operations on Kn be S-morphisms in
the S-structure on Kn. But this is clearly the case for the three categories
with which we are dealing.

Let M be a differentiable manifold and let T (M) −→ M be its tangent
bundle. Using the techniques outlined above, we would like to consider new
differentiable vector bundles over M, derived from T (M). We have
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(a) The cotangent bundle, T ∗(M), whose fibre at x ∈ M,T ∗
x (M), is the

R-linear dual to Tx(M).
(b) The exterior algebra bundles, ∧pT (M),∧pT ∗(M), whose fibre at

x ∈ M is the antisymmetric tensor product (of degree p) of the vector
spaces Tx(M) and T ∗

x (M), respectively, and

∧T (M) =
n⊕
p=0

∧pT (M)

∧T ∗(M) =
n⊕
p=0

∧pT ∗(M).

(c) The symmetric algebra bundles, Sk(T (M)), Sk(T ∗(M)), whose fibres
are the symmetric tensor products (of degree k) of Tx(M) and T ∗

x (M),
respectively.

We define
Ep(U) = E(U,∧pT ∗(M)),

the C∞ differential forms of degree p on the open set U ⊂ M. As usual,
we can define the exterior derivative

d: Ep(U) −→ Ep+1(U).

We recall how this is done. First, consider U ⊂ Rn and recall that the deriva-
tions {∂/∂x1, . . . , ∂/∂xn} form a basis for Tx(Rn) at x ∈ U . Let {dx1, . . . , dxn}
be a dual basis for T ∗

x (R
n). Then the maps

dxj : U −→ T ∗(Rn)|U
given by

dxj (x) = dxj |x
form a basis for the E(U)(= ER′′(U))-module E(U, T ∗(Rn)) = E1(U). More-
over, {dxI = dxi1 ∧ · · · ∧ dxip }, where I = (i1, . . . , ip) and 1 ≤ i1 <

i2 < · · · < ip ≤ n, form a basis for the E(U)-module Ep(U). We defined
d: Ep(U) −→ Ep+1(U) as follows:

Case 1 (p = 0): Suppose that f ∈ E0(U) = E(U). Then let

df =
n∑
j=1

∂f

∂xj
dxj ∈ E1(U).

Case 2 (p > 0): Suppose that f ∈ Ep(U). Then

f =
∑
|I |=p

′
fIdxI ,

where fI ∈ E(U), I = (i1, . . . , ip), |I | = the number of indices, and
∑′

signifies that the sum is taken over strictly increasing indices. Then

df =
∑
|I |=p

′
dfI ∧ dxI =

∑
|I |=p

′ n∑
j=1

∂fI

∂xj
dxj ∧ dxI .
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Suppose now that (U, h) is a coordinate system on a differentiable manifold
M. Then we have that T (M)|U ∼−→ T (Rn)|h(U); hence Ep(U)

∼← Ep(h(U)), and
the mapping

d: Ep(h(U)) −→ Ep+1(h(U))

defined above induces a mapping (also denoted by d)

d: Ep(U) −→ Ep+1(U).

This defines the exterior derivative d locally on M, and it is not difficult to
show, using the chain rule, that the definition is independent of the choice
of local coordinates. It follows that the exterior derivative is well defined
globally on the manifold M.

We have previously defined a bundle homomorphism of two bundles over
the same base space (Definition 2.8). We now would like to define a mapping
between bundles over different base spaces.

Definition 2.14: An S-bundle morphism between two S-bundles πE: E −→ X

and πF : F −→ Y is an S-morphism f : E −→ F which takes fibres of E
isomorphically (as vector spaces) onto fibres in F . An S-bundle morphism
f : E −→ F induces an S-morphism f̄ (πE(e)) = πF (f (e)); in other words,
the following diagram commutes:

E

πE ��

f

�� F

πF��
X

f

�� Y.

If X is identified with 0(X), the zero section, then f̄ may be identified with
f̄ = f |x : X −→ Y = 0(Y )

since f is a homomorphism on fibres and maps the zero section of X into
the zero section of Y , which can likewise be identified with Y . If E and
F are bundles over the same space X and f̄ is the identity, then E and
F are said to be equivalent (which implies that the two vector bundles are
S-isomorphic and hence equivalent in the sense of Definition 2.8).

Proposition 2.15: Given an S-morphism f : X −→ Y and an S-bundle
π : E −→ Y , then there exists an S-bundle π ′: E′ −→ X and an S-bundle
morphism g such that the following diagram commutes:

E′

π ′
��

g

�� E

π��
X

f

�� Y.

Moreover, E′ is unique up to equivalence. We call E′ the pullback of E by f
and denote it by f ∗E.

Proof: Let
(2.3) E′ = {(x, e) ∈ X × E: f (x) = π(e)}.
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We have the natural projections
g: E′ −→ E and π ′: E′ −→ X

(x, e) −→ e (x, e) −→ x.

Giving E′
x = {x} × Ef(x) the structure of a K-vector space induced by

Ef(x), E
′ becomes a fibered family of vector spaces over X.

If (U, h) is a local trivialization for E, i.e.,

E|U
h∼−→U ×Kn,

then it is easy to show that
E′|f−1(U)

∼−→ f −1(U)×Kn

is a local trivialization of E′; hence E′ is the necessary bundle.
Suppose that we have another bundle π̃ : Ẽ −→ X and a bundle morphism

g̃ such that

Ẽ

π̃ ��

g̃

�� E

π
��

X
f

�� Y

commutes. Then define the bundle homomorphism h: Ẽ −→ E′ by

h(ẽ) = (π̃(ẽ), g̃(ẽ)) ∈ {π(ẽ)} × E.
Note that h(ẽ) ∈ E′ since the commutativity of the above diagram yields
f (π̃(ẽ)) = π(g̃(ẽ)); hence this is a bundle homomorphism. Moreover, it is
a vector space isomorphism on fibres and hence an S-bundle morphism
inducing the identity 1X: X −→ X, i.e., an equivalence.

Q.E.D.

Remark: In the diagram in Proposition 2.15, the vector bundle E′ and
the maps π ′ and g depend on f and π , and we shall sometimes denote
this relation by

f ∗ E

πf
��

f∗
�� E

π
��

X
f

�� Y

to indicate the dependence on the map f of the pullback. For convenience,
we assume from now on that f ∗E is given by (2.3) and that the maps πf
and f∗ are the natural projections.

The concepts of S-bundle homomorphism and S-bundle morphism are
related by the following proposition.

Proposition 2.16: Let E
π−→X and E′ π ′−→Y be S-bundles. If f : E −→ E′ is

an S-morphism of the total spaces which maps fibres to fibres and which is
a vector space homomorphism on each fibre, then f can be expressed as the
composition of an S-bundle homomorphism and an S-bundle morphism.
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Proof: Let f̄ be the map on base spaces f̄ : X −→ Y induced by f .
Let f̄ ∗E′ be the pullback of E′ by f̄ , and consider the following diagram,

E
π

����
��

��
��

h
�� f̄ ∗ E′

π ′
f̄��

f̄∗
�� E′

π ′
��

X
f̄

�� Y,

where h is defined by h(e) = (π(e), f (e)) [see (2.3)]. It is clear that f = f̄∗◦h.
Moreover, f̄∗ is an S-bundle morphism, and h is an S-bundle homomorphism.

Q.E.D.

There are two basic problems concerning vector bundles on a given space:
first, to determine, up to equivalence, how many different vector bundles
there are on a given space, and second, to decide how “twisted” or how
far from being trivial a given vector bundle is. The second question is the
motivation for the theory of characteristic classes, which will be studied
in Chap. III. The first question has different “answers,” depending on the
category. A special important case is the following theorem. Let U = Ur,n
denote the universal bundle over Gr,n (see Example 2.6).

Theorem 2.17: Let X be a differentiable manifold and let E −→ X be
a differentiable vector bundle of rank r. Then there exists an N > 0
(depending only on X) and a differentiable mapping f : X −→ Gr,N(R)),
so that f ∗U ∼= E. Moreover, any mapping f̃ which is homotopic to f has
the property that f̄ ∗U ∼= E.

We recall that f and f̃ are homotopic if there is a one-parameter family
of mappings F : [0, 1] × X −→ Gr,N so that F |{0}×X = f and F |{1}×X = f̃ .
The content of the theorem is that the different isomorphism classes of dif-
ferentiable vector bundles over X are classified by homotopy classes of maps
into the GrassmannianGr,N . For certain spaces, these are computable (e.g., if
X is a sphere, see Steenrod [1]). If one assumes that X is compact, one can
actually require that the mapping f in Theorem 2.17 be an embedding of X
intoGr,N (by lettingN be somewhat larger). One could have phrased the above
result in another way: Theorem 2.17 is valid in the category of continuous
vector bundles, and there is a one-to-one correspondence between isomor-
phism classes of continuous and differentiable (and also real-analytic) vector
bundles. However, such a result is not true in the case of holomorphic vec-
tor bundles over a compact complex manifold unless additional assumptions
(positivity) are made. This is studied in Chap. VI. In fact, the problem of find-
ing a projective algebraic embedding of a given compact complex manifold
(mentioned in Sec. 1) is reduced to finding a class of holomorphic bundles
over X so that Theorem 2.17 holds for these bundles and the mapping f
gives an embedding intoGr,n(C), which by Proposition 1.14 is itself projective
algebraic. We shall not need the classification given by Theorem 2.17 in our
later chapters and we refer the reader to the classical reference Steenrod
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[1] (also see Proposition III.4.2). A thorough and very accessible discussion
of the topics in this section can be found in Milnor [2].

The set of all vector bundles on a space X (in a given category) can
be made into a ring by considering the free abelian group generated by
the set of all vector bundles and introducing the equivalence relation that
E − (E′ + E′′) is equivalent to zero if there is a short exact sequence of
the form 0 −→ E′ −→ E −→ E′′ −→ 0. The set of equivalence classes
form a ring K(X) (using tensor product as multiplication), which was first
introduced by Grothendieck in the context of algebraic geometry (Borel and
Serre [2]) and generalized by Atiyah and Hirzebruch [1]. For an introduction
to this area, as well as a good introduction to vector bundles which is more
extensive than our brief summary, see the text by Atiyah [1]. The subject of
K-theory plays an important role in the Atiyah-Singer theorem (Atiyah and
Singer [1]) and in modern differential topology. We shall not develop this in
our book, as we shall concentrate more on the analytical side of the subject.

3. Almost Complex Manifolds and the ∂̄-Operator

In this section we want to introduce certain first-order differential oper-
ators which act on differential forms on a complex manifold and which
intrinsically reflect the complex structure. The most natural context in which
to discuss these operators is from the viewpoint of almost complex man-
ifolds, a generalization of a complex manifold which has the first-order
structure of a complex manifold (i.e., at the tangent space level). We shall
first discuss the concept of a C-linear structure on an R-linear vector space
and will apply the (linear algebra) results obtained to the real tangent bundle
of a differentiable manifold.

Let V be a real vector space and suppose that J is an R-linear isomorphism
J : V ∼−→V such that J 2 = −I (where I = identity). Then J is called a
complex structure on V . Suppose that V and a complex structure J are
given. Then we can equip V with the structure of a complex vector space
in the following manner:

(α + iβ)v := αv + βJv, α, β ∈ R, i = √−1.

Thus scalar multiplication on V by complex numbers is defined, and it is
easy to check that V becomes a complex vector space. Conversely, if V is a
complex vector space, then it can also be considered as a vector space over
R, and the operation of multiplication by i is an R-linear endomorphism of
V onto itself, which we can call J , and is a complex structure. Moreover,
if {v1, . . . , vn} is a basis for V over C, then {v1, . . . , vn, J v1, . . . , J vn} will
be a basis for V over R.

Example 3.1: Let Cn be the usual Euclidean space of n-tuples of complex
numbers, {z1, . . . , zn}, and let zj = xj + iyj , j = 1, . . . , n, be the real and
imaginary parts. Then Cn can be identified with R2n = {x1, y1, . . . , xn, yn},
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xj , yj ∈ R. Scalar multiplication by i in Cn induces a mapping J : R2n −→ R2n

given by
J (x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn),

and, moreover, J 2 = −1. This is the standard complex structure on R2n.
The coset space GL(2n,R)/GL(n,C) determines all complex structures on
R2n by the mapping [A] −→ A−1JA, where [A] is the equivalence class of
A ∈ GL(2n,R).

Example 3.2: Let X be a complex manifold and let Tx(X) be the (com-
plex) tangent space to X at x. Let X0 be the underlying differentiable
manifold of X (i.e., X induces a differentiable structure on the underlying
topological manifold of X) and let Tx(X0) be the (real) tangent space to X0

at x. Then we claim that Tx(X0) is canonically isomorphic with the underlying
real vector space of Tx(X) and that, in particular, Tx(X) induces a complex
structure Jx on the real tangent space Tx(X0). To see this, we let (h, U) be a
holomorphic coordinate system near x. Then h: U −→ U ′ ⊂ Cn, and hence,
by taking real and imaginary parts of the vector-valued function h, we obtain

h̃:U −→ R2n

given by

h̃(x) = (Re h1(x), Im h1(x), . . . ,Re hn(x), Im hn(x)),

which is a real-analytic (and, in particular, differentiable) coordinate sys-
tem for X0 near x. Then it suffices to consider the claim above for the
vector spaces T0(Cn) and T0(R2n) at 0 ∈ Cn, where R2n has the standard
complex structure. Let {∂/∂z1, . . . , ∂/∂zn} be a basis for T0(Cn) and let
{∂/∂x1, ∂/∂y1, . . . , ∂/∂xn, ∂/∂yn} be a basis for T0(R2n). Then we have the
diagram

T0(Cn) ∼= CCn

α‖ �R ‖�R
T0(R2n) ∼= RR2n,

where α is the R-linear isomorphism between T0(R2n) and T0(Cn) induced
by the other maps, and thus the complex structure of T0(Cn) induces a
complex structure on T0(R2n), just as in Example 3.1. We claim that the
complex structure Jx induced on Tx(X0) in this manner is independent of
the choice of local holomorphic coordinates. To check that this is the case,
consider a biholomorphism f defined on a neighborhood N of the origin
in Cn, f : N −→ N , where f (0) = 0. Then, letting ζ = f (z) and writing
in terms of real and imaginary coordinates, we have the corresponding
diffeomorphism expressed in real coordinates:

ξ = u(x, y)

η = v(x, y),
(3.1)

where ξ, η, x, y ∈ Rn and ξ + iη = ζ ∈ Cn, x + iy = z ∈ Cn. The map
f (z) corresponds to a holomorphic change of coordinates on the complex
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manifold X; the pair of mappings u, v corresponds to the change of coor-
dinates for the underlying differentiable manifold. The Jacobian matrix
(differential) of these mappings corresponds to the transition functions for
the corresponding trivializations for T (X) and T (X0), respectively. Let J
denote the standard complex structure in Cn, and we shall show that J
commutes with the Jacobian of the real mapping. The real Jacobian of (3.1)
has the form of an n× n matrix of 2 × 2 blocks,

M =

⎡⎢⎢⎢⎣
∂uα

∂xβ

∂uα

∂yβ

∂vα

∂xβ

∂vα

∂yβ

⎤⎥⎥⎥⎦ , α, β = 1, . . . , n,

which, by the Cauchy-Riemann equations (since f is a holomorphic
mapping), is the same as⎡⎢⎢⎢⎣

∂vα

∂yβ

∂uα

∂yβ

−∂uα
∂yβ

∂vα

∂yβ

⎤⎥⎥⎥⎦ , α, β = 1, . . . , n.

Thus the Jacobian is an n×n matrix consisting of 2 × 2 blocks of the form[
a b

−b a

]
.

Moreover, J can be expressed in matrix form as an n× n matrix of 2 × 2
blocks with matrices of the form[

0 1
−1 0

]
along the diagonal and zero elsewhere. It is now easy to check that MJ =
JM. It follows then that J induces the same complex structure on Tx(X0)

for each choice of local holomorphic coordinates at x.

Let V be a real vector space with a complex structure J , and consider
V ⊗R C, the complexification of V . The R-linear mapping J extends to a C-
linear mapping on V ⊗R C by setting J (v⊗α) = J (v)⊗α for v ∈ V, α ∈ C.
Moreover, the extension still has the property that J 2 = −I , and it follows
that J has two eigenvalues {i,−i}. Let V 1,0 be the eigenspace corresponding
to the eigenvalue i and let V 0,1 be the eigenspace corresponding to −i. Then
we have

V ⊗R C = V 1,0 ⊕ V 0,1.

Moreover, conjugation on V ⊗R C is defined by v ⊗ α = v ⊗ ᾱ for v ∈ V
and α ∈ C. Thus V 1,0 ∼=R V

0,1 (conjugation is a conjugate-linear mapping).
It is easy to see that the complex vector space obtained from V by means
of the complex structure J , denoted by VJ , is C-linearly isomorphic to V 1,0,
and we shall identify VJ with V 1,0 from now on.
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We now want to consider the exterior algebras of these complex vector
spaces. Namely, denote V ⊗R C by Vc and consider the exterior algebras

∧Vc, ∧V 1,0, and ∧ V 0,1.

Then we have natural injections
∧V 1,0

∧Vc,
∧V 0,1

and we let ∧p,qV be the subspace of ∧Vc generated by elements of the form
u ∧ w, where u ∈ ∧pV 1,0 and w ∈ ∧qV 0,1. Thus we have the direct sum
(letting n = dimcV

1,0)

∧Vc =
2n∑
r=0

∑
p+q=r

∧p,qV .

We now want to carry out the above algebraic construction on the tangent
bundle to a manifold. First, we have a definition.

Definition 3.3: Let X be a differentiable manifold of dimension 2n. Suppose
that J is a differentiable vector bundle isomorphism

J : T (X) −→ T (X)

such that Jx : Tx(X) −→ Tx(X) is a complex structure for Tx(X); i.e., J 2 = −I ,
where I is the identity vector bundle isomorphism acting on T (X). Then
J is called an almost complex structure for the differentiable manifold X.
If X is equipped with an almost complex structure J , then (X, J ) is called
an almost complex manifold.

We see that a differentiable manifold having an almost complex structure
is equivalent to prescribing a C-vector bundle structure on the R-linear
tangent bundle.

Proposition 3.4: A complex manifold X induces an almost complex
structure on its underlying differentiable manifold.

Proof: As we saw in Example 3.2, for each point x ∈ X there is a com-
plex structure induced on Tx(X0), where X0 is the underlying differentiable
manifold. What remains to check is that the mapping

Jx : Tx(X0) −→ Tx(X0), x ∈ X0,

is, in fact, a C∞ mapping with respect to the parameter x. To see that J is
a C∞ vector bundle mapping, choose local holomorphic coordinates (h, U)
and obtain a trivialization for T (X0) over U , i.e.,

T (X0)|U ∼= h(U)× R2n,

where we let zj = xj + iyj be the coordinates in h(U) and (ξ1, η1, . . . , ξn, ηn)
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be the coordinates in R2n. Then the mapping J |U is defined by (with respect
to this trivialization)

id × J : h(U)× R2n −→ h(U)× R2n,

where
J (ξ1, η1, . . . , ξn, ηn) = (−η1, ξ1, . . . ,−ηn, ξn),

as before, That is, in this trivialization J is a constant mapping, and hence
C∞. Since differentiability is a local property, it follows that J is a differ-
entiable bundle mapping.

Q.E.D.

Remark: There are various examples of almost complex structures which
do not arise from complex structures. The 2-sphere S2 carries a complex
structure [∼= P1(C)], and the 6-sphere S6 carries an almost complex structure
induced on it by the unit Cayley numbers in S7 (see Steenrod [1]). However,
this almost complex structure does not come from a complex structure (it is
not integrable; see the discussion below). Moreover, it is unknown whether S6

carries a complex structure. A theorem of Borel and Serre [1] asserts that only
S2 and S6 admit almost complex structures among the even dimensional
real spheres. For more information about almost complex structures on
manifolds, consult, e.g., Kobayashi and Nomizu [1] or Helgason [1].

Let X be a differentiable m-manifold, let T (X)c = T (X) ⊗R C be the
complexification of the tangent bundle, and let T ∗(X)c be the complexifi-
cation of the cotangent bundle. We can form the exterior algebra bundle
∧T ∗(X)c, and we let

Er (X)c = E(X,∧rT ∗(X)c).
These are the complex-valued differential forms of total degree r on X. We
shall usually drop the subscript c and denote them simply by Er (X) when
there is no chance of confusion with the real-valued forms discussed in
Sec. 2. In local coordinates we have ϕ ∈ Er (X) if and only if ϕ can be
expressed in a coordinate neighborhood by

ϕ(x) =
∑
|I |=r

′
ϕI (x)dxI ,

where we use the multiindex notation of Sec. 2. and ϕI (x) is a C∞ complex-
valued function on the neighborhood. The exterior derivative d is extended
by complex linearity to act on complex-valued differential forms, and we
have the sequence

E0(X)
d−→ E1(X)

d−→ · · · d−→ Em(X) −→ 0,
where d2 = 0.

Suppose now that (X, J ) is an almost complex manifold. Then we can
apply the linear algebra above to T (X)c. Namely, J extends to a C-linear bun-
dle isomorphism on T (X)c and has (fibrewise) eigenvalues ±i. Let T (X)1,0

be the bundle of (+i)-eigenspaces for J and let T (X)0,1 be the bundle of
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(−i)-eigenspaces for J [note that these are differentiable subbundles of
T (X)c]. We can define a conjugation on T (X)c,

Q: T (X)c −→ T (X)c,

by fibrewise conjugation, and, as before,

Q: T (X)1,0 −→ T (X)0,1

is a conjugate-linear isomorphism. Moreover, there is a C-linear isomorphism

T (X)J ∼= T (X)1,0,

where T (X)J is the C-linear bundle constructed from T (X) by means of J .
Let T ∗(X)1,0, T ∗(X)0,1 denote the C-dual bundles of T (X)1,0 and T (X)0,1,
respectively. Consider the exterior algebra bundles ∧T ∗(X)c,∧T ∗(X)1,0, and
∧T ∗(X)0,1, and, as in the case of vector spaces, we have

T ∗(X)c = T ∗(X)1,0 ⊕ T ∗(X)0,1

and natural bundle injections
∧T ∗(X)1,0

∧T ∗(X)c,
∧T ∗(X)0,1

and we let ∧p,qT ∗(X) be the bundle whose fibre is ∧p,qT ∗
x (X). This bundle

is the one we are interested in, since its sections are the complex-valued
differential forms of type (p, q) on X, which we denote by

Ep,q(X) = E(X,∧p,qT ∗(X)).

Moreover, we have that

Er (X) =
∑
p+q=r

Ep,q(X).

Note that the differential forms of degree r do not reflect the almost complex
structure J , whereas its decomposition into subspaces of type (p, q) does.

We want to obtain local representations for differential forms of type
(p, q). To do this, we make the following general definition.

Definition 3.5: Let E −→ X be an S-bundle of rank r and let U be
an open subset of X. A frame for E over U is a set of r S-sections
{s1, . . . , sr}, sj ∈ S(U,E), such that {s1(x), . . . , sr (x)} is a basis for Ex for
any x ∈ U .

Any S-bundle E admits a frame in some neighborhood of any given point
in the base space. Namely, let U be a trivializing neighborhood for E so
that

h: E|U ∼−→U ×Kr,

and thus we have an isomorphism

h∗: S(U,E|U) ∼−→S(U,U ×Kr).

Consider the vector-valued functions

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , er = (0, . . . , 0, 1),
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which clearly form a (constant) frame for U × Kn, and thus {(h∗)−1(e1),
. . . , (h∗)−1(er)} forms a frame for E|U , since the bundle mapping h is an
isomorphism on fibres, carrying a basis to a basis. Therefore we see that
having a frame is equivalent to having a trivialization and that the existence
of a global frame (defined over X) is equivalent to the bundle being trivial.

Let now (X, J ) be an almost complex manifold as before and let
{w1, . . . , wn} be a local frame (defined over some open set U ) for T ∗(X)1,0.
It follows that {w̄1, . . . , w̄n}† is a local frame for T ∗(X)0,1. Then a local
frame for ∧p,qT ∗(X) is given by (using the multiindex notation of Sec. 2)

{wI ∧ w̄J }, |I | = p, |J | = q, (I, J strictly increasing).

Therefore any section s ∈ Ep,q(X) can be written (in U ) as

s =
∑
|I |=p
|J |=q

′
aIJw

I ∧ w̄J , aIJ ∈ E0(U).

Note that
ds =

∑
|I |=p
|J |=q

′
daIJ ∧ wI ∧ w̄J + aIJ d(wI ∧ w̄J ),

where the second term is not necessarily zero, since wi(x) is not necessarily
a constant function of the local coordinates in the base space (which will,
however, be the case for a complex manifold and certain canonical frames
defined with respect to local holomorphic coordinates, as will be seen below).

We now have, based on the almost complex structure, a direct sum
decomposition of Er (X) into subspaces {Ep,q(X)}. Let πp,q denote the natural
projection operators

πp,q : Er (X) −→ Ep,q(X), p + q = r.

We have in general
d: Ep,q(X) −→ Ep+q+1(X) =

∑
r+s=p+q+1

Er,s(X)

by restricting d to Ep,q . We define
∂: Ep,q(X) −→ Ep+1,q(X)

∂̄: Ep,q(X) −→ Ep,q+1(X)
by setting

∂ = πp+1,q ◦ d
∂̄ = πp,q+1 ◦ d.

We then extend ∂ and ∂̄ to all

E∗(X) =
dim X∑
r=0

Er (X)

by complex linearity.
Recalling that Q denotes complex conjugation, we have the following

elementary results.

Proposition 3.6: Q∂̄(Qf ) = ∂f, for f ∈ E∗(X).

†We shall use both Q and overbars to denote the conjugation, depending on the context.
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Proof: One has to verify that if f ∈ Er (X) and p+q = r, then Qπp,qf =
πq,pQf and Q(df ) = dQf , which are simple, and we shall omit the details.

Q.E.D.

In general, we know that d2 = 0, but it is not necessarily the case that
∂̄2 = 0. However, it follows from Proposition 3.6 that ∂̄2 = 0 if and only if
∂2 = 0.

In general
d: Ep,q(X) −→ Ep+q+1(X)

can be decomposed as

d =
∑

r+s=p+q+1

πr,s ◦ d = ∂ + ∂̄ + · · · .

If, however, d = ∂ + ∂̄, then

d2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2,

and since each operator projects to a different summand of Ep+q+2(X) (in
which case the operators are said to be of different type), we obtain

∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0.

If d = ∂ + ∂̄ then we say that the almost complex structure is integrable.

Theorem 3.7: The induced almost complex structure on a complex manifold
is integrable.

Proof: Let X be a complex manifold and let (X0, J ) be the underlying
differentiable manifold with the induced almost complex structure J . Since
T (X) is C-linear isomorphic to T (X0) equipped with the C-bundle structure
induced by J , it follows that, as C-bundles,

T (X) ∼= T (X0)
1,0,

and similarly for the dual bundles,
T ∗(X) ∼= T ∗(X0)

1,0.

But {dz1, . . . , dzn} is a local frame for T ∗(X) if (z1, . . . , zn) are local
coordinates (recall that {dz1, . . . , dzn} are dual to {∂/∂z1, . . . , ∂/∂zn}). We set

∂

∂zj
= 1

2

(
∂

∂xj
− i ∂
∂yj

)
, j = 1, . . . , n

∂

∂z̄j
= 1

2

(
∂

∂xj
+ i ∂
∂yj

)
, j = 1, . . . , n,

where {∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn} is a local frame for T (X0)c and
{∂/∂z1, . . . , ∂/∂zn} is a local frame for T (X) (cf. Examples 2.4 and 2.5).
We observe that ∂/∂zj so defined is the complex (partial) derivative of a
holomorphic function, and thus the assertion that these derivatives form a
local frame for T (X) is valid. From the above relationships, it follows that

dzj = dxj + idyj
dz̄j = dxj − idyj , j = 1, . . . , n,
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which gives

dxj = 1
2
(dzj + dz̄j )

dyj = 1
2i
(dzj − dz̄j ), j = 1, · · · , n.

This in turn implies that for s ∈ Ep,q(X)

s =
∑
I,J

′
aIJ dz

I ∧ dz̄J .
We have

ds =
n∑
j=1

∑
I,J

′
(
∂aIJ

∂xj
dxj + ∂aIJ

∂yj
dyj

)
∧ dzI ∧ dz̄J

=
n∑
j=1

∑
I,J

′ ∂aIJ
∂zj

dzj ∧ dzI ∧ dz̄J

+
n∑
j=1

∑
I,J

′ ∂aIJ
∂z̄J

dz̄J ∧ dzJ ∧ dz̄J .

The first term is of type (p + 1, q), and so

∂ =
n∑
j=1

∂

∂zj
dzj ,

and similarly
∂̄ =

n∑
j=1

∂

∂z̄j
dz̄j ,

and hence d = ∂ + ∂̄. Thus the almost complex structure induced by the
complex structure of X is integrable.

Q.E.D.

The converse of this theorem is a deep result due to Newlander and
Nirenberg [1], whose proof has been simplified in recent years (see, e.g.,
Kohn [1], Hörmander [2]).

Theorem 3.8 (Newlander-Nirenberg): Let (X, J ) be an integrable almost
complex manifold. Then there exists a unique complex structure OX on X
which induces the almost complex structure J .

We shall not prove this theorem, and instead refer the reader to
Hörmander [2]. We shall mention, however, that it can easily be reduced
to a local problem—and, indeed, to solving particular partial differential
equations (namely the inhomogeneous Cauchy-Riemann equations) with
estimates. In the case where (X, J ) is a real-analytic almost complex mani-
fold, there are simpler proofs (see e.g., Kobayashi-Nomizu, Vol. II [1]). We
shall not need this theorem, but we shall mention that it plays an impor-
tant role in the study of deformations of complex structures on a fixed
differentiable manifold, a topic we shall discuss in Chap. V.



CHAPTER II

S H E A F T H E O RY

Sheaves were introduced some 20 years ago by Jean Leray and have had a
profound effect on several mathematical disciplines. Their major virtue is that
they unify and give a mechanism for dealing with many problems concerned
with passage from local information to global information. This is very useful
when dealing with, say, differentiable manifolds, since locally these look like
Euclidean space, and hence localized problems can be dealt with by means
of all the tools of classical analysis. Piecing together “solutions” of such
local problems in a coherent manner to describe, e.g., global invariants, is
most easily accomplished via sheaf theory and its associated cohomology
theory. The major virtue of sheaf theory is information-theoretic in nature.
Most problems could be phrased and perhaps solved without sheaf theory,
but the notation would be enormously more complicated and difficult to
comprehend.

In Sec. 1 we shall give the basic definition of presheaves and sheaves,
including a variety of examples. In Sec. 2 we shall develop one of the
basic computational tools associated with a sheaf, namely a resolution,
and again there are more examples. Section 3 contains an introduction to
cohomology theory via abstract (canonical) soft (or flabby) resolutions, and
we shall prove some basic isomorphism theorems which give us an explicit
version of de Rham’s theorem, for instance. In Sec. 4 we give a brief
summary of Čech cohomology theory, an alternative and equally useful
method for computing cohomology. General references for this chapter
include Bredon [1], Godement [1], and selected chapters in Gunning and
Rossi [1] and Hirzebruch [1].

1. Presheaves and Sheaves

In this section we shall introduce the basic concepts of presheaves and
sheaves, giving various examples to illustrate the main ideas. We shall start
with some formal definitions.

Definition 1.1: A presheaf F over a topological space X is

36
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(a) An assignment to each nonempty open set U ⊂ X of a set F(U).
(b) A collection of mappings (called restriction homomorphisms)

rUV : F(U) −→ F(V )

for each pair of open sets U and V such that V ⊂ U , satisfying
(1) rUU = identity on U(= 1U).
(2) For U ⊃ V ⊃ W, rUW = rVW ◦ rUV .

If F and G are presheaves over X, then a morphism (of presheaves)
h : F −→ G

is a collection of maps
hU : F(U) −→ G(U)

for each open set U in X such that the following diagram commutes:

F(U)

rUV��

�� G(U)

rUV��
F(V ) �� G(V ), V ⊂ U ⊂ X.

F is said to be a subpresheaf of G if the maps hU above are inclusions.

Remark: We shall be dealing primarily with presheaves, F, where F(U)

has some algebraic structure (e.g., abelian groups). In this case we also
require that the subpresheaves have the induced substructure (e.g., sub-
groups) and that restriction homomorphisms and morphisms preserve the
algebraic structure (e.g., rUV and hU are group homomorphisms). Moreover,
we shall call the elements of F(U) sections of F over U for reasons which
will become apparent later.

Definition 1.2: A presheaf F is called a sheaf if for every collection Ui of
open subsets of X with U = ∪ Ui then F satisfies

Axiom S1: If s, t ∈ F(U) and rUUi (s) = rUUi (t) for all i, then s = t .
Axiom S2: If si ∈ F(Ui) and if for Ui ∩ Uj 
= � we have

r
Ui
Ui∩Ui (si) = r

Uj

Ui∩Uj (sj )

for all i, then there exists an s ∈ F(U) such that rUUi (s) = si for all i.

Morphisms of sheaves (or sheaf mappings) are simply morphisms of the
underlying presheaf. Moreover, when a subpresheaf of a sheaf F is also a
sheaf, then it will be called a subsheaf of F. An isomorphism of sheaves (or
presheaves) is defined in the obvious way, namely hU is an isomorphism in
the category under consideration for each open set U . Note that Axiom S1

for a sheaf says that data defined on large open sets U can be determined
uniquely by looking at it locally, and Axiom S2 asserts that local data of a
given kind (in a given presheaf) can be pieced together to give global data
of the same kind (in the same presheaf).

We would now like to give some examples of presheaves and sheaves.
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Example 1.3: Let X and Y be topological spaces and let CX,Y be the
presheaf over X defined by

(a) CX,Y (U) := {f : U → Y : f is continuous}.
(b) For f ∈ CX,Y (U), r

U
V (f ) := f |V , the natural restriction as a function.

It is easy to see that this presheaf satisfies Axioms S1 and S2 and hence is
a sheaf.

Example 1.4: Let X be a topological space and let K be R or C. Let
CX = CX,K , as in the above example. This is a sheaf of K-algebras; i.e.,
CX(U) is a K-algebra under pointwise addition, multiplication, and scalar
multiplication of functions.

Example 1.5: Let X be an S-manifold (as in Definition 1.1 in Chap. I).
Then we see that the assignment SX given by

SX(U) := S(U) = the S-functions on U

defines a subsheaf of CX. This sheaf is called the structure sheaf of the mani-
fold X. In particular, we shall be dealing with EX,AX, and OX, the sheaves
of differentiable, real-analytic, and holomorphic functions on a manifold X.

Example 1.6: Let X be a topological space and let G be an abelian
group. The assignment U → G, for U connected, determines a sheaf, called
the constant sheaf (with coefficients in G). This sheaf will often be denoted
simply by the same symbol G when there is no chance of confusion.

We want to give at least one example of a presheaf which is not a sheaf,
although our primary interest later on will be sheaves of the type mentioned
above.

Example 1.7: Let X be the complex plane, and define the presheaf B

by letting B(U) be the algebra of bounded holomorphic functions in the
open set U . Let Ui = {z : |z| < i}, and then C = ∪ Ui . Let fi ∈ B(Ui) be
defined by setting fi(z) = z. Then it is quite clear that there is no f ∈ B(C)
with the property that f |Ui = fi . In fact, by Liouville’s theorem, B(C) = C.
Consequently, B is not a sheaf, since it violates Axiom S2.

We see in the above example that the basic reason B was not a sheaf
was that it was not defined by a local property (such as holomorphicity,
differentiability, or continuity).

Remark: A presheaf that violates Axiom S1 can be obtained by taking
the sections of CX,K with X a two point discrete space but letting all proper
restrictions be zero.

A natural structure on presheaves which occurs quite often is that of a
module.
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Definition 1.8: Let R be a presheaf of commutative rings and let M be
a presheaf of abelian groups, both over a topological space X. Suppose
that for any open set U ⊂ X,M(U) can be given the structure of an
R(U)-module such that if α ∈ R(U) and f ∈ M(U), then

rUV (αf ) = ρUV (α)r
U
V (f )

for V ⊂ U , where rUV is the M-restriction homomorphism and ρUV is the
R-restriction homomorphism. Then M is called a presheaf of R-modules.
Moreover, if M is a sheaf, then M will be a sheaf of R-modules.

Example 1.9: Let E → X be an S-bundle. Then define a presheaf
S(E) (= SX(E))† by setting S(E)(U) = S(U,E), for U open in X, together
with the natural restrictions. Then S(E) is, in fact, a subsheaf of CX,E and
is called the sheaf of S-sections of the vector bundle E. As special cases, we
have the sheaves of differential forms E∗

X on a differentiable manifold, or the
sheaf of differential forms of type (p, q),Ep,qX , on a complex manifold X.
These sheaves are examples of sheaves of EX-modules, and, more generally,
S(E) is a sheaf of SX-modules for an S-bundle E → X.

Example 1.10: Let OC denote the sheaf of holomorphic functions in the
complex plane C and let J denote the sheaf defined by the presheaf{

U −→ O(U), if 0 /∈ U
U −→ {f ∈ O(U) : f (0) = 0}, if 0 ∈ U.

Then, clearly, this presheaf is a sheaf, and it is also a sheaf of modules
over the sheaf of commutative rings OC (in fact, it is a sheaf of ideals in
the sheaf of rings, going one step further).

The most commonly occurring sheaves of modules in complex analysis
have names.

Definition 1.11: Let X be a complex manifold. Then a sheaf of modules
over the structure sheaf OX of X is called an analytic sheaf.

As one knows from algebra, the simplest type of modules are the free
modules. We have a corresponding definition for sheaves. First, we note
that there is a natural (and obvious) notion of restriction of a sheaf (or
presheaf) F on X to a sheaf (or presheaf) on an open subset U of X, to
be denoted by F|U .

Definition 1.12: Let R be a sheaf of commutative rings over a topological
space X.

†SX(E) is not to be confused with SE(E), which are the global S-functions defined on
the manifold E. In context it will be clear which is meant.
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(a) Define Rp, for p ≥ 0, by the presheaf

U −→ Rp(U) := R(U)⊕ · · · ⊕ R(U)︸ ︷︷ ︸
p terms

.

Rp, so defined, is clearly a sheaf of R-modules and is called the direct sum
of R (p times; p = 0 corresponds to the 0-module).

(b) If M is a sheaf of R-modules such that M ∼= Rp for some p ≥ 0,
then M is said to be a free sheaf of modules.

(c) If M is a sheaf of R-modules such that each x ∈ X has a
neighborhood U such that M|U is free, then M is said to be locally free.

The following theorem demonstrates the relationship between vector
bundles and locally free sheaves.

Theorem 1.13: Let X = (X, S) be a connected S-manifold. Then there is a
one-to-one correspondence between (isomorphism classes of) S-bundles over
X and (isomorphism classes of) locally free sheaves of S-modules over X.

Proof: The correspondence is provided by

E −→ S(E)

and it is easy to see that S(E) is a locally free sheaf of S-modules. Namely,
by local triviality, for some neighborhood U of a point x ∈ X, we have
E|U ∼= U ×Kr , where r is the rank of the vector bundle E. It follows that
S(E)|U ∼= S(U ×Kr). We claim that

S(U ×Kr) ∼= S|U ⊕ · · · ⊕ S|U .
From the definition of a section, it follows that f ∈ S(U ×Kr)(V ) (for V
open in U ) if and only if f (x) = (x, g(x)), where g : V → Kr and g is
an S-morphism (cf. Example I.2.12). Therefore g = (g1, . . . , gr), gj ∈ S(V ),
and the correspondence above is given by

f −→ (g1, . . . , gr) ∈ SU(V )⊕ · · · ⊕ SU(V ),

which is clearly an isomorphism of sheaves. Therefore S(E) is a locally free
SX-module.

We shall now show how to construct a vector bundle from a locally free
sheaf, which inverts the above construction. Suppose that L is a locally free
sheaf of S-modules. Then we can find an open covering {Uα} of X such
that

gα : L|Uα ∼−→ Sr |Uα
for some r > 0 (excluding the trivial case); note that r does not depend on
α, since X is connected. Then define

gαβ : Sr |Uα∩Uβ
∼−→ Sr |Uα∩Uβ

by setting gαβ = gα ◦g−1
β . Now gαβ is a sheaf mapping, so in particular (when
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acting on the open set Uα ∩ Uβ) it determines an invertible mapping of
vector-valued functions (gαβ)Uα∩Uβ , which we write as

gαβ : S(Uα ∩ Uβ)r −→ S(Uα ∩ Uβ)r,
which is then a nonsingular r × r matrix of functions in S(Uα ∩ Uβ), i.e.,
gαβ : Uα ∩ Uβ → GL(r,K), and hence determines transition functions for
a vector bundle E, since the compatibility conditions gαβ · gβγ = gαγ are
trivially satisfied. Thus a vector bundle E can be defined by letting

Ẽ = ∪
α
Uα ×Kr (disjoint union)

and making the identification

(x, ξ) ∼ (x, gαβ(x)ξ), if x ∈ Uα ∩ Ūβ 
= ∅.

(Cf. the remark after Definition I.2.2.)
We leave it to the reader to verify that isomorphism classes are preserved

under this correspondence.
Q.E.D.

Remark: Most of the sheaves we shall be dealing with will be locally free
sheaves arising from vector bundles; however, there is a generalization which
is of great importance for the study of function theory on complex manifolds
and, more generally, complex manifolds with singularities—complex spaces.
An analytic sheaf F on a complex manifold X is said to be coherent if for
each x ∈ X there is a neighborhood U of x such that there is an exact
sequence of sheaves over U ,

Op|U −→ Oq |U −→ F|U −→ 0,

for some p and q. For a complete discussion of coherent analytic sheaves
on complex spaces, see Gunning and Rossi [1]. For instance, let V be a
subvariety of Cn; i.e., V is defined as a closed subset in Cn, which is locally
given as the set of zeros of a finite number of holomorphic functions. Let IV
be the subsheaf of O defined by sections that vanish on V . Therefore IV is an
ideal sheaf in the sheaf of rings O. Then IV is a coherent analytic sheaf (by
results of Oka and Cartan; see Gunning and Rossi [1]) but not necessarily
locally free. A simple example of this situation is the case where V is simply
the origin in C2; then we see that IV = I{0} is similar to Example 1.10.
Moreover, I{0} is coherent because of the following exact sequence,

0 −→ O
ν−→ O2 µ−→ I{0} −→ 0 (Koszul complex),

where

µ(f1, f2) = z1f1 − z2f2

ν(f ) = (z2f, z1f ).

One can easily check that this is exact (by expanding the functions in power
series at the origin and determining the relations between the coefficients).
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2. Resolutions of Sheaves

A sheaf F on a space X is a carrier of localized information about the
space X. To get global information about X from F, we want to apply the
techniques of homological algebra to sheaves. For this we want to consider
exact sequences, quotients, etc. To do this, however, we have to look at
another, more localized, model of a sheaf. In fact, we shall make a sheaf
into a topological space of a particular type.

Definition 2.1: (a) An étalé space over a topological space X is a topo-
logical space Y together with a continuous surjective mapping π : Y −→ X

such that π is a local homeomorphism.
(b) A section of an étalé space Y

π−→X over an open set U ⊂ X is a
continuous map f : U −→ Y such that π ◦ f = 1U . The set of sections
over U is denoted by �(U, Y ).

It is clear that the sections of an étalé space form a subsheaf of CX,Y . We
are going to associate to any presheaf F over X an étalé space F̃ −→ X such
that the sheaf of sections of F̃ gives another model for F if F happens to be
a sheaf. The reasons for this construction will become clear as we go along.

Consider a presheaf F over X, and let

Fx := lim−−→
x∈U

F(U)

be the direct limit of the sets F(U) with respect to the restriction maps
{
rUV

}
of F. If F has an algebraic structure which is preserved under direct limits,
then Fx , called the stalk of F at x, will inherit that structure. For instance,
this is the case if F is a presheaf of abelian groups or commutative rings.

There is a natural map

rUx : F(U) −→ Fx, x ∈ U,
given by taking an element in F(U) into its equivalence class in the direct
limit. If s ∈ F(U), then sx := rUx (s) is called the germ of s at x, and s is
called a representative for the germ sx . Let

F̃ = ∪
x∈X

Fx

and let π : F̃ −→ X be the natural projection taking points in Fx to x. We
want to make F̃ into an étalé space, and all that remains is to give F̃ a
topology. For each s ∈ F(U) define the set function

s̃ : U −→ F̃

by letting s̃(x) = sx for each x ∈ U . Note that π ◦ s̃ = 1U . Let

{s̃(U)} where U is open in X, s ∈ F(U)

be a basis for the topology of F̃. Then all the functions s̃ are continuous.
Moreover, it is easy to check that π is continuous and indeed a local home-
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omorphism (s̃ provides a local inverse at sx for π for a given representative
s of sx ∈ F̃).

Thus we have associated to each presheaf F over X an étalé space.
Moreover, if the presheaf has algebraic properties preserved by direct limits,
then the étalé space F̃ inherits these properties. For example, suppose that
F is a presheaf of abelian groups. Then F̃ has the following properties:

(a) Each stalk is an abelian group.
(b) If F̃ ◦ F̃ := {(s, t) ∈ F̃ × F̃ : π(s) = π(t)}, then the map

µ : F̃ ◦ F̃ −→ F̃

given by (sx, tx) −→ sx − tx is continuous. This is true since if (s − t)∼(U)
is a basic open set of sx − tx for U open in X and s, t ∈ F(U), then the
inverse image of (s − t)∼(U) by the above map is just s̃(U) ◦ t̃ (U), which
is a basic open set in F̃ ◦ F̃.

(c) For U open in X, the set of sections of F̃ over U,�(U, F̃) is an
abelian group under pointwise addition, i.e., for s, t ∈ �(U, F̃)

(s − t)(x) = s(x)− t (x) for all x ∈ U.
We see that s− t is continuous since it is given by the following composition
of continuous maps:

U
(s,t)−→ F̃ ◦ F̃

µ−→ F̃.

In associating an étalé space F̃ to a presheaf F, we have also associated
a sheaf to F, namely the sheaf of sections of F̃. We call this sheaf the sheaf
generated by F. We would now like to look more closely at the relationship
between the presheaf, F, and the sheaf of sections of F̃ which we shall call
F̄ for the time being. We have already used the fact that there is a presheaf
morphism, which we now denote by

τ : F −→ F̄,

namely τU : F(U) −→ F̄(U)[:= �(U, F̃)] is given by τU(s) = s̃. Recall that
s̃(x) = rUx (s) for all x ∈ U . In the case that F is a sheaf, we have the
following basic result. Its proof will illustrate the use of the sheaf axioms
in an abstract setting.

Theorem 2.2: If F is a sheaf, then

τ : F −→ F̄

is a sheaf isomorphism.

Proof: It suffices to show that τU is bijective for each U .

(a) τU is injective: Suppose that s ′, s ′′ ∈ F(U) and τU(s
′) = τU(s

′′).
Then

[τU(s ′)](x) = [τU(s ′′)](x) for all x ∈ U ;



44 Sheaf Theory Chap. II

i.e., rUx (s
′) = rUx (s

′′) for all x ∈ U . But when rUx (s
′) = rUx (s

′′) for some x ∈ U ,
the definition of direct limit implies that there is a neighborhood V of x
such that rUV (s

′) = rUV (s
′′). Since this is true for each x ∈ U , we can cover

U with open sets Ui such that

rUUi (s
′) = rUUi (s

′′)

for all i. So since F is a sheaf, we have, by Axiom S1, s ′ = s ′′.
(b) τU is surjective: Suppose σ ∈ �(U, F̃). Then for x ∈ U there is a

neighborhood V of x and s ∈ F(V ) such that

σ(x) = Sx = [τV (S)](x).
Since sections of an étalé space are local inverses for π , any two sections
which agree at a point agree in some neighborhood of that point. Hence
we have for some V ∗ a neighborhood of x:

σ |V ∗ = τV (s)|V ∗ = τV ∗(rVV ∗(s)).

Since this is true for any x ∈ U , we can cover U with neighborhoods Ui
such that there exists si ∈ F(Ui) and

τUi (si) = σ |Ui .
Moreover, we have

τUi (si) = τUj (sj ) on Ui ∩ Uj,
so by part (a)

r
Ui
Ui∩Uj (si) = r

Uj

Ui∩Uj (sj ).

Since F is a sheaf and U = ∪i Ui , there exists s ∈ F(U) such that

rUUi (s) = si .

Thus
τU(s)|Ui = τUi (r

U
Ui
(s)) = τUi (si) = σ |Ui ,

and finally τU(s) = σ .

Q.E.D.

The content of this theorem is that to each sheaf F one can associate
an étalé space F̃ whose sheaf of sections is the original F; i.e., F̃ contains
the same amount of information as F, and for this reason, a sheaf is very
often defined to be an étalé space with algebraic structure along its fibres, as
discussed above (see, e.g., Bredon [1] and Gunning and Rossi [1]). For doing
analysis, however, the principal object is the presheaf, with its axioms (since
most sheaves occur naturally in this form), and the associated étalé space
is an auxiliary construction which is useful in constructing the homological
machinery which makes sheaves useful objects. One way, in particular, that
the étalé space is useful is to pass from a presheaf to a sheaf.

Definition 2.3: Let F be a presheaf over a topological space X and let F̄

be the sheaf of sections of the étalé space F̃ associated with F. Then F̄ is
the sheaf generated by F.
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By Theorem 2.2 above, we see that a presheaf, which is a sheaf, generates
itself; i.e., F = F̄. Moreover, we shall use both notations F(U) and �(U,F)

to denote the set (or group or module) of sections of F over U , depending
on the context (the word section, of course, coming from the étalé space
picture of a sheaf ).

We now want to study the elementary homological algebra of sheaves of
abelian groups; all the concepts we shall encounter generalize in a natural
manner to sheaves of modules.

Definition 2.4: Suppose that F and G are sheaves of abelian groups over
a space X with G a subsheaf of F, and let Q be the sheaf generated by the
presheaf U → F(U)/G(U). Then Q is called the quotient sheaf of F by G

and is denoted by F/G.

The quotient mapping on presheaves above induces a natural sheaf surjec-
tion F −→ F/G by going to the direct limit, inducing a continuous mapping
of étalé spaces, and then considering the induced map on continuous sections.
This is then the desired sheaf mapping onto the quotient sheaf.

One of the fundamental concepts of homological algebra is that of
exactness.

Definition 2.5: If A, B, and C are sheaves of abelian groups over X and

A
g−→ B

h−→ C

is a sequence of sheaf morphisms, then this sequence is exact at B if the
induced sequence on stalks

Ax

gx−→ Bx

hx−→ Cx

is exact for all x ∈ X. A short exact sequence is a sequence
0 −→ A −→ B −→ C −→ 0,

which is exact at A, B, and C, where 0 denotes the (constant) zero sheaf.

Remark: Note that exactness is a local property. The sheaves are not
defined to be exact at the presheaf level [i.e., exactness of

A(U) −→ B(U) −→ C(U)

for each U open in X], which, of course, was possible since homomorphism
of sheaves were so defined. The usefulness of sheaf theory is precisely in
finding and categorizing obstructions to the “global exactness” of sheaves.

We shall now give some examples of short exact sequences of sheaves.

Example 2.6: Let X be a connected complex manifold. Let O be the sheaf
of holomorphic functions on X and let O∗ be the sheaf of nonvanishing
holomorphic functions on X which is a sheaf of abelian groups under
multiplication. Then we have the following sequence:

(2.1) 0 −→ Z
i−→ O

exp−→ O∗ −→ 0
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where Z is the constant sheaf of integers, i is the inclusion map, and
exp : O −→ O∗ is defined by

expU (f )(z) = exp (2π if(z)).

Moreover, for some (sufficiently small) simply-connected neighborhood U
of x ∈ X and for some representative g ∈ O∗(U) of a germ gx at x, we can
choose fx = ((1/2πi) log g)x for some branch of the logarithm function,
and we have expx(fx) = gx . Also, expx(fx) = 0 implies that†

exp 2π if(z) ≡ 1, z ∈ U,
for any f ∈ O(U) which is a representative of the germ fx on a connected
neighborhood U of x. Therefore f is constant on U and is, in fact, an
integer, so that

Ker(expx) = Z,

and the sequence (2.1) is exact.

Example 2.7: Let A be a subsheaf of B. Then

0 −→ A
i−→ B

q−→ B/A −→ 0

is an exact sequence of sheaves, where i is the natural inclusion and q is
the natural quotient mapping.

Example 2.8: As a special case of Example 2.7, we let X = C and let O

be the holomorphic functions on C. Let I be the subsheaf of O consisting
of those holomorphic functions which vanish at z = 0 ∈ C (Example 1.10).
Then we have the following exact sequence of sheaves:

0 −→ I −→ O −→ O/I −→ 0.

We note that

(O/I)x ∼=
{

C, if x = 0
0, if x 
= 0.

Example 2.9: Let X be a connected Hausdorff space and let a, b be
two distinct points in X. Let Z denote the constant sheaf of integers on X
and I denote the subsheaf of Z which vanishes at a and b. Then

0 −→ I −→ Z −→ Z/I −→ 0

is exact and

(Z/I)x ∼=
{

Z, if x = a or x = b

0, if x 
= a and x 
= b.

†Note that “0” here is the identity element in an abelian group.
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Remark: Example 2.9 shows the necessity of using the generated sheaf
for the quotient sheaf in Definition 2.4, since the presheaf of quotients of
sections of Z by sections of I violates Axiom S2.

Following the terminology of homological algebra for modules, we make
the following definitions where sheaf means sheaf of abelian groups or
sheaf of modules. A graded sheaf is a family of sheaves indexed by integers,
F∗ = {Fα}α∈Z. A sequence of sheaves (or sheaf sequence) is a graded sheaf
connected by sheaf mappings:

(2.2) · · · −→ F 0 α0−→ F1 α1−→ F2 α2−→ F3 −→ · · · .
A differential sheaf is a sequence of sheaves where the composite of any
pair of mappings is zero; i.e., αj ◦ αj−1 = 0 in (2.2). A resolution of a sheaf
F is an exact sequence of sheaves of the form

0 −→ F −→ F 0 −→ F1 −→ · · · −→ Fm −→ · · · ,
which we also denote symbolically by

0 −→ F −→ F∗,

the maps being understood.
We shall see later that various types of information for a given sheaf

F can be obtained from knowledge of a given resolution. We shall close
this section with various examples of resolutions of sheaves. Their utility
in computing cohomology will be demonstrated in the next section.

Example 2.10: Let X be a differentiable manifold of real dimension m
and let E

p

X be the sheaf of real-valued differential forms of degree p. Then
there is a resolution of the constant sheaf R given by

(2.3) 0 −→ R
i−→ E0

X

d−→ E1
X

d−→ · · · −→ EmX −→ 0,

where i is the natural inclusion and d is the exterior differentiation operator.
Since d2 = 0, it is clear that the above is a differential sheaf. However, the
classical Poincaré lemma (see, e.g., Spivak [1], p. 94) asserts that on a
star-shaped domain U in Rn, if f ∈ Ep(U) is given such that df = 0,
then there exists a u ∈ Ep− 1(U) (p > 0) so that du = f . Therefore the
induced mapping dx on the stalks at x ∈ X is exact, since we can find
representatives in local coordinates in star-shaped domains. At the term
E0
X, exactness is an elementary result from calculus [i.e., df ≡ 0 implies that
f is a constant (locally)]. We shall denote this resolution by 0 −→ R −→ E∗

X

(or 0 −→ C −→ E∗
X if we are using complex coefficients).

Example 2.11: Let X be a topological manifold. We want to derive a re-
solution for the constant sheaf G over X, where G is an abelian group (which
will hold also for more general spaces). Let Sp(U,G) be the group of singular
cochains in U with coefficients in G; i.e., Sp(U,G) = HomZ(Sp(U,Z),G),
where Sp(U,Z) is the abelian group of integral singular chains of degree
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p in U with the usual boundary map (see, e.g., MacLane [1] or any standard
algebraic topology text). Let δ denote the coboundary operator, δ : Sp(U,G)
−→ Sp+ 1(U,G), and let Sp(G) be the sheaf over X generated by the presheaf

U −→ Sp(U,G), with the induced differential mapping Sp(G)
δ−→ Sp+1(G).

Consider the unit ball U in Euclidean space. Then the sequence

(2.4) · · · −→ Sp− 1(U,G)
δ−→ Sp(U,G)

δ−→ Sp+ 1(U,G) −→ · · ·
is exact, since Ker δ/Im δ is the classical singular cohomology for the
unit ball, which is well known to be zero for p > 0 (see MacLane [1],
pp. 54–61, for an elementary proof of this fact, using barycentric subdivi-
sion). Therefore the sequence

0 −→ G −→ S0(G)
δ−→ S1(G)

δ−→ S2(G) −→ · · · −→ Sm(G) −→ · · ·
is a resolution of the constant sheaf G, noting that

Ker(δ : S0(U,G) −→ S1(U,G)) ∼= G.

We remark that we could also have considered C∞ chains if X is a differ-
entiable manifold, i.e. (linear combinations of) maps f : �p −→ U , where f
is a C∞ mapping defined in a neighborhood of the standard p-simplex �p.
The corresponding results above still hold [in particular, the elementary
proof of the exactness of (2.4) still works in the C∞ case], and we have a
resolution by differentiable cochains with coefficients in G:

0 −→ G −→ S0
∞(G) −→ S1

∞(G) −→ · · · −→ Sm∞(G) −→ · · · ,
which we abbreviate by

(2.5) 0 −→ G −→ S∗
∞(G).

Example 2.12: Let X be a complex manifold of complex dimension n,
let Ep,q be the sheaf of (p, q) forms on X, and consider the sequence of
sheaves, for p ≥ 0, fixed,

0 −→ �p i−→ Ep,0
∂̄−→ Ep,1

∂̄−→ · · · −→ Ep,n −→ 0,

where �p is defined as the kernel sheaf of the mapping Ep,0
∂̄−→ Ep,1, which

is the sheaf of holomorphic differential forms of type (p, 0) (and we usually
say holomorphic forms of degree p); i.e., in local coordinates, ϕ ∈ �p(U) if
and only if

ϕ =
∑
|I |=p

′ϕIdzI , ϕI ∈ O(U),

and we note that �0 = O(= OX). Then for each p we have a differential
sheaf

(2.6) 0 −→ �p −→ Ep,∗,

since ∂̄2 = 0, which is, in fact, a resolution of the sheaf �p, by virtue of the
Grothendieck version of the Poincaré lemma for the ∂̄-operator. Namely,
if ω is a (p, q)-form defined in a polydisc � in Cn,� = {z : |zi | < r, i = 1,
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. . . , n}, and ∂̄ω = 0 in �, then there exists a (p, q − 1)-form u defined in
a slightly smaller polydisc �′ ⊂⊂ �, so that ∂̄u = ω in �′. See Gunning
and Rossi [1], p. 27, for an elementary proof of this result using induction
(as in one of the classical proofs of the Poincaré lemma) and the general
Cauchy integral formula in the complex plane.†

Example 2.13: Let X be a complex manifold and consider the differential
sheaf over X,

0 −→ C −→ �0 ∂−→ �1 −→ · · · ∂−→ �n −→ 0,

where the �p are defined in Example 2.12. Then we claim that this is a
resolution of the constant sheaf C. First we note that ∂ = d, when acting
on holomorphic forms of degree p, since d = ∂ + ∂̄, and ∂̄(�p) = 0 for
p = 0, . . . , u; then exactness at �0 is immediate. Moreover, one can locally
solve the equation ∂u = ω for u if ∂ω = 0 by the same type of proof as
for the operator ∂̄ indicated in Example 2.12.

Suppose that L∗ and M∗ are differential sheaves. Then a homomorphism
f : L∗ → M∗ is a sequence of homomorphism fj : Lj → Mj which
commutes with the differentials of L∗ and M∗. Similarly, a homomorphism
of resolutions of sheaves

0 �� A ��

��

A∗

��
0 �� B �� B∗

is a homomorphism of the underlying differential sheaves.

Example 2.14: Let X be a differentiable manifold and let

0 −→ R −→ E∗

0 −→ R −→ S∗
∞(R)

be the resolutions of R given by Examples 2.10 and 2.11, respectively. Then
there is a natural homomorphism of differential sheaves

I : E∗ −→ S∗
∞(R)

which induces a homomorphism of resolutions in the following manner:

E∗

0 R
S∗

∞(R).

i

I

i

The homomorphism I is given by integration over chains; i.e.,

IU : E∗(U) −→ S∗
∞(U,R)

†The same result holds for ∂ : Ep,q −→ Ep+1,q , as one can easily see by conjugation.
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is given by

IU(ϕ)(c) =
∫
c

ϕ,

where c is a C∞ chain (with real coefficients, in this case), and then IU(ϕ) ∈
S∗

∞(U,R). Moreover, by Stokes’ theorem it follows that the mapping I

commutes with the differentials.

We shall see in the next section how resolutions can be used to represent the
cohomology groups of a space. In particular, we shall see that every sheaf
admits a canonical abstract resolution with certain nice (cohomological)
properties, and we shall then compare this abstract resolution with our
more concrete examples of this section.

At this point we mention an analogue of the classical Poincaré lemma
mentioned above, for which we shall have an application later on.

Lemma 2.15: Let ϕ ∈ Ep,q(U) for U open in Cn and suppose that dϕ = 0.
Then for any point p ∈ U there is a neighborhood N of p and a differential
form ψ ∈ Ep−1,q−1(N) such that

∂∂̄ψ = ϕ in N.

Proof: The proof consists of an application of the Poincaré lemmas
for the operators d, ∂, and ∂̄ (see Examples 2.10 and 2.12). Namely, since
dϕ = 0, we have that there is a u ∈ Er−1

x (using germs at x), so that du = ϕ,
where r = p + q is the total degree of ϕ. Thus we see that if we write
u = ur−1,0 + · · · + u0,r−1, we have

du = ∂̄up,q−1 + ∂up−1,q

∂̄up−1,q = ∂up,q−1 = 0,

and then there exists (by the ∂̄ and ∂ Poincaré lemmas, Example 2.12) forms
ψ1 ∈ Ep−1,q−1

x and ψ2 ∈ Ep−1,q−1
x so that

∂ψ1 = up,q−1

∂̄ψ2 = up−1,q

which implies that

ϕ = du = ∂̄∂ψ1 + ∂∂̄ψ2

= ∂∂̄(ψ2 − ψ1).
Q.E.D.

Remark: Let H = Ker ∂∂̄ : E0,0 −→ E1,1 on a complex manifold X.
Then there is a fine resolution (see Definition 3.3)

0 −→ H −→ E0,0 ∂∂̄−→ E1,1 d−→ E2,1 ⊕ E1,2 −→ · · · ,
where H is the sheaf of pluriharmonic functions, Lemma 2.15 showing
exactness at the E1,1 term (see Bigolin [1]). This is analogous to the resolution
of O by E0,∗ and has a similar usefulness.
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3. Cohomology Theory

In this section we want to present a brief development of sheaf coho-
mology theory. We first consider the problem of “lifting” global sections
of sheaves. Consider a short exact sequence of sheaves:

(3.1) 0 −→ A −→ B −→ C −→ 0.

Then it is easy to verify that the induced sequence

(3.2) 0 −→ A(X) −→ B(X) −→ C(X) −→ 0

is exact at A(X) and B(X) but not necessarily at C(X). For instance, in
Example 2.6, if we let X = C − {0}, the punctured plane, then we see that
the mapping O(X) −→ O∗(X) is not surjective. Similarly, in Example 2.9, a
section of Z over X has the same value at both points a and b, whereas a
section of Z/I over X may have different values at points a and b and must
be zero elsewhere, and thus the map �(X,Z) → �(X,Z/I) is not surjective.

Cohomology gives a measure to the amount of inexactness of the sequence
(3.2) at C(X). We need to introduce a class of sheaves for which this lifting
problem is always solvable, and cohomology will be defined in terms of
such sheaves by means of resolutions. Let F be a sheaf over a space X and
let S be a closed subset of X. Let

F(S) := lim−−−→
U⊃S

F(U),

where the direct limit runs over all open sets U containing S. From the point
of view of étalé spaces F(S) can be identified with the set of (continuous) sec-
tions of F̃|S , where F̃|S := π−1(S), and π : F̃ → X is the étalé map. We
call F(S) the set (or abelian group) of sections of F over S, and we shall often
denote F(S) by �(S,F). Moreover, we shall assume from now on for simplicity
that we are dealing with sheaves of abelian groups over a paracompact Haus-
dorff space X, this being perfectly adequate for the applications in this book.

Definition 3.1: A sheaf F over a space X is soft if for any closed subset
S ⊂ X the restriction mapping

F(X) −→ F(S)

is surjective; i.e., any section of F over S can be extended to a section of
F over X.

There are no obstructions to lifting global sections for soft sheaves, as
we see in the following theorem.

Theorem 3.2: If A is a soft sheaf and

0 −→ A
g−→B

h−→C −→ 0
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is a short exact sequence of sheaves, then the induced sequence

(3.3) 0 −→ A(X)
gX−→ B(X)

hX−→ C(X) −→ 0

is exact.

Proof: Let c ∈ C(X). Then we want to show that there exists a section
b ∈ B(X) such that hX(b) = c. Since the sequence of sheaves is exact, it
follows that for each x ∈ X there exists a neighborhood U of x and a
b ∈ B(U) such that hU(b) = c|U , where c|U denotes the presheaf restriction
from X to U . Thus we can cover X with a family Ui of open sets such
that there exists bi ∈ B(Ui) satisfying h(bi) = c|Ui (dropping the subscript
notation for g and h). The object now is to show that the bi can be pieced
together to form a global section.

Since X is paracompact, there exists a locally finite refinement {Si} of
{Ui} which is still a covering of X and such that the elements Si of the
cover are closed sets. Consider the set of all pairs (b, S), where S is a union
of sets in {Si} and b ∈ B(S) satisfies h(b) = c|S . The set of all such pairs is
partially ordered by (b, S) ≤ (b′, S ′) if S ⊂ S ′ and b′|S = b. It follows easily
from Axiom S2 in Definition 1.2 that every linearly ordered chain has a
maximal element. Thus, by Zorn’s lemma there exists a maximal set S and
a section b ∈ B(S) such that h(b) = c|S . It suffices now to show that S = X.

Suppose the contrary. Then there is a set Sj ∈ {Si} such that Sj 
⊂ S.
Moreover, h(b − bj ) = c − c = 0 on S ∩ Sj . Therefore, by exactness of
(3.3) at B(X) we see that there exists a section a ∈ A(S ∩ Sj ) such that
g(a) = b− bj . Since A is soft, we can extend a to all of X, and using the
same notation for the extension, we now define b̃ ∈ B(S ∪ Sj ) by setting

b̃ =
{
b on S
bj + g(a) on Sj .

If follows that h(b) = c|S∪Sj , and hence S is not maximal. This contradiction
then proves the theorem.

Q.E.D.

Before continuing with the consequences of Theorem 3.2, we would like
to introduce another class of sheaves, which will give us many examples of
soft sheaves.

Definition 3.3: A sheaf of abelian groups F over a paracompact Hausdorff
space X is fine if for any locally finite open cover {Ui} of X there exists a
family of sheaf morphisms

{ηi : F −→ F}
such that

(a) Σηi = 1.
(b) ηi (Fx) = 0 for all x in some neighborhood of the complement of

Ui .
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The family {ηi} is called a partition of unity of F subordinate to the covering
{Ui}.

Example 3.4: The following sheaves are fine sheaves:

(a) CX, for X a paracompact Hausdorff space.
(b) EX, for X a paracompact differentiable manifold.
(c) E

p,q

X , for X a paracompact almost-complex manifold.
(d) A locally free sheaf of EX-modules, where X is a differentiable

manifold.
(e) If R is a fine sheaf of rings with unit, then any module over R is a

fine sheaf.

The first four examples are fine sheaves because multiplication by a continu-
ous or differentiable globally defined function defines a sheaf homomorphism
in a natural way. Hence the usual topological and C∞ partitions of unity
define the required sheaf partitions of unity.

Proposition 3.5: Fine sheaves are soft.

Proof: Let F be a fine sheaf over X and let S be a closed subset of X.
Suppose that s ∈ F(S). Then there is a covering of S by open sets {Ui} in
X, and there are sections si ∈ F(Ui) such that

Si |S∩Ui = S|S∩Ui .
Let U0 = X − S and s0 = 0, so that {Ui} extends to an open covering of
all of X. Since X is paracompact, we may assume that {Ui} is locally finite
and hence that there is a sheaf partition of unity {ηi} subordinate to {Ui}.
Now ηi (si) is a section on Ui which is identically zero in a neighborhood
of the boundary of Ui , so it may be extended to a section on all of X.
Thus we can define

s̃ =
∑
i

ηi (si)

in order to obtain the required extension of s.
Q.E.D.

Example 3.6: Let X be the complex plane and let O = OX be the sheaf
of holomorphic functions on X. It is easy to see that O is not soft and hence
cannot be fine (which is also easy to see directly). Namely, let S = {|z| ≤ 1

2 },
and consider a holomorphic function f defined in the unit disc with the unit
circle as natural boundary [e.g., f (z) = �zn!]. Then f defines an element
of O(S) which cannot be extended to all of X, and hence O is not soft.

Example 3.7: Constant sheaves are neither fine nor soft. Namely, if G
is a constant sheaf over X and a and b are two distinct points, then let
s ∈ G({a} ∪ {b}) be defined by setting s(a) = 0 and s(b) 
= 0. Then it is
clear that s cannot be extended to a global section of G over X.
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Now that we have some familiar examples of soft sheaves, we return to
some consequences of Theorem 3.2.

Corollary 3.8: If A and B are soft and

0 −→ A −→ B −→ C −→ 0

is exact, then C is soft.

Proof: Let S be a closed subset of X and restrict the sequence above
to the set S. Then Theorem 3.2 applies, and the given section of C over S
to be extended to all of X comes from a section of B over S, which by
softness then extends to all of X. Its image in C(X) is a suitable extension.

Q.E.D.

Corollary 3.9: If

0 −→ S0 −→ S1 −→ S2 −→ · · ·
is an exact sequence of soft sheaves, then the induced section sequence

0 −→ S0(X) −→ S1(X) −→ S2(X) −→ · · ·
is also exact.

Proof: Let Ki = Ker(Si → Si+1). Then we have short exact sequences

0 −→ Ki −→ Si −→ Ki+1 −→ 0.

For i = 0,K1 = S0, and S0 is soft. Thus we have the induced short exact
sequence

0 −→ K1(X) −→ S1(X) −→ K2(X) −→ 0
by Theorem 3.2. An induction using Corollary 3.8 shows that Ki is soft
for all i, and so we obtain short exact sequences:

0 −→ Ki (X) −→ Si (X) −→ Ki+1(X) −→ 0.

Splicing these sequences gives the desired result.
Q.E.D.

We are now in a position to construct a canonical soft resolution for any
sheaf over a topological space X. Let S be the given sheaf and let S̃

π→X

be the étalé space associated to S. Let C0(S) be the presheaf defined by

C0(S)(U) = {f : U −→ S̃ : π ◦ f = 1U }.
This presheaf is a sheaf and is called the sheaf of discontinuous sections of
S over X.† There is clearly a natural injection

0 −→ S −→ C0(S).

†Recall that sections were defined to be continuous in Definition 2.1, so discontinuous
section is a generalization of the concept of section.
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Now let F1(S) = C0(S)/S and define C1(S) = C0(F1(S)). By induction we
define

Fi (S) = Ci−1(S)/Fi−1(S)

and
Ci (S) = C0(Fi (S)).

We then have the following short exact sequences of sheaves:

0 −→ S −→ C0(S) −→ F1(S) −→ 0

0 −→ Fi (S) −→ Ci (S) −→ Fi+1(S) −→ 0.

By splicing these two short exact sequences together, we obtain the long
exact sequence

0 −→ S −→ C0(S) −→ C1(S) −→ C2(S) −→ · · · ,
which we call the canonical resolution of S. We abbreviate this by writing

(3.4) 0 −→ S −→ C∗(S).

The sheaf of discontinuous sections C0(S) is a soft sheaf, for any sheaf S,
and for this reason we call the resolution (3.4) the canonical soft resolution
of S.

Remark: A sheaf S is called flabby if S(X) → S(U) is surjective for
all open sets U in X. It can be shown that a flabby sheaf is soft (see
Godement [1]). To avoid the restriction of paracompactness in the above
arguments, one must deal with flabby sheaves rather than soft sheaves.
However, we note that most of our examples of soft sheaves are not flabby.

We are now in a position to give a definition of the cohomology groups
of a space with coefficients in a given sheaf. Suppose that S is a sheaf over
a space X and consider the canonical soft resolution given by (3.4). By
taking global sections, (3.4) induces a sequence of the form

(3.5)
0 −→ �(X, S) −→ �(X,C0(S)) −→ �(X,C1(S))

−→ · · · −→ �(X,Cq(S)) −→,

and this sequence of abelian groups forms a cochain complex.† This sequence
is exact at �(X,C0(S)), and if S is soft, it is exact everywhere by Corollary 3.9.
Let

C∗(X, S) := �(X,C∗(S)),

and we rewrite (3.5) in the form

0 −→ �(X, S) −→ C∗(X, S).

†A cochain complex means that the composition of successive maps in the sequence is
zero, but the sequence is not necessarily exact. We shall assume some elementary homological
algebra, and we refer to, e.g., MacLane [1], Chap. I.
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Definition 3.10: Let S be a sheaf over a space X and let

Hq(X, S) := Hq(C∗(X, S)),

where Hq(C∗(X, S)) is the qth derived group of the cochain complex
C∗(X, S); i.e.,

Hq(C∗) = Ker(Cq −→ Cq+1)

Im(Cq−1 −→ Cq)
, where C−1 = 0.

The abelian groups Hq(X, S) are defined for q ≥ 0 and are called the sheaf
cohomology groups of the space X of degree q and with coefficients in S.

As we shall see later, there are various ways of representing more explic-
itly such cohomology groups in a given geometric situation. This abstract
definition is a convenient way to derive the general functorial properties of
cohomology groups, as we shall see in the next theorem.

Theorem 3.11: Let X be a paracompact Hausdorff space. Then

(a) For any sheaf S over X,
(1) H 0(X, S) = �(X, S) (= S(X)).
(2) If S is soft, then Hq(X, S) = 0 for q > 0.

(b) For any sheaf morphism
h : A −→ B

there is, for each q ≥ 0, a group homomorphism
hq : Hq(X,A) −→ Hq(X,B)

such that
(1) h0 = hX : A(X) → B(X).
(2) hq is the identity map if h is the identity map, q ≥ 0.
(3) gq ◦ hq = (g ◦ h)q for all q ≥ 0, if g: B → C is a second sheaf

morphism.
(c) For each short exact sequence of sheaves

0 −→ A −→ B −→ C −→ 0
there is a group homomorphism

δq : Hq(X,C) −→ Hq+1(X,A)
for all q ≥ 0 such that

(1) The induced sequence

0 −→ H 0(X,A −→ H 0(X,B) −→ H 0(X,C)
δ0−→H 1(X,A) −→ · · ·

−→ Hq(X,A) −→ Hq(X,B) −→ Hq(X,C)
δq−→Hq+1(X,A) −→

is exact.
(2) A commutative diagram

0 �� A ��

��

B ��

��

C ��

��

0

0 �� A′ �� B′ �� C′ �� 0
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induces a commutative diagram

0 �� H 0(X,A) ��

��

H 0(X,B) ��

��

H 0(X,C) ��

��

H 1(X,A) ��

��

· · ·

0 �� H 0(X,A′) �� H 0(X,B′) �� H 0(X,C′) �� H 1(X,A′) �� · · · .

Proof:

(a), (1) We have that the resolution

0 −→ �(X, S) −→ C0(X, S) −→ C1(X, S) −→ · · ·
is exact at C0(X, S), and so

�(X, S) = Ker(C0(X, S) −→ C1(X, S)) = H 0(X, S).

(a), (2) This follows easily from Corollary 3.9.
For the proof of (b) and (c) we shall show first that

h : A −→ B

induces naturally a cochain complex map†

(3.6) h∗ : C∗(A) −→ C∗(B).

First we define
h0 : C0(A) −→ C0(B)

by letting h0(sx) = (h ◦ s)x , where s is a discontinuous section of A. Now
h0 induces a quotient map

h̃0 : C0(A)/A �� C0(B)/B

‖ ‖
F1(A) F1(B),

and, as above, h̃0 induces

h̃1 : C0(F1(A)) �� C0(F1(B))

‖ ‖
C1(A) C1(B).

Repeating the above procedure, we obtain, for each q ≥ 0,

hq : Cq(A) −→ Cq(B).

The induced section maps give the required complex map (3.6). It is clear
that h∗ is functorial [i.e., satisfies compatibility conditions similar to those
in (b), (1)–(3)]. Moreover, if

0 −→ A −→ B −→ C −→ 0

is exact, then this implies that

0 −→ C∗(A) −→ C∗(B) −→ C∗(C) −→ 0

†Letting C∗(A) = C∗(X,A), etc.
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is an exact sequence of complexes of sheaves. However, the sheaves in these
complexes are all soft, and hence it follows that

0 −→ C∗(A) −→ C∗(B) −→ C∗(C) −→ 0

is an exact sequence of cochain complexes of abelian groups. It now follows
from elementary homological algebra that there is a long exact sequence
for the derived cohomology groups

(3.7)
−→ Hq(C∗(A)) −→ Hq(C∗(B)) −→ Hq(C∗(C))

δq−→Hq+1(C∗(A)) −→,

where the mapping δq is defined in the following manner. Consider the
following commutative diagram of exact sequences:

0 �� Cq+1(A)
µ′

�� Cq+1(B)
ν′

�� Cq+1(C) �� 0

0 �� Cq(A)
µ

��

α

��

Cq(B)
ν

��

β

��

Cq(C) ��

γ

��

0.

Suppose that c ∈ Ker γ . Then by exactness, c = ν(b). Consider the element
β(b). Then ν ′(β(b)) = γ (ν(b)), by commutativity, and hence β(b) = µ′(a)
for some a ∈ Cq+1(A). It is easy to check that (1) a is a closed element
of Cq+1(A), (2) the cohomology class of a in Hq+1(A) is independent of
the various choices made, and (3) the induced mapping δq : Hq(X,C) →
Hq+1(X,A) makes the sequence (3.7) exact (the operator δq is often called
the Bockstein operator). From these constructions it is not difficult to verify
the assertions in (b) and (c).

Q.E.D.

Remark: The assertions (a), (b), and (c) in the above theorem can be
used as axioms for cohomology theory, and one can prove existence and
uniqueness for such an axiomatic theory. What we have in the theorem
is the existence proof; see, e.g., Gunning and Rossi [1] for the additional
uniqueness. There are other existence proofs; e.g., Čech theory is a popular
one (cf. Hirzebruch [1]). In Sec. 4 we shall give a short summary of Čech
theory.

We now want to give the proof of an important theorem which will give
us a means of computing the abstract sheaf cohomology in given geometric
situations. First we have the following definition.

Definition 3.12: A resolution of a sheaf S over a space X

0 −→ S −→ A∗

is called acyclic if Hq(X,Ap) = 0 for all q > 0 and p ≥ 0.

Note that a fine or soft resolution of a sheaf is necessarily acyclic (Theorem
3.11). Acyclic resolutions of sheaves give us one way of computing the coho-



Sec. 3 Cohomology Theory 59

mology groups of a sheaf, because of the following theorem (sometimes
called the abstract de Rham theorem).

Theorem 3.13: Let S be a sheaf over a space X and let

0 −→ S −→ A∗

be a resolution of S. Then there is a natural homomorphism

γ p : Hp(�(X,A∗)) −→ Hp(X, S),

where Hp(�(X,A∗)) is the pth derived group of the cochain complex
�(X,A∗). Moreover, if

0 −→ S −→ A∗

is acyclic, γ p is an isomorphism.

Proof: Let Kp = Ker(Ap → Ap+1) = Im(Ap−1 → Ap) so that K◦ = S.
We have short exact sequences

0 −→ Kp−1 −→ Ap−1 −→ Kp −→ 0,

and this induces, by Theorem 3.11,

0 −→ �(X,Kp−1) −→ �(X,Ap−1) −→ �(X,Kp) −→ H 1(X,Kp−1)

−→ H 1(X,Ap−1) −→ · · · .
We also notice that

Ker(�(X,Ap) −→ �(X,Ap+1)) ∼= �(X,Kp),

so that

Hp(�(X,A∗)) ∼= �(X,Kp)/Im(�(X,Ap−1) −→ �(X,Kp)).

Therefore, using the exact sequence above, we have defined

γ
p

1 : Hp(�(X,A∗)) −→ H 1(X,Kp−1),

and γ p1 is injective. Moreover, if the resolution is acyclic,

H 1(X,Ap−1) = 0

and γ p1 is an isomorphism.
We now consider the exact sequences of the form

0 −→ Kp−r −→ Ap−r −→ Kp−r+1 −→ 0

for 2 ≤ r ≤ p, and we obtain from the induced long exact sequences

γ pr : Hr−1(X,Kp−r+1) −→ Hr(X,Kp−r ),

and again γ pr is an isomorphism if the resolution is acyclic. Therefore we
define

γp = γ pp ◦ γ pp−1 · · · · · γ p2 ◦ γ p1 ,
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i.e.,

Hp(�(X,A∗))
γ1
p

−→H 1(X,Kp−1)
γ2
p

−→H 2(X,Kp−2)
γ3
p

−→
· · · γp

p

→Hp(X,K◦) = Hp(X, S),

and γ p is an isomorphism if the resolution is acyclic.
The assertion that γ p is natural in Theorem 3.13 means that if

0 �� S ��

f
��

A∗

g

��
0 �� J �� B∗

is a homomorphism of resolutions, then

Hp(�(X,A∗))
γp

��

gp
��

Hp(X, S)

fp
��

Hp(�(X,B∗))
γp

�� Hp(X, J)

is also commutative, where gp is the induced map on the cohomology of
the complexes. This is not difficult to check and follows from the naturality
assertions in Theorem 3.11.

Q.E.D.

Remark: Note that in the proof of the previous theorem we did not use
the definition of sheaf cohomology, but only the formal properties of coho-
mology as given in Theorem 3.11 (i.e., the same result holds for any other
definition of cohomology which satisfies the properties of Theorem 3.11).

Corollary 3.14: Suppose that

0 �� S ��

f
��

A∗

g

��
0 �� J �� B∗

is a homomorphism of resolutions of sheaves. Then there is an induced
homomorphism

Hp(�(X,A∗))
gp−→Hp(�(X,B∗)),

which is, moreover, an isomorphism if f is an isomorphism of sheaves and
the resolutions are both acyclic.

As a consequence of this corollary, we easily obtain de Rham’s theorem
(see Example 2.14 for the notation).

Theorem 3.15 (de Rham): Let X be a differentiable manifold. Then the
natural mapping

I : Hp(E∗(X)) −→ Hp(S∗
∞(X,R))
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induced by integration of differential forms over C∞ singular chains with
real coefficients is an isomorphism.

Proof: As in Example 2.14, consider the resolutions of R given by

E∗

0 R
S∗

∞(R) = S∗
∞.

i

i

Then the sheaves E∗ and S∗
∞ are both soft. Since E∗ is fine, it remains only

to show that the sheaves Sp∞ are soft. First we note that the sheaf Sp∞ is
an S0

∞-module (given by cup product on open sets). Then we claim that
S0

∞ is soft. This follows from the observation that S0
∞ = S0 = C0(X,R); i.e.,

for each point of X (a singular 0-cochain), we assign a value of R. We
now need the following simple lemma, which asserts that Sp is soft, which
concludes the proof, in view of Corollary 3.14.

Q.E.D.

Lemma 3.16: If M is a sheaf of modules over a soft sheaf of rings R,
then M is a soft sheaf.

Proof: Let s ∈ �(K,M) for K a closed subset of X. Then s extends to
some open neighborhood U of K. Let ρ ∈ �(K ∪ (X−U),R) be defined by

ρ ≡
{

1 on K
0 on X − U.

Then, since R is soft, ρ extends to a section over X, and ρ · s is the desired
extension of s.

Q.E.D.

We now have an analogue of de Rham’s theorem for complex manifolds,
due to Dolbeault [1].

Theorem 3.17 (Dolbeault): Let X be a complex manifold. Then

Hq(X,�p) ∼= Ker(Ep,q(X)
∂̄−→Ep,q+1(X))

Im(Ep,q−1(X)
∂̄−→Ep,q(X))

.

Proof: The resolution given in Example 2.12 is a fine resolution, and
we can apply Theorem 3.13.

Q.E.D.

We want to consider a generalization of Theorem 3.17, and for this we
need to introduce the tensor product of sheaves of modules.
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Definition 3.18: Let M and N be sheaves of modules over a sheaf of
commutative rings, R. Then M ⊗R N, the tensor product of M and N is
the sheaf generated by the presheaf

U −→ M(U)⊗R(U) N(U).

Remark: The necessity of using the generated sheaf is demonstrated by
considering the presheaf

U −→ O(E)(U)⊗O(U) E(U),

where E → X is a holomorphic vector bundle with no non-trivial global
holomorphic sections (see Example 2.13). The presheaf does not satisfy
Axiom S2, since O(E)(X) ⊗O(X) E(X) = 0, but O(E)(Uj ) ⊗O(Uj ) E(Uj ) ∼=
E(E)(Uj ) 
= 0 for the sets of any trivializing cover {Uj } of X.

It follows from Definition 3.18 that

(M ⊗R N)x = Mx ⊗Rx Nx.

This easily implies the following lemma.

Lemma 3.19: If I is a locally free sheaf of R-modules and

0 −→ A′ −→ A −→ A′′ −→ 0

is a short exact sequence of R-modules, then

0 −→ A′ ⊗R I −→ A ⊗R I −→ A′′ ⊗R I −→ 0

is also exact.

Recalling Example 2.12, we have a resolution of sheaves of O-modules
over a complex manifold X:

0 −→ �p −→ Ep,0
∂̄−→Ep,1

∂̄−→ · · · −→ Ep,n −→ 0.

Moreover, if E is a holomorphic vector bundle, then O(E) is a locally free
sheaf, and so, using Lemma 3.19, we have the following resolution:

0 −→ �p ⊗O O(E) −→ Ep,0 ⊗O O(E)

∂̄⊗1−→ · · · ∂̄⊗1−→ Ep,n ⊗O O(E) −→ 0.
(3.8)

We also notice that

�p ⊗O O(E) ∼= O(∧pT ∗(X)⊗C E)

and that

Ep,q ⊗O O(E) ∼= Ep,q ⊗E E(E)

∼= E(∧p,qT ∗(X)⊗C E),

where E(E) is the sheaf of differentiable sections of the differentiable bundle
E. This follows from the fact that

O(E)⊗O E = E(E),

since Ep,q is also an E-module.
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We call O(X,∧pT ∗(X) ⊗CE) the (global) holomorphic p-forms on X with
coefficients in E, which we shall denote for simplicity by �p(X,E), and we
shall denote the sheaf of holomorphic p-forms with coefficients in E by
�p(E). Analogously, we let

(3.9) Ep,q(X,E) := E(X,∧p,qT ∗(X) ⊗C E)

be the differentiable (p, q)-forms on X with coefficients in E. Therefore the
resolution (3.8) can be written in the form (letting ∂̄E = ∂̄ ⊗ 1)

(3.10) 0 −→ �p(E) −→ Ep,0(E)
∂̄E−→ Ep,1(E) −→ · · · ∂̄E−→ Ep,n(E) −→ 0,

and since it is a fine resolution, we have the following generalization of
Dolbeault’s theorem.

Theorem 3.20: Let X be a complex manifold and let E −→ X be a
holomorphic vector bundle. Then

Hq(X,�p(E)) ∼= Ker(Ep,q(X,E)
∂̄E−→ Ep,q+1(X,E))

Im(Ep,q−1(X,E)
∂̄E−→ Ep,q(X,E))

.

4. Čech Cohomology with Coefficients in a Sheaf

Suppose that X is a topological space and that S is a sheaf of abelian
groups on X. Let U = {Ua} be a covering of X by open sets. A q-simplex,
σ, is an ordered collection of q + 1 sets of the covering U with nonempty
intersection; i.e.,

σ = (U0, . . . , Uq)

and ∩qi=0 Ui 
= ∅. The set ∩Ui∈σ Ui is called the support of the simplex σ,
denoted |σ|. A q-cochain of U with coefficients in S is a mapping f which
associates to each q-simplex, σ,

f (σ) ∈ S (|σ|).
The set of q-cochains will be denoted by Cq(U,S ) and is an abelian group
(by pointwise addition).

We define a coboundary operator

δ : Cq(U,S ) → Cq+1(U,S )

as follows. If f ∈ Cq(U, I) and σ = (U0, . . . , Uq+1), define

δf (σ) =
q+1∑
i=0

(−1)i r |σi |
|σ| f (σi ),

where σi = (U0, . . . , Ui−1, Ui+1, . . . Uq+1) and r
|σi |
|σ| is the sheaf restriction

mapping. It is clear that δ is a group homomorphism and that δ2 = 0. Thus
we have a cochain complex:

C∗(U, S) :=C0(U, S) −→ · · · −→ Cq(U, S)
δ−→Cq+1(U, S)

−→ Cq+2(U, S) −→ · · ·
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The cohomology of this cochain complex is the Čech cohomology of U with
coefficients in S; i.e., letting

Zq(U, S) = Ker δ : Cq(U, S) −→ Cq+1(U, S),

Bq(U, S) = Im δ : Cq−1(U, S) −→ Cq(U, S)

we define

Hq(U, S) := Hq(C∗(U, S)) = Zq(U, S)/Bq(U, S).

We shall now summarize the properties of the Čech cohomology. For
proofs, see the references listed below.

(a) If W is a refinement of U, there is a natural group homomorphism

µU
W : Hq(U, S) −→ Hq(W, S)

and
lim−−−→

U

Hq(U, S) ∼= Hq(X, S),

where Hq(X, S) is the cohomology defined in Definition 3.10.
(b) If U is a covering such that

Hq(|σ |, S) = 0

for q ≥ 1 and all simplices σ in U, then

Hq(X, S) ∼= Hq(U, S)

for all q ≥ 0 (U is called a Leray cover).
(c) If X is paracompact and U is a locally finite covering of X, then

Hq(U, S) = 0

for q > 0 and S a fine sheaf over X.
We shall most often use resolutions of particular sheaves in order to

represent cohomology, principally because the techniques we develop are
derived from the theory of partial differential equations and are applied
to differential forms and their generalizations. Čech theory, on the other
hand, is very important in complex analysis and arises very naturally in such
problems as Cousin I and II and their generalizations, being the general
theory of Stein manifolds. See, e.g., Gunning and Rossi [1] and Gunning
[1]. More generally, see Bredon [1], Godement [1], or Hirzebruch [1].



CHAPTER III

D I F F E R E N T I A L

G E O M E T RY

This chapter is an exposition of some of the basic ideas of Hermitian
differential geometry, with applications to Chern classes and holomorphic
line bundles. In Sec. 1 we shall give the basic definitions of the Hermitian
analogues of the classical concepts of (Riemannian) metric, connection, and
curvature. This is carried out in the context of differentiable C-vector bundles
over a differentiable manifold X. More specific formulas are obtained in the
case of holomorphic vector bundles (in Sec. 2) and holomorphic line bundles
(in Sec. 4). In Sec. 3 is presented a development of Chern classes from the
differential-geometric viewpoint. In Sec. 4 this approach to characteristic
class theory is compared with the classifying space approach and with the
sheaf-theoretic approach (in the case of line bundles). We prove that the
Chern classes are primary obstructions to finding trivial subbundles of a
given vector bundle, and, in particular, to the given vector bundle being
itself trivial. In the case of line bundles, we give a useful characterization
of which cohomology classes in H 2(X,Z) are the first Chern class of a line
bundle. Additional references for the material covered here are Chern [2],
Griffiths [2], and Kobayashi and Nomizu [1].

1. Hermitian Differential Geometry

In this section we want to develop some of the basic differential-geometric
concepts in the context of holomorphic vector bundles and, more generally,
differentiable C-vector bundles. The basic purpose is to develop certain
concepts such as metrics, connections, and curvatures which will have various
applications in later sections. We do not relate these concepts in detail to
their more classical counterparts in real differential geometry, as there are
recent texts which do this quite well (e.g., Helgason [1] and Kobayashi and
Nomizu [1]). We shall give more specific references as we go along.

In this section we shall denote by the term vector bundle a differentiable
C-vector bundle over a differentiable manifold, E → X. An analogous treat-
ment can be given for R-vector bundles, but our applications are primarily

65
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to Chern class theory and holomorphic vector bundles, both of which
require complex-linear fibres.

Suppose that E → X is a vector bundle of rank r and that f = (e1, . . . , er)

is a frame at x ∈ X; i.e., there is a neighborhood U of x and sections
{e1, . . . , er}, ej ∈ E(U,E), which are linearly independent at each point
of U . If we want to indicate the dependence of the frame f on the domain
of definition U , we write fU , although normally this will be understood to
be some local neighborhood of a given point. Suppose that f = fU is a
given frame and that g : U → GL(r,C) is a differentiable mapping. Then
there is an action of g on the set of all frames on the open set U defined by

f −→ fg,

where

(fg)(x) =
(

r∑
ρ=1

gρ1(x)eρ(x), . . . ,

r∑
ρ=1

gρr(x)eρ(x)

)
x ∈ U,

is a new frame, i.e., fg(x) = f (x)g(x), and we have the usual matrix product.
Clearly, fg is a new frame defined on U , and we call such a mapping g a
change of frame. Moreover, given any two frames f and f ′ over U , we see
that there exists a change of frame g defined over U such that f ′ = fg.†

Using frames, we shall find local representations for all the differential
geometric objects that we are going to define. We start by giving a local
representation for sections of a vector bundle. Let E → X be a vector bundle,
and suppose that ξ ∈ E(U,E) for U open in X. Let f = (e1, . . . , er) be
a frame over U for E (which does not always exist, but will if U is a
sufficiently small neighborhood of a given point). Then

(1.1) ξ =
r∑
ρ=1

ξρ(f )eρ

where ξρ(f ) ∈ E(U) are uniquely determined smooth functions on U . This
induces a mapping

(1.2) E(U,E)
�f−→E(U)r ∼= E(U,U × Cr ),

which we write as

ξ −→ ξ(f ) =

⎡⎢⎢⎢⎢⎣
ξ 1(f )

·
·
·

ξ r(f )

⎤⎥⎥⎥⎥⎦ ,
†The set of all frames over open sets in X is the sheaf of sections of the principal

bundle P(E) associated with E, often called the frame bundle of E, a concept we shall not
need; see, e.g., Kobayashi and Nomizu [1], or Steenrod [1]. Namely, the principal bundle
P(E) has fibres isomorphic to GL(r, C), with the same transition functions as the vector
bundle E → X.
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where ξρ(f ) are defined by (1.1). Suppose that g is a change of frame
over U . Then we compute that

ξρ(fg) =
r∑
σ=1

g−1
ρσ ξ

σ (f ),

which implies that
ξ(fg) = g−1ξ(f )

or

(1.3) gξ(fg) = ξ(f ),

all products being matrix multiplication at a given point x ∈ U . Therefore
(1.1) gives a vector representation for sections ξ ∈ E(U,E), and (1.3) shows
how the vector is transformed under a change of frame for the vector bundle
E. Moreover, if E is a holomorphic vector bundle, then we shall also have
holomorphic frames, i.e., f = (e1, . . . , er), ej ∈ O(U,E), and e1∧· · ·∧er(x) 
=
0, for x ∈ U ; and holomorphic changes of frame, i.e., holomorphic mappings
g : U → GL(r,C). Then with respect to a holomorphic frame we have the
vector representation

(1.4) O(U,E)
�f−→O(U)r,

given by ξ → ξ(f ) as before, and the transformation rule for a holomorphic
change of frame is still given by (1.3).

Our object now is to give definitions of three fundamental differential-
geometric concepts: metric, connection, and curvature. We shall then give
some examples in the next section to illustrate the definitions.

Definition 1.1: Let E → X be a vector bundle. A Hermitian metric h on
E is an assignment of a Hermitian inner product 〈, 〉x to each fibre Ex of
E such that for any open set U ⊂ X and ξ, η ∈ E(U,E) the function

〈ξ, η〉 : U −→ C

given by
〈ξ, η〉(x) = 〈ξ(x), η(x)〉x

is C∞.

A vector bundle E equipped with a Hermitian metric h is called a
Hermitian vector bundle. Suppose that E is a Hermitian vector bundle and
that f = (e1, . . . , er) is a frame for E over some open set U . Then define

(1.5) h(f )ρσ = 〈eσ , eρ〉,
and let h(f ) = [h(f )ρσ ] be the r × r matrix of the C∞ functions {h(f )ρσ },
where r = rank E. Thus h(f ) is a positive definite Hermitian symmetric
matrix and is a (local) representative for the Hermitian metric h with respect
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to the frame f . For any ξ, η ∈ E(U,E), we write

〈ξ, η〉 = 〈∑
ρ

ξρ(f )eρ,
∑
σ

ησ (f )eσ
〉

=
∑
ρ,σ

ησ (f )hσρ(f )ξ
ρ(f )

〈ξ, η〉 = tη(f )h(f )ξ(f ),(1.6)

where the last product is matrix multiplication and tA denotes the transpose
of the matrix A. Moreover, if g is a change of frame over U , it is easy to
check that

(1.7) h(fg) = t ḡh(f )g,

which is the transformation law for local representations of the Hermitian
metric.

Theorem 1.2: Every vector bundle E → X admits a Hermitian metric.

Proof: There exists a locally finite covering {Uα} of X and frames fα

defined on Uα. Define a Hermitian metric hα on E|Uα by setting, for ξ, η ∈
Ex, x ∈ Uα, 〈ξ, η〉α

x = tη(fα)(x) · ξ(fα)(x).

Now let {ρα} be a C∞ partition of unity subordinate to the covering {Uα}
and let, for ξ, η ∈ Ex ,

〈ξ, η〉x =
∑

ρα(x)〈ξ, η〉α
x.

We can now verify that 〈 , 〉 so defined gives a Hermitian metric for E → X.
First, it is clear that if ξ, η ∈ E(U,E), then the function

x −→ 〈ξ(x), η(x)〉x =
∑

α

ρα(x)〈ξ(x), η(x)〉α
x

=
∑

α

ρα(x)tη(fα)(x) · ξ(fα)(x)

is a C∞ function on U . It is easy to verify that h is indeed a Hermitian inner
product on each fibre of E, and we leave this verification to the reader.

Q.E.D.

We now want to consider differential forms with vector bundle coefficients.
Suppose that E → X is a vector bundle. Then we let

Ep(X,E) = E(X,∧pT ∗(X)⊗C E)

be the differential forms of degree p on X with coefficients in E (cf. the
discussion following Lemma II.3.19). We want to relate this definition to
one involving tensor products over the structure sheaf.

Lemma 1.3: Let E and E′ be vector bundles over X. Then there is an
isomorphism

τ : E(E)⊗E E(E′)
�−→ E(E ⊗ E′).
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Proof: We shall define the mapping τ on presheaves generating the above
sheaves

τU : E(U,E)⊗E(U) E(U,E
′) −→ E(E ⊗ E′)(U)

by setting
τU(ξ ⊗ η)(x) = ξ(x)⊗ η(x) ∈ Ex ⊗ E′

x.

If f = (e1, . . . , er) and f ′ = (e′
1, . . . , e

′
r ) are frames for E and E′ over an

open set U , then we see that for any γ ∈ E(U,E ⊗ E′) we can write

γ (x) =
∑
α,β

γαβ(x)eα(x)⊗ e′
β(x), γαβ ∈ E(U).

But this shows that

γ ∈ E(U,E)⊗E(U) E(U,E
′),

and this implies easily that {τU } defines a sheaf isomorphism when we pass
to the sheaves generated by these presheaves.

Q.E.D.

Corollary 1.4: Let E be a vector bundle over X. Then

Ep ⊗E E(E) ∼= Ep(E).

We denote the image of ϕ ⊗ ξ under the isomorphism in Corollary 1.4
by ϕ · ξ ∈ Ep(X,E), where ϕ ∈ Ep(X) and ξ ∈ E(X,E). Suppose that f is a
frame for E over U . Then we have a local representation for ξ ∈ Ep(U,E)

similar to (1.2) given by

Ep(U,E)
lf−→[Ep(U)]r

ξ −→

⎡⎢⎢⎢⎢⎣
ξ 1(f )

·
·
·

ξ r(f )

⎤⎥⎥⎥⎥⎦ ,(1.8)

defined by the relation

(1.1′) ξ =
r∑
ρ=1

ξρ(f ) · eρ.

Namely, let x ∈ U and let (ω1, . . . , ωs) be a frame for ∧pT ∗(X)⊗ C at x.
Then we can write

ξ(x) =
∑
ρ,k

ϕkρ(x)ωk(x)⊗ eρ(x).

where the ϕkρ are uniquely determined C∞ functions defined near x. Let

ξp =
∑
k

ϕkρωk,

and it is easy to check that the differential form ξρ so determined is indepen-
dent of the choice of frame (ω1, . . . , ωs). Since x was an arbitrary point of
U , the differential forms {ξρ} are defined in all of U , and thus the mapping
(1.8) (local representation of vector-valued differential forms) is well defined
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and, indeed, is an isomorphism. Moreover, we have the transformation law
for a change of frame
(1.3′) ξ(fg) = g−1ξ(f ), ξ ∈ Eρ(X,E)

exactly as in (1.3) for sections. We now make the following definition.

Definition 1.5: Let E → X be a vector bundle. Then a connection D on
E → X is a C-linear mapping

D : E(X,E) −→ E1(X,E),

which satisfies

(1.9) D(ϕξ) = dϕ · ξ + ϕDξ,
where ϕ ∈ E(X) and ξ ∈ E(X,E).

Remarks: (a) Relation (1.9) implies that D is a first-order differential
operator (cf. Sec. 2 in Chap. IV) mapping E(X,E) to E(X, T ∗(X)⊗E), as
we shall see below.

(b) In the case where E = X × C, the trivial line bundle, we see that
we may take ordinary exterior differentiation

d : E(X) −→ E1(X)

as a connection on E. Thus a connection is a generalization of exterior
differentiation to vector-valued differential forms, and we shall later extend
the definition of D to higher-order forms.

We now want to give a local description of a connection. Let f be a frame
over U for a vector bundle E → X, equipped with a connection D. Then
we define the connection matrix θ(D, f ) associated with the connection D
and the frame f by setting

θ(D, f ) = [θρσ (D, f )], θρσ (D, f ) ∈ E1(U),

where

(1.10) Deσ =
r∑
ρ=1

θρσ (D, f ) · eρ.

We shall denote the matrix θ(D, f ) by θ(f ) (for a fixed connection) or
often simply by θ (for a fixed frame in a given computation). We can use
the connection matrix to explicitly represent the action of D on sections of
E. Namely, if ξ ∈ E(U,E), then, for a given frame f ,

Dξ = D
(∑

ρ

ξρ(f )eρ
)

=
∑
σ

dξσ (f ) · eσ +
∑
ρ

ξρ(f )Deρ

=
∑
σ

[
dξσ (f )+

∑
ρ

ξρ(f )θσρ(f )
] · eσ

Dξ =
∑
σ

[
dξ(f )+ θ(f )ξ(f )] · eσ ,(1.11)



Sec. 1 Hermitian Differential Geometry 71

where we have set

dξ(f ) =

⎡⎢⎢⎢⎢⎣
dξ 1(f )

·
·
·

dξ r(f )

⎤⎥⎥⎥⎥⎦ ,
and the wedge product inside the brackets in (1.11) is ordinary matrix
multiplication of matrices with differential form coefficients. Thus we see that

Dξ(f ) = dξ(f )+ θ(f )ξ(f )
= [d + θ(f )]ξ(f )

thinking of d+θ(f ) as being an operator acting on vector-valued functions.

Remark: If we let E = T (X), then the real analogue of a connection in
the differential operator sense as defined above defines an affine connection
in the usual sense (cf. Helgason [1], Nomizu [1], Sternberg [1], and Kobayashi
and Nomizu [1]). If ω = (ω1, . . . , ωn) is a frame for T ∗(X) over U , then

θρσ =
n∑
k=1

�
ρ

σkωk, �
ρ

σk ∈ E(U).

In the classical case these are the Schwarz-Christoffel symbols associated
with (or defining) a given connection.

Suppose that E → X is a vector bundle equipped with a connection D
(as we shall see below, every vector bundle admits a connection). Let Hom
(E,E) be the vector bundle whose fibres are Hom(Ex, Ex). We want to
show that the connection D on E induces in a natural manner an element

�E(D) ∈ E2(X,Hom(E,E)),

to be called the curvature tensor.
First we want to give a local description of an arbitrary element χ ∈

Ep(X,Hom(E,E)). Let f be a frame for E over U in X. Then f =
(e1, . . . , er) becomes a basis for the free Ep(U)-module

Ep(U,Hom(E,E)) ∼= Ep(U)⊗E(U) E(U,Hom(E,E)).

Since E|U ∼= U × Cr , by using f to effect a trivialization, we see that

E(U,Hom(E,E)) ∼= Mr (U) = Mr ⊗C E(U),

where Mr is the vector space of r × r matrices, and thus Mr (U) is the
E(U)-module of r × r matrices with coefficients in E(U). Therefore there is
associated with χ under the above isomorphisms, an r × r matrix

(1.12) χ(f ) = [χ(f )ρσ ], χ(f )ρσ ∈ Ep(U).

Moreover, we see easily that χ determines a global homomorphism of vector
bundles

χ : E(X,E) −→ Ep(X,E),



72 Differential Geometry Chap. III

defined fibrewise in the natural manner. The frame f gives local representa-
tions for elements in E(X,E) and Ep(X,E) and the matrix (1.12) is chosen
so that the following diagram commutes,

E(U,E)
χ−→ Ep(U,E)

� ‖ � ‖
E(U)r

χ(f )−→[Ep(U)]r
ξ(f ) −→ χ(f )ξ(f ) = η(f ),

where
ηρ(f ) =

∑
σ

χ(f )ρσ ξ
σ (f )

is matrix multiplication and the vertical isomorphisms are given by (1.2)
and (1.8), respectively. Under this convention it is easy to compute how the
local representation for χ behaves under a change of frame; namely, if

η(fg) = χ(fg)ξ(fg),

then we see that
g−1η(f ) = χ(fg)g−1ξ(f ),

which implies that

(1.13) χ(fg) = g−1χ(f )g;
i.e., χ transforms by a similarity transformation. Conversely, any assignment
of a matrix of p-forms χ(f ) to a given frame f which is defined for all
frames and satisfies (1.13) defines an element χ ∈ Ep(X,Hom(E,E)), as is
easy to verify.

Returning to the problem of defining the curvature, let E −→ X be a
vector bundle with a connection D and let θ(f ) = θ(D, f ) be the associated
connection matrix. We define

(1.14) �(D, f ) = dθ(f )+ θ(f ) ∧ θ(f ),
which is an r × r matrix of 2-forms; i.e.,

�ρσ = dθpσ +
∑

θρk ∧ θkσ .
We call �(D, f ) the curvature matrix associated with the connection matrix
θ(f ). We have the following two simple propositions, the first showing how
θ(f ) and �(f ) transform, and the second relating �(f ) to the operator
d + θ(f ).
Lemma 1.6: Let g be a change of frame and define θ(f ) and �(f ) as above.
Then

(a) dg + θ(f )g = gθ(fg),
(b) �(fg) = g−1�(f )g.

Proof:

(a) If
fg = (∑

gρ1eρ, . . . ,
∑

gρreρ
) = (e′

1, . . . , e
′
r ),
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then

D(e′
σ ) =

∑
ν

θνσ (fg)e
′
ν

=
∑
ν,ρ

θνσ (fg)gρνeρ,

and, on the other hand,

D
(∑

ρ

gρσ eρ
) =

∑
ρ

dgρσ eρ +
∑
ρ,τ

gρσ θτρeτ .

By comparing coefficients, we obtain

(1.15) gθ(fg) = dg + θ(f )g.
(b) Take the exterior derivative of the matrix equation (1.15), obtaining

(1.16) dθ(f ) · g − θ(f ) · dg = dg · θ(fg)+ g · dθ(fg).
Also,

(1.17) θ(fg) = g−1dg + g−1θ(f )g,

and thus we obtain by substituting (1.17) into (1.16) an algebraic expression
for gdθ(fg) in terms of the quantities dθ(f ), θ(f ), dg, g, and g−1. Then
we can write

(1.18) g[dθ(fg)+ θ(fg) ∧ θ(fg)]
in terms of these same quantities. Writing this out and simplifying, we find
that (1.18) is the same as

[dθ(f )+ θ(f ) ∧ θ(f )]g,
which proves part (b).

Q.E.D.

Lemma 1.7: [d + θ(f )][d + θ(f )]ξ(f ) = �(f )ξ(f ).

Proof: By straightforward computation we have (deleting the notational
dependence on f )

(d + θ)(d + θ)ξ = d2ξ + θ · dξ + d(θ · ξ)+ θ ∧ θ · ξ
= θ · dξ + dθ · ξ − θ · dξ + θ ∧ θ · ξ
= dθ · ξ + θ ∧ θ · ξ
= � · ξ.

Q.E.D.

The proof of the above lemma illustrates why we have taken care to see
that the abstract operations and equations at the section level correspond,
with respect to a local frame, to matrix operations and equations.

We now make the following definition.

Definition 1.8: LetD be a connection in a vector bundle E −→ X. Then the
curvature �E(D) is defined to be that element � ∈ E2(X,Hom(E,E)) such
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that the C-linear mapping

� : E(X,E) −→ E2(X,E)

has the representation with respect to a frame

�(f ) = �(D, f ) = dθ(f )+ θ(f ) ∧ θ(f ).
We see by Lemma 1.6(b) that �E(D) is well defined, since �(D, f ) satisfies
the transformation property (1.13), which ensures that �(D, f ) determines
a global element in E2(X,Hom(E,E)).

Remark: It follows from the local definition of �E(D) that the curvature
is an E(X)-linear mapping

� : E(X,E) −→ E2(X,E),

and it is this linearity property that makes � into a tensor in the classical
sense. Note that the transformation formula for θ(f ) involves derivatives
of the change of frames and that of course the connection D is not E(X)-
linear. If we denote by Dzξ the natural contraction of Z⊗Dξ for Z ∈ T (X)
and ξ ∈ E(X,E), then the classical curvature tensor R(Z,W) = DZDW −
DWDZ −D[Z,W ] defined from this affine connection agrees with �(Z,W) ∈
E(X,Hom(E,E)). This follows by an exterior algebra computation and
(1.14), since for a frame f over U,Dξ(f ) = dξ(f )+ θ(f ) ∧ ξ(f ) implies

DZξ(f ) = Zξ(f )+ θ(f )(Z)ξ(f ).
We can now define the action of D on higher-order differential forms by

setting
Dξ(f ) = dξ(f )+ θ(f ) ∧ ξ(f ),

where ξ ∈ Ep(X,E). Thus

D : Ep(X,E) −→ Ep+1(X,E)

if it is well defined. But we only have to check whether the image satisfies
the transformation law (1.3′) in order to see that the image of D is a
well-defined E-valued (p + 1)-form. To check this, we see that

g[dξ(fg)+ θ(fg)ξ(fg)] = d(gξ(fg))− dg · ξ(fg)
+ [dg + θ(f )g] ∧ g−1ξ(f )

from (1.3) and Lemma 1.6(a), which reduces to

dξ(f )+ θ(f ) ∧ ξ(f ).
Thus we have the extension of D to differential forms (E-valued) of higher
order. This extension is known as covariant differentiation, and we have
proved the following.

Proposition 1.9: D2 = �, as an operator mapping

Ep(X,E) −→ Ep+2(X,E), where D2 = D ◦D.
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The only unproved part is for p > 0, but we observe that Lemma 1.7 is
still valid in this case. Then the curvature is the obstruction to D2 = 0 and
is therefore the obstruction that the sequence

E(X,E)
D−→E1(X,E)

D−→E2(X,E) −→ · · · −→
be a complex (cf. Sec. 5 in Chap. IV).

The differential forms Ep(X,Hom(E,E)) are locally matrices of p-forms.
We want to use this fact to define a Lie product on the algebra

E∗(X,Hom(E,E)) =
∑
p

Ep(X,Hom(E,E)).

We proceed as follows. If χ ∈ Ep(X,Hom(E,E)) and f is a frame for E
over the open set U , then we have seen before that

χ(f ) ∈ Mr ⊗C Ep(U),

and thus if ψ ∈ Eq(X,Hom(E,E)), we define
(1.19) [χ(f ), ψ(f )] = χ(f ) ∧ ψ(f )− (−1)pqψ(f ) ∧ χ(f ),
where the right-hand side is matrix multiplication. If g is a change of frame,
then by (1.13) we have

χ(fg) = g−1χ(f )g

ψ(fg) = g−1ψ(f )g,

and thus [χ(fg), ψ(fg)] = g−1[χ(f ), ψ(f )]g
by a straightforward substitution. Therefore the Lie bracket is well
defined on E∗(χ,Hom(E,E)) and satisfies the Jacobi identity, making
E∗(X,Hom(E,E)) into a Lie algebra (cf., e.g., Helgason [1]).

Suppose that E is equipped with a connection D and that we let
θ(f ),�(f ) be the local connection and curvature forms with respect to
some frame f . Then we can prove a version of the Bianchi identity in this
context, for which we shall have use later.

Proposition 1.10: d�(f ) = [�(f ), θ(f )].
Proof: Letting θ = θ(f ) and � = �(f ), we have

� = dθ + θ ∧ θ,
and thus

d� = d2θ + dθ ∧ θ − θ ∧ dθ
= dθ ∧ θ − θ ∧ dθ.

But
[�, θ ] = [dθ + θ ∧ θ, θ ]

= dθ ∧ θ + θ ∧ θ ∧ θ
− (−1)2·1(θ ∧ dθ + θ ∧ θ ∧ θ)

= dθ ∧ θ − θ ∧ dθ.
Q.E.D.
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We now want to show that any differentiable vector bundle admits a
connection. In the next section we shall see some examples when we look
at the special case of holomorphic vector bundles. Assume that E is a
Hermitian vector bundle over X. Then we can extend the metric h on E
in a natural manner to act on E-valued covectors. Namely, set

(1.20) 〈ω ⊗ ξ, ω′ ⊗ ξ ′〉x = ω ∧ ω̄′〈ξ, ξ ′〉x
for ω ∈ ∧pT ∗

x (X), ω
′ ∈ ∧qT ∗

x (X), and ξ, ξ ′ ∈ E, for x ∈ X. Thus the
extension of the inner product to differential forms induces a mapping

h : Ep(X,E)⊗ Eq(X,E) −→ Ep+q(X).
A connection D on E is said to be compatible with a Hermitian metric h
on E if

(1.21) d〈ξ, η〉 = 〈Dξ, η〉 + 〈ξ,Dη〉.
Suppose that f = (e1, . . . , er) is any frame and that D is a connection

compatible with a Hermitian metric on E. Then we see that [letting h(f ) = h,
θ(f ) = θ ]

dhρσ = d〈eσ , eρ〉 = 〈Deσ , eρ〉 + 〈eσ ,Deρ〉
= 〈∑

τ

θτσ eτ , eρ〉 + 〈eσ ,
∑
µ

θµρeµ
〉

=
∑
τ

θτσ hρτ +
∑
µ

θ̄µρhµσ

= (hθ)ρσ + (t θ̄h)ρσ ,
and thus

(1.22) dh = hθ + t θ̄h

is a necessary condition that h and the connection D be compatible. More-
over, it is sufficient. Namely, suppose that (1.22) is satisfied for all frames.
Then one obtains immediately

d〈ξ, η〉 = d(t η̄hξ) = t (dη̄)hξ + t η̄(dh)ξ + t η̄hdξ

in terms of a local frame. Substituting (1.22) into the above equation, we
get four terms which group together as

t (dη̄ + θη)hξ + t η̄h(dξ + θξ) = 〈ξ,Dη〉 + 〈Dξ, η〉.
Proposition 1.11: Let E −→ X be a Hermitian vector bundle. Then there
exists a connection D on E compatible with the Hermitian metric on E.

Proof: A unitary frame f has the property that h(f ) = I . Such frames
always exist near a given point x0, since the Gram-Schmidt orthogonalization
process allows one to find r local sections which form an orthonormal basis
for Ex at all points x near x0. In particular, we can find a locally finite
covering Uα and unitary frames fα defined in Uα. The condition (1.21)
reduces to

0 = θ + t θ̄
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for a unitary frame; i.e., θ is to be skew-Hermitian. In each Uα we can
choose the trivial skew-Hermitian matrix of the form θα = 0; i.e., θ(fα) = 0.
If we make a change of frame in Uα, then we see that we require that
(1.23) θ(fαg) = g−1dg + 0
by Lemma 1.6(a). Therefore, define θ(fαg) by (1.23), and noting that
h(fαg) = t ḡh(f )g = t ḡg, we obtain

dh(fαg) = d(t ḡ · g)
= dt ḡ · g + t ḡ · dg
= dt ḡ(t ḡ)−1 · t ḡ · g + t ḡ · g · g−1 · dg
= t θ̄ (fαg)h(fαg)+ h(fαg)θ(fαg),

which verifies the compatibility. Let {ϕα} be a partition of unity subordinate
to {Uα} and let Dα be the connection in E|Uα defined by

(Dαξ)(fα) = dξ(fα).

Dα is defined with respect to other frames over Uα by formula (1.23) and is
compatible with the Hermitian metric on E|Uα , by construction. Then we
let D = ∑

α ϕαDα, which is a well-defined (first-order partial-differential)
operator

D : E(X,E) −→ E1(X,E).

Moreover, D is compatible with the metric h on E since

〈Dξ, η〉 + 〈ξ,Dη〉 =
∑
α

ϕα[〈Dαξ, η〉 + 〈ξ,Dαη〉]

=
∑
α

ϕαd〈ξ, η〉 = d〈ξ, η〉.
Q.E.D.

Remark: It is clear by the construction in the proof of Proposition 1.11
that a connection compatible with a metric is by no means unique because
of the various choices made along the way. In the holomorphic category,
we shall obtain a unique connection satisfying an additional restriction on
the type of θ .

2. The Canonical Connection and Curvature of a Hermitian Holomorphic
Vector Bundle

Suppose now that E −→ X is a holomorphic vector bundle over a
complex manifold X. If E, as a differentiable bundle, is equipped with
a differentiable Hermitian metric, h, we shall refer to it as a Hermitian
holomorphic vector bundle.

Recall that since X is a complex manifold,

E∗(E) =
∑
r

Er (E) =
∑
p,q

Ep,q(E),

where
Ep,q(E) = E

p,q

X ⊗EX E(E).
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Suppose then that we have a connection on E

D : E(X,E) −→ E1(X,E) = E1,0(X,E)⊕ E0,1(X,E).

Then D splits naturally into D = D′ +D′′, where

D′ : E(X,E) −→ E1,0(X,E)

D′′ : E(X,E) −→ E0,1(X,E).

Theorem 2.1: If h is a Hermitian metric on a holomorphic vector bundle
E −→ X, then h induces canonically a connection, D(h), on E which
satisfies, for W an open set in X,

(a) For ξ, η ∈ E(W,E)

d〈ξ, η〉 = 〈Dξ, η〉 + 〈ξ,Dη〉;
i.e., D is compatible with the metric h.

(b) If ξ ∈ O(W,E), i.e., is a holomorphic section of E, then D′′ξ = 0.

Proof: First, we point out that (b) is equivalent to the fact that the
connection matrix θ(f ) is of type (1,0) for a holomorphic frame f . This
follows, since for ξ ∈ O(W,E) and f a holomorphic frame, we have

Dξ(f ) = (d + θ(f ))ξ(f )
= (∂ + θ(1,0)(f ))ξ(f )+ (∂̄ + θ(0,1)(f ))ξ(f ),

where θ = θ(1,0) + θ(0,1) is the natural decomposition. Therefore

D′ξ(f ) = (∂ + θ(1,0)(f ))ξ(f )
and

D′′ξ(f ) = (∂̄ + θ(0,1)(f ))ξ(f ).
But ∂̄ξ(f ) = 0 since ξ and f are holomorphic. Thus

D′′ξ(f ) = θ(0,1)(f )ξ(f ).

Suppose now that we have a connection D satisfying (a) and (b). Then let
f = (e1, . . . , er) be a holomorphic frame over U ⊂ X and θ the associated
connection matrix. Since D is compatible with the metric h, we have, by
(1.22),

dh = hθ + t θ̄h.

Since, in addition, D satisfies (b), we have seen that θ is of type (1, 0).
Thus, by examining types we see that

∂h = hθ

and
∂̄h = t θ̄h,

from which it follows that

(2.1) θ = h−1∂h.
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We can then define θ by (2.1). Such a connection matrix clearly satisfies
(a) and (b). Moreover, if f ′ = fg is another holomorphic frame, we have

h(fg) = t ḡh(f )g,

so that
h−1(fg) = g−1h(f )−1[t ḡ]−1

and

gθ(fg) = g[h−1(fg)∂h(fg)]
= h(f )−1[t ḡ]−1∂[t ḡh(f )g]
= h(f )−1[t ḡ]−1[t ḡ∂h(f )g + t ḡh(f )∂g + ∂t ḡh(f )g].

But g is a holomorphic change of frame, from which it follows that

∂t ḡ = ∂̄ tg = 0 and ∂g = dg.

Thus

gθ(fg) = h(f )−1∂h(f )g + dg
= θ(f )g + dg.

Recalling Lemma 1.6(a), we see that this is the necessary transformation
formula for θ to define a global connection.

Q.E.D.

This theorem gives a simple formula for the canonical connection in
terms of the metric h; namely,

(2.2) θ(f ) = h(f )−1∂h(f )

for a holomorphic frame f . Moreover, D = D′ + D′′ has the following
representation with respect to a holomorphic frame f :

D′ = ∂ + θ(f )
D′′ = ∂̄ .(2.3)

Thus we have the following proposition.

Proposition 2.2: Let D be the canonical connection of a Hermitian holo-
morphic vector bundle E −→ X, with Hermitian metric h. Let θ(f ) and
�(f ) be the connection and curvature matrices defined by D with respect
to a holomorphic frame f . Then

(a) θ(f ) is of type (1, 0), and ∂θ(f ) = −θ(f ) ∧ θ(f ).
(b) �(f ) = ∂̄θ(f ), and �(f ) is of type (1, 1).
(c) ∂̄�(f ) = 0, and ∂�(f ) = [�(f ), θ(f )].
Proof: Let h = h(f ), θ = θ(f ), and � = �(f ). Then we first note that

θ is of type (1, 0) by (2.2). Then by using

∂h−1 = −h−1 · ∂h · h−1

∂2 = 0,
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we see that
∂θ = ∂(h−1∂h) = −h−1 · ∂h · h−1 ∧ ∂h

= −(h−1∂h) ∧ (h−1∂h) = −θ ∧ θ,
which gives us part (a). Part (b) is a simple computation, namely,

� = dθ + θ ∧ θ = ∂θ + θ ∧ θ + ∂̄θ
= ∂̄θ,

by using part (a). Part (c) then follows from
∂̄� = ∂̄2θ = 0

and Proposition 1.10.
Q.E.D.

Let E −→ X be a holomorphic vector bundle and let f = (e1, . . . , er)

be a frame for E defined near a point p ∈ X. Choose local coordinates
z = (z1, . . . , zn) near p so that p is given by z = 0. Then we can write

f (z) = (e1(z), . . . , er(z))

to denote the dependence on the variable z near z = 0. Suppose that h is a
Hermitian metric on E → X and that f (z) is the above frame. Then we write

h(z) = h(f (z))

near z = 0. The next lemma tells us that we may always find a local frame
f near p such that h(f (z)) has a very nice form. Let �(z) = �(f (z)).

Lemma 2.3: There exists a holomorphic frame f such that

(a) h(z) = I +O(|z|2).
(b) �(0) = ∂̄∂h(0).

Proof: Suppose that (a) holds. Then it follows that
h−1(z) = I +O(|z|2),

from which we see that
�(z) = ∂̄∂h(z)+O(|z|),

and hence (b) follows.
To show (a), we shall make two changes of frame. First we note that h(0)

is a positive definite Hermitian matrix, and thus there exists a nonsingular
matrix g ∈ GL(r,C) such that

g∗h(0)g = I,

where for any matrix M we let M∗ = t M̄. The matrix g induces a change
of frame f −→ f̃ = f · g, and we see that

h̄(z) = h(f̃ (z)) = h(fg)

= g∗hg

h̄(z) = I +O(|z|).(2.4)
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Assume now that h(z) is given satisfying (2.4). We want to consider a
change of frame of the form

g = I + A(z),
where A(z) = (

∑
j A

j
ρσ zj ) is a matrix of linear holomorphic functions of z.

Since A(0) = 0, this change of frame will preserve (2.4). By choosing A(z)
such that

(2.5) h̃(z) = g(z)∗h(z)g(z) = I +O(|z|2),
we will have proved (a). But (2.5) is equivalent, by Taylor’s theorem, to the
vanishing of the first derivatives of (2.5) at z = 0; i.e., dh̃(0) = 0. Thus we
compute

dh̃(z) = dh(z)+ dA∗(z) · h(z)
+h(z)dA(z)+O(|z|).

Therefore
dh̃(0) = ∂h(0)+ dA(0)+ ∂̄h(0)+ dA∗(0).

Suppose that we let

(2.6) Aiρσ = −∂hρσ (0)
∂zi

,

Then we see that
dA(0) = −∂h(0),

which implies that
dA∗(0) = −∂̄h(0).

Then the choice of A(z) given by (2.6), depending on the derivatives of the
metric h, ensures that (2.5) holds.

Q.E.D.

This lemma allows us to compute the curvature � at a particular point
without having to compute the inverse of the local representation for the
metric, provided that we have the right frame.

We want to give one principal example concerning the computation of
connections and curvatures. Further examples of specific Hermitian metrics
on tangent bundles are found in Chap. VI, where we shall discuss Kähler
manifolds. In Sec. 4 we shall look at the special case of line bundles in
more detail.

Example 2.4: Let Ur,n −→ Gr,n be the universal bundle over the
Grassmannian manifold Gr,n (Example 1.2.6). We see that a frame f =
(e1, . . . , er) for Ur,n −→ Gr,n consists of an open set U ⊂ Gr,n and smooth
functions

ej : U −→ Cn,
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so that e1 ∧ . . .∧er 
= 0. Thus f = (e1, . . . , er) can be thought of as an n× r
matrix with coefficients being smooth functions in U and whose columns
are the vectors {ej }, and the matrix f is of maximal rank at each point
z ∈ U . A holomorphic frame will simply have holomorphic coefficients. We
define a metric on Ur,n by letting

(2.7) h(f ) = t f̄ f

for any frame f for Ur,n. This metric results from considering Ur,n ⊂ Gr,n×Cn

and restricting the standard Hermitian metric on Cn to the fibres of Ur,n −→
Gr,n. First we note that h(f ) is positive definite since (recall that f has
maximal rank)

t z̄h(f )z = t (f z)(f z) = |f z|2 > 0 if z 
= 0.

Moreover, if g is a change of frame, then we compute that

h(fg) = t (fg)(fg) = t ḡt f̄ fg = t ḡh(f )g,

so that (1.7) is satisfied, and thus we see that h defined by (2.7) on frames
gives a well-defined Hermitian metric on Ur,n, since the frame representation
transforms correctly.

We can now compute the canonical connection and curvature for Ur,n
with respect to this natural metric. If f is any holomorphic frame for Ur,n,
then by (2.2) and Proposition 2.2, we see that

θ(f ) = h−1(f )∂h(f )

�(f ) = ∂̄(h−1(f )∂h(f )).

We obtain, letting θ = θ(f ), etc., as before,

(2.8) � = h−1 · t df ∧ df − h−1 · t df · f · h−1 ∧ t f̄ · df,
where h−1 = [tf̄f ]−1. In the case r = 1 (projective space), we can obtain
a more explicit formula. If ϕ ∈ [Ep(W)]n, ψ ∈ [Eq(W)]n, for W an open
subset of Cn, we set

〈ϕ,ψ〉 = (−1)pq t ψ̄ ∧ ϕ,
which generalizes the usual Hermitian inner product on vectors in Cn [note
that this is compatible with (1.19), where we have the usual inner product
on E = W × Cn given by 〈u, v〉 = t v̄u, u, v ∈ Cn]. Then the curvature form
for U1,n becomes

(2.9) �(f ) = −〈f, f 〉〈df, df 〉 − 〈df, f 〉 ∧ 〈f, df 〉
〈f, f 〉2

,

where f is a holomorphic frame for U1,n. If we choose f to be of the form

f =

⎡⎢⎢⎢⎢⎣
ξ1

·
·
·
ξn

⎤⎥⎥⎥⎥⎦ ,
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where ξj ∈ O(U) and
∑ |ξj |2 = |f |2 
= 0, then

df =

⎡⎢⎢⎢⎢⎣
dξ1

·
·
·
dξn

⎤⎥⎥⎥⎥⎦ ,
tdf = (dξ 1, . . . , dξn)

= (dξ̄1, . . . , dξ̄n),

and we obtain

(2.10) �(f ) = −
|f |2

n∑
i=1
dξi ∧ dξ̄i −

n∑
i,j=1

ξ̄iξj dξi ∧ dξ̄j
|f |4 .

Recall that the functions ξ1, . . . , ξn are functions of the local coordinates
on G1,n = Pn−1, and that, in particular, �(f ) is a well-defined 2-form on
U ⊂ Pn−1. Alternatively, we can think of (ξ1, . . . , ξn) as being homogeneous
coordinates for Pn−1, and by the homogeneity of (2.9), we see that the
expression in (2.9) induces a well-defined 2-form on all of Pn−1, which
agrees with the 2-form on U mentioned above. We shall see this differential
form again when we study Kähler metrics in Chap. V.

Returning to the general case of Ur,n → Gr,n, we have seen in Lemma 2.3
that, by a proper choice of holomorphic frame for Ur,n and a proper choice
of local holomorphic coordinates near some fixed point, we can find a very
simple expression for the curvature. We shall now see an example of this.
Let

f0 =
[
Ir
0

]
be a frame for Ur,n at the point x0 ∈ Gr,n defined by

x0 = 〈
[
Ir
0

]
〉,

where 〈 〉 denotes the span of the columns of the frame matrix inside, which
is a subspace of Cn and thus a point in Gr,n. Letting

Bε = {Z ∈ Mn−r,r ∼= C(n−r)r : |Z| < ε},
the mapping

Bε −→ Gr,n

given by

Z −→ 〈
[
Ir
Z

]
〉

is a coordinate system for Gr,n near x0, with the property that x0 corre-
sponds to Z = 0. There is a natural action of GL(n,C) on Gr,n given
by left multiplication of frames (i.e., left multiplication of homogeneous
coordinates). Namely, if f ∈ Mn,r , x = 〈f 〉, and u ∈ GL(n,C), then set

u(x) = 〈u · f 〉.
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Moreover, U(n), the unitary group, is transitive on Gr,n under this action
(a well-known fact of linear algebra).

Therefore if y0 is any point in Gr,n and y0 = u(x0) for a unitary matrix
u, then the mapping

Z −→ u

[
I

Z

]
gives local coordinates at y0 ∈ Gr,n. The metric at y0 has the form, with
respect to the frame

f (z) = u

[
I

Z

]
,

h(Z) = h(f (Z)) =
(
u

[
I

Z

])∗ (
u

[
I

Z

])
= I + Z ∗ Z
= I +O(|Z|2),

which is the form occurring in Lemma 2.3(a) (note that the dependence on
u disappears completely). Thus we see that

�(y0) = �(0) = ∂̄∂(I + Z ∗Z)(0)
�(y0) = dZ ∗ ∧ dZ(0)(2.11)

which is the same for all points of Gr,n with respect to these particular
systems of local coordinates. We shall use this expression for the curvature
to compute certain Chern classes of this vector bundle in the next section.

3. Chern Classes of Differentiable Vector Bundles

Our object in this section is to give a differential-geometric derivation of
the Chern classes of a differentiable C-vector bundle E → X. The Chern
classes will turn out to be the primary obstruction to admitting global
frames, or, more generally, admitting k global sections ξ1, . . . , ξk, 1 ≤ k ≤
rank CE, such that ξ1 ∧ . . . ∧ ξk 
= 0, at each point of E (i.e., they are
to be obstructions to E or some nonzero subbundle of E being trivial).
Classically, the Chern classes are related to the Euler characteristic of a
compact manifold X, which for oriented 2-manifolds, for instance, decides
completely whether or not there are nonvanishing vector fields on X. More
specifically, if E is a C-vector bundle of rank r, then the Chern classes
cj (E), j = 1, . . . , r, will be elements of the de Rham group H 2j (X,R)
having certain functorial properties. As we shall see, they can be defined in
terms of the curvature of E with respect to a connection. Our approach
here follows the exposition of Bott and Chern [1], based on the original
ideas of Chern and Weil.

To begin, we need some multilinear algebra. Recall that Mr , is the set
of r × r matrices with complex entries. A k-linear form

ϕ̃ : Mr ,× · · · × Mr −→ C
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is said to be invariant if

ϕ̃(gA1g
−1, . . . , gAkg

−1) = ϕ̃(A1, . . . , Ak)

for g ∈ GL(r,C), Ai ∈ Mr . Let Ĩk(Mr ) be the C-vector space of all invariant
k-linear forms on Mr .

Suppose that ϕ̃ ∈ Ĩk(Mr ). Then ϕ̃ induces

ϕ : Mr −→ C

by setting
ϕ(A) = ϕ̃(A, . . . , A).

It is clear then that ϕ is a homogeneous polynomial of degree k in the
entries of A. Moreover, for g ∈ GL(r,C),

ϕ(gAg−1) = ϕ(A),

and we say then that ϕ is invariant. Let Ik(Mr ) be the set of invariant
homogeneous polynomials of degree k as above. Since the isomorphism of
the symmetric tensor algebra S(M∗

r ) and the polynomials on Mr preserves
degrees (see Sternberg [1]), one obtains† from ϕ ∈ Ik(Mr ) an element
ϕ̃ ∈ Ĩk(Mr ) such that

ϕ̃(A, . . . , A) = ϕ(A).

We shall omit the tilde and use the same symbol for the multilinear form
and its restriction to the diagonal.

Example 3.1: The usual determinant of an r × r matrix is a mapping

det : Mr −→ C,

which is clearly a member of Ir(Mr ). Moreover, for A ∈ Mr and I , the
identity in Mr , we see that

det(I + A) =
r∑
k=0

�k(A),

where each �k ∈ Ik(Mr ). Note that �k, k = 0, . . . , r, so defined is a real
mapping; i.e., if M has real entries, then �k(M) is real.

We would like to extend the action of ϕ ∈ Ĩk(Mr ) to E*(Hom(E,E)).
First, we define the extension to Mr ⊗ EEp. If U is open in X and Ai ·wi ∈
Mr (U)⊗E(U) E

p(U), then set

ϕU(A1 · w1, . . . , Ak · wk) = w1 ∧ · · · ∧ wkϕ(A1, . . . , Ak).

By linearity ϕ becomes a well-defined k-linear form on Mr ⊗E Ep. If ξj ∈
Ep(U,Hom(E,E)), j = 1, . . . , k, then set

ϕU(ξ1, . . . , ξk) = ϕU(ξ1(f ), . . . , ξk(f )).

† This process is called polarization and a specific formula for ϕ̃ is

ϕ̃(A1, . . . , Ak) = (−1)k

k!
k∑
j=1

∑
i1<···<ij

(−1)jϕ(Ai1 + · · · + Aij ).

This shows that the invariance of ϕ̃ follows from that of ϕ.
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We can check that this definition is independent of the choice of frame.
Namely, if g is a change of frame, then by (1.13)

ϕU(ξ1(fg), . . . , ξk(fg)) = ϕU(g
−1ξ1(f )g, . . . , g

−1ξk(f )g)

= ϕU(ξ1(f ), . . . , ξk(f )),

by the invariance of ϕ and the induced invariance of ϕ when acting on
matrices with differential form coefficients. Thus we get an extension of ϕ
to all of X,

ϕx : Ep(X,Hom(E,E))× · · · × Ep(X,Hom(E,E)) → Epk(X),

which when restricted to the diagonal induces the action of the invariant
polynomial ϕ ∈ Ik(Mr ) on Ep(X,Hom(E,E)), which we denote by

ϕX : Ep(X,Hom(E,E)) −→ Epk(X).

Now suppose that we have a connection
D : E(X,E) −→ E1(X,E)

defined on E → X. Then we have the curvature �E(D), as defined in
Definition 1.8. So if ϕ ∈ Ik(Mr ), ϕx(�E(D)) is a global 2k-form onX. We can
now state the following basic result due to A. Weil (cf. Bott and Chern [1]).

Theorem 3.2: Let E → X be a differentiable C-vector bundle, let D be a
connection on E, and suppose that ϕ ∈ Ik(Mr ). Then

(a) ϕX(�E(D)) is closed.
(b) The image of ϕX(�E(D)) in the de Rham group H 2k(X,C) is

independent of the connection D.

Proof: To prove (a), we shall show that for ϕ ∈ Ik(Mr ), the associated
invariant k-linear form ϕ satisfying

ϕ(gA1g
−1, . . . , gAkg

−1) = ϕ(A1, . . . , Ak)

for all g ∈ GL(r,C) satisfies

(3.1)
∑
j

ϕ(A1, . . . , [Aj, B], . . . , Ak) = 0

for all Aj, B ∈ Mr .
Assuming (3.1), we shall first see that (a) holds. Recalling the definition

of the Lie product on Mr ⊗ E* preceding Proposition 1.10, equation (3.1)
gives, for U open in X,†

(3.2)
∑
α

(−1)f (α)ϕU(A1, . . . , [Aα,B], . . . , Ak) = 0

for all Aα ∈ Mr ⊗ Epα (U) and B ∈ Mr ⊗ Eq(U), where f (α) = degB∑
β≤α degAβ . Moreover, it follows from the definition of a k-linear form

that
(3.3) dϕU(A1, . . . , Ak) =

∑
α

(−1)g(α)ϕU(A1, . . . , dAα, . . . , Ak)

†We have previously defined the action of ϕ only on Mr ⊗ Ep , but this clearly extends
to an action on Mr ⊗ E∗.
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for Aα ∈ Mr ⊗ Epα (U), where g(α) = ∑
β<α degAβ . We want to show that

dϕx(�) = 0, and it suffices to show that for a frame f over U ,

dϕU(�(f )) = 0.

But from equation (3.3) we have [letting �(f ) = �]
dϕU(�) = dϕU(�, . . . ,�) =

∑
ϕU(�, . . . , d�, . . . ,�),

noting that deg � is even. From Proposition 1.10 we have that

dϕU(�) =
∑

ϕU(�, . . . , [�, θ ], . . . ,�),
but this vanishes by equation (3.2), and thus ϕX(�E) is a closed form.

Now all that remains is to show that the invariance of ϕ implies equa-
tion (3.1). First, if f (t) and g(t) are power series with matrix coefficients
which converge for all t ∈ C, i.e.,

f (t) =
∑
n

Ant
n and g(t) =

∑
n

Bnt
n,

then
f (t)g(t) = A0B0 + (A1B0 + A0B1)t +O(|t |2),

and if ϕ is a linear functional on Mr , then

ϕ(f (t)) =
∑
n

ϕ(An)t
n.

Now for A,B ∈ Mr it follows from the above remarks that

(3.4) e−tBAetB − A = t[A,B] +O(|t |2).
We now want to show that (3.1) holds. We consider, for simplicity, the
case k = 2, the general case being an immediate generalization. Thus, if
ϕ ∈ I2(Mr ), by the invariance of the associated bilinear form we obtain

ϕ(e−tBA1e
tB, e−tBA2e

tB)− ϕ(A1, A2) = 0

for all t ∈ C and A1, A2, B ∈ Mr , since e−tB · etB = I . By adding and
subtracting ϕ(e−tBA1e

tB, A2) to/from the above identity, we obtain

ϕ(e−tBA1e
tB, e−tBA2e

tB)− ϕ(e−tBA1e
tB, A2)+ ϕ(e−tBA1e

tB, A2)

− ϕ(A1, A2) ≡ 0.

Applying (3.4) to each of the differences above, we find that

ϕ(e−tBA1e
tB, t[A2, B])+O(|t |2)+ ϕ(t[A1, B] +O(|t |2), A2)

= t{ϕ(A1, [A2, B])+ ϕ([A1, B], A2)} +O(|t |2) ≡ 0.

Thus the coefficient of t must also vanish identically, and this proves (3.1)
in the case k = 2. It is now clear that the general case is obtained in the
same way by adding and subtracting the appropriate k − 1 terms to/from
the difference

ϕ(e−tBA1e
tB, . . . , e−tBAketB)− ϕ(A1, . . . , Ak),

and we omit further details.
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Now that ϕX(�E(D)) is closed, it makes sense to consider its image in
the de Rham group H 2k(X,C). To prove part (b), we shall show that for
two connections D1, D2 on E −→ X there is a differential form α so that

(3.5) ϕ(�E(D1))− ϕ(�E(D2)) = dα.

To do this, we need to consider one-parameter families of differential forms
on X and one-parameter families of connections on E → X, and to point
out some of their properties.

Let α(t) be a C∞ one-parameter family of differential forms on X, t ∈ R;
i.e., α has the local representation

α(t) =
∑

aI (x, t)dxI

for t ∈ R and aI is C∞ in x and t (cf. Sec. 2 in Chap. I). Define locally

α̇(t) = ∂α(t)

∂t
=

∑ ∂aI

∂t
dxI∫ b

a

α(t)dt =
∑(∫ b

a

aI (x, t)dt

)
dxI

It is easy to check that these definitions are independent of the local coor-
dinates used and that α̇(t) and

∫ b
a
α(t)dt are well-defined global differential

forms. Also,

∂

∂t
(α(t) ∧ β(t)) = ∂α

∂t
(t) ∧ β(t)+ α(t) ∧ ∂β

∂t
(t)

and ∫ b

a

α̇(t)dt = α(t)|ba = α(b)− α(a).
For a differentiable vector bundle E → X, we define a C∞ one-parameter
family of connections on E to be a family of connections {Dt}t∈R such that
for a C∞ frame f over U open in X the connection matrix θt (f ) := θ(Dt , f )

has coefficients which are C∞ one-parameter families of differential forms
on E.† Suppose that Dt is such a family of connections. Then for a C∞

frame f over U and ξ ∈ E(U,E) we have

∂

∂t
Dtξ(f ) = ∂

∂t
(dξ(f )+ θt (f )ξ(f ))

=
(
∂

∂t
θt (f )

)
ξ(f ).

Moveover, since a change of frame is independent of t , this clearly defines
for each t0 ∈ R a mapping

Ḋt0 : E(X,E) −→ E1(X,E)

†We shall need only C1 families of connections in the applications, which have the
analogous definition.
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by
Ḋt0(ξ) = ∂

∂t
Dtξ |t0.

Moreover, this mapping is EX-linear. Therefore Ḋt0 defines an element of
E1(X,Hom(E,E)) which we also call Ḋt0. As we pointed out above, Ḋt0
has a local representation

θ̇t0(f ) := Ḋt0(f ) = ∂

∂t
θt (f )|t0.

We can now reduce the proof of part (b) to the following lemma, which
will be proved below.

Lemma 3.3: Let Dt be a C∞ one-parameter family of connections, and
for each t ∈ R, let �t be the induced curvature. Then for any ϕ ∈ Ik(Mr ),

ϕX(�b)− ϕX(�a) = d

(∫ b

a

ϕ′(�t ; Ḋt )dt
)
,

where
ϕ′(ξ ; η) =

∑
α

ϕ(ξ, ξ, . . . , ξ, η
(α)

, ξ, . . . , ξ),

(α) denotes the αth argument, and ξ, η ∈ E∗(X,Hom(E,E)).

Namely, if D1 and D2 are two given connections, for E −→ X, then let
Dt = tD1 + (1 − t)D2,

which is clearly a C∞ one-parameter family of connections on E. Thus, by
Lemma 3.3, we see that

ϕX(�E(D1))− ϕX(�E(D2)) = ϕX(�1)− ϕX(�2) = dα,

where
α =

∫ 1

0
ϕ′(�t ; Ḋt ) dt.

Q.E.D.

Proof of Lemma 3.3: It suffices to show that, for a frame f over U , we
have

(3.6) ϕ̇U (�) = dϕ′
U(�; θ̇ ),

where � = �E(Dt, f ), θ = θ(Dt , f ), and the dot denotes differentiation
with respect to the parameter t , as above. Here we use the simple fact
that exterior differentiation commutes with integration with respect to the
parameter t . We proceed by computing

dϕ′
U(�; θ̇ ) = d

(∑
α

ϕU
(
�, . . . , θ̇

(α)
, . . . ,�

))
=

∑
α

{∑
i<α

ϕU
(
�, . . . , d�

(i)
, . . . , θ̇

(α)
, . . . ,�

)
+ ϕU

(
�, . . . , dθ̇

(α)
, . . . ,�

)
−

∑
i>α

ϕU
(
�, . . . , θ̇

(α)
, . . . , d�

(i)
, . . . ,�

)}
.
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By adding and subtracting∑
α

ϕU
(
�, . . . ,

[
θ̇
(α)
, θ

]
, . . . ,�

)
to/from the above equation and noting that

�̇ = dθ̇ + [θ̇ , θ ] (differentiation of(1.14))
d� = [�, θ ] (Bianchi identity, Proposition 1.10),

we obtain the equation
dϕ′

U(�; θ̇ ) =
∑
α

ϕU
(
�, . . . , �̇

(α)
, . . . ,�

)
+

∑
α

{∑
i<α

ϕU
(
�, . . . ,

[
�, θ

(i)

]
, . . . , θ̇

(α)
, . . . ,�

)
− ϕU

(
�, . . . ,

[
θ̇ , θ
(α)

]
, . . . ,�

)
−

∑
i>α

ϕU
(
�, . . . , θ̇

(α)
, . . . ,

[
�, θ

(i)

]
, . . . ,�

)}
.

By (3.2), we see that the second sum over α vanishes, and we are left with
dϕ′

U

(
�; θ̇) =

∑
α

ϕU
(
�, . . . , �̇

(α)
, . . . ,�

)
= ϕ̇U (�),

which is (3.6).
Q.E.D.

We are now in a position to define Chern classes of a differentiable
vector bundle. From Example 3.1 we consider the invariant polynomials
�k ∈ I k(Mr ) defined by the equation

det(I + A) =
∑
k

�k(A), A ∈ Mr .

Definition 3.4: Let E −→ X be a differentiable vector bundle equipped
with a connection D. Then the kth Chern form of E relative to the connection
D is defined to be

ck(E,D) = (�k)X
( i

2π
�E(D)

) ∈ E2k(X).

The (total) Chern form of E relative to D is defined to be

c(E,D) =
r∑
k=0

ck(E,D), r = rank E.

The kth Chern class of the vector bundle E, denoted by ck(E), is the
cohomology class of ck(E,D) in the de Rham group H 2k(X,C), and the
total Chern class of E, denoted by c(E), is the cohomology class of c(E,D)
in H ∗(X,C); i.e., c(E) = ∑r

k=0 ck(E).

It follows from Theorem 3.2 that the Chern classes are well defined and
independent of the connectionD used to define them. Thus the Chern classes
are topological cohomology classes in the base space of the vector bundle
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E. We shall see shortly that they are indeed obstructions to finding, e.g.,
global frames. First we want to show that the Chern classes are real
cohomology classes.

Proposition 3.5: Let D be a connection on a Hermitian vector bundle E
compatible with the Hermitian metric h. Then the Chern form c(E,D) is
a real differential form, and it follows that c(E) ∈ H ∗(X,R), under the
canonical inclusion H ∗(X,R) ⊂ H ∗(X,C).

Proof: It suffices to show that for a local frame f the matrix rep-
resentation for the Chern form is a real differential form. Therefore let
h = h(f )� = �(D, f ), as usual, and recall that D being compatible with
the metric h was equivalent to the condition (1.22),

dh = hθ + t θ̄h,

whose exterior derivative is given by
0 = dh ∧ θ + hdθ + dt θ̄ · h− t θ̄ ∧ dh.

By substituting the above expression for dh, we obtain
(3.7) 0 = h� + t�̄h.

In particular, if f is a unitary frame, we note that � is skew-Hermitian.
Using (3.7) we can show that if

c := c(E,D, f ) = det
(
I + i

2π
�

)
,

then c = c̄; i.e., c is a real differential form. Namely,

det
(
h+ i

2π
�h

)
= det

(
I + i

2π
�

)
· det h

‖

det
(
h− i

2π
ht�̄

)
= det h · det

(
I − i

2π
t�̄

)
,

where the vertical equality is given by (3.7). Now it follows that

c = det
(
I + i

2π
�

)
= det

(
I − i

2π
t�̄

)
= det

(
I − i

2π
�̄

)
= c̄.

Q.E.D.

We want to prove some functorial properties of the Chern classes. In
doing so we shall see that it is often convenient to choose a particular
connection to find a useful representative for the Chern classes. We remark
that the de Rham group H* (X,R) on a differentiable manifold X carries
a ring structure induced by wedge products; i.e., if

c, c′ ∈ H*(X,R)
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and c = [ϕ] and c′ = [ϕ′], then

c · c′ = [ϕ ∧ ϕ′],
which is easily checked to be well defined.†

Theorem 3.6: Suppose that E and E′ are differentiable C-vector bundles
over a differentiable manifold X. Then

(a) If ϕ : Y −→ X is a differentiable mapping where Y is a differentiable
manifold, then

c(ϕ∗E) = ϕ∗c(E),
where ϕ∗E is the pullback vector bundle and ϕ∗c(E) is the pullback of the
cohomology class c(E).

(b) c(E ⊕ E′) = c(E) · c(E′), where the product is in the de Rham
cohomology ring H ∗(X,R).

(c) c(E) depends only on the isomorphism class of the vector bundle E.
(d) If E∗ is the dual vector bundle to E, then

cj (E
∗) = (−1)j cj (E).

Proof:

(a) Let D be any connection on E −→ X. To prove part (a), it will
suffice to define a connection D∗ on ϕ∗E so that

ϕ∗(�(D)) = �(D∗),

where ϕ∗ is the induced map on curvature. We proceed as follows. Suppose
that f = (e1, . . . , er) is a frame over U in X. Then f ∗ = (

e∗
1, . . . , e

∗
r

)
, where

e∗
i = ei ◦ϕ, is a frame for ϕ∗E over ϕ−1(U), and frames of the form f ∗ cover
Y . Also, if g : U −→ GL(r,C) is a change of frame over U , then g∗ = g ◦ϕ
is a change of frame in ϕ∗E over ϕ−1(U). Now define a connection matrix

θ∗(f ∗) := ϕ∗θ(f ) = [ϕ∗θρσ ],
where ϕ∗θρσ is the induced map on forms. Moreover, it is easy to see that

g∗θ∗(f ∗g∗) = θ∗(f ∗)g∗ + dg∗

so that θ∗ defines a global connection on h∗E. And, finally, we have

�(D∗, f ∗) = dθ∗(f ∗)+ θ∗(f ∗) ∧ θ∗(f ∗)

= dϕ∗θ(f )+ ϕ∗θ(f ) ∧ ϕ∗θ(f )

= ϕ∗(dθ(f )+ θ(f ) ∧ θ(f ))
= ϕ∗�(D, f ),

which completes the proof of part (a).

†This is a representation for the cup product of algebraic topology; see, e.g., Bredon [1]
and Greenberg [1].
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(b) Given D and D′, connections on E and E′, respectively, it suffices to
find a connection D⊕ on E ⊕ E′ so that

c(E ⊕ E′,D⊕) = c(E,D) ∧ c(E′,D′).

Also, as in part (a), it suffices to consider a local argument. Therefore for
θ and θ ′ connection matrices over U on E and E′, respectively, it is easy
to see that

θ⊕ =
[
θ 0
0 θ ′

]
is a connection matrix defining a global connection on E ⊕E′ (the details
are left to the reader). The associated curvature matrix is given by

�⊕ =
[
� 0
0 �′

]
.

Thus

c(E ⊕ E′,D⊕)|U = det

⎡⎢⎣I + i

2π
� 0

0 I ′ + i

2π
�′

⎤⎥⎦
= det

[
I + i

2π
�

]
det

[
I ′ + i

2π
�′

]
= c(E,D)|U ∧ c(E′,D′)|U .

(c) Suppose that α : E −→ E′ is a vector bundle isomorphism. Then we
want to show that c(E) = c(E′). This is simple, and similar to the argument
in part (a). Let D be a connection on E, and define a connection D′ on
E′ by defining the connection matrix for D′ by the relation

θ ′(f ′) = θ(f ),

where f is a frame for E and f ′ = (α(e1), . . . , α(er)) is a frame for E′. As
in (a), this is a connection for E′, and it follows that �′(f ′) = �(f ), and
hence c(E) = c(E′).

(d) Suppose that the duality between E and E∗ is represented by 〈 , 〉
(not to be confused with a metric) and that D is a connection on E. If
f and f ∗ are dual frames over an open set U , i.e., 〈eσ , e∗

ρ〉 = δσρ , then we
can define a connection D∗ in E∗ by setting

(3.8) θ∗ = θ(D∗, f ∗) = −t θ(D, f ).

We can check that θ∗ defined by (3.8) is indeed a connection on E∗. Suppose
that g is a change of frame f −→ fg on E. Then the induced change
of frame for the dual frame f ∗ is given by f ∗ −→ f ∗t (g−1), as is easy to
verify. Thus, if we let g∗ = (tg)−1, we have to check that

(3.9) θ∗(f ∗g∗) = (g∗)−1dg∗ + (g∗)−1θ∗(f ∗)g∗
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to see that θ∗ is a well-defined connection on E∗. But (3.9) holds if and
only if

−t θ(fg) = t gdt (g−1)− t gt θ(f )t (g−1),

which simplifies to, after taking transposes and using the fact that dg−1 =
−g−1dgg−1,

θ(fg) = g−1dg + g−1θ(f )g,

which holds, since θ(f ) is a connection matrix. Therefore the curvature for
E∗ is

�∗ = dθ∗ + θ∗ ∧ θ∗

= −dtθ + t θ ∧ t θ

= −dtθ − t (θ ∧ θ)
= −t (dθ + θ ∧ θ)
= −t�.

Thus the Chern forms restricted to U are related by

ck(E
∗,D∗) = �k

(
− i

2π
�

)
= (−1)k�k

(
i

2π
�

)
= (−1)kck(E,D),

where we note that the invariant polynomial �k is homogeneous of degree
k and is invariant with respect to transpose (since det is).

Q.E.D.

Remark: In the case where E −→ X is a holomorphic vector bundle
and h is a Hermitian matrix on E, h∗, the induced metric on E∗, is given by

h∗(f ∗) = t (h−1(f )),

where f and f ∗ are dual holomorphic frames. From this we see that

θ∗ = (h∗)−1∂h∗

= th∂t (h−1)

= −(∂th)t (h−1)

= −t (h−1∂h) = −t θ

and
�∗ = −∂̄ t θ = −t�.

We now use the above functorial properties to derive the obstruction-
theoretic properties of Chern classes, i.e., the obstructions to finding global
sections.

Theorem 3.7: Let E −→ X be a differentiable vector bundle of rank r. Then
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(a) c0(E) = 1.
(b) If E ∼= X× Cr is trivial, then cj (E) = 0, j = 1, . . . , r; i.e., c(E) = 1.
(c) If E ∼= E′ ⊕ Ts , where Ts is a trivial vector bundle of rank s, then

cj (E) = 0, j = r − s + 1, . . . , r.

Proof:

(a) This is obvious from the definition of Chern classes.
(b) If E = X × Cr , then E(X,E) ∼= (E(X))r , and a connection

D : E(X,E) −→ E1(X,E)

can be defined by

Dξ = dξ = d

⎡⎢⎢⎢⎢⎣
ξ1

·
·
·
ξr

⎤⎥⎥⎥⎥⎦ ,
where ξj ∈ E(X). In this case the connection matrix θ is identically zero.
Then the curvature vanishes, and we have

c(E,D) = det(I + 0) = 1,

which implies that cj (E,D) = 0, j > 0.
(c) We compute

c(E) = c(E′ ⊕ Ts)
= c(E′) · c(Ts)
= c(E′) · 1

by Theorem 3.6 and part (b). Moreover, E′ is of rank r− s, and so we have

c(E) = 1 + c1(E)+ · · · + cr(E) = 1 + c1(E
′)+ · · · + cr−s(E′),

from which it follows that

cj (E) = 0, j = r − s + 1, . . . , r.
Q.E.D.

We shall now use Theorem 3.7 to show that some of our examples of
vector bundles discussed in Chap. I are indeed nontrivial vector bundles by
showing that they have nonvanishing Chern classes.

Example 3.8: Consider T (P1(C)), which is R-linear isomorphic to T (S2),
the real tangent bundle to the 2-sphere S2, and we shall show that it has
a nonzero first Chern class. The natural metric on T (P1(C)) is the chordal
metric defined by

h(z) = h

(
∂

∂z
,
∂

∂z

)
= 1
(1 + |z|2)2
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in the z-plane; if w = 1/z is the coordinate system at infinity (from the
classical point of view), h(∂/∂w, ∂/∂w) has the same form. We compute

θ(z) = h(z)−1∂h(z)

= (1 + |z|2)2 ∂

(
1

(1 + |z|2)2

)
θ(z) = − 2z̄

(1 + |z|2)
dz

� = ∂̄θ = 2
(1 + |z|2)2

dz ∧ dz̄.
Therefore

c1(E, h) = i

π(1 + |z|2)2
dz ∧ dz̄

= 2dx ∧ dy
π(1 + |z|2)2

.

Now ∫
P1

c1(E, h) = 2
π

∫ ∞

0

∫ 2π

0

ρdρdθ

(1 + ρ2)2

= 4
∫ ∞

0

ρdρ

(1 + ρ2)2

= 2
∫ ∞

1

du

u2

= 2.

Thus the closed differential form c1(E, h) cannot be exact, since its integral
over the 2-cycle P1 is nonzero. Therefore T (P1(C)) is a nontrivial complex
line bundle. Note that the integral of the Chern class over P1 was in fact 2,
which is the Euler characteristic of P1. This is true in much greater generality.
Namely, the classical Gauss-Bonnet theorem asserts that the integral of the
Gaussian curvature over a compact 2-manifold is the Euler characteristic
(see e.g. Eisenhart [1]). More generally,∫

X

cn(T (X)) = χ(X)

for a compact n-dimensional complex manifold X (see Chern [2]). We shall
see the above computation on the 2-sphere in a different context in the next
section.

Example 3.9: Consider the universal bundle E = U2,3 −→ G2,3, which
is a vector bundle with fibres isomorphic to C2. In Example 2.4 we
have computed the curvature in an appropriate coordinate system, and
we obtained

�(y0) = dZ∗ ∧ dZ(0),
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using the notation of Example 2.4. Thus we find that Z = (Z11, Z12), Z1j ∈ C,
and we have the 2 × 2 curvature matrix

dZ∗ ∧ dZ =
[
dZ̄11 ∧ dZ11 dZ̄11 ∧ dZ12

dZ̄12 ∧ dZ11 dZ̄12 ∧ dZ12

]
from which we compute

c2(E, h)(y0) = det
(
i

2π
dZ∗ ∧ dZ

)
=

(
− 1

2π 2

)
dZ11 ∧ dZ̄11 ∧ dZ12 ∧ dZ̄12

=
(

− 1
2π 2

)
·
(

2
i

)2

dX11 ∧ dY11 ∧ dX12 ∧ dY12

= 2
π 2
dX11 ∧ dY11 ∧ dX12 ∧ dY12,

which shows that c2(E, h) is a volume form for G2,3 and, consequently, that∫
G2,3

c2(E, h) > 0.

This shows that c2(E, h) 
= 0. Thus E has no trivial subbundles and is itself
not trivial.

4. Complex Line Bundles

In this section we are going to continue our study of Chern classes of vector
bundles by restricting attention to complex line bundles, i.e., differentiable or
holomorphic C-vector bundles of rank 1. In particular, we shall characterize
which cohomology classes inH 2(X,R) (for a given differentiable manifoldX)
are the first Chern class of a complex line bundle over X, a result which has
an important application in Chap. VI when we prove Kodaira’s fundamental
theorem characterizing which abstract compact complex manifolds admit
an embedding into complex projective space.

We start with the following two propositions, which are true for vector
bundles of any rank.

Proposition 4.1: Let E −→ X be a differentiable vector bundle. Then there
is a finite open covering {Uα}, α = 1, . . . , N , of X such that E|Uα is trivial.

Proof: If X is compact, then the result is obvious. By definition we are
assuming that X is paracompact (see Chap. I). Now let {Vβ} be an open
covering of X such that E|vβ is trivial. By a standard result in topology, X
has topological dimension n implies that there is a refinement {Uα} of {Vβ}
with the property that the intersection of any (n+2) elements of the covering
{Uα} is empty, which, in particular means that {Uα} is a locally finite covering
of X. Let {ϕα} be a partition of unity subordinate to the covering {Uα}.
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Let Ai be the set of unordered (i + 1)-tuples of distinct elements of the
index set of {ϕα}. Given a ∈ Ai, a = {α0, . . . , αi}, let

Wia = {x ∈ X : ϕα(x) < min[ϕα0(x), . . . , ϕαi (x)] for all α 
= α0, . . . , αi}.
Then it follows that each Wia is open, and Wia∩Wib = ∅ if a 
= b. Moreover,

Wia ⊂ suppϕα0 ∩ · · · ∩ suppϕαi ⊂ Uα

for some α, where supp ϕαj = support of ϕαj . Then we see that if we let

Xi = ∪
a
Wia, i = 0, . . . , n,

then (a) E|Xi is trivial and (b) ∪ Xi = X. Assertion (a) follows from the
fact that E|Wia is trivial, since Wia ⊂ Uα and Wia∩Wib = ∅, a 
= b. If x ∈ X,
then x is contained in at most n+1 of the sets {Uα}, and so at most n+1 of
the functions {ϕα} are positive at x. Let a = {α0, . . . , αi}, where ϕα0 , . . . , ϕαi
are the only functions in {ϕα} which are positive at x, 0 ≤ i ≤ n. Then it
follows that

0 = ϕα(x) < min{ϕα0(x), . . . , ϕαi(x)}
for any α 
= α0, . . . , αi , and hence x ∈ Wia ⊂ Xi . Thus {Xi} is a finite open
covering of X such that E|Xi is trivial.

Q.E.D.

Proposition 4.2: Let E → X be a differentiable C-vector bundle of rank r.
Then there is an integer N > 0 and a differentiable mapping � : X →
Gr,N(C) such that �∗(Ur,N) ∼= E, where Ur,N → Gr,N is the universal bundle.

Remark: This is one-half of the classification theorem for vector bundles,
theorem I.2.17, discussed in Sec. 2. of Chap. I.

Proof: Consider the dual vector bundle E∗ → X. By Proposition 4.1,
there exists a finite open cover of X, {Uα}, and a finite number of frames
fα = (eα

1 , . . . , e
α
r ), α = 1, . . . , k, for the vector bundle E∗. By a simple

partition of unity argument, we see that there exists a finite number of
global sections of the vector bundle E∗, ξ1, . . . , ξN ∈ E(X,E∗), such that
at any point x ∈ X there are r sections {ξα1 , . . . , ξαr } which are linearly
independent at x (and hence in a neighborhood of x). We want to use the
sections ξ1, . . . , ξN to define a mapping

� : X −→ Gr,N .

Suppose that f ∗ is a frame for E∗ near x0 ∈ X. Then

(4.1) M(f ∗) = [ξ1(f
∗)(x), . . . , ξN(f ∗)(x)]

is an r × N matrix of maximal rank, whose coefficients are C∞ functions
defined near x0. The rows of M span an r-dimensional subspace of CN , and
we denote this subspace by �(x). A priori, �(x) depends on the choice of
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frame, but we see that if g is a change of frame, then

M(f ∗g) = [ξ1(f
∗g), . . . , ξN(f ∗g)]

= [g−1ξ1(f
∗), . . . , g−1ξN(f

∗)]
= g−1M(f ∗).

Thus the rows of M(f ∗) and M(f ∗g) span the same subspace, and therefore
the mapping

� : X −→ Gr,N

is well defined at every point. It follows from the construction, by looking at
local coordinates in Gr,N , that �; is a differentiable mapping. We now claim
that �∗Ur,N ∼= E. To see this, it suffices to define a bundle morphism �̃

E
�̃ ��

��

Ur,N

π
��

X
� �� Gr,N

which commutes with the mapping � and which is injective on each fibre.
We define �̃(x, v), x ∈ X, v ∈ Ex , by setting

�̃(x, v) = (〈v, ξ1(x)〉, . . . , 〈v, ξN(x)〉),
where 〈 , 〉 denotes the bilinear pairing between E and E∗. Thus �̃|Ex is a
C-linear mapping into CN , and we claim that (a) �̃|Ex is injective and (b)
�̃(Ex) = π−1(�(x)), where π is the projection in the universal bundle. Let
f be a frame for E near x ∈ X and let f ∗ be a dual frame for E∗; i.e.,
if f = (e1, . . . , er) and f ∗ = (e∗

1, . . . , e
∗
r ), then 〈eρ, e∗

σ 〉 = δρσ . Then we see
that the mapping �̃ can be represented at x by the matrix product

(4.2) �̃(x, v) = t v(f ) ·M(f ∗),

where M(f ∗) is defined by (4.1) and is of maximal rank. Thus �̃ is injective
on fibres. But (4.2) shows that the image of �̃(Ex) is contained in the
subspace of CN spanned by the rows of M(f ∗), which implies that �̃(Ex) =
π−1(�(x)).

Q.E.D.

It follows from Proposition 4.2 and Theorem 3.6(a) that c(E) =
�∗(c(Ur,N)). In particular, one can show easily from this that line bundles
have integral Chern classes. Let H̃ q(X,Z) denote the image of Hq(X,Z) in
Hq(X,R) under the natural homomorphism induced by the inclusion of the
constant sheaves Z ⊂ R [this means that H̃ q(X,Z) is integral cohomology
modulo torision].

Proposition 4.3: Let E → X be a complex line bundle, Then c1(E) ∈
H̃ 2(X,Z).



100 Differential Geometry Chap. III

Proof: Since c1(E) = �∗(c1(U1,N )), where � is the mapping in
Proposition 4.2, we see that it suffices to show that

c1(U1,N ∈ H 2(PN−1,Z)

[H 2(PN−1,Z) has no torsion; see the discussion below]. In Sec. 2 we have
computed the curvature for the canonical connection D(h) associated with
the natural metric h on the universal bundle U1,N , and thus, by (2.10), we
see that

(4.3) c1(U1,N ,D(h)) = 1
2πi

|f |2 ∑ dξj ∧ dξ̃j − ∑
ξ̃j ξkdξj ∧ dξ̃k

|f |4 ,

where f = (ξ1, . . . , ξN) is a frame for U1,N . Now, it is well known that

Hq(Pn(C),Z) ∼= Z, q even, q ≤ 2n

Hq(Pn(C),Z) ∼= 0, q odd, or q > 2n,

which can be shown easily using singular cohomology (see Greenberg [1]).
In fact there is a cell decomposition

P0 ⊂ P1 ⊂ · · · ⊂ PN−1

where Pj−1 ⊂ Pj is a linear hyperplane, and Pj−Pj−1
∼= Cj . The submanifold

Pj ⊂ PN−1 is a generator for H2j (PN,Z), and there are no torsion elements.
A closed differential form ϕ of degree 2j will be a representative of an
integral cohomology class in H 2j (PN−1,Z) if and only if∫

Pj

ϕ ∈ Z.

Thus, to see that c1(U1,N ) ∈ H 2(PN−1,Z), it suffices to compute∫
P1

α,

where α is defined by (4.3). We can take P1 ⊂ PN−1 to be defined by the
subspace in homogeneous coordinates

{(z1, . . . , zN) : zj = 0, j = 3, . . . , N}.
Consider the frame f for U1,N → PN−1, defined over W = {z : z1 
= 0},
given by

f ([1, ξ2, . . . , ξN ]) = (1, ξ2, . . . , ξN),

where (ξ2, . . . , ξN) are coordinates for PN in the open set W . Then f |W∩P1

is given by
f ([1, ξ2, 0, . . . , 0)]) = (1, ξ2, 0, .., 0),

and we can think of ξ2 as coordinates in W ∩P1 for P1. Thus the differential
form α|P1 is given by (letting z = ξ2)

α = 1
2πi

dz ∧ dz̄
(1 + |z|2)2

,
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and therefore we obtain∫
P1

α =
∫

P1∩W
α = 1

2πi

∫
C

dz ∧ dz̄
(1 + |z|2)2

= − 1
π

∫
R2

dx ∧ dy
(1 + |z|2)2

= −2
∫ ∞

0

rdr

(1 + r2)2

= −1.

This shows that c1(U1,N ) ∈ H 2(PN−1,Z) and hence that c1(E) ∈ H̃ 2(X,Z).
Q.E.D.

Remark: This approach generalizes to vector bundles. In fact, Gr,N(C)
has a cell decomposition similar to that given above for G1,N (C) and has
non-vanishing cohomology only in even degrees and has no torsion. The
generalization of the cycles {Pj ⊂ PN } generating the homology are called
Schubert varieties. Moreover, one can show that the Chern classes of the
universal bundle Ur,N , appropriately normalized, are integral cohomology
classes, and thus a version of Proposition 4.3 is valid for vector bundles
(see Chern [2]). In algebraic topology, one defines the Chern classes as the
pullbacks under the classifying map of the Chern classes of the universal
bundle, thus admitting torsion elements. However, the proof of Theorem 3.6
in that context is considerably different and perhaps not quite so simple.

So far we have encountered two different approaches to Chern class the-
ory: the differential-geometric definition in Sec. 3 and the classifying space
approach discussed in the above remark. A third approach is to define Chern
classes only for line bundles, extend the definition to direct sums of line
bundles by using the required behavior on direct sums, and show that any
vector bundle can be decomposed as a direct sum of line bundles by mod-
ifying the base space appropriately (see Hirzebruch [1]). For a comparison
of almost all definitions possible, see Appendix I in Borel and Hirzebruch
[1]. We shall present a simple sheaf-theoretic definition of Chern class for
a complex line bundle and show that it is compatible with the differential-
geometric (and consequently classifying space) definition. We shall assume
a knowledge of Čech cohomology as presented in Sec. 4 in Chap. II.

Consider, first, holomorphic line bundles over a complex manifold X.
Let O be the structure sheaf of X and let O∗ be the sheaf of nonvanishing
holomorphic functions on X.

Lemma 4.4: There is a one-to-one correspondence between the equiva-
lence classes of holomorphic line bundles on X and the elements of the
cohomology group H 1(X,O∗).
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Proof: We shall represent H 1(X,O∗) by means of Čech cohomology.
Suppose that E → X is a holomorphic line bundle. There is an open
covering {Uα} = U and holomorphic functions

(4.4) gαβ : Uα ∩ Uβ −→ GL(1,C) = C − {0}
such that

gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ .(4.5)

gαα = 1 on Uα.

Namely, the {gαβ} are the transition functions of the line bundle with respect
to a suitable covering (see Sec. 2 of Chap. I). But the data {gαβ} satisfying
(4.5) define a cocycle g ∈ Z1(U,O∗) and hence a cohomology class in
the direct limit H 1(X,O∗). Moreover, any line bundle E′ → X which is
isomorphic to E → X will correspond to the same class in H 1(X,O∗).
This is easy to see by combining (via the isomorphism) the two sets of
transition functions to get a single set of transition functions on a suitable
refinement of the given {Uα} and {U ′

α}. Thus they will correspond to the same
cohomology class. Conversely, given any cohomology class ξ ∈ H 1(X,O∗),
it can be represented by a cocycle g = {gαβ} on some covering U = {Uα}. By
means of the functions {gαβ} one can construct a holomorphic line bundle
having these transition functions. Namely, let

Ẽ = ∪ Uα × C (disjoint union)

and identify
(x, z) ∈ Uα × C with (y,w) ∈ Uβ × C

if and only if
y = x and z = gαβ(x)w.

This identification (or equivalence relation on Ẽ) gives rise to a holomorphic
line bundle. Again, appealing to a common refinement argument, it is easy
to check that one does obtain the desired one-to-one correspondence.

Q.E.D.

As we know from the differential-geometric definition, the Chern class of
a line bundle depends only on its equivalence class, and this is most easily
represented by a cocycle in Z1(U,O∗) for a particular covering. Recall the
exact sequence of sheaves in Example II.2.6,

0 −→ Z −→ O
exp−→ O∗ −→ 0,

and consider the induced cohomology sequence

H 1(X,O) H 1(X,O∗) H 2(X,Z) H 2(X,O)

H 2(X,R),

δ

where the vertical mapping is the natural homomorphism j induced by the
inclusion of the constant sheaves Z ⊂ R and δ is the Bockstein operator.
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Note that the first Chern class, as defined in Sec. 3, gives a mapping (see
the dashed arrow above)

c1 : H 1(X,O∗) −→ H 2(X,R).
The following theorem tells us that we can compute Chern classes of line
bundles by using the Bockstein operator δ.

Theorem 4.5: The diagram

H 1(X,O∗) δ ��

c1

���������
H 2(X,Z)

j
��

H 2(X,R)

is commutative.

Proof: The basic element of the proof is to represent de Rham coho-
mology by Čech cohomology and then compute explicitly the Bockstein
operator in this context. Suppose that U = {Uα} is a locally finite covering
of X, and consider ξ = {ξαβγ } ∈ Z2(U,R). We want to associate with ξ a
closed 2-form ϕ on X. Since ξ also is an element of Z2(U,E) and E is fine,
there exists a τ ∈ C1(U,E) so that δτ = ξ , for instance,

τβγ =
∑

α

ϕαξαβγ ,

where ϕα is a partition of unity subordinate to U. Exterior differentiation is
well defined on cochains in Cq(U,Ep) and commutes with the coboundary
operator, and so we obtain

δdτ = dδτ = dξ = 0.
Then dτ ∈ Z1(U,E1), but E1 is also fine, so do the same thing once more,
writing

µβ =
∑

α

ϕαdταβ.

Then µ ∈ C0(U,E1) and δµ = dτ, and thus dµ ∈ C0(U,E2). But
δdµ = dδµ = d2τ = 0,

and so ϕ = −dµ ∈ Z0(U,E2) = E2(X) is a well-defined global differential
form which is clearly d-closed. Thus to a cocycle ξ ∈ Z2(U,R) we have
associated a closed differential form ϕ(ξ). This induces a mapping at the
cohomology level,
(4.6) Ȟ 2(X,R)

(Čech)
−→ H 2(X,R)

(de Rham)
,

which one can show is well defined and is an isomorphism (cf. the proof of
Theorem II. 3.13). Note that the mapping at the cocycle level depends on
the choices made (τ and µ) but that the induced mapping on cohomology
is independent of the choices made. This is thus an explicit representation
for the isomorphism between de Rham cohomology and Cech cohomology.
The choice of sign in this isomorphism was made so that the concept
of “positivity” for Chern classes is compatible for the sheaf-theoretic and
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differential-geometric definitions of Chern classes (cf. Chap. VI; Kodaira [1];
Hirzebruch [1]; Borel-Hirzebruch [1; II-Appendix]).

Suppose now that U is a covering of X, with the property that any
intersection of elements of the covering is a cell (in particular is simply
connected).† We want to use U to describe the Bockstein operator δ:

δ : H 1(X,O∗) −→ H 2(X,Z).

Suppose that g = {gαβ} ∈ Z1(U,O∗). Then σ = {σαβ}, defined by

σαβ = 1
2πi

log gαβ = exp−1(gαβ),

defines an element of C1(U,O) (here we use the simply connectedness and
any particular branch of the logarithm). Thus δσ ∈ C2(U,O), and since
δ2 = 0, we see that δσ ∈ Z2(U,O). But

(δσ )αβγ = 1
2πi

(log gβγ − log gαγ + log gαβ),

and this is integer-valued, since

gαβ · gβγ = gαγ ;
i.e., {gαβ} is a cocycle in Z1(X,O∗). Thus δσ ∈ Z2(U,Z) and is a representative
for δ(g) ∈ H 2(X,Z).

Now let g = {gαβ} be the transition functions of a holomorphic line
bundle E → X and let h be a Hermitian metric on E. Since {Uα} is a
trivializing cover for E, we have frames fα for E over Uα, and we set
hα = h(fα). Note that hα is a positive C∞ function defined in Uα. Thus

c1(E, h) = i

2π
∂̄(h−1

α ∂hα) in Uα,

which we rewrite as
c1(E, h) = 1

2πi
∂∂̄ log hα.

Note that the functions hα satisfy

hα = |gβα|2hβ
on Uα ∩ Uβ , which follows from the change of frame transformation (1.7)
for the Hermitian metric h. We want to use the functions {hα} in the
transformation from Čech to de Rham representatives. As above, let

δσ ∈ Z2(U,Z), σαβ = 1
2πi

log gαβ,

be the Bockstein image of {gαβ} in H 2(X,Z). We now want to associate to
δσ a closed 2-form via the construction giving (4.6), which will turn out to

†Such a covering always exists and will be a Leray covering for the constant sheaf;
i.e., Hq(|σ |,R) = 0 for any simplex σ of the covering U. If X is equipped with a
Riemannian metric (considered as a real differentiable manifold), then every point x ∈ X
has a fundamental neighborhood system of convex normal balis (Helgason [1], p. 54), and
the intersection of any finite number of such convex sets is again convex. Moreover, these
convex sets are cells.
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be the Chern form of E, concluding the proof of the theorem. Choose
τ and µ in the construction of the mapping (4.6) by letting τ = σ and
µ = {µα}, where

µα = 1
2πi

∂ log hα.

Then we see that this choice of µ = {µα} satisfies

(δµ)αβ = µβ − µα = 1
2πi

∂ log
hβ

hα

= 1
2πi

∂ log gαβ ḡαβ

= 1
2πi

(∂ log gαβ + ∂ log ḡαβ)

= 1
2πi

d log gαβ

= dσαβ = dταβ

(here ∂ log ḡβα = 0, since gβα is holomorphic). Thus the closed 2-form
associated with the cocycle δσ is given by

ϕ = −dµ = d

(
i

2π
∂ log hα

)
= i

2π
∂̄∂ log hα = c1(E, h).

Q.E.D.

A modification of the above proof shows that Theorem 4.5 is also true
in the C∞ category. Namely, there is an exact sequence

0 −→ Z −→ E −→ E∗ −→ 0

on a differentiable manifold X, where E∗ is the sheaf of nonvanishing C∞

functions. The induced sequence in cohomology reads

−→ H 1(X,E) −→ H 1(X,E∗)
δ−→H 2(X,Z) −→ H 2(X,E) −→,

but H 4(X,E) = 0, q > 0, since E is fine, and hence there is an isomorphism

H 1(X,E∗)
δ−→∼= H 2(X,Z),

which asserts that all differentiable complex line bundles are determined
by their Chern class in H 2(X,Z) [but not necessarily by their real Chern
class in H̃ 2(X,Z), as there may be some torsion lost]. For holomorphic line
bundles, the situation is more complicated. Let X be a complex manifold
and consider the corresponding sequence

H 1(X,O) �� H 1(X,O∗) δ ��

c1

���������
H 2(X,Z) ��

j
��

H 2(X,O)

H̃ 2(X,Z).

(4.7)
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Here we may have H 1(X,O) or H 2(X,O) nonvanishing, and line bundles
would not be determined by their Chern class in H 2(X,Z). We want to
characterize the image of c1 in the above diagram. Let H̃ 2

1,1(X,Z) be the
cohomology classes in H̃ 2(X,Z) which admit a d-closed differential form
of type (1, 1) as a representative, and let

H 2
1,1(X,Z) = j−1(H̃ 2

1,1(X,Z)) ⊂ H 2(X,Z).

Proposition 4.6: In (4.7),

c1(H
1(X,O∗)) = H̃ 2

1,1(X,Z).

Proof: It suffices to show that

δ(H 1(X,O∗)) = H 2
1,1(X,Z) in (4.7).

To see this, it suffices to show that the image of H 2
1,1(X,Z) in H 2(X,O) is

zero. Consider the following commutative diagram of sheaves (all natural
inclusions),

C

Z O,
and the induced diagram on cohomology,

H 2(X,C)

H 2(X,Z) H 2(X,O).

Now H̃ 2
1,1(X,Z) ⊂ H 2(X,C) and is the image of H 2

1,1(X,Z) in the above
diagram. Therefore it suffices to show that the image of H 2

1,1(X,C) (defined
as before) in H 2(X,O) is zero. Consider the homomorphism of resolutions
of sheaves

0 �� C ��

i
��

E0 d ��

i��

E1 d ��

π0,1
��

E2 d ��

π0,2
��

. . .

0 �� O �� E0,0 ∂̄ �� E0,1 ∂̄ �� E0,2 ∂̄ �� . . .

where π0,q : Eq → E0,q is the projection on the submodule of forms of type
(0, q). Therefore the mapping

H 2(X,C) −→ H 2(X,O)

is represented by mapping a d-closed differential form ϕ onto the ∂̄-closed
form π0,2ϕ. It is then clear that the image of H 2

1,1(X,C) in H 2(X,O) is zero,
since a class in H 2

1,1(X,C) is represented by a d-closed form ϕ of type (1, 1),
and thus π0,2ϕ = 0.

Q.E.D.

Closely related to holomorphic line bundles is the concept of a divisor
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on a complex manifold X. Consider the exact sequence of multiplicative
sheaves

(4.8) 0 −→ O∗ −→ M∗ −→ M∗/O∗ −→ 0

where O∗ was defined above and M∗ is the sheaf of non-trivial meromorphic
functions on X; i.e., the stalk M∗

x is the group of non-zero elements of the
quotient field of the integral domain Ox at a point x ∈ X (see Gunning and
Rossi [1], for the proofs of the algebraic structure of Ox ; i.e., Ox is a Noether-
ian local ring; moreover, Ox is an integral domain, with unique factorization).
We let D = M∗/O∗, and this is called the sheaf of divisors on X. A section
of D is called a divisor. If D ∈ H 0(X,D), then there is a covering A = {Uα}
and meromorphic functions (sections of M∗) fα defined in Uα such that

(4.9)
fβ

fα

= gαβ ∈ O∗(Uα ∩ Uβ).

Moreover,
gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ .

Thus a divisor gives rise to an equivalence class of line bundles represented
by the cocycle {gαβ}. This is seen more easily by looking at the exact sequence
in cohomology induced by (4.8), namely

H 0(X,M∗) �� H 0(X,D) �� H 1(X,O∗)

δ��

H 2(X,Z),

(4.10)

where we have added the vertical map coming from (4.7). From the sequence
(4.8) we see that a divisor determines an equivalence class of holomorphic
line bundles and that two different divisors give the same class if they “differ
by” (multiplicatively) a global meromorphic function (this is called linear
equivalence in algebraic geometry). Divisors occur in various ways, but very
often as the divisor determined by a subvariety V ⊂ X of codimension 1.
Namely, such a sub-variety V can be defined by the following data: a covering
{Uα} of X, holomorphic functions fα in Uα, and fβ/fα = gαβ nonvanishing
and holomorphic on Uα ∩ Uβ . The subvariety V is then defined to be the
zeros of the functions fα in Uα. This then clearly gives rise to a divisor (see
Gunning and Rossi [1] or Narasimhan [2] for a more detailed discussion of
divisors and subvarieties). We shall need to use this concept later on only
in the case of a nonsingular hypersurface V ⊂ X, which then gives rise to
an equivalence class of holomorphic line bundles.



CHAPTER IV

E L L I P T I C

O P E R AT O R T H E O RY

In this chapter we shall describe the general theory of elliptic differential
operators on compact differentiable manifolds, leading up to a presentation
of a general Hodge theory. In Sec. 1 we shall develop the relevant theory of
the function spaces on which we shall do analysis, namely the Sobolev spaces
of sections of vector bundles, with proofs of the fundamental Sobolev and
Rellich lemmas. In Sec. 2 we shall discuss the basic structure of differential
operators and their symbols, and in Sec. 3 this same structure is generalized
to the context of pseudodifferential operators. Using the results in the
first three sections, we shall present in Sec. 4 the fundamental theorems
concerning homogeneous solutions of elliptic differential equations on a
manifold. The pseudodifferential operators in Sec. 3 are used to construct
a parametrix (pseudoinverse) for a given operator L. Using the parametrix
we shall show that the kernel (null space) of L is finite dimensional and
contains only C∞ sections (regularity). In the case of self-adjoint operators,
we shall obtain the decomposition theorem of Hodge, which asserts that the
vector space of sections of a bundle is the (orthogonal) direct sum of the
(finite dimensional) kernel and the range of the operator. In Sec. 5 we shall
introduce elliptic complexes (a generalization of the basic model, the de
Rham complex) and show that the Hodge decomposition in Sec. 4 carries
over to this context, thus obtaining as a corollary Hodge’s representation
of de Rham cohomology by harmonic forms.

1. Sobolev Spaces

In this section we shall restrict ourselves to compact differentiable mani-
folds, for simplicity, although many of the topics that we shall discuss are
certainly more general. Let X be a compact differentiable manifold with a
strictly positive smooth measure µ.

We mean by this that dµ is a volume element (or density) which can be
expressed in local coordinates (x1, . . . , xn) by

dµ = ρ(x)dx = ρ(x)dx1 · · · dxn
108
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where the coefficients transform by

ρ(x) dx = ρ̃(y(x))

∣∣∣∣det
∂y(x)

∂x

∣∣∣∣ dx,
where ρ̃(y) dy is the representation with respect to the coordinates y =
(y1, . . . , yn), where x → y(x) and ∂y/∂x is the corresponding Jacobian
matrix of the change of coordinates. Such measures always exist; take, for
instance,

ρ(x) = | det gij (x)|1/2,
where ds2 = ∑

gij (x)dxi
⊗
dxj is a Riemannian metric for X expressed

in terms of the local coordinates (x1, . . . , xn).† If X is orientable, then the
volume element dµ can be chosen to be a positive differential form of
degree n (which can be taken as a definition of orientability).

Let E be a Hermitian (differentiable) vector bundle over X. Let Ek(X,E)

be the kth order differentiable sections of E over X, 0 ≤ k ≤ ∞, where
E∞(X,E) = E(X,E). As usual, we shall denote the compactly supported
sections‡ by D(X,E) ⊂ E(X,E) and the compactly supported functions by
D(X) ⊂ E(X). Define an inner product ( , ) on E(X,E) by setting

(ξ, η) =
∫
X

〈ξ(x), η(x)〉E dµ,
where 〈 , 〉E is the Hermitian metric on E. Let

‖ξ‖0 = (ξ, ξ)1/2

be the L2-norm and let W 0(X,E) be the completion of E(X,E). Let {Uα, ϕα}
be a finite trivializing cover, where, in the diagram

E|Uα ϕα ��

��

Ũα × Cm

��

Uα
ϕ̄α �� Ũα,

ϕα is a bundle map isomorphism and ϕ̄α: Uα → Ũα ⊂ Rn are local coordinate
systems for the manifold X. Then let

ϕ∗
α: E(Uα,E) −→ [E(Ũα)]m

be the induced map. Let {ρα} be a partition of unity subordinate to {Uα},
and define, for ξ ∈ E(X,E),

‖ξ‖s,E =
∑
α

‖ϕ∗
αραξ‖s,Rn ,

where ‖ ‖s,Rn is the Sobolev norm for a compactly supported differentiable
function

f : Rn −→ Cm,

†See any elementary text dealing with calculus on manifolds, e.g., Lang [1].
‡A section ξ ∈ E(X,E) has compact support on a (not necessarily compact) manifold

X if {x ∈ X: ξ(x) 
= 0} is relatively compact in X.
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defined (for a scalar-valued function) by

(1.1) ‖f ‖2
s,Rn =

∫
|f̂ (y)|2(1 + |y|2)s dy,

where
f̂ (y) = (2π)−n

∫
e−i〈x,y〉f (x) dx

is the Fourier transform in Rn. We extend this to a vector-valued function
by taking the s-norm of the Euclidean norm of the vector, for instance.
Note that ‖ ‖s is defined for all s ∈ R, but we shall deal only with integral
values in our applications. Intuitively, ‖ξ‖s < ∞, for s a positive integer,
means that ξ has s derivatives in L2. This follows from the fact that in Rn,
the norm ‖ ‖s,Rn is equivalent [on D(Rn)] to the norm[∑

|α|≤s

∫
Rn

|Dαf |2dx
]1/2

, f ∈ D(Rn)

(see, e.g., Hörmander [1], Chap. 1). This follows essentially from the basic
facts about Fourier transforms that

D̂αf (y) = yαf̂ (y),

where yα = y
α1
1 · · · yαnn ,Dα = (−i)|α| Dα1

1 · · ·Dαn
n , Dj = ∂/∂xj , and ‖f ‖0 =

‖f̂ ‖0.
The norm ‖ ‖s defined on E depends on the choice of partition of unity

and the local trivialization. We let Ws(X,E) be the completion of E(X,E)

with respect to the norm ‖ ‖s . Then it is a fact, which we shall not verify
here, that the topology on Ws(X,E) is independent of the choices made; i.e.,
any two such norms are equivalent. Note that for s = 0 we have made two dif-
ferent choices of norms, one using the local trivializations and one using the
Hermitian structure on E, and that these two L2-norms are also equivalent.

We have a sequence of inclusions of the Hilbert spaces Ws(X,E),

· · · ⊃ Ws ⊃ Ws+1 ⊃ · · · ⊃ Ws+j ⊃ · · · .
If we let H ∗ denote the antidual of a topological vector space over C

(the conjugate-linear continuous functionals), then it can be shown that

(Ws)∗ ∼= W−s (s ≥ 0).

In fact, we could have defined W−s in this manner, using the definition
involving the norms ‖ ‖s for the nonnegative values of s. Locally this is
easy to see, since we have for f ∈ Ws(Rn), g ∈ W−s(Rn) the duality (ignoring
the conjugation problem by assuming that f and g are real-valued)

〈f, g〉 =
∫
f (x) • g(x)dx =

∫
f̂ (ξ) • ĝ(ξ) dξ,

and this exists, since

|〈f, g〉| ≤
∫

|f̂ (ξ)|(1 + |ξ |2)s/2|ĝ(ξ)|(1 + |ξ |2)−s/2dξ ≤ ‖f ‖s‖g‖−s < ∞.
The growth is the important thing here, and the patching process (being a
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C∞ process with compact supports) does not affect the growth conditions
and hence the existence of the integrals. Thus the global result stated above
is easily obtained. We have the following two important results concerning
this sequence of Hilbert spaces.

Proposition 1.1 (Sobolev): Let n = dimRX, and suppose that s > [n/2] +
k + 1. Then

Ws(X,E) ⊂ Ek(X,E).

Proposition 1.2 (Rellich): The natural inclusion

j : Ws(E) ⊂ Wt(E)

for t < s is a completely continuous linear map.

Recall that completely continuous means that the image of a closed ball
is relatively compact, i.e., j is a compact operator. In Proposition 1.2
the compactness of X is strongly used, whereas it is inessential for Pro-
position 1.1.

To give the reader some appreciation of these propositions, we shall give
proofs of them in special cases to show what is involved. The general results
for vector bundles are essentially formalism and the piecing together of these
special cases.

Proposition 1.3 (Sobolev): Let f be a measurable L2 function in Rn with
‖f ‖s < ∞, for s > [n/2] + k + 1, a nonnegative integer. Then f ∈ Ck(Rn)

(after a possible change on a set of measure zero).

Proof: Our assumption ‖f ‖s < ∞ means that∫
Rn

|f̂ (ξ)|2(1 + |ξ |2)s dξ < ∞.

Let

f̃ (x) =
∫

Rn
ei〈x,ξ〉f̂ (ξ) dξ

be the inverse Fourier transform, if it exists. We know that if the inverse
Fourier transform exists, then f̃ (x) agrees with f (x) almost everywhere, and
we agree to say that f ∈ C0(Rn) if this integral exists, making the appropriate
change on a set of measure zero. Similarly, for some constant c,

Dαf (x) = c

∫
ei〈x,ξ〉ξαf̂ (ξ) dξ

will be continuous derivatives of f if the integral converges. Therefore we
need to show that for |α| ≤ k, the integrals∫

ei〈x,ξ〉ξαf̂ (ξ) dξ
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converge, and it will follow that f ∈ Ck(Rn). But, indeed, we have∫
|f̂ (ξ)||ξ ||α| dξ =

∫
|f̂ (ξ)|(1 + |ξ |2)s/2 |ξ ||α|

(1 + |ξ |2)s/2
dξ

≤ ‖f ‖s
(∫ |ξ |2|α|

(1 + |ξ |2)s
dξ

)1/2

.

Now s has been chosen so that this last integral exists (which is easy to
see by using polar coordinates), and so we have∫

|f̂ (ξ)||ξ ||α| dξ < ∞,
and the proposition is proved.

Q.E.D.

Similarly, we can prove a simple version of Rellich’s lemma.

Proposition 1.4 (Rellich): Suppose that fv ∈ Ws(Rn) and that all fv have
compact support in K ⊂⊂ Rn. Assume that ‖fv‖s ≤ 1. Then for any t < s
there exists a subsequence fvj which converges in ‖ ‖t .

Proof: We observe first that for ξ, η ∈ Rn, s ∈ Z+,
(1.2) (1 + |ξ |2)s/2 ≤ 2s/2(1 + |ξ − η|2)s/2(1 + |η|2)s/2.

To see this we write, using the Schwarz inequality,
1 + |ζ + η|2 ≤ 1 + (|ζ | + |η|)2 ≤ 1 + 2(|ζ |2 + |η|2)

≤ 2(1 + |ζ |2)(1 + |η|2).

Now let ξ = ζ + η, and we obtain (1.2) easily.
Let ϕ ∈ D(Rn) be chosen so that ϕ ≡ 1 near K. Then from a standard

relation between the Fourier transform and convolution we have that
fv = ϕfv

implies

(1.3) f̂v(ξ) =
∫
ϕ̂(ξ − η)f̂v(η) dη.

Therefore we obtain from (1.2) and (1.3) that
(1 + |ξ |2)s/2|f̂v(ξ)|

≤ 2s/2
∫
(1 + |ξ − η|2)s/2|ϕ̂(ξ − η)|(1 + |η|2)s/2|f̂v(η)| dη

≤ Ks,ϕ‖fv‖s ≤ Ks,ϕ,
where Ks,ϕ is a constant depending on s and ϕ. Therefore |f̂v(ξ)| is uniformly
bounded on compact subsets of Rn. Similarly, by differentiating (1.3) we
obtain that all derivatives of f̂v are uniformly bounded on compact subsets
in the same manner. Therefore, there is, by Ascoli’s theorem, a subsequence
fvj such that f̂vj converges in the C∞ topology to a C∞ function on Rn.
Let us call {fv} this new sequence.
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Let ε > 0 be given. Suppose that t < s. Then there is a ball Bε such that
1

(1 + |ξ |2)s−t
< ε

for ξ outside the ball Bε . Then consider

‖fv − fµ‖2
t =

∫
Rn

|(f̂v − f̂µ)(ξ)|2
(1 + |ξ |2)s−t

(1 + |ξ |2)s dξ

≤
∫
BE

|(f̂v − f̂µ)(ξ)|2(1 + |ξ |2)t dξ

+ ε
∫

Rn−BE

|(f̂v − f̂µ)(ξ)|2(1 + |ξ |2)s dξ

≤
∫
BE

|(f̂v − f̂µ)(ξ)|2(1 + |ξ |2)t dξ + 2ε,

where we have used the fact that ‖fv‖s ≤ 1. Since we know that f̂v converges
on compact sets, we can choose v, µ large enough so that the first integral
is < ε, and thus fv is a Cauchy sequence in the ‖ ‖t norm.

Q.E.D.

We now need to discuss briefly the concept of a formal adjoint operator
in this setting.

Definition 1.5: Let
L: E(X,E) −→ E(X, F )

be a C-linear map. Then a C-linear map
S: E(X, F ) −→ E(X,E)

is called an adjoint of L if
(1.4) (Lf, g) = (f, Sg)

for all f ∈ E(X,E), g ∈ E(X, F ).

It is an easy exercise, using the density of E(X,E) in W 0(X,E), to see
that an adjoint of an operator L is unique, if it exists. We denote this
transpose by L∗. In later sections we shall discuss adjoints of various types
of operators. This definition extends to Hilbert spaces over noncompact
manifolds (e.g., Rn) by using (1.4) as the defining relation for sections with
compact support. This is then the formal adjoint in that context.

2. Differential Operators

Let E and F be differentiable C-vector bundles over a differentiable
manifold X.† Let

L: E(X,E) −→ E(X, F )

†The case of R-vector bundles is exactly the same. For simplicity we restrict ourselves
to the case of complex coefficients.
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be a C-linear map. We say that L is a differential operator if for any choice
of local coordinates and local trivializations there exists a linear partial
differential operator L̃ such that the diagram (for such a trivialization)

[E(U)]p L̃ �� [E(U)]q
‖ � ‖ �

E(U,U × Cp) �� E(U,U × Cq)

∪ ∪
E(X,E)|U L �� E(X, F )|U

commutes. That is, for f = (f1, . . . , fp) ∈ [E(U)]p

L̃(f )i =
p∑
j=1
|α|≤k

aijα D
αfj , i = 1, . . . , q.

A differential operator is said to be of order k if there are no derivatives of
order ≥ k+1 appearing in a local representation. (For an intrinsic definition
involving jet-bundles, see Palais [1], Chap. IV.) Let Diff k(E, F ) denote the
vector space of all differential operators of order k mapping E(X,E) to
E(X, F ).

Suppose X is a compact differentiable manifold. We define OPk(E, F ) as
the vector space of C-linear mappings

T : E(X,E) −→ E(X, F )

such that there is a continuous extension of T

T̄s : Ws(X,E) −→ Ws−k(X, F )

for all s. These are the operators of order k mapping E to F .

Proposition 2.1: Let L ∈ OPk(E, F ). Then L∗ exists, and moreover L∗ ∈
OPk(F,E), and the extension

(L
∗
)s : Ws(X, F ) −→ Ws−k(X,E)

is given by the adjoint map

(Lk−s)∗: Ws(X, F ) −→ Ws−k(X,E).

This proposition is easy to prove since one has a candidate (Lk−s)∗ (for
each s) which gives the desired adjoint when restricted to E(X, F ) in a
suitable manner. One uses the uniqueness of adjoints and Proposition 1.1.

Proposition 2.2: Diff k(E, F ) ⊂ OPk(E, F ).

The proof of this proposition is not hard. Locally it involves, again,
D̂αf (ξ) = ξαf̂ (ξ), and the definition of the s-norm.

We now want to define the symbol of a differential operator. The symbol
will be used for the classification of differential operators into various types.
First we have to define the set of all admissible symbols. Let T ∗(X) be the
real cotangent bundle to a differentiable manifold X, let T ′(X) denote T ∗(X)
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with the zero cross section deleted (the bundle of nonzero cotangent vectors),
and let T ′(X)−→π X denote the projection mapping. Then π∗E and π∗F
denote the pullbacks of E and F over T ′(X). We set, for any k ∈ Z,

Smblk(E, F ) := {σ ∈ Hom(π∗E,π∗F): σ(x, ρv)
= ρkσ (x, v), (x, v) ∈ T ′(X), ρ > 0}.

We now define a linear map

(2.1) σk: Diff k(E, F ) −→ Smblk(E, F ),

where σk(L) is called the k-symbol of the differential operator L. To define
σk(L), we first note that σk(L)(x, v) is to be a linear mapping from Ex to Fx ,
where (x, v) ∈ T ′(X). Therefore let (x, v) ∈ T ′(X) and e ∈ Ex be given. Find
g ∈ E(X) and f ∈ E(X,E) such that dgx = v, and f (x) = e. Then we define†

σk(L)(x, v)e = L

(
ik

k! (g − g(x))kf
)
(x) ∈ Fx.

This defines a linear mapping

σk(L)(x, v): Ex −→ Fx,

which then defines an element of Smblk(E, F ), as is easily checked. It is
also easy to see that the σk(L), so defined, is independent of the choices
made. We call σk(L) the k-symbol of L.

Proposition 2.3: The symbol map σk gives rise to an exact sequence

(2.2) 0 −→Diff k−1(E, F )
j−→ Diff k(E, F )

σk−→ Symblk(E, F ),

where j is the natural inclusion.

Proof: One must show that the k-symbol of a differential operator of
order k has a certain form in local coordinates. Let L be a linear partial
differential operator

L: [E(U)]p −→ [E(U)]q
where U is open in Rn. Then it is easy to see that if

L =
∑
|ν|≤k

AνD
ν,

where {Aν} are q × p matrices of C∞ functions on U , then

(2.3) σk(L)(x, v) =
∑
|ν|=k

Aν(x)ξ
ν,

where v = ξ1dx1 + · · · + ξndxn. For each fixed (x, v), σk(L)(x, v) is a linear
mapping from x × Cp → x × Cq , given by the usual multiplication of a
vector in Cp by the matrix ∑

|ν|=k
Aν(x)ξ

ν.

†We include the factor ik so that the symbol of a differential operator is compatible
with the symbol of a pseudodifferential operator defined in Sec. 3 by means of the Fourier
transform.
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What one observes is that if σk(L) = 0, then the differential operator L
has kth order terms equal to zero, and thus L is a differential operator
of order k − 1. Let us show that (2.3) is true. Choose g ∈ E(U) such that
v = dg = ∑

ξjdxj ; i.e., Djg(x) = ξj . Let e ∈ Cp. Then we have

σk(L)(x, v)e =
∑
|ν|≤k

AνD
ν

(
ik

k! (g − g(x))ke
)
(x).

Clearly, the evaluation at x of derivatives of order ≤ k − 1 will give zero,
since there will be a factor of [g−g(x)]|x = 0 remaining. The only nonzero
term is the one of the form (recalling that Dν = (−i)νDν1

1 · · ·Dνn
n )∑

|ν|=k
Aν(x)

k!
k! (D1g(x))

ν1 · · · (Dng(x))νn

=
∑
|ν|=k

Aν(x)ξ
ν1
1 · · · ξ νnn =

∑
|ν|=k

Aν(x)ξ
ν,

which gives us (2.3). The mapping σk in (2.2) is well defined, and to see
that the kernel is contained in Diff k−1(E, F ), it suffices to see that this is
true for a local representation of the operator. This then follows from the
local representation for the symbol given by (2.3).

Q.E.D.

We observe that the following property is true: If L1 ∈ Diff k(E, F ) and
L2 ∈ Diffm(F,G), then L2L1 = L2 ◦ L1 ∈ Diff k+m(E,G), and, moreover,
(2.4) σk+m(L2L1) = σm(L2) • σk(L1),

where the right-hand product is the product of the linear mappings involved.
The relation (2.4) is easily checked for local differential operators on trivial
bundles (the chain rule for composition) and the general case is reduced to
this one in a straightforward manner.

We now look at some examples.

Example 2.4: If L: [E(Rn)]p → [E(Rn)]q is an element of Diff k(Rn×Cp,

Rn × Cq), then
σk(L)(x, v) =

∑
|ν|=k

Av(x)ξ
ν,

where
L =

∑
|ν|≤k

AνD
ν, v =

n∑
j=1

ξjdxj ,

the {Aν} being q×p matrices of differentiable functions in Rn (cf. the proof
of Proposition 2.3).

Example 2.5: Consider the de Rham complex

E0(X)
d−→ E1(X)

d−→ · · · d−→ En(X),

given by exterior differentiation of differential forms. Written somewhat
differently, we have, for T ∗ = T ∗(X)⊗ C,

E(X,∧0T ∗)
d−→ E(X,∧1T ∗)

d−→ · · · ,
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and we want to compute the associated 1-symbol mappings,

(2.5) ∧0T ∗
x

σ1(d)(x,υ)
�� ∧1T ∗

x

σ1(d)(x,υ)
�� ∧2T ∗

x
�� · · · .

We claim that for e ∈ ∧pT ∗
x , we have
σ1(d)(x, υ)e = iυ ∧ e.

Moreover, the sequence of linear mappings in (2.5) is an exact sequence of
vector spaces. These are easy computations and will be omitted.

Example 2.6: Consider the Dolbeault complex on a complex manifold X,

Ep,0(X)
∂̄−→ Ep,1(X)

∂̄−→ · · · ∂̄−→ Ep,n(X) −→ 0.
Then this has an associated symbol sequence

�� ∧p,q−1T ∗
x (X)

σ1(∂̄)(x,υ)
�� ∧p,qT ∗

x (X)
σ1(∂̄)(x,υ)

�� ∧p,q+1T ∗
x (X)

�� ,

where the vector bundles ∧p,qT ∗(X) are defined in Chap. I, Sec. 3. We
have that ν ∈ T ∗

x (X), considered as a real cotangent bundle. Consequently,
ν = ν1,0 + υ0,1, given by the injection

0 −→ T ∗
x (X) −→ T ∗

x (X)⊗ RC = T ∗(X)1,0 ⊕ T ∗(X)0,1

= ∧1,0T ∗(X)⊕ ∧0,1T ∗(X).
Then we claim that

σ1(∂̄)(x, υ)e = iυ0,1 ∧ e,
and the above symbol sequence is exact. Once again we omit the simple
computations.

Example 2.7: Let E −→ X be a holomorphic vector bundle over a
complex manifold X. Then consider the differentiable (p, q)-forms with
coefficients in E,Ep,q(X,E), defined in (II.3.9), and we have the complex
(II.3.10)

−→ Ep,q(X,E)
∂̄E−→ Ep,q+1(X,E) −→,

which gives rise to the symbol sequence

�� ∧p,qT ∗
x ⊗ Ex

σ1(∂̄E)(x,υ)
�� ∧p,q+1T ∗

x ⊗ Ex �� .

We let υ = υ1,0 + υ0,1, as before, and we have for f ⊗ e ∈ ∧p,qT ∗
x ⊗ E

σ1(∂̄)(x, υ)f ⊗ e = (iυ0,1 ∧ f )⊗ e,
and the symbol sequence is again exact.

We shall introduce the concept of elliptic complex in Sec. 5, which gener-
alizes these four examples.

The last basic property of differential operators which we shall need is
the existence of a formal adjoint.

Proposition 2.8: Let L ∈ Diff k(E, F ). Then L∗ exists and L∗ ∈ Diff k(F,E).
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Moreover, σk(L∗) = σk(L)
∗, where σk(L)∗ is the adjoint of the linear map

σk(L)(x, υ): Ex −→ Fx.

Proof: Let L ∈ Diff k(E, F ), and suppose that µ is a strictly positive
smooth measure on X and that hE and hE are Hermitian metrics on E
and F . Then the inner product for any ξ, η ∈ D(X,E) is given by

(ξ, η) =
∫
X

〈ξ, η〉E dµ,
and if ξ, η have compact support in a neighborhood where E admits a
local frame f , we have

(ξ, η) =
∫

Rn

t η̄(x)hE(x)ξ(x)ρ(x) dx,

where ρ(x) is a density,

η(x) = η(f )(x) =

⎡⎢⎢⎢⎢⎣
η1(f )(x)

·
·
·

ηr (f )(x)

⎤⎥⎥⎥⎥⎦ ,
etc. Similarly, for σ, τ ∈ D(X, F ), we have

(σ, τ ) =
∫

Rn

t τ̄ (x)hF (x)σ (x)ρ(x) dx.

Suppose thatL : D(X,E) → D(X, F ) is a linear differential operator of order
k, and assume that the sections have support in a trivializing neighborhood
U which gives local coordinates for X near some point. Then we may write

(Lξ, τ ) =
∫

Rn

t τ̄ (x)hF (x)(M(x,D)ξ(x))ρ(x) dx,

where
M(x,D) =

∑
|α|≤k

Cα(x)D
α

is an s × r matrix of partial differential operators; i.e., Cα(x) is an s × r
matrix of C∞ functions in Rn. Note that ξ and τ have compact support
here. We can then write

(Lξ, τ ) =
∫

Rn

∑
|α|≤k

t τ̄ (x)ρ(x)hF (x)Cα(x)D
αξ(x) dx,

and we can integrate by parts, obtaining

(Lξ, τ ) =
∫

Rn

∑
|α|≤k

(−1)|α|Dα(t τ̄ (x)ρ(x)hF (x)Cα(x))ξ(x) dx

=
∫

Rn

t (
∑
|α|≤k

C̃α(x)Dατ(x))hE(x)ξ(x)ρ(x) dx,

where C̃α(x) are r × s matrices of smooth functions defined by the formula

(2.6) t (
∑
|α|≤k

C̃αDατ) =
∑
|α|≤k

(−1)|α|Dα(t τ̄ρhFCα)h
−1
E ρ

−1,
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and hence the C̄α involve various derivatives of both metrics on E and F and
of the density function ρ(x) on X. This formula suffices to define a linear
differential operator L∗: D(X, F ) → D(X,E), which has automatically the
property of being the adjoint of L. Moreover, we see that the symbol σk(L∗)
is given by the terms in (2.6) which only differentiate τ, since all other terms
give lower-order terms in the expression

∑
|α|≤k C̃α(x). One checks that the

symbol of L∗ as defined above is the adjoint of the symbol of the operator
L by representing σk(L) with respect to these local frames and computing
its adjoint as a linear mapping.

Q.E.D.

We have given a brief discussion of the basic elements of partial differential
operators in a setting appropriate for our purposes. For more details on the
subject, see Hörmander [1] for the basic theory of modern partial differential
equations (principally in Rn). Palais [1] has a formal presentation of partial
differential operators in the context of manifolds and vector bundles, with a
viewpoint similar to ours. In the next sections we shall generalize the concept
of differential operators in order to find a class of operators which will serve
as “inverses” for elliptic partial differential operators, to be studied in Sec. 4.

3. Pseudodifferential Operators

In this section we want to introduce an important generalization of differ-
ential operators called, appropriately enough, pseudodifferential operators.
This type of operator developed from the study of the (singular) integral
operators used in inverting differential operators (solving differential equa-
tions). On compact Riemannian manifolds a natural differential operator
is the Laplacian operator, and our purpose here will be to give a sufficient
amount of the recent theory of pseudodifferential operators in order to be
able to “invert” such Laplacian operators, which will be introduced later
in this chapter. This leads to the theory of harmonic differential forms
introduced by Hodge in his study of algebraic geometry.

In defining differential operators on manifolds, we specified that they
should locally look like the differential operators in Euclidean space with
which we are all familiar. We shall proceed in the same manner with
pseudo-differential operators, but we must spend more time developing the
(relatively unknown) local theory. Once we have done this, we shall be able
to obtain a general class of pseudodifferential operators mapping sections
of vector bundles to sections of vector bundles on a differentiable manifold,
in which class we can invert appropriate elliptic operators.

Recall that if U is an open set in Rn and if p(x, ξ) is a polynomial in ξ of
degree m, with coefficients being C∞ functions in the variable x ∈ U , then
we can obtain the most general linear partial differential operators in U by
letting P = p(x,D) be the differential operator obtained by replacing the
vector ξ = (ξ1, . . . , ξn) by (−iD1, . . . ,−iDn), where we set Dj = (∂/∂xj )
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(j = 1, . . . , n) and Dα = (−i)|α|Dα1
1 · · ·Dαn

n replaces ξα1
1 · · · ξαnn in the

polynomial p(x, ξ). By using the Fourier transform we may write, for
u ∈ D(U),

(3.1) Pu(x) = p(x,D)u(x) =
∫
p(x, ξ)û(ξ)ei〈x,ξ〉 dξ,

where 〈x, ξ〉 = ∑n

j=1 xjξj is the usual Euclidean inner product, and û(ξ) =
(2π)−n

∫
u(x)e−i〈x,ξ〉 dx is the Fourier transform of u.

Thus (3.1) is an equivalent way (via Fourier transforms) to define the
action of a differential operator p(x,D) defined by a polynomial p(x, ξ)
on functions in the domain U . We use compact supports here so that there
is no trouble with the integral existing near ∂U , and since D(U) is dense in
most interesting spaces, it certainly suffices to know how the operator acts
on such functions. Of course, P(x,D): D(U) → D(U), since differential
operators preserve supports.

To define the generalization of differential operators we are interested in,
we can consider (3.1) as the definition of differential operator and generalize
the nature of the function p(x, ξ) which appears in the integrand.

To do this, we shall define classes of functions which possess, axiomatically,
several important properties of the polynomials considered above.

Definition 3.1: Let U be an open set in Rn and let m be any integer.

(a) Let S̃m(U) be the class of C∞ functions p(x, ξ) defined on U × Rn,
satisfying the following properties. For any compact set K in U , and for
any multiindices α, β, there exists a constant Cα,β,K , depending on α, β,K,
and p so that

(3.2) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cα,β,K(1 + |ξ |)m−|α|, x ∈ K, ξ ∈ Rn.

(b) Let Sm(U) denote the set of p ∈ S̃m(U) such that

(3.3) The limit σm(p)(x, ξ) = lim
λ→∞

p(x, λξ)

λm
exists for ξ 
= 0,

and, moreover,

p(x, ξ)− ψ(ξ)σm(p)(x, ξ) ∈ S̃m−1(U),

where ψ ∈ C∞(Rn) is a cut-off function with ψ(ξ) ≡ 0 near ξ = 0 and
ψ(ξ) ≡ 1 outside the unit ball.

(c) Let S̃m0 (U) denote the class of p ∈ S̃m(U) such that there is a compact
set K ⊂ U , so that for any ξ ∈ Rn, the function p(x, ξ), considered as a
function of x ∈ U , has compact support in K [i.e., p(x, ξ) has uniform
compact support in the x-variable]. Let Sm0 (U) = Sm(U) ∩ S̃m0 (U).

We notice that if p(x, ξ) is a polynomial of degree m (as before), then both
properties (a) and (b) in Definition 3.1 above are satisfied. If the coefficients
of p have compact support in U , then p ∈ Sm0 (U). Property (a) expresses
the growth in the ξ variable near ∞, whereas σm(p)(x, ξ) is the mth order
homogeneous part of the polynomial p, the lower-order terms having gone
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to zero in the limit. We shall also be interested in negative homogeneity,
and the cut-off function in (b) is introduced to get rid of the singularity
near ξ = 0, which occurs in this case.

A second example is given by an integral transform with a smooth kernel.
Let K(x, y) be a C∞ function in U×U with compact support in the second
variable. Then the operator

Lu(x) =
∫

Rn
K(x, y)u(y) dy

can be written in the form (3.1) for an appropriate function p(x, ξ); i.e.,
for u ∈ D(U),

Lu(x) =
∫
p(x, ξ)û(ξ)ei〈x,ξ〉dξ,

where p ∈ S̃m(U) for all m. To see this, we write, by the Fourier inversion
formula,

Lu(x) =
∫
K(x, y)

[∫
ei〈y,ξ〉û(ξ) dξ

]
dy

=
∫
ei〈x,ξ〉

[∫
ei〈y−x,ξ〉K(x, y)dy

]
û(ξ)dξ

and we let
p(x, ξ) =

∫
ei〈y−x,ξ〉K(x, y) dy,

which we rewrite as

p(x, ξ) = e−i〈x,ξ〉
∫
ei〈y,ξ〉K(x, y) dy.

Thus p(x, ξ) is (except for the factor e−i〈x,ξ〉) for each fixed x the Fourier
transform of a compactly supported function, and then it is easy to see (by
integrating by parts) that p(x, ξ), as a function of ξ , is rapidly decreasing
at infinity; i.e.,

(1 + |ξ |)N |p(x, ξ)| −→ 0

as |ξ | → ∞ for all powers ofN (this is the class S introduced by Schwartz [1]).
It then follows immediately that p ∈ S̃m(U) for all m. Such an operator
is often referred to as a smoothing operator with C∞ kernel. The term
smoothing operator refers to the fact that it is an operator of order −∞,
i.e., takes elements of any Sobolev space to C∞ functions, which is a simple
consequence of Theorem 3.4 below and Sobolev’s lemma (Proposition 1.1).

Lemma 3.2: Suppose that p ∈ Sm(U). Then σm(p)(x, ξ) is a C∞ function
on U × (Rn − {0}) and is homogeneous of degree m in ξ .

Proof: It suffices (by the Arzela-Ascoli theorem) to show that for any
compact subset of the formK×L, whereK is compact in U and L is compact
in Rn − {0}, we have the limit in (3.3) converging uniformly and that all
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derivatives in x and ξ of p(x, λξ)/λm are uniformly bounded on K ×L for
λ ∈ (1,∞). But this follows immediately from the estimates in (3.2) since

Dβ
xD

α
ξ

(
p(x, λξ)

λm

)
= Dβ

xD
α
ξ p(x, λξ) •

λ|α|

λm
,

and hence, for all multiindices α, β,∣∣∣∣Dβ
xD

α
ξ

(
p(x, λξ)

λm

)∣∣∣∣ ≤ Cα,β,K(1 + λ|ξ |)m−|α| •
λ|α|

λm

≤ Cα,β,K(λ−1 + |ξ |)m−|α|

≤ Cα,β,K sup
ξ∈L
(1 + |ξ |)m−|α| < ∞.

Therefore all derivatives are uniformly bounded, and in particular the limit
in (3.3) is uniform. Showing homogeneity is even simpler. We write, for
ρ > 0,

σm(x, ρξ) = lim
λ→∞

p(x, λρξ)

λm·

= lim
λ→∞

p(x, λρξ)

(ρλ)m
• ρm

= lim
λ→∞

p(x, λ′ξ)
(λ′)m

• ρm (λ′ = ρλ)

= σm(x, ξ) • ρm.

Q.E.D.

We now define the prototype (local form) of our pseudodifferential
operator by using (3.1). Namely, we set, for any p ∈ S̃m(U) and u ∈ D(U),

(3.4) L(p)u(x) =
∫
p(x, ξ)û(ξ)ei〈x,ξ〉 dξ,

and we call L(p) a canonical pseudodifferential operator of order m.

Lemma 3.3: L(p) is a linear operator mapping D(U) into E(U).

Proof: Since u ∈ D(U), we have, for any multiindex α,

ξαû(ξ) = (2π)−n
∫
Dαu(x)e−i〈x,ξ〉 dx,

and hence, since u has compact support, |ξα||û(ξ)| is bounded for any α,
which implies that for any large N ,

|û(ξ)| ≤ C(1 + |ξ |)−N,
i.e., û(ξ) goes to zero at ∞ faster than any polynomial. Then we have the
estimate for any derivatives of the integrand in (3.4),∣∣Dβ

x p(x, ξ)û(ξ)
∣∣ ≤ C(1 + |ξ |)m(1 + |ξ |)−N,

which implies that the integral in (3.4) converges nicely enough to differenti-
ate under the integral sign as much as we please, and hence L(p)(u) ∈ E(U).
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It is clear from the same estimates that L(p) is indeed a continuous linear
mapping from D(U) → E(U).

Q.E.D.

Our next theorem tells us that the operators L(p) behave very much like
differential operators.

Theorem 3.4: Suppose thatp∈ S̃m0 (U). Then L(p) is an operator of orderm.

Remark: We introduce functions with compact support to simplify things
somewhat. Our future interest is compact manifolds and the functions p
which will arise will be of this form due to the use of a partition of unity.

Proof: We must show that if u ∈ D(U), then, for some C > 0,

(3.5) ‖L(p)u‖s ≤ C‖u‖s+m,
where ‖ • ‖s = ‖ • ‖s,Rn , as in (1.1), First we note that

(3.6) L̂(p)u(ξ) =
∫
p̂(ξ − η, η)û(η) dη,

where p̂(ξ−η, η) denotes the Fourier transform of p(x, η) in the first variable
evaluated at the point ξ −η. Since p has compact support in the x-variable
and because of the estimate (3.2), we have (as before) the estimate, for any
large N ,

(3.7) |p̂(ξ − η, η)| ≤ CN(1 + |ξ − η|2)−N(1 + |η|2)m/2

for (ξ, η) ∈ Rn × Rn. We have to estimate

‖Lu‖2
s =

∫
|L̂(p)u(ξ)|2(1 + |ξ |2)sdξ

in terms of
‖u‖2

s+m =
∫

|û(ξ)|2(1 + |ξ |2)m+sdξ.

We shall need Young’s inequality, which asserts that if f ∗ g is the convolution
of an f ∈ L1(Rn) and g ∈ Lp(Rn), then

‖f ∗ g‖Lp ≤ ‖f ‖L1‖g‖Lp
(see Zygmund [1]).

Proceeding with the proof of (3.5) we obtain immediately from (3.6) and
the estimate (3.7), letting C denote a sufficiently large constant in each
estimate,

|L̂(p)u(ξ)| ≤ C
∫
(1 + |ξ − η|2)−N(1 + |η|2)m/2|û(η)| dη

≤ C
∫
(1 + |ξ − η|2)−N
(1 + |η|2)s/2

(1 + |η|2)(m+s)/2|û(η)| dη.
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Now, using (1.2), we easily obtain

|L̂(p)u(ξ)| ≤ C(1 + |ξ |2)−s/2
∫
(1 + |ξ − η|2)−N+s/2

× (1 + |η|2)(m+s)/2 |û(η)| dη.
Assume now that N is chosen large enough so that f (ξ) = (1 + |ξ |2)−N+s/2

is integrable, and we see that

|L̂(p)u(ξ)|(1 + |ξ |2)s/2 ≤ C
∫
(1 + |ξ − η|2)−N+s/2

× (1 + |η|2)(m+s)/2 |û(η)| dη.
By Young’s inequality we obtain immediately

‖L(p)u‖s ≤ C‖f ‖0 • ‖u‖s+m
≤ C‖u‖s+m.

Q.E.D.

We now want to define pseudodifferential operators in general. First we
consider the case of operators on a differentiable manifold X mapping
functions to functions.

Definition 3.6: Let L be a linear mapping L: D(X) → E(X). Then we say
that L is a pseudodifferential operator on X if and only if for any coordinate
chart U ⊂ X and any open set U ′ ⊂ ⊂ U there exists a p ∈ Sm0 (U)

(considering U as an open subset of Rn) so that if u ∈ D(U ′), then [extending
u by zero to be in D(X)]

Lu = L(p)u;
i.e., by restricting to the coordinate patch U , there is a function p ∈ Sm0 (U)
so that the operator is a canonical pseudodifferential operator of the type
introduced above.

More generally, if E and F are vector bundles over the differentiable
manifold X, we make the natural definition.

Definition 3.7: Let L be a linear mapping L: D(X,E) → E(X, F ). Then L
is a pseudodifferential operator on X if and only if for any coordinate chart
U with trivializations of E and F over U and for any open set U ′ ⊂ ⊂ U

there exists a r × p matrix (pij ), pij ∈ Sm0 (U), so that the induced map

LU : D(U ′)p −→ E(U)r

with u ∈ D(U ′)p
LU

�� Lu, extending u by zero to be an element of D(X,E)

[where p = rank E, r = rank F , and we identify E(U)p with E(U,E) and
E(U)r with E(U, F )], is a matrix of canonical pseudodifferential operators
L(pij ), i = 1, . . . , r, j = 1, . . . , p, defined by (3.4).
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We see that this definition coincides (except for the restriction to the
relatively compact subset U ′) with the definition of a differential operator
given in Sec. 2, where all the corresponding functions pij are polynomials
in Sm(U).

Remark: The additional restriction in the definition of restricting the
action of LU to functions supported in U ′ ⊂ ⊂ U is due to the fact that in
general a pseudodifferential operator is not a local operator; i.e., it does not
preserve supports in the sense that supp Lu ⊂ supp u (which is easy to see for
the case of a smoothing operator, for instance). In fact, differential operators
can be characterized by the property of localness (a result of Peetre [1]). Thus
the symbol of a pseudodifferential operator will depend on the choice of U ′

which can be considered as a choice of a cutoff function. The difference of
two such local representations for pseudodifferential operators on U ′ ⊂ ⊂ U

and U ′′ ⊂ ⊂ U will be an operator of order −∞ acting on smooth functions
supported in U ′ ∩ U ′′.

Definition 3.8: The local m-symbol of a pseudodifferential operator
L: D(X,E) → E(X, F ) is, with respect to a coordinates chart U and
trivializations of E and F over U , the matrix†

σm(L)U(x, ξ) = [σm(pij )(x, ξ)], i = 1, . . . , r, j = 1, . . . , p.

Note that in all these definitions the integer m may depend on the
coordinate chart U . If X is not compact, then the integer m may be
unbounded on X. We shall see that the smallest possible integer m in
some sense will be the order of the pseudodifferential operator on X. But
first we need to investigate the behavior of the local m-symbol under local
diffeomorphisms in order to obtain a global m-symbol of a global operator L.

The basic principle is the same as for differential operators. If a differential
operator is locally expressed as L = ∑

|α|≤m cα(x)D
α
x and we make a change

of coordinates y = F(x), then we can express the same operator in terms of
these new coordinates using the chain rule and obtain

L̃ =
∑
|α|≤m

c̃α(y)D
α
y

and
L̃(u(F (x)) =

∑
|α|≤m

c̃α(F (x))D
α
y u(F (x)).

Under this process, the order is the same, and, in particular, we still have
a differential operator. Moreover, the mth order homogeneous part of the
polynomial,

∑
|α|=m cαξ

α, transforms by the Jacobian of the transformation
y = F(x) in a precise manner. We want to carry out this process for pseudo-
differential operators, and this will allow us to generalize the symbol map
given by Proposition 2.3 for differential operators. For simplicity we shall
carry out this program here only for trivial line bundles over X, i.e., for

†σm(L)U will also depend on U ′ ⊂ ⊂ U , which we have suppressed here.
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pseudodifferential operators mapping functions to functions, leaving the
more general case of vector bundles to the reader.

The basic result we need can be stated as follows.

Theorem 3.9: Let U be open and relatively compact in Rn and let p ∈
Sm0 (U). Suppose that F is a diffeomorphism of U onto itself [in coordinates
x = F(y), x, y ∈ Rn]. Suppose that U ′ ⊂ ⊂ U and define the linear mapping

L̃: D(U ′) −→ E(U)

by setting
L̃v(y) = L(p)(F−1)∗v(F (y)).

Then there is a function q ∈ Sm0 (U), so that L̃ = L(q), and, moreover,

σm(q)(y, η) = σm(p)

(
F(y),

[
t
(
∂F

∂y

)]−1

η

)
.

Here (F−1)∗: E(U) → E(U) is given by (F−1)∗v = v ◦ F−1, and the basic
content of the theorem is that pseudodifferential operators are invariant
under local changes of coordinates and that the local symbols transform
in a precise manner, depending on the Jacobian (∂F/∂y) of the change
of variables. Before we prove this theorem, we shall introduce a seemingly
larger class of Fourier transform operators, which will arise naturally when
we make a change of coordinates. Then we shall see that this class is no
larger than the one we started with.

Let p ∈ Sm0 (U) for U open in Rn. Then we see easily that from (3.4) we
obtain the representation

(3.8) L(p)u(x) = (2π)−n
∫ ∫

ei〈ξ,x−z〉p(x, ξ)u(z) dz dξ,

using the Fourier expression for û. We want to generalize this representation
somewhat by allowing the function p above to also depend on z. Suppose
that we consider functions q(x, ξ, z) defined and C∞ on U × Rn ×U , with
compact support in the x- and z-variables and satisfying the following two
conditions (similar to those in Definition 3.1):

(a)
∣∣Dα

ξ D
β
xD

γ
z q(x, ξ, z)

∣∣ ≤ Cα,β,γ (1 + |ξ |)m−|α|.

(b) The limit lim
λ→∞

q(x, λξ, x)

λm
= σm(q)(x, ξ, x), ξ 
= 0,(3.9)

exists and ψ(ξ)σm(q)(x, ξ, x)− q(x, ξ, x) ∈ S̃m−1(U).

Proposition 3.10: Let q(x, ξ, z) satisfy the conditions in (3.9) and let the
operator Q be defined by

(3.10) Qu(x) = (2π)−n
∫
ei〈ξ,x−z〉q(x, ξ, z)u(z) dz dξ

for u ∈ D(U). Then there exists a p ∈ Sm0 (U) such that Q = L(p). Moreover,

σm(p)(x, ξ) = lim
λ→∞

q(x, λξ, x)

λm
, ξ 
= 0.
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This proposition tells us that this “more general” type of operator is in
fact one of our original class of operators, and we can compute its symbol.

Proof: Let q̂(x, ξ, ζ ) denote the Fourier transform of q(x, ξ, z) with
respect to the z-variable. Then we obtain, from (3.10),

Qu(x) =
∫∫

ei〈ξ,x〉q̂(x, ξ, ξ − η)û(η) dη dξ

=
∫
ei〈η,x〉

{∫
ei〈ξ−η,x〉q̂(x, ξ, ξ − η) dξ

}
û(η) dη.

Thus, if we set

p(x, η) =
∫
ei〈ξ−η,x〉q̂(x, ξ, ξ − η) dξ

=
∫
ei〈ζ,x〉q̂(x, ζ + η, ζ ) dζ,

(3.11)

we have the operator Q represented in the form (3.4). First we have to
check that p(x, η) ∈ S̃m(U), but this follows easily by differentiating under
the integral sign in (3.11), noting that q̂(x, ζ + η, y) decreases very fast at
∞ due to the compact support of q(x, ξ, z) in the z-variable. We now use
the mean-value theorem for the integrand:

(3.12) q̂(x, ζ + η, ζ ) = q̂(x, η, ζ )+
∑
|α|=1

Dα
η q̂(x, η + ζ0, ζ )ζ

α

for a suitable ζ0 lying on the segment in Rn joining 0 to ζ . We have the
estimate

|Dα
η q̂(x, η + ζ0, ζ )| ≤ CN(1 + |η + ζ0|)m−1(1 + |ζ |)−N

for sufficiently large N , and since |ζ0(ζ )| ≤ |ζ |, we see that we obtain, with
a different constant,

|Dα
η q̂(x, η + ζ0, ζ )| ≤ C̃N(1 + |η|)m−1(1 + |ζ |)−N+m−1.

By inserting (3.12) in (3.11), choosing N sufficiently large, and integrating
the resulting two terms we obtain

p(x, η) = q(x, η, x)+ E(x, η),
where

(3.13) |E(x, η)| ≤ C(1 + |η|)m−1.

Therefore

lim
λ→∞

p(x, λη)

λm
= lim

λ→∞
q(x, λη, x)

λm
+ lim

λ→∞
E(x, λη)

λm
, η 
= 0.

It follows that the limit on the left exists and that

σm(p)(x, η) = lim
λ→∞

q(x, λη, x)

λm
, η 
= 0,

since the last term above has limit zero because of the estimate (3.13).
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The fact that p(x, ξ)− ψ(ξ)σm(p)(x, ξ) ∈ S̃m−1(U) follows easily from the
hypothesis on q(x, η, x) and the growth of E(x, η).

Q.E.D.

We shall need one additional fact before we can proceed to our proof of
Theorem 3.9. Namely, suppose that we rewrite (3.8) formally as

L(p)u(x) = (2π)−n
∫ {∫

ei〈ξ,x−z〉p(x, ξ) dξ
}
u(z) dz

and let
K(x, x − z) =

∫
ei〈ξ,x−z〉p(x, ξ) dξ.

Then we have the following proposition.

Proposition 3.11: K(x,w) is a C∞ function of x and w provided that
w 
= 0.

Proof: Suppose first that m < −n, then we have the estimate

|p(x, ξ)| ≤ C(1 + |ξ |)−n−1

from (3.2), and thus the integral

K(x,w) =
∫
ei〈ξ,w〉p(x, ξ) dξ

converges. Integrating repeatedly by parts, and assuming that, for instance,
w1 
= 0, we obtain

K(x,w) = (−1)N
∫
ei〈ξ,w〉

wN1
DN
ξ1
p(x, ξ) dξ

for any positive integer N . Hence

Dα
xD

β
wK(x,w) = (−1)N

∫
ξβei〈ξ,w〉

wN1
Dα
xD

N
ξ1
p(x, ξ) dξ.

Using the estimates (3.2) we see that the integral on the right converges for
N sufficiently large. Thus K(x,w) is C∞ for w 
= 0, provided that m < −n.
Suppose now that m is arbitrary; then we write, choosing ρ > m+ n,

K(x,w) =
∫
ei〈ξ,w〉(1 + |ξ |2)−ρ(1 + |ξ |2)ρp(x, ξ) dξ

and we see that we have (letting �w = ∑
D2
j be the usual Laplacian in the

w variable)

K(x,w) =
∫ [

(1 − �w)
ρei〈ξ,w〉]p(x, ξ)(1 + |ξ |2)−ρdξ

which is the same as

(1 − �w)
ρ

∫
ei〈ξ,w〉p(x, ξ)(1 + |ξ |2)−ρdξ
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if the integral converges. But this then follows from the case considered
above, since

p(x, ξ)(1 + |ξ |2)−ρ ∈ S−(n+1)
0 (U).

So, for w 
= 0, the above integral is C∞, and thus K(x,w) is C∞ for w 
= 0.
Q.E.D.

We shall now use these propositions to continue our study of the behavior
of a pseudodifferential operator under a change of coordinates.

Proof of Theorem 3.9: Now p(x, ξ) has compact support in U (in the
x-variable) by hypothesis. Let ψ̃(x) ∈ D(U) be chosen so that ψ̃ ≡ 1 on
supp p ∪ U ′ and set ψ(y) = ψ̃(F (y)). We have, as in (3.8),

L(p)u(x) = (2π)−n
∫∫

ei〈ξ,x−z〉p(x, ξ)u(z) dz dξ,

for u ∈ D(U ′) ⊂ D(U). We write z = F(w) and υ(w) = u(F (w)) and obtain

L(p)u(F (y)) = (2π)−n
∫∫

ei〈ξ,F (y)−F(w)〉p(F(y), ξ)
∣∣∣∣∂F∂w

∣∣∣∣ υ(w) dw dξ,
where |∂F/∂w| is the determinant of the Jacobian matrix ∂F/∂w. By the
mean-value theorem we see that

F(y)− F(w) = H(y,w) • (y − w),
where H(y,w) is a nonsingular matrix for w close to y and H(w,w) =
(∂F/∂w)(w). Let χ1(y,w) be a smooth nonnegative function ≡ 1 near the
diagonal � in U × U and with support on a neighborhood of � where
H(y,w) is invertible. Let χ2 = 1 − χ1. Thus we have

L(p)u(F (y)) = (2π)−n
∫∫

ei〈ξ,H(y,w) • (y−w)〉p(F(y), ξ)
∣∣∣∣∂F∂w

∣∣∣∣ v(w) dw dξ,
which we may rewrite, setting ζ = tH (y,w)ξ ,

L(p)u(F (y)) = (2π)−n
[∫∫

ei〈ζ,y−w〉p(F(y), [tH (y,w)]−1ζ )

×
∣∣∣∣∂F∂w

∣∣∣∣ψ(w) χ1(y,w)

|H(y,w)|v(w) dw dζ + Eu(F(y))
]

= (2π)−n
[∫∫

ei〈ζ,y−w〉q1(y, ζ, w)v(w) dw dζ + Eu(F(y))
]
.

Here E is the term corresponding to χ2 and

q1(y, ζ, w) = p(F(y), [tH (y,w)]−1ζ )

∣∣∣∣∂F∂w
∣∣∣∣ χ1(y,w)

|H(y,w)|ψ(w),
while ψ ∈ D(U) as chosen above is identically 1 on a neighborhood of supp
v(y). Thus q1(y, ζ, w) has compact support in the y and w variables, and
it follows readily that conditions (a) and (b) of (3.9) are satisfied. Namely,
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(a) will follow from the estimates for p by the chain rule, whereas for (b)
we have

σ(q1)(y, ξ, y) = lim
λ→∞

q1(y, λξ, y)

λm
= lim

λ→∞
p(F(y), [t (∂F/∂y)]−1λξ)

λm

= σ(p)

(
F(y),

[
t
(
∂F

∂y

)]−1

ζ

)
, ξ 
= 0;

moreover the desired growth of

ψ(ξ)σ (q1)(y, ξ, y)− q1(y, ξ, y)

follows easily from the hypothesized growth of

ψ(ξ)σ (p)(x, ξ)− p(x, ξ).
We still have to worry about the term E, which we claim is a smoothing

operator of infinite order (see the example following Definition 3.1) and
will give no contribution to the symbol. In fact, we have

Eu(x) =
∫
ei〈ξ,x−z〉p(x, ξ)χ2(x, z)u(z) dz dξ

=
∫ {∫

ei〈ξ,x−z〉p(x, ξ)χ2(x, z) dξ

}
u(z) dz

=
∫
χ2(x, z)K(x, x − z)u(z) dz

=
∫
W(x, z)u(z) dz,

where
K(x,w) =

∫
ei〈ξ,w〉p(x, ξ) dξ.

But we have seen earlier that K(x,w) is a C∞ function of x and w for
w 
= 0.† Also, χ2(x, z) vanishes identically near x − z = 0, so the product
χ2(x, z)K(x, x − z) = W(x, z) is a smooth function on U × Rn, and Eu(x)
is then a smoothing operator with C∞ kernel, which we can write in terms
of the new coordinates y = F−1(x), w = F−1(z),

Eu(F(y)) =
∫
W(F(y), F (w))u(F (w))

∣∣∣∣∂F∂w
∣∣∣∣ dw

=
∫
W 1(y,w)F

∗u(w) dw,

where W1 is a C∞ function on U × U , which we rewrite as

=
∫
W 1(y,w)ψ(w)F

∗u(w) dw,

†Note that K(x,w) has compact support in the first variable, since p(x, ξ) = ϕ(x)p(x, ξ)

for an appropriate ϕ ∈ D(U).
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where we note that ψ ≡ 1 on supp F ∗u. Then we have

Eu(F(y)) =
∫
W 2(y,w)υ(w) dw,

where v(w) = F ∗u(w), as before, and

W 2(y,w) = W(F(y), F (w))

∣∣∣∣∂F∂w
∣∣∣∣ψ(w),

which is a smoothing operator of order −∞ with C∞ kernel with compact
support in both variables, as discussed following Definition 3.1, Thus, by
Proposition 3.11,

Eu(F(y)) =
∫
ei〈w,ξ〉q2(y, ξ)υ̂(ξ) dξ,

where
q2(y, ξ) =

∫
ei〈y−w,ξ〉W2(y,w) dw,

and q2 ∈ S̃r0(U) for all r. This implies easily that σm(q2)(y, ξ) ≡ 0. Thus we
can let q = q1 + q2, and we have

L̃v(y) = L(q),

and the symbols behave correctly [here we let q1(y, ξ, w) be replaced by
q1(y, ξ), as given by Proposition 3.10].

Q.E.D.

We are now in a position to define the global symbol of a pseudodiffer-
ential operator on a differentiable manifold X. Again we treat the case of
functions first, and we begin with the following definition.

Definition 3.12: Let X be a differentiable manifold and let L: D(X) −→
E(X) be a pseudodifferential operator. Then L is said to be a pseudodiffer-
ential operator of order m on X if, for any choice of local coordinates
chart U ⊂ X, the corresponding canonical pseudodifferential operator
LU is of order m; i.e., LU = L(p), where p ∈ Sm(U). The class of all
pseudodifferential operators on X of order m is denoted by PDiffm(X).

Proposition 3.13: Suppose that X is a compact differentiable manifold. If
L ∈ PDiffm(X), then L ∈ OPm(X).

Proof: This is immediate from Theorem 3.4 and the definition of Sobolev
norms on a compact manifold, using a finite covering of X by coordinate
charts.

Q.E.D.

This proposition tells us that the two definitions of “order” of a pseudo-
differential operator are compatible. We remark that if p ∈ Sm(U), for some
U ⊂ Rn, then p ∈ Sm+k(U) for any positive k; moreover, in this case, σm+k(p)
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= 0, k > 0. Thus we have the natural inclusion PDiffm(X) ⊂ PDiffm+k(X),
k ≥ 0. Denote Smblm(X × C, X × C) by Smblm(X) for simplicity.

Proposition 3.14: There exists a canonical linear map

σm: PDiffm(X) −→ Smblm(X),

which is defined locally in a coordinate chart U ⊂ X by

σm(LU)(x, ξ) = σm(p)(x, ξ),

where LU = L(p) and where (x, ξ) ∈ U × (Rn − {0}) is a point in T ′(U)
expressed in the local coordinates of U .

Proof: We merely need to verify that the local representation of σm(L)
defined above transforms correctly so that it is indeed globally a homomor-
phism of T ′(X)×C into T ′(X)×C, which is homogeneous in the cotangent
vector variable of order m (see the definition in Sec. 2). But this follows eas-
ily from the transformation formula for σm(p) given in Theorem 3.9, under
a local change of variables. The linearity of σm is not difficult to verify.

Q.E.D.

This procedure generalizes to pseudodifferential operators mapping
sections of vector bundles to sections of vector bundles, and we shall leave
the formal details to the reader. We shall denote by PDiffm(E, F ) the space
of pseudodifferential operators of order m mapping D(X,E) into E(X, F ).
Moreover, there is an analogue to Proposition 3.14, whose proof we omit.

Proposition 3.15: Let E and F be vector bundles over a differentiable
manifold X. There exists a canonical linear map

σm: PDiffm(E, F ) −→ Smblm(E, F ),

which is defined locally in a coordinate chart U ⊂ X by

σm(LU)(x, ξ) = [σm(pij )(x, ξ)],
where LU = [L(pij )] is a matrix of canonical pseudodifferential operators,
and where (x, ξ) ∈ U × (Rn−{0}) is a point in T ′(U) expressed in the local
coordinates of U .

One of the fundamental results in the theory of pseudodifferential
operators on manifolds is contained in the following theorem.

Theorem 3.16: Let E and F be vector bundles over a differentiable manifold
X. Then the following sequence is exact,

(3.15) 0 −→ Km(E, F )
j−→ PDiffm(E, F )

σm−→ Smblm(E, F ) −→ 0,

where σm is the canonical symbol map given by Proposition 3.15, Km(E, F )
is the kernel of σm, and j is the natural injection. Moreover, Km(E, F ) ⊂
OPm−1(E, F ) if X is compact.
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Proof: We need to show that σm is surjective and that σm(L) = 0 implies
that L is an operator of order m − 1. Doing the latter first, we note that
σm(L) = 0 for some L ∈ PDiffm(E, F ) means that in a local trivializing
coordinate chart, L has the representation LU = [L(pij )], pij ∈ Sm(U).
Since σm(L)|U = σm(LU) = [σm(pij )] = 0, by hypothesis, it follows that
pij ∈ S̃m−1(U), by hypothesis on the class Sm. Hence LU is an operator of
order m− 1, and thus L will be an operator of order m− 1. To prove that
σm is surjective, we proceed as follows. Let {Uµ} be a locally finite cover of
X by coordinate charts Uµ over which E and F are both trivializable. Let
{φµ} be a partition of unity subordinate to the cover {Uµ} and let {ψµ} be
a family of functions ψµ ∈ D(Uµ), where ψµ ≡ 1 on supp φµ. We then let
χ be a C∞ function on Rn with χ ≡ 0 near 0 ∈ Rn and χ ≡ 1 outside the
unit ball. Let s ∈ Smblm(E, F ) be given, and write s = ∑

µ φµs = ∑
µ sµ;

supp sµ ⊂ supp φµ ⊂ Uµ. Then with respect to a trivialization of E and
F over U , we see that sµ = [sijµ ], a matrix of homogeneous functions
sijµ : Uµ × Rn − {0} −→ C, and sijµ (x, ρξ) = ρmsijµ (x, ξ), for ρ > 0. We let
pijµ (x, ξ) = χ(ξ)sijµ (x, ξ). It follows from the homogeneity that pijµ ∈ Sm0 (U)
and that σm(pijµ ) = sijµ . We now let

Lµ: D(Uµ)
p −→ E(Uµ)

r

be defined by Lµu = [L(pijµ )]u, with the usual matrix action of the matrix of
operators on the vector u. If u ∈ D(X,E), then we let u = ∑

φµu = ∑
uµ,

considering each uµ as a vector in D(Uµ)
p by the trivializations. We then

define
Lu =

∑
µ

ψµ(Lµuµ),

and it is clear that
L: D(X,E) −→ E(X, F )

is an element of PDiffm(E, F ), since locally it is represented by a matrix of
canonical pseudodifferential operators of order m. Note that it is necessary
to multiply by ψµ in order to sum, since Lµuµ is C∞, where we consider Lµuµ
as an element of E(Uµ, F ) in Uµ, but that it does not necessarily extend in
a C∞ manner to a C∞ section of F over X. Thus we have constructed from
s a pseudodifferential operator L in a noncanonical manner; it remains to
show that σm(L) = s. But this is simple, since (ψµLµ) ∈ PDiffm(E, F ) and

σm(ψµLµ)U(x, ξ) = σm(ψµ(x)p
ij
µ (x, ξ)) = ψµ(x) lim

λ→∞
pijµ (x, λξ)/λ

m

= ψµ(x)s
ij
µ (x, ξ) = sijµ (x, ξ),

since ψµ ≡ 1 on supp sµ. It follows that

σm(ψµLµ) = sµ,

and by linearity of the symbol map

σm
(∑

µ

ψµLµ
) =

∑
µ

sµ = s.

Q.E.D.
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We need to show now that the direct sum PDiff(E, F ) = ∑
m PDiffm(E, F )

forms an algebra under composition, which is closed under transposition.
We formulate this in the following manner.

Theorem 3.17: Let E,F , and G be vector bundles over a compact
differentiable manifold X. Then

(a) If Q ∈ PDiff r (E, F ) and P ∈ PDiff s(F,G), then the composition
as operators P ◦Q ∈ PDiff r+s(E,G), and, moreover,

σr+s(P ◦Q) = σs(P ) • σr(Q),

where the latter product is the composition product of the linear vector
bundle maps

π∗E
σr (Q)−→π∗F

σs(P )−→π∗G.
(b) If P ∈ PDiffm(E, F ), then P ∗, the adjoint of P , exists, where P ∗ ∈

PDiffm(F,E), and, moreover,

σm(P
∗) = σm(P )

∗,

where σm(P )∗ denotes the adjoint of the linear map

π∗E
σm(P )−→ π∗F.

Proof: To prove these facts it will suffice to consider local representations
by canonical pseudodifferential operators, since this is how the action of
the operator on functions is defined. First we consider the scalar case; i.e.,
E,F , and G are trivial line bundles, and we have the operators acting on
C∞ functions on X.

We begin by proving the existence of an adjoint in PDiffm(X) and note
that by Proposition 3.13 and Proposition 2.1, P ∗ ∈ OPm(X) exists. Let U
be a coordinate chart (considered as an open subset of Rn) for X, and for
any open set U ′ ⊂⊂ U , let u, v ∈ D(U ′). If p ∈ Sm0 (U) such that PU = L(p),
then by (3.4)

(u, P ∗v) = (PUu, v) =
∫ ∫

p(x, ξ)ei〈x,ξ〉û(ξ)v(x) dξ dx

=
∫ ∫ ∫

p(x, ξ)ei〈x,ξ〉(2π)−ne−i〈y,ξ〉u(y)v(x) dy dξ dx

=
∫
u(y)(2π)−n

∫ ∫
p(x, ξ)ei〈y−x,ξ〉v(x) dx dξ dy.

Let r(y, ξ, x) = p(x, ξ), and we have

(u, P ∗v) =
∫
u(y)(2π)−n

∫ ∫
r(y, ξ, x)ei〈y−x,ξ〉v(x) dx dξ dy.

By Proposition 3.10, there exists q ∈ Sm0 (U) such that

L(q)v(y) = (2π)−n
∫ ∫

r(y, ξ, x)ei〈y−x,ξ〉v(x) dx dξ.
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Therefore,
(u, P ∗v) =

∫
u(y)L(q)v(y)dy = (u, L(q)v)

and we have P ∗
U = L(q). Hence P ∗ ∈ PDiffm(X). Moreover,

σm(q)(x, ξ) = lim
λ→∞

r(x, λξ, x)

λm
= lim

λ→∞
p(x, λξ)

λm
= σm(p)(x, ξ),

and conjugation is the adjoint for trivial line bundles.
The composition formula now follows by a simple reduction to the adjoint

problem. Note that (Q∗)∗ = Q. For U,U ′ as above, let PU = L(p),QU =
L(q), and Q∗

U = L(q ′) be representations in U . Then for u ∈ D(U ′), the
proof of the adjoint property shows that

L(q)u(z) = (2π)−n
∫ ∫

q ′(y, ξ)ei〈z−y,ξ〉u(y) dy dξ

=
∫
ei〈z,ξ〉((2π)−n

∫
q ′(y, ξ)e−i〈y,ξ〉u(y) dy) dξ.

Thus,

L(p) ◦ L(q)u(x) =
∫
p(x, ξ)L̂(q)u(ξ)ei〈x,ξ〉dξ

= (2π)−n
∫ ∫

p(x, ξ)q ′(y, ξ)ei〈x−y,ξ〉u(y) dy dξ.

Let s(x, ξ, y) = p(x, ξ)q ′(y, ξ). Then Proposition 3.10 shows that there exists
a t ∈ Sr+s0 (U) such that P ◦ Q|U = L(t). Therefore P ◦ Q ∈ PDiff r+s(X).
Furthermore,

σr+s(t)(x, ξ) = lim
λ→∞

s(x, λξ, x)

λr+s
= lim

λ→∞
p(x, λs)

λs
• lim
λ→∞

q ′(x, λs)
λr

= σs(p)(x, ξ)σr(q ′)(x, ξ)

= σs(p)(x, ξ)σr(q)(x, ξ)

from the proof for the adjoint. Hence, σr+s(P ◦Q) = σs(P ) • σr(Q) as desired.
The proofs for vector-valued functions (sections of bundles) are essentially

the same as for scalar functions, with the added complication that we are
dealing with matrices. Then the order of the terms in the integrals is crucial,
since the matrix-valued entries will not, in general, commute. We shall omit
any further details here.

Q.E.D.

For more detailed information about pseudodifferential operators on man-
ifolds, consult the original papers of Seeley [1], Kohn and Nirenberg [1], and
Hörmander [3, 4]. The expository article by Nirenberg [1] is an excellent
reference.† Palais [1] has a development of the theory presented here along
the lines of the Kohn and Nirenberg paper.

†Our presentation is simplified somewhat by the fact that we avoid the asymptotic expan-
sion of a pseudodifferential operator (corresponding to the lower-order terms of a differential
operator), since it is unnecessary for the applications to elliptic differential equations.
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4. A Parametrix for Elliptic Differential Operators

In this section we want to restrict our attention to operators which
generalize the classic Laplacian operator in Euclidean space and its inverse.
These will be called elliptic operators. We start with a definition, using the
same notation as in the preceding sections. Let E and F be vector bundles
over a differentiable manifold X.

Definition 4.1: Let s ∈ Smblk(E, F ). Then s is said to be elliptic if and
only if for any (x, ξ) ∈ T ′(X), the linear map

s(x, ξ): Ex −→ Fx

is an isomorphism.

Note that, in particular, both E and F must have the same fibre dimension.
We shall be most interested in the case where E = F .

Definition 4.2: Let L ∈ PDiff k(E, F ). Then L is said to be elliptic (of
order k) if and only if σk(L) is an elliptic symbol.

Note that if L is an elliptic operator of order k, then L is also an operator
of order k + 1, but clearly not an elliptic operator of order k + 1 since
σk+1(L) = 0. For convenience, we shall call any operator L ∈ OP−1(E, F )

a smoothing operator. We shall later see why this terminology is justified.

Definition 4.3: Let L ∈ PDiff(E, F ). Then L̃ ∈ PDiff(F,E) is called a
parametrix (or pseudoinverse) for L if it has the following properties,

L ◦ L̃− IF ∈ OP−1(F )

L̃ ◦ L− IE ∈ OP−1(E),

where IF and IE denote the identity operators on F and E, respectively.

The basic existence theorem for elliptic operators on a compact manifold
X can be formulated as follows.

Theorem 4.4: Let k be any integer and let L ∈ PDiff k(E, F ) be elliptic.
Then there exists a parametrix for L.

Proof: Let s = σk(L). Then s−1 exists as a linear transformation, since
s is invertible,

s−1(x, ξ): Fx −→ Ex,

and s−1 ∈ Smbl−k(F,E). Let L̃ be any pseudodifferential operator in
PDiff−k(F,E) such that σ−k(L̃) = s−1, whose existence is guaranteed by
Theorem 3.16. We have then that

σ0(L ◦ L̃− IF ) = σ0(L ◦ L̃)− σ0(IF ),
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and letting σ0(IF ) = 1F , the identity in Smbl0(F, F ), we obtain
σ0(L ◦ L̃− IF ) = σk(L) • σ−k(L̃)− 1F

= 1F − 1F = 0.
Thus, by Theorem 3.16, we see that

L ◦ L̃− IF ∈ OP−1(F, F ).

Similarly, L̃ ◦ L− IE is seen to be in OP−1(E,E).
Q.E.D.

This theorem tells us that modulo smoothing operators we have an inverse
for a given elliptic operator. On compact manifolds, this turns out to be only
a finite dimensional obstruction, as will be deduced later from the following
proposition. First we need a definition. Let X be a compact differentiable
manifold and suppose that L ∈ OPm(E, F ). Then we say that L is compact
(or completely continuous) if for every s the extension Ls :Ws(E) → Ws−m(F )
is a compact operator as a mapping of Banach spaces.

Proposition 4.5: Let X be a compact manifold and let S ∈ OP−1(E,E).
Then S is a compact operator of order 0.

Proof: We have for any s the following commutative diagram,

Ws(E) Ws(E)

Ws+1(E),

S̃s

Ss j

where Ss is the extension of S to a mapping Ws → Ws+1, given since
S ∈ OP−1(E,E), and S̃s is the extension of S, as a mapping Ws → Ws , given
by the fact that OP−1(E,E) ⊂ OP0(E,E). Since j is a compact operator
(by Rellich’s lemma, Proposition 1.2), then S̃s must also be compact.

Q.E.D.

In the remainder of this section we shall let E and F be fixed Hermitian
vector bundles over a compact differentiable manifold X. Assume that X
is equipped with a smooth positive measure µ (such as would be induced
by a Riemannian metric, for example) and let W 0(X,E) = W 0(E),W 0(F )

denote the Hilbert spaces equipped with L2-inner products

(ξ, η)E =
∫
X

〈ξ(x), η(x)〉Edµ, ξ, η ∈ E(X,E)

(σ, τ )F =
∫
X

〈σ(x), τ (x)〉F dµ, σ, τ ∈ E(X, F ),

as in Sec. 1. We shall also consider the Sobolev spacesWs(E),Ws(F ), defined
for all integral s, as before, and shall make use of these without further men-
tion. If L ∈ OPm(E, F ), denote by Ls : Ws(E) → Ws−m(F ) the continuous
extension of L as a continuous mapping of Banach spaces. We want to study
the homogeneous and inhomogeneous solutions of the differential equation
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Lξ = σ , for ξ ∈ E(X,E), σ ∈ E(X, F ), where L ∈ Diffm(E, F ), and L∗ is
the adjoint of L defined with respect to the inner products in W 0(E) and
W 0(F ); i.e.,

(Lξ, τ )F = (ξ, L∗τ)E,

as given in Proposition 2.8. If L ∈ Diffm(E, F ), we set

HL = {ξ ∈ E(X,E): Lξ = 0},
and we let

H⊥
L = {η ∈ W 0(E): (ξ, η)E = 0, ξ ∈ HL}

denote the orthogonal complement in W 0(E) of HL. It follows immediately
that the space H⊥

L is a closed subspace of the Hilbert space W 0(E). As
we shall see, under the assumption that L is elliptic HL turns out to be
finite dimensional [and hence a closed subspace of W 0(E)]. Before we get
to this, we need to recall some standard facts from functional analysis, due
to F. Riesz (see Rudin [1]).

Proposition 4.6: Let B be a Banach space and let S be a compact operator,
S:B → B. Then letting T = I − S, one has:

(a) Ker T = T −1(0) is finite dimensional.
(b) T (B) is closed in B, and Coker T = B/T (B) is finite dimensional.

In our applications the Banach spaces are the Sobolev spacesWs(E) which
are in fact Hilbert spaces. Proposition 4.6(a) is then particularly easy in this
case, and we shall sketch the proof for B, a Hilbert space. Namely, if the unit
ball in a Hilbert space h is compact, then it follows that there can be only
a finite number of orthonormal vectors, since the distance between any two
orthonormal vectors is uniformly bounded away from zero (by the distance√

2). Thus h must be finite dimensional. Proposition 4.6(a), for instance,
then follows immediately from the fact that the unit ball in the Hilbert
space h = Ker T must be compact (essentially the definition of a compact
operator). The proof that T (B) is closed is more difficult and again uses the
compactness of S. Since S∗ is also compact, Ker T ∗ is finite dimensional, and
the finite dimensionality of Coker T follows. More generally, the proof of
Proposition 4.6 depends on the fundamental finiteness criterion in functional
analysis which asserts that a locally compact topological vector space is
necessarily finite dimensional. See Riesz and Nagy [1], Rudin [1], or any
other standard reference on functional analysis for a discussion of this as
well as a proof of the above proposition. (A good survey of this general
topic can be found in Palais [1].)

An operator T on a Banach space is called a Fredholm operator if T
has finite-dimensional kernel and cokernel. Then we immediately obtain the
following from Theorem 4.4 and Propositions 4.5 and 4.6.
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Theorem 4.7: Let L ∈ PDiffm(E, F ) be an elliptic pseudodifferential oper-
ator. Then there exists a parametrix P for L so that L ◦ P and P ◦ L
have continuous extensions as Fredholm operators: Ws(F ) → Ws(F ) and
Ws(E) → Ws(E), respectively, for each integer s.

We now have the important finiteness theorem for elliptic differential
operators.

Theorem 4.8: Let L ∈ Diff k(E, F ) be elliptic. Then, letting HLs = Ker Ls :
Ws(E) → Ws−k(F ), one has

(a) HLs ⊂ E(X,E) and hence HLs = HL, all s.
(b) dim HLs = dim HL < ∞ and dimWs−k(F )/Ls(Ws(E)) < ∞.

Proof: First we shall show that, for any s, dim HLs < ∞. Let P be a
parametrix for L, and then by Theorem 4.7, it follows that

(P ◦ L)s : Ws(E) −→ Ws(F )

has finite dimensional kernel, and obviously KerLs ⊂ Ker(P ◦L)s , since we
have the following commutative diagram of Banach spaces:

Ws(E) Ws(E)

Ws+1(E),

(P ◦L)

Ls Ps−k

Hence HLs is finite dimensional for all s. By a similar argument, we see
that Ls has a finite dimensional cokernel. Once we show that HLs contains
only C∞ sections of E, then it will follow that HLs = HL and that all
dimensions are the same and, of course, finite.

To show that HLs ⊂ E(X,E) is known as the regularity of the homo-
geneous solutions of an elliptic differential equation. We formulate this as
a theorem stated somewhat more generally, which will then complete the
proof of Theorem 4.8.

Theorem 4.9: Suppose that L ∈ Diffm(E, F ) is elliptic, and ξ ∈ Ws(E) has
the property that Lsξ = σ ∈ E(X, F ). Then ξ ∈ E(X,E).

Proof: If P is a parametrix for L, then P ◦L− I = S ∈ OP−1(E). Now
Lξ ∈ E(X, F ) implies that (P ◦ L)ξ ∈ E(X,E), and hence

ξ = (P ◦ L− S)ξ.
Since we assumed that ξ ∈ Ws(E) and since (P ◦ L)ξ ∈ E(X,E) and
Sξ ∈ Ws+1(E), it follows that ξ ∈ Ws+1(E). Repeating this process, we see
that ξ ∈ Ws+k(E) for all k > 0. But by Sobolev’s lemma (Proposition 1.1) it
follows that ξ ∈ El(X,E), for all l > 0, and hence ξ ∈ E(X,E)(= E∞(X,E)).

Q.E.D.
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We note that S is called a smoothing operator precisely because of the
role it plays in the proof of the above lemma. It smooths out the weak
solution ξ ∈ Ws(E).

Remark: The above theorem did not need the compactness of X which
is being assumed throughout this section for convenience. Regularity of the
solution of a differential equation is clearly a local property, and the above
proof can be modified to prove the above theorem for noncompact manifolds.

We have finiteness and regularity theorems for elliptic operators. The one
remaining basic result is the existence theorem. First we note the following
elementary but important fact, which follows immediately from the
definition.

Proposition 4.10: Let L ∈ Diffm(E, F ). Then L is elliptic if and only if L∗

is elliptic.

We can now formulate the following.

Theorem 4.11: Let L ∈ Diffm(E, F ) be elliptic, and suppose that τ ∈
H⊥
L∗ ∩ E(X, F ). Then there exists a unique ξ ∈ E(X,E) such that Lξ = τ

and such that ξ is orthogonal to HL in W 0(E).

Proof: First we shall solve the equation Lξ = τ , where ξ ∈ W 0(E),
and then it will follow from the regularity (Theorem 4.9) of the solution
ξ that ξ is C∞ since τ is C∞, and we shall have our desired solution. This
reduces the problem to functional analysis. Consider the following diagram
of Banach spaces,

Wm(E)
Lm ��

��

W 0(F )

��

W−m(E)

��

W 0(F ),
L∗
m��

��

where we note that (Lm)∗ = (L∗)0, by the uniqueness of the adjoint, and
denote same by L∗

m. The vertical arrows indicate the duality relation between
the Banach spaces indicated. A well-known and elementary functional analy-
sis result asserts that the closure of the range is perpendicular to the kernel
of the transpose. Thus Lm(Wm(E)) is dense in H⊥

L∗
m

. Moreover, since Lm
has finite dimensional cokernel, it follows that Lm has closed range, and
hence the equation Lmξ = τ has a solution ξ ∈ Wm(E). By orthogonally
projecting ξ along the closed subspace Ker Lm (= HL by Theorem 4.8),
we obtain a unique solution.

Q.E.D.

Let L ∈ Diffm(E) = Diffm(E,E). Then we say that L is self-adjoint if
L = L∗. Using the above results we deduce easily the following fundamental
decomposition theorem for self-adjoint elliptic operators.
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Theorem 4.12: Let L ∈ Diffm(E) be self-adjoint and elliptic. Then there
exist linear mappings HL and GL

HL: E(X,E) −→ E(X,E)

GL: E(X,E) −→ E(X,E)

so that

(a) HL(E(X,E)) = HL(E) and dimcHL(E) < ∞.
(b) L ◦GL +HL = GL ◦ L+HL = IE , where IE = identity on E(X,E).
(c) HL and GL ∈ OP0(E), and, in particular, extend to bounded

operators on W 0(E)(= L2(X,E)).
(d) E(X,E) = HL(X,E) ⊕ GL ◦ L(E(X,E)) = HL(X,E) ⊕ L ◦

GL(E(X,E)), and this decomposition is orthogonal with respect to the
inner product in W 0(E).

Proof: Let HL be the orthogonal projection [in W 0(E)] onto the closed
subspace HL(E), which we know by Theorem 4.8 is finite dimensional. As
we saw in the proof of Theorem 4.11, there is a bijective continuous mapping

Lm: Wm(E) ∩ H⊥
L −→ W 0(E) ∩ H⊥

L .

By the Banach open mapping theorem, Lm has a continuous linear inverse
which we denote by G0:

G0: W 0(E) ∩ H⊥
L −→ Wm(E) ∩ H⊥

L .

We extend G0 to all of W 0(E) by letting G0(ξ) = 0 if ξ ∈ HL, and noting
that Wm(E) ⊂ W 0(E), we see that

G0: W 0(E) −→ W 0(E).

Moreover,
Lm ◦G0 = IE −HL,

since Lm ◦G0 = identity on H⊥
L . Similarly,

G0 ◦ Lm = IE −HL
for the same reason. Since G0(E(X,E)) ⊂ E(X,E), by elliptic regularity
(Theorem 4.9), we see that we can restrict the linear Banach space mappings
above to E(X,E). Let GL = G0|E(X,E), and it becomes clear that all of the
conditions (a)–(d) are satisfied.

Q.E.D.

The above theorem was first proved by Hodge for the case where E =
∧pT ∗(X) and where L = dd∗ + d∗d is the Laplacian operator, defined with
respect to a Riemannian metric on X (see Hodge [1] and de Rham [1]).
Hodge called the homogeneous solutions of the equation Lϕ = 0 harmonic
p-forms, since the operator L is a true generalization of the Laplacian in the
plane. Following this pattern, we shall call the sections in HL, for L a self-
adjoint elliptic operator, L-harmonic sections, and when there is no chance of
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confusion, simply harmonic sections. For convenience we shall refer to the
operator GL given by Theorem 4.12 as the Green’s operator associated to
L, also classical terminology.† The harmonic forms of Hodge and their
generalizations will be used in our study of Kähler manifolds and algebraic
geometry. We shall refine the above theorem in the next section dealing with
elliptic complexes and at the same time give some examples of its usefulness.

Suppose that E → X is a differentiable vector bundle and L: E(X,E) →
E(X,E) is an elliptic operator. Then the index of L is defined by

i(L) = dim Ker L− dim Ker L∗,

which is a well-defined integer (Theorem 4.8). The Atiyah-Singer index
theorem asserts that i(L) is a topological invariant, depending only on (a)
the Chern classes of E and (b) a cohomology class in H ∗(X,C) defined
by the top-order symbol of the differential operator L. Moreover, there is
an explicit formula for i(L) in terms of these invariants (see Atiyah and
Singer [1, 2]). We shall see a special case of this in Sec. 5 when we discuss
the Hirzebruch-Riemann-Roch theorem for compact complex manifolds.

We would like to give another application of the existence of the para-
metrix to prove a semicontinuity theorem for a family of elliptic operators.
Suppose that E −→ X is a differentiable vector bundle over a compact
manifold X, and let {Lt} be a continuous family of elliptic operators,

(4.1) Lt : E(X,E) −→ E(X,E),

where t is a parameter varying over an open set U ⊂ Rn. By this we mean
that for a fixed t ∈ U,Lt is an elliptic operator and that the coefficients of
Lt in a local representation for the operator should be jointly continuous
in x ∈ X and t ∈ U .

Theorem 4.13: Let {Lt} be a continuous family of elliptic differential oper-
ators of order m as in (4.1). Then dim Ker Lt is an upper semicontinuous
function of the parameter t ; moreover if t0 ∈ U , then for ε > 0 sufficiently
small,

dim Ker Lt ≤ dim Ker Lt0
for |t − t0| < ε.

Proof: Suppose that t0 = 0, let B1 = W 0(X,E) and B2 = W−m(X,E),
and let P be a parametrix for the operator L = L0. Denoting the extensions
of the operators Lt and P by the same symbols, we have

Lt : B1 −→ B2, t ∈ U
P : B2 −→ B1.

We shall continue the proof later, but first in this context we have the
following lemma concerning the single operator L = L0, whose proof uses

†Note that the Green’s operator GL is a parametrix for L, but such that GL◦L−I = −HL
is a smoothing operator of infinite order which is orthogonal to GL, a much stronger
parametrix than that obtained from Theorem 4.4.
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the existence of the parametrix P at t = 0. Let Ht = Ker Lt, t ∈ U , and
‖ ‖1, ‖ ‖2 denote the norms in B1 and B2.

Lemma 4.14: There exists a constant C > 0 such that
‖u‖1 ≤ C‖L0u‖2

if u ∈ H⊥
0 ⊂ B1 (orthogonal complement in the Hilbert space B1).

Proof: Suppose the contrary. Then there exists a sequence uj ∈ H⊥
0

such that
‖uj‖1 = 1

‖Luj‖2 ≤ 1
j
.

(4.2)

Consider
PLuj = uj + T uj ,

where T is compact, Then
‖T uj‖1 ≤ ‖PLuj‖1 + ‖uj‖1

≤ C‖Luj‖2 + ‖uj‖1

≤ C
(

1
j

)
+ 1

≤ C̃,
where C, C̃ are constants which depend on the operator P (recall that P is
a continuous operator from B2 to B1). Since ‖uj‖ = 1, it follows that {T uj }
is a sequence of points in a compact subset of B1, and as such, there is
a convergent subsequence yjn = T ujn → y0 ∈ B1. Moreover, y0 
= 0, since
limn→∞ Lujn = 0, by (4.2), and thus

0 = lim
n→∞PLujn = lim

n→∞ ujn + y0,

which implies that ujn → −y0 and
‖y0‖ = lim

n→∞ ‖ujn‖ = 1.

However, Ly0 = − limn→∞ Lujn = 0, as above, and this contradicts the fact
that y0 (which is the limit of ujn) ∈ H⊥

0 .
Q.E.D.

Proof of Theorem 4.13 continued: Let C be the constant in Lemma 4.14.
We claim that for δ sufficiently small there exists a somewhat larger constant
C̃ such that, for u ∈ H⊥

0 ,

(4.4) ‖u‖1 ≤ C̃‖Ltu‖2,

provided that |t | < δ, where C̃ is independent of t . To see this, we write
L0 = Lt + L0 − Lt,

and therefore (using the operator norm)
‖L0‖ ≤ ‖Lt‖ + ‖L0 − Lt‖.
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For any ε > 0, there is a δ > 0 so that

‖Lt − L0‖ < ε,
for |t | < δ, since the coefficients of Lt are continuous functions of the
parameter t . Using Lemma 4.13, we have, for u ∈ H⊥

0 ,

‖u‖1 ≤ C‖L0u‖2

≤ C(‖Ltu‖2 + ε‖u‖1),

which gives
(1 − Cε)‖u‖1 ≤ C‖Ltu‖2

for |t | < δ. By choosing ε < C−1, we see that

‖u‖1 ≤ C(1 − Cε)−1‖Ltu‖2

≤ C̃‖Ltu‖2,

which gives (4.4). But u ∈ H⊥
0 by assumption, and it follows from the

inequality (4.4) that H⊥
0 ∩ Ht = 0 for |t | < δ. Consequently, we obtain

dim Ht ≤ dim H0.
Q.E.D.

5. Elliptic Complexes

We now want to study a generalization of elliptic operators to be called
elliptic complexes. The basic fact of generalization is that instead of con-
sidering a pair of vector bundles we now want to study a finite sequence of
vector bundles connected by differential operators. Thus, let E0, E1, . . . , EN
be a sequence of differentiable vector bundles defined over a compact
differentiable manifold X. Suppose that there is a sequence of differen-
tial operators, of some fixed order k, L0, L1, . . . , LN−1 mapping as in the
following sequence†:

(5.1) E(E0)
L0−→ E(E1)

L1−→ E(E2) −→ · · · LN−1−→ E(EN).

Associated with the sequence (5.1) is the associated symbol sequence (using
the notation of Sec. 2)

(5.2) 0 −→ π∗E0
σ(L0)−→π∗E1

σ(L1)−→π∗E2 −→ · · · σ(LN−1)−−−→ π∗EN −→ 0.

Here we denote by σ(Lj ) the k-symbol of the operator Lj . In most of our
examples we shall have first-order operators.

Definition 5.1: The sequence of operators and vector bundles E (5.1) is
called a complex if Li ◦Li−1 = 0, i = 1, . . . , N −1. Such a complex is called
an elliptic complex if the associated symbol sequence (5.2) is exact.

†For simplicity we denote in this section E(X,Ej ) by E(Ej ), not to be confused with
the sheaf of sections of Ej .



Sec. 5 Elliptic Complexes 145

Suppose that E is a complex as defined above. Then we let

(5.3) Hq(E) = Ker(Lq : E(Eq) −→ E(Eq+1))

Im(Lq−1: E(Eq−1) −→ E(Eq))
= Zq(E)

Bq(E)

be the cohomology groups (vector spaces) of the complex E, q = 0, . . . , N
[where Zq(E) and Bq(E) denote the numerator and denominator, respec-
tively]. For this definition to make sense, we make the convention that
L−1 = LN = E−1 = EN+1 = 0 (i.e., we make a trivial extension to a complex
larger at both ends).

A single elliptic operator L: E(E0) → E(E1) is a simple example of
an elliptic complex. Further examples are given in Sec. 2, namely, the de
Rham complex (Example 2.5), the Dolbeault complex (Example 2.6), and
the Dolbeault complex with vector bundle coefficients (Example 2.7). Elliptic
complexes were introduced by Atiyah and Bott [1] and we refer the reader
to this paper for further examples.

Let E denote an elliptic complex of the form (5.1). Then we can equip
each vector bundle Ej in E with a Hermitian metric and the corresponding
Sobolev space structures as in Sec. 1. In particular W 0(Ej ) will denote the
L2 space with inner product

(ξ, η)Ej =
∫
X

〈ξ(x), η(x)〉Ej dµ,
for an appropriate strictly positive smooth measure µ. Associated with each
operator Lj : E(Ej ) → E(Ej+1), we have the adjoint operator L∗

j : E(Ej+1)

→ E(Ej ), and we define the Laplacian operators of the elliptic complex E by

�j = L∗
jLj + Lj−1L

∗
j−1: E(Ej ) → E(Ej ), j = 0, 1, . . . , N.

It follows easily from the fact that the complex E is elliptic that the oper-
ators �j are well-defined elliptic operators of order 2k. Moreover, each �j

is self-adjoint. Namely,

σ(�j ) = σ(L∗
j )σ (Lj )+ σ(Lj−1)σ (L

∗
j−1)

= [σ(Lj )∗σ(Lj )+ σ(Lj−1)σ (Lj−1)
∗],

which is an isomorphism and, in fact, either positive or negative definite.
The fact that σ(�j ) is an isomorphism follows easily from the following
linear algebra argument. If we have a diagram of finite dimensional Hilbert
spaces and linear mappings,

U
A ��

��

V
B ��

��

W

��
U

��

V

��

A∗�� W,

��

B∗��

which is exact at V , where the vertical maps are the duality pairings in U , V ,
and W , then we see that V = Im(A)⊕Im(B∗). Moreover, AA∗ is injective on
Im(A) and vanishes on Im(B∗), while B∗B is injective on Im(B∗) and van-
ishes on Im(A). Thus AA∗ + B∗B is an isomorphism on V and in fact is
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positive definite. The self-adjointness of �j follows easily from the fact that
(L∗

j )
∗ = Lj and that the adjoint operation is linear.

Since each �j is self-adjoint and elliptic, we can, by Theorem 4.12,
associate to each Laplacian operator a Green’s operator G�j , which we
shall denote by Gj . Moreover, we let

H(Ej ) = H�j (Ej ) = Ker �j : E(Ej ) −→ E(Ej )

be the �j -harmonic sections, and let

Hj : E(Ej ) −→ E(Ej )

be the orthogonal projection onto the closed subspace H(Ej ).
To simplify the notation somewhat, we proceed as follows. Denote by

E(E) = N⊕
j=0

E(Ej )

the graded vector space so obtained with the natural grading. We define
operators L, L∗, �, G, H on E(E), by letting

L(ξ) = L(ξ0 + · · · + ξN) = L0ξ0 + · · · + LNξN,
where ξ = ξ0 +· · ·+ξN is the decomposition of ξ ∈ E(E) into homogeneous
components corresponding to the above grading. The other operators are
defined similarly. We then have the formal relations still holding,

� = LL∗ + L∗L

I = H +G� = H + �G,

which follow from the identities in each of the graded components, coming
from Theorem 4.12. We note that these operators, so defined, respect the
grading, that L is of degree +1, that L∗ is of degree −1, and that �,G, andH
are all of degree 0 (i.e., they increase or decrease the grading by that amount).
This formalism corresponds to that of the d or ∂̄ operator in the de Rham
and Dolbeault complexes, these operators also being graded operators on
graded vector spaces. Our purpose is to drop the somewhat useless subscripts
when operating on a particular subspace E(Ej ). We also extend the inner
product on E(Ej ) to E(E) in the usual Euclidean manner, i.e.,

(ξ, η)E =
N∑
j=0

(ξj , ηj )Ej ,

a consequence of which is that elements of different homogeneity are
orthogonal in E(E). Let us denote by H(E) = ⊕H(Ej ) the total space
of �-harmonic sections.

Using this notation we shall denote a given elliptic complex by the pair
(E(E), L), and we shall say that the elliptic complex has an inner product if
it has an inner product in the manner described above, induced by L2-inner
products on each component. Examples would then be (E∗(X), d) for X
a differentiable manifold and (Ep,∗(X), ∂̄) for p fixed and X a complex
manifold (see Examples 2.5 and 2.6).
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We now have the following fundamental theorem concerning elliptic
complexes (due to Hodge for the case of the de Rham complex).

Theorem 5.2: Let (E(E), L) be an elliptic complex equipped with an inner
product. Then

(a) There is an orthogonal decomposition

E(E) = H(E)⊕ LL∗GE(E)⊕ L∗LGE(E),

(b) The following commutation relations are valid:
(1) I = H + �G = H +G�.
(2) HG = GH = H� = �H = 0.
(3) L� = �L,L∗� = �L∗.
(4) LG = GL,L∗G = GL∗.

(c) dimCH(E) < ∞, and there is a canonical isomorphism

H(Ej ) ∼= Hj(E).

Proof: From Theorem 4.12 we obtain immediately the orthogonal
decomposition

E(E) = H(E)⊕ (LL∗ + L∗L)GE(E).

If we show that the two subspaces of E(E),

LL∗GE(E) and L∗LGE(E),

are orthogonal, then we shall have part (a). But this is quite simple. Suppose
that ξ, η ∈ E(E). Then consider the inner product (dropping the subscript
E on the inner product symbol)

(LL∗Gξ,L∗LGη) = (L2L∗Gξ,LGη),

and the latter inner product vanishes since L2 = 0.
Part (b), (1) and (2), follow from the corresponding statements in

Theorem 4.12 and its proof. Part (b), (3) follows immediately from the
definition of L and �. In part (b), (4), we shall show that LG = GL, leav-
ing the other commutation relation to the reader. First we have a simple
proposition of independent interest, whose proof we shall give later.

Proposition 5.3: Let ξ ∈ E(E). Then �ξ = 0 if and only if Lξ = L∗ξ = 0;
moreover, LH = HL = L∗H = HL∗ = 0.

Using this proposition and the construction of G, we observe that both
L and G vanish on H(E). Therefore it suffices to show that LG = GL on
H(E)⊥, and it follows immediately from the decomposition in Theorem 4.12
that any smooth ξ ∈ H(E)⊥ is of the form ξ = �ϕ for some ϕ in E(E).
Therefore we must show that LG�ϕ = GL�ϕ for all ϕ ∈ E(E). To do this,
we write, using I = H +G�,

Lϕ = H(Lϕ)+G�Lϕ

= HLϕ +GL�ϕ,
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since L� = �L. We also have

ϕ = Hϕ +G�ϕ,

and applying L to this, we obtain

Lϕ = LHϕ + LG�ϕ.

Setting the two expressions above for Lϕ equal to each other, we obtain

GL�ϕ − LG�ϕ = LHϕ −HLϕ,
and by Proposition 5.3 we see that the right-hand side is zero.

In part (c), it is clear that the finiteness assertion is again a part of
Theorem 4.12. To prove the desired isomorphism, we recall that Hq(E) =
Zq(E)/Bq(E), as defined in (5.3), and let

�: Zq(E) −→ H(Eq)

be defined by �(ξ) = H(ξ). It then follows from Proposition 5.3 that � is a
surjective linear mapping. We must then show that Ker � = Bq(E). Suppose
that ξ ∈ Zq(E) and H(ξ) = 0. Then we obtain, by the decomposition in
part (a),

ξ = Hξ + LL∗Gξ + L∗LGξ.
Since Hξ = 0 and since LG = GL, we obtain ξ = LL∗Gξ , and hence
ξ ∈ Bq(E).

Q.E.D.

Proof of Proposition 5.3: It is trivial that if Lξ = L∗ξ = 0 for ξ ∈ E(E),
then �ξ = 0. Therefore we consider the converse, and suppose that �ξ = 0
for some ξ ∈ E(E). We then have

(�ξ, ξ) = (LL∗ξ + L∗Lξ, ξ)

= (LL∗ξ, ξ)+ (L∗Lξ, ξ)

= (L∗ξ, L∗ξ)+ (Lξ, Lξ)
= ‖L∗ξ‖2 + ‖Lξ‖2 = 0.

It now follows that L∗ξ = Lξ = 0, and, consequently, LH = L∗H = 0.
To show that HL = 0, it suffices to show that (HLξ, η) = 0 for all
ξ, η ∈ E(E). But H is an orthogonal projection in Hilbert space, and as
such it is self-adjoint. Therefore we have, for any ξ, η ∈ E(E),

(HLξ, η) = (Lξ,Hη) = (ξ, L∗Hη) = 0,

and hence HL = 0. That HL∗ = 0 is proved in a similar manner.
Q.E.D.

Remark: We could easily have defined an elliptic complex to have differ-
ential operators of various orders, and Theorem 5.2 would still be valid, in a
slightly modified form (see Atiyah and Bott [1]). We avoid this complication,
as we do not need the more general result later on in our applications.

We now want to indicate some applications of the above theorem.
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Example 5.4: Let (E∗(X), d) be the de Rham complex on a compact
differentiable manifold X. As we saw in our proof of de Rham’s theorem
(Theorem II.3.15)

Hr(X,C) ∼= �H
r(X,C) ∼= Hr(E∗(X))

(using complex coefficients). The first group is abstract sheaf cohomology,
which is defined for any topological space; the second is singular coho-
mology; and the first isomorphism holds when we assume that X has the
structure of a topological manifold (for example). When X has a differ-
entiable structure, as we are assuming, then differential forms are defined
and the de Rham group on the right makes sense. Thus we can use differ-
ential forms to represent singular cohomology. For convenience, we shall
let Hr(X,C) denote the de Rham group when we are working on a dif-
ferentiable manifold, which will almost always be the case, making the
isomorphisms above an identification. One further step in this direction of
more specialized information about the homological topology of a mani-
fold comes about when we assume that X is compact and that there is a
Riemannian metric on X. This induces an inner product on ∧pT ∗(X) for
each p, and hence (E∗(X), d) becomes an elliptic complex with an inner
product. We denote the associated Laplacian by � = �d = dd∗ + d∗d. Let

Hr (X) = H�(∧rT ∗(X))
be the vector space of �-harmonic r-forms on X. We shall call them simply
harmonic forms, a metric and hence a Laplacian being understood. We thus
obtain by Theorem 5.2.(c) that

Hr(X,C) ∼= Hr (X).

This means that for each cohomology class c ∈ Hr(X,C) there exists a
unique harmonic form ϕ representing this class c, which is, by Proposi-
tion 5.3, d-closed. If we change the metric, we change the representation, but,
nevertheless, for a given metric we have a distinguished r-form to represent
a given class. It will turn out that this representative has more specialized
information about the original manifold than an arbitrary representative
might, in particular when the metric is chosen carefully (to be Kähler, for
example, as we shall see in the next chapter). Thus we have continued the
chain of representations of the sheaf cohomology on X with coefficients in
C, but for the first time we have a specific vector space representation; there
are no equivalence classes to deal with, as in the previous representations.
A consequence of Theorem 5.2 is that

dimCH
q(X,C) = dimCHq(X) = bq < ∞.

This finiteness is not obvious from the other representations, and, in fact, the
harmonic theory we are developing here is one of the basic ways of obtaining
finiteness theorems in general.† The numbers bq, q = 0, 1, . . . , dimR(X),

†Of course, we could represent the de Rham groups by singular cohomology and prove
that a compact topological manifold has a finite cell decomposition. This is the point of
view of algebraic topology.
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are the celebrated Betti numbers of the compact manifold X. By our results
above the Betti numbers are topological invariants of X; i.e., (a) they depend
only on the topological structure of X, and (b) they are invariant under
homeomorphisms.

In the study of manifolds these numbers play an important role in their
classification, and this is no less so if the manifold happens to be complex,
as we shall see. We define

χ(X) =
dimX∑
q=0

(−1)qbq,

the Euler characteristic of X, also a topological invariant.

Example 5.5: Let X be a compact complex manifold of complex
dimension n, and consider the elliptic complex

· · · ∂̄→ Ep,q(X)
∂̄→ Ep,q+1(X)

∂̄→ Ep,q+2(X)
∂̄→ · · · ,

for a fixed p, 0 ≤ p ≤ n. As we saw in our previous study of this example
(Example 2.6), this is elliptic, and in Chap. II (Theorem 3.17) we saw that

Hq(X,�p) ∼= Hq(∧p, ∗T ∗(X), ∂̄)

(Dolbeault’s theorem), where �p is the sheaf of germs of holomorphic
p-forms. We want to represent these cohomology groups by means of
harmonic forms. Let ∧p,qT ∗(X) be equipped with a Hermitian metric, 0 ≤
p, q,≤ n [induced by a Hermitian metric on T (X), for example]. Then
the complex above becomes an elliptic complex with an inner product
(parametrized by the integer p). Denote the Laplacian by

� = ∂̄ ∂̄∗ + ∂̄∗∂̄,

and let
Hp,q(X) = H�(∧p,qT ∗(X))

be the �-harmonic (p, q)-forms, which we shall call simply harmonic (p, q)-
forms when there is no confusion about which Laplacian is meant in a given
context.

Similar to the de Rham situation, we have the following canonical
isomorphism (using Theorem 5.2 along with Dolbeault’s theorem):

Hq(X,�p) ∼= Hp,q(X).

We define, for 0 ≤ p, q ≤ n,

hp,q = dimCH
q(X,�p) = dimCHp,q(X),

which are called the Hodge numbers of the compact complex manifold X.
Note that these numbers are invariants of the complex structure of X and do
not depend on the choice of metric. The finite dimensionality again comes
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from Theorem 5.2.† The following theorem shows us how the Hodge num-
bers and the Betti numbers are related, in general (on Kähler manifolds,
more will be true).

Theorem 5.6: Let X be a compact complex manifold. Then

χ(X) =
∑
(−1)rbr(X) =

∑
(−1)p+qhp,q(X).

The proof of this theorem is a simple consequence of the fact that there
is a spectral sequence (Fröhlicher [1])

E
p,q

1
∼= Hq(X,�p) =⇒ Hr(X,C)

relating the Dolbeault and de Rham groups, and we omit the details as we
do not need this result in later chapters. For Kähler manifolds this results
from the Hodge theory developed in Chapter V.

Example 5.7: Let E be a holomorphic vector bundle over a compact
complex manifold X and let (Ep,∗(X,E), ∂̄) be the elliptic complex of (p, q)-
forms with coefficients in E. By the generalization of Dolbeault’s theorem
given in Theorem II.3.20 the cohomology groups Hq(X,�p(E)) represent
the cohomology of the above complex, where �p(E) ∼= O(∧pT ∗(X) ⊗ E)

is the sheaf of germs of E-valued holomorphic p-forms. The bundles in
the complex are of the form ∧p,qT ∗(X) ⊗ E, and equipping them with a
Hermitian metric [induced from a Hermitian metric on T (X) and E, for
instance], we can then define a Laplacian

� = ∂̄ ∂̄∗ + ∂∗∂̄: Ep,q(X,E) −→ Ep,q(X,E),

as before. Letting Hp,q(X,E) = H�(∧p,qT ∗(X) ⊗ E) be the �-harmonic
E-valued (p, q)-forms in Ep,q(X,E) we have, by Theorem 5.2, the isomor-
phism (and harmonic representation)

Hq(X,�p(E)) ∼= Hp,q(X,E),

a generalization of the previous example to vector bundle coefficients. We let

hp,q(E) = hp,q(X,E) = dimCHp,q(X,E),

where we drop the notational dependence on X unless there are different
manifolds involved. As before, it follows from Theorem 5.2 that hp,q(E) < ∞,
and we can define the Euler characteristic of the holomorphic vector bundle
E to be

χ(E) = χ(X,E) =
n∑
q=0

(−1)qh0,q(E).

As before, the generalized Hodge numbershp,q(E)depend only on the complex
structures of X and E, since the dimensions are independent of the particular
metric used. However, it is a remarkable fact that the Euler characteristic of

†A general theorem of Cartan and Serre asserts that the cohomology groups of any
coherent analytic sheaf on a compact complex manifold are finite dimensional. This and
the next example are special cases of this more general result, which is proved by different
methods, involving Čech cohomology (cf. Gunning and Rossi [1]).
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a holomophic vector bundle can be expressed in terms of topological invari-
ants of the vector bundle E (its Chern classes) and of the complex manifold
X itself (the Chern classes of the tangent bundle to X). This is the celebrated
Riemann-Roch theorem of Hirzebruch, which we formulate below.

Let E be a complex (differentiable) vector bundle over X, where r =
rank E and X is a differentiable manifold of real dimension m. Let

c(E) = 1 + c1(E)+ · · · + cr(E)
be the total Chern class of E, which is an element of the cohomology ring
H ∗(X,C), as we saw in Chap. III. Recall that the multiplication in this
ring is induced by the exterior product of differential forms, using the de
Rham groups as a representation of cohomology.† We introduce a formal
factorization

c(E) =
r∏
i=1

(1 + xi),

where the xi ∈ H ∗(X,C). Then any formal power series in x1, . . . , xr which
is symmetric in x1, . . . , xr is also a power series in c1(E), . . . , cr(E). This
follows from the fact that the cj (E) are the elementary symmetric functions
of the (x1, . . . , xr) (analogous to the case of the coefficients of a polynomial).
Therefore we define

T(E) =
r∏
i=1

xi

1 − e−xi

ch(E) =
r∑
i=1

exi ,

which are formal power series, symmetric in x1, . . . , xr , and hence define a
(more complicated-looking) formal power series in the Chern classes of E.
We call T(E) the Todd class of E and ch(E) is called the Chern character
of E. Of course, there are only a finite number of terms in the expansion
of the above formal power series since Hq(X,C) = 0 for q > dimRX.

We now recall that X is assumed to be compact, and then we let, for
c ∈ H ∗(X,C),

c[X] =
∫
X

ϕm,

where ϕm is a closed differential form of degree m representing the homo-
geneous component in c of degree m; i.e., from the viewpoint of algebraic
topology we evaluate the cohomology class on the fundamental cycle. By
Stokes’ theorem the above definition is a sensible one. We are now in a
position to state the following theorem due to Hirzebruch for projective
algebraic manifolds.

†Of course, the characteristic class theory is valid in a more general topological category,
and the cohomology ring has the cup product of algebraic topology for multiplication, but
on a differentiable manifold, the two theories are isomorphic.
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Theorem 5.8 (Riemann-Roch-Hirzebruch): Let X be a compact complex
manifold, and let E be a holomorphic vector bundle over X. Then

χ(E) = {ch(E) • T(T (X))}[X].

Note that the left-hand side of the equality depends a priori on the
complex structure of X and E, whereas the right-hand side is a priori a
complex number (we could have made it a rational number had we worked
with integral coefficients for our cohomology). Therefore two immediate
consequences of the above formula is that these dependences are superfluous;
i.e., the left-hand side depends only on the underlying topological structure,
and the right-hand side is an integer.

This theorem is a special case of the Atiyah-Singer index theorem, dis-
cussed in Sec. 4, and was formulated and proved for projective algebraic
manifolds by Hirzebruch in a famous monograph (Hirzebruch [1]) in 1956.
The special case of a Kähler surface had been proved earlier by Kodaira.
For n = 1 and E a line bundle, the above theorem is essentially the classic
theorem of Riemann-Roch for Riemann surfaces (in the form proved by
Serre [1]). This case is discussed thoroughly by Gunning [1]. For applica-
tions of the Riemann-Roch Theorem in this form to the study of compact
complex surfaces (complex dimension 2), see Kodaira [5].



CHAPTER V

C O M PAC T

C O M P L E X M A N I F O L D S

In this chapter we shall apply the differential equations and differential
geometry of the previous two chapters to the study of compact complex
manifolds. In Sec. 1 we shall present a discussion of the exterior algebra on a
Hermitian vector space, introducing the fundamental 2-form and the Hodge
∗-operator associated with the Hermitian metric. In Sec. 2 we shall discuss
and prove the principal results concerning harmonic forms on compact
manifolds (real or complex), in particular, Hodge’s harmonic representation
for the de Rham groups, and special cases of Poincaré and Serre duality.
In Sec. 3 we present the finite-dimensional representation theory for the Lie
algebra sl(2, C), from which we derive the Lefschetz decomposition theorem
for a Hermitian exterior algebra. In Sec. 4 we shall introduce the concept of
a Kähler metric and give various examples of Kähler manifolds (manifolds
equipped with a Kähler metric). In terms of a Hermitian metric we define
the Laplacian operators associated with the operators d, ∂, and ∂̄ and show
that when the metric is Kähler that the Laplacians are related in a simple
way. We shall use this relationship in Sec. 5 to prove the Hodge decomposi-
tion theorem expressing the de Rham group as a direct sum of the Dolbeault
groups (of the same total degree). In Sec. 6 we shall state and prove Hodge’s
generalization of the Riemann period relations for integrals of harmonic
forms on a Kähler manifold. We shall then use the period relations and the
Hodge decomposition to formulate the period mapping of Griffiths. In par-
ticular, we shall prove the Kodaira-Spencer upper semicontinuity theorem
for the Hodge numbers on complex-analytic families of compact manifolds.

1. Hermitian Exterior Algebra on a Hermitian Vector Space

Let V be a real finite-dimensional vector space of dimension d which is
equipped with an inner product 〈 , 〉, a Euclidean vector space, and suppose
that ∧V denotes the exterior algebra of V . Then for each degree p, the
vector space ∧pV has an inner product induced from the inner product of V .
Namely, if {e1, . . . , ed} is an orthonormal basis for V , then {ei1 ∧· · ·∧eip : 1 ≤
i1 < i2 < · · · < ip ≤ d} is an orthonormal basis for ∧pV . An orientation on

154
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V is a choice of ordering of a basis such as {e1, . . . , ed} up to an even
permutation, which is equivalent to a choice of sign for a particular d-form,
e.g., e1 ∧ · · · ∧ ed .

We now define the Hodge ∗-operator. Choosing an orthonormal basis
{e1, . . . , ed} for V as above, fix an orientation of V by specifying the d form
e1 ∧ · · · ∧ ed which we will denote by vol (for volume element). The Hodge
∗-operator is a mapping

∗: ∧ pV −→ ∧d−pV
defined by setting

∗(ei1 ∧ · · · ∧ eip ) = ±ej1 ∧ · · · ∧ ejd−p ,
where {j1, . . . , jd−p} is the complement of {i1, . . . , ip} in {1, . . . , d}, and we
assign the plus sign if {i1, . . . , ip, j1, . . . , jd−p} is an even permutation of
{1, . . . , d}, and the minus sign otherwise. In other words ∗ is defined so that

(1.1) ei1 ∧ · · · ∧ eip ∧ ∗(ei1 ∧ · · · ∧ eip ) = e1 ∧ · · · ∧ ed = vol.

Extending ∗ by linearity to all of ∧pV we find that if α, β ∈ ∧pV , then

(1.2) α ∧ ∗β = 〈α, β〉 vol,

where 〈α, β〉 is the inner product induced on ∧pV from V . Let us check
that (1.2) is valid. Namely, if

α =
∑
|I |=p

′
aJ eJ ,

and
β =

∑
|J |=p

′
bJ eJ ,

using multi-index notation, then

α ∧ ∗β =
∑
|I |=p
|J |=p

′
aIbJ eI ∧ ∗eJ .

We see that the wedge product in each term of the sum vanishes unless
I = {i1, . . . , ip} coincides with J = {j1, . . . , jp}, and then it follows
immediately from (1.1) that

α ∧ ∗β =
∑
|I |=p

aIbI vol

= 〈α, β〉 vol.

It is easily checked that the definition of the Hodge ∗-operator is independent
of the choice of the orthonormal basis, and depends only on the inner
product structure of V as well as a choice of orientation.†

†The classical references for the ∗-operator are Hodge [1], de Rham [1], and Weil [1].
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We can extend (1.2) easily to complex-valued p-forms. Namely, if α, β ∈
∧pV ⊗ C, then β̄ is well defined (cf. Sec. I.3). We write

α =
∑
|I |=p

′
αIeI , αI ∈ C,

β =
∑
|I |=p

′
βIeI , βI ∈ C,

then we define an Hermitian inner product on ∧pV ⊗ C by

〈α, β〉 :=
∑
|I |=p

′
αI β̄I .

If α, β are real, then we have the original inner product, so we use the same
symbol 〈 , 〉 for this complex extension. It follows then immediately that if
∗ is extended to ∧∗V ⊗ C by complex linearity, we obtain the relation

(1.3) α ∧ ∗β̄ = 〈α, β〉 vol.

Let �r denote the projection onto homogeneous vectors of degree r,

�r : ∧ V −→ ∧rV ,
and define the linear mapping w: ∧ V → ∧V by setting

w = �(−1)dr+r�r .

It is easy to see that ∗∗ = w, and we remark that if d is even, then we have

(1.4) w = �(−1)r�r.

Let E be a complex vector space of complex dimension n. Let E′ be the
real dual space to the underlying real vector space of E, and let

F = E′ ⊗R C

be the complex vector space of complex-valued real-linear mappings of E
to C. Then F has complex dimension 2n, and we let

∧F =
2n∑
p=0

∧pF

be the C-linear exterior algebra of F . We will refer to an ω ∈ ∧pF as a
p-form or as a p-covector (on E). Now, as before, ∧F is equipped with a
natural conjugation obtained by setting, if ω ∈ ∧pF ,

ω(v1, . . . , vp) = ω(v1, . . . , vp), vj ∈ E.
We say that ω ∈ ∧pF is real if ω = ω, and we will let ∧pRF denote the real
elements of ∧pF (noting that ∧pE′ ∼= ∧pRF ).

Let ∧1,0F be the subspace of ∧1F consisting of complex-linear 1-forms
on E, and let ∧0,1F be the subspace of conjugate-linear 1-forms on E. Then
we see that ∧1,0F = ∧0,1F and moreover

∧1F = ∧1,0F ⊕ ∧0,1F,
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and this induces (as in Sec. I.3) a bigrading on ∧F ,

∧F =
2n∑
r=0

∑
p+q=r

∧p,qF,

and we see that if ω ∈ ∧p,qF , then ω ∈ ∧q,pF .
Now we suppose than our complex vector space is equipped with a

Hermitian inner product 〈 , 〉. This inner product is a Hermitian symmetric
sesquilinear† positive definite form, and can be represented in the following
manner. If {z1, . . . , zn} is a basis for ∧1,0F , then {z̄1, . . . , z̄n} is a basis for
∧0,1F , and we can write, for u, v ∈ E,

〈u, v〉 = h(u, v),

where
h =

∑
µ,v

hµvzµ ⊗ z̄v,

and (hαβ) is a positive definite Hermitian symmetric matrix. Now h is a
complex-valued sesquilinear form acting on E × E, and we can write

h = S + iA,
where S and A are real bilinear forms acting on E. One finds that S is a
symmetric positive definite bilinear form, which represents the Euclidean
inner product induced on the underlying real vector space of E by the
Hermitian metric on E. Moreover one can calculate easily that

A = 1
2i

∑
µ,ν

hµν(zµ ⊗ z̄ν − z̄ν ⊗ zµ)

= −i
∑
µ,ν

hµνzµ ∧ z̄ν .

Let us define

(1.5) � = i

2

∑
µ,ν

hµνzµ ∧ z̄ν,

the fundamental 2-form associated to the hermitian metric h. One sees
immediately that

� = − 1
2A = − 1

2 Im h,

and thus

(1.6) h = S − 2i�.

Moreover � ∈ ∧1,1
R F , i.e., � is a real 2-form of type (1, 1). We can always

choose a basis {zµ} of ∧1,0F so that h has the form

(1.7) h =
∑
µ

zµ ⊗ z̄µ.

†We recall that a mapping f : E × E → C is sesquilinear if f is real bilinear, and
moreover, f (λu, v) = λf (u, v), and f (u, λv) = λf (u, v), λ ∈ C.
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It then follows that, if we let

xµ = zµ + z̄µ
2

, yµ = zµ − z̄µ
2i

be the real and imaginary parts of {zµ}, then

(1.8) h =
∑
µ

(xµ ⊗ xµ + yµ ⊗ yµ)− 2i
∑
µ

(xµ ∧ yµ),

and thus from (1.5), with respect to this basis,

S =
∑

xµ ⊗ xµ + yµ ⊗ yµ

� =
∑

xµ ∧ yµ = i

2

∑
zµ ∧ z̄µ.

(1.9)

It follows from this that

(1.10) �n = n!x1 ∧ y1 ∧ · · · ∧ xn ∧ yn.
Thus the fundamental 2-form associated to a Hermitian metric is a real form
of type (1, 1) whose coefficient matrix is positive definite, and moreover, �n

is a nonzero volume element of E′. Thus �n determines an orientation on
E′, and we see from (1.9) that {xµ, yµ} is an orthonormal basis for E′ in
the induced Euclidean metric of E′. Thus we see that there is a naturally
defined Hodge ∗-operator

(1.11) ∗: ∧ pE′ −→ ∧2n−pE′

coming from the Hermitian structure of E. Namely, E′ has the dual metric
to the real underlying vector space of E, while E′ is equipped with the
orientation induced by the 2n-form �n coming from the Hermitian structure
of E. We define

(1.12) vol = 1
n!�

n,

which, with respect to the orthonormal basis used above, becomes

vol = x1 ∧ y1 ∧ · · · ∧ xn ∧ yn.
Note that the definition (1.12) does not depend on the choice of the basis,
and is an intrinsic definition of a volume element on E′.

We are now interested in defining various linear operators mapping
∧F → ∧F in terms of the above structure. Recall that we already defined
w for an even dimensional vector space by (1.4), and this therefore defines

w: ∧ E′ −→ ∧E′

which we extend by complex-linearity to

w: ∧ F −→ ∧F
where

�r : ∧ F −→ ∧rF
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is the natural projection. Similarly, since E has a Hermitian structure, as
we saw above, there is a natural ∗-operator

∗: ∧ pE′ −→ ∧2n−pE′

which we also extend as a complex-linear isomorphism to

∗: ∧ pF −→ ∧2n−pF.

Both w and ∗ are real operators. Now we let

�p,q : ∧ F −→ ∧p,qF
be the natural projection, and we define

J : ∧ F −→ ∧F
by

J =
∑

ip−q�p,q .

Recall that the real operator J which represents the complex structure of
the vector space F has the property that if v ∈ ∧1,0F , then Jv = iv, and if
v ∈ ∧0,1F , then Jv = −iv. Thus we see immediately that J defined above
is the natural multilinear extension of the complex structure operator J to
the exterior algebra of F . We note also that J 2 = w as linear operators.

We now define a linear mapping L in terms of �, the fundamental form
associated to the Hermitian structure of E, namely, let

L: ∧ F −→ ∧F
be defined by L(v) = � ∧ v. We see that

L: ∧ pF −→ ∧p+2F

so it is homogeneous and of degree 2. Moreover,

L: ∧ p,qF −→ ∧p+1,q+1F

and L is bihomogeneous of bidegree (1, 1), and it is apparent that L is a
real operator since � is a real 2-form. Recall from (1.3) that ∧pF has a
natural Hermitian inner product defined by

〈α, β〉vol = α ∧ ∗β̄,
where vol = (1/n!)�n as before. With respect to this inner product L has
a Hermitian adjoint

L∗: ∧ pF −→ ∧p−2F, 2 ≤ p ≤ 2n,

and one finds that

(1.13) L∗ = w∗L∗.
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To see that (1.13) holds we compute, for α ∈ ∧pF, β ∈ ∧p+2F ,
〈Lα, β〉vol = � ∧ α ∧ (∗β̄)

= α ∧ � ∧ (∗β̄)
= α ∧ L∗β̄
= α ∧ ∗w∗L∗β̄
= α ∧ ∗w∗L∗β̄
= 〈α,w∗L∗β〉vol

= 〈α,L∗β〉vol

using the fact that ∗w∗ = id, and ∗, L, and w are real operators. It follows
from (1.13) that L∗ is a real operator, homogeneous of degree −2. It
will follow from the next proposition that L∗ is bihomogeneous of degree
(−1,−1).

If M and N are two endomorphisms of a vector space, then we will
denote by [M,N ] = MN−NM the commutator of the two endomorphisms.
We now have a basic proposition giving fundamental relationships between
the above operators.

Proposition 1.1: Let E be a Hermitian vector space of complex dimension
n with fundamental form � and associated operators w, J,L, and L∗. Then

(a) ∗�p,q = �∗
n−q,n−p,

(b) [L,w] = [L, J ] = [L∗, w] = [L∗, J ] = 0,

(c) [L∗, L] = ∑2n
p=0(n− p)�p.

To prove Proposition 1.1, it is necessary to introduce some notation which
will allow us to effectively work with the convectors in ∧F . Let N =
{1, 2, . . . , n}, and let us consider multi-indices I = (µ1, . . . , µp), where
µ1, . . . , µp are distinct elements of N , and set |I | = p. Let {z1, . . . , zn} be
a basis for ∧1,0F such that the Hermitian metric h on E has the form
h = ∑

µ zµ ⊗ z̄µ as in (1.7), with � given by (1.9), and with (1/n!)�n =
vol = x1 ∧ y1 ∧ · · · ∧ xn ∧ yn where zµ = xµ + iyµ, as in (1.10). The operator
∗ is now well-defined in terms of the orthonormal basis {x1, y1, . . . , xn, yn}.
If I = (µ1, . . . , µp), then we let

zI = zµ1 ∧ zµ2 ∧ · · · ∧ zµp
xI = xµ1 ∧ xµ2 ∧ · · · ∧ xµp·

·
·

If M is a multiindex, we let

wM =
∏
µ∈M

zµ ∧ z̄µ = (−2i)|M| ∏
µ∈M

xµ ∧ yµ.
In this last product it is clear that the ordering of the factors is irrelevant,
since the terms commute with one another, and we shall use the same symbol
M to denote the ordered p-tuple and its underlying set of elements, provided
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that this leads to no confusion. Any element of ∧F can be written in the
form ∑

A,B,M

′
cA,B,MzA ∧ z̄B ∧ wM,

where cA,B,M ∈ C, and A,B, and M are (for a given term) mutually disjoint
multiindices, and, as before, the prime on the summation sign indicates that
the sum is taken over multiindices whose elements are strictly increasing
sequences (what we shall call an increasing multiindex).

We have the following fundamental and elementary lemma which shows
the interaction between the ∗-operator (defined in terms of the real structure)
and the bigrading on ∧F (defined in terms of the complex structure).

Lemma 1.2: Suppose that A,B, and M are mutually disjoint increasing
multiindices. Then

∗(zA ∧ z̄B ∧ wM) = γ (a, b,m)zA ∧ z̄B ∧ wM ′

for a nonvanishing constant γ (a, b,m), where a = |A|, b = |B|,m = |M|,
and M ′ = N − (A ∪ B ∪M). Moreover,

γ (a, b,m) = ia−b(−1)p(p+1)/2+m(−2i)p−n

where p = a + b + 2m is the total degree of zA ∧ z̄B ∧ wM .

Proof: Let υ = zA∧ z̄B ∧wM . If A = A1 ∪A2 for some multiindex A, let

ε
A1A2
A =

⎧⎪⎨⎪⎩
0 if A1 ∩ A2 
= ∅

1 if A1A2 is an even permutation of A
−1 if A1A2 is an odd permutation of A.

Using this notation it is easy to see that

zA =
∑

A=A1∪A2

′
ε
A1A2
A ia2xA1 ∧ yA2 ,

where the sum runs over all decompositions of A into increasing multiindices
A1 ∪ A2, and a1 = |A1|, etc. Thus we obtain

υ = (−2i)m
∑

A=A1∪A2
B=B1∪B2

′
ε
A1A2
A ε

B1B2
B ia2−b2xA1 ∧ yA2 ∧ xB1 ∧ yB2 ∧

∏
µ∈M

xµ ∧ yµ.

We now want to compute ∗υ, having expressed υ in terms of a real basis,
and we shall do this term by term and then sum the result. To simplify the
notation, consider the case where B = ∅. We obtain

(1.1) ∗(zA ∧ wM) = (−2i)m
∑

A=A1∪A2

ε
A1A2
A ia2∗{xA1 ∧ yA2 ∧

∏
µ∈M

xµ ∧ yµ}.

It is clear that the result of ∗ acting on the bracketed expression is of the form

(1.2) ±xA2 ∧ yA1 ∧
∏
µ∈M ′

xµ ∧ yµ,

where M ′ = N − (A∪M). The only problem left is to determine the sign.
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To do this it suffices (because of the commutativity of
∏

µ∈Mxµ ∧ yµ) to
consider the product (setting a2 = |A2|)

xA1 ∧ yA2 ∧ xA2 ∧ yA1 = (−1)a2
2
xA1 ∧ yA1 ∧ xA2 ∧ yA2 .

Now, in general,
xC ∧ yC = (−1)|C|(|C|−1)/2xµ1 ∧ yµ2 ∧ · · · ∧ xµ|C| ∧ yµ|C|,

and applying this to our problem above, we see immediately that the sign
in (1.2) is of the form

(−1)a2
2+a1(a1−1)/2+a2(a2−1)/2 = (−1)r .

Putting this into (1.1), we obtain

(1.3) ∗(zA ∧ wM) = (−2i)m
∑

A=A1∪A2

′
ε
A1A2
A ia2(−1)rxA2 ∧ yA1 ∧

∏
µ∈M ′

xµ ∧ yµ.

The idea now is to change variables in the summation. We write
ε
A1A2
A = (−1)a1a2ε

A2A1
A

ia2 = ia(−1)a1 ia1 ,

and substituting in (1.3) we obtain

∗(zA ∧ wM) = ia(−2i)m
∑

A=A1∪A2

′
ε
A2A1
A ia1{(−1)r+a1+a1a2}

· xA2 ∧ yA1 ∧
∏
µ∈M ′

xµ ∧ yµ,

which is, modulo the bracketed term, of the right form to be const(zA∧wM).
A priori, the bracketed term depends on the decompositions A = A1 ∪A2;
however, one can verify that in fact

(−1)r+a1+a1a2 = (−1)a(a+1)/2 = (−1)p(p+1)/2+m,
and the bracketed constant pulls out in front the summation, and we obtain

∗(zA ∧ wM) = ia(−1)p(p+1)/2+m(−2i)p−nzA ∧ wM ′ .

The more general case is treated similarly.
Q.E.D.

Proof of Proposition 1.1: Part (a) follows immediately from Lemma 1.2.
We note that (a) is equivalent to

(a′) ∗|∧p,qF : ∧p,q F −→ ∧n−q,n−pF is an isomorphism.

Part (b) follows from the fact that L and Λ are homogeneous operators
and are real.

We shall show part (c). Using the notation used in Lemma 1.2, we observe
that

L(zA ∧ z̄B ∧ wM) = i

2

( n∑
µ=1

zµ ∧ z̄µ
)

∧ zA ∧ z̄B ∧ wM

= i

2
zA ∧ z̄B ∧

(∑
µ∈M ′

wM∪{µ}
)
,

(1.4)
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where M ′ = N − (A ∪ B ∪M), as before. On the other hand, we see that,
using Lemma 1.2 and the definition of Λ,

(1.5) Λ(zA ∧ z̄B ∧ wM) = 2
i
zA ∧ z̄B ∧

(∑
µ∈M

wM−|µ|
)
.

Using these formulas, one obtains easily, assuming that zA ∧ z̄B ∧ wM has
total degree p,

ΛL− LΛ = (n− p)zA ∧ z̄B ∧ wM,
and part (c) of Proposition 1.1 follows immediately.

Q.E.D.

2. Harmonic Theory on Compact Manifolds

In this section we want to give further applications of the theory of har-
monic differential forms on compact (differentiable or complex) manifolds.
As we have seen in Chap. IV, the Laplacian on a Riemannian manifold is
defined by dd∗ + d∗d, where d∗ is the adjoint with respect to some inner pro-
duct on the (elliptic) complex E∗(X) of complex-valued differential forms on
X. We want to use the ∗-operator of Sec. 1 to define a particular inner product
for the vector space of differential forms of a given degree, from which will
follow a useful formula for the adjoint operator d∗ (and related operators).

Suppose that X is a compact oriented Riemannian manifold of d dimen-
sions. Then the orientation and Riemannian structure define the ∗-operator
as in Sec. 1: ∗: ∧p T ∗

x (X)
∼=−→ ∧d−p T ∗

x (X)

at each point x ∈ X. Moreover, ∗ defines a smooth bundle map, since we
can define it in the neighborhood of a point by choosing a smooth local
(oriented) orthonormal frame. Hence ∗ induces an isomorphism of sections
(assuming that we extend ∗ to ∧pT ∗(X)⊗ C by complex linearity),

∗: Ep(X)
∼=−→ Ed−p(X),

where d = dimRX.
Suppose that ϕ ∈ Ed(X). Then we can define, in a standard manner,∫

X

ϕ

by using a partition of unity {ϕα} subordinate to a finite covering of X by
coordinate patches. Namely, let

fα: Uα ⊂
open

Rd −→ X

be the coordinate mappings, and set∫
X

ϕ =
∑
α

∫
Uα

f ∗
α (ϕαϕ) =

∑
α

∫
Rd
gα(x)dx1 ∧ · · · ∧ dxd,

where the C∞ function gα has compact support in Uα. This is easily seen
to be independent of the coordinate covering and partition of unity used.
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If X is an oriented Riemannian manifold, then X carries a volume element
dV , which is nothing but a d-form ϕ ∈ Ed(X), with the property that in
any oriented system of local coordinates U ⊂ X

ϕ(x) = f (x)dx1 ∧ · · · ∧ dxd,
where f (x) > 0 for all x ∈ U . By means of the ∗-operator it is easy to see that

ϕ = ∗(1), (1 ∈ C ⊂ E0(X))

is indeed a volume element on X.

Remark: Denote in local coordinates the Riemannian metric on X by

ds2 = gijdx
i ⊗ dxj ,

using the summation convention, where gij is a symmetric positive definite
matrix of functions. If we let gij be defined by

gijgjk = δik (Kronecker delta),

and if we raise indices by setting

ai1···ip = gi1j1 • gi2j2 • · · · • gipjpai1···ip ,

then we can express the ∗-operator given by the metric ds2 explicitly in
terms of these quantities (cf., deRham [1], pp. 119–122). Namely, we have, if

α =
∑

i1<···<ip
αi1···ip dx

i1 ∧ · · · ∧ dxip ,

then
(∗α) =

∑
j1<···<jd−p

(∗α)j1···jd−pdx
j1 ∧ · · · ∧ dxjd−p ,

where
(∗α)j1···jd−p = ±

√
det(gij )αi1···ip ,

where {i1, . . . , ip, j1, . . . , jd−p} = {1, . . . , d}, and we have the positive sign if
the permutation is even and negative sign in the other case (just as in the
case of an orthonormal basis). Thus in particular

∗(1) =
√

det(gij ) dx1 ∧ · · · ∧ dxd

is the volume element in this case.

Define

(ϕ, ψ) =
∫
X

ϕ ∧ ∗ψ̄, ϕ, ψ ∈ Ep(X)

(ϕ,ψ) = 0, ϕ ∈ Ep(X), ψ ∈ Ep(X), p 
= q

(2.1)

and the integral is well defined since ϕ ∧ ∗ψ̄ is a d-form on X. We can
extend this definition to noncompact manifolds by considering only forms
with compact support. We then have the following proposition.
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Proposition 2.1: The form ( , ) defined by (2.1) defines a positive defi-
nite, Hermitian symmetric, sesquilinear form on the complex vector space
E∗(X) = ⊕d

p=0E
p(X).

Proof: The Riemannian metric onX induces an Hermitian inner product
〈 , 〉 on ∧pT ∗x(X) for each x ∈ X, given by, for ϕ,ψ p-forms on X,

ϕ ∧ ∗ψ̄ = 〈ϕ,ψ〉vol

as we saw in (1.3). It is then clear that

(ϕ, ψ) =
∫
X

ϕ ∧ ∗ψ̄ =
∫
X

〈ϕ,ψ〉vol

is a positive semidefinite, sesquilinear Hermitian form on Ep(X). To see
that ( , ) is positive definite, suppose that ϕ ∈ Ep(X) is not equal to zero
at x0 ∈ X, then near x0, we can express ϕ in terms of a local oriented
orthonormal frame for T ∗(X)⊗ C, {e1, . . . , ed},

ϕ =
∑
|I |=p

′
ϕIeI ,

and
ϕ ∧ ∗ϕ̄ =

∑
|I |=p

′|ϕI |2 vol

near x0, and
∑′

|J |=p |ϕI |2 > 0 near x0. Then the contribution to the integral

(ϕ, ϕ) =
∫
X

ϕ ∧ ∗ϕ̄
will be nonzero, and thus (ϕ, ϕ) > 0.

Q.E.D.

Thus the elliptic complex (E∗(X), d) is equipped with a canonical inner
product depending only on the orientation and Riemannian metric of the
base space X (in Sec. 5 of Chap. IV we had allowed arbitrary metrics on each
of the vector bundles appearing in the complex). We would have arrived at
the same inner product had we merely used the metric on ∧pT ∗(X) naturally
induced by that of T (X) and for our strictly positive measure dλ used the
volume element ∗(1). However, the representation we have given here for
the inner product on E∗(X) will prove to be very useful, as we shall see.
For convenience, we shall call the inner product (2.1) on E∗(X) the Hodge
inner product on E∗(X).

Suppose that X is a Hermitian complex manifold. Then we can define the
Hodge inner product on E∗(X) with respect to the underlying Riemannian
metric and a fixed orientation given by the complex structure (all complex
manifolds are orientable).

Proposition 2.2: The direct sum decomposition Er (X) = ∑
p+q=r E

p,q(X) is
an orthogonal direct sum decomposition with respect to the Hodge inner
product.
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Proof: Suppose that ϕ ∈ Ep,q(X) and that ψ ∈ Er,s(X), where p + q =
r + s. Then we see that ϕ ∧ ∗ψ̄ is of type (n − r + p, n − s + q), since ψ̄
is of type (s, r) and ∗ψ̄ is then of type (n − r, n − s) by Proposition 1.1.
Therefore ϕ ∧ ∗ψ̄ is a 2n-form if and only if r = p and s = q. Otherwise,
ϕ ∧ ∗ψ̄ is identically zero. This proves the proposition.

Q.E.D.

Using the Hodge inner product, it will be very easy to compute the adjoints
of various linear operators acting on E∗(X) (cf. the computation of L∗ in
Sec. 1). First we want to modify the ∗-operator in a manner which will be
convenient for this purpose. On an oriented Riemannian manifold we define

∗̄: E∗(X) −→ E∗(X)

by setting ∗̄(ϕ) = ∗ϕ̄. Thus ∗̄ is a conjugate-linear isomorphism of vector
bundles,

∗̄: ∧p T ∗(X)c −→ ∧m−pT ∗(X)c,
where m = dimRX. Suppose that X is now a Hermitian complex manifold
and that E −→ X is a Hermitian vector bundle. Let

τ : E −→ E∗

be a conjugate-linear bundle isomorphism of E onto its dual bundle E∗. The
mapping τ depends on the Hermitian metric of E and is defined fibrewise
in a standard manner. We then define

∗̄E: ∧p T ∗(X)c ⊗ E −→ ∧2n−pT ∗(X)c ⊗ E∗

by setting
∗̄E(ϕ ⊗ e) = ∗̄(ϕ)⊗ τ(e)

for ϕ ∈ ∧pT ∗
x (X)c and e ∈ Ex . Thus ∗̄E is a conjugate-linear isomorphism

of Hermitian vector bundles. We recall that we defined Er (X,E) to be the
sections of ∧rT ∗(X)c⊗E and that, moreover, there is a decomposition into
bidegrees

Er (X,E) =
∑
p+q=r

Ep,q(X,E).

Thus we note that first the Hodge inner product on E∗(X) can be written as

(ϕ, ψ) =
∫
X

ϕ ∧ ∗̄ψ,
and we extend this to a Hodge inner product on E∗(X,E) by setting

(2.2) (ϕ, ψ) =
∫
X

ϕ ∧ ∗̄Eψ
if ϕ,ψ ∈ Er (X,E). It is easy to see that ϕ ∧ ∗̄Eψ does make sense and is
a scalar 2n-form which can be integrated over X (where n = dimCX). In
fact, if we let 〈 , 〉 represent the bilinear duality pairing between E and E∗,
then we set, for ϕ ∈ ∧pT ∗

x (X)c, e ∈ Ex,ψ ∈ ∧2n−pT ∗
x (X)c, f ∈ E∗

x ,

(ϕ ⊗ e) ∧ (ψ ⊗ f ) = ϕ ∧ ψ • 〈e, f 〉 ∈ ∧2nT ∗
x (X)c.
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By using a basis for E and a dual basis for E∗, we can extend this exterior
product to vector-bundle-valued differential forms, and it is easily checked
that the resulting exterior product is independent of the choice of basis.
Thus (2.4) defines what we shall call a Hodge inner product on E∗(X,E).
Then it is easy to see that ∗̄E preserves the bigrading on E∗(X,E), and
that, in fact,

∗̄E: Ep,q(X,E)
∼−→ En−p,n−q(X,E∗)

is a conjugate-linear isomorphism. It is then clear that Proposition 2.2
extends to this case.

We are now in a position to compute the adjoints of various operators
with respect to the Hodge inner product. Moreover, all adjoints in this and
later sections of the book will be with respect to the Hodge inner product.

Proposition 2.3: Let X be an oriented compact Riemannian manifold of
real dimension m and let � = dd∗ + d∗d, where the adjoint d∗ is defined
with respect to the Hodge inner product on E∗(X). Then

(a) d∗ = (−1)m+mp+1∗̄d∗̄ = (−1)m+mp+1∗d∗ on Ep(X).
(b) ∗� = �∗, ∗̄� = �∗̄.

Proof: The basic fact we need is that ∗∗ = w, as defined in Sec. 1.
Suppose that ϕ ∈ Ep−1(X) and that ψ ∈ Ep(X). Then we consider

(dϕ,ψ) =
∫
X

dϕ ∧ ∗̄ψ

=
∫
X

d(ϕ ∧ ∗̄ψ)− (−1)p−1

∫
X

ϕ ∧ d∗̄ψ,
by the rule for differentiating a product of forms. Moreover, by Stokes’
theorem, we see that the first term vanishes, and hence we obtain (noting
that ∗∗ = ∗̄∗̄ = w, since ∗ is real)

(dϕ,ψ) = (−1)p
∫
X

ϕ ∧ ∗̄(∗̄−1d∗̄)ψ

= (−1)p
∫
X

ϕ ∧ ∗̄(∗̄wd∗̄)ψ

= (−1)m+mp+1(ϕ, ∗̄d∗̄ψ),
and thus we have

d∗ = (−1)m+mp+1∗̄d∗̄,
and since d is real, we also obtain

d∗ = (−1)m+mp+1∗d∗.
To prove (b), we compute, for ϕ ∈ Ep(X),

∗�ϕ = (−1)m+mp+1(∗d∗d∗ + (−1)m∗∗d∗d)ϕ
�∗ϕ = (−1)m+m(m−p)+1(d∗d∗∗ + (−1)m∗d∗d∗)ϕ,
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and so it suffices to show that (recall that w = ∗∗)

wd∗dϕ = d∗dwϕ.
But this is simple, since w = ∑

(−1)p+mp�p, and thus the right-hand side
is d∗d(−1)p+mpϕ, whereas the left-hand side has degree m− p, and so

wd∗dϕ = (−1)m−p+m(m−p)d∗dϕ = (−1)p+mpd∗dϕ.
Q.E.D.

We have a similar result for the Hermitian case. Note that ∗̄E∗ is defined
in the same way as ∗̄E by using τ−1: E∗ −→ E.

Proposition 2.4: Let X be a Hermitian complex manifold and let E −→ X

be a Hermitian holomorphic vector bundle. Then

(a) ∂̄: Ep,q(X,E) −→ Ep,q+1(X,E) has an adjoint ∂̄∗ with respect to the
Hodge inner product on E∗∗(X,E) given by

∂̄∗ = −∗̄E∗ ∂̄ ∗̄E.
(b) If � = ∂̄ ∂̄∗ + ∂̄∗∂̄ is the complex Laplacian acting on E∗∗(X,E), then

�∗̄E = ∗̄E�.

Proof: In this case we also have ∗̄E ∗̄E∗ = w = ∑
(−1)p�p, a simpler

expression since the real dimension of X is even. The proof of (a) then
follows as before, with minor modification. Suppose that ϕ ∈ Ep,q−1(X,E)

and that ψ ∈ Ep,q(X,E). Then we have that ϕ∧ ∗̄Eψ is a scalar differential
form of type (n, n− 1), and hence ∂̄(ϕ ∧ ∗̄Eψ) = d(ϕ ∧ ∗̄Eψ). Moreover,

∂̄(ϕ ∧ ∗̄Eψ) = ∂̄ϕ ∧ ∗̄Eψ + (−1)p+q−1ϕ ∧ ∂̄ ∗̄Eψ.
Substituting into the inner product, we obtain, using Stokes’ theorem as in
the proof of Proposition 2.3,

(∂̄ϕ, ψ) = (−1)p+q
∫
X

ϕ ∧ ∂̄ ∗̄Eψ

= (−1)p+q
∫
ϕ ∧ ∗̄E(w∗̄E∗ ∂̄ ∗̄Eψ)

= −
∫
ϕ ∧ ∗̄E(∗̄E∗ ∂̄ ∗̄Eψ)

= (ϕ,−∗̄E∗ ∂̄ ∗̄Eψ),
and hence (a) is proved. The proof of (b) is exactly the same as in Propo-
sition 2.3 (Note that � acting on E∗∗(X,E) and E∗∗(X,E∗) denotes two
different operators).

Q.E.D.

Remark: We note that only ∂̄ acts naturally on Ep,q(X,E) for a nontrivial
holomorphic vector bundle E, whereas ∂ and hence d do not, since they
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do not annihilate the transition functions defining E. However, in the scalar
case, we have ∂: Ep,q(X) −→ Ep+1,q(X), and by the same calculation as above
we obtain that ∂∗ = −∗̄∂ ∗̄ and that � = ∂∂∗ +∂∗∂ commutes with ∗̄, exactly
the same as the ∂̄-operator case.

Using the above results we can derive two well-known duality theo-
rems. We first remark that a finite dimensional complex vector space E is
conjugate-linearly isomorphic to a complex vector space F if and only if
F is complex-linearly isomorphic to E∗, the dual of E (and the bilinear
pairing of E to F can be obtained from a Hermitian inner product on E).

Theorem 2.5 (Poincaré duality): Let X be a compact m-dimensional ori-
entable differentiable manifold. Then there is a conjugate linear isomorphism

σ : Hr(X,C) −→ Hm−r (X,C),

and hence Hm−r (X,C) is isomorphic to the dual of Hr(X,C).

Proof: Introduce a Riemannian metric and an orientation on X and let
∗ be the associated ∗-operator. Then we have the commutative diagram

Er (X)
∗̄

��

H���

Em−r (X)

H���
Hr (X)

∗̄
�� Hm−r (X)

‖ � ‖ �
Hr(X,C)

σ
�� Hm−r (X,C),

where H� is the projection onto the harmonic forms given by Theo-
rem IV.4.12, and the mapping ∗̄ maps harmonic forms to harmonic forms
since �∗̄ = ∗̄�, as we saw in Proposition 2.3. Moreover, the de Rham
groups Hr(X,C) are isomorphic to Hr (X) (Example IV.5.4), and σ is the
induced conjugate linear isomorphism.

Q.E.D.

Remark: We could have restricted ourselves to real-valued differential
forms and obtained the same result. Also, the more general Poincaré duality
theorem of algebraic topology is true with coefficients in Z and is indepen-
dent of any differentiable structure on X, but one needs a different type of
proof for that (see, e.g., Greenberg [1]).

Corollary 2.6: Let X be as in Theorem 2.5. Then

br(X) = bm−r (X), r = 0, . . . , m.

Our next result is more analytical in nature and depends very much on
the complex structures involved, in contrast to the Poincaré duality above.
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Theorem 2.7 (Serre duality): Let X be a compact complex manifold of
complex dimension n and let E −→ X be a holomorphic vector bundle
over X. Then there is a conjugate linear isomorphism

σ : Hr(X,�p(E)) −→ Hn−r (X,�n−p(E∗)),
and hence these spaces are dual to one another.

Proof: By introducing Hermitian metrics on X and E, we can define
the ∗̄E operator. Then we obtain the following commutative diagram,

Ep,q(X,E)
∗̄E

��

H���

En−p,n−q(X,E∗)

H���
Hp,q(X,E)

∗̄E
�� Hn−p,n−q(X,E∗)

‖ � ‖ �
Hp,q(X,E)

τ
�� Hn−p,n−q(X,E∗)

‖ � ‖ �
Hp(X,�p(E))

σ
�� Hn−q(X,�n−p(E∗)),

which proves the result immediately. Once again, ∗̄E maps harmonic forms
to harmonic forms by Proposition 2.4, and the {Hp,q(X,E)} are the Dol-
beault groups [the cohomology of the complex (Ep,∗(X,E), ∂̄)], which are
isomorphic to Hq(X,�p(E)), as we saw in Theorem II.3.20.

Q.E.D.

Remark: Serre proved this also in the case of noncompact manifolds,
under certain closed range hypotheses on ∂̄ and by using cohomology
with compact supports, i.e., Hq

∗ (X,�
p(E)) is the topological dual of

Hn−q(X,�n−q(E∗)), where Hq
∗ ( ) denotes cohomology with compact sup-

ports. In our case we have finite dimensional vector spaces (due to the
harmonic theory), in which case Serre’s hypothesis is fulfilled and the com-
pact support is automatic. Serre’s proof (in Serre [1]) used resolutions of
�p(E) by both C∞ forms and by distribution forms, and he was able to
utilize the natural duality of these spaces to obtain his results. The proof
above is due to Kodaira [1].

Corollary 2.8: LetX be a compact complex manifold of complex dimension
n. Then

(a) br(X) = b2n−r (X), r = 0, . . . , 2n.
(b) hp,q(X) = hn−p,n−q(X), p, q = 0, . . . , n.

3. Representations of sl(2,C) on Hermitian Exterior Algebras

In this section we summarize the finite-dimensional complex representa-
tion theory for the Lie algebra sl(2,C) of 2×2 complex matrices with trace
zero, and then we will apply this theory to specific representations arising
from Hermitian exterior algebras as in Sec. 1. This representation theory is
available in various references (e.g., Serre [3], Varadarajan [1]), and we will
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survey the principal ideas needed for the applications we have in mind. We
will use some elementary facts and terminology concerning Lie groups and
Lie algebras as is found in any introduction to the subject (e.g., Chevalley [1],
Helgason [1], Varadarajan [1]), such as the Lie algebra of a Lie group, and
the associated exponential mapping, invariant measure on Lie groups, etc.,
although we will be using these concepts only for specific low-dimensional
matrix groups and matrix algebras.

We recall that a Lie algebra is a vector space A equipped with a Lie
bracket product [ , ] which is anticommutative, and which satisfies the Jacobi
identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

An algebra of matrices equipped with the commutator Lie bracket is the
prototypical example of a Lie algebra. A representation of a Lie algebra A
on a complex vector space V is an algebra homomorphism

π : A −→ End(V ),

where End(V ) is the Lie algebra of endomorphisms of V equipped with
the commutator Lie bracket [A,B] = AB − BA. If n = dim V < ∞, then
we say that the representation has dimension n. If dim V = ∞, then we
say that π is an infinite-dimensional representation. A representation π is
irreducible if there is no proper invariant subspace V0 
= 0 of V . Here V0 is
a proper invariant subspace if 0 
= V0 
= V , and

π(X)V0 ⊂ V0, for all X ∈ A.

If π1 and π2 are representations on V1 and V2, respectively, then π = π1 ⊕ π2

is a representation of A on V1 ⊕V2 in a natural manner. Two representations
π1 and π2 are equivalent if there is an isomorphism S: V1 → V2 so that
π1 = S−1π2S. A representation π is completely reducible if it is equivalent to
a direct sum of irreducible representations. A representation of a Lie group
(e.g., a matrix group) G on a finite-dimensional complex vector space V is
a real-analytic homomorphism ρ: G → GL(V ), where GL(V ) denotes the
Lie group of nonsingular endomorphisms of the vector space V . In this
case, one has the same notions of irreducibility, complete reducibility, etc.
as discussed above for representations of Lie algebras.

The Lie algebra sl(2,C) is, by definition, 2×2 complex matrices with trace
zero. One finds that sl(2,C) is the Lie algebra of the Lie group SL(2,C),
the group of 2×2 matrices with complex coefficients and determinant equal
to 1. There is an exponential mapping

(3.1) exp : sl(2,C) −→ SL(2,C)

given by

expX = eX =
∞∑
n=0

Xn/n!,
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which is norm convergent, and where, for t ∈ C,

etX = I + tX +O(|t |2),

etXetY = I + t (X + Y )+O(|t |2),(3.2)
etXetY e−tXe−tY = I + t2([X, Y ])+O(|t |3),

which indicates the basic relationship between the group law in SL(2,C)
and the Lie bracket in sl(2,C).

Now consider the subgroup SU(2) of SL(2,C) consisting of unitary
2 × 2 matrices of determinant one. It follows readily from (3.2) that su(2),
the corresponding Lie algebra of SU(2), consists of skew-Hermitian 2 × 2
matrices of trace zero, i.e., X + X∗ = 0, tr(X) = 0, where X∗ = tX is
the Hermitian adjoint. Thus we have the following diagram of groups and
algebras, where i is the natural inclusion:

su(2)
i

��

exp
��

si(2,C)

exp
��

SU(2)
i

�� SL(2,C).

(3.3)

For reference, we will write down explicit generators for these algebraic
objects. First we note that sl(2,C) has dimension 3 and a basis is given by

(3.4) X =
[

0 1
0 0

]
, Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
.

One checks that the commutation relations

(3.5) [X, Y ] = H, [H,X] = 2X, [H, Y ] = −2Y

hold. We see easily that su(2) is a real form of sl(2,C) (i.e., as vector spaces,
sl(2,C) = su(2)⊗R C), and has a basis (over R) given by

iH, X − Y, i(X + Y ).
We note that i(X+Y ) generates a one-parameter subgroup of SU(2) given
by

exp[it (X + Y )] =
[

cos t i sin t
i sin t cos t

]
, t ∈ R.

This can be checked by a direct computation or by noting that both
1-parameter subgroups have the same generator, namely

i(X + Y ) = i

[
0 1
1 0

]
= d

dt

[
cos t i sin t
i sin t cos t

]∣∣∣∣
t=0

Let

(3.6) w = exp[ 1
2 iπ(X + Y )] =

[
0 i

i 0

]
,
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and we see that conjugation by w in sl(2,C) gives rise to a reflection with
respect to the above basis (the Weyl group reflection). Namely,

wHw−1 = −H, wXw−1 = Y, wYw−1 = X.

We return now to diagram (3.3). For each of the algebraic objects in
(3.3) one considers representations on a complex vector space V , as we
have done before:

[su(2) −→ End(V )]R
r1←− [sl(2,C) −→ End(V )]C

d ↑ d ↑
[SU(2) −→ GL(V )]R

r2←− [SL(2,C) −→ GL(V )]C

(3.7)

Here [su(2) → End(V )]R denotes R-linear algebra homomorphisms,
[sl(2,C) → End(V )]C denotes C-linear algebra homomorphisms, [SL(2) →
GL(V )]R denotes real-analytic group homomorphisms, and [SL(2,C) →
GL(V )]C denotes complex-analytic group homomorphisms. The mappings r1
and r2 are the natural restriction mappings, and d is the derivative mapping,
recalling that the Lie algebra of a Lie group is the tangent space to the Lie
group at the identity element, and noting that the derivative of a representa-
tion of a Lie group is indeed a representation of the associated Lie algebra.

We now have the following proposition.

Proposition 3.1: The mappings r1, r2 and d in (3.7) are all bijective, i.e.,
there is a one-to-one correspondence between representations of SL(2,C),
sl(2,C), SU(2) and su(2).

Proof: First we see that r1 is bijective since sl(2,C) is the complexification
of su(2), and R-linear homomorphisms defined on su(2) extend naturally
and uniquely as C-linear homomorphisms on sl(2,C). The mappings d are
bijective since SL(2,C) and SU(2) are both connected and simply-connected
[SL(2,C) ∼= S3 × R3, SU(2) ∼= S3], thus insuring that the inverse of exp
(the “logarithm”) is well-defined on SU(2) and SL(2,C). The diagram is
commutative, and we conclude that r2 is bijective. In fact, if

ρ: sl(2,C) −→ End(V )

is given, and if g = eX ∈ SL(2,C) whereX ∈ sl(2,C), then the representation

π : SL(2,C) −→ GL(V )

corresponding to the given ρ is of the form

(3.8) π(eX) = eρ(X).

It is clear that dπ = ρ.
Q.E.D.

Thus we have that representations of sl(2,C) are in one-to-one correspon-
dence with representations of SU(2), a compact Lie group. We now have
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the following important theorem of H. Weyl concerning complete reducibil-
ity of representations of compact Lie groups (the “unitary trick”). We state
the theorem in full generality, but will use it only for G = SU(2).

Theorem 3.2: Let G be a compact Lie group, and let ρ: G → GL(V ) be
a representation on a finite-dimensional complex vector space. Then ρ is
completely reducible.

Proof: Choose a basis for V so that V ∼= Cn. Let dg be the natural
left invariant measure on the Lie group G which can be constructed from
left invariant differential forms dual to the left invariant vector fields which
comprise the Lie algebra of G (see Helgason [1], Chapter X, §1). Then

M(g) = ρ(g)ρ(g)∗

is a Hermitian positive definite matrix for each g ∈ G. Define

M =
∫
G

M(g)dg,

and it follows that M is Hermitian positive definite also. Then consider

ρ(g)Mρ(g)∗ =
∫
G

ρ(g)ρ(τ)ρ(τ)∗ρ(g)∗dτ

=
∫
G

ρ(gτ)ρ(gτ)∗dτ

=
∫
G

ρ(τ)ρ(τ)∗dτ = M,

using the invariance of dτ under the action of G on itself by left translation.
Since M is positive definite, we can write

M = NN∗

where N is positive definite. Then we see that ρ̃ = N−1ρN is equivalent to
ρ and moreover

ρ̃(g)ρ̃(g)∗ = (N−1ρ(g)N)(N−1ρ(g)N)∗

= N−1ρ(g)NN∗ρ(g)∗(N−1)∗

= N−1M(N−1)∗

= I,

and thus ρ̃(g) is a unitary matrix for all g ∈ G. Now we check that ρ̃
is completely reducible. Suppose that V0 is any subspace of V invariant
under the action of ρ̃. Then let V ⊥

0 be the orthogonal complement to V0

with respect to the usual Hermitian metric on Cn. Then ρ̃(V0) ⊂ V0, and it
follows immediately that ρ̃(V ⊥

0 ) ⊂ V ⊥
0 , since ρ̃(g), being unitary, preserves

the inner product in Cn for each g ∈ G.
Q.E.D.

Corollary 3.3: Let ρ be a representation of sl(2,C) on a finite-dimensional
complex vector space, then ρ is completely reducible.
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Proof: This follows immediately from Proposition 3.1, Theorem 3.2 and
the fact that the bijections in (3.7) are natural and preserve irreducibility
and direct sums.

Q.E.D.

Now we know that any representation ρ of sl(2,C) on a finite-dimensional
complex vector space V is the direct sum of irreducible representations. We
now turn to an explicit description of these irreducible representations,
which can be characterized, up to equivalence, by the dimension of the
representation space, as we shall see. We start with a definition.

Definition 3.4: Let ρ be a representation of sl(2,C) on a finite-dimensional
complex vector space V . Let V λ be the eigenvectors of ρ(H) with eigenvalue
λ, i.e., for λ ∈ C,

V λ = {v ∈ V : ρ(H)v = λv}.
We say that v ∈ V λ has weight λ. A vector v ∈ V is said to be primitive of
weight λ if v is nonzero, v ∈ V λ and ρ(X)v = 0.

We now have some elementary lemmas which lead up to the basic canoni-
cal form for a representation of sl(2,C). We assume a fixed finite-dimensional
representation ρ on sl(2,C) on a complex vector space V .

Lemma 3.5:

(a) The sum
∑

λ∈C V
λ is a direct sum,

(b) If v is of weight λ, then ρ(X)v is of weight λ+ 2 and ρ(Y )v is of
weight λ− 2.

Proof: (a) is simply the assertion that eigenvectors corresponding to
different eigenvalues are linearly independent. For (b) we observe that

ρ(H)ρ(X)v = (ρ(H)ρ(X)− ρ(X)ρ(H))v + ρ(X)ρ(H)v
= ρ([H,X])v + λρ(X)v
= ρ(2X)v + λρ(X)v
= (λ+ 2)ρ(X)v.

Similarly, ρ(H)ρ(Y )v = (λ− 2)ρ(Y )v.
Q.E.D.

Lemma 3.6: Every representation ρ of sl(2,C) on a finite-dimensional
complex vector space has at least one primitive vector.

Proof: Let v0 be an eigenvector of ρ(H), and consider the sequence of
eigenvectors of ρ(H)

v0, ρ(X)v0, ρ(X)
2v0, . . . , ρ(X)

nv0, . . . .
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The nonzero terms in this sequence are linearly independent, since they are
eigenvectors with differing eigenvalues (Lemma 3.5), so the sequence must
terminate, and hence for some fixed k, ρ(X)kv0 = 0, ρ(X)k−1v0 
= 0, and
thus v = ρ(X)k−1v0 is a primitive vector.

Q.E.D.

We now have the basic description of an irreducible representation of
sl(2,C) on a finite-dimensional complex vector space.

Theorem 3.7: Let ρ be an irreducible representation of sl(2,C) on a finite-
dimensional complex vector space V . Let v0 ∈ V be a primitive vector of
weight λ for the representation ρ. Then, letting v−1 = 0, and setting

vn = (1/n!)ρ(Y n)v0, n = 0, 1, . . . , m, . . . ,

one obtains, for n ≥ 0,

(a) ρ(H)vn = (λ− 2n)vn,
(b) ρ(Y )vn = (n+ 1)vn+1,
(c) ρ(X)vn = (λ− n+ 1)vn−1.

Moreover, λ = m, where m+ 1 = dimCV , and

ρ(Y n)v0 = 0, n > m.

Proof: (a) asserts that vn is of weight λ−2n, which follows immediately
from Lemma 3.5. (b) is clear from the definition of vn, while (c) follows
by induction on n. Namely, for n = 0, we have ρ(X)v0 = 0, since v0 was
primitive, and v−1 = 0. Suppose we know (c) for n− 1, then we compute

nρ(X)vn = ρ(X)ρ(Y )vn−1 = ρ(Y )ρ(X)vn−1 + ρ([X, Y ])vn−1

= (λ− n+ 2)ρ(Y )vn−2 + ρ(H)vn−1

= (λ− n+ 2)(n− 1)vn−1 + (λ− 2n+ 2)vn−1

= n(λ− n+ 1)vn−1,

and we obtain (c) after dividing by n.
We now show that λ is necessarily an integer. Since V is finite-dimensional,

there is an integer m ≥ 0 such that
v0, . . . , vm are nonzero
vm+1, . . . , vm+k, . . . = 0

recalling that the nonzero vj ’s are eigenvectors of ρ(H) with differing
eigenvalues. Now apply (c) to vm+1, obtaining

0 = ρ(X)vm+1 = (λ− (m+ 1)+ 1)vm

= (λ−m)vm,
and since vm 
= 0, it follows that λ = m.

Let Vm be the vector space spanned by {v0, . . . , vm}. Then we claim that
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Vm is invariant under the action of ρ on V . Suppose v = ∑m

n=0 αnvn, αj ∈ C,
then

ρ(H)v =
m∑
n=0

αn(m− 2n)vn

ρ(Y )v =
m∑
n=0

αn(n+ 1)vn+1

ρ(X)v =
m∑
n=0

αn(m− n+ 1)vn−1,

so ρ(sl(2,C))Vm ⊂ Vm. Thus Vm is a nonzero invariant subspace, and since
ρ is assumed irreducible, it follows that V = Vm, and that m+ 1 = dim V .

Q.E.D.

Remark: We see that the basis {vn} in Theorem 3.7 gives a canonical
form for the matrices representing the linear mappings ρ(H), ρ(Y ) and ρ(X)
acting on V . Namely

ρ(H) =

⎡⎢⎢⎢⎢⎢⎣
m 0 . . . 0

0 m− 2
...

. . .
...

. . . 0
0 · · · 0 −m

⎤⎥⎥⎥⎥⎥⎦

ρ(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 m 0 . . . 0
. . .

0
. . . m− 1

...
...

. . .
. . . 1
. . .

0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ρ(Y ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
. . .

1
. . .

. . .
. . .

...

0
. . .

. . .
... m− 1

. . . 0

0 . . . 0 m 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which for m = 1 gives the original 2 × 2 matrices in (3.4), showing that
they are in the same canonical form.

Next we see that there is, up to equivalence, only one irreducible repre-
sentation of dimension m+ 1. Somewhat later we will describe an explicit
example of an (m+ 1)-dimensional irreducible representation, arising from
symmetric tensor products.
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Theorem 3.8: Let V be a complex vector space of dimension m+ 1, with
m ≥ 0, and let {v0, . . . , vm} be a basis for V . Then define a representation
ρ of sl(2,C) on V by setting

(a) ρ(H)vn = (m− 2n)vn,

(b) ρ(Y )vn = (n+ 1)vn+1,(3.9)

(c) ρ(X)vn = (m− n+ 1)vn−1,

where n = 0, . . . , m, and v−1 = vm+1 = 0. This representation is irreducible,
and any irreducible complex representation of dimension m+1 is equivalent
to this one.

Proof: One checks readily that the mapping ρ: sl(2,C) → End(V )
given by (3.9) is indeed a representation. Suppose now that V0 is a nonzero
subspace of V invariant under ρ. Then there is an eigenvector of ρ(H)
contained in V0. The list of eigenvectors of ρ(H) in (3.9a) is complete,
so V0 must contain one of the vectors vk for some k. But then applying
(3.9c) to vk, we see that v0 ∈ V0. Then using (3.9b) we see that V0 must
contain vn, n = 0, . . . , m. Thus V0 = V , and ρ is irreducible. It is clear from
Theorem 3.7 that an arbitrary irreducible representation of dimension m+1
is equivalent to this one.

Q.E.D.

Corollary 3.9: Suppose ρ: sl(2,C) → V is an irreducible representation of
dimension m + 1,m ≥ 0. Let ϕ ∈ V be an eigenvector of ρ(H) of weight
λ; then there exists a primitive vector of weight λ + 2r, for some integer
r ≥ 0, so that

ϕ = ρ(Y )rϕ0,

and where
ϕ0 = (m− r)!

m!r! ρ(X)rϕ.

Proof: Let {v0, . . . , vm} be a basis for V satisfying (3.9) for the given
representation ρ. Then we see that for r fixed, 0 ≤ r ≤ m, we have

ρ(X)vr = (m− r + 1)vr−1,

ρ(X)2vr = (m− r + 1)(m− r + 2)vr−2,

etc., and thus

ρ(X)rvr = (m− r + 1) · · · (m)v0 = m!
(m− r)!v0.

Then applying the second “ladder operator,” we see that

ρ(Y )ρ(X)rvr = m!
(m− r)!v1,

ρ(Y )2ρ(X)rvr = m! 2
(m− r)!v2,
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etc., and thus
ρ(Y )rρ(X)rvr = m!r!

(m− r)!vr,
and thus we obtain the useful identity

(3.10) vr = (m− r)!
m!r! ρ(Y )rρ(X)rvr .

Now suppose that ϕ is any eigenvector of ρ(H). Then ϕ is a multiple of
one of the eigenvectors {v0, . . . , vm} above, say, ϕ = αvr . Then it follows
from (3.10) that

ϕ = (m− r)!
m!r! ρ(Y )rρ(X)rϕ,

and letting

ϕ0 = (m− r)!
m!r! ρ(X)rϕ,

we see that ϕ0 is primitive, and the corollary is proven.
Q.E.D.

We now introduce a specific representation of SL(2,C) and its derived
representation of sl(2,C). Consider C2 as column vectors, and let

v1,0 =
[

1
0

]
, v1,1

[
0
1

]
be standard basis vectors. Then SL(2,C) acts on C2 by left matrix multipli-
cation, and we call this representation π1. Then if we consider Sm(C2), the
m-fold symmetric tensor product of C2 with itself, we define πm = Sm(π1),
where each matrix πm(g) is the multilinear extension of π1(g) = g to Sm(C2),
and we note that dim Sm(C2) = m + 1. The representation πm induces a
derived representation ρm = dπm of sl(2,C) on Sm(C2). We note that ρ1 is
simply matrix multiplication on the left by elements of sl(2,C) [just as for
the Lie group SL(2,C), whereas ρm(g) = dπm(g) is the extension of the
linear mapping ρ1(g) to Sm(C2) as a derivation, which is easy to check.

Thus in particular we obtain the following results:

ρ1(H)v1,0 = v1,0, ρ1(X)v1,0 = 0, ρ1(Y )v1,0 = v1,1,

etc., and this representation satisfies the relations in (3.9) for m = 1. Now
define

vm,k = vm−k
1,0 v

k
1,1, 0 ≤ k ≤ m,

m+ 1 elements of Sm(C2). Then {vm,k} is a basis for Sm(C2). Moreover, one
can compute easily that

ρm(H)vm,k = (m− 2k)vm,k, 0 ≤ k ≤ m,
ρm(X)vm,0 = 0,

ρm(Y )vm,m = 0,

ρm(X)vm,k = kvm,k−1, 1 ≤ k ≤ m,
ρm(Y )vm,k = (m− k)vm,k+1, 0 ≤ k ≤ m− 1.
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It is clear from these relations that any basis vector vm,k is expressible as
powers of ρm(X) and ρm(Y ) acting on vm,0, which we see is a primitive vector
of weight m. Thus vm,0 generates Sm(C2) by the action of ρm, and thus ρm
is irreducible, and hence equivalent to the representation in Theorem 3.8.
In fact, if we set

ϕk = ρm(Y )
kvm,0,

we see that
ϕk = m!

(m− k)!v
m−k
1,0 v

k
1,1,

from which follows the irreducibility.
Now let us compute the action of w, the Weyl element in SL(2,C), on

ϕk. We see that

πm(w)ϕk = m!
(m− k)!πm(w)(v1,0)

m−k(v1,1)
k

= m!
(m− k)!S

m(π1(w))(v1,0)
m−k(v1,1)

k.

But

π1(w)v1,0 = iv1,1

π1(w)v1,1 = iv1,0,

and hence
πm(w)ϕk = im

k!
(m− k)!ϕm−k.

Thus we obtain

(3.11) πm(w)ρm(Y )
kϕ0 = im

k!
(m− k)!ρm(Y )

m−kϕ0.

Now we note that the identity (3.11) which involves both the representation
of SL(2,C) and sl(2,C) was derived from this particular explicit represen-
tation, but we see from its form that it will be valid on any irreducible
representation of SL(2,C) and sl(2,C) on a vector space of dimension m+1.

Now consider a specific representation of sl(2,C) on the exterior algebra
of forms on an Hermitian vector space E. We will use the notation and
terminology of Sec. 1. Let E be a fixed Hermitian vector space of complex
dimension n, and associate to E the algebra of forms ∧F , and the operators
L and L∗. We introduce the notation:

Λ := L∗

B :=
2n∑
p=0

(n− p)�p.

We then define a representation

α: sl(2,C) −→ End(∧F)
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by setting
α(X) = Λ, α(Y ) = L, α(H) = B.

We see by Proposition 1.1 that α is indeed a representation of SL(2,C), since
the commutation relations [B,L] = −2L, [B,Λ] = 2Λ, and [Λ,L] = B are
easy to verify.

Definition 3.10: A p-form ϕ ∈ ∧pF is said to be primitive if Λϕ = 0, i.e.,
if α(X)ϕ = 0.

Remark: Recall that B = ∑2n
p=0(n− p)�p, and thus any homogeneous

form of degree p is an eigenvector of α(H) of weight n−p. Hence a primitive
p-form is a primitive vector for the representation α of weight n− p.

If ϕ is a primitive p-form, then the action of α generates a subspace
Fϕ ⊂ ∧F of dimension n − p + 1 on which α acts irreducibly. Moreover,
the action of α leaves the real forms ∧RF invariant since L,Λ, and B

are real operators. The decomposition of ∧RF into irreducible components
is called the Lefschetz decomposition of the exterior algebra, and this is
compatible with the decomposition F = ⊕ ∧p,q F , since L,Λ, and B are
bihomogeneous operators. This is elaborated in the theorems which follow.
By Proposition 3.1, we see that α induces a representation of SL(2,C) on
∧F , for which we will use the notation πα. We can restrict πα to SU(2),
and we observe that πα|SU(2) is unitary, which follows from the fact that
α|sU(2) are skew-Hermitian operators, i.e.,

α(iH) = iB, α(i(X + Y )) = i(Λ+ L), α(X − Y ) = Λ− L.
The following theorems are consequences of the representation theory of

sl(2,C) for the specific representation α on the Hermitian exterior algebra
∧F . The first results can be proved directly without appealing to represen-
tation theory, as is done in Weil [1], but we prefer to use the representation
theory as it gives more insight into the major results (cf. Chern [3] and
Serre [3]. We can then give Hecht’s elegant proof of the fundamental Kähler
identities using the language developed here. Let (x)+ = max(x, 0).

Theorem 3.11: Let E be an Hermitian vector space of complex dimension n.

(a) If ϕ ∈ ∧pF is a primitive p-form, then Lqϕ = 0, q ≥ (n− p + 1)+.
(b) There are no primitive forms of degree p > n.

Proof: Let ϕ be a primitive p-form, and let Fϕ be the subspace of ∧F
generated by the action of sl(2,C) on ϕ by the representation α. Then
ρ(H)ϕ = mϕ, where dimFϕ = m+1. But ρ(H)ϕ = (n−p)ϕ, so m = n−p.
Thus ρ(Y )qϕ = Lqϕ = 0, for q ≥ (n − p + 1)+, by Theorem 3.7. Part (b)
is a simple corollary of the fact that dimFϕ = n− p + 1.

Q.E.D.
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We will refer to the following theorem as the Lefschetz decomposition
theorem for an Hermitian exterior algebra.

Theorem 3.12: Let E be an Hermitian vector space of complex dimension
n, and let ϕ ∈ ∧pF be a p-form, then

(a) One can write ϕ uniquely in the form

(3.12) ϕ =
∑

r≥(p−n)+
Lrϕr,

where, for each r ≥ (p − n)+, ϕr is a primitive (p − 2r)-form. Moreover,
each ϕr can be expressed in the form

(3.13) ϕr =
∑
r,s

ar,sL
sΛr+sϕ, ar,s ∈ Q.

(b) If Lmϕ = 0, then the primitive (p − 2r)-forms ϕr appearing in the
decomposition vanish if r ≥ (p − n+m)+, i.e.,

ϕ =
(p−n+m)+∑
r=(p−n)+

Lrϕr,

(c) if p ≤ n, and Ln−pϕ = 0, then ϕ = 0.

Proof: The representation space V = ∧F of the representation α decom-
poses into a direct sum of irreducible subspaces V = V1 ⊕ · · · ⊕ Vl . Let ϕ
be a p-form, then

ϕ = ψ1 + · · · + ψl,
ψj ∈ Vj . Then each ψj is an eigenvector of ρ(H) of weight n − p, and
hence by Corollary 3.9, we see that

ψj = Lrj χj ,

where χj is a primitive (p − 2rj )-form, and

(3.14) χj = cjΛ
rj ψj , cj ∈ Q.

Collecting the primitive forms of the same degree, we obtain a decomposition
of ϕ of the form

ϕ =
∑

r≥(n−p)+
Lrϕr,

where each ϕr is primitive of degree (p − 2r).
To see that the decomposition is unique, we suppose that

(3.15) 0 = ϕ0 + Lϕ1 + · · · + Lmϕm,
where each ϕj is primitive j = 0, . . . , m ≥ 1. We note that it follows from
Theorem 3.7 that

(3.16) ΛkLkϕk = ckϕk, k = 1, . . . , m
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for a rational nonzero constant ck, depending only on p, k and n. Applying
Λm to (3.15) and using (3.16) we find that

0 = Λmϕ0 +Λm−1(ΛL)ϕ1 + · · · +Λ(Λm−1Lm−1)ϕm−1 +ΛmLmϕm,
which implies immediately that ϕm = 0, contradicting our assumption that
ϕm was primitive. Thus the decomposition (3.12) is unique.

To see that (3.13) holds we proceed in a similar manner. Let the p-form
ϕ have the decomposition

ϕ = ϕ0 + Lϕ1 + · · · + Lmϕm,
where ϕj are primitive (p − 2j)-forms. Then

Λmϕ = Λmϕ0 +Λm−1(ΛL)ϕ1 + · · · +ΛmLmϕm
= 0 + · · · + 0 + cmϕm,

and so
ϕm = (1/cm)Λmϕ.

By induction from above, we get formulas of the type (3.13) for each
ϕj , j = 0, . . . , m.

Parts (b) and (c) follow simply from the uniqueness. Namely, for part (b),
we see that

0 = Lmϕ =
∑

r≥(p−n)+
Lm+rϕr .

Since ϕr is primitive, it follows from Theorem 3.11 that Lqϕr = 0 if q ≥
(n− (p− 2r)+ 1)+, which implies that Lr+mϕr = 0 if r < (p−n+m). Thus
we have

0 =
∑

r≥(p−n+m)+
Lr+mϕr =

∑
q≥(p+2m−n)+

Lqϕq−m.

The total degree of each term is 2m + p, and thus we have a primitive
decomposition of the zero form of degree p + 2m, from which it follows
that ϕq−m = 0, q ≥ (p+ 2m− n)+, i.e., ϕr = 0, r ≥ (p− n+m)+, as desired.
Finally, part (c) is a special case of part (b).

Q.E.D.

Corollary 3.13: Let ϕ be a p-form in ∧F . Then a necessary and sufficient
condition that ϕ be primitive is that both (a) p ≤ n and (b) Ln−p+1ϕ = 0.

This corollary is a simple consequence of the Lefschetz decomposition
theorem (Theorem 3.12).

We now want to prove some fundamental results concerning the relation-
ship between the operators ∗, L and Λ which are important in the theory
of Kähler manifolds. The development we give here is due to Hecht [1]
and differs from the more traditional viewpoint of Weil [1] in that a global
representation of both SL(2,C) and sl(2,C) on the Hermitian exterior
algebra is utilized, leading to some simple ordinary differential equations
which simplifies some of the combinatorial arguments found in Weil [1].
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Let E now be an Hermitian vector space with fundamental form

� =
n∑
µ=1

xµ ∧ yµ,

given by (1.9) where {xµ, yµ} is an orthonormal basis for E′, as before. Now,
if η is any p-form in ∧F , we let

e(η)ϕ := η ∧ ϕ
be the operator acting on ∧F given by wedging with η. If η is a real 1-form,
then we check easily that

(3.17) e∗(η) = ∗e(η)∗,
and if {e1, . . . , e2n} is a real oriented orthonormal basis for E′, we see from
Sec. 1 that

e∗(ej1)(ej1 ∧ · · · ∧ ejk ) = ej2 ∧ · · · ∧ ejk ,
if j1 
∈ {j2, . . . , jk}, and 0 otherwise.

(3.18)

We note that

L = e(�) =
n∑
µ=1

e(xµ)e(yµ),

Λ = e∗(�) =
n∑
µ=1

e∗(yµ)e∗(xµ).

It is clear that

(3.19) [L, e(η)] = 0, for any η ∈ ∧F,
since � is a 2-form. On the other hand, we claim that

(3.20)
(a)

(b)

[Λ, e(xµ)] = e∗(yµ),
[Λ, e(yµ)] = −e∗(xµ),

for µ = 1, . . . , n. We note that (3.20b) follows from (3.20a) by reversing
the role of xµ, yµ in the definition of the operator L. To see that (3.20a)
holds we consider

[Λ, e(xj )] =
n∑
µ=1

e∗(yµ)e∗(xµ)e(xj )− e(xj )
n∑
µ=1

e∗(yµ)e∗(xµ)

= e∗(yj )e∗(xj )e(xj )− e(xj )e∗(yj )e∗(xj ),

(3.21)

since e(xj ) commutes with e∗(xµ) and e∗(yµ) for µ 
= j , which follows
readily from (3.18). Now we consider the action of both [Λ, e(xj )] given
by (3.21) and e∗(yj ) on monomials, i.e., multiples of products of xi ’s and
yi ’s. Then we see that if ψ is a given form, then

ψ = ψ1 + xj ∧ ψ2 + yj ∧ ψ3 + xj ∧ yj ∧ ψ4,

where ψ1, ψ2, ψ3 and ψ4 do not contain xj or yj or a wedge factor. It
follows readily that

[Λ, e(xj )]ψ = ψ3 − xj ∧ ψ4
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and also that
e∗(yj )ψ = ψ3 − xj ∧ ψ4,

so (3.20b) follows.
Now suppose that η is a (1, 0)-form. Then

[Λ, e(η)] = −ie∗(η̄),
[Λ, e(η̄)] = ie∗(η).

(3.22)

Moreover, if η is a real 1-form, then

(3.23) [Λ, e(η)] = −Je∗(η)J−1.

We see that (3.22) follows from (3.20), since it suffices to consider the special
case of η = xj + iyj . To see that (3.23) is true, we simply note that any
real 1-form can be written in the form η = ϕ + ϕ, where ϕ is of type (1,
0), and then one checks that

−ie∗(η̄) = −Je∗(η̄)J−1,

ie∗(η) = −Je∗(η)J−1.

With these preparations made, we now want to prove two basic lemmas
due to Hecht [1]. We introduce the following operator on ∧F induced by
the action of SL(2,C) on ∧F by the representation πα. Let

# = πα(w) = exp( 1
2 iπα(X + Y )) = exp( 1

2 iπ(Λ+ L)).
The first lemma shows us that # is closely related to the ∗ operator.

Lemma 3.14: Let η be a real 1-form. Then

(3.24) #e(η)#−1 = −iJ e∗(η)J−1.

Proof: We set, for t ∈ C,

et (η) = exp(itα(X + Y )) • e(η) • exp(−itα(X + Y )),
= exp(it[Λ+ L]) • e(η) • exp(−it (Λ+ L)),

and we note that eπ/2(η) = #e(η)#−1. We will see that et (η) satisfies a simple
differential equation with initial condition e0(η) = e(η), which can be easily
solved, and evaluating the solution at t = 1

2π will give the desired result.
First we let

ad(X)Y = [X, Y ]
for operators X and Y . Then one obtains

(3.25) et (η) =
∞∑
k=0

(1/k!)adk[it (Λ+ L)]e(η).

This follows from the fact that if σ is any representation of SL(2,C) on
V , then (cf. (3.8))

σ(eA) = edσ(A),
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i.e., representations commute with the exponential mapping. In this case
σ is conjugation by πα, and dσ is given by ad(α) (cf., Helgason [1] or
Varadarajan [1]), and adα(X + Y ) = ad(Λ+ L).

Now adk(Λ + L) is a sum of monomials in ad(Λ) and ad(L). Since
ΛL = LΛ+B, ad(L)e(η) = 0, and ad(−B)e(η) = e(η) (since η is of degree
1), we see that et (η) can be expressed in the form

et (η) =
∞∑
t=0

ak(t)ad
k(Λ)e(η),

where ak(t) are real-analytic functions in t . Now (3.23) implies that
adk(Λ)e(η) = 0, for k ≥ 2, since Λ commutes with J and e∗(η). Thus

(3.26) et (η) = a0(t)e(η)+ a1(t)ad(Λ)e(η).

Let f ′(t) denote differentiation with respect to t . Then we see, by
differentiating (3.25), that et (η) satisfies the differential equation

(3.27)
(a)
(b)

e′
t (η) = i(ad(Λ)+ ad(L))et (η).
e0(η) = e(η).

We can solve (3.27) by using (3.26). Namely, we have

(3.28) et (η) = a′
0(t)e(η)+ a′

1(t)ad(Λ)e(η)

must equal

i(ad(Λ+ L))[a0(t)e(η)+ a1(t)ad(Λ)e(η)]
= ia0(t)ad(Λ)e(η)+ ia1(t)ad(L)ad(Λ)e(η),

using the fact that ad2(Λ)e(η) = 0, and ad(L)e(η) = 0. But

ad(L)ad(Λ)e(η) = ad([L,Λ])e(η)+ ad(Λ)ad(L)e(η)
= ad(−B)e(η) = e(η),

and thus (3.28) must equal

ia0(t)ad(Λ)e(η)+ ia1(t)e(η).

This will be satisfied if

a′
0(t) = ia1(t),

a′
1(t) = ia0(t).

Then letting a0(t) = cos t, a1(t) = i sin t , we find that

(3.29) et (η) = cos t e(η)+ i sin t ad(Λ)e(η)

is the unique solution to (3.27). Letting t = 1
2π in (3.29) yields

eπ/2 = i[Λ, e(η)],
which by (3.23) gives (3.24) as desired.

Q.E.D.

The next lemma shows the precise relationship between ∗ and # acting
on p-forms.
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Lemma 3.15: Let ϕ ∈ ∧pF , then

∗ϕ = ip
2−nJ−1#ϕ.

Proof: The ∗-operator satisfies

∗1 = vol = (1/n!)Ln(1),(3.30)

∗e(η) = (−1)pe∗(η)∗,(3.31)

as an operator on ∧pF for any real 1-form η. Relation (3.30) is clear. To
see (3.31), let ϕ ∈ ∧pF , and write

∗e(η)ϕ = ∗e(η)∗∗−1ϕ = (−1)2n−pe∗(η)∗ϕ.
Now ∗ is the only linear operator on ∧F satisfying both (3.30) and (3.31), as
the forms obtained from 1 by repeated application of e(η) span ∧F . Now let

∗̃ = ip
2−nJ−1#

be an operator defined on ∧pF . We recall from (3.11) that

(3.32) #α(Y )kϕ0 = im
k!

(m− k)!α(Y )
m−kϕ0,

where ϕ0 is primitive of weight m. But ϕ0 = 1 is a primitive 0-form of
weight n, so we have, using (3.32) for k = 0,

#1 = (in/n!)Ln(1).
Thus

∗̃1 = i−n(in/n!)Ln(1) = vol.

Similarly, if η ∈ ∧1
RF , and ϕ ∈ ∧pF , we see that

∗̃e(η)ϕ = i(p+1)2−nJ−1#e(η)ϕ,

= ip
2−n(−1)piJ−1#e(η)#−1#ϕ,

= ip
2−n(−1)pe∗(η)J−1#ϕ,

= (−1)pe∗(η)∗̃ϕ,
thus verifying (3.31) for ∗̃. Thus ∗ = ∗̃.

Q.E.D.

We now have an important relation between ∗ and Lr acting on primitive
p-forms (cf., Weil [1]), the proof of which is due to Hecht [1].

Theorem 3.16: Let ϕ be a primitive p-form in ∧pF , then

∗Lrϕ = (−1)p(p+1)/2 r!
(n− p − r)!L

n−p−rJϕ, 0 ≤ r ≤ n− p.

Proof: Let Fϕ be the subspace of ∧F generated by {Lrϕ}, 0 ≤ r ≤ n−p.
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Then πα|Fϕ is an irreducible representation of SL(2,C), and we see by (3.32)
that

#Lrϕ = in−p
r!

(n− p − r)!L
n−p−rϕ.

Hence, by Lemma 3.15,

∗Lrϕ = i(p+2r)2−nJ−1#Lrϕ

= ip
2−nJ−1in−p

r!
(n− p − r)!L

n−p−rϕ

= ip
2−p(J−1)2

r!
(n− p − r)!L

n−p−rJϕ

= ip
2−p(−1)p

r!
(n− p − r)!L

n−p−rJϕ

= (−1)p(p+1)/2 r!
(n− p − r)!L

n−p−rJϕ.

Q.E.D.

4. Differential Operators on a Kähler Manifold

Let X be a Hermitian complex manifold with Hermitian metric h. Then
there is associated to X and h a fundamental form �, which at each point
x ∈ X is the form of type (1, 1), which is the fundamental form associated
as in (1.5) with the Hermitian bilinear form

hx : Tx(X)× Tx(X) −→ C,

given by the Hermitian metric.

Definition 4.1: A Hermitian metric h on X is called a Kähler metric if the
fundamental form � associated with h is closed; i.e., d� = 0.

Definition 4.2:

(a) A complex manifold X is said to be of Kähler type if it admits at
least one Kähler metric.

(b) A complex manifold equipped with a Kähler metric is called a Kähler
manifold.

We shall see later that not every complex manifold X admits a Kähler
metric. On a complex manifold a Hermitian metric can be expressed in
local coordinates by a Hermitian symmetric tensor

h =
∑

hµν(z)dzµ ⊗ dz̄ν,
where h = [hµν] is a positive definite Hermitian symmetric matrix (depending
on z); i.e., h = t h̄ and t ūhu > 0 for all vectors u ∈ Cn. The associated
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fundamental form is then, in this notation,

� = i

2

∑
hµν(z)dzµ ∧ dz̄ν.

In the notation of Chap. III,

hµν(z) = h

(
∂

∂zµ
,
∂

∂zν

)
(z).

Let us first give some examples of Kähler manifolds.

Example 4.3: Let X = Cn and let h = ∑n

µ=1 dzµ ⊗ dz̄µ. Then

� = i

2

n∑
µ=1

dzµ ∧ dz̄µ =
n∑
µ=1

dxµ ∧ dyµ,

where zµ = xµ + iyµ, µ = 1, . . . , n, is the usual notation for real and imag-
inary coordinates. Then, clearly, d� = 0, since � has constant coefficients,
and hence h is a Kähler metric on Cn.

Example 4.4: Let ω1, . . . , ω2n be 2n vectors in Cn which are linearly
independent over R and let � be the lattice consisting of all integral linear
combinations of {ω1, . . . , ω2n}. The lattice � acts in a natural way on Cn by
translation, z → γ + z, if γ ∈ �. Let X = Cn/� be the set of equivalence
classes with respect to �, where we say that z and w are equivalent with
respect to � if z = w + γ for some γ ∈ �. By giving X the usual quotient
topology, we see that X is in a natural manner a complex manifold† and
that its universal covering space is Cn. We call X a complex torus, and X
is homeomorphic to S1 × · · ·× S1, with 2n-factors. The Kähler metric h on
Cn, given above, is invariant under the action of � on Cn; i.e., if γ ∈ � gives
a mapping γ : Cn → Cn, then γ ∗h = h, where γ ∗ is the induced mapping
on (covariant) tensors. Because of this invariance, we can find a Hermitian
metric h̃ on X so that if π : Cn → Cn/� is the holomorphic projection
mapping, then π∗(h̃) = h. This is easy to see, and we omit any details here.
Moreover, π is a local diffeomorphism, and hence in a neighborhood U
of a point z ∈ Cn, we have πU := π |U is a biholomorphic mapping. Hence
(π−1
U )

∗h|U = h̃|π(U), and similarly for the corresponding � and �̃. Since d
commutes with (π−1

U )
∗, we have
d�̃|π(U) = (π−1

U )
∗d�|U = 0.

Then h̃ defined on X is a Kähler metric, and all complex tori are then
necessarily of Kähler type.

Example 4.5: One of the most important manifolds of Kähler type is
Pn. Let (ξ0, . . . , ξn) be homogeneous coordinates for Pn, and consider the
differential form �̃,

�̃ = i

2

|ξ |2
n∑
µ=0
dξµ ∧ dξ̄µ −

n∑
µ,ν=0

ξ̄µξνdξµ ∧ dξ̄ν
|ξ |4

†See Proposition 5.3 for a proof of this fact.
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where we have let |ξ |2 = ξ 2
0 +· · ·+ξ 2

n , as usual. This form is the homogeneous
representation for the curvature form of the universal bundle over Pn with
the standard metric on the frame bundle [except for sign; see equation (4.3)
in Chap. III]. In particular, then, �̃ defines a d-closed differential form �

on Pn of type (1, 1). In terms of local coordinates in a particular coordinate
system, for example,

wj = ξj

ξ0
, j = 1, . . . , n,

we can write � as

�(w) = i

2

(1 + |w|2)
n∑
µ=1
dwµ ∧ dw̄µ −

n∑
µ,ν=1

w̄µwνdwµ ∧ dw̄ν
(1 + |w|2)2

Thus the associated tensor

h = (∑
hµν(w)dwµ ⊗ dw̄ν

)
(1 + |w|2)−2

has for coefficients (ignoring the positive denominator above)

hµν(w) = (1 + |w|2)δµν − w̄µwν, µ, ν = 1, . . . , n.

It is easy to see that h̃ = [hµν] is Hermitian symmetric and positive definite.
In fact, suppose that u ∈ Cn. Then

t ūh̃u =
∑
µ,ν

hµνuµūν =
∑
µ,ν

(1 + |w|2)δµνuµūν − (∑
µ

w̄µuµ
)(∑

ν

wνūν
)

= |u|2 + |u|2|w|2 − (w̄, ū)(w, u),
letting (,) denote the standard inner product in Cn. Hence by Schwarz’s
inequality we have

t ūh̃u ≥ |u|2,
and hence h̃ is positive definite. It then follows that h defines a Hermitian
metric on Pn (which is called the Fubini-Study metric classically). Since � is
a closed (1, 1)-form on Pn, as noted earlier, we see that h is, in fact, a Kähler
metric. This Kähler metric is invariant with respect to transformations of
Pn induced by unitary transformations of Cn+1 −{0} onto itself, a property
which will not concern us too much but which is important from the point
of view of homogeneous spaces.

The next proposition combined with the above basic examples gives many
additional examples of Kähler manifolds.

Proposition 4.6: Let X be a Kähler manifold with Kähler metric h and
let M be a complex submanifold of X. Then h induces a Kähler metric on
M, and with this metric M becomes, therefore, a Kähler manifold.

Proof: Let j : M → X be the injection mapping. Then hM = j ∗h defines
a metric on M, and j ∗� = �M is the associated fundamental form to
hM on M. Since d �M = j ∗d� = 0, it is clear that �M is also a Kähler
fundamental form.

Q.E.D.
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In terms of the differential operators d, ∂, and ∂̄ on a Hermitian manifold,
we can define the following Laplacian operators,

� = dd∗ + d∗d
� = ∂∂∗ + ∂∗∂
� = ∂̄ ∂̄∗ + ∂̄∗∂̄,

of which the first and last will play an important role in our study of Kähler
manifolds later in this chapter. Note that � is the complex conjugate of
the operator �, thus justifying the notation. What can we say about the
relation between the Laplacians � and �? In general, not too much,† but
on Kähler manifolds there is a striking relationship. Recall that an operator
P : E∗(X) → E∗(X) is said to be real if Pϕ = P ϕ̄, i.e., P = P̄ .

Theorem 4.7: Let X be a Kähler manifold.‡ If the differential operators
d, d∗, ∂̄, ∂̄∗, ∂, ∂∗,�,�, and � are defined with respect to the Kähler metric
on X, then � commutes with ∗, d, and L, and

� = 2� = 2�.
In particular,

(a) � and � are real operators.
(b) �|Ep,q : Ep,q → Ep,q .

Remark: Neither (a) nor (b) of the above theorem are true in general
and these properties will imply topological restrictions on Kähler manifolds,
as we shall see in the next section.

To prove Theorem 4.7, we shall first develop some consequences of the
representation theory from Sec. 3 as applied to the study of the interaction
of the operators d and ∂ and their adjoints. The operators L and L∗ will be
used as auxiliary tools in this work§ and we shall also use the concept of
a primitive differential form on a Hermitian complex manifold X. We shall
say that ϕ ∈ Ep(X) is primitive if L∗ϕ = 0, and we shall denote by Epo (X)

the vector space of primitive p-forms. All the results of Sec. 1 concerning
primitive forms on an Hermitian vector space then apply to the primitive
differential forms.

We also define the operators
dc = J−1dJ = wJdJ

d∗
c = J−1d∗J = wJd∗J,

†There is a relationship which involves the torsion tensor; cf. Chern [2] or Goldberg [1].
‡Note that we do not necessarily assume compactness here. In the noncompact case,

we assume that the formal adjoints are given by ∂̄∗ = −∗̄∂̄ ∗̄, etc. (cf. Propositions 2.2 and
2.3), which would be the formal L2-adjoints for forms with compact support on an open
manifold.

§Note that L∗ = w∗L∗ (cf. Sec. 1) can be shown to be identical with the L2-formal
adjoint of the linear operator L [for the Hodge metric on ∧∗T ∗(X)] in the same way that
∂̄∗ = −∗̄∂̄ ∗̄ is derived as in Proposition 2.3.
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a twisted conjugate to d. These are real operators which are useful in
applications involving integration and Stokes’ theorem, and this is one reason
for introducing them. For instance, if we let dc act on a function ϕ, we have

dcϕ = wJdJϕ

= (−1)J (∂ϕ + ∂̄ϕ)
= (−1)(i∂ϕ − i∂̄ϕ)
= −i(∂ − ∂̄)ϕ,

and we could use this last expression for dc as a definition. From
dc = −i(∂ − ∂̄), it follows immediately that

(4.1) ddc = 2i∂∂̄,

which is a real operator of type (1, 1) acting on differential forms in E∗(X).
We now have an important theorem concerning the commutators of these

various operators.

Theorem 4.8: Let X be a Kähler manifold. Then

(a) [L, d] = 0, [L∗, d∗] = 0.
(b) [L, d∗] = dc, [L∗, d] = −d∗

c .

Proof: Part (a) is simple and follows from the fact that the fundamental
form � on X is closed, the basic Kähler assumption. The second part of (a)
is the adjoint form of the first part. Similarly, the second part of (b) is the
adjoint statement of the first part, and the first statement holds if and only
if the second statement holds. Let us show then that

L∗d − dL∗ = −J−1d∗J.
Letting L∗ = Λ as before, we see by Proposition 2.3 that

d∗ = (−1)p+1∗d∗−1, acting on p-forms.

Now let ϕ be a p-form on X; then we find that, from Lemma 3.15,

#ϕ = i−p
2+nJ∗ϕ,

#−1ϕ = i(2n−p)
2−n∗−1J−1ϕ = ip

2−n∗−1J−1ϕ.

Therefore we see that

#d#−1ϕ = i−(2n−p+1)2+nip
2−nJ∗d∗−1J−1ϕ

= i−1i2pJ∗d∗−1J−1ϕ

= iJ [(−1)p+1∗d∗−1]J−1ϕ(4.2)

= iJ d∗J−1ϕ.

Now let

dt = exp[itα(X + Y )] ◦ d ◦ exp[−itα(X + Y )]
= exp[it (Λ+ L)] ◦ d ◦ exp[−it (Λ+ L)].
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Just as in the proof of Lemma 3.14, we have

dt =
∞∑
k=0

(1/k!)adk[it (Λ+ L)]d

and, since ad(L)d = 0, by the Kähler hypothesis,

(4.3) dt =
∞∑
k=0

ak(t)ad
k(Λ)d,

where ak(t) are real-analytic functions of t . Now dπ/2 is an operator of
degree −1, which implies that
(4.4) dπ/2 = a1(π/2)ad(Λ)d,
since all other terms in the expansion (4.3) are operators of degree
+1,−3,−5, . . ., etc., and the expansion clearly has only a finite number
of nonzero terms. But then it follows from (4.2) and (4.4) that iJ d∗J−1 is
proportional to ad(Λ)d, and hence that adk(Λ)d = 0 for k ≥ 2, since Λ
commutes with d∗ and J . Thus

dt = a0(t)d + a1(t)ad(Λ)d,

and just as in the proof of Lemma 3.14, we conclude that
dt = (cos t)d + i(sin t)ad(Λ)d,

and now the theorem follows by letting t = π/2 and observing that Jd∗J−1 =
−J−1d∗J .

Q.E.D.

Corollary 4.9: Let X be a Kähler manifold. Then

[L, dc] = 0, [L∗, d∗
c ] = 0, [L, d∗

c ] = −d, and [L∗, dc] = d∗.

Proof: This follows easily from Theorem 4.8, since the operator J com-
mutes with the real operators, L,L∗, and so (dc)c = −d and (d∗

c )c = −d∗.
Q.E.D.

Considering the bidegree structure of the differential forms, we obtain
the following corollary to Theorem 4.8.

Corollary 4.10: Let X be a Kähler manifold. Then

[L, ∂] = [L, ∂̄] = [L∗, ∂∗] = [L∗, ∂̄∗] = 0

[L, ∂∗] = i∂̄, [L, ∂̄∗] = −i∂
[L∗, ∂] = i∂̄∗, [L∗, ∂̄] = −i∂∗.

(4.5)

d∗dc = −dcd∗ = d∗Ld∗ = −dcL∗dc

dd∗
c = −d∗

c d = d∗
c Ld

∗
c = −dL∗d

∂∂̄∗ = −∂̄∗∂ = −i∂̄∗L∂̄∗ = −i∂L∗∂

∂̄∂∗ = −∂∗∂̄ = i∂∗L∂∗ = i∂̄L∗∂̄ .

(4.6)
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Proof: Equations (4.5) follow from Theorem 4.8 by comparing bidegrees
and using the fact that dc = i(∂̄ − ∂).

To obtain (4.6) we use, for example, d∗ = [L∗, dc] as follows:

d∗dc = L∗dcdc − dcL∗dc = −dcL∗dc

−dcd∗ = −dcL∗dc + dcdcL∗ = −dcL∗dc,

and so
d∗dc = −dcL∗dc = −dcd∗.

Similarly for the others, setting dc = [L, d∗], etc.
Q.E.D.

Using the above results, we are now in a position to prove Theorem 4.7
concerning the Laplacians on a Kähler manifold.

Proof of Theorem 4.7: It is clear from the definition of d∗ and � that �

commutes with d and ∗. So we have to see that L�−�L vanishes. We have

�L− L� = dd∗L+ d∗dL− Ldd∗ − Ld∗d

= dd∗L+ d∗Ld − dLd∗ − Ld∗d

= −d[L, d∗] − [L, d∗]d,
and substituting, from Theorem 4.8, we obtain

�L− L� = −ddc − dcd.
It follows from (4.1) that ddc = −dcd, since ∂∂̄ + ∂̄∂ = 0; thus we obtain
�L− L� = 0.

To prove the relationship between � and the other Laplacians, we write,
using Corollary 4.9,

� = dd∗ + d∗d = d[L∗, dc] + [L∗, dc]d
= dL∗dc − ddcL∗ + L∗dcd − dcL∗d.

Note that all the information about the metric in the operator � is con-
tained in the operator L∗, since d and dc depend only on the differentiable
and complex structure, respectively. Multiply on the left by J−1 and on the
right by J ; we obtain

�c = −dcL∗d + dcdL∗ − L∗ddc + dL∗dc.

But since dcd = −ddc, we have that � = �c, in a trivial manner.
We now write (noting that 2∂ = d + idc, etc.)

4(∂∂∗ + ∂∗∂) = (d + idc)
(
d∗ − id∗

c

)
+ (
d∗ − id∗

c

)
(d + idc)

= (dd∗ + d∗d)+ (
dcd

∗
c + d∗

c dc
)

+ i(dcd∗ + d∗dc)− i
(
dd∗

c + d∗
c d

)
.
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By (4.6) in Corollary 4.10, we see that the last two parentheses vanish. We
also have

�c = J−1�J = J−1dd∗J + J−1d∗dJ
= dcd

∗
c + d∗

c dc.
Therefore we have

4� = � + �c + 0

= 2�.
Thus, 2� = �. The other assertion is proved in a similar manner. The fact
that � is of bidegree (0, 0) follows now trivially from the fact that � is of
bidegree (0, 0). Similarly, since � is a real operator, � and � must also be
real operators.

Q.E.D.

Corollary 4.11: On a Kähler manifold, the operator � commutes with J ,
L∗, d, ∂, ∂̄, ∂∗, and d∗.

Since L∗ commutes with � on a Kähler manifold, we have an analogue
to Theorem 3.12. On a Kähler manifold X, �-harmonic differential forms
are the same as, by Theorem 4.7, �-harmonic or �-harmonic forms, and
we shall say simply harmonic forms on X, to be denoted by Hr (X) and
Hp,q(X) as before. We shall denote by Hr

0(X) and H
p,q

0 (X) the primitive
harmonic r-forms and (p, q)-forms, respectively; i.e., Hr

0(X) is the kernel
of the mapping L∗: Hr (X) → Hr−2(X) and H

p,q

0 (X) is the kernel of the
mapping L∗: Hp,q(X) → Hp−1,q−1(X). These maps are well defined since
L∗ commutes with �.

Corollary 4.12: On a compact Kähler manifold X there are direct sum
decompositions:

Hr (X) =
∑

s≥(r−n)+
LsHr−2s

0 (X)

Hp,q(X) =
∑

s≥(p+q−n)+
LsH

p−s,q−s
0 (X).

This result follows immediately from the primitive decomposition theorem
(Theorem 3.12) and the fact that � commutes with L and L∗.

Our last corollary to the Lefschetz decomposition theorem is the following
result, also due to Lefschetz.

Corollary 4.13: Let X be a compact Kähler manifold, then
Ln−p = e(�n−p): Hp(X,C) −→ H 2n−p(X,C)

is an isomorphism, where � is the Kähler form on X.

Remark: This implies the Poincaré duality theorem (Theorem 2.5) in this
context, and is referred to in algebraic geometry as the “strong Lefschetz
theorem” (cf., Grothendieck [1]).
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Proof: This is an immediate consequence of part (c) of the Lefschetz
decomposition theorem (Theorem 3.12), where we represent the cohomology
groups by harmonic forms as in Corollary 4.12.

Q.E.D.

Remark: The basic result of this section is Theorem 4.7, and we shall
develop its consequences in the next section. The derivation of this result was
based on Theorem 4.8 and its corollaries, and this depended in turn on the
representation theory of Sec. 3. However, the statement of Theorem 4.7 does
not involve the representation theory, and there are alternative methods of
deriving Theorem 4.8 (from which then follows Theorem 4.7) which do not
involve this concept. One basic approach is the following one. Suppose that

� = i

2

∑
hµv(z)dzµ ∧ dz̄v

is the fundamental form on a Kähler manifold for z near 0 in some appro-
priate coordinate system. By a linear change of coordinates, one can obtain
easily that the matrix h(z) = [hµv(z)] is the identity at z = 0

hµv(0) = δµv

or
h(z) = I +O(|z|).

By using the fact that d� = 0, one finds easily that the coefficient matrix
satisfies the differential equations

(4.7)

∂hµv

∂zλ
(z) = ∂hλv

∂zµ
(z), µ, v, λ = 1, . . . , n

∂hµv

∂z̄λ
(z) = ∂hµλ

∂z̄v
(z), µ, v, λ = 1, . . . , n.

By making a new (quadratic) change of variables of the form

z̃µ = zµ + 1
2

∑
α,β

A
µ

αβzαzβ,

where [Aµαβ] is a symmetric (in α, β) complex matrix (for fixed µ), one can
choose the coefficients Aµαβ [by using the differential equations (4.7)] so that

A
µ

αβ = −∂hβµ
∂zα

(0),

and it will follow that
h(z) = I +O(|z|2);

i.e., all the linear terms in the Taylor expansion of h at 0 vanish. Such a
coordinate system is called a geodesic coordinate system. At the point 0,
one can derive Theorem 4.8 by ignoring the higher-order terms, since in the
commutator only first-order derivations of L and L∗ will appear. Then one
is reduced to proving the commutator relations in Cn with the canonical
Kähler metric as in Example 4.3. This is not difficult but will involve a sort
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of combinatoric multilinear algebra similar to that developed in Sec. 1 in
going back and forth between the real and complex structures.

One can also prove the Lefschetz decomposition theorem for differential
forms on a Kähler manifold independent of the representation theory of
sl(2,C), per se, and then use this to prove the basic Kähler identities. This
is the approach followed by Weil [1].

5. The Hodge Decomposition Theorem
on Compact Kähler Manifolds

In this section we shall derive the Hodge decomposition theorem for
Kähler manifolds and give various applications. Let X be a compact complex
manifold. Then we have the de Rham groups on X, {Hr(X,C)}, represented
by d-closed differential forms with complex coefficients, and the Dolbeault
groups on X, {Hp,q(X)}, represented by ∂̄-closed (p, q)-forms (Sec. 3 in
Chap. II). We have seen that these vector spaces are finite dimensional
(Sec. 5 in Chap. IV). Moreover, there is a spectral sequence relating them
(Fröhlicher [1]). However, in general, if ϕ is a ∂̄-closed (p, q)-form on X,
then ϕ need not be d-closed, and, conversely, if ψ is a d-closed r-form on
X and ψ = ψr,0 + ψr−1,1 + · · · + ψ0,r are the bihomogeneous components
of ψ , then the components ψp,q need not be ∂̄-closed. On manifolds of
Kähler type, however, such relations are valid, as we see in the following
decomposition theorem of Hodge (as amplified by Kodaira).

Theorem 5.1: Let X be a compact complex manifold of Kähler type. Then
there is a direct sum decomposition†

(5.1) Hr(X,C) =
∑
p+q=r

Hp,q(X),

and, moreover,

(5.2) H̄ p,q(X) = Hq,p(X).

Proof: We shall show that

Hr (X) =
∑
p+q=r

Hp,q(X),

and then (5.1) follows immediately. Suppose that ϕ ∈ Hr (X). Then �ϕ = 0,
but 2� = �, by Theorem 4.7, and hence �ϕ = 0. But ϕ = ϕr,0 + · · · + ϕ0,r

(writing out the bihomogeneous terms), and, moreover,

�ϕ = �ϕr,0 + · · · + �ϕ0,r .

†Strictly speaking, there is an isomorphism Hr(X,C) ∼= ∑
p+q=r Hp,q (X), and it is

easy to verify that the isomorphism is independent of the choice of the metric. We shall
normally identify Hp,q(X) with its image in Hr(X,C) under this isomorphism. When both
the Dolbeault groups and the de Rham groups are represented by harmonic forms for the
same Kähler metric, then we have strict equality, as we see in the proof of the theorem.
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Since � preserves bidegree, we see that �ϕ = 0 implies that �ϕr,0 = · · · =
�ϕ0,r = 0, and therefore there is a mapping

τ : Hr (X) −→
∑
p+q=r

Hp,q(X)

given by ϕ −→ (ϕr,0, . . . , ϕ0,r ). The mapping is clearly injective, and, more-
over, if ϕ ∈ Hp,q(X), then �ϕ = 1

2�ϕ = 0, which implies that ϕ ∈ Hp+q(X),
and thus τ is surjective, proving (4.1).

Assertion (5.2) follows immediately from the fact that � is real (Theo-
rem 4.7) and that conjugation is an isomorphism from Ep,q(X) to Eq,p(X).

Q.E.D.

Remark: One can also prove Theorem 5.1 by showing that the spectral
sequence relating the Dolbeault and de Rham groups degenerates at the
E1 term (see Fröhlicher [1] and the appendix to Griffiths [4]). This proof
also makes heavy use of the differential operators �,� and the harmonic
representation of the de Rham and Dolbeault groups. This approach, via
spectral sequences, deserves mention because there are examples, namely
K-3 surfaces† where one does not know (yet) whether they are Kähler in
general or not.‡ However, one can show by other means that the spectral
sequence degenerates, and one still obtains a Hodge decomposition, and
this in turn is useful in the study of the moduli problem for K-3 surfaces.

As a consequence of the Hodge decomposition theorem, we have the
following relations for the Betti numbers and Hodge numbers of a Kähler
manifold. Recall that we set (see Sec. 5 in Chap. IV)

br(X) = dimCH
r(X,C), hp,q(X) = dimCH

p,q(X).

Corollary 5.2: Let X be a compact Kähler manifold. Then

(a) br(X) = ∑
p+q=r h

p,q(X).
(b) hp,q(X) = hq,p(X).
(c) bq(X) is even for q odd.
(d) h1,0(X) = 1

2b1(X) is a topological invariant.

These results are a simple consequence of the preceding theorem. We shall
see shortly that there are examples of compact complex manifolds X which
violate property (c), and hence such manifolds are not of Kähler type. Thus
Corollary 5.2 places topological restrictions on a compact complex manifold
admitting a Kähler metric. We already know that any such manifold always
admits a Hermitian metric.

†A K-3 surface is a compact complex manifold X of complex dimension 2 such that
(a) H 1(X,OX) = 0 and (b) ∧2T ∗(X) = K, the canonical bundle of X, is trivial; see, e.g.,
Kodaira [3] and Šafarevič [1], Chap. 9.

‡In 1983 Yum-Tong Siu showed that K-3 surfaces are Kähler (Y.-T. Siu, “Every K-3
Surface is Kähler,” Invent Math. 73 (1983), no. 1, pp. 139–150.
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The simplest example of a non-Kähler compact complex manifold is given
by a Hopf surface, which we shall now construct. First, we recall one of the
basic ways of constructing compact complex manifolds in general, namely,
“dividing a given manifold by a group of automorphisms,” an example being
the complex tori considered in Sec. 4. Let X be a complex manifold and let
� be a subgroup of the group of automorphisms of X (an automorphism of X
is a biholomorphic self-mapping of X onto itself). We say that � is properly
discontinuous if for any two compact sets K1,K2 ⊂ X, γ (K1)∩K2 
= ∅, for
only a finite number of elements γ ∈ �. The group � is said to have no
fixed points if for each γ ∈ � − {e} (e = identity in �) γ (x) 
= x for all
x ∈ X. We let X/� be the set of equivalence classes with respect to the
action of the group �; i.e., x and y ∈ X are equivalent (with respect to �)
if x = γ (y) for some γ ∈ �. Let X/� have the natural quotient topology
given as follows: A basis for the open sets in X/� is given by the projection
of the open sets in X under the natural projection mapping π : X → X/�.

Proposition 5.3: Let X be a complex manifold and let � be a properly
discontinuous group of automorphisms of X without fixed points. Then
X/� is a Hausdorff topological space which can be given uniquely a com-
plex structure, so that the natural projection mapping π : X → X/� is a
holomorphic mapping, which is locally biholomorphic.

Proof: Let N be any compact neighborhood of a point x0 ∈ X. Then
there exists only finitely many elements γ ∈ � so that γ (x0) ∈ N . This
follows immediately from the definition of properly discontinuous, letting
K1 and K2 = N . Thus for each point x0 ∈ X there exists an open neigh-
borhood N0 so that γ (N0) ∩ N0 = ∅ for all γ ∈ � − {e}. Then, clearly,
γ (N0) will be a neighborhood of γ (x0) with the same property; i.e., γ (N0)

is the only translate of N0 by � that meets γ (N0). Let y0 = π(x0). Then,
clearly, W0 = π(N0) = π(∪γ∈�γ (N0)) is a neighborhood of y0. If y1 
= y0 is
a second point in X/�, then letting x1 be any point in π−1(y1), we can find
a neighborhood N1 of x1 so that: (a) γ (X1) 
∈ N1 for all γ ∈ �−{e} and (b),
N1 ∩γ (N0) = ∅, for all γ ∈ �. Thus π(∪γ∈�γ (N1)) is an open neighborhood
W1 of y1 which does not intersect W0, and hence X/� is Hausdorff. We can
use these neighborhoods as coordinate charts near the point y0. Namely, N0

is homeomorphic to W0 under π since π |N0 is one-to-one, open, and contin-
uous. Moreover, if W0 and W1 are two such coordinate systems near y0 and
y1 and W0 ∩W1 
= ∅, then there exists a γ ∈ � so that the corresponding
γ (N0) ∩N1 
= ∅, and thus the overlap transformation will be of the form

γ |N0∩γ−1(N1)
: N0 ∩ γ −1(N1) −→ γ (N0) ∩N1,

which is a biholomorphic mapping. Hence we have a complex structure,
and the mapping π is clearly holomorphic and locally biholomorphic. The
uniqueness is easy to verify, and we omit the proof.

Q.E.D.
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Classical examples of complex manifolds constructed in this manner are

(a) Riemann surfaces of genus g = 1 (elliptic curves), where X = C and
� is a two-dimensional lattice in C generated by two periods independent
over R.

(b) Complex tori (see Example 4.4). (a) is a complex torus of one
complex dimension.

(c) Riemann surfaces of genus g > 1, where X = unit disc in C and
� is a properly discontinuous fixed point free subgroup of the group of
automorphisms of X (which are all fractional-linear transformations of the
unit disc onto itself, i.e., Möbius transformations).

Remark: If we omitted the assumption that � had no fixed points in
Proposition 5.3, then X/� can still be given a complex structure as a
complex space (a generalization of a complex manifold) with singularities
at the image of the fixed points (see Cartan [1] for a proof of this).

To construct an example of a Hopf surface, we proceed as follows. Con-
sider the 3-sphere S3 defined by {z = (z1, z2) ∈ C2: |z1|2 + |z2|2 = 1}, and
then we observe that there is a diffeomorphism

f : S3 × R
∼=−→ C2 − {0}

given by
f (z1, z2, t) = (etz1, e

tz2)

for (z1, z2) ∈ S3 ⊂ C2, t ∈ R (i.e., we are shrinking and expanding S3 in
C2 by the parameter t exponentially). The infinite cyclic group Z acts on
S3 × R in a natural manner, namely,

(z1, z2, t) −→ (z1, z2, t +m), for m ∈ Z,

and it is clear that the quotient space under this action (defined as above)
(S3 ×R)/Z is diffeomorphic to S3 ×S1. Under the diffeomorphism f we can
transfer the action of Z on S3 × R to an action of Z on C2 − {0}. Namely,

(z1, z2,m) → (emz1, e
mz2)

for (z1, z2) ∈ C2 −{0} and m ∈ Z. Moreover, for a fixed m ∈ Z, the mapping
above is an automorphism of C2−{0}. Thus the action of Z on C2−{0} is the
action of a subgroup � of Aut(C2−{0}), which, it is easy to check, is properly
discontinuous without fixed points (the orbit of a point under � is a discrete
sequence of points with limits at 0 and ∞). Since the action of the groups Z
and � commutes with the diffeomorphism, we have the commutative diagram

S3 × R

��

f

�� C2 − {0}
��

(S3 × R)/Z
f

�� (C2 − {0})/�
‖� ‖�

S3 × S1 X,
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where the vertical arrows are the natural projections. By Proposition 5.3
we see that X is a complex manifold which is diffeomorphic under f̃ to
S3 ×S1 (and this is compact). An integral basis for the homology of S3 ×S1

is given by the factors S1, S3 in those dimensions, and we have the Betti
numbers

b0(X) = b1(X) = b3(X) = b4(X) = 1

b2(X) = 0.
In particular, b1(X) = 1, and hence X cannot be Kähler, since odd degree
Betti numbers must be even on Kähler manifolds. A deep result of Kodaira
[4] asserts that any compact complex manifold which is homeomorphic to
S1 × S3 is of the form (C2 − {0})/� for some appropriate � chosen in a
manner similar to that of our example. Such manifolds are called Hopf
surfaces.

We would like to give one last important example of Kähler manifolds.

Theorem 5.4: Every complex manifold X of complex dimension 1 (a
Riemann surface) is of Kähler type.

Proof: Let g be an arbitrary Hermitian metric on X. Then it suffices
to show that this metric is indeed a Kähler metric. But this is trivial, since
the associated fundamental form � is of type (1, 1) and therefore of total
degree 2 on X. Since X has two real dimensions, it follows that d� = 0,
since there are no forms of higher degree.

Q.E.D.

Suppose that X is a compact Riemann surface. Then we have, by the
Hodge decomposition theorem for Kähler manifolds,

H 1(X,C) = H 1,0(X)⊕H 0,1(X).

Moreover, h1,0(X) = h0,1(X), and hence 2h1,0(X) = b1(X). Thus h1,0(X) is a
topological invariant of X, called the genus of the Riemann surface, usually
denoted by g.

6. The Hodge-Riemann Bilinear Relations
on a Kähler Manifold

In this section we want to study the structure of the de Rham groups on
a Kähler manifold. If X is a Kähler manifold, then the fundamental form
� on X determines the Lefschetz decomposition,

(6.1) Hr(X,C) =
∑

s≥(r−n)+
LsHr−2s

o (X,C),

where Hr
o (X,C) is the vector space of primitive cohomology classes of degree

r. This follows immediately from the harmonic forms representation of the
de Rham group and Corollary 4.12. Since we represent the cohomology ring
H ∗(X,C) by differential forms, we shall write ξ ∧ η for the product of two
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cohomology classes, where we mean by this the following: If ϕ,ψ ∈ Z∗(X,C),
the d-closed differential forms, and [ϕ], [ψ ] are the classes of ϕ and ψ in
H ∗(X,C), then [ϕ] ∧ [ψ] is defined by [ϕ ∧ψ], and it is easy to verify that
this cohomology product is well defined and, moreover, satisfies ξ ∧ η =
(−1)deg ξ ·deg ηη ∧ ξ . If � is the fundamental form on X, let ω = [�]; then
we define

L: H ∗(X,C) → H ∗(X,C)
by L(ξ) = ω ∧ ξ . Thus the Kähler structure on X determines the linear
mapping L on cohomology. However, the mapping L depends only on the
class ω and not on the differential form representing it (nor on the metric
inducing �); any cohomologous differential form would give the same result.
The existence of a Kähler metric therefore implies the existence of a linear
mapping L: H ∗(X,C) → H ∗(X,C), which is real, i.e., L is actually defined
on H ∗(X,R), and, moreover, the above Lefschetz decomposition (5.1) holds.
The primitive cohomology classes Hr

o (X,C) ⊂ Hr(X,C) are those satisfying
Ln−r+1ξ = 0, as before. The point we wish to make here is that the existence
of L and of the decomposition (6.1) is a topological necessity that a (say,
differentiable or topological) manifold admit a Kähler complex structure.
This is analogous to and related to the requirement that odd degree Betti
numbers must be even for Kähler manifolds.

Suppose that such an L exists on a compact oriented differentiable
manifold of real dimension 2n, i.e.,

L: Hr(X,R) → Hr+2(X,R), r = 0, . . . , 2n− 2

and
Hr(X,R) =

∑
s≥(r−n)+

LsHr−2s
o (X,R),

where Hp
o (X,R) is the kernel of the mapping

Ln−p+1: Hp(X,R) → H 2n−p+2(X,R), p ≤ n,
and L is extended to the complexification by linearity. We want to introduce
a bilinear form on Hr(X,R) as follows: For ξ, η ∈ Hr(X,R), we let

(6.2) Q(ξ, η) =
∑

s≥(r−n)+
(−1)[r(r+1)/2]+s

∫
X

Ln−r+2s(ξs ∧ ηs),

where ξ = ∑
Lsξs and η = ∑

Lsηs are the primitive decompositions of ξ
and η, respectively. In the case where X is a Kähler manifold, the quadratic
form above is well defined by the fundamental form �. However, we do not
assume for the present that X is Kähler to emphasize the topological nature
of the quadratic form Q above. Such a quadratic form was first introduced
by Lefschetz in the context of a projective algebraic variety and then reinter-
preted in the same context (for a projective algebraic manifold) by Hodge for
de Rham cohomology represented by harmonic differential forms. The qua-
dratic form Q is a sort of intersection matrix for cycles in X, and the signs
reflect the decomposition induced by L. As we shall see, Q will have many
important properties and applications, but first we want to discuss it from
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an intuitive and geometric point of view. Suppose that dimRX = 2. Then
we have, for H 1(X,R),

Q(ξ, η) = −
∫
X

ξ ∧ η,

since H 1(X,R) = H 1
0 (X,R) and n = r = 1. Thus, if {ξα} is a real basis for

H 1(X,R) and if we let {ξ̂α} be a dual basis for H 1(X,R)∗ ∼= H1(X,R), then
{ξ̂α} can be represented by geometric 1-cycles on X, which in turn can be
represented by an algebraic sum of oriented closed curves �α on X. Then the
matrix Q(ξα, ξβ) = Qαβ can be represented by (and is the same as) the inter-
section matrix (�α ·�β), which is defined by �α ·�β = the algebraic sum of the
number of intersections of �α with �β , assuming that they are in general posi-
tion, meeting only in a finite number of points. The sign of the intersection
number is given by whether the local orientation of the intersecting curves
agrees or disagrees with the orientation of X. This was, in fact, the context
in which Lefschetz worked (see Lefschetz [1] or Hodge [1], where higher-
dimensional intersections are also considered). The interaction between the
two points of view is very important (especially in algebraic geometry), but
in this book we shall restrict ourselves primarily to a discussion of the coho-
mology groups H ∗(X,C), defined by differential forms, and deduce what
we can from the existence of a Kähler metric and other considerations.

Suppose now that X is a compact Kähler manifold with fundamental
form � and that we have the Lefschetz decomposition as given by (6.1)
and the quadratic form Q defined by (6.2), which we extend to Hr(X,C)
by complex-linearity. Since X is a Kähler manifold, there is a bigrading on
H ∗(X,C) induced by the complex structure; i.e.,

Hr(X,C) =
∑
p+q=r

Hp,q(X),

given by the Hodge decomposition, Theorem 5.1. The linear operator J =∑
p,q i

p−q�p,q is well defined on Hr(X,C), where �p,q denotes projections
onto Hp,q(X) (cf. Sec. 1). Then we have the following theorem.

Theorem 6.1: Let X be a compact Kähler manifold with fundamental form
� and with the associated quadratic form Q defined by (5.2). Then Q is
a nondegenerate real bilinear form with the following properties: If ξ and
η ∈ Hr(X,C), then

(a) Q(ξ, η) = (−1)rQ(η, ξ).
(b) Q(Jξ, Jη) = Q(ξ, η).
(c) Q(ξ, Jη) = Q(η, J ξ).
(d) Q(ξ, J ξ̄ ) > 0, if ξ 
= 0.

Proof: Property (a) is obvious from the definition of Q. Property (d)
has as a consequence that the quadratic form Q is nondegenerate, since
Q(ξ, J η̄) is the composition of the bilinear form Q with two isomorphisms
of Hr(X,C) onto itself. In a matrix representation of this composition we
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would have the product of the matrices, and since the composition is a
positive definite Hermitian symmetric form, it must have a nonzero deter-
minant. Thus Q must have a nonzero determinant with respect to some
basis and hence is nonsingular.

To show property (d), we note that we can rewrite

Q(ξ, Jη) =
∑

s≥(r−n)+
cs

∫
X

Lsξs ∧ ∗Lsηs ,

where the {cs} are positive constants. This follows from Theorem 3.16.
Namely, in this case we have (recall that degree ηs = r − 2s)

∗Lsηs = (−1)[r(r+1)/2]+scr,sLn−r+sJηs ,

where cr,s is a positive constant. Thus we obtain, with cs > 0,

Q(ξ, J ξ̄ ) =
∑

s≥(r−n)+
cs

∫
X

Lsξs ∧ ∗Lsξ̄s,

and this is > 0 since ξ 
= 0 implies at least one of the Lsξs 
= 0 and hence the
sum is positive, by the positive definite nature of the Hodge inner product.

The proofs for properties (b) and (c) are similar and will be omitted.
Q.E.D.

Property (a) in Theorem 6.1 tells us that Q is either symmetric or skew-
symmetric depending on whether Q is acting on cohomology of even or
odd degree. It is well known from linear algebra that there are canonical
forms for such quadratic forms. Namely, for r odd, there exists a basis {ξα}
for Hr(X,R) so that if we let Q(ξα, ξβ) = Qαβ , then the matrix [Qαβ] has
the form

(6.3) [Qαβ] =
[

0 Ig
−Ig 0

]
,

where g = 1
2br(X) and Ig is the g×g identity matrix [note that it is necessary

that br(X) be even in this case]. Similarly, if r is even, then there is a basis
{ξα} of Hr(X,R) so that

(6.4) [Qαβ] =
[
Ih 0
0 −Ik

]
,

and h− k is the signature of the quadratic form Q.
Our next results will show that the subspaces of Hr(X,C) on which

Q is positive or negative definite are very much related to the bigrading
of Hr(X,C) given by the Hodge decomposition. First, however, we want
to discuss the distinction between primitive and nonprimitive cohomology
classes. We shall be interested primarily in the de Rham groups Hr(X,C)
for r ≤ n, since by Poincaré duality the vector spaces H 2n−r (X,C) for r < n,
are conjugate-linearly isomorphic to Hr(X,C) and, in effect, do not contain
any new information.
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Let us compute the primitive cohomology of a simple space, X = Pn(C).
We have seen before that

b0(Pn) = · · · = b2n(Pn) = 1

b1(Pn) = · · · = b2n−1(Pn) = 0,

as is most easily seen by a cell decomposition, and the generators of the
homology groups are given by 0 = P0 ⊂ · · · ⊂ Pn. The cohomology
groups H ∗(Pn,C) have as basis elements 1, ω, ω2, . . . , ωn, where � is the
fundamental form of Pn and [�] = ω is the class of � in H 2(Pn,C); i.e.,

H∗(X,C) = C ⊕ Cω ⊕ Cω2 ⊕ · · · ⊕ Cωn,

where Cωm represents the complex vector space spanned by the (m,m) class
ωm in H 2m(X,C). We claim that the only primitive cohomology classes in
H ∗(Pn,C) are the constants, i.e., H 0

o (Pn,C) ∼= C, H 2m
o (Pn,C) = 0,m =

1, . . . , n. This follows from the fact that ω is not primitive, since

ωn−2r+1 ∧ ωr = ωn−r+1 
= 0 if r ≥ 1.

Thus, in a very easy case, all of the cohomology is determined by primitive
cohomology (the constants) and the fundamental form. In general, on a
compact Kähler manifold a nonprimitive cohomology class ξ is of the form

ξ = ξ0 + ω ∧ ξ1 + · · · + ωm ∧ ξm,
where the ξj are primitive cohomology classes and ω is the fundamental
class, and some ξj 
= 0 for j > 0. How large is H∗o(X,C) in general? Let
bjo = dimCH

j
o (X,C). Then we have the following proposition.

Proposition 6.2: Let X be a compact Kähler manifold. Then

bro(X) = dimHr
o (X,C) = br(X)− br−2(X)

for r ≤ n.

Before we give the proof, we note that for projective space we get the
right answer, since br−br−2 = 0 for r ≥ 1. Similarly, another simple example
(which follows from Proposition 6.2) would be cohomology of degree 2 on
a Kähler manifold X, and we see that in this case b0

o = b0, b
1
o = b1, and

b2
o = b2 − b0 = b2 − 1. Moreover, if ω is the fundamental class on X, then
ω is of type (1, 1), and hence we have

H 2(X,C) = H 2,0(X)⊕H 1,1(X)⊕H 0,2(X)

= H 2,0
o (X)⊕H 1,1

o (X)⊕ Cω ⊕H 0,2
o (X),

noting that, by dimension considerations, we have H 2,0(X) = H 2,0
o (X) and

H 0,2(X) = H 0,2
o (X); i.e., all of the nonprimitive cohomology is in the middle

and is one-dimensional.
Geometrically, what this means is the following. If X is a smooth complex

submanifold of Pn (and hence Kähler), then there are many cycles on X
of the form X ∩ Pj , j = 0, 1, . . . , n − 1, where P0 ⊂ · · · ⊂ Pn is the cell
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decomposition of Pn (assuming that the intersecting manifold X and Pj
are in general position). This determines part of the homology of X; the
remainder of the homology, which is not so determined, is the primitive
part (or as Lefschetz called them, effective cycles). In the case of a complex
surface X ⊂ P3, then, X ∩ P2 is (generically) a real two-dimensional closed
submanifold, which is a cycle in H2(X,Z), which corresponds in cohomology
to ω ∈ H 2(X,Z) (since ω is, in this case, an integral cohomology class).
Again, we shall not formally prove this correspondence; we merely mention
it as motivation for the discussion at hand.

Proof of Proposition 6.2: The proposition is clearly true for r = 0, 1,
and so we shall prove it by induction for general r. Suppose that bqo =
bq − bq−2 for q = 0, . . . , r − 1. Then let {ξ (j)i } be a basis for Hr−2j

o (X,C),
i = 1, . . . , br−2j − br−2j−2, j = 1, . . . , [r/2](bq = 0, for q < 0, by definition),
and consider the set {Ljξ (j)i } of classes in Hr(X,C). We claim that these
vectors are linearly independent. Suppose that∑

ij

αijL
jξ
(j)

i = 0, αij ∈ C,

Then we have
0 =

∑
j

Lj
(∑

i

αij ξ
(j)

i

)
,

and by the uniqueness of primitive decomposition, we obtain
∑

i αij ξ
(j)

i = 0,
j = 1, . . . , [r/2]. By the linear independence of the {ξ (j)i } in Hr−2j

o (X,C),
we see that αij = 0 for all i and j . We claim now that none of the vectors
of the form Ljξ

(j)

i can be primitive in Hr(X,C). To show this, suppose
that ξ ∈ Hr−2j

o (X,C), and, moreover, suppose that Ljξ is primitive; i.e.,
Ln−r+1(Ljξ) = 0. Then it follows from Theorem 3.12 that ξ must be zero.
Suppose that {η1, . . . , ηm} is a basis for Hr

o (X,C). Then it follows from the
above remark that the vectors {η1, . . . , ηm, L

jξ
(j)

i } are linearly independent
in Hr(X,C). By the primitive decomposition theorem, they clearly span
Hr(X,C), and hence

bro = m = br − {(br−2 − br−4)+ (br−4 − br−6)+ · · · }
= br − br−2.

Q.E.D.

It is interesting to note that although the primitive cohomology is defined
via the fundamental class ω, the dimensions bjo(X) are topological invariants
of X and independent of the fundamental class ω (of course, for j ≤ n).†

We would now like to discuss the restriction of the quadratic form Q for
a compact Kähler manifold X to subspaces of Hr(X,C). For reasons which
will become apparent, we shall want to consider Q restricted to the primitive
cohomology Hr

0 (X,C). We have the following important theorem, due to

†The same proof shows that for the Hodge numbers hp,q we have hp,qo = hp,q−hp−1,q−1.



Sec. 6 The Hodge-Riemann Bilinear Relations 207

Hodge, which generalizes a theorem of Riemann for the case n = r = 1 (in
which case primitive cohomology coincides with cohomology).

To simplify the notation we let P n(X,C) = Hn
o (X,C) and Pp,q(X) =

Hp,q
o (X,C) denote primitive cohomology, and by definition Pn(X,C), etc.,

will be the dual primitive homology groups (the effective cycles of Lefschetz).

Theorem 6.3: Let X be a compact Kähler manifold, let P r(X,C) =∑
p+q=r P

p,q(X) be the primitive cohomology on X, r = 0, . . . , 2n, and
let Q be the quadratic form on P r(X,C) given by (6.2). Then

(a) Q(P r−q,q , P s,r−s) = 0(q 
= s).
(b) i−r (−1)qQ(P r−q,q , P̄ r−q,q) > 0.

Here (a) means Q(ξ, η) = 0 for ξ ∈ P r−q,q and η ∈ P s,r−s , and (b) means
that

i−r (−1)qQ(ξ, ξ̄ ) > 0, for all nonzero ξ ∈ P r−q,q .
Proof: First we observe that Q restricted to P r(X,C) has a simpler

form, namely,

(6.5) Q(ξ, η) = (−1)r(r+1)/2

∫
X

Ln−r ξ ∧ η, ξ, η ∈ P r(X,C)
and as in the proof of Theorem 6.1, we have

∗η = (−1)r(r+1)/2c−1
0 L

n−rJη, c0 > 0,

as given by Theorem 3.16. Substituting in, we find that

Q(ξ, η) = c0i
b−a

∫
X

ξ ∧ ∗η

if η ∈ P a,b. Now, for part (a), suppose that ξ ∈ P r−q,q and η ∈ P s,r−s , q 
= s.
Then we have

Q(ξ, η) = c0i
r−2s

∫
X

ξ ∧ ∗̄η̄,

and ξ and η̄ have different bidegrees, by assumption, and so, by Proposi-
tion 2.2, Q(ξ, η) = 0. Similarly, if ξ ∈ P r−q,q and ξ 
= 0, then we see that
i2q−r = i−r (−1)q , and thus

i−r (−1)qQ(ξ, ξ̄ ) = c0

∫
X

ξ ∧ ∗ξ̄ > 0.

Q.E.D.

We shall call the relations in Theorem 5.3 (a) and (b) the Hodge-Riemann
bilinear relations. These play an important role in the study of the moduli of
algebraic manifolds (cf. Griffiths [1], [3]). They are the natural generalization
of the Riemann period matrix of a Riemann surface or of an abelian variety
(cf. Sec. VI.4). These topics will be discussed briefly in the remainder of this
section in connection with the general moduli problem for compact complex
manifolds. The reason we restrict our attention to primitive cohomology in
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Theorem 6.3 is that the corresponding quadratic form in (b) for the full
Dolbeault group Hp,q(X) contained in the full de Rham group Hr(X,C) is
an Hermitian symmetric form which is nondegenerate, but it is no longer
positive definite, in general (cf. Hodge [1]). Since the primitive cohomology
generates the full cohomology by means of the fundamental class ω, there
is no essential loss of information.

Remark: If X is a compact Kähler manifold of even complex dimension
2m, then one can use the above type of considerations to show that the
signature of the underlying topological manifold, which is the same as the
signature of the quadratic form

A(ξ, η) =
∫
X

ξ ∧ η, ξ, η ∈ H 2m(X,R),

can be computed in terms of the Hodge numbers hp,q(X). More precisely,
one has

σ(X) =
∑
p,q

(−1)php,q(X) =
∑
p=q(2)

(−1)php,q(X),

where σ(X), the signature of X, is the difference between the number of
positive and negative eigenvalues of the (symmetric, nondegenerate) qua-
dratic form A, and, as is well known in algebraic topology, is a topological
invariant of such a real 4m-dimensional oriented topological manifold (see,
e.g., Hirzebruch [1]). For more details see Weil [1], p. 78.

Let X be a compact Kähler manifold and consider the Hodge decom-
position of the primitive cohomology group of degree r,

P r(X,C) =
∑
p+q=r

P p,q(X).

Then we have the subspace relation

Pp,q(X) ⊂ P r(X,C),

and we note that Theorem 6.3 imposes restrictions that subspaces be of
this form. Let ϕ = {ϕ1, . . . , ϕh} be a basis for Pp,q(X), where h = hp,qo (X),
and let γ̂ = {γ̂1, . . . , γ̂b} be a basis for P r(X,R) with dual (real) basis
γ = {γ1, . . . , γb} for Pr(X,R). For instance, we can choose the basis γ̂ so
that Q in terms of this basis has the canonical form (6.3) or (6.4) depending
on the parity of r, but this is not necessary for our discussion here. We
can express ϕα in terms of the basis γ̂ , namely,

ϕα =
b∑
σ=1

ωασ γ̂σ

and we can integrate this relationship over the cycles {γρ}, obtaining∫
γρ

ϕα =
∑
σ

ωασ

∫
γρ

γ̂σ = ωαρ

since γ and γ̂ are dual bases and the duality pairing is given (via de Rham’s
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theorem) by integration of differential forms over cycles. Thus we have a
matrix

� = (ωαρ) =

⎡⎢⎢⎢⎢⎣
∫
γ1
ϕ1 · · · ∫

γb
ϕ1

· ·
· ·
· ·∫
γ1
ϕh · · · ∫

γb
ϕh

⎤⎥⎥⎥⎥⎦ ,
which we call the period matrix of the differential forms {ϕα} with respect to
the cycles {γρ}. It is clear that � is an h×b matrix of maximal rank. We can
now express the Hodge-Riemann bilinear relations in terms of this matrix
representation for the subspace relation Pp,q ⊂ Hr . Namely, we see that

Q(ϕα, ϕβ) = Q
(∑

σ

ωασ γ̂σ ,
∑
τ

ωβτ γ̂τ
)

=
∑
σ,τ

ωασQστωβτ = 0,

and, similarly,

i−r (−1)qQ(ϕα, ϕ̄β) = i−r (−1)q
∑

ωασQστ ω̄βτ > 0,

which can be expressed in the form (letting Q denote the matrix [Qστ ])
(a) �Qt� = 0.
(b) i−r (−1)q�Qt�̄ > 0.

The bilinear relations above were first written down in this form by Riemann
for periods of holomorphic 1-forms (abelian differentials) on a Riemann
surface (Riemann [1]). If we make a change of basis for Pp,q(X), then
we get another period matrix �̃ which is related to the original � by the
relation �̃ = A� for A ∈ GL(h,C).

If we consider the Grassmannian manifold

Gh(P
r(X,C)),

then the subspace relation Pp,q(X) ⊂ P r(X,C) defines a point in the above
Grassmannian manifold. We thus have the association

X −→ �(X) = (P p,q(X) ⊂ P r(X,C) ∈ Gh(P r(X,C)),
where �(X) is, by definition, the associated point in the Grassmannian,
given by the subspace relation. We call � the period mapping since the
image point �(X) can be represented by periods of integrals as above. The
choice of basis {γ̂1, . . . , γ̂b} gives us

Gh(P
r(X,C)) ∼= Gh(Cb) = Gh,b(C),

and the choice of basis {ϕ1, . . . , ϕh} gives us an h × b matrix (the period
matrix) � ∈ Mh,b(C), which is mapped onto the corresponding point in the
Grassmannian via the canonical projection mapping

Mh,b(C)
π−→Gh,b(C)
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(see Chap. 1). The invariant description of the period mapping given above
is due to Griffiths. If the complex structure on X is allowed to vary in
some manner (for a fixed cup product operator L on a fixed topological
manifold Xtop), then the subspace Pp,q(X) ⊂ P r(X,C) will vary, although
the primitive de Rham group remains fixed. Thus the variation of the Hodge
group Pp,q in P r is a reflection of the variation of the complex structure on
the underlying topological manifold Xtop.† We refer to this generally as a
variation of Hodge structure, and Griffiths has introduced a formulation for
making this variation of Hodge structure precise and in many instances a
true measure of the variation of complex structures (see Griffiths [1], where
he introduces the period mapping, and his survey article [3], which contains
an up-to-date bibliography of the very active work in this field as well as
a long list of conjectures and problems).

We shall introduce here what we shall call a Griffiths domain, which
is a classifying space for Hodge structures and which is chosen in such
a manner that an a priori holomorphic variation of complex structures
induces a holomorphic mapping into the Griffiths domain (a subset of an
appropriate Grassmannian-type domain manifold generalizing the classical
upper half-plane and Siegel’s upper half-space).

Let X be a Kähler manifold as above and let

P r(X) =
∑
p+q=r

P p,q(X)

be the Hodge decomposition for primitive cohomology. Then we define

F s(X) = P r,0(X)+ · · · + P r−s,s(X), s ≤ r,
and we see that

F 1 ⊂ F 2 ⊂ · · · ⊂ F r = P r

and we call {F s} the Hodge filtration of the primitive de Rham group P r .‡ Then
let f s = dimCF

s , σ = [(r−1)/2], and f = (f 0, . . . , f σ ) ([ ] denotes greatest
integer). We consider the flag manifold F(f,W), where W = P r(X,C); i.e.,
a point in F(f,W) (called a flag) is by definition a sequence of subspaces

F 0 ⊂ F 1 ⊂ · · · ⊂ Fσ ⊂ W,

where
dimCF

j = f j .

Thus F(f,W) is a natural generalization of a GrassmannianGh(W), which is
the flag manifold for σ = 0 (which is the case if r = 1, for instance). The det-
ailed construction of a flag manifold is analogous to that of a Grassmannian,
and we omit any details here. Now, to a Kähler manifold X we can

†The above discussion works equally well for nonprimitive cohomology, i.e., considering
Hp,q(X) ⊂ Hr(X,C) as a point in a different Grassmannian. The period relations which
will play a role later are defined only for primitive cohomology, and hence the restriction.
However, by the Lefschetz decomposition theorem, there is no loss of information.

‡One can also define the Hodge filtration of the full de Rham group in the same manner.
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associate the integers f 0, . . . , f σ coming from the Hodge filtration, and
there is then a mapping defined,

X −→ F 0(X) ⊂ F 1(X) ⊂ · · · ⊂ Fσ (X) ⊂ P r(X,C),

which we then write as
�(X) ∈ F(f,W).

This is Griffiths’ period mapping (Griffiths [1]).
Let X

π−→ T be a proper surjective holomorphic mapping of maximal rank
from a complex manifold X to a complex manifold T . Then X

π−→ T is called
a complex-analytic family of compact complex manifolds. Let Xt = π−1(t).
Then Xt is the fibre over t , or the compact complex submanifold of X
corresponding to the parameter t ∈ T . A basic fact about such families is
the following proposition asserting that they are locally differentiably trivial.

Proposition 6.4: If to ∈ T , then there exists a neighborhood U of to in T
and a fibre preserving diffeomorphism

(6.6) f : Xt0 × U −→ π−1(U).

Proof: This is a local problem in the parameter space T , and so let T
be an open set in Ck and let t0 = 0 be the origin assumed to be in T . Then
we have coordinates (t1, . . . , tk) for points in T , and by the implicit function
theorem, if p ∈ X0 = π−1(0), it follows that we can find a neighborhood
Up and a biholomorphic mapping

ψp: Up −→ U ′
p ⊂

open
Cn × Ck,

with
ψp|Up∩Xt

∼=−→U ′
p ∩ Cn × {t};

i.e., the fibres of the family in this coordinate system are given by [t =
constant], where (z, t) ∈ U ′

p, z ∈ Cn, t ∈ Ck. In other words, near p, the
family is holomorphically trivial (= to a product family). We can find a
finite covering {Uα} of a neighborhood of X0 in X by such coordinate
systems, and we denote the coordinates for Uα by (zα, t). The transition
functions from (zα, t) coordinates to (zβ, t) coordinates are of the form[

fαβ(z, t) 0
0 1

]
,

where fαβ(z, t) is an n×n complex matrix of holomorphic functions. By using
a partition of unity we can piece together the usual Euclidean metric in each
coordinate system to obtain a global Hermitian metric h, which, expressed
in one of the above coordinate systems, has the form (in real coordinates)

h =
∑

gij (x, s)dxi ⊗ dxj +
∑

hiν(x, s)dxi ⊗ dsν + · · · ,
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where

zj = xj + ixj+n, j = 1, . . . , n

tj = sj + isj+k, j = 1, . . . , k,

and where (gij ) is a real positive definite matrix and zj = zαj (dropping the
notational dependence on α). Consider a curve of the form (in Uα)

γp,t (τ ) = (z(τ ), τ t),

depending on the parameters (p, t), where p = (z, 0) is a point on X0 ∩Uα.
We require that

(a) γp,t (0) = (z, 0).
(b) The curve γp,t be orthogonal to Xτt with respect to the metric h at

γp,t (τ ).

Note that the nature of the parameterization and the coordinate system
ensures us that the curve intersects Xτt precisely at the point γp,t (τ ).
Condition (b) can be rewritten as the system of ordinary differential
equations

2n∑
j=1

gij (x(τ ), τ s)x
′
j (τ )+

2k∑
ν=1

hiν(x(τ ), τ s)sν = 0, i = 1, . . . , 2n.

It follows that this nonlinear system of equations satisfies a Lipschitz con-
dition (it is quasilinear) such that the standard existence, uniqueness, and
parameter dependence theorems for ordinary differential equations hold,
and thus there is a unique curve associated to each parameter point (p, t),
and we define

f (p, t) = γp,t (1)
and obtain a mapping

f : X0 × T −→ X,

which is (for |t | small) an injective differentiable mapping. Moreover, the
differential of this mapping at points of X0 is readily seen to be invertible,
and thus the mapping

f : X0 × {|t | < ε} −→ X||t |<ε
is a diffeomorphism for ε sufficiently small.

Q.E.D.

Remark: The above result clearly does not depend on the complex
structures.

Proposition 6.4 tells us, in particular, that all the fibres Xt for t near
t0 are diffeomorphic. Then we can consider f −1(Xt) as inducing possibly
different complex structures on the same differentiable manifold (Xt0)diff .
This is the point of view of deformation theory, introduced in the general
context by Kodaira and Spencer in 1958 and begun by Riemann in his study
of the number of moduli necessary to parameterize the different complex
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structures on a Riemann surface. The recent book by Morrow and Kodaira
[1] gives a good introduction to deformation theory along with many exam-
ples, and we refer the reader to this reference as well as the original papers
of Kodaira and Spencer [1, 2]. One of Griffiths’ objects in introducing the
period mapping above was to obtain a representation for the variation of
complex structure (in the sense of deformation theory) in terms of the vari-
ation of Hodge structure. To describe this mapping, we need some auxiliary
results from deformation theory, which we shall now describe.

Proposition 6.5: Let X
π−→ T be a complex-analytic family and let hp,qt =

h
p,q
t (Xt). Then hp,qt is an upper semicontinuous function of the parameter
t ; moreover, hp,qt ≤ hp,qt0 , t0 ∈ T and t near t0.

Proof: This is a local result. Let T ⊂ Ck and t0 = 0 ∈ Ck. We first use
(6.6) to get a diffeomorphism

ft : Xt −→ X0,

which induces a differentiable vector bundle isomorphism,
f ∗
t : ∧r T ∗(X0) −→ ∧rT ∗(Xt).

The almost complex structure Jt acting on T (Xt) induces an almost complex
structure J̃t on T (X0), via ft , and hence a projection

�p,q,t : ∧∗ T ∗(X0) −→ ∧p,qt T ∗(X0),

which is maximal rank for t = 0 and thus for t near 0. Therefore the diagram

∧rT ∗(X0) �� ∧p,qt T ∗(X0) ∼= ∧p,qT ∗(Xt)

∧p,qT ∗(X0)

�� µ

∼=

������������

induces an isomorphism µ for t sufficiently small. Thus we have the operator
∂̄ on Xt acting on the complex ∧p,qT ∗(Xt), induces via µ, the complex

−→ Ep,q(X0)
∂̄t−→ Ep,q+1(X0) −→,

where ∂̄0 = ∂̄ and the operator ∂̄t depends continuously on the parameter t .
The proposition now follows from Theorem 4.13 and Sec. 5 in Chap. IV.

Q.E.D.

Corollary 6.6: Suppose that X
π−→ T is a complex-analytic family such

that T is connected and Xt is Kähler for t ∈ T . Then hp,qt = h
p,q
t0

for some
fixed t0 ∈ T ; i.e., hp,qt is constant on T .

Proof: By Corollary 4.2 we know that
∑

p+q=r h
p,q
t = br,t , but since all

the fibres are diffeomorphic, br,t = br,t0 = br . Thus for |t − t0| < δ, we have
h
p,q
t ≤ hp,qt0 , and therefore

br =
∑
p+q=r

hp,qt ≤
∑
p+q=r

hp,qt0 = br .
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If for some p, q, hp,qt < h
p,q
t0

, for |t − t0| < δ, then we would have a contra-
diction.

Q.E.D.

If now X
π−→ T is a complex-analytic family of Kähler manifolds (e.g., a

family of projective algebraic submanifolds, parameterized by varying the
coefficients of the defining homogeneous equations) and T is connected,
then for all fibres Xt in the family we have the same Hodge numbers hp,q

and hence the same primitive Hodge numbers hp,q0 , and finally the same
Hodge filtration numbers f s, 0 ≤ s ≤ σ = [r/2]. Thus for this family we
may define the flag manifold

F(f 0, . . . , f σ ,W), W = P r(Xt0 ,C),

and we see that the mapping

(6.7) �: T −→ F(f,W)

given by
�(t) = �(Xt) = [F 0(Xt) ⊂ . . . ⊂ Fσ (Xt) ⊂ W ]

is well defined.

Theorem 6.7 (Griffiths): The period mapping (6.7) is a holomorphic
mapping.

Remark: The proof of this theorem depends principally on the Kodaira-
Spencer deformation theory formalism (Kodaira and Spencer [1]), which we
do not develop here (see e.g., Morrow and Kodaira [1]). In fact, Griffiths
shows many more properties of the period mapping such as the nature of
the curvature of certain natural metrics restricted to �(T ), or that �(T ) is
a locally closed analytic subvariety of F(f,W), etc. (see Griffiths [2, 6]). He
also gives conditions (verifiable in many examples) such that if �(t1) 
= �(t2),
then the two complex manifolds Xt1 and Xt2 are not biholomorphically
equivalent. In other words, the period mapping is a description (sometimes
complete) of the variation of the complex structure.

If Q is the fundamental quadratic form defined on P r(X,C) (6.5), then let

X ⊂ F(f 0, . . . , f σ ,W) = F(f,W)

be defined by the set of flags in F(f,W) satisfying the first bilinear condition

(6.8) Q(F s/F s−1, F s/F s−1) = 0,

where F s/F s−1 is defined to be a subspace of F s ⊂ W by defining

F s/F s−1 = {ν ∈ F s : Q(ν, F s−1) = 0}
(note that Q is nondegenerate). Then let D ⊂ X be the set of flags in
F(f,W) satisfying in addition to (6.8) the second bilinear condition

(6.9) i−r (−1)sQ(F s/F s−1, F̄ s/F̄ s−1) > 0.
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One proves that X is a compact projective algebraic manifold and that
D is an open subset of X. Both are homogeneous spaces, with natural
invariant metrics. We call such a domain D a Griffiths domain.† Because
of Theorem 6.3, it follows that

�(T ) ⊂ D ⊂ X ⊂ F(f,W).

Moreover, there is a natural fibering of D (because of the homogeneous
structure) as a real-analytic family of compact complex submanifolds of D,
as in Example 6.8 below (possibly zero-dimensional, as in the classical case),
and Griffiths obtains an infinitesimal period relation which asserts that the
mapping � is transversal to the fibres in the real-analytic fibering mentioned
above.

We mention two examples of Griffiths domains.

Example 6.8: Let r = 1. Then σ = 0, F 0 = H 1,0(X), and the flag
manifold F(f,W) becomes

F(f,W) = Gh,2h(C),

and letting Q be in standard form (6.3),

Q =
[

0 Ih
−Ih 0

]
,

we see that X and D are defined in terms of the “homogeneous coordinates”
for Gh,2h(C),

X = {� ∈ Mh,2h(C): �Qt� = 0}
D = {� ∈ Mh,2h(C): �Qt� = 0,−i�Qt�̄ > 0}.

This Griffiths domain D is biholomorphically equivalent to Siegel’s upper
half-space (see Griffiths [1]),

Ds = {Z ∈ Mh,h(C): Z = tZ, Im Z > 0},
which is itself a generalization of the classic upper half-plane (h = 1) (see
Siegel [1]). D can also be expressed in the homogeneous space form

D = Sp(h)/U(h)

where Sp(h) is the real symplectic group and U(h) is the unitary group
and is a classical bounded symmetric domain (see Helgason [1]).

Example 6.9: If r = 2, then we have the relationship

F 0 = P 2,0 ⊂ P 2

(note that P 2,0 = H 2,0), and, moreover,

dim F 0 = dim H 2,0,

†Griffiths called these domains period matrix domains (Griffiths [1]) and classifying spaces
for Hodge structures (Griffiths [3]).
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and
i2Q|H2,0+H0,2 is positive definite

and
i2Q|P 1,1 is negative definite.

Therefore we have that

i2Q =
[
I2h 0
0 −Ik

]
,

where k = dimP 2 − 2h. D then has the homogeneous representation

D = SO(2h, k)/(U(h)× SO(k)),
and we note that the maximal compact subgroup of the noncompact real
group SO(2h, k) is SO(2h)× SO(k). Thus we have a natural fibering

D = SO(2h, k)/(U(h)× SO(h))
↓ ↓
M = SO(2h, k)/(SO(2h)× SO(k)),

and it so happens that the fibres of this mapping are compact complex
submanifolds of positive dimension when h 
= 1.

The reader is referred to Griffiths’ papers in the References for a further
discussion of the period mapping and its relation to the study of the variation
of complex structure on a given (usually projective algebraic) manifold.

The discussion and analytic behavior of the period mapping into a
Griffiths domain is contained in Griffiths [1, 3 and 6], while the geom-
etry of a Griffiths domain itself is discussed in Griffiths and Schmid [1],
Schmid [1], and Wells [1, 2], Wells–Wolf [1]. The relation of the periods
of harmonic forms on an algebraic hypersurface V of Pn and the rational
forms on Pn−V with poles of various orders along V is studied in Griffiths
[5] along with some interesting applications to algebraic geometry.



CHAPTER VI

KO DA I R A’ S

P RO J E C T I V E E M B E D D I N G T H E O R E M

In this chapter we are going to prove a famous theorem due to Kodaira,
which gives a characterization of which compact complex manifolds admit
an embedding into complex projective space. In Sec. 1 we shall define
Hodge manifolds as those which carry an integral (1, 1) form which is
positive definite in local coordinates. We then give various examples of such
manifolds. Kodaira’s theorem asserts that a compact complex manifold is
projective algebraic if and only if it is a Hodge manifold. This is a very useful
theorem, as we shall see, since it is often easy to verify the criterion. Chow’s
theorem asserts that projective algebraic manifolds are indeed algebraic, i.e.,
defined by the zeros of homogeneous polynomials. Thus the combination
of these two theorems allows one to reduce problems of analysis to ones of
algebra (cf. Serre’s famous paper [2] in which this program of comparison
is carried out in great detail).

In Sec. 2 we shall use the Hodge theory developed in the previous two
chapters to prove Kodaira’s vanishing theorem, which plays a role in compact
complex manifold theory similar to that of Theorem B of Cartan in Stein
manifold theory (see Gunning and Rossi [1]).

In Sec. 3 we shall introduce the concept of a quadratic transform of a
complex manifold at a given point (the Hopf blowup) and study the behavior
of metrics on holomorphic line bundles under pullbacks with respect to a
quadratic transform. In Sec 4. we shall bring together the tools of Secs. 2
and 3 (which depended in turn on the work in the previous chapters) to
prove Kodaira’s embedding theorem.

1. Hodge Manifolds

In this section we want to consider a restricted class of Kähler manifolds
defined by a certain topological (integrality) condition. If X is a compact
complex manifold, then a d-closed differential form ϕ on X is said to be
integral if its cohomology class in the de Rham group, [ϕ] ∈ H ∗(X,C), is
in the image of the natural mapping:

H ∗(X,Z) −→ H ∗(X,C).

217
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Let h be a Kähler metric on a complex manifold of Kähler type and let
� be the associated fundamental form.

Definition 1.1: If � is an integral differential form, then � is called a
Hodge form on X, and h is called a Hodge metric. A manifold of Kähler
type is called a Hodge manifold if it admits a Hodge metric.

This terminology was first used by A. Weil. The main theorem of this
chapter (due to Kodaira [2]) is that a compact complex manifold is Hodge
if and only if it is projective algebraic. First we shall see that there are
many examples of Hodge manifolds, some of which are not at all obviously
projective algebraic, and in passing we shall note that the Hodge condition
is often easy to verify in practice.

Let E be a holomorphic line bundle over a complex manifold X. Then
we let

Eµ = E ⊗ · · · ⊗ E︸ ︷︷ ︸
µ factors

and
E−µ = (E∗)µ,

for any positive integer µ. We let E0 = X × C, the trivial line bundle over
X, which is isomorphic to Eµ ⊗ E−µ for all positive µ, as is easy to see.
If {gαβ} is a set of transition functions for E with respect to some locally
finite set of trivializations, then {gµαβ} is a set of transition functions for
Eµ for all integers µ. This is a simple fact, whose verification we leave
to the reader (cf. Sec. 2 in Chap. I). In various examples below we shall
use this principle to compare different line bundles on the same space, by
comparing appropriate transition functions on the same open covering. If
X is of complex dimension n, then we let

KX = ∧nT ∗(X)

be the canonical line bundle of X. It follows that

OX(KX) = OX(∧nT ∗(X)) = �n
X

the sheaf of holomorphic n-forms on X. For simplicity we denote the
canonical line bundle simply by K whenever X is fixed in a given discussion.

We now present a list of examples of Hodge manifolds.

Example 1.2: Let X be a compact projective algebraic manifold. Then
X is a submanifold of PN for some N . Let � be the fundamental form
associated with the Fubini-Study metric on PN (see Example V.4.5). Since �

is the negative of the Chern form for the universal bundle U1,N+1 → PN , it
follows that � is a Hodge form on PN (see Propositions III.4.3 and III.4.6).
The restriction of � (as a differential form) to X will also be a Hodge
form, and hence X is a Hodge manifold. In general, by the same principle,
a complex submanifold of a Hodge manifold is again a Hodge manifold.
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Example 1.3: Let X be a compact complex manifold which is an unram-
ified covering of a Hodge manifold Y ; i.e., there is a holomorphic mapping
X

π−→Y such that π−1(p) is discrete and π is a local biholomorphism at
each point x ∈ X. Then X is a Hodge manifold. To see this, simply let � be
a Hodge form on Y and then π∗� will be a Hodge form on X. Similarly, if

X
f−→Y is an immersion, then f ∗� will give a Hodge manifold structure

to X.

Example 1.4: Let X be a compact connected Riemann surface. Then X
is a Hodge manifold. Namely, since dimRX = 2, we have by Poincaré duality
that C ∼= H 0(X,C) ∼= H 2(X,C), and, moreover, H 2(X,C) = H 1,1(X). Let
�̃ be the fundamental form on X associated with a Hermitian metric. Then
�̃ is a closed form [of type (1, 1)] which is a basis element for the one-
dimensional de Rham group H 2(X,C). Let c = ∫

X
�̃, and then � = c−1�̃

will be an integral positive form on X of type (1, 1). Hence X is Hodge.
This example generalizes to the assertion that any Kähler manifold X with
the property that dimCH

1,1(X) = 1 is necessarily Hodge. This follows from
the fact that multiplication by an appropriate constant will make the Kähler
form on X integral, as above in the Riemann surface case (one has to also
make an appropriate choice of basis for the integral 2-cycles).

Example 1.5: Let D be a bounded domain in Cn and let � be a fixed
point free properly discontinuous subgroup of the group of biholomor-
phisms of D onto itself [= Aut(D)] with the property that X = D/� is
compact (cf. Proposition V.5.3). Then X is a Hodge manifold. Let �D be
the fundamental form associated with the Bergman metric hD on D (see,
e.g., Bergman [1], Helgason [1], or Weil [1]). The Bergman metric has the
very useful property that it is invariant under the action of Aut(D) and
hence under the action of any subgroup �. Thus hD induces a metric h on
X, which has associated with it a fundamental form � which is of type
(1,1) and positive definite. Moreover, since (for a particular normalization)

(1.1) �D(z) = ∂∂̄ log kD(z),

where kD(z) is the Bergman kernel function for the domain D, it follows
that � is Kähler. What remains to be shown is that the Bergman metric
form (1.1) above induces an integral form � on X. To do this, we shall
show that (i/2π)� is, in fact, the Chern form of the canonical bundle over
X and hence belongs to an integral cohomology class in H 2(X,Z). We shall
need the property that kD(z) > 0 for all z ∈ D [which is almost self-evident
from the fact that

kD(z) =
∑
v

|ϕv(z)|2

for an orthonormal basis {ϕv} for the Hilbert space L2(D)∩O(D)], and we
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shall also need the property that

(1.2) kD(γ (z)) = kD(z)

∣∣∣∣det
∂γ (z)

∂z

∣∣∣∣−2

, γ ∈ Aut(D),

where ∂γ /∂z is the Jacobian matrix of the biholomorphism γ (see Bergman
[1] or Weil [1]). Suppose that {Uα} is a covering of X by a finite number
of coordinate patches, with ψα: Uα → D being the coordinate functions
(which can be taken as local inverses for the projection π : D → X = D/�).
Then the transition function γαβ = ψα

◦ ψ−1
β ∈ � and is defined on all of

D. It then follows that {(∂γαβ/∂z)(ψβ(p))} are the transition functions for
T (X) and that gαβ(z) = det(∂γαβ/∂z)(ψβ(p)) are the transition functions
for ∧nT (X). Thus the functions {g−1

αβ } are the transition functions for the
canonical line bundle KX = ∧nT ∗(X). Let kα = kD

◦ ψα be positive functions
defined on Uα ⊂ X. Then it is easy to check from (1.2) that

kα(p) =
∣∣∣∣det

∂γαβ(z)

∂z

∣∣∣∣2

kβ(p),

where z = ψβ(p). This shows that the {kα} transform like a metric for K
and thus define a metric on KX. By the results in Chap. III, we see that

c1(KX) = i

2π
∂̄k−1

α ∂kα = −i
2π
∂∂̄ log kα

= − i

2π
∂∂̄ log k(z) (in the coordinates of D),

but this is (except for sign) the fundamental form associated with the
Bergman metric and thus the induced Bergman metric is a Hodge metric.
Therefore, X is a Hodge manifold.

Remark: Note that the above example is quite different from the example
of a Hopf surface given in Sec. 5 of Chap. V, since the Hopf surface was
defined as a quotient space D/�, where D was not a bounded domain,
and by the results above it cannot be biholomorphically equivalent to one.
Being biholomorphically equivalent to a bounded domain is rather crucial
for the Bergman kernel theory to apply.

Example 1.6: Consider a complex torus X, as in Example V.4.4, with
2n independent periods {ω1, . . . , ω2n} in Cn, and let

� =

⎡⎢⎢⎢⎢⎣
ω11 · · · ω1,2n

· ·
· ·
· ·
ωn1 · · · ωn,2n

⎤⎥⎥⎥⎥⎦
be the matrix of periods. Suppose that there exists a nonsingular integral
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skew-symmetric matrix Q of rank 2n such that

(I) �At� = 0

(II) − i�At�̄ = M > 0 (positive definite),
(1.3)

where A = Q−1. Then we say that � is a Riemann matrix (cf. Conforto [1] and

Siegel [1]). Consider the matrix P =
[
�

�̄

]
, called the big period matrix. Then

it follows from the conditions above that P is nonsingular. Namely, consider
the product [using the relations (1.3) above] and, noting that tM = M̄,

(1.4) PAtP̄ =
[
�

�̄

]
A[t�̄, t�] =

[
iM 0
0 −iM̄

]
,

which is nonsingular, since M > 0, and hence P is nonsingular. Thus we
find that, by taking the inverse of (1.4),

Q = i

2
[t�H �̄ − t�̄H̄�],

where we let tH = 2M−1, which is also positive definite, and thus we find that

(1.5) Qαβ = i

2

∑
µ,ν

hµν(ωµαω̄νβ − ωµβω̄να).

Conversely, if the periods {ωα} satisfy (1.5) for some Hermitian positive
definite matrix H , where Q is a skew-symmetric nondegenerate matrix with
integer coefficients, then � is a Riemann matrix. Let

ω = i

2

∑
hµνdzµ∧dz̄ν

be the fundamental form for a Hermitian metric for X defined by the con-
stant positive definite matrix H . The integral homology group H2(X,Z)
is generated by the integral 2-cycles {Cαβ}, defined by the parametric
representation

Cαβ = {sωα + tωβ : 0 ≤ s, t ≤ 1},
where ωα, ωβ are given periods, 1 ≤ α < β ≤ 2n. Then the period of ω
over the 2-cycles is given by∫

Cαβ

ω = i

2

∑
µ,ν

hµν(ωµαω̄νβ − ωµβω̄να).

This is easy to verify and consists of evaluating the integral of dzµ∧dz̄ν
over the real two-dimensional parallelogram determined by the two vectors
ωα and ωβ in Cn. Thus ω is a Hodge form for the torus X.

In the other direction, suppose that we know that a torus X admits an
embedding into some projective space PN . Then the standard Kähler form
on PN induces a Hodge form ω on X and in the coordinates of Cn,

(1.6) ω = i

2

∑
hµνdzµ∧dz̄ν,
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where the functions hµν are not necessarily constant, as we had above.
However, ∫

Cαβ

ω ∈ Z,

and we can replace hαβ in (1.5) by the mean value

ĥαβ = µ(X)−1

∫
X

hαβdµ,

where µ is the invariant measure on the torus induced by Lebesgue measure
in Cn. One can then verify that the resulting form ω̂ will satisfy the condition
(1.5) and will have a positive definite coefficient matrix. Thus the existence
of a Hodge form on X implies that the period matrix is a Riemann matrix.

An example of a complex torus not satisfying Riemann’s condition is
given by the period matrix (n = 2)

(1.7) � =
[

1 0
√−2

√−5
0 1

√−3
√−7

]
.

Namely, suppose that there existed a matrix A with rational coefficients
such that

(1.8) �At� = 0.

Then the element in the first row and second column of (1.8) is given by

a12 + a13

√−3 + a14

√−7 − a23

√−2 − a24

√−5

+ a34(
√

14 − √
15) = 0,

from which it follows easily that

a12 = a13 = a14 = a23 = a24 = a34 = 0,

since A was assumed to have rational entries. Since A is skew-symmetric,
it follows that A cannot be nonsingular, which contradicts the assumption
of � being a Riemann matrix. Thus this particular complex torus cannot
be projective algebraic. One can show, in fact, that the complex torus
defined by the period matrix � in (1.7) does not admit any nonconstant
meromorphic function (cf. Siegel [1], pp. 104–106), which also implies that
X is not embeddable in any projective space.

2. Kodaira’s Vanishing Theorem

The vanishing theorem of Kodaira plays a role in the theory of compact
complex manifolds analogous to the well-known Theorem B of Stein mani-
fold theory (due to Cartan and Serre; see, e.g., Gunning and Rossi [1]). The
basic difference is that on a compact complex manifold X, the cohomology
groups Hq(X,O(E)), q ≥ 1, do not need to vanish for all holomorphic
vector bundles E, which would be the case for Stein manifolds. There are
basic obstructions, due to the compactness.
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We shall now formulate the vanishing theorems for line bundles. A dif-
ferential form ϕ of type (1, 1) on a complex manifold is said to be positive
if, in local coordinates at any point p,

ϕ = i
∑
µ,ν

ϕµν(z)dzµ∧dz̄ν,

and the matrix [ϕµν(z)] is a positive definite Hermitian symmetric matrix for
each fixed point z near p. Notationally, we denote this condition by ϕ > 0.

Definition 2.1: Let E → X be a holomorphic line bundle and let c1(E) be
the first Chern class of E considered as an element of the de Rham group
H 2(X,R). Then E is said to be positive if there is a real closed differential
form ψ of type (1, 1) such that ψ ∈ c1(E) and ψ is a positive differential
form. E is said to be negative if E∗ is positive.

For computational ease we prove the following proposition.

Proposition 2.2: Let E −→ X be a holomorphic line bundle over a compact
complex manifold X. Then E is positive if and only if there is a Hermitian
metric h on E such that i�E is a positive differential form, where �E is
the curvature of E with respect to the canonical connection induced by h.

Proof: It is obvious from the differential-geometric definition of c1(E)

that i�E positive for some metric h will imply that E is positive. Conversely,
suppose that E is positive and that ϕ ∈ c1(E), where ϕ is a positive
differential form. Let h be any metric on E, and then with respect to a
local frame f we have [h = h(f )]

ϕ0 = i

2π
∂̄∂ log h ∈ c1(E),

and hence
ϕ − ϕ0 = dη, η ∈ E1(X).

Moreover, the differential form ϕ is a Kähler form on X, and X becomes a
Kähler manifold when equipped with the associated Kähler metric. Then we
may apply the harmonic theory, and let H be the harmonic projection onto
H∗(X), and let G be the Green’s operator associated with the d-Laplacian
� = 2� = 2�. Then we note that

η = Hη + �Gη,

and hence
dη = dHη + d�Gη = �Gdη,

since dH = 0 and d commutes with both � and G.† It follows that

dη = 2∂̄ ∂̄∗Gdη + 2∂̄∗G∂̄dη,

and we claim that ∂̄dη = 0 and ∂dη = 0. This follows from the fact that

†The operators ∂ and ∂̄ also commute with G = 1
2G� = 1

2G�, (cf. Theorem IV.5.2).
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∂̄ϕ = ∂̄ϕ0 = 0, and ∂ϕ = ∂ϕ0 = 0, since ϕ can locally be written in the form
ϕ = ∂∂̄u, for some C∞ function u (Lemma II.2.15), and ϕ0 is already of
this form. Thus

dη = 2∂̄ ∂̄∗Gdη,
and we can use the Kähler identity

i∂̄∗ = L∗∂ − ∂L∗

(Corollary V.4.10), obtaining

dη = 2i∂̄∂L∗Gdη,
since ∂G = G∂ and ∂dη = 0. Therefore we set r = 2L∗Gdη, and by letting
h′ = h · e2πr be a new metric for E, we obtain

i

2π
∂̄∂ log h′ = i

2π
∂̄∂ log h+ i∂̄∂r

= ϕ0 + dη
= ϕ.

Q.E.D.

Example 2.3: Let X = Pn, and consider the following three basic line
bundles over Pn:

(a) The hyperplane section bundle: H −→ Pn.
(b) The universal bundle: U −→ Pn(U = U1,n+1).
(c) The canonical bundle: K = ∧nT ∗(Pn) −→ Pn.

Here H is the line bundle associated to the divisor of a hyperplane in Pn,
e.g., [t0 = 0], in the homogeneous coordinates [t0, . . . , tn]. Then the divisor
is defined by {t0/tα} in Uα = {tα 
= 0}, and the line bundle H has transition
functions (cf. (III.4.9))

hαβ =
(
t0

tα

)(
t0

tβ

)−1

in Uα ∩ Uβ

= tβ

tα
.

The universal bundle (Example I.2.6) has transition functions

uαβ = tα

tβ
in Uα ∩ Uβ,

and thus H ∗ = U. Let us now compute the transition functions for the
canonical bundle K on Pn. If we let ζ βj = tj /tβ, j 
= β, the usual coordinates
in Uβ , then a basis for K|Uβ is given by the n-form

�β = (−1)βdζ β0 ∧ · · · ∧ dζ ββ−1∧dζ ββ+1 ∧ . . .∧dζ βn .
Since

ζ
β

j = tj

tβ
= tj

tα
· tα
tβ
,
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we have
ζ
β

j = ζ αj · (ζ αβ )−1

in Uα ∩ Uβ which is the (nonlinear) change of coordinates for Pn from Uα
to Uβ . Thus we obtain easily, by substituting into the above form �α,

�α = (ζ αβ )
n+1(−1)βdζ β0 ∧ · · · ∧dζ ββ−1 ∧ dζ ββ+1∧ · · · ∧dζ βn

= (ζ αβ )
n+1�β

Now we see that these transition functions for the frames {�α} induce
transition functions {kαβ} for the canonical bundle K which are given by

kαβ([t0, . . . , tn]) =
(
tα

tβ

)n+1

.

We note that the choice of the minus sign in the trivializing sections was
necessary for the transition functions for K to be comparable to the tran-
sition functions for U and H . Thus K = ∧nT ∗(Pn) = Un+1 = (H ∗)n+1.
Moreover, the universal bundle U → Pn has the curvature form given in
(III.2.10), which is the negative of the positive differential form

� = i

2

|t |2
n∑
µ=0
dtµ∧dt̄µ −

n∑
µ,ν=0

t̄µtνdtµ∧dt̄ν
|t |4 ,

expressed in homogeneous coordinates. Namely, � is the canonical Kähler
form on Pn associated with the Fubini-Study metric (see Example V.4.5).
Thus H ∗, U , and K are negative line bundles over Pn, and the hyperplane
section bundle H −→ Pn is positive. These are the primary examples of
positive and negative line bundles.

Remark: It follows from the Hodge decomposition theorem that
H 1(Pn,O) = H 2(Pn,O) = 0. Namely,

H 1(Pn,C) = H 1,0(Pn)⊕H 0,1(Pn),
and H 1(Pn,C) = 0, by the cell decomposition of Pn. Also,

C ∼= H 2(Pn,C) = H 2,0(Pn)⊕H 1,1(Pn)⊕H 0,2(Pn),
and since H 1,1(Pn) = C[�], where � is the fundamental form on Pn, it fol-
lows that H 2(Pn,O ∼= H 0,2(Pn) = 0.† Now consider the short exact sequence

0 −→ Z −→ O −→ O∗ −→ 0

on Pn and the induced cohomology sequence

H 1(Pn,O) −→ H 1(Pn,O∗)
c1−→H 2(Pn,Z) −→ H 2(Pn,O),

which gives us, since H 1(Pn,O) = H 2(Pn,O) = 0,

0 −→ H 1(Pn,O∗)
c1−→H 2(Pn,Z) −→ 0.

‖ �
Z

†In the same manner, one obtains that Hq(Pn,�p) = 0, p 
= q,Hp(Pn,�p) ∼= H 2p(Pn,C),
which are special cases of a vanishing theorem due to Bott [1].
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Let P1 ⊂ Pn be a generator for H 2(Pn, Z), and then we see that if we
consider powers of the hyperplane section bundle Hm, we obtain

c1(H
m)(P1) = m.

Namely, by the properties of Chern classes,†
c1(H) = c1(U

∗) = −c1(U) and c1(U)(P1) = −1.
Since c1 is an isomorphism of abelian groups, it follows that every holomor-
phic line bundle L −→ Pn (in particular U and K in the above example) is
a power of the hyperplane section bundle, L = Hm, and c1(L)(P1) = m. We
use here the fact that c1(L) = c1(H

m) = c1(H⊗· · ·⊗H) = c1(H)+· · ·+c1(H)

(cf. the proof of Theorem III.3.6). In particular, we obtain from Example 2.3
that c1(KPn)(Pn) = −(n+ 1). Thus the holomorphic line bundles on Pn are
completely classified in this manner by their Chern classes.

We now state the basic vanishing theorem due originally to Kodaira [1].

Theorem 2.4: Suppose that X is a compact complex manifold.

(a) Let E −→ X be a holomorphic line bundle with the property that
E ⊗K∗ is a positive line bundle. Then

Hq(X,O(E)) = 0, q > 0.
(b) Let E −→ X be a negative line bundle. Then

Hq(X,�p(E)) = 0, p + q < n.
Remark: Kodaira’s theorems were first proved in Kodaira [1] ((a) and

p = 0 in (b)) and were generalized later by Nakano [1] to the case we have
given here. There are various generalizations of these types of results for
vector bundles which are not as precise as the above theorems but which
have numerous applications. See, e.g., Grauert [2], Griffiths [2], Nakano [1],
Hartshorne [1], and Grauert and Riemenschneider [1].

To prove the above theorem we want to derive some fundamental inequal-
ities due to Nakano. First suppose that X is a Kähler manifold with a
fundamental form � associated to the Kähler metric. Then the operators L
and L∗ are well-defined endomorphisms of E∗(X). Suppose that E −→ X

is a holomorphic vector bundle over X. Then we want to show that L and
L∗ extend in a natural manner to endomorphisms of E∗(X,E) (differential
forms with coefficients in E). If ξ ∈ Ep(X,E), then for a choice of a local
holomorphic frame f for E in an open set U ⊂ X, we see that

ξ(f ) =

⎡⎢⎢⎢⎢⎣
ξ 1(f )

·
·
·

ξρ(f )

⎤⎥⎥⎥⎥⎦ ,
†Compare the proof of Proposition III.4.3, where c1(U)(P1) = ∫

P1
c1(U) = −1.
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where ξ j (f ) ∈ Ep(U). Moreover, if g is a holomorphic change of frame,
then we have the compatibility condition that

g−1ξ(f ) = ξ(gf )

(see Sec. 2 of Chap. III), where the matrix g−1 of functions is multiplied with
the vector ξ(f ) of differential forms. We now let ∗ be the Hodge operator
defined with respect to the Kähler metric on X, and ∗ acts naturally on
vector-valued forms by setting

∗ξ(f ) =

⎡⎢⎢⎢⎢⎣
∗ξ 1(f )

·
·
·

∗ξρ(f )

⎤⎥⎥⎥⎥⎦
and noting that, since ∗ is C-linear,

∗ξ(gf ) = ∗g−1ξ(gf ) = g−1∗ξ(f ),
and hence ∗ξ(f ) satisfies the compatibility conditions and defines a global
element in Ep(X,E). This is true of any zeroth order differential operator
(which is a homomorphism of the underlying vector bundles). Thus

L: Ep(X,E) −→ Ep+2(X,E)

is well defined by letting

L(ξ(f )) = (Lξj (f )), j = 1, . . . , ρ,

and hence L∗ = w∗L∗ is also defined. Of course, exterior differentiation d
does not extend to vector-valued forms, and we have to introduce a connec-
tion on E in order to define covariant differentiation on E, a generalization
of exterior differentiation. Namely, as in Chap. III, we let

D = d + θ,
where θ is the connection defined by

θ = h−1∂h (with respect to a local holomorphic frame)

if h is the metric. Moreover,

D = D′ +D′′,

where

D′ = ∂ + θ
D′′ = ∂̄

are the splitting of the covariant differentiation into types. With respect to
the Hodge inner product on E∗(X,E), we have the L2-adjoints of the above
differential operators, computed as in Proposition V.2.3:

(2.1) (D′)∗E = −∗∂̄∗ = ∂∗

(D′′)∗E = −∗∂∗ + w∗θ∗ on r-forms(2.2)

= ∂̄∗ + w∗θ∗.
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Note that in making this computation the Hodge inner product can be
represented with respect to a local holomorphic frame

(ξ, η) = (−1)p
∫

∗̄tη •h • ξ, ξ, η ∈ Ep(X,E),

where ξ = ξ(f ), η = η(f ), and h = h(f ) are vectors and matrices, respec-
tively, and the multiplication inside the integral is matrix multiplication.
Also it suffices to compute the adjoint (which we know is a differential
operator by Proposition IV.2.8), to assume that ξ and η have support where
the holomorphic frame is defined. The crucial factor for our later use is
that the adjoint (D′)∗E does not depend on the Hermitian metric of the
fibres of E, and, in particular, is the more classical scalar adjoint ∂∗ acting
in E∗(X). The adjoint of ∂̄ (a scalar operator) is no longer scalar, however,
Then we can conclude that, by Corollary V.4.10, since the scalar operator
adjoints are with respect to a scalar metric,

(2.3) ∂̄L∗ − L∗∂̄ = i∂∗ = i(D′)∗E.

Under these circumstances we have the following inequality due to
Nakano [1].

Proposition 2.5: Let ξ ∈ Hp,q(E). Then

(a) (i/2)(�∧L∗ξ, ξ) ≤ 0.
(b) (i/2)(L∗�∧ξ, ξ) ≥ 0.

In both (a) and (b) � (= ∂̄h−1∂h) is the curvature form for the metric h
on the holomorphic vector bundle E.

Proof: We recall that (Proposition III.1.9), as an operator,

D2 = (d + θ)2 = �,

and thus
�∧η = D2η = (D′∂̄ + ∂̄D′)η

for η ∈ E∗(X,E) (noting that (D′)2 = 0, because of type). Hence we have

i(∂∗ξ, ∂∗ξ) = ([∂̄L∗ − L∗∂̄]ξ, ∂∗ξ)

by (2.3), and since ξ is harmonic, we have ∂̄ξ = ∂̄∗
Eξ = 0, and thus

i(∂∗ξ, ∂∗ξ) = (∂̄L∗ξ, ∂∗ξ)

= (L∗ξ, [∂̄∗
E∂

∗ + ∂∗∂̄∗
E]ξ),

since ∂̄∗
Eξ = 0. Then, taking adjoints, we get

i(∂∗ξ, ∂∗ξ) = ([D′∂̄ + ∂̄D′]L∗ξ, ξ)

= (�∧L∗ξ, ξ),

which immediately gives part (a). Part (b) is proved in a similar manner.
Q.E.D.

It is now a simple matter to derive Kodaira’s vanishing theorem.
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Proof of Theorem 2.4: Suppose that E is a negative line bundle. Then
a fundamental form for a Kähler metric on X is given by � = −(i/2)�
[noting that � is a closed form of type (1, 1), whose coefficient matrix is
negative definite]. Then subtract part (b) from part (a) in Proposition 2.5,
and we obtain [noting that −(i/2)�∧ gets replaced by L]

([L∗L− LL∗]ξ, ξ) ≤ 0.

Recalling from Proposition V.1.1(c) that

(L∗L− LL∗)ξ = (n− p − q)ξ,
we have immediately

(n− p − q)(ξ, ξ) ≤ 0

if ξ ∈ Hp,q(E), and thus part (b) of Theorem 2.4 follows, by using the
results in Example IV.5.7. Part (a) follows from part (b) by Serre duality
(Theorem V.2.7). Namely, if E ⊗K∗ is positive, then (E ⊗K∗)∗ = K ⊗ E∗

is negative. We then have

Hq(X,O(E)) = Hq(X,O(K ⊗K∗ ⊗ E) = Hq(X,�n(K∗ ⊗ E)),
which is dual to Hn−q(X,O(K⊗E∗)), which vanishes for q > 0, by part (b).

Q.E.D.

3. Quadratic Transformations

In this section we are going to study the behavior of positive line bun-
dles under quadratic transformations. Let X be a complex manifold and
suppose that p ∈ X. Then we want to define the quadratic transform of the
manifold X at the point p. Let U be a coordinate neighborhood of the
point p, with coordinates z = (z1, . . . , zn), where z = 0 corresponds to the
point p. Consider the product U × Pn−1, where we assume that (t1, . . . , tn)
are homogeneous coordinates for Pn−1. Then let

(3.1) W = {(z, t) ∈ U × Pn−1: tαzβ − tβzα = 0, α, β = 1, . . . , n},
which is a submanifold of U×Pn−1. Then there is a holomorphic projection
π : W −→ U given by π(z, t) = z. Moreover, π has the following properties,
as is easy to verify:

π−1(0) = S = {0} × Pn−1
∼= Pn−1

π |W−s : W − S −→ U − {0} is a biholomorphism.
(3.2)

We define X̃ = Qp(X), the quadratic transform of X at p, by letting

X̃ =
{
W, x ∈ U
X − U, x ∈ X − U.

This process if often referred to as blowing up X at the point p. We may
also denote the manifold X̃ by Qp(X) to indicate the dependence on the
point p, and the projection will be denoted by πp: Qp(X) −→ X.
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We recall from Sec. 4 in Chap. III that a divisor D in a complex manifold
X determines an associated holomorphic line bundle L(D) → X, which is
unique up to holomorphic equivalence of line bundles. Let X̃

π→X be the
quadratic transform of X at the point p and let S = π−1(p). Then S ∼= Pn−1

and is an (n − 1)-dimensional compact hypersurface embedded in X̃. As
such it is a divisor in X̃ and determines a line bundle L(S) → X̃, which we
shall simply denote by L. Moreover, since S ∼= Pn−1, there is a canonical
line bundle, the hyperplane section bundle H → S (cf. Example 2.3), which
is the line bundle determined by the divisor corresponding to a fixed linear
hyperplane (e.g., [t1 = 0] ⊂ Pn−1), all such line bundles being isomorphic.
Let σ denote the projection σ : W → Pn−1, σ (z, t) = t , and let L|W denote
the restriction of the line bundle L → X̃ to W ⊂ X̃. Then we have the
following proposition.

Proposition 3.1: L|W = σ ∗H ∗.

Proof: Let U be a coordinate neighborhood of p in X, and represent
X̃ near π−1(U) by W ⊂ U × Pn−1, with coordinates (z1, . . . , zn) ∈ U ,
[t1, . . . , tn] ∈ Pn−1. Then S is defined by z1 = · · · = zn = 0 in the product
space U × Pn−1. Now the hyperplane [t1 = 0] is defined by the equations
[(t1/tα) = 0] in Vα ⊂ Pn−1, where Vα = {[t1, . . . , tn]: tα 
= 0} is a coordinate
patch for Pn−1. Therefore H → S is the line bundle given by the transition
functions

hαβ =
(
t1

tα

)
•
(
t1

tβ

)−1

= tβ

tα
in Vα ∩ Vβ,

and σ ∗H has the same transition functions in (U × Vα ∩ Vβ) ∩ W . Now
S ∩ (U × Vα) ∩ W is defined by the single equation [zα = 0], as is easily
checked, using the defining relation for W . Thus the line bundle L associated
to the divisor S ⊂ W has the transition functions

gαβ(z, t) = zα

zβ
in (U × Vα ∩ Vβ) ∩W.

It follows that gαβ = h−1
αβ and thus L|W = σ ∗H ∗.

Q.E.D.

We now want to study the differential-geometric behavior of a line bundle
on X when lifted to a quadratic transformation of X at some point p. First
we look at the behavior of the canonical bundles. Let X be a compact
complex manifold, which will remain fixed in the following discussion, and
Lp → QpX := Qp(X) is the line bundle given in Proposition 3.1.

Lemma 3.2: KQpX = π∗
pKX ⊗ Ln−1

p .

Proof: First we note that (z1, t2/t1, . . . , tn/t1) are holomorphic coordi-
nates for U × V1 ∩W (using the same coordinates as above). Hence

f1 = dz1∧d
(
t2

t1

)
∧ · · · ∧d

(
tn

t1

)
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is a holomorphic frame for KX̃ over this open set, letting X̃ = QpX.
Moreover, one obtains easily that

f1 = z1−n
1 dz1∧ · · · ∧dzn,

using the defining equations for W . More generally, we have that

fα = z1−n
α dz1∧ · · · ∧dzn

is a frame for KX̃ over U × Vα ∩W , and hence transition functions for the
line bundle KX̃|W are given by

(3.3) fβ = gαβfα,

since the local frames {fα} define a system of trivializations, which then
gives (3.3). It then follows that gαβ = (zα/zβ)

n−1, which implies that

KX̃|W = Ln−1|W ∼= Ln−1 ⊗ π∗
pKX|W

since KX is trivial on U . Also, L|X̃−W is trivial, and πp is biholomorphic
on X̃ −W . Hence

KX̃|X̃−W ∼= KX̃ ⊗ Ln−1|X̃−W .
Thus

(3.4) KX̃
∼= Ln−1 ⊗ π∗

pKX.

Q.E.D.

Let p ∈ X and let Lp → QpX be the line bundle corresponding to
the divisor π−1

p (p) ⊂ X. If q 
= p is another point on X, then it is clear
that QqQpX ∼= QpQqX, since blowing up at the points p and q are local
and independent operations. Let πp,q : QpQqX → X be the composite
projection and and let Lp,q be the line bundle corresponding to the divisor
π−1
p,q({p} ∪ {q}).

Proposition 3.3: Let E → X be a positive holomorphic line bundle. There
exists an integer µ0 > 0 such that if µ ≥ µ0, then for any points p, q ∈ X,
p 
= q,

(a) π∗
pE

µ ⊗ L∗
p ⊗K∗

QpX
,

(b) π∗
pE

µ ⊗ (L∗
p)

2 ⊗K∗
QpX

, and
(c) π∗

p,qE
µ ⊗ L∗

p,q ⊗K∗
QpQqX

are positive holomorphic line bundles.

Proof: To prove the above proposition, we shall construct a metric on
each of the above line bundles whose curvature form multiplied by i is
positive. We shall first look at a special case. Suppose that p ∈ X is fixed,
and let QpX = X̃, as before. The basic fact that we shall be using is that
if F and G are Hermitian line bundles over a complex manifold Y , then,
denoting the curvature by �,

�F⊗G = �F + �G.
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This is easy to see, since if ρα = |gβα|2ρβ and rα = |hβα|2rβ are local transition
functions for metrics {ρα} and {rα} for F and G, respectively (cf. Chap. III),
then

�F = ∂̄∂ log ρα,

�G = ∂̄∂ log rα,

but {gαβ •hαβ} are the transition functions for F ⊗ G, and thus {ρα • rα}
defines a metric for F ⊗G, since

ραrα = |gβα|2|hβα|2ρβrβ.
Thus

�F⊗G = ∂̄∂ log (ραrα)

= �F + �G.

We have, then, using the given metric on E and letting π = πp,

�π∗Eµ = π∗�Eµ = µπ∗�E.

We now need to construct appropriate metrics on Lp and KX̃.
First we consider Lp. Suppose that U is a coordinate neighborhood

near p, with coordinates (z1, . . . , zn), that Pn−1 has homogeneous coordinates
[t1, . . . , tn] as before, and that W ⊂ U × Pn−1 is the local representation for
X̃ near π−1

p (p) as given by (3.1). Let U ′ be an open subset of U such that
0 ∈ U ′ ⊂⊂ U , and let ρ ∈ D(U) be chosen so that ρ ≥ 0 in U and ρ ≡ 1
on U ′. Let

�H = ∂̄∂ log
|tα|2

|t1|2 + · · · + |tn|2 (in Vα ⊂ Pn−1)

be the curvature of the hyperplane section bundle H → Pn−1, with respect to
the natural metric h0 (see Example III.2.4 for the construction of this metric
for U1,n−1 = H ∗). In particular (i/2)�H is the fundamental form associated
with the standard Kähler metric on Pn−1. Since L|W = σ ∗H ∗, we can equip
L∗|W with the metric h1 = σ ∗h0. Now L∗|X̃−U ′ is trivial, and we can equip it
with a constant metric h2. Then, letting ρ be chosen as above, we see that

h = ρh1 + (1 − ρ)h2

defines a metric on L∗ → X̃ and that, moreover, h = h1 in W ′ = U ′ ×
Pn−1 ∩W . Thus

�L∗ = �σ∗H

�L∗ ≡ 0

in W ′

in X̃ −W.
We now let KX be equipped with an arbitrary Hermitian metric, and

then we have from Lemma 3.2 (letting L be equipped with the dual metric)

�K
X̃

= �π∗KX + (n− 1)�L.
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Therefore it follows that

�π∗Eµ⊗L∗⊗K ∗̃
X

= µ�π∗E + n�L∗ + �π∗K∗
X∗

Consider the sum
µ�π∗E + �σ∗H

as differential forms in U ′ × Pn−1, with the coordinates (z, t) as before.
Then �π∗E depends only on the z-variable and �σ∗H depends only on the
t-variable, and the coefficient matrix of each is positive definite in each of
the respective directions, so their sum is a positive differential form† in
U ′ × Pn−1, and the restriction to W is likewise positive. Moreover, �π∗E is
positive on U −U ′, so there exists a µ1(p) such that µ > µ1(p) implies that

(3.5) [µ�π∗E] + �L∗ > 0

on all of X̃.
Let µ2 be chosen such that

µ2�E + �K∗
X
> 0,

which is possible since E is positive and since X is compact. Thus we see
that there is a µ0(p) such that

(3.6) µ�πp∗E + n�L∗ + �πp∗K∗
X
> 0

if µ > µ0(p). Namely, let µ0(p) = µ2 + nµ1(p) and note that

µ2�π∗E + �π∗K∗
X

is positive everywhere on X̃ except at points of S, where it is positive
semidefinite (in the obvious sense).

Suppose that q ∈ U ′. Then we claim that if µ ≥ µ1(p), then the estimate
(3.5) will hold for points q near p, namely,

µ�πq∗E + �L∗ > 0

for all x ∈ X. This is a simple continuity argument which is easily seen by
expressing the equations for the quadratic transform at q in terms of local
coordinates centered at p, namely,

Wq = {(z, t) ∈ U × Pn−1: (zi − qi)tj = (zj − qj )ti},
where q = (q1, . . . , qn) and p = (0, . . . , 0).

By covering X with a finite number of such neighborhoods, we find that
there is a µ0 such that (3.6) holds for all points p ∈ X, if µ ≥ µ0, and this
concludes the proof of part (a). Parts (b) and (c) are proved in exactly the
same manner. In (b) we put the same metric on Lp near the point p as above,
and (L∗

p)
2 will have the same positivity properties as L∗

p, compensating for
the lack of positivity of π∗

pE
µ on π−1

p (p). In part (c) one has the same local
constructions near each of the two distinct points p and q. The continuity

†In this argument we ignore the factor of i and mean by > 0 that the coefficient matrix
of the (1, 1) form is positive definite.
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and compactness arguments go through in exactly the same manner, and
we leave further details to the reader.

Q.E.D.

4. Kodaira’s Embedding Theorem

After the preliminary preparations of the previous sections we are now
prepared to prove Kodaira’s embedding theorem for Hodge manifolds. This
theorem was conjectured by Hodge [2] and proved by Kodaira [2].

Theorem 4.1: Let X be a compact Hodge manifold. Then X is a projective
algebraic manifold.

Remark: (a) As a consequence of the Kodaira embedding theorem,
each of the examples of Hodge manifolds in Sec. 1 admits a projective
algebraic embedding. In particular, any compact Riemann surface is pro-
jective algebraic (a well-known classical result), and a complex torus admits
a projective embedding if and only if the periods defining the torus give
rise to a Riemann matrix. Such tori are called abelian varieties and can also
be characterized by the fact that a complex torus X is an abelian variety if
and only if there are n algebraically independent nonconstant meromorphic
functions on X, where n = dimCX (cf. Siegel [1]).

(b) It follows immediately from Theorem 4.1 that any compact complex
manifoldX which admits a positive line bundle L → X is projective algebraic
(and conversely). Namely, in this case, c1(L) will have a Hodge form as a
representative, and thus X will be projective algebraic. This is a very useful
version of the theorem, and in this form the theorem has been generalized by
Grauert [2] to include the case where X admits singularities. Grauert’s proof
can be found in Gunning and Rossi [1], and it depends on the finiteness
theorem for strongly pseudoconvex manifolds and spaces.

Proof: By hypothesis, there is a Hodge form � on X. By Proposition
III.4.6, it follows that there is a holomorphic line bundle E → X such that
� is a representative for c1(E). Hence, E is a positive holomorphic line
bundle. Let µ0 be given by Proposition 3.3, let µ ≥ µ0, and set F = Eµ.
Consider the vector space of holomorphic sections O(X, F ) = �(F ), for
short, which is finite dimensional by Theorem IV.5.2. Our object is to show
that there is an embedding of X into P(�(F )). We shall prove this by a
sequence of lemmas, which will reduce the embedding problem and hence
the proof of Theorem 4.1 to the vanishing theorem proved in Sec. 2. First
we have some preliminary considerations.

Consider the subsheaf of O = OX consisting of germs of holomorphic
functions which vanish at p and q; call it mpq . If p = q, then we mean by this
the holomorphic functions which vanish to second order at p, and we denote
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it simply by m2
p(= mpp), where mp is the ideal sheaf of germs vanishing to

first order at p. Then there is an exact sequence of sheaves

0 −→ mpq −→ O −→ O/mpq −→ 0,

and we can tensor this with the locally free sheaf O(F ) (the sheaf of
holomorphic sections of F ), obtaining

(4.1) 0 −→ mpq ⊗O O(F ) −→ O(F ) −→ O/mpq ⊗O O(F ) −→ 0.

We see that the quotient sheaf in this sequence becomes

(4.2)
Op/m

2
p ⊗C Fp,

0,

x = p = q

x 
= p

if p = q and

Fp, x = p

Fq x = q(4.3)

0, x 
= p or q

if p 
= q, where we have used the fact that Op/mp ∼= C, where mp is the
maximal ideal in the local ring Op.

Lemma 4.2: Op/m
2
p

∼= C⊕T∗
p(X), and the quotient mapping is represented

by f ∈ Op → f (p)+ df (p).
Proof: If f ∈ Op is expanded in a power series near z = p in local

coordinates, we have

f (z) =
∑
|α|≥0

1
α!Dαf (p)(z− p)α,

using the standard multiindex notation (see Chap. IV). Then if [ ] denotes
equivalence classes in O/m2

p, we see that

[f ]p = [f (p)+
∑
|α|=1

Dαf (p)(z− p)α],

since the higher-order terms ∈ m2
p. Then define the mapping

Op

ψ−→ C ⊕ T ∗
p (X)

by ψ(f ) = [f (p), df (p)], and it is easy to check that ψ factors through
the quotient mapping

Op C ⊕ T ∗
p (X)

Op/m
2
p

ψ

ψ̃

and ψ̃ is an isomorphism.
Q.E.D.



236 Kodaira’s Projective Embedding Theorem Chap. VI

Consider now the sequence (4.1) and the induced mapping on global
sections

O(X, F )
r−→ Op/m

2
p ⊗ Fp(4.4)

�‖
[C ⊕ T ∗

p (X)] ⊗ Fp.
If f is a local frame for F near p and if ξ ∈ O(X, F ), then

r(ξ(f )) = (ξ(f )(p), dξ(f )(p)) ∈ C ⊕ T ∗
p (X),

noting that Fp ∼= C, by the choice of a frame f . Suppose that the map r in
(4.4) is surjective. Then we can find sections {ξ0, ξ1, . . . , ξn}, ξj ∈ �(X, F ),
such that

ξ0(p) = 1

ξj (p) = 0, j = 1, . . . , n

dξj (p) = dzj (in local coordinates).

(4.5)

This means that the global sections ξ1, . . . , ξn, expressed in terms of the
frame f , give local coordinates for X, in particular, dξ1(f )∧ · · · ∧dξn(f ) 
= 0.
Moreover, ξ0(p) 
= 0.

Similarly, suppose that the mapping

(4.6) O(X, F )
s−→Fp ⊕ Fq

induced from the sheaf sequence (4.3) is surjective. Then we can find global
sections ξ1 and ξ2 such that

(4.7)
ξ1(p) 
= 0,

ξ2(p) = 0,

ξ1(q) = 0

ξ2(q) 
= 0.

Lemma 4.3: If the mappings r and s in (4.4) and (4.6) are surjective for
all points p and q ∈ X, then there exists a holomorphic embedding of X
into Pm, where dimCO(X, F ) = m+ 1.

Proof: Let ϕ = {ϕ0, . . . , ϕm} be a basis for O(X, F ). If f is a holomorphic
frame for F at p, then (ϕ0(f )(x), . . . , ϕm(f )(x)) ∈ Cm+1 for x near p.
By assumption, (4.4) is surjective, and hence at least one of the basis
elements ϕj is nonzero at p and hence in a neighborhood of p. Thus
[ϕ0(f )(x), . . . , ϕm(f )(x)] is a well-defined point in Pm, for x near p, and is
a holomorphic mapping as a function of the parameter x. If f̃ is another
holomorphic frame at p, then it is easy to check that

ϕj (f )(x) = c(x)ϕj (f̃ )(x),

where c is holomorphic and nonvanishing near p, and thus we have a
well-defined holomorphic mapping from X into Pm by

�ϕ: X −→ Pm,
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with
�ϕ(x) = [ϕ0(f )(x), . . . , ϕm(f )(x)].

Suppose that the basis ϕ is replaced by another basis, ϕ̃ = {ϕ̃j }, where

ϕ̃i = �cijϕj , cij ∈ C,

and that the matrix C = [cij ] is nonsingular. Then consider the diagram

Pm

X

Pm,

C

�ϕ

�ϕ̃

where C is the mapping on Pm defined by the action of the matrix C on the
homogeneous coordinates. The diagram is then commutative, and since C is
a biholomorphic mapping, it follows that the holomorphic mapping �ϕ has
maximal rank or is an embedding if and only if �ϕ̃ has the same property.

To complete the proof of the lemma, we see that to prove that �ϕ has
maximal rank at p ∈ X it suffices to find a nice choice of basis ϕ which
demonstrates this property. By hypothesis, the mapping r in (4.4) is surjective,
and it follows that we can find sections ξ0, ξ1, . . . , ξn ∈ O(X, F ) satisfying
the conditions in (4.5). It is easy to verify that ξ0, ξ1, . . . , ξn are linearly inde-
pendent in the vector space O(X, F ) and that we can extend them to a basis,
ϕ̃. Then the mapping �ϕ̃ is defined, in terms of the frame used in (4.5), by

�ϕ̃(x) = [ξ0(f )(x), ξ1(f )(x), . . . , ξn(f )(x), . . .],
and using the local coordinates

(1, ζ1, . . . , ζn, . . .)

in Pm and (z1, . . . , zn) in X, we see that the Jacobian determinant

∂(ζ1, . . . , ζn)

∂(z1, . . . , zn)

is given by the coefficient of

d

(
ξ1(f )

ξ0(f )

)
∧ · · · ∧ d

(
ξn(f )

ξ0(f )

)
(p) = ξ0(f )(p)

−ndz1∧ · · · ∧dzn,

which is nonzero. Thus �ϕ̃ and hence �ϕ have maximal rank at p, and
consequently �ϕ is an immersion.

To see that �ϕ is one to one, we let p and q be two distinct points on
X and choose global sections ξ1 and ξ2 satisfying (4.7). Then ξ1 and ξ2 are
clearly linearly independent and extend to a basis

ϕ̃ = {ξ1, ξ2, . . . .},
and it is clear that �ϕ̃ is one to one, and thus that �ϕ is an embedding.

Q.E.D.
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The following lemma will then complete the proof of Theorem 4.1.

Lemma 4.4: The mappings r and s in (4.4) and (4.6) are surjective for all
points p and q ∈ X .

Proof: Consider first the mapping r in (4.4). Let X̃ = QpX and let
S = π−1

p (p). Then let IS be the ideal sheaf of the submanifold S ⊂ X̃, i.e.,

the sheaf of holomorphic functions on X̃ which vanish along S. Let I2
S

be the ideal sheaf of holomorphic functions on X̃ which vanish to second
order along S, i.e., fx ∈ I2

S,x if fx = (gx)
2, where gx ∈ IS,x . Let Õ = OX̃ be

the structure sheaf for X̃, let O = OX be the structure sheaf for X, and
let F̃ = π∗F . Then we have the exact sequence of sheaves over X̃ (tensor
products are over the structure sheaves),
(4.8) 0 −→ Õ(F̃ )⊗ I2

S −→ Õ(F̃ ) −→ Õ(F̃ )⊗ Õ/I2
S −→ 0,

and the mapping πp induces a commutative diagram

0 �� Õ(F̃ )⊗ I2
S

�� Õ(F̃ ) �� Õ(F̃ )⊗ Õ/I2
S

�� 0

0 �� O(F )⊗m2
p

��

π∗
1

��

O(F ) ��

π∗
��

O(F )⊗ O/m2
p

��

π∗
2

��

0

(4.9)

given by the topological pullback of the sheaves on X to sheaves on X̃, where
π∗

1 is the restriction of π∗ to the subsheaf O(F )⊗m2
p, and π∗

2 is the induced
map on quotients. We note that if f ∈ �(U, F ) for some U ⊂ X, then f
vanishes to second order at p if and only if π∗f ∈ �(π−1

p (U), F̃ ) vanishes
to second order along S, where S ⊂ π−1

p (U), if p ∈ U . This only has to be
verified for the structure sheaves, since F is trivial near p, and hence F̃ is
trivial in a neighborhood of S. This is easy to do using the local coordinates
(z, t) in W as in Sec. 3. Thus π∗

1 and hence π∗
2 are well defined mappings

and one checks easily that π∗
2 is injective. Moreover, we claim that there

exist isomorphisms α and β making the following diagram commutative:
0 �(X̃ , Õ(F̃) ⊗ I2

S) �(X̃ , Õ(F̃)) �(X̃ , Õ(F̃) ⊗ Õ/I2
S)

0 �(X,O(F) ⊗ m2
p) �(X,O(F)) �(X,O(F) ⊗ O/m2

p).

π∗
1α β π∗ π∗

2
r

(4.10)

If we can show that H 1(X̃,O(F̃ )⊗I2
S) = 0, it follows from (4.10) that r must

be surjective. First, we shall construct α and β. For n = 1 this is trivial,
since X̃ = X and π = identity. For n > 1 we shall need to use Hartogs’
theorem, which asserts that a holomorphic function f defined on U − {0},
where U is a neighborhood of the origin in Cn, n > 1, can be analytically
continued to all of U .† We shall define β and see that the restriction of β to
the subspace �(X̃, Õ(F̃ )⊗ I2

S) (which we shall call α) has the desired image.
Namely, suppose that ξ ∈ �(X̃, Õ(F̃ )). Then the projection πp: X̃ → X is
biholomorphic on the complement of S, and let

β̃(ξ) = (π−1
p )

∗ξ,
†For an elementary proof of this theorem, see Hörmander [2], Chap. II.
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which is a well-defined element of �(X − {p},O(F )). Then by Hartogs’
theorem, there is a unique extension of β̃(ξ) to a section of O(F ) on X,
which we call β(ξ). Clearly, we have that β−1 = π∗

p and hence β is an
isomorphism. Moreover, as noted above β−1(η) will vanish to second order
along S if and only if η ∈ �(X,O(F )⊗m2

p).
It thus remains to show that

(4.11) H 1(X̃, Õ(F̃ )⊗ I2
S) = 0.

To do this, we note that IS is a locally free sheaf of rank 1, since it is the
ideal sheaf of a divisor in X̃. Moreover, any locally free sheaf corresponds
to the sheaf of sections of a vector bundle, and we see that in fact

IS ∼= Õ(L∗),
where L is the line bundle associated to the divisor S ⊂ X̃. This is easy
to check by verifying that L∗ and IS have the same transition functions in
terms of the coverings of S used in Sec. 3 in its coordinate representation
as a subset of W ⊂ U × Pn−1. Moreover, one also has I2

S
∼= O((L∗)2), and

then we see that
H 1(X̃, Õ(F̃ )⊗ I2

S) = H 1(X̃, Õ(F̃ ⊗ (L∗)2)).
But, by hypothesis, F = Eµ, where µ > µ0, and by Proposition 3.3(b)

F̃ ⊗ (L∗)2 ⊗K∗
X̃
> 0,

and thus by Kodaira’s vanishing theorem [Theorem 2.4(a)], we see that
(4.11) holds.

To see that s in (4.6) is surjective, we let S = π−1
pq ({p}∪ {q}), let IS be the

ideal sheaf of this divisor, let Õ be the structure sheaf for Qp Qq X, and let
F̃ = π∗

pq F . We then have the exact sequence

(4.12) 0 −→ Õ(F̃ )⊗ IS −→ Õ(F̃ ) −→ Õ(F̃ )⊗ Õ/IS −→ 0,

and there exists isomorphisms α and β such that the following diagram
commutes:

(4.13)
0 �(X̃ , Õ(F̃) ⊗ IS) �(X̃ , Õ(F̃)) �(X̃ , Õ(F̃) ⊗ Õ/IS)

0 �(X,O(F) ⊗ m pq) �(X,O(F)) �(X,O(F) ⊗ O/m pq).

π∗
p,qα β π∗

p,q π∗
p,qs

The isomorphisms α and β are constructed using Hartogs’ theorem as
before, and thus we see that the vanishing of H 1(X̃, Õ(F̃ )⊗ IS) will ensure
the surjectivity of s. But IS ∼= Õ(L∗

pq), and it follows from Proposition 3.3(c)
that F̃ ⊗ L∗

pq ⊗ K∗
X̃
> 0. Applying Kodaira’s vanishing theorem again, we

obtain the desired result.
Q.E.D.

Remark: Note that in the diagrams (4.10) and (4.13) we would be able
to complete the proof if we knew that

H 1(X ,O(F)⊗m2
p) = H 1(X ,O(F)⊗mpq) = 0.
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This is the approach taken by Grauert [2] and gives an alternative proof of
the embedding theorem. Namely, Grauert proves the more general vanishing
theorem: If E is a positive line bundle and F is any coherent analytic sheaf,
then there is an integer µ0 > 0 so that

H q(X,O(Eµ)⊗ F ) = 0

for µ ≥ µ0 and q ≥ 1. This result is derived from the general theory of
coherent analytic sheaves on pseudoconvex analytic spaces and involves, in
particular, Grauert’s solution to the Levi problem (Grauert [1]; see Gunning
and Rossi [1] for this derivation). Moreover, one needs to know that the
ideal sheaves m2

p and mpq are coherent analytic sheaves (which for these
particular ideals sheaves is not too difficult to prove). Kodaira’s approach,
which we have followed here, says, in effect, that if you blow up the points
p appropriately, then the coherent sheaves m2

p and mpq become locally free
on the blown up complex manifold X̃, and then the theory of harmonic
differential forms (which applies at this time only to locally free sheaves,
i.e., vector bundles) can be applied to give the desired vanishing theorems.
To prove Grauert’s vanishing theorem via harmonic theory, it is necessary
to first obtain a projective embedding; then, by finding a global projective
resolution of the given coherent sheaf by locally free sheaves (which follows
from the work of Serre [2]), one can deduce Grauert’s result (see Griffiths
[1] for this derivation).

A recent generalization of Kodaira’s vanishing and embedding theorems
to Moishezon spaces (generalizations of projective algebraic spaces) by
Grauert and Riemenschneider [2] and Riemenschneider [1] has involved the
approach used by Kodaira presented here, combined with the theory of
coherent analytic sheaves on pseudoconvex spaces.
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M O D U L I S PAC E S

A N D

G E O M E T R I C S T RU C T U R E S

1. Introduction

Moduli spaces arise naturally in classification problems in geometry.
Typically, one has a collection of objects and an equivalence relation, and
the problem is to describe the set of equivalence classes. Usually, there are
discrete invariants that partition this set in a countable number of subsets.
In most cases there exist continuous families of objects, and one would like
to give the set of equivalence classes some geometric structure to reflect
this fact. This is the object of the theory of moduli spaces.

The word moduli is due to Riemann†, who used it as a synonym for
parameters when showing that the space of equivalence classes of Riemann
surfaces of a given genus g depends on 3g−3 complex numbers. After this,
the concept of moduli has been used in geometry in a rather loose sense to
measure variations of geometric structures of one kind or another, but it has
not been however until the 1960s that one has been able to formulate moduli
problems in precise terms and in some cases to obtain solutions to them.

The study of moduli spaces has a local and a global aspect. While the
local theory progressed through the initial work of Kodaira–Spencer and the
contributions of Kuranishi, and others, the global theory, with the proper
definition of moduli spaces and how to construct them is due to Mumford
[25] based on Grothendieck’s theory of schemes.

In this appendix we are concerned with moduli spaces of holomorphic
vector bundles and Higgs bundles over a Riemann surface, as well as
related structures, like connections and representations of the fundamental
group of the surface. These moduli spaces play a very prominent role in
algebraic geometry, differential geometry, topology and theoretical physics.
The emphasis here is not so much on the construction of these moduli spaces

*Instituto de Ciencìas Matemáticas, Consejo Superior de Investigaciones Científicas,
Serrano, 121, 28006 Madrid, Spain.

†“hängt …von 3g− 3 stetig veränderliche Grössen ab, welche die Moduln dieser Klasse
gennant werden sollen” [32].
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as on the correspondences among them and the geometric structures that
they carry. Our goal is to review some developments in the theory that have
taken place mostly since the beginning of the 1980s, including some more
recent progress. Naturally, due to space limitations, we do this in a rather
scketchy way, avoiding many technical aspects and omitting most proofs,
but trying to address the reader to the main bibliography in the subject.

In section 2 we study the moduli space of holomorphic vector bun-
dles. After the classification of holomorphic vector bundles for genus 0
by Grothendieck [16] and genus 1 by Atiyah [2], vector bundles on higher
genus Riemann surfaces have been studied extensively with the fundamental
work of Mumford [25] and of Narasimhan and Seshadri [28], who defined
the concept of a stable vector bundle and constructed the moduli spaces
which classify these bundles. In their theorem Narasimhan and Seshadri
[28] identified the moduli space of stable vector bundles over a compact
Riemann surface with the moduli space of irreducible projective unitary
representations of the fundamental group of the surface (or equivalently,
unitary representations of the universal central extension of the fundamental
group). Donaldson [10] gave another proof of this theorem, which we briefly
scketch, following the gauge-theoretic point of view of Atiyah and Bott [4],
where these representatations are identified with projectively flat connections.

A Higgs bundle over a Riemann surface is a pair consisting of a holomor-
phic vector bundle and an endomorphism of the bundle twisted with the
canonical line bundle of the surface — the Higgs field. Higgs bundles were
introduced by Hitchin [17] in the study of self-duality equations. They are
the holomorphic objects corresponding to complex representations of the
fundamental group which are not necessarily unitary. In fact when the Higgs
field vanishes, one recovers unitary representations. To establish this corre-
spondence requires two fundamental theorems: one proving the existence
of a solution to Hitchin equations on a stable Higgs bundle [17, 34, 35],
which we explain in Section 3, and another one, studied in Sections 4 and
5, proving the existence of a harmonic metric on a bundle equipped with
a reductive flat conection [8, 14]. This correspondence is in some sense a
non-abelian version of the classical Hodge theory.

In Section 6 we explain how Higgs bundles can also be used to study
representations of the fundamental group of the surface and its universal
central extension that preserve an indefinite Hermitian metric of signature
(p, q) on Cn, with n = p+q. This is equivalent to studying representations
in the non-compact real form U(p, q) of the complex group GL(n,C). The
representations in the compact form U(n) are those preserving a definite
Hermitian metric and, as mentioned above, correspond to Higgs bundles
with vanishing Higgs field, i.e., holomorphic vector bundles. We will see that
the representations in U(p, q) are in correspondence with Higgs bundles of
a particular structure, determined by the geometry of U(p, q).

All our moduli spaces carry various types of geometric structures. Natu-
rally, the moduli spaces of vector bundles and Higgs bundles have complex
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structures induced by the complex structure of the Riemann surface. More-
over, they also have a symplectic structure, which is in fact compatible with
the complex structure, endowing the moduli spaces with a Kähler structure.
One way to see this, is to exhibit the moduli space as a symplectic and Käh-
ler quotient. This point of view, initiated by Atiyah and Bott [4], is studied
in Section 7, where we see that the gauge-theoretic equations defining the
moduli space can be interpreted as the vanishing of the moment map for
a symplectic action of the gauge group on the space of connections and
Higgs fields. In the case of Higgs bundles, more is actually true. The com-
plex structure of GL(n,C) defines an additional complex structure on the
moduli space, which combined with the one induced by the surface give rise
to a hyperkähler structure that can be obtained as a hyperkähler quotient.

We finish in Section 8 by briefly studying a generalization to higher
dimensional compact Kähler manifolds of some of the previous results. We
first explain the Hitchin–Kobayashi correspondence between stable vector
bundles and Hermitian–Einstein connections, proved by Donaldson [12, 13]
and Uhlenbeck and Yau [38], and then finish with the higher dimensional
version of the non-abelian Hodge theory correspondence, due to Simpson
[34, 35] and Corlette [8].

We follow the notation of the book.
Acknowledgements. First of all I want to thank Ronny Wells for having
invited me to write this appendix for the third edition of his book. I must
confess that I have always been very embarrassed by the certainty that the
appendix could never approach the quality and elegance of Ronny’s text. I
hope, however, that the reader finds the topics presented here stimulating
enough to pursue further study of a subject whose basics are so beautifully
treated in Ronny’s book. I have a great debt to Nigel Hitchin and Simon
Donaldson, from whom I have learned the subject treated here. Thanks
are also due to Steve Bradlow and Peter Gothen, my collaborators in the
original work on U(p, q) reviewed in this appendix. I am very grateful to
my students, Álvaro Antón, Marta Aparicio, Mario García, and Roberto
Rubio for having gone through several preliminary versions of this appendix
and having made many useful comments.

Much of the final preparation of this appendix has taken place while
the author was visiting the IHES, whose hospitality and support is warmly
thanked.

2. Vector Bundles on Riemann Surfaces

2.1. Moduli Spaces of Vector Bundles

Let X be a connected compact Riemann surface. As we have seen in Chap.
III†, the group H 1(X,O∗) parametrizes isomorphism classes of holomorphic

†All references to chapters, sections and page numbers refer to the preceeding Chap.
I–VI of this book
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line bundles on X, where the group structure is given by the tensor product
of line bundles. This group is called the Picard group of X. If we fix the
first Chern class — which we will call degree from now on — to be d,
then Picd(X) is the set of equivalence classes of line bundles of degree d.
In particular, J (X) := Pic0

(X) is a subgroup of H 1(X,O∗), which is called
the Jacobian of X. The group J (X) has the structure of a complex abelian
variety (see Remark (a) on page 234), whose dimension is equal to the
genus of X, and it is very important in the study of the geometry of the
Riemann surface [1].

The problem we will address now is that of classifying isomorphism classes
of holomorphic vector bundles of arbitrary rank on a compact Riemann
surface X. This is a much harder problem than that of line bundles, basically
due to the fact that this set is no longer a group. As in the case of line
bundles, C∞ vector bundles are classified by the first Chern class, and hence
an equivalence class of C∞ vector bundles is determined by the rank n and
the degree d.

For genus zero, Grothendieck [16] showed that every holomorphic vector
bundle on P1(C) is a direct sum of holomorphic line bundles, and it is
hence determined by the degrees of these line bundles. The case of a genus
one surface (a torus) was studied by Atiyah [2], who showed that the set of
equivalence classes of indecomposable vector bundles with fixed rank and
degree is isomorphic to the surface itself. We will then assume most of the
time that the genus of X is greater than one.

We will look now at holomorphic vector bundles from the point of view
of ∂-operators, which will be more adapted to our approach. As we have
seen in Sec. 3 of Chap. II, a holomorphic vector bundle E on a complex
manifold X defines a C-linear mapping

∂E: E0(X,E) −→ E0,1(X,E),

which satisfies
∂E(ϕξ) = ∂ϕξ + ϕ∂Eξ,

where ϕ ∈ E(X) and ξ ∈ E(X,E). This can be extended to a C-linear
mapping

∂E: E0,1(X,E) −→ E0,2(X,E),

such that ∂
2
E = 0.

Conversely, if E is a smooth vector bundle and we have an operator ∂E
as above satisfying ∂

2
E = 0, we can find holomorphic transition functions by

solving locally the equation ∂Es = 0 [19] and endow E with the structure of
a holomorphic vector bundle. Of course, if we are on a Riemann surface,
E0,2(X) = 0, and hence the condition ∂

2
E = 0 is always satisfied.

Let E be a smooth complex vector bundle of rank n and degree d over a
Riemann surface X. Let C be the set of all ∂E operators defined on E. As
we have mentioned above, this set is in bijection with the set of holomorphic



Sec. 2 Vector Bundles on Riemann Surfaces 245

structures on E. A holomorphic bundle E can be then thought of as a pair
(E, ∂E). The group Gc of automorphisms of the vector bundle E acts on C

by the rule:

g · ∂E = g∂Eg
−1, where g ∈ Gc and ∂E ∈ C,

and the above correspondence can be made precise in the following.

Proposition 2.1: The quotient C/Gc can be identified with the set of
isomorphism classes of holomorphic vector bundles of rank n and degree d.

The set C/Gc can be endowed with the C∞ topology, although for technical
reasons one should consider appropriate Sobolev spaces instead of the C∞

topology. It turns out that this space is in general non-Hausdorff (see [28]),
but a “good” space is obtained if we consider only (semi)stable holomorphic
structures.

Let E = (E, ∂E) be a holomorphic vector bundle over a compact Riemann
surface X. Let deg(E) be the degree of E (i.e., the first Chern class c1(E)).
The slope of E is defined as

µ(E) = degE/ rankE.

The vector bundle E is stable if for every proper subbundle F ⊂ E

µ(F) < µ(E).

This concept arises naturally from Mumford’s Geometric Invariant Theory
(GIT, see [25]).

Let
Cs = {∂E ∈ C : E = (E, ∂E) is stable}

The moduli space of stable vector bundles of rank n and degree d is
defined as

Ms(n, d) = Cs/Gc.

Using analytic methods (see e.g. [20]) one can show the following.

Theorem 2.2: The moduli space of stable bundlesMs(n, d) has the structure
of a complex manifold of dimension 1 + n2(g − 1), where g is the genus
of X.

Notice that every line bundle is stable and Ms(1, d) is simply the compo-
nent of Pic(X) consisting of line bundles of degree d, in particular, Ms(1, 0)
is the Jacobian J (X).

We can easily compute the tangent space ofMs(n, d) at a point [∂E]. To do
this, we first observe that C is an affine space modelled on E0,1(X,End E),
where End E = Hom(E,E), and hence the tangent space of C at ∂E is
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isomorphic to E0,1(X,End E). Notice that in higher dimensions, the equation
∂

2
E = 0 is not automatically satisfied, and it is not difficult to show that the

tangent space to the space of ∂E operators satisfying ∂
2
E = 0 is the kernel

of the map
∂E: E0,1(X,End E) −→ E0,2(X,End E).

Here we are abusing notation since the ∂-operator associated to End E =
E ⊗ E∗ is ∂E⊗E∗ = ∂E ⊗ IE∗ + IE ⊗ ∂E∗ , and ∂E∗ is naturally induced by ∂E .

Now, if a curve ∂E(t) = ∂E + tα in C for |t | < ε is obtained by a
1-parameter family of gauge transformations gt ∈ Gc, so that

∂E(t) = gt∂Eg
−1
t , with g0 = IE,

then α = −∂Ea, where a = ∂tgt |t=0. That is, a is an element of the tangent
space at the identity of the infinite dimensional Lie group Gc, which is
isomorphic to E0(X,End E). Hence the “tangent space” at a point [∂E] ∈
C/Gc is isomorphic to

H 1(X,EndE) = {α ∈ E0,1(X,End E)}
{∂Ea: a ∈ E0(X,End E)} .

Since stability is an open condition, this is indeed the tangent space at a
point [∂E] ∈ Ms(n, d). To compute the dimension of H 1(X,EndE) when
E is stable, we first recall the Riemann-Roch theorem, (a special case of
Theorem 5.8, Chap. IV, when X is a Riemann surface) which says that if
E is a holomorphic vector bundle of degree d and rank n

χ(E) = dimH 0(X,E)− dimH 1(X,E) = d − n(g − 1),

where g is the genus of X. Applying this to the holomorphic vector bundle
EndE whose rank is n2 and has 0 degree we obtain

χ(EndE) = dimH 0(X,EndE)− dimH 1(X,EndE) = −n2(g − 1).

Here, we have used that the degree of EndE vanishes, as follows from the
first Chern class relation

deg(E ⊗ F) = rankF degE + rankE degF,

which can be deduced using Chern–Weil theory (Chap. III, Sec. 3).
A holomorphic vector bundle is said to be simple if H 0(X,EndE) = C.

It is not difficult to see that if E is stable, then it is simple (see e.g. [20]).
Hence

dimH 1(X,EndE) = 1 + n2(g − 1),

thus obtaining the dimension of Ms(n, d) given by Theorem 2.2.
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The manifold Ms(n, d) is not compact in general. However it can be
compactified by considering semistable vector bundles (it is indeed this
compactification which is obtained by GIT). A vector bundle E is semistable
if for every subbundle F ⊂ E

µ(F) ≤ µ(E).
Another concept which is relevant here is that of polystability. The vector

bundle E is polystable if E = ⊕Ei , where Ei is stable and µ(Ei) = µ(E).
A polystable bundle is in particular semistable.

Let E be be semistable vector bundle. If E is not stable, then there exists
a stable subbundle F ⊂ E, such that µ(F) = µ(E). Since E/F is semistable
with µ(E/F) = µ(E), this process can be iterated, to obtain a filtration of
E (Jordan–Hölder filtration) by semistable vector bundles Ej ,

0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E,

such that Ej/Ej−1 is stable and µ(Ej/Ej−1) = µ(E) for 1 ≤ j ≤ m. The
graded vector bundle associated to E is defined as

gr(E) =
⊕
j

Ej/Ej−1.

Although, this is not uniquely defined, its isomorphism class is. Two semi-
stable vector bundles E and E′ are said to be S-equivalent if gr(E) ∼= gr(E′).
The moduli space of semistable vector bundles M(n, d) of rank n and degree
d is defined as the set of S-equivalence classes of semistable bundles of
rank n and degree d. Note that, since the graded vector bundle asso-
ciated to a semistable bundle is polystable, M(n, d) coincides with the
set of isomorphism classes of polystable vector bundles of rank n and
degree d.

One of the first applications of Mumford’s Geometric Invariant Theory
[25] was to the algebraic construction of M(n, d).

Theorem 2.3: The moduli space M(n, d) has the structure of an irreducible
projective algebraic variety which contains Ms(n, d) as an open smooth
subvariety.

If GCD(n, d) = 1, then there are no strictly semistable vector bundles
and M(n, d) = Ms(n, d), and hence we have the following.

Corollary 2.4: If GCD(n, d) = 1, then M(n, d) is a connected projective
algebraic manifold of dimension 1 + n2(g − 1).

For the GIT construction of M(n, d) and basic facts on the geometry of
M(n, d) the reader may look at [25, 28, 33, 29, 27, 26, 5].
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2.2. Stable Bundles and Connections

We will see now that the stability of a holomorphic vector bundle emerges
also from a differential-geometric point of view in relation to the existence
of a certain class of Hermitian metrics on the bundle.

Let E be a holomorphic vector bundle over X and let h be a Hermitian
metric on E. Let D be the canonical connection on E defined by h, and
let �(D) = D2 be its curvature (see Chap. III, Sec. 2).

The connection D is said to be flat if �(D) = 0. From Chern-Weil theory
(Chap. III, Sec. 3), we know that the flatness of D implies that the first
Chern class of E must be zero. If c1(E) 
= 0, then the closest to flatness that
we can have is that the curvature be central. To formulate this condition,
it is convenient to fix a Hermitian metric on X. Since the dimension of
X is one, such a metric is always Kähler (Chap. V, Sec. 4). Let � be its
Kähler form. We will normalize this metric so that X has volume 2π , i.e.,∫
X
� = 2π .
Now, we say that D has constant central curvature if

(2.1) �(D) = −iµIE�,
where IE is the identity endomorphism of E and µ is a real constant.
Taking the trace in (2.1), integrating and using that

c1(E) = i

2π

∫
X

Tr(�(D))

(Chap. III, Sec. 3) we have that

µ = µ(E) = degE/ rankE.

Condition (2.1) can be better understood in terms of principal bundles.
To do this, we briefly recall some basic facts about principal bundles. Let
G be a Lie group. A principal G-bundle P over a smooth manifold X

is a manifold with a smooth (right) G-action and orbit space P/G = X.
We demand that the action admit local product structures, i.e., it is locally
equivalent to the obvious action U ×G, where U is an open set in X. Then
we have a fibration π : P → X. We say that P has structure group G.

Now, a connection A for P is a G-invariant splitting of the natural exact
sequence

(2.2) 0 −→ TFP −→ T P −→ π−1TX −→ 0

of vector bundles over P . Here TF denotes the tangent bundle along the
fibres in P , and TX the tangent bundle of X. The group G acts on all
terms of this sequence and so G-invariant splitting of (2.2) is a well-defined
concept.
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Given a principal G-bundle P over X and a representation ρ : G →
GL(V) of G on a complex vector space V, one can associate to it a
complex vector bundle defined by

V = (P × V)/G,

where G acts on P on the right, and on V on the left, via the representation
ρ. Conversely, if E is a smooth complex vector bundle of rank n over X,
we obtain a principal bundle P with structure group GL(n,C) by taking
the set of all frames in E. A point in the fibre of P over x ∈ X is a set
of basis vectors for Ex . A connection on the principal bundle P induces a
connection on the vector bundle E, and viceversa (see e.g. [11, 20]).

If the Lie group G is complex, all the constructions above on principal
bundles can also be done in the holomorphic category.

Now, condition (2.1) is equivalent to saying that D is projectively flat,
which means that D induces a flat connection on the PGL(n,C)-principal
bundle P̂ associated to the GL(n,C)-principal bundle P defined by E,
where P̂ = P/C∗In.

To analyse the relation with stability, we consider a holomorphic sub-
bundle F ⊂ E and the quotient vector bundle Q = E/F . These fit in an
exact sequence

(2.3) 0 −→ F −→ E −→ Q −→ 0.

The Hermitian metric h on E defines a smooth splitting (not necessarily
holomorphic) of this sequence

E ∼= F ⊕Q,
with respect to which we can write

(2.4) ∂E =
(
∂F β

0 ∂Q

)
,

where ∂F and ∂Q are the corresponding ∂ operators on F andQ, respectively,

and β ∈ E0,1(X,Hom(Q, F )). Since ∂
2
E = 0, we have that ∂Hom(Q,F )β = 0

and hence β defines a class

[β] ∈ H 1(X,Hom(Q, F )).

Conversely, given F and Q, the set of equivalence classes of extensions as
(2.3) is given by H 1(X,Hom(Q, F )), with [β] = 0 corresponding to the
holomorphic trivial extension E = F ⊕Q.

The canonical connection D on E defined by h can be written as

(2.5) D =
(
DF β

−β∗ DQ

)
,
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where DF and DQ are the canonical connections defined by the
Hermitian metrics on F and Q, respectively, induced by h, and β∗ ∈
E1,0(X,Hom(F,Q)) is obtained from β by combining the conjugation on the
form part and the conjugate-linear bundle isomorphism between Hom(Q, F )
and Hom(F,Q), defined by the Hermitian metric (Chap. V, Sec. 2).

Now, the curvature of D is given by

(2.6) �(D) =
(
�(DF )− β ∧ β∗ D′β

−D′′β∗ �(DQ)− β∗ ∧ β
)
.

We can now prove the following.

Proposition 2.5: Let E be a holomorphic vector bundle over X. Let h be
a Hermitian metric on E, such that the canonical connection satisfies (2.1).
Then E is polystable.

Proof: Suppose that D satisfies (2.1). Let F ⊂ E be a holomorphic
subbundle and let Q = E/F . From (2.6) we have that

�(DF )− β ∧ β∗ = −iµIF�.
Now, taking the trace of this equation, multiplying by i/2π and integrating
over X we have

i

2π

∫
X

Tr(�(DF ))+
∫
X

|β|2� = µ rankF,

where we have used that −i/2π Tr(β ∧β∗) = |β|2� (Chap. V, Sec. 2). Since
deg(F ) = i/2π

∫
X

Tr(�(DF )) we obtain that µ(F) ≤ µ = µ(E). If E is
indecomposable, then β 
= 0 for every F ⊂ E, and µ(F) < µ(E). Hence
E is stable. If β = 0 for some F ⊂ E, then E = F ⊕ Q and clearly
µ(F) = µ(Q) = µ(E). Since DF and DQ have also central curvature, we
can iterate the process (the rank of E is finite) until we obtain that E = ⊕Ei
with Ei stable and µ(Ei) = µ(E) for every i, that is, E is polystable.

Q.E.D.

Note that if, in the proof above, we had considered the piece

�(DQ)− β∗ ∧ β = −iµIQ�,
in (2.1) we would have obtained that µ(E) ≤ µ(Q), which is indeed an
equivalent definition of semistability, and hence would have reached the
same conclusion.

To explain the converse of Proposition 2.5, it is convenient to look at (2.1)
from another point of view. Instead of fixing a holomorphic structure and
looking for a Hermitian metric, we fix the Hermitian metric and look for the
holomorphic structure or, what is equivalent, for the canonical connection.
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To be more precise, let E be a smooth complex vector bundle over X. Let
h be a Hermitian metric on E. Let A be the set of all connections on E,
which are compatible with h. The gauge group G of (E, h) is the subgroup
of Gc consisting of those automorphisms of E that preserve h. The group
G acts on A as follows:

g ·D = gDg−1, where g ∈ G and D ∈ A.

The connection D ∈ A has constant central curvature if

(2.7) �(D) = λ,

where

(2.8) λ = −iµ(E)IE�.

This equation is invariant under the action of G and then, if we set

(2.9) A0 = {D ∈ A : �(D) = λ},

the quotient A0/G is the moduli space of constant central curvature
connections on (E, h).

Indeed, solving (2.1) for a Hermitian metric on a fixed holomorphic
vector bundle E is equivalent to fixing a Hermitian metric on the smooth
bundle E, and then solving for a Hermitian connection satisfying (2.7).

To show this, we note that the space of Hermitian metrics on E is the space
of global sections of the GL(n,C)/U(n)-bundle associated to the principal
GL(n,C)-bundle of frames of E, which in turn, by fixing h, can be identified
with the symmetric space Gc/G, where G is the gauge group of (E, h). Now,
if h′ is a solution to (2.1) on the holomorphic bundle E = (E, ∂E), then if
h = g(h′) for g ∈ Gc, then the h-connection corresponding to g(∂E) solves
(2.7) on the Hermitian bundle (E, h). Conversely, if on the Gc-orbit of ∂E
we find an element g(∂E), whose corresponding h-connection satifies (2.7),
then h′ = g(h) is the Hermitian metric solving (2.1) on E.

A connection D ∈ A is said to be reducible if (E, h) = (E1, h1)⊕ (E2, h2)

and D = D1 ⊕ D2, where D1 and D2 are connections on the Hermitian
vector bundles (E1, h1) and (E2, h2), respectively. We say that D is irreducible
if it is not reducible. We denote by A∗ and A∗

0 the subsets of A and A0,
respectively, consisting of irreducible connections.

Using analytic methods similar to those used for the moduli space of
stable vector bundles (see e.g. [20]), one has the following.

Theorem 2.6: The moduli space A∗
0/G of irreducible constant central cur-

vature connections on (E, h) has the structure of a smooth real manifold
of dimension 2 + 2n2(g − 1), where n is the rank of E.
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Consider now the map

A −→ C(2.10)

D %−→ D′′

where D′′ is the projection of D into the (0, 1)-part (Chap. 3, Sec. 2).
Theorem 2.1 in Chap. III. establishes that this map is an isomorphism.

Proposition 2.5 can be now reformulated as giving one direction of the
following.

Theorem 2.7: The map (2.10) restricted to A0 has its image in the subspace
Cps ⊂ C of polystable holomorphic structures, and descends to give a
homeomorphism

(2.11) A0/G ∼= Cps/Gc.

Moreover, this restricts to give a homeomorphism

(2.12) A∗
0/G

∼= Cs/Gc.

This is the theorem of Narasimhan and Seshadri [28]. The formulation in
[28] is in terms of representations of the fundamental group of the surface
but, as we will see in Section 4, this is equivalent. Here we follow the
approach of Atiyah–Bott [4] and Donaldson [10].

It is enough to prove surjectivity for (2.12). The polystable case can
easily be reduced to the stable one. We just mention the main ideas of the
proof given by Donaldson [10]. Let D ∈ A be the Hermitian connection
corresponding to ∂E . The theorem says that, even though D may not satisfy
(2.7), in the Gc-orbit O(D) of D (where the action is via the identification of
A with C) we can find a connection which does satisfy (2.7), which is unique
up to gauge transformations in G. We suppose inductively that the result
has been proved for bundles of lower rank (the case of line bundles being an
easy consequence of Hodge theory). Then we choose a minimizing sequence
in O(D) for a carefully constructed functional of the curvature, which is
equivalent to the Yang-Mills functional, defined by ‖�(D)‖L2 , and extract
a weakly convergent subsequence. Either the limiting connection is in O(D)

and we deduce the result by examining small variations within the orbit, or
in another orbit and we deduce that E is not stable. The main ingredient
in this approach is a result of Uhlenbeck on the weak compactness of the
set of connections with L2 bounded curvature. In the intermediate stages
of the argument one has to allow generalized connections of class W 1, i.e.,
which differ from some fixed C∞ connection D by an element of the Hilbert
space with norm

‖α‖2
W1 = ‖α‖2 + ‖Dα‖2,

with curvature in L2 and gauge transformations in W 2 (see Chap. IV, Sec. 1,
for the definition of Sobolev norms). As explained in Atiyah–Bott [4]
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the group actions and properties of curvature that we use extend with-
out essential change (in particular W 2 ⊂ C0, so the topology of the bundle
is preserved), and it is proved in [4] that each W 1 connection defines a
holomorphic structure.

3. Higgs Bundles on Riemann Surfaces

3.1. Moduli Spaces of Higgs Bundles

There are many natural gauge-theoretic equations similar to (2.7) which
involve also Higgs fields. These are simply sections of a certain vector bundle
naturally associated to the original vector bundle. As for equation (2.7),
the existence of solutions is related to some stability condition. Some of
these equations arise from considering solutions to the Yang-Mills equations
which are invariant under a certain symmetry group—a mechanism known
in gauge theory as dimensional reduction. An important example is provided
by the theory of Higgs bundles introduced by Hitchin [17].

Let X be a compact Riemann surface. A Higgs bundle over X is a pair
consisting of a holomorphic vector bundle E → X together with a sheaf
homomorphism — the Higgs field — � : E → E ⊗ K, where K is the
canonical line bundle of X, i.e.

� ∈ H 0(X,EndE ⊗K).
The Higgs bundle (E,�) is said to be stable if

µ(F) < µ(E)

for every proper subbundle F ⊂ E such that �(F) ⊂ F ⊗K. Semistability,
polystability, Jordan–Hölder filtrations and S-equivalence are defined in a
similar way to vector bundles. Clearly, if E is stable, (E,�) is a stable Higgs
bundle for every � ∈ H 0(X,EndE ⊗K).

The moduli space of stable Higgs bundles Ms(n, d) is defined as the set of
isomorphism classes of stable Higgs bundles (E,�) with rankE = n and
degE = d. In [17], Hitchin gave an analytic construction of this moduli
space in the rank 2 case. Similarly, we define the moduli space of semistable
Higgs bundles M(n, d) as the set of S-equivalence classes of semistable Higgs
bundles of rank n and degree d. In contrast with the case of vector bundles,
M(n, d) is not a projective algebraic variety, but only quasi-projective, i.e.,
it is an open subset of a projective variety. To be more precise, the GIT
construction given by Nitsure [31] says the following.

Theorem 3.1: The moduli space of semistable Higgs bundles M(n, d) is
a complex quasi-projective variety, which contains Ms(n, d) as an open
smooth subvariety of dimension 2 + 2n2(g− 1), where g is the genus of X.
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Similarly to the vector bundle case, if n and d are coprime M(n, d) ∼=
Ms(n, d). Notice that the dimension of Ms(n, d) is twice that of the moduli
space of stable vector bundles Ms(n, d). In fact Ms(n, d) contains as an open
subset the cotangent bundle of Ms(n, d). Indeed, let [E] ∈ Ms(n, d). The
cotangent space to Ms(n, d) at [E], as we saw in Section 2.1, is isomorphic
to H 1(X,EndE)∗. But, by Serre duality

H 1(X,EndE)∗ ∼= H 0(X,EndE ⊗K),
and hence the Higgs field is an element of the cotangent space T ∗

[E]M
s(n, d).

But, as mentioned above, if E is stable then (E,�) is stable for every
� ∈ H 0(X,EndE ⊗K). In particular, M(1, d) = T ∗ Picd(X).

The moduli space of stable Higgs bundles can also be described in
differential-geometric terms, using ∂ operators. To do that, let E be a
smooth complex vector bundle over X of rank n and degree d. Consider
the set of pairs

(3.1) H = {(∂E,�) ∈ C × E1,0(X,End E) : ∂E� = 0}.
Using apropriate Sobolev metrics C×E1,0(X,End E) can be endowed with the
structure of an infinite dimensional manifold and H is a closed subvariety,
in general with singularities. The gauge group Gc acts on E1,0(X,End E) by

g ·� = g�g−1 where g ∈ Gc and � ∈ E1,0(X,End E),

and this, combined with the action on C, gives the action on H:

g · (∂E,�) = (g∂Eg
−1, g�g−1) where g ∈ Gc and (∂E,�) ∈ H.

It is clear that if (∂E,�) ∈ H, then the pair (E,�), where E = (E, ∂E), is
a Higgs bundle, and H/Gc can be identified with the set of isomorphism
classes of Higgs bundles of rank n and degree d. If we define

Hs = {(∂E,�) ∈ H : (E,�) is stable},
Then

Ms(n, d) ∼= Hs/Gc.

To study the deformations of an element in H/Gc we consider the maps

(3.2) Gc
f0−→ C × E1,0(X,End E)

f1−→ E1,1(X,End E),

where f0 is defined for a fixed element (∂E,�) ∈ C × E1,0(X,End E) by

f0(g) = g · (∂E,�) where g ∈ Gc;
and

f1(∂E,�) = ∂E� where (∂E,�) ∈ C × E1,0(X,End E).
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We have that H = f −1
1 (0). Now, let (∂E,�) ∈ H. Let f0 be the map in

(3.2) defined by this element. Let D0 = Df0(I ) and D1 = Df1(∂E,�) be
the differentials of f0 and f1 at I ∈ Gc and our fixed element (∂E,�),
respectively. We have the complex

C• : 0 −→ E0(X,End E)
D0−→ E0,1(X,End E)⊕ E1,0(X,End E)(3.3)

D1−→ E1,1(X,End E) −→ 0,

where

D0(ψ) = (∂Eψ, [�,ψ])(3.4)

D1(α, ϕ) = ∂Eϕ + [α,�].(3.5)

This complex is elliptic since it is the sum of two elliptic complexes. Let
Hi(C•) be the cohomology groups of the complex (3.3). We have the
following ([17, 31]).

Proposition 3.2:

(1) The space of endomorphisms of (E,�) is isomorphic to H 0(C•).
(2) The space of infinitesimal deformations of (E,�) is isomorphic

H 1(C•).
(3) There is a long exact sequence

(3.6) 0 −→ H 0(C•) −→ H 0(EndE) −→ H 0(EndE ⊗K) −→ H 1(C•)

−→ H 1(EndE) −→ H 1(EndE ⊗K) −→ H 2(C•) −→ 0,

where the maps Hi(EndE) −→ Hi(EndE ⊗K) are induced by ad(�).

From (3.6) we deduce that

χ(C•)− χ(EndE)+ χ(EndE ⊗K) = 0,

hence by the Riemann-Roch theorem, we have that

h1(C•) = h0 + h2 + 2n2(g − 1).

Now, if (E,�) is a stable Higgs bundle, then it is simple, i.e. H0(C•) = C. On
the other hand, from (3.6) we see that Hi(C•) ∼= H2−i (C•)∗ for i = 0, 1, 2,
and hence H2(C•) = C. By deformation theory one has that Ms(n, d) is
smooth [31] and has dimension 2 + 2n2(g − 1).
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3.2. Hitchin Equations

The stability of a Higgs bundle is linked, as we have already mentioned,
to the existence of solutions to a certain equation. Let (E,�) be a Higgs
bundle. Let h be a Hermitian metric on E, with canonical connection D
and curvature �(D). A natural condition to ask is that the metric satisfy
the Hitchin equation:

(3.7) �(D)+ [�,�∗] = −iµIE�,
where [�,�∗] = ��∗ + �∗� is the usual extension of the Lie bracket to
Lie-algebra valued forms. Since Tr[�,�∗] = 0, as in (2.7), µ = µ(E). We
have the following.

Theorem 3.3: Let (E,�) be a Higgs bundle such that there is a Hermitian
metric on E satisfying (3.7). Then (E,�) is polystable. Conversely, if (E,�)
is stable, then there exists a Hermitian metric on E satisfying (3.7).

This theorem is proved by Hitchin [17] for n = 2 and by Simpson [34, 35]
for arbitrary rank (he also gives a generalization for a higher dimensional
Kähler manifold, which we will mention in Section 8).

The proof of how polystability follows from (3.7) is very similar to the
one given in Proposition 2.5. Suppose that h is a Hermitian metric satisfying
(3.7). Let F ⊂ E be a holomorphic subbundle such that �(F) ⊂ F ⊗ K,
and let Q = E/F . In terms of the C∞ splitting E ∼= F ⊕Q defined by h,
the Higgs field can be written as

(3.8) � =
(
�F θ

0 �Q

)
.

Using (2.6), from (3.7) we have

�(DF )− β ∧ β∗ + [�F ,�∗
F ] + θ ∧ θ∗ = −iµIE�.

Now, taking the trace of this equation, multiplying by i/2π and integrating
over X we have

i

2π

∫
X

Tr(�(DF ))+
∫
X

|β|2�+
∫
X

|θ |2� = µ rankF,

and hence
deg(F )+ ‖β‖2 + ‖θ‖2 = µ rankF.

We thus have µ(F) ≤ µ(E). The condition µ(F) = µ(E) is equivalent to
β = 0 and θ = 0. This happens if and only if (E,�) = (F,�F )⊕ (Q,�Q),
where both terms are Higgs bundles. Then we can iterate this process until we
obtain that (E,�) = ⊕(Ei,�i) where (Ei,�i) is stable and µ(Ei) = µ(E).
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To prove the existence result, it is convenient, as in the case of vector
bundles, to look at Theorem 3.3 as a correspondence between moduli
spaces. To do this, let E be a smooth complex vector bundle over X
of rank n and degree d. Let h be a Hermitian metric on E. Let A be
the set of all connections on E which are compatible with h, and let
X = A×E1,0(X,End E). The Hitchin equation on a Higgs bundle (3.7) can
be rephrased by requiring the pair (D,�) ∈ X to satisfy

(3.9)
�(D)+ [�,�∗] = λ

∂E� = 0,

where ∂E = D′′ is the holomorphic structure defined by D, and λ is given by
(2.8). The second equation simply says that � is holomorphic with respect
to this holomorphic structure, and hence the pair (E,�) is a Higgs bundle,
where E = (E, ∂E). Consider the set of all solutions to (3.9):

X0 = {(D,�) ∈ X = A × E1,0(X,End E) satisfying (3.9)}.
The set X0 is invariant under the action of G — the gauge group of (E, h),
and the moduli space of solutions to Hitchin equations is defined as the
quotient X0/G.

A pair (D,�) ∈ X is said to be reducible if (E, h) = (E1, h1) ⊕ (E2, h2)

and D = D1 ⊕ D2, where D1 and D2 are connections on the Hermitian
vector bundles (E1, h1) and (E2, h2), respectively, and � = �1 ⊕�2, where
�1 and �2 are Higgs fields on E1 and E2, respectively. We say that (D,�) is
irreducible if it is not reducible. We denote by X∗

0 the subset of X0 consisting
of irreducible solutions.

Using analytic methods one can show the following (see [17]).

Theorem 3.4: The moduli space X∗
0/G of irreducible solutions to (3.9) has

the structure of a smooth real manifold of dimension 4 + 4n2(g− 1), where
n is the rank of E.

Let H be the set defined in (3.1), and let

Hps = {(∂E,�) ∈ H : (E,�) is polystable}.
Theorem 3.3 can be restated as follows.

Theorem 3.5: There is a homeomorphism

X0/G ∼= Hps/Gc,

which restricts to a homeomorphism

X∗
0/G ←→ Hs/Gc.



258 Moduli Spaces and Geometric Structures Appendix

We have proved one direction of this correspondence. To prove the con-
verse, one has to show that in the Gc-orbit of any element (∂E0 ,�0) ∈ Hs

we can find an element (∂E,�), unique up to gauge transformations in G,
whose corresponding (irreducible) pair (D,�) (under the correspondence
between A and C) satisfies (3.9). As in the case of Theorem 2.7, we need to
work with Sobolev spaces and consider W 1 connections and W 1 Higgs fields,
as well as W 2 gauge transformations. To find a solution one considers a
minimizing sequence (Dn,�n) for the functional ‖�(D)+[�,�∗]‖2

L2 defined
on the Gc-orbit of (D0,�0). In particular one has ‖�(D)+[�,�∗]‖2

L2 < C.
From this, and from L2 bounds that one can obtain for �n, one obtains L2

bounds for �(Dn), from which it follows, by a theorem of Uhlenbeck [37],
that there are gauge transformations gn ∈ G for which gn ·Dn has a weakly
convergent subsequence. It is not difficult to find W 1 bounds for �n, to
conclude that (Dn,�n) (after renaming) converges to a solution (D,�). To
complete the proof one shows that (D,�) is in the same orbit as (D0,�0)

(see [17, 34] for details).

4. Representations of the Fundamental Group

4.1. Connections and Representations

Let E be a C∞ complex vector bundle of rank n over X, and let D be
a connection on E. A section ξ ∈ E(X,E) is said to be parallel if Dξ = 0.
If γ = γ (t), 0 ≤ t ≤ T is a curve in X, a section ξ defined along γ is said
to be parallel along γ if

(4.1) Dξ(γ ′(t)) = 0 for 0 ≤ t ≤ T ,

where γ ′(t) is the tangent vector of γ at γ (t). If ξ0 is an element of the
initial fibre Eγ (0), by solving the system of ordinary differential equations
(4.1) with initial condition ξ0 we can extend ξ0 uniquelly to a parallel section
ξ along γ , called the parallel displacement of ξ0 along γ . If the initial and
the end points of γ coincide so that x0 = γ (0) = γ (T ) then the parallel
displacement along γ defines a linear transformation of the fibre Ex0 . We
thus have a map

(4.2) {closed paths based at x0} −→ GL(Ex0)

whose image is a subgroup of GL(Ex0) called the holonomy group of D
at x0.

If D is flat the parallel displacement depends only on the homotopy class
of the closed path and (4.2) defines a representation

ρ : π1(X, x) −→ GL(Ex).
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Conversely, given a representation ρ : π1(X, x0) → GL(n,C), one can
construct a vector bundle E of rank n with a flat connection by setting

E = X̃ ×ρ Cn,

where X̃ is the universal cover of X and X̃×ρ Cn is the quotient of X̃× Cn

by the action of π1(X, x) given by (y, v) %→ (γ (y), ρ(γ )v) for γ ∈ π1(X, x)

(regarded as the covering transformation group acting on X̃). The trivial
connection on X̃ × Cn descends to give a flat connection on E, whose
holonomy is the image of ρ.

As we know, the existence of flat connections on E implies that the first
Chern class of E must vanish. If c1(E) 
= 0, we can consider projectively
flat connections. As we have seen in Section 2.2, these are connections
on E which induce flat connections on the principal PGL(n,C)-bundle
associated to E. The holonomy map of a projectively flat connection defines
a homomorphism

ρ̃ : π1(X, x0) −→ PGL(Ex0),

i.e., a projective representation of π1(X, x0).
Since we are assuming that X is connected we can drop the reference

point x0 ∈ X from the notation. The fundamental group π1(X) is a finitely
generated group generated by 2g generators, say A1, B1, . . . , Ag, Bg, subject
to the single relation

g∏
i=1

[Ai, Bi] = 1.

It has a universal central extension

(4.3) 0 −→ Z −→ � −→ π1(X) −→ 1

generated by the same generators as π1(X), together with a central element
J subject to the relation

∏g

i=1[Ai, Bi] = J . By the universal property of
� (see [4]), we can lift every ρ̃ : π1(X) −→ PGL(n,C) to a representation
ρ : � −→ GL(n,C) such that

0 −−−−→ Z −−−−→ � −−−−→ π1(X) −−−−→ 1⏐⏐8 ρ

⏐⏐8 ρ̃

⏐⏐8
1 −−−−→ C∗ −−−−→ GL(n,C) −−−−→ PGL(n,C) −−−−→ 1.

Since a projective connection is equivalent to a connection with constant
central curvature, we conclude that there is a correspondence between con-
stant central curvature connections and representations of � in GL(n,C).
To be more precise, let Hom(�,GL(n,C)) be the set of all representations of
� in GL(n,C). Given an element ρ ∈ Hom(�,GL(n,C)) we can associate
to it a topological invariant given by the first Chern class of the vector
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bundle Eρ with central curvature associated to ρ. Fixing this invariant, we
define

(4.4) Homd(�,GL(n,C)) = {ρ ∈ Hom(�,GL(n,C)) : c1(Eρ) = d}.
The group GL(n,C) acts on Hom(�,GL(n,C)) by conjugation, that is,

(g · ρ)(γ ) = gρ(γ )g−1 for g ∈ GL(n,C), ρ ∈ Hom(�,GL(n,C)), γ ∈ �,
preserving Homd(�,GL(n,C)).

Now, let E be a C∞ vector bundle of rank n and degree d. Let D be
the set of all connections on E, and let D0 be the set of connections with
constant central curvature, that is,

(4.5) D0 = {D ∈ D : �(D) = λ},
where λ is given by (2.8).

Proposition 4.1: There is a homeomorphism

D0/G
c ∼= Homd(�,GL(n,C))/GL(n,C).

Here, the gauge group Gc acts on D as usual, by g ·D = gDg−1 for g ∈ Gc

and D ∈ D.

4.2. Theorem of Narasimhan–Seshadri Revisited

Let E be a C∞ vector bundle of rank n and degree d. Let h be a Hermitian
metric on E. It is clear that the holonomy group of a connection compatible
with h is a subgroup of the unitary group U(n). Let Homd(�,U(n)) be
defined in a similar way to (4.4). Hence, if A is the set of all connections
on E which are compatible with h, and A0 is the set of constant central
curvature connections in A defined in (2.9), then similarly to Proposition
4.1, we have the following.

Proposition 4.2: There is a homeomorphism

A0/G ∼= Homd(�,U(n))/U(n),

which restricts to a homeomorphism

A∗
0/G ←→ Hom∗

d(�,U(n))/U(n),

where A∗
0 and Hom∗

d(�,U(n)) are irreducible connections and representa-
tions respectively.
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We define the moduli space of representations of degree d of � in U(n) as

R(n, d) = Homd(�,U(n))/U(n),

and the moduli space of irreducible representations of degree d of � in
U(n) as

R∗(n, d) = Hom∗
d(�,U(n))/U(n).

Combining Proposition 4.2 with Theorem 2.7 we obtain the original
formulation of the theorem of Narasimhan and Seshadri [28]:

Theorem 4.3: There is a homeomorphism

R(n, d) ∼= M(n, d),

which restricts to a homeomorphism

R∗(n, d) ∼= Ms(n, d).

5. Non-abelian Hodge Theory

5.1. Harmonic Metrics

Our next goal is to show that there is a similar correspondence to that given
by Theorem 4.3 between Higgs bundles and representations of � in GL(n,C).
This requires, though, another existence theorem due to Donaldson [14]
for n = 2 and to Corlette [8] for arbitrary n (and in fact in much more
generality).
The set Hom(�,GL(n,C)) can be embedded in GL(n,C)2g+1 via the map

Hom(�,GL(n,C)) −→ GL(n,C)2g+1(5.1)

ρ %→ (ρ(A1), . . . ρ(Bg), ρ(J )).(5.2)

We can then give Hom(�,GL(n,C)) the subspace topology and consider on

Hom(�,GL(n,C))/GL(n,C)

the quotient topology. In contrast to what happen in the unitary case,
this topology is non-Hausdorff. This phenomenon is very similar to what
we have already seen in the study of holomorphic structures. In order to
obtain a Hausdorff space we have to restric our attention to reductive
representations.

A representation ρ ∈ Hom(�,GL(n,C)) is said to be reductive if it is
the direct sum of irreducible representations. Under the correspondence
given by Proposition 4.1, a reductive representation is obtained from the
holonomy representation of a reductive connection with constant central
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curvature, where a connection D is called reductive if every D-invariant
subbundle admits a D-invariant complement. Due to the compactness of
U(n), every unitary representation is reductive.

Restricting to the sets of reductive and irreducible representations, denoted
respectively by Hom+

d (�,GL(n,C)) and Hom∗
d(�,GL(n,C)), we obtain the

moduli space of reductive representations of degree d of � in GL(n,C),

(5.3) R(n, d) = Hom+
d (�,GL(n,C))/GL(n,C),

and the moduli space of irreducible representations of degree d of � in
GL(n,C),

(5.4) R∗(n, d) = Hom∗
d(�,GL(n,C))/GL(n,C),

respectively. In particular, Hom0(�,GL(n,C)) = Hom(π1(X),GL(n,C))
and hence

(5.5) R(n, 0) = Hom+(π1(X),GL(n,C))/GL(n,C)

is the moduli space of reductive representations of the fundamental group
of X in GL(n,C).

Let E be a C∞ vector bundle of rank n and degree d over X. We denote
the sets of reductive and irreducible connections in D0 by D+

0 and D∗
0,

respectively, and define the corresponding moduli spaces as D+
0 /G

c and
D∗

0/G
c. It is clear that the correspondence given by Propostion 4.1 restricts

to give the following.

Proposition 5.1: There are homeomorphisms

R(n, d) ∼= D+
0 /G

c,

and
R∗(n, d) ∼= D∗

0/G
c.

In analogy to what happens with polystable bundles and Higgs bundles,
a C∞ complex vector bundle E equipped with a reductive connection with
constant central curvature admits a special type of Hermitian metric. To
explain this, let h be a Hermitian metric on E. Using h we can decompose
D uniquely as

(5.6) D = ∇ + ,
where ∇ is a connection on E compatible with h and  is a 1-form with
values in the bundle of self-adjoint endomorphisms of E. That is, under
the decomposition

End E = ad E ⊕ i ad E,
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where ad E = End(E, h) is the bundle of skew-Hermitian endomorphisms
of (E, h), the connection ∇ takes values in ad E, while  takes values in
i ad E.

The metric h is said to be harmonic if

(5.7) ∇∗ = 0,

where we use the metric on X (in fact the conformal structure is enough
here), and the metric on E to define ∇∗ (see Chap. V, Sec. 2). To explain
why the word “harmonic” is used here, recall that a Hermitian metric h
on E is simply a section of the GL(n,C)/U(n)-bundle over X naturally
associated to E. This can be viewed as a π1(X)-equivariant function

h̃ : X̃ → GL(n,C)/U(n),

where X̃ is the universal cover of X. It turns out that ∇∗ = 0 is equivalent
to the condition that the map h̃ be harmonic, in the sense that it minimizes
the energy E(h̃) = ∫

X̃
|dh̃|2. In fact the one-form  can be identified with

the differential of h̃, and ∇ with the pull-back of the Levi–Civita connection
on GL(n,C)/U(n) ([14, 8]).

The theorem proved by Donaldson [14] in rank 2 and by Corlette [8] in
general is the following.

Theorem 5.2: Let D be a connection on E with constant central curvature.
Then (E,D) admits a harmonic metric if and only if D is reductive.

Remark: Corlette’s version of this theorem includes the case in which the
base manifold is a compact Riemannian manifold of arbitrary dimension
and GL(n,C) – the structure group of the bundle — is replaced by any
reductive non-compact Lie group.

As in the previous existence theorems, we can formulate Theorem 5.2 as
a correspondence between moduli spaces. To do that, we fix a Hermitian
metric h on E. We have a bijection

D −→ A × E1(X, ad E)

D %→ (∇,  ),

defined by (5.6). Now, the condition for a connection D to have central
curvature, i.e. �(D) = λ, where λ is given by (2.8), and the harmonicity
equation (5.7) are equivalent to the following set of equations for (∇,  ):

(5.8)
�(∇)+ 1

2 [ , ] = λ

∇ = 0
∇∗ = 0.
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Let Y = A × E1(X, ad E) and let

Y0 = {(∇,  ) ∈ Y = A × E1(X, ad E) satisfying (5.8)}.
The gauge group G acts on Y0, and Y0/G is the moduli space of solutions
to (5.8). Theorem 5.2 can now be restated as follows.

Theorem 5.3: There is a homeomorphism between the moduli spaces of
solutions to (5.8) and the moduli space of reductive connections with
constant central curvature on E, i.e.,

Y0/G ∼= D+
0 /G

c.

This restricts to a homeomorphism between the corresponding moduli spaces
of irreducible objects.

5.2. Representations and Higgs Bundles

Consider now the correspondence

E1,0(X,End E) −→ E1(X, ad E)

� %→  = �+�∗.

We have the following.

Proposition 5.4: The pair (∇,  ) satisfies (5.8) if and only if (∇,�) sat-
isfies Hitchin equations (3.9), where  = � + �∗. Moreover, there is a
homeomorphism between the moduli spaces of solutions

Y0/G ∼= X0/G,

which restricts to a homeomorphism between the moduli spaces of
irreducible solutions.

Combining previous results in this section with results in Section 2, we
obtain the following.

Theorem 5.5: There is a homeomorphism

R(n, d) ∼= M(n, d)

which restricts to
R∗(n, d) ∼= Ms(n, d).

This correspondence can be viewed as a Hodge theorem for non-abelian
cohomology. To see this, consider first the abelian cohomology: H 1(X,C)
can be regarded as the space of homomorphisms from π1(X) into C, or
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equivalently the space of closed one-forms modulo exact one-forms. Since
X is Kähler, the Hodge theorem (Chap. V) gives a decomposition

H 1(X,C) = H 1(X,OX)⊕H 0(X,K).

In other words, a cohomology class can be thought of as a pair (e,�)
with e ∈ H 1(X,OX) and � a holomorphic one-form. The correspondence
between Higgs bundles and representations of π1(X) in GL(n,C) is analo-
gous. If π1(X) acts trivially on GL(n,C), then the non-abelian cohomology
set H 1(π1(X),GL(n,C)) is the set of representations π1(X) → GL(n,C)
modulo conjugation. Equivalently, it is the set of isomorphism classes of
C∞ vector bundles of rank n with flat connections. What we have described
is a correspondence between the set of reductive representations and the
set of polystable pairs (E,�) where E is a holomorphic vector bundle, i.e.
an element in the non-abelian cohomology set H 1(X,GL(n,OX)), and �
is an endomorphism valued one-form.

6. Representations in U(p, q) and Higgs Bundles

6.1. Representations in U(p, q) and Harmonic Metrics

Let X be a compact Riemann surface. We have seen how stable vector
bundles correspond to irreducible representations of π1(X) in U(n), and
stable Higgs bundles correspond to irreducible representations of π1(X) in
GL(n,C). The group U(n) is the compact real form of GL(n,C). We can
also consider a non-compact real form G of GL(n,C) and ask whether
we can use complex geometry to study representations of π1(X) in G. We
illustrate in this section how to do this for the group U(p, q) (see [6, 7]).

The group U(p, q), with p+q = n, is defined as the group of linear trans-
formations of Cn which preserve the Hermitian inner product of signature
(p, q) defined by

〈z,w〉 = z1w1 + · · · + zpwp − · · · − zp+1wp+1 − zp+qwp+q,

for z = (z1, · · · , zn) ∈ Cn and w = (w1, · · · , wn) ∈ Cn. That is,

U(p, q) = {A ∈ GL(n,C) : 〈Az,Aw〉 = 〈z,w〉, for every z,w ∈ Cn}.
If

Ip,q =
(
Ip 0
0 Iq

)
,

we have that

U(p, q) = {A ∈ GL(n,C) : AIp,qA
t = Ip,q}.

As is done for an ordinary Hermitian metric on a C∞ complex vector
bundle E we can consider a Hermitian metric H of signature (p, q) and
study connections which are compatible with H . This is equivalent to having
a reduction of the structure group of the principal GL(n,C)-bundle P of
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frames associated to E to a U(p, q)-bundle and considering connections
on P . A vector bundle E equipped with a U(p, q)-structure H has a finer
topological invariant than its degree d. To show this, we first observe that
U(p)×U(q) ⊂ U(p, q) is the maximal compact subgroup of U(p, q). Now,
since the symmetric space U(p, q)/U(p)× U(q) is simply connected, there
is no obstruction to further reduce the structure group of P to the group
U(p)× U(q). This is equivalent to saying that E ∼= V⊕W, where V and W

are vector bundles with rank V = p and rank W = q, naturally equipped
with Hermitian metrics hV and hW, respectively. The topological invariant
naturally associated to (E, H) is the pair of integers (a, b), where a = deg V

and b = deg W, which does not depend on the reduction to U(p)× U(q).
Notice that d = a + b.

Let ρ ∈ Hom(�,U(p, q)) be a representation of � in U(p, q). As in
the case of U(n) and GL(n,C), to ρ we can associate a smooth vector
bundle Eρ equipped with a U(p, q) structure and a U(p, q)-connection with
constant central curvature. We can in this way attach a topological invariant
c(ρ) = (a, b) to ρ, corresponding to the invariant of the U(p, q)-bundle
Eρ . Consider

Homa,b(�,U(p, q)) = {ρ ∈ Hom(�,U(p, q)) : c(ρ) = (a, b)},
and define the moduli spaces of reductive and irreducible representations
of � in U(p, q) with invariant (a, b) ∈ Z × Z as

R(p, q, a, b) = Hom+
a,b(�,U(p, q))/U(p, q),

and
R∗(p, q, a, b) = Hom∗

a,b(�,U(p, q))/U(p, q),

respectively.
The representations for which a + b = 0 correspond to representations

of the fundamental group of X.
Let (E, H) be a C∞ vector bundle on X equipped with a U(p, q)-structure

and topological invariant (a, b) ∈ Z×Z . Let B be the set of all connections
on E compatible with H . Let

(6.1) B0 = {D ∈ B : �(D) = λ},
where λ is given by (2.8). Let GH be the gauge group of (E, H). We denote
the sets of reductive and irreducible connections in B0 by B+

0 and B∗
0,

respectively, and define the corresponding moduli spaces as B+
0 /GH and

B∗
0/GH .

Proposition 6.1: There are homeomorphisms

Homa,b(�,U(p, q))/U(p, q) ∼= B0/GH ,

R(p, q, a, b) ∼= B+
0 /GH ,
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and
R∗(p, q, a, b) ∼= B∗

0/GH .

Now Theorem 5.2 can be generalized to U(p, q) to show that if D ∈ B+
0 ,

then there is a harmonic reduction of the U(p, q) structure to U(p)×U(q).
Any reduction defines a decomposition

D = ∇ + ,
where ∇ is a U(p)× U(q)-connection on the reduced U(p)× U(q)-bundle
and  is a one-form with values in the associated bundle with fibre m,
where

u(p, q) = u(p)⊕ u(q)⊕ m

is the Cartan decomposition of the Lie algebra of U(p, q), and m is the
set of matrices (

0 A

−At 0

)
,

with A a complex matrix with p columns and q rows. The harmonicity
condition is, as for GL(n,C),

∇∗ = 0,

where we use now the reduction to U(p) × U(q) to define ∇∗. Similar
to the GL(n,C) case, a reduction to U(p) × U(q) can be viewed as a
π1(X)-equivariant function

X̃ → U(p, q)/U(p)× U(q),

where X̃ is the universal cover of X, and ∇∗ = 0 is equivalent to the
condition that this map be harmonic.

We thus have the following [8].

Theorem 6.2: Let D be a connection on a U(p, q) bundle (E, h) with
constant central curvature. Then (E,D) admits a harmonic reduction to
U(p)× U(q) if and only if D is reductive.

6.2. U(p, q)-Higgs Bundles and Hitchin Equations

There is a special class of GL(n,C)-Higgs bundles, related to represen-
tations in U(p, q) given by the requirements that

(6.2)
(
E = V ⊕W,� =

(
0 β

γ 0

))
,

where V andW are holomorphic vector bundles of rank p and q respectively
and the non-zero components in the Higgs field are β ∈ H 0(Hom(W, V )⊗



268 Moduli Spaces and Geometric Structures Appendix

K), and γ ∈ H 0(Hom(V ,W)⊗K). We say (E,�) is a stable U(p, q)-Higgs
bundle if the slope stability condition µ(E′) < µ(E), is satisfied for all
�-invariant subbundles E′ = V ′ ⊕W ′, i.e. for all subbundles V ′ ⊂ V and
W ′ ⊂ W such that

β : W ′ −→ V ′ ⊗K
γ : V ′ −→ W ′ ⊗K.

Semistability and polystability are defined as for GL(n,C)-Higgs bundles.
Let (a, b) ∈ Z × Z. We define the moduli space of stable U(p, q)-Higgs
bundles Ms(p, q, a, b) as the set of isomorphism classes of stable U(p, q)-
Higgs bundles with deg(V ) = a and degW = b. Similarly, we define the
moduli space of polystable U(p, q)-Higgs bundles M(p, q, a, b). The basic
relation with representations of � in U(p, q) is given by the following [6].

Theorem 6.3: There is a homeomorphism

M(p, q, a, b) ∼= R(p, q, a, b),

which restricts to
Ms(p, q, a, b) ∼= R∗(p, q, a, b).

The scheme of the proof is very similar to that of Theorem 5.5 for
GL(n,C). A key ingredient is an existence theorem for solutions to the
U(p, q)-Hitchin equations that we explain now.

Let (E,�) be a U(p, q)-Higgs bundle as in (6.2). Hitchin equations are
now equations for Hermitian metrics hV and hW on V and W , respectively.
If �(DV ) and �(DW) are the curvatures of the corresponding canonical
connections, the equations are

(6.3)
�(DV )+ β ∧ β∗ + γ ∗ ∧ γ = λ

�(DW)+ γ ∧ γ ∗ + β∗ ∧ β = λ,

where λ is given by (2.8). We have the following [6].

Theorem 6.4: Let (E,�) be a U(p, q)-Higgs bundle as in (6.2), such that
there are Hermitian metrics on V and W satisfying (6.3). Then (E,�) is
polystable. Conversely, if (E,�) is stable, then there exist Hermitian metrics
on V and W satisfying (3.7).

Following a similar scheme to that of the GL(n,C) case, Theorem 6.4
combined with Theorem 6.2 give the proof of Theorem 6.3.

In contrast with the case of stable vector bundles and stable GL(n,C)-
Higgs bundles, which exist for any value of the degree of the bundle,
the topological invariant (a, b) of a polystable U(p, q)-Higgs bundle has
to satisfy a certain constraint. This is expressed in terms of the Toledo
invariant.
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Given a representation of � in U(p, q) with topological invariant c(ρ) =
(a, b), the Toledo invariant of ρ is defined by

τ(ρ) = τ(p, q, a, b) = 2
qa − pb
p + q .

This invariant satisfies the inequality

|τ(p, q, a, b)| ≤ min{p, q}(2g − 2).

proved by Domic and Toledo [9] (this is a generalization of the Milnor
inequality for the Euler class of a PSL(2,R)-flat connection [24]). This
inequality can also be proved for a reductive representation ρ ∈ R(p, q, a, b)

using the polystability condition of the corresponding Higgs bundle (E,�) ∈
M(p, q, a, b) [6].

One of the main results in [6] is the following.

Theorem 6.5: The moduli space Ms(p, q, a, b) (and hence Rs(p, q, a, b)) is a
connected smooth Kähler manifold of complex dimension 1+(p+q)2(g−1),
which is non-empty if and only if |τ(p, q, a, b)| ≤ min{p, q}(2g − 2).

7. Moment Maps and Geometry of Moduli Spaces

7.1. Symplectic and Kähler Quotients

In this section we review some standard facts about the moment map
for the symplectic action of a Lie group G on a symplectic manifold, and
the special situation in which the manifold has a Kähler structure which is
preserved by the action of the group.

A symplectic manifold is by definition a differentiable manifold X together
with a non-degenerate closed 2-form �. A Kähler manifold with its Kähler
form is an example of a symplectic manifold. A transformation f of X is
called symplectic if it leaves invariant the 2-form, i.e., f ∗� = �.

Suppose now that a Lie group G acts symplectically on (X,�). If v is a
vector field generated by the action, then the Lie derivative Lv� vanishes.
Now for �, as for any differential form,

Lv� = i(v)d�+ d(i(v)�);

hence d(i(v)�) = 0, and so, if H 1(X,R) = 0, there exists a function
µv : X → R such that

dµv = i(v)�.

The function µv is said to be a Hamiltonian function for the vector field v.
As v ranges over the set of vector fields generated by the elements of the
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Lie algebra g of G, these functions can be chosen to fit together to give a
map to the dual of the Lie algebra,

µ : X −→ g∗,

defined by
〈µ(x), a〉 = µã(x),

where ã is the vector field generated by a ∈ g, x ∈ X and 〈·, ·〉 is the natural
pairing between g and its dual. There is a natural action of G on both
sides and a constant ambiguity in the choice of µv. If this can be adjusted
so that µ is G-equivariant, i.e.

µ(g(x)) = (Ad g)∗(µ(x)) for g ∈ G x ∈ X,
then µ is called a moment map for the action of G on X. The remaining
ambiguity in the choice of µ is the addition of a constant abelian character
in g∗. If µ is a moment map then

dµã(x)(v) = �(ã(x), v) for a ∈ g , v ∈ TXx , x ∈ X.
An important feature of the moment map is that it gives a way of

constructing new symplectic manifolds. More precisely, suppose that G acts
freely and discontinuously on µ−1(0) (recall that µ−1(0) is G-invariant),
then

µ−1(0)/G

is a symplectic manifold of dimension dimM−2dimG. This is the Marsden–
Weinstein symplectic quotient of a symplectic manifold acted on by a group
[23]. There is a more general construction by taking µ−1 of a coadjoint
orbit. In particular if λ is a central element in g∗ we can consider the
symplectic quotient

µ−1(λ)/G.

Suppose now that X has a Kähler structure. It is convenient to describe
a Kähler structure on the manifold X as a triple (g, J,�) consisting of a
Riemannian metric g, an integrable almost complex structure (a complex
structure) J and a symplectic form � on X which satisfies

�(u, v) = g(Ju, v), for x ∈ X and u, v ∈ TxX.
Any two of these structures determines the third one. This is equivalent to
the definition given in Chap. V.

Let G now be a Lie group acting on (X, g, J,�) preserving the Kähler
structure. Then if µ : X −→ g∗ is a moment map, and G acts freely and dis-
continuously on µ−1(λ), for a central element λ ∈ g∗, the quotient µ−1(λ)/G

is also a Kähler manifold. This process is called Kähler reduction [25].
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A very basic example is the following. Let X = Cn be equipped with
its natural Kähler structure and let U(1) act on X by multiplication. The
action of U(1) preserves the symplectic structure and has a moment map
µ : Cn → R given by z %→ ∑ |zi |2. We can consider µ−1(1) = S2n−1. We
then have the symplectic quotient

µ−1(1)/U(1) = S2n−1/U(1) ∼= Pn−1(C).

Since the action of U(1) preserves also the complex structure, this construc-
tion exhibits Pn−1(C) as a Kähler quotient whose induced Kähler structure
is in fact the standard one. Note that µ−1(1)/U(1) is hence isomorphic to
the “good” quotient Cn − {0}/C∗. This relation turns out to be true in a
more general context as we will see below.

When X is a projective algebraic manifold there is a very important
relation between the symplectic quotient and the algebraic quotient defined
by Mumford’s Geometric Invariant Theory (GIT) [25]. Suppose that i :
X ⊂ Pn−1(C) is a projective algebraic manifold acted on by a reductive
algebraic group which we can assume to be the complexification Gc of a
compact subgroup G ⊂ U(n). Then, following [25], we say that x ∈ X is
semistable if there is a non-constant invariant polynomial f with f (x) 
= 0.
This is equivalent to saying that if x̃ ∈ Cn is any representative of x, then
the closure of the Gc-orbit of x̃ does not contain the origin. Let Xss ⊂ X

the set of all semistable points. There is a subset Xs ⊂ Xss of stable points
which satisfy the stronger condition that the Gc-orbit of x̃ is closed in Cn.
The algebraic quotient is by definition the orbit space Xss/Gc. That this
is the right quotient in this setup is confirmed by the fact that if A(X)
is the graded coordinate ring of X, then the invariant subring A(X)G

c
is

finitely generated and has Xss/Gc as its corresponding projective variety.
The quotient Xs/Gc gives a dense open set of Xss/Gc.

To relate to symplectic quotients, consider the action of U(n) on Pn−1(C)
induced by the standard action on Cn. This action is symplectic and has a
moment map µ : Pn−1(C) → u(n)∗ given by

µ(x) = 1
2π

xx∗

‖x‖2
,

where we are using the Killing form of u(n) to identify u(n) with u(n)∗. Let
X and G be as above. Then p ◦µ◦ i, where p : u(n)∗ → g∗ is the projection
induced by the inclusion g ⊂ u(n), is a moment map for the action of G on
X. We can then consider the symplectic quotient µ−1(0)/G. The relation
between this quotient and the algebraic quotient is given by the following
result due to Mumford, Kempf–Ness, Guillemin and Sternberg and others
(see [25]).

Theorem 7.1: There is an isomorphism

µ−1(0)/G ∼= Xss/Gc.
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7.2. Moduli Spaces as Kähler Quotients

The symplectic and Kähler quotient constructions explained above can
also be extended to the context of infinite dimensional manifolds (see [23]).
We show now how this can be used to endow our moduli spaces with
symplectic and Kähler structures.

Coming back to the setup of Section 2.2, let (E, h) be a smooth complex
Hermitian vector bundle over a compact Riemann surface X. The set A of
connections on (E, h) is an affine space modelled on E1(X, ad E), which is
equipped with a symplectic structure defined by

�A(ψ, η) =
∫
X

Tr(ψ ∧ η), for D ∈ A and ψ, η ∈ TDA = E1(ad E).

This is obviously closed since it is independent of D ∈ A.
Now, the set C of holomorphic structures on E is an affine space modelled

on E0,1(X,End E), and it has a complex structure JC, induced by the complex
structure of the Riemann surface, which is defined by

JC(α) = iα, for ∂E ∈ C and α ∈ T∂EC = E0,1(X,End E).

The complex structure JC defines a complex structure JA on A via the
identification A ∼= C given by (2.10). The symplectic structure �A and the
complex structure JA define a Kähler structure on A, which is preserved
by the action of the gauge group G. We have that Lie G = E0(X, ad E)

and hence its dual (Lie G)∗ can be identified with E2(X, ad E). One has the
following [4].

Proposition 7.2: There is a moment map for the action of G on A given by

A −→ E2(X, ad E)

D %−→ �(D).

To prove this, let a ∈ Lie G = E0(X, ad E), and let ã be the vector field
generated by a. We have to show that the function µã : A → R given by

µã(D) =
∫
X

Tr(a ∧�(D))

is Hamiltonian. But this follows simply from the following:

dµã(D)(v) =
∫
X

Tr(a ∧Dv)

= −
∫
X

Tr(Da ∧ v)

= �A(v, ã),

where we have used that ã = Da. In order to have a non-empty symplectic
reduction, we take the central element λ ∈ E2(X, ad E) given by (2.8) and
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consider µ−1(λ). This coincides with the set defined in (2.9) and hence the
Kähler quotient µ−1(λ)/G is precisely the moduli space of constant central
curvature connections on (E, h), which in this way is shown to have a
Kähler structure. In view of this, the correspondence given by Theorem 2.7
is formally an infinite dimensional version of the isomorphism between the
symplectic and the algebraic quotients in finite dimensions given by Theorem
7.1. Note that even though A is infinite dimensional, the quotient obtained
has finite dimension, as shown in Section 2.2. It should be mentioned that
in order to perform the quotient construction in the infinite dimensional
set up, all the spaces and the gauge group have to be naturally completed
to have Banach manifold structures (see e.g. [4, 20]).

Similarly, the moduli spaces of Higgs bundles can be endowed with a
Kähler structure. To explain this, let us denote E = E1,0(X,End E). The
linear space E has a natural complex structure JE defined by multiplication
by i, and a symplectic structure given by

�E(ψ, η) = i

∫
X

Tr(ψ ∧ η∗), for � ∈ E and ψ, η ∈ T�E = E.

We can now consider X = A×E with the symplectic structure �X = �A+�E

and complex structure JX = JA + JE. The action of G on X preserves �X

and JX and there is a moment map given by

(7.1)
µX : X −→ E2(X, ad E)

(D,�) %→ �(D)+ [�,�∗].
This follows from Proposition 7.2 and the fact that � %→ [�,�∗] is a
moment map for the action of G on E, as can be easily proved [17].

We now consider the subvariety

(7.2) N = {(D,�) ∈ X : D′′� = 0},
which corresponds to the space H defined in (3.1) under the identification
between A and C. Avoiding difficulties with possible singularities, N inherits
a Kähler structure from X and, since it is G-invariant, the moment map
is the restriction µ = µX|N : N → E2(X, ad E). Now, the moduli space of
solutions to Hitchin equations (3.9) is the Kähler quotient µ−1(λ)/G.

To show this construction in the case of U(p, q)-Higgs bundles, we go
back to the setup in Section 6, and consider the set

Y = AV × AW × E+ × E−,

where AV and AW are the sets of connections on the Hermitian bundles
(V, hV) and (W, hW) respectively, and E+ = E1,0(X,Hom(W,V)) and E− =
E1,0(X,Hom(V,W)). Let (E, h) = (V⊕W, hV ⊕hW) and A, E and G be the
corresponding set of connections, Higgs fields and gauge group. The space
Y is a Kähler submanifold of X = A×E which is invariant by the subgroup
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GV × GW ⊂ G, and hence the moment map is given by projecting onto
(Lie GV)

∗ ⊕ (Lie GW)
∗ in (7.2). The moment map for the action of GV × GW

on Y is thus

µY : Y −→ E2(X, ad V)⊕ E2(X, ad W)

(DV,DW, β, γ ) %−→ (�(DV)+ β ∧ β∗ + γ ∗ ∧ γ,�(DW)+ γ ∧ γ ∗ + β∗ ∧ β).
We can then restrict this to obtain a moment map µ on the (GV × GW)-
invariant Kähler submanifold NY = N ∩ Y, where N is given by (7.2). The
quotient µ−1(λ)/GV × GW is the moduli space of solutions to the U(p, q)-
Hitchin equations, which is isomorphic to the moduli space of U(p, q)-Higgs
bundles M(p, q, a, b) where a and b are the Chern classes of V and W

respectively.

7.3. Hyperkähler Quotients and Moduli Spaces

A hyperkähler manifold is a differentiable manifold X equipped with
a Riemannian metric g and complex structures Ji , i = 1, 2, 3 satisfying
the quaternion relations J 2

i = −I , J3 = J1J2, etc., such that if we define
�i(·, ·) = g(Ji ·, ·), then (g, Ji, �i) is a Kähler structure on X. As for Kähler
manifolds, there is a natural quotient construction for hyperkähler manifolds
[18].

Let G be a Lie group acting on X preserving the Kähler structure
(g, Ji, �i) and having moment maps µi : X → g∗ for i = 1, 2, 3. We can
combine these moment maps in a map

µ : X −→ g∗ ⊗ R3

defined by µ = (µ1, µ2, µ3). Let λi ∈ g∗ for i = 1, 2, 3 be central elements
and consider the G-invariant submanifold µ−1(λ) where λ = (λ1, λ2, λ3).
Then G acts on µ−1(λ) freely and discontinuously and the quotient

µ−1(λ)/G

is a hyperkähler manifold.
One way to understand the non-abelian Hodge theory correspondence

in Section 5 is through the analysis of the hyperkähler structures of the
moduli spaces involved. We explain how these can be obtained as hyperkähler
quotients. For this, let us go back to the setup of Section 7.2, and let (E, h)
be a smooth complex Hermitian vector bundle over a compact Riemann
surface X. As we have seen in Section 7.2, the space X = A × E has a
Kähler structure defined by JX and �X. Let us rename J1 = JX. Via the
identification A ∼= C, we have for α ∈ E0,1(X,End E) and ψ ∈ E1,0(X,End E)

the following three complex structures on X:

J1(α, ψ) = (iα, iψ)

J2(α, ψ) = (iψ∗,−iα∗)
J3(α, ψ) = (−ψ∗, α∗),
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where α∗ and ψ∗ is defined using the Hermitian metric h on E. Clearly,
Ji , i = 1, 2, 3 satisfy the quaternion relations, and define a hyperkähler
structure on X, with symplectic structures �i , i = 1, 2, 3, where �1 = �X.
The action of the gauge group G on X preserves the hyperkähler structure
and there are moment maps given by

µ1(D,�) = �(D)+[�,�∗], µ2(D,�) = Re(∂E�), µ3(D,�) = Im(∂E�).

Taking λ = (λ, 0, 0), where λ is given by (2.8) we have that µ−1(λ)/G is the
moduli space of solutions to Hitchin equations (3.9). In particular, if we
consider the irreducible solutions µ−1

∗ (λ) we have that

µ−1
∗ (λ)/G

is a hyperkähler manifold which, by Theorem 3.5, is isomorphic to the
moduli space Ms(n, d) of stable Higgs bundles of rank n and d.

Let us now see how the moduli of harmonic flat connections on (E, h)
can be realized as a hyperKähler quotient. As in Section 4.1, let D be the
set of all complex connections on E. This is an affine space modelled on
E1(X,End E) = E0(X, T ∗X⊗R End E). The space D has a complex structure
I1 = 1 ⊗ i, which comes from the complex structure of the bundle. Using
the complex structure of X we have also the complex structure I2 = i ⊗ τ ,
where τ(ψ) = ψ∗ is the involution defined by the Hermitian metric h. We
can finally consider the complex structure I3 = I1I2.

The Hermitian metric on E together with a Riemannian metric in the
conformal class of X defines a flat Riemannian metric gD on D which is
Kähler for the above three complex structures. Hence (D, gD, I1, I2, I3) is
also a hyperkähler manifold. As in the previous case, the action of the gauge
group G on D preserves the hyperkähler structure and there are moment
maps

µ1(D) = ∇∗ , µ2(D) = Im(�(D)), µ3(D) = Re(�(D)),

where D = ∇ +  is the decomposition of D defined by (5.6). Hence
the moduli space of solutions to the harmonicity equations (5.8) is the
hyperkähler quotient defined by

µ−1(0, λ, 0)/G,

where µ = (µ1, µ2, µ3) and λ given by (2.8).
The homeomorphism between the moduli spaces of solutions to the

Hitchin and the harmonicity equations is induced from the hypercomplex
affine map

A × E −→ D

(D,�) %−→ D +�+�∗.

One can see easily, for example, that this map sends A × E with complex
structure J2 to D with complex structure I1 (see [17]).
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Now, Theorems 3.5 and 5.2 can be regarded as existence theorems, estab-
lishing the non-emptiness of the hyperkähler quotient, obtained by focusing
on different complex structures. For Theorem 3.5 one gives a special status
to the complex structure J1. Combining the symplectic forms determined
by J2 and J3 one has the J1-holomorphic symplectic form �c = �2 + i�3

on A × E. The complex gauge group Gc acts on A × E preserving �c.
The symplectic quotient construction can also be extended to the holomor-
phic situation (see e.g. [20]) to obtain the holomorphic symplectic quotient
{(∂E,�) : ∂E� = 0}/Gc. What Theorem 3.5 says is that for a class
[(∂E,�)] in this quotient to have a representative (unique up to unitary
gauge) satisfying µ1 = λ it is necessary and sufficient that the pair (∂E,�)
be polystable. This identifies the hyperkähler quotient to the set of equiv-
alence classes of polystable pairs on E. If one now takes J2 on A × E or
equivalently D with I1 and argues in a similar way, one gets Theorem 5.2
identifying the hyperkähler quotient to the set of equivalence classes of
reductive central curvature connections on E.

Note that for n = 1, the moduli space with complex structure defined by
J1 is T ∗ Picd(X) and with complex structure defined by J2 is (C∗)g.

8. Higher Dimensional Generalizations

8.1. Hermitian–Einstein Connections and Stable Bundles

Mumford’s stability condition for a holomorphic vector bundle over a
compact Riemann surface was generalized by Takemoto to higher dimen-
sional Kähler manifolds (see [36, 20]). Let X be a compact Kähler manifold
of dimension n, with Kähler form �. Let E be a holomorphic vector bundle
over X. Associated to E one has the sheaf of its holomorphic sections. This
is a locally free sheaf, which is thus a coherent sheaf (see Chap. II, Sec. 1),
that will also be denoted by E.

The degree of a coherent sheaf F over X is defined as

degF = 1
(n− 1)!

∫
X

c1(F ) ∧�n−1,

where c1(F ) = c1(detF), and detF is a line bundle associated to F , which
coincides with the determinant line bundle when F is locally free (see [20],
for instance). As in the Riemann surface case, the slope of F is defined as

µ(F) = degF/ rankF,

where rankF is the rank of the vector bundle that the coherent sheaf F
determines outside of a subset of X, called the singularity set of F , that
has codimension at least one (see [20]). We say that E is stable with respect
to � if for every coherent subsheaf F ⊂ E with 0 < rankF < rankE,

µ(F) < µ(E).
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Semistability and polystability are defined as in the one-dimensional case.
Note that, in contrast to the Riemann surface case, in higher dimensions
the stability condition depends on the Kähler metric of X.

We will see now how stability on a Kähler manifold is also related to the
existence of a special Hermitian metric on E. Let h be a Hermitian metric
on E with canonical connection and curvature D and �(D), respectively.
The metric h is called Hermitian-Einstein if

(8.1) �(D) ∧�n−1 = −iµIE�n,
where, after the normalization VolX = 2π , µ = µ(E). When n = 1, (8.1)
reduces to the constant central curvature condition given by (2.1). The
following generalizes to higher dimensions the theorem of Narasimhan and
Seshadri.

Theorem 8.1: Let E be a holomorphic vector bundle over a compact
Kähler manifold (X,�). Then E has a Hermitian–Einstein metric if and
only if it is polystable.

The polystability of a vector bundle admiting a Hermitian–Einstein metric
was proved by Lübke [22] (see also [20]). The existence of a Hermitian–
Einstein metric on a stable vector bundle was first proved by Donaldson
for algebraic surfaces [12] and then by Uhlenbeck and Yau [38] for arbi-
trary Kähler manifolds. In [13] Donaldson gave another proof for algebraic
manifolds of any dimension.

Theorem 8.1, can also be viewed as a correspondence between moduli
spaces. To see this, let (E, h) be a smooth Hermitian vector bundle over X.
A connection D on (E, h) is called Hermitian–Einstein if it satisfies

(8.2) D′′2 = 0
�(D) ∧�n−1 = −iµ(E)IE�n.

The first equation simply means that the (0, 1)-part of the connection D,
defines a holomorphic structure on E. The moduli space of Hermitian–
Eintein connections is defined as the set of all connections satisfying (8.2)
modulo the action of the gauge group of (E, h).

Theorem 8.1 is equivalent to the Hitchin–Kobayashi correspondence:

Theorem 8.2: There is a bijection between the moduli space of Hermitian–
Einstein connections on (E, h) and the moduli space of polystable holomor-
phic vector bundles whose underlying smooth vector bundle is isomorphic
to E.

In the case of Kähler surfaces, the Hermitian–Einstein equation is equiva-
lent to the anti-self-dual instanton equation for a connection on a Hermitian
vector bundle over a real 4-dimensional Riemannian manifold. Using the
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moduli space of instantons, Donaldson defined topological invariants for
four-manifolds. One of the main applications of the correspondence given
by Theorem 8.2 has been in the computation of the Donaldson invariants
for Kähler surfaces (see [11]).

8.2. Higgs Bundles and Representations of Kähler Groups

As above, let (X,�) be a compact Kähler manifold of dimension n, whose
volume is normalized such that VolX = 2π . A Higgs bundle over X is a
pair (E,�) consisting of a holomorphic vector bundle E over X and a
Higgs field � ∈ H 0(X,EndE ⊗�1), satisfying �∧� = 0, where �1 is the
bundle of holomorphic one-forms on X. Note that on a Riemann surface
�1 coincides with the canonical line bundle, and the condition � ∧� = 0
is trivialy satisfied for dimensional reasons.

A Higgs bundle (E,�) is said to be stable if and only if µ(E′) <
µ(E) for every coherent subsheaf E′ ⊂ E invariant under �, i.e. �(E′) ⊂
E′ ⊗ �1. Semistability and polystability are defined as usual. As in the
one-dimensional case, the notion of stability is related to the existence of
a special Hermitian metric on E. More precisely, one has the following
theorem proved by Simpson [34, 35].

Theorem 8.3: Let (E,�) be a Higgs bundle over X. The existence of a
Hermitian metric h on E satisfying

(8.3) (�(∇)+ [�,�∗]) ∧�n−1 = −iµ(E)IE�n,
is equivalent to the polystability of (E,�). Here ∇ is the canonical
connection determined by h and the holomorphic structure of E.

To relate Higgs bundles to representations of the fundamental group of
the Kähler manifold X (what is called a Kähler group) one has to impose
topological conditions on E. Namely, one needs

(8.4)
∫
X

c1(E) ∧�n−1 = 0, and
∫
X

(c1(E)
2 − 2c2(E)) ∧�n−2 = 0.

Under conditions (8.4), if (E,�) is polystable, then the Hermitian metric
h on E in Theorem 8.3 satisfies the stronger equation

(8.5) �(∇)+ [�,�∗] = 0.

Note that the first condition in (8.4) is simply that degE = 0 and hence
µ(E) = 0. We can then consider the pair (E,D), taking E to be the
underlying C∞ bundle to E and D = ∇+�+�∗. From ∂E� = 0, �∧� = 0
and (8.5) one easily sees that �(D) = 0, i.e. D is a flat connection on E. In
fact setting  = �+�∗, we can see that ∇∗ = 0, i.e. h is a harmonic metric
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in the sense of Sec. 5. But Theorem 5.2 holds also in higher dimensions
(see [8]) and hence we have the following.

Theorem 8.4: Let D be a flat connection on E. Then E admits a harmonic
metric if and only if D is reductive.

The construction of a polystable Higgs bundle from a flat reductive con-
nection follows along the same lines as the one dimensional case explained
in Sec. 5 (see also [35]), establishing the following.

Theorem 8.5: There is a one-to-one correspondence between the moduli
space of polystable Higgs bundles (E,�) with rankE = r and E satisfying
(8.4), and the moduli space of reductive representations of π1(X) in GL(r,C).

Higgs bundles can also be regarded from the point of view of Tannakian
categories. This is a point of view taken by Simpson in [35], which we
follow (see also [15] and the references given there for details on Tannakian
categories). A tensor category is a category C with a functorial binary
operation ⊗ : C×C → C. An associative and commutative tensor category is
a tensor category provided with additional natural isomorphisms expressing
associativity and commutativity of the tensor product that have to satisfy
certain canonical axioms. A unit 1 is an object 1 provided with natural
isomorphisms 1⊗V ∼= V satisfying canonical axioms. A functor F between
associative and commutative categories with unit is a functor provided
with natural isomorphisms F(U ⊗V ) ∼= F(U)⊗ F(V ). A neutral Tannakian
category C is an associative and commutative tensor category with unit,
which is abelian, rigid (duals exist), End(1) = C, and which is provided
with an exact, faithful fibre functor F : C → Vect, where Vect is the tensor
category of complex, finite dimensional vector spaces.

If G is an affine group scheme over C the category Rep(G) of complex
representations of G is a neutral Tannakian category. The fibre functor FG
is given by sending a representation of G to the underlying vector space. The
group G is recovered as the group G = Aut⊗

(FG) of tensor automorphisms
of the fibre functor. The converse is given by the fundamental duality
theorem of Tannaka–Grothendieck–Saavedra.

Theorem 8.6: Let (C,F) be a neutral Tannakian category and let G =
Aut⊗

(F) be the group of tensor automorphisms of the fibre funtor. Then
(C,F) ∼= (Rep(G),FG).

To briefly describe the group Aut⊗
(F) — referred sometimes as the

Tannaka group of the Tannakian category (C,F)—, let End(F) be the algebra
of endomorphisms of the the fibre functor. Its elements are collections {fV }
with fV ∈ End(F(V )) such that for any morphism ψ : V → W , one has
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F(ψ)fV = fWF(ψ). Let Aut⊗
(F) be the set of elements {fV } of End(F)

satisfying
f1 = 1 fV⊗W = fV ⊗ fW .

The existence of duals in C implies that any element in Aut⊗
(F) consists

entirely of automorphisms, and hence there is no need to include a condition
for invertibility. The algebra End(F) is a projective limit of finite dimensional
algebras and it is endowed with a projective limit topology. The subset
Aut⊗

(F) has a structure of projective limit of algebraic varieties.
We come now to the Tannakian nature of Higgs bundles. Let (E,�)

and (F, ) be two Higgs bundles. Its tensor product is given by the Higgs
bundle (E ⊗ F,�⊗ IF + IE ⊗ ). One has the following (see [35, 15]).

Proposition 8.7: The tensor category of polystable Higgs bundles (E,�)
over X, satisfying (8.4) with fibre functor defined by sending a Higgs bundle
to the fibre of the bundle at a fixed point of X, is a neutral Tannakian
category.

The category of reductive complex representations of the fundamental
group of X (with the obvious fibre functor) is also a neutral Tannakian
category. It follows from the Tannaka duality theorem that the Tannaka
group of this category is the pro-reductive completion of π1(X) (see [35]).
This is a group G, that comes equipped with a homomorphism π1(X) → G

such that for every reductive group H and a homomorphism π1(X) → H

there exists a unique extension G → H such that the following diagram

π1(X) ��

��

H

G

���������

commutes.
Now, the correspondence given in Theorem 8.5 gives actually an

equivalence of Tannakian categories between the category of complex rep-
resentations of π1(X) and the category of polystable Higgs bundles over
(X,�) satisfying (8.4), and hence the Tannaka group of the latter category
is isomorphic to the G — the pro-reductive completion of π1(X).

An central ingredient in non-abelian Hodge theory is the action of the
group C∗ on the category of polystable Higgs bundles given by

(E,�) %→ (E, λ�) for every λ ∈ C∗.

This action induces an action of C∗ on the category of reductive represen-
tations of the fundamental group. It should be pointed out that, while this
action is very clear and explicit from the point of view of Higgs bundles,
its explicit effect on a representation of the fundamental group is not easy
to describe.



Sec. 8 Higher Dimensional Generalizations 281

One can formalise the action of C∗ on a Tannakian category (C,F) in
terms of certain tensor functors satisfying canonical axioms. If the action
preserves the fibre functor F one has an action of C∗ on End(F) by sending
the element {fV } of End(F) to {f λV } with f λV = fλV for every λ ∈ C∗, and
hence one has an action on the Tannaka group Aut⊗

(F). The action of C∗ on
the category of polystable Higgs bundles preserves clearly the fibre functor
since the bundle is unchanged, and one can then transfer this action to G
— the pro-reductive completion of the fundamental group. More precisely
one has the following theorem proved by Simpson in [35].

Theorem 8.8: There exists a unique action of C∗ on G, each λ ∈ C∗ acting
by a homomorphism of pro-reductive groups, such that if ρ : G → GL(r,C)
is the representation corresponding to (E,�), then ρ◦λ is the representation
corresponding to (E, λ�).

In some sense the action of C∗ on G is the essence of non-abelian Hodge
theory, replacing the C∗-action on cohomology explained in Chap. V for
the abelian theory.
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