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Preface

The study of integral equations is a thoroughly fascinating chapter in man’s
continuing search for mathematical understanding, and the outcome of this search
is both strikingly beautiful and intrinsically interesting.

The greater part of the theory of integral equations was developed early in the
twentieth century as a result of the efforts of many brilliant individuals, and most of
the important integral equations fittingly bear their names.

One of the most important categories of integral equations is the Fredholm
integral equation, which was named after the renowned Swedish mathematician
Erik Ivar Fredholm (April 7, 1866 to August 17, 1927). His landmark paper, Sur
une classe d’equations fonctionelles, was published in Acta Mathematica in 1903.
The first three chapters of this text are devoted to linear Fredholm integral equations.

Another important category of integral equations is the Volterra integral equation,
which was named after the distinguished Italian mathematician Vito Volterra (May
3, 1860 to October 11, 1940). Chapter 4 is devoted to linear Volterra integral
equations. Nonlinear Volterra integral equations are briefly discussed in Chap. 6,
and singular Volterra integral equations are touched upon in Chap. 7.

The prolific German mathematician David Hilbert (January 23, 1862 to February
14, 1943) made huge contributions to the foundation of the general theory of
integral equations in his tome Grundzüge einer allgemeinen Theorie der linearen
Integralgleichungen. The Hilbert–Schmidt theorem in Chap. 3 and the Hilbert
transform in Chap. 7 are essential tools in the field.

In little over a century, more than 11,000 articles and dozens of books and
manuscripts have been written that concern various aspects of the theory of integral
equations. Perhaps the best way to obtain an overview of this vast subject area
would be to examine the 2010 Mathematics Subject Classification published by the
American Mathematical Society. This classification appears in Appendix A for the
convenience of the reader.

Although it is certain that the theory of integral equations is an important part
of pure mathematics, it is also true that there are many applications of this theory
to problems in the physical sciences. Furthermore, considerable interactions exist
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viii Preface

between the area of integral equations and other areas within mathematics, such as
linear algebra, operator theory, and ordinary differential equations.

The specific goal of the author of any textbook is to enrich the academic lives
of students by constructing an effective tool for learning and teaching, as well
as independent study. My primary intention in writing this text is to present a
rigorous and systematic development of the classical theory of integral equations
that is accessible to the advanced undergraduate or early graduate student. Since
most students at this level and many practicing scientists are generally not familiar
with the intricacies of Lebesgue integration or the theory of integral operators at
a sophisticated level, no references are made to these theories here. Yet, it is still
possible to present most of the main results by assuming only that the functions that
appear in an integral equation are either continuous or integrable in the sense of
Riemann. It is also possible to give a rather thorough treatment of many significant
theorems involving integral operators without the intense sophistication required in
an advanced course of study. Indeed, much of the theory was originally derived
under these relaxed assumptions. Hopefully, our presentation will serve as a firm
foundation for the theory as well as a springboard for further reading, exploration,
and research.

Although no previous experience with the theory of integral equations is
required, some prerequisites are essential. It is assumed that the reader has some
expertise in reading as well as writing mathematics. It is also assumed that the reader
is generally familiar with the important definitions and theorems in the subject
areas of linear algebra and advanced calculus that are necessary to understand the
development of the theory here. Undoubtedly, a concise review of the prerequisites
would refresh the student’s memory. In order to serve this purpose and to enhance
the overall completeness of the presentation, a section entitled Tools of the Trade
appears at the beginning of each chapter.

In preparing this text, I have striven for precision and completeness in every
example, explanation, or exercise. Theorems and their proofs are presented in a
rigorously analytical manner. No tricky, frustrating details are “easily verified” or
“left to the reader.” Furthermore, the reader is not asked to refer to other texts to
search for results that are supportive of statements made in this text. Hopefully, the
result is a self-contained, straightforward, and crystal-clear treatment of the theory.

There is considerable and justified emphasis on the methods of solution. Since
it might be extremely difficult or even impossible to obtain an exact solution
to an integral equation, numerical methods for computing approximate solutions
assume great importance. Comprehensive examples are presented that reinforce
underlying theories and illustrate computational procedures. When a particular
numerical procedure is especially tricky or complicated, a chart entitled A Concise
Guide to Computation is inserted into the text.

The problem sets are meant to be devices for enrichment. Since mathematics
is learned by doing, not just reading and memorizing results, understanding is
generally enhanced by struggling with a variety of problems, whether routine or
challenging. Understanding may even be enhanced when a problem is not solved
completely. Some problems are intended to reinforce the theory while others are
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purely computational. A problem may also introduce new material or relate the
material of that section to other areas of mathematics.

Some expertise in the use of Wolfram’s Mathematica or a similar software
package is assumed so that students can solve problems similar to those presented in
the illustrative examples, verify solutions to the exercises that require computational
intensity, and engage in creative investigations of their own.

In conclusion, I have endeavored to construct a completely comprehensible
exposition of the theory, so that students who read it will be adequately prepared
to solve a wide variety of problems. My hope is that the book will provide the
background and insight necessary to facilitate a thorough understanding of the
fundamental results in the classical theory of integral equations, as well as to provide
the motivation for further investigation.

Mont Alto, PA Stephen M. Zemyan
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Chapter 1
Fredholm Integral Equations of the Second
Kind (Separable Kernel)

In this chapter, our purpose is to examine the Fredholm integral equation of the
second kind

φ(x) = f (x)+λ
b∫

a

K(x, t)φ(t)dt,

where K(x, t) is a separable1 kernel.
In our analysis, we make the following assumptions:

• The unknown function φ(x) is always assumed to be integrable in the sense of
Riemann so that the integral equation itself makes sense.

• The free term f (x) is assumed to be complex-valued and continuous on the
interval [a,b]. If f (x)≡ 0 on the interval [a,b], then the integral equation is called
homogeneous; otherwise, it is called inhomogeneous.

• The complex constant λ (�= 0) is a parameter that should not be absorbed into the
kernel.

• The kernel K(x, t) is assumed to be complex-valued and continuous on the square
Q(a,b) = {(x, t) : a ≤ x ≤ b,a ≤ t ≤ b}.

A kernel K(x, t) is called separable if it assumes the specific form

K(x, t) =
n

∑
i=1

ai(x)bi(t).

We will always assume that each function ai(x) and bi(t) is complex-valued and
continuous on the interval [a,b]. We also assume without any loss of generality that
the sets {ai(x)} and {bi(t)} are linearly independent on the interval [a,b]; otherwise,
we could diminish the number of addends in the sum.

1Separable kernels are also known as degenerate kernels or, in older texts, as Pincherle–Goursat
kernels.

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 1, © Springer Science+Business Media, LLC 2012

1



2 1 Fredholm Integral Equations of the Second Kind (Separable Kernel)

We will also explain the significant role played by the adjoint equation

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt

in the overall process. The reason for considering these equations in tandem will
become apparent in the exposition.

In Sect. 1.1, we present several tools of the trade that are indispensible for the
comprehension of the material in this chapter. It will shortly become evident to
the reader that any thorough treatment of the theory of linear integral equations is
critically dependent upon the theory of linear algebra. Consequently, we provide
here a concise review of the essential information from that discipline that will used
within this chapter.

In Sect. 1.2, we examine a specific Fredholm integral equation to illuminate by
example the theory that supports the techniques used to determine its solution and
to motivate the discussion of the theory to follow.

In Sect. 1.3, we prove the four Fredholm theorems and the Fredholm Alternative
Theorem for Fredholm integral equations of the second kind with a separable kernel.

1.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Systems of linear equations: The theory of linear algebra is concerned with
systems of linear equations and their solutions. An arbitrary system of n linear
equations in n unknowns can be written in the form

a11 x1 + a12 x2 + · · ·+ a1n xn = b1

a21 x1 + a22 x2 + · · ·+ a2n xn = b2

...

an1 x1 + an2 x2 + · · ·+ ann xn = bn

or more compactly in the form Ax = b, where A is an n× n matrix and x and b
are column vectors with n entries. We assume that the entries ai j, xi, and bi are
complex numbers. If b = 0, then the system is called homogeneous; otherwise,
it is called inhomogeneous. Every system of linear equations will have either
exactly one solution, an infinite number of solutions, or no solutions at all.

• Inverse of a matrix: If the determinant det(A) of the n× n matrix A does not
vanish, then A is invertible, and its inverse A−1 is given by

A−1 =
1

det(A)
adj(A),
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where the adjoint matrix adj(A) is defined as the transpose of the matrix of
cofactors Ci j from A, i.e., adj(A) = (Cji), where Ci j = (−1)i+ j Mi j and Mi j is the
determinant of the submatrix of A that remains after the ith row and jth column
are deleted from A. When A is invertible, the system Ax=b has a unique solution
that can be written in the form x = A−1 b. If det(A) = 0, then a system of linear
equations will either have an infinite number of solutions or no solutions at all.

• Eigenvalues and eigenvectors: A scalar μ is called an eigenvalue of the n× n
matrix A if there exists a nonzero vector xμ such that Axμ = μ xμ . Any solution
vector xμ is called an eigenvector of A corresponding to μ . In other words, the
eigenvectors that correspond to μ are the nontrivial solutions of the homogeneous
linear system (A − μ I)xμ = 0. Nontrivial solutions to this system exist if
and only if A − μ I is not invertible, i.e., if det(A − μ I) = 0. There always
exists at least one eigenvector corresponding to each eigenvalue. The set of all
eigenvectors corresponding to the eigenvalue μ is a vector space, which we refer
to as the eigenspace Eμ corresponding to μ . The determinant det(A− μ I) is a
polynomial of degree n in the variable μ , called the characteristic polynomial
of A. It always has n zeroes counting multiplicity by the Fundamental Theorem
of Algebra. If μ is an m-fold root of the characteristic polynomial, then we say
that μ has algebraic multiplicity m. If there exist exactly p linearly independent
eigenvectors corresponding to μ , then we say that the eigenvalue μ has geometric
multiplicity p, and dim(Eμ) = p. The geometric multiplicity may be less than the
algebraic multiplicity, but in any case we always have 1 ≤ p ≤ m ≤ n.

• Complex inner product spaces: A vector space W over the field of complex
numbers C is called a complex vector space. An inner product on a complex
vector space W is a function that associates a complex number 〈u,v〉 with each
ordered pair of vectors u and v in W in such a way that the following four axioms
are satisfied for all scalars k and all vectors u,v,w ∈W :

1. 〈u,v〉= 〈v,u〉
2. 〈u+ v,w〉= 〈u,w〉+ 〈v,w〉
3. 〈ku,v〉= k 〈u,v〉
4. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0

A complex vector space with an inner product is called a complex inner
product space or a unitary space.

Two nonzero vectors are called orthogonal in a complex inner product space
if 〈u,v〉= 0. Of course, 〈0,v〉= 〈v,0〉= 0 for any v ∈W .

The inner product is also conjugate linear, i.e., the properties 〈u,v+w〉 =
〈u,v〉+ 〈u,w〉 and 〈u,kv〉= k 〈u,v〉 also hold.

One example of a complex inner product space is the vector space Cn that
consists of all n-dimensional complex-valued vectors. Let u = (u1, . . . ,un) and
v = (v1, . . . ,vn) be any two elements of Cn. Then the product

〈u,v〉= v∗u =
n

∑
i=1

ui vi

defines an inner product on Cn since it satisfies all of the required axioms.
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Another example is the vector space C[a,b] that consists of all complex-valued
functions that are continuous on the interval [a,b]. Let f (x) and g(x) be any two
elements of C[a,b]. Then the product

〈 f ,g〉=
b∫

a

f (x)g(x)dx

defines an inner product on C[a,b] since it also satisfies all of the required axioms.
• Conjugate transpose matrices: Let B = (bi j) denote a matrix whose entries are

complex numbers. Then the matrix B∗ = (b∗i j) = (b ji) is called the conjugate
transpose or adjoint of the matrix B.

We note the following facts:

1. Clearly, B∗∗ = B, (B+C)∗ = B∗+C∗, and (kB)∗ = kB∗.
2. (AB)∗ = B∗ A∗ and (Bn)∗ = (B∗)n.
3. 〈Bx,y〉= 〈x,B∗y〉.
4. The determinants of B and B∗ satisfy det(B∗) = det(B).
5. If det(B) �= 0, then (B∗)−1 = (B−1)∗.
6. The matrices B and B∗ have complex conjugate eigenvalues.
7. If det(B) �= 0, then both homogeneous systems of linear equations

Bx = 0 and B∗y = 0

have only the trivial solution.
8. If det(B) = 0, then the ranks and nullities of the matrices B and B∗ are equal.

Consequently, both of the homogeneous systems above have the same number
of linearly independent solutions.

9. If det(B) = 0, then the inhomogeneous system Bx = f is solvable if and only
if the vector f is orthogonal to all of the solutions of the homogeneous system
B∗y = 0.

1.2 An Illustrative Example

In order to motivate the full theoretical treatment of the Fredholm integral equation
of the second kind with a separable kernel in the next section, we examine in depth
here an illustrative example.

Consider the equation

φ(x) = f (x)+λ
1∫

0

(
xt2 + x2 t4) φ(t)dt, (1.1)
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with real-valued kernel K(x, t) = xt2 + x2t4. If we set

c1 =

1∫

0

t2 φ(t)dt and c2 =

1∫

0

t4 φ(t)dt,

then the integral equation can be reformulated as

φ(x) = f (x)+λ c1 x+λ c2 x2. (1.2)

Observe that any possible solution to the integral equation must assume this general
form but that the specific values of c1 and c2 are as yet undetermined.

After replacing x by t in Eq. (1.2), multiplying by t2, and integrating the result
from 0 to 1, we obtain

1∫

0

t2 φ(t)dt =

1∫

0

t2 f (t)dt +λ c1

1∫

0

t3 dt +λ c2

1∫

0

t4 dt.

After replacing x by t in Eq. (1.2), multiplying by t4, and integrating the result from
0 to 1, we obtain

1∫

0

t4 φ(t)dt =

1∫

0

t4 f (t)dt +λ c1

1∫

0

t5 dt +λ c2

1∫

0

t6 dt.

If we set

f1 =

1∫

0

t2 f (t)dt and f2 =

1∫

0

t4 f (t)dt,

then these equations assume the form
(

1− λ
4

)
c1 −

(
λ
5

)
c2 = f1 (1.3)

and (
−λ

6

)
c1 +

(
1− λ

7

)
c2 = f2. (1.4)

Algebraically, these equations constitute a linear system of two equations in the two
unknowns, c1 and c2. Geometrically, they represent two lines in the c1c2-plane that
may intersect, be parallel, or coincide, depending upon the values of λ , f1, and f2.
All three of these possibilities may occur. This system can also be written in matrix
form as ⎛

⎜⎝
1− λ

4
−λ

5

−λ
6

1− λ
7

⎞
⎟⎠
(

c1

c2

)
=

(
f1

f2

)
,
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or more elegantly as

(I−λ A)c = f, (1.5)

where we have set

A =

⎛
⎜⎝

1
4

1
5

1
6

1
7

⎞
⎟⎠ . (1.6)

The analysis of this linear system depends upon the value of the Fredholm
determinant

det(I−λ A) =
λ 2 − 165λ + 420

420
. (1.7)

There are exactly two values of λ for which this determinant vanishes. These two
values are called eigenvalues of the kernel and are easily computed to be

λ1 =
165−√

25545
2

= 2.585 . . . and λ2 =
165+

√
25545

2
= 162.414 . . .

Note: A strong word of caution is in order here! In Sect. 1.1, the eigenvalues of
the matrix A were defined to be the values μ for which det(μ I−A) = 0. Thus,
the eigenvalues of the kernel are precisely the reciprocals of the eigenvalues of the
matrix, i.e., λ = 1/μ .

We consider two cases:

Case I : det(I−λ A) �= 0.
In this case, Eqs. (1.3) and (1.4) represent two lines in the c1c2-plane that

intersect in a single point. The unique solution c to the equivalent linear system (1.5)
can be written in the form

c = (I−λ A)−1 f,

or more explicitly as

(
c1

c2

)
=

420
λ 2 − 165λ + 420

⎛
⎜⎝

1− λ
7

λ
5

λ
6

1− λ
4

⎞
⎟⎠
(

f1

f2

)
.

We consider three possibilities:

1. If f (x) = 0, then f1 = f2 = 0 so that c1 = c2 = 0. Since every solution to Eq. (1.1)
has the form (1.2), it follows that the unique solution to Eq. (1.1) is the trivial
solution φ(x) = 0.

2. If f (x) �= 0, but f1 = f2 = 0, then again c1 = c2 = 0. In this case, the unique
solution to Eq. (1.1) is φ(x) = f (x).
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3. If f (x) �= 0 and either f1 �= 0 or f2 �= 0, then the definitions of f1 and f2 allow us
to rewrite the expressions for c1 and c2 in the forms

c1 =
420

λ 2 − 165λ+ 420

1∫

0

[(
1− λ

7

)
t2 +

(
λ
5

)
t4
]

f (t)dt

and

c2 =
420

λ 2 − 165λ + 420

1∫

0

[(
λ
6

)
t2 +

(
1− λ

4

)
t4
]

f (t)dt.

If we substitute these expressions for c1 and c2 into Eq. (1.2), then the unique
solution to the inhomogeneous equation (1.1) can be represented in the form

φ(x;λ ) = f (x)+λ
1∫

0

R(x, t;λ ) f (t)dt, (1.8)

where

R(x, t;λ ) =
420

[(
1− λ

7

)
xt2 +

(
λ
5

)
xt4 +

(
λ
6

)
x2 t2 +

(
1− λ

4

)
x2 t4

]

λ 2 − 165λ + 420
. (1.9)

We write the solution as φ(x;λ ) to indicate its dependence on the parameter λ .
The function R(x, t;λ ) that appears in the integrand is called the resolvent kernel
of the integral equation (1.1). The values of λ for which the resolvent exists are
called regular.

For instance, if we choose f (x) = x3, then the solution to the inhomogeneous
integral equation (1.1) assumes the form

φ(x;λ ) = x3 +
λ

λ 2 − 165λ + 420

[
1
2
(140+λ )x+

35
24

(36−λ )x2
]

(1.10)

for every regular value of λ . It is worth noting here that

lim
λ→±∞

φ(x;λ ) = x3 +
1
2

x− 35
24

x2

but that the limits lim
λ→λi

φ(x;λ ) do not exist for i = 1,2.

Case II: det(I−λ A) = 0.
In this case, Eqs. (1.3) and (1.4) represent two parallel lines in the c1c2-plane.

To see this, we multiply (1.3) by (− λ
6 ) and (1.4) by (1− λ

4 ) to obtain

(
−λ

6

)(
1− λ

4

)
c1 +

(
−λ

6

) (
−λ

5

)
c2 =

(
−λ

6

)
f1 (1.11)



8 1 Fredholm Integral Equations of the Second Kind (Separable Kernel)

and
(

1− λ
4

)(
−λ

6

)
c1 +

(
1− λ

4

) (
1− λ

7

)
c2 =

(
1− λ

4

)
f2. (1.12)

The coefficients of c1 are equal. The coefficients of c2 are also equal since

det(I−λ A) =

(
1− λ

4

)(
1− λ

7

)
−
(
−λ

6

) (
−λ

5

)
= 0.

We now consider two possibilities:

1. If (− λ
6 ) f1 �=(1− λ

4 ) f2, then Eqs. (1.11) and (1.12) represent two distinct parallel
lines in the c1c2-plane. In this situation, there are no solutions to the linear system
and hence no solutions to the integral equation (1.1) either.

2. If (− λ
6 ) f1 = (1− λ

4 ) f2, then Eqs. (1.11) and (1.12) represent two coincident
lines in the c1c2-plane. In this situation, there are an infinite number of solutions
to the linear system and hence an infinite number of solutions to the integral
equation (1.1) as well for each eigenvalue.

(a) If f (x) = 0, then f1 = f2 = 0, so that Eqs. (1.11) and (1.12) become

(
1− λ

4

)
c1 =

(
λ
5

)
c2 or

(
λ
6

)
c1 =

(
1− λ

7

)
c2.

These two equations are identical. Recall that every solution to Eq. (1.1) must
have the form (1.2). Since c2 is a multiple of c1, we can write the solution to
the homogeneous integral equation in the form

φ(x;λ ) = φ (e)(x;λ ) = c

[(
λ
5

)
x+

(
1− λ

4

)
x2
]
, (1.13)

where c is an arbitrary constant and λ may be either λ1 or λ2. Each of these
solutions is called a characteristic function or an eigenfunction of the kernel.
The superscript (e) indicates that the solution is an eigenfunction.

(b) If f (x) �= 0 but f1 = f2 = 0, then the analysis proceeds as in the previous case.
We conclude that we can write the solution to the inhomogeneous integral
equation in the form

φ(x;λ ) = f (x)+φ (e)(x;λ ) = f (x)+ c

[(
λ
5

)
x+

(
1− λ

4

)
x2
]
,

where again c is an arbitrary constant and λ may be either λ1 or λ2.
(c) If f (x) �= 0 with f1 �= 0 and f2 �= 0, then we have

c2 =

(
1− λ

4

)
c1 − f1(

λ
5

)
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from Eq. (1.11). Substituting c2 into the required form (1.2), we find that the
solution to the inhomogeneous equation in this case is

φ(x;λ ) = f (x)+ c

[(
λ
5

)
x+

(
1− λ

4

)
x2
]
− 5 f1 x2,

where λ may be chosen to be either eigenvalue and c = 5c1 is an arbitrary
constant. Alternately, the solution may be expressed in the form

φ(x;λ ) = f (x)+ cφ (e)(x;λ )+φ (p)(x;λ ),

where φ (e)(x;λ ) is the eigenfunction from case (a) above and φ (p)(x;λ ) is
some particular combination of x and x2.

We have seen in Case II that the requirement that (− λ
6 ) f1 = (1 − λ

4 ) f2 is a
necessary and sufficient condition for the existence of a solution to the integral
equation (1.1) when λ is an eigenvalue of the kernel. Consequently, it deserves
further scrutiny. Recalling the definitions of f1 and f2, this requirement becomes

1∫

0

[(
λ
6

)
t2 +

(
1− λ

4

)
t4
]

f (t)dt = 0. (1.14)

Employing the vocabulary introduced in Sect. 1.1, this equation says that the free
term f (x) is orthogonal to the polynomial (λ

6 )x2 +(1− λ
4 )x4 on the interval [0,1].

In order to explain the appearance of the polynomial in this condition, we now
undertake an analysis of the homogeneous adjoint equation, which in our illustrative
example assumes the form

ψ(x) = λ
1∫

0

(
x2 t + x4 t2)ψ(t)dt. (1.15)

If we set

d1 =

1∫

0

t ψ(t)dt and d2 =

1∫

0

t2 ψ(t)dt,

then the adjoint equation becomes

ψ(x) = λ d1 x2 +λ d2 x4. (1.16)

Any possible solution to the adjoint equation must assume this form. The specific
values of d1 and d2 must be determined.

Proceeding as before, we obtain the equations

(
1− λ

4

)
d1 −

(
λ
6

)
d2 = 0 and

(
−λ

5

)
d1 +

(
1− λ

7

)
d2 = 0.
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Equivalently, we have

⎛
⎜⎝

1− λ
4

−λ
6

−λ
5

1− λ
7

⎞
⎟⎠
(

d1

d2

)
=

(
0

0

)

or more compactly as

(I−λ AT)d = 0,

where AT denotes the transpose of the matrix A defined above by (1.6). Since
detB = detBT for any real-valued square matrix B, the eigenvalues of A and AT

are the same. Thus, the eigenvalues of both corresponding kernels are the same as
well. However, the eigenvectors of A and AT that correspond to the same eigenvalue
may in general be different.

Recall that every solution to Eq. (1.15) must have the form (1.16). Since d2 is a
multiple of d1, we can write the solution to the homogeneous adjoint equation in the
form

ψ(x;λ ) = ψ(e)(x;λ ) = d

[(
λ
6

)
x2 +

(
1− λ

4

)
x4
]
,

where d is an arbitrary constant and λ may be either λ1 or λ2. Each of these solutions
is an eigenfunction of the kernel appearing in the adjoint equation. Note especially
that φ (e)(x;λ ) �= ψ(e)(x;λ ).

The orthogonality condition (1.14) now becomes

1∫

0

ψ(e)(x;λ ) f (t)dt = 0.

Rephrased, this condition requires that the free term f (x) be orthogonal to the
eigenfunctions of the adjoint equation for a solution to exist to Eq. (1.1) when λ
is an eigenvalue of the kernel.

It is instructive to highlight the essential features exhibited in an example because
they usually enhance our understanding of the general theory to follow. Accordingly,
we record the following observations:

• The resolvent kernel (1.9) is separable. It is worth noting that it can be written as
the negative quotient of two determinants. Specifically, we have

R(x, t;λ ) =−det(D(x, t;λ ))
det(I−λ A)

, (1.17)
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where

D(x, t;λ ) =

⎛
⎜⎜⎜⎝

0 x x2

t2 1− λ
4 − λ

5

t4 − λ
6 1− λ

7

⎞
⎟⎟⎟⎠ .

Note that the matrix I − λ A is a submatrix of D(x, t;λ ). Since R(x, t;λ ) is a
quotient of two polynomials in λ , it can be developed in a power series in λ ,
whose radius of convergence is equal to the smallest eigenvalue λ1.

• The value of the complex parameter λ plays a critical role in determining the
existence and uniqueness of a solution to the integral equation and its adjoint
equation. There are essentially two alternatives.

If λ is not an eigenvalue of the kernel, then Eq. (1.1) has the unique
solution (1.8) for any continuous free term f (x). This fact illustrates the First
Fredholm Theorem.

If λ is an eigenvalue of the kernel, then the inhomogeneous equation (1.1) will
have a solution if and only if the free term f (x) is orthogonal to the eigenfunctions
of the adjoint equation (1.15). This observation is known as the Third Fredholm
Theorem.

• In the illustrative example, both of the kernels, K(x, t) = xt2 + x2t4 and K(t,x) =
x2t + x4t2, had two eigenvalues and two corresponding eigenfunctions. The
eigenvalues λi were the same, but the eigenfunctions, φ (e)(x;λi) and ψ(e)(x;λi),
were different. A separable kernel of the form

K(x, t) =
n

∑
i=1

ai(x)bi(t)

will have exactly n eigenvalues, counting multiplicities. If λ is any common
eigenvalue of these kernels, then both the homogeneous Fredholm integral
equation and its homogeneous adjoint equation will have the same finite number
of linearly independent eigenfunctions corresponding to λ . This observation is
known as the Second Fredholm Theorem.

• Separable kernels have a finite number of eigenvalues. However, arbitrary
nonseparable kernels may have a countably infinite number of eigenvalues. The
fact that these eigenvalues do not have a finite subsequential limit point is known
as the Fourth Fredholm Theorem.

Section 1.2 Exercises

1. A function φ(x) is called a solution of an integral equation if the integral
equation is transformed into an identity by substituting φ(x) into it. Show that
φ(x) = 1 is the solution to the Fredholm integral equation
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φ(x) = ex − x−
1∫

0

x(ext − 1)φ(t)dt.

2. Solve each of the following inhomogeneous Fredholm integral equations of the
second kind for all values of λ for which there is a solution:

(a) φ(x) = x3 +λ
∫ 1

0 xt φ(t)dt

(b) φ(x) = sin(πx)+ 1
2

∫ 1
0 φ(t)dt

(c) φ(x) = x2 +λ
∫ 1

0 ex+t φ(t)dt

(d) φ(x) = cos x+λ
∫ π

0 sin xφ(t)dt

(e) φ(x) = sin x+λ
∫ 2π

0 sin(x/2)φ(t)dt

(f) φ(x) = sin x+λ
∫ 2π

0 sin(t/2)φ(t)dt

(g) φ(x) = sin x+λ
∫ 2π

0 sin(x/2) sin(t/2)φ(t)dt

(h) φ(x) = 5
6 x+ 1

2

∫ 1
0 xt φ(t)dt

(i) φ(x) = x4 +λ
∫ 1

0 x2 t2φ(t)dt

(j) φ(x) = 1+λ
∫ 1

0 |x|φ(t)dt

3. The simplest separable kernels have one of the forms K(x, t) = a(x), K(x, t) =
b(t) or K(x, t) = a(x)b(t). Given your experience with the previous problem,
what can you say in general about the solutions to Fredholm integral equations
with kernels of these forms?

4. Consider the integral equation

φ(x) = 1+λ
1∫

0

(x− t)φ(t)dt.

(a) Show that the integral equation has a unique solution for every complex
value of λ �= ±2i

√
3. What happens to this solution as λ → ∞? As λ →

±2i
√

3?
(b) Show that if λ �=±2i

√
3, then the homogeneous equation

φ(x) = λ
1∫

0

(x− t)φ(t)dt

has only the trivial solution φ(x) ≡ 0, but that if λ = ±2i
√

3, then this
equation has nontrivial solutions.

(c) Show also that the inhomogeneous integral equation above has no solution
if λ =±2i

√
3.

5. Solve each of the following inhomogeneous Fredholm integral equations of the
second kind for all values of λ for which there is a solution:

(a) φ(x) = cos x+λ
∫ π

0 ex cos t φ(t)dt

(b) φ(x) = 1+ x2+λ
∫ 1

0 (x+ t)φ(t)dt
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(c) φ(x) = 1+ x2+λ
∫ 1

0
x

1+ t2 φ(t)dt

(d) φ(x) = 1+λ
∫ π

0 x cos2 t φ(t)dt

(e) φ(x) = x+λ
∫ π

0 (1+ sin x sin t)φ(t)dt

(f) φ(x) = 1+λ
∫ π
−π cos(x+ t)φ(t)dt

6. Invent an integral equation for which φ(x) = ex + sin x is the solution.
7. Invent a kernel that is continuous on the square Q(1,2) and has eigenvalues

λ1 = 1 and λ2 = 2. What are the eigenfunctions of your kernel?
8. Invent a kernel that is defined and continuous on the square Q(a,b) and

has the double eigenvalue λ1 = λ2 = 1. Does your invented kernel have two
eigenfunctions corresponding to this eigenvalue or just one?

9. Show that the resolvent kernel (1.9) has the representation (1.17).
10. Our analysis of equation with the kernel K(x, t) = xt2 + x2 t4 led us to the

matrix A given by (1.6). If we substitute a generic kernel of the form K(x, t) =
a1(x)b1(t)+a2(x)b2(t), in Eq. (1.1), then our analysis will lead us to a generic
form for A = (ai j). What are the entries in this generic form?
Answer: ai j =

∫ b
a a j(t)bi(t)dt.

11. In the illustrative example, we set

a1(x) = x, a2(x) = x2, b1(t) = t2, and b2(t) = t4

in the kernel K(x, t) = a1(x)b1(t)+a2(x)b2(t). Suppose instead that we had set

ã1(x) =
1
2

x, ã2(x) =
1
4

x2, b̃1(t) = 2t2, and b̃2(t) = 4t4.

Does this change of assignment affect the solutions to the integral equation in
any way?
Answer: No. The matrices A = (ai j) and Ã = (ãi j) are different, but the
eigenvalues, the eigenfunctions, and the resolvent kernel are the same.

1.3 The Fredholm Theorems

In the previous section, we introduced algorithmic techniques for determining the
solution to a particular Fredholm integral equation of the second kind in order to
motivate the use of these methods in general.

In this section, we present the theoretical basis for a thorough discussion of the
Fredholm integral equation of the second kind

φ(x) = f (x)+λ
b∫

a

K(x, t)φ(t)dt, (1.18)
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where K(x, t) is an arbitrary separable kernel defined on Q(a,b) of the form

K(x, t) =
n

∑
i=1

ai(x)bi(t). (1.19)

We assume that each function ai(x) and bi(t) is complex-valued and continuous on
the interval [a,b]. We further assume without any loss of generality that the sets
{ai(x)} and {bi(t)} are linearly independent on the interval [a,b]. The solution φ(x)
is assumed to be Riemann integrable. The free term f (x) is assumed to be complex-
valued and continuous on the interval [a,b]. If f (x) ≡ 0 on the interval [a,b], then
the integral equation is called homogeneous; otherwise, it is called inhomogeneous.
The complex constant λ (�= 0) is a parameter that should not be absorbed into the
kernel. We will see that the form of the solution to the integral equation depends
directly upon the value of λ .

Any complete treatment of Eq. (1.18) requires a thorough explanation of the
significant role that the homogeneous adjoint equation2

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt (1.20)

plays in the Fredholm theory. We will see that its role is a natural consequence of a
well-known result in the theory of linear algebra.

In this section, we will state and prove the four Fredholm Theorems and the
Fredholm Alternative Theorem for Fredholm integral equations of the second kind
with a separable kernel. In the next chapter, we will prove them for equations with
a general kernel, i.e., for an arbitrary nonseparable kernel. The proofs there will
depend upon the results of this section.

The analytic procedure begins by substituting the separable kernel (1.19) into
Eq. (1.18), thereby obtaining

φ(x) = f (x)+λ
n

∑
i=1

ai(x)

⎛
⎝

b∫

a

bi(t)φ(t)dt

⎞
⎠ .

If we set

ci =

b∫

a

bi(t)φ(t)dt,

for i = 1, . . . ,n, then the previous equation becomes

φ(x) = f (x)+λ
n

∑
i=1

ci ai(x). (1.21)

2In the literature, the adjoint equation is also referred to as the conjugate equation, the transposed
equation, or the associated equation.
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It is important to observe here that any possible solution to the integral equation
must assume this general form. Thus, the process of solving a Fredholm integral
equation with a separable kernel is directly related to the process by which the
constants ci are determined.

[Note: Both the solution φ(x) = φ(x;λ ) and the constants ci = ci(λ ) depend
upon the value of λ . However, we shall henceforth suppress this dependence for the
sake of notational simplicity, unless the context requires it.]

If we replace x by t in Eq. (1.21), change the index of summation from i to
j, multiply both sides of the equation by bi(t), and then integrate the resulting
expression from a to b, then we obtain

b∫

a

bi(t)φ(t)dt =

b∫

a

bi(t) f (t)dt +λ
n

∑
j=1

c j

⎛
⎝

b∫

a

a j(t)bi(t)dt

⎞
⎠

for i = 1, . . . ,n. After introducing the simplifying notations

fi =

b∫

a

bi(t) f (t)dt and ai j =

b∫

a

a j(t)bi(t)dt,

we obtain a system of n linear equations in the n unknowns ci which can be written
in the form

ci = fi +λ
n

∑
j=1

ai j c j (1.22)

for i = 1, . . . ,n. For a given value of λ , the solvability of this linear system correlates
with the solvability of the integral equation. Accordingly, we proceed to analyze this
linear system, which can be elegantly stated in matrix form as

(I−λA)c = f, (1.23)

where I is the n× n identity matrix and A = (ai j) is the n× n matrix whose entries
are defined above. The entries of the column vector f = ( f1, . . . , fn)

T are defined
above in terms of the free term f (x). The required solution to the system is denoted
by the column vector c = (c1, . . . ,cn)

T.
The determinant D(λ ) = det(I − λA), which is known as the Fredholm de-

terminant, is a polynomial of degree n in the variable λ . It always has n zeroes
counting multiplicity by the Fundamental Theorem of Algebra. These zeroes are
called eigenvalues of the kernel.

The analysis of the linear system (1.23) proceeds in remarkedly different ways,
depending upon the value of the determinant D(λ ).

We consider two cases:

Case I: D(λ ) = det(I−λA) �= 0.
In this case, the linear system has the unique solution

c = (I−λA)−1 f. (1.24)
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We consider two possibilities:

1. If f = 0, then c = 0, i.e., ci = 0 for all i = 1, . . . ,n. Since every solution to
Eq. (1.18) has the form (1.21), it follows that the unique solution to the integral
equation is φ(x) = f (x). (It is possible for f = 0 with f (x) �= 0 on [a,b].) In
particular, if f (x)≡ 0 on [a,b], i.e., if Eq. (1.18) is homogeneous, then the unique
solution is the trivial solution φ(x) ≡ 0.

2. If f �= 0, then c �= 0, i.e., ci �= 0 for at least one subscript i. Upon the substitution
of the nonzero values ci into the required form (1.21), we will have produced
thereby the unique solution to the integral equation.

Although we have successfully solved the integral equation in this case, we
have not yet produced a canonical representation for it. Toward this end, we
express (1.24) in the form

c =
1

D(λ )
adj(I−λA) f,

where adj (I − λA) = (D ji(λ )) is the transpose of the matrix of cofactors from
(I−λA). Consequently, each coefficient ci has the representation

ci =
1

D(λ )

n

∑
j=1

D ji(λ ) f j .

Substituting this representation for ci into the solution (1.21), we obtain

φ(x) = f (x)+λ
n

∑
i=1

(
1

D(λ )

n

∑
j=1

D ji(λ ) f j

)
ai(x).

After recalling the definition of f j , the solution can be reformulated as

φ(x) = f (x)+λ
b∫

a

(
1

D(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )ai(x)b j(t)

)
f (t)dt

or as

φ(x) = f (x)+λ
b∫

a

R(x, t;λ ) f (t)dt, (1.25)

where R(x, t;λ ) denotes the expression in parentheses in the integrand.
The function R(x, t;λ ) that appears in the integrand is called the resolvent kernel

of the integral equation. It is clear that the resolvent kernel depends only on λ and
the functions ai(x) and bi(t) that appear in the definition of K(x, t). The values of λ
for which the resolvent kernel exists (the values for which D(λ ) �= 0) are called
regular. From this representation for the solution, it is clear that solving the integral
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equation for any regular value of λ and any arbitrary free term f (x) is equivalent
to producing the resolvent kernel. The denominator D(λ ) in the expression for
R(x, t;λ ) is the Fredholm determinant. It can be shown that the numerator

n

∑
i=1

n

∑
j=1

D ji(λ )ai(x)b j(t) =−det(D(x, t;λ )),

where

D(x, t;λ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1(x) a2(x) · · · an(x)

b1(t) 1−λa11 −λa12 · · · −λa1n

b2(t) −λa21 1−λa22 · · · −λa2n

...
...

...
. . .

...

bn(t) −λan1 −λan2 · · · 1−λann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.26)

Note that the n× n lower right block of this (n+ 1)× (n+ 1) matrix is precisely
(I−λA). The determinant D(x, t;λ ) = det(D(x, t;λ )) can be evaluated by comput-
ing the cofactor expansion along the first row and then computing the subsequent
cofactor expansions along the first column. As a consequence, the resolvent kernel
R(x, t;λ ) can be represented in the canonical form

R(x, t;λ ) =−D(x, t;λ )
D(λ )

(1.27)

as the negative quotient of determinants, each of which is a polynomial in the
variable λ . Also, deg(D(x, t;λ )) = n− 1 and deg(D(λ )) = n.

The discussion above serves to establish the following result:

Theorem 1.3.1 (The First Fredholm Theorem). Let λ be a complex parameter,
f (x) be a complex-valued continuous function defined on the interval [a,b], and
K(x, t) be a complex-valued continuous separable kernel of the form (1.19) that
is defined on the square Q(a,b). Then the unique solution φ(x) to the Fredholm
integral equation of the second kind,

φ(x) = f (x)+λ
b∫

a

K(x, t)φ(t)dt,

has the representation

φ(x) = f (x)+λ
b∫

a

R(x, t;λ ) f (t)dt,

for every regular value of λ , where R(x, t;λ ) is the resolvent kernel defined by (1.27).
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Case II: D(λ ) = det(I−λA) = 0.
In this case, the linear system (I−λA)c = f may or may not have solutions. As

a consequence, the corresponding integral equation may or may not have solutions
either.

We consider two possibilities:

1. If f = 0, then the homogeneous linear system becomes

(I−λk A)c = 0

for each zero λk of the Fredholm determinant D(λ ) = 0. This system has a
certain number pk of nontrivial linearly independent vector solutions c( j)(λk),
j = 1, . . . , pk, which take the form

c( j)(λk) =

⎛
⎜⎜⎜⎝

c( j)
1 (λk)

...

c( j)
n (λk)

⎞
⎟⎟⎟⎠ .

The set

Eλk
= {span {c( j)(λk)} : j = 1, . . . , pk}

is a vector space, called the eigenspace corresponding to the eigenvalue λk,
and dim(Eλk

) = pk. The number pk is called the geometric multiplicity of the
eigenvalue λk. If λk is an mk-fold zero of the equation D(λ ) = 0, then mk is
called the algebraic multiplicity of the eigenvalue. In any case, 1 ≤ pk ≤ mk ≤ n.

The functions

φ j(x;λk) = f (x)+λk

n

∑
i=1

c( j)
i (λk)ai(x),

obtained by substituting the coefficients c( j)
i (λk) into the Eq. (1.21), are nontrivial

solutions of the integral equation. (It is possible for f = 0 with f (x) �= 0 on [a,b].)
If f (x) ≡ 0 on [a,b], then each of the functions

φ (e)
j (x;λk) = λk

n

∑
i=1

c( j)
i (λk)ai(x)

will be a nontrivial solution of the homogeneous integral equation

φ(x) = λk

b∫

a

K(x, t)φ(t)dt, (1.28)
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for j = 1, . . . , pk. These solutions are referred to as eigenfunctions of the kernel
corresponding to the eigenvalue λk and are designated by the superscript (e).
The set

Eλk
=
{

span
{
φ (e)

j (x;λk)
}

: j = 1, . . . , pk

}

of all linear combinations of eigenfunctions corresponding to the eigenvalue λk

is also a vector space, and dim(Eλk
) = pk. Since the homogeneous equation is

linear, every element of Eλk
, i.e., every linear combination of the form

φ (h)(x;λk) =
pk

∑
j=1

α j φ
(e)
j (x;λk),

where the α j are arbitrary constants, is a solution to the homogeneous equation,
as indicated by the superscript (h).

2. If f �= 0, then the linear system (I−λA)c = f may or may not have solutions.
Fortunately, the following criterion is available to assist us in our investigation.

Lemma 1.3.1. Let B be a square matrix with complex entries, and let B∗ be its
conjugate transpose. If det(B) = 0, then the inhomogeneous system Bx = f is
solvable if and only if the vector f is orthogonal to all of the solutions of the
homogeneous conjugate transpose system B∗y = 0.

Proof. If the inhomogeneous system Bx = f is solvable and B∗y = 0, then

〈f,y〉= 〈Bx,y〉= y∗Bx = (B∗y)∗ x = 〈x,B∗y〉= 〈x,0〉= 0.

Conversely, if f is orthogonal to all of the solutions of the homogeneous conjugate
transpose system B∗y = 0 (or y∗B = 0∗), then f must belong to the range of the
linear transformation that is represented by the matrix B, that is, f must be a linear
combination of the columns of B. If the coefficients in this representation are xi,
then choose x = (x1, . . . ,xn). �


We will eventually apply this very useful lemma to conclude that the linear
system (I−λkA)c = f is solvable if and only f is orthogonal to all of the solutions
of the conjugate transpose system (I−λkA)∗ d = 0 for each zero λk of the Fredholm
determinant, but a thoughtful examination of each of these systems and their
relations to Eq. (1.20) is required beforehand.

The system (I − λkA)∗ d = 0 has a certain number qk of nontrivial linearly
independent vector solutions d( j)(λk), j = 1, . . . ,qk, which take the form

d( j)(λk) =

⎛
⎜⎜⎜⎝

d( j)
1 (λk)

...

d( j)
n (λk)

⎞
⎟⎟⎟⎠ .
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The set

Fλk
=
{

span {d( j)(λk)} : j = 1, . . . ,qk

}

is the eigenspace corresponding to the eigenvalue λk, and dim(Fλk
) = qk, where

qk is the geometric multiplicity of the eigenvalue λk. In any case, we always have
1 ≤ qk ≤ mk ≤ n.

Since the matrices (I−λkA) and (I−λkA)∗ have the same ranks and nullities, it
must necessarily be the case that pk = qk, i.e., that the eigenbases for Eλk

and Fλk

have the same cardinality.
The matrix equation

(I−λkA)∗ d =
(

I−λkA∗
)

d =
(

I−λk A
T
)

d = 0

can be expanded as a system of n linear equations in n unknowns. Specifically, if
d( j)(λk) is any one of the pk solutions to this system, then the expanded form of this
system becomes

d( j)
m (λk)−λk

n

∑
i=1

aim d( j)
i (λk) = 0 (1.29)

for m = 1, . . . ,n. The similarities between the expanded form of this system and
the expanded form (1.22) are remarkable: the parameter λ there is replaced with λk

here; the sum of the terms ai j c j(λ ) there over the second subscript is replaced with

the sum of the terms aim d( j)
i (λk) here over the first subscript. Since Eq. (1.22) was

derived from the integral equation (1.18), our comparison suggests that we consider
another integral equation that could serve as a suitable companion to it.

With the kernel

K(t,x) =
n

∑
i=1

ai(t)bi(x), (1.30)

the homogeneous integral equation

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt, (1.31)

called the adjoint equation, has precisely the desired characteristics. Indeed, after
substituting the kernel K(t,x) into the adjoint equation, we obtain

ψ(x) = λ
n

∑
i=1

di bi(x),

where

di =

b∫

a

ai(t)ψ(t)dt.
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If we replace x by t, multiply both sides of the equation by am(t), and then integrate
the resulting expression from a to b, we obtain the linear system

dm −λ
n

∑
i=1

aim di = 0,

for m = 1, . . . ,n, where

aim =

b∫

a

am(t)bi(t)dt.

With λ replacing λk and d = (d1, . . . ,dn)
T replacing d( j)(λk), this linear system

correlates precisely with the linear system (1.29). Furthermore, it follows from this
correlation that the solutions to the homogeneous adjoint equation

ψ(x) = λk

b∫

a

K(t,x)ψ(t)dt (1.32)

have the form

ψ(e)
j (x;λk) = λk

n

∑
i=1

d( j)
i (λk)bi(x)

for j = 1, . . . , pk. Since the homogeneous adjoint equation is linear, the set

Fλk
= {span{ψ(e)

j (x;λk)} : j = 1, . . . , pk}

of all linear combinations of eigenfunctions corresponding to the eigenvalue λk is
also a vector space, and dim(Fλk

) = pk. Every element of Fλk
, i.e., every linear

combination of the form

ψ(h)(x;λk) =
pk

∑
j=1

β j ψ
(e)
j (x;λk),

where the β j are arbitrary constants, is a solution to the homogeneous equation, as
indicated by the superscript (h).

The discussion above serves to establish the following result:

Theorem 1.3.2 (The Second Fredholm Theorem). Let λ be a complex parameter
and let K(x, t) be a complex-valued continuous separable kernel defined on the
square Q(a,b). Then λ is an eigenvalue of the separable kernel K(x, t) if and only if
λ is an eigenvalue of the adjoint kernel K(t,x). The homogeneous integral equation

φ(x) = λ
b∫

a

K(x, t)φ(t)dt
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and the homogeneous adjoint integral equation

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt

have the same finite number of linearly independent eigenfunctions.

Proof. By definition, the zeroes of the equation

D∗(λ ) = det
[
(I−λA)∗

]
= det

(
I−λA∗

)
= 0

are the eigenvalues of the kernel K(t,x). It also follows from this same equation that
λ is an eigenvalue of the matrix A if and only if λ is an eigenvalue of the matrix A∗.
Hence, the first assertion follows. The second assertion follows since both equations
have exactly pk linearly independent eigenfunctions. �


We now turn to the linear system (I − λkA)c = f. We assume that this linear
system is solvable and then note the structure of all possible solutions. If c(λk) =
(c1(λk), . . . ,cn(λk))

T is the most general solution to the linear system and c(p)(λk) =

(c(p)
1 (λk), . . . ,c

(p)
n (λk))

T denotes one solution in particular, then a simple subtraction
shows that

(I−λkA)
(

c(λk)− c(p)(λk)
)
= 0,

from which it follows that c(λk)− c(p)(λk) belongs to the eigenspace Eλk
. Hence,

the most general solution to the linear system has the form

c(λk) = c(p)(λk)+
pk

∑
j=1

α j c( j)(λk),

where the α j are arbitrary constants. If we substitute this representation for the
coefficients into the required form for the solution to the inhomogeneous integral
equation, then we obtain

φ(x) = f (x)+λk φ (p) (x;λk)+β φ (h) (x;λk) , (1.33)

where β is an arbitrary constant,

φ (p) (x;λk) =
n

∑
i=1

c(p)
i (λk)ai(x) and φ (h) (x;λk) =

pk

∑
j=1

α j φ
(e)
j (x;λk) .

We can now apply the lemma stated earlier in this section to the problem of
finding the solution to the inhomogeneous Fredholm integral equation when λ is
an eigenvalue of the separable kernel K(x, t). We interpret the lemma to say that
the linear system (I−λkA)c = f is solvable if and only f is orthogonal to all of the
solutions of the conjugate transpose system (I−λkA)∗ d = 0 for each zero λk of the
Fredholm determinant.
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If we recall the definition

fi =

b∫

a

f (t)bi(t)dt,

then, for each j = 1, . . . , pk, the orthogonality conditions imposed by the lemma
become

〈
f,d( j) (λk)

〉
=

n

∑
i=1

fi d( j)
i (λk) =

b∫

a

f (t)ψ(e)
j

(
t;λk

)
dt = 0. (1.34)

In other words, this condition requires that the free term f (x) be orthogonal to all
of the eigenfunctions of the kernel K(t,x). If this condition is fulfilled, then the
inhomogeneous Fredholm integral equation will have solutions of the form (1.33).
If, on the other hand, this condition is not fulfilled for any single value of j, then the
inhomogeneous Fredholm integral equation will not have a solution.

The discussion above serves to establish the following result:

Theorem 1.3.3 (The Third Fredholm Theorem). Let λ be a complex parameter,
f (x) be a complex-valued continuous function defined on the interval [a,b], and
K(x, t) be a complex-valued continuous separable kernel defined on the square
Q(a,b). If λ is an eigenvalue of the kernel K(x, t), then the inhomogeneous Fredholm
integral equation of the second kind

φ(x) = f (x)+λ
b∫

a

K(x, t)φ(t)dt

will have a solution if and only if the free term f (x) is orthogonal to all of the
eigenfunctions of the homogeneous adjoint equation

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt.

For general kernels, there is a Fourth Fredholm Theorem which states that the set
of all eigenvalues of a kernel is at most countable and that this set of eigenvalues
does not have a finite limit point. However, since separable kernels have only a finite
number of eigenvalues, this theorem is trivially true here.

The essential features of the first three Fredholm theorems are combined into one
comprehensive statement.

Theorem 1.3.4 (The Fredholm Alternative Theorem). Let λ be a given complex
parameter, f (x) be a complex-valued continuous function defined on the interval
[a,b], and K(x, t) be a complex-valued continuous separable kernel that is defined
on the square Q(a,b). Then
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either the inhomogeneous Fredholm integral equation of the second kind

φ(x) = f (x)+λ
b∫

a

K(x, t)φ(t)dt

possesses a unique solution (if λ is not an eigenvalue of the kernel K(x, t))
or the homogeneous equation

φ(x) = λ
b∫

a

K(x, t)φ(t)dt

possesses nontrivial solutions (if λ is an eigenvalue of the kernel K(x, t)).
Furthermore, if λ is an eigenvalue of the kernel K(x, t), then the inhomogeneous
equation possesses nontrivial solutions if and only if

b∫

a

f (t)ψ(t)dt = 0

for every solution ψ(x) of the homogeneous adjoint equation

ψ(x) = λ
b∫

a

K(t,x)ψ(t)dt.

A Concise Guide to Computation

• Determine the eigenvalues of the kernel K(x, t):

1. Compute the n2 entries ai j of the matrix A by using the formula

ai j =

b∫

a

a j(t)bi(t)dt.

2. Form the matrix (I−λ A).
3. Evaluate the Fredholm determinant, D(λ ) = det(I − λ A) which will be a

polynomial of degree n in λ .
4. The eigenvalues of the kernel are the zeroes of the equation D(λ ) = 0.

• Determine the resolvent kernel R(x, t;λ ):

1. Use the matrix (I−λ A) constructed above to construct the larger matrix
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D(x, t;λ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1(x) a2(x) · · · an(x)

b1(t) 1−λa11 −λa12 · · · −λa1n

b2(t) −λa21 1−λa22 · · · −λa2n

...
...

...
. . .

...

bn(t) −λan1 −λan2 · · · 1−λann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the n×n lower right block of this (n+1)×(n+1) matrix is precisely
(I−λA).

2. Evaluate the determinant D(x, t;λ ) = det(D(x, t;λ )) by computing the cofac-
tor expansion along the first row and then computing the subsequent cofactor
expansions along the first column, thereby obtaining a linear combination of
the functions ai(x)b j(t).

3. Represent the resolvent kernel R(x, t;λ ) in the canonical form

R(x, t;λ ) =−D(x, t;λ )
D(λ )

.

• If λ is regular, formulate the solution to the inhomogeneous equation:

1. If λ is a regular value, i.e., if λ is not an eigenvalue of the kernel, then
substitute the resolvent kernel computed above into the equation

φ(x) = f (x)+λ
b∫

a

R(x, t;λ )φ(t)dt.

2. Evaluate the resulting integral to obtain the unique solution.

• Determine all of the eigenfunctions of the kernel K(x, t):

1. For each eigenvalue λk of the kernel K(x, t), solve the matrix equation
(I−λ A)c = 0 for all of its solutions c( j)(λk), j = 1, . . . , pk.

2. Use these solutions c( j)(λk) = (c( j)
1 (λk), . . . ,c

( j)
n (λk))

T to formulate all of the
eigenfunctions

φ (e)
j (x;λk) = λk

n

∑
i=1

c( j)
i (λk)ai(x)

for j = 1, . . . , pk. The span of these eigenfunctions constitutes all possible
solutions to the homogeneous integral equation.

• Determine all of the eigenfunctions of the kernel K(t,x):

1. For each eigenvalue λk of the kernel K(x, t), solve the matrix equation
(I−λ A)∗ d = 0 for all of its solutions d( j)(λk), j = 1, . . . , pk.
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2. Use these solutions d( j)(λk) = (d( j)
1 (λk), . . . ,d

( j)
n (λk))

T to formulate all of the
eigenfunctions

ψ(e)
j (x;λk) = λk

n

∑
i=1

d( j)
i (λk)bi(x)

for j = 1, . . . , pk. The span of these eigenfunctions constitutes all possible
solutions to the homogeneous adjoint equation.

• Determine whether the free term is orthogonal to all of the solutions to the
homogeneous adjoint equation:

1. Evaluate the integrals

b∫

a

f (t)ψ(e)
j (t;λk)dt.

2. If any of these integrals does not vanish, then stop here. If these integrals
vanish for all j and k, then proceed to the next step.

• If λ is an eigenvalue of the kernel, then formulate all of the solutions to the
inhomogeneous integral equation:

1. Determine any one particular solution c(p)(λk) to the matrix system
(I−λ A)c = f for eigenvalue λk.

2. Use the solution c(p)(λk) of the matrix equation to form the particular solution
φ (p)(x;λk).

3. Formulate the solution to the inhomogeneous integral equation by adding
f (x), an arbitrary multiple β of the previously determined homogeneous
solution, and the particular solution to obtain

φ(x;λk) = f (x)+β φ (h)(x;λk)+λk φ (p)(x;λk).

Section 1.3 Exercises

1. Determine the unique solution of the integral equation

φ(x) = e2x +

1∫

0

(
xet + ex t

)
φ(t)dt.

2. Determine the unique solution of the integral equation

φ(x) = x4 + 1
10

1∫

0

(
1+ xt + x2 t2) φ(t)dt.
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3. Solve the Fredholm integral equation

φ(x) = x6 +λ
1∫

0

[
x5(1− t)4 + x4(1− t)3

]
φ(t)dt

for all regular values of λ .

Hint: It will be helpful to know that

1∫

0

tm−1 (1− t)n−1 dt =
Γ (m)Γ (n)
Γ (m+ n)

and that Γ (n) = (n− 1)!, where Γ (n) is the Euler gamma function.
Solve the homogeneous equation

φ(x) = λk

1∫

0

[x5(1− t)4+ x4(1− t)3]φ(t)dt

for every eigenvalue of the kernel.
4. Solve the Fredholm integral equation

φ(x) = ex +λ
1∫

0

(x− t)2φ(t)dt

for all regular values of λ . Solve the corresponding homogeneous equation

φ(x) = λ
1∫

0

(x− t)2φ(t)dt

for every eigenvalue of the kernel.
5. Solve the Fredholm integral equation

φ(x) = x+λ
+π∫

−π

cos2(x− t)φ(t)dt

for all regular values of λ . Solve the corresponding homogeneous equation

φ(x) = λk

+π∫

−π

cos2(x− t)φ(t)dt

for every eigenvalue of the kernel.
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6. Let n be a positive integer and consider the homogeneous equation

φ(x) = λ
+π∫

−π

cosn(x− t)φ(t)dt.

Show that all of the eigenvalues of the kernel are of the form

λr =
2n−1

π
(n

r

)

and that all eigenfunctions of the kernel are of the form

1, cos((n− 2r)x) and sin((n− 2r)x),

where r assumes all nonnegative integer values not exceeding n/2. There will be
n+ 1 such eigenfunctions. Show also that

n

∑
r=0

1
λr

= 2π

for each positive integer n.

Hint: The kernel may be rewritten in a more convenient form since

cosn θ =

(
eiθ + e−iθ

2

)n

=
1
2n

n

∑
r=0

(
n
r

)
ei(n−r)θ e−irθ

=
n

∑
r=0

1
2n

(
n
r

)
cos(n− 2r)θ .

This sum may be simplified according to whether n is even or odd.
7. It was shown in this section that the resolvent kernel R(x, t;λ ) can be written as

the negative quotient of two determinants that, when expanded, are polynomials
in the variable λ . For example, if the kernel has the form K(x, t) = a1(x)b1(t)+
a2(x)b2(t), then

R(x, t;λ ) =− r0(x, t)+ r1(x, t)λ
(1−λ/λ1)(1−λ/λ2)

.

Determine r0(x, t) and r1(x, t). If λ1 �= λ2, then the method of partial fractions
can be used to write the resolvent kernel in the form

R(x, t;λ ) =
s1(x, t)

1−λ/λ1
+

s2(x, t)
1−λ/λ2

.

Determine s1(x, t) and s2(x, t).
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8. For −1 ≤ x ≤+1, consider the polynomials

p1(x) = x, p2(x) = 3x2 − 1, and p3(x) = 5x3 − 3x.

Define the kernel

K(x, t) =
3

∑
i=1

pi(x) pi(t)

on the square Q(−1,+1).

(a) Set ai j =
+1∫
−1

p j(t) pi(t)dt. Show that a11 = 2
3 , a22 = 8

5 , a33 = 8
7 , and that

ai j = 0 if i �= j.
(b) For i = 1,2,3, determine the eigenvalues λi of the kernel.
(c) For i = 1,2,3, show that the eigenfunctions of the kernel are given by

φ (e)(x;λi) = ci pi(x) so that 〈φ (e)(x;λi),φ (e)(x;λ j)〉= 0, if i �= j.
(d) If λ �= λi, show that the solution to the inhomogeneous Fredholm integral

equation

φ(x) = f (x)+λ
+1∫

−1

K(x, t)φ(t)dt

is given by

φ(x) = f (x)−λ
+1∫

−1

(
3

∑
i=1

pi(x) pi(t)
1−λ/λi

)
f (t)dt.

(e) Let p4(x) = 35x4−30x2+3. Show that p4(x) is orthogonal to the eigenfunc-
tions of the kernel, i.e., p4(x) is orthogonal to each pi(x), and then solve the
inhomogeneous equation

φ(x) = p4(x)+λi

+1∫

−1

K(x, t)φ(t)dt

for each eigenvalue λi.

9. Let n be a positive integer. For m = 1,2,3, and 4, solve each of the homogeneous
Fredholm integral equations

φ(x) = λ
+π∫

−π

Tm(x, t)φ(t)dt,
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where

T1(x, t) = cos(n(x− t)),

T2(x, t) = cos(n(x+ t)),

T3(x, t) = sin(n(x− t)),

and

T4(x, t) = sin(n(x+ t)).



Chapter 2
Fredholm Integral Equations of the Second
Kind (General Kernel)

In Chap. 1, we conducted a thorough examination of the Fredholm integral equation
of the second kind for an arbitrary complex parameter λ , assuming that the free
term f (x) is complex-valued and continuous on the interval [a,b] and that the
kernel K(x, t) is complex-valued, continuous, and separable on the square Q(a,b) =
{(x, t) : [a,b]× [a,b]}. We stated the four Fredholm theorems and the Fredholm
Alternative Theorem which provide for the construction of all possible solutions
to the equation under these assumptions.

A question naturally arises: What, if anything, can be proven if K(x, t) is a
general kernel, i.e., an arbitrary kernel that is only assumed to be complex-valued
and continuous? In this chapter, we will answer this question completely by proving
that all of the Fredholm theorems continue to hold in this eventuality.

In Sect. 2.1, we present several tools of the trade which are indispensible for the
comprehension of the material in this chapter.

In Sects. 2.2 and 2.3, we use these tools to show that the Fredholm integral
equation of the second kind with a general kernel has a unique solution if the product
of the parameter λ and the “size” of the kernel is small.

In Sect. 2.4, we prove the validity of the Fredholm theorems for unrestricted λ
and a general kernel.

In Sect. 2.5, we show how to construct the resolvent kernel that appears in the
solution to the integral equation recursively.

In Sect. 2.6, we introduce numerical methods for producing an approximation to
the solution of a Fredholm integral equation. These methods are necessary due to
the inherent computational difficulties in constructing the resolvent kernel.

2.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Norms of continuous functions: Let C[a,b] denote the vector space that consists of
all complex-valued continuous functions on the interval [a,b]. A norm on C[a,b]

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 2, © Springer Science+Business Media, LLC 2012
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is a real-valued function ( f ∈C[a,b]→‖ f‖∈R) with the following properties:

1. ‖ f‖ ≥ 0 for every f (x) ∈ C[a,b]
2. ‖ f‖= 0 if and only if f (x) ≡ 0 on [a,b]
3. ‖k f‖= |k|‖ f‖
4. ‖ f + g‖ ≤ ‖ f‖+ ‖g‖
In particular, we will have a strong interest in the p-norm (0 < p < +∞)
defined by

‖ f‖p =

(∫ b

a
| f (x)|p dx

)1/p

in the special cases p = 1 and p = 2. Of critical importance is the Cauchy–
Schwarz inequality which states that

|〈 f ,g〉| ≤ ‖ f‖2‖g‖2

or, more explicitly, that

∣∣∣∣
∫ b

a
f (x)g(x)dx

∣∣∣∣≤
(∫ b

a
| f (x)|2 dx

)1/2 (∫ b

a
|g(x)|2 dx

)1/2

.

Another norm of interest is the supremum norm defined by

‖ f‖∞ = sup{| f (x)| : x ∈ [a,b]}.
In an entirely similar way, a norm can be defined on the set of complex-valued

continuous functions defined on the square Q(a,b). Kernels, in particular, can be
normed. The norms

‖K‖2 =

(∫ b

a

∫ b

a
|K(x, t)|2 dxdt

)1/2

and
‖K‖∞ = sup{|K(x, t)| : (x, t) ∈ Q(a,b)}

will be of special interest in this chapter.
• Uniform convergence of an infinite sequence of functions: An infinite sequence

{ fn(x)} of functions converges uniformly on the interval [a,b] to a function f (x)
if, for every ε > 0, there exists an integer N = N(ε) such that | fn(x)− f (x)| < ε
for all x ∈ [a,b] and all n ≥ N(ε).

An infinite series Σ∞
1 fn(x) converges uniformly on [a,b] if its sequence of

partial sums converges uniformly on [a,b].
The Cauchy criterion is used to establish uniform convergence. We say that

an infinite sequence { fn(x)} of functions defined on [a,b] converges uniformly
there if and only if, for every ε > 0, there exists a fixed integer N(ε) such that
| fn(x)− fm(x)|< ε for all x ∈ [a,b] and all n,m ≥ N(ε).
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Uniform convergence is an essential hypothesis in many theorems. For
example, if { fn(x)} is an infinite sequence of continuous functions on [a,b] and
if the sequence { fn(x)} converges uniformly to the limit function f (x) there, then
f (x) is continuous on [a,b].

Uniform convergence is also required to justify term-by-term integration.
If { fn(x)} is a sequence of integrable functions that converge uniformly to f (x)
on [a,b], then f (x) is integrable and

∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx.

As an immediate consequence, we can say that if

f (x) =
∞

∑
n=1

fn(x)

and the convergence is uniform on the interval [a,b], then

∫ b

a
f (x)dx =

∞

∑
n=1

∫ b

a
fn(x)dx.

• Analytic, entire, and meromorphic functions: A region is a nonempty, connected,
open subset of the plane. If f (z) is a complex-valued function defined in the
region Ω and f (z) is differentiable for every z0 ∈ Ω, then we say that f (z) is
analytic or holomorphic in Ω.

Suppose that f1(z) is analytic on Ω1 and that f2(z) is analytic on Ω2. If Ω1 ∩
Ω2 �= /0 and f1(z) = f2(z) for all z ∈Ω1 ∩Ω2, then f1(z) and f2(z) are said to be
direct analytic continuations of one another.

A function that is analytic in the whole complex plane C is called entire.
A function f (z) is meromorphic in a region Ω if there is a set P such that (a) P

has no limit point in Ω, (b) f (z) is analytic in the region Ω\P, and (c) f (z) has a
pole at each point of P. Every meromorphic function in a region Ω is a quotient
of two functions which are analytic in Ω.

2.2 The Method of Successive Substitution

Consider the integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt,

where we assume as usual that f (x) is continuous on the interval [a,b] and that
K(x, t) is complex-valued and continuous on the square Q(a,b). If this equation has
a solution φ(x), then the equation itself provides a representation for it. Without any
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preconditions other than its integrability, φ(x) can be substituted into the integrand,
thereby producing yet another, albeit more complicated, representation for φ(x) in
terms of itself. More precisely, if we replace x by t and t by s in the integral equation,
then a direct substitution yields

φ(x) = f (x)+λ
∫ b

t=a
K(x, t)

[
f (t)+λ

∫ b

s=a
K(t,s)φ(s)ds

]
dt

= f (x)+λ
∫ b

a
K(x, t) f (t)dt +λ 2

∫ b

t=a

∫ b

s=a
K(x, t)K(t,s)φ(s)dsdt.

After interchanging the order of integration in the last integral and replacing the
dummy variable s with t, we have

φ(x) = f (x)+λ
∫ b

a
K(x, t) f (t)dt +λ 2

∫ b

a
K2(x, t)φ(t)dt,

where we have set

K2(x, t) =
∫ b

a
K(x,s)K(s, t)ds.

It may seem pointless to repeat this process, since the solution φ(x) will always be
represented in terms of itself, no matter how many times we repeat it. In actuality,
however, successive substitution proves to be quite fruitful. Not only does the
continuation of this iterative process eventually produce the solution to the equation,
but it also produces an elegant representation for it that does not involve φ(x).
Additional iterations lead to the general form

φ(x) = f (x)+
n

∑
m=1

λm
(∫ b

a
Km(x, t) f (t)dt

)
+λ n+1

∫ b

a
Kn+1(x, t)φ(t)dt,

for any integer n, where initially we have set K1(x, t) = K(x, t), and then

Km(x, t) =
∫ b

a
Km−1(x,s)K(s, t)ds, (2.1)

for each m = 2, . . . ,n. This general form is valid for all λ .
The functions Km(x, t) are called iterated kernels. Each Km(x, t) is complex-

valued and continuous on Q(a,b). Also, Km(x, t) is bounded there for all m ≥ 2,
for if |K(x, t)| ≤ M, then |Km(x, t)| ≤ Mm (b− a)m−1.

Now let

σn(x) =
n

∑
m=1

λm−1
(∫ b

a
Km(x, t) f (t)dt

)
(2.2)

and

ρn(x) = λ n+1
∫ b

a
Kn+1(x, t)φ(t)dt,
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so that
φ(x) = f (x)+λ σn(x)+ρn(x).

With a little effort, we show that the sequence {σn(x)} of continuous functions
converges uniformly to a continuous limit function σ(x) on the interval [a,b] and
that φ(x) = f (x)+λ σ(x).

Given the bound on Km(x, t), each term of the sum σn(x) satisfies the inequality
∣∣∣∣λm−1

(∫ b

a
Km(x, t) f (t)dt

)∣∣∣∣≤ ( |λ |M (b− a))m−1 M‖ f‖1.

If |λ |M (b−a)< 1, then the sequence {σn(x)} of partial sums is a Cauchy sequence.
For if ε > 0 is arbitrary, then

|σn(x)−σp(x)| ≤
[

n

∑
m=p+1

( |λ |M (b− a))m−1

]
M ‖ f‖1

≤ (|λ |M (b− a))p M‖ f‖1

1−|λ |M (b− a)

< ε

if p is large enough. In addition, the remainder term ρn(x)→ 0 uniformly on [a,b]
as n →+∞, in view of the estimate |ρn(x)| ≤ |λ |M‖φ‖1 (|λ |M (b− a))n.

It now follows that the sequence {σn(x)} of continuous functions converges
absolutely and uniformly on the interval [a,b] to the continuous limit function

σ(x) =
∞

∑
m=1

λm−1
(∫ b

a
Km(x, t) f (t)dt

)
,

provided that |λ |M (b − a) < 1. Furthermore, since term-by-term integration is
permitted as a consequence of uniform convergence, we have

σ(x) =
∫ b

a

(
∞

∑
m=1

λm−1 Km(x, t)

)
f (t)dt =

∫ b

a
R(x, t;λ ) f (t)dt,

where R(x, t;λ ) denotes the infinite series in parentheses. This series is known as
the Neumann series, and it is the resolvent kernel of the integral equation. Its radius
of convergence is at least 1/(M(b− a)).

Recall that a function φ(x) is a solution to an integral equation if the integral
equation is transformed into an identity by the substitution of φ(x) into it.

We shall show that f (x) + λ σ(x) is the solution to the integral equation by
showing that

f (x)+λ σ(x) = f (x)+λ
∫ b

a
K(x, t) ( f (t)+λ σ(t)) dt.
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By substituting the series expansion for σ(x) into the integral on the right, we obtain

λ
∫ b

a
K(x, t) [ f (t)+λ σ(t)] dt

= λ
∫ b

a
K(x, t) f (t)dt

+λ 2
∫ b

t=a
K(x, t)

[∫ b

s=a

(
∞

∑
m=1

λm−1Km(t,s)

)
f (s)ds

]
dt

= λ
∫ b

a
K(x, t) f (t)dt

+λ 2
∫ b

s=a

∞

∑
m=1

λm−1
(∫ b

t=a
Km(x, t)K(t,s)dt

)
f (s)ds

= λ
∫ b

a
K(x, t) f (t)dt +λ

∫ b

a

(
∞

∑
m=1

λmKm+1(x,s)

)
f (s)ds

= λ σ(x).

We can now rightfully claim that φ(x) = f (x)+λ σ(x). Since f (x) is assumed to be
continuous on the interval [a,b] and we have proven that σ(x) is continuous there,
it follows that φ(x) is continuous as well and that its norm ‖φ‖1 is finite.

The discussion above serves to establish the following result:

Theorem 2.2.1 (Successive Substitution). Let f (x) be a complex-valued and
continuous function defined on the interval [a,b], and let K(x, t) be a complex-valued
continuous kernel defined on the square Q(a,b) and also bounded there by M. Let
λ be a complex parameter. If |λ |M (b− a) < 1, then the unique solution to the
Fredholm integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt

is given by

φ(x) = f (x)+λ
∫ b

a
R(x, t;λ ) f (t)dt,

where R(x, t;λ ) is the resolvent kernel

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t).
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Section 2.2 Exercises

1. For each of the kernels K(x, t) given below, determine all of the iterated kernels
Km(x, t) and then form the resolvent kernel R(x, t;λ ). Note that the resolvent
depends upon the endpoints of the interval [a,b]. For which values of λ does the
resolvent series converge? Can you sum the resolvent series in closed form?

(a) A(x, t) = x+ t, defined on Q(−1,+1)
(b) B(x, t) = x− t, defined on Q(0,1)
(c) C(x, t) = xt, defined on Q(a,b)
(d) D(x, t) = (1+ x)(1− t), defined on Q(−1,0)
(e) E(x, t) = x2 t2, defined on Q(−1,+1)
( f) F(x, t) = cos x cos t, defined on Q(0,π)
(g) G(x, t) = sin(x+ t), defined on Q(0,π)
(h) H(x, t) = xet , defined on Q(0,1)
( i) I(x, t) = ex−t , defined on Q(0,1)
( j) J(x, t) = ex cos t, defined on Q(0,π)

2. Suppose that the kernel K(x, t) is continuous on the square Q(a,b). Prove that if
the kernel K(x, t) is separable, then every iterated kernel Km(x, t), m = 2,3, . . . ,
is also separable.

3. Suppose that the kernel K(x, t) is a function of the product xt, say K(x, t) =G(xt).
Is the iterated kernel K2(x, t) also a function of the product xt?

4. Suppose that the kernel K(x, t) is a function of the difference x− t, say K(x, t) =
H(x− t). Is the iterated kernel K2(x, t) also a function of the difference x− t?

5. Is every kernel an iterated kernel? In other words, if the kernel K(x, t) is
continuous on the square Q(a,b), does there exist a continuous kernel L(x, t)
such that

K(x, t) =
∫ b

a
L(x,s)L(s, t)ds?

6. Let m ≥ 2. Show that

Km(x, t) =
∫ b

a
Kr(x,s)Km−r(s, t)ds

for every r = 1, . . . ,m− 1.
Hint: If m = 2, then the conclusion holds by definition. Use an inductive
argument for m ≥ 3.

2.3 The Method of Successive Approximation

In this section, we introduce another recursive method for solving Fredholm integral
equations of the second kind. There are some distinct advantages in considering
another method: additional insight is gained into the recursive process, a different
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proof of convergence is used, and a better result is obtained, in the sense that the
resolvent series may have a larger radius of convergence.

Consider the Fredholm integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt. (2.3)

If λ = 0, then φ(x) = f (x) is the unique solution to the equation. In view of this
observation, it seems reasonable to suggest that if |λ | ≈ 0, then φ(x) ≈ f (x), i.e.,
that the free term f (x) serves as a reasonable zeroth-order approximation φ0(x) to
the solution φ(x). However, for computational reasons, f (x) may not be the most
practical choice for larger values of λ . Depending upon the form of the kernel, the
choices φ0(x) = 1 or φ0(x) = ex or some other choice might be more reasonable
from the perspective of integrability.

After φ0(x) is chosen, a first-order approximation φ1(x) to φ(x) is furnished by
substituting φ0(t) for φ(t) into the integrand to obtain

φ1(x) = f (x)+λ
∫ b

a
K(x, t)φ0(t)dt.

If φ1(x) = φ0(x), then φ(x) = φ1(x), and the solution has been found. If the integral
vanishes, then φ1(x) = f (x). At this point, the iterative process continues as if we
had originally chosen φ0(x) = f (x).

If φ1(x) �= φ0(x), then the substitution of φ1(t) into the integrand yields the
second-order approximation

φ2(x) = f (x)+λ
∫ b

a
K(x, t)φ1(t)dt.

If φ2(x) = φ1(x), then φ(x) = φ2(x), and the solution has been found. If the integral
vanishes, then φ2(x) = f (x). Again, the iterative process continues as if we had
originally chosen φ0(x) = f (x). If φ2(x) = φ0(x), then a continuation of this iterative
process produces the two distinct constant subsequences, namely, φ0(x) = φ2(x) =
φ4(x) = · · · and φ1(x) = φ3(x) = φ5(x) = · · · . If this were to happen, then a unique
solution to the integral equation obviously would not exist.

If φ2(x) �= φ1(x) or φ0(x), then a substitution of φ2(t) into the integrand yields
the third-order approximation

φ3(x) = f (x)+λ
∫ b

a
K(x, t)φ2(t)dt,

and comments similar to those made above regarding the two previous iterations
can again be made.
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Assuming that φn(x) �= φ j(x) for j = 0, . . . ,n− 1 and that φ(x) �= f (x), then a
substitution of φn(t) into the integrand yields the (n+ 1)st-order approximation

φn+1(x) = f (x)+λ
∫ b

a
K(x, t)φn(t)dt.

Each approximant φn(x) has an alternate form. In Sect. 2.2, we substituted the
integral equation into itself repeatedly; here, we substitute each approximant φ j(x)
into the expression for the next approximant φ j+1(x) to obtain

φn+1(x) = f (x)+
n

∑
m=1

λm
(∫ b

a
Km(x, t) f (t)dt

)

+λ n+1
∫ b

a
Kn+1(x, t)φ0(t)dt. (2.4)

Alternately, we have

φn+1(x) = f (x)+λ σn(x)+ωn+1(x),

where σn(x) was previously defined by (2.2), and we set

ωn+1(x) = λ n+1
∫ b

a
Kn+1(x, t)φ0(t)dt.

In Sect. 2.2, we showed that the sequence σn(x) converges uniformly to the function
σ(x) on the interval [a,b], provided that |λ | was small enough relative to the size of
the kernel. Here, we reprove this result under a different condition on λ .

An application of the Cauchy–Schwarz inequality to the definition of the iterated
kernel yields

|Km(x, t)|2 ≤
(∫ b

a
|Km−1(x,s)|2 ds

)(∫ b

a
|K(s, t)|2 ds

)
.

Integrating this inequality with respect to t yields

∫ b

a
|Km(x, t)|2 dt ≤

(∫ b

a
|Km−1(x,s)|2 ds

)(∫ b

a

∫ b

a
|K(s, t)|2 dsdt

)
,

for each fixed x ∈ [a,b], or more simply

κm(x)≤ κm−1(x)‖K‖2
2,

where we have set

κm(x) =
∫ b

a
|Km(x, t)|2 dt
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and

‖K‖2 =

(∫ b

a

∫ b

a
|K(x, t)|2 dxdt

)1/2

.

Recursively, we easily obtain the estimate

κm(x)≤ κ1(x)‖K‖2m−2
2 .

Another application of the Cauchy–Schwarz inequality to the integrals in the sum
σn(x) provides the estimate

∣∣∣∣
∫ b

a
Km(x, t) f (t)dt

∣∣∣∣
2

≤
(∫ b

a
|Km(x, t)|2 dt

)(∫ b

a
| f (t)|2 dt

)

= κm(x)‖ f‖2
2

≤ κ1(x)‖ f‖2
2 ‖K‖2m−2

2 .

Hence, each term in the sum σn(x) can be estimated by the inequality

∣∣∣∣λm
∫ b

a
Km(x, t) f (t)dt

∣∣∣∣≤
√

κ1(x)‖ f‖2

‖K‖2
(|λ |‖K‖2)

m, (2.5)

which is valid for each fixed x ∈ [a,b].
It follows from this estimate that the sequence σn(x) converges absolutely and

uniformly to a unique limit σ(x) on the interval [a,b] whenever |λ |‖K‖2 < 1, since
it is dominated by a convergent geometric series of positive terms.

By using a similar estimate, we also see that

|ωn+1(x)| ≤
√

κ1(x)‖φ0‖2

‖K‖2
(|λ |‖K‖2)

n+1 → 0

as n →+∞.
The results of the last two paragraphs imply that φ(x) = f (x)+λ σ(x).
The proof that φ(x) is unique proceeds by contradiction. Suppose that there were

two distinct solutions to Eq. (2.3), say φ(x) and φ̃(x). If we set δ (x) = φ(x)− φ̃ (x),
then δ (x) satisfies the homogeneous integral equation

δ (x) = λ
∫ b

a
K(x, t)δ (t)dt.

If δ (x) �= 0, then it would be an eigenfunction of the kernel corresponding to the
eigenvalue λ . Showing that δ (x)≡ 0 not only proves that φ(x) is unique, but it also
shows that the kernel has no eigenvalues smaller than 1/‖K‖2. An application of the
Cauchy–Schwarz inequality gives
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|δ (x)|2 ≤ |λ |2
(∫ b

a
|K(x, t)|2 dt

)(∫ b

a
|δ (t)|2 dt

)
,

which can be integrated with respect to x yielding

(
1−|λ |2‖K‖2

2

) ∫ b

a
|δ (x)|2 dx ≤ 0.

The restriction |λ |‖K‖2 < 1 implies that
∫ b

a |δ (x)|2 dx = 0.
The discussion above serves to establish the following result:

Theorem 2.3.1 (Successive Approximation). Let λ be a complex parameter and
let f (x) be a complex-valued continuous function defined on the interval [a,b]. Let
K(x, t) be a complex-valued continuous kernel defined on the square Q(a,b) with

‖K‖2 =

(∫ b

a

∫ b

a
|K(x, t)|2 dxdt

)1/2

.

If |λ |‖K‖2 < 1, then the unique solution to the Fredholm integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt

is given by

φ(x) = f (x)+λ
∫ b

a
R(x, t;λ ) f (t)dt,

where R(x, t;λ ) is the resolvent kernel

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t).

The estimate for the radius of convergence in the Theorem of Successive Ap-
proximation is larger than the corresponding estimate in the Theorem of Successive
Substitution. Indeed, ‖K‖2 ≤ M(b− a), with equality holding only if K(x, t) ≡ M.
Hence,

1
M(b− a)

≤ 1
‖K‖2

.

For example, consider the kernel K(x, t) = x10 t10 on the square Q(0,1). For this
kernel, we have ‖K‖2 =

1
21 and M(b− a) = 1.

The inequalities established within the proof of the theorem may be used again
to estimate the magnitude of the error incurred by using the approximant φn(x) to
estimate φ(x). For each x ∈ [a,b], we have
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|φ(x)−φn(x)|=
∣∣∣∣∣

∞

∑
m=n+1

λm
∫ b

a
Km(x, t) f (t)dt

∣∣∣∣∣

≤
√

κ1(x) ‖ f‖2

‖K‖2

∞

∑
m=n+1

(|λ |‖K‖2)
m

≤ ‖√κ1‖∞ ‖ f‖2

‖K‖2 (1−|λ |‖K‖2)
(|λ |‖K‖2)

n+1.

This inequality shows that if n is large enough, then the difference |φ(x)− φn(x)|
is uniformly small on the interval [a,b]. However, the rate of convergence may be
quite slow if |λ |‖K‖2 is close to 1. The implication here is that a large number
of approximants may need to be computed, thereby decreasing the efficiency and
convenience of the method.

Illustrative Examples

• Example 1: If it should happen that an iterated kernel Km(x, t)≡ 0 on the square
Q(a,b), then the resolvent kernel reduces to a polynomial in λ , and the kernel
K(x, t) will have no eigenvalues.

In particular, if K2(x, t) ≡ 0, then R(x, t;λ ) = K(x, t), and the kernel K(x, t)
is said to be orthogonal to itself. It is easy to invent such kernels in terms of
trigonometric functions. For example, if K(x, t) = sin(x+ 2 t), then K2(x, t) = 0.
Hence, the solution to the integral equation

φ(x) = x+
∫ 2π

0
sin(x+ 2t)φ(t)dt

is

φ(x) = x+
∫ 2π

0
sin(x+ 2t)t dt = x−π cos x.

• Example 2: Consider the separable kernel

K(x, t) = cos(x+ t) = cos x cos t − sin x sin t

defined on the square Q(0,π). By employing the methods in Chap. 1, we can
obtain the resolvent kernel in the form

R(x, t;λ ) =−D(x, t;λ )
D(λ )

=
cos x cos t

1− λ π
2

− sin x sin t

1+ λ π
2

,

showing that it is a meromorphic function of λ with simple poles at ±2/π .
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Alternatively, the resolvent kernel can also be easily computed in terms of the
iterated kernels of K(x, t). Simple integrations yield

K2(x, t) =
∫ π

0
cos(x+ s) cos(s+ t)ds = π

2 cos(x− t)

and

K3(x, t) =
∫ π

0
cos(x− s) cos(s+ t)ds =

(π
2

)2
cos(x+ t) =

(π
2

)2
K(x, t).

A short inductive argument shows that

Km(x, t) =

{(π
2

)m−1
cos(x+ t), if m is odd,(π

2

)m−1
cos(x− t), if m is even.

After inserting the iterated kernels into the resolvent series and simplifying the
result, we obtain the same expression for R(x, t;λ ) as above.

The Theorem of Successive Substitution guarantees that the resolvent series
converges if |λ | ≤ 1/M(b−1)< 1/π ; the Theorem of Successive Approximation
guarantees convergence if |λ | ≤ 1/‖K‖2 <

√
2/π . If we were to expand R(x, t;λ )

in a Taylor series in λ about the origin, then its radius of convergence would
be 2/π .

• Example 3: Suppose that we need to solve the Fredholm integral equation

ψ(x) = x4 + 1
10

∫ 1

0
ext ψ(t)dt. (2.6)

Since the kernel K(x, t) = ext is not separable, the methods of Chap. 1 do not
apply.

In an attempt to use one of the successive methods, we easily compute

K2(x, t) =
ex+t − 1

x+ t

but then quickly realize that the integration required to produce the next iterate
K3(x, t) is unmanageable.

Next, in an attempt to use the Method of Successive Approximation, we
choose ψ0(x) = x4 and then use integration by parts several times to compute
ψ1(x) as prescribed, but then we quickly find that the integration required to
produce ψ2(x) is unmanageable.

In situations like this, it may be advantageous to approximate the kernel in
our attempt to approximate the solution. Recalling that

ext =
∞

∑
m=0

1
m!

xm tm,
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we truncate this series and consider the Fredholm integral equation

φ(x) = x4 + 1
10

∫ 1

0
K(x, t)φ(t)dt (2.7)

with the separable kernel

K(x, t) = 1+ xt+
x2 t2

2!
+

x3 t3

3!
+

x4 t4

4!

defined on the square Q(0,1). All five eigenvalues of the kernel are real and
positive, the smallest of which is λ1 ≈ 0.739241. Since 1

10 is therefore a regular
value, the integral equation has a unique solution by the First Fredholm Theorem.

A direct manual computation of the resolvent kernel is impractical since each
of the iterated kernels Km(x, t) consists of 25 terms of the form xi y j. Instead, we
prefer to determine a suitable approximation to the solution by using the Method
of Successive Approximation. Since

‖K‖2 =

√
841,676,993

15120
√

2
,

the Theorem of Successive Approximation guarantees that the resolvent series
converges if |λ | ≤ 1/‖K‖2 ≈ 0.737045, a value that is remarkably close to λ1.
(The Theorem of Successive Substitution guarantees that the resolvent series
converges if |λ | ≤ 1/M(b− a) = 24

65 ≈ 0.369231.)
With the uniform convergence of the sequence {φn(x)} to the solution φ(x)

now guaranteed, we can begin to compute it. Since λ = 1
10 is small, we choose

φ0(x) = x4. In order to demonstrate the efficacy of the method to produce a
convergent sequence, we list the first six approximants in the form

φn(x) = x4 + 1
10 τn(x).

The coefficients of the polynomials τn(x) have been computed accurately here to
six decimal places but not rounded up or down:

τ1(x) = 0.200000+ 0.166666x+0.071428x2+ 0.020833x3+ 0.004629x4

τ2(x) = 0.231327+ 0.184501x+0.077766x2+ 0.022479x3+ 0.004967x4

τ3(x) = 0.235611+ 0.186859x+0.078590x2+ 0.022692x3+ 0.005010x4

τ4(x) = 0.236191+ 0.187178x+0.078701x2+ 0.022720x3+ 0.005016x4

τ5(x) = 0.236269+ 0.187221x+0.078717x2+ 0.022724x3+ 0.005017x4

τ6(x) = 0.236280+ 0.187226x+0.078719x2+ 0.022725x3+ 0.005017x4

The exact solution is given by φ(x) = x4 + 1
10 τ(x), where

τ(x) = 0.236282+ 0.187227x+0.078719x2+ 0.022725x3+ 0.005017x4.
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The rate of convergence is quite satisfactory. Indeed, the coefficients of τ(x)
differ from those of τ6(x) by at most 0.000002!

The degree of accuracy on display here could have been predicted by the
error estimate given above. Since λ = 1

10 , ‖ f‖2 = 1
3 , ‖K‖2 = 1.3567691, and

‖√κ1‖∞ = 1.7851749, the error in using φ6(x) to approximate φ(x) is no more
than |φ(x)−φ6(x)| ≤ 1

10(0.0000043).
To grade the success in approximating the solution ψ(x) of Eq. (2.6) with the

solution φ(x) of Eq. (2.7), it is reasonable to estimate the norm ‖ψ−φ‖∞.
An application of the triangle inequality yields

|ψ(x)−φ(x)| ≤ 1
10

∣∣∣∣
∫ 1

0
ext (ψ(t)−φ(t))dt

∣∣∣∣

+ 1
10

∣∣∣∣
∫ 1

0
(ext −K(x, t))φ(t)dt

∣∣∣∣ .
For each fixed x ∈ [0,1], we apply the Cauchy–Schwarz inequality to each of
these integrals to obtain

|ψ(x)−φ(x)| ≤ 1
10 ‖ext‖2 · ‖ψ−φ‖2 +

1
10 ‖ext −K(x, t)‖2 · ‖φ‖2.

On the square Q(0,1), we have

‖ext‖2 <
9
5 , and ‖ext −K(x, t)‖2 <

1
338

independently of x, so that the last inequality becomes

|ψ(x)−φ(x)| ≤ 9
50 ‖ψ−φ‖2 +

1
3380 ‖φ‖2.

Taking the supremum over the left side of this inequality and replacing ‖ψ−φ‖2

with the greater norm ‖ψ−φ‖∞ gives

‖ψ−φ‖∞ ≤ 9
50 ‖ψ−φ‖∞+

1
3380 ‖φ‖2.

Finally, since

‖φ‖2 ≤ ‖φ6‖2 + ‖φ −φ6‖2 ≤ ‖φ6‖2 + ‖φ−φ6‖∞ < 3
8 ,

we obtain the uniform estimate

‖ψ−φ‖∞ ≤ 50
41 · 1

3380 · 3
8 = 15

110864 < 1
7390 .

Also, given the error estimate for ‖φ −φ6‖∞ that was established above, we have

‖ψ−φ6‖∞ ≤ ‖ψ−φ‖∞+ ‖φ −φ6‖∞ < 1
7366 .

Practically speaking, the graphs of ψ(x) and φ6(x) are “within the ink” of each
other, since their values agree so closely everywhere within the interval [0,1].
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Section 2.3 Exercises

1. Solve the nonhomogeneous Fredholm integral equation

φ(x) = ax+λ
∫ 1

0
xt φ(t)dt

in two ways.

(a) Use the techniques in Chap. 1 to show that the unique solution to this
equation is given by

φ(x) =
ax

1− λ
3

if λ �= 3.
(b) Use the Method of Successive Approximation, with the initial choice

φ0(x) = ax, to compute φn(x), for every n ≥ 1. Show that the limit
φ(t) = limn→∞ φn(x) exists. The solution obtained here should agree with
the solution obtained above within the circle of convergence.

2. Suppose that the kernel K(x, t) is continuous on the square Q(a,b).

(a) If K(x,x)≡ 0 on [a,b], is it true that K2(x,x) ≡ 0 on [a,b]?
(b) If K(x, t) = K(t,x), is it true that Km(x, t) = Km(t,x)?
(c) If K(x, t) =−K(t,x), is it true that Km(x, t) = (−1)m Km(t,x)?

3. Suppose that the kernels K(x, t) and L(x, t) are continuous on the square Q(a,b).
If K2(x, t) = L2(x, t), is it true that K(x, t) = L(x, t)?

4. Suppose that the kernel K(x, t) is continuous on the symmetric square
Q(−a,+a) and that

K(x,y) = K(−x,y) = K(x,−y) = K(−x,−y).

Does Km(x, t) have the same property for all m ≥ 2?
5. Suppose that the kernel K(x, t) is continuous on the square Q(a,b) and that

K(x, t) ≡ 0 for all a ≤ x ≤ t ≤ b, i.e., the kernel vanishes on and above the
diagonal of the square. Does K2(x, t) have the same property?

6. Define

K(x, t) =

{
t (1− x) if t ≤ x

x(1− t) if x ≤ t

on the square Q(0,1). This kernel vanishes on the boundary of the square, and
K(x,x) = x(1− x) on its diagonal. Compute K2(x, t).

7. Define K(x, t) = |x− t| on the square Q(0,a). Compute K2(x, t).
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8. By using its series representation, show that the resolvent satisfies the equations

R(x, t;λ ) = K(x, t)+λ
∫ b

a
K(x,s)R(s, t;λ )ds

and

R(x, t;λ ) = K(x, t)+λ
∫ b

a
R(x,s;λ )K(s, t)ds.

9. By using its series representation, show that the resolvent satisfies the integro-
differential equation

∂
∂λ

R(x, t;λ ) =
∫ b

a
R(x,s;λ )R(s, t;λ )ds.

10. Let K(x, t) be a continuous kernel defined on Q(a,b), and let

‖K‖2 =

(∫ b

a

∫ b

a
|K(x, t)|2 dxdt

)1/2

.

Assume that λ is small enough so that

‖Rλ‖2 =

(∫ b

a

∫ b

a
|R(x, t;λ )|2 dxdt

)1/2

<+∞.

Estimate ‖Rλ‖2 in terms of |λ | and ‖K‖2. For which values of λ is your
estimate valid?

11. Consider the integral equation

ψ(x) = x+ 1
2

∫ 1

0
cosh(xt)ψ(t)dt

and assume that 1
2 is not an eigenvalue of the kernel. Choose ψ0(x) = x and

compute ψ1(x), ψ2(x), and ψ3(x). (Recall that coshx = (ex + e−x)/2.) Next,
approximate the kernel by

cosh(xt)≈ 1+ 1
2 x2t2 + 1

24 x4t4

and consider the integral equation

φ(x) = x+ 1
2

∫ 1

0

(
1+ 1

2 x2t2 + 1
24 x4t4) φ(t)dt.

Choose φ0(x) = x, and compute φ1(x), φ2(x), and φ3(x). Compare your results,
and estimate the accuracy of your approximations by following the techniques
in Example 3.
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2.4 The Fredholm Theorems

In Sect. 1.3, we proved the Fredholm theorems for the integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt, (2.8)

where λ is an arbitrary complex parameter and K(x, t) is a separable kernel. Then,
in Sect. 2.3, we showed that the Method of Successive Approximations can be
successfully applied to solve this equation if K(x, t) is a general kernel, provided
that |λ |< 1/‖K‖2. In this section, we combine the techniques of those two sections
in order to establish the Fredholm theorems if K(x, t) is a general kernel and λ is
arbitrary.

An ingenious idea due to Schmidt enables the discussion. His idea is to show
that the solution φ(x) to Eq. (2.8) satisfies two integral equations, one whose kernel
is small and another one whose kernel is separable. The techniques delineated in
Sects. 1.3 and 2.3 can then be applied to these equations.

Some assumptions are in order. The complex parameter λ is assumed at first
to belong to the closed disk Δρ = {λ : |λ | ≤ ρ}, where ρ is arbitrarily large but
fixed. As usual, the free term f (x) is assumed to be complex-valued and continuous
on the interval [a,b], and the kernel K(x, t) is assumed to be complex-valued and
continuous on the square Q(a,b).

The discussion begins with a decomposition of the kernel K(x, t).
By virtue of the well-known Weierstrass approximation theorem, the kernel

K(x, t) can be decomposed into a sum of two complex-valued and continuous
kernels as

K(x, t) = Ksep(x, t)+Kε(x, t).

The kernel Ksep(x, t) can be chosen to be a separable polynomial in the variables x
and t in the form

Ksep(x, t) =
n

∑
i=1

ai(x)bi(t),

where each ai(x) and bi(t) is complex-valued and continuous on [a,b], and each of
the sets {ai(x)} and {bi(t)} is linearly independent on the interval [a,b]. The kernel
Kε(x, t) can be chosen so that its norm

‖Kε‖2 =

(∫ b

a

∫ b

a
|Kε (x, t)|2 dxdt

)1/2

is arbitrarily small. In particular, if we require that ‖Kε‖2 < ε , we choose ρ = 1/ε ,
so that if |λ | ≤ ρ , then |λ |< 1/‖Kε‖2.

Given this decomposition of the kernel, we may write Eq. (2.8) in the form

φ(x) = f (x)+λ
∫ b

a
Ksep(x, t)φ(t)dt +λ

∫ b

a
Kε (x, t)φ(t)dt.
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Equivalently, we have

φ(x) = F(x;λ )+λ
∫ b

a
Kε (x, t)φ(t)dt, (2.9)

which is the first of the two integral equations satisfied by φ(x), where

F(x;λ ) = f (x)+λ
∫ b

a
Ksep(x, t)φ(t)dt.

The continuity of F(x;λ ) on the interval [a,b] is due to the integrability of φ(t). At
least for |λ | < 1/‖K‖2, the solution φ(x) that exists by virtue of the Theorem of
Successive Approximation is continuous on the interval [a,b].

Now consider the equation

ψ(x) = g(x)+λ
∫ b

a
Kε (x, t)ψ(t)dt,

where g(x) is assumed to be complex-valued and continuous on the interval [a,b].
As a consequence of the Theorem of Successive Approximation, the solution ψ(x)
to this equation may be expressed in the form

ψ(x) = g(x)+λ
∫ b

a
Rε(x, t;λ )g(t)dt,

if |λ | < 1/‖Kε‖2. In particular, this conclusion holds for all values of λ ∈ Δρ ,
since we chose Kε(x, t) so that ρ < 1/‖Kε‖2. As a consequence of this choice, the
resolvent series

Rε(x, t;λ ) =
∞

∑
m=1

λm−1 Kεm(x, t), (2.10)

generated from the iterates of Kε(x, t), is an analytic function of λ in Δρ and is a
continuous function of x and t on the square Q(a,b) for each λ ∈ Δρ .

Whenever F(x;λ ) is continuous, the solution to Eq. (2.9) can be displayed as

φ(x) = F(x;λ )+λ
∫ b

a
Rε(x, t;λ )F(t;λ )dt.

After replacing F(x;λ ) by its definition in this equation, we obtain

φ(x) = fε (x;λ )+λ
∫ b

a
Gε(x, t;λ )φ(t)dt, (2.11)

where

fε (x;λ ) = f (x)+λ
∫ b

a
Rε(x, t;λ ) f (t)dt (2.12)
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and

Gε(x, t;λ ) = Ksep(x, t)+λ
∫ b

a
Rε(x,u;λ )Ksep(u, t)du. (2.13)

Equation (2.11) is the second integral equation that is satisfied by the solution
φ(x) to Eq. (2.8). The free term fε (x;λ ) is an analytic function of λ in Δρ , is
complex-valued and continuous on the interval [a,b], and exhibits an adjustment
to the original free term f (x) that is based on the choice of Kε (x, t). The kernel
Gε(x, t;λ ) is an analytic function of λ on Δρ and is complex-valued and continuous
on the square Q(a,b). It reflects an adjustment to the original kernel K(x, t) that is
based upon its decomposition.

It is important to note that Gε(x, t;λ ) is separable. To see this, observe that

∫ b

a
Rε(x,u;λ )Ksep(u, t)du =

∫ b

a
Rε(x,u;λ )

(
n

∑
i=1

ai(u)bi(t)

)
du

=
n

∑
i=1

(∫ b

a
Rε(x,u;λ )ai(u)du

)
bi(t)

=
n

∑
i=1

Aεi(x;λ )bi(t),

where

Aεi(x;λ ) =
∫ b

a
Rε(x,u;λ )ai(u)du

=

∫ b

a

(
∞

∑
m=1

λm−1 Kεm(x,u)

)
ai(u)du

=
∞

∑
m=1

λm−1
(∫ b

a
Kεm(x,u)ai(u)du

)
. (2.14)

Term-by-term integration is permitted here, since the resolvent series converges
absolutely and uniformly on the interval [a,b] for every λ ∈ Δρ . Each Aεi(x;λ )
is an analytic function of λ on Δρ and is continuous on the interval [a,b]. With
these notational conventions, the kernel Gε(x, t;λ ) can be explicitly displayed in
the separable form

Gε(x, t;λ ) =
n

∑
i=1

[ai(x)+λ Aεi(x;λ )] bi(t). (2.15)

Equation (2.11) can now be treated with the techniques that were delineated in
Sect. 1.3 for integral equations with separable kernels, although some differences
will arise due to the fact that its kernel depends upon λ . The analysis of Eq. (2.11)
begins by replacing Gε(x, t;λ ) in with its representation (2.15) to obtain



2.4 The Fredholm Theorems 51

φ(x) = fε (x;λ )+λ
n

∑
i=1

ci(λ ) [ai(x)+λ Aεi(x;λ )] , (2.16)

where we have set

ci(λ ) =
∫ b

a
φ(t)bi(t)dt.

Every solution to Eq. (2.11) assumes this form. It remains to determine the
coefficients ci(λ ). If we replace x by t, change the index of summation from i to j,
multiply both sides of Eq. (2.16) by bi(t), and then integrate the resulting expression
from a to b, then we obtain the system of linear equations

ci(λ ) = fi(λ )+λ
n

∑
j=1

c j(λ )ai j(λ ) (2.17)

for i = 1, . . . ,n, where we have set

fi(λ ) =
∫ b

a
fε (t;λ )bi(t)dt

and

ai j(λ ) =
∫ b

a
[a j(t)+λ Aε j(t;λ )] bi(t)dt. (2.18)

Since the definitions of fi(λ ) and ai j(λ ) depend upon the resolvent kernel
Rε(x, t;λ ), they both are analytic functions of λ in Δρ .

The linear system (2.17) can also be written in matrix form as

(I−λ A(λ ))c(λ ) = f(λ ). (2.19)

The Fredholm determinant Dρ(λ ) = det(I−λ A(λ )) is an analytic function of λ
in the closed disk Δρ . An analytic function defined on an open neighborhood of a
closed disk D in the complex plane that vanishes on an infinite set with a limit point
in D vanishes identically on the neighborhood of D. Since Dρ(0) = 1, Dρ(λ ) can
have only a finite number of zeroes in Δρ . In Sect. 1.3, the matrix A, corresponding
to the matrix A(λ ) here, was a matrix of constants, and the Fredholm determinant
D(λ ) = det(I−λ A) was a polynomial of degree n with exactly n zeroes. However,
since Dρ(λ ) is not necessarily a polynomial, it may have more or less than n zeroes,
but in any case, the number of zeroes is finite.

The values of λ ∈ Δρ for which Dρ(λ ) �= 0 are called regular values of the kernel
K(x, t). If λ is a regular value, then the unique solution φ(x) to the inhomogeneous
integral equation (2.8) can ultimately be expressed as an integral with a resolvent
kernel as stated below in the First Fredholm Theorem.

On the other hand, the values of λ for which Dρ(λ )=0 are called eigenvalues
of the kernel K(x, t). If λ is an eigenvalue, then the homogeneous case of the integral
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equation (2.8) will have nontrivial solutions called eigenfunctions of the kernel; the
inhomogeneous case may or may not have solutions, depending upon additional
considerations.

The analysis of the linear system (2.19) proceeds in remarkedly different
ways, depending upon the value of the Fredholm determinant Dρ(λ ). The linear
system, and hence the integral equation (2.8), will have exactly one solution if the
determinant does not vanish. Otherwise, the linear system will have either an infinite
number of solutions or no solutions at all. Both possibilities may occur, and each of
them has implications for our investigation.

We consider two cases:

Case I: Dρ(λ ) = det(I−λ A(λ )) �= 0.
In this case, the linear system has the unique solution

c(λ ) = (I−λ A(λ ))−1f(λ )

=
1

Dρ(λ )
adj(I−λ A(λ )) f(λ ), (2.20)

where adj(I−λ A(λ )) = (D ji(λ )) is the transpose of the matrix of cofactors from
I−λ A(λ ). Each coefficient ci(λ ) can be represented in the form

ci(λ ) =
1

Dρ(λ )

n

∑
j=1

D ji(λ ) f j(λ ).

Note that each D ji(λ ) is an analytic function of λ in the closed disk Δρ .
We consider two possibilities:

1. If f(λ ) = 0, then c(λ ) = 0, i.e., ci(λ ) = 0 for all i = 1, . . . ,n. Since every solution
to Eq. (2.11) has the general form (2.16), it follows that φ(x) = fε (x;λ ). In
particular, if f (x) ≡ 0, then fε (x;λ ) ≡ 0 on [a,b], so that the unique solution
to Eq. (2.11) is φ(x) ≡ 0. It is possible for f(λ ) = 0 with fε(x;λ ) �= 0 on [a,b].
For instance, if each bi(t) happens to be orthogonal to f (t) and the iterates of
Kε (t,u), then f(λ ) = 0.

2. If f(λ ) �= 0, then c(λ ) �= 0, i.e., ci(λ ) �= 0 for at least one subscript i. After
substituting these values for ci(λ ) into Eq. (2.16), we obtain

φ(x) = fε (x;λ )+λ
n

∑
i=1

(
1

Dρ(λ )

n

∑
j=1

D ji(λ ) f j(λ )

)
[ai(x)+λ Aεi(x;λ )]

= fε (x;λ )+λ
∫ b

a
Sε(x, t;λ ) fε (t;λ )dt,

where we have set

Sε(x, t;λ ) =
∑n

i=1 ∑
n
j=1 D ji(λ ) [ai(x)+λ Aεi(x;λ )]b j(t)

Dρ(λ )
. (2.21)
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The kernel Sε(x, t;λ ) is a meromorphic function of λ in the closed disk Δρ , in
addition to being a separable function of x and t. Since Sε(x, t;0) = Ksep(x, t),
Sε(x, t;λ ) represents an adjustment to Ksep(x, t) based upon the decomposition
of K(x, t) and can also be written as a negative quotient of determinants.

After substituting fε (x;λ ) into this last representation for φ(x), we finally obtain
a representation for the solution to Eq. (2.11), and therefore also Eq. (2.8), in the
compact form

φ(x) = f (x)+λ
∫ b

a
Uε(x, t;λ ) f (t)dt,

where

Uε(x, t;λ ) = Rε(x, t;λ )+ Sε(x, t;λ )+λ
∫ b

a
Sε(x,s;λ )Rε (s, t;λ )ds. (2.22)

The resolvent Rε(x, t;λ ) is relatively small, since it was obtained by iterating
Kε(x, t), and the integral term is also small, since Rε(s, t;λ ) appears in the integrand.
Hence, Sε(x, t;λ ) is the main component of Uε(x, t;λ ).

The kernel Uε(x, t;λ ) is a meromorphic function of λ in the closed disk Δρ .
Actually, Uε(x, t;λ ) is the restriction of a function that is meromorphic in the full λ -
plane. For if ρ̃ is arbitrary with 0 < ρ < ρ̃ , then we can construct another resolvent
kernel Ũε(x, t;λ ) that is meromorphic in Δρ̃ , so that the solution to Eq. (2.11) can
also be represented in the form

φ(x) = f (x)+λ
∫ b

a
Ũε(x, t;λ ) f (t)dt.

However, since φ(x) is unique, Uε(x, t;λ ) = Ũε(x, t;λ ) on a neighborhood of the
origin. Thus, Ũε(x, t;λ ) is a meromorphic extension of Uε(x, t;λ ). Since ρ̃ was
assumed to be arbitrary, it follows Uε(x, t;λ ) may be extended to the entire λ -plane,
and we let R(x, t;λ ) denote this unique extension.

The discussion above serves to establish the following result:

Theorem 2.4.1 (The First Fredholm Theorem). Let λ be a complex parameter,
f (x) be a complex-valued continuous function defined on the interval [a,b], and
K(x, t) be a complex-valued continuous kernel defined on the region Q(a,b).

Then the unique solution φ(x) to the Fredholm integral equation of the second
kind

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt

has the representation

φ(x) = f (x)+λ
∫ b

a
R(x, t;λ ) f (t)dt,

for every regular value of λ , where the unique resolvent kernel R(x, t;λ ) is a
meromorphic function of λ in the complex plane C.
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Note that if λ is a regular value of the kernel, then the homogeneous integral
equation has only the trivial solution φ(x) ≡ 0 on the interval [a,b]. For if f (x) ≡ 0
on [a,b], then fε (x;λ ) ≡ 0, so that f(λ ) = 0, implying in turn that c(λ ) = 0. The
general form (2.16) of the solution reduces to φ(x)≡ 0.

In the discussion above, it was also established that the disk Δρ , ρ arbitrary,
could contain only a finite number of eigenvalues of the kernel K(x, t). If the set of
eigenvalues of K(x, t) had a finite limit point, then there would exist some value of
ρ for which Δρ contained an infinite number of eigenvalues. The next result follows
from this observation.

Theorem 2.4.2 (The Fourth Fredholm Theorem). Let K(x, t) be a complex-
valued continuous kernel defined on the square Q(a,b). Let ΛK denote the set
of eigenvalues of the kernel K(x, t), that is, the set of values λ for which the
homogeneous Fredholm integral equation

φ(x) = λ
∫ b

a
K(x, t)φ(t)dt

has a nontrivial solution. Then ΛK is at most countable, and it cannot have a finite
limit point.

Case II: Dρ(λ ) = det(I−λ A(λ )) = 0.
In this case, there are a finite number of values λ ∈ Δρ for which Dρ(λ ) = 0.
We consider two possibilities:

1. If f(λ ) = 0, then the linear system

(I−λ A(λ ))c(λ ) = 0 (2.23)

has a certain number p(λ ) of nonzero linearly independent vector solutions
c( j)(λ ), j = 1, . . . , p(λ ), that can be written in the form

c( j)(λ ) =

⎛
⎜⎜⎜⎝

c( j)
1 (λ )

...

c( j)
n (λ )

⎞
⎟⎟⎟⎠.

Insert these values of c( j)
i (λ ) into Eq. (2.16) to obtain the solution to Eq. (2.8). If

f (x)≡ 0 on [a,b], then fε (x;λ )≡ 0. For j = 1, . . . , p(λ ), the general form of the
solution to the homogeneous counterpart to the integral equation (2.8) reduces to

φ (e)
j (x;λ ) =

n

∑
i=1

c( j)
i (λ ) [ai(x)+λ Aεi(x;λ )]

=
n

∑
i=1

c( j)
i (λ )

[
ai(x)+λ

∫ b

a
Rε(x, t;λ )ai(u)du

]
, (2.24)
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where the superscript (e) signifies that φ (e)
j (x;λ ) is an eigenfunction of the kernel

K(x, t). The span of the set of all eigenfunctions corresponding to the eigenvalue
λ constitutes an eigenspace, whose dimension is p(λ ). The general solution
to the homogeneous integral equation corresponding to a given eigenvalue λ
assumes the form

φ (h)(x;λ ) =
p(λ )

∑
j=1

α j φ
(e)
j (x;λ ),

where the α j are arbitrary constants. The superscript (h) signifies that the
solution φ (h)(x;λ ) is the most general solution to the homogeneous equation
corresponding to the eigenvalue λ .

The number p(λ ) of linearly independent eigenfunctions corresponding to a
given eigenvalue λ is called the geometric multiplicity of the eigenvalue. The
geometric multiplicity of the eigenvalue is less than or equal to the algebraic
multiplicity of the eigenvalue, i.e., if λ is an m(λ )-fold root of the equation
Dρ(λ ) = 0, then 1 ≤ p(λ )≤ m(λ ).

When λ is an eigenvalue of a separable kernel, the rationale for considering
the homogeneous adjoint integral equation while conducting an analysis of the
inhomogeneous integral equation (2.8) was firmly established in Sect. 1.3. Here,
we examine this relationship anew when λ is an eigenvalue of a general kernel.

Consider the homogeneous adjoint integral equation

ψ(x) = λ
∫ b

a
K(t,x)ψ(t)dt (2.25)

where K(x, t) is complex-valued and continuous on the square Q(a,b). If we
conjugate the decomposition of the kernel and transpose variables, then we obtain

K(t,x) = Ksep(t,x)+Kε(t,x).

If we now substitute this decomposition into the homogeneous adjoint equation and
rearrange terms, then we have

ω(x) = ψ(x)−λ
∫ b

a
Kε(t,x)ψ(t)dt = λ

∫ b

a
Ksep(t,x)ψ(t)dt. (2.26)

It is clear from this representation that if ψ(x) ≡ 0, then ω(x) ≡ 0 on [a,b]. Since
the left half of this equation is an inhomogeneous Fredholm equation with a small
kernel, the Theorem of Successive Approximation can be applied to it, thereby
obtaining a representation for ψ(x) in the form
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ψ(x) = ω(x)+λ
∫ b

a
Rε(t,x;λ )ω(t)dt, (2.27)

where the resolvent kernel Rε(t,x;λ ) is the complex conjugate of the resolvent
kernel Rε(x, t;λ ) constructed from the iterations of the kernel Kε(x, t). It is
clear from this representation that if ω(x) ≡ 0, then ψ(x) ≡ 0 on [a,b]. Thus,
ω(x) and ψ(x) vanish only simultaneously. If we substitute the right half of the
representation (2.26) for ω(x) into the last equation, we obtain

ψ(x) = λ
∫ b

a
Gε(t,x;λ )ψ(t)dt, (2.28)

where the kernel Gε(t,x;λ ) is the complex conjugate of the kernel Gε(x, t;λ ) that
appears in Eq. (2.11). It is explicitly given in the integral form (2.13) or in the
equivalent separable form (2.15), from which we conclude that

Gε(t,x;λ ) =
n

∑
i=1

[ai(t)+λ Aεi(t;λ )]bi(x). (2.29)

It follows that the solutions to Eq. (2.28) have the representation

ψ(e)
j (x;λ ) = λ

n

∑
i=1

d( j)
i (λ )bi(x),

for j = 1, . . . ,q(λ ), where q(λ ) is the geometric multiplicity of λ and we have set

d( j)
i (λ ) =

∫ b

a
ψ(t) [ai(t)+λ Aεi(t;λ )]dt.

We conclude that λ is an eigenvalue of the kernel K(t,x) and that all of its q(λ )
linearly independent solutions are as given. Since Eq. (2.28) and the equation

φ(x) = λ
∫ b

a
Gε(x, t;λ )φ(t)dt

have conjugate kernels, they must have the same number of linearly independent
eigenfunctions, i.e., p(λ ) = q(λ ).

The discussion above serves to establish the following result:

Theorem 2.4.3 (The Second Fredholm Theorem). Let K(x, t) be a complex-
valued continuous kernel defined on the square Q(a,b). If λ is an eigenvalue of
the kernel K(x, t), then λ is an eigenvalue of the adjoint kernel K(t,x). The number
of linearly independent eigenfunctions of the homogeneous equation
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φ(x) = λ
∫ b

a
K(x, t)φ(t)dt

is equal to the number of linearly independent eigenfunctions of the homogeneous
adjoint equation

ψ(x) = λ
∫ b

a
K(t,x)ψ(t)dt.

2. If f(λ ) �= 0, then neither of the free terms fε (x;λ ) and f (x) can vanish identically
on the interval [a,b], so that the equations

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt

and

φ(x) = fε (x;λ )+λ
∫ b

a
Gε (x, t;λ )φ(t)dt

are simultaneously inhomogeneous and are simultaneously satisfied by φ(x).
Since Gε(x, t;λ ) is separable, the Third Fredholm Theorem for integral equations
with separable kernels that was proven in Sect. 1.3 can be invoked to conclude
that the last equation has solutions if and only if fε (x;λ ) is orthogonal to all
solutions of the homogeneous adjoint equation

ψ(x) = λ
∫ b

a
Gε (t,x;λ )ψ(t)dt.

If ω(x) denotes one of these solutions, then, given the representation (2.12), we
have
∫ b

a
fε (t;λ )ω(t)dt =

∫ b

a

(
f (t)+λ

∫ b

a
Rε(t,s;λ ) f (s)ds

)
ω(t)dt

=
∫ b

a
f (t)ω(t)dt +λ

∫ b

a

∫ b

a
Rε(t,s;λ ) f (s)ω(t)dsdt

=

∫ b

a
f (t)

[
ω(t)+λ

∫ b

a
Rε(s, t;λ )ω(s)ds

]
dt

=

∫ b

a
f (t)

[
ω(t)+λ

∫ b

a
Rε(s, t;λ )ω(s)ds

]
dt

=

∫ b

a
f (t)ψ(t)dt.

The last equality follows from the representation (2.27). We conclude from these
equations that fε (x;λ ) is orthogonal to ω(x) if and only if f (x) is orthogonal to
any solution ψ(x) of the homogeneous adjoint equation
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ψ(x) = λ
∫ b

a
K(t,x)ψ(t)dt.

The discussion above serves to establish the following result:

Theorem 2.4.4 (The Third Fredholm Theorem). Let λ be a complex parameter,
f (x) be a complex-valued continuous function defined on the interval [a,b], and
K(x, t) be a complex-valued continuous kernel defined on the square Q(a,b). If λ
is an eigenvalue of the kernel K(x, t), then the inhomogeneous Fredholm integral
equation of the second kind

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt

will have solutions if and only if the free term f (x) is orthogonal to all of the
eigenfunctions of the homogeneous adjoint equation

ψ(x) = λ
∫ b

a
K(t,x)ψ(t)dt.

The Fredholm Alternative Theorem for integral equations with separable kernels
was stated in Sect. 1.3. The statement of this theorem for general kernels is identical,
except for the fact that the word “separable” is deleted.

Although the Fredholm theorems give the conditions under which solutions to
Fredholm integral equations of the second kind exist, they do not specify how to
construct those solutions. In the next section, we provide a recursive procedure for
constructing the resolvent kernel when λ is regular.

Illustrative Examples

• Example 1: The Lalesco–Picard Equation. This example highlights the
importance of the Fourth Fredholm Theorem.

Consider the homogeneous integral equation

φ(x) = λ
∫ +b

−b
e−|x−t| φ(t)dt,

where 0 < λ < +∞ and 0 < b ≤ +∞. The presence of the absolute value in the
integrand requires the equation to be expanded in the equivalent form

φ(x) = λ
(

e−x
∫ x

−b
et φ(t)dt + ex

∫ +b

x
e−t φ(t)dt

)
.

After differentiation and simplification, we obtain the second-order linear
ordinary differential equation
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φ ′′(x)+ (2λ − 1)φ(x) = 0.

Any solution to the Lalesco–Picard equation must necessarily be a solution to
this differential equation, which has exactly two linearly independent solutions
whose form depends upon the value of λ . These solutions are

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A sinh(
√

1− 2λ)+B cosh(
√

1− 2λ), if 0 < λ < 1
2

A+Bx, if λ = 1
2

A sin(
√

2λ − 1)+B cos(
√

2λ − 1), if 1
2 < λ <+∞

It remains to determine, by process of elimination, exactly which of these six
solutions to the differential equation are eigenfunctions of the kernel.

We consider three cases:

Case I: 0 < λ < 1
2 .

In this case, we set μ =
√

1− 2λ or λ = (1− μ2)/2, where 0 < μ < 1.
After substituting φ(x) = sinh(μx) into the expanded integral equation, we

obtain

sinh(μx) = sinh(μx)+λ e−b sinhx

(
− ebμ

1− μ
+

e−bμ

μ+ 1

)
;

after substituting φ(x) = cosh(μx), we obtain

cosh(μx) = cosh(μx)−λ e−b coshx

(
ebμ

1− μ
+

e−bμ

μ + 1

)
.

If b = +∞, then equality holds in both equations, implying that both

φ (e)
1 (x;λ ) = sinh(μx) and φ (e)

2 (x;λ ) = cosh(μx) are eigenfunctions of the kernel
for every λ ∈ (0, 1

2 ).
However, if b<+∞, then equality cannot hold in either equation for any value

of b, so that neither sinh(μx) nor cosh(μx) are eigenfunctions of the kernel for
any λ ∈ (0, 1

2).

Case II: λ = 1
2 .

After substituting φ(x) = 1 and then φ(x) = x into the expanded integral
equation, we obtain

1 = 1− e−b and x = x− (b+ 1)e−b sinhx.

If b = +∞, then inequality holds in both equations, implying that both

φ (e)
1 (x; 1

2) = 1 and φ (e)
2 (x; 1

2 ) = x are eigenfunctions of the kernel.
However, if b<+∞, then equality cannot hold in either equation for any value

of b, so that neither 1 nor x is an eigenfunction of the kernel.
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Case III: 1
2 < λ <+∞.

In this case, we set μ =
√

2λ − 1 or λ = (1+ μ2)/2, where 0 < μ <+∞.
After substituting φ(x) = sin(μx) into the expanded integral equation, we

obtain

sin(μx) = sin(μx)− e−b sinhx (sin(μb)+ μ cos(μb)) ;

after substituting φ(x) = cos(μx), we obtain

cos(μx) = cos(μx)+ e−b coshx (μ sin(μb)− cos(μb)) .

If b = +∞, then equality holds in both equations implying that both

φ (e)
1 (x;λ ) = sin(μx) and φ (e)

2 (x;λ ) = cos(μx) are eigenfunctions of the kernel
for every λ ∈ ( 1

2 ,+∞).
However, if b < +∞, then equality holds in the first equation if and only

if sin(μb)+ μ cos(μb) = 0, i.e., if tan(μb) = −μ . For each fixed value of b,
there are an infinite number of eigenvalues λn = (1+μ2

n )/2 corresponding to the

eigenfunctions φ (e)
1 (x;λn) = sin(μnx). Equality holds in the second equation if

and only if μ sin(μb)−cos(μb) = 0, i.e., if tan(μb) = 1/μ . For each fixed value
of b, there are an infinite number of eigenvalues λn = (1+ μ2

n )/2 corresponding

to the eigenfunctions φ (e)
2 (x;λn) = cos(μnx).

In summary, we have come to the following conclusions:

– If b = +∞, then every λ ∈ (0,+∞) is an eigenvalue of the kernel. Two
eigenfunctions correspond to each eigenvalue λ .

– If b < +∞, then there is a countably infinite set of discrete eigenvalues {λn}
which do not have a finite limit point, in perfect agreement with the Fourth
Fredholm Theorem. One eigenfunction corresponds to each eigenvalue λn.

2.5 Constructing the Resolvent Kernel

In this section, we prove the following result:

Theorem 2.5.1. The resolvent kernel R(x, t;λ ) can be written as the quotient of the
entire functions D(x, t;λ ) and D(λ ) given by the series expansions

D(x, t;λ ) =
∞

∑
n=0

(−1)n

n!
Bn(x, t)λ n and D(λ ) =

∞

∑
n=0

(−1)n

n!
cn λ n.

In these series, B0(x, t) = K(x, t) and c0 = 1. For every n ≥ 1, Bn(x, t) can be
computed from the recursive relationship

Bn(x, t) = cn K(x, t)− n
∫ b

a
K(x,s)Bn−1(s, t)ds,
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and cn can be computed by evaluating the integral

cn =
∫ b

a
Bn−1(t, t)dt.

Before beginning the proof, we remark that the coefficients Bn(x, t) and cn in
these series are computed sequentially. Schematically, the sequence of successive
integrations are represented by the diagram

B0 → c1

↓ ↙
B1 → c2

↓ ↙
B2 → c3

↓ ↙
B3 → c4

↓ ↙
B4 → c5
...

...
...

Note that if BN(x, t) vanishes identically for some N, then cN+1 = 0, and Bn(x, t)
also vanishes identically for all n > N. In this case, both series are just polynomials
in λ of degree N − 1 and N, respectively.

Proof. In order to show that the resolvent R(x, t;λ ) can be expressed as the quotient
of two specific entire functions of λ , we require the following technical lemma
which measures the difference between the resolvent kernels R(x, t;λ ) generated by
iterating K(x, t) and Rε(x, t;λ ) generated by iterating Kε(x, t).

Lemma 2.5.1. For all values of λ ∈ Δρ , we have

∫ b

a
Uε(t, t;λ )dt =

∫ b

a
Rε(t, t;λ )dt − Dρ

′(λ )
Dρ(λ )

.

Proof. The proof consists of a sequence of equalities requiring Eq. (2.22) in addition
to the definitions of Sε(x, t;λ ), a ji(λ ), Aεi(x;λ ), a′ji(λ ), and the integrodifferential
equation for the resolvent (see Sect. 2.3, Exercise 9). We have

∫ b

a
Uε(t, t;λ )dt −

∫ b

a
Rε(t, t;λ )dt

=

∫ b

a
Sε(t, t;λ )+λ

∫ b

a

∫ b

a
Sε(t,s;λ )Rε(s, t;λ )dsdt

=
1

Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )
∫ b

a
[ai(t)+λ Aεi(t;λ )] b j(t)dt
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+λ
n

∑
i=1

n

∑
j=1

D ji(λ )
∫ b

a

∫ b

a
[ai(t)+λ Aεi(t;λ )]b j(s)Rε (s, t;λ )dsdt

=
1

Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )a ji(λ )

+λ
n

∑
i=1

n

∑
j=1

D ji(λ )
[∫ b

a

∫ b

a
Rε(s, t;λ )ai(t)b j(s)dt ds

+

∫ b

a

∫ b

a

(∫ b

a
Rε(s, t;λ )Rε(t,u;λ )dt

)
ai(u)b j(s)dsdu

]

=
1

Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )a ji(λ )+λ
n

∑
i=1

n

∑
j=1

D ji(λ )
[∫ b

a
Aεi(s;λ )b j(s)

+ λ
∫ b

a

∫ b

a

∂
∂λ

Rε(s,u;λ )ai(u)b j(s)duds

]

=
1

Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )a ji(λ )

+λ
1

Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ )

×
∫ b

a

(
Aεi(s;λ )+λ

∂
∂λ

(∫ b

a
Rε(s,u;λ )ai(u)du

))
b j(s)ds

=
1

Dρ(λ )

[
n

∑
i=1

n

∑
j=1

D ji(λ )
(
a ji(λ )+λa′ ji(λ )

)]

=− 1
Dρ(λ )

n

∑
i=1

n

∑
j=1

D ji(λ ) (−λa ji(λ ))′

=−Dρ
′(λ )

Dρ(λ )
. �


This lemma will be used to show that there exist entire functions D(x, t;λ ) and D(λ )
such that

D(x, t;λ ) = R(x, t;λ )D(λ ).

Since R(t, t;λ ) is an analytic function of λ in Δρ , the statement of the lemma
implies that the zeroes of Dρ(λ ) correspond to the poles of the function

δε (λ ) =
∫ b

a
Uε(t, t;λ )dt
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that lie in Δρ . Specifically, if λk ∈ Δρ is a zero of algebraic multiplicity mk in Dρ(λ ),
then Dρ(λ ) = (λ −λk)

mk eρ(λ ), where eρ(λ ) �= 0 near λk, and

Dρ
′(λ )

Dρ(λ )
=

mk

λ −λk
+

eρ
′(λ )

eρ(λ )
.

This fact in conjunction with the equality stated in the lemma shows that λk is a
simple pole of δε(λ ) with residue −mk. Hence, δε(λ ) has only simple poles which
coincide with the zeroes of Dρ(λ ). Since Uε(t, t;λ ) is the restriction of R(t, t;λ ) to
the disk Δρ , δε (λ ) is also the restriction of

δ (λ ) =
∫ b

a
R(t, t;λ )dt

to the disk Δρ , so that δ (λ ) is a meromorphic function in the full λ -plane having
only simple poles that coincide with the eigenvalues of the kernel K(x, t). From this,
it follows that

D(λ ) = exp

(
−
∫ λ

0
δ (λ )dλ

)

is an entire function of λ .
To show that D(x, t;λ ) is entire, note that we can integrate the equality stated in

the lemma near the origin since Dρ(0) = 1 to obtain the relation

−
∫ λ

0
δ (λ )dλ =−

∫ λ

0

∫ b

a
Rε(t, t;λ )dt dλ + lnDρ(λ )

which is valid in Δρ . Upon exponentiation, we obtain

D(λ ) = Dρ(λ ) · exp

(
−
∫ λ

0

∫ b

a
Rε(t, t;λ )dt dλ

)
.

It follows from this relation that the zeroes of D(λ ) coincide with those of Dρ(λ )
in Δρ and have the same multiplicity, since the exponential factor does not vanish.
Thus, D(x, t;λ ) is an entire function of λ , since the poles of R(t, t;λ ) are cancelled
by the zeroes of D(λ ).

It remains to develop the series expansions in the statement of the theorem. Recall
from Sect. 2.3 that the resolvent kernel can be represented by the expansion

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t)

for small values of λ , where Km(x, t) is the m-th iterated kernel of K(x, t). It follows
that

δ (λ ) =
∫ b

a
R(t, t;λ )dt =

∞

∑
m=1

Am λm−1,
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where we have set

Am =

∫ b

a
Km(t, t)dt.

The coefficient Am is known as the trace of the kernel Km(x, t). It follows that

D(λ ) = exp

[
−
∫ λ

0

(
∞

∑
m=1

Am λm−1

)
dλ

]

= exp

(
−

∞

∑
m=1

Am

m
λm

)

=
∞

∑
k=0

(−1)k

k!

(
∞

∑
m=1

Am

m
λm

)

= 1+
(−1)1

1!
A1 λ +

(−1)2

2!
(A1

2 −A2)λ 2

+
(−1)3

3!
(A1

3 − 3A1A2 + 2A3)λ 3

+
(−1)4

4!
(A1

4 − 6A1
2A2 + 3A2

2 + 8A1A3 − 6A4)λ 4 + · · · .

More simply, we can write

D(λ ) =
∞

∑
n=0

(−1)n

n!
cn λ n,

where c0 = 1. Also, for n ≥ 2, each coefficient cn is a evidently a multivariable
polynomial in the traces A1, . . . ,An whose coefficients are integers that sum to zero.
(To establish this purely algebraic statement, just set Am = 1 for m≥ 1. Then D(λ )=
1−λ , so that cn = 0 for all n ≥ 2.)

Since D(x, t;λ ) is entire, it has the Maclaurin expansion

D(x, t;λ ) =
∞

∑
n=0

1
n!

D(n)(x, t;0)λ n =
∞

∑
n=0

(−1)n

n!
Bn(x, t)λ n.

The coefficients Bn(x, t) in this series must be computed in order to establish the
recursion relation for them given in the statement of the theorem. If n = 0, then

B0(x, t) = D(x, t;0) = R(x, t;0)D(0) = K(x, t).

If n ≥ 1, then we apply Leibniz formula to obtain

Bn(x, t) = (−1)n D(n)(x, t;0)

= (−1)n (D(0)R(x, t;0))(n)
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= (−1)n
n

∑
m=0

n!
m!(n−m)!

D(n−m)(0)R(m)(x, t;0)

=
n

∑
m=0

n!
m!(n−m)!

((−1)−mcn−m)(m!Km+1(x, t))

= n!
n

∑
m=0

(−1)−m 1
(n−m)!

cn−m Km+1(x, t)

= n!

(
1
n!

cn K(x, t)+
n

∑
m=1

(−1)−m

(n−m)!
cn−m Km+1(x, t)

)

= cn K(x, t)− n

(
(n− 1)!

n−1

∑
m=0

(−1)−m

((n− 1)−m)!
c(n−1)−m Km+2(x, t)

)

= cn K(x, t)

− n

[∫ b

a
K(x,s)

×
(
(n− 1)!

n−1

∑
m=0

(−1)−m

((n− 1)−m)!
c(n−1)−m Km+1(s, t)

)
ds

]

= cn K(x, t)− n
∫ b

a
K(x,s)Bn−1(s, t)ds.

This sequence of equalities shows that Bn(x, t) is a particular linear combination of
iterated kernels and that Bn(x, t) can be computed recursively.

Finally, we show that each cn+1 may be determined from the coefficient function
Bn(x, t). On the one hand, we have

∫ b

a
D(t, t;λ )dt = D(λ )

∫ b

a
R(t, t;λ )dt

= D(λ )δ (λ )

=−D′(λ )

=
∞

∑
n=0

(−1)n

n!
cn+1λ n.

On the other hand, we also have

∫ b

a
D(t, t;λ )dt =

∞

∑
n=0

(−1)n

n!

(∫ b

a
Bn(t, t)dt

)
λ n.
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By comparing the coefficients of the powers of λ in these two expansions, we have

cn+1 =

∫ b

a
Bn(t, t)dt

for all n ≥ 0 as required. �

The coefficients cn are related to the traces Am in the following way. By setting

x = t in the sequence of equalities in the proof, we obtain the relation

Bn(t, t) = n!

(
n

∑
m=0

(−1)m 1
(n−m)!

cn−m Km+1(t, t)

)
.

Upon integration, we immediately have

cn+1 = n!

(
n

∑
m=0

(−1)m 1
(n−m)!

cn−m Am+1

)
.

It is of interest to note that the coefficients cn can be written as integrals of
determinants. By definition, we have

c1 = A1 =
∫ b

a
K(t, t)dt.

Similarly, we have

c2 = A1
2 −A2

=

(∫ b

a
K(t1, t1)dt1

)2

−
∫ b

a
K2(t1, t1)dt1

=

(∫ b

a
K(t1, t1)dt1

)(∫ b

a
K(t2, t2)dt2

)
−
∫ b

a

∫ b

a
K(t1, t2)K(t2, t1)dt2 dt1

=

∫ b

a

∫ b

a
det

(
K(t1, t1) K(t1, t2)

K(t2, t1) K(t2, t2)

)
dt2 dt1.

In general, it can be shown that

cn =

∫ b

a
. . .

∫ b

a
det

⎛
⎜⎜⎜⎜⎜⎜⎝

K(t1, t1) K(t1, t2) . . . K(t1, tn)

K(t2, t1) K(t2, t2) . . . K(t1, tn)

...
...

. . .
...

K(tn, t1) K(tn, t2) . . . K(tn, tn)

⎞
⎟⎟⎟⎟⎟⎟⎠

dtn . . .dt1.
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The magnitude of the coefficients |cn| can be estimated with a classical inequality
due to Hadamard stating that the absolute value of the determinant of a matrix is less
than or equal to the product of the norms of its rows. More precisely, if A = (ai j) is
an n× n matrix and ai = (ai1, . . . ,ain) is its ith row, then

|detA| ≤
n

∏
i=1

‖ai‖,

where ‖ai‖= (a2
i1 + · · ·+ a2

in)
1/2. By Hadamard’s inequality, we have

|cn| ≤ nn/2 Mn (b− a)n,

if |K(x, t)| ≤ M on the square Q(a,b).
The coefficient functions Bn(x, t) can also be written as multiple integrals of a

determinant. Specifically, for n ≥ 1, we have

Bn(x, t) =
∫ b

a
. . .

∫ b

a
Δn(x, t)dtn, . . . ,dt1,

where

Δn(x, t) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K(x, t) K(x, t1) K(x, t2) . . . K(x, tn)

K(t1, t) K(t1, t1) K(t1, t2) . . . K(t1, tn)

K(t2, t) K(t2, t1) K(t2, t2) . . . K(t1, tn)

...
...

...
. . .

...

K(tn, t) K(tn, t1) K(tn, t2) . . . K(tn, tn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Illustrative Examples

• Example 1: Recall the inhomogeneous Fredholm integral equation of the second
kind

φ(x) = f (x)+λ
∫ 1

0
(xt2 + x2 t4)φ(t)dt

that was solved in Sect. 1.2. It is always the case that c0 = 1. Since B0(x, t) =
K(x, t) = xt2 + x2 t4, we have

c1 =

∫ 1

0
B0(t, t)dt =

∫ 1

0
(t3 + t6)dt = 11

28 .
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Also,

B1(x, t) = c1 K(x, t)− 1 ·
∫ 1

0
K(x,s)B0(s, t)dt

= 11
28 (xt2 + x2 t4)−

∫ 1

0
(xs2 + x2 s4)(st2 + s2 t4)dt

= 1
4 x2 t4 + 1

7 xt2 − 1
5 xt4 − 1

6 x2 t2

and

c2 =
∫ 1

0
B1(t, t)dt =

∫ 1

0
( 1

4 t6 + 1
7 t3 − 1

5 t5 − 1
6 t4)dt = 1

210 .

One more integration shows that B2(x, t) ≡ 0, so that cn = 0 and Bn(x, t) ≡ 0 if
n ≥ 3. Hence,

D(λ ) = 1+(−1)
1
1!

(
11
28

)
λ +(−1)2 1

2!

(
1

210

)
λ 2 = 1

420

(
λ 2 − 165λ + 420

)

and

D(x, t;λ ) = B0(x, t)+ (−1)
1
1!

B1(x, t)λ

= (xt2 + x2 t4)− (1
7 xt2 + 1

4 x2 t4 − 1
5 xt4 − 1

6 x2 t2) λ .
These results are identical to those obtained in Sect. 1.2.

Section 2.5 Exercises

1. Let K(x, t) = a(x)b(t), and assume that α =
∫ b

a a(t)b(t)dt �= 0. Show that

R(x, t;λ ) =
K(x, t)
1−λ α

and that the mth trace Am = αm. In particular, if b(t) = a(t), then Am = ‖a‖2m
2 .

2. Let K(x, t) = a1(x)b1(t)+ a2(x)b2(t) and define the matrix A = (ai j) by

ai j =

∫ b

a
a j(t)bi(t)dt.

Determine the resolvent kernel R(x, t;λ ) and show that

∫ b

a
R(t, t;λ )dt =

tr(A)− 2 det(A)λ
1− tr(A)λ + det(A)λ 2 =

∞

∑
m=1

Am λm−1

if |λ | < min{|λ1|, |λ2|}. Thus, the mth trace Am can be expressed in terms of
tr(A) and det(A).
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Also, since

D(λ ) = 1− tr(A)λ + det(A)λ 2 =

(
1− λ

λ1

)(
1− λ

λ2

)
,

we have

tr(A) =
1
λ1

+
1
λ2

and det(A) =
1

λ1λ2
.

Use this observation to show that

Am =
1
λm

1
+

1
λm

2

for every m ≥ 1.

2.6 Numerical Methods

We have seen that considerable difficulties may arise in the computation of the
resolvent kernel, even with relatively simple continuous general kernels. Thus,
the use of numerical methods assumes critical importance in the production of
approximate solutions to Fredholm integral equations of the second kind. In this
section, we consider several elementary approaches to the problem of determining
approximations to the solution of an integral equation.

2.6.1 The Method of Uniform Approximation

The essence of the theorem in this subsection is that if the two free terms and the
two kernels in two Fredholm integral equations are close, then their solutions are
close as well. This theorem is extremely useful if one of the integral equations is
difficult to solve while the other one is not.

Theorem 2.6.1 (Theorem of Uniform Approximation). Let f (x) and g(x) be
continuous free terms defined on the interval [a,b], and let K(x, t) and L(x, t) be
continuous kernels defined on the square Q(a,b).

Suppose that

max
a≤x≤b

| f (x)− g(x)|< ε and max
a≤x,t≤b

|K(x, t)−L(x, t)|< κ

for some fixed constants ε and κ . Suppose further that λ is a common regular value
of both kernels of the Fredholm integral equations

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt
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and

ψ(x) = g(x)+λ
∫ b

a
L(x, t)ψ(t)dt

for which |λ | is less than the radii of convergence of both of the resolvent series
RK(x, t;λ ) and RL(x, t;λ ).

Then there exist constants α = α(λ ,BL) and β = β (λ ,B f ,BK ,BL) such that

max
a≤x≤b

|φ(x)−ψ(x)| ≤ α ε+β κ ,

where

B f = max
a≤x≤b

| f (x)|,

BK(λ ) = max
a≤x≤b

∣∣∣∣
∫ b

a
RK(x, t;λ )dt

∣∣∣∣ ,
and

BL(λ ) = max
a≤x≤b

∣∣∣∣
∫ b

a
RL(x, t;λ )dt

∣∣∣∣ .
Proof. By virtue of the First Fredholm Theorem in Sect. 2.4, the solution to the first
equation in the statement of the theorem has the representation

φ(x) = f (x)+λ
∫ b

a
RK(x, t;λ ) f (t)dt.

It follows from this representation that

Bφ = max
a≤x≤b

|φ(x)| ≤ B f (1+ |λ |BK(λ )) .

Next, if we subtract the two integral equations given in the statement of the
theorem, we obtain

φ(x)−ψ(x) = D(x)+λ
∫ b

a
L(x, t) (φ(t)−ψ(t)) dt,

where

D(x) = f (x)− g(x)+λ
∫ b

a
(K(x, t)−L(x, t)) φ(t)dt.

It will be useful to have the estimate

BD = max
a≤x≤b

|D(x)| ≤ ε+ |λ |κ (b− a)Bφ .
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Again, by the First Fredholm Theorem, the solution to the above equation has the
representation

φ(x)−ψ(x) = D(x)+λ
∫ b

a
RL(x, t;λ )D(t)dt.

It follows from this representation that

max
a≤x≤b

|φ(x)−ψ(x)| ≤ (1+ |λ |BL(λ )) BD.

Upon combining the above estimates, we finally obtain

max
a≤x≤b

|φ(x)−ψ(x)| ≤ α ε+β κ

where

α = 1+ |λ |BL(λ )

and

β = |λ | (1+ |λ |BL(λ )) (1+ |λ |BK(λ )) (b− a)B f . �

In order to use this theorem, it is necessary to obtain estimates for BK(λ ) and

BL(λ ). If K(x, t)≤M on the square Q(a,b) and λ is within the radius of convergence
of the resolvent series, then

∣∣∣∣
∫ b

a
RK(x, t;λ )dt

∣∣∣∣≤ M(b− a)
1−|λ |M(b− a)

= BK(λ ).

Illustrative Examples

• Example 1: Consider the integral equation

φ(x) = cos x+ 1
2

∫ 1

0
cos(xt)φ(t)dt.

The kernel K(x, t) = cos(xt) is not separable, and it is difficult to compute its
iterated kernels. Consequently, an approximative method is indicated.

Since the free term cos x can be represented with the Taylor series

cos x = 1− 1
2!

x2 +
1
4!

x4 − 1
6!

x6 + · · · ,

we choose

g(x) = 1− 1
2!

x2 +
1
4!

x4 and L(x, t) = 1− 1
2!

x2 t2 +
1
4!

x4 t4



72 2 Fredholm Integral Equations of the Second Kind (General Kernel)

and consider the companion equation

ψ(x) = 1− 1
2!

x2 +
1
4!

x4 +
1
2

∫ 1

0

(
1− 1

2!
x2 t2 +

1
4!

x4 t4
)

ψ(t)dt.

The companion equation has a separable kernel. It can be solved by employing
the method prescribed in Sect. 1.3 to obtain

ψ(x) =
11,532,090
6,397,711

− 7,944,195
12,795,422

x2 +
607,005

12,795,422
x4.

If we substitute this approximation into the equation, then we obtain

ψ(x)− cos x− 1
2

∫ 1

0
cos(xt)ψ(t)dt

=
1,620,362,251

1,064,067,293,520
x6 − 1,473,509,027

55,331,499,263,040
x8 +O(x9)

≈ 0.0015228x6− 0.0000266x8

as the residual. The constant term and the coefficients of x2 and x4 in this
difference vanish.

The actual error is well within the error predicted by the theorem. Since the
Taylor series for cos x is alternating, we have the classical estimates

| f (x)− g(x)|=
∣∣∣∣cos x−

(
1− 1

2
x2 +

1
24

x4
)∣∣∣∣< ε =

1
720

on the interval [0,1] and

|K(x, t)−L(x, t)|=
∣∣∣∣cos(xt)−

(
1− 1

2
x2 t2 +

1
24

x4 t4
)∣∣∣∣< κ =

1
720

on the square Q(0,1). Also, B f = 1 and BK(
1
2 ) = BL(

1
2 ) = 2. Thus, the difference

between the actual and the approximate solutions is predicted by the theorem to
be no more than |φ(x)−ψ(x)| ≤ 1

180 = 0.0055555.

2.6.2 The Method of Collocation

The Method of Collocation produces a function y∗(x) that approximates the
solution φ(x) to a Fredholm integral equation on an interval as a combination of a
predetermined set of continuous and linearly independent functions on that interval.
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Although this method is described here for Fredholm integral equations, we note
that it can be adapted to produce an approximation to the solution of other types of
integral equations as well.

Theorem 2.6.2 (The Collocation Theorem). Consider the integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt,

where the free term f (x) is continuous on the interval [a,b], the kernel K(x, t) is
continuous on the square Q(a,b), and λ is a regular value of the kernel that is less
than the radius of convergence of the resolvent series.

Choose a selection {x1, . . . ,xn} of n nodes with a ≤ x1 < · · · < xn ≤ b and a set
{y1(x), . . . ,yn(x)} of n functions that are continuous and linearly independent on
the interval [a,b]. Define the matrices Y = (yik) and Z = (zik) where

yik = yk(xi) and zik =

∫ b

a
K(xi, t)yk(t)dt.

If det(Y−λ Z) �= 0, then there exists a linear combination

y∗(x) =
n

∑
i=1

a∗i yi(x)

for which

y∗(xi) = f (xi)+λ
∫ b

a
K(xi, t)y∗(t)dt

for all i = 1, . . . ,n. Furthermore, the inequality

|φ(x)− y∗(x)| ≤ (1+ |λ |BR(λ )) By∗

holds uniformly on the interval [a,b], where

BR(λ ) = max
a≤x≤b

∣∣∣∣
∫ b

a
RK(x, t;λ )dt

∣∣∣∣
and

By∗ = max
a≤x≤b

∣∣∣∣y∗(x)− f (x)−λ
∫ b

a
K(x, t)y∗(t)dt

∣∣∣∣ .
Proof. For any choice of y(x), define the residual η(x) of y(x) to be

η(x) = y(x)− f (x)−λ
∫ b

a
K(x, t)y(t)dt.

The residual η(x) ≡ 0 on [a,b] if and only if y(x) is equal to the unique solution
φ(x) of the integral equation.
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Let {a1, . . . ,an} be an arbitrary choice of coefficents and consider the linear
combination

y(x) = y(x;a1, . . . ,an) =
n

∑
k=1

ak yk(x).

For this choice of coefficients, the residual of y(x) assumes the corresponding form

η(x) = η(x;a1, . . . ,an) =
n

∑
k=1

ak (yk(x)−λ zk(x))− f (x).

If y(x) is not the solution to the integral equation, then the residual η(x) does not
identically vanish on the interval [a,b]. However, if η(xi) = 0 for all i = 1, . . . ,n,
then the approximate solution y(x) will be measureably close to the actual solution
φ(x) on the entire interval [a,b]. It is this idea which constitutes the essence of the
Method of Collocation.

By requiring that η(xi) = 0 for all i = 1, . . . ,n, we produce a system of n linear
equations in the n unknowns a1, . . . ,an. This linear system may be written in matrix
form as

(Y−λ Z)a = f

where a = (a1, . . . ,an)
T and f = ( f (x1), . . . , f (xn))

T. If det(Y−λ Z) �= 0, then the
linear system has a unique solution

a∗ = (a∗1, . . . ,a
∗
n)

T = (Y−λ Z)−1 f.

The corresponding approximate solution

y∗(x) = y∗(x;a∗1, . . . ,a
∗
n) =

n

∑
k=1

a∗k yk(x)

has the property that its residual vanishes at the selected nodes xi, i.e., that η∗(xi) =
η∗(xi;a∗1, . . . ,a

∗
n) = 0 for all i = 1, . . . ,n.

For any choice of y(x), let ε(x) = y(x)−φ(x). By adding the integral equation to
the definition of the residual of y(x), we obtain

ε(x) = η(x)+λ
∫ b

a
K(x, t)ε(t)dt.

Since η(x) continuous on the interval [a,b], this equation has a unique solution that
can be represented in the form

ε(x) = η(x)+λ
∫ b

a
R(x, t;λ )η(t)dt,

where R(x, t;λ ) is the unique resolvent kernel corresponding to the given kernel
K(x, t).
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The estimate

|ε(x)| = |y(x)−φ(x)| ≤ (1+ |λ |BR(λ )) By

follows directly from the integral representation for ε(x), where

By = max
a≤x≤b

|η(x)|

and BR(λ ) is a bound on the integral of the resolvent. Thus, the magnitude of the
residual controls the accuracy of the estimation. Since this estimate holds for the
approximant y∗(x), the proof is complete. �


Some comments regarding the Method of Collocation may be helpful.
To employ this method, it must be possible to compute the integrals zk(x),

which depend upon the choice of the functions yk(x). Some typical choices for the
functions yk(x) include various types of polynomials, such as a finite set of powers
of x (as illustrated in the example below), Legendre or Chebychev polynomials, or
trigonometric polynomials. The best choice depends upon the functional form of the
kernel K(x, t).

If the determinant det(Y− λ Z) = 0, then an alternate choice of nodes and/or
basis functions is required. This situation might arise if the basis functions were
accidentally chosen to be eigenfunctions of the kernel. If the determinant does not
vanish, but is close to zero, then computational difficulties may arise, since the
entries in Y−λ Z might be rather large.

Requiring that η(xi) = 0 for all i = 1, . . . ,n is not the only method of producing
a small residual. For example, we could require that the coefficients a1, . . . ,an are
such that the sum

n

∑
i=1

|η(xi;a1, . . . ,an)|2

is minimal. In this case, the bound on the residual would still control the accuracy
of the approximation.

An examination of the graph of the residual |η(x)| can lead to improved accuracy
for the approximate solution. For if the graph of the residual has a few maxima, but
is otherwise small, it is reasonable to suggest that shifting the nodes, i.e., adapting
the mesh, could lead to a decrease in the magnitude of the residual.

The bound BR(λ ) can be chosen to be

BR(λ ) =
BK (b− a)

1−|λ |BK (b− a)
,

provided that |λ | is less than the radius of convergence of the resolvent series. For
other values of |λ |, an alternate estimate must be made.
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A Concise Guide to Computation

• Preliminary calculations:

1. Choose a set {x1, . . . ,xn} of n nodes with a ≤ x1 < · · · < xn ≤ b. Usually, the
nodes are chosen to be equally spaced, i.e.,

Δxi = xi − xi−1 =
b− a

n

for all i = 1, . . . ,n.
2. Choose a set {y1(x), . . . ,yn(x)} of n functions that are continuous and linearly

independent on the interval [a,b].
3. Compute the elements of the matrices Y = (yik) and Z = (zik), where

yik = yk(xi) and zik =

∫ b

a
K(xi, t)yk(t)dt

for all i,k = 1, . . . ,n.
4. Compute the vector f = ( f (xi)).

• Determine the approximate solution:

1. Compute the determinant det(Y − λ Z). If this determinant vanishes, then
adjust the choices of nodes and/or basis functions as necessary.

2. If the matrix Y−λ Z is invertible, then solve the matrix equation

(Y−λ Z)a = f

for its unique solution

a∗ = (a∗1, . . . ,a
∗
n)

T = (Y−λ Z)−1 f.

3. Use the solution to formulate the approximation

y∗(x) =
n

∑
i=1

a∗i yi(x).

• Estimate the accuracy of the approximate solution:

1. Formulate the residual η∗(x) in terms of y∗(x).
2. Determine the upper bounds By∗ and BK(λ ).
3. Use these computed bounds to compute an estimate for the upper bound on

the possible error |ε(x)|.
4. If the error must be reduced, then plot the residual to determine an appropriate

number of additional nodes and/or basis functions, and repeat the previous
steps as appropriate.



2.6 Numerical Methods 77

Illustrative Examples

• Example 1: Consider the Fredholm integral equation

φ(x) = sin(πx)+λ
∫ 1

0

1
1+ x+ t

φ(t)dt.

According to the Theorem of Successive Approximation, there are no eigenval-
ues of the kernel in the disk of radius 1/‖K‖2 = 1.864419 . . ., where

‖K‖2 =

(∫ 1

0

∫ 1

0

(
1

1+ x+ t

)2

dt dx

)1/2

=
√

ln( 4
3 ) = 0.536360 . . ..

Therefore, the choice λ = 1
2 is a regular value of the kernel.

Suppose that we desire a polynomial approximation of the sixth degree
to the solution φ(x) of the equation. Following the guide, we choose the
seven equally spaced nodes {0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 ,1} and the seven basis functions

{1,x,x2,x3,x4,x5,x6}. The approximate solution has the form

y(x) =
6

∑
k=0

ak yk(x) =
6

∑
k=0

ak xk,

and the residual η(x) assumes the form

η(x) =
6

∑
k=0

ak (x
k − 1

2 zk(x))− sin(πx).

Requiring that η(xi) = 0 for i = 0, . . . ,6 leads to the 7× 7 matrix system

(Y− 1
2 Z)a = f,

where (Y− 1
2 Z)ik = (xk

i − 1
2 zk(xi)) and f= (0, 1

2 ,
√

3
2 ,1,

√
3

2 , 1
2 ,0)

T. With rounding
in the last decimal place, the matrix Y− 1

2 Z is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+0.653426 −0.153426 −0.096574 −0.070093 −0.054907 −0.045093 −0.038240
+0.690480 +0.027773 −0.060180 −0.059420 −0.049504 −0.041217 −0.035075
+0.720192 +0.206411 +0.030342 −0.021937 −0.034023 −0.034061 −0.031061
+0.744587 +0.383119 +0.175321 +0.070352 +0.019473 −0.004209 −0.014520
+0.764998 +0.558336 +0.374995 +0.245379 +0.157393 +0.098583 +0.059632
+0.782341 +0.732375 +0.629535 +0.531038 +0.444641 +0.370834 +0.308478
+0.797267 +0.905465 +0.939070 +0.955194 +0.964613 +0.970775 +0.975116

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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After determining the solution a∗ = (Y − 1
2 Z)−1 f to this system, we can

formulate the approximate solution

y∗(x) = y∗(x;a∗1, . . . ,a
∗
n)

= 0.297340+ 2.932409x+0.124667x2− 5.092254x3

− 0.557749x4+ 3.710938x5− 1.240580x6.

Inspecting the graph of the residual η∗(x) shows that η∗(xi) = 0 and that
|η∗(x)| ≤ 0.000036. With BR(

1
2 ) = 2, the uniform error |ε(x)| ≤ 0.000072.

Adapting the mesh leads to a slight improvement.

2.6.3 Quadrature Methods

Each of the previously considered numerical methods requires the evaluation of
definite integrals in order to produce a function that approximates the solution of a
Fredholm integral equation on the interval [a,b]. Numerical quadrature methods, on
the other hand, require the solution of a system of linear equations in order to do so.

The purpose of any numerical quadrature method is to approximate the definite
integral of a continuous function f (x) on a closed interval [a,b] with a finite sum.
Regardless of the chosen method, the approximation always takes the form

∫ b

a
f (x)dx =

n

∑
i=1

wi f (xi)+E.

Each quadrature method requires a predetermined set {x1, . . . ,xn} of nodes with
a ≤ x1 < .. . < xn ≤ b and a set of positive weights {w1, . . . ,wn}. The error term E
depends upon n, a, b, and the value of some higher derivative of f (x) at an interior
point of the interval. The choice of method might depend upon the form of f (x), the
interval of integration, the amount of computation required to achieve a given level
accuracy, or other factors.

Although there are many such quadrature formulas, they fall into two major
classes. Newton–Cotes quadrature formulas require equally spaced nodes, so that

Δx = xi − xi−1 =
b− a

n

for all i = 1, . . . ,n and a specific set of weights that do not depend upon the nodes.
Formulas of this type include the Trapezoid rule, Simpson’s rule, and Bode’s rule.
On the other hand, the nodes in Gaussian quadrature formulas are chosen to be the
zeroes of some orthogonal polynomial of degree n, and the weights are given in
terms of these polynomials and/or their derivatives evaluated at the nodes. Common
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choices are Legendre, Chebychev, or Jacobi polynomials. (Laguerre polynomials
are used if the interval is [0,+∞), and Hermite polynomials are used if the interval
is (−∞,+∞).)

Now consider the integral equation

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt,

where f (x) is continuous on the interval [a,b] and the kernel K(x, t) is continuous on
the square Q(a,b). After choosing an appropriate numerical method, we substitute
each node xi into the integral equation to obtain the n equations

φ(xi) = f (xi)+λ
∫ b

a
K(xi, t)φ(t)dt.

By substituting the nodes and positive weights indicated for the chosen method, the
value of each of these integrals can be expressed in the form

∫ b

a
K(xi, t)φ(t)dt =

n

∑
j=1

wj K(xi,x j)φ(x j)+E(xi).

Replacing the definite integrals with the finite sums produces the n equations

φ(xi) = f (xi)+λ
n

∑
j=1

wj K(xi,x j)φ(x j)+λ E(xi).

After discarding the error term, we arrive at the system

yi = f (xi)+λ
n

∑
j=1

wj K(xi,x j)y j

of n equations in the n unknowns yi. It was necessary to replace the exact values
φ(xi) with the approximate values yi since the error terms were discarded. If the
E(xi) is small, then yi is close to φ(xi). In matrix form, this linear system becomes

(I−λ KW)y = f.

In this matrix equation, we have set K = (Ki j) = (K(xi,x j)), y = (y1, . . . ,yn)
T, and

f = ( f (x1), . . . , f (xn))
T. The matrix W = (Wi j) is a diagonal matrix with weights wi

appearing on the diagonal, i.e., Wii = wi and Wi j = 0, if i �= j. Assuming that the
matrix (I−λ KW) is invertible, the solution assumes the form

y = (I−λ KW)−1 f.

Once y = (y1, . . . ,yn)
T is determined, a continuous interpolating function y(x)

can be constructed on the interval [a,b] that passes through all of the points (xi,yi).
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A simple way to accomplish this construction would be to define a continuous
interpolating function by setting

y(x) = f (x)+λ
n

∑
j=1

wj K(x,x j)y j .

Another simple way to produce a continuous interpolation function would be to
use the classical Lagrange interpolation formula

y(x) =
n

∑
i=1

yi

⎛
⎜⎝ ∏

1≤k≤n
k �=i

x− xk

xi − xk

⎞
⎟⎠

directly when n is small. For example, if n = 3, then

y(x) = y1

(
x− x2

x1 − x2

)(
x− x3

x1 − x3

)

+ y2

(
x− x1

x2 − x1

)(
x− x3

x2 − x3

)

+ y3

(
x− x1

x3 − x1

)(
x− x2

x3 − x2

)
.

By inspection, it is clear that y(x1) = y1, y(x2) = y2, and y(x3) = y3.
However, if n is large, then essentially unpredictable anomalies may arise in the

interpolation function. For example, if n = 50, then it is possible to construct a
polynomial p(x) of degree 49 with the Lagrange formula so that yi = p(xi) for all
i = 1, . . . ,50. Its derivative p′(x) might have as many as 48 simple zeroes, at which
as many as 48 relative extrema may occur. If a large number of these zeroes fall
between two successive nodes, then it is likely that “polynomial wiggles” would
be introduced into the graph of the interpolating polynomial between those two
nodes. As a consequence, p(x) would then approximate the solution poorly between
successive nodes.

To avoid the introduction of polynomial wiggles, natural cubic splines are often
used in practice. In a sense, cubic splines are the smoothest possible interpolating
functions.

Briefly, a cubic spline is a piecewise cubic polynomial. After a choice of nodes
{x0,x1, . . . ,xn} is made, with a = x0 < x1 . . . < xn = b, a cubic polynomial qi(x)
is defined on each subinterval [xi−1,xi], for i = 1, . . . ,n. These cubics are defined
uniquely by imposing continuity conditions on each qi(x) and its first two derivatives
at the interior nodes and requiring that q′′(a) = q′′(b) = 0 at the endpoints. To be
more specific, for each i = 1, . . . ,n− 1, we require that qi(xi) = qi+1(xi), q′i(xi) =
q′i+1(xi) and that q′′i (xi) = q′′i+1(xi). Since the values of the adjacent cubics and
their first two derivatives match at the nodes, the interpolation is quite smooth.
Furthermore, since each qi(x) can have no more than two critical points in each
subinterval, polynomial wiggles cannot arise.
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Illustrative Examples

• Example 1: Consider the inhomogeneous integral equation

φ(x) = x3 +
1
2

∫ +1

−1
sin
(πxt

2

)
φ(t)dt. (2.30)

After replacing the kernel with a separable one derived from fifth partial sum of
the Maclaurin series for sin x, we can determine an approximation y(x) to φ(x)
by solving the equation

y(x) = x3 +
1
2

∫ +1

−1

(
1
2
πxt − 1

48
π3x3t3 +

1
3840

π5x5t5
)

y(t)dt.

By employing the method of Sect. 1.3, we obtain

y(x) = 0.565620x+ 0.847692x3+ 0.014047x5.

This approximation is quite accurate in the sense that the residual

ηy(x) = y(x)− x3 − 1
2

∫ +1

−1
sin
(πxt

2

)
y(t)dt

≈ 0.000660x7− 0.000018x9.

(a) An application of Simpson’s rule yields another approximation z(x) to φ(x).
If we partition the interval [−1,+1] into six subintervals, then the length of
each subinterval is Δx = 1/3. The equally distributed nodes are

{x1, . . . ,x7}= {−1,− 2
3 ,− 1

3 ,0,+
1
3 ,+

2
3 ,+1},

and the corresponding weights are

{w1, . . . ,w7}= { 1
9 ,

4
9 ,

2
9 ,

4
9 ,

2
9 ,

4
9 ,

1
9}.

If we set x = xi in Eq. (2.30), then we obtain

φ(xi) = x3
i +

1
2

∫ +1

−1
sin
(πxit

2

)
φ(t)dt

for each i = 1, . . . ,7. Approximating each integral with Simpson’s Rule
yields the approximate equations

z(xi) = x3
i +

1
2

7

∑
j=1

wj sin
(πxix j

2

)
z(x j).
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Now set f = (−1,− 8
27 ,− 1

27 ,0,+
1
27 ,+

8
27 ,+1)T, and solve the linear system

(I− 1
2 KW)z = f,

where K = (Ki j) = (sin(πxix j/2)) and W = (Wi j) = wi δi j, to obtain

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.425492

−0.630291

−0.220551

0.000000

+0.220551

+0.630291

+1.425492

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After substituting these values into the interpolation formula, we obtain the
approximate solution

z(x) = x3 +
1
2

7

∑
j=1

wj sin
(πxx j

2

)
z(x j)

≈ 0.567809x+ 0.842899x3+ 0.015578x5.

In this case, the residual is

ηz(x) = z(x)− x3 − 1
2

∫ +1

−1
sin
(πxt

2

)
z(t)dt

≈ 0.0023436x− 0.004890x3+ 0.001542x5

− 0.000158x7+ 0.000007x9.

(b) A comparable approximation to the solution φ(x) can be had by employing
Gaussian quadrature.

The Legendre polynomial of degree seven is

P7(x) =
1
16

(
429x7 − 693x5+ 315x3− 35x

)
.

With this method, the nodes {u1, . . . ,u7} are the seven roots of P7(x)

{−0.949107,−0.741531,−0.405845,0,+0.405845,+0.741531,+0.949107},
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and the corresponding weights {v1, . . . ,v7} are computed from the formula

vi =
2

(1− u2
i )(P

′
7(ui))2

to be

{0.129484,0.279705,0.381830,0.417959,0.381830,0.279705,0.129484}.

If we set x = ui in Eq. (2.30), then we obtain

φ(ui) = u3
i +

1
2

∫ +1

−1
sin
(πuit

2

)
φ(t)dt

for each i = 1, . . . ,7. Approximating each of these integrals by Gaussian
quadrature yields the approximate equations

g(ui) = u3
i +

1
2

7

∑
j=1

v j sin
(πuiu j

2

)
g(u j).

Now set h = (u3
1, . . . ,u

3
7)

T and solve the linear system

(I− 1
2 KV)s = h,

where K = (Ki j) = sin(πuiu j/2) and V = (Vi j) = vi δi j, to obtain

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.271807

−0.768011

−0.286296

0.000000

+0.286296

+0.768011

+1.271807

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After substituting these values into the interpolation formula, we obtain

g(x) = x3 +
1
2

7

∑
j=1

v j sin
(πxu j

2

)
g(u j)

= 0.565420x+ 0.847750x3+ 0.014041x5.
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The approximation g(x) is very close to φ(x), since the residual

ηg(x) = g(x)− x3 − 1
2

∫ +1

−1
sin
(πxt

2

)
g(t)

≈ 10−8 × (−4.337x+ 1.543x3− 0.181x5).

The approximation g(x) is also very close to y(x) determined above as the
solution to the integral equation with the separable kernel.

The graphs of the approximations y(x), z(x), and g(x) are “within the ink” of
each other, i.e., if all three approximations are plotted in the same plane, they are
indistinguishable.

The number of nodes in the illustrative examples was deliberately chosen to be
small in order to avoid unnecessary numerical complications. It should be noted
that significant problems relating to stability may arise if the number of nodes
and/or the number of basis functions is increased.



Chapter 3
Fredholm Integral Equations of the Second
Kind (Hermitian Kernel)

A Hermitian kernel is a kernel that satisfies the property

K∗(x, t) = K(t,x) = K(x, t)

in the square Q(a,b) = {(x, t) : a ≤ x ≤ b and a ≤ t ≤ b}. We assume as usual that
K(x, t) is continuous in Q(a,b).

In this chapter, we explore the significant and astoundingly beautiful role played
by Hermitian kernels within the theory of Fredholm integral equations of the second
kind.

In Sect. 3.1, we present several tools of the trade that are indispensible for the
comprehension of the material in the chapter.

In Sect. 3.2, we explore the properties of Hermitian kernels, as well as their
eigenvalues and eigenfunctions.

In Sect. 3.3, we unveil the structure of Hermitian kernels with a finite number
of eigenvalues, and then state expansion theorems for them and their iterations.
We construct the resulting resolvent kernel in order to be able to solve integral
equations with Hermitian separable kernels.

In Sect. 3.4, we will extend these results to Hermitian kernels with an infinite
number of eigenvalues via Fourier series. Here, the Hilbert–Schmidt Expansion
Theorem is the key result in this endeavor.

In Sect. 3.5, we present some numerical methods for computing eigenvalues and
eigenfunctions of Hermitian kernels.

3.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Riemann integrable functions: In this chapter, the term “integrable” means
Riemann integrable. The space consisting of all complex-valued Riemann

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 3, © Springer Science+Business Media, LLC 2012
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integrable functions on the interval [a,b] will be denoted by R[a,b]. The inner
product space that consists of all square-integrable functions f (x) for which
‖ f‖2 <+∞ on [a,b] will be denoted by R2[a,b].

• Mutually orthonormal systems of functions: A set {φn(x)} of nonzero
complex-valued continuous functions defined on the interval [a,b] is called a
mutually orthogonal system of functions if

〈φn,φm〉=
∫ b

a
φn(x)φm(x)dx = 0

whenever n �= m. If, in addition, it is true that

‖φn‖2
2 = 〈φn,φn〉=

∫ b

a
|φn(x)|2 dx = 1

for every n, then the set {φn(x)} is called a mutually orthonormal system of
functions. These systems may be either finite or infinite.

For example, if ψn(x) = einx, then the set {ψn(x)}∞
n=−∞ is a mutually

orthogonal system on the interval [0,2π ]. Since ‖ψn(x)‖2 =
√

2π , the set {φn(x)}
is a mutually orthonormal system, where φn(x) = ψn(x)/‖ψn‖2.

The set of Legendre polynomials {Pn(x)}∞
n=0 also constitutes a mutually

orthogonal system on the interval [−1,+1], for if n �= m, then
∫ +1

−1
Pn(x)Pm(x)dx = 0.

Since

‖Pn‖2
2 =

∫ +1

−1
P2

n (x)dx =
2

2n+ 1

for every n ≥ 0, the set {Ln(x)}∞
n=0 of functions, where

Ln(x) =

√
2n+ 1

2
Pn(x),

constitutes a mutually orthonormal system on the interval [−1,+1].
Every mutually orthonormal system of functions {φn(x)} must necessarily be

a linearly independent set on its interval of definition. For if

c1 φ1(x)+ · · ·+ ck φk(x) = 0,

then ci (φi,φi) = ci = 0 for each value of i = 1, . . . ,k.
A function f (x) belongs to the span of the mutually orthonormal system

{φ1, . . . ,φk} if and only if there exist constants ci such that

f (x) = c1 φ1(x)+ · · ·+ ck φk(x).
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However, since the property of orthonormality implies that ci = 〈 f ,φi〉, any such
f (x) can always be represented as a linear combination

f (x) = 〈 f ,φ1〉φ1(x)+ · · ·+ 〈 f ,φk〉φk(x).

In this chapter, it will be important to know that any linearly independent
set of continuous functions can be orthonormalized via the Gram–Schmidt
Orthonormalization Procedure. Let {ψn(x)} be a linearly independent set of
nonzero, complex-valued continuous functions defined on the interval [a,b]. If
we set

φ1(x) =
ψ1(x)
‖ψ1‖2

,

then ‖φ1‖2 = 1. If we set

v2(x) = ψ2(x)−〈ψ2,φ1〉φ1(x),

then
〈v2,φ1〉= 〈ψ2,φ1〉− 〈ψ2,φ1〉〈φ1,φ1〉= 0,

so that v2 is orthogonal to φ1. If we set

φ2(x) =
v2(x)
‖v2‖2

,

then φ2 is orthogonal to φ1 and ‖φ2‖= 1.
Continuing in this manner, if we set

vk(x) = ψk(x)−
k−1

∑
i=1

〈ψk,φi〉φi(x),

then

〈vk,φ j〉= 〈ψk,φ j〉−
k−1

∑
i=1

〈ψk,φi〉〈φi,φ j〉= 0,

so that vk(x) is orthogonal to φ j for all j = 1, . . . ,k− 1. If we set

φk(x) =
vk(x)
‖vk‖2

,

then φk is orthogonal to φ j for all j = 1, . . . ,k − 1 and ‖φk‖ = 1. The set
{φ1, . . . ,φk} is a mutually orthonormal system.

To illustrate this procedure, we apply it to the set {1,x,x2,x3}, which is
linearly independent on the interval [4,8], to construct the mutually orthonormal
system {φ1(x),φ2(x),φ3(x),φ4(x)} on [4,8]. Since

‖ψ1‖2
2 = 〈1,1〉=

∫ 8

4
1 ·1dx = 4,
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we set φ1(x) =
1
2 . Next, we set

v2(x) = x−〈x,φ1〉φ1 = x− 6.

Since

‖v2‖2
2 =

∫ 8

4
(x− 6)2 dx =

16
3
,

we set

φ2(x) =

√
3

4
(x− 6).

Next, we set

v3(x) = x2 −〈x2,φ1〉φ1(x)−〈x2,φ2〉φ2(x) = x2 − 12x+
104

3
.

Since

‖v3‖2
2 =

∫ 8

4

(
x2 − 12x+

104
3

)2

dx =
256
45

,

we set

φ3(x) =

√
5

16
(3x2 − 36x+ 104).

Next, we set

v4(x) = x3 −〈x3,φ1〉φ1(x)−〈x3,φ2〉φ2(x)−〈x3,φ3〉φ3(x)

= x3 − 18x2+
528

5
x− 1008

5
.

Since

‖v4‖2
2 =

∫ 8

4

(
x3 − 18x2 +

528
5

x− 1008
5

)2

dx =
1024
175

,

we set

φ4(x) =

√
7

32

(
5x3 − 90x2 + 528x− 1008

)
.

Since 〈φn,φm〉 = 0 if n �= m and 〈φn,φn〉 = 1 for each n, the resulting set
{φ1,φ2,φ3,φ4} constitutes a mutually orthonormal system on [4,8].

• Fredholm operators: The operator K defined by

K : φ ∈R2[a,b]→ Kφ =
∫ b

a
K(x, t)φ(t)dt ∈R2[a,b]

is called the Fredholm operator. Fredholm operators are always linear, since
K(φ1 +φ2) = Kφ1 +Kφ2 and K(αφ) = αKφ for any complex constant α .

Two Fredholm operators, K and L, are said to be equal if Kφ = Lφ for all
φ ∈R2[a,b].
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Fredholm operators can be composed to define new Fredholm operators.
Suppose that K(x, t) and L(x, t) are complex-valued kernels defined on the square
Q(a,b) and integrable with respect to each of their variables. If we define the
composition M(x, t) of these two kernels to be

M(x, t) =
∫ b

a
K(x,s)L(s, t)ds,

then for every φ ∈R2[a,b], we have

Mφ =

∫ b

a
M(x,s)φ(s)ds

=

∫ b

a

(∫ b

a
K(x, t)L(t,s)dt

)
φ(s)ds

=

∫ b

a
K(x, t)

(∫ b

a
L(t,s)φ(s)ds

)
dt

= KLφ .

If K = L, then we write K2φ = K(Kφ) and Knφ = K(Kn−1φ). Thus, iterated
operators can naturally be expressed in terms of iterated kernels. Specifically,

Kmφ =

∫ b

a
Km(x, t)φ(t)dt.

The composition of two Fredholm operators K and L is generally not
commutative, but it is associative.

A set F � R2[a,b] is called bounded if there exists a constant B such that
‖ f‖2 < B for all f ∈ F . A set F � R2[a,b] is called compact if a convergent
subsequence can be selected from any infinite sequence in F .

Proposition 3.1.1. If K(x, t) is a complex-valued kernel whose norm ‖K‖2 is
finite, then the corresponding Fredholm operator K maps any bounded set in
R2[a,b] into a compact set in R2[a,b].

A linear operator K is bounded if there exists a constant C ≥ 0 such that
‖Kφ‖2 ≤ C‖φ‖2 for all φ ∈ R2[a,b]. The norm ‖K‖ of the bounded linear
operator K is the smallest possible value of C for which this inequality holds.
Precisely,

‖K‖= sup

{‖Kφ‖2

‖φ‖2
: φ ∈R2[a,b], φ �= 0

}
.

If K is bounded, then the inequality ‖Kφ‖2 ≤ ‖K‖ · ‖φ‖2 holds for all φ ∈
R2[a,b].
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Bounded operators satisfy the triangle inequality. For if φ ∈ R2[a,b] and K
and L are any two bounded operators, then

‖(K+L)φ‖2 = ‖Kφ +Lφ‖2

≤ ‖Kφ‖2 + ‖Lφ‖2

≤ (‖K‖+ ‖L‖) · ‖φ‖2,

from which we immediately conclude that

‖K+L‖ ≤ ‖K‖+ ‖L‖.

If K(x, t) is a kernel for which ‖K‖2 < +∞ and K is the corresponding
Fredholm operator, then K is bounded and ‖K‖ ≤ ‖K‖2. An application of the
Cauchy–Schwarz inequality gives

|Kφ(x)|2 ≤
(∫ b

a
|K(x,s)|2 ds

)(∫ b

a
|φ(s)|2 ds

)
.

Upon integration, we have

‖Kφ‖2
2 =

∫ b

a
|Kφ(x)|2 dx

≤
(∫ b

a

∫ b

a
|K(x,s)|2 dsdx

)(∫ b

a
|φ(s)|2 ds

)

= ‖K‖2
2‖φ‖2

2

from which the conclusion follows directly.
If K and L are two bounded operators, then the composition KL is also a

bounded operator. Since

‖KLφ‖2 ≤ ‖K‖ · ‖Lφ‖2

≤ ‖K‖ · ‖L‖ · ‖φ‖2,

it follows immediately that ‖KL‖ ≤ ‖L‖ · ‖K‖.
If we set K∗(x, t) = K(t,x), then the operator defined by

K∗ : φ ∈R2[a,b]→ K∗φ(x) =
∫ b

a
K∗(x, t)φ(t)dt ∈R2[a,b]

is called the conjugate transpose Fredholm operator. Clearly, K∗∗ = K, since
K∗∗(x, t) = K(x, t).
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Fredholm operators and their conjugates satisfy the relation

〈Kφ ,ψ〉= 〈φ ,K∗ψ〉

for all φ ,ψ ∈ R2[a,b]. To see this, we interchange the order and variables of
integration to obtain

〈Kφ ,ψ〉 =
∫ b

a

(∫ b

a
K(x, t)φ(t)dt

)
ψ(x)dx

=

∫ b

a

(∫ b

a
K(x, t)ψ(x)dx

)
φ(t)dt

=

∫ b

a

(∫ b

a
K(t,x)ψ(t)dt

)
φ(x)dx

=

∫ b

a
φ(x)

(∫ b

a
K(t,x)ψ(t)dt

)
dx

= 〈φ ,K∗ψ〉.

The conjugate of a composition of two Fredholm operators is equal to the
composition of their conjugates in reverse order, i.e.,

(KL)∗φ = L∗K∗φ

for all φ ∈R2[a,b]. If φ ,ψ ∈R2[a,b], then

〈(KL)ψ ,φ〉 = 〈ψ ,(KL)∗φ〉.

On the other hand,

〈KLψ ,φ〉= 〈Lψ ,K∗φ〉 = 〈ψ ,L∗K∗φ〉.

By subtracting these last two equations, we obtain

〈ψ ,(KL)∗φ −L∗K∗φ〉= 0.

If we choose ψ to be the second factor of this inner product, then we obtain

‖(KL)∗φ −L∗K∗φ‖2 = 0

for all φ ∈ R2[a,b], from which the conclusion follows immediately. In
particular, if we choose K = L, then we obtain (K2)∗ = (K∗)2. A short inductive
argument then shows that (Km)∗ = (K∗)m for all m ≥ 1.
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• Convergence in the mean: If f ,g ∈ R2[a,b], then the mean square distance
between them is defined as

‖ f − g‖2 =

(∫ b

a
| f (x)− g(x)|2 dx

)1/2

.

A sequence { fn(x)} in R2[a,b] converges in the mean to a limit function f ∈
R2[a,b] if the mean square distance ‖ f − fn‖2 → 0 as n →+∞.

An important criterion (due to Riesz and Fischer) for convergence in the mean
is the following: A sequence { fn(x)} in R2[a,b] converges in the mean to a
function f (x) ∈R2[a,b] if and only if

lim
m,n→∞

‖ fn − fm‖2 → 0.

Let { fn(x)} be a sequence of functions in R2[a,b] and define its sequence of
partial sums as

sN(x) =
N

∑
n=1

fn(x).

If the sequence {sN(x)} of partial sums converges in the mean to a function
f (x) ∈ R2[a,b], i.e., if ‖ f − sN‖2 → 0 as N → ∞, then we say that f (x) is the
sum of the infinite series and we write

f (x) =
∞

∑
n=1

fn(x).

If a series converges in the mean, then it can be integrated term-by-term. More
precisely, if g ∈R2[a,b], then

∫ b

a
f (x)g(x)dx =

∞

∑
n=1

∫ b

a
fn(x)g(x)dx.

It is easy to show that this is true. Since

|〈 f − sN ,g〉| ≤ ‖ f − sN‖2 · ‖g‖2 → 0,

it follows that

〈 f ,g 〉= lim
N→∞

〈sN ,g〉

= lim
N→∞

N

∑
n=1

〈 fn,g〉

=
∞

∑
n=1

〈 fn,g〉.
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• Completeness and Fourier series: Let Φ= {φn(x)}∞
n=1 be a mutually orthonormal

system of functions, and let Φm be a finite subset of Φ.
We have previously noted that if f ∈ span{Φm}, then f (x) will have the

representation
f (x) = 〈 f ,φ1〉φ1(x)+ · · ·+ 〈 f ,φm〉φm(x).

If f �∈ span{Φm}, then the mean square distance d( f ,σm) between f (x) and any
element σm(x) ∈ span{Φm} is given by

d2( f ,σm) =

∥∥∥∥∥ f −
m

∑
n=1

cn φn

∥∥∥∥∥
2

2

= ‖ f‖2
2 +

m

∑
n=1

|cn −〈 f ,φn〉|2 −
m

∑
n=1

|〈 f ,φn〉|2,

having assumed a priori that f ∈ R2[a,b]. It is clear that d( f ,σm) is minimized
by choosing cn = 〈 f ,φn〉 for every n = 1, . . . ,m. The constants 〈 f ,φn〉 are called
the Fourier coefficients of f (x). For these choices, we have

d2( f ,Φm) = min
Φm

d2( f ,σm) = ‖ f‖2
2 −

m

∑
n=1

|〈 f ,φn〉|2,

from which we immediately deduce that the coefficient inequality

m

∑
n=1

|〈 f ,φn〉|2 ≤ ‖ f‖2
2

holds for every m ≥ 1. As m → ∞, the minimal distances d( f ,Φm) decrease to
the nonnegative limit

d( f ,Φ) = lim
m→∞

d( f ,Φm) = ‖ f‖2
2 −

∞

∑
n=1

|〈 f ,φn〉|2,

and consequently, the coefficient inequality becomes

∞

∑
n=1

|〈 f ,φn〉|2 ≤ ‖ f‖2
2.

This classical result is known as Bessel’s inequality. Equality holds here if and
only if d( f ,Φ) = 0; the resulting equality is known as Parseval’s identity or
Parseval’s equation.

Suppose that f ∈ R2[a,b] and that 〈 f ,φ〉 = 0 for all φ ∈ Φ. If it must be the
case that ‖ f‖2 = 0 for every such f , then the system Φ is said to be complete;
if there exists such an f for which ‖ f‖2 > 0, then the system Φ is said to be
incomplete.
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Most of the mutually orthogonal systems of functions to be encountered will
consist of continuous functions. For example, the system

Φ= {sin nx, cos nx}∞
n=1

is incomplete in R2[0,2π ] because 〈1,sin nx〉= 〈1,cos nx〉 = 0 for every n ≥ 1,
but ‖1‖2 =

√
2π. However, it can be shown that the augmented orthogonal system

Φ∪{1} is complete.
Suppose that Φ is a mutually orthonormal system of continuous functions on

the interval [a,b]. Given f ∈ R2[a,b], we can always compute the values 〈 f ,φn〉
and then use them to construct the series

f (x) ∼
∞

∑
n=1

〈 f ,φn〉φn(x).

We use the symbol∼ to indicate only that the corresponding series was generated
from f (x). This series is called the Fourier series of f (x).

As with any series, two basic questions arise here:

– Does the Fourier series converge?
– If it does converge, does it converge to f (x) as we might expect?

To address the first question, we note that varied criteria exist for the
convergence of a Fourier series. For example, if f (x) is continuous and f ′(x)
is sectionally continuous on the interval [0,2π ], and the definition of f (x) is
extended so that f (x+2π) = f (x) for all real values of x, then f (x) has a Fourier
series of the form

f (x) =
a0

2
+

∞

∑
n=1

(an cos nx+ bn sin nx)

which converges to f (x) for all real values of x.
As for the second question, it is easy to show in general that f (x) is the sum

of the series, provided that the system Φ is complete. Since we have assumed
that each φn(x) is continuous on the interval [a,b], the partial sums of the Fourier
series are continuous there as well. If the Fourier series converges uniformly, then
it converges to some continuous function in R2[a,b]. Consider the continuous
function

δ (x) =
∞

∑
n=1

〈 f ,φn〉φn(x)− f (x).

If the series converges uniformly, then it can be integrated term by term to obtain
〈δ ,φn〉 = 0 for every n ≥ 1. But since Φ is complete, it must be the case that
‖δ‖2 = 0, i.e., that δ (x)≡ 0 on the interval [a,b].
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3.2 Hermitian Kernels and Operators

Let K(x, t) be a complex-valued, continuous kernel defined on the square Q(a,b). If

K∗(x, t) = K(t,x) = K(x, t),

on Q(a,b), then K(x, t) is called a Hermitian kernel. If K(x, t) is complex-valued and
K(x, t) = K(t,x), then K(x, t) is referred to as a complex symmetric kernel. If K(x, t)
is real-valued and K(x, t) = K(t,x), then K(x, t) is called a real symmetric kernel.
Every real symmetric kernel is Hermitian, but nonzero complex symmetric kernels
are not.

Illustrative Examples

• Example 1: The kernels A(x, t) = x+ t and B(x, t) = ext are real symmetric, but
C(x, t) = x− t is not.

• Example 2: The kernels D(x, t) = i(x− t) and E(x, t) = ei(x−t) are Hermitian, but
F(x, t) = i(x+ t) is not. However, F(x, t) is complex symmetric, since F(x, t) =
F(t,x).

• Example 3: If G(x, t) is an arbitrary real-valued continuous kernel defined on the
square Q(a,b), then the composed kernels

GL(x, t) =
∫ b

a
G(x,s)G(t,s)ds

and

GR(x, t) =
∫ b

a
G(s,x)G(s, t)ds

are real symmetric kernels. If G(x, t) is symmetric, then GL(x, t) = GR(x, t).
• Example 4: If {ψi(x)}n

i=1 is an arbitrarily chosen linearly independent set of
complex-valued continuous functions defined on [a,b] and each μi is real, then

H(x, t) =
n

∑
i=1

ψi(x)ψi(t)
μi

is a Hermitian kernel. If, in addition, ‖ψi‖2 = 1, then φ(x) = ψi(x) is a solution
to the homogeneous integral equation

φ(x) = μi

∫ b

a
H(x, t)φ(t)dt
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for each i = 1, . . . ,n. It follows that each μi is an eigenvalue and each φi(x) is a
normalized eigenfunction of the kernel H(x, t). Kernels of this form will play a
significant role in the theory to follow.

The Fredholm operator K is called a Hermitian operator if K∗ = K. Any
Hermitian operator enjoys the property

〈Kφ ,ψ〉= 〈φ ,Kψ〉

for all φ ,ψ ∈R2[a,b].
If K(x, t) is a Hermitian kernel, then K is a Hermitian operator, since

Kφ =

∫ b

a
K(x, t)φ(t)dt

=

∫ b

a
K∗(x, t)φ(t)dt

= K∗φ

for every φ ∈R2[a,b].
If K is any Fredholm operator, then the composition KK∗ is a Hermitian operator,

since (KK∗)∗ = K∗∗K∗ = KK∗. Similarly, K∗K is Hermitian.
The Fredholm operator K is called a normal operator if KK∗ = K∗K. If K is a

normal operator, then

‖Kφ‖2
2 = 〈Kφ ,Kφ〉
= 〈φ ,K∗Kφ〉
= 〈φ ,KK∗φ〉
= 〈φ ,K∗∗K∗φ〉
= 〈K∗φ ,K∗φ〉
= ‖K∗φ‖2

2

for all φ ∈R2[a,b].
A linear operator K : R2[a,b] → R2[a,b] is called continuous if there exists a

constant C such that
‖K f −Kg‖2 ≤C‖ f − g‖2.

If K and L are two continuous operators, then their sum and difference are also
continuous. In addition, if c is any constant, then cK is continuous.

If K(x, t) is any complex-valued, continuous, Hermitian kernel, then the cor-
responding Fredholm operators K and K∗ are continuous. Since we always have
‖K‖ ≤ ‖K‖2 <+∞, we can choose C = ‖K‖.



3.2 Hermitian Kernels and Operators 97

If {φn} is a strongly convergent sequence and K is any continuous linear operator,
then {Kφn} is also a strongly convergent sequence, since

‖Kφ −Kφn‖2 ≤ ‖K‖‖φ −φn‖2.

A sequence {φn} in R2(a,b) is said to be weakly convergent to an element φ
if 〈φn,ψ〉 → 〈φ ,ψ〉 as n → +∞ for all ψ ∈ R2(a,b). An operator K is called
completely continuous if {Kφn} converges strongly to Kφ whenever {φn} converges
weakly to φ .

3.2.1 Properties of Hermitian Kernels and Operators

Hermitian kernels have many properties that are interesting in their own right.

Proposition 3.2.1 (Iterated Kernels). Suppose that K(x, t) is a continuous,
complex-valued, Hermitian kernel defined on the square Q(a,b).

Then, for m ≥ 1, the iterated kernels Km(x, t) satisfy each of the following
properties:

1. Each Km(x, t) is complex-valued, continuous, and Hermitian.
2. ‖Km‖2 ≤ ‖K‖m

2 <+∞.
3. Each Km(x,x) is real-valued on the interval [a,b].
4. If K(x, t) �≡ 0 on Q(a,b), then each iterated kernel Km(x, t) �≡ 0 there.
5. If Km denotes the Fredholm operator corresponding to Km(x, t), then the inner

products 〈Kmφ ,φ〉 are real-valued for every φ ∈R2[a,b].

Proof. 1. The proof proceeds by induction. The kernel K2(x, t) is Hermitian since

K2(x, t) =
∫ b

a
K(x,s)K(s, t)ds

=

∫ b

a
K(t,s)K(s,x)ds

= K2(t,x)

= K∗
2 (x, t).

If Km(x, t) is Hermitian, then

Km+1(x, t) =
∫ b

a
K(x,s)Km(s, t)ds

=

∫ b

a
Km(t,s)K(s,x)ds

= Km+1(t,x)

= K∗
m+1(x, t).
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2. An application of the Cauchy–Schwarz inequality gives ‖K2‖2 ≤ ‖K‖2
2. The

assertion follows by induction.
3. Since Km(x, t) is Hermitian, it follows that Km(x,x) =Km(x,x) for every x∈ [a,b].
4. The proof proceeds by contradiction. Suppose that Km(x, t) ≡ 0 on the square

Q(a,b) and that m > 1 is the smallest integer for which this is the case. Then
Kn(x, t) �≡ 0 for n = 1, . . . ,m−1 and Kn(x, t)≡ 0 if n ≥ m. Let 2N = m or m+1,
whichever is even. An application of the iteration formula for kernels yields

K2N(x, t) =
∫ b

a
KN(x,s)KN (s, t)ds ≡ 0

on the square Q(a,b). In particular, if x ∈ [a,b], then

K2N(x,x) =
∫ b

a
KN(x,s)KN(s,x)ds

=

∫ b

a
KN(x,s)KN(x,s)ds

=
∫ b

a
|KN(x,s)|2 ds ≡ 0,

so that KN(x,s) ≡ 0 as a function of s for each x ∈ [a,b], i.e., KN(x, t) ≡ 0 on
the square Q(a,b). But this conclusion contradicts the assumption that m was the
smallest integer for which Km(x, t)≡ 0, since N < m.

5. The assertion follows directly from the relations

〈Kmφ ,φ〉 = 〈φ ,Km∗φ〉= 〈φ ,Kmφ〉= 〈Kmφ ,φ〉. �


3.2.2 The Eigenvalues of a Hermitian Kernel

To show that nonvanishing, continuous, Hermitian kernels have eigenvalues, it is
necessary to establish beforehand the following result regarding the trace Am of the
iterated kernel Km(x, t), or what is the same, the mth trace of the kernel K(x, t).
Recall from Sect. 2.5 that

Am =

∫ b

a
Km(x,x)dx.

Lemma 3.2.1 (The Trace Lemma). Let K(x, t) be a nonvanishing, continuous,
Hermitian kernel.

Then the traces Am satisfy the following properties:

1. For every m ≥ 1, Am is a real number.
2. For every m ≥ 1, A2m = ‖Km‖2

2 > 0.
3. If k and p are positive integers, then A2

k+p ≤ A2k A2p.
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4. The sequence

{
A2n+2

A2n

}
is nondecreasing and bounded below by A4/A2. In

particular,

0 <
A4

A2
≤ limsup

n→∞

A2m+2

A2m
.

Proof. The proof of this lemma follows directly from Proposition 3.2.1.

1. The values Km(x,x) are real for every m ≥ 1 and every x ∈ [a,b].
2. Since Km(x, t) is Hermitian for every m ≥ 1, we have

A2m =

∫ b

a
K2m(x,x)dx

=
∫ b

a

∫ b

a
Km(x, t)Km(t,x)dt dx

=

∫ b

a

∫ b

a
Km(x, t)Km(x, t)dt dx

=

∫ b

a

∫ b

a
|Km(x, t)|2 dt dx

= ‖Km‖2.

Since Km(x, t) �≡ 0, its norm is positive.
3. Since K(x, t) is Hermitian, the iteration formula for kernels assumes the form

Kk+p(x,x) =
∫ b

a
Kk(x, t)Kp(x, t)dt.

Since ‖Km‖2 < +∞ for all m ≥ 1, an application of the Cauchy–Schwarz
Inequality yields

A2
k+p =

(∫ b

a
Kk+p(x,x)dx

)2

=

(∫ b

a

∫ b

a
Kk(x, t)Kp(x, t)dt dx

)2

≤
(∫ b

a

∫ b

a
|Kk(x, t)|2 dxdt

)(∫ b

a

∫ b

a
|Kp(x, t)|2 dxdt

)

=

(∫ b

a
K2k(x,x)dx

)(∫ b

a
K2p(x,x)dx

)

= A2k A2p.

4. If we set k = n− 1 and p = n+ 1, then as a special case, we obtain

A2
2n ≤ A2n−2 A2n+2.
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Since the traces with even subscripts are positive, we can rearrange this inequality
to obtain the sequence of inequalities

A4

A2
≤ A6

A4
≤ ·· · ≤ A2n

A2n−2
≤ A2n+2

A2n
≤ ·· · �


With the Trace Lemma, we can establish the most important property of
Hermitian kernels.

Proposition 3.2.2. If K(x, t) is a nonvanishing, continuous, Hermitian kernel, then
K(x, t) and its iterates Km(x, t) have at least one eigenvalue. Furthermore, if λ1 is
the eigenvalue of smallest modulus of K(x, t), then |λ1| ≤

√
A2/A4.

Proof. The proof proceeds by contradiction. Suppose that K(x, t) does not have any
eigenvalues. Then, for each x, t ∈ [a,b], the resolvent kernel defined in the Theorem
of Successive Approximation in Sect. 2.3 is an entire function of λ that can be
represented by the series

R(x, t;λ ) =
∞

∑
m=1

Km(x, t)λm−1

which converges for every complex value of λ . If we set t = x and integrate the
result, then we obtain the series

λ
∫ b

a
R(x,x;λ )dx =

∫ b

a

(
∞

∑
m=1

Km(x,x)λm

)
dx =

∞

∑
m=1

Amλm,

which also converges for every complex λ . The even subseries

∞

∑
m=1

A2m|λ |2m (3.1)

also has an infinite radius of convergence. By the Trace Lemma, we have

0 <
A4

A2
|λ |2 ≤ limsup

m→∞

A2m+2

A2m
|λ |2 = ρ .

If |λ |>√A2/A4, then ρ > 1. But if ρ > 1, then the series (3.1) diverges by Cauchy’s
ratio test. Hence, the assumption that K(x, t) had no eigenvalues was false. Also, the
required inequality follows from the fact that ρ ≤ 1. The iterates Km(x, t) have at
least one eigenvalue as well by Proposition 3.2.1(1, 4). �

Proposition 3.2.3. If K(x, t) is a complex-valued, nonvanishing, continuous,
Hermitian kernel, then the eigenvalues of Km(x, t) are real for all m ≥ 1.

Proof. If φ = μ Kmφ , then ‖φ‖2 = μ 〈Kmφ ,φ〉. Therefore, μ is real since 〈Kmφ ,φ〉
is real by Proposition 3.2.1(5). �
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Note: Even though Hermitian kernels have real eigenvalues, they may have
complex-valued eigenfunctions. Consider the integral equation

φ(x) = λ
∫ 2π

0
ei(x−t) φ(t)dt.

The only eigenvalue is λ1 = 1/2π, and the corresponding eigenfunction is φ1(x) =
eix/

√
2π .

The next result will be used in the proof of the Hilbert–Schmidt Theorem given in
Sect. 3.4, and will also serve as a theoretical basis for the computation of eigenvalues
in Sect. 3.5. We motivate it with the following observation.

If λn is any eigenvalue of the Hermitian kernel K(x, t) and φn is one of its
corresponding normalized eigenfunctions, then φn = λn Kφn. Forming the inner
product with φn, we obtain

1 = ‖φn‖2
2 = 〈φn,φn〉= λn〈Kφn,φn〉.

After division, we have
1

|λn| = |〈Kφn,φn〉|.

If the eigenvalues of K(x, t) are arranged in order of increasing magnitude, i.e.,
|λ1| ≤ |λ2| ≤ · · · , then

1
|λ1| = max

n
|〈Kφn,φn〉|.

A stronger result can be proven.

Theorem 3.2.1. Let K(x, t) be a nonvanishing, continuous, Hermitian kernel. If
λ1 is the eigenvalue of smallest modulus of K(x, t) and K is the corresponding
Hermitian operator, then

1
|λ1| = max

φ
|〈Kφ ,φ〉|,

where the maximum is taken over all φ ∈R2[a,b] subject to the condition that

‖φ‖2 = 〈φ ,φ〉 =
∫ b

a
|φ(x)|2 dx = 1.

Furthermore, this maximum value is attained when φ(x) is an eigenfunction of the
kernel corresponding to λ1.

Proof. Let K(x, t) be a nonvanishing, continuous, Hermitian kernel, and let K be
the corresponding Fredholm operator with necessarily finite norm ‖K‖. For any
φ ∈R2[a,b] with ‖φ‖2 = 1, we have

|〈Kφ ,φ〉| ≤ ‖Kφ‖2 · ‖φ‖2 ≤ ‖K‖ · ‖φ‖2
2 = ‖K‖

as a direct consequence of the Cauchy–Schwarz inequality.
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Let B denote the least upper bound of the bounded set

K = {|〈Kφ ,φ〉| : ‖φ‖2 = 1}.

By the definition of the least upper bound, there exists at least one sequence
{ψn(x)}∞

n=1 in R2[a,b] with ‖ψn‖2 = 1 such that

lim
n→∞

|〈Kψn,ψn〉|= B.

If the sequence 〈Kψn,ψn〉 of real numbers converges, then it must converge to either
+B or −B. If it does not converge, then there must be at least two subsequences, one
of which converges to +B and another one which converges to −B. Without loss of
generality, it suffices to assume that

lim
n→∞

〈Kψn,ψn〉=+B.

Since the sequence {ψn(x)}∞
n=1 is bounded and ‖K‖2 is finite, the sequence

{Kψn(x)}∞
n=1 is a compact set in R2[a,b]. Thus, there must exist a function w ∈

R2[a,b] such that

w(x) = lim
n→∞

Kψn.

Set φ1(x) = w(x)/B and λ1 = 1/B. If we can show that

lim
n→∞

ψn(x) =
w(x)

B
and lim

n→∞
Kψn = Kφ1,

it will follow that

φ1(x) =
w(x)

B
= lim

n→∞
ψn(x) =

1
B

lim
n→∞

Kψn = λ1 Kφ1(x).

Also, ‖φ1‖2 = 1, since ‖ψn‖2 = 1 for all n.
A clever variational argument allows us to complete the proof. For any real t and

any αn ∈R2[a,b], we can construct the competing functions

βn(x, t) =
ψn(x)+ t αn(x)

‖ψn(x)+ t αn(x)‖2
∈R2[a,b]

with ‖βn‖2 = 1 for every n≥ 1. Since the real number |〈Kβn,βn〉| ∈K, the inequality
〈Kβn,βn〉 ≤ B holds for all n ≥ 1. After expanding this inequality in powers of t, we
obtain

(〈Kφn,φn〉−B)+ (Re{〈Kψn −Bψn,αn〉}) t +
(〈Kαn,αn〉−B‖αn‖2) t2 ≤ 0
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for every n ≥ 1. The discriminant of this quadratic polynomial cannot be positive.
That is,

|Re{〈Kψn −Bψn,αn〉}| ≤
√

B‖αn‖2 −〈Kαn,αn〉
√

B−〈Kψn,ψn〉

for every n≥ 1 and every choice of αn. If we choose αn =Kψn−Bψn, then the first
term on the right in the discriminant inequality is bounded by (B+ ‖K‖)3/2. Since

‖αn‖2 = ‖Kψn −Bψn‖2 ≤ B+ ‖Kφn‖2 ≤ B+ ‖K‖
and

|〈Kαn,αn〉| ≤ ‖Kαn‖2 · ‖αn‖2 ≤ ‖K‖ · ‖αn‖2
2,

we have

|B‖αn‖2
2 −〈Kαn,αn〉| ≤ B(B+ ‖K‖)2+ ‖K‖(B+ ‖K‖)2 = (B+ ‖K‖)3.

Since the second term on the right in the discriminant inequality tends to 0, it follows
that

lim
n→∞

Re 〈Kφn −Bφn,Kφn −Bφn〉= lim
n→∞

‖Kφn −Bφn‖2 = 0,

from which we conclude that

lim
n→∞

φn(x) = lim
n→∞

1
B

Kφn =
1
B

w(x) = φ1(x).

Also, since K is a continuous Fredholm operator, we know that

‖Kφn −Kφ1‖2 =

∥∥∥∥K
(
φn(x)− w(x)

B

)∥∥∥∥
2

≤ ‖K‖ ·
∥∥∥∥φn(x)− w(x)

B

∥∥∥∥
2
→ 0

as n → ∞, so that

lim
n→∞

1
B

Kφn =
1
B

Kφ1 = λ1 Kφ1.

Hence, φ1 = λ1 Kφ1, and φ1(x) �≡ 0, since ‖φ1‖2 = 1. �

Proposition 3.2.4. Let K(x, t) be a kernel (whether Hermitian or not) for which
‖K‖2 <+∞. Let Λ= {λi} denote the set of all eigenvalues of the kernel K(x, t) and,
for m ≥ 2, let Λm = {λm

i } denote the set of all mth powers of these eigenvalues. If
Λm denotes the set of all eigenvalues of the iterated kernel Km(x, t), then Λm = Λm.

Proof. (Λm � Λm) If λ ∈ Λ, then

φ(t) = λ
∫ b

a
K(t,s)φ(s)ds
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for some corresponding nontrivial eigenfunction φ(t). Multiply this equation by
λ K(x, t) and then integrate the result from a to b to obtain

φ(x) = λ
∫ b

a
K(x, t)φ(t)dt = λ 2

∫ b

a
K2(x,s)φ(s)ds.

This shows that λ 2 is an eigenvalue of the iterated kernel K2(x, t) with the same
corresponding eigenfunction. By continuing this process, we obtain

φ(x) = λm
∫ b

a
Km(x,s)φ(s)ds

for every integer m ≥ 2, showing that λm is an eigenvalue of the iterated kernel
Km(x, t) with the same corresponding eigenfunction. Hence, λm ∈ Λm.

(Λm � Λm) If ρ ∈ Λm, then there exists a corresponding eigenfunction ψ(x) �≡ 0
such that

ψ(x) = ρ
∫ b

a
Km(x, t)ψ(t)dt.

We must show that there exists at least one eigenvalue λ ∈ Λ for which λm = ρ .
Let {e1, . . . ,em} be the m distinct mth roots of ρ , and define the functions Ei(x) by
setting

mEi(x) = ψ(x)+
m−1

∑
j=1

e j
i

∫ b

a
Kj(x, t)ψ(t)dt.

If we multiply both sides of this definition by ei K(y,x) and integrate the result with
respect to x, then we obtain

mei

∫ b

a
K(y,x)Ei(x)dx = ei

∫ b

a
K(y,x)ψ(x)dx

+
m−1

∑
j=1

e j+1
i

∫ b

a
Kj+1(y, t)ψ(t)dt

= ei

∫ b

a
K(y,x)ψ(x)dx

+
m

∑
j=2

e j
i

∫ b

a
Kj(y, t)ψ(t)dt

=
m−1

∑
j=1

e j
i

∫ b

a
Kj(y, t)ψ(t)dt

+ρ
∫ b

a
Km(x, t)ψ(t)dt

= ψ(y)+
m−1

∑
j=1

e j
i

∫ b

a
Kj(y, t)ψ(t)dt

= mEi(y).
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To complete the proof, we must show that Ei(x) �≡ 0 for at least one index i. By
adding all m of the equations in the definition and canceling a factor of m, we obtain

E1(x)+ · · ·+Em(x) = ψ(x),

after using the well-known fact that the sum of the mth roots of unity satisfies the
property

e j
1 + · · ·+ e j

m = 0

for every j = 1, . . . ,m− 1. This equation implies that at least one of the functions
Ei(x) �≡ 0, since ψ(x) �≡ 0. Choose λ = ei. �


3.2.3 The Eigenfunctions of a Hermitian Kernel

Proposition 3.2.5. Let K(x, t) be a nonzero, continuous, Hermitian kernel. Then
the set of eigenfunctions corresponding to any given eigenvalue λi can be
orthonormalized.

Proof. Since the set of eigenfunctions corresponding to any eigenvalue is linearly
independent, the Gram–Schmidt Orthonormalization Procedure can be applied to
convert it into an orthonormal set. �

Proposition 3.2.6. Let K(x, t) be a nonzero, continuous, Hermitian kernel. If λi

and λ j are any two different eigenvalues, then the eigenfunctions φi and φ j that
correspond to them are orthogonal.

Proof. Suppose that φi = λi Kφi and φ j = λ j Kφ j. Then,

1
λi

〈φi,φ j〉= 〈Kφi,φ j〉= 〈φi,K∗φ j〉= 〈φi,Kφ j〉= 1
λ j

〈φi,φ j〉.

Since λi �= λ j, it must be the case that 〈φi,φ j〉= 0. �

Proposition 3.2.7. Let K(x, t) be a nonzero, continuous, Hermitian kernel. Then
the set of all of its eigenfunctions is a mutually orthonormal system of functions.

Proof. The eigenfunctions that correspond to any given eigenvalue λi can be
orthonormalized, and the eigenfunctions of unit norm corresponding to different
eigenvalues are orthogonal. Thus, the set of all eigenfunctions of a Hermitian kernel
constitutes a mutually orthonormal system of functions. �

Proposition 3.2.8. Let K(x, t) be a nonzero, continuous, Hermitian kernel. Then
the full set of its eigenvalues can be enumerated in order of increasing magnitude.
Consequently, the eigenfunctions corresponding to them can be listed in a sequence,
although this listing need not always be unique.



106 3 Fredholm Integral Equations of the Second Kind (Hermitian Kernel)

Proof. The Fourth Fredholm Theorem implies that there exist only a finite number
of eigenvalues in any finite disk centered at the origin. In particular, there can only be
a finite number of eigenvalues on any circle centered at the origin. If two eigenvalues
have the same modulus, then they can be numbered according to their argument.
Since there can only be a countably infinite number of eigenvalues of a Hermitian
kernel, we can now write

|λ1| ≤ |λ2| ≤ · · · ≤ |λn| ≤ · · · .
Once the eigenvalues have been thus enumerated, the eigenfunctions can be
enumerated correspondingly. �


For the remainder of this chapter, we will assume that the eigenvalues and
eigenfunctions are so enumerated.

Illustrative Examples

• Example 1: A kernel K(x, t) is skew Hermitian if K∗(x, t) = −K(x, t). The
eigenvalues of a skew-Hermitian kernel are purely imaginary. On the one hand,
we have

〈K∗φ ,φ〉 = 〈φ ,Kφ〉 =
〈
φ ,

φ
λ

〉
=

1

λ
〈φ ,φ〉.

On the other hand, we also have

〈−Kφ ,φ〉 =
〈
−φ

λ
,φ
〉
=− 1

λ
〈φ ,φ〉.

Thus, −λ = λ , or λ +λ = 2Re{λ}= 0.
• Example 2: The eigenvalues of the composed nonvanishing, continuous, and

Hermitian kernels KK∗ and K∗K are positive. For if φ = λ KK∗φ , then

‖φ‖2 = 〈λ KK∗φ ,φ〉 = λ 〈K∗φ ,K∗φ〉= λ ‖K∗φ‖2.

The second assertion is established in a similar manner.
• Example 3: If K(x, t) is a real symmetric kernel, then its iterates Km(x, t) and the

corresponding resolvent R(x, t;λ ) are also real symmetric kernels. For if K(x, t)
is real symmetric, then

K2(x, t) =
∫ b

a
K(x,s)K(s, t)dt =

∫ b

a
K(t,s)K(s,x)ds = K2(t,x),

and the result follows for all iterates by a simple induction argument. Hence, we
have

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t) =
∞

∑
m=1

λm−1 Km(t,x) = R(t,x;λ ).
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• Example 4: Consider the integral equation

φ(x) = f (x)+λ
∫ b

a
r(t)L(x, t)φ(t)dt,

where r(t) is nonnegative and L(x, t) is a real symmetric kernel. Then the kernel
r(t)L(x, t) in this equation is not symmetric. However, if we multiply this integral
equation by

√
r(x), then it becomes

(√
r(x)φ(x)

)
= f (x)+λ

∫ b

a
K(x, t)

(√
r(t)φ(t)

)
dt

where now the new kernel K(x, t) =
√

r(x)r(t)L(x, t) is real symmetric.
• Example 5: If the kernel K(x, t) is real symmetric, then its eigenfunctions may be

assumed to be real. For if φ(x) = α(x)+ iβ (x) with α(x) and β (x) real, then the
two equations

α(x)± iβ (x) = λ
∫ b

a
K(x, t)(α(t)± iβ (t))dt

can be added and subtracted to show that both the real part α(x) and the
imaginary part β (x) are eigenfunctions.

• Example 6: The inner product 〈Kφ ,φ〉 can be written as a double integral. Indeed,
we have

〈Kφ ,φ〉 =
∫ b

a

(∫ b

a
K(x, t)φ(t)dt

)
φ(x)dx

=
∫ b

a

∫ b

a
K(x, t)φ(x)φ(t)dxdt.

• Example 7: Consider the continuous symmetric kernel

K(x, t) =
1

1+ xt

defined on the square Q(0,1). The trace A1 of K(x, t) is easily computed as

A1 =

∫ 1

0

1
1+ x2 dx = arctan1 =

π
4
.

To compute A2, we first compute the iterated kernel K2(x, t) as

K2(x, t) =
∫ 1

0

1
1+ xs

1
1+ st

ds =
ln(1+ x)− ln(1+ t)

x− t
.
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We recognize K2(x, t) to be the difference quotient for the derivative of ln(1+x).
Hence,

A2 =

∫ 1

0
K2(x,x)dx =

∫ 1

0

1
1+ x

dx = ln2.

The trace A2 can be computed in another way. For if we substitute the geometric
series for the kernel into the integrand, we obtain

K2(x, t) =
∞

∑
n=0

∞

∑
m=0

(−1)m+n

m+ n+ 1
xn tm

from which we conclude that

A2 =

∫ 1

0
K2(x,x)dx =

∞

∑
n=0

∞

∑
m=0

(−1)m+n

(m+ n+ 1)2 =
∞

∑
N=0

(−1)N

N + 1
= ln2.

If it is required to compute A3, then the series method would be easier.

Section 3.2 Exercises

1. Suppose that the kernel K(x, t) is continuous in the variables x and t. Are the
corresponding eigenfunctions φn(x) continuous?
Hint: Consider the difference

φn(x)−φn(y) = λn

∫ b

a
(K(x, t)−K(y, t))φn(t)dt.

2. Consider the continuous symmetric kernel

K(x, t) =
1

1+ x+ t

defined on the square Q(0,1). Show that A1 =
1
2 ln3. Show that

K2(x, t) =
ln(x+ 1)− ln(t + 1)

x− t
− ln(x+ 2)− ln(t + 2)

x− t

and then use this fact to show that A2 = ln
(

4
3

)
.

3. Consider the continuous symmetric kernel

K(x, t) = ext
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defined on the square Q(0,1). Show that

A1 =

∫ 1

0
ex2

dx =
∞

∑
n=0

1
n!(2n+ 1)

≈ 1.462651.

Use the series representation for the exponential function to show that

K2(x, t) =
∞

∑
n,m=0

1
n!m!(n+m+ 1)

xn tm

and then conclude that

A2 =
∞

∑
n,m=0

1
n!m!(n+m+ 1)2 ≈ 1.841935.

In a similar fashion, show that

A3 =
∞

∑
n,m,k=0

1
n!m!k!(n+m+ 1)(m+ k+1)(k+n+1)

≈ 2.478170.

In a similar manner, show that A4 ≈ 3.351554. Then use the inequality |λ1| ≤√
A2/A4 that was proven in Proposition 3.2.2 to estimate |λ1|. Finally, derive a

general formula for AN .
4. Compute the eigenvalues and eigenvectors of the skew-symmetric kernel

K(x, t) = x ln t − t lnx defined on the square Q(1,e). (Recall from Example 1
that the eigenvalues of a skew-symmetric kernel are purely imaginary.)

5. Suppose that all of the eigenvalues of some kernel are greater than one. Explain
why the sequence {Am}∞

m=1 of traces is strictly decreasing.
6. Suppose that all of the eigenvalues of some kernel are positive and that A1 < A2.

What can you conclude from this information?
7. Suppose that all of the eigenvalues of some kernel are positive. Determine upper

and lower bounds on the quantity A1/m
m . Does the limit

lim
m→+∞

A1/m
m

exist? If so, what is the value of this limit? If not, why not?
8. Many interesting real symmetric kernels are defined in terms of cases in the

following manner:

K(x, t) =

{
g(x, t) if 0 ≤ x ≤ t ≤ 1

g(t,x) if 0 ≤ t ≤ x ≤ 1.
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For each of the kernels below, compute the iterated kernel K2(x, t), and the traces
A1 and A2. (Recall that A2 can be computed directly from K2(x, t) or from the
formula A2 = ‖K‖2

2 established in Lemma 3.2.1(2).)

(a) K(x, t) =

{
x if 0 ≤ x ≤ t ≤ 1

t if 0 ≤ t ≤ x ≤ 1

(b) K(x, t) =

{
ex if 0 ≤ x ≤ t ≤ 1

et if 0 ≤ t ≤ x ≤ 1

(c) K(x, t) =

{
x(1− t) if 0 ≤ x ≤ t ≤ 1

t(1− x) if 0 ≤ t ≤ x ≤ 1

(d) K(x, t) =

{
sin x cos t if 0 ≤ x ≤ t ≤ 1

sin t cos x if 0 ≤ t ≤ x ≤ 1

Hint: If 0 ≤ x ≤ t ≤ 1, then

K2(x, t) =

(∫ x

0
+

∫ t

x
+

∫ 1

t

)
K(x,s)K(s, t)ds.

What are the values of K(x,s) and K(s, t) if s belongs to each of these three
subintervals?

3.3 Finite Bilinear Expansions

The lemma below serves to illuminate the structure of Hermitian kernels with a
finite number of eigenvalues. Not only is it interesting in its own right, but it also
serves to motivate the discussion to follow in the rest of the chapter.

Lemma 3.3.1 (Kernel Structure). Let K(x, t) be a complex-valued, continuous,
Hermitian kernel defined on the square Q(a,b). Suppose that its eigenvalues
λ1,λ2, . . . are enumerated in order of increasing magnitude with corresponding
orthonormal eigenfunctions φ1(x),φ2(x), . . .

Then, the truncated kernel

ΔN+1(x, t) = K(x, t)−
N

∑
n=1

φn(x)φn(t)
λn

is also complex-valued, continuous, and Hermitian.
If ΔN+1(x, t)≡ 0 for some N ≥ 1 on Q(a,b), then K(x, t) assumes the canonical

form of the finite bilinear expansion

K(x, t) =
N

∑
n=1

φn(x)φn(t)
λn

.
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In this case, the kernel K(x, t) is separable, and it has exactly N eigenvalues
counting multiplicity. The geometric multiplicity of each of these eigenvalues is
equal to its algebraic multiplicity.

If ΔN+1(x, t) �≡ 0 for any N ≥ 1on Q(a,b), then the following statements are
true:

1. The eigenvalues λ1, . . . ,λN of K(x, t) are not eigenvalues of ΔN+1(x, t), and the
corresponding eigenfunctions φ1(x), . . . ,φN(x) of K(x, t) are not eigenfunctions
of ΔN+1(x, t).

2. The eigenvalues λN+1,λN+2, . . . of K(x, t) are eigenvalues of ΔN+1(x, t), and the
corresponding eigenfunctions φN+1(x),φN+2(x), . . . of K(x, t) are eigenfunctions
of ΔN+1(x, t).

3. The kernel ΔN+1(x, t) has no eigenvalues or eigenfunctions other than those
mentioned in the previous item.

Proof. The truncated kernel is the difference of two complex-valued, continuous,
Hermitian kernels.

Suppose that there exists an N such that ΔN+1(x, t)≡ 0 on Q(a,b). In this case, it
is clear that K(x, t) assumes the given separable form. Furthermore, the matrices A=
(ai j) = (δi j/λ j) and I−λ A are diagonal, due to the assumed orthonormality of the
eigenfunctions. Since the geometric multiplicities of the eigenvalues of the matrix
A are equal to their algebraic multiplicities, the same is true for the eigenvalues of
the kernel.

Now suppose that ΔN+1(x, t) �≡ 0 on Q(a,b). In this case, we can prove that the
truncation process has effectively removed the eigenvalues λ1, . . . ,λN and their cor-
responding eigenfunctions φ1(x), . . . ,φN(x) from the kernel K(x, t). The following
three statements clarify this assertion and validate our claim:

1. If 1 ≤ j ≤ N, then

∫ b

a
ΔN+1(x, t)φ j(t)dt =

∫ b

a
K(x, t)φ j(t)dt

−
N

∑
n=1

φn(x)
λn

∫ b

a
φn(t)φ j(t)dt

=
φ j(x)

λ j
− φ j(x)

λ j

= 0,

showing that φ j(x) cannot be an eigenfunction of ΔN+1(x, t).
2. If ΔN+1(x, t) �≡ 0, then it has at least one eigenvalue by Proposition 3.2.2. If, for

j ≥ N + 1, we subtract the equations

φ j(x) = λ j

∫ b

a
K(x, t)φ j(t)dt
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and

λ j

∫ b

a

(
N

∑
n=1

φn(x)φn(t)
λn

)
φ j(t)dt = 0,

then we obtain

φ j(x) = λ j

∫ b

a
ΔN+1(x, t)φ j(t)dt.

Thus, each φ j(x) is an eigenfunction corresponding to the eigenvalue λ j of
ΔN+1(x, t).

3. Let ρ be any eigenvalue of the kernel ΔN+1(x, t) and let ψ(x) �≡ 0 be the
eigenfunction corresponding to it. Then, we have

ψ(x) = ρ
∫ b

a
ΔN+1(x, t)ψ(t)dt

= ρ
∫ b

a
K(x, t)ψ(t)dt −ρ

N

∑
n=1

φn(x)
λn

∫ b

a
φn(t)ψ(t)dt.

If we compute the inner product of ψ(x) with φ j(x), with 1 ≤ j ≤ N, then we
obtain the relation

〈ψ ,φ j〉= ρ 〈Kψ ,φ j〉− ρ
λ j

〈ψ ,φ j〉.

But since K is a Hermitian operator, we obtain

〈Kψ ,φ j〉= 〈ψ ,K∗φ j〉= 〈ψ ,Kφ j〉= 1
λ j

〈ψ ,φ j〉,

from which it follows that 〈ψ ,φ j〉= 0. By using this fact, we obtain

ψ(x) = ρ
∫ b

a
K(x, t)ψ(t)dt,

i.e., ρ is an eigenvalue of the kernel K(x, t) and ψ(x) is an eigenfunction
corresponding to ρ . As we have shown above, ρ cannot be among the eigenvalues
λ1, . . . ,λN . Hence, it must be the case that ρ = λN+k for some k ≥ 1 and
ψ(x) = φN+k. �

We apply this lemma to obtain the following bilinear expansions:

Theorem 3.3.1 (Representation Formulae). Let K(x, t) be a complex-valued,
continuous, Hermitian kernel defined on the square Q(a,b), with a finite number
N of eigenvalues λ1, . . . ,λN, and let φ1(x), . . . ,φN(x) be a corresponding system of
mutually orthonormal eigenfunctions.

Then, the following formulae are valid:
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1. The kernel K(x, t) can be represented by the finite bilinear expansion

K(x, t) =
N

∑
n=1

φn(x)φn(t)
λn

.

2. If g ∈R2[a,b], then

Kg =
∫ b

a
K(x, t)g(t)dt =

N

∑
n=1

〈g,φn〉
λn

φn(x),

and
λn 〈Kg,φn〉= 〈g,φn〉

for each n = 1, . . . ,N.
3. For every m ≥ 1, the iterated kernel Km(x, t) can be represented by the finite

bilinear expansion

Km(x, t) =
N

∑
n=1

φn(x)φn(t)
λm

n
.

4. The resolvent kernel R(x, t;λ ) corresponding to K(x, t) is unique, and it can be
represented by the finite bilinear expansion

R(x, t;λ ) =
N

∑
n=1

φn(x)φn(t)
λn −λ

.

Proof. 1. By virtue of Lemma 3.3.1, K(x, t) always has the representation

K(x, t) =
N

∑
n=1

φn(x)φn(t)
λn

+ΔN+1(x, t).

If ΔN+1(x, t) �≡ 0, then it must have at least one eigenvalue, say, λN+1, which
must be an eigenvalue of K(x, t). But then K(x, t) would have at least N + 1
eigenvalues, contrary to hypothesis. Thus, ΔN+1(x, t)≡ 0.

2. The first equation follows upon direct substitution of the representation for
K(x, t) into the integrand. The second equation follows by forming the inner
product 〈Kg,φn〉.

3. The proof follows by induction. One iteration yields

K2(x, t) =
∫ b

a

(
N

∑
n=1

φn(x)φn(s)
λn

)(
N

∑
j=1

φ j(s)φ j(t)

λ j

)
ds

=
N

∑
n=1

φn(x)φn(t)
λ 2

n
.
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Repeated iterations inductively lead to the validity of the representation for all
values of m.

4. Since we have arranged the eigenvalues of K(x, t) in order of increasing
magnitude, the resolvent series converges if |λ | < |λ1|. Hence, we can use the
representation for Km(x, t) to obtain

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t)

=
∞

∑
m=1

λm−1

(
N

∑
n=1

φn(x)φn(t)
λm

n

)

=
N

∑
n=1

φn(x)φn(t)
λn

(
∞

∑
m=1

(λ/λn)
m−1

)

=
N

∑
n=1

φn(x)φn(t)
λn

λn

λn −λ

=
N

∑
n=1

φn(x)φn(t)
λn −λ

.

By the Principle of Analytic Continuation, this representational form is actually
valid for all λ �= λn. �

With these representational formulae in hand, it is easy to solve Fredholm integral

equations of the first and second kinds with Hermitian separable kernels.

Theorem 3.3.2. Consider the Fredholm integral equation of the second kind

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt,

in which the free term f (x) is continuous on the interval [a,b], and the Hermitian
kernel

K(x, t) =
N

∑
n=1

φn(x)φn(t)
λn

is complex-valued and continuous on the square Q(a,b), where λ1, . . . ,λN are
the eigenvalues of the kernel K(x, t) and φ1(x), . . . ,φN(x) are the corresponding
orthonormal eigenfunctions.

If λ is not an eigenvalue of the kernel, then the unique continuous solution φ(x)
to the integral equation has the representation

φ(x) = f (x)+λ
N

∑
n=1

〈 f ,φn〉
λn −λ

φn(x).
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If λ = λk = · · · = λk+r−1 is an eigenvalue of the kernel of multiplicity r with
the corresponding eigenfunctions φk(x), . . . ,φk+r−1, then the integral equation has
solutions if and only if 〈 f ,φ j〉 = 0 for every j = k, . . . ,k + r − 1. In this case, the
solution to the integral equation has the representation

φ(x) = f (x)+λk ∑
j

〈 f ,φ j〉
λ j −λk

φ j(x)+
k+r−1

∑
j=k

c j φ j(x),

where the first sum is taken over the indices j for which λ j �= λk and the constants
c j in the second sum are arbitrary.

Proof. If λ is not an eigenvalue of the kernel, then the First Fredholm Theorem for
separable kernels as stated in Sect. 1.3 states that the solution to the integral equation
is given by

φ(x) = f (x)+λ
∫ b

a
R(x, t;λ ) f (t)dt.

Since R(x, t;λ ) has the representation given by Theorem 3.3.1(4), the result follows
directly.

If λ is an eigenvalue of the kernel, then the Third Fredholm Theorem for
separable kernels states that the integral equation has solutions if and only if f (x)
is orthogonal to all of the eigenfunctions of the homogeneous adjoint equation
corresponding to λ . These are the eigenfunctions of K(t,x); however, since K(x, t)
is Hermitian, they are the same as the eigenfunctions of K(x, t). Also, by Proposition
3.2.3, λ is real. Thus, for solutions to exist in this case, it is necessary and sufficient
that 〈 f ,φ j〉= 0 for all j = k, . . . ,k+ r− 1.

In Sect. 1.3, it was shown that if these orthogonality conditions are satisfied, then
the solution to the inhomogeneous integral equation has the form

φ(x) = f (x)+λk φ (p)(x;λk)+β φ (h)(x;λk),

where f (x) + φ (p)(x;λk) is a particular solution to the integral equation, β is
an arbitrary constant, and φ (h)(x;λk) is an arbitrary linear combination of the
eigenfunctions corresponding to λk. By substituting the representation for the kernel
into the integral equation, we obtain

φ(x) = f (x)+λk

N

∑
n=1

(φ ,φn)

λn
φn(x).

If j is an index for which λ j �= λk, then by forming the scalar product of φ(x) with
φ j(x), we obtain

〈φ ,φ j〉= 〈 f ,φ j〉+λk
〈φ ,φ j〉

λ j
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or

〈φ ,φ j〉= λ j

λ j −λk
〈 f ,φ j〉.

By substituting the values into the particular equation, we obtain the first sum in the
solution to the equation. The indices j for which λ j = λk correspond to the second
sum in the solution. �


Illustrative Examples

• Example 1: Solve the Fredholm integral equation

φ(x) = ex +λ
∫ 2π

0
ei(x−t) φ(t)dt

for all values of λ .
The only eigenvalue of the kernel K(x, t) = ei(x−t) is λ1 = 1/2π, and

the corresponding eigenfunction of unit norm is φ1(x) = eix/
√

2π. A direct
computation shows that

〈 f ,φ1〉=
〈

ex,
eix
√

2π

〉
=

1√
2π

∫ 2π

0
ex(1−i) dx =

1+ i

2
√

2π
(e2π − 1).

If λ �= 1/2π, then the unique solution to the integral equation is given by

φ(x) = ex +λ
〈 f ,φ1〉
λ1 −λ

φ1(x)

= ex +λ
(1+ i)(e2π − 1)

2(1− 2πλ )
eix.

If λ = 1/2π, then the equation has no solutions, since 〈 f ,φ1〉 �= 0.
• Example 2: Solve the Fredholm integral equation

φ(x) = f (x)+λ
∫ +2

−2
(2x2 t2 + xt)φ(t)dt

if λ is not an eigenvalue of the kernel.
Upon employing the method presented in Sect. 1.3 for the solution of

Fredholm integral equations with separable kernels, we find that the eigenvalues
of the kernel are λ1 = 5/128 and λ2 = 3/16. (Recall that eigenvalues are
always enumerated in order of increasing magnitude.) The corresponding
eigenfunctions are

φ1(x) =

√
5x2

8
and φ2(x) =

√
3x
4

,
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respectively. Observe that 〈φ1,φ2〉= 0, with ‖φ1‖2 = 1 and ‖φ2‖2 = 1. The kernel
can now be expanded in the structurally revealing form

K(x, t) =

(√
5x2

8

)(√
5 t2

8

)

(
5

128

) +

(√
3x
4

)(√
3 t
4

)

(
3

16

) .

Thus, if λ is not an eigenvalue of the kernel, then the solution to the integral
equation assumes the form

φ(x) = f (x)+λ
〈 f ,φ1〉
5

128 −λ

√
5x2

8
+λ

〈 f ,φ2〉
3
16 −λ

√
3x
4

,

for any free term f (x).
In particular, if f (x) = ex, then

〈 f ,φ1〉=
〈

ex,

√
5x2

8

〉
=

√
5

8

∫ +2

−2
x2 ex dx =

√
5

4
(e2 − 3e−2),

and

〈 f ,φ2〉=
〈

ex,

√
3x
4

〉
=

√
3

4

∫ +2

−2
xex dx =

√
3

4
(e2 + 3e−2).

If we choose λ = 1/32, then the unique solution to the equation is

φ(x) = ex +
5
8
(e2 − 3e−2)x2 +

3
80

(e2 + 3e−2)x.

However, if we choose λ = λ1 = 5/128 or λ = λ2 = 3/16, then the integral
equation has no solutions whatsoever, since f (x) is not orthogonal to either φ1(x)
or φ2(x).

By way of contrast, the integral equation

φ(x) = x3 +
5

128

∫ +2

−2
(2x2 t2 + xt)φ(t)dt

has an infinite number of solutions of the form

φ(x) = x3 +λ1
〈x3,φ2〉
λ2 −λ1

φ2(x)+ c1φ1

= x3 +
12
19

x+ cx2,

where c is an arbitrary constant, since 〈x3,φ1〉= 0.
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• Example 3: The trace A2 of the iterated kernel K2(x, t) was computed in
Lemma 3.2.1(2) to be A2 = ‖K‖2

2. But since

K2(x, t) =
N

∑
1

φn(x)φ(t)
λ 2

n

by Theorem 3.3.1(3), we also have

A2 =

∫ b

a
K2(x,x)dx =

N

∑
n=1

1
λ 2

n
.

• Example 4: The Fredholm integral equation of the first kind has the form

f (x) =
∫ b

a
K(x, t)φ(t)dt,

where f (x) is continuous on the interval [a,b] and the kernel K(x, t) is continuous
on the square Q(a,b). Note that solution φ(x) does not appear outside of the
integrand.

If the kernel K(x, t) is Hermitian and has a finite number of eigenvalues,
λ1, . . . ,λN , then it has the representation prescribed in Theorem 3.3.1(1). By
substituting it into the above equation, we obtain

f (x) =
N

∑
n=1

〈φ ,φn〉
λn

φn(x).

Thus, for a solution φ(x) to the integral equation to exist, it is necessary that
f (x) be a linear combination of the eigenfunctions φ1(x), . . . ,φN(x) of the kernel
K(x, t). Otherwise, the equation has no solution.

If f (x) has the representation

f (x) =
N

∑
n=1

fn φn(x),

then a comparison of these representations allows us to conclude that the relations
〈φ ,φn〉= λn fn hold for all n = 1, . . . ,N. Since it is always true that

φ(x) =
N

∑
n=1

〈φ ,φn〉φn(x),

we propose that any solution φ(x) to the integral equation must have the form

φ(x) =
N

∑
n=1

λn fn φn(x)+Φ(x),
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where Φ(x) is any function that is orthogonal to all of the eigenfunctions φn(x)
on the interval [a,b]. Note that

‖φ‖2
2 =

N

∑
n=1

λ 2
n f 2

n + ‖Φ‖2
2,

due to the orthonormality of the eigenfunctions.
Some examples illustrate the comments above.
If K(x, t) = xt + 2x2 t2, as in Example 2, then the Fredholm integral equation

of the first kind

cos x =
∫ +2

−2
K(x, t)φ(t)dt =

(∫ +2

−2
tφ(t)dt

)
x+

(∫ +2

−2
2t2φ(t)dt

)
x2

has no solutions, since cos x is not a linear combination of x and x2.
However, the integral equation

4x2 + 3x =
∫ +2

−2
K(x, t)φ(t)dt

has solutions of the form

φ(x) = λ1 f1 φ1(x)+λ2 f2 φ2(x)+Φ(x),

since 4x2 + 3x can be expressed in terms of the eigenvalues λ1 = 5/128 and
λ2 = 3/16, and the eigenfunctions φ1(x) =

√
5x2/8 and φ2(x) =

√
3x/4. Indeed,

since

4x2 + 3x =
32√

5
φ1(x)+

12√
3
φ2(x),

we have f1 = 32/
√

5 and f2 = 12/
√

3. By substituting these values into the
general form of the solution to the integral equation, we obtain

φ(x) =
5

32
x2 +

9
16

x+Φ(x),

where Φ(x) is any continuous function which is orthogonal to both x and x2 on
the interval [−2,+2].

Section 3.3 Exercises

1. (Thought Question) Are the eigenvalues and eigenfunctions of a kernel
dependent on the domain of its definition? Let K(x, t) be a complex-valued,
nonvanishing, continuous, Hermitian kernel, and let 0 < a < b < c. If
Kab(x, t) = K(x, t) on Q(a,b) and Kac(x, t) = K(x, t) on Q(a,c), are the
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eigenvalues and eigenfunctions of Kab(x, t) identical to those of Kac(x, t)? If
two eigenfunctions of Kab(x, t) are orthogonal on the interval [a,b], are they
orthogonal on the interval [a,c]?

2. Recall that the eigenvalues are always arranged in order of increasing magnitude.
Use Example 3 to show that

λ 2
1 ≤ ‖K‖2

2

N
≤ λ 2

N ,

thereby furnishing an upper bound on |λ1| and a lower bound on |λN |.
3. Let {Ln(x)}∞

n=0 denote the mutually orthonormal system of Legendre polynomi-
als described in Sect. 3.1.

(a) Let p(x) be an arbitrary polynomial of degree N. Explain why there must
exist constants pn such that

p(x) =
N

∑
n=0

pn Ln(x),

and derive a formula for each pn.
(b) Solve the integral equation

φ(x) = q(x)+λ
∫ +1

−1
K(x, t)φ(t)dt,

where q(x) = x4 + x2 + 1,

K(x, t) =
4

∑
n=0

Ln(x)Ln(t)
n+ 1

,

and λ is not an eigenvalue of K(x, t).

Hint: Begin by expressing q(x) as a linear combination of Legendre polyno-
mials, as done in part (a).

(c) Solve the Fredholm integral equation of the first kind

x4 + x2 + 1 =

∫ +1

−1
K(x, t)ψ(t)dt,

where K(x, t) is the kernel given in part (b).

3.4 The Hilbert–Schmidt Theorem

The finite bilinear expansions given in Theorem 3.3.1 allowed for the solution of
Fredholm integral equations of the second kind with Hermitian separable kernels.
It is a natural question to ask whether these expansions remain valid if the upper
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index of summation N is replaced with ∞. In general, the response is negative, since
the series

∞

∑
n=1

φn(x)φn(t)
λn

need not converge. However, all is not lost. The crucial theorem for us in this regard
is the Hilbert–Schmidt Theorem stated below.

Although we assume in the Hilbert–Schmidt Theorem that a Fourier series of the
form

g(x)∼∑
n
〈g,φn〉φn(x) =∑

n
gnφn(x)

can be constructed, we do not assume any type of convergence for it. Neither do we
assume that the set of orthonormal eigenfunctions {φn(x)} is complete.

Theorem 3.4.1 (The Hilbert–Schmidt Theorem). Let K(x, t) be a complex-
valued, continuous, Hermitian kernel defined on the square Q(a,b). Suppose that
the kernel K(x, t) has an infinite number of eigenvalues λ1,λ2, . . . and that the
corresponding orthonormal eigenfunctions are φ1(x),φ2(x), . . .

For g ∈R2[a,b], define

f (x) = Kg =

∫ b

a
K(x, t)g(t)dt.

Then, f (x) can be expanded in the absolutely and uniformly convergent Fourier
series

f (x) =
∞

∑
n=1

fn φn(x) =
∞

∑
n=1

gn

λn
φn(x),

where fn = 〈 f ,φn〉 and gn = 〈g,φn〉 are the Fourier coefficients of f (x) and g(x),
respectively. Also, f ∈R2[a,b].

Proof. Since K(x, t) is Hermitian, each λn is real by Proposition 3.2.3. The Fourier
coefficients of f (x) are related to those of g(x), since

fn = 〈 f ,φn〉= 〈Kg,φn〉= 〈g,Kφn〉=
〈

g,
φn

λn

〉
=

1
λn

〈g,φn〉= gn

λn
.

In order to prove the theorem, we will first show that the Fourier series converges
absolutely and uniformly to some function σ(x), and then show that f (x) = σ(x).

To establish absolute and uniform convergence of the Fourier series, we show
that the sequence

σN(x) =
N

∑
n=1

gn

λn
φn(x)
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of its partial sums satisfies the Cauchy criterion. As a consequence of the Cauchy–
Schwarz inequality, we have

∣∣σN+p(x)−σN(x)
∣∣2 =

∣∣∣∣∣
N+p

∑
n=N+1

gn
φn(x)
λn

∣∣∣∣∣
2

≤
(

N+p

∑
n=N+1

g2
n

)(
N+p

∑
n=N+1

|φn(x)|2
λ 2

n

)

≤
(

N+p

∑
n=N+1

g2
n

)(
∞

∑
n=1

|φn(x)|2
λ 2

n

)

for any positive integer p. For N large enough, the first factor on the right can be
made arbitrarily small, since

∞

∑
n=1

g2
n =

∞

∑
n=1

|〈g,φn〉|2 ≤ ‖g‖2
2 <+∞

by Bessel’s inequality and the assumption that g ∈ R2[a,b]. The second factor on
the right is bounded, again as a consequence of Bessel’s inequality. For each fixed
x ∈ [a,b], consider the continuous function kx(s) = K(x,s). The Fourier coefficients
of kx(s) with respect to the orthonormal system {φn(s)} are given by

〈kx,φn〉=
∫ b

a
K(x,s)φn(s)ds =

φn(x)
λn

.

Hence,
∞

∑
n=1

|φn(x)|2
λ 2

n
=

∞

∑
n=1

∣∣〈kx,φn〉
∣∣2 ≤ ‖kx‖2

2 <+∞. (3.2)

Thus, the sequence {σn(x)}∞
N=1 satisfies the Cauchy criterion, implying that there

exists a continuous function σ ∈R2[a,b] such that

σ(x) = lim
N→∞

σn(x).

Now we must show that f (x) = σ(x). To do this, we note that

‖ f −σ‖2 ≤ ‖ f −σN‖2 + ‖σN −σ‖2

as an application of the triangle inequality and that the left-hand side of this
inequality is independent of N. To conclude the proof, it must be shown that
‖σN −σ‖2 → 0 and that ‖ f −σn‖2 → 0 as N →+∞.
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Given an arbitrary ε > 0, there exists an integer Nε such that

|σN(x)−σ(x)|< ε
2
√

b− a

for all N ≥ Nε , since the Fourier series converges uniformly. It follows from this
inequality that

‖σN −σ‖2
2 =

∫ b

a
|σN(x)−σ(x)|2 dx <

ε2

4
,

or that ‖σN −σ‖2 < ε/2 whenever N ≥ Nε .
We turn to ‖ f −σN‖2. Observe first that

f (x)−σN(x) = Kg−
N

∑
n=1

gn

λn
φn(x)

=

∫ b

a
K(x, t)g(t)dt −

N

∑
n=1

〈g,φn〉
λn

φn(x)

=

∫ b

a
K(x, t)g(t)dt −

N

∑
n=1

1
λn

(∫ b

a
g(t)φn(t)dt

)
φn(x)

=

∫ b

a

(
K(x, t)−

N

∑
n=1

φn(x)φn(t)
λn

)
g(t)dt

=

∫ b

a
ΔN+1(x, t)g(t)dt.

We recognize ΔN+1(x, t) here as the truncated, complex-valued, continuous, and
Hermitian kernel defined in the statement of Lemma 3.3.1. If we define the
Hermitian operator

DN+1 : g ∈R2[a,b]→ DN+1 g =

∫ b

a
ΔN+1(x, t)g(t)dt,

then

‖ f −σN‖2
2 = ‖DN+1 g‖2

2 = 〈DN+1 g,DN+1 g〉= 〈g,D2
N+1 g〉.

The operator D2
N+1 is also Hermitian, and it corresponds to the iteration of the

kernel ΔN+1(x, t) with itself. By Lemma 3.3.1, its least eigenvalue is λ 2
N+1, and by

Proposition 3.2.1, we have

1

λ 2
N+1

= max
φ

〈φ ,D2
N+1 φ〉

〈φ ,φ〉 .

For any g ∈R2[a,b], it follows that

1

λ 2
N+1

≥ 〈g,D2
N+1 g〉

〈g,g〉 =
‖ f −σN‖2

2

〈g,g〉 .
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By the Fourth Fredholm Theorem, λN →+∞ as n →+∞. Therefore, there exists an
Mε such that

〈g,g〉
λ 2

N+1

<
ε2

4

for all N ≥ Mε . By combining these two inequalities, we obtain ‖ f −σN‖2 < ε/2
for all N ≥ Mε . The proof is now complete, since

‖ f −σ‖2 ≤ ‖ f −σN‖2 + ‖σN −σ‖2 <
ε
2
+

ε
2
= ε

for all N ≥ max{Nε ,Mε}. But since ε is arbitrary, it must now be the case that
‖ f −σ‖2=0.

Finally, f ∈R2[a,b], since ‖ f‖2 = ‖Kg‖2 ≤ ‖K‖ · ‖g‖2. �

Corollary 3.4.1 (Hilbert’s Formula). Let K(x, t) have the same properties as
stated in Theorem 3.4.1.

If g,h ∈R2[a,b], then

〈Kg,h〉=
∞

∑
n=1

1
λn

〈g,φn〉〈φn,h〉.

In particular, if g = h, then

〈Kg,g〉=
∞

∑
n=1

1
λn

|〈g,φn〉|2.

Proof. Since the Fourier series converges absolutely, it can be integrated term by
term. �

Corollary 3.4.2. Let K(x, t) have the same properties as stated in Theorem 3.4.1.
Then, for m ≥ 2, the iterated kernel Km(x, t) has the bilinear expansion

Km(x, t) =
∞

∑
n=1

φn(x)φn(t)
λm

n
.

Consequently, the trace Am of Km(x, t) is given by

Am =

∫ b

a
Km(x,x)dx =

∞

∑
n=1

1
λm

n
.

Proof. The proof proceeds by induction. For fixed s∈ [a,b], let g(t) =K(t,s). Then,
since λn is real and K(x, t) is Hermitian, the Fourier coefficients of g(t) are computed
to be

gn = 〈g,φn〉=
∫ b

a
K(t,s)φn(t)dt =

∫ b

a
K(s, t)φn(t)dt =

φn(s)
λn

.
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On the one hand, we have

Kg =
∞

∑
n=1

gn

λn
φn(x) =

∞

∑
n=1

1
λ 2

n
φn(x)φn(s),

while on the other hand, we have

Kg =

∫ b

a
K(x, t)K(t,s)dt = K2(x,s).

Hence, the bilinear expansion is valid if m = 2. In this case, it follows from the
theorem that the convergence is absolute and uniform in the variable x for each
fixed s and vice versa.

Now suppose that the expansion is valid if m = 2, . . . ,M. By setting g(t) =
KM(t,s) in the above equations, similar calculations show that the required
expansion is also valid if m = M+ 1.

Actually, for m ≥ 3, the convergence is uniform with respect to both of the
variables x and s. Let p be a positive integer and recall that the eigenvalues are
arranged in order of increasing magnitude. Consider the inequalities

∣∣∣∣∣
N+p

∑
n=N+1

φn(x)φn(s)
λm

n

∣∣∣∣∣
2

≤ 1∣∣λm−2
N+1

∣∣2
(

N+p

∑
n=N+1

∣∣∣∣φn(x)
λn

∣∣∣∣
∣∣∣∣φn(s)

λn

∣∣∣∣
)2

≤ 1∣∣λm−2
N+1

∣∣2
(

∞

∑
n=1

∣∣∣∣φn(x)
λn

∣∣∣∣
∣∣∣∣φn(s)

λn

∣∣∣∣
)2

≤ 1∣∣λm−2
N+1

∣∣2
(

∞

∑
n=1

|φn(x)|2
λ 2

n

)(
∞

∑
n=1

|φn(s)|2
λ 2

n

)

≤ 1∣∣λm−2
N+1

∣∣2 ‖kx‖2
2‖ks‖2

2.

Since the norms of kx and ks are finite by Eq. (3.2) and |λn| → 0 as n → +∞, it
follows that the bilinear series satisfies the Cauchy criterion and therefore converges
absolutely and uniformly on the square Q(a,b). �

Corollary 3.4.3 (Resolvent Kernel). Let K(x, t) have the same properties as stated
in Theorem 3.4.1. Then the resolvent kernel R(x, t;λ ) corresponding to K(x, t) has
the infinite bilinear expansion

R(x, t;λ ) = K(x, t)+λ
∞

∑
n=1

1
λn (λn −λ )

φn(x)φn(t)

which converges absolutely and uniformly if λ �= λn for all n ≥ 1.
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Proof. For x, t ∈ Q(a,b), the resolvent series converges absolutely whenever |λ |<
|λ1| by the Theorem of Successive Approximation stated in Sect. 2.3.

When constructing the bilinear series for the resolvent, one must consider the
fact that the bilinear series for the first term K1(x, t) = K(x, t) need not converge. As
a consequence of the previous corollary, we have

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t)

= K(x, t)+
∞

∑
m=2

λm−1 Km(x, t)

= K(x, t)+
1
λ

∞

∑
m=2

∞

∑
n=1

(
λ
λn

)m

φn(x)φn(t)

= K(x, t)+
1
λ

∞

∑
n=1

[
∞

∑
m=2

(
λ
λn

)m
]
φn(x)φn(t)

= K(x, t)+
1
λ

∞

∑
n=1

[
(λ/λn)

2

1− (λ/λn)

]
φn(x)φn(t)

= K(x, t)+λ
∞

∑
n=1

1
λn (λn −λ )

φn(x)φn(t).

By the Principle of Analytic Continuation, this representational form is actually
valid for all λ �= λn for any n ≥ 1. �


Note that the form of the resolvent in this corollary differs from the form of
the finite bilinear expansion for the resolvent as stated in Theorem 3.3.1(4). This
apparent difference is due to the fact that the series

K(x, t) =
∞

∑
n=1

φn(x)φn(t)
λn

need not converge absolutely and uniformly on Q(a,b). If the convergence were
absolute and uniform, then the inclusion of this representational form results in the
formula

R(x, t;λ ) =
∞

∑
n=1

φn(x)φn(t)
λn −λ

which is the expected analogous representation.
Given this observation, it is of interest to discover a type of kernel with an infinite

bilinear expansion that does converge absolutely and uniformly. Mercer discovered
one such type of kernel.



3.4 The Hilbert–Schmidt Theorem 127

Let K(x, t) be a nonvanishing, complex-valued, continuous Hermitian kernel.
Then K(x, t) is called positive if 〈Kφ ,φ〉 ≥ 0 for all φ ∈ R[a,b]. If, in addition,
〈Kφ ,φ〉 > 0 if and only if 〈φ ,φ〉 > 0, then K(x, t) is called positive definite.1 If
the orthonormal system {φn(x)} is not complete, there may exist a nonvanishing
function φ(x) for which 〈Kφ ,φ〉 = 0.

Positive kernels have some noteworthy properties.

Proposition 3.4.1. Let K(x, t) be a nonvanishing, complex-valued, continuous
Hermitian kernel defined on the square Q(a,b).

If K(x, t) is positive, then the following statements are true:

1. The eigenvalues λn of K(x, t) are all positive.
2. For every x ∈ [a,b], the inequality K(x,x) ≥ 0 holds.
3. The Fredholm operator defined by

DN+1 g(x) =
∫ b

a
ΔN+1(x, t)g(t)dt,

where ΔN+1(x, t) is the truncated kernel

ΔN+1(x, t) = K(x, t)−
N

∑
n=1

φn(x)φn(t)
λn

,

satisfies the properties

DN+1 φ(x) =
∞

∑
N+1

1
λn

〈φ ,φn〉φn(x)

and

〈DN+1φ ,φ〉 =
∞

∑
N+1

1
λn

|〈φ ,φn〉|2

Consequently, ΔN+1(x, t) is a positive kernel.
4. For every N ≥ 1 and x ∈ [a,b], we have

N

∑
n=1

1
λn

|φn(x)|2 ≤ K(x,x).

Proof. 1. If λn Kφn = φn, then λn 〈Kφn,φn〉= 〈φn,φn〉> 0. Thus, λn > 0.
2. The proof proceeds by contradiction. Let c ∈ (a,b), and assume that K(c,c)< 0.

Since K(x, t) is continuous on Q(a,b), there exists a (square) neighborhood

S(c,δ ) = {(x, t) : c− δ ≤ x ≤ c+ δ and c− δ ≤ t ≤ c+ δ}

1This terminology varies slightly in the literature.
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of the point (c,c) ∈ Q(a,b) such that Re{K(x, t)} < 0 on S(c,δ ), provided that
δ is sufficiently small. Define the unit pulse function

p(x;c,δ ) =

⎧⎨
⎩

1, if c− δ ≤ x ≤ c+ δ

0, if a ≤ x < c− δ and c+ δ < x ≤ b.

Since 〈Kp, p〉 is real-valued by Proposition 3.2.1(5), we have

〈Kp, p〉=
∫ b

a

∫ b

a
K(x, t) p(t) p(x)dxdt

=
∫∫

S(c,δ )
Re{K(x, t)}dxdt < 0,

contrary to the assumption that K(x, t) is a positive kernel. We also have
K(a,a)≥ 0 and K(b,b)≥ 0 by a continuity argument.

3. By Lemma 3.3.1, ΔN+1(x, t) is continuous on Q(a,b), and its eigenvalues are the
eigenvalues of K(x, t) for which n≥N+1. If φ ∈R2[a,b], then the representation
for DN+1φ follows from the Hilbert–Schmidt Theorem. The representation for
〈DN+1φ ,φ〉 is then an application of Corollary 3.4.1 (Hilbert’s formula). Since
the eigenvalues λn are positive for n ≥ N + 1, we conclude that ΔN+1(x, t) is a
positive kernel.

4. Since ΔN+1(x, t) is a positive kernel, we have

ΔN+1(x,x) = K(x,x)−
N

∑
n=1

1
λn

|φn(x)|2 ≥ 0.

The result follows directly from this observation. �

We have noted above that the infinite bilinear expansion of a Hermitian kernel

need not converge. However, it is still reasonable to expect that there would exist
conditions under which the infinite bilinear expansion of a Hermitian kernel K(x, t)
would converge, since the Fourier development has the expected form

K(x, t)∼
∞

∑
n=1

φn(x)φn(t)
λn

.

To see this, suppose that

K(x, t)∼
∞

∑
n=1

αn φn(x)

for a fixed value of t. Then,
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αn =

∫ b

a
K(x, t)φn(x)dx

=

∫ b

a
K(t,x)φn(x)dx

=
φn(t)
λn

.

We are now in a position to establish the following result.

Theorem 3.4.2 (Mercer’s Theorem). Let K(x, t) be a nonvanishing, complex-
valued, continuous, Hermitian kernel.

If K(x, t) is positive, then it can be expanded in the infinite bilinear series

K(x, t) =
∞

∑
n=1

φn(x)φn(t)
λn

which converges absolutely and uniformly on Q(a,b).

Proof. By Proposition 3.4.1(4), the infinite series

∞

∑
n=1

1
λn

|φn(x)|2 (3.3)

converges for each x ∈ [a,b], and its sum is no greater than K(x,x).

Note: It is possible that K(x0,x0) = 0 for some value of x0. For example, if φn(x) =
sin(nx), then φn(π) = 0, which directly implies that K(π ,π) = 0. However, it is not
possible for K(x,x) ≡ 0 on the interval [a,b]. If that were the case, then we would
also have φn(x)≡ 0 on [a,b] for all n.

Now let ε > 0 be arbitrary and define

B = max
a≤x≤b

K(x,x).

Since the series (3.3) converges for each x ∈ [a,b], there exists an integer Nx(ε)
depending on x and ε such that

p

∑
n=m

1
λn

|φn(x)|2 < ε
B

(3.4)

for all p ≥ m ≥ Nx(ε).
We now turn to the bilinear series. As an application of the Cauchy–Schwarz

inequality, we have
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∣∣∣∣
p

∑
n=m

φn(x)φn(t)

∣∣∣∣
2

≤
( p

∑
n=m

∣∣∣φn(x)φn(t)
∣∣∣
)2

≤
( p

∑
n=m

1
λn

|φn(x)|2
) ( p

∑
n=m

1
λn

|φn(t)|2
)

≤
( p

∑
n=m

1
λn

|φn(x)|2
)

K(t, t)

<
ε
B
·B

= ε (3.5)

for all p ≥ m ≥ Nx(ε). Thus, for each fixed x ∈ [a,b], the infinite bilinear series
converges uniformly to a function L(x, t) that is continuous with respect to the
variable t.

Next, we wish to show that L(x, t) = K(x, t) on the square Q(a,b). Let φ ∈
R2[a,b]. Then, as a consequence of our previous remarks and the Hilbert–Schmidt
Theorem, we have

∫ b

a
(L(x, t)−K(x, t)) φ(t)dt =

∫ b

a
L(x, t)φ(t)dt −

∫ b

a
K(x, t)φ(t)dt

=

∫ b

a

(
∞

∑
n=1

1
λn

φn(x)φn(t)

)
φ(t)dt −

∞

∑
n=1

1
λn

〈φ ,φn〉φn(x)

=
∞

∑
n=1

1
λn

φn(x)

(∫ b

a
φ(t)φn(x)dt

)
−

∞

∑
n=1

1
λn

〈φ ,φn〉φn(x)

= 0.

In particular, if we choose the continuous function φ(t) = L(x, t)−K(x, t), then we
obtain

‖L(x, t)−K(x, t)‖2
2 =

∫ b

a
|L(x, t)−K(x, t)|2 dt = 0.

Since both L(x, t) and K(x, t) are continuous functions of t on the interval [a,b], it
now follows that L(x, t) = K(x, t) for each fixed x ∈ [a,b]. Hence,

L(x, t) = K(x, t) =
∞

∑
n=1

φn(x)φn(t)
λn

on the square Q(a,b).
It remains to show that the convergence of the bilinear series is uniform in the

variable x. By choosing t = x, we obtain

K(x,x) =
∞

∑
n=1

1
λn

|φn(x)|2. (3.6)
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Since the limit function K(x,x) is continuous on the interval [a,b], this series
converges uniformly there by Dini’s theorem.2 This means that there exists an
integer N(ε) such that the inequality (3.4) holds for all p ≥m ≥N(ε) independently
of x. As a direct consequence, the inequality (3.5) also holds under these conditions.
Thus, the infinite bilinear series converges absolutely and uniformly to K(x, t), and
the proof is complete. �

Corollary 3.4.4. Let K(x, t) have the same properties as stated in Theorem 3.4.2.
Then the trace A1 of the kernel K(x, t) is given by

A1 =

∫ b

a
K(x,x)dx =

∞

∑
n=1

1
λn

.

Theorem 3.4.3. Consider the Fredholm integral equation of the second kind

φ(x) = f (x)+λ
∫ b

a
K(x, t)φ(t)dt,

where the free term f (x) is continuous on the interval [a,b], and the kernel
K(x, t) is nonvanishing, complex-valued, continuous, and Hermitian on the square
Q(a,b). Let λ1,λ2, . . . be the eigenvalues of the kernel arranged in order of
increasing magnitude, and let φ1(x),φ2(x), . . . be the mutually orthonormal system
of eigenfunctions corresponding to them.

If λ is not an eigenvalue of the kernel, then the unique continuous solution φ(x)
to the integral equation has the representation

φ(x) = f (x)+λ
∞

∑
n=1

〈 f ,φn〉
λn −λ

φn(x).

If λ = λk = · · · = λk+r−1 is an eigenvalue of the kernel of multiplicity r with
the corresponding eigenfunctions φk(x), . . . ,φk+r−1, then the integral equation has
solutions if and only if 〈 f ,φ j〉 = 0 for every j = k, . . . ,k + r − 1. In this case, the
solution to the integral equation has the representation

φ(x) = f (x)+λk ∑
j

〈 f ,φ j〉
λ j −λk

φ j(x)+
k+r−1

∑
j=k

c j φ j(x),

where the first sum is taken over the indices j for which λ j �= λk and the constants
c j in the second sum are arbitrary.

2Dini’s theorem states that an increasing sequence of functions that converges pointwise to a
continuous function on a closed interval actually converges uniformly there.
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Proof. Under the given hypotheses, the integral equation can be reformulated as

φ(x) = f (x)+λ
∞

∑
n=1

〈φ ,φn〉
λn

φn(x)

as a consequence of the Hilbert–Schmidt Theorem. Recall that the convergence here
is both absolute and uniform. By taking the inner product of each of the terms in
this equation with φn(x), we directly obtain

〈φ ,φn〉= 〈 f ,φn〉+λ
〈φ ,φn〉

λn

or, equivalently,

〈φ ,φn〉= 〈 f ,φn〉λn

λn −λ
.

The result follows upon substitution.
The solution can be written in an alternate form by replacing 〈 f ,φn〉 with its

integral definition. Since

∞

∑
n=1

〈 f ,φn〉
λn −λ

φn(x) =
∞

∑
n=1

(∫ b

a
f (t)φn(t)dt

)
φn(x)
λn −λ

=

∫ b

a

(
∞

∑
n=1

φn(x)φn(t)
λn −λ

)
f (t)dt

=

∫ b

a
R(x, t;λ ) f (t)dt,

the solution can be written in terms of the resolvent, as was done in the First
Fredholm Theorem, which states that the solution to the integral equation is given by

φ(x) = f (x)+λ
∫ b

a
R(x, t;λ ) f (t)dt.

If λ = λk = · · · = λk+r−1 is an eigenvalue of the kernel of multiplicity r, then
the Third Fredholm Theorem states that the integral equation has solutions if and
only if f (x) is orthogonal to all of the eigenfunctions of the homogeneous adjoint
equation corresponding to λ . These are the eigenfunctions of K(t,x); however, since
K(x, t) is Hermitian, they are the same as the eigenfunctions of K(x, t). Also, by
Proposition 3.2.3, λ is real. Thus, for solutions to exist in this case, it is necessary
and sufficient that 〈 f ,φ j〉= 0 for all j = k, . . . ,k+ r− 1.

If all of these orthogonality conditions are satisfied, then the solution to the
inhomogeneous integral equation has the form

φ(x) = f (x)+λk φ (p)(x;λk)+β φ (h)(x;λk),
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where f (x) + φ (p)(x;λk) is a particular solution to the integral equation, β is
an arbitrary constant, and φ (h)(x;λk) is an arbitrary linear combination of the
eigenfunctions corresponding to λk.

If j is an index for which λ j �= λk, then by forming the scalar product of φ(x)
with φ j(x), we obtain

〈φ ,φ j〉= 〈 f ,φ j〉+λk
〈φ ,φ j〉

λ j

or, equivalently,

〈φ ,φ j〉= λ j

λ j −λk
〈 f ,φ j〉.

By substituting these values, we obtain the first sum in the proposed form of the
solution.

The indices j for which λ j = λk correspond to the second sum in the given
solution which consists of an arbitrary linear combination of the corresponding
eigenfunctions. �


Illustrative Examples

• Example 1: Consider the Fredholm integral equation of the first kind

f (x) =
∫ b

a
K(x, t)φ(t)dt, (3.7)

where f (x) is continuous on the interval [a,b] and the kernel K(x, t) is non-
vanishing, complex-valued, continuous, and Hermitian on the square Q(a,b). In
Example 4 of Sect. 3.3, we observed that any solution to this equation must have
the specific form

φ(x) =
N

∑
n=1

λn 〈 f ,φn〉φn(x)+Φ(x),

where Φ(x) is orthogonal to all N of the eigenfunctions of the separable kernel.
In this example, we assume that the Hermitian kernel K(x, t) has an infinite

number of eigenvalues. If we assume that the integral equation has a solution
φ ∈ R2[a,b], then we can invoke the Hilbert–Schmidt Theorem to reformulate
the integral equation as

f (x) =
∞

∑
n=1

〈φ ,φn〉
λn

φn(x).
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If the mutually orthonormal set {φn(x)}∞
n=1 of eigenfunctions is complete in

R2[a,b], then we can also represent f (x) in the form

f (x) =
∞

∑
n=1

〈 f ,φn〉φn(x).

Consequently, 〈φ ,φn〉= λn 〈 f ,φn〉, and

φ(x) =
N

∑
n=1

λn 〈 f ,φn〉φn(x).

If the set {φn(x)}∞
n=1 of eigenfunctions is not complete, then there exist functions

Φ(x) ∈R2[a,b] for which 〈Φ,φn〉= 0 for all n ≥ 1. But then also 〈Φ, f 〉 = 0, so
that the solution assumes the form

φ(x) =
N

∑
n=1

λn 〈 f ,φn〉φn(x)+Φ(x).

Note that
N

∑
n=1

λ 2
n |〈 f ,φn〉|2 =

N

∑
n=1

|〈φ ,φn〉|2 ≤ ‖φ‖2
2

by Bessel’s inequality. Thus, for a solution to exist, it is not only necessary
for f (x) to be expressible in terms of the eigenfunctions of K(x, t), but it is
also necessary for the Fourier coefficients of f (x) to satisfy a restrictive growth
condition.

In more advanced textbooks, equations of the first kind are considered in
case f (x) is square integrable, either in the sense of Riemann or in the sense
of Lebesgue. We do not consider this possibility here.

It may be possible to solve an integral equation of the first kind even if the
kernel is not Hermitian by using the methods in this section. If we multiply
equation (3.7) by K∗(s,x) and then integrate with respect to x, we obtain

g(s) = K∗ f (s)

=

∫ b

a
K∗(s,x) f (x)dx

=
∫ b

a
K∗(s,x)

(∫ b

a
K(x, t)φ(t)dt

)
dx

=

∫ b

a

(∫ b

a
K∗(s,x)K(x, t)dx

)
φ(t)dt

=

∫ b

a
H(s, t)φ(t)

= Hφ(s).
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If f (x) is continuous, then so is g(s). The composed kernel H(s, t) is a nontrivial,
continuous, Hermitian kernel. (Actually, it is normal.) Denote its eigenvalues
by {νn}∞

n=1 and its corresponding orthonormal eigenfunctions by {ϕn(s)}∞
n=1. If

ϕn = νn Hϕn, then

‖ϕn‖2
2 = 〈ϕn,ϕn〉
= νn 〈Hϕn,ϕn〉
= νn 〈K∗Kϕn,ϕn〉
= νn 〈Kϕn,Kϕn〉
= νn ‖Kφn‖2

2.

Consequently, the eigenvalues of H(s, t) are all positive, i.e., H(s, t) is a positive
kernel.

If φ(x) is a solution of the integral equation (3.7), then it also is a solution of
the equation g(s) = Hφ(s). Consequently, φ(s) can be expressed in terms of the
eigenvalues and eigenfunctions of H(s, t). On the one hand, we have

g(s) =
∞

∑
n=1

〈g,ϕn〉ϕn(s).

On the other hand, we also have

Hφ(s) =
∞

∑
n=1

〈φ ,ϕn〉
νn

ϕn(s).

Consequently, 〈φ ,ϕn〉= νn 〈g,ϕn〉, and

φ(x) =
∞

∑
n=1

〈φ ,ϕn〉ϕn(x) =
∞

∑
n=1

νn 〈g,ϕn〉ϕn(x).

• Example 2: In this example, we show that if the inequality

n

∑
i=1

n

∑
j=1

K(xi,x j)ηi η̄ j ≥ 0

holds for arbitrary xi, with a = x0 < x1 < · · · < xn = b and arbitrary complex
numbers η1, . . . ,ηn, then K(x, t) is a positive kernel. To do so, we review the
concept of the double integral of a continuous function.

Let Δx = Δt = (b − a)/n, and define xi = ti = a+ iΔx. With this partition
of the interval [a,b], the square Q(a,b) can be partitioned into subsquares Qi j =
{(x, t) : xi−1 ≤ x ≤ xi and ti−1 ≤ t ≤ ti}, each of which has area equal to ΔxΔt.
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If F(x, t) is real- or complex-valued and continuous on the square Q(a,b), then
we define the double integral of F(x, t) to be

∫∫
Q(a,b)

F(x, t)dxdt = lim
n→∞

(
n

∑
i=1

n

∑
j=1

F(x∗i , t
∗
j )ΔxΔt

)
,

where the points (x∗i , t
∗
j ) ∈ Qi j can be chosen arbitrarily.

The inner product 〈Kφ ,φ〉 can be written as a double integral. Indeed, we
have

〈Kφ ,φ〉 =
∫ b

a

(∫ b

a
K(x, t)φ(t)dt

)
φ(x)dx

=

∫ b

a

∫ b

a
K(x, t)φ(x)φ(t)dxdt

= lim
n→∞

(
n

∑
i=1

n

∑
j=1

K(x∗i , t
∗
j )φ(x∗i )φ(t

∗
j )ΔxΔt

)
.

If we choose x∗i = xi and ηi = φ(x∗i ) for i = 1, . . . ,n in the assumed condition,
then we can conclude that 〈Kφ ,φ〉 ≥ 0 as required.

The converse to this assertion also holds. A proof by contradiction can be
constructed, although we shall not do so here.

Section 3.4 Exercises

1. Suppose that f (x) is defined and continuous on the interval [−π ,+π ], and that
its definition is extended to be continuous and periodic on the real line R so
that f (x + 2π) = f (x). Suppose further that its derivative f ′(x) is piecewise
continuous on R. If f (x) is even, then it has a Fourier cosine development of
the form

f (x) =
a0

2
+

∞

∑
n=1

an cos(nx)

which converges to f (x) on R. Explain why

an = 2
∫ π

0
f (x) cos(nx)dx

for all n ≥ 0.
2. Assuming that f (x) has the properties as stated in Exercise 1, define the real

symmetric kernel

L(x, t) =
f (x+ t)+ f (x− t)

2

on the square Q(−π ,+π).
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(a) Show that L(x, t) has the double Fourier cosine representation

L(x, t) =
a0

2
+

∞

∑
n=1

an cos(nx) cos(nt)

on the square Q(a,b).
(b) Compute the norm ‖L‖2.
(c) Determine the eigenvalues and eigenfunctions of L(x, t).
(d) Compute the iterated kernels Lm(x, t) of L(x, t), their traces Am, and the

corresponding resolvent kernel RL(x, t;λ ).

3. Assuming that f (x) has the properties as stated in Exercise 1, define the real
symmetric kernel

M(x, t) =
f (x+ t)− f (x− t)

2

on the square Q(−π ,+π).

(a) Show that M(x, t) has the double Fourier sine representation

M(x, t) =
∞

∑
n=1

an sin(nx) sin(nt)

on the square Q(a,b).
(b) Compute the norm ‖M‖2.
(c) Determine the eigenvalues and eigenfunctions of M(x, t).
(d) Compute the iterated kernels Mm(x, t) of M(x, t), their traces Am, and the

corresponding resolvent kernel RM(x, t;λ ).

4. Let f (x) = |x| on the interval [−π ,+π ] and extend its definition to R to be
periodic so that f (x+ 2π) = f (x).

(a) Show that f (x) has the Fourier cosine development

f (x) =
π
2
− 4

π

∞

∑
n=1

1
(2n− 1)2 cos [(2n− 1)x].

(b) Define the real symmetric kernel

L(x, t) =
|x+ t|+ |x− t|

2

on the square Q(−π ,+π). Show that L(x,x) = L(x,−x) = |x| and that
L(x, t) = L(−x, t) = L(x,−t) = L(−x,−t). Deduce from these equations
that L(x, t) has an alternate form L(x, t) = max{|x|, |t|}. Use this informa-
tion to sketch the surface z = L(x, t) above the square Q(−π ,+π). (This
surface resembles an inverted pyramid; the horizontal cross sections are
squares.)
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(c) Determine the infinite bilinear expansion of L(x, t), and discuss its conver-
gence properties on Q(−π ,+π).

(d) What are the eigenvalues and eigenfunctions of L(x, t)?
(e) Compute the iterated kernels Lm(x, t) of L(x, t), their traces Am, and the

corresponding resolvent kernel RL(x, t;λ ).

5. Let f (x) = |x| on the interval [−π ,+π ] and extend its definition to R to be
periodic so that f (x+ 2π) = f (x).

(a) Define the real symmetric kernel

M(x, t) =
|x+ t|− |x− t|

2

on the square Q(−π ,+π). Show that M(x,x) = |x| = −M(x,−x), that
M(x, t) = −M(−x, t) = −M(x,−t) = +M(−x,−t), and that M(0, t) =
M(x,0) = 0. Deduce from these observations that M(x, t) has the alternate
form

M(x, t) =

{
+min{|x|, |t|} if xt ≥ 0

−min{|x|, |t|} if xt ≤ 0.

Use this information to sketch the surface z = M(x, t) above the square
Q(−π ,+π).

(b) Determine the infinite bilinear expansion of M(x, t) and discuss its conver-
gence properties on Q(−π ,+π).

(c) What are the eigenvalues and eigenfunctions of M(x, t)?
(d) Compute the iterated kernels Mm(x, t) of M(x, t), their traces Am, and the

corresponding resolvent kernel RM(x, t;λ ).

6. For −1 < r < 1 and 0 ≤ θ ≤ 2π , define

P(θ ) =
n=+∞

∑
n=−∞

r|n| einθ .

(a) Use the formula for the sum of a geometric series to show that

P(θ ) =
1− r2

1− 2r cos θ + r2 .

(b) Combine the terms of P(θ ) to show also that

P(θ ) = 1+
∞

∑
n=1

2rn cos(nθ ).
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(c) Show that ∫ 2π

0
cos2(nx)dx =

∫ 2π

0
sin2(nx)dx = π ,

and use these facts to show that the set
{
φ0(x) =

1√
2π

}
∪
{
φn(x) =

cos(nx)√
π

, ψn(x) =
sin(nx)√

π

}∞

n=1

is a mutually orthonormal system on the interval [0,2π ].
(d) For 0 ≤ x ≤ 2π and 0 ≤ t ≤ 2π , define the real symmetric kernel

D(x, t) =
1

2π

(
1+

∞

∑
n=1

2rn cos(n(x− t))

)
.

By using a trigonometric identity, convert D(x, t) into the form

D(x, t) =
φ0(x)φ0(t)√

2π
+

∞

∑
n=1

[
φn(x)φn(t)

r−n +
ψn(x)ψn(t)

r−n

]
,

displaying its eigenvalues and eigenfunctions.
(e) Compute the iterated kernels Dn(x, t), their traces, and the resolvent kernel

RD(x, t;λ ).

7. If G(x, t) is an arbitrary real-valued continuous kernel defined on the square
Q(a,b), then the composed kernels

GL(x, t) =
∫ b

a
G(x,s)G(t,s)ds

and

GR(x, t) =
∫ b

a
G(s,x)G(s, t)ds

are real-valued, continuous symmetric kernels. Let GL and GR denote the
Fredholm operators that correspond to GL(x, t) and GR(x, t).

(a) Prove that 〈GLφ ,φ〉 ≥ 0 and that 〈GRφ ,φ〉 ≥ 0, showing that the eigenval-
ues of GL(x, t) and GR(x, t) are positive.

(b) Are the eigenvalues of GL(x, t) equal to the eigenvalues of GR(x, t)?
(c) What can you say about their eigenfunctions? Are they related?

8. In Proposition 3.4.1(1), it was established that all of the eigenvalues of
a nonvanishing, complex-valued, continuous, Hermitian, positive kernel are
positive numbers. Does the converse hold?

9. The kernel K(x, t) is called negative if 〈Kφ ,φ〉 ≤ 0 for all φ ∈R2[a,b]. Explain
why all of the eigenvalues of K(x, t) are negative numbers.
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10. Explain why Mercer’s theorem holds if K(x, t) is a negative kernel.
11. Explain why Mercer’s theorem holds if

(a) All but finitely many of the eigenvalues of K(x, t) are positive.
(b) All but finitely many of the eigenvalues of K(x, t) are negative.

12. Suppose that K(x, t) is a nonvanishing, complex-valued, continuous, and
Hermitian, positive kernel. By Proposition 3.2.1(3), K(x,x) is real, and by
Proposition 3.4.1(2), K(x,x) ≥ 0. By means of an example, show that it is
possible for K(x, t)< 0 if x �= t.

13. Invent a kernel for which the traces A2m+1 = 0 for all m ≥ 0.
14. Let

K(x, t) =

{
1 if 0 ≤ t ≤ x ≤ 1

0 if 0 ≤ x < t ≤ 1.

Clearly, K(x, t) is neither continuous nor Hermitian. Determine K∗(x, t) and
then show that the composed kernel H = K∗K is both continuous and Hermi-
tian.

15. Suppose that a sequence of complex-valued, nonvanishing, continuous, Hermi-
tian, positive kernels converges uniformly to a limit kernel L(x, t) on the square
Q(a,b). Does L(x, t) also have all of these properties as well?

3.5 Numerical Methods

In this section, we discuss some numerical techniques for computing valuable
approximations to the eigenvalues and eigenfunctions of a Hermitian kernel.

3.5.1 The Method of Traces

Lemma 3.2.1 (The Trace Lemma) established some basic facts about the traces of a
kernel and its iterates. In this subsection, we show how to obtain useful inequalities
to estimate the smallest eigenvalue of a kernel.

Proposition 3.5.1. Let K(x, t) be a complex-valued, nonvanishing, continuous
Hermitian kernel, and let Am denote the mth trace of K(x, t). Then

1. For every m ≥ 1, we have

|λ1| ≤
√

A2m

A2m+2
.
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2. The magnitude of the smallest eigenvalue of K(x, t) is given by

|λ1|= lim
m→∞

√
A2m

A2m+2
.

3. For every m ≥ 1, we have

2m

√
g

A2m
≤ |λ1|,

where g is the sum of the geometric multiplicities of +λ1 and −λ1.
4. The magnitude of the smallest eigenvalue of K(x, t) is given by

|λ1|= lim
m→∞

1
2m
√

A2m
.

Proof. Let g+ and g− denote the geometric multiplicities of the eigenvalues +λ1

and −λ1, respectively, and let g = g++ g−. (The geometric multiplicity is equal to
the algebraic multiplicity.) If K(x, t) has more than g eigenvalues, then for m ≥ 1,
the formula for the trace A2m can be rearranged in the form

A2m =
∞

∑
n=1

1
λ 2m

n

=
g

λ 2m
1

[
1+

1
g

∞

∑
n=g+1

(
λ1

λn

)2m
]

=
g

λ 2m
1

(1+ δm) .

1. Since (λ1/λn)
2 < 1 for all n ≥ g + 1, it is clear that {δm}∞

m=1 is a strictly
decreasing sequence of positive numbers which necessarily converges to a limit
δ ≥ 0. (Actually, δ = 0.) The first claim follows directly from the observation that

λ 2
1 ≤ 1+ δm

1+ δm+1
=

A2m

A2m+2
.

2. Consequently,

λ 2
1 = λ 2

1
1+ δ
1+ δ

= λ 2
1 lim

m→∞

1+ δm

1+ δm+1
= lim

m→∞

A2m

A2m+2
.

3. It also follows from the rearrangement above that

2m

√
g

A2m
≤ 2m

√
g(1+ δm)

A2m
= |λ1| ≤ 2m

√
g(1+ δ1)

A2m
.
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4. Since

lim
m→∞

2m
√

g = lim
m→∞

2m
√

g(1+ δ1) = 1,

the result follows from an application of the Squeezing Theorem. �

Unfortunately, the Method of Traces does not produce an eigenfunction that

corresponds to the eigenvalue of smallest modulus.

3.5.2 The Method of Rayleigh and Ritz

In Theorem 3.2.1, it was established that

1
|λ1| = max

φ
|〈Kφ ,φ〉|,

where λ1 is the eigenvalue of smallest modulus of the nonvanishing, complex-
valued, continuous Hermitian kernel K(x, t), and the maximum is taken over all
φ ∈ R2[a,b] for which ‖φ‖2 = 1. Furthermore, it was shown that the maximum
value is attained when φ(x) is an eigenfunction that corresponds to λ1. Thus, if
ψ(x) is not an eigenfunction of the kernel, then |〈Kψ ,ψ〉| is merely a lower bound
for 1/|λ1| of questionable value.

The Method of Rayleigh and Ritz is an effective technique for producing a
relatively accurate lower bound for 1/|λ1| (or equivalently, an upper bound for |λ1|),
as well as a corresponding eigenfunction.

Let Ψ = {ψn(x)}∞
n=1 be a complete, linearly independent set of continuous

functions defined on the interval [a,b] with ‖ψn‖2 = 1 for all n ≥ 1, and let

ψ(x) =
N

∑
n=1

an ψn(x)

be an arbitrary linear combination constructed from the elements of Ψ . If Ψ is not
an orthonormal set, then

‖ψ‖2
2 =

N

∑
m=1

N

∑
n=1

〈ψm,ψn〉am ān,

whereas if Ψ is an orthonormal set, then

‖ψ‖2
2 =

N

∑
n=1

|an|2.

Also,

〈Kψ ,ψ〉=
N

∑
m=1

N

∑
n=1

Kmn am ān,
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where

Kmn =
∫ b

a

∫ b

a
K(x, t)ψm(t)ψn(x)dt dx.

The Method of Rayleigh and Ritz employs these finite linear combinations ψ(x)
in a clever way in order to determine a lower bound for 1/|λ1|. Essentially, if the
quadratic form |〈Kψ ,ψ〉| is maximized over all such ψ(x) subject to the constraint
that ‖ψ‖2 = 1, then the attained maximum value serves as an effective lower bound
for 1/|λ1|, and the coefficients an that yield the attained maximum value can be used
to construct an approximation to an eigenfunction.

In general, several complicating factors may be present:

• The eigenvalue λ1 of smallest modulus may be positive or negative.
• The set Ψ may consist of complex-valued functions.
• The number N of linearly independent functions composing ψ(x) may be large.
• The coefficients an may be complex numbers.
• There may be more than one eigenfunction corresponding to λ1.

Accordingly, we make the following simplifying assumptions:

• The kernel K(x, t) is real symmetric.
• The smallest eigenvalue of K(x, t) is positive.
• The system Ψ is a mutually orthonormal complete system that consists of real-

valued functions.
• The coefficients an are real numbers.
• There is only one eigenfunction corresponding to λ1.

Under these assumptions, we can rephrase our problem in the following way:

Maximize the real quadratic form

F(a1, . . .,aN) =
N

∑
m=1

N

∑
n=1

Kmn am an

subject to the constraint

G(a1, . . . ,aN) =
N

∑
n=1

a2
n −1 = 0.

The Method of Lagrange Multipliers is ideally suited to address this problem. Since
F and G are continuously differentiable on RN and ∇G does not vanish on the
constraint surface, the extreme values of F occur among the solutions of the gradient
equation ∇F = μ ∇G for some auxiliary parameter μ (the multiplier). The fact that
the coefficient matrix K̃ = (Kmn) is real symmetric allows for the reformulation of
the gradient equation as the linear system of N coordinate equations

N

∑
n=1

Kmn an = μ am (m = 1, . . . ,N)
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This system can be recast in matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎝

K11 − μ K12 · · · K1N

K21 K22 − μ · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

a1

a2

...

aN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

or more elegantly as (K̃ − μ I)a = 0. For this homogeneous system to have at
least one nontrivial solution, it is necessary for the determinant det(K̃− μ I) (the
characteristic polynomial of the matrix K̃ of degree N) to vanish. Since K̃ is real
symmetric, all of the zeroes of the determinant are real. Let μ∗

N denote the largest
positive zero of the equation det(K̃− μ I) = 0, and let a∗ = (a∗1, . . . ,a

∗
N) denote a

solution of the system corresponding to μ∗
N . Then,

N

∑
n=1

Kmn a∗n = μ∗
N a∗m (m = 1, . . . ,N)

If we multiply each of these equations by a∗m and then sum them over the index m,
we obtain

F(a∗1, . . . ,a
∗
N) = μ∗

N .

Thus, the multiplier μ∗
N is actually the maximum value of F(a1, . . . ,aN) subject

to the imposed constraint, and this maximum value is attained at each of the
corresponding solutions of the linear system.

Since we assumed for purposes of argumentative simplicity that the smallest
eigenvalue of K(x, t) is positive, it follows from the comments at the beginning
of this subsection that 1/λ1 ≥ μ∗

N or, equivalently, that 1/μ∗
N ≥ λ1, i.e., that 1/μ∗

N
is an approximation (in excess) to λ1. Since we also assumed that there is only one
eigenfunction corresponding to λ1, the function

ψ∗
N(x) =

N

∑
n=1

a∗n ψn(x)

is an approximation to the eigenfunction φ1(x) corresponding to λ1.
It is clear that the sequence {μ∗

N} increases with N. Thus, the decreasing
sequence 1/μ∗

N approximates λ1 with increasing accuracy as N increases. It can
be shown that 1/μ∗

N → λ1 as N → ∞, but we shall not do so here.
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Illustrative Examples

• Example 1: Consider the kernel K(x, t) = ext defined on the square Q(0,1).
In Exercise 3 of Sect. 3.2, it was shown that A1 = 1.462651, A2 = 1.841935,

and A3 = 2.478170, A4 = 3.351554 and that all of the traces of K(x, t) are
positive.

By Proposition 3.5.1(1), we immediately have the upper estimate

|λ1| ≤
√

A2

A4
< 0.741334.

If g1 denotes the sum of the geometric multiplicities of +λ1 and −λ1, then

A4 =
∞

∑
n=1

1
λ 4

n
≥

g1

∑
n=1

1
λ 4

n
=

g1

λ 4
1

.

Hence,

1 ≤ g1 ≤ λ 4
1 A4 < (0.741334)4 (3.351554)< 1.012282,

i.e., g1 = 1. Thus, there is exactly one eigenfunction corresponding to λ1.
By Proposition 3.5.1(3), we now have the lower estimate

0.739074< 4

√
1

A4
≤ |λ1|.

By employing these estimates, we can provide a lower estimate on |λ2|. If g2

denotes the sum of the geometric multiplicities of +λ2 and −λ2, then

1

λ 2
2

≤ g2

λ 2
2

≤ A2 − 1

λ 2
1

< 0.022353,

from which we conclude that |λ2|> 6.688536.
• Example 2: In practice, when one applies the Method of Rayleigh and Ritz, a

judicious choice for the mutually orthonormal system usually leads to accurate
approximations. On the other hand, a poor choice could lead to decidedly
disappointing results.

To illustrate this point, consider the system Ψ = {ψn(x)}∞
n=1, where ψn(x) =√

2 sin(nπx), which is defined on the interval [0,1]. Note that ψn(0) =ψn(1) = 0
for all n ≥ 1. If we set

ψ(x) =
N

∑
n=1

anψn(x),

then ψ(0) = ψ(1) = 0, regardless of the choice of N.
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If φ1(x) is an eigenfunction corresponding to the smallest eigenvalue of some
kernel and it were known beforehand that φ1(0) = φ1(1) = 0, then choosing Ψ
would probably lead to an acceptable approximation to φ1(x). On the other hand,
if it were known in advance that φ1(0) = 1 and φ1(1) = 2, then choosingΨ would
most likely lead to an unacceptable approximation for φ1(x), especially near the
endpoints of the interval.

In general, in the absence of any a priori information about φ1(x), it is
advisable to choose a mutually orthonormal system with the greatest adaptability
over the entire interval of definition. Systems of orthonormal polynomials are
easy to use and lead to accurate approximations.

• Example 3: In Example 1 above, we used the Method of Traces to show that the
smallest eigenvalue λ1 of the kernel K(x, t) = ext satisfies the inequality

0.739074≤ λ1 ≤ 0.741334,

which is actually quite good, considering the fact that it was computed in terms
of only A2 and A4.

In this example, we apply the Method of Rayleigh and Ritz to improve
this estimate. Our application also leads to an excellent approximation to the
corresponding eigenfunction φ1(x), where

φ1(x) = λ1

∫ 1

0
ext φ1(t)dt.

In order to employ their method, we must choose a mutually orthonormal
system of functions defined on the interval [0,1]. In view of Example 2 above, we
choose to construct an orthonormal system of polynomials. An application of the
Gram–Schmidt Orthonormalization Procedure to the set {xn}∞

n=0 of polynomials
produces the requisite system Ψ = {ψn(x)}∞

n=1. The polynomials ψn(x) are
pairwise orthogonal and ‖ψn‖2 = 1 for all n ≥ 1 as required.

The first four elements of Ψ are

ψ1(x) = 1,

ψ2(x) =
√

3(2x− 1),

ψ3(x) =
√

5(6x2 − 6x+ 1),

and

ψ4(x) =
√

7(20x3 − 30x2+ 12x− 1).

The approximation ψ(x) to φ1(x) determined below will be written as a linear
combination of these four polynomials.
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Now that the orthonormal system Ψ has been chosen, the next step is to
compute the entries of the matrix K̃ = (Kmn), where

Kmn =

∫ 1

0

∫ 1

0
ext ψm(x)ψn(t)dxdt.

After these computations have been completed, we find that

K̃ =

⎛
⎜⎜⎜⎜⎜⎝

1.317902 0.205527 0.018360 0.001189

0.205527 0.138880 0.017096 0.001291

0.018360 0.017096 0.005717 0.000625

0.001189 0.001291 0.000625 0.000148

⎞
⎟⎟⎟⎟⎟⎠
.

Note that the matrix K̃ is real symmetric, so that all of its eigenvalues are real.
These eigenvalues are the solutions of the polynomial equation det(K̃−μ I) = 0,
which we determine to be 1.353030, 0.105983,0.003560, and 0.000075, accurate
to six decimal places. If we denote the largest of these eigenvalues by μ∗

4 , then
its reciprocal serves as an upper bound for λ1, i.e., λ1 ≤ 1/μ∗

4 = 1/1.353030 =
0.739081.

By combining this estimate with the lower estimate in Example 1, we obtain
the improved estimate 0.739074≤ λ1 ≤ 0.739081.

Finally, by solving the homogeneous linear system
(
K̃− μ∗

4 I
)

a = 0, we
obtain the coefficients

a∗ = 〈a∗1,a∗2,a∗3,a∗4〉= 〈−0.985817,−0.167096,−0.015555,−0.001033〉.

Hence, the approximation ψ(x) to the eigenfunction φ1(x) is given by

ψ(x) = a∗1 ψ1(x)+ a∗2ψ1(x)+ a∗3ψ3(x)+ a∗4ψ4(x)

=−0.728445− 0.402959x−0.126654x2− 0.054694x3.

To illustrate the accuracy of our calculations, we estimate the residual

η(x) = ψ(x)− 0.739081
∫ 1

0
ext ψ(t)dt

in two ways: We find that ‖η‖∞ = 0.000166 and that ‖η‖2 = 0.000053.
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Section 3.5 Exercises

1. The results discussed in this section illustrate two methods that can be used to
approximate the magnitude of the smallest eigenvalue |λ1| of a kernel and a
corresponding eigenfunction. If λ1 is known and there is exactly one real-valued
eigenfunction φ1(x) corresponding to it, then the truncated kernel

Δ2(x, t) = K(x, t)− φ1(x)φ1(t)
λ1

can be constructed.

(a) Review Lemma 3.3.1 (Kernel structure). Explain why the magnitude of the
smallest eigenvalue of Δ2(x, t) is |λ2|.

(b) Review Theorem 3.2.1. Consider the problem of computing

max
φ

|〈D2φ ,φ〉|

over all φ(x) such that ‖φ‖2 = 1 and 〈φ ,φ1〉 = 0, where D2 is the Fredholm
operator corresponding to the truncated kernel Δ2(x, t). Is the maximum
value attained? If so, for which φ?

(c) Theoretically, can this process of truncation be repeated? If so, can you
approximate |λ3|? |λ4|?

(d) Practically speaking, if this process is repeated several times, what happens
to the numerical accuracy of your approximations?

2. Consider the kernel C(x, t) = cosh(xt).

(a) Follow the procedures illustrated in Example 1 to compute the traces A1, A2,
A3, and A4.

(b) Use the Method of Traces to estimate |λ1|.
(c) Use the Method of Rayleigh and Ritz to estimate |λ1| and φ1(x).

3. Consider the kernel G(x, t) =
1

1+ xt
.

(a) Show that A4 = ‖G‖2
2 = (2π2 ln2− 9ζ (3))/6, where ζ (z) is the Riemann

zeta function. (Refer to Example 7 in Sect. 3.2 and Lemma 3.2.1(2).)
(b) Use the results of Example 7 and part (a) to estimate |λ1|.

4. Consider the kernel

J(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−√
xt ln t if 0 < x ≤ t ≤ 1

−√
xt lnx if 0 < t ≤ x ≤ 1

0 if x = t = 0
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defined on the square Q(0,1). Note that J(x, t)≡ 0 on ∂Q(0,1) and that J(x, t) is
positive on the interior of Q(0,1). Note also that we defined

J(0,0) = lim
(x,t)→(0,0)

J(x, t) = 0

by continuous extension.

(a) Show that

A1 =

∫ 1

0
J(x,x)dx =−

∫ 1

0
x lnxdx = 1

4 .

(b) Compute the iterated kernel J2(x, t).
(c) Compute A2 = ‖J‖2

2 and then check your answer by computing

A2 =

∫ 1

0
J2(x,x)dx.

(d) Compute A4 = ‖J2‖2
2.

(e) Use parts (c) and (d) to estimate the smallest eigenvalue of J(x, t).



Chapter 4
Volterra Integral Equations

In this chapter, our attention is devoted to the Volterra integral equation of the second
kind which assumes the form

φ(x) = f (x)+λ
x∫

a

K(x, t)φ(t)dt. (4.1)

Volterra integral equations differ from Fredholm integral equations in that the upper
limit of integration is the variable x instead of the constant b.

In our analysis, we make the following assumptions:

• The unknown function φ(x) is always assumed to be integrable in the sense of
Riemann, so that the integral equation itself makes sense.

• The free term f (x) is assumed to be complex-valued and continuous on the
interval [a,b].

• The complex constant λ (�= 0) is a parameter.
• The kernel K(x, t) is assumed to be complex-valued and continuous on the

triangle T (a,b) = {(x, t) : a ≤ x ≤ b, a ≤ t ≤ x}. Volterra kernels are always
assumed to satisfy the condition K(x, t) ≡ 0 if x < t, i.e., the kernel vanishes
above the diagonal of the square Q(a,b).

In Sect. 4.1, we present several tools of the trade which are indispensible for the
comprehension of the material in the chapter.

In Sect. 4.2, we revisit the Method of Successive Approximation which can be
applied to produce a solution to the integral equation in the form of a Maclaurin
series with an infinite radius of convergence in the variable λ .

In Sect. 4.3, we show that the Laplace transformation can be used to solve the
integral equation when the kernel assumes the form K(x, t) = k(x− t).

In Sect. 4.4, we treat Volterra integral equations of the first kind.

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 4, © Springer Science+Business Media, LLC 2012
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4.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• The Laplace transform: Not only is the Laplace transform method an extremely
useful tool for solving linear ordinary differential equations, but it is also quite
valuable for solving linear Volterra integral equations of a certain type.

Let f (t) be defined on the interval [0,∞). The Laplace transform of f (t) is
given by the improper integral

L{ f (t)}=
∞∫

0

e−st f (t)dt = lim
A→∞

A∫

0

e−st f (t)dt,

provided that the integral exists. The integral will exist if f (t) is piecewise
continuous on the interval [0,A] for any A, and is of exponential order. (Recall
that a function f (t) is piecewise continuous on an interval [0,A] if it is continuous
there except for a finite number of jump discontinuities. Also, a function f (t) is
of exponential order if there exist constants a, c, and m such that | f (t)| ≤ ceat

for all t ≥ m.)
To illustrate the definition, elementary integrations show that

L{tn}= n!
sn+1 , L{eat}= 1

s− a
, and L{sin(at)}= a

s2 + a2 .

The Laplace transform of the derivatives f (n)(t) of f (t) can be expressed in
terms of the Laplace transform of f (t). The precise formula is

L
{

f (n)(t)
}
= sn L{ f (t)}−

n−1

∑
m=0

f (m)(0)sn−1−m.

This fact is the reason why the Laplace transform can be used to solve linear
ordinary differential equations with constant coefficients.

If f (t) and g(t) are integrable on the interval [0,∞), then the convolution
product of f (t) and g(t) is defined by the integral

( f ∗ g)(t) =

t∫

0

f (t − u)g(u)du.

If L{ f (t)} and L{g(t)} exist, then L{( f ∗ g)(t)}= L{ f (t)}L{g(t)}.
• Differentiation of a multivariable integral: Let F(x, t) be a complex-valued con-

tinuous function on the square Q(a,b). If F(x, t) is a continuously differentiable
function of x, then

d
dx

⎛
⎝

x∫

a

F(x, t)dt

⎞
⎠= F(x,x)+

x∫

a

∂F
∂x

(x, t)dt.
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4.2 The Method of Successive Approximation

Consider the integral equation

φ(x) = f (x)+λ
x∫

a

K(x, t)φ(t)dt

in which the free term f (x) is complex-valued and continuous on the interval [a,b]
and the kernel K(x, t) is complex-valued and continuous on the triangle T (a,b) =
{(x, t) : a ≤ x ≤ b,a ≤ t ≤ x}. It is always assumed that Volterra kernels satisfy the
condition K(x, t) ≡ 0 if x < t, i.e., the kernel vanishes above the diagonal of the
square Q(a,b). If λ = 0, then φ(x) = f (x) is the unique solution to the integral
equation.

If |λ | is small, then it is reasonable to suggest that φ(x) ≈ f (x), i.e., that the
free term is a serviceable zeroth-order approximation φ0(x) to the solution of the
equation, provided that a solution exists.

A first-order approximation φ1(x) to φ(x) is furnished by replacing φ(t) by
φ0(t) = f (t) in the integrand to obtain

φ1(x) = f (x)+λ
x∫

a

K(x, t)φ0(t)dt.

If the integral
x∫

a

K(x, t)φ0(t)dt = 0,

then φ1(x) = f (x) = φ0(x), and the iterative process terminates here. To show that
this eventuality can actually occur, consider the equation

φ(x) = x+λ
x∫

0

(2x− 3 t)φ(t)dt.

If we choose φ0(x) = f (x) = x, then

x∫

0

(2x− 3 t)t dt =

x∫

0

2xt − 3 t2 dt = xt2 − t3
∣∣x
0 = 0.

Hence, φ1(x) = f (x) = x = φ(x) for every value of λ .
If φ1(x) �= φ0(x) = f (x), then a substitution of φ1(t) into the integrand yields the

second-order approximation

φ2(x) = f (x)+λ
x∫

a

K(x, t)φ1(t)dt.
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Continuing in this manner, the nth-order approximation

φn(x) = f (x)+λ
x∫

a

K(x, t)φn−1(t)dt

is obtained, assuming that the integral does not vanish at any step. If the integral
does vanish, then φn(x) = f (x) = φ0(x), and the iterative process fails.

Each approximant {φn(x)} has an alternate form. If we substitute the first-order
approximation into the second-order approximation, then we obtain

φ2(x) = f (x)+λ
x∫

a

K(x, t)

⎡
⎣ f (t)+λ

t∫

a

K(t,s) f (s)ds

⎤
⎦dt

= f (x)+λ
x∫

a

K(x, t) f (t)dt +λ 2

x∫

a

t∫

a

K(x, t)K(t,s) f (s)dsdt

= f (x)+λ
x∫

a

K(x, t) f (t)dt +λ 2

x∫

a

K2(x, t) f (t)dt,

where we have set

K2(x, t) =

x∫

t

K(x,s)K(s, t)ds.

Note that the iterated kernel K2(x, t)≡ 0 if x < t. This is due to the fact that K(x,s)≡
0 whenever x < s and K(s, t) ≡ 0 whenever s < t. Since these s-intervals overlap
whenever x < t, it follows that the integrand differs from zero only when t ≤ s ≤ x.

Additional iterations lead to the general form

φn(x) = f (x)+
n

∑
m=1

λm

⎛
⎝

x∫

a

Km(x, t) f (t)dt

⎞
⎠ , (4.2)

where for each m = 1,2, . . . , we have set

Km(x, t) =

x∫

t

Km−1(x,s)K(s, t)ds.

By induction, each iterated kernel satisfies the condition Km(x, t)≡ 0 if x < t.
The sequence {φn(x)} of continuous approximants converges absolutely and

uniformly on the interval [a,b]. Since we have assumed that K(x, t) is continuous
on the closed triangle T (a,b) and that K(x, t) ≡ 0 if x < t, there exists an M such
that |K(x, t)| ≤ M on the square Q(a,b). Hence,

|K2(x, t)| ≤ M2

∣∣∣∣∣∣
x∫

t

ds

∣∣∣∣∣∣= M2 (x− t)≤ M2 (b− a)
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for t ≤ x. We have already observed that K2(x, t) ≡ 0 if x < t. A short inductive
argument shows that the inequalities

|Km(x, t)| ≤ Mm (x− t)m−1

(m− 1)!
≤ Mm (b− a)m−1

(m− 1)!

hold for all m ≥ 1 and arbitrary x, t ∈ [a,b]. Given these estimates, each term of the
sum in Eq. (4.2) satisfies the inequality

∣∣∣∣∣∣λ
m

x∫

a

Km(x, t) f (t)dt

∣∣∣∣∣∣≤
|λ |m Mm (b− a)m−1

(m− 1)!
‖ f‖1.

Hence, the iterative sequence {φn(x)} of approximants converges absolutely and
uniformly to the continuous solution

φ(x) = f (x)+
∞

∑
m=1

λm

⎛
⎝

x∫

a

Km(x, t) f (t)dt

⎞
⎠

of the integral equation (4.1) for every complex value of λ , as it is dominated by an
absolutely convergent series. Since the order of summation and integration can now
be legitimately interchanged, the form of the solution becomes

φ(x) = f (x)+λ
x∫

a

R(x, t;λ ) f (t)dt,

where we have set

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t).

The infinite series R(x, t;λ ) is known as the resolvent kernel of the integral
equation (4.1), or as the Neumann series.

The solution φ(x) to the integral equation is unique. If there were two solutions,
φ(x) and ˜φ(x), then their difference δ (x) = φ(x)− ˜φ(x) would satisfy the homoge-
neous equation

δ (x) = λ
x∫

a

K(x, t)δ (t)dt.

We show that δ (x) ≡ 0 is the only solution to this integral equation. Let

d2 =

b∫

a

δ 2(x)dx, A2(x) =

x∫

a

K(x, t)dt, and N2 =

b∫

a

A2(x)dx.
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An application of the Cauchy–Schwarz inequality shows that

δ 2(x)≤ |λ |2
⎛
⎝

x∫

a

K2(x, t)dt

⎞
⎠
⎛
⎝

x∫

a

δ 2(t)dt

⎞
⎠≤ |λ |2 A2(x)d2.

After replacing x by t in this inequality and then integrating from a to x, we obtain

x∫

a

δ 2(t)dt ≤ |λ |2
⎛
⎝

x∫

a

A2(t)dt

⎞
⎠ d2.

If we set

B1(x) =

x∫

a

A2(t)dt

and combine the previous two inequalities, we obtain

δ 2(x)≤ |λ |4 d2 A2(x)B1(x).

If we set

B2(x) =

x∫

a

A2(t)B1(t)dt

and repeat this process, we obtain

δ 2(x)≤ |λ |6 d2 A2(x)B2(x).

In general, if we set

Bn(x) =

x∫

a

A2(t)Bn−1(t)dt

and repeat this process indefinitely, we obtain

δ 2(x)≤ |λ |2n+2 d2 A2(x)Bn(x)

for every n ≥ 1. Observe that Bn(a) = 0 for each value of n. Also,

B2(x) =

x∫

a

A2(t)B1(t)dt =

x∫

a

B1(t)B′
1(t)dt =

1
2!

B2
1(x)

for each x ∈ [a,b]. After employing a short inductive argument, we get

Bn(x) =
1
n!

Bn
1(x),
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so that

|Bn(x)| ≤ 1
n!

|B1(x)|n ≤ N2n

n!

for every n ≥ 1. After applying this estimate, we obtain

δ 2(x)≤ |λ |2 d2 A2(x)
(|λ |N)2n

n!

for each x ∈ [a,b] and every n ≥ 1. If n → ∞, we can only conclude that δ (x)≡ 0.
The discussion above serves to establish the following result:

Theorem 4.2.1 (Successive Approximation). Let λ be a complex parameter and
let f (x) be a complex-valued continuous function defined on the interval [a,b]. Let
K(x, t) be a complex-valued continuous kernel defined on the triangle T (a,b), with
K(x, t) ≡ 0 if x < t. Then, for every complex value of λ , the unique continuous
solution to the Volterra integral equation

φ(x) = f (x)+λ
x∫

a

K(x, t)φ(t)dt

is given by

φ(x) = f (x)+λ
x∫

a

R(x, t;λ ) f (t)dt,

where R(x, t;λ ) is the unique resolvent kernel

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t).

One notable consequence of this theorem is that φ(x) ≡ 0 if f (x)≡ 0.
Another notable consequence is that Volterra kernels have no eigenvalues, since

the resolvent series is an entire function of λ .
The magnitude of the error due to the use of the approximant φn(x) in estimating

the solution φ(x) can be uniformly estimated by using the same estimate established
within the proof. For each x ∈ [a,b], we have

|φ(x)−φn(x)| ≤ |λ |M‖ f‖1

∞

∑
m=n

[|λ |M (b− a)m]

m!
.

The sum on the right can be estimated by Lagrange’s form of the remainder for the
exponential series. In doing so, we obtain the uniform estimate

‖φ(x)−φn(x)‖∞ ≤ eb [|λ |M (b− a)]n

n!
.

Thus, the magnitude of the error will be as small as desired, provided that n is large
enough.
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The Method of Successive Approximation firmly establishes the equivalence
between solving a Volterra integral equation of the second kind and computing the
resolvent kernel R(x, t;λ ) from the given kernel K(x, t). The following examples
demonstrate this equivalence.

Illustrative Examples

• Example 1: Consider the linear Volterra integral equation

φ(x) = f (x)+λ
x∫

0

xt φ(t)dt.

An elementary integration shows that

K2(x, t) =

x∫

t

x s · st ds = xt

(
x3 − t3

3

)
.

An inductive argument shows that in general, we have

Km(x, t) =
xt

(m− 1)!

(
x3 − t3

3

)m−1

.

Thus, the resolvent kernel is

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t) = xt exp

{
λ
(

x3 − t3

3

)}
.

As a consequence of the theorem, the solution to the integral equation is

φ(x) = f (x)+λ
x∫

0

xt exp

{
λ
(

x3 − t3

3

)}
f (t)dt.

In particular, if f (x) = x and λ = 1, then the solution to the equation

φ(x) = x+

x∫

0

xt φ(t)dt

is

φ(x) = x+

x∫

0

xt exp

{(
x3 − t3

3

)}
t dt = xex3/3.
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• Example 2: If a kernel has the simple separable form K(x, t) = a(x)b(t), then its
iterated kernels are easily computed. Indeed,

K2(x, t) =

x∫

t

a(x)b(s)a(s)b(t)ds

= K(x, t)

x∫

t

K(s,s)ds

= K(x, t)(L(x)−L(t)),

where L(s) is any antiderivative of K(s,s). Another iteration shows that

K3(x, t) = K(x, t)
(L(x)−L(t))2

2!
.

A short inductive argument shows that in general

Kn(x, t) = K(x, t)
(L(x)−L(t))n−1

(n− 1)!
.

Consequently, the resolvent kernel is given by

R(x, t;λ ) = K(x, t) exp{λ (L(x)−L(t))} .
Note that all of the iterated kernels and the resolvent kernel are also separable.
Thus, the solution to the integral equation

φ(x) = f (x)+λ
x∫

0

a(x)b(t)φ(t)dt

takes the form

φ(x) = f (x)+λ
x∫

0

a(x)b(t) exp{λ (L(x)−L(t))} f (t)dt.

In the previous example, K(x, t) = xt. By using this method, we compute the
antiderivative

L(s) =
∫

K(s,s)ds =
∫

s2 ds =
s3

3
,

so that

R(x, t;λ ) = xt exp

{
λ
(

x3 − t3

3

)}
,

which is exactly what had been previously obtained.
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For another example of the utility of this method, consider the simple kernel
K(x, t) = ex−t . Since K(s,s) = 1, L(s) = s. Therefore, the resolvent kernel is
given by

R(x, t;λ ) = ex−t eλ (x−t) = e(λ+1) (x−t).

• Example 3: Consider the linear Volterra integral equation

φ(x) = f (x)+λ
x∫

0

1
1+ x

φ(t)dt.

Since K(s,s) = 1/(1+ s), L(s) = ln(1 + s). Following the prescription in the
previous example, we get

R(x, t;λ ) =
1

1+ x
eλ (L(x)−L(t)) =

1
1+ x

(
1+ x
1+ t

)λ
.

Therefore, the solution to the integral equation is

φ(x) = f (x)+λ
x∫

0

1
1+ x

(
1+ x
1+ t

)λ
f (t)dt.

In particular, if f (x) = 1, then a routine integration gives

φ(x;λ ) =
1−λ (1+ x)λ−1

1−λ
,

if λ �= 1. An application of l’Hôpital’s rule gives φ(x;1) = 1+ lnx as λ → 1, and
this solution can be independently verified.

• Example 4: Consider the linear Volterra integral equation

φ(x) = f (x)+ μ2

x∫

0

(x− t)φ(t)dt.

An elementary integration shows that

K2(x, t) =

x∫

t

(x− s)(s− t)ds =
1
3!

(x− t)3.

An inductive argument shows that in general, we have

Km(x, t) =
1

(2m− 1)!
(x− t)2m−1.



4.2 The Method of Successive Approximation 161

The resolvent kernel is

R(x, t;λ ) =
∞

∑
m=1

μ2(m−1)Km(x, t)

=
1
μ

∞

∑
m=0

1
(2m+ 1)!

(μ(x− t))2m+1

=
1
μ

sinh(μ(x− t)).

As a consequence of the theorem, the solution to the equation is

φ(x) = f (x)+ μ
x∫

0

sinh(μ(x− t)) f (t)dt.

• Example 5: In the proof of the theorem, the initial approximant φ0(x) was chosen
to be f (x). However, if the integration necessary to compute φ1(x) is difficult,
then an alternate choice for φ0(x) may be more practicable—the process of
integration may be less difficult, or the rate of convergence may be accelerated.
The purpose of this example is to illustrate a nice technique by which this can be
accomplished.

Suppose that we wish to compute a sequence {φn(x)} of approximants to the
solution to the Volterra integral equation

φ(x) = 1+

x∫

0

1
1− 2xt+ t2 φ(t)dt

on the interval [0, 1
2 ]. If we choose φ0(x) = 1, then a straightforward integration

gives

φ1(x) = 1+
1√

1− x2
arctan

(
x√

1− x2

)
.

Since computing φ2(x) would be prohibitively difficult, we seek a better choice
for φ0(x).

Note first that φ(0) = 1. If we apply the tool for differentiating an integral that
was described in Sect. 4.1, then we obtain

φ ′(x) =
1

1− x2 φ(x)+
x∫

0

2t
(1− 2xt+ t2)2 φ(t)dt,

from which we obtain φ ′(0) = 1. If we differentiate the integral equation twice
more, then we obtain φ ′′(0) = 1 and φ ′′′(0) = 5. Thus, the first four terms of the
Maclaurin series for the solution are

φ(x) = 1+ x+
1
2

x2 +
5
6

x3 + · · ·
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As a zeroth approximant to the solution φ(x), we choose

ψ0(x) = φ(x) = 1+ x+
1
2

x2 +
5
6

x3.

Now let P7(x, t) denote the seventh partial sum of the kernel 1/(1− 2xt + t2).
Then

P7(x, t) = 1+ 2xt+(4x2 − 1)t2 +(8x3 − 4x)t3

+(16x4 − 12x2+ 1)t4 +(32x5 − 32x3 + 6x)t5

+(64x6 − 80x4+ 24x2 − 1)t6 +(128x7− 192x5+ 80x3 − 8x)t7.

Since P7(x, t) agrees with the kernel up to the power t7, we can replace the kernel
with P7(x, t) in our calculations to obtain

ψ1(x) = 1+ x+
1
2

x2 +
5
6

x3 +
5
8

x4 +
41
60

x5 +
101
180

x6 +
25
42

x7 +O
(
x8
)

ψ2(x) = 1+ x+
1
2

x2 +
5
6

x3 +
5
8

x4 +
97

120
x5 +

27
40

x6 +
143
180

x7 +O
(
x8
)

ψ3(x) = 1+ x+
1
2

x2 +
5
6

x3 +
5
8

x4 +
97

120
x5 +

167
240

x6 +
227
280

x7 +O
(
x8
)

ψ4(x) = 1+ x+
1
2

x2 +
5
6

x3 +
5
8

x4 +
97

120
x5 +

167
240

x6 +
1367
1680

x7 +O
(
x8
)
.

Each approximant ψn(x) is a polynomial. The fifth approximant ψ5(x) agrees
with ψ4(x) up to the term containing x7. These approximants will agree with φ(x)
up to the term containing x7, since the approximate kernel P7(x, t) agrees with the
kernel that far. If the last three approximants are plotted in the same plane, their
graphs are indistinguishable to the naked eye. A painstaking technical analysis
would reveal that the errors involved here are quite small on the interval [0, 1

2 ].
• Example 6: Consider the Volterra integral equation

φ(x) = (1+ x2)2 +λ
x∫

0

1+ x2

1+ t2 φ(t)dt.

Note that if λ = 0, then φ(x;0) = (1+ x2)2.
If we utilize the technique in Example 2 to compute the corresponding

resolvent kernel, then the solution to the integral equation assumes the form

φ(x;λ ) = (1+ x2)2 +λ
x∫

0

1+ x2

1+ t2 eλ (x−t) (1+ t2)2 dt

=
1+ x2

λ 2

[
(2+λ 2)eλ x − 2(1+λx)

]
.
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At first glance, it would appear that this solution is undefined at λ = 0; however,
after two applications of l’Hôpital’s rule, we find that

lim
λ→0

φ(x;λ ) = φ(x;0).

There is another way to evaluate this limit. Since the Maclaurin expansion for the
solution is given by

φ(x;λ ) = (1+ x2)

[
1+λx+

1
2
(2+λ 2)x2 +

1
6
λ (1+λ 2)x3

+
1

24
λ 2(2+λ 2)x4 +

1
120

λ 3(2+λ 2)x5 +O(x6)

]
.

it again follows that φ(x;λ )→ φ(x;0) as λ → 0.

Section 4.2 Exercises

1. The Theorem of Successive Approximation was proven assuming that f (x) is
continuous on the interval [a,b] and that K(x, t) is continuous on the square
Q(a,b). The resolvent kernel will converge absolutely and uniformly under
weakened hypotheses. Investigate the sequence φn(x) and the convergence of
the resolvent series if neither f (x) nor K(x, t) is necessarily continuous, but

(a) ‖ f‖1 <+∞ and K(x, t) is bounded.
(b) ‖ f‖2 <+∞ and ‖K‖2 <+∞.

State and prove two theorems analogous to the Theorem of Successive Approxi-
mation in these cases.

2. By using its series representation, show that the resolvent kernel satisfies the
integral equation

R(x, t;λ ) = K(x, t)+λ
x∫

t

K(x,s)R(s, t;λ )ds

for all complex values of λ .
3. For each of the given kernels, compute the corresponding resolvent kernels by

following the prescription given in Example 2:

(a) A(x, t) =
√

cos x cos t
(b) B(x, t) =

√
sin x sin t

(c) C(x, t) =
√

tanx tant
(d) D(x, t) = 1/

√
xt

(e) E(x, t) = x3 t3



164 4 Volterra Integral Equations

(f) F(x, t) = (3x+ 1)/(3t+ 1)2

(g) G(x, t) = 2sin xcos t
(h) H(x, t) = lnx/ lnt

4. Consider the Volterra integral equation

φ(x) =
1

1+ x2 +λ
x∫

0

t
1+ x2 φ(t)dt.

Follow the prescription given in Example 2, to show that the resolvent kernel is
given by

R(x, t;λ ) =
t

1+ x2

(
1+ x2

1+ t2

)λ/2

.

Use this representation to show that the solution is given by

φ(x) =
(
1+ x2)(λ−2)/2

.

Sketch the solution for various values of λ .
5. Use the results of Problem 3 to solve the following integral equations:

(a) φ(x) = cos1/2 x+λ
x∫

0

√
cos x

√
cos t φ(t)dt

Answer: φ(x) =
√

cos xeλ sin x.

(b) φ(x) = sin1/2 x+λ
x∫

0

√
sin x

√
sin t φ(t)dt

Answer: φ(x) =
√

sin xe−λ cos x.

(c) φ(x) =
√

sin x+ 1
2

x∫
0

√
tanx

√
tan t φ(t)dt

Answer: φ(x) =
√

sin x+ 1
2

√
tanx

√
secx

(
1
2 − 1

2 cos x
)
.

(d) φ(x) = xn +λ
x∫

1
(1/

√
xt)φ(t)dt

Answer: If λ �= n+ 1
2 , then φ(x) =

(n+ 1
2)xn −λ xλ−1/2

n+ 1
2 −λ

.

If λ = n+ 1
2 , then φ(x) = xn +(n+ 1

2 )xn lnx.
In this problem, what is the effect of changing the lower limit of

integration from 1 to 0?

(e) φ(x) = x3 +λ
x∫

0
x3 t3 φ(t)dt

Answer: φ(x) = x3 exp
{
λ x7

}
.
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(f) φ(x) = 1+λ
x∫

0

3x+ 1
(3t + 1)2 φ(t)dt

Answer: If λ �=−3, then φ(x) =
3+λ (3x+ 1)(λ+3)/3

3+λ
.

If λ =−3, then φ(x) = 1− ln(3x+ 1).

(g) φ(x) = sin x+λ
x∫

0
2 sin x cos t φ(t)dt

Answer: φ(x) = sin x exp
{
λ sin2 x

}
.

(h) φ(x) = lnx+λ
x∫
e
(lnx/ ln t)φ(t)dt

Answer: φ(x) = lnx exp{λ (x− e)}.

6. Explain why, without loss of generality, the lower limit a of integration in an
integral equation can be replaced with zero if so desired.

7. In the proof of the Theorem of Successive Approximation, we chose φ0(t)= f (t).
What happens to the sequence {φn(x)} if we choose otherwise, for instance, if
we choose φ0(x) to be a partial sum of the series representation for φ(x)? Does
the sequence of approximants still converge? Use Example 5 as a guide in your
investigation.

8. Consider the Volterra integral equation

φ(x) = 1+

x∫

0

(x2 − t2)φ(t)dt.

(a) Choose φ0(x) = 1. Show that the next three successive approximants to the
solution of the equation are

φ1(x) = 1+
2
3

x3

φ2(x) = 1+
2
3

x3 +
1

12
x6

φ3(x) = 1+
2
3

x3 +
1

12
x6 +

1
378

x9.

(b) Prove by induction that φn(x) is a polynomial in x3 for every n ≥ 1.
(c) Explain why φ(x) is a function of x3.
(d) Substitute the power series

φ(x) =
∞

∑
n=0

an x3n
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into the integral equation and deduce that

an+1 =
2

(3n+ 1)(3n+ 3)
an

for every n ≥ 0.
(e) With a0 = φ(0) = 1, solve this recurrence relation for an in terms of n.
(f) The modified Bessel function Iν(t) of the first kind of order ν has the series

representation

Iν(t) =
∞

∑
m=0

1
22m+ν m!Γ(m+ν+ 1)

x2m+ν ,

where Γ(x) is Euler’s gamma function. Use the identity Γ(m + ν) =
(ν)m Γ(ν) to show that the solution to the integral equation is

φ(x) =
21/3 Γ

( 1
3

)
32/3

xI−2/3

(
23/2 x3/2

3

)
.

4.3 Convolution Kernels

If the kernel K(x, t) of a Volterra integral equation is a function of the difference
x− t, i.e., if K(x, t) = k(x − t) for some function k, then it is called convolution
kernel.

If K(x, t) is a convolution kernel, then the computed iterated kernels and the
resolvent kernel are also convolution kernels. To see that this is true, suppose that
K(x, t) =K1(x, t) = k1(x− t) for some function k1. Then a simple change of variable
(u = s− t) shows that the iterated kernel

K2(x, t) =

x∫

t

k1(x− s)k1(s− t)ds

=

x−t∫

0

k1((x− t)− u)k1(u)du

= k2(x− t)

for some function k2. An inductive argument shows that Km(x, t) = km(x− t) for
some function km, so that
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R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t)

=
∞

∑
m=1

λm−1 km(x− t)

= r(x− t;λ )

for some function r(x;λ ).
The Laplace transform of r(x;λ ) can be expressed in terms of the Laplace

transform of k(x). According to the Theorem of Successive Approximation, the
solution to the equation

φ(x) = f (x)+λ
x∫

0

k(x− t)φ(t)dt (4.3)

has the representation

φ(x) = f (x)+λ
x∫

0

r(x− t;λ ) f (t)dt. (4.4)

Note that if L{k(x)} and L{φ(x)} exist, then

L
⎧⎨
⎩

x∫

0

k(x− t)φ(t)dt

⎫⎬
⎭= L{(k ∗φ)(x)}= L{k(x)}L{φ(x)}.

Applying the Laplace transform to Eq. (4.3), we get

L{φ(x)} = L{ f (x)}+λ L{k(x)}L{φ(x)}, (4.5)

and applying the Laplace transform to Eq. (4.4), we get

L{φ(x)} = L{ f (x)}+λ L{r(x;λ )}L{ f (x)}. (4.6)

By eliminating L{φ(x)} and L{ f (x)} from Eqs. (4.5) and (4.6), we obtain

L{r(x;λ )} = L{k(x)}
1−λ L{k(x)} , (4.7)

from which r(x;λ ) can be determined.
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The Laplace transform can be used to solve Volterra integral equations with
convolution kernels of the form (4.3). By solving Eq. (4.5) for L{φ(x)}, we obtain

L{φ(x)} = L{ f (x)}
1−λ L{k(x)} .

The solution to the integral equation is the inverse Laplace transform of the right-
hand side of this equation.

Illustrative Examples

• Example 1: Consider the integral equation

φ(x) = 2+λ 4

x∫

0

(x− t)3

3!
φ(t)dt.

After applying the Laplace transform to this equation and then solving for
L{φ(x)}, we obtain

L{φ(x)}= 2s3

s4 −λ 4

=
1
2

1
s−λ

+
1
2

1
s+λ

+
s

s2 +λ 2 .

After inverting each of these terms, we obtain

φ(x) = 1
2 eλ t + 1

2 e−λ t + cos(λ t) = cosh(λ t)+ cos(λ t),

which is the unique solution to the integral equation for all values of λ .
• Example 2: For real values of λ , consider the integral equation

φ(x) = f (x)+λ
x∫

0

sin(x− t)φ(t)dt.

Since L{sin(x)} = 1/(s2 + 1), an application of formula (4.7) above shows that
L{r(x;λ )} = 1/(s2 + 1−λ ). The solution to this integral equation is

φ(x) = f (x)+λ
x∫

0

r(x− t;λ ) f (t)dt,



4.3 Convolution Kernels 169

where

r(x;λ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin(
√

1−λ x)√
1−λ

, if −∞< λ < 1;

x, if λ = 1;
sinh(

√
λ − 1x)√

λ − 1
, if 1 < λ <+∞.

Note that the structural form of the solution changes near λ = 1, but that

lim
λ→1−

r(x;λ ) = r(x;1) = lim
λ→1+

r(x;λ ).

• Example 3: Consider the integral equation

φ(x) = sin(2x)+ μ2

x∫

0

(x− t)φ(t)dt.

After applying the Laplace transform to this equation and then solving for
L{φ(x)}, we obtain

L{φ(x)} = 2s2

(s2 − μ2)(s2 + 4)

=
μ

μ2 + 4
1

s− μ
− μ

μ2 + 4
1

s+ μ
+

4
μ2 + 4

2
s2 + 4

.

After inverting each of these terms, we obtain

φ(x;μ) =
μ

μ2 + 4
eμx − μ

μ2 + 4
e−μx +

4
μ2 + 4

sin(2x)

=
2μ

μ2 + 4
sinh(μx)+

4
μ2 + 4

sin(2x),

which is the unique solution to the integral equation above provided that μ �=±2i.
If μ =±2i or μ2 =−4, then

lim
μ→±2i

φ(x;μ) = x cos(2x)+
1
2

sin(2x) = φ(x;±2i).

The last equality is justified here, since it can be independently verified as the
unique solution to the equation when μ =±2i. Thus, the solution to this equation
is a continuous function of the parameter μ .
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This equation can be solved by another method. Since L{k(x)} = 1/s2, an
application of formula (4.7) gives L{r(x;μ2)} = 1/(s2 − μ2), so that r(x;μ2) =
sinh(μ(x))/μ . Hence, the solution to the integral equation takes the form

φ(x;μ) = sin(2x)+ μ
x∫

0

sinh(μ(x− t)) sin(2t)dt,

which is equivalent to the solution obtained above.

Section 4.3 Exercises

1. Let F(x, t) be a complex-valued continuous function that is defined on the square
Q(a,b) and is continuously differentiable with respect to x. Justify the following
limiting processes:

d
dx

⎛
⎝

x∫

a

F(x, t)dt

⎞
⎠= lim

h→0

⎡
⎣1

h

⎛
⎝

x+h∫

a

F(x+ h, t)dt−
x∫

a

F(x, t)dt

⎞
⎠
⎤
⎦

= lim
h→0

⎡
⎣1

h

x+h∫

x

F(x+ h, t)dt

⎤
⎦

+ lim
h→0

⎡
⎣

x∫

a

(
F(x+ h, t)−F(x, t)

h

)⎤
⎦

= F(x,x)+

x∫

a

∂F
∂x

(x, t)dt.

2. Consider the Volterra integral equation

φ(x) = a+ bx+λ
x∫

0

[c+ d(x− t)]φ(t)dt,

where a,b,c, and d are arbitrary constants. Categorize all possible solutions to
this integral equation.

Hint: Show that

L{φ(x)} = as+ b
s2 −λcs−λd

.

What are all possible partial fraction decompositions of this transform?
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3. Solve each of the following integral equations:

(a) φ(x) = 3+ 4x+
x∫
0
[2− (x− t)]φ(t)dt

Answer: φ(x) = (3+ 7x)ex.

(b) φ(x) = 3+ 4x+
x∫
0
[2− 2(x− t)]φ(t)dt

Answer: φ(x) = ex (3 cos x+ 7 sin x).

4. Consider the Volterra integral equation

φ(x) = a+ bx+ cx2+λ
x∫

0

[d+ e(x− t)+ f (x− t)2]φ(t)dt,

where a,b,c,d,e, and f are arbitrary constants. Categorize all possible solutions
to this integral equation. Generalize your result to all integral equations with
kernels of the form

K(x, t) =
n

∑
k=0

ak

k!
(x− t)k.

5. Solve each of the following integral equations:

(a) φ(x) = 1− x− x2+
∫ x

0

(
2− (x− t)+ (x− t)2

)
φ(t)dt

Answer: φ(x) = cos x+ sin x.
(b) φ(x) = 1+ x2+

∫ x
0

(
1− 2(x− t)+ (x− t)2

)
φ(t)dt

Answer: φ(x) = ex.
(c) φ(x) = 1− x+

∫ x
0

(
3− 4(x− t)+ (x− t)2

)
φ(t)dt

Answer: φ(x) = ex(sin x+ cos x).

6. Solve each of the following integral equations:

(a) φ(x) = sin x+
∫ x

0 φ(t)dt

Hint: Since the kernel K(x, t)≡ 1, it is trivially a convolution kernel.
Answer: φ(x) = 1

2 (e
t + sin t − cos t).

(b) φ(x) = eax +λ
∫ x

0 eb(x−t) φ(t)dt
Answer: If λ �= a− b, then

φ(x;λ ) =
(a− b)eax−λ e(b+λ )x

a− b−λ
.

If λ = a− b, then φ(x;a− b) = eax [1+(a− b)x].
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(c) φ(x) = 1+ 7
4

∫ x
0 sin(4(x− t))φ(t)dt

Answer: φ(x) = 1
9 (16− 7 cos(3x)).

(d) φ(x) = coshx+ 3
∫ x

0 sinh(x− t)φ(t)dt
Answer: φ(x) = cosh(2x).

(e) φ(x) = ex + μ2 ∫ x
0 (x− t)ex−t φ(t)dt

Answer: φ(x) = ex cosh(μx).
(f) φ(x) = sin x+

√
5
∫ x

0 cos(x− t)φ(t)dt

Answer: φ(x) = 2ex
√

5/2 sinh(x/2).
(g) φ(x) = x+ 216

∫ x
0 (x− t)3φ(t)dt

Answer: φ(x) = 1
12 [sinh(6x)+ sin(6x)].

(h) Let n be a positive integer. Solve the integral equations

φ(x) = 1
k! xk + 1

n!

x∫

0

(x− t)nφ(t)dt.

Hint: Solve these equations for n = 1,2, and 3 and then generalize your
results.

4.4 Equations of the First Kind

The Volterra integral equation of the first kind is an equation of the form

x∫

a

K(x, t)φ(t)dt = f (x). (4.8)

In order to guarantee the existence of a unique continuous solution φ(x) to this
integral equation on the interval [a,b], we require that f (x) be continuous on that
interval and that K(x, t) be continuous on the triangle T (a,b). A simple example
illustrates the continuity requirement.

Consider the Volterra integral equation

x∫

0

tx−t φ(t)dt = f (x).

The kernel K(x, t) = tx−t is continuous on the triangle T (0,b). If f (x) ≡ 0 on the
interval [0,b], then φ(x)≡ 0 is clearly the unique solution to the equation. However,
if f (x) = xx−1, then f (x) is continuous on the interval (0,b], but f (0) is undefined
since f (x) = O(1/x) as x → 0. Since we have
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x∫

0

tx−t tt−1 dt =
tx

x

∣∣∣∣
x

t=0
= xx−1,

the solution φ(x) = xx−1 to the given integral equation is continuous on (0,b].
Two of the standard analytical approaches to the resolution of a Volterra integral

equation of the first kind with a general kernel involve its reduction to an integral
equation of the second kind.

The first approach depends upon the the differentiation tool supplied in Sect. 4.1
that can be directly applied to obtain

K(x,x)φ(x)+
x∫

a

∂K(x, t)
∂x

φ(t)dt = f ′(x). (4.9)

If K(x,x) does not vanish on the interval [a,b], then this equation can always be
reformulated as an equation of the second kind in the form

φ(x) =
f ′(x)

K(x,x)
−

x∫

a

[
∂K(x, t)

∂x
/K(x,x)

]
φ(t)dt.

The Theorem of Successive Approximation in Sect. 4.2 assures that this equation
has a unique continuous solution φ(x) on the interval [a,b], provided that f ′(x) is
continuous on the interval [a,b] and that ∂K(x, t)/∂x is continuous on the triangle
T (a,b). Since Eq. (4.9) was obtained from Eq. (4.8) by the process of differentiation,
Eq. (4.8) can be obtained from Eq. (4.9) by an integration and the additional fact that
f (a) = 0.

The second approach depends upon the elementary technique commonly known
as integration by parts. If we set

Φ(x) =

x∫

a

φ(t)dt,

then Φ(a) = 0 and Φ′(x) = φ(x). After applying this procedure to the integral in
Eq. (4.8), we obtain

K(x,x)Φ(x) = f (x)+

x∫

a

∂K(x, t)
∂ t

Φ(t)dt.

If K(x,x) does not vanish on the interval [a,b], then this equation can always be
reformulated as

Φ(x) =
f (x)

K(x,x)
+

x∫

a

[
∂K(x, t)

∂ t
/K(x,x)

]
Φ(t)dt.
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The Theorem of Successive Approximation assures us that this equation has a
unique continuous solution Φ(x) on the interval [a,b] that can be differentiated to
obtain φ(x), provided that ∂K(x, t)/∂ t is continuous on the triangle T (a,b).

The success of these two approaches depends upon the assumption that K(x,x)
does not vanish on the interval [a,b]. For example, if K(x, t) = cos(x − t), then
K(x,x)≡ 1.

However, if K(a,a) = 0 or if K(xi,xi) = 0 at isolated points within the interval
[a,b], then these techniques cannot be employed.

Note: A Volterra integral equation of the general form

A(x)φ(x) = f (x)+

x∫

a

K(x, t)φ(t)dt,

where A(x) vanishes at isolated points within the interval [a,b], was referred to
by Picard as a Volterra integral equation of the third kind. The analysis of these
equations is especially delicate and will not be considered in this text.

Another possibility is that K(x,x) ≡ 0 on the interval [a,b]. For example, if
K(x, t) = sin(x− t), then K(x,x)≡ 0. In this case, Eq. (4.9) is still an equation of the
first kind, and it takes the simplified form

x∫

a

∂K(x, t)
∂x

φ(t)dt = f ′(x).

If we assume that f ′(a) = 0, f ′(x) is continuously differentiable on the interval
[a,b], and that the partial derivative ∂K(x, t)/∂x is continuously differentiable on
the triangle T (a,b), then this equation will have a unique continuous solution on the
interval [a,b]. Obviously, the process of differentiation can be continued indefinitely,
if we assume that f (k)(a) = 0 for suitable values of k and that the kernel K(x, t)
and the free term f (x) are sufficiently differentiable. Consider the Volterra integral
equation

x∫

0

(x− t)n−1

(n− 1)!
φ(t)dt = f (x).

If f (k)(0) = 0 for k = 0, . . . ,n− 1 and f (x) is n-times continuously differentiable,
then φ(x) = f (n)(x).

Illustrative Examples

• Example 1: Consider the integral equation

x∫

0

sin(x− t)φ(t)dt =
1
2

x sin x,
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where K(x, t) = sin(x− t). If the Laplace transform method that was described in
the previous section is applied to this equation, then we obtain

1
s2 + 1

L{φ(x)}= s
(s2 + 1)2

or

L{φ(x)}= s
s2 + 1

from which we conclude that φ(x) = cos x.
On the other hand, if we differentiate the integral equation by using the tool

in Sect. 4.1, then we obtain the following equation:

x∫

0

cos(x− t)φ(t)dt =
1
2

xcos x+
1
2

sin x,

which is again of the first kind, since K(x,x) ≡ 0 and Kx(x, t) = cos(x − t).
Another differentiation leads us to the equation

φ(x)−
x∫

0

sin(x− t)φ(t)dt = cos x− 1
2

x sin x,

which is an equation of the second kind, since Kxx(x, t) = −sin(x − t) and
Kx(x,x) = 1. By adding this equation to the original equation, we obtain φ(x) =
cos x. Thus, the equation was solved by using differentiation and elimination,
rather than any direct technique.

• Example 2: Let J0(x) denote the Bessel function of the first kind of order zero.
The solution to the Volterra integral equation

x∫

0

J0(x− t)φ(t)dt = sin x

is φ(x) = J0(x), since L{J0(x)} = 1/
√

s2 + 1 and

L
⎧⎨
⎩

x∫

0

J0(x− t)J0(t)dt

⎫⎬
⎭=

1
s2 + 1

= L{sin x}.

This interesting formula can be interpreted as a combinatorial identity. On the
one hand, if we substitute the series representation

J0(x) =
∞

∑
0
(−1)n 1

22n(n!)2 x2n
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into the convolution integral, then we obtain after some simplification

x∫

0

J0(x− t)J0(t)dt =
∞

∑
0

(−1)mAm
1

(2m+ 1)!
x2m+1,

where

Am =
1

22m

m

∑
k=0

(
2k
k

)(
2m− 2k

m− k

)
.

On the other hand, we also have

sin x =
∞

∑
m=0

(−1)m 1
(2m+ 1)!

x2m+1.

After equating the coefficients in these two representations, we obtain the
binomial coefficient identity

m

∑
k=0

(
2k
k

)(
2m− 2k

m− k

)
= 22m,

which is valid for all m ≥ 0. This identity is not new. Indeed, it can be directly
obtained by squaring the series

1√
1− x

=
∞

∑
n=0

1
22n

(
2n
n

)
xn.

A general family of combinatorial identities can be established in a similar
manner. If we set

Hk(x) =

√
π

Γ(k)
1

2k−1/2
tk−1/2 Jk−1/2(x),

then L{Hk(x)} = 1/(s2 + 1)k. On the one hand, if p is any nonnegative integer,
then we obtain after some simplification

L{(H1/2 ∗Hp+1/2)(x)} = L{H1/2(x)}L{Hp+1/2(x)}

=
1

(s2 + 1)p+1

= L
{

∞

∑
m=0

(−1)m Bmp
1

(2m+ 2p+ 1)!
x2m+2p+1

}
,
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where

Bmp =

(
m+ p

p

)
.

On the other hand, since

Jp(x) =
( x

2

)p ∞

∑
j=0

(−1) j 1
j!( j+ p)!

( x
2

)2 j
,

we obtain after a direct computation

H1/2 ∗Hp+1/2(x) =

x∫

0

H1/2(x− t)Hp+1/2(t)dt

=
∞

∑
m=0

(−1)mCmp
1

(2m+ 2p+ 1)!
x2m+2p+1,

where

Cmp =
1(2p
p

)
[

m

∑
k=0

1
22m+p

(
2m− 2k
m− k

)(
2k+ 2p

k p k+ p

)]
.

Since Bmp = Cmp for all nonnegative integers m and p, we obtain as a conse-
quence the binomial/trinomial coefficient identities

m

∑
k=0

(
2m− 2k

m− k

)(
2k+ 2p

k p k+ p

)
=

(
m+ p

p

)(
2p
p

)
22m+p.

• Example 3: Consider the Volterra integral equation

x∫

0

ex−t φ(t)dt = sin x.

Since ex−t is a convolution kernel, we can apply the Laplace transform to this
equation. After some simplification, we find that

L{φ(x)} = s− 1
s2 + 1

= L{cos x− sin x},

from which we conclude that φ(x) = cos x− sin x is the unique solution to the
equation.

On the other hand, the integral equation

x∫

0

ex−t φ(t)dt = cos x
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does not have a continuous solution on an interval of the form [0,b] for any
b, since cos 0 �= 0. However, we can still apply the Laplace transform to this
equation to obtain

L{φ(x)} = 1− s
s2 + 1

− 1
s2 + 1

= L{δ (x)− cos x− sin x},

from which we conclude that φ(x) = δ (x)− cos x− sin x is a solution to the
equation, where δ (x) is the Dirac δ -function.

• Example 4: Consider the Volterra integral equation

x∫

0

(
x2 − t2) φ(t)dt = f (x).

The requirement that f (0) = 0 is a necessary but not sufficient for this equation
to have a continuous solution on an interval of the form [0,b].

If we set φ(x) = a0 + a1x+ a2x2 + a3x3 + · · · , then

x∫

0

(
x2 − t2) φ(t)dt =

2
3

a0x3 +
1
2

a1x4 +
2

15
a2x5 +

1
12

a3x6 + · · · .

Thus, it is necessary that f (0) = f ′(0) = f ′′(0) = 0 for this equation to have a
unique continuous solution. If we differentiate the integral equation

x∫

0

(
x2 − t2) φ(t)dt = sin

(
x3)

with respect to x, then we obtain

x∫

0

2xφ(t)dt = 3x2 cos
(
x3) .

After canceling x, another differentiation yields

φ(x) =
d
dx

[
3
2

x cos
(
x3)]= 3

2

[
cos
(
x3)− 3x3 sin

(
x3)] ,

which is the unique continuous solution to the integral equation.
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Section 4.4 Exercises

1. Suppose that the kernel K(x, t) = a(x)b(t) is continuous on the triangle T (a,b)
and that a(x) does not vanish on the interval [a,b]. Give a set of additional
necessary conditions for the existence of a unique continuous solution to the
Volterra integral equation

x∫

0

K(x, t)φ(t)dt = f (x).

What is the general form of the solution?
2. Determine the unique continuous solution to the Volterra integral equation

x∫

0

√
cos x cos t φ(t)dt = tanx

on the interval [0,π/4]. Can the interval of validity for this solution be extended
indefinitely?
Answer: φ(x) = secx

(
1+ 3

2 tan2 x
)
.

3. Determine the continuous solution to the Volterra integral equation

x∫

1

1√
xt

φ(t)dt = f (x),

provided that f (1) = 0 and that f (x) is continuously differentiable on the interval
[1,b].
Answer: φ(x) = x f ′(x)+ 1

2 f (x).
4. Show that if φ(t) = c0 + c1t + c2t2 + · · · , then

x∫

0

sin(2(x− t))φ(t)dt = c0x2 + 1
3 c1x3 + · · · .

Solve the Volterra integral equations

x∫

0

sin(2(x− t))φ(t)dt = sinn x

if n = 2, 3, and 4. Is there a solution if n = 1?
Answer: If n = 2, then φ(x) = 1.

If n = 3, then φ(x) = 9
8 sin x+ 5

8 sin(5x).
If n = 4, then φ(x) = 3

4 (1− cos(4x)).
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4.5 Numerical Methods

Given the difficulties that arise in determining exact solutions to equations of the
second kind as exhibited in the previous sections of this chapter, for instance, the
computation of the resolvent kernel, the use of numerical methods assumes critical
importance in the production of approximate solutions to equations of this type.
It is not the intent of this text to provide a complete treatment of the convergence
properties, the numerical stability, or a painstaking analysis of the errors inherent in
these approximations. Instead, we refer the reader to more advanced texts or to the
literature for a complete discussion of these issues.

In this section, we provide a condensed outline of the general procedures
involved in the production of a sequence of approximate solutions to a Volterra
integral equation of the second kind via quadrature methods. We mention some of
the complications that naturally arise with the choice of weights, and the techniques
required to assess the accuracy of the approximations. The methods here are
considerably more complicated than the methods employed in Sect. 2.6 for the
production of approximate solutions to linear Fredholm integral equations of the
second kind.

As usual, we assume that f (x) is continuous on the interval [0,1] and that K(x, t)
is continuous on the triangle T (0,1). If an approximate solution to the Volterra
integral equation

φ(x) = f (x)+

x∫

0

K(x, t)φ(t)dt

is required on the interval [0,1], then any standard quadrature method of the
Newton–Cotes type that is used to approximate the integral requires a predetermined
set {x0,x1, . . . ,xn} of n + 1 equally spaced nodes, where xi = i/n. For each xi,
i = 0,1, . . . ,n, we have

φ(xi) = f (xi)+

xi∫

0

K(xi, t)φ(t)dt.

Clearly, φ(x0) = f (x0) = f (0). For each i = 1, . . . ,n, each integral here can be
approximated by a finite sum on the interval [0,xi], so that

φ(xi) = f (xi)+
i

∑
j=0

wi j K(xi, t j)φ(t j)+E(Δx,xi),

where t j = j/n, the weights wi j are (usually) positive, and E(Δx,xi) is an error
term attached to the choice of quadrature method, with Δx = xi − xi−1 = 1/n. For
example, if the trapezoid rule is employed, then the weights would be wi0 = wii =
Δx/2 = 1/2n and wi j = Δx = 1/n for j = 1, . . . , i−1. Also, if n is sufficiently large,
then E(Δx,xi) is sufficiently small.
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Initially, we set y0 = φ(x0) as a starting value. Under appropriately crafted
conditions, the error term E(Δx,xi) is relatively small for all i = 1, . . . ,n. If we
discard it, then we arrive at the linear system

yi = f (xi)+
i

∑
j=0

wi j K(xi, t j)y j.

When expanded, the equations in this system take the form

y1 = f (x1)+w10K(x1, t0)y0 +w11K(x1, t1)y1,

y2 = f (x2)+w20K(x2, t0)y0 +w21K(x2, t1)y1 +w22K(x2, t2)y2,

and so forth. In these equations, xi = ti = i/n.
After a careful inspection of these equations, several observations can be made:

• The weights wi j vary from one equation to the next.
• As n increases, the accuracy of the approximation increases.
• Each yi can be computed recursively in a step-by-step fashion, and it depends

upon y0.

If a higher-order quadrature rule, such as Simpson’s rule or Bode’s rule, is
adopted, then additional starting values must be specified before these equations
can be solved recursively. For example, if Simpson’s rule is employed, then the
interval [0,xi] must necessarily be partitioned into an even number of subintervals,
and y1 must be specified before y2 can be computed in terms of y0 and y1. If
the interval [0,xi] is partitioned into an odd number of subintervals, then a hybrid
of Simpson’s rule with another quadrature rule must be constructed with weights
adjusted accordingly.

After each yi is determined, a continuous interpolating function yn(x) can be
constructed on the interval [0,1] that passes through the points (xi,yi) for all i =
0,1, . . . ,n. One way of accomplishing this task would be to employ the classical
Lagrange interpolation formula

yn(x) =
n

∑
i=1

yi

⎛
⎜⎝ ∏

1≤k≤n
k �=i

x− xk

xi − xk

⎞
⎟⎠ .

Some natural questions arise: For each n, how well does yn(x) approximate φ(x)
on the interval [0,1]? Does yn(x) converge uniformly to φ(x) on the interval [0,1] as
n →+∞? In order to answer these and other relevant questions, it must be possible
beforehand to establish the fact that the maximum discretization error

max
0≤i≤n

|yi −φ(xi)|
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tends to 0 as n→+∞. This can be done, provided that the error E(Δx,xn) associated
with the choice of quadrature method decreases to 0 rapidly enough and the weights
{|wi j|} are bounded independently of n. In addition, it must be shown that any
starting errors associated with a higher-order quadrature method must tend to 0 as
n →+∞.

The several types of errors associated with the use of an approximative method
can vary smoothly, or they can behave rather unpredictably. Thus, even if conver-
gence of the approximants is assured, an analysis of the rate of growth of the various
errors and accumulated errors may be required in order to have confidence in the
accuracy of the computed approximations and the effectiveness of the choice of
quadrature rule.

Furthermore, numerical instability can occur, depending upon the rate of conver-
gence of the approximating sequence and the rate of error propagation. A thorough
analysis of the numerical stability of an applied quadrature method can provide
reassurance and insight, since it characterizes the essential features of the stable
methods as well as the unstable ones, thereby furnishing valuable guidance to the
user.

Finally, other useful methods, such as the block-by-block methods which gener-
alize the well-known Runge–Kutta method, are readily available in the literature.



Chapter 5
Differential and Integrodifferential Equations

There are strong connections between the theory of integral equations and the theory
of differential equations. Although there are many ways to illustrate, analyze, and
interpret these connections, we can only discuss a few of them in this chapter.

In Sect. 5.1, we present several tools of the trade that are indispensible for the
comprehension of the material in this chapter.

In Sect. 5.2, we demonstrate how Fredholm integral equations can be converted
to boundary value problems for ordinary differential equations, and vice versa.
Interconversion may yield a great advantage. For example, the eigenfunctions of
a kernel may be difficult to determine, whereas these same eigenfunctions may be
easy to determine if they are the solutions to a converted boundary value problem.
Also, the boundary conditions that accompany an ordinary differential equation are
imposed separately, but they can be directly incorporated the converted integral
equation.

In Sect. 5.3, we demonstrate a few simple and convenient methods by which
Volterra integral equations can be converted to initial value problems, and vice versa,
and note the advantages of conversion.

In Sect. 5.4, we consider integrodifferential equations, which are considered to
be hybrids of differential and integral equations, since they involve the integral and
the derivative of the unknown function in possibly many ways. Since the variety of
combinations is virtually infinite, we must restrict our consideration here to a few
interesting and solvable examples of linear integrodifferential equations.

5.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Linear ordinary differential equations: A linear ordinary differential equation of
order n assumes the form

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 5, © Springer Science+Business Media, LLC 2012
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a0(x)y(n)(x)+ a1(x)y(n−1)(x)+ · · ·+ an−1 y′(x)+ an(x)y(x) = g(x),

where g(x) and the coefficient functions ai(x) are always assumed to be
continuous on some interval I = (a,b).

If a0(x0) �= 0, then x0 is called an ordinary point; if a0(x0)= 0, then x0 is called
a singular point. Often, when x0 is an ordinary point, the differential equation is
divided by a0(x); equivalently, we can assume that a0(x)≡ 1. For example, linear
differential equations of the second order with an ordinary point at x0 = 0 have
the standard form

y′′(x)+ a1(x)y′(x)+ a2(x)y(x) = 0.

Singular points may be either regular or irregular. A common example of a
second-order linear differential equation with a regular singular point at x0 = 0 is
the Euler equation given by

x2 y′′(x)+α xy′(x)+β y(x) = 0.

Another well-known example is the Bessel equation of order ν given by

x2 y′′(x)+ xy′(x)+
(
x2 −ν2) y(x) = 0.

Since differential equations with irregular singular points are quite difficult to
solve, we do not consider them here.

Without loss of generality, we assume that x0 = 0 in this chapter.
If g(x) vanishes identically on I, then the equation is called homogeneous;

if g(x) does not vanish identically on I, then the equation is called nonhomo-
geneous. Every homogeneous linear ordinary differential equation of order n
has exactly n linearly independent solutions {y1(x), . . . ,yn(x)}, and the most
general solution yc(x) (the complementary solution) can be written as a linear
combination of them. If the equation in question is nonhomogeneous and yp(x)
is a particular solution of the equation, then the most general solution has the
form y(x) = yc(x)+ yp(x).

An initial value problem consists of a linear ordinary differential equation of
order n together with a set of n initial conditions of the form

y(x0) = y0, y′(x0) = y1, . . . ,y
(n−1)(x0) = yn−1,

where x0 ∈ I.
On the other hand, a boundary value problem consists of a linear ordinary

differential equation of order n together with n boundary conditions that specify
the values of y(x) and/or its derivatives at the endpoints of the interval I =
[a,b]. For example, if n = 2, then the boundary conditions may be especially
simple, such as y(a) = 0 and y(b) = 0, or even more complicated, such as
α y(a)+β y′(a) = 0 and γ y(b)+δ y′(b) = 0. If each boundary condition involves
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only one endpoint, then the conditions are said to be separated. The most general
boundary conditions consist of n linearly independent equations of the form

n−1

∑
n=0

(
αik y(k)(a)+βik y(k)(b)

)
= 0.

• Integrating derivatives: Suppose that y(x) is an n-times continuously differ-
entiable function on an interval containing the initial point x0 = 0. If we set
φ(x) = y(n)(x), then every derivative of y(x) of lower order can be expressed
in terms of a single integral in which φ(x) appears in the integrand. For example,
if n = 3, then a single integration yields

y′′(x) =
x∫

0

y′′′(t)dt + y′′(0)

=

x∫

0

φ(t)dt + y′′(0).

Another integration, followed by a change in the order of integration, yields

y′(x) =
x∫

0

y′′(t)dt + y′(0)

=

x∫

0

⎛
⎝

t∫

0

φ(s)ds

⎞
⎠ dt +

x∫

0

y′′(0)dt + y′(0)

=

x∫

0

⎛
⎝

x∫

s

dt

⎞
⎠ φ(s)ds+ y′′(0)x+ y′(0)

=

x∫

0

(x− s)φ(s)ds+ y′′(0)x+ y′(0).

Yet another such integration yields

y(x) =

x∫

0

⎛
⎝

t∫

0

(t − s)φ(s)ds

⎞
⎠ dt +

x∫

0

(
y′′(0)t + y′(0)

)
dt + y(0)

=

x∫

0

⎛
⎝

x∫

s

(t − s)dt

⎞
⎠ φ(s)ds+ 1

2! y′′(0)x2 + y′(0)x+ y(0)

=

x∫

0

1
2!

(x− s)2 φ(s)ds+
1
2!

y′′(0)x2 + y′(0)x+ y(0).
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Note that the polynomial on the right-hand side of this last equation is exactly the
Taylor polynomial of degree 2 for y(x) constructed from the given initial data.

We turn to the general case.
Let Tn−1(x) denote the Taylor polynomial of degree n− 1 for y(x), i.e., let

Tn−1(x) =
n−1

∑
m=0

1
m!

y(m)(0)x j .

If we set φ(x) = y(n)(x), then after n integrations, we obtain the integral
representation

y(x) =

x∫

0

1
(n− 1)!

(x− t)n−1φ(t)dt +Tn−1(x). (5.1)

After one differentiation, we obtain

y′(x) =
x∫

0

1
(n− 2)!

(x− t)n−2φ(t)dt +T ′
n−1(x).

In general, the k-th derivative of y(x) has the representation

y(k)(x) =

x∫

0

1
(n− k− 1)!

(x− t)n−k−1φ(t)dt +T (k)
n−1(x). (5.2)

Eventually, we have

y(n−2)(x) =

x∫

0

(x− t)φ(t)dt + y(n−1)(0)x+ y(n−2)(0)

and

y(n−1)(x) =

x∫

0

φ(t)dt + y(n−1)(0).

In a similar manner, if we are given the general differential equation

y(n)(x) = F [x,y(x)]

together with n initial conditions, then we obtain the converted integral equation

y(x) =

x∫

0

1
(n− 1)!

(x− t)n−1 F [t,y(t)]dt +Tn−1(x). (5.3)
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The integral formulas prescribed above will be used in Sects. 5.2 and 5.3
to convert linear ordinary differential equations into both Fredholm integral
equations and Volterra integral equations.

• First-order linear systems of ordinary differential equations:
A first-order linear system of differential equations has the (vector) form

v′(x) = A(x)v(x)+ g(x), (5.4)

where A(x) is an n× n matrix whose entries ai j(x) are continuous functions on
some interval I = (a,b). If the n× 1 continuous vector g(x) vanishes identically
on I, then the system is called homogeneous; if g(x) does not vanish identically
on I, then the system is called nonhomogeneous. If an initial condition of the form
v(x0) = v0 is specified, where x0 ∈ I, then the solution to the system is unique.

The general solution v(x) to the linear system is always a continuously
differentiable n× 1 vector on I and can be decomposed into two distinct parts as
v(x)= vc(x)+vp(x). Here, vc(x) is the most general solution to the homogeneous
system, and vp(x) is a particular solution of the nonhomogeneous system. The
vector vc(x) can be expressed as the linear combination

vc(x) = c1 v(1)(x)+ · · ·+ cn v(n)(x),

where each of the n vectors v(k)(x) is a solution of the homogeneous system, and
the entire set {v(1)(x), . . . ,v(n)(x)} is linearly independent.

The invertible n× n matrix

Ψ(x) = (v(1)(x), . . . ,v(n)(x))

whose columns are the linearly independent solutions of the homogeneous
system, is called the fundamental matrix of the system. In terms of Ψ(x), we
can express vc(x) in the elegant form

vc(x) =Ψ(x)c, (5.5)

where c is an n× 1 column matrix consisting of arbitrary constants. Since each
column of Ψ(x) is a solution to the homogeneous system, it follows that Ψ(x)
satisfies the matrix equation

Ψ′(x) = A(x)Ψ(x). (5.6)

The homogeneous system can be solved by converting it to a set of n linear
differential equations of the nth order. For example, if n = 2, then the system
takes the equivalent form

v′1(x) = a(x)v1(x)+ b(x)v2(x)

v′2(x) = c(x)v1(x)+ d(x)v2(x). (5.7)
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If we differentiate these two equations, then, after some standard algebraic
manipulations, we obtain the two decoupled second-order linear differential
equations

v′′1(x)−
(

a(x)+ d(x)+
b′(x)
b(x)

)
v′1(x)

+

(
a(x)d(x)− b(x)c(x)+

a(x)b′(x)− a′(x)b(x)
b(x)

)
v1(x) = 0

and

v′′2(x)−
(

a(x)+ d(x)+
c′(x)
c(x)

)
v′2(x)

+

(
a(x)d(x)− b(x)c(x)+

d(x)c′(x)− d′(x)c(x)
c(x)

)
v2(x) = 0.

Each of these equations has two linearly independent solutions. For each solution
v1(x) of the first equation, we can get the corresponding solution v2(x) from
Eq. (5.7), and then form v(1)(x), v(2)(x), vc(x), andΨ (x) from them. Alternately,
we can solve the second equation for v2(x) and get the corresponding solution
v1(x) from Eq. (5.7).

If g(x)≡ 0 on I and v(x0) is specified, then c=Ψ−1(x0)v(x0), and the solution
to the equation v′(x) = A(x)v(x) assumes the form

v(x) =Ψ(x)Ψ−1(x0)v(x0).

The notation here can be simplified in a special case. If Ψ(x0) = I, the identity
matrix, then Ψ−1(x0) = I as well. It is standard practice to let Φ(x) denote the
fundamental matrix for which Φ(x0) = I. In this case, we can simply write

v(x) =Φ(x)v(x0).

A particular solution vp(x) to the nonhomogeneous problem can be found by
the method of variation of parameters. By analogy to Eq. (5.5), we assume that
the particular solution assumes the form

vp(x) =Ψ(x)up(x), (5.8)

where up(x) is initially unknown. After substitution into Eq. (5.4) and some
simplification, we obtain

Ψ(x)u′
p(x) = g(x) or u′

p(x) =Ψ−1(x)g(x).
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Hence,

vp(x) =Ψ(x)

x∫

x0

Ψ−1(t)g(t)dt,

and the general solution to Eq. (5.4) can be written in the form

v(x) = vc(x)+ vp(x)

=Ψ(x)Ψ−1(x0)v(x)+Ψ(x)

x∫

x0

Ψ−1(t)g(t)dt.

5.2 Boundary Value Problems

5.2.1 Conversion to a Fredholm Integral Equation

Consider the boundary value problem that consists of the ordinary differential
equation

φ ′′(x) = F [x,φ(x)],

where F(x,y) is a continuous function of both of its variables, together with two
prescribed values for φ(a) and φ(b). It was shown in Sect. 5.1 that this differential
equation can be converted via two integrations to the corresponding integral form

φ(x) =
x∫

a

(x− t)F[t,φ(t)]dt +φ(a)+φ ′(a)(x− a).

Since the constant φ ′(a) is not prescribed, it should be eliminated from this
formulation. If we set x = b, then we can solve for φ ′(a) to obtain

φ ′(a) =
φ(b)−φ(a)

b− a
− 1

b− a

b∫

a

(b− t)F[t,φ(t)]dt.

In order to simplify the form of the converted integral equation, we assume without
loss of generality that a = 0. After substituting φ ′(0) into the integral equation, we
obtain

φ(x) = φ(0)+
(

φ(b)−φ(0)
b

)
x

− x
b

b∫

0

(b− t)F[t,φ(t)]dt +

x∫

0

(x− t)F[t,φ(t)]dt.
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The first integral on the right can be decomposed to obtain

φ(x) = φ(0)+
(

φ(b)−φ(0)
b

)
x

− x
b

b∫

x

(b− t)F[t,φ(t)]dt − x
b

x∫

0

(b− t)F[t,φ(t)]dt

+

x∫

0

(x− t)F[t,φ(t)]dt

= φ(0)+
(

φ(b)−φ(0)
b

)
x

−
b∫

x

x(b− t)
b

F [t,φ(t)]dt −
x∫

0

t(b− x)
b

F[t,φ(t)]dt

or

φ(x) = φ(0)+
(

φ(b)−φ(0)
b

)
x−

b∫

0

G(x, t)F [t,φ(t)]dt,

where

G(x, t) =

⎧⎪⎨
⎪⎩

t(b− x)
b

if 0 ≤ t ≤ x ≤ b

x(b− t)
b

if 0 ≤ x ≤ t ≤ b.

As a special case, the nonhomogeneous ordinary differential equation

φ ′′(x)+λ q(x)φ(x) = h(x),

where q(x) and h(x) are continuous on the interval [0,b], can be converted to a
Fredholm integral equation by letting F [t,φ(t)] = h(t)− λ q(t)φ(t) in the above
representation to obtain

φ(x) = f (x)+λ
b∫

0

G(x, t)q(t)φ(t)dt,

where

f (x) = φ(0)+
φ(b)−φ(0)

b
x−

b∫

0

G(x, t)h(t)dt.
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In particular, suppose that q(x) ≡ 1 and h(x) ≡ 0 on the interval [0,b], and that
φ(0) = φ(b) = 0. Then the boundary value problem consisting of the ordinary
differential equation φ ′′(x) + λ φ(x) = 0 together with the boundary conditions
φ(0) = φ(b) = 0 leads to the homogeneous Fredholm integral equation

φ(x) = λ
b∫

0

G(x, t)φ(t)dt.

We conclude that the solutions to the boundary value problem are actually the
eigenfunctions of the triangular kernel G(x, t). The kernel G(x, t) is called the
Green’s function of the second derivative operator. In a more advanced text, the
properties and uses of Green’s functions are treated in greather depth.

5.2.2 Conversion from a Fredholm Integral Equation

Consider the Fredholm integral equation of the second kind

φ(x) = f (x)+λ
1∫

0

K(x, t)φ(t)dt

with the Hermitian kernel

K(x, t) =

⎧⎨
⎩

g(x)h(t) if 0 ≤ x ≤ t ≤ 1

g(t)h(x) if 0 ≤ t ≤ x ≤ 1,

where g(x) and h(x) are continuously differentiable functions defined on the interval
[0,1].

Kernels of this type appear quite frequently in practice. The determination of
their eigenvalues and eigenfunctions can be simplified if the integral equation is
reduced to a linear differential equation of second order as follows.

After substituting K(x, t) into the integral equation, we obtain

φ(x) = f (x)+λ h(x)G(x)+λ g(x)H(x),

where we have set

G(x) =

x∫

0

g(t)φ(t)dt and H(x) =

1∫

x

h(t)φ(t)dt.

After differentiation and simplification, we obtain

φ ′(x) = f ′(x)+λ h′(x)G(x)+λ g′(x)H(x)
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and

φ ′′(x) = f ′′(x)+λ (h′(x)g(x)− g′(x)h(x))φ(x)

+λ h′′(x)G(x)+λ g′′(x)H(x).

If G(x) and H(x) are eliminated from these three equations, then we obtain a linear
differential equation of the second order for φ(x) that can be conveniently displayed
in terms of determinants as

det

⎛
⎜⎜⎝

φ g h

φ ′ g′ h′

φ ′′ g′′ h′′

⎞
⎟⎟⎠−λ

[
det

(
g h

g′ h′

)]2

φ = det

⎛
⎜⎜⎝

f g h

f ′ g′ h′

f ′′ g′′ h′′

⎞
⎟⎟⎠ .

The integral equation also implies that certain boundary conditions must neces-
sarily be satisfied. If we set x = 0 in the expressions for φ(x) and φ ′(x), then we
obtain

φ(0) = f (0)+λ g(0)H(0) and φ ′(0) = f ′(0)+λ g′(0)H(0).

After eliminating H(0), these boundary conditions become

det

(
φ(0) g(0)

φ ′(0) g′(0)

)
= det

(
f (0) g(0)

f ′(0) g′(0)

)
.

In a similar fashion, we obtain the additional requirement that

det

(
φ(1) h(1)

φ ′(1) h′(1)

)
= det

(
f (1) h(1)

f ′(1) h′(1)

)
.

To determine the eigenvalues and eigenfunctions of K(x, t), we set f (x) ≡ 0, and
then solve the resulting boundary value problem.

Illustrative Examples

• Example 1: Consider the Fredholm integral equation

φ(x) = f (x)+λ
1∫

0

K(x, t)φ(t)dt,
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where

K(x, t) =

⎧⎨
⎩

x(1− t) if 0 ≤ x ≤ t ≤ 1

t (1− x) if 0 ≤ t ≤ x ≤ 1.

We wish to determine the eigenvalues and eigenfunctions of this kernel.
By employing the method of Sect. 5.2.2, the integral equation can be converted

to a linear differential equation which is easily solved.
In this example, we note that f (x) ≡ 0, g(x) = x, and h(x) = 1− x. After

conversion, we obtain the initial value problem consisting of the differential
equation

φ ′′(x)+λ φ(x) = 0,

together with the initial conditions

φ(0) = 0 and φ ′(0) = 0.

This differential equation has nontrivial solutions only if λ is positive. If we
set λn = μ2

n , then the only functions that will satisfy both the linear differential
equation and the accompanying boundary conditions are φn(x) = sin(μnx), where
μn = nπ .

Hence, the eigenvalues of K(x, t) are λn = n2π2, and the corresponding
eigenfunctions are φn(x) = sin(nπx). Since ‖φn‖2

2 = 1/2, the normalized eigen-
functions of K(x, t) are ψn(x) =

√
2 sin(nπx).

• Example 2: The nontrivial solutions of the integral equation

φ(x) = λ
1∫

0

J(x, t)φ(t)dt

are the eigenfunctions of the symmetric kernel

J(x, t) =

⎧⎨
⎩
−√

xt ln t if 0 ≤ x ≤ t ≤ 1

−√
xt lnx if 0 ≤ t ≤ x ≤ 1.

We determine the eigenvalues and the eigenfunctions of J(x, t). In this example,
f (x) ≡ 0, g(x) = −√

x, and h(x) =
√

x lnx. Note that we have defined h(0) = 0
by continuous extension, after having applied l’Hôpital’s rule. Since J(x, t)
is continuous on the square Q(0,1), its eigenfunctions are continuous on the
interval [0,1].

After conversion, we obtain the linear differential equation

x2 φ ′′(x)+
(
λ x2 + 1

4

)
φ(x) = 0

together with the initial condition φ(1) = 0. Note that his equation has a regular
singular point at x = 0. Every solution of this equation is a linear combination of
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two linearly independent solutions. In order to determine its solutions, we appeal
to a known result within the theory of Bessel functions. The solutions of the
differential equation

x2 y′′(x)+
(
α2β 2 x2β + 1

4 −ν2β 2
)

y(x) = 0

on the interval (0,+∞) assume the form y = x1/2 f (α xβ ), where f (ζ ) is a
solution of the Bessel equation of order ν .

In the present situation, ν = 0, β = 1, and λ = α2. Thus, the solution to the
differential equation of interest assumes the form

φ(x) = x1/2 (k1J0(αx)+ k2Y0(αx)) ,

where J0(x) and Y0(x) are the Bessel functions of order 0. However, since Y0(x)
has a logarithmic singularity at x = 0, it is not a part of any eigenfunction that is
continuous on the interval [0,1]. Also, the initial condition implies that φ(1) =
k1J0(α) = 0. Hence, each α is a zero of J0(x).

It follows that the eigenvalues of the kernel are the squares of the zeroes of
J0(x). If we denote the zeroes of J0(x) by {αn}, then the eigenvalues of the kernel
J(x, t) are λn = α2

n , and the corresponding eigenfunctions are

φn(x) = x1/2J0(αnx).

These eigenfunctions are orthogonal since it is well known that

1∫

0

φn(x)φm(x)dx =

1∫

0

xJ0(αnx)J0(αmx)dx = 0

whenever n �= m. Furthermore, since

‖φn‖2
2 =

1∫

0

xJ2
0 (αnx)dx =

1
2

(
J′0(αn)

)2
=

1
2

J2
1(αn),

the functions

ψn(x) =

√
2x1/2 J0(αnx)

J1(αn)

are the orthonormalized eigenfunctions of the kernel J(x, t).
Since the eigenvalues λn of J(x, t) are positive, it is a positive kernel. Hence,

Theorem 3.4.2 (Mercer’s theorem) allows us to conclude that J(x, t) has the
uniformly convergent representation

J(x, t) =
∞

∑
n=1

2
√

xtJ0(αnx)J0(αnt)

α2
n J2

1(αn)
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on the square Q(0,1). In Exercise 4 of Sect. 3.5, it was shown that the first trace
A1 of J(x, t) is equal to 1/4 and that the second trace A2 is equal to 1/32. Now
that the eigenvalues of J(x, t) have been determined, we can conclude that

∞

∑
n=1

1
α2

n
=

1
4

and
∞

∑
n=1

1
α4

n
=

1
32

.

Section 5.2 Exercises

1. Consider the following boundary value problem consisting of the ordinary
differential equation

φ ′′(x)+π2φ(x) = cos(πx)

together with the boundary conditions φ(0) = 1 and φ( 1
2 ) =

1
2π .

(a) Show that the unique solution to this boundary value problem is

φ(x) = cos(πx)+
1

4π
sin(πx)+

1
2π

x sin(πx).

(b) By using the method illustrated in Sect. 5.2.1, convert this differential
equation into a Fredholm integral equation of the second kind.

(c) Show that the solution to the differential equation is also the solution to your
converted integral equation.

Hint: You will need to evaluate the integral

1/2∫

0

K(x, t) cos(πt)dt = (1− 2x)

x∫

0

t cos(πt)dt + x

1/2∫

x

(1− 2t) cos(πt)dt.

2. In this exercise, we generalize the results of Example 2. The nontrivial solutions
of the integral equation

φ(x) = λ
1∫

0

J(x, t;α)φ(t)dt
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are the eigenfunctions of the kernel

J(x, t;α) =

⎧⎨
⎩
−(xt)α ln t if 0 ≤ x ≤ t ≤ 1

−(xt)α lnx if 0 ≤ t ≤ x ≤ 1,

where α > 0. We determine the eigenvalues and the eigenfunctions of
J(x, t;α).

(a) Let g(x) =−xα and h(x) = xα lnx. Apply the conversion technique to show
that φ(x) satisfies the differential equation

x2 φ ′′(x)+ (1− 2α)xφ ′(x)+
(
α2 +λ x2α+1) φ(x) = 0.

(b) Let φ(x) = xα σ(x) and show that σ(x) satisfies the differential equation

xσ ′′(x)+σ ′(x)+λ x2α σ(x) = 0.

(c) Show that

σ(x) = J0

(
2
√

λ
2α+1 x(2α+1)/2

)

is a solution of the differential equation in part (b), where J0 is the Bessel
function of the first kind of order zero. Thus, the solution assumes the form

φ(x) = xα J0

(
2
√

λ
2α+1 x(2α+1)/2

)
.

(d) With φ(1) = 0, deduce that the eigenvalues of J(x, t;α) are

λn = α2
n

( 2α+1
2

)2
,

where J0(αn) = 0, and therefore that

φn(x) = xα J0

(
αn x(2α+1)/2

)
.

Note that if α = 1
2 , then these results agree with the results in Example 2.

(e) Show that the set {φn(x)}∞
n=1 is mutually orthogonal, i.e., that

1∫

0

φn(x)φm(x)dx = 0

if n �= m.

Hint: Introduce the change of variables

u = x(2α+1)/2,
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for which it can be shown that

x2α dx = 2
2α+1 udu.

(f) Show that

‖φn‖2
2 =

1∫

0

x2α J2
0

(
αn x(2α+1)/2

)
dx = 1

2α+1 J2
1 (αn).

(g) Use parts (e) and (f) to produce the infinite bilinear expansion for J(x, t;α).
(h) Show that the trace A1(α) of J(x, t;α) is given by

A1(α) =
1

(2α+ 1)2 .

5.3 Initial Value Problems

5.3.1 Conversion to a Volterra Integral Equation

Consider the initial value problem consisting of the linear ordinary differential
equation of order n

y(n)(x)+ a1(x)y(n−1)(x)+ · · ·+ an−1 y′(x)+ an(x)y(x) = g(x),

where g(x) and the coefficient functions ai(x) are assumed to be continuous on some
interval I = (a,b), together with the initial conditions

y(x0) = y0, y′(x0) = y1, . . . ,y
(n−1)(x0) = yn−1,

where x0 ∈ I. It is possible to convert an initial value problem of this form into a
linear Volterra integral equation of the second kind. Without loss of generality, we
assume that x0 = 0.

If we now substitute the integral representation (5.2) for y(k)(x) that was
determined in Sect. 5.1 into the differential equation above, then we obtain

φ(x)+
n−1

∑
k=0

an−k(x)

⎛
⎝

x∫

0

1
(n− k− 1)!

(x− t)n−k−1φ(t)dt +T (k)
n−1(x)

⎞
⎠= g(x).

Upon rearrangement, we obtain

φ(x)+
x∫

0

(
n−1

∑
k=0

1
(n− k− 1)!

an−k(x)(x− t)n−k−1

)
φ(t)dt

= g(x)−
n−1

∑
k=0

an−k(x)T (k)
n−1(x).
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The converted equation is clearly a Volterra integral equation of the second kind of
the form

φ(x) = f (x)+

x∫

0

K(x, t)φ(t)dt,

where

K(x, t) =−
n−1

∑
k=0

1
(n− k− 1)!

an−k(x)(x− t)n−k−1

and

f (x) = g(x)−
n−1

∑
k=0

an−k(x)T (k)
n−1(x).

Note that if the coefficient functions an−k(x) are constants, then the kernel K(x, t) is
a convolution kernel. Equations of this type were solved in Sect. 4.3 by employing
the Laplace transform.

After the solution φ(x) to the Volterra integral equation has been found, it can be
substituted directly into the representation (5.1) to obtain an integral representation
for the solution to the given differential equation.

5.3.2 Conversion from a Volterra Integral Equation

Consider the Volterra integral equation of the second kind

φ(x) = f (x)+λ
x∫

0

K(x, t)φ(t)dt

with the separable kernel

K(x, t) =
n

∑
i=1

ai(x)bi(t).

Upon substitution, we obtain

φ(x) = f (x)+λ
n

∑
i=1

ai(x)vi(x),

where

vi(x) =

x∫

0

bi(t)φ(t)dt.
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If we differentiate these integrals and then substitute the expression for φ(x), we
obtain the first-order linear system of differential equations

v′i(x) = bi(x) f (x)+λ
n

∑
j=1

a j(x)bi(x)v j(x),

where i = 1, . . . ,n. In vector form, the linear system becomes

v′(x) = λ M(x)v(x)+ f (x)b(x), (5.9)

where

v(x) =

⎛
⎜⎜⎜⎝

v1(x)

...

vn(x)

⎞
⎟⎟⎟⎠ , a(x) =

⎛
⎜⎜⎜⎝

a1(x)

...

an(x)

⎞
⎟⎟⎟⎠ , b(x) =

⎛
⎜⎜⎜⎝

b1(x)

...

bn(x)

⎞
⎟⎟⎟⎠ ,

and M(x) = b(x) · aT(x). Since vi(0) = 0 for each i = 1, . . . ,n, the initial vector
condition is v(0) = 0. For example, if n = 2, then this linear system takes the
expanded form

d
dx

(
v1(x)

v2(x)

)
= λ

(
a1(x)b1(x) a2(x)b1(x)

a1(x)b2(x) a2(x)b2(x)

)(
v1(x)

v2(x)

)
+ f (x)

(
b1(x)

b2(x)

)
.

After having solved this linear system for v(x) as indicated in Sect. 5.1, we can write
the solution to the integral equation in the vector form

φ(x) = f (x)+λ a(x) ·v(x).

Illustrative Examples

• Example 1: Convert the initial value problem

y′′(x)+ xy′(x)+ y(x) = 0

with the given initial conditions y(0) = 1 and y′(0) = 0 to a Volterra integral
equation of the second kind.

It is easy to solve this differential equation, since it can be recast in the form
y′′(x)+ (xy(x))′ = 0. After two integrations, we find that its general solution is

y(x) = c1 e−x2/2 + c2 e−x2/2

x∫

0

et2/2dt.

The given initial conditions imply that c1 = 1 and that c2 = 0. Hence, y(x) =

e−x2/2.
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If we set

y′′(x) = φ(x),

y′(x) =
x∫

0

φ(t)dt + y′(0),

and

y(x) =

x∫

0

(x− t)φ(t)dt + y′(0)x+ y(0),

according to the discussion in Sect. 5.1, then we obtain the integral equation

φ(x) =−1−
x∫

0

(2x− t)φ(t)dt.

The solution to this equation is

φ(x) = y′′(x) = (e−x2/2)′′ = (x2 − 1)e−x2/2,

as can be easily verified.
• Example 2: The Volterra integral equation of the second kind

φ(x) = f (x)+λ
x∫

0

a(x)b(t)φ(t)dt

is easily converted to a linear differential equation of the first order. If we set

y(x) =

x∫

0

b(t)φ(t)dt,

then

y′(x) = b(x)φ(x)

= b(x) [ f (x)+λ a(x)y(x)] ,

or

y′(x)−λ a(x)b(x)y(x) = b(x) f (x),

together with the initial condition y(0) = 0.
• Example 3: Consider the linear Volterra integral equation

φ(x) =
x3

6
+λ

x∫

0

K(x, t)φ(t)dt. (5.10)
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where K(x, t) = x− t and λ =−1. As shown in Sect. 4.3, Volterra equations with
difference kernels can be solved by employing the Laplace transform. After a
short calculation, we find that the solution to this equation is φ(x) = x− sin x.

Here, we illustrate a second method of finding the solution to this integral
equation that is based upon conversion to a linear system of equations, as
discussed in Sect. 5.3.2. With this method, the solution assumes the form

φ(x) = f (x)− a(x) ·v(x),

where v(x) is the solution of the converted first-order linear system

v′(x) = λ M(x)v(x)+ f (x)b(x) (5.11)

with v(0) = 0.
Since a1(x) = x, b1(t) = 1, a2(x) = −1, and b2(t) = t, the linear system

assumes the equivalent form,

d
dx

(
v1(x)

v2(x)

)
=−

(
x −1

x2 −x

)(
v1(x)

v2(x)

)
+

x3

6

(
1

x

)
.

We solve this system by following the method outlined in Sect. 5.1. Our first
task is to determine vc(x). After decoupling this system, we find that v1(x)
satisfies the equation

v′′1(x)+ v1(x) = 0,

whose general solution is

v1(x) = c1 cos x+ c2 sin x,

and that v2(x) satisfies the equation

xv′′2(x)− 2v′2(x)+ xv2(x) = 0,

whose general solution is

v2(x) = c1 (cos x+ x sin x)+ c2 (x cos x− sin x).

Since v2(x) = v′1(x)+ xv1(x), it follows that

v(1)(x) =

(
cos x

x cos x− sin x

)
and v(2)(x) =

(
sin x

xsin x+ cos x

)
.

The general solution vc(x) = c1 v(1)(x)+c2 v(2)(x) is prescribed in terms of these
vector functions.
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The fundamental matrix for this linear system is

Φ(x) =

(
cos x sin x

x cos x− sin x x sin x+ cos x

)
.

Note that Φ(0) = I. With detΦ(x) = 1, we have

Φ−1(x) =

(
x sin x+ cos x −sin x

sin x− x cos x cos x

)
.

To determine a particular solution vp(x) = Φ(x)up(x), we follow the proce-
dure outlined in Sect. 5.1 to obtain

u′
p(x) =Φ−1(x)b(x) =

1
6

(
x3 cos x

x3 sin x

)
.

After integration, we have

up(x) =
1
6

(
(3x2 − 6) cos x+(x3 − 6x) sin x

(6x− x3) cos x+(3x2 − 6) sin x

)
.

After multiplication, we have

vp(x) =

(
1
2 x2 − 1

1
3 x3

)
.

The general solution to the linear system has the form

v(x) = c1 v(1)(x)+ c2 v(2)(x)+ vp(x).

The initial condition v(0) = 0 implies that c1 = 1 and c2 = 0. Thus,

v(x) =

(
cos x+ 1

2 x2 − 1

x cos x− sin x+ 1
3 x3

)
.

Finally, the solution φ(x) to the Volterra integral equation becomes

φ(x) = f (x)− a(x) ·v(x) = x− sin x.
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Section 5.3 Exercises

1. Convert each of the following Volterra integral equations into first-order linear
ordinary differential equations and then determine their solutions:

(a) φ(x) = a+ bx+ cx2+λ
∫ x

0 φ(t)dt

(b) φ(x) = aebx + c+λ
∫ x

0 φ(t)dt

(c) φ(x) = a+ bx+λ
∫ x

0 xt φ(t)dt

(d) φ(x) = aex + b+λ
∫ x

0 ex−t φ(t)dt

(e) φ(x) = a secx+ b tanx+λ
∫ x

0 secx cos t φ(t)dt
Answer: φ(x) = (a+ b

1+λ 2 )eλ x secx+ b
1+λ 2 (tanx−λ ).

(f) φ(x) = ax2 + bx+λ
∫ x

0
ax+ b
at + b

φ(t)dt

Answer: φ(x) =
1
λ
(ax+ b)(eλ x− 1).

2. (a) Show that the unique solution to the initial value problem consisting of the
differential equation

y′′(x)+ xy′(x)+ xy(x) = 0

together with the initial conditions y(0) = y′(0) = 1 is given by y(x) =

ex−x2/2.
(b) Show that the differential equation in part (a) can be converted into the

Volterra integral equation

φ(x) =−x2 − 2x−
x∫

0

(
x2 + x− xt

)
φ(t)dt

and verify that its solution is φ(x) = y′′(x) = x(x− 2)ex−x2/2.
3. Two linearly independent series solutions of Airy’s differential equation

w′′(x)− xw(x) = 0

are given by

w1(x) =
∞

∑
n=0

3n ( 1
3

)
n

x3n

(3n)!
= 1+

1
3!

x3 + · · ·

and

w2(x) =
∞

∑
n=0

3n ( 2
3

)
n

x3n+1

(3n+ 1)!
= x+

2
4!

x4 + · · · .
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In terms of these series, the solutions to Airy’s equation are expressed in the
forms

Ai(x) = c1 w1(x)− c2 w2(x) and Bi(x) =
√

3(c1 w1(x)+ c2 w2(x)) ,

where

c1 = Ai(0) =
Bi(0)√

3
=

1

32/3
Γ ( 2

3 )

and

c2 =−Ai′(0) =
Bi′(0)√

3
=

1

31/3
Γ ( 1

3 ).

(a) Convert Airy’s differential equation into Volterra integral equations, one
satisfied by w1(x) and another by w2(x).

(b) Show that two linearly independent solutions of the linear differential
equation

y′′(x)+ y′(x)+ xy(x) = 0

are

y1(x) = e−x/2 Ai
( 1

4 − x
)

and y2(x) = e−x/2 Bi
( 1

4 − x
)
.

(c) Convert the differential equation in part (b) into a Volterra integral equation
of the second kind.

4. The classical Hermite differential equation is given by

y′′(x)− 2xy′(x)+ 2ny(x) = 0.

If n is a nonnegative integer, then one solution Hn(x) of this equation is a
polynomial of degree n. These polynomials appear as the coefficients in the
generating function

exp{2xt − t2}=
∞

∑
k=0

1
k!

Hk(x)tk.

(a) Set x = 0 in the generating function to determine the value of Hk(0) for all
k ≥ 0.

(b) Differentiate the generating function with respect to x to show that

H ′
k(x) = 2k Hk−1(x)

for all k ≥ 1. Use this result to determine the value of H ′
k(0) for all k ≥ 1.

(c) For n ≥ 1, convert Hermite’s differential equation together with the values of
Hn(0) and H ′

n(0) to a Volterra integral equation of the second kind.
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5.4 Integrodifferential Equations

An integrodifferential equation can be viewed as a hybrid of an integral equation
and an ordinary or partial differential equation, in the sense that it involves both the
integral and the derivative(s) of the unknown function.

Since the variety of integrodifferential equations is essentially infinite, no satis-
factory classification of them is in existence. Consequently, the methods available
for determining their solutions vary considerably and often involve some ad hoc
creativity. In some situations, a solution can be obtained directly; in others, a
solution can be obtained after converting the integrodifferential equation into either
a differential equation or an integral equation.

Qualitative and quantitative theoretical investigations of integrodifferential equa-
tions are generally concerned with the existence and uniqueness of their solutions,
along with an examination of their analytic properties. These include periodicity,
boundedness, stability analysis, and continuous dependence upon parameters.
However, since these studies would take us too far afield from the introductory
nature of this textbook, we only consider here a few types of solvable equations.

Illustrative Examples

• Example 1: Consider the integrodifferential equation

φ ′′(x)+λ φ(x) =
1∫

0

φ(t)dt.

This equation can be considered to be of Fredholm type, since the upper and
lower limits of integration are constants. Since the right-hand side of this equation
is constant, any solution to it must be found among the solutions to the third-order
linear differential equation

φ ′′′(x)+λ φ ′(x) = 0,

which is immediately obtained by differentiation. Regardless of the value of λ ,
this differential equation will always have three linearly independent solutions.

We consider three cases:

Case I: λ = 0.
In this case, the most general solution to the differential equation assumes the

form
φ(x) = φ(0)+φ ′(0)x+ 1

2 φ ′′(0)x2.
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However, if we substitute this solution into the integrodifferential equation, then
the necessary condition

φ ′′(0) =
1∫

0

φ(t)dt = φ(0)+ 1
2 φ ′(0)+ 1

6 φ ′′(0),

or equivalently,

φ ′′(0) = 6
5 φ(0)+ 3

5 φ ′(0)

must be satisfied for a solution to exist. Two of the initial conditions can be
chosen arbitrarily. For example, if we substitute the above value for φ ′′(0), we
obtain

φ(x) = φ(0)
(
1+ 3

5 x2)+φ ′(0)
(
x+ 3

10 x2) .

Case II: λ =+σ2 with σ > 0.
In this case, the most general solution to the differential equation assumes the

form

φ(x) = φ(0)+
1
σ

φ ′(0) sin(σx)+
1
σ2 φ ′′(0)(1− cos(σx)).

However, if we substitute this solution into the integrodifferential equation, then
the necessary condition

φ ′′(0)
(

1− 1
σ2 +

sin σ
σ3

)
= φ(0)(1−σ2)+

1
σ2 φ ′(0)(1− cos σ)

must be satisfied for a solution to exist. Special care should be exercised if σ = 1
or σ = nπ .

Case III: λ =−σ2 with σ > 0.
In this case, the most general solution to the differential equation assumes the

form

φ(x) = φ(0)++φ ′(0)
(

sinh(σx)
σ

)
+ 2φ ′′(0)

(
sinh(σx/2)

σ

)2

.

However, if we substitute this solution into the integrodifferential equation, then
the necessary condition

φ ′′(0)
(

1+
1
σ2 − sinhσ

σ3

)
= φ(0)(1+σ2)+

1
σ2 φ ′(0)(coshσ − 1)

must be satisfied for a solution to exist.
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• Example 2: Consider the Fredholm-type integrodifferential equation

φ(x) = x3 +λ
1∫

0

x3 t3 φ ′(t)dt.

This integral equation can be solved directly. If we set

A =

1∫

0

t3 φ ′(t)dt,

then the solution assumes the form φ(x) = (1+Aλ )x3. After substituting this
representation into the integral equation and then simplifying the result, we find
that A = 1/(2−λ ). Consequently, if λ �= 2, then

φ(x) =
2x3

2−λ
.

• Example 3: Consider the integrodifferential equation

φ ′′(x)− 3φ(x) =
x∫

0

2φ(t)dt.

This equation can be considered to be of Volterra type, since the upper limit of
integration is variable. Any solution to it must be found among the solutions to
the third-order linear differential equation

φ ′′′(x)− 3φ ′(x)− 2φ(x) = 0,

which is directly obtained by differentiation. The most general solution to this
differential equation can be written in the form

φ(x) =
1

15

(
φ(0)+ 3φ ′(0)+ 2φ ′′(0)

)
e2x

+
1

15

(
8φ(0)− 6φ ′(0)+φ ′′(0)

)
e−x

+
1

15

(
6φ(0)+ 3φ ′(0)− 3φ ′′(0)

)
xe−x.

However, if we substitute this solution into the integrodifferential equation, then
we find that the necessary condition 2φ ′′(0) = 9φ(0)− 3φ ′(0) must be satisfied
for a solution to exist. If we substitute this value for φ ′′(0), we obtain

φ(x) =
1
6
φ(0)

(
4e2x + 5e−x− 3xe−x)− 1

2
φ ′(0)

(
e−x − xe−x) ,

which is the most general solution to the integrodifferential equation.
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• Example 4: Consider the integrodifferential equation

φ ′(x) = cos x+ 2

x∫

0

sin(x− t)φ(t)dt

together with the initial condition φ(0) = 1. This Volterra-type equation can
be solved by employing the method of Laplace transforms that was introduced
in Sect. 4.3, since the kernel is of convolution type. After taking the Laplace
transform of both sides of this equation and then simplifying the result, we obtain

L{φ}= s2 + s+ 1
s3 + s2 − 2

=
3
5

1
s− 1

+
1+ 2s

s2 + 2s+ 2
.

Hence,

φ(x) =
3
5

ex +
2
5

e−x cos x− 1
5

e−x sin x.

Section 5.4 Exercises

1. Consider the Fredholm-type integrodifferential equation

φ(x) = x3 +λ
1∫

0

x3 t3φ (n)(t)dt.

This equation was solved in Example 2 if n = 1. Use the technique illustrated
there to solve this equation if n = 2 and if n = 3. What happens if n ≥ 4?

2. Consider the Fredholm-type integrodifferential equation

φ (n)(x) = x3 +λ
1∫

0

x3 t3 φ(t)dt.

Solve this equation if n = 1 and if n = 2. What happens if n ≥ 3?
3. Let n be a positive integer. Solve the Volterra-type integrodifferential equation

φ(x) =
1
n!

xn +
1
n!

x∫

0

(x− t)nφ ′(t)dt

for n = 1,2, and 3. Note that φ(0) = 0. Since the kernel is of convolution type,
the method introduced in Sect. 4.3 can be employed here.
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4. Solve the Volterra-type integrodifferential equation

x∫

1

1√
xt

φ ′(t)dt = f (x),

where we assume that f (1) = 0 and f (x) is continuously differentiable on an
interval of the form [1,b].



Chapter 6
Nonlinear Integral Equations

A nonlinear integral equation is an integral equation in which the unknown function
appears in the equation in a nonlinear manner. The nonlinearity may occur either
inside or outside of the integrand or simultaneously in both of these locations.
It leads to an astonishing variety of new phenomena related to the characteristics
of the solutions and to the methods of solution.

Since the variety of nonlinear integral equations is almost unlimited in scope,
a definitive classification of them is elusive. However, one of the most common
categories is that of equations assuming the form

H(x,φ(x)) =
b∫

a

G(x, t,φ(t))dt.

We consider equations of this general form, but we are mainly concerned with
equations of two special types:

• The Fredholm type

φ(x) = f (x)+λ
b∫

a

G(x, t,φ(t))dt, (6.1)

for which we always assume that the integrand G(x, t,φ(t)) is continuous either
on the set Q(a,b)×R or on the smaller set Q(a,b)× [−M,+M] for a suitably
large value of M.

• The Volterra type

φ(x) = f (x)+λ
x∫

a

G(x, t,φ(t))dt, (6.2)

for which we always assume that the integrand G(x, t,φ(t)) is continuous either
on the set T (a,b)×R or on the smaller set T (a,b)× [−M,+M] for a suitable
value of M.

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 6, © Springer Science+Business Media, LLC 2012
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In these equations, we always assume that the inhomogeneous term f (x) is
continuous on the interval [a,b].

It is natural to ask whether solutions to nonlinear integral equations exist and, if
so, whether these solutions are unique. It is also reasonable to explore the role that
the parameter λ plays in the determination of these solutions. Although straightfor-
ward routines exist to determine these solutions when the integral equations assume
familiar forms, we find that creative ad hoc methods are also required when they do
not. Our analysis of these questions reveals that new phenomena occur here that did
not occur in our previous work with linear integral equations.

When a solution cannot be determined exactly, numerical techniques can be
employed to determine approximate solutions. The nonlinearity of the integral
equations induces additional computational difficulties into our work.

In Sect. 6.1, we present several tools of the trade that are indispensible for the
comprehension of the material in this chapter.

In Sect. 6.2, we apply a fixed point theorem originally enunciated by Banach
to establish the existence and uniqueness of a solution to an integral equation
of Fredholm type (6.1) for restricted values of λ , when the integrand satisfies a
particular analytic condition. An analogous theorem for nonlinear integral equations
of Volterra type (6.2) is also proven. Other fixed point theorems, e.g., those of
Brouwer, Schauder, and Kakutani, can also be invoked to prove existence and
uniqueness theorems in different settings, but we shall not pursue those here. We
also briefly consider equations of Hammerstein type. These equations are interesting
since their solution involves an application of the Hilbert–Schmidt theory that was
introduced in Chap. 3.

In Sect. 6.3, we consider a large number of examples in order to illustrate many
of the new phenomena that can and do occur in an investigation of nonlinear
integral equations. There is no need to consider complicated integral equations
to illustrate these phenomena. Indeed, extremely simple equations can be used
to demonstrate some rather intriguing analytic behaviors. For example, while the
parameter λ held great significance in the proofs of Fredholm’s theorems, it may be
entirely insignificant in the discussion of nonlinear integral equations with a similar
structure. Our examples will also show that nonlinear integral equations can have an
infinite family of solutions.

Any discussion of nonlinear integral equations should include some of the
techniques by which they are routinely solved. In the case that the integrand in
Eq. (6.1) can be factored as

G(x, t,φ(t)) = K(x, t)F(t,φ(t)),

we show how to obtain solutions if K(x, t) is either separable or symmetric and
positive. Converting a nonlinear integral equation to a nonlinear differential equation
is also fruitful.

Hopefully, the discussion that is presented here will serve to spur the interest and
curiosity of the reader to continue the study of this particularly fascinating area of
mathematics.
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6.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Metrics, metric spaces, and completeness: A metric on a set X is a mapping
d : X ×X → R with the following properties:

1. d(x,y)≥ 0 for all x,y ∈ X .
2. d(x,y) = 0 if and only if x = y.
3. d(x,y) = d(y,x) for all x,y ∈ X .
4. d(x,z)≤ d(x,y)+ d(y,z) for all x,y,z ∈ X .

A metric is also called a distance function and d(x,y) is called the distance
between x and y.

A metric space1 is a set endowed with a metric. The elements of X are called
the points of X .

A sequence {xn} in a metric space X is called a d-Cauchy sequence in X
if, for every ε > 0, there exists an integer N (which depends upon ε) such that
d(xm,xn)< ε whenever n,m ≥ N.

A metric d for a metric space X is called complete if every d-Cauchy sequence
in X converges to an element of X . A metric space X is called d-complete if d is
a complete metric for X .

In particular, we note that the space C[a,b] of functions that are continuous on
the closed interval [a,b] is complete with respect to the metric

d(x(t),y(t)) = max
a≤t≤b

|x(t)− y(t)|.

• Contraction mappings: Let X be a metric space with metric d, and let A be a
mapping from X into itself. Then A is called a contraction mapping if

d(Ax,Ay)≤ α d(x,y)

for all x,y ∈ X , where 0 < α < 1. The constant α does not depend in any way on
the elements of X . The possibility that α = 0 has been omitted here. For if α = 0,
then d(Ax,Ay) = 0 for all x,y ∈ X , i.e., A is a constant mapping. If X is a space
consisting of functions, then A is called a contraction operator.

• Continuous mappings: Let X be a metric space with metric d, and let A be a
mapping from X into itself. Then A is continuous at the point x0 ∈ X if, for every
ε > 0, there exists a δ > 0 such that d(Ax,Ay) < ε whenever d(x,y) < δ . If S
is a subset of X and A is continuous at every point of S, then we say that A is
continuous on S.

• Fixed points and fixed point theorems: Let A be a mapping from a metric space
X into itself. If Ax0 = x0, then x0 is called a fixed point of the mapping A.

1More precisely, a metric space is a topological space whose topology is induced by a metric.



214 6 Nonlinear Integral Equations

It is natural to ask whether mappings have fixed points. Many theorems that
provide necessary conditions on metric spaces and their self-mappings for the
existence of fixed points have been established. Among them is the following
result known as Banach’s Fixed Point Theorem. It is also known as the Principle
of Contraction.

Theorem 6.1.1 (Banach). Let X be a complete metric space endowed with the
metric d. If A is a contraction mapping from X into itself, then there exists a
unique point x0 ∈ X such that Ax0 = x0.

Proof. Let x ∈ X be arbitrary. Generate a sequence in X by setting x1 = Ax and
xn+1 = Axn for n ≥ 1. Since A is a contraction mapping, there exists a constant
α (0 < α < 1) such that

d(x1,x2) = d(Ax,Ax1)≤ α d(x,x1) = α d(x,Ax).

A short inductive argument establishes the inequality

d(xn,xn+1)≤ αn d(x,Ax)

for all n ≥ 1. Since every metric satisfies the triangle inequality, we also have

d(xn,xn+p)≤ d(xn,xn+1)+ · · ·+ d(xn+p−1,xn+p)

≤ αn (1+α+ · · ·+α p−1)d(x,Ax)

for every integer p ≥ 1. It follows that

d(xn,xn+p)≤ αn

1−α
d(x,Ax), (6.3)

from which we deduce that d(xn,xn+p) → 0 as n → +∞ for any given integer
p ≥ 1. Thus, the sequence {xn}∞

n=1 is d-Cauchy in X . Since we have assumed
that X is d-complete, there exists an element x0 ∈ X such that

x0 = lim
n→+∞

xn.

To show that Ax0 = x0, we show that d(x0,Ax0) = 0. Let ε > 0 be arbitrary. In
view of the convergence of the sequence {xn}∞

n=1, there exists a positive integer
N such that d(x0,xn)< ε/2 and d(x0,xn−1)< ε/2 for all n ≥ N. Consequently,

d(x0,Ax0)≤ d(x0,xn)+ d(xn,Ax0)

= d(x0,xn)+ d(Axn−1,Ax0)

≤ d(x0,xn)+α d(xn−1,x0)

<
ε
2
+α

ε
2

< ε.

But since ε is arbitrary, it must be the case that d(x0,Ax0) = 0.
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It is easy to prove by contradiction that x0 is unique. Suppose that A has two
or more distinct fixed points, say x0 and y0. Then,

d(x0,y0) = d(Ax0,Ay0)≤ α d(x0,y0).

If x0 �= y0, then d(x0,y0) > 0, and we conclude that α ≥ 1, contrary to the
hypothesis that 0 < α < 1. Hence, x0 is the unique fixed point of the contraction
mapping A, and the proof is complete. �


An estimate on the speed of convergence of the sequence {xn}∞
n=1 can be

obtained from inequality (6.3). If we let p →+∞, then we obtain the inequality

d(xn,x0)≤ αn

1−α
d(x,Ax),

which shows that the speed of convergence depends upon the choice of metric,
the magnitude of α , and the distance between x and its image Ax in X .

Not every continuous mapping from X into itself must be a contraction
mapping. However, it may happen that some power An of A might be a
contraction mapping, even if A is not. In this case, another fixed point theorem
can be enunciated.

Theorem 6.1.2. Let A be a continuous mapping from the complete metric space
X into itself. If An is a contraction mapping for some positive integer n, then
there exists a unique point x0 ∈ X such that Ax0 = x0.

• Lipschitz conditions: A real-valued function satisfies a Lipschitz condition on a
set E if the inequality

| f (x)− f (y)| ≤C |x− y|

holds for all x,y ∈ E , where C is a constant that is independent of x and y. For
example, a function that has a bounded first derivative on E satisfies a Lipschitz
condition as a consequence of the Mean Value Theorem, which states that there
exists a value c between x and y for which

f (x)− f (y) = f ′(c)(x− y).

A function of several variables can satisfy a Lipschitz condition on a set
with respect to one of the variables. In this chapter, we will encounter functions
G(x, t,z) of three variables that satisfy a Lipschitz condition of the form

|G(x, t,z1)−G(x, t,z2)| ≤C |z1 − z2|

where G(x, t,z) is defined on Q(a,b)×R. The constant C is independent of x, t,
z1, and z2.
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6.2 Existence and Uniqueness Theorems

The fixed point theorems that were stated in Sect. 6.1 can be invoked to establish
existence and uniqueness theorems for nonlinear integral equations. In this section,
we illustrate the method by which this can be accomplished.

6.2.1 Nonlinear Fredholm Integral Equations

Banach’s Fixed Point Theorem can be used to prove the following result.

Theorem 6.2.1. Suppose that G(x, t,z) is defined and continuous on the set
Q(a,b)×R and that it satisfies a Lipschitz condition of the form

|G(x, t,z1)−G(x, t,z2)|<C |z1 − z2| .
Suppose further that f ∈ C[a,b]. Then the nonlinear Fredholm integral equation

φ(x) = f (x)+λ
b∫

a

G(x, t,φ(t))dt (6.4)

has a unique solution on the interval [a,b] whenever |λ |< 1/(C (b− a)).

Proof. The space C[a,b] consisting of the real-valued continuous functions that are
defined on the interval [a,b] is a complete metric space with the metric

d(u,v) = max
a≤x≤b

|u(x)− v(x)|.

If it can be shown that the operator

F : C[a,b]→ C[a,b]

defined by

Fu = f (x)+λ
b∫

a

G(x, t,u(t))dt

is a contraction operator for the restricted values of λ prescribed in the statement
of the theorem, then it will follow immediately as an application of Banach’s Fixed
Point Theorem (Theorem 6.1.1) that F has a unique fixed point, i.e., that the integral
equation in the statement of the theorem has a unique solution. Observe that for any
u,v ∈ C[a,b] and any x ∈ [a,b], we have

|Fu(x)−Fv(x)|= |λ |
∣∣∣∣∣∣

b∫

a

(G(x, t,u(t))−G(x, t,v(t))) dt

∣∣∣∣∣∣
≤ |λ |C (b− a)d(u,v).
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It follows directly from this inequality that

d(Fu,Fv)≤ |λ |C (b− a)d(u,v).

Hence, if α = |λ |C (b− a) < 1, then F is a contraction operator from C[a,b] into
itself, and the proof is complete. �


In the proof of the Theorem 6.2.1, a unique fixed point was determined as the
limit of a sequence {xn}∞

n=1 of points generated by the operator A. Analogously, the
unique solution of the nonlinear integral equation (6.4) is determined as the limit
of a sequence of continuous functions generated by the operator F. Choose φ0(x).
If we set

φ1(x) = Fφ0(x) = f (x)+λ
b∫

a

G(x, t,φ0(t))dt

and

φn+1(x) = Fφn(x)

for all n ≥ 1, then the sequence {φn(x)}∞
n=0 in C[a,b] converges uniformly to a limit

function φ(x) which will be the solution to the integral equation. In essence, the
Method of Successive Substitution is valid under the hypotheses of Theorem 6.2.1.

6.2.2 Nonlinear Volterra Integral Equations

Fixed point theorems can also be used to prove the existence and uniqueness
of solutions to nonlinear Volterra integral equations. In the theorem below, note
especially that there are no restrictions on the value of λ .

Theorem 6.2.2. Suppose that G(x, t,z) is defined and continuous on the set
T (a,b)×R and that it satisfies a Lipschitz condition of the form

|G(x, t,z1)−G(x, t,z2)|<C |z1 − z2| .
Suppose further that f ∈ C[a,b]. Then the nonlinear Volterra integral equation

φ(x) = f (x)+λ
x∫

a

G(x, t,φ(t))dt

has a unique solution on the interval [a,b] for every value of λ , where a ≤ x ≤ b.

Proof. The space C[a,b] consisting of the real-valued continuous functions that are
defined on the interval [a,b] is a complete metric space with the metric

d(u,v) = max
a≤x≤b

|u(x)− v(x)|.
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If it can be shown that a suitable power of the continuous operator

V : C[a,b]→ C[a,b]

defined by

Vu = f (x)+λ
x∫

a

G(x, t,u(t))dt

is a contraction operator for any value of λ , then it will follow immediately as an
application of Theorem 6.1.2 that V has a unique fixed point, i.e., that the integral
equation in the statement of the theorem has a unique solution. Observe that for any
u,v ∈ C[a,b] and any x ∈ [a,b], we have

|Vu(x)−Vv(x)|= |λ |
∣∣∣∣∣∣

x∫

a

(G(x, t,u(t))−G(x, t,v(t))) dt

∣∣∣∣∣∣
≤ |λ |C (x− a)d(u,v).

After again invoking the Lipschitz condition and then integrating the result, we
obtain

|V2u(x)−V2v(x)|= |λ |
∣∣∣∣∣∣

x∫

a

(G(x, t,Vu(t))−G(x, t,Vv(t))) dt

∣∣∣∣∣∣

≤ |λ |C
x∫

a

|Vu(t)−Vv(t)|dt

≤ |λ |2 C2 (x− a)2

2!
d(u,v).

In general, after n such integrations, we obtain

|Vnu(x)−Vnv(x)| ≤ |λ |n Cn (x− a)n

n!
d(u,v),

from which it follows that

d(Vnu,Vnv)≤ |λ |n Cn (b− a)n

n!
d(u,v).

Hence, if n is sufficiently large, then Vn is a contraction operator from C[a,b] into
itself, and the proof is complete. �




6.2 Existence and Uniqueness Theorems 219

6.2.3 Hammerstein’s Equation

In Sect. 5.2.1, it was shown that the boundary value problem that consists of the
ordinary differential equation

φ ′′(x)+F[x,φ(x)] = 0

together with the boundary conditions φ(0) = φ(1) = 0 can be converted into the
integral equation

φ(x) =
1∫

0

T (x, t)F [t,φ(t)]dt,

where T (x, t) is the continuous, symmetric, positive, “triangular” kernel given by

T (x, t) =

{
t(1− x) if 0 ≤ t ≤ x ≤ 1

x(1− t) if 0 ≤ x ≤ t ≤ 1.

Hammerstein investigated a generalization of this converted equation by consid-
ering integral equations in the standardized form

φ(x) =
1∫

0

K(x, t)F [t,φ(t)]dt, (6.5)

where K(x, t) is a symmetric, positive kernel, and reasonable restrictions are
imposed on F[t,z].

It is easy to choose functions F [t,z] for which a solution need not exist. It is
also evident that if F [t,0] ≡ 0, then φ(x) ≡ 0 is a trivial solution to the equation.
It is therefore natural to ask for reasonable hypotheses under which an equation
of this type has nontrivial solutions. A comprehensive discussion of existence
and uniqueness questions is beyond the scope of this textbook.2 However, it is
nonetheless possible to state one of several versions of a typical existence theorem
and then to give an indication of the arguments involved in proving it, since
Hammerstein’s assumption that K(x, t) is symmetric allows for an artful application
of the Hilbert–Schmidt theory that was introduced in Chap. 3.

Theorem 6.2.3 (Hammerstein). Suppose that K(x, t) is a continuous, positive,
symmetric kernel. If F(t,z) is continuous and satisfies the inequality

|F[t,z]| ≤C1 |z|+C2,

2For a treatment of these issues, see Tricomi, Integral Equations, pp. 202–213.
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where C1 and C2 are positive and C1 is smaller than the smallest eigenvalue
of K(x, t), then the nonlinear integral equation (6.5) has at least one solution.
Furthermore, if either

(a) The function F [t,z] is a nondecreasing function of z for any fixed t ∈ (0,1)
or

(b) The function F [t,z] satisfies uniformly a Lipschitz condition of the form

|F [t,z1]−F[t,z2]|<C |z1 − z2| (0 <C < λ1),

then the nonlinear integral equation (6.5) has at most one solution.

If we assume that F [x,φ(x)] ∈ R2[0,1], then an invocation of the Hilbert–
Schmidt Theorem (Theorem 3.4.1) allows us to conclude that the solution φ(x) has
the representation

φ(x) =
∞

∑
n=1

cn φn(x),

where {φn(x)}∞
n=1 is a mutually orthonormal system of eigenfunctions that must

correspond to the ordered positive eigenvalues λ1,λ2, . . . of the kernel K(x, t).
A formula for each of the coefficients cn can be given in terms of them all. Recall

that, for each n ≥ 1, we have

cn =

1∫

0

φ(x)φn(x)dx

due to the orthonormality of the eigenfunctions. If we substitute the right-hand side
of Eq. (6.5) into this representation, we obtain

cn =

1∫

0

⎛
⎝

1∫

0

K(x, t)F [t,φ(t)]dt

⎞
⎠ φn(x)dx

=

1∫

0

F [t,φ(t)]

⎛
⎝

1∫

0

K(x, t)φn(x)dx

⎞
⎠ dt

=
1
λn

1∫

0

F [t,φ(t)]φn(t)dt

=
1
λn

1∫

0

F

[
t,

∞

∑
m=1

cm φm(t)

]
φn(t)dt.
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If the kernel K(x, t) has a finite bilinear expansion (see Sect. 3.3) consisting of N
terms, then these representations for the coefficients c1, . . . ,cN constitute a finite
nonlinear system of N equations in N unknowns. However, if K(x, t) has an infinite
number of eigenvalues, then these representations constitute a nonlinear system of
an infinite number of equations in an infinite number of unknowns. Each solution
to the system, whether finite or infinite, should give rise to a solution to the
Hammerstein equation.

The initial step in the process of establishing the existence of a solution is to
truncate the infinite system of equations. For every positive integer p, we consider
the finite system

cp,n =
1
λn

1∫

0

F

[
t,

p

∑
m=1

cp,m φm(t)

]
φn(t)dt (1 ≤ n ≤ p).

By means of an elegant minimization argument, Hammerstein showed that this
finite system always has at least one solution, (cp,1, . . . ,cp,p). As a consequence,
a sequence of functions of the form

ψp(x) =
p

∑
n=1

cp,nφn(x) (1 ≤ p <+∞)

can be constructed. This sequence has several valuable properties. For example, it
can be shown that there exists a constant B such that ‖ψp‖2 ≤ B for all p ≥ 1, i.e.,
that the sequence {ψp}∞

p=1 is bounded. Although it can also be shown that

lim
p→+∞

⎛
⎝ψp(x)−

1∫

0

K(x, t)F [t,ψp(t)]dt

⎞
⎠= 0

uniformly on the interval [0,1], the sequence {ψp(x)} itself may not converge.
However, it can be shown (via an argument involving equicontinuity and an
application of Ascoli’s Theorem) there will always exist a subsequence of it that
converges uniformly on the interval [0,1] to a continuous limit function ψ(x), and
this fact leads to the proof of the theorem.

6.3 Illustrative Examples

In this section, we consider a large variety of interesting examples in order to
illustrate many of the new phenomena and intriguing analytic behaviors that can
and do occur in the investigation of nonlinear integral equations. Hopefully, the
discussion of these examples will spur the interest and curiosity of the reader to
continue the study of this particularly fascinating area of mathematics.
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• Example 1: Many of the important nonlinear integral equations assume the
general form

L(x,φ(x)) =
b∫

a

G(x, t,φ(t))dt,

where L(x,z) and G(x, t,z) are nonlinear functions of z. In some cases, it is
advantageous to incorporate the nonlinearity on the left-hand side of the equation
into the integrand. If it is possible to invert the relationship ψ(x) = L(x,φ(x)) to
obtain φ(x) = J(x,ψ(x)), then the integral equation can be reformulated as

ψ(x) =

b∫

a

G(x, t,J(t,ψ(t)))dt.

• Example 2: If the integrand G(x, t,φ(t)) in the nonlinear equation (6.1) can be
factored as

G(x, t,φ(t)) = K(x, t)F(t,φ(t)),

where K(x, t) is separable, then a solution can often be found directly. For
example, if K(x, t) = a(x)b(t), then the solution must have the form φ(x) =
f (x)+λ ca(x), where

c =

b∫

a

b(t)F(t,φ(t))dt;

substituting φ(t) into this integrand yields a necessary condition, usually nonlin-
ear in nature, that must be satisfied by the value c.

Consider the nonlinear Fredholm integral equation

φ(x) = 1+ 2x+λ
1∫

0

xt
(
1+φ2(t)

)
dt

where we assume that λ is a real parameter.
Every solution to this equation must have the form φ(x;λ ) = 1+(2+λc)x,

where we have set

c =

1∫

0

t
(
1+φ2(t)

)
dt.

Given the form of the solution, this integral condition is equivalent to the
quadratic equation

3λ 2c2 +(20λ − 12)c+ 40= 0,
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whose roots in terms of the parameter λ are

c1(λ ) =
2
3

(
3− 5λ −√

9− 30λ − 5λ 2

λ 2

)

and

c2(λ ) =
2
3

(
3− 5λ +

√
9− 30λ − 5λ 2

λ 2

)
.

Note that c1(λ ) has a removable discontinuity at λ = 0, but c2(λ ) does not.
However, this presents no difficulty, since φ(x;0) = 1+ 2x.

In order to obtain the rest of the real-valued solutions to the integral equation,
we must require that c1(λ ) and c2(λ ) be real. The discriminant Δ(λ ) = 9−
30λ − 5λ 2 vanishes at the values

λ1 =−3
5

(
5+

√
30
)
=−6.2863 . . .

and

λ2 =−3
5

(
5−

√
30
)
=+0.2863 . . .

and is positive between them. Thus,

c1(λ1) = c2(λ1) =
10
9

(
6−

√
30
)
=+0.5808 . . .

so that

φ(x;λ1) = 1+

(
2− 2

3

√
30

)
x,

and

c1(λ2) = c2(λ2) =
10
9

(
6+

√
30
)
=+12.7525 . . .

so that

φ(x;λ2) = 1+

(
2+

2
3

√
30

)
x.

The solutions φ(x;0), φ(x;λ1), and φ(x;λ2) are unique. However, if either
λ1 < λ < 0 or 0 < λ < λ2, then there are exactly two solutions, given by

φ−(x;λ ) = 1+

(
2+

2
3

(
3− 5λ −√

9− 30λ − 5λ 2

λ 2

)
λ

)
x

= 1+

(
6− 4λ− 2

√
9− 30λ − 5λ 2

3λ

)
x
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and

φ+(x;λ ) = 1+

(
2+

2
3

(
3− 5λ +

√
9− 30λ − 5λ 2

λ 2

)
λ

)
x

= 1+

(
6− 4λ+ 2

√
9− 30λ − 5λ 2

3λ

)
x.

If either −∞< λ < λ1 or λ2 < λ <+∞, then there are no real-valued solutions.
To summarize, we have shown that the solutions to the integral equation

constitute a family of straight lines passing through the point (0,1). Finally, we
note that the only constant solution is φ−(x;−2) = 1.

• Example 3: The concept of an eigenvalue played an extremely significant role
in the discussion of the Fredholm theorems earlier in this text. For example,
the Fourth Fredholm Theorem, considered in Chap. 2, states that the set of
eigenvalues of the homogeneous equation

φ(x) = λ
b∫

a

K(x, t)φ(t)dt

is at most countable and has no finite limit point.
By way of contrast, consider the nonlinear integral equation

φ(x) = λ
b∫

a

K(x, t)φn(t)dt (n �= 1)

If we set φ(x) = μ ψ(x), where μ is chosen so that λ μn−1 = 1, then this nonlinear
equation is readily transformed into the equation

ψ(x) =

b∫

a

K(x, t)ψn(t)dt,

for which both of the values λ and μ are entirely insignificant.
• Example 4: The method used to solve linear integral equations that had separable

kernels can be adapted to solve nonlinear integral equations as well. However, a
important difference arises. While the method that we used to solve linear integral
equations led to a linear system of equations, the method here almost always
leads to a nonlinear system of equations.

Consider the nonlinear integral equation

φ(x) =
π∫

0

sin(x+ t)φ2(t)dt.
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An obvious solution to this equation is the trivial solution φ(x)≡ 0. To determine
nontrivial solutions, we expand the integrand to obtain

φ(x) =
π∫

0

(sin x cos t + cos x sin t)φ2(t)dt,

from which we conclude that every possible solution must have the form

φ(x) = c1 sin x+ c2 cos x,

where

c1 =

π∫

0

cos t φ2(t)dt and c2 =

π∫

0

sin t φ2(t)dt.

After substituting φ(t) into these necessary conditions and simplifying the
results, we find that c1 and c2 must simultaneously satisfy the nonlinear equations

c1

(
1− 4

3
c2

)
= 0 and 2c2

1 +

(
c2 − 3

4

)2

=
9

16
.

In the c1c2-plane, the first equation represents two straight lines, and the second
equation represents an ellipse centered at the point

(
0, 3

4

)
. These two equations

have four solutions (c1,c2):

(0,0),

(
0,

3
2

)
,

(
+

3
√

2
8

,
3
4

)
, and

(
−3

√
2

8
,

3
4

)
.

Corresponding to c1 = 0, we have the two solutions

φ(x) = 0 and φ(x) =
3
2

cos x;

corresponding to c2 =
3
4 , we have the other two solutions

φ(x) = +
3
√

2
8

sin x+
3
4

cos x and φ(x) =−3
√

2
8

sin x+
3
4

cos x.

• Example 5: Nonlinear integral equations can have an infinite family of solutions.
Consider the nonlinear integral equation

φ(x) =
π∫

0

cos(x− t)φ3(t)dt.
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An obvious solution to this equation is the trivial solution φ(x)≡ 0. To determine
nontrivial solutions, we expand the integrand to obtain

φ(x) =
π∫

0

(cos x cos t + sin x sin t)φ3(t)dt,

from which we conclude that every possible solution must have the form

φ(x) = c1 cos x+ c2 sin x,

where

c1 =

π∫

0

cos t φ3(t)dt and c2 =

π∫

0

sin t φ3(t)dt.

After substituting φ(t) into these necessary conditions and simplifying the
results, we find that c1 and c2 must simultaneously satisfy the nonlinear
conditions

c1

(
1− 3π

8

(
c2

1 + c2
2

))
= 0 and c2

(
1− 3π

8

(
c2

1 + c2
2

))
= 0.

If c1 �= 0 and c2 = 0, then the first condition implies that

φ(x) =±2

√
2

3π
cos x.

If c1 = 0 and c2 �= 0, then the second condition implies that

φ(x) =±2

√
2

3π
sin x.

If c1 �= 0 and c2 �= 0, then the point (c1,c2) in the c1c2-plane must belong to the
circle c2

1 + c2
2 =

8
3π . If we set

c1 = 2

√
2

3π
cos α and c2 = 2

√
2

3π
sin α,

where α is real and arbitrary, then

φ(x) = 2

√
2

3π
(cos x cos α+ sin x sin α) = 2

√
2

3π
cos(x−α).

This general solution includes the previous two solutions as special cases. Note
that the integral equation in this example has an infinite number of solutions, in
contrast to the integral equation in the previous example which had only four.



6.3 Illustrative Examples 227

• Example 6: A simple example shows that nonlinear integral equations can have
complex-valued solutions in addition to real-valued solutions.

Consider the nonlinear integral equation

φ(x) =
π∫

0

cos(x− t)φ4(t)dt.

An obvious solution to this equation is the trivial solution φ(x)≡ 0. To determine
nontrivial solutions, we expand the integrand to obtain

φ(x) =
π∫

0

(cos x cos t + sin x sin t)φ4(t)dt,

from which we conclude that every possible solution must have the form

φ(x) = c1 cos x+ c2 sin x,

where

c1 =

π∫

0

cos t φ4(t)dt and c2 =

π∫

0

sin t φ4(t)dt.

After substituting φ(t) into these necessary conditions and simplifying the
results, we find that c1 and c2 must simultaneously satisfy the nonlinear equations

c1 =
8

15
c1c2

(
3c2

1 + 2c2
2

)
and c2 =

2
15

(
3c4

1 + 12c2
1 c2

2 + 8c4
2

)
.

The first equation implies that if c2 = 0, then c1 = 0, which leads to the trivial
solution. Hence, we assume that c2 �= 0.

If c1 = 0, then the second equation implies that c3
2 =

15
16 .

If c1 �= 0, then the first equation can be rewritten as

c2
1 =

15− 16c3
2

24c2
.

After substituting this expression for c2
1 into the second equation, we find that c2

must satisfy the relation

(15− 16c3
2)

2

1440c2
2

= 0,

i.e., c3
2 =

15
16 , implying that c2

1 = 0, contrary to assumption.
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We conclude that the only solutions to the pair of nonlinear equations are

(0,0) and (0,ζ 3
√

15
16 ), where ζ 3 = 1. Therefore, the only nontrivial solutions to

the integral equation are

φ(x) = ζ 3

√
15
16

sin x.

• Example 7: In this example, we illustrate some of the difficulties that can arise
when the nonlinearity occurs outside of the integrand.

Suppose that we desire all real-valued solutions to the nonlinear integral
equation

φ2(x) = 1+ x2 +λ
1∫

0

xt φ(t)dt.

If λ = 0, then it is clear that there are exactly two real-valued solutions, φ(x) =
±√

1+ x2. Furthermore, it can be observed that, regardless of the value of λ ,
every nontrivial real-valued solution must satisfy the relation

φ2(x) = 1+λcx+ x2,

where we have set

c =

1∫

0

t φ(t)dt.

Real-valued solutions defined on the interval [0,1] can only exist if p(x) = 1+
λcx+ x2 ≥ 0 there. On the one hand, if λc ≥−2, then

p(x) = 1+λcx+ x2 ≥ 1− 2x+ x2 = (1− x)2 ≥ 0.

On the other hand, if λc <−2 and the zeroes of p(x) are r1 and r2, then r1 +r2 =
−λc > +2 and r1r2 = 1, implying that p(x) has a simple zero in the interior of
the interval (0,1). Thus, real-valued solutions can only exist on the interval [0,1]
if λc ≥−2.

Define

φ+(x) = +
√

1+λcx+ x2 and φ−(x) =−
√

1+λcx+ x2.

Set

c+ =

1∫

0

t φ+(t)dt =

1∫

0

t
√

1+λc+ t + t2 dt,
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and observe that

c+ =

1∫

0

t
√

1+λc+ t + t2 dt ≥
1∫

0

t
√

1− 2t+ t2 dt =
1
6
.

Note especially that if λc+ =−2, then c+ = 1
6 and that λ =−12.

With a similar definition for c−, we also have c− ≤ − 1
6 . Also, if λc− = −2,

then c− =− 1
6 and λ =+12.

We can now show that there is a unique value of c+ for which φ+(x) is a
solution to the integral equation on the interval [0,1]. To do this, we shall show
that there is a unique solution c+ to the equation

1
λ

=

1∫
0

t
√

1+λc+ t + t2 dt

λc+
.

Define the auxiliary function

R(a) =

1∫
0

t
√

1+ at+ t2 dt

a
=

1√
a

⎛
⎝

1∫

0

t

√
t +

1+ t2

a
dt

⎞
⎠.

It is clear that R(a) is positive and strictly decreasing on the interval 0 < a<+∞,
that R(a) → +∞ as a → 0+, and that R(a) → 0 as a → +∞. It is also clear
that R(a) is negative and strictly decreasing on the interval −2 ≤ a < 0, that
R(a)→− 1

12 as a →−2, and that R(a)→−∞ as a → 0−. Given this information,
we conclude that R(a) has a uniquely defined inverse on its domain.

Given the range of R(a), the equation 1
λ = R(a) has a uniquely defined

solution a = R−1( 1
λ ) whenever −12 ≤ λ < 0 or 0 < λ <+∞. If we set a = λc+,

then c+ = 1
λ R−1( 1

λ ). We can now conclude that φ+(x) is a solution to the integral
equation for each value of λ in the given intervals.

In a similar manner, it can be shown that the equation

1
λ

=

−
1∫
0

t
√

1+λc− t + t2 dt

λc−

has a unique solution c− or, equivalently, that the equation − 1
λ = R(a) has a

uniquely defined solution a = R−1(− 1
λ ) whenever −∞ < λ < 0 or 0 < λ ≤ 12.

If we set a = λc−, then c− = 1
λ R−1(− 1

λ ). We can now also conclude that φ−(x)
is a solution to the integral equation for each value of λ in the given intervals.

Thus, the integral equation has exactly two solutions, φ+(x) and φ−(x),
if −12 ≤ λ ≤ +12, exactly one solution φ+(x) if 12 < λ < +∞, and exactly
one solution φ−(x) if −∞< λ <−12.
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• Example 8: We have seen in several examples above that determining the
solutions to a nonlinear integral equation may involve determining the solutions
to a nonlinear system of algebraic equations. Although it was a relatively painless
process in the preceding examples, it may in general be quite difficult or even
impossible to do so.

Suppose that we seek all real-valued solutions to the nonlinear integral
equation

φ(x) = 1+ x+ x2+λ
1∫

0

(
1+ xt+ x2t2) φ2(t)dt.

If λ = 0, then the unique solution is obviously φ(x) = 1+ x+ x2. If λ �= 0, then
every solution is a quadratic polynomial of the form

φ(x) = (1+λa)+ (1+λb)x+(1+λc)x2,

where a, b, and c are positive constants satisfying the relations

a =

1∫

0

φ2(t)dt, b =

1∫

0

t φ2(t)dt, and c =

1∫

0

t2 φ2(t)dt.

After substituting the required form for φ(t), we find that these relations are
equivalent to the coefficient conditions

30a = 111+(110a+ 65b+47c)λ

+
(
30a2 + 30ab+ 10b2+ 20ac+ 15bc+6c2)λ 2,

60b = 149+(130a+ 94b+74c)λ

+
(
30a2 + 40ab+ 15b2+ 30ac+ 24bc+10c2)λ 2,

and

210c = 401+(329a+ 259b+214c)λ

+
(
70a2 + 105ab+ 42b2+ 84ac+ 70bc+30c2)λ 2.

As λ varies, each of these conditions represents a family of ellipsoids (real or
imaginary) in abc-space. Since we seek only real-valued solutions to the integral
equation, we assume that all three of these ellipsoids are real.

Recall that the intersection of three real ellipsoids may consist of as many as
eight points or possibly a closed curve. After conducting a standard numerical
investigation with Mathematica, we find there are two distinct real solutions
and six complex solutions if −72.2074 ≈ λmin < λ < 0 or 0 < λ < λmax ≈
0.0854635615. If λ = λmin or λ = λmax, then there is only one solution. If λ <
λmin or λ > λmax, then all eight solutions are complex.
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For example, if λ = 0.01, then the two real solutions to the nonlinear algebraic
system are

(a,b,c)≈ (3.93694,2.63726,2.02611),

which leads to the first solution

φ(x)≈ 1.03937+ 1.02637x+1.02026x2,

and
(a,b,c)≈ (4195.41,2609.03,1936.74),

which leads to the second solution

φ(x)≈ 42.9541+ 27.0903x+20.3674x2.

Note that the first solution is close to the solution φ(x) = 1 + x + x2 which
corresponds to λ = 0, but the second solution is not.

If λ = λmax, then the only solution is

φ(x)≈ 2.28352+ 1.83160x+1.62922x2.

If λ = λmin, then the only solution is

φ(x)≈−0.0881+ 0.1287x+0.2425x2.

Another approach to solving this integral equation involves the use of the
Method of Successive Approximation.

Let λ = 0.01, and choose φ0(x) = 1+ x+ x2. By direct computation, we find
that

φ1(x) = 1+ x+ x2+ 0.01

1∫

0

(
1+ xt + x2t2)φ0(t)dt

≈ 1.03700+ 1.02483x+1.01909x2.

The next two approximants are

φ2(x)≈ 1.03922+ 1.02628x+1.02019x2

and

φ3(x)≈ 1.03936+ 1.02637x+1.02026x2.

The third approximant compares quite favorably to the solution that was
produced directly by solving the nonlinear algebraic system above. The student
should be cautioned, however, that serious questions concerning the convergence
of such sequences must be answered before employing this method routinely for
other values of λ or for other integral equations.
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• Example 9: It is well known that Maclaurin series can be used to solve ordinary
differential equations. In this example, we show that they can also be used to
solve nonlinear integral equations of Volterra type.

Consider the integral equation

φ2(x) =

x∫

0

(x− t)φ(t)dt.

It is obvious that φ(x) ≡ 0 is a solution to this equation. Since φ(0) = 0, it is
reasonable to seek a nontrivial solution of the form

φ(x) = xα

(
∞

∑
n=0

an xn

)
=

∞

∑
n=0

an xn+α ,

where α > 0 and a0 �= 0, assuming that the series has a positive radius of
convergence.

On the one hand, we have

x∫

0

(x− t)φ(t)dt =
∞

∑
n=0

1
(n+α+ 1)(n+α+ 2)

an xn+α+2

=
1

(α+ 1)(α+ 2)
a0xα+2 +

1
(α+ 2)(α+ 3)

a1xα+3 + · · ·

On the other hand, we also have

φ2(x) = x2α

(
a2

0 + 2a0a1x+ · · ·+
n

∑
k=0

akan−k xn + · · ·
)

= a2
0 x2α + 2a0a1x2α+1 +

(
2a0a2 + a2

1

)
x2α+2 + · · · .

By comparing the first terms in these two series, we deduce that α = 2 and that
a0 = 1

12 . If we use this information when comparing the second terms, we find
that a1 = 0. A short induction argument shows that an = 0 for all n ≥ 1. Given
our assumption about the form of the solution to the integral equation, it now
follows that

φ(x) =
1
12

x2,

as is easily checked.
• Example 10: In this example, we compare and contrast the Method of Successive

Approximation with the direct substitution of an infinite series.
Consider the nonlinear integral equation of Volterra type

φ(x) = x+

x∫

0

(x− t)2φ2(t)dt.
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Although this equation is a bit more complicated than the equation in the previous
example, due to the inhomogeneous term and the nonlinearity in the integrand,
we will find that both of the employed methods can still produce some very useful
information. Since φ(0) = 0, a reasonable initial approximant to the solution φ(x)
is φ0(x) = x. Subsequent approximants can be determined from the recurrence
formula

φn+1(x) = x+

x∫

0

(x− t)2φ2
n (t)dt.

After a few simple integrations, we find that

φ1(x) = x+
1
30

x5,

φ2(x) = x+
1
30

x5 +
1

3780
x9 +

1
772,200

x13,

and

φ3(x) = x+
1
30

x5 +
1

3780
x9 +

31
16,216,200

x13 + · · · .

We can be reasonably sure that the coefficients of x5 and x9 in these approximants
are the same as the initial coefficients in the representation for φ(x), since they
do not change upon iteration.

Noticing that successive exponents in these approximants differ by four, it
is reasonable to propose that a nontrivial solution to the integral equation has a
series representation of the special form

φ(x) = x

(
∞

∑
n=0

an x4n

)
,

with a positive radius of convergence. After directly substituting this series into
the integral equation and then equating its coefficients, we find that a0 = 1 and
that all of the subsequent coefficients satisfy the recursion relation

an+1 =
2

(4n+ 3)(4n+ 4)(4n+5)

(
n

∑
k=0

ak an−k

)
.

After some elementary calculations, we find that the first few coefficients in the
series solution to the integral equation are

a1 =
1

30
, a2 =

1
3780

, and a3 =
31

16,216,200
.
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Note that these coefficients agree with those in φ3(x). Note also that the direct
substitution of an infinite series confirms the conjectured form of the solution.
The recursion relationship that it provides allows us to compute as many
coefficients as desired, with less computational effort and more accuracy than
can be produced by using successive approximation.

• Example 11: If a parameter is present in a nonlinear integral equation of Volterra
type, then the domain of the solution may depend upon that parameter. Other
characteristics of the solution, such as the location of inflection points and the
location of asymptotes, may depend upon the parameter as well.

Consider the nonlinear integral equation

φ(x) =
1
2

x2 +λ
x∫

0

t e−φ(t) dt.

Regardless of the value of the parameter λ , we always have φ(0) = 0. If φ(x)≡ 0
for all x, then necessarily λ =−1, by direct substitution.

After differentiating the integral equation, we obtain

φ ′(x) = x
(

1+λ e−φ(x)
)
,

from which we deduce that φ ′(0) = 0, again regardless of the value of λ . After
rewriting this equation in the form

eφ(x) φ ′(x)
eφ(x) +λ

= x,

we observe that if λ = −1, then the left-hand side of this equation is undefined
at x = 0. If λ �= −1, then the differential equation can be directly integrated to
obtain the implicit solution

ln

∣∣∣∣∣
eφ(x) +λ

1+λ

∣∣∣∣∣=
1
2

x2,

which can in turn be easily solved to obtain the explicit solution

φ(x;λ ) = ln
[
(1+λ )ex2/2 −λ

]
.

Note first that if λ = −1, then φ(x;−1) ≡ 0. If the solution is rewritten in the
form

φ(x;λ ) = ln
[
1+(1+λ )

(
ex2/2 − 1

)]
,

then, for each fixed value of x, we have φ(x;λ ) → 0 as λ → −1, due to the
continuous dependence upon λ .
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We turn to the dependence of the interval of validity of these solutions upon
the value of the parameter λ . It is clear that φ(x;λ ) is defined for all values of x
if λ = 0 or λ = −1. This is also true if 0 < λ < +∞ or −1 < λ < 0, although
for different technical reasons. However, if −∞ < λ < −1, then φ(x;λ ) is only
defined on the interval −λ̃ < x <+λ̃ , where

λ̃ =

√
2ln

(
λ

1+λ

)
.

The graph of the solution φ(x;λ ) will have a vertical asymptote if either x →
+λ̃− or x →−λ̃+.

Other characteristics of the solution can be observed. For example, all
solutions of the integral equation are even functions of x, a conclusion that was
not at all clear from the form of the integral equation.

• Example 12: Consider the nonlinear integral equation

φ(x) = f (x)+λ
b∫

a

k(x, t,φ(t))dt,

where

k(x, t,z) =
n

∑
i=1

ai(x)bi(t,z).

Then every solution to the integral equation must have the form

φ(x) = f (x)+λ
n

∑
i=1

ci ai(x),

where, for each i = 1, . . . ,n, we have

ci =

b∫

a

bi

(
t, f (t)+λ

n

∑
i=1

ci ai(t)

)
dt.

Thus, to solve the integral equation, it is necessary to solve this nonlinear system
of n equations in the n variables ci. Some of the complications that can arise have
been exhibited in the previous illustrative examples. Others will be discovered
in the exercises to follow. It will be easy to compare and contrast the methods
employed here with those that were introduced in Chap. 2 for linear integral
equations with separable kernels.

• Example 13: A nonlinear integral equation of Volterra type of the first kind has
the form

f (x) =

x∫

0

G(x, t,φ(t))dt,
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where f (x) is a given continuous function on some interval [0,b] with f (0) = 0.
Formal differentiation of this integral equation yields

G(x,x,φ(x)) = f ′(x)−
x∫

0

∂G
∂x

(x, t,φ(t))dt,

an equation of the second kind which is not of the standard form considered in
this chapter.

In order to show that the equation of the first kind has a unique solution, it
is essential to show first that the corresponding integral equation of the second
kind has a unique solution. This will be the case under the following familiar
assumptions:

– f (0) = 0.
– f (x) and f ′(x) are continuous on the interval [0,b].
– G(x, t,z) and ∂G(x, t,z)/∂x are continuous on T (0,b)×R.
– ∂G(x, t,z)/∂x satisfies a Lipschitz condition with respect to z

together with two additional unfamiliar assumptions, namely:

– G(x,x,z) is an invertible function of z for all x ∈ [0,b].
– |G(x,x,z2)−G(x,x,z1)| ≤ k |z2 − z1| for some constant k, for each x ∈ [0,b],

and all z1 and z2.

Under all of these assumptions, the method of successive approximations can be
applied to produce a sequence {φn(x)}∞

n=0 that can be shown to converge to a
unique solution due to an argument involving the use of a suitably constructed
contraction mapping.

As a practical matter, the process of determining these approximating se-
quences may be quite complicated. After a zeroth approximant φ0(x) is chosen,
additional approximants φn+1(x) are then produced as solutions of the equation

G(x,x,φn+1(x)) = f ′(x)−
x∫

0

∂G
∂x

(x, t,φn(t))dt.

This can be done as a consequence of the invertibility assumption stated above.
The assumptions on G(x, t,z) are required to show that each φn(x) is continuous
on [0,b]. While some of these assumptions are necessary as stated, others can
often be adapted to special circumstances.

Section 6.3 Exercises

1. Consider the nonlinear integral equation

φ(x) = f (x)+

x∫

0

Q(x, t,φ(t))dt,
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where

Q(x, t,z) = sin(x− t)
1

1+ z3 .

(a) Show that Q(x, t,z) satisfies a Lipschitz condition of the form

|Q(x, t,z2)−Q(x, t,z1)| ≤C |z2 − z1|

on the interval [0,∞), where C = 2
3

3
√

2.
(b) Invoke Theorem 6.2.2 to conclude that the integral equation has a unique

solution whenever f (x) is continuous on [0,∞).
(c) Choose f (x) = 1. By using the differentiation tool stated in Sect. 4.1,

differentiate the integral equation twice to show that φ(x) satisfies the
nonlinear ordinary differential equation

φ ′′(x)+φ(x) = 1+
1

1+φ3(x)
,

together with the initial conditions φ(0) = 1 and φ ′(0) = 0.
(d) Since φ ′′(0) = 1

2 , we can choose φ0(x) = 1+ 1
4 x2 to be an initial approxi-

mant, and then use it to compute the first approximant

φ1(x) = 1+

x∫

0

sin(x− t)
1

1+φ3
0 (t)

dt

= 1+
1
4

x2 − 7
192

x4 + · · · .

Note the inherent difficulties in performing the necessary integration.
(It will be advantageous to use an appropriate partial sum of the Taylor
series for sin(x− t) in doing so.)

(e) Show that φ ′′′(0) = 0 and that φ ′′′′(0) =− 7
8 by differentiating the differen-

tial equation in part (c) twice. Conclude that

φ(x) = 1+
1
4

x2 − 7
192

x4 + · · · .

(f) Suppose that you needed to compute the coefficient of x6. Would you
prefer to compute φ2(x), in accordance with the Method of Successive
Approximations, or would you prefer to differentiate the differential
equation two more times?

(g) Explain why the solution φ(x) is an even function of x whose interval of
definition is (−∞,+∞).
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2. Consider the nonlinear integral equation

φ(x) = 1+λ
1∫

0

xt (φ(t)+φ2(t))dt.

Every solution to this equation has the form φ(x) = 1+λcx, where

c =

1∫

0

t (φ(t)+φ2(t))dt.

Thus, the solution set consists of a family of straight lines passing through
the point (0,1). By following the procedures shown in Illustrative Example 2,
determine all real-valued solutions to this equation. Explain why this equation
has no real-valued solutions if λ = 2 and why it never has any more than two
solutions for any value of λ .

3. Consider the nonlinear integral equation

φ(x) = 1+λ
1∫

0

xt
(
φ2(t)+φ3(t)

)
dt.

Every solution to this equation has the form φ(x) = 1+λcx, where

c =

1∫

0

t
(
φ2(t)+φ3(t)

)
dt.

Thus, the solution set consists of a family of straight lines passing through
the point (0,1). Explain why this equation always has at least one real-valued
solution for every real value of λ , and why it never has any more than three
solutions for any value of λ . Determine all three real-valued solutions if λ = 1

4 .
4. Consider the nonlinear integral equation

φ(x) = 1+λ
1∫

0

xt φ(t)dt + μ
1∫

0

x2t2 φ2(t)dt,

where λ �= 0 and μ �= 0 are arbitrary parameters. Every solution of this integral
equation has the form

φ(x) = 1+λax+ μbx2,

where

a =

1∫

0

t φ(t)dt and b =

1∫

0

t2 φ2(t)dt.

Thus, the solution set consists of a family of parabolas passing through the point
(0,1).



6.3 Illustrative Examples 239

(a) By substituting the representation for φ(x) into the expressions for a and b,
show that the two conditions

a =
1
3
λa+

1
4
μb+

1
2

and

b =
1
5
λ 2a2 +

1
3
λaμb+

1
7
μ2b2 +

1
2
λa+

2
5
μb+

1
3

must necessarily be satisfied. (The first equation represents a straight
line, and the second equation represents a hyperbola in the ab-plane. The
number of solutions varies with the values of λ and μ , since these two
curves may be disjoint, or they may intersect in one or more points.)

(b) Let λ = 3. Use the linear coefficient condition to show that it is
necessary for μb = −2 for a solution to exist. In this case, we have
φ(x) = 1+ 3ax− 2x2. Then use the hyperbolic condition to show that it is
necessary for

a =
35μ±√

7
√−μ(10080+ 353μ)

252μ

for a solution to exist. Explain why two real-valued solutions will exist if
− 10080

353 < μ < 0.
Show also that if μ = − 10080

353 , then a = 5
36 and b = 353

5040 . Verify that
φ(x) = 1+ 5

12 x− 2x2 is the unique solution to the integral equation

φ(x) = 1+ 3

1∫

0

xt φ(t)dt − 10080
353

1∫

0

x2t2 φ2(t)dt.

(c) Suppose that λ �= 3. Use the linear condition to show that

μb =−2
3
(3+ 2a(λ − 3)) .

Multiply the hyperbolic condition by μ and then substitute the above
expression for μb into it. The resulting expression can be solved for a in
terms of λ and μ alone.

(d) Let λ = 8 and μ = 2. Determine a and μb. Use these computed values to
show that the functions

φ(x) = 1− 1
6

(
55±

√
1169

)
x+

1
36

(
203± 5

√
1169

)
x2
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solve the integral equation

φ(x) = 1+ 8

1∫

0

xt φ(t)dt + 2

1∫

0

x2t2 φ2(t)dt.

5. Let P(z) = 2z+ 3z2+ z3.

(a) Consider the nonlinear integral equation of Fredholm type

φ(x) = 1+λ
1∫

0

P(φ(t))dt.

Every solution to this equation is a constant of the form φ(x) = 1+ λc,
where

c =

1∫

0

P(φ(t))dt.

How many solutions to this integral equation are possible? Find all real-
valued solutions if λ = 1 and if λ = 5. Discuss the role that the degree of
P(z) plays in answering this question.
Answer: If λ = 1, then φ(x) ≈ −2.769292, and if λ = 5, then φ(x) ≈
−0.144022, −0.621467, and −2.234510.

(b) Consider the nonlinear integral equation of Volterra type

φ(x) = 1+λ
x∫

0

P(φ(t))dt.

Differentiate this integral equation to show that the solution φ(x) satisfies
the nonlinear ordinary differential equation

φ ′(x) = λ
(
2φ(x)+ 3φ2(x)+φ3(x)

)

together with the initial condition φ(0) = 1. Solve this differential equation,
and note the dependence of the domain of the solution upon λ .
Answer: φ(x) =−1+ 2/

√
4− 3eλ x.

(c) Use parts (a) and (b) to investigate what happens when P(z) is an arbitrary
polynomial.

6. Use the Laplace transform to solve the nonlinear integral equation

xφ(x) =
x∫

0

φ(x− t)φ(t)dt.

Is the solution unique in some sense?
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Now consider the more complicated equation

φ(x) = f (x)+λ
x∫

0

φ(x− t)φ(t)dt.

For a solution to exist, it is necessary that φ(0) = f (0). If so, will this equation
always have at least one solution? At least two? What is the maximum number
of solutions to this equation?

7. Consider the nonlinear integral equation

φ(x) = f (x)+λ
b∫

a

G(x, t,φ(t))dt

What necessary conditions would you impose on f (x) and G(x, t,z) to ensure
that the solution φ(x) is bounded? To ensure that φ(x) → 0 as x → +∞? To
ensure that φ(x) is infinitely differentiable?

8. Solve each of the following nonlinear integral equations of Fredholm type:

(a) φ(x) =
π∫
0

sin(x+ t)φ2(t)dt.

(b) φ(x) =
π∫
0

cos(x− t)φ3(t)dt.

(c) φ(x) =
π∫
0

cos(x− t)φ4(t)dt.

9. Do the following nonlinear integral equations of Volterra type have nontrivial
solutions?

(a) φ(x) =
x∫

0
sin(x+ t)φ2(t)dt.

(b) φ(x) =
x∫

0
cos(x− t)φ3(t)dt.

(c) φ(x) =
x∫

0
cos(x− t)φ4(t)dt.

10. Adapt the quadrature methods that were described previously in Sect. 2.6.3 for
linear integral equations of Fredholm type to nonlinear integral equations.

11. Adapt the quadrature methods that were given previously in Illustrative
Example 5 in Sect. 4.4 for linear integral equations of Volterra type to nonlinear
integral equations.



Chapter 7
Singular Integral Equations

The theory introduced in previous chapters, especially the Fredholm Theory, was
presented under the restrictive assumptions that the kernel was continuous on its
domain of definition and that the interval of integration was finite. There is no
guarantee that those results or similar ones will hold if the kernel has an infinite
discontinuity or if the interval of integration is infinite.

A singular integral equation is an equation in which the integral appearing
therein is either a convergent improper integral or a divergent improper integral
that exists in the sense of the Cauchy principal value. Examples of such integrals
include

x∫

0

1√
x− t

φ(t)dt,

+1∫

−1

1
x− t

φ(t)dt, and

+∞∫

0

cos(xt)φ(t)dt.

A singular kernel is a kernel that has an infinite discontinuity in the interior of
the interval of integration or at a boundary point of it. According to this definition,
the kernels that appear in the first two examples are singular, whereas the kernel that
appears in the third example is not.

In this chapter, we will discuss several types of singular integral equations that
occur frequently in practice and the techniques that can be used to solve them. Some
types of equations, e.g., nonlinear singular integral equations, will not be discussed
here. New types of equations are being discovered every day.

In Sect. 7.1, we present several tools of the trade that are indispensible for the
comprehension of the material in this chapter.

In Sect. 7.2, we consider singular integral equations with continuous kernels for
which the interval of integration is infinite. Many equations of this type can be
solved with integral transforms.

In Sect. 7.3, we consider singular integral equations with singular kernels. Since
the interval of integration can be either finite or infinite, we consider both of these
possibilities. In particular, singular integral equations with the Cauchy kernel and
with the Hilbert kernel are considered.

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 7, © Springer Science+Business Media, LLC 2012
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7.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• The evaluation of improper integrals: There are two types of improper integrals:
(1) the integrals for which the integrand possesses an infinite discontinuity
within the interval of integration and (2) the integrals for which the interval of
integration is infinite. The existence of both types of integrals depends upon the
existence of one or more limits. An improper integral is called convergent if all
of the limits involved exist, and divergent if even one of them does not exist.

(1) If the integrand f (t) is continuous on the interval [a,c) and it has an infinite
discontinuity at the right endpoint of the interval, then we define the integral
of f (t) on the interval [a,c) to be

c∫

a

f (t)dt = lim
ε↓0

c−ε∫

a

f (t)dt,

provided that the limit exists.
Similarly, if the integrand has an infinite discontinuity at the left endpoint

of the interval, then we define the integral of f (t) on the interval (c,b] to be

b∫

c

f (t)dt = lim
ε↓0

b∫

c+ε

f (t)dt,

provided that the limit exists.
If the integrand has an infinite discontinuity at an interior point c of the

interval [a,b], then we define

b∫

a

f (t)dt =

c∫

a

f (t)dt +

b∫

c

f (t)dt,

provided that both one-sided limits exist independently.
(2) If the integrand f (t) is continuous on the interval [c,+∞), then we define the

integral of f (t) on this interval to be

+∞∫

c

f (t)dt = lim
b→+∞

b∫

c

f (t)dt,

provided that the limit exists.

If the integrand is continuous on the interval (−∞,c], then we define the
integral of f (t) on this interval to be
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c∫

−∞

f (t)dt = lim
a→−∞

c∫

a

f (t)dt,

provided that the limit exists.
If the integrand is continuous on the interval (−∞,+∞), then we define the

integral of f (t) on this interval to be

+∞∫

−∞

f (t)dt =

c∫

−∞

f (t)dt +

+∞∫

c

f (t)dt,

provided that both one-sided limits involved exist independently.
A given integral may display both types of improprieties.

• The Cauchy principal value of an integral: In the previous item, we observed
that if the integrand has an infinite discontinuity in the interior of the interval of
integration or if the interval of integration extended to infinity in both directions,
then the existence of the integral depends upon the existence of two limits
independently. Even if neither of these two limits exists, a single symmetric limit
might still exist.

For an integral whose integrand f (t) has an infinite discontinuity c in the
interior of the interval of integration, we define the Cauchy principal value of the
integral of f (t) on the interval [a,b] to be

PV

b∫

a

f (t)dt = lim
ε↓0

⎛
⎝

c−ε∫

a

f (t)dt +

b∫

c+ε

f (t)dt

⎞
⎠,

provided that this limit exists.
For an integral whose interval of integration extends to infinity in both

directions, we define the Cauchy principal value of the integral of f (t) on the
interval (−∞,+∞) to be

PV

+∞∫

−∞

f (t)dt = lim
a→∞

⎛
⎝

+a∫

−a

f (t)dt

⎞
⎠,

provided that this limit exists.
We shall always write PV in front of integrals defined as above. It is important

to note that both of these limits are defined as symmetric limits. A non-symmetric
limit might also exist, but its value could very well be different.

Consider the following illustrative example. On the one hand, we have

PV

2∫

0

1
t − 1

dt = lim
εε↓0

⎛
⎝

1−ε∫

0

1
t − 1

dt +

2∫

1+ε

1
t − 1

dt

⎞
⎠= 0.
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On the other hand, we have

1−2ε∫

0

1
t − 1

dt +

2∫

1+ε

1
t − 1

dt =

1+2ε∫

1+ε

1
t − 1

dt = ln2.

There is nothing special about the choice of 2ε here. If we had chosen kε , then
the value of the resulting integral would have been lnk. The point here is that the
principal value of an integral is a specific value that is chosen from an infinite
number of possibilities.

Another example that illustrates the importance of symmetric limits is the
following. On the one hand, we have

PV

+∞∫

−∞

2t
1+ t2 dt = lim

a→∞

⎛
⎝

+a∫

−a

2t
1+ t2 dt

⎞
⎠= 0,

since the integrand is odd. On the other hand, we have

+2a∫

−a

2t
1+ t2 dt =

+2a∫

+a

2t
1+ t2 dt = ln

(
1+ 4a2

1+ a2

)
→ ln4,

as a → ∞. There is nothing special about the choice of 2a here. If we had chosen
ka, then the value of the resulting integral would have been ln(k2).

• The beta integral: There are several equivalent definitions of the beta function
B(p,q), all of which are useful. Perhaps the simplest one is

B(p,q) =

1∫

0

up−1 (1− u)q−1 du,

where it is required that p and q are positive for the integral to exist. An
elementary change of variables shows that B(p,q) = B(q, p).

If we set u = sin2(θ ), then the defining integral becomes

B(p,q) = 2

π/2∫

0

sin2p−1(θ ) cos2q−1(θ )dθ .

If we set u = x/(1+ x), then the defining integral becomes

B(p,q) =

∞∫

0

xp−1

(1+ x)p+q dx.
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It can be shown that

B(p,q) =
Γ(p)Γ(q)
Γ(p+ q)

for all choices of p > 0 and q > 0. In particular, if p+ q = 1, then we have the
relationship

B(p,1− p) = Γ(p)Γ(1− p) =
π

sin(π p)
.

The value Γ( 1
2 ) =

√
π is deduced by letting p = 1

2 .
• The Mellin transform: Suppose that f (t) is continuous on the interval (0,∞) and

that it satisfies the absolute integrability condition

∞∫

0

ts−1 | f (t)|dt <+∞

for some complex value of s = σ + iτ .
The Mellin transform of f (t) is defined by

F(s) =M{ f (t)}=
∞∫

0

ts−1 f (t)dt = lim
A→∞

A∫

0

ts−1 f (t)dt.

If both of the integrability conditions

1∫

0

tσ1−1 | f (t)|dt <+∞ and

∞∫

1

tσ2−1 | f (t)|dt <+∞

hold, then F(s) is analytic in the infinite strip Σ= {s : σ1 < σ < σ2}.
The inverse Mellin transform of F(s) is given by

f (t) =M−1{F(s)} = 1
2π i

c+i∞∫

c−i∞

t−s F(s)ds, (7.1)

where σ1 < c < σ2. At a value of t where f (t) is discontinuous, the integral
converges to the average of the left- and right-hand limits, i.e., ( f (t+) +
f (t−))/2.

The evaluations of both of these Mellin-type integrals often involve the use of
the Residue Theorem. Alternately, tables of Mellin transforms1 are available to
assist the student.

1See Oberhettinger, F., Tables of Mellin Transforms, Springer, New York, 1974.
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The Mellin convolution of f (t) and g(t) is defined by

( f ∗ g)(t) =

∞∫

0

1
u

f
( t

u

)
g(u)du.

If F(s) =M{ f (t)} and G(s) =M{g(t)}, then M{( f ∗ g)(t)} = F(s)G(s). We
also have the similar formula

M
⎧⎨
⎩

∞∫

0

f (tu)g(u)du

⎫⎬
⎭= F(s)G(1− s), (7.2)

which can be derived directly from the definition. The Mellin transform is
extremely useful for solving singular integral equations involving integrals of
this type.

• Fourier transforms: The Fourier Integral Theorem is the starting point in any
discussion of Fourier Transform pairs. If f (x) and f ′(x) are piecewise continuous
functions and if f (x) is absolutely integrable on the interval (−∞,+∞), then f (x)
has the representation

f (x) =
1
π

+∞∫

0

+∞∫

−∞

f (t) cos[s(t − x)]dt ds

for all values of x for which f (x) is continuous. Furthermore, if x is a value
for which f (x) has a jump discontinuity at x, then the integral converges to the
average value of the left- and right-hand limits of f (x) at x, i.e., to ( f (x−) +
f (x+))/2.

This double integral has an alternate form that can be written in terms of
complex exponentials. Since cos θ = (e+iθ + e−iθ )/2, we also have

f (x) =
1

2π

+∞∫

−∞

e−isx

+∞∫

−∞

e+ist f (t)dt ds.

We assume that s and t in these integral representations are real variables.
There are many ways to decompose the complex exponential form of Fourier’s

integral into a pair of Fourier Transforms. A general way of doing so is to write

F(s) =

√
|b|

(2π)1−a

+∞∫

−∞

f (t)eibst dt

and

f (x) =

√
|b|

(2π)1+a

+∞∫

−∞

F(s)e−ibxs ds,



7.1 Tools of the Trade 249

where a and b are real parameters. In this textbook, we choose a = 0 and b = 1,
which is the default choice in the Mathematica 8.0 software package. It is also the
choice in textbooks2 intended for a more advanced audience. With this choice,
the Fourier Transform pair becomes

F(s) = F{ f (t)}= 1√
2π

+∞∫

−∞

eist f (t)dt (7.3)

and

f (x) = F−1{F(s)}= 1√
2π

−∞∫

−∞

e−ixs F(s)ds. (7.4)

Other choices for the Fourier parameters, such as (−1,+1), (+1,+1), (−1,+1),
or (0,−2π), are commonly used in probability theory, signal processing, or
classical physics. Each choice has its advantages.

If f (x) is absolutely integrable, then F(s) is bounded, since

|F(s)| ≤ 1√
2π

+∞∫

−∞

| f (x)|dx <+∞.

Similarly, if F(s) is absolutely integrable, then f (x) is bounded, since

| f (x)| ≤ 1√
2π

+∞∫

−∞

|F(s)|ds <+∞.

The Fourier Transform F(s) is continuous even if f (x) is only piecewise
continuous. Furthermore, if F(s) exists, then F(s)→ 0 as s →±∞.

If f (t) and g(t) are Riemann integrable on every finite interval [a,b] and
| f (t − u)g(u)| is absolutely integrable for each t ∈ (−∞,+∞), then the Fourier
convolution of f (t) and g(t) is defined to be

( f ∗ g)(t) =
1√
2π

+∞∫

−∞

f (t − u)g(u)du,

or equivalently, with an elementary change of variable,

( f ∗ g)(t) =
1√
2π

+∞∫

−∞

f (u)g(t − u)du.

2See Porter, D. and Stirling, D., Integral Equations: A Practical Treatment, from Spectral Theory to
Applications, Cambridge University Press, Cambridge, 1990. For an alternate choice, see Andrews,
L.C. and Shivamoggi, B.K., Integral Transforms for Engineers and Applied Mathematicians,
MacMillan Publishing Company, New York, 1988.
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The integrability condition is fulfilled, for example, if f (t) and g(t) are square
integrable, since an application of the Cauchy–Schwarz inequality gives

+∞∫

−∞

| f (t − u)g(u)|du ≤
⎛
⎝

+∞∫

−∞

| f (u)|2 du

⎞
⎠

1/2⎛
⎝

+∞∫

−∞

|g(u)|2 du

⎞
⎠

1/2

.

The Fourier Transform is extremely useful for solving singular integral
equations involving integrals of convolution type. In order to do so, we must
be able to compute the Fourier Transform of a convolution integral. Let F(s) =
F{ f (t)} and G(s) =F{g(t)}. Then the Fourier Convolution Theorem states that
F{( f ∗ g)(t)}= F(s)G(s). It is often stated alternately in the form

+∞∫

−∞

e−ist F(s)G(s)ds =

+∞∫

−∞

f (u)g(t − u)du. (7.5)

In particular, if t = 0 and g(−u) = f (u), then G(s) = F(s) and

+∞∫

−∞

|F(s)|2 ds =

+∞∫

−∞

| f (t)|2 dt. (7.6)

This relationship between f (t) and its Fourier Transform F(s) is called Parseval’s
relation. It follows that f (t) is square integrable if and only if F(s) is square
integrable.

Quite often, it is necessary to compute the Fourier Transforms of the
derivatives of f (t) in terms of the Fourier Transform of f (t). The formula

F{ f (n)(t)}= (−is)n F(s) (7.7)

holds, under the necessary assumption that f (n)(t) is piecewise smooth
and absolutely integrable, in addition to the reasonable assumptions that
f (t), f ′(t), . . . , f (n−1)(t) are continuous everywhere, vanish as t → ±∞, and
are absolutely integrable on the interval (−∞,+∞).

If f (t) is defined and integrable only on the interval [0,+∞), then the Fourier
Transform of a symmetrical extension of it can still be computed.

The even extension of f (t) to (−∞,+∞) is defined by setting fE(t) = f (|t|),
and the odd extension of f (t) to (−∞,+∞) is defined by setting fO(t) =
signum(t) f (|t|), where signum(t) is equal to +1 if t is positive and −1 if t is
negative.

If f (t) is even, then the Fourier integral representation assumes the simplified
form

f (x) =
2
π

∞∫

0

∞∫

0

cos(xs) cos(st) f (t)dt ds.
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The Fourier Transform (7.3) becomes the Fourier Cosine Transform

FC(s) = FC{ f (t)}=
√

2
π

∞∫

0

cos(st) f (t)dt (s > 0) (7.8)

and F{ f (t)}= FC{ f (t)}.
The Inverse Fourier Transform (7.4) becomes the Inverse Fourier Cosine

Transform

f (x) = F−1
C {FC(s)}=

√
2
π

∞∫

0

cos(xs)FC(s)ds. (x > 0) (7.9)

If f (t) is odd, then the Fourier integral representation assumes the simplified
form

f (x) =
2
π

∞∫

0

∞∫

0

sin(xs) sin(st) f (t)dt ds.

The Fourier Transform (7.3) leads to the Fourier Sine Transform

FS(s) = FS{ f (t)}=
√

2
π

∞∫

0

sin(st) f (t)dt (s > 0) (7.10)

and F{ f (t)}= iFS{ f (t)}.
The Inverse Fourier Transform (7.4) leads to the Inverse Fourier Sine Trans-

form

f (x) = F−1
S {FS(s)} =

√
2
π

∞∫

0

sin(xs)FC(s)ds (x > 0) (7.11)

7.2 Equations with Continuous Kernels

It is not our intent in this section to give a complete introduction to the theory,
properties, and uses of the Mellin, Fourier, and Laplace integral transforms.
However, since it is our intent to illustrate how these transforms can be used to
solve singular integral equations of certain types, the introduction of some of their
properties along the way will be essential.

In this section, we will consider singular integral equations with continuous
kernels for which the interval of integration is infinite. The intervals of interest are
(−∞,a), (a,+∞), (−∞,x), (x,+∞), and (−∞,+∞). The limit a is a constant, but it
is usually taken to be 0 or 1.
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A wide variety of integral equations fall into this category. The kernels that
appear most frequently in practice are of the form K(x, t) = k(x− t), J(x, t) = j(xt),
M(x, t) = m(x/t), E(x, t) = eixt , C(x, t) = cos(xt), or S(x, t) = sin(xt).

Many of the techniques that are used to solve singular integral equations require
the use of integral transforms. The choice of transform (Mellin, Fourier, or Laplace)
to be used depends upon the form of the kernel and the interval of integration.

The techniques that will be used here are similar to the Laplace transform method
that was previously used to solve a Volterra integral equation of the second kind of
the form

φ(x) = f (x)+λ
x∫

0

k(x− t)φ(t)dt.

We recall from Sect. 4.3 that the Laplace transform converted the integral equation
into an algebraic equation that could be solved for the transform Φ(s) of the solution
φ(x) in terms of the transform F(s) of the inhomogeneous term f (x) and the
transform K(s) of the function k(x), provided that all of the transforms exist. The
solution φ(x) could then be recovered from Φ(s).

The singular integral equations

φ(x) = λ
+∞∫

0

K(x, t)φ(t)dt and φ(x) = λ
+∞∫

−∞

K(x, t)φ(t)dt

are of interest. The values λ for which nontrivial solutions to these equations exist
are called eigenvalues of the kernel. The solutions are called eigenfunctions, in
keeping with the terminology introduced in earlier chapters. We will see that the
Fourth Fredholm Theorem need not hold for equations of this type.

We shall also be concerned with singular integral equations of the first kind of
the forms

f (x) = λ
+∞∫

0

K(x, t)φ(t)dt and f (x) = λ
+∞∫

−∞

K(x, t)φ(t)dt,

and singular integral equations of the second kind of the forms

φ(x) = f (x)+λ
+∞∫

0

K(x, t)φ(t)dt

and

φ(x) = f (x)+λ
+∞∫

−∞

K(x, t)φ(t)dt.
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7.2.1 Equations Solved with the Mellin Transform

Consider the singular integral equation of the second kind

φ(x) = f (x)+λ
∞∫

0

1
t

k
(x

t

)
φ(t)dt.

Since the integral is given in terms of the Mellin convolution of k(x) and φ(x), an
application of the Mellin Transform to both sides of the equation yields

Φ(s) = F(s)+λ K(s)Φ(s),

provided that these transforms exist for common values of s in some infinite strip
Σ= {s : σ1 < s < σ2}. By solving for Φ(s), we obtain

Φ(s) =
F(s)

1−λ K(s)
,

provided that λ K(s) �= 1. If Φ(s) is recognized in a table of Mellin transforms, then
the problem is essentially solved. If not, then it is necessary to apply the Inverse
Mellin Transform which yields the formal solution

φ(x) =
1

2π i

c+i∞∫

c−i∞

F(s)
1−λ K(s)

x−s ds,

where σ1 < c < σ2. This integral is usually evaluated with the assistance of the
Residue Theorem after an appropriate contour is chosen.

The singular integral equation of the first kind

f (x) =

∞∫

0

k(xt)φ(t)dt

can also be formally solved by applying the Mellin Transform to both sides of the
equation. After doing so, we obtain F(s) =K(s)Φ(1−s), or equivalently F(1−s)=
K(1− s)Φ(s), after replacing s with 1− s. We must, of course, assume that the
transforms F(1− s) and K(1− s) exist for values of s in some common infinite strip
Σ = {s : σ1 < s < σ2}. If Φ(s) is recognized in a table of Mellin Transforms, then
the problem is essentially solved. An application of the Inverse Mellin Transform
yields the formal solution

φ(x) =
1

2π i

c+i∞∫

c−i∞

F(1− s)
K(1− s)

x−s ds,

for a suitable value of c.
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Fox’s singular integral equation

φ(x) = f (x)+

∞∫

0

k(xt)φ(t)dt

can also be formally solved by applying the Mellin Transform. After doing so, we
obtain

Φ(s) = F(s)+K(s)Φ(1− s).

After replacing s by 1− s, we obtain

Φ(1− s) = F(1− s)+K(1− s)Φ(s).

Upon eliminating Φ(1− s) from these equations, we can easily solve for Φ(s) to
obtain

Φ(s) =
F(s)+K(s)F(1− s)

1−K(s)K(1− s)
,

which then results in the formal solution

φ(x) =
1

2π i

c+i∞∫

c−i∞

F(s)+K(s)F(1− s)
1−K(s)K(1− s)

x−s ds,

for a suitable value of c.

Illustrative Examples

• Example 1: Show that the singular integral equation

φ(s) = λ
∞∫

0

e−st φ(t)dt

has nontrivial solutions.
After scanning a standard table of Laplace transforms, we find that

L{t−1/2}=√
π s−1/2,

or, equivalently, that

s−1/2 =
1√
π

∞∫

0

e−st t−1/2 dt. (7.12)

Thus, with λ = 1/
√
π and φ(t) = t−1/2, there is at least one nontrivial solution

to this equation.
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More generally, if 0 < p < 1, then

L{t−p}= Γ(1− p)sp−1 and L{t p−1}= Γ(p)s−p.

If we set

φ+
p (t) =

√
Γ(p)t−p +

√
Γ(1− p)t p−1 (7.13)

and

φ−
p (t) =

√
Γ(p) t−p −

√
Γ(1− p)t p−1, (7.14)

then we have

L{φ+
p (t)}=

√
Γ(p)Γ(1− p)φ+

p (s) = +

√
π

sin(pπ)
φ+

p (s)

and

L{φ−
p (t)}=−

√
Γ(p)Γ(1− p)φ−

p (s) =−
√

π
sin(pπ)

φ−
p (s).

Equivalently, we have

φ±
p (s) =±λp

∞∫

0

e−st φ±
p (t)dt,

with ±λp =±√sin(pπ)/π.
We have discovered in this example that every value of λ in the intervals

(−1/
√
π ,0) and (0,+1

√
π ] is an eigenvalue of the Laplace kernel. The endpoint

−1/
√
π was omitted, since φ−

1/2(t)≡ 0.3

Note that the eigenfunctions φ±
p (t) are continuous on the interval (0,+∞),

but that they have an infinite discontinuity at t = 0. Note also that these
eigenfunctions are not square integrable on the interval (0,+∞).

• Example 2: Consider the singular integral equation

1
1+ x

=

+∞∫

0

e−xt φ(t)dt.

Note that

M
{

1
1+ x

}
=

π
sin(πs)

= Γ(s)Γ(1− s) and that M{
e−x}= Γ(s).

3This example is discussed in greater detail in Widder, D.V., The Laplace Transform, Princeton
University Press, Princeton, 1946, pp. 390–391.
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An application of the Mellin convolution formula (7.2) gives

Γ(s)Γ(1− s) = Γ(s)Φ(1− s),

or, equivalently, Φ(s) = Γ(s). Hence, φ(x) = e−x, and the solution is easily
verified.

7.2.2 Equations Solved with Fourier Transforms

The singular integral equation of the first kind

f (x) =

+∞∫

−∞

k(x− t)φ(t)dt

can be formally solved by applying the Fourier Transform to it. Since the kernel
k(x − t) is of convolution type, a straightforward application of the convolution
theorem yields

F(s) =
√

2π K(s)Φ(s),

where F(s) =F{ f (x)}, K(s) =F{k(x)}, and Φ(s) =F{φ(x)}, provided that these
transforms exist. If

Φ(s) =
1√
2π

F(s)
K(s)

is recognized in a table of Fourier Transforms, then the equation is essentially
solved. Formally, the solution φ(x) has the integral representation

φ(x) =
1

2π

+∞∫

−∞

e−ixs F(s)
K(s)

ds,

by applying the Inverse Fourier Transform to Φ(s).
In view of Parseval’s relation (7.6), the solution φ(x) is square integrable if and

only if its transform Φ(s) is square integrable. For this to occur, it is necessary to
assume at the outset that f (x) (and hence F(s)) is square integrable and k(x) is
absolutely integrable. We do not exclude the possibility that the integral equation
might have solutions that are not square integrable.

The Fredholm singular integral equation of the second kind

φ(x) = f (x)+λ
+∞∫

−∞

k(x− t)φ(t)dt
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can also be formally solved by applying the Fourier Transform to it. A
straightforward application of the convolution theorem yields

Φ(s) = F(s)+λ
√

2π K(s)Φ(s),

where F(s) =F{ f (x)}, K(s) =F{k(x)}, and Φ(s) =F{φ(x)}, provided that these
transforms exist. The transform of the solution has the representation

Φ(s) =
F(s)

1−λ
√

2π K(s)
,

where 1−λ
√

2π K(s) �= 0 for all real values of s. If Φ(s) is recognized in a table of
Fourier Transforms, then the equation is essentially solved. Formally, the solution
φ(x) has the integral representation

φ(x) =
1√
2π

+∞∫

−∞

e−ixs F(s)

1−λ
√

2π K(s)
ds (−∞< x <+∞)

by applying the Inverse Fourier Transform to Φ(s). This representation is valid if
f (x) is square integrable and k(x) is absolutely integrable. If 1− λ

√
2π K(s) = 0

for some real value of s, then the integral equation might not have a solution that is
absolutely integrable.

Another representation for the solution is possible. Recall that

f (x) =
1√
2π

−∞∫

−∞

e−ixs F(s)ds.

By subtracting the given representations for φ(x) and f (x), we obtain

φ(x) = f (x)+λ
+∞∫

−∞

e−ixs
(

F(s)K(s)

1−λ
√

2π K(s)

)
F(s)ds.

If g(x;λ ) is a function for which

Γ(s;λ ) = F{g(x;λ )}= F(s)K(s)

1−λ
√

2π K(s)
,

then the solution can be alternately written in the form

φ(x) = f (x)+λ
+∞∫

−∞

g(x− t;λ ) f (t)dt,

in view of relation (7.5).



258 7 Singular Integral Equations

Illustrative Examples

• Example 1: In this example, we illustrate the various types of integrability in
relation to the Fourier Transform. Let

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if −∞< t <−1
1
2 if t =−1

1 if −1 < t <+1
1
2 if t =+1

0 if +1 < t <+∞.

Then f (t) is an even step function that is obviously integrable, absolutely
integrable, and square integrable. Its Fourier Transform exists and it is easily
computed to be

F(s) =
1√
2π

+∞∫

−∞

eist f (t)dt

=
1√
2π

+1∫

−1

eist f (t)dt

=
1√
2π

eit − e−it

is

=

√
2
π

sin s
s

.

Thus, F(s) is also even. The value F(0) =
√

2/π is defined as usual by
continuous extension. If we apply the Inverse Fourier Transform to F(s), we
have

f (t) =
1√
2π

−∞∫

−∞

e−ist F(s)ds

=
1√
2π

−∞∫

−∞

e−ist

√
2
π

sin s
s

ds

=
2
π

+∞∫

0

cos(st)
sin s

s
ds.
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In particular, if t = 0, then f (0) = 1, so that

+∞∫

0

sin s
s

ds =
π
2
,

a well-known result. Thus, F(s) is integrable on (−∞,+∞).
Although F(s) is integrable, it is not absolutely integrable. Since

(n+1)π∫

nπ

∣∣∣∣ sin s
s

∣∣∣∣ ds ≥ 1
(n+ 1)π

(n+1)π∫

nπ

|sin s|ds =
2

(n+ 1)π

for every n ≥ 0, we have

(N+1)π∫

0

∣∣∣∣ sin s
s

∣∣∣∣ ds ≥ 2
π

N

∑
n=0

1
n+ 1

→+∞

as N →+∞.
However, an application of Parseval’s relation (7.6) shows that F(s) is square

integrable, since f (t) is square integrable. An interesting integral value can easily
be derived from this observation. On the one hand, we have

+∞∫

−∞

| f (t)|2 dt =

+1∫

−1

12 dt = 2.

On the other hand, we have

+∞∫

−∞

|F(s)|2 ds =

+∞∫

−∞

∣∣∣∣∣
√

2
π

sin s
s

∣∣∣∣∣
2

ds

=
4
π

+∞∫

0

sin2 s
s2 ds.

By setting these two integrals equal, we obtain

+∞∫

0

sin2 s
s2 ds =

π
2
.

• Example 2: Show that the singular integral equation

φ(s) = λ
∞∫

0

cos(st)φ(t)dt

has nontrivial solutions.
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Let f (t) be any function for which a Fourier Cosine Transform pair exists.
After appropriately replacing the dummy variables in the Fourier Cosine Trans-
form pair, we have

FC(x) =

√
2
π

∞∫

0

cos(xt) f (t)dt

and

f (x) =

√
2
π

∞∫

0

cos(xt)FC(t)dt.

If we add these two equations, then we obtain

φ(x) =
√

2
π

∞∫

0

cos(xt)φ(t)dt,

where φ(x) = f (x)+FC(x). Thus, φ(x) is an eigenfunction corresponding to the
eigenvalue λ =

√
2/π.

For example, if f (t) = e−a|t|, where a > 0, then

FC(s) = FC{ f (t)}=
√

2
π

∞∫

0

cos(st)e−at dt =

√
2
π

a
a2 + s2 .

Consequently,

φ(x) = e−ax +

√
2
π

a
a2 + x2

is an eigenfunction corresponding to the eigenvalue
√

2/π for every a > 0.
The functions f (t), FC(s), and φ(x) are integrable and square integrable on the
interval (−∞,+∞).

• Example 3: In Sect. 2.4, we considered the Lalesco–Picard integral equation

φ(x) = λ
+∞∫

−∞

e−|x−t| φ(t)dt.

It was solved by converting it to an ordinary differential equation of the second
order with constant coefficients. By doing so, we showed that there were two
eigenfunctions associated with each value of λ ∈ (0,+∞). Recall that there are
three possibilities:

– If 0 < λ < 1
2 , then the two solutions are φ1(x;λ ) = sinh(μx) and φ2(x;λ ) =

cosh(μx), where μ2 = 1− 2λ .
– If λ = 1

2 , then the two solutions are φ1(x; 1
2 ) = 1 and φ2(x; 1

2 ) = x.
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– If 1
2 < λ <+∞, then the two solutions are φ1(x;λ ) = sin(μx) and φ2(x;λ ) =

cos(μx), where μ2 = 2λ − 1.

With the same kernel, we now consider the singular integral equation of the
first kind

f (x) =

+∞∫

−∞

e−|x−t| φ(t)dt,

and we illustrate how the Fourier Transform can be used to solve it. Since the
kernel is a convolution kernel and

F
{

e−|t|
}
=

√
2
π

1
s2 + 1

,

an application of the Fourier convolution theorem directly produces the trans-
formed equation

Φ(s) =
1
2

F(s)+
1
2

s2 F(s).

From formula (7.7), we know that F {− f ′′(t)} = s2 F(s). Hence, we have the
solution

φ(x) =
1
2

f (x)− 1
2

f ′′(t),

which is valid under the assumptions that f (x) and f ′(x) are continuous and
absolutely integrable on the interval (−∞,+∞), that they vanish as t → ±∞,
and that f ′′(t) is piecewise continuous and absolutely integrable on the interval
(−∞,+∞).

The inhomogeneous singular integral equation of the second kind

φ(x) = f (x)+λ
+∞∫

−∞

e−|x−t| φ(t)dt

can also be solved with the Fourier Transform. For the purpose of this example,
we will assume that 0< λ < 1

2 , so that 0< 1−2λ < 1. After applying the Fourier
Transform and simplifying the result, we obtain

Φ(s) = F(s)+
2λ

s2 + 1
Φ(s),

which can be rearranged as

Φ(s) = F(s)+λ

(
2

s2 +
(√

1− 2λ
)2

)
F(s).

Note that the second term on the right-hand side of this equation is the product of
two Fourier Transforms. Consequently, after an application of the Inverse Fourier
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Transform, the solution to the integral equation can be written in terms of a
convolution integral as

φ(x) = f (x)+
λ√

1− 2λ

+∞∫

−∞

e−
√

1−2λ |x−t| f (t)dt.

7.2.3 Equations of Volterra Type

Volterra singular integral equations of the second kind have either of the forms

φ(x) = f (x)+λ
∞∫

x

K(x, t)φ(t)dt

or

φ(x) = f (x)+λ
x∫

−∞

K(x, t)φ(t)dt,

where it is assumed that the Volterra kernel K(x, t) vanishes in a half-plane.
Suppose that f (x) is continuous and bounded. If the kernel K(x, t) satisfies

suitable integrability conditions, then the Method of Successive Approximations
can be employed to produce unique solutions to these equations in the respective
forms

φ(x) = f (x)+λ
∞∫

x

R(x, t;λ ) f (t)dt

or

φ(x) = f (x)+λ
x∫

−∞

R(x, t;λ ) f (t)dt,

where R(x, t;λ ) is the resolvent kernel constructed from the iterations of K(x, t) on
each of the respective intervals of integration.

If the kernel K(x, t) is separable or is a difference kernel, then some of the
techniques that have been previously introduced in this text may be successfully
employed here.

Illustrative Examples

• Example 1: If the kernel is separable, then a singular integral equation can often
be converted to an ordinary differential equation or to a linear system of ordinary
differential equations.
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Consider the Volterra singular integral equation

φ(x) = ex + 2

x∫

−∞

e−3(x−t) φ(t)dt.

If we multiply this integral equation by e3x and differentiate the result, we obtain
the first-order linear equation

φ ′(x)+φ(x) = 4ex

after performing the usual simplifications. The solutions to this differential
equation are subject only to the initial condition that φ ′(0) + φ(0) = 4. Upon
solving this equation, we obtain the solution

φ(x) = (φ(0)− 2)e−x + 2ex.

• Example 2: Volterra singular integral equations of the second kind

φ(x) = f (x)+

+∞∫

x

k(x− t)φ(t)dt,

whose kernel is a convolution or difference kernel, can be solved with the Laplace
transform, although the solution may not be unique.

The essential transform formula is given by

L
⎧⎨
⎩

+∞∫

x

K(x− t)φ(t)dt

⎫⎬
⎭= K(−s)Φ(s), (7.15)

where

K(−s) =

+∞∫

0

k(−x)esx dx and Φ(s) = L{φ(x)}.

To illustrate this procedure, consider the integral equation

φ(x) = 3e−x + 2

+∞∫

x

ex−t φ(t)dt.

Since k(x) = ex, K(−s) = 1/(1− s). After transforming the integral equation, we
find after some simplification that

Φ(s) =
3

s+ 1
− 6

(s+ 1)2 ,

from which we conclude that

φ(x) = 3e−x − 6xe−x.
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However, this solution is not unique. Suppose that there were two different
solutions, say φ1(x) and φ2(x). If we set δ (x) = φ1(x)− φ2(x), then δ (x) must
satisfy the equation

δ (x) = 2

+∞∫

x

ex−t δ (t)dt.

After converting this integral equation to a differential equation, we obtain
δ ′(x)+δ (x) = 0. Hence, δ (x) = ce−x, where c is an arbitrary constant. It follows
that the most general solution to the integral equation has the form

φ(x) = φ(0)e−x − 6xe−x.

If the integral equation had been converted to a differential equation by
following the procedure outlined in the previous example, then this general
solution would have been obtained directly.

Sect. 7.2 Exercises

1. Evaluate the integral
+1∫

−1

(1+ x)p−1(1− x)q−1 dx

in terms of the beta function.
2. For 0 < α <+∞, let D(α) denote the domain in the first quadrant bounded by

the x-axis, the y-axis, and the curve xα + yα = 1.

(a) Show that the area A(α) of D(α) is given by

A(α) =
1

2α
B

(
1
α
,

1
α

)
.

For example, if α = 1, then A(1) = 1
2 , and if α = 2, then A(2) = π

4 .
(b) Show that

∫∫
D(α)

1
1− xy

dydx =
1

2α

∞

∑
n=1

1
n

B
( n
α
,

n
α

)
.

3. Show that the Laplace kernel L(x, t) = e−xt is not square integrable on
Q(0,+∞).

4. Does there exist a function for which M{ f (x)}= 1?
Hint: Revisit the Inverse Mellin Transform (7.1).
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5. Let

FM(x) =M{ f (t)}=
∞∫

0

tx−1 f (t)dt

and

FL(x) = L{ f (t)} =
∞∫

0

e−xt f (t)dt.

(a) Show that

FLM(s) =M{FL(x)} = Γ(s)FM(1− s).

You will need to interchange the order of integration and use the definition
of the Γ-function.

(b) Try to compute FML(s) = L{FM(x)}. Do these integrals exist?
(c) Does FLM(s) = FML(s) under any circumstances? That is, do the operators

L and M commute?

6. Does the singular integral equation

φ(s) = λ
∞∫

0

sin(st)φ(t)dt

have any nontrivial solutions?
7. Does the singular integral equation

φ(s) = λ
∞∫

0

eist φ(t)dt

have any nontrivial solutions?

(a) Show that

F
{

e−a2t2
}
=

1

a
√

2
e−s2/4a2

.

You will need to use the well-known result that

+∞∫

−∞

e−x2
dx =

√
π

and the Residue Theorem with an appropriately chosen contour. What can
you conclude from the choice a = 1/

√
2?

(b) Show that

F
{

1

|t|1/2

}
=

1

|s|1/2
.
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Hint: Refer to Eq. (7.12). This exercise shows that the absolute integrability
condition is sufficient for a Fourier Transform to exist, but that it is not
necessary.

(c) Given that

F
{

1

|t|1/4

}
=

√
2
π Γ( 3

4 ) sin(π
8 )

|s|3/4

and

F
{

1

|t|3/4

}
=

√
2
π Γ( 1

4 ) cos(π
8 )

|s|1/4
,

show that

F
{

1

|t|1/4
+

k

|t|3/4

}
=

1

|s|1/4
+

k

|s|3/4
,

where k =
√

2
π Γ( 3

4 ) sin(π
8 ). Compare the transforms in this exercise to

Eqs. (7.13) and (7.14).

8. The Gaussian kernel with parameter σ is defined by

G(s, t;σ) =
1

σ
√

2π
exp

{
− (s− t)2

2σ2

}

and the Gaussian Transform is defined in terms of it by

Gσ{ f (t)}=
+∞∫

−∞

G(s, t;σ) f (t)dt.

(a) Use Mathematica to compute G1{tn} for n = 0,1, . . . ,6.
(b) Solve the singular integral equation s6 = G1{p(t)}.
(c) Let PN denote the vector space consisting of all polynomials of degree less

than or equal to N. Show that G1{PN}= PN .
(d) Does the integral equation sn = G1{p(t)} always have a polynomial

solution for all integers n ≥ 0?
(e) Show that

es =
1√
e
G1{et}.

(f) Determine λσ so that

es = λσ Gσ{et}.

Conclude that if 0 < λ < 1, then λ is an eigenvalue of the Gaussian
operator.
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9. Solve the singular integral equation

φ(x) = f (x)+
1
2

+∞∫

−∞

e−|x−t| φ(t)dt.

You will need to know that

F
{
−
√

π
2
|t|
}
=

1
s2 .

10. Solve the Volterra singular integral equation

φ(x) = ex + 2

∞∫

x

e−3(x−t) φ(t)dt.

11. Solve the Volterra singular integral equation

φ(x) = ex +

x∫

−∞

e−3(x−t) (x− t)φ(t)dt.

12. Solve the singular integral equation

φ(x) =
1
x
+λ

+∞∫

2

1
x2t3 φ(t)dt.

Is your solution valid for all λ?

7.3 Equations with Singular Kernels

A singular kernel is a kernel that has an infinite discontinuity in the interior of the
interval of integration or at a boundary point of it.

7.3.1 Abel’s Equation

Abel’s equation is the nonsingular integral equation of the first kind of the form

f (x) =

x∫

0

1
(x− t)α

φ(t)dt, (7.16)

where 0 < α < 1.
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Abel showed that solutions to this equation could be found by employing infinite
series. Let

h(x) = xα

(
∞

∑
n=0

an xn

)
=

∞

∑
n=0

an xn+α ,

where a0 �= 0 and the series h(x)/xα is assumed to have a positive radius of
convergence. If we desire a solution of the form

φ(x) = h′(x) =
∞

∑
n=0

(n+α)an xn+α−1 = α a0xα−1 + · · ·

then the right-hand side of the integral equation becomes

x∫

0

1
(x− t)α

φ(t)dt =
∞

∑
n=0

(n+α)an

⎛
⎝

x∫

0

(x− t)−αtn+α−1 dt

⎞
⎠

=
∞

∑
n=0

1
n!

(n+α)Γ(n+α)Γ(1−α)an xn

=
π

sin(απ)

∞

∑
n=0

1
n!

α(α+ 1) · · ·(α+ n)an xn.

Term-by-term integration here is permissible within the interval of convergence.
The integrals here were evaluated and simplified in terms of the beta function and
its properties.

On the other hand, if the known inhomogeneous term f (x) has the Maclaurin
expansion

f (x) =
∞

∑
n=0

bn xn

with an assumed positive radius of convergence, where b0 �= 0, then a comparison
of the coefficients in these two series shows that the coefficients of the solution φ(x)
can be written in terms of the coefficients of f (x). Specifically, we have

an =
sin(απ)

π
n!

α(α+ 1) · · ·(α+ n)
bn,

from which we derive the representation

φ(x) =
sin(απ)

π

∞

∑
n=0

n!
α(α+ 1) · · ·(α+ n− 1)

bn xn+α−1.
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But since

x∫

0

1
(x− t)1−α f (t)dt =

∞

∑
n=0

bn

⎛
⎝

x∫

0

(x− t)α−1 tn dt

⎞
⎠

=
∞

∑
n=0

n!
α(α + 1) · · ·(α+ n)

bn xn+α ,

it follows from these last two equations that the solution φ(x) has the integral
representation

φ(x) =
sin(απ)

π
d
dx

⎛
⎝

x∫

0

1
(x− t)1−α f (t)dt

⎞
⎠ .

It is also possible to solve Abel’s equation with the Laplace transform. If F(s) =
L{ f (x)} and Φ(s) = L{φ(x)}, then we have the transformed equation

F(s) =
Γ(1−α)

s1−α Φ(s),

which can be rearranged in the form

Φ(s)
s

=
s−αΓ(α)

Γ(1−α)Γ(α)
F(s) =

sin(απ)
π

Γ(α)
sα

F(s).

After inversion, we obtain

L
⎧⎨
⎩

x∫

0

φ(t)dt

⎫⎬
⎭=

sin(απ)
π

L{xα−1} L{ f (x)}

=
sin(απ)

π
L
⎧⎨
⎩

x∫

0

1
(x− t)1−α f (t)dt

⎫⎬
⎭ ,

from which we conclude that

φ(x) =
sin(απ)

π
d
dx

⎛
⎝

x∫

0

1
(x− t)1−α f (t)dt

⎞
⎠ .
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A third approach to Abel’s equation is possible. If we replace x by s in Eq. (7.16),
multiply by ds/(x− s)1−α , and then integrate with respect to s, we obtain

x∫

s=0

1
(x− s)1−α f (s)ds =

x∫

s=0

⎛
⎝

s∫

t=0

1
(x− s)1−α (s− t)α

φ(t)dt

⎞
⎠ds

=

x∫

t=0

⎛
⎝

x∫

s=t

1
(x− s)1−α (s− t)α

ds

⎞
⎠ φ(t)dt,

after interchanging the order of integration. (The student should justify this step after
considering appropriate assumptions on φ(t) such as continuity.) The inner integral
on the right-hand side can be evaluated as a beta integral with a simple substitution.
If we let u = (s− t)/(x− t), so that ds = (x− t)du, then

x∫

s=t

1
(x− s)1−α (s− t)α

ds =

1∫

0

u−α (1− u)α−1 du =
π

sin(απ)
.

Hence, we have

x∫

0

φ(t)dt =
sin(απ)

π

x∫

0

1
(x− s)1−α f (s)ds,

from which we derive

φ(x) =
sin(απ)

π
d
dx

⎛
⎝

x∫

0

1
(x− s)1−α f (s)ds

⎞
⎠ .

If f (s) is differentiable, then the solution to Abel’s equation has another
formulation. A simple integration by parts shows that

x∫

0

1
(x− s)1−α f (s)ds =

1
α

xα f (0)+
1
α

x∫

0

(x− s)α f ′(s)ds,

if f (0) is defined. It now follows that

φ(t) =
sin(απ)

π

⎛
⎝ f (0)

x1−α +

x∫

0

1
(x− s)1−α f ′(s)ds

⎞
⎠ .
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Illustrative Examples

• Example 1: Abel originally considered Eq. (7.16) with α = 1
2 in the course of

investigating the tautochrone problem whose solution is widely available in the
literature.4

Although Eq. (7.16) is sometimes referred to as the generalized Abel equation,
even more general versions of it exist. For example, if B(x, t) is bounded and
continuous in the triangle T (0,1) with B(x,x) �= 0, then the equation

f (x) =

x∫

0

B(x, t)
(x− t)α

φ(t)dt

has also been considered. It is solved by converting it to an equivalent Volterra
integral equation of the first kind as follows. If we replace x by s, multiply by
1/(x− s)1−α , and then integrate the result, we obtain after some simplification,
the equation

f̃α(x) =

x∫

0

J(x, t)φ(t)dt,

where

J(x, t) =

x∫

t

B(s, t)
(x− s)1−α(s− t)α

ds =

1∫

0

B(t +(x− t)u, t)
(1− u)1−αuα du

and

f̃α (x) =

x∫

0

1
(x− s)1−α f (s)ds

are continuously differentiable with respect to x. The converted equation can be
differentiated, if necessary, to obtain a Volterra integral equation of the second
kind.

Another type of generalization is possible. If γ : [0,1]→ R has a positive and
continuous derivative, then the singular integral equation

f (x) =

x∫

0

1
(γ(x)− γ(t))α

φ(t)dt

4For a discussion of this problem, see Andrews, L.C. and Shivamoggi, B.K., Integral Transforms
for Engineers and Applied Mathematicians, MacMillan Publishing Company, New York, 1988,
pp. 240–242.
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has the solution

φ(x) =
sin(απ)

π
d
dx

⎛
⎝

x∫

0

γ ′(t)
(γ(x)− γ(t))1−α f (t)dt

⎞
⎠ . (7.17)

• Example 2: Abel’s integral equation of the second kind is given by

φ(x) = f (x)+λ
x∫

0

1√
x− t

φ(t)dt.

Assume that φ(x) is continuous at x = 0. If we replace x by s, multiply by
ds/

√
x− s, and then integrate with respect to s, we obtain

x∫

0

1√
x− s

φ(s)ds =

x∫

0

1√
x− s

f (s)ds

+λ
x∫

0

s∫

0

1√
x− s

√
s− t

φ(t)dt ds.

Next, if we interchange the order of integration in the double integral and then
multiply by λ , we obtain

λ
x∫

0

1√
x− s

φ(s)ds = λ
x∫

0

1√
x− s

f (s)ds+λ 2 π
x∫

0

φ(t)dt.

After subtracting Abel’s equation from the last equation, we obtain

φ(x) = g(x)+λ 2π
x∫

0

φ(t)dt,

where we have set

g(x) = f (x)+λ
x∫

0

1√
x− s

f (s)ds.

Upon differentiation, we find that φ(x) must satisfy the first-order linear differ-
ential equation

φ ′(x)−λ 2π φ(x) = g′(x).

After integrating this differential equation, we obtain

e−λ 2 π x φ(x)−φ(0) =
x∫

0

e−λ 2π t g′(t)dt.
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Integration by parts, when applied to the integral on the right, yields

e−λ 2 π x φ(x)−φ(0) = e−λ 2 π x g(x)− g(0)+λ 2π
x∫

0

e−λ 2 π t g(t)dt.

But since φ(0) = g(0), we finally have

φ(x) = g(x)+λ 2π
x∫

0

eλ 2 π (x−t) g(t)dt.

7.3.2 Equations with Cauchy and Hilbert Kernels

In this subsection, we consider integral equations with singular kernels of great
theoretical and practical importance. It is important to realize at the outset that
many singular integral equations involve integrals that exist only in the sense of
Cauchy principal value and, in addition, that the solutions to those equations will
accordingly exist only in the sense of Cauchy principal value as well.

The Cauchy kernel is given by

C(x, t) =
1

x− t
,

and the Hilbert kernel is given by

H(x, t) = cot

(
x− t

2

)
.

These two kernels are analytically related since

1
x− t

=
1
2

cot

(
x− t

2

)
+

∞

∑
n=1

(−1)n−1 B2n

(2n)!
(x− t)2n−1, (7.18)

where the constants B2n are the Bernoulli numbers.
Before considering singular integral equations with either of these kernels, it is

necessary to show that the singular integrals themselves exist in the sense of the
Cauchy principal value under reasonable conditions. One very common and simple
condition is the following.

The function f (x) is said to satisfy a Lipschitz condition with exponent α if

| f (x1)− f (x2)| ≤C |x1 − x2|α

for all x1,x2 ∈ [a,b], where C is a positive constant and 0 < α ≤ 1. Then

∣∣∣∣ f (t)− f (x)
t − x

∣∣∣∣≤ C
|t − x|1−α
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for all t,x ∈ [a,b]. Now let x ∈ [a,b] and consider the identity

b∫

a

f (t)
t − x

dt =

b∫

a

f (t)− f (x)
t − x

dt + f (x)

b∫

a

1
t − x

dt.

The first integral on the right exists, albeit as an improper integral, and the second
integral on the right exists only in the sense of Cauchy principal value. Hence,

PV

b∫

a

f (t)
t − x

dt =

b∫

a

f (t)− f (x)
t − x

dt + f (x) ln

(
b− x
x− a

)
.

A similar observation can be made for singular integrals with Hilbert kernels.
A theorem due to Privalov5 demonstrates that higher iterates also exist in this

sense. Let

f1(x) = PV

b∫

a

f (t)
t − x

dt

and

fn+1(x) = PV

b∫

a

fn(t)
t − x

dt

for n ≥ 1. If α < 1, then f1(x) satisfies a Lipschitz condition with exponent α on the
interval [c,d] where a< c< d < b. If α = 1, then f1(x) satisfies a Lipschitz condition
for arbitrary β < 1 on [c,d]. It follows that f2(x) exists. A short corollary to
Privalov’s theorem shows that fn(x) exists for all n≥ 1 under these same conditions.

Without loss of generality, we can assume that a = −1 and that b = +1, since
the change of limits can be effected by an elementary change of variables. Another
common choice of limits is a = 0 and b =+1.

If the interval of integration is infinite, then we must write

PV

+∞∫

−∞

f (t)
t − x

dt =

a∫

−∞

f (t)
t − x

dt +PV

b∫

a

f (t)
t − x

dt +

+∞∫

b

f (t)
t − x

dt,

where x ∈ (a,b). If f (x) is square integrable on the interval (−∞,+∞), then the
first integral on the right exists as an application of the Cauchy–Schwarz Inequality,
since ∣∣∣∣∣∣

a∫

−∞

f (t)
t − x

dt

∣∣∣∣∣∣
2

≤
⎛
⎝

a∫

−∞

f 2(t)dt

⎞
⎠
⎛
⎝

a∫

−∞

(
1

t − x

)2

dt

⎞
⎠<+∞.

A similar comment can be made for the third integral on the right.

5For a proof of this theorem, see Privalov, I.I., Introduction to the Theory of Functions of a Complex
Variable, 8th edn. State Technical Publishers, 1948.
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The singular integrals have been defined here for functions of a real variable
x on an interval. In more advanced texts, it is shown that analogous integrals
can also be defined for functions of a complex variable z on smooth contours in
the complex plane. Interesting integral equations can be posed involving contour
integrals, although we shall not do so here.

Three Special Integral Transforms

• 1. The Cauchy Kernel (finite interval): If f (x) satisfies a Lipschitz condition on
the interval (−1,+1), then the Finite Hilbert Transform

h : f (x)→ 1
π

PV

+1∫

−1

1
t − x

f (t)dt = h(x)

exists in the sense of the Cauchy principal value. This transformation has many
interesting properties. One of the most useful is the convolution theorem, which
states that

h[φ hψ +ψ hφ ] = hφ hψ−φ ψ . (7.19)

In the exercises, it is shown that h
[
(1− x2)−1/2

]
= 0, from which it follows that

h
[
(1− x2)1/2

]
=−x.

Now consider the singular integral equation of the first kind

f (x) =
1
π

PV

+1∫

−1

1
t − x

φ(t)dt,

known as the airfoil equation, which can be more simply written in the form
f = hφ . It is easy to determine the form that any solution to this equation must
assume. If we set ψ(x) = (1−x2)1/2 in the convolution theorem, then we readily
obtain the relation

h
[
−xφ(x)+ (1− x2)1/2 f (x)

]
=−x f (x)− (1− x2)1/2 φ(x).

In order to isolate φ(x), observe that

h [xφ(x)] =
1
π

PV

+1∫

−1

1
t − x

t φ(t)dt

=
1
π

PV

+1∫

−1

(t − x)+ x
t − x

φ(t)dt
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=
1
π

+1∫

−1

φ(t)dt +
x
π

PV

+1∫

−1

1
t − x

φ(t)dt

=
1
π

+1∫

−1

φ(t)dt + x f (x).

After substituting the result of this computation into the equation above it, we
obtain

(1− x2)1/2φ(x) =−h
[
(1− x2)1/2 f (x)

]
+

1
π

+1∫

−1

φ(t)dt,

or, in terms of an explicit integral,

φ(x) =− 1
π

PV

+1∫

−1

√
1− t2

1− x2

1
t − x

f (t)dt +
k√

1− x2
,

where we have set

k =
1
π

+1∫

−1

φ(t)dt.

• 2. The Cauchy Kernel (infinite interval): If f (x) is square integrable and satisfies
a Lipschitz condition on the interval (−∞,+∞), then the Hilbert Transform

H : f (x)→ 1
π

PV

+∞∫

−∞

1
t − x

f (t)dt = h(x)

exists in the sense of the Cauchy principal value. Furthermore, h(x) is also square
integrable and satisfies the same Lipschitz condition as f (x), so that its Hilbert
Transform

H : h → 1
π

PV

+∞∫

−∞

1
t − x

h(t)dt

also exists. One of the most surprising and important properties of the Hilbert
Transform, derived from the Fourier Integral Theorem, is the fact that if h = H f ,
then Hh =− f , from which it follows that HH f =− f .

Now consider the singular integral equation of the second kind

φ(x) = f (x)+λ
+∞∫

−∞

1
t − x

φ(t)dt,
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where we assume that f (x) is square integrable and satisfies a Lipschitz condition
on the interval (−∞,+∞). In operator form, this equation can be alternately
written as

φ = f +λπ Hφ .

If we apply H to this equation, then we obtain

Hφ = H f +λπHHφ or Hφ = H f −λπ φ .

After eliminating Hφ from these last two equations, we obtain

φ =
1

1+λ 2π2 ( f +λπ H f ) ,

or

φ(x) =
1

1+λ 2π2

⎛
⎝ f +λ PV

+∞∫

−∞

1
t − x

f (t)dt

⎞
⎠ ,

where 1 + λ 2 π2 �= 0. The solution φ(x) is square integrable on the interval
(−∞,+∞).

• 3. The Hilbert Kernel: Another closely related integral transform is defined in
terms of the Hilbert kernel. Let

P : f (x)→ 1
2π

PV

2π∫

0

cot

(
x− t

2

)
f (t)dt = p(x).

Given the close analytic relation (7.18) between the Cauchy kernel and the
Hilbert kernel, we can assert that P f exists if f (x) satisfies a Lipschitz condition
on the interval (0,2π). Note that if k is a constant, then Pk = 0, due to the
periodicity of the cotangent.

The most important property of this transform, relevant to the purpose of
solving singular integral equations with Hilbert kernels, is the observation that
if p = P f , then Pp = PP f =− f +A[ f ], where

A[ f ] =
1

2π

2π∫

0

f (s)ds

is the average value of f (s) on the interval [0,2π ].
Consider the singular integral equation of the first kind

1
2π

PV

2π∫

0

cot

(
x− t

2

)
φ(t)dt = f (x),
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which can be written more simply in operator notation as Pφ = f . If we apply
P to both sides of the integral equation, we obtain PPφ = P f . However, since
PPφ =−φ +A[φ ], the solution to the integral equation is

φ =−P f +A[φ ],

or, in explicit integral form,

φ(x) =− 1
2π

PV

2π∫

0

cot

(
x− t

2

)
f (t)dt +

1
2π

2π∫

0

φ(s)ds.

To show that φ satisfies the equation, we apply P to the solution φ =−P f +A[φ ]
to obtain

f = Pφ =−PP f +PA[φ ] = f (x)−A[ f ],

showing that a necessary and sufficient condition for a solution to exist is that
A[ f ] = 0.

Now consider the singular integral equation of the second kind

aφ(x) = f (x)+
b

2π
PV

2π∫

0

cot

(
x− t

2

)
φ(t)dt,

where a and b are constants, possibly complex.
Let

L−φ = aφ(x) = φ(x)− b
2π

PV

2π∫

0

cot

(
x− t

2

)
φ(t)dt

and

L+φ = aφ(x) = φ(x)+
b

2π
PV

2π∫

0

cot

(
x− t

2

)
φ(t)dt.

The integral equation can be written in the alternate form L−φ = f . If we apply
L+ to both sides of this equation, we obtain

L+L−φ = L+ f = f + bP f .

But also,

L+L−φ = L+ [aφ − bPφ ]

= aL+φ − bL+ [Pφ ]

= a (aφ + bPφ)− b (aPφ + bPPφ)

= a2φ − b2 (−φ +A[φ ])

=
(
a2 + b2) φ − b2 A[φ ].
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It follows from these last two equations that

(
a2 + b2) φ(x) = a f (x)+ bP f +

b2

2π

2π∫

0

φ(s)ds.

We have shown that the solution φ(x) to the singular integral equation is the
solution to a simple Fredholm equation with the kernel K(x,s) ≡ 1. Actually,
it can be shown that these two integral equations are equivalent. In order to
complete the solution, we must evaluate A[φ ]. Upon integrating the last equation,
we find that

A[φ ] =
1

2πa
A[ f ].

Thus, if a2 + b2 �= 0, then the solution to the integral equation is given by

φ(x) =
a

a2 + b2 f (x)+
b

a2 + b2 P f +
b2

a(a2 + b2)
A[ f ].

If a2 + b2 = 0, then L+ f = −b2 A[φ ], i.e., L+ f is constant. In this case, the
integral equation does not in general have a solution.

Illustrative Examples

• Example 1: Consider the singular integral equation of the first kind

f (x) =
1

1+ x2 =
1
π

PV

+∞∫

−∞

1
t − x

φ(t)dt = Hφ .

Before we attempt to solve this equation, it is necessary to note that f (x) is
square integrable and that it satisfies a Lipschitz condition with exponent 1. As a
consequence of the Mean Value Theorem, it is easy to show that

| f (x1)− f (x2)|=
∣∣ f ′(c)∣∣ |x1 − x2| ≤ 3

√
3

8
|x1 − x2|

for any real x1 and x2, with x1 < c < x2. It follows that H f exists.
Since H f = HHφ =−φ , the solution to the integral equation is

φ(x) =−H f =− 1
π

PV

+∞∫

−∞

1
t − x

1
1+ t2 dt.
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This integral is evaluated by employing the method of partial fractions. Let

I(t) =
∫

1
t − x

1
1+ t2 dt

=
1

1+ x2

∫ (
1

t − x
− t

1+ t2 −
x

1+ t2

)
dt

=
1

1+ x2

(
ln |t − x|− 1

2
ln
∣∣1+ t2

∣∣− x arctant

)
.

It is easy to see that:

– As t →−∞, I(t)→ πx
2+2x2 .

– As t →+∞, I(t)→− πx
2+2x2 .

– At t = x± ε , I(x± ε) = 1
1+x2 [ln |

±ε√
1+(x± ε)2

|− xarctan |x± ε|].

We conclude from these values that

φ(x) =− 1
π

1
1+ x2 lim

ε↓0

⎛
⎝

x−ε∫

−∞

+

+∞∫

x+ε

⎞
⎠ 1

t − x
1

1+ t2 dt

=
x

1+ x2 .

Finally, we note that φ(x) is square integrable and satisfies a Lipschitz condition.
• Example 2: Compute

P[sin x] =
1

2π
PV

2π∫

0

cot

(
x− t

2

)
sin t dt.

With the linear substitution u=(x−t)/2 and elementary trigonometric identities,
the indefinite integral is evaluated to be

J(t) =
∫

cot

(
x− t

2

)
sin t dt

=−t cos x− sin t − 2 ln

∣∣∣∣sin

(
x− t

2

)∣∣∣∣+C.

(Terms involving x only are absorbed into C.)
It is easy to see that:

– J(0) =−2 ln |sin( x
2 )|+C.

– J(2π) =−2π cos x− 2 ln |sin( x
2 )|+C.

– J(x± ε) =−(x± ε) cos x− sin(x± ε)− 2 ln |sin(∓ε)|+C.
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We conclude from these values that

P[sin x] =
1

2π
lim
ε↓0

⎛
⎝

x−ε∫

0

+

2π∫

x+ε

⎞
⎠ cot

(
x− t

2

)
sin t dt =−cos x.

• Example 3: The singular integral equation

+1∫

−1

ln |x− t|φ(t)dt = 1

with a logarithmic kernel can be solved by employing Fourier series.
Since −1 < x, t < +1, the change of variables x = cos y and t = cos u yields

the reformulation
π∫

0

ln |cos y− cos u|ψ(u)du = 1

where ψ(u) = φ(cos u) sin u.
The well-known Fourier series

1
2

ln(1− cos θ ) =−1
2

ln2−
∞

∑
n=1

1
n

cos(nθ ) (0 < θ < 2π)

can be adapted to suit our purpose by using only elementary trigonometric
identities. Indeed, if we let L(y,u) = ln |cos y− cos u|, then we have

L(y,u) = ln

∣∣∣∣2 sin

(
y+ u

2

)
sin

(
u− y

2

)∣∣∣∣
=

1
2

ln

(
2sin2

(
y+ u

2

))
+

1
2

ln

(
2 sin2

(
u− y

2

))

=
1
2

ln

(
1− cos

(
y+ u

2

))
+

1
2

ln

(
1− cos

(
u− y

2

))

=−1
2

ln2−
∞

∑
n=1

1
n

cos

(
n

(
y+ u

2

))

− 1
2

ln2−
∞

∑
n=1

1
n

cos

(
n

(
u− y

2

))

=− ln2−
∞

∑
n=1

1
n

[
cos

(
n

(
y+ u

2

))
+ cos

(
n

(
u− y

2

))]

=− ln2− 2
∞

∑
n=1

1
n

cos(ny)cos(nu).
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Assuming that the solution φ(t) is continuous with a piecewise continuous
derivative on (−1,+1), the composed function ψ(u) is also continuous with
a piecewise continuous deivative on (0,π). Furthermore, the even extension of
ψ(u) to (−π ,+π) will have a convergent Fourier expansion of the form

ψ(u) =
∞

∑
n=0

bn cos(nu)

which converges to ψ(u) on the interval (0,π).
If we substitute these two Fourier series into the reformulated integral

equation and evaluate the resulting integral, then we obtain

−π b0 ln2−
∞

∑
n=1

πbn

n
cos(ny) = 1

for all y ∈ (0,π) due to the orthogonality properties of the cosine function. It
follows that −π b0 ln2 = 1 and bn = 0 for all n ≥ 1. Consequently,

ψ(u) = b0 =− 1
π ln2

or, equivalently,

φ(cos u) sin u = φ(cos u)
√

1− cos2 u =− 1
π ln2

.

Finally, the solution to the integral equation is given by

φ(x) =− 1
π ln2

1√
1− x2

.

If we substitute this solution back into the given integral equation, then we obtain
as a corollary the evaluated definite integral

+1∫

−1

ln |x− t| 1√
1− t2

dt =−π ln2. (7.20)

The general singular integral equation of the first kind

+1∫

−1

ln |x− t|φ(t)dt = f (x) (7.21)

with a logarithmic kernel can now be solved.
If we differentiate (justify!) this integral equation, then we obtain

1
π

PV

+1∫

−1

1
t − x

φ(t) =− 1
π

f ′(x),

or, equivalently, hφ =− f ′(x)/π , where h is the Finite Hilbert Transform.
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We recognize this equation as a singular integral equation with a Cauchy
kernel (the airfoil equation) which was solved in the exposition above. Its solution
was determined there to be

φ(x) = +
1
π2 PV

+1∫

−1

√
1− t2

1− x2

1
t − x

f ′(t)dt +
k√

1− x2
,

where we have set

k =
1
π

+1∫

−1

φ(t)dt.

It remains to evaluate k. If we replace x with u in Eq. (7.21), multiply by
1/

√
1− u2, integrate with respect to u, and then interchange the order of

integration, we obtain

+1∫

t=−1

⎛
⎝

+1∫

u=−1

ln |u− t| 1√
1− u2

du

⎞
⎠ φ(t)dt =

+1∫

−1

1√
1− u2

f (u)du.

Given the value (7.20), we see that

k =− 1
π2 ln2

+1∫

−1

1√
1− u2

f (u)du.

The final form of the solution

φ(x) =
1

π2
√

1− x2

⎡
⎣PV

+1∫

−1

√
1− t2

t − x
f ′(t)dt

− 1
ln2

+1∫

−1

1√
1− u2

f (u)du

⎤
⎦

is called Carleman’s formula.
It is clear from this form of the solution that suitable assumptions must be

made a priori on f ′(x) and f (x) for these integrals to exist. For example, if f ′(x)
satisfies a Lipschitz condition on the interval (−1,+1), then the first integral will
exist in the sense of the Cauchy principal value. The second integral must exist
as an improper integral since 1/

√
1− t2 becomes unbounded as t →±1. It will

exist, for example, if f (x) is bounded and integrable.
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Sect. 7.3 Exercises

1. Let 0 < α < 1 and let n be a positive integer. The solution to Abel’s equation

xn =

x∫

0

1
(x− t)α

φ(t)dt

has the form φ(t) = cxd . Determine c and d.
If PN(x) is a polynomial of degree N, does the integral equation

PN(x) =

x∫

0

1
(x− t)α

φ(t)dt

always have a solution?
2. For real values of α and β , when does the integral equation

xβ =

x∫

0

1
(x− t)α

φ(t)dt

have a solution?
3. Derive the solution (7.17) by following the method outlined in the text.
4. Abel’s equation is easily converted to the form

f̃ (y) =

1∫

y

1
(u− y)α

φ̃ (u)du

by setting x = 1− y, t = 1− u, f̃ (y) = f (1− y), and φ̃(u) = φ(1− u).

(a) Determine the general form of the solution φ̃ (y) to this equation.
(b) Solve the equation

1− y =

1∫

y

1
(u− y)α

φ̃ (u)du.

5. Solve Abel’s singular integral equation

f (x) =

+∞∫

x

1√
x− t

φ(t)dt.

Hint: Replace x by s, multiply by 1/
√

x− s, and then integrate from x to +∞.
6. Evaluate the Finite Hilbert Transform

h
[
(1− x2)−1/2

]
=

1
π

PV

+1∫

−1

(1− t2)−1/2 1
t − x

dt.
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(a) Explain why (1 − x2)−1/2 does not satisfy a Lipschitz condition on the
interval (−1,+1).

(b) Let −1 < a < x < b < +1. Use the Mean Value Theorem to explain why
(1− x2)−1/2 does satisfy a Lipschitz condition on the interval [a,b].

(c) Explain why h
[
(1− x2)−1/2

]
exists, regardless of part (a).

(d) Use the substitution

t =
1− s2

1+ s2 , dt =− 4s
(1+ s2)2

to show that

h
[
(1− x2)−1/2

]
=

2
π

PV

+∞∫

0

1
(1− x)− (1+ x)s2 ds.

Note that t is a decreasing function of s, so that t =+1 corresponds to s = 0
and that t =−1 corresponds to s =+∞. Also, since 0 < 1± x < 2, there is
an asymptote at s̃ =

√
(1− x)/(1+ x), with 0 < s̃ <+∞.

(e) Use the antiderivative formula

∫
1

a2 − b2s2 ds =
1

2ab
ln

∣∣∣∣a+ bs
a− bs

∣∣∣∣+C

to evaluate the integral in part (d) on the set [0, s̃− ε]∪ [s̃+ ε,+∞).
(f) Conclude that h

[
c(1− x2)−1/2

]
= 0, where c is a constant. Are there any

other nontrivial functions ψ for which hψ = 0?
(g) Are there any nontrivial functions φ for which hφ = φ?

Hint: Begin with the convolution theorem (7.19), and set ψ = φ .

7. Show that h
[
(1− x2)+1/2

]
=−x.

8. The results of the previous two problems can be generalized. Let Tn(x) and
Un(x) denote the Chebychev polynomials of the first and second kinds of
degree n. For n ≥ 1, show that

h
[

Tn(x)√
1− x2

]
=Un−1(x) and that h

[√
1− x2Un−1(x)

]
=−Tn(x).

9. (a) Show that P[cos x] = sin x and that P[sin x] =−cos x.
(b) Determine P[cos(nx)] and P[sin(nx)] for all integers n ≥ 1.

10. Solve the singular integral equation of the first kind with logarithmic kernel

+1∫

−1

ln |x− t|φ(t)dt =
√

1− x2.



Chapter 8
Linear Systems of Integral Equations

A system of integral equations is a set of two or more integral equations in two or
more unknown functions. Usually, all of the equations belonging to a system are
of the same type, but this need not be the case. Since linear systems of Fredholm,
Volterra, or singular integral equations occur very commonly in practice, they are
the subjects of this chapter.

There are a variety of methods for solving systems of integral equations:

• Converting a system of integral equations into a different type of system is an
especially useful technique. For example, a linear system of integral equations
can often be converted into a system of linear equations or a system of linear
differential equations by differentiation or by employing a transform method.
The solution to the converted system can then be related back to the solution of
the system of integral equations.

• A linear system of integral equations can be converted into a single linear integral
equation in several ways. One method of doing this involves writing the system
as a single integral equation by employing matrix notation. The kernel is a single
matrix function that incorporates all of the kernels in the system. The free term
and the solution are vector functions. Then, an analogous version of the Theorem
of Successive Substitution can be applied to the equation in matrix form.

• The integral equations in a linear system can be substituted into one another,
yielding a single integral equation with a more complex kernel. The solutions to
the more complex equation can then be related back to the solutions of the linear
system.

• In some cases, a linear system of integral equations can be converted into a
decoupled system of linear equations that can be solved individually.

In many systems of interest, these conversion methods are not applicable. Thus,
the importance of determining approximate solutions to such systems of integral
equations cannot be underestimated. It may be necessary at times to approximate
one or more of the kernels or free terms in order to produce an approximate solution.
Difficult questions of convergence and stability must be addressed in the ensuing
analysis in order to verify accuracy.

S.M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment,
DOI 10.1007/978-0-8176-8349-8 8, © Springer Science+Business Media, LLC 2012
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In Sect. 8.1, we present several tools of the trade which are indispensible for the
comprehension of the material in this chapter.

In Sect. 8.2, we consider systems of Volterra integral equations. We show how to
solve some simple systems when the kernels are of convolution type by employing
the Laplace transform.

In Sect. 8.3, we investigate the relationship between linear systems of integral
equations and differential equations of higher order.

In Sect. 8.4, we consider linear systems of Fredholm integral equations. We
illustrate a method for solving them when the kernels are separable.

In Sect. 8.5, we consider systems of linear singular integral equations with
Cauchy kernels or Hilbert kernels.

8.1 Tools of the Trade

In this chapter, the reader should be familiar with the following topics:

• Norms of a continuous vector function: If each fi(x) is continuous on the closed
interval [a,b], then we define the norm of the continuous vector function f(x) =
( f1(x), . . . , fn(x)) by

‖f(x)‖= max
1≤i≤n

| fi(x)| . (8.1)

For each x ∈ [a,b], vector norms satisfy the following axioms:

1. ‖f(x)‖ ≥ 0
2. ‖f(x)‖= 0 if and only if f(x) = 0
3. ‖f(x)+ g(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖
4. ‖k f(x)‖= |k|‖f(x)‖ for any scalar k

Since f(x) is continuous, there exists a constant F such that

F = max
a≤x≤b

‖f(x)‖.

Also, it is readily shown that

∥∥∥∥∥∥
b∫

a

f(t)dt

∥∥∥∥∥∥≤
b∫

a

‖f(t)‖ dt. (8.2)

• The norm of a matrix: Let A be either a real-valued or complex-valued matrix.
The norm of the matrix A, denoted by ‖A‖, is a nonnegative number with the
following properties:
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1. ‖A‖ ≥ 0.
2. ‖A‖= 0 if and only if A is the zero matrix.
3. ‖k A‖= |k|‖A‖ for any scalar k.
4. ‖A+B‖ ≤ ‖A‖+ ‖B‖. (The triangle inequality holds.)
5. ‖AB‖ ≤ ‖A‖‖B‖.

Matrix norms can be naturally induced from vector norms. For example, if ‖z‖
is the Euclidean vector norm, then the matrix norm naturally induced from it is
defined by

‖A‖= max
‖z‖=1

‖Az‖.

If z belongs to Rn and A is an n × n matrix, then Az belongs to Rn. In this
situation, the Euclidean norm of A is equal to the greatest length of all possible
images of unit vectors.

• Norms of a continuous matrix function: A continuous matrix function of one or
more variables is a matrix whose entries are continuous functions of one or more
variables. The norm of a continuous matrix function replaces the concept of the
absolute value in proofs of existence and uniqueness theorems for systems of
integral equations written in matrix form.

The norm of interest in this chapter is the maximum absolute row sum norm
defined by

‖A‖= max
1≤i≤n

n

∑
j=1

∣∣ai j
∣∣ . (8.3)

If each ki j(x, t) is continuous on the square Q(a,b), then the norm of the matrix
function K(x, t) = (ki j(x, t)) for each (x, t) ∈ Q(a,b) is given by

‖K(x, t)‖= max
1≤i≤n

n

∑
j=1

∣∣ki j(x, t)
∣∣ .

Since each ki j(x, t) is continuous, there exists a constant K such that

K= max
Q(a,b)

‖K(x, t)‖.

Also, it is readily shown for this norm that

∥∥∥∥∥∥
b∫

a

K(x, t)dt

∥∥∥∥∥∥≤
b∫

a

‖K(x, t)‖ dt. (8.4)
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8.2 Systems of Volterra Equations

A system of linear Volterra integral equations can be rewritten in terms of matrix
notation.

Consider the system consisting of three Volterra integral equations of the second
kind in three unknowns:

φ1(x) = f1(x)+

x∫

0

k11(x, t)φ1(x)+ k12(x, t)φ2(x)+ k13(x, t)φ3(x)dt,

φ2(x) = f2(x)+

x∫

0

k21(x, t)φ1(x)+ k22(x, t)φ2(x)+ k23(x, t)φ3(x)dt,

φ3(x) = f3(x)+

x∫

0

k31(x, t)φ1(x)+ k32(x, t)φ2(x)+ k33(x, t)φ3(x)dt.

In matrix notation, this system appears in the alternate form

⎛
⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

f1(x)

f2(x)

f3(x)

⎞
⎟⎟⎠+

x∫

0

⎛
⎜⎜⎝

k11(x, t) k12(x, t) k13(x, t)

k21(x, t) k22(x, t) k23(x, t)

k31(x, t) k32(x, t) k33(x, t)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

φ1(t)

φ2(t)

φ3(t)

⎞
⎟⎟⎠dt,

or more compactly as

p(x) = f(x)+

x∫

0

K(x, t)p(t)dt,

where obvious assignments have been made.
It can be shown that this system has a unique solution p(x) on the interval [0,b]

if f(x) is continuous on the interval [0,b] and if K(x, t) is continuous on the triangle
T (0,b). The proof of this fact is quite similar to the proof for a Volterra integral
equation of the second kind in one variable, with matrix norms (see Sect. 8.1)
replacing absolute values.

Some systems of Volterra integral equations can be quite difficult to solve,
especially if the component kernels ki j(x, t) have very different functional forms.
However, if each kernel is a convolution kernel, then the Laplace transform can be
used very efficiently to solve the system.

Suppose that ki j(x, t) = mi j(x− t) for all i and j. Set

Fi(s) = L{ fi(x)}, Mi j(s) = L{mi j(x)}, and Φi(s) = L{φi(x)}.
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The Laplace transform converts the system of three integral equations into the
following system of three linear equations, written as

Φ1(s) = F1(s)+M11(s)Φ1(s)+M12(s)Φ2(s)+M13(s)Φ3(s),

Φ2(s) = F2(s)+M21(s)Φ1(s)+M22(s)Φ2(s)+M23(s)Φ3(s),

Φ3(s) = F3(s)+M31(s)Φ1(s)+M32(s)Φ2(s)+M33(s)Φ3(s).

or more compactly in matrix form as

P(s) = F(s)+M(s)P(s),

where P(s) = (Φ1(s),Φ2(s),Φ3(s))
T, F(s) = (F1(s),F2(s),F3(s))

T, and the matrix
M(s) = (Mi j(s)). It follows directly from this equation that

(I−M(s))P(s) = F(s),

from which we conclude that

P(s) = (I−M(s))−1 F(s),

provided that the inverse exists. The solution is then p(x) = L−1{P(s)}.
The introductory example above consists of a system of three equations in

three unknown functions. Obviously, systems can consist of an arbitrary number of
equations and unknown functions. Furthermore, the left-hand side of these equations
can consist of a linear combination of the unknown functions as well. Thus, in
general, a system of n integral equations of Volterra type can appear in the expanded
form

n

∑
j=1

ai j(x)φ j(x) = f j(x)+

x∫

0

(
n

∑
j=1

ki j(x, t)φ j(t)

)
dt

for i = 1, . . . ,n. In the more compact matrix form, this equation becomes

A(x)p(x) = f(x)+

x∫

0

k(x, t)p(t)dt,

where obvious assignments have been made. In applications, A(x) is assumed to be
constant, bounded, nonsingular, or diagonalizable.
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Illustrative Examples

• Example 1: Consider the linear system of Volterra integral equations

φ(x) = 2+

x∫

0

(x− t)2ψ(t)dt,

ψ(x) = x+ 16

x∫

0

(x− t)φ(t)dt.

The Laplace transform can be applied to this system of integral equations since
the kernels are of convolution type.

If we set Φ(s) = L{φ(x)} and Ψ(s) = L{ψ(x)}, then this system of integral
equations is converted by the Laplace transform into the system of linear
equations

Φ(s)− 1
s3 Ψ(s) =

2
s
,

−16
s2 Φ(s)+Ψ(s) =

1
s2 ,

The solution of this linear system consists of the transforms

Φ(s) =
2s4 + 2
s5 − 32

and

Ψ(s) =
s3 + 32s2

s5 − 32
.

Inversion is readily accomplished if these transforms are expanded into more
recognizable forms.

If we set1 g = (
√

5+ 1)/2, h = 1/g = (
√

5− 1)/2, a =
√
(5+

√
5)/2, and

b =
√
(5−√

5)/2, then Φ(s) andΨ(s) can be decomposed as

Φ(s) =
17
40

(
1

s− 2

)
+

1
80a

[(
63+

√
5
)

a

(
s− h

(s− h)2 + a2

)

−
(

5+
√

5
) ( a

(s− h)2 + a2

)]

1g is known as the Golden Ratio.
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+
1

80b

[(
63−

√
5
)

b

(
s+ g

(s+ g)2 + b2

)

−
(

5−
√

5
) ( b

(s+ g)2 + b2

)]

and

Ψ(s) =
17
10

(
1

s−2

)

− 1
20a

[(
17+15

√
5
)

a

(
s−h

(s−h)2 +a2

)
−
(

5+33
√

5
) ( a

(s−h)2 +a2

)]

− 1
20b

[(
17−15

√
5
)

b

(
s+g

(s+g)2 +b2

)
−
(

5−33
√

5
) ( b

(s+g)2 +b2

)]
.

After inversion, we obtain the solutions

φ(x) =
17
40

e2x +
1

80a
ehx
[(

63+
√

5
)

a cos(ax)− (5+
√

5) sin(ax)
]

+
1

80b
e−gx

[(
63−

√
5
)

b cos(bx)− (5−
√

5) sin(bx)
]

and

ψ(x) =
17
10

e2x − 1
20a

ehx
[(

17+ 15
√

5
)

a cos(ax)−
(

5+ 33
√

5
)

sin(ax)
]

− 1
20b

e−gx
[(

17− 15
√

5
)

b cos(bx)−
(

5− 33
√

5
)

sin(bx)
]
.

It is worth noting that this system of Volterra integral equations can be
decoupled via differentiation into two initial value problems of the fifth order.
Specifically, if we differentiate both integral equations five times and combine
the results algebraically, then we find that φ(x) is the solution of the ordinary
differential equation

φ ′′′′′(x) = 32φ(x)

together with the initial conditions

φ(0) = φ ′′′′(0) = 2 and φ ′(0) = φ ′′(0) = φ ′′′(0) = 0,

and that ψ(x) is the solution of the ordinary differential equation

ψ ′′′′′(x) = 32ψ(x)

together with the initial conditions

ψ(0) = ψ ′′′(0) = ψ ′′′′(0) = 0, ψ ′(0) = 1, and ψ ′′(0) = 32.
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Although it is computationally possible to effect this conversion, it is rather
cumbersome to actually carry it out. Hence, it is definitely not a recommended
method in this case.

Section 8.2 Exercises

1. Solve the linear system of Volterra integral equations of the second kind given by

φ(x)+ 2ψ(x) = 2+ 2

x∫

0

φ(t)dt,

φ(x)−ψ(x) = 2x+

x∫

0

(x− t)ψ(t)dt.

Answer:

φ(x) =
4
3

ex − 2
3

e−x/6 cos

(√
23
6

x

)
+

2
√

23
23

e−x/6 sin

(√
23
6

x

)

and

ψ(x) =
2
3

ex − 16
√

23
69

e−x/6 sin

(√
23
6

x

)
.

Show that φ(x) satisfies the initial value problem that consists of the differential
equation

3φ ′′′(x)− 2φ ′′(x)+φ ′(x)− 2φ(x) = 0

together with the initial conditions

φ(0) =
2
3
, φ ′(0) =

16
9
, and φ ′′(0) =

44
27

.

Show also that ψ(x) satisfies the initial value problem consisting of the
differential equation

3ψ ′′′(x)− 2ψ ′′(x)+ψ ′(x)− 2ψ(x) = 0

together with the initial conditions

ψ(0) =
2
3
, ψ ′(0) =−2

9
, and ψ ′′(0) =

26
27

.
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In doing so, you have shown that the system of Volterra integral equations of the
second kind can be successfully decoupled via differentiation.

2. Consider the matrix system of Volterra singular integral equations of the second
kind

p(x) = f(x)+

x∫

0

Ap(t)dt,

where

p(x) =

⎛
⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

f1(x)

f2(x)

f3(x)

⎞
⎟⎟⎠ , and A =

⎛
⎜⎜⎝

4 0 1

−2 1 0

−2 0 1

⎞
⎟⎟⎠ .

(a) If f(x) = 0, then p(x) = 0 is obviously a solution to this system. Is this
solution unique?

(b) Solve the matrix system if

f(x) = c(x) =

⎛
⎜⎜⎝

cos x

cos(2x)

cos(3x)

⎞
⎟⎟⎠

and if

f(x) = s(x) =

⎛
⎜⎜⎝

sin x

sin(2x)

sin(3x)

⎞
⎟⎟⎠ .

Hints: The matrix A is diagonalizable. The eigenvalues of A are λ1 = 1,
λ2 = 2, and λ3 = 3. The eigenvectors corresponding to these eigenvalues are

v1 =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

−1

2

2

⎞
⎟⎟⎠ , and v3 =

⎛
⎜⎜⎝

−1

1

1

⎞
⎟⎟⎠ ,

respectively.
Diagonalize A by setting A = PDP−1, where D is the diagonal matrix

with the eigenvalues of A as diagonal entries, and the columns of P are the
eigenvectors of A.

Decouple the system into three separate Volterra integral equations of the
second kind by setting q(x) = P−1p(x).
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Partial answer: The solutions to both equations assume the form

p(x) = c1ex v1 + c2e2x v2 + c3e3x v3 +Cc(x)+Ss(x),

where C and S are constant matrices.
Explain why this form could have been reasonably predicted before any

attempt to solve the system.

3. Consider the matrix system of Volterra integral equations of the second kind

p(x) = f(x)+

x∫

0

Ap(t)dt,

where

p(x) =

(
φ(x)

ψ(x)

)
, f(x) =

(
f1(x)

f2(x)

)
, and A =

(
0 1

4 0

)
.

(a) Solve this coupled system by converting it into a decoupled system of
second-order differential equations.

(b) Solve this system again by converting it into a decoupled system of Volterra
integral equations. Use the fact that A is diagonalizable. Its eigenvalues are
λ1 = +2 and λ2 = −2, and its corresponding eigenvectors are v1 = (1,2)T

and v2 = (1,−2)T.
Answer: With k = 1/(1− 4λ 2), the solution is

p(x) = k

[
2e−x

(−λ

1

)
+ ex

(
1

4λ

)
− 4λ 2e2λ x v1 + 2λe−2λ x v2

]
.

If λ =±1/2, the solution exists as a limit.

8.3 Differential Equations

It is possible to convert a linear ordinary differential equation of higher order into a
system of integral equations. Before we demonstrate this procedure, we recall some
basic facts.

Valuable techniques for integrating higher derivatives were introduced in
Sect. 5.1. These techniques were used in Sect. 5.2.1 to convert boundary value
problems, consisting of a second-order ordinary differential equation together with
two boundary conditions, into a single Fredholm integral equation. To be specific,
it was shown that the second-order equation
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φ ′′(x)+λ φ(x) = 0

together with the boundary conditions φ(0) = φ(1) = 0 can be converted to the
homogeneous Fredholm integral equation

φ(x) = λ
1∫

0

G(x, t)φ(t)dt

where the triangular kernel is prescribed by

G(x, t) =

⎧⎪⎨
⎪⎩

t(1− x)
1

if 0 ≤ t ≤ x ≤ 1,

x(1− t)
1

if 0 ≤ x ≤ t ≤ 1.

Illustrative Examples

• Example 1: In this example, we convert the boundary value problem that consists
of an ordinary differential equation of the fourth-order together with suitable
boundary conditions into a system of integral equations.

Consider the fourth order equation

φ ′′′′(x)−λ φ(x) = 0 (8.5)

together with the boundary conditions

φ(0) = φ(1) = 0 and φ ′′(0) = φ ′′(1) = 0.

This equation can be solved directly. If λn = n4π4, then the solution is φn(x) =
c sin(nπx), where c is an arbitrary constant. If λ �= n4π4 for any integer n, then
φ(x) ≡ 0.

Clearly, this fourth-order equation can be decomposed into two second-order
equations by setting

φ ′′(x) =−ψ(x) and ψ ′′(x) =−λ φ(x)

with the accompanying boundary conditions

φ(0) = φ(1) = 0 and ψ(0) = ψ(1) = 0.

If we proceed as above, then these two equations can be converted into the system
consisting of the coupled integral equations
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φ(x) =
1∫

0

G(x, t)ψ(t)dt,

ψ(x) = λ
1∫

0

G(x, t)φ(t)dt.

After replacing x by t and t by s in the second equation and substituting it into
the first equation, this system becomes

φ(x) =
1∫

0

G(x, t)

⎛
⎝λ

1∫

0

G(t,s)φ(s)ds

⎞
⎠ dt.

After interchanging the order of integration, we obtain

φ(x) = λ
1∫

0

⎛
⎝

1∫

0

G(x, t)G(t,s)dt

⎞
⎠ φ(s)ds,

or what is the same, after replacing s by t,

φ(x) = λ
1∫

0

G2(x, t)φ(t)dt. (8.6)

The iterated kernel G2(x, t) can be computed directly. If 0 ≤ x ≤ t ≤ 1, then

G2(x, t) =

⎛
⎝

x∫

0

+

t∫

x

+

1∫

t

⎞
⎠G(x,s)G(s, t)ds.

A similar expression holds if 0 ≤ t ≤ x ≤ 1. Note that

x∫

0

G(x,s)G(s, t)ds =

x∫

0

s(1− x)s(1− t)ds

=
1
3

x3(1− x)(1− t),



8.3 Differential Equations 299

that

t∫

x

G(x,s)G(s, t)ds =

t∫

x

x(1− s)s(1− t)ds

=
1
6

x(1− t)
(
3t2 − 3x2 − 2t3+ 2x3) ,

and that

1∫

t

G(x,s)G(s, t)ds =

1∫

t

x(1− s)t(1− s)ds

=
1
3

xt(1− t)3.

It follows from these calculations that

G2(x, t) =

⎧⎪⎨
⎪⎩

1
6

x(1− t)
(
2t − x2 − t2

)
if 0 ≤ x ≤ t ≤ 1,

1
6

t(1− x)
(
2x− t2 − x2

)
if 0 ≤ t ≤ x ≤ 1.

We conclude from the analysis above that the solutions to the fourth-order
differential equation (8.5) are among the eigenfunctions of G2(x, t), i.e., the
solutions to the integral equation (8.6).

Since the kernel G(x, t) and its iterate G2(x, t) are symmetric, it follows
from Proposition 3.2.4 that the eigenvalues of G2(x, t) are the squares of the
eigenvalues of G(x, t). Furthermore, their eigenfunctions are the same.

In Illustrative Example 1 of Sect. 5.2.2, it was shown that the eigenvalues of
the triangular kernel G(x, t) are n2π2 and that its eigenfunctions are φn(x) =
sin(nπx). Hence, the eigenvalues of G2(x, t) are n4π4, and its eigenfunctions are
the same.

Section 8.3 Exercises

1. Consider again the fourth-order differential equation

φ ′′′′(x)−λ φ(x) = 0

that we discussed in Example 1. It was noted that this differential equation can
be decomposed into the two second-order differential equations

φ ′′(x) =−ψ(x) and ψ ′′(x) =−λ φ(x).
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Replace the boundary conditions given there with the similar conditions

φ(0) = φ ′(0) = 0 and ψ(1) = ψ ′(1) = 0.

Follow the methods introduced in Sect. 5.1, Sect. 5.2.1, and Example 1 in order
to convert this pair of two ordinary differential equations into a system of two
coupled integral equations. Substitute one of them into the other one, thereby
obtaining a single integral equation with the symmetric kernel

K(x, t) =

⎧⎪⎨
⎪⎩

1
2

t2x− 1
6

t3 if 0 ≤ t ≤ x ≤ 1,

1
2

x2t − 1
6

x3 if 0 ≤ x ≤ t ≤ 1.

Note that the kernel determined here is different from the kernel that was
determined in Example 1. The point is that the form of the kernel depends upon
the initial conditions that are specified for φ(x) and ψ(x).

8.4 Systems of Fredholm Equations

A system of n linear integral equations of Fredholm type has the form

n

∑
j=1

ai j(x)φ j(x) = f j(x)+

b∫

a

(
n

∑
j=1

ki j(x, t)φ j(t)

)
dt

for i = 1, . . . ,n, where the functions ai j(x) and f j(x) are continuous on the interval
[a,b], and ki j(x, t) is continuous on Q(a,b).

By employing the matrix notation described in Sect. 8.2, this system can be
written in matrix form as

A(x)p(x) = f(x)+

b∫

a

K(x, t)p(t)dt,

where obvious assignments have been made. If A(x) = 0, then the system is said to
be of the first kind. If A(x) is invertible, then it is said to be of the second kind. If
A(x) �= 0 but it is not invertible, then it is said to be of the third kind. The matrix
A(x) is often assumed to be constant, bounded, nonsingular, or diagonalizable.

Some linear systems of Fredholm integral equations can be quite difficult
to solve, especially if the component kernels ki j(x, t) have different functional
forms. However, if the kernels are separable, then the algebraic methods that were
introduced in Chap. 1 can be used very efficiently to solve the system.
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Illustrative Examples

• Example 1: Consider the linear system of Fredholm integral equations of the
second kind:

A(x)p(x) = f(x)+

b∫

a

K(x, t)p(t)dt,

where

A =

(
1 1

1 −1

)
, f(x) =

(
40x

x

)
, p(x) =

(
φ(x)

ψ(x)

)
,

and

K(x, t) =

(−x− t 0

0 −xt

)
.

In expanded form, this system can be written as

φ(x)+ψ(x) = 40x−
1∫

0

(x+ t)φ(t)dt,

φ(x)−ψ(x) = x−
1∫

0

xt ψ(t)dt.

Note that the kernel elements k11(x, t) and k22(x, t) are continuous on the square
Q(0,1) and separable. The element k11(x, t) is the sum of two terms, and the
element k22(x, t) is a single term. Thus, we should expect the representative forms
of the solutions to involve three constants which are to be determined.

If we set

c1 =

1∫

0

φ(t)dt, c2 =

1∫

0

t φ(t)dt, and d =

1∫

0

t ψ(t)dt,

then the system can be written in the alternate form

φ(x)+ψ(x) = (40− c1) x− c2,

φ(x)−ψ(x) = (1− d)x,

from which we conclude that φ(x) and ψ(x) must assume the necessarily linear
forms

φ(x) =
1
2
(41− c1− d) x− 1

2
c2
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and

ψ(x) =
1
2
(39− c1+ d) x− 1

2
c2.

If we substitute φ(x) into the definitions of c1 and c2, and ψ(x) into the definition
of d, then we obtain the linear system

5c1 + 2c2 + d = 41,

2c1 + 15c2+ 2d = 82,

2c1 + 3c2 + 10d = 78.

The unique solution to this linear system is given by

c1 =
11
2
, c2 = 4, and d =

11
2
.

Thus,

φ(x) = 15x− 2

and

ψ(x) =
39
2

x− 2.

In matrix form, we can write the solution as

p(x) =

(
φ(x)

ψ(x)

)
=

(
15x− 2

39
2 x− 2

)
.

• Example 2: In this example, we will examine the Method of Successive Substitu-
tion for matrix systems of linear Fredholm integral equations of the second kind.

If the matrix system

p(x) = f(x)+λ
1∫

0

K(x, t)p(t)dt

is substituted into itself, then we obtain

p(x) = f(x)+λ
1∫

0

K(x, t) f(t)dt +λ 2

1∫

0

K2(x, t)p(t)dt,

where we have set

K2(x, t) =

1∫

0

K(x,s)K(s, t)dt.
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Additional iterations lead to the general form

p(x) = f(x)+λ
1∫

0

(
n

∑
m=1

λm−1 Km(x, t)

)
f(t)dt

+λ n+1

1∫

0

Kn+1(x, t)p(t)dt,

where

Km(x, t) =

1∫

0

Km−1(x,s)K(s, t)dt.

Since K(x,s) need not commute with K(s, t) or its iterations, the order of matrix
multiplication is important here.

The goal of our investigation is to show that there is a unique solution to the
matrix system of the form

p(x) = f(x)+λ
1∫

0

R(x, t;λ ) f(t)dt,

where the resolvent matrix is given by the convergent series

R(x, t;λ ) =
∞

∑
m=1

λm−1 Km(x, t).

Part of the proof consists in showing that the remainder tends to 0, i.e., that

max
0≤x≤1

∥∥∥∥∥∥λ
n+1

1∫

0

Kn+1(x, t) p(t)dt

∥∥∥∥∥∥→ 0,

or, what is the same, that

max
a≤x≤b

∥∥∥∥∥∥p(x)− f(x)−λ
1∫

0

(
n

∑
m=1

λm−1 Km(x, t)

)
f(t)dt

∥∥∥∥∥∥→ 0

as n →+∞.
The norm used above is the vector norm defined in Sect. 8.1 by Eq. (8.1), since

the integrand is a continuous vector function of x.
The matrix norm used below for the matrix K(x, t) and its iterates is the

maximum absolute row sum norm defined by Eq. (8.3).
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By inequality (8.2) and the properties of matrix norms, we have

∥∥∥∥∥∥λ
n+1

1∫

0

Kn+1(x, t) p(t)dt

∥∥∥∥∥∥≤
∣∣λ n+1

∣∣
1∫

0

‖Kn+1(x, t)p(t)‖ dt

≤ ∣∣λ n+1
∣∣

1∫

0

‖Kn+1(x, t)‖ ‖p(t)‖ dt.

Since K(x, t) is a continuous matrix function, there exists a constant K such that

K= max
Q(a,b)

‖K(x, t)‖.

By inequality (8.4) and the properties of matrix norms, we have

‖K2(x, t)‖=
∥∥∥∥∥∥

1∫

0

K(x,s)K(s, t)ds

∥∥∥∥∥∥

≤
1∫

0

‖K(x,s)K(s, t)‖ ds

≤
1∫

0

‖K(x,s)‖ ‖K(s, t)‖ ds

≤K2.

By a simple induction argument, it follows that ‖Km(x, t)‖ ≤ Km for all m ≥ 1
and all (x, t) ∈ Q(0,1). Also, since p(x) is a continuous vector function, there
exists a constant P such that

P = max
a≤x≤b

‖p(x)‖.

By combining the inequalities above, it now follows that

max
0≤x≤1

∥∥∥∥∥∥λ
n+1

1∫

0

Kn+1(x, t) p(t)dt

∥∥∥∥∥∥≤ (|λ |K)n+1 P → 0

as n→+∞, whenever |λ |< 1/K. The student is asked to continue the discussion
in Exercise 4.
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Section 8.4 Exercises

1. Consider the matrix system of Fredholm integral equations of the second kind

p(x) = f(x)+

π/2∫

0

Ap(t)dt,

where

p(x) =

⎛
⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

f1(x)

f2(x)

f3(x)

⎞
⎟⎟⎠ , and A =

⎛
⎜⎜⎝

0 0 −2

1 2 1

1 0 3

⎞
⎟⎟⎠ .

(a) Explain why the solution has the form p(x) = f(x)+ c, where c is a constant
vector.

(b) Determine c, thereby solving the system.
(c) For general f and A, does this system always have a solution?

2. Solve the system of Fredholm integral equations of the second kind

φ(x) = 2+

1∫

0

(x− t)2ψ(t)dt,

ψ(x) = x+ 16

1∫

0

(x− t)φ(t)dt.

Hint: By inspection, the solutions must assume the forms

φ(x) = d0 x2 − 2d1 x+(2+ d2) ,

ψ(x) = (1+ 16c0) x− 16c1,

so that there are five undetermined constants in the solutions.
Answer:

φ(x) =
1

44

(
846x2 − 1464x+ 679

)
,

ψ(x) =
9

11
(103x− 28).

Note: This system is similar to the system of Volterra integral equations of the
second kind that was considered in Example 1 in Sect. 8.2. The only difference
between these systems is that the upper limit x in the Volterra system is replaced
by 1 in the Fredholm system. However, the solutions to these systems are quite
different.
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3. In Example 1 above, three unknown constants were to be determined, and in the
previous exercise, there were five. In general, how many unknown constants need
to be determined in order to solve systems of this type?

Hint: Suppose that the linear system of Fredholm integral equations of the
second kind under consideration consists of N equations in N unknown functions
φn(x). In this case, the corresponding matrix kernel K(x, t) = (ki j(x, t)) is of
size N ×N. You may assume that every element ki j(x, t) of the kernel matrix
is continuous on the square Q(0,1) and is separable, with the usual form

ki j(x, t) =
Ni j

∑
k=1

ai jk(x)bi jk(t).

4. If A(t) is a continuous matrix function, show that

∥∥∥∥∥∥
1∫

0

A(t)dt

∥∥∥∥∥∥≤
1∫

0

‖A(t)‖ dt,

where the matrix here is the maximum absolute row sum norm.
5. State and prove a Theorem of Successive Substitution for matrix systems of

Fredholm integral equations, analogous to Theorem 2.2.1 for a single Fredholm
integral equation. You will need to show that the sequence defined by

pn(x) = f(x)+λ
1∫

0

(
n

∑
m=1

λm−1 Km(x, t)

)
f(t)dt

is a Cauchy sequence, and to explain why the solution is unique.
6. Solve the matrix system of Fredholm integral equations of the second kind

p(x) = f(x)+

π∫

0

Ap(t)dt,

where

p(x) =

⎛
⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

1

sin x

cos x

⎞
⎟⎟⎠ , and A =

⎛
⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎠ .

There is no need to diagonalize A here. The solution has the form p(x) = f(x)+c,
where c is a constant vector.
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8.5 Systems of Singular Equations

A linear system of n singular integral equations in n unknown functions φ j(x) with
a Cauchy kernel has the general form

n

∑
j=1

ai j(x)φ j(x) = fi(x)+

1∫

−1

1
x− t

(
n

∑
j=1

bi j(x, t)φ j(t)

)
dt

+

1∫

−1

(
n

∑
j=1

ki j(x, t)φ j(t)

)
dt

for i = 1, . . . ,n, where the functions ai j(x) and f j(x) are assumed to satisfy
a Lipschitz condition on the interval [−1,1], and ki j(x, t) is assumed to satisfy a
Lipschtiz condition in each of its variables.

This system2 can be written in matrix form as

A(x)p(x) = f(x)+

1∫

−1

1
x− t

B(x, t)p(t)dt +

1∫

−1

K(x, t)p(t)dt,

where obvious assignments have been made. The matrices A, B, and K are of size
n×n. If A(x) = 0, then the system is said to be of the first kind. If A(x) is invertible,
it is said to be of the second kind, and if A(x) �= 0 but it is not invertible, then it is
said to be of the third kind.

Some comments about the structure of this system are appropriate:

• A linear system of singular integral equations can be converted to a linear system
of Fredholm equations, but the process can be troublesome.

• In practice, n is usually 2 or 3 since systems of this size arise when modeling
physical systems in two or three dimensions.

• The system is defined on the open interval (−1,+1) instead of the closed interval
[−1,+1] because the solutions φ j(x) often have singularities at the endpoints
±1 of the interval. Solutions with specifically prescribed behaviors near the
singularities at the endpoints are often sought.

• The matrix B(x, t) is often assumed to be constant, bounded, nonsingular, or
diagonalizable.

• The kernel K(x, t) is usually assumed to be bounded, but in general its elements
may have singularities, often of logarithmic type. In this case, the terms
containing singularities are separated from the others.

2For a general discussion of these systems, see Erdogan, F., Approximate Solutions of Systems of
Singular Integral Equations, SIAM J. Appl. Math., Vol. 17, No. 6, November 1969.
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A linear system of singular equations with the Hilbert kernel has the similar form

n

∑
j=1

ai j(x)φ j(x) = fi(x)+

1∫

−1

cot

(
t − x

2

)( n

∑
j=1

bi j(x, t)φ j(t)

)
dt

+

1∫

−1

(
n

∑
j=1

ki j(x, t)φ j(t)

)
dt

for i = 1, . . . ,n, where the functions ai j(x) and f j(x) are assumed to satisfy
a Lipschitz condition on the interval [−1,1], and ki j(x, t) is assumed to satisfy a
Lipschtiz condition in each of its variables.

By employing the matrix notation described in Sect. 8.2, this system can be
written in matrix form as

A(x)p(x) = f(x)+

1∫

−1

cot

(
t − x

2

)
B(x, t)p(t)dt +

1∫

−1

K(x, t)p(t)dt,

where obvious assignments have been made. The matrices A, B, and K are of size
n×n. If A(x) = 0, then the system is said to be of the first kind. If A(x) is invertible,
it is said to be of the second kind, and if A(x) �= 0 but it is not invertible, then it is
said to be of the third kind.

Illustrative Examples

• Example 1: Some linear systems of singular integral equations can be decoupled.
Consider the linear system of singular integral equations of the second kind in

the matrix form

Ap(x) = f(x)+

+1∫

−1

1
t − x

Bp(t)dt,

where A and B are constant n×n matrices, p(x) = (φ1(x), . . . ,φn(x))
T, and f(x) =

( f1(x), . . . , fn(x))
T.

Suppose that A is nonsingular and C = A−1 B is diagonalizable. If we left-
multiply the equation by A−1, then we obtain the equivalent system

p(x) = A−1 f(x)+

+1∫

−1

1
t − x

Cp(t)dt.
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Since C is assumed to be diagonalizable, there exist matrices D and P such
that C = PDP−1, where D is a diagonal matrix whose diagonal entries are the
n eigenvalues λi of C and P = (pi j) is an invertible matrix whose columns ei

are the n eigenvectors corresponding to these eigenvalues. With this in mind, the
system can be rewritten as

p(x) = A−1 f(x)+

+1∫

−1

1
t − x

PDP−1 p(t)dt.

Now left-multiply this equation by P−1. If we define

q(x) = P−1p(x) = (ψ1(x), . . . ,ψn(x))
T

and

g(x) = P−1A−1f(x) = (g1(x), . . . ,gn(x))
T ,

then the system becomes

q(x) = g(x)+

+1∫

−1

1
t − x

Dq(t)dt.

Since D is diagonal, we have successfully decoupled the system into a set of n
individual singular equations of the second kind that can be explicitly written in
the form

ψi(x) = gi(x)+λi

+1∫

−1

1
t − x

ψi(t)dt

for i = 1, . . . ,n.
After these n equations are solved for their individual solutions ψi(x), the

solution to the original system can be constructed, since p(x) =Pq(x). Explicitly,
we can write each φi(x) as a linear combination of the form

φi(x) =
n

∑
j=1

pi j ψ j(x).

For example, suppose that

A =

⎛
⎝1 0 0

0 4 7
0 1 2

⎞
⎠ and B =

⎛
⎝ 0 1 1

11 7 4
3 2 1

⎞
⎠ .

Then

C = A−1 B =

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ .
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The eigenvalues of C are λ1 = 2 and λ2 = λ3 = −1. Corresponding directly
to these eigenvalues, the eigenvectors of C are e1 = (1,1,1)T, e2 = (1,0,−1)T,
and e3 = (0,1,−1)T. The matrix P is constructed with these eigenvectors as its
columns, so that

P =

⎛
⎜⎜⎝

1 1 0

1 0 1

1 −1 −1

⎞
⎟⎟⎠ .

Also,

g(x) = P−1A−1f(x) =
1
3

⎛
⎜⎜⎝

1 1 −3

2 −1 3

−1 5 −18

⎞
⎟⎟⎠ f.

The decoupled system can now be explicitly written as the three separate
equations

ψ1(x) =
1
3
( f1(x)+ f1(x)− 3 f3(x))+ 2

+1∫

−1

1
t − x

ψ1(t)dt,

ψ2(x) =
1
3
(2 f1(x)− f1(x)+ 3 f3(x))−

+1∫

−1

1
t − x

ψ2(t)dt,

ψ3(x) =
1
3
(− f1(x)+ 5 f1(x)− 18 f3(x))−

+1∫

−1

1
t − x

ψ3(t)dt.

Once q(x) = P−1p(x) = (ψ1(x), . . . ,ψn(x))
T has been determined, the solution

p(x) = (φ1(x), . . . ,φn(x))
T can be determined from it, since p(x) = Pq(x).

Explicitly, we may write the solution as

φ1(x) = ψ1(x)+ψ2(x),

φ2(x) = ψ1(x)+ψ3(x),

φ3(x) = ψ1(x)−ψ2(x)−ψ3(x).
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B.1 French

B.1.1 Specialized French Vocabulary

English French
adjoint adjointe
alternative alternative (f )
analytic analytique
approximation theorem théorème (m) d’approximation
bounded borné
bilinear form forme (m) bilinéare
boundary value problem problème (m) marginal
Cauchy sequence suite (f ) de Cauchy
Cauchy principal value valeur (f ) principale de Cauchy
coefficient coefficient (m)
compact compact
complete complet
complete orthonormal system système (m) orthonormal complet
conjugate conjugué
continuity continuité (f )
continuous continu
contraction contraction (f )
contraction map application (f ) restringent
convergence convergence (f )
convergent in the mean convergent en moyenne
cosine cosinus
cubic cubique
determinant déterminant (f )
differentiable dérivable
differential equation équation (f ) différentielle
distance distance (f )
eigenfunction fonction (f ) propre
eigenvalue valeur (f ) propre
eigenvector vecteur (m) propre
finite fini
first premier, -ière
fixed point theorem théorème (m) du point fixe
formula formule (f )
Fourier transformation transformation (f ) de Fourier
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English French
fourth quatrième
function fonction (f )
gamma function fonction (f ) gamma
Hadamard’s inequality théorème (m) du déterminant de Hadamard
Hermitian form forme (f ) hermitienne
incomplete incomplète
independent indèpendant
inequality inégalité (f )
infinite infini
infinite series série (f ), progression (f )
initial value problem problème (m) des conditions initiales
integrable intègrable
integral equation équation (f ) intégrale
integration intégration (f )
integration by parts intégration (f ) par parties
iterated itére
kernel noyau (m)
linear linéaire
linearly dependent linéairement independant
Lipschitz condition condition (f ) de Lipschitz
logarithmic logarithmique
matrix matrice (f )
method méthode (f )
metric métrique (f )
metric space espace (f ) métrique
necessary nécessaire
norm norme (f )
normal normale
orthogonal orthogonal
orthogonalization procédé (m) d’orthogonalisation
orthonormal system système (m) orthonormale
point point (m)
polynomial polynôme (m)
positive positif
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English French
positive definite positif defini
product kernel noyau (m) produit
proof démonstration (f )
rectangle rectangle (m)
recursive récursif
resolvent résolvente (f )
Riemann integral intégrale (f ) de Riemann
second deuxième
series série (f )
separable séparable
sequence suite, séquence (f )
singular singulier
skew antisymmétrique
solution solution (f )
spectrum spectre (m)
square carré (m)
square integrable de carré integrable
substitution substitution (f )
successive successive
sufficient suffisant
sum somme (f )
symmetric symétrique
term terme (m)
third troisième
transformation transformation (f )
transpose matrix matrice (f ) transposée
trapezoid rule méthode (f ) des trapèze
trigonometric trigonométrique
vector vecteur (m)
zero zéro (m)
zero of a polynomial zéro (m) d’un polynôme

B.1.2 Sample Translation from French into English

Annali di Mathematica Pura ed Applicata
Volume 54, Number 1, 33− 36.
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Equations intégrales aux deux limites variables

par M. MICHEL GHERMANESCU (à Bucharest, Romania)

À M. Enrico Bompiani pour son Jubilé scientifique

1. Les équations intégrales à limites variables, découvertes par VITO VOL-
TERRA à la fin du siècle dernier, constituent l’un des puissants instruments
de recherche mathématique moderne, grâce auquel le développement de la
Physique mathématique et ceux de quelques autres domaines de recherche ont
pris un essor considérable.

Parmi ces équations, celles avec les deux limites variables, comprise dans le
type général linéaire

pϕ(x) = λ
∫ x

a(x)
K(x,s)ϕ(s)ds+ q f (x) (B.1)

– où p and q sont des constantes réelles données – forment une class qui n’est pas
toujours en accord avec la théorie de VOLTERRA. En effet, quelquesunes d’entre
elles ont plutôt un caractère fonctionnel et non intégral, en ce sens qu’elles se
réduisent à des équations fonctionnelles proprement dites, de sorte que leurs
ensembles des solutions dépendent parfois d’une fonction arbitraire, ce qui est
contraire aux théorèmes d’unicité donnés par la théorie classique de VOLTERRA.
Le plus simple exemple, possédant cette particularité, a été par C. POPOVICI, qui
considère l’équation intégrale

∫ x

−x
φ(s)ds = f (x). (B.2)

On voit aisément que, si ϕ1(x) en est une solution, l’équation précédente
admet l’ensemble des solutions donné par

ϕ(x) = ϕ1(x)+Ψ(x), (B.3)

où Ψ(x) est une fonction impaire arbitraire, bornée et intégrable dans l’intervalle
donné (−a,a), dans lequel varie x. Si f (x) est impaire, avec f (0) = 0, l’équation
intégrale (B.2) s’écrit sous la forme

∫ x

0
φ(s)ds−

∫ −x

0
φ(s)ds = f (x) =

f (x)
2

− f (−x)
2

,
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ou encore ∫ x

0
φ(s)ds− f (x)

2
=
∫ −x

0
φ(s)ds− f (−x)

2
,

qui montre que le premier membre est une fonction paire en x, Ψ(x) =Ψ(−x),

∫ x

0
φ(s)ds =

f (x)
2

+Ψ(x),

d’où, par dérivation, en supposant dérivables les fonctions f (x) et Ψ(x)

ϕ(x) =
f ′(x)

2
+Ψ1(x),

qui représente l’ensemble (B.3) des solutions de (B.2), Ψ1(x) étant ce qu’est
Ψ(x) dans (B.3), c’est à dire, une fonction impaire, bornée et intégrable dans
(−a,a).

2. Arétons-nous un peu sur l’exemple précédent. L’équation intégrale (B.2) est ainsi
résoluble si f (x) est impaire et dérivable. Mais lorsque f (x) n’est pas impaire ou
dérivable, ou les deux à la fois, l’équation parait êgale à f (x) pour x > 0 et à
− f (x) pour x < 0, −a ≤ x ≤ a: l’équation intégrale (B.2) sera remplacée par la
suivante ∫ x

−x
ϕ(s)ds = F(x),

dont l’ensemble des solutions bornée et inégrables, sera donné par

ϕ(x) =
F ′(x)

2
+Ψ1(x),

ou, plus précisement, par

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

f ′(x)
2

+Ψ1(x) if x > 0

− f ′(x)
2

+Ψ1(x) if x < 0

Ψ1(x) étant comme précédemment une fonction impaire arbitraire bornée et
intégrable dans (−a,a).
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Annali di Mathematica Pura ed Applicata
Volume 54, Number 1, 33− 36.

Integral Equations with Two Variable Limits1

by M. MICHEL GHERMANESCU (in Bucharest, Romania)

To M. Enrico Bompiani for his scientific jubilee

1. Integral equations with variable limits, discovered by VITO VOLTERRA at the
end of the last century, constitute one of the powerful instruments of modern
mathematical research, thanks to which the development of mathematical physics
and other domains of research have made a considerable stride.

Among these equations, those with two variable limits, comprised in the
general linear type

pϕ(x) = λ
∫ x

a(x)
K(x,s)ϕ(s)ds+ q f (x) (B.4)

– where p and q are given real constants – form a class which is not al-
ways in accord with the theory of VOLTERRA. Indeed, some of these have
rather a functional and not integral character, in the sense that they reduce to
equations properly called functional, of the kind that their sets of solutions
depend sometimes on an arbitrary function, which is contrary to the uniqueness
theorems given by the classical theory of VOLTERRA. The most simple example,
possessing this particularity, has been given by C. POPOVICI, who considered the
integral equation ∫ x

−x
φ(s)ds = f (x). (B.5)

One easily sees that, if ϕ1(x) is a solution, the preceding equation admits the set
of solutions given by

ϕ(x) = ϕ1(x)+Ψ(x), (B.6)

1Translated by Stephen M. Zemyan.
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where Ψ(x) is an arbitrary odd function, bounded and integrable in the given
interval (−a,a), in which x varies. If f (x) is odd, with f (0) = 0, the integral
equation (B.5) is written under the form

∫ x

0
φ(s)ds−

∫ −x

0
φ(s)ds = f (x) =

f (x)
2

− f (−x)
2

,

or again as ∫ x

0
φ(s)ds− f (x)

2
=
∫ −x

0
φ(s)ds− f (−x)

2
,

which shows that the left-hand side is an even function of x, Ψ(x) =Ψ(−x),

∫ x

0
φ(s)ds =

f (x)
2

+Ψ(x),

from which, by differentiation, supposing that the functions f (x) and Ψ(x) are
differentiable,

ϕ(x) =
f ′(x)

2
+Ψ1(x),

which represents the set (B.6) of solutions of (B.5), Ψ1(x) being Ψ(x) in (B.6),
that is to say, an odd function, bounded and integrable in (−a,a).

2. Let us reflect a little on the preceding example. The integral equation (B.2) is
thus solvable if f (x) is odd and differentiable. But when f (x) is not odd or
differentiable, or both, the equation appears to be unsolvable. We are going to
show that in this case a generalized solution can be attributed to the integral
equation (B.5).

Indeed, we designate by F(x) the odd, differentiable function, equal to f (x)
for x > 0 and to − f (x) for x < 0, −a ≤ x ≤ a: The integral equation (B.5) will
be replaced by the following

∫ x

−x
ϕ(s)ds = F(x),

whose set of bounded integrable solutions will be given by

ϕ(x) =
F ′(x)

2
+Ψ1(x),

or, more precisely, by

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

f ′(x)
2

+Ψ1(x) if x > 0

− f ′(x)
2

+Ψ1(x) if x < 0

Ψ1(x) being, as before, an arbitrary odd function, bounded and integrable in
(−a,a).
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B.2 Italian

B.2.1 Specialized Italian Vocabulary

English Italian
adjoint aggiunta
alternative alternativa (f )
analytic analytico
approximation theorem teorema (m) d’approssimazione
bounded limitato
bilinear form forma (f ) bilineare
boundary value problem problema (m) con condizioni ai limiti
Cauchy sequence successione (f ) di Cauchy
Cauchy principal value valore (m) principale secondo Cauchy
coefficient coefficiente (m)
compact compatto
complete completo
complete orthonormal system sistema (m) ortonormale completo
conjugate coniugato
continuity continuità (f )
continuous continuo
contraction contrazione (f )
contraction map applicazione (f ) restringente
convergence convergenza (f )
convergent convergente in media
cosine coseno
cubic cubico
determinant determinante (m)
differentiable derivabile
differential equation equazione (f ) differenziale
distance distanza (f )
eigenfunction autofunzione (f )
eigenvalue autovalore (m)
eigenvector autovettore (m)
finite finito
first primo
fixed point theorem teorema (m) del punto fisso
formula formula (f )
Fourier transformation trasformazione (f ) di Fourier
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English Italian
fourth quarto
function funzione (f )
gamma function funzione (f ) gamma
Hadamard’s inequality teorema (m) di Hadamard
Hermitian form singolarità (f ) eliminabile di Hermite
incomplete incompleto
independent independente
inequality disuguaglianza (f )
infinite infinito
infinite series serie (f )
initial value problem problema (m) a condizioni initiali
integrable integrabile
integral equation équation (f ) intégrale
integration integrazione (f )
integration by parts integrazione (f ) per parti
iterated iterato
kernel nucleo (m)
linear lineare
linearly dependent linearmente dipendente
Lipschitz condition condizione (f ) di Lipschitz
logarithmic logaritmico
matrix matrice (f )
method metodo (m)
metric metrica (f )
metric space spazio (m) metrico
necessary necessario
norm norma (f )
normal normale
orthogonal ortogonale
orthogonalization ortogonalizzione (f )
orthonormal system sistema (m) ortonormale
point punto (m)
polynomial polinomio (m)
positive positivo
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English Italian
positive definite definito positivo
product kernel nucleo prodotto (m)
proof dimostrazione (f )
rectangle rettangolo (m)
recursive ricorrente
resolvent risolvente (f )
Riemann integral integrale (m) di Riemann
second secondo
series serie (f )
separable separabile
sequence sequenza (f )
singular singolare
skew antisimmetrica
solution soluzione (f )
spectrum spettro (m)
square quadrato (m)
square integrable di quadrato integrabile
substitution sostituzione (f )
successive successive
sufficient sufficiente
sum somma (f )
symmetric simmetrico
term termine (m)
third terzo
transformation trasformazione (f )
transpose matrix matrice (f ) trasposta
trapezoid rule formula (f ) dei trapezi
trigonometric trigonometrico
vector vettore (m)
zero zero (m)
zero of a polynomial zero (m) di un polinomio
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B.2.2 Sample Translation from Italian into English

Annali di Mathematica Pura ed Applicata (4)
Volume 39 (1955), 229− 244.

Equazioni integrali singolari del tipo di Carleman

FRANCESCO G. TRICOMI (a Torino).

A Mauro Picone nel suo 70mo compleanno.

Sunto. Giustificazione rigorosa del metodo (euristico) di CARLEMAN per la
risolutione di certe equazioni integrali contenenti il valor principale di un integrale
(semplice), fondandosi sulla teoria della trasformazione finita di HILBERT.

1. È ben noto che le equazioni integrali di FREDHOLM di seconda specie aventi
nuclei della forma

K(x,y) =
H(x,y)
(y− x)α

dove H(x,y) è una funzione sufficientemente regolare (p. es. continua) ed α
è un numero positivo minore di uno, non offrono particolari difficoltà perchè
i successivi nuclei interati non contengono più, da un certo punto in poi, una
potenza di y− x al denominatore.

Molto più arduo è invece il caso α = 1, che pur si presenta in importanti
applicazioni, in cui bisogna considerare il valor principale (nel senso di CAUCHY)
dell’integrale,2 di guisa che l’equazione si presenta sotto l’aspetto

2Il valor principale (nel senso di CAUCHY) dell integrale di una funzione f (x) dotata di un infinito
(del primo ordine) nel punto c interno all’intervallo d’integrazione (a,b), valor principale che verrà
indicato sovrapponendo un asterisco all’ordinario segno d’integrazione, si definisce notoriamente
ponendo

∫ ∗b

a
f (x)dx = lim

ε→0

∫ c−ε

a
+
∫ b

c+ε
f (x)dx. (B.7)
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ϕ(x)−λ
∫ ∗b

a

H(x,y)
(y− x)α

ϕ(y)dy = F(x). (B.8)

Meglio ancora – osservato che, sotto condizioni poco restrittive per H, il rapporto
incrementale

H∗(x,y) =
H(x,y)−H(x,x)

y− x

risulterà una funzione limitata o almeno sommabile (nel senso di LEBESGUE) –
converrà scrivere l’equazione nel modo seguente

ϕ(x)−λ H(x,x)
∫ ∗b

a

ϕ(y)
y− x

dy = F(x)+λ
∫ b

a
H∗(x,y)ϕ(y)dy.

Invero, si vede cosı̀ che la cosa essenziale per dominare le equazioni del
typo (B.8), è di saper risolvere un’equazione del tipo

ϕ(x)
H(x,x)

−λ
∫ ∗b

a

ϕ(y)
y− x

dy = f (x)

ovvero

a(x)ϕ(x)−λ
∫ ∗1

−1

ϕ(y)
y− x

dy = f (x) (B.9)

dove a(x) = 1/H(x,x) e f (x) sono due funzioni assegnate e, per comodità formale,
si è supposto che l’intervallo fondamentale sia l’intervallo (−1,1).

Le equazioni della forma (B.8) e, più particolare, l’equazione (B.9) canonica,
possono con ragione dirsı̀, come qui faremo, del tipo di Carleman perchè risolute
fin dal 1922 da quest’A. in un’elegante Memoria3 rimasta ingiustamente semi-
dimenticata per lunghi anni.

Noi esporremo più innanzi (Sect. 3) il metodo risolutivo di CARLEMAN o, più
esattamente, il secondo e il migliore dei due methodi, tratti dalla teoria delle
funzioni analitiche, usati nella Memoria succitata. Data però che non sembra facile
giustificare i vari passagi in modo conforme alle moderne esigenze di rigore, il
metodo di CARLEMAN verrà qui considerato da un punto vista puramente euristico
e nei tre paragrafi che seguono (Sect. 4.6) la formula risolutiva a cui esso conduce
verrà � legalizzata �, delimitando un suo, abbastanza largo campo di validità, con
metodi di genere diverso. Precede il §2 in cui vengono richiamati alcune proprietà
della trasformazione di Hilbert, indispensabili per l’accennata legittimazione delle
formule di CARLEMAN.

3T. CARLEMAN, Sur la résolution de certaines équations intégrales, Arkiv for Mat. Astron. och
Fysik, 16 (1922), 19 pp.
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Annali di Mathematica Pura ed Applicata (4)
Volume 39 (1955), 229− 244.

Singular Integral Equations of Carleman Type4

FRANCESCO G. TRICOMI (in Torino).

To Mauro Picone on his 70th birthday.

Abstract. Rigorous justification of the (heuristic) method of CARLEMAN for the
resolution of certain integral equations containing the principal value of an integral
(simple), basing it on the theory of the finite HILBERT transformation.

1. It is well known that FREDHOLM integral equations of the second kind having
kernels of the form

K(x,y) =
H(x,y)
(y− x)α

where H(x,y) is a sufficiently regular (for example continuous) function and α is
a positive number less than one, do not present any particular difficulties because
the successive iterated kernels no longer contain, from a certain point onwards, a
power of y− x in the denominator.

Much more difficult is instead the case α = 1, which arises in important
applications, in which it is necessary to consider the principal value (in the sense of
CAUCHY) of the integral,5 in such a way that the equation appears as

4Translated by Stephen M. Zemyan.
5The principal value (in the sense of CAUCHY) of the integral of a function f (x) with a given
infinite value (of the first order) at the point c interior to the interval of integration (a,b) (the
principal value will be indicated by putting an asterisk on the ordinary sign of integration) is
defined notationally by putting

∫ ∗b

a
f (x)dx = lim

ε→0

∫ c−ε

a
+
∫ b

c+ε
f (x)dx. (B.10)
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ϕ(x)−λ
∫ ∗b

a

H(x,y)
(y− x)α

ϕ(y)dy = F(x). (B.11)

Better yet—it can be observed that, under less restrictive conditions on H, the
difference relation

H∗(x,y) =
H(x,y)−H(x,x)

y− x

will result in a bounded function or at least summable (in the LEBESGUE sense) – it
enables us to write the equation in the following manner

ϕ(x)−λ H(x,x)
∫ ∗b

a

ϕ(y)
y− x

dy = F(x)+λ
∫ b

a
H∗(x,y)ϕ(y)dy.

Indeed, it is seen that the essential thing to master the equations of type (B.11) is to
know how to solve an equation of the type

ϕ(x)
H(x,x)

−λ
∫ ∗b

a

ϕ(y)
y− x

dy = f (x)

or

a(x)ϕ(x)−λ
∫ ∗1

−1

ϕ(y)
y− x

dy = f (x) (B.12)

where a(x) = 1/H(x,x) and f (x) are two prescribed functions and, for formal
convenience, it is supposed that the fundamental interval is the interval (−1,1).

Equations of the form (B.11) and, more particularly, the canonical equa-
tion (B.12), can be rightly called, as we have done, of Carleman type because it was
solved by him in 1922 in an elegant Memoir6 that remained unjustly half-forgotten
for many years.

We previously (Sect. 3) established CARLEMAN’S method of solution, or, more
exactly, the second and the better of the two methods, treated with the theory of
analytic functions, used in the Memoir cited above. However, given that it does not
seem easy to justify the various passages in a manner that conforms to the modern
exigencies of rigor, the method of CARLEMAN will be considered here from a purely
heuristic point of view and in the three paragraphs which follow (Sect. 4.6) the
solution to which it leads will be � legitimized �, in a large enough field of validity,
with methods of a different kind. Section 2 precedes it, in which some properties of
the Hilbert transformation, indispensible for the legitimization of CARLEMAN’S

formulas, are restated.

6T. CARLEMAN, Sur la résolution de certaines équations intégrales, Arkiv for Mat. Astron. och
Fysik, 16 (1922), 19 pp.
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B.3 German

B.3.1 Specialized German Vocabulary

English German
adjoint adjungierte
alternative Alternative (f )
analytic analytisch
approximation theorem Approximationssatz (m)
bounded beschränkt
bilinear form Bilinearform (f )
boundary value problem Randwertproblem (n)
Cauchy sequence CauchyFolge (f )
Cauchy principal value Cauchyscher Hauptwert (n)
coefficient Koeffizient (m)
compact kompakt
complete vollständig
complete orthonormal system vollständiges Orthonormalsystem (n)
conjugate konjugiert
continuity Stetigkeit (f )
continuous stetig
contraction Verjüngung (f )
contraction map kontrahierende Abbildung (f )
convergence Konvergenz (f )
convergent konvergent
cosine Cosinus (m)
cubic kubisch
determinant Determinante (f )
differentiable differenzierbar
differential equation Differentialgleichung (f )
distance Abstand (m)
eigenfunction Eigenfunktion (f )
eigenvalue Eigenwert (m)
eigenvector Eigenvektor (m)
finite endlich
first erste
fixed point theorem Fixpunktsatz (m)
formula Formel (f )
Fourier transformation Fouriersche Integraltransformation (f )
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English German
fourth vierte
function Funktion (f )
gamma function Gammafunktion (f )
Hadamard’s inequality Hadamardscher Determinantensatz (m)
Hermitian hermitesche
incomplete unvollständig
independent unabhängig
inequality Ungleichung (f )
infinite unendlich
infinite series unendliche Reihe (f )
initial value problem Anfangswertproblem (n)
integrable integrierbar
integral equation Integralgleichung (f )
integration Integration (f )
integration by parts partielle Integration (f )
iterated iteriert
kernel Kern (m)
linear linear
linearly dependent linear abhängig
Lipschitz condition Lipschitz-Bedingung
logarithmic logarithmisch
matrix Matrix (f )
method Methode (f )
metric Metrik (f )
metric space metrischer Raum
necessary notwendig
norm Norm (f )
normal Normale (f )
orthogonal orthogonal, senkrecht
orthogonalization Orthogonalisierung (f )
orthonormal system Orthonormalsystem (n)
point Punkt (m)
polynomial Polynom (n)
positive positiv
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English German
positive definite positiv definit
product kernel Produktkern (m)
proof Beweis (m)
rectangle Rechteck (n)
recursive rekursiv
resolvent Resolvente (f )
Riemann integral Riemannsches Integral (n)
second zweite
series Reihe (f )
separable separabel
sequence Folge (f )
singular singulär
skew schief
solution Lösung (f )
spectrum Spektrum (n)
square Quadrat (n)
square integrable quadratintegrabel
substitution Substitution (f )
successive sukzessiv
sufficient hinreichend
sum Summe
symmetric symmetrisch
term Term (m)
third dritte
transformation Transformation (f )
transpose matrix transponierte Matrix (f )
trapezoid rule Trapezregel (f )
trigonometric trigonometrisch
vector Vektor (m)
zero Null (f )
zero of a polynomial Nullstelle (f ) eines Polynoms
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B.3.2 Sample Translation from German into English

DINGHAS, A.
Math. Zeitschr. Bd. 70, S. 174–189 (1958)

Zur Existenz von Fixpunkten bei Abbildungen
vom Abel-Liouvilleschen Typus

Von

ALEXANDER DINGHAS

1. Einleitung. Es sei f (x,y) eine im Rechteck

R : 0 ≤ x ≤ a, |y| ≤ b (0 < a,b <+∞) (B.13)

eindeutige reele stetige Funktion von x und y, und es bezeichne C die Gesamtheit
aller eindeutigen, reellen, stetigen Funktionen g(x), |g(x)| ≤ b, die im Intervall
J : 0 ≤ x ≤ a definiert sind und im Nullpunkt verschwinden. Ist dann μ eine reelle
Zahl aus dem Intervall (0,1], so liefert die Transformation

Tμ(g) =
1

Γ(μ)

∫ x

0
(x− t)μ−1 f (t,g(t)) dt7 (B.14)

eine Abbildung von C. Die Frage nach der Existenz eines Fixpunktes, d.h. einer
Funktion y(x), y(x) ∈C mit der Eigenschaft

y(x) =
1

Γ(μ)

∫ x

0
(x− t)μ−1 f (t,y(t)) dt (B.15)

für alle x ∈ J1 (J1 = [0,a1]) mit einem geeigneten a1, 0 < a1 ≤ a ist bekanntlich
äquivalent mit der Auffindung einer (stetigen) Lösung der Integrodifferentialgle-
ichung

d
dx

{
1

Γ(1− μ)

∫ x

0
(x− t)−μ y(t)dt

}
= f (x,y) (B.16)

7Sowohl in diesem, als auch in den nachfolgenden Integralen soll der Wert der Integrale für x = 0
durch Stetigkeit definiert werden. Es gilt dann

Γ(μ+1) lim
x→0

{
Tμ (g(x))/xμ}= f (0,0),

und somit ist Tμ (g(x)) = O(xμ ).
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mit y(0) = 0. Ist 0 < μ < 1, so kann man diese Tatache durch Multiplikation
von (B.15) mit (τ − x)−μ und Integration von x = 0 bis x = τ unter Heranziehung
einer einfachen Transformationsformel, die in 2. ausführlich beweisen wird, Leicht
nachweisen. Ebenso leicht kann gezeigt werden, daß aus (B.16) ohne weit-
eres (B.15) folgt. Läßt man in (B.14) μ → 1 konvergieren, so konvergiert Tμ(g)
gegen

∫ x
0 f (t,g)dt. Man kann entsprechend zeigen, daß (bei festem g) der Ausdruck

1
Γ(1− μ)

∫ x

0
(x− t)−μ g(t)dt

für μ → 1 gegen f (x) konvergiert. Man setze in der Tat

Dμ(x) =
1

Γ(1− μ)

∫ x

0
(x− t)−μ g(t)dt − g(x)

Γ(2− μ)
. (B.17)

Dann ist

Dμ(x) =
1

Γ(1− μ)

∫ x

0
(x− t)−μ {g(t)− g(x)}dt. (B.18)

Man wähle bei vorgegebenem ε > 0 und einem x > 0 x1 (0 < x1 < x) so, daß im
Intervall x1 ≤ t ≤ x die Ungleichung

|g(t)− g(x)| ≤ ε

gilt. Dann wird

∣∣Dμ(x)
∣∣≤ 1

Γ(1− μ)

∫ x1

0
(x− t)−μ |g(t)− g(x)|dt+

ε
Γ(2− μ)

,

und somit
limsup

μ→1

∣∣Dμ(x)
∣∣≤ ε.

Das beweist die Behauptung.
Diese Zusammenhänge würden zweifellos keine selbständige Abhandlung recht-

fertigen, wenn nicht zugleich zwei weitere Gründe hinzukämen, die mich veranlaßt
haben, diese Note zu publizieren. Erstens die Tatsache, daß hier dem Weier-
straßschen Approximationssatz sowohl beim Beweis der Eindeutigkeit der Lösung
als auch beim Konvergenzbeweis der Approximationsfolge eine wesent-liche Rolle
zukommt und zweitens, daß die hier gegebenen Bedingungen nicht ohne weiteres
gelockert werden können. Es herrschen also sowohl in dem Fall von 3. und 4., als
auch in demjenigen von 6. und 7. dieselben Verhältnisse, wie in den Fällen μ =
1 von ROSENBLATT-NAGUMO-PERRON-HAVILAND und KRASNOSELSKI-KREIN-
LUXENBURG, für welche man weiß, daß die zugehörigen Lipschitz-Bedingungen
nicht abgeschwächt werden können, ohne daß man die Eindeutigkeit der Lösung
und die Konvergenz der Iterationsfolge einbüßt.
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DINGHAS, A.
Math. Zeitschr. Bd. 70, S. 174–189 (1958)

On the Existence of Fixed Points of Mappings
of Abel–Liouville Type8

By

ALEXANDER DINGHAS

1. Introduction. Let f (x,y) be a single-valued real continuous function of x and y
in the rectangle

R : 0 ≤ x ≤ a, |y| ≤ b (0 < a,b <+∞) (B.19)

and let C denote the collection of all single-valued, real, continuous functions g(x),
|g(x)| ≤ b, defined in the interval J : 0 ≤ x ≤ a which vanish at zero. If μ is a real
number in the interval (0,1], then the transformation

Tμ(g) =
1

Γ(μ)

∫ x

0
(x− t)μ−1 f (t,g(t)) dt9 (B.20)

yields a mapping of C. The question of the existence of fixed points, i.e., of a
function y(x), y(x) ∈C with the property that

y(x) =
1

Γ(μ)

∫ x

0
(x− t)μ−1 f (t,y(t)) dt (B.21)

for all x ∈ J1 (J1 = [0,a1]) with suitable a1 (0 < a1 ≤ a) is well known to be
equivalent to the existence of a (continuous) solution to the integrodifferential
equation

d
dx

{
1

Γ(1− μ)

∫ x

0
(x− t)−μ y(t)dt

}
= f (x,y) (B.22)

with y(0) = 0. If 0 < μ < 1, then one can easily prove these properties by
multiplication of (B.21) by (τ − x)−μ and integration from x = 0 to x = τ drawing

8Translated by Stephen M. Zemyan.
9As usual, the value of the following integrals at x = 0 will be defined by continuity. Then we have

Γ(μ+1) lim
x→0

{
Tμ (g(x))/xμ}= f (0,0),

and consequently Tμ (g(x)) = O(xμ ).
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upon a simple transformation formula, as we will prove in detail in 2. It is just as
easy to show without further work that (B.21) follows from (B.22). If we let μ → 1
in (B.20), then Tμ(g) converges to

∫ x
0 f (t,g)dt. It can be correspondingly shown

(with fixed g) that the expression

1
Γ(1− μ)

∫ x

0
(x− t)−μ g(t)dt

converges to g(x) as μ → 1. Indeed, one can set

Dμ(x) =
1

Γ(1− μ)

∫ x

0
(x− t)−μ g(t)dt − g(x)

Γ(2− μ)
. (B.23)

Then, we have

Dμ(x) =
1

Γ(1− μ)

∫ x

0
(x− t)−μ {g(t)− g(x)}dt. (B.24)

One can choose in advance an ε > 0 and an x1 > 0 (0< x1 < x) so that the inequality

|g(t)− g(x)| ≤ ε

holds in the interval x1 ≤ t ≤ x. Then we will have

∣∣Dμ(x)
∣∣≤ 1

Γ(1− μ)

∫ x1

0
(x− t)−μ |g(t)− g(x)|dt+

ε
Γ(2− μ)

,

and consequently
limsup

μ→1

∣∣Dμ(x)
∣∣≤ ε.

The assertion is proven.
Undoubtedly, any independent discussion would justify this relationship, as I

have done by publishing this note, if two further facts would be added at the same
time. First, the properties that play an essential role in the Weierstrass approximation
theorem together with the uniqueness proof associated with the convergence proof
of the approximation sequence, and second, that the condition given here cannot
be further weakened. This relation holds also in the case of 3. and 4., as well as
in that of 6. and 7., as in the case μ = 1 of ROSENBLATT-NAGUMO-PERRON-
HAVILAND and KRASNOSELSKI-KREIN-LUXENBURG, for which it is known that
the associated Lipschitz condition cannot be further weakened, without which one
loses the uniqueness of the solution and the convergence of the iteration sequence.
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Bessel
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eigenspace, 3, 18
eigenvalue

algebraic multiplicity, 3, 18
geometric multiplicity, 3, 18, 55
of a kernel, 6, 15, 51
of a matrix, 3
regular, 7

eigenvector, 3
expansion

finite bilinear, 110
exponential order, 152

F
fixed point, 213
Fourier series, 94
Fredholm determinant, 15
Fredholm equation

linear
first kind, 118, 133
second kind, 1, 13

nonlinear
second kind, 211

Fredholm theorem, 48
Alternative, 23, 58
First, 11, 17, 53
Second, 11, 21, 56
Third, 11, 23, 58
Fourth, 11, 23, 54

free term, 1, 14, 151
function

analytic, 33
continuous vector, 288
entire, 33
holomorphic, 33
meromorphic, 33

G
Guide to Computation

Collocation, 76
Fredholm equations, 24

H
Hammerstein’s Theorem, 219
Hilbert’s Formula, 124
Hilbert-Schmidt Theorem, 120

I
identity

binomial coefficient, 176
combinatorial, 175

incomplete, 93
inequality

Cauchy-Schwarz, 32
inhomogeneous, 14
initial value problem, 184, 197
inner product, 3
integral

beta, 246
Cauchy principal value, 245
improper

convergent, 244
divergent, 244

integrating derivatives, 185
integrodifferential equation, 205

K
kernel

Cauchy, 273
complex symmetric, 95
convolution, 166
eigenvalues, 252
Gaussian, 266
Hermitian, 85, 95
Hilbert, 273
iterated, 34, 154
logarithmic, 281
positive, 127
positive definite, 127
real symmetric, 95
resolvent, 7, 16, 35, 125, 155
separable, 1
singular, 243, 267
skew Hermitian, 106
trace, 64, 98
triangular, 219
Volterra, 153

L
Lipschitz condition, 215, 273

M
matrix

adjoint, 4
fundamental, 187
inverse, 2
norm, 288

Mercer’s Theorem, 129, 194
metric, 213

complete, 213
metric space, 213
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mutually orthogonal, 86
mutually orthonormal, 86

N
nodes, 78
norm, 31

matrix, 288
vector function, 288

numerical instability, 182
numerical methods, 69

collocation, 73
quadrature, 78, 180
Rayleigh and Ritz, 142
successive approximation, 153
traces, 140
uniform approximation, 69

O
operator

bounded, 89
completely continuous, 97
conjugate transpose, 90
continuous, 96
Fredholm, 88
Hermitian, 96
norm, 89
normal, 96

ordinary point, 184
orthogonal, 3
Orthonormalization

Gram-Schmidt, 87

P
Parseval’s Identity, 93
Parseval’s relation, 250
piecewise continuous, 152
polynomial

characteristic, 3
Chebychev, 285
Legendre, 86, 120

Q
Q(a,b), 1

R
regular, 16, 51
residual, 73

Riemann integrable, 85
Riemann zeta function, 148

S
series

Neumann, 35, 155
resolvent, 157

singular equation, 243
first kind, 252, 253, 256, 277
Fox, 254
Lalesco-Picard, 260
second kind, 252, 253, 256, 262, 263,

276
singular point

regular, 184
solution, 35
successive approximation, 37, 217
successive substitution, 33, 302
system

coupled, 297
Fredholm, 300

first kind, 300
second kind, 300
third kind, 300

linear, 287
singular, 307

first kind, 307
second kind, 307
third kind, 307

Volterra, 290

T
T (a,b), 151
theorem

Dini, 131
fixed point, 214
Fourier integral, 248
Hammerstein, 219
Hilbert-Schmidt, 121
Mercer, 129
successive approximation, 41, 157
successive substitution, 36

trace, 98
Trace Lemma, 98
transform

finite Hilbert, 275
Fourier, 248
Fourier cosine, 251, 259
Fourier sine, 251
Gaussian, 266
Hilbert, 276
inverse Fourier cosine, 251
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transform (cont.)
inverse Fourier sine, 251
inverse Mellin, 247
Laplace, 152, 290
Mellin, 247

V
vector space

complex, 3
Volterra equation, 197

linear
first kind, 172
second kind, 151
third kind, 174

nonlinear
first kind, 235
second kind, 211

W
weights, 78
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