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Preface

This volume contains the extended versions of almost all lectures delivered during the
International Conference “Curvature in Geometry” held in Lecce (Italy), 11-14 June
2003, in honour of Professor Lieven Vanhecke.

Prof. Lieven Vanhecke began his professional career at the Catholic University of
Leuven (Belgium) where he obtained his PhD in 1966. He has been teaching at that
University since the academic year 1965-1966 and was appointed full professor in
1972. Since 1972, he has been the head the Section of Geometry of the Mathematics
Department of the Catholic University of Leuven. From 1972 until 1985 he also taught
at the University of Antwerp as a part-time professor and became an Honorary Professor
there in 1985.

Prof. Lieven Vanhecke has done research mainly in the field of differential geometry
and, more particularly, in Riemannian and pseudo-Riemannian geometry. Throughout
his scientific work, the study of curvature and of its properties has always played a
central role. He started with classical topics on line congruences and minimal varieties.
Later, he investigated Lorentzian, Hermitian and Kaehlerian manifolds, almost complex
and almost contact manifolds, volumes of geodesic spheres and tubes, homogeneous
structures on Riemannian manifolds, harmonic spaces, generalized Heisenberg groups
and Damek-Ricci spaces, geodesic symmetries and reflections on Riemannian mani-
folds, Sasakian manifolds, various generalizations of symmetric spaces (e.g., naturally
reductive, weakly symmetric and D’ Atri spaces), curvature homogeneous spaces, fo-
liations, the geometry of the tangent bundle and of the unit tangent bundle, geodesic
transformations, special vector fields on Riemannian manifolds (minimal, harmonic),
etc.

He has given more than one hundred lectures in almost as many universities and
research centers around the world, and visited many of these universities as a researcher.

The almost 80 mathematicians from many different countries with whom Prof.
Lieven Vanhecke has collaborated testify both to the wide range of interesting problems
covered by his research and, above all, to his uncommon personal qualities. This has
made him one of the world’s leading researchers in the field of Riemannian geometry.
Most of the papers published in this volume are written by mathematicians who have
been at some point either his students or collaborators.



viii Preface

We dedicate this volume to Professor Lieven Vanhecke with great affection and
deep respect.
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Curvature of Contact Metric Manifolds*

David E. Blair

Department of Mathematics,
Michigan State University, East Lansing, MI 48824
blair@math.msu.edu

Dedicated to Professor Lieven Vanhecke

Summary. This essay surveys a number of results and open questions concerning the curvature
of Riemannian metrics associated to a contact form.

In 1975, when the author was on sabbatical in Strasbourg, it was an open question
whether or not the 5-torus carried a contact structure. The author, being interested in the
Riemannian geometry of contact manifolds, proved at that time ([4]) that on a contact
manifold of dimension > 5, there are no flat associated metrics. Shortly thereafter,
R. Lutz [31] proved that the 5-torus does indeed admit a contact structure and hence the
natural flat metric on the 5-torus is not an associated metric. The non-flatness result of
1975 was generalized by Z. Olszak [35], who proved in 1978 that a contact metric man-
ifold of constant curvature ¢ and dimension > 5 is Sasakian and of constant curvature
+1. In dimension 3, the only constant curvature cases are of curvature 0 and 1 as we will
note below. Sometimes one has an intuitive sense that the existence of a contact form
tends to tighten up the manifold. The non-existence of flat associated metrics does raise
the question as to whether, aside from the flat 3-dimensional case, any contact metric
manifold must have some positive sectional curvature. If the manifold is compact, it is
known ([7] p. 99) that there is no associated metric of strictly negative curvature. This
follows from a deep result of A. Zeghib [48] on geodesic plane fields. Recall that a plane
field on a Riemannian manifold is said to be geodesic if any geodesic tangent to the plane
field at some point is everywhere tangent to it. Zeghib proves that a compact negatively
curved Riemannian manifold has no C! geodesic plane field (of non-trivial dimension).
Since for any associated metric the integral curves of the characteristic vector field, or
Reeb vector field, are geodesics, the characteristic vector field determines a geodesic
line field to which we can apply the theorem of Zeghib to obtain the following result.

Theorem. On a compact contact manifold, there is no associated metric of strictly
negative curvature.

* This essay is an expanded version of the author’s lecture given at the conference “Curvature
in Geometry” in honor of Professor Lieven Vanhecke in Lecce, Italy, 11-14 June 2003.



2 D. E. Blair

The author conjectures that this and a bit more is true locally, namely, that except
for the flat 3-dimensional case, any contact metric manifold has some positive sectional
curvature.

Before giving other curvature results, we must review the structure tensors of a con-
tact metric manifold. By a contact manifold we mean a C> manifold M>"*+! together
with a 1-form 7 such that n A (dn)" # 0. It is well known that given n there exists a
unique vector field & such that dn(¢, X) = 0 and (&) = 1; £ is called the charac-
teristic vector field or Reeb vector field of the contact form 7. A classical theorem of
Darboux states that on a contact manifold there exist local coordinates with respect to
which n = dz —Y_"_, y'dx!. We denote the contact subbundle or contact distribution
defined by the subspaces {X € T,, M : n(X) = 0} by D. Roughly speaking the meaning
of the contact condition, n A (dn)" # 0, is that the contact subbundle is as far from
being integrable as possible. In fact, for a contact manifold the maximum dimension
of an integral submanifold of D is only n, whereas a subbundle defined by a 1-form n
is integrable if and only if n A dn = 0. A Riemannian metric g is an associated metric
for a contact form 7 if, first of all,

n(X) = g(X, &), i.e. the characteristic vector field is orthogonal to D
and secondly, there exists a field of endomorphisms ¢ such that
¢* = —1+1®§ and dn(X,Y) = g(X, ¢Y).

We refer to (¢, &, 1, g) as a contact metric structure and to M+ with such a structure
as a contact metric manifold. The product M>"*! x R carries a natural almost complex

structure defined by
J <X f_”) = <¢X — fE n(X)—a>
T dt A3 dt

and the underlying almost contact structure is said to be normal if J is integrable. The
normality condition can be expressed as N = 0 where N is defined by

N(X.Y) =[¢,¢1(X,Y) + 2dn(X, Y)§,

[¢. ¢] being the Nijenhuis tensor of ¢. A Sasakian manifold is a normal contact metric
manifold. In terms of the curvature tensor a contact metric structure is Sasakian if and
only if

Rxy€& =n(¥)X —n(X)Y.

In terms of the covariant derivative of ¢ the Sasakian condition is

(Vx9)Y = g(X, Y)§ —n(¥)X.

A contact metric structure for which & is Killing is said to be K-contact and it is
easy to see that a Sasakian manifold is K-contact. In dimension 3, a K-contact mani-
fold is necessarily Sasakian but this is not true in higher dimensions. In the theory of
contact metric manifolds there is another tensor field that plays a fundamental role,
viz. h = %f g¢ where £ denotes Lie differentiation. The operator A is symmetric,
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it anti-commutes with ¢, h€ = 0 and & vanishes if and only if the contact metric
structure is K-contact. The complexification of the tangent bundle of a contact metric
manifold admits a holomorphic subbundle H = {X — i¢|pX : X € D} and its Levi
form is given by —dn(X, ¢|pY), X, Y € D. In this way a contact metric manifold
becomes a (non-integrable) strongly pseudo-convex CR-manifold. The CR-structure
is integrable if [H, H] C H. Tanno [46] showed that the integrability is equivalent to
(Vxp)Y = g(X + hX,Y)§ — n(Y)(X + hX). For later use, we mention briefly the
idea of a D-homothetic deformation of a contact metric structure. Let a be a positive
constant and define a new structure by,

3 -1 3
n=an, S=EE, ¢p=¢, g=ag+al@—Dnen.

The new structure is again a contact metric structure and if the original structure is a
Sasakian, a K-contact, or a strongly pseudo-convex integrable CR-structure, so is the
new structure. For details and additional information on the above development, see
the author’s book [7].

Returning to the positivity of curvature question, we briefly mention the following.
A celebrated theorem of Myers [33] states that a complete Riemannian manifold whose
Ricci curvature satisfies Ric > § > 0 is compact. In [27] I. Hasegawa and M. Seino
generalized Myers’ theorem for a K-contact manifold by proving that a complete K-
contact manifold for which Ric > —§ > —2 is compact. Note however that in the
K-contact case, all sectional curvatures of plane sections containing & are equal to 1
and hence there is a certain amount of positive curvature from the outset. In an attempt
to weaken the K-contact requirement in this result, R. Sharma and the author [11]
considered a contact metric manifold M?"*! for which £ is an eigenvector field of the
Ricci operator. In this case if Ric > —3§ > —2 and the sectional curvatures of plane
sections containing & are > € > § > 0 where

8§ =2ynl —2v25+n+2)— (8§ —2v25 + 1 +2n),

then M>"*! is compact. The condition that & be an eigenvector field of the Ricci
operator is not only a natural generalization of the K-contact condition, but an important
condition in its own right. D. Perrone [40] recently showed that £ is an eigenvector
field of the Ricci operator if and only if £ is a harmonic vector field. Moreover, all
complete 3-dimensional contact metric manifolds for which & is an eigenvector of the
Ricci operator and for which the Ricci operator has constant eigenvalue are known
(Koufogiorgos [29]); these are either Sasakian or particular Lie groups.
The next curvature result to discuss is the following [5].

Theorem. A contact metric manifold M*"*" satisfies Rxy& = 0 if and only if it is
locally isometric to E"t! x §"(4) for n > 1 and flat for n = 1.

This structure is the standard contact metric structure on the tangent sphere bundle
of Euclidean space; the standard normalizations give the curvature of the sphere factor
as +4. For brevity we will not discuss the contact metric structure on the tangent sphere
bundle 71 M of a Riemannian manifold M suffice it to note that the characteristic
vector field is (to within a factor of 2) the geodesic flow (again see [7], Section 9.2 for
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details). Now E"+! x §”(4) is a symmetric space and one can ask first when the tangent
sphere bundle is locally symmetric and, more generally, whether one can classify all
locally symmetric contact metric manifolds. For the first question the author proved
the following result in [6].

Theorem. The standard contact metric structure on Ty M is locally symmetric if and
only if either the base manifold M is flat or 2-dimensional and of constant curvature
+1

For the more general question we have the following results of Blair-Sharma [12]
and A. M. Pastore [37] respectively.

Theorem. A 3-dimensional contact metric manifold is locally symmetric if and only if
it is of constant curvature 0 or +1.

Theorem. A 5-dimensional contact metric manifold is locally symmetric if and only if
it is locally isometric to S3(1) or E3 x §2 4).

Very early in the development of the Riemannian geometry of contact manifolds
the following had been shown.

Theorem. A locally symmetric K-contact manifold is of constant curvature +1 and
Sasakian.

This result was due to Tanno in 1967 [43] and in the Sasakian with dimension > 5
case to Okumura in 1962 [34].

We now consider briefly the analog of holomorphic sectional curvature, namely
¢-sectional curvature. A plane section in 7, M>"+1 is called a ¢-section if there exists
a vector X € T,, M*"*! orthogonal to £ such that {X, ¢ X} span the section and the
sectional curvature is called ¢-sectional curvature. Just as the sectional curvatures of a
Riemannian manifold and the holomorphic sectional curvatures of a Kéhler manifold
determine the curvature completely, on a Sasakian manifold the ¢-sectional curvatures
determine the curvature completely. Moreover, on a Sasakian manifold of dimension
> 5, if at each point the ¢-sectional curvature is independent of the choice of ¢-section
at the point, it is constant on the manifold and the curvature tensor is given by,

c+3
RxyZ = T(g(Y, Z)X — g(X,2)Y)

—1
+ CT(H(X)H(Z)Y =) X + g(X, Z)n(Y)§ — g(Y, Z)n(X)§
+8(Z, pY)PpX — 8(Z, pX)pY +2¢(X, pY)PZ).

A Sasakian manifold of constant ¢-sectional curvature is called a Sasakian space form.
A well-known result of Tanno [44] is that a complete simply connected Sasakian
manifold of constant ¢-sectional curvature c¢ is isometric to one of certain model
spaces depending on whether ¢ > —3, ¢ = —3 or ¢ < —3. The model space for
¢ > —3 is a sphere with a D-homothetic deformation of the standard structure. For
¢ = —3 the model space is R>**! with the contact form n = J(dz — Y I, y'dx'),
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the factor of % being convenient for normalization reasons, together with the metric
ds’=nQ®n+ ‘—IL ZZ’ZI((abc")2 + (dy")?). For the ¢ < —3 case one has a canonically
defined contact metric structure on the product B” x R where B” is a simply connected
bounded domain in C"* with a Kéhler structure of constant negative holomorphic curva-
ture. In particular, Sasakian space forms exist for all values of c. In the general context
of contact metric manifolds, J. T. Cho [23] recently introduced the notion of a contact
Riemannian space form. We get at this notion in the following way. In [47] Tanno
showed that the CR-structure of the tangent sphere bundle with its standard contact
metric structure is integrable if and only if the base manifold is of constant curvature.
Cho first computes the covariant derivative of % in this case obtaining

(Vxh)Y = g((h — W)X, V)& + n(¥)(h — KX — un(X)heY,

where u is a constant. He then abstracts this idea and defines the class £ of contact
Riemannian manifolds with integrable CR-structure for which the covariant derivative
of h satisfies the above condition. We remark that in the study of contact manifolds in
general, lack of control of the covariant derivative of & is often an obstacle to further
results. Now for a contact metric manifold M>"*! of class Q for which the ¢-sectional
curvature is independent of the choice of ¢-section, Cho shows that the ¢-sectional
curvature is constant on M>"*1 and computes the curvature tensor explicitly. He then
defines a contact Riemannian space form to be a complete, simply connected contact
metric manifold of class £ of constant ¢-sectional curvature. Cho also gives a number
of non-Sasakian examples and shows that a contact Riemannian space form is locally
homogeneous and is strongly locally ¢-symmetric (see below).

We noted above that a locally symmetric K-contact manifold is of constant curvature
+1 and Sasakian. For K-contact geometry this can be regarded as saying that the idea
of being locally symmetric is too strong. For this reason Takahashi [41] introduced the
following notion: A Sasakian manifold is said to be a Sasakian locally ¢-symmetric
space if

#*(VyR)xyZ =0,

for all vector fields V, X, Y, Z orthogonal to &. It is easy to check that Sasakian space
forms are locally ¢-symmetric spaces. Note that on a K-contact manifold, a geodesic
that is initially orthogonal to & remains orthogonal to &. We call such a geodesic a ¢-
geodesic. A local diffeomorphism s, of M>" 1 m e M?>"*! is a ¢-geodesic symmetry
if its domain contains a (possibly) smaller domain ¢/ such that for every ¢-geodesic
y (s) parametrized by arc length with y (0) € U and on the integral curve of & through m,

(smoy)(s) = y(—s),

for all s with y(£s) € U. Takahashi defines a Sasakian manifold to be a Sasakian
globally ¢-symmetric space by requiring that any ¢-geodesic symmetry can be extended
to a global automorphism of the structure and that the Killing vector field £ generates
a l-parameter group of global transformations. Among the main results of Takahashi
are the following three theorems.

Theorem. A Sasakian locally ¢-symmetric space is locally isometric to a Sasakian
globally ¢-symmetric space and a complete, connected, simply-connected Sasakian
locally ¢p-symmetric space is a globally ¢-symmetric space.



6 D. E. Blair

Theorem. A Sasakian manifold is locally ¢-symmetric if and only if it admits a ¢-
geodesic symmetry at every point which is a local automorphism of the structure.

Now suppose that I/ is a neighborhood on M?"*! on which £ is a regular vector
field, then since M2"*! is Sasakian, the projection 7 : i —> V = U /£ gives a Kihler
structure on V. Furthermore if s ., denotes the geodesic symmetry on ) at 77 (m), then
Saz(m) © T =T O S8py.

Theorem. A Sasakian manifold is locally ¢-symmetric if and only if each Kdihler
manifold which is the base of a local fibering is a Hermitian locally symmetric space.

Recall that a Riemannian manifold is locally symmetric if and only if the local
geodesic symmetries are isometries. From the Takahashi theorems we note that on
a Sasakian locally ¢-symmetric space, local ¢-geodesic symmetries are isometries.
Conversely in [13], L. Vanhecke and the author proved that if on a Sasakian manifold
the local ¢-geodesic symmetries are isometries, the manifold is a Sasakian locally ¢-
symmetric space. This was extended to the K-contact case by Bueken and Vanhecke
[19] and we have the following Theorem.

Theorem. If on a K-contact manifold the local ¢-geodesic symmetries are isometries,
the manifold is a Sasakian locally ¢-symmetric space.

Finally J. A. Jiménez and O. Kowalski [28] classified complete simply-connected
globally ¢-symmetric spaces.

We now ask what is the best notion of a locally ¢-symmetric space for a general
contact metric manifold? One could use the same definition, namely,

»*(VyR)xyZ =0,

for all vector fields V, X, Y, Z orthogonal to £ and this condition gives what is known
as a weakly locally ¢-symmetric space. Now without the K-contact property one loses
the fact that a geodesic, initially orthogonal to £, remains orthogonal to £. However we
have just seen that in the Sasakian case local ¢-symmetry is equivalent to reflections
in the integral curves of the characteristic vector field being isometries. E. Boeckx and
L. Vanhecke [17] proposed this property as the definition for local ¢-symmetry in the
contact metric case and call a contact metric manifold with this property a strongly
locally ¢-symmetric space. From the work of B.-Y. Chen and L. Vanhecke [22] one
can see that on a strongly locally ¢-symmetric space,

g(V¥ yR)xyX, &) =0,
(V¥R xyX,Z2) =0,
S(V¥HRxeX, &) =0,

for all X, Y, Z orthogonal to & and all £k € N. Conversely, in the analytic case these
conditions are sufficient for the contact metric manifold to be a strongly locally ¢-
symmetric space. In particular, taking £ = 0 in the second condition, we note that a
strongly locally ¢-symmetric space is weakly locally ¢-symmetric. In [21], G. Cal-
varuso, D. Perrone and L. Vanhecke determined all 3-dimensional strongly locally
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¢-symmetric spaces. In [18] E. Boeckx, P. Bueken and L. Vanhecke gave an exam-
ple of a non-unimodular Lie group with a weakly locally ¢-symmetric contact metric
structure which is not strongly locally ¢-symmetric.

As a generalization of both Ry y& = 0 and the Sasakian case, Ryyé = n(¥Y)X —
n(X)Y, Th. Koufogiorgos, B. Papantoniou and the author [10] considered the (k, w)-
nullity condition,

Rxy&§ =c((V)X —n(X)Y) + nu(m(¥)hX — n(X)hY),

where k and p are constants and gave several reasons for studying it. We refer to a
contact metric manifold satisfying this condition as a («, w)-manifold. On a (k, j)-
manifold, k < 1. If k = 1, the structure is Sasakian and if k < 1, the («x, p)-nullity
condition determines the curvature of M?>"*! completely. When ¥ < 1, the non-
zero eigenvalues of i are ++/1 — x each with multiplicity n. Th. Koufogiorgos and
C. Tsichlias [30] considered this condition where x and p are functions; they showed
that in dimensions > 5, k and p must be constants but that in dimension 3 these “gen-
eralized (k, pu)-manifolds” exist. The standard contact metric structure on the tangent
sphere bundle 77 M satisfies the (k, w)-nullity condition if and only if the base manifold
M is of constant curvature. In particular if M has constant curvature ¢, thenk = c(2—c)
and u = —2c. A D-homothetic deformation destroys a condition like Rx y& = 0 or

Rxy§ =x((¥)X —n(X)Y).

However, the form of the («, w)-nullity condition is preserved under a D-homothetic
deformation with

. k+ad*-1 w+2a—2
K= ——, _
)

=
1

a
Given a non-Sasakian (k, w)-manifold M, E. Boeckx [15] introduced an invariant

m

2
Iy = ,
M 1—«

and showed that for two non-Sasakian (k, w)-manifolds (M;, ¢i, &, ni, gi),i = 1,2,
we have Iy, = Iy, if and only if up to a D-homothetic deformation, the two spaces
are locally isometric as contact metric manifolds. Thus we know all non-Sasakian
(k, w)-manifolds locally as soon as we have, for every odd dimension 2n + 1 and
for every possible value of the invariant 7, one («, ;)-manifold (M, ¢, &, n, g) with
Iy = 1. For I > —1 such examples may be found from the standard contact metric
structure on the tangent sphere bundle of a manifold of constant curvature ¢ where we
have I = (1 4+ ¢)/|1 — c|. Boeckx also gives a Lie algebra construction for any odd
dimension and any value of 7 < —1.

Returning to the strongly locally ¢-symmetric spaces, we note that the non-Sasakian
(k, n)-spaces are strongly locally ¢p-symmetric as was shown by E. Boeckx [14]. Special
cases of these are the non-Abelian 3-dimensional unimodular Lie groups with left-
invariant contact metric structures. To see these examples, we first note the classification
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of simply connected homogeneous 3-dimensional contact metric manifolds as given
by D. Perrone in [39]. Let t denote the scalar curvature and

w= é(l’ — Ric(é) +4),

the Webster scalar curvature. The classification of 3-dimensional Lie groups and their
left invariant metrics was given by Milnor [32].

Theorem. Let (M3, 1, g) be a simply connected homogeneous contact metric mani-
fold. Then M3 is a Lie group G and both g and n are left-invariant. More precisely we
have the following classification: (1) If G is unimodular, then it is one of the following
Lie groups:

1. The Heisenberg group when w = |£Lgg| = 0;

2. SU(2) when 42w > | £¢gl;

3. the universal covering of the group of rigid motions of the Euclidean plane when
42w = |£egl > 0;

4. the universal covering of SL(2, R) when —|£gg| # 42w < |£egl;

5. the group of rigid motions of the Minkowski plane when 42w = —|£&g| < O.

(2) If G is non-unimodular, its Lie algebra is given by
ler, e2] =aex + 28, [e1,§] =ye2, [e2,6]=0,

wherea # 0, e1, ex = ey € D and 42w < | £¢gl. Moreover, if y = 0, the structure
is Sasakian and w = —a’ /4.

The structures on the unimodular Lie groups in this theorem satisfy the (x, u)-
nullity condition and hence they are strongly locally ¢-symmetric. The weak locally
¢-symmetric contact metric structure which is not the strong locally ¢-symmetric given
by Boeckx, Bueken and Vanhecke [18] is the non-unimodular case with y = 2. Notice
also, in the unimodular case, the role played by the invariant p = (42w) /1Legl.
Moreover w = (2 — u)/4 and |£Leg| = 2421 = k; thus p=Q2—-—w/2v1—x«)
which is the above invariant /; of Boeckx.

A special case of the (k, w)-spaces is, of course, the case where £ belongs to
the «-nullity distribution, i.e. & = 0 and we call such a contact metric manifold an
N (k)-contact metric manifold. Using the Boeckx invariant we construct an example
of a (2n + 1)-dimensional N (1 — (}l))-manifold, n> 1.

Example. Since the Boeckx invariant for a (1 — (%), 0)-manifold is \/n > —1, we
consider the tangent sphere bundle of an (n 4 1)-dimensional manifold of constant
curvature ¢ so chosen that the resulting D-homothetic deformation will be a (1 —
(1/n), 0)-manifold. That is, for k = ¢(2 — ¢) and u = —2¢ we solve

l_lzlc—i—az—l 0=u+2a—2’

n a? ’ a
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for a and c. The result is

o (Vn£1)?

9 =1 9
P a +c

and taking ¢ and a to be these values we obtain a N (1 — (%))—manifold.

Now as a generalization of locally symmetric spaces, many geometers have consi-
dered semi-symmetric spaces and in turn their generalizations. A Riemannian manifold
is said to be semi-symmetric if its curvature tensor satisfies Ryy - R = 0, where Ryy acts
on R as a derivation. In [45] Tanno showed that a semi-symmetric K-contact manifold
is locally isometric to $21+1(1). In [38] D. Perrone began the study of semi-symmetric
contact metric manifolds and in [36] B. Papantoniou showed that a semi-symmetric
(k, p)-space of dimension > 5 is locally isometric to S>"T1(1) or to E"+! x §"(4).
Similarly Ch. Baikoussis and Th. Koufogiorgos [1] showed that an N («)-contact metric
manifold satisfying Rgx - W = 0, W being the Weyl conformal curvature tensor, is
locally isometric to $2 (1) orto E"T! x §”(4). In [16] E. Boeckx and G. Calvaruso
showed that the tangent sphere bundle is semi-symmetric if and only if it is locally sym-
metric and therefore the base manifold is either flat or 2-dimensional and of constant
curvature +1. With this in mind it is surprising that the concircular curvature tensor,

T
ZxyV=RxyV——@¥, V)X —g(X,V)Y),
Xy Xy 2n(2n+1)(g( ) 8( )Y)

leads to other cases. Recently J.-S. Kim, M. Tripathi and the author [8] proved the
following.

Theorem. A (2n + 1)-dimensional N (k)-contact metric manifold M satisfies
Zex - Z =0,

if and only if M is 3-dimensional and flat, or locally isometric to the sphere S +1(1),
or M is locally isometric to the above example of an N (1 — %)—manifold.

We close this essay with the question of conformally flat contact metric manifolds,
a question in which there has recently been renewed interest. Early on, Okumura [34]
had shown that a conformally flat Sasakian manifold of dimension > 5 is of constant
curvature +1 and in [42] and [43] Tanno extended this result to the K-contact case
and for dimensions > 3. Thus a conformally flat K-contact manifold is of constant
curvature 41 and Sasakian. Recently Ghosh, Koufogiorgos and Sharma [24] have
shown that a conformally flat contact metric manifold of dimension > 5 with a strongly
pseudo-convex integrable CR-structure is of constant curvature +1. As we have seen,
in dimension > 5, a contact metric structure of constant curvature must be of constant
curvature +1 and is Sasakian; and in dimension 3, a contact metric structure of constant
curvature must be of constant curvature O or +1, the latter case being Sasakian. For
simplicity set [ X = Ryx¢&, then [ is a symmetric operator. K. Bang [2] showed that
in dimension > 5 there are no conformally flat contact metric structures with / = 0,
even though there are many contact metric manifolds satisfying [ = 0, ([2] or see
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[7] p. 153). Bang’s result was extended to dimension 3 and generalized by F. Gouli-
Andreou and Ph. Xenos [26] who showed that in dimension 3 the only conformally
flat contact metric structures satisfying Vel = 0 (equivalently Veh = 0, Perrone [38])
are those of constant curvature O or 1. In [25] F. Gouli-Andreou and N. Tsolakidou
showed that a conformally flat contact metric manifold M>**! with [ = —«¢? for
some function « is of constant curvature. In the case of the standard contact metric
structure on the tangent sphere bundle, Th. Koufogiorgos and the author [9] showed
that the metric is conformally flat, if and only if the base manifold is a surface of
constant Gaussian curvature O or 1. The (k, p)-spaces are conformally flat only in the
constant curvature cases. In dimension 3, this was shown by F. Gouli-Andreou and
Ph. Xenos [26], even when « and u are functions. In higher dimensions the proof is
straightforward: Let W denote the Weyl conformal curvature tensor. Wxg& = 0 with
X L &yields [2(n — )(u — 1)/2n — 1]hX = 0; if n = 1 we have the case studied
by Gouli-Andreou and Xenos and if # = 0 we have the K-contact case. If © = 1,
h # 0 and n > 1, we can choose two orthogonal unit eigenvectors X and Y of & with
eigenvalue A > 0 and set Z = ¢Y. Then using Theorem 1 of [10], WxyZ = 0 yields
k = 1 (A = 0), contradicting A > 0. In [9] Th. Koufogiorgos and the author showed
that a conformally flat contact metric manifold on which the Ricci operator commutes
with ¢ is of constant curvature. Then in [21] G. Calvaruso, D. Perrone and L. Vanhecke
showed that in dimension 3 the only conformally flat contact metric structures, for
which £ is an eigenvector of the Ricci operator, are those of constant curvature 0 or
1. An attempt was made in [24] to generalize this to higher dimensions by assuming
another condition in addition to & being an eigenvector of the Ricci operator. However
& being an eigenvector of the Ricci operator is the essential condition and we now have
a recent result of K. Bang and the author [3] generalizing the Calvaruso, Perrone and
Vanhecke result to higher dimensions.

Theorem. A conformally flat contact metric manifold for which the characteristic
vector field is an eigenvector of the Ricci operator is of constant curvature.

In view of these strong curvature results, one may ask if there are any conformally
flat contact metric structures which are not of constant curvature. In [7] (pp. 108-110),
the author shows that 3-dimensional conformally flat contact metric manifolds of non-
constant curvature do exist. These examples were studied further by Calvaruso [20]; he
showed that these examples satisfy Veh = ah¢, where a is a non-constant function. He
also showed that if a is a constant # 2, then a 3-dimensional conformally flat contact
metric manifold satisfying Ve = ah¢ has constant curvature. It is not known if there
exist conformally flat contact metric manifolds of dimension > 5 which are not locally
isometric to the standard Sasakian structure on the unit sphere.
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1 Curvature theory

In the scientific work of L. Vanhecke, the notion of curvature is never more than a step
away, if not studied explicitly. This is only right, since, in the words of R. Osserman,
“curvature is the central concept (in differential geometry and, more in particular, in
Riemannian geometry), distinguishing the geometrical core of the subject from those
aspects that are analytic, algebraic or topological”. The reason for this can be seen as
follows:

— if we equip a differentiable manifold M with a metric g, then its curvature is
completely determined. If the metric g has nice properties (e.g., a large group of
isometries), then this is reflected in a ‘nice’ curvature;

— conversely, we can often deduce information about the metric from special prop-
erties of the curvature. In some cases, knowledge about the curvature even suffices
to completely determine the metric (at least locally). Locally symmetric spaces are
the prime example here: they are distinguished from non-symmetric spaces by their
parallel curvature and, starting from the curvature, one can reconstruct the manifold
and its metric (locally).

The curvature information is contained in the Riemannian curvature tensor R. This is an
analytic object, a (0, 4)-tensor which is not easy to handle, in general, despite its many
symmetries. It is often very difficult to extract the geometrical information which is,
as it were, encoded within. For this reason, the famous geometer M. Gromov calls the
curvature tensor “a little monster of multilinear algebra whose full geometric meaning

Key words: geodesics, unit tangent bundle, curves with constant or vanishing curvatures.
Subject Classifications: 53C22, 53C35, 53B20.
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remains obscure”. One therefore works not only with the curvature tensor R itself, but
with other forms of curvature or related operators as well, which have a more direct
geometric interpretation or which are easier to deal with. We mention the sectional
curvature, the Ricci curvature, the scalar curvature and the Jacobi operators. However,
not all of these contain the same amount of curvature information. Curvature theory
has as its explicit aim the shedding of light on the interplay between the curvature
of a Riemannian manifold and its geometric properties, in spite of the difficulties
mentioned before.

The study of manifolds from the point of view of curvature has two complemen-
tary aspects, roughly corresponding to the two passages: from the metric (and all the
geometry that it entails) to the curvature and from the curvature to the metric.

1. Direct theory. First, one looks at ‘simple’ manifolds. By this we mean Riemannian
manifolds with a high degree of symmetry and hence with a relatively easy curvature
tensor. In some cases, one can even write it down explicitly. As examples of such spaces,
we mention locally symmetric spaces, homogeneous spaces and two-point homoge-
neous spaces. One studies their geometric properties, which are often generalizations of
properties from classical Euclidean geometry. In particular, one also studies associated
objects like small geodesic spheres, tubes about curves and submanifolds, tangent and
unit tangent bundles, special transformations, . . .

2. Inverse theory. Next, one compares more general manifolds with one of these ‘sim-
ple’ spaces: one takes the latter as a model and investigates which of its properties (or
those of its associated objects) are characteristic for the model space. In other words:
can one recognize the model space based on those specific properties? If not, one tries
to find a complete classification of Riemannian manifolds with those properties. The
technical details at this stage differ considerably from those in the direct theory. In-
deed, for general manifolds, no explicit description of the curvature is available. Further,
quantities such as, e.g., the volume of small geodesic spheres and balls can no longer
be written down in closed form. Instead, one often uses series expansions for these
quantities, the coefficients of which depend on the curvature. Geometric information
concerning, e.g., the volumes of the small geodesic spheres then lead to restrictions
on the curvature via the series expansions. In other situations, the geometric proper-
ties considered have natural consequences for the Jacobi operators or other forms of
curvature. In this way, one collects curvature information and hopes to be able to draw
conclusions from this concerning the metric. Curvature acts here as the bridge between
the geometric properties and the metric itself.

The contributions of L. Vanhecke to the field of curvature theory in the above spirit
are too numerous to specify and his influence on geometry and on geometers worldwide,
the present one included, can readily be discerned. In this note, I only intend to illustrate
the above program using the geometry of the unit tangent bundle as a showcase. On
this topic, I have worked for some years now, often in collaboration with L. Vanhecke
and other colleagues. For a survey of earlier results, see [5]. Here, I will concentrate on
two aspects of the unit tangent bundle: its geodesics and the question of reducibility.
The presentation will be rather brief. Full statements and proofs can be found in the
articles [1] and [3].
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2 The unit tangent bundle

We first recall a few of the basic facts and formulas about the unit tangent bundle of a
Riemannian manifold. A more elaborate exposition and further references can be found
in [4].

The tangent bundle T M of a Riemannian manifold (M, g) consists of pairs (x, u)
where x is a point in M and u a tangent vector to M at x. The mapping 7: TM —
M: (x,u) — x is the natural projection from 7'M onto M. It is well-known that the
tangent space to T M at a point (x, u) splits into the direct sum of the vertical subspace
VT M,y = ker my(x,u) and the horizontal subspace HT M, ,y with respect to the
Levi Civita connection V of (M, g): T(x )y TM = VT My @ HT My ).

For w € T, M, there exists a unique horizontal vector w”" € HT My ) for which
. (w") = w. It is called the horizontal lift of w to (x, u). There is also a unique
vertical vector w” € VT My, for which w”(df) = w(f) for all functions f on M.
It is called the vertical lift of w to (x, u). These lifts define isomorphisms between
T:M and HT M, ) and VT M., respectively. Hence, every tangent vector to T M
at (x, u) can be written as the sum of a horizontal and a vertical lift of uniquely defined
tangent vectors to M at x. The horizontal (respectively vertical) lift of a vector field X
on M to T M is defined in the same way by lifting X pointwise. Further, if T is a tensor

field of type (1,s) on M and Xy, ..., Xy are vector fields on M, then we denote
by T(Xy,...,u,..., Xs_1)? the vertical vector field on 7'M which at (x, w) takes
the value 7(X 1y, ..., w, ..., Xs—1x)", and similarly for the horizontal lift. In general,

these are not the vertical or horizontal lifts of a vector field on M.
The Sasaki metric gs on T M is completely determined by

gs(X" ¥M) = ge(X",Y") =g(X, V) om, gs(X",¥")=0,

for vector fields X and Y on M.

Our interest lies in the unit tangent bundle 771 M, which is the hypersurface of T M
consisting of all tangent vectors to (M, g) of length 1. It is given implicitly by the
equation g, (u,u) = 1. A unit normal vector field N to 71 M is given by the vertical
vector field u”. We see that horizontal lifts to (x,u) € T M are tangents to T1 M,
but vertical lifts in general are not. For that reason, we define the tangential lift w’
of w e TyM to (x,u) € T{M by w' = w¥ — g(w, u)N. Clearly, the tangent space
to T1 M at (x, u) is spanned by horizontal and tangential lifts of tangent vectors to M
at x. One defines the tangential lift of a vector field X on M in the obvious way. For
the sake of notational clarity, we will use X as a shorthand for X — g(X, u)u. Then
X! = X". Further, we denote by VT1 M the (n — 1)-dimensional distribution of vertical
tangent vectors to T M.

If we consider 71 M with the metric induced from the Sasaki metric gg of T M, also
denoted by gg, we turn 771 M into a Riemannian manifold. Its Levi Civita connection v
is described completely by

Vi V' = —g(Y, u) X',

Vy Y = % (R, X)Y)", (1)
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S t t 1 h
VY = (VxY) + E (R(u, Y)X)",

C h h 1 t
VY7 = (Vx¥)" = 5 (R(X, Y)u),
for vector fields X and ¥ on M. Its Riemann curvature tensor R is given by

RX'YNZ'=g(Y. D)X —g(Z. X) Y',
_ _ - 1
RX', YHZ" = (RX, 12" + 2 (IR, X), R, 1Z)",
B(yvh yiyot 1 5 vy L h
R(X"Y)Z' = =5 (R(Y, 2)X)" — 7 (R(u, Y)R(u, Z)X)",

Rx", yHhz" = %(R(X, Z2)Y) — %(R(X, R(u, Y)Z)u)

1
+ 5 (VxR 12", )
R(X", Y"Z' = (R(X,Y)Z)'

+ %(R(Y, R, Z)X)u — R(X, R(u, Z)Y)u)"

" %((VXR)(M, 7)Y — (VyR)(u, Z)X)",
R(X" YMz" = R(X,V)2)" + %(Rw, R(X. V)u)Z)"

_ %(R(u, R(Y, Z)u)X — R(u, R(X, Z)u)Y)"

1
+ 5 (VzR)(X, u)',

for vector fields X, Y and Z on M.

From these formulas, it is clear how the curvature of the base manifold interferes
in the geometry and the curvature of the unit tangent bundle. Conversely, we will be
able to ‘translate’ information on the unit tangent bundle to the base manifold using
these formulas. This should not surprise us, as the metric structure on the base manifold
completely determines that of the bundle.

3 Geodesics on the unit tangent bundle

As afirst illustration of the role of curvature in geometric problems, we are interested in
geodesics of the unit tangent bundle. Any curve y () = (x(¢), V (¢)) in the unit tangent
bundle can be considered as a curve x(¢) in the base manifold M, together with a unit
vector field V () along it. The geodesic equation in (71 M, gs) can be readily deduced
from the formulas (1) for the Levi Civita connection. We find that y () = (x(¢), V (¢))
is a geodesic of (T1 M, gs), if and only if
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Vix = —R(V,V;V)x, 3)
ViViV = =V,

where ¢ = g(V;V, V;V) is a constant along x(¢). (See, e.g., [9].)

For general Riemannian manifolds, it is hopeless to try and solve the system of
differential equations (3). For ‘simple’ base spaces, however, some results can be
obtained. For two-dimensional base spaces, a full solution was given in [7]. When
the base manifold is a space of constant curvature c, the curvature can be written as
R(X,Y)Z =c(g(Y,Z)X — g(X, Z2)Y) and the equation (3) becomes much simpler.
S. Sasaki ([10]) has explicitly determined all geodesics in this setting. As a side-result
of his description, we state

Proposition 1. If (M", g) is a space of constant curvature and y (t) = (x(t), V(t)) is
a geodesic of (T1 M, gs), then the projected curve x(t) = w(y(t)) in M" has constant
curvatures k1 and k> and vanishing third curvature k3.

For a locally symmetric base manifold, P. Nagy showed a result in the same spirit
in [8].

Proposition 2. If (M", g) is a locally symmetric space and y(t) = (x(t), V(¢)) i
a geodesic of (T\M, gs), then the curve x(t) in M has constant curvatures ki, i =
1,...,n—1.

~
=)

The proofs for both propositions are based on the same idea. Since both |y|*> =
|%]> + |V:V|? and |V; V|?> = ¢? are constant, we can reparametrize y (¢) (and x())
so that |x| = 1. Hence we can take T = x as the first vector in the Frenet frame
{T, N1, ..., N,_1} along x and we have for the first three covariant derivatives of x:

i = Vik =k Ny,
P = ViVikt = =12 T + k| Ni + k1k2 Na, 4)
i = VeV = =31k T + (] — k1 (1% + k22)) Ny
+ (2/ci/<2 + K]Ké) N> + k1Kk2k3 N3,

and similar expressions for the higher order derivatives of x. On the other hand, using (3),
we can calculate

W =RV, V)i,
i@ = (ViR)(V, V)i + R(V, V)%, ®)
i3 = (VI RV, V)i + (Vpey i RV, V)i

+2(ViR)(V, VIR(V, V)i + R(V, V)(ViR)(V, V)i

— R(V,V)3x,

where we have put V = V; V for simplicity. Again, similar expressions can be derived
for higher order derivatives of x. In particular, for a locally symmetric base space, this
leads to the simple formula
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0 = (—DFR(V, V)i

It is easy to see from this formula that x ®) has constant length for all k. Combining this
with the corresponding formulas (4) for arbitrary x®), k = 1,...,n — 1, one proves
by induction that all curvatures «; are constant. The vanishing of «3 for base spaces of
constant curvature is a consequence of the special form of the curvature tensor.

Both propositions above are examples of direct results. In [1], we have looked at
possible converses, at indirect results. We comment on the role of curvature in this
context.

As concerns the converse of Proposition 2, we note that explicit expressions can be
given for the curvatures k; in terms of the curvature tensor R and its covariant derivatives
via (4) and (5). However, these expressions quickly become rather complicated and of
little practical use. For this reason, we only consider the case where the first curvature
is constant. For this function, we find the expression

k1> = g(R(V, V)i, R(V, V)). 6)
Taking the covariant derivative along x(¢), we find

Proposition 3. Let (M, g) be a Riemannian manifold. Then for any geodesic y of
(T1 M, gs), the projected curve x = m oy has constant first curvature k1 if and only if
the curvature condition

g((VyR)(V, W)Y, R(V, W)Y) =0, (7
is satisfied for all vector fields Y, V and W on M.

The curvature condition (7) is the starting point for our search for a possible converse
to Proposition 2. It implies several conditions on the Jacobi operators R, = R(-, 7)o
along geodesics o on (M, g):

1. the eigenvalues of R, are constant along o for each geodesic o of (M, g), i.e., the
manifold (M, g) is a C-space;
2. the operator R,? is parallel along each geodesic o of (M, g).

In the literature, a lot of results on the Jacobi operator can be found. Using those,
we can obtain converse statements to Proposition 2 for several classes of Riemannian
manifolds, but so far not for the general case. For the precise statements, we refer to [1].

Next, we consider a converse of Proposition 1. We will look more generally at
spaces (M, g) for which projections of geodesics on (71 M, gs) have vanishing curva-
ture K1, k2 Or K3.

The case k1 = 0 is easily dealt with. From (4) and (5) we see that the base manifold
must necessarily be flat.

Next, suppose thatkp = 0 for every projected geodesic. Comparing the two different
descriptions of @ we find

Proposition 4. Let (M, g) be a Riemannian space. Then any geodesic y of (T'\M, gs)
projects to a curve x of M for which ko = 0 if and only if
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R(V,W)2Y = —|R(V, W)Y|? Y, (8)
IR(V, W)Y > (Vy R)(V, W)Y = g((Vy R)(V, W)Y, R(V, W)Y) R(V, W)Y, (9)
for all vector fields V, W and Y on M with |Y| = 1.

In this way, we have again translated the original geometric data about geodesics
of (T1M, gs) into a curvature condition on (M, g). In particular, it follows from (9)
that every Jacobi operator R, on (M, g) has parallel eigenspaces along the geodesic o,
ie., (M, g) is a P-space. Since the only Riemannian manifolds which are both ¢- and
B-spaces are the locally symmetric ones (see [2]), we find

Proposition 5. Let (M, g) be a Riemannian space and suppose that any geodesic y
of (T'M, gs) projects to a curve x of M with constant k| and vanishing k. Then
(M, g) is locally symmetric.

Restricting now to locally symmetric base spaces, we can prove

Theorem 6. Let (M, g) be a non-flat locally symmetric space and suppose that any
geodesicy of (T1' M, gs) projects to a curve x in M with vanishing second curvature i;.
Then (M, g) is two-dimensional.

The proof of this result uses different techniques. First, one shows that the rank
of the universal covering (M, g) of (M, g) must be one. For this, we use the root
space decomposition of the Lie algebra corresponding to a representation G/H of M
as a homogeneous space. The condition (8) is fundamental here. In a second step, we
show easily that no four-dimensional locally irreducible symmetric spaces exist which
satisfy (8). Finally, we use the classification by B.-Y. Chen and T. Nagano of maximal
totally geodesic submanifolds of rank-one symmetric spaces ([6]) to finish the proof.

To treat the case of vanishing third curvature k3 = 0, we restrict at once to locally
symmetric spaces.

Proposition 7. Let (M, g) be a locally symmetric space. Then any geodesic y of
(T1 M, gs) projects to a curve x in M for which k3 = 0, if and only if

R(V, W)Y + (k1> + k2®) R(V, W)Y = 0, (10)

for all vector fields V, W and Y on M. The coefficient k1% + k2> only depends on V
and W, not on Y. Its value is given by

k1> + 127 = [R(V, W) Y*/|R(V, W)Y %,
for any Y such that R(V, W)Y # 0.

Again using a mixture of Lie group theory and results on totally geodesic sub-
manifolds in symmetric spaces, we are able to prove from this curvature condition the
following converse to Proposition 1.

Theorem 8. Let (M", g), n > 3, be a locally symmetric space such that the projec-
tion x = 1w oy of any geodesic y of (T\ M, gs) has vanishing third curvature k3. Then,
(M™, g) is either a space of constant curvature or a local product of a flat space and
a space of constant curvature.
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4 Reducibility of the unit tangent bundle

As a second illustration of the programme set out in the first section, we consider
the question: when is the unit tangent bundle of a Riemannian manifold reducible?
In answering this question, the curvature tensor will again be the main actor, even if
completely different techniques are needed compared to the ones used in the preceding
section. On the whole, the answer to the above question requires a lot of calculations,
but the underlying ideas are very simple. We will outline the argument and refer to [3]
for the technical details.

The existence of a local decomposition implies some special behavior of the Rie-
mann curvature tensor. Indeed, any curvature operator R(U, V) acting on a vector
tangent to one of the components gives again a vector tangent to the same component.
In particular, if in the expression R(U , V)W, one of the vectors U, V, W is tangent
to one component and another vector to the other component, then R(U, V)W will
necessarily be zero. This is a very simple consequence of reducibility which is by no
means equivalent to the existence of a local product decomposition. Still, it will bring
us very far, as we will see. An additional advantage is that the curvature condition is a
pointwise condition and no knowledge about covariant derivatives is needed.

Suppose first that, at a point (x, u) of 71 M, the tangent space to one of the factors,
say to M, contains a non-zero vertical vector X!, X € T, M and X orthogonal to u.
Then it holds

R(Y', X)X =g(X, X)Y' — ¢(X,Y) X" € T(e.yMi

for all vectors Y € T, M. As a consequence, V11 My ) C T(x,uyM1, and M is at least
(n — 1)-dimensional. Hence, if at a point of T1 M one of the factors contains a non-zero
vertical vector, it contains the complete vertical distribution at that point. We call the
decomposition vertical at (x, u) in such a situation. Note that this is the case as soon
as max{dim M1, dim M>} > n. So, the only possibility for the decomposition not to
be vertical at (x, ) is that dim M| = n, dim M, = n — 1 (or conversely) and neither
factor is tangent to a vertical vector. We call this a diagonal decomposition at (x, u).

4.1 Diagonal decomposition

Suppose for now that we have a diagonal decomposition 1M >~ My x M at (x, u)
with dim M| = n and dim My = n — 1. The following technical result allows us to
work with suitable bases for Ty ,) M1 and T, ,)M>. Its proof uses the symmetries of
the curvature tensor.

Lemma 9. I[f T\M >~ M| x M> is a diagonal decomposition at (x, u) with dim M| =

n and dim M, = n — 1, then there exist two orthonormal bases {X1, ..., X,} and
{(Yi,.... Y1, u} of TxM and A > 0, such that an orthogonal basis for T , M is
given by

X" o', X A X
and an orthogonal basis for T(x , M> is given by

AX(" =1 A X =Y
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Note that the decomposition at (x, u) gives rise to two special orthonormal bases
of T, M.

Next, we express that R (U, V)W =0, if U is one of the vectors in the above basis
for T(x,,)M1 and W one of the vectors in the basis for T, ,)M>. This gives a list of
curvature conditions on (M, g). The ones we will need further on are given by

R(u, Y )R(u, YD) X; + R(u, Y)R(u, Y;)X; =481 X; — 281 X; +6;;Xp), (11)

R(u,Yj)R(u,Y) X, + R(u, Y)R(u, Y;) X, (12)
= —2g(R(u, Yj)Xnv R(u, Y)Xy) Xy,
AR(Y, Yj)Xi =R, Y))R(u, Y)X; — R(u, Y))R(u, Y;))X; (13)
—4(6uX; —8ij Xyp),
AR(Y), Y)) Xy = R(u, Y;)R(u, Y X, — R(u, Y))R(u, )X, (14)
4R(X;, X)X, = M BjuXi —0uXj) (15)
2 j j

+ R(u, R(X;, Xu)X; — R(u, R(X;, Xpu)X ;
—2R(u, R(X;, Xj)u)Xy,

1
4R(X,, Xj) X = ﬁg(R(u, Yj)Xn, R(u, Y1) Xy) Xy (16)

+ R(u, R(Xj, XPu) X, — R(u, R(Xp, Xp)u)X;
— 2R(u, R(X,, X jyu) Xy,

where i, j, k€ {1,...,n—1}.

Two remarks are important here. First, if we can determine the operators R (u, Y),
I =1,...,n — 1, satisfying (11) and (12), then we can compute consecutively the
operators R(Y;,Y;), [, j = 1,...,n — 1, from (13) and (14) and R(X;, X;), i, j =
1,...,n—1,from (15) and (16). The operators R(u, ¥;) are therefore the most funda-
mental. (Note also that this gives two descriptions for the curvature operators R(V, W):
one in the basis {Y1, ..., Y,—1, u} and another in the basis {X1, ..., X,}.) Second, the
conditions (11) and (12) remind one of the Clifford relations ¢; - ¢ +e; - ¢; = —24;;,
though they are not quite right. Both remarks inspire us to study the operators R (u, Y;)
in some more detail.

From conditions (11) and (12), it follows readily that

R(u, Y1)*X; =0,
R(u, Y)*X; = —4X;, i#1,
R(u, Y1)* Xy = —|R(u, Y) X |* X

Since R(u, Y;) is skew-symmetric, the non-zero eigenvalues of R(u, Y j)2 must have
even multiplicity. Hence,

— if n is even, the eigenvalue —4 has even multiplicity n — 2 on {X, X,,}L. Hence,
the eigenvalue corresponding to X,, must be zero. This implies R(u, Y;)X,, = 0
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forj=1,...,n—1.By(14),also R(Y;, Yi)X, =0forj,k=1,...,n—1. We
conclude that X,, belongs to the nullity distribution of the curvature tensor R,. In
this case, the conditions (12), (14) and (16) are trivially satisfied;

— if nis odd, the eigenvalue —4 has odd multiplicity n — 2 on {X ;, X, }*. The eigen-
value corresponding to X,, must then be —4 as well. So, itholds, |R(u, Y;) X, |2 =4,
for j = 1,...,n — 1. It even holds, |R(u, Y)X,,|2 = 4, for every unit vector Y
orthogonal tou and g(R(u, Y)X,, R(u, Z2)X,) = 4g(Y, Z), forall vectors Y and Z
orthogonal to u. In particular, the right-hand side of (12) equals —85;X,,. In this
case, conditions (12) and (14) are included in (11) and (13) if we allow the index i
to be n.

This indicates that the cases where n is even and those where n is odd will have to be
treated separately.

When 7 is even, consider the operators R;,i = 1,...,n —1,actingon V" = T\ M
by
1
Ri = E R(M, Yl) - <Xn7 )Xl + (Xl'v >Xl’la
where (-, -) = g,. One can show that they satisfy the Clifford relations
RioRj—i-RjORi =—25ijid. (17)

Hence, they correspond to a Clifford representation of an (n — 1)-dimensional Clifford
algebra on an n-dimensional vector space.

When = is odd, define the operators R;, i = 1,...,n — 1, acting on yntl —
M & RXj by

1
Ri = 3 R(u, Y;) — (Xo, ) Xi +(X;, - )Xo,

where (-, -) = g ®go with go(a X, bXo) = ab. Again these satisfy the relations (17)
and we obtain a Clifford representation of an (n — 1)-dimensional Clifford algebra on
an (n 4+ 1)-dimensional vector space.

It is well-known, however, that the dimension of a Clifford algebra and that of a
module over it are closely related. (See, e.g., the table in [3].) In particular, it follows
that Clifford representations as above can only exist for dimensions n = 1, 2, 3,4,7
and 8. So, only for those dimensions for the base manifold (M, g) can a diagonal
decomposition exist for the unit tangent bundle. Moreover, the case n = 1 is irrelevant,
since a one-dimensional manifold is never reducible.

Finally, treating these remaining cases separately, one can show that the two de-
scriptions for the curvature tensor mentioned higher, one in the basis {Y7, ..., ¥,—1, u}
and the other in the basis {X1, ..., X,}, are incompatible, except when n = 2. Then,
the base manifold is necessarily flat. We conclude that diagonal decompositions for the
unit tangent bundle exist only for a flat surface as base space.

4.2 Vertical decomposition

Suppose now that we have a vertical decomposition T1M =~ M; x M, such that
VTiM .y C Tix,uyM1 everywhere. In this situation, if (x, u) € M; x {q}, for some
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g € Mo, it holds that 7= '(x) ¢ M; x {q}. Consequently, we have M| x {g} =
7 (@ (My x {g})). So, the leaves M| x {q}, corresponding to the product, project
under 7 to a foliation £1 on (M, g) and 7 ~1(L1) = {M; x {q},q € M>}. Let L be
the distribution on M tangent to L. Define the distribution L, to be the orthogonal
distribution to L{ on M. Then,

T(x,u)(Ml x {gq}) = VTrM(x,u) @ h(Liyx), T(x,u)({p} X M3) = h(Lay),

where h denotes the horizontal lift. In particular, we can describe the tangent spaces to
the factors of the (local) product using horizontal and vertical lifts. From the expressions
(1) for the Levi Civita connection, it is easy to deduce that also L, is integrable,
with associated foliation £, with flat leaves, and that (M, g) is locally isometric to a
Riemannian product M >~ M’ x R¥ where k = dim L, < n. Conversely, it is almost
immediate that a (local) decomposition M ~ M’ x R¥ with k > 0 gives rise to a (local)
decomposition of (771 M, gs). This proves

Theorem 10 (Local version). The unit tangent bundle (T\M, gs) of a Riemannian
manifold (M", g), n > 2, is locally reducible if and only if (M, g) has a flat factor,
i.e., (M, g) is locally isometric to a product (M', g') x (R, go) where 1 <k <nand
go denotes the standard Euclidean metric on R¥.

With a little more effort (not involving curvature), we can even show the corre-
sponding global result.

Theorem 11 (Global version). Let (M", g), n > 3, be a Riemannian manifold and
suppose that (T1 M, gs) is a global Riemannian product. Then, (M, g) is either flat or
it is also a global Riemannian product, with a flat factor.

Conversely, if (M, g) is a global product space (M, g') x (F¥, go) where1 <k <n
and F is a connected and simply connected flat space, then (T1M, gs) is a global
Riemannian product, also with (F, go) as a flat factor.
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Summary. We prove a theorem about an extremal property of Lobachevsky space among simply
connected Riemannian manifolds of nonpositive curvature.

Hadamard proved the following theorem. Let ¢ be an immersion of a compact
oriented n-dimensional manifold M in Euclidean space E"*! (n > 2) with positive
Gaussian curvature everywhere. Then ¢(M) is a convex hypersurface [1].

Chern and Lashof [2] generalized this theorem. Let ¢ be an immersion of a compact
oriented n-dimensional manifold M in E"*!. Then the following two assertions are
equivalent:

(1) The degree of the spherical mapping equals %1, and the Gaussian curvature does
not change sign (i.e., it is either nonnegative or nonpositive everywhere);
(i1) @(M) is a convex hypersurface.

By Gaussian curvature, we mean the product of the principal curvatures.

S. Alexander generalized the Hadamard theorem for compact hypersurfaces in
any complete, simply connected Riemannian manifold of nonpositive sectional curva-
ture [3].

A topological immersion f : N — M of a manifold N” into a Riemannian mani-
fold M is called locally convex at a point x € N" if x has a neighborhood U such that
f(U) is a part of the boundary of a convex setin M.

Heijenoort proved the following theorem. Let f : N* — E"*! where n > 2,
be a topological immersion of a connected manifold N”. If f is locally convex at all
points and has at least one point of local strict support and N” is complete in the metric
induced by the immersion, then f is an embedding and F = f(N") is the boundary
of a convex body [4].

In [5] this theorem was generalized to h-locally convex (i.e., such that each point
has a neighborhood lying on one side from a horosphere) regular hypersurfaces in
Lobachevsky space and in [6], to nonregular hypersurfaces.

* I thank the referee for some helpful comments and for correcting my English style.
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In this section we shall recall some definitions and we shall state the notation.

A Hadamard manifold is a complete simply connected Riemannian manifold with
sectional curvature K < 0.

Like in the hyperbolic space, a horoball in a Hadamard manifold M is the domain
obtained as the limit of the balls with their centers in a geodesic ray going to infinity,
and their corresponding geodesic spheres containing a fixed point. The boundary of a
horoball is a horosphere. In general, a horosphere is a C2 hypersurface. An h-convex
set in a Hadamard manifold M of dimension n + 1 is a subset 2 C M with boundary
02 satisfying that, for every P € 9<2 there is a horosphere H of M through P such
that €2 is locally contained in the horoball of M bounded by H. This H is called a
supporting horosphere of Q (and 9<2).

For Hadamard manifolds M satisfying —k% > K > —k%, ki,kpy > 0,if Hisa
horosphere, at each point of H where the normal curvature &, is well defined, it satisfies
ki < kn < ka.

For geodesic spheres of radius r their normal curvatures k,, satisfy the inequali-
ties

kicothkir <k, < kycothkr.

Note that the value k coth kr is the geodesic curvature of a circumference of radius r
in the Lobachevsky plane of curvature —k?.

An orientable regular (C? or more) hypersurface F of a Hadamard manifold M
is A-convex if, for a selection of its unit normal vector, the normal curvature k, of F
satisfies k, > A. A domain Q2 C M is A-convex if for every point P € 9S2 there is a
regular A-convex hypersurface F through P leaving a neighborhood of P in the convex
side (the side where the unit normal vectors points) of F. If 02 is regular, then it is a
regular A-convex hypersurface.

Given any set 2 C M, an inscribed ball (inball for short) is a ball in M contained
in Q2 with maximum radius. Its radius is called the inradius of €2, and it will be always
denoted by r. Moreover, we shall denote by O the (not necessarily unique) center of
an inball of €2, and by d the distance in M to O.

A circumscribed ball (or circumball) is a ball in M"*! containing € with minimum
radius. Its radius is called circumradius in €2 and is denoted by R.

Now we shall prove the following theorems.

Theorem 1. Let M+ be a simply connected complete Riemannian manifold with
sectional curvature K satisfying

—k} > K = —k3, ka >k >0.

Suppose that F C Mt be a complete immersed hypersurface with normal cur-
vatures

ky > k.
Then either

I) F" is a compact convex hypersurface diffeomorphic to the sphere S™ and

R—r <kyln2
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or

II) F" is a horosphere in M"T' and, when the norm of covariant derivative of the
curvature tensor of M"*1 is bounded, the ambient space M+ is the hyperbolic
space of constant curvature —k%.

Remark. The condition |VR| < C added in the part II of Theorem 1 in order we
can conclude that M"+! has constant curvature is used only to assure the regularity
of horospheres of class C3. We think that the result is still true without this hypothe-
sis.

For more strong conditions on the normal curvatures of F" it is true.

Theorem 2. Let M be a Hadamard manifold with sectional curvature K satisfying
—k} > K > —k3, ko >k >0.

Let F" be a complete immersed hypersurface with normal curvatures bigger or equal
ko coth korg at any point F". Then either

I) F" is a compact convex hypersurface diffeomorphic sphere S" and radius of cir-
cumscribed ball

R <1

or

1) F" is a sphere of radius ro which is the boundary of the ball Q. The ball Q2 is
isometric to the ball of radius ro of the hyperbolic space with constant curvature
—k3.

The ambient space M"*! is a C3 regular Riemannian manifold. At any point of a
smooth hypersurface F” in a Hadamard manifold there are two tangent horospheres.
If the normal curvatures of F"* at some point P € F" with respect some normal are
greater than zero, than the horosphere tangent to F” at P with positive normal curvature
with respect the same normal is called tangent horosphere.

Proof of Theorem 1. From the conditions of the theorem it follows that the normal
curvatures k, /H" of any horosphere H” in M"*! satisfy

kn/H" = k2~

And for every point P € F", the normal curvatures of F" and the tangent horosphere
H" in the corresponding directions a satisfy the inequality

kn(a)/Fn = kn(a)/ur.
I) Suppose that at one point Py the following strong inequality is true
kn(a)/Fn > kn(a)/mn. (D

Let ng be the unit normal at the point Py, such that the normal curvatures of
F™ at the point Py € F" with respect to normal ng are positive, and H” be the
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tangent horosphere at the point Py with the normal ng. From the inequality (1) it
follows that there exists some neighborhood of the point Py on F” such that it lies
inside the horoball bounded by the horosphere H”. Let us take a horospherical
system of the coordinates in M"*! with the base H", 1 is a length parameter along
geodesic line orthogonal to H" whose positive direction coincides with the normal
ng at Py. From another side 7 is the distance in M"*! to the horosphere H". Let
the function f = ¢ be the restriction of ¢ to the hypersurface F". At the point Py,
the function f has a strong minimum. Let ¢ be the angle between the direction
d/0t and the unit normal N of the hypersurface F". Along the integral curves of
the vector field X = grad f/p» on the hypersurface F”, the angle ¢ satisfies the
equation [8],

kn:ucos<p+sin<pd—¢), 2)
dt
where k;, is the normal curvature of F” in the direction X at the point P € F”",
1 is the normal curvature of the coordinate horosphere at the point P € F”" in
the direction Y, which is the orthogonal projection of the vector X on the tangent
space of the coordinate horosphere at the point P.
AS k;,, > k and the normal curvatures of the horosphere ;& < k», from (2), for
¢ < /2, it follows

do
kr(1 —cosg) < singp—;
2( @) < ing—

"
sin £ k
S B A GOF
sm%

k
sing > sin @e%(t_t"),
2~ 2

where ¢ is the angle between d/d¢ and the normal N for small #. It follows from
inequality (1) at the point Py that ¢9 > 0. The angle ¢ monotonically increases
along the integral curve and, for

t < 2 1 e"%
<—In———,
k2 /2(sin £4i0)

it reaches the value 7 /2. For ¢ > 7 /2 we have

d
ko < sincod—f;

cosg <1 —ky(t —1),

where ¢(t1) = /2 and, for t» < #; 4+ (2/k3), the angle ¢ reaches the value = and
function f = t/p» at this point achieves a strong maximum.
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The length of the integral curve on the hypersurface F" of the vector field
X = grad f/pn satisfies the inequalities

do
ko(1 —cosgp) < —;
ds

Yo
cot )
ko

s <50+

It follows that point Qg, where ¢ = m, does not go to infinity. Let #, be the
infimum of the value ¢ on the integral curves of the vector field X = grad f/p»
such that ¢(#;) = w. The level hypersurfaces of the function f = ¢ for0 < t <
1o are spheres $"~!, points Py and Q are the strong minimum and the strong
maximum respectively and function f is a Morse function on F" with two critical
points. Therefore the hypersurface F” is homeomorphic to the sphere S”. From the
conditionk, > k we obtain that the second quadratic form of F" is positive defini-
te at any point. From a theorem of S. Alexander [4] it follows that F" is an embedded
compact convex hypersurface diffeomorphic to $” and bounds a convex domain
2. The domain 2 is k>-convex and satisfies the condition of theorem 3.1 [9] and

max d(0,0R) < kyIn2,

where O is the center of the inscribed ball.
Suppose that at any point P € F" there exists a directiona € T, F" such that

kn(a)/Fn = kn(@)/mn.

1) Let us show that some neighborhood U C F" of a point Py € F" lies in the
horoball bounded by tangent horosphere H”. Let us take a horospherical system
of coordinates with base H".

The metric M"+! has the form

ds? = di* + g;j(t,0)d6'do’ . (3)
The equation of the hypersurface F" in the neighborhood Py € F" is
t=p@0).
The unit normal vector N to F" has coordinates

ok

T+ (grad p, grad p)’

g_-n+1 — 1
V1 + (grad p, grad p)’

gk = k=1,...,n 4)

where

pF =g"ps, (grad p,grad p) = gijp'p’, (5)
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ap
T

The coefficients of the second fundamental form of F”" are [10]

(6)

10gij 10gjk 4, 13gik ¢
20t 2 9t o

Q= oo ZZo9  ZTeJk ok Z 2Ok
ij COS(/’|:101,] Pip 2 o1 P
where ¢ is the angle between 9/d¢ and the normal N,

1
VT (grad p, grad p)’

cos g = Pij = Pij — Ff‘j/gpk, @)

k
where Fij/g

are the Kristoffel symbols of the metric,
do? = g;;d6" do’.
The coefficients of the metric tensor F” have the form
aij = gij + pipj- ®)
From the conditions of the theorem, the normal curvatures
kn/pn > ka,

and, from (6), it follows that, for any tangent vector b € F", b = (bl, ..., b"),

10g

pipi — lmp.bi kpi _ 1@
2 ot

Pj b/ ,okb’i|
> ka(gijb'b7 + (pib)?).  (9)
Let us introduce the function h = &*2P @),

hi = koe?* p;;

hij = k%ekzp,o,-,oj +k2€k2pp,'j.

Hence
pPi = A kz’
1hij 1 hih;
o Lhy  Lhihy 10
PiZah kah h (10)
1 hh; ; — h;h
pij = ——2 7
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We rewrite the inequality (9) in the following way:

lagjkbibjhz 1 dgik

Ly
2 3t 2k2 at

os ihh- bibl — 1 hibH)* —
@ k2 i,] k2( 1 )

1 dgik k } [ 2 i\2
“Zhibhb | > ko | WP giib' b + —(h-bl) . (D
2 J 2 [
2k ot k5
Since the normal curvature of any horosphere in M”*! is lower or equal than ks, then

10 .
—3 égl] b'b/ < kzg,'jblb], (12)

where A;; = __ %8 are coefficients of the second fundamental form of the

horosphere ¢ = const.

lag/k
2 0t

L hib' kb7 | = (A jh*b7) ;b |

< J(AjhkRI) A b b3 b | < kol grad hlIBIIRiBL, (13)

where |b|2 = gi.,'bibj, | grad h)? = gi.,-h"hj.
Let us we substitute (12), (13) in (11) and obtain

cos (pghh,-,jb’bf > koh*(1 — cos ) |b|> + E(l + cos @) (hib')?

1 .
- 2k_2| grad hl[b[|(h;b")|. (14)

The expression on the right side is a quadratic expression with respect to |(/;b")].
The discriminant of this polynomial is

1
ﬁ' grad h|?|b|> — h? sin® ¢|b|*. (15)
2

But

) 1 k3n?
COs™ @ = 3= 32 5
1+ | grad p| k3h= + | grad h|

| grad h|?

- 2
sin = —_ .
¢ k3h2 + | grad h|?
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We rewrite (15) in the form

b|? d n*
PR end i), (16)
k3 \ kyh=+|grad h|

From (14) it follows
hi jb'b > 0. (17)
Let L be the lines on F” which satisfy the system of equations

32]{

0 30" 90°
— Tl p©) =

— =0. 18
ds 0s (18)

Through any point and in any direction there is only one line in this family. We call
these lines the g-geodesics. We take the restriction of the function / on this line

o' = 0'(s);
do’
hs = hiﬁi
oy =y 2L O (19)
ST s ds K d2s
If we substitute (18) in (19), then
hes = h e’ do > (20)
ss — 12%) dS dS

At the point Py, h = 1,hy = 0 and, from (20), it follows that along the g-
geodesic lines which go through the point Py, & > 1. Then

t=p() =0,

and the hypersurface F” lies on one side of the tangent horosphere H".

2) Let Py be an arbitrary fixed pointin F",and let H" (Pyp) be the tangent horosphere
of F" at Py. From 1) it follows that some neighborhood of the point Py € F" is con-
tained in the horoball bounded by the horosphere H "(Pp). Let us take the dual tan-
gent horosphere H" (Pyp). This horosphere is defined by the opposite point at infinity
on the geodesic line going in the direction of the normal n¢ at the point Py € F™".
Let H"(t) be the parallel horospheres H(0) = H"(Py), M; = F"(\H"(7), t
is the distance from the horosphere H"(Py). Let f = ©/Fp» be the restriction of the
function t to the hypersurface F". For the function f the point P is a strong local
minimum then, for small t, the set M; = F" () H"(t) is diffeomorphic to the
sphere §”~! and bounds on F" a domain D, homeomorphic to a ball and contains
aunique critical point Py of the function f = t/p». On the horosphere H"(7), the
set M; bounds a convex domain homeomorphic to a ball. Actually, the normal v
to M; in H"(t) has the form
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V= A1n1 + AN,
where n is unit normal to H"(t), N is a normal to F", (v, n;) = 0. Therefore
v={(ny, Nni + N.
Let X be a unit vector field tangent to M. Then

(v, Vx X) = (n1, N)p + kn/ pn,

where p is the normal curvature of the horosphere H (7). Since k, /pn > kp and
u =< ky, then (v, VxX) > 0, that is, the second quadratic form of M. in H"(7)
is positive definite and the domain in H" (7) bounded by M, is a convex domain
homeomorphic to a ball.

Let’s consider the body Q(t), bounded D, and H" (r) for small 7. At any
boundary point there exists a local supporting horosphere. It is a global supporting
horosphere too, and the body Q(t) is situated in the horoball bounded by support-
ing horospheres. In other words, the body Q(7) is h-convex. Let t* be a supremum
value of 7, for which the body Q () is h-convex, D* = | D;. Let’s show 7* = oo.
Let us assume the contrary. There are three possible cases:

a) D* = F",

b) D* # F" and, on the boundary S* of the domain D*, there are critical points
of the function f = t/F".

¢) D* # F" and S* doesn’t contain any critical point of the function f.

The case c) is impossible. Really for t > t* the set M; is homeomorphic to the
sphere also. It bounds a convex domain in H" (7) and at any boundary point Q(7)
there exists a local supporting horosphere. It follows that Q(7) is a h-convex set
for T > ™ and 7* is not the supremum.

For the case b) the set $* contains a critical point P of the function f. At the
point P € §*, the horosphere H"(t*) is the tangent supporting horosphere to
F",§* C H"(t*) [ F" is the boundary of the convex domain homeomorphic to
aball in H"(t*). Let show that H" (t*) is the tangent horosphere at all points S*.
Actually, some neighborhood U of the point P € F" lies to one side with respect
to H"(t%), U () S* belongs to H"(t*). If the horosphere H"(7*) isn’t tangent in
some point Q € U () S* then U doesn’t lie to one side of H"(7*). The set S*
is homeomorphic to the sphere $"~1 and the set of the points of S*, such that
the horosphere H"(t*) is tangent, and open and closed at the same time. This set
isn’t empty and coincides with §*. Let Q (™) be the body bounded by D* and the
domain with boundary S* on H" (t*). It is a compact ~-convex body with smooth
boundary. Let S(r) be a circumscribed sphere of Q(t*).

Suppose that a tangent point P € S(r) to the boundary Q(z*) belongs to
H"(t*). In this case the sphere S(r) supports the horosphere H"(t*) at the point
P. The sphere S(r) and H"(t*) are tangent at the point P and the convex sides
have the same direction. This is impossible.

Let Qo € D* be a tangent point of the sphere S(r). For Hadamard manifolds
the following is true.
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Lemma 1. Let S(r) and S(R) (r < R) be tangent spheres at a point Q in a
Hadamard manifold of sectional curvature K < 0.

Suppose that at the point Q the convex sides of the spheres are the same. Then
at the point Q the normal curvatures of the sphere S(R) are lower than the normal
curvatures of the sphere S(r) in corresponding directions.

Proof. Let us take in M"+! a spherical system coordinate with pole O, where O is
the center of the sphere S(R). In the neighborhood of the point Q the sphere S(r)
has the following parametrization

t=he', ..., 0m,
where¢,01, ..., 6" are spherical coordinates in M n+1 with metric
ds? = dt* + g;j(t,0)d0' do’ .

The normal curvature of S() at the tangent point Q of the spheres in the direction
b= (bl, ..., b") is equal to:

27 (9!
e, ... 6" 1dgi)

X 00196/ 2 ot

! gijb'bJ

27 (9!

h@' ... 0"

90907 . 1)

gijb'b’

= kn(b)/s(r) +

Let us take the map:
exp(_)l MY Tom ! = ENTL

The image of the sphere S(R) is the sphere S(R) with the center O = exp_1 (0)
and radius R. The image of the sphere S(r) lies in a closed ball in E"*! of radius
r with the center P = €XPg ! (P), where P is the center of the sphere S(r).

In fact, let us consider triangles O P X, OPX,where X € S(r), X = exp(;1 (X);
OP=0P=R-r, OX=0X=hand ZPOX = /POX.From nonpositiv-
ity of the sectional curvature M"+! and comparison theorem for triangles it follows
that PX < PX.In aspherical system of coordinates with pole O, the metric E"*!
has the form

ds? = di* + Gij(t,0)d6'd6/ .
The normal curvature of the image of the sphere S(r) at the point Q is equal

2
(a h(el,_....,en) B laGij)bibj
- 00106 2 ot
k, = - 22
n G (22)
2 1
32h(0 ,'....,en)bibj
307967 L
Gijbibj R2’
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As the image S(r) lies in a closed ball of radius » with center P, then
- 1
kn > —.
r
From (22) it follows at the point Q

2

h .
0hO) i - ¢ (23)
307907

From (21) and (23) we obtain the statement of Lemma 1.

It follows from the lemma that normal curvatures of the horosphere are lower than
normal curvatures of the tangent sphere which lies inside the horoball, bounded by
the horosphere. Therefore at the point Q¢ € F", normal curvatures F” satisfy the
inequality:

kn/F" = kn/S(r) > kn/H",

where H" is the supporting tangent horosphere. But this contradicts the assumption
that at any point F" there exists direction a, such that

kn(@)/ pr = k(@) 1.

The case b) is impossible. The case ) is possible only for 7* = oo, otherwise, the
arguments of the case b) work here to give a contradiction again. We have proved
that any tangent horosphere is globally supporting.

Let Py, P, be different arbitrary points F” and tangent supporting horospheres
H,, H, also be different. Then F" belongs to the intersection of horoballs bounded
by horospheres Hy, H>. Intersection of horoballs is a compact bounded set if the
sectional curvature of Hadamard manifold

Ka = _k% < 0.

Therefore T* < oo, but this is impossible. Hence horospheres H; and H; coincide
and F” is a horosphere in Hadamard manifold M”+1.

3) Let us introduce the horospherical system of coordinates with base F” in the
manifold M+, The metric of the ambient space has the form (3). For r = 0, we
obtain the hypersurface F".The principal curvatures of the horosphere + = const
satisfy the inequalities ko > A; > k1, and the sectional curvature of M nt+1 gatisfies
inequality

—k} > K > —k3.

By the conditions of the theorem the principal curvatures of F" satisfy inequality
Ai > kp and we obtain that A; = k3 and the horosphere F" is an umbilical hyper-
surface. Principal curvature of equidistant horospheres ¢t = const satisfy the Riccati
equation,

dxr

dt 7
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where K, is the sectional curvature in the direction of the two-dimensional plane
spanned by the normal to the horosphere and the corresponding principal direction.
Ricatti equation has sense because, since |[VR| < C, the horospheres are of class
C3 [7]. Since K, > —k3,

dr

e R > 1(0) = Ao.
dr = 2 () 0

Solving this inequality we obtain,
(k2 + 2o)e 2" — (ko — ko)
=l + e+ (ky — Ao)

for Lo = k2, A > kp, from another side A < k3, and we get A = k for all values 7.
Therefore the coefficients of the metric tensor g;; of the ambient space M n+1 gatisfy
the equations:

lagij
—— =L =kogii,
2 9t 281j

and g;;(0,1) = g;; (6, 0)e—2k2! The metric M"+! has the form
ds* = dt* + e_Zkztdaz,

where do? is the metric of the base horosphere F”. Let us show that the metric of
F" is flat. Suppose that at some point of F” in some two-dimensional plane the
sectional curvature y» # 0. Then the sectional curvatures of the coordinates horo-
sphere ¢ = const in the corresponding point and direction is equal to y2¢%%2. From
Gauss’ formula we get that the sectional curvature of the ambient space M"*+! at
the same direction is equal to

ye?ft — k3, —oo <t < 4o0.
As the sectional curvature M"*! satisfies the inequality
2 2

it follows that y» = 0 and the manifold M"*! is a space of constant curvature —k%.

Proof of Theorem 2. From the part I) of theorem 1 it follows that F" is a compact
convex hypersurface diffeomorphic to S”. Similarly, from the proof of the theorem

3.1 [9] we obtain that every tangent sphere of radius rg is globally supporting and F”

belongs to closed balls bounded by these spheres. Two cases are possible:

I) Thereexisttwodifferentpoints Py, P, € F" suchthattangent spheres S (rg), S2(ro)

at these points of radius rg don’t coincide. Than F" lies at the intersection of the
balls bounded of these spheres. In the Hadamard manifold the intersection of dif-
ferent balls of radius r( belongs to the ball of lower radius ry.

II) Atall points F" the tangent sphere of radius ry is the same and F" coincides with

the sphere of radius r¢. Analogous to the proof of part II). 3) of theorem 1 we obtain
that the ball bounded of this sphere isometric to a ball of radius r¢ in Lobachevsky
space of curvature —k%.
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Summary. We review some of the most interesting results concerning the interactions between
the geometry of a Riemannian manifold and the one of its unit tangent sphere bundle, equipped
with its natural contact metric structure.

1 Introduction

The study of the relationships between the geometric properties of a Riemannian mani-
fold M and those of its unit tangent sphere bundle 77 M, represents a well-known and
interesting research field in Riemannian geometry.

On equipping 71 M with its “natural” metric gs (the one induced by the Sasaki
metric of the tangent bundle), as well as with the contact metric g of the standard
contact metric structure (€, n, ¢, g) of T1 M, the curvature properties of 77 M influence
those of the base manifold M itself, and vice versa. In many aspects, the properties of
(T1 M, g) are faithfully reflected by the ones of (71 M, gs), since these two metrics are
homothetic. Nevertheless, some results are more strictly related to the special features
of the contact metric manifolds. A survey concerning the geometry of (71 M, gs) can
be found in [BV4]. The aim of this paper is to review the main known results which
involve the contact metric structure of 771 M.

The paper is organized in the following way. Section 2 will be devoted to recall
some basic facts and results about contact metric manifolds and, in particular, unit
tangent sphere bundles. In Section 3, we shall review the historical development of the
study of the geometry of a Riemannian manifold via the contact metric structure of
its unit tangent sphere bundle. In Section 4, we shall describe the characterization of

Key words: contact metric manifolds, unit tangent sphere bundle, semi-symmetric spaces.
Subject Classifications: 53C15, 53C25, 53C35.
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semi-symmetric unit tangent sphere bundles, recently obtained by the author in joint
works with E. Boeckx [BC] and D. Perrone [CP2].

2 Preliminaries

A contact manifold is a (2n 4 1)-dimensional manifold M equipped with a global 1-
form 7 such that n A (dn)" # 0 everywhere on M. It has an underlying almost contact
structure (1, ¢, &) where £ is a global vector field (called the characteristic vector field)
and ¢ a global tensor of type (1,1) such that

nE) =1, ¢t¢=0, np=0, ¢*=-I1+n®E.

A Riemannian metric g can be found such that
n=g@E. ), dn=gC.e), g ¢)=—gp.").

Wereferto (M, n, g)orto (M, n, g, &, ¢) as acontact metric (or Riemannian) manifold.
If L denotes the Lie differentiation, we denote by /& and £ the operators defined by

1
h=7Lep. X =R(X.5%.

The tensor & is symmetric and satisfies
V& =—¢p—9h, Vep=0, hp=—ph, h&=0. (D)

A K-contact manifold is a contact metric manifold such that £ is a Killing vector
field with respect to g. Clearly, M is K-contact if and only if 2z = 0. If the almost
complex structure J on M x R defined by

d d
J <X fE) = <<PX - f&, MX)E) )

is integrable, M is said to be Sasakian. Any Sasakian manifold is K-contact and the
converse also holds for three-dimensional spaces. It is easy to prove that if M is a
contact metric three-manifold of constant sectional curvature 1, then M is necessarily
Sasakian. We refer to [BI2] for more information about contact metric manifolds.

Next, let 7 : TM — M be the tangent bundle of a Riemannian manifold (M, g).
The tangent space to T M at a point (x, u) splits into the direct sum of the vertical
subspace VT My ;) = kermy(x,4) and the horizontal subspace HT M, ) with respect
to the Levi-Civita connection V of M. If X is a vector field on M, X" and XV denote
respectively the horizontal and the vertical lift of X on TM. The map X +— X"
(respectively, X — XV)is anisomorphism between T, M and HT M ,, (respectively,
TyM and VT M ). The Sasaki metric gg on T M is defined by

8s(A, B) = g(m+A, m:B) + g(KA, KB),
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where A, B are the vector field on 7 M and K is the connection map corresponding to
the Levi-Civita connection of M. T'M admits an almost complex structure J defined
by JX" = XV and J X" = —X".

The tangent sphere bundle wm: TYM — M is the hypersurface of T M defined by
T'M = {(x,u) € TM : g«(u, u) = 1}. We shall denote again by gg the metric induced
on T1 M by the Sasaki metric of T M.

The geodesic flow of (M, g) is the horizontal vector field of T M defined by

/9 \"
5L/¢=—]N=Ml (ﬁ) ,

where (x,u) € TM and u = u' d;;, in local coordinates. If (x,z) € 1M, then &',
is tangent to Ty M. Hence, &' can be considered as a vector field on Ty M. Let 1’ be
the 1-form on T\ M dual to & with respect to gg, and ¢’ the (1,1) tensor given by
¢'X =JX —n(X)N. Then,

€08 = (27,26, Sgs
9 9 9 2 9 b 9 4

is the standard contact metric structure on 77 M. Note that the contact metric of 7\ M
is given by g = }‘gg. So, since g is homothetic to gs, (T1 M, g) and (T1 M, gs) share
many geometric properties. For example, the former is reducible if and only if the
latter is, and (771 M, g) is locally symmetric, respectively semi-symmetric, if and only
if (T1 M, gs) has the same property.

The following characterization of locally reducible unit tangent sphere bundles was
proved recently by E. Boeckx:

Theorem 1 ([B4]). The unit tangent sphere bundle (T\M, gs) of a Riemannian mani-
fold M, of dimension greater than two, is locally reducible if and only if the base
manifold has a flat factor.

We now describe the curvature tensor of (77 M, g). In general, the vertical lift of
a vector (field) is not tangent to 71 M. For this reason, we define the tangential lift of
X € Ty M by

X =(X—-gX,wu)' = X",

(eu) —
where we put X = X — g(X, u). The metric g is then described explicitly by
43X, Y") = g(X.¥) = g(X,Y) = g(X, w)g(¥, ),
43(X", Y" =0,
45(x". Y = g(X.7),

at any point (x, u) € T; M. The Levi-Civita connection V associated to g is given at
any point (x, u) by
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Vi Y' = —g(Y, u)X',

= h 1 h

VY = E(R(u, X)Y)",

_ 1

VY = (VxY)' + 5 (R, )Xk, )

_ 1
VY = (Vx )l — S (R(X, Y)u),

where R(X,Y) = [Vx, Vy] — V|x vy is the curvature tensor of M.

. h
The covariant derivatives of £ = 2u’ (%) can be easily derived from the formulas

above. Explicitly, we have
Vit = —(R(X, wu)',  Vyig = 20X — (R(X, wyu)". 3)
Taking into account (1), & = V& + ¢>. So, we have
hx" = —X"+ (RX,ww)", hX' =X — (RX,u)u). 4)
The curvature tensor R of (T1 M, gs) is given by
R(X', YNZ' = —g(X, Z)Y' + g(Y, 2)X",
RX', YHZ" = (RX,V)Z)" + %([R(u, X), Ru, N1Z)",
RX", yHhz' = —%(R(Y, )X — %(R(u, Y)R(u, Z)X)",

R(xX", yHz" = %(R(X, 2)Y) — %(R(X, R(u,Y)Z)u)' (5)

+ %((VXR)(LL VZ)",
RX", Y7 = (R(X,Y)Z)
+ %(R(Y, R(u, Z)X)u — R(X, R(u, Z)Y)u)"
+ %((va)w, 2)Y — (VyR)(u, 2)X)",
RX", Y"Z" = (R(X, ) 2)" + %(R(u, R(X,Y)u)Z)"

— %(R(u, R(Y, Z)u)X — R(u, R(X, Z)u)Y)"

1
+ 5((VZR)(X, Yyu)'.
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From formulas (5) we can also obtain the following formulas for £:

X" = 4(R(X, wu)" — 3(R(R(X, wu, wu)" + 2(R'(X, wu)’, ©
X' = (R*(X, wu) +2(R' (X, wu)",

where R (X, w)u = (V,R)(-, u)u.

Note that, since gg = 4g, the Riemannian connection, the curvature tensor of
type (1,3) and the Ricci tensor of (T7M, gs) coincide with the corresponding ones
of (T1M, g), while the scalar curvature and the sectional curvature of (71 M, gg) are
obtained by the ones of (77 M, g) divided by 4.

3 A historical survey

We now review some old and recent results concerning the geometry of the standard
contact metric structure of the unit tangent sphere bundle 77 M and its influences on
the base manifold (M, g). In some cases, we give short sketches of the proofs of the
results. We refer to the original papers for the details.

K -contact unit tangent sphere bundles

As we already mentioned in the previous Section, a K -contact manifold is a contact
metric manifold (M , 1, &) such that £ is a Killing vector field with respect to g, which
is equivalent to the condition 2 = 0. A Sasakian manifold is always K -contact and the
converse also holds in dimension three. K -contact spaces are a field of special interest
among contact metric manifolds. As concerns the unit tangent sphere bundle, Y. Tashiro
proved the following

Theorem 2 ([Ts]). (T1 M, n, g) is K -contactifand only if (M, g) has constant sectional
curvature 1. In this case, T\ M is Sasakian.

Proof. (For all the details, see [Ts] or Chapter 9 of [BI2].) Suppose first T1 M is K -
contact. Then, by (1), Vx& = ¢X for all X. Comparing with (3), one can show that on
the base manifold (M, g) we have

RX,Y)Z=g(,2)X —g(X, 2)Y, )

that is, (M, g) has constant curvature 1.
Conversely, if (7) holds, one can compute the covariant derivative of ¢. It satis-
fies

(Vx@)Y = g(X, Y)§ —n(¥)X,

for all vector fields X, Y, and this characterizes Sasakian manifolds [B12, Chap-
ter 6]. O



46 G. Calvaruso
Locally symmetric unit tangent sphere bundles

It is well-known that the study of locally symmetric spaces is one of the main topics in
Riemannian geometry. In the framework of contact metric geometry, local symmetry
has been extensively investigated, obtaining many rigidity results. For example, K -
contact locally symmetric spaces have constant sectional curvature 1 [O], [Tn], while
three-dimensional locally symmetric contact metric manifolds must have constant sec-
tional curvature O or 1 [BIS]. For the unit tangent sphere bundle, Blair proved the
following.

Theorem 3 ([BI1]). (1M, n, g) is locally symmetric if and only if either (M, g) is flat
or it is a surface of constant sectional curvature 1.

An alternative proof, which uses only curvature information, was obtained by
Boeckx and Vanhecke [BV1].

In Section 4 we describe how Theorem 3 has recently been extended by replacing
local symmetry by semi-symmetry ([CP2], [BC]). An extension of Theorem 3 to locally
@-symmetric spaces, obtained in [BV1], is described further in this Section.

Also local symmetry on the base manifold can be characterized by some geometric
properties of its unit tangent sphere bundle. For example, taking into account (6), it is
not difficult to show that (M, g) is locally symmetric if and only if £ maps horizontal
(or equivalently, vertical) vectors into horizontal (vertical) vectors. A more complete
characterization result is the following.

Theorem 4 ([BPV]). (M, g) is locally symmetric if and only if one of the following
statements holds:

(a) £ maps horizontal (equivalently, vertical) vectors into horizontal (vertical) vectors;

(b) the horizontal (equivalently, vertical) lift of an eigenvector of R, = R(-, u)u is an
eigenvector of £, at any point (p,u) € T1M;

(c) the horizontal (equivalently, vertical) distribution of T\ M is anti-invariant with
respect to Vegh.

Unit tangent sphere bundles satisfying Ve = 0

Let (M, 1, g) be a contact metric manifold. The condition
Veh =0 8)

appeared for the first time in a paper by Chern and Hamilton [ChH], concerning the
study of compact contact three-manifolds. They conjectured that for a fixed contact
form 7, whose characteristic vector field & induces a Seifert foliation, there exists a
C R-structure, and hence, a contact metric structure, satisfying (8). It can be noted that
(8) is equivalent to the condition that the sectional curvature of all planes, at a given
point, perpendicular to the contact subbundle, are equal. When M is compact, (8) is
the critical point condition for the functional 7 (g) =“integral of the scalar curvature”,
defined in the set A(n) of all metrics associated to n [P1]. In dimension three, (8) is
related to the existence of a taut contact circle on a compact contact metric manifold
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[CP1]. Note that K -contact spaces obviously satisfy (8). On the other hand, there are
contact metric manifolds satisfying Ve h = 0 which are not K -contact. This is also the
case for the unit tangent sphere bundle on a flat manifold, as follows by comparing
Theorem 2 with the following.

Theorem 5 ([P2]). (T1M, n, g) satisfies Veh = 0 if and only if (M, g) has constant
sectional curvature 0 or 1.

Theorem 5 also extends Theorem 3, since locally symmetric contact metric manifolds
satisfy (8) [P2]. A further generalization of Theorem 5 is given by the following result:

Theorem 6 ([BPV]). (M, g) is locally isometric to a two-point homogeneous space if
and only if (1M, n, g) satisfies

Veh = 2ahg + 2bgS,

where a and b are functions only depending on p € M and S is the (1, 1)-tensor defined
by S(X") = X" and S(X') = —X' for X e TM.

Conformally flat unit tangent sphere bundles

Conformally flat manifolds are a classical field of investigation in Riemannian geome-
try. As is well-known, a Riemannian manifold (M, g) is said to be conformally flat
if its Riemannian metric g is locally conformal to a flat metric, and this gives strong
information on the curvature of the manifold. Making such information interact with
the curvature properties of the unit tangent sphere bundle, the following result has been
obtained:

Theorem 7 ([BIK]). (T1 M, n, g) is conformally flat if and only if (M, g) is a surface
of constant Gaussian curvature O or 1.

Unit tangent sphere bundles which are (k, 11)-spaces

A contact metric manifold (M, n, g) is said to be a (k, w)-space if its characteristic
vector field & belongs to the so-called (k, u)-distribution, that is, if

R(X,Y)§ =k(n(Y)X —n(X)Y) + u((Y)hX — n(X)hY),

for all vector fields X, Y, where k and p are some constants.

A Sasakian manifold is a (k, ©t)-space with k = 1 (and p arbitrary). Non-Sasakian
(k, p)-spaces have been completely classified by Boeckx in [B3]. In [BIKP], where
(k, n)-spaces have been introduced, the authors proved the following.

Theorem 8 ([BIKP)). (T1 M, n, g) is a (k, w)-space if and only if (M, g) has constant
sectional curvature.

Note that, according to Theorems 2 and 8, the unit tangent sphere bundle 77 M of
a Riemannian manifold of constant sectional curvature # 1, gives an example of a
(k, )-space which is not K -contact.
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Homogeneous unit tangent sphere bundles

A contact metric manifold (1\71 , 1, &) is said to be homogeneous if there exists a con-
nected Lie group of isometries acting transitively on M and leaving n invariant. It is
said to be locally homogeneous if the pseudogroup of local isometries acts transitively
on M and leaves n invariant. For the unit tangent sphere bundle, we have:

Theorem 9 ([BV4)). If (M.g) is a two-point homogeneous space, then its unit tangent
sphere bundle (T\ M, n, g) is a homogeneous contact metric manifold.

Theorem 9 is the contact metric version of the following classic result by Wolf [W]
(see also [MTr)):

Theorem 10 ([W]). If (M, g) is a two-point homogeneous space, then its unit tangent
sphere bundle (T\ M, gs) is homogeneous.

The converse of Theorems 9 and 10 has been proved to hold in several special cases
([BV2], [BV4]), but the general case remains an interesting open problem.

A way to characterize two-point homogeneous spaces using the properties of their
unit tangent sphere bundles is the following

Theorem 11 ([BPV]). (M, g) is locally isometric to a two-point homogeneous space
if and only if on (I'M, n, g) we have both

(a) the eigenvalues of h are constant along the fibers, and
(b) £ maps vertical vectors into vertical vectors.

Note that, according to Theorem 4, condition (b) above means that (M, g) is locally
symmetric.

Locally g-symmetric unit tangent sphere bundles

As we already remarked, local symmetry represents a very rigid condition in the
framework of contact metric geometry. In order to weaken such conditions, lo-
cally p-symmetric spaces were first introduced in [Tk], as Sasakian manifolds satis-

fying,
§((VxR)(Y,Z)V, W) =0, 9

for all X, Y, Z,V, W orthogonal to &£. For a Sasakian manifold, (9) is equivalent to
requiring that the reflections with respect to the integral curves of § are local isome-
tries, but for a general contact metric manifold (M, 5, g) this geometric property is
strictly stronger than (9) (see [BBV]). Using this stronger geometric property as defi-
nition, locally ¢g-symmetric spaces have also been introduced for contact metric spaces
in [BV1]. Note that a non-Sasakian (k, u)-space is locally ¢-symmetric [B2]. The
following result was proved in [BV1]:

Theorem 12 ([BV1]). (T1 M, n, g) is locally p-symmetric if and only if (M, g) has
constant sectional curvature.
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H -contact unit tangent sphere bundles

A unit vector field V on a Riemannian manifold (M, g) determines a map between
(M, g) itself and its unit tangent sphere bundle (77 M, gs). If M" is compact and
orientable, the energy of V is defined as the energy of the corresponding map:

1 n 1
E(V) = sz IdV|?dv = Evo1(M, &+3 /M IVV? dv.

V is called harmonic if it is a critical point for E in the set of all unit vector fields of
M [Wo]. This has been proved to be equivalent to requiring that

vy (X) = tr(V.(AL)X) =0 on V1, (10)

where Ay X = —VxV [Wi].
The corresponding map between (M, g) and (71 M, gg) is harmonic if and only if
V is harmonic and moreover

trR(V.V, V). =0. (11

Note that (10) and (11) also make sense when M is non-orientable or non-compact.
For this reason, (10) has been assumed as the definition of a harmonic vector field
on an arbitrary Riemannian manifold [G-M]. For further details and references about
harmonic vector fields, we refer to [BV3], where the harmonicity of the geodesic flow
was investigated (see also Theorem 14 further on).

Among the unit vector fields of a contact metric manifold (1\_4 , 1, ), the most
important for determining the geometry of the manifold is by far its characteris-
tic vector field £&. A H-contact space is a contact metric manifold whose charac-
teristic vector field is harmonic [P5]. The following characterization was proved in
[P4]:

Theorem 13 ([P4]). (M, 1, g) is H-contact if and only if € is an eigenvector for the
Ricci operator.

K -contact spaces (in particular, Sasakian manifolds), (k, u)-spaces, locally ¢-
symmetric spaces are all examples of H-contact manifolds. We can refer to [P5] for
more details on H-contact spaces.

As concerns the unit tangent sphere bundle, Theorem 1 of [BV3] can be reformu-
lated in the following way:

Theorem 14 ([BV3]). If (M, g) is two-point homogeneous, then (T'\M,n, g) is H-
contact.

Note that, according to Theorems 2, 12 and 14, if (M, g) is a two-point homoge-
neous space of non-constant sectional curvature, then its unit tangent sphere bundle
(T1M, n, g) is an H-contact space which is neither locally ¢p-symmetric (in particular,
it is not a (k, u)-space), nor K -contact.

For the unit tangent sphere bundle, Proposition 2 of [BV3] can be rewritten in the
following way, which extends Theorems 2, 8 and 12 in low dimension:
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Theorem 15 ([BV3]). If dim M = 2 or 3, then (T\ M, n, g) is H-contact if and only if
M has constant curvature.

To our knowledge, the general problem of characterizing H-contact unit tangent
sphere bundles is an interesting open problem. More precisely, the following was stated
in [BV3].

Question. Is a Riemannian manifold, whose unit tangent sphere bundle is H-contact,
a two-point homogeneous space?

4 Semi-symmetric unit tangent sphere bundles

A Riemannian manifold (M, g) is said to be semi-symmetric if its curvature tensor R
satisfies:

R(X,Y)-R=0, (12)

for all vector fields X, Y, where R(X, Y) acts as a derivation on R. This is equivalent
to saying that R p is, foreach p € M, the same as the curvature tensor of a symmetric
space. This last space may vary with p. So, locally symmetric spaces are obviously
semi-symmetric, but the converse is not true. The first example of a semi-symmetric
space which is not locally symmetric was found by H. Takagi [T]. In all dimensions
greater than one, there exist semi-symmetric spaces which are not locally symmetric (we
can refer to [BKV] for a survey). Nevertheless, semi-symmetry implies local symmetry
in several cases and it is an interesting problem, given a class of Riemannian manifolds,
to decide whether inside that class semi-symmetry implies local symmetry or not (see
for example [B1], [CV]). The author, in joint works with E. Boeckx and D. Perrone,
obtained the following generalization of Theorem 3 by Blair:

Theorem 16 ([BC], [CP2]). If the unit tangent sphere bundle (T1 M, gs) (equivalently,
(T1M, n, g)) of a Riemannian manifold (M, g) is semi-symmetric, then it is locally
symmetric. Therefore, (T\M, gs) is semi-symmetric if and only if either (M, g) is flat
or it is locally isometric to S*(1).

In order to prove this result, after recalling the local structure of a semi-symmetric
space, we deal separately with the cases when 71 M is three-dimensional, where we
make use of the special features of a three-dimensional contact metric manifold, locally
irreducible and locally reducible.

Definition 1. The nullity vector space of the curvature tensor at a point p of a Rieman-
nian manifold (M, g) is given by

Eop ={XeT,M/R(X,Y)Z=0foralY,ZeT,M}.

The index of nullity at p is the number v(p) = dimEo,. The index of non-nullity (or
co-nullity) at p is the number u(p) = dimM — v(p).
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The index of nullity and the index of co-nullity permit us to distinguish the different
irreducible factors in the local structure of a semi-symmetric space (M, g), which was
described by Szabé [Sz] in the following way.

Theorem 17 ([Sz]). There exists an open dense subset U of M such that around every
point of U the manifold is locally isometric to the direct product of symmetric spaces,
two-dimensional manifolds, spaces foliated by Euclidean leaves of codimension two,
real cones and Kdhlerian cones.

For more details and references about the irreducible factors of the local decompo-
sition of a semi-symmetric space, we refer to [BKV].

The three-dimensional case

Let (M, n, g) be a three-dimensional contact metric manifold and m a point of M. Let
U be the open subset of M, where h # 0, and V the open subset of points m € M such
that 2 = 0 in a neighborhood of m. Then, U U V is an open dense subset of M. For any
point m € U UV there exists a local orthonormal basis (called a ¢-basis) {£, e, e} of
smooth eigenvectors of % in a neighborhood of m. On U we put he = Ae, where A is
a non-vanishing smooth function which we suppose to be positive. From (1), we have
hgpe = —Agpe. We can refer to [CPV] for more details.

The components of the Ricci operator Q, with respect to {£, e, e}, are given by
(see [P3] or [CPV])

Q& =2(1 — A?)E 4 Ae + Bye,
Qe = A& + (5 — 1+ 2% +2a)) e + E(Vpe, (13)
Qpe = BE +EMWe+ (5 — 1+ A2 —2a)) ge.

Starting from (12) and using (13), one can characterize three-dimensional semi-

symmetric contact metric manifolds by a list of algebraic formulas involving A, a,
A, B:

Lemma 1. [CP2] Let (M, n, g) be a three-dimensional non-Sasakian contact metric
manifold. Then M is semi-symmetric if and only if

B(A\2 — 14 2a)) = AE(L), (14)
A% —1—2a)) = BE(L), (15)
AB +E£(V) (% +oa2 2) —0, (16)
B — [EW)21+ (A% —1—2ak) (% +322 -3+ 2a,\) =0, (17)
A2 —[E0)%1+ (A2 = 1 +2an) (% +32 -3 ZaA) —0, (18)

where r denotes the scalar curvature of M.
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Making use of formulas (14)—(18), it is possible to prove the following

Proposition 1 ([CP2]). A three-dimensional semi-symmetric contact metric manifold
(M3, n, g) satisfying A = 0 or B = 0, either is flat or has constant curvature 1.

We are now ready to prove the three-dimensional version of Theorem 16:

Theorem 18. Ler (M2, g) be a Riemannian surface. (T\ M 2, g) (equivalently, (' M 2
gs)) is semi-symmetric if and only if (M?, g) is either flat or locally isometric to S*(1).

Proof. If (M?, g) has constant Gaussian curvature 0 or 1, from Theorem 3 it follows
that 71 M? is locally symmetric. In particular, it is semi-symmetric.

In order to prove the converse, we need the description of the contact metric structure
of ' M 2, Using isothermal local coordinates (x1 , xz) on M?2, its Riemannian metric g
is given by

g = e ((dx")? + (dx*)?),

0
9x2"
Then, {€ = 20", e = 2u”, pe = 2u’} is a p-basis for (Ty M2, n, g), of eigenvectors of
h. More precisely, he = Ae with A = 1 — k, where k denotes the Gaussian curvature
of (M2, g), considered the function on T; M? defined by k(p, v) = k(p). We can refer
to [CP2] for all the details.

Next, we can compute the Ricci tensor of 771 M 2 starting from formulas (5) (see
also [BV2]). We obtain

where f is a C* function on M2. Set u = —vzai—l + vla%z andv = vla% +02

_ 1
2 (X", Y =0, (X, ¥) = 5 3 gp(R(v, ENX, R(v, ENY),
i=1,2

where ¢ is the Ricci tensor of M2 and {E;} is an orthonormal basis of T,,MZ. In
particular, taking {u, v} as orthonormal basis of T), M 2 we get

A =00 €) = 020", 2u")
=40,(v, u) — 28, (R(v, w)v, R(v, w)u) = —k(p)*gp(v, u) = 0.
So, if (T'M 2, n, g) is semi-symmetric, since A = 0, Proposition 1 implies that

T1 M is flat or it has constant curvature 1. In both cases, 71 M is locally symmetric and
the conclusion follows from Theorem 3. (]

Irreducible semi-symmetric unit tangent sphere bundles
From now on, we shall always assume that dimM > 3. We now prove the following.

Theorem 19. Let (M, g) be a Riemannian manifold of dimensionn > 3. If (1M, gs)
is semi-symmetric, then Ty M must be locally reducible.
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Proof. We assume that 71 M is semi-symmetric and locally irreducible and we show
that M is flat. By Theorem 1, this gives a contradiction.

According to Szabé’s classification (Theorem 17), 71 M is locally isometric to one
of the Riemannian manifolds listed in Theorem 17. If 71 M is locally isometric to a
symmetric space, then it is locally symmetric and so, M must be flat (Theorem 3).
We shall now exclude all the other possibilities. Since dim71M = 2n — 1, where
n = dimM, clearly 71 M cannot be locally isometric either to a Riemannian surface, or
to a Kdhlerian cone, since manifolds of both type have even dimension (see [BKV] for
the description of Kéhlerian cones).

Next, suppose now that 71 M is locally isometric to F"+2, a Riemannian manifold
foliated by two-dimensional Euclidean leaves. This means that the index of nullity is
constant along F "+2 and equal to » [BKV]. Hence, at any point p € F "+2 e have

T,F™% = Eop ®V,

with dimV, = 2. Note that 7 +2 = 2n — 1 > 5 and so, r > 3. After some easy
calculations on the curvature tensor of 71 M, starting from formulas (5), we can show
that when r > 3, there exist three linearly independent vectors in V), while, if r = 3,
then (M, g) is flat. Since both cases give a contradiction, we can exclude that 71 M is
locally isometric to F" 2.

Also the case when T1 M is locally isometric to a real cone can be excluded using
curvature information. In fact, comparing the formulas for the curvature of a semi-
symmetric real cone with the information coming from formulas (5), we eventually
obtain a contradiction. We refer to [BC] for the full detailed proof. O

Reducible semi-symmetric unit tangent sphere bundles

We now complete the proof of Theorem 16, by proving the following.

Theorem 20. Let (M, g) be a Riemannian manifold of dimension n > 3. Then,
(T1 M, gs) is semi-symmetric if and only if M is flat.

Proof. The “if” part is trivial. As concerns the “only if” part, by Theorem 19 it follows
that 71 M is locally reducible. Thus, according to Theorem 1, there exist k > 1 and,
unless M is flat, a Riemannian manifold M’, without the flat factor, such that

M =M x RF.

In order to complete the proof, we want to prove that M is flat.

Fix apoint (x, u) in Ty M. Then, x = (x’, v9) € M’ x R¥ and the tangent space T, M
splits into the direct sum of T,y M" and Ty, R¥. Consider in the tangent space T,y M
the following distributions:

Ll = V(x,u)(TxM) b H(x,u)(Tx’M/)’
Ly = Hx ) (TyyRY).

Then, T, WT1M = L1 ® L.
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We denote by X, Y, respectively U, V, some vector fields tangent to M’, respectively
to R, while A, B denote generic vector fields tangent to M. Computing the Levi-Civita
connection of (71 M, gs), we proved that L and L, are two complementary, mutually
orthogonal, totally geodesic and totally parallel distributions (L, is also flat) [BC].
Therefore, £1 and L, the foliations determined respectively by L and L, are leaves
of aRiemannian product M| x M> = T1 M. In particular, let M| be the integral manifold
of L through a point ((x’, 0), u). Then, T'M' C M.

Note that, since T1M = M| x M> is semi-symmetric and M, is flat, M itself
is semi-symmetric. We proved also that 77 M’ is semi-symmetric (see [BC]). Now, if
Ty M’ is locally reducible, from Theorem 1 it follows that M’ must have a flat factor,
which gives a contradiction. Hence, T1 M’ is locally irreducible and so, according to
Theorems 18 and 19, M’ must be isometric to Sz(l). So, we end the proof of Theorem
20 by proving the following

Proposition 2. The unit tangent sphere bundle of the Riemannian manifold M =
Sz(l) X ]Rk, with k > 1, is not semi-symmetric.

Proof. Suppose T\ M is semi-symmetric. Consider x = (x’, vg) € M and a unit vector
u € Ty M. Then, there exist unit vectors u1, us, tangent respectively to S2(1) at x’
and to R¥ at v, such that u = cos@u; + sinOuy. We choose u in such a way that
cosf # 0 # sin 6.

Next, we consider the following vectors tangent to M:

X=u1+X2, Y=u+Y, U=u +U,,
V=uv+V,, W=uv+W,

where v is a unit tangent vector to S2(1) at x’, orthogonal to u].
Applying the semi-symmetry condition (12), we have

(RX", YY - RyU", vHw!' = 0. (19)

We use formulas for the curvature tensor of 71 M and, after some standard but quite
long calculations, from (19) we get

—Z(l — g(Y, u)cosO)(u'| + g(W, u) cosbub) = 0. (20)

Note that g(Y, u) = cos6 + sin60g(Y>, uz) and g(W, u) = sin6 g(Wa, up). If we take
Y, = W, = 0, then (20) gives u} = 0, that is,

(w1 — g, wu)’ =0
and so,
0=u; — g, u)u = sin® Qu; — sin 6 cos Gus. 1)

Therefore, taking into account cos6 # 0 # sinf, (21) gives u; = up = 0, which
clearly cannot happen. So, 71 M is not semi-symmetric.
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Remark 1. The tangent sphere bundle T, M of arbitrary radius r is the submanifold of the
tangent bundle 7'M defined by T, M = {(x,u) € TM : g, (u,u) = r2} and equipped
with the metric gg induced by the Sasaki metric on T M (see for example [KS] and
[KSVI]). The geometric properties of (7. M, gs) may change with the radius. Its Levi-
Civita connection and Riemann curvature tensor have been calculated in [KS]. One
obtains similar expressions to the ones above for 7j M, up to an occasional factor 1/r2.

As proved in [B4], Theorem 1 holds for tangent sphere bundles (7, M, gs) of any
radius r. Further, Theorem 3 by D. Blair can be generalized, obtaining that the rangent
sphere bundle (T, M, gs), r > 0, of a Riemannian manifold (M, g) is locally symmetric
if and only if either (M, g) is flat or it is locally isometric to the two-dimensional sphere
S2(r) of radius r.

With these ingredients, one can proceed as in the case of the unit tangent sphere
bundle to prove the following

Theorem 21 ([BC]). If the tangent sphere bundle (T M, gs), r > 0, of a Riemannian
manifold (M, g) is semi-symmetric, then it is locally symmetric. Therefore, (T, M, gs) is
semi-symmetric if and only if either (M, g) is flat or it is locally isometric to S*(r).
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Summary. We introduce the notion of a tt*-bundle. It provides a simple definition, purely in
terms of real differential geometry, for geometric structures which are solutions of a general
version of the equations of topological-anti a topological fusion considered by Cecotti-Vafa,
Dubrovin and Hertling. Then we give a simple characterization of the tangent bundles of spe-
cial complex and special Kidhler manifolds as particular types of tt*-bundles. We illustrate
the relation between metric tt*-bundles of rank r and pluriharmonic maps into the pseudo-
Riemannian symmetric space GL(r)/O(p, ¢q) in the case of a special Kihler manifold of signature
(p,q) = (2k,2l). It is shown that the pluriharmonic map coincides with the dual Gauss map,
which is a holomorphic map into the pseudo-Hermitian symmetric space Sp(R*")/U(k, 1) C
SL(2n)/SO(p, q) € GL(2n)/O(p, q), where n = k + 1.

1 tt*-equations and pluriharmonic maps

Definition 1. A #*-bundle (E, D, S) over a complex manifold (M, J) is a real vector
bundle £ — M endowed with a connection D and a section S € I'(T*M ® End E)
which satisfy the t*-equation

R =0, forall 0 €eR, (1.1)

where RY is the curvature tensor of the connection D? defined by
DY := Dx + (cos0)Sx + (sin6)Syx, forall X e TM. (1.2)
* This work was supported by the ‘Schwerpunktprogramm Stringtheorie’ of the Deutsche For-

schungsgemeinschaft. Research of L. S. was supported by a joint grant of the ‘Deutscher
Akademischer Austauschdienst’ and the CROUS Nancy-Metz.
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A metric tt*-bundle (E, D, S, g) is a tt*-bundle (E, D, S) endowed with a possibly
indefinite D-parallel fiber metric g such that for all p € M

g(SxY,Z) = g(¥,SxZ), forall X,Y,Z e T,M. (1.3)

A unimodular metric tt*-bundle (E, D, S, g) is a metric tt*-bundle (E, D, S, g)
such that tr Sy = O for all X € TM. An oriented unimodular metric tt*-bundle
(E, D, S, g, or) is a unimodular metric tt*-bundle endowed with an orientation or of
the bundle E.

Remarks. 1) In special cases, particularly emphasized in the literature, such as the
moduli spaces of topological quantum field theories [CV, D] and the moduli spaces
of singularities [H], the complexified tt*-bundle E C is identified with T19M and
the metric g is positive definite. Here we will consider the case E = T M, and
hence EC = T1-9M + 791 M. This includes special complex and special Kéhler
manifolds, as we shall see.

2) If (E, D, S) is a tt*-bundle then (E, D, Se) is a tt*-bundle for all 6 € R, where

s?:=p’ - D= (cos0)S + (sinh)S;. (1.4)

The same remark applies to metric tt*-bundles.

3) Notice that an oriented unimodular metric tt*-bundle (E, D, S, g, or) carries a
canonical metric volume element v € I'(A"E*), r = 1k E, determined by g and
or, which is D? parallel for all 8 € R.

Proposition 1. Let E — M be a real vector bundle over a complex manifold (M, J)
such that E is endowed with a connection D and a section S € I'(T*M ® End E).
Then (E, D, S) is a tt*-bundle if and only if the following equations are satisfied.

(i) dPS = dPS; = 0, where S and S are considered as one-forms with values in
End E and dP is the exterior covariant derivative defined by D,

(i) [Sx, Syl = [Syx, Syylforall X and Y,
(iii) RP(X,Y) + [Sx, Syl =0 forall X and Y.
Proof. Using the relations 2 cos 6 sin @ = sin 26, 2 cos?> 6 = 14 cos 26 and 2sin” 6 =
1 — cos 20, we obtain a (finite) Fourier decomposition of RP’ in the variable 6. The
tt*-equation RP” = 0 shows that all Fourier components are zero. This yields (i-iii).O0
Definition 2. Let (M, J) be a complex manifold and (N, &) a pseudo-Riemannian

manifold. A map f : M — N is called pluriharmonic if f|c is harmonic for all
complex curves C C M.

Notice that the harmonicity of f|¢ is independent of the choice of a Riemannian
metric in the conformal class of C, by conformal invariance of the harmonic map
equation for (real) surfaces.

Proposition 2. Let (M, J) be a complex manifold and (N, h) a pseudo-Riemannian
manifold with Levi-Civita connection V!, D a connection on M which satisfies

DyyX = JDyX, (1.5)

for all vector fields which satisfy LxJ = 0 (i.e. for which X — i J X is holomorphic),
and V the connection on T*M @ f*T N which is induced by D and V".
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(i) Amap f : M — N is pluriharmonic if and only if it satisfies the following equation
V'af =0, (1.6)

where 3f = df'0 e 1"(/\1’0 T*M ®c (T N)C) is the (1, 0)-component of df and
V" is the (0, 1)-component of V. = V' + V",

(ii) Any complex manifold (M, J) admits a torsion-free complex connection, i.e. a
torsion-free connection D which satisfies DJ = 0.

(iii) Any torsion-free complex connection D satisfies (1.5).

Proof. The condition (1.5) means that D” Z = 0 for all local holomorphic vector fields
Z, ie. Fgﬂ = Fgﬂ = 0 in terms of the Christoffel symbols of D with respect to
holomorphic coordinates z*. This implies that the Christoffel symbols of D do not
contribute to equation (1.6). The equation is therefore independent of the choice of
connection D. In fact, it is straightforward to check that the restriction of (1.6) to every
complex curve C reduces to the harmonic map equation for f|c : C — N.

(ii) is well known, see [KN].

(iii) The conditions TP = 0 and DJ = 0 imply that

DyyX —JDyX =[JY, X1+ Dx(JY) — JDyX (1.7)
=[JY, X]+ J[X, Y] = —(LxJ)Y.
The right-hand side vanishes if LxJ = 0. o

Given a Hermitian metric y on T19M, or, more generally, a pseudo-Hermitian
metric, the Chern connection of y is the unique Hermitian connection D in the holo-
morphic bundle 7% M which satisfies D”Z = 0 for all holomorphic local sections Z
of T1-9M. The last property is usually written as D" = 3.

Proposition 3. Let (M, J) be a complex manifold and D the Chern connection of a
pseudo-Hermitian metric y on TOM. Then there is a unique connection D in the real
tangent bundle T M such that DZ = DZ for all local sections Z of T'-° M, where D has
been complex bilinearly extended to a connection on the complexified tangent bundle.
The connection D satisfies (1.5), DJ = 0 and Dg = 0, where g is the J-invariant
pseudo-Riemannian metric defined by

1
g(X, X) =2y (x"0, x10), Xx'0.= S X —iJX), (1.8)

forall X e TM.

Conversely, let g be a J -invariant pseudo-Riemannian metric on a complex manifold
(M, J). Then there exists a unique connection D in T M, which satisfies the conditions
(1.5), DJ = 0 and Dg = 0. Moreover, D induces a connection in T M, which is the
Chern connection of the pseudo-Hermitian metric y on T'OM defined by (1.8).

The factor 2 is chosen such that y coincides with the restriction to 71-0M of the
sesquilinear extension of g to the complexified tangent bundle.
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Proof. We define a connection D in the complexified tangent bundle (7 M) by
DxZ:=DxZ and DxZ:=D3Z, (1.9)

for all local sections X of (TM)(C and Z of T10M. By construction D is real, i.e. is
the complex bilinear extension of a connection in 7'M, which we denote by the same
symbol D. Obviously, it is the only real connection such that DZ = DZ for all local
sections Z of T1:°M. The equation (1.5) follows from D” = 3. By construction, D
preserves the decomposition (T M)C = T1OM + 791 M. Therefore, DJ = 0. Finally,
Dg = 0 follows from the fact that D is Hermitian.

Conversely, let (M, J, g) be a pseudo-Hermitian manifold. Then we can define a
pseudo-Hermitian metric y in 7% M by (1.8) and consider its Chern connection D. As
we know, it induces a connection D in T'M which satisfies (1.5), DJ = 0 and Dg = 0.
To prove the uniqueness, let D be an other connection satisfying (1.5), DJ =0 and
Dg = 0. D induces a connection Din TMOM, which satisfies D" = 3, due to (1.5),
and which is Hermitian with respect to y. Therefore, D is the Chern connection of y,
i.e. D = D. This implies D = D, by the first part of the proof. O

Given a metric tt*-bundle (E, D, S, g), we consider the flat connection D? for
§=0:V:= D Any parallel frame s = (s1, ..., s,) of E with respect to V defines
a map

G=GY:M— Symp’q(]Rr) ={A e GL(r)|A" = A has signature (p, q)}

x = Gx) = (ga(si(x), 5 (x))), (1.10)

where (p, g) is the signature of the metric g.

Similarly, for an oriented unimodular metric tt*-bundle (£, D, S, g, v) with canoni-
cal volume element v and a V-parallel frame s = (s1, ... , s,) suchthatv(sy, 52, ... , s»)
= 1 we have a map

G=GY:M— Sym, (R")={Ae€Sym, (R)|detA=(-1)}. (111

By Sylvester’s Theorem, the general linear group GL(r) acts transitively on the mani-
fold Sym, ,(R"), which we can identify with the pseudo-Riemannian symmetric space

S(p.q) == GL(r)/O(p. q). (1.12)
The subgroup O(p, g) C GL(r) is the stabilizer of the matrix
Ip 4 = diag(1,, —1,).

We shall identify the tangent space of the coset space S(p, ¢q) at the canonical base
point 0 = eO(p, ¢g) with the vector space

sym(p, q) :={A € § (N[n(A-,-) =n(, A)} (1.13)

of symmetric endomorphisms of R” with respect to the standard scalar productn = 1, 4
of signature (p, ), whichis represented by the matrix /,, ;. The structure of a symmetric
space is defined by the symmetric decomposition
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b (r) = o(p,q) +sym(p, q). (1.14)

The pseudo-Riemannian metric is defined by an O(p, g)-invariant pseudo-Euclidean
scalar product on sym(p, q). For instance, we may choose the metric induced by the
trace form:

B(r)>X,Y) > tr XY. (1.15)

Similarly, SL(r) acts transitively on the manifold Sym},) q (R"), which we can identify
with the pseudo-Riemannian symmetric space

S1(p, q) := SL(r)/SO(p, q). (1.16)

We have the de Rham decomposition

S(p,q) =R x S1(p, q), (1.17)

where the flat factor corresponds to the connected central subgroup
R = {Ald|» > 0} C GL(r), (1.18)

and the other factor is always indecomposable and even irreducible if (p, g) # (1, 1).
The tangent space of SL(r)/SO(p, g) at the canonical base point 0 = e¢SO(p, q) is
identified with the trace-free n-symmetric matrices:

symg(p. q) :={A € sym(p, g)|tr A = 0}. (1.19)

Under a change of parallel (respectively, parallel unimodular) frame s — su,u € GL(r)
(respectively, u € SL(r)), the map G = G transforms as

GOW — 71, Gg® = utG(S)M, (1.20)

where the dot stands for the action of GL(r) on Sym P (R").

The following theorem is proven in [S2], cf. [S1]. In the case where EC = 7100
and the metric g is positive definite it is due to Dubrovin [D].

Theorem 1. Let (E, D, S, g) be a metric tt*-bundle over a simply connected complex
manifold M. Then the map,

GY = (g(si,5) : M — Sym,, ,(R") Z GL(r)/O(p.q) = S(p,q),  (1.21)

associated to a parallel frame s = (s1, ... , s;) of E with respect to the flat connection
V = DY is pluriharmonic. Moreover, for all x € M, the image ofol’OM C(T:M)®C
under the complex linear extension odeu_lde :TeM — T,5(p,q) = sym(p, q)
consists of commuting matrices, where u € GL(r) is any element such that G(x) =
u-oand L, : S(p,q) — S(p,q) is the isometry of S(p, q) induced by the left-
multiplication by u in GL(r).

Conversely, let M be a simply connected complex manifold and f : M —
Sym,, ,(R") = S(p.q) a pluriharmonic map such that, for all x € M, the image
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of TXI’OM under the complex linear extension of dL;ldfx :TeM — T,S(p,q) =
sym(p, q) consists of commuting matrices, where u € GL(r) is any element such that
f(x) = u-o. Then there exists a metric tt*-bundle (E, D, S, g) over M and a parallel

frame s such that f = G). The condition on the image of TXI’OM is automatically
satisfied if pg = 0, which corresponds to a positive or negative definite metric g.

The same correspondence holds for oriented unimodular tt*-bundles and plurihar-
monic maps into Sym},,q(R’) = SL(r)/SO(p, qg) = S1(p, q).

Now we shall explain in more detail the condition on the image of 71:9M under
the differential of f in the theorem. Above we have always identified Sym, , (R") with
S(p. q). Let us denote by

¢ :Sym, ,(R") = S(p.q), S+ §=¢(S), (1.22)

that identification, which is GL(r)-equivariant and maps I = I, 4 to the canonical base
point 0. We can identify the tangent space TsSym , ,(R") at § € Sym, . (R") with the
(ambient) vector space of symmetric matrices:

TsSym,, ,(R") = Sym(R") := {A € Mat(r, R)|A" = A}. (1.23)

As above for § = I, the tangent space T5S(p, ¢) is canonically identified with the
vector space of S-symmetric matrices:

TS(p,q) =sym(S) :={Aep (r)|A'S = SA}. (1.24)
Note that sym(/, 4) = sym(p, q).

Proposition 4. The differential of ¢ at S € Sym,, . (R") is given by

1
Sym(R") > X > —ES_IX € $7'Sym(R") = sym(S). (1.25)

Let us now consider the differential
dfy : TyM — Sym(R") (1.26)

of f: M — Sym, ,(R") at x € M and the differential

dfy: ThyM — sym(f(x)) (1.27)

of f =g@o f: M — S(p,q). Then the condition on the image of the differential of
f in the theorem is that

dL;ldf(Txl'oM) C sym(p,q) ® C consists of commuting matrices, (1.28)

where f (x) = wo. This is equivalent to the condition that d f (Txl On ) C
sym( f(x)) ® C consists of commuting matrices. This follows from the fact that

dLy 2 T,8(p, @) = TuoS(p, q) = Tf(,)S(P> @), (1.29)
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corresponds to
Ad,, : sym(p, q) = sym(I) — sym(u - I) = sym(f (x)), (1.30)
and that the adjoint representation preserves the Lie bracket.
Finally, d fy = dpdf; = —1 f(x)"'df; and, therefore,
df(TOM) = f0) 7l df (T OM). (1.31)

This shows that f satisfies the condition (1.28) if and only if the matrices f (x)"'d f:(2)
and f(x)_ldfx(W) commute forall Z, W e TXI’OM. This is equivalent to

[F ) dfe(UX), fFO) T (U = [f ) dfe(X), f)T )], (1.32)
forall X,Y e T, M.

2 Special complex and special Kihler manifolds

In this section we recall some basic results on special complex manifolds and special
Kéhler manifolds. For more detailed information the reader is referred to [ACD], see
also [F].

Definition 3. A special complex manifold (M, J, V) is a complex manifold (M, J)
endowed with a flat torsion-free connection V (on the real tangent-bundle) such that
VJ is symmetric.

A special Kihler manifold (M, J, V, w) is a special complex manifold (M, J, V),
for which w is J-invariant and V-parallel. The (pseudo)-Kéhler-metric g(-,-) =
w(J-, -)is called the special Kiihler metric of the special Kéhler manifold (M, J, V, w).

Given a complex manifold (M, J) with a flat connection V, we define its conjugate
connection by

Vy =Vx — JVxJ with X € TM. (2.1

On a special complex manifold (M, J, V) the connection v/ istorsion-free. In addition,
one can introduce a torsion-free connection

1 1
D= 5(V-ﬁ-VJ)=V—S, where S 1= EJVJ’ (2.2)

which satisfies DJ = 0, as follows from a short calculation.

In the case of a special Kdhler manifold (M, J, V, w) the connection D is the
Levi-Civita connection of the special Kéhler metric g and the endomorphism-field §
anticommutes with the complex structure J, i.e.:

JSx = —SxJ, forall XeTM. (2.3)

Now we explain part of the extrinsic construction of special Kdhler-manifolds given
in [ACD]. In order to do this, we consider the complex vector space V = T*C" =
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C2" with canonical coordinates (zl, ..., 7% wy, ..., w,) endowed with the standard
complex symplectic form Q = Y 7, dz' A dw; and the standard real structure 7 :
V — V with fixed points V¥ = T*R". These define a Hermitian form y := Q(., t-).

Let (M, J) be a complex manifold (M, J) of complex dimension n. We call a
holomorphic immersion ¢ : M — V nondegenerate (respectively Lagrangian) if
¢*y is nondegenerate (respectively, if ¢*Q = 0). If ¢ is nondegenerate it defines a,
possibly indefinite, Kihler metric g = Re ¢*y on the complex manifold (M, J) and
the corresponding Kihler form g(-, J-) is a J —invariant symplectic form.

The following theorem gives a description of simply connected special Kihler-
manifolds in terms of the above data:

Theorem 2 ([ACD]). Let (M, J, V, w) be a simply connected special Kahler manifold
of complex dimension n, then there exists a holomorphic nondegenerate Lagrangian
immersion ¢ : M — V = T*C" inducing the Kdhler metric g, the connection V
and the symplectic form o = 2¢* (Z?:l dx’ A dyl-) = g(-, J-) on M. Moreover,
¢ is unique up to an affine tranformation of V preserving the complex symplectic
form Q and the real structure t. The flat connection V is completely determined
by the condition Vo*dxi = Vo*dy; = 0,i = 1,...,n, where x!' = ReZ and
yi = Re w;.

3 Special complex and special Kihler manifolds as solutions of the
tt*-equations

Let (E, D, S) be a tt*-bundle over a complex manifold (M, J). We are now interested
in the case E = T M. In that case it is natural to consider tt*-bundles for which the
connection DY = D + (cos0)S + (sin)S; is torsion-free.

Definition 4. A tt*-bundle (T M, D, S) over a complex manifold (M, J) is called spe-
cial if DY is torsion-free and special, i.e. D’ J is symmetric for all 6.

Proposition 5. A tt*-bundle (T M, D, S) is special if and only if D is torsion-free and
DJ, S and S; are symmetric.

Proof. The torsion T? of D? is given by
TQ(X, Y)=T(X,Y)+cosO(SxY — SyX) +sin6(SyxY — SyyX), 3.1

where T is the torsion of D. This shows that 7¢ = 0 for all # if and only if 7 = 0 and
S and §; are symmetric. The equation,

(D§ )Y = (DxJ)Y + cos6[Sx., JIY +sin0[S,x, J1Y, (3.2)

shows that DY J is symmetric if DJ, S and S, are symmetric. Conversely, if 7¢ = 0
and DY J is symmetric, then, by the first part of the proof, S and S; are symmetric and
equation (3.2) shows that DJ is symmetric. O
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Theorem 3. (i) Let (M, J, V) be a special complex manifold. Put S := %J VJ and
D :=V—S8.Then (TM, D, S) is a special tt*-bundle, which satisfies the additional

conditions:
a)SxJ =—JSx forall X € TM and
b)DJ =0.

This defines a map ® from special complex manifolds to special tt*-bundles.

(i) Let (TM, D, S) be a special tt*-bundle over a complex manifold (M, J). Then
(M, J,V := D+ S) is a special complex manifold. This defines a map WV
from special tt*-bundles to special complex manifolds such that W o ® = Id.
If (TM, D, S) is a special tt*-bundle satisfying the conditions a) and b) in (i), then
oW (TM,D,S))=(TM, D,S).

(iii) Let (M, J, g, V) be a special Kdahler manifold with S and D defined as in (i). Then
(TM, D, S, g) is a special metric tt*-bundle. This defines a map ® from special
Kdhler manifolds to special metric tt*-bundles.

(iv) Let (TM, D, S, g) be a special metric tt*-bundle over a pseudo-Hermitian mani-
fold (M, J, g). Then (M, J,V := D+ S, g) is a special Kihler manifold. In par-
ticular, we have a map \V from special metric tt*-bundles over pseudo-Hermitian
manifolds to special Kéhler manifolds such that ¥ o ® = 1d. If (TM, D, S, g)
is a special metric tt*-bundle satisfying the conditions a) and b) in (i), then
SN (TM,D,S,8)=(TM,D,S,g).

(V) Let (TM, D, S, g) be a metric tt*-bundle over a pseudo-Hermitian manifold
(M, J, g) such that D is torsion-free. Then it is special if and only if (M, J,V :=
D + S, g) is a special Kdhler manifold.

Proof. (1) Let (M, J, V) be a special complex manifold with S and D defined as above.
Then,

V9 = ovoe (3.3)

is a family of flat torsion-free special connections. Using V = D + S and (2.3) we can
write

V% = Dy + ¢ 8. (3.4)
The following calculation shows that V¢ = D=2 where D? is defined in (1.2):
V4 — Dx = ¢*' Sx = c0s(20)Sx + sin(26)J Sx
® cos(—26)Sy + sin(—20)S;x = D;(z@ —Dyx, XeTM.
At (x) we have used that J Sy = —S;x, which follows from
JSxY =JSyX =-SyJX =-8;xY, X, YeT,M. (3.5)

Here we used the symmetry of S and (2.3). This shows that (T M, D, S) is a special
tt*-bundle.

(ii) Let (T M, D, S) be a special tt*-bundle. This means that D? is flat, torsion-
free and special. In particular, V. = D 4+ § = DV is flat, torsion-free and special and
(M, J, V) is a special complex manifold. It is clear that W o & = Id.
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Conversely, let (T M, D, S) be a special tt*-bundle such that DJ = 0 and SxJ =
—J Sy for all X. Then we can recover D and S from V = D + § by the formulas
S = %JVJ and D = V — §. In fact, Let (TM, D', S') be an other special tt*-
bundle over (M, J) such that D'J = 0 and Sy J = —JS} forall X € TM and
V=D+S =D+ 5" Then,

0= DiyJ = VxJ —[Sk, J1 = VxJ +2J S, (3.6)

forall X € TM. This shows that Sy = 1JVxJ = Syand D' =V —§' =V -S = D.

(iii) Let (M, J, g, V) be a special Kéhler manifold with S and D defined as in (i).
Then, by (1), (T M, D, S) is a special tt*-bundle and satifies a) and b). To prove that it
is a metric tt*-bundle we have to check that Dg = 0 and that (1.3) is satisfied. Since
DJ =0, by b), the equation Dg = 0 is equivalent to the following claim:

Claim: The Kihler form w is D-parallel; Do = 0.

In fact Vw = 0 and Sy = %J VxJ, X € TM, is the product of two anticommuting
w-skew-symmetric endomorphisms A = %J and B = VyxJ. This implies that Sy is
w-skew-symmetric and, thus, Do = 0.

The endomorphism Sy is w-skew-symmetric and anticommutes with J, by a).
Therefore Sx is symmetric with respectto g = w(J-, ).

(iv) Let (TM, D, S, g) be a special metric tt*-bundle over a pseudo-Hermitian
manifold (M, J, g). Thanks to (i), we know already that (M, J,V := D + §) is a
special complex manifold. Therefore it suffices to prove that Vo = 0. The assumption
Dg = 0 and property b), which follows from (i), imply that D = 0. Now itis sufficient
to observe that the endomorphisms Sy, X € T M, are w-skew-symmetric. In fact, Sy
is g-symmetric in virtue of (1.3) and anticommutes with J, by a). This shows that
(M, J, V, g) is a special Kdhler manifold. The remaining statements follow from (ii).

(v) Let (TM, D, S, g) be a metric tt*-bundle over a pseudo-Hermitian manifold
(M, J, g) such that (M, J,V := D + S, g) is a special Kédhler manifold. If D is
torsion-free, then it is the Levi-Civita connection of g and, thus, D = V — %J VJ,
see section 2. Now we can conclude that ®(M, J, V, g) = (T M, D, S, g). This shows
that (TM, D, S, g) is a special metric tt*-bundle. O

Corollary 1. Any special metric tt*-bundle (T M, D, S, g) over a pseudo-Hermitian
manifold (M, J, g) is oriented and unimodular.

Proof. TM 1is canonically oriented by the complex structure J. By Theorem 3,
(M, J, g,V = D+ 9) is a special Kédhler manifold. Its Kéhler form is parallel with
respect to D and V and hence invariant under Sy = Vy — Dy for all X € T M. This
shows that tr Sy = 0. O

In [H] special complex and special Kihler geometry is interpreted in terms of
variations of Hodge structure of weight 1 on the complexified tangent bundle. From
this interpretation and his discussion of tt*-geometry, it follows that any special complex
(respectively, special Kihler) manifold defines a tt*-bundle (respectively, a metric tt*-
bundle) in the sense of our definition.
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4 The pluriharmonic map in the case of a special Kihler manifold

4.1 The Gauss maps of a special Kéihler manifold

Let (M, J, g, V) be a special Kihler manifold of complex dimension n = k + [ and
of Hermitian signature (k, /), i.e. g has signature (2k, 2[/). Let (M, J, g, V) be its
universal covering with the pullback special Kihler structure, which is again denoted by
(J, g, V). According to Theorem 2, there exists a (holomorphic) Kahlerian-Lagrangian
immersion ¢ : M — V = T*C" = C?", which is unique up to a complex affine
transformation of V with linear part in Sp(R2”) We consider the dual Gauss map of ¢

L:M— Gry'(C™), prs L(p) = TpM :=dgpT,M C V (4.1)

into the Grassmannian of complex Lagrangian subspaces W C V of signature (k,1),
i.e. such that the restriction of y to W is a Hermitian form of signature (k, /). The map

L:M— Grg ’I((CZ”) is in fact the dual of the Gauss map
LY M — Gry" (™), pr L(p)t =Lp) = L(p)*. 4.2)

Here L(p)~* stands for the y-orthogonal complement of L(p) and the isomorphism
L(p) = L(p)* is induced by the symplectic form Q on V = L(p) & L(p).

The Grassmannian Gr(])C ’l((CZ") is an open subset of the complex Grassmannian
Gro(C?") of complex Lagrangian subspaces W C V and hence a complex submanifold.

Proposition 6. 1) The dual Gauss map L : M — Grg’I(CZ") is holomorphic

ii) The Gauss map L™+ M — Gr(l)’k (C*) is antiholomorphic.

Proof. The holomorphicity of L follows from that of ¢. Part (ii) follows from (i), since
L*=L:pr~ L(p). m|

The real symplectic group Sp(R?") acts transitively on Grg (€2 and we have the
following identification:

Gry' (€M) = Sp(R*") /U (k, I). 4.3)

Here U(k,I) C Sp(]R2”) is defined as the stabilizer of

W. = span 0 4i 0 d Li d a .0 g .0
= —_— e, — 11— ————1—, s, ———1 .
o =PI T T ok T w82 Gwgey 9z owy
4.4)
The Gauss maps L and L+ induce Gauss maps,
Ly : M — T\ Gril (@™, (4.5)
Ly : M — T\ Gryk (™), (4.6)

into the quotient of the Grassmannian by the holonomy group I' = Hol(V) C Sp(R*")
of the flat symplectic connection V.
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Corollary 2. (i) The dual Gaussmap Lys : M — T'\ Grg oL (C¥) of M is holomorphic.
(i1) The Gauss map Lil M — T\ Gr(l)’k (C?) is antiholomorphic.

The Grassmannian Grg’l((Cz") is a pseudo-Hermitian symmetric space and, in
particular, a homogeneous pseudo-Kihler manifold. If I' ¢ Sp(R?") acts properly

discontinuously on Grg‘l((CZ”) then I' \ Grg’l((CZ") is a locally symmetric space of
pseudo-Hermitian type.

4.2 Holomorphic coordinates on the Grassmannian Gr(])‘ ’l((CZ”) of complex
Lagrangian subspaces of signature (k, /)

In this section we shall introduce a local model for the Grassmannian Gr(l)‘ ’I(Cz") and
determine the corresponding local expression for the dual Gauss map. This model is a
pseudo-Riemannian analogue of the Siegel upper half-space

Sym™(C") := {A € Mat(n, C)|A’ = A andIm A is positive definite}. 4.7)

Our aim is to construct holomorphic coordinates for the complex manifold Grg ok

(C?") in a Zariski-open neighborhood of a point Wy of the Grassmannian represented
by a Lagrangian subspace Wy C V of signature (k, /). Using a transformation from

Sp(R2”) we can assume that Wy = W, see (4.4). Let Uy C Grg’l((Cz”) be the open
subset consisting of W € Grg ’[((CZ”) such that the projection,

() - Vv=T*C"=C"o® (C”)*Cn (4.8)

onto the first summand (z-space) induces an isomorphism,

Tolw : WS C". (4.9)
Notice that Uy C Gr(])"l((Cz”) is an open neighborhood of the base point Wy. For
elements W € Uy we can express w; as a function of 7 = (Zl, ..., 7. In fact,
wi =Y Cyzl, (4.10)
where
(Cij) € Sym, ;(C") = 4.11)

{A € Mat(n, C)|A" = A andIm A has signature (k, [)}.
Proposition 7. The map

C: Uy — Sym ;(C"), W = C(W) := (Cij) (4.12)

is a local holomorphic chart for the Grassmannian Grg’l((CZ").
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Remark. The open subset Sym, ;(C") C Sym(C") = {A € Mat(n, C)|A! = A}isa
generalization of the famous Siegel upper half-space Sym,, ((C") = Sym™ (C"), which

is a Siegel domain of type I. In the latter case, we have Uy = Sp(RZ”) /U(n) and a
global coordinate chart

C : Gry*(C™) = Sp(R™)/U(n) = Sym, o(C"). (4.13)

We shall now describe the dual Gauss map L in local holomorphic coordinates in
neighborhoods of pg € M and L(po) € Gr(])‘ ’l((CZ"). Applying a transformation from
Sp(RZ”), if necessary, we can assume that L(po) € Up. We put U := L} (Up). The
open subset U C M is a neighborhood of po.

Let ¢ : M — T*C" be the Kdhlerian—-Lagrangian immersion. It defines a system
of local (special) holomorphic coordinates

p=mcodly:U—>UCC, prC@p). . "@p)), @14

and we have the following commutative diagram

U -5 vy
el 1 C (4.15)
L
U =% Sym, ;(C"),
where the vertical arrows are holomorphic diffeomorphisms and Ly atz = (z!,...z")
is given by

82F(Z)) (4.16)

Ly(z) = (F;j(2) = —
v(@ = (Fij(2) (az, =
Here F = F(z) is a holomorphic function on U’ C C" determined, up to a constant,
by the equations

oF
wj(@(p) = — (4.17)

dz/

2@ (p))

Summarizing, we obtain the following proposition.
Proposition 8. The dual Gauss map L has the following coordinate expression

Ly=CoLog ' =(F)), (4.18)

where ¢ : U — C" is the (special) holomorphic chart of M associated to the
Kdhlerian—Lagrangian immersion ¢, see (4.14), and C : Uy — Sym(C") is the holo-
morphic chart of Grg ’I(Cz”) constructed in (4.12).

4.3 The special Kéhler metric in affine coordinates

As before, let (M, J, g, V) be a special Kédhler manifold of Hermitian signature (k, /),
k+1 =n = dimc M, and (M, J, g, V) its universal covering. As in section 1, we
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shall now consider the metric g in a V-parallel frame. Such a frame is provided by
the Kidhlerian—-Lagrangian immersion ¢ : M — V. In fact, any point p € M has a
neighborhood in which the functions X’ := Rez/ o ¢, y; :=Rew; o¢p,i = 1,... ,n,
form a system of local V-affine coordinates. We recall that the V-parallel Kdhler form is
given by w = 23" dX" AdY;. This implies that the globally defined one-forms +/2d%",
J2d y; constitute a V-parallel unimodular frame,

(€Vazl...on = (', ... &) := (V2dX", ... V243", V2d51, ... . N2d5,),
(4.19)

of T* M with respect to the metric volume form v = (—1)"*! ‘,‘I’—r,l =2"dX"' A ... AdY,.

The dual frame (e,) of TM is also V-parallel and unimodular. The metric defines a
smooth map,

G:M— Symékvzl(R%) =
{A € Mat(2n,R)|A" = A, det A = 1 has signature (2k, 21)}, (4.20)
by
p = G(p) == (8an(p)) := (gp(ea. €p)). (4.21)
We call G = (g,p) the fundamental matrix of ¢. As before, we identify
Symj, »,(R*") = SL(2n, R)/SO(2k, 2I). (4.22)

This is a pseudo-Riemannian symmetric space. For conventional reasons, in this section,
SO(2k, 21) C SL(2n, R) is defined as the stabilizer of the symmetric matrix

E, = diag(1y, —1;, 1, —1)). (4.23)
The fundamental matrix induces a map,
Gy : M — T\ Sym} ,,(R*™), (4.24)

into the quotient of Sym%k’zl (IR?") by the action of the holonomy group I' = Hol(V) C

Sp(R?") c SL(2n, R). The target I" \ Symékll (R?") is a pseudo-Riemannian locally
symmetric space, provided that I" acts properly discontinuously.

Theorem 4. The fundamental matrix,
G : M — Sym}, , (R™) = SL(2n, R)/SO(2k, 21),
takes values in the totally geodesic submanifold,
L Gra' (€ = Sp(R¥) /U (k, 1) < SL(2n, R)/SO(2k, 21), (4.25)

and coincides with the dual Gauss map L : M — Grg’l((CZ”): G=t0oL.
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Proof. The proof follows from a geometric description of the inclusion ¢. With any

Lagrangian subspace W € Grg’l((CZ”) we can associate the scalar product g% :=
Re y|w of signature (2k, 2/) on W C V. The projection onto the real points,

1
Re:V =T*C"—> T*R" =R*, v Rev= z(v +7), (4.26)

induces an isomorphism of real vector spaces W = R2" the inverse of which we denote
by ¢ = ¥w. We claim that

(W) = y7g" =t (gqy) =1 GV (4.27)
To check this, it is sufficient to prove that the map
Gry' (@) s W GV e Sym)y 5 (R™) (4.28)

is Sp(RQ”)-equivariant and maps the base point W,, with stabilizer U(k, [), see (4.4),
to the base point E, with stabilizer SO(2k, 2I), see (4.23). Let us verify that indeed
G% = E,.
Using the definition of y, one finds for the basis
ad 0
(e ) = ( + i—) (4.29)

9zl ow;

of V that the only non-vanishing components of y are y(ej.t, ef) = +2. This shows

that g% = Re y| w, 1s represented by the matrix 2E, with respect to the basis,
(el+, - ,e,j, el ,....¢, ie;r, el ie,:r, ie,...,ie ). (4.30)

In order to calculate G%o = (g;‘;") = (g(¥eq, Yep)), we need to pass from the real
basis (4.30) of W, to the real basis (Ve,).
Recall that the real structure t is complex conjugate with respect to the coordinates

(z', w;). This implies that

- 3 3 ,
v ‘(ej):—.:«/iej, ylGel) = —Wz—\/ienﬂ», i=1,... k,
J
_ 0 ;
v e )——_«/_e,, yle;) = W=fzen+j, j=1,...,1
J

This shows that GVo = E,,.

It remains to check the equivariance of W > GW = v/*g. Using the definition of
themap ¢ = ¥y : R? — W, one easily checks that, under the action of A € Sp(R*"),
Y transforms as

Yaw = Ao Yw o A o (4.31)
From this we deduce the transformation law of G%:
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The above claim (4.27), together with the fact that
gt =g, and G'P =G(p), (4.32)
forall p € M , implies that
(L(p)) =GP = G(p). (4.33)
O

Corollary 3. The fundamental matrix G : M — Symékﬂ (R?") is pluriharmonic.

Proof. G = 1o L is the composition of the holomorphic map L : M — Gr(])c ‘l((CQ”)

with the totally geodesic inclusion Grg ’l((CZ”) - Sym%kal (R?"). The composition of
a holomorphic map with a totally geodesic map is pluriharmonic. |
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Summary. We present and investigate, within the general frame of deformation theory, new
Z,-constructions for generalized moduli spaces of holomorphic and symplectic structures.

1 Introduction

Deformation theories are one of the keystone settings of contemporary geometry, ap-
pearing in very different areas and providing, through moduli space constructions, a
highly powerful tool to produce new invariants (cf. [6] and [7] for recent accounts).

This paper, in the first part, describes a tuning up of a general machine for de-
formation theory, enhancing the relationships between Z and Z;-theories. Then, after
presenting equivalence classes of A°-algebras as an example of deformation space,
to show how vast the range covered by deformation theories is, it deals with com-
plex/holomorphic deformations and symplectic deformation. In the latter case, a totally
new non-naif theory is constructed.

By means of the results established in the first part, both in the complex/holomorphic
case and the symplectic case, we define and discuss the corresponding Z;-theories
(complex/holomorphic and supersymplectic structures).

2 7Z,-theory and Z-theory of deformations of DLA

2.1 Z;-theory: superstructures

We start with a quick overview of superstructures (or Z,-structures).

Definition 1. 1. A supervectorspaceisavector space V together with adecomposition
v=vO0egv®h,

* This work was supported by the M.I.U.R. Project “Geometric Properties of Real and Complex
Manifolds” and by G.N.S.A.G.A. of LN.d.A.M.
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Vectors in V@ and in V) are called homogeneous of degree (or parity) 0 and 1,
respectively. The degree of the homogeneous vector v is denoted by |v|.
A vector supersubspace of V is a subspace W C V of the form

W = W(O) ey W(l),

where W) is a vector subspace of V), j =0, 1.

. A super algebra is an algebra A together with a vector space decomposition

A= A(O) @A(l),
in such a way that
AVA® AUk € T,
The bracket [, ], defined on homogeneous elements as
la, b] := ab — (—1)!1Plpg,

is called the super commutator of A and A is said to be supercommutative if its
super commutator vanishes identically.

. A super Lie algebra is a super vector space g = g(© @ g(!) together with a bilinear

map,
[,L]1:gxg — g,
such that '
a) [g, g®1 c guth, j ke Zo

b) for homogeneous elements a, b, ¢, we have:
i. [a, b] = —(=D)Pl[p 4],

ii. [a, [b, c]] = [[a, b], c]+ (=D4PI[p, [a, c]).

Note that:

given a vector space V , the exterior algebra A*V has a natural structure of super-
commutative super algebra, just setting

V(O) — Aevenv , V(l) — /\oddv;

given a super vector space V = V@ @ VD with projections p; and ps, then
End(V) has a natural structure of super algebra, just setting

End(V)© :={f € End(V)| f(VD) c VYD | j e Zy),
End(V)V .= {f € End(V)| f(VD) c vUTD | j e 7,
the relation,
f=iofopi+profopr)+(piofopr+profopi),
proves that
End(V) = End(V)© @ End(v)V;

given a super algebra A, the super commutator [, ] defines on A the structure of
super Lie algebra.
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Definition 2. Let
A=AOD pAD
be a super algebra.
1. A super derivation D of degree |D| on A is an element of End(A)PD such that
D(ab) = (Da)b + (—1)!Pllelg(Db).
This amounts to say that, for every a € A, we have
[D, Lal = Lpa =0,

L, being the left multiplication by a.
2. A differential d on A is a super derivation of degree 1 such that d> = 0. The
couple (A, d) is called a differential super algebra (DSA).

Definition 3. Let
g=g0 @ g"
be a super Lie algebra.
1. A super derivation D of degree |D| on g is an element of End(g)P" such that:
Dla, b] = [Da, bl + (—1)'Pll[a, Db].

2. A differential d on g is a super derivation of degree 1 such that > = 0. The couple
(g, d) is called a differential super Lie algebra (DSLA).

Note that, in both cases, the super commutator of the super derivations D and F
is a super derivation of degree |D| + | F| .
Let (g, [, ], d) be a DSLA. We set

7P = 7P (g d) :=taecg? |da=0), Z=20gzD,
BP = BW (g, d):=dg” "), B=B® g BD,
HP = HP (g, d) = 2P (g, d)/BP (g, d), H=H® @ HD.
Let (g =g® ®g®, [, ], d) beaDSLA.Fory € gV, set
dya = da + [y, al.
Clearly,
dyla, b] = [dya, bl + (=1)“[a, d,b]
and
dy+%[y,y]=0=>d}%=0,
ie.,

y satisfies the Maurer-Cartan (MC) equation — d)% = 0.
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Set
Mz, (g) = {y € gV |y satisfies MC}.

Given « € g, set

o0

1
ad(exp(@)) =)+~ (@d(@)"

(where, of course, @ («) (€) := [«, €]). Therefore exp(g) acts on the lefton g. exp(g(o))
acts on the d,,’s on the left as

dy, + ad(exp(a))d,ad(exp(—a))
and this induces a left action of exp(g(o)) on MCz,(g) given by

& 1
(@, y) = x(@y =y — hX:(j) m(a@(a»”(dw).

As usual, the results of the present section hold in the framework of formal power
series, i.e., modulo convergence. Convergence can be rigorously established in the class
of Artin rings and their projective limits.

Set

Defz, (g) := MCz,(g)/ exp(g®).
Definition 4. Defz, (g) is called the Z,-deformation space of the DSLA g.

Note that:
e ift — y(t) is a smooth curve in OME(g), with y(0) = y , then,

1
dy () + 5[y(r), yH1=0

and so
0=dy0) + [y, y/(0)] = dy,y(0).
Consequently,
T,meg) c zWV(g,d,).
[ ]

d

EX(“X)VIZ=O = _dya
and so,

Yy = —dya,

represents the fundamental vector field of & associated to the given action.
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e Setting
Y (@) = x (ta)y (1),
we get
7'(0) = y'(0) — dya.

Consequently, if e € Z( (g, dy) is tangent to 9€(g) at y, then any element of

el e HV(g, d, ) is tangent to 9ME(g) at y and is related to € by the action induced
by x. Therefore, if (y) € Defyz,(g) then

T\ Defz, (9) ¢ HV (g, d,).
We set the following
Definition 5. If
T;y)Detz,(9) = H (g, dy),
we say that the deformation theory of the DSLA g is totally unobstructed at (y).

We are mainly interested, as we shall see, in infinitesimal deformations at 0 or,
more precisely, formal developments of deformations.

2.2 7-theory

As a special case of superstructures we have Z-graded structures.
Definition 6. A graded vector space is a vector space V together with a decomposition,
V=@V,
pEL

with the agreement that V), = {0}, if p < 0; again vectors in the V),’s are called ho-
mogeneous and they are assigned to have degree p. In the same way, we can consider
graded algebras, graded Lie algebras, differential graded algebras (DGA), differen-
tial graded Lie algebras (DGLA) etc., with the same definitions as before (indices in
7).

In particular, if

s=op. [.1.4d

pEZ
is a DGLA, we set
MEz(g) = {y € g1 |y satisfies MC}.

Then, exactly as the Z,-case, we have a left action of exp(go) on IMCz(g) and we
set

Defz(g) := M&z(g)/ exp(go)-

Note that any graded structure has a natural underlying superstructure.
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2.3 Formal deformations

We want to describe the basic setting of formal deformations. Let (g, [, ], d) be a
DSLA and let H be its cohomology. Let H* be the super vector space dual of H and
let K := k[[H*]] be the completed supersymmetric algebra of H*.

In particular, if {vy, ..., vy} is asuper basis of H, the dual superbasis {x1, ..., xy}
satisfies [x;| = |vj| =1, 1 < j < N.
Set

g = 9® K ,dg :=d®1 etc,,
extend the structure of DSLA to gk in the standard way, i.e.,

e [a®a b®pl=(-1)"la, bl ap,
o la®al=lallal|

Finally, let mg be the maximal ideal of K.
Note that

g ® mg an ideal (and hence a subalgebra) of gg;
® € gk can be written as

o0
©=2 o
J=0

where the w;’s are homogeneous polynomials of degree j in the H*-variables;
e vy > vpxp, | <h < N, identifies H with a degree-one homogeneous polyno-
mial in (H ® mg)D.

Set
1
MCz, [[g]] := Mz, (g @ mg) = {y e @@mg)V dgy + Sy vl= o} ,

Def7,[[g]] := Def(g ® mg).

Definition 7. We say that the deformation theory of the DSLA g is formally totally
unobstructed (at (y)), if the deformation theory of g ® mg is totally unobstructed at

(v).

2.4 Z-theory versus Z,-theory

It is a very interesting fact that Z,-deformation theory fibers in a natural manner over
Z-deformation theory.

In fact, let (g = @pezgp, [,1,d)beaDGLA,letm; : g — gj, j € Zbe
the natural projections, and let § := € =183 consider on g the underlying structure
of DSLA. Then we have:

Lemma 1. 7 : ¢ —> g1 induces a surjective map

o MEz,(g) — MEz(g)
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such that:
1. for every y| € Mz (g),
7 ) = v+ M, (. dyy):
2. for every a € g©,
w0 x(a) = x(mo(er)) o7y,
and thus we obtain a surjective map
7 @ Defz,(g9) —> Defz(g)
and
7~ (v1) * Defz, 8. dy,)-
Proof. Lety € MCEyz,(g). Write y =y + 0 withy; =m(y) ando € gN g,
Then,

1
dy+5[% y1=0

1 1

1 1
=dy + E[}/l, vil+d, o+ E[U’ , ol

and thus,
mi(y) € MC7z(g), o € Mz, ().
This gives the surjectivity and 1. at once. 2. is now obvious.

At formal level, we have:

g@mgx = P mk),,
pelZ

where

@® mx), = P (@) ® (mk)s.

rts=p
In particular,
(g ® (mg)1 = go ® (mk)1g1 ® mg)o,
and
(mg)o =mpg,
where
K =K[[x1,...,x]]  with n=dim;H".

Therefore, we have a further reduction; the results are summarized in the following
lemma, which can be proved exactly as the previous one.
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Lemma 2. Let

p:(@®mg) — g1 (®mk)o
be the natural projection. Then

1. p induces a surjective map:

1
p : Mez(g@mg) — M&y[[g]] := {a € g1 ®@mg)o | da + E[a, ol = 0};

2. for every y1 € My [[gll,
1
p ') =y + €llg. dy, 11 = {a € go®@mg) [dpa + Sla. o] = 0} ;

3. pisexp(go ® (mg)o-invariant;
4. setting T := p o | we have that, for every y| € MEy[[g]],

ity =1 + 5,
where
Sy ={(B, o) | B € €zllg. dy 11, o € MEy, (9, dy1+p)};

5. we obtain a surjective map,
7 @ Defz,[lgll — Defzllgl] := Mz[[g]]/ exp(go ® (mk)o),
and 71 ((y1)) = (((B), ()}, where
(B) € €zllg, dy 11/ exp(go ® (mk)o), (o) € Defz, (@, dy,+p),

2.5 A special case

Let us begin with some general facts.

Definition 8. A differential k-vector space (V, d) is ak-vector space V equipped with
d € Homy(V, V) satisfying d>=0;set Z:=Kerd, B:=1Imd, H := Z/B.

Lemma 3. Let (V, d) be adifferential k-vector space; then there exist vector subspaces
H and S with

1 H®B=2Z (andsoH ~ H),
285NZ={0},

in such a way that
V=Ho®dS®S. ey

(1) is called a Hodge decomposition for (V, d).
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Moreover, given (1), Q € Homy(V, V) is defined in such a way that
o =mp(a) +dQ(a) + Q(da),

i.e., Q is a cohomological homotopy between I and w3 and o € g is d-exact if and
only if da = 0 and (o) = 0 and in this case o« = d Q(«). Finally, if V is a super
vector space (resp. a graded vector space) and d is compatible with the grading, then it
is possible to choose H and S to be supersubspaces (resp. graded subspaces) obtaining
a super (resp., graded) Hodge decomposition.

Proof. Let H C Z be a vector subspace such that
HeB=Z.

Let R C g be a vector subspace such that:

e g=H®R,
e BCR.

Clearly, RN Z = B.
Let S C R be a supersubspace such that R = B @ S. Then

SNZ=0 and B =4dS.
Finally, if
a =mp(a) +dB +v,

just set Q(«) = B. Then dQ(da) = da = dy and thus y = Q(dw); note also that
Q% = 0. Concerning the last statement, just observe that we can perform the whole
construction preserving the grading.

We have now the following

Lemma 4. Let (g = g© @ gV, d) be a DSLA. Then the following facts are equivalent:

1. there exists a quasi isomorphism,
¢:(.[.1,d — (HD00);
2. we have:
[g. 81NZ C B; 2)
3. there exists super Hodge decomposition g = H ® dS & S, such that
[g, 91 CdS®S. 3)
Proof. 1. = 2. Since @ is a quasi-isomorphism, we have, in particular

[g, glNZ CKer®NZ = B.
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2. = 3. Let H C Z be a supersubspace such that
HeB=2Z.

Clearly H N [g, g] = {0}. Then as in the general construction of Hodge decompo-
sition, just choose R C g to be a supersubspace such that:
e g=HO®R,
e [g,9]+BCR
3. = 1. Justset () := [T ()]

We recall that a dGBV algebra (A, A, d) satisfying the Ad-lemma is an example
of DSLA meeting the condition of lemma (4) (cf.[3] and [5][1]).
We have the following

Lemma 5. Assume the DSLA (g, [, 1, d) satisfies the conditions of lemma (4); fix
‘H, S and hence ® and Q. Let

a : Mez,[lgll — (Z@mg) D,
be defined by
1
aly) =y + EQK([V’ vD.

Then:

1. a is one-to-one with inverse map,

(0.¢] (0.¢]
b::a:Zaj — y:ZyJ-,
j=1 j=1

where:

Y=o

yj = —% Z.QK([%, s +a.

rs=j
2.
a(x(B)y) = a(y) mod((B ® mg)1)
a~!(a +de) = a~ ' (€) mod(exp((g ® mx)0))

and so

*

a® :{y) — la(y)]

establishes a bijection

Defz,[lgl] — (H ®@mg) .
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3. Let
MLz,[[g]] := {y € (MLz,llgll|y; € Ker® @ mg , j > 2}.

Then/_\_/
a) MLz, [[g]] is exp((g ® mg) ) — invariant
b) a* : Defz,[[gl] := MEz,[[gl]/ exp((g @ mx)?) — H

Proof. 1. First note that, given y € 97z, [[g]], we have that [y, y]is dk-exact and,
because of (4),

[y, yY1=dx Ok (y, vD.

Therefore
da(y) =dky + %dK Ok (y, vD =0.
Now we can first check that, given ¢ € (Z ® mg)D , we have
db(a) + %[b(a), b(a)] =0. 4)

Now (4) amounts to
1
d)/j = _E Z‘[Vr» ys],
r+s=j

and this can be shown recursively. It is certainly true for j = 1. Assume it is true
forl < j, then:

d Y v vsl= Y (dyr, vl =y, dys))

r+s=j r+s=j
1 1
=3 Y Y Wendnlts XY e il wld
r+s=j ptq=r rds=j t+u=s
== > ¥ vl vl
r+s+t=j

=0, Dby Jacobi identity.
Therefore,
b: (Z@mg)D — Mey,[[g]).

Then,

e 1
ab(a) = ) Bj=b(a)+ EQ([ga), b)) =«a.

j=1
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In fact,

1
Bi=vi+5 ) Oy %D

rts=j

1 1
=3 2 0y wD+aj+5 > Qv v =a,

r+s=j rt+s=j

o0
ba(y) =Y €j=y,
j=0

can be shown recursively. Definitely true for j = 1, assume it holds true for/ < j.
Then,

1 1
€ =—5 ) Qe &D+vj+5 Y, Oy v =v;

j i
2 rds=j r+s=j

. We can easily show by direct computation that:

a(x(my) =aly) +dQ(xmy —v).

Vice versa, given € € (g ® mx)© | we can construct recursively n € (g ® mg)©
such that,

a”(a +de) = x(ma~ (@),
ie.,
a+de=a+d0(x(ma (@) —a ().
Set n1 = €1 and assume 7; has been constructed for [ < j. Note that, in general,
Xy —y)j=A; —dnj,

where A; depends on y,, ng forO <r, s < j.
Therefore:

@dO(xmy —y)j=dQ(Aj) —dn;.
Thus choose n; = Q(A;) — ¢;.

. 1is clear.

Finally, if (g, [, ], d) is a DGLA, we have the following, easy to prove lemma:

Lemma 6. The following diagram is commutative:

Mez,[[g]] —— (Z @ mg)D

s J#

mezllgll —— (Z@mg)D

Moreover,

a*on*=a%*oa*

and analogous results hold true for 9%, provided || =0 inZ.
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Finally, note that, if we want to efficiently define a at the Z-level only, we just need
to replace (2) with
[g1, 911N Z> C Bos.

3 An example: A°°-algebras and deformation theory

As a first example of deformation space, we consider the following. Let (V = V© @
V)| d) be adifferentiable k-super vector space. We can extend d and the superstructure
to the tensor algebra T'(V). In particular,

e dR®S)=dR® S+ (-1)RIR®dS;
e if L € Homy(V®", V®5), then

dL=doL— (—D)*Lod
and
d(LoM)=dLoM + (—D)!*'L ocdM.

Set

CP(V) := Homy (V®P+D v,
and given R € CP(V), set

Rl = (IRl + p) mod 2.

Given R € CP(V), S € C4(V),1et[R, S] € CPT4(V) be defined as

p+1
[R, S]:= Z(_])P(k—l)R o (I®(k—1) ®RS® I®(([7+1—k)) +
k=1
q+1
— (—DIRISIN ™ (1yat=Dg o (10D @ R @ [O(a+1-0),
k=1
Then,
d[R, S1=[dR, S1+ (—=DIRI[R, ds]
and
cvy=crwy, 1, 14|,
PEZ
is a DSLA.

Let A(V) be the completion of C (V') and extend in an obvious way the DSLA struc-
ture to A(V). Let A*(V) be the sub DSLA of A(V) of elements with no components
in CO(V). Then,

a structure of A*-algebra on 'V is a solution of the MC equation in A*(V).

See [11] and [12] for examples of A°°-algebras related to complex and symplectic
geometry.
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4 Complex and holomorphic deformation theory

4.1 Preliminaries

Let

We consider the faithful representation,

o : glin, C) — gl(2n, R),

A+iB A-B
N = .
p ! B A

In the sequel, we shall identify
gl(n, C) with p(gl(n, C)) ={X € gl2n, R)| XJ, — J,X =0}.
Moreover,
gl@2n, R) = gl(n, C) @ s(n),
where
s(n) :={X egl@2n, R) | XJ, + J, X =0},

with projections
1
R : gl2n, R) — gl(n, C), X E(X—J,,X.In),

1
S :gl2n, R) — s(n), X — E(X—l—J,,XJn).

Let
MW(n) :={P € GLQ2n, R)| P> = —1I}.

Clearly,

e PeW(n) < P=AJA !,
e P=AJ,A"'=BJ,B"! < B 'AeGL(n, C).

Consequently,
W(n) =GL2n, R)/GL(n, C)
and
GL(2n, R) — W(n)

is a GL(n, C)-principal bundle with projection 7 (A) = AJ,A~!. In particular, there
exists a neighborhood U of J, and a section o over U, i.e, amapo : U —>
G L(2n, R) such that:
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a. o(y) =1,
b. forevery P € U, o (P)J,o(P)~! = P.

Moreover, since R(o(J,)) = I, if U is sufficiently small, then, for every P € U,
R((P)) € GL(n, C) and so 6(P) := o(P)(R(c(P)))~! is a section over U with
R((P)) = I. It is obvious that 6 is uniquely characterized by these conditions,
namely,

4 6(‘]7!) = 17

e R(O)P)=I.

In other words, every P € U can be expressed in a unique way as
P=U+L)J,I+L)~" with LJ,=—J,L. (5)

We can give a complete description of those elements in 20(n) which are expressible
as (5). Let

An) :={X € s(n) |det(I + X) # 0},
Bn) :={P € W(n) |det(I — J, P) # 0}.
Then, we have the following:
Lemma 7. Set
r(P):= (I —J,P)""(I + J,P).
Then r diffeomorphically sends P(n) into A(n)
Proof. Just note that
r(P) =2 —J,P) ' =1 =~ —PL)" '+ Py,
and that, clearly,
ri (L) = U +L)J,(I+L)"".

Note also that the elements P € 2J(n) are in one-to-one correspondence with
complex subspaces W of C2* = (R?")C, satisfying

C"=weaoWw. (6)

In fact, given P € 20(n), just set W = Vg’l; vice versa, given W satisfying (6), set
P=-ino tl_l, where

ne=pyw e W — R>,
= pyyy W — iR
Given W sufficiently close to V})n’ ! W can be described as the graph of a C-linear map
L : V})n’l — V}n’o (and so LJ, = —J,L). Consequently,
W={U+L)X+i(I+L)JX|X eR™},
and the corresponding element of W (n)is P = (I + L)J,(I + Ly~
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4.2 Starting deformation theory

Let (M, J) be a complex manifold and let (M) be the Lie algebra of smooth vector
fields on M. Given X, Y € $H(M), set

0;X)(Y) = %([Y, X1+ JJY, X1+ 1JY, JX] - JIY, JX])
1 1 ™
= 5([Y, X1+ JIJY, X)) — ZNJ(Xa Y),
where, as usual,
Ny e AV (M) @ TM,
defined as
N;X,Y)=[JX,JY]-[X, Y]-J[JX, Y]-J[X, JY],
is the Nijenhuis tensor of J and
Njy=0 <= J is integrable.
Then we have:
e XxenY oM,
o 9;JX=J03;X,ie.,0;J =0.
Note also that, given f € C*°(M, C), then

- 1
@) f(X, ¥) = _g(NJ(X» Y)—iJNj(X, Y))f.

Let (M, J) be a holomorphic manifold and set

e g=A:=rY"M)TM,

o [X,Y]=[XxY]:= %([X, Y]-[JX, JY],for X, Y € H(M).
A straightforward computation shows that [ * ] is a Lie algebra bracket (note that
for a general complex structure J , we have:

SX*x[Y*xZ]] = %G[JN, N;y(JY, 2))),
o d= 51 where, now, for X, Y € 9,
- 1
0;X)(Y) = 5([Y, X1+ J[JY, X).

Then:
1. Define | ® X| := || and so,

A=P A,

PEZ
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where

APP(M)®TM, if0<p=<n,

0, otherwise.

Apz

2. Extend [*] to A in the following way:
a) if L € /\(}’1 (M) ® TM, define [L * L] by means of the formula

[L* L)X, Y) =[L(X)* L(Y)] = L(ILX) * Y]+ [X * L(Y)]
— L([X = Y]);

b) given R, S € /\J (M)®TM define [R * S] by polarization, i.e.,
1
[R*S]:= 5([R+S>|<R+S]—[R*R]—[S*S]);

) givena € AJ(M), B € A% (M), define
[@AR*BAS]I:=(=DIaABA[R*S];

d) extend to the general case by bilinearity.

91

Note that, in terms of local complex coordinates z1, . . ., Z,, under the identification

1
™ «— T'OM, X «— E(X—iJX),

we have that, given R € A, , S € A,

R= erﬂdm@—zz ai

j=11=p
5= % s,Kda@—:Z ai
J=11K|=q Jj=1
Then,

1 ad ad ad
R x S = E ri AN —s1 — (—1 qu./\ r ® ,
[ ] 1<] 3ij ( ) / 3Zj k) 3Zk

where, of course,

0 ad _
— Sk = Z —skkdik,
K=¢ °%J

(see e.g. [8]).
3. Extend 9 to A by setting

@®X)=d;a® X+ (—D%a A d;X.
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Then (A, [*], d;) isaDGLA; note that Ay = $H(M) and, consequently, exp(Ap),
is the connected component of idy in Diff(M). Let J be another complex structure on
M with det (I — JJ) # 0. Then we can write in a unique way,

J=AJAT!,
with
A=1+L and LJ+JL =0,
ie.,
LenAY'MyeTM.
A tedious but straightforward computation yields the following
Lemma 8. Let L, A, J be as before and let
p(A) == (A ' Q@ A € Aut(T*M ® TM).

Then:

o p7NAN;=—4@sL + 3L *LD);
o pl(A)odjop(A)=20;+[Lx],

Le,onTM:

o AT'NF(AX, AY) = —4@,L + L[L x L1(X, )),
o AT'0;AX)(AY) = (3, X)(Y) + [L * X1(Y).

Proof. It is enough to consider the case
J=J,, AQ©) =1 (ie., L(0) =0),
and perform the computations at 0.

Consequently,

e (37)r =3y +[L *-] corresponds to éj ;

o LeMey(A),det(I+L)#0, <, J=I+L)JUI+L)"is a holomorphic
structure and so L +— (I 4+ L)J(I + L)~! establishes a bijection:

ME (A) :={L € MEy(A) |det (I + L) # 0}
\
{holomorphic strucures Js.t.det(I —JJ) # 0};

e two exp(Ap)-equivalent elements of M€z (A) correspond to diffeomorphic holo-
morphic structures.

We have also the following, easy to prove
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Lemma9. Let L, A, J be as before. Then, on A(;’*(M ) we have
p~H(A)odjop(A) = 8+ LAdy,
where, more generally,
0, s 0, , 0,
A AP @ T)OM) x (A (M) © A M)y — AN (M)

is defined by means of the duality pairing.

Lemma 9 suggests the possibility of considering operators on /\(J)’* (M) of the form:

o dja+ L Adja,

with

T+

("'
Len™uneTM, L L, with L,enry*"'m,

I
7+

1

=
I

possibly with L; = 0, i.e., including L; into a new J on the basis of Lemma 8.
Therefore, we can set the following:

Definition 9. A supercomplex (resp. superholomorphic) structure on M is the datum
J = (J, L) of a complex (resp. holomorphic) structure J on M and L € AD =
ASM) @ TM.
Given a superholomorphic structure 7 = (J, L), set, on /\(}’*(M ):
S, =G 4L AD.
Clearly T is a parity one derivation and

= .z l -
T —(3]L~|—2[L>kL])/\(a+L/\3J).

Moreover, T extends to A as
T=0;+[L=* -],
and it satisfies

Te®X)=Ta® X + (=)o A TX,

for X € Ay, a € A(}’*(M ). Clearly T reflects the Z,-deformation theory of A. Thus,
in particular, we have

-\ - 1
T=0 < 81L+§[L*L]=0,
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which gives by lemma 1,
= 1
asLy + E[Ll *L1] =0,

ie.,
Ji=U+L)JUI+L)"

is holomorphic. This leads to a superholomorphic structure J =(J, L)with L; = 0.
Note that:

e if n = 2, then superholomorphic structures coincide with complex structures (be-
cause L = L),
o ifn=3,thenL =L+ L, and

_ 1 - 1
3JL+§[L*L]=O = 3JL1+§[L1*L1]=0,
and so, assuming L; = 0, we obtain for
o€ A(;’*(M), a=oay+o +ar+a3, with o) € /\(}’p(M) 0<p<3:

9500 = 0,
;[Ol=0 — 5]0(1:0,

5]0(2+L2/\3]O(0 =0.

4.3 A very simple example

Let M = T?" = (C”/ZZ” and let 7 = (J, L), where

o J=Jsa,

o L=3" 0oLy, Lp=3_y > 11=2p—195;d2} ® % . aj; €C.

Clearly,

5 Symplectic deformation theory
5.1 Preliminaries

Let (V, k) be a 2n-dimensional symplectic vector space. Define the symplectic Hodge
operator

* A | VAN /\2n—r V*
by means of the relation,
Kn
a Ak B =k, ,B)F,

a, B € A"V*. Itis easy to check that *2=1.



Z, and Z-Deformation Theory

Consider the following endomorphisms of A*V*:

o L:ar kA«
A= —% L,
H =Y —r)p,, where

pr i AV — ATV
is the natural projection.
It is easy to check that
[L, Al=H, [L, Hl=-2L, [A, H] =2A,

and so A*V* has the natural structure of the s[(2, C)-module.
We have

Lemma 10. For 0 < p <n,
LP : A"TPVE s APV
is an isomorphism and so, in particular, for 0 < p < n,
L:APVF — APT2y
is injective.
We have also

Lemma 11. Let 0 < p < n.

o Ifa € APV™ then

K (@ AK"P) = (=1)2PP D — p)l@ + Aa A k).

p! _
=
For every A € End(V), we define T A € End(V) by means of the relation
K(Av, w) = kv, T Aw).
Let,

Sc(V):={A € End(V)|A=TA},
SHV) = Se(V) N Aut (V).

We can immediately check that

AeSHV) = Al'eSHV).

95
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9
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Clearly, given A € S, (V),
ka(v, w) :=k(Av, w)
defines an element of A2V * and
fe 0 Se(V) —> A2V A > ka,
is a bijection sending S, (V) into symplectic forms.

Let i now be a symplectic form on V. Then there exists a uniquely defined A €
S, (V) §2 such that:

=1
I
=

>

Consequently, if a, B € A"V*, then,
ik(a, B) =k (p(Aa, B) =«k(a, p(A)B),
where, as before,
PAYC A AG) = Ao A A (A g
Moreover,

IZ" — enAKrz

’

where A = A(A) = - log|det Al.
Therefore, if J is the symplectic Hodge operator with respect to ¥, we have

a Ak B =Kk(a, ﬁ)% =k (c, e")‘p(A),B)% =a Ak p(A)B,

and so, setting C = C(A) := " p(A), we have
*=%kC=C"%.
Let (M, k) be an almost symplectic manifold. Set
d* = (1) T kd%k,
on r-forms. Clearly, (d*)?> = 0 and if & is another almost symplectic structure, then
d* = c7la*c.
We have the following
Lemma 12. Let (M, «) be an almost symplectic manifold. Set

o =L, d¥].



Z, and Z-Deformation Theory 97

Then the following facts are equivalent:

1. dk = 0, i.e., k defines a symplectic structure on M;

2.0 =d;
3.0:=[d, Al—d*=0;
4.[d, d*]=0;

5. 0, is a differential, i.e., it is a derivation of parity 1 and O,% =0.

Proof. Note first that 2. and 3. are obviously equivalent and that Q is C°°(M)-linear
(cf. [4]);

1. = 3. It is a basic symplectic identity (cf. [4]).

3. = 1. From Q = 0, it follows

a. 0= Q/cn = [d, Alk" = dAk™. Now,
Ak = —k Lk = —nl¥x = —nx" 1,

and so,
0k =0 = A1 =0, ie., d* =0.

If n = 2, there is nothing else to prove, otherwise,
b. 0= 0« =[d, Ak = —Adk.
c. From [a.] we obtain,

Ok ' =1d, A" —d®" ' = dac" — a*e L

Now,
AR = KL = —(n = Dl = =201 — D2,
From (8), it follows
d*k" ' = —kd k" = —(n — Dlkdk = (n — 1)(n — 2)dx A k"3,
Finally,
Ok" ' = —2(n— Ddc" 2 = (n — D(n — 2)dk A" 3

=—3(n — D)(n —2)dk Ak" 7,
and thus, by Lemma 10, Qx"~! = 0 gives dx = 0.
1. —=4.
[d, d*=[d. [d, A]l = [[d. d]. A] — [d. [d, A]] =0.
4. — 1. Let f € C°°(M). Then
Qdf = —d*df

and so
[d,d*¥]=0 = Q=0o0n A' (M).

Leta € AN (M) s.t. d*a =0 (and so Ada = 0) Thus, again using (8), we obtain:
d*da =0 = —kdk(da) = (n — 2) 1% (da A d" ),

which gives dk 2 = 0 and so dx = 0.
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1. = 5. It is now obvious.
5.=2.If f € C®(M), thend, f =df — fd*k and so

0, is a derivation — 0%l=0 — d*ic = 0.
Thus if 0, is a derivation, it coincides with d on functions and, since it satisfies 0,2( =0
itisd.
5.2 Starting deformation theory once more
Let (M, k) be a compact symplectic manifold. Therefore,
Sym (M) := {simplectic forms on M},
is not empty. Set,
Sym(()K)(M) = {k € Sym(M) | k" = const.k"}.
By Moser’s lemma,
Sym(M) = Ditf(M)Sym$" (M).

It is well known that (A* (M), d* d)is adGBYV algebra, and so, in particular, for every
a € A*(M) defining,

To 1 AY(M) — A*(M),
as
ToB = (=DIa* @ A B) — (=DMd*a A B — o A d*B,
we obtain

1. Ty is a derivation,
2. setting [« @ B] := Tl B, we obtain that (A*(M), [e], d) is an odd dGLA.

Let k¥ now be another almost symplectic structure on M. Write K (X, Y) =
k(AX, Y) and &" = ™ k™. Then,

Co.C ' =C[L, &&)c~' = [CcLCc™!, a*].

Now

CLC™" = p(A)Lp(A) ™ = e(p(A)i),

where, for any y € A*(M), we denote by e(y) the left multiplication by y, i.e.,
e(y)(@) = y A a. Note also that p(A)R(X, ¥) = k,-1(X, ¥) =k (A7'X, V).
Write p(A)R = k — € and assume d*p(A)R = 0, i.e., d*e = 0. Thus

CLC™' =[L, d*] —[e(e), ¥ =d + ..
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Consequently, defining MC : A*(M) — A*(M) as
1
MC(a) :=da + E[a o],
we obtain
2=0 < MC(e)=0 < di =0.

Note also that

d*p(A)k =0

*ii =0

Vice versa, given € € Kerd*N A%(M), with det (57 (k — €)) # 0, let & be defined by
the equation,

— M(A) = const.

p(AK =Kk — €.

If MC(e) = 0, then, again, 92 = 0 and s0 k¥ € Sym(()K)(M) )
Note once more that, given k almost symplectic, by Moser’s lemma, there exists
¢ € Diff(M) such that & := ¢* (k) satisfies £" = e «" with A = const.
Summarizing, let (M, «) be a symplectic manifold and let

A= (Kerd*m ey /\p(M)> [1],
p>0
where, as usual, [1] is the degree —1 shift. Consequently,
APH(M)NKerdX if0<p<2n—1,
A, = .
0, otherwise.

Therefore, (A, [o], d) is the dGLA that governs the deformation theory of the sym-
plectic structure «. In particular, if

ME(A) :={e € A1 | MC(e) =0},
and
ME*(A) = {e € ME(A) | det (5, (k — €)) # 0},
then,
A [—AT
induces a bijection,
Symi (M) «— IME*(A).
Note that, if
Diff (M) = {¢ € Diff(M) | ¢* (k") = k" , ¢ is isotopic to the identity},

then the action of Dift[j(M) on A2(M) corresponds to the action of exp(A(O)) on
ME*(A). In fact, given X € H(M), then
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1.
d*#.(X) = div X;

2. on A" (M), we have
ix = (=1) kel (X)) %k
and, consequently, on A
*Lxkx = Ty (x);

3. exp(X) € Diffg (M) sends d to ad (3k p ((exp(X).) % )d and so the infinitesimal action
is

o = kLyka =Ty x)o = [#c(X) e ].
Consequently,
ME*(A)/ exp(Ao)

is the moduli space of (infinitesimal) constant volume deformations of the symplectic
structure «.

We want to show now that the theory is totally unobstructed.

Let (M, k) be a compact symplectic manifold, and assume

/K”:l.
M

Let i be an almost symplectic form, and let

e ::/ " > 0.
M

/ (e“x)" = /E”,

M

and so, by Moser’s lemma, there exists ¢ € Diff(M) s.t.

Then,

[¢"()]" = " k™.
Letnow o € A2(M),da = 0. Set k; := k + ta. Let t > ¢; be a smooth curve in
Diff(M) s.t.

1. ¢o =idy,
2. ¢+*(x) has constant volume density, i.e.,

o (k') = O
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Now,
e"c® =/ o/ (k] 2/ K/ =1+nt/aAK"_l +o(1).
M M
Write
1
o =——Aak + B, with AB=0 ie., BAk" 1 =0.
n
Therefore,

10 =1 —t[ Aak™ +o(1).
M
Now let X € $H(M) s.t. its associated flow {%X} satisfies

d X\* _ d *
E(% ) (ki) ji=0 = qu’ (k1) |1=0-

Consequently,

d
— ¢ (kD=0 = Lxk" + no A K" = —qi”,

dt
:/ Aak”,
M

1
n (a +dy + —q/c) A" =0,
n

where

and thus, if y = #,(X),

ie.,
1
Ala+ —gk+dy | =0,
n
and so

d*a +dy) =0.

Note that, if Ao = const (i.e., d*a = 0), then

1
A<a+—qx> =A0l—/ Aax" =0,
n M
and so Ady = 0 and d*y = 0. Finally,
d X%
_(w; ) (Kt)|t:() =o+dy,
dt
and so ¢t > k; corresponds to a curve in 9ME(A), with tangent o + dy at 0.

It is clear that, if we consider the underlying Z,-deformation theory, we are led to
the notion of supersymplectic structure.
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Definition 10. A supersymplectic structure on the 2n-dimensional differentiable man-
ifold M is the datum of

n
KGACVGH(M), KZZKP’ KPE/\ZP(M),lfpST’l
p=1

such that:

1. k" #0,1e., /ci’ #+0,
2.dk =0,ie.,dky =0,1<p <n,
3. d% = 0,ie., d*Kp =0, 1 < p < n, where % is computed with respect to «.

Therefore, if k is a supersymmetric structure on M, then « is a simplectic structure.
Vice versa, from a symplectic structure k1, we can always construct a supersymplectic
structure, just setting

n
— P
co= Yl
p=1

Note that, in general, the DSLA (A, d) does not satisfy the condition of lemma 4
(because, in general, the dGBV algebra (A, d*, d) does not satisfy the dd*—lemma).
Therefore, in contrast with the Z-case, we cannot conclude that the theory is totally
(formally) unobstructed; this is true whenever the symplectic manifold (M, k1) satisfies
the Hard Lefschetz Condition (cf. [2], [9], [10], [4], [13]).
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Summary. We study m-dimensional real submanifolds of codimension p with (m — 1)-
dimensional maximal holomorphic tangent subspace in a Kéhler manifold. Consequently, on
these manifolds there exists an almost contact structure (F, u, U, g) naturally induced from the
ambient space. In this paper, we study a certain commutative condition on the almost contact
structure and on the second fundamental form of these submanifolds.

1 Introduction

Let N be a real hypersurface of an almost Hermitian manifold N. In [23] Y. Tashiro
showed that in this case N is equipped with an almost contact metric structure naturally
induced by the almost Hermitian structure on N. This has been a fertile field for many
authors, in particular when Nisa complex space form. See [3], [11] and [20] for more
details and further references. Above all, M. Okumura, S. Montiel and A. Romero gave
a geometric meaning of the commutativity of the second fundamental tensor of the
real hypersurface of a complex space form, and its almost induced contact structure
({161, [20]).

In [8] and [9] M. Okumura and the author of this paper considered similar prob-
lems by studying CR-submanifolds of maximal CR-dimension in complex space forms.

Namely, let M be a real submanifold of the complex manifold (Mmﬂ7 , g) with com-
plex structure J. If, for any x € M, the tangent space Tx(M) of M at x satisfies
dimp(JTy (M) N T, (M)) = m — 1, then M is called a CR-submanifold of maximal
CR-dimension. It follows that there exists a unit vector field & normal to M such that
JT, (M) C Ty (M) @span{, }, forany x € M. A real hypersurface is a typical example
of a CR-submanifold of maximal CR-dimension and the generalization of some results
which are valid for real hypersurfaces to CR-submanifolds of maximal CR-dimension
may be expected, see for example [5]. In the real hypersurface case and in particular
when M is a Kihler manifold, many results have been obtained. See, for example,
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[17] for the fundamental definitions and results and for further references. On the other
hand, for arbitrary codimension, less detailed results are known but may be expected.
For example, we refer to [21], [5] and [6].

In the present article, we continue the above-mentioned study and we discuss a
certain commutative condition on the almost contact structure and on the second fun-
damental form of these submanifolds. Namely, in [9] M. Okumura and the author of
this paper investigated CR-submanifolds of maximal CR-dimension in complex space
forms which satisfy the condition 2(F X, Y) + h(X, FY) = 0, under the assumption
that the distinguished vector field £ is parallel in the normal bundle, where F is the in-
duced almost contact structure and 4 is the second fundamental form of M. We proved
that under this condition there exists a totally geodesic complex space form M’ of
M, such that M is a real hypersurface of M’. Therefore, it was possible to apply the
results of real hypersurface theory ([16], [20]) and prove some classification theorems
for CR-submanifolds of maximal CR-dimension in complex projective space, complex
hyperbolic space and complex Euclidean space.

Moreover, it was proved in [8] that if a CR-submanifold of maximal CR-dimension
in a complex space form satisfies the commutative condition 2/(F X, Y) —h(X, FY) =
0, under the assumption that the distinguished vector field & is parallel in the nor-
mal bundle, then the holomorphic sectional curvature of the ambient manifold is non-
positive.

The main purpose of this paper is to continue the study of the commutative condition
h(FX,Y)—h(X, FY) = 0, but after leaving out the assumption that the distinguished
normal vector field & is parallel with respect to the normal connection and in the
case when the ambient manifold is not necessarily a complex space form, but is a
Kihler manifold. In section 2, we recall some general preliminary facts concerning
submanifolds (see [4] and [14] for more details and further references) and especially
CR-submanifolds (see [26], [25] and [1]) and derive useful formulas for later use.
Section 3 is devoted to the study of CR-submanifolds of maximal CR-dimension in
Kihler manifolds which satisfy the condition 2(F X, Y) — h(X, FY) = 0.

The author thanks Prof. M. Okumura for his valuable suggestions during the prepa-
ration of this paper.

2 CR-submanifolds of maximal CR-dimension of a Kihler manifold

Let M be an (m + p)-dimensional Kihler manifold with Kihler structure (J, g) and
M an m-dimensional real submanifold of M with immersion : of M into M. Also,
we denote by 1 the differential of the immersion, or we omit to mention z, for brevity
of notation. The Riemannian metric g of M is induced from the Riemannian metric
g of M in such a way that g(X,Y) = g(X,1Y), where X,Y € T(M). We de-
note by T'(M) and TL(M) the tangent bundle and the normal bundle of M, respect-
ively.

Next, it is known that, for any x € M, the subspace Hy(M) = JT, (M) N Ty (M)
is the maximal J-invariant subspace of the tangent space T (M) at x, and it is called
the holomorphic tangent space to M at x. In general, the dimension of H, (M) varies
with x (see [6], for example), but if the subspace Hy (M) has constant dimension for



Commutative Condition on the Second Fundamental Form 107

any x € M, a submanifold M is called the Cauchy—Riemann submanifold or briefly
CR-submanifold and the constant complex dimension of H, (M) is called the CR-
dimension of M ([18], [25]). It is well-known that a real hypersurface is one of the
typical examples of CR-submanifolds whose CR-dimension is (m — 1)/2, where m is
the dimension of a hypersurface. It is easily seen that if M is a CR-submanifold in the
sense of Bejancu’s definition given in [1], M is also a CR-submanifold in the sense of
the above-given definition. In the case when M is a CR-submanifold of CR-dimension
(m—1)/2, these definitions coincide. On the other hand, when the CR-dimension is less
than (m — 1) /2, the converse is not true. We refer to [6] for more details and examples
of CR-submanifolds of maximal CR-dimension.

In the sequel we consider CR-submanifolds of maximal CR-dimension, that is,
dimp H,(M) = dimr(JT,(M) N Tx(M)) = m — 1. Then it follows that M is
odd-dimensional and that there exists a unit vector field & normal to M such that
JT, (M) C T, (M) & span{&,}, for any x € M. Hence, for any X € T (M), choosing a
local orthonormal basis &, &1, ..., &, of vectors normal to M, we have the following
decomposition into tangential and normal components:

J1X =1 FX +u(X)§, ey

JE=—1U+ PE, 2)

J&, = —1U, + P§, (a=1,....,p—1. 3)

Here F and P are skew-symmetric endomorphisms acting on 7 (M) and TL(M) re-

spectively, U, U,,a = 1, ..., p — 1 are tangent vector fields and u is one form on M.
Furthermore, using (1), (2) and (3), the Hermitian property of J implies,

glU, X)=ulX), U,=0 (@=1,...,p—1), (€))]

F?X = —X +u(X)U, )

u(FX)=0, FU=0, P&=0. ©6)

Hence, relations (2) and (3) may be written in the form
JE=—U, J&g =P (@=1,...,p—1). @)

Moreover, these relations imply that (F, u, U, g) defines an almost contact metric
structure on M (see [24], [2]).

Since {n € T-(M), n L £} is J-invariant, from now on let us denote the orthonor-
mal basisof T-(M)by&, &1, ..., &, 81%, ..., &g, where &« = JE,andg = (p—1)/2.
Next, letus denote by V and V the Riemannian connection of M and M respectively,
and by D the normal connection induced from V in the normal bundle of M. They
are related by the following well-known Gauss equation

V.xi¥ =1VxY + h(X,Y), (8)
where & denotes the second fundamental form, and by Weingarten equations,

q
Vix§ = —1AX + Z{sa(X)Ea + sax (X)&a+}, ®)

a=1
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q
Vix€a = —144X — s4(X)€ + Z{Sab(x)%_b + sab* (X)Ep+}, (10)
b=1
q
leg:a* = —1Ap X — 5o+ (X)E + Z{Sa*b(X)%_b + Saxpr (X)Ep+}, (11)
b=1

where the s’s are the coefficients of the normal connection D and A, A,, Ag+, a =
1,...,q, are the shape operators corresponding to the normals &, &,, &,+, respectively.
They are related to the second fundamental form by

q
h(X,Y) = g(AX, V)& + Y {2(AuX, V)Eq + g(Aar X, V)Equr). 12)

a=1

Since the ambient manifold is a Kdhler manifold, using (1), (7), (10) and (11), it
follows that

Ag X = FALX — s4(X)U, (13)
AgX = —FApX + s+ (X)U, (14)
sa(X) = u(AgX) = g(AaX, U) = g(AqU, X), (15)
Sqa(X) = —u(ApxX) = —g(Ag=xX,U) = —g(A+U, X), (16)
Sa*b* = Sab,  Sa*h = —Sab*, (17)

for all X, Y tangentto M anda,b =1, ..., qg. Therefore,

traceA,; = s+ (U), traceAq, = —sq,(U), (a=1,...,q). (18)

Moreover, since F' is skew-symmetric, and A, and A+, (@ = 1, ..., g) are symmetric,
(14) and (16) imply

gUALF + FA)X,Y) = u(Y)sa(X) — u(X)sq(Y), (19)

(A F + FA)X,Y) = u(Y)sgx(X) — u(X)sq«(Y), (20)

foralla=1,...,q.
Next, differentiating relation (1), using (7), (8), (9) and (12), and comparing the
tangential and normal parts, we get,

(VyF)X = u(X)AY — g(AY, X)U, 21)
(Vyu)(X) = g(FAY, X), (22)
VxU = FAX. (23)

Furthermore, the Gauss equation and the Codazzi equation (for the distinguished
vector £) become

Z(RixiviZ,iW) = g(RxyZ, W)
—g(AY, Z2)g(AX, W)+ g(AX, Z)g(AY, W) 24)
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q
=) 18(ApY, Z)g(ApX, W) — g(ApX, Z)g(ApY, W)}
b=1
q
=D ((ApY, 2)g(Ap X, W) — g(Ap X, Z)g(ApY, W),
b=1

Z(RixiviZ, &) = g(VxA)Y — (VyA)X, Z)

q
+ Z{—g(AbK Z)sp(X) + g(ApX, Z)sp(Y)}
b=1
q
+ ) {—8(ApY, Z)sp=(X) + g(Ap< X, Z)sp=(Y)}, (25)
b=1

forall X, Y, Z tangent to M. Here, R and R denote the Riemannian curvature tensors
of M and M respectively. Moreover, the Codazzi equations for normal vectors &,,
a=1,...,p—1are

2(RixiviZ, &) = g(VxA)Y — (VYA X, Z)
— g(AY, Z)s4(X) + g(AX, Z)s4(Y)
q
+ ) {g(ApY, Z)spa(X) — g(ApX, Z)spa(Y)}

b=1
q
+ Y {8(ApY, Z)spra(X) — g(ApX, Z)spra(Y)). (26)
b=1

Finally, if the ambient manifold M is a complex space form, i.e. a Kihler manifold of
constant holomorphic sectional curvature 4k, then

RyyZ =k {30, 2)X —g(X, 2)Y +§UJY, Z2)JX
- 8UX,Z)JY —23(JX,Y)JZ}, 27)

for X, Y, Z tangentto M.

3 CR-submanifolds satisfying h(FX,Y) — h(X, FY) =0

CR-submanifolds M™ of maximal CR-dimension of complex space forms whose dis-
tinguished normal vector field & is parallel with respect to the normal connection and
which satisfy the condition

h(FX,Y)—h(X,FY)=0, (28)
forall X,Y € T(M), were studied in [8] and the following theorem was proved:

Theorem 1 ([8]). Let M be an m-dimensional CR-submanifold of CR-dimension
(m — 1)/2 of a complex space form. If the distinguished normal vector field & is
parallel with respect to the normal connection, and if the condition (28) is satisfied,
then the holomorphic sectional curvature of the ambient manifold is non-positive.
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Now, we continue this study, dropping the condition of the parallelism (with respect
to the normal connection) of the distinguished normal vector field & .
Using relation (12), we obtain,

h(FX,Y)—h(X,FY) = {g(AFX,Y) — g(AX, FY))¢

q
+ ) {[g(AaF X, Y) — g(AuX, FY)lEq

a=1

+ [8(Aa FX,Y) — g(Apx X, FY)]8a}. (29)

Therefore, since F is skew-symmetric, it follows that the relation (28) is equivalent to

AF + FA =0, 30)
A F+FA, =0, 31
Ay F + FA, = 0. (32)

We continue this section by recalling the definition of the Levi form and by deducing
one more sufficient condition for a submanifold of a Kihler manifold to be Levi-flat.
For more details, we refer to [6], [7], [10], [13].

For this purpose, let us assume that M is a CR-submanifold of CR-dimension
(m — 1)/2 of a Kéhler manifold M. Further, let HXC (M) be the complexification of
H,(M) and

HOD () = {;X +VZINX|X € Hx(M)} ,

H;l,O)(M) — {lX —=1J1X|X € Hx(M)} .

Then HXC (M) = H;O’ b (M)® H;l’o) (M) and we can define the following sub-bundles
of the complexification of the tangentbundle 7€ (M): HC (M) = |, )y HE (M), HOD
M) = Uyen BV ), HEO M) = U, cpp B ().

Then, it is well-known that both distributions H©-V (M) and H -9 (M) are involu-
tive. However, this does not imply that H€ (M) = H D (M)® H1-9 (M) is involutive
and the Levi form is defined in such a way that it measures the degree to which HC (M)
fails to be involutive ([10], [13]). Hence,

Definition 1. The Levi form L is the projection of J[Ji1 X, Y] to T(M)J- for X,Y €
H(M).

Therefore, HC (M) is involutive if and only if the Levi form vanishes identically. Fur-
ther, we need the following well-known

Theorem 2 ([10]). Let M be a Kiihler manifold and M be a real submanifold of M.
Then,

LX,Y)=h(X,Y)+h(FX, FY), (33)

Jor X,Y € H(M), where h denotes the second fundamental form with respect to the
Riemannian connection V of M and F is the skew-symmetric endomorphism acting on
T(M).
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Finally, when in M the Levi form vanishes identically, M is called a Levi-flat
submanifold. In his recent work Siu ([22]) proved that there does not exist a smooth
Levi-flat hypersurface of complex projective space of dimension > 3. However, if we
do not assume that M is complete, the example of a real hypersurface, which is given
by Kimura ([12]), is Levi-flat.

As an immediate consequence, using (5), we have from (30) and (33):

Proposition 1. Ler M be an m-dimensional CR-submanifold of CR-dimension
(m — 1)/2 of a Kdhler manifold M. If the condition (30) is satisfied, then the man-
ifold M is Levi-flat.

Further, if relation (30) holds at a point of the submanifold M, using (6), we get
AU = aU, (34)
where we have put « = u(AU). Thus, the following lemma holds:

Lemma 1. Let M be an m-dimensional CR-submanifold of maximal CR-dimension of
a Kdahler manifold M. If the condition (30) is satisfied, then U is an eigenvector of
the shape operator A with respect to distinguished normal vector field & , at any point
of M.

Further, let M be an m-dimensional CR-submanifold of maximal CR-dimension
of a Kihler manifold M such that the condition (30) is satisfied. Denote by D the
distribution spanned by all vectors orthogonal to U. Then, we can easily see that D
is an involutive distribution. Namely, let X, Y € D, whereas using relation (23), it
follows that g([X, Y],U) = —g((FA 4+ AF)X,Y). Therefore, relation (30) implies
g([X,Y],U) = 0, ie. that [X, Y] € D, which shows that D is involutive. So we
have

Lemma 2. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1)/2
of a Kahler manifold M. If the condition (30) is satisfied, then the distribution D, which
is spanned by all vectors orthogonal to U, is involutive.

Further, we have

Theorem 3. Let M be an m-dimensional CR-submanifold of maximal CR-dimension
of a Kéihler manifold M. If the condition (30) is satisfied, then the integral submanifold
Mop of the distribution D, which is spanned by all vectors orthogonal to U, is a Kdhler
manifold.

Proof. Let us denote by j the immersion of Mp in M. Since U is a unit normal to Mp
in M, we note that g(U, jX") = 0 for X’ tangent to Mp. Then, we have the following
decomposition into tangential and normal components:

FjiX =jF'X +u' (X)U. (35)
Thus, from (6) it follows that

F2jX' = jF*X +u (F X"U. (36)
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Further, since u(jX’) = 0, using (5), we have

F2jXx =—jX. (37)
Now, (36) and (37) yield u’(F’X’) = 0 and thus, we have

F?X' =-X/, (38)

i.e. F' is an almost complex structure on Mp.
Further, relation (35) implies

FjX = jF'X'. (39)

Finally, using the Gauss equation (8) and relation (21), and comparing tangential and
normal components, it follows that

(V%/F’)Y’ =0,
and hence, Mp is a Kidhler manifold.

In what follows, we shall consider cosymplectic manifolds. For this purpose, we first
recall that an odd-dimensional differentiable manifold M2*~ is an almost cosymplectic
manifold, if there exist a 1-form ¢ and a 2-form 7 such that

o ATkl £0, (40)

at each point of M Z=1 (see, for example [15]). The pair (¢, ) is called an almost
cosymplectic structure on M>*~1 If, on an almost cosymplectic manifold, the 1-form
¢ and the 2-form 7 are both closed, the manifold is called a cosymplectic manifold.
Further, M. Okumura in [19] studied the cosymplectic hypersurfaces of complex space
forms. Having found a certain condition for the structure to be cosymplectic, he studied
non-existence of the cosymplectic hypersurfaces under certain conditions for the scalar
curvature of a complex space form and proved that the scalar curvature of a cosymplectic
hypersurface of a complex space form is a non-positive constant.

Now, let M be an m = 2l + 1-dimensional CR-submanifold of CR-dimension
(m—1)/2 of a Kdhler manifold ‘M, with an almost contact metric structure (F,u,U,g).
Further, let w be a two-form defined by w(X, Y) = g(F X, Y). Then, since F has rank
21, it follows that

qu’;éo,

which shows that M is an almost cosymplectic manifold. Moreover, since F is a skew-
symmetric endomorphism, using (22), it follows that

du(X,Y)=g(FAX + AFX,Y)
and therefore,

du=0< FA+ AF =0. 1)

It is easily seen, using relation (1), that w = 1*2, where 2 is a Kéhler form of M, and
therefore, dw = 0. Combining this with relation (41), we obtain:
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Theorem 4. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1) /2
of a Kdhler manifold M. If the condition (30) is satisfied, then M is a cosymplectic
manifold.

Further, denoting the second eigenvalue of the shape operator A with respect to
distinguished normal vector field & by A, and the corresponding eigenvector by X, that
is AX = AX, relation (30) implies that F'X is an eigenvector of A corresponding to
the eigenvalue —A. Therefore, we proved

Lemma 3. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1)/2
of a Kihler manifold M. If the condition (30) is satisfied, then if X € T(M) and if
X 1 U is an eigenvector with eigenvalue X of the shape operator A with respect to
distinguished normal vector field & , then F X is an eigenvector of A with corresponding
eigenvalue —\, and, therefore, with respect to a suitable orthonormal frame, A has the
following form:

)\
Consequently, traceA = «.

In the above consideration we used only the condition (30). Now, we continue our
study by exploring the conditions (31) and (32). Proceeding in a similar way as in the
proof of Lemma 3, and using (31) and (32), we easily prove:

Lemma 4. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1)/2
of a Kihler manifold M. If the condition (28) is satisfied, then A,U = a,U and
ApU =ag«Ufora=1,...,q, where Ay, Agx,a = 1, ..., q, are the shape operators
corresponding to the normals &,, &,~ respectively. Moreover, with respect to a suitable
orthonormal frame,

—)»Z
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and, similarly,
oy

k]

a*

a*

—2d,
Further, it follows from (19), (20), (31) and (32) that
u(¥)sa(X) =u(X)sq(Y),  u(¥)sax(X) = u(X)sex(¥Y), a=1,....q,  (42)
and therefore,
Sa(X) = u(X)sa(U),  sa+(X) = u(X)s,+(U), a=1,....q. 43)

Lemma 1 implies that U is an eigenvector of the shape operator A with respect to
distinguished normal vector field &, at any point of M, thatis AU = «U. Hence, using
(23), it follows that

g(VxA)Y — (VyA)X,U) + g(AFAX,Y) — g(AFAY, X)
= (Xa)g(U,Y) — (Ya)g(U, X) + ag(FAX,Y) — ag(FAY, X). (44)

From now on, we suppose that the ambient manifold M is a Kihler manifold
of constant holomorphic sectional curvature 4k. Then we have, by straightforward
computation and using (1) and (27)

S(RuX,1YNZ, &) =k{g(FY, Z)u(X) —g(FX, Z)u(Y) — 2g(FX, Y)u(Z)}. (45)
Hence, using relations (25) and (45), it follows that

k{g(FY, Z)u(X) — g(FX, Z)u(Y) — 2g(FX, Y)u(Z)} = g((VxA)Y — (VyA)X, Z)

q
+ ) {—8(AY. Z)sp(X) + g(ApX, Z)sp(Y))
b=1

q
+ D (—8(ApY, Z)spe(X) + g(Ap X, Z)sp ()} (46)
b=1

Replacing Z by U and using relation (43), the last equation reduces to

g((VxA)Y — (VyA)X,U) = -2kg(FX,Y). 47
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Further, since F is skew-symmetric, condition (30) and relations (44) and (47)
imply

—2kg(FX,Y)—2g(FA%X,Y) = (Xa)u(Y) — (Ya)u(X). (48)
Replacing Y by U in the last equation, direct computation yields
kg(FX,Y)+ g(FA’X,Y) =0, (49)
and thus, using (5), it follows that
A’X + kX +BU =0. (50)

Therefore, if X € T(M), X L U is an eigenvector of the shape operator A with respect
to distinguished normal vector field £, namely AX = A X, then

A +k=0. (S1)
Hence we have:

Lemma 5. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1) /2 of
a Kdhler manifold M with constant holomorphic sectional curvature 4k. If the condition
(28) is satisfied, then the shape operator A with respect to distinguished normal vector
field & admits at most three distinct eigenvalues: o (corresponding to U), /—k and

—/—k.
As an immediate consequence we have from (28) and (51):

Corollary 1. There exists no CR-submanifold of maximal CR-dimension of a Kéhler
manifold with constant positive holomorphic sectional curvature satisfying the condi-
tion (28).

Therefore, assuming that the ambient manifold M is of constant non-positive holo-
morphic sectional curvature, and using the above consideration, we conclude that the
shape operator A with respect to the distinguished normal vector field & can be dia-
gonalized as follows that

Further, we consider the case when the shape operator A with respect to the distin-
guished normal vector field £ has three distinct eigenvalues: « (of multiplicity one),
+/—k and —+/—k. For that purpose, let
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Dy ={X|AX =v—kX, g(X,U) =0}, (52)
D_ ={X|AX = —v/—kX, g(X,U) =0}. (53)
Then, it follows that

D(p) = D+(p) ® D—(p)
at each point of the integral submanifold Mp of D. Moreover,

Proposition 2. Let M be an m-dimensional CR-submanifold of CR-dimension
(m — 1)/2 of a Kéhler manifold M with constant holomorphic sectional curvature
4k. If the condition (28) is satisfied, then the distributions D4 and D_, defined by (52)
and (53), are both integrable.

Proof. Let us consider the case X, Y € D, having in mind that the proof of the latter
case is analogous.

Differentiating g(X, U) = 0by Y € D, andusing (23),itfollowsthatg(Vy X, U) =
—g(X, FAY). Therefore, since F is skew-symmetric and using (30), it follows that
g([X, Y], U) =0.

Further, in order to prove [X, Y] € Dy, for X, Y € D, by differentiating AX =
/—k and AY = +/—k, we obtain

(VxA)Y — (VY AX + A[X, Y] =V —k[X,Y]. (54)

According to the assumption, it follows that FX € D_ (see Lemma 3). Moreover,
using (43) and (46) it follows that A[X, Y] = ~/—k[X, Y] and thus [X, Y] € D,.

Lemma 6. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1)/2
of a complex space form M. If the condition (28) is satisfied, then it follows that
onD

AAL+AA=0, AAH+AA=0, a=1,...,q. (55)

Proof. According to Lemma 4, U is an eigenvector of the shape operator A, that is
AU = o,U. Differentiating this equation covariantly and using relations (23) and
(30), we obtain
8((VxA)Y — (VYA X, U) + 8((AcFA+ AFA)X,Y)
= Xag)u(¥) — Yag)u(X). (56)

Next, since M is a complex space form, using relation (27) and Codazzi equation (26),
we get,

g((VxA)Y — (VyAd) X, Z) = g(AY, Z)sq(X) — g(AX, Z)s,(Y)

q
+ Y {g(ApX, Z)spa(Y) — g(ApY, Z)spa(X)}
b=1

q
+ ) {8(Ap X, Z)spea(Y) — g(ApY, Z)spra(X)).
b=1
(57)
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Replacing Z by U in the last relation, and using relations (15) and (16), it follows that

g((VxA)Y — (VYA X, U) = g(AY, U)sqa(X) — g(AX, U)sa(Y)
q
+ ) {spr(X)$pa (Y) — spx (Y)$pa (X)

b=1

= $p(X)spra(Y) + 5p(Y)spra(X)}. (58)

Further, using (34) and (43), the last relation reduces to

q
8((VxAuY — (VyAg) X, U) = u(X) Z{Sb*(U)Sba(Y) = sp(U)spa(Y)}
b=1
q
+u(Y) Z{sb(U)sb*u (X) — sp+(U)spa (X))} (59)
b=1

Now, relations (56) and (59) yield

q
w(X) Y {5y (U)spa(Y) = sp(U)spra(Y))

b=1

q
+u(Y) Z{Sb(U)Sb*a (X) = spx(U)spa (X)}
b=1

4+ g((A,FA+ AFA)X,Y) = Xag)u(Y) — Yo u(X). (60)
Replacing Y by U in the last relation, since A,U = o, U, we get

q

D (56 (U)spa(X) = spr (U)spa (X)) = Xetg — (Uata)u(X)
b=1
q
—u(X) Y sy (U)spa(U) = sp(U)spra(U)}. (61)
b=1

Now, relations (60) and (61) imply
g((A,FA+ AFA)X,Y)=0. (62)

Finally, relations (62), (30), (31) and (5) prove the required result.
The proof of the latter case is analogous.

Corollary 2. Let M be an m-dimensional CR-submanifold of CR-dimension (m —1) /2
of a complex space form M. If the condition (28) is satisfied then if X € T(M) and
if X L U is an eigenvector with eigenvalue X of the shape operator A with respect
to the distinguished normal vector field &, then A,X is an eigenvector of A with
corresponding eigenvalue —A, and, analogously for A .

In Theorem 3 we proved that the integral submanifold Mp is a Kéhler manifold if
the condition (30) is satisfied and if M is a Kédhler manifold. Now, we prove
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Theorem 5. Let M be an m-dimensional CR-submanifold of CR-dimension (m — 1) /2
of a Kdhler manifold M of constant holomorphic sectional curvature 4k. If the condition
(28) is satisfied, then the holomorphic sectional curvature of the integral submanifold
Mp of the distribution D, which is spanned by all vectors orthogonal to U, is non-
positive.

Proof. First we note that the holomorphic sectional curvature H'(X") of the integral

submanifold Mp of the distribution D is given by

g/(R;(/ F/x/ 1_7/)(/7 X/)
g/( X/, X/)Z

H (X)) = , (63)

for X’ tangent to Mp, where R’ denotes the Riemannian curvature tensor of Mp and
J is the immersion of Mp in M, as defined in Theorem 3. Moreover, since U is a unit
normal to Mp in M, we note that g(U, jX’) = 0 for X’ tangent to Mp and we recall
relations (38) and (39), which are important for later considerations.

Since another case can be proved quite analogously, we will suppose that X € Dy
and we will identify X’ and X from now on. This means that X | U, AX = AX, A =
/—k, and therefore, using Lemma 3 it follows that FX € D_,ie., AFX = —AFX.
Moreover, Corollary 2 yields AA; X = —XA;X and g(A, X, X) = 0 and analogously
g(AxX, X)=0.

Therefore, using the Gauss equation for Mp in M, we have

SRxrxFX,X)=¢'(Ry iy F'X, X) — g (A'F'X, FFX)g'(A'X, X)

+g'(AX, FFX)g'(A'F'X, X), (64)
where A’ is the shape operator of Mp in M. Now, using (23), we obtain
g(A'X,Y)=—g(FAX,Y). (65)
Thus, (64) and (65) yield

§(Ry iy F'X,X)=g(RxrxFX, X)+ g(FAFX, FX)g(FAX, X)
— g(FAX, FX)g(FAFX, X).

Moreover, since X € D, it follows that
g (Ry my F'X, X) = g(Rx rx FX, X) — M2 g(X, X)%. (66)
Now, using the Gauss equation (24), we obtain

2RixirxiFX,iX) = g(RxrxFX, X)

q q
+328(X. X2+ g(ApFX. X + ) g(Ap FX, X).
b=1 b=1
(67)
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On the other hand, since M is a complex space form of constant holomorphic

sectional curvature 4k, k = —A2, using (27) and (5), it follows that

T(RixirxiFX,iX) =4k g(X, X)*. (68)

Finally, using (67), (68) and (66), direct computation yields,

¢ (Ry py F'X, X) = 6k g(X, X)?

q
=Y (g(AaF X, X)* + g(As FX, X)?). (69)

a=1

The result follows now at once.

Corollary 3. Let M be a real hypersurface of a Kihler manifold M (k) of constant
holomorphic sectional curvature 4k. If the condition (28) is satisfied, then the holomor-
phic sectional curvature of the integral submanifold Mp of the distribution D, which
is spanned by all vectors orthogonal to U, is equal to 6k, k < 0.
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Summary. We show that there exist non-formal compact oriented manifolds of dimension n
and with first Betti number by = b > O ifand only if » > 3 and b > 2, orn > (7 — 2b) and
0 < b < 2. Moreover, we present explicit examples for each one of these cases.

1 Introduction

Simply connected compact manifolds of dimension less than or equal to 6 are formal
[11, 10, 5]. A method to construct non-formal simply connected compact manifolds of
any dimension n > 7 was given by the authors in [6]. An alternative method is given in
[3] (see also [12] for an example in dimension 7). A natural question is whether there
are examples of non-formal compact manifolds of any dimension whose first Betti
number b; = b > 0 is arbitrary. We consider the following problem on the geography
of manifolds:

For which pairs (n, b) withn > 1 and b > 0 are there compact oriented manifolds
of dimension n and with b; = b which are non-formal? Note that we can restrict to
just considering connected manifolds. In this paper, we solve this problem completely
by proving the following theorem.

Theorem 1. There are compact oriented n-dimensional manifolds with by = b which
are non-formal if and only ifn > 3 and b > 2, orn > (71 —2b) and 0 < b < 2.

In the case of a simply connected manifold M, formality for M is equivalent to
saying that its real homotopy type is determined by its real cohomology algebra. In the
non-simply connected case, things are a little bit more complicated. If M is nilpotent,

Key words: Real homotopy, formal manifolds, Massey products.
Subject Classifications: Primary: 55S30; Secondary: 55P62.
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i.e., w1 (M) is nilpotent and it acts nilpotently on r; (M) fori > 2, then formality means
again that the real homotopy type is determined by the real cohomology algebra. In
general, we shall say that M is formal, if the minimal model of the manifold (which
is, by definition, the minimal model of the algebra of differential forms Q*(M)) is
determined by the real cohomology algebra (see Section 2 for precise definitions).
Note that there are alternative (and non-equivalent) definitions of formality in the non-
nilpotent situation (see [8]). This punctualization is important because the non-formal
manifolds that we construct in Section 3 are necessarily not nilpotent (see Section 5).
In the following table, the big dots mark the pairs (r, b;) for which all manifolds of
dimension n and first Betti number b; are formal. For any of the small dots, there are
examples of non-formal manifolds. To prove Theorem 1 we need to do two things.
On one hand, we need to verify that manifolds of dimension n < 6 with b; = 0 and
manifolds of dimension n < 4 with by = 1 are always formal. For this we use the
results of [5]. On the other hand, we need to present examples of non-formal manifolds
of dimension n > 7 with by = 0, of dimension n > 5 with b1 = 1 and of dimension
n > 3 for any other b1 > 2. For this we use a similar method to that of [6]. Note that
both questions for the case b; = 0 are already solved, so here we have to focus on the
case b = 1.

Table 1. Geography of non-formal manifolds

n>717

n==6 e

n=>5 °

n=4| e °

n=3| e °

n=2 e ° . °
b.:O b]II b1:2 b123

2 Minimal models and formality

We recall some definitions and results about minimal models [2, 7, 13]. Let (A, d) be a
differential algebra, that is, A is a graded commutative algebra over the real numbers,
with a differential d which is a derivation, i.e., d(a - b) = (da) - b+ (—1)9€8@q . (db),
where deg(a) is the degree of a. Morphisms between differential algebras are required to
be degree preserving algebra maps which commute with the differentials. A differential
algebra (A, d) is said to be minimal if:

1. Aisfree as an algebra, that is, A is the free algebra /\ V over a graded vector space
V =@Vi, and

2. there exists a collection of generators {a,, T € I}, for some well-ordered index set
I, such that deg(a,,) < deg(a;) if u < 7 and each da; is expressed in terms of
preceding a;, (i < 7). This implies that da, does not have a linear part, i.e., it lives

in AV AV AV

We shall say that a minimal differential algebra (/\ V, d) is a minimal model for a
connected differentiable manifold M, if there exists a morphism of differential graded
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algebras p: (/\ V,d) — (M, d), where QM is the de Rham complex of differential
forms on M, inducing an isomorphism

p*: H*(/\ V) — H*(QM,d) = H*(M)

on cohomology. If M is a simply connected manifold (or, more generally, a nilpotent
space), the dual of the real homotopy vector space 77; (M) ®R is isomorphic to V'’ for any
i. Halperin in [7] proved that any connected manifold M has a minimal model unique
up to isomorphism, regardless of its fundamental group. A minimal model (/\ V, d) of
a manifold M is said to be formal, and M is said to be formal, if there is a morphism
of differential algebras ¥ : (A V,d) — (H*(M), d = 0) that induces the identity on
cohomology. Alternatively, the above property means that (/\ V, d) is a minimal model
of the differential algebra (H* (M), 0). Therefore, (2M, d) and (H*(M), 0) share their
minimal model, i.e., one can obtain the minimal model of M out of its real cohomology
algebra. When M is nilpotent, the minimal model encodes its real homotopy type. In
order to detect non-formality, we have Massey products. Let us recall its definition. Let
M be a (not necessarily simply connected) manifold and leta; € HPi (M), 1 <i <3,
be three cohomology classes such that a; U ay = 0 and a» U a3 = 0. Take forms ¢; in
M with a; = [«;] and write a1 A ap = d&, ap A a3 = dn. The Massey product of the
classes a; is defined as

(a1, a2, a3) = [a1 A+ (—=DPITE A az]

Hp1+pz+p3—1(M)
€ .
ay U Hp2tpr3s=1(M) 4+ HPi+tP2=1L(M) U ay

We have the following result, for whose proof we refer to [2, 13, 14].
Theorem 2. If M has a non-trivial Massey product, then M is non-formal.

Therefore, the existence of a non-zero Massey product is an obstruction to the
formality.
In order to prove formality, we extract the following notion from [5].

Definition 1. Let (/\ V, d) be a minimal model of a differentiable manifold M. We say
that (/\ V, d) is s-formal, or M is a s-formal manifold (s > 0) if for each i < s one can
get a space of generators V' of elements of degree i that decomposes as a direct sum
Vi = C! @ N, where the spaces C' and N satisfy the three following conditions:

1.d(C") =0, '
2. the differential map d: N' —> /\ V is injective, . '
3. any closed element in the ideal I; = I (€D N'), generated by €@ N’ in A(P V'),

i<s i<s i<s

isexactin A V.

The condition of s-formality is weaker than that of formality. However, we have
the following positive result proved in [5].

Theorem 3. Let M be a connected and orientable compact differentiable manifold of
dimension 2n or 2n — 1). Then M is formal if and only if is (n — 1)-formal (that is, if
and only if M is s-formal, for s = n — 1, according to the previous definition).
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This result is very useful because it allows us to check that a manifold M is formal

by looking at its s-stage minimal model, that is, A (€ V). In general, when computing
i<s

the minimal model of M, after we pass the middle dimension, the number of generators
starts to grow quite dramatically. This is due to the fact that Poincaré duality imposes that
the Betti numbers do not grow and therefore there are a large number of cup products
in cohomology vanishing, which must be killed in the minimal model by introducing
elements in N, for i above the middle dimension. This makes Theorem 3 a very useful
tool for checking formality in practice.

3 Non-formal manifolds with »; = 1 and dimensions 5 and 6

The 5-dimensional example

Let H be the Heisenberg group, that is, the connected nilpotent Lie group of dimension 3
consisting of matrices of the form

1xz
a=1|01y],
001

where x, y,z € R. Then a global system of coordinates x, y, z for H is given by
x(a) = x,y(a) =y, z(a) = z, and a standard calculation shows that a basis for the left
invariant 1-forms on H consists of {dx, dy, dz — x dy}. Let I" be the discrete subgroup
of H consisting of matrices whose entries are integer numbers. So the quotient space
N = I'\ H is a compact 3-dimensional nilmanifold. Hence the forms dx, dy, dz — x dy
descend to 1-forms «, 8, ¥ on N and

de =d =0, dy=-anp.
The non-formality of N is detected by a non-zero triple Massey product

H?(N)
[BIUHY(N) + H'(N) U [«]

([Bl.lal.[a]) =[x Ayl € = H*(N).
Now, let us consider the 5-dimensional manifold X = N x T2, where T2 = R? / 72,

The coordinates of R? will be denoted xi, x». So {dx1, dx,} defines a basis {§;, 8, } for
the 1-forms on T2. We get a non-zero triple Massey product as follows:

([BAdi] [al [a]) =[-y AaAd1] ey

Our aim now is to kill the fundamental group of X by performing a suitable surgery
construction, in order to obtain a manifold with by = 1. The projection p(x, y, z) =
(x, y) describes N as a fiber bundle p : N — T2 with fiber S'. Actually, N is the
total space of the unit circle bundle of the line bundle of degree 1 over the 2-torus. The
fundamental group of N is therefore

1 (N) =T = (A1, A2, A3 | [A1, A2] = A3, A3 central), ()



The Geography of Non-formal Manifolds 125
where A3 corresponds to the fiber. The fundamental group of X = N x T? is
m(X) =m(N) @ 2%, 3)
Consider the following submanifolds embedded in X:

Ti = p~ ({0} x ") x {0} x {0},
T, = (£} xS' xS,

with & a point in N. These are 2-dimensional tori with trivial normal bundle. Consider
now another 5-manifold Y with an embedded 2-dimensional torus 7" with trivial normal
bundle. Then, we may perform the fiber connected sum of X and Y identifying 77 and
T, denoted X#7,—7Y, in the following way: take (open) tubular neighborhoods vi C X
and v C Y of Ty and T respectively; then dv; = T2 x S? and 9v = T? x S?; take

an orientation reversing diffeomorphism ¢ : 8\;13)31); the fiber connected sum is
defined to be the (oriented) manifold obtained by gluing X — v and Y — v along their
boundaries by the diffeomorphism ¢. In general, the resulting manifold depends on the
identification ¢, but this will not be relevant for our purposes.

Lemma 1. Suppose Y is simply connected, then the fundamental group of X#r,=rY is
the quotient of w1 (X) by the image of w1 (Ty).

Proof. Since the codimension of 77 is bigger than or equal to 3, we have that 71 (X —
v1) = w1 (X —T) isisomorphic to 71 (X). The Seifert—Van Kampen theorem establishes
that 71 (X#7,=7Y) is the amalgamated sum of 71 (X — vy) = 7 (X) and 71 (Y —v) =
m1(Y) = 1 over the image of 1 (dvy) = m1(T] x S2) = m(T1), as required. O

We shall take for Y the 5-sphere S°. We embed a 2-dimensional torus T2 in R3. This
torus has a trivial normal bundle since its tangent bundle is trivial (being parallelizable)
and the tangent bundle of R? is also trivial. After compactifying R by one point, we
get a 2-dimensional torus 7 C S° with trivial normal bundle. In the same way, we
may consider another copy of the 2-dimensional torus 7 C S° and perform the fiber
connected sum of X and S’ identifying 7> and T. We may do both fiber connected
sums along 77 and 75 simultaneously, since 77 and 75 are disjoint. Call

M = X#7, 787,18’ )

the resulting manifold. By Lemma 1, r1 (M) is the quotient of 1 (X) by the images of
71(Ty) and 71 (T2). This kills the Z% summand in (3) and it also kills A5 and A3 in (2).
Therefore (M) = (M) E Z,ie., bj(M) = 1.

Our goal now is to prove that M is non-formal. We shall do this by proving the
non-vanishing of a suitable triple Massey product. More specifically, let us prove that
the Massey product (1) survives to M. For this, let us describe geometrically the coho-
mology classes [a A §1] and [B]. Consider the following submanifolds of X:

By = p'(S' x {az)) x {b1} x S,
By = p~'(fa1} x 8" x S' x 8!,
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where the a; and b; are generic points of S!. It is easy to check that B; N T; = ¢ for
alli and j. So B; may be also considered as submanifolds of M. Let n; be the 2-forms
representing the Poincaré dual to B; in X. By [1], n; can be taken supported in a small
tubular neighborhood of B;. Therefore the support of n; lies inside X — 77 — T3, so we
also have naturally 5; € Q*(M). Note that in X we have clearly that [;] = [B A e1]
and [12] = [«], where ¢ is (the pull-back of) a differential 1-form on S' (considered
as the first of the two circle factors in X = N x S! x S1) cohomologous to §; and
supported in a neighborhood of b; € S!. Thus [m]=1[B8A61]in X.

Lemma 2. The triple Massey product ([n1], [n2], [n12]) is well-defined on M and equals
to[—y Na Aeql

Proof. Leta’ be the pull-back to N of the 1-form supported in a neighborhood of a; in
the first factor of S! x S! under the projection p : N — T2. Analogously, let 8’ be the
pull-back to N of the 1-form supported in a neighborhood of a, in the second factor of
S' x S!. Therefore [o'] = [o] and [8'] = [B]. Clearly,

(@ Ae))AB =dy Aey,

where dy’ = o’ A B’. It can be supposed easily that y’ is zero in a neighborhood of
& € N. Therefore the support of " A e is disjoint from 77 and T». Hence ¥’ A ey is
well-defined as a form in M. So the triple Massey product

(Im1, 21, In21) = [=y" A Aetl
is well-defined in M. O
Finally, let us see that this Massey product is non-zero in

H3(M)
(B Aei]UHY(M) 4+ H2(M) U [o]

Consider B3 = p~1(S! x {a3}) x S' x {b,}, for generic points a3, b, of S!. Then
the Poincaré dual of Bj is defined by a 2-form 8" A e; supported near B3, where B” is
Poincaré dual to p~ (S x {a3}), [8”] = [B], and e is (the pull-back of) a differential
1-form on S' (considered as the second of the two circle factors in X = N x S! x S1)
cohomologous to 8, and supported in a neighborhood of b, € S!. Again this 2-form
can be considered as a form in M. Now, for any [¢] € H! (M), [¢'] € H2(M) we have,

Iy nanell+ (B rnetnpl+d Ag'D-[B" Aeal =1,

since the first product gives 1, the second is zero and the third is zero because o’ A B”
is exact in N and hence in M. This result and Theorem 2 prove the following:

Theorem 4. The manifold M, defined by (4), is a compact oriented non-formal 5-
manifold with by = 1.
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The 6-dimensional example

A compact oriented non-simply connected and non-formal manifold M’ of dimension 6
is obtained in an analogous fashion to the construction of the 5-dimensional manifold M.
We start with X’ = N x T and consider the 3-dimensional tori with trivial normal
bundle

7] = p~ ({0} x S1) x {0} x {0} x S,
Ty = {&) x S' x 8! x 8.

Define
M’ = X'#p/_7/S%%7y_1S°, Q)

where 7" is an embedded 3-torus in §® with trivial normal bundle. Then M’ is a non-
formal 6-manifold with b1 = 1, which can be proved in a similar way to Theorem 4.

4 Proof of theorem 1

Let us first prove the affirmative results in Theorem 1.

Proposition 1. Let M be a connected, compact and orientable manifold of dimension
n and first Betti number by = b.

o Ifn <2, then M is formal.
o Ifn<6andb =0, then M is formal.
o Ifn<4andb =1, then M is formal.

Proof. The first item is well-known: The circle and any oriented surface are formal.
However, it follows from Theorem 3 very easily. Since M is connected, M is O-formal.
Hence M is formal as n < 2. Second item follows from [5, 10, 11]. Let us recall briefly
the proof. Since M has b1 = 0, it follows that in the minimal model v1 = 0. This
implies that N2 = 0 since there are no decomposable elements of degree 3 and hence
no element of V2 can kill any element of degree 3 in the minimal model. Thus M
is 2-formal and hence formal, by Theorem 3, since n < 6. The third item is proved
similarly. Since M has b; = 1, in the minimal model (/\ V, d) we have that V! = C'
is generated by one element £. There cannot be any element in N'! since there are no
decomposable elements of degree 2 (the only such element is £ - &€ = 0). Thus M is
1-formal and hence formal, by Theorem 3, sincen < 4. O

With this result, we only need to find non-formal (connected, compact, orientable)
manifolds under the conditions n > max{3,7 — 2b;} to complete the proof of
Theorem 1.

e Non-formal manifolds withn > 7 and b; = 0 are constructed by the authors in [6].
Actually, those examples are simply connected. An alternative method is given in
[3]. Oprea [12] also constructed examples of dimension 7 for other purposes.

e Non-formal manifolds of dimensions n = 5 or 6 and first Betti number b; = 1.
These are the manifolds M and M’ given by (4) and (5) in Section 3.
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e Non-formal manifolds of dimension n > 7 and b; = 1. Take the non-formal
5-dimensional manifold M of Section 3 and consider M x $"~5. This is again
non-formal (by [5, Lemma 2.11]) and has by (M x 8"7) = b1 (M) = 1.

e Casen = 3 and by = 2. The manifold N considered as the beginning of Section 3
is non-formal.

e Casen = 3andb; > 3.Consider N#(b; —2)(S1 x §2), which is non-formal because
the Massey product ([B], [«], [¢]) = [a A y] is again defined and non-zero (as it
happened for N).

e Casen = 4andb; > 3.Consider (N#(b1 —3)(S' x Sz)) xS!, which is non-formal
being a product of a non-formal manifold with other manifold.

Casen > 5Sand by > 2. We just consider (N#(b; — 2)(S! x §%)) x $"7.

Casen = 4 and b1 = 2. A non-formal example can be constructed by a nilmanifold
which is non-formal. For example (see [4]), let E be the total space of the S!-bundle
over N with Chernclassc; = [BAy] € H 2(N ). The nilmanifold E is defined by
the equations,

de =dp =0, dy=—aApB, dp=BAvy,

where {«, B, ¥, n} is a basis for the differential 1-forms on E. Then [8] U [a] =
[a] U [a] = 0, so that the Massey product ([B8], [«], [«]) is well-defined, and it
is non-zero because it is represented by the cohomology class of y A « which is
non-zero in cohomology.

5 Final remarks

Note that the examples of non-formal manifolds with b; = 1 that we have constructed
have Abelian fundamental group, since it is isomorphic to Z. However, these manifolds
are not nilpotent. Actually, if a manifold M with b; = 1 is nilpotent, then M is 2-formal.
Furthermore, if the dimension is n < 6 and M is compact oriented, then it is formal.
To prove that for a nilpotent manifold M with b1 = 1 we have that M is 2-formal, it is
enough to check that N2 = 0. This would follow from the fact that no decomposable
element of degree 3 (i.e., elements in V! - V2) is exact. Let & be the generator of V! and
let a € V2 be a non-zero closed element. Suppose that [£] U [a] = 0 and let us reach
to a contradiction. We use the following lemma of Lalonde—McDuff-Polterovich [9],
which has been communicated to us by J. Oprea.

Lemma 3. Suppose thaty € w1 (M), A € (M), h € H'(M;Z) andax € H*(M; Z.),
satisfy that h(y) # 0 and a(A) # 0. Then if « U h = 0, the action of y on A is
non-trivial.

In our case, take & = [£] € H'(M) (after suitable rescaling if necessary to make it
an integral class). Let y € w1 (M) be any element with (y) # 0. Then, h(y") # 0 for
anyn > 0.Now take o = [a] and consider any element A € 7> (M) witha(A) # 0 (this
exists since we are assuming that M is nilpotent and in this case V2 = (m(M) @ R)™).
Then Lemma 3 implies that " acts on A non-trivially. Hence y acts non-nilpotently
on 11 (M), which is a contradiction.

We end up with some questions that arise naturally once Theorem 1 is answered.
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Are there any restrictions on the Betti numbers for the existence of non-formal
manifolds? Alternatively, solve the following geography problem:

For which tuples (n, by, ... ,bs) withn > 1, s = [n/2] and b; > 0 is there a
compact oriented manifold M of dimension n, with Betti numbers b; (M) = b;,
i=1,...,s,and which is non-formal?

Another alternative question is the following: Given a finitely presented group
I" and an integer n with n > max{3, 2b;(I") — 7}, are there always non-formal
n-manifolds M with fundamental group 7 (M) = I'?
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Summary. Total curvatures of boundaries of geodesic disks in Riemannian manifolds are in-
vestigated. The first terms in the corresponding power series expansions are obtained for the
total scalar curvature and the L?-norms of the scalar curvature, the Ricci tensor and the curvature
tensor. As an application, it is shown that these functions characterize the local geometry of most
of the two-point homogeneous spaces.

1 Introduction

In the study of geometric properties of a Riemannian manifold (M, g), itis often useful
to consider geometric objects naturally associated to (M, g). These can be special
hypersurfaces like small geodesic spheres and tubes around geodesics, bundles with
(M, g) as base manifold, or families of transformations reflecting symmetry properties
of (M, g) [V88]. The existence of a relationship between the curvature of a Riemannian
manifold and the volume of its geodesic spheres and tubes led some authors to state
the following question:

To what extent is the curvature (or the geometry) of a given Riemannian mani-
fold (M, g) influenced, or even determined, by the volume properties of certain
naturally defined families of geometric objects (for example geodesic spheres
and tubes) in M?

This problem seems very difficult to handle in such a generality. However, when one
looks at manifolds with a high degree of symmetry (e.g., two-point homogeneous
spaces), these geometric objects have nice properties and one may expect to obtain
characterizations of those spaces by means of such properties. For instance, the two-
point homogeneous spaces may be characterized by using the spectrum of their geodesic

* Supported by projects BFM2001-3778-C03-01 and BFM 2003-02949 (Spain)



132 J. C. Diaz-Ramos, E. Garcia-Rio, and L. Hervella

spheres [CV81] or in most cases by the L2-norm of the curvature tensor of geodesic
spheres [DGH]. (See also [DGV] for more information on total curvatures of geodesic
spheres.)

This work fits into the general program above. The family of geometric objects to be
considered are the geodesic disks, which were previously investigated by O. Kowalski
and L. Vanhecke with special attention to their volume properties [KV82], [KV83],
[KV85]. Here, we are interested in the intrinsic geometry of the boundaries of these
disks and we devote our attention to the study of their total scalar curvatures ob-
tained by integrating the scalar curvature and the quadratic curvature invariants on
these boundaries. In doing that, we compute the first terms in their power series expan-
sions. Several conclusions are obtained from those coefficients. In particular, we note
that

two-point homogeneous spaces are characterized by some of the total curva-
tures of the boundaries of geodesic disks among Riemannian manifolds with
adapted holonomy.

The paper is organized as follows. In Section 2, we recall some notation and basic
notions on scalar curvature invariants. The first terms in the power series expansions
of the corresponding total invariants are derived in §2.2. These are used in Section 3
to obtain the first terms in the power series expansions of the total curvatures of the
boundaries. Finally, Section 4 is devoted to point out some applications of those ex-
pressions.

2 Preliminaries

Let (M", g) be an n-dimensional smooth Riemannian manifold of class C°°. We denote
by V the Levi—Civita connection and put Ryy = V|x,y] — [Vx, Vy] for the curvature
tensor, where X, Y are vector fields on M. Also, Ryyzw = g(RxyZ, W) and the Ricci
tensor and the scalar curvature are given by pxy = > i Rxe;ve; and T =Y '_| Peie;
respectively, and with respect to an orthonormal basis {e1, ..., e,}. For simplicity,
here and in what follows, we use the notation p;; = Peie;s Riju = Reiejeke,, Vijk... =
Ve,.ejek“_ and so on.

Finally, note that to avoid problems with the domains of exponential maps, the
geodesic spheres and disks considered here are sufficiently small, i.e., their radius is
always smaller than the injectivity radius at their center.

2.1 Scalar curvature invariants

A scalar curvature invariant is a polynomial in the components of the curvature tensor
that does not depend on the choice of the orthonormal basis used to build it. The
order of a scalar curvature invariant is, by definition, the number of derivatives of the
metric tensor involved in it. Let I (k, n) be the vector space of curvature invariants of
order 2k, m € M and {ey, ..., e,} an orthonormal basis of the tangent space at m,
TnM.
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Forn > 2, I(1, n) has dimension 1 and is generated by t. For n > 4, 1(2, n) has
dimension 4 and a basis is given by,

2. elP=)pk.  IRIP=D_ Ry,  Ar=) Vi (1)

A basis for 1(3, n) is given in [GV79]. For our purposes here, only invariants of
order two and four are needed. Indeed, those allow to characterize important classes of
Riemannian manifolds. We have for n > 2 [CV81]:

For any n-dimensional Riemannian manifold,

1
lol? > =72, )
n

with equality if and only if the manifold is an Einstein space.
For any n-dimensional Riemannian manifold,

2
IRI? = ——Ilpll?, 3)
n—1

with equality if and only if the manifold has constant sectional curvature.
For a 2n-dimensional Kéhler manifold,

4
RIZ> ——lpol?, 4
IRl _n+1||p|| 4)

with the equality holding if and only if M has constant holomorphic sectional curvature.
For a 4n-dimensional quaternionic Kdhler manifold,
IRI?

+1 5
> mllpll , ®)

with the equality holding precisely for the quaternionic space forms.

2.2 Total scalar curvatures of geodesic spheres

Our purpose here is to obtain the first two terms in the power series expansions of
the integrals of the curvature invariants of order two and four on geodesic spheres.
We denote by G,,(r) the geodesic sphere with center m € M and radius r, that is,
Gu(r) ={m' € M/d(m,m’) = r}. Since r > 0 is supposed to be smaller than the
injectivity radius at m, the geodesic sphere G,,(r) is a hypersurface of M and G, (r)
= expm (S"~1(r)), where S"'(r) = {y € T,,M/||x|| = r} is the sphere of radius r
in the tangent space to M at the basepoint m. Moreover as a matter of notation, let
T, o ||2, ... denote the scalar curvature, the square norm of the Ricci tensor, ... of
the geodesic sphere G, (r), and set , || p ||2, ... for the corresponding objects for the
ambient manifold (M, g).

First of all, note that we will not consider the Laplacian of the scalar curvature since
me(r) ATdu = 0. Also, in what follows, ¢, = % where (n/2)! = T'((n/2) +1)
stands for the volume of the unit sphere in the Euclidean n-space (cf. [G90]). In the
lemma below, the first terms in the power series expansions of the total scalar curvature
[CV81] and the L2-norms of the scalar curvature, the Ricci tensor and the curvature
tensor [DGH] of sufficiently small geodesic spheres are given.
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Lemma 1 ([CV81], [DGH]). Let (M, g) be an n-dimensional Riemannian manifold
and m € M. Then, we have:

/ ~ n]{(n—Z)(n—l) (n—3) (n—2)
T =cCp_1r — T(m)
G (r)

r2 6n

llol?

1 (n+2)(n+3) ”R”2+n2+5n+21
nn+2) 120 45

2
—Tn— - -
n n—=6 .2 n—-3)(n—-2)
72 20

S (1= (n—
fG()?ch,,_lr"—l{(n—z)z(n—l)zr—“—(” 5)(”6n2) @=D  myr2

1 _(n-2)(n-1)(n2+13n+10)
nn+2) 120

Ar:| m)r’+ 0 (r3)} ,

IRI?

n*+10n° +43n% — 14n + 120
+
45
n* —14n3 +29n> —60n — 188 ,
+ 7 i

2
el

n—=5m—-22%*mn-1 )
_ = At} (m)+0(r )}

_ _ 2
jg ()nﬁu2==cw_1r”‘{(n——2>2(n——1>r4—39——5%5?—‘21-r(nor2

1 nd—on?—16n-20
+ - IRl
n(n+2) 120

N n3 +31n% — 16n — 120
45

_ —_ 72
_—(n N —2) Ar:| (m)+ O (rz)} ,

nd —13n% — 16n+44 ,
T

2
lell” + -

20

1) r_4——(n -2 7:(m)r_2

]‘ n§n2==cn1r"‘1{2(n——2>01—
G (r) 3n

2 (n? — 37n + 60)
45

2
ol

1 59n? —93n—10
[IRII" +

tant 60

n?—1ln+2 , (-5 (0n-2) )
e o Af:|(m)+0(r)}.
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3 Total scalar curvatures of boundaries of geodesic disks

Geodesic disks were introduced by O. Kowalski and L. Vanhecke as a generalization
of the notion of a two-dimensional disk in the Euclidean space 3. In a series of
papers ([KV82], [KV83], [KV85]) they investigated their volume properties in relation
to local homogeneity and obtained a characterization of the two-point homogeneous
spaces by means of the volumes of their small geodesic disks. Since the boundaries
of geodesic disks are compact submanifolds, we are interested in their total scalar
curvatures obtained by integrating the corresponding scalar curvature invariants of
order two and four.

Recall that the geodesic disk Ei, (r) of radius r, centered at m € M and orthogonal
to & € T,,M, is defined by

Efn(r) = {exp,,(su)/u € T,M, |lul| =1, gu,§) =0, 0<s <r}
= {m' € M/d(m,m") <r}Nexp, ({&}")

where exp,, : T, M — M is the exponential map at m. For the purpose of this paper
and the investigation of total scalar curvatures, we consider the boundaries

D (r) = {m' € M/d(m,m") = r} Nexp,, ({€}1).

In order to obtain the first terms in the power series expansions of the total curvatures of
these boundaries, the following result will be extensively used. It relates scalar curvature
invariants of order two and four of exp,, ({£}1) with the corresponding objects in the
ambient space.

Lemma 2. Let (M g) be an n-dimensional Riemannian manifold andé € TyM a unit
vector. If R P, T, ... denote the objects in exp,,({€}") and R, p, T, ... denote the
corresponding ob]ects on (M, g), then the following hold at m:

n n
IRIZ=1RI*+4 Y R%,; —4 > Ry

i,j=1 i j k=1
1512 = llol® + o2 —22% Z R —2 Z pij Reig)
i= i,j=1 i,j=1

T=1-— 2,055,
N~ 2 2 4 5
3 Zpg, t3 Z Riej — Z REji-
l] 1 lj k=1
Proof. It follows from the work in [KV82], after some calculations. O

Now, the first terms in the power series expansions of the total curvatures of
the boundaries of geodesic disks are obtained from the corresponding ones for the
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geodesic spheres in Lemma 1 after using the identities in Lemma 2. As a matter of

notation 7, |||, ... denote the curvature objects on the boundaries Di (r), while
7, |lpll%, ... stand for the corresponding objects on (M, g). We omit the calculations
which are straightforward and immediately state the different expansions separately in
Theorem 1-Theorem 4.

Theorem 1. Let (M, g) be an n-dimensional Riemannian manifold, m € M and & €
T M a unit vector. Then, for sufficiently small radius r, one has the following expansion

for the total scalar curvature of the boundaries D, (r):

/Df( ) 2=y 2 {(n — ) = 3)r 2 + Ay (m) + Ay (m)r + O(r)]

where
n—3)n—4
Aoy = ——— 27 e 20,
©) 6= 1) [T — 2pge]
1 n2—9n+2 n+2)(n+1) n?+3n+17
A = - IRI? + ————1lpl?
n—Dn+1) 72 120 45

B (n—3)(n—4)AT+ (n—=3)(n—-4

2 2
0 o [VZ.T — 2V pes + 200z ]

(n+2)(n+11 Z _ (n=4(n—11)

= 90
1 2% +3n+17) & n?>—2n+7
2

i,j=l1 i,j=1

n 2

5 n-—9n+2 n-—1Dmn-4 ,
X Z Rsijk - 18 Tpge + 18 Peg (-

i jk=1

Theorem 2. Let (M, g) be an n-dimensional Riemannian manifold, m € M and & €
T:n M a unit vector. Then, for sufficiently small radius r, one has the following expansion

for the L*-norm of the scalar curvature of the boundaries Dﬁ, (r):

/ e o= 220 = 35 By 4 Bon) +00)]
Dy (r

where

(n—23)>2mn—-6)(n—2)
6(n — 1)

By =— [t — 2pee],
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1 n* —18n% 4+ 770> — 164n — 84 ,
B(O) = T

(n—D@E+1) 72
n—2)(n—=3)(n*>+11n—-2) ”R”2+n4+6n3+19n2—74n—|—168
120 45
(=3 -6)(n-2) Arg (1= 3)2(n — 6)(n —2)
20 20
n* +26n% — 31n> — 4n 4 228
45

lol?

X V2T = 2Vi ez + 20pz:] —

"y, In* —78n% 4 223n% — 488n + 276
) .21:‘) & 90
1=

n 2(n* 4 6n3 + 1902 — 74n + 168)
2
x Y R —

ij=1 45
n 2
n—=2)(n—-3)(n"+n+38)
X Z Reigjpij + 15
i,j=1
n 4 3 2
) n* —18n° +77n- — 164n — 84
X D Riy - Thsk
i,j k=1 18

n* — 10n® 4 57n% — 136n — 60
+ 13 Peg | -

Theorem 3. Let (M, g) be an n-dimensional Riemannian manifold, m € M and & €
T;n M a unitvector. Then, for sufficiently small radius r, one has the following expansion
for the L?>-norm of the Ricci tensor of the boundaries D,En (r):

/D 1P = coar = 2000 = 3757+ Cpp o™ o+ Coptm) + 00
m

where
(n—3)%(n — 6)
Ci_y) = —2ps¢],
(-2) 6 —1) [T — 2pee]
1 n3 — 1602 + 13n + 46 n3 —12n%+5n — 14
Coy = % — IR|*
n—Dm+1) 72 120

3 2 2 2
n’> 4+ 28n“ — 75n — 74 (n—=3)(n—-06) (n—3)"(n—6)
+ o> - ———— At ——
45 20 20
n® 4 68n% — 1951 — 94
45

X [VET — 2Vipee + 200z —
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1 n3 — 164n? + 4350 — 218
X Z’Ogi - 90
i=1

1 2(n3 4 28n% — 7510 — 74)
2
X Z Rfii‘j - 45
ij=1
& n3 —12n% +25n — 34
i ZRgisjpij—i- T
ij=1
n 3 2 3
2 n’> —16n° 4+ 13n 4 46 n’ —35n+38 ,
x ; leijk - 13 Tpgg + — 1z Pe(-
1, ],K=

Theorem 4. Let (M, g) be an n-dimensional Riemannian manifold, m € M and & €
T M a unitvector. Then, for sufficiently small radius r, one has the following expansion

for the L*-norm of the curvature tensor of the boundaries D,’,i (r):

MR = 0o {2 = D = 30 4 Doy + Dy + 00
Dy (r)

where
n—3)(n—-06)
Diyy=—— """t —2ps],
(-2) 30 - 1) [T — 2pee]
1 n?—13n + 14 592 —211n + 142
D) = T2+ IR|*

m—1Dm+1) 36 60

2(n? — 391 + 98) (n —3)(n — 6)
+ 05 loll* — — At

(n—3)(n—-06)
+ T[véf — 2V per + 20pz¢]

2(n® —69n +178) <~ ,  173n2 — 657n + 514
N 45 Z;péf + 45

1=
4 4(n* — 391 4+ 98) & 22912 — 1011 + 62)

X D Riigj — Y Reiejpij —

L~ 45 L 15

i,j=1 i,j=1

n 2
5 n? —13n+ 14 (n—2)(n—23) ,

X D Repm Tt Pl (-

i,j,k=1

4 Characterizations of the model spaces

The purpose of this section is to obtain characterizations of the two-point homogeneous
spaces by means of the total curvatures of the boundaries of geodesic disks as an



Total Scalar Curvatures 139

application of the expansions in Theorems 1—4. First of all, we recall that by a two-
point homogeneous space we mean one of the following spaces: Euclidean n-space,
the n-dimensional spheres and the hyperbolic spaces, the projective and hyperbolic
n-spaces over the complex numbers or over the quaternions, and the Cayley projective
or hyperbolic plane. Furthermore, we say that the holonomy of a Riemannian manifold
(M, g) is adapted to one of these models, if the holonomy group of (M, g) is a subgroup
of the holonomy group of the given model space, that is, the holonomy of (M, g) is
contained in O (n), U (n), Sp(1) - Sp(n) or Spin(9) respectively. Moreover, note that
in what follows, we will omit the Cayley plane since its holonomy group completely
characterizes its local geometry. In fact, if a manifold has holonomy group contained
in Spin(9), then it is flat or locally isometric to the Cayley plane or its non-compact
dual [A67].
We begin with the following:

Lemma 3. Let (M, g) be an n-dimensional Riemannian manifold. Suppose that one of
the following holds:

(i) 4 < n and the total scalar curvature of the boundaries of geodesic disks coincides
with the corresponding one in an Einstein manifold;

(i) 3 < n # 6 and any of the L*-norms of the scalar curvature, the Ricci tensor
or the curvature tensor of the boundaries of geodesic disks coincides with the
corresponding one in an Einstein manifold.

Then, (M, g) is an Einstein manifold with the same scalar curvature as the model
space.

Proof. (i) is obtained from the coefficient A gy in Theorem 1 and (ii) follows immedi-

ately from the corresponding coefficients of »~2 in the expansions in Theorems 2—4.
O

Recall that a Riemannian manifold is said to be 2-stein if (M, g) is Einsteinian and
satisfies

n
Y Ry =g, x)?
ij=1

for all x. Also, (M, g) is said to be super-Einstein if it is Einstein and

n
2
D Rl =mg(x, x)

ijk=1
for all x. It was shown in [CV81] that 2-stein manifolds are super-Einstein, but the
converse is not true. (For instance, irreducible symmetric spaces are super-Einstein,
but they are not necessarily 2-stein.)
Lemma 4. Let (M, g) be an n-dimensional Einstein manifold. If

n

n
allRIP+b 3 Reje+e ) Riy =k (©)
i k=1 ij=1

for some real constants a, b, ¢, k with (n + 4)b 4+ 3¢ # 0, ¢ # 0 and for all unit
vectors &, then (M, g) is 2-stein.
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Proof. Put

=

n
Wxyvw = Z Rxiyj Ruiwj Nxy = Rxijk Ryijk-
i,j=1 i, k=1

Then, for all vectors x, y € T;, M and all o, 8 € R, it follows from (6) that

allR[*g(ax + By, ax + BY)? 4 biigx+py.ax+py&(@x + By, ax + By)

Expand the previous expression and take the coefficients of a?82. Then, put y = ¢;

and take the trace to obtain

2a||R|I*(n +2)g(x, x) + b(IRII*g(x, x) + (1 + D) 1yx)

2

1 3
+2c ( > pijRuixj + —rm) =2(n + 2)kg(x, x).

ij=1

Since (M, g) is assumed to be Einsteinian, (7) becomes

2 ,  2ct?

[b(n +4) +3clnxx=—|2(n + 2)al|R||” + DR[|+ PR 2(n +2)k | gxx»
and contracting this gives
5 2 5 Pl
[b(n +4)+3c]||R||“=—n|2(n+2)a||R||“+b| R +n—2—2(n +2)k|.

Now, from (8) and (9), one has

b(n+4)+3c

(b1 +4) + 3che = —————[IRI*gxx,

and thus n = @ g. Hence, it follows from (6) that

1 /na+>b
wxxxx=—;( . ||R||2—k)g§x

which shows that (M, g) is 2-stein.

)

®)

€))

O

Lemma 5. Let (M, g) be an n-dimensional Riemannian manifold. Suppose that one of

the following holds:

(1) 4 < n and the total scalar curvature of the boundaries D,i (r) does not depend on

the normal direction &, or

(i) 3 < n # 6 and any of the L?>-norms of the scalar curvature, the Ricci tensor
or the curvature tensor of the boundaries D,% (r) does not depend on the normal

direction §.

Then, (M, g) is 2-stein.
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Proof. We first show (i). Since the total scalar curvature of the boundaries of geodesic
disks does not depend on the normal direction, the coefficients Ay and A() are in-
dependent of the unit &. Therefore, it follows from Ay = —[(n — 3)(n — 4)/6(n —
D][r — 2pge] that (M, g) is an Einstein space. Moreover, for an Einstein manifold,
p = (t/n)g holds and so, the coefficient Ay becomes

IRI?

A 1 (n—4HGn3 =3 +62n+92) , @+2)m+1)
= ‘L' —
@ = =Dt 360n2 120

m—H(Tn—-11) &, n?—-2n+7 &,
90 i,j=1 15 i,j,k=1

So, (M, g) is 2-stein as an application of Lemma 4. The case (ii) is obtained in an
analogous way. Indeed, if one assumes either B(_») or C(_2) or D(_») to be independent
of £ and dim M # 3, 6, then (M, g) is an Einstein space. The fact that it is also 2-stein
follows from Lemma 4 after consideration of the coefficients B(q), C(o) and D g), which
now become

B 1 5n°—102n°+789n* —2712n3 4335202 +1520n 5712 ,
= T
O =D+ 36012

(n—2)(n—73)n*+11n —2) IR Tn* — 78n3 + 223n% — 488n + 276
120 90
n 2 n
(n—2)(n—3)n%+n+38)
x Z Régiéj + Z Réjk}, (10)

ij=1 15 i, j k=1

Co =

1 5n° — 92n* 4 60513 — 1622n% + 548n + 2696 ,
T
(n—Dmr+1) 360n2

n® —12n% 4+ 5n — 14”R||2 Tn® — 164n> +435n — 218
120 90

n 3 2 n
2 n’ — 12n* 4 25n — 34 2
X ) Rl + ST Rt (11

ij=1 15 ijk=1

1 {5714 — 7713 + 14n 4 1180n — 2072 ,
T

D =
R Y 18012

59n% —211n+ 142 o 173n% — 657n + 514
+ IRI"+
60 45

1 22972 — 101n + 62) &

2 2 : 2

% Z 1R5isj' - 15 e 1R5”"}' (12
1,]= 1, ], k=
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Now we are ready to derive the desired characterizations of the two-point homoge-
neous spaces for n > 4.

Theorem 5. Let (M, g) be an n-dimensional Riemannian manifold with holonomy
adapted to a two-point homogeneous space. If 4 < n and the total scalar curvature of

sufficiently small boundaries Df,, (r) coincides with that of a two-point homogeneous
space, then (M, g) is locally isometric to that model space.

Proof. 1t follows from Lemma 5-(i) that (M, g) is 2-stein and thus super-Einstein
[CV81], from where it follows that

n 1 3 1 n 1
Rz. = — | =|IR 24 242 s Rz-- = —||R 2. 13
2 e = s (S +57) B S = IR0

Then, the coefficient A ) in the power series expansion of the total scalar curvature of
the boundaries of geodesic disks becomes

s — 1 (n —4)(5n* — 270 — 120 + 188n + 228) 2
@ LD +2) 360n

(n —4)(n® + n* + 26n + 6) (RIP
120 :

Now the result is obtained by just comparing this with the corresponding coefficient
A(2) in the model spaces and using the equations (2)—(5). O

Here it is worthwhile to emphasize that dimension four is excluded in previous
theorem. Since the boundaries of the geodesic disks in a 4-dimensional manifold are
compact surfaces, the total curvature f DE () 7 is the Gauss Bonnet integral, and thus a

topological invariant.

Theorem 6. Let (M, g) be an n-dimensional Riemannian manifold with holonomy
adapted to a two-point homogeneous space. If 3 < n # 6 and the L*-norms of
the scalar curvature or the Ricci tensor or the curvature tensor of sufficiently small
boundaries of geodesic disks coincides with that of a two-point homogeneous space,
then (M, g) is locally isometric to that model space.

Proof. Proceeding as in the previous theorem and using (13), the equations (10), (11)
and (12) of the corresponding coefficients become

1
Bpy= ——
0= =D +2)

!5n7 —92n° + 585n° — 1162n* — 1760n> + 7332n% — 720n — 12528 ,
X T
360n

n® —9n* — 190n3 + 714n> — 840n — 216
- 50 IRI" ¢
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c n—3 5n° — 67n* +220n3 + 220n% — 1380n — 2088 ,
= ‘[
© nm?—1n+2) 360n
(n? = 14n —2)(n* —n + 18) IR
120 ’
D — 1 (n —3)(5n* — 52n3 — 296n% + 1012n + 69
0= =D +2) 1801

(n —3)(59n® — 14812 — 34n — 12)
+ ) IRIT -

Now the result follows by comparing these with the corresponding coefficients in the
model spaces and using the characterizations (2)—(5). O

Explicit formulas for the total scalar curvatures of the boundaries of geodesic disks
in the two-point homogeneous spaces are not yet available. However, by making use
of the expansions in Theorems 14, the first terms in their power series expansions can
be explicitly computed.
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Summary. We construct a family of balanced signature pseudo-Riemannian manifolds, which
arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a
symmetric space, and that are not locally homogeneous.

1 Introduction

Let R be the Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) of
signature (p, q). Following Kowalski, Tricerri, and Vanhecke [16, 17], we say that
(M, g) is curvature homogeneous if given any two points P, Q € M. There is a linear
isomorphism W : Tp M — ToM such that W*gp = gp, and such that W* Ry = Rp;
this notion has also been called 0 curvature homogeneous when considering a similar
condition for the higher covariant derivatives of the curvature tensor.

Similarly, (M, g) is said to be locally homogeneous if given any two points P and
Q, there are neighborhoods Up and Ug of P and Q respectively, and an isometry
Y : Up — Ug such that y P = Q. Taking W := 1, shows that locally homo-
geneous manifolds are curvature homogeneous. The somewhat surprising fact is that
the converse fails — there are curvature homogeneous manifolds which are not locally
homogeneous.

There is by now an extensive literature on the subject in the Riemannian setting, see,
for example, the discussion in [1, 2, 14, 23-25]. There are also a number of papers in
the Lorentzian setting [5—7] and also in the affine setting [15, 18]. There are, however,
almost no papers in the higher dimensional setting — and those that exist appear in the
study of 4-dimensional neutral signature Osserman manifolds, see, for example, [3, 8].

Key words: curvature homogeneous, balanced signature, hypersurfaces.
Subject Classifications: 53C50
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In this brief note, we exhibit a family of examples in signature (p, p) for any p > 3
which are curvature homogeneous, but not locally homogeneous; this family first arose
in the study of Szab6 Osserman IP Pseudo-Riemannian manifolds [10, 11].

Let (x,y) = (x1,...,Xp, y1, ..., yp) be the usual coordinates on R2P. Let f(x)
be a smooth function on an open subset O C R”. We define a non-degenerate pseudo-
Riemannian metric g s of balanced signature (p, p) on M := O x R?:

gr@F 9 =05 f -0 f, gr@F.0) =8y, and gr(].9)=0. (1)

This is closely related to the so called ‘deformed complete lift” of a metricon O to T O,
see, for example, the discussion in [4, 13, 20].

The pseudo-Riemannian manifold (M, g r) arises as a hypersurface in a flat space.
Let {uy, ... ,up, vy, ..., vy, Wi} be a basis for a vector space W. Define an inner
product (-, -) of signature (p, p + 1) on W by setting

(wi,u;) =0, (w,v;)=26;, (vi,vj)=0,
(i, wi) =0, (vi,wy) =0, (w,wy)=1.

Let F(x,y) = xju1 +...+xpup +y1vi+...+y,Vp + f(x)w define an embedding
of M in W. Then, g is the induced metric on the embedded hypersurface. The normal
v to the hypersurface is given v := wy — 37 f vi — ... — a;;f vp. Thus, the second
fundamental form L  of the embedding is given by the Hessian

Ly, 07) =98707f, Ls@3,8))=0, and Ly ,087)=0.
We define distributions
X :=Span{d{,...,0;} and Y:= Span{d;, ..., 3}

We then have L(Z1, Zy) =0if Z1 € Y or Z, € ), so the restriction L}Y of L to the
distribution X carries the essential information. The following is the main result of this
paper:

Theorem 1. If the quadratic form Ljf is positive definite, then (M, g r) is curvature
homogeneous. Furthermore, if p > 3, then (M, gy) is not locally homogeneous for
generic f.

As noted above, these manifolds first arose in an entirely different setting. Let R
be the Riemann curvature tensor of a pseudo-Riemannian manifold (M, g). Let VR be
the covariant derivative of R. Let J, S and R be the associated Jacobi operator, Szab6
operator, and skew-symmetric curvature operator respectively. Let X € TM and let
{Y, Z} be an oriented orthonormal basis for an oriented space-like or time-like 2-plane
7. These operators are defined by the identities:

gJ(X)U,V)=R(WU, X, X,V),
gS(X)U,V)=VRWU, X, X,V; X),
g(R(@)U,V)=R(Y,Z,U, V).
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Stanilov and Videv [21] have defined a higher-order Jacobi operator by setting
J() = g(X1, X)) J(X1) + ...+ 8(X¢, X¢)J(Xo),
where {X1, ... , X,}is any orthonormal basis for a non-degenerate subspacer C T M.

Definition 1. Let (N, g) be a pseudo-Riemannian manifold. Then, (N, g) is

1. space-like Jordan Osserman (resp. time-like Jordan Osserman), if the Jordan nor-
mal form of J(X) is constant on the bundle of unit space-like (resp. unit time-like)
vectors.

2. space-like Szabo (resp. time-like Szabo), if the eigenvalues of S(X) are constant
on the bundle of unit space-like (resp. unit time-like) vectors.

3. space-like Jordan IP (resp. time-like Jordan IP), if the Jordan normal form of R ()
is constant on the Grassmannian of oriented space-like (resp. time-like) 2-planes
inTM.

4. Jordan Osserman of type (r, s), if the Jordan normal form of J (r) is constant on
the Grassmannian of non-degenerate subspaces of type (r, s) in TM.

The spectral geometry of the Jacobi operator, of the skew-symmetric curvature
operator, and of the Szabd operator were first considered in the Riemannian setting by
Osserman [19], by Ivanova and Stanilov [12], and by Szab6 [22] respectively. We refer
to [9] for further details. The manifolds (M, g r) provide examples of these manifolds.
We refer to [10, 11] for the proof of:

Theorem 2. Ifthe quadratic form Lff is positive definite, then (M, g r) is space-like Jor-
dan Osserman, time-like Jordan Osserman, space-like Szabo, time-like Szabd, space-
like Jordan IP, and time-like Jordan IP. Furthermore, (M, g r) is Jordan Osserman of
types (r,0), (0,r), (p —r, p) and (p, p — r) and is not Jordan Osserman of type (r, s)
otherwise.

Note that there are no known Jordan Szabé manifolds which are not symmetric.

Here is a brief guide to the paper. In Section 2, we determine the tensors Ry and
VR ¢ which are defined by the metric gy and show (M, g) is curvature homogeneous.
In Section 3, we complete the proof of Theorem 1 by showing that (M, gr) is not
locally homogeneous for generic f. We conclude in Remark 1 by showing the ‘model
space’ for the curvature tensor for (M, g) is that of a symmetric space.

2 The tensors Ry and VR ¢

We begin the proof of Theorem 1 by determining Ry and VR .

Lemma 1. Let Zy, ... be coordinate vector fields on M := O x RP. Let the metric g
be given by equation (1). Then,

1.V2,2,=0,ifZy € YorifZ € Y;

2. R(Z1, 2,23, 2Z4) = L(Z1, Z4)L(Z3, Z3) — L(Z1, Z3)L(Z>, Z4). This vanishes
ifone ofthe Z; € Y for1 <i <4;
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3.VR(Zy, Z3, 723, Z4; Z5) = Zs{R(Z1, Z», Z3, Z4)}. This vanishes if one of the
ZieYforl <i<S5.

Proof. We have

1
(Vz,22, Z3) = E{Zzgf(Zl, Z3) + Z18¢(Z2, Z3) — Z3g s (Z1, Z2)}.

This vanishes if any of the Z; € ). Assertion (1) now follows. We now define

gl] = g(o7, 8;‘) and let Fuk = (1/2)(8xg]k gfk kglj) We adopt the Einstein

convention and sum over repeated indices to see
ViordT = Tiudl,  Vardi = Vi yd7 =0, and Vypd = 0.
It now follows that R(Z1, Z», Z3, Z4) = 0 if any of the Z; € ). Furthermore,

R, 07, 85, 0) = 9Ty — ;1.

Assertion (2) now follows. This also, of course, follows from the classical formula
which expresses the curvature tensor of a hypersurface in flat space in terms of the
second fundamental form.

Since Vz,Z; € Y and since R(:, -, -, -) vanishes if any of the entries belong to )/,
Assertion (3) follows from Assertion (2).

We show that (M, g r) is curvature homogeneous by showing:

Lemma 2. Let P € M. Assume L}Y is positive definite. Then there exists a basis
{(X1,....Xp, Y1,..., Y} for Tp M so that:

1. gr(Xi, Xj) =0, gr(X;, Y;) =6ij, and g¢(Y;, Y;) = 0.

2. Ry(X;, Xj, Xk, X1) = 8181 — Sikdj1-

3. Ry(-, -, -, -) = 0 if any of the entries is one of the vector fields {Y1, ..., Yp}.

Proof. Fix P € M. We diagonalize the quadratic form L;}Y at P to choose tangent
vectors }_(,' = a;j 8}‘ € TpM, so that L(X',-, X/) = §;j. Let 17[ = aﬁaj where a'/ is the
inverse matrix. Then,

gy (Xi, V) = aia gp (3, 9)) = aa" =85,
gr(Y;,Y;) =0,
Rp(Xi, Xj, Xu, X¢) = 8ie8jk — Sikd e,

and Ry (-, -, -, -) = O if any entry is )_’,-. We define,

- 1 - - -
Xi Z=Xi—§gf(Xi,Xj)Yj and Yi Z=Yi,

toensure g r(X;, X ;) = 0.Itfollows that the frame {X1, ... , X, Y1, ..., Y, } satisfies
the normalizations of the Lemma.
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3 Homogeneity

We begin our discussion with a technical observation. Let V be a finite-dimensional
real vector space. A 4-tensor R € ®@*V* is said to be an algebraic curvature tensor if
it satisfies the symmetries of the Riemann curvature tensor

R(vi,v2,V3,v4) = —R(v2, V1, V3, V4) = R(v3, V4, V(,v2) and
R(vy,v2,V3,V4) + R(v2, V3, v, v4) + R(v3, Vi, V2, v4) = 0.

If ¢ is a symmetric bilinear form on V, then we may define an algebraic curvature
tensor Ry on V by setting

Ry(v1,v2,V3,v4) 1= @ (V1, Va)P(V2, V3) — ¢ (V1, V3)P(V2, V4).

Lemma 3. Let ¢1 and ¢ be symmetric positive definite bilinear forms on a vector
space V of dimension at least 3. If Ry, = Ry,, then ¢ = ¢».

We note that Lemma 3 fails if dim V < 2.

Proof. Since ¢ is positive definite, we can diagonalize ¢, with respectto ¢ and choose
a basis {ey, ... , e} for V so that ¢(e;, ;) = ;; and so that ¢ (e;, €;) = A;0;;. If
i # j,then

1 =¢i(e;,e)pi(ej,e;) —pi(e;, e;)pi(e;, e;) = Ry (e;,e;,e;,¢€;)
= Ry, (e;,ej,€;,€) = ¢n(e;, e )pa(ej,e;) — pa(e;, e;)pa(e;, e;) (D
= AiAj.
Since r > 3, we can choose k so {i, j, k} are distinct indices. By equation (1), 1 =

Aidg = Ajhg, 50 A; = Ajforalli, j. Since 1 = A;A; = A% and since ¢» is positive
definite, A; = 1 for all i and hence ¢; = ¢».

We say that B := (X1,...,Xp,Y,...,Y)) is an admissible basis for Tp M if B
satisfies the normalizations of Lemma 2. We can now define a useful invariant.

Lemma 4. Suppose L;}/ is positive definite. Let P € M. Let B be an admissible basis

for TpM. Letay(P,B) =", i1, VRr(Xi, X, X, X1; Xn)(P)?.

1. ay(P, B) is independent of the particular admissible basis B chosen.
2.If (M, gyr) is locally homogeneous, then oy is the constant function.

Proof. The distribution ) is invariantly defined being characterized by
yp = {Y € TPM . R(Zl, Zz, Z3, Y) =0 forall Z,’ € TPM}.

The subspace X on the other hand is not invariantly defined. Denote the standard
projection by 7 from TpM to TpM/Yp. As

L("')ZO’ Rf('v'v"'):() and VRf(‘v'v"';')=O9
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if any entry belongs to Y, these tensors induce corresponding structures I:f, Iéf and
Ry onTpM/Yp so that,

Lf:]'[*if, Rf:]T*Iéf, and VRfZT[*mf.

If B is an admissible basis, then we may define a quadratic form ¢ on Tp M /Yp by
requiring that {w Xy, ..., 7 X} is orthonormal with respect to this quadratic form.
We then have R f = Rgs. By Lemma 3, ¢ = ¢p is independent of the particular
basis chosen and is invariantly defined. This defines a positive definite inner product on
Tp M /Yp which we use to raise and lower indices and to contract tensors. The invariant
a is then given by ||PR 7| |%¢ and is invariantly defined. Since the structures involved are
preserved by isometries, the Lemma now follows. What we have done, of course, is to
prove that the second fundamental form is preserved by alocal isometry of (M, g r) here.

Proof of Theorem 1. In light of Lemma 4, to complete the proof of Theorem 1, it
suffices to construct f so that o ¢ is constant on no open subset of R”; the fact that such
f are generic will then follow using standard arguments. Let f,; = 9;" f, f.;; := 9] 8; />
and so forth. We use Lemma 1 to see

R(;, 07,05, 0) = frfijk — finfiji,
VRO, 97, 0. 93 9y) = p{ fiir fojie — Foin S jn}-

Let ® = ®(x;) be a smooth function on R so that [®.11| < 1. Set

L 2
f(x):= E{xl +... +xp} + O (x1).

We may then compute, up to the usual Z, symmetries, that the non-zero components
of Ry and of VR are

Ry, 9%,05,0) =140, for 2<i<p,

[ A

Ry(3F, 0%,0%.95) =1 for 2<i<j<p,

VRpF. 87, 07, 81:07) = @11 for 2<i<p.

Consequently, after taking into account to normalize the basis for the tangent bundle
suitably, we have,

4(p — 1)6;2111
A= ——"7-—"7+1-
T+ e
It is now clear the metric g7 is not be locally homogeneous for generic ©. a
Remark 1. Let {uy, ... ,up, vy, ..., v,} be abasis for a vector space V of dimension

2p. Define an innerproduct (-, -) and an algebraic curvature tensor R on V whose
non-zero entries are

(u;,vj) =46;; and R(u;,uj,ug, w) =818k — 8ikdji.
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Then by Lemma 2, (V, (-, -), R) is a model for the metric and curvature tensor of all
the manifolds (M, g ) considered above. If we set ® = 0, then,

1
fozz{x%+...+x12,}.

Since VR = 0, (M, gy,) is a symmetric space and hence locally homogeneous. This
shows that (V, (-, -), R) is the model for a symmetric space. Thus there exist pseudo-
Riemannian manifolds which are not locally homogeneous, whose metric and curvature
tensor is modeled on those of a symmetric space.
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1 Introduction

The aim of this exposition is to place our recent joint work on anti-self-dual Hermi-
tian surfaces in the more general context of locally conformal Kdihler metrics—which
literally means that the metric is conformal to a Kéhler metric, locally. From now on
we will adopt the standard notation /.c.K . for these metrics which were introduced and
studied by Vaisman in the 1970s.

We start by recalling some preliminaries. Throughout this work S will denote a
smooth complex surface—a complex manifold of complex dimension 2—with complex
structure J € Aut(T M) with J> = —id. A Riemannian metric g on the underlining
real four-manifold S is said to be Hermitian, if it is compatible with the complex
structure in the sense that J acts as an isometry: for all tangent vectors X and Y in T M,

g(UJX,JY)=g(X.,Y).

In this situation, we can define a non-degenerate 2-form w € ALL(S) usually called
the Kiahler form of the Hermitian metric by prescribing

w(X,Y)=g(X,JY),

and consider the linear map from one-forms to three-forms defined by taking wedge
product with @

E:ANS) — A3(S),
N oA

Using the fact that w is non-degenerate, the linear map L is always injective and
therefore is an isomorfism because S is of real dimension four. We conclude that in this
dimension there always is a unique one-form 6 € A'(S) such that,
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do=wAN6.

6 is usually called the Lee form of the metric and it is easily seen to satisfy the following
properties:

1. 8 = 0 — the Lee form vanishes <= g is a Kihler metric —i.e., dw = 0.

2. @ = df —the Lee form is exact <= the metric e~/ g is Kihler—i.e., g is globally
conformal Kéhler.

3. df = 0 —the Lee form is closed (locally exact) <= gisl.c.K.

4. We will also consider the case of parallel Lee form VO = 0 where V is the Levi-
Civita connection of g; this of course implies d0 = 0 and therefore it is a special
class of /.c.K. metrics also called generalized Hopf manifolds by Vaisman [36].
Notice that such surfaces must have vanishing Euler characteristic: x(S) = O,
when § is compact.

The main purpose of this note is to address the following question of Vaisman.

Question 1.1 ([37, p.122]) Which compact complex surfaces (S, J) can admit l.c.K.
metrics?

We will take the natural approach of first reducing the problem to minimal surfaces
and then look at the Enriques—Kodaira classification. The rest of the section is devoted
to give a brief account of these notions.

We start by explaining the minimal model of a surface introduced by Kodaira
[16]: If one applies the classical monoidal transformation of blowing up a point on S,
the result is a new complex surface S containing a smooth rational curve C of self-
intersection C2> = —1. The blown up surface S is diffeomorphic to the connected
sum S#@z. Conversely, a smooth rational curve C of self-intersection C 2—-—1on
a complex surface S can always be blown down to a smooth point and the resulting
smooth surface S will have second Betti number bg(S‘ ) — 1; therefore if S is compact,
after a finite number of blowing down we will obtain that S is minimal — i.e., without
rational curves of self-intersection —1. Such an § is called a minimal-model for the
compact complex surface S and in general is not unique.

It is then enough to understand minimal complex surfaces and this is the general
philosophy of the classification which however is also very suitable to address the
geometrical problem of Question 1.1 because of the following result of Tricerri which
generalizes the analogous result in the Kéhler case:

Proposition 1.2 ([34]) A complex manifold M is l.c.K. if and only if the blow up of
M at pointisl.c.K.

As noticed in [34, Remark 4.3], this reduces the above question of Vaisman to
minimal surfaces, for this reason from now on we can assume that S is a minimal com-
pact complex surface and heavily rely on the famous Enriques—Kodaira classification
which is summarized in the following table taken from the book of Barth—Peters—Van
de Ven [5, p.188]. The classification divides all minimal surfaces into ten classes be-
longing to four groups according to the possible values of the Kodaira dimension,
Kod(S) = —o0, 0, 1, 2 which appears in the second column of the table, while in the
other columns we have indicated the algebraic dimension a(S), the Euler characteristic
x (S) and the first Betti number by (S).
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Table 1. Table of Enriques—Kodaira classification

Class of S Kod(S) a(s) x(S) b1 (S)
1) rational surfaces 2 34 0
2) class VI, surfaces —00 0,1 >0 1
3) ruled surfaces of genus g 2 41—-9) 2¢g
4) Enriques surfaces 2 12
5) Hyperelliptic surfaces 2
6) Kodaira surfaces 0 1 0 1,3
7) K3-surfaces 0,1,2 24 0
8) tori 0,1,2 0 4
9) properly elliptic surfaces 1 2 >0 even

1 0 odd

10) surfaces of general type 2 2 >0 even

2 The case b{(S) even

Itis well-known from Hodge theory that any compact Kédhler manifold M must have odd
de Rham cohomology of even dimension. Vice-versa, in the special case of surfaces,
due to the fact that H'(S,C) = H'%(S) @ H*!(S) whether b; is even or odd [5,
p-117], we have the following result of Vaisman:

Proposition 2.1 ([35, Prop 2.3]) Everyl.c.K. metric on a compact surface with even
first Betti number is actually globally conformal Kdhler.

Therefore, in the case b1 even Vaisman’s question reduces to the more classical one
of finding Kéhler metrics on surfaces. As conjectured by Kodaira and Morrow [17] the
answer is the following:

Theorem 2.2 ([27, 31]) A compact complex surface is Kdhler if and only if b1(S) is
even.

The original proof of this result was done case by case using Enriques—Kodaira
classification of minimal surfaces. We give a brief account of the proof following the
table of the previous section.

Because every Moischezon surface S —i.e., of top algebraic dimension a(S) = 2 —
is actually projective algebraic [5, p.127] it follows that surfaces in 1), 3), 4), 5), and 10)
are certainly Kihler because they are submanifolds of CP,,. Tori 8) admit flat Kihler
metrics while elliptic surfaces 9) with b; even are Kéhler by a result of Miyaoka [27].
The problem remained open for the only class left, namely for K3 surfaces, until it was
solved by Siu [31] building on preliminary work of Todorov.

It is also interesting to notice that quite recently Buchdhal and Lamari found two
unified proofs of this theorem—i.e., not using Kodaira’s classification. Their works are
independent—using different complex analytical methods — and appeared in the same
issue of the same journal [6, 18].
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3 The case by (S) odd and x (S) = 0

From now on we can assume that S is a minimal compact complex surface with odd
first Betti number and look for strictly /.c. K . metrics on S—i.e., not globally conformal
Kihler. We see from Kodaira’s classification of these surfaces that the Euler charac-
teristic x (S) cannot be negative and in our treatment we distinguish two main cases:
The first one x (S) = 0 is completely understood both from the point of view of the
classification of the complex structure [2] and the existence of [.c. K . metrics [1]; notice
that x (S) = 0 is also a necessary condition for the metric to have parallel Lee form.

We start by presenting a brief description of the complex structure of these surfaces
in order of decreasing Kodaira dimension.

Properly elliptic surfaces with b; odd

A surface S is said to be elliptic if it admits a holomorphic map to a curve B with generic
fiber an elliptic curve. It was shown by Kodaira [5, 16, 26] that when S is minimal with
b1(S) odd, the singular fibers can only be multiple fibers; in this situation § admits an
unbranched covering § which is a (topologically non-trivial) elliptic fiber bundle over
a smooth complex curve B with b1 (S) = b1(B)+ 1 and b(S) = 2b1(B). In particular,
we conclude that x (S) = 0 for any minimal elliptic surface with b1 (S) odd.

Finally, an elliptic surface S is called properly elliptic if Kod(S) = 1; when b (S)
is odd this amounts to say that the base B has genus g > 2. Furthermore, every surface
of algebraic dimension 1 turns out to be elliptic [5, p.194].

Kodaira surfaces

By definition they are surfaces with b1(S) odd and Kod(S) = 0. They are divided
into primary and secondary Kodaira surfaces according to whether b; is equal to 3
or 1. Primary Kodaira surfaces are elliptic fiber bundles over an elliptic curve and they
provide interesting examples in differential geometry and topology. In fact it is shown
in [30] that the complex structure J of a primary Kodaira surface anti-commutes with
a symplectic structure /—generating in that way an almost hypercomplex structure on
S; (S, I) was cited by Thurston as the first example of a compact symplectic manifold,
which is not Kdhler because b1 = 3 [33]; and S also represents an interesting example
in rational homotopy theory. Finally, secondary Kodaira surfaces are finite quotients of
primary ones [5, p.147].

It follows from the classification table that the remaining minimal surfaces S with
b1(S) odd and x(S) = 0 belong to class VIIy — i.e., satisfy Kod(S) = —oo and
b1(S) = 1. The classification of surfaces in class VIl is known only in the special
case x(S) = 0 and a theorem of Bogomolov [2] also proved by Yau et al. [22] and
by Teleman [32] states that a surface in this class is either a Hopf surface or a Inoue-
Bombieri surface, which we now describe briefly.

Hopf surfaces

By the work of Kodaira, a Hopf surface is the quotient of C2 \ {0} by a discrete group
of biholomorphisms which is a finite extension of the infinite cyclic group generated
by the contraction:
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(z, w) = (az, bw + 17",

where a, b, A € C and n € N satisfy 0 < |a| < |b| < 1 and A(a — b") = 0; we say
that a Hopf surface is diagonal if . = 0 (class 1 in the terminology used by Belgun).
A Hopf surface is elliptic exactly when A = 0 and a” = b7 for some p, g € N while
an elliptic surface with b; odd must be a Hopf surface when the base B = CP.

Bombieri-Inoue surfaces

These surfaces were independently discovered at the same time [14] and [3], their
universal cover is C x H where H denotes the upper-half plane and contrary to Hopf
surfaces which always have at least one elliptic curve (namely the image of z = 0)
Bombieri—Inoue surfaces have no complex curves at all. They come in three different
families which for simplicity we denote by S, S, and S, withu € C.

Now that we have an idea of the complex structure of minimal surfaces with odd
first Betti number and zero Euler characteristic, we want to investigate which of them
admit /.c.K . metrics. This problem has been solved by Belgun [1] in his doctoral thesis
completing the work of several authors as Vaisman, Tricerri, Gauduchon—Ornea. In
fact Belgun even classified surfaces which admit metrics with parallel Lee form and
his powerful results can be summarized as follows:

Theorem 3.1 ([1]) The complete list of compact complex surfaces S with by odd ad-
mitting l.c.K . metrics with parallel Lee form is the following:

1. Properly elliptic surfaces — i.e., all surfaces with Kod(S) = 1.
2. Kodaira surfaces, primary or secondary — i.e., all surfaces with Kod(S) = 0.
3. Diagonal Hopf surfaces — i.e., Hopf surfaces with with A = Q.

Belgun was also able to construct/.c. K . metrics on every non-diagonal Hopf surface
improving therefore the previous work of Gauduchon—Ornea [10] to show that:

Theorem 3.2 ([1]) Every Hopf surface admits a l.c.K . metric.

The only case left is that of Inoue-Bombieri surfaces whose geometry was first
studied by Tricerri who constructed /.c.K. metrics on all of them except for S, , and
u ¢ R [34]. Then another remarkable theorem of Belgun is that Tricerri’s result is in
fact sharp.

Theorem 3.3 ([1]) The Inoue-Bombieri surfaces S, , withu ¢ R do not admitl.c.K.
metrics at all.

An interesting consequence is that, contrary to the Kihler case, /.c.K. metrics are
not stable under small deformations [1].

4 Anti-self-dual Hermitian metrics on surfaces of class VI, with
bz >0

As seen in the previous section, the work of Belgun completely answered the question
of Vaisman in the case of zero Euler characteristic. It follows from the classification
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that the only other possible case is that of surfaces of class Vily with 0 < x = by,
because b; = 1. There is no classification of these surfaces but only several examples
due to Inoue, Hirzebruch, Enoki, Kato, Nakamura, and Dloussky. These examples all
turn out to have small deformations which are not minimal. They are blown-up Hopf
surfaces.

On the topology of these surfaces we can therefore say that all known examples of
S are diffeomorphic to (S! x §3)#mCP, where m = by(S) > 1.

There are also some very basic open questions about the complex structures; for
example it is not known whether every surface S € VIly with b,(S) > 1 admits a curve
[26].

As far as the Hermitian geometry of these surfaces is concerned, very little is known.
We only have examples by LeBrun [19] who constructed anti-self-dual Hermitian met-
rics with semi-free S'-action on parabolic Inoue surfaces using his hyperbolic ansatz.
The action must in fact be holomorphic by [29] and this fits well with a result of Hausen
[11] asserting that the only surfaces in this class admitting a 1-dimensional group of
biholomorphisms with fixed points are parabolic Inoue surfaces.

The crucial link here is that LeBrun’s metrics are automatically /.c.K. by the fol-
lowing result of Boyer; see also [28] for an alternative twistor proof.

Theorem 4.1 ([4]) Let S be a compact surface with by (S) odd admitting an anti-self-
dual Hermitian metric g. Then g is l.c.K. and S belongs to class VII.

In what follows, we present a new twistor construction of anti-self-dual Hermitian
metrics on class VII surfaces; by Boyer’s result these metrics are automatically /.c.K.
and notice that all known examples of /.c.K. metrics on surfaces of class VIIj with
by > 0 are indeed anti-self-dual Hermitian. The details and the proofs of our construc-
tion will appear elsewhere [8].

4.1 Surfaces with positive b,, according to Nakamura

Although it is still an open question whether all the class VIl surfaces with b, > 0
must have a curve, it is known for example that they can only have elliptic or rational
curves; in fact at most one-elliptic curve and at most b, (S) rational curves some of
them forming a cycle C, there can be at most two cycles of rational curves in S. More
precisely, some of these surfaces can be characterized by the configuration of curves
that they contain. This is the case for Inoue and Enoki surfaces which always have
b, (S) rational curves and can be identified by the presence of an elliptic curve or by the
number of cycles and their self-intersection numbers. Rather than giving the original
definition of each specific class we will simply refer to the excellent exposition in [26]
from which we extract the useful table 2.

Our construction is very much inspired by the work of Nakamura [23, 25] on
rational degenerations of class VII surfaces. In what follows, we briefly explain how,
Inoue and Enoki surfaces can be constructed starting from a completely different class
of surfaces, namely toric surfaces which are blow-ups of CIP; over a fixed point of the
action.

Let p € CP, be a fixed point of a standard (C* x C*)-action and let H C CP,
denote the hyperplane class. We have —K = 3H for the anti-canonical class which
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Table 2. Table of Enoki and Inoue surfaces with b, > 0.

curves surfaces
an elliptic curve on a cycle parabolic Inoue surfaces
two cycles hyperbolic Inoue surfaces
acycle C with C? < 0 and b,(S) = b,(C) half Inoue surfaces
acycle C with C2 =0 Enoki surfaces

can therefore be represented by a cycle of three rational curves—each of them having
self-intersection number +1—and let p be one of the three corners. Blowing up CIP,
at the point p yields the Hirzebruch surface ¥ with anti-canonical divisor —K which
is a cycle of four rational curves with self-intersection numbers —1, 0, 41, 0.

One can go on like this by always blowing up one of the two corners of the last
exceptional divisor. After m times the result is again a toric surface D diffeomorphic
to CPy#mCP, with a unique + 1-rational curve denoted by H which is disjoint from
the exceptional divisor of the last blow-up, denoted by E. They are part of a cycle of
(m + 2)-rational curves which represents the anti-canonical class of the surface D,

—-K=E+Bi+--+Bi+H+Bit1+ -+ Bn,

the important point here is that by always blowing up one of the two corners of the
(—1)-curve E we produced an anti-canonical cycle — K, whose —1 components always
intersect E—in other words sz. = —1 implies j = 1 or j = m. This is the property
that makes this construction produce minimal surfaces with by = 1.

From this smooth toric surface D, we now construct a singular surface D’: Take
¢ : H — E to be a biholomorphism of the complex projective line sending the two
corners of H to those of E and consider the rational surface with ordinary double curve
given by the quotient

D' =D/¢.

Notice that D’ is a singular surface with normal crossings along the double curve
F = ¢(H) = ¢(E) satisfying the d-semistable condition vy Q@ vg = O(+1) ®
O(-1) = Ocp,.

In this setting we know from a more general result of Nakamura [23, 24] that the
Kuranishi family of D’ is unobstructed, the general element D; is a smooth surface in
class VII containing a global spherical shell and diffeomorphic to (S I x $3#mCP,
withm = by(D) — 2. In fact he shows that every class VII surface with global spherical
shell admits a rational degeneration (not necessarely toric).

Because we want to obtain VIl surfaces with a particular configuration of curves
(as described in the table), we consider deformations of the singular pair (D', B") where
D is toric and B’ = ¢(By + - - - By,) C D’ is the normal crossing divisor given by the
image of the divisor —K — H — E in D. We then have the following result:

Theorem 4.2 The Kuranishi family of the singular pair (D', B') is unobstructed, the
general member D is either an Inoue or an Enoki surface of class VIIy with by = m.
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In fact more precisely, one obtains a half Inoue surface if B’/¢ consists of just one
cycle. In other cases, ¢ identifies the four end-points of B’ in order to form two cycles
of rational curves and we obtain a hyperbolic Inoue surface when i > 2, or a parabolic
Inoue surface wheni = 1, because in this case one of the cycles in B’ /¢ consists of just
one rational curve with a double point which is deformed to a smooth elliptic curve.

Finally, in order to obtain Enoki surfaces we need i = 1 and to actually neglect
Bj so that the general member D; has only a cycle of rational curves with zero self-
intersection number and no elliptic curve.

4.2 Twistor construction

Now that we understand the complex structure of our surfaces as smooth deformations
of the singular pair (D', B’), we are going to produce anti-self-dual Hermitian metrics
by imbedding (D’, B’) into a singular twistor space Z’. The construction of Z’ is
suggested by the work of Donaldson—Friedman [7] which for our purposes fits very
well with Nakamura’s construction of surfaces in class VII.

The starting point is a result of Joyce [13] who constructed self-dual metrics on the
connected sum of m copies of CPP, (denoted by mCP, from now on) with isometry
group S' x S! and their twistor spaces were studied by Fujikiin [9]. Lets : Z — mCP,
be the twistor fibration from a Joyce twistor space to a Joyce metric, as usual each fiber
t~1(p) = CP; is a complex submanifold of Z with normal bundle O(1) ® O(1) called
twistor line; these fibers are invariant with respect to the real structure 0 : Z — Z
which is an anti-holomorphic involution which restricts to the antipodal map on each
twistor line, and is therefore fixed-point free.

What is important for our purposes is that every Joyce twistor space contains a
pair of degree-1 divisors D and D (in fact a generic Z contains exactly (m + 3) such
pairs) by which we mean the following: D is an effective divisor in Z with intersection
number 1 with a twistor line and D = o (D). The generic twistor line intersects D at
one point and there is exactly one twistor line L; C D, by reality it is also contained
in D so that L1 = D N D. The restriction of the twistor map ¢ : D — M is orientation
reversing and shows that D is diffeomorphic to a blow-up of CP2: D = CP#mCP,
[20, prop.6].

In fact it is shown in [9] that each of this degree-1 divisors are toric surfaces with
respect to a holomorphic C* x C*-action on Z which is a complexification of the
isometric action on M, given by the twistor correspondence.

L is the component of self-intersection +1 in the anti-canonical cycle —K of
the toric surface D C Z, and in order to apply the Donaldson—Friedman construc-
tion let Ly be the twistor line passing through one of the two corners of a (—1)-
component of anti-canonical cycle —K. We can then follow the prescription of [7]
and blow up the twistor space Z at L; and L, to obtain a smooth 3-fold Z con-
taining two exceptional quadrics Q| and Q; each with normal bundle O(—1, 1) and
finally produce a singular twistor space Z’ by using a biholomorphism ¥ : Q1 — Q>
which extends ¢ switching the two CP;-factors of the quadrics and taking the quotient
space
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According to general theory [7], Z’ is a complex 3-fold with only normal crossing
singularities along the smooth quadric ¥ (Q1) = ¥ (Q>) satisfying the d-semistable
condition and we can prove that its deformation theory is unobstructed so that it always
admits smooth deformations which are twistor spaces of anti-self-dual metrics on the
self-connected sum of mCP, (with reversed orientation) which is (S' x $3)#mCP, —
i.e., exactly what we want, topologically.

However, our construction gives us for free a lot more geometrical structure: The
proper transform D of D in the blown up twistor space Z is exactly one of the toric sur-
faces considered in the prev10us section and is now disjoint from the proper transform

D of D. The divisors D and D are isomorphic as toric surfaces and intersect trans-
versely the two exceptional quadrics Q1 and Q». The biholomorphism ¥ : Q1 — Q>
extends the identification ¢ so that the singular surface D’ of the previous section is
contained inside the singular twistor space Z’ together with D’ because the construction
is compatible with real structures. In fact D’ and D’ are disjoint Cartier divisors in Z’
with chains of rational curves B’ € D’ and B’ C D'. We then set S’ = D’ + D’ and
C’ = B + B’ and consider the triple of singular complex spaces with real structure.
The deformation theory of such triples was studied by Honda [12] and we are able to
prove the following result.

Theorem 4.3 The Kuranishi family of the singular triple (Z', S’, C') is unobstructed,
the general member Z; is smooth and contains a class VIly surface D; with curves Bs.

Because the triple (Z’, S’, C’) has a real structure we know from general theory
[7, 12, 15] that for ¢ generic and real, Z; is a twistor space with a degree-1 divisor D;
which is disjoint from D; and isomorphic to one of the surfaces of 4.2. This is the key
to prove the following result.

Theorem 4.4 Every minimal hyperbolic or half Inoue surface with by = m admits an
m-dimensional family of anti-self-dual Hermitian metrics. The same result holds on
some Enoki and some parabolic Inoue minimal surfaces with by = m.

Altough it is not yet clear which parabolic Inoue surfaces admit anti-self-dual
Hermitian metrics, let us notice that our metrics on these surfaces admit an S!-action
and should therefore be conformally isometric to LeBrun’s by the general result of
[21].
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Summary. In the last few years, many works have appeared containing examples and general
results on harmonicity and minimality of vector fields in different geometrical situations. This
survey will be devoted to describe many of the known examples, as well as the general results
from where they are obtained.

1 Introduction

The tangent bundle of a Riemannian manifold (M, g) admits a natural metric g5 known
as the Sasaki metric. Since a vector field V : M — (T M, gS) is an immersion, it is
natural to consider the problem of characterizing those vector fields for which V (M)
is a minimal submanifold, or those for which V is a harmonic map. We can also look
for vector fields that are critical points of the volume, or of the energy, when restricted
to variations among vector fields.

There are several reasons why it is interesting to obtain these characterizations. For
example, we can use them to find new examples of harmonic maps and of minimal
immersions into manifolds with an interesting and highly non-trivial geometry: the
tangent bundle or the unit tangent bundle.

Besides, we can use these critical conditions to obtain, on a given compact manifold,
some information concerning the infimum of the volume or the energy of unit vector
fields and to detect the possible minimizers, if they exist.

Finally, there are many situations in which a distinguished vector field appears in
a natural way, for example the characteristic vector field of a contact metric manifold,
the radial vector field on a normal neighborhood of a point of a Riemannian manifold
and the geodesic vector field on the unit tangent bundle. In this case, it is interesting to

* Supported by projects BFM2001-3548 (DGI, Spain) and AVCiT, Grupos03/169 (Generalitat
Valenciana)
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study how the criticality of the vector field is related to the geometry of the mani-
fold. To do so, it is important to obtain a convenient expression for the conditions of
criticality.

Many authors have been interested in the study of the volume and the energy of
vector fields, and also of sections of more general fiber bundles. In the last five years,
an important number of works have appeared containing examples and general results
on harmonicity and minimality of vector fields in different geometrical situations. The
aim of this paper is to survey the advances made on these aspects of the problem, this is
a subject in which the important contribution due to Professor Lieven Vanhecke plays
a central role.

Many advances have been done also concerning the problem of finding the minima
of the volume or of the energy among unit vector fields, the majority of the results
obtained are for the sphere and this was the subject of our survey [Gil02]; for more
recent developments the reader can see [GV02], [BG**], [GH**], [BS**] and the
references therein.

Apart from volume and energy, other related function on the space of vector fields
have been studied with similar methods, as for example, the corrected energy defined
in [Bri00], the generalized energy considered in [Gil01], [GLO1] and [GH**] and the
space-like energy of time-like vector fields on Lorentzian manifolds, defined in [GHO4].

The paper is organized as follows: In Section 2, we give the definitions and the
characterization of critical vector fields, as well as the first examples. The characteriza-
tion of critical sections of more general bundles is very similar and some results have
been obtained on this subject of which we give a brief account. Section 3 is devoted to
describe many of the known examples, as well as the general results from where they
are obtained.

2 Definitions and first results

The energy of a smooth map ¢ : (M, g) — (N, h) from a Riemannian manifold to
another is defined as,

1
E(p) = > /Mtr(L(p)dvg,

where L, is the endomorphism field completely determined by (¢*h)(X,Y) =
g(Ly(X), Y). If {E;} is a g-orthonormal frame, then

r(Ly) = Y (h 0 9)(@x(Ei), 9u(ED).

i=1

The volume of an immersion ¢ : M — (N, h) is the volume of the Riemannian
manifold (M, ¢*h), that is

Vol () :/ dvgrp.
M
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If we choose a metric g on M, then

Vol(p) = /M Vdet(Ly)dvy.

Itis well known that the Euler-Lagrange equations, of the corresponding variational
problems, give rise to the definition of fension of a map and of mean curvature of an
immersion. Both of them are vector fields along the map and their vanishing defines
harmonic maps and minimal immersions respectively. In a g-orthonormal frame as
above, the tension is expressed in terms of the Levi-Civita connections V& and V" as,

70(@) = Y (VE0u(E) = oV, ED).

i=1

The mean curvature vector field coincides with the tension of the map ¢ : (M, ¢*h) —
(N, h).

2.1 Volume and energy of vector fields

If we consider the tangent bundle w : TM — M and a metric gop on M, we can
construct a natural metric on T M as follows: at each point v € T M, we consider on
the vertical sub-space of T,,(T M) the inner product go (up to the usual identification
with T, M, where p = m(v)). We take the horizontal sub-space determined by the
Levi-Civita connection as a supplementary of the vertical and we declare them to be
orthogonal. Finally, we define the inner product of horizontal vectors as the product
of their projections, with the metric gg. The so constructed metric gg is sometimes
referred as the Sasaki metric.

The geometry of (T M, gg ) is well known and a good description can be found in
[Bla02]. We have used it in [GilO1] to compute 74 (V), the tension of a vector field
V in M considered asamap V : (M, g) — (TM, gg). We will represent by V the
Levi-Civita connection of gg, and by R the (1, 3) curvature tensor given by

R(X.Y,Z) :=R(X.Y)Z = —VxVyZ + VyVxZ + Vix.1)Z.

Proposition 1. Let V be a vector field in M. Then
~ ~ hor
7 (V) = (3 RUVVIED, V. Ei) + 7, (14))
i

+ (VW) 1) + Y (V5 (TVN(ED)

where for a vector field X we have represented by X" its vertical lift and by Xxthor
its horizontal lift. {E;} is any g-orthonormal frame and t4(1d) is the tension of 1d :
(M, g) = (M, go).

In the particular case g = g, the expression above simplifies due to the vanishing
of 7¢(Id) and in fact, the vertical part of the tension is just the rough Laplacian of V.
This result goes back to Ishihara [Ish79].
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For a compact manifold M, the vector field

(VV)(re(d) + Y (Vi (VV))(Er)

vanishes if and only if VV = 0, as can be seen combining Corollary 15 and
Proposition 17 of [GilO1]. Then it is more interesting to consider the problem of de-
termining which unit vector fields, with respect to the metric go, give harmonic maps
from (M, g) to the unit tangent bundle (T'M, gg ). It is not difficult to see that

Theorem 1 ([Gil01]). Given a unit vector field V in a Riemannian manifold (M, go)
and a metric g on M, the map 'V : (M, g) — (T'M, gg) is harmonic if and only if

(@) Yy RUVV)(E:), V, E;) + 74(Id) = 0 and
(b) (VV) (1 (Id)) + 3 (V5 (VV))(E) = AV for some ) € C®(M).

Apart from the particular case g = go mentioned above, the other special case
involving only one metric on M is g = V*gg. The tension computed in Proposition
1 is then the mean curvature vector field of the immersion V : M — (T'M, gg ). In
[Gil01], we have shown that for g = V* gg the condition (b) implies the condition (a)
and then

Proposition 2. Given a unit vector field V in a Riemannian manifold (M, go), the
immersion V. : M — (T'M, gg) is minimal if and only if there is A € C°°(M) such
that

(VV)(Tyugs ) + (Vi (VV))(Ep) = AV.

A different question is: When a unit vector field is a critical point of the energy
restricted to unit vector fields? Since we are now concerned with a variational problem
with constraints, the condition will be the vanishing of the projection of the tension
1(V) € Ty(C®(M, T'M)) onto the sub-space Ty (I'°(M, T'M)), consisting in
those elements that are tangent to the submanifold of all smooth sections of the unit
tangent bundle. It is easy to see that if 7 is a vector field on 7'M along V, then it is
tangent to the manifold of unit sections if and only if the vector n(x) € Ty () (T'M) is
vertical, for all x € M. As a consequence,

Corollary 1. A unit vector field is a critical point of the energy restricted to unit vector
fields if and only if it satisfies condition (b). It is a critical point of the volume restricted
to unit vector fields if and only if it is a minimal immersion.

This is not the usual approach to the problem. Instead, we can go back to the
definition of energy and volume of a map and, since for a vector field V we have
V*gg(X, Y) =g0(X,Y)+go(VxV,VyV)and then Ly =Id+ (VV)!(VV), we can
see that the energy of the map V : (M, go) — (T'M, g3), that is, by definition the
energy of the vector field, is given by,

n 1 5
E(V)=§+§ IVV|“dvg
M
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and the volume of the vector field is
Vol(V) = / Vdet(Ly)dvyg.
M

The relevant part of the energy, B(V) = f valNa% |?dvg is sometimes called the total
bending of the vector field.

The condition for a unit vector field to be a critical point has been obtained by direct
computation of the Euler—Lagrange equation of these variational problems. The second
order differential operators involved are the rough Laplacian V*V and the operator V* D
where D is, as V, a first order differential operator from the space of vector fields to
the space of (1, 1)-tensor fields. It is given by DV = «/det(Lv)(VV)L(,].

Let us recall that V* represents the formal adjoint of V that can be expressed in an
orthonormal frame as V*(K) = ) (Vg, K) E;. Moreover, the 1-form associated by the
metric to this vector field is Y (Vg K)'.

Theorem 2. Given a unit vector field V in a Riemannian manifold (M, go), then

1. ([Wie95]) V is a critical point of the energy if and only if V¥*VV = AV, for some
smooth function A.

2. ([GL02]) V is a critical point of the volume if and only if V*DV = AV, for
some smooth function A. Moreover, it is critical if and only if it defines a minimal
immersion.

Remark. In [GilO1] we show, by a direct argument, that the condition in part 2 above
and that of Proposition 2 are equivalent.

The covariant version of Theorem 2, as it appears in [GL02], has been very useful
for the study of particular examples and also to compute the second variation of the
volume in [GLO1]. The second variation of the energy was previously computed by a
different method in [Wie95].

Proposition 3. Ler V be a unit vector field in a Riemannian manifold (M, go). Let us
denote by wy (resp. @y ) the 1-form associated by the metric to V*V'V (resp. V*DV )
and by vy the 1-form is given by

vy (X) = ZR((VV)(Ei), V,Ei, X).

V is a critical point of the energy if and only if wy (X) = 0 for all X € V*. In that
case V will be called a unit harmonic vector field. V defines a harmonic map into the
unit tangent bundle if and only if it is harmonic and vy = 0. Finally, V is a critical
point of the volume if and only if @y (X) = 0 for all X € V=, in that case V defines a
minimal immersion.

If we represent by V* the 1-form associated to a unit vector field V, the rough
Laplacian is related with the Hodge Laplacian by the Weitzenbock formula
AV* =V*VV* + py,

where py is 1-form associated to the Ricci tensor, i.e., py (X) = p(V, X). Then, when
a vector field is harmonic, the associated 1-form verifies AV* = py and, in general, it
is not Hodge-harmonic.
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2.2 First examples

If V is a unit Killing vector field, we can write the conditions in Proposition 3 in terms
of the curvature.

Proposition 4. Given a unit Killing vector field V in a Riemannian manifold (M, go)
then

1. ([Wie95)) V is harmonic if and only if py (X) = 0 forall X € V.
2. ([GLO1)) V is minimal if and only if py(X) = O for all X € VL, where py is
defined, in terms of an orthonormal frame of V =+, as follows:

py(X) = Z (R(L;l(vXV), Ly (VE V), V,E) + R(VxV, VgV, V, Ei)>.

1

It is well known that Hopf fibration 7z : $?"+!1 — CP™ determines a foliation of
§2m+1 by great circles and that a unit vector field can be chosen as a generator of this
distribution. It is given by £ = J N, where N represents the unit normal to the sphere
and J the usual complex structure on R?”*2. £ is the standard Hopf vector field, but we
will call a Hopf vector field any vector field in $+! obtained as J N for J a complex
structure on R?"*2 that is J € End (R?"+2) such that J' o J = Id, J? = —Id. On
the other hand, Hopf vector fields are exactly unit Killing vector fields of $>+1.

An important result due to Gluck and Ziller [GZ86] is that if m = 1, the Hopf vector
fields are exactly the unit vector fields with minimum volume. For m > 1 it is shown,
by Johnson in [Joh88], that for any variation of a Hopf vector field by unit vector fields,
the first derivative of the volume vanishes. In view of Theorem 2, this means that Hopf
vector fields are minimal immersions. In fact we have,

Proposition 5. Let V be a unit Killing vector field on a Riemannian manifold M. Then

1. ([Wie95]) If M is an Einstein manifold of constant Ricci curvature k, V is harmonic
with energy E(V) = (n + «/2)Vol(M).

2. ([GLO1]) If M is of constant curvature k, V defines a minimal immersions with
volume Vol(V) = (1 4+ k) =12 Vol(M).

Moreover, it is easy to see, using Proposition 3 that Hopf vector fields are harmonic
maps. An interesting result of Han and Yim is the following:

Proposition 6 ((HY98)). The only unit vector fields on S° that are harmonic maps are
Hopf vector fields.

It has been improved by Gluck and Gu ([GGO1]) who have shown that the Hopf
vector fields are the only unit vector fields on § 3, such that vy = 0.

The proofs are rather technical and can not be extended to higher dimensional
spheres. The particular behaviour of 3-dimensional manifolds, in what concerns volume
and energy of vector fields, is very frequent. For instance, in [GLO1] we have shown

Proposition 7. A unit Killing vector field V on a 3-dimensional manifold is minimal
if and only if py (V) = 0 (that in this case is equivalent to R(X,Y, V) = 0, for
all X, Y € VL) but this is no longer true if the dimension of the manifold is greater
than 3.
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Let us now consider the vector fields W defined on $” — {— p} by parallel transport
ofagivenw € Tpl S", along the great circles of " passing through p. We will call such
a W, a parallel translation unit vector field.

In [Ped93], it is shown that the generalized Pontryagin cycle is minimal at each
smooth point as a submanifold of the corresponding Stiefel manifold. Since W (S§" —
{—p}) can be seen as the set of smooth points of one of these cycles, then W is a
minimal unit vector field. In [GLO02], we use direct computation of W and VW to show
that @y (W) = 0. The expression of VW can also used be to compute wy (the details
can be seen in [L1i02]) and then

Proposition 8. Parallel translation unit vector fields defined on M = S" — {—p} are
minimal immersions into the unit tangent bundle but they are critical for the energy
only if the dimension is 2.

As this example shows, the problems concerning the volume and the energy of
vector fields, presents certain peculiarities on 2-dimensional manifolds. If we assume
M to be compact, the only possible manifolds admitting unit vector fields are tori. The
critical vector fields for the volume and the energy have been studied in [Joh88] and
[Wie96], respectively. In [GLO1], we have shown that, on any 2-dimensional manifold,
if a unit vector field is harmonic or minimal then it is stable.

2.3 Beyond the tangent bundle

Letmr : P — (M, g) be a fiber bundle over a Riemannian manifold. Suppose that
the fibers are endowed with Riemannian metrics (such that the structure group of the
bundle acts on them by isometries), and that the bundle is equipped with a connection.
With a construction completely analogous to that described for the Sasaki metric on
the tangent bundle, we can define a metric on P that is also known as the Kaluza—Klein
metric.

In the case of a vector bundle, Konderak has written, in [Kon99], the condition for
asectiono : (M, g) — (P, gS ) to be a harmonic map. To do so, he has computed the
tension of 0.

The weaker condition of o to be a critical point of the energy restricted to sections,
i.e., to be a harmonic section, has been considered by Wood (see [W0090], [Woo000])
and studied for a number of different vector bundles (or sub-bundles of vector bundles)
of geometrical interest. For example, for sections of the twistor bundle (i.e., almost
Hermitian structures) in [Wo0095] and for almost-product structures in [Wo094]. Salvai
([Sal02] and [Sal02b]) studies the harmonicity of sections of some unit sub-bundles of
trivializable bundles over certain parallelizable manifolds.

In [Wo003], Wood has obtained the condition for a section of an homogeneous fiber
bundle to be harmonic.

A unit vector field on a Riemannian manifold gives rise to a 1-dimensional distribu-
tion on it. If we consider a general k-dimensional distribution on (M, g), the problem
of determining when it is a harmonic map into de Grassmann bundle has been solved
by Choi and Yim in [CYO03]. They have used this characterization to study the har-
monicity of a G-invariant distribution of a reductive homogeneous spaces M = G/K.
In particular, they show that the Hopf 3-dimensional distribution is harmonic. The
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same conclusion has been obtained in [W0094], by the study of the corresponding al-
most product-structure, and in [CNWOI1] by considering the Grassmann bundle as a
sub-bundle of the exterior bundle.

If # : P — M is a tensor bundle over M, (i.e., the fiber at each point Py is a
vector space consisting of tensors of the tangent space 7y M), the only data needed
to construct the Sasaki metric in P is a Riemannian metric go on M, since we take
its extension to tensors as the inner product on the fiber and the extension of the
Levi-Civita connection, as the fiber connection. We have obtained in [GGV**] with
Gonzalez—Davila and Vanhecke the condition for a sectiono : (M, g) — (P, gg ) to be
a harmonic map and a harmonic section as far as the corresponding results for sections
of the unit bundle. If we assume g = go, we recover the results mentioned above. As
for the particular case where P is the tangent bundle, described in subsection 2.1, if
we assume that g = o* gOS , we obtain the condition for a section to define a minimal
immersion.

We have used these results to obtain the condition for a distribution to be a harmonic
map from (M, g) to the Grassmann bundle of M endowed with the restriction of
the Sasaki metric gg of the conveniently chosen exterior bundle. We show that the
3-dimensional distribution of S*"3 tangent to the quaternionic Hopf fibration defines
not only a harmonic map but also a minimal immersion and we extend these results to
more general situations coming from 3-Sasakian and quaternionic geometry.

3 A cascade of examples

To obtain examples of critical vector fields, and of critical sections in general, it is
necessary to have a good knowledge of the covariant derivative and the curvature of
the manifold, in order to compute the tension or the mean curvature of the vector
field. So, it is natural to look first at manifolds whose geometry is well known. Also
the properties of the section itself are important, and some general intuition is that
criticality would imply some beauty: symmetry (or skew-symmetry) of the covariant
derivative, naturallity of the definition, etc. In the last five years, many papers have
been published on the subject of volume and energy of unit vector fields, where several
authors have provided examples, and studied the properties, of minimal and harmonic
unit vector fields in different Riemannian manifolds. Many of the examples are obtained
as a consequence of general results just by exhibiting some manifolds and sections
fulfilling the hypothesis; but others arise in a particular manifold and they appear as
isolated, by the moment. Probably, how they fit in the general picture will be understood
in the future. We have divided this section in several subsections although some of the
examples are in the intersection. We do not pretend to give an exhaustive list, almost
all the works mentioned here contain more examples than those we have reported.

3.1 Invariant vector fields on Lie groups and homogeneous spaces

Let (G, g) be a Lie group endowed with a left-invariant metric, and let S represent the
unit sphere of the Lie algebra g. The condition for a left-invariant unit vector field V to
be minimal or harmonic can be expressed in terms of the corresponding element of S
and of the elements of g* determined by wy and @y. We have a first existence result:
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Proposition 9 ([TV00b],[GV02b]). Any odd-dimensional Lie group with left-invariant
metric, admits harmonic, and minimal, left-invariant unit vector fields.

The maps e(V) = tr(Ly) and f(V) = /det(Ly) defined on the manifold of unit
vector fields and with values in the space of smooth functions, give rise to real valued
maps on S that will be represented by the same symbols. Tsukada and Vanhecke in
[TVOOb] for the volume and Gonzédlez—Dévila and Vanhecke in [GV02b] for the energy
have shown

Proposition 10. Let (G, g) be a Lie group endowed with a left-invariant metric and
let V € S. The corresponding invariant vector field is harmonic if and only if for all
X eVt

deV(X) = tr(ad(vv)r(x)).
It is minimal if and only if for all X € V1,

dfyv(X) = tr(adg, (x))-

Let us recall that a Lie group is said to be unimodular if tr(ady) = 0, forall X € g
and that, for a non-unimodular Lie group, the unimodular kernel is the codimension
one ideal of g defined by,

u={Xeg,; tr(ady) =0}

Considering a unit vector H € ul, we will say that ady is symmetric if its restriction
to u is symmetric with respect to the inner product on u determined by the metric.

Theorem 3 ([TV00b],[GVO02b]). Let G be either a unimodular Lie group or a non-
unimodular Lie group such that ady is symmetric. Then a left-invariant unit vector
field on G is harmonic if and only if it is a critical point of e and it is minimal if and
only if it is a critical point of f. In particular, on any such group there exists at least
one harmonic and one minimal left-invariant vector field.

As an application, for the unimodular case, one can find in [TV0Ob] (resp. in
[GV02b]) a complete classification of left-invariant minimal (resp. harmonic) unit vec-
tor fields on the classical Heisenberg group of dimension 2k + 1. For such a vector
field, it is equivalent to be harmonic, to define a harmonic map and to be minimal.

Examples of non-unimodular Lie groups with the symmetry condition are Damek—
Ricci spaces and those obtained from solvable metric Lie algebras of Iwasawa type.

A Lie group for which there is [ € g*, [ # 0, such that

[X,Y]=1(X)Y —I(Y)X

is also of this kind, and in [TVO0O] one can also find a complete classification of left-
invariant minimal unit vector fields on them.

For a 3-dimensional Lie group, the complete classification of minimal left-invariant
unit vector fields has been given in [TV00], and of those that are harmonic or defined
harmonic maps in [GV02]. By comparing the results in both papers, one can see that in
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the unimodular case, minimality and harmonicity are equivalent but do not necessarily
imply the harmonicity as a map.

It is worth noting that, although for a non-unimodular case it was not possible to
use always Theorem 3, the computations needed to apply Proposition 10 are not very
complicated due to the dimension restriction. For arbitrary dimension, Gonzalez—Davila
and Vanhecke have shown, in [GV00],

Proposition 11. Unit left-invariant vector fields orthogonal to the unimodular kernel
are minimal in any dimension.

The same authors in [GV00] and [GV02b] have found many examples, among
others, on the different types of generalized Heisenberg groups and on Damek—Ricci
spaces.

Another situation that is well-understood is that of Lie groups with a bi-invariant
metric. In [GV02b], the authors have been able to determine the full set of left-invariant
harmonic vector fields. Moreover, they show that in this case, to be harmonic is equi-
valent to define a harmonic map. In particular, they have shown

Proposition 12. On a compact connected semi-simple Lie group with the usual metric,
given by the negative of the Killing form, every left-invariant unit vector field determines
a harmonic map into the unit tangent bundle.

On the other hand, the study of the volume of unit vector fields on a compact semi-
simple Lie group, has been done by Salvai in [Sal03], using the characterization of
minimality of [TVO0Ob] and the structure and properties of semi-simple Lie groups, in
a development where the roots of the Lie algebra play a central role. To describe the
results we need some definitions.

Let g be the Lie algebra of a compact semi-simple Lie group, G. Let t be a maximal
abelian subalgebra, A the corresponding root system, C a Weyl chamber and @ the
associated basis of A. Given o € @ there is a unique v, € t such that v, € Kerg for
all B # o, a(vy) > 0 and |v,| = 1. Each vector vy, is a vertex of the simplex

C_'lzc_'ﬁ{veg; lv| = 1}.

This vector is maximal singular (i.e., its Ad(G)-orbit has dimension strictly less than
the orbit of any other unit vector in a neighborhood). Each maximal singular unit vector
belongs to the Ad(G)-orbit of exactly one of this vertex.

Theorem 4 ([Sal03]). On a compact semi-simple Lie group, for any maximal singular
unit vector, the corresponding left-invariant and right-invariant unit vector fields are
minimal.

Moreover, if a # B and the unit vector fields corresponding to vy and vg have
the same volume, then there is v in the edge joining vy with vg (i.e., y (v) = 0 for all
y # o, y # B)and different from vy and vg, such that the corresponding left-invariant
and right-invariant unit vector fields are minimal.

This result provides a lower bound for the number of inequivalent (i.e., they are
not related by any element of the identity component of the isometry group) minimal
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vector fields. Furthermore, the same author has computed the expression of the volume
of the left-invariant (and the right-invariant) vector field determined by a unit v € g, in
terms of the root system, obtaining,

vol(G) ] <1+%¢(v)2).

peAt
When applied to particular groups one can show, for example
Proposition 13 ([Sal03]).

a) The number of non-equivalent minimal unit vector fields on SU(n + 1) is not
smaller than 2n + 2[n/2].

b) The number of non-equivalent minimal unit vector fields on SO(5) and in G is
not smaller than 4.

c) The number of non-equivalent minimal unit vector fields on SO (8) is not smaller
than 14.

Let us finish this subsection by the extension of these results on Lie groups to
the more general situation of homogeneous spaces. We have constructed in [GGVO01],
with Gonzalez—Davila and Vanhecke, many examples of harmonic and minimal unit
vector fields among the invariant vector fields of homogeneous spaces. To do so, we
have derived a criterion for the minimality and harmonicity of such a vector field
using the framework of homogeneous structures [TrV83] and infinitesimal models
[TrV89].

Let (M = G/Go, g) be a homogeneous Riemannian manifold with reductive de-
composition g = m & go and let V be the adapted canonical connection. We will
consider the associated homogeneous structure S = V —V and its trace n = ) ; Sg, E;
where {E;} is an orthonormal basis of m. o ~ ~

The associated infinitesimal model is 99t = (m, T, R, (, )), where T and R are the
torsion and curvature of V. The sub-space of invariant vectors of m is defined as,

InvINn = ﬂ Kerléx,y.
X,Yem

Theorem 5 ([GGVO01]). Let (M = G/ Gy, g) be a homogeneous Riemannian manifold
with reductive decomposition g = mégo, a left-invariant unit vector field V is harmonic
if and only if

dey(X) = —(VyV, X) = —(n, (VV)' (X)),
and it is minimal if and only if
dfy(X) = —(n, Ky (X)),
forall X e nvOn NV,

Among the different classes of homogeneous structures given in [TrV83], we can
find the hyperbolic spaces.
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Proposition 14 ([GGVO01]). On the hyperbolic plane every left-invariant vector field is
harmonic and minimal. For n > 3, on the hyperbolic space H" = {y e R" ; y; > 0},
the unit vector fields £V, tangent to parametric curves of parameter y1, and those
determined by unit vectors in V- are exactly the harmonic invariant unit vector fields.
The only minimal unit invariant vector fields are =V . There are no harmonic maps
among unit invariant vector fields.

In contrast with this situation, in the class of naturally reductive spaces,

Proposition 15 ((GGVO01)). Every harmonic invariant unit vector field on a naturally
reductive homogeneous manifold defines a harmonic map into its unit tangent bundle.

In the proof of this result, we use that on naturally reductive homogeneous manifolds
invariant vector fields should be Killing. This fact enables us to use frames adapted to
the endomorphism V'V, to write minimality and harmonicity conditions in terms of 7'
in order to show:

Proposition 16 ((GGVO01]). On a naturally reductive homogeneous manifold such that
the space Inv 9N is 1-dimensional, the unit generators are minimal and harmonic.

Proposition 17 ([GGVO01]). A unit invariant vector field on a naturally reductive ho-
mogeneous manifold of dimension < 5 is minimal if and only if it is harmonic.

The same conclusion is also true, independently of the dimension, for unit invariant
V such that VV is of rank 2. With all these properties, we determine all invariant
minimal and harmonic unit vector fields on naturally reductive homogeneous spaces
of dimension is < 5.

Another interesting class of homogeneous structures S is defined by the conditions
n = 0and (SxY, Z) + (SzX,Y) + (SyZ, X) = 0. The full classification of con-
nected, complete and simply connected Riemannian manifolds of dimension-3 and 4
which admit a non-trivial structure was obtained by Kowalski and Tricerri in [KTr87].
In [GGVO01], we combine this classification with Theorem 5 to determine, all invari-
ant minimal and harmonic unit vector fields on homogeneous spaces of dimension-3
and 4.

3.2 Examples coming from contact geometry

The first examples of critical vector fields, Hopf vector fields, are in fact the character-
istic vector fields of the usual Sasakian structure of odd-dimensional spheres. We have
obtained that they are critical since they are Killing, but the same can be concluded
also as a particular case of the following general result.

Theorem 6 ([Wie95],[GL02]). The characteristic vector field of any Sasakian mani-
fold is harmonic and a minimal immersion.

Let us recall some definitions. For more details on contact geometry, the reader is
referred to the book by Blair [Bla02].

A contact structure on a (2n 4 1)-dimensional manifold M is a globally defined
1-form n such that n A (dn)" # 0. There exists a unique vector field £ such thatn(§) = 1
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and tgdn = 0; it is called the characteristic vector field. A Riemannian metric g on
M is said to be associated if n(X) = g(&, X) and the (1, 1)-tensor field ¢ defined by
g(X,¢(Y)) =dn(X,Y) verifies ¢2(X) + X = n(X)&. In that case, (n, g) is a contact
metric structure and the usual notation for a contact metric manifold is (M, n, g, &, ¢).

If the characteristic vector field is Killing, the manifold is said K-contact, for such
a manifold

R(X,§,Y,§) =g(X,Y),
and then p (&, X) = 2ng (&, X). Moreover,
R(X,Y)§ =g(X,6)Y —g(Y, §)X,

the manifold is called Sasakian. Another class of contact metric manifolds is that of
the (k, w)-spaces, introduced by Blair, Koufogiorgos and Papantoniou in [BKP95] as
those such that,

R(X,Y)E =k(g(X, &)Y —g(Y.6)X) + %(g(x, E)(Led)(Y) — (Y, E)(Led) (X)),

where k and p are constants. In the particular case of a three-dimensional manifold,
one can consider the class of generalized (k, w)-spaces where k and p are functions
(see [KTO0O0]).

The (k, w)-spaces have been completely classified by Boeckx in [Boe0O0]. In par-
ticular, the unit tangent manifold of a constant curvature space is of this type, so the
next result provides examples of minimal and harmonic vector fields.

Proposition 18 ([GVO00],[Per**]). The characteristic vector fields of K-contact mani-
folds and of (k, n)-spaces are minimal and harmonic.

Since a contact metric manifold is Sasakian if and only if it is a K-contact (k, w)-
space, the proposition above generalizes Theorem 6 in two different directions.

The minimality of the characteristic vector field of a K-contact manifold was also
obtained by Rukimbira in [Ruk02] by a different method, namely by showing that
the characteristic vector field of a contact metric manifold defines a contact invariant
submanifold of the unit tangent bundle, endowed with the natural contact structure
defined by the metric.

In the particular case of three-dimensional contact manifolds, a convenient expres-
sion of the Levi-Civita connection, obtained by Calvaruso, Perrone and Vanhecke in
[CPV99], was used by Gonzalez—Davila and Vanhecke in [GV01] to show

Proposition 19. The characteristic vector field & of a three-dimensional contact metric
manifold is harmonic if and only if pg (EH =0.

They also obtained the conditions that £ should verify in order to define a harmonic
map and to be minimal, and used them to study the cases where the manifold has
constant scalar curvature or it is locally homogeneous. With the same methods, these
results have been recently improved by Perrone in [Per03].
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Proposition 20 ([Per03]). The characteristic vector field of a three-dimensional con-
tact metric manifold defines a harmonic map if and only if the manifold is a generalized
(k, w)-space on an open and dense subset. It is harmonic and is minimal if and only
if the manifold is either Sasakian or a unimodular Lie group equipped with a non
Sasakian left-invariant contact metric structure.

As aconsequence, it is shown in [Per03] that a compact 3-manifold admits a contact
metric structure whose characteristic vector field is harmonic and is minimal if and only
if it is diffeomorphic to a left quotient of the Lie group G under a discrete subgroup,
where G is one of SU (2), the Heisenberg group, the group of motions of the Minkowski
plane or the universal cover of SL(2, R), or the universal cover of the group of motions
of the Euclidean plane.

In [Per**], the same author has generalized Proposition 19 to any dimension as a
consequence of the following:

Proposition 21 ([Per**]). Let (M, &, g) be a contact metric manifold. Then g(V*VE, X)
= ps(X) — 2ng(&, X), for all vector field X.

This result leads the author to define the class of H -contact manifolds as those with
harmonic characteristic vector field, or equivalently those for which pg¢ (1) = 0. This
condition on the Ricci tensor appeared in [GPT89], in relation with the vanishing of the
first Betti number of a contact manifold with critical metric. Such a metric is defined as
a critical point of the Chern—Hamilton functional that is given, up to constants, by the
energy of £. Let us recall that, in fact, the energy functional on X (M) is the restriction of
a functional defined on X (M) x M, where M is the space of metrics on M (see [Gil01]).
Then, critical metrics are critical points for variations by associated metrics and with
fixed £, and harmonic unit vector fields are critical points for variations by unit vector
fields, and with fixed g. In [Per**], H-contact manifolds with critical metrics are called
critical contact metric structures and the author obtains a complete description—up to
diffeomorphism—of all compact 3-dimensional manifolds admitting such a structure.

3.3 The hopf vector field of a hypersurface of a complex manifold

The Hopf unit vector fields on odd-dimensional spheres are a particular case of a
general construction on any orientable real hypersurface (M, g) of a Kédhler manifold
(M ,&,J). We can define on M the unit vector field £ = JN, where N represents
the unit normal to the hypersurface. In fact, & is the characteristic vector field of an
almost-contact metric structure on M. We can define an endomorphism field on the
submanifold by the expression

¢p(X)=JX —-g(JX,N)N.

The submanifold M is said to be a Hopf hypersurface if & determines a principal
direction, that is, if S¢ = «&, where S represents the shape operator. Tsukada and
Vanhecke have shown

Theorem 7 ([TV00]). Let M be an orientable real hypersurface of a Kahler manifold.
Then the Hopf vector field & is harmonic if and only if
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X(h) = g7, X) — p(X, N),
forall X € &1, where h denotes the mean curvature of M and p is the Ricci tensor of M.

The corresponding result for the particular case of a complex space form was
previously obtained by the same authors in [TVO1]. The principal curvature o of a
Hopf hypersurface, in a complex space form of non-zero curvature, is constant and
the other principal curvatures are constant along the integral curves of &. Therefore,
&(h) = 0 and then

Corollary 2 ([TVO01]). The Hopf vector field of a Hopf hypersurface in a complex
space form, of non-zero curvature, is harmonic if and only if the mean curvature is
constant.

Under the same hypothesis, the authors show that if the mean curvature is constant
then the Hopf vector field defines a harmonic map. Moreover, among constant mean
curvature orientable real hypersurfaces in a complex space form, of non-zero curvature,
the Hopf hypersurfaces are characterized by the property of their Hopf vector fields
defining harmonic maps.

For more general manifolds they show:

Corollary 3 ([TV00]). Let M be a Hopf hypersurface of an Einstein—K#hler manifold.

a) If M has constant mean curvature, then & is harmonic.
b) If £ is harmonic and ¢ o S + S 0 ¢ # 0 on an open and dense subset, then the mean
curvature of M is constant.

Using these results, they obtain new examples of harmonic vector fields. In par-
ticular, they describe in [TV00] examples of hypersurfaces of the complex two-plane
Grassmannian G, (C”2). This manifold carries a Kihler structure J and a quater-
nionic Kéhler structure 7. For m > 3, they consider real hypersurfaces with normal
bundle M~ such that J (M) and 7 (M) are invariant under the action of the shape
operator. They proved that the corresponding unit Hopf vector fields of these hypersur-
faces are harmonic. Moreover, using the results concerning this class of submanifolds
by Berndt [Ber97] and by Berndt and Suh [BS99], they compute vg¢ and @¢ and show
that £ also defines a harmonic map and a minimal immersion. Similar results hold for
the non-compact dual space G, (C™+2)*,

The condition characterizing the minimality of the Hopf vector field is more com-
plicated. The function involved here is not the mean curvature but the following:

2n
h = Z arc cot A;,
i=1

where {A; ; i =1, ..., 2n} are the principal curvatures of £ -. This function is defined
only in the open dense set where the multiplicities of the principal curvatures are locally
constant.

Proposition 22 ([TVO01]). The Hopf vector field of a Hopf hypersurface in a complex
space form is minimal if and only if h is constant.
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It is a consequence that the Hopf vector field of Hopf hypersurface with constant
principal curvatures in a complex space form, of non-zero curvature, provide simulta-
neously new examples of unit vector fields that are minimal and harmonic maps. Tubes
about complex submanifolds in complex space forms are examples of Hopf hypersur-
faces. Those with constant principal curvatures have been classified in [Ber89] and
[Kim86].

A very surprising result is the following:

Proposition 23 ([TVO1]). The Hopf vector field of a Hopf hypersurface of a complex
space form of constant holomorphic sectional curvature 4 is minimal.

The minimal ruled real hypersurfaces form another class of particular examples.
Let us recall a real hypersurface M is said to be ruled if £ defines a foliation with
totally geodesic leaves.

Proposition 24 ([TVO01]). The Hopf vector field of a minimal real ruled hypersurface
of a complex space form of non-zero curvature is harmonic, minimal but never defines
a harmonic map.

Since examples of this kind of hypersurfaces were known previously, the result
gives more examples of critical vector fields.

3.4 Radial unit vector fields

For a given point pg € S”, we can define on S —{ pg, — po} a unit radial vector field Vg,
which is at each point the unit vector tangent to the unique geodesic passing through
po and the point. Radial vector fields play an important role in what concerns volume
and energy; let us see why.

On one hand, since a radial vector field is geodesic and its orthogonal distribution
defines a foliation with umbilical leaves, the endomorphism Ly can be expressed in
terms of the principal curvature function « of the leaves, as a diagonal matrix with
entries (1 + a2, ..., 1+a?, 1) and then, it is not difficult to show that

Proposition 25. The unit radial vector fields on the sphere are critical points of the
energy, minimal immersions but they are not harmonic maps.

Using the expression of Ly, we can also compute the energy and the volume.
In particular, the energy of the radial unit vector field on the 2-dimensional sphere
is infinite. There is a general result of Boeckx, Gonzédlez—Davila and Vanhecke in
[BGV03] showing that, in fact,

Proposition 26. The tori are the only compact oriented surfaces admitting unit vector
fields with finite energy and with at most a finite number of singular points.

In [BGVO03], they have computed the explicit value of the energy of radial vector
fields around points, and about special classes of totally geodesic submanifolds, on
the other compact rank-one symmetric spaces, using the fact that all these unit vector
fields are geodesic, that their orthogonal distribution coincides at each point with the
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tangent space of the geodesic sphere, or the tube, and that the principal curvatures of
these hypersurfaces are well known.

In all the cases considered, the set of singularities of the vector field consists on a
finite number of pair-wise disjoint closed submanifolds.

On the other hand, it has been shown by Brito and Walczak in [BW00] that E(V) >
E(Vg) for all unit vector fields on the sphere with isolated singularities with equality
only when V = Vp;and by Brito, Chac6én and Naveirain [BCN] that Vol(V) > Vol(VRg)
for all smooth unit vector fields V. In fact, E(Vg) is not only a lower bound, but it is
the infimum of the energy of smooth unit vector fields on S" if n is odd and n > 3
as we have seen in [BBGO03]. The analogous question concerning the volume is more
delicate, as we have shown in [BG**], and to find the infimum of the volume of unit
vector fields on odd-dimensional spheres is still an open problem.

In [BVO1], Boeckx and Vanhecke made a local study of radial vector fields about
points and about totally geodesic submanifolds of rank one symmetric spaces. They
are defined in general only on tubular neighborhoods of these points and submanifolds,
excluding the points and the submanifolds themselves. Their results can be summarized
as follows:

Theorem 8. On a two-point homogeneous space, any radial unit vector field defined in
a (pointed) normal neighborhood of a point is minimal and harmonic but it determines
a harmonic map into the unit tangent bundle if and only if the manifold is flat.

Furthermore, if a two-dimensional manifold has the property that every radial unit
vector field is either harmonic or minimal, then it has constant curvature.

Theorem 9. Let (M, g) be a Riemannian manifold and let P be a totally geodesic
submanifold. The radial unit vector field defined in any tubular neighborhood of P is
minimal and harmonic in the following cases:

a) (M, g) has constant curvature.

b) (M, g) is one of the two-point homogeneous spaces with complex structure J and
P is J-invariant.

c) (M, g) is a 2m-dimensional Kdhler manifold of constant holomorphic sectional
curvature and P is a m-dimensional anti-invariant submanifold.
In all cases, the vector field determines a harmonic map into the unit tangent bundle
only if the manifold is flat.

Let us recall that a Sasakian manifold has constant ¢-sectional curvature ¢ if and
only if every plane admitting an orthonormal base of the form {X, ¢ X} has curvature
c. For this kind of manifolds, the same authors have shown the following:

Proposition 27 ([BVO01]). On a Sasakian space form of constant ¢-sectional curvature,
the radial vector field on a tubular neighborhood of any characteristic line is both
minimal and harmonic, but it does not determine a harmonic map.

Since a radial vector field is, up to normalization, the gradient of the distance
function (to the submanifold or to the point), it is a particular case of a more general
situation that was studied by the same authors in [BV01b], wherein, they considered
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vector fields defined outside the set of critical points of isoparametric functions, as the
gradient divided by its norm. A real valued function f on a Riemannian manifold is
said to be isoparametric if

ldfI? =b(f) and  Af=a(f),
where a is a continuous function and b is smooth.They have shown

Proposition 28. The unit vector fields obtained from the gradient of isoparametric
functions, up to normalization, are harmonic on Einstein manifolds, minimal on spaces
of constant curvature and they determine harmonic maps only on flat manifolds.

With this approach, they also obtain many examples of minimal and harmonic unit
vector fields defined by the flow normal to foliations provided by certain homoge-
neous hypersurfaces of complex and quaternionic spaces forms. These examples never
determine harmonic maps into the unit tangent bundle.

A connected closed submanifold F of a complete Riemannian manifold M is said
to be reflective if the geodesic reflection of M in F is a well-defined global isometry.
If M is a symmetric space, there exists another reflective submanifold associated to
F, denoted F1. Both are totally geodesic and then symmetric spaces. For this kind of
submanifolds, Berndt, Vanhecke and Verh6czki [BVV03] have shown the following

Theorem 10 ([BVVO03]). Let M be a Riemannian symmetric space of compact or of
non-compact type, and let P be a reflective submanifold of M such that its codimension
is greater than one and the rank of the complementary reflective submanifold P~ is
equal to one. Then the radial unit vector field, tangent to the geodesics emanating
perpendicularly from P, is harmonic and minimal.

Under the hypotheses, P is the singular orbit of a cohomogeneity one action on M,
the radial vector field is then defined in the open and dense set formed by the union of
principal orbits. The authors provide a list of pairs (M, P) with the required conditions,
finding new explicit examples of unit vector fields that are harmonic and minimal.

Apart from being an important source of natural examples, the harmonicity of radial
vector fields give rise to a very nice new characterization of harmonic manifolds. Let
us recall that this name is used for Riemannian spaces such that every small geodesic
sphere has constant mean curvature. Boeckx and Vanhecke [BV0Ob] have shown

Theorem 11 ([BVO0O0b]). A Riemannian manifold is harmonic if and only if all radial
vector fields on pointed normal neighborhoods of arbitrary points are harmonic vector
fields. They determine harmonic maps only if the manifold is flat.

3.5 Unit vector fields on tangent and unit tangent bundles

It is well known that given a Riemannian manifold (M, g) a natural vector field on
T'M, called the geodesic vector field and denoted by G, can be defined as follows: for
u e TZ}M let y, be the geodesic passing through p with tangent vector u and let c(¢)

be the curve on T'M given by c(t) = y, (1) € Tyl“ ) which is a horizontal lift of y,,.
We define G(u) = ¢’(0). It is easy to see that G is a unit vector field of (7'M, g5).
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The geometry of the tangent or unit tangent bundle has been deeply studied and
involves the geometry of the base manifold in a way that, although very natural, it
produces complicated expressions if the curvature of the manifold has no particular
properties. Let us recall that the curvature tensor appears in the covariant derivative of
the Sasaki metric. So, one can not expect to obtain results valid for a general manifold,
without curvature assumptions.

The better results by the moment are due to Boeckx and Vanhecke [BVO0O0] that
have shown

Theorem 12 ([BVO00]). Let (M, g) be a two-point homogeneous space. Then the
geodesic flow G : T'M — (Tl(TlM), (gS)S) is a minimal immersion and a har-
monic map from (T'M, g%). Moreover; if the dimension of M is either 2 or 3 and G is
either minimal or harmonic, then M has constant curvature.

Although in the unit tangent bundle of a Riemannian manifold the only distinguished
unit vector field is the geodesic field, as far as the manifold is endowed with an almost
hermitian structure (M, g, J), it is possible to define a one parameter family of special
horizontal unit vector fields on 7' M by Gy = cosa G + sina (G o J). Furthermore,
a vertical unit vector field on the unit tangent bundle is well defined by G (1) = (Ju)".
In [BVO00], it has been shown

Theorem 13. If (M, g, J) isa complex space form, G and G, for all a, define harmonic
maps and minimal immersions.

The above results continue to hold for the corresponding scaled vector fields defined
on the sphere bundles of any radius (7" M, g%) and also for their natural extensions
defined on T M outside the zero section.

The same authors with Gonzéleg—Dévila have studied, in [BGV02], the Hessian of
the energy functional at G and at G for certain variations. They are able to show that
if the curvature of M fulfills certain inequalities, that depend on the dimension, then
they are unstable not only as harmonic maps, but also as harmonic vector fields.
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Summary. In this paper, we deal with 3-dimensional Riemannian manifolds where some condi-
tions are put on their principal Ricci curvatures. In Section 2 we classify locally all Riemannian
3-manifolds with prescribed distinct Ricci eigenvalues, which can be given as arbitrary real an-
alytic functions. In Section 3 we recall, for the constant distinct Ricci eigenvalues, an explicit
solution of the problem, but in a more compact form than it was presented in [17]. Finally, in
Section 4 we give a survey of related results, mostly published earlier in various journals. Last
but not least, we compare various PDE methods used for solving problems of this kind.

1 Introduction

The problem of how many Riemannian metrics exist on the open domains of R? with
prescribed constant Ricci eigenvalues o1 = 02 # 03 was completely solved in [15] and
[19]. The main existence theorem says that the local isometry classes of these metrics
are always parametrized by two arbitrary functions of one variable. Some non-trivial
explicit examples were presented in [15], as well. A more elegant but less rigorous
proof of the main existence theorem was given in [5].

The case of distinct constant Ricci eigenvalues is more interesting. Here, the first
examples were presented by K.Yamato in [33], namely a complete (but not locally
homogeneous) metric defined on R3 for each prescribed triplet (01, 02, 03) of constant
distinct Ricci eigenvalues satisfying certain algebraic inequalities. Thus, these triplets

** The authors have been partly supported by the grant GACR 201/02/0616 and by the project
MSM 113200007.
Key words: Riemannian manifold, principal Ricci curvatures, PDE methods, curvature ho-
mogeneous spaces.
Subject Classifications: 53C21, 53B20.
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form an open set in R3 [o1, 02, 03] This open set was essentially extended by new
examples in [13]. Finally, in [17], non-trivial explicit examples were constructed for
every choice of Ricci eigenvalues 91 > g2 > 3. These examples are not locally
homogeneous but mostly local and not complete. (There is still an open problem for
which triplets o1 > 0 > 03 a complete metric exists with such Ricci eigenvalues.)

The problem of ‘how many local isometry classes (or, more exactly, how many
isometry classes of germs) of Riemannian metrics exist for prescribed constant Ricci
eigenvalues o1 > 02 > ©3” was solved first by A. Spiro and F. Tricerri in [30], us-
ing the theory of formally integrable analytic differential systems. They proved that
this “local moduli space” depends on an infinite number of parameters. This solution
was not satisfactory enough for us and we succeeded to show in [26] that this local
moduli space is parametrized, in fact, by (the germs of) three arbitrary functions of
two variables. Moreover, the method of solution was completely “classical”, based on
the Cauchy—Kowalewski Theorem. Yet, for many mathematicians, this solution may
be not completely satisfactory for a different reason: The partial differential equations
expressing the geometric conditions are rather cumbersome (see Section 3), and one
of the main steps of the proof is not transparent enough, because it depends heavily
on a hard computer work (using Maple V) for the huge amount of routine symbolic
manipulations with the corresponding PDE system.

In this paper, we prove the same result by a different method. Here the computer
assistence (using Maple V) is also used, but in a much more transparent way. Namely,
when using the new method, some cumbersome formulas occur again. Yet, for the main
argument, we need only their qualitative properties and not the explicit expressions.

Moreover, by the new method, we are able to generalize the original result to the
situation when the prescribed distinct Ricci eigenvalues are not constants but arbitrary
functions. This is the content of Section 2.

In Section 3, we come back to the old version from [17] and [26] (with constant g;
and a complicated PDE system) to show that there is a general explicit formula involving
three parameters o1 > 02 > @3 and producing a Riemannian metric with the Ricci
principal curvatures ;. This result was essentially proved already in [17], but now it is
presented in a particularly simple form, in the spirit of the pioneering work by K. Yamato
[33]. It is obvious that the new method from Section 2 is not suitable to produce such
explicit examples and so one can compare the advantages and disadvantages of both
(very different) methods.

The last Section 4 is mainly a survey of related results which have been published
earlier (except the last subsection inspired by the work by S.Ivanov and I. Petrova
[11]). The main purpose of Section 4 is to show that there are more geometric pro-
blems concerning prescribed properties of the Ricci eigenvalues for which a com-
pletely satisfactory geometric solution was found, but where “the method of the Ricci
characteristic polynomial”, introduced in Section 2, obviously fails. Namely, from
the optics of this method, one comes to an overdetermined system of PDE. Yet,
we are still able to describe “the size” of the general solutions of such systems just
coming back from a known geometric result to the corresponding PDE system. This
might be a useful contribution to the “philosophy of PDE methods” in Riemannian
geometry.
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2 The case of arbitrary distinct Ricci eigenvalues

Let 01(x,y,2) > 02(x,y,2) > 03(x, Yy, z) be three real analytic functions defined
on a domain 4 C R3[x, v, z]. Let (M, g) be a Riemannian manifold and ./’ C M
a coordinate neighborhood. We say that the metric g restricted to U’ has principal
Ricci curvatures 91, 02, 03, if this is valid with respect to a local chart ¢ : U’ — U,
i.e., when expressing g4 in the local coordinates x, y, z.

The main theorem of this paper is the following:

Theorem 1. Let 01(x, y,z) > 02(x,y,z) > 03(x, Y, 2) be three real analytic func-
tions defined on a domain U C R3[x, y, z). Then, the local moduli space of (local)
Riemannian metrics with the prescribed principal Ricci curvatures 91, 02, 03 can be
parametrized by three arbitrary functions of two variables.

We shall start with the hard part of the proof, which is based on the following:

Theorem 2. Let 01(x, y,z) > 02(x,y,2) > 03(x, Y, 2) be three real analytic func-
tions defined in a domainUU C R3[x, v, z]. Then all (local) diagonal Riemannian met-
rics with the principal Ricci curvatures 01, 02 and 03 depend on six arbitrary functions
of two variables.

The following Theorem should be considered as a “folklore”, see e.g. [9].

Theorem 3. Let (M, g) be a real analytic 3-dimensional Riemannian manifold. Then,
in a neighborhood of each point p € M, there is a system (x, y, z) of local coordi-
nates in which g adopts a diagonal form. All coordinate transformations for which the
diagonality of a metric is preserved depend on 3 arbitrary functions of two variables.

Thus, in the sequel, we can assume that each Riemannian metric g in consideration
has the matrix (g;;) of components written in the form

K(x,y,2) 0 0
(gij) = 0 Lkx,v,z 0 LG j=1,2,3).
0 0 M(x,y,z)

Here, of course, the functions K, L and M are positive and real analytic in the corre-
sponding domain U C R3[x, v, z].

A routine calculation gives the following expression for the Ricci operator Ric
in the given local coordinates x, y, z. Here, we introduce the following abbreviated
notation: If G denotes K, L or M, evaluated at a general point (x, y, z), we write,

0G 0G G
Gi=—,Gy=—, G3=—,

ax ay 0z

392G 92G %G

n=7"—, ..., G33

Gi=——,G
RNCIE dxdy

T (0%

evaluated at (x, y, z), as well. Now, in the abbreviated notation, we have the following
formulas:
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Ric] = — (MK + LK33 + MLy + LMy1) / QKLM) + [LM*K\ L,
+ L*MK\M; + LM*K3 + KM*K2Ly — KLMKyMs + L>MK;
— KLMK3L3 + KL?K3M3 + KM?L} + KL*M?} 1/(AK*L>M?),
Ric5 = — (MK + MLy, + KL33 + K M) /| QKLM) + [LM?K L,
+ LM?K3 + KM?KyLy — KLMK3Ly + KM?L? — KLM LM,
+ K?MLyMy + K*ML3 + K*LL3Ms + K*LM; 1/(4K*L*M?),
Rici = — (LK33 4+ K L3z + LMy + KMa) / QK LM) + [L> MK M,
~ KLMKyLy + L*MK3 + KL*K3M3 — KLML M, + K*M LM,
+ K*ML2 + K’LL3M; + KL*M? + K*LM?2 ] /(4K*L*M?),
Ric? = Ric}
= —QKLMMy — LMK>M, — KML\M> — KLMM,)/(4K L*M?),
Ric; = Ric}
= —QKLML\3 — LMK3L, — KML\L3 — KLL3M;)/(4KL*M?),
Ric% = Ric%
= —QKLMK>»3 — LMK>K3 — KMK>L3 — KLK3M>)/(AK*LM?).
We now express the above formulas in a shorter way:
Ricl = — (MK + LK33 + MLy + LMyy) / QKLM) + G1,
Rics = — (MK + MLy 4+ KL33 + KM») / QKLM) + G3,
Ric3 = — (LK33 + KL33 + LMy + K M) /| QKLM) + G3,
Ric? = Ric) = —M12/QLM) + G2, (1)
Ric; = Ric} = —L13/Q2LM) + G3,
Ricj = Ric = —K23/ (2K M) + G3,

where G{ are rational functions of K, L, M, K1, K3, ..., M3, i.e., they depend only
on the functions K, L, M and their first derivatives.

Consider now the prescribed Ricci eigenvalues o1 (x, v, z), 02(x, ¥, 2), 03(x, y, 2)
(which are real analytic functions defined in the same domain as K, L and M). The
corresponding geometric conditions can be expressed, in the simplest way, through the
characteristic polynomial det (A\] — Ric) = A® + A% + 1A + co of the Ricci operator
Ric, in the form

3
==Y 0 c1= ). 0, C0=—010103 (@)
i=1

1<i<j<3
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This is a system of nonlinear PDE’s of second order because

3 ‘ ' .
cp=—) Ric, = Y  (RicRic) - Ric})?), o= —det[Ric}]. (3)
i=1

I1<i<j<3

We can see easily from (1) that the only “non-mixed” second partial derivatives involved
in the functions Rici- are Ky, K33, L1, L33, M1, and My,. Hence we cannot use the
Cauchy—Kowalewski Theorem in the basic setting. We shall try to remove this defect
by a linear transformation of independent variables (which is optimal in some sense),
namely,

U=z, v=y, w=x+y-+z. “)

The metric g, if expressed in the new variables u, v, w, is not anymore in the diagonal
form. The new Ricci components Ric% will become linear combinations of the original

components Ric;. Nevertheless, because, with respect to the new variables we get

[Ricj] = [SIRic;1S~"],

where § is a constant regular matrix, the characteristic polynomial of Ric will remain
invariant and the expression (3) have the same form for the old components Ric’j as

for the new components Ric%. Thus, we can still use the old components Ric; in our

computations and all to be done is to transform all Ric'. to the new variables u, v, w.
As the first step, the original functions K, L, M and their partial derivatives have to be
transformed.

We now introduce new positive functions U, V, W of three variables u, v, w by

U, v,w)=K(w —u—v,v,u),
V@, v,w)=L(w—u—v,v,u), &)
W, v, w)=Mw —u—v,v,u).
Rewriting the old coordinates, we get,
Kx,y,20=U(z,y,x+y+2),
Lx,y,2)=V(@Z, y,x+y+2), (6)
Mix,y,2) =W, y,x+y+2).

If F denotes U, V or W evaluated at (u, v, w) = (z, ¥, x + y + z), we shall write

oF oF oF
Fl = > F2 = > F3 = >

ou dv Jw
F _9°F F _0*F F _9°F
11_ (8“)2, 12_ auav’ LRI 33_ (aw)zs

evaluated at the point (u#, v, w) = (z, ¥, x + y + 2), as well.
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We get easily, in our abbreviated form,
K=U, K1 =Us3, K =U;+ U3z, K3 =U; + U3, Ky =Us3,
K2 = Uy + Usz, K13 =U3 + U3z, Koo = Uy +2U23 + Uss,
Ky3 = Uip + Uiz + Uz + Usz, K33 = Ui +2U13 + Uss,
L=V, Li=Vs, Ly=V,+V3, L3 =V + V3, L11 = V33,
Lz =Va3+ V33, L13 = Vi3 + Va3, Lo = Voo +2Vo3 + V33, (7
Lys = Vio+ Viz+ Vaz + Va3, Laz = Vi1 +2Vi3 + Vi3,
M=W, My =W3, My =W, + W3, M3 =W, + W3, My} = W3,
My = Waz + W33, Mi3 = Wiz + Wiz, Moy = Wy +2Wo3 + Was,
Mpz = Wip + Wiz + Waz + Wiz, M3z = Wi + 2Wi3 + Was.
Hence, we obtain, for the old components Ric} evaluated at (u, v, w) = (z, y, x +
y+2),
Ricl = — (V + W) Uss + WVs3 + VW33) / QUVW) + F[,
Rics = — (WUss 4+ (U + W) V33 + UWa3) / QUVW) + F3,
Ric = — (VUs3 + UVs3 + (U + V) W33) / QUVW) + F3,
Ric% = Ric% =—W33/QVW) + F12 (8)
Ric] = Ric} = —V33/QVW) + F},
Ric3 = Ric3 = —Usz3/QUW) + F;,
where F j’ are rational functions of U, V, W, their first partial derivatives with respect
to u, v, w, and their second partial derivatives which are different from Uz3z, V33 and
W33Now, we are going to prove that, in the new variables, the standard Cauchy—
Kowalewski Theorem can be used for the solution of the PDE system (2). We only
have to keep in mind that the prescribed Ricci eigenvalues ¢; mean here the functions
o;(u,v,w) = 0;(w—u—v,v,u), i =1,2,3, defined in the same domain as U, V

and W. The system (2) can be expressed explicitly in the new variables u, v, w. We get
the first PDE in the form

a=((V+W)Uszs +(U+W) V33 + U+ V)Ws3)/(UVW) + H,

3
=-> o ©)
i=1

where H is a rational function of U, V, W, their first derivatives and their second
derivatives which are not of the form Ujs, V33 or W33. H> is defined as a function of
the variables u, v, w in the whole definition domain of the functions U, V, W. From
here, we express
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Wiz =—((VA+W)Uszs+U+W)V33)/(U+V)+ P, (10)

where P is a rational function of 91, 0,, 03, U, V, W, the first derivatives of U, V, W,
and their second derivatives except Uiz, V33 and W33. Anyway P is a real analytic
function of u, v, w, U, V, W and of the corresponding derivatives.

Next, we substitute the expression for W33 from (10) in the formulas (8) and we
obtain the Ricci components in the reduced form:

Ricl = — (V+ W) Uss + (W = V) V33) / QU + V)VW) + P,

Ric3 = — (W = U) Us3 + (U + W) V33) / (U + V)UW) + P3,

Ric3 = (Uss + Va3) / QUV) + P, (11
Ric} = Ric) = (V + W) Usz + (U + W) V33) / (U + V)VW) + P,

Ric] = Ric} = —V33/ QVW) + P},

Ric3 = Ric3 = —Uss/ QUW) + P3,

where P! are functions of the same type as P introduced in (10).

So, assuming that (9) is satisfied identically, we must write down the remaining two
PDE’s where the Ricci operator is expressed in the form (11). The second equation of
(2) can be written in the form

fi(U33)* + frUs3Vas + f3(V33)? + g1U3s + g2Va3 = O, (12)

where Q is of the same type as P and PJ’ Moreover, we get explicitly

U2BVZ4+3VW +2W2) +UVQRVZ VW + W) + VE(VZ 4+ W?)
4U + V)2U2v2w? ’
US(V+W)+UX(=V24+ VW +2W3) + UVW?2 + V22
2(U + V)2U2V2W
U AV 4 W)+U?QVE— VW +2W2) + UVW(V 4+ W) + VW2
B AU + V2URVIW? ’

i

S3

and g1, g2 are (more complicated) rational functions of the same type as H> in (9).
The third equation of (2) can be written in the form

F30(U3)? + f21(U33)* Va3 + f12U33(V33)* + fo3(V33)® + fo0(Us3)?
+ fuUsVas + fo (V) + fioUs + faVs =S, (14)
where S is of the same type as P, Q. Moreover, we get explicitly
fro=(V+ W)V =2VW = W)U + V> + VW?)/d,
o1 =RV = WHU? + (V3 +3V2W -5V W? 3w U — v*
+V3W + VW2 +3VW3 ] /d, (15)
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fu=1(V=W)U> + (V2 + VW —4WHU?
n (4V2W —vw?— 3W3) U— VW2 +3vw?/d,
f03:(U+W)(V—W)[U2+(V+W)U—VW]/d,

where d = 8 (U 4+ V)2 U2V3W3,

The other coefficients are functions of the same type as Hj in (9) (but occupying
many pages in the explicit form).

It remains to analyze the system (12) + (14) of PDE. If this system can be solved
in an explicit form

Uz =T, Vaz =1, (16)

where T and T are algebraic functions of 0, 0,, 03, U, V, W and of the “admisible”
derivatives of U, V, W, then the full system (10) + (16) can be solved by the use
of the Cauchy—Kowalewski Theorem, which will prove Theorem 2. Of course, the
solvability and the correctness of all calculations will depend on the initial conditions
of the corresponding Cauchy problem. (Notice that a solution in the form (16) may
have more branches but this is not too relevant for the proof of our Theorem).

First, let (uq, vg, wo) be a point from the definition domain of the functions U, V, W.
We define six functions of two variables u, v (the Cauchy initial conditions) in a neigh-
borhood of (i, vg) by the formulas,

Fi(u,v) =U(u, v, wy), Fou,v) =V(u,v, wy), F3(u,v) = W(u, v, wy), (17)

U av W
Gl(l/t, U) = _(l/l, v, wO), G2(u9 U) = _(I/i, v, wO), G}(I/t, v) = _(I/t, v, wO)
ow ow ow

Further, denote for a moment u, v, w as u1, uz, u3. We shall define constants

a; = Fi(up,v) >0, a;,; = W;(Mo, Vo), 4 jk = o, E;uk (uo, vo),
0G; . .
bij = v (ug,v9) fori=1,2,3and j,k=1,2. (18)
uj

It is obvious that, for every choice of the constants in (18), we can still define functions
Fi(u, v) and G; (u, v) satisfying (18) as arbitrary real analytic functions in a neighbor-
hood of (ug, vo). (In fact, we are fixing only a finite number of initial Taylor coefficients
of such functions.)

Next, if f is any real analytic function of the variables u, u, w, U, V, W, of the
first derivatives of U, V, W, and of those second derivatives which are not of the form
Us3, V33 or Wi3, we shall denote by f the corresponding value at the point (¢, vg, wo).
Obviously, each constant f depends (in a real analytic way) on the constants uq, vg, wo,
a;, aj j, a; jx and b; ;.Inparticular, we can make the substitutionu = ug, v = vg, w =
wy in the coefficients f;, g;, fij, O and § of the equations (12) and (14). Let us choose
the initial constants a; > 0, a; j, a; jx and b; ; in such a way that the equation (12) at
the origin defines a generic real quadratic curve and the equation (14) a generic cubic
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curve, both in the coordinate plane R [X = Us3z, Y = V33]. Moreover, we can make our
choice in such a way that these two curves meet transversaly at some point (X, Yp).

Now, using the real analytic version of the “implicit function theorem” for more
variables, we obtain easily the following

Lemma 1. Let P(X,Y) and Q(X, Y) be two polynomials of two variables X, Y and
with the coefficients which are arbitrary parameters. If, for a fixed choice of these

parameters, the equations P(X,Y) = 0and Q(X,Y) = 0 have a common solution
oP/dx 0P/dy

9Q/0x 9Q/dy
in a neighborhood of (Xo, Yy), the variables X,Y can be expressed from the above
equations in a unique way as a real analytic function of the corresponding coefficients.

(Xo, Yo) such that the Jacobian det[ i| is nonzero at (Xg, Yo) then,

Now, consider for a moment, the coefficients f;, g;, fij, O and S in the equations
(12) and (14) as arbitrary parameters. Applying Lemma 1 to this situation, we see that,
in a neighborhood of the point (X, Yp), the quantities U3z and Va3 are expressed in
a unique way as real analytic functions of the above coefficients and, consequently,
as real analytic functions of u, v, w, U, V, W and their admissible derivatives in the
neighborhood of the set (ug, vo, wo, a;, a;, j, b;, ;) of initial values.

Then the Cauchy—Kowalewski Theorem can be applied to the system {(10), (12),
(14)} of PDE and the proof of Theorem 2 is completed. O

The proof of Theorem 1 now follows at once from the second part of Theorem 3. O

Remark 1. The same arguments which we used in the proof of Theorem 1 work also
for the proof of the first part of Theorem 3! In the latter case, we are looking for
a coordinate transformation x = x(ul, u?, u3), y = y(ul, u?, u3), z= Z(I/tl, u?, u3)
taking a general metric g = 2,3 j=18i ;du'du’ into a diagonal form. Here, we obtain
a nonlinear PDE system of first order for 3 unknown functions. We need all the basic
steps here as well (first a linear transformation of coordinates to ensure the applicability
of the Cauchy—Kowalewski Theorem in the standard form, and, at the very end, the
elementary “geometric analysis”). Instead of ensuring intersection of one quadratic
curve and one cubic curve, we need in the latter case only to ensure intersection of two
quadratic curves. Moreover, all the computations are much more simple and a computer
aid is not needed at all.

Remark 2. The situation changes dramatically if two of the prescribed Ricci eigenvalues
are asked to be equal. Consider the characteristic matrix [A/ — Ric] and substitute for
A the prescribed double Ricci eigenvalue o1 = 2. Then, the specified matrix has rank
one and hence all sub-determinants of degree two must vanish. Because the matrix
is symmetric, these conditions are obviously reduced to three independent algebraic
conditions for the Ricci components Rici-. We obtain three new PDE, which are of
order 2 and of degree 2. Obviously, at least one of these new PDE is independent of
(2). Hence we obtain an overdetermined system of PDE and the Cauchy—Kowalewski
Theorem cannot be applied. We shall give a short survey about such kind of geometric
problems, earlier results and corresponding methods in the last section.

Recall that we are always looking for a geometrical solution, i.e., we want to
“parametrize” the local moduli space of Riemannian metrics for the given problem.
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From this point of view, we shall see that a notion “overdetermined” and “underde-
termined” PDE system has only a relative meaning, depending on the approach and
method used in the particular situation.

3 The case of constant distinct Ricci eigenvalues

In [17], the first author and F. Priifer solved the following problem: For every prescribed
numbers o1 > 2 > 3, write down an explicit Riemannian metric g such that its
Ricci eigenvalues are constant and equal to ;. A broad family of examples (so-called
“generalized Yamato spaces”) was constructed there. Moreover, in [18], a geometrical
characterization of this family was given inside the set of all Riemannian metrics with
prescribed Ricci eigenvalues as above.

In this paper, we present, for each prescribed 01 > 02 > ©3, a particularly simple
example.

Theorem 4. Consider fixed constants 01 > 02 > 03 and define the new constants o, A;
and b as follows:

o=817803 0,
Q3 — 02
)"iz(Ql+Q2+Q3)/2_ini:172731 (19)
1 a+2 - +
b {—oz)»2+ ((a+1)k3+kz)} _(e—o)lrtoey)
a+1 01— 03
Further, define a function a%l (w) as follows:
o 1
O ay(w)=—— for b =0,
aw
L b
i) alj(w) =,/ tan («/ab w) for b < 0, (20)
o

(iii) a%l(w) = % tanh (,/ || w) for b > 0.
V o

Let I(w) be a maximal open interval on which (azll(w))2 > —M\2/|loe + 1]. De-
fine other functions aj.k(w) fori,j,k = 1,2,3 on I(w) in a unique way so that

ai-k(w) + aijk(w) = 0and

(@+D(@)? + (@)?* =12, a3 >0,

—a ayay, = (@ + DAz + A, (21)
1 1 2 1
ay =0, a3 =0, a3 =—ay,

1 _ 2 _ 2 _ 1
a3 =0, a3 =0, azj3=(+1) ay,.
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Then, the metric g = Z?:l (a)")2 defined on the strip I (w) x R2[x, y] ¢ R3[w, x, y]
by the orthonormal coframe
o' = [<a§2 — a53) y — aélx] dw+dx,
o® =dw, (22)
o’ =dy + [(a +1aiy — (a%z + aé) x] dw,
has the following properties:

1) The Ricci eigenvalues of g are 01 > 02 > 03. _
2) The corresponding Christoffel symbols Fj.  of g are the functions a; L (w).
3) The metric g is not locally homogeneous.
Remark 3. The definition of the constant » in (19) is correct and the first equation (21)

is always solvable because o + 1 = (01 — 02)/(03 — 02) < 0.If b > 0 and 1> > O,
then we can put / (w) = (—00, +00) and the metric g is defined on R3.

Outline of the proof of Theorem 4. Instead of a direct check (which is a rather non-trivial
task) we shall prove our Theorem on a broader background of “generalized Yamato
spaces” as presented in [17] and [18]. (See Theorem 5 and Proposition 1 below).

Let (M, g) be a Riemannian 3-manifold of class C*° with distinct constant Ricci
eigenvalues 01 > 02 > 03. Choose an open domain i/ C M and a smooth orthonormal
moving frame {E1, E;, E3} consisting of the corresponding Ricci eigenvectors at each
point of /. Denoting by R;;i; and R;; the corresponding covariant components of the
curvature tensor and of the Ricci form respectively, we obtain,

Rii=0; (i=1,2,3), Rij =0 fori # j,
Ri212 = A3, R1313 = A2, Ra323 = Aq, where A; are constants, 23)
Rijr = 0 if at least three indices are distinct.

Moreover, the numbers A; are related to the numbers g; by the middle formula of (19)
and we obviously get

Ai—dj=—(0i—ej) i, j=123. (24)
In a neighborhood U4, of any point m € U, one can construct a local coordinate

system (w, x, y) such that

0
E3y=— onl,. (25)
dy

Consider the orthonormal coframe {a)l, w?, a)3} which is dual to {Ey, E», E3}. Then,
the coordinate expression of the coframe {a)l, a)2, w3} in U, must be of the form

! =Adw + Bdx,
w® = Cdw+ Ddx, (26)
o’ =dy+Gdw+ Hdx,

where A, B, C, D, G, H are unknown functions to be determined.
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Now, using the calculus of exterior forms and the standard structural equations for
the connection form and the curvature form (cf. [6, 12]) one can derive the expressions
for the components a§ ¢ of the Levi-Civita connection with respect to the given frame.
First, we introduce new functions D, £, F (where D # 0) by

D=AD-BC, £ =AH - BG, F=CH — DG. 27
We also define a bracket of two functions f, g by
[f. 81 = fig — 8} (28)

Then we obtain, by a routine calculation,
l l ! 1 1 l 1
az1 = —(GB —HAy,+ A, —B,), a3 = Z_D(DAy —CBy),

1
al, = B(GD; — HC, 4+ C, = D)), a3, = 5(AD; — BC}),

aly = = (DG, — CH}), a}y = = (AH, - BG}) (29)
3BT y ) 433 = Ay )
1
aly = 55 {IC. D1+ [A. B - [G. H] + (G, — H,)} .
a3y = 55 {[C. D1~ [A, BI+ (G, H] = (G, — H})}.
1 1

a} = 5 (IC. D1~ [A. B~ (G, H] + (G — H})}.

From the structural equations for the connection form (a) ) and for the curvature form
(Q’ ), using the curvature conditions (23) and the subsequent exterlor differentiation,
we obtain the following relations for the Christoffel symbols a'. K

a+1
ah =aay, a3 =@+ Day, a3 = —< a ) ay. (30)

where « is the constant introduced in (19).
Now, assuming (30), the formulas (29) are equivalent to the following system of
nine PDE for six basic Christoffel symbols aél, aéz, agl, a%3, a%l and agzz

Al = Aag, + C (a3 — a),
B, = Bal + D (a}, — a3y),

C; =A (053 +a§l) +O(Ca3%1,

D; :B(a%3+a§1)+aDa§11 (31)
1 o+ 1
G} = (@ +1)Cay — . —— Aaly,
oa+1

Hy=(a+1) Dal — —— Bal,.
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1 r_ 1 1 1 1
A — By, = Day + Eaz; + Flaz, — az),
C, — D), = Da), + E(ady +a3)) + aF aly, (32)
oa+1
G\ — H,, = D(a}, — a3,) — Té’aéz—i— (@+ 1) Faly.

Next, we express explicitly the geometric curvature conditions (23). Using again the
structural equations for the curvature form (Q’j), we obtain after lengthy but routine

calculations the following system of nine PDE’s for all nine Christoffel symbols, still
having in mind the relations (30):

Aay)y = B(ay)), + Clayp), — D(ay), + Glay), — H(ay),

— DU — *3) —EV3 — FW3 =0,
Alay)), + Clayy)y + Glay)), — (ay), — AV3 — CW3 =0,
B(ay))}, + D(ay)}, + H(ay), — (a33); — BV3 — DW3 =0,
A(az)); = Blaz)), + Clag), — Diazy),, + Glazy);, — Hlazy),, (33)

— DUy — E(Va — k) — FWo =0,
A(ad)), + Clady), + Glaky)), — (ady),, — A(Va = ha) = CW2 = 0,
B(a3)), + D(a}y)}, + H(agy), — (a33); — B(Va — k) — DW, =0,
A@3y)) — B(a3)),, + Clad), — D(azy),, + Glazy), — H(azy),,

— DU, — EVy — F(Wy — A1) =0,
A@3)), + C(ap), + Ga3y), — (a33),, — AVi — C(Wy — A1) =0,
B(a3))}, + D(a3,), + H(a3y), — (a33), — BVi — D(W) — 41) = 0.

Here, we put (using again only the “basic” six Christoffel symbols)

12 i L
Ui = aay a3 — (@ — Dayas; — (@ + 2)ay a3,

(a4 D(x+2)
Vi= f"%]ab — (@ + Dagja3; — (@ — Dagjay;,
W_O“le_ D26 V2 — 2@l )2 + gl — al a2 11
1= (a2)” — (e + D)7(ay))” —a”(az))” + apaz — axas; + azpays,
1 20 + 1
U = &azlza§2 + (@ — Dayaz, — B ayas.

o+ 1

2
12 11 1 2 1 2
) (a3p)” — axay3 — azaz — ayaz;,

(34)

Va = (e + ) (a3)? — (a3)* — (
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Qa+D+1) | 4

11 11
W2 = (1 —@)ayzaz; — (@ + Dazyaz; + Yy ‘%
1 \2 112 12, 1.2 11 )
Us = —(ay))” — (ay)” — alaz))” + axa3; — apaz + axnasz;,
1 200+ 1
11 11 12
V3= o s — (@ +2)ay a3 — ayazy,

W3 = —aad aly — (@ + 2)ayal, — Qo + Dalyal,.

By the detailed analysis of the system of 18 PDE, (31)—(33) for 12 unknown functions
A B,...,H, aél , 3%27 e, agz, the following result was obtained in [17]. (Here we
present the more convenient local version of the corresponding theorem.)

Theorem S. Let a triplet 01 > 02 > 03 of constant Ricci eigenvalues be prescribed.
Let a; « be functions onU C R2[w, x] satisfying the following conditions:
(ND aél =0, aé3 —|—a§l =0, aéz =0,

(N2) a%3 is an arbitrary function of class C*° onU C R2[w, x] such that

(@) (a%:),);y # 0, a%y, > 0,
(b) (al)? > max {A2, (& +2) [(e + DAz + A2] o2},

(N3) (o + D(@lp? + (@dy)? = A2, @}, > 0,
(N4) —aalyal, = (@ + DAz + Ao

Then, there exist smooth functions A, B,C, D, G, H on U x R[y] C R3[w, x, y]
(depending on two arbitrary functions of two variables and two arbitrary functions of
one variable) such that the basic system of partial differential equations (31)—(33) is
satisfied.

We shall now specify these functions. First, look at the function W3 defined in (34).
One can calculate explicitly from (N3) and (N4) that,

(a33)* = 22 o + 1]A3 = 2
Wi = flaky) = |2;Tl| way+(@+2)—————=]. (39
aa23

We see that the inequalities in (N2)(b) just ensure that f (a53) is non-zero everywhere in

our domain I/ (but this can be always assumed in our local case, because (053);; # 0).
Define now C, D as functions on U/ by,

_ (@33) _ (a33)’
flay) flay)
It is shown in [17], that, if the Christoffel symbols are defined by (N1)—(N4) and the

functions C, D are defined by (36), then for arbitrary choice of the functions A, B, G, H
all PDE’s (33) are satisfied. Further, the following was proved.

(36)
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Proposition 1. 7o satisfy the remaining PDE (31) and (32), it is sufficient to define the
functions A, B, G, H by

A = C(ag, — ay)y + Ao(w. x), B = D(a}, — az)y + Bo(w, x),
G=(a+1)Cayy+Go(w,x), H=(a+1)Dajy+ Ho(w,x), (37)

where Ao, By, Go, Hy are functions of class C*® on U C R2[w, x] satisfying the
equations

(Aq) = (B0, = (DAg — CBo) aj; + (DGo — CHo) (aks — aly) (38)
(Go). — (Ho),y = (DAg — CBy) <a312 + a§3) — (DGo — CHy) (& + 1) al;.

To obtain the explicit examples announced in Theorem 4, let us suppose that
a%3 depends on the variable w only and put By = 1,Hy = 0. Then, C =
—(aly)'(w)/f(al;) # O depends on w only and D = 0,B = 1, H = 0. For A
and G we get explicit solutions

A =C(a)y —aly)y — Calx, (39)
G=(@+1)Calyy— C(a312 —i—a%)x.

It remains to verify that the formulas (19)-(22) in Theorem 4 follow from the
previous ones and to make the final conclusions. First we see that if we solve the
differential equation (a%3)/ (w)y=-—f (a%3), then the function aé3(w) will be specified
so that C = 1. If we pass from aé3 (w) to “%1 (w), we obtain a much simpler equation

(@) (w) = alad)?+b. (40)

Hence, the formulas (20) follow at once (neglecting the integration constant here).
Further, we recall that the PDE system (33) is equivalent to the statement that o1 >
02 > o3 are corresponding Ricci eigenvalues and the PDE system (31) + (32) together
with (30) says that a’} ¢ (w) defined by (21) are the corresponding Christoffel symbols.

Finally, because the Christoffel symbols aj.k are calculated with respect to a Ricci-
adapted frame (which is determined uniquely up to reflections at each point), and
because not all a; « are constant, the space (M, g) cannot be locally homogeneous. 0

Remark 4. For the prescribed constant Ricci eigenvalues o1, 02, 03, (even if they are
not all distinct) there is not always a locally homogeneous space with such Ricci
eigenvalues. Some necessary conditions were given in [27] and the complete answer
can be found in [16].

Remark 5. The 3-dimensional Riemannian manifolds with constant Ricci eigenvalues
belong to the broader family of so-called curvature homogeneous spaces. See, e.g.,
[1, 3, 23-25, 28, 29] and, in particular, a survey in [4]. This topic was developed with
strong participation of F.Tricerri and L. Vanhecke; it was originally motivated by a
conjecture of M. Gromov.
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We also proved the following in [26]:

Theorem 6. The general solution of the PDE system (31)—(33) depends on six arbitrary
functions of two variables and six arbitrary functions of one variable.

The proof depends strongly on the computer aid because one has to show that all
integrability conditions coming from this PDE system are consequences of the original
PDE’s. This is a hard computer work which is not very transparent and difficult to
check by hand. After showing this, one can use the Cauchy—Kowalewski Theorem in
two successive steps to obtain the result.

Now we have the following geometric existence theorem which we reproduce in
full from [17], including its short proof.

Theorem 7. The isometry classes of germs of three-dimensional (real analytic) Rie-
mannian metrics with prescribed constant Ricci eigenvalues are parametrized by
triplets of germs of arbitrary (real analytic) functions of two variables.

Proof. Let (M, g), M, 2) be two real analytic Riemannian 3-manifolds with the same
constant Ricci eigenvalues 01 > 02 > 03. Let F : i — U be an isometry between two
open domains of M and M respectively. We construct the “Ricci adapted” orthonormal
coframes {w'}, {w'} and the local coordinate systems (w, x, y), (W, X, ¥) in the neigh-
borhoods U, C U and Zjlp(m) =FWUy, cU respectively, such that g and g are both
of the form (26). We obviously have

F*@') =o', & €{-1,1}), i=123. (41)

Hence, we see easily that the corresponding parametrization of F in local coordinates
must be of the form,

w=o(w,x), ¥=Pa(w,x), y=¢ey+ P3(w,x), (42)

where ¢ = +1 and ®;(w, x) are arbitrary (real analytic) functions of two variables.
Conversely, every local transformation F of the form (42) determines a local isom-
etry which preserves the formulas (26) through (41). The result now follows from
Theorem 6. O

Let us notice that we neglect here six arbitrary functions of one variable. This
is fully justified because, for the geometric conclusions, these functions are not rele-
vant.

Remark 6. Looking at the proof carefully, we see that the same argument also works
when p; are not constants but arbitrary functions! Hence, we have an alternative way
to derive Theorem 1 from Theorem 2 where we don’t need the second part of the
“diagonalization theorem” 3.

Open problem. It is not known to the authors if an explicit construction as in Theorem 4
can be extended to non-constant Ricci eigenvalues.
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4 Related problems with curvature restrictions

4.1 The Schur’s theorem

Consider prescribed Ricci eigenvalues o1 (x, v, 2), 02(x, ¥, 2), 03(x, y,z) on (M, g)
which are all equal and consider the corresponding system of partial differential equa-
tions (2). In this case, we have to add three new independent PDE’s, namely Ric. =0
for 1 <i < j < 3, and the system of equations becomes strongly overdetermined.
According to the Schur’s Theorem, (M, g) must be a space of constant curvature.
Hence the local moduli space depends only on one parameter. As a consequence of
Theorem 3, the general solution of the corresponding overdetermined system depends
on three arbitrary functions of two variables (and possibly, on some functions of one
variable and some parameters — we shall not repeat this stipulation in the sequel).

4.2 The pseudo-symmetric spaces of constant type

A 3-dimensional pseudo-symmetric space of constant type is characterized by the fol-
lowing properties (cf. [7], [8], [20]-[22] and [4], Chap. 11): One of the Ricci eigenvalues
is prescribed as a constant and the other two Ricci eigenvalues are required to be equal
but arbitrary. (If the constant eigenvalue is zero, the space is said to be semi-symmetric
(see [2], [3], [14], [31]-[32], and, in particular, [4] for more information). Then, we have
only two PDE for the coefficients ¢; of the Ricci characteristic polynomial but there
are additional three quadratic equations for the Ricci components Ric’; involving an
arbitrary function. Eliminating this arbitrary function, we are left with two additional
PDEs, which are biquadratic. This system is not easy to analyse. Yet, using a different
approach, we come to some satisfactory and surprising results.

Let us start with a 3-dimensional Riemannian manifold (M, g) whose Ricci tensor
has the eigenvalues o1 = 0> # 3 with constant p3. One can construct easily, in
a neighborhood of any fixed point m € M, a Ricci adapted orthonormal moving frame
{E1, E>, E3} and a system (w, x, y) of local coordinates such that E3 = 9/d0y. We
shall also consider the dual coframe (o, 0?, »3}.

The Ricci tensor R expressed with respect to {E1, E», E3} has the form R, =
0i9;j. Because each g; is expressed through the sectional curvature K;; by the formula
0i = I’Q\ii = Z/# K, there exist a function k = k(w, x, y) of the variables w, x and
y,and a constant ¢ such that

Ko =k, K13 = K3 =, (43)
o1=0=k+¢, 03 =2c¢.
From the structural equations for the connection form (a);) and for the curvature form

(Q;), using the curvature conditions (43), we obtain after a simple manipulation with
the corresponding exterior differential forms o', a)’J the following results:

Proposition 2. In a normal neighborhood of any point m € M there exist an orthonor-
mal coframe (!, w2, & } and a local coordinate system (w, x, y) such that
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P fdw,
w? = Adx + Cdw, (44)
' =dy+ Hdw.

Here f, A and C are smooth functions of the variables w, x and y, f A # 0, and H is
a smooth function of the variables w and x.
Moreover, fA = a/(k — ¢) for some non-zero function o = o (w, x).

Next, we obtain easily the following expression for the components of the connec-
tion form:

wé = —Aadx + Rdw + Bdy,
wy = ABdx + Sdw, 45)
w% :A/ydx—f—wa,
where
a=x(A, — C, — HA),
B = %(H; +AC, - CA)), (46)
and

R=xff; - Ca+ HB,
S=fy+CB, 47
T =Cy— fB,

putting here x for 1/f A. The curvature conditions (43) (when used in the structural
equations for the curvature form) then give a system of nine PDE’s for our problem:

(Aa), + B, =0,
R, — B, =0,
(Aa);, + R)’C + SA’y — ABT = — f Ak,
” 2 _ =
Ayy — AB° = —CA,
—A/y’w+Tx/+A(ﬁR+aS) =CAH, (48)
Ty — S = —¢cC,
/ /
(AB)y + AL =0,
S; — (A,B);U — (AaT + A’yR) =0,
S; + T8 =—cf.



On 3D-Riemannian Manifolds with Prescribed Ricci Eigenvalues 205

This is a reasonable PDE system, because two of the equations are consequences of
the others and for the remaining equations we obtain a number of nice “first integrals”
(like formulas (49)-(51) below).

Now, an important tool how to simplify the system (48) is the notion of asymptotic
leaf. It is defined as a surface N C M generated by the principal p3-lines and such
that its tangent distribution is parallel along each principle p3-line in (M, g). (Here,
naturally, principal p3-lines are integral curves of the local vector field E3. They are
known to be geodesic lines in (M, g).)

Now, the following result can be proved with some effort:

Proposition 3. For any point p € M there are just four possibilities:

a) There is no asymptotic leaf through p (“elliptic point”).

b) There are just two asymptotic leafs through p (“hyperbolic point”).

¢) There is just one asymptotic leaf through p (“parabolic point” ).

d) There are infinitely many asymptotic leafs through p (“planar point”).

We call a (local) space (M, g) to be of elliptic type if it consists of elliptic points
only. Similarly, we define spaces of hyperbolic, parabolic and planar type. Thus, on
such kind of spaces we can consider asymptotic foliations. If the space is not elliptic,
at least one asymptotic foliation exists and one can define a new local coordinate
system (w, x, y) such that, in addition, the integral manifolds of the equation dw = 0
are asymptotic leafs. Then a dramatic simplification of the system (48) takes place,
enabling to write down the general solution in the explicit form!

One has the following main results ([10], [14], [20]-[22] and [4]) proved by the
first author and M. Sekizawa:

A) The local moduli space of all spaces of elliptic type (or of hyperbolic type, or of
parabolic type, or of planar type respectively) is parametrized by 3 arbitrary func-
tions of 2 variables (or by 3, or by 2, or by 1 arbitrary functions of 2 variables
respectively). Hence the corresponding “overdetermined” system of PDE for the
Ricci components Ric’j is not really overdetermined because it has a general solu-
tion depending on 6 arbitrary functions of 2 variables — the same result as for the
system (2) with distinct prescribed Ricci eigenvalues.

B) The local moduli space of all spaces of non-elliptic types can be expressed by a
finite number of explicit formulas involving only algebraic operations, elementary
functions, differentiation, integration, and depending explicitly on the correspond-
ing number of arbitrary functions of two variables.

This is a rare phenomenon in the theory of nonlinear PDE systems.

C) The double Ricci eigenvalue, which was supposed to be arbitrary, is in fact not

arbitrary! It must be of the form

1
= = fOr = 0, 49
01 =02 K2 1 kay 1 s 03 (49)
01 =01= ! +22%2 foroz=21>>0 (50)
ki cos(Ly) + ks sin(Ay) + k3 ’
1
01 =02 —22% foroz=-22*>0, (51

= k1 cos(hy) + ka sin(hy) + ks
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where ki, kp, k3 are arbitrary functions of 2 variables w, x. We are somehow on
the “halfway” to the Schur’s Theorem.

4.3 The semi-symmetric spaces of elliptic type with the prescribed non-constant
double Ricci eigenvalue

The prescribed eigenvalue must be of the form (49). The problem was investigated in
[14], pp. 471-474. The local moduli space depends here on one arbitrary function of 2
variables.

The corresponding system of PDE’s for the Ricci components is again overdeter-
mined and its general solution depends on 4 arbitrary functions of two variables.

4.4 The case of constant Ricci eigenvalues o1 = 07 # 03

Here we have a specialized PDE system (48) in which k is a constant. As we mentioned
in the Introduction (see [15], [5], [19]), the local moduli space of all possible metrics
depends on 2 arbitrary functions of 1 variable.

The PDE system for the Ricci components is again “strongly overdetermined” and
the general solution depends only on 3 arbitrary functions of 2 variables.

Notice that the local moduli space here is “much smaller” than in the case of
three distinct constant Ricci eigenvalues! This is obviously due to the fact that the
corresponding PDE system (2) gets overdetermined by adding new equations.

4.5 The 3-dimensional Riemannian manifolds with two zero Ricci eigenvalues
and one arbitrary Ricci eigenvalue

The corresponding PDE system for the Ricci characteristic polynomial is here rather
special. In fact, we get the conditions ¢; = 0, ¢p = 0 and the additional equations
saying that the 2-dimensional sub-determinants of the matrix [Ric’.] are zero. It might
be an interesting problem to solve the corresponding PDE system in order to obtain the
information about general solution.

One can also proceed like in the subsection 4.2, and to write down a system of 9
PDE’s of second order. But this system is very hard to solve and the “parametrization
problem” for the moduli space still remains open.

The problem was raised, in fact, for general dimension by S. Ivanov and I. Petrova
in [11] when the authors studied “the spaces with pointwise constant curvature eigen-
values” (in fact, eigenvalues of the skew-symmetric curvature operator R(X, Y). The
classification problem was solved completely by the above authors in dimension 4 and
later by P. Gilkey, J. Leahy and H. Sadofsky in the higher dimensions except n = 7 and
n = 8. Yet, it still remains open in dimension 3 (which is just the case described in the
title of this paragraph — see Remark 2 and Remark 3 in the Introduction of [11]).

The only known results are isolated examples of the above spaces:

A) The group SU (3) with a special left-invariant metric (see [27] and Remark 2 in
(11D).
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B) The metrics of the form
1

= e Vdw? + [p MVdx + (r & +5 e M)dw]? + dy, (52)

g =
where p = p(w), s = s(w), r = —)szz(u))s(w)x2 + p/(w)x + ¥(w), and
p(w), s(w), ¥ (w) are arbitrary functions. Here, 01 = 02 = 0, 03 = —212. These
metrics are not locally homogeneous. (See [15], Example 5.8.)

C) The example by Ivanov—Petrova: (M, g) is a warped product M3 = B! x N 2,
where B! = B!(y) is areal line, N? is a space form of constant curvature K, and

the warping function f(y) is /K y2 + Cy + D with constant C, D such that C? —
4K D # 0. The Ricci eigenvalues are (o, 0, 1(C2 — 4K D)/(Ky? + Cy + D) )
D) The new example found by V. Hajkova and O. Kowalski:

g = y21”dw2 + yz(l_”)dx2 + dyz, where p is a parameter. (53)

Here, 01 = 0> = 0 and o3 = 2p(1 — p)/y?. Further, p(1 — p) is a Riemannian
invariant and the case p = 1/2 corresponds to the example C) for the particular
choice K =0, C =1, D=0.

E) (Added in proof). See Y. Nikolayevsky, On Riemannian manifolds cohose skew-
symmetric curvature operator has constant curvature, preprint, to appear in Bull.
Austral. Math. Soc., 2004.
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Summary. In this article I state two problems related to Integral Geometry. In the first, I try to
obtain analytical inequalities which become equivalent to the inequalities among the integrals
of the mean curvatures of a hypersurface in the Euclidean space. The second problem is related
to the Complex Integral Geometry. I try to analyze the “complex cross-sectional measures” of a
convex body contained in the complex Euclidean space.

1 Introduction

The concept of mixed volume or integral cross-sectional measure (quermass integrale)
is well known in the specialized mathematical literature, [5, 10, 12]. It refers to a family
of intrinsic measures, among which there are a number of inequalities; for instance,
“The classical Isoperimetric Inequality”. A beautiful proof of the equivalence of its
geometric and analytic formulations can be found in [4]. In the first part of this note, we
pose the problem of generalizing the equivalence to other isoperimetric-like geometric
inequalities formulated in terms of the different integral cross-sectional measures. We
can say that the history of Integral Geometry begins with Buffon’s needle problem at
the end of 18th century. It grew up in an incipient way throughout the 19th century,
but most of its development took place in the 20th century, basically with the work of
Blaschke and his school, and later with Santal6 and Chern, among others. Santald’s
book has been a basic tool for the study of Integral Geometry in the last decades
of the 20th century. It is, and will continue to be a very important reference for all
researchers in this field. For convex sets in the Euclidean space, Santal6 defines the
real integral cross-sectional measures as an average integral on the real Grassmann
manifold of real subspaces through the origin. He also considers that a study in depth
of the Complex Integral Geometry could be interesting [10], p. 338. In [7, 8], many of
the properties of densities in real spaces has been extended to the complex case. Here,
it is also possible to define, by means of an integration in the corresponding complex

* Work partially supported by DGI grant number BEM2001-3548
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Grassmann manifold, the concept of complex integral cross-sectional measures. In the
second part of this note we pose the following question: How is the representation of
the complex cross-sectional measures in terms of the integrals of the generalized mean
curvatures?.

2 Inequalities of isoperimetric type

2.1 The mixed volumes of convex compact sets in the Euclidean space
The mixed volumes

To every pair of non-empty sets A, B C R” their (vector) Minkowski sum is defined
byA+B =a+b/a e A, be B,while AA = La/a € A is the result of the homotethy
of A with coefficient A. For the moment, I consider only non-empty convex compact
subsets of the space R", without saying it explicitly.

Theorem 1 (Theorem of Minkowski, [5], p. 136). The volume of the linear combina-

tion of non-empty compact sets K1, ..., Ks, s # n, in general, with non-negative coeffi-
cients Ay, ... , A is a homogeneous polynomial of degree n with respectto A1, ... , Ag:
V(Zizt,. srMiKi) =Zi=1, 5 Bip=1,.. s V(Kip, ..., Ki DAy oo Ay, (D)

It follows from the theorem that these coefficients depend only on those K1, . .. , Kj.
The classical definition of mixed volume of non-empty convex compactsets K, ... , K,
in R"(they are not necessarily distinct and their order plays no role) according to
Minkowski is the following: this volume is the coefficient V (K1, ... , K;) in the de-

composition of the Minkowski theorem involving these sets.
It is convenient to write (1) in the form

V(Zi_ %K)
n! P Pr
= ﬁxm_*_..,_;,_pr:n Yi<iy<o<ip<s VIKiy prs o3 Kir,Pr))‘i] . )\ir , 2
pil...ps!
where
V(K pys-o 3 Kipp) =V(Kip, oo, (p1)s -, K3 Ky oo (Pr), -0, K)o (3)

Characteristic properties of mixed volumes can be found in [5].

In geometry, one usually considers only those mixed volumes for which, only two
(rarely three) of the K; differ. Most often one considers the so-called mth integral
cross-sectional measures

Vu(K)=V(K,...(m)....,K,D,...(n—m)..., D), 4)

where K is a non-empty convex compact set, while D is the closed unit ball in R”.
Their particular cases (with the appropriate normalization) are the volume V (K') and
the (n—1)-dimensional boundary area S(K) : V(K) = V,,(K)and S(K) = nV,,_1(K).
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The Alexandrov-Fenchel Inequality (AFI)

The best-known inequality among the general inequalities relating to mixed volumes
is the Alexandrov—Fenchel Inequality.

Theorem 2 ([5]). Alexandrov—Fenchel Inequality (AFI) says that
V2(K1’ AR ] Kl‘l) Z V(Kla K17 K37 AR ] K}l)V(KZa KZ’ K3? AL ] Kn)~ (5)

One of the most important consequence of the AFI is the following [5, p. 143]:

V"K,...,G(),...,K,L,...,(m—i),...,L,Cmst,...,Cn)
>ViK,...,(m),....,K,Cpst,...,CO)V" (L, ..., (m),...,L,Cpsi, ..., Cp).

2.2 Inequalities of isoperimetric type

As particular cases of the Alexandrov—Fenchel inequality, we can consider a whole
series of well-known geometric inequalities:

i) The Classical Isoperimetric Inequality

S"(K) = n"v, V"1 (K), (6)

where K is a non-empty convex-compact set in R”, S(K) = n V" 1(K) is the
(n — 1)-dimensional area of 0K, V (K) is its volume and v,, the volume of the unit
ball D in R”. This inequality is known as the first Minkowski Inequality.

ii) The second Minkowski Inequality

VI(K) = oy~ V(K. (7
iii) The Minkowski Quadratic Inequalities
Vi ((K) = Vo (K)V(K) ®)
VE(K) = vy Va(K).
iv) The Favard Inequalities, which generalizes the Minkowski quadratic inequalities
VA (K) = Vie 1l (K) Vi1 (K). ©)

v) The generalized Minkowski Inequalities, which generalizes the first and the second
Minkowski Inequalities

V(K) > " VI(K). (10)
vi) Even more general is the Alexandrov Inequality
VIK) = vV (K), (1)

for j < i.Remark that the inequalities of Alexandrov contain the classical isoperi-
metric inequality.
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It is well known that for all these inequalities the equality holds if and only if K is
the Euclidean ball.

When n = 3, for convex bodies the AFI yields series of inequalities among the
volume V, the area of the surface S and the total mean curvature M:

$3 > 367V? (12)
M3 > 487%V

M? >4 S

52 >3VM.

I think that it is interesting to make some remarks about proofs of the AFI. Alexan-
drov published two proofs of his inequality in 1936. The first of them is combina-
torial. The second proof of Alexandrov is more analytical. In 1975, Khovanskii ob-
tained an algebraic proof for n = 2. In 1978, Fedotov published an erroneous alge-
braic proof of this inequality for any n. In 1978, and independently, Tessier in Paris
and Khovanskii in Moscow obtained a correct algebraic proof using the Hodge Index
Theorem.

It is well known in the literature the Steiner decomposition for the volume of a
parallel body in function of the volume, surface area and the integrals of mean curvature
of the primitive body [5, 10]. The corresponding formula is

Va(K + AD) = Vi (K) 4+ nVu_1(K)A + Cy 2 Voo (K)A?
F it Copt VICOA ™ v, 07 (13)

If in the above formula we substitute A = A1 + A7, then carry out this decomposition
consecutively for A; and A, and equate the coefficients, then we obtain the Steiner
decomposition for mth integral cross-sectional measures

Vin(K + D) = Vi (K) 4+ mVyy—1 (K)A 4 Cpy 2 Vi—2 (K )A?
+ i Crm VIO oy, 0™, (14)

2.3 The Brunn-Minkowski Inequalities
As a consequence of the AFI in the form (2), it is possible to prove the following:

Corollary 1 ([5]). From the above theorem, we have the Brunn—Minkowski Inequality
for integral cross-sectional measures; that is,

V! " (K + L) = Vio/™ (K) + V" (L). (15)

In [4] we can find a beautiful proof of the Isoperimetric Inequality, using the Brunn—
Minkowski Inequality for V,,.

This proof can be extended to all cross-sectional measures. In fact, from (14) and
using (13), we have
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V(K + 2D)}it = {Viu(K) + m Vi1 (K% + Co.2 Vi (K)A?

1
F oot Cum VIO 0,y
mel(K)

1

1 1
=k = Vi (K)W + Vi (AD) 7
Vi (K)" —m

1
= Vi (K)7 +

1 1
=V (K)m +vg A,
and when A tends to 0, it follows that

Vin—1(K 1
—1()1 > or. (16)
Vi (K)o

Remark. The inequalities of isoperimetric type of Alexandrov and Fenchel for cross-
sectional measures of convex domains in the Euclidean space were established for
non-convex domains, subject to natural curvature conditions. The technique used is of
Monge—Ampere type equations, [13, 14].

2.4 The theorem of Blaschke—-Chern-Santald

We can say that the history of the Integral Geometry begins with Buffon’s needle
problem at the end of 18th century. This was growing up in an incipient way through
19th century, but its more important development was in the 20th century, fundamentally
with Blaschke’s work, and his school and later with Santal6é and Chern, among others.

Santal6’s book has been basic for all the studies about Integral geometry that have
appeared in the last decades of the 20th century. This book is, and will be, a very
important reference for all the researchers on the subject.

It is well known that on a Lie group G it is possible to define a left-invariant volume
form dG. Let G be a Lie group of dimension # and let H be a closed subgroup of G
of dimension n-m. The set of left cosets gH, g € G is the homogeneous space G/H,
which, as is known [16], admits a differentiable manifold structure of dimension m.
We want to find the conditions for the existence of a non-zero m-form on G/H invariant
under G. Such an m-form is called a density on G/H and it gives rise, by integration, to
an invariant measure on G/H. Since G acts transitively on G/H, the invariant density,
if it exists, is unique up to a constant factor. Note that H and gH are differentiable
submanifolds of G and it is foliated by leaves which are dipheomorphic to gH. Then
we know that gH are the integral manifolds of a completely Pfaffian system

w1 =0, =0,...,0, =0,
where w; are 1-forms on G. It is easy to prove that

dG/MH) =w1 N2 ... )\ on 17

is invariant under G and up to a constant factor, it is unique m-form with this property.
However, d(G/H) is not always a density for (G/H) because its value can change when
the points g € G displace on the submanifold gH.
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Theorem 3 (Blaschke—Chern—Santald, [10]). A necessary and sufficient condition for
the m-form d(G/H) to be a density for (G/H) is that its exterior differential vanish; that is,

d(d(G/H)) = 0. (18)

Historical Remark. 1 asked Professor Santalé how he had come to formulate the above
theorem precisely in that way. His answer was that Blaschke had already studied many
properties of densities in that way, and that Chern had found conditions for the existence
of an invariant density on homogeneous spaces [6]. This is why I have named this
theorem as of Blaschke—Chern—Santald, since Professor Santald states it this way in
his book [11].

2.5 The group of motions in the Euclidean space

Definition 1. If x = (x1,...,x,), X' = (x{,...,x;), then a motion from x to x’ is
given by

x =ax+b, (19)
where a € O(n), b € R".

It is well known that the study of the group of motions can be done by the method
of moving frames of Cartan. Let ((p)g, e?) = ((pP)o, e?, e, eg) be an orthonormal

fixed frame. To each motion g corresponds a moving frame ((p), e;) = g((p)o, e?), the
transform by g of ((p)y, eio). We have

dp= Y wie de= Y wjej, (20)
i=l,....n i=l,..,n
and
w; =dp - e, wji=dei~ej, wji + wjj =0.
The structure equations are:
dwij = — Z win /\a)hj dw;j = — Z wp, /\a)ih. 21
i=1,..,n i=l,...,n

Now, using the theorem of Blaschke—Chern—Santal6, we can give the density for
r-subspaces L, C R".

Proposition 1 ([10]). The density for the r-subspaces is given by
dLr:/\wa/\a)i,,B’ (22)
o i’ﬂ

wherea, B =r+1,... ,nandi=1,...,r.

We represent by L,[o) the r-subspaces contained in R" through the origin 0. It
follows that dL,[0) = dLu—r0) = /\ wi,p and it is a density for the real Grassmann

manifold an _,» which is a compact manifold.
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It L%] represent a r-subspace contained in R’ and if we denote by L, j1 the
r-subspace contained in R” that contain a subspace L ;, then we have a remarkable
relation among densities:

dL8 N dLoo) = dLygieny \ dLas o *3)

2.6 Quermass integrales of convex sets

I consider a convex body K C R” and their boundary 0K is called a convex hypersur-
face. Let K be a convex set, and let 0 € R" be a fixed point. Consider all the (n — r)-
subspaces L,_[0] and let K/ be the orthogonal projection of K into L, _,[o].

Denoting by O; the surface area of the i-dimensional unit sphere, we define the
mean value of the volume V (K,_,) of these projected sets as the quermass integrale
of order r:

(n =)0y
W, (K) = 1,(K),
’ nOu_r1 volGR,_, "
where
1K) = /G Ol )dLuo 24)

which is an important characteristic of the convex set K.
Using the above relation among densities, it is possible to prove that this formula
is recurrent; that is,

I,(K) = I (K, _dL,_110)-

Orfl GR

1,n—1

For completeness, we put

n—1

Wo(K) = Ip(K) = vol(K), W, (K) =

Theorem 4 (Cauchy’s Formula, [10]). If F' denotes the (n — 1)-dimensional surface
area of 0K, then

2(—1)
0,2 an_]

F vol(K,_)dL, — 1[0] (25)

Remark. Evidently, this construction justifies the term integral cross-sectional mea-
sure.

2.7 Steiner’s formula for parallel convex sets

Definition 2. The parallel domain K, in the distance A of a convex set K is the union of
the solid spheres of radius A, the centers of which are points of K; that is, K, = K+AD.
The boundary 0K, is called the parallel surface of 0K at the distance A.
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Theorem 5 (Steiner’s Formula). For parallel convex sets, we have

vol(K;) = Z Wi (K)AL. (26)

i=0,...,n

Corollary 2. W; = V,,_;; that is, the quermass integrale and the cross-sectional mea-
sure of the same order coincide.

2.8 Integrals of mean curvature and cross-sectional measures of convex domains

If the boundary 0K of a convex set is a differentiable hypersurface, the cross-sectional
measure W, (K) can be expressed by means of the integrals of mean curvature of JK.
It is known that at each point of a hypersurface dK there are n — 1 principal directions
and n — 1 principal curvatures k1, ... , k,—1. If do denotes the area element of JK,
then the rth integral of mean curvature Q,(90K) is defined by

0,(K) = (Co1,)"! / (k. .. k3 )do, @7)

oK
where {k;,, ..., k; } denotes the rth elementary symmetric function of the principal
curvatures. The product kg - ... - k,—1 is called the Gauss—Kronecker curvature and is

related to the area element du,_; of the spherical image of JK by the equation
Kl-...-Kn_ldUZdun_l. (28)

If R; = (1/k;) are the principal radii of curvature, then

0/0K) = Gt [ R Ry do 29)

From the above assumptions, the principal radii of curvature of 0K are R; 4+ A and the
element area do; becomes

dop, = [] @®i+n. (30)
i n—1

hence, the area of 0K is
0K, = Xi—o,... n-10,(OK)A". (31

For the volume of S(Kj), we have
1
1(K;) = vol(K —— 0, (KA 32
vol(K;) vo<>+Zr+1Qr< ) (32)
Comparison of this expression with Steiner’s Formula gives

0, (0K) = nW,11(K).

2.9 Inequalities of isoperimetric type for arbitrary domains

In [14], the author extend some inequalities of isoperimetric type to arbitrary domains
in the Euclidean space verifying a natural curvature condition.
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Definition 3. A domain K with boundary 9K is said to be k-convex, 0 < k < n — 1,
if 0;(9K) = 0forall j =0,1,... k.

An arbitrary domain is clearly O-convex while a differentiable domain is convex if
and only if it is (n — 1)-convex.

Irecall that the quermass integrale (or equivalently) the integrals of mean curvatures
are well defined for any bounded domain K with boundary dK.

Proposition 2 ([14]). The inequalities of isoperimetric type
0'(9K) = v,/ 0] (9K)

are valid for any bounded and differentiable domain K which is (n — m — 1)-convex.

Sobolev spaces and the classical isoperimetric inequality

Itis well known that there is a connection between the classical isoperimetric inequality
and the Sobolev embedding theorem. In fact, it is well known that for a measurable
function f the p-norm is defined as

£, = / IFlldp? (33)

where u is a positive Radon measure.

Definition 4. Let (M", g) be a Riemannian manifold of dimension n. For a real function
RS Ck(M”), we define

VRl = VIV ViV, Vi, ... Vig. (34)

In particular, [|[VO]| = llgll. [IV'¢[* = [Vl = VipVig, V¥¢ will mean any
k-th covariant derivative of ¢.

Let us consider the vector space ‘ﬁ,‘:’ of functions ¢, such that || Vig| € Ly(M"),
for all [ with 0 < [ < k, where k and [ are integers and p 2 1 is a real number.

Definition S. The Sobolev space H,f (M") is the completion of ‘R,f with respect to the
norm

k
Vel = > 1V el (35)
i=0

Theorem 6 ([1,2,15]). If 1 <n,all ¢ € Hlp (R™) satisfy:

HVelll, = Km, PlIIVellly (36)
ihl=1_1
with >=g7 " n and
q—1 n—gq |« 'n+1) ’
K(”’Q)zn—q{nw—l)} " " <0
F(E>F<n+l—3>w”_1
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For1 < q < n, and K(n,1) = (1/n)[n/(w.—)1"". K(n, q) is the norm of the
embedding HZ C Ly, and it is attained by the functions

g \1-7
o) = (h+ IIxNTT)
where )\ is any positive real number.

When g = 1, this gives the usual isoperimetric inequality, [5, 9]. The extremum
functions are then the characteristic functions of the balls of R".

As a particular case of the general situation, [3, p. 40], we have the following result
of Federer and Fleming or Maz‘ya and a proof of it is presented in [4], p. 300-302.

Theorem 7. Let K be a bounded domain in R" with smooth boundary 0K. The isoperi-
metric inequality

v (3K) 2 v, VITH(K)

for every such K is equivalent to the inequality

n n—1
( / IIgradflldK) >, ( / IIfII""-‘dK> forallf € CF(K).  (38)
K K

For the proof of the above result, it was the basic fact that the surface area of the
level-hypersurfaces were positive decreasing functions, [4, p. 301].

Open Problem. In the direction of the (38), it seems natural to try obtain analytical
inequalities which becomes equivalent to (6)—(11).

3 Complex cross-sectional measures

3.1 Some remarks about complex integral geometry

In the mathematical literature, in particular, in Santald’s book, the theory of the Real
Integral Geometry is developed and supported in the Theorem of Blaschke—Chern—
Santal6. Also, Santal6 said in his book, [10], p. 338: “Integral Geometry on complex
spaces has not been sufficiently developed and probably deserves further study”. Some
results are known now about the complex projective space and the unitary group. But,
in general, this theory is far to be achieved.

Let C" denote the space of n-tuples of complex numbers (z1, z2, ... , Z,). The r-
dimensional complex linear subspaces of C" will be called r-planes. We consider the
group of complex motions

7 =az+b,

where a is an element of the unitary group U”" and b is a complex number.

The study of this group can be easily done by the method of complex moving
frames, using their real representation. Let (p, e;, e;+) be a complex moving frame. So,
applying the standard method, we have
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w; =dp- e, wix = dp - e,
a)jizdei-ej, w;jj* =de,~*~ej,
wji +wij =0, wjix + wixj =0,

Wix jx + Wjrpx = 0
Now, the structure equations are
reldw;j = —wjg /\wkj — Wik /\a)k*j
dwij« = —wik /\wkj* — Wi /\wk*j*

dw; = —wj /\a)k — Wjj* /\wk*
dop = o [\ o — oix [\ 0. (39)

The complex rotations about a point can be identified with the unitary group U(n)
which is compact and has an invariant measure which was determined, among others,
by Santal6 [11]. Since the complex translations had also an invariant density, we have
an invariant density for the group of the complex motions.

Then, we can generalize to the Complex Integral Geometry on C” all results known
pertaining to densities in the Real Integral Geometry and, mutatis mutandis, the for-
mulae are the same.

The complex Grassmann manifold G
C

r,n—r

rc,n—r of the complex r-planes through the

origin is well-defined as G = [U@m)/U(r)xU(n — r)] and we can determine its

volume.

3.2 The complex quermass integrales

Also, we can consider a convex body K C R2" = C". If I assume that 9K is suf-
ficiently smooth, then the r-th complex quermass integrale V,C (K), (complex cross-
sectional measure), may be defined as a mean integral value of the r-dimensional vol-
ume of the projections of K on all r-dimensional complex subspaces. Explicitly, we can
define

1
volG¢

r,n—r

VEK) = / H'" (P, (K)dp(v), (40)

where GrC’nf . 1s the complex Grassmann manifold of r-dimensional complex subspaces
in C", P, (K) is the orthogonal projection of K on the subspace v € G€ H'" denotes

r,n—r>
the r-dimensional Hausdorff measure in C"* and u denotes the normalized Haar measure
on an_,.
In the real case, it has been shown that the r-th quermass integrale could be repre-

sented by the integral of the symmetric functions of the principal curvatures.

Open Problem. How is the representation V. (K) in function of the integrals of the
generalized mean curvatures?
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Summary. Concerning the integrability of almost Kdhler manifolds, there is a longstanding
conjecture by S.I. Goldberg, “A compact almost Kdihler Einstein manifold is Kdhler”. The con-
jecture is true in the case where the scalar curvature is non-negative. However, the conjecture is
still open in the remaining case. In this note, we shall give a brief survey on the recent progress
concerning the conjecture in four-dimensional case.

1 Introduction

An almost Hermitian manifold M = (M, J, g) is called an almost Kéhler manifold,
if the Kéhler form €2 is closed (or equivalently, XG; Z g((Vx )Y, Z) =0, where X@; Z
denotes the cyclic sum with respect to any smooth vector fields X, Y, Z on M), namely,
(M, Q) is a symplectic manifold. By the definition, a Kéhler manifold (VJ = 0)
is necessarily an almost Kéhler manifold. A non-Kéhler, almost Kahler manifold is
called a strictly almost Kéhler manifold. The first example of compact strictly almost
Kihler manifold was given by W.T. Thurston [25]. It is well-known that, if the almost
complex structure J of almost Kdhler manifold M = (M, J, g) is integrable, then
M is a Kihler manifold. Concerning the integrability of almost Kdhler manifolds, the
following conjecture by S.I. Goldberg is known [10].

Conjecture. A compact almost Kahler Einstein manifold is integrable.

In [23], the second author showed that the above conjecture is true in the case
where the scalar curvature is non-negative. However, the conjecture is still open in the
remaining case. Other partial affirmative answers have been obtained by many authors
under some additional curvature conditions ([1-6, 8-10, 14, 16, 19-24] and so on).

This article is a brief survey on the Goldberg conjecture in dimension four.
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2 Preliminaries

In this section, we prepare some fundamental formulas on four-dimensional almost
Kihler Einstein manifold.

LetM =(M, J, g) be afour-dimensional almost Hermitian manifoldand Q (X, Y) =
g(JX,Y), for X, Y € X(M) be the Kihler form of M, where X(M) is the Lie alge-
bra of all smooth vector fields on M. We assume that M is oriented by the volume
form dV = (1/ 2)92. Let V be the Levi-Civita connection, and further, R, Ric, s the
curvature tensor, the Ricci tensor, the scalar curvature of M defined respectively by

R(X,Y)Z =[Vx,Vy]lZ - Vix vZ, (2.1)
Ric(X, Y) = Trace {Z — R(Z, X)Y}, (2.2)
s = TracegRic, (2.3)

for X, Y, Z € X(M). Moreover, we define the Ricci #-tensor Ric* by
Ric*(X,Y) = Trace {Z — —JR(Z, X)J Y}, (2.4)

for X, Y, Z € X(M). Further, we denote by s* the *-scalar curvature of M which
is the trace of the linear endomorphism Q* defined by g(Q*X,Y) = Ric*(X, Y) for
X, Y € X(M). By the definition, we see immediately

Ric*(X, Y) = Ric*(JY, J X), (2.5)

and hence, Ric* is symmetric if and only if Ric* is J-invariant. We may also note that if
M is Kibhler, then Ric* = Ric holds on M. An almost Hermitian manifold M is called
a weakly *-Einstein manifold if Ric* = (s*/4)g holds on M. Especially, if the x-scalar
curvature of a weakly x-Einstein manifold M is constant, then M is called a x-Einstein
manifold. It is known that the following identity holds for any four-dimensional almost
Hermitian manifold [12], [24]:

* —
Ric*(X, ¥) 4 Ric* (Y, X) — {Ric(X, Y) + Ric(JX, JY)} = ——°

g(X,Y), (2.6)

for X, Y € X(M). We may regard the curvature tensor R as (0,4)-tensor and also an
endomorphism of the vector bundle of 2-forms AZM = A2T*M as,

R(X,Y, Z,W)=g(R(X,Y)Z, W),
(R(a1 A B1), a2 A B2)) = —R(a!, BY, o, B5),

for X,Y,Z, W e X(M) and ;, B; € T'(M, T*M). Here, the symbol £ is the natural
isomorphism 7*M — T M by g and (-, -) is the inner product on A>M induced from g.
The usual type decomposition A2M @ C = A2OM @ AV M @ A%2 M of complexified
2-forms induces the following decomposition of the vector bundle A2M:

ANM=RQEAY'M & LM, 2.7
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where LM = (A>°M @ A%2M)R and /\(l)’lM is the orthogonal complement of R in
(AYIM)R. In the above decomposition, /\(1)‘1 M is the vector bundle of real primitive
J-invariant 2-forms, L M the vector bundle of real primitive J-skew-invariant 2-forms
over M respectively. The vector bundle /\(l)’ M is identified itself with the bundle A2 M
of anti-self-dual 2-forms, while the sum RS2 @ L M is the bundle /\iM of the self-dual

2-forms. Further, it is well-known that M is Einstein if and only if A%_M and A2 M
are both preserved by the curvature operator [13]. We denote by 7 the orthogonal
projection = : A2M — LM. The vector bundle LM is endowed with the natural
complex structure (also denoted by J) which is defined by J® (X, Y) = —P(JX,Y)
(X,Y € X(M)) for any local section ® of LM.

Let {e;} be a local orthonormal frame field and set

Rijki = R(ei, ej, e, ep), Ric;; = Ric(e;, €)), Ric}; = Ric*(e;, ¢)),

where the Latin indices run over the range 1, 2, 3, 4. In the sequel, indices with bar are
the ones with respect to {Je;}, for example

Rij = RUei ej, ex, ep).

Using these notational convention, we obtain

. . 1
a a a
1
—ZRabab, st = _EZRao_tbl_y
a,b a,b

and the Ricci *-tensor satisfies Ricfj = Ric% (2.5). We denote J;; and V; Jjx by

=)
I

Jij =g(Jei, ej), Vidjr = g((Ve; e, ex).
{Jij} and {V; J i} satisfy
Jij = —Jji = I3, 2.8)

l

Vidjk = —Vi]),;. (2.9)

Now, let {¢;} = {e1, e2 = Jey, e3, e4 = Je3} be any local unitary frame field and {¢'} be
its dual frame field. Then, the Kihler form 2 of M is representedby Q@ = e! Ae?+e> ne?.
Further, we may easily observe that

1 1
(D, JD} = {ﬁ(el Aned—er net), ﬁ(el At + e? Ae3)} , (2.10)
and
(W1, ¥y, U3} = {L(e1 ne? — e /\e4) L(el Aed 4P A 64)
9 b ﬁ bl ﬁ 9 (2 11)
{ .
—(e1 Anet—e? Ae3)}

2

and local orthonormal frame fields of LM and /\(l)’lM respectively.
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We denote by invRic, antiyRic, symRic*, skewRic* the following tensor fields of
type (0, 2) defined respectively by

1
invyRic(X,Y) = E(Ric(X, Y) +Ric(JX, JY)),

1
antijRic(X, Y) = = (Ric(X, Y) — Ric(J X, JY)),
2
1 2.12)
symRic*(X,Y) = E(Ric*(X, Y) + Ric*(Y, X)),

1
skewRic*(X, Y) = E(Ric*(X, Y) — Ric*(Y, X)),

for X, Y € X(M). Then, the formula (2.6) can also be written as follows:
symRic = invRico,

where Rico = Ric — (s/4)g and Ricj = Ric* — (s*/4)g.
The almost complex structure J induces an endomorphism on the vector bundle
A¥M of k-forms (denoted also by J) defined by,

JB(Xy, ..., Xp) =—B(UX1, X2,..., Xp),

for g € T'(M, /\kM) and X1, ..., Xy € X(M). Then, the endomorphism J satisfies
J? = —Id, and defines a complex structure on L M.
We denote by W the Weyl (conformal) tensor of M. Then, we have

1 K
W =R — —Ri - , 2.13
3 ico® g 24g®g (2.13)

where the symbol @ is the Nomizu—Kulkarni product of symmetric tensors of type
(0, 2) generating a curvature type tensor. The Weyl tensor W can also be regarded as a
symmetric endomorphism of A2M which induces endomorphism W of A%_M (resp.

W~ of A2 M). By making use of the second Bianchi identity, the divergence sW of W
is expressed as

SW = —%dR (Ric _ %g) , (2.14)

where dg : T(M; A'M @ A'M) — T'(M; A'M ® A>M) is defined by,
drT)(X,Y,Z) = (VyT)(X,Z) = (VZT)(X,Y),

for T € T(M; A'"M @ A'M). From (2.12) and (2.13), by direct calculation, we have

1
Wt = <s* - %) Q@ Q2+ Wiy + 5 (JskewRic" ® 2 + 2 ® JskewRic").

(2.15)

1
8

where Wy = o W | . According to the decomposition (2.7), we may decompose
the operator W into several parts as follows:
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W=w"4+w", (2.16)
K
+
6 W2
Wt = ,
+ +_ K
(W Wi — EId+

where the function k = 3(W1(Q), Q) = (3s* —5)/2 is the conformal scalar curvature
and Id™ is the identity on /\iM. From (2.14), (2.15) and (2.16), we have

1
W2+ = E(Q ® JskewRic* 4+ JskewRic* ® Q), 2.17)

K
Wi =W+ EIc1+. (2.18)

There are three spacial type of four-dimensional almost Hermitian Einstein manifolds
which are imposing one additional condition on the self-dual Weyl tensor W:

(W) k is constant (equivalently, the manifold has constant *-scalar curvature),

(WII) W; vanishes (equivalently, the manifold is weakly *-Einstein),

(WIID) W3+ vanishes (equivalently, the Kéhler form €2 is a root of the Weyl tensor W).
A four-dimensional almost Hermitian manifold satisfying W3+ = 0O 1is called a manifold

with Hermitian Weyl tensor. Especially, we may see that a Kihler Einstein surface
satisfies the above conditions (W I)—(W III).

Let M = (M, J, g) be a four-dimensional almost Hermitian Einstein manifold and
{®, J D} alocal orthonormal frame of LM given by (2.10). Then, we have
N s*¥—s
u
W;_ = 8 % )
v
w + 3

where u = (R(®), ), v = (R(JD), JP), w = (R(P), JP). We denote by /h the
smooth function on M, defined by

B (S* _ S)2
T

h —4det Ry,

where Ry = m o R|py. Then, h can be expressed locally by
h=u-— v)2 + 4w,

We may also observe that a four-dimensional almost Hermitian Einstein manifold is a
manifold with Hermitian Weyl tensor if and only if  vanishes.

For a four-dimensional almost Hermitian manifold, the conditions (W I) k is con-
stant, (W II) W2+ =0, (WIID W\+ = 0 are closely related to the following conditions
(G1)—(G3) on the curvature tensor defined by Gray [11] (not necessarily in the four-
dimensional context):
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GDRX,Y,Z,W)=R(X,Y,JZ,JW),
(G))RX,Y,Z,W)—R(UX,JY,Z,W)=R(UX,Y,JZ, W)+ R(UX,Y,Z,JW),
(G3)) R(X,Y,Z,W)=R(UX,JY,JZ,JW),

for X, Y, Z € X(M). Identity (G;) will be called the ith Gray condition. A simple
application of the first Bianchi identity yields the implications (G1) = (Gz) = (G3).
We denote by AKX and AK; the class of almost Kdhler manifolds and the class of

manifolds in A/C, whose curvature tensors satisfy the condition (G;). Then, we have
the following inclusion relations:

AK 2 AK3 2 AK, 2 AKX 2 K,

where IC denotes the class of Kihler manifolds.
In the remaining part of this section, we assume that M = (M, J, g) is a four-
dimensional almost Kéhler manifold. Then, in addition to (2.8) and (2.9), we get

Vidjk = —=Vili > Vadai =0. (2.19)
a

Taking account of (2.8)—(2.11) and (2.19), we may set
VR=aQ@P—-JaRJD, (2.20)

where « is a local 1-form and {®, J ®} is a local orthonormal frame of LM given by
(2.10). Gray [11] has obtained the following curvature identity:

Rijki = Rijii — Riju + Rije + Riju + Rijug + R + Rijug (2.21)
=2 (VaJij)Valu
a

From (2.21), we get immediately

Ric}; + Rick; — Ric;j — Ric;; = Y (VaJit) VaJji, (2.22)
ak
and further

IVI)? =2(s* —s). (2.23)

We denote by ¢ the symmetric tensor field of type (0, 2) defined by,
P(X,Y) =Y e(Val)X, (Va)Y).
a

Then, we see that (2.21) and (2.22) imply

(R(®), @) + (R(JD), JD') = —% Z(VaQ, dYNV,Q, D), (2.24)
a
and
¢ = 2(symRic* — inv Ric), (2.25)
respectively. Further, from (2.6), (2.12) and (2.25), we have
s*—s
Y= 8- (2.26)

2
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3 Some partial answers

In this section, we introduce several partial answers to the Goldberg conjecture and
also some related results to the conjecture.

First, we recall the Chern—Weil formulae for four-dimensional compact oriented
Riemannian manifolds and almost Hermitian manifolds. Suppose that M = (M, g) is
a four-dimensional compact oriented Riemannian manifold. Then, by the Chern—Weil
theorem together with the Hirzebruch signature theorem, the signature 7(M) of M is
given by

1

M =15n

/ (WP = W 2)av. 3.1
M

Similarly, the generalized Gauss—Bonnet theorem, the Euler characteristic x (M) of M
is given by

52

x(M)=i W2 w12 + 2 — LiRico)? tav (3.2)
872 [y 24 2 ' ‘

The following result is due to Wu [26].

Theorem 3.1. Let M = (M, J) be a four-dimensional compact almost complex mani-
fold. Then we have

c1(M)* = 2x (M) + 3t (M),
where c1(M) is the first Chern class of M.

In [13], Hitchin proved that a four-dimensional compact oriented Einstein mani-
fold M = (M, g) must satisfy the following inequality (known as Hitchin—Thorpe
inequality):

3
x(M) > EIT(M)I.

This result gives a topological obstruction for the existence of Einstein metrics on a
four-dimensional compact oriented manifold.

Now, we shall discuss four-dimensional almost Kihler Einstein manifolds satisfying
the conditions (W I)—(W III) interpreted in § 2 respectively.

First, consider the condition (W I). Armstrong [5] proved the following.

Theorem 3.2. IfM = (M, J, g) is afour-dimensional compact almost Kihler Einstein
manifold, then s = s* holds somewhere on M.

From the above Theorem 3.2, we have readily the following.

Corollary 3.3. ([S]) A four-dimensional compact almost Kdihler Einstein manifold
with constant x-scalar curvature is necessarily Kchler.

The present authors obtained the local version of the above Corollary 3.3 [20].
Secondly, consider the condition (W II). In [19], the authors proved the following.
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Theorem 3.4. Let M = (M, J, g) be a four-dimensional almost Kdhler Einstein and
x-Einstein manifold. Then M is Kdhler Einstein.

From the above Theorem 3.4 and (2.23), we have readily the following.

Corollary 3.5. A four-dimensional almost Kihler manifold of constant sectional cur-
vature is a flat Kdhler surface.

We remark that the assertion of the above Corollary 3.5 is also valid for higher dimen-
sional case (cf. [6]). Further, in [21], the authors and Yamada proved the following.

Theorem 3.6. Let M = (M, J, g) be a four-dimensional strictly almost Kdhler Ein-
stein and weakly x-Einstein manifold. Then, M is a Ricci-flat space of pointwise con-
stant holomorphic sectional curvature s* /8 (and hence self-dual).

Armstrong [6] obtained more detailed result than the above Theorem 3.6.

Corollary 3.7. Every four-dimensional compact almost Kahler Einstein and weakly
x-Einstein manifold is Kdhler Einstein.

Thirdly, we discuss the condition (W III). In [1], Apostolov and Armstrong proved
the following.

Theorem 3.8. Any four-dimensional compact almost Kéihler manifold M = (M, J, g)
with J-invariant Ricci tensor and Hermitian Weyl tensor is Kdhler provided that
Sx(M)+6t(M) #0.

For a four-dimensional compact oriented (non-flat) Einstein manifold, the topological
condition stated in the above Theorem 3.6 is verified as a consequence of the Hitchin—
Thorpe inequality. Thus, we have

Corollary 3.9. ([1]) Any four-dimensional compact almost Kihler Einstein manifold
with Hermitian Weyl tensor is Kdhler.

Next, we discuss briefly four-dimensional almost Kéhler manifolds satisfying the
Gray conditions (G), (G2), (G3) interpreted in § 2.

First, it was proved that the equality AX; = K holds locally. In [2], Apostrov,
Armstrong and Draghici proved the following result.

Theorem 3.10. The equality AK; = K for every four-dimensional compact manifold.

We remark that the example of Davidov and Muskarov [8], multiplied by compact
Kihler manifolds, show that even in the case, the inclusion AKX, D K is strict in
dimension 2n > 6. We must also remark that there are known several examples of
four-dimensional strictly non-compact almost Kihler manifolds belonging to the class
AK including the example by Kowalski [15]. It was shown that the inclusion AKX D
AK3 is strict. In four-dimensional compact case, Draghici [9] proved that the equality
AK3 = K holds for four-dimensional compact manifold with second Betti number
equal to 1.

As mentioned in § 1, the Goldberg Conjecture is still open in the case, where
the scalar curvature is negative. In [14], Itoh gave a partial affirmative answer to the
conjecture for the remaining case by making use of the Seiberg—Witten theory developed
by Taubes and LeBrun.
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Theorem 3.11. Let M = (M, J, g) be a four-dimensional compact almost Kdihler
Einstein manifold with negative scalar curvature s. If the equality

/ s2dV = 32725 (M) + 3t (M)} (3.3)
M

holds, then M is Kdihler Einstein.

We note that the equality can be rewritten as
/ s2dV = 32x%ci (M)?
M

by virtue of Theorem 3.1. Quite recently, Sato [22] obtained an improvement of the
above Theorem 3.11 without the Siberg—Witten theory, proved the following.

Theorem 3.12. Let M = (M, J, g) be a four-dimensional compact almost Kdihler
manifold with w(§W) = 0. If the equality (3.3) in Theorem 3.11 holds, then M is
Kdhler Einstein.

We shall introduce here the sketch of the proof. First, let M = (M, J, g) be a four-
dimensional almost Kéhler manifold. By making use of the formulas (2.19)—(2.23), we
can deduce the following formula

As*? = —8||Rp|1* — 2(|IRic*||* — (Ric*, Ric))
- Z Vi((6R)iki JijJu) + Z(8R)ikl~]ijvj~]kl
—4) ViV JjaRic}). (3.4)
We assume further that the manifold M under consideration is compact and satisfies

the condition 7 (§ W) = 0. Then, by (2.14), we get mdr(Ric — (s/6)g) = 0. By using
this equality, we may get

Z((SR)iliijVj Jki = 0. (3.5)
Now, taking account of (2.26), we get

|Ric*||> — (Ric*, Ric) = ||skewRic*||? + |lsymRic*||? — (symRic*, inv Ric)

= |IskewRic*||> + %(symRic*, )

= |IskewRic*||> + ;(s* —5). (3.6)
From (2.15), we get

1 s\2 1 .
W12 = — (s* _ 5) + 5 liskewRic™ |2 + [ WL I 3.7)
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Integrating (3.4) and taking account of (3.5), we have the following integral formula
4/ IRLm AV + / |Ric*||2dV — / (Ric*, Ric)dV = 0. (3.8)
M M M
Since Ry s does not have trace-free Ricci tensor as its part, by (2.13), we have
5 s 2 5 S 5 \2
IRl = |Wew + Stdiu|” = I1Wew P + S TraceWea) +2 ()
12 6 12

Since Trace(W ™) = 0, we have

L/, s
Trace(Wry) = ~1 (s — —) .

Hence, we obtain

AN S
IRLMI? = WLl — — TRETS (3.9)

Substituting (3.6) and (3.9) into (3.8), we have

ss* 52
0=4 %% - — dV
/M(n Ll +36>
1 1
+2/ (nvv*n2 IWLml? ‘E(s*‘§> >"V+Z/ s*(s* — 5)dV
M
—Z(f ||WLM||2dv—— (-2 )
2
N .
+ /M (2||W+||2 -5 §||R100||2> dv

3 1
+ —/ (s* —$)%dV + —/ IRico||?d V.
16 Jy 2y

Thus, from the assumption (3.3) in Theorem 3.11 and the formulas (3.1) and (3.2), we

have finally
2 / Wy al2dV — L (s* — f)zdv
Lm 32 3

3
+ —/ (s* —5)%dV + —/ [Rico[|?dV = 0. (3.10)
16 i 2 Ju

In general, for k x k symmetric matrix A, we have Trace(A2) > (Trace(A))> /k, and
the equality holds if and only if A = ¢ (§;;) for a constant c. Since we may regard Wy
as a 2 x 2 symmetric matrix pointwisely, we have

1 2
IWewl? = Trace(Weu? = 3 (TraceWew)? = 55 (s* = 5)

Thus, we see that each term of the right hand side of (3.10) is non-negative, we must
have s* — s = 0 and Rico = 0 on M, and hence, M is Kihler Einstein.
As a corollary of Theorem 3.10, we may easily show the following.
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Corollary 3.13. Let M = (M, J, g) be a four-dimensional compact almost Kdihler
Einstein manifold with negative scalar curvature. If M satisfies

/ s2dV < 24/ IW|2dVv,
M M

ormore strictly if |s| < 276 | W at each point of M, then M must be Kahler Einstein.
Here, W is the self-dual Weyl curvature operator of the metric g.

As an application of the above Corollary 3.13, Lemence and the authors proved the
following.

Theorem 3.14. ([16]) Let M = (M, J, g) be a four-dimensional compact almost
Kdihler Einstein manifold with negative scalar curvature. If M satisfies

/ {4||skewRic*||? + s(s* — 5)}dV > 0,
M

then M is Kdhler Einstein.

In [3], Apostolov, Draghici and Moroianu discussed the possibility of the existence
of counter examples to the Conjecture. More precisely, they asserted that if there exists
a compact irreducible Kdhler surface with two distinct constant negative Ricci eigen-
values, then we can construct a compact strictly almost Kihler Einstein manifold with
negative scalar curvature, namely, a counter example to the Goldberg conjecture. Fur-
ther, they considered the structure of such Kdhler surfaces. It must be also remarked that
they obtained examples of non-compact homogeneous strictly almost Kéhler Einstein
manifolds of dimension 2n(> 6) with negative scalar curvature.

4 Examples

Until recently, it was not known whether or not there exist local examples of strictly
almost Kéahler Einstein manifold at all. The first such example was given by Nurowski
and Przanowski [ 18], and then the example was generalized to give a family of examples
by Tod. Tod’s examples are all special cases of the Gibbons—Hawking ansatz and
constructed from hyper-Kihler manifold by considering the opposite almost complex
structure. Tod’s examples are all Ricci-flat and weakly *-Einstein which are not -
Einstein. This fact supports the assertion of Theorems 3.4 and 3.6. In [4], Apostolov,
Gauduchon and Calderbank gave a local example of 4-dimensional strictly almost
Kihler Einstein (Ricci-flat) and not weakly *-Einstein manifold. We herewith explain
their example. To do this, let S be a unit sphere with the canonical metric gs2 and
% the corresponding Riemann sphere with the canonical symplectic structure wy.
Let (x,y) be a local coordinate system around north pole N of S? defined by the
stereographic projection form N to the plain containing the equator. Then we have
g = f2dx* + dy?), ws = f?dx A dy, where f = 2/(1 + x? + y?). Further,
let W be a positive harmonic function defined on a neighborhood D of the north
pole N and chose a smooth function V on D in such a way that H = V +iW



232 T. Oguro and K. Sekigawa

1 3

is a non-constant holomorphic function on D. We define 1-forms e’, e2, &3, ¢* on

M:{(xﬂyazvt)€R4|(.x,y)eD, Z>O, teR}by

e =Wz fdx, e =Wz fdy, 4.1)

_d s _ dt+ N
e = Z e ( a)

where « is a 1-form on D satisfying da = Wws = f?>W dx A dy. Here, we define
almost Hermitian structure (J, g) on M as follows:

4
g:Zei@)ei, Q:el/\ez+e3/\e4, 4.2)

i=1

where €2 is the corresponding Kéhler form of (J, g). Then, we may easily check that
d2 = 0 (and hence, (M, J, g) is an almost K&hler manifold). Furthermore, we may
also observe that (M, J, g) is a Ricci-flat strictly almost Kédhler manifold, and the Ricci
x-tensor Ric* is given by

Wi+ Wy 0 W, W,
W3 f2 W2 f W2f
Wi+ wr o ow, W,
) wW3f2 w2 T Low?2
e Wf s EAEEL N R
_ X _ y X y
W2 f W2 f  ZW3f2
2 2
W,V Wy 0 Wx + Wy
W2f W2 f W3 f2

and hence (M, J, g) is not weakly *-Einstein.
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Summary. Let o be an involution of a real semi-simple Lie group U, U, the subgroup fixed
by o, and U/ U, the corresponding symmetric space. Ferus and Pedit called a submanifold M
of a rank r-symmetric space U/ Uy a curved flat, if T, M is tangent to an r-dimensional flat of
U/Uj at p for each p € M. They noted that the equation for curved flats is an integrable system.
Bryant used the involution o to construct an involutive exterior differential system Z, such that
integral submanifolds of Z,, are curved flats. Terng used r first flows in the U/ Uy-hierarchy of
commuting Soliton equations to construct the U/ Uy-system. She showed that the U/ U,-system
and the curved flat system are gauge equivalent, used the inverse scattering theory to solve the
Cauchy problem globally with smooth rapidly decaying initial data, used loop group factorization
to construct infinitely many families of explicit solutions, and noted that many of these systems
occur as the Gauss—Codazzi equations for submanifolds in space forms. The main goals of this
paper are: (i) give a review of these known results, (ii) use techniques from Soliton theory to
construct infinitely many integral submanifolds and conservation laws for the exterior differential
system Z, .

1 Introduction

Let G be a complex semi-simple Lie group, T an involution of G such that its differential
at the identity e is complex conjugate linear, and ¢ an involution of G such that the
differential is complex linear. Assume that

To0 =o0T. 6]

Let U be the fixed point set of 7, i.e., a real form of G. We will still use 7, o to denote
dt, and do, respectively. Let G, U denote the Lie algebras of G and U respectively.

* Research supported in part by NSF Grant DMS-0306446 (C.-L. Terng) and by Post-doctoral
fellowship of MSRI (E. Wang).



236 C.-L. Terng and E. Wang

Since ¢ and T commute, o (U) C U. So o|U is an involution of U. Let Uy, U denote
the +1, —1 eigenspaces of o on /. Then,

(U, Upl C Uy, [Up, U] C UL, U, U] C Up.

The quotient space U/ Uy is a symmetric space, and the eigen-decompositiond = Uy +
U, is called a Cartan decomposition. Ferus and Pedit [8] called a submanifold M of a
rank r symmetric space U/ Uy a curved flat if T, M is tangent to an r -dimensional flat of
U/ Uy at p foreach p € M. They noted that the equation for curved flats is an integrable
system. Bryant [6] used the involution o to construct a natural involutive exterior
differential system Z, such that integral submanifolds of Z, in U project down to
curved flats in U/ Uy. Terng [12] used r first flows in the U / Up-hierarchy of commuting
Soliton equations to construct the U/ Up-system. She showed that the U/ Up-system
and the curved flat system are gauge equivalent, used the inverse scattering theory
to solve the Cauchy problem globally with smooth rapidly decaying initial data [12],
used loop group factorization to construct infinitely many families of explicit solutions
[14], and noted that many of these systems occur as the Gauss—Codazzi equations for
submanifolds in space forms [12, 15]. The main goals of this paper are: (i) review some
of these known results, (ii) use techniques from Soliton theory to construct infinitely
many integral submanifolds and conservation laws for the exterior differential system
Zs. We review the definitions of these systems next.
An element a € U] is called regular if

(1) A:={y € Uy |la, y] = 0} is a maximal Abelian subspace in U,
(i) Ad(Up)(A) is open in Uj.

Let (, ) be an ad-invariant, non-degenerate bilinear form on /. Given a linear sub-
space V of U let

Vi={yelU|(y,V)=0}.

Assume that U/ Uy has rank r. Let A be a maximal Abelian subspace in U], and let
ai,...,ar € Abe regular and form a basis of A. The U/ Uyp-system (cf. [12]) is the
following PDE for v : R" — U; N A*:

lai, vx;] = [aj, vg ] = [lai, v], [aj, 0], 1<i#j<r 2

These systems occur naturally in submanifold geometry. For example, the Gauss—
Codazzi equations for isometric immersions of space forms in space forms [2, 9, 12],
for isothermic surfaces in R” [2, 7], and for flat Lagrangian submanifolds in C” or in
CP™ [15].

The U/ Up-system also arises naturally from Soliton theory (cf. [12]). In fact, given
1 <i <r,b e A, and a positive integer j, the (b, j)-th Soliton flow in the U/ Ujy-
hierarchy is a certain partial differential equation for v : R?> — U N A*L:

vy = Py j(v).

For example, the second flow in the SU (2)-hierarchy is the NLS (non-linear Schrodinger
equation), the third flow in the SU (2) /S O (2)-hierarchy is the modified KdV equation,
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and the first flow in the SU (3)/S O (3)-hierarchy is the 3-wave equation. The U/ Up-
system (2) is given by the collection of the (a;, 1)-flows with 1 < j < r in the
U/ Up-hierarchy.

The curved flat system associated to U/Uy (cf. [9]) is the following first-order
system for (Ay, ..., A;) : R" — []i_, Us:

(Adx; = (Ajx, P F# ],
[Ai. Aj] =0, i#J.

It is known that solutions of the curved flat system give rise to curved flats in U/ Uy [8].

Let @ = g~ !'dg be the Maurer—Cartan form on U. Write & = a9 + o} with respect
to the Cartan decomposition U = Uy + Uj. Let Z; be the exterior differential ideal
generated by . It was observed by Bryant [6] that (U, Z,,) is involutive and the PDE
for the exterior differential system Z, is the curved flat system (3).If f : O — U isa
maximal integral submanifold of the exterior differential system (EDS) (U, Z, ), then
f*(ag) = 0. The Uy component of the Maurer—Cartan equation do + (1/2)[er, @] = 0
gives,

3)

1
dag + 5([010, ool + a1, o1]) = 0.

So f*([a1,@1]) = 0. This implies that f_ldf is U;-valued and the subspace
f~Hm(df,) is Abelian for all p € O. This means that (f~'fy,,..., f71f,) isa
solution of the curved flat system (3) with respect to any coordinate system y. Using
the Cartan—Ké&hler Theorem we can see that the curved flat system should only depend
on n functions of one variable, where n = dim(l{;) — r. But the curved flat system
(3) is a system of »(r — 1)/2 equations of nr functions. This indicates that the curved
flat system has many redundant functions and we probably can use geometry to find
a special coordinate system on integral submanifolds so that their PDE involves only
n functions. This is indeed the case. We can find a special coordinate system x on an
integral submanifold of (U, Z, ), so that the corresponding PDE written in x coordinate
is gauge equivalent to the U/ Uy-system.

Since the curved flat system is gauge equivalent to the U/ Up-system, we can use
techniques from Soliton theory to construct infinitely many explicit integral submani-
folds and conservation laws for the exterior differential system Z,, .

This paper is organized as follows: We explain the gauge equivalence of the U/ Up-
system and the curved flat system in Section 2, give a brief review of theory of exterior
differential systems in Section 3, and give Bryant’s proof that the exterior system Z, on
the Lie group U is involutive in Section 4. Finally, in Section 5, we explain how to use
the Birkhoff loop group factorization to construct infinitely many families of explicit
solutions and commuting flows for the U/ Up-system and conservation laws for Z,.

2 The U/ Uy-system

Let G, t, 0, U, Uy be as in Section 1, U/ Uy the corresponding symmetric space, U =
Up + U its Cartan decomposition, and ( , ) be an ad-invariant, non-degenerate bilinear
form on Y.
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Note that the U/ Up-system (2) can also be defined invariantly as a system for maps
v: A — U NAL, sothat [da, v]is flat, where da means the differential of the identity
map a(§) = & on A. When we choose a basis ay, ... , a, of A, the system becomes
(2). Changing basis of .A amounts to a linear change of coordinates of R”.

The U/Up-system (2) and the curved flat system (3) are gauge equivalent. To
explain this, we first recall some known propositions, which can be proved by direct
computations.

Proposition 2.1 The following statements are equivalent for smooth maps
u :R"—> G, 1<i <n:

Yo'y uidx; is a flat G-connection 1-form on R",

the first-order system Ey, = Eu;, 1 <i <n is solvable,

there exists g : O — G such that g~'dg = Yo', uidx; for some open subset O
of the origin in R".

W=

Proposition 2.2 ([12]) The following statements are equivalent forv : R* — UjNA~L:

1. v is a solution of the U/ Uy-system (2),
2. Z;=1 [ai, vldx; is a U-valued flat connection on R,
3.

O = Y _(aik+ [ai, v])dx; )
i=1

is a G-valued flat connection on R" for all parameter ). € C,
4. thereisans € R, so that 6y = Z;zl (ajs+a;, v])dx; is ald-valued flat connection

onR",
Proposition 2.3 A smooth map (A, -+, A;) : RN — ]_[;:1 U is a solution of the
curved flat system (3) associated to U /Uy if and only if

,
w) = Z MA;dx;
i=1

is a flat G-valued connection 1-form on R” for all ). € C.

The flat connections 6, and w;, are called Lax connections of the U / Up-system and
the U/ Up-curved flat system.
A map & : C — G is said to satisfy the U/ Uy-reality condition if

TEGR) =50), o(ER) =§(=2).

It follows from the definition that £(A) = ) j &; AJ satisfies the U / Uy-reality condition
ifandonlyif&; € Uy, if jisevenand§; € U, if j is odd. Note that both Lax connections
0, and w,, satisfy the U/ Up-reality condition.

It follows from Proposition 2.1, that if v is a solution of the U/ Up-system then there
exists a unique E(x, A) so that

ET'E,, =air+1la;,v], 1<i<r,
E(, 1) =e.
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Since 6, satisfies the U/ Up-reality condition, E also satisfies the U/ Up-reality condi-
tion:

T((E(x, 1) = E(x,A), o(E(x,1) = E(x,—A).

We call such E the parallel frame of the Lax connection 6, associated to v.
The following proposition says that solutions of the U/Up-system give rise to
solutions of the curved flat system.

Proposition 2.4 ([15]) Letv : R" — U N AL be a solution of the U/ Uy-system (2),
and E(x, A) the parallel frame of the corresponding Lax connection 0,_defined by (4).
Let g(x) = E(x,0),and A; = gaig_lfor 1<i <r. Then,

(1) the gauge transformation of 0 by g is

.
gx0, =y hgaig”'dx;,
i=1

@ii) (A, ..., Ay) is a solution of the curved flat system (3).

Theorem 2.5 ([9]) If (A1, ..., A,) is a solution of the curved flat system (3) associ-
ated to U/ Uy, then there exists [ : O — U such that f_lfxi =A;foralll <i<r,
and w(f) is a curved flat in U/ Uy, where m : U — U/Uy is the natural projec-
tion. Conversely, every curved flat in U /Uy can be lifted to a map f to U so that
(f7! faiv oo f! fx,) is a solution of the curved flat system (3).

A direct computation implies

Proposition 2.6 If (A1, --- , A,) is a solution of the curved flat system (3) associated
to U/ Uy, then there exists a smoothmap f : R" — U suchthat f satisfies the following
conditions:

f_lfxi EZ/[],

5
[f~' fu. f fy;] =0, foralli # ). ©)

Conversely, if f : R" — U is an immersion satisfying (5), then

F fas oo s 70D
is a solution of the curved flat system (3).
An immersed submanifold f : O — U is called flat Abelian [15], if

L [fy, fy;]=0foralll <i#j<n,
2. the induced metric on O is flat.

The following theorems give explicit algorithms to construct flat Abelian submanifolds
inU; and curved flats in the symmetric space U/ Uy from solutions of the U / Uy-system.
The proofs can be found in [15].
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Theorem 2.7 ([15]) Let v and E be as in Proposition 2.4. Set
BE
Y=—E'la=0.
ER

Then Y is an immersed flat Abelian submanifold in U,. Conversely, locally all flat
Abelian submanifolds in U can be constructed this way.

Forge Uandx € U,
gxx=gxa(g)”
defines an action of U on U (it is called the o -action). The orbit at e is
={go(® g U} CU.

Since the isotropy subgroup at e is Uy, the orbit M is diffeomorphic to U/ Uy. In fact,
M is a totally geodesic submanifold of U and is isometric to the symmetric space
U/ Uy. This is the classical Cartan embedding of the symmetric space U/ Up in U.

Theorem 2.8 ([15]) With the same assumption as in Theorem 2.4, set
Y(x)=E@x, DEx, —1)"L

Then  is a curved flat in the symmetric space U/Uy. Conversely, locally all curved
flats in U/ Uy can be constructed this way.

Theorem 2.9 Let O be an open neighborhood of 0 € R". If f : O — U is an
immersion satisfying (5), then there exists a local coordinate system x near 0, a regular

basis {ai, ... , a;} of the maximal Abelian subspace A = Im(dfy), g : O — Uy, and
a solutionv : R" — Uy N A+ of the U/ Uy-system (2), so that
[ fo = gaig™!,
-1 (6)
8 &y =lai, vl

Conversely, if v is a solution of the U/Uy-system, then f(x) = E(x, )E(x, 0)~!
satisfies (5) and (6), where E(x, X) is the parallel frame for the Lax connection 6,
corresponding to v.

Proof. Since generically all maximal Abelian subalgebra are conjugate under elements
of Up, there exist g : O — Uy and by, - -+ , b, : O — A such that

filfyi = gbigilf

for 1 <i < n. A direct computation implies

0=d(df)=d (f Zgb,-g—ldyi)

= fZ(g(bz)y, + [8y;8 l,gbig_l]) dyj N dyi
J#

= fg (Z((b»y,. — [bi. g gy, Ddy; A dy,-> g
J#i
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This implies that
(bi)y, = [bin g™ gy, 1 = b))y, — [bj. 87 gy ), ()
foralli # j. Let (, ) denote a non-degenerate ad-invariant bilinear form on . Then,
(A, [A, U]) = 0and (IUa, [A U] = 0.So [A, U] C Uy and [A, U] C AL. Also we
have

Uy = A® (A nuy).

Note (b;)y; € A and [b;, g’lgyj] € [A, Up] is contained in AL. By (7), we get

(bi)yj = (bj)y, ’ (Sa)

[bi, g~ gy 1 =1bj, 87 gy, (8b)

forall 1 <i # j < n. Equation (8a) implies that Z:': 1 bidy; is closed. So, there
exist a local coordinate change x = x(y) and constant ay, ... ,a, in A, such that

Yoo bidyi =Y i aidx;.

Let 8 = 3", b;dy;. Equation (8b) can be rewritten as [, g~'dg] = 0. Write
and g~'dg in x coordinate to get f = Y7, a;dx; and g7 'dg = Y I_, g7 g, dx;.
Then,

0=1[8.¢ 'dgl = lai. g gx;ldxi Adx;.
i#]

So we have
I:ai’ g—lng] = [aj’ g_lgxi], Vi # J

Up to a linear change of coordinates of x, we may assume that ¢;’s are regular. Note
the kernel of ad(a;) on U is A, and the tangent plane of the orbit Ad(Uy)(a;) at a;
is [a;, Up]. By assumption Ad(Uy)(A) is open in ;. So the dimension of the tangent
plane of the principal Ad(Up)-orbit at a; is equal to dim(4;) — dim(A). Thus, ad(a;)
maps AL N isomorphically onto 2y N (Z/IO)JA, where Uy) 4 = (€ € Uy | [&, A] = 0}.
Then, by (8b), there existsav : O — U] N A+, so that

g_lgx,- =[a;,v], 1=<i<n.

But g_ldg = ) ;lai, vldx; is a flat connection. By Proposition 2.2, v is a solution of
the U/ Up-system (2).
To prove the converse, note that

.
E7'dE =0, =) (@i + [a;, v])dx;.
i=1

Set g(x) = E(x,0) and F(x,1) = E(x, )E(x,0)"! = E(x,\)g(x)~". A direct
computation implies that
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-
FlaF = go g7 —dgg™' = Z)Lga,-g_ldx,-.
i=1

Note f(x) = F(x,1).So f~ldf =>/_, gaig'dx;.

Remark 2.10. The maps g and v in Theorem 2.9 are essentially unique. To see this,
suppose we have g, g, so that

gaig ' =gaig7 = 7 fs

g_lgxi = [a;, v], and g-lgx,. = [a;, v]. Since g_lgval- = a;, there exists (Up) 4-valued
map A such that g='g = h, i.e., § = gh. But,

&% =lai, 01 = h a;, vl + h 'y,
= [a;, h " "wh]+h~'h,, € Z/lj +Uy.

Thus,
h='h,, =0,
[ai, h~'vh] = [a;, D].

The first equation implies /4 is a constant. Since h="h € Uy N A+ and ad(q;) is
injective on U; N AL, the second equation implies that A~ 'vh = ©. This proves that
g = gh and © = h~'vh for some constant & € (Up) 4.

3 Basics of exterior differential systems

We give a brief account of Cartan—Kéhler theory based on the lectures given by
R. Bryant at MSRI in 1999 and 2003 (cf. [3] for details and references).

Let M be a smooth manifold, and Q*(M) the graded algebra of differential forms
on M. An ideal Z of Q*(M) is called a differential ideal, if T satisfies the following
conditions:

L. I=@,;T/, where T/ = Q/(M) N T;
2.dT C1T.

An exterior differential system (EDS) is a pair (M, ) consisting of a smooth mani-
fold M and a differential ideal Z C Q*(M).

A submanifold N C M is called an integral submanifold for the EDS (M, T) if
i*Z =0, wherei : N — M is the inclusion. In local coordinates, this condition can
be written as a system of PDE (or ODE).

A linear subspace £ C T, M is said to be an integral element of I if ¢|g = 0
for all ¢ € Z. The set of all integral elements of Z of dimension n is denoted v, (Z).
A submanifold of M is an integral submanifold of Z if and only if each of its tangent
space is an integral element of Z.

Note that v, (Z) N Gr, (T, M) is a real algebraic sub-variety of Gr, (T, M), which
may be very complicated. The set of ordinary integral elements v}, (1) C v,(Z) consists
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of those which are locally cut out ‘cleanly’ by finite number of n-forms in Z, so that
the connected components of vj, (Z) are smooth embedded submanifolds of Gr, (T M).
The rigorous definition can be found in [3].

Let {e1, - -- , e,} be a basis of the linear subspace E of T, M. The polar space of
E is defined to be the vector space,

H(E)={veT,M|¢(,e,--,e) =0forallp € 7"}

When E € v,(Z), a (n + 1)-plane E™ containing E is an integral element of Z if and
only if E¥ C H(E). Define

r(E) = dim H(E) — dim E — 1.

This integer may jump up at certain points. An ordinary integral element E is called
regular if r is locally constant in a neighborhood of E in vJ(Z). The set of regular
integral elements is denoted v, (Z) and is a dense open subset of v}, (Z). Thus, v, (Z) C
v(Z) C va(Z) C Gry(TM). An integral submanifold is called regular if all of its
tangent spaces are regular integral elements.

We state the following two theorems that are given in [5]:

Theorem 3.1 (Cartan-Kéhler Theorem) Suppose (M, T) is a real analytic EDS and
that N C M is a connected real analytic regular n-dimensional integral submanifold
of Zwithr(N) > 0. Let R C M be a real analytic submanifold of codimension r(N)
containing N, such that

dm(T,RNH(T,N))=n+1, forallp € N.

Then, there exists a unique connected real analytic (n + 1)-dimensional integral sub-
manifold N suchthat N C N C R.

A regular flag is a flag of integral elements
0)=EyCE C---CE,=ECT,M,

where E; € v; (Z)for0 < j < nand E, € v,(Z). Note that E,, may not be regular, but
one can show that it must be ordinary. By applying Cartan—Ké&hler Theorem repeatedly
to this flag, one can show that there is a real analytic n-dimensional integral manifold
N C M passing through p and satisfying 7, N = E. Set

¢(E;) = dim(T,M) — dim H(E).

Theorem 3.2 (Cartan’s Test) Let (M,Z) be an EDS, and F = (Eg,---, E,) an
integral flag of T. Then v, (Z) has codimension at least

c(F) =c(Ep) + -+ c(En—1)

in Grp,(TM) at E,. Moreover, F is a regular flag if and only if v,(Z) is a smooth
submanifold of Gr,(T M) in a neighborhood E,, and has codimension exactly c(F).
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The Cartan characters of the flag F are the numbers
sj(F)=dim H(E;_|) —dim H(E}), 0<j<n,

with the convention ¢(E_1) = 0 or H(E_1) = T,M. These numbers exhibit the
generality of integral submanifolds. Roughly speaking, the integral manifolds near N
will depend on sg constants, s1 functions of one variable, - - - , s, functions of n variables.

A connected open subset Z of v (Z) is called involutive if every E € Z is the
terminus of a regular flag. When Z is clear from the context, we simply say that our
EDS (M, 7) is involutive.

Suppose (M, T) is an EDS with n-dimensional integral submanifold. A conserva-
tion law for (M, T) is an (n — 1)-form ¢ € Q"= 1(M) such that d(f*¢) = 0 for every
integral submanifold f : N" < M of Z. Actually, one only considers as conservation
laws those ¢, such that d¢ € Z. Two “trivial” type of conservation laws are ¢ € 7"~ ! or
¢ being exact on M. Factoring out these cases, the space of conservation laws is defined
tobe C = H"~1(Q*(M)/T). It also makes sense to factor out those conservation laws
represented by closed (n — 1)-forms on M (then the quotient space is called the space
of proper conservation laws). One can study the symmetries of the EDS and then apply
Noether’s Theorem to compute the corresponding conservation laws (cf. [4] for details).

4 Involutivity of the EDS

Let G, t, 0, U, Uy and U be as in Section 1. Let & be the canonical left-invariant 1-form
¢ 'dg on U. Write

o =a+al,

with respect to the Cartan decomposition I/ = Uy + U;. The Uj-component of the
Maurer—Cartan equation da + (1/2)[«, o] = 0 gives

dag + 3 (a0, @] + [er1, 1 ]) = 0,
day + [ag, a1] = 0.

Let Z, € Q*(U) be the differential ideal generated by the components of «y. It
follows from the Maurer—Cartan equation that
15 = (ao, dao)
= (a0, [o1, 1]).
Here ( , ) denotes the algebraic ideal generated by the enclosed forms.
The following Proposition was proved by R. Bryant.
Proposition 4.1 ([6]) The EDS (U, L) is involutive.

Proof. Since everything is homogeneous, we only need to look at the integral elements
E C T.U = U. Note that E C Uy = Njxiker(a;). For E = (0) € v(Z,), we
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have H(E) = U and vo(Z,) = U. Thus, v9(Zs) = vj(Zs) = vy(Zs). Now consider
E =Rx € v (Z,) for some x € U; — {0}. Its polar space is

H(E) = {y € Ui|[x, y] = 0},

since [o1, @1]e(x, ¥) = [x, y]. For generic such x, H(Rx) will be a maximal Abelian
subalgebra of /], and set dim H (Rx) = dim A = r. Therefore,

v1(Zs) = Ui)(z-o) 2 U?(IU)

Furthermore, when Rx € v{(Z), every subspace E of H(Rx) containing Rx is
also regular and has H(E) = H (Rx). Thus, generic E € v?(Z,) is the terminus of a
regular flag, and our EDS is involutive. In fact, every regular integral curve of Z,; lies in
aunique r-dimensional integral submanifold of Z,;, or locally the integral submanifolds
depend on sp = dimU — dim U] constants and s; = dim({4]) — r functions of one
variable (since sp = --- =5, = 0).

Corollary 4.2 Let O be an open subset of R”, and f : © — U an immersion. Then
the following statements are equivalent:

1. f is a r-dimensional integral submanifold of (U, Z),
2. f satisfies (5),
3. (f_lfxl, e, f_lfxr) is a solution of the curved flat system (3).

Hence the PDE for the EDS (U, Z,) is the curved flat system (3) associated to
U/Uy.

As a consequence of the Cartan—Kihler Theorem 3.1, Proposition 4.1 and
Corollary 4.2, it follows that the real analytic curved flats in U /Uy or the real ana-
lytic solutions of the curved flat systems (3) depend only on dim (4 N AL) functions
of one variable along a non-characteristic line.

By Theorem 2.9, there is a special coordinate system x on R, so that the curved flat
system (3) written in x coordinate system is gauge equivalent to the U/ Up-system (2).
The Cartan—Kihler theory implies that the Cauchy problem of the U/ Up-system has a
unique local solution for any given local real analytic initial data on the x;-axis. But, it
was also proved in [12], using the inverse scattering theory of Beals and Coifman [1],
that given any smooth rapidly decaying function vy : R — 4 N A", there exists a
unique smooth solution v : R” — ; N AL so that

v(x1,...,x) =vo(x1,0,...,0).

Although the theory exterior differential system seems to give a weaker result concer-
ning the Cauchy problem, it may prove to be a very good tool to detect “integrability”.

Remark 4.3. Let G, t, U be as above, and p an order k automorphism of G so that dp,
is complex linear. Assume that
0 = ,o_lr_l.

Let G; denote the eigenspace of dp, with eigenvalue e@mij/k) and K; =UNG;. Then,
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U=Ko+- -+ Ki-1. )
Leta = g~ 'dg, and

a=oao+t-+og-1,

the decomposition of « with respect to (9). Let Z,, denote the differential ideal on U
generated by «g, o2, ... , ak—1. Then,

Iy = (a0, a2, ..., 061, dag, do, ..., dog_1)
= (o, a2, ..., a1, [a1, a1]).

We define regular elements in /C; the same way as before, namely, a € K is regular if
it is contained in a maximal Abelian subspace A in K| and Ad(Uy)(A) is open in ;.
If K1 admits regular elements, then the proof of Proposition 4.1 works for (U, Z,). In
fact, in this case, we have:

1. (U, Z,) is involutive.

2. Ifdim(A) = r, then any r-dimensional integral submanifold depend on dim(xC;) —
dim(A) number of functions of one variable.

3. every regular integral curve is contained in a unique r-dimensional integral sub-
manifold of (U, Z,).

4. The curved flat system associated to U/K is the system (3) for (Aq,..., A/):
R" — K, and the U /K -system is the system (2) for v : R" — K;_;. Modulo a
change of coordinate system of R”, these two system are gauge equivalent.

5. Given an immersion f : R” — U, the following statements are equivalent:

a) f is an integral submanifold of (U, Z,),
b) f~!fy, € Kiand [f~! fi. ! fi;1=0foralli, j,
c) (f! N f’lfx,) is a solution of the curved flat system associated to
U/K.
6. The PDE for the EDS (U, Z,) is the curved flat system associated to U/K.

5 Conservation laws and commuting flows

We construct infinitely many conservation laws and commuting flows for the U/ Uyp-
system, and indicate how to construct infinitely many explicit solutions of the U/ Up-
system.

First we review the Birkhoff Factorization Theorem (for details see [10]). Lete > 0
be a small number, and O, = {A € C|(1/€) < |A| < oo} the open neighborhood at co
in §2 = C U {o0}. L(G) denote the group of holomorphic maps g : O¢ \ {co} — G,
L (G) the subgroup of g € L(G) such that g can be extended to a holomorphic map
in C, and L_(G) the subgroup of ¢ € L(G) that can be extended to a holomorphic
map in O, and is equal to the identity e at co.

Theorem 5.1 (Birkhoff Factorization Theorem) The multiplication map
n:L+(G) x L_(G) > L(G), (g+,8-) > &+8&-

is one to one, and the image is an open dense subset of L(G).
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In other words, for generic g € L(G), we can factor g = g4 g_ uniquely with
g+ € L1(G). Leté denote the constant map from O, \ {oo} to G with constant e. Since
e lies in the image of the multiplication map u, there is an open subset of ¢, so that all
elements in this open subset can be factored uniquely.

Let T and 6 denote the map on L(G) defined by

F@)MN) =1(g(), (G =0 (g(=1).
It is easy to check that

1. 7 and 6 are conjugate linear and complex linear involutions of L(G),

2. g € L(G) is afixed point of both T and & if and only if g satisfies the U/ Up-reality
condition: T(g(X)) = g(A), 0 (g(L)) = o (—A).

3. both 7 and & leave L1 (G) invariant.

Let L*°(G) and L%’ (G) denote the subgroup of fixed points of 7 and & of L(G) and
L+ (G) respectively. Then we have:

Corollary 5.2 The multiplication map
LY (G) x LY (G) — L™?(G)
is one to one and the image is open and dense in L*? (G).

We want to use this factorization to construct infinitely many solutions and com-
muting flows for the U/ Uy-system. Given b € A and j > 1 an odd integer, x € R’,
andt € R, lete?(x, 1) € LL7 (G) be defined by

A, H(h) = exp((a1xy + -+ -+ arx,)A + bAl1).
Given f € L"?(G), since e?(0, 0) = ¢ is the identity in L% (G) and ¢4 is smooth
from R” x R to L™ (G), by Corollary 5.2 there is an open subset of (0, 0) in R” x R
so that we can factor f~'e4 (x, r) uniquely as

et x, 1) = E(x, ym(x, 1), (10)

where E(x, ) € LY (G) and m(x, t) € L27 (G).
Given ¢ € A, let

m~tem = Qco+ Qear N F Qe P4 (11)

denote the Taylor series of (m(x, 1)~ 'em(x, 1))(A) at A = oo. Since m(x, t)(1) = e at
A = 00,

Qc0 = c. (12)

We want to explain how to compute Q. ,, m~Ydm and E~'dE next. To do this,
we take 9y, of (10) to get

f_leA(x, Hail = Exl.m_1 — Em_lmxim_l.
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Multiply E~! on the left and m on the right of the above equation and use (10) to get
m_laikm = E_lExi —m_]mx,.. (13)
Take 9; of (10) and use a similar calculation to get
m~'borAim = EE, —m'm,. (14)

Note that E~'E,; and E~'E, lie in the Lie algebra £° (G) of L7 (G), and m~'m,,
and m~'m, lie in the Lie algebra £7° (G) of L> (G). But it follows from the factori-
zation theorem that

L©G) =LY (©G) & LY (G),

as direct sum of vector spaces. Let &4 denote the £ (G) component of & € L™ (G).
Then, (13) and (14) imply that

E'E, = (m 'aymn)y, (15a)
E~YE, = (m'bmad), (15b)
m~tmy, = —(m~laima)_, (15¢)
m'my = —(m~"bmad)_. (15d)

Use (11) to see that

(m~'aim)) 1 = Qq,.0h + Qa1
(m~'bmd )y = Qpor + Qp M 4+ O

So we get

E_IEX,' = Qa,',o)\' + Qa,-,la

B . - (16)
E7TE; = Qpor + Qp1 M7 4+ Qp .
Lemma 5.3 Ifci, c; € A, then
[mflclm, milczm] =0, (17a)
m~Leim, —(m Leod™m)_] = [m™'eym, (m_lczknm)+]. (17b)

Theorem 5.4 ([12]) There exists v : R" x R — U; N AL so that
Qg1 = la;, v].

Moreover, for eacht € R, v(--- , t) is a solution of the U/ Uy-system.

Proof. By (17a),

[m_laim, m‘la,/m] =0, l<i#j=r
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So, the coefficient of A~! of the left hand side has to be zero, i.c.,
[aiv Qaj,1]+[Qai,1,aj]=0, 151#]57’

But this implies that there exists v : R” x R — U; N A+, so that

Qa1 = lai, v].
By (16) and Proposition 2.1, we see that Zi (a; ) + [a;, v])dx; is a flat G-valued con-
nection on R” for all A € C. Hence for each fixed ¢, v(--- ,t) is a solution of the

U/ Up-system.
The following is well-known (cf. [11, 13]):

Theorem 5.5
L. Qp,j(x,t) is a polynomial in u, dyv, - - -, 8){711),
2. Qp,j satisfies the following recursive formula

(Op,j)x; +[ai, v], Op, ;1 =[0b,j+1,ail, (18)
3. Oro=0b 0Qp1=1[b,v]
Proof. A direct computation gives
(m~'bm),, = [m™'bm, m™'m,,], by (15a)
=[m'bm, —(m~'a;am)_], by (17b)
= [m_lbm, (m_laikm)+].
Substitute (11) to the above equation to get

(m~'bm),, = [m™bm, a;x + ul. (19)

Compare coefficient of A=/ of A~/ of (19) to get (18). _
It was proved in [11, 13] that Qp_; is a polynomial in u;, Oy u;, . .. , 83{1._1145, where

u; = [a;, v]. Since ad(q;) is a linear isomorphism between U N At and Up N Z/lj,
(1) follows. Since m(- - - , 00) =1, Qp,0 = b. Use (18) to prove Qp,1 = [b, v].

Use (16) and Proposition 2.1 to see that
b,j - i i
O =Y (aix+ [ai, vD)dxi + (bA) + Qpahd ™'+ -+ Qp j)dt
i=1

is a flat connection on R” x R for all A € C. It follows from the recursive formula (18)
and the flat equation

d0;7 + 677 A 0]’ =0,

that we have
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[ai7v)(j]:[ajvvxi]+[[aivv]v[ajsv]]f l;é]’
[ai9vl‘]:(Qb,j)x+[[al"v]3 Qb,j]’ 1 Slfr

(20)

The first set of equations just means v(--- , ¢) is a solution of the U/Up-system for
each ¢, and the second set of equations give the flow on the space of solutions of the
U/ Up-system.

Let Ac denote the subgroup of G whose Lie subalgebrais A® C, and L} (A¢) is
the subgroup of f € Li’a(G) such that g(A) € Ac forall A € C. Given b € A and j
a positive integer, then &, ; lies in the Lie algebra £ (A ® C), where &, ; (1) = bA/.
Let ey, j(¢) be the one-parameter subgroup in Lia (G) generated by &, ;, i.e.,

ey (D) = e
It was proved in [13] that if v(x, ¢) is a solution of (20), then
ep,j(t) - v(-,0):=v(--,1)

is the dressing action of ep, ;(t) € LiJ(A(C) on the space of solutions of the U/Upy-
systems. The second set of equations of (20) is the vector field on the space of solutions
of the U/ Up-system corresponding to the one-parameter subgroup generated by &, ;.
Since the group L_ﬁ_‘” (Ac) is Abelian, the flows generated by these &, ; are commuting.
So, we have

Theorem 5.6 ([12, 13]) Given b € A and a positive integer j, the flow
[aiyvt]z(Qb,j)x,- +[[ai7v]’ Qb,j]y 1 Sl =r, (21)

leaves the space of solutions of the U/Uy-system (2) invariant. Moreover, all these
flows commute.

We sketch the method of constructing solutions of the U/ Uy-system below. Let
e (x) € LT (G) be defined by,

e = exp <Z a,-xﬂ) )
i=1
Theorem 5.7 ([14]) Given f € L™° (G), factor
[Tl = E@om™! () (22)
with E(x) € LY (G) and m(x) € L™° (G). Expand m(x)(X) at A = oo:
mx)A) =e+m_1(OA +ma(x)A 2+

Then,
1. m_1(x) ey,
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2. v = (m_1)* is a solution of the U | Uy-system, where (m_1)* is the projection of
m_1 onto Uy N AL with respect toUdy = A @® U N AL).

Proof. Use the same computation as for the proof of (15a) to conclude that
E_lExl. = (m_la,-m)Jr =a;A+ Qg 1.
Expand m(x)(X) at A = oo:
me)A) =e+m_jOA " +m_s(OAE 4.
A direct computation implies that
milaim =a; + |a;, m_l])fl + ...
Therefore, Q4,1 = [a;, m_1]. Since m € L™ (G), m_1(x) € Uj. So,
la;, v] = [a;, m ] = [a;,m_1] = Qu 1.
Hence we have shown that
E'E, =air+[a;,v], 1<i<r
By Proposition 2.2, v is a solution of the U/ Up-system.

Remark 5.8. It was proved in [14] that if each entry of f € L™ (G) is a meromorphic
function on §? = C U {oc}, then the factorization (22) can be carried out explicitly
using residue calculus. In particular, m(x)(A) and E(x, A) = E(x)(A) can be given
by explicit formulas. Therefore, we get explicit solutions v = (m_1)* for the U/ Up-
system. Since the parallel frame E(x, 1) for the solution v is also given explicitly,
it follows from Corollary 4.2 and Theorem 2.9 that F'(x) = E(x, 1) E(x, 0)~!is an
explicit integral submanifold of the EDS (U, Z,).

Next we derive conservation laws of the flows for the U/ Up-system.
Theorem 5.9 Let ¢ € A, and n a positive integer. Then,
(Qc,nvai)Xj :(Qc,n,aj)x,-: 1 5175] <r. (23)

In particular,
,
ben =D (Qcun-ai) dx; (24)
i=1

is a closed 1-form on R".
Proof. Compute directly to get
(m~'em, ai)x; = (Im~em, m_lmxj], a;), by (15¢),
= (Im~'em, —(m~'a;xm)_1, a;), by (17b),

= ([m 'em, (m_lajkm)+], a;) = (Im ‘em, ajr+ Qa;1l, ai).
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Use (11) and compare coefficient of A™" of the above equation to get

(Qc,na ai)x_,' = ([Qc,na Qaj,l]» a;) + ([Qc,n+la aj]» a;i)
= (QC,I’M [Qaj,lv ai]) + (QC,H-‘:—]: [ajv ai]) = (QC,nv [[ajv U], ai]) + O
= (QCJI’ [[ai’ U], a]]) = ([QC,I’M [ai7 U]], aj)7 by (18)9
= ((Qc,n)x,- - [Qn+1,a,-]a aj) = ((Qc,n)x,-, aj)-
If f: O — U is a r-dimensional integral submanifold of the EDS (U, Z,), then
by Theorem 2.9 and Corollary 4.2 there exist a special local coordinate system x of
O, g : © — Uy and a solution v of the U/ Uy-system (2) such that f~! fo = gaig™!

and g’1 &y, = lai,v]lforall 1 <i < r.Letx* denote the Hodge star operator for the
Euclidean space R". Given 1 <i # j <r,let

= ben A (R(dx; Adxj)) = (Z(Qc,n, ae)dxe) A (e(dxi A dx;)).
=1

Then, v/, is a closed (r — 1)-form on the integral submanifold. In other words, ./,
is a conservation law for the EDS (U, Z,) forall 1 <i < j <r, ¢ € A, and positive
integer n.

Next we derive the conservation laws for the flow (21) on the space of solutions of
the U/ Up-system (2). Given a, ¢ € A, compute

(m~tem,a); = (Im~'em,m™'m;1, @), by (15d)
= (Im~'em, —(m~'bA/m)_],a), by (17b)
= ([m_lcm, (m_lbkjm)+], a).
Substitute (11) to the above equation and compare coefficient of A ™" to get
j—1

(Qen)is@) =Y ([Qentis Qb.jil, ). (25)
i=0

Here we have used

([Qcns Qbo0l, @) = ([Qe,ns D1, @) = (Qe,ns [b,al) = 0.
We claim that
J
([ Qe Qb1 ai) =Y (Qenti-ts Qb j—i)x; (26)
i=1
We prove this claim by induction on j. For j = 1, we have
(Qc,na Qb,1]5 ai) = (Qc,n’ [Qb,l’ai]) = (QC,H7 [[ba U], ai])a

= (QC,I‘M [[aiv U], b]) = _([[aH U]v QC,"]V b)
= _([Qc,nJrlv a;l— (Qc,n)x,-, b) = ((Qc,n)x,w b).
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(We used the Jacobi identity for the first line of the computation above). This proves
(26) for j = 1. Now assume (26) is true for j and we want to prove the identity for
Jj + 1. We compute,

([Qc,nv Qb,j+l]v ai) = (Qc,nv [Qb,j+17 ai])’ by (18)

= (Qcn> (Op,j)x; + i, Op, 1)

= (Qens Qb,j)xi — ((Qendxis Ob,j) + (Qepns [uis Qb j1)
= (Qc,na Qb,j)x; - ((Qc,n)x,w Qb,j) - ([ui’ Qc,n]a Qb,j)
= (Qcn, Ob,j)x; + (@, Qcn1l, Ob,j), by (18),

= (Qcns Ob,j)x; +(a, [Qen+1, Ob,j 1

Then the induction hypothesis implies (26) is true for j + 1.
It follows from (25) and (26) that we have:

Theorem 5.10 Let v : R” x R — U; N AL be a solution of (20), ¢ € A, and n a
positive integer. Then,

Jj=1j=¢

(Qens@i)i = Y Y (Qenttrs—1, Qb j—t—s)x;- 27)

£=0 s=1

As a consequence, we see that

/]R (Qc,m ai)dxl A A dxr

is a conserved quantity for the flow (21) on the space of rapidly decaying solutions of
the U/ Up-system.
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Summary. Symmetric submanifolds are defined analogously to Riemannian symmetric spaces
in the theory of Riemannian submanifolds. This notion was introduced by D. Ferus ([2], 1980)
firstly for a submanifold of a Euclidean space and can be easily extended to a submanifold of a
general Riemannian manifold. One of the main problems is to classify symmetric submanifolds
of Riemannian symmetric spaces. This problem has been studied by several mathematicians,
and for Euclidean spaces and rank 1 symmetric spaces, complete and beautiful classifications
of symmetric submanifolds have been given. In a recent joint work [1] J. Berndt et al. study
symmetric submanifolds in irreducible Riemannian symmetric spaces of non-compact type and
rank greater than one. This finishes the above classification problem completely. In this expository
note, I would like to explain the similarity between the theories of Riemannian symmetric spaces
and symmetric submanifolds, the ideas of classification in the framework of Grassmann geometry
and our recent results.

1 Symmetric submanifolds and parallel submanifolds

Symmetric submanifolds are defined analogously to Riemannian symmetric spaces.
Riemannian symmetric spaces admit an intrinsic symmetry at each point, whereas
symmetric submanifolds admit an extrinsic symmetry at each point.

Definition 1.1. A (regular) connected submanifold M of a connected Riemannian
manifold M is called symmetric, if at each point p in M there exists an involutive
isometry ¢, of M satisfying the following:
tp(p) =p,tp(M) =M,
(tp)«X ==X forall X € T,M, (1,).& =§ forall§eT, M,

where T, M and Tle denote the tangent space and the normal space of M at p
respectively.
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The isometry t), is called the extrinsic symmetry of M at p. For the convenience of
our theory, we also define the notion of symmetric immersions.

Definition 1.2. An isometric immersion f : M — M of a connected Riemannian
manifold M into a connected Riemannian manifold M is called symmetric if at each
point p € M, there exist an isometry s, of M and an isometry ¢, of M which satisfy
the following:

sp(p) = p.tpo f = fosp, (andthent,(f(p)) = f(p))
tp)s fxX =—fiX forall X e T,M, (1,)«& =& forall§ e Tlf‘M.

A locally symmetric submanifold and a locally symmetric immersion are defined simi-
larly as the local version. The inclusion map of a symmetric submanifold (resp. a locally
symmetric submanifold) is a symmetric immersion (resp. a locally symmetric immer-
sion). By the definition above, we see that a symmetric submanifold (or a Riemannian
manifold which admits a symmetric immersion) is a Riemannian symmetric space and
that alocally symmetric submanifold (or a Riemannian manifold which admits a locally
symmetric immersion) is a locally Riemannian symmetric space.

The following two facts are fundamental in the theory of Riemannian symmetric
spaces:

(A) A Riemannian manifold M is locally symmetric if and only if the covariant deriva-
tive of the curvature tensor R vanishes, namely, VR = 0.

(B) Alocally Riemannian symmetric space is determined by the curvature tensor R at
one point.

We discuss similar properties to them.

Proposition 1.3. Let f : M — M be a locally symmetric immersion. Then, the co-
variant derivative of the second fundamental form a vanishes, i.e., Va = 0. At each
point p of M the subspaces f, T, M and T;‘M of Ty(pyM are curvature invariant. That
is,

R(fuTyM, fuTyM) . T,M C f,T,M and R(T,M.T,M)TyM C T, M,

where R denotes the curvature tensor of M.

The properties above easily follow from the fact, that for each point p € M Va
and R are preserved by the differential tp«p Of the extrinsic symmetry 7. A submani-
fold (resp. an isometric immersion) with parallel second fundamental form is called a
parallel submanifold (resp. parallel immersion).

A parallel submanifold is determined by its second fundamental form at one point.
This fact corresponds to the property (B) of Riemannian symmetric spaces.

Theorem 1.4. (cf. Naitoh [9]) Let My and M; be a simply connected complete Rie-
mannian manifold and a complete Riemannian manifold respectively. Let f; : M; — M
(i = 1,2) be parallel immersions of M; into M and «; (i = 1, 2) denote the second
Sfundamental form of f;. Assume that there exist points p1 € My, p» € M3 and a linear
isometry ¢ : Tp, M1 — Tp, M> which satisfy
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Si(py) = f2(p2),  faxpr 0D = frap, (@X,dY) = a1(X,Y),

X,Y € Ty, M. Then there exists a Riemannian covering map ® : My — M» of M
onto My, which satisfies

Q(p1) =p2. Pup =¢, froP=fi1.

If the ambient space M is locally symmetric, then the converse of Proposition 1.3
holds.

Theorem 1.5. (W. Striibing [16], Naitoh [9]) Let M be a locally Riemannian sym-
metric space and f : M — M an isometric immersion. Suppose that the second
Jundamental form « is parallel and that at each point p of M Tlf‘M is a curvature

invariant subspace of Tf(p)l\_l .Then f : M — M is a locally symmetric immersion.

Remark 1. Since Va = 0, by the equation of Codazzi f T, M is curvature invariant.
We assume that at a point p of a locally symmetric space M, both a subspace V and
its orthogonal complement V- in the tangent space TPM are curvature invariant. We
define a linear isometry A of T, M by A(X) = —X for X € V and A(§) = £ for£ € V.
Then the curvature tensor R is invariant by A, namely MR(X,Y)Z) = ROX, AY)AZ
for X, Y, Z € T, M, and hence, there exists a local isometry ¢, on a neighborhood of
p which satisfies t,(p) = p and 7,4, = A.

Remark 2. Proofs of Theorems 1.4 and 1.5 are essentially due to the property of
geodesics of parallel submanifolds which was discovered by Striibing [16].

We recall another fact for Riemannian symmetric spaces.
(C) A Riemannian symmetric space is a homogeneous Riemannian manifold.

Compared with this property, we see that a symmetric submanifold M of a Rieman-
nian manifold M is an equivariantly homogeneous submanifold in the following sense.
We denote by /(M) the isometry group of M and by /°(M) its identity component.
Let Gy be the subgroup of /(M) which is generated by all extrinsic symmetries ¢,
p € M. Then, G, = I°(M) N G acts transitively on M. For the detailed argument,
we refer to [10].

2 Grassmann geometry and classification of symmetric submanifolds

At first, we recall the curvature property of the tangent spaces and the normal spaces
of symmetric submanifolds. Let M be a symmetric submanifold of a Riemannian sym-
metric space M. For each point p € M, both tangent space T}, M and the normal space
TPLM are invariant under the curvature tensor R of M. Therefore, there exist unique
totally geodesic submanifolds N and N* through p which are tangent to 7, M and TPLM
at p respectively. By Theorem 1.5, N is a symmetric submanifold of M (N* is also
a symmetric submanifold). We call (M, N) a totally geodesic symmetric submanifold
associated with (M, M).
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We recall Grassmann geometry introduced by R. Harvey and H.B. Lawson [3]. Let
M be a Riemannian manifold and Gr,,(T M) be the Grassmann bundle over M of all
m-dimensional linear subspaces of the tangent spaces of M. We take a subset S of
Gry (T M). Then, an m-dimensional submanifold M of M is called an S-submanifold
if all the tangent spaces 7, M of M belong to the subset S, and the collection of such
S-submanifolds is called the S-geometry. Grassmann geometry is a general name for
such S-geometries. If a connected Lie group G acts isometrically on a Riemannian
manifold M, it also acts naturally on the Grassmann bundle Grm(TM). Then, we
may take a G-orbit O as a subset S in Gr,,, (T M) with respect to this action. Such
a Grassmann geometry is called an orbit type. Now, we suppose that M is a simply
connected, semi-simple Riemannian symmetric space and G is the identity component
I°(M) of the isometry group of M. For a totally geodesic symmetric submanifold N
of M, we consider the G-orbit O containing the tangent space T,N (e Grn (T M)).
Then, any symmetric submanifold M of M tangent to N is an O-submanifold, because
of its equivariance and hence it belongs to the O-geometry.

From the viewpoint of Grassmann geometry, the program of the classification of
symmetric submanifolds in Riemannian symmetric spaces is the following:

(1) the decomposition theorem which reduces the problem to the irreducible ones;

(2) the classification of symmetric submanifolds of Euclidean spaces;

(3) the classification of totally geodesic, symmetric submanifolds (M, N) of simply
connected semi-simple Riemannian symmetric spaces M, in particular, the classi-
fication of irreducible ones;

(4) in the O-geometries which are associated with (M, N) classified in (3), the clas-
sification of such O-geometries which contain non-totally geodesic, symmetric
submanifolds;

(4)" in the O-geometries which are associated with (M, N) classified in (3), the classifi-
cation of such O-geometries which contain non-totally geodesic O-submanifolds;

(5) the classification of non-totally geodesic symmetric submanifolds belonging to
O-geometries which are classified in (4).

The case (2) is the classification due to Ferus [2]. The cases (1), (3) and (4)" have
been settled by Naitoh in a series of papers [11-14]. We comment on case (3). A
totally geodesic symmetric submanifold M of a Riemannian symmetric space M is
characterized as a connected submanifold of M, such that the geodesic reflection of M
in M is an isometry, in which case M is called a reflective submanifold. The reflective
submanifolds of Riemannian symmetric spaces were classified by Leung [6, 7].

For the case (4)’, Naitoh obtained the following remarkable result.

Theorem 2.1. Let O be the G-orbit defined from an irreducible, totally geodesic sym-
metric submanifold (M, N), where M is a simply connected, semi-simple Riemannian
symmetric space. All O-geometries except the following ones have only totally geodesic
submanifolds:

(1) the geometry of k-dimensional (0 < k < n) submanifolds of the sphere S" resp. of
the real hyperbolic space RH" (n > 2);

(2) the geometry of k-dimensional (0 < k < n) complex submanifolds of the complex
projective space CP" resp. of the complex hyperbolic space CH" (n > 2);
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(3) the geometry of n-dimensional totally real submanifolds of the complex projective
space CP" resp. of the complex hyperbolic space CH" (n > 2);

(4) the geometry of 2n-dimensional totally complex submanifolds of the quaternionic
projective space HP" resp. of the quaternionic hyperbolic space HH" (n > 2);

(5) the geometries associated with irreducible symmetric R-spaces and their non-
compact dual geometries.

Remark. Naitoh proved Theorem 2.1 for simply connected irreducible Riemannian
symmetric spaces M of compact type. However, it is easy to see that the proof also
holds for the non-compact case.

The symmetric submanifolds belonging to the geometries of type (1)—(4) in
Theorem 2.1 were classified by several authors, we refer to [15] and [18] for fur-
ther details. The symmetric submanifolds belonging to the geometries of type (5) were
classified by Naitoh in [10] for the compact case and recently by J. Berndt et al. [1] for
the non-compact case. We explain our work in the next section.

3 Symmetric submanifolds associated with symmetric R-spaces

For details in this section, we refer to [1]. We will construct a one-parameter family of
symmetric submanifolds in irreducible Riemannian symmetric spaces of non-compact
type associated with symmetric R-spaces. First we show the typical examples — a one-
parameter family of totally umbilical hypersurfaces of a real hyperboplic space. We
start with the totally geodesic hypersurface of a real hyperbolic space. It bends slightly.
Then, it is a totally umbilical hypersurface which is homothetic to the totally geodesic
hypersurface. It bends more and more. Then it yields a so-called horosphere. It is a flat
submanifold. After the horosphere, we have a totally umbilical sphere. It is a compact
dual of a real hyperbolic space. Our construction can be viewed as a generalization of
this family of totally umbilical hypersurfaces.

We recall the theory of symmetric R-spaces, for details we refer to Kobayashi and
Nagano [5], Nagano [8] and Takeuchi [17]. Let (g, o) be a positive definite symmetric
graded Lie algebra, that is, g is a real semi-simple Lie algebra with a Cartan involution
o satisfying the following properties:

(1) § = §—1+Fo+31 (vector space direct sum) and [§. §] C Gp+q (P, q € (0. £1));
(2) o(gp) =9-p (p {0, £1});
(3) g—1 # {0}, and the adjoint action of go on the vector space g_ is effective.

For the classification of the positive definite symmetric graded Lie algebras, see
[5, 17], and the table at the end of this paper. We define a linear isomorphism 7 of g
by 7(X) = (=1)?X for X € g,. Then, 7 is an involutive automorphism of g with
ot =710.Letg = t+ p be the Cartan decomposition induced by o. Then we have
T(#)) = tand t(p) = p. Let &t =€, +- € and p = p; + p_ be the 1-eigenspace
decompositions of £ and p with respect to t.
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Since g is semi-simple, there exists a unique element v € go such that
gp={Xegladw)X = pX}forall p € {0, £1}.

It is easy to see that v € p, and hence v € p..

The restriction of the Killing form B of g to p x p is a positive definite inner product
on p, which will be denoted by (-, -). This inner product is invariant under the adjoint
action of £ on p and under the involution 7 |p. In particular, p4 and p_ are perpendicular
to each other. Let G be the simply connected Lie group with Lie algebra g and K be the
connected Lie subgroup of G with Lie algebra £, and define the homogeneous space

= G/K.Letw : G — M be the natural projection and put o = = 7 (e), where e
is the identity of G. The restriction to p of the differential 7y, : § — T,M of 7 at e
yields a linear isomorphism from p onto 7, M. In the following, we will always identify
p and T, M via this isomorphism. From the Ad(K)-invariant inner " product (-, -) on
p = T,M, we get a G-invariant Riemannian metric on M. Then M = G/K is the
simply connected Riemannian symmetric space of non-compact type associated with
(g’ o, (" ))

We put

K| ={k e K |Ad(k)v = v}.

Then K jr is a closed Lie subgroup whose Lie algebra is €. The homogeneous space
M =K/ K is diffeomorphic to the orbits Ad(K)-v C pand K - m(expv) C M,
where exp : § — G denotes the Lie exponential map from g into G. We equip M’ with
the induced Riemannian metric from M. Then, M’ is a compact Riemannian symmetric
space associated with the orthogonal symmetric Lie algebra (¥, t|¢), where 7|t is the
restriction of t to €. The symmetric spaces M’ arising in this manner are precisely
the symmetric R-spaces. If g is simple, then M’ is called an irreducible symmetric
R-space. Symmetric R-spaces form a class of compact Riemannian symmetric spaces
with remarkable properties.

The subspace p_ is a Lie triple system in p = 7, M and [p_, p-] C &, Thus, there
exists a connected complete totally geodesic submanifold M of M with o € M and
T,M = p_. Moreover, since TULM = py is also a Lie triple system, by Theorem 1.5
(global version) M is a symmetric submanifold. Since M is the image of p_ under the
exponential map of M at o, we see that M is simply connected. We define a subalgebra
gof gby g = £, + p_ and denote by G the connected Lie subgroup of G with Lie
algebra g. Then, by construction, M is the G-orbit through o. The Lie algebra of the
isotropy subgroup K of this action at o is just £, .The restriction t|g of 7 to g is an
involutive automorphism of g and (g, T|g) is the orthogonal symmetric Lie algebra
dual to (¢, 7|€). Moreover, M is the Riemannian symmetric space of non-compact type
associated with (g, t|g).

We now introduce an O-geometry on M. We put dim p_ = m and denote by O the
orbit through p_ under the action of G on Gr,,(T M). This O-geometry is a geometry
of type (5) in Theorem 2.1 for the non-compact case. B

We will now construct a one-parameter family of symmetric submanifolds of M
consisting of O-submanifolds and containing the totally geodesic submanifold M and
the symmetric R-space M’. Foreach ¢ € R, we define a linear subspace p, of p_+¢_ =
g-1+g1by
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pe = {X +cadW)X | X €p_).

We note that the adjoint transformation ad(v) restricted to p_ is an isomorphism from
p_ onto £_. We put g. = €4 + p.. Then, g, is a subalgebra of g. g, is invariant under t
and (gc, T|gc) is an orthogonal symmetric Lie algebra. We denote by G the connected
Lie subgroup of G with Lie algebra g. and by M, the G -orbit through o in M.

Proposition 3.1. For each ¢ € R, M, is a symmetric submanifold belonging to the
O-geometry of M.

_ The submanifolds M. and M_. are congruent via the geodesic symmetry s, of
M at o. Since go = £ + p—, My coincides with the totally geodesic submanifold
of M. We explain the geometric properties of the submanifolds M, (¢ > 0) in more
detail.

Theorem 3.2. The submanifolds M., 0 < ¢ < 1, form a family of non-compact sym-
metric submanifolds which are homothetic to the totally geodesic submanifold M. The
submanifolds M., 1 < ¢ < oo, form a family of compact symmetric submanifolds
which are homothetic to the symmetric R-space M'. The submanifold M| is a flat sym-
metric space which is isometric to a Euclidean space. The second fundamental form
o of M. is given by

(X, Y) =cladW)X, Y] epy =T} M., X,Y ep_ =T, M..
In particular, all submanifolds M., 0 < ¢ < 0o, are pairwise non-congruent.

Remark. Inthe case of Table, No. 13,i = 1, M is areal hyperbolic space RH", and the
family of symmetric submanifolds M. constructed as above is the family of complete
totally umbilical hypersurfaces.

Next we explain the classification result. Let M be a simply connected Riemannian
symmetric space of noncompact type introduced in this section. We consider the O-
geometry defined by the totally geodesic symmetric submanifold M of M. Our main
result is the following.

Theorem 3.3. Let M be an irreducible Riemannian symmeltric space as in the Table,
except No. 13, fori = 1. Then, an O-submanifold of M is locally congruent to some
M, constructed in this section.

For the proof of this Theorem, see [1]. Applying this result, we obtain the classifi-
cation of symmetric submanifolds.

Theorem 3.4. Let M be anirreducible Riemannian symmetric space as in Theorem 3.3.
Then, every symmetric submanifold M of M which belongs to the O-geometry is con-
gruent to some M, as constructed in this section.

This table is a modification of Table II in [10]. The notation for real semi-simple Lie
algebras is as in [4].

(8, 0) M: an irreducible Riemannian symmetric space M associated with a positive
definite symmetric graded Lie algebra (g, o),

p_ (M): a totally geodesic submanifold M tangent to p_,

t_ (M’): a symmetric R-space.
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Table 1.
No @.0) M p_ (M) e (M)
1 |sl(n; C)/su(n) su(i,n —i)/s(u(@) +u@m —i)) |su(n)/s(u@)+u(n —1i))
2 |so(2n; C)/so(2n) 50%(2n) /u(n) s0(2n)/u(n)
3 |so(n; C)/so(n) so(n —2,2)/son —2)+T so(n)/so(n —2)+ T
4 |sp(n; C)/sp(n) sp(n; R)/u(n) sp(n)/u(n)
5 |ES/Es E;"/50(10) + T E¢/s0(10) + T
6 |ES/E, E;®/Es+T E;/Es+T
7 |su(n,n)/su(n) +um)) |R + sl(n; C)/su(n) T + su(n) + su(n)/su(n)
8 |s0*(4n)/u(2n) R + su*(2n)/sp(n) T + su(2n)/sp(n)
9 |sp(n; R)/un) R + sl(n; R)/s0(n) T + su(n)/so(n)
10 |[E;®/Es+ T R+ E;*/F, T + E¢/F,
11 |sl(n; R)/so(n) so(i,n —i)/so(i) +so(n —i) |so(n)/so(i)+so(n —i)
12 | su*(2n)/sp(n) spi,n —i)/sp()) +sp(n —i) |sp(n)/sp(i) +sp(n — i)
13 |so(i,n —1i)/ so(i —1,1)/s0(i — 1) s0(i)/so(i — 1)
s50(i) +so(n — i) +so(n —i—1,1)/so(n —i — 1)|+so(n —i)/so(n —i — 1)
14 |so(n, n)/so(n) + so(n) |so(n; C)/so(n) so(n) 4+ so(n)/so(n)
15 |sp(n, n)/sp(n) +sp(n) |sp(n; C)/sp(n) sp(n) + sp(n)/sp(n)
16 | E¢/sp(4) sp(2,2)/s5p(2) +sp(2) sp(4)/5p(2) +sp(2)
17 |[E;*/Fy F, % /50(9) Fy/50(9)
18 | EZ/su(8) su*(8)/sp(4) s5u(8)/sp(4)
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Summary. We give a complete classification of the complex forms of quaternionic symmetric
spaces.

1 Introduction

Some years ago, H. A. Jaffee found the real forms of Hermitian symmetric spaces
([J1], [J2]; or see [H()]). That classification turns out to be related to the classification
of causal symmetric spaces. This was first observed by I. Satake ([S, Remark 2 on page
30] and [S, Remark on page 87]). Somewhat later, it was independently observed by
J. Hilgert, G. Olafsson and B. @rsted; see [HO], especially Chapter 3 and the Notes at
the end of that Chapter. I learned about that from Bent @rsted. He and Gestur Olafsson
had informally discussed complex forms of quaternionic symmetric spaces and found
examples for the classical groups, for G, , and perhaps for Fy. @rsted told me about the
classical ones, and we rediscovered examples for G, and Fy. I thank Bent @rsted for
agreeing to my incorporating those examples into this note. Later I used the computer
program LiE [L] to find examples for E¢, E7 and Eg.

In this note, I write down a complete classification for complex forms L/V of
quaternionic symmetric spaces G/K . The definitions and some preliminary results are
in Sections 2 and 3, the main results are stated in Section 4, and the proofs are in
Sections 5, 6, 7 and 8. The case where G is a classical group and rank(L) = rank(G)
is handled, essentially by matrix considerations, in Section 5. That, of course, does not
work comfortably for the exceptional groups, which must be approached by means of
their root structure. The tool for this is a script for the use of the computer program LiE;
itis described in Section 6 along with some examples of its application. Those examples
have the interesting property that the complexifications L¢ and K¢ are conjugate in
Gc. They cover the delicate cases for G exceptional and rank(L) = rank(G), and the

* Research partially supported by NSF Grant DMS 99-88643.
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remaining exceptional equal rank cases are settled in Section 7. Finally, the few cases
of rank(L) < rank(G) are worked out in Section 8.

A possible extension of the theory is mentioned in Section 9.

After this paper was written, I learned that quite a lot was published on totally
complex submanifolds of quaternionic symmetric spaces from the viewpoint of dif-
ferential geometry. See, for example, [ADM], [AM1], [AM2], [F], [JKS], [L1], [L2],
[Ma], [Mo], [Ts] and [X], but especially the first three. I also learned that M. Takeuchi
[Ta] had studied the maximal totally complex submanifolds of quaternionic symmetric
spaces, reducing their classification to that of certain Satake diagrams and writing out
the classification in the classical group cases. A priori that is not quite the same as the
classification of complex forms of quaternionic symmetric spaces, but it is very close.
On the other hand, it seems to me that the method given here is more efficient and more
direct, and more explicit in the exceptional group cases. I thank Dmitry Alekseevsky
for calling the above-cited papers to my attention.

2 Quaternionic symmetric spaces

We recall the structure of quaternionic symmetric spaces [W]. A quaternionic structure
on a connected Riemannian manifold M is a parallel field A of quaternion algebras A
on the real tangent spaces 7y (M), such that every unimodular element of every A, is
an orthogonal linear transformation. Thus, A gives every tangent space the structure of
quaternionic vector space, such that the Riemannian metric at x is Hermitian relative
to the elements of A, of square —/. If n = dim M, then a quaternionic structure is
the same as a reduction of the structure group of the tangent bundle from O (n) to
Sp(n/4) - Sp(1). Let K, denote the holonomy group of M at x (we will see in a
minute that this is appropriate notation for symmetric spaces with no Euclidean factor).
Suppose that M is simply connected, so that the K, are connected. Let A = {A,} be a
quaternionic structure on M. Then A, is stable under the action of K, so K, N Ay is a
closed normal subgroup of K. Now, K, = K )lc" ". K{%, where K )lf” is the quaternion-
linear part, centralizer of Ay in K, and K{°“ = K, N A, is the scalar part. We say that
K has real scalar part if K{“ consists of real scalars, i.e., K{° is {1} or {£=1}. We say
that K has complex scalar part if K is contained in a complex subfield of A, but
not in the real subfield, and we say that K, has quaternion scalar part if K{“ is not
contained in a complex subfield of A,. A Riemannian 4-manifold M with holonomy
U (2) has a dual role: it has a quaternionic structure A; generated by the SU (2)-factor
in the holonomy; that has quaternionic scalar part, the same SU (2), M it has a second
quaternionic structure A, where A» , is the centralizer of A , in the algebra of R-linear
transformations of Ty (M); it has complex scalar part, generated by the circle center of
the holonomy U (2). Thus, we have an interesting dual picture. The holonomy of M
has quaternionic scalar part for A and has complex scalar part for A,.

Proposition 2.1. The connected simply connected Riemannian symmetric spaces with
quaternionic structure are the following.

(1) The Euclidean spaces of dimension divisible by 4. Here, the holonomy has real
scalar part.
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(i) Products M = My x --- X My, where each M; is (a) the complex projective or
hyperbolic plane with the quaternionic structure of complex scalar part, or (b) a
product Ml.’ X Mi” where each factor is a complex projective line and a complex
hyperbolic line. Here M = G/K, K is the holonomy, and the holonomy has
complex scalar part.

(iii) Irreducible connected simply connected Riemannian symmetric spaces M = G /K,
where K has an Sp(1) factor that generates quaternion algebras on the tangent
spaces of M. Here K is the holonomy, and the holonomy has quaternion scalar
part.

There is a structure theory for the spaces of Proposition 2.1(iii). There are two, a
compact one and its non-compact dual, for each complex simple Lie algebra, and they
are constructed from the highest root [W]. These spaces are listed in the Table 1 below.
Here, we use the notation that G», Fs, Eg, E7 and Eg denote the compact connected
simply connected groups of those Cartan classification types, and their non-compact
forms listed in the Table are connected real forms contained as analytic subgroups in
the corresponding complex simply connected groups. All known examples of compact
connected simply connected quaternionic manifolds with holonomy of quaternionic
scalar type are Riemannian symmetric spaces.

Table 1.
lIrreducible Quaternionic Symmetric Spaces, Scalar Part of Holonomy Quaternionic‘
l compact M = G/K [ non-compact M’ = G'/K [ Rank [Dimension/H‘
SU(r+2)/SWUr) xUQR)) |SU,2)/SWUr) x UQ2)) |min(r, 2) r
SO(r+4)/[SO(r) x SOA)]|SO(r,4)/[SO(r) x SO4)]|min(r, 4) r
Spn+1)/[Sp(n) x Sp(M)] |Sp@, 1)/[Sp() x Sp(1)] 1 n
G2/50(4) Go414,/SO0(&) 2 2
Fy/[Sp(3) - Sp(1)] Facye /[SP3) - Sp(1)] 4 7
E¢/[SU(®) - Sp(1)] Eg 45, /ISU6) - Sp(1)] 4 10
E7/[Spin(12) - Sp(D)] E7.pgc, /[Spin(12) - Sp(D]| 4 16
Eg/[E7 - Sp(1)] Eg gyc) /[E7 - Sp(1)] 4 28

Thus, irreducible quaternionic symmetric spaces have rank 1, 2, 3 or 4. Curiously,
quaternionic symmetric spaces for F4, Eg, E7, and Eg all have restricted root systems
of type Fjy.

3 Complex forms of quaternionic manifolds

Let S be a smooth submanifold of a Riemannian manifold M. Let A = {A, | x € M}
denote a quaternionic structure on M. If x € S, let A;f denote the subalgebra of all
elements in A, that preserve the real tangent space Ty (S). We say that § is totally
complex, if A;C9 = Cand Tx(S) N g(Tx(S)) = Oforall g € A \ A}, forall x € S.
If S is totally complex in M, then AS = {Af | x € S} restricts to a well-defined
almost complex structure on S, parallel along S because A is parallel on M, so (see
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[KN, Cor. 3.5, p. 145]) (S, Asls) is Kahler. If in addition, dim¢ S = dimy M, then we
say that S is a maximal totally complex submanifold of M.

Let S be a maximal totally complex submanifold of M. Suppose that S is a topo-
logical component of the fixed point set of an involutive isometry o of M. Then, we
say that S is a complex form of M and that o is the quaternion conjugation of M over
S. The following is immediate.

Lemma 3.1. Let (M, A) be a quaternionic symmetric space. If S is a complex form of
M, then S is a totally geodesic submanifold. If S is a totally geodesic, totally complex
submanifold of M, then S is an Hermitian symmetric space.

Let M = G/K, irreducible quaternionic symmetric space, with base point xo =
1K, where K = K’ - Sp(1) as in Proposition 2.1(iii) and Table 1. Let 6 denote the
involutive automorphism of G that is conjugation by the symmetry (say ¢) at xo. Let S C
M be a totally geodesic submanifold through xg. Then, S is a Riemannian symmetric
space with symmetry ¢/, at xo. Express S = L(xg) = L/V, where L is the identity
componentof {g € G| g(S) =S}andV =L NK.Then6(L) = L.

The following three results are our basic tools for finding the complex forms § =
L/V of M = G/K, where rank(L) = rank(G). Proposition 3.2 gives criteria for L/ V
to be an appropriate submanifold of G/K. Proposition 3.3 tells us that when L/V is
identified abstractly, it in fact exists well positioned in G/K, and Proposition 3.4 is a
uniqueness theorem showing when two complex forms are G-equivalent.

Proposition 3.2. Let M = G/K be an irreducible quaternionic symmetric space,
with base point xo = 1K, as above. Let o be an involutive inner automorphism of G
that commutes with 6. Let L be the identity component of the fixed point set G°. Set
V=LNK.Denote S=L(xg) =ZL/V.

1. If VN Sp(1) is a circle group, then S is a totally complex submanifold of M.

2. S is a complex form of M if and only if (i) V N Sp(1) is a circle group, and (ii)
dimc § = dimyg M.

3. If S is a complex form of M, then 0 = Ad(s) wheres € V.

Proposition 3.3. Let M = G /K be an irreducible quaternionic symmetric space, with
base point xo = 1K, as above. Let L be a symmetric subgroup of equal rank in G that
has an Hermitian symmetric quotient L/ V, such that V is isomorphic to a symmetric
subgroup V' C K. Then, L is conjugate to a O—stable subgroup L' C G such that
L'NK =V

Proposition 3.4. Let M = G /K be an irreducible quaternionic symmetric space, with
base point xo = 1K, as above. Let S; = L;(x0) = K;/V; be two complex forms of M.
If S1 and S are isometric, then some element of K carries Sy onto S.

Proof of Proposition 3.2. We can pass to the compact dual if necessary, so we may (and
do) assume M compact. Decompose the Lie algebra g of G under df, g = £+ m, where
tis the Lie algebra of K and m represents the real tangent space of M. Then Sp(1) gives
m aquaternionic vector space structure, so any circle subgroup gives m acomplex vector
space structure. If that circle is V N Sp(1), it defines an L-invariant almost complex
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structure on S, and that is integrable because S is a Riemannian symmetric space. We
have proved Statement 1.

For Statement 2, first suppose that § is a complex form of M. Since o is inner by
hypothesis, rank(L) = rank(G). Since § is an Hermitian symmetric space, rank(V) =
rank(L). Now, V contains a Cartan subgroup T of G. Thus, V N Sp(1) contains a circle
group 71 := T N Sp(1). Now the only possibilities for V N Sp(1) are (a) T1, (b) the
normalizer of 77 in Sp(1), and (c) all of Sp(1). Here, (b) is excluded because it would
prevent S from having an L-invariant almost complex structure, and (c) is excluded
because it would prevent S from being totally complex, so V N Sp(1) is a circle group.
Finally, dim¢ S = dimpy M because S is a maximal totally complex submanifold of M.

Conversely, suppose that V N Sp(1) is a circle group and dimc¢ S = dimy M. By
Statement 1, S is a totally complex submanifold of M. By dim¢ § = dimy M, it is a
maximal totally complex submanifold. And we started with the symmetry o, so S is a
complex form of M.

For Statement 3 note, as above, that s € L because rank(L) = rank(G), and now
s € V because rank(V') = rank(L). O

Proof of Proposition 3.3. All our groups have equal rank, so V' is the K -centralizer
of some v/ € V' with v'2 central in K. Here, K contains the center of G, and those
centers satisfy Zx /Zg = {1, z}Z¢ cyclic order 2. Let ¢’ = Ad(V'). If v? € 2Zg,
then 02 = 6, so do has eigenvalues ++/—1 on m, and L' = G° has the property
that &' = L'(xg) = L’/V’ is Hermitian symmetric. Since V € L and V' € L’ are
symmetric subgroups of G, and their Hermitian symmetric subgroups are isomorphic,
it follows from Table 1 and the classification of Riemannian symmetric spaces that
L = L'.Now, L and L' are conjugate in G, so we may assume L = L’. Then, V and
V' are isomorphic symmetric subgroups in L, so they are L-conjugate. This completes
the proof. a

Proof of Proposition 3.4. Suppose that S7 and S, are isometric, say g : S; = S, for
some isometric map g. We can assume g(xg) = xo, so dg gives a Lie triple system
isomorphism of [{ Nm onto I, Nm. Write [; = [; @3, where [; is generated by [; N'm and
3i C v; is a complementary ideal. Then dg gives a Lie algebra isomorphism of [} onto
;. Let j; € sp(1) be orthogonal to the Lie algebra of the circle group V; N Sp(1). Then,
ji centralizes 3; and m is the real vector space direct sum of [; N'm with ad(j;)(I; N'm).
Now, ad(3;)|m = 0, so each 3; = 0, and dg : I} = [5. Since [; and [, are isomorphic
symmetric subalgebras of g, they are Ad(G)—conjugate. Thus we may assume g € G.
As g(xg) = xonow g € K. Thus some g € K carries S onto S3. O

Propositions 3.2 and 3.4 will let us do the classification of complex forms S = L/V
of quaternionic symmetric spaces M = G/K in case rank(L) = rank(G). There are
only a few cases where rank(L) < rank(G), and we will handle them individually. That
is not very elegant, but it is very efficient.

4 The classification of complex forms

In this section, we state the classification of complex forms S = L/V of quaternionic
symmetric spaces M = G/K and M’ = G’/ K whose holonomy has quaternion scalar
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part. The proofs are given in Sections 5, 7 and 8. We state the results separately for the
compact and the non-compact cases.

Theorem 4.1. Let M = G /K be a compact simply connected irreducible quaternionic
Riemannian symmetric space. Then the complex forms S = L/V of M are exactly the
following, and each is unique up to the action of G.

L M =SUGr+2)/SWUr) x UQ)). Then (1a) § = st 05, or

N Sy SUGD SU(r—u-+1)
(1b) § = P*(C) x P"(C) = 5wy X Swo—wxomy 0 Su =T

2. M =SO0(+4)/[SO() x SO@)]. Then 2a) S = 5y, © = 2r' even,
_ SOu+2) SO(r—u+2)
or(2b) § = [SO(L[)’;SO(Z) x SO(r—u)ZSO(Z)’ Osusr.

3. M = Sp(n+1)/[Sp(n) x Sp(1)] = P"(H). Then S = P"(C) = ooty

T xU()"
4. M = G,/SO4). Then S = P/(C) x P1(C) = #@0(2)
5. M = Fy/[Sp(3) - Sp()]. Then S = &5 x P1(C).

6. M = E/[SU(6)-Sp(D)). Then (62) S = 5598+ x P(C), or (6b) S = 2%,

)
or (6c) S = SgE2.

7. M = Eq/[Spin(12) - Sp(D)]. Then (Ta) § = godS o, or (Tb) S =

SU®) _50(12) 1
swaxoay o (19 8 = - x PHO).

8. M = Eg/[E7 - Sp(1)]. Then (8a) S = 55 x P!(C) or (8b) § = S,

Theorem 4.2. Let M = G /K be a non-compact irreducible quaternionic Riemannian
symmetric space. Then, the complex forms S = L/V of M are exactly the following,
and each is unique up to the action of G.

L M =SU(r,2)/SWUr) x UQ)). Then (1a) S = 55095005 0F

_ — _ SU(u,1) SU(r—u,l)
(Ib) $ = H*(C) x H"(C) = saxvay X sw@o—mxvmy 0Su =

2. M =500, 4)/[SO(r) x SO@). Then (2a) S = 5222 r = 21" even, or

_ SOu.2) SO(r—u,2)
(2b) § = S0WxS02) X SOGr—u)xs0Q)’ Osusr

3. M = Sp(n, 1)/[Sp(n) x Sp(1)] = H"(H). Then S = H"(C) = %

4. M =G p,4,/SO@4). Then S = H'(C) x H'(C) = %

5. M = Ficyc,/ISp@3) - Sp()]. Then S = 35Z8 x H'(C).
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6. M = E6 AsC|/[SU(6) . SP(l)] Then (63) S = % X Hl((C)’ or (6b)
§ =SB o (6c) 5 = SO0,

7. M = E7.p.c,/[Spin(12) - Sp(1)]. Then (7a) § = %, or (7b) § —
%ﬁfl)@m: or(Tc) S = S%((61)2> % P1(C).

8. M = Eg g,c,/[E7- Sp(1)]. Then (8a) S = ﬂ PY(C) or(8b) S = S%*(gl)ﬁ).

Of course, Theorem 4.2 is immediate from Theorem 4.1 by passage to the non-
compact dual symmetric spaces. So, we need only prove Theorem 4.1. The proof of
Theorem 4.1 consists of consolidating the results of Sections 5, 7 and 8.

5 The equal rank classification — classical cases

We run through the list of compact irreducible quaternionic symmetric spaces M =

G/K from Table 1, for the cases where G is a classical group. For each of them, we

look at the possible symmetric subgroups L, that correspond to an Hermitian symmetric

space § = L/ V,such thatrank (L) =rank(G), dimc S = dimyg M, rank(S) < rank(M),
and V isisomorphic to a symmetric subgroup of K properly placed as in Proposition 3.2.

The equal rank classification will follow using Proposition 3.4. We retain the notation

used in Propositions 3.2 and 3.4. Fix s € K, such that L is the identity component of

o = Ad(s).

CASE M = SU(r +2)/S(U(r) x U(2)). First, suppose r = 2. We may take s to be
diagonal. It has only two distinct eigenvalues, and its component in the U (2)-factor of
K must have both eigenvalues. Now L = S(Uu + 1) x U(v + 1)), V = S([U (u) %

U] x [U@) x U(1)]), and S is the product P*(C) x P?(C) of complex projective

spaces. Here, dimpM = r = u + v = dim¢ S. If u, v = 1, then rank(M) = 2 =
rank(S). If u = 0, then the factor P“(C) is reduced to a point, S = P'(C), and

rank(S) = 1. The analog holds, of course, if v = 0.

Now, consider the degenerate case r = 1. Then M = P?(C) and fits the dual
pattern described in the paragraph just before the statement of Proposition 2.1. Relative
to the quaternionic structure denoted A there, the one with with quaternion scalar part,
the matrix considerations above show that M has a complex form S = P L©).

CASEM = SO(r +4)/[SO(r) x SO(4)]. As before, the matrix s has just two distinct
eigenvalues, and each one must appear with multiplicity 2 in the SO (4)-factor of K.
Ifs?=1,thenL = SO +2) x SO +2) withu+v=r,whereV=LNK =
[SOWm)xSOQR)]x[SO(v)xSO2)]. Here the SO (2)-factors in V are the intersection
with the SO (4)-factor of K. That gives us the forms § = (SO(u + 2)/[SO(u) x
SO2)]) x (SO +2)/[SO(v) x SO2)]) of M.

Now, suppose s> = —I. Then, r = 2r' even, L= U@’ +2), V= UF) x U(2),
and we have the complex form S = SU(r' +2)/S(U (') x U(2)) of M.

CASE M = Sp(n + 1)/[Sp(n) x Sp(1)] = P"(H). The symmetric subgroups of
Sp(n + 1) are the Sp(u) x Sp(v), u +v = n+ 1, and U(n + 1). The first case,
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L = Sp(u)xSp(v),wouldgive V = Sp(u) xSp(v—1)xSp(1),s05 = Sp(v)/[Sp(v—
1) x Sp(1)], which is not Hermitian symmetric. That leaves the case L = U(n + 1)
and V = U(n) x U(1), where S = P"(C). It satisfies the conditions of Proposition
3.2 and thus is a complex form of M.

6 The LiE program

While the matrix computation methods of Section 5 work well for the classical group
cases, it is more convenient to make use of the root structure in the exceptional group
cases. In this section, we indicate just how we used the LiE program [L] to do that. We
illustrate it for Eg, but it is the same for any simple group structure. Here, node refers
to the simple root at which the negative of the maximal root is attached in the extended
Dynkin diagram.

STEP O: INITIALIZE.

> setdefault(E8) > rank = 8
> diagram ; prints out the Dynkin diagram and numbers the simple roots.
> node = 8 ; the number of the simple root that defines K.

STEP 1: POSITIVE ROOTS OF g.
> pos = pOSJ‘OOtS

> max_root = pos[n_rows(pos)]
STEP 2: POSITIVE ROOTS OF ¢.

> kkk = pos > fori =1 to n_rows(kkk) do
if kkk[i,node] == 1 then kkk[i] = null(rank) fi od ; zeroes rows m-roots
> kk = unique(kkk) ; eliminates duplicate rows
> k = null(n_rows(kk)-1,rank) > for i = 1 to n_rows(k) do k[i] = kk[i+1] od
; eliminates last zero row
> Cartan_type(k) ; verifies correct Cartan type for &, in this case E7A

STEP 3: POSITIVE ROOTS OF m.

> mmm = pos > for i =1 to n_rows(mmm) do
if mmm[i,node] != 1 then mmml[i] = null(rank) fi od ; zeroes rows for t—roots

> mm = unique(mmm) ; eliminates duplicate rows
> m = null(n_rows(mm)-1,rank)
> fori=1 to n_rows(m) do m[i] = mm[i+1] od ; eliminates last zero row

STEP 4: CHOICE OF sym WHERE ¢ = Ad(sym); DEfINITION OF [ = g°.

> sym = null(rank + 1) ; initializes sym as row vector

> sym[node] = 1 ; one possibility for nonzero element of sym

> sym[rank+1] =2 ; normalizes 1—-parameter group containing symm
> | = cent_roots(sym) ; defines | as centralizer of sym

> Cartan_type(l) ; Cartan type of |, in this case E7A1

STEP 5: POSITIVE ROOTS OF s := [N M AND OF b := [N &.
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> sss =1 > fori= 1 to n_rows(sss) do
if sss[i,node] != 1 then sss[i] = null(rank) fi od

> 8S = unique(sss)

> s = null(n_rows(ss)-1,rank)

> fori= 1 to n_rows(s) do s[i] = ss[i+1] od

>vvv=1

> for i =1 to n_rows(vvv) do if vvv[i,2] == 1 then vvv[i] = null(rank) fi od

> vV = unique(vvv)

> v = null(n_rows(vv)-1,rank)

> fori=1ton_rows(v) do v[i] = vv[i+1] od

> Cartan_type(v) ; Cartan type of v, in this case E¢T T}
; At this point we know that S = L/ V = (E7/[Ee x T1]) x (T1/ T1),
; So it is an hermitian symmetric subspace of G/K.

STEP 6: VERIFY THAT S IS A MAXIMAL TOTALLY COMPLEX IN M.

> t = null(n_rows(s)-1,rank)

> for i=1 to n_rows(t) do t[i] = max_root - s[i] od

> u = null(n_rows(s) + n_rows(t) + n_rows(m), rank)

> for i =1 to n_rows(s) do u[i] = s[i] od

> fori=1 to n_rows(t) do u[n_rows(s) +i] = t[i] od

> for i =1 to n_rows(m) do u[n_rows(s) + n_rows(t) + i] = m[i] od

; now the rows of u are: positive roots of s,
; maximal root minus positive roots of s,
; positive roots of m
> w =unique(u) ; the rows of w are the positive roots of m and non—root
; linear functionals ( max root minus positive root of s )
> n_rows(w) - n_rows(m) ; number of non—root linear functionals in w,
; measures failure of S to be maximal totally complex;
; OK here because it returns 0

We carry out the routine in some key cases. These are cases where K and L are
conjugate in G.

CASE G = B7. Here, node = 2, and sym=[0, 1,0, 0,0, 0,0, 2] leads to L = B5sA1A;

and V = B4T 11T, thus to the complex form § = SO(11)/[SO(9) x SO(2)] x

P(C) x P1(C) of G/K = SO(15)/[SO(11) x SO(4). More generally, for B, with

n 2 3,node =2, and sym = [0, 1,0, ..., 0, 2] gives the complex form § = SO(2n —
3)/[SO2n—5)x SO4)] x P1(C) x P(C)of G/K = SOQ2n+1)/[SO(2n —3) x

SO(4)]. This is the case v = 2, u = r — 2 considered for G = SO(r + 4), r odd, in
Section 5.

CASE G = D7.Here, node = 2, and sym =10, 1,0, 0,0, 0,0, 2] leadsto L = D5A1 A
and V = D4T1T1T, thus to the complex form § = SO(10)/[SO(8) x SO(2)] x
PL(C) x PI(C) of G/K = SO(14)/[SO(10) x SO(4)]. More generally, for D, with
n 2 3,node =2, and sym = [0, 1,0, ..., 0, 2] gives the complex form § = SO(2n —
4)/[SO2n—6)xSO02)Ix PH(C)x P1(C)of G/K = SO(2n)/[SO(2n—4)x SO 4)].
This is the case v = 2, u = r — 2 considered for G = SO (r +4), r even, in Section 5.
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CASE G = G». Here, node = 2, and sym = [0, 1, 2] leadsto L = AjAjand V = T T},
thus to the complex form § = P! (C) x P1(C) of G/K = G2/SO(4).

CASE G = F4. Here, node = 1, and sym = [1,0,0,0, 2] leads to L = C3C; and
V = AT\ Ty, thus to the complex form § = [Sp(3)/U(3)] x P1(C) of G/K =
Fy1/C3C.

CASE G = E¢. Here, node = 2, and sym =[0, 1,0, 0, 0,0, 2] leads to L = AsA; and
V = AT A>Tq, thus to the complex form S = [SU(6)/S(U3) x U(3))] x PL(C) of
G/K = Eg/As5A,.

CASE G = E7. Here, node = 2, and sym = [0, 1,0,0,0,0,0,2] leads to L = DgA;
and V = AsT T, and thus to the complex form S = [SO(12)/U(6)] x P!(C) of
G/K = E7/DeA1.

CASE G = Eg. As we saw, sym = [0,0,0,0,0,0,0, 1,2] leads to L = E7A; and
V = E¢T1Th, and thus to the complex form S = (E7/[E¢ x T1]) X PY(C) of G/K =
Eg/E7A;.

CASES A7 and C7. Here, the computation using LiE has not yet produced complex
forms S of M. In other words, I have not yet guessed the appropriate vectors sym to
define toral elements of G whose centralizers are appropriate subgroups L C G.

7 The equal rank classification — exceptional cases

In this section, we complete the classification for the equal rank exceptional group
cases.

CASE G = G3. The only symmetric subgroup of G is S O (4), so here the only complex
form of M = G/S0(4) is S = P1(C) x P'(C) as described in Section 6.

CASE G = F4. The only symmetric subgroups of F4 are Sp(3) - Sp(1) and Spin(9).
If L = Spin(9), then the Hermitian symmetric space L/V = Spin(9)/[Spin(7) x
Spin(2)]. That would place the Spin(7)-factor of V in the Sp(3)-factor of K; but
Sp(3) € SU(6) while Spin(7) has no non-trivial representation of degree < 7. Thus,
L # Spin(9), so, here the only complex formof M = F4/C3C1is S = [Sp(3)/ U (3)] x
P!(C) as described in Section 6.

CASE G = Eg. The only symmetric subgroups of maximal rank in E¢ are A5A; and
DsTi.

If L = DsTj, then the Hermitian symmetric space S = L/V must be either
SO(10)/[SOB) x SO2)]with V =[SO(8) x SO(2)]- SO2),or [SO(10)/U (5)]
with V. = U(5) - SO(2). The first is excluded because dimc SO(10)/[SO(8) x
SO2)] = 8 < 10 = dimyg M. The second of these is a complex form of M =
E¢/AsA; by Propositions 3.2 and 3.3.

L = AsA; gives another complex form S = [SU(6)/S(U(3) x U(3))] x P1(C)
of M = E¢/AsA; as described in Section 6.

CASE G = E7. The only symmetric subgroups of E7 are DgA1, A7 and EgT}.
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If L = E¢Ty, then the Hermitian symmetric space S = L/V must be E¢/DsT}
with V. = DsTT;.1tis acomplex form of M = E7/DgA | by Propositions 3.2 and 3.3.

If L = A7,then the Hermitian symmetric space S = L/V mustbe SU (8)/S(U (u) x
UW)) withu +v = 8. Here dim¢c L/V = UV whiledimg M = 16,sou = v = 4.
That would place the [SU (4) x SU (4)]-factor of V in the Spin(12)-factor of K. It could
only sit there as Spin(6) x Spin(6), which is the identity component of its Spin(12)-
normalizer because it is a symmetric subgroup of Spin(12), so the circle center of V
is contained in the Sp(1)-factor of K. Thus, S is a complex form of M = E7/DgA;
by Propositions 3.2 and 3.3.

L = DgA; gives another complex form S = [SO(12)/U(6)] x PYC)of M =
E7/DgA as as described in Section 6.

CASE G = Eg. The only symmetric subgroups of Eg are E7A and Dg.

If L = Dg, then the Hermitian symmetric space S = L/V either must be
SO(16)/[SO(14) x SO(2)] with V = [SO(14) x SO(2)], or SO(16)/U (8) with
V = U(8). The first of these is excluded because dimc SO (16)/[SO(14) x SO(2)] =
14 < 28 = dimy M. The second of these is a complex form of M = Eg/E7A| by
Propositions 3.2 and 3.3.

L = E7A; gives another complex form § = (E7/[E¢ x T1]) X PY(C) of M =
Eg/E7Aq as described in Section 6.

8 The unequal rank classification

In this section, we deal with the cases rank(L) < rank(G). Here, G is of type A,, D,
or Eg.

CASEM = SU(r+2)/S(U(r) x U(2)). The only symmetric subgroups of lower rank
in SU(r +2) are SO(r + 2) and, for r = 2r’ even, Sp(r’ + 1).

IfL = Sp(r’'+1),r =2r"even,then S = Sp(r'+1)/U '+ 1) withV = U(r'+1).
Here, dimg M = 2r’ and dim¢ S = %(r’ + 2)(r’ + 1), so those dimensions are equal
just when r'2—r'+2 = 0. That equation has no integral solution. Thus, L # Sp(r'+1).

IfL=SO@0+2),thenS =SSO +2)/[SOF)x SO2)]withV = [SO(r) x
SO(2)]. The SO (2)—factor of V is contained in the derived group SU (2) of the U (2)-
factor of K, and dim¢ S = r = dimy M, so Proposition 3.2 shows that § is a complex
form of M.

CASEM = SO(2n+4)/[SO(2n) x SO (4)]. The only symmetric subgroups of lower
rank in SO(2n 4+ 4) are SOQu +1) x SOQv+ 1), whereu +v=n+1.If L =
SOQRu+1)xSORv+1thenV =SOQRu—1)xSO02)xSORv—1)xSO(2) and
S={SO0QRu+1)/[SOQu—-1)xSOR)]} x {SORuv+1)/[SORv—1)x SO2)]},
where the product of the two SO (2)-factors is contained in the SO (4)-factor of K.
Since dimc S = 2u — 1) + 2v — 1) = n = dimyg M, the argument of Proposition 3.2
shows that S is a complex form of M.

CASE M = E¢/AsA;. The only symmetric subgroups of lower rank in E¢ are F4 and
Cy4,and L # F4 because F4 has no Hermitian symmetric quotient space. If L = Sp(4),
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then S = Sp(4)/U4) with V. = U(4). Here, V sits in K as follows. The semi-
simple part [V, V] = U@4)/{xl} = SO(6) C SU(6) = As. [V, V] is a connected
symmetric subgroup of the connected simple group As, so it is equal to the identity
component of its normalizer in As. Thus, the projection K = AsA; — As annihilates
the circle center of V. In other words, V N Sp(1) is a circle group central in V. It
follows as in Proposition 3.2(1) that S is a totally complex submanifold of M. Since
dimc S = 10 = dimpyg M, it is a maximal totally complex submanifold, and being a
symmetric submanifold it is a complex form.
This completes the proof of Theorems 4.1 and 4.2, the main results of this note.

9 Quaternionic forms

In this section, we look at the idea of quaternionic forms of symmetric spaces as
suggested by the examples of projective planes P?(H) C P2(0) and hyperbolic planes
H?*(H) c H?(0). The meaning of Cayley structure is not entirely clear because of
non-associativity, so we do not have a good definition for Cayley symmetric space.
Here, we offer a tentative definition of quaternionic form and a number of examples,
some interesting and some too artificial to be interesting.

Let M be a Riemannian symmetric, let o be an involutive isometry of M, let S be a
totally geodesic submanifold of M, and suppose that (i) S is a topological component
of the fixed point set of o, (ii)) dimg S = %dimR M, and (iii) S has quaternionic
structure for which its holonomy has quaternion scalar part. Then we will say that S is
a quaternionic form of M.

Suppose that M = G /K with base point xo = 1K and S = L(xo) = L/V, where
L is the identity component of the group generated by transvections of S. Following
Proposition 2.1, S = L/ V is one of the spaces listed in Table 1. That gives us interesting
examples

SU(r+2) U+ . .
SUNOxXUQ) — UnHxo@ 1 Sp(r +2)/[Sp(r) x Sp(D)];

S0 som UG +4)/[UGF) x UA)] = SUG +4)/SWU ) x SU4));

% inUQr+2)/[UQ2r) x UQ)] = SUQr +2)/SUQ2r) x UQ2));

SUC+) . _U+D) . __S5pB) _ _ p2
S(U(r)r><U(2)) = U(r)er(Z) in SOQ2r +4)/[S0Q2r) x SOM]; gyayysm = P

in P2(0Q) = Fy4 /Spin(9) (computing with LiE);

m in Eg/SO(16) (using Proposition 3.3 with L = E7A1, as in §7).

It also gives us some other examples S in S x S as a factor or as the diagonal;

#jﬁz» in SU(r +4)/S(U(r) x U4)) or SUQ2r +2)/S(U2r) x U(2));

—sos(?)(i?f;)@) in SO(r +8)/[SO(r) x SO(8)] or SO2r +4)/[SO2r) x SO@)];

s i Sp(r+2)/[Sp(r) x Sp(2)] or Sp(2r + 1)/[Sp(2r) x Sp(1)].
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Those other examples somehow seem too formal to be interesting. Of course with
any of these compact examples S C M, we also have the non-compact duals S’ C M’.
These examples indicate that a reasonable theory for quaternionic forms § of sym-
metric spaces M will require some additional structure on the normal bundle of S in M.
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