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editors of the proceedings. 

We take this opportunity to thank the National Science Foundation 
for its support of the IMA. 
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PREFACE 

The physics of soft matter in particular, focusing on such materials as 
complex fluids, liquid crystals, elastomers, soft ferroelectrics, foams, gels 
and particulate systems is an area of intense interest and contemporary 
study. Soft matter plays a role in a wide variety of important processes 
and application, as well as in living systems. For example, gel swelling 
is an essential part of many biological processes such as motility mecha­
nisms in bacteria and the transport and absorption of drugs. Ferroelectrics, 
liquid crystals, and elastomers are being used to design ever faster switch­
ing devices. Experiments of the last decade have provided a great deal 
of detailed information on structures and properties of soft matter. But 
the integration of mathematical modeling and analysis with experimental 
approaches promises to greatly increase our understanding of underlying 
principles and provide a predictive power. The articles presented in this 
volume share such an integrated approach and span several areas of appUed 
and computational mathematics, continuum and statistical mechanics. 

Several articles deal with interfacial phenomena in soft matter, from 
both, static and dynamic points of view, including a survey on evolution 
of interfaces in complex fluids, and on the role of surface forces in bulk 
ordering. A related article deals with the role of line tension in wetting. 
Modeling of nano-composite films of nematic liquids is the topic of one of 
the works, that also explores the effective conductivity properties of such 
a composites. There are two articles in the subject of elastomers with two 
distinctive thrusts: studies of stripe phenomena, and also sweUing of gels 
made of liquid filled networks. Ferroelectricity in smectic C* liquid crys­
tals is also presented pointing to the challenges of nonlocal electric phe­
nomena due to the spontaneous polarization in the material. New models 
of nonrigid particulate systems is the subject of one of the articles, that 
addresses the problem of stress transmission and isostatic states of such 
systems. One of the articles is devoted to the non-equilibrium statistical 
mechanics of nematic liquids and the Fokker-Planck equation. Workers 
in areas of complex and non-Newtonian fluids may benefit fi:om the article 
on constitutive equations involving the orientational order parameter. This 
work establishes comparisons among well known theories of non-Newtonian 
fluids. 

The editors wish to thank all the contributors of the volume and also 
the speakers and participants of the IMA workshop on soft matter physics. 



viii PREFACE 

The goal of this volume is to motivate the applied mathematics and the 
soft matter physics communities to continue collaborative tasks of identi­
fying beautiful and novel scientific problems and set the stage for further 
research. 

The editors wish to thank the IMA staff for all their assistance, and 
especially Patricia V. Brick and Dzung N. Nguyen for their efforts in making 
this volume possible. 

Maria-Carme T. Calderer 
School of Mathematics 
University of Minnesota 
http://www.math.umn.edu/%7Emcc/ 

Eugene M. Terentjev 
Cavendish Laboratory 
Cambridge University 
http://www.poco.phy.cam.ac.uk/~emtlOOO 
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AN E N E R G E T I C VARIATIONAL F O R M U L A T I O N 
W I T H P H A S E FIELD M E T H O D S F O R 

INTERFACIAL D Y N A M I C S OF C O M P L E X FLUIDS: 
ADVANTAGES A N D C H A L L E N G E S 

JAMES J. FENG§*, CHUN LlUt, JIE SHEN*, AND PENGTAO YUE§ 

Abstract . The use of a phase field to describe interfacial phenomena has a long and 
fruitful tradition. There are two key ingredients to the method: the transformation of 
Lagrangian description of geometric motions to Eulerian description framework, and the 
employment of the energetic variational procedure to derive the coupled systems. Several 
groups have used this theoretical framework to approximate Navier-Stokes systems for 
two-phase flows. Recently, we have adapted the method to simulate interfacial dynamics 
in blends of microstructured complex fluids. This review has two objectives. The first is 
to give a more or less self-contained exposition of the method. We will briefly review the 
literature, present the governing equations and discuss a suitable numerical schemes, 
such as spectral methods. The second objective is to elucidate the subtleties of the 
model tha t need to be handled properly for certain applications. These points, rarely 
discussed in the literature, are essential for a realistic representation of the physics and a 
successful numerical implementation. The advantages and limitations of the method will 
be illustrated by numerical examples. We hope that this review will encourage readers 
whose applications may potentially benefit from a similar approach to explore it further. 

Key w o r d s . Energetic variational formulation, phase field methods, Cahn-Hilliard 
equation, two-phase flows, complex fluids, free interfacial motions. 

A M S ( M O S ) subject classifications. 76A02, 76A15, 76A05, 76M30, 76T20, 
76T10, 76R99, 76M45,76M22, 76D45, 76B10, 76D05. 

1. In t roduct ion . Most complex fluids have complicated internal mi-
crostructures, whose conformation is coupled with the macroscopic dynam­
ics of the material [1]. On the one hand, this coupling gives rise to novel flow 
behavior. On the other hand, it plays a central role in achieving desirable 
structure and property in advanced engineering materials. Complex fluids 
are often used in composites, of which polymer-dispersed liquid crystals 
and polymer blends are good examples [2, 3]. In these two-phase systems, 
the components are separated by myriad interfaces that move and deform 
with the flow; the interfacial morphology to a large extent determines the 
dynamics of the mixture. 

A fluid-mechanical theory for two-phase mixtures of complex fluids 
has to contend with two difiiculties: the moving internal boundaries (or 
internal transition regions) and the complex rheology of the components. 

*(jfeng@chml.ubc.ca). 
^Department of Mathematics, Penn State University, University Park, PA 16802 

(liu@math.psu,edu). 
* Department of Mathematics, Purdue University, West Lafayette, IN 47907 

(shen@math.purdue.edu). 
§ Department of Chemical &; Biological Engineering and Department of Mathematics, 

University of British Columbia, Vancouver, BC V6T 1Z4, CANADA. 



2 JAMES J. FENG ET AL. 

The former is a well-known mathematical difficulty. The movement of 
the interfaces is naturally amenable to a Lagrangian description, while the 
bulk flow is conventionally solved in an Eulerian framework. A great deal 
of effort has gone to reconciUng these two considerations in a numerical 
scheme [4]. The latter difficulty stems from the fact that the rheology of 
each component depends on the internal microstructure, which is coupled 
with the flow field [5, e.g,]. Thus, these materials feature dynamic coupHng 
of three disparate length scales: molecular or supra-molecular conformation 
inside each component, mesoscopic interfacial morphology and macroscopic 
hydrodynamics. The complexity of such materials has for the large part 
prohibited theoretical and numerical analysis. 

A conceptually straightforward way of handling the moving interfaces 
is to employ a moving mesh that has grid points on the interfaces and 
deforms according to the flow on both sides of the boundary. This has 
been implemented in boundary integral and boundary element methods 
[6-8], finite-element methods [9-11] and a finite-difference method [12, 13]. 
Besides the overhead in keeping track of the moving mesh, these meth­
ods break down when large displacement of internal domains causes mesh 
entanglement or when the interfaces undergo singular topological changes 
such as breakup and coalescence. Thus, these methods have been lim­
ited mostly to single drops undergoing relatively mild deformations. As an 
alternative, fixed-grid methods have been developed that regularized the 
interface [4]. These include the volume-of-fluid (VOF) method [14, 15], the 
front-tracking method [16, 17] and the level-set method [18-20]. All these 
approaches have the advantage of converting the Lagrangian description 
of a geometric motion into the Eulerian description. Instead of computing 
the flow of the two components with matching boundary conditions on the 
interface, these methods represent the interfacial tension as a body force 
or bulk stress spread over a narrow region covering the interface. Then a 
single set of governing equations can be written over the entire domain and 
solved on a fixed grid in a purely Eulerian framework. 

The phase-field method is also a fixed-grid method; it differs from 
those aforementioned in that the interface is diffusive in a physical rather 
than numerical sense. Thus, it is also known as the diffuse-interface model. 
More precisely, the diffuse interface is introduced through an energetic 
variational procedure that results in a thermodynamic consistent coupling 
system. The basic idea was derived from the consideration that the two 
components, though nominally immiscible, does mix in reality within a 
narrow interfacial region. A phase-field variable (/> is introduced, which can 
be thought of as the volume firaction, to demarcate the two species and 
indicate the location of the interface. A mixing energy is defined based on 
(f) which, through a convection-diffusion equation, governs the evolution of 
the interfacial profile. The phase-field method can be viewed as a physically 
motivated level-set method, and Lowengrub and Truskinovsky [21] have ar­
gued for the advantage of using a physically determined (j) profile instead 
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of an artificial smoothing function for the interface. When the thickness of 
the interface approaches zero, the diffuse-interface model becomes asymp­
totically identical to a sharp-interface level-set formulation. It also reduces 
properly to the classical sharp-interface model in general. 

The idea of diffuse interfaces can be traced back to van der Waals 
[22-25], and has since been developed for numerous applications, e.g., 
phase transition and critical phenomena [26, 27], solidification and dendritic 
growth in alloys [28, 29], interfacial tension theories [30], phase-separation 
[31, 32, 27] and two-phase flows [33-40]. Recently, we [41] have gener­
alized the theoretical model to simulate interfacial dynamics in complex 
fluids. Taking advantage of the energy-based formulation, they are able to 
resolve the dual difficulties for complex fluid mixtures—moving interfaces 
and complex rheology—in a unified framework. So far, we have applied 
the method to a number of problems on drop dynamics of viscoelastic and 
Uquid crystalline fluids [42-46]. In the following, we first give a brief but 
self-contained derivation of the theoretical model, and describe a numerical 
algorithm using spectral methods. Then we will illustrate the advantages 
and limitations of the model by several numerical examples. We hope to 
convince the reader that the diflfuse-interface idea can be developed into a 
versatile CFD tool for multi-phase and multi-component complex fluids. 

2. An energy-based phsuse-field theory. The phase-field model 
can be derived from the general procedure of Lagrangian mechanics [21, 37]. 
We write out the Lagrangian (action functional) of the system based on 
its free energy, and carry out variations with respect to the field variations 
(and the flow map). This amounts to following the "least-action principle" 
and various dynamical laws, and will lead to evolution equations for these 
variables (including the momentum equation — force balance equations). 
The dissipative portions of these equations need to be derived separately, 
for instance via irreversible thermodynamics [47]. The entire procedure 
has been demonstrated previously for Newtonian, viscoelastic and nematic 
liquid-crystalline fluids [37, 41, 48], and even for fluid-structure interactions 
(with the help of a Eulerian description of elasticity) [49]. In the following, 
we will use an example of a Newtonian-nematic blend with planar anchoring 
for illustration. 

For an immiscible blend of a nematic liquid crystal and a Newtonian 
fluid, there are three types of free energies: mixing energy of the inter­
face, bulk distortion energy of the nematic, and the anchoring energy of 
the liquid crystal molecules on the interface. We introduce a phase-field 
variable 0 such that the concentration of the two components is (1 -j- (j))/2 
and (1 — (^)/2, respectively. We express the mixing energy density in the 
Landau-Ginzburg form: 

(2.1) fmi.{<t>,Vct>) = ^mf + ^ ( ^ 2 - 1)\ 
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where the parameter A is the mixing energy density, and e is a capillary 
width representative of the thickness of interface. The gradient energy term 
A|V<?i>p/2 and the bulk energy term /o = A((̂ ^ - l)^/(4e^) represent the 
"phiUc" and "phobic" tendencies between the species, their competition 
giving rise to the equiUbrium (j) profile. Note that fmix is the diffuse-
interface counterpart of the inter facial tension. In fact, one can relate the 
conventional interfacial tension a to the parameters in the mixing energy. 
For instance, from an equilibrium hyperbolic-tangent (j) profile that is the 
ID energy minimizer, one obtains [34, 41] 

(2.2) "^=-1-7-

The orientation of the nematic liquid crystal is described by the direc­
tor field n(x). The Prank distortion energy expresses the energy penalty 
for distorting the orientation [50]: 

(2.3) fbuik = K - V n : (Vn)T + i L J _ ^ 

where K is the elastic constant. The second term on the right-hand side 
regularized the original Prank energy to allow defects [51]. The nematic 
prefers to orient on the interface along an easy axis [50]; any deviation from 
it is penalized by an anchoring energy. Here we assume that the easy axis 
is any direction in the tangential plane, and write the anchoring energy as 

(2.4) fanch='^{n-V<j>)\ 

with the positive constant A representing the anchoring strength. This is 
the diffuse-interface counterpart of the Rapini-Popoular energy [52]. UnUke 
in the sharp-interface picture, both fmix and fanch are volumetric energy 
densities. Finally, the total free energy density for the two-phase material 
is written as: 

(2.5) f{(j), n , V(^, Vn) = fmix H -^—fhulk + fanch 

where (l-|-0)/2 is the volume fraction of the nematic component, and </> = 1 
in the purely nematic phase. 

Variation of the system's action functional with respect to the phase-
field variable (̂ , the nematic director n and the displacement leads to evo­
lution equations for 0, n and the momentum equation. Augmented by the 
dissipative effects, the governing equations of the system are: 
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(2.6) | ^ + „.V<^ = 7 i V 2 ^ 

(2.7) — + t ; - V n - 7 2 / 1 , 

(2.8) V • V = 0, 

(2.9) p(^ + vVv\= -Vp + V • [niVv + Vv^) + <T«] , 

where 71 is the interfacial mobiUty and 72 determines the relaxation time 
of n . F = J fdQ is the total free energy of the system, whose variations 
produce 

(2.10) 
SF_ 
5^ = \ -V^<t> + 1) + ^ftmik - ^ V • [{n • V<A)n], 

and the molecular field 

h= —— 
(2.11) 

5F 
Sn 

= K [-v.(l±*v„) -f 1 + (/> (n^ - l ) n 
~ 2 P 

4- A{n. V(f>)V(j). 

Note that the right-hand side of the dynamic equation (2.6) dictates 
the relaxation of the phase-field variable </>, with a relaxation time propor­
tional to 1/71. In the limit of 71 approaching zero, we recover the kinematic 
condition for the interface. Moreover, as e approaches zero, the dynamics 
of (j) will preserve the profile of the transition (hyperbolic-tangent in this 
case), a key advantage of phase field approach. The last two terms in 
equation (2.10) represent coupling between the phase field and the Prank 
distortion energy and anchoring energy. When the interface is thin, fiyuik 
is dominated by the mixing energy near the interface and therefore negligi­
ble. The last term may have an effect on the interfacial (f) profile for strong 
anchoring. But it is a higher order effect, negUgible if the effects of interfa­
cial tension and surface anchoring are assumed to be additive (cf. equation 
(2.12) below). Thus for simplicity, the last two terms on the right-hand-
side of equation (2.10) are neglected hereafter. There are applications, e.g. 
[28], where the interface is relatively thick and the (f) profile has physical 
consequences. 

In the variation with respect to displacement, we have assumed equal 
density between the two species. A small density mismatch may be handled 
by the Boussinesq approximation [37]. In the more general situation, the 
mass-averaged mixture velocity becomes non-solenoidal within the interfa­
cial region, and a theory for compressible mixtures can be constructed [21]. 
The pressure is a Lagrange multiplier for the constraint of incompressibil-
ity. The elastic stress tensor is derived as part of the variational procedure 
[41], and in this case can be written out as 
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^+(t>rT7^^ /rr^NT (2.12) cr^ = -A(V<^ ® V^) - i f - - ^ ( V n ) • (Vn) ^ - ^ ( n • V(f>)n 0 V(^. 

3. Numerical scheme. While the coupled nonlinear system (2.6-
2.9) are adequate mathematical models for the mixtures of complex fluids, 
it is a challenging task to construct a numerical scheme which is capable of 
correctly capturing, at a reasonable cost, the complex spatial and temporal 
features of these two-phase flows. 

We propose to discretize the coupled nonlinear system (2.6-2.9) in time 
with a stabilized semi-implicit second-order scheme. The guiding principle 
here is that we only want to solve decoupled, constant-coefficient elliptic 
equations at each time step while preserving the overall second-order time 
accuracy and having a reasonably large stability region. 

To simphfy the presentation, we shall only describe our approach for 
the Cahn-Hilliard equation 

(3,) ^+,v=(vV-Ifcil*)=.„ 
and for the time-dependent Stokes equations 

(3.2) ^ - - A ^ 4 - V p = / i 2 , 

V - t ; = 0, 

where the forcing functions hi and /12 would include all the extra nonlinear 
terms in (2.6-2.9) which will be treated explicitly to avoid solving nonUn-
ear equations at each time step. The treatment for the nematic director 
equation 2.7) is very similar. 

Let us consider first the Cahn-Hilliard equation (3:1). A main diffi­
culty associated with the numerical approximation of (3.1) is that a stan­
dard semi-implicit scheme leads to a very stiff system (when e < 1) which 
dictates a very small time step. This difficulty can be alleviated by using 
the following shifted semi-implicit scheme: 

_ ( | ^ * - l | 2 _ ( l + C ' , ) ) 0 * - l ] . 

where Cs is a stabilizing parameter typically in the range of [1,5]. Ample 
numerical results indicate that the above stabihzed semi-imphcit scheme 
allows much larger time step than the standard semi-implicit scheme does. 
We observe that (3.3) is a fourth-order equation for 0*̂ "̂ ^ with constant 
coefficients. 

Next, we describe our approach for solving the time-dependent Stokes 
problem (3.2). 
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If the boundary conditions are periodic, the pressure in (3.2) can 
be easily eliminated using the divergence-free conditions so (3.2) 
can be efficiently solved by using a Fourier-spectral method [37]. 
If the velocity satisfies a free-sUp boundary condition (cf. [53]), 
then, the time discrete approximation of (3.2) can be split into 
a sequence of Poisson-type equations for the velocity and for the 
pressure. 
If the boundary conditions in all but one direction are periodic, 
(3.2) can be reduced into a sequence of one-dimensional fourth-
order equations using a Fourier expansion in all but one direction 
[54]. 
Finally, for the general cases, we shall use a projection type scheme 
(see the recent review paper [55]) to decouple the computation 
of the velocity from the pressure. For example, we may use the 
new consistent splitting scheme introduced in [56]. To be specific, 
we assume here that the velocity is subjected to a homogeneous 
Dirichlet boundary condition: 

(3.4) 2At 

(3.5) (Vi^'^Wq) = (̂ '̂̂ ' SA'"^""' ' - S - ^̂  ^ '̂̂ "̂ ^ 
(3.6) / + ^ = il;^-^^ 4- 2p^ - p^-^ - z/V • v^'^\ 

Note that (3.4) is a Poisson-type equation for v^'^^ while (3.5) is 
a Poisson equation (with homogeneous Neumann boundary condi­
tions) in the weak form for if;^'^^. 

Hence, after a time discretization to the coupled nonlinear system 
(2.6-2.9), we only need to solve, at each time step, a sequence of constant-
coefficient elliptic equations which can be efficiently handled by one of the 
many existing numerical methods using finite difference, finite elements or 
spectral methods. Since we shall confine ourselves to simple geometries in 
this study, we choose to use the well-conditioned and fast spectral-Galerkin 
methods developed in [57, 54, 58] which are capable of solving constant-
coefficient elliptic equations in simple geometries with quasi-optimal com­
putational complexity, i.e., the number of operations per time step is of 
order 0(iV log AT), N being the number of unknowns. The high resolution 
property of the spectral method and the efficiency of the fast spectral-
Galerkin algorithms allow us to numerically solve the coupled nonhnear 
system (2.6-2.9) at a reasonable cost. For example, with a 750 MHz Sparc-
v9 processor, the two-dimensional problems with a spatial resolution of 
1024 X 1024 or 2048 x 1024 typically take about 1 minute of CPU time 
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per time step. For all the simulations reported below, we have carried out 
grid and time-step refinements to ensure convergence. If we take 4.164e to 
be a nominal interfacial thickness (cf. [41]), this layer typically requires 
7-10 grids to resolve. Coarser grids will generate spurious oscillations in 
the solution, especially in the vicinity of the interface. 

4. Advantages of the diffuse-interface model. Needless to say, 
the greatest payoflF of adopting a diffuse-interface picture is the ease with 
which moving interfaces can be handled. Compared with the traditional 
sharp-interface view of internal boundaries, there is no longer a need to 
track the position of the interface, and to impose matching boundary con­
ditions for solving the flow inside each component separately. As mentioned 
earlier, the interfacial tension is now represented by an elastic stress tensor 
concentrated in the interfacial region. The cost is the additional d3mamics 
for (j)\ we have to deal with the physics of the convection-diffusion process 
as well as the numerical burdens of an additional equation. These will 
be discussed in the next section among the subtle issues that need special 
consideration. 

The diffuse-interface formulation also brings about several "side bene­
fits" that may be of great importance to the physical applications at hand. 
Here, we illustrate in some detail three of such benefits that we have noted 
in our simulations. These advantages reflect the fact that the phase-field 
idea transforms the Lagrangian description of a geometric motion into Eu-
lerian coordinates, and easily represents the competition between various 
energy functionals for the multiphase material. 

4.1. Short-range molecular forces during topological changes. 
For the same reason that the phase-field method handles moving interfaces 
easily, so it does singular topological changes such as breakup and coa­
lescence. In the sharp-interface convention, such events require an ad hoc 
treatment. For filament breakup and drop coalescence, for example [59, 60], 
the thinning neck or film has to be artificially removed once its thickness 
reaches a prescribed threshold. In contrast, the diffuse-interface is repre­
sented by the contour of 0 = 0, which deforms and reconnects smoothly 
during flow. Thus, no artificial trigger is needed for drop breakup and 
coalescence. As an example. Fig. 1 illustrates the head-on collision and 
subsequent coalescence of two Newtonian drops in a Newtonian matrix. 
The draining film develops a "dimple" in the middle [61] and the rupture 
occurs toward the outside of the fiilm, trapping some matrix fluid inside. 

In reality, film rupture is effected by short-range forces such as van 
der Waals force [62]. Interestingly, the phase-field model is rooted in the 
physics of molecular interaction between the two species, and thus contains 
short-range molecular forces. To see this, consider the simple situation in 
Fig. 2, with a liquid film (F) of uniform thickness h sandwiched between 
semi-infinite domains of another fluid (A). For a thick film, the phase-field 
variable at the center approaches the bulk value, say (J>Q -^ —1, B,t the 
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OO 
t= 1.342 

t=2.433 t=2.5l7 

FIG. 1. Collision and coalescence of two Newtonian drops in a Newtonian 
matrix. The Reynolds number, defined using D and U, is Re = 33.6, and the 
Weber number is We = 12. Other parameters are: e = 0.01 and^ = 3.365 x 10~^ 
(after Yue et al. [41], ©Cambridge University Press.) 

center. For a thin film, however, conceivably (j) inside F will differ from 
the bulk value: (f)o > —I. From the elastic stress tensor due to the mixing 
energy (cf. [42]), one may calculate the disjoining pressure in the diffuse-
interface model: 

(4.1) n^ = -A/o = A(^§-1)^ 
4e2 

which implies an attractive force between the interfaces as with van der 
Waals force. If we estimate (f>o based on a hjrperbolic tangent ^-profile as 
in a one-dimensional equilibrium interface [41], 

(4.2) (j)Q = — t anh 
2V2e 

Then the disjoining pressure in Eq. (4.1) can be shown to be of the same 
order of magnitude as the van der Waals force. As the film thickness 
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FIG. 2. A cartoon for a draining film and the corresponding <j) profile. 

approaches zero, however, the van der Waals force goes to infinity while II,^ 
remains finite. A more detailed comparison can be found in Ref. [42]. On 
a fundamental level, the discrepancy between van der Waals force and n<̂  
stems from the truncation of the Cahn-Hilliard free energy at the quadratic 
term |V</>p. An elegant explanation has been given by Pismen [63]. 

4.2. Complex rheology. Because of its energy-based formaUsm, our 
diffusive interface method incorporates complex rheology easily. The non-
Newtonian rheology is typically due to microstructures whose conformation 
deviates from equihbrium under deformation. The conformation of the mi-
crostructure is often governed by a free energy, e.g., the Prank distortion 
energy for a liquid crystal or the free energy of a polymer chain. In Sec­
tion 2, we showed how this microstructural energy can be added to the 
mixing energy to form the total free energy of the multi-phase system, 
which will give rise to the proper constitutive equation for the microstruc-
tured fluids in addition to the evolution equation of the phase field variable. 
Thus, interfacial dynamics and complex rheology are included in a unified 
theoretical framework. 

This procedure is general in that various types of constitutive relations 
can be derived by the same procedure. As a second example, we consider 
here the important case of a viscoelastic polymer solution modeled as a sus­
pension of Hookean dumbbells in a Newtonian solvent [64]. Instead of the 
least-action principle, we follow a formally different but essentially equiv­
alent 'Virtual-work principle" [5]. For a single dumbbell with a connector 
Q, its elastic energy is ^HQ • Q, where H is the elastic constant. For an 
ensemble of dumbbells with configuration distribution * (Q) , the average 
energy can be written as 

(4.3) fd = I (kTln^ + \HQ • Q) ^dQ, 

where k is the Boltzmann constant and T is the temperature, and the 
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integration is over all possible configurations of Q. Now the total free 
energy density of the two-phase system is: 

(4.4) / = / ^ . ^ 4. i ± ^ n / d , 

where n is the number density of the dumbbells. Since the stress tensor 
due to fmix has been derived (cf. equation 2.12 and [41]), we will only 
consider the elastic stress due to the dumbbell energy fd- We impose a 
virtual displacement 6x on the material, which takes place instantaneously 
so that the dumbbells deform afSnely with no slip between the bead and the 
surrounding fluid. The corresponding change in the distribution function ^ 
can be obtained from the Fokker-Planck equation for ^ [64]. Now we may 
calculate the resultant variation in the dumbbell free energy. Omitting the 
intermediate steps [42], we eventually arrive at: 

Sfd = [ (kTln^i-kT^jQ: Q) 6^dQ 

(4.5) = {-kTI^H<QQ>): {V5xf, 

where < • >== J^g -^dQ t̂nd I is the identity tensor. Thus the dumbbell 
stress tensor is: 

(4.6) Td = -nkTI + nH <QQ>, 

which obeys the Maxwell equation. This is exactly the Kramers expression 
for the polymer elastic stress tensor [64]. The same procedure can be 
followed for other microstructural free energies, such as the Marrucci-Greco 
nematic potential energy for liquid-crystalline polymers [65, 5]. 

4.3. Energy conservation. An additional advantage of the phase-
field method over other interface-regularizing methods is its energy con­
servation: a solution to the governing equations in Section 2 obeys an 
energy law. For example, multiplying equation (2.9) by the velocity v, 
equation (2.6) by the chemical potential SF/5^ and equation (2.7) by the 
molecular field SF/5n, integrating over the entire domain and summing 
the results, we obtain: 

(4.7) 
dtJ^W + f)dn 

Jn \ 
fxVv : Vv +71 

5(j> 

2 

+ 72 
5F 

Sn 

2\ 
dfi, 

where / is the system's potential energy density (cf. equation 2.5), and 
surface work has been omitted. Physically, the law states that the total 
energy of the system (excluding thermal energy) will decrease fi:om inter­
nal dissipation. Based on such energy laws, Lin and Liu [66, 67] have 
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established the existence of classical and weak solutions for Leslie-Ericksen 
fluids. In general, energy laws play an important role in the convergence 
of finite-dimensional approximations to partial differential equations, espe­
cially when the solution is not smooth [51]. This constitutes one of the 
advantages of our method over previous methods that do not maintain the 
system's total energy budget. In VOF simulations, density is the labeling 
function subjected to smoothing. The level-set method renormalizes the 
distance function. In either case, the conservation of energy cannot be 
maintained. 

Note that the energy conservation holds exactly when all the coupling 
terms in equation (2.10) are kept. For numerical conveniences, we have 
omitted such terms in applications where the interface will remain thin 
and the coupling terms have at most a localized effect. This omission 
will violate the energy conservation. When the geometry is simple and the 
solution is smooth, non-conservation of energy usually does not compromise 
the quaUty of the solution. But difiiculties may arise in the presence of rapid 
spatial variations, which are characteristic of microstructured fluids with 
internal boundaries and/or defects [1, 43]. 

5. Physical and numerical subtleties. Although the convergence 
of the phase-field model to the sharp-interface model has been established 
by asymptotic expansion for regular velocity fields [24, 25, 40, 33, 39, 21, 
37], there are some subtle issues that merit further discussion. One such 
issue, for example, concerns incompressibility. While the phase-field for­
mulation imposes incompressibility throughout the dot^ain (hence also on 
the interface), the sharp-interfstce model satisfies this condition only weakly 
on the interface. In fact, the system would be over-determined with such 
a constraint on the interface. For phase-field models, we are allowed to 
impose V • i; = 0 everywhere thanks to the diffused transition layer. The 
same holds for VOF and level-set methods through the introduction of an 
artificial transition layer. Physically, one may consider the sharp interface 
and the diffuse interface different approximations of the real physical sit­
uation, the former by relaxing incompressibility on the interface and the 
latter by introducing the transition layer. 

The phase-field method can be viewed from two complementary angles: 
as a representation of the microscopic physics on the interface or as a nu­
merical device for simulating moving boundary problems without tracking 
the interface. Depending on the applications, one or the other viewpoint 
may be more appropriate. For applications such as solidification of alloys 
[28, 29] and near-critical systems [26, 33], it is essential to ensure that the 
phase-field equation captures the dynamics at the interface because the 
inter facial profile is of direct interest. On the other hand, the two-phase 
flow problems we have simulated involve "immiscible" components with 
interfacial thickness on the order of tens of nanometers. Beyond indicating 
the position and movement of the interface, the (f) profile has little direct 
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bearing on the macroscopic properties of interest. Thus, there is a degree 
of freedom or ambiguity in choosing the dynamics of the phase field and 
the parameter values. In particular, the interfacial thickness in the model 
can be much thicker than in reaUty; there is no need, nor perhaps the ca­
pability, to resolve the interface down to nanometer scales. Prom this an 
array of subtle issues arise, which must be handled with care for the model 
to be physically sound and numerically efficient. 

5.1. Cahn-Hilliard and Allen-Cahn dynamics. As long as our 
physical problem conceptually consists of sharp interfaces, the diffusion 
d)mamics of the phase-field variable is to a large extent fictitious. Thus, 
one can choose Cahn-Hilliard, Allen-Cahn or other types of dynamics. We 
can view all such choices as a relaxation or approximation of the kinematic 
transport equations. Based on similar considerations, we have neglected 
certain coupling terms in the Cahn-Hilliard equation due to presence of 
microstructures (cf. equation 2.10). One requirement on the diffusion 
dynamics is that they maintain the integrity of the interface. In other 
words, the "phobic" and "philic" tendencies should be balanced such that 
the transition layer neither smoothes out nor steepens into a shock wave. 

The Cahn-Hilliard equation follows from the physical argument that 
the flux be proportional to the gradient of a generalized chemical potential. 
This differs from the conventional Pick's law, which leads to the Allen-Cahn 
dynamics. The advantage of the Cahn-HilUard equation is the following 
conservation of total system "mas^: 

(5.1) -J(l>ix,t)dx^O, 

if the following no-flux boundary condition is imposed. 

where n is the normal direction to the boundary. 
A disadvantage of the Cahn-HiUiard equation is that its higher (4th) 

order causes numerical compHcations. Shen [54] and Yue et al. [41] used a 
procedure of splitting it into two second-order Helmholtz equations. 

The Allen-Cahn equation is easier to handle numerically but does not 
automatically ensure conservation of mass; a Lagrange multiplier can be 
introduce to enforce it as a constraint [68]: 

d(l> ^, f 5F 

(5.3) i+-^^ = ̂ <-^+-
with J^ (j>{x, t) dx = J^ 0(x, 0) dx. 

Another possibility is the "advected field" method [69], which is a 
compromise between phase-field and level-set approaches. To impose mass 
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conservation on the Allen-Cahn equation, an additional term proportional 
to the local curvature is added: 

(5.4) ^ + t ; . V ( ^ = 7i ^ - (A<^4-c |V<^ | ) 

where c is the curvature of interface. In the sharp-interface limit, the new 
term cancels the diffusion flux incurred by the Allen-Cahn dynamics, thus 
mass is conserved. On the downside, the ad hoc term prevents interfacial 
tension to be incorporated into the momentum equation via the phase field. 
Instead, it has to be added "by hand" through a spread-out delta function 
as in level-set and VOF methods. 

Finally, we must point out that the phase-field dynamics do play a 
central role in a special class of two-phase flow problems where the interface 
undergoes topological changes such as breakup or coalescence [42]. The 
length scale of such critical processes approaches that of the interfacial 
thickness. In reality, these processes are dominated by short-range forces. 
As illustrated in the last section, the Cahn-Hilliard dynamics does contain 
a type of short-range force; it produces a disjoining pressure comparable 
to the van der Waals force. Then the question arises as to how closely this 
type of short-range force approximates reality in a particular experiment. 
The answer likely depends on the complex details of the experiment, as 
short-range forces from several sources can take part, typically imparting 
a stochasticity to the problem [70, 71]. 

5.2. Interfacial relaxation. Secondary to the ambiguity in interfar 
cial dynamics is the determination of parameter values. For the diffuse 
interface to reproduce the macroscopic behavior of a sharp-interface, the 
model parameters must be judiciously chosen. In particular, the parameter 
7i determines the rate of relaxation of the 0 field. However, there is little 
experimental information on 71 for the thin-interface two-phase flows that 
we are interested in. Jacqmin[34] juxtaposed two considerations on this: 
"straining flows can thin or thicken an interface and this must be resisted 
by a high enough diffusion. On the other hand, too large a diffusion will 
overly damp the flow". We will discuss several manifestations of interfacial 
relaxation in the following. 

One interesting effect of interfacial relaxation is the initial "contrac­
tion" of a drop in a quiescent fluid. As an initial condition, we impose the 
hyperbohc tangential (p profile at the interface (equation 4.2), with <̂  = ±1 
in the two bulk phases. On commencing the simulation, however, we notice 
a very small shift in (j) such that the interface (f> = 0 shrinks slightly, and </> 
deviates from ±1 slightly in the bulk (Fig. 3). The reason for this artificial 
shrinkage is that the initial (j) field is not the equilibrium one that minimizes 
the total free energy in 2D. Thus, the interface tends to shrink to reduce the 
mixing energy. Since J^cjxiQ. is conserved by the Cahn-Hilliaxd equation 
with the zero-flux boundary condition (equation 5.2), the shrinking inter­
face causes the bulk ^ value to change slightly, incurring an energy penalty 
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fluid. 
FIG. 3. A diagram showing the initial contraction of a drop in a quiescent matrix 

in the bulk energy /Q. The competition between the bulk and interfacial 
energies results in a slightly relaxed (j) field that has a lower energy than 
our initial condition. For a circular drop of radius r, one can calculate the 
shift in the bulk value of (f) analytically if e/r <^ 1: 

(5.5) S(l) = 
V2e 
6r 

In general, such a formula will not be available. But one may always choose 
a sufficiently small e so that the initial shift is insignificant to the accuracy 
of the results. 

Another important consequence of interfacial relaxation is the change 
in apparent interfacial tension [41, 43]. To simulate an experiment with 
two immiscible fluids, one chooses appropriate values for the mixing en­
ergy A and capillary width e so as to match X/e to the experimental in­
terfacial tension a according to a formula based on some equilibrium (f) 
profile[34, 41]. As 0 evolves during flow, the matching formula no longer 
holds. Yue et al. [41] have shown an example of drop deformation in shear 
flows, where the deviation of the cj) profile from the equilibrium one in­
creases the effective interfacial tension. As a result, the drop deformation 
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FIG. 4. Effect of the mobility parameter 71 on the deformation of a drop after 
startup of a sim.ple shear. The drop is Newtonian while the m,atrix is a viscoelastic 
Oldroyd-B fluid (after Yue et at. [4I], ©Cam^hridge University Press.) 

is underpredicted. Since the rate of relaxation is controlled by 71, it has 
an effect on the drop deformation as well. In this case, Fig. 4 shows that a 
smaller 71 increases the drop deformation shghtly. 

5.3. Interfacial thickness. The capillary width e is another param­
eter that needs to be chosen carefully. This is a well-recognized issue in 
phase-field models for alloy solidification [29]. In our simulations of two-
phase flows, the interfacial thickness /i, defined for example by 90% of the 
jump in 0, is typically on the order of 4e. The smallest h that one can 
resolve depends on the macroscopic length scale and the computational 
capacity. But it is typically much thicker than the nano-scale real inter­
faces. Thus, it is a delicate task to pick an e within one's computational 
reach that produces approximately the correct macroscopic behavior of a 
much thinner interface. As mentioned before, e aflFects the effective interfsr 
cial tension, the relaxation of the interface and the short-range molecular 
forces. The philosophy behind choosing an appropriate value is perhaps 
best illustrated by a situation involving drastic topological changes. 

Figures 5 and 6 show simulations with a larger or smaller e than in 
Fig. 1 with all other parameters unchanged. The early stage of the simula-
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FIG. 5. Collision and coalescence of two Newtonian drops in a Newtonian matrix 
with a thicker interface. The parameters are the same as Fig. 1 except for e = 0.02 
(after Yue et al. [42], ©Elsevier.) 
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LU 

FIG. 6. Collision and coalescence of two Newtonian drops in a Newtonian matrix 
with a thinner interface. The parameters are the same as Fig. 1 except for e = 0.005 
(after Yue et al. [42], ©Elsevier.) 

tions, say for t < 1.342, is identical with Fig. 1. This is before the interfacial 
profiles of the two drops overlap. For a larger €, the interfaces of the two 
drops overlap at an earlier time during their approach, and the ensuing coa^ 
lescence occurs more readily (Fig. 5). Note that the interface does not have 
time to develop the dimpled shape, and no matrix fluid is trapped inside 
the drop. On the other hand, a smaller e prolongs the coalescence process 
(Fig. 6). As compared with Fig. 1, the points of rupture are more toward 
the ends of the film. This produces a less pronounced waist in the resultant 
compound drop, and the entrapped matrix filament does not break up but 
retracts into a droplet. The optimal e cannot be determined by an a priori 
criterion. Rather, it needs to reflect the range of the molecular forces at 
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work in the particular experiment to be simulated. Owing to a degree of 
randomness in the short-range forces, the coalescence time in experiments 
often exhibits a Gaussian distribution [70, 71]. Obviously, such intricate 
details cannot be reproduced by the disjoining pressure in a phase-field 
formulation. Instead, one may hope to capture the macroscopic dynamics 
in some average sense by using optimal values for the model parameters. 

Note that the effect of e is not to be confused with numerical resolution 
of the interface. For each e value tested here, mesh refinement has confirmed 
that the grid used is adequate for resolving the interface (see also [41]). 

5.4, Adaptive mesh refinement. We argue that adaptive mesh re­
finement is capable of addressing all aforementioned issues. As has been 
established before, the diJBFuse-interface model will stay close to the sharp-
interface model, with the conventional interfacial tension, when the interfa-
cial thickness tends to zero [33, 37]. Note that the </> profile as a solution to 
equation (2.6) is "nontrivial" only within the interfacial layer, whose thick­
ness scales with e. Therefore, for sufiiciently small transition thickness e and 
elastic relaxation time 7, the effect of interfacial relaxation becomes negli­
gible, and the difference between Cahn-Hilliard and AUen-Cahn dynamics 
becomes irrelevant. In fact, they represent two different regularizations of 
the kinematic transport of the phase field. 

However, in some cases, such as those involving surfactant monolayers, 
the interfacial profile needs to be numerically resolved for accurate evalua­
tion of the interfacial stress. The disparity between small e and the global 
length scale implies the need for a locally refined grid inside the interfacial 
region. 

Although procedures for dynamically adaptive meshing seem to be 
available [72, 73], they have not been used in a diffuse-interface framework 
as we are aware. So far, we have used spectral methods with structured 
grids; the resolution of the interface is the numerical bottleneck [41] that 
must be tackled before the method can be used for large-scale flow sim­
ulations in three dimensions. Such an adaptive meshing scheme seems to 
be most conveniently implemented within a finite-element formulation. In 
addition, moving-mesh schemes may serve the same purpose. Code devel­
opment along both directions is underway, and will be reported in the near 
future. 

5.5. Topological control. So far we have considered it an advan­
tage that the phase-field method automatically handles topological changes 
such as merging and rupture of interfaces. This is the case when the na­
ture of the short-range forces are understood and more or less adequately 
represented by the phase-field dynamics [42]. In certain applications, how­
ever, this may become a liability [74]. For instance, surface-active agents 
greatly modify the behavior of interfaces, stabilizing drops in emulsions 
and bubbles in foams against coarsening [1]. Membranes may prevent vesi­
cles in contact from coalescing. If one chooses to use a phase-field model 
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OOoo 
FIG. 7. Singular cases in S-D. The inner intersect angles are TT, 0, 7r/2 for cases 

a, b and c respectively. The Euler number x is 2, 1 and 1.5. The Euler-Poincar6 index 
number rj is always 2. 

in such situations, it is desirable to retain some control of the topological 
events within the model. This consists of retrieving topological information 
from the phase field formulation, monitoring the occurrence of topological 
events, and even using the information to design a criterion for prohibiting 
unphysical changes of topology. 

Du et al. [75] have recently developed a method for topological control 
in a phase-field model via the Euler number. The idea, briefly outlined 
below, applies equally well to other simulation methods for free boundary 
and interface problems such as the level-set methods. 

Given an oriented (regular) compact (i.e., without boundary) surface 
r , the well-known Gauss-Bonnet formula states that 

(5.6) iKds = 27rx, 

where K = k\k2 is the Gaussian curvature of the surface in ii^, ds is the 
area element and x/2 in 3D or x in 2D is the Euler number [76]. The 
number x is a commonly used topological quantity. For some frequently 
encountered surfaces, we have x = 2 for a sphere, x = 0 for a torus and 
X = —2 for a torus with 2 holes. For 2D curves, K is the curvature and 
X = 1 for a circle. 

Such a concept can be generalized to the cases involving singularities, 
as illustrated in Figure 7. For instance, in 2 dimensional cases, we will have 
that: 

/

n n 

Kds^- ^ ( T T - ai) = 27rx + ^ ( T T - a^), 
i= i i = i 

where ai are the inner angle at each vertices. And ry, the Euler-Poincare 
index number, is the topological integer, the genus of the surface. 

In [75], we derived a phase-field representation of x- Let F be a smooth 
oriented compact surface of a domain fl in R^ (note that F is allowed to 
have multiple disconnected pieces). Let p be a monotonically increasing 
function defined from R to R with p(0) = 0. We define the phase-field 
function as (j>{x) = p{d{x)) where the signed distance function d{x) = 
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dist{x^ r ) is defined to be positive inside Q. and negative outside fl. The 
level sets of 0 are denoted by F^ = {x € ft\<t){x) == /i}. In particular, we 
have r = FQ. We also define Cl^ = {x £ Q\b < (j){x) < a}, which forms a 
banded (layered) neighborhood around the surface for 6 < 0 < a. Further 
define A(M) = Ai(M)A2(M) = A{V'^d{x)) for a singular matrix M with 
Ai, A2 being the two non-zero eigenvalues of M = V^d(x). Since we can 
view that fci, fc2 remain close to constant along the normal directions in the 
thin layer region fl', we have that 

I " " 4 ^ 7 fcl(x)fc2Wrf5 

^ pp~ (a) p 
= 7:;^—h\ / p\r)dT / ki{x)k2{x) ds 

(^•^) = , / M / p\d{x))ki{x)k2{x) dx 

47r(a - b) J^f^a^b) 

(^•9) = , / M / -jj^MV^<t> - p'VidVjd) dx , 

In practice, the function p and the constants a, b will be chosen such that p ' 
is relatively small outside of the transition layer. Now, since p{x) is mono­
tone, hence we have that p\d{x)) = |V<^(x)| and p"(d(x)) = L^'^'^ ^. In 
the end we have the following theorem [75]: 

THEOREM 5.1. If (t> = (j>{x) ofQ, as (j){x) = p{d{x)) where the signed 
distance function d{x) = dist{x^ F). For any monotone increasing function 
p, there exists b <0 < a, such that the following matrix M, where 

is a singular matrix for Vx £ fi(a, b) in the sense that it always has a zero 
eigenvalue J and the Euler number ofV can be obtained as: 

(5.11) I = / F{x)dx 

where F denote the coefficient of the linear term of the characteristic poly­
nomial of M. 

Numerical simulations, such as that in Figure 8 and Figure 9, show 
that the Euler number thus computed indeed captures the occurrence of 
critical topological events [75]. 

Besides detecting the occurrence of critical topological events, this 
quantity also provides an important tool in designing a scheme to prevent 
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FIG. 8. Coalescence of two bubbles in a Newtonian fluid with the time valued at 
0.00, 0.10, 0.18, 0.22, 0.24, 0.28 (after Du et al. [75].) 

FIG. 9. A plot of the Euler number in time with the annihilation of the small bubble 
(after Du et al. [75].) 

topological changes from happening. For instance, one may use a Lagrange 
multiplier to enforce the constancy of the Euler number over the entire do­
main. Since the constraint will involve a cost functional of high derivatives, 
more detailed analysis and numerical studies are needed in this area. 

6. Concluding remarks. This article aims to introduce the ener­
getic variation based phase-field approach to readers interested in the fluid 
dynamics of immiscible complex fluids. Although various versions of the 
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model have been used in the past to great degrees of success, we highlight 
the generic advantages inherent in the formalism. More importantly, per­
haps, we discuss several detailed key crucial issues (challenges) with the 
method whose proper treatment is prerequisite to a physically realistic and 
numerically practicable implementation of the model. 

We emphasize that the diflFuse-interface treatment can alternatively 
be seen as a physical model or a numerical device. It can be viewed as 
a physics motivated approximation (regularization) of the sharp interface 
models. The employment of the phase field method changes the Lagrangian 
description of the interface motion into Eulerian description. The energetic 
variational procedure ensures that the resulting coupling system will still 
preserve the overall energy law. The method seems to be more appropriate 
for the drop dynamics problems that we have simulated, although there 
are other applications where the opposite is true. As such, the interfacial 
dynamics and model parameters do not directly correspond to measurable 
quantities and their determination is a delicate matter. We have advocated 
the view that the criterion should be that the diffuse-interface model accu­
rately predict the macroscopic dynamics of the two-phase system, including 
drastic changes of the interfacial morphology. Several numerical experi­
ments are shown to illustrate these issues and how they can be resolved to 
a satisfactory degree of accuracy. The inherent ambiguity vanishes as the 
interfacial thickness shrinks. Thus, we suggest adaptive mesh refinement 
as the solution when a thin interface has to be resolved. It is also necessary 
for computing large-scale 3D flows of blends of rheologically complex fluids. 
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NON-EQUILIBRIUM STATISTICAL MECHANICS OF 
NEMATIC LIQUIDS* 

CHII J. CHAN* AND EUGENE M. TERENTJEVt 

Abstract . The rotational diffusion of a general-shape object (a molecule) in a flow 
of uniaxial nematic liquid crystal is considered in the molecular field approximation. 
The full corresponding Fokker-Planck equation is derived, and then reduced to the limit 
of diffusion of orientational coordinates in a field of uniaxial nematic potential and the 
flow gradient. The spectrum of orientational relaxation times follows from this analysis. 
As a second main theme of this work, we derive a complete form of microscopic stress 
tensor for this molecule from the first principles of momentum balance. Averaging 
this microscopic stress with the non-equilibrium probability distribution of orientational 
coordinates produces the anisotropic part of the continuum Leslie-Ericksen viscous stress 
tensor and the set of viscous coefficients, expressed in terms of molecular parameters, 
nematic order and temperature. The axially-symmetric limits of long-rod and thin-disk 
molecular shapes allow comparisons with existing theories and experiments on discotic 
viscosity. The article concludes with more complicated aspects of non-linear constitutive 
equations, microscopic theory of rotational friction and the case of non-uniform flow and 
director gradients. 

K e y words. Rotational diffusion, Microscopic stress tensor, Nematic liquid crys­
tals, Constitutive equations, Leslie coefficients, Orientational relaxation. 

A M S ( M O S ) subject classifications. 76A15 Liquid crystals; 74A25 Molecular, 
statistical, and kinetic theories; 60J60 Diffusion processes. 

1. Introduction. On the macroscopic continuum level, the dissipa­
tion of energy in a liquid flow is determined by the viscous stress tensor, 
which in the linear regime is proportional to the flow gradients with a fac­
tor of viscous coefficient. Kinetic theory of fluid viscosity has the aim of 
deriving this stress tensor, and the viscous coefficients, from the molecular 
parameters, interaction forces and temperature, thereby relating the kinetic 
linear response coefficient with the thermal fluctuations in the medium. Ki­
netic theory of viscosity of classical isotropic liquids is based on a compli­
cated and delicate analysis of pair correlation functions out of equilibrium; 
it has a famous history of successful developments [1-3] although by far 
not everything is understood in this field. 

In this article we describe a non-equilibrium statistical theory of the 
hydrodynamics of nematic liquid crystals, the hquids with a spontaneously 
broken orientational symmetry due to the anisotropic pair interactions be­
tween constituent particles (molecules). In developing the nematodynamics 
we aim to justify prevalent phenomenological theories and determine the 
underlying principles governing the orientational dynamics of the molecules 
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under simple shear flow. Prom a fundamental perspective, such studies re­
veal important physical insights which may help to answer some of the 
most important questions in rheological studies of nematic liquid crystals: 
To what extent does shear flow affect the molecular alignments? What is 
the microscopic basis for nematic liquid crystals displaying flow-induced 
transitions into an ordered or unstable state? Such questions represent 
typical phenomena abundant in physics for which a simple physical anal­
ysis often reveals deep underlying principles, yet a detailed and rigorous 
solution is necessary to confirm the analysis. 

From a more practical perspective, the inherent nature of nematic liq­
uid crystals to acquire a preferred orientation of anisotropic molecules, and 
preserve it in the presence of flow, provides a natural advantage to these 
materials to be used as precursors for the manufacturing of high perfor­
mance fibres. The preferred orientation and degree of alignment of the 
molecules are found to have a predominant effect on the mechanical and 
thermal properties of the materials, and the optimization and control of 
preferred alignment is of paramount importance. Unfortunately a funda­
mental understanding of the factors affecting the development of preferred 
ahgnment is still lacking, which may hinder their further development. 

In comparison to thermotropic nematics, i.e. dense liquids of 
anisotropic molecules, dilute suspensions of non-spherical particles are rea­
sonably well understood [4]. The intrinsic viscosities of suspensions of 
oblate and prolate spheroids have been calculated allowing low volume 
fraction viscosity measurements to be used to estimate particle aspect ra­
tio. Studies have been completed which extend the observations to the 
interactions of several particles. Models that include the influence of Brow-
nian motion have also been developed [6]. However the majority of these 
theoretical studies have focused solely on rod-shaped nematic molecules, 
as opposed to disk-shaped particles or a more general case of spheroidal 
molecules with uniaxial symmetry. As the concentration of particles in­
creases, the particles no longer rotate freely, but their motion is limited 
through excluded volume interactions as well as long range inter-particle 
and hydrodynamic forces. For particles with a large length/thickness ra­
tio the effective excluded volume is much larger than their actual volume. 
As a result, their relative motion will be geometrically constrained, and 
the physics becomes non-trivial since many-particle correlations have to be 
considered. This situation will be applicable to a thermotropic nematic 
liquid as well. 

In general the orientation of the director in a flowing nematic is de­
termined by four external influences which tend to compete with, and in 
the steady state balance one another. The first effect is the influence of 
flow alignment; in the case of simple planar shear this tends to rotate the 
director until it lies almost, though not quite, in the direction in which the 
fluid is moving. Secondly there is the influence exerted by appUed fields 
such as the magnetic fields. Thirdly there is the influence exerted by the 
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solid surfaces which contain the hquid which affects the dynamics of thin 
layers (the strong anchoring effect). Finally the director alignments may 
be influenced by the curvature elasticity of the nematic itself. In this work, 
we will not consider the effects of external magnetic fields and surface an­
choring effects, since we are primarily interested in the bulk property of 
the system subject to shear flow without imposing external fields. 

There are traditionally two approaches towards studying the rheo-
logical behavior of Uquid crystalUne materials: the top-down macroscopic 
theory based on classical mechanics such as the Leslie-Ericksen model [5, 7] 
or the time-dependent Ginzburg-Landau theory, and the bottom-top molec­
ular theory employing statistical approach that aims to derive fundamental 
constitutive equations governing the dynamics of the variables we are in­
terested in. The macroscopic models assume the system being close to 
equilibrium and consider the dynamics of the slow variables such as the 
director or the order parameter tensor, while a complete microscopic the­
ory allows us to consider even nematic systems driven far from equilibrium. 
Such is the case for a tumbling nematic that are often observed in high shear 
flow regime. A phenomenological explanation had for a long time failed to 
account for this phenomenon but as we shall see later, this phenomenon 
can be understood from a microscopic perspective. 

Some of the earliest attempts on microscopic approach include works 
by Diogo and Martins [8]. They consider the viscosity coefficients to be 
proportional to the characteristic relaxation time which is related to the 
probability of overcoming the nematic potential barrier during molecular 
reorientation. Although such consideration does give microscopic expres­
sions for the LesUe coefficients, their model was not constructed as a self-
consistent statistical theory, and contains too many free parameters. There­
fore, a more elaborate statistical theory was required. In 1983 Kuzuu and 
Doi [9] proposed the first non-equiUbrium statistical model that describes 
the hydrodjoiamics of nematic liquid crystals made of ellipsoidal molecules 
using the concept of averaging the microscopic stress tensor over the non-
equihbrium distribution function. However their expression for the micro­
scopic stress tensor was not accurately derived and gave only the symmetric 
part of it. To introduce antisymmetric elements to the stress tensor, they 
invoke an external magnetic field in an ad hoc manner which makes it hard 
to reconcile with intrinsic antisymmetric viscous stress in liquid crystals 
in the absence of external field. Osipov and Terentjev suggested another 
approach [10] which assumes that the overall nonequihbrium distribution 
function should consist of an original equihbrium part and an additional 
non-equilibrium part due to the flow gradients, but their derivation of mi­
croscopic stress tensor is questionable and their derived Leslie coefficients 
are not always consistent with flow alignment experiments. 

All these approaches either suffer from some theoretical shortcomings 
or they are confined to specific nematic systems composed only of long 
rod-like molecules. Although the later analysis is highly relevant to the 
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rheology of liquid crystalline polymers [11], a more elaborate microscopic 
theory on the nematodynamics of spheroidal molecules will serve a greater 
purpose to a wider class of nematic systems. We generally follow the ap­
proach of [10], improving on several shortcomings of their treatment. Our 
work is also motivated by recent interests in the studies of discotic nematic 
liquid crystals. To our present knowledge, there have been little theoretical 
studies for the case of discotic nematic Uquid crystalline phases in shear 
flow, though lately there has been a revival in experimental and theoretical 
interests in these materials due to their applications in high performance 
fibres (eg. mesophase pitch-based carbon fibres, Kevlar) [12, 13]. An­
other example that highlights many important technological appUcations 
in these materials is kaolin clay suspensions (plate-shaped particles) which 
have seen Umited rheological characterization [14]. The work outhned in 
this article should assist in characterizing some of the main microstructure 
features and textures developed in these materials under flow. 

The outline of this paper is as follows. In Section 2 we discuss theo­
retical concepts of non-equiHbrium statistical physics and hydrodynamics 
which allow us to derive the kinetic equation governing the evolution of 
the orientation distribution function of the molecules. We also attempt to 
solve the kinetic equation which gives us the dominant orientation relax­
ation time. In Section 3 we demonstrate how the microscopic stress tensor 
can be derived using classical equation of motion for fluids. In Section 4 
we put the results of kinetic modelMng and the microscopic dynamics to­
gether to derive the average macroscopic stress tensor. Its coefficients are 
a complete set of the LesUe's coefficients, expressed in terms of molecular 
and order parameters. We discuss their vahdity, followed by a brief dis­
cussion on the unusual non-linear effects which exist in discotic nematics 
only. Section 5 outUnes some attempts to derive the rotational firictional 
constant from a microscopic description, focusing primarily on discotic ne­
matics. Finally in Section 6 we consider more realistic situations when 
spatial inhomogeneities and domain structures (such as those with point 
defects or discUnations) exist in nematic Uquid crystals, and construct a 
new molecular theory to account for the Ericksen stress in the complete 
Leshe-Ericksen theory. 

2, Kinetic equation. In this section we discuss some of the concepts 
of rotational diffusion and Brownian motion. We demonstrate that the 
dynamicai evolution of a general ellipsoidal-shaped molecule in rotational 
motion in a nematic potential can be described essentially by a multi-phase 
variable Fokker-Planck equation. The solutions of the kinetic equation in 
the weak flow limit suggest a rich spectrum of relaxation times. The dom­
inant relaxation time is found to depend linearly on the rotational friction 
constant and exhibits an Arrhenius activation exponential dependence on 
the inter-molecular coupling strength. 
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2 .1 . Rota t ional Brownian mot ion and hydrodynamics . A ne-
matic fluid contains many anisotropic molecules, all of similar size in a 
dense phase. On a mean-field level, each molecule can be .considered to be 
immersed in a thermodynamic bath which acts as a source of background 
fluctuations. We can therefore consider each molecule to undergo rotational 
Brownian motion since it experiences a constant flux of stochastic torques. 
The problem of an arbitrary-shaped rigid body executing rotational Brow­
nian dynamics is however a technically complicated one. The reason for 
this is at least three-fold: (1) rotations about different axes do not com­
mute, (2) the range of relevant variables, the angles specifying the body's 
orientation, is finite. This introduces the pecuUar nature of the topologi­
cal constraints to the system. (3) Relation between angular velocity and 
angular momentum is tensorial, not vectorial, as in translational motion. 

Despite the above complications, the rotational Brownian motion in 
a mean-field potential is thoroughly described within the fi-amework of 
Smoluchowski equation. Jefferey and Hinch et al [15,6] had solved similar 
problems for a dilute suspension of eUipsoids in a flow. We note that 
in addition to the rotational Brownian motion the molecules also execute 
translational random motions which we will not deal with in this article. 
The orientational degree of fireedom is described by the dynamical variable 
li, which is the unit vector defining the direction of principal axis (parallel 
to the long axis for rod-Uke molecules and perpendicular to the plane of a 
disk-like molecule). 

The rotational Brownian motion can be best visualised as the trajec­
tory of u{t) on the surface of the sphere defined by \u\ = 1, The movement 
of u{t) can be considered as random steps due to random stochastic force 
and external potential (see Fig. 1). The hydrodynamics of rotational mo­
tion can be addressed by first considering a general spheroid immersed in 
a stationary viscous liquid. We consider the molecule rotating with an 
angular velocity u; by the influence of a torque T exerted by an external 
field U{u). Consider a small rotation S(p of the molecule that changes t* 
to u-\-6(p xu. The work needed for this change is —F • 5y?, which must be 
equal to the change in (7, i.e., 

(2.1) - r • *v? = ^{u-^bip X w)-f/(w) = (̂ (̂  X « ) . — = <J9. f u X — j . 

Hence 

(2.2) r ^ = - 9 ^ ( 7 , where ^ ^ = ( ^ x Q T ) • 

The operator d^ is called the rotational operator that plays the role anal­
ogous to the gradient operator V in translational motion. Now if the 
molecules are immersed in a flowing medium, there will be a residue angular 
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FIG. 1. Rotational Brownian diffusion by the unit vector u along the molecular 
axis, which explores the space on the surface of unit sphere. 

velocity for a spheroid with aspect ratio p = a/b given by [15]: 

f P ' 1 T 1 
u; = It X •̂  - r — - a • u T—-g u} 

( ^ * ^ ) 1 2 i 1 

1 »2 - 1 1 1 

where p^^ is the velocity gradient V^Va, and p^^ and p^^ are the symmetric 
and asymmetric part of this velocity gradient, respectively. 

2.2, Langevin equation. The stochastic eflFects on the particle's ro­
tational motion in viscous medium can be considered in a coherent fashion 
using the method of Langevin stochastic equation and the Fokker-Planck 
kinetic equation. The latter allows us to find explicit dynamical evolution 
of the distribution function in terms of the orientation of the director. To 
see how this can be appUed to anisotropic fluid motion we first consider 
the dynamical equations of motion for the particle's angular velocity. 

We first note that we can always diagonalize the moment of inertia 
tensor in the spheroid's principal-axis frames, 

(2.4) loc^ = I±5a(3 + (-f|| - Il.)UaUp 

where u is the unit vector of the molecule's axis. The instantaneous angular 
velocity of the molecule is 

(2.5) * = -^ti -h cj 

where the first term on the right hand side denotes angular velocity about 
the molecular axis, while c*; is the transverse angular velocity due to large 
rotational motion perpendicular to the molecular axis, i.e. a; ± u. 
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For a molecule moving with an instantaneous angular momentum L, 
we can immediately write down its expression, 

(2 .6) La = /a/3*/3 = / i j ^ ^ a + I±(J^a' 

The rotational motion thus obeys the equation of motion: 

(2.7) La = Iotf3^(3 = I\\i^Ua + IL^OC + I\\i^Ua' 

The first two terms on the right hand side are the expected rotational 
torques about /|| and I± respectively, while the last term represents the 
gyroscopic effect. This term vanishes for the case of an infinitely long and 
thin rod (/|j <C /x) but may be large for disk-like molecules. We will 
soon see that this term gives rise to non-trivial modifications to the kinetic 
equation and the stress tensor. 

At this stage we have to be careful about the meaning of a;. To 
evaluate all physical observables in the laboratory frame we have to make 
a coordinate transformation from the body's frame to the laboratory frame. 
Therefore for a molecule rotating with an instantaneous angular velocity 
^ , the transverse angular velocity a; in the body frame is transformed in 
the following manner: 

( - ) ^ = * xu ; -h -TT 
lab ^ * 

= —ijjU -h IX X U. 
body 

Having obtained the general equation of motion in equation (2.7), we can 
write down the Langevin equation in terms of a vector stochastic torque ^ 
and a possible external torque F, 

La = MUa + IL^OC + MUa 

(2.9) . " 

where A /̂s is the frictional constant tensor and the vector (cj/j-hi/^u^ —^^^^) 
is the net angular velocity of the molecule relative to the reservoir. 

To get the equation of motion for the dynamical variable ^ , we can 
multiply the above equation by Ua to eliminate the gyroscopic term, 

(2 .10) /||Vi = -Ua\oi(3^(5 + TaUa + ^ a ^ a 

where we replace {Ljp-^-ipUfs—u^i^^) with fi/3. Equation (2.10) is the equation 

of motion for the dynamical variable ip dictating the angular rotation about 
the molecular axis. 

Substituting (2.10) into Equation (2.9) we obtain a similar equation 
of motion for the transverse angular velocity u;, 

I±d}a = -{Sa(3 " UaUf3)Xf3i^i + {6a(3 " UaUi3)Tp 

+ {Saf3 - UaU^)(,p - / | | '0(cJ X u)a 
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2.3. Generalized Fokker-Planck equation. The rotational diffu­
sion of the anisotropic molecules is captured by the Fokker-Planck equation 
which describes the dynamical evolution in time of the system's phase space 
distribution function W{uj,tp,u,t) [16]: 

dW 
dt dUa 

(2.12) 
1 92 

2du}adu)i3 
))W 

1 r-.'d) 

where S^^(t — i') = {^a{i)i^{t')) is the correlation function between the 

vector stochastic torque ^ that perturbs '^. It can be shown directly that the 
following form for 2^^ indeed satisfies the fluctuation-dissipation theorem, 

(2.13) 77^ _ Sj.(Ja/3 + (2|| - 'E±)UaU^. 

2.3.1. Reduced Fokker-Planck equation. We next consider ob­
taining the coordinate dependence of the distribution function. We note 
that there are intrinsically two time-scales of interest, the fast relaxation 
time after which the system reaches the Maxwell equiUbrium velocity dis­
tribution, 

(2.14) 

and the slow relaxation time 

(2.15) 

Ax 

2Dr 

after which the system reaches the equilibrium Boltzmann distribution of 
angular coordinates. A^ is the free angular volume the molecule rotates in 
the diffusion limit and Dr is the rotational diffusion constant related to the 
microscopic friction constants via the fluctuation-dissipation theorem. This 
is the chauracteristic time for the relaxation of fluctuations of the system 
back to equilibrium under Brownian forces. Their ratio we define as a small 
parameter: 

(2.16) 
2kTIx 

1̂ C l 

where we omit the dimensionless term (AO)'^. The smallness of a is not ob­
vious at this stage, but will become apparent later. Substituting Equations 
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(2.10) and (2.11) into Equation (2.12), and introducing the dimensionless 
variables: 

we obtain the dimensionless form for Equation (2.12), 

dW 
ar + ad/siu^^W) + «3^(<Sa/3 - u^up) ( g i y ) 

(̂ •̂ «) = ^ 
1 fi 

(^a - fia + 2 Q (^«/5 - Wc««/3) + aAij{uJ X u)c. w 

-^''U'-*^my 
with the notations 

(2.19) A = 

2.3.2. Elimination of fast variables. We now describe in a qualita­
tive fashion the meanings of the two time-scales introduced in the previous 

. section. The situation where the variables describing a phenomenon can be 
divided into two sets, one evolving on a rapid time scale and one evolving 
on a slow time scale, is of frequent occurrence in physics. It is often desir­
able to ehminate or average over the rapid variables in order to study the 
dynamics of the slow variables. Such coarse-graining is done by assuming 
that the velocity distribution of the Brownian particle rapidly thermalizes 
while the coordinate distribution remains far from equilibrium for a much 
longer time. This means that the velocity distribution is close to a Maxwell 
distribution while the position distribution still has not evolved too far from 
the initial distribution. The equation, obtained after integrating out the 
fast variables by estimating the phase distribution function to be the prod­
uct of the reduced distribution function in terms of the slow variable and 
a Maxwell distribution for fast variables, is formally known as the Smolu-
chowski equation [17]. The basic assumption that thermalization occurs 
on a time scale short with respect to the time for appreciable changes in 
the positional distribution is almost always satisfied in the high friction 
(overdamped) limit. 

We can apply the above concepts to the case of a nematic to obtain the 
coordinate-only Smoluchowski equation. The fast variables in this case are 
the angular velocity both along and perpendicular to the director axis (a; 
and ip) while the slow variable is the angular orientation u{t). Assuming the 
quasi-equilibrium state when the longitudinal angular velocity distribution 
function has thermaUzed, we can approximate: 

(2.20) W{ij,i,,u,t) = exp!^-^{^-<j,)^^W'{u;,u,t). 
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Substituting this into Equation (2.18) and integrating over ip eventually 
gives the angular velocity dependence of W^{(JJ, U, t): 

W' = ad^iu^W) + a^{8^^ - u^u^)\^W' 
'kT 

d 
= aA(j>{u)—[{uxu)f3W'] 

d 
UJa — ^a + {Soc(3 — UaUfs) 

d 
W\ 

Introducing a relative velocity ^a = ^a — f^a, we may naively proceed with 
integration over the remaining fast variable uj using 

(2.21) W^ioj, u, t) = e-^^\iu, t). 

This however gives the trivial equation 

(2.22) w + ad{3{^^w) = 0 

with the diffusion term missing from the equation. We conclude that the 
non-trivial Smoluchowski equation with the diffusion term must come from 
adding small corrections to the distribution function that contains 
the last bits of non-relaxed Maxwell distribution. Hence we suggest that, 

(2.23) W\uj, u, t) = e-^^' [w{u, t) + ay{i, u)] 

where the smallness is controlled by the natural parameter - the ratio of 
relaxation times a <: 1, and the form of the correction term 2/(^, u) is to be 
determined self-consistently. Substituting (2.23) into (2.21), and neglecting 
terms of second orders in a, the equation transforms into: 

dpW + Q.ada0.f3W — r-^W + A(l>{ft X u)pW 
KJ. 

d'^y dy 

Assuming y = a + bi^i -j- Cij^i^j we determine uniquely the coefficients bi 
and Cii 

(2.24) —wdiCtj 

r 
(2.25) bj = -djW - u;i{diQj)w 4- j^w - A(f){u){n x u)jW. 
Integrating over the fast variable ^i, we finally have the desired dimension-
less Smoluchowski's equation for the coordinate-only distribution function 
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w{u^t), which we will call here the orientational distribution function: 

•p 

A 

(2.26) + J^'^^^ [(ti • V X v){n X u)f3w] 

The right-hand side now contains small but non-vanishing terms propor­
tional to Q^ (compare with Equation (2.22) where this was missing in the 
leading order in a). The first term on the right hand side gives the dif-
fusional term in a non-equilibrium system with external potential, which 
describes rotational diffusion mechanism. The term adp(Ctpw) incorpo­
rates the linear effects of perturbation due to external flow. 

2.3.3. Non-linear effects. The last two terms in Equation (2.26) de­
serve further discussion. We note that these terms have not been shown in 
previous work [9, 10], but their presence necessarily describe novel non­
linear effects due to higher flow and intrinsic geometrical shape of the 
molecules. The term ^a^Ad^s [(u • V x v){ft x u)i3w] reveals the gyro­
scopic motion of the molecules due to the non-vanishing moment of inertia 
along the molecular axis. This term is commonly neglected for thin rods 
with A = yfhjTZ <^ 1. This however is not the case for a discotic system, 
when /jj and /x are comparable. One expects that this gyroscopic effect 
will contribute essentially to the viscous torques and the antisjonmetric 
stress tensor, and modify the 'shape' of the equilibrium distribution func­
tion. This conjecture will be pursued and verified in a quantitative fashion 
in Section 4. 

On the other hand the second term a^df^ ^oc{da^f3)w\ arises as a re­
sult of algebra. This term vanishes in the weak-flow limit (small il) and 
will be present in both isotropic and anisotropic liquids. It therefore con­
stitutes trivial higher order corrections to the overall stress tensor due to 
stronger external flow. It may explain the changes in the linear viscosity 
for a general spheroidal nematic before tumbling sets in, where the whole 
physical basis of the linear model breaks down, but it does not introduce 
any new symmetries into the effect. 

2.4. Solving the kinetic equation. There is an intrinsic time-scale 
that may be related to the typical relaxation times of the orientational dis­
tribution function which may be obtained via solving the kinetic equation. 
In fact, as we will see shortly, the solutions give rise to a spectrum of re­
laxation times that relate to the relaxation of the various normal modes of 
angular rotations. This relaxation can be observed macroscopically in the 
relaxation spectrum of the order parameter [18]. 

The standard way to solve the nonlinear integral kinetic equation in the 
angular space is to expand the distribution function in spherical harmonics 
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and solve the resulting equations for the expansion coefficients sometimes 
numerically. Although this method is always available, we can gain some 
insights by solving it analjrtically using a simple eigenfunction expansion. 
For the sake of simpUcity, we rewrite the Smoluchowski equation (2.26) in 
zero flow, in the following form: 

(2.27) ^ =-A(u)w{u,t) 

where A(u) is a linear differential operator: 

(2.28) A{u)w{u,t)=^-a^dk(dkw + ^ w y 

Let Wn be the eigenfunctions: 

(2 .29) A{u)Wn = \n Wn. 

Expanding the distribution function in terms of the complete orthogonal 
set of eigenfunctions: 

(2.30) w{u, t) = Y, ^n(*) ^"(^) ' 
n 

we obtain the time dependence of coefficients an(t), an{t) = an(0)e~^"*. 
The equilibrium distribution function Weq{u) is an eigenfunction which by 
definition has infinite relaxation time. The eigenvalue being the inverse of 
the relaxation time therefore is 0, corresponding to the eigenfunction WQ 
with n = 0. Therefore the full solution takes the form: 

(2.31) w{u,t) = Weq{u) -h ^an(0)e""^-* Wn{u) 
n=l 

where ao = 1 by normalization. Since in statistical equilibrium Weq = 0, 
substituting Equation (2.31) into (2.27) gives: 

(2.32) dk 
' dkU{u'n) 
OkWn + Tj; Wr, 

where U{u • n) is the mean-field potential, which depends on the polar 
angle 9 only. Equation (2.32) is very similar to solving the Schrodinger's 
equation in quantum mechanics. In this case the external potential has to 
be modified. This mapping is formally known as the 'Darboux transfor­
mation' or *supersymmetry' [19]. The operator of course has to be made 
Hermitian but this can be achieved through a simple transformation [20]. 

Expanding the rotational operator dk in spherical coordinates and 
writing the eigenfunction of (2.32) as Wn = fn{^)weq, where Weq = 
exp{—U{0)/kT), we finally obtain the following differential equation: 

(2-33) - ^ + (^cotS - - — j — = --^U . 
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in depends on 6 since, for rotations of a spheroid, the general solution 
of Equation (2.33) must be an eigenfunction expansion in terms of the 
Legendre polynomials Pn(cos 0). Equation (2.33) can be rearranged to 
give 

(2.34) 
^u{e)/kT Q 

sine 90 
e ^ < ^ ) / ^ ^ s i n 0 ^ — ~ o In* 

Rearranging the equation further and talcing care of the constants of inte­
gration, we finally obtain the following self-consistent integral equation: 

(2 
\ pv U{x)/kT px 

35) U9) = C - - f / -^r-—dx / wr^iz) si 
a^ Jo smx Jo 

sin z dz. 

Multiplying e ^(^)/*=^ on both sides of the equation, 

(2.36) u;„(0) = e-^W/fcT / —; dx I Wn(z)siiizaz 
a^ Jo smx Jo 

At this stage we introduce the method of iterations [19]: 

2 

(2.37) Wn{e)=wo'^^wi-h{^] W2 + ... 
a^ m 

where Ai is the smallest non-vanishing coefficient corresponding to the first 
coefficient wi. This method will be justified later, when the perturbation 
coefficient Ai/a^ is shown to be small. 

Substituting the solution with only the leading terms in Ai and com­
paring the terms explicitly, we have the relation: 

(2.38) 
wn{e) ^-l/(^)/fcT^-t/(0)AT^^(Q) 

_ ^ / 1^ dx / e-^'^^y'^Sinzdz 
a^ Jo sma: JQ 

A conceivable boundary condition for any eigenfunction is that the distri­
bution function must vanish at 0 = TT, i.e., Wniir) = 0, as it must do since 
Wn{0) is a single-valued function. This boundary condition gives 

(2.39) 
\^ p-n U{x)/kT fx 
^ / —, dx / e-~^(^>/'=^sinzd^ = 0. 
a^ Jo smx Jo 

The integrals can be evaluated using the saddle-point approximation. In 
Maier-Saupe mean-field approximation, U(9) = — J52Cos^(fl), where J de­
notes the mean-field coupling strength (an explicit form for the energy 
constant J will be discussed in Section 5) and 52 is the principle scalar or­
der parameter of uniaxial nematic phase, discussed in much greater detail 
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in Section 4. The ratio q — JS2/kT ~ 4.5 at the nematic transition, hence 
justifying the method of saddle-point approximation where JS2/kT ^ 1. 
Recovering the full dimensional form finally gives the following value for Ai: 

,.40, . . = l , l . - . Z , , = ^ t ^ . — 

where Dr = kT/Xj_ is the rotational diffusion constant and Aj. is the 
friction constant for the molecular rotation about any axis parallel to the 
plane of the disk. We now return to justifying the perturbation in terms 
of the small parameter Ai/a^. In dimensional form we have 

/« ^^\ Ai AiAi 4 3 _ 

This is indeed small in the limit of large q and justifies the perturbation 
expansion. The inverse of Ai gives the dominant (longest) relaxation time^ 

which gives a dependence similar to the relaxation time for the molecular 
director correlation function {u{t)u{0)) = e"*/'^'', where r^ = l/2Dr is the 
rotational correlation time [11]. For a typical nematic liquid, Dr ^ 10^ 
sec"^, and TI ~ lO"'^ s. This result agrees well with typical molecular 
relaxation times for the principal tumbling motion [21]. Also, this time-
scale is usually small compared to the typical flow rate hence justifying the 
vaUdity of the continuum LesUe-Ericksen description for nematics in flow 
(see Section 3). 

The fact that the rotational diffusion of a nematic liquid crystal is 
associated with a rich spectrum of relaxation times is due to higher-order 
modes of rotational motion contained in (2.37), involving spherical harmon­
ics in azimuthal and polar coordinates. It could also be attributed to the 
generic non-spherical shape of the molecule and the anisotropic rotatory 
diffusion tensor. The various relaxation modes and times correspond to the 
non-collective relaxations around different symmetry axes of the molecules. 
Our results agree with Diogo's conclusion [8] that the relaxation times for 
the flipping motions of the molecules obey the Arrhenius law. The expo­
nential factor accounts for the probability that the reorienting molecule 
has enough energy to overcome the potential barrier due to intermolecular 
nematic potential. In reality, however, we may need to consider the free 

^ In a passing remark we note that this problem can also be solved in a simpler way, 
with inspiration from Kramers problem on a particle's passage over a potential barrier 
[19]. In other words, the relaxation mechanisms for rotational motion in liquid crystals 
are similar to the overcoming of the potential barriers imposed by the average medium 
in a mean-field. 
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volume effects which exist even in the absence of nematic potential. This 
may give rise to the Volger-Fulcher type of glassy relaxation [22]. On the 
other hand, the explicit dependence of the relaxation time on the rota­
tional friction constant is expected due to slow decay in the presence of 
high friction. A typical application of the rotational diflFusion problem is 
observed in the dielectric relaxation of nematics in the presence of an ex­
ternal electric field [21, 18], where more than one Debye relaxation times 
are found corresponding to rotations around the long or short molecular 
axis. Similar phenomena are also observed via NMR of a nucleus inside 
the nematic liquid [21]. 

3. Viscous stress tensor. In this section we discuss the non-
equilibrium transport phenomena in a nematic liquid. We briefly review 
the classical Leslie-Ericksen theory and then construct a microscopic stress 
tensor using classical kinetic theory of simple fluids, and relate the macro­
scopic stress tensor in terms of microscopic parameters. 

3.1. Hydrodynamics of a uniaxial fluid. A nematic liquid crystal 
flows easily like a conventional liquid consisting of similar small molecules. 
The state of alignment however turns out to be rather complicated. In 
the first place, the flow depends on the angles the director makes with the 
flow direction and with the velocity gradient. Secondly, the translational 
motions are coupled to inner, orientational motions of the molecules. Con­
sequently, in most cases the flow disturbs the alignments and causes the 
director to rotate. Prom the theoretical point of view the coupUng between 
orientation and flow is a delicate matter. 

The hydrodynamics for an isotropic classical fluid is well studied [3, 2]. 
The approach is to treat the fluid as a continuous medium and any small 
volume element is always assumed to be so large that it still contains a 
very great number of molecules. The dynamical situation is specified by by 
the fiuid velocity field v( r , i ) , and by any two thermodynamic quantities 
pertaining to the fluid, for instance the pressure p{r,t) and the density 
p(r,t). The condition of incompressibiUty is always assumed, V • v = 0, 
The equation of motion is then given by the linear Navier-Stokes form: 

(3.1) = - Vp -f V<7v 

where the right hand side denotes the total force, which comes from two 
contributions: the net pressure gradient and the viscous stress term. We 
have neglected the presence of additional external forces such as the po­
tential term. The classical viscous stress is given by 

where rj is the viscosity coefficient. 
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FIG. 2. The three geometries of simple shear. 

For the case of a simple shear flow in a nematic liquid, the measured 
viscosity coefficient depends on the orientation of the director n . The 
direction of n can be specified by the angles (f> and 9. If the orientation of 
the director is fixed by external forces (for instance by a strong magnetic 
field), we can define three geometries of simple shear (see Fig. 2) as r)a '• 
(j) = 90*̂  9 = 90** for director normal to shear plane; r}b : (j> = 0^ 9 = 0^ for 
director parallel to flow direction; rjci cf) = 0^ 9 = 90^ for director parallel 
to velocity gradient. The three coefiicients r/o, rjb and r}c are often called 
the Miesowicz coefficients. 

3.2. Leslie-Ericksen theory. So far we have been concerned with 
the motion of a nematic liquid in which the orientation of the director is 
fixed. If we lift this restriction, we will have to consider an extra degree of 
freedom associated with the orientation of the director n{r,t)^ which may 
introduce local unbalanced torques in the system. The phenomenological 
linear hydrodynamics of nematics is adequately described in the context of 
Leslie-Ericksen (LE) theory, by considering the entropy sources, due to all 
friction processes in the fluid. In short, and keeping the notation close to 
the de Gennes' monograph [21], the LE approach describes the dissipation 
due to a decrease in the stored energy, 

(3.3) TS = j{alpglp + KN^)d^ 

where p^^ denotes the symmetric velocity gradient and ho, is the molecular 
field. Also, the corotational derivative 

(3.4) N = h — u X n 

represents the rate of change of the director with respect to the flow back­
ground, and u = | V x v is the flow rotation angular velocity.^ 

In irreversible processes, it is customary to write the entropy source 
as the product of 'flux' by the conjugate 'force' [25]. Choosing <J^^ as the 

^Another approach, proposed by the Harvard group [23], assumes that the velocity 
field is sufficient to specify the state, and the orientation of the director is deduced from 
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force conjugate to f̂̂ ^ and ha as the force conjugate to Na, we can write, 
in the limit of weak flux, the following linear functions of the fluxes for the 
forces, which satisfy the symmetry properties of uniaxial nematics: 

(3.5) + ounanfBn^npgl^p -f Q:4fl̂ a/3 

(3.6) /lM=72^a5aM+7l^M-

Note that all the coeSicients /?, a, 7 have the dimensionaUty of viscosity, 
and the Onsager's symmetry of kinetic coefiicients [25] impUes that 72 = 72-

If the liquid is incompressible {gf^^ = 0), we arrive at the Leslie-
Ericksen theory where the total viscous stress tensor reads: 

^a^ = OLiUocn^npn^gl^p 4- a^g^fs + a^n^np^gl^^ + otQU^n^gl,^ 
(3.7J 

+ a2naNf3 + a^n^Na , 

where the viscosity constants ai , . . . ,a6 are called the Leslie coeflScients. 
In the isotropic phase all of them vanish except a4, which becomes the 
isotropic shear viscosity coefiicient r/. They have to fulfill the Onsager 
reciprocity, which for a nematic is known as the Parodi relation [26], a2 + 
ĉ s = QJ6 — o;5. So effectively there are only five independent coefiicients. 
Three of them are connected with the symmetric part of the stress tensor 
and the other two with the anti-symmetric part 

7J 72 
(3.8) ali^ = -^{n^Noc - riaN^) + y (ri/jn^^^^ ~ f^an^g^p) 

with 

(3.9) 71 = a3 - a2 and 72 = 0:2 + 0:3 = Q!6 - CK5-

The coefficients 71 and 72 determine the viscous torque acting on the 
molecule: 71 is characteristic of pure director rotations and 72 describes the 
contribution due to a shear flow. The equation of motion of the director 
reads: 

(3.10) n X (71JV + 72n • g^) = 0. 

If we assume undeformed director field, the conservation law for an­
gular momentum can be neglected. If one would like to consider the case 

the gradients of v. In this picture, a rotation of the director can only occur in the 
presence of a non-uniform flow. There is however experimental evidence to show that 
this choice of state variable is not sufficient to describe a nematic, while the EL choice 
is auiequate [24]. 
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of a deformed system, the stress tensor and the conservation of angular 
momentum have to be modified, and Equations (3.8) and (3.10) should be 
extended to a more general forms containing the additional elastic stress. 
Elastic stress induced by spatial inhomogeneities will be the subject of in­
terest in Section 6. The status of the LE equation as a constitutive equation 
for nematics is therefore analogous to that of the Newtonian constitutive 
equation as a description for ordinary liquid. 

3.3. Microscopic stress tensor. In general the transport coeffi­
cients can be obtained within the framework of classical kinetic theory 
[3, 2]. In this context, the macroscopic stress tensor can be defined as an 
ensemble average of cr^, the corresponding microscopic stress tensor, over 
the non-equilibrium distribution function tt;{xi}, where Xi are the rele­
vant phase space variables. In fact the microscopic stress tensor describes 
the evolution of the microscopic momentum density p(-R) according to the 
local conservation law: 

(3.11) ^ ^ V a - C R ) . 

The general expression for the microscopic stress tensor can be ob­
tained with the help of the microscopic equations of motion for individual 
molecules. For a nematic fluid composed of rigid elongated particles, an ap­
proximate expression for the microscopic stress tensor had been derived in 
the literature [9, 10], Here we give a rigorous derivation for the microscopic 
stress tensor for a general spheroidal molecule with arbitrary shape. 

A molecule can be considered as a rigid body made up of bounded 
points of mass mfc. Then the total momentum in the system of many such 
particles is: 

(3.12) p{R) ^YlYl"^^ ^^i + ^"^^ ^ ^̂ )̂] *(^ "" ^̂  ~ ^̂ )̂ 
i k 

where the index i indicates a molecule and k a point inside the molecule, 
see Fig. 3. uJi is the angular velocity of molecular rotation and Vi the 
velocity of its center of mass (COM). Vi is the position of the COM in the 
laboratory frame, while rik is the position of the point k in the molecular 
frame so that the velocity of a point k of the 2-th molecule in the laboratory 
frame is vik = Vi-\-(jJiX nk-

Formally expanding the delta-function in powers of r̂ fc, we have 

(3.13) 5{R - n - r̂ fc) = <5(i2 - n) - r^k • VR5{R - n) + /(V^J) -f ... 

Taking the time derivative in Equation (3.12) and substituting Equation 
(3.13) into (3.11), while working in the linear flow regime where higher order 
terms V (̂5 can be neglected, we find that the microscopic stress tensor can 
be separated into the translational (a function of Vi and its derivatives) 
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FIG. 3, The molecule i (arbitrarily represented here as an ellipsoid, without loss of 
generality) has its center of mass coordinate ri in the laboratory frame. In the frame of 
its COM, the position of a given mass element m/t is Vik. The unit vector Ui represents 
the principal axis of the tensor of inertia moments of this molecule. For a uniaxial body 
this tensor is equal to If^^ = I±6cip + (/|| — I±)uoiUf3. 

and orientational parts. Comparing these terms with the V •cr'^(il) on the 
right hand side of definition (3.11) we obtain the orientational part of the 
microscopic stress tensor: 

^a/3 = X ^ X ] "^^ [̂ ^ ^ (^* ^ '^^^'> +^iX r-ifcla (^ifc)/3 ^{^ - '^i) 

(3.14) i k 

+ X I ^ rriki^jJi X rik)oc{<^i x rik)^5{R - n ) . 
i k 

The translational part of the microscopic stress would determine the 
isotropic viscosity, arising from non-equihbrium pair correlations in liq­
uid. Its contribution will remain in the nematic phase as well, adding a 
significant constant to the Leslie coefficient a4, a fact often overlooked in 
molecular theories of nematic viscosity. 

Expanding the tensors in (3.14) and grouping together the expressions 
for the inertial tensor of a body rotating about its COM, defined as 

(3.15) lap = Y^rrikir'^Socp - rccVp) , 

we can rewrite the orientational part of microscopic stress tensor as a sum 
over all rigid molecules i\ 

^Pv8 + Imk^alm^l^/3jkOJj + lau^^^v " ^a/9^ ] 
i 

(3.16) X 5{R - n) 

+ Y.^pu.{I-%iT' {^Tr{I^p)\ 5{R-ri). 

Here Ti is the total moment of the force acting on the i-th molecule, arising 
from the dynamical relation Ti = lijojj. For a rigid uniaxial molecule, we 
should define the principal molecular frame in which the inertial tensor is 
diagonal with components I± and /y (see Fig. 3): 

(3.17) lap = I±SaP + {I\\ - I±)UaUp-
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The torque acting on the molecule i from all its neighbors is given by the 
rotational gradient of the pair potential, 

(3.18) Fair ) = - 2^€a^^ti^ —. , 
du: 

3 ' 

where U{ui, Uj^Vij) is the interaction potential for molecules i and j . Since 
all variables in (3.18) are related to the particle i, summing over the rest 
of the particles gives, by definition, the molecular field (often called the 
mean-field potential) 

(3.19) Uiui.n) = 5]] t7( t i , ,u„r i , ) . 
j 

Section 5.3.1 gives more detail to these concepts. Substituting Equations 
(3.17) and (3.18) into (3.16), we finally have 

(3.20) ' / 
~ 2 ^ ( / | | ~ I±) [ (w X W)a(u? X U)^ -f Uo,UyUJuOJf3 - uTUaU^] 

i 

X 5{R-ri). 

For an elUpsoid, with semi-axes o and width b (see Fig. 3) the moments 
of inertia along and perpendicular to the director are I\\ = |M6^ and 
/ i = \M{(P' -h fe^), with M the total mass of the molecule. For a long thin 
"rod-Uke" particle p = a/6 ^ 1 and /y -C /x ; for an oblate ellipsoid with 
h^ a they are of the same order of magnitude.^ Substituting the /-values 
for an ellipsoid into Equation (3.20) gives the final form: 

p2 dU 1 dU p 2 _ l dU 
T'^ct'^ / 2 . i \ ^ ^ Q 2~7T^"^/5^^" 

(3.21) x ^ ( J R - n ) 
*j2 __ 1 

+ ^ 2 . 1 ^ - ^ [ ( ^ ^ W)a(w X U ) ^ + UaUi^U^UJp ~ Cc^^UaU ]̂ <J(-R - n ) . 
t ^ 

The macroscopic continuum stress tensor is obtained by statistical averag­
ing of (3.21) which impUes the integration over the angles (u) and angular 
velocity (w) with a proper distribution function. The averaging over the 
velocity can be easily performed since it is determined by the one-particle 

^Later in this text we shall be dealing with thin flat disks, with thickness d and 
diameter D^ d, which have /j | = ~ M£>^ and Jx = | M ( | d ^ + ^D^), also of the same 
order of magnitude. 
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local Maxwell distribution function = exp[—/x(c*^ — a;res)^/2fcT], where 
cjres is the background angular velocity due to flow. The second term on 
the right hand side of Equation (3.21) therefore gives, after averaging, the 
^kinetic' part of the stress tensor. 

The stress tensor in terms of microscopic orientational variables, but 
not molecular velocities (which have just been averaged out as fast vari­
ables), takes the form 

<^ = E {̂ ''̂ p (̂ «̂ ^ - 1 -̂/̂ ) + ^ ^ - ^ 
(3.22) 

where p = (p^ — l)(p^ + 1) is often called the form factor of the molecules. 
Note that the assumption made about ellipsoidal shape of the anisotropic 
molecule, leading to the particular expressions for /y and I± and the re­
sulting form of (3.22), was not necessary at all. The theory of microscopic 
stress at the level of (3.20) or (3.16) is totally general. 

The separation of the orientational part of stress tensor into two parts, 
the kinetic and the potential, has an important physical significance. The 
kinetic part, proportional to 3fcr, represents the momentum flux due to 
the translation of individual molecules, while the second, potential, part 
represents the flux arising from intermolecular forces. Both are referred to 
a coordinate system moving with the local fluid velocity v. In a dilute gas 
of molecules, the kinetic part gives the dominant contribution [11], while 
in a dense fluid, the orientational motion is inhibited and the potential 
part gives the dominant contribution. In the following sections, we will 
assume that the system has uniform density and the summation over the 
delta-functions is replaced by a constant number density p{R). 

3.4. Preliminary discussion points. It is obvious that in the limit 
p —* CO, Equation (3.22) reduces to the familiar results for long rods sys­
tem obtained previously [9, 10]. For the disk-like molecules the result is 
of special interest. Since in this case the form factor p is negative, one 
may expect a change in sign of certain viscosity coeflScients. One can spec­
ulate that more drastic differences in viscosity coeflicients will arise from 
consideration of more precise mean-field potential. 

It is interesting to compare our expressions with classical results of 
Kuzuu and Doi [9]. In their approach, the elastic stress tensor is obtained 
by relating changes in firee energy to the elastic stress and virtual defor­
mation [11]. They impUcitly assumed that such firee energy can be defined 
even in non-equilibrium state since the system behaves as an elastic ma­
terial for instantaneous deformation. By making this approximation, they 
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obtained the stress tensor: 

(3.23) <7a^=p ^^._ .^uc^p ^-

Our results therefore agree in the kinetic part of the stress tensor, but 
not in the potential-dependent part. In fact if one uses the free-energy 
approach, following Kuzuu and Doi, one finds that the expression they 
had derived contains only the symmetric part of our complete microscopic 
stress tensor. As a result, they had to introduce arbitrary magnetic field to 
generate asymmetric torque contribution, which however exists in nematics 
even in the absence of magnetic field. In this respect our results give a more 
accurate description since Equation (3.22) can be antisymmetrized, without 
imposing external conditions to the system. 

A cautionary remark has to be made. We have assumed uniform liquid 
concentration throughout the sample. In reality a phase separation may oc­
cur between the isotropic and nematic phases with different concentrations, 
as often is the case in lyotropic systems. The kinetic equation will describe 
the internal dynamics in each of the phases, which is thermodynamically 
stable. It is however not sufficient to describe the hydrodynamics of the 
nematics near phase separation boundary. This fact must be borne in mind 
while comparing the theory with experiments in the bi-phase region. 

4. Microscopic viscosity coefficients. In this section we put to­
gether results from sections 2 and 3 to derive a set of the microscopic 
expressions for the Leslie coefficients, which are found to depend explic­
itly on the molecular form factor, the order parameters and the rotational 
friction constants. We also investigate the effects of non-linear corrections 
due to gyroscopic motions in discotic nematics. These effects give no cor­
rections to the Miesowicz viscosities but generate a non-linear rotational 
viscosity 7 ' that depends on the aspect ratio p and the longitudinal moment 
of inertia /y. 

The motivation for finding the microscopic expressions for the Leslie's 
coeSicients relies on the concept that the macroscopic continuum stress 
tensor is a result of averaging its microscopic equivalent a^ over the appro­
priate non-equilibrium distribution function. The underlying assumption 
is that the nematic liquid crystal performs rotational Brownian motion in 
a mean-field potential and whose orientational distribution function satis­
fies the kinetic equation (Section 2). However, we note that the solution 
to the kinetic equation is non-trivial, even if one neglects the non-linear 
terms (though of course it can be done via eigenfunction expansion method 
when the flow term is neglected). Instead, we demonstrate how, by follow­
ing the approach used by Kuzuu and others [9, 10], one can separate the 
macroscopic stress tensor into the symmetric and anti-symmetric parts, the 
microscopic viscosity coefficients can be obtained in a more elegant fashion. 
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4.1. Symmetric stress tensor. Prom Equation (3.7), the symmetric 
stress tensor of the LE phenomenological theory can be written as: 

^a(3 = otinan^npU^gl^p + a^^gl,^ 

(4.1) + 2 («5 + ote){nan^9l^ + ^/J^M^'^a) 

+ - (a2 + asXuaN^ + n^iVa) 

where g^^^ is the symmetric velocity gradient and N is the rate of angu­
lar rotation (3.4). Our aim is to derive a microscopic expression of the 
Leslie's viscosity coeflScients from microscopic variables through a series of 
coarse-graining. The symmetric stress tensor can be obtained by averaging 
the microscopic stress tensor in Equation (3.22) over the non-equihbrium 
distribution function, 

(4.2) a^j = p(skTp(uiUj--Sij j-\--p{uidjU'\-UjdiU-2uiUjUmdmU) 

where p is the number density of the nematic Uquid crystal. (...) denotes 
the average over the non-equilibrium single-particle orientation distribution 
function (...) = J w{u,t)...du. Obviously, averaging with Weq{u) alone will 
return zero. 

We next use a trick, in this context often attributed to Doi [9]. We 
consider the kinetic equation, obtained in Section 2 and neglect higher 
order non-linear terms, 

(4.3) w + adk{ftkw) = a^dk i dkW -f -rf-'^ J • 

Multiplying this equation by a factor (uiUj — ^Sij) and integrating over the 
director orientation making use of the orientational version of integration 
by parts: J duA{u)dB{u) = — f du [dA{u)] S (u) , we derive the following 
expressions for the four terms in (4.3): 

(4.4) wl UiUj - -6ij jdu= — (uiUj - -Sij 

I dkiCtkW) (uiUj - ^Sij] du = —^[ gtaci'^aUj) - gajiUaUi)] 

(4.5) + - [2gl^i3{uaUf3UiUj) 

- gf^iiu^Uj) - g'^j{u^Ui)] 

(4.6) / dk{dkw) I UiUj - -Sij jdu = -e (uiUj - -5ij 
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{wdkU) (4.7) / . , ( ^ ( . . . , - i . , ) du 

= - T ^ {UidjU + UjdiU - 2UiUjUmdmU) . 

Combining these results, Equation (4.3) after averaging gives, 

dQij 
(4.8) 

where 

dt 
— Fij + Gij 

(4.9) Qij = / UiUj - -Sij \ 

Fij = -6a^ (uiUj - -5ij \ 

(4.10) 

(4.11) 

a* - Tji {UidjU + Uj^iC/ - 2UiUjUmdmU) 

OL 
+ X {g'icck^ocUj) - (^iaiXt)5^ai] • 

Following this, the sjonmetric part of the macroscopic stress tensor can be 
written as: 

(j\j = p(SkTp (uiUj - -Sij ] 

4- K- du du ^ du\\ 

(4.12) 
kT .^ kT . 

= P - ^ [-2gl^^{uaU^UiUj) + {u^Uj)gf^^ + {u^Ui)gt^j] 

kTp kTp d 
' ^ ^ 1 ^ [i'^c.Uj)gt^ - {uc,Ui)g^j] - p ^ — (uiUj). 

The various moments of orientational distribution function can be ex­
pressed generally in terms of the macroscopic average director field n and 
the delta-functions which must obey the directors symmetries that n and 
—n are equivalent. The derivation of the various moments is straightfor-
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ward and we simply quote the results: 

(4.13) {uiUj) = SiriiUj + - ( 1 - 52)% 

(4.14) 

where 52 and ^4 are the scalar order parameters corresponding to the av­
eraged second and fourth Legendre's polynomials of molecular orientation. 
The main scalar order parameter can be derived from the order parameter 
tensor 5, t j . 

(4.15) Sij = /uiUj - -Sij ) =82 IniTij - -Sij j . 

Multiplying niUj to Equation (4.15) gives 52 = § ( (n • w)^ ~ | ) . Thus 52 
is a scalar measure of how perfectly the molecules are oriented along n . 
The expression for 54 is derived in the same way. 

Substituting the average moments we eventually obtain the desired 
expression of afj in terms of velocity gradient and the directors, 

^ i , = 
kTf^ 

4a 
-2S4nani3ninjg^p + -^{^ - 552 - '^S4)gfj 

sy 
1 2 

(4.16) 4- -(352 + ^S4){nina9t,j + njUf^g^^j) - -(52 - S4)nan^gip5ij 

kTpS2 fi' ft' 

The term riaTipg^^Sij contributes to the scalar pressure, which therefore 
does not appear in the LE stress tensor. Comparing with Equation (4.1), 
we find the corresponding LesUe's viscosity coefiicients, after restoring to 
dimensional forms: 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Q!2 + «3 = —P^±P S2 

a4 = ^ p ' ( 7 - 5 5 2 - 2 S ' 4 ) 

a5 + ae = ^p^ (3^2 + 454) 
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4.2. Anti-symmetric stress tensor. For an isotropic liquid the 
stress tensor must be a symmetric function due to the demand on the lo­
cal balance of torques. For anisotropic nematics, we expect the anisotropic 
part of the stress tensor to be non-vanishing due to the orientational torques 
of the director. The existence of a viscous stress in the fluid has to be a 
result of averaging over the non-equilibrium distribution function. We can 
write the non-equilibrium distribution function as w = wo{l-\-h[u]) where 
h represents the deviation from the equilibrium distribution function WQ 
(or Weq) which in turn can be written in a very general form that reflects 
the symmetries of the terms in LE theory. The macroscopic antisymmetric 
stress tensor then takes the form: 

(4.21) /(""^-"^S"'°["^'^f"5''" 
where the antisymmetric microscopic stress tensor follows from taking the 
antisymmetric part of (3.22). The antisymmetric stress tensor obtained 
this way has to be equivalent to the one obtained in the phenomenological 
LE formalism. 

In this case there is no straightforward trick to solve cr^^, as was 
previously done for cr^^. Instead we have to solve the kinetic equation 
(4.3) to determine h[v] uniquely. The phenomenological antisymmetric 
stress tensor is given by Equation (3.8), which suggests that 71 is related 
to the rotation of the director n and the flow vorticity (V x v). Therefore 
we have the freedom to choose the nematic system in zero flow {ft = 0) such 
that the solution of the kinetic equation gives h which is flow-independent 
and can be equated to the 71 term. The kinetic equation becomes: 

(4.22) w = a^d^ a^WQ d^h-'-§d,h 

Assuming the mean field potential to be of Maier-Saupe form [21], 

(4.23) U(e) = -JS2 3 . .2 1 

and the equiUbrium orientational distribution t̂ o oc exp[—fZ/fcT], Equation 
(4.22) becomes 

(4.24) 

with 

(4.25) 

d \ - ^dph ~ «(n • u){n • u)( l + h) 
KJ. 

K = 

As designed, the only source of deviation from equilibrium here is the time 
dependence of the uniformly rotating director. We have assumed that the 
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term n • li is negligibly small for a nematic system approaching quasi-static 
state such that all molecules are almost aligned parallel to the averaged 
director n . An equivalent argument is that n • ti is proportional to the 
angular velocity which is a fast dynamical variable that had been previously 
integrated out to yield the kinetic equation (4.3) in terms of w{u,t). 

Symmetry of the problem suggests the following expression for the 
Unear non-equilibrium correction /i, 

(4.26) h = ho{n • u){n -u) 

where ho is a constant to be determined self-consistently. In this respect 
we can neglect h on the right hand side of Equation (4.24) since it produces 
non-linear terms. Substituting (4.26) into Equation (4.24) determines ho 
(in its dimensional form): 

(4.27) ho = — 
A± q 
kT2-\-q 

where q = JS2/kT denotes the strength of the nematic order and Aj. is the 
rotational friction constant. Substituting this result into Equation (4.21) 
and manipulating in spherical coordinates, we finally obtain the averaged 
antisymmetric stress tensor with the explicit coefficient in front 

(4.28) (Tap = yQ 24"'^•^'^ ̂ ^ "̂  ̂ '̂ ^ ~ ^^^"^^ {'^anp - nan/?). 

Comparing with the continuum theory definition in Equation (3.7) we iden­
tify that: 

(4.29) 7 1 = <^3 ~ QJ2 = 
1 {JS2/kTf 

35 2 + iJS2/kT) 
Ax/o(7 + 552-1254) , 

which has the desired property of vanishing when ^2 goes to zero. Making 
use of Equations (4.17-4.20), we have the following microscopic expressions 
for the remaining Leslie coefficients: 

1 
(4.30) 

(4.31) 

(4.32) 

(4.33) 

"2 = -2(^X^52+71) 

Oi3 = -^ip>^LpS2-ll) 

1 ^ -"5 = 2^^-i-P 

"6 = 2^^^.? 

52+ i (352+ 454)] 

-52 + 1 (352+ 454) 
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4.3. Theoretical predictions. 1) The microscopic expressions for 
the viscosity coefficients depend strongly on the order parameters and on 
the alignment of the director in the fluid. They also depend expHcitly on 
the geometrical shape of the spheroid which manifest itself in the form fac­
tor p. Since the order parameters are the averaged property, the LesUe's 
coefficients do not depend explicitly on the exact form of the nematic po­
tential [/. Instead, the intermolecular potential determines uniquely the 
rotational friction constant Aj_ (see Section 5). 

2) In the above analysis, we have paid particular attention to the 
fact that the general symmetric part of the microscopic stress tensor for a 
spheroid must be enriched with the form factor ^5TI» ^^ contrast to previous 
works which treated only long-rods nematics [9, 10]. This allows us to take 
p to be asymptotically zero for the case of a discotic nematic, in which 
case the form factor p goes to —1. This impUes a change in the signs of 
certain viscosity coefficients, like a^ and ae. In the limit of small 71, both 
a2 and 0:3 are large and positive for a discotic nematic, but are negative for 
rod-like nematics. This is in accordance with earlier theoretical predictions 
[27, 28]. 

3) The geometrical shape appears to have no effects on the value of ^4, 
In the LE formaUsm, this term accounts for the Newtonian-like behavior 
which is present in isotropic Uquid too. It accounts phenomenologically 
for contributions to momentum transport other than those due to rota­
tional motions. For spherically symmetric molecules, this will be the sole 
contribution towards the viscosity of the liquid, mostly determined by the 
translational molecular degrees of freedom, which we haven't considered 
here at all. In the nematic case, according to Equation (4.20), the orien-
tational part of 0̂ 4 vanishes in the Umit of strong order when ^2 and ^4 
tend to be 1. This corresponds to the fact that as the liquid approaches its 
full nematic alignment, its isotropic counterpart, independent of the shape 
of the anisotropic molecules, ceases to exist and so is a^. This suggests 
that a4 consists of two independent contributions: the isotropic a^^ which 
denotes contributions from momentum transport, in the style of classical 
works of Kirkwood and others [1-3], and the additional contribution aj®"*, 
which we derived above. 

4) Prom Equation (4.29), we see that as the intermolecular coupling 
strength q increases, the rotational viscosity 71 increases significantly, lead­
ing to large energy dissipation for uniform director rotation with respect 
to the matrix. This suggests that 71 characterizes director rotation that 
is associated with overcoming the potential barrier which is dictated by 
the order parameter ^2. A strong nematic potential therefore makes local 
rotational motions difficult and this increases the viscous loss. 

5) There is an alternative approach towards evaluating the antisym­
metric stress tensor, by taking the steady state solution it; = 0 in the kinetic 
equation, instead of the zero flow condition fi = 0 as we have done. In 
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this case we are looking for the flow-dependent terms of a^^ which will 
eventually give us values of 71 and 72 [29,10]. This method bypasses some 
of the approximations in the calculation above, but gives similar expression 
of 71. We do not include such an alternative derivation here. 

4.4. Reactive coefficient and director tumbling. We next dis­
cuss how an understanding of 71 and 72 leads to a description of non-trivial 
dynamics sich as director tumbling. The ratio of the negative of the irrota-
tional torque coefficient 72 over the rotational viscosity 71 is often known 
as the reactive coefficient^ or tumbling parameter [21]. It represents the 
competing effects of strain to vorticity torques acting on the director n . 
Our results from previous section give for this parameter, which is defined 
as the negative ratio of the two rotational viscosities: 

(A 34^ _22 ^ 1 + ^ 3 / ^ 2 ^ 3552 2 + JS2/kT 
^ ' ^ 71 1 - «3/a2 ^7 + 552 - 1254 (J52/ikT)2 ' 

The form factor contributes to a sign inversion for 72/71 between discotic 
and rod-like nematics. For long rods, p goes to 1, a3/a2 < 1, and —72/71 > 
1. For disk-like molecules, p goes to - 1 , a^la2 > 1, and —72/71 < —1. Our 
results agree well with the analytic solutions obtained via Poisson Bracket 
formaUsm of Volovik [28]. 

In a more quantitative manner, we can consider the time evolution 
of the director n . This can be obtained from the conservation of angular 
momentum in the LE theory [30, 5]: 

(4.35) ^ = (i. X n ) , - ^ [{9^. n)i - (n • p^ • n) m] 
at 71 

where as before, g^ is the symmetric velocity gradient, u is the vorticity de­
fined in Equation (3.4) and the reactive coefficient is a factor in the second 
term. From (4.35) it is apparent that for | 72/71 |> 1, the straining motion 
dominates and the director tends towards a steady-state orientation angle 
9 relative to the stream lines, when the hydrodynamic torque T vanishes 
[27, 4]: 

(4.36) t a n 0 = . / ^ ^ S = 
V 72 - 71 

6 is called the flow alignment angle, defined as the angle between the 
director axis and the flow in the state of balanced nematic and viscous 
torques. We see that the straining term can be interpreted as the pX±S2 
term which is dictated by the rotational fi:iction and the order parameter 
strength, while 71 dictates the vorticity effects. Steady-state alignments 

^Here "reactive" means that the term is reversible, i.e. no sign changes in time-
reversal and non-dissipative hence producing no dissipation either going *forwatrds' or 
'backwards' in time. 
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occur when shearing rotates the molecules until they are almost parallel 
or perpendicular to the flow direction and at this orientation they cease to 
rotate. As we had seen, for rod-like nematic, OLZIOL2 < 1, Equation (4.36) 
states that 6 < 45°. In fact the rods align their axes almost parallel to 
the flow direction. For the discotic nematic, we have the opposite situation 
when a^/a2 '> 1, and 9 « 90^. The disks therefore tend to align with 
their axes perpendicular to the flow direction, with one of the long axes of 
the disks being parallel to the flow direction. The other long axis seems to 
point in the gradient direction, so that the director orients in the vorticity 
direction. Such behavior has indeed been observed in scattering studies 
[12], and agrees with earlier predictions [27]. 

Equation (4.35) also suggests that when | 72/71 |< 1, the vorticity 
term dominates over the straining motion and the director can no longer 
find a steady-state orientation. This is reflected in 71 ^ p^±S2 and 
0:3/a2 < 0. As a result no alignment angle can be established. In this 
situation, the molecules deviate significantly from the average orientation, 
and even if the director is almost aligned with the flow field, there is a 
net torque on molecules that are not perfectly aligned with the field. Due 
to the anisotropic shape and the pair potential, the torque on any one 
molecule is transmitted to the others and the whole assembly of molecules 
continues rotating even at the instant the average direction is parallel to 
the flow. The nematics therefore do not have a preferred alignment an­
gle, and at any orientation angle, the director experiences a viscous torque 
tending to rotate it. This leads to the tumbling phenomenon. The steady 
shear-flow properties of tumbling nematics are very different from those of 
flow-aligning nematics [31, 32], and the effects of tumbhng and its arrest 
are believed to lead to observed transitions of normal stress differences from 
positive to negative values [30]. 

In this section we discussed several predictions of the LE theory per­
taining to the tumbling of the director. However we note that these results 
do not immediately apply to real nematic liquids, confined within vessels 
when strong anchoring at the wall produces gradients in the director field. 
These gradients or distortions in the director field lead to elastic stresses 
known as Ericksen stresses. In passing we also note that both the flow-
aligning and tumbling nematics are seen to produce large number of discU-
nation lines under high rates of shear [33], and this observation can only be 
reconciled with the existence of elastic stress in the nematic medium. We 
will postpone this discussion to Section 6, when a spatially-varying director 
field in the presence of flow will be considered. 

4.5. Non-linear effects. We return to the investigation of the non­
linear effects that are present in the kinetic equation. As was briefly men­
tioned in Section 2, the non-linear effects were manifested in the following 
additional terms in the kinetic (Smoluchowski) equation (2.26). Their ef­
fects can be analyzed by considering their corrections to the symmetric and 
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antisymmetric parts of the stress tensor separately. 

4 .5 .1 . Correct ions to symmetr ic stress tensor . We first consider 
the effects of the gyroscopic term ^a^Ad^s [(u • V x v){n x u)(^w] on the 
symmetric stress tensor. Using the same method of averaging as outlined 
in Section 4.L we obtain: 

(4.37) 

/ 9/3 [(ifc • V X v){ft X u)f3w] ( UiUj ~ -5ij j du 

= " 9(3 I UiUj — -^ij J (tx • V X v){ft X u)i3wdu. 

Expanding ft = ^p{u x g^ - u) -\- ̂ {u x g^ - u), the integral (4.37) can 
be evaluated to give the correction that is added to the symmetric stress 
tensor in the original equation (4.8): 

(4.38) 
kT . 

giving the non-linear addition af^ = —j^ipMij. The next step involves 
expanding all moments of u. The tensor Mij^ after manipulations, takes 
the form 

A (1 
+ a -̂T-< - p 54 (n • V X v) [ni{n x g^ • n)j + nj{n x g^ • n)i] 

+ 2 ^ \^irn9mj ~~ QimQmj) 

+ - p 5 |̂ (V X v)i{n X g^ • n)j -^riiinx p^(V x v))-

4- Hi ((V xv)xg^ ' n)j + (n • V x v)g^iniejim 

(4.39) + {i<-^j terms)! 

4- TS'4(n • V X v) [ni{n x g^" • n ) j + n^{n x g"^ • n)i] 

+ A ' [ 2 ( V x t ; ) , ( V x i ; ) , + p ? ^ p ^ . ] 

4- -B [2(71 • V X v)ni(V X v)j + (V x v)i{n x g"" - n)j 

+ n^ (n X 5f" . (V X v))- + n^ ((V x v) x '̂̂  • n)j 

+ (n • V X v)g^iniejim + {i ^ j terms)j L 

Equation (4.39) shows that all terms are indeed second order in velocity 
gradient, with their coefficients expressed by the appropriate order parame­
ters and obeying certain symmetry patterns. At this stage we are motivated 
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by the fact that experimentally it is not easy to measure all of the Leslie's 
coefficients. What is often measured is the Miesovicz viscosity defined in 
the beginning of Section 3: 

(4.40) r]a = 2<̂ 4 Vb = 5(^3 4- a4 -h ae) r)c = 5(""^2 + 0̂ 4 + as) . 

When each flow configuration is considered, we discover that all terms in 
Equation (4.39) vanish in one way or another. It seems to suggest that 
the effects of non-linear corrections only manifest themselves in some non-
trivial flow configurations which involve the director and flow couplings. 
On the other hand some insights can be gained firom consideration of the 
effects of non-linearity on the antisymmetric stress tensor. 

4.5.2. Corrections to antisymmetric stress tensor. The non­
linear corrections pertaining to the gyroscopic effects manifest itself 
strongly in the antisjonmetric stress tensor, since it relates to the energy 
or entropy dissipation via rotation of the director axis in shear flow. The 
gyroscopic term changes the *shape' of the distribution function which cor­
responds to energy loss via torques. 

In steady state, the kinetic equation (2.26) becomes 

(4.41) ^ "^ 

+ '—a^d(3[{u ' V X v){ft X u)(3w] -h ad^ (fi^^afi/S^) 

and we write the non-equilibrium distribution function with corrections: 

(4.42) w = WQ 

where h^^^ is the correction to the equilibrium distribution function WQ 
that we had discussed before which is proportional to Hnear velocity gra­
dient. /i^^^[u] is introduced to represent corrections that are second order 
in velocity gradients, and is relevant in this section since we are primarily 
interested in seeking non-hnear corrections to the antisymmetric stress ten­
sor due to the gyroscopic term a^^d/s \{u - V x v) (ft x u)gw\. As such 

we can, for the moment, neglect the term adi3{Qa9a^i3'^), and consider 
only the reduced equation: 

= a-r-5/5 Uu'V X v){ftx u)^w 

which we obtain after substituting (4.42) into (4.41). We have deliberately 
left the gyroscopic term on the right hand side. The various terms can 
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be evaluated explicitly in spherical coordinates, u = ncos6 -\-esinO, The 
right hand side of Equation (4.43) yields 

--9/3 (tt • V X i ; ) ( n X u)pw\ 

^ "2 { 2 ^ I(w • V X v).{n xe)'g'- u—— - (p'̂  • u) {9' • u) 

(4.44) 
1 r. „ .. . . 1 9 t / _ .2 

+ 2 (^•^^^) (^><^) -^ ' ' "^ j ty -g^- (^ ' ' - ' ^ ) 

( • 
U'V xvf I. 

We seek the appropriate general expression of /î ^^ that corresponds 
to Equation (4.44). The corrections due to /î ^^ becomes irrelevant since 
no matching of the velocity gradient terms can be found. An appropriate 
expression for /î ^^ will be /î ^^ = fti + /12 + /ts where 

(4.45) 

hi = hpig^^Qije^ij (n x e)^ n^n/3 

+ hp29a^9tj^'yij (n X e)^n^e^ 

+ hpsgapdij^-yij ( ^ X e ) a ^7^/3 

+ hp49ai39ij^yij ( ^ X ^)oi^l'^^ 

+ hp79^a9m(3'^ae(3 + hpS9tncc9m^ean^ 

where the correction coefficients must depend on the two angles ft = /i(&, (^). 
The term /12 has exactly the same general expansions as hi above 

except for every sjonmetric velocity gradient g^g in these equations, we 
replace it by p^^. Finally we have 

/13 = ha€ajk€(3mngjk9mn''^ocnfi + hheotjk^^mn9%9mn^oi^f^ 
(4.46) 

+ hc€ajk^^mng]k9mn'^otei3 + hdeajk^(3 mngjk9mn^oi'^^' 

The left hand side of Equation (4.43) can be evaluated explicitly in 
spherical polar coordinates to give 

92/1(2) / ^ 1 dU\ 9/i(2) 1 a2/i(2) 92/i(2) / 1 dU\ 9M2) 
sin^^ 9(̂ 2 • 

Substituting fti, /12 and /13 into Equation (4.47), and after a series of tedious 
algebra, we arrive at a form where explicit comparison on both sides can 
be made. For coefficients corresponding to /ii, we obtain the following 
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relations 

(4.48) ^ + ( c o t ^ - - ^ ^ j - a f - ^ = ^'"^^'kf^ 

(4.51) - ^ + [cot9- - - j ^ - - f ^ = - 4PC0S e 

A^^o^ ^^^p^^( ,Q 1 dU\dhpe 4hpe A. . ^ 

(^•' ') - ^ + r * ' - ikT W j ^ - i # ^ = - ^ p c o s ^ s m ^ . 

For coefficients corresponding to /12, we arrive at the same equations as hi 
but without the form factor p. For coefficients corresponding to /13, 

lAr,A\ d^ha^f ^. 1 dU\dha A ^. 

(4.54) _ ^ + | c o t ^ - - - j — = - - c o s ^ 

(4.55) _ + ( ^ c o t ^ - ^ ^ j ^ - 2 - ^ = - - s m 6 

(4.56) ^ + (^cot^ - - - j ^ - - ^ = - - s m ^ c o s ^ 
and /id = Ac, /ip4 = ^̂ 2̂) hps = hpf. 

We wish to obtain some qualitative features of the modified stress ten­
sor due to the non-Unear gyroscopic term, therefore we make the following 
approximations: 

(1.) We use the one-constant approximation, that is, we assume that 
all the h for a given combination of velocity gradients are equal, /ipi = 
hp2 = /ip3 = /ip45 hp^ = hpQ = hpy = /ip8» and ha = hf, = he = hd = h^, 
so that 

/i(2) = hpig^^^g^je^ij (n x e)^ [n^rifs + n^e^ + e^e^ + e^n^] 

(4 .57) + hal9al39ifyij ( ^ X e ) a K ^ / ^ "^ ^7^/3 + ^7^/? + ^7^;^] 

+ h'a69ma9mP [^a^/? + ^a^/3 + ^ a ^ ^ + 60^/3] 

+ h^3^ajk^f3mn9jk9mn h a ^ / 0 + ^0^/3 + rtaCp + ea^ / j ] 

where /loi and has are terms due to /i2-
(2.) We assume that in all cases, the term hp/ sin^ 6 will be negligible 

if the relaxation time of the molecular rotation about the director n is 
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much smaller than the time of reorientation with respect to the angle 6, 
In this way the microscopic antisymmetric stress tensor due to gyroscopic 
effects can be calculated using the formula 

(4.58) < ^ = j wa^^^^^du = j woha^^^^'^du. 

Substituting Equation (4.57) and carry out the calculation explicitly, we 
eventually arrive at (after restoring dimensional variables): 

< ^ = / f - pAx (n . V X v) ^ric {n x g^ • n)^ -np{nxg^ - n)^] • /ipi 

- 1 na b " • ^ ' • n]^ + ria [g' -g'-n]^ 

+ n/s b^ • 9' ' n]^ 4- n/? [g' • ^ ' • n]^ i • ftps 

4- 4/>Ax (n -Vxv) lua ( V x v ) ^ - n^ ( V x v ) ^ j • h^A—wosm0de, 

The coefficients /ipi, hp^ and /13 are derived to take the values: 

(4.60) h.r^^p^e"; h,, ^-^pq-'/'e" ; ft^ ~ - V ^ / V . 
0 ^ 4 o 

It can be seen that all terms without the potential derivatives on the right 
hand side, i.e.. Equations (4.51-4.56), retain the same functional depen­
dence of q. The exponential dependence on q, however, exists for all co­
efficients of h. The non-linear rotational viscosity 7^^ due to hpi is found 
to be: 

(4.61) 7;i = J V ^ ^ o s i n e d O ^ ^pA^e^^? q^^Ap 

which only appears in discotic nematics with non-vanishing A = ^I\\ /I±. 

4.6. Preliminary discussion points. Despite the crude assump­
tions made in the previous section, we managed to obtain some qualitative 
features of the solutions for kinetic coefficients and constitutive relations. 

Equation (4.59) suggests that at a higher flow rate, there is strong 
coupling of the director with the vorticity. Such effects becomes irrele­
vant for a rod-like nematic when A vanishes. On the other hand due to 
the non-vanishing /|| and hence the additional gyroscopic efiects in disk­
like molecules, there is a non-linear correction to the antisymmetric stress 
tensor and the rotational viscosity 71. 

The more general approach to find the complete solution to the non­
linear viscosity is to write down the full general expression for h which satis­
fies all symmetries of the problem, and explicit matchings of the coefficients 
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can be made and determined. This process is however very laborious which 
does not necessarily yield new physical insights to the solution. Instead we 
had adopted a more pragmatic approach by focusing on only a subgroup 
of the complete expression (see Equation (4.57)) using the one-constant 
approximation. 

The conventional intuitive picture to explain the non-linear effects in 
viscosity is to visuaUze flow alignment of the molecules along the flow. This 
microscopic rearrangement of the molecules that results in a decrease of 
viscosity at higher velocity gradient is commonly known as shear-thinning 
mechanism. Most suspensions of non-spherical particles which are dilute 
enough tend to be shear-thinning at modest rates of shear. No doubt flow 
alignment is always partly responsible but there is an additional factor 
due to rotation of suspended particles by planar shear to adopt a layered 
arrangement which favors easy shear.^ The removal of misahgned domains 
therefore results in a drop in the viscosity. Strain rate then speeds up and 
eventually a steady state is achieved at an alignment angle (monodomain). 
However above a critical shear rate there is no solution for the steady state 
angle of alignment and this results in instabiUties such as the tumbling 
phenomena discussed before. 

As was briefly mentioned above, we can derive 71 in the linear regime 
(due to h^^^ correction) using the method described in this section. This 
method predicts an exponential dependence on q, where q represents mean-
field coupUng strength which is proportional to the order parameter 52. 
The apparent contradiction with the result of (4.29) can be resolved if one 
expands the denominator in the Umit of small q, 

5. Rotational friction constant. In this section the rotational fric­
tion constant X± for a discotic nematic liquid crystal is derived from micro­
scopic interactions. The expression for this constant suggests an Arrhenius 
exponential dependence on the isotropic part of the intermolecular potential. 

5.1. Generalized fluctuation-dissipation theorem. So far we 
have studied Brownian motion as a physical realization of a random pro­
cess. For our model of a molecule in rotational motions, the nature of the 
medium entered our consideration only through one parameter, the fric­
tion constant. We know, however, that that the medium comprises other 
molecules that are ultimately subjected to deterministic, not statistical 
evolution. Therefore we ought to be able to derive the friction constant 
from basic atomic dynamics. The appropriate formalism requires us to 
work within the framework of generalized fluctuation-dissipation theorem. 
To begin with, we consider the generalized Langevin equation, also known 
as the Mori Equation [17] that relates the friction coefficient to a memory 

^In some cases, at even higher rates of shear, the layers may break up due to shear-
thickening, when the particles form a less regular structure such that they occupy a 
larger volume and the bulk structure becomes stiffer. 
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function K{t) (in the absence of external forces), 

(5.1) —=l K{s)A{t-s)ds-\-F{t) 

where A{t) is the dynamical variable of the problem, and F{t) is the 
stochastic source. The memory function K{t) is related to the correlation 
function of the stochastic force: 

where M is the mass of the Brownian particle. 
Equation (5.1) is useful when there is a good separation of time scales 

for the motions of the components of the system. We note that compared 
to the Langevin equation, the friction constant A has become a friction 
kernel, K{t)^ which if decays to zero sufficiently rapidly, leads to 

(5.3) / K{s)A{t - s)ds « A{t) f K{s)ds « A{t) f K{s)ds. 
Jo Jo Jo 

Thus the friction term in the Mori equation can be approximated by the 
friction term in the Langevin equation, provided that the correlation time 
of the random force is short compared to the time in which A{t) changes 
appreciably. We thus have a molecular expression for the friction constant 
A, which is the time integral of the autocorrelation function of the inter-
molecular force exerted by the bath particles on the Brownian particle: 

Here the random force is interpreted as the intermolecular force on the 
Brownian particle exerted by the bath particles when they move in the 
field of the fixed Brownian particle (notice that there is nothing intrinsically 
random in the random force). Equation (5.2) states that, if we consider 
the Langevin's limit, when the correlation time of the stochastic force is so 
short as to approximate it as a <J-function, 

(5.5) {F{t)F{0))=E5{t) 

where E is the stochastic strength. Substituting it to the Mori equation, 
we recover the fluctuation-dissipation theorem H = XMkT (the parameter 
M can be rescaled to 1 depending on the definition friction constant). 

In the context of rotational motion, the friction constant arises as a 
consequence of the Brownian particle experiencing a field of random ex­
ternal torques. These instantaneous torques arise from fluctuations in the 
random intermolecular forces surrounding the particle. As a result, the 
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particle executes random rotational motion with arbitrary angular veloc­
ity at any time-step. We can write down a similar form for the rotational 
friction constant X±: 

(5.6) Ax«^^°°(r(t)r(o))dt 

where T{t) is the stochastic torque at time t. 
For a dense system like a nematic liquid, we have to consider two 

distinct types of averaging processes in Equation (5.6). The first type 
concerns ensemble-averaging which is performed with respect to particle 
distribution and takes into account short-range correlation effects etc. The 
second type is the time-averaging, where temporal correlations of the 
stochastic torques are considered. In this section we will consider these 
two processes separately to arrive at a microscopic expression for A_L . 

The above analysis assumes that the decay rate of the torque correla­
tion function is rapid with respect to the rate of change of the distribution 
function of the Brownian particle (see Equation (5.3)). It can be shown 
that the correlation time for the stochastic torques is the effective collision 
time tc which is of the same order of magnitude as the relaxation time 
for the angular velocity. This however is true only in the stretched Umit 
of the Brownian particle being truly small (e.g. molecular liquids). For 
massive molecules one expects the correlation time to be much longer than 
the coUision time (often neglected in this case) and the correlation time is 
equated to the Brovmian motion time t^j. Strictly speaking this only holds 
true when^, tc <^t '^t^uj. 

An example is that of a dilute gas as first suggested by Kirkwood [1]. 
Here two widely diflferent time scales are easily identified as the duration 
of a collision and the mean free flight time. The collision time may be 
interpreted as the time in which the motion of a molecule is predictable 
from a knowledge of its initial momentum and the force on it at the initial 
instant. For times longer than this collision time, a second collision may 
occur, completely uncorrelated with the first. The mean free time describes 
this regime well and it may be interpreted as the decay time of the particle's 
momentum correlation function. 

5.2. Time averaging. As mentioned before, the temporal averaging 
of the stochastic torques (r(t)r(O)) corresponds to finding the autocorrela­
tion function of the angular velocity [1]. Such correlation function typically 
follows an exponentially decaying function, where the decay time is often 

^There is an observation of *long time-tail' in molecular correlation functions [34, 17] 
i.e. decay of certain molecular correlation function has an asymptotic slow inverse power 
law; not the rapid exponential decay that had been assumed. Hence the assumption that 
K has a short lifetime relative to A may not strictly be true. This can be explained 
via the existence of slow fluid variables, and the general theoretical framework is known 
as mode-mode coupling theory. We shall, however not deal with this aspect since it is 
beyond the scope of this article. 
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called the Brownian motion time since it is the time above which the mo­
tion becomes diflFusive, and below which the motion is ballistic. By finding 
this correlation time for the particle's angular momentum, one effectively 
finds the correlation time for the stochastic torques. However, for a nematic 
executing rotational motion, the situation is complicated by the presence 
of multiple-correlation times due to its non-trivial tensorial formalism and 
the anisotropy of the molecules. This contrasts with a typical isotropic 
Uquid where the molecular relaxation process can usually be described in 
terms of a single correlation time TC. 

Some insights on the Brownian motion time can be drawn from the 
translational motion of a Brownian particle of mass M, such as in the case 
of a colloid particle. In this case we consider the dynamical variable velocity 
v{t), whose correlation function obeys: 

(5.7) ( „ (^ ) „ ( t ' ) ) ^H ,e - | t - * IA 

where r = M/Xt is the Brownian motion time, or the velocity correlation 
time. At denotes the translational friction constant. Analogously, we can 
define a similar correlation time r ,̂ for the angular velocity u; for rota­
tional motion. For t < r^^^ the rotational motion is 'ballistic' in the sense 
that the angular velocity is maintained without 'coUisions', which come 
in the form of contacts with random external torques acting on the sys­
tem. For t > Tiy, the rotational motion becomes diffusive and the particle 
distribution function eventually reaches the equilibrium Maxwell velocity 
distribution e~^^ /2kT^ hence the name rotational Brownian motion time 
[17]. For a simple spherical molecule, the dynamics can be described with 
a single Brownian motion time r^ = //A;>, where Â  is now the rotational 
friction constant and I is the moment of inertia (analogous to the mass in 
translational motion). 

The Brownian motion time for non-spherical molecules are however 
complicated by both the rotations around the long molecular axis and the 
large-angle rotations around the shorter molecular axis. It is clear that the 
larger the moment of inertia the longer the particle maintains its correlation 
in angular velocity before it enters the diffusive regime '̂ . 

The rotational Brownian motion time is not to be confused with 
another relaxation time r^ which is the time it takes to relax slowly 
to the Boltzmann distribution over the angular coordinates, given by 
exp[—?7(n-u)/fcT] where C/(nu) is the mean-field potential experienced by 
the molecule. The characteristic time-scale TU is approximately y/I_i/kT 
if we assume rotational motions to be dominated by large-angle rotations 
about the short molecular axis. This is the regime where our kinetic equa-

^The cross-over from Brownian to non-Brownian behavior in a flowing suspension is 
controlled by the rotational Peclet number Pe — 7/Dr where Dr is the rotary difFusivity 
of the particles and 7 is the strain rate. 
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tion is based upon and leads to the mode relaxation times evaluated in 
Section 2. 

It might be tempting to think that the solution for a disk-like molecule 
in rotational Brownian motion will yield only a trivial modification to the 
correlation time of a long rod (where the relaxation times for rotations 
around the long molecular axis is very small and can be neglected). In 
fact, as we shall see, due to both rotations along and perpendicular to the 
molecular axis in discotic nematics, non-trivial solutions for the Brownian 
motion time can be found. 

For a discotic nematic phase, due to the significant moment of inertia 
parallel to the director axis /y, the axial angular momentum I\\^ along the 
molecular axis may be comparable to or larger than that perpendicular to 
the axis. Prom our analysis of the kinetic equation (2.11) before, we have 
the following equation: 

(5.8) /jLU â = -AxO^a -\-(a - I\\fp{^ X w)a 

where for simplicity we have assumed zero external torque and external 
flow. /jiV' can be assumed to be almost constant since there is virtually 
no torque acting on the axis and hence no angular acceleration along the 
director. Clearly the description for rotational motion is more complicated 
due to its vectorial form and the precessional term I\\fp{u^ x u) , giving non-
trivial solutions as I\\/I± is non-negligible. Expanding the cross product in 
tensorial form. Equation (5.8) becomes 

(5.9) UJa = -^a3^(3 + 7 ^ 
iX 

where 

(5.10) Aa/3 = -y-Sotfi + BtpeapyU^ with B = / | | / /± . 

The problem is similar to solving small oscillation dynamics using nor­
mal mode expansion. The general motion is then a superposition of the 
various normal modes with the mode firequencies and their amplitudes given 
by the eigenvalues and eigenvectors of the matrix respectively. Setting the 
equation in homogeneous form {Ca/I± = 0) and assuming that the director 
coordinate u^ remains approximately stationary on the fast time scale of 
u;, we have, writing Ky = Bipu^, 

(5.11) 

Here we note that the matrix is non-symmetric, and complex eigenvalues 
are to be expected. Direct diagonalization of the matrix numerically gives 

Ax//x 
K3 

-K2 

-K3 

-Ax//x 
Ki 

K2 \ 
-Kr 

-Ax//x / 

/ Wl 

1 W2 
\ W3 
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the following eigenvalues and eigenvectors: 

(5.12) 

and the eigenvectors are 

A - ^ ^ - ^2,3 

(5.13) 

vi = 

^2,3 = 

{±iBi;Ks-KiK2)/{Kf + Ki) 
1 

(TiB jpKi - K2 Ks)/ {Kl + Kl) 

It is clear that the eigenvalues become degenerate Ai = A2 = A3 = — A x / / i 
for the case of rod-like molecules, indicating the presence of a single Brown-
ian motion time corresponding to only rotations of the long molecular axis. 

The angular velocity components can be written as following: 

a ; i=e-* /^ 

(5.14) UJ2 = e"*/^ 

0̂ 3 = e -* /^ 

--^+2cos(BV^t) 

K^ o J^2Kz fry } . \ , o ^iBlp . , „ } . . 

where we have defined r = I±/X± as the rotational Brownian motion time. 
The stochastic force ^a introduces inhomogeneity into the equation 

and the full solution of the inhomogeneous equation can be obtained by 
integrating over the stochastic term in Equation (5.9). For simplicity we 
consider just one of the angular velocity components L02 and its correlation 
function (a;2(t)'^2(0))- Careful analysis leads to the following expression 
for the angular velocity correlation function: 

{u;2{t)uj2{0)) 

(5.15) 

kT 

II' 
e-*/^ + -^e-*/-^ cos{t/T^) 

-t/T TT^ 

4 + r^ 
T t 

2— cos{t/r^) - sin(i/T^) 

+ 
kT 

IT' 
-t/r 

L r 
cos(t/T^) - sin(t/T-0) 

The first term gives the natural decay of the correlation function for the 
angular velocity which depends on the geometrical projection ratio K2/K1. 
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The imaginary part of the eigenvalues gives rise to the precessional term 
cos{t/T^) where the precessional period r^ = 1/Bip is introduced. ExpUcit 
comparison between the two time-scales can be made: 

(5.16) ^ '^'-'^^ 
T-^ A5_ I± ' 

The first term on the right hand side corresponds to the small parameter 
a we had defined in Equation (2.16), therefore we conclude that r is sig­
nificantly smaller than r^ for disk-like molecules. Rearranging the terms 
we have for it < r <^ r^, 

(5.17) {uJ2it)u;2m = -^e-'l^ ^ V + 2 ^ (-1) 
Note that except for the prefactor in terms of if's, Equation (5.17) resem­
bles (5.7) in translational motion. We conclude that the system remains 
heavily damped^, and the effective correlation or relaxation time is the 
shorter time-scale r. Note that the rotational Brownian motion time has 
a linear dependence on the friction constant Aj. which is to be contrasted 
with the mode relaxation time found in Section 2 which has an inverse 
dependence on A_L. 

Equation (5.6) therefore becomes: 

^ /.CX) 

(5.18) ^^"^kfj (r'(0))ense-*/"-dt 

giving the final form of friction constant after time-averaging: 

(5.19) Ax « y j v ( r 2 ( 0 ) ) e „ s 

where (r^)ens denotes ensemble averaging of the stochastic torques acting 
on the molecules. 

5.3. Ensemble averaging. As mentioned before, the idea of ensem­
ble averaging is essential when considering macroscopic properties of any 
dense liquid. The ensemble averaging of the torques in Equation (5.18) 
describes microscopically the interactions of the molecules with various 
random potentials exerted by the surrounding molecules. A reasonable 
expression for (r^(0))en5 for molecule 1 can be written as: 

(5.20) (T\ns ^N^jdiUil, 2) • 9iC/(l,3) P^3(l,2,3) d(l) d(2) d(3) 

®This corresponds to the assumption that thermalization occurs on a time scale 
much shorter with respect to the time for appreciable changes in positional distances. 
This occurs when the rotational friction constant Ax is large and is often called the high 
friction limit. 
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where dik = ^kijUud/duij, d{l) — dridui, and W3(l,2,3) is the three-
particle angular distribution function. 9iC/(l,2) describes the torque ex­
erted by molecule 2 on molecule 1 due to their pair interaction potential 
i7(l,2), and the same holds for 9iC/(l,3). 

To evaluate this ensemble we need to have a microscopic model of the 
molecular pair potential that acts on a particular pair of nematic molecules. 
We begin this by giving a brief review of the mean-field description of the 
intermolecular forces, followed by an attempt to build a phenomenological 
model that goes beyond mean-field regime and consider more realistic ef­
fects such as short-range orientational correlations and the excluded volume 
effects, paying specific attention to the case of a discotic nematic. 

5.3.1. Nematic intermolecular forces. The molecular theory of 
the nematics has been an intense field of research in the past decades, 
using advanced statistical theories such as the density functional theory. 
There two main approaches pursued to derive the various thermodynamic 
quantities that agree with the experimental results: 

1) Treating the intermolecular forces as anisotropic and the intermolec­
ular repulsions as isotropic to first approximation, which serves as a positive 
pressure. The result is temperature- dependent of course. 

2) In suspensions of anisotropic particles the nematic order arises 
purely from short-range anisotropic repulsive forces (exclusion volume ef­
fects in the Onsager approach). The high density of the liquid is established 
by the intermolecular attractions, which are assumed to be isotropic. 

In this work, we take into account both anisotropic intermolecular at­
tractive forces depending on the orientation of the interacting molecules, 
but at the same time consider an anisotropic repulsive potential which 
arises fi:om the exclusion volume effects. We consider the following expres­
sion for the effective uniaxial potential [35] 

Veff{ui,rij,Uj) = l̂ so - Jiir){ui • Ujf 

(5.21) -J2{r)[{ui^rijf^{uj'rij)^] 

where Viso represents an isotropic dispersion potential independent of it's 
and the various Ts represent the orientation-dependent coupUng strengths 
which can be expressed in terms of the electric dipole and quadrupole 
matrix elements, u denotes the molecular director while Vij = Vi — Vj 
denotes the molecular distance from particle i to j . See Fig. 4 below for 
the geometric illustration. Chandrasekhar et. aL [36] had argued that the 
potential arises mainly from the dispersion forces which have r~^ or r~^/^ 
dependence on the intermolecular separation for dipole-dipole and dipole 
quadrupole interactions respectively. The permanent dipoles are found to 
play a minor role in providing the stability of the nematic phase (although 
dipole-dipole forces are much stronger than the van der Waals, in practice, 
dipolar molecules in liquid always form very strong dimers). 
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FIG. 4. The scheme of excluded volume m,odelling for rod-like and disk-like parti­
cles, leading to the orientation dependent expression for the minimal distance separating 
the two centers of mass, fi2(wi,U2,tAi2) of Equation (5.30). The analogous expres­
sion for two rods would read: fi2 = d-\- ^{L — d) [(ui • 1112)^ -h (1*2 • 1*12)̂ ] o.nd has a 
minimum, fjfi2 = d) when both ixi and U2-Liti2-

As shown by Gelbart and Gelbart [37], the predominant orientational 
interaction in nematics must be the isotropic dispersion attraction mod­
ulated by the anisotropic molecular hard core. The isotropic part of the 
dispersion interaction is generally greater than the anisotropic part because 
it is proportional to the average molecular polarizabiUty. The anisotropy of 
this overall potential comes mainly from the asymmetric molecular shape. 
Thus this effective potential is a combination of intermolecular attraction 
and repulsion, 

(5.22) V;ff(l,2) = Ja t t ( r i2 )e ( r i2 -62 ) 

where the step function 0(ri2 — ^12) determines the steric cut-off. 

5.3.2. Mean-field theory: the Maier-Saupe potential. The sim­
plest molecular theory of the nematics can be developed in the context of 
a mean-field approximation. By mean-field approximation we mean that 
all correlations between different molecules, such as the fluctuations in the 
short-range order (mutual aUgnment of two neighboring molecules), are ig­
nored. This is obviously a crude and unrealistic approximation but it does 
enable one to obtain very simple and useful expressions for the free energy. 

In this section we demonstrate how the mean-field approximation can 
be established starting with a completely general pairwise intermolecular 
interaction potential. One appropriate model potential is to write it as an 
expansion in terms of Legendre polynomials (spherical invariants) Pim [35]: 

(5.23) U{Ui,Ui2, U2) = ^ Jlm{Ui2)Plm{UuUi2, U2). 

To obtain the single molecule potential U in the mean field approximation 
it is necessary to take successive averages of the intermolecular potential 
C/12. Firstly we note that in the nematic phase there is no positional order 
and the molecular centres are distributed randomly. If one neglects the 
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positional correlations, the interaction potential can be further simplified 
by averaging over all values of the intermolecular unit vector U12: 

(5.24) U{ui,U2) = / U{ui,ui2,U2)dui2. 

The final mean-field potential UMF{UI) is obtained by averaging over all 
orientations of the second molecule 1x2* 

(5.25) UMF{UI) = j U{u\^U2)wi{u2)du2 

where Ui specifies the orientation of the molecule i, and 

(5.26) wi{ui) = \e^^^^F{ui) 

denotes the single-particle distribution function that depends only on the 
molecular orientation. Equation (5.26) says that in the mean-field ap­
proximation, that is, neglecting paiur correlations between u\ and U2, 
each molecule feels some average angular potential produced by all other 
molecules in the system. The usual Maier-Saupe potential JP2(^ • 'Wi) is 
obtained via this averaging process with respect to the first non-polar term 
in the Legendre polynomial expansion of the intermolecular potential. 

5.3.3. A model potential for discotic nematics. Realistic inter­
molecular interaction potentials for mesogenic molecules can be very com­
plex and are generally unknown. At the same time molecular theories 
based on simple model potentials usually offer good qualitative solutions 
when describing some general properties of liquid crystals that are not sen­
sitive to the details on the interaction. In this section we propose a simple 
nematic potential to model molecular interactions in a discotic nematic liq­
uid crystal within the mean-field approximation. This leads to an explicit 
expression of the torque autocorrelation function in Equation (5.20). 

1. A model pair potential: Previous investigations on the inter­
molecular interaction potential of a discotic nematic had focused mainly 
on the regime close to nematic-isotropic (N-I) transition [38]. A reasonable 
assumption is that the nematic order arises primarily from the short-range 
and highly anisotropic repulsive forces between the molecules. We consider 
a modification of the nematic potential in Equation (5.21) which captures 
the essential physics of the molecular interactions in a discotic nematic 
phase [35, 37]: 

U{\,2)^-^~^h{u^-U2f 

(5.27) - —{j2 \{ux. ux2f + (U2 • 1̂ 12)̂ ] 

^̂ 12 ^ 

+ J3 \(ux ' U2){Ui • Ui2){U2 ' ri2)] | 
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where G describes the isotropic attraction and the constants J i , J2 and 
J3 describe the anisotropic contribution to the pair interaction potential 
and depend on the anisotropy of the molecular shape. Following previous 
discussion, we know that a more precise description of the inter molecular 
interaction has to include higher order Legendre's polynomials such as the 
P4 terms [36], but such terms are usually sufficiently small to be ignored in 
our model. J2 accounts for the different interaction energies corresponding 
to different orientation configurations of the two molecules. For instance for 
long rods, J2 has to be negative since the orientation configuration is not 
energetically favorable, and Ukewise positive for disk-like molecules. The 
most important weakness of the model (5.27) is its uniform r^2 dependence 
on molecular separation. We shall see that the specific form of this power 
law is truly irrelevant, since the dominant contribution to the final integrals 
is arising from the potential cutoff at the molecular excluded volume cutoff. 
However, particular dependence on the molecular thickness (the closest 
approach distance) may not be captured accurately in such a model. 

2. Excluded volume effects: These effects are determined by hard­
core repulsion that does not allow molecules to penetrate each other. It 
is interesting to note that by doing so we already go beyond the formal 
mean-field approximation, since at low densities it is possible to express 
the free energy of the system in the form of the virial expansion [39]: 

(5.28) 
I3F = p\iip-{-p I 'Wi{ui) [ \iiWi{ui) — 1 ]dui 

+ -p^ / wi{ui)wi{u2)' B{ui,U2)duidu2 + ... 

where B(ui , 1*2) is the excluded volume for the two disks: 

(5.29) B{uuU2) = /dri2(e-^^«*-*^(i'2) _ ;̂ ) 

and f/steric(l»2) is the steric repulsion potential. 
In Equation (5.28) all terms are purely entropic in origin since the 

system is athermal by definition. The second term is the additional ori-
entational entropy which is a consequence of the anisotropic shape of the 
rigid bodies, and are thus absent in an isotropic liquid. The third term is 
the packing entropy that can be thought of intuitively as a result of the 
excluded volumes effects that restrict the molecular motion and therefore 
reducing the total entropy of the liquid. At low volume fraction of the 
disks, the higher order terms in the expansion can be neglected. The steric 
repulsion potential is equivalent to introducing a steric cut-off length. For 
two disk-like molecules this can be expressed phenomenologically as: 

(5.30) ^12 = D+ ^^-^ [ (ui • «i2)2 + (U2 • unf ] 
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where d and D are the thickness and diameter of the disks respectively, 
and Ui2 is the unit vector along molecular separation Une. The expression 
can be checked by considering the extreme limits of the molecular directors 
being parallel or perpendicular to the intermolecular unit vector 1̂ 12. For 
instance, the shortest separation, 1̂2 = d is achieved when Wi||w2||'i*i2-

3. Three-part ic le correlation functions: The simplest form of 
the three-particle angular distribution function in Equation (5.20) can be 
expressed in the Kirkwood approximation [1], which neglects three-body 
collisions: 

(5.31) W3(l,2,3) ~ W2{1,2) W2i2,3) 1^2(1,3). 

Such approximation are known to work well at short and long ranges, but is 
less accurate at medium range of separation. For a long rod system, its has 
been shown by Onsager [39] that virial coefficients higher than second order 
vanish in the asymptotic limit as the length of the rod goes to infinity. This 
means that higher order correlations such £is the three-body correlations are 
negligible, and the Kirkwood's approximation is a good approximation for 
infinitely long rods system. Such may not be the case for a discotic phase, 
when three-body correlations has to be taken into account [38]. One might 
envisage the use of a better approximation scheme using integral equations 
such as the Percus-Yevick or Hyper-Netted Chain approximations. 

For simpUcity we neglect the three-particle collisions, which gives: 

(5.32) W3(l, 2,3) c:^ e-f''^^'^^^e-^^^'^^^e-^'^(^^^^w{ui)w{u2)w{us) 

where w{ui) is the single-particle equilibrium orientation distribution func­
tion for molecule i, and /? = 1/feT as usual. 

We return to the evaluation of the integral in Equation (5.20). We 
first change the variables from dr i , dr2 and dr^ to dri2, dris and dri. 
The integrand can be expressed in terms of ri2 and ris only, which can be 
integrated over ri2 and r is (only the relevant terms are shown): 

where 

(5.34) 
fc(l, 2) = /3{G + Ji(ixi . U2)2 + J2 [{ui • unf + {u2 • ^12)^] 

-f J3 [{ui • U2){ui' Ui2){u2 • ri2)]} , etc. 

The integrand clearly approaches a maximum towards the cutoff length 
^12 = 1̂2 = d, ri3 = ^13 = d. From Equation (5.30) this requires all the 
molecular axes to be parallel to intermolecular vectors ni2, wis and U23. If 
we take small deviations fi-om this conformation only, and U12 being in the 
middle between ui and U2 etc., then Equation (5.34) simplifies to terms 
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containing only two constants, G = G-{-^J2-\-\J3 and J = Ji 4-1J2 + ^J3. 
Equation (5.20) can be evaluated approximately by observing the sharp 
rise of the integrand at the end of the integration interval. We therefore 
obtain: 

(5.35) (r2(0)) « ffi-Pe^^^ fduidu2dus 

gi(txi-n2)^9i(ni'ti3)^e^'^>^-^^>'+(^^-^^>'+^^^'^^)']ti;(ui)i^(^^ 

[2G' 4- J'(tXi • U2)2 + J'(ti2 • U3)^] [SG' + 2J'{UI • U3)2 + J'(U2 ' ^3)2] 

where G' = G/d^ and J ' = J/d^ have the dimensionahty of energy. 
The equilibrium single-particle orientation distribution function w{l) 

is proportional to the mean-field nematic potential U{n • u i ) , where 

(5.36) U{ui^n) = Ju{ui jU2,ri2)w{u2 • n)dri2du2. 

That is, the mean-field potential experienced by the first molecule is just 
the pair interaction energy averaged over the position and orientation of the 
second molecule. For the discotic nematic phase with interaction energy 
defined in Equation (5.27) we obtain the mean-field potential with the 
Maier-Saupe form: 

4:7r 
(5.37) U{ui ' n) « const. - 0-73(2^1 + ^3)52(^1 • nf. 

Equation (5.35) can be evaluated using again the saddle-point approxima­
tion. The integrand possesses a clear maximum point when all molecular 
axes 111, U2 and 1x3 are: 1) parallel to each other and 2) aligned parallel 
to the average macroscopic director n. Another simplification derives from 
the fact that the anisotropic contribution to the pair potential is usually 
much smaller than the isotropic contribution Ji <^ G [35]. With these 
in mind we obtain a final estimate for the microscopic rotational friction 
constant X±: 

(5.38) Ax « G 

where the constant G contains a few microscopic parameters that are not of 
interest to us. The crucial result from the above analysis is the Arrhenius 
dependence with the activation energy which corresponds to overcoming 
the nematic barrier given by the isotropic potential G' and the much weaker 
anisotropic correction J ' during ensemble averaging. The factor y/I±/kT 
takes into account the time averaging process. 

To summarize the main results of this section: 
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1) Due to the gyroscopic effects, the disks exhibit more compHcated form 
of velocity correlation function. The dynamical evolution of the particle 
rotation exhibit multiple time-scales, but its rotational Brownian motion 
time is described predominantly by the ratio of the moment of inertia to 
the rotational frictional constant. 
2) The microscopic friction coefficient shows an exponential tempera­
ture dependence with a large activation energy determined mainly by the 
isotropic part of the interaction potential. This seems to account for the 
observed temperature variation of the LesUe coefficients [40]. Incorporat­
ing orientational correlation effects generates a more precise mean-field po­
tential which can be determined self-consistently via numerical methods. 
One can foresee higher order correlations such as three-body or four-body 
correlation effects to render even more accurate results and an improved 
approximation for the friction constant and the Leslie coefficients. 

6. Spatial inhomogeneities and domain structure. In this sec­
tion we consider the effects of spatial inhomogeneities by incorporating dis-
tortional elasticity, using a non-local nematic potential In the limit of weak 
flow and mild spatial distortion, this reveals the microscopic origin of the 
Ericksen stress in the complete Leslie-Ericksen (LE) theory. 

The original LE theory assumes that the molecules have a short relax­
ation time so that the molecular orientation distribution always retains its 
uniaxial equilibrium 'shaped while the local axis of symmetry gets rotated 
by the flow. The rotational dynamics of the nematics are characterized by 
the local director n and the constant order parameter. However, it seems 
plausible that at a higher shear rate, the flow may induce significant gra­
dients in the continuous director field and creates spatial inhomogeneities 
or textures in the sample. In this case the orientation distribution may 
be distorted by flow into a non-uniaxial configuration, and the formulation 
of stress tensor in director variable may not be feasible. Instead, a more 
adequate formalism will be to consider the dynamics of nematics in terms 
of the evolution of order parameter tensor as in Equation (4.15) [41, 33]. 

Another circumstance where distortional effects might become impor­
tant arise in nematics ridden with defects such as disclination lines and 
point defects which may be generated due to shear flow. Another more 
common situation arises due to anchoring condition, when the the direc­
tor fleld near the surface is forced to align with the walls. This disrupts 
the molecular packing and incur a free energy penalty, the minimization 
of which determines the equilibrium or static dependence of n{r). Indeed, 
the neglect of such distortional stress leads to failures to account for rheo-
logical properties of Uquid crystalline polymers with domain structures. It 
was shown that the microscopic theory described so far predicts the for­
mation of disclinations due to inhomogeneous director tumbling which are 
however constantly annihilated and reformed [33]. Clearly, without dis­
tortional elasticity, one can not describe the disclinations and eventually 
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explain a steady-state network of disclinations, which seems to arise in 
reaUty. 

Previous attempts to account for the distortional elasticity are based 
mainly on phenomenological models. After the original formulation of the 
Ericksen stress, Edwards and Beris [42] constructed an ad hoc general ex­
pression of Prank elasticity in tensorial form. More recently Tsuji and Rey 
[41] added distortional energy using the Landau-de Gennes free energy 
to the kinetic equation but their work does not discuss the stress tensor. 
Purthermore the use of Landau-de Gennes energy expansion proves to be 
doubtful for systems with moderately high order parameters typical of a ne-
matic liquid crystal. This highlights the necessity of a molecular theory. In 
this section we demonstrate that by using a non-local nematic potential to 
model the effects of distortional elasticity, we can derive a new stress tensor 
and kinetic equation governing the time evolution of the order parameter 
tensor. The final results are consistent with the complete LE theory in the 
limit of weak flow and small distortions. 

6.1. Ericksen stress. In contrast to a globally uniform director field, 
a positional variation in the director n{r) introduces new distortion free 
energy in the system which tends to minimize the spatial gradient of the 
director. The result is an additional contribution to the stress known as 
the Ericksen stress [21]. In the usual small-motion approximation, this 
distortional stress gives rise to second order spatial deviations of n which 
can be discarded in the formulation of stress tensor. This picture however 
breaks down at a sufficiently strong shear flow when the local variation in 
n becomes non-vanishing. Before we embark on a microscopic description 
of this new effects, we shall first give a brief outline of the definitions of 
Prank's elastic energy and the Ericksen stress. 

We consider the distortion free energy in the following form [21], 

(6.1) Fd = ^Ki{V . n)2 + lK2{n • V x n)^ -f- ^Ks{n x V x n)^ 

where the constants iff (i = 1,2,3) are associated with respect to the three 
basic types of deformation: splay, bend and twist. Por simplicity, we make 
a useful one-constant approximation: Ki = K2 = Ks = K, The free 
energy then takes the form 

(6.2) Fd = ^K {(Vn)2 + (V x n)^} = ^K(Van^)(Van^) 

after integration by parts in which we assumed the surface terms are unim­
portant in our analysis. We can consider a small change in the total free 
energy SFtot due to a local change in the director, and a material distor­
tion of the fluid which leaves the director orientation invariant [21]. Any 
changes in the system may be decomposed into these independent changes. 
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1. Variation in embedded order: Consider the variation n{r) -> 5n{r)y 
at a fixed point in space, which produces a change in the free energy 

Integrate the second term by parts and neglect the surface term 

We can define the terms in the bracket as a molecular field 

(0.5; tl/s = —-r h OaTTaPi W h e r e TTa^ = 
dn^ ' SidaTip) Sga/3 

Equation (6.5) implies that in equilibrium (in the absence of external fields), 
SFd must vanish and the director must be at each point parallel to the 
molecular field. 

2. Material Distortion: We now consider a distortion of the material 
which preserves the value of the director r —> r' = r -{- 6{r) with n^{r') = 
n{r). The change in the free energy then becomes 

(6.6) SFd = / (T^^d^Sa dr, where a^p = -'Ka-yd^n^ 

is the distortion stress tensor. If we impose the incompressibility condition 
for the fluid, we have to introduce a Lagrange multiplier, the pressure p, 
then the Ericksen stress tensor arises as a result: 

(6.7) < / 3 = ^ a ^ - P * a ^ -

Using the one-constant approximation and substituting Equation (6.2) into 
(6.5), we have the full stress tensor acting on the element of nematic fluid, 

(6.8) (Ja^ = Glp + alp = -KVaTiiVpni + < ^ 

where cr^^ is the viscous stress given by Equation (3.5), and the symmetric 
Ericksen stress is written in the limit of elastic isotropy. One of the aims 
of this section is to demonstrate that this term can be accounted for by 
a suitable microscopic theory, and an approximate microscopic expression 
for the Prank constant K can be obtained. 

6.2. Kinetic equation with distortions. We can extend the origi­
nal theory to include distortional energy. We expect modifications to two 
major components: the kinetic equation and the microscopic stress tensor. 
For a nematic with distorted director configurations, we consider an addi­
tional non-local nematic potential, proposed by Marrucci and Greco [43]. 
This potential accounts for spatial variations of the molecular orientation 
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distribution, and represents the molecular interaction energy in a gradu­
ally varying orientational mean-field. The effective nematic potential in the 
presence of spatial inhomogeneities therefore consists of the Maier-Saupe 
mean-field potential and the Marrucci-Greco nematic potential UMG'-

(6.9) U{u) = UMS + UMG = —zUkTSijUiUj - —UkTL^V^Sij UiUj 
£t xO 

where C/ is a non-dimensional constant representing the nematic strength 
and kT is the Boltzmann temperature. L denotes the characteristic length-
scale for molecular interaction. S^ is the order parameter tensor defined 
in Equation (4.15). This particular expression of modified Maier-Saupe 
potential is the generalized version of Equation (4.23) which applies to 
non-equilibrium and spatially homogeneous case [9, 43]. On the other 
hand UMG takes care of distortion over the neighbourhood of the nematic 
molecules, and it can be derived in the limit of small distortion expansion. 

Note that we have chosen to write the potential in second order ten-
sorial form since its relation to the stress tensor can be established more 
easily. This approach is completely equivalent to our microscopic theory 
using the distribution function discussed in previous sections. Prom our ki­
netic equation in Equation (4.3), we see that the Marrucci-Greco potential 
generates an additional term: 

(6.10) o? / dk \w ^J^^\ f^i^j - 3< t̂i] d^ 

o 

6.3, Nonlocal stress tensor. A natural approach to find the mod­
ified stress tensor is to return to Equation (3.22). We see that the UMG 
term generates an additional stress due to distortions: 

f^..s / P^ OUMG 1 OUMG ~ OUMG \ 

Following our earlier approach, we take the symmetric part of this 
contribution and discover that it can be related to Equation (6.11). This 
can be written explicitly in terms of the velocity gradient and gives the 
symmetric part of the viscous stress tensor. This approach however gen­
erates no additional terms which can account for the symmetric Ericksen 
stress K^aJ^i^^Ui in Equation (6.8). We conclude that this straightfor­
ward approach does not give a self-consistent microscopic theory that can 
account for the Ericksen stress, and a more elaborate formalism is required 
to evaluate the microscopic stress tensor. 
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Considering that the Ericksen stress can be regarded as an elastic 
stress due to distortions, we can invoke the principle of virtual work [11], 
and calculate the elastic stress a^o from the reaction of the nematic to a 
rapid virtual deformation Ssapir). 

(6.12) SF = [ a^^Ssa^ dV 
Jv 

where V is the volume of the bulk sample. By calculating the change in 
the free energy, we can extract the elastic stress. 

The free energy of the nematic liquid crystal can be written in terms 
of the molecules orientation distribution function w{u) 

(6.13) F = p f dV fdu (kTwlnw + wU). 

This gives 

(6.14) SF = p f dV fdu [kTSw\nw + kTSw + S{WUMS) + S{WUMG)] • 

We only have to concern ourselves with the UMG term, since the other terms 
produce exactly the same microscopic stress tensor as given in Equation 
(3.22). We therefore have, 

SFMG = P dV S {wUMG)du 

^_pUkTL'' r ^ fs{wV^SijUiUj)du 

(6.15) / " '' 

- ^^^^^ fdVS{V'SijSij) 
Jv 16 

16 
/ dV {V^SijSSij + dV^Sij Sij) 

Jv 

The term SV^Sij represents the energy for additional spatial distortions 
due to the strain field. This can be calculated explicitly to give: 

SV^'Sij = f^Yl^ + ^,. VV^Sij) St = V^SSij -f v • VV^SijSt 

(6.16) \ "̂ ^ ^ 
= V SSij — SSa^VaV^Sij — VaSSa^V^Sij 

where we have used integration by parts and neglecting the surface terms. 
Integrating by parts again we have: 

/ (cSV^Sij) Sij dV = f dV{V^Sij5Sij - SsapVa'^/sSij Sij -h SsapAap) 

+ / dSa (Va SSij Sij — Va Sij SSij — SSa^ V j3 Sij Sij ) 
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where Aap = VaSijV^Sij, and the contribution to the virtual work 

5FMG = - £ ^ ^ ^ ^ j fdV{2V^SijSSij-6ea0Vc^i3SijSij + 5ea0Aai3) 

(6.17) 

The surface integral can be put to zero since &, 5Sij and VSSij vanish on 
the surface boundary. 

The variation in the order parameter tensor Sij can be calculated from 
the kinetic equation (4.3) by neglecting the diffusion and potential terms 
for a rapid virtual deformation [11]. In this case, 

(6.18) 5w = -^5t = -adk{^kw)5t 
ot 

where fi = | w x ^* •« + | t i x ^^ • u is the residue flow field. We then have 

5Sij — j UiUjSwdu = a dk{uiUj)QkSt w du 

(6.19) : . -̂  ^ ^ 

where 6e^ and Je" are the symmetric and asymmetric strain tensor respec­
tively. Using these in Equation (6.12), we finally obtain the part of the 
elastic stress due to distortion only: 

. _ pUkTL^ \ p' 2 1 , 

(6.20) ^ ; 
1 pUkTL^ 

-pV^SijiuiUjUaU^) > ^ 2 — ( ^ « ^ ~ ^a^/3'S'ti*5ij). 

The free energy approach therefore produces nearly identical stress tensor 
as in Equation (6.11), except with an additional term —^^^^ (^a^g — 
^a^lsSijSij) which is symmetrical. We shall see that this term possesses 
the correct symmetry, as the Ericksen stress, and justifies our use of the 
virtual deformation principle. This approach also shows explicitly that 
the addition of distortional elasticity introduces non-local effects into the 
stress tensor, which now depends on position due to the non-homogeneous 
Marrucci-Greco potential. This situation differs from a uniform nematic 
liquid crystal when the principle of locality is assumed which means that 
both the flow and the nematic configurations are homogeneous [11]. 

We can gain some physical insights by considering the symmetric part 
of the stress tensor due to Marrucci-Greco potential UMG- From Equation 
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(6.20) this may be written as 

(6.21) ^^ ^ 

The first term on the right hand side, together with the original Maier-
Saupe term in Equation (4.7), can be replaced by the flow term in the 
kinetic equation (6.10). The full symmetric stress tensor with distortions 
then becomes 

(6.22) a^^ - — 2 ^ {-^^ ^ « ^ ) 32—^^«^ ~ ^o^^P^iJ^ij) 

where Gij follows from Equation (4.11). Comparing with the full Leslie-
Ericksen stress tensor in Equation (6.8) we see that the first term on the 
right hand side produces the viscous stress, while the second term must be 
equivalent to the Ericksen stress. Equation (6.22) therefore expresses the 
reaction of the nematic liquid crystal in terms of velocity gradient (as in 
the original LE theory) and the local variation of nematic configurations, 
which gives rise to non-local nature of the Ericksen stress. 

Using the expression for the uniaxial order parameter tensor Sij and 
assuming the magnitude of scalar order parameter 52 is constant, we have 

8 2 
VaSijV^Sij - Voc^isSijSij = - 5 | VaTiiVisni - -S2VaniV0ni 

(6.23) - - 5 | niVaV^m - -SariiVcV^ni 

= 4 5 | VariiVprii 

where riiVjUi = 0 is frequently used and the last line is obtained from 
integration by parts.^ We therefore obtain a microscopic expression for the 
average Prank constant: 

(6.24) K = \pUkTL'^Sl 
8 

in the limit of elastic isotropy (one constant approximation) and assuming 
a type of Marrucci-Greco distortional energy. 

This expression has several nice features. It depends on the molecular 
interaction length and the order parameter. However we would expect by 
intuition that the Frank constants depends on the molecular aspect ratio 

^It is important to note at this point that in recent years a number of theories have 
appeared, which examine the additional effects of variation V52, or leaving the nematic 
variables in the tensor form, as Sij (r, t) [44]. Clearly, our approach is adaptable for these 
continuum theories although here we rigidly follow the path towards the LE model. 
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p and differ in general for discotic or rod-like nematic phase. However this 
only applies in the limit of elastic anisotropy when Ki ^ K^ , Marrucci and 
Greco [43] demonstrated that this is a result of assuming that the length 
of the rods is long compared to the molecular interaction length L. On 
the other hand if the interaction length is much larger than the molecular 
length, the 'interaction neighborhood' becomes essentially spherical and the 
one-constant approximation becomes fairly accurate. We did not attempt 
here to pursue the more accurate derivation of Frank elasticity from the 
kinetic theory, firstly because an excellent equilibrium microscopic models 
already exist [45, 46] and secondly because our limited aim has been the 
LE theory of viscosity. No doubt this is an interesting possible avenue of 
new research. 

We note that with the incorporation of Ericksen stress, the Leslie stress 
tensor becomes non-symmetric in general, and hence angular momentum 
is not conserved in the usual sense. This gives rise to a mean-field torque 
which is to be expected since the mean-field potential exerts a torque on 
the molecules when they are forced away by flow. We therefore expect the 
usual balance of torque equation to be modified [21]: 

(6.25) / ea^p{rpa^^^ -i- ripTrlJdS^ "" / ^^ ^ ^^^^'^ ^ ^' 

This balance is required for the conservation of the total angular momentum 
in static equilibrium. The first term on the left hand side denotes the 
surface torque due to elastic distortions in the director field h given by 
Equation (6.5). There are two contributions to the surface torques, one 
from the Ericksen stress and one deriving from the tensor TT. The second 
term denotes the torque due to viscous processes, where h' is given by 
Equation (3.6). In static equihbrium this term vanishes when the director 
is aligned parallel to the molecular field, but the total torque becomes 
non-vanishing due to the surface torque. 
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ANISOTROPY A N D HETEROGENEITY OF NEMATIC 
POLYMER NANO-COMPOSITE FILM PROPERTIES 

M. GREGORY FOREST*, RUHAI ZHOUt, QI WANG*, XIAOYU ZHENG*, 

AND ROBERT LIPTON§ 

Abstract . Nematic polymer nanocomposites (NPNCs) are comprised of large as­
pect ratio rod-like or platelet macromolecules in a polymeric matrix. Anisotropy and 
heterogeneity in the effective properties of NPNC films are predicted in this article. 
To do so, we combine results on the flow-processing of thin films of nematic suspen­
sions in a planar Couette cell, together with homogenization results for the effective 
conductivity tensor of spheroidal inclusions in the low volume fraction limit. The orien-
tational probability distribution function (PDF) of the inclusions is the central object 
of Doi-Hess-Marrucci-Greco theory for flowing nematic polymers. Prom recent simula­
tions, the PDF for a variety of anisotropic, heterogeneous thin films is applied to the 
homogenization formula for effective conductivity. The principal values and principal 
axes of the effective conductivity tensor are thereby generated for various film process­
ing conditions. Dynamic fluctuations in film properties are predicted for the significant 
parameter regime where the nematic polymer spatial structure is unsteady, even though 
the processing conditions are steady. 

1. Introduction. Nematic (liquid crystalline) pol3aners, because of 
their extreme aspect ratio, impart anisotropy in properties through the 
orientational probability distribution of the molecular ensemble. This is 
well-known in fibers, where the rod-like molecules strongly aUgn with the 
centerline of the fiber during flow processing. In these cases, one can an­
ticipate that the assumption of perfectly aligned spheroidal inclusions is 
a reasonable approximation, and apply the numerical tools of Gusev and 
collaborators [1] to estimate fiber effective properties. At very dilute con­
centrations, the assumption of isotropic orientation is accurate for bulk, 
quiescent mesophases of nematic polymers, which is the other extreme typ­
ically assumed. 

In shear-dominated flows typical of film processes, however, the ori-
entational distribution of nematic polymers has been the object of intense 
theory, modeling and simulations for at least two decades. The monographs 
of deGennes & Prost [2] and Larson [7, 8] provide excellent treatments, as 
well as the recent review by Rey & Denn [9]. In such confined flows, the 
orientational distribution of the inclusions is neither random nor perfectly 
aligned, and furthermore there are lengthscales of distortion in the distri­
bution, which are evident but poorly understood. 
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Our goal in this article is to combine two recent advances to predict 
effective property tensors of nematic polymer nano-composites. We use 
results from [3] on the orientational probability distribution function (PDF) 
of nematic polymer films, which have been processed in a plane Couette cell. 
The simulations only allow spatial variation between the parallel plates, and 
restrict the molecular orientation function to so-called in-plane symmetry, 
in which the principal axes of the orientational distribution lie in the flow-
flow gradient plane. The results of these simulations are then sampled 
ax r̂oss a range of plate speeds and a range of distortional elasticity strength 
of the nematic polymer liquid. We then use recent results from [11] which 
determine the effective conductivity tensor for spheroidal inclusions in an 
isotropic matrix in the low volume fraction Umit. The key result in this 
paper is that only the second moment of the PDF is required to predict 
the leading order property tensor. The application to predict anisotropy of 
bulk monodomains is extended here to heterogeneous films. 

2. Plane Couette film flow of nematic polymers. We recall re­
sults for film flows in a plane Couette shear cell. This device is mathemat­
ically convenient in that one can self-consistently assume one-dimensional 
variations in the gap between moving parallel plates. We summarize the 
model only to the extent necessary to explain the fundamental paurameters, 
Deborah and Ericksen numbers, used to represent the phase diagram of 
spatial film structures [12, 3]. 

The nematic polymer liquid is trapped between plates located at y — 
±/i, in Cartesian coordinates x = (x, y, z), and moving with corresponding 
velocity v = (±vo,0,0), respectively. Even though kinetic theory now 
exists to include a viscoelastic polymeric solvent [4], the numerical codes 
have yet to be written. Following all other model simulations to date, cf. 
the review by Rey and Denn [9] and references in [12, 3], we model nematic 
polymers in a viscous solvent. There are two apparent length scales in this 
problem: the gap width 2/i, an external length scale, and the finite range 
I of molecular interaction, an internal length scale, set by the distortional 
elasticity in the Doi-Marrucci-Greco (DMG) model. The plate motion sets 
a bulk flow time scale {to = h/vo); the nematic average rotary diffusivity 
(D^) sets another (internal) time scale {tn = l/£^r) ^^^ ^^^ ratio tn/to 
defines the Deborah number De. The nematic liquid is also elastic, with a 
short-range excluded volume potential of dimensionless strength N, along 
with a distortional elasticity potential, which has a persistence length i, 
and a degree of anisotropy 6. The Ericksen number is then defined by: 

which measures short-range nematic potential strength relative to distor­
tional elasticity strength, and 0 is a fraction between —1 and oo that cor­
responds to equal {9 = 0) or distinct {0 ^ 0) elasticity constants. 
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The dimensionless Smoluchowski equation for the probability distri­
bution function (PDF) / ( m , x , t ) is 

Pl = n-[{nf^fnv)]^n^[m x m/], 
(2) ^* 

m = n • m + a[D • m ~ D : mmm] , 

where D/Dt is the material derivative d/dt 4- v • V, 7?̂  is the rotational 
gradient operator: 

(3) ^̂  = " ^ ^ 5 ^ ' 

D and Q are the symmetric and anti-symmetric parts of Vv, a = {r^ — 
l) /(r^ +1) is the molecular shape parameter for spheroidal macromolecules 
of aspect ratio r. The extended Doi-Marrucci-Greco potential is 

(4) y - - ^ [ ( l + ^ ^ ) M : m m + ^{mm : (VV • M)) 

where the second moment projection tensor M of / is 

(5) M = M ( / ) = / m m / ( m , x , t ) d m . 
«/||m||=l 

The dimensionless forms of the balance of Unear momentum, stress consti­
tutive equation, and continuity equation are 

- = V . ( - p I + r ) 

T= (— + fi3{a)D + aa(M - - - n M • M • M + NM : M4 j 

- a - ^ ( A M • M + M • A M - 2AM : M4) 

(6) - - ^ ( 2 ( A M - M - M - A M ) + ( A M : A M - ( A A M ) : M ) ) 

- a - ^ [ M • Md + Md • M - 4(VV • M) : M4] 

- « ^ [ M d • M - M • Md + (VV • M) • Mpj,aMij,i] 

+[^i(a)(D • M + M • D) + M2(a)D : M4], 

V - v = 0 

where 

Md = V V - M + ( V V - M ) ^ , 

M4 = / mm/ ( in ,x , t ) dm. 
^I|m||=l 
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Rheological properties of nematic polymers arise from the total stress r, 
which is important for mechanical properties of soft matter materials that 
are locked in during processing. These effects have not yet been explored; 
rather we will focus on volume-averaged conductivity, for which only the 
orientational distribution of the nematic polymer molecules is needed. The 
other parameters above are solvent and nematic viscosities and a molecular 
entropy parameter, defined in [10, 12, 3], and not relevant for this paper. 
The extra stress involves the moments of the PDF / and their gradients, the 
fourth moment M4 and the second moment M. It is traditional to define 
Q (a second order, symmetric, traceless tensor) known as the orientation 
tensor: 

(8) Q = M - i l . 

The boundary conditions of the velocity v = (i;x»0,0) are given by the 
Deborah number 

(9) v^{y = ±l,t) = ±De. 

We assume homogeneous anchoring at the plates, given by the quiescent 
nematic equilibrium, 

(10) /(m,2/ = ± l , 0 = /e(m), 

where /e(ni) is a nematic equihbrium without flow, v = 0. At nematic 
concentrations, equilibria /e(m) are invariant under orthogonal rotations; 
the peak axis of orientation is experimentally set by mechanical rubbing, 
chemical properties, or applied fields. We only consider tangential and 
normal anchoring, where the peak orientation (so called major director) on 
the boundary is ahgned with the plate motion axis, or normal to it. The 
initial condition for the PDF is given by 

(11) / ( m , y , t = 0) = /e(m), 

modeling experiments that start fi:om a homogeneous liquid in a statisti­
cally uniform, thermal equilibrium. 

The PDF is expanded in a spherical harmonic representation 

L I 

(12) / ( m , x , t ) ^J2Y1 < (x ,OV;^ (m) . 

We then apply a standard Galerkin scheme to arrive at a system of 65 
coupled, nonlinear partial differential equations for a^, corresponding to 
the truncation order L = 10. Spatial derivatives are discretized using 4th 
order finite difference methods, and an adaptive moving mesh algorithm 
is important for efficiency and to capture localized internal and boundary 
layers with strong defocusing of the PDF. Spectral deferred corrections are 
used for time integration to achieve 4th order convergence, and thereby 
remove dynamic sensitivity especially near transition phenomena. 
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3. Conductivity properties across the phase diagram of flow-
induced film structures. In [3], the nematic concentration is fixed at 
iV = 6, which corresponds to a volume fraction of about 1% for rod-Uke 
spheroids with aspect ratio r = 200. One then numerically determines 
the structure attractors, that is, the convergent space-time solutions of the 
above system of model equations for imposed shear flow between the two 
plates. This assumes the experiment is running at steady state, and the 
structure attractors are compiled versus Ericksen number Er and Deborah 
number De for two diflFerent anchoring conditions. Four distinct spatio-
temporal attractors arise, Usted in Table 1, repeated from [3]. Two are 
steady state structures, whereas the other two are periodic responses to 
steady plate motion. This dynamic response to steady driving conditions 
has been recognized since the experiments of Kiss and Porter [5, 6]. For 
material properties, addressed next, there are significant imphcations since 
the fluctuations in anisotropy and heterogeneity of the PDF translate to 
property fluctuations. The timescale and timing of the quench process then 
becomes an intriguing issue in film processing of these materials. 

TABLE 1 
(From [3]). In-plane structure attractors and phase transitions for 3 decades of 

Deborah number {De) and Ericksen number (Er). ES and VS stand for elastic (E) 
and viscous (V) dominated steady (S) states. T or W indicates a transient structure in 
which the peak orientation axis at each height between the plates either oscillates with 
finite amplitude (wagging) or rotates continuously (tumbling). 

\ De\Er 

0.01 
0.06 

1 0.10 
0.50 
1.00 
3.00 
5.50 
6.00 
8.00 
8.50 

10.00 
12.00 

5 

ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 

10 

ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 
ES 

15 

Es 
ES 
ES 
ES 
W 

w 
w 
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w 
ES 
ES 
VS 

50 

ES 
ES 
ES 
W 

TW 
TW 
TW 
W 

w 
VS 
VS 
VS 

180 

ES 
ES 

w 
TW 
TW 
TW 
TW 
W 

w 
VS 
VS 
VS 

500 

ES 
TW 
TW 
TW 
TW 
TW 
TW 
W 

w 
VS 
VS 
VS 

2000 

TW 
TW 
TW 
TW 
TW 
TW 
TW 
W 

w 
VS 
VS 
VS 

5000 

TW 
TW 
TW 
TW 
TW 
TW 
TW 
W 

w 
VS 
VS 
VS 

cx> 

~Y^ 
T 
T 
T 
T 
T 
T 

W 
W 
FA 
FA 1 
FA 

One of the purposes of the present study is to quantitatively predict 
the steady and dynamic property fluctuations of these one-dimensional film 
structures. 

We now recall the homogenization theory result from [11], based on 
volume averaging of spheroidal inclusions in the low volume fraction limit. 



90 M. GREGORY FOREST ET AL. 

In that paper, we illustrated the anisotropy of steady, homogeneous mon-
odomains of nematic pol3nner composites. Here, we generalize to spatially 
heterogeneous PDFs of the spheroidal inclusions, for both steady and un­
steady attractors. The basic assumption is that the lengthscales of distor­
tions in the PDF are much larger than the volume averaging scale. Since 
there are on the order of a million macromolecules in a cubic micron, this 
assumption seems quite reasonable. 

The effective conductivity tensor in closed form is 

S | , = So 4- (7i92{<T2 - ai) (———^ -—I 
^ V(^2 + c7i)-(cr2-cri)La 

n ô  . (^2-<Ti ) ( l -3La) \ 
^ ^ ( ( ^ 2 + a i ) ~ (^2 ~ (Ti)La){(7i + ((72 - CT^)Lar^^^ ^) 

+ 0{6l), 

where cri, (72 are the conductivity of the matrix and the inclusions, respec­
tively. The conductivity contrast between the nano phase and the matrix 
solvent is specified as <J2/cri — 10^. O2 is the volume fraction of nematic 
polymers, I is the 3 by 3 identity matrix, La is the spheroidal depolar­
ization factor depending on the aspect ratio r of the molecular spheroids 
through the relation 

(14) La = 
l-^e iKB) 1 = vT-i 

/ is the orientational PDF of the inclusions, and M ( / ) is the second-
moment of the PDF, defined earlier. 

The three principal axes of the effective conductivity are identical with 
the principal axes of the second moment tensor M ( / ) . The three principal 
conductivity values (eigenvalues of E^^) are denoted by (7f > (7̂  > crj. We 
define the relative principal value enhancements by 

Sfl„ ~ ^ l l (7? — (7i 
(15) Si = -^ : Hin^ = -^ -, i = 1,2,3. 

(71 (7i 

We now apply this formula directly to the PDF attractors of Table 1. 
As in [11], we highUght the key property features for each attractor, fo­
cusing on the maximum relative principal value enhancement Smax of the 
effective conductivity tensor. 

3.1. Elasticity-dominated steady states (ES structure attrac­
tors). Spatial elasticity dominates the viscous driving force from the plates 
when the Ericksen number and Deborah number are both sufficiently small. 
In this parameter regime, the experiment saturates in a steady structure in 
which stored elastic stresses balance the viscous stress. For fixed Ericksen 
number, Figures 1 and 2 show heterogeneity in the maximum relative prin­
cipal value enhancement of effective conductivity at each gap height, as a 
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FIG. 1. Maximum relative principal value enhancement of the effective conductivity 
tensor of steady states for fixed sm,all Ericksen nuwher Er = 5, and increasing Deborah 
number J De — 2,5,10,14, vidth parallel anchoring. 

function of variable plate speeds (Deborah number). The comparison of 
Figure 1 and 2 shows the effect of boundary anchoring on properties. We 
underscore that the principal axis associated with the maximum conduc­
tivity is also varying across the film thickness, and that this principal axis 
follows the eigenvector associated with the maximum eigenvalue of M ( / ) , 
called the major director or peak axis of orientation of the molecular distri­
bution. Figure 2 illustrates the non-monotone Deborah number dependence 
ofsiaaxiy)^ with increasing gradient morphology as De increases from 2 to 
10, followed by a transition to more uniform spatial variation for De = 15. 

3.2. Viscous-dominated steady states (VS structure attrac-
tors). For sufficiently high Deborah number, the viscous driving forces 
induced by the moving plates overwhelm short-range elasticity (which gov­
erns bulk monodomain dynamics), and the molecular distribution at each 
gap height aligns at some preferred direction. The anchoring conditions 
do not promote transient responses, so the material settles again into a 
steady structure between the plates. The maximum relative principal value 
enhancement of effective conductivity, analogous to Figures 1 and 2, are 
illustrated in Figures 3 and 4. 

3.3. Composite tumbling-wagging periodic states (TW struc­
ture attractors). Dynamic structures occupy a large fraction of the pa­
rameter domain in Table 1. The so-called tumbhng-wagging attractors have 
the distinguished feature of being periodic in time, with the PDF oscillat­
ing with finite amplitude of peak axis variation in layers near the plates, 
while rotating continuously in a mid-gap layer. The finite oscillation mode 
is called wagging, whereas the continuous rotation of the peak orientation 
axis is called tumbling. The distinguished optical and rheological feature, 
which has impact on mechanical as well as conductive properties, is that 
a small boundary layer between the tumbling and wagging layers emerges 
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FIG. 2. Maximum relative principal value enhancement of the effective conductivity 
tensor of steady states for fixed small Ericksen num,ber Er — 5, and increasing Deborah 
number, De = 2,5,10,15, with normal anchoring. 
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FIG. 6. Tempo-spatial structure of maximum relative principal value enhancement 
of effective conductivity with Er = 500, De = 4, for normal anchoring. 

periodically. This layer experiences a precipitous drop in the degree of 
orientation, indeed the PDF goes isotropic in this layer, which is called a 
defect. Our purpose here is to amplify the consequences of these defect 
fluctuations on properties. Figures 5 and 6 show representative features. 
Since the orientation order parameter enters strongly into the principal 
conductivity values, one finds a dramatic drop of the maximum relative 
principal value enhancement of effective conductivity. Not shown is the re­
lated effect in which the principal axis of maximum conductivity becomes 
degenerate, and an entire plane of directions is associated with this drop 
in degree of orientation. 

3.4. Wagging periodic states (W structure attractors). The 
other periodic attractor, in which the entire gap experiences finite ampH-
tude oscillation of the PDF at each gap height, is called a wagging structure. 
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FIG. 7. Spatial-temporal structure of maximum relative principal value enhance­
ment of effective conductivity with Er = 500, De = 6, for parallel anchoring. 

The interesting feature of the PDF of wagging oscillations versus tumbling 
is that energy shifts into focusing and defocusing of the PDF rather than 
rotation. This means that there is apt to be more oscillation and variabil­
ity in the principal values of the effective conductivity tensor, rather than 
tortuous paths of the principal axis. Figures 7 and 8 show representative 
features of these attractors. 

4. Conclusions. We have connected two central features of nematic 
polymer nano-composite films: processing-induced orientational anisotropy 
and heterogeneity of the spheroidal inclusions, and the corresponding 
volume-averaged effective conductivity. Recent numerical simulations of 
film structures in Couette cells versus plate driving conditions and nematic 
elasticity have been translated into film properties. These are proof-of-
principle results, in that idealized assumptions have been made which need 
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ment of effective conductivity with Er = 500, De = 6, for normal anchoring. 

to be generalized to actual high performance materials. Examples include 
polymeric solvents, flexibility and concentration variability of the macro-
molecular ensembles, higher dimensional orientational configurations and 
spatial structures. Nonetheless, these are the first results to our knowl­
edge, which give a sense of the property anisotropy and heterogeneity in 
shear-dominated processing of nematic poljnxier materials. 
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N O N - N E W T O N I A N CONSTITUTIVE EQUATIONS USING 
THE ORIENTATIONAL ORDER PARAMETER 

HARALD PLEINER*, MARIO LlUt, AND HELMUT R. BRAND* 

A b s t r a c t . Nonlinear hydrodynamic equations for non-Newtonian fluids are dis­
cussed. We start from the recently derived hydrodynamic-like nonlinear description of a 
slowly relaxing orientational order parameter tensor. The reversible quadratic nonlinear-
ities in this tensor's dynamics are material dependent due to the generalized nonlinear 
flow alignment effect that comes in addition to the material independent corotational 
convected derivative. In the entropy production these terms are balanced by linear and 
nonlinear orientational-elastic contributions to the stress tensor. These can be used to 
get a nonlinear dynamic equation for the stress tensor (sometimes called constitutive 
equation) in terms of a power series in the variables. A comparison with existing phe-
nomenological models is given. In particular we discuss how these ad-hoc models fit into 
the hydrodynamic description and where the various non-Newtonian contributions are 
coming from. We also discuss the connection to the hydrodynamic-like description of 
non-Newtonian effects that employs a relaxing strain tensor. 

K e y words. Constitutive equations, orientational order parameter, non-Newtonian 
effects, hydrodynamics, flow alignment, relaxing strain tensor. 

A M S ( M O S ) subject classifications. Primary 76A05, 74D10, 80A17, 76A15. 

1. Introduction. HydrodyTiamics is a well established field to de­
scribe macroscopically simple fluids by means of the Navier-Stokes, con­
tinuity, and heat conduction equations. However, it applies also to more 
complex fluids that are fully characterized by conservation laws and broken 
symmetries. It is based on (the Gibbsian formulation of) thermod3mam-
ics [1, 2], symmetries and well-founded physical principles [3]. A detailed 
description of this method can be found in [4, 5]. This method can be gener­
alized to include slowly relaxing variables that are relevant on experimental 
macroscopic time scales albeit being non-hydrodynamic. Examples are the 
soft mode near phase transitions [6, 7], the magnetic degree of freedom in 
ferrofluids [8, 9] and the relative velocity in 2-fluid descriptions [10]. The 
derivation of such macroscopic nonlinear dynamic equations is still based 
on first principles, making use of thermostatics, linear irreversible thermo­
dynamics, symmetries and broken symmetries, and invariance principles. 
Only the choice of the slowly varying variable is heuristic and material 
dependent. In that sense non-Newtonian fluids are non-universal. 

On the other hand, a host of diflFerent empirical models have been 
proposed [11-17] to cope with the rheology of such substances. Typically 
these models are formulated as generalizations of the Hnear, Newtonian 
relation between stress and deformational flow allowing for additional time 
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derivatives and nonlinearities. They are tailored to accommodate empirical 
findings or are based on principles [15] that are ad-hoc and generally insuf­
ficient. 

Quite recently we have derived a nonlinear hydrodynamic description 
of elastic media [18, 19] that has been confirmed within the GENERIC 
formalism [20]. Allowing in this hydrodynamic description the strains to 
relax (and not only to diflFuse) a generalized hydrodynamic description of 
nonlinear viscoelasticity is obtained in terms of a dynamic equation for 
the (Eulerian) strain tensor [18, 19]. This strain tensor description can 
be transformed approximately into one that uses a dynamic equation for 
the stress tensor [21] and can thus be directly compared with many of 
the empirical models proposed to describe non-Newtonian rheology. The 
comparison reveals possible inconsistencies and connects the various ad-
hoc additions of those models with physical relevant processes, like strain 
relaxation, elasticity and viscosity [21]. 

In this communication we use a different approach that relates non-
Newtonian behavior to fluctuating, transient, and slowly relaxing orien-
tational order. This has been used e.g. for describing the dynamics of 
semiflexible polymers, where long-lived polymer alignments and entangle­
ments lead to viscoelastic effects [22]. The relaxational dynamics of the 
orientational order parameter tensor has been used in the isotropic phase 
of low molecular weight nematogens [23] describing orientational fluctu­
ations that become important as pre-transitional effects near the phase 
transition. The relaxational (and non relaxational) dynamics of the orien­
tational tensor has been derived and rederived pretty often [24-29]. Here, 
we will rely on the hydrodynamic description [30] that e.g. makes the 
clear distinction between reversible and irreversible processes and avoids 
any detours via additional auxiHary and unphysical dynamic variables. In 
Sec. 2 orientational elasticity and the phenomenological material tensors 
describing reversible and irreversible transport (flow alignment, viscosity, 
and relaxation) that are part of the hydrodynamic description are given as 
an expansion in powers of the orientational tensor. The back-flow effect in 
the stress tensor (Sec. 3), which is required for thermodynamic reasons, as 
well as the part of the viscosity that depends on the orientational tensor 
provide a coupling between the stress and the orientational tensor. This 
can be used to generate a dynamic equation for the stress tensor from that 
of the orientational tensor (Sec. 4). This translation is achieved by a power 
series expansion in the variables and can be done only approximately, since, 
generally, nonlinear equations cannot be inverted analytically. The power 
series is truncated after the quadratic order, since most of the phenomeno­
logical constitutive models, which we compare with in Sec. 5, are of that 
form. A summary (Sec. 6) of the main results concludes the paper. 

2. Dynamics of the orientational order parameter tensor. The 
transient orientational order is described by a symmetric, traceles second 
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rank tensor Qij {Qij = Qji and Qu = 0 ) . In contrast to the case of a 
nematic phase with spontaneous and permanent orientational order, there 
is no nematic order in equiUbrium and a director does not exist. The 
relaxational dynamics of Qij can be written as [30] 

(2.1) Qij -i- VkVkQij -f Qjk^ki + Qik^kj - ^ijkiAki = -OLijkii^ki 

with 2Aij = VjVi -h ViVj and 2ftij = VjVi — \/iVj the symmetric and an­
tisymmetric velocity gradients characterizing deformational and rotational 
flow, respectively. The orientational elastic stress tensor ijjki is defined by 
the Gibbs relation [4] 

(2.2) de — Tda = Vidgi + i/^ijdQij 4- fidp. 

as the conjugate to Qij, It has to be taken as symmetric and traceless, 
since only that part enters the Gibbs relation and has a physical meaning. 
The Gibbs relation contains all the other variables (density p, momentum 
density p^, energy density e or entropy density a) and defines their con­
jugates (temperature T, velocity Ui, and chemical potential ;x), where the 
latter are related to the more familiar (thermodynamic) pressure p by the 
Gibbs-Duhem equation 

(2.3) dp = adT-i-Qidvi — ijJijdQij-\-pdjuL 

In Eq. (2.1) the nonUnear reversible coupling terms to flow are a priori 
of the corotational or Jaumann derivative type (containing only flij the 
rotational flow - suitably for the orientational order involved), but there is 
in addition a phenomenological reversible coupling to symmetric velocity 
gradients that makes the efî ective convective derivative material dependent 
[30]. The phenomenological material tensor Xijki (a kind of generaUzed flow 
alignment tensor) is given as a power series expansion in Qij 

2 
Xijkl = ^1 {SikSjl + SjkSii — -SijSkl) -f XsSklQij 

(2.4) ^ 
+ A2 {SikQji + SjkQii + SjiQik + SiiQjk - - SijQki) + 0(2) 

where higher order terms 0(2) have been discussed in [30], but are not 
needed here. It contains one phenomenological, material dependent, re­
versible reactive coefiicient in linear, and two additional ones in quadratic 
order. If in Eq. (2.1) the Jaumann terms are combined with the quadratic 
contribution (2.4) for the special value A2 = ^ (~ ~"^) ^^® S®̂ ^ something 
that looks like an upper (lower) convected derivative - with some addi­
tional correction terms that ensure Qa = 0. However, there is no general 
reason why such a relation should hold for all different materials nor can 
it hold for all temperatures and pressures, since Aî 2,3 generally depend on 
all scalar state variables, Uke p, a (or p, T) and on the invariants QijQij 
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and QijQjkQki' Within the quadratic approximation used here, the latter 
dependencies do not show up. 

In [30] the relaxation of Qij has been given in linear approximation. 
More generally, the dissipative material tensor aijki reads in a power series 
expansion in Qij (with auki = 0 = aijkk) 

2 
Oiijkl = «1 (Sik^jl + SjkSii — -rSijSkl) 

(2.5) + a2 f SikQji + SjkQii + SjiQik + SuQjk - ^ [SijQki + SkiQij] j 

+ 0(2) 

with the relaxation parameters 0:1,2 being functions of the scalar state vari­
ables. It should be noted that we stay very well inside the framework of 
"linear irreversible thermodynamics" that has a soUd foundation in sta­
tistical mechanics, although the expressions (2.4, 2.5) and (3.3) below are 
genuinely nonlinear due to the dependence on state variables. 

The orientational elastic stress is derived from an energy functional 
by the variational derivative ipij = 6 JedV/5Qij, where only the trace free 
part enters Eqs, (2.1-2.3), which is given in quadratic order by 

(2.6) iPij = ciQij + C2(QikQ3k - ISijQkiQkij + 0(2) 

neglecting gradient terms. Near a phase transition the rotational elastic 
moduli ci, C2 can be interpreted as Landau parameters. Generally they are 
still functions of all scalar state variables. 

Putting together Eqs. (2.1-2.6) the final dynamic orientational order 
parameter equations, quadratic in the variables, is obtained as 

Qij + VkVkQij + Qjk^ki + Qik^kj - 2Xi{Aij - -SijAkk) 

2 
-2X2{AiiQji + AjiQii - -SijAkiQki) - XsQijAkk 

(2.7) = -^Qij^ UQUQJI - UijQkiQki) 

where the relaxation times are related to the elastic moduli and the relax­
ation parameters by 1/ri = 2ciai and l/r2 = 2c2ai 4- 4cia2-

3. Stress tensor. In the preceding sections we discussed nonUnear 
reversible terms in the dynamic equation for the orientational order (2.1) 
that describe couplings to flow. In the Navier-Stokes or momentum con­
servation equation 

(3.1) gi + VjivjQi + Sijp + (Tij) = 0, 
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on the other hand, there must be appropriate counter terms describing 
couplings to orientational order, due to the requirement of zero or pos­
itive entropy production, in the case of reversible and irreversible terms, 
respectively [4, 5, 31]. Their form can equivalently be derived from Onsager 
relations [32]. For the stress tensor aij this leads to the expression 

(3.2) dij = —Xkiiji^ki — ^ijkiAki 

The counter term to the linear deformational flow term in (2.1), ^ AfcUj, 
leads to a symmetric part of the stress tensor, while there are no counter 
terms to the nonlinear Jaumann terms, since the latter do not at all con­
tribute to the entropy production [30]. The viscosity tensor is again ex­
panded in Qij as 

i^ijki = Y(<5ifc<5ji -f SiiSjk) + Y(Qi^^J^ "̂  QjkSii + QiiSjk + QjiSik) 

(3.3) + usSijSki -f MSijQki + SkiQij) 

with the viscosities generally being functions of the scalar state variables. 
Taking together Eqs. (2.5, 3.2, 3.3) the stress is given by 

(Tij = - uiAij - V2{QikAjk + QjkAik) - usSijAkk 
(3.4) 

— i^4{SijQkiAki-^QijAkk)—^iQij—^2QikQjk-'^3SijQkiQki 

where we have used the abbreviations Ai = 2ciAi, A2 = 2C2A1 + 4C1A2, 
and A3 = C1A3 — (2/3)c2Ai. In the incompressible limit, which we will use 
below, Akk = 0, and the viscosity 1/3 does not appear in the stress tensor, 
while A3 drops out of Eq. (2.7). If we allow for a "redefinition" of the 
pressure, p —> p - i^^QkiAki — ^^QkiQkU also 1/4 and A3 do not show up 
explicitly in the final equations. However, in that case p looses its simple 
physical meaning. For a general discussion of the incompressible Umit and 
its connection to redefining the pressure cf. [33]. 

4. Dynamic stress tensor equation. Eqs. (2.7, 3.1, 3.4) constitute 
an (isothermal) description of viscoelasticty based on a relaxing orienta­
tional order parameter tensor. This hydrodynamic-like description con­
tains as special cases [30] some of the well-known model-based descriptions 
of viscoelasticity that also employ the orientational order parameter tensor, 
like e.g. the Doi-Edwards model for isotropic semiflexible polymers [22]. 
However, most of the heuristic constitutive models are written in terms of 
a dynamic equation for the stress tensor, very often quadratic in the vari­
ables and under the assumption of incompressibility. In order to compare 
with those models we have to translate our Qij/9% into a &ij/gi description 
by replacing the orientational order parameter tensor (and its derivatives) 
by the stress tensor (and its derivatives). This can only be done in an ap­
proximate way, since the equations are nonUnear. We will set up a power 
series expansion up to second order in the (old and new) variables. Of 
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course, the resulting equations axe less general than the starting ones and 
only applicable, if quadratic nonlinearities are sufficient for the problem at 
hand. This procedure is similar in spirit to that in [21], where we used the 
hydrodynamic-like description of viscoelasticity in terms of a relaxing Eu-
lerian strain tensor [18, 19] and translated it into a dynamic stress tensor 
description, again to faciUtate comparison. 

Taking the derivative d/dt = d/dt -f viVi of aij in (3.4) and replacing 
dQij/dt according to Eq. (2.7) we get 

(4.1) Tjf^^^ ~ ~^ \ ^*^' * '̂ lit ^^' ^̂  / 

in terms of the orientational order parameter tensor and flow. To convert 
this into the desired dynamic equation for the stress tensor, we have to 
invert <Jij = crij{Qij->Aij)^ Eq. (3.4), into Qij = Qij{aij^Aij). This is done 
approximately by the power expansion Qij = Q^j + Qi^^°' -f •.., where 

Qij and Q\J^^ contain expressions linear and quadratic in the variables, 
respectively. In particular we find 

(4.2) X,Q^^ = -a^.-^,Aij 

XlQ^r""^ = -M<^ik(Tjkf + (Aiî 2 - \2J^i){<TikAjf, + ajkAikf 

+ i^i{2XiU2 - X2i^i){AikAjkf 

where the superscript ^ denotes the traceless part of the associated tensor. 
Since we assume incompressibility, Aij is traceless by itself. 

Using these expressions the dynamic equation for the stress tensor 
takes the final form 

D D r 1 
n - ^ ^ i j + CTij = -VooAij - ViTi-^Aij -f 2—T-'̂ îkC ĵk + -^SijT, 

(4.4) 

where 

(4.5) 

and 

(4.6) 

-m 
+ 0{3) 

I'oo = I'l +4ciTiAf 

:Dt̂ *̂  = dî '̂  " ^̂ *̂'=̂ -

[ [(^jk-\riyiAjk] -gl^ik + [crik+J^lAik]'^Ajk ] 

J n C2 A2 
and r = 1 f- 2T— 

T2 Ci Ai 

s{TikAjk + TjkAik) - (Tik^jk + Tjk^ik) 

for any tensor Tij and number s. For s — —1 {s = 4-1) Dg/Dt is the 
lower (upper) convected derivative, for 5 = 0 the Jaumann or corotational 
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derivative, while for a general s a linear combination of those is invoked. 
In our case the numbers s and q are 

(4.8) , = _ 2 A y « + 3 i 2 - f 2 ) 

2ciXiTi 

AciXiTi 

where r is given in Eq. (4.5). The part ~ Sij in Eq. (4.4) is due to the fact 
that Qij is traceless, while cr̂ j is not. It can in principle be incorporated 
into the pressure term by a redefinition p —> p -f (1/3)E, where 

(4.9) S = <Jkk^xAkiAki+yaki(Tki+zakiAki-¥-r-^{i^\Aki+aki)-^Ak^ 
lciX\ at 

with 

(4.10) 
2ciX\ \\\ T-i 3ci Ai ) 

1/1(21̂ 2 +3^/4) 
2ciA I'^i 

^ > /2A2 A3 ̂  2C2\ „-

(̂ •̂ )̂ ^=2^U-^-'3^'-^J 

1 V Ai T2 3ci Ai ) ciAi 
(4.12) 

ciAi 

3z/4 --(f-M?)- 2ciAi 

This "redefinition" of the pressure, however, is rather dubious, since it ren­
ders a "pressure" that depends nonlinearly on flow and its time derivative, 
and even more disturbing on the stress tensor itself. It is completely differ­
ent from the appropriate "redefinition" in the Qij/gi description of Sec. 3. 
In a more reasonable description one notices that Gkk and its derivative 
are at least of quadratic order (for Akk = 0) and do not influence the 
constitutive equation for cr?̂ . in that order. For the latter one then gets 
finally 

+0(3) 
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with the coefficients defined above. The time evolution of the trace 

Ti —akk = ( 27X" + ^ ) ^ki^ki + ^ ^kiAki + z aliAki 

(4-14) / d 

^ 2 ^ ^ ^ " " ' ^ 3i/4)(^i^fci + <^ki)QiAki + 0(3) 

is completely determined by a^j and >lij in lowest order. 

5. Comparison with constitutive models. Eq. (4.4) constitutes 
the most general form for a constitutive equation (up to quadratic order 
in the variables) that can be derived from a transient orientational order 
parameter as source of non-Newtonian behavior. It contains eight mate­
rial coefficients (four Unear and four quadratic ones with subscript 1 and 
2, respectively), and two more in the trace part (A3,1/4), characterizing 
orientational elasticity, relaxation of orientational order, viscosity and flow 
alignment. These coefficients are still functions of density and tempera­
ture. Most of the traditional constitutive models are much simpler than 
Eq. (4.4). We will now discuss, whether and how these models fit into the 
frame derived above. 

The general case (4.4) contains the relaxation of stresses as well as of 
flow with relaxation times ri and TII/I/I/QO, respectively. Here the effec­
tive viscosity '̂oo is different from the bare one {i/i) due to the relaxation 
of orientational order and its coupling to flow via the flow ahgnment ef­
fect. Thus, the Maxwell [15], Johnson-Segalman [16], and Giesekus [14] 
models, which neglect flow relaxation, impUcitly assume '̂i = 0 and Z/QO is 
completely due to flow alignment. The quadratic stress contribution ^ r 
in (4.4) is nonzero (as in the Giesekus model) only, if at least one of the 
second order material parameters, C2,A2,l/r2, is nonzero. Vice versa, all 
the other models (including the Oldroyd [11] and Jeffreys [15] models) that 
have r = 0 also impUcitly assume C2 = 0 = A2 = 0 = l /r2. In principle, it 
would be possible to have r = 0 for a special set of nonzero values of the 
second order parameters, but this would be highly incidentally and would 
work only for one special point in phase space (for one combination of den­
sity and temperature), but not in general. As a consequence the nature of 
the convected derivatives of stress and flow, characterized in (4.4) by 5, ^, is 
fixed to be of the corotational or Jaumann type (5 = 0 = g), since in all the 
models mentioned above there is either i/x = 0 or C2 = 0 = A2 = 0 = I/T2 
or both. Thus, only the Jeffreys and Johnson-Segalman model (the latter 
in the version with the corotational convective derivative of the stress ten­
sor) are compatible with viscoelasticity due to transient orientational order. 
These models also consistently lack the complicated nonlinear term in the 
second line of (4.4), since they have 1/2 = 0; in addition, they miss the trace 
part ~ E. That means in these models the pressure has to be interpreted 
as the redefined pressure discussed above, rather than the thermodynamic 
hydrostatic pressure. 
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6. Summary. We have explored the hydrodynamic form of non-
Newtonian fluid dynamics, if viscoelasticity is due to transient orientational 
order. The dynamic equation for the orientational order parameter tensor 
has been converted approximately into a dynamic equation for the stress 
tensor, which is then compared with traditional constitutive models. Due 
to the intricate relations among the coefficients of the nonlinearities in this 
effective constitutive equation some of the models are incompatible with 
this type of visoelasticity, since they lack one type of nonlinearity, but in­
consistently not some other one, or they assume a special type of convective 
derivative incompatible with other choices of the nonlinear terms. Compat­
ible are a generalized Giesekus model (with the convective derivative of the 
stress tensor being material dependent, in general), the Jeffreys model and 
the Johnson-Segalman model with the corotational convective derivative 
for the stress tensor. This is quite complementary to our recent findings 
[21] that the latter two models are incompatible with viscoelasticity due to 
transient elasticity characterized by a relaxing strain tensor, while Maxwell 
and Oldroyd models (incompatible in the present case) have been found to 
be compatible. The deeper reason for this difference hes in the type of 
viscoelasticity used, either a transient elasticity leading to a relaxing strain 
tensor that contains the lower (upper) convected time derivative in the 
Eulerian (Lagrangian) case [18, 19], or a transient orientational order lead­
ing to a relaxing orientational order parameter tensor that contains the 
corotational convected time derivative modified by second order flow align­
ment material parameters [30]. Of course, in nature both (and even other) 
sources of viscoelasticity can be present allowing all these models to exist, 
but one should bear in mind that the general effective constitutive equation 
obtained in that way is by far richer and more complicated than any of the 
traditional models. 
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SURFACE ORDER FORCES 
IN NEMATIC LIQUID CRYSTALS* 

FULVIO BISit AND EPIFANIO G. VIRGAtt 

Abstract . The notion of surface order force in nematic liquid crystals is presented 
and contrasted with the notions of similar forces already introduced in the literature. 
We illustrate how a surface order force could in principle be measured and how it would 
convey the mechanical signature of an intrinsically nanoscopic phenomenon, often re­
ferred to as order reconstruction. The relationship between this force and the occurrence 
of biaxial states of the nematic order tensor is further illuminated. 

K e y words. Nematic liquid crystals, order reconstruction; biaxial ordering; order 
forces. 

A M S ( M O S ) subject classifications. 76A15 Liquid crystals; 82B21 Continuum 
models (systems of particles, etc.) 

1, Introduction. What we shall caU here oryier forces have also been 
given other names in the past, such as structural forces, or solvation forces, 
or hydration forces—especially in aqueous media [1,2]. We shall reserve the 
name of structural forces for the forces so called by Horn, IsraelachiviU and 
Perez in their seminal paper [1], which illuminates the basic distinctions 
between different forces exchanged by soUd, smooth surfaces immersed in 
a nematic liquid crystal, which here serves as a paradigm for ordered fluids 
in general. As also recalled in [1], when two solid bodies approach one 
another, they can interact directly^ for example through electrostatic or 
Van der Waals forces, or indirectly^ through forces mediated by a fluid 
placed between them. 

In general, the interactions between a molecularly smooth solid surface 
and the molecules of a fluid in contact with it affect the molecular order in 
the fluid; the order can thus be either enhanced or depressed in the vicinity 
of the surface. This effect on the order propagates in the fluid for some 
characteristic distance ^, as a result of the molecular interactions. When 
two surfaces confine a fluid, the alterations in the free energy resulting j&rom 
changes in the surface order ultimately contribute to the force between 
the confining surfaces, as their separation becomes comparable with ^. 
Depending on the size of ^, we can distinguish amongst different types 
of such indirect forces, which we now proceed to describe in the case where 
the fluid is a liquid crystal. 

Liquid crystals are constituted by elongated molecules. Such a molec­
ular anisotropy would not be sufficient by itself to generate liquid crystal 
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phases: it must also be reflected in the intermolecular potential, as, for ex­
ample, in the mean-field model of Maier and Saupe [3]. On a macroscopic 
scale, the tendency of liquid crystal molecules to be oriented in a common 
direction is described by assigning a unit vector field, the nematic director 
n , which represents the local average orientation of molecules. 

The classical elastic theory of Oseen [4] and Prank [5] employs the 
director field n to describe the local state of the fluid and assumes that 
the fi:ee-energy density depends in a quadratic fashion on Vn. No internal 
length scale is present in the theory, so that local distortions of n , mainly 
forced upon it by contrasting boundary conditions, decay over a distance 
comparable with the distance d between the bounding surfaces. 

A scalar order parameter S often accompanies n to describe the degree 
at which molecules are aligned. If i is the unit vector along the individual 
molecular axis, S is defined by 

where (•) denotes an ensemble molecular average. The nematic coherence 
length ^n is defined as the length over which disturbances in the equilibrium 
value of S decay in space. The nematic coherence length depends on the 
temperature and it is typically nanometric, that is, larger than the molec­
ular size /x: it thus reflects the long-range ordering interactions responsible 
for the very existence of liquid crystal phases. 

In the foregoing discussion, we introduced three separate length scales, 
namely, d, ^n? and fi. We now see how three diflFerent order forces can be 
identified by letting ^ coincide with each of them. 

Elastic forces. When the director n is prescribed on smooth, rigid 
surfaces that bound a nematic liquid crystal, the force exchanged by the 
surfaces, related to the distortions of n in the liquid crystal, and thus called 
elastic, can be considered as an order force, as it results from the ability 
of the surfaces to orient the director. For elastic forces, ^ « d. All elastic 
forces are repulsive; their strength increases monotonically as d decreases. 

Structural forces. Most surfaces that come in contact with a liquid 
crystal enhance the order parameter 5 in a boundary layer [6, 7]. In the 
absence of other disturbing influences, S decays back to its bulk equihbrium 
value Sb within a length comparable with ^n- Since the difference between 
the surface value of S and Sb causes a local increase in the free energy, when 
the region occupied by the Uquid crystal is so thin that facing boundary 
layers come within a distance ^n from one another and partially overlap, 
a repulsive order force, called structural force in [1], is expected to arise 
between the rigid surfaces nearly brought in contact. For these forces ^ w 
^n- The structural forces described in [1] are repulsive and monotonic like 
the elastic forces. 

Positional ordering forces. This class of forces is related to the presence 
of a certain positional order induced by the surface, which is short-range. 
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and so can only be transmitted to within a few molecular lengths. Seen 
at the molecular level, the liquid crystal layer adjacent to a solid bounding 
surface reveals a positional structure that results from the adhesion of the 
first molecular layer to the surface. This structure clearly depends on the 
nature of the substrate responsible for the hquid crystal anchoring. The 
force that manifests itself when the separation between two boundary layers 
is comparable with the molecular size /i can also fail to be monotonic, as 
illuminated by the following example. If in a nematic liquid crystal cell the 
molecules in the first surface layer are aligned orthogonally to the bounding 
plates, further layers of molecules form close to this and show a local smectic 
ordering. Upon decreasing the distance d between the plates, an oscillating 
force may be observed due to the periodical variation of the free energy as 
a result of the interdigitation of the smectic layers. 

Evidence of these phenomena, relating mechanical properties and local 
ordering, has already been obtained in several experiments [8, 9, 10, 11]. 
In a force-controlled experiment, the transition from the regime where the 
order force is increasing for decreasing d to the regime where the order 
force could also be decreasing is marked by a snapping instabiUty in the 
force-displacement diagram, usually associated with a hysteresis loop. The 
first occurrence of such an instability is taken as the sign that the force 
being measured ceases to be structural and thus starts revealing the posi­
tional molecular ordering. However, it has recently been shown that this 
transition from one regime to the other is far more subtle when the biaxial 
degree of order is also considered, which arises when the local molecular 
ordering is described within a finer resolution through de Gennes' order 
tensor Q. The biaxial degree of order relaxes over a characteristic coher­
ence length ^b, comparable with ^n? at least away from the transition to the 
isotropic phase. The force associated with the local biaxial ordering can 
fail to be monotonic as a function of the distance between two approaching 
surfaces [12]. In a force-controlled experiment, such a lack of monotonicity 
would cause precisely the same snapping instabiUty so far attributed to the 
occurrence of positional ordering forces. 

Biaxial surface order forces are intimately related to order reconstruc­
tion in the bulk. This phenomenon was first described in the core of hq­
uid crystal defects by Schopohl and Sluckin [13]. Subsequently, Palfiy-
Muhoray, Gartland and Kelly [14] recognized the same pattern in a thin 
cell between two parallel plates with contrasting uniaxial anchorings (one 
planar and the other homeotropic). It has been shown that in this system 
the two uniaxial states on the boundaries can be connected both through 
a director bend and through a transformation which does not involve any 
director rotation, a transformation where two uniaxial states can be trans­
formed into one another by letting one eigenvalue of Q grow at the expense 
of another, until a new uniaxial state, differently oriented, is reached via 
a wealth of biaxial states, where Q has different eigenvalues, but the same 
eigenfi-ame. 
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In this article we recall the stress fields that describe the distributions 
of both internal forces and internal torques in a liquid crystal when the 
order tensor Q also attains biaxial states. With the aid of these fields we 
can compute both force and torque transmitted from one plate to the other 
of a classical nematic twist cell and we thus see how both these mechanical 
actions are affected by the order reconstruction in the bulk. We shall show 
that both a force- and a torque-controlled machine would experience a 
snapping instability, as a distinctive sign of order reconstruction. 

2. Energy and stresses. We describe the local nematic state of a 
liquid crystal by means of the order tensor Q, which is a symmetric, trace-
less tensor of rank two related to the second moments of the probability 
distribution of the molecular long axes (see pp. 56-57 of [15]). Since Q is 
symmetric, it can be represented in the orthonormal basis of its eigenvec­
tors {61,62,63} as 

Q = '^><iei(S^ei, 
i = l 

where the eigenvalues Â  must obey the constraint 

Ai-f-As-f A3 = 0. 

A uniaxial state is described by the condition that two eigenvalues coincide, 
and, in that case, we can write 

(2.1) Q = 5 ( n ( 8 ) n ~ i l ) , 

where S e [~^, 1] is the scalar order parameter, n is the nematic director, 
and I is the identity tensor. It is worth noticing that the upper bound of S 
corresponds to the configuration where all molecules are oriented along n , 
whilst the lower bound corresponds to a configuration where the molecules 
are on average isotropically distributed in the plane orthogonal to n . A 
biaxial state is characterized by the condition that all eigenvalues of Q be 
distinct; an index of how far a biaxial state is from a uniaxial one is the 
degree of biaxialityy which can be defined as [16] 

and ranges in the interval [0,1]. In all uniaxial states, /?^ = 0, while states 
with maximal biaxiality correspond to /?^ = 1; since trQ^ = 3det Q, these 
latter states are precisely those where det Q = 0, that is, where at least 
one eigenvalue of Q vanishes. 

The free-energy functional that we consider here is the following 

(2.3) J^[Q]:= fwdV, 
JB 
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where B is the region in space occupied by the liquid crystal, W is defined by 

(2.4) W:=^\WQf + MCl), 

and 

(2.5) MQ) := | t r Q 2 - | t r Q ^ + ^( t rQ^)^ . 

L is the only elastic constant appearing in the gradient term. A, B, and 
C are the usual coefficients in the Landau-de Gennes bulk potential, which 
we also refer to as the ordering potential, as its role is favoring the uniaxial 
states. Moreover, we set 

A = a{T- T*) 

where T is the current temperature and T* is the supercooling tempera­
ture of the isotropic phase; a, B, and C are positive constants typical of 
the specific material. The potential fh is an expansion truncated at the 
fourth power, and so, in principle, it should be accurate only close to the 
isotropic-nematic transition, but it has also been used in a wide range of 
temperatures below T*, an attitude that we also take here. According 
to the ordering potential in (2.5), the temperature TNJ that marks the 
transition from the nematic to the isotropic phase is defined by 

(2.6) TNI := T* + 
27 AC 

For T < T/v/, the order tensors that minimize fb are all uniaxial as in (2.1) 
with n arbitrary and 

Our definition of biaxial coherence length is [17, 18] 

where 9 <1 is the reduced temperature defined by 

(2.9) 9:=''^'^ ^ - ^ * 
jD2 y * * y * 

with 

(2.10) T" := T* + 
24aC 
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the superheating temperature of the nematic phase. The length ^6, which 
represents the typical distance over which biaxial disturbances die out in 
space, clearly depends on the temperature. We can easily estimate ^t for 
a typical liquid crystal, that is, 5CB (4—cyano—4'n—pentylbiphenyl), for 
which the values of the constants appearing in (2.5) are obtained from [19]; 
they are: a = 0.20xlO^J/Km^ B = 7.2xlO^J/m3, a n d C = 8.8xlO^J/m^. 
If for the reduced temperature we choose ^ = — 8, which is well below the 
value ON I = | corresponding to T/v/, and for the elastic constant we set L = 
9.075 X 10~^^N, which is the average of the elastic constants given in [20], 
we obtain ^̂  = 1.2 niji. Continuum theories have already been employed 
successfully at the nanometric scale both to describe pre-transitional effects 
in thin films [7, 21] and to explore the disclination core [13]: we pursue here 
this line of thought and we also apply a continuum theory at the ^5-scale 
to describe mechanical properties. 

To compute both forces and torques transmitted within liquid crystals, 
we introduce both stress and couple stress tensors. The former, which 
we call Ericksen^s stress tensor T^^^ has been derived within this theory 
by Gartland and Virga [22]; it parallels the tensor defined originally by 
Ericksen within the director theory of liquid crystals [23]. 

T^^) is defined as 

8W 
(2.11) T ^ ^ ^ = W ^ I - V Q 0 dVQ' 

where W is the energy density, and 

For clarity, in Equation (2.12) Cartesian components are adopted for ten­
sors; partial derivatives with respect to space variables are therein denoted 
by commas, and summation on repeated indices is understood. The total 
force F{V) exerted by the liquid crystal on any submerged body V is thus 
expressed as 

(2.13) F{V)= f T(^>i/d5, 
JdV 

where 1/ is the outer unit vector normal to the boundary dV, and s denotes 
the area measure. 

The couple stress tensor L appropriate to this theory, which we call 
Leslie ^s couple stress tensor, as it parallels the one introduced by Leslie in 
his director theory of liquid crystals, was derived by Sonnet, Maffettone 
and Virga [24]. The Cartesian components of L are 

dW 
(2.14) Lij \=2eikiQkm-9QmlJ 



SURFACE ORDER FORCES IN NEMATIC LIQUID CRYSTALS 117 

-1^ v*^'!-ii^' 

• • ' • ' • • ' • ' ^ 

!' ^ ' 

FIGURE 1. A cell bounded by two parallel plates. The unit vector Cx is orthogonal 
to the plates; the origin of the frame {ea;,ey,c^} is in the middle of the cell. The 
nematic director n is along BZ at X = —d, whilst it makes the angle <̂ o with e,z on the 
plate at X = -\-d. The angle <i> denotes the rotation about Cx of the eigenframe of Q. 

where Siki is the usual Ricci alternator. The total torque M{V) exerted 
on a submerged body V by the liquid crystal is thus given by 

(2.15) M{V) = / ] 
JdV 

Li /ds . 

3. Twist celL We assume that a nematic liquid crystal occupies the 
region B bounded by two parallel, infinite plates at a distance 2d, The 
sjnnmetry of the system suggests choosing a reference frame {cx^By^ez} 
with a unit vector e^ orthogonal to both plates and with the origin of the 
co-ordinates in the middle of the cell, so that the plates lie at rr = —d and 
X = 4-d. Q is assumed to be prescribed on both plates as a uniaxial tensor 
with scalar order parameter SQ and possibly diflFerent nematic directors n , 
each lying parallel to the corresponding plate. In particular, we assume 
that n is parallel to BZ on the plate at a: = —d, so that 

(3.1) Q = Q - : = 5 o ( e , ( 8 ) e , - i l ) . 

On the plate at x = d, the nematic director is rotated by the angle <̂o 
(normalized so as to be in [0, | ] ) . Therefore, for x = 4-d 

(3.2) Q = Q"^:= 5ofno<8)no--IJ , with no := cos(/)oe^4-sin0oey. 

Symmetry considerations also suggest assuming that Cx is everywhere 
an eigenvector of Q and that all quantities are functions of the variable x. 
Thus, we write 

(3.3) Q = Q{x) 



118 F. BISI AND E.G. VIRGA 

and 

(3.4) VQ = Q'(rc)®e^, 

where a prime denotes diflFerentiation with respect to x. Furthermore, we 
will use for Q the same g—representation introduced in [17], according to 
which, the Cartesian components of Q are 

(3.5) [Q] = 
'-2qi 0 0 

0 qi-q2 qz 
0 ^3 q\+ q2 

Under the assumptions made here, we obtain from Equation (2.3) the 
following expression for the functional T representing the energy stored in 
the cell per unit area of the bounding plates: 

(3.6) J^[Q\:^j2[^\Q!? + h{Ci)\dx. 

Accordingly, Ericksen's stress tensor in (2.11) becomes 

(3.7) T(^) = (^^IQf + / , ( Q ) ) I - L|Q' ^Ca: <8> Bx 

Since the unit outer vectors i/~ and u^ normal to the plates at a: = —d 
and X — +d are such that i/~ = —v^ = e^, by Equation (3.7) the forces 
/"" and / + exerted per unit area on these plates are, correspondingly, 

r = - f ^ I Q f - / 6 ( Q ) ) ex = - / M ) e , 

/+= (̂ f IQf -/(.(Q) j e. =/(+d)e, 

where the function / , defined as 

(3.9) /(=r):=f|Qf-/6(Q), 

is actually constant throughout the cell when computed on a solution of 
the equihbrium equations [17]. Thus, at equilibrium, 

/ - = -/+. 

In the g—representation introduced in Equation (3.5), / reads as 

/ = i ^ [ 3 ( g i ) ' + (9^)' + (g^)'] 
^ • •" - [A(3g?+g |+g | )+259i (g?-g | -g | )+C(3g2+g |+g | )2 ] . 
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Similarly, we can compute the torque exerted per unit area of the plate. 
LesUe's couple stress tensor here takes the form 

(3.11) L = -m(8 )ex , 

where m is the vector associated with the skew-symmetric tensor 

(3.12) M := 2 L ( Q Q ' - Q'Q) 

so that 

(3.13) Mv = m X V for all vectors v. 

It is easily seen that the vector m is indeed parallel to e^, that is, 

(3.14) m = mex , 

and that at equilibrium m is constant throughout the cell [12]. Moreover, 
in the g—representation introduced above 

(3.15) m = 41(^3^2 - ^2^3) • 

Finally, the torques m~ and m^ exerted per unit area on the plates at 
X = —d and at a: = -\-d read as 

(3.16) m~ = mex ? 'fn^ = —'mCx . 

As in [17], we scale Q to 

s -^ 
** - AC' 

which is the equilibrium value of S at the superheating temperature T**. 
Moreover, we scale all lengths to d. Thus, we set 

(3.17) qiidrj) =: S^Xiiv) for z = 1,2,3,^ 

where 

(3.18) r,:=^. 

In the scaled variables, the equilibrium equations associated with the func­
tional !F in (3.6) read as follows [17]: 

| ( v ' i ^ + i)xi' = ̂ xi-^(xi + xl-3x?) 
(3.19a) 

(P' 

+ 2(3^? + ^2 + X3)xi, 

9 
(3.19b) ^ ( \ / r ^ + 1)X2 = gX2 - 2X1X2 + 2 (3X? + Xl+ xl) X2, 

(3.19c) I {VT^ + 1)X '̂ - ^X3 - 2X1X3 + I (3x? +xl + xl) Xs , 
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where, now, a prime denotes differentiation with respect to rj, and use has 
also been made of (2.8). Boundary conditions (3.1) and (3.2) for Q are 
translated into the following conditions for xi? X2» and X3-

(3.20a) ^ . ( - i ) ^ ! ^ , , y^,(i)=.lss, 

(3.20b) X 2 ( - 1 ) = 2 ^ 5 , X2{1) = -^85 cos2(t>o, 

(3.20c) X3(-1) = 0, X3(l) = ^55 sin 2(^0, 

where we have set 

(3.21) 5o = (1 + S)Sb and ss := (1 + 5) ( l + v ^ T ^ ) . 

We will refer to <5 as the incremental surface ordering parameter, as it 
measures how the degree of order imposed by the bounding surfaces diflFers 
from its bulk value. In particular, when J > 0, both bounding plates 
have an enhanced aligning ability on the liquid crystal molecules; they 
enforce a uniaxial state with a degree of order higher than the equilibrium 
bulk value Sb. On the contrary, when 5 < 0, the aligning ability of the 
plates is depressed: the enforced state is still uniaxial, but with a degree 
of order smaller than Sh. When 5 = 0, the order parameter enforced 
on the boundary is precisely 5fe. To keep SQ in the interval (0,1), which 
corresponds to a pattern in which molecules on the plates tend to align 
along the director n , we shall assume that 

(3.22) - 1 < (5 < - 1 -f ^ . 

Both in this and in the following section we set J = 0. 

In terms of the new variables, / and m in (3.10) and (3.15) read as 

/ = /o | | ( vT^ +1) [3(xi)̂  + ix'^f + (x^n 

(3.23) - [^(3xf + xl + Xl) + 2xi{xl - x l - xl) 

and 

(^0A\ ^ rr. f̂e X2X3 ~ X2X3 
(J.24) m = mo-r : , 

a 4 
where /o :=B^/UC^, and mo := B^L^^^/C^^'^. 

In general, Equations (3.19) subject to (3.20) have more than one so­
lution [17]. First, the same boundary conditions could be obeyed by two 
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twist solutions, corresponding to opposite rotations of the eigenframe of Q 
across the cell. In addition, a third type of solution can be found in which 
the eigenframe of Q stays unchanged throughout the cell, and the uniax­
ial states at the boundary are reconciled through an order reconstruction 
in the bulk culminating in a uniaxial state with negative order parameter 
in the middle of the cell [17]. Our numerical exploration of these equa­
tions relied upon MATLAB [25] and AUTO 2000 [26]. MATLAB is a 
commercial scientific computing and visualization environment, based on 
a high-level language syntax, and endowed with a wealth of mathemati­
cal Ubrary software, and integrated graphics. We have used primarily the 
MATLAB graphics, as well as a code from its ODE Suite, bvp4c, for the 
solution of general nonUnear systems of ordinary differential equations. 

The MATLAB BVP solver is not equipped for numerical bifurcation 
analysis, and for that we reHed upon the AUTO package. For ODE bound­
ary value problems, the package has the capabilities to perform parameter 
continuation, detection of bifurcation points, and stable numerical calcu­
lation of limit points. It is also capable of monitoring auxiliary quantities, 
such as the values of / and m, as well as integral functionals {e.g., the free 
energy), and of generating a two-parameter locus of fold points. We have 
used all of these features to obtain the results we discuss below. 

Here and in the following we set 6 = —8: other smaller values of 6 
would not affect qualitatively the scenario we shall depict [17]. For </>o = ^, 
a texture bifurcation appears in the twist cell for d — dc ^ 2.47 ^6. For 
d < dc, there is only one equilibrium texture, which bridges the boundary 
conditions through order reconstruction: the eigenframe of Q remains un­
changed throughout the cell, while the transverse eigenvalues in the (^, z)-
plane are exchanged. For d > dc, the reconstruction texture becomes 
unstable and two stable symmetric textures emerge from it, corresponding 
to opposite twists of the transverse eigenvectors of Q. For (̂ o = f ? Fig- 2 
illustrates all three types of equilibrium textures by ellipsoids that sketch 
the Q field within the cell. 

4. Torque and force. The multiplicity of equilibrium textm-es and 
their stabiUty just recalled are mirrored by the diagrams of both torque m 
and force / as functions of the half-thickness of the cell. In Fig. 3 we present 
the classical bifurcation pitchfork obtained from the plot of m/mo against 
d/^b') for the typical values of 5CB (4-cyano-4'n-pentylbiphenyl) [19], mo « 
5mJ m~^ and f̂c w 1 nm at 6 = —8. It is worth noting that for d < dc 
the equilibrium texture bears no torque at all values of d; this is clearly 
related to the lack of rotation of the eigenframe of Q, as also suggested 
by the pictorial description of the system in Fig. 2. The two symmetric 
equiUbrium twist textures existing for d > dc exhibit a maximum torque 
m for d = djvf ^ 3.54 ^t. Furthermore, as d increases, the order tensor 
Q tends to become uniaxial everywhere in the cell; for any </>o and 6, the 
representation of the smaller twist tends asymptotically for ^ ;:^ 1 to be 
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FIGURE 2. Order-tensor ellipsoids against position across the cell, in units of the 
biaxial coherence length ^5, for three basic solutions: opposite twists (top and middle), 
order-reconstruction (bottom). Ellipsoids are oriented along the eigenframe of the order 
tensor Q at each point; their semiaxes are the eigenvalues of Q appropriately augmented 
and scaled to the largest eigenvalue at the boundary. The gray scale is associated to the 
degree of biaxiality 0^ (the lighter the color, the larger 0^). Parameters: twist angle 
<̂ 0 = f ? reduced temperature $ = —S, dimensionless cell half-width d/^i, = 5. 

(4.1a) 

(4.1b) 

(4.1c) 

Xiiv) = 3 

X2{r)) =2c6s{<j>oil+T})) 

X3(»7) = 2sm((/)o(l + »7)) ; 

it follows from the last two of these equations and (3.24) that m decays to 
zero like 1/d. 
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FIGURE 3. The torque m transmitted per unit area from one plate to the other, 
scaled to mo, is plotted against the half-thickness d of the cell, scaled to the biajcial 
coherence length ft defined in (2.8), for $ — —S and total twist angle <̂ o = ^- Stable 
branches are represented by solid lines, whilst the unstable branch is represented by 
a dashed line. The graphs corresponding to the two sym>metric twist textures merge 
with the reconstruction straight line bearing no torque at d = dc ^ 2.47^5/ for 5CB, 
mo = B^L^/^/C^/^ w 5 mJ m'^ and ffe « 1 nm. 

Measuring m as a function of d in a displacement-controlled machine 
should reproduce the bifurcation diagram in Fig. 3, thus allowing for a di­
rect mechanical measurement of ^b. Conversely, if one imagines a machine 
in which the distance between the plates is progressively decreased by in­
crementing the applied torque, a snapping instability should be met at the 
critical value (IM- there, in fact, the equihbrium torque required to fur­
ther reduce d would decrease, instead of increasing. However, in practice, 
nanotorque machines have not yet been developed. On the other hand, 
nanoforce machines (such as, for example, the Surface Force Apparatus 
[1, 27, 28, 29]), have been established and improved over the years. 

This suggests seeing how the texture bifurcation in the twist cell is 
also reflected onto the force diagram. In accordance with Equations (3.9) 
and (3.10), for large values of d the force / tends to a constant —/m, where 
fm is the minimum of /b, independent of </>o- We expect / to decay to 
—/m as 1/d^ decays to zero. The decay of the force / to the residual 
force —fm is an artifact of the normalization chosen for fb'. to make the 
total free energy stored in the infinite cell finite, fb should be shifted so 
as to make fm = 0. In the following, all forces are meant to be measured 
relative to their asymptotic residual value. Figure 4 shows the graph of / 
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FIGURE 4. The force f transmitted per unit area from one plate to the other, scaled 
to fo, is plotted against the half-thickness d of the cell, scaled to the biaxial coherence 
length ^y defined in (2.8), for ^ = — 8 and total twist angle <̂ o = f • Stable branches 
are represented by solid lines, while the unstable branch is represented by a dashed line. 
The dashed branch corresponds to the unstable reconstruction texture, which becomes 
stable at d = dc ^ 2.47^5. There, it meets the single stable branch corresponding to 
the two sym,m,etric twists (unlike the case of torque, these are represented by only one 
branch, since the force is the same for both). For 5CB, fo = B^eAC^ w 60mPa, and 
b̂ ^ 1 nm. The arrows delimit the hysteresis loop described in an ideal force-controlled 

cycle. 

against 4- for 0 = ^. Upon reducing d, the force exerted by both twist 
textures increases as long as cf > dj^ ^ 3.18^6 and then decreases until 
it meets the force exerted by the reconstruction texture at d = dc- Upon 
further reducing d below dc, the reconstruction force keeps increasing and 
diverges like 1/cP. The slope of the graph of / against d is discontinuous 
at d = dc» where m vanishes. As for the torque diagrams, here the lack of 
monotonicity would also imply that a snapping instability is expected to 
happen at dj^. The solid line in the diagram of Fig. 4 corresponds to all 
locally stable configurations. Thus, in an ideal force-controlled experiment, 
where the force is steadily increased, the equilibrium value of d would be, 
by continuity, the largest value of d compatible with the applied force, as 
long as this exceeds d]^. When the force is further increased, there is a 
single value of d compatible with the applied force: the one attained on 
the reconstruction branch. Upon decreasing the force, this latter branch, 
equally locally stable, is followed until d reaches dc; there, as shown by the 
lower arrow in Fig. 4, the equilibrium value of d jumps again on the branch 
of the twist textures, which are then the only stable ones. 
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FIGURE 5. The force f transmitted per unit area from one plate to the other is 
plotted against the half-thickness d of the cell scaled to the biojdal coherence length $5, 
for the following values of the total twist angle: (a) (̂ 0 = f, (b) <t>o = 0.49 TT, (C) <̂ O = 
<i>l w 0.474 TT, (d) (f>o = 0.45 TT, (e) (i>Q = 0.42 TT, (/) (̂ 0 = <5̂c « 0.394 TT, (g) <t>o = 0.35 TT; 
all other parameters are as in Fig. 4- ^^^ solid lines represent stable textures. The 
dark gray dashed branches correspond to the unstable reconstruction texture; they meet 
the stable branches (dark gray solid lines) corresponding to the more t^msted texture at 
d = dc((t>o). 

It is interesting to study the behavior of the bifurcation plots when 
00 7«̂  7r/2: in fact, in a real experiment the value of the total twist angle 
is known with some uncertainty, and it is unlikely, if not impossible, to 
have it exactly equal to the desired value. Both the force and the torque 
diagrams are expected to be unfolded. Figure 5 shows the graphs of f/fo 
against d/^b, for several values of (/)o; now two solutions, corresponding to a 
less twisted texture and to a more twisted one, are stable, with the former 
existing for all values of d as the absolute minimizer of the free energy, 
whilst the latter, just metastable, is found only above a critical distance 
dc{(t>o)j now depending on <j>o and greater than the limiting value dc{^). 
In addition to that, the reconstruction textiure, always unstable, can be 
found for d > dc(<^o); its plot merges into that of the metastable texture. 
For 00 < f the angular point at dc evolves into a regular minimum at d^, 
which survives until <J)Q reaches a critical value 0* ^ 0.474 TT. The behavior 
of the solutions at small and large d mimics that described above in the 
presence of the bifurcation. 
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FIGURE 6. The torque m transmitted per unit area from one plate to the other 
is plotted against the half-thickness d of the cell scaled to the biaxial coherence length 
^h) fof *^6 following values of the total twist angle: (a) 4>Q = ^, (b) <J)Q = 0.49 TT, 
(c) <̂ o = <̂ c « 0.474 TT, (d) <t>o = 0.45 TT, (e) (̂ o = <̂ c » 0.394 TT, ( /) <̂ o = 0.35 TT; 
all other parameters are as in Fig. 3. Solid lines represent the stable textures. The 
dark gray dashed branches correspond to the unstable reconstruction texture; they m.eet 
the stable branches (dark gray solid lines) corresponding to the more twisted texture at 
d = dc{(l>Q). 

Figure 6 illustrates the unfolding of the torque m; this differs somehow 
from the unfolding of the force. First, for <̂o < 7r/2 the stable solutions 
bear nonzero torque, even when d is small; actually, m diverges like \/d 
as d tends to zero. As a consequence, in addition to the maximum at ^MJ 
a local minimum appears at dm < dM- As for the force, there exists a 
critical value (j)c for which minimum and maximum merge in an inflection 
point, and for (j) > <j)c the torque diagram becomes monotonic; for 0 = —8, 
<^c« 0.394 TT. 

The unfolded diagrams of both force and torque would also host a 
hysteresis loop, as long as they fail to be monotonic. We can imagine using 
a force-controlled apparatus in which the distance between the plates of the 
cell is decreased by applying an increasing equilibrating force. We would 
follow the stable branch of the less twisted texture in Fig. 5 until we reach 
the maximum at d^: a further slight increase of the force would cause the 
cell to snap and reach the point on the stable branch at d < d^ located 
on the diverging side of the branch, at the same value of / . Now, if we 
suppose to reduce the applied force in a quasi-static way, we would follow 
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FIGURE 7. The graphs of the pairs (dmidM) o.'f^d ((ij^,<ij^), scaled to ^5, as func­
tions of <t>o/'K. The graphs of the first pair merge at (J>Q = <t>c, whilst those of the second 
pair merge at <̂ o = <̂ c • 

the decreasing stable branch until reaching the minimum point at dj^; a 
further attempt to reduce the force, would cause the cell to snap back at 
the value of d > d*^ that keeps the same equilibrium force / . The same 
argument would apply to the torque diagram, where d^ and d^ would be 
replaced by the distances dm and dM-

It is worth noticing that both dM and dm, which also depend on (/)o, 
are generally different from dj^ and djl̂ . In particular, for our choice of 
parameters, dj^ < d^ and dj^ > dm- In Fig. 7 we plot these four quantities 
as functions of ^O/TT, for 9 = —8. The graphs for dm and d ^ meet at 
(f>o = (f>c, whilst the graphs for dj^ and d%j meet at (J)Q = (j>l < <i>c- The 
nesting of the graphs in Fig. 7 clearly shows that the lack of monotonicity is 
more pronounced and more persistent for the torque diagram than for the 
force one; this is one more reason in favor of employing a torque-controlled 
experiment to reveal the mechanical signature of order reconstruction. 

5. Surface biaxial force. So far we have set 5 = 0 in Equation 
(3.20), that is, we have assumed that the uniaxial order parameter «So en­
forced on both bounding plates of the cell coincides with the equilibrium 
value Sb. Most substrates, however, enhance the surface degree of align­
ment, and so the question arises as to whether choosing 5 >Q would alter 
the properties of the order force / outlined above. In particular, we won­
der whether the force diagram drawn in the preceding section could become 
monotonic, thus reducing the order force described here to the pattern of 
the classical structural force already shown. For simplicity, henceforth we 
set </>o = f and explore the force diagram / for positive values of (J. Fig-
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FIGURE 8. The force f transmitted per unit area from one plate to the other is 
plotted against the half-thickness d of the cell scaled to the biaxial coherence length 
^bt for the following values of the surface ordering parameter: {a)S = 0, {b)S = 0.2, 
(c)S = 6c = 0.5583, {d)6 = 0.65. All other parameters are as in Fig. 4- Solid lines 
represent stable textures. The dashed branches correspond to the unstable reconstruction 
texture. 

ure 8 shows the graphs of / / / o against d/^t for several values of J, namely, 
(J = 0, 0.2, 0.5583, 0.65. Upon increasing J, the force diagram is shifted 
upwards, while the well and the hill making the graph non-monotonic are 
drawn closer. To illustrate better how the force diagram eventually be­
comes monotonic when the surface ordering parameter is sufficiently large, 
we draw in Fig. 9 the graphs of both the critical point dc and the maximum 
point dj^, as functions of 8\ these points meet at a critical value Sc, which 
is 8c ~ 0.5583 for 0 = —8. For this critical value to be actually attained 
it must fall below the upper bound in Equation (3.22); for example, since 
for 5CB at 0 = —8 5b w 0.82, 5c cannot be reached for that material at 
that temperature, and so the force would remain non-monotonic. Other 
materials or other temperatures, however, could make 5c attainable, thus 
rendering the force diagram monotonic. 

Surface order transitions induced by temperature in a nematic liquid 
crystal have been theoretically analyzed by adopting a pseudomolecular 
approach to obtain the surface free energy [30]. In such a model, the surface 
shows the tendency to impose a scalar order parameter diflFerent from the 
one in the bulk, which depends only on temperature; two second-order 
phase transitions are possible: one from the homeotropic director alignment 
to a tilted aUgnment, and another from this latter to a planar director 
orientation. However, within the approximation of perfect local order for 
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FIGURE 9. The maximum point d]^ (continuous line) and the critical point dc 
(dashed line) scaled to the biaxial coherence length ^b are plotted against the surface 
ordering parameter 6, for ^ = —8 and total twist angle <̂ o = f - The two plots merge 
at the critical value 6c « 0.5583; above this value, the force profile is monotonic. 

a model nematic liquid crystal composed of ellipsoidal molecules, it has 
been shown that a tilted equilibrium director orientation is energetically 
unfavorable [31]. Therefore, only planar or homeotropic orientations would 
be allowed; moreover, whilst the former alignment is stable under ordinary 
conditions, the latter could be stable only with the aid of a dominant 
repulsive contribution to the free energy, which would also imply negative 
values of the elasticity coefficients. Tilted orientations at the surface might 
be favored by other contributions to the surface energy, such as that of long-
range electrostatic forces. In view of these results, we reckon that negative 
values of (J, though possible, are not Ukely to occur in a real system. 

An enhanced degree of uniaxiality at the surface has the potential to 
disrupt the pattern of the force described here, making it more similar 
to the uniaxial structural force described in [1]. We say that the order 
force / predicted here is a surface biaxial force as it indeed reveals the 
biaxial structure hidden in the bulk order reconstruction. A quantitative 
measure of the biaxial character of this force can be gained by recording the 
maximum degree of biaxiality /3'lf attained within the cell when d = d^, 
that is, at the snapping Umit. The graph of ^j^ against (J, shown in Fig. 10, 
exhibits an increasing function approaching a plateau in the vicinity of Sc. 

6. Conclusion. We computed both the nanotorque m and the 
nanoforce / transmitted between two parallel plates 2d apart, confining 
a nematic liquid crystal in a (/>o-twist cell with infinitely strong anchor-
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FIGURE 10. The maximum degree of biaxiality 0j^ attained within the cell when 
d = d*i^ is plotted against the surface ordering parameter 6 ^ [0,Sc]. As S approaches 
6c « 0.5583, 0^ tends to its maximum value. 

ing. The signature of order reconstruction could be revealed by measuring 
7n{d) for (/>o close to ^, which would also provide the most direct evalua­
tion of the biaxial coherence length ^t; on the other hand, it may be more 
practical to employ a nanoforce machine where the order reconstruction 
appears as an angular point in the diagram of f{d). In fact, for </>o = f ? 
both the torque and the force diagrams are not monotonic. We predicted 
the existence of two critical twist angles (/>c and (̂ * > <̂ c? below which the 
force and the torque diagrams, respectively, become strictly monotonic. 
The ordering effect of the plates also plays a role: the order parameter at 
boundaries can be increased with respect to that in the bulk without de­
stroying the non-monotonic pattern in the force, as long as a critical value 
Sc of the incremental surface ordering parameter is not attained. By this 
disruptive effect of an enhanced degree of uniaxiality at the surface, the 
force / studied here may be considered as a surface biaxial force; this is 
also reflected by the fact that the maximum degree of biaxiality attained 
within the cell approaches its Umiting value 1 when the incremental surface 
ordering parameter is close to 5c. 

In the light of the model studied here, it is clear that our theory 
describes only the continuum contribution to nanoforces. A more accurate 
description should also account for other forces, such as van der Waals's 
and Casimir's, which are Ukely to affect the divergence of / predicted here 
for d <C ^6. In principle, these forces should also depend on the underlying 
hquid crystal texture. Similarly, the oscillating structural forces ascribed 
to the positional ordering of the molecules on the bounding plates [1] fall 
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outside the scope of this study, but our analysis shows that the onset of a 
non-monotonic behavior in the force should be ascribed to medium-range 
surface biaxial forces, and not to short-range positional ordering forces as 
in [1]. 

The possibility of using fiat surfaces in nanoforce machines could be 
questioned, but previous experiments have shown that they are indeed pos­
sible [32], though they need to be improved to explore nanothicknesses. Al­
though the assumption on infinite anchoring made here could also be ques­
tioned, such an assumption seems however to be compatible with nanoscale 
observations of single nematic molecular layers on cleaved monocrystal sur­
faces [33, 34, 35, 36]. 

Recent experiments on forces may be explained in terms of the present 
model; Zappone et al. [37] observed pecuUar features in a cell containing 
two thermotropic nematics (5CB and ME10.5) subject to hybrid anchoring 
conditions, when the distance between the plates is below lOnm: though 
in a bend geometry, these experiments provide a clear evidence of a non­
monotonic behavior of the force, in agreement with our model. 
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MODELLING LINE TENSION IN WETTING 

RICCARDO ROSSO* 

Abstract . Line tension can be viewed as the analogue, for three-phase contact, 
of surface tension. However, obtaining a coherent picture from the different avenues 
followed to model line tension is much harder than the analogous operation for surface 
tension. This essentially reflects the extreme sensitivity of line tension to the details 
of the model employed. Line tension has an impact on the equilibrium and stability of 
fluid droplets laid on a rigid substrate, in the presence of a vapor phase. In particular, 
the sign of line tension is a critical issue, that gave rise to conflicting interpretations. 
Here, we review the approaches to line tension from microscopic to macroscopic scales, 
stressing the mathematical problems involved. We also illustrate a stability criterion 
for wetting functionals to clarify the role of the sign of line tension. As an application, 
we discuss how stability of liquid bridges near the wetting or the dewetting transition 
mirrors the scaling laws for surface and line tension. 

K e y words. Surface tension; Line tension; wetting. 

A M S ( M O S ) subject classifications. 74A50, 82-02. 

1. Introduction. In the past three decades line tension has been one 
of the most studied and controversial issues in the wetting science, both 
at the theoretical and at the experimental level. To some extent, line 
tension can be studied by the methods also employed for its more renowned 
relative, the surface tension. In fact, line tension was first introduced by 
Gibbs in a footnote on p. 288 of his seminal paper On the equilibrium of 
heterogeneous substances [1] as the analogue, for three-phase contact along 
a line, of surface tension for two-phase contact: "These lines (i.e. contact 
lines) might be treated in a manner entirely analogous to that in which we 
have treated surfaces of discontinuity". However, a few pages later, Gibbs 
remarked that "We may here add that the linear tension there mentioned 
{i.e. line tension) may have a negative value" {of. p. 296 of [1]). As we shall 
see, this comment contains the basic ingredient of most debates concerning 
line tension. 

After Gibbs, line tension received less attention than surface tension 
essentially because its effects can be appreciated at much smaller length 
scales. Careful experiments are required to detect the tiny effects due to 
line tension and the experimental outcomes often led to contradictory re­
sults. Indeed, line tension measurements can be found in the Hterature 
which differ from one another even by five orders of magnitude. Moreover, 
no consensus was reached on the sign of line tension that oscillated from 
positive to negative according to the experiment: the papers [2] and [3] 
contain lists of references to relevant experimental results on line tension. 
Apart from poor techniques, discrepancies are mainly due to the fact that 
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line tension measurements are indirect, as they are obtained through the 
values of parameters somehow related to line tension via theoretical predic­
tions. For instance, line tension can be computed by use of the generahzed 
Young equation which predicts a dependence of the contact angle on the 
size of sessile droplets. In this case, Hne tension measurements inherit the 
intrinsic difficulties to obtain an unambiguous value for the contact angle, 
which is sensitive to substrate's roughness and heterogeneity, a fact that 
led experimentahsts to study Uquid-fluid-vapor systems instead of solid-
fluid-vapor systems: for an updated account on the main experimental 
techniques, we refer the reader to Section 5 of [4]. 

Also theoretical predictions diflFer if different avenues are followed to 
account for Gibbs's view of line tension as a free-energy excess. The crucial 
step is the strategy adopted to model the distortions of sessile droplets 
near the three-phase region where, unavoidably, several approximations are 
required. It has been appreciated for a while that line tension is greatly 
affected by these approximations and that different outcomes are obtained, 
depending on the neglected factors. For instance, gravity is often neglected 
[5, 6]; on exploring intermolecular interactions, the role of short-range forces 
is stressed [7, 8] at the expense of long-range forces which, in turn, are 
embodied in a nonlocal approach [5] where, on the contrary, multi-body 
effects are not taken into account. 

Once a value for the line tension has been obtained from a microscopic 
approach based either on statistical mechanics [9] or on some phenomeno-
logical model that somehow summarizes intermolecular interactions (see 
e.g. [6, 8, 10]), it can be inserted into a macroscopic free-energy functional. 
The simplest model to study the equilibrium of a droplet B made of incom­
pressible fluid laid on a rigid and homogeneous substrate, in the absence 
of body forces, is based on the free-energy functional 

(1.1) J^[B] = 7 / da 4- (7 - ty) / da-\-r f ds, 

where the boundary dB of the droplet has been split as 9S = «S U 5*. The 
free surface S is the portion of dB in contact with the vapor phase (V) and 
the adhering surface 5* is the portion of dB in contact with the substrate 
(S) {see Fig. 1). The positive constant 7 = 7LV is the surface tension 
between the liquid droplet (L) and the vapor phase, the positive constant 
ty := 7 -f JsL — IsVt referred to as the adhesion potential^ accounts for the 
interactions between the droplet and the substrate and can be expressed in 
terms of the surface tensions 7, ^sv and 751, where the last two are referred 
to the substrate-vapor, and to the substrate-Uquid interfaces. Taking 7 —ly 
as the interfacial energy on the substrate means that ly > 0 for an adhesive 
substrate. Finally, the constant r is the line tension associated with the 
contact line C where three phases coexist in equilibrium. In (1.1) a is the 
area measure on dB = SUS^^^, and s is the arc-length along the contact line 
C . At this stage, the sign of line tension raises a basic question. In fact, a 
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FIGURE 1. Sketch of a drop deposited on a curved solid substrate. The boundary 
of the drop is composed of the free surface S and the adhering surface <S*. The contact 
line C is the common border of S and Sm - The contact angle i9c is the angle between 
the conormals us and i/s^ ofC, viewed as a curve on S and <S*, respectively. 

negative line tension makes the contact line unstable against perturbations 
with a short wavelength {see [2, 11]) since, in that case, the term 

(1.2) rjds, 

makes the free-energy functional (1.1) unbounded from below, and variar 
tional problems ill-posed [12]. As an aside, it is interesting to note that 
objections to negative values of r raised on thermodynamic grounds [11] 
were rejected since "in the three-phase equilibrium the contact line cannot 
pucker to increase its length without at the same time changing the areas 
of the two-phase interfaces -which are of positive tension- in such a way as 
to increase the free energy of the whole system" (p. 237 of [13], see also the 
similar argument invoked by Solomentsev and White [6]). Although ap­
pealing, this counter-objection does not address the issue from the mathe­
matical point of view, since it is not the amplitude of the perturbation, but 
its wavelength to induce instability, and indeed the perturbations could be 
concentrated so as to make the variation in the interfacial area negUgible 
with respect to the length of the perturbed contact line. To tackle this 
problem, a possible strategy pursued in [12] relies on relaxation techniques 
to regularize the behaviour of (1.2). 

Alternatively, one could assume that the functional (1.2) poorly ac­
counts for line tension effects and that further terms, presumably depen­
dent on the curvature of C, should be added to get rid of the unboundedness 
of (1.2), along the lines of Boruvka and Neumann's generalized theory of 
capillarity [14], Finally, as a third way, it is possible to note [15, 16] that 
the ratio \r\/j between the Hne and the surface tension of the droplet intro­
duces a natural length below which the model based on (1.1) is unrehable. 
Hence, if the wavelength of a destabiUzing mode is shorter than | T | / 7 , the 
instability would have a mathematical meaning with no physical counter­
part since it would be effective at length scales that lie outside the realm 
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of the model. In this case, a cutoflF should be imposed to avoid too wiggly 
pertm'bations. In this way, conditionally stable equilibria would exist even 
for negative values of r, provided that its magnitude |r | is not too high. 

The ratio \T\/J and the contact angle can be treated as independent 
on temperature only far from either the wetting or the dewetting transi­
tion, where the droplet either wets completely the underlying substrate, or 
is separated from the substrate by a vapor layer. When these transitions 
are approached, \T\/J and the contact angle are correlated via their depen­
dence on temperature. This, in turn, takes us into another controversial 
topic, that is, the behavior of Une tension at the wetting transition. While 
surface tension vanishes at the transition {see Chapter 9 of [13]), several 
scahng laws have been proposed for line tension, predicting all kind of be­
haviors. For instance, Widom and Clarke [17] predicted a vanishing hne 
tension at wetting, while in [18] Szleifer and Widom predicted a possible 
divergence of Hne tension, though their conclusions were affected by numer­
ical uncertainties: for an overview on this topic, see Section 1 of [19]. Such 
undulating predictions mirror once again the sensitivity of line tension to 
the microscopic description of the three-phase line. 

The plan of this paper is the following. In Section 2 we start at 
the macroscopic level by building a wetting functional more general than 
(1.1) to cope with problems posed by technological applications of wetting. 
Then, we discuss the effects of Une tension on the equilibrium equations 
for a droplet. Remaining at the macroscopic level, however, does not yield 
information on surface and Une tension which are only parameters of the 
model. Hence, in Section 3 we review the main microscopic approaches to 
surface tension both at, say, the phenomenological level -where the details 
of intermolecular interactions are accounted for by use of a phenomenolog­
ical potential - and at the fundamental level, where the tools of statistical 
mechanics are employed. The digression on surface tension is expedient to 
the treatment of line tension that, to some extent, follows a parallel avenue, 
and forms the content of Section 4. In Section 5 we are ready to study the 
effects of line tension on the stabiUty of equiUbria. We will outline the 
basic features of the general stability criterion introduced in [15, 20], and 
discuss in detail our approach to negative Une tension illustrating by exam­
ple how the cutoff on the wavelength of the perturbations comes into play. 
In Sections 6 and 7 we apply the stability criterion introduced in Section 
5 to explore the consequences of a class of scaling laws on the stability of 
liquid bridges, close to the wetting and the dewetting transitions. Finally, 
a closing section summarizes the paper. 

2. Line tension effects on equilibria. The renewed interest in wet­
ting phenomena is due to the emergence of problems in different areas which 
caU for a theoretical explanation. Among these are the effects of both ma­
terial inhomogeneities and geometric microstructures of the substrate sup­
porting the liquid drop B {see [21, 22]). AppUcations of these effects range 
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from botany to the coating of fibers. To the former category belongs the 
Lotus effect, that is, the property endowed by the leaves of some plants to 
repel virtually any Uquid [23]. Here, the geometric microstructure of the 
leaves seems to play a major role in the phenomenon [24, 25]. In the latter 
category, it is the substrate's curvature that strongly influences the stabil­
ity of the sit droplets [26, 27]. Besides interfacial interactions, the droplet B 
can be subject to body forces with free-energy density / that could depend 
on the position in space. Apart from gravity, at the macroscopic level / 
could also account for contributions due to diluted interactions between the 
drop and the substrate, in the spirit of [28]. An appropriate generalization 
of (1.1) to account also for the effects just alluded to is 

(2.1) J^[B] = ^6[B] + :FS[S] + J'aiS,] + J'ilC]. 

The first term is the bulk energy 

(2.2) jr ,[S]:= / / d v . 
JB 

The second term is the interfacial energy of the free surface S: 

(2.3) J^,[S]:=yl da. 
s 

Hence, we are supposing that the "tangible surface of discontinuity" (p. 
769 of [29]) S is the surface of tension introduced by Gibbs (see Section 3). 
The next term, 

(2.4) Ta[S,]:= f {j-w)da, 

describes the adhesive properties of the substrate. Finally, 

(2.5) J^e[C]:=fTds 

is the free energy of the contact line C, where r can be interpreted as a 
line tension. At variance with (1.1), in (2.4) and (2.5) we assume that 
both w and r depend on the position on the substrate, so that wetting on 
inhomogeneous substrates can be studied: for an account on theoretical 
investigations on this topic see [22, 30, 31]. Moreover, when both w and r 
are constant, arbitrary geometric microstructures are still possible in the 
substrate. To arrive at the equilibrium equations for the free surface S 
and the contact line C, we perturb the points p on a putative equilibrium 
configuration into points pe, according to 

(2.6) py-^ pe := p + su 
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where u is a smooth vector field. Since the droplet has to glide on the 
substrate, u must obey the constraint 

(2.7) u • i/* = 0 on 5* 

where i/* denotes the unit normal of 5* oriented outward to B {see Figure 
1). Moreover, since all admissible variations must preserve the volume of 
the droplet, u is also constrained to satisfy 

(2.8) / u d a = 0, 

where u := u - u is the component of u along the unit normal u to S. 
Referring the interested reader to Section 2 of [20] for the details of the 
computations, by setting the first variation of (2.1) equal to zero, we arrive 
at the following equihbrium equations: 

(29) / 7 i ? + / = A o n 5 
'̂  ^ \ 7Cost?c + 7 - ^ + V s T - i / 5 ^ - r « ^ ^ = 0 along C, 

where H is the total curvature of 5 , that is, twice its mean curvature, A 
is the Lagrange multiplier associated with the constraint (2.8), Kg^ is the 
geodesic curvature of C, imagined as a curve on the substrate 5*, Vg is the 
surface-gradient operator, and ??c is the contact angle, that is, the angle 
between the conormals 1/5 and 1/5̂  to C, viewed as a curve on S and 5*, 
respectively. Equation (2.9) 1 is the standard Laplace equation. If gravity 
is negUgible and no other bulk effects are incorporated in the description so 
that / = 0, (2.9)1 predicts that the equihbrium shape of the free surface 5 
has to be a surface with constant mean curvature, making straight cyUnders 
and spheres admissible solutions. 

Equation (2.9)2 is the generaUsed Young equation. The neutral at­
tribute generalised appended to (2.9)2 reminds us that several contribu­
tors worked on it. The generaUzation (2.9)2 was obtained by Swain and 
Lipowsky [21], although Rusanov and Toshev (see §9.2 of [32]) obtained 
a condition similar to (2.9)2, rephrased in terms of the angle between the 
wetted substrate and the local plane of the three-phase contact line. The 
equation 

(2.10) JCOS'dc + 7 — ty — TKg^ = 0 

to which (2.9)2 reduces when the line tension is constant, was first intro­
duced by Vesselovsky and Pertzov in 1936, according to [32] and [33]; it 
was employed by Pethica in 1961, and is sometimes referred to as the Gretz 
rule [34], quoting a 1966 note by Gretz [35]. Apart from priority matters. 
Equations (2.9)2 and (2.10) are interesting since they show how Une tension 
affects the equiUbrium. It can be proved (see, e.g., [36]) that, even on a flat 
substrate, a spherical sessile droplet can have no equilibrium configuration 
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if the line tension is positive and large enough, and two distinct equilibria 
if the line tension, still positive, is smaller. On the other hand, no lack 
of either existence or uniqueness occurs when the line tension is negative. 
The equilibrium reveals a richer structure when the substrate is curved, as 
discussed in [37]. These features should be contrasted with the behavior in 
the absence of line tension, where the classical Young equation 

(2.11) 7cosi9c + 7--iy = 0 

replaces (2.10). In fact, when constitutive restrictions on 7 and w guarantee 
that cosT?c ^ [~1>1]» ^^^^ (2-11) always possesses a unique solution. The 
different behavior can be explained by the presence in (2.10), as compared 
to (2.11), of the natural length scale r/j which breaks the invariance of 
(2.11) under rescaling. It should also be remarked that Une tension effects 
on equilibrium are coupled with the geometric properties of the substrate 
through the geodesic curvature Kg^. Hence, even in the presence of a non-
vanishing line tension r , no effects of r on the equilibrium can be detected 
if the geometry of the substrate guarantees that «p* = 0, as happens for 
liquid bridges on a flat substrate [16]. 

3. Modelling surface tension. The macroscopic model (2.1) does 
not give any information on the surface and the line tension, that should 
be the outcome of a microscopic analysis accounting for the intermolecular 
interactions of which 7 and r are macroscopic signatmres. Moreover, the 
interfaces S and 5* defined in the macroscopic approach introduce sharp 
discontinuities and it is not evident why only modifications of the interface 
areas should be penalized in (1.1) or in (2.1), and not also bending of the 
interfaces. Similarly it is not evident why only the length of the contact 
line, and not also its curvature, should contribute to line effects in the 
three-phase region. To extract information on both surface and line tension 
out of a microscopic analysis, and to understand the mechanisms behind 
possible generalizations of the free-energy functional (2.1), different avenues 
were followed in the Uterature. In this section, I refer to the approaches 
concerning surface tension, postponing a parallel review concerning line 
tension to the next section. 

The microscopic origin of surface tension has been recognized for a 
long time, seemingly since the work of Von Segner published in 1752: see 
[38] and p. 15 of Finn's book [39]. Referring to Figure 1, the molecules of 
the liquid droplet B that lie either at S or at S^ feel different molecular 
interactions with respect to the droplet's molecules located in the interior 
of B: it is this discrepancy that justifies the introduction of surface tension. 

In fact, though Gibbs knew that the properties of B change contin­
uously across a transition layer and not abruptly, he found it easier to 
imagine that the two phases remain homogeneous up to a certain dividing 
surface, that is "sensibly coincident with the physical surface of disconti­
nuity, but shall have a precisely determined position" (p. 219 of [1]). In 
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doing so, however, the system is somehow modified, since properties like 
its mass, energy, and entropy do not coincide with the sum of the masses, 
the energies and the entropies ascribed to the ideal homogeneous phases 
in contact at the dividing surface. To recover a correct description, Gibbs 
attributed to the dividing surface the excess energy U -and, similarly, the 
excess entropy, mass, etc.- defined as the difference between the real energy 
of the system and the energies of the ideal homogeneous phases that replace 
it. Different choices for the dividing surface could be made, depending on 
the specific requirement we place on it, with the only restriction that it 
belongs to a family of surfaces parallel to the "tangible physical surface 
of discontinuity". Gibbs indeed postulated that U should depend on the 
dividing surface through its area A, and its principal cmrvatures ci and C2, 
so that 

f/ = C/(5,iV,,Aci,C2), 

where S is the entropy, and Ni is the mole number of the i-th component. 
Then, he was able to show that, by suitably selecting the dividing surface 
«S, it was always possible to get rid of the contributions arising from the 
curvature, and so he postulated a reduced surface energy U^ given by 

the dividing surface on which the excess energy is U^ is called the surface 
of tension. The excess energy per unit area of the surface of tension is 
the surface tension associated with the interface separating two different 
phases. Hovever, Gibbs argument to obtain U^ firom U works only if the 
interface is planar or spherical, and it is approximately true when the inter­
face slightly differs from these cases. At this point, we stress an important 
difference between planar and spherical dividing surfaces. While shifting 
the dividing surface does not modify the surface tension in the former case, 
as it does not modifies the area of the surface, a displacement within a 
spherical layer is more deHcate since, when the dividing surface is shifted 
its area changes, inducing an effective dependence of the surface tension on 
the radius of the dividing surface. This dependence was studied by Tolman 
[40] who proved that the surface tension j{R) associated with a spherical 
dividing surface of radius R can be written, at the lowest level, as 

-f{R) = 70 ( - ^ ) . 

where 70 is the line tension of a planar dividing surface, and the microscopic 
length ST is now called the Tolman length: accounts of Tolman's approach 
can be found in Section 2.4 of [13] and in Chapter 11 of [41]. Tolman also 
explored the spherical interfaces in [29], where he modelled the transition 
layer as a spherical shell, within which he located the surface of tension, 
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obtaining an expression for its surface tension 7 which depends on the 
layer's structure. Additional work on this topic is due to Buff [42] who 
explored the dependence on curvature of the surface tension pertaining to 
the equimolar surface, defined as the dividing surface over which no excess 
of mass exists. 

Although Gibbs did not analyze arbitrarily curved interfaces, nonethe­
less he suggested the lines along which concentrate the efforts: "It will be 
observed that the position of this surface {i.e. the dividing surface) is as 
yet to a certain extent arbitrary, but that the directions of its normals are 
already everywhere determined, since all the surfaces that can be formed 
in the manner described are evidently parallel to one another." {see p. 
219 of [1]). Seemingly, Buff [43] was the first who dropped the restrictions 
on the shape of the lamellae forming the transition layer. Buff, adopting 
a mechanical rather than thermodynamical approach, based his analysis 
upon the hydrostatics equation 

(3.1) diva + / = 0 

where a is the stress tensor, and / is the body force acting on the system. 
He assumed that in the bulk of the liquid and the vapor phases the stress 
tensors reduce to the standard isotropic form 

o-L = -PLI y 

and 

(Ty = —pyl 

where I is the identity tensor, while PL and pv are the pressures in the 
bulk phases. In the transition zone, Buff assumed the stress a to be trans­
versely isotropic about the unit normal u common to all the lamellae of 
the transition layer, by setting 

(3.2) (T{X) = aT(A)(I - 1/ (8) î ) -t- ajv(A)i/ 0 u, 

where A measures the distance from the dividing surface 5, corresponding 
to A = 0. The layer is parameterized by use of confocal coordinates {u, v, A), 
where u and v parameterize S, In the spirit of Gibbs's prescription, Buff 
extrapolated the isotropic stress tensors ai and ay up to dividing surface. 
By taking the inner product between (3.1) and u, with <j as in (3.2), then 
integrating across the layer, and repeating the same procedure for cr = CL 
and a = cy, he obtained the equilibrium equation 

(3.3) Ap := pL-py = yH- (U^ -2K)^+ gTe, • 1/, 

where H and K are the total and the Gaussian curvature of 5 , / has been 
restricted to gravity contribution, and g = —gCz is the gravity acceleration. 
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Prom (3.3), BuflF could interpret 7 as the surface tension of S and express 
it in terms of the layer parameters as 

7 : = / "^ i(7T-aLv){l-^HX)dX, 
J-XL 

where XL and Xy are positive numbers chosen so as the surfaces at A = —Â  
and at A = Ay lie in the bulk phases. Moreover, 

(JLV^=(TL[1-H{X)]^CJVH{X) 

where the Heaviside function 

^ ^ ^ ^ - \ 1 i f A > 0 

has been introduced. Finally, 

I*Xv 

XL 

(3.4) § = /"(<T-<Tiv)dA 

is the bending moment associated with variations in tl 
dividing surface and 

fXv 

-XL 

where 

r = / "^ {g-QLv)dX, 
J-XL 

QLV:=^QL[1-H{X)]^QVH{X) 

is the surface excess mass of the dividing surface, in terms of the bulk mass 
densities QL and gy. In the remaining part of [43], BuflF reexamines the 
phenomenological theory by repeating Gibbs's approach with the important 
diflFerence that a bending moment (3.4) is retained. Hence, the free energy 
is modified and (3.3) follows also at this level as the equilibrium condition 
for a droplet, thus generalizing the classical Laplace equation. 

BuflF's paper stimulated further generalizations of Gibbs original ap­
proach. Indeed, as noted later by Boruvka and Neumann, BuflF pointed out 
that *the limitations of the original analysis by Gibbs center around the 
curvature terms in the expression for the internal energy. [...] The Gibbs 
approximation worked so well that nobody pursued Gibbs' comment that 
more rigorous treatments are possible" (p. 5464 of [14]). Boruvka and Neu­
mann [14] however, remarked that BuflF failed to make a proper distinction 
between intensive and extensive parameters, resulting in an incorrect gen­
eralization of Gibbs capillarity theory. Instead of using extensive quantities 
as Gibbs did, Boruvka and Neumann worked with volume densities of these 
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quantities. Moreover, when they had to ascribe a surface energy to a divid­
ing surface, they noted that any surface S admits three extensive geometric 
properties, that is, the area A, and the first and second integral curvatures 
H and /C defined as 

n:= f HdA and K — f 
Js Js 

KdA 
s 

so that the sinrface energy density should depend on H and K, while the 
extensive surface energy U should contain A, H and /C among its argu­
ments. Besides the quest for a general approach, it seems that Boruvka and 
Neumann first realized that only differential invariants of a surface could 
enter in the free-energy density. By an analysis parallel to Buff's, Boruvka, 
Rotenberg and Neumann [44] used the hydrostatic theory of capillarity to 
have a further verification of Boruvka and Neumann [14] phenomenological 
model. The consistency of the two approaches was shown in [44] through 
a procedure that was later simplified in [45] and [46]. 

Until now the intimate details of intermolecular interactions occurring 
at an interface have been bypassed, by use of more or less ideaUzed de­
scriptions of the transition layer. Computations of the surface tension for 
planar interfaces at the microscopic level, by resorting to statistical me­
chanics, were pioneered by Fowler [47], and by Kirkwood and Buff [48]. 
A basic ingredient in Kirkwood and Buff's analysis is the pair density 
g^^\ri^ri2) which measures the average number of molecular pairs, with 
one molecule located in a small volume around r i , and the other in a small 
volume around a second point whose relative position firom the former is 
ri2. Hence, by assuming the planar interface at z = 0, it is possible to set 
^(2) _ (̂2)̂ 2^1, ri2), where zi is the z-coordinate of the first molecule, and 
1̂2 = ki2|- Prom these premisses, Kirkwood and Buff did not determine 

the surface tension firom its thermodynamical definition as the work needed 
to form a unit area of interface, but from its mechanical definition in terms 
of the stress transmitted across a strip of unit width, orthogonal to the 
dividing surface: in some sense, they remount to Laplace's original view of 
capillarity [49]. In fact, it is possible to arrive at the expression for 7 ob­
tained by Kirkwood and Buff also through the standard thermodynamical 
avenue, by computing 

- (g) V,T,N 

where !F is the Helmholtz free energy, A is the area of the dividing surface, 
and the subscripts mean that differentiation should be computed at con­
stant volume V, temperature T, and mean number of particles N. It turns 
out that the derivation based upon (3.5) is more general than the original 
approach discussed in [48] since, as proven in [50], the molecular pressure 
tensor employed by Kirkwood and Buff lacks of uniqueness: fortunately. 
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this feature does not affect the expression of 7. Hence, regardless of the 
avenue that is followed, the surface tension can be given in the form 

(3.6) 7 = i J dzijdrurn (l - 3 ^ ) u'{ri2)e^^Hri2, zi), 

where u is the pairwise intermolecular potential that depends only on the 
relative distance ri2 between the two molecules, and a prime denotes dif­
ferentiation with respect to ri2: for a clear derivation of (3.6) from (3.5), 
see Chapter 4 of [41], Though compact, Equation (3.6) is not easy to 
compute, as it requires knowledge of the intermolecular potential and the 
two-particle density. Partial simplification can be obtained by invoking 
Fowler approximation, according to which the density of the the vapor 
phase is neglected {see §4.1.2 of [41]). Even in that case, however, the 
evaluation of 7 requires a deUcate machinery to deal with the two-particle 
correlation function. Apart from computer simulations, progress in this 
field was made possible by use of perturbation schemes, according to which 
a reference intermolecular potential is singled out while the remaining part 
of the potential is treated as a perturbation. Though more schemes are 
possible, the Weeks-Chandler-Anderson approach [51] has been the most 
influential and, besides several applications to bulk properties of homoge­
neous fluids, it was applied by Kalikmanov and Hofmans [52] to obtain an 
analytic expression for the surface tension of a Lennard-Jones fluid at the 
planar interface with the vapor phase: a detailed account of the perturba­
tion approach in the statistical mechanics of fluids can be found in Chapter 
5 of [41]. 

The second microscopic way to surface tension is based upon van der 
Waals theory that postulates a free energy density ip which depends on the 
local mass density Q{r) and on its squared gradient. If no external field 
acts on the fluid, the Helmholtz free energy J^ can be written as 

jr = J[i,ir)]dV = J |v(e(r)) + iyi(e(r))[Ve(r)]2 jdF 

where il^{g) is the free energy density of a uniform fluid with density g: 
hence, the first term in !F is the extension to the non-uniform case of the 
free-energy density of a uniform fluid, while the second term accounts for 
spatial inhomogeneities of the density profile. It was a major achievement 
of [49] to prove that the coeflScient A{g) is related to the direct correla­
tion function. In this approach, the surface tension arises naturally as a 
byproduct fi:om minimization of !F under the constraint that the system is 
closed. If g{r) is the density profile that minimizes .F, and the interface is 
the plane z = 0, the surface tension 70 can be written as 

70= / A{eiz)){g'{z)fdz, 
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where a and b are values of the coordinate z in the bulk phases. 
With the extension of van der Waals theory in [49] we are entering a 

broad area of intensive research in non-uniform fluids that makes use of 
the density functional theory. Since entering the details of this approach 
would take us too far, we content ourselves with a cursory mention to its 
existence, referring the interested reader to the reviews [53, 54, 55], and to 
Chapter 9 of [41]. 

4. Modelling line tension. It is now time to see how the strategies 
employed to study the transition layer and to obtain information on the 
surface tension work when applied to a three-phase contact region, with 
special emphasis on the predictions concerning Une tension. As remarked 
in the Introduction, the line tension was introduced by Gibbs [1] in the 
same spirit as surface tension. At a formal level, Gibbs prescriptions were 
generaUzed by Boruvka and Neumann in [14], who considered a line energy 
excess depending also on the geodesic and the normal curvatures of the 
contact line C, thought of as a curve belonging to any of the three coexisting 
phases. Moreover they also included a dependence on the contact angles 
between the intervening phases. This theory takes care of the deficiencies 
of (1.2) by adding curvature terms to penalize from the beginning the 
onset of wiggly destabilizing modes. However, it is difiicult to manage this 
theory in its full generaUty. On the other hand, we also mention that the 
use of free-energy densities depending on curvature has been questioned 
by Sagis and Slattery who, in the continuum theory developped in [56, 
57, 58], claimed that no contributions in either the surface- or the line-
energy density depending on curvatures should arise at all. They formally 
proved that the presence of curvature terms would be incompatible with 
the fulfillment of the entropy inequality which, in the spirit of Coleman and 
Noll theorem [59], acts as a constraint on constitutive assumptions. As far 
as I know, no attempt in confirming or disproving the results of Sagis and 
Slattery has been made. 

The theoretical approaches to line tension can be divided [4] into two 
categories, as local and non-local. In a local approach the intermolecular 
forces are accounted for only in the narrow region where the three interfaces 
meet together, while in a non-local approach intermolecular forces are also 
considered beyond that region and, moreover, effects due to the global 
shape of the droplet are incorporated in the treatment. It should be noted, 
however, that several assumptions are made in both approaches which make 
straightforward comparisons difficult. For instance, effects of gravity can be 
neglected; the droplet caji be imagined in equilibrium with a thin fluid film 
or not; predictions are often made for droplets of infinite size, more similar 
to a wedge, and so on. It is important to realize this, since different models 
often lead to drastically different conclusions concerning line tension. 

All microscopic models consider the distortions of the droplet's shape 
in the three-phase region as the key factor governing the line tension, as 
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O 

FIGURE 2. Distortion suffered by the liquid droplet L, here sketched as an infinite 
wedge, in the contact region, where it meets both the substrate S and the vapor phase 
V. Macroscapically, the droplet is seen to meet the substrate at P, hence forming a 
m,acroscopic contact angle i?c- However, at any point Q = {x,h{x)) lying on the real, 
distorted profile of the droplet, the microscopic contact angle is '&(x). 

stressed by [6], [10], and [58]. This makes the analysis more difficult than 
the parallel one performed for surface tension, as was clearly stated by BuflF 
and Saltsburg [60] who extended the capillary approach to three-phase con­
tact. In [60] they noted that in the transition region "the distribution of 
matter becomes more diffuse and the physical basis for parallel dividing 
surfaces breaks down." (p. 27 of [60]). To overcome the difficulty they ex­
trapolated not only bulk energies, as done to define surface tension, but also 
surface energies, ascribing the excess energy to the contact line, according 
to Gibbs's prescription. 

The distortions of the droplet's shape lead, for instance, to distinguish 
between a macroscopic contact angle obtained by extrapolating the macro­
scopic shape of the drop up to the substrate, and the microscopic contact 
angle, bound to follow the distortion of the droplet's profile up to the sub­
strate (Figure 2). Sagis and Slattery [58] use a perturbative approach to 
arrive at the droplet's shape by distinguishing an outer problem, where the 
profile is dictated by Laplace equation and so the eiffects of intermolecular 
forces in the three-phase region are neglected, from an inner problem, where 
these forces enter the equilibrium equation obeyed by the profile through 
a suitable potential that incorporates, besides gravity, the effects of van 
der Waals-London forces, while double-layer, steric, and structural forces 
are neglected. Not surprisingly, the perturbation parameter involves the 
strength of long-range intermolecular forces. The geometry of the three-
phase region is carefully analyzed by Babak [10] from a sUghtly different 
perspective, as he is more concerned with situations in which the droplet 
is in equilibrium with either a thin fluid film or a thick fluid layer. Con­
sequently, he considers three regions to be matched together by resort to 
suitable boundary conditions: first, there is a Laplace (outer) region, where 
the profile, in the absence of gravity, is a sphere. The role of intermolec­
ular forces is particularly relevant in the transition region that mediates 



RICCARDO ROSSO 147 

between the Laplace region and a further flat region, where the drop sits 
upon the film or the layer. In the transition zone, the contact angle gradu­
ally passes from its macroscopic value to zero. Using a different approach, 
Solomentsev and White [6] do not assume in advance that the droplet is 
in equiUbrium with a fluid film on the substrate, and use the profile of the 
Laplace region as an asymptotic shape. In passing, we note that in all these 
approaches the solid substrate on which the droplet lies is planar. 

Solomentsev and White [6] locally modelled the profile of an infinitely 
large drop by its height h{x) over the substrate, of which x is the abscissa. 
The interaction energy between the vapor and the fluid phase close to the 
substrate is modelled by resorting to the Derjagnin approximation, accord­
ing to which the interaction energy per unit length EsLv{h{x)) is in fact 
the interaction energy between "plane parallel half-spaces of substrate and 
vapor phases, separated by a distance h of the liquid phase" (p. 123 of 
[6]). Embodied in EsLv{h{x)) are contributions due to van der Waals, 
steric, and structural forces, besides possible terms due to density varia­
tions. However, use of the Derjaguin approximation limits predictions to 
small values of the macroscopic contact angle T?C-

In these approaches, the way to line tension is twofold. Prom one side 
[10], [58], the balance equations obtained at the microscopic level are recast 
in a form which allows identification with the macroscopic definition of line 
tension based on the functional (1.2). On the other hand, it is possible 
to determine the droplet's profile as the minimizer of the Helmholtz firee 
energy F per unit length of the contact line that models the free energy 
stored in the three-phase region [6]: 

F = Fo + 
/.OO 

/ bLV + EsLv{hix))]{l + h'^ix)y/^dx + xoijsv - ysL). 

Here, Fo contains all contributions independent of the droplet's shape, and 
XQ is the value of x at O, where the real contact line, that can be ap­
preciated only at the microscopic level, meets the substrate {see Fig. 2). 
By minimizing F , Solomentsev and White obtained that the microscopic 
contact angle should vanish at x = XQ. Curiously, we mention that [58] 
attributed discrepancies between their theoretical model and experimen­
tal results to the assumption of vanishing microscopic angle. When the 
droplet's profile h{x) has been obtained fi:om this variational analysis, the 
line tension r is defined as the energy difference (per unit length of the con­
tact line) between the microscopic and the macroscopic profiles and can be 
calculated as 

HLV 
r = cosdc 

X 
XQ 7x0 I TLV \ JLV J i 

where xp is the value of x at which the extrapolated contact Une meets 
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the substrate. Solomentsev and White obtained negative values for r by 
taking, as an illustration of their method, 

EsLv{h) = ~ ^^^^ 
127r(/i 4- ho^ ' 

where ASLV > 0 is the Hamaker constant {see Chapt. 11 of [61]), and ho 
is a suitable cutoff length that measures the range of the forces involved in 
the interaction. It should be noted that, although this simplified example 
does not account for steric and structural forces, it maintains reference to 
the multi-body effects associated with the dispersion forces. It should also 
be remarked that [6] was also concerned with the finite-size effects of the 
droplet showing that the infinite-drop model is inadequate only when the 
radius R of a spherical drop is comparable with ho. The approach of [6] 
retains many features in common with the interface displacement models 
which were discussed by de Gennes (see §II.D of [62]) and then applied 
extensively to study line tension (see, e,g., [7, 8, 63]). Here, the free energy 
per unit length of the contact line of an infinite droplet sitting on a flat 
substrate and in equilibrium with a thin liquid film of width hi is taken as 

<") "w-/¥(^)'+^(''<") dx. 

The quadratic term in dh{x)/dx penalizes changes in the interface area and 
so accounts for distortions near the contact region, while V{h{x)) is the 
interface potential which embodies intermolecular interactions: the equi­
librium profile he{x) is the minimizer of (4.1). The line tension is then 
obtained by replacing he{x) into (4.1), and can be recast as 

r+oo 

= y/2^j [v'V^-v^Jd/i, 

where E := lim/i_,^oo ^(^)- In [8], r was computed for systems with long-
range forces such that either 

(4.2) F(/i) = jB + /3( / i -^-a/ i -2) 

with /? and a positive constants, or 

(4.3) V{h) = £-}- P{ah-^ - 2h-^ -\-h""^) : 

while for (4.2) the line tension is always negative, for the choice in (4.3) 
line tension turns from negative to positive on decreasing the macroscopic 
contact angle. 

As already remarked, Solomentsev and White [6] did not assume the 
existence of a thin Uquid film in equilibrium with the droplet and, in turn, 
they obtained a necessary condition for this to happen. However, when 
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such a film exists, the energy density EsLv{h) is related to the disjoining 
pressure ll{h) of a film of height h through 

oh 

The effect on line tension due to the profile of the disjoining pressure 
isotherm 11 against h is the major concern of Babak's generahzed theory 
[10] which aims at mediating between two extreme models that view the 
adsorbed film in equilibrium with the droplet either as an idealized surface 
of zero thickness, or as a layer of thickness Hf. Babak's theory points out 
the crucial role played by the profile of Tl{h) to distinguish between the two 
cases and, more importantly, it relates the predictions on line tensions to 
the quahtative features of the function n(/i), in particular to the presence 
of maxima and minima. 

The approaches illustrated so far are local, as they neglect nonlocal 
contribution to liquid-liquid interactions that have been incorporated by 
Getta and Dietrich [5, 64], who were motivated by apparent deficiencies in 
the interface displacement model, when appUed to structured substrates. 
Starting form a density functional theory, Getta and Dietrich [64] concluded 
that in most situations predictions based on interface displacement models 
are in good agreement with the nonlocal theory which, on the contrary, 
requires careful numerical analysis. In fact, resort to nonlocal models seems 
mandatory only when the interface profiles are highly curved. It should 
also be stressed that multi-body eflFects are neglected within a nonlocal 
theory, while they are embodied in the simpler, phenomenological interface 
displacement models {see [6, 7]). 

To close this section, we recall that the approach to fine tension via 
statistical mechanics, in the spirit of Kirkwood and Buff [48], was pursued 
by Tarazona and Navascues [9]. As they stressed, "The three-phase contact 
line is a very inhomogeneous region [...], The topology of the density in 
this region can be very complicated and, at present, it prevents us from 
trying to determine the molecular distribution functions" that enter the 
expression of the line tension (c/. p. 3116 of [9]). In fact, even restricting 
attention to a straight contact line, they had to resort to a suitable form 
of Fowler's approximation to calculate the line tension of a Lennard-Jones 
fiuid. 

5. Line tension elSects on stability. A wealth of mathematical 
literature exists on the equilibrium of sessile droplets and, in general, on 
equilibrium capillary surfaces [39]. It is however crucial to ascertain the sta­
bility of equilibrium configurations, since only stable or, at least, metastable 
equilibria can be observed. Studies on the stability of fluid surfaces appear 
less frequently, especially when constraints are imposed on the free-energy 
functional, that must be obeyed up to second order in the perturbation 
parameter €, The special role played by the contact line can be understood 
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by recalling a classical result in the theory of minimal surfaces. In fact, 
Barbosa and Do Carmo [65] proved that the area functional (2.3) is lo­
cally stable against perturbations confined in a sufiiciently small region of 
the equilibrium surface that does not involve the contact Une, supposed as 
fixed. Similarly, turning attention to capillary surfaces, the local stability 
of spheres was proved in [66] by limiting attention to perturbations that, 
again, do not move the contact line. An important contribution to this 
topic was the paper by Sekimoto, Oguma, and Kawasaki [67] who studied 
the stability of several wetting morphologies, for a planar and homoge­
neous substrate, without line tension. In fact, for small contact angles, 
they proved that the sessile droplet is stable against all perturbations that 
move the contact fine, apart from a uniform translation. Taking small con­
tact angles allowed the authors to draw their conclusion from the study of 
a Hnear partial differential equation. Among the morphologies explored in 
[67] is the fluid ridge, where a Hquid is drawn along a solid wedge. This ge­
ometric setting was studied by Roy and Schwartz [68] who generalized the 
problem by considering a cylindrical droplet laid on a cyUndrical substrate. 
The analysis employed is confined to a two-dimensional problem, and can­
not be extended to less symmetric shapes. In [68] however, a systematic 
exploration of the role played by the substrate's curvature was made for 
the first time. Along a different avenue, Lenz and Lipowsky [69] obtained a 
general stabifity criterion, for arbitrary wetting morphologies, in the pres­
ence of a structured substrate. In [69] the substrate is flat and fine tension 
is absent, so that no effect of curvature is at play. In [20], we derived a 
general stability criterion for the wetting functional (2.1) which hence in­
corporates the effects of inhomogeneous, arbitrarily curved substrates, in 
the presence of Une tension. Before reviewing the contents of [20], it is 
worth digressing shghtly to put the results in the right perspective. 

In the mathematical Hterature, a clear distinction is made between two 
concepts: stability and minimality. In fact, given a functional ^ defined 
on a Banach space B, a point P G B is stable for !F if, for all Q G B, the 
function f{e) := J^{P-\-eQ) attains a minimum at £ = 0. A point P G B is 
a strict local minimum for .F in B if there is £ > 0 such that ^ ( P ) < ^{Q) 
for all <5 ^ P in B such that \\P - Q\\B < e, where || • || is the norm 
in B. Considerable hterature exists on the stability of capillary surfaces 
lying on homogeneous substrates, mostly in the absence of gravity: see 
e.g, [70, 71]. The question about strict local minima in capillarity theory 
has been treated in a series of papers by Vogel [72, 73, 74], who proposed 
minimality criteria arising from the requirement that the second variation 
5'^!F of the firee-energy functional !F be strongly positive, that is, there 
exists a positive constant k such that 5'^J^ > A:||/I||B, for all /i G B {see p. 
100 of [75]). Invoking strict positivity of the second variation, Vogel could 
elude the difficulty pointed out by Finn [76] who remarked that the mere 
requirement that the second variation of a functional be positive cannot 
guarantee by itself that the energy actually attains a minimum. 
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In [20], we systematically addressed the stability of the functional (2.1), 
leaving untouched the issue as to whether our stability criterion was related 
to the minimality of (2.1). To arrive at a correct expression for the second 
variation of (2.1), the crucial step was to properly take care of the con­
straints on the system, up to second order in £. Requiring (2.7) and (2.8) 
suffices to obey the constraints on the system up to first order in e but, in 
general, use of a single vector field u could lead to inconsistencies when the 
constraints are enforced to second order, as required in a stability analysis. 
Following Peterson [77, 78], instead of (2.6) we used the following mapping 

(5.1) pi-^Pe :=p- | - eu + ^^'i; 

to perturb the shape B, where v is a smooth vector field. Imposing the 
volume constraint up to second order in e requires, besides (2.8), the ful­
fillment of 

(5.2) / {u divgit — U'a-\- 2v)da = 0 , 

where diVgW := trVgW is the surface divergence of u, a := (Vgtt)^!/*, and 
V := V ' u. Similarly, contact between the droplet and the substrate is 
preserved up to the required order if 

(5.3) V • I/* = —-w • (Vsi/*)u on 5* 

is obeyed, in addition to (2.7). Prom (5.3), it follows that, in general, were 
the substrate curved and had we chosen v = 0, it would be impossible to 
ensure contact between the droplet and the substrate, up to terms quadratic 
in £, After painstaking computations, in [20] we arrived at the following 
expression for the second variation [79] of (2.1): 

(5.4) 

where: 

y(3 : = T{K* + K*2) ^ (y^^ . 1/5J - (V2r)i/5, • 1/5. 4- K^VST • 1/5, 

(5.5) + 7[ff * sin dc^- H cos dc sin dc 4- AĈ  sin^ i?c]• 

In (5.4) and (5.5) /f * and iiT* are the total and the Gaussian curvatures 
of «S*, 9i// := V / • u is the normal derivative of / on 5 , K* is the geodesic 
curvature of C, thought of as a curve on 5*, the field Us* is related to u by 

(5.6) u = siniJcWs*, 
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and a prime denotes differentiation with respect to the arc-length s of C. 
It is worth noting that S'^!F is independent of the field v. This is in fact 
obtained by resorting to (5.2), (5.3), and to the equilibrium equations (2.9). 
We can now derive from equation (5.4) a criterion for the local stability of 
the equilibrium configurations of (2.1), where local stabiUty means strong 
positiveness of 5'^T, in the same sense previously recalled, but here relative 
to the L^-norm over S. This is indeed equivalent to subjecting S^J^ to the 
further, non-homogeneous constraint 

(5.7) / uMa = 

in addition to (2.8) and requiring S'^^F to attain a positive minimum on the 
set of functions u satisfying (5.7). As is standard in such a case (see Sect. 
VI. 1 of [80]), we define the functional 

F[u] := - / {|Vstxp+au^}da4-A / uda-

(5.8) ^(^ ^^ 
- - / i jf̂  u^da + - y {^u,l - pul }ds, 

where A and /x are Lagrange multipliers associated with (2.8) and (5.7), 

(5.9) a:=2K-H-\-d^f, 

and the ratio 

(5.10) ^ = I , 

sets a natural length scale of the problem. Like r , ^ can be of either sign. 
The equilibrium equations associated with (5.8) are 

(5.11) AsU —au —X +fjLu = 0 on 5 , 

(5.12) Vsu • us - X{axu)y - Px^u = 0 along C , 

where x •= l/(sini9c)- By standard arguments [20], it is possible to prove 
that the least value of/i for which there is a solution to Equations (5.11) and 
(5.12) is also the minimum of 5'^T on the constraints (2.8) and (5.7). We 
thus conclude that an equilibrium configuration of a droplet with energy 
represented as in (2.1) is locally stable whenever the least eigenvalue ii in 
(5.11) is positive. 

We applied the stability criterion to find out how a line tension of 
either sign affects the stability of droplets laid upon a substrate. In [16] 
and [36], where the substrate was assumed flat and homogeneous, we fo-
cussed attention on liquid bridges and spherical sessile droplets. In [37] 
we explored the effects of the substrate^s curvature by studying a spherical 
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FIGURE 3. (a). Sketch of a liquid bridge lying on a flat, homogeneous substrate. 
The bridge is a straight circular cylindrical sector. (6). Every planar cross-section of 
the bridge orthogonal to BZ is a circular sector of radius R, centered at the point O. 
The contact angle i?c is the angle between the substrate and the bridge's tangent plane 
along the contact line C. The points on the bridge's profile are parameterized by the 
Z'coordinate along Cz and by the polar angle •&, Since we im.agine the liquid bridge as 
infinite along BZ, L is interpreted as the typical length associated with the distortion u. 

sessile droplet on a spherical, homogeneous substrate. In the sequel, we 
shall stress the results of [16] that are expedient to the computations of 
Sections 6 and 7. The geometrical setting is sketched in Figure 3 where a 
liquid bridge is modelled as a straight cyUnder of radius R. Since both w 
and r were assumed constant, we are focussing attention on the functional 
!F in (1.1). It is easy to prove from (2.10) that line tension does not affect 
the equiUbrium, since K^* = 0. Once cyUndrical polar coordinates (t?, z) 
are introduced, the eigenvalue problem (5.11)-(5.12) reduces to 

(5.13) 

(5.14) i r f ^ . g 
1?=l?c i^=^c 

— sin i?c cos z?cw('̂ c, ̂ ) 0. 

We imagine the liquid bridge as infinite along e ĵ, and we introduce 
the typical length L associated with the distortions the bridge undergoes. 
Thus, it is natural to require that 

(5.15) u(i?,0) = u(i9,I) = 0, Vi9e[0,i?c] 

Limiting attention to perturbations that do not introduce further symmetry 
breaking in the problem, we also impose the requirement 

(5.16) 
du 
d'd 

= 0 V2 € [0, L]. 
iJ=0 

We look for solutions to Eqs. (5.13) and (5.14) in the form 

(5.17) u{i9, z) = uoid) + Y, sin ( ^ ^ ) ""C'̂ ) • 
n=l ^ ^ 
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so that (5.15) is automatically satisfied. Attention is restricted to even 
modes to satisfy automatically the incompressibility condition (2.8), which 
now reads 

f dz f \ ( i? ,z)dt? = 0. 
Jo Jo 

Note that the addition of odd modes does not modify the stability threshold 
[16]. Furthermore, the 2;—independent mode uo{'&) compatible with (5.15) 
is uo{'&) = 0, whence A = 0 in (5.13) follows. By setting 

(5.18) Qn :--
/27rnfiy 

the projection of (5.13) onto the eigenspaces corresponding to diflFerent 
values of n gives rise to the following set of boundary value problems, with 
n G N, n > 1: 

r iinW + anUni^) =0 We (-^ c, ĉ) 

(5 .19) i Sin^ l9cUn{^c) + [^Qn - sini?cCOS1?c]Wn(^c) = 0 
[ Un(0 )=0 , 

where 

(5.20) an := /ifl^ + 1 - ^n , 

and the condition (5.19)3 reflects the requirement (5.16). According to the 
value of (Tn, Equation (5.19)i is solved by 

^n('^) = A cosh yJ—Orid if CTn < 0 

Wn(^) = C COS yfoW^ if (7n > 0 , 

referred to as the hyperbolic^ the linear, and the circular modes. The 
constants A, B, C are irrelevant in the sequel, as they are fixed by (5.7). 

The stability of linear modes was readily addressed by proving that 

if C( J , ^c) > 1 linear modes are stable; 
i f O < C ( § , i ? c ) < l linear modes are unstable. 

where 

(5.22) C ( | , ^ c ) := |sint?eCosi?c. 

Ascertaining the stability of circular and hyperbolic modes was more in­
volved as it required solving the transcendental equation 

R 
(5.23) gn = J sixi'dc cos Vc H T^^^n tan x„ — • J c \ ^ n ) ) 
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with Xn :— v ^ ^ c » for circular modes, and the transcendental equation 

R 
(5.24) ^n = -T-sint?. 

^ 
e o s ^ ? . - ! i ^ a : „ t a n h a : . 

for hyperbolic modes, where now Xn := yj—o-a^c- By (5,20) and the defi­
nitions of Xn, it follows that the pairs (xn, Q-n) for which 

fer (5.25) ^n = 1 T 

correspond to /x = 0, for either circular (—) or hyperbolic modes (+). 
Hence, the parabolas (5.25) can be referred to as the marginal parabolas 
for the corresponding class of modes. Then, we study the intersections in 
the set 

Q '= {(^n, Qn), Xn > 0, ^n > 0} . 

between fc{xn) -fhi^n)- and the marginal parabola for circular -
hyperbolic- modes. As discussed in [16], any marginal parabola divides 
Q into two sets: Sc and Uc for circular modes, Sh and Uh for hyperbolic 
modes. The modes associated with the sets Sc and Sh correspond to /x > 0 
and so are stable, whereas modes associated with Uc and Uh are unsta­
ble. It is then crucial to see whether the intersections between a marginal 
parabola and fc{xn) or fh{xn)i depending on the mode under study, lie in 
a stable set or not. The case where there are no intersections needs further 
study. In fact, if the graphs of fc{xn) or fhi^n) belong to either Sc or Sh-i 
the modes are stable whereas, if they lie within Uc or Uh they are unstable, 
regardless of the values of ^n- As proved in [16], different regimes occur, 
according to the value of C ( Y , ^ C ) , whether it exceeds 1 or not. The typical 
stabiUty diagrams for a positive line tension are reproduced in Figure 4 for 
a contact angle t?c < 7^/2, and in Figure 5 for i?c € (^/2, TT). Here, the value 
'Q of Qn at marginal stability is plotted against /2/^. Figure 4 shows the 
stabilizing effect of a positive line tension since the larger is ^, the smaller 
is ^, and in the Umit as ^ :^ i2 the size L of the destabilizing modes di­
verges. When dc € (7r/2,7r), the line tension maintains a stabilizing effect, 
but there always survive unstable modes over a size L sufficiently large: 
precisely circular modes such that 

5<^° V2^cj 

always induce instability. As proved in [16], the classical Rayleigh insta­
bility, occurring at ^ = 1 when t?c = 7r/2 is recovered in the limit where 
iJ /e>l . 

A different scenario occurs when the line tension is negative. The 
stability diagram in Figure 6 shows that conditionally stable liquid bridges 
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imr 
FIGURE 4. In this stability diagram we plotted the value 'Q of Qn o,t marginal 

stability against the dimensionless ratio R/(, for i?c = 35*̂ . When a pair (R/^^Qn) 
lies in the set S, the liquid bridge is stable against all modes, whereas when a pair 
{R/^,Qn) lies in the set U, the liquid bridge is unstable. The analysis in [16] proves 
that, when R/^ < (R/^)* := l/(sini9cCOSi?c); linear, circular, and hyperbolic unstable 
modes coexist whereas, when {R/0 > (R/^)*, only hyperbolic unstable m,odes survive. 
When {R/0 < (-^/O* *̂ ^ straight-line segment Qn = (H/f) sin i?c cos i?c (solid-thin 
line) marks the onset of instability for both linear and hyperbolic modes. However, the 
circular modes (dotted line) impose a strictier requirement on the stability of liquid 
bridges. In the limit where (R/0 ^ 1 *̂ ^ instability region is bounded by the line 
'Q •=• g°° := 1 + (i/'&c) , where i is the unique positive root of £ta.nhi = i?cCot i?c. 

-I. 

• i?/C 

FIGURE 5. The value "Q of Qn at marginal stability is plotted against the dimension-
less ratio R/i, for t?c = 125°. When a pair (i?/f, Qn) lies in the set S, the liquid bridge 
is stable against all the modes we have examined, whereas when a pair (-R/i, Qn) lies 
in the set U, the liquid bridge is unstable against circular modes. Along the curve of 
marginal stability 'Q ranges between g^ and g°° = 1 — (i/'&c)^, where i is now the unique 
positive root of £ tanh £ = —T?C cot i?c • Hence, regardless of the value of R/^, unstable 
liquid bridges always exist, provided Qn is chosen sufficiently small. 

exist also when the hne tension is negative. The intuitive expectation that 
they would be totally unstable is valid only when the absolute value of 
the line tension is sufficiently large, that is, for (it/|^|) < (JR/|^|)C. For 
(i?/|^|) > (iJ/|^|)c, alongside the lower limit of stability ^ which is related 
to the classical Rayleigh's instability, there is an upper limit g* on Qn 
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14.08 

Rm 
{Rm)c 

FIGURE 6. When R/\i\ > {R/\^\)c Ci 20.36, there are two values g and g* of gn 
that correspond to marginal stability, here plotted for '&c = 35°. When a. pair (i?/|^|, gn) 
lies in the set S, the liquid bridge is stable against hyperbolic modes, whereas the liquid 
bridge is unstable against hyperbolic modes when a pair (H/|^|, gn) lies in the setlA: both 
circular and linear modes are uneffective in this case. Clearly, the values of {R/\^\)c, 
"g, and g* depend on the contact angle 'dc. When i?c = 35° the comm,on value ofg and 
g*, when {R/\^\) = {Rl\i\)c is gn — 14.08. Finally, the asymptotic value g°° formally 
coincides with that pertaining to Figure 4-

and, hence, on the mode index n. This means that highly wiggly modes 
make eventually the liquid bridge unstable; however, the corresponding 
wavelength can be so short to render these modes physically irrelevant, as 
is definitely the case for R/\(\ sufficiently large. When R/\£\ < {R/\i\)c, all 
existing modes are unstable; this means that a large, negative line tension 
causes instabiUty of all liquid bridges. A similar result occurs also when 
^eG(7r/2,7r). 

Hence, we clearly find a scenario coherent with the unboundedness 
from below of (1.2) but, instead of seeking a different mathematical frame­
work to replace (1.2) with functionals that are bounded from below, as 
done in [12], we suggest a difi^erent avenue by saying that a limitation on 
the admissible perturbations should be introduced, since those with a too 
short wavelength would induce a fictitious instability, occurring at length 
scales where the model based on (1.1) is doubtful and where, moreover, 
other stabilizing mechanisms could be at work, especially those related to 
possible curvature effects on the line tension. Similar results have also been 
obtained for sessile droplets on either a flat [36] or a curved substrate [37]. 
However, a quantitative selection rule that could rule out wiggly modes is 
still lacking. 
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6. Wet t ing t ransi t ion. We just learnt that the ratio i?/^ plays a 
major role in the stability of a liquid bridge. However, the procedure fol­
lowed in Section 5 must be modified near the wetting or the dewetting 
transition since in that case the dependence of i i / ^ and the contact angle 
t?c on the absolute temperature T is relevant: in fact, near the transi­
tions we have R/^ = {R/^){T) and i?c = ''^c{T). This suggests to assume 
that, when i9c <^ 1 or T?C ^ ^ v ^ / ^ = (^/^)(^c)> where the dependence 
on T?c is obtained by inverting the function '&c{T) and replacing the result 
into (iZ/^)(T). The reader concerned with the somehow related field of 
phase-ordering kinetics is referred to [81], where recent developments on 
the determination of growth laws describing the time dependence of char­
acteristic length scales have been reviewed. Using a local stability analysis 
near the wetting or the dewetting transition might seem inappropriate, 
since most wetting transitions are first-order transitions. However, it was 
recently shown experimentally [82] that light alkanes on water undergo, 
under certain circumstances, a second-order (or critical) wetting transition 
besides a first-order transition. Furthermore, the behavior of line tension 
at wetting can be affected by the order of the wetting transition [83], and 
metastable states play a relevant role in the nucleation of wetting layers 
in the proximity of a first-order transition [84, 85, 86]. Hence, we think it 
appropriate to use the local stability analysis illustrated in Section 5 also 
close to wetting transitions. 

The wetting transition separates partial wetting, in which the contact 
angle of a droplet lies in (0, TT) from complete wetting in which i?c = 0, and 
so a layer of fluid separates the vapor fi:om the soUd phase. We assume 
that the line tension is positive, and postulate the following scaling law in 
the limit where tJc < 1-

(6.1) j-^ad-, 

for unknown parameters a > 0 and a. Here, we aim at exploring to which 
extent a scaling law like (6.1) influences the stability of a liquid bridge. To 
keep our approach as simple as possible, we perform the computations for 
liquid bridges. 

In [16] we showed that the circular modes at marginal stability are the 
pairs (xn, Qn) obtained by searching in Q the solutions of the equation 

(6-2) l - ( g ) ' = /.(x„), 

which gives the intersections between fc{xn) as defined in (5.23) and the 
corresponding (—) marginal parabola (5.25). As remarked in the caption 
of Figure 4, circular modes cannot induce instability when the function 
C(f ,i?c) in (5.22) exceeds 1. Since, by (6.1), C ^ a'd^'^^, we conclude that 
circular modes do not induce instability at wetting, when a + 1 < 0. On 
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the contrary, when a + 1 > 0, we repeat the same approach as in [16] to 
seek the smallest positive root Xn of Eq. (6.2) such that Xn ^ in?f, with 
b> 0 and p a non negative number. The method of dominant balance (see 
e.g. Chapter 3 of [87]) applied to Eq. (6.2) leads to 

l _ b 2 ^ 2 ( ^ - l ) ^ ^ ^ a + l 
i92 1 _ ! ^ + 6 2 ^ 2 / 5 
2 "" 

which is inconsistent, ii/3 ^ l . In fact, in the case 0 < /? < 1, the dominant 
balance would give 0 > —b^'&c = ai?̂ "*"̂  > 0, which is a contradiction. 
On the other hand, were /3 > 1, the dominant balance would be 1 = â "̂*"̂  
which, again is not compatible with a -I-1 > 0. Thus, we conclude that 
^ = 1 and 1 - fc2 = ai?^+i which holds, provided that 6 = 1. By (5.25), we 
conclude that circular modes induce instability whenever 

(6.3) Qn < at?^+i < 1, 

and so most liquid bridges are stable against circular modes. To gain fur­
ther insight into the behavior of Xn, we assume Xn ~ i?c(l + dbd^)t for 
unknown coefficients d and (5 > 0. It is not difficult to prove that a consis­
tent balance follows provided that d = —a/2 and J = a + 1. 

Finally, when a = — 1, the balance holds if/? = 1 and 6 = y/1 — a, and 
we conclude that liquid bridges are unstable against circular modes if 

(6.4) Qn<a<l. 

To detect instabilities induced by hyperboUc modes, we repeat a pro­
cedure similar to that followed for circular modes, by solving the equation 

(6.5) \+[-^] =a^ {€- oa+l 
t?2 ^2 

1 - Y - (1 - -~-)xntanhxn 

to find the intersection between fh{xn) defined in (5.24) and the corre­
sponding marginal parabola in (5.25). When a + 1 > 0, C{R/^,'&c) < 1 
holds and, as explained in the caption of Figure 4, liquid bridges are un­
stable against hyperbolic modes when 

Qn < ai9^+^ < 1 , 

that is, the same threshold as for circular modes. When a 4-1 < 0, we set 
Xn ~ M^ into Eq. (6.5) where 6 > 0, while /? can be any real number. In 
the sequel, we will skip the details of the analysis when similar to those 
illustrated in Section 3A of [16]. 

• a = —1. Here we arrive at ^ = 1, and b = ^/c^^. Were a < 1, we 
should have C(j>^c) < 1, falling in a case already shown. Thus, 
we conclude that instability occurs when 

Qn<0" 
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• a G ( - 3 , - 1 ) . The dominant balance hHl^^~^^ = 01?^+^ leads 
to 6 = y/a and /3 = ^ ^ G (0,1); correspondingly, the instability 
threshold has still the form 

• a = — 3. In this case /? vanishes and b is the unique positive root of 
the transcendental equation 6̂  = a(l — 6tanh6). Instability occurs 
when 

• a < —3. It is possible to show that the assumption Xn ~ 6tff, 
/3 7»̂  0, leads to an inconsistent balance. Setting /3 = 0 yields a 
consistent balance, provided that b is the unique positive root of 
the transcendental equation 

(6.6) 6 t a n h 6 = l . 

By inserting the ansatz Xn ~ 6 + o?^, with 7 > 0, into Eq. (6.5), 
and using Eq. (6.6), we arrive at 

(6.7) 1 + bH^^ + 2bcd2~^ + c2792(7-i) = ad^^-^^i -^-bcd^V 

A consistent dominant balance 6t9~^ = —act?^+^+'̂  requires 7 < 2, 
whence c = —6/a, and 7 = —(a 4-3) G (0,2) follow. Hence, we can 
account for scaling laws (6.1) with a € (—5,-3). When a < —5, 
we have to set 7 = 2 and c = — ̂ , so that the coefficient in front 
of 1?̂ +^ on the right-hand side of (6.7) vanishes. Moreover, we 
need further refinement of the putative behavior of x„ by setting 
Xn ^b — (3/6)??^(l -f di?^), and then iterating the procedure. Fur­
ther refinements are needed as soon as a = —7,-9, and so on. 
Though involved, this procedure always yields the same instabiUty 
threshold 

0n<b^K' 

regardless of the value of a < — 3. It should be noted that this 
procedure works under the assumption that no corrections arise 
due to further terms in the expansion of j . However, were these 
corrections taken into account, the threshold on Qn would not be 
affected. 

Finally, Equation (5.21) guarantees that linear modes can induce in­
stability when a -h 1 > 0. Precisely, if a = —1 instability occurs when 
^n < tt < Ij while, if a > —1, instability occurs when Qn < ai?̂ "*"̂ - The 
table in Fig. 7 summarizes the outcome of the analysis. The remarkable 
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\ a 

modes \ 

circular 

linear 

hyperbolic 

( - 0 0 , - 3 ) 

stable 

stable 

6tanh6 = 1 

- 3 

stable 

stable 

en < bH-\ 

a( l -6tanh6) = 6̂  

( - 3 , -1 ) 

stable 

stable 

en < ai??+^ 

- 1 

n̂ < a < 1 

en<a<l 

en < a, 

V a > 0 

( - l ,+oo) 

en < a^?+^ 

en < ai9^+^ 

en < a^^+' 

FIGURE 7. Instability thresholds when the line tension is positive. The values of 
Qn corresponding to unstable equilibria against a specific class of modes are tabulated 
for all the values of a in Eq. (6.1). 

result shown here is that instability thresholds closely follow the behav­
ior of the scaling law (6.1) only when a > — 3 while, when a < — 3, the 
thresholds saturate at 6^^~^, exhibiting a universal behaviour. 

As explained in [16], when the line tension r is negative, we can limit 
attention to hyperbolic modes whose behavior, setting {R/\(\) ~ a'd^ with 
a > 0, is dictated by 

(6.8) l+{j^ = - a T ? « + i [ l - ^ - ( l - ^ ) x „ t a n h x n 

a sUght modification of (6.5). When a < —3, Eq. (6.8) has no positive root 
Xn ~ 6i9f, with ^ > 0. Assuming Xn'^h-\- ct?^, with 7 > 0 yields 

1 + hH-'^ + 2hcd1-^ 4- cHf^-^^ 
oa+ifi L. UL ^c/^l4-fetanh&\ 

(6.9) = -^^c [1 - ''tanhb - -f [^ ^ j 

-a9^[tanh 6 + 6(1 - tanh^ 6)] 

which has the same structure as (6.7), and can be studied in a similar 
way. As a result, when a = — 3 two positive, finite roots Xn ~ 61 and 
Xn ^^ 1)2 > hi exist, where bi are the positive roots of the transcendental 
equation 6̂  = —a[l — fctanh6]. Liquid bridges are unstable when either 
Qn < b\'d-'^ or Qn > 6|i?-2. When a < - 3 (6.8) has still a finite root 
x^' - 6, where b is the unique positive root of the transcendental equation 
6tanh6 = 1. Moreover, (6.8) has a further root Xn ~ biT9^^, provided 
that /3i = — (a H- 3) < 0, and 61 = a. Finally, the same argument can be 
used to prove that (6.8) has no positive root â n, when a > —3 and so, 
as discussed in Section 5, Hquid bridges are unstable against hyperbolic 
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modes \ 

circular 

linear 

hyperbolic 

( - 0 0 , - 3 ) 

do not exist 

do not exist 

Qn < bH-'^, 
b tanh 6 = 1; 

- 3 

do not exist 

do not exist 

Qn < 6f^^^ Qr. > 6 i C ^ 

—a(l — bi tanhfet) = 6? , 61 < 62 

("3,-foo) 

do not exist 

do not exist 

unstable 

FIGURE 8. Instability thresholds when the line tension is negative. The unstable 
sets of Qn for a specific class of modes are tabulated for all the values of a in Eq. (6.1), 
When a > —3 hyperbolic modes induce instability regardless of the value of Qn • 

modes, regardless of the value of Qn* On the other hand, when a < 3, 
liquid bridges are unstable when either Qn < b^'0~^ 01 Qn > a 
The results we obtained are summarized in Fig. 8. 

7. Dewet t ing Transit ion. The dewetting transition corresponds to 
the case where T9C — TT: it separates partial wetting from the situation 
in which the liquid does not wet the substrate at all. Apart from minor 
changes, it can be studied in the same way as the wetting transition. As 
usual, we first suppose that the Une tension is positive. Since t?c — ^, 
we already know from the general analysis of Section 5 that only circular 
modes can induce instability, and so we can restrict attention to Eq. (6.2) 
which now, by setting 1?̂  = TT — £, can be recast as 

(7.1 l ~ ^ l-f — = e - 1 + 4 - - i 4 . - . ) x ^ t a n a : n 

Starting with positive line tension, we now assume 

(7.2) j'^as'^ 

with a > 0, and look at the asymptotic behavior of the smallest positive 
root Xn of Eq. (7.1). As a result, Xn cannot tend to 0, since the inconsistent 
dominating balance 1 = —ae^'^^ would follow. Similarly, assuming x„ ~ 
I ^ 7r/2 would also lead to an inconsistent balance. Thus, we are left with 
Xn —̂  7r/2. The value of a affects the rate of convergence of Xn to 7r/2, but 
does not affect the instability threshold which is then independent of the 
scaling law (7.2). Indeed, instability occurs when ^n < | -
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When the line tension is negative, circular modes should satisfy the 
equation 

Again, using the general case treated in Section 5 as a guide, and setting 
Sr ~ ae^, we conclude that if a + 1 > 0, and so ae^"^^ < 1, instability 

occurs whenever Qn < as^'^^. On the other hand, if a + 1 < 0 Eq. (7.3) 
has a unique root in the interval [0,7r/2]. It is not difficult to prove that 
if either a:n —> 0 or Xn '^ ^ 7̂  TT/2, an inconsistent balance would follow 
so that we are led again to suppose that Xn -^ 7r/2: from this point on, 
the analysis follows the same avenue as for positive line tension. The case 
where a = — 1 requires Qn < CL for instabiUty to occur, regardless of the 
value of a > 0. 

By use of (5.21), it is easy to prove that linear modes cannot induce 
instabihty when a < — 1. On the contrary, when a = —1 they induce in­
stability for liquid bridges such that Qn <a <1, whereas they are harmless 
when a > 1. Finally, when a > — 1 instability against hnear modes occurs 
when ^<a i9^+^ 

As to hyperbolic modes, we have to study the equation 

(7.4) 1 + $H)- ae 
a+l 1 - ^ + 

TT \ TT/ 
Xntanh Xn 

which, again, gives rise to two different regimes according to whether a -f 
1 < 0 or a + 1 > 0. In the former case ae^'^^ > 1 and Eq. (7.4) has a 
unique root. By supposing Xn ~ be~^, for positive constants b and (3, the 
dominant balance yields 

62 
-7:6' 

-2(3 
= ae 

a + l 
TT 

and three cases arise. 
• a = —3: we need to impose a H- 1 = —2/3 = —2, so that /? = 1, 

while b is the unique positive root of the equation 62/[7r(6+7r)] = a. 
Whenever Qn > (6/7r)^e~2, Uquid bridges are unstable. 

• a€(—3,—1): the dominant balance now reads 

62 ̂ -213 ^ ^^a-f 1 

from which we obtain 6 = TTy/a and /? = —[(1 + ct)/2] £ (0,1). 
Instability occurs when Qn > as^'^^, 

• a < —3: the relevant dominant balance is 

{^- £-2^ = a£"-^+2 
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modes \ 

circular 

linear 

hyperbolic 

( - 0 0 , - 3 ) 

. n < | 

stable 

Qr. > a£2(-+2) 

- 3 

. n < | 

stable 

i 2 

n(^+b) - " 

(-3,-1) 

e n < | 

stable 

Qn > ae"+i 

- 1 

Qn <a, 

Va>0 

Qn<a<l 

Qn>a, if a > 1, 

unstable, if a € (0,1) 

( - l , + o o ) 

9n < ai^^-^"^ 

Qn < ai9^+^ 

unstable 

FIGURE 9. Instability thresholds are tabulated, for all the values of a in Eq. (7.2), 
and for circular, linear, and hyperbolic modes. Here, we are near the dewetting transi­
tion and the line tension is negative. 

whence 6 = ny/a and /? = — (a 4- 2) > 1 follow. The bridges 
satisfying Qn > ae^^^"^^^ are unstable. 

When a = — 1, instability occurs for ^n ^ a, if a > 1, whereas all 
liquid bridges are unstable against hyperbolic modes if a G (0,1). Finally, 
when a > —1 the same analysis just performed makes us sure that Eq. 
(7.4) has no roots, and so all hyperboUc modes induce instability. Fig. 9 
summarizes the outcomes just illustrated. In general, while linear modes, 
when they exist, induce an instabihty threshold that mirrors the scaling 
law chosen in (7.2), for circular and hyperboUc modes this is true only up 
to a certain extent: a > —1 for circular modes, a < —1 for hyperbolic 
modes. Otherwise, the modes induce an instability threshold independent 
of the choice made in (7.2). 

8. Conclusions. In this paper, we reviewed some topics concerning 
line tension modelling in the wetting science. We stressed how line tension 
affects both the equilibrium and the stability of a sessile droplet laid on 
a rigid substrate. In particular, we reviewed recent work on the stabiUty 
of Uquid bridges that confirmed the crucial role of the sign of line tension 
on stability. In fact, when line tension is negative, destabilizing modes 
always exist. However, the unstable modes involve wiggly corrugations of 
the contact line that manifest themselves at a length-scale that could be 
smaller than the length-scale at which the model we adopted is reliable. 
This calls for an effective criterion that can rule out from the beginning the 
perturbations that are too wiggly to be physically meaningful: as far as I 
know, no precise, quantitative criterion has been proposed. The computa­
tions illustrating the behaviour of liquid bridge close to either the wetting 
or the dewetting transition reveal that information on the stability of Uq­
uid bridges could be used to infer the relation between line tension, surface 
tension and the contact angle close to the transition. As a result, we proved 
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that the instabihty thresholds follow the scaling law only up to a certain 
extent, while they exhibit a universal behaviour when the exponent a in 
(6.1) ranges suitable intervals. 
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VARIATIONAL PROBLEMS AND MODELING OF 
FERROELECTRICITY IN 

CHIRAL SMECTIC C LIQUID CRYSTALS* 

JINHAE PARKt AND M. CARME CALDERERt 

Abstract. This article deals with modeling and analysis of chiral smectic C liquid 
crystals and their ferroelectric phases. The polarization field plays an important role in 
the problem. The total energy of the smectic C* contains the Oseen-Frank free energy 
of the nematic, together with smectic terms quadratic in the second order gradients of 
the complex wave function describing smectic layering, and expression for the surface 
energy. In addition, the polar self-interaction is taken into ax:count, together with the 
electrostatic energy associated with an external electric field. The case of spatial variable 
electric fields is also addressed. Stability properties of the solutions are discussed to 
determine the interplay between the surface and electric energy terms. The physically 
relevant boundary conditions of the admissible fields bring out analogies to the problems 
of vortex tubes and vortex sheets in fluid mechanics. 

Key words. Liquid crystals, smectic C*, chiral, ferroelectric, minimizer, electric 
field, surface energy. 

AMS(MOS) subject classifications. 49J40 (Variational Methods), 49J45 
(Methods of semicontinuity; relaxation), 76A15 (Liquid crystals), 82B21 (particle sys­
tems, continua), 82D45 (Ferroelectrics). 

1. Introduction. In this article, we study chiral smectic C liquid 
crystals and their ferroelectric phases, addressing the roles of the flexoelec-
tric and spontaneous polarizations. We investigate existence of energy min-
imizers, their characterization, and discuss stability properties of critical 
points of the energy in order to examine the relationship between applied 
electric fields and surface energy contributions. 

We will use the conventional notation C* to denote smectic C liquid 
crystals with chirality. Upon lowering the temperature, the orient at ionally 
ordered nematic liquid crystals develop positional ordering of the molecular 
centers of mass forming smectic phases. In the smectic A, molecules tend 
to orient themselves perpendicular to the layers. In the lower temperature 
smectic C phase, the average angle of molecular alignment with respect to 
the layer normal takes values between 20 and 35 degrees. This angular tilt 
is responsible for electric polarization; in smectic C, the polarization field 
P is perpendicular to both the nematic director n and the layer normal 
Vcj. The scalar field a; denotes the phase of the complex order parameter 
ip ~ pe^^ that describes the layer structure: layer locations correspond to 
level surfaces u — constant; p represents the density of molecules arranged 

*This work has been partially funded by the Institute for Mathematics and its Ap­
plications (IMA). 

^School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA 
(jinhaeSmath.umn.edu and mccSmath.iimn.edu). 
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in layers. 
Some smectic phases are also chiral. In addition to layer ordering, 

smectic C* molecules may tend to follow a helical pattern with the polar­
ization vector field varying periodically in space. This may yield a zero 
average polarization. However due to an electric field effect or to surface 
interactions, the helix may be suppressed, inducing uniform or splayed 
ferroelectric phases with nonzero net polarization [22]. In display applica­
tions, the oppositely polarized ferroelectric states allow the bistable switch­
ing such as in the case of the surface stabilized ferroelectric liquid crystal 
(SSFLC) device [5]. 

The total energy of the problem consists of several parts: the Oseen-
Frank free energy of the nematic, the smectic, the surface energy, the polar 
self-interaction energy, and the electrostatic terms associated with an ap­
plied electric field. 

We model the smectic free energy according to the covariant Ginzburg-
Landau form developed by Chen and Lubensky [3] that applies to both 
smectic types, A* and C*; such functional contains terms quadratic on the 
gradients of i/?, with temperature dependent coefficients. In the case of 
the smectic A, the energy is minimized with n parallel to the layer normal 
Vo;, and with the wave number equal to the material parameter q. The 
energy functional may fail to be positive definite at temperatures below 
the transition from smectic A to smectic C allowing for minimizers with 
n tilted from VCJ. For the problem to be well-posed, one approach is to 
allow quadratic terms on second derivatives of -0 [3, 15]. The covariant 
nature of such gradients brings the term | AV'P rather than the full second 
derivatives matrix. However, we show coercivity of the higher order energy 
within the class of fields satisfying physically relevant boundary conditions 
on a bounded domain. One such class of boundary conditions corresponds 
to the layers reaching the boundary in a perpendicular fashion, with the 
prescribed wave number. For another class, the layers reach the boundary 
in a tangent. The first case corresponds to the geometry of the Clark-
Lagerwall effect in ferroelectric displays [5, 11, 24]. 

We need the requirement that the boundary of the domain is piecewise 
smooth, in order to treat configurations without point defects. Moreover, 
we also assume cylinder-like geometries. Specifically, the domain and its 
boundary can be accurately described by a vortex tube and by a vortex 
sheet, respectively, with boundary conditions for Vo; being analogous to 
those of the vorticity field in fluid mechanics [4]. 

In addition to including an intrinsic cholesteric twist contribution, the 
Oseen-Frank energy also involves the analogous term to account for intrinsic 
bending not usually found in nematic modeling [7]. The latter results from 
the molecular structure that induces polarization and enters the model 
through the bending energy term Ksln x (V x n) + P|^. Specifically, P = 
^Q|vlt!xnP ^^^ significance of PQ is discussed later. Although the interaction 
between P and an applied electric field may be large in comparison with 
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the dielectric term of ordinary nematics, it may not be sufficiently large as 
to justify the inclusion of self-interacting effects. This case corresponds to 
flexoelectric polarization with PQ being a material constant. Most studies 
of ferroelectricity of smectic C* liquid crystals are consistent with such an 
approach. The treatment presented in this article includes energy of self-
interaction, and thus allows for spontaneous polarization; PQ is thus taken 
to be a field of the problem. 

We also carry out asymptotic characterizations of the minimizers as 
relevant energy coefficients become unbounded. For instance, the unbound-
edness of K2 and Ks as the temperature approaches the transition value to 
smectic C* yields helical configurations. The unboundedness of the smectic 
coefficients Ca = C|| — C± and D give uniform layer structures. Likewise, 
the unboundedness of Ki at temperature lower than the smectic A to smec­
tic C transition produces ferroelectric states. 

We finally give a survey on stability results to see how the competing 
effects of the surface energy and electrostatic energy determine the transi­
tions between helical and ferroelectric phases [8, 9, 10, 19, 20, 21]. 

Although the net polarization of the C* phase is nonzero, it is not 
felt in the environment. This is a main difference between ferroelectricity 
in liquid crystals and in solids: the force on the boundary of a polarized 
domain is not zero, whereas no force is measured in the case of the liquid 
crystal. The latter is due to a rearrangement of charges (not occurring in 
solids due to the much more rigid structure and location ordering) on the 
bounding plates that exerts a force opposing that of the polarization. 

Mathematical analysis of the phase transitions between chiral nematic, 
smectic A*, and C* liquid crystals has been carried out by Joo and Phillips 
[13]. For analysis of the phase transition between chiral nematic and smec­
tic liquid crystals, with a special emphasis on the analogies of the transition 
between conductor and superconductor as proposed by de Gennes [7], the 
reader is referred to the article [1]. For comprehensive treatments of the 
physical phenomena and modeling of ferroelectric liquid crystals, we refer 
to the books by Lagerwall [14], Pikin [22], and by Musevic, Blinc and Zeks 
[16]. Studies of periodic ferroelectric and antiferroelectric phases and anal­
ysis of time dependent problems arising in switching are carried out by the 
authors [18]. 

2. Free energy functions of smectic materials. Equilibrium con­
figurations of a smectic C* liquid crystal subject to an applied constant 
electric field E correspond to quadruples of fields (V'jn, E, P) such that 
^ : f2 -> C, n : n -> 52, E : n -^ 7^ ,̂ and P : n -> Tê  that minimize the 
total energy, 

(2.1?(^, n, P) = / [FN(Vn, n) + Fsmi'^^^. Vi/̂ , Vn) + FEiec{n. E, P) 
Jn 

4-FpoKn,P,VP,V^)]cix+ / F5nr/(n,P,i^)rf5, 
JdQ, 
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where FN,Fsm, Fsurf denote the Oseen-Frank, the smectic, the surface en­
ergy densities ([6], page 99), and FsiecyFpoi are energy densities associated 
with the electric field and polar self-interaction, respectively. 

2.1. Nematic and Smectic free energy. The Oseen-Frank free en­
ergy density is given by 

FN = Ki(V • nf 4- K2{n • V x n -h r)^ -h Ksln x (V x n) + b x n|^ 

(2.2) +{K2 + K^)itr{Vnf-{V'nf). 

where Ki,i = 1,2,3,4 denote elasticity constants. The scalar r represents 
the chiral pitch of the helical structure of the cholesteric phases, and b x n 
is an intrinsic bending stress. The vector b is parallel to the layer normal, 
Vcj. Such a term appears only in connection with the modeling of the 
smectic C* since nematics with intrinsic bending have not been observed. 
Both quantities result from the loss of mirror symmetry of the smectic C* 
phases. The fourth term in F^ is a null-Lagrangian; its integral is deter­
mined by n on dft. The free energy density associated with the smectic 
layering follows the covariant form presented in [3]: 

Fsm = D(B^ij){B^i;y + [q,n,n,- + Cj_{6ij - n,n,)](D,^)(D,-V^)* 

(2.3) +rW2 + | | ^ | ^ 

with D = V - ign and r = a{T -T*),a> 0\ here T denotes the (constant) 
temperature of the material and T* is the transition temperature from 
nematic to smectic A. The model (2.3) yields the de Gennes model for 
smectic A* when C|j — C i = 0 and D = 0. The smectic C phase is 
characterized by 

(2.4) C± < 0. 

Moreover, Cx > 0 in the smectic A* and Cj_ = 0 characterizes the transi­
tion to smectic C. Equivalently, (2.3) can also be written as follows: 

(2.5) Fsm = D\B^^\^ + Cx|DV |̂2 + C,|n • D̂ l̂̂  + r|^|2 + | | ^ | ^ 

Remark. The first term in (2.3) is obtained from reference [15] and is a 
modification of D±{Sij — ninj){Ski — nfcni)(DiDj)(DfcDi)* in the original 
Chen-Lubensky model. The purpose of introducing the new term is to 
obtain coercivity of the energy. 

2.2. Flexoelectric and Spontaneous Polarization. The presence 
of the intrinsic bending in the smectic C phase causes the material to be 
polarized. The polarization field P, the volume dipole density, is given by 

(2.6) P = P o , * ' " " 
'Ibxnl' 
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where PQ is a material parameter. We observe that such a polarization is a 
secondary field determined from the geometry of the director and the layers; 
this type of ferroelctricity is usually known as improper [22]. However for 
some smectic materials the modulus of P is so large that the equivalent 
point charge distribution, — V • P, generated by the polarization cannot be 
neglected. Then the energy associated with the charge distribution has to 
be included in the model. Although the direction of P is still as in (2.6), 
its modulus PQ becomes a variable of the problem. In such a case, |P | is a 
variable of the problem, and we represent P as follows: 

Vu; X n 
p = ipi-^ -, if Vu; X n ^ 0 

(2.7) |P | = 0, if Vu; X n = 0. 

One important difference between ferroelectric smectics and solids is the 
freedom of the polarization field to rotate in the layer plane in the former 
(P is a Goldstone variable) as opposed to taking specific values determined 
by the solid lattice [14]. Because of this vectorial symmetry the energy 
density of the field P contains, together with the term (V • P)^, a term of 
the form |VP|^ which penalizes interfaces in the material: 

Fpoi = Po[Bi|VPp + B2IV . P|2 + ao|P|2 + 6o|P|' 

(2.8) + l | ( | V c . x n | ) P - | P | ( V u ; x n ) | 2 ] , 

where Bi > 0, B2 > 0, Po > 0, ao and 60 are temperature dependent 
parameters. 

The last term of the previous equation penalizes departure of P from 
the parallel direction to Vo; x n, in the case that Vco x n 7̂  0. One can use 
|P — |P| iy^^"[ P as a penalty term, but it may cause a discontinuity of P 
when Vcj x n = 0. 

2.3. Anchoring Energy. The presence of a nonzero polarization in­
duces a surface charge on the boundary which, in turn, requires an opposite 
charge layer in the bounding plate; likewise, an analogous layer if the liq­
uid crystal is surrounded by fluid. This boundary effect can be taken into 
account through an effective anchoring energy, which depends on the po­
larization. We also include a quadratic term in the polarization to account 
for the Rapini-Pouplar anchoring energy [7, 14]: 

(2.9) Esurf = j ^ ^ K ( l - - ^ ) + OJri^ - - ^ ) 

(2.10) +ojn{l-ao{ja-vf)dS, 

where a;r,Wn,Wp and |QO| < 1 are material constants, and u denotes the 
unit normal to the surface. 
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2.4. Electrostatic energy. The electrostatic energy is given by 

(2.11) FEiec = - ^ D . E , 

(2.12) D = £E + P , 

(2.13) e = s±I-^€an(^n, 

where s, e±, and Sa denote the susceptibihty tensor, dielectric permittivity, 
and dielectric anisotropy, respectively. Note that (2.11) can be written as, 

î Elec = - i ( ^ E + P ) . E 

= - ^ ( ( ^ i - ^ + ^an (8) n ) E -f- P ) • E 

(2.14) =-\('^ 1^1' + ^«(^ • E)2 + P • E) . 

In the case of variable electric fields, the total energy may be unbounded 
from below due to the term FEIOC] we then characterize equilibrium config­
urations as critical points of S subject to constraints 

(2.15) V x E = 0, V - D = : 0 . 

Assumptions on the constitutive parameters include 

(2.16) ^ > 0, g > 0, r > 0, r < 0, D > 0, Cx < 0, Ca > 0, 

(2.17) ci>K2 + K^> Co, Ki>K2-^ K4, 

(2.18) K3>K2-^K4,0>K4, 

(2.19) Bi > 0, J52 > 0, 60 > 0, Po > 0, 

(2.20) Up >Q,uJr > 0 , cjn > 0 , 

where ci and CQ are positive constants. The latter inequalities are necessary 
conditions to ensure coercivity of the energy [1]. 

3. Exis tence of minimizers. In this section we study existence of 
minimizers of the total energy discussed in the previous section. We assume 
that the conditions on the constitutive parameters hold. Let H be a simply 
connected domain, either bounded or confined between two plates, O C 
{x : \x\ < L}. We let the boundary boundary dft be C^-surface. 

Let 1/; = pe'^. Then 

Fsm = D\B^ij\^ + Cx|DV^|2 + Cain • D^\^ 4- rl^/^p + | | ^ | 4 

= D[{Ap - p\Vuj - gnp)2 + (pV • {Vuj - ^n) 

4-2Vp . (Va; - ^n))^] 4- C±[\^pf + p''\Vuj - qn\'^] 

(3.1) +Ca[{Vp • n)2 + p 2 ( y ^ . ^ _ ^)2] ^ ^^2 ^ £^4 
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Prior to addressing the question of existence of minimizers, we will discuss 
the type of domains and boundary conditions to consider. For this, we 
review the notions of vortex sheet and vortex tube in fluid mechanics and 
seek analogies with the present physics. 

In three-dimensional flows, a vortex tube consists of a two-dimensional 
surface S, nowhere tangent to the vorticity field ^, with vortex lines drawn 
through each point of the bounding curve C of *S. One class of domains 
that we consider have the geometric structure of a vortex tube. A precise 
definition is given as follows. Let S be a plane surface diff'eomorphic to a 
disc *So, and consider the cylinder So x 7Z. The resulting tube is a three 
dimensional domain diffeomorphic to the cylinder. Moreover, we take ft 
to be a portion of the vortex tube, with lateral surface E contained be­
tween surfaces Si and S2, with contour curves Ci and C2, respectively. The 
vorticity field ^ is everywhere tangent to E. 

-F-i'K------'''--^ 

'^-'—-y- -J 
E 

FIGURE 1. A vortex tube 

Since in the present work we do not address defects, we construct ft as 
follows. We consider a cylinder-like domain with lateral surface E having a 
nonzero tangent everywhere. Cross sections of the cylinder perpendicular 
to the tangent vector are two dimensional surfaces S diffeomorphic to a 
circle. The cylinder-like domain is bounded by two plane cross sections Si 
and S2, with unit normal i/i and 1/2, respectively. So, 

(3.2) ft = {x£n^ bounded by dft = EuSiUS2}. 

The following lemma based on Gauss theorem motivates the boundary 
conditions taken into account. 

LEMMA 3.1. Let Q, 6 7Z^ be as previously defined. Let f be a smooth 
scalar function defined in H. Then f satisfies the following identity: 

f |A/|2 = / [V • iVf)iu • V/) - i v ( | V / | 2 ) . u] dS 

(3.3) + Yl f(9idjf)^. 

Let A; > ^ be a given constant. We require the following boundary 
conditions to hold on dCl: 

Vu; • 1/ = 0 on S, Vu; - ui = k, on Si, i = 1, 2, 

(3.4) \Voj\^-=k^, on E u 5 i U 5 2 . 
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Such relations correspond to smectic layers reaching the boundary in a 
perpendicular manner, with a prescribed wave number k. The case with 
smectic layers tangent to the boundary is treated elsewhere. Moreover, for 
simplicity, we restrict ourselves to the case that p is constant (say p = 1), 
that is, no nematic defects are present in the sample, and rewrite the 
smectic energy as follows: 

Fsm = D{Auj - qV . n)2 + D ( | V U ; - qn\^ + ^ ) ' 

(3.5) +Ca(Va; • n - g)2 \2 ^1 
4 ^ 2 ' 

The admissible set is defined as follows: 

(3.6) A'= {(n,P) e W'^\n,S^) X W^i'2(n,R^) : ||P||oo < Po, } 

(3.7) n = {u;e W^^^in) I uj satisfies (3.4) on dO,}, 

(3.8) ^ = Wx A', 

where PQ is the given polarization saturation constant depending on the 
material and temperature, and A: > g is a prescribed constant related to the 
wave number of the layers. We rewrite the energy to minimize as follows: 

S= f {Fsmi^co, Vo;, n) + FN(P, n, Vn) + Fpoi{n, P , VP, Vu)} dx 
Jn 

(3.9) + / Fsur{n,P,u)dS. 
JdQ 

LEMMA 3.2. The admissible set A is non-empty and the inequality, 

inf S(n,P,uj)<M 

holds for some M > 0. 
We note that for all n € W^'2(0, S^), the identities 

tr{Vnf = |Vn|2 - |V x nf, and 

|V X n p = |n • V X n p -I- |n X V X n|^ 

hold. Using these identities, we get 

Fiv(P,n, Vn) = (Ki - K2 - K^){V • n)^ + {K2 - K){n • V x n -f T ) ^ 

+{K3 - K)\n X V X n + P|2 + (̂ ^2 + i^4)|Vn|2 

+K{\n • V X n + r\^ -h |n x V x n + P|2 - {K2 + K^)\V x n 

+Po[Pi|VPp -f B2\W • P|2 -f ao|P|2 4- 6o|P|' 

+ -^ | ( |Vu ;xn | )P - |P | (Va ;xn) |2 ] . 
s 
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We obtain the following inequalities: 

i^ |n X V X n + P|2 -f X ( n . V X n -f r)2 - {K2 + ^4)!V x n p 

> K(^\V X n|2 - 2r2 - 4|P|2) - {K2 + K4)|V x n\^ 

> (ci -K2- K4)|V X n|2 - K2(4 |Pp -f 2r2) 

(3.10)>-2ii :2(2 |P |2 4-r2) 

It follows from (3.10), (3.10), and Lemma 3.1 that ^ is bounded below and 
coercive in A. Therefore, we have 

Ml < inf ^ (n ,P ,c j ) < 00, for some Mi G R. 

(n ,P,a;)€^ 

Let {(n-^, P-^,u;^)} be a minimizing sequence for S. Since |n-^| = 1, we get 

n̂ " - - n ' ^ i n l ^ i ' 2 ( n ) , 
jjj —> n°° almost everywhere in Q, and 

as j —^ 00. Furthermore, we have 

n-̂ ' X V X n '̂ ^ n ^ X V X n°^ in L^(n), 

n-?" . V X n̂ " - - n°° • V X n ^ in L^i^t), and 

n^ X V X n '̂ . P^' -> n ^ X V X n ^ • P ^ in L\n) 

as j -^ 00. We also show that the sequence 

(|(|Vu;^' X n^|)P^' - \F^{VJ x n^)|^) 

converges to 

\{\Voj^ X n ^ | ) P ^ - |P^ |(Vu;°^ X n ^ ) ^ 

in L^{n) as j —̂  cx). 
Note that for all j , 

(3.11) f \VJ\^d^<2 [ {\VJ -qn^\^ + q^)d^, 

and 

Jn Jn 

(3.12) < 2 / ( | A u ; ^ - g V - n ^ f + ^ 2 ( y . ^ j ) 2 ^ ^ 
70 
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hold. From (3.11), (3.12), and Lemma 3.1, we get 

||̂ -̂ ltw 2̂,2(ĵ ) < R, for any i 

for some R> 0, and thus 

uj^ -^ oj^ in W'^^'^in), asj-^oo. 

Since cjp(l — fe) H-a;^(l — \^J )-fa;n(l - (n • i/)^) is continuous, it 
follows that S is weakly lower semicontinuous, that is, 

^ ( n ^ , P ^ , a ; ^ ) < lim ^(n^P^u;^) . 
j—*oo 

Therefore we have the following theorem: 
THEOREM 3.1. There exists a minimizing triple (n, P , a;) of the energy 

functional S in A. 
Remark. The proof extends with no additional difficulty to the case that 
the variable p is included in the model. 

4. Asymptotic form of the energy minimizers. In this section, 
we aim at providing a classification of the energy minimizers previously 
obtained. In particular, we wish to identify the smectic layer geometry and 
identify parameter conditions leading to helical director configurations in 
the bulk with zero average polarization, as well as those giving homoge­
neous ferroelectric states. For this, we will consider a rectangular domain 
between two parallel plates: 

n = {x= {x,y,z) : 0<y,z < L, 0<x < d,}, 

for fixed 0 < L, 0 < <i. Let i, j and. k denote the corresponding orthonormal 
system of vectors. 

4.1. Helical energy minimizers. We determine the structure of 
the energy minimizers (n,a;,P) when K2 and K3 as well as the smectic 
coefficients dominate over the polar energy and surface energy parameters, 
and C± < 0. Such a situation arises at temperatures below the threshold 
of the smectic A to smectic C transition yielding helical configurations of 
n and P. It is well known that in the higher temperature transition from 
nematic to smectic A, K2 becomes unbounded and the smectic coefficient 
C± > 0. 

We take the admissible set such that 

(4.1) ^ = ̂ ^/w + l-
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We consider admissible fields such that n makes a constant angle a with 
the layer normal vector Va;. We take a such that 

(4.2) *--=V§.-
Specifically, we let 

(4.3) I 

V 

A simple calculation gives 

r no = (acos^ ,c i s in^ ,c ) , 
^ \c \ a = sina 7<̂  0, c = cos a ^ 0, ^ = 2U^^ 

Po = f ( - s i n ^ i + cosifj), 
[ a;o = A:z, /c= f, i/ = i. 

Vcjo • no = g, AcJo = 0, |VcJo - ^nol^ 
2D ' 

V • no = 0, no • V X no + r = 0, |no x (V x no) -f Po| = 0, 

V . P o = 0, |VPo| = ^ . 

We observe that the quantity tana = y 2 ^ ^ is of the order of tan |̂  
according to experimental measurements of the director tilt angle. This 
together with available information on the wave number q in the smectic A 
phase allows us to determine the relative value of the smectic parameters 
jCxI andD. 

The total energy of (4.3) is given by 

-f-ao + ^O-^T^)] + L(CpUJp + CrUJr + CnUJn), 

where Cr^Cp, Cn are expressions involving a,c,q and r. 
We estimate the energies: 

Esurf > -(2|a;p| + 2 K I + |cx;n|(l + \a\)L'', 

{Fsm + F ^ + Fpot) ĉ x > - [ ^ + ^^(aopo-4c0^ ^ 2c,r']dL\ I 
Letting (n, P,w) denote an energy minimizer, we get 

0 < f (n,P,w) + (2|wp| + 2|w,| + |w„|(l + |a|)L2 

_Lf^i , u («oPo-4ci)2 2 2 
+l4D^ + ''° 4^^ + 2 c , r ] d l . 

< £o + (2iwp| + 2|u;,| + K | ( l + |a|)L2 
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Note that the quantity on the right hand side of the inequahty is indepen­
dent of D,C±,Ki,K2 and K3, with the only Ki constants appearing as 
the sum K2 + K4. The following estimates follow from (4.4). 

T H E O R E M 4 .1 . Let q > 0,T > 0 be fixed. Suppose that the constitutive 

parameters satisfy assumptions (2.16) and (2.20). Suppose that K2,Ks > 

4ci and 0 < 2^^ — -'•• / / (^ i^P?^) ^̂  ^ minimizer of S, then we get 

(4.5) IKVo; X n ) | P | - P{\Vu> x n | ) | | i , j , < e^£o, 

(4.6) | | V „ | | , . < ^ , 

(4.7) | | „ x V x n + P | | i , „ < _ ^ | ^ , 

(4.8) l l - V x n + < , < - ^ , 

(4.9) <Vw-n^J^t,<|„ 

(4.11) | |VP||2,n < 

1 - , -..2 ^ ^0 
2, 

So 

(4.10) | | _ V a ; . n - l | | ^ , o < 7 f . o^rid 

BQPO' 

Next, we proceed to take limits in (4.5)-(4.10). We use the following 
representation for n: 

n = sin ^ cos (̂ i + sin 0 sin 0j -f- cos ^k, 

where (t> = 0(x, y, z) and 0 = 0{x, y, z) are functions resulting from energy 
minimization. 

T H E O R E M 4.2. Suppose that the hypotheses of the previous theorem, 
hold. Then the energy minimizing fields (n ,P ,a ; ) satisfy the following linn-
iting relations: 

(4.12) lim Vuj-n^q, 

\Ci\ 

i c r p o o ' " ' ^y 2Dq^ 
(4.13) J i m |Vc^| = ^ ^ / 1 ^ 4 - l , 

(4.14) l i m P = - c o t a r - j --T, cotQ; = 
6-.0 I n x k l ' V |C_L| ' 

(4.15) lim n x V x n + P = 0, 

(4.16) lim n - V x n - f T = 0, 
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where K = min{K2,Ks}. Furthermore 

\Ci\ 
(4.17) ,^lim uj = {q\l±^ + l)z, 

T T 
(4.18) lim n = sinacos-Tr2:i + sinasin-:rzj + cosak. 

K-^oo O? O?-

Proof. From the geometry of the domain and the boundary conditions, 
it follows that Vu; = |Va;|k, which together with (4.9) and (4.10) yield 
(4.12), (4.13), and (4.17). It now follows from relation (4.12) and (4.13) 
that ^ = a is the constant given by (4.2). These together with (4.5) 
yield P = |P|.[^^K. Combining this equation with (4.15) and (4.16) gives 
4) = -^z in (4,18). This also yields equation (4.14). D 

Note that from the property limz)-*oo(Aa; — gV • n) = 0, it follows that 
the limiting director field has zero divergence, in agreement with (4.18). 

4.2. Ferroelectric energy minimizers. In the previous theorem, 
the elasticity constants K2 and K^ become unbounded with respect to the 
parameters of the polarization contribution to the energy. We will show 
that the ferroelectric configurations 

(4.19) n = i s i n a j -h cosak, P = ibPoi, 

with a the constant in (4.14), are limits of minimizers at the limit of Ki 
large, and when the polar coefficients cjp and ujr dominate over the twist 
and bending elasticity constants, K2 and K^. This situation occurs at 
temperatures lower than those of the helical regime. The role of the surface 
energy is also relevant in such a case. 

Next, we take the following set of admissible fields to determine the 
ferroelectric limits: 

(4.20) n = ±sinaj4-cosak, P = ±W i ^ i , 

with 0 < a < | , and u; as in (4.14) and (4.17), respectively. We find that 
the energy Si corresponding to such fields is: 

OQ OQ 

(4.21) -aocjnsin^a)]. 

Replacing'£^0 with Si, the estimates of Theorem 4.1 hold. These allow us 
to establish the following asymptotic limits of minimizers. 

(4.22) V • n = 0, as Ki ^ 00, 

(4.23) |Va;|=:/c as |C_L|-^ oc. 
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Letting D —^ oo and taking (4.22) into account, it follows that Aa; = 0. 
This together with the boundary conditions on dft gives Vcj = (0,0, A:), 
with k as in (4.1). Moreover, letting Ca —• oo gives cos a = | , and 

•^ ~ V b Ikxnl results by letting € —> 0 and using the expression for 
Vuj. Finally, letting ŵ  —>> oo gives <̂  = ± | . 
1. The limiting fields (n, P, a;) given by (4.17) and (4.19) satisfy the Euler-
Lagrange equations with the prescribed boundary conditions. 
2. Likewise, (n, P,a;) as in (4.17) and (4.18) solve the Euler-Lagrange 
equations at the limit \C^\ —̂  oo. 

5. Applied constant electric fields and boundary conditions. 
In this section, we present a summary of stability results about the nature 
of the equilibrium minimizers with respect to the parameters of the prob­
lems, boundary conditions, surface energy, and applied electric field. We 
also assume that the layer structure is prescribed with p = 1 and cj as in 
the previous section. We consider the parallel plate domain with periodic 
boundary conditions, 

n = [-d,rf] X R 2 , 

^: = {4>e W'^\n) \ 4>{±d) = | , </>(:r,y + M , ^ ) = 0(x,2/,^), 

0(ar, y,z + L) = (x, y, z), for all x,y,z eQ}. 

One goal is to show that, although the ground state of the energy may be 
the helical smectic C* ( i.e., the cone structure), the boundary conditions 
may impose a preference for uniform director configurations, labelled (f) = 
± 1 in the proposed geometry. 

THEOREM 5.1. The energy functional S has a global minimizer ^ 
among functions in X. 

The analogous statement holds for </> = — | in A*. In the following, 
we assume some symmetry conditions on the plates but do not prescribe 
boundary values of the director on the top and bottom plates. The former 
are consistent with the additional assumption that cjp = 0. 

Rather than prescribing boundary conditions on 0, we consider the 
effect of the surface energy u^r- For the present purpose, we take ujp = 
0 = uJri' We first study a special class of one-dimensional fields ^(z) G A'l, 
where 

X^ = {<i>e W''^([0,L]) I .^(0) = cf>(L),^'{Q) = <j>'{L) } . 

The Euler-Lagrange equations for such fields 

(5.2) <̂ (0) = .^(L),<^'(0) = ,^'(L). 
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T H E O R E M 5.2. Let ujr be positive and d be such that 

2b^L'^UJr , ^ 2b^L'^UJr , 
< d< —r-r-^— jor some k G (A:+l)27r2 ^ - A:27r2 

Then there exist at least k nonconstant solutions to (5.1) and (5.2) and for 
such a solution (j>, 

5(0)>5(±|). 

Remark. This implies that (j) = ±^ are global minimizers, in particular, 
for small d> 0. The analogous result in higher dimensions in general does 
not hold. Also, for ujp j ^ 0^ 4> = ±^ may not be a critical point of the 
energy, and instead, an x-dependent field, splayed configuration, (j){x) will 
achieve the minimum energy. 

Next, we show that the stability of the uniform states fails when the 
gap between the plates exceeds a critical value. Specifically, we study the 
sign of the second variation of the energy to conclude the following. 

T H E O R E M 5.3. There exists a critical value dc of the domain thickness 
such that <f) = do^ is unstable for d> dc. In the case that K2 = K^y 

dc = 2sin^ a[L^Po^(cot^ <^)^T7 + ^^(2Po -h r s in2a 
K 

In order to study how the multiple effects of inter-plate distance d > 0, 
strength of the applied electric field E > 0, and surface energy coefficient 
ujry we address the stability of fields n = (a cos 0(z), a sin (t>{z), c), 0 € W^^"^, 
with periodic boundary conditions, under three dimensional perturbations. 
In addition to (̂  = ^ , another critical point of the energy corresponds to 

sm (pc 
2{eaE^-^)sina' 

A bifurcation analysis [17, 23] yields the following conclusion: 
T H E O R E M 5.4. Suppose E > 0. The field cj) = ^ is stable under three 

dimensional periodic perturbations, if (u;^, 0?, E) satisfy one of the following 
conditions: 

(2) EaE^ _ ^ < s^ < e^E^, 

(3)eaE^-i-^<^<eaE^-f^, 
(4)s,E' + f^<^. 

In cases (3) and (4), (j) = <i>c is also a critical point. Moreover, (j) ~ ~ is 

unstable if SaE^ " ^ - ^ > i f • 
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71/2 is unstable : A, F 

n/2 is stable : B, C , D 

<t>̂  is a critical point : 

A, D. F 

E (Stat V / c m ) , electric field 

FIGURE 2. Sa = 0.01,a = sin(22.5),a;r' = 1,K = 10~^,L= 10~ 

Remarks . 
1. If £̂  < 0, then the energy of 0 = — ^ always is less energy than that of 
(p = ^- The stability region for — f is symmetric with respect to the line 
E = 0 in the previous diagrams. 
2. Estimates of critical fields that without including dielectric effects can 
be found in the literature [9]. However the inclusion of such a contribu­
tion is relevant since it becomes dominant when the electric field reaches a 
threshold value, in which case the ferroelectric state </> = f becomes unsta­
ble. Although our calculations predict that the configuration with (/> = (pc 
become the stable one, other ferroelectric phases may be observed in such 
a regime. 

We conclude this section with a calculation of the correction to the 
threshold values that need to be made due to the field created by surface 
charges in polarized bulk. Such a field opposes the effect of the applied one 
and it rises the threshold values [14]. 

R E M A R K 5.1. The flexoelectric polarization associated with the vector 
field n = (sin a cos (?̂ , sin a sin </), cos a ) is given by P = PQ ij^^[^|. As a 
result, the boundary plates sustain charges of opposite sign and density 
P • i = — Posin</>i, where i corresponds to the surface unit normal vector 
in the parallel plate geometry. The electric field created by the pair of 
oppositely charged plates is E^on = inPosinct)!. In the case </> = f such a 
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^ • « 

t 

«]>̂  is a critical 

point: A^.D^.F, 

«1>̂  is stable: F^ 

E(stat V /cm} , electric field 

FIGURE 3. £a = 0.01,a = sin(22.5),d = 0.2,i^ = 10-^,1 = lO'^ 

field reduces to E^on — 47rPoi? which is opposite to the applied field E = 
—Ei, E > 0. Therefore, the effective field is reduced io E — Eion? which 
leads to an increase of the threshold values by the amount \Eion\ = 47rPo-

6. Variable electric fields. As mentioned in [12], the total energy 
including electric potential is not bounded below. In order to overcome, 
we minimize it with Maxwell's equations for D and E 

V - D = 0, V x E = 0. 

Using an electric potential (f and imposing boundary conditions for (p, 
we consider the following equation, 

(6.1) 
- V • {aol -f aaii (g) n) V(^ = V • P in fi 

| ^ = O o n r ^ , 

where (po e H^ (TD) and ^fi = T D U TN-
Let 

H' =: {<p e H\n) : ^ = ^0 OUTD}. 

where A is defined in (3.8). 
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Define 

W * ( n , P , a ; , c ^ ) - ^ ( n , P , u ; ) + f FEiecdx. 

For any (n, P,a;) € A, the fundamental theory of elliptic PDEs shows 
that (6.1) has a unique solution which we denote by ^ (^^(^ 'P ) ' ^^^ ^^^^ 
^^0 (n, P ) is the unique minimizer of / ^ FEUC C?X in H^^. 

Substituting <̂̂ o (n, P ) for cp in >V, we define W by 

W ( n , P , ^ ) = W * ( n , P , w , $ ^ „ ( n , P ) ) . 

The following theorem uses arguments similiar to those in [12]. 

T H E O R E M 6.1 . For any (po € Hi{TD) and min{K2,^3} > 4ci, there 
exists a triple (n ,P ,a / ) which minimizes W on A. Furthermore^ a quadru­
ple (n, P,a;, (̂ ) is a critical point ofW*, 

5W*{n,P,uj,ip)=0 onX 

if and only if 

(̂  = ^<^o(n,P), and 5W(n,P,u ; ) = 0 on A 

The boundary condition (̂ o can be considered as an external field. In 
the case that Î Q = 0, <̂  is due to material polarization only which brings 
out nonlocal energy. The polarization P causes a point charge density 
Pp = V • P and a surface charge density of charges a = V -u. These charge 
densities may induce a field in the whole space. In fact, one needs to find 
an electric potential if € W^'^(R^) satisfying 

(6.2) - V • ( (ao / 4- aaVi <S> n)Vv?) = V • P in H, 

(6.3) Av? = 0 in R^ - 0 , 

(6.4) [(ao/ -f aaii (g) n) V(^ - soVip] • i/ = P • i/ on ^O, 

where i/ is the normal to the boundary and SQ is the dielectric coefficient 
of the environment. It can be shown [2] that </?|Q belongs to W'^'^{Q.) for 
any P G W^'P{Q). In other words, there exists a constant C such that 

| |¥'I|H/2,P(Q) < C||P||vvi,p(Q). 

We shall discuss further details for nonlocal energy associated with the 
polarization P in our forthcoming papers. 

7. Conclusions. We studied modeling and analysis of static configu­
rations of smectic C* liquid crystals with a special emphasis on polarization 
and ferroelectricity. The energy that we analyze contains quadratic terms 
on the second derivative of the complex wave function. We show that the 
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total energy is lower semicontinuous and coercive within the class of fields 
satisfying physically relevant boundary conditions. These include the cases 
where the layer structure reaches the boundary of the domain either in 
a perpendicular or parallel fashion , with prescribed wave number. The 
problem bears a strong resemblance to the analysis of vortex tubes and 
vortex sheets in fluid mechanics. We studied the asymptotic properties of 
the energy minimizers as the parameters of the energy become unbounded 
upon the temperature reaching transition values from smectic A* to smec-
tic C*, and lower temperature limits. We discuss some stability results to 
help interpreting the role of boundary conditions and applied electric field 
effects. Finally, we considered the case such that the electric field is vari­
able. The problem reduces to finding critical points of the energy subject 
to the time-independent Maxwell's equations. 
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STRIPE-DOMAINS IN NEMATIC ELASTOMERS: 
OLD AND NEW 

ANTONIO DESIMONE* AND GEORG DOLZMANN+ 

Abstract . Formation of stripe-domains has often been observed in nematic elas­
tomers, starting from the pioneering work of Finkelmann and coworkers. One of the 
possible interpretations of this phenomenon is to view it as a material instability driven 
by energy minimization. This approach, first proposed by Warner and Terentjev, has 
been quite helpful in the analysis of stretching experiments of thin sheets, and in the 
modelling of soft elasticity associated with stripe-domain formation. Recently, complex 
stripe-domain patterns have been observed in nematic gels undergoing the isotropic-
to-nematic transition while being confined by two glass plates. We suggest that , once 
again, energy minimization can be seen as the driving mechanism for the formation of 
the observed patterns. 

K e y words. Polymers, Nematic elastomers. Domain patterns. Nonlinear elasticity, 
Nonconvex problems in the Calculus of Variations, Relaxation, Numerical simulation of 
microstructures. 

A M S ( M O S ) subject classifications. 74N15, 74B20, 49J45. 

1. Introduction. Nematic elastomers consist of networks of cross-
linked polymeric chains, each of which contains nematic rigid rod-like 
molecules (either as main-chain segments or as side attachments). These 
are called nematic mesogens: their tendency to align below a critical tran­
sition temperature promotes the formation of nematic order. Contrary to 
nematic liquids, however, the orient at ional degrees of freedom of the meso­
gens are coupled to the translational degrees of freedom of an underlying 
elastic solid (the rubbery polymer network). This coupling makes nematic 
elastomers very interesting as a model physical system, and it is also at 
the root of their technological interest as materials for actuators and for 
(mechanically tunable) optical devices. The recent monograph [1], and 
the extensive Ust of references cited therein give a comprehensive account 
of the history of the synthesis of liquid crystal elastomers, of the envis­
aged applications, and of the models proposed to explain their fascinating 
properties. 

Nematic elastomers display interesting material instabilities. At high 
temperatures, the nematic mesogens are randomly oriented due to thermal 
fluctuations, and nematic elastomers behave like isotropic rubbers. Upon 
cooling through the nematic transition temperature, the nematic mesogens 
align causing a distorsion of the underlying rubber network. Imagine, for 
simplicity, the possibihty that locally the mesogens are perfectly aligned at 

*SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, 
ITALY. 

"^Department of Mathematics, University of Maryland, College Park, MD 20742, 
USA. 
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the microscopic scale. Then symmetry dictates that the polymer network 
deform uniaxially, with the distinguished axis parallel to the common di­
rection of the mesogens. Moving now to a more macroscopic scale, if the 
mesogens align along different directions in different parts of the sample, 
then different states of spontaneous distorsion may coexist within the same 
sample, generating patterns which are reminiscent of magnetic domains in 
ferromagnetic materials. Since the optical properties of the material are 
controlled by the orientation of the nematic mesogens, which changes from 
domain to domain, domain patterns are observable under polarized light. 
Indeed, regions where the mesogens are differently oriented may appear 
opaque or transparent when observed under crossed polarizers, depending 
on the relative orientation of mesogens and polarization of light. 

The mechanical response of nematic elastomers to imposed deforma­
tion may be unusually soft, when compared to the response of ordinary 
rubber. The existence of domain patterns, and the ease with which they 
can evolve, is what allows nematic elastomers to respond to imposed macro­
scopic deformations with negligible internal stress, whenever the imposed 
strains may be accommodated by simply reorienting the nematic mesogens. 

2. A minimalist model. Both the occurrence of domains, in a char­
acteristic striped texture, and the existence of 'soft' deformation modes 
have been observed experimentally, in several different laboratories. These 
phenomena have also been analyzed in great detail by several groups, using 
a variety of different models. Many of these were represented at the IMA 
workshop [2], and we refer to the papers [3]-[8] for a sample of the many 
existing viewpoints on the subject. By contrast, we take here a minimalist 
approach, and proceed with the help of the most basic model we can think 
of. In essence, all what we do is to accept that the symmetry-breaking 
phase transformation associated with the establishment of nematic order 
is able to produce a number of distinct, symmetry-related, spontaneously 
deformed states, and that these states are the minima of a quadratic free-
energy density with the correct invariance properties. Prom here, we will 
try and deduce the largest possible number of rigorous consequences result­
ing from energy minimization, without further simplifications. Our aim is 
to contribute, in this way, to put into sharper focus the most generic and 
universal aspects of the phenomenon under study. 

The first ingredient of our model is the spontaneous strain the material 
experiences when, starting firom the isotropic parent phase, it undergoes 
the isotropic-to-nematic phase transformation. Assume that the nematic 
mesogens align, say, along the direction of a unit vector n. Accepting 
the hypothesis of incompressibility, and assuming that the polymer chains 
stretch in the direction of n, the resulting deformation is described by a 
uniaxial tensor of the form 

(2.1) U„ := a-^/^n(g)n-f a^/^(Id - n(8)n) 
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where (n <8) n)^^ = nfiij, Id is the identity, and a < 1 is a material param­
eter quantifying how much a spherical random polymer coil spontaneously 
extends in the direction of n upon the alignment of the mesogens. Using 
frame-indifference and material symmetry (recall that the relevant sym­
metry is the one of the isotropic parent phase), we deduce from (2.1) that 
the set of spontaneous deformations has the form 

(2.2) P U Q „ = P Q U n Q ^ 

where P and Q are arbitrary rotations. A deformation gradient F belongs 
to the set (2.2) if and only if the ordered principal stretches Ai(F) < 
A2(F) < A3(F) satisfy Ai(F) = A2(F) = a^l^ < 1, A3(F) = a-i /3 > i. 

The next ingredient of our model is an energy penalization on defor­
mation gradients F which are not in the set (2.2). The simplest choice for 
a quadratic, isotropic, frame-indifferent expression is a minor modification 
of the classical neo-hookean expression 

(2.3) py(F) = |/^{A?(F) + Ai(F) + aAi (F) -3a i /3 ) i f d e t F = l 

I -f-00 else. 

Here /x > 0 is a material parameter giving the rubber energy scale (defining 
the initial shear modulus of the material), while the constraint de tF = 1 
on deformations with finite energy enforces incompressibility. Since the 
geometric mean of the squares of the principal stretches is not larger than 
the corresponding arithmetic mean, it is easy to see that (2.3) is always 
non-negative, and that it vanishes precisely on the set (2.2) (which we 
then call the set of the material's energy wells). The classical neo-hookean 
expression is simply obtained from (2.7) by setting a = 1. 

Finally, denoting by y the map that gives the deformed configuration 
of a body whose reference configuration is B^ and by Vy its gradient, the 
total energy reads 

(2.4) E{y)=: [w{yiK))dx. 
JB 

We are interested in deformation maps which minimize this total energy 
when suitable loads or boundary displacements are prescribed. 

Before proceeding with the analysis of our minimalist model, a few re­
marks are in order. Expression (2.3) can actually be derived from the one 
first proposed in [3] with the following procedure (see [9,10]). First, assume 
that nematic order is adequately described by a director field x H> n(x). 
Then perform an affine transformation of the spatial variables which cor­
responds to using, as reference configuration, the highly symmetric stress-
free configuration of the isotropic parent phase.^ This leads to the following 

^The reference configuration chosen in [3] is one of the stress-free configurations the 
material ctdopts after it has transformed to the nematic phase. One such configuration 
is the initial configuration in the stretching experiments discussed in Section 3. 
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simple expression for the energy density, depending on the vector field n 
and on the tensor field F 

(2.5) WBTw(n,F) = /i ( |Fp ~ (1 ~ a)|F^n|2 - Sa^/^) . 

Finally, minimize the last expression with respect to n to obtain 

(2.6) W{F) = min WBTw(n, F ) . 
|n|=l 

Notice that the n minimizing WBTW is the eigenvector of F ^ F associated 
with its largest eigenvalue A3(F). It follows that, in our simple-minded 
model, the nematic degrees of freedom are slaved to the elastic ones, and 
they are simply described by a director field which is aligned to the direction 
of the largest principal stretch at every point of the sample. 

Moving to the analysis of our model, its most important feature is the 
non-convexity of energy density (2.3) for a < 1. This implies that uniform 
configurations may have higher energy than complex domain patterns with 
the same average deformation. In fact, this is the mechanism proposed in 
[7] to explain the experimental observation that stretching a mono-domain 
sheet of nematic elastomer may induce spontaneous break-up into stripe-
domains [14]. 

The non-convexity of (2.3) also explains the experimentally observed 
soft deformation paths. They arise as energetically optimal fine phase mix­
tures, with volume fractions evolving with the applied loads. These fine 
phase mixtures effectively accomplish a convexification of the underlying 
rough energy landscape. A plateau in the stress-strain response is the pre­
cisely signature of a flat portion of the energy graph resulting from the 
convexification of the energy. We conclude that macroscopic soft deforma­
tion paths result, and should then be computable, from suitable convex 
hulls of the materials energy wells. In fact, using this idea, the charac­
terization of all soft deformation paths associated with the set (2.2) was 
obtained in [10]. 

The existence of macroscopic deformations that can be resolved at no 
energy cost by microscopic mixtures of deformation gradients lying on the 
energy wells is only part of the story. One may ask what is, in general, 
the minimal energetic cost of imposing an arbitrary aJfine deformation F 
on the boundary dQ of a representative volume fJ, leaving the system free 
to develop fine structures in the interior of ft whenever this is energeti­
cally advantageous. This is given by a well-defined mathematical object 
(see, e.g., [11]), the value at F of the quasi-convex envelope of the energy 
density W 

(2.7) Wqc(F) := ^fJ^J W{Vy{x))dx : y(x) = Fx on dn\ 
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where |n | is the volume of fi and the infimum is taken over the set A of 
Lipschitz-continuous maps such that det Vy(x) = 1. It can be shown that 
the right-hand-side of (2.7) does not depend on the geometry of fi. 

An expUcit formula for the quasi-convex envelope of (2.3) has been 
derived in [12]. For volume-preserving deformation gradients it reads 

(2.8) W^ciF) = { 

0 (phase L) if Ai > a^/^ 

W{F) (phase S) if a^^^XjXi > 1 

[fi (A? + 2a^/^X^^ - 3a^/^) (phase I) else 

while Wqc(F) = -f oo if de tF ^ 1. Here the labels L, S, and I refer to the 
fact that the resulting material response is liquid-like, solid-like, or of an 
intermediate type, see the discussion below. 

The formula above gives a very precise picture of the macroscopic me­
chanical response resulting from our model, and of its microscopic origin. 
There are three regimes in (2.8), arising from the collective behavior of ener­
getically optimal fine phase mixtures. They represent three different modes 
of macroscopic mechanical response, and they correspond to three different 
patterns of microscopic decomposition of the macroscopic deformation gra­
dient F . Phase L describes a liquid-like response (at least within the ideally 
soft approximation embedded in the expression (2.3) for the microscopic 
energy density; the semi-soft case is discussed in [13]). All gradients falling 
in this region of the phase diagram can be sustained at zero internal stress 
(in other words, the zero level set of Wqc is the set of all soft deformation 
paths mentioned above). To resolve microscopically the whole of phase L 
(in particular, to resolve the deformation gradient F = Id) it is necessary to 
allow for relatively complex microstructures (layers-within-layers, see the 
right panel in Figure 1). Phase S describes a solid-like response in which 
fine phase mixtures are ruled out. As a consequence, in this regime the ef­
fective macroscopic energy Wqc reproduces the microscopic energy W with 
no changes. Finally, gradients in the intermediate phase I can transmit 
stresses (unlike phase L) through microstructure formation (unlike phase 
S). The microscopic patterns required to resolve phase I have a relatively 
simple geometry (laminates, or simple-layers, see the left panel in Figure 1). 
Patterns of this kind have been frequently observed experimentally after 
being first reported in [14]. The first attempt to explain them through 
elastic energy minimization is in [7]. 

By decoupling the physical length scales into microscopic ones (which 
determine the effective energetics but are averaged out in the kinematics) 
and macroscopic ones (e.g., those which determine the deformed shape of 
a sample in a stretching experiment), expression (2.8) leads to a coarse­
grained version of our model. In order to resolve macroscopic quantities, 
we minimize the effective energy 

(2.9) EeffCy) = / H^qc(y(x))dx 
JB 
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02 

FIG. 1. Geometry of energetically optimal microstructures: simple-layers (left) 
and layers-within-layers (right). The light and dark dots hint at the optical contrast 
these microstructure would produce in nematic elastomers under polarized light (adapted 
from [9]). 

subject to the boundary conditions that are relevant to the loading exper­
iment we want to model. This can be done numerically, giving a field 
X »-> F(x). Then, by locating the computed macroscopic deformation 
within one of the three phases L, S, I of the phase diagram, we can recon­
struct, from the field of computed local deformation gradients x i-> F(x), 
the corresponding field of local (energy minimizing) microstructures. 

Before closing this section, one word about the length scales of the 
domain patterns. Energy (2.2) does not contain an intrinsic length scale. 
Thus, the minimization procedure (2.7) leading to W^c can lead to domain 
patterns which are infinitely fine with respect to the size of a representative 
volume element, and which manifest themselves as (infinitely refining) se­
quences of deformation patterns driving the energy to its infimum. Clearly, 
in reality, physical mechanisms not active in our simple-minded model do 
establish a smallest characteristic length scale. Whenever the size of the 
sample of interest is large compared to this characteristic length, our ap­
proach can be used to gather detailed information on the macroscopic re­
sponse of the sample (e.g., the force-stretch curve), and gross information 
on the domain patterns responsible for the macroscopic behavior. More de­
tailed information on domain patterns requires explicit resolution of length 
scales. One natural possibility is to consider models containing higher or­
der gradients (e.g., Prank-type terms in the gradient of the director, see 
e.g. [4]). Needless to say, since the corresponding numerical simulations 
will need to resolve much finer spatial scales (typically, at the sub-micron 
scale), a substantial increase of the computational cost for obtaining a 
force-stretch diagram for, say, a mm-sized sample should be expected. 
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3. Stripe—domain patterns: the classics. The computational ap­
proach outUned in the previous section, and based on the expression (2.7) 
for the energy density, has been used in [15] for the numerical simulation 
of stretching experiments of sheets of nematic elastomer held between two 
rigid clamps. The simulations are designed to reproduce the classical ex­
perimental setting of Kundler and Finkelmann [14], where stripe-domain 
patterns were first observed. 

The specimen is a thin sheet of nematic elastomer. We choose a refer­
ence frame with axis xi parallel to the thickness direction. Moreover, we 
assume that the specimen is prepared with the director uniformly aligned 
along xsy and is then stretched along X2' By reorienting the director from 
the xs to the X2 direction, the material can accommodate the imposed 
stretches without storing elastic energy. As it is well known, see e.g. [1], 
a uniform rotation of the director would induce large shears, which are 
incompatible with the presence of the clamps. Director reorientation oc­
curs instead with the development of spatial modulations shaped as bands 
parallel to the X2 axis. This is the origin of the striped texture observed in 
the experiments. 

The numerical simulations allow us to analyze the stretching experi­
ments in more detail. If the clamps do not allow lateral contraction, the 
reorientation of the director towards the direction of the imposed stretch 
is severely hindered. This constraint is stronger near the clamps, and it 
decays away from them producing two interesting effects. On one hand, 
the induced microstructures are spatially inhomogeneous, with director re­
orientation occurring more rapidly in the regions far away from the clamps. 
On the other hand, the stress-strain response shows a marked dependence 
on the geometry of the sample, with the influence of the clamps becoming 
less pronounced as the aspect ratio length/width increases. These effects 
are documented in Figure 2 and Figure 3, which show good qualitative 
agreement with both the experimental results from the Cavendish Labora­
tories [1], and with the X-ray scattering measurements in [16]. 

The stripe domain patterns appearing in Figure 3 are all simple lami­
nates, either in phase L or in phase I. Focusing on the point at the center 
of the sample (the bottom left corner in the plots of the deformed shape), 
the material is in phase L as long as no force is transmitted at the clamps. 
The computed deformation gradient is 

(3.1) FA = 

ai/« 

0 

0 

0 0 

A 0 

0 a-V6/A 
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FIG. 2. Numerical simulation of stretching experiments on thin sheets of nematic 
elastomers: geometry (left) and force-stretch diagrams for several aspect ratios AR 
(right). The panel on the left shows four configurationsj namely, reference, initial, 
and the two at stretches 5=L31 and 5=1.57 for the geometry with AR=Z. On the 
corresponding force-stretch curve on the right panel, full dots mark the representative 
points of configurations shown in Figure 3 (adapted from [15]). 

FIG. 3. Numerical simulation of stretching experiments on thin sheets of nematic 
elastomers, based on the coarse-grained energy Wqc, at stretches 5=L31 (a), and 5=^1.38 
(b). Only one-quarter of the sample is shown since the rest of the solution can be 
obtained by symmetry. The circular insets display energetically optimal micro structures 
at some selected locations within the sample. The sticks give the local orientation of 
the principal direction of maximal stretch, i.e., the orientation of the nematic director 
(adapted from [15]). 

with A varying from a^^^ to a ^/^. This is resolved by a simple laminate 
in which the deformation gradient oscillates between the values 

(3.2) Ft-
ai/« 0 0 

0 X ±5 
0 0 a-^/yX 
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in stripes perpendicular to X3, i.e., with a geometry similar to the one 
shown in the left panel of Figure 1. The value of J = S{\) is obtained from 
52 = (a~2/^ - A^)(l - a^/^A~^), which ensures that F J has the charac­
teristic principal stretches giving W(F^) = 0. Notice that the kinematic 
compatibility condition F j - F ^ = a(8)N, where N is the reference normal 
to the stripes and a is a shear vector, is satisfied with a = 25{X)e2 and 
N = 63. This guarantees the existence of a continuous map y such that 
Vy(x) = F ^ in layers with normal 63. 

Force starts being transmitted through the sample when the defor­
mation gradient in the central point moves to the region I of the phase 
diagram. The computed deformation gradient is now of the form 

(3.3) FA, = 

where A3 > a~^/^ forces Ai < a^/^. This is resolved by simple laminates 
similar to the ones above. The deformation gradient oscillates between the 
values 

Ai 0 
0 I/A1A3 
0 0 

0 
0 

A3 

(3.4) 

in stripes perpendicular to 0:3, and S = S{Xi) is computed by requiring 
that the principal stretches be those giving the minimal energy at given 
Ai, namely, (Al,al/^A7^/^a-l/^A~^/^), see [15]. 

4. Stripe-domain patterns: recent observations. The setup of 
the stretching experiments described in the previous section has one pe­
culiarity. In the initial configuration, the film thickness near the center of 
the sample is a^/^ times the thickness in the reference configuration. As 
the film is stretched, the film thickness either stays unchanged (this is the 
regime given by (3.1), and it represents an unusual behavior when com­
pared to that of a conventional rubber) or it decreases (this is the regime 
given by (3.3)). This implies that the smallest principal stretch can never 
exceed the value a^/®. As a consequence microstructures of the layers-
within-layers type are not accessible in the kind of stretching experiments 
described above, no matter how close the material is to the limit of ideal 
softness. 

In the course of the workshop [2], the following recent experiment by 
Meyer and Meng was presented. A thin film of a soft nematic gel, confined 
between two horizontal glass plates, is cooled through the isotropic-to-
nematic transition temperature Tj^ while its director is kept vertical by 
an applied electric field. When the external field is removed, the nematic 
director is no longer frozen, and in-plane stripe domains develop and be­
come visible through the glass plates. 
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If one focuses on points far away from the sample edges, one may 
think of the glass plates as infinitely extended so that, by symmetry, all 
the in-plane stretches are principal stretches with the same value. The 
constraining action of the glass plates, which do not allow the film thickness 
to expand, coupled with the incompressibility constraint, then results in 
imposing that the material does not deform at all, or 

(4.1) F = Id 

at least in average, and far away from the lateral edges. This macroscopic 
deformation gradient can be resolved by the spontaneous deformations of 
the set (2.2). 

To discuss the experiment more quantitatively, we fix a reference frame 
with axes xi and X2 parallel to the mid-surface of the film, and axis xs 
along the thickness direction. The geometry of the energetically optimal 
microstructures resolving (4.1) entails two orders of lamination. One is 
along the film thickness, to accommodate the fact that at temperatures 
below TIN, the natural thickness associated with a vertically oriented di­
rector is larger than the distance between the two glass plates. The second 
lamination, in the plane of the film, is the one that should be responsible 
for the observed contrast. Were this second order of lamination absent or, 
said diff'erently, were the director to buckle while remaining in one plane 
(say, the xiXs plane), then the film would have to contract (by the amount 
fli/s <̂  i j in ^iie direction of X2. Since this contraction is incompatible 
with the constraints introduced by the experimental apparatus, in-plane 
stripe-domains are generated. 

To test this hypothesis, we looked for the possibility of resolving (4.1) 
with exactly four deformation gradients lying in the set of zero energy spon­
taneous distorsions (2.2). The geometry of the construction is sketched 
in Figure 4. Notice that, in the layers-within-layers construction of Fig­
ure 1, fine layers are nested inside coarser layers and kinematic compati-
biUty across the interfaces of the coarse layers holds only approximately. 
By contrast, in Figure 4, kinematic compatibility across all interfaces is 
satisfied exactly, see formulas (4.2)-(4.5) below. More in detail, we set 
T) = a"^/^ and consider the following deformation gradients 

Fii = 

Fi2 = 

0 

1 

0 1 

0 n-^, \ 
1 1/2 - 1 

0 1 

'22 

F21 = 

1 

0 

1 

0 
1 

0 

0 

1 

0 

};-ri\ 

l - 7 j 2 

1 



ANTONIO DESIMONE AND GEORG DOLZMANN 199 

L 
ei 

FIG. 4. Geometry of our zero-energy four gradient construction: reference (left) 
and deformed (right) configurations for r) = 1.1225 corresponding to a = 0.5. 

Clearly, 

(4.2) 

(4.3) 

Fi i - Fi2 = -2(J7 - - , 7y2 _ 1,1) ® 63 

F 2 2 - F 2 1 = - 2 ( 7 ? - - , l - r ^ ^ l ) ® e 3 

so that interfaces between F n and F12, and between F22 and F21 are pos­
sible, with normal parallel to 63 in the reference configuration. Moreover, 

(4.4) 

(4.5) 

F21 ~ F12 = -2(7 / - i je2 0 (1,0,r?) 

F22 - Fi i = - 2 f ry - - j 62 0 (1,0, -rj) 

so that an interface between F21 and F12 is possible with reference normal 
parallel to (1,0,77), and an interface between F22 and F n is possible with 
reference normal parallel to (1,0, -r?). 

We now plot the deformed configuration of the film, see Figure 4 and 
Figure 5, using the value r; = 1.1225 corresponding to a = 0.5. For this 
purpose, it is useful to compute the deformed orientation F*N of each 
layer normal N, where F* = (det F )F~^ is the cofactor of the deformation 
gradient inside the layer. Since 

where ^ -

(4.6) 

Fti = 
/ I - ^ 0 \ 

0 1 0 

\^ -K l) 
/ 1 -e 0 

FI2 = 0 1 0 
V - e A 1 

= r; — I/T] and A = 1 - 7? 

F u ^ s = Fi2e 

/ I ^ ON 
F ; 2 = 0 1 0 

U A l) 
\ / 1 e 0 

F;I = 0 1 0 

; I - e -A 1 
^ -1- (ry - 1/r?)^, we have 

3 = FgiCs = F22e3 = 63 , 

(4.7) F I 2 ( 1 , 0 , / ? ) = F ; I ( 1 , 0 , 7 ? ) = ( 1 , 0 , - ) , 
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FIG. 5. Sketch of a domain pattern resolving F = Id. This models the possible 
behavior of a film undergoing the isotropic-nematic phase transformation while being 
constrained between two parallel plates. 

and 

(4.8) F*n{l,0,-r]) = F;^ilA-v) ( 1 . 0 , - - ) . 

For what concerns the displacement of material particles, notice that 
the relative motion of the layer deformed according to F22 (respectively, 
F21) relative to that deformed according to F n (respectively, F12) is a 
shear of amplitude 2y/l-\-lif(r} — 1/r}) in the 62 direction. This follows 
from formulas (4.4) and (4.5), by normalizing the modulus of the interface 
normals (1,0, ±77) to one. The resulting deformation is sketched in Figure 5, 
where attention should be paid to the alternating shears in the plane 0:1X2 
which are responsible for the observed stripe pattern. 

Finally, we give the orientations of the nematic director implied by 
our four-gradient construction. As noted above, within our model, the 
nematic director is always aligned with the direction of maximal stretch. 
This implies that, in the deformed configuration, the orientation n of the 
director will be that of the eigenvector of F F ^ associated with its largest 
eigenvalue A^F). We thus obtain the following relations of proportionality 

ni l oc 

ni2 oc 

n22 oc 

n2i a 

A more detailed analysis of zero energy deformation patterns compat­
ible with (4.1) and, more generally, of the stripe patterns that may arise 
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within the confined geometry described at the beginning of this section will 
appear elsewhere [17]. 

5. Conclusions and Outlook. Nematic elastomers have been syn­
thesized relatively recently [18]-[21]. Nevertheless, they have already at­
tracted considerable attention in the Chemistry, Engineering, Mathemat­
ics, and Physics literature. The same is true, in particular, for the stripe-
domain patterns they exhibit. 

Our interest in nematic elastomers arose from the realization that the 
symmetry-breaking isotropic-to-nematic phase transformation which is at 
the root of their fascinating material instabilities has close analogies with 
the martensitic phase transformations exhibited by shape-memory alloys. 
While in the latter case, however, the underlying material symmetry is the 
discrete crystallographic symmetry of the austenitic parent phase, in the 
case of nematic elastomers the full isotropic symmetry of the high tem­
perature amorphous polymer is available. It soon became apparent that 
the mathematical techniques developed for the study of displacive phase 
transformations in crystals are applicable to a radically different class of 
systems (polymers, rather than crystals) and that the simplifications ac­
companying the enhanced material symmetries lead to results of unprece­
dented completeness. One such result is the development of a combined 
analytical-computational approach in which the original problem is first 
simplified with the use of mathematical analysis, and then attacked com­
putationally. As described above, this approach has been used with some 
success to simulate numerically stretching experiments of thin sheets of 
nematic elastomers. We believe that this combination of analysis and com­
putation has a great potential in shedding further light on the mechanical 
response of nematic elastomers and, more generally, of all systems whose 
mechanical response is microstructure-driven. 

The analogy between shape memory alloys and nematic elastomers as 
shape-memory polymers is fruitful. It reveals to us the underlying struc­
ture, hence the ultimate simpUcity of seemingly complicated stripe-domain 
patterns. And yet, trivially, analogy is not identity. The devil (just like sys­
tem specificity coming from the different underlying physical mechanisms) 
is in the details. Examples are the detailed structure of a wall between two 
adjacent domains, or the geometric details of how two differently oriented 
systems of stripe-domains meet, or the time scales with which domains ap­
pear, disappear, and respond to external fields and loads. It is through such 
details that the complexity of these seemingly simple domain patterns re­
ally emerges. And we should be prepared to use sharper (but, unavoidably, 
more complicated and system specific) models to understand them. 
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NUMERICAL SIMULATION FOR 
THE MESOSCALE DEFORMATION OF 

DISORDERED REINFORCED ELASTOMERS 

DIDIER LONG* AND PAUL SOTTA* 

Abstract. We study here the dynamical behavior of disordered elastic systems 
such as gels or filled elastomers, by dissipative molecular dynamics. We show that 
applied macroscopic deformations result in non-affine deformations at the scale of the 
filler particles. These non-affine deformations lead to slow meso-scale reorganizations, 
which could explain the long relaxation times measured in gels, and also in rubbers even 
at temperatures much above the glass transition temperature. 

Key words. Statistical mechanics. Polymers, Nonlinear elasticity, Plastic materials, 
Materials with memory. 
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1. Introduction. Microscopic mechanisms at the origin of macro­
scopic elasticity in disordered systems [1] and in particular in systems such 
as gels or rubbers [2-6] have been the subject of many debates over the 
past 50 years. Gels or rubbers are made of cross-linked networks of poly­
mer chains. When deforming a sample, the strands between cross-links are 
stretched which results in a decrease of entropy, and thus in a free energy 
cost. This entropic origin of the elastic properties of gels or rubbers is no 
longer disputed. On the other hand, a precise, microscopic description of 
the strand network deformation under shear has long been elusive. To over­
come this difficulty, the classical models developed in the polymer literature 
for describing rubber elasticity have assumed affine deformation down to 
the strand scale. A number of experiments, such as small angle neutron 
scattering or light scattering experiments, have been performed in order to 
test this assumption, and it has been demonstrated that the deformations 
in gels are indeed not affine on this scale [4, 5, 7-10]. Many theoretical 
attempts have been made to go beyond the affine deformation assumption 
in gel or rubber elasticity. De Gennes proposed that the sol-gel transition 
is analogous to a percolation transition, and that the shear modulus close 
to the gelation critical point behaves like the electric conductivity in con­
ductor percolation problems [11, 12]. However, Feng and Sen have shown 
that this is not the case when considering only central forces between cross­
links [13]. The analogy can be drawn only when bending energy comes into 
play, an assumption for which there is no ground in gel or rubber .elasticity. 
For the role of both stretching and bending energies, one can see e.g. the 
work by Arbabi and Sahimi [14]. These differences between geometric and 
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rigidity percolation result in a higher percolation threshold and different 
values of the critical exponents in rigidity percolation. 

The inhomogeneity in the local elastic modulus is an essential feature 
in describing non-afSne deformation at a local scale. Finite element map­
ping with spring network representations is a model suitable to describe 
elastically inhomogeneous materials [15]. However, the dynamical behavior 
and large deformations have not been investigated within this framework. 
On the other hand, several computational studies on disordered elastic 
systems have addressed the question of non-affine deformations [16]. Non-
affine deformation processes have been invoked to interpret yielding in col­
loidal gels. Brownian dynamics simulation have been performed, but such 
systems were not permanent elastic networks [17], contrarily to those of in­
terest here. On the other hand, it has been observed recently in molecular 
dynamics studies that continuum elasticity breaks down at some spatial 
scale quite large with respect to the average interparticle distance, and this 
effect has been interpreted in terms of non affine displacements in the sys­
tem [18, 19]. However, this study has been done in two dimensions and for 
very small amplitudes only. 

Another important feature is the important role played by excluded 
volume [20, 21] and by topological constraints distinct from cross-links, 
that is entanglements. Indeed, polymer strands cannot cross each other, 
which limits their lateral spatial fluctuations and contribute to the elastic 
moduli of the samples. This feature makes the description of real gels or 
rubbers even more complicated, since a precise description of entanglements 
based on first principles is still lacking. Indeed, it has been demonstrated 
recently that topological constraints are essential in understanding the sol-
gel transition [22, 23]. This can be understood quaUtatively as follows: in 
polymer melts made of high molecular weight polymers, a plateau modulus 
is observed at intermediate frequencies. This is the well known result of 
entanglements. Upon cross-linking the melt, these entanglements are made 
permanent with only a small fraction of cross-links [22-25], especially in the 
case of very long chains. Therefore, a description of rubber or gel elasticity 
should take into account both entanglements and rigidity percolation, as 
well as their combined effects. 

A further difficulty in describing gel or rubber elasticity is that these 
systems are intrinsically disordered and inhomogeneous, as the result of 
their preparation [26, 27]. The cross-linking process not only freezes in the 
disorder present in the melt, but it tends to enhance this disorder: dur­
ing vulcanization or cross-linking, the more a region is cross-linked, the 
more it tends to collapse, which further enhances cross-Unking in this re­
gion. This results in large scale heterogeneities which are responsible for 
turbidity in gels, for instance, and which have been evidenced experimen­
tally [4]. Elastic heterogeneity may occur as well even in so called "model" 
networks obtained by end-to-end cross-linking of precursor chains with a 
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controlled polymolecularity [28]. Another source of large scale disorder is 
due to the addition of solid inorganic particles (the so-called charges) acting 
as reinforcing fillers. Indeed, non-reinforced polymer matrices generally do 
not exhibit mechanical properties suitable for practical purposes, being too 
soft and fragile [29]. On the contrary, elastomers filled with carbon black 
or siUca particles have a shear modulus much (up to 100 times) higher 
than that of the pure elastomer, exhibit a high dissipative efficiency, which 
makes them useful for damping materials, and are extremely resistant both 
to fracture and abrasion [29-35]. The typical diameters of these filler par­
ticles vary between 10 nm and 100 nm. Moreover, they often form fractal 
aggregates and/or agglomerates at even larger scales [36]. The presence of 
filler particle thus introduces another source of disorder on a much larger 
scale than the crosslinking process of pure rubbers. Deformations at the 
scale of polymer chains have been investigated in such systems by SANS. 
An average enhancement of the strain has been shown at this scale [37]. 

In this work, we propose a model for describing elastic properties of 
filled elastomers. The scale of interest here is larger than the distance be­
tween crosslinks or entanglements, which is usually considered in gels or 
rubbers. It is typically of order 100 nm, which corresponds to the diameter 
of the filler particles [29, 38, 39]. Our model must therefore be considered 
as a coarse-grained model aimed at describing meso-scale relaxation pro­
cesses in such systems. We focus on the high temperature regime, in which 
the whole polymer matrix is in the rubbery state, as opposed to the lower 
temperature regime in which the polymer matrix is partially glassy [38-41]. 
In this high temperature regime, reinforcement effects are weaker than at 
lower temperatures, but they are still important [38,39]. We consider there­
fore a rubber matrix with randomly dispersed solid particles, with strong 
anchorage of the matrix on the particles. We consider the matrix as being a 
highly cross-linked rubber, which in practical cases corresponds to a shear 
modulus from 10^ Pa to 10^ Pa. We consider typical filler volume fractions 
of 20 % or more. The purpose of this work is to describe the meso-scale 
behavior of such a system when submitted to imposed deformations. We 
study here both static and dynamical properties by dissipative molecular 
dynamics. The paper is organized as follows. We first describe in details 
the model and the procedure used to obtain a system at mechanical equi­
librium. Then, we show that this system exhibits non-affine deformations 
and long time relaxations. 

2. Description of the model. The basic ingredients we want to 
implement in the simulated system are permanent elasticity, disorder and 
excluded volume effects. While disorder creates a complex energy land­
scape with a ill-defined minimum energy state, excluded volume may in­
troduce irreversibility in the system. The solid particles are modelized by 
hard spheres randomly distributed in space. The hard sphere potential is 
described by: 
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(2.1) VUr') = < 

E^max 
•*• h s 

0 

^^ (rmin < r* < rcut) 

(rcut < r*) 

where r* = r/cr is the reduced dimensionless distance between particles. 
Though we will keep it in our notations, a should be considered to be the 
unit length in the problem and takes the value 1. The parameter e* = 1 
determines the energy scale in the system. The cutoff distance beyond 
which Fhs cancels is rcut = 2. At this distance, the force Fhs is already 
much smaller than e*. The force is limited at short distances to prevent 
numerical instabilities in the initial step of the simulations, in which the 
centers of two particles may be very close. The constant H is chosen to 
insure the continuity of the potential. The force Fhs(^*) rises very sharply 
at r* of the order one. For instance, it is already of the order 20 (in units 
of €*) for r* « 0.96. This means that it is quite realistic to consider a as 
the particle diameter. 

To represent the effect of the rubber matrix, the particle centers are 
connected by harmonic springs, with an elastic interaction potential given 
by: 

(2.2) Ve.(r*) = y ( ^ - 1)^ 

where k* = ka'^lg/e* is the reduced spring stiffness (in units of e*) and ZQ 
is the equilibrium length of the spring (in units of a). Thus, the particles 
interact with a hard-core repulsion and the elastic springs. We assume that 
the degrees of freedom, which are the centers of mass of the hard spheres, 
move relative to each other with a friction coefficient (. The hydrodynamic 
friction is computed within a mean field approximation: 

(2.3) ^Hydro = ~ r ( ^ - < ^ > ) 

where C* = ^cr^/e* = 1 is the reduced friction coefiicient, which has the 
dimension of a time and thus sets the time scale in the system, v* is the 
reduced velocity of a particle and < v* > the average reduced velocity of 
the surrounding particles (velocities have the dimension of an inverse time). 
To save computational time, the hydrodynamic friction is computed with 
respect to the average affine deformation rate rather than to the actual 
motion relative to the surrounding of a particle. 

Periodic boundary conditions are used in order to simulate bulk-like 
behavior. This means that a spring emanating from a particle close to a 
boundary and pointing out of the box is identified with a symmetrical one 
coming into the box and acting on another particle close to the opposite 
side of the box. To prepare the system, N particles are dispersed at random 
in a box of volume V = L^ such that the volume fraction takes the chosen 
value ^ , that is: 
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The volume V of the box is kept constant throughout the simulations. The 
average distance between particles is: 

For an average number of connections per particle n, the total number of 
springs in the system is Nn/2 (one spring contributes to two connections). 
The Nn/2 closest particle pairs are connected by springs. The equilibrium 
length IQ is set equal to the average distance between neighboring sites 
on an ordered simple cubic lattice, that is IQ = ^(6 -I- (n — 6)\/2)a (for 
6 < n < 18), where a is the lattice parameter corresponding to the volume 
fraction $, given by a^ = 7r/6$. This value for IQ is quite arbitrary. The 
properties of the systems which will be investigated do not depend on this 
particular choice. Only the value of the pressure which has to be applied to 
maintain the volume constant, i.e. the isotropic part of the stress tensor, 
depends noticeably on IQ. The quantitative value of the shear modulus 
depends also on IQ, though much more weakly. 

Thus, the parameters which are relevant to describe the system and 
its temporal evolution are the following ones: 

• the volume fraction $ of the sohd particles 
• the degree of connectivity n, defined as the average number of 

springs connected to one particle. Note that n does not have to be 
an integer. 

• the spring stiffness k 
• the friction coefficient (. 

The model system considered here is disordered and only includes poten­
tials which depend on the distances between particles, without bending 
energies. Since we aim at representing highly cross-linked rubber matrices, 
we shall only consider relatively large values of the connectivity n. Indeed, 
there is a threshold Uc below which the rubber matrix would become floppy, 
that is below which the elastic modulus /i would cancel. On the other hand, 
far above this threshold, the elastic modulus fi is of the order /fc, where / 
is the number of springs per unit volume and k their stiffness. The elastic 
modulus should then decrease much faster on approaching ric, then cancel 
at and below Uc. ric has been estimated for some ordered lattices [42-50]. 
It is slightly above 6 in a simple cubic lattice, and much lower (close to 4) 
in a diamond lattice. We shall consider values of n larger than 8 typically 
in our simulations. Values of n close to or lower than 6 would correspond to 
solid particles imbedded in a loosely cross-linked gel or rubber, which is not 
our purpose here. We emphasize once again that the elastic springs in our 
model represent the elastic interaction between filler particles due to the 
elasticity of the rubber matrix as a whole, not the strands between cross-



210 DIDIER LONG AND PAUL SOTTA 

FIG. 1. Schematics of our model for filled rubbers. Filler particles are connected by 
elastic springs and interact via a hard-core potential at short distances, a is the particle 
diameter. For clarity, only a fraction of the springs have been drawn. 

links. Indeed, we consider the problem at the scale of the filler particles, 
which is much larger than the typical distance between crosslinks. 

2.1. Dissipative molecular dynamics. The equations of the dissi-
pative molecular dynamics are non inertial and include a source of dissipa­
tion in the form of a hydrodynamic friction term. The equation of motion 
for particle i is thus: 

(2.6) ^el + ^hs + ^Hydro - ^ 

which gives the velocities at time i as a function of the positions f*, within 
the mean field approximation (see Equation (2.3)): 

(2.7) tT = < t ; > + 7 [̂ el + KsJ 

The positions and velocities are computed every time interval dt. The equa­
tions of motion are solved using the Modified Midpoint Method (MMM). 
The time interval dt is divided in p sub-steps such that ddt = dt/p, and 
the equations are: 

step 0 : 

step 1 : 

step m + 1 : 

step p : 

r? = f^{t) 
fj=f?+i;i({f5})ddt 
^^'=fT^'2'm^})ddt, m = l , . . , p - l 

nit + dt) = lir^r' + rt -f Vi{{^j})ddt) . 
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2.2. Time scale. In the simulations, the time scale is fixed by the 
value of the reduced friction coefficient C* = 1- This time scale corre­
sponds to the typical relaxation time of a particle. The relaxation times 
measured in the system should thus be compared to this typical relaxation 
time. Unless explicitly specified, times will be expressed in units of (* de­
noted "sec". In real systems, the elementary time scale is determined by 
the rubber matrix. In the ideal case of a densely cross-linked network, and 
in the considered regime of high temperature, the time scale is the so-called 
Rouse relaxation time [2, 51]. Note however that, even in this case, real 
rubbers do not exhibit exponential relaxation, but display slower relax­
ations often described as power laws. This is thought to be a consequence 
of the intrinsic disorder of these systems [2, 52]. In this paper, we assume 
that the rubber matrix corresponds to a highly cross-linked rubber, which 
can be well described at long times by a single relaxation time, which is its 
Rouse relaxation time. 

2.3. Deformation of an isotropic solid. Virial stress formula­
tion. In an elastic isotropic body, the stress tensor aa0 is related to the 
strain tensor by the constitutive equation: 

(2.8) Cra0 = KSa^Uii -f 2fi{Uai3 — -^Sa/SUll) 

where K is the bulk (compression) modulus and /x the shear modulus [53]. 
Consider a box of volume V* containing N particles. The stress tensor 
is related to the forces exerted on the particles by the Kramers Kirkwood 
formula, which provides a microscopic expression for the stress tensor [51]: 

(2.9) a,,0 = -^'£P-^P 

where F^ is the a-component of the sum of the forces exerted on particle i 
by other particles of the considered sample and i?^ is the /^-component of 
the position of particle i. Periodic boundary conditions in the simulation 
box ensures that: 

(2.10) E^" = 0. 
i 

These boundary conditions and the fact that we consider only central forces, 
ensures that the total torque satisfies 

(2.11) f = ^ ^ * A F * = 0 
i 

(see Appendix). 
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3. Preparation of the system. The purpose of the preparation 
steps is to obtain an equilibrated sample, in which the total force act­
ing on each particle is zero and the stress tensor is isotropic. Just after 
the particles have been randomly distributed, none of these conditions is 
satisfied. We will have therefore to let the sample equihbrate. First, we 
will cancel the forces (or the velocities) on each particle, and then cancel 
the non-isotropic part of the stress tensor. In an infinite system, the stress 
tensor just after the particles have been distributed randomly should be of 
the form: 

(3.1) Ga^ = -ph 

where p is the pressure, and /d is the identity tensor. In a finite simulation 
box, aa^ is of the form: 

(3.2) Ga^ - -pid -f aal3 • 

The non-isotropic part aap is a traceless tensor. Since the torque acting on 
the system is zero, this tensor is symmetric [53, 54]. There is therefore five 
degrees of freedom to adjust in order to obtain a system with an isotropic 
(isostatic) stress tensor. One can show (see Appendix) that the variance of 
the tensor aa/s scales like N~^/^ just after the particles has been randomly 
distributed. In a sample with 10000 particles, this tensor is of order 0.1 and 
is therefore not negligible as compared to the pressure, which is of order 1. 

3.1. First initialization step. This first step consists in canceling 
the particle velocities, or equivalently the potential forces exerted on each 
particle. This step is performed at constant shape. The time resolution 
ddt chosen to solve the equations of motion must be such that vddt -C ro, 
where v is the velocity of the particles and TQ is the typical distance between 
particles. The initial velocity may be of the order 10 to 100. With ro ~ 0.1, 
this imposes ddt « 10""*. We typically chose dt — 10~^ and p = 10, which 
gives ddt — dt/p = 10""^. In this step, the system is relaxed typically 
during 0.2 to 0.4 unit of time, which corresponds to 200 to 400 dt steps. At 
the end of this first step, the average velocity is not rigorously zero, but it 
has dropped to a value of the order unity at most. A predefined precision 
parameter value ê  may be specified as well to stop the first relaxation step 
as soon as < v > < ey. 

3.2. Second initialization step. At the end of the first step, the 
deviation of the stress tensor, aa^, is still of order N~^^^. To obtain a 
reference sample with isotropic stress tensor, the sample must now be de­
formed so as to cancel the residual stress tensor. It is important to notice 
that the non-isotropic stress tensor elements must be canceled with a high 
degree of precision (typically 10~^), so that the mechanical response (such 
as the shear modulus) can be measured with a good accuracy. Note also 
that all deformations performed take place at constant volume, in order 
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to represent the behavior of real rubbers whose bulk modulus is very large 
as compared to the shear modulus. The following iterative deformation 
process is used to cancel or. At a given step, a small deformation tensor of 
the form 

(3.3) /d + dTap = /d ~ CSaap 

where Saap = (Tafi — (^isoSa/3 with cTiso = Trcra^/3 is applied, so that the 
new deformation tensor Ta/sit + dt) is given by: 

(3.4) r^,{t^dt)= (^^^^^^)^^^(^l 
[de t ( /d - fdr ,^ ) ] ' / ' 

C is a positive number of order 0.1 typically. A new step of equilibration 
of the particles (as described in the first initialization procedure) is then 
applied for a duration At, This procedure is iterated until all components 
of aa^ are zero to the prescribed precision Ca- Note that the dynamics of 
this relaxation process, namely the stress relaxation rate, is not intrinsic, 
but is determined by the ratio C/At, which has then to be optimized in 
order to give the best relaxation performance. 

3.3. Third initialization step. Like real gels, the state of our sam­
ples depends on the way they are prepared. The purpose of this step is 
to remove internal instabilities which result from the preparation process, 
and thus to reduce the dispersion between the results of simulations per­
formed on different samples. The samples are submitted to a few (typically 
6 to 10) preliminary high amplitude elongation cycles. After performing 
these cycles, the second step is done again to cancel the residual stress. 
Non-isotropic elements of the stress are made smaller than typically 10"^. 

3.4. Shear experiments. After obtaining an equilibrated system 
along the lines described above, various experiments may be performed. 
The proper shear experiment is performed in the following way. The sys­
tem is first sheared up to a maximum shear value 7max at a constant shear 
rate 7. This is done by imposing shear steps dj described by the deforma­
tion tensor 

(3.5) /d + dTap = 
1 d7 0 
0 1 0 
0 0 1 

followed by relaxation during At, such that 7 = dj/At. This means that, 
during these elementary steps, the system is first affinely deformed, and 
then the particle positions are allowed to relax to new positions during the 
time At. A full description of the system may be stored in various states 
corresponding to different values of 7inax- After imposing a large amplitude 
deformation at a finite rate 7, we let the stress relax in the sample while 
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maintaining the system at the imposed deformation 7max- Alternatively, 
we may let the system come back to zero stress to achieve a large amplitude 
shear cycle, or perform an oscillatory shear. 

3.5. Simulation times. The duration of the simulations depend on 
the number of time steps dt, or equivalently on the time over which the 
system is studied, given that dt = 0.02 has been chosen typically. In 
order to perform a fiill high amplitude shear cycle, the following steps must 
be achieved: first velocity and stress relaxation (3000 dt steps typically), 
initial elongation cycles (15000 dt steps), stress relaxation (15000 dt steps), 
shearing up to 7max « 2 at 7 = 0.1 (1000 dt steps), long time relaxation 
of the stress at constant 7niax (up to 50000 dt steps). Thus, each shear 
cycle performed on a new system typically corresponds to 80000 steps dt, 
or equivalently 1600 sec in terms of system unit time. The simulations have 
been performed on a cluster of four XEON bi-processor machines operating 
at 2.4 GHz. The systems simulated here have N = 10000 particles (which 
corresponds to a simulation volume of the order 2 1 x 2 1 x 2 1 particles). 
This size has been chosen to insure reasonable simulation times. For this 
size, the performance of the machine corresponds roughly to 25 to 40 sec 
in terms of system time (depending on the connectivity n) per one hour 
computer time, which gives an idea of the overall duration of the whole 
experiment, that is 40 to 60 hours of computer time. On the other hand, 
performing an experiment (stress relaxation under large amplitude shear for 
example) on a system which has already been equilibrated represents about 
24 hours. The results in 15 different systems (3 values of the connectivity 
n and 5 values of the volume fraction $) are presented here. In each 
system, the relaxation at constant shear was studied for typically 6 to 
8 values of the shear amplitude. Typically two samples of each systems 
have been generated. All together, this corresponds roughly to 8000 hours 
computer time. 

All the simulations presented here have been performed using the mean 
field approximation described in Equation (2.3), which allows to solve the 
dissipative molecular dynamics equations directly using Equation (2.6). 
In the general case where the friction term would depend on the particle 
velocity Vi relative to its neighbors, an (almost empty) NxN matrix would 
have to be inverted to solve the equations. The simulation time would 
then increase like iV^ instead of N. Indeed, this method has also been 
implemented. However, to obtain simulation times comparable to those 
mentioned above, the number of particles is Umited to roughly 300 particles, 
which is obviously too small for the kind of problems addressed in this paper 
(non-affinity, long relaxation times due to long-ranged reorganisation) since 
it corresponds to 7 x 7 x 7 particles only in the simulation box. On the other 
hand, at least in the low shear rate regime considered here, the results do 
not differ in a qualitative way and we believe that the essential phenomena 
are correctly described within the mean field approximation used here. 
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^ 

FIG. 2. Oscillatory shear modulus, measured at an amplitude 7 = 0.03 and fre­
quency w/27r = 0.625 sec~^ as a function of the volume fraction $, for different values 
of the connectivity: • ; n = 10 ; 4: n = 9 ; •; n = 8.5. The shear modulus is measured 
by Fourier transforming the strain and stress over 32 periods after waiting 8 periods 
after the beginning of the shear. 

4, Resul ts . The main parameters describing the systems are the vol­
ume fraction $ and connectivity n. $ has been varied between 0.20 and 
0.37 and n between 8.5 and 10. The reduced spring stiffness k* is taken 
equal to 1. Systems with N = 10000 particles have been simulated. The 
size L of the simulation box varies from L* « 24.19 (in units of a) for 
$ = 0.37 to L* « 29.69 for $ = 0.20. According to the different values of n 
and $, the spring equihbrium length varies from ZQ ̂  1-26 to IQ « 1.61. The 
systems at equihbrium contain quenched forces because the spring lengths 
are quite widely distributed. This is a common feature of disordered sys­
tems. A fraction of springs have a length / < /Q, and thus are compressed. 
They correspond to the shell of nearest neighbors of a given particle. A 
fraction of springs are significantly stretched. They correspond to the shell 
of second nearest neighbors around a given particles. We have verified 
that the distribution of spring vectors is isotropic in the initial equilibrium 
state. In all experiments described here, the appUed shear is of the type 
7a;y, represented by a tensor with the symmetry as in Equation (3.5). 

4.1. Dynamical characterization in the linear regime. In order 
to characterize the system in the linear regime, an oscillatory shear strain 
of the form j{t) = jsinut has been appUed. Both the frequency uj/2ir and 
the amplitude 7 may be varied. The oscillatory shear is applied during a 
time of the order 25 to 200 sec (in system time units), depending of the 
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FIG. 3. The complex shear modulus measured in an oscillatory shear (̂ aj/27r = 0.625 
sec~ ̂ , 8 to 32 points per period, Fourier transform taken over 32 period after waiting 
8 periods after the beginning of the shear) as a function of the shear amplitudcy for 
n=10,^ = 0.37. 

frequency and the amplitude, and the response is analyzed after waiting for 
typically 10 sec at least after the beginning of the oscillation, in order to be 
in a true steady state. 8 to 32 points per period are stored, depending on the 
amplitude. The response is analyzed by Fourier transforming both strain 
and stress over an integer number of periods. In this way, the complex shear 
modulus G', G" may be measured as a function of the frequency u and 
the ampUtude 7, and the non-linear components in the response may also 
be detected. Note that the shear modulus fi defined by Equation (2.8) is 
related to the complex modulus in frequency G{uj) = G'{uj)-\-iC{u)) by the 
relation /x = G'(a; = 0) [2, 51]. Figure 2 shows the oscillatory shear modulus 
G' measured at an amplitude 7 « 0.03 and frequency a;/27r = 0.625 sec~^ as 
a function of the volume fraction $ for different values of the connectivity n. 
This figure illustrates the reinforcement mechanism in the high temperature 
regime, as it was characterized in [38] and [39]. In these references, the shear 
moduli were measured in poly(ethyl acrylate) matrices filled with silica 
particles as a function of the frequency, temperature and particle volume 
fraction. In the high temperature regime (T" ^ T̂  + 100 K typically), at a 
given (low) frequency, it was found that the modulus increases by a factor 
about 4 as the volume fraction increases firom about 8% to about 20%. 
Thus, the results presented in Figure 2 are in good agreement with these 
observations. The complex shear modulus is plotted as a function of the 
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shear amplitude 7 in Figure 3, in the system $ = 0.37, n = 10. The 
modulus G' starts to decrease significantly at 7 of the order 0.05, which 
can be considered as the onset of the non-linear regime. 

4.2. Evolution of the energy in the system. In the disordered 
systems investigated, the phase space is very complicated. The system 
does not necessarily reach a uniquely defined minimum energy state in a 
finite time. To illustrate this effect of the disorder, the average energy in 
the system has been computed throughout the simulations. The contribu­
tions from the elastic springs and the hard-core potentials may be treated 
separately. The average elastic energy per spring is defined as: 

(4-1) (Eel) = ^ E ^ ^ 

where Ng is the number of springs and the sum runs over the ensemble of 
springs. The average excluded volume energy is defined as: 

(4.2) ^E^^) = J—Y^E^, 

where the sum runs over the ensemble of interacting pairs. The total energy 
per particle (including both contributions) has also been computed as: 

(4.3) (^E,.,) = l.lY.Ei, + Y.^ 
^spring pair 

Note that, with the given definitions, (£?tot) # {EQ\) + (£Jhs)- The evolution 
of the energy throughout large ampUtude stress/strain cycles is plotted in 
Figure 4. The cycles shown in Figure 4 consist first in shearing the system 
at a given shear rate 7 up to a maximum shear 7max (upwards part of 
the curves), and then relaxing to zero stress using the relaxation process 
which has been described in Section 3.2. Thus, as mentioned in Section 
3.2, the relaxation times in the relaxing parts of the curves are not intrinsic 
here, but depend on the relaxation parameters C and A^ which have been 
chosen. Several observations may be drawn from Figure 4. First, the 
average total energy does not strictly reach a plateau in several hundreds 
of sec (elementary simulation time units), even though the macroscopic 
mechanical state of the system is stationary. Second, the energy state in 
which the system drops after relaxation is not unique. It depends on the 
mechanical history of the system, namely here, on the maximum shear 
7max- Third, the system drops in a state of lower energy after shearing 
at large amplitude. The tendency to decrease the energy is observed for 
both individual contributions (average elastic energy and average excluded 
volume energy). Note that this drop in energy is possible because our 
sample is relatively "young". But we emphasise here that even after the 
third preparation step, the internal energy of the sample can decrease. This 
is a consequence of the very complex phase space available to the fillers. 

hs 
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FIG. 4. The average total energy < Etot > plotted as a function of time during large 
amplitude stress/strain cycles in the system n = 8.5, ^ = 0.35. The abscissa is in sec 
(units of elementary simulation time). The time t = 0 corresponds to the starting point 
of the first large amplitude shear applied (j = 0.1/ The two curves relaxing between 
i w 0 and t « 300 sec correspond to relaxing the system to zero stress after shearing 
at 7mox = 1-88 (top curve) and jmax = 0.77 (bottom curve). At t f^ 335 sec, a second 
cycle is applied with 7 = —0.1 down to various maximum strain. 

4.3. Non-afflne displacements. As mentioned above, most Theolog­
ical models assume that the deformations are affine down to the molecular 
scale [2, 3, 51]. Whereas this assumption has provided a useful way of de­
scribing e.g. polymer melt dynamics, it has proven wrong and misleading 
in the case of systems with frozen disorder, such as gels or rubbers. We 
aim here at quantifying the non-afBne part of the displacements, down to 
the scale of the filler particles. In order to quantify this deviation with 
respect to affine deformation, we proceed as follows. The displacements 
of all particles are computed with respect to a reference state. The initial 
state (I) is the state of the system after the preparation process. The initial 
equilibrium state (I) obtained after the preparation processes is taken as 
the reference state, characterized by the deformation tensor F̂ ^̂  = Id- In 
the initial state (I) the particle i is located at position R!- ^. 

Then a second state (II) may be obtained, for instance after the sys­
tem has been deformed at a finite rate 7 up to a deformation F̂ ^̂ ) and the 
particle positions have been relaxed for a long time at constant deforma­
tion F^^^^ In this second state, the particle i has a position n^ ^ which 
corresponds in the initial (undeformed) state to the position R \ ^ given 
by E!M^^ = r^^^^R\^^\ R\^^^ is the position in state (II), referred to the 
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FIG. 5. a: Schematics illustrating the type of experiment which is described in this 
paper. The system in the initial, reference state (I) described by the deformation tensor 
r(^) = /^ is first sheared at a given rate 'y up to a state described by the deformation 
tensor T^^^^ (step 1), then the relaxation of the stress is studied as a function of time 
while keeping the deformation T^^^^ constant (step 2). b: The definition of the non-
affine displacement vector ARi, referred to the initial undeformed state (I): the position 
of particle i is R'^ ^ in state (II), which corresponds to R \ — r̂ ^̂ ^ R[^ ^ in state 
(I), c: the definition of the correlation function of non-affine displacements. 

initial state (I). Thus, the relative displacement of particle i between the 
states (I) and (II), which measures the non-affine displacement referred to 
the initial undeformed state (I), is expressed directly as: 

(4.4) ARi = B^"^ - R\ (i) 
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FIG. 6. The amplitude gyy(0) of the correlation function of non-affine displace­
ments in the system n = 8.5, ^ = 0.35 sheared at j = 0.1, as a function of the 
maximum shear ̂ max- The system is given time to relax in the imposed deformation. 
The continuous curve is a 7^^ law. 

This is illustrated in Figures 5a and b . 
quantified by the correlation functions 

Then the non-affinity may be 

(4.5) Oa^ir) = {ARiacARjfs) 

where a,P = x,y,z and the average is done over all particle pairs (i, j ) with 
an interparticle vector f (see Figure 5c). One can show (see Appendix), 
that for small deformations and at fixed f, the correlation functions should 
be proportional to 7^, where 7 is the amplitude of the deformation. The 
amplitude gyy{0) of the correlation function of non-affine displacements is 
plotted as a function of 7max in Figure 6, for n = 8.5 and $ = 0.35. Indeed, 
the variation is compatible with a 7^ax 1^^, as illustrated by the continu­
ous curve. The histograms for the Cartesian coordinates (Axj, Ay^, Azi) of 
the non-affine displacement vectors are plotted in Figure 7, in logarithmic 
scale. The distributions of non-affine displacement vectors are compati­
ble with Gaussian distributions. They are however not isotropic. After 
shearing at large amplitude (7max = 1.88), the distribution widths sys­
tematically range in the order {Ax) > {Ay) > {Az) in the various sys­
tems investigated. Histograms for the modulus of the displacement vec-

1 /2 
tors Ari = {Axf -{- Ay^ -h Azf) ' are plotted in Figure 8. Note that the 
quantity Qxx^) + 9yy{Q) "+• QzziO) is the second moment of the probability 
distribution P{Ar) shown in Figure 8. The various histograms in Figure 8 
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Ax, Ay, Az 

FIG. 7. Histograms of the components Ax, Ay, Az of the non-affine deformation 
vector, obtained in the system n = 10, <> = 0.37. Each histogram is normalized such 
that f P{Aa)dAa = 1 (with a — x, y or z). The system is deformed at the rate at 
7 = 0.1 up to 7max = 1.88, then it is given time to relax internally in the imposed 
deformation. Gaussian fits to the histograms are shown. •: histogram for Ax (full 
curve: Gaussian fit) ; o: histogram for Ay (dotted curve: Gaussian fit) ; o: histogram 
for Az (dashed curve: Gaussian fit). The non-affine displacement is not isotropic. 

correspond to different values of 7maxj in the system n = 8.5, $ = 0.35. 
A curve corresponding to a Gaussian distribution of the non-affine dis­
placement vectors is shown also in Figure 8. The computed histograms 
are broader than the Gaussian example. This may be due to the fact that 
the displacements along the three directions are not independent variables. 
Therefore their sum may not be a Gaussian, even though they are Gaus­
sian individually. However, when the abscissa scale Ar is normalized by 
the average value of the histogram (first moment of the histogram), the 
histograms obtained for different values of the parameters n and $ and for 
different values of 7max superpose. The average displacement (Ar), com­
puted as the first moment of the histograms shown in Figure 8, is plotted 
in Figure 9 as a function of the volume fraction $, for different values of 
the connectivity n. Assuming that a 7^ax ^ î̂  represents reasonably well 
the variation as a function of 7max (see Figure 6), the values of (Ar) have 
been normaHzed by 7max ^̂  order to compensate for the slightly different 
values of 7max used in the different measurements. 

The correlation functions 9yy{r),gxx{f),9zz{f') and Qxyif) are plotted 
in Figure 10, in a system with n = 8.5, $ = 0.35 and for a final deformation 
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FIG. 8. Histograms of the modulus of the non-affine deformation vector obtained in 
the system n = 8.5, ^ = 0.35 which has been deformed at the rate 7 = 0.1 up jmaxj and 
after the system has been given time to relax in the imposed deformation. The abscissa 
is the modulus of the displacement vector Ar = (Ax? + Ay^ + Azf) ^ , the ordinate 
the histogram P(Ar) normalized as f P{Ar)dAr = 1. Histograms are plotted for three 
different values of full curves ^max = 0.37 ; doted curves 'ymax 

= 0.745 ; dashed 
curves yrnax -— 

1.88. The dashed-dotted curve corresponds to a Gaussian distribution of 
the non-affine displacement vectors. 

of amplitude 7max = 1-88. Except for Qxy, these correlation functions 
decrease exponentially, at least over the distance which can be probed in 
our simulations, which is of the order 10 (that is half the dimension of the 
simulation box). Note that for symmetry reasons, the correlation functions 
9xy{T)y as well as 9xz{f) and 5yz(r) are expected to be zero. Indeed, it is 
observed that these functions are very small in absolute value (see Figure 
10). Correlation lengths ^ may be estimated from the plots of the functions 
9a^(r) as a function of r. In a given system, the correlation length is not the 
same for all ga^{r) functions. At high amphtudes, the correlation length 
of the y components ^yy is systematically the largest one. (^yy is plotted 
as a function of the maximum strain 7niax in Figure 11. ŷy increases 
significantly as 7max increases, which means that the spatial scale of the 
non-afSne displacements increases as well as their amplitude, though more 
slowly. By contrast, no systematic change of ̂ ŷ as a function of the volume 
fraction $ has been measured in the systems investigated (from $ = 0.20 
to # = 0.37). 
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FIG. 9. The reduced average displacement < Ar > /if^axf computed as the first 
moment of the histograms (as shown in Figure 8), as a function of the volume fraction 
$, for different values of the connectivity n: D; n = 8.5 ; o; n = 9 ; o: n = 10. All 
points are obtained with values of^max of the order 1.8 to 2. 

4.4. Stress relaxation under shear. As it is well known, gels or 
rubbers exhibit long relaxation times, much longer for instance than those 
predicted by the Rouse model, even at high temperatures [2, 52]. In the 
simulated filled rubbers studied here, we may expect long relaxation times 
as well. Indeed, due to the disorder of the systems, one may expect that 
the relaxation involves motions at scales larger than the filler diameters, 
and therefore can be much longer than unity. The relaxation times may 
depend on several parameters. First, the smaller the cross-Unk density, the 
longer the relaxation time, since the available phase space becomes more 
complex. The effect of the filler volume fraction is less clear. On one hand, 
the energy barriers to cross when deforming the samples become larger on 
increasing $. This effect tends to reduce the relaxation times. On the other 
hand, these barriers becoming higher, it takes more time to cross them 
back during the relaxation process. Thus, we have studied the relaxation 
dynamics in our systems by performing the following typical experiment. 
The systems are first submitted to an imposed shear deformation at a 
given 7, and the subsequent intrinsic relaxation of the stress at constant 
deformation is measured. 

We have studied the relaxation as a function of the various parameters 
which describe the systems. The relaxation of the stress under constant 
strain for different values of the strain 7max is shown in Figure 12. (7(0) 
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FIG. 10. Correlation function of non-affine displacements after the system has been 
deformed by a large amplitude shear, r is the distance between correlated particles, the 
correlation function is averaged isotropically on r. A: gyy{r); +: gxx{r); o; gzz{r); D; 
gxy{r). n = 8.5, $ = 0.35, 7 = 0.1, jmax = 1-88. 

is the stress when the value 7inax has been reached. The time is measured 
here from that starting point. Throughout this section, the time scales are 
expressed in system time units (sec), determined by the reduced friction 
coefficient C*- It appears first that the typical relaxation time is very long 
with respect to one, particularly at large values of the strain 'Ymax* 

In the 
top relaxation curves in Figure 12, the stress has not yet reached a plateau 
after more than 100 sec. The relative amount of stress relaxation is quite 
sensitive to the parameters of the systems. The shear stress relaxation 
normalized to one at the starting point, a(^)/a(0), is plotted in Figure 13 
as a function of time, for different values of the constant strain 7max- The 
relative amount of relaxation, defined as (cr(0) — C7fin)/c7(0), is plotted in 
Figure 14 as a function of $, for different values of the connectivity n and 
for a given applied shear 7max- crfin is the stress value at the end of the 
measured relaxation. As mentioned above, there is some uncertainty in 
estimating the terminal value of the stress, which is still relaxing signifi­
cantly after more than 200 sec in some cases. It is observed that the larger 
$, the larger the subsequent stress relaxation. We interpret this result as 
the following: at relatively short times, some fillers come into contact and 
interact strongly, which results in a high contribution to the stress. At 
subsequent times, some of these fillers may move apart in order to drop 
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FIG. 11. r/ie correlation length ̂ yy of the correlation function of non-affine dis­
placements 9yy{0) in the system n = 8.5, $ = 0.35 sheared ai 7 = 0.1 up to 7mox, 
plotted as a function of the maximum shear 'yrnax-

in more energetically favorable position. However, this process is likely to 
take a long time. 

Another noticeable feature is that the relaxations are non exponential. 
The reduced (normalized) stress cr*(i) = (cr(t) — (Tfin)/{(T{0) — crnn), where 
(jfin is the final value of the stress (crfin = cr(i = 00)), is plotted as a 
function of time in Figure 15 in the system n = 8.5, $ = 0.35 for different 
values of the applied shear strain 7inax- The non-exponential character of 
these curves is very clear. Moreover, the initial relaxation time exhibits a 
marked variation as a function of the strain 7: the larger 7, the longer the 
relaxation time, for reasons which are probably similar to those mentioned 
above. The dispersion of the curves at longer times comes essentially from 
the difficulty to determine the final stress (Tfin- A relaxation time r may 
be defined in the usual way as the integral r = f^ a*(t)dt. The relaxation 
time T is plotted as a function of $ in Figure 16 for different values of n, 
all points here being obtained at about the same value of 7 « 1.8. Both 
the relaxation time r and the relative amount of relaxation (as exemplified 
in Figure 13) depend on the volume fraction $, though not very strongly. 

5. Conclusion. We have proposed a model in order to simulate the 
dynamical behavior of physical systems such as gels or rubbers reinforced 
by filler particles. This model represents a disordered elastic system made 
of hard spheres connected by harmonic springs. The response of this sys-
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FIG. 12. Relaxation of the stress (T{t) at various fixed values of the strain as a 
function of time, in the system n — 8.5, ^ = 0.35. The shear (upward curve) is 
performed at 7 = 0.1. The time scale in abscissa is in unit of the elementary simulation 
time scale given by <^. Circles visualize the starting point of each relaxation experiment. 
The corresponding 7 values are respectively (from top to bottom): 1.876, 1.499, 1.122, 
0.745, 0.369, 0.180, 0.086. 

tern to large amplitude shear deformations has been studied by dissipative 
molecular dynamics. The parameters of the system are the connectivity n 
and the volume fraction $ , and the parameters of the applied deformations 
are the shear rate 7 and the maximum shear 7max- Note that any tensorial 
deformation F^^ may be implemented in our numerical simulation code. 
This system exhibits some major effects which correspond to the behavior 
observed in filled elastomers. First, it reproduces the reinforcement ob­
served in the high temperature regime in [38, 39]. Indeed, we observe that, 
the higher the filler volume fraction, the higher the shear modulus. Second, 
our simulations displays the non-affinity of the microscopic displacements, 
which have been observed in systems such as gels or rubbers. The pres­
ence of the fillers tends to enhance the non-affine part of the microscopic 
displacements. This behavior results from two mechanisms with opposite 
contribution: the presence of the fillers tends to maintain each unit within a 
defined neighborhood, which tends to reduce the non-affinity; on the other 
hand, once a unit has overcome this barrier under the action of the imposed 
displacement, the presence of the fillers makes it more difficult to drop back 
in (or very close to) its previous relative position during subsequent relax­
ation. Our simulations show that this latter effect dominates the former. 
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FIG. 13. Relaxation of the normalized stress a{t)/cr{t = 0) in the system n = 8.5, 
^ = 0.35 under different values of the applied strain, from top to bottom curve: A; 
Jmax = 1.88 ; V: Jmax = 1-50 / o; ^rnax = 1.12 / O; Jmax = 0.745 / D : 7mox = 0.37 / X; 
7max = 0.18 ; plain curve: jmax — 0.086. 

As mentioned in the introduction, the non-affine nature of the displacement 
field has also been considered in simulations regarding the case of simple 
liquids, in the low temperature regime [18,19]. However, these studies con­
sidered wave propagations, on time scales which does not allow the degrees 
of freedom to change their local environment: the motion of the molecules 
correspond to vibrations of small amplitudes compared to the molecular 
diameter, whereas we consider here large scale reorganisations. Note also 
that these simulations have been performed in 2D only. 

The relaxation mechanisms discussed above makes the time evolution 
of the system very complex. We have also shown that the microscopic 
state is not a one-to-one function of the macroscopic deformation: the 
state of this kind of systems depends on their history. In particular, we 
have shown that the internal energy of a "young" sample can decrease when 
submitted to deformation cycles. Another major effect is that the complex 
relaxation mechanisms due to the disorder of the system lead to very long, 
non-exponential relaxations, with associated time scales much longer than 
the unit time scale of the system. Therefore, even if the rubber matrix 
has a well defined relaxation time, these systems should exhibit a broad 
distribution of relaxation times. The case of a less idealized matrix, with 
itself a non-exponential relaxation function, could in principle be addressed 



228 DIDIER LONG AND PAUL SOTTA 

0.5 H 

0.4 

^ 0.3 
IS 

I 

b^ 0.2 

0.1 

0.0 I t I I I I I I 

0.20 0.25 0.30 
1 — I — I — I — 1 -

0.35 

o 
FIG. 14. The relative percentage of relaxation of the stress expressed as the quantity 

((T(0) — (Tfin)/(T{Q) at 7 « 1.8 as a function of $ for different values of n: D; n = 8.5 ; 
o: n = 9 ; o: n = 10. 

using our approach, by replacing the friction coefficient C* by a distribution 
of friction coefficients. These kinds of approaches should be extended to 
describe in more details the non-linear behavior of gels and rubbers, and 
also the complex and fascinating behavior of filled elastomers in the low 
temperature regime, where the glass transition effects lead to dramatic 
reinforcement and very strong non-linear behaviors [29, 30, 34, 38, 39]. 
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APPENDIX 

A. Torque. The torque acting on the system can be written as 

(A.l) f=Y^R'AF' 

where the force F^ is the total force acting on particle i. The torque can 
be written as 

(A.2) 
ijneighbors 
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FIG. 15. The relaxation of the reduced stress (T*{t) = (o"(t) — afin)/io-{0) — a fin) in 
the system n = 8.5, $ = 0.35, for different values of the shear strain 7max. From top 
to bottom curve: A: jmax = 1.88 / V; 7max = 1-50 ; o; ^max = 1.12 ; o; ^max = 0.745 ; 
• : 7max = 0,37 ; X: 7mox = 0.18 ; plain curve: jmax = 0.086. 
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FIG. 16. The relaxation time r ai 7 « 1.8 as o function of the volume fraction $, 

for different values of n: D: n = 8.5 ; o; n = 9 ; o; n = 10. 
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where the summation runs other all internal forces. F*'-' is the force that 
particle j exerts on particle i. The torque can then be written as 

(A.3) f = i ^ {W- RP) A F'^^ . 
ijneighbors 

Since all the forces between particles are central forces, this quantity is zero. 

B. Deviation of the initial stress tensor. In a macroscopic sam­
ple, the stress should be diagonal immediately after the particles have been 
randomly distributed in the sample, because the sample would be isotropic. 
On the other hand, because of the finite number of particles in our sam­
ple, fluctuations cannot be neglected. After the particles have been dis­
tributed, the deviation of non-diagonal elements of the stress tensor can be 
estimated as: 

(B.i) {ai,) = ^,Y.{^<^^c.nH) • 
id 

We consider the case of non-diagonal elements a ̂  ^. Then, the previous 
sum, which contains AT̂  terms a priori, effectively contains a number of 
order N of non-negligeable terms only. Indeed 

(B.2) {RiRiFJF^)^0 

for indices corresponding to particles far apart. Thus 

ij'neighbors 
(B.3) 

i,jneighbors 

When the indices i and j are different, one has, if the particles i and j are 
neighbors 

(B.4) (F^FJ) = l{Y,P'^')CZ^'n) = (F^'^F^'^) (« -P) 
\ k m I 

where / is the typical force exerted by the elastic springs or by the hard 
core repulsion. If the particles are not neighbors, this average is zero. When 
the indices i and j are equals, one has 

(B.5) {FiFi)={Y,F'''F''n 
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These terms exactly cancel the previous ones, except for the bonds at the 
boundaries which point out of the box. The contribution of the remaining 
terms is therefore 

(B.6) K/3>«^E/i^«^/'^B. 

The subscript B means that the summation is performed over all particles 
which interact through the boundary of the box. The number of such 
particles is NB- Finally: 

(B.7) (al,) « ^ ^ oc iV- /3 . 

Thus, for a box with 10000 particles, the amplitude of non diagonal ele­
ments of the stress tensor is of the order 0.1 and is therefore not negligible. 

C. Amplitude of the correlation functions. Let us consider an 
elastic body with a non-homogeneous elastic modulus // = /ZQ + ^fJ" When 
this system is submitted to an imposed deformation 7, the displacement 
field u{r) is such that fjL{r)u{r) ^ 7/xo is constant. It follows that 6u{r) ~ 
jSjj>{f), where Su{r) is the local distortion as compared to the macroscopic 
affine deformation, i.e. the non-affine displacement. Then: 

(C.l) {u{fi)u{fi + R)) - 7 ' {Sf^{fl)S^{fl + R)) . 

This shows that, for small deformations, the correlation function of the 
non-affine displacements varies as a function of 7 like 7^. 
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STRESS TRANSMISSION AND ISOSTATIC STATES OF 
NON-RIGID PARTICULATE SYSTEMS 

RAPHAEL BLUMENFELD* 

Abstract. The isostaticity theory for stress transmission in macroscopic planar 
particulate assemblies is extended here to non-rigid particles. It is shown that, provided 
that the mean coordination number in d dimensions is d + 1, macroscopic systems can 
be mapped onto equivalent assemblies of perfectly rigid particles that support the same 
stress field. The error in the stress field that the compliance introduces for finite systems 
is shown to decay with size as a power law. This leads to the conclusion that the isostatic 
state is not limited to infinitely rigid particles both in two and in three dimensions, and 
paves the way to an application of isostaticity theory to more general systems. 

Key words. Granular systems; Stress field; Compliance; Isostatic systems. 

1. Introduction. Much attention has been given lately to particulate 
systems both due to their overwhelming technological importance and the 
fundamental theoretical challenges that they pose [1, 2]. In particular the 
micro- and macro-mechanics have focused research activity following exper­
imental [3-7] and numerical [8-11] observations of nonuniform stress fields 
[12]. Specifically, stresses frequently appear to be supported by arch-like 
regions, termed force chains, that cannot be straightforwardly described 
by conventional approaches [13-15]. It has been recognized that to un­
derstand this phenomenon it is essential to first understand transmission 
of stresses in 'isostatic' systems [12]. Isostatic states are configurations of 
particles where the interparticle contact forces are statically determinate, 
i.e. they can be determined from the mechanical equilibrium conditions 
of balance of force and torque moments. This means that the interparti­
cle forces can be determined without reference to compliance and hence 
to stress-strain relations. Isostatic states are characterized by low mean 
coordination numbers per particle which depend on the dimensionality of 
the system and on the particles roughness. For rough and infinitely rigid 
particles in d-dimensionaJ systems (d = 2,3) this number is Zc = d H- 1, 
for smooth infinitely rigid particles of arbitrary shape Zc = d{d -h 1) [16-
19], and for smooth infinitely rigid spheres Zc = 2d. Isostatic packings 
of particles are marginally rigid and such states have been shown to be 
easy to approach experimentally [19], making them interesting more than 
only theoretically. Several empirical [20-23] and statistical [12, 18] mod­
els have been proposed for the macroscopic stress field equations in these 
systems, suggesting a linear coupling between the components of the stress 
tensor. This has been recently established from first principles in the two-
dimensional case for systems of infinitely rigid particles [24]. The new 

* Biological and Soft Systems, University of Cambridge, Cavendish Laboratory, Mad-
ingley Road, Cambridge CBS ORE, UK (rbblUlphy.cam.ac.uk). I am grateful to Prof. 
Robin Ball for critical comments. 

235 



236 RAPHAEL BLUMENFELD 

isostaticity theory (IT) closes the stress field equations with a constitutive 
relation between the stress tensor a and a rank-two symmetric fabric tensor 
p which characterizes the local microstructure: 

(1.1) 
Pxx^yy "T PyyO'xx ^Pxy^^xy — ̂  • 

On the scale of a few particles, this equation is a local manifestation of the 
torque balance condition beyond the global requirement that a = a^ [24]. 
It then transpired that the coarse-graining of Eq. (1.1) is not trivial, but 
this was eventually resolved, making it applicable for macroscopic systems, 
albeit with a subtle difference in the interpretation of the constitutive field 
Pij [30]. This paved the way to several results, most notably it enabled 
a derivation of the general solution for the stress field in two-dimensional 
isostatic granular packings [25]. The solution turned out to indeed give 
rise to force chains and arches. This, not only gave a firm theoretical basis 
that explains the experimentally observed force chains, but also provided 
a way to predict the trajectories of individual force chains. Using these 
predictions made it possible to test the theory by direct comparison with 
experimental measurements. 

However, much controversy surrounds the validity of the new theory. 
In particular, because it has been developed for infinitely rigid particles, 
there remained questions concerning its validity to general particulate sys­
tems, whose rigidity is unavoidably finite. The clarification of this point is 
a crucial first step towards bridging between IT and elasticity theory. A 
detailed examination of this issue, both in two and in three dimensions, is 
the aim of this paper. 
Two dimensions. Consider a poly disperse planar packing of N parti­
cles of arbitrary shape and typical area a [26], confined to within a square 
container of dimensions L^ ~ aN. All the particles are presumed to be 
made of the same material whose elastic properties are known [27]. The 
packing is loaded by an infinitesimally small external compressive force Fy 
on two opposite boundaries, as shown in Figure 1. The load compresses 
the particles against one another slightly, resulting in contacts between 
neighboring particles that consist of short lines. The line contacts, rather 
than point contacts, between particles constitute the main difference be­
tween packings of compliant and infinitely rigid particles. The criterion for 
'smallness' of Fy is that the contact lines are smaller that the linear size 
of the corresponding particles [28]. For a system of infinitely rigid parti­
cles to be statically determinate in two dimensions the mean coordination 
number per particle must he Zc = S up to a boundary-to-bulk correction 
term. We wish to determine whether stress fields that develop in assemblies 
of compliant particles that satisfy this condition are also governed by the 
equations of IT. 

An ideal resolution of the issue would be to estabhsh whether all the 
interparticle forces can be determined, at least in principle, fi*om balance 
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FIG. 1. The loading on a packing of grains by a force Fy that is distributed evenly 
on the shown surfaces. 

conditions alone. If this is possible then the system is statically determi­
nate and isostaticity theory must apply. The main difference between the 
geometries of infinitely rigid and compliant systems is that while in the 
former the interparticle forces act at a point of contact, in the latter they 
are continuously distributed along contact lines. Let us examine the con­
tact between two touching particles, g and g'. The particles press on one 
another with a force that is distributed along the contact line with density 
(f>{x), where x is a length parameter that varies from 0 to I along the Une 
(see Figure 2). Due to the arbitrary shapes of particles this force density 
need not be uniform. Both a force and a torque moment are transmitted 
through the contact and these are given by 

(1.2) 

and 

(1.3) 

f^3 = / <t>{x)dx 
Jo 

pi 
M^^' = / ${x) X 

Jo 
p{x)dx 

Here p{x) is the position vector from the centroid of the particle (defined 
as the mean position vector of the contact points of the particle g). 
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FIG. 2. The distribution of forces, (t>{x) along the contact line between grains g and 
g'. The contact line is parameterized by 0 < x < I from left to right. The mean force is 
f^3 located at a distance x = to, found from the first and second moments of the force 
density. 

So, do we need to determine the entire force distributions along the 
contact lines? Considering relations (1.2) and (1.3), the answer is encour­
agingly no. The torque moment can be represented by a single force of 
magnitude /^^ acting at a point x = IQ that Ues between a; = 0 and x = / 
(it is straightforward to see that IQ cannot be outside this section), and 
whose location is determined by the relation 

(1.4) fa9 xp(/o) = M^^ 

Thus, it seems that, at least in principle, we can reduce the problem to 
find the discrete forces /^^ . In mechanical equilibrium these interparticle 
forces balance out [29] 

(1.5) 
9' 

The stress field can be defined in terms of the force moments around the 
particles 

(1.6) 4 = E/rVf'(w. 
9' 

The torque balance condition for every particle amounts to the requirement 
that Sfj = Sji. With this definition the stress within a given region inside 
the material is the area average of the force moments over the particles 
within the region. 
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FIG. 3. The equivalent system of ideally rigid particles (dashed lines) touch at the 
point X = IQ along the contact line of the original compliant particles (full lines). 

Expressions (1.2), (1.3) and (1.6) suggest that the stress field is deter-
mined only by the forces /^^ , rather than by the entire distributions of the 
contact forces. It follows that if we knew the locations of the points l^^ 
where the equivalent interparticle forces act then we could map the system 
of compliant particles onto an equivalent one of infinitely rigid and infinitely 
rough particles that contact at these points, as illustrated in Figure 3. The 
equivalent system would have the same mean coordination number and it 
would transmit the same interparticle forces. Therefore, it would also have 
the same macroscopic stress field. Since the stress field in the equivalent 
packing is governed by IT then this would lead to the important conclu­
sion that the original packing of compliant particles is also isostatic and is 
indeed described by IT. 

However, there still remains the issue of the adaptation of the formal­
ism to the structure of compUant systems. In particular, recall that IT 
reUes on the identification of the geometric tensor whose components pij 
depend directly on the positions of the contact points. Thus, the question 
that we are faced with is whether it is possible to identify the points along 
the contact Unes, l^^ . Here we appear to have a problem. To determine 
the locations of these points requires using relations (1.3) and (1.4), which 
in turn require full knowledge of (j){x) at the contact between every two 
particles. But this is tantamount to a solution of the interparticle forces 
in the first place. Does this mean that we cannot find the equivalent rigid 
packing? Have we reached a dead end? 

Not necessarily. The conundrum can be resolved as follows. Let us 
introduce a judiciously chosen approximate equivalent system for which we 
can use IT to solve for the stress field. The idea is to show that the difference 
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between the approximate and the true fields diminishes as N~^ (a > 0) 
when the system size increases and therefore that the approximate solution 
converges to the true solution for macroscopic systems. The equivalent 
packing is generated by choosing the forces /^^ to act at the centers of the 
contact lines. This requires only knowledge of the structure, not the force 
distributions. Let us construct the geometric tensor p for the equivalent 
system, using the definition in [24] and coarse-grain it using the procedure 
in [30]. Together with the boundary data, we can now determine the stress 
field using the solution of reference [25]. 

The deviation of this solution from the 'true' stress field arises from 
the error made in the position vectors that point from the centroids of 
the grains to the location of p^^ (IQ), Defining these error vectors as S^^ = 
p^^' (1/2) - p^^' (/o), the error in the stress field around particle g is given by 

(1-7) H = ^E'5f''/f', 
9' 

where a^ is the area associated with particle g. 
Now, a continuous stress field representation is only useful on scales 

that contain a good number of particles M but where M < N. For macro­
scopic description, the system is regarded as a collection of continuous 
such units. The error made in the stress within such a unit region of area 
A^ = Ylga3 <^ aM is 

54 
(1.8) 

^E-H A^ 
9 

9 9.9'€T 

The error in the stress field is linear in the S^^ and its magnitude depends 
directly on the correlations between these quantities; 

(1.9) K ) ' = T ^ E (r'^f'"•)//'•//"•"•• 
v2 _ J _ 

^^ ) 9.9'.9",9"'er 

Let us now assume that in isotropic packings the error vectors S^^ are 
random and uncorrelated. This, of course, may not be the case since cor­
relations may arise from the history of the dynamics that gave rise to the 
structure, as well as from inhomogeneities in material properties and gran­
ular characteristics that lead to nonlinear contact lines. However, in the 
absence of evidence to the contrary it is plausible that under small load­
ing these effects are negligible. Then the sum in (1.8) can be regarded 
as a two-dimenaional Markovian random walk and it increases as 0 ( M ) , 
up to logarithmic terms. But the area also increases as 0{M) and hence 
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the entire expression (1.9) decreases as 1/M. We therefore arrive at the 
conclusion that 

(1.10) 5a' ;;.r 
y/M ' 

This result encouragingly support the idea that the approximate and the 
true stress fields converge in the macroscopic limit. But we are not fin­
ished yet. Having partitioned the system into NjM basic units of M grains 
each, we now face the acid test of the analysis. We need to determine the 
size of the discrepancy between the boundary data and the corresponding 
data derived from the approximate field. Using the same rationale, it is 
assumed that in isotropic systems the errors in the stresses (1.10) in dif­
ferent basic units are independent. It follows that the error in the stress 
field at the boundary (which is normalized by the total area) is of order 
0{'\/MJN) < 1. For macroscopic systems this error is indeed negligibly 
small. We have therefore reached the desired result; in macroscopic pack­
ings of compliant grains the approximate and the true stress fields are the 
same and can be obtained by solving for the isostatic stress in the equivalent 
infinitely rigid packing. 

To make the analysis even more quantitative, let the particles' Young 
modulus be E and let us assume that their local radius of curvature is 
typically R = Cy/a. In isotropic systems it is expected that the value of 
the parameter c would be distributed over particles around l / y ^ . For 
monodisperse circular particles the distribution of c is almost a (5-function 
around this value. A sensible choice of M is such that there are many 
particles in a unit region on the boundary that are pressed by the boundary 
loading. With this choice the fluctuations of the force on the boundary 
particles can be disregarded and the mean force per particle in the y-
direction is Fyjy/N. Two particles in contact exerting a normal force fn 
on one another deform slightly and according to Hertz theory the line 
contact between them is 

(1.11) w 
V nE' 

long. In this expression R^ is an effective radius, 1/iJ* = 1/R^ + 1/R^' « 
2\/ir/a, E' = 2(1 - i'^)/E and u is Poisson's ratio. Substituting for the 
compressive force / „ gives that the width of a typical line contact is 

The error in the distance between the middle of the line and the true 
point lo is at most w/2. Thus, using relations (1.7) and (1.12), and taking 
into consideration that there are on average three contacts per particle, the 
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typical error made in the computation of the stress around any one particle 
is bounded by 

(1.13) 

This calculation gives the precise power a = 3/4 with which the error be­
tween the stress fields decays with the number of particles N and completes 
the proof. 

Recalling that theories for ideal rigid particles predict stresses that 
propagate nonuniformly along arches [12, 20, 25], this explains why such 
force chains are also observed in packings of compliant particles [3-11]. 
Moreover, since the trajectories of force chains can be predicted in ideal 
packings [25] then the above suggests that these predictions can be ex­
tended to systems of compliant particles. It would be interesting to com­
pare these predictions with the actual trajectories observed in realistic sys­
tems, such as those of references [3-7]. 
Three dimensions. The discussion of the three-dimensional systems fol­
lows the same rationale. The systems considered here consist of compliant 
and non-sUpping particles, sUghtly compressed under a low external load. 
The mean coordination number is four per particle and the contacts make 
small two-dimensional surfaces. We assume, for simplicity, that the parti­
cles have homogeneous elastic properties, in which case the contact surfaces 
are planar. It is straightforward to lift this assumption and extend the re­
sults to systems of particles with nonuniform properties. The difference 
between such a system and one of infinitely rigid particles is that the in-
terparticle forces are distributed across the contact surfaces. The contact 
surface between particles p' and g' can be described by a position vector 
p^^ (x, y), where x and y parameterise the surface of the contact. Terming 
the interparticle force density (j)^^ {^,y), the mean force between the two 
particles is 

(1.14) f^^'=f$^^'{x,y)dxdy, 

where s stands for an area integration across the contact surface. The mean 
torque moment on the surface is 

(1.15) M^^' = f ^^' {x,y)p^^' {x,y)dxdy . 

Prom Eqs. (1.14) and (1.15) we now extract a position vector pQ^ by using 

(1.16) f^'' X p^/ = M^^' . 

It is straightforward to verify that if the contact surface is planar then 
p^^ corresponds to a point on the surface p^^ = p^^ (a;o,2/o)' Non-planar 
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surfaces, which may result from non-uniform elastic properties in the parti­
cles, do not pose a limitation on this analysis as long as the deviation from 
the plane is smaller than the size of either of the particles in contact. We 
can now define the equivalent ideal system by postulating that its infinitely 
rigid particles make contacts at the points pĝ  • 

This done, we face the same conundrum as in the two-dimensional case; 
the determination of the contact points of the equivalent system poses the 
same level of difiiculty as the original determination of the contact force 
distributions. For the resolution of this problem we follow the same logic 
as before. We construct an approximate system, for which isostaticity 
theory can be applied to determine the stress field, and then we show that 
the approximate field converges to the true field as the size of the system 
increases. 

The contact points of the approximate system of infinitely rigid parti­
cles are postulated to be at the centroid of the contact surfaces of the true 
system of compliant particles, 

These points axe well defined from the geometry. The stress field in the 
approximate ideal packing of rigid particles is 

where V^ is the volume associated with particle g. There are several ways 
to define the volume V^ such that V^^^ = J^ V^, but the precise definition 
is not essential for the present discussion. The error in the stress around 
particle g originates from the deviations of the true positions of the effective 
forces from the approximate positions Sp^^ = ̂ ^prox "" Po^ > 

(1.19) K^wE/f^'^^f-

Consider a region T containing M <^N particles. The volume of the region 
is of order V^ = Ylg ̂ ^ ^ VM, where V is the typical particle volume. 
The error in the stress over this region is 

Sal = ^ —y rv?. 
(1.20) 

9,9'er 

Following a similar analysis as in two dimensions we end up with a 
three-dimensional Markovian random walk of the vectors 5p^^ . Assuming 
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now that in isotropic systems these are uncorrelated (at least above some 
length scale), we conclude that | Safj \ increases as 0{M^/'^) and therefore 
that the error decreases as 0(M~^/^). By considering many such regions 
we are then led to the conclusion that the error at the boundary between 
the true and approximate stress fields decreases again as 
0(L-3/2) < 1. 

We can make the analysis again more quantitative by taking into con­
sideration the elasticity of the particles, their typical size and assuming 
Hertzian interaction. Following the hne of reasoning as that leading to 
Eq. (1.13), we find that according to Hertz theory the diameter of the area 
of contact between two grains is 

(1.21) ^ = 2 ( ^ y ^ ' , 

where / „ is the force pressing them together, l/K = (3/4)[(l — fi^)/E + 
(1 - fji'^)/E'] is an effective elastic constant, and 1/R^ = l/R^ -f 1/R^' is 
an effective curvature. Taking a cube of N particles and pressing on one of 
its surfaces by a force Fz gives that on average per grain there is a normal 
force of order Fz/N^^^. Recalling that there are on average four contacts 
per particles, the error in the stress around a particle can be bounded by 

(1.22) \Sa!j\ < ^ ^ 1 ^ ^ ^ 4 / 3 ^ - 8 / 9 

Thus we have demonstrated that, just as in two dimensions, the iso-
static solution for the equivalent system of ideally rigid particles converges 
to the true stress field of the packing of compliant particles as the size of 
the system increases. 

To conclude, it has been shown in this note that isostaticity theory is 
not limited to packings of infinitely particles. Rather, this theory can be 
used to describe stress fields in macroscopic systems of compliant particles. 
The only condition that such systems must satisfy is the same as the one 
for rigid-particle isostatic systems; that the number of contacts per particle 
is Zc = d + lin d = 2,3 dimensions. 

The next step towards bridging between isostaticity and elasticity the­
ories involves considering packings where the mean coordination number is 
larger than Zc. A suggestion in this direction has been made by this author 
[25] and a detailed formulation of an isoelasticity theory will be reported 
elsewhere. 
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