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Preface

Rien n’est plus fécond, tous les mathématiciens le savent,

que ces obscures analogies, ces troubles reflets d’une théorie

a une autre, ces furtives caresses, ces brouilleries inexplicables;
rien aussi ne donne plus de plaisir au chercheur.

André Weil (1960)

The analogy between number fields and function fields in one variable was observed
at least as early as the second half of the 19th century. It became an important heuristic
principle in the hands of Dedekind. It led him to set up a completely algebraic theory
of algebraic curves as a counterpart to the transcendental theory of algebraic curves
established by Riemann. In this analogy, a prime of a number field is viewed as
being similar to a point on an algebraic curve. Indeed, each gives rise to a valuation.
This point of view led, for instance, to the introduction of the infinite primes of a
number field.

In the famous paper by Dedekind and Weber, published in 1882 in Crelle’s Jour-
nal, the analogy between number fields and function fields is worked out in detail.
A few years later, in his once-famous “Grundziige” paper, Kronecker made an at-
tempt to develop a general theory encompassing both function theory and arithmetic.
In a related development, Weil and van der Waerden established in the first half
of the 20th century the foundations of algebraic geometry along algebraic rather
than analytic lines, but it was not until the 1960s that Grothendieck’s theory of
schemes provided a satisfactory framework for the unified point of view envisioned by
Kronecker.

In the meantime, E. Artin had discovered that the zeta functions of Riemann
and Dedekind have analogues for function fields over finite fields and that Riemann’s
hypothesis concerning the zeroes of his zeta function translates into a conjecture about
the absolute values of the eigenvalues of the Frobenius endomorphism associated to
curves over finite fields. This revealed a much deeper analogy than the one presented
by Dedekind and Weber. Once the Riemann hypothesis for curves over finite fields
was proved by Hasse for curves of genus 1 and by Weil for curves of any genus, a
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better understanding of the analogy became a Holy Grail, holding a promise for a
proof of the Riemann hypothesis.

Weil himself popularized this point of view on various occasions. In the 1960s,
perhaps inspired by a remark in a 1942 letter of Weil to Artin, Iwasawa developed
his theory of Z ,-extensions. Guided by the analogy, he was led to the so-called Main
Conjecture in Iwasawa Theory. It was proved in 1982 by Mazur and Wiles. Rather
unexpectedly, the analogy also provided to be an inspiration in the other direction
when the theory of cyclotomic fields led to the development of an analogous theory
for Drinfeld modules. Similarly, Deligne’s mixed Hodge theory was largely inspired
by the properties of the Frobenius endomorphism on the cohomology of varieties in
characteristic p.

A new exciting chapter was written in the 1970s when Arakelov, at the instigation
of Shafarevich, showed how to compactify a curve over a number field. This led to the
concept of an arithmetic surface, which is the analogue of a compact surface fibered
over a curve. Arakelov invoked the differential geometry of Riemann surfaces and
constructed a good intersection theory on arithmetic surfaces that mimicked the inter-
section theory of compact algebraic surfaces. The analogy between the finite places
and the infinite places of a number field is extended to a more subtle analogy between
curves over p-adic fields on the one hand and Riemann surfaces over the complex
numbers on the other. Arakelov’s point of view has become a guiding principle. Basic
results such as the Riemann—Roch Theorem and Noether’s Theorem have been ob-
tained by Faltings. They have been generalized to higher dimensions by Gillet, Soulé,
and others.

Perhaps Arakelov theory has not yet fulfilled its initial promises. But its phil-
osophy has had a profound influence on the recent development of number theory.
Deepening the analogy between geometry and arithmetic as much as possible seems
to be a worthwhile enterprise. The same can be said of other, perhaps less traditional,
analogies. Here one may think of the analogy between number fields and knot theory
as observed by Mazur, or the existence of the mysterious mathematical object that
plays the role of a “field with one element.”

In this volume we present different aspects of this parallelism. It is published on
the occasion of the 4th Texel Conference, which was devoted to the analogy and held
during the last week of April 2004.

We would like to take the opportunity to thank the participants and speakers
who made the conference a success. We also would like to thank the institutions
that financed the conference: the Korteweg-de Vries Instituut at the Universiteit van
Amsterdam, NWO, the Thomas Stieltjes Instituut, and the Koninklijke Nederlandse
Akademie van Wetenschappen.

Gerard van der Geer
Ben Moonen

René Schoof
Amsterdam

March, 2005
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Arithmetic over Function Fields:
A Cohomological Approach

Gebhard Bockle

Institut fiir Experimentelle Mathematik
Universitidt Duisburg-Essen

Campus Essen

Ellernstraf3e 29

45326 Essen

Germany
boeckle@iem.uni-due.de

1 Introduction

The present article is a survey of some recent developments on a particular aspect
in the arithmetic of function fields. It is not intended to be a survey on all recent
developments, of which there are many, nor on all the foundations of the subject, for
which there is a number of good references available, such as [A196], [Ge86], [G096].
The main emphasis, as expressed by the subtitle, is to advertise some developments
that are based on a cohomological theory, introduced by R. Pink and the author [BP04].

This survey is aimed at a reader who has some familiarity with the arithmetic of
elliptic curves over number fields, with algebraic geometry and étale sheaves, and
has perhaps some (vague) ideas about motives, and who wants to learn more about
parallel aspects in the arithmetic of functions fields.

Our starting point in Section 2 is a short review of the similarities between elliptic
curves on the one hand and Drinfeld modules on the other hand. We emphasize
motivically interesting information that is encoded in them, namely their analytic and
étale realizations. The subsequent section gives a rapid introduction into some aspects
of Anderson’s theory of #-motives. It generalizes the theory of Drinfeld modules and
thereby provides some additional flexibility.

Section 4 introduces the cohomological viewpoint introduced by R. Pink and the
author; cf. [BP04]. It is a natural generalization of Anderson’s theory. The construction
starts with a theory that looks very much like the theory of coherent sheaves, where
as an additional piece of data the sheaves are equipped with an endomorphism. (The
endomorphism itself needs the absolute Frobenius endomorphism which is present
in the characteristic p situation we consider. A similar type of object in characteristic
zero would be a vector bundle with a connection.)

Then comes a crucial point. We localize this first category at a suitable multiplica-
tively closed subset. The resulting category is called the “category of crystals over
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function fields.” The reader should not be deterred by this two-step construction, but
instead realize all the improvements to the theory that result from the localization.
The motivation for the construction is that in [BP04] we realized that in the local-
ized category there would exist a functor “extension by zero” which is not present
in the original category. The introduction of crystals is perhaps the main novelty in
comparison to some earlier concepts generalizing Drinfeld modules.

As a test case, we compare the theory of crystals over IF, with the theory of
constructible étale sheaves of IF,-modules over schemes of characteristic p, and
establish an equivalence of categories.

The following section gives two applications of the cohomological theory. The
first is a rationality proof for L-functions that can be attached to families of #-motives
or for Drinfeld modules. An analytic proof had previously been given by Taguchi
and Wan (cf. [TW96]) using Dwork-style methods. A similar development had taken
place in the rationality proofs of L-functions of varieties over finite fields. Again, it
was first Dwork who gave an analytic and then Grothendieck who gave an algebraic
proof. It was precisely this parallel that motivated the construction of the theory of
crystals and led to [BP04].

The second application in Section 5 is the proof of the existence of a meromorphic
continuation of global L-functions attached to -motives by Goss to amod p analogue
of the complex plane. Here again, the pioneering work [TW96] of Taguchi and Wan
had yielded a first p-adic analytic proof (at least in an important special case).

In the last section, we explain yet another application, namely the construction of
something that could be called a motive for Drinfeld modular forms. This “motive” is
an arithmetic object whose analytic realization is the space of Drinfeld cusp forms for a
fixed weight and level. Its étale realization allows one to attach Galois representations
to Drinfeld cusp forms.

There are many interesting open problems in this subject, and throughout the last
two sections, we describe a number of them. It is hoped that they will further stimulate
the interest in the arithmetic of function fields.

2 The basic example

Let us first recall some arithmetic properties of an elliptic curve E over Q which are
basic for its realization as a motive:

1. ViaQ — Cthecurve E becomes an elliptic curve over C. Its first Betti homology
is A := H{(E(C), Z), and one has a pairing

A x HY(E©), Qgcyc) = C: (L, 0) /w
A

so that E(C) = Hom¢ (H(E(C), Qg)c). C)/A = C/A.

2. Furthermore for any rational prime £ of Z one has the £-adic Tate module Tate, (E)
of E. As a group it is isomorphic to Z%, and it provides us with a representation
of the absolute Galois group Gg := Gal(Q*P/Q) of Q on Tate,(E), i.e., a
homomorphism pg ¢: Gg — GL2(Zy).
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The Betti cohomology of E may be viewed as its analytic realization, the Tate module
of E asits £-adic étale realization. (The motive of E in the sense of Grothendieck also
contains parts in degree 0 and 2—but these are not particular to E, and we therefore
do not consider them.)

Let I, be the finite field of g elements, and let F be a function field of transcen-
dence degree 1 over its constant field ;. We fix a place, denoted by oo, of F, and
let A denote the ring of functions in F which have a pole at most at co. Then A is a
Dedekind domain.

The completion F, of F at oo is a discretely valued field. By g the cardinality
of its residue field is denoted and by val, its normalized valuation. The latter extends
uniquely to a valuation on the algebraic closure F;l,g of Fuo. The completion Cqy
of F;'(l)g with respect to valy, remains algebraically closed. Denoting the extended
valuation again by vals,, the expression |.|o := qo_ovaloo defines a norm on C, which
is often abbreviated |.|. Finally, ¢ denotes the composite homomorphism A < F <>
Foo — Cxo.

We fix a finite extension L of F and a Drinfeld A-module ¢ of rank r on L of
characteristict; : A < F — L.(Below we recall them and some further definitions.)
With ¢ one associates

1. its analytic realization, which is a discrete A-lattice A C Cy, of rank r, such that
¢ base changed to C, arises from A;

2. for every place v of L which is not above 00, its v-adic étale realization, which is
a representation of the absolute Galois group G, of L on the v-adic Tate module
Tate, (¢) of ¢. If A, is the completion of A at v, then Tate,(¢) is isomorphic to
A" . The action of G, yields an A,-linear representation on Tate, (¢).

We owe some definitions, at least to the novice in function field arithmetic. For any
ring R over IF, one defines R{z} as the noncommutative polynomial ring subject to
the noncommutation rule tr = r?t for any r € R. An alternative description of R{t}
is as follows. Let R [z]F, denote the set of IF,;-linear polynomials in the (commutative)

polynomial ring R[z], i.e., of polynomials of the form }; ﬂ,-zqi. These are precisely
the polynomials p with p(ax + y) = ap(x) + p(y) forall @ € F, and all x, y in
some R-algebra, i.e., they define IF;-linear maps on R-algebras. Then R[z]F, is aring

under addition and composition of polynomials. Moreover, the substitution 7/ > z4'
yields an isomorphism of rings R{r} — Rlz]p,. In the sequel, we will always use
a small Greek letter to denote a polynomial in R{t}, and the corresponding capital
letter to denote its image in R[z]]Fq—for instance, ¢, <> .

A Drinfeld A-module ¢ on some field K is aring homomorphism ¢: A — K{t}:
a — ¢, such that its image ¢ (A) contains some nonconstant polynomial of K{t}.
There is a unique positive integer r € N, called the rank of ¢ such that foranya € A
the highest nonzero coefficient of ¢, occurs in degree » deg(a).

The composition (¢ : A — K of ¢ with the projection K{t} — K onto the
zeroth coefficient is a ring homomorphism which is called the characteristic of ¢. The
Drinfeld A-module ¢ is called of generic characteristic if 1k is injective. Otherwise,
it is called of special characteristic. The case of generic characteristic is the one
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analogous to that of an elliptic curve over a number field. The other case corresponds
to the case of an elliptic curve over a field of positive characteristic.

If K — C is a field homomorphism, the base change of ¢ to C, is obtained by
composing ¢ with the induced monomorphism K {t} — Cy.{t}. We will only con-
sider homomorphisms o« : K < Cq such that atx agrees with the homomorphism
t: A — Cq defined above.

A discrete A-lattice A C Cy is a finitely generated projective A-submodule of
Coo (via t) such that the set {A € A | |A| < ¢} is finite for any ¢ > 0. Given such
a lattice A of rank r, there is a unique power series e, of the form ZZ‘;O anzq",
ap € Cy, with infinite radius of convergence, with ag = 1 and with simple zeros
precisely at the points of A. The entire function e, is F-linear and surjective and
hence one has a short exact sequence of F,-vector spaces

0— A —> Coo -2 Coo —> 0.

Thus if we let a € A act by multiplication on the middle and left term, there exists a
unique I, -linear function ®,(z) on the right such that the diagram

z>ep(2)

Coo —Cx

J/ZHaz
zZ>ep(2)

Coo —Cx

izH% (2)

commutes. One verifies that ®, lies in Coo [z]yq , and denotes by ¢, the corresponding
polynomial in Cyo{t}. Then A — Cyo{t}: a — ¢, defines a Drinfeld A-module of
rank 7. It is known that any Drinfeld A-module on C, of characteristic ¢ arises in
this way.

Suppose now that ¢ is a Drinfeld A-module on L of rank r and generic charac-
teristicty, : A — F < L. Fix a place v of A, and denote by p, the corresponding
maximal ideal of A. Then one defines

P[v"] == {» € L | Va e p" : ®,(1) = 0}.

The derivative of ®,(z) is the constant ¢; (a). Since ¢ is of generic characteristic,
tz.(a) is nonzero, and so the polynomial &, is separable. From this one deduces
that ¢[v"] defines a finite separable Galois extension of L. The module of v-primary
torsion points of ¢ is

¢lv™1:=(Jol"1 C L.

It is stable under the action of G and, as an A-module, isomorphic to (F,/Ay)",
where F), is the fraction field of A,. Finally by Tate,(¢) := Homu (F,/A,, ¢[v™°])
one denotes the v-adic Tate module of ¢.

Example 1. Let F :=F,(t), A :=F4[t] and L a finite extension of F'. The point co
therefore corresponds to the valuation vy, which to a quotient f/g of polynomials
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assigns deg g — deg f. A Drinfeld A-module ¢ : A — L{r} is uniquely determined
by the image of . If 1 : A — F < L is the characteristic of ¢ and if ¢ is of rank
r, then ¢, must be of the form

t+ajt+---+a1" € L{t}

with a, € L*, and where we identify t+ = ¢ (¢). Conversely any such polynomial
defines a Drinfeld A-module of characteristic ¢;, and rank r.

Suppose v is the place corresponding to the maximal ideal (¢). Then ®;(z) =
tz+ajz? +---+az% and

vl =(A el |In:d,0-- 0D, (1) =0}.
~———

n

To generalize the notion of a Drinfeld A-module to arbitrary schemes over Iy,
we now give an (equivalent) alternative definition of a Drinfeld A-module on K. Let
Gy, x be the additive group (scheme) on K. By Endp, (Ga,x) we denote thering of F ;-
linear endomorphisms of the group scheme G, k. This ring is known to be generated
over K by the Frobenius endomorphism 7 of G, g, and thereby isomorphic to K {r}.
Thus we may define a Drinfeld A-module as a nonconstant homomorphism

¢:A— Enqu(Ga,K).

Since the elements of @ € A act as endomorphisms of the group scheme G, g, they
induce an endomorphism d¢, on the corresponding Lie algebra. This is called the
derivative of ¢ and yields a ring homomorphism

0¢: A — End(Lie G4, k) = I'(Spec K, Ospec k) = K. @))

This homomorphism is precisely the characteristic of ¢.

Over an arbitrary [F,-scheme X one defines a Drinfeld A-module as follows:
Let £ denote a line bundle on X (i.e., a scheme which is a G,-bundle on X), and
Endp, (L) the ring of F,-linear endomorphisms of the group scheme £ over X. A
Drinfeld A-module of rank r on (X, L) is a homomorphism

¢: A — Endp, (L),

such that for all fields K and all morphisms 7 : Spec K — X the induced homomor-
phism ¢: A — Endp, (m*L) is a Drinfeld A-module of rank r on K.

In the same way as (1) was constructed, ¢ induces a homomorphism d¢: A —
I'(X, Ox). The corresponding morphism of schemes chary : X — Spec A is called
the characteristic of ¢. Via the characteristic, X becomes an A-scheme (i.e., a scheme
with a morphism to Spec A).

A morphism from a Drinfeld A-module ¢ on L to ¢' on L' is a morphism « €
HOqu (L, L) whichis A-equivariant, i.e., such thatforalla € A onehasa¢, = q%a.
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3 Anderson’s motives

In the preceding section we encountered an object defined over function fields, namely
a Drinfeld A-module, which has properties seemingly similar to those of an elliptic
curve. Therefore, it seemed natural to look for a category of motives which would
naturally contain all Drinfeld A-modules (of generic characteristic). In particular, this
category should be A-linear, it should allow for constructions from linear algebra such
as sums, tensor, exterior and symmetric products, and it should have étale as well as
analytic realizations. It was Anderson in his seminal paper [An86] who first realized
how to construct such a theory, perhaps motivated by the earlier definition of shtuka
due to Drinfeld. Some further details can be found in [vdHO03, Chapter 4].

We fix a subfield K of C, containing F', denote by o the Frobenius on K relative
toF,,andsetig: A~ F — K.

Definition 1. An abelian A-motive on K consists of a pair (M, t) such that we have
the following:

1. M is a finitely generated projective K ® A-module.

2. 1: M — M isaninjective o -semilinear endomorphism of M, i.e., forallm € M,
x € Kanda € Aonehas t1(x @ aym) = (x4 ® a)t(m).

3. The module M /K Tt (M) is of finite length over K ® A, and annihilated by a power
of the maximal ideal generated by {t1(a) ® 1 — 1 Q@ a | a € A}.

4. M @ KP is finitely generated over KP™ {t}, where KP denotes the perfect
closure of K.

Using that KP {7} is a left principal ideal domain, it is shown in [An86] that for
any abelian A-motive M the module M ®@ ¢ KP*T is free over KP* {z}. The rank of
M @ KP over KP*T {1} is called the dimension of M, its rank over K ® A is called
the rank of M.

If K is perfect, condition 3 can be simplified using M/Kt(M) = M/t(M). The
maximal ideal in 3 defines a K -rational point of Spec(K ® A).

Definition 2. A pair (M, t) which satisfies conditions 1-3 only, is called an A-motive
on K.

This definition differs significantly from [Go96, Definition 5.4.2], while Defini-
tion 1 is the same as in [G096] and [An86]. One has the following obvious result.

Proposition 1. If (M, t) and (M', ©’) are abelian A-motives on K, then so is (M &
M, t®dT).

If (M, t) and (M', t') are A-motives on K, then so is their tensor product, as
well as all tensor, exterior, and symmetric powers of (M, 7).

To define the analytic realization of an A-motive, we have to introduce some
further notation. The Tate algebra over C, is defined as

Coolt) := {Zant” | an € Coo, lay| — Oforn — oo}.
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Any monomorphism [F,[¢] < A is finite and flat. Fixing one, any module M under-
lying some A-motive can be regarded as a (free and finitely generated) module over
K|t]. We set

M(t) ;=M @k Coolt),

and define M (¢)* as the F,[¢]-module of t-invariant elements of M (¢). The module
of t-invariants is a projective (left) A-module and satisfies

rankg M{t)" <rankgga M. 2)
Definition 3. If equality holds in (2), then (M, t) is called uniformizable.

Anderson gave examples of abelian A-motives of dimension greater than 1 which
are not uniformizable. If (M, t) is uniformizable, we regard the A-module M (¢)* as
its analytic realization. It is also shown in [An86], that for any uniformizable motive
M of dimension d and rank r, there is a related short exact sequence

d M ~d
0— Ay — C, — C, — 0,
where Ay is a discrete A-lattice in Cgo of rank r. Let 24 denote the module of

Kihler differentials of A over IF,. Then by [An86, Section 2], there is the following
isomorphism which relates A s with the analytic realization of M:

Homa (M ()7, Q4) = A. A3)

Following Anderson [An86, Section 2], one has a fully faithful functor from
Drinfeld A-modules to uniformizable A-motives of dimension 1: Let ¢ be a Drinfeld
A-module on K of generic characteristic tx. Via left multiplication by K and right
multiplication by ¢, for a € A, we regard M (¢) := K{r} as a module over K ® A.
Left multiplication by t defines a o-semilinear endomorphism t: M (¢) — M(¢).

Theorem 1. The assignment ¢ +— (M(¢), T) defines a functor which identifies the
category of Drinfeld A-modules of rank r with the category of abelian A-motives M
of rank r that satisfy M = K{t}. Any such A-motive is uniformizable. Moreover, if
K = Cy and ¢ arises from a lattice A, then A and M (t)T are related via (3).

To define étale realizations, one proceeds as follows: Let p,, be the prime ideal of
A corresponding to the place v of A. Then

M Qkga (K*P ® A/pY)

is free and finitely generated over K*P ® A/p”. By condition 3 for a motive, the
induced t-action is, in fact, bijective. From Lang’s theorem [An86, 1.8.2], one easily
deduces that

My = (M @ken (K0 @ A/p))

is a free A/p”-module of rank r. Because M is defined over K, the actions of G
and of T commute on M @gga (K*P @ A/p?), and so Gk acts A/p,-linearly on
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M, ,,. The inverse limit M, o := l(ig M, , is thus a free A,-module of rank » with a
continuous linear action of G . This we regard as the v-adic étale realization of M.
It exists independently of the uniformizability of M. One has the following result due
to Anderson.

Proposition 2. Suppose ¢ is a Drinfeld A-module of rank r and generic character-
istic, and (M, t) := (M (), t). Then there is a canonical isomorphism

Homy, (My,c0, lim p "4/ Q4) = ¢[v™].

4 A cohomological framework

In the previous section, we have seen that Anderson’s category of A-motives has a
number of very useful properties. It allows constructions from linear algebra, it has
realizations as one would expect from motives, and it contains the category of Drinfeld
A-modules. Also pullback along morphisms ¥ — X for families of A-motives on a
scheme X is easily defined.

Anderson’s theory does not, however, provide a cohomological theory of A-
motive like objects, which is also desirable and by which we mean the following:
On every base scheme X over F; we would like to have a category of objects similar
to families of A-motives. For any morphism f: Y — X, there should be (derived)
functors R! [+« between these categories, and perhaps also other ones such as f*, ®,
Hom, Rf, etc.

In [BP04] such a theory is developed in joint work with R. Pink. Much of the ma-
terial described in the previous section was inspirational for this. The main motivation
for the work in [BP04] was to give a cohomological proof of a rationality conjecture
by Goss, that had, by analytical methods, previously been established in work of
Taguchi and Wan; cf. [TW96]. This is discussed in greater detail in Subsection 5.1.

An alternative construction of such a cohomological theory was recently also
described by M. Emerton and M. Kisin in [EK04]. The main reference for the present
section is [BP04].

Conventions. Throughout, X, Y, etc. will be noetherian schemes over ;. By ox or
simply o we denote the absolute Frobenius endomorphism of X relative to IF,. We
fix a morphism of schemes f: Y — X.

The symbol B (or B) will always denote an I, -algebra which arises as a local-
ization of an IF;-algebra of finite type. Typically, B will be A, or A/a for some ideal
of A, or the fraction field F of A.

Whenever tensor or fiber products are formed over I, the subscript F;, at ® and
x will be omitted.

By pr;: X x Spec B — X the projection onto the first factor is denoted.

4.1 t-sheaves

Definition 4. A t-sheaf over B on a scheme X is a pair F := (F, ©F) consisting of
a coherent sheaf F on X x Spec B and an Oy xspec g-linear homomorphism
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(o x id)*F —— F.

A homomorphism of T-sheaves F — G over B on X is a homomorphism of the
underlying sheaves ¢ . F — G which is compatible with the action of t.

We often simply speak of t-sheaves on X. The sheaf underlying a 7-sheaf F will
always be denoted by F. When the need arises to indicate on which sheaf t acts, we
write T = TF.

The category of all t-sheaves over A on X is denoted by Coh, (X, A). It is an
abelian A-linear category, and all constructions like kernel, cokernel, etc. are the usual
ones on the underlying coherent sheaves, with the respective T added by functoriality.

In this survey we focus on coherent objects. To alleviate our notation, we deviate
from the terminology in [BP04]. What is called a t-sheaf here is a coherent 7-sheaf
in [BPO4].

On any affine open Spec R C X a t-sheaf over B is given by a finitely generated
R ® B-module M together with an R ® B-linear homomorphism R° ® g M — M.
The latter homomorphism corresponds bijectively to a o ® id-linear morphism t :
M — M. The pair (M, 7) is also called a t-module.

Example 2. Due to properties 1 and 2 in the definition of a motive, any A-motive on
K is a t-module, and thus yields a t-sheaf over A on Spec K. However, the notion
of t-sheaf is less restrictive than that of A-motive, since we impose no local freeness
conditions, or conditions on the kernel or cokernel of .

4.2 Examples

We now describe some further examples of t-sheaves. All but the first and last of
these correspond to families of A-motives (of fixed rank).

Most of the examples are locally free t-sheaves; by this we mean t-sheaves
whose underlying sheaf is locally free. The rank of a locally free t-sheaf is that of
its underlying sheaf. Locally free t-sheaves had been considered already in [TW96],
where they were called ¢-sheaves.

I. Any (coherent) sheaf F on X x Spec B can be made into a t-sheaf by setting
T = 0. As we will see shortly, these T-sheaves are not interesting to us.
II. The unit t-sheaf, denoted by 1y g, is the free 7-sheaf defined by the pair consisting
of the sheaf Oy xspec p together with the isomorphism

T:(0 % id)*OXxSpec}_’? — OXxSpecB»

which via adjunction arises from o ® id: Ox xspec 8 — (0 X id)«Ox xSpec B-
III. The construction ¢ — M (¢) from Drinfeld A-modules to A-motives generalizes
in an obvious way to a functor (£, ¢) — M(¢) from Drinfeld A-modules over
a general base X to t-sheaves over A on X. The rank of the Drinfeld module
becomes the rank of the locally free sheaf underlying M (¢).
Similarly, any elliptic sheaf on X givesrise to a r-sheaf over A on X, by restricting
itto X x Spec A. For details on this, we refer to the excellent article of Blum and
Stuhler; cf. [BS97].
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IV. As we have seen earlier, one can define Drinfeld A-modules over a general base.
So it is natural to consider corresponding moduli problems. As in the case of
elliptic curves (or abelian varieties) these are not rigid, unless one introduces
some level structures. To define such, we fix a proper nonzero ideal n C A. Then
for any Drinfeld A-module ¢: A — Endp, (£) of rank r over a scheme X, one
defines the subscheme

Loln] == () Ker(£ 2 £) c L.

aen

It carries an action of A/n and is finite flat over X. Its degree over X is the
cardinality of (A/n)". If the image of chary : X — Spec A is disjoint from
Spec A/n, we say that the characteristic of ¢ is prime to n. In this case Lg[n] is,
moreover, étale and Galois over X.

For a finite discrete group G we denote by G x the corresponding constant group
scheme on X.

Definition 5. A naive level n-structure on ¢ is an isomorphism

Vi (AW —> Lylnl.

A naive level n-structure can only exist if the characteristic of ¢ is prime to n. In
that case it always exists over a finite Galois covering ¥ — X.

Let A(n) denote the ring of rational functions in F' regular outside co and the
primes dividing n. Then for any fixed » € N one may consider the moduli func-
tor M"(n) which to an A(n)-scheme X assigns the set of triples (L, ¢, ¥) (up to
isomorphism), where

1. ¢: A — Endp, (£) is a Drinfeld A-module of rank r, and
2. ¢ (A/n)Y = Ly[n] is a naive level n-structure,
such that the composite of the structure morphism X — Spec A(n) with the canonical

open immersion Spec A(n) < Spec A is equal to char.

Theorem 2 ([Dr76]). The moduli problem M’ (n) is representable by an affine
(noetherian) A(n)-scheme )" (n). The line bundle L£"(n) in its universal triple
(L (), ¢" (), ¥"(n)) on Y (n) is isomorphic to Gy gy ). The structure morphism
" (n) — Spec A(n) is smooth of relative dimension r — 1.

For later use, we record the following.
Proposition 3. The t-sheaf M" (n) := M(¢" (n)) is locally free of rank r.

V. One can, in fact, define moduli spaces of more general types of A-motives (which
carry some polarization and level structure). The corresponding universal A-
motive then again yields interesting T-sheaves. The investigation of some of these
moduli problems is ongoing work by U. Hartl and, independently, by L. Taelman.
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VI. An important notion to study the reduction of abelian varieties is their Néron
model. For t-sheaves, in [Ga03] Gardeyn introduced and investigated the fol-
lowing substitute.

Definition 6. Suppose j : U — X a dense open immersion. A t-sheaf G €
Coh. (X, A) is called a model of F € Coh. (U, A) with respectto j if j*G = F. A
model G is called a maximal model of F € Coh. (U, A) with respect to j if for all
‘H € Coh. (X, A) the canonical homomorphism

Homcon, (x,4)(H, G) —> Homcon, v, B)(H|v xSpec 4> F) “4)
is an isomorphism. We write jzJF = G.

If it exists, a maximal model is always unique up to unique isomorphism. There
always exists a direct limit of T-sheaves G which satisfies (4). The crucial requirement
is that G be coherent.

As to be expected, if ¢ : A — Endp, (£) is a Drinfeld A-module on X, and
j: U — X adense open immersion, then jgM(j*¢) = js(j* M(¢)) = M(¢).

Theorem 3 ([Ga03)). Suppose X is a smooth projective curve over Fy, and j: U <
X is open and dense. Then for any locally free F € Coh, (U, A) with tr injective, a
maximal model jyJF exists. It is again locally free.

Remark 1. Suppose now that ¢ : A — K{t} is a Drinfeld A-module of rank r over
a complete discretely valued field K with ring of integers V, residue field k and
J: Spec K < Spec V. Suppose also that ¢ has reduction of rank 0 < r’ < r over k.
(The latter means that over K the Drinfeld module ¢ is isomorphic to some Drinfeld
module ¢’ whose image lies in V{z}, and such that the reduction of ¢’ to k is a
Drinfeld module of rank r’ over k.)

Drinfeld (cf. [Dr76, Section 7]) has shown that in this situation, after possibly
passing to a finite extension of K, there exist a Drinfeld module ¢’ of rank r’ over
K, a discrete A-sublattice A C K (where A acts on K via ¢’), and an “analytic”
A-homomorphism e, : K — K, where on the left A acts via ¢’ and on the right via
¢, such that there is a short exact sequence of A-modules

0— A —> K48 A galg

The transition from Drinfeld modules to T-sheaves is contravariant, so the mor-

phism e turns into an “analytic” morphism between A-motives M (¢) —>
’
M*(¢") over K . Itis again surjective, and its kernel is the analytification of lg;erc K.A-
So there is a short exact sequence
-
0— (1gpe’cK’A)"‘“ — M*™(¢p) — M*™(¢)) — 0.

Gardeyn shows that: This short exact sequence can be extended to a left exact sequence

over a formal scheme attached to V ® A. The left two terms of the extended sequence
arise via analytification from
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/

0 — 157y 4 — JsM(@).
The induced morphism 1;;; C/ A i* juM(¢) on the special fiber over Speck is
injective and some iterate of T vanishes on the cokernel.

The upshot of this longwinded explanation is that in the present situation the
maximal extension and the Drinfeld module ¢’ shed light on opposite aspects of the
given bad reduction situation. Also while ¢’ can be obtained from ¢ only via an
analytic morphism, the relation between ¢ and j3 M (¢) is algebraic. For more on this
interesting topic, we refer to [Ga03]. In this survey maximal extensions will reappear
in Remark 2 and Subsection 6.8.

4.3 Crystals

There is a large class of homomorphism in Coh; (X, B) which one would like to
regard as isomorphisms. Categorically, the correct way to deal with this is to localize
at this class; cf. [We94, Section 10.3]. The reason in [BP04] to pass to the localized
theory was a practical one: only there we were able to construct an “extension by zero
functor” as sketched below Theorem 4. First, we describe the localization procedure:

For a t-sheaf F, we define the iterates t” of 7 by setting inductively 7° := id and
"= 10 (0 xid)*t": (6" x id)*F — F. A t-sheaf F is called nilpotent if
and only if 7’z vanishes for some n > 0. A corresponding notion for homomorphisms
is the following.

Definition 7. A morphism of T-sheaves is called a nil-isomorphism if and only if both
its kernel and cokernel are nilpotent.

It is shown in [BP04, Chapter 2] that the nil-isomorphisms in Coh; (X, B) form
a saturated multiplicative system, and so one defines the following.

Definition 8. The category Crys(X, B) of B-crystals on X is the localization of
Coh. (X, B) with respect to nil-isomorphisms.

The category Crys(X, B) is again a B-linear abelian category with the induced
notions of kernel, image, cokernel, and coimage. Its objects are the same as those
in Coh;(X, A). However, the homomorphisms are different. Any homomorphism
F — GinCrys(X, A)isrepresented by adiagram 7 <— H —> GinCoh, (X, A),
for some H € Coh;(X, A), and where the homomorphism H — F is a nil-
isomorphism.

Let us conclude this subsection with the simplest functor that is based on nilpo-
tency. For a t-sheaf / on X over B, define

F':=T(X x Spec B, F)* 5)

as the B-module of global r-invariant sections of F. The following result is an
immediate consequence of Definition 8.

Proposition 4. The functor F +— F* from Coh (X, B) to B-modules is invariant
under nil-isomorphisms. It therefore passes to a functor on the category Crys(X, B),
which is again denoted F +— F*.
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4.4 Functors

On t-sheaves, we now indicate the construction of four functors:
(a) f*: Coh.(X, B) —> Coh,(Y, B) (pullback):

For F € Coh.(X, B), we define f*F € Coh,(Y, B) as the pair consisting of the
coherent sheaf (f x id)*F on Y x Spec B and the o x id-linear endomorphism on
(f x id)*F induced by functoriality from 7. This defines a B-linear functor f*.

In an analogous way we define B-linear (bi-)functors:

(b) R' f, : Coh,(Y, B) — Coh. (X, B) (push-forward) if f : Y — X is proper,
andi > 0.

(¢) —® — : Coh;(X, B) x Coh,(X, B) —> Coh; (X, B) (tensor product).

(d) —®p B’: Coh. (X, B) —> Coh, (X, B’) (change of coefficients) for any homo-
morphism B — B’.

Despite the notation, at this point it is not at all clear that the R f, are derived functors.

In the same way as the tensor product is defined, following [Ha77, Exam-
ple I1.5.16], for the construction on the underlying sheaf, one also obtains higher
tensor, symmetric and exterior powers of a t-sheaf F. We denote them by ®"F,
Sym" F and /\" F. The latter two are quotients of ®"F.

The functors defined in (a)-(d) as well as ®”, Sym”" and A" all preserve nil-
isomorphisms. Hence they pass to functors between the corresponding categories of
crystals.

Theorem 4. The functors f*, R' f., ® and @ p B’ on t-sheaves induce B-linear func-
tors:

(a) f*: Crys(X, B) — Crys(Y, B).

(b) R f,.: Crys(Y, B) — Crys(X, B) fori > 0, if f is proper.
(c) —® —: Crys(X, B) x Crys(X, B) — Crys(X, B).

(d) — ®p B’: Crys(X, B) — Crys(X, B').

If f is proper, then f, and f* form an adjoint functor pair on crystals. Moreover,
®", Sym" and \" induce functors on Crys(X, B).

Now we come to a main point, namely the construction of an extension by zero
in the theory of crystals. Such a functor is not present on t-sheaves. We shall see how
localization affords this functor on crystals.

To explain the construction, let j : U < X be an open embedding withi: Z — X

a closed complement, and denote by Zo C Oy the ideal sheaf of Z. Then Z := pr} I
is the ideal sheaf for Z x Spec B C X x Spec B. We wish to extend any t-sheaf F
on U “by zero” to X.
_ By local considerations on X, one can always construct some coherent extension
JF on X x Spec B of F. Such an extension is by no means unique, since any ¢ sheaf
I"™F,m € N, is also an extension of F. To extend 7, we observe that for some 2 € N
it extends to a homomorphism (o x 1d)*I’”]~" — F.The identity (o x id)*Z = 79
inside O X xSpec B implies that for any m >> 0 one has an extension
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of 7. By its construction, the pair zm = (Im]? , T;p) 18 @ T-sheaf on X which extends
. The inclusion (x) implies that i *:m is nilpotent—in fact, the induced 7 is zero—
and so F,, has the properties of an extension by zero, except the assignment F +— F,
is in no way functorial since there are many possible choices. The key observation is

that all such pairs are nil-isomorphic. Passing to crystals yields the following result.
Theorem 5. There is an exact B-linear functor

ji: Crys(U, B) — Crys(X, B) : F— ji.F

<

uniquely characterized by the properties j* ji = idcrys,py and i* j = 0.

Having an extension by zero, it is well known how to define cohomology with
compact Supports.

Definition 9 (Cohomology with compact support). Say f is compactifiable, i.e.,
f = fjforsomeopenimmersion j:Y — Y and some proper morphism f:Y — X.
Then one defines

R' fi := R' fi o ji: Crys(Y, B) —> Crys(X, B).

Standard arguments show that the definition is independent of the chosen factor-
ization, e.g., [Mi80, Chapter VI, Section 3]. Furthermore, due to a result of Nagata,
any morphism f: ¥ — X between schemes of finite type over I, is compactifiable,
and so in this situation the R fi exist; cf. [Lii93] or [CoDel].

4.5 Sheaf-theoretic properties

Since Crys(X, B) is an abelian category, one has the notion of exactness in short
sequences. There is also a good notion of stalk at a point x € X, where iy : x — X
denotes the corresponding immersion: The stalk of a crystal F (on X) at x is defined
as i} F. The sheaf underlying the stalk i} F is in general not the stalk at x of the sheaf
F underlying F. The following result justifies the definition of i} F.

Theorem 6.

1. For any morphism f:Y — X, pullback along f is an exact functor on crystals.

2. A sequence of crystals is exact if and only if it is exact at all stalks.

3. The support of a crystal F, i.e., the set of x € X for which i} F is nonzero, is
constructible.

We note that part 1 is established by showing that the higher right derived functors
of f* on t-sheaves are all nilpotent.

Moreover, crystals enjoy a rigidity property that is not shared by r-sheaves, but
reminiscent of properties of étale sheaves.
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Theorem 7. If f is finite radical and surjective, the functors

*

Crys(X, B) > Crys(Y, B)
fe

are mutually quasi-inverse equivalences of categories.

In particular, the closed immersion f : Xq <> X yields an isomorphism
Crys(Xed, B) = Crys(X, B). This rigidity property motivates the name “crystal’:
crystals extend in a unique way under infinitesimal extensions.

4.6 Derived categories and functors

A major part of [BP04] is to extend the functors (a)-(d) and extension by zero to
derived functors between suitable derived categories of crystals. This yields derived
functors f*, ®, Rfi, and change of coefficients.

There are various good reasons to do so. For instance, only there can one properly
understand derived functors such as Rfi. It can be shown that the ad hoc defined
functors R’ f, for proper f are indeed ith cohomologies of a right derived functor R f;.
Moreover, derived categories is the correct setting to discuss the theory of L-functions
needed in Section 5.

The objects introduced so far do not suffice to define derived functors. The reader
may recall that to properly define the cohomological functors on coherent sheaves,
one needs the ambient larger category of quasi-coherent sheaves. Only there can
one dispose of Cech resolutions and resolutions by injectives. Similarly, in [BP04],
two auxiliary categories of t-sheaves are introduced, namely those of quasi-coherent
t-sheaves, and of inductive limits of coherent t-sheaves. In the presence of the endo-
morphism 7, these two and Crys(X, B) are pairwise distinct. It is, in fact, an impor-
tant result of [BP04] that the corresponding derived categories of bounded complexes
with coherent cohomology are all equivalent. Having good comparison results of the
categories, the treatment of the derived functors follows the usual path.

4.7 Flatness

An important prerequisite to discussing L-functions of crystals in Section 5 is flatness.
Only to flat B-crystals can we hope to attach an L-function which takes values in
1 4 ¢ B[[#]]. Since flatness can only be fully understood in derived categories, which
we mainly avoid in this survey, we also introduce the notion of crystal of pullback
type, which is less natural, but technically easier to handle.

Definition 10. A crystal F is flat if the functor F @ —: Crys(X, B) — Crys(X, B)
is exact.

A crystal is called (locally) free, if it can be represented by a (locally) free t-sheaf.
Alocally free t-sheaf is acyclic for ® on t-sheaves, and so it represents a flat crystal.
There are other flat crystals which are easy to describe:
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A t-sheaf F = (F, t) on X is of pullback type, if there exists a coherent sheaf
Fo on X such that 7 = pr} Fo. For an affine scheme X = Spec R, a t-sheaf is of
pullback type if its underlying sheaf is of the form My ® B for some finitely generated
R-module M. A crystal on X is called of pullback type, if it can be represented by
a t-sheaf of pullback type. This notion derives its importance from the following
proposition.

Proposition 5. Any crystal of pullback type is flat.

Being of pullback type is preserved under all the functors defined so far, i.e., under
pullback, tensor product (of two crystals of pullback type), change of coefficients, the
functors R' f, and ®", Sym", and )\".

Let us briefly explain the first assertion of the proposition: Since by Theorem 6
exactness can be verified on stalks, a crystal is flat if and only if all its stalks are flat.
From the definition of stalk for a crystal, given directly before Theorem 6, it follows
that if the crystal is represented by a t-sheaf of pullback type, then its stalk at any
point x of X is represented by a t-sheaf of pullback type over A on Speck,. Over
the field k, any module is flat, and hence the pullback of such a module to k, ® A is
flat as well. This shows that all the stalks of a crystal of pullback type are flat, which
we needed to verify.

Similarly, one has the following important properties of flatness.

Theorem 8.

1. Flatness of a crystal is preserved under pullback, tensor product (of two flat
crystals), change of coefficients and extension by zero.

2. If f is compactifiable and F* is a bounded complex of flat crystals on Y, then
RfiF* is represented by a bounded complex of flat crystals.

3. A crystal is flat if and only if all its stalks are flat.

We observed that any locally free crystal is flat. It is, in fact, not a simple matter
to understand precisely when, or in what sense, a flat crystal may be represented by
a locally free 7-sheaf. This is relevant to us since we want to attach an L-function at
x to a flat crystal and a point x € X with finite residue field. Therefore, it would be
desirable that its stalk at x have a representing t-sheaf whose underlying sheaf is free
and finitely generated over A. Unfortunately this is not true in general. However, we
have the following important special case.

Theorem 9. Suppose that x = Spec k, for some finite field extension ky of Fy, that
A is artinian and that F is an A-crystal on x. Then we have the following:

1. The crystal F has a representing t-sheaf whose endomorphism t is an isomor-
phism.

2. The representative from 1 is unique up to unique isomorphism; we write F s for
it and call it the semisimple part of F.

3. The assignment F +— F is functorial.

4. If F is flat, then the module underlying F g is free over k, @ A.
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For later use, we also record the following.

Proposition 6. Suppose that X is the spectrum of a field, and B is regular of dimension
< 1 or finite. Then every flat B-crystal on X can be represented by a locally free t-
sheaf on which t is injective.

If F is represented by a torsion free r-sheaf, then the proof in [BP04] shows that
Im(z’) has the asserted property for n >> 0.

The most general representability result for flat crystals, shown in [BP04], is that
for any flat F and any reduced scheme X there is a finite cover by locally closed
regular subschemes X;, so that on each X; some “jth iterate” of F is representable
by a “r/-sheaf”” whose underlying sheaf is locally free. Since we will not need this,
we will not give the details. Note, however, that this is reminiscent of the definition
of constructibility of étale sheaves.

4.8 A test case

Throughout this section, we assume that B is finite (a,nd an [F;-algebra). Let Et(X, B)
be the category of étale sheaves of B-modules and Et. (X, B) its full subcategory of
constructible sheaves. By pr; : X x Spec B — X we denote the projection onto the
first factor.

It has long been known that for such B there is a correspondence between t-
sheaves on which 7 is an isomorphism and lisse étale constructible sheaves of B-
modules; cf., for instance, [Ka73, Theorem 4.1.1], which we recall in Theorem 10
below. In [BP04], this correspondence was extended to an equivalence of categories
with, on the one hand, Crys(X, B) and, on the other, EtC(X , B). In this section, we
describe the functor which provides this equivalence.

We would like to remark that—under the name of “Riemann—Hilbert corres-
pondence”—M. Emerton and M. Kisin have, for regular X, constructed another
equivalence of categories between on the one hand Et.(X, B) and on the other again
a category whose objects carry a o-semilinear operation, cf. [EK04]. It turns out,
and this is currently under investigation by M. Blickle and the author, that their
category is dual to the category of crystals, with the duality given by the duality of
sheaves, as described by Hartshorne in [Ha66]. Emerton and Kisin have extended their
correspondence to formal Z,-coefficients. It would be interesting to see whether in
some way one can extend the concept of t-sheaf to incorporate Z/(p™)-coefficients.

Let F be a t-sheaf over B on X. To any étale morphism u : U — X we assign
the B-module (u*F)T of T-invariants of u*F. This construction is functorial in « and
hence defines a sheaf of B-modules on the small étale site over X, which we denote
by Fet.

The construction is also functorial in 7, that is, to any homomorphism ¢ : 7 — G
itassociates ahomomorphism ¢ : F¢r — Ge. Therefore, it defines a B-linear functor

e: Cohy (X, B) » Et(X, B) : F > e(F) := Fa. (6)

Let us mention some obvious consequences of the definition of €. For any t-sheaf F
and étale u: U — X, one has a left exact sequence
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0 — Fa(U) — Ww*F)(U x Spec B) i g w* F)(U x Spec B), @)

which induces a short exact sequence of étale sheaves. In the particular case F =
1 X.F,» Sequence (7) specializes to the usual Artin—Schreier sequence

00— (I_LX’B)ét — Ox l;r> Ox.

Thus (Ly p)e is the constant étale sheaf with fiber B.

As another example, suppose (M(¢), 7) is the A-motive on K attached to a
Drinfeld A-module on K. Then we may apply the functor € to (M (¢), T) ®4 A/n for
any nonzero ideal n of A. Essentially by specializing Proposition 2 to finite levels,
one obtains the isomorphism

¢[n] = Homyn(e(M(9), ) ®a A/n)(K*P), 124/ Q24).

In particular, € can be used to define étale realizations of A-crystals.
Generalizing Artin—Schreier theory, the following result is proved by Katz in
[Ka73, Theorem 4.1.1].

Theorem 10. For a normal domain X the functor F + Fg defines an equiv-
alence between the categories {F € Coh. (X, B) : tr is an isomorphism} and
{F € Et.(X, B) : F is lisse}.

Since for nilpotent t-sheaves F one has F¢ = 0, one easily deduces that €
passes to a functor Crys(X, B) — Et(X, B). Using this, [BP04, Chapter 9] refines
Theorem 10 to the following.

Theorem 11. The functor Crys(X, B) — Et(X, B) : F — Fa takes its image in
Et. (X, B). The induced functor

e: Crys(X, B) — Et.(X, B)

is an equivalence of categories. It is compatible with all of the functors [*, ®, ®p B/,
Sym", A" and R' fi, and preserves flatness.

Remark 2. The category Et.(X, B) possesses no duality. Therefore, it can neither ex-
ist for Crys(X, B). Also only the functors f*, ® and f,, which we have constructed
on crystals, are well behaved on Etc(. ..). Therefore, one should not expect that all
the functors f*, ®, fi, fx, Hom, f Y postulated by Grothendieck for a good cohomo-
logical theory, exist for Crys(...).

In special cases, one may construct some further functors. For instance, in [B604]
it is shown that for B finite or B = A and any open immersion j: U — X there
exists a meaningful functor

Ju: Crys(U, A) — Crys(X, A) ®)

in the sense of Definition 6. It corresponds to j, in the étale theory. It is not called j,
since in [BP04] this name was reserved for a different functor.
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5 First applications

As explained in the introduction, one of the initial motivations to introduce the cate-
gory of crystals was to give a cohomological proof of the rationality of L-functions
of t-sheaves. The rationality had been conjectured—at least in the case of families of
Drinfeld modules—by Goss [Go91a], and a first proof had been given by Taguchi and
Wan in [TW96] using analytical tools. Subsection 5.1 describes the cohomological
proof from [BP04].

In addition to the rationality, the algebraic approach yields some extra information.
Namely, the L-function is expressible in terms of cohomology with compact support.
These cohomology modules are in principle computable. The main result described
in Subsection 5.2, makes crucial use of this.

Subsection 5.2 is concerned with a conjecture of Goss on analytic L-functions
attached to families of Drinfeld modules. It asserts that these L-functions (with values
in C) have a meromorphic continuation to a function field analogue of the complex
plane; cf. [Go91a]. In the case A = [F,[t], this is the second main result in [TW96].
Later in [B602] Goss’s conjecture was completely established for arbitrary A.

In the present section, we want to formulate the notions necessary to state the
precise results and indicate some important steps in their proofs. Since for general
A, Goss’s conjecture on meromorphy is rather technical to formulate, we will only
do this in the case A = I, [¢]. A detailed treatment of Subsection 5.1 can be found in
[BPO4], and of Subsection 5.2 in [B602].

5.1 L-functions of crystals

In this subsection we assume for simplicity of exposition that B is either a finite ring
or a normal domain. We write Q (B) for the ring of fractions of B, so that in the latter
case Q(B) is a field and in the former it is simply B again. All schemes will be of
finite type over IF,. By | X| we denote the closed points of a scheme X. For x € |X]|
we denote its residue field by k, and its degree by d, := [k, : Fy]. Moreover, F will
denote a flat B-crystal on X.

The aim is to explain how to attach L-functions to flat crystals on X, and state
their main properties, i.e., the rationality, the invariance under R f, and the invariance
under change of coefficients.

Ultimately, these L-functions must be defined in terms of their underlying t-
sheaves, and at the same time invariant under nil-isomorphisms. For artinian B, we
will use Theorem 9 to choose a good canonical representative.

When B is reduced, these L-functions satisfy all the usual cohomological formulas
precisely (except duality). When B possesses nonzero nilpotent elements, however,
these formulas hold only up to “unipotent” factors. In some sense these factors cor-
respond to nilpotent t-sheaves and can therefore not be detected by our theory. So
this defect is built into our theory of crystals by its very construction.

As a preparation we briefly recall the theory of the dual characteristic polyno-
mial for endomorphisms of projective modules. Suppose M is a finitely generated
projective B-module and ¢: M — M is a B-linear endomorphism.
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Lemma 1. Let M’ be any finitely generated projective B-module such that M & M’ is
free over B. Let ¢': M’ — M’ be the zero endomorphism and t a new indeterminate.

1. The expression detg(id — t(¢p ® ¢') | M & M') € 1 + tB[t] is independent of
the choice of M'. It is called the dual characteristic polynomial of (M, ¢) and
denoted detp(id — t¢p | M).

2. The assignment (M, ¢) +— detp(id — t¢ | M) is multiplicative in exact se-
quences.

For any x € | X]|, the stalk F, is flat, and so is Fyx ® p Q(B). By Theorem 9 the
latter is canonically represented by the locally free t-sheaf (Fy ®p Q(B))ss- The
endomorphism 7% is k, ® Q (B)-linear. By Lemma 1, part 1, the following definition
makes sense.

Definition 11. The L-function of F at x is

Lo Foni= et ((d =1 e | (Fx @5 0(B)w) ™" € ke ® OB

Lemma 2.

1. The power series L(x, F,t) liesin 1 + 1% B[[r%]].
2. The assignment F +— L(x, F, t) is multiplicative in short exact sequences.

The proof of part 1 needs our assumption on B.
As the number of points in | X| of any given degree d is finite, we can form the
product over the L-functions at all points x € |X| within 1 + ¢ B[[¢]].

Definition 12. The L-function of F is

LX, E.0) =[] L&, F.t) € 1+41BI[1]].
x€|X|

To state the main results, we need an equivalence relation on 1 + 7 B[[#]].

Definition 13. By ng we denote the nilradical of B, i.e., the ideal of B of nilpotent
elements.

For P, Q € 1+tB[[t]], wewrite P ~ Q ifand only ifthere exists H € 1+tnp[t],
such that P = QH.

If B is reduced, and so, for instance, if B is a normal domain, then ng = (0), and
hence P ~ Q is equivalentto P = Q.

Finally, if #: B — B’ denotes a change of coefficients homomorphism, then its
induced homomorphism B[[¢]] — B’[[¢]] is also denoted by 4.

Theorem 12. Suppose f: Y — X is any morphism between schemes of finite type,
h: B — B’ is any ring homomorphism and G is a B-crystal of pullback type on Y .
Then

1LY, G.1) ~ [[, L(X, R AG, )’
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2.L(Y,G®p B'.t) ~ h(L(Y, G, 1)), with equality if B is artinian.

Working in the context of derived categories, both parts can be proved more
generally for any bounded complex F* of flat crystals on Y, and with the complex
Rf.F* instead of the crystals R’ f, F. We alert the reader that the complex Rf,F*
carries more information than the individual R’ fiF.

A rational function (over B) is an element in 1 + ¢ B[[¢]] of the form P/Q for
suitable polynomials P, Q € 1 + ¢B[t]. The rationality of L-functions follows by
applying Theorem 12, part 1, to the structure morphism ¥ — Speck.

Corollary 1. With Y, G as in Theorem 12, the function L(Y, G, t) is rational.

Proof of Theorem 12 (sketch). The proof of the two parts are independent. We shall
omit the proof of part 2. Instead, we indicate two alternative proofs of the trace formula
in part 1.

A conventional proof might go as follows, where first we assume B to be reduced:
Standard fibering techniques reduce one to the proof in the case where ¥ = A! and
X = SpeclF,. The formula to be proved can then as in [SGA4l, “Rapport” and
“Fonction L mod ¢" et mod p”’] be reduced to a trace formula over the symmetric
powers of Ak for the corresponding exterior symmetric product of G. Again by induc-
tion on dimension, it suffices to prove this formula over A 114. Its proof can be obtained
from the Woodshole fixed point formula for coherent sheaves: see [SGAS, Exp. III,
Corollary 6.12].

Let now B be finite and nonreduced. The assertion can be reduced to affine ¥
over F, and to t-sheaves which are free over B on Y. Fixing a surjection B’ :=
Fylx1, ..., xx] —> B, the t-sheaf may be lifted to one over the reduced ring B’. For
B’ the trace formula has been proved already. Using part 2, it follows for B.

The proof of part 1, as given in [BP04] is significantly different and based on
some ideas of Anderson; cf. [An00]. To sketch it, let us fix the following situation.
Let Y = Spec R be smooth and affine over X := SpecF,; of dimension e with f as
the structure morphism, let B be a field, and suppose that G is a locally free 7-sheaf.

Using coherent duality and the Cartier operator on wy /f,, = N Qy /F,»Anderson
sets G¥ := Hon(G, wy /IFq) and obtains an Oy ® B-linear homomorphismk : G¥ —>
(o xid)*G". Let M be the R ® B-module underlying G and M " that underlying G
Anderson observes that « is strongly contracting on M" in the following sense:

There exists a finite dimensional B-subvector space W of M"Y such that x (W) C
W and such that MY = | J72,{m € M" | k' (m) € W}. Such a subspace is termed a
nucleus for (M", ). Using elementary means, Anderson proves that

L(Y,G,t)= dgt(id —ti | W)(—l)ffl_

In [BP04] it is shown that for locally free G the only nonvanishing cohomology R’ fi g
occurs in degree i = e, and that furthermore the dual of (W, «) is via Serre duality
nil-isomorphic to a suitable t-sheaf representing R fG. Combining the above pieces,
the proof is “complete.”
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The method just sketched has two main advantages. First, Anderson’s proof is
elementary. Second, our interpretation gives a cohomological interpretation for the
nucleus and thus for his trace formula. O

For finite B we have seen in the previous section that there is an equivalence of
categories € : Crys(X, B) — Etc (X, B) which preserves, in particular, the notion
of flatness. As is well known, to any constructible étale sheaf F of flat B-modules, one
can also attach an L-function L (X, F, 1), e.g., [SGA4%, “Rapport” and “Fonction
L mod ¢"”’]. In [BP04] the following is shown, which except for the comparison is
also proved in [SGA4%].

Theorem 13. Suppose B is finite and F is a flat B-crystal on X. Then
L(Xa Z’ t) = Lél‘(Xa G(E)’ t)

Hence Lg has a trace formula and is compatible with change of coefficients.

5.2 Goss’s L-functions of crystals over A

To a scheme X which is flat and of finite type over Z, one can associate its ¢ -function
which is an analytic function that is convergent on a right half plane. A similar con-
struction of global L-functions over function fields has been carried out by Goss for
families of Drinfeld modules. It can easily be extended to r-sheaves, and we now
sketch this for A = F,[¢]. For further details, for the more general case and for the
case of v-adic L-functions, we refer the reader to [Go96, Chapter 8] and [B502].

Throughout this subsection, we fix a morphism g : X — Spec A of finite type,
and assume B = A. By F we denote a flat A-crystal on X. The example considered
originally was that of a Drinfeld A-module ¢ of rank r on £ over some scheme X of
finite type over IF,. It yields a locally free T-sheaf M(¢) (= F) of rank r, and for g
one takes chary: X — Spec A.

Exponentiation of ideals

We begin by defining a substitute for the classically used expression p—*, where s € C
and p is a prime number. Following Goss, one sets Sy, := C} X Z,,, which will replace
the usual complex plane as the domain of L-functions. An element s € S, will have
components (z, w). One defines an addition by (z1, w1)+(z2, w2) = (2122, w1+ w2).
As a uniformizer for Fo = F,((1/1)) we take mo = 1/1.

Since any fractional ideal a of A is principal, we may write it in the form (a)
for some rational function 0 # a € F. The element (a) := ano}\’a]“(“) is a unit in
A = Fyllmo]]. We choose for a the unigue generator of a for which (a) is a 1-unit,
and set (a) := (a) as well as deg a := —vals(a). The exponentiation of ideals with
elements in S, is now defined as follows.

Definition 14.

{fractional ideals of A} x Seoc — C%, : (a, (z, w)) > 0 := Zdegaqyw,
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The exponentiation is bilinear for multiplication on ideals, addition on Sy, and
multiplication on C}_ . Note that the exponentiation of any 1-unit with an element
of Z, is well defined. The so-defined exponentiation depends on the choice of the
uniformizing parameter wo, = 1/1.

One defines the embedding Z < Sy @ i > §; := (no_oi , 1), so that the element
a’ e F is the unique generator of the ideal a’ such that (a%) is a I-unit.

The definition of global L-functions

Let x be a closed point of X. Since X is of finite type over Spec A, the point x
lies above a unique closed point p = p, of Spec A, and one has dp|d, for their
degrees over [F,. Hence L(x, F, N~ e 14+ 1%B[t%] c 1+ % B[t%], and so
L(x,F,t) ‘ 1y — s is well defined. In [B602] or in many cases in [G096, Section 8],
it is shown that there exists ¢ > 0 such that the following Euler product converges
forall s € H := {(z, w) € C, x Zp | |z| > c}.

Definition 15. The global L-function of F at s € H is

L, Fsy= [ T[] L&ED|a_ys= 1 L& E D] s
peMax(A) xelX| x€|X|
x above p

Thus L*™(X, F, —): H, — Cq. The subset H, C S is called a half space (of
convergence) of Sx in analogy with the usual right half plane of C.

Obviously, this definition depends on the morphism g : X — Spec A. If F =
M(¢) for some Drinfeld A-module ¢ on £ over X, then Definition 15 agrees with
the one originally given by Goss.

Meromorphy

For ¢ € R we define D} := {z € C | |z] > ¢} C P! (Cwo) as the punctured
“open” disc around oo of radius c, and 52? :={z € Cso | |z| = ¢} as the correspond-
ing “closed” disc. In particular, H. = D} x Z,.

To give a precise meaning to “entire,” respectively, “meromorphic extension” of
a global L-function to S, one now changes one’s viewpoint. Namely, for any fixed
w € Z, oneregards an L-function as a function D} — C.. Withrespect to a suitable
topology on the resulting functions D} — C, the variation over w € Z, will be
continuous. We now describe this topology.

For D= D*andc > 0,0or D = D} and ¢ > 0, we define

C™D):=1f= Zanz’” | a, € Cx, f convergeson D
n>0

If D= 52‘, then C*"(D) is isomorphic to the usual Tate algebra over C,, and one
can define a Banach space structure on it by defining for any f € C*(D) the norm
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1 flle := SUP_ | f(z)| (which is also multiplicative). In the case D = D} one
can only obtain a Fréchet space. The procedure is slightly more involved. Namely,
let (cy) C R be a strictly decreasing sequence with limit ¢. For any two elements
f, g € C*™(D), we define their distance as

]

dist(f, g) = Y 27"

m=1

If = &llew
L+ 11f = glle

One can show (a), that with respect to dist the Coo-linear space C*"(D) is a complete
linear metric space, and (b), that the topology on this space does not depend on the
choice of the sequence (c,) (provided that ¢, — ¢ and ¢, > c for all n). In the
following, Z, is equipped with its usual locally compact topology.

Proposition 7. If L(X, F, (z, w))) converges on H., then the function w — (z —
L(X, F, (z, w))) defines a continuous function Z, — C*"(D}).

This viewpoint bears some similarities to that of p-adic L-functions, where the
complete, algebraically closed field C,, takes the role of C*"(D}).

For ¢ < ¢’ one has the obvious inclusion C*"(D}) C C*(D7), given as the
identity on power series. Also since a power series is uniquely determined by its
coefficients, an element in Can(Dj,) has at most one extension to an element in
C(D}). Having this in mind, one introduces the following notions.

Definition 16 (Goss). A continuous function 7, — C* (D) is called entire. The
quotient of two entire functions which are units on DY for some ¢ >> 0 is called
meromorphic.

A global L-function L*™ (X, F, s) is called entire, respectively, meromorphic on
Soo if there exists an entire, respectively, meromorphic, function h whose restriction
h:Z, — C*(D}) agrees with L*"(X, F, s) for ¢ > 0.

By the remark preceding the definition, there is at most one entire function &
which extends a function L*" (X, F, s). The same holds for meromorphic functions.

For a meromorphic function £, the values h(i), i € Z, are its special values. In the
examples of interest, the special values at —Ng will typically lie in Co (z). Since both
Z and Ny are dense in Z,, the special values completely determine a meromorphic
function. One has the following criterion in terms of special values for L** (X, F, s)
to be entire.

Proposition 8. Let H,. denote a half plane of convergence for L* (X, F, s) and write
h for the corresponding continuous function Z, — C* (D). Suppose there exists
e € {£1} such that

1. h(i)¢ is a polynomial in z~" over Co for all i € —No, and

2. the degrees of the polynomials h(i)¢, i € —Ny, grow like O(log |i|).

Then L™ (X, F, s)¢ is entire.
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The assumptions of the theorem can typically be achieved for X smooth over I,
of dimension e, for F locally free on X x Spec A, and ¢ = (— l)e’].

There are two ways to prove Proposition 8. The path taken in the proof of [B6502,
Theorem 4.15] uses directly p-adic interpolation properties. In [Go04a], Goss takes
an alternative measure-theoretic approach.

Special values
The Carlitz T-sheaf C over A on Spec A is the t-sheaf corresponding to
Fylt1 @Fy[t], (1@t — 1 ® 1)(0 ®id)).

The following result, first observed by Taguchi and Wan, provides the following key
link between algebraic and analytic L-functions.

Proposition 9. Suppose X = Spec A = Al and g: X — Spec A is the identity. Then
fori € Ng one has

L™(X,F, (2,00 +5-) = LX, F®C¥, 1)1,
where we recall s : 7. — Soo 1 i > §; = (rro_oi, i).

In light of Proposition 8, one would like to bound the degree of L(X, F ® C ®i
t) while i varies. For this we shall compute Rg(F ® C®'). If one has a t-sheaf on
Spec k representing it, its rank will bound the degree of the algebraic L-function. Let
us denote by ;j the open immersion A! < P! and f: P! — Spec IF, the structure
morphism.

We proceed as follows: First, one changes the coefficients from A to its fraction
field F. Next, one extends the t-sheaves F and C (over F) to t-sheaves F and C
on P! which represent the crystals jiF and jiC, respectively. Then, one computes
R’ f (]—" ® C®’) as a t-sheaf over F on SpecF,. In the case at hand, the 7-sheaves
R f,,i # 1, will all be nilpotent. By the trace formula, Theorem 12, we thus have

LX,F@C®% 1) = det(l —r7 | R LA F ®CP®.

Hence L(X, FQC® 1)isa polynomial and its degree is bounded by the dimension
of the F-vector space H (]P’1 , F® C®’)

The sheaf underlying Q can be taken as (’)Plp (—2). If we follow the above recipe,
then by the Riemann-Roch theorem, the dimension of H 1 (]P’}p, F® (,7®i) will grow
linearly in i. The degree of L(X, FQC®', 1) € Coo [#] can thus grow at most linearly.

But we can do much better. Namely, the sheaf Q@’pl is nil-isomorphic to C¥), which
is defined by .

F 1@ Fylr], (1 @17 — 1 ® 1)(0 ®id)).
The latter (considered over F) has an extension QN(i) whose underlying sheaf is
(’)]Plp(—2). So if we write i = ag + ayp + axp? + - - - in its p-adic expansion with
ai €{0,1,..., p— 1}, then
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(E(O))®ao ® (é(l))@’al ® (é(z))@lz ®---

alsorepresents the crystal jiC', butits underlying sheaf is OP}: (—2(ap+ai+ax+---)).

It follows that the degree of L(X,F ® C®, ) grows at most logarithmically in i.
This combined with Propositions 8 and 9 proves the following result, which in the
given form with a different proof is due to Taguchi and Wan; cf. [TW96].

Theorem 14. Suppose X = Spec A, g: X — Spec A is the identity, and F is locally
free over A on X. Then L*™ (X, F, s) is entire.

Refining the above methods, in [B602] the following is shown.

Theorem 15. Suppose X is Cohen—Macaulay and equidimensional of dimension e.

Then for any locally free t-sheaf F over A on X the function L* (X, F, s)(_l)%l is
entire.

Using the representability results for flat crystals, and the theory of iterates of
characteristic polynomials, as developed in [BP04], one obtains the following con-
sequence by decomposing X into a suitable finite union of regular locally closed
subschemes.

Corollary 2. Suppose X — Spec A is a scheme of finite type and F is a flat A-crystal
on X. Then L*™(X, F, s) is meromorphic.

5.3 Open questions

While on the one hand, we have seen that under some reasonable set of hypotheses
the analytic functions L*"(X, F, s) are meromorphic, there remain many mysteries
concerning these functions. The interpolation procedure seems to identify them as a
kind of p-adic L-function interpolating special values at the negative integers. At the
same time, these functions also have Euler products. We pose some open problems.

Question 1. What is the arithmetic meaning of the special values?

For an analogue of the Riemann ¢-function, already in the work of Carlitz there
appeared identities that are reminiscent of the formulas ¢(n) = n"r, forevenn € N
and rational r,,. So Carlitz’s formulas have some arithmetic meaning. For more on
this, we refer to [G096, Section 8.18].

Question 2. Is there a conjecture a la Birch and Swinnerton-Dyer (BSD) for A-
motives?

A naive analogue of BSD cannot hold, since it is known due to a result of Poonen
(cf. [P095]) that the naive analogue of the Mordell-Weil group for a Drinfeld A-
module over a field L as in Section 2 is of infinite A-rank. In [An96] in certain cases,
a finite rank A-module has been constructed, that could serve as a starting point to
investigate such a conjecture.
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Question 3. Is there a Riemann hypothesis or a (substitute for a) functional equation?

There is no duality to be expected for crystals or 7-sheaves, as explained in
Remark 2. Nevertheless, there are very intriguing calculations along these lines which
are very suggestive although definitive conjectures cannot now be made; cf. [Go00]
and [Go04].

6 Motives for Drinfeld cusp forms

Using geometric means, Scholl in [Sch90] has constructed for the space of cusp forms
(over Q) for each fixed weight and level a motive in the sense of Grothendieck. In
this section, we want to describe a similar construction for Drinfeld modular forms
in the function field case. It attaches a motive in the sense of Anderson to each space
of Drinfeld cusp forms of fixed weight and level. Again for the sake of exposition,
we only consider the simplest case A = [F;[¢]. Details of this appear in [B&04].

6.1 Moduli spaces

Let n be a proper nonzero ideal of A. In Subsection 4.2, in particular in Theorem 2,
we recalled the definition and existence of a fine moduli space )" (n) for Drinfeld
A-modules of rank r and characteristic prime to n that carry a level n-structure.
From now on, we only consider the case r = 2, and therefore omit the superscript r
whenever r = 2. Asin Subsection 4.2, by M (n) we denote the t-sheaf corresponding
to the universal Drinfeld A-module on )(n), and by g, : Ym) — Spec A(n) its
characteristic.
The first observation we will need in the following is due to Drinfeld.

Theorem 16. The morphism g, has a (canonical) smooth compactification

P x(n)

Rt

Spec A(n).

The completion of X(n) along the complement X(n) \ 2 (n) (considered as a
reduced scheme) is (formally) smooth over Spec A(n), and may be considered as
a disjoint union of what one might call Drinfeld-Tate curves. They describe the
degeneration of rank 2 to rank 1 Drinfeld modules and have properties analogous to
the usual Tate curve. For details of this construction, cf. [Bo04, vdHO3, Le0O1].

To describe the connectivity properties of ) (n) and the cusps, recall that in the
case of elliptic curves the existence of the Weil-pairing yields a morphism of the
corresponding (compactified) moduli space to Spec Z[¢y, %]. Over this base the
moduli space is geometrically connected, and so not over Z itself.

Similarly one has a pairing on rank 2 Drinfeld A-modules. It induces a smooth
morphism wy : P(m) — Y'(n) to the moduli space of rank 1-Drinfeld modules
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with a level n-structure, which may be extended to a smooth proper morphism wy, :
X(n) — @1 (n); cf. [vdHO3]. The situation together with the canonical morphism
D' (n) — Spec A(n) is displayed in

Y(n) ¢ X(n) PX(m) \ Y(n)
' (n) ©)
gw
Spec A(n).

The morphism 8111 is finite étale, of degree d(n); the morphism w, is geometrically
connected. Thus if we pass from A(n) to C, the space @1 (n) will decompose into
d(n) copies of Co. Correspondingly, X(n) breaks up into d(n) components. Finally,
under dwy, the scheme X(n) \ P (n) is isomorphic to a disjoint union of copies of
2)‘ (n). Their number is denoted by c(n).

6.2 Rigid analytic uniformization

Over Z[1/n], one has a compactification similar to X(n) — Spec A(n) for the arith-
metic surfaces that arise as the moduli space of elliptic curves with alevel N-structure.
This is described in detail in [KMS85]. If instead one works over the complex num-
bers and the finer complex topology, the situation becomes considerably simpler. The
resulting curves admit a uniformization by the upper half plane, and can be realized
as quotients by congruence subgroups.

The analogous procedure in the function field setting is to base change ) (n) via
t: A(n) — Cq to a curve over Spec Co,. Now one regards the curve over C, as a
rigid analytic space—we write ) (n)""€—which again yields a finer (Grothendieck)
topology than the Zariski topology. For details on the rigidification functor X > X"i&,
we refer the reader to [BGR84].

As observed by Drinfeld, there is an analogue of the upper half plane, usually de-
noted 2. The rigidified moduli space 2)(n)"€ is, in fact, isomorphic to U?S) '(m)\
for a suitable quotient of 2, which we now describe:

The points of 2 over Coo are given as Q2(Cqso) := P! (Coo) \ P! (Fao). They are
acted on by the group GL,(F) via

az+b
cz+d’

GLy(Fa) x 2(Cop) —> Q(Co) : ((ﬁﬁ}),z) >

To give 2 the structure of a rigid analytic space, we describe an admissible cover
(which is the analogue in rigid geometry of an atlas in differential geometry). Its
construction can be best understood, if one introduces the reduction map of (Cqo)
to the corresponding Bruhat-Tits tree. The atlas we describe arises via pullback from
a simple combinatorial Cech covering of the tree. Not wanting to introduce these
notions, we now directly define the cover: Let Fo, be the residue field of F and g
its cardinality, and define
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-2/3 2/3
10(Co0) = {z € Coc | |2 = Bloo = g5 forall B € Fo and |2]oo < g25 7).
The set Llo(Cwo) is rigid analytically equivalent to the unit disc with g, smaller discs

removed. One can show the following:

1. If for y € GLy(Fx) the intersection $p(Cxo) N ¥ (Uo(Cxo)) is nonempty, then
one has precisely g + 2 possibilities: Either the intersection is Llo(Cxo), or it is

1(Coo) = {2 € Coo | 4207 < I2l00 < 420},

or there exists some 8 € [Fy such that it is of the form

—-1/3 —-2/3
{Ze(coo|4<>o/ 2|Z_ﬂ|ooZQOo/}-

2. The sets in 1 different from Ly (Cyo) are all translates of Ll; (Coo).
3. The sets yip(Coo), ¥ € GL2(Fso), form an admissible covering of 2 (Cyo).

To define a geometry (in this case a rigid analytic structure), one also has to
describe a set of functions on the atlas given. A function f: $g(Cs) — Cqo is rigid
analytic on $9(Cy), if and only if it can be written as a series

doa+ YY) bupz—p)"

neNy BeFy neN

which converges on all of Lp(C). The latter simply means that the sequences
(|an|q2/3") and (|b,,,,3|q_2/3”), for all B € F, tend to zero.

Definition 17. A function f: Q(Cy) — Co is rigid analytic on Q(Cy), if for all
y € GLy(Foo) the restriction of f oy to Ug(Cwo) is rigid analytic.

To describe I'(n)\ €2, we recall that one defines
I'n) :={y € GLy(A) | y =id (mod n)}.

It is a discrete subgroup of GLy(F), and thus acts on Q(Cy). Say we fix y €
GL,(F~) and abbreviate 4 := yily. Then for yg € I'(n) one either has ypil = U
or yoil N4 = @. The former case only occurs a finite number of times, so that the
stabilizer Stabr () (M) of 4l in I"(n) is finite. One may define rigid analytic quotients
Stabr ) () \44, and these can be glued to define a rigid space I'(n)\ 2.

6.3 Cusp forms

Following the case of elliptic modular forms over number fields, one can define
Drinfeld modular functions (and cusp forms) over function fields as follows.

Definition 18. A rigid analytic function f : Q(Cs) — C is called a modular
function of weight k € N for I'(n), if it satisfies the identity

fyz) = (cz+ ) f(z) forally = (ff}) eT(m) and z € Q(Cyx).
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The modular functions of level n are invariant under the operation of

() = {y = (éi’) | be n},

i.e., under translation by all b € n. Another such function is

en(2) :=12 1_[ (1—%).

ren\{0}

The function t, := e lis, in a suitable sense, a uniformizing parameter of n-invariant

functions near oo. Therefore, any modular function has a Laurent expansion

f@ =) antp2)

nez

convergent for |z|; > 0, where |z|; := inf{|z —a| | a € F}.

If f is amodular function of weight k for I'(n), thensois foy forall y € GL»(A),
because I" (n) is normal in GL; (A). Therefore, one can equally consider the expansion
ZneZ an,yty(z) of f oy. Since GLy(A) acts transitively on the “cusps” of I'\ 2,
following the case of elliptic modular forms, one defines the following.

Definition 19. A modular function f of weight k for I'(n) is called a

modular form n<0
cusp form <= Vy € GLy(A)Vn € Zwith {n <1 pa,, =0.
double-cusp form n<?2

By M (I'(n), Cx), we denote the Coo-vector space of modular forms for T’ (n) of
weight k and by Sy (I'(n), Co) and S,‘:C(l"(n), Coo) its subspaces of cusp and double-
cusp forms.

The number of conditions imposed in Definition 19 is finite, since it suffices
to require these conditions for matrices ¥ which form a set of representatives of
I(n)\ GLa(A).

Elliptic double-cusp forms are usually not considered, since they have no mean-
ingful interpretation. One reason to introduce them in the Drinfeld modular setting is
given below in Theorem 17.

To define modular forms on ) (n)rig one uses its identification with Ufig) '(m)\ Q.
Formally we set

My (0, Coo) 1= Mi(T'(w), Coo)*™, (10)

and similarly for cusp and double-cusp forms.

As in the classical situation, one may define Hecke operators (e.g., as correspon-
dences) which act on Drinfeld modular forms. These preserve the subspaces of cusp
and double-cusp forms. (Depending on their normalization, Hecke operators may also
“permute’’ the components of ) (n)/Cxo.)

We conclude this subsection with two examples. For the first, recall that ) (n) is
an affine scheme, equal to Spec R,, for some smooth A(n)-algebra Ry,. As remarked
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in Theorem 2, the universal rank 2 Drinfeld A-module is a homomorphism A —
End]Fq (Ga,9n), i-€., a homomorphism

¢n: A —> Rp{t}.

There are morphisms from Ry to its rigidification, and then from the latter to the
ring of global rigid analytic sections I" (€2, O?Zg)d ) of uldg) Q(Cx). This yields a
homomorphism _

p(m): A — I'(Q, 05 ™ {r).

Proposition 10. For any a € A consider ¢ (n)q. The coefficient of its leading term
r24e2a Jies jn S g2deza_1 (M, Coo), the coefficients of the remaining terms T’ lie in
q'—l(n COO)

As for elliptic modular forms one has an interpretation of the global sections of
the sheaf of differentials on X(n) in terms of modular forms.

Theorem 17. There is a canonical isomorphism
HO(X()™, Qe /c,) = 55 (0, Coo).

Without going into any details, the reason for the occurrence of double-cusp forms
is the following. Suppose f (z) is a Drinfeld modular form of weight 2 for I'(n). Then
f(z)dz is a global I'(n)-invariant differential form on Q(Cs). To investigate its
behavior near the cusp described by t,,, observe that one has de, = dz from the
definition of e, and hence

dty = d(e;!) = —e;?dz = —12dz.

Thus near the cusp for 7, the function f(z)dz is a power series in #,, times ——dt,1

Hence if we start with a double-cusp form, we obtain a global differential on f{(n)
and vice versa.

6.4 The motive

Following the guide by Eichler—Shimura and Deligne, we now define for any k > 2
the locally free t-sheaf M (n) *k=2) .= Symk_2 M(n), and the A-crystal

SPm) == R'guMm)*=2 (11)

on Spec A(n). By Proposition 3 the t-sheaf M (n)*~2) is locally free of rank k — 1.
Because 2)(n) is affine, the corresponding module is projective and finitely gener-
ated. If we extend it to a free module and choose T = 0 on the complement, we
find that M (n)* =2 is of pullback type. Also it is not difficult to see that the crys-
tal RogngM (m)*=2 is zero. Since, moreover, gn is smooth and proper of relative
dimension 1, Proposition 5 yields the following.

Proposition 11. The crystal R g M ()%= is zero fori # 1. The crystal S® (n) =
R'gu Mm)*=2 is of pullback type and hence flat.
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In [B604], jointly with R. Pink we computed some explicit examples of such mo-
tives for A = F,[¢] and n = (¢). Other explicit examples are given in Corollaries 4, 5
and 6.

Considering geometric correspondences, one can define Hecke operators T, for all
places of A prime to n. They naturally act on the crystals S® (n). Let p, be the maximal
ideal corresponding to v. The Hecke operators will still act as Hecke operators on the
reduction of S® (n) to the fiber at v, i.e., its pullback along Spec A /p, < Spec A(n).
As basically already observed by Drinfeld, one has an Eichler—Shimura relation.

Theorem 18. The action of T, on the fiber of S® (n) at v is given by the action of
the geometric Frobenius Frob, at v on this fiber.

6.5 Its analytic realization

We now follow the guide of A-motives to define an analytic realization of the crystals
S &) (n). First, we pull back this crystal via A(n) — C to a crystal over A on
Coo- Because it is flat, we may by using Proposition 6 represent it by a r-module
(S®(n), 1) over A on Cn, whose underlying sheaf is finitely generated projective,
and on which t is injective. In [B604] the following is shown.

Theorem 19. The t-module (S® (n), 7) is uniformizable in the sense of Definition 3.

Therefore, we call
(S©Om(e)*

the analytic realization of the motive S® (n). This realization carries an induced
Hecke action. The following main result is shown in [B604].

Theorem 20. There is a canonical Hecke-equivariant isomorphism
Hom A ((S® ) ()7, 24) ®4 Coo = Si(n, Coo).

The result should be compared with equation (3). The proof uses rigid analytic
tools and an explicit combinatorial Cech covering of X(n)"€. It would go beyond the
scope of this article to give details.

Using the Hecke action one may define a Hecke-invariant filtration on S® (n)
whose subquotients are flat crystals S ¢ corresponding to (generalized) cuspidal Drin-
feld Hecke eigenforms f. Neither the filtration, nor the crystal S s are canonical, and
more precisely the crystal S ¢ corresponds to the Galois orbit of f, and one has to be
aware that the Hecke action on S®(n) may not be semisimple. Nevertheless, these
subquotients are useful.

6.6 Its étale realizations

Let us fix a place v of A. Then S® (n) ®4 A /p% defines a flat crystal over A/p on
Spec A(n). Via the functor € from Subsection 4.8, we obtain a lisse étale sheaf of
A/p"-modules on Spec A(n), which say we denote by S'(n, A/p”). Varying n, these
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sheaves form a compatible system, and thus a v-adic étale sheaf on Spec A(n). Since
all sheaves in this systems are lisse, we obtain a Galois representation

Pnkw: GF —> GLyg,  (Ay),

where dy, x is the dimension of Sy (n, Coo).

The filtration on S® (n) described at the end of the previous subsection induces
also a filtration on the compatible system S€(n, A /p%). The subquotients yield the
compatible systems €(S s ®4 A/p}) corresponding to (Galois orbits of generalized)
cuspidal Drinfeld Hecke eigenforms f. The correspondence can be made precise by
using the Eichler—Shimura relation from Theorem 18. One obtains the following.

Theorem 21. Let f be a cuspidal Drinfeld Hecke eigenform (over Cy) and denote
by Fy the field generated over F by the Hecke eigenvalues a, of f, where w runs
through all places of A prime to n. Then [Fy : F] is finite and for any place v of A
there exists a place v’ of Fy above v and a representation

pfw: Gal(F*P/F) — GL{((Fy)y)

uniquely characterized by
pf,u(FrObw) =day (12)

for all places w of A which are prime to np,.

This result is strikingly different from the analogous one for elliptic modular
forms since there the representations are 2-dimensional. To explain this, we recall
the following observation on Hecke operators which dates back to Gekeler and Goss.
Namely, one can define Hecke operator Ty, for any nonzero ideal m prime to n. In
characteristic p they satisfy Ty = Tm Ty for any ideals m, m’, and in particular
for m a power of some prime ideal p. This is different from the case of characteristic
zero, but it simply follows from the usual relation by reduction modulo p. Another
reason why one should expect abelian representations is given following Corollary 6.

The characterizing property (12) is basically the same in all places v of A. This
means that the representations p ,,, form a compatible system of v-adic abelian rep-
resentations of G r. (The same holds for the semisimplification of the representations
Pn.k.v-) Thus extending the results of [Kh04] to the function field case, it seems nat-
ural to expect that to any Drinfeld cusp form one can attach a Grossencharacter y 7
of type Ao such that the compatible family p,, arises from y y in the way described
in [Kh03, Section 4] and [G092]. Therefore, the following natural question arises.

Question 4. Which Grossencharacters of F' of type Ag arise from Drinfeld modu-
lar forms?

Can any Grossencharacter of F of type Ag be twisted by a power of the Grossen-
character arising from the Carlitz-module (as in [G092]), such that it arises from a
Drinfeld modular form?

Recall that C is the Carlitz-module defined above Proposition 9. Then Question 4
is a generalization of the following problem raised in [Go02].



34 Gebhard Bockle

Question 5. Can one find for any Drinfeld F,[t]-module ¢ on Spec [F[¢] of rank 1
an n € Ny such that M(¢) ® C®" is the motive of a modular form?

Namely, any such Drinfeld module determines a Hecke-character of type Ag and
is, moreover, uniquely determined by this Hecke-character.

6.7 L-functions

Having the (noncanonically defined) crystal S attached to any cuspidal Drinfeld
Hecke eigenform f of level n, using the formalism described in Subsection 5.2 one
can attach an analytic L-function to it. It is independent of the choice of 7. This
yields nontrivial factors in the Euler product at all primes not dividing n. However,
the function f may be an old form, i.e., defined over some smaller level n’. Thus it
would be desirable to also have Euler factors at primes in Spec A/n\ Spec A/n’. One
way to achieve this is to assign to f the analytic L-function of the maximal model of
S 7 in the sense of Gardeyn; cf. Definition 6. This assignment is now also independent
of the level in which f was found. Using, in particular, Theorem 14 and Theorem 21,
one shows the following.

Corollary 3. For f a cuspidal Drinfeld Hecke eigenform of minimal level n and with
Hecke eigenvalues a,,, one has

—1
o J1(3)

veMax(A(n))

for s = (z,w) € Seo with |z| > 0. The function L‘]’cn(s) is entire in the sense of
Definition 16.

In [Go91] two further analytic L-functions are attached to a cuspidal Drinfeld
modular form. These are known to be different from the one in Corollary 3.

Question 6. What is the relation between these L-functions, if any?

The assignment f +— L‘}n (s) described in Corollary 3, attaches to a Hecke eigen-
form an L-function. However, unlike in the situation for elliptic modular forms, there
is no normalization for such forms in the Drinfeld modular setting. In the elliptic
modular setting the typical requirement is that the first Fourier coefficient of f is 1.
As the examples of doubly cuspidal Drinfeld Hecke eigenforms show, this coefficient
may be zero in our setting.

Question 7 (Goss). Is there a canonical normalization of a cuspidal Drinfeld Hecke
eigenform?

If the answer would be yes, then by superposition one could attach an L-function
to any Drinfeld cusp form.

Question 8. Can the assignment f > L r(s) be realized by an analogue of the usual
Mellin transform?
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6.8 Double-cusp forms

We saw in Theorem 17, that double-cusp forms do play an important role in the
theory of Drinfeld modular forms. So one may wonder whether there is also a motive
describing them. The short answer is yes, and we will explain some of it, since it leads
to another interesting question.

Let k > 2. In Subsection 6.4, we defined S® (n) = Rz, juMm)* =2 je., we
first extended the crystal M(n)*~2) to X(n) by zero, and then we computed its first
cohomology. In Remark 2, we noted that Gardeyn’s notion of maximal model leads
to a functor jz on A-crystals provided the base X was of finite type over some field.
Therefore, we may define

S& ) = R' gn jur M2
One can now formulate (by adding the subscript 4.) and prove the precise analogue
of Theorems 19 and 20 for double-cusp forms; cf. [B604].

It is, in fact, possible to completely determine the discrepancy between cusp and
double-cusp forms. Namely, for any & > 2 one has a short exact sequence

0— j!M(n)(k_2) - j#M(n)(k_z) — Lxmnom,a — 0

of crystals. The long exact sequence of cohomology then yields a four-term exact
sequence of crystals

0= ZnetMME? = 20 drmm.a = SPm = SPm - 0. (13)

The properties of diagram (9) yield gnsly mygm), 4 = (g},‘*lml(n), )™ . Moreover,
for k # 2 the le_ft-hand term vanishes, for k = 2 it is isomorphic to 831*1@1(:1), A

We define S;(n, Cs) = Si(n, Coo)/S,‘(jC(n, Cxo), and set §; := O for k > 3
and 8 := 1 for k = 2. Sequence (13) with the above identifications, the duality in
Theorem 20, and the analogous duality for double-cusp forms, prove the following.

Corollary 4. There is a fixed Hecke-module of dimension d(n) depending on n but
not on k, such that Sy (n, Cso) is the direct sum of c(n) — 8y copies of it.

The Hecke-module in question arises from the arithmetic of @1 (n).

Question 9. Can one give an explicit basis for the cuspidal Drinfeld Hecke eigenforms
which are not double-cusp forms, in a way similarly explicit to the the description
one has for Eisenstein series?

It is equally interesting to consider the consequences of (13) for the étale realiza-
tion of our motives. With §; as above, one obtains the following.

Corollary 5. The v-adic étale realization corresponding to Sy(n, Coo) consists of
(c(n)—8y) copies of H (Y (n)! / FseP, F,)®F,, considered as a Galois representation
of G (Which is unramified outside n).
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In particular, this shows that the étale realizations corresponding to the Hecke
eigenforms in S (n, Co) give rise to Galois representations over F,, and thus with
finite image. The proof of the corollary uses, among other things, the compatibility of
the functor € of Theorem 11 with coefficient change and with proper push-forward.

Specializing (13) to k = 2, and passing to étale realizations one finds the follow-
ing.

Corollary 6. The v-adic étale realization of S ((i? (n) is the Galois representation given
of G on H'(X(n)/F*P,F,) ® F,.

Again this describes Galois representations over I, and thus with finite image. It
is known that the curve X(n)/F is ordinary, and hence so is its Jacobian, which, say,
we denote by J(n). One therefore has

Hl(x(n)/Fsep’ F,) = J(n)[p](FSeP)y = Z/(p)dim J(n)’

where the first isomorphism is an isomorphism of Galois modules. Since, in particular,
the semisimplification of the module in the middle is abelian, this gives another
indication for the abelianess of the representations o,y .

The examples in [B604] show that the image of py, is typically infinite for
fe S,fc (n, Cx) and k > 2. This is related to a notion of weight that one can attach to
(pure) motives. Again this notion goes back to Anderson. Its definition is similar to the
notion of weight for £-adic sheaves due to Deligne. Now for an elliptic cuspidal Hecke
eigenform of weight k£ one knows that the weight of its £-adic Galois representation
is k — 1, which in turn yields the Ramanujan—Peterson conjecture. By considering
examples we expect that for cuspidal Drinfeld Hecke eigenforms of weight k the
following holds: The weight of their v-Galois representation is well defined and an
integer in [0, ..., £51]. A proof of this is still missing.
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1 Introduction

The aim of this article is to investigate the cohomology (/-adic as well as Betti)
of schemes, and more generally of certain algebraic stacks, X, that are proper and
smooth over Z and have the property that there exists a polynomial P with coefficients
in Q such that for every finite field F, we have #X'(IF,) = P(q). For the precise
definitions and conditions the reader is invited to read the rest of the article, at least
up to the statement of Theorem 2.1. Under those conditions, we prove that for all
prime numbers / the étale cohomology H(X@’ «» Q1), considered as a representation
of the absolute Galois group of Q, is as expected: zero in odd degrees, and a direct sum
of Q;(—i) in degree 2i, with the number of terms equal to the coefficient P; of P. Our
main tools here are Behrend’s Lefschetz trace formula in [Beh93] and /-adic Hodge
theory combined with the fact that Z has no nontrivial unramified extensions. Finally,
using comparison theorems from /-adic Hodge theory, we obtain a corollary which
says that under the extra assumption that the coarse moduli space of X is a quotient
by a finite group, the Betti cohomology H(X'(C), Q) with its Hodge structure is as
expected: zero in odd degree, and Q(—i)” in degree 2i.

The results in this article are motivated by a question by Carel Faber on potential
applications to some moduli stacks M , of stable n-pointed curves of genus g. These
stacks are proper and smooth over Z, and they also satisfy the extra hypotheses of
the corollary by results of Pikaart and Boggi [PB00]. We are told that # M, ,, (IF,) is
a polynomial in g for all pairs of the form (0, n) withn > 3, (1,n) with 1 <n < 10,
(2,n) with 0 < n < 5 (probably even up to n = 9), and (3, n) with0 < n < 3 (and
probably more). For genus 2 and 3 these results are due to Jonas Bergstrom.

As this article is motivated by its application to certain M, ,, we have not made
an effort to make our results as general as possible. In particular, we have not tried to
generalize comparison theorems from /-adic Hodge theory from schemes to stacks.



40 Theo van den Bogaart and Bas Edixhoven

We hope that this article will be of help to those computing the rational Hodge
structure on the cohomology of certain M, ,,. Counting points, using a suitable strat-
ification, could be easier than having to compute the cohomology, using the same
stratification. We apologize for our lack of expertise in the fields of algebraic stacks
and /-adic Hodge theory. Readers with more competence in these areas will probably
find the contents of this article rather straightforward and the proofs too elaborate.
But there seems to be a lack of “well-known facts” in the literature and we have tried
hard to give precise references and proofs understandable also to the nonexpert.

Terminology, conventions

Concerning stacks, our terminology is that of [LMBOO]. In particular, algebraic stacks
are by definition quasi-separated.

Let k be a finite field. If X’ is a Deligne—-Mumford stack of finite type over Z,
define its number of points over k to be

1
= ; | Aut()]’

where the sum is over representatives of isomorphism classes of objects in X' (k).
Here Aut(&) denotes the finite group of automorphisms of &.

If G is a topological group, by a G-representation (over ;) we shall mean a con-
tinuous representation of G onto a finite-dimensional (Q;-vector space equipped with
the /-adic topology. We use the same notation for a representation and its underlying
vector space. For any G and n > 0, the symbol (] denotes the trivial n-dimensional
G-representation.

2 Results

Theorem 2.1. Let X be a Deligne—Mumford stack over Z which is proper, smooth
and of pure relative dimension d for some d > 0. Let S be a set of primes of Dirichlet
density 1. Assume the following:

There exists a polynomial P(t) = Zizo Pit', with P; € Q, such that
() #X(Fpn) = P(p") +o(p™/?) (n — o)
forall p € S.

Then the degree of P(t) is d, and there exists a unique such polynomial satisfying
P; = Py_j forall 0 <i < d. Suppose P(t) is of this form. Then it has nonnegative
integer coefficients and satisfies #X (F pn) = P(p™") for all primes p and alln > 1.
Furthermore, for all primes [ and all i > O there is an isomorphism of Gal(Q/Q)-
representations
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' 0 ifi is odd,
H (Xg 4 Q) = A
’ Qi(—=i/2)"i2 ifi is even.

We remark that part of the theorem can also be stated in terms of the coarse
moduli space associated to X. Indeed, the number of points over a finite field of a
Deligne-Mumford stack equals the number of points of its coarse moduli space; and
furthermore, the cohomologies of both spaces with coefficients in a (Q-algebra are the
same.

3 Some results on stacks

Let us make two technical remarks.

In [LMBOO, Section 18] the theory of constructible sheaves of Z/I" Z-modules
over the smooth-étale site of an algebraic S-stack is developed, where S is a scheme.
There is a straightforward extension of this theory to constructible /-adic sheaves,
e.g., by working with projective systems of Z/I" Z-modules modulo torsion in the
usual way. We will use this without further comments.

Associated to a Deligne—-Mumford stack X are its étale topos (denoted X;) and its
smooth-étale topos. They however give the same cohomology theory of constructible
sheaves (see [LMBO0O0, Section 12, especially Proposition 12.10.1]). This justifies the
fact that we will only work with the étale topos of a Deligne—Mumford stack, but
freely cite results stated in terms of the other topos.

For schemes the following proposition is classical. By lack of a precise reference,
we have included a proof for the case of stacks.

Proposition 3.1. Let X' be a Deligne-Mumford stack which is smooth and proper
over L. For every primel # p and everyi > 0, the canonical map of Gal(Q,,/Q)-
representations

H (X5 40 Q) > H (XG0 Q1) ()

is an isomorphism. In particular, H! (X@ o Q1) is unramified.
2

Proof. Denote by Q) the maximal unramified extension of Q, in @p and let ZY; be
its ring of integers. Set S = Spec(Z;r) and denote by s, respectively, n, its closed,

respectively, generic, point. Let 7 — n correspond to Q‘I‘f — @p. Consider the
natural morphisms ) )
Xy Xg & X,

These maps induce continuous morphisms between the associated étale sites.

Let (U, u) be an étale neighborhood of X’s and let ji; be the pull-back of j along u.
By [LMBO0O0, 18.2.1(i)], for every g we have (R?j.Qp)uy.. = R2(ju)«Qi. As U is
smooth, it follows that j,Q; = Q; and R?,Q; = 0 if ¢ # 0. Hence the Leray
spectral sequence gives an isomorphism H (X5, Q) — H (A5, Q). But on the other
hand, H! (X, Q;) is naturally isomorphic to H (X, Q;); this follows from the proper
base change theorem [LMBO0O0, 18.5.1] for X5 over S and the fact that S is strictly
local. O
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The next topic is Poincaré duality for the /-adic cohomology of certain stacks (see
Proposition 3.3 below). We will obtain this by considering the cohomologies of their
associated coarse moduli spaces.

Let X be a separated Deligne—Mumford stack of finite type over an algebraically
closed field of characteristic zero. We will denote by X its coarse moduli space and
by ¢: X — X the corresponding mapping. Note that we can cover X by étale charts
U such that the pull-back of U in X is the quotient stack of an algebraic space by a
finite group [LMBO0O, Remark 6.2.1].

Lemma 3.2. For every i the pull-back map
q*: H (Xar, Q) — H (X, Q1)
is an isomorphism.

Proof. The lemma follows from the Leray spectral sequence once we have shown
that the canonical map Q; — Rg,Qy is an isomorphism. This question is étale local
on X and therefore we may assume that X = [V/G] for some algebraic space V
equipped with an action by a finite group G. Denote by p: V — X the canonical
morphism. Note that Q; =~ ( +Q) Y. As p and gp are finite and Q[G] is a semisimple
Q-algebra, we obtain

Rq.Q; ~ R (pQ)Y =~ ((¢p)«Qn)° =~ Q. o

Now suppose that X" is defined over C and smooth. Consider the complex analytic
space X" associated to X. It can naturally be equipped with the structure of a V-
manifold, i.e., locally X" is the quotient of a connected manifold by a finite group;
cf. [Ste77].

Proposition 3.3. Suppose X is a Deligne-Mumford stack which is smooth and proper
over Q of pure dimension d for some d > 0.

(1) Suppose X is integral. For an integer i, consider the cup product mapping
H' (X, Q) ®g, B (Xer, Q) — H (X, Q.

Then the right-hand side is one dimensional and the pairing thus obtained is
perfect.

(ii) Suppose X is a smooth and proper Q-scheme of pure dimensiond and let f : X —
X be a Q-morphism which is surjective and generically finite. Then for all i, the
induced map

£ H (Xar, Q) — H' (Xer, Q)
is injective.

Proof. By Lemma 3.2 and the comparison theorem between Betti and étale coho-
mology, it suffices to show that in case (i),

H X", Q) @ H (X", Q) - H¥X™, Q)
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is a perfect pairing; and in case (ii) that
H (Xe, Q) — H (Xe, Q)

is injective. Now the singular cohomology of a V-manifold satisfies Poincaré duality
([Ste77]), from which these statements follow. O

4 Proof of the main theorem

We will now prove Theorem 2.1. In this section, all cohomology is with respect to
the étale sites. We begin with an analytic lemma used in the course of the proof.

Lemma 4.1. Let us be given the following integers: d > 0, d < r < 2d, and for
0 <i < ralsod; > 0. Furthermore, let p > 1 be a real number, let P; € Q for
alli > 0, with P; = 0 for i large, and let o; j € Cfor0 <i <rand1 < j <d,.

Assume |a; | = pi/% and
r
DYDY =) Pip" +o(p"?) (n— o0). ©)
i=0 1<j<d; i>0

Then d; = 0 fori = d odd, P; = 0 for i > r/2, while for d/2 < i < r/2 we have
P; = dy;; for these i also ay; j = p'.

Proof. The lemma follows by induction on r. Indeed, assume that either r = d or
that the lemma holds for r — 1. As | Zlfjfdi ozl’.fj| < d; p'™/?, we have

r

S0 Y el =] X e o o)

i=0 1<j<d; 1<j=<dy

and also, using (2), that P; = 0 fori > r/2.

Note that if 7 is an element of a finite product (S')* of complex unit circles, then
the closure of {z" | n > 1} contains the unit element. Hence for every € > 0 there
exists an infinite subset N C N such that for all n € N and for all i and j we have
|(ai,jp_i/2)” — 1] < € and, in particular,

Y (anip Y —dy| <€, 3)
1<j=d,

with €/ = d, €.
Now first suppose r is odd. Then

Dol =o0(p"?) (n— o0),

1<i<d,
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which by (3) implies d, = 0. Therefore, if r = d we are done, while if r > d, we can
apply the induction hypotheses.
So from now on suppose r is even. From (2) it follows that

Dot = Ppp” P =0(p")  (n — o),
I=j=<d,

or, equivalently,

. —r/2
Tim | (e jp ™ = Prp| =0,
1<j=d,
Together with (3), this implies d, = P, /. In turn this easily leads to a;,j = pr/ 2,
Now subtract P, > pr? = Di< j<d, oeﬁ j from (2) andif r > d apply the induction
hypotheses. O

Let X, d, and S be as in Theorem 2.1 and let P(¢) = Zi>0 Piti bea polynomial
satisfying (). Without loss of generality we assume P; = Py_;iforall0 <i <d.
We also fix a prime /.

By [LMBOO, Theorem 16.6] and resolution of singularities, there exists a smooth
and proper Q-scheme X of pure dimension d and a surjective and generically finite
map f: X — Ap. By removing a finite number of primes from § if necessary, we
may assume that Xg, extends to a smooth scheme over Z, for all p € S. As a
consequence, for all p # [ in S the representation H' (X@ , Q) is unramified and we

can consider the action of _Frobenius. By [Del74i], the eigenvalues of Frobenius have
complex absolute value p'/ 2 Using Proposition 3.3, we obtain the same conclusions
for the subrepresentation H* (X@ ,Qp.

P

Fix a prime p # [/ in S. By Behrend’s Lefschetz trace formula (see [Beh93] or
[LMBOO, Theorem 19.3.4]),

Z(—l)" Tr(Frob”, Hi(XFP, Q1) = #X(Fpn) 4)

i>0

forallm > 1. Leta; 1, ..., & g4; be the complex roots of the characteristic polynomial
of Frobenius. Applying () and Proposition 3.1, formula (4) becomes

2d
YD Y al =P o) (n— o0).

i=0 1<j<d;

From Lemma 4.1 we now obtain that P(¢) has degree d and for all d < i < 2d we
have that fori even P; =d; ando; j = pi/z, while d; = 0 for i odd. Using Poincaré
duality (Proposition 3.3) we obtain the same conclusions for all i. (Note that P () is
defined in such a way that P, = P;_; for0 <i <d/2.)

Hence H! (X@p, @Qy) vanishes for any odd i, while for all even i it has dimension
P; jo—in particular, the coefficients of P () are nonnegative integers—and further-
more,
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Tr(Frob, H* (A . @) = Tr(Frob, @ (—)"). )

This holds for all primes p in the set S\{/}. But a semisimple, almost everywhere
unramified, Gal(Q/Q)-representation over Q; is determined by the trace of Frobenius
onaset of primes of Dirichlet density 1. (A proof of this is outlined in [DDT97, Propo-
sition 2.6].) We conclude that the semisimplification of HZ (X@, Q) is isomorphic
to Qi (—i)Fi. _
By Proposition 3.1, H% (X@ , Q) is unramified for every prime p # [.As (5) then
P
holds for every prime p # [, Behrend’s Lefschetz trace formula gives #X (IFn) =
P(p") forall p # . Changing [, we see that this formula is valid for every prime p.
All that remains to be proved is that H* (X@, Q) is semisimple, or equivalently,

that its ith Tate twist H = H% (X@, Q) (@) is semisimple. Note that H is unramified
outside / and that the semisimplification of H is isomorphic to the trivial representa-
tion QIP".

By [LMBOO, 16.6] and [DeJ96], there exists a finite extension K of Q; inside
Q,, a proper, semistable scheme X of pure relative dimension d over the ring of
integers of K and a surjective and generically finite K -morphism f: Xx — Xk.By
[Tsu02, Theorem 1.1], H% (X@z , Q) is a semistable representation of Gal(@l /K).So

it follows from Proposition 3.3 that H* (X@l, Q) and hence also H are potentially
semistable.

Lemma 4.2. Letn > 1 be an integer. Consider a short exact sequence of Gal(Q; /Q;)-
representations
O—>Q§’—>V—>Ql—>0. (6)

If V is potentially semistable, then V is unramified.

Proof. By assumption, there is a finite extension K of Q inside Q, such that the
restriction of V to Gg := Gal(@l /K) is semistable. Fix such a K and denote by Ky
its maximal unramified subfield relative to ;. Denote by ¢ the automorphism of K
obtained by lifting the automorphism x — x' of the residue field of K.

We will briefly recall some theory about semistable representations and fil-
tered (¢, N)-modules; for more details, see [CF00].

Denote by @S (G k) the category of semistable representations of G g over Q;
and denote by @um(G k) its full subcategory of unramified representations. Let

@If( (¢, N) be the category of (weakly) admissible filtered (¢, N)-modules over K.

An object of @ﬁ (¢, N) is a finite-dimensional Ko-vector space E equipped with
a o-semilinear bijection ¢: E — E, a nilpotent endomorphism N of E and an
exhaustive and separating descending filtration Fil' Ex on Ex = K ®g, E. We
must have No = lpN and furthermore there is a certain admissibility condition to
be satisfied (cf. [CF00, Section 3]).

All the above categories are Tannakian (so, in particular, they are all abelian ;-
linear ®-categories). Fontaine has constructed a functor Dy g from @St(G ) to

@{( (¢, N) and the main result of [CF00] is that this is an equivalence of Tannakian
categories.
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To the trivial one-dimensional representation Q; corresponds Dy x (Q;), which
is just K¢ equipped with the trivial maps ¢ = o, N = 0 and filtration determined
by Fil’K = K and Fil' K = 0. By abuse of notation we will denote Dy x (Q;) also
by Kp.

We obtain natural maps of (;-vector spaces

EXtRep (GK)(QI Q[)QEXtRep (GK)(QZ Q[)—>Ext (Ko, K(’}),

ME/ (¢, N)
where the second map is the isomorphism induced by Dy x. We need to show that
i is an isomorphism. Since Ext! is additive in the second variable, it suffices to treat
the case n = 1. We will show that the dimension of Ethlzep (GK)(QI’ Q) is at least

as big as the dimension of the Q;-vector space Ext! (Ko, Kop).

MF/ (¢, N)
First, we consider the extensions in mé (¢, N). Let

0—>K0—>E—>K0—>0 (7)

be a short exact sequence in @é (¢, N). Choosing a splitting of the short exact
sequence of vector spaces underlying (7), we write E = Ko & Ko with Ko — E
being x — (x,0) and E — K being the projection onto the second coordinate.

As the induced sequence of filtered K -vector spaces is exact, Fil’ Ex = Ex and
Fil!l Ex = 0. Secondly, N has the form ({3) for some A € Ko. Then No = IpN
implies A = lo()), which is only possible if A = 0. Hence N = 0 on E. Finally,
we necessarily have ¢(1,0) = (1,0) and ¢(0, 1) = («, 1) for some ¢ € Ky and
conversely giving o € K uniquely determines ¢.

Denote by K the Q;-vector space underlying Ko. To o € K associate the
unique extension (7) with £ = Ko @ Ko and ¢(0, 1) = («, 1). This determines a
surjective map

K} 7, Exi! (Ko, Ko),

ME/ (¢, N)

and one checks that it is in fact (;-linear. Take x € K¢ and let L be the automorphism
of Ko & Ky given by (}%). If we equip the source with ¢ and the target with ¢’, then
L induces an equivalence of the associated extensions if ¢/ = L~!'¢L. It follows
that j(a) = j(a + o (x) — x), so the kernel of j is a sub-(Q;-vector space of K of
codimension 1; this implies that dimg, Ext! f( (Ko, Kp) < 1.

But on the other hand, dimg, ExtRep (GK)(QI Ql) = 1. To see this, suppose V

is unramified and sits in an extension of Q; by Q. Taking a suitable basis for V,
the action of the Galois group is given by (;7), where 5 is an unramified character
Gal(Q;/K) — Q. In other words, 7 is a morphism of groups 7 — Q which, being
continuous, must factor through 7Z;. But Hom(Z;, Q) is one dimensional.

Thus we obtain that V in (6) is unramified when restricted to Gal(Q;/K ). Then if
g is an element of the inertia subgroup of Gal(Q; /Q;), the [K : Q;]th power of g must
act trivially. But on the other hand g must act unipotently, as V sits in the short exact
sequence (6). Hence g itself must act trivially and V' is an unramified representation

of Gal(Q;/Q)). o
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Now let
O0=HyCH C---CHp =H

be a Jordan—Hélder filtration of H. Hence H;/H; | ~ (; and each H; is unramified

outside / and potentially semistable at /. Clearly, H; ~ (Q;; assume that H; ~ Qlj
for some j (1 < j < P; —1). Then Hj; is everywhere unramified by the above
lemma. However, as Minkowski’s theorem says that (Q has no nontrivial unramified
extensions, we conclude that H 1 is isomorphic to Qlj 1. S0 by induction, H =~ QIP" .
This finishes the proof of Theorem 2.1.

5 The Hodge structure

Let V be an integral, regular, quasi-projective Q-scheme. Consider a finite group G
acting on V from the right. Denote by f: V — Q the canonical projection to the quo-
tient scheme Q = V/G. Note that there is a natural G-action on the module f*.Q‘l, /0"

We are interested in the cohomology of the quotient space Q and, in particular, in
the Hodge structure of the singular cohomology of its associated analytic space. For
this we will use [Ste77]. In order to be able to apply some results of [Ste77], we will

need the following result.

Proposition 5.1. Let ¥ C Q be a closed subset of codimension > 2 containing all
singular points of Q. Let j: U — Q be the open subscheme complementary to X.
Then, for all p, there is a canonical isomorphism

2010 — (f27,0)° (8)
of Og-modules.

Proof. For any Q-scheme Z, we abbreviate 27 := QS/Q. Put W = f~1(U) and
let g: W — U be the restriction of f. Note that G acts on W with quotient U. The
canonical map g*2y — 2w induces a morphism

a: Qu —>(g:8*20)% — (g.2w)°.

This map is an isomorphism in the stalk at the generic point. To define (8), we apply
Jx to o to obtain a map from j,§2y to the sheaf j,( f*.QV)G. This last sheaf is
isomorphic to ( f,£2y)Y, as a consequence of the fact that if Z is a regular Q-variety
and z: Z’' < Z is a dense open subset with complement of codimension > 2, then
72+827 =~ $27. Another consequence of this fact is that the map (8) thus defined
is independent of the choice of X. In particular, we have reduced the problem to
showing that for any point € U whose closure has codimension 1, the map « is an
isomorphism in the stalk at 1.

The question being local for the étale topology on U and V/, it suffices to consider,
ford > 1 and n > 0, the action of gy on A7, with the quotient map A@ — A?’Q

mapping (ai, ..., ay) to (af, az, ..., ay). The result follows from an easy calcula-
tion. m]
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Let j: U — Q be the smooth locus of Q. As a consequence of Proposition 5.1,
there is a canonical isomorphism between the De Rham complexes

25— (fe2y,0)°.
Therefore, for each i we obtain an isomorphism
H'(Q, jx2{),0) — H(Q., (f:2},0)%) — Hpr (V/Q). ©)
This lastisomorphism follows from the fact that f is finite and that taking cohomology
with Q-coefficients commutes with taking invariants under a finite group action. The
Hodge filtration on the De Rham complex induces filtrations on the vector spaces in
(9) and the isomorphisms in (9) respect those filtrations.
Fix a prime /. Denote by Dpr the Fontaine functor (see e.g., [Tsu02]) from the

category of Gal(Q; /Q)-representations over Q to the category of finite-dimensional
filtered Q;-vector spaces.

Proposition 5.2. In the above situation, suppose furthermore that Q is proper over Q.
For every i, there is an isomorphism of filtered vector spaces

Dpr (H' (Qg, 4 @) — H(Q, j+$2}) ) ®q Q-

Proof. As V is proper and smooth, the comparison theorem (see e.g., [Tsu02, The-
orem Al]) states that DDR(Hi(V@[, « Q) and H{)R(V/(@l) are isomorphic. This
isomorphism preserves the G-invariants. Using (9) we obtain the isomorphism of the
proposition. O

With these prerequisites, we are finally ready to prove the corollary to the main
theorem.

Corollary 5.3. In the situation of Theorem 2.1, suppose furthermore that the coarse
moduli space X of Xy is the quotient of a smooth projective Q-scheme by a finite

group.
Then for each i, there is an isomorphism of Q-Hodge structures

g 0 ifi is odd,
H' (X(C), Q) ~ NPy g
Q(=i/2)"12 ifi is even,
where the left hand side is equipped with the canonical Hodge structure of [Del74ii].
Proof. We may assume that X’ is integral. Note that H’ (X@l « Q1) is isomorphic to
H' (T@l « Q) by Lemma 3.2. Therefore, combining Theorem 2.1 and Proposition 5.2
it suffices to exhibit an isomorphism of filtered vector spaces

where j: U — X is the smooth locus of X This is done in [Ste77, Theorem 1.12].0
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Summary. We give an example of a vector bundle £ on arelative curve C — Spec Z such that
the restriction to the generic fiber in characteristic zero is semistable but such that the restriction
to positive characteristic p is not strongly semistable for infinitely many prime numbers p.
Moreover, under the hypothesis that there exist infinitely many Sophie Germain primes, there
are also examples such that the density of primes with nonstrongly semistable reduction is
arbitrarily close to one.

Introduction

In this paper, we deal with the following problem of Miyaoka [5, Problem 5.4]:

“Let C be an irreducible smooth projective curve over a noetherian integral
domain R of characteristic 0. Assume that a locally free sheaf £ on C is
2A-semistable on the generic fiber C,. Let S be the set of primes of char. > 0
on Spec R such that £ is strongly semistable. Is S a dense subset of Spec R?”

Here a locally free sheaf £ on a smooth projective curve over a field is called
semistable, if for every coherent subsheaf 7 C & the inequality deg(F)/rk(F) <
deg(€)/1k(€) holds true. In positive characteristic, £ is called strongly semistable
if every Frobenius pullback of £ stays semistable. Since semistability is an open
property and since semistable bundles on the projective line and on an elliptic curve
are strongly semistable, this problem has a positive answer for genus g = 0, 1.

Shepherd-Barron “rephrases’ the question asking “is it true that the set (...) of
primes p modulo which £ is not strongly semistable (...) is finite, or at least of
density 0?” [7]. He considers also higher dimensional varieties V, and one of his
main results is that for dim V > 2 and rk(£) = 2 the set X of prime numbers with
nonstrongly semistable reduction is finite under the condition that either the Picard
number of V is 1, or that the canonical bundle Ky is numerically trivial, or that the
variety V is algebraically simply connected [7, Corollary 6].
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Coming back to curves of genus > 2, say over Spec Z, nothing seems to be known
about the following questions on the set S of prime numbers with strongly semistable
reduction: Does S contain almost all prime numbers (as in the results of Shepherd-
Barron)? Is § always an infinite set? Is it even possible that S is empty? Can we say
anything about the density of S in the sense of analytic number theory?

In this paper we give examples of vector bundles of rank 2, which are semistable
in characteristic zero, but not strongly semistable for infinitely many prime numbers.
We also provide examples where the density of primes with nonstrongly semistable
reduction is very high, and in fact arbitrarily close to 1 under the hypothesis that there
exist infinitely many Sophie Germain prime numbers.

The example is just the syzygy bundle Syz(X2, Y2, Z?) on the plane projective
curve given by Z¢ = X? 4 Y4 ford > 5. These bundles are semistable in character-
istic zero. The point is that in positive characteristic p fulfilling certain congruence
conditions modulo d, some Frobenius pullbacks of these bundles have global sections
which contradict the strong semistability. It is also possible that in these examples the
reduction is not strongly semistable for all prime numbers, but this we do not know.

This type of examples is motivated by the theory of tight closure. It was already
used in [2] to show that there is no Bogomolov type restriction theorem for strong
semistability in positive characteristic. We will come back to the impact of these
examples on tight closure and on Hilbert—Kunz theory somewhere else.

1 Main results

In the following we will consider syzygy bundles of rank 2 on a smooth projective
curve C = Proj A over a field K, where A is a two-dimensional normal standard-
graded K-domain. Such a bundle is given by three homogeneous, A -primary ele-
ments f1, f2, f3 € A of degree d1, da, d3 by the short exact sequence

0= Syz(f1, fr, f3)(m) = O(m—d))BOm—d2)®O(m—d3) "L Om) — o.

A global section of Syz( f1, f2, f3)(m)isatriple (s1, s2, s3) of homogeneous elements
such that deg(s;) +d; =m,i = 1,2,3, and 51 f1 + s2.f> + s3.f3 = 0. We call m the
total degree of the syzygy (s1, 52, s3). The degree of such a syzygy bundle is by the
short exact sequence deg(Syz(f1, f2, f3)(m)) = 2m — dy — da — d3) deg(C). If m
is such that this degree is negative and such that there exist global nontrivial sections,
then this bundle is not semistable.

It is in general not easy to control the global syzygies; in the following lemma
however we take advantage of the existence of a noetherian normalization of a very
special type. Let 6(f1, . . ., fn) denote the minimal total degree of a nontrivial syzygy

for f1,..., fa.

Lemma 1. Let P(X,Y) denote a homogeneous polynomial in K[X, Y] of degree
d and consider the projective curve C given by Z? — P(X,Y), so that C =
Proj K[X, Y, Z]/(Zd — P(X,Y)). Suppose that C is smooth. Let a1, a,a3 € N
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and consider the syzygy bundle Syz(X“', Y, Z%)(m) on C. Write az = dk + t,
where 0 <t < d. Then

S(XN, YR, 7%)
= min{8(X“, Y2, P(X, V)*) +1,8(X, Y, P(X, Y)*TH}.

Proof. A global section of Syz(X“!, Y2, Z%)(m) is the same as homogeneous poly-
nomials F, G, H € K[X, Y, Z]/(Zd—P(X, Y))suchthat FX“'+GY®“+HZ% =0
and deg(F) + a1 = deg(G) + a» = deg(H) + a3 = m. We may write F' =
Fo+ FiZ+ F2Z%+ -+ F;1Z9 1 with F; € K[X, Y] and similarly for G and
H.We have Z% = 7K+ = (z4)k 7! = P(X, Y)*Z!. The polynomials (F, G, H)
(fulfilling the degree condition) are a syzygy if and only if fori = 0,...,d — 1,
we have

FiZ'X“ + G;Z'Y" + H;Z/ 7% =0, where j =i —tmodd.

Now let (F, G, H) denote a nontrivial syzygy of minimal degree for X!, Y%, Z%
and let i denote the minimal number such that F; # 0 or G; # 0. Since the degree
is minimal we may assume by dividing through Z™"(./) that eitheri = 0 or j = 0,
which means i = 7.

In the first case, we can read the zero-component of the syzygy directly as a
nontrivial syzygy for X@, Y%, P(X, Y)k*! Inthe second case thei = rth component
of the syzygy is

F,Z'X + G, Z'Y* + HyZ™ = 0.

Replacing Z% through P(X, Y)*Z' and dividing through Z’ we get a nontrivial
syzygy for X4, Y% P(X, Y)* of the same degree —t.

Suppose that we have a nontrivial syzygy FX9 +GY2 +HP(X, V)M =0in
K[X,Y].Then F=Fy=F,G=Go=Gand H = Hy_,Z%" = HZ%! gives a
syzygy for X, Y%, Z% of the same degree.

Suppose that we have a nontrivial syzygy FX“ + GY% + HP(X,Y)* = 0 in
K[X, Y]. Multiplying with Z, we see that F = F,Z! = FZ',G = G, Z' = GZ'
and H = H gives a syzygy for X%, Y92, Z% of the same degree +1. O

Proposition 1. Let d and b denote natural numbers, write b = dk+t with0 <t < d.
Suppose that k is even and that t > 2d /3. Then the syzygy bundle Syz(X?, Y?, Zb)
is not semistable on the Fermat curve given by Z¢ = X4 + v

Proof. We will look for syzygies for X?, Y? and (X?¢ + Y9)**1 of total degree
d(k + 1) +d|k/2] = d(k + 1 + |k/2]), which yields syzygies for X?, Y?, Z? of
the same degree by Lemma 1. To find such syzygies we have to look for multiples
H(X? 4+ Ykl ¢ (xP,Y?), where deg(H) = d|k/2]. We consider for H only
monomials in X¢ and Y¢, so these are the [k/2]| 4+ 1 monomials

Xd[k/2J7 Xd(Lk/zJ_l)Yd, Xd([k/2j—2)Yd2’ o, Yd[k/ZJ.

The resulting monomials in the products, which do not belong to the ideal (X?, Y?),
have the form X?“Y?" with du +dv = d(k + 1 + |k/2]) and u, v < d(k + 1). So
these are the monomials
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Xd([k/2J+1)de’ Xd(Lk/2J+2) Yd(kfl)’ o Xdkyd([k/ZJJrl)'

These are k — (|k/2] + 1) + 1 = k — | k/2] monomials. Since k is supposed to be
even, we have |k/2| +1 > k — | k/2], and therefore we must have a nontrivial linear
relation
Z )\,del Ydj (Xd + Yd)k+1 — 0,
i+j=|k/2]

modulo (X?, Y?). The total degree of this nontrivial global syzygy is d (k+ 1+ |k/2])
and the degree of the bundle is

deg(Syz(X”, Y, ZP)(d(k + 1 + |k/2]))) = Qd(k + 1 + |k/2]) — 3b) deg(C).
Due to our assumptions, we have
2d(k + 1+ |k/2]) = 3dk + 2d < 3dk + 3t = 3b;

hence the degree of the bundle is negative, but it has a nontrivial section, so it is not
semistable. O

Corollary 1. Let d and q denote natural numbers; write ¢ = d€ +s with0 < s < d.
Suppose that 2s < d < 3s. Then the syzygy bundle Syz(X?4,Y??, Z%9) is not
semistable on the Fermat curve given by Z¢ = X4 + v4.

Proof. We apply Proposition 1 to b = 2g = d(2¢) + 2s = dk + ¢t. Note thatt < d
and 2d < 6s = 3t. O

Corollary 2. Consider the syzygy bundle £ = Syz(X?, Y2, Z?) on the Fermat curve
Cx =ProjK[X,7, Z]/(Xd +yd— Zd), K a field. Then Ek is semistable in char-
acteristic zero for d > 5, but Ek is not strongly semistable in positive characteristic
p = rmodd such that some power s = r¢ fulfills 2s < d < 3s. In particular,
for prime numbers d > 5, Eg is not strongly semistable for infinitely many prime
numbers p.

Proof. Suppose first that K has characteristic zero. Then £k is semistable due to
[1, Proposition 6.2]; this follows for d > 7 also from the restriction theorem of
Bogomolov (see [3, Theorem 7.3.5]) since the bundle is clearly stable on the projective
plane.

Suppose now that K has positive characteristic p fulfilling the assumption. Then
we look at ¢ = p° so that ¢ = d€ + s with 2s < d < 3s, and Corollary 1 yields that
Syz(X?4, Y24, Z*9) is not semistable. Since this bundle is the pullback under the eth
Frobenius of Syz(X 2, Y 2, Z 2), as follows from the short exact sequence mentioned at
the beginning of this section, we infer that Syz(X2, Y2, Z?) is not strongly semistable.
For prime numbers d > 5 there are natural numbers s such that 2s < d < 3s and
such that s is coprime to d. Due to the theorem of Dirichlet about primes in an
arithmetic progression [6, Chapitre VI, Section 4, Théoréme and Corollaire], there
exists infinitely many prime numbers p with remainder = s mod d. O
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Remark 1. The condition in Corollary 2 that d is a prime number is necessary, since
for d = 6 and d = 10 there does not exist such a coprime reminder s in the range
d/3 < s < d/2. Are these the only exceptions?

Remark 2. For p = 1 or —1 modd we have ¢ = 1 or —1 modd for all ¢ = p® and
so Corollary 2 does not apply. It is open whether for these prime numbers the bundle
is strongly semistable or not.

2 The example on the Fermat quintic

In this section we take a closer look at the example £ = Syz(X 2 y2, Zz) on the
Fermat quintic Z> = X> + Y3 for various characteristics. Then £ is semistable in
characteristic zero, but g is not strongly semistable in characteristic p = 2 or = 3
mod 5. In characteristic p = 1 or p = 4 mod 5 this is not known.

Corollary 3. Consider the syzygy bundle & = Syz(X?, Y?, Z?) on the Fermat quin-
tic Cx = ProjK[X,Y, Z]/(X> + Y> — Z%), K a field. Then £k is semistable in
characteristic zero, but Ek is not strongly semistable in characteristic p =2 or =3
mod 5. For p = 2mod 5 the first Frobenius pullback of Ek is not semistable, and for
p = 3mod 5 the third Frobenius pullback of Ex is not semistable.

Proof. For p = 3mod5 we have ¢ = p> = 2mod5, and for p = 2mod 5

we take ¢ = p. So in both cases we get a situation treated in Corollary 2; hence
Syz(X?, Y2, Z?) is not strongly semistable. |

Remark 3. In the case p = 3mod 5, Corollary 3 shows that the third Frobenius
pullback of the syzygy bundle is not semistable anymore. We show now that already
the first Frobenius pullback is not semistable. Write p = Su + 3 so that 2p =
5Qu+ 1)+ 1(and k = 2u + 1, ¢t = 1 in the notation of Lemma 1). We consider the

syzygies for
X5(2u+1)+l , Y5(2u+1)+1 , (XS + Y5)2u+] )

We multiply the last term by the # + 1 monomials
Xy xy%, xy(x>“=Vyd ... xyx°r).

The resulting polynomials are modulo the first two terms expressible in the monomials
X3iHlySGutl=0+1 wherei < 2uandu+1 < i,sothese are only u many. Hence there
exists a syzygy of these polynomials of degree 5(3u+ 1) +2, and therefore there exists
a global nontrivial syzygy for X27, Y27, Z?P of degree 5(3u + 1) + 3 by Lemma 1.
This contradicts semistability, since 2(5(3u + 1) +3) —=35Qu + 1) + 1) = -2.

For example, for p = 3, we find for X, Y, (X34 Y?) the syzygy (—Y, —X, XY)
of total degree 7, which yields the syzygy (—Y Z, —X Z, XY) for X%, Y%, Z° of total
degree 8 on the Fermat quintic.

Example 1. We consider the bundle Syz(X?, Y2, Z?) on the Fermat quintic for ¢ =
p =7.Then Z'* = 719z% = (X34 1Y>)?Z* and we look for syzygies in K[X, Y] for
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X14 Y14 (X5+Y5)3

We multiply (X + ¥3)3 by the monomials X> and Y. The only monomial in the
products which remains modulo (X 14 Y]4) is X10y10 Therefore, we must have a
nontrivial syzygy of total degree 20, and indeed we have

X0+ 2XY) X + XY + YO Y+ (X0 — V)X + Y =0.
Going back to our original setting on the Fermat curve, we get the syzygy
—(XC2XYHXM 4+ XY + YO Y+ (X° —YHzZzZM =0.

This shows that Syz(X 14 yld4 7 14)(20) has a nontrivial global section, but its degree
is (2-20—3-14) deg(C) = —2deg(C) negative. So Syz(X?2, Y2, Z?) is not strongly
semistable for p = 7. It is easy to see that the syzygy (—X® — 2XY>, +2X°Y +
Yo, (X — Y3)Z) does not have a common zero on the curve; hence we get the short
exact sequence

0— O —> Syz(Xx'™*, Y, 2'"(20) — O(=2) — 0,
which is the Harder—Narasimhan filtration.

Example 2. We consider the example for p = 11, so the remainder mod 5 is 1 and we
cannot expect a syzygy for X%2, Y22, Z?? contradicting the semistability. We have
7?2 = (X7 + Y?)*Z? and we look first for syzygies for X22, Y22, (X° 4+ Y)* We
have (X5 + Y5)4 = X204 4xBy> 4+ 6x10y10 4 4x5y15 4 y20 and multiplication
by X9, X373, Y10 yields modulo (X?2, Y??) the three polynomials

6X20y10_|_4X15yl5+X10Y20
4X20Y10+6X15Y15+4X10Y20,
X20Y10+4X15Y15 +6X10Y20.

The determinant of the corresponding matrix is 50 = 6 mod 11 and so these polyno-
mials are linearly independent.

We look now at syzygies for X%2, Y22, (X° +Y>)3.If we consider only powers of
5, we multiply only by X3 and Y3, which yields modulo (X?2, Y??) the monomials
10X20710 4 10X 15y15 + 5x190720 and 5X207 10 + 10X 5Y1S + 10X 10720, which
are again linearly independent.

Remark 4. For Fermat curves of degree d < 5, the situation is as follows: ford = 1
the restriction of Syz(X?2, Y2, Z?)(3) = Syz(X?, Y%, X? +2XY + Y>)(3)is O @
O, hence (strongly) semistable (characteristic = 2). For d = 2 the restriction of
SyZ(XZ, Y2, ZH2) = SyZ(XZ, Y2, X2 + Y?)(2) has a nontrivial section; hence
Syz(Xz, Y2, Z%)(3) = O(—1) ® O(1), so this is not semistable in any characteristic.
For d = 3 the Fermat equation Z> = X3 + Y3 yields at once a global section
O — Syz(X?, Y2, Z%)(3) without a zero. This shows that the bundle is strongly
semistable, but not stable, independent of the characteristic. For d = 4 we have
shown in [1, Example 7.4] that for char(K) # 2 the restriction is strongly semistable.
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3 Using Sophie Germain primes

Do there exist examples of vector bundles that are semistable in characteristic zero and
where the density of prime numbers for which the bundle is not strongly semistable
is 1 or arbitrarily close to 1? The density of prime numbers might be the analytic (or
Dirichlet) density or the natural density (see [6, Chapitre 5, Sections 4.1 and 4.5]).
Since we will only use the fact that the set of prime numbers p such that p = r mod d,
(r, d coprime), has the density 1/¢(d), we will not say much about this point.

If we want to attack this question with the method of the first section, we need to
know for which and for how many remainders r € Z; there exists a power

reM=1{s:d/3<s <d/2).

Forr = 1 or = —1 mod d, this is not possible; on the other hand, it is always true for
primitive elements if M is not empty. For a remainder » there exists some power inside
M if and only if the (multiplicative) group generated by r intersects M. Therefore,
we only have to count the number of generators of all the subgroups of Z; which
contain an element of M ; hence

#{r € Z) : Je such that r¢ € M} = > @(ord(H)),
HCZ; HNM#)

where ¢ denotes the Euler ¢-function. Good candidates to obtain here a big cardinality
are degrees d of type d = 2h + 1, where both d and h are prime. The numbers # with
this property are called Sophie Germain primes. It is still not known whether there
exist infinitely many such numbers.

Proposition 2. Suppose that h > 5 is a Sophie Germain prime; setd = 2h + 1. Then
the primes for which Syz(X?, Y2, Z?) is not strongly semistable on the curve given
by Z¢ = X + Y have density at least (2h —2)/2h =1 — 1/ h.

Proof. We will show that for every remainder r # 1, —1 mod d there exists a power
such that r¢ € M = {s : d/3 < s < d/2}. The residue class ring Zy; has 2h
units; therefore every element has order 1, 2, 4 or 2h. We only have to show that M
contains primitive remainders as well as nonprimitive remainders. Since then there
exist ¢(2h) + ¢(h) = 2h — 2 remainders such that some power of them belongs
to M.

We first look for nonprimitive remainders. For d > 75 there exists always an
integer n between v/d/v/3 < n < +/d/+/2, since the length of the interval is then
> 1. Thus n? is a square in M and hence nonprimitive. It is also true that there exists
a square in M for the smaller Sophie Germain prime numbers 7 = 5, 11, 23, 29.

Now to find primitive remainders note first that d = 3mod 4. Hence —1 is not
a square in Z . There exist again squares between d/2 and 2d/3 (check directly for
d < 59).1If b is such a square, then —b = d — b is a nonsquare inside M, and so
M contains squares as well as nonsquares (for 4 = 3 mod 4 one can also show by
quadratic reciprocity law that 4~ € M is a nonsquare). O
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Remark 5. If we would know that there exist infinitely many Sophie Germain
primes, then we could conclude that the density of primes for which the bundle
Syz(X?, Y2, Z?) is not strongly semistable on a Fermat curve can be arbitrarily high.
The biggest Sophie Germain prime which I have found in the literature (see [4]) is
h = 2375063906985 - 219380 _ 1. There should be known results in analytic number
theory which imply that the density of primes with nonstrongly semistable behavior
is arbitrarily close to 1.

Example 3. Letd = 11 = 2 -5 + 1. The set M consists only of 4 and 5. We have
22 = 4 and 4> = Smod 11; hence both numbers are squares and not primitive.
Thus the density of primes p such that Syz(X?, Y2, Z?) is not strongly semistable on
zW = x" 4+ y!! for char K = pis only > 5/11.

Example 4. Letd = 167 = 2-83+ 1. Here we have M = {56, ..., 83}. The numbers
s = 64and s = 81 are squares, hence nonprimitive elements, and 83 is a nonsquare by
Proposition 2. Thus the density of primes p such that Syz(X?, Y2, Z?) is not strongly
semistable on Z'67 = X167 4 Y167 gyer char K = p is > 165/167.

Example 5. We look now at h = 29, so d = 59. We have M = {20, ...,29}. 2 is
a primitive element in Zsg; hence computing 2“, u odd (or by quadratic reciprocity
law), we see that the only primitive remainders in M are 23 and 24. So in this range
we have eight quadratic remainders but only two nonquadratic remainders.

We close with an example of a degree which does not come from a Sophie Germain
prime.

Example 6. Let d = 31, which does not come from a Sophie Germain prime. The
remainders s for which we know that Syz(X24, Y24, Z?7) is not semistable for ¢ =
smodd, are s € M = {l1,...,15}. Which remainders p = r modd have the
property that some power ¢ = p® = r® = s = 11,...,15? The number 3 is a
primitive element modulo 31, and we have 11 = 32312 =319 13 = 311 14 =322,
15 =321, S0 11, 12 and 13 are primitive, 14 generates a subgroup with 15 elements
and 15 generates a subgroup with 10 elements. The number of generators of these
groups are eight, eight, and four, so we have altogether 20 remainders for which some
power fulfills the condition in Corollary 2. So the density of primes p for which £k is
not strongly semistable in characteristic char K = p is at least > 2/3 (the remainders
for which we do not know the answer are 1, 2, 4, 5, 8, 16, 25, 27, 29, 30).

Acknowledgment. 1thank Neil Dummigan (University of Sheffield) for a useful remark con-
cerning Sophie Germain primes.
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Summary. Let ¢ be a non-isotrivial family of Drinfeld A-modules of rank » in generic char-
acteristic with a suitable level structure over a connected smooth algebraic variety X. Suppose
that the endomorphism ring of ¢ is equal to A. Then we show that the closure of the analytic
monodromy group of X in SL, (A{;) is open, where AJ;- denotes the ring of finite adeles of the
quotient field F of A.

From this we deduce two further results: (1) If X is defined over a finitely generated field
extension of F, the image of the arithmetic étale fundamental group of X on the adelic Tate
module of ¢ is open in GL, (A{,). (2) Let ¢ be a Drinfeld A-module of rank r defined over
a finitely generated field extension of F, and suppose that ¢y cannot be defined over a finite
extension of F. Suppose again that the endomorphism ring of v is A. Then the image of the
Galois representation on the adelic Tate module of ¢ is open in GL, (A{,).

Finally, we extend the above results to the case of arbitrary endomorphism rings.

Key words: Drinfeld modules, Drinfeld moduli spaces, Fundamental groups, Galois repre-
sentations

Subject Classifications: 11F80, 11G09, 14D05

1 Analytic monodromy groups

LetIF), be the finite prime field with p elements. Let F be a finitely generated field of
transcendence degree 1 over F,. Let A be the ring of elements of F which are regular
outside a fixed place oo of F. Let M be the fine moduli space over F of Drinfeld
A-modules of rank r with some sufficiently high level structure. This is a smooth
affine scheme of dimension r — 1 over F.
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Let Fs, denote the completion of F at oo, and C the completion of an algebraic
closure of Fi. Then the rigid analytic variety M(%" is a finite disjoint union of spaces
of the form A\, where Q C (]P’(rc_l)a“ is Drinfeld’s upper half-space and A is a
congruence subgroup of SL, (F) commensurable with SL,(A).

Let X¢ be a smooth irreducible locally closed algebraic subvariety of Mc. Then
X' lies in one of the components A\ of M'. Fix an irreducible component E C €2
of the preimage of X¢%'. Then E — X' is an unramified Galois covering whose Galois
group Ag := Stab (E) is a quotient of the analytic fundamental group of X&'

Let ¢ denote the family of Drinfeld modules over X determined by the embed-
ding X¢ C Mc. We assume that dim X¢ > 1. Since M is a fine moduli space, this
means that ¢ is non-isotrivial. It also implies that » > 2. Let n¢ be the generic point
of X¢ and n¢ a geometric point above it. Let @5 denote the pullback of ¢ to nc.

Let A{, denote the ring of finite adeles of F. The main result of this article is the
following:

Theorem 1. In the above situation, if Endj.(¢5.) = A, then the closure of Ag in
SL, (A{,) is an open subgroup of SL, (AJ;).

The proof uses known results on the p-adic Galois representations associated to
Drinfeld modules [Pi97] and on strong approximation [Pi00].
Theorem 1 leaves open the following natural question:

Question. IfEndj. (¢;.) = A, is Ag an arithmetic subgroup of SL, (F)?

Theorem 1 has applications to the analogue of the André—Oort conjecture for
Drinfeld moduli spaces; see [Br]. Consequences for étale monodromy groups and for
Galois representations are explained in Sections 2 and 3. The proof of Theorem 1 will
be given in Sections 4 through 7. Finally, in Section 8 we outline the case of arbitrary
endomorphism rings.

For any variety Y over a field k and any extension field L of k we will abbreviate
Y =Y xi L.

2 Etale monodromy groups

We retain the notation from Section 1. Let k C C be a subfield that is finitely generated
over F, such that X¢ = X xj C for a subvariety X C My. Let K denote the function
field of X and K*°P a separable closure of K. Then 1 := SpecK is the generic point
of X and 7 := SpecK*°P a geometric point above 1. Let k%P be the separable closure
of k in K3¢P. Then we have a short exact sequence of étale fundamental groups

1 — 7 (Xgser, ) —> m1 (X, 7) —> Gal(kK*P/k) — 1.

Let A = [ 1200 Ap denote the profinite completion of A. Recall that A; = F Qa

A and contains A as an open subring. Let ¢, denote the Drinfeld module over K

corresponding to 7. Its adelic Tate module f“((pn) is a free module of rank r over A.
Choose a basis and let
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p: (X, 7) —> GL(A) C GL,(A])

denote the associated monodromy representation. Let ['&°™ C ' C GL,(A) denote
the images of 7 (Xysep, ) C 71(X, 77) under p.

geom

Lemmal.T is the closure of g~ 'Agg in SL,(A) for some element g €

GL, (A]).

Proof. Choose an embedding K% < C and a point & € E above 5. Let A C F”
be the lattice corresponding to the Drinfeld module at &. This is a finitely generated
projective A-module of rank r. The choice of a basis of f”((p,]) yields a composite
embedding

A =T(p)ZA®sA— F @4 A= (ALY,

which is given by left multiplication with some element g € GL, (AJ;). Since the
discrete group A C SL,(F) preserves A, we have g_lAg c SL, (A).

For any nonzero ideal a C A let M (a) denote the moduli space obtained from M
by adjoining a full level a structure. Then 7wy : M (a) — M is an étale Galois covering
with group contained in GL, (A /a), and one of the connected components of M (a)
above the connected component A\ of M&' has the form A(a)\$2 for

A(a) :={6 € A | |g’]8g =id mod aA}.

Let X (a)iser be any connected component of the inverse image 7 1 Xpser) C
M (a)sep. Since k%P is separably closed, the variety X (a)c over C obtained by
base change is again connected. The associated rigid analytic variety X ()¢ is then
also connected (cf. [Lii74, Korollar 3.5]) and therefore a connected component of
na’l (XE). But one of these connected components is (Ag N A(a))\ E, whose Ga-
lois group over X&' = Ag\E is Ag/(Ag N A(a)). This implies that ¢ 'Azg and
71 (Xgser, 1) have the same images in GL,(A/a) = GL, (A/a/i). By taking the in-
verse limit over the ideal a we deduce that the closure of g ! Az g in SL, (A) is ['eeom,
as desired. O

Lemma 2. End s (¢;;) = Endjj (¢5)-

Proof. By construction 5¢ is a geometric point above 1, and ¢y is the pullback of ¢;;.
Any embedding of K5 into the residue field of 7 induces a morphism 7jc — 7.
Thus the assertion follows from the fact that for every Drinfeld module over a field,
any endomorphism defined over any field extension is already defined over a finite
separable extension. O

Theorem 2. In the above situation, suppose that Endser () = A. Then

(a) T°&°™M is an open subgroup of SL, (A';), and
(b) T is an open subgroup of GL, (A{;).
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Proof. By Lemma 2 the assumption implies that Endj. (¢7.) = A. Thus part (a)
follows at once from Theorem 1 and Lemma 1. Part (b) follows from (a) and the
fact that det(T") is open in GL (AJI;). This fact is a consequence of work of Drinfeld
[Dr74, Section 8, Theorem 1] and Hayes [Ha79, Theorem 9.2] on the abelian class
field theory of F, and of Anderson [An86] on the determinant Drinfeld module. Note
that Anderson’s paper only treats the case A = IF,[T]; the general case has been
worked out by van der Heiden [He03, Chapter 4]. Compare also [Pi97, Theorem
1.8]. O

3 Galois groups

Let F and A be as in Section 1. Let K be a finitely generated extension field of F of
arbitrary transcendence degree, and let ¢/ : A — K{t} be a Drinfeld A-module of
rank r over K. Let K5 denote a separable closure of K and

o1 Gal(K*P/K) —> GL,(AL)

the natural representation on the adelic Tate module of ¢. Let I' C GL, (A{,) denote
its image.

Theorem 3. In the above situation, suppose that Endgser () = A and that  cannot
be defined over a finite extension of F inside K5°P. Then T is an open subgroup of
GL, (A]).

Proof. The assertion is invariant under replacing K by a finite extension. We may
therefore assume that ¥ possesses a sufficiently high level structure over K. Then
Y corresponds to a K-valued point on the moduli space M from Section 1. Let
denote the underlying point on the scheme M, and let L C K be its residue field.
Then  is already defined over L, and o factors through the natural homomorphism
Gal(K*P/K) — Gal(L%P/L), where L5 is the separable closure of L in K5P,
Since K is finitely generated over L, the intersection K N L% is finite over L; hence
the image of this homomorphism is open. To prove the theorem we may thus replace
K by L, after which K is the residue field of 7.

The assumption on ¥ implies that even after this reduction, K is not a finite
extension of F. Therefore its transcendence degree over F is > 1. Let k denote
the algebraic closure of F in K. Then n can be viewed as the generic point of a
geometrically irreducible and reduced locally closed algebraic subvariety X C My
of dimension > 1. After shrinking X we may assume that X is smooth. We are then
precisely in the situation of the preceding section, with ¢ = ¢,. The homomorphism
o above is then the composite

Gal(K*P/K) = m1(n, 7)) — m1 (X, i1) & GL, (AL)

with p as in Section 2. It follows that the groups called I' in this section and the last
coincide. The desired openness is now equivalent to Theorem 2 (b). O

Note. The adelic openness for a Drinfeld module ¥ as in Theorem 3, but defined
over a finite extension of F, is conjectured yet still unproved.
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4 p-Adic openness

This section and the next three are devoted to proving Theorem 1. Throughout we
retain the notation from Sections 1 and 2 and the assumptions dimX > 1 and
Endj. (¢5.) = A. In this section we recall a known result on p-adic openness.
For any place p # oo of F let I'y denote the image of I under the projection

GL, (A]) = GL,(Fy).

Theorem 4. Iy, is open in GL, (F).

Proof. By construction I'y, is the image of the monodromy representation
pp: (X, 1) — GL,(Fyp)

on the rational p-adic Tate module of ¢, This is the same as the image of the composite
homomorphism

Gal(K*P/K) = ) (n, 7) — m1(X, 7) 22 GL,(Fy).

Since K is a finitely generated extension of F, and Endgser(¢;) = A by the as-
sumption and Lemma 2, the desired openness is a special case of [Pi97, Theorem
0.1]. O

Next let F,%eom denote the image of I'#*°™ under the projection GL, (A;) —»
GL, (Fp). Note that this is a normal subgroup of I'y. Lemma 1 immediately implies
the following.

Lemma 3. F%eom is the closure of g~'Agg in SL, (Fy) for some element g €

GL, (Fp).

5 Zariski density

Lemma 4. The Zariski closure H of Ag in GL, r is a normal subgroup of GL, F.

Proof. Choose a place p # oo of F. Then by base extension Hp, is the Zariski
closure of Ag in GL; f,. Thus Lemma 3 implies that ¢ 'H F, & 1s the Zariski closure

of F%eom in GL,, Fp- Since I'p normalizes Fﬁeom, it therefore normalizes g_lH Fp 8-
But I', is open in GL, (F},) by Theorem 4 and therefore Zariski dense in GL, g, . Thus
p 18 Op! p) Oy L Fp

GL,, Fy normalizes g_1 H Fy8 and hence H Fp» and the result follows. O
Lemma 5. Ag is infinite.

Proof. Let X, K, k and ¢, be as in Section 2. Then, as M is affine and dim X > 1,
there exists a valuation v of K, corresponding to a point on the boundary of X
not on My, at which ¢, does not have potential good reduction. Denote by I, C
Gal(K 3P/ K k5°P) the inertia group at v. By the criterion of Néron—Ogg—Shafarevich
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[G096, Section 4.10], the image of [, in F%eom is infinite for any place p # oo of F.
In particular, Az is infinite by Lemma 3, as desired.

Alternatively, we may argue as follows. Suppose that Az is finite. Then after
increasing the level structure we may assume that Ag = 1. Then F%eom = 1by
Lemma 3, which means that oy, factors as

w1 (X, ) —> Gal(k**P/k) — GL,(Fp).

After a suitable finite extension of the constant field k we may assume that X possesses
a k-rational point x. Let ¢, denote the Drinfeld module over k corresponding to x.
Via the embedding k C K we may consider it as a Drinfeld module over K and
compare it with ¢,. The factorization above implies that the Galois representations
on the p-adic Tate modules of ¢, and ¢, are isomorphic. By the Tate conjecture (see
[Tag95] or [Tam95]) this implies that there exists an isogeny ¢ — ¢, over K. Its
kernel is finite and therefore defined over some finite extension k’ of k. Thus ¢,, as
a quotient of ¢, by this kernel, is isomorphic to a Drinfeld module defined over '
But the assumption dim X > 1 implies that 7 is not a closed point of Mj; hence ¢,
cannot be defined over a finite extension of k. This is a contradiction. O

Proposition 1. Ag is Zariski dense in SL; F.

Proof. By construction we have H C SL, r, and Lemma 5 implies that H is not
contained in the center of SL, r. From Lemma 4 it now follows that H = SL, r, as
desired. O

The above results may be viewed as analogues of André’s results [An92, The-
orem 1, Proposition 2], comparing the monodromy group of a variation of Hodge
structures with its generic Mumford-Tate group. Our analogue of the former is Az,
and by [Pi97] the latter corresponds to GL,, r. In our situation, however, we do not
need the existence of a special point on X.

6 Fields of coefficients

Let Ag denote thei image of Az in PGL, (F). In this section we show that the field
of coefficients of Az cannot be reduced.

Definition. Let L be a subfield of a field L. We say that a subgroup A C PGL, (L)
lies in a model of PGL, ;, over L, if there exist a linear_algebraic group G over L
and an isomorphism A : G, — PGL, 1, such that A C A1(G1(L1)).

Proposition 2. Az does not lie in a model of PGL, i over a proper subfield of F.

Proof. As before we use an arbitrary auxiliary place p # oo of F. Let ;™" «

f‘p denote the images of Fgeom < I'p in PGL, (F}p). Lemma 3 implies that r %eom is
conjugate to the closure of Ag in PGL, (Fyp). By Proposition 1 it is therefore Zariski
dense in PGL,. . On the other hand Theorem 4 implies that I'y is an open subgroup
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of PGL, (Fy). It therefore does not lie in a model of PGL,, F, OVer a proper subfield
of Fy. Thus f‘ﬁeom is Zariski dense and normal in a subgroup that does not lie in
a model over a proper subfield of Fy, which by [Pi98, Corollary 3.8] implies that
f‘%eom, too, does not lie in a model over a proper subfield of Fy,.

Suppose now that Ag C A (G1(F))) for a subfield F; C F, a linear algebraic
group G over Fj, and an isomorphism A : G, r — PGL, r. Since Ag is Zariski
dense in PGL, , it is in particular infinite. Therefore F| must be infinite. As F is
finitely generated of transcendence degree 1 over [, it follows that F contains a
transcendental element, and so F is a finite extension of Fj. Let p; denote the place
of F below p. Since f’;‘;’eom is the closure of Ag in PGL, (Fy), it is contained in
A1(G1(F1,p,)). The fact that f‘ﬁeom does not lie in a model over a proper subfield
of Fy thus implies that Fy p, = Fy.

But for any proper subfield F g F, we can choose a place p # oo of F above a
place p; of Fi, such that the local field extension F p, C Fy is nontrivial. Thus we
must have F| = F, as desired. O

7 Strong approximation

The remaining ingredient is the following general theorem.

Theorem 5. Forr > 2 let A C SL,(F) be a subgroup that is contained in a congru-
ence subgroup commensurable with SL, (A). Assume that A is Zariski dense in SL,
and that its image A in PGL,(F) does not lie in a model of PGL, r over a proper

subfield of F. Then the closure of A in SL, (AJ;) is open.

Proof. If A is finitely generated, then this is a special case of [Pi00, Theorem 0.2].
That result concerns arbitrary finitely generated Zariski-dense subgroups of G(F)
for arbitrary semisimple algebraic groups G, but it uses the finite generation only to
guarantee that the subgroup is integral at almost all places of F. For A as above the
integrality at all places # oo is already known in advance, so the proof in [Pi00]
covers this case as well.

As an alternative, we will deduce the general case by showing that every suffi-
ciently large finitely generated subgroup A; C A satisfies the same assumptions.
Then the closure of A in SL, (A}};) is open by [Pi00], and so the same follows for A,
as desired.

For the Zariski density of A note first that the trace of the adjoint representation
defines a dominant morphism to the affine line SL, p — AL, g > tr(Ad(g)). Since
A is Zariski dense, this function takes infinitely many values on A. As the field of
constants in F is finite, we may therefore choose an element y € A with tr(Ad(y))
transcendental. Then y has infinite order; hence the Zariski closure H C SL, r of the
abstract subgroup generated by y has positive dimension. Let H° denote its identity
component. Since A is Zariski dense and SL, r is almost simple, the A-conjugates
of H° generate SL, r as an algebraic group. By noetherian induction finitely many



68 Florian Breuer and Richard Pink

conjugates suffice. It follows that finitely many conjugates of y generate a Zariski-
dense subgroup of SL, r. Thus every sufficiently large finitely generated subgroup
A1 C A is Zariski dense.

Consider such A and let A; denote its image in PGL, (F). Consider all triples
(F1, G, A1) consisting of a subfield F; C F, a linear algebraic group G over Fi,
and an isomorphism A1 : G| r —> PGL,; f, such that A1 C A (G1(F))). By [Pi98,
Theorem 3.6] there exists such a triple with 7 minimal, and this F7 is unique, and G
and A are determined up to unique isomorphism. Consider another finitely generated
subgroup A1 C Az C A and let (F>, Hy, A») be the minimal triple associated to it.
Then the uniqueness of (Fi, G, A1) implies that | C F», that G2 = G, F,, and that
A2 coincides with the isomorphism G2 r = G r — PGL, r obtained from 1. In
other words, the minimal model (F;, G, A1) is monotone in Aj.

For any increasing sequence of Zariski-dense finitely generated subgroups of
A, we thus obtain an increasing sequence of subfields of F. This sequence must
become constant, say equal to F; C F, and the associated model of PGL, r over
F1 is the same up to isomorphism from that point onwards. Thus we have a triple
(F1, G1, A1) with Ay C A1 (G1(F))) for every sufficiently large finitely generated
subgroup A; C A. But then we also have A C A1(G1(F})), which by assumption
implies that F1 = F. Thus every sufficiently large finitely generated subgroup of A
satisfies the same assumptions as A, as desired. O

Proof of Theorem 1. In the situation of Theorem 1 we automatically have r > 2, so
the assertion follows by combining Propositions 1 and 2 with Theorem 5 for Ag. O

8 Arbitrary endomorphism rings

Set E := End;. (¢5.), which is a finite integral ring extension of A. Write r = ' -
[E/ A]; then the centralizer of E in GL, (AJ;) is isomorphic to GL, (E®AA{¢). Lemma
2 implies that all elements of E are defined over some fixed finite extension of K

This means that an open subgroup of p (1 (X, 1)) is contained in GL,/(E ®4 AL )
Thus by Lemma 1 the same holds for a subgroup of finite index of Az. The followmg
results can be deduced easily from Theorems 1, 2, and 3, using the same arguments
as in [Pi97, end of §2].

Theorem 6. In the situation of before Theorem 1, for E := Endj (¢j.) arbitrary,
the closure in GL, (A F) of some subgroup of finite index of Ag is an open subgroup
of SLy/(E ®4 A 7

Theorem 7. In the situation of before Theorem 2, for E := End gser (@) arbitrary,
(a) some open subgroup of T'8e°™
SL/(E ®4 A;), and

(b) some open subgroup of T := p(m1(X, 1)) is an open subgroup of GL,/ (E ® 4 A;).

= p(w(Xgsep, ) is an open subgroup of
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Theorem 8. In the situation of before Theorem 3, for E := Endgser (V) arbitrary,
suppose that r cannot be defined over a finite extension of F inside KP. Then some

open subgroup of T .= o (Gal(K*®P/K)) is an open subgroup of GL,/(E ® A;).
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1 Introduction

For a polynomial f(T) € Z[T], the frequency with which the values f (n) are prime
has been considered since at least the eighteenth century. Euler observed, in a letter to
Goldbach in 1752, that the sequence n?+1has many prime values for 1 <n < 1500.
Legendre assumed an arithmetic progression an+b with (a, b) = 1 contains infinitely
many primes in his work on the quadratic reciprocity law. There is also the old question
of twin prime pairs n and n + 2, but we will focus here only on a single polynomial
(in one variable).
An asymptotic estimate for

mpx):=|{1 <n <x: f(n)is prime}| (L.1)

as x — 0o amounts to a higher-degree generalization of the prime number theorem
and Dirichlet’s theorem. Conjectural estimates for 7 ¢ (x) have been around since the
work of Hardy and Littlewood in the early twentieth century, and this will be recalled
later.

Hardy and Littlewood did not pursue a characteristic p version of this topic, but
the framework is simple to set up. Let «[«] be the polynomial ring in one variable
over a finite field k. Given f(T) = f(u, T) in k[u][T], how often is f(g) irreducible
in k[u] as g runs over «[u]? We will see that it is trivial to translate Hardy and Lit-
tlewood’s conjectural estimate for (1.1) into the setting of «[u], but a completely
unexpected development will unfold: the Hardy-Littlewood conjecture in character-
istic p is not always true! This discovery leads to new nontrivial theorems concerning
polynomials over finite fields, and with these results the Hardy—Littlewood conjec-
ture in characteristic p can be corrected. Moreover, the new understanding we gain
in characteristic p leads to an interesting family of elliptic curves over « (u).

2 The classical situation

Given a nonconstant f(T) € Z[T], there are two necessary conditions that f must
satisfy in order for f(n) to be prime infinitely often:
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(1) f(T) is irreducible in Q[T].
(2) No prime p divides f(n) for every n € Z. (That is, for no p is the function
f:Z — 7Z/(p) identically 0.)

The need for (1) is obvious. The role of (2) was first noticed by Bouniakowsky in
1854; it excludes examples (such as 7% — T + 2) that are irreducible as polynomials
yet have all values on Z containing a common prime factor (such as 2). We allow
negative primes, so we do not require f to have a positive leading coefficient. Whereas
(2) implies that f(T) is primitive (i.e., its coefficients have no common factor), (2)
is a strictly stronger condition than primitivity. We call (1) and (2) the Bouniakowsky
conditions, and we consider the failure of (2) to be a local obstruction to the growth of
7 ¢ (x). Condition (2) is equivalent to there being at least one pair of relatively prime
values f(m) and f(n) for m # n, and this is how (2) is checked in practice.

Conjecture 2.1 (Bouniakowsky). For nonconstant f(7T) € Z[T], f(n) is prime for
infinitely many n € Z if and only if conditions (1) and (2) hold.

Bouniakowsky’s conjecture is known for f of degree 1, but no instance of it has
been established when deg f > 1.

The Hardy-Littlewood conjecture (also called the Bateman—Horn conjecture)
makes the Bouniakowsky conjecture quantitative.

Conjecture 2.2 (Hardy-Littlewood). If f(T) € Z|T] satisfies both (1) and (2), then

Lo x
log|f(n)|  deg flogx’

T ~CNHY

n<x

where C(f) = I—[p(l —wy(p)/p)/(1 —1/p) and ws(p) is the number of solutions
to f(n) =0in Z/(p).

Remark 2.3. When f is irreducible, C(f) = 0 if and only if one of its factors is 0,
which is exactly when condition (2) fails. Assuming (1) and (2), the product C(f)
converges, although only conditionally when deg f > 1. Rapidly convergent for-
mulas for the Hardy—Littlewood constant C ( f) can be obtained from L-functions by

writing w ¢ (p) in terms of character values on a Frobenius element at p in the splitting
field of f over Q.

3 The characteristic p (non)analogue

Let k be a finite field. We consider polynomials f(T) = f(u, T) in k[u][T] that have
positive T-degree. Let

wr(n) = |{g € k[u] : deg g = n, f(g) is irreducible in « [u]}|.

(One might consider a count over deg g < n, rather than over deg g = n, to be
more analogous to the classical setting. If so, two points are worth noting: (i) the
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number of g with degree n grows exponentially with n, so sampling by degree is
substantive, and (ii) the new phenomenon we will see later is essentially impossible
to describe if we count by deg g < n.)

In order for f(g) to be irreducible infinitely often in « [¢], the appropriate Bounia-
kowsky conditions must hold:

(1) f(T) isirreducible in « (u)[T].
(2) There are no local obstructions: No irreducible 7 in «[u] divides f(g) for every
g € k[u].

The following conjecture is the obvious analogue of Conjecture 2.2. We call it
the Naive Conjecture. In many cases it fits numerical data well, but there are cases
where the conjecture is wrong, so the “Naive” label is important.

Conjecture 3.1. Let « have size g. When f(T) € «[u][T] satisfies conditions (1)
and (2),

? 1 C(f) (g—1q"
7 (n) C(f)deg%:_n TR

asn — oo, where C(f) = I—[(n)(l —wy(w)/Nm)/(1—1/Nm), wy () is the number
of solutions to f = 0in k[u]/(x), and N = |k[u]/(7)| = g9e&™.

Remark 3.2. The convergence of C(f) is proved just as in the classical case, and in
particular depends on condition (2). Analogies between number fields and function
fields suggest replacing deg f(g) in the denominator with

logN(f(g)) = (logg)(deg f(g)).

Then C(f) should be replaced with (log ¢)C(f) to maintain the same overall val-
ues on the right side. From the viewpoint of base-change properties, the product
(log g)C(f) is in fact a better k [1]-analogue of the classical Hardy—Littlewood con-
stant than C(f), and it is this product with log g which goes under the label C(f)
in [1].

When deg; f = 1, the Naive Conjecture is a theorem (an analogue of Dirich-
let’s theorem) and has been known for a long time. No case has been proved when
degy f > 1.

Numerical data when degy f > 1, at first, present evidence in favor of the Naive
Conjecture. But then we meet examples like those in the four tables below, which
suggest the Naive Conjecture is not true in general. (In each table, the choice of f(T)
and « is indicated along the top. The irreducibility of f over « () is left to the reader
to check. Since f(0) and f (1) are relatively prime in « [#], the second Bouniakowsky
condition is satisfied.)

In the headings of the tables, “Naive Est.” means the expression just to the right
of the ~7 in Conjecture 3.1, and “Ratio”” means the ratio of the two sides of the ~1
which should be tending to 1 if the Naive Conjecture is true. The ratios do not seem
to be tending to 1 according to the data in the tables. In Table 1, the ratios seem to
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tend to 2 for odd n and equal O for even . In Table 2, the ratios seem to be tending
to the periodic values 1,2,1,0. In Table 3, the ratios appear to be tending to a number
~ 1.33. In Table 4, it looks like 7 s (n) = 0 for n > 0. (Clearly 7/ (0) = 5.)

Table 1. T# + u over Fou]

n 7 ¢(n) Naive Est. Ratio

9 24 142 1.690
10 0 256 O
11 92 465 1978
12 0 83 0
13 336 1575 2.133
14 0 2926 O
15 1076 546.1 1.970
16 0 10240 0

Table 2. T3 + u over F3lu]

nmw f(n) Naive Est. Ratio

9 1404 1458.0 0.963
10 7776 3936.6 1.975
11 10746 10736.2 1.001
12 0 295245 0

13 82140 81760.2 1.005
14 455256 227760.4 1.999
15 637440 637729.2 1.000
16 017936134 0

Table 3. T!2 + (u + l)T6 + u* over F3[u]

n my¢(n) Naive Est. Ratio

9 1624 1168.3 1.390
10 4228 31545 1.340
11 11248 86032 1.307
12 31202 23658.7 1.319
13 87114 65516.5 1.330
14 244246 182510.2 1.338
15 683408 511028.6 1.337
16 1914254 1437268.0 1.332
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Table 4. T'0 + 4 over Fs[u]

n wg(n) Naive Est. Ratio

1 0 4.0 0
2 0 10.0 0
3.0 333 0
4 0 125.0 0
5 0 500.0 0
6 0 2083.3 0
7 0 8928.6 0
8§ 0 12686.5 0
9 0 173611.1 0
10 0 781250.0 0
11 0 3551136.4 0
12 0 16276041.7 0O
13 0 751201923 0
14 0 3487723214 O
15 0 1627604166.7 O
16 0 76293945313 O

Unlike the classical case over Z, the Bouniakowsky conditions (1) and (2) over
k [u] are apparently not sufficient to guarantee that f(7) takes infinitely many ir-
reducible values in «[u]. In fact, the Bouniakowsky conditions over «[u] are not
sufficient to guarantee that f(7) takes any irreducible values. For an example in
any «[u][T], let f(T) = T% + u24-1 where q is the size of k. This polynomial is
irreducible in « (u)[T] and f(0) and f (1) are relatively prime, so the Bouniakowsky
conditions are satisfied. However, it can be proved that f(g) is reducible for every
g € k[u]. (We will see a proof in Example 4.3.) This example in the case ¢ = 2 was
found by Swan [7] over 40 years ago, but in a different context. It seems that nobody
noticed the connection to a failure of the Hardy—Littlewood conjecture (and even the
Bouniakowsky conjecture) in characteristic p.

Our explanation for the unexpected examples in the tables (and others that are not
given here, including polynomials f(7") which are not monic in 7') is a new global
obstruction that has no known counterpart in characteristic 0. This is the topic of the
next section.

4 Mobius fluctuations

We have found many examples that appear to deviate from the Naive Conjecture.
These examples have two common properties:

(a) f(T) is apolynomial in k[u][T?], where p is the characteristic of «.
(b) The sequence of ratios has interlaced limiting trends for n >> 0, which fall into
a cycle of one, two, or four limits. (See, respectively, Tables 3, 1, and 2.)

Not all polynomials in «[u][T?] disagree (numerically) with the Naive Conjec-
ture. For instance, T? +u? over F3[u], Fs[u], F7[u], and Fo[u] appears to fit the Naive
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Conjecture. We expect that the Naive Conjecture is correct if f(T) ¢ «[u][T?], but
we have not proved anything in that direction.

A closer examination of the data behind the four tables in the previous section
reveals a more subtle third common property:

(c") There is a Mobius bias: the nonzero values of w(f(g)), where u is the Mobius
function on «[u], are not =1 equally often.

The Mobius function on k[u] is defined by analogy with its classical counterpart:
it vanishes on polynomials with a multiple irreducible factor and is &1 on square-
free polynomials in accordance with the parity of the number of (monic) irreducible
factors.

Let us explain the meaning of (¢’) through our four examples. In Table 1, we found
numerically that 1 ( f(g)) = u(g* + u) is —1 when deg g is odd and is 1 when deg g
is positive and even. In particular, if such a pattern persists, g* 4+ u must be reducible
when deg g is positive and even since the Md&bius value is not —1. In Table 2, we
found numerically that (g3 + u) is £1 equally often in each odd degree, while
w(g® +u) = —1 for degg = 2 mod 4 and w(g® +u) = 1 for deg g = 0 mod 4.
In Table 3, we found numerically that ©(f(g)) is —1 twice as often as it is 1 when
sampling over g with a fixed degree > 2. (While u(f(g)) can also vanish, the point
is the apparent bias among nonzero values.) In Table 4, we found numerically that
n(f(g)) = 1 when degg > 0. We can prove these numerically observed Mobius
patterns are true in all degrees, as special cases of Theorem 4.4.

That biases in irreducibility statistics of f(g) are linked to biases in nonzero
values of w(f(g)) was our basic numerical discovery, but this link is a bit more
subtle than the data so far suggest. Consider Table 5, where the ratio of irreducibility
counts to the estimate coming from the Naive Conjecture seems to be approaching
the limiting values 0, 1, 2, 1. In particular, the Naive Conjecture looks good in even
degrees. Consistent with this, computations suggest ;(f(g)) is equally often £1 in
even degrees. (As before, Mobius value 0 is not taken into account.) However, though
the Naive Conjecture looks bad in odd degrees (bad in different ways depending on
the degree modulo 4), it appears from computations that 1 ( f (g)) is still equally often
=+1 in odd degrees. It turns out that property (c’) has to be amended (which is why it
is called (¢") and not (c)). This will be treated later.

In both Z and «[u], the definition of the Mobius function is useless for effective
computations. But unlike the case over Z, there is another formula for the Mobius
function in k[u], and this does not require factoring.

Lemma 4.1. When « is a finite field with odd characteristic and h € k[u] is nonzero,
() = (=1)%e" x (disc, h). .1

Here yx is the quadratic character on k™, with x (0) = 0, and disc, h is the discrimi-
nant of h.

Proof. If h has a multiple irreducible factor, then the result is obvious since both
sides vanish. Assume / is separable. Both sides are multiplicative functions of 4,
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Table 5. T2 + Qu? + u)TO + Qu + 2)T3 + u? + 2u + 1 over F3[u]

n m¢(n) Naive Est. Ratio
f

5 0 11.0 O

6 28 274 1.022
7 146 705 2.071
8 173 185.1 0.935
9 0 4936 0

10 1345 1332.8 1.009
11 7348 36349 2.022
12 10138 9996.1 1.014
13 0 276814 0

14 77288 77112.5 1.002
15 432417 215915.0 2.003

so it suffices to check the case when & =  is irreducible. Now (4.1) is equivalent
to x (disc, ) = (—1)987~1 which is easily checked using Galois theory of finite
fields: the Frobenius over k acts as a cycle of length deg 7 on the roots of . O

When « has characteristic 2, there is a Mobius formula due to Swan [7], in terms
of a characteristic O lifting of «[u] to W («x)[u], where W (k) is the Witt vectors of k.
We omit this formula. The special case when « = [F, was described by Stickelberger
at the first International Congress of Mathematicians in 1897 using a lift to Z[u] rather
than a lift to Z,[u].

Remark 4.2. When k = F), for p # 2 and h is squarefree in F,[u], (4.1) can be
rewritten as (%) = (—=1)"7", where n = degh and & has r distinct irreducible
factors in IF,[u]. This goes back to Pellet (1878) and is related to Stickelberger’s
formula (£) = (—1)""", where A is the discriminant of a number field of degree n
in which p is unramified with r prime ideal factors.

Example 4.3. Let g be the size of k and f(T) = T* + u??~!. For g € «[u], clearly
f(g) isreducible when g(0) = 0; in fact, u(f(g)) = 0. When ¢ is odd and g(0) # 0,
a calculation using (4.1) shows u(f(g)) = 1. When g is even and g(0) # 0, it can
also be shown that u(f(g)) = 1. Since u(f(g)) is never —1, we see that f(g) is
reducible for every g € «[u]. This is an example where the Bouniakowsky conditions
hold but no irreducible values occur.

By a substantial extension of Swan’s ideas in [7], and motivated by our numerical
data, we proved the surprising fact that (/' (g)) is essentially a periodic function of
g if f(T) € k[u][T] is a polynomial in T” when p # 2 or is a polynomial in T4
when p = 2. (When p = 2, the case of polynomials in 7 which are not polynomials
in 7% still has not been completely understood.)

Theorem 4.4 ([1]). Let k be afinite field with characteristic p. Let f (T) be squarefree
in k[u][T] with positive T-degree. Assume, moreover, that f(T) is a polynomial in
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TP when p # 2 and is a polynomial in T* when p = 2. When p # 2, let x be the
quadratic character on k.

There is a nonzero M = My, in k[u] such that for g = cu™ + --- and
g2 = cou™ + - - - in k[u] with sufficiently large degrees n and nj,

gir=gmod M, ny=nymod4, x(c1)= x(c2) = u(f(g1) = n(f(g2)
when p # 2 and

gr=gmod M,  np=nymod4= u(f(g)) =n(f(g2))
when p = 2.

Proof (sketch). Very briefly, the proof of Theorem 4.4 requires a careful study of
resultants.

According to (4.1), (f(g)) depends on the discriminant of f(g) when p # 2.
The discriminant of f(g) can be expressed in terms of the resultant of f(g) and
(d/du)(f(g)) = (df/0u)(g). (This derivative calculation indicates why f(T) =
f(u, T) being a polynomial in «[u, T?] is useful in the proof.) In order to exploit
inductive arguments, we replace the study of the resultant R(f(g), (3f/du)(g)) with
R(f1(g), f>(g)), where f1 and f; are fairly general polynomials in « [u, T']. There are
properties of resultants which resemble the properties of greatest common divisors,
and this suggests a method for computing R( f1(g), f2(g)) by a procedure analogous
to the Euclidean algorithm. However, a moment’s thought about the difference be-
tween, say, R(u”?+1, u? +u+1) and R(ug?+ (u+1)g+1, g* +u’g +u) for varying
g in k [u] indicates why a proof that R,[,1(f1(g), f2(g)) has a periodic structure in g
does not follow right away from any kind of basic elementary property of resultants
for one-variable polynomials.

To correctly handle the varying polynomial g, we view the resultant of fi(g)
and f>(g) as an algebraic function of g. This requires a combination of polynomial
algebra and algebraic geometry, and is the main content of [1]. We study the ge-
ometry of the zero-scheme of R(f1(g), f>(g)) on the space of polynomials g with
a fixed degree in order to get a formula for this resultant function in terms of the
geometry of the intersections of the plane curves f; = 0 and f, = 0. (Recall f;
and f> are in k[u][T] = k[u, T].) This geometric formula for the resultant has the
asserted periodicity by inspection. (The case of characteristic 2 has its own set of
complications.)

The mod 4 congruence in the conclusion of the theorem has a simple explanation.
It is essentially due to the fact that the discriminant of a polynomial of degree n picks
up a sign of (—1)"*~1/2 when written in terms of a resultant, and this sign depends
on n mod 4. O

Remark 4.5. The Bouniakowsky conditions (1) and (2) are irrelevant for f(7T) in
Theorem 4.4. In particular, the hypotheses on f(7") in Theorem 4.4 are preserved
when « is replaced by a finite extension, but the first Bouniakowsky condition does
not have to remain true under a finite extension of « (for the same f).

The following two examples illustrate Theorem 4.4.
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Example 4.6. For f(T) as in Table 1 and g € Fy[u] with degg > 1, u(f(g)) =
(—1)de¢¢ Here M = 1 and the mod 4 condition in the characteristic 2 case of
Theorem 4.4 can be relaxed to a mod 2 condition.

Example 4.7. For f(T) asinTable 5, and g(u) = cu” + - - - in F3[u] with n > 2, the
proof of Theorem 4.4 leads to the formula

n+l 1)2 H+2 2
n(r(e) = oo () (SEEERED) (5)

where (3) is a Legendre symbol. All of the conditions from Theorem 4.4 are seen in
4.2): M = (u — 1)(u — 2), there is a mod 4 dependence on n = deg g, and there is
a quadratic dependence on the leading coefficient ¢ of g.

Furthermore, (4.2) lets us prove u(f(g)) takes values 1 and —1 equally often in
every degree. This means that the deviations from the Naive Conjecture in Table 5, in
odd degrees, are apparently not “explained’ by the distribution of nonzero values of
w(f(g))in odd degrees. But a closer look at (4.2) reveals something peculiar in odd
degrees: whendeg g = 1 mod 4, u(f(g)) is —1 only when f(g) is divisible by u — 1
or u — 2. Therefore f(g) will not be irreducible even in the case that u(f(g)) = —1.
Similarly, when deg g = 3 mod 4, (£ (g)) is 1 only when f(g) is divisible by u — 1
or u — 2. In short, if u(f(g)) is nonzero and deg g is odd, the sign of u(f(g)) is
fixed when (f(g), M) = 1, where M = (u — 1)(u — 2) is the “modulus’ from (4.2).
Classically, one would not expect a nonconstant f(7") € Z[T] to have the long-range
statistics on u( f(n)) be affected by a local constraint of the form (f (n), m) = 1 for
some m € Z. But this can happen in characteristic p.

We now revise the incorrect property (c¢’) from the start of this section, by using
M, from Theorem 4.4:

(c) There is a Mobius bias: the nonzero values of w(f(g)) are not =1 equally often
when (f(g), M) = 1.

The idea in (c) will be used later to correct the Naive Conjecture.

Although Theorem 4.4 does not pin down a unique choice of My, it turns out
that all possible choices of M y,, are multiples of a choice with least degree. Therefore
the choice of My, with least degree and leading coefficient 1 could be considered
a “canonical” selection. However, it is important for the proof of the full version
of Theorem 4.4, as stated in [1], that we can always choose M, in a geometric
manner, which is not always a choice with least degree. We describe this geometric
construction in characteristic # 2 for simplicity, first in a special case and then in
general:

*  When f(T) is monic as a polynomial in T', My, is the radical of the resultant of
f and 9f/0u as polynomials in 7.

* In the general case, when f(T') is not necessarily monic in 7', view f as a poly-
nomial in the two variables u and T', and let Z ¢ be the zero locus of f in Az.
The projection Zy — A}( onto the T'-axis has a finite nonétale locus on Z ¢, and
its projection onto the u-axis is a finite set. Let M, be the separable (monic)
polynomial in «[«] having this subset of the u-axis as its zero locus.
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Example 4.8. For f(T) as in Example 4.7, the resultant of f and df/du as polyno-
mials in 7 is —(u — 1)®(u — 2)°, whose radical is (u — 1)(u — 2). This agrees with
the “modulus” for w(f(g)) according to (4.2).

Definition 4.9. For f as in Theorem 4.4 and satisfying the second Bouniakowsky
condition, define

D deg g=n.(f (). M, 0)=1 (S (&)

Ne(fin) =1~ '
Zdegg=n,(f(g),Mf_K):1 [ (f (@)l

(4.3)

The denominator sum in (4.3) is the number of g with degree n such that f(g)
is squarefree and relatively prime to My,. By work of Poonen [5] on squarefree
values and relatively prime values of polynomials, this denominator is positive for
n > 0. Clearly 0 < A, (f;n) < 2. While there is not a unique choice for M, in
Theorem 4.4, the choice used in (4.3) has no impact on the long-range behavior of
Ay (f; n): two different choices of M ¢, from Theorem 4.4 provably give sequences
in (4.3) that agree for n > 0 (depending on f and « and the choice of the Ms).

Corollary 4.10 ([1]). Let f(T) satisfy the hypotheses of Theorem 4.4 and the second
Bouniakowsky condition. Forn >> 0, A (f; n) is periodic in n with period 1, 2, or 4.

Proof (sketch). This follows from a careful evaluation of the formula for u(f(g))
which is established in the proof of Theorem 4.4 (taking separately p # 2 and p = 2).
It turns out that A, (f; n) depends on n mod 4, so its minimal period as a function of
nisl,?2,or4. O

The periodicity in Corollary 4.10 shows A, (f; n) is a much simpler function
of n than its definition suggests! In any particular example, we can use the proof
of Theorem 4.4 to compute the periodic part of the sequence A, (f;n). As Table 6
shows, when f(T) is one of the polynomials from the previous tables, the periodic
part of the sequence A, (f; n) appears to fit the deviations from the Naive Conjecture
for 7 (n).

Table 6. Examples of A, (f; n)

Table for f(T) Mg, Periodic Part of A, (f; n)

Table 1 1 2,0forn >1
Table 2 1 1,2,1,0forn > 1
Table 3 u(u—1) 4/3 forn > 2
Table 4 1 Oforn >1

Table 5 u—-—1Hu-2) 0,1,2,1 forn > 1

We believe the following are correct x [u]-analogues of the conjectures of Bounia-
kowsky and Hardy-Littlewood over Z.
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Conjecture 4.11 ([1]). Let « have characteristic p # 2, and let f € «[u][T] have
positive degree in 7. Then f(g) is irreducible for infinitely many g in «[u] if and
only if the following conditions hold:

(1) f(T) is irreducible in « (u)[T].

(2) No irreducible 7 in «[u] divides f(g) for every g € k[u].

3) f(T) ¢ «[u][TP],orif f(T) € k[u][T?], then the periodic part of the sequence
A (f; n) is not identically 0.

As in the classical case, the second condition in this conjecture is checked in
practice by finding a pair of relatively prime values f(g;) and f(g2). The third
condition can also be checked in practice. When « has characteristic 2, we believe
Conjecture 4.11 is correct if f(T) ¢ «[u][T?] or if f(T) e k[u][T*]. The case of
polynomials in 72 that are not polynomials in 7# still needs further study.

Here is a quantitative refinement of Conjecture 4.11, incorporating part of the
characteristic 2 case.

Conjecture 4.12 ([1]). Let f € k[u][T] satisfy the two Bouniakowsky conditions.
Let p = char(x). If f(T) ¢ «[u][T"], then the asymptotic relation in the Naive
Conjecture is true. If f(7) is a polynomial in 77 when p # 2 or f(T) is a polynomial
in 7% when p = 2, then

C(f) (q—1q"

mp(n) ~ Ae(f: n)degT 7 n “4.4)

asn — oQ.

As in Theorem 4.4, we do not yet have a complete formulation of Conjecture 4.12
in characteristic 2, since the behavior of polynomials in 72 that are not in 7% is still
not adequately understood.

The periodicity of A, (f;n) is essential for a proper understanding of (4.4).
When 0 is in the period of A.(f;n), the meaning of (4.4) is that w¢(n) equals O
for those (large) periodic n where A, (f;n) = 0. In fact, it is easy to prove this:
if Ac(f;n) = 0, then for all g of degree n we have either (f(g), M) # 1 or
n(f(g)) € {0, 1}. Thus, for n > 0 (depending on M), the vanishing of A, (f; n)
implies 7 ¢ (n) = 0. In this way, by making the condition “n >> 0” effective in specific
examples, we can prove the 0 patterns in Tables 1, 2, 4, and 5 continue for all larger n.
We have not proved a relation between Mdbius statistics and irreducibility statistics
for those periodic (large) n where A, (f; n) # 0, but the data in these cases agree
very well with (4.4).

We said at the start of this section that some polynomials in 77 appear to fit the
Naive Conjecture numerically, such as 77 + u? over F3[ul, Fs[ul, F7[u], and Fo[u].
If the Naive Conjecture and (4.4) are going to be compatible, then any polynomial
in T? (for p # 2) that satisfies the Bouniakowsky conditions and agrees with the
Naive Conjecture must have A, (f; n) = 1 for all large n. This conclusion has been
confirmed in several examples of polynomials in 77 (for p # 2) where the Naive
Conjecture appears to look good, e.g., we can prove A, (T” 4+ u?;n) = 1forn > 1
and « any finite field of characteristic p # 2.
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The ring « [u] corresponds to the affine line over x. Theorem 4.4 can be extended to
the coordinate ring of any smooth affine curve over x whose smooth compactification
has only one geometric point “co’” at infinity. The substitute for the sampling condition
“deg g = n”is “ord(g) = —n.” From this point of view, Theorem 4.4 corresponds
to genus zero. The proof of the higher-genus generalization uses the work in genus
zero as input, and requires additional arguments of a much more elaborate geometric
character. Numerical aspects of this work are still in progress.

S An application to elliptic curves

Having found a Mobius periodicity that is a global obstruction to the Naive Conjecture
in characteristic p, we ask: why does no analogous obstruction arise over Z? The
belief in the classical Hardy—Littlewood conjecture suggests that the Z-analogue of
the new characteristic p correction factor in (4.3) is 1. This suggests the following: if
f(T) € Z[T]is anonconstant (irreducible) polynomial taking at least one squarefree
value, then

S i @)
> e (F )]

as n — o0o. The denominator of (5.1) is the number of squarefree values f(n) for
n < x. Granting the abc-conjecture, work of Granville [3] shows the denominator of
(5.1) is proportional to x, so (5.1) should be equivalent to

D n<x (S (1))
= >0

X

6D

(5.2)

(The equivalence of (5.1) and (5.2) is unconditional when deg f < 3; the abc-
conjecture is used for deg f > 3.) When f(T) = T, (5.2) is equivalent to the prime
number theorem. For other f of degree 1, (5.2) is equivalent to Dirichlet’s theorem [6].
No other case of (5.2) has been proved. Numerical evidence for (5.2) whendeg f > 1
looks reasonable. An example in degree 3 is provided in Table 7.

Table 7. (5.2) for f(T) = T3 +2T + 1

x LAY, u(f@)

102 .15
103 —.015
104 —.0009
105 .00432
100 .00028

The Ph.D. thesis of H. Helfgott [4] gives a link between a variant on (5.2) and
elliptic curves. Helfgott studies the average root number of an elliptic curve over
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Q(T), which is essentially the average value of the root number of the smooth spe-
cializations at T = ¢ € P!(Q), with ¢ ordered by height. This average lies in [—1, 1]
if it exists. Assuming two conjectures from analytic number theory about values of
polynomials over Z, Helfgott shows that the average root number of any nonisotrivial
elliptic curve over Q(7') exists and lies strictly between —1 and 1. (When the elliptic
curve has at least one place of multiplicative reduction, Helfgott can in fact prove the
average is 0.) One of the two conjectures Helfgott assumes is

1
= Y A(f(m.n) — 0. (5.3)

X
m,n<x

where f(X,Y) € Z[X, Y] is anonconstant nonsquare homogeneous polynomial and
A is the classical Liouville function. (Recall that A(£p) = —1 for prime p and A is
totally multiplicative, e.g., A(12) = —1.) Considering the similarity of the M&bius
and Liouville functions, (5.3) bears a close resemblance to (5.2).

The natural analogue of the conjectural (5.3) for polynomials with coefficients in
Kk [u] rather than Z is false: explicit counterexamples can be constructed from certain
instances of unusual Mdbius statistics in characteristic p. Might this imply that some
of Helfgott’s results over Q(7") are not true over k (1) (T')? Yes. The following theorem
says nonisotrivial elliptic curves over « (#)(T) with average root number 1 do exist
in odd characteristic, with an additional interesting feature.

Theorem 5.1 ([2, Theorem 1.1]). Let « be any finite field with characteristic p # 2.
Forany c,d € k™, the Weierstrass model

Ecar:y> =x> 4+ ((T? +uw)* +du)x*> — (c(T* + w)*’ +du)’x  (5.4)

defines a nonisotrivial elliptic curve over k (u)(T) such that

(a) for every t € Pl (k(u)), the specialization E¢ a.: is an elliptic curve over k(u)
having global root number 1, and for t # oo there is a k (u)-rational point of
infinite order;

(b) the Mordell-Weil group E. 4.1 (k(u)(T)) has rank 1.

The key word in Theorem 5.1 is “nonisotrivial.”” Helfgott’s work strongly suggests
that a nonisotrivial elliptic curve over Q(7') should not have elevated rank. (We say
an elliptic curve over Q(7T) has elevated rank when the rank of all but finitely many
of its specializations to elliptic curves over Q exceeds the rank over Q(7').) Granting
the parity conjecture for elliptic curves over k (1), Theorem 5.1(a) implies the rank
of E. 4+ (k(u)) is positive and even for all ¢ € PI(K(M)) — {00}, so each E. 4,7 is
nonisotrivial and should have elevated rank over « (u)(T).

Proof (sketch). An explicit calculation of the j-invariant of E. 4 7 shows it is non-
isotrivial. (Moreover, j(E¢.q4,7) = j(Es o 1) ifand only ifc = ¢’ andd = d'.)

To verify part (a), the elliptic curve over « (1) obtained by specialization T +— ¢
foranyt € P! (k (u)) has global root number 1 based on an analysis of local reduction
types and a calculation of all the local root numbers. (It is within these local root
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number calculations, which are carried out in detail in [2], that one sees how we
found (5.4) in the first place. This Weierstrass model was not discovered by random
guessing.) We use a function field variant of the Nagell-Lutz criterion to check an
explicit rational point in E. 4,7 (k (u)(T)) has infinite order and retains infinite order
after specialization of T to any € P! (k (1)) — {o0}.

The proof of part (b) amounts to showing E. 4.7 (« (u)(T)) has rank at most 1.
(Part (a) already tells us the rank is at least 1.) The 2-torsion is ((0, 0)) = Z/27Z, so

dimp, (Ec,g,7 (W, T))/2 - Ec.a,7(k(u,T))) =1+,

with r being the rank. We show this dimension is at most 2 by a specialization in the
u-direction rather than the 7'-direction.

Abbreviate E. 4.7 to &. For any closed point ug € ]P’}(, with residue field ko
(varying with ug), consider the natural commutative diagram

Ewu, T2 - Exkw,T)) —> Eww,T))/2-E(u, T))

l l

Euy(k0(T))/2 - Gy (ko(T)) ——> &y (K(T))/2 - &y (kK (T))

where the elliptic curve &, /., (7) is the u-specialization at 1o, and #g € « lies over ug.

The Lang—Néron theorem tells us & (k(u, T)) = & (x (u, T)) when « is replaced
by a suitable finite extension. We make this enlargement of « at the beginning of the
proof of part (b), so we may take the top map to be an isomorphism. The enlargement
of ¥ might depend on the choice of parameters ¢ and d. Since part (a) has already
been checked in full generality (i.e., for all finite constant fields), we may apply it to
the new elliptic curve under consideration.

The proof now falls into two parts. Geometric and ramification-theoretic argu-
ments (applicable not just to &, (,T), but to abelian varieties over function fields of
varieties fibered over P') show that the map along the right column is one-to-one
for all but finitely many ug. An application of the Chebotarev density theorem and a
calculation in étale cohomology show that the map along the bottom side has image
with dimension at most 2 for infinitely many u(. Therefore, by a suitable choice of
up,wegetl+r <2. O

Although Theorem 5.1 does not include characteristic 2, further work should
remove this exception.

It required several months of effort to find the curve in Theorem 5.1 and confirm
all of its properties, but we never would have had the intuition that such an elliptic
curve could exist in characteristic p if the investigation of a function field analogue
of the classical Hardy—Littlewood conjecture had not revealed the peculiarities of
the Mobius function in characteristic p. Thus, while the topic of this paper is a non-
analogy between QQ and «(u), the analogies between these fields provided useful
insights during our work.

Acknowledgments. This paper is a summary of joint work. The results pertaining to the Hardy—
Littlewood conjecture in characteristic p are joint work with B. Conrad and R. Gross [1]. The
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application to elliptic curves is joint work with B. Conrad and H. Helfgott [2]. Full proofs and
other details can be found in the references cited.

I thank the organizers of the conference on the analogy between number fields and function
fields for a stimulating week on Texel Island.
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Introduction

Jacques Tits wondered in [5] if there would exist a “field of one element” [F| such that
for a Chevalley group G one has G (1) = W, the Weyl group of G. Recall the Weyl
group is defined as W = N(T)/Z(T) where T is a maximal torus, N(T) and Z(T)
are the normalizer and the centralizer of T in G. He then showed that one would be
able to define a finite geometry with W as automorphism group.

In this paper we will extend the approach of N. Kurokawa, H. Ochiai, and M.
Wakayama [2] to “absolute Mathematics™ to define schemes over the field of one
element. The basic idea of the approach of [2] is that objects over Z have a notion of
Z-linearity, i.e., additivity, and that the forgetful functor to [F1-objects therefore must
forget about additive structures. A ring R for example is mapped to the multiplicative
monoid (R, x). On the other hand, the theory also requires a “going up” or base
extension functor from objects over [ to objects over Z. Using the analogy of the
finite extensions [F1» as in [4], we are led to define the base extension of a monoid
Aas

A®p, Z:=T[Al,

where Z[A] is the monoidal ring which is defined in the same way as a group ring.
Based on these two constructions, here we lay the foundations of a theory of schemes
over IFy.

1 Rings over [y

In this paper, a ring will always be commutative with unit element. Recall that a
monoid is a set A with an associative composition that has a unit element. Homo-
morphisms of monoids are required to preserve units. In this paper all monoids will
be commutative, so aa’ = @’a for all a, a’ € A. From now on in the rest of the paper
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the word ‘monoid’ will always mean ‘commutative monoid’. For a monoid A we will
write A for the group of invertible elements.

The category of rings over F; is by definition the category of monoids. For a
monoid A we will also write [F4 to emphasize that we view A as a ring over [Fq. Let
F; := {1} be the trivial monoid.

For an F;-ring F 4, we define the base extension to Z by

where Z[A] is the monoidal ring which is defined like a group ring with the monoid
structure of A giving the multiplication.

In the other direction there is the forgetful-functor F* which maps a ring R (com-
mutative with 1) to its multiplicative monoid (R, X).

Theorem 1.1. The functor of base extension - @y, Z is left adjoint to F, i.e., for every
ring R and every F 4 /F1, we have

Homgijngs(Fa ®r, Z, R) = Homg, (Fa, F(R)).

Proof. Let ¢ be aring homomorphism from F4 ®, Z = Z[A] to R. Restricting it to
A yields a monoid morphism from A to (R, x). So we get a map as in the theorem.
Since a ring homomorphism from Z[ A] is uniquely given by the restriction to A, this
map is injective. Since, on the other hand, every monoid morphism from A to (R, x)
extends to a ring homomorphism on Z[A], the claim follows. O

1.1 Localization

For a monoid A write A* for the group of invertible elements. Let S be a submonoid
of A.

Lemma 1.2. There is a monoid S™'A and a monoid homomorphism ¢ from A to
S~LA, determined up to isomorphism with the following property: ¢(S) C (S~1A)*
and ¢ is universal with this property, i.e., for every monoid B, composing with ¢
yields an isomorphism

Homg_, g« (A, B) = Hom(S™'A, B),

where the left-hand side describes the set of all monoid homomorphisms ¢ from A to
B with ¢(S) C B*.

Proof. Uniqueness is clear from the universal property. We show existence. Define
S~!A to be the set A x S modulo the equivalence relation

(m,s)~@m',s") & 3I"eS:s"s'm=s"sm.

The multiplication in S~! A is given by (m, s)(m’, s') = (mm’, ss’). We also write =
for the element [(m, s)] in S™'A. The map ¢: m > T has the desired property. O
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1.2 Ideals and spectra

For two subsets S, T of a monoid A we write ST for the set of all st where s € S
and t € T. An ideal is a subset a such that aA C a. This then implies that Z[a] is an
idealin Z[A]. If ¢ : F4 — Fp is a morphism and a is an ideal of B, then its preimage
¢~ (a) is an ideal of A. For a given subset T of A the set T A is the smallest ideal
containing 7. We call it the ideal generated by T .

An ideal a # A is called prime if xy € a implies x € a or y € a. Equivalently,
an ideal a is prime iff A \ a is a submonoid (compare [1]). We define the spectrum of
[F 4 to be the set Spec F'4 of all prime ideals in A. Note that this set is never empty, as
the set A \ A is always a prime ideal.

If p is a prime ideal, then the set S, = A \ p is a submonoid. We define

Ap=S,"A

to be the localization at p. Note that for the prime ideal c = A \ A* the natural map
A — A, is an isomorphism.

We now introduce a topology on Spec [F4. The closed subsets are the empty set
and all sets of the form

V(a) :={p € SpecF4 : p D a},

where a is any ideal. One checks that V (a) UV (b) = V (aNb), and that ﬂie] V(a) =
V(UU; @;). Thus the axioms of a topology are satisfied. The point n = n4 = 0
is open and contained in every nonempty open set. On the other hand, the point
¢ =cyq = A\ A% is closed and contained in every nonempty closed set.

Lemma 1.3. For every f € A the set
V(f):={p €SpecFa: f €p}
is closed.

Proof. Leta = Af be the ideal generated by f. Then V(f) = V(a). O

2 Schemes over

2.1 The structure sheaf

Let 4 be a ring over 1. On the topological space Spec F4 we define a sheaf of
F-rings as follows. For an open set U C SpecF4 we define O(U) to be the set of
functions, called sections, s: U — ]_[peU Ay such that s(p) € Ay foreachp € U,
and such that s is locally a quotient of elements of A. This means that we require for
each p € U to exist a neighborhood V of p, contained in U, and elements a, f € A
such that for every q € V one has f ¢ g and s(q) = % in Aq.
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Proposition 2.1. (a) For each p € SpecF4 the stalk Oy of the structure sheaf is
isomorphic to the localization Ay.

(b) I'(SpecF4, 0) = A

Proof. For (a) define a morphism ¢ from Oy to Ap, by sending each element (s, Uy)

of Oy to s(p). For the injectivity assume ¢(s) = ¢(s’). On some neighborhood U

of p, we have s(q) = % and s'(q) = ?—/, for some a, d’, f, f/ € A. This implies that

there is f” € A with f” ¢ pand f”f' = f” fa’. Assume U to be small enough to
be contained in the open set

D(f) ={p € SpecFa : f ¢ p}.

Then we conclude that ‘; = holds in A4 for every q € U and hence s = s’. For
the surjectivity let 4 7€ Ap Wlth a, f €A, fé¢p. On U = D(f) define a section
s € OWU)bys(q) = 7 € Aq. Then ¢(s) = s(p) = . Part (a) is proven.

For part (b) note that the natural map A — Alg for p € SpecF,4 induces a
map ¥: A — ['(SpecF 4, O). We want to show that this map is bijective. For the
injectivity assume ¥ (a) = v (a’). Then, in particular, these sections must coincide
on the closed point which implies @ = a’. For the surjectivity let s be a global section
of O. For the closed point ¢, we get an element of A by a = s(c) € Ac = A. We
claim that s = ¥ (a). Since c is contained in every nonempty closed set, its only open
neighborhood is Spec IF 4 itself. Since s(c) = a we must have s(p) = a on some
neighborhood of ¢, hence we have it on Spec Fy4, so s = ¥ (a). O

2.2 Monoidal spaces

A monoidal space is a topological space X together with a sheaf Ox of monoids. A
morphism of monoidal spaces (X, Ox) — (Y, Oy) is a pair (f, f*), where f is a
continuous map f: X — Y and f* is a morphism of sheaves f*: Oy — f.Ox of
monoids on Y. Such a morphism (f, f¥) is called local, if for each x € X the induced
morphism f : Oy, rr) — Ox  satisfies

(fH™ (O)X(,x) O f
A isomorphism of monoidal spaces is a morphism with a two-sided inverse. An iso-
morphism is always local.

Proposition 2.2. (a) For a ring F4 over F| the pair (SpecF 4, O4) is a monoidal
space.
) If o: A — B is a morphism of monoids, then ¢ induces a morphism of monoidal
spaces
f, f#): SpecFp — SpecFy,

thus giving a functorial bijection
Hom(A, B) = Hom(SpecFp, SpecFy),

where on the right-hand side one only admits local morphisms.
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Proof. Part (a) is clear. For (b) suppose we are given a morphism ¢ : A — B. Define
amap f: SpecFp — SpecF, that maps p to the prime ideal f(p) = ¢! (p). For
an ideal a we have f~1(V(a)) = V(¢(a)), where ¢(a) is the ideal generated by
the image ¢(a). Thus the map f is continuous. For every p € Spec Fp we localize
@ to get a morphism ¢ : A -1, — Bp. Since ¢y is the localization, it satisfies

ga;l (B‘;() =A For any open set U C SpecF4 we obtain a morphism

;*1(19)‘
1 04WU) - 0p(f~1(W))

by the definition of O, composing with the maps f and ¢. This gives a local morphism
of local monoidal spaces (f, f*). We have constructed a map

¥ : Hom(A, B) — Hom(SpecFp, SpecF4).

We have to show that ¥ is bijective. For injectivity suppose ¥ (¢) = ¥ (¢').
For p € SpecF4 the morphism f;*: Oa,rpy — Op,p is the natural localization
@: Ag-1(py — Bp and this coincides with the localization of ¢'. In particular, for
p = c the closed point, we get o = ¢’: A — B.

For surjectivity let (f, f#) be a morphism from Spec F to Spec F4. On global
sections the map f* gives a monoid morphism

¢: A=04pecF4) - f.Op(SpecFp) = Op(SpecFp) = B.

For every p € Spec F one has an induced morphism on the stalks O4_ rp) = OB p
or Afpy — Ap which must be compatible with ¢ on global sections, so we have a

commutative diagram

@
A

B

i
Afp) — By

Since f(p) = ( f'f )~ !(p) it follows that ff is the localization of ¢ and hence the claim.
The last part follows since the first bijection preserves isomorphisms by functoriality
and an isomorphism on the spectral side preserves closed points and can thus be
extended to an isomorphism of the full spectra. O

2.3 Schemes

An affine scheme over F1 is a monoidal space which is isomorphic to Spec F4 for
some A.

Lemma 2.3. Every open subset of an affine scheme is a union of affine schemes.

Proof. Let U C SpecF 4 be open. Then there is an ideal a such that
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U=D(a)={peSpecF,:ppa}.
So U is the set of all p such that there exists f € a with f ¢ p. Forany f € A, let

D(f):={p eSpecFa: f ¢p}
Then we get
U=JDbw.
fea
LetAy = f_lA = S;]A where Sy = {1, f, fz, f3, ... }. One checks that the open
set D(f) is affine, more precisely,

(D(f), Oalp(s)) = SpecFy,.
The lemma follows. 0

A monoidal space X is called a scheme over Iy, if for every point x € X there is
an open neighborhood U C X such that (U, Ox|y) is an affine scheme over F. A
morphism of schemes over [F; is a local morphism of monoidal spaces.

A point 1 of a topological space such that {n} is open and 7 is contained in every
nonempty open set, is called a generic point. It it exists, it is unique.

Proposition 2.4. Every connected scheme over F| has a generic point. Morphisms on
connected schemes map generic points to generic points. If for an arbitrary scheme
X over F| we define

X (F1) := Hom(Spec Fq, X),

then we get
X (1) = mo(X),

where the right-hand side is the set of connected components of X.

Proof. Let X be connected. Every affine subscheme U has a generic point ny. If U
and V are affine with U NV # @, then ny = ny by the uniqueness. Fix an open
affine subset U. By Zorn’s Lemma, there is a maximal open subset V D U with ny
as a generic point. This set V must coincide with X. The rest is clear. O

Let X be a scheme over Fy and let (f, f*) be a morphism from X to an affine
scheme SpecF4. Taking global sections the sheaf morphism f*: 04 — f.Ox
induces a morphism ¢: A — Ox(X) of monoids.

Proposition 2.5. The map v : (f, f*) — ¢ is a bijection
Hom(X, SpecF4) — Hom(A, I'(X, Ox)).

Proof. Lety(f, f*) = ¢.Foreachp € X one has alocal morphism f§f: O fp) —
Ox,p. Via the map Ox(X) — Oyx,p the point p induces an ideal p on Ox (X) and
f(p) = ¢ L(p). So f is determined by ¢. Further, since f'f factorizes over A p(p) =

Aoy = Ox(X); it follows that fg(%) = zi‘:; and so f* also is determined by ¢,

so ¥ is injective. For surjectivity reverse the argument. O

The forgetful functor from Rings to Monoids mapping R to (R, x) extends to a
functor
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Schemes/Z — Schemes/IFy

in the following way: A scheme X over Z can be written as a union of affine schemes
X = U,¢; Spec A; for some rings A;. We then map it to | J;; Spec(A;, x), where
we use the gluing maps from X.

Likewise, the base change A — A ®p, Z extends to a functor

Schemes/IF1 — Schemes/Z

by writing a scheme X over I as a union of affine ones, X = _J;.; Spec A; and then
mapping it to | J;.; Spec(A; ®r, Z), which is glued via the gluing maps from X. The
fact that these constructions do not depend on the choices of affine coverings follows
from Proposition 2.2, Lemma 2.3 and its counterpart for schemes over Z.

As an example of a scheme which is not affine let us construct the projective line
P! over Fi.LetCoo ={. .., 11,7, } be the infinite cyclic group with generator
7. Let Coo+ = {1, 7, 72, .. .yand Coo,— = {1, 72 . . }. The inclusions give
maps from U = Spec C to X = Spec Co,+ and ¥ = Spec C,— identifying U
with open subsets of the latter. We define a new space P! by gluing X and Y along
this common open subset. The space X has two points, cy, nx, one closed and one
open and likewise for Y. The space P! has three points, cx, cy, n, two closed and
one open. The structure sheaves of X, Y, U give a structure sheaf of P! making it a
scheme over [F;.

3 Fiber products

Let S be a scheme over Fj. A pair (X, fx) consisting of an Fj-scheme X and a
morphism fx: X — S is called a scheme over S.

Proposition 3.1. Let X, Y be schemes over S. There exists a scheme X x5 Y over S,
unique up to S-isomorphism and morphisms from X xs Y to X and Y such that the
diagram

X XgY — X

Ifx

Yy —S§
Jfr
is commutative and the composition with these morphisms induces a bijection for

every scheme Z over S,
Homg(Z, X) x Homg(Z,Y) - Homg(Z, X x5 Y).

This fiber product is compatible with 7 extension and the usual fiber product of
schemes, i.e., one has

X xsY)RZ=(XQZ) xsgz (Y ®Z).
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Proof. This proposition follows via the gluing procedure once it has been established
in the affine case. So let’s assume that X, Y, S are all affine, say X = Spec A, Y =
Spec B and S = Spec L. Then fx and fy give monoid morphisms ¢4: L — A and
¢p: L — B and we define

X xsY :=Spec(A ® B),

where A ®;, B is the monoid A x B/ ~ and ~ is the equivalence relation generated
by (pa(D)m,n) ~ (m,pp()n) forallm € A,n € B, and ! € L. In other words,
A ®p, B is the push-out of 4 and pp and so X x g Y has the desired properties. O

4 Ox-modules

For an Fy-ring F 4, one defines an [F 4-module to be a set M together with an action
Ax M — M, (a,m) — am such that Is = s and (aa’)s = a(a’s) forevery s € §
and all a, a’ € A. One defines M ® Z = Z[M] with the obvious F4 ® Z-module
structure. The direct sum M @ N of A-modules is the disjoint union and the tensor
product M ®4 N is the quotient M x N/ ~, where ~ is the equivalence relation
generated by (am, n) ~ (m,an) foralla € A,m € M,n € N.Then M ®4 N is an
A-module viaa[m, n] = [am, n]. There are natural isomorphisms of F 4 ® Z-modules

MON)RZL=MRZ)® (N L),
M@AN)QZL=(MQZL) Qagz (N ® Z).

Let (X, Oyx) be a monoidal space. We define an Ox-module to be a sheaf F of
sets on X together with the structure of an Oy (U)-module on F(U) for each open
set U C X such that for open sets V C U C X the restriction F(U) — F(V)
is compatible with the module structure via the map Ox (U) — Ox (V). If F is an
Ox-module and U C X is open, then F|y is an Oy = Ox|y-module. A morphism
of Ox-modules ¢: F — G is a morphism of sheaves such that for every open set
U C X the map o(U): F(U) — G(U) is a morphism of Ox(U)-modules. The
category of Ox-modules has kernels, cokernels, images, and internal Hom’s, as the
presheaf U +— Homop, )(F(U), G(U)) is a sheaf called the sheaf Hom for any
two given Ox-modules F and G. This then is naturally an Ox-module. The tensor
product F ® 0, G of two Ox-modules F, G is the sheaf associated to the presheaf
U FU) ®oyw) GU). Note that F ® Ox = F. An Ox-module is free if it is
isomorphic to a direct sum of copies of Ox. It is locally free if every x € X has an
open neighborhood U such that F|y is free. In this case the rank of F at a point x is
the number of copies of Ox needed over any open neighborhood of x over which F
is free. If X is connected, then the rank is the same everywhere.

For a given Ox-module F let 7* := Hom(F, Oyx) be its dual module. There is
a canonical morphism, called the trace,

tr: FQ F* - Ox,

given over an open set U by mapping f @ o € F(U) ®oyw) F*(U) to a(f) €
Ox ().
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Lemma 4.1. If F is locally free of rank 1, then the trace is an isomorphism. So the set
of isomorphism classes of locally free Ox-modules of rank 1 forms a group, called
the Picard group Pic(X) of X.

Proof. Clear. O

Proposition 4.2. Let X be an affine scheme over 1, then every locally free sheaf is
free, so, in particular, Pic(X) is trivial.

Proof. There is a unique closed point ¢ which is contained in every nonempty closed
set, so the only open neighborhood of c is the full space X, which implies that every
locally free sheaf is free. O

Proposition 4.3. The Picard group of the projective line P! is isomorphic to Z.

Proof. The space P! has three elements, ¢ X, ¢y, and n. The nontrivial open sets are
U={nhX=1{ncx}handY = {5, c,}. Wehave O(X) = Cop,4,0(Y) = Cso,— and
O(U) = Cy with the inclusions as restriction maps. Since X and Y are affine, a given
invertible sheaf F is trivial on X and on Y. We fix isomorphisms «: F|x — Oy
and B: F|y — Oy. The restriction of o and 8 gives two isomorphisms F(U) —
OU) = Cs. These two differ by a C-module automorphism of C,. The group
of these automorphisms is isomorphic to Z. It is easy to see that this establishes the
claimed isomorphism. O

Let f: X — Y be a morphism of F;-ringed spaces. If F is an Ox-module, then
f«F is an f,Ox-module. The morphism f#: Oy — f,Oy thus makes f,F into an
Oy-module, called the direct image of F.

For an Oy-module G the sheaf f~ 1Gisan f- 1Oy -module. Recall that the functor
f~Lis adjoint to f,, this implies that

Homy (f 'Oy, Ox) = Homy (Oy, f.Ox).

So the map f*: Oy — f,Ox gives a map 10y — Ox. We define f*G to be the
tensor product

f_lg ®f’10y Ox.
So f*G is an Ox-module, called the inverse image of G. The functors, f, and f* are
adjoint in the sense that

Homo, (f*G, F) = Homo, (G, f+F).

4.1 Localization

Let M be a module of the monoid A. Let § C A be a submonoid. We define the
localization S™!M to be the following module of S —1A. As aset, ST M is the set of
all pairs (m, s) = % withm € M and s € S modulo the equivalence relation

m /

m 1 7 1 !
—~—,<:>E|s eS:s"sm=s"sm'.
s S
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The S~! A-module structure is given by

a m am
N

' 58

A given A-module homomorphism ¢: M — N induces an S~!A-module homo-
morphism S~ '¢: S!M — STIN by S’Hp(%) = @. Note that S~!¢ is injec-
tive/surjective if @ is.

Given an A-module M we define an O, -sheaf Mon X = Spec [F4 as follows.
For each prime ideal p of A let M}, be the localization S, 'M at p. For any open set
U C SpecF4 we define the set M(U) to be the set of functions s: U — Lycy My
such that s(p) € My, for each p and such that s is locally a fraction, i.e., we require
that for each p € U there is a neighborhood V' C U of p and m € M as well as
f € Awith f ¢ qforeveryg € V and s(q) = % in mq. Then M is a sheaf with
the obvious restriction maps. It is an Ox-module. For each p € X the stalk (M )p
coincides with the localization My, at p. For every f € M the A ;-module A(D(f))is
isomorphic to the localized module M y. In particular, we have I"(X, M) = M. One
also has (M ®4 N)~ = M X Oy N. For a morphism f: Spec B — Spec A one has
f*M = (aM)™, where 4 M is M cqnsidered as an A-module via the map A — B
induced by f. Finally, we have f*(N) = (B ®4 N)™.

4.2 Coherent modules

Let (X, Ox) be ascheme over F1. An Ox-module F is called coherent if every x € X
has an affine neighborhood U = Spec F4 such that F|y is isomorphic to M for some
A-module M.

Proposition 4.4. Let X be a scheme over Fi. An Ox-module F is coherent if and
only if for every open affine subset U = Spec A of X there is an A-module M such
that Fly = M.

Proof. Let F be coherent and let U = Spec A be an affine open subset. Let X =
\J; Spec A; be a covering by affines such that F ISpec A; = Mi for some modules M;.
Let f € A;. Then Flp(s) = (M; ¢)”. So X has a basis of the topology consisting
of affines on which F comes from modules. It follows that F |y also is coherent, so
we can reduce to the case when X is affine. Then F must come from a module in a
neighborhood of the closed point, so F comes from a module. O

5 Chevalley groups

51 GL,

We first repeat the definition of GL,, (1) as in [2]. On rings the functor GL,,, which is
a representable group functor, maps R to GL, (R) = Autg(R"). To define GL, (F)
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we therefore have to define ]F? , or more generally, modules over ;. Since Z-modules
are just additive abelian groups, by forgetting the additive structure one simply gets
sets. So IFi-modules are sets. For an [Fj-module S and a ring R the base extension is
the free R-module generated by S: S ®F, R = R[S] = R®). In particular, F} ® Z
should be isomorphic to Z", so IF’f is a set of n elements, say F’f ={1,2,...,n}.
Hence

GL,(IFy) = Auty, T
=Aut(l,...,n)
= Sn,

the symmetric group in  letters, which happens to be the Weyl group of GL,,. We now
extend this to rings over /1. One would expect that Y, = F{ ®F, = {1, ...,n} x A.
So we define an F4-module to be a set with an action of the monoid A and, in
particular, [y is a disjoint union of n-copies of A. We define

GL,(F4) := Autg, (F)).
This is compatible with Z-extension,

GL,(F4 ® Z) = Auty, g7 (F", @ Z)
= Autz41(Z[A]")
= GL, (Z[A])

as required.

Note that GL,,(F4) can be identified with the group of all n x n matrices A over
Z[A] with exactly one nonzero entry in each row and each column and this entry
being in the group of invertible elements A*.

Proposition 5.1. The group functor GL| on Rings /Iy is represented by the infinite
cyclic group Cso. This is compatible with Z-extension as

Fe, ®Z = Z[Coo) = ZIT, T
represents GL1 on rings.
Proof. Choose a generator 7 of C,. For any ring [F 4 over F; we have an isomorphism
Hom(Fc ,Fa) > A = GL{(Fy)
mapping o to «(7). O

The functor GL,, on rings over F| cannot be represented by a ring 4 over
since Hom(F 4, F1) has only one element.

Proposition 5.2. The functor GL, on rings over F| is represented by a scheme
over IFy.
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Proof. We will give the proof for GL,. The general case will be clear from that. For
F 4 /Ty the group GL(IF4) can be identified with the group of matrices

I

We define a scheme X over Iy as the disjoint union Xg U X7 and Xog = X| =
Spec((Coo X Coso), Where Co, is the infinite cyclic group. The group structure on
Hom(SpecF4, X) forevery IF 4 /F| comes viaamultiplicationmapm : X xp, X — X
defined in the following way. The scheme X x, X has connected components X; xf,
X; fori, j € {0, 1}. The multiplication map splits into components m; ;: X; XF,
X; — Xitj@). Each m; ; in turn is given by a monoid morphism s; j: C2 —
Cgo X Cgo, called the comultiplication. Here (; ; maps a to (e'(a), £/ (a)), where
&%a) = aand el(x, y) = (y, x). This finishes the construction and the proof. O

5.2 O, and Sp,,

The orthogonal group O, is the subgroup of GL,, consisting of all matrices A with
AgA" = q, where

g = diag(J, ..., J,1) with J:(l 1),

the last entry 1 in ¢ occurring only if 7 is odd. A computation shows that
0, (F1) = Weyl group

holds here as well. Finally Sp,; is the group of all A with ASA" = S, where S is
the 2/ x 2[ matrix with anti-diagonal (1,...,1,—1,..., —1) and zero elsewhere.
Likewise, Sp,/(F) is the Weyl group. Both O, and Sp,; are representable by -
schemes.

6 Zeta functions

Let X be a scheme over ;. For [F4 /' we write, as usual,
X(F4) = Hom(SpecFy4, X)

for the set of [F4-valued points of X. After Weil we set for a prime p,

o Tn
Zx(p, T) :=exp (Z 7#(X(Fpn>>> :

n=1

where, of course F,» means the field of p" elements and X (IF,») stands for
X ((F,n, x)). For this expression to make sense (even as a formal power series)
we must assume that the numbers #(X (IF ,»)) are all finite.
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Proposition 6.1. The formal power series Zx (p, T) defined above coincides with the
Hasse—Weil zeta function of X ®p, F), = Xy,

Proof. This is an immediate consequence of Theorem 1.1. O

This type of zeta function thus does not give new insights. Recall that to get a zeta
function over Z, one considers the product

Zxon(s) = [ Zxe, (0™ =[] Zx(p. 7).
p p

As this product takes care of the fact that the prime numbers are the prime places of
Z, over [F there is only one place, so there should be only one such factor. Soulé [4],
inspired by Manin [3], provided the following idea: Suppose there exists a polynomial
N (x) € Z[x] such that, for every p one has #X (IF,n) = N(p"). Then Zx(p, p™*)
is a rational function in p and p~*. One can then ask for the value of that function at
p = 1. The (vanishing-) order at p = 1 of Zx(p, p~*)~! is N(1), so the following
limit exists: 2 .-
. x(p,p
= T v

One computes that if N(x) = ag 4+ ajx + - - - + a,x", then
Ex(s) =% — DU - (s — ).
For example X = Spec [F| gives

§Spec]F1 (s) =s.
For the affine line A; = Spec C + one gets N (x) = x and thus
ia(8) =5 — L

Finally, for GL| one gets

oL () = —.
In our context the question must be if we can retrieve these zeta functions from the
monoidal viewpoint without regress to the finite fields IF ,» ? In the examples it indeed
turns out that

N(k) = #X (Fp,),

where Dy is the monoid Cr_1 U {0} and Ci_1 is the cyclic group with k — 1 elements.
Since (Fn, x) = D this comes down to the following question.

Question. Let X be a scheme over F|. Assume there is a polynomial N(x) with
integer coefficients such that #X(D,n) = N(p") for every prime number p and
every nonnegative integer n. Is it true that #X(Dy) = N (k) for every k € N?
Or another question: Is there a natural characterization of the class of schemes X
over Fy for which there exists a polynomial Nx with integer coefficients such that
#X (Dy) = Nx (k) for every k € N?
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1 Introduction

In the paper [De-We2], we defined isomorphisms of parallel transport along étale
paths for a certain class of vector bundles on p-adic curves. In particular, these vector
bundles give rise to representations of the fundamental group.

One aim of the present paper is to discuss in more detail the special case of line
bundles of degree zero on a curve X with good reduction over Q p- By [De-We2] we
have a continuous, Galois-equivariant homomorphism

a: Picg/@p(cp) — Hom,(7*(X), C5). (1)

Here Hom, (nlab (X), C3) is the topological group of continuous C7)-valued characters
of the algebraic fundamental group 71 (X, x).

The map « can be rephrased in terms of the Albanese variety A of X as a contin-
uous, Galois-equivariant homomorphism

a: A(C,) — Hom (T A, C). 2)

Therefore, we focus in this paper on abelian varieties A over @,, with good reduction.
We also consider vector bundles of higher rank on Ac, = A ®g Cp. In Sec-
P

tion 2, we define a category B Ac, of vector bundles on Ac, which contains all line
bundles algebraically equivalent to zero. Then we define for each bundle E in B Ac,
a continuous representation pg of the Tate module 7 A on the fiber of E in the zero
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section. The association E +> pg is functorial, Galois-equivariant and compatible
with several natural operations on vector bundles.

Besides, we show that it is compatible with the theory for curves in [De-We2] via
the Albanese morphism X — A.

Every rank-2 vector bundle on Ac, which is an extension of the trivial line
bundle O by itself lies in B Ac,- The functor p induces a homomorphism between

Exty ac, (0,0)~ HYA,0)®C p and the group of continuous extensions

Ext}4(Cp, Cp) = HA(X,Q,) ® C).
Hence p induces a homomorphism
H'(A,0)®C, — HL(X,Q,) ®C,. (3)

In Section 3, we show that this homomorphism is the Hodge—Tate map coming from
the Hodge—Tate decomposition of Hélt(X ,Qp) ® C,. Here we use an explicit de-
scription of the Hodge—Tate map by Faltings and Coleman via the universal vectorial
extension.

In Section 4, we consider the case of line bundles algebraically equivalent to zero
on A. We prove an alternative description of the homomorphism « in (2), which
shows that the restriction of « to the points of the p-divisible group of A coincides
with a homomorphism defined by Tate in [Ta] using the duality of the p-divisible
groups associated to A and A.

In fact, the whole project started with the search for an alternative description
of Tate’s homomorphism for line bundles on curves which could be generalized to
higher-rank bundles.

We prove that « is a p-adic analytic morphism of Lie groups whose Lie algebra
map

Liea: H'(A,0)®C, = Lie A(C,) —> Lie Hom.(T A, Ch) = Hy(A,Qp) ®C,
coincides with the Hodge—Tate map (3).

On the torsion subgroups, « is an isomorphism, so that we get the following
commutative diagram with exact rows:

~ ~ 1 ~
0 — A(Cp)rtors A(Cp) o Lie A(Cp) =— H'(A,0) ®@p Cpr—-o0

J/z \La ¢Liea

0 = Hom/(T A, u) — Hom (T A, (C;) — Hom(TA,Cp) — Hélt(A, Qp) ®Cp —0.

Here o is the subgroup of roots of unity in (C*[;. If A is defined over K, the vertical

maps are all Gx = Gal(@p /K)-equivariant.
Besides, we determine the image of «. By CH*(T A) we denote the group of
continuous characters y: TA — (Cj; whose stabilizer in G g is open. Then « induces

an isomorphism of topological groups between A(C p») and the closure of CH* (T A)
in Hom.(T A, C7)) with respect to the topology of uniform convergence.
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The final section deals with a smooth and proper variety X over Q p Whose H !
has good reduction. Combining the previous results for the Albanese variety of X
with Kummer theory, we obtain an injective homomorphism of p-adic Lie groups

PICX/Q (Cp) — Hom,(r} b(X), C*)
and determine its image and Lie algebra map.

There is an overlap between parts of the present paper and results independently
obtained by Faltings (see [Fa2]). In [Fa2], Faltings develops a more general theory
where he proves an equivalence of categories between vector bundles on a curve X
over C, endowed with a p-adic Higgs field and a certain category of “generalized
representations” of the fundamental group of X.

The results of the present paper originally formed the first part of the preprint
[De-Wel]. However, this preprint will not be published since the results in its second
part are contained in the much more general theory of [De-We2].

2 Vector bundles giving rise to p-adic representations

Let A be an abelian variety over @p with good reduction, and let .A be an abelian
scheme over Z p Wwith generic fiber A.

We denote the ring of integers in C,, = @p by o, and put

op =0/p"0o="2,/p" L.

We write A, = A®Zp oandAc, = A®@ C,.Besides, we denote by A, = A®Zp o,
P
the reduction of .A modulo p”".

Let A = Pic’ A7 be the dual abelian scheme. Its generic fiber A = Pic°
P

the dual abelian variety of A.

A/Qp

Definition 1. Let B 4, be the full subcategory of the category of vector bundles on
the abelian scheme A, consisting of all bundles E on A, satisfying the following
property: For all n > 1, there exists some N = N(n) > 1 such that the reduction
(N*E), of N*E modulo p" is trivial on A, = A ®Z,, 0,. Here N: A, — A,

denotes multiplication by N.
Note that every vector bundle F' on Ac, can be extended to a vector bundle E

on A,. This can be shown by induction on the rank of F. If F is a line bundle on
Ac,,, it corresponds to a C)-valued point in the Picard scheme Pic , /T of A. Since
P

every connected component of Pic , /3, contains a @p—valued point, there exists a

line bundle M on A such that F ® M(El lies in Pic (C,,) As Pch/ 3 (C,) =

Pic A 7z, (0), the line bundle F ® M(C can be extended t0 A, . Therefore, it suffices

to show that every line bundle M on A can be extended to a line bundle on 4. Now
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A and M descend to Ax and Mg over a finite extension K of Q, in @[, with ring
of integers ox. The Néron model A, , of Ag over the discrete valuation ring og is
noetherian, hence

Pic A, jog (0k) = CH'(Aoy) — CH'(Ag) = Picay/k (K)

is surjective. Therefore, M can be extended to .A.
Now let F be a vector bundle on Ac,. Then there exists a short exact sequence

00— Ff— F — F, — 0,

where F3 is aline bundle. By induction, we can assume that F; and F; can be extended
to vector bundles E| and E; on A,. Flat base change gives an isomorphism

Ext!(Ez, E1) ® C, —> Ext'(Fy, Fy),

hence F can also be extended to A,.
We are interested in those bundles on Ac, which have a model in B 4,,.

Definition 2. Let ‘B Ac, be the full subcategory of the category of vector bundles on
Ac,, consisting of all bundles F on Ac, which are isomorphic to the generic fiber of
a vector bundle E in the category B 4.

Consider the Tate module TA = 1(121 An(Q »)s» where Ay Q p) denotes the group
of N-torsion points in A(@p).

By x,, respectively, x,, we denote the zero sections on A,, respectively, .4,,. For
a vector bundle E on A, we write E,, = x}E viewed as a free 0-module of rank
r = rank E. Similarly, we set E,, = x,;E viewed as a free 0,-module of rank r.
Note that

E, = 1(121 E,,
n
as topological o-modules, if £, is endowed with the discrete topology.

Assume that E is contained in the category B 4, and fix some n > 1. Then there
exists some N = N(n) > 1, such that the reduction (N*E),, is trivial on A,. The
structure morphism A: A, — spec o satisfies 14O 4, = Ogpec o universally. Hence
I'(A,, O) = 0, and therefore the pullback map

x*: T(Ap, (N*E),) —> T'(speco,, x'E,) = E,,

is an isomorphism of free 0,-modules. (Note that N o x,, = x,.) The group A N(@p)
acts in a natural way on I'(A4,, (N*E),) by translations. Define a representation
PEn: TA — Aut,, (Ey,) as the composition:

pEn: TA — AN(Q,) — Auty, ['(A,, (N*E),) — Autg, Ey, .
via x;f
Lemma 1. For E in B 4, the representations pg. , are independent of the choice of
N and form a projective system when composed with the natural projection maps
Aut,,,, E — Aut,, Ey,.

Xn+1
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Proof. If N' = N - M for some M > 1, and (N*E),, is trivial, it follows from our

construction that .
An(Q,) — Aut(E,,)

[«
AN(@p)

is commutative. Hence pg , is independent of the choice of N.
Fix somen > 1 and assume that (N*E), 1 is trivial. Then (N* E),, is also trivial,
and the natural action of Ay (Q,) on I'(A;+1, (N*E),+1) induces the natural action

of Ay(Q,) on T'(A,, (N*E),). Hence

Aut,, . E

TA
Aut,, Ey,

Xn+1

is commutative, so that (og »)n>1 is a projective system. O
By the lemma, we can define for all £ in 98 4, an o-linear representation of 7' A by

pE =lmpg 1 TA — Auto(Ey,).

n

Since each pg , factors over a finite quotient of 7' A, the map pg is continuous, if
Aut, (E,,) >~ GL,(0) for r = rank E carries the topology induced by the one of o.

Note that for any morphism f: E; — E; of vector bundles in B 4, the natural
op-linear map x; f: (E1)y, — (E2)y, is T A-equivariant with respect to the actions
PE,.» and pEg, ,. Hence the association E — pg defines a functor

0: B4, — Repyy(0),

where Repy4(0) is the category of continuous representations of TA on free o-
modules of finite rank.

We denote by x = x, ® C,, the unit section of A(C,).

Let F be a vector bundle in the category B Ac,- Then F can be extended to a
bundle E in B 4,. We define a C,-linear representation

pr: TA — Autcp(Fx)
as pr = pg ®o Cp, where we identify Fy with £, ®, C,.

If £ and E> are two extensions of F lying in 9B 4, a flat base change for H 0 of
the Hom-bundle yields Hom 4, (E1, E2) ®, Cp > Homyc, ((E1)c,. (E2)c,)-
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Let ¢: (E I)Cp = F = (Ez)cp be the identifications of the generic fibers.
Then there exists some m > 1 such that mg is the generic fiber of a morphism
Y : E1 — Ej. By functoriality, the induced map x¥v : (E1)x, — (E2)y, is TA-
equivariant. Therefore, identifying F, = (E1)x, ®0 Cp and F, = (E2), ®0 Cp,, we
see that pg, ®, Cp and pg, ®, C, coincide. Hence pr is well defined.

Theorem 1.

(i) The category B Ac, is closed under direct sums, tensor products, duals, internal
homs, and exterior powers. Besides, it is closed under extensions, i.e., if 0 —
F' — F — F” — 0 is an exact sequence of vector bundles on Ac,, such that
F'and F" are in B 4., , then F is also contained in Bz, .
(i) B Ac, contains all line bundles algebraically equivalent to zero. For any bundle
inB Ac, the determinant line bundle is algebraically equivalent to zero.
(iii) The association F +— pr defines an additive exact functor

o %ACP —> Rep;4(C)),

where Repy o (C,) is the category of continuous representations of T A on finite-
dimensional C,-vector spaces. This functor commutes with tensor products, du-
als, internal homs and exterior powers.

(iv) Let f: A — A’ be a homomorphism of abelian varieties over @p with good
reduction. Then pullback of vector bundles induces an additive exact functor

* .,
f . %A:Cp —> %ACP’

which commutes with tensor products, duals, internal homs, and exterior powers
(up to canonical identifications). The following diagram is commutative:

%A/ %*'%A
Cp Cp

pi J{p
Repr4/(C)p) L Repr4(Cp),

where F is the functor induced by composition with Tf: TA — TA'.

Proof. (i) We only show that B Ac, is closed under extensions, the remaining asser-
tions are straightforward. So consider an extension 0 — F' — F — F” — 0 with
F’and F” in %Ac,,‘ Fix some n > 1. Then we find a number N such that (N*F"),,
and (N*F"),, are trivial. Hence (N*F),, is an extension of two trivial vector bundles.
We claim that this implies the triviality of ((p" N)*F),. It suffices to show that (p")*
induces the zero map on Exti\n (0, 0) = H'(A,, O). The diagram

H (An, 0) 22> H(A,, 0)

j j

R Liep" . . ¢
Lie Pchn/on —— Lie PICAn/on
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is commutative by [BLR, 8.4, Theorem 1]. Since Lie p” is multiplication by p”"
on the o0,-module Lie Pic?4n Jon? it is zero. Hence (p")* is indeed the zero map on

Extly (0,0).

(ii) Since Ao = Pic?40 /o is proper, we have

- .0 - .0
Pchﬂ/U(o) = PICACP/(C/: (Cp),

so that any line bundle L¢, on Ac,, which is algebraically equivalent to zero, can be

extended to a line bundle L on A, g1v1ng rise to a class in .A0 (0).

A descends to an abelian scheme Aa « over the ring of integers in some finite
extension K of Q in @p. Theringo, = 0/p"o = p/p”Z is the union of the finite
rings 07,/ p” oy, where L runs through the finite extensions of K in @p. Therefore,
Aq(0,) = Ao (o) is the union of all A, (07 /p"0r). Since A, is of finite type
over ok, all these groups AOK (or/p"or) are finite. Hence Aa (0,) is a torsion group.

In particular, we find some N such that N annihilates the class of L, in Aa (0,).
Then (N*L), is trivial, which shows that L is contained in B 4. .

If E is a vector bundle in 9B 4, then by i) its determinant line bundle L is also
contained in B 4, . Hence there exists some N > 1 such that N*L; is trivial on A,
where L and A denote the reductions modulo p. If k denotes the residue field of
0, this implies that N*Ly is trivial on 4. Since the Néron—Severi group of Ay is
torsion free, Ly lies in Pic%k / (k).

Note that A is projective by [Ray, Théoreme XI 1.4]. Hence Pic?4n /o is an open
subscheme of the Picard scheme Pic 4, /.. Since the reduction of the point in Pic
induced by L lies in Pico, the generic fiber of L is also contained in Pico, whence our
claim follows.

(iii) The fact that F' +— pr is functorial on B 4. follows from the fact that the
corresponding association E +— o is functorial on ‘B 4,. The remaining claims in
iii) are straightforward.

(iv) It is clear that f* induces a functor f*: B AL, — B Ac, with the claimed

properties. In order to show that the desired diagram commutes, it suffices to show that

%A;%‘BAD

”l ip

F
Repr4(0) —— Repr 4 (0)

commutes, where f: A, — A} comes from the canonical extension of f to the
Néron models. Let E’ be an object in B A, It x}, is the zero section of A7, we have
f(xo) = x}, so that there is a canonical identification of E ; . and (f*E’), . For every

ae AN(@p) we have ty)° f = f o1y, where ty () and t, are the translation maps.
If we now go through the definition of the representation of TA on (f*E’),,, our
claim follows. O
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Let K be a finite extension of Q, in @p so that A is defined over K, i.e., A =
Ak Ok @p for an abelian variety Ax over K. Then Gx = Gal(@p/l() acts in a
natural way on T'A and on C,, and hence on the category Rep 4, (C,,) by putting both
actions together. To be precise, foro € Gg put®V =V ®c, ., C,, for every finite-
dimensional C,-vector space V, and write o : V — °V for the natural o -linear map.
For every representation p: TA — Aut(gp (V), we define o.¢ as the representation

-1 .
0x0: TAZSTAS Autc, V Lo Autc, 7V,
where ¢, (f) =0 Ofoo’l.
For every vector bundle F in B Ac, the vector bundle °F = F X spec C,.spec o
spec C,, is also contained in the category B Ac,-

Proposition 1. For every o € Gk the following diagram is commutative:

%A‘CP $ RepTA((Cp)

lga l

Bac, £, Rep7 4 (C)),

where the functor g maps F to ° F.
Proof. This can be checked directly. O

Let X be a smooth, connected, projective curve over Q p- Wefixapointx € X Q »)
and denote by 71 (X, x) the algebraic fundamental group with base point x.

In [De-We2], we define and investigate the category 5 Xc, of all vector bundles
F on Xc, which can be extended to a vector bundle E on X, = X ®Z,, o for

a finitely presented, flat and proper model X of X over Zp and which have the
following property: Foralln > 1 there exists a finitely presented proper Z p-morphism
m: Y — X with finite, étale generic fiber such that 7, E, is trivial. Here 7, and E,
denote again the reductions modulo p”.

Besides, we define in [De-We2] a functor p from ‘B Xc, to the category of continu-
ous representations of the étale fundamental groupoid of X . In particular, every bundle
F in By induces a continuous representation pr: 71 (X, x) — Autc, (Fy) of the
fundamental group; cf. [De-We2, Proposition 20]. Let Rep,,, (x ) (C),) be the category
of continuous representations of 71(X, x) on finite-dimensional C,-vector spaces.
Then the association F — pr induces a functor p: B Xc, = Repm(x’x)((c »)-

Let us now assume that X has good reduction, i.e., there exists a smooth, proper,
finitely presented model X of X over Z p- Then A = Picg€ /Z, is an abelian scheme.
LetA = Picg)( 0 be the Jacobian of X, andlet f: X — A be the embedding mapping

P
x to 0. After descending to a suitable finite extension of Q,, in Q p»» A becomes the
Néron model of A. Hence f has an extension fy: X — .A. Besides, f induces a
homomorphism
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fe:m(X,x) — m(A,0)=TA,

which identifies T A with the maximal abelian quotient of 71 (X, x).

Let F be a vector bundle in B Ac, and let E be a model of F on A, such that for
all n > 1 there exists some N > 1 satisfying (N*E),, trivial. Consider the pullback
of the covering N: A — Ato X, i.e., the Cartesian diagram

y—s4

St

Xx—A

Then (3, f*E), is also trivial, and we see that f*F is contained in ‘BXCP.
Hence pullback via f induces a functor f*: B Ac, = B Xc,-

Lemma 2. The following diagram is commutative:

Bac, / Be,

pl ~ lp

f
Repy4(Cp) ——Rep,, x (Cp),

where f is the functor induced by composition with the homomorphism f..: w1 (X, x)
— TA.

Proof. One argues similarly as in the proof of Theorem 1(iv). O

3 The Hodge-Tate map

In this section we show that the functor p can be used to describe the Hodge—Tate
decomposition of the first étale cohomology of A, when we apply it to extensions of
the trivial line bundle with itself.

Let K be a finite extension of Q, in @p such that there is an abelian variety Ag

over K with A = Ag ®k Q,. Put G = Gal(Q,/K).
The Hodge—Tate decomposition (originating from [Ta])

Hi(A,Qp) ® Cp =~ (H'(Ag. 0) ®k Cp) ® (H'(Ag. Q") ®k Cp(—1)) (4
gives rise to a G g-equivariant map
04 H'(Ax, 0) @k Cp, —> HA(A,Q,) ® C). ®)

As Faltings [Fal, Theorem 4] and Coleman [Col, p. 379], [Co3, Section 4] have
shown, 0% has the following elegant description.
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Consider the universal vectorial extension of A over the ring Zp,
00— w Y S E— A— 0.
Here w 4 is the vector group induced by the invariant differentials on Aie, o 48 =

HO(S, e*QLi /S) for all Zp-schemes S, where e denotes the zero section.
S

For v > 1 consider the map
Apr (0) — w 4(0)/p’w 4(0)

obtained by sending a,v to p“b,v, where b,v € E(o0) is a lift of a,v. Passing to
inverse limits, we get a Z,-linear homomorphism

Op: TyA — wA(o).
The C,-dual of the resulting map
0r: TpA®C, — w 4(0) ®C, = a)A((Cp)

is the map 67 in (5).
In [Col], Coleman proved that together with a map defined by Fontaine in [Fo],

H%A, Q") ®Cp(—1) — HL(A,Q,) ® C,,

0’ gives the Hodge—Tate decomposition.
Let us write Extl%A (O, O) for the Yoneda group of isomorphism classes of
Cp

extensions 0 - O — O(F) — O — 0, where F is a vector bundle in B Ac, with
sheaf of sections O(F) and O = OACP. By Theorem 1, B Ac, contains all vector

bundles which are extensions of the trivial bundle by itself. Hence Ext}BA (0, 0)
Cp

coincides with the group Ext! (O, ©) in the category of locally free sheaves on Ac,,
so that

Ext}BACp (0,0) =Ext'(0,0) = H'(A¢,. 0) = H'(Ag. 0) ®k C,.

Since the functor p is exact by Theorem 1, it induces a homomorphism of Ext groups

Px - EXtI%ACp 0,0) — EthllepTA (C,) ((Cp, (Cp)

There is a natural isomorphism
EXtRep, ,c,)(Cps Cp) = Home(T A, Cp),

where Hom.(T'A, C,) denotes the continuous homomorphisms from T'A to C,,

which is defined as follows. For every extension 0 — C, Lyvs C, — 0in
Rep; 4 (C,) choose any v € V with e(v) = 1 and define y: TA — C, by ¥ (y) =
i~'(yv — v). Since Hom.(T A, Cp) = HomZP(TpA, Cp), we get an isomorphism

| oyl
ExtRep, () (Cps Cp) = Hg (A, Qp) © Cp.
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Theorem 2. The following diagram commutes:

1 P 1
Ext%ACp (0, 0) ExtRep“ ((Cp)((C 2 Cp)

lz ©)
9*
H}(A,Q,) ® C),

H'(Ak,0) ® C,

where 0’ is the map (5) appearing in the Hodge—Tate decomposition.

Remark 1. Theorem 2 gives the following novel construction of the Hodge Tate map
6’;’;. Consider a class ¢ in H (A, ©). It can be viewed as an extension

0-0—>0OE)—0—0

of locally free sheaves on A,. The bundle E lies in B 4,. Hence, for every n > 1
there is some N > 1, in fact, N = p”" will do, such that (N*E), is the trivial rank-2
bundle on 4,,. The short exact sequence 0 — 0, — E,, — 0, — 0 of fibers along
the zero section of .4,, becomes T A-equivariant if T A acts trivially on the o0,s and
via the projection TA — Ay (K) and the isomorphism

res

[(An, (N*E),) —> Ey,

on E,, . Passing to projective limits, we get a short exact sequence 0 — o S E . 4,
0 — 0 of T A-modules. Set g; = i(1) and choose g» € E, such that g(g2) = 1.
Then E is a free o-module on g; and g», and the action of y € T A on E, is given
in terms of the basis g1, go by a matrix of the form

(1 ﬂ(y)>
o1 )

where B: TA — o is a continuous homomorphism. Note that 8 does not depend on
the choice of g,. Viewing 8 as an element of Hélt(A, Zp) ® 0, we have 9;’; (c) =B.

Proof. Since H'(A,, ©) ®, C,= Hl(A(cp, 0), we find for every element in
Extl%A (O, O) a p-power multiple lying in Extl%A (O, O). Since py is a homo-
Cp 0

morphism between Yoneda Ext-groups, it suffices to show that

1 P 1
Ext%A0 0,0) —~ ExtRepTA(U)(o, 0)

\Lz
2

H(A,, ©) Hom/(T,A, o)

commutes. Consider an extension 0 — O A F — O — 0on A, where F = O(E)
for some E in ‘B 4, .
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LetZ = Is_oExt(O2, F) be the (Zariski) sheaf on A, which associates to an open
subset U C A, the set of isomorphisms ¢: O%] — Fy of extensions, i.e., such that

0 Ou 02 >0y 0
/|
0 Oy —=Fy Oy 0

commutes. Then ¢ € G,(U) = I'(U, O) acts in a natural way on Z(U) by mapping

> @+iefeop,

where f.: Oy — Oy is multiplication by c. Note that Z is a G,-torsor on A, and
that the class [Z] of Z in H (A, ©) = Hzlar(Ao, G,) coincides with the image of
the extension class given by F under the isomorphism

Ext' (0, 0) — H'(A,, O).

The association ,
(T = Ao) —> Isog, (07, t*F) )

also defines a sheaf on the flat site over .A,, which is represented by a G,-torsor
Z— A,.

We have Hzlar(Ao, Gy) = Hfiapf (Ao, Gy) = Ext!(A,, G,), so that Z can be
endowed with a group structure sitting in an extension of .4, by G,:

O—>GaL>Z—>.A0—>O.

Hence there is a homomorphism #: @ ; — Gq such that Z is the pushout of the
0
universal vectorial extension:

0 a)Au EU AO 0
|
0 Gq z Ao 0.

Recall that 04 : T,A — a)A(o) is defined as the limit of the maps

Oan: Ap(Lp) — w 4(0)/p"w 4(0)
associating to a € Apn (Zp) the class of p"b for an arbitrary preimage b € E,(0)
of a.

By [Ma-Me, Chapter I], the natural isomorphism

Hom, (@ 4(0), 0) —> Lie(Aq)(0) —> H'(A,, 0) = Ext' (A, Gy)
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sends a map to the corresponding pushout of E,. Hence 60%: H!(A,, O) —
Hom(T), A, 0) maps the extension class of F to the limit of the maps

— O .,
A Tp) 25 0 4(0)/p" 1(0) 2 0,

where h,, is induced by #. .
This map can also be described as follows: For a € A, (Z,) € Apn(0) choose
a preimage z € Z(0). Then

hpo04 ,(a) = class of p"zin G,(0)/p"G,(0) = 0.

Set Z, = Z @, 0,. Let mpn denote multiplication by p” on 4,. We have seen in
the proof of Theorem 1(i) that n;n JF, is a trivial extension. Hence 7 ;n Z, is trivial in
Ext(A;, Gq.,,), and there is a splitting r: A,, — n;,, Z, of the extension

0 — Gy, — n;nZn — A4, —0

over 0,,. Let g: n;,, Z, — Z, denote the projection, and denote by a, € A, (0,) the
point induced by a. Then g(r(a,)) projects to zero in A4, hence it is equal to j(c)
for some ¢ € G,(0,) = 0,. Since for any a’ € A, (0,) with p"a’ = a, the point
g(r(a’)) is a preimage of a,, we have h;, °04 ,(a) = ¢ € 0,. Besides, Z represents
the functor (7) so that the map r : A, — 7 ;,, Z, corresponds to a trivialization

0 O, 02, O, 0
'
0 O, 7 Fn Oa, 0.

The point g(r (a,,)) in the kernel of Z,,(0,,) — A, (0,,) corresponds to the trivialization

. M2 g %k -~ *
O(.Ospecon—>anﬂpn.7:—>0.7:,

where 0 is the zero element in A, (0,,). Besides, the trivialization

. M2 0"y 4 ~on*
B: Ospecan — 0 npnf—> 0" F

is given by the zero element in Z,. By definition, « = 8 4+ i o f. o p. If we denote
the canonical basis of I"(A4,,, (’)i\n) by ey, e, and the induced basis of I'(A,, JT;,, F)
by fi1, fa, it follows that ¢ f» — 0% f> = i(c).

On the other hand, the image of E under

Ox - ExtlﬁA0 0,0) — Extlllep”(a)(o, 0) = Hom.(T, A, 0)

is the homomorphism y : T,A — o, such that y mod p” maps the p"-torsion point
an € A, (0,) to the element

710" (g ) — O0F o) =i~ (@) fo — 0% fa),
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where 7,, is translation by a,, and hence to ¢ = h, o 04 ,(a). This proves our
claim. m]

Corollary 1. Let X be a smooth, connected, projective curve over @p with good

reduction and let x € X(@p) be a base point. The functor ‘BXCP — Repnl(x’x)((cp)
from [De-We2] induces a homomorphism

Ext%x ((’) 0) — Extc((C,,,(C,,)

where C is the category Rep, x )(Cp), which makes the following diagram com-
mutative:

Eth%xCp (0, 0) b Ext5(C,, Cp)

lz ®)

Hy (X, Qp) ®g, C

Hodge-Tate

1 _
H'(X,0) 85, C,

Here the right vertical isomorphism is defined as in the case of abelian vari-
eties, and the lower horizontal map comes from the Hodge—Tate decomposition of

Hélt(Xs Qp) ® Cp-

Proof. According to [De-We2, Theorem 10], ‘B Xc, is stable under extensions, so that
every vector bundle on X¢, which is an extension of the trivial bundle by itself lies
in B Xc,- By [De-We2, Proposition 21], the association F +— pp, mapping a vector
bundle F to the continuous representation pr: w1 (X, x) — Aut(cp(Fx), respects
exact sequences. Hence it induces a homomorphism on Yoneda Ext groups. Denote
by f: X — A the morphism of X into its Jacobian with f(x) = 0. By Lemma 2, the
middle square in the following diagram is commutative:

f*
H'(Ac,, 0

1 * 1
Exty, (0.0) . Exty,, (0.0)

lp* ~ lp*

1 f*
EXtRepTA ((Cp)((cp7 Cp) —_— EXt(lj ((Cp, (Cp)

e

HL(A,Qp) ® C, — HA(X,Q,) ® C,).

» O

The outer squares are also commutative. Since the Hodge-Tate decomposition is
functorial, our claim follows from Theorem 2. O
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4 Line bundles on abelian varieties

Let A be an abelian variety with good reduction over @p which is defined over the
finite extension K of Q, in Q,, i.e., A = Ax ®k Q. Then for the dual abelian
variety Awehave A = A K Qk @ - Let A be an abelian scheme with generic fiber

A and A its dual abelian scheme.

By Theorem 1, all line bundles algebraically equivalent to zero on Ac,, are con-
tained in the category B Ac,- For every line bundle L on Ac,,, we have Autc, (Lx) =
€7, Hence p induces a map

a: A(C,) — Hom (T A, Ch),

where Hom.(T A, (C;) denotes the continuous homomorphisms from 7' A to (C*;,. Note
that Hom.(T A, (C;) = Hom(T A, 0*) since (C;‘, = pQ x 0*. By Theorem 1 and
Proposition 1, p is compatible with tensor products and Gx = Gal(@p /K)-action.
Hence « is a G g-equivariant homomorphism. .

We endow the G,,,-torsor associAated to the Poincaré bundAle over A x A with the
structure of a biextension of A and A by G,,, so that we have A = Ext!(A, G,,)inthe
flat topology. For all N > 1 we denote by Ay and Ay the subschemes of N-torsion
points. The long exact Hom / Ext-sequence associated to the exact sequence

0—>AN—>AE>A—>O

induces an isomorphism le AN Hom(Ap, G;,;). Hence we get foralln > 1 a
homomorphism .
An(0,) —> Hom(Ay (0,), 0}).

By composition with the reduction map
AN(@p) — Av(Zp) — An(on)
and with the projection TA — Ay (Q p»)» we get a homomorphism
An(0,) —> Hom, (T A, 0r).

Note that here o, carries the discrete topology. For N | M the corresponding maps
are compatible with the inclusion Ay (0,) < A (0p).

Note that the abelian group A(on) is torsion since it is the union of the finite
groups flo (o /p"or), where L runs over the finite extensions of K in @p. Hence
we get a homomorphism fl(on) — Hom.(T A, o}). Composition with the reduction
map A((Cp) = fl(o) — fl(on) induces a homomorphism

ay: A((Cp) —> Hom(T'A, 0}).

Theorem 3. For everyn > 1 and all a € A((Cp) the o} -valued character o, () is
the reduction of the o*-valued character o(a) modulo p". Hence the homomorphism
a: A(Cp) — Hom (T A, 0%) is the inverse limit of the ay,.
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Proof. We denote by L the line bundle on A, corresponding to the pointa € AC p) =
A(0). If N is big enough, the reduction a, of a modulo p”" lies in An(0,). By L, we
denote the reduction of L modulo p”,i.e., L, is the line bundle on 4, corresponding
to a,. Then N*L, is trivial on A,,. Since we identified A with Ext!(A4, G,), the G,,-
torsor in = L, \ {zero section} on A, is endowed with the structure of an extension
of A, by G, 0,. Moreover, with this identification the inclusion

i: Hom(Ay, G,,) ~ le |

is given by pushout with respect to the exact sequence 0 - Ay — A LA ,ﬁl — 0.
Denote by ¢: A, v — Gy, the homomorphism corresponding to a, € Ay (0p).
Then L, is given by the following pushout diagram:

N

0 An,N .An .An 0
]
OHGm,on in An 0.

By definition, a,,(a) is the map
y(@): TA — An(@,) = AN(Zp) —> An(04) = Ann(04) 5 0.
On the other hand, the reduction of
a(@): TA — AN(@p) — o*
modulo p” is obtained from the map
An@,) — o}

associating to a € A N(@p) = Ay (Zp) the element in o} corresponding to the
natural action of a, € A, n(0,) on I'(A,, N*L,) —5 0,. Here we can as well

regard the natural action of a, € A, n(0,) onT'(A,, N*L,) N o) in the setting of
G,y -torsors. ~
Now the homomorphism s : A, — L, from diagram (9) induces an element

so=(s,id): A, — L, X A,.NAn = N*L, inT(A,, N*L,)

which is mapped to sg ° f,, via the action of a,, where f,, denotes translation by a,
on A,. By diagram (9), the corresponding element in o} is equal to ¢ (a,). Therefore,
a(a) reduces to a, (a) modulo p". O

In [Ta, Section 4], Tate considers the homomorphism

ar: A(p)(0) —> Hom (T (A(p)), U)
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defined by duality of the p-divisible groups .A(p) and A( p). Here U; denotes the
group of units congruent to 1 in o. It follows from Theorem 3 that ey coincides with
the restriction of & to the open subgroup A(p)(0) of A((C p)-

We now consider the restriction oy of the map « to the torsion part of A((C p):

tors: A(Cp)iors = A(Q))tors —> Home(T A, 0%)iors = Hom (T A, ).

Here u = ,u,(@p) is the group of roots of unity in o* or @: Note that the Kummer
sequence on Ag induces an isomorphism

ian: HY(A, uy) — HY(A, Gp)n.

Proposition 2. The map oo is an isomorphism. On A N(@p) it coincides with the
composition:

—1

a ‘A
AN@p) = H'(A,Gu)y —> H'(A, uy) = Hom (T A, uy).
Proof. By Theorem 3, the restriction of « to A N (@p) is the map
An(Qp) — Hom(AN(@,), un) = Hom(T A, juy)

coming from Cartier duality A Ny =~ Hom(Ay, G,,) over @p. The canonical identifi-
cation Hom (T A, uy) = H LA, un) can be factorized by the isomorphisms

Hom(A, uy) — BExt' (A, uy) — H'(A, ),
where the first map is induced by the exact sequence 0 - Ay - A - A — 0 and

the second map is the forgetful map associating to an extension the corresponding
un-torsor. Since the diagram

Hom(Ay, ty) — Ext!(A, uy) —— H(A, uy)

T

Hom(Ay, Gp) — Ext' (A, Gy — H'(A, Gy

|

Ay@,) ———Ay@Q))

commutes, our claim follows. O

Next, we need an elementary lemma. Consider an abelian topological group m
which fits into an exact sequence of topological groups

0— H—>1—7"—0
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where H is a finite discrete group. Later 7w will be the abelianized fundamental group
of an algebraic variety. Applying the functor Hom. (7, _) to the exact sequence

1
0—>/L—>0*E>Cp—>0,

we get the sequence

1
0 — Hom,(w, ©) — Hom,(m, 0*) 28 Hom,(w,C,) — 0. (10)

Lemma 3.

(a) The sequence (10) is exact.

(b) In the topology of uniform convergence Hom, (7, 0*) is a complete topological
group. It contains (0*)" as an open subgroup of finite index and hence acquires
a natural structure as a Lie group over C,,. Its Lie algebra is Hom. (7, C,) and
the logarithm map is given by log,.

Proof. (a) Since Hom, (7, _) is left exact, it suffices to show that log, is surjective.
As Hom.(H, C,) = 0 we only have to show surjectivity of log, for 7 = 7", hence
form = 7. We first prove that the injective evaluation map ev : Homc(Z, 0*) — o™,
ev(e) = @(1) is surjective.

SetUy={xeco*||[x—1 <1}andUp={x €0* | |x -1 < p_l’%l}.The
logarithm provides an isomorphism

~ 1
log: Up— Vo={xeC,||x|<p » T}

whose inverse is the exponential map. Therefore, Uy is a Z ,-module and it follows that
ev: Hom¢(Z,, Uy) = Uyisanisomorphism. We claim thatev: Hom¢(Zp, U1) <
U, is an isomorphism as well. Fix some b in U;. We construct a continuous map
¥:Z, — Uy with ¥(1) = b as follows. There is some N > 1 such that
p" e Up. Hence there is a continuous homomorphism ¢: pVZ » —> Uy such
that p(pNv) = (pr)” for all v € Z. Because of the decomposition 0™ = () x U
the group U is divisible. Hence there is a homomorphism v': Z, — U; whose
restriction to p’v Z, equals . It follows that ¥ is continuous as well. Because of

1//’(1)1’N =y'(pN) = bP" there is a root of unity ¢ € p,v with ¥'(1) = ¢b. Take
the continuous homomorphism ¥ : Z,, — pp~ C Uy with ¢”(1) = ¢! and set
v=y"-y"

The natural projection Z—>17 p induces a commutative diagram

Hom(Z,, U1) ~———— Hom.(Z, U;)

N /
Uj.
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It follows that ev: Hom, (Z, Uy) — U is an isomorphism as well. Using the de-
composition 0* = () x Uy where up) carries the discrete topology we conclude

that ev: Hom, (Z, 0*) —> 0™ is an isomorphism. Using the commutative diagram

N log, N
Hom,(Z, 0*) —> Hom(Z, C,) == Hom.(Z;, C,)
l? ev lz ev
It
o* * Cp,

we see that log,, is surjective for 7 = 7 and hence in general.

(b) With the topology of uniform convergence, Hom, (7, 0*) becomes a topolog-
ical group. This topology comes from the inclusion of Hom, (7, 0*) into the p-adic
Banach space CO%mr, C p») of continuous functions from 7 to C, with the norm

171l = max | ()l

Since Hom, (7, 0*) is closed in CO(rr, C p) it becomes a complete metric space and
hence it is a complete topological group. We now observe that the continuous evalu-
ation map ev: Hom, (Z 0™) 5 o*is actually a homeomorphism. Let x, — x be a
convergent sequence in 0* and let ¢, ¢ : 7. — o* be the continuous homomorphisms
with ¢, (1) = x, and (1) = x. Since ZZ! is dense in 7 we get

lo — @ull = max |@(y) — ()| = suple(n) — ¢, ()| = sup |x" — x}|

veL n>1 n>1

Ix—xv|sup|2x‘ ==l <y — x|
n>1 i=0

Hence ¢, converges uniformly to ¢.
It follows that Hom,(Z", ¢*) and (0*)" are isomorphic as topological groups. The
exact sequence of topological groups

0 — Hom(Z", 0*) — Hom,(r, 0*) — Hom,(H, 0*) = Hom,(H, WiH|)

shows that Hom, (7r, 0*) contains (0*)" as an open subgroup of finite index. Hence
Hom, (i, 0*) becomes a Lie group over C,. It is clear that the analytic structure
depends only on 7 and not on the choice of an exact sequence 0 - H — 7 —
7" = 0 as above. The remaining assertions have to be checked for 7 = = 7" and
hence for 7 = Z only where they are clear by the preceeding observations. O

Remark 2. The proof shows that the topologies of uniform and pointwise convergence
on Hom, (77, 0*) coincide.

By [Bou, III, Section 7, number 6], there is a logarithm map on an open subgroup
U of the p-adic Lie group A(C,,), mapping U — Lie A(C,), such that the kernel con-

sists of the torsion points in U. Since A((C »)/ U is torsion (see [Co2, Theorem 4.1]),
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the logarithm has a unique extension to the whole Lie group AC p)- It is surjective
since the C,-vector space Lie AC p) is uniquely divisible. Therefore, we have the
exact sequence

0 —> A(Cplors — ACp) 25 Lie AC,) = H'(A,0)®C, — 0. (11)

Using Proposition 2 and Lemma 3, we therefore get a commutative diagram with
exact rows and G g -equivariant maps

A N lo .
00— A<(Cp)mrs A((Cp) £ LieA((Cp) HI(A’O)®@],(CI’ —0
ators¢l OZ\L \L& (12)

0 — Hom (T A,n) = Hom (T A,0*) = Hom.(TA,Cp) = H}(4,Q,)®C, — 0.

Here « is the map induced by « on the quotients.
We will prove next that « is a p-adically analytic map of p-adic Lie groups. It
follows that @ = Lie «.

Lemmad. Let §: A((C p) X TA — 0* be the pairing induced by the homomorphism

o A(Cp) — Hom (T A, 0*). Then B is continuous. In particular, o is continuous.

Proof. Denote by r,: /l(o) — fl(on) the reduction map. Since the kernel of r, is
p-adically open, it contains an open neighborhood W C A(C p) of zero.

Fix (a,y) € A(C p) x T A mapping to z = B(a, y). We show that the preimage
of the open neighborhood z(1 + p"0) is open. Let N > 1 be big enough so that r,, (@)
is contained in AN(on) If U denotes the kernel of the projection TA — A () )
the neighborhood (@ + W, y 4+ U) of (4, y) maps to z(1 + p"o) under B. Since the
topology on Hom.(T A, 0*) is the topology of pointwise convergence by the remark
following Lemma 3, continuity of 8 implies continuity of . O

Let us fix some y € T A, and denote by v, the induced homomorphism
¥y = B(—, y): A(Cp) —> o*.
Proposition 3. v, is an analytic map, hence a Lie group homomorphism.

Proof. We will briefly write ¥ = v, in this proof. It suffices to show that ¢ is
analytic in a neighborhood of the zero element ec, € AC p)-

Lete € Ao(o) be the zero section of flo. Since flo is smooth over o, there is a
Zariski open neighborhood U C A, of e of the form

U = SpeCU[_x1, ~~-’xm+r]/(flv "'7fm)

such that the matrix ( d (e)) i,j=1..m 1s invertible over o.

By the theorem of 1mphclt functions (see, e.g., [Col,A.3.4]), U (0) contains an open
neighborhood V of e in the p-adic topology, such that the projection map g : U (o) €
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ot > o given by (x1, ..., Xy4r) —> (x1,...,x,) maps e to (0,...,0) and
induces a homeomorphism
qg:V—V

between V and an open ball V| € o” around zero. This is an analytic chart around
ec,- A function f on V is locally analytic around ec,, iff it induces a function on
V1 which coincides on a ball Vl’ C Vj around O with a power series in xp, ..., X,
converging pointwise on V.

Since by [Bou, III, Section 7, Propositions 10 and 11] the logarithm map on
A(C p) islocally around ec, an analytic isomorphism respecting the group structures,

there exists an open subgroup H of A((Cp) such that (p¥ H),>0 is a basis of open
neighborhoods of ec . By shrinking V' if necessary, we can assume that V' C H.
For n > 1 we denote by r, as before the reduction map

I'p: A(Cp) = A(U) — A(Un) = An(on),

where fln = /Al ® 0,.

Since the kernel of r,, is an open subgroup of A(Cp) it contains p” H for a
suitable v, > 0. Hence p" V is contained in the kernel of r,,, which implies that for
all x € V the point r,, (x) lies in the scheme .An pvn of pYn-torsion points in An

The element y in T A induces a pointin A, , (0,), whose image under the Cartier
duality morphism .

An,p”n (0p) — Hom(An,p"" » Gim,o,)

we denote by ¥,,. Then ¢ (x) for x € V is by definition the element in 0* C o
satisfying ¥ (x) = v, (7, (x)) mod p" for all n.

Let U, = U ®, 0, = specoy[xy,..., me]/(?l, ... ,?m) be the reduction of
the affine subscheme U C Ao. We write f for the reduction of a polynomial f over
o modulo p".

Then U, N An,puﬂ = speco,[xy, ..., Xmtr]/a for some ideal a containing
(?1, e, ?m). Since ¥, is an algebraic morphism, it is given on U, ﬂ./in,,,vn by a unit
ino,[x1, ..., Xm4+r1/a, whichis induced by a polynomial g,, € 0,[x1, ..., Xur]. Let
gn €0[xy, ..., xpqr]bealiftof g,.

The implicit function theorem also implies that possibly after shrinking V and
V1, we find power series 61, . . Gm € Cpllx1, ..., x,]] converging in all points of

V1 € o”, such that the map V; Iivc U (o) C o™ is given by
(x]9""-xr)'—> (x]5""xr591(x1’"'7xr)7"'59m(xl’"‘7xr))'

Foralli =1,...,mandalln > 1 let h;, € Cpl[xy,...,x,] be a polynomial
satisfying 60; (x) — h; ,(x) € p"o for all x € V1. We can obtain 4; , by truncating 6;
suitably.

Then the map V| v U,(o,) N fin,pvn (0n) ﬂ o maps the point

(x1,...,x) 08, X1, ..., X, 01 (X1, . X)), oo, O (X1, .o, X)),
Hence for all x = (x1, ..., x,) € V] we have
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1p(qil('x)) _gn(xl» --wxr»hl,n(xl, "'7-xr)1 '--vhm,n(xh ~--,xr)) € pno

Thus ¥ is the uniform limit of polynomials with respect to the coordinate chart
V1. This implies our claim. O

Corollary 2. The homomorphism o : A((Cp) —> Hom/(T A, 0*) is analytic.

Proof. Recall from the proof of Lemma 3 that evaluation in 1 € 7 induces an iso-
morphism Hom.(Z, 0*) =~ o*. Hence Hom(T' A, 0*) =~ (0*)%¢ by evaluation in
a Z-basis y1, ..., y2g of TA. This isomorphism induces the analytic structure on
Hom (T A, 0*). Hence our claim follows from Proposition 3. O

Let us now determine the Lie algebra map induced by «.
Recall from Section 3 that the map

03: H'(Ak, 0) ®k C, — H4(A,Qp) ®C,

coming from the Hodge-Tate decomposition of Hélt(A, Qp) ® C, is the dual of a
Zp-linear homomorphism
Oa: TyA — a)A(o)

defined using the universal vectorial extension of A.
Theorem 4. We have Lie o = 0.

Proof. We give two proofs of this fact.
(1) According to [Ta, Section 4], the diagram

A(p)(0) o Lie A(p) =——=H'(A,0)®g C,
or Liear
Home (T (A(p)). Ur) —=% Hom (T (A(p)), Cp) =— HL(A, Q,) ®C,

commutes. As we have seen, a7 is the restriction of o to fl( p)(0). Combining Cole-
man’s work in [Col] and [Co3, Section 4] with Fontaine’s results, specifically [Fo,
Proposition 11], it follows that Lie a7 = 6. Hence Lie o = 6.

(2) The result can also be proved directly. Consider for y € T),(A) the analytic

map ¥, : AC ») — 0¥ induced by «. It induces a Lie algebra homomorphism
Lie ¢, : Lie A(C,) —> Lieo* —> o,

where we identify Lie o* with o by means of the invariant differential dTT on Gy, o =
speco[T, T_l].

It suffices to show that for all y € T, A the map Lie v, is given by the invariant
differential 4 (y), i.e., that
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LAdT
yT =0a(y).

We use the notation from the proof of Proposition 3. Fix some n > 1 and recall the
morphism

Yo Uy N fln,pvn = spec 0,[X1, ..., Xmrl/0 — Gy o,
induced by a polynomial g,, € 0,[x1, ..., Xp4+,]. This g, defines a morphism
(”) Uy — Gy, -

Denote by i: Gp,o — G 0 the obvious closed immersion, and by i, the induced
morphism over o,. The diagram
(n)

n
Up ———— Gaq,o,

Knj Jin
A 14

n
Un N An’pvn —— Gm,on

is commutative, where «;, is the canonical closed immersion.

Similarly, the lift g, of g,, too[x, ..., X;;+,] defines amorphism (p(”) U — Gy
over o, which induces an analytic map ¢ : U(0) — o.

The space of invariant differentials @ A(U) is an o-lattice in the C,-vector space
w ;(Cp). For any analytic map h: V — C, we denote by (dh), the element in the
cotangential space w;(Cp) =~ Mecp / M ec, given by the class of & — h(e) modulo

2 . .
M, e, Here Mecp is the ideal of germs of analytic functions vanishing at ec,.

It j U < A" denotes the obvious closed immersion in affine space, the fact
that (

ax (e))l ,j=1..m 1s invertible implies that

 4(0) = T (speco, e*Qyy )

is freely generated over o by the differentials j*(dxi)e, ..., j*(dx;)e.

For all x € V we have io{(x) = i,°y,(r,(x))mod p”, hence i°y(x) —
9™ (x) € p"o C o. Since ¢ is a polynomial map, we may assume by shrinking
V., if necessary, that for all n the function (i ey — ™) o g~ is given by a pointwise

converging power series I=Giyo. i) ayl)x? ...x¥ on the chart V; 2, Vv, where

V1 = (p'o)” for somez > 0. For every multiindex 7 this implies p’(1++ir = ”a}") €
0. Then
dioy — ") =ally o Grdx)e+ - +af) o (Tdx)e € p" o 4(0).

In particular, for n > ¢ this implies d(i ° ), € w A(O)' Under the isomorphism

® 3(0)/P"w 4(0) — @ 4(0,), the element (dp™), € w ;(0) maps to (dpy"). €
 4(0,). Moreover, the diagram above implies that
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. dT
K:(d(py(,n))e = (d(in°oYn))e = W;,k (7) .
e
Besides, we can assume that v, > n, so that 0, is annihilated by p*. Then the exact

sequence

( pvn )*
;> ;P> 7 —>
wAn wAn a)An ,pbn O

induces an isomorphism «,;: @ 4 —> 7 . This implies
n n,p-n

dT
v (7> = d(i°y)e = d¢™)emod p"~w 4(0)

= )y (#) mod p"~w (o).

Now we take a closer look at the map 64.

By definition, 84 (y) = p" b, mod p”a)A(o), where b,v € E(0) is an arbitrary
lift of the p»-torsion pointa,w in A(0) induced by y € T, A to the universal vectorial
extension E. .

Cartier duality [, ]: A, pm X Ay, pn — Gy, o, induces a homomorphism

Ty An’pun — a)An‘p“n,
givenby a — [a, —]* dTT. Now we use an argument of Crew (see [Cr, Section 1] and
also [Ch, Lemma A.3]) to show that 64(y) = (fc,’f)’1 T, (@pvn ) mod p"a)A(o), where
apm € Ay(0,) is the reduction of ap .

Namely, by [Ma-Me, Chapter I, (2.6.2)], the universal vectorial extension E,, =
E ® o0, of A, is isomorphic to the pushout of the sequence

0— Appn > Ay - A, = 0

by (/c;f)’l o 1,. Hence we have a commutative diagram with exact rows

0 —> Ay pin Ay s 4, 0
@ A f
Ky Tz

0 @A, Ey, Ay 0.

Let byw be the image of b, under the reduction map E(o) — E,(0,). Since
multiplication by p”* on .A(0) is surjective, we can find some ¢ € A,(0,) with
p"c = apm. Then f(c) differs from b v by an element in w A (0,,), which implies
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p"bpm = f(p™e)
= ()~ T (@),

so that indeed
0a(y) = () Ty (@) mod p"w 4(0).

By definition, 7, (@pw) = ¥;5(41), so that for all n,

dT _1 dT _

v (T)e = (K:) l//: <?>em0d p" ta)A(a)
= 04(y) mod p"~'w 4(0),

which implies our claim. O

Corollary 3. The map « is injective.

Proof. This follows from Theorem 4 and diagram (12) since @ = Liea = 0} is
injective. O

By Theorem 4, the following diagram is commutative:

. log .
AC,) =——= H'(Ac,,.0"" —— H'(A¢,,0) —— Lleplch/K(Cp)

l le;; im

lo,
Homc(TA,(Cf,) i> Hom (TA,Cp) ——— LieHomC(TA,(Cj‘,).

This is in a certain way analogous to the following diagram for the Lie group

o=|(10)] <o

which we derive from Theorem 2:

log=id

H'(Ac,.U(0)) —— H'(Ac,, Lie U(Q)) === H'(Ac,.0)

N I

log, =id
Hom, (T A,U(C,)) 8=y Hom,(T A,Lie U(C,)) HL(A,Q)®C,.

1
Ext%ACp ©)

In the first diagram, the underlying group is G, in the second it is U =~ G,.
The next corollary was already observed by Tate in his context of p-divisible
groups [Ta, Theorem 3].

Corollary 4. The map o induces an isomorphism of abelian groups

a: Ag(K) — Hom, g, (TA, 0%).
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Proof. According to [Ta, Theorems 1 and 2], we have H 0(G k. Cp) = K and
HGg,C p(—1)) = 0. Hence the Hodge-Tate decomposition and Theorem 4 imply
that &« = Lie « induces an isomorphism:

@: H'(Ag,0) — H%Gk, HL(A, Q) ® Cp) = Hom, G (T A, C,).

We have H(Gg, A((Cp)) = AK (K). This follows for example by embedding AK
into some PV over K and using the corresponding result for PV. The latter is a
consequence of the decomposition PNV = AN II ... I A? over K and the equality
H(Gg,C p) = K. The corollary follows by applying the 5-lemma to the diagram
of Galois cohomology sequences obtained from (12). O

We next describe the image of the map « on AC »)-

Definition 3. A continuous character x: TA — (C; is called smooth if its stabilizer
in G is open. The group of smooth characters of T A is denoted by Ch®*° (T A).

Note that we have

Ch™(T A) = lim Hom, g, (T A, 0*),
L/K

where L runs over the finite extensions of K in @p. It is also the biggest G g -invariant
subset S of Hom.(T A, (C;‘,) such that the G g -action on S? is continuous. Here S° is
S endowed with the discrete topology.

Replacing Ag by A in Corollary 4 we find that & induces an isomorphism

a: A@,) —> Ch™(T A) C Hom (T A, o*).

Let Ch(T A) be the closure of Ch®(T A) in Hom (T A, 0*) or equivalently in
c%(TA,C »). Then Ch(T A) is also a complete topological group.

Theorem 5. The map o induces an isomorphism of topological groups
a: A(C,) = Ch(TA).

Proof. By Lemma 4, « is continuous. Hence

a(A(C))) = a(A@))) C a(A@))) = C(TA).
It now suffices to show that « is a closed map. Namely, because of
Ch®(TA) C a(A(C,)) C Ch(T A),

it will follow that a(/i((C p)) = Ch(T A) and « will be a homeomorphism onto its
image.
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SoletY C A((Cp) be a closed set. Let a(y,) for y, € Y be a sequence which
converges to some x in Hom.(T A, 0*). Since the map log, in (10) is continuous
in the uniform topologies it follows that Lie«(log y,) = log, a(y,) converges to
log, x.Because of the equality

Hom (T A,C)) = Homgz, (T, A, Cp)

the topology of uniform convergence on this space coincides with its topology as
a finite-dimensional C,-vector space. The map Lie « is a C,-linear injection by the
Hodge-Tate decomposition and Theorem 4. Hence it is a closed injection and therefore
the sequence log y, converges. As log is a local homeomorphism there is a convergent
sequence y, € A((Cp) with log ¥, = log y,. Writing y,, = y, +1, with¢t, € A((Cp)tOrg
we get a(y,) = a(y,) + a(t,). The sequence «(y,) converges by assumption and
the sequence «(y,) converges because « is continuous. Hence the sequence «/(#,) =
Qiors () converges. The groups A((C p)ors and Hom (T A, ) are the kernels of the
locally topological homomorphisms log, respectively, log,. Hence they inherit the
discrete topology from the p-adic topologies on AC ), respectively, Hom (T A, 0*).
Therefore, the algebraic isomorphism o is trivially a homeomorphism and hence
the sequence #,, converges. It follows that the sequence y, converges to some y € Y.
By continuity of « the sequence o (y, ) converges to «(y). Thus «(Y) is closed as was
to be shown. O

The following example was prompted by a question of Damian Roessler.

Example. Fix some o in Gg. Since « is G g -equivariant we know thatif a € A((C »)
corresponds to the character y: TA — 0¥, then o(a) corresponds to “y =
oo x oo, '. Here oy is the action on T A induced by o.

How about the character o o x : TA — 0*? Using Theorem 5 we will now show
that it also corresponds to an element of A(C p) provided that Ag has complex mul-
tiplication over K. For this, we have to check that in the CM case, the subgroup
Ch(T A) is invariant under the homeomorphism x +— o ° x of Hom.(T A, 0*). It
suffices to show that Ch®°(T A) is invariant. For y in Ch® (T A), there is a finite
normal extension N/K such that x is G y-invariant, i.e., 7! XT« = x forall 7 in
G y. It follows that

ot =0 't o) =ox(o 't o)t = o xlo, Tl

where we define the commutator by [0, 7] = 0 ~'t~lo7. By the CM assumption,

the image of Gk in the automorphism group of T A is abelian. Hence [o, 7] acts
trivially on TA and we have thus shown that ‘L'_l((IX)‘L'* = oy forall T € Gy.
Hence o ° x lies in Ch®°(T A). This proves the claim.

For a € A((Cp) let a, € A((Cp) be the element corresponding to o o x via
Theorem 5. By construction, the map (o, @) + a, determines a new action of Gg
on A(C ). It seems to be a nice exercise in C M -theory to give an explicit description
of this action.
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5 Line bundles on varieties and their p-adic characters

Consider a smooth and proper variety X ¢ over a finite extension K of Q,,. Varieties
are supposed to be geometrically irreducible. We assume that H'(Xg) has good
reduction in the sense that the inertia group Ix of Gk acts trivially on the étale
cohomology group H' (X, Q;) for some prime [ # p. Here X = Xx ® K.

The abelianization of the fundamental group 71 (X, x) is independent of the choice
of a base point x and will be denoted by nf‘b(X ). It carries an action of the Galois
group G even if Xk does not have a K -rational point. We will now attach a p-adic

character of nf‘b (X) to any line bundle L on X, whose image in the Néron—Severi

group of X, is torsion.

It is known that Bx := Pic())(K sk 1s an abelian variety over K. Its dual is the
Albanese variety Ax = Alby,/x of Xg over K. We put B = Bg Qg Qp and
A=Ak ®k @p'

Using the Kummer sequence and divisibility of Pic())( </K (@,,) one gets an exact

sequence o
0 — By(Q,) — H'(X,un) — NS(X)y —> 0 (13)

for every N > 1. Since the Néron—Severi group of X is finitely generated it fol-
lows that TjB = H' (X, Z;(1)) for every /. Thus Bk and hence also Ax have good
reduction. For sufficiently large N in the sense of divisibility we have

NS(X)tors = NS(X)N.

Applying Hom(_, ) to the exact sequence (13) and passing to projective limits
therefore gives an exact sequence of G g-modules:

0 — Hom(NS(X)tors, 1) —> 72(X) — TA —> 0. (14)
Here we have used the perfect Galois equivariant pairing coming from Cartier duality
An(@,) x By(@Qp) —> m-

For every prime number / the pro-/ part of the sequence (14) splits continu-
ously since T;A is a free Z;-module. Hence (14) splits continuously and applying
Hom,(_, 0*) we get an exact sequence of G g-modules

0 —> Hom(T A, 0¥) —> Hom,(7*(X), 0*) —> NS(X)iors —> O.
We set
Hom?(7*(X), 0*) = Ker(Hom, (7 (X), 0¥) —> NS(X)ors)-
Recall from Section 3 the continuous injective homomorphism

a: Pick, x(Cp) = A(C,) = Hom (T A, 0*) = Hom2(7¥®(X), 0*).
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Moreover, « is alocally analytic homomorphism of p-adic Lie groups over C,. Using
Theorem 4, we see that « fits into a commutative diagram with exact rows:

: . log .
0 = Pick . /x (Cplors —> Picy, /5 (Cp) — LiePick, ¢ (Cp) = H'(Xx.0O)®kC), —> 0
atorsil o Liea

o k
0 —> Hom({®(X), 1) —> Hom?(x{"(X),0*) = Hom, (w{*(X),Cp) == H'(X&,Qp)®C, —> 0.
(15)
Here we have set

Hom( (7" (X), p1) = Hom{ ({"(X), 0*) N Hom,(x{"(X), )

= Homg (n?b (X), 0%)tors-
Furthermore, note that:
Lie Hom?(7{®(X), 0*) = Hom,(7®(X), C)).

The map Lie « coincides with the inclusion map coming from the Hodge—Tate de-
composition of H' (X, Q »)®C,. This follows from Theorem 4 and the functoriality
of this decomposition.
Set
Ch™® (i (X)) = lim Hom{ ; (m{*(X), 0*)
L/K

andletCh (nlab (X)) beiits closure in Hom(c) (rrlab (X), 0™). We make similar definitions
with the s omitted.

It follows from Theorem 5 that « induces a topological isomorphism of complete
topological groups:

a: Pick, x(Cp) — Ch(m{*(X))°.

We will now extend the domain of definition of « to Pick  ,x (Cp). This is the group
of line bundles on X C, whose image in N S(X C,,) = NS(X) is torsion. We thus have
an exact sequence

0 — Pic}, x (Cp) —> Pick, /x(Cp) —> NS(X)ors —> 0. (16)

Theorem 6. There is a G g -equivariant map o* which makes the following diagrams
with exact rows commute:

00— PiC())(K/K((Cp) I l:‘icng/K ((CP) — NS(X)tors =0

0 — Hom( (7r{*(X), 0*) — Hom,(7{*(X), 0*) = NS(X)tors = 0

and
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. . log .
0 — Pick, /x (Cplors — Pick, x(Cp) — LiePick ¢ (Cp) — H'(Xx,0)®xC, — 0
llafors ia’ Liea"=Liew
0 = Hom, (7 (X),x) = Homc(7i®(X),0%) — Hom,(7*(X),Cp) = H'(X4.Q,)®C, — 0.

The map o is an injective and locally analytic homomorphism of p-adic Lie groups.
Its restriction af . to torsion subgroups is the inverse of the Kummer isomorphism.:

ix s Home(r{®(X).)=lim  H'(X.uy)—lim  H'(X.Gp)n=Pick . /g (Cpions.
The map aF induces a topological isomorphism of complete topological groups
o Pick, x(Cp) —> Ch(x{"(X)).

Proof. First, note that Picx,/x(Q,)ny = Picxy/x(Cp)n and Pick, y Q)N =
Pic%K /K (Cp)n because this holds for Pic? and because N S (Xc,) = NS(X).
As Pic())( /K (C,) is divisible, the sequence (16) gives a short exact sequence

0 —> Pic%, /x (Cpliors — Pick, /k (Cpliors —> NS(X)iors — 0.

We claim that the following diagram with exact rows commutes:

0 —=Pic%, /x (Cpliors —= Pick/k (Cpliors — N S(X)tors — 0

.—1
lators llx

0 = Hom(7r#*(X), jt) = Hom, (i (X), jt) = NS(X)iors = 0.

7)

If we make the identifications explicit which define the maps of the left square, we
see that on N-torsion it is the outer rectangle of the following diagram

PiC())(K/K((CP)N — AN((CP) = BN((Cp)( HI(X’Gm)N

a It 2 i1
lorsl E] lorsl i)?l l?lx
HomQ(7#®(X),un) = Home(T A, juy) = Hom(Ay.pun) = ByCH' (X.G)y > H (X, ).

Now [1]is commutative by definition, and [ ] commutes since the restriction of « to
AN((CP) is the map AN((CP) — Hom/ (T A, uy) = Hom(Ay, uy) coming from
Cartier duality. Hence the outer rectangle commutes as well.

The right square in diagram (17) is commutative since the second map in the exact
sequence (13) is induced by iy.

We now define o* on

Pick, /x(Cp) = Pic%, x (Cp) + Pick, /x (Cpliors
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by setting it equal to & on Pic())(K/K (Cp) and to i;(l on Picg(K/K (Cp)tors- This is well

defined since by the commutativity of (17), the maps « and i;l agree on

Pick , /k (Cp) NPick, /x (Cpliors = Pick, 1k (Cpiors.

The remaining assertions follow without difficulty. Note that Picg(K /K (Cp)tors carries
the discrete topology as a subspace of Picg(K /K (C,) since it is the kernel of the locally
topological log map. O

Acknowledgments. Itisapleasure to thank Damian Roessler and Peter Schneider for interesting
discussions and suggestions.
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1 Introduction

The classical theory of Eisenstein series and Eisenstein cohomology is rather well
developed; see [12] or [6]. For Shimura varieties it gives topological cohomology
classes with rational coefficients. In the present paper we study whether these classes
extend to /-adic étale classes over the integers with the prime [ inverted of a number
field. We show this for a certain special type of class on the Siegel moduli space, in
fact, even construct the class in K-theory. However, this construction follows known
techniques and is exceptionally simple, and there are many other more difficult cases
left. As an example, we treat the remaining class for genus 2, where we identify
the relevant L-factors and bound the denominator of Eisenstein-classes using p-adic
Hodge theory. Unfortunately, even here we cannot solve all relevant problems, and
the proofs use unpleasant explicit calculations.

The results were inspired by Kato’s construction of an Euler system in the coho-
mology of modular curves. All in all, we get some insight, but there remain many
open questions and problems whose solution requires new techniques.

2 Preliminaries

Suppose f: A — S is an abelian scheme over a scheme S of relative dimension g.
We also choose a prime / and assume that [ is invertible in S. Then the direct images
R £, (Z;) are smooth and equal to the i th exterior power of the dual of the Tate-module
T;(A) (which is a smooth [-adic sheaf on §). It is an old observation of Lieberman
that the (;-adic direct image R f, (Q;) splits as the direct sum of all Ri (Q)[—i]. This
follows because multiplications by integers n define endomorphisms of A/S which
induce on the ith direct images multiplication by n’. On the individual pieces the
direct image 1, (which is defined because multiplication by # is finite) acts as n28 .
More precisely, one can find a map
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28
Y gi @75 R f(Z)—i] — RfZ)
i=0

which induces on the ith cohomology multiplication by i!. Namely, the zero-section
S — A induces a direct sum decomposition

< (Rf(Zy) = 7y @ R fo(Zy[-1]).

The cup-product is antisymmetric, so antisymmetrizing under the symmetric group
(acting on R! £,.(Z;)®") gives

R £(Z) = AR £u(Z)) — RE(Z)]E],

which induces multiplication by i! on cohomology.
The ¢; are multiplicative in the sense that

$isj(@U ) = (’ f’)qsi(a) Ug;(B).

Also for any integers m prime to [/ the trace m. under multiplication by m acts on
the image of ¢; as m?¢~*. This holds because ¢; commutes with the pullback m* and
because of the projection formula

my -m* = m8.
Furthermore, if y9 € H28(A, Z;(g)) denotes the class of the zero-section (defined
by Poincaré duality) and 7 its projection in R?8 £, (Z;(g)), we can find an explicit
integer N such that
N - ¢ (v0) = N - (28)! - yo.

Namely, choose an integer m which is a generator of Z; if [ > 2, and (say) m = 3 if

| = 2. Then the product
2g—1

[ e —m?70
i=0

annihilates t<2¢—1 (R f(Z;)) and thus the difference ¢z, (y0) — (2¢)! - 0. As m fixes
yo as well as ¢, (1), we obtain the claim with

2g—i

N = ]_[ (1 —m27h.
i=0

If/ > 2, one checks that the maximal /-power in this product is equal to ) uz0l28/—
1){*]. For [ = 2, it increases by g.

If x: § — Aisasection of f, the obstructions to divide x by [-powers define a
class d(x) € H'(S, T;(A)). Furthermore, translation by x defines an operator T, on
cohomology. These are related as follows: Interior multiplication defines a pairing
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AN(Ti(A)) x R £,(Zy) — R fu(Zy);
H (S, A (Ti(A))) x HO(S, R (7)) — H' (S, R fiu(Z)).

Furthermore, R28 f«(Z;(g)) is canonically isomorphic to Z;, with generator yp, and
the ith cup-power of d(x) defines an element in the first factor of the pairing. We then
have the following formula which holds in

HI(A, Qu(g) = [[H/7 (5. R fu(@i(e)).

Lemma 1. We have

T} () =) (d(x)", a)/n!.

Proof. We first consider the action of T on 7<| (R f(Z;)). This complex splits (use
0%), and T;¥ — T} defines a map

R! f(Z)[-11 = 7

that is a class in H(S, Tj(A)). It can be described as follows.
There exists a universal element in H!(A, f*(T;(A)), whose reduction modulo
[" classifies the A[l"]-torsor given by the exact sequence

0—> A[l"] —> A5 A —> 0.

The action of 7\ — 7" is described by pulling back this torsor via x. But this pullback
is classified by d(x), and this implies the above formula (even without denominators)
for the action of 7 on t<| (R f,(Z;)).

For the action on R! £, (Q;) one uses the cup product and that interior multiplica-
tion by d(x) is a derivation for that cup product. In fact, this argument even allows
us to control denominators:

We have defined maps

b R f(Z)[—i] — Rf(Zy),

by antisymmetrizing the i-fold cup product of ¢1. They induce multiplication by i!
on cohomology. Then our argument gives the formula

J .
INCHCHED Y (f)¢,i<<d(x>", a)). o

i=0
3 First construction of an Eisenstein class
For A — S as before, we fix an integer n prime to [. Let

U=A—-A[n] CA,

and let fy: U — S be the restriction of f to U. Then R fu.«(Z;(g)) coincides with
R' f«(Zi(g)) fori < 2g — 1, while in degree 2g — 1 we have an injection
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R*®71 £, (Zi(9)) C R fy . (Zi(g))

with cokernel equal to the kernel of

fam«(Zy) — Zy.

The characteristic class of
Aln] — n% - {0}

defines a global section of this cokernel. Furthermore, for any nonzero integer m
the trace m, acts on R fy «(Z;) by first restricting to the complement of A[mn] and
then applying the usual trace for the finite morphism m-. The obstruction to lift our
class to R fy «(Z;(g)) lies in the hypercohomology of t<2,_1(R fi(Z;(g))), thus is

annihilated by
2g—1

[ e —m?75),

i=0
for any integer m. We choose m prime to n and a generator of Z;, as before. Then m,,
respects the characteristic classes of A[n] and of {0}, and we obtain by applying the

operator
2g—1

[ e —m?7%
(=0

a lift of N times our class. This lift may depend on the chosen nullhomotopy of our
operator, but applying it again eliminates the indeterminacy. Thus after multiplication
by N 2, we obtain a canonical class z, in H2~ (U, Z;(g)). However, it may still
depend on the choice of the integer m.

In view of the dependence on n we write U, = A — A[n]. Then on U,,,,, one
obtains the formula

2 1
Znyny =1 (Zny) + 13 Zny = 15(@n) + 13+ Zny.-

It holds because we always try to lift the same element in H O(A[n1n2l, Zy). Also for
any r prime to n we have for the direct images that r,(z,) = z,. Now our fundamental
class is defined by evaluating z,, at torsion-points x € A(S) of order prime to n.

Definition 1. We set z,,(x) = x*(z,) € H*¢71(S, Z;(g)). For any integer n such that
n-x=xletz(x) =1/(n* — 1) - z,(x) € H3¥71(S, Qi(g)).

It follows from the equations above that z(x) does not depend on the choice of n.
The theory generalizes to semiabelian varieties. Such a variety G is an extension
of an abelian variety A by a torus 7,

0—T —>G—A—0.

As before, the direct images R f«(Zy) are exterior powers over the dual of the Tate
module 7;(G), and the direct image splits rationally. Any section x : S — G defines a
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class c(x) € H'(S, T;(G)), and the translation action of x is given by the exponential
of interior multiplication by that class. Also we have the direct image with compact
support R f1(Z;) which is dual to the usual direct image (Poincaré duality), and on it
the translation action is the exponential of interior multiplication as well.

Our class is an eigenvector for the Hecke operators: Choose a prime p not dividing
the order of x. The p-adic Hecke algebra acts by correspondences (on the moduli space
parametrizing A) which send A to a formal linear combination of A’s with p-isogenies
A — A’, and the torsion-point x” which is the image of x. It has one generator which
sends A to all its quotients A’ = A/H, with H C A[p] an isotropic subgroup of
order pé.In addition foreach O < i < g there are operators which map A to quotients
A/H with H C A[p?] isotropic of order p?¢, and H N A[p] of order p?8~.

Now by the projection formula we have

20 =) zx+ M,

heH

so the sum of all z(x") (which describes the Hecke action) is equal to a sum over
z(x+h), each summand occurring with multiplicity equal to the number of subgroups
H (of the type prescribed by the Hecke operator) which contain /. For the first type
(maximal isotropic H C A[p]) the number is

g .
[Ta+p"
j=1

(for h = 0), respectively,
g—1
[Ta+p)
j=1

(for h # 0). Thus this Hecke operator maps z(x) to

g—1
[T+ p7) - Gpx) + pfz(x)).

j=1

For the other Hecke operators, indexedby 0 < i < g, we similarly obtain numbers
which only depend on whether 4 vanishes, or has precise order p, or precise order p?.
Thus the Hecke operator maps z(x) to a certain linear combination of z(x), z(px),
and z(p2x).

In fact, we have not used the polarization, and could instead divide by arbitrary
subgroups H C A[p]. These generate the Hecke algebra for GL(2g) instead of
GSp(2g), and again map z(x) into linear combinations of z(x) and z(px).

4 Behavior under degeneration

We investigate what happens to our class at the boundary of the Siegel moduli space.
More precisely, we consider rigid quotients G = G/i(Y), where G is an extension
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of an abelian variety B of dimension g — 1 by the torus G,,, and Y = Z a group of
periods, as is explained in the book [3]. The varieties B are classified by a moduli
space of abelian varieties of dimension g — 1, the extensions G by the dual B’ of the
universal abelian variety B, and finally the period map ¢ lifts a certain map Z — B
which is determined by polarizations. For principal polarizations B = B’, and the
projection of ¢ to B classifies the extension G. After choosing one lift, ¢ differs from
this lift by a map n — ¢, where ¢ is an element of the base. Thus the formal
completion of the moduli stack Ag along this boundary stratum looks as follows:
Start with the moduli stack .Ag_1, with its universal abelian variety B — Ag_;.
Over the fiber product B" x A, B wehave the Poincaré bundle 7 (whose total space

is the universal semiabelian G), and the associated A!-bundle. We name the first
factor B because for arbitrary polarizations it is the dual of the universal B. In our
case B’ = B, but it is still useful to have different names for the factors. Denote by
M — B! the G,,-torsor opposite to the restriction of P to the diagonal. The formal
completion of the associated A!-bundle along {0} is the desired formal completion of
f{g along its boundary stratum. To keep our previous notation denote S° = M, let S
be the associated A!-bundle, j: 8¢ — S the inclusion, and S the formal completion
of S along the zero-sectioni: B — S.

Over § the universal semiabelian scheme G is the quotient (via the Mumford
construction) of the universal semiabelian extension G, by a group of periods ¥ = Z.
That is, over each affine ring of the formal scheme we have such a G. The periods lift
the map ¥ x B — B whichis —id on {1} x B. This lifts canonically to the desired
period map ¥ — G (8°) over S°.

The Mumford construction of the quotient G can be described as follows: Locally
we obtain degeneration data as above, with ¢ denoting a local equation of {0} C
A'. Then embed G into a relatively complete model P which (in this case) can be
given explicitly: In the projective line P! over our base, blow up the codimension-2
subscheme defined as the intersection of {0, co} and {g = 0}. The result has as special
fiber the join of three P's. Repeat the procedure at the ends and continue, to obtain a
scheme Py which over {g # 0} is equal to P!, and over {g = 0} to an infinite join of
P's. G,, operates on Py, and the operation of ¢ on the generic fiber extends (and shifts
the infinitely many components in the special fiber). This construction is insensitive
to multiplying ¢ by a unit, thus globalizes to our formal completion of flg.

Now

P =G x® B

is the induced G-scheme. Its special fiber is an infinite join of P!-bundles over B’ x B,
indexed by integers r € Z, and the rth component is the projective bundle associated
to the Gy, -torsor P ® pry(M Y®~". It admits a free operation of ¥ = Z, and the
quotient P = P/Y exists first as a formal scheme but is seen to be algebraic because
it is relatively projective. It contains the universal semiabelian G as open subset,
corresponding to the open subset of P which is the union of all Y -translates of G.
Next, we introduce level structure. Choose an integer N > 3 which will be as-
sumed sufficiently divisible so that all occurring torsion points are N-torsion and
work over Z[1/N, ¢y]. The stack A, y classifying principally polarized abelian va-
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rieties with level- N-structure is actually a scheme, and its toroidal compactification
Ag  at least an algebraic space, and for suitable choices also a scheme. Over A,_|
we have the universal g — 1-dimensional abelian scheme B, with level- N -structure.
The scheme SY; is the Gy,-torsor My over va opposite to the restriction of the Nth
power of the Poincaré bundle to the diagonal, and Sy the associated A'-bundle. The
universal semiabelian G y now corresponds to the N'th power of the Poincaré bundle,
and the period map (: Y — Gy is equal to the tautological map multiplied by N,
so that it extends canonically to 1/N - Z (the image of 1/N lifts —id: B;V — Bpy).
Then G[N] has a canonical basis (as the extension is defined by the Nth power of the
Poincaré bundle), and so has the Mumford quotient G (add ¢(1/N)). Furthermore,
we obtain Py whose special fiber is an infinite join of P!-bundles over BY, x By, in-
dexed by integers r. The rth component is the projective completion of the G, -torsor
fp®N ® PTT(MN)@)_r.

To compute the invariants z(x) we consider its image in the cohomology of
i*Rj.(Z;) on the special fiber By. The coefficients i*R j,(Z;) depend only on the
normal bundle of the embedding of the special fiber:

In general, if Y C X is a smooth divisor in a smooth scheme, denote by X’
the affine bundle associated to Ox (Y), and by ¥’ = X its zero-section. We have a
tautological section s : X — X’ with s*(¥Y’) = Y, and s* induces an isomorphism on
vanishing cycles. The same holds for the pullback of affine bundles via Y C X, and
the assertion follows. Similarly, we construct a class on an open subset of the special
fiber of P whose boundary is the characteristic class of the (relative to $°) zero-cycle
Gn] — n*8 - {0}, as follows:

This zero-cycle lifts to a cycle Z on G, for example, as the sum of all translates
t(i/n) + é[n] (0 < i < n), minus n?¢ - {0}. We can indeed find such a zero-cycle
with rational coefficients such that its characteristic class in H!zg (G, Z;(g)) vanishes.

Namely, we replace each point ¢(i /n) + x (with x € G[n]) by a linear combination

D ar- (o +i/n) +x)

reZ

with ) . a, = 1,) . a,(r +i/n)® = 0for 0 < s < 2g. This is possible with r
ranging from O to 2g — 1, because the determinant of this system of linear equations
is nonzero. As the characteristic class of a point is obtained by the action by translation
on the characteristic class of {0}, as this action by translation is the exponential of the
class of the point in H L, Tl(é)), and as this class is up to torsion proportional to
r + i/n, the assertion follows.

We may also assume that for any integer m = 1(mod n) the cycle m,(Z) (that is,
multiply each point in Z by m) differs from Z by a cycle of the form ¢((1) + Z1 — Z,
where Z is itself cohomologeous to zero: Namely, in the notation above we have

m, (Z ar - {er+i/m)+ 00} =Y ar - Llr+i/n)+ x})

= ar-({ulm - (r+i/n) +x} = (u(r +i/n) +x))
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=)+ 2) - Z,

with
(m—1)(r+i/n)—1
Z]=Zar Z {t(s+r+i/n)+x}.
r s=0
The class of Zj is then a linear combination, with coefficients that are cohomology
classes, of the sums

(m—1)(r+i/n)—1

Zar- Z (s+r+i/n),

s=0

for 0 <t < 2g. Here the inner sum is a polynomial in r + i /n without constant term
and of degree ¢ + 1. It vanishes if we choose the a, such that

> ar(r+i/n) =0

for 0 < t < 2g (that is, one degree higher than before).
Now fix one m > 1 as above. There exist cohomology classes

Z.21 e H¥ (G — |21, Qu(g)
with boundaries the classes of Z, Z;, and thus
(my —id)(Z) — (1) —1id)(Z1)

has trivial boundary and extends to a class in H 2-1(G,Q, (2)). This class lies in
the image of (m, — id) and correcting 7 we may assume that it vanishes. That is,
my(Z£) — Z lies in the image of ¢(1), — id, in the inductive limit of cohomologies
with compact support of G — (finite union of ¢(r 4 i/n) + x). It then follows that the
same holds for any other m’ = 1(modn).

Now recall that we have defined a compactification PyofGy by first forming the
associated P!-bundle over By and then repeatedly blowing up {0, oo} in the special
fiber. It admits an action of 1/N - Y. After sufficiently (but only finitely) many of these
blowups all sections in the support of Z extend to sections of this blowup and lie in
the union of the 1/n - Y-translates of G. If we extend the derived direct image over
§% under the inclusion GN —|Z| - GN of Q;(g) by zero to all of 13, the derived
direct image under j gives a sheaf on our partial blowup which is the extension
by zero of the corresponding sheaf on the complement of {0, oo}. Thus Z induces a
cohomology class with coefficients in the sheaf i*R j,(Q;(g), over Py — | Z|, with
support contained in finitely many of the irreducible components of the special fiber
of Py.If we represent i *R j, (Q;(g)) by a complex of Y-equivariant injective sheaves
(better: multiply by a common denominator and then use coefficients Z/(I*) for all
s) we may form the (locally finite) sum of all Y-translates of our class, and it defines
a class on the quotient with boundary the projection of Z. Equivalently, we take the
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trace of Z under the projection P — P, and it defines there a class z, with boundary
Z. Also one checks that it is fixed by m.: The closure of the graph of multiplication
by m on G defines another relatively complete model P* c P x P, and m, on

i*Rj.(Qy(g)) is given by pullback via one projection and push forward via the other.
As 7 is invariant under this operation up to classes which vanish under the projection
to P, we get our claim. It implies that our projection is the class z,,. Namely, it differs
from it only by the image of a class in H?¢~!(Py, i*Rj*(Q;(g)), and m, — id is
bijective on that group (reduce to Y -equivariant cohomology on Py, and filter by the
pullback of i*Rj,(Q;(g)) on Bf\, X By etc.). In other words, we have represented
that class in terms of the Mumford construction.

To compute its bad reduction we have to do the same for the class z. For this
denote by the inclusion of 151‘\’, into Py by j. Then the derived direct image R j, (Q;(g))
has cohomology in degrees 0, 1, 2. In degree 0, this cohomology is Q;(g), in degree
1 the direct sum of the direct images of Q;(g — 1) on the components (P!-bundles
over Blt\, X By) E,, and in degree 2 the direct sum of the direct images of Q;(g — 2)
on the intersections E, N E, 4 of two consecutive components. A cohomology-class

w € H"(Py, Qi(g)) = H" (P, Rj.(Qi(g)))
has as image in t>2R j,(Q;(g)) a finite sum of classes in
H"2(E; 0 Ery1, Qu(g — 2)).

As this sum lifts to 71 (R j,(Q;(g)) the relevant obstruction vanishes, which means
that for each r the cohomology class in H" (E,, Q;(g — 1) which is the sum of the
direct images of the two contributions from E, N E,_; and from E, N E,| vanishes.
It then follows by induction that all these vanish individually, starting from the fact
that this holds for very small » (because of compact support). Hence we conclude that
our class lifts to H)" (Pn, T<1R j«(Q:(g))), and the lift is unique up to the boundary
of a sum of classes in H!m*3(E, NE-v1,Qg —2)).

Projecting modulo t<oRR j, (Q;(g)), we obtain a direct sum of classes in H m=-1(E,,
Qi (g—1)), unique up to the possibility to shift the directimage of aclassin H” 3 (E,N
E 11, Qi(g —2)) from degree r to degree r + 1. Finally, the sum of the direct images
of this class in H!m+l (Pn, Qi(g)) is the obstruction to lift to 7<1 R j,(Q;(g)) and thus
vanishes.

Recall that the cohomology of a P'-bundle with section is the direct sum of two
copies of the cohomology of the base, one mapping to it via pullback 7* and the
other via direct image of the section. As in our case we may shift these direct images
between components, we may assume that for all » 7~ O our classes are pullback of
classes

w, € H"~'(By x By, Qi(g — 1),

while for » = 0 we obtain the direct sum of the pullback of wg and the direct image
(via Eg N Ey C Eg) of aclass in H" > (BY, x By, Qi(g —2)).

Now we use the condition that the sum of the direct images of our classes vanishes.
Restricting to E, for r # 0, 1 we get the equation (N, = normal bundle)
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iO,*(wr—l) + ioo,*(wr+l) +c1(N;) Uw, =0.

As N, = M(—{0, oo}), and as iy x — ico,« is multiplication by the first Chern class of
PeN My, this reads

ioo,*(wrfl + wrg1 — 2wy) + JT*(Cl(M) U w,
+ (Ne1(Pn) —rei(My)) U (wy —wy—1)) = 0.

Thus the first component vanishes, that is, w,_; + w41 = 2w, for r # 0, 1, and
it follows by induction that all w, vanish. The same then follows for the additional
contribution on Ey. In other words, any section of H," (P, Qi(g)) extends to a section
of H™ (Pn, Qi(g))-

This picture has to be modified if we deal with z. Namely, for each r we have a
section i, of I5N over the preimage in Sy of the graph of multiplication by —r: Bj\, —
By, and, in fact, we also have sections if we translate by N-torsion-points x of G N-
Now Z is also allowed to have poles along these sections (which give subschemes
of codimension g), with constant residues in ;. This means that in our analysis we
have to add to the divisors E, also the subschemes i, (Sy). As the new (constant)
residues are regular at the boundary it follows as before that the projection of Zy to
the truncation 7> of the direct image vanishes, so we can lift as before to t<;, and
again get classes

wy € H*¥ 2(BYy x By, Qu(g — D).

Furthermore, the sum of the direct images of all classes vanishes. Restricting to E,
this gives a relation between the w,, which now, however, gets an additional term
coming from the section i,. Namely, the sum of the residues of zx on the G NIN]-
translates of i, is a number a,, which vanishes if r is not divisible by N/n. Also we
know that Zr a, - r' vanishes for 0 < ¢ < 2g. Now i, contributes to our equation the
direct image i, , of the graph of —r: B[’\, — By, thatis, ino « (1, —=1)«(ca), With ca
the class of the diagonal in Hzg_z(Bf\, x By, Qi(g — 1)) (io.« gives the same result
because the bundle E, is trivial over the graph of —r). Hence we have the equation
(forr £0,1)
Wr—] + Wry1 — 2wy +ar (1, —=r)s(ca) = 0.

It has the unique solution

w, = Z(s —r)as(1, —s)«(ca)

s<r

(the sum vanishes for big r because (1, —s).(ca) is a polynomial in s of degree
2g — 2). It also follows that zy can be lifted to 7<; of the direct image in such a
way that its residue along each E is pullback of a section w, on B, x By, with no
additional local component.

For completeness we also note (although it is not needed) that from the fact that
the sum of direct images vanishes on E, we have only used half, namely, that the
component given by i 5 vanishes. In addition, we have a component which is 7;* of
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cit(M)Uw, + (Nc1(Py) —rcit(My)) U (wy — wy—1).
One checks that this indeed vanishes for our solutions w, because
(sc1(M) — Nci(Pn) U (1, —=5)x(ca) =0

by the projection formula, since prj (M )®s = P?N over the graph of (1, —s).
Finally, we derive that the residue of z(x) at the boundary depends only on the
g-component ¢’/N of the torsion-point x. It is equal to the sum

—10¥ =1 Y (s —Dag(1,—r)*(1, =9)(ca)

s<t,t=r(mod N)

=—1/(* = 1)) (s = N* ascq).

s<r

To evaluate this sum, introduce new variables u = s/N, v = t/N, and consider
the function

fy= > @—v—)*ay.
JE€L u<v+t
It is periodic in v with period 1, and its (2g)th derivative is —(2g — 1)! times the sum
of ayy - (§-distribution in the projection of s to R/Z). The latter is

n—1

n*®(=80+ > 1/n-8jm).

j=0

If we expand f(v) in a Fourier series, we can read off the coefficients from those of
the §-distributions. The result is

f)=Qg—Dn* > —expuikv)/Qmik)*.
keZ—n-7

If v is such that nv — v is an integer, this is equal to
— (g —Dn* Z exprikv)/(2mwik)®
keZ—n-7

=—(Q2g — D! — 1)) exp2mikv)/Q2mik)*.
k0

Thus finally the residue of z(x) in a torsion-point x € ¢(v) + Gis equal to the L-series

—(g — DIN*71/2ri)*8 Zexp(Znikv)/kzgcl{o}.
k0

The factor N2¢~! is the degree of the covering Sy — S.

Remark 1. The fact that we get a multiple of cjg) can also be read off from its trans-
formation under the isogeny which is multiplication by n on B’ and by m? on the
Poincaré bundle. It corresponds to dividing G by its isotropic subgroup G[n]+ T'[n?].
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5 The class in K-theory

We show that our Eisenstein class is induced by a class in K-theory, more precisely
from a multiple of it which lies in K. We construct such a class which is invariant
under pushforwards m, but we do not know whether this property makes it unique.
However, this invariance suffices to show that we obtain from it the étale class if we
apply the Chern character. The construction uses a little bit of topology but not the
sophisticated machinery of infinite loop-spaces.

Higher K’-theory is defined in [11]. For a noetherian scheme X we consider
the exact category M (X) of coherent sheaves on X, form the Q-category QM (X)
and its classifying space BQM (X). Morphisms M — N in QM (X) consists of
isomorphisms of coherent sheaves M = N,/Nj, where N € N> € N is a layer of
subsheaves. Then BQ M (X) is the geometric realization of the simplicial set whose
n-simplices are sequences Ngo — N; — --- — N, of maps in Q M(X). Finally,

K{(X) = 7i+1(BOQM(X)).

For example, for any coherent sheaf M there are two maps 0 — M in QM(X)
corresponding to the layers (0) € (0) and M € M. Their composition defines a loop
around (0) which represents the class of M in K(’)(X ). We note that BOQM(X) is a
connected H-space with the addition defined by direct sums, and thus an abelian group
in the category of CW-complexes up to homotopy. (The map (x, y) — (x,x + )
induces an isomorphism on homotopy groups of BQM (X) x BQM(X), thus is a
homotopy equivalence.) Also in the definition of M (X) we may consider only coher-
ent sheaves up to canonical isomorphisms, by passing to an equivalent subcategory.
Thus in the following we identify sheaves which are canonically isomorphic.

For a relative abelian scheme A — S, of relative dimension g, the Fourier trans-
form

F: BOM(A) — BOM(A)
is defined as
F= prz’*(pr’iF UPL),

where P4 denotes the Poincaré bundle on A x g A; see [10]. The composition F o F
is equal to (—1)8 - [—id ], thus F induces homotopy equivalences on the B QMs.
Finally, for direct images under multiplications, we have

F([ml«(x)) = pry . (pri[ml«(x) UPy)
= pry . ([m] x id)«(pr} (x) U PZ™)
= pry, (id x [m])* (pr} (x) U P)
= [m]*F(x).

Thus the Fourier transform intertwines [m], and [m]*.

Now assume that S is quasi-projective. We note that for a quasi-projective scheme
X and any vector bundle £ on X multiplication by £ — rank(€) is nilpotent (up to
homotopy) on BQM (X). Namely, we may tensor £ by a suitable ample line bundle
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and then assume that there exist (at most dim(X) + 1) maps 0% — & such that
locally near any given point of X at least one of them is an isomorphism. Then the
tensor product of all these complexes is acyclic and realizes the desired homotopy.

As for our abelian scheme A [m],[m]* is equal to multiplication by [m].(O,), it
follows that [m ], [m]* — m28id is nilpotent on B QM (A), up to homotopy. By Fourier
transform this also holds for the other composition [m]*[m], — m28id. Especially if
x € A(S) denotes an m-torsion point, then translation by x defines an automorphism
T, of BOM(A) with

[m] Ty = [m]s,

and thus m?8 (T, — id) is nilpotent up to homotopy. As T = id it follows easily that
for some sufficiently high power m” the multiple m" (T, — id) is nullhomotopic (we
may take r = (2g 4+ 1)(dim(A) + 1)).

Thus we obtain a homotopy between m” T, and m”, which can be considered as a
path from f = m”"Ty to g = m" in the mapping space Map of continuous maps from
B QO M(A) into itself, with the compact open topology. We would like this homotopy
to be canonical, which we can achieve after increasing r: Namely, two paths p, up to
homotopy, from f to g differ by a closed loop in the fundamental group of either f
or of g. As Map is an H-space itself these fundamental groups can be identified with
the fundamental groups at the origin and the two actions coincide. Also the group
structure is induced by the H-space structure. Finally, composition with f or g on the
left acts on the fundamental group as m”, f and g commute (not just up to homotopy),
and f™ = g". Any path p from f to g induces paths f"~~1g’ o p from f" gl
to fm~i~lgi*t1 by composing on the left with f”~~!g/ and thus a closed loop !
around f™ = g™. Adding a closed loop / to our initial homotopy changes [ by m” 1,
so we obtain a canonical path }_; f™~~!g¢! o p — h (independent of initial choices,
up to homotopy) between m’ ! f = m> 1T, and m"+'g = m**!. This procedure
commutes with compositions on the right. Especially for any other integer n we have
[n]+ T = Tx[n]s and thus composing our homotopy between m’ ™! T and m”+! with
[n], on the left is the same as composing the canonical homotopy between m”+17;,,
and m"+! with [n], on the right. A similar statement holds for arbitrary isogenies.

As an application we note that we obtain an explicit homotopy between the two
loops in BQ M (A) representing m?+1 Oy and m?+1 Oyx. Restricting to A — {0, x}
this gives a class in (B QM (A —{0, x})), invariant under all [n], for whichnx = x.
Pulling back via torsion-points y (well defined because of finite Tor-dimension) gives
an Eisenstein class in K (S)q. Applying the Chern character into étale cohomology,
we get an étale cohomology classin A—{0, x} with the correctresidues at the boundary
and invariant under [n]s. This must be the class used in the étale construction. That
is, the Chern character maps the K-theory class to the étale class.

6 The class in complex analytic cohomology

The Eisenstein class in Betti cohomology lifts to Deligne cohomology, or equivalently
has a Hodge-theoretic analogue. This of course already follows from the previous
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construction in higher K-theory, by applying a regulator. However, it is possible
to give an explicit formula, by calculating with Green currents. We represent this
calculation, without touching the various connections to “K-theory with metrics” or
“K1-chains in Arakelov—Chow groups.”

So assume given a relative abelian scheme A — S, with S a complex analytic
manifold, of relative dimension g, and two sections x, y € A(S) which are torsion
and everywhere nonzero. Then there exists a (g — 1, g — 1)-current (differential form
valued distribution) G with

390G /mi = 8, — §y.

As usual we consider two such Green’s currents equivalent if their difference lies in
the sums of the images of d and 9. In fact, we shall construct such a distribution such
that for any integer m > 1 with mx = x, my = y we have

(Iml« —id)*(G) = G.

If S is projective this determines G uniquely up to equivalence, and it is fixed by [m]*,
up to equivalence. In general I do not know about uniqueness. Finally, G will be C*°
outside of {x, y}, and evaluation at 0 gives a form on S. So let us first construct G.

If H = A denotes the C¢ bundle over S defined by the Lie-algebra Lie(A), we
can write A as quotient A = H/A, with A C H locally isomorphic to Z?8. If Q4
denotes the dual of the Lie-algebra of A we have a natural map Q24 — Op whose
image is the ideal defining the origin in H.

We can use this to define a Green’s current for the zero-section. Endow 24 with
the hermitian metric defined by a polarization on A, which then defines a metric
connection V and canonical representatives for the Chern classes (the coefficients
of the characteristic polynomial for —V?2/27i). Now exterior multiplication by our
tautological section defines a differential v on the pullback to H of the exterior algebra
/\°® ©4, which makes the resulting Koszul complex a resolution of the ideal of the
zero-section. If V denotes the metric connection we can form the superconnection

A, =V + /1 + v

and form the components of bidegree (g — 1, g — 1) of the regularized integral
(compare [2])

[e.]

dt
Go = 2mi)' 8 / try(Ngy exp(—Atz))T.
t=0
Then

390Go/2mi = 89 — (—1)gcg ().

Here try denotes the supertrace (alternating sum of traces) on endomorphisms of
End(/\® Q24), Ny the number-operator (equal to —g on QZ‘), the integrand de-
cays exponentially at infinity away from the zero-section, and at zero we use zeta-
regularization which amounts to the following:

Suppose f(¢) is differentiable at the origin and decays sufficiently fast at infinity.
Then
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f Fins =f () — fFOeHL.
t=0 t =0 t

Note that for an invertible A > 0, we then have

© dt © dt
f JFn)— =/ S(®)— —log(A) f(0).
t=0 t =0 t

It follows that under the action on H by a homothety A (amounting to multiplying ¢
by /|A]), Go changes by

1/21og(|A]) chg_1(A®R24),

which in turn is invariant under homotheties.

Translating G by elements x or y and taking the difference gives a Green’s current
for {x} — {y}. Formally summing over all translates under elements of A should give
a Green’s current on A. However, to make this sum converge we use the following
procedure:

Suppose x and y are torsion sections of A. Choose locally in § liftings X,, and
yv to elements of Ag, and rational numbers a,, by, such that for any polynomial
P e S[A%al] of degree < 2g + 1, we have

Y auPEL) =) b,PG).

This is possible; for example, apply to the formal linear combination X — y (using
some lifts) the operator ]_[ig;l ([m] — m?) and divide by ]_[3‘-{": (1 — mJ) for some
integer m > 1 withmx = x, my = y.

Now the infinite sum

> (Zaﬂco(z — %, =2 =) bGolz— v — A))

reA 1%

converges for 7 € H, as a sum of currents, because G is C* outside 0 and invariant
under homotheties. Thus the inner sum decays like ||| ~¢*2) by Taylor’s formula.
Another way to define it is to use Hecke summation:

If we multiply Go by ¢(z)™* the resulting sum converges absolutely for Re(s) >
2g — 1 (for arbitrary choices of lifts X and y) and has an analytic continuation to the
whole complex s-plane (by our argument with suitable linear combinations of lifts
X, y). Thus we can take its value at s = 0. It follows that the result is independent
of our regularization procedure, that is, of the choice of the X, and y,. That it is
annihilated by ([m], — id)? follows from the vanishing of ([m~!]* —id)?(Gg) by a
simple double-sum argument, using independence from regularizations.

Going back we compute G in more detail. We have

A==t v + ViV, v+ M) + V2

Forgetting r-powers the first term is multiplication by the square-norm ¢ (z) = |s||2
of the tautological section of Lie4 over H, the second sum of exterior multiplication
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by V'(s) and of its adjoint, and the third the curvature Rg of 4 which acts as a
derivation on A®S24. Furthermore, the operator Ny exp(—Alz) lives naturally in the
Clifford-algebra C (€24 @Lie4) which acts on A®*S24 by interior and exterior multipli-
cation. This Clifford algebra is filtered by the degree of the Clifford polynomials, the
associated graded is isomorphic to the exterior algebra, and the supertrace vanishes
on F28~! Furthermore, Ny has Clifford degree 2 (its leading term is the Kzhler form
w), and for the other terms the Clifford degree matches the degree as a differential
form. It follows that to get differential forms of degree 2g —2 we only need to compute
with leading terms, thus can replace the Clifford algebra by the exterior algebra. As
a result,

try (N exp(—A?))

=D o D exp(—tg)td(V's) (Vs ) R /(alalb)).
a+b=g—1

Here note that this has to be computed in the exterior algebra over Q24 @
Lieg 6 915’0 (&) SZ(S) ! , and what we really want is the coefficient of the canonical 2g-form
in A% (Q4 @ Liey).

Thus the regularized integral becomes

EDE o | Y UV S RE /(aab!) — log(@)RE /(g — 1)!
a+b=g—1

Finally, in the regularized sum

> (Z a,Go(z — % — 1) = Y _b,Go(z — F — x))

rEA 12 v

the terms which are purely polynomial in z disappear, which applies to the terms with
a = 0 1in the big sum in the formula for Gy.

Next, we restrict this class to the zero-section and continue computing. Obviously
we need expressions for Rg and for the derivatives V (v). For this note that the bundle
(on §) £ = A @ Og admits an integrable connection V, a complex conjugation, and
a symplectic form given by the polarization. Furthermore, it has a maximal isotropic
subbundle 24 with quotient the dual Liey4. Finally, £ is the direct sum of 24 and its
complex conjugate, and the symplectic product on £ induces the hermitian norm on
Q4. Let IT denote the projection onto €24, with kernel its complex conjugate. It is a
C*° endomorphism of £.

The metric connections on 24 and Liey are given by ITVII, respectively, its
complex conjugate. Also

k= (1—-1I)VII

defines a holomorphic one-form on § with values in the symmetric homomorphisms
from Q4 to Lie(A), that is, an element
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2.1 : 1
k € S“(Liea) ® Q.

This is also called the Kodaira—Spencer class. If k24 denotes its complex conjugate
adjoint (for the inner product on £), we have

[V, ] =« +«¥

and
k% = TR II.

Also an element A € A defines a section v, € Lieg and V(v ) can be computed as
(1 -IDHV{ -IDO) = —(1 =ID[V, I](A) = —k(X).

Finally, we find V(v34) = 3 (3).

To continue the computation use the Hermitian form to identify Lies with the
complex conjugate of 4. Then Rg becomes the contraction of k® a (1, 1)-form
with values in Q%’z ® Lieﬁ’2 contracting to a (1, 1)-form with coefficients Q24 ® Liey4.
Similarly, V(v,\)V(vid) becomes the contraction of —IT(A) ® (1 — IT)(A). Thus all
terms can be expressed in terms of the Kodaira—Spencer class . However, I see no
significant simplification in the resulting formula.

7 Classical Eisenstein cohomology

Here we try to explain what can be derived from the classical theory of Eisenstein
series, as discussed in the article [6]. However, we restrict ourselves to the Siegel
space classifying principally polarized abelian varieties of dimension 2 to avoid com-
plications.

So denote by G the algebraic group GSp(4), by P its parabolic corresponding to
degenerations with one-dimensional torus, by Q the Siegel-parabolic (corresponding
to degenerations into tori), and by B its Borel. Associated to G is a Shimura variety
SH¢ which is a projective limit of quasi-projective schemes, and admits an action of
the group G (A ¢) of finite adeles. In fact, SH is the quotient of the product of G(A ¢)
and the Siegel upper half space, under the action of G(Q)™ (symplectic similitudes
with positive multiplier. Positivity comes in because the relevant symmetric space for
symplectic similitudes has two connected components). It has a “compactification”
which is the projective limit of reductive Borel-Serre compactifications. Its boundary
strata are first indexed by a conjugacy class of a parabolic, that is, by either P, Q, or
B. Furthermore, the set of P-strata is the quotient G(A )/ P(Q)T, the Q-strata are
G(Ar)/Q(Q), and similarly for B. More precisely, we mean the projective limits of
quotients under compact open subgroups of G (A r).

If U denotes the unipotent radical of the relevant parabolic (P, Q, or B), then
U(Q) is dense in U(Ay), so in the quotient we may divide on the right by U (A )
instead of U(Q), or even by PO(Af) and QO(Af), where P° ¢ P and Q° c Q
denote the derived subgroups, or the kernels of the canonical maps into G,z,l.



150 Gerd Faltings

The induced action of G(A ) on the cohomology of SH¢ is admissible, that is,
each vector is fixed by an open compact subgroup K s of G(A r). We may assume that
this open subgroup is the product of open compacts K; C G(Qy), for all primes /, and
K; = G(Z;) for almost all /. The space of K y-fixed vectors admits an action of the
Hecke algebra for K ¢, that is, the K -biinvariant functions with compact support on
G(Ay). This Hecke algebra is the tensor product of the local Hecke algebras for each
factor K;. We say that a vector is strictly Eisenstein if there exists a finite set of primes
and a character x of finite order of T'(A )/ T (Q) such that for [ # S, x is unramified
in [, our vector is fixed by K;, and the local Hecke algebra acts on it by the same

character by which it acts on the K ¢-invariant vector in the produced representation

Prog((gf)) (x). “Produced” means continuous functions on G (Q;) which transform via

x under B(Qy), as opposed to “induced” which uses tensor products. We also call
an element Eisenstein if it lies in a Hecke module which has a finite Jordan—Holder
series consisting of strictly Eisenstein modules.

We need the following argument, due to Manin and Drinfeld: If a square-integrable
differential form on SH, (C) is a Hecke eigenform and Eisenstein, it is invariant under
the derived group of G (R): Namely, we may assume that it is a Hecke eigenfunction
for almost all local Hecke algebras, with eigenvalues prescribed by a character of
finite order. For primes [ = 1 mod N, with sufficiently divisible N, the local Hecke
algebra then acts like it acts on the functions on G(Q;)/B(Q;). In more concrete
terms we have a square-integrable differential form A on a finite union of quotients
D/ T, with D a symmetric domain and I" a congruence subgroup of G. Then there
exist finitely many elements y, ..., y» € G(Q), and a congruence subgroup I’ C T,
such that Ad(y;)(I'") C T, and such that on D/ '’ we have for the sum

Zyl-*(k) =r-A

By elementary Hilbert-space geometry this means that A is fixed by each individual y;.
However, the subgroup generated by all such elements (for various Hecke operators)
is dense in the derived subgroup of G (R).

We need a more sophisticated version of this argument: For the parabolic P or
QO we can apply the Jacquet functor to the induced representation Indgfgll)) (x), that
is, form covariants under the unipotent radical U (Q;). This is a representation of the
corresponding Levi subgroup, and we can look for subquotients which are unitary,
that is, admit an invariant positive definite hermitian product. This implies that the
central character has to be unitary, and it then follows easily that only the trivial
subquotient can be unitary. This implies that Eisenstein classes in L2-cohomology lie
in sums of one-dimensional subrepresentations.

The Eisenstein cohomology can be analyzed using [6]: Namely, we know the
Eisenstein part of the L2-cohomology, since this cohomology coincides with the
space of square-integrable harmonic forms, and any such form is constant. We obtain
powers of the first Chern class of the line bundle w, or more precisely of the curvature
form defined by its canonical metric. Furthermore, the L?-cohomology coincides with
the intersection cohomology (Zucker conjecture), and the latter can be described by
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weights. Finally, we can analyze the difference between intersection cohomology and
usual cohomology, and thus determine its Eisenstein part. For technical reasons we
use cohomology with compact support and obtain the desired results by duality. The
reason for this is that only special weight profiles are used in [6] (see Remark 35.4
there), and these are better adapted to cohomology with compact support. Also we
concentrate on cohomology with compact support in degrees at least 3, dual to usual
cohomology in degrees at most 3.

The weights are defined by data involving the root system. In our case it is of
type C». If one chooses an Euclidean vector space with orthonormal base {e1, e>} its
roots can be given as {£2e1, +2e;, te1 L ey}, the positive roots as {2e1, 2e>, e1 £ ez},
p = 2e1+e>. The Weyl orbit of p consists of {+2e1 +e3, £ej +2e,}. The parabolic P
has the simple root 2¢; in its Levi component, whose center is spanned by Hp = 2e;.
For the parabolic Q these are replaced by e; — e; and Hyp = e| + e>. Finally,
a maximal weight w(p) — p appears in the weight profile © corresponding to the
intersection cohomology of the Baily—Borel compactification [6, Theorem 23.2] if it
is dominant for the relevant Levi and its inner product with Hp, respectively, Hp,
respectively, both, is strictly greater than it is for —p. The latter means that the inner
product of w(p) with Hp or H is strictly positive. For P this leaves the p-transforms
{2e1 + e2, e1 + 2e3}, for Q {2e1 + €2, 2e; — ez}, and for the Borel their union. These
correspond precisely to the elements in the Weyl group of length < 1, and thus the
intersection cohomology coincides with the cohomology of the truncation 7<1 R j(C)
on the reductive Borel-Serre compactification.

Next, the first direct image has as stalks at the boundary the first cohomology
of the unipotent radical of the parabolic corresponding to the stratum. The strata are
again Shimura varieties, now associated to the group GL(2).

On the P-stratum the first direct image has rank 2 and corresponds to the irre-
ducible two-dimensional local system on the upper half plane. For the Q-stratum we
obtain the three-dimensional local system, and for the Borel the direct sum of two
one-dimensional systems. These coincide with the direct images of the systems on the
P-stratum, respectively, Q-stratum. All in all, the first direct image is the direct sum
of the middle extensions of nontrivial local systems. Thus its cohomology coincides
with the intersection cohomology, and any Eisenstein component in degree 2 comes
from constant harmonic forms which must vanish. So finally the second cohomol-
ogy of the first direct image is totally non-Eisenstein, and the Eisenstein part of the
intersection cohomology in degree at least 3 coincides with that of the cohomology
of the zeroth direct image, that is, with the Eisenstein part in the cohomology of the
reductive Borel-Serre compactification.

Finally, there exists an exact triangle relating the cohomology with compact sup-
port of SHg, the cohomology of the reductive Borel-Serre compactification, and
the cohomology of the boundary. Similarly, the cohomology of the boundary sits in
an exact triangle whose other terms are the direct sum of the cohomologies of the
closures of the P- and Q-stratum, and the cohomology of the B-stratum. Again by
the Manin—Drinfeld argument the Eisenstein parts of these cohomologies consist of
constant harmonic forms, thus no contribution to H'. Thus finally the Eisenstein part
of the cohomology of the boundary consists of the constants in degree 0, of the Eisen-
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. . . . G(Ay)
stein part in the quotient of the produced representation Pro , Q (C) under the sum of
A A . . . . .
ProgEQf ) (C) and of Pro(Q;EQ; ) (C) in degree 1, and of the Eisenstein part in the direct

sum of ProGEgj ) (C) and Pro ( /) (C") in degree 2. Here “produced representation”
means functions f: G(Ay) — @E left-invariant (because we produce from the trivial
representation) under P(Q) or Q(Q), with G(A r) acting via right translation. The
exponent “4->’ refers to the action of the quotient GL(2, Q)/ GL(2, Q)" where the
nontrivial element acts by orientation reversing maps, that is, with a negative sign on
top cohomology. Finally, the Eisenstein part of the cohomology with compact support
becomes

G(A )

1))

G(Af) G(Af)
(©)/(Prop gy (C) + Pro ) (C))

in degree 2, and

G(Af)
P

G(Af)

Pro 0@

(C*)/ constants @ Pro (CH)
in degree 3, and finally the constant multiples of powers of c{(w) in degrees 4 and
6. Dually the Eisenstein part of the usual cohomology has the constants in degree

0 and 2,

G(Ays)

P (C*)/ constants & IndCAn )

Ind 0@

in degree 3, and some induced representation in degree 4. Here “induced represen-
tations”” are defined by using tensor products. For later use we note that the induced
representations in degree 3 can be detected as follows: In the toroidal compactifi-
cation we have strata at infinity indexed by P (corresponding to degenerations with
one-dimensional torus) and Q (total degeneration). A class in degree 3 induces on
the P-stratum a class in degree 2 with coefficients in the first direct image, which
can be integrated over the torus bundle as we did in the previous chapter. Over the
Q-stratum we obtain a section of the third direct image (which is supported in the
most degenerate stratum).

Also we note that by strong approximation (which is rather elementary in our case)
we may replace in the induced (and produced) representations B(Q) by its product
with BO(A f), where BY denotes the kernel of all characters into Gy, and similarly
for P and Q. Hence the induced representations split into sums of representations
induced from characters.

Next, we show that these representations already occur in étale cohomology
over the rationals QQ, with coefficients in (Q; (which means the inductive limit of
the Q;-adic cohomologies of the SHg ): First of all, we get over the complex numbers
cohomology-classes with coefficients QQ instead of C, and these give rise to Q;-adic
classes over the algebraic closure Q. Next, we know that the powers of ¢|(w) are
classes over Q. So finally by the Leray spectral sequence it suffices to show that the
induced representations in degree 3 are Galois-invariant. For this we use the toroidal
compactification of our moduli space. It has stratum corresponding to P where the
abelian variety degenerates to an extension of an elliptic curve by a torus. Considering
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the leading term gives an invariant linear form on the cohomology with coefficients
@Q;(2), thus the representation IndgéA{ ) (Qy)/ constants occurs in the cohomology of
@Q;(2). This we have already seen before.
For the other representation Ind(Q;((gg ) (Qy) we consider the Q-stratum, where the
abelian variety degenerates to a two-dimensional torus. The stratum corresponds to a
torus embedding of dimension 3: Namely, the universal degenerating abelian variety
is a quotient G = G/1(Y), where G = (G,Zn is a torus with character group X, and
¢ a period map on X = Y = Z? which corresponds to a symmetric definite bilinear
form b parametrized by the torus embedding. The possible level-n-structures on G are
parametrized by first choosing a maximal isotropic Z/(n)? in the symplectic Z/(n))*,
then identifying it with

G[n] = Hom(X, 1),

and finally extending ¢ to 1/n - Y by extracting an nth root out of b. It follows that the
Galois-action on Ind(Q; (Q) is induced by the cyclotomic character Gal(Q/Q) — Z*
which takes values in the A -points of the center of the Levi-group GL; of O, and
thus acts on the induced representation.

The restriction of cohomology to the most degenerate strata defines an invariant
linear form on the étale cohomology with coefficients Q;(3), with values in this in-
duced representation, and respects Galois-actions. Thus the Q-induced representation
gives classes with coefficients QQ;(3). Thus, all in all, we have constructed Eisenstein
classes in H3(SHg, Q;(2)) and H3(SHg, @;(3)). Note that they are not quite unique
because of the Eisenstein classes in degrees 0 and 2.

Finally, there is a relation between Galois and Hecke action, weaker than the
classical Eichler—Shimura (see [3, Chapter 7]). Namely, the maximal torus 7 of G
consists of diagonal matrices diag(a, b, ¢, d) € an with ab = cd. For an unramified
character y of T'(Qy) at a prime [ “of good reduction” the geometric Frobenius Frob;
at [ satisfies an equation of degree 4 over the Hecke-algebra, which means that on a
subspace where the Hecke-algebra acts like on the induced representation from the
B(Qy)-representation x (an unramified character of T (Q;)), Froby satisfies the quartic
equation

(Frob; —ay)(Frob; —a») (Frob; —a3) (Frob; —a4) = 0,

where a1 = x(p,p,1,1), a2 = px(p,1,1,p), a3 = p*’x(1, p, p, 1), and as =
px(1,1,p, p).

8 Interpolation

Following Hida (initially in [7] and later extended to more complicated situations) we
can interpolate the Eisenstein series to a p-adic meromorphic function. Unfortunately,
we obtain little information about the location of its poles. For this purpose denote by
x the character Q — G, trivial on the center, and by Q° its kernel. Also p: G,,, — Q



154 Gerd Faltings

denotes the “dual” cocharacter which is contracting on the unipotent radical of Q,
and such that the centralizer of p is the Levi-subgroup. The composition x o p is
multiplication by g = 2.

Choose some level-structure at primes away from p, and denote by M* a com-
plex representing the projective limit of the cohomologies of the Shimura varieties
associated to all open compact subgroups of G(Z,). The transition-maps are traces.
M* can be represented by a perfect complex of Z ,[G (Z,)]-modules, bounded below,
and the G (Z)-action extends to G (Q,), up to homotopy.

Next, form the covariants of M* under Q°(Zp). It is still a complex over
Zp|Gn(Zp)], and admits an action of a Hecke operator U, as follows:

First apply o(p) and then form the trace (essentially under the I ,-points of the
unipotent radical) to make the result Q°-invariant.

The U ,-operator defines a splitting of the Q°(Z)-invariants in two spaces on
which U, is either invertible or topologically nilpotent. Here the topology is defined
by the natural topology on Z,[G (Z,)] defined by the p-adic topologies on the coef-
ficients and on the group, and the assertion holds because it is true on the covariants
under suffiently many compact open subgroups of G(Z). Also the splitting of the
complex may depend on the choice of U, in its homotopy-class, but two different
choices lead to homotopy-equivalent decompositions. This follows because the in-
duced splitting on the cohomology is canonical. Also any endomorphism of the com-
plex which commutes up to homotopy with U, is homotopic to an endomorphism
respecting the decomposition.

Denote by N* the subcomplex of the Q°(Z,)-coinvariants where U, is invertible.
This complex is perfect over Z,[G,,(Z,)], or equivalently its cohomology is finite
over Zj if we form coinvariants under the 1-units 1 + pZ,, and also divide by p.
However, this turns out to be the U ,-invertible subspace of the cohomology (with
coefficients IF,,) of the Shimura variety associated to the compact open subgroup of
G(Zp) which is the preimage of Q(F,) C G(F)).

The cohomology groups of N* are finite modules over the Noetherian and reduced
ring A = Z,[[G,(Z,)]] which is the completion of the group-ring in the adic topol-
ogy defined by the kernel of the surjection to I, [IF;]. Thus there exists for each fixed
cohomological degree a dense Zariski-open subset of the spectrum of .4, such that in
this subset the cohomology is flat and commutes with base change. Furthermore, on it
we have an operation of the Hecke algebra T consisting of Hecke operators at primes
different from p. Their action on Eisenstein series defines a homomorphism T — A,
and we can consider its generalized eigenspace on the cohomology of N*. Again this
is flat and commutes with base change on a dense open subset of Spec(.A). If we make
base change by a nontrivial character of finite order of G,,(Z,) the corresponding
generalized eigenspace becomes the Eisenstein cohomology. The half of it induced
from P has p-adically nilpotent U, and contributes nothing. For the other half in-
duced from Q we obtain either nothing or a space of dimension 1, if the character is
odd. It follows that our generalized T-eigenspace has generic ranks 1 or 0. So we find
in it an element which generates it in all generic points of Spec(A)/(1 + (—1)). Its
constant term along the parabolic Q (given by considering R j,(Z p)) is an element
of A which is nonzero in all generic points, as one sees by evaluating at characters
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of finite order. By the same argument the constant term along P vanishes. All in all,
we have the following.

Theorem 1. There exists a cohomology class with coefficients in the fraction field of
A, which interpolates the Eisenstein class at points where it is regular and which
correspond to characters of finite order.

9 The classical Eisenstein series

We have seen in the previous section that over the complex numbers there exists an
Eisenstein class in degree 3 associated to the parabolic Q and to odd characters. We
can exhibit an explicit modular form of weight 3 which represents this class. Namely,
suppose y : (Z/(n))* — C* is a primitive Dirichlet-character with x (—1) = —1.
Then for a symmetric 2 x 2 matrix Z = X + iY in the Siegel-space the series

E(x.Z)=Y_ x(det(C))det(CZ + D)~
C,D

defines such a modular form. The sum is over coprime pairs of matrices C, D with
C D' symmetric, C invertible modulo 7, D divisible by n, modulo the action by
left multiplication of invertible matrices U € GL(2, Z). The exponent 3 lies on the
boundary of the domain of absolute convergence but one can define the series by
Hecke summation (more details later). A more intrinsic definition goes as follows:
In the symplectic space A = Z* consider maximal isotropic sublattices L of rank 2.
Then the sum is over all such sublattices such that the reduction L /(n) is the subspace
L generated by the first two coordinate vectors. Namely, L is the image of the linear
map given by the 4 x 2-matrix (C, D). Note that sublattices are parametrized by
lines in
AZ(A) = 70

which satisfy a certain quadratic equation (the Pliicker condition). Furthermore, the
symplectic form gives a linear form on A%(A) and isotropic lattices correspond to
lines in the kernel, that is, points in a Pliicker-quadric in P*. Each such line has
a canonical generator of its determinant det(L), up to factor 1. The reduction of
det(C) modulo 7 is the determinant of the induced map modulo n between L and Ly,
or the value modulo n of one of the coordinates of L.

The determinant det(C Z + D) defines another linear form [z on A2(A), and Ez is
the sum over x (det(L))Iz (L) =3, with L running over points in the Pliicker-quadric in
P* which reduce modulo 7 to the given point L. It converges if one sums in the order
given by the norm of L because of the factor x (det(L)) which leads to cancellations.
Also we can identify A with the first cohomology H!(A(Z), Z) of the principally
polarized abelian variety

A(Z) = G2,/ exp(2miZ?Z)

classified by Z and then [z corresponds to the projection onto H>(A, O4) in the
Hodge-filtration. The third power of this line bundle is isomorphic to the dual of
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the 3-differentials on the moduli space, via the Kodaira—Spencer isomorphism, and
thus the infinite sum defines indeed a three-form. Note also that we evaluate at the
multiplicative cusp, that is, the maximal isotropic subgroup in A(Z)[n] consists of
the torsion-points of the torus G2,.

The effect of Hecke operators on E(x, Z) can be computed as follows (as in [3,
Chapter 7, Proposition 4.4]): A Hecke operator acts formally by pulling back a class
via all isogenies A — A’ of a certain type. These correspond to certain sublattices
A’ C A. For example, for primes [ not dividing n, one assumes that A/A’ is a
maximal isotropic subgroup of A/(/") with a prescribed sequence of elementary
divisors 14,17, 1"=4 ["=b If one applies this to the sum defining E(x, Z), one notes
that the isotropic L C A correspond one to one to the isotropic

L'=LNAchA

because the reductions modulo 7 are isomorphic. However, the canonical generators
of the determinant differ by a factor [L : L’], and the Kodaira—Spencer isomorphisms
differ by I*", so that the corresponding summands differ by

x(IL:LDIL: L1737,

If we sum over all A’ the result is independent of L and given by the following rule:

There exists a homomorphism p from the Hecke algebra for GSp(4) (symplectic
similitudes) to that for its Levi-subgroup GL(2) x G, (pairs (A, D) in GL(2) with
AD' = scalar) by integrating over the unipotent radical of the parabolic Q. In
down to earth terms we consider all A" C A as before and count the induced lattices
L' c Land A’/L" C A/L, for any fixed maximal isotropic L. Then the Hecke action
on E(x, Z) is via the character induced from the character x (det(A)) det(D)? of the
Hecke algebra of GL(2) x Gy,.

At prime divisors p of n we can still consider the operator U, which maps A to
the sum of all A’ such that the kernel of A — A’ is a maximal isotropic subgroup of
A[p] not meeting the given one. These correspond to A’ C A mapping to an isotropic
complement of Ly/(p). Forsucha A’ we alwayshave L' = pL (if L/(n) = Lo/(n)),
and E(x, Z) is fixed by U,.

Before we come to the computation of Fourier coefficients (following [5]) we
check that Hecke summation applies. The isotropic L C A reducing modulo # to
the fixed Lo generated by the first two coordinates can be identified with the set
of symmetric 2 x 2-matrices S, with coefficients in QQ, such that S is integral and
divisible by n at primes dividing n. Namely, let Lg = graph(id, §). Furthermore,
the image C(Z?) C 72 is the subgroup of elements A for which S(1) is still integral.
For such an S define the denominator D(S) as a diagonal 2 x 2-matrix with positive
integral entries 81, 8> the elementary divisors of C. That is, §; is the smallest common
multiple of the denominators of the entries of S, and §; has a similar but slightly more
complicated definition. In any case D(s) depends only on the reduction of S modulo
7 and is the product, over all primes p, of factors depending only on the p-primary
component of this reduction. Finally, our infinite sum becomes the sum of

x (det(D(S))) det(D(S)) 3 det(Z + )73,
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so for the Hecke summation we have to multiply these by (det(D(S) - | det(Z +
S)|)~® and try to analytically continue to s = 0. Here we first sum over all translates
by integral S € nZ3, and then over residue-classes of S modulo nZ>. The first
sum converges absolutely for Re(s) > —1 (use Poisson summation to replace it by
an integral) and defines an infinitely differentiable periodic function ¢(Z, s) in Z,
analytic in s. We then have to sum over its translates under S € nZ3. Here such a
translate gets a factor of absolute size D(S§)3~Re(),

S mod (n) is the sum of its p-primary components S, for p a prime not dividing
n. If such an §), has denominator diag(p®, p*TP) it is of the form

S, = p o Puxx' + p"‘S;7

with a unit u € Z’I‘,, a unimodular vector x, and a symmetric matrix S;,. If we let
u run over an arbitrary element of Z,, and S’ be an arbitrary symmetric matrix, we
get in this manner p3**2# residue classes of symmetric matrices, and the fraction
of them which does not have the denominator p®, p**# is O(1/p). It then follows
that if we form the sum over all pairs «,, 8, (for all primes p not dividing n) and
for each such pair all S,- residues as above, we make an error which is bounded by
the sum over all p~2~Re() and thus converges absolutely for Re(s) > —1. A similar
argument allows us to ignore terms where some o, > O or ) 8, > 1. Thus we are
left with the infinite sum

Y P T X (PS(Z + (u/p)xx' ).

p.x,u

Here p runs over all primes not dividing n, u over all elements of IF,, and x over all
unimodular vectors in ]F?, modulo scalars, that is, over P! (F p)-

Now express ¢ (Z, s) as a Fourier series in Re(Z) (for fixed imaginary part). The
Fourier coefficients a(7T, s) are indexed by even integral matrices 7" (which corre-
spond to integral quadratic forms T (x) = Tr(xTx’/2)) and they are holomorphic in
s. If we sum a Fourier term a (T, s) exp(7wi Tr(Re(Z)T)) over all multiples u/p - xx!
the result vanishes unless T (x) is divisible by p. Furthermore, for a given T this
holds for at most two xs unless 7 is divisible by p. Thus again up to an absolutely
convergent error term we need only sum over terms with 7 divisible by p, which
amounts to forming the average of ¢(Z, s) over all p-division points, which then
again we may replace by the average ¢(s) over all Re(Z) mod (1). Thus we end
up with

Do ()b (s)
p

which is, in fact, analytic for Re(s) > —1 because x is odd and thus nontrivial.
Next, we want to compute Fourier coefficients in more detail but for a slightly
different series. In general we can form Eisenstein series

EM, x) =) x(L)lz(L)™?
L
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where we sum over all isotropic L C A such that the intersection of L/nL with
the subspace of A /(n) generated by the first two basis elements is a fixed submodule
M C Lo/ (n). They are sums transforms of our previous one (M = L /(n)) under the
symplectic group and also can be defined via Hecke summation. For p a prime divisor
of n the U ,-operator replaces A by all smaller A’ which are preimages of an isotropic
complement L modulo p to Lo/(p). As the intersection L’ = L N A’, we have for
the new intersection M’ O M with equality if and only if the p-torsion of M is a
direct summand in the p-torsion of Ly/(n) and in addition L contains a complement
to M/pM in L/(p). The number of such L is 1, p?, p*> depending whether M/pM
has rank 0, 1, 2, and the corresponding indices [L : L'] are 1, p, pz. It follows that
U, transforms E(M, x) into a linear transformation of E(M " x) with M € M’,
where the coefficient of E(M, x) is equal to 0, p3, p2, 1 depending on whether M
is not a direct summand at p or a direct summand of rank 0, 1, 2. For example,
M = Lo/(n) defines, as we already know, a U ,-eigenfunction with eigenvalue 1.
Also we derive that the eigenvalues of U, on the space of E(M, x)s are 0, 1, 2 pl.
One obtains eigenvectors with the eigenvalue 1 if one applies a sufficiently high
power of U, (U, — pz)(Up — p3) to E(M, x)s with M/(p) = (0). We shall need
such eigenvectors and thus compute the Fourier coefficients of

E@©.x) =Y _ x(det(D)det(CZ + D)?,

where the sum is over all coprime (C, D) with C D' symmetric and C divisible by n,
up to common unimodular left factors. In fact, we are really interested in the projection
to the U, = 1-eigenspace, for all p dividing n. This is given by applying a suitable
power of Uy (U, — pHU p— p>). However, once we know that the p-powers in the
denominators are bounded, it is simpler to form the limit lim U 1'7’ (E) which converges
p-adically. This we shall do when we compute local factors at p. Note that the 7'-
Fourier coefficient of U, (E) is the pT-coefficient of E, by explicit computation at
the multiplicative cusp, so passing to the limit of Fourier expansions is easy.

Firstly the Fourier coefficients can be evaluated termwise by integrating against
exp(—mi Tr(T Z) (avoiding Hecke regularization). Secondly they are invariant under
transformations T +— UTU' with unimodular U. The coefficient for T = 0 is
evaluated by letting Z go to infinity and corresponds to the subsum where C = 0, so
itis 1. For T of rank 1 we can assume that 7 = diag(2u, 0) with u > 0, and let z2»
approach infinity. Then only Cs annihilating the second coordinate vector contribute.
Multiplying by unimodular U we may assume that C = diag(nc, 0) with ¢ > 0. Then
D is lower triangular and can still be multiplied by a unipotent matrix, and one can
choose a unique representative D = diag(d, 1) with d prime to nc. So we have to
compute the Fourier coefficients of Y x (d)(cnt + d)~3. We treat the coefficient of
exp(2miut) for u > 0 and with no prime factors not dividing n (that is, u divides a
power of n). More general us will be treated by other means.

This coefficient turns out to be

(—27i)*u*/2 Y x(d)expQmiud/(nc))/(nc)’.
¢>0,deZ/(nc)*
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The sum is over all rational numbers s = d/(nc) with denominator divisible by n,
modulo integers. Such a number is the sum over its p-primary components and this
makes the sum an infinite product over all primes p. For p not dividing n we get as
factor

oo
2oxPpT Y expQuinx/p™) = 1= x(p)/p’
m=0 x€eZ/(p™)*

(the inner sum vanishes for m > 1), while for p dividing n in exact power p’,
we have

o0
Z p—3m Z x (d) expQmiud/p™).
m=r deZ/(p™)*

If we sum first over d = 1 mod (p") the sum vanishes unless u is divisible by p™~".
If this is so we get a linear combination of value x (d) where the coefficients have
denominators bounded by p—3"—20m=7),

All in all, we get the following result: If we multiply the Fourier coefficient by the
L-value L(3, x)/(—2mi )3 (with trivial Euler factors at primes p dividing n) the result
is a linear combination of values x (d), with coefficients in Q(u,) and denominators
dividing 2n3.

So we get to the most interesting case of strictly positive definite T's. The partial
sum where C is not invertible does not contribute to this Fourier coefficient because
these terms are invariant under translations by real multiples of some xx’. So we
consider the sum with invertible Cs. Then we can multiply C by a unique unimodular
matrix to make it equal to the denominator of the symmetric matrix S = C~!D,
to get

Z x (det(D(S)S) det(D(S) > det(Z + §) .
S

The sum is over all symmetric S with denominator divisible by n. If we use the
formula in [5, Chapter 4, 7.6, p. 294], the factor 7 ~""" there seems to be superfluous)
the Fourier coefficient of T in this sum becomes

—7°/3 - det(T)>? Z x (det(D(S)S) det(D(S)) > exp(wi Tr(ST)),
S

where now the sum is over symmetric S modulo Z> with denominator divisible by 7.
Similarly as before, the sum becomes the product, over all primes p, of the sum with
S p-primary. Finally, we do not need to do this only for 7's such that for any prime
the quadratic form defined by 7T is not proportional to a square modulo p?, and does
not vanish modulo p. The other T's will be handled by Hecke operators.

We now first compute the local factors at primes p not dividing n. The denominator
of S, has the form diag(p“, p®*#). The sum over denominators with o > 2 vanishes
because the sum over a fixed class modulo 1/ p vanishes. Similarly, the contributions
from o = 1 can be computed by first summing over all S, with « < 1 (which
vanishes) and then subtracting the contributions with o« = 0. Finally, the §, with
o = 0 are of the form pPuxx’ with u € Z/(p?)* and x € PL(Z/(p?)) (or better x a



160 Gerd Faltings

unimodular element, and the pair (u, x) is determined up to the action of units). Thus
we obtain as local factor

D oxphHpF Y eXp<—2muT(x))

B
=0 u,x mod pP p
_ —6— 2miuT (x)
—x(p)p - Z X(p*tP)p=07F Z exp (W) :
B8=0 u,x mod pP+1

In the first term, the sums over « vanish unless T (x) is divisible by pf~!. If this
is the case, then the sum is —p#~! if T'(x) is not divisible by p#, and pf — pP~1 if
it is. So we have to count the number of times this will happen:

Define € by the rule that ¢ = 1 if 7 mod (p) is nonsingular isotropic, € = —1 if
it is nonsingular anisotropic, and € = Qiff T (x) = ur(x)? mod (p)isa square. Note
that 7 is proportional to the norm-form on an ideal in the integers of an imaginary
quadratic number field, and the three values of € distinguish whether p decomposes,
remains inert, or ramifies in this imaginary quadratic field. That is, € = e7(p) with
er the associated quadratic odd Dirichlet character.

For B > 0 the number of x where T (x) is divisible by pf~lis p + 1if 8 = 1,
2p,p,0if B =2and e = 1,0,—1, and 2p, 0,0 for B > 2. Divisibility by pﬂ
happens in 2, 1,0 cases if 8 = 1, and 2,0, 0 cases if 8 > 1. If ¢ = %1 in the first
sum the subsums with 8 > 1 vanish, and the same holds for the last term and 8 > 0.
Thus we obtain

L+ (1= x(P)p Hxp(=p—1+pd+e) — x(pHp~°

= (- x(»p U+ x(pler(p)p).
For € = 0 the result becomes
L+ = x(p)/pH((=p =1+ px(»)/ P> = P*x(PH /P — x(pH/P°
=(1—x(p)/pPHA — x(H/ph.

Thus in all cases we obtain

(1= x(p)/pHYA = x(P?/pH/ (A —er(P)x(p)/ D).

Hence if we multiply by L(3, x)L(4, x?)/n” we obtain as product (over primes
p not dividing n) the L-value L(2, xer)/m>.

Finally, we consider the prime factors p of n. Suppose p” is the exact power of
p dividing n. Denote by M («, B) the set of symmetric matrices S with denominator
diag(p®, p**#), modulo integral matrices. We have to compute

doope T x (P det(S)) exp(i Tr(ST)).
a>r,f>0 SeM(a,p)

In fact, we want to write this as a sum of values of x, (the p-local factor of x) on
elements of Z/(p")*), and bound the denominators of the coefficients. That is, we
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consider subsums where p%*3# det(S) lies in a fixed congruence class modulo p’.
First we note that these denominators are powers of p, and they are bounded because
the sums over M («, B) vanishif o > r orif « +  is sufficiently big: the first because
the sum over S in a fixed congruence class mod p~! vanishes (as 7 is not divisible by
p), and the second because we may act (via U SU") with the group of 2 x 2-matrices
U =1 mod (p"). If we sum over an orbit, we may instead sum over the orbit of the
action on T which contains all T’ = T mod (p*) for some sufficiently big s. If p > 2
and p does not divide the discriminant of 7', we may choose s = r; if it divides the
discriminant only to the first power, choose s = r + 1, etc. This sum vanishes if the
denominator of S contains a higher p-power, thatis, if @ + 8 > .

Next, as already announced, we pass to the U, = 1-eigenspace by replacing T by
p™T and forming the p-adic limit for m — oo. We extend the character x to (Q)’;
by setting x (p) = 1, and the denominator to all nonsingular symmetric S by the rule
D(S) = diag(p®, p**P) if S has elementary divisors p~%, p~®~#_ Then the local
factor for p™'T is

/ x (det(S))] det(S)| exp(ri Tr(ST))dSS,

where dS denotes the usual p-adic Haar-measure and the integral is defined as the
(infinite) sum of integrals over orbits under the U SU"-action of matrices U = 1 mod
(p"). Namely, these integrals over orbits vanish unless & and @ + 8 are bounded
above by a constant depending only on 7.

Finally, we pass to the p-adic limit m — oo and get the integral over all S,

/ x (det(8))| det(S)|* exp(ri Tr(ST))dS,

which converges p-adically because for small (and usually negative) « and B the
volume of an orbit has as denominator a p-power growing like p—3¢~2f while det(S)>
gives p~% 3 in the numerator. Also we have used the character x to simplify
notation, but we still really want to integrate over S with fixed determinant (mod p”).
If wereplace T by UT U withU € GL(2, Q) we geta factor | det(U)| 3 x (det(U)?,
thus if we multiply the integral by x (det(7)| det(T) 132 we get a function which is
invariant under such actions, that is, depends only on x and on the isomorphism class
over QQ,, of the quadratic form 7', that is, on det(7") modulo squares.

To compute these integrals we may assume that either 7' defines a nonsingular
quadric or that it is proportional to a square modulo p but not modulo p?, that T (x) is
integral but the discriminant is not divisible by p2. We already know that the integral
over M («, ) vanishes unless o <r,a + 8 <r + 1 (or < r if p does not divide the
discriminant of 7).

We first compute integrals over M(«, 0) (¢ < r). Let s denote the smallest
integer > r/2. A congruence class of S mod (p*~%) consists of elements S + §S
with 8§ symmetric and divisible by p*~%, and Tr(S~!8S) divisible by p” (to get
fixed determinant modulo this p-power). The sum over exp(si Tr(§ST)) vanishes
unless p~*T is a scalar multiple of (p®S)~! modulo p~ or T is a scalar multiple of
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(p®S)~! modulo p*~*.If & > s this cannot happen if p divides the discriminant of
T, and otherwise means that p® S is a multiple of 7! modulo p®~*. If this holds the
integrand is constant on each congruence class and thus the integral a multiple of the
volume of this class, that is, of p>*~3*, multiplied by p~. If « = r > 11is odd (so
s = (r + 1)/2), we can improve this a little: Namely, if we consider §S divisible by
P’ —l=a the condition on the determinant becomes

Tr(S~'88 — (57168)2/2 = 0 mod (p")

(trace of the logarithm), so we can find a system of representatives 65 divisible by
p* 17 with det(p® (S+385)) fixed modulo p” by first finding 8 S° with Tr(S~!185%) =
0 (and this element divisible by p*~!), and then replacing them by

8S =850+ 5/4 - Tr((S~'85%?).

The integral then becomes a multiple of a quadratic Gauss-sum and we win an addi-
tional factor p (and a fourth root of unity), because Tr(z?) is a nondegenerate quadratic
form on the space of traceless z (modulo p) with p®Sz symmetric. Fora = r = 1,
we can do the same:

We have to sum exp(mwi/p - Tr(sT)) for s (“= pS”’) a symmetric matrix with
entries in IF,, with given (invertible) determinant. If T has rank-1 modulo p this
reduces to a sum ) _ ¢ exp(27iS(x)/p) over S with a given invertible determinant,
with x some nonzero vector in ]F?y. We claim that any value for S(x) is taken with the
same multiplicity p. Namely, if S(x) = 0 we are free to choose the second isotropic
line among the p complements to IF,x, and the determinant then fixes S uniquely. If
S(x) # 0 we can do the same argument for the perpendicular space to the line IF , x.

If T mod (p) is nondegenerate we may assume that it is diag(e, —1) . The S with
Tr(ST) = X and det(S) = u correspond to solutions of

€(s22 — 1/ (2€))% — 53, = pu + A%/ (4e).

The form on the left is either anisotropic and represents any nonzero value p + 1-
times, and zero once, or isotropic and represents nonzero values p — 1-times and
zero 2p — 1-times. These numbers are congruent modulo p and it follows that the
exponential sum is divisible by p.

It follows that the sum of contributions from M («, 0)s is an integral multiple of
p~ /% if ris even, of p~1=/2 if r is 0dd, and of p~5 if p divides the discriminant
of T.

Sowe cometo M («, §) with 8 > 0. To parametrize it choose unimodular elements
X € Z%, which are a set of representatives for IP’l(Zp), and for each x choose a
y = y(x) such that {x, y} forms a basis with determinant 1. Then M («, 8) consists
of all matrices u/p*TPxx" + v/p*yy" with u,v € Zy and x,y = y(x) as above.
Moreover, the determinant of S is uv. To integrate we sum over a set of representatives
modulo p"*# (for x, u), respectively, p” (for v), and multiply by p>@~"). Then the
contribution from M (¢, B) becomes the sum (over x, u, v as specified above, with
uv a fixed element modulo p”)
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p e N expQri(u/ p TPT (x) + v/ p*T ().

X,u,v

Assume first that p does not divide the discriminant of 7 and that T is anisotropic.
Then T (x) € Z*[; and we can choose for y(x) a generator of the line perpendicular
(for T') to x, so that T (x)T (y) is the discriminant of 7. We then can multiply u by
T (x) and v by T (y) and obtain as a result

(p+ Dp~ 7271 exp@ri(u/p**F +v/p®)).

u,v

The sum over u vanishes unless @ + 8 < r. As 8 > 0 the summands only depend on
v modulo p”~!. Then summing over a fixed congruence class of » mod p"~! gives
zero unless @ + B < r — 1, etc. This process stops at @ + f < 1, and we get as result
an integral multiple of p~" 3.

Finally, we consider the case that 7' is the norm form of a ramified quadratic
extension of Z,. Here we can achieve that exactly one of T'(x), T (y) is divisible by
p (and then only to the first power). For T (x) divisible by p, we obtain the subsum

p740173f372rpr+ﬂ71 Zexp(Zni(u/paﬂg*] + U/pa)),
for T (y) divisible
p74a73/372rpr+/3 Zexp(zni(u/pa+/3 + U/pail)).

Both sums are over units ¥ mod p"+#, v mod p” with uv a fixed value mod p”. The
second sum vanishes unless « + 8 < r, in which case « < r — 1 so that the summands
depend only on v mod p”l, so we can sum over a class of ¥ mod p”l, so the sum
vanishes unless o + 8 < r — 1, etc. as before. That is, the second sum is an integral
multiple of p—r — 3. So we can concentrate on the first sum.

As before it does not pose any problems if 8 > 1, so assume 8 = 1. Then we can
sum over u and v mod p%, that is, we get

P exp(@mi(u +v)/p).

Now the sum is over units u, v mod p® with fixed product. As usual if s denotes
the smallest integer > « we might first sum over u in a fixed class modulo p*. That
sum either vanishes or the summands are constant, so it is divisible by p®~*. Also
if « > 2 is odd we may win an additional factor p'/? from a quadratic Gauss sum.
However, this does not seem to work for « = 1. Thus finally the integral is divisible
by p~/>72ifr =a > 1,andby p~ 7 if r = 1.

Putting everything together, we come to the main claim of this section.

Theorem 2. For all primes p > 5,

7 'n’ L3, X)L(&, x*) lim U (E(0, X))
m—00
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has Fourier coefficients in Q(uy, x)) which are p-integral. If p > 1, there exists a
Fourier series with coefficients in the ideal of the group ring Z[Z/(n)*] generated by
1 4 [—1], from which we derive this product via evaluation at x, and this series has
coefficients in Q(u,,) which are integral at p.

Proof. Of course there exists a unique such series with complex coefficients. This
result is known for the product of L-values n® 2n)~ L3, x)L(4, Xz) (one gets
Bernoulli distributions; see [13, Chapter 5, Theorem 5.11] for negative values of s,
and apply the functional equation in [13, p. 29]), and for the Fourier coefficients for
T with squarefree discriminant away from n. After that the general case will follow
by applying the Hecke algebra:

Namely, apply Hecke operators at primes / not dividing n. Our Eisenstein series is
an eigenvector with eigenvalue integral at p. (It may contain an / in the denominator
depending on choice of normalizations.) On the other hand, the Fourier coefficients
of T;(E) can be computed from the Fourier coefficients of E, by restricting quadratic
forms to sublattices and rescaling. If we know that some multiple p* E has p-integral
Fourier coefficients at T's where the discriminant of T is not divisible by /> (for
any [/ not dividing n), we choose a T with smallest discriminant such that the 7T'-
Fourier coefficient is not p-integral. We then find a 7’ with smaller discriminant and
a Hecke operator 7; such that the T’-coefficient of 7;(E) is a sum (with p-adic units
as coefficient) of the T -Fourier coefficient of E and other Fourier coefficients which
are already known to be p-integral.

Assume first that T is divisible by /, and let T’ = T/I. For T; we use the Hecke
operator which maps A to all quotients B under maximal isotropic subgroups in
A[l]. To compute its effect on g-expansions write A = G/t(X) where G = G%q
is a torus with character-group X = Z? and ¢ corresponds to a definite symmetric
bilinear form » on X. Then E becomes a power-series in values of b on positive
semidefinite elements T € S2(X ), and the coefficients are the Fourier coefficients.
The possible isogenies A — B are first classified by their multiplicative degree,
that is, B is quotient of a torus with character group ¥ € X, Y D [X, which can
have index 1, [, or /2. Furthermore, the restriction to [X x Y of the bilinear form &’
on Y must coincide with the restriction of b to X x Y, if we identify /X with X.
Thus the T’ Fourier coefficient of T;(E) (for T € S2(X)) is obtained by summing
over all ¥ C X the sum of all T-Fourier coefficients of E, where T € S*(Y) and
T’ = T/l. These come with [-powers as coefficients which arise formally because
we use a trace operation (from the torus with character group S 2(X) + 1/1S%(Y) to
that with character group $?(X)) which also annihilates contributions from 7’ with
T’ /1 not integral. Note that the discriminant of T’ differs from the discriminant of T
by a factor [X : Y1? / [2. There is only one case where this is / -2 namely, if X =Y
(the isogeny is étale) and T = IT’. So the coefficient of T’ in T;(E) is equal to &
times the coefficient of 7' (this is the relevant /-power) plus a linear combination of
coefficients with lower discriminant.

If the smallest “bad” T is such that T has discriminant divisible by /% but T
itself is not divisible by [, there exists a unique ¥ C X of index [/ such that T lies
in 1252(X). We then use the Hecke operator 7; which associates to A all quotients



Arithmetic Eisenstein Classes on the Siegel Space: Some Computations 165

B under a maximally isotropic subgroup of A[/?] whose intersection with A[/] has
order /3. At the cusps this amounts to choosing sublattices /X C ¥ C X of index [
or I3, and a b’ which coincides with b on /X x Y. Again the T'-Fourier coefficient of
T;(E) is the sum of T = [?>T’-coefficients for E for which T lies in S%(Y), multiplied
with some /-power. We now can copy the previous argument.

Thus we get an Eisenstein series whose g-expansion at the multiplicative cusp
(which classifies isogenies A — B with purely multiplicative kernel at p) is p-
integral, and which is fixed by U,. It then follows that as a section of cuf3 it has
p-integral g-expansion also at the other cusps:

Namely, such cusps correspond to isogenies A — B whose kernel is not purely
multiplicative at p. The Up,-operator maps this to the formal sum of isogenies
A" — B’ = A where the kernel of A — A’ contains a multiplicative p-component.
That is, U, (E) is obtained by pullback of a section of wf’? and forming a suitable
trace. The pullback is divisible by p, and the trace preserves integrality. Finally, the
multiplicative degree of the kernel of A’ — B’ is at least as big as the multiplicative
degree of the kernel of A — B. By decreasing induction over this multiplicative
degree we then get the result. O

10 Application of p-adic Hodge theory

The p-adic version of Hodge theory gives relations between p-adic coherent coho-
mology and p-adic étale cohomology of the generic fiber. We apply this to the moduli
stack S, which classifies abelian surfaces A with a principal polarization, an isogeny
A — B whose kernel is a maximal isotropic subgroup of A[n] étale locally isomor-
phic to Z/(n)?, and a generator of its determinant. Actually by using some auxiliary
level-structure we can assume that S, is a scheme. Also it admits smooth toroidal
compactifications over Q (see [3]). However, what is missing is a toroidal model
over Zy.

Fortunately, we can still apply p-adic Hodge theory as follows: Denote by S the
moduli scheme classifying A (and perhaps some auxiliary level structure), which has
a smooth model over Z, as well as a smooth toroidal compactification S, and choose
as Zp-model for S, the normalization of S in the generic fiber. Then our Eisenstein
series defines a regular section of wﬁﬁ over S,,. Here w4 extends to S as a line bundle
of differentials on the universal semiabelian scheme G. Furthermore, if V denotes
the integral closure of V = Z,, in_@ pand p € V an element of valuation 1/(p — 1)
(for example, p = ¢, — 1), and R the integral closure in the maximal extension of
R[1/p] unramified over S ® Q, of the ring R of an open affine in S, then we have a

functorial extension of S2(Q5) ®r 13 by p‘llg inducing a functorial 3-extension of
Q%@RR:CU%3®RR

by p—3 13(3). See [4, Section 2c, p. 206]. If L denotes the locally constant étale sheaf
on § ® Q which is the direct image of Z, on S, then E defines a compatible system
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of sections of a)%>3 ®R 13 ® LL and thus a class in the cohomology of ,0’3I$ ® L(3),
over the topos described in [4, Chapter 3, p. 214]. However, it is known [4, Chapter 4,

Theorem 9] that this cohomology is almost isomorphic to H3(S ® Q, L(3)) ® p—3 ‘:/

orto H3(S, ® Q, Z,(3)® p_3 V, so that we end up with an étale cohomology-class.
As this construction is equivariant the class is Eisenstein, so after inverting p becomes
a multiple of the known Eisenstein class. By computing residues at the multiplicative
cusp (corresponding to residues of logarithmic differentials) we get that these two
classes coincide after inverting p. Also we know that both classes are invariant under
Gal(@p/(@p). As the Galois invariants in p~3V /(p*) are contained in the sum of
V/(p*) and elements annihilated by p we see that our integral class is uniquely (as
p = 7) the sum of an étale class with coefficients Z, and a class annihilated by p. The
first component then is an integral version of the Eisenstein class. Over the ordinary

locus of S, its image in the Galois cohomology of R is given by the three-form E.
All in all, we have found a class in H 35S, ® @ p» Zp(3)) which is invariant under
Gal(Q,/Qp), and which is an eigenvector for the Hecke action. However, it is not
clear how to proceed further (invariance under Gal(Q/Q), class over Z[1/ p], etc.).
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Abstract. Elliptic sheaves (which are related to Drinfeld modules) were introduced by Drinfeld
and further studied by Laumon—Rapoport—Stuhler and others. They can be viewed as function
field analogues of elliptic curves and hence are objects “of dimension 1.”” Their higher dimen-
sional generalizations are called abelian sheaves. In the analogy between function fields and
number fields, abelian sheaves are counterparts of abelian varieties. In this article we study the
moduli spaces of abelian sheaves and prove that they are algebraic stacks. We further transfer
results of Cerednik—Drinfeld and Rapoport-Zink on the uniformization of Shimura varieties to
the setting of abelian sheaves. Actually the analogy of the Cerednik—-Drinfeld uniformization
is nothing but the uniformization of the moduli schemes of Drinfeld modules by the Drinfeld
upper half space. Our results generalize this uniformization. The proof closely follows the ideas
of Rapoport—Zink. In particular, analogues of p-divisible groups play an important role. As a
crucial intermediate step we prove that in a family of abelian sheaves with good reduction at
infinity, the set of points where the abelian sheaf is uniformizable in the sense of Anderson, is
formally closed.

Subject Classifications: 11G09 (11G18, 14L.05)

Introduction

In arithmetic algebraic geometry the moduli spaces of abelian varieties are of great
importance. For instance, they have played a major role in Faltings’ proof of the
Mordell conjecture [16], the proof of Fermat’s Last Theorem [7], and the proof of
Langlands reciprocity for GL,, over nonarchimedean local fields of characteristic zero
by Harris—Taylor [22]. Therefore, their structure and especially their reduction at bad
primes is intensively studied. One way to investigate their reduction is through p-adic
uniformization. This was begun by Cerednik [6] and Drinfeld [11] and continued
by Rapoport—Zink [36]. Cerednik—Drinfeld obtained the uniformization of certain
Shimura curves of EL-type by a formal scheme whose associated rigid-analytic space
is Drinfeld’s p-adic upper half plane. This formal scheme can be viewed as a moduli
space for p-divisible groups which are isogenous to a fixed supersingular p-divisible
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group. See Boutot—Carayol [5] for a detailed account. Rapoport—Zink generalized
these results to the (partial) uniformization of higher dimensional Shimura varieties
by more general moduli spaces for p-divisible groups.

In this article we study abelian sheaves as positive characteristic analogues of
abelian varieties. We investigate their moduli spaces and prove that these are al-
gebraic stacks. Then our aim is to transfer the above uniformization results to the
case of positive characteristic. For the case considered by Cerednik—Drinfeld this
was accomplished already by Drinfeld [10]; see below. We use this as a guide line
to transfer the results of Rapoport—Zink. We also obtain a partial uniformization of
the moduli stacks of abelian sheaves. In the Hilbert-Blumenthal situation a similar
uniformization result was obtained by Stuhler [40] using different methods.

Let us explain what abelian sheaves are by first going back 30 years to Drinfeld’s
elliptic sheaves. Exploiting the analogy between number fields and function fields,
Drinfeld [10, 12] invented the notions of elliptic modules (today called Drinfeld
modules) and the dual notion of elliptic sheaves. These structures are analogues of
elliptic curves for characteristic p in the following sense. Their endomorphism rings
are rings of integers in global function fields of positive characteristic or orders in
central division algebras over the later. On the other hand, the moduli spaces are
varieties over smooth curves over a finite field. Through these two aspects in which
global function fields of positive characteristic come into play, elliptic sheaves and
variants of them proved to be fruitful for establishing the Langlands correspondence
for GL,, over local and global function fields of positive characteristic. See the work
of Drinfeld [10, 13, 14], Laumon—Rapoport—Stuhler [33], and Lafforgue [30]. Beyond
this the analogy between elliptic modules and elliptic curves is abundant.

In this spirit, Anderson [1] introduced higher dimensional generalizations of Drin-
feld’s elliptic modules and called them abelian t-modules. The concept of abelian
sheaves is a higher dimensional generalization of elliptic sheaves. Both serve as char-
acteristic p analogues of abelian varieties. Abelian sheaves were studied in various
special instances in the past. In this article we intend to give a systematic treatment.
The definition of abelian sheaves is as follows. Let C be a smooth projective curve
over IF, and let oo € C(IF,) be a fixed point. For every F;-scheme S we denote by o
the endomorphism of C x, S that acts as the identity on the coordinates of C and
as b — b7 on the sections b € Og. Now an abelian sheaf of rank r and dimension d
over S consists of the following data: a collection of locally free sheaves F; of rank
ron C x, S satisfying a certain periodicity condition. These sheaves are connected
by two commuting sets of morphisms I1; : ; — Fi1q and 7; : o*F; — Fiyl
such that coker I1; and coker 7; are locally free Og-modules of rank d, supported,
respectively, on oo x § and on the graph of a morphism ¢ : § — C called the
characteristic of the abelian sheaf. An abelian sheaf of dimension 1 is the same as an
elliptic sheaf. In this sense abelian sheaves are higher dimensional elliptic sheaves.
The notion of abelian sheaf is dual to the notion of abelian #-module and related to
Anderson’s f-motives. In fact, if the characteristic is different from oo, an abelian
sheaf over a field is nothing but a pure #-motive equipped with additional structure
at infinity (Section 2). Therefore, we like to view abelian sheaves as characteristic p
analogues of polarized abelian varieties.
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Abelian sheaves with appropriately defined level structure possess moduli spaces
which are algebraic stacks locally of finite type over the curve C. The morphism to
C is given by assigning to an abelian sheaf its characteristic. We denote the algebraic
stacks of abelian sheaves of rank r and dimension d with H-level structures by
.Ab-Sh;f. Here H C GL,(Ay) is a compact open subgroup and A are the finite
adeles of C. It should be noted that opposed to the case of elliptic sheaves, the stacks
of abelian sheaves will in general not be schemes, not even if we add high level
structures. This is due to the fact that for every level there are abelian sheaves having
nontrivial automorphisms (see Remark 4.2). The nonrepresentability also reflects in
the uniformization; see below.

Then our aim is to study the uniformization of these moduli stacks at co. Let z be
a uniformizing parameter of C at co. In the case of elliptic sheaves, Drinfeld [10, 11]
showed that the moduli stacks are in fact smooth affine schemes which can be uni-
formized by a formal scheme ). This formal scheme is the characteristic p version
of the one used by Cerednik and Drinfeld to uniformize Shimura curves. Correspond-
ingly, it is a moduli space for certain formal groups on which multiplication with z
is an isogeny. All this was worked out in detail by Genestier [18]. We like to call
these formal groups “z-divisible groups.” They play an important role also in our
uniformization results.

So let us next explain some facts about z-divisible groups. Naturally these groups
are of most use over schemes on which z is not a unit. Therefore, we will from now
on work over schemes S in ./\filqu [z]- the category of F [z]l-schemes on which z is
locally nilpotent. However, since it is important to separate the two roles played by z
as a uniformizing parameter at co and as an element of Og, we use the symbol z only
for the first and we denote the image of z in Og by ¢. Then S belongs to ./\/'ilp]Fq 3L

Classically p-divisible groups may be studied via their Dieudonné modules. There
is a corresponding notion for z-divisible groups. A Dieudonné Fy[[z]l-module over S
is a finite locally free Os[[z]l-module F with a o-linear endomorphism F' such that

1. coker F is locally free as an Og-module,
2. (z — ¢) is nilpotent on coker F,

The theory of z-divisible groups and their Dieudonné I, [[z]l-modules resembles many
facets of the theory of p-divisible groups; see [23].

Also z-divisible groups are related to abelian sheaves through their Dieudonné
F,[zI-modules. Namely, the completion of an abelian sheaf over S at co x S is a
Dieudonné F [z]-module. The connection between abelian sheaves and z-divisible
groups parallels the situation for abelian varieties. In particular, there is an analogue
of the Serre—Tate Theorem relating the deformation theory of abelian sheaves to the
deformation theory of their z-divisible groups.

Finally, we come to the uniformization of Ab- Shd 5 at infinity. We begln by
describing the uniformizing spaces. Let r, d, k, £ be positive integers with ‘r’ =7 k and
k and ¢ relatively prime. Let Oa be the ring of integers in the central skew field over
F,(z)) of invariant k/£. A special z-divisible On-module over S € MlqueHZ]] is a

z-divisible group E of height r£ and dimension d¢ with an action of Oa prolonging
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the action of F,[[z]], such that the inclusion qu C Oa makes Lie E into a locally
free F e ®p, Os-module of rank d. The z-divisible groups associated to abelian
sheaves of rank r and dimension d are special z-divisible Ox-modules. Let E be a
special z-divisible Ox-module over SpecF ¢. Then the moduli problem of special
z-divisible Oa-modules which are isogenous to E is solved by a formal scheme G
locally formally of finite type over Spf F_¢[[{]l. The latter means that the reduced
closed subscheme Greq of G is locally of finite type over SpecIF ..

We fix an abelian sheaf M of rank r and dimension d over Spec F,¢ whose
restriction to C ™\ oo satisfies t; = Id, -0* and we let E be its z-divisible group. The
Newton polygon of EE is a straight line. Let Z be the set of points s of .4b-S hrljld X 00
such that the universal abelian sheaf F, over s is isogenous to M over an algebraic
closure of k (s). It is an important step to show that Z is the set of points over which
the Newton polygons of £ and of the z-divisible group associated to F coincide. This
implies that Z is a closed subset. We consider the formal completion .Ab-Sh;de )z of
.Ab-Sh?Id along Z. It is no longer an algebraic stack, but it is a formal algebraic stack
over Spf IF ¢ [£ ]|. Formal algebraic stacks are generalizations of algebraic stacks in the
same sense as formal schemes generalize usual schemes. (The relevant facts on formal
algebraic stacks are collected in an appendix.) Now we can uniformize .4b-S h;’]d /Z
as follows. Being isogenous to the z-divisible group E of M, the universal special
z-divisible Oa-module on G gives rise to an abelian sheaf on G which we call its
algebraization. Let J(Q) be the group of quasi-isogenies of M. There are natural
embeddings of the group J(Q) into GL, (A r) and into the group of quasi-isogenies
of E. The latter group acts on the formal scheme G. We let J(Q) act diagonally on
G x GL, (A ). Taking into account level structures we obtain the following result,
which we will later formulate as Uniformization Theorem 12.6:

There is a canonical 1-isomorphism of formal algebraic Spf F ,¢[[¢ [I-stacks
©:J(Q\G xGL,(Af)/H — Ab—Sh?,d/z X spf F, 1] SPE FgellS T

At this point, note that the nonrepresentability of the algebraic stacks Ab—Sh;_’Id
also reflects in the uniformization. Namely, since all unipotent subgroups of J(Q) are
torsion, in general a discrete subgroup of J (Q) cannot act fixed point free on G. So the
quotients J(Q)\G x GL, (A y)/H can only be formal algebraic stacks and not formal
algebraic spaces. This phenomenon does not occur in the p-adic uniformization of
Shimura-varieties.

We mention an interesting aspect of the proof that is also related to the uniformiz-
ability of r-motives. Namely, by work of Gardeyn [17], the f-motive associated to
an abelian sheaf over a complete field extension K of IF, (¢)) is uniformizable in the
sense of Anderson [1] if and only if firstly the abelian sheaf extends to an abelian
sheaf over the valuation ring R of a finite extension of K, and secondly its reduction
modulo the maximal ideal of R is isogenous to M. We show that the second condition
is closed. More precisely if F is an abelian sheaf of rank  and dimension d over
Se ./\/'ilp]Fq ¢ then the set of points in § over which Z is isogenous to M is closed.
This is the key ingredient in the proof of the Uniformization Theorem. It is proved in
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Section 11 where we avoid the language of stacks and proceed in more down-to-earth
terms.

Let us end by explaining the relation of our Uniformization Theorem to the results
of Rapoport—Zink [36] and Drinfeld [10]. In the case of elliptic sheaves we have

Ab-SHy )7 = Ab-SHy x ¢ Spf F,[I¢].

This follows from the fact that there is only one polygon between the points (0, 0)
and (r, 1) with nonnegative slopes and integral break points, namely, the straight
line. So all special z-divisible Ox-modules have the same Newton polygon as E, and
therefore Z is all of Ab-Sh;_’Id X c00. Moreover, in this case G is the formal scheme
Q" introduced above and J (Q) = GL,(Q).So we recover Drinfeld’s uniformization
theorem

GL(Q\Q") x GL.(Ap)/H —> M}, x¢ Spf F ¢ [[¢]

where M}, is the moduli scheme of Drinfeld modules of rank r with H-level structure.
Compared to [36], our uniformization theorem is analogous to the uniformization
of the formal completion of Shimura varieties along the most supersingular isogeny
class. In this sense uniformizable abelian sheaves correspond to supersingular abelian
varieties. There is no doubt that the more general uniformization in [36] of an arbitrary
isogeny class of abelian varieties also carries over to the setting of abelian sheaves.
Furthermore, we have only described the uniformization at oo in this article. But
the analogous uniformization results at other places of C should likewise hold. For
example in the case of D-elliptic sheaves these were described by Hausberger [26].

Notation

Throughout this article, we will denote by

F, the finite field having ¢ elements and characteristic p,
C a smooth projective geometrically irreducible curve over F,
oo € C(IFy) a fixed point,
C'=C~
A =T(C',Oc¢) thering of regular functions on C’,
0 =F,(C) the function field of C, viz. the field of fractions of A,
Ooo the completion of Q at oo,
Ao the ring of integers in Q«,
ve My the finite places of C, i.e., the points of C’,
Ay the completion of A at the finite place v of C,
A= A
veMy

Ar=0®4 A the finite adeles of C,

d,r,k,t positive integers with % = % and k and Z relatively prime,
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A the central skew field over O of invariant k/¢,
Ona its ring of integers.

All schemes, as well as their products and morphisms between them, are supposed to
be over Spec IF,;. If X is a scheme, we let Schx be the category of X-schemes. For two
schemes X and Y, we write X x Y for their product over Spec IF;. A similar notation
will be employed for the tensor product over ;. If i : ¥ < X is a closed immersion
of schemes and F is a quasi-coherent sheaf on X, we denote the restriction i *F by
Fly. As is customary, we will use the term vector bundle for a locally free coherent
sheaf on a scheme.
Starting with Section 6, we denote by

e an indeterminant over [,

F, Iz the ring of formal power series in ¢,

Spf F,[[¢ 1 the formal scheme which is the formal spectrum of F, [¢ 1],
Nilpg, ¢ the category of schemes over Spf F,[[¢]], viz. the category of

schemes over SpecIF,[[¢ ]| on which ¢ is locally nilpotent.

From Section 6, on all schemes will be in ./\/ilqu 3L
Let S be a scheme. We denote by

os:S—> S its Frobenius endomorphism which acts as the identity on points
and as the g-power map on the structure sheaf,

Cs=CxS

o =1id¢ xog the endomorphism of Cg that acts as the identity on the coordinates

of C and as b — b? on the elements b € Og.

For adivisor D on C, we denote by Oc, (D) the invertible sheaf on Cs whose sections
have divisor > — D. If F is a coherent sheaf on Cg, we set F (D) := ]—'(X)OCS Ocy (D).
This notation applies in particular to the divisor D = n - oo for an integer n.

Part One: Abelian Sheaves

1 Definition of abelian sheaves

Let S be a scheme and fix a morphism ¢ : § — C. Let J be the ideal sheaf on Cg of
the graph of c.

Definition 1.1. An abelian sheaf F = (F;, I1;, t;) of rank r, dimension d, and char-
acteristic ¢ over S is a ladder of vector bundles F; on Cgs of rank r and injective
homomorphisms T1;, t; of Ocg-modules (i € Z) of the form

- I1; it
D — R — A Fisi
Tfi—z Tfi—l Tfi

o*I;_» o*T; o *I1;

D iy TR o T o T

subject to the following conditions (for alli € 7):
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1. the above diagram is commutative;

2. the morphism I1j1¢—1 o - - - o I1; identifies F; with the subsheaf F;+¢(—k - 00) of
Fives

3. the cokernel of T1; is a locally free Og-module of rank d;

4. the cokernel of t; is a locally free Ogs-module of rank d and annihilated by Je.

A morphism between two abelian sheaves (F;, I1;, v;) and (F}, I}, t}) is a collection
of morphisms F; — fl’ which commute with the I1s and the ts.

Let us make a few remarks. By condition 2 the cokernel of I1; is supported at co.
Moreover, due to the periodicity condition 2 we have 7j4¢, = 7, ® idOCS (kn) for all
n € Z. Finally, the reader should be aware that we allow that the ideal sheaf 7 acts
nontrivially on coker ;. In this respect our abelian sheaves are more general than the
abelian sheaves studied so far in the literature. As such, we mention elliptic sheaves
[12, 2], which we discuss later, and D-elliptic sheaves [33] which are abelian sheaves
equipped with an action of an order D in a central division algebra over Q.

Definition 1.2. We denote by Ab-S W (S) the category whose objects are the abelian
sheaves of rank r and dimension d over S and whose morphisms are the isomorphisms
of abelian sheaves. If S’ — S is a morphism of schemes, the pullback of an abelian
sheaf over S is an abelian sheaf over S'. This defines a fibered category Ab-Sh™¢
over the category of Fy-schemes, which is a stack for the fppf-topology. The functor
which assigns to an object of Ab-Sh” “4(8) the characteristic ¢ : S — C defines a

1-morphism of stacks
Ab-Sh™4 — C.

Next, we introduce level structures on abelian sheaves. Let I C C' = C \ oo be
a finite closed subscheme and let F = (F;, I1;, 7;) be an abelian sheaf of rank » over
S. Then the restrictions F; | x s are all isomorphic via the morphisms IT;. We call this
restriction F |« s. The same holds for the morphisms 7;. So we obtain a morphism

Tlixs 1 0" Flixs — Flixs

which we consider as a o-linear map of F|;«gs to itself. In this article we always
assume that the characteristic c(S) of (F;, I1;, t;) is disjoint from /. Due to this as-
sumption, T|;« s is an isomorphism. We consider the functor of t-invariants of | x s,

(FID*t - Schy — O-modules
T/S —> ket H(I x T, tl1xr —idgy,, ;).

In Bockle-Hartl [3, Theorem 2.5] the following fact is proved.

Proposition 1.3. The functor (F|;)" is representable by a finite étale scheme over S
which is a GL, (Oy)-torsor.

Definition 1.4. An I-level structure on (F;, I1;, t;) over S is an isomorphism
M (Elrxs, Tlixs) —> (O g, 1d, -0%)

from Flyxs to O, ¢ that commutes with the o -linear endomorphisms t|jxs on one
and 1d, -o* on the other side.
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If the characteristic c(S) meets /, then F does not possess any /-level structure.

Proposition 1.5. Let F be an abelian sheaf over a field. Then the automorphism
group of F is finite.

Proof. We may assume that the base field is algebraically closed. Let 1 be an -level
structure on F = (F;, I1;, t;). It induces a group homomorphism

o Aut(F) — Aut(Of, 4. 1d, -0*) = GL,(O).

The latter group is finite. We claim that «; is injective for some sufficiently large finite
subscheme I C C’. From this the proposition will follow. To establish the claim let
(fi + Fi = Fi); be an automorphism of F. Note that if fj is the identity then f; must
also be the identity for all i. We now consider a finite flat morphism 7= : C — IP’]Fq

Since the map 7, : Autc(Fo) — Autpi (m,.Fp) is injective we may assume C = P
Then the vector bundle 7, Fy decomposes

. Fo = @D Opi (ni)

i=1

for uniquely determined integers n; > --- > ny. We let P € P! be a point and set
I = (ny —ng + 1) - P. Then 7y is injective. O

Next, we want to give a different definition of /-level structures. Note that via
the natural isomorphism (F|;)* ® 0, Orxs —> Flrxs the I-level structures 7 on F
over a connected S correspond bijectively to the isomorphisms of O;-modules

i (EIDT(S) — Of.

We use this observation to define more general level structures by introducing the
adelic point of view. Let F be an abelian sheaf of rank r over S. We define the functor

(FID" : Schy — A-modules
T/S — 1}11(7_:|1)T(T),

I

where the limit is taken over all finite closed subschemes I C C’. Assume that
S is connected and choose an algebraically closed base point ¢ : s — §. Due to
Proposition 1.3 we may view (F|7)" as the Al [1(S, s)]-module (t*flg) (s).

We con51der the set Isom 3((F|3)°, A’) = Isom;((t*]-"m) (9) A") of isomor-
phisms of A-modules. Via its natural action on A” the group GL, (A) acts on this set
from the left. Via its action on (t*F|7)*(s) the group 71 (S, s) acts on it from the
right.

Definition 1.6. Ler H C GL, (;\\) be a compact open subgroup. An H-level structure
on F over S is an H-orbit inIsom 3((F|3)*, A") which is fixed by 71 (S, s). (Because
of this latter condition, the notion of level structure is independent of the chosen base
point.)
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In particular, if H = H; = ker(GL, (X) — GL,(Oy)), an H-level structure is
nothing else than an /-level structure. Note that as before an H-level structure can
only exist if the characteristic ¢(S) does not meet the set of places v of C for which
H, # GL(A,).

Definition 1.7. Let Ab-ShrIde(S) be the category whose objects are the abelian
sheaves of rank r and dimension d together with an H-level structure over S and
whose morphisms are the isomorphisms of abelian sheaves which respect the level
structures. Analogous to Definition 1.2, this defines a stack .Ab-Sh;;,d over C.

For H = Hy = GL, (X) the definition of H -level structure is vacuous. Therefore,
we have Ab-Sh;jIZ = Ab-Sh"¢. We will show in Section 3 that these stacks are
algebraic over C.

There is a free action of the group Z on these stacks given on objects by the map

[n] : (Es Hla Tl) = (E-Q—nv Hl+n7 Tl+}’l)

Example 1.8 (Drinfeld modules and elliptic sheaves). Letd = 1 and let H = Hj.
Then an abelian sheaf is what was called an elliptic sheaf in Blum—Stuhler [2]. We
consider the open substack

Ab-Shy! xcC'

of abelian sheaves with characteristic disjoint from oo. It is shown in [2, Theo-
rem 3.2.1] that there is a 1-isomorphism between the stack Dr-Mod’; of Drinfeld
A-modules of rank r with /-level structure and the open and closed substack of
.Ab-Sh;’{1 x ¢ C’ consisting of those (F;, I1;, ;) with deg(Fo|c,) = 1 — r for each
algebraically closed point s of S.

On the other hand, in Ab-Sh?,l we always have deg(F;|c,) = deg(Folc,) + i.
Using the free action of Z on Ab-ShrILI1 we thus obtain a 1-isomorphism of stacks

Ab—Sh;jII xcC' =7 x Dr-Mody .

The first factor gives the degree of Fy.

In fact if I # @ the stack Dr-Mod; is a smooth affine scheme of finite type
over IF,. See for example [2, Theorem 2.3.8]. So .Ab-Sh?,’{1 x cC' is a smooth scheme
locally of finite type in this case.

We will give another example in Section 4 which shows that for d > 1 one can
neither expect that Ab-ShQId is a scheme, nor that it is smooth over C’.

2 Relation to Anderson’s ¢-motives

We will show that abelian sheaves with characteristic disjoint from oo are the same
as polarized A-motives, a variant of Anderson’s [1] z-motives. Let S be a scheme and
fix a characteristic morphism ¢ : § — C’ disjoint from oco. Let I'(¢) C Cgs be the
graph of ¢ and let 7 be the ideal sheaf defining I"(c).
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Definition 2.1. A (pure) polarized A-motive (F, t) of rank r, dimension d, and char-
acteristic ¢ over S consists of a vector bundle F on Cs of rank r and a morphism of
coherent sheaves Tt : 0*F — F(k - 00) such that

1. the cokernel of t is supported on I'(c) U oo, the part supported on I'(c) is
annihilated by J d

2. foreveryi =1, ..., L theimage of t' : 0'*F — F(ik - 00) lies in F(k - o0) and
tt o F - F(k-00) is alocal isomorphism at 0o,

3. locally at oo, F is contained in the image T F.

Here we denote by 7/ the composition (t ®ido(i-1)k-00)) 0" cogi=D*g mapping
o*F — o "V Fk-00) — ... —> ¢*F((i — Dk - 00) —> F(ik - 00).

Lemma 2.2. Conditions 1 and 2 imply that t is injective and that the part of coker T
which is supported on I' (c) (respectively, on 00) is a locally free Os-module of rank
d (respectively, (£ — 1)d).

Proof. Consider the exact sequences of Og-modules induced by t

0—kert o*F imt 0

|-

0—imt — F(k-00) — cokert — 0.

For a point s € S we tensor them with the residue field « (s) at s to obtain

0—— Tor?s (im T, k(s)) —= (ker 7); (0*F)s b (imt); —=0

\Lr@id

00— Tor?s (coker T, k(s)) — (im T); —% F(k - 00)y — (coker 7)s —= 0.

We claim that T ® id is injective. Indeed, consider a point on Cy and its local ring
which is a PID. Then over this PID t ® id is a morphism between finite free modules
of the same rank with torsion cokernel. Hence by the elementary divisor theorem
T ® id = o must be injective.

Now the surjectivity of 8 shows that « is injective. Therefore, Tor?s (coker 7, k(s))
vanishes and by the local criterion for flatness [15, 6.8], coker 7 is a flat Og-module.
This in turn implies the flatness of im 7. Hence (ker t); is identified with the kernel
of 8. However, 8 is an isomorphism and thus (ker 7); is zero. By Nakayama’s lemma
ker t is zero and 7 is injective. Finally let G be the part of coker T which is supported
on I"(¢). Since the characteristic is disjoint from oo, G is a direct summand of coker t.
Then condition 2 implies that coker t¢ = @f;é o'*G and the lemma follows. O

If § = Spec K is the spectrum of a field, A = F,[¢], and (F, 7) is a polarized
A-motive over S, then the K¢, t]-module F(Cg, F) is a pure t-motive of weight
d/r as defined by Anderson [1]. Compared to Anderson’s definition, however, our
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polarized A-motive contains additional data at infinity which rigidifies the structure
of the A-motive. Since Anderson’s r-motives serve as characteristic p analogues of
abelian varieties this may justify our terminology.

As in Section 1, we can define H-level structures on polarized A-motives for
compact open subgroups H C GL, (X). Correspondingly, we obtain the stack Pol?,d
of polarized A-motives with H-level structure. This is a stack over C’.

Theorem 2.3. There is a 1-isomorphism of stacks
Ab-SHy x o C" = Poly)! .

Proof. We construct two mutually 2-inverse 1-morphisms 7 and 7’ between the
stacks in question. First consider the 1-morphism T : .Ab-Sh;’id xcC' — Pol’,}d
which assigns to an abelian sheaf (F;, I1;, t;) over S with characteristic disjoint from
oo the polarized A-motive of rank » and dimension d consisting of

F = Fo, t:=Iy_10---0lljotg:0*F — F(k-00).

Clearly, this construction is also compatible with level structures.
Conversely, let (F, ) be a polarized A-motive of rank r and dimension d over
S.For0 <i </ we set

E:=f+...+fifc_7:(k-00)-

Then F; is equal to F outside oo due to the definition of 7. And locally at oo it is
isomorphic to o’*F due to condition 3 of Definition 2.1. Therefore, F; is locally
free on Cyg. Let I1; : F; — F;41 be the inclusion and let 7; : o*F; — Fi41 be
the morphism t. Again by condition 3, coker I1; is supported at co and coker 7; is
supported on I"(¢) and annihilated by 7¢. By Lemma 2.2 these cokernels are locally
free Og-modules of rank d. Furthermore, by condition 2 we have Fy = F(k - 00).
For arbitrary i € Z we take n € Z such that 0 < i — nf < £ and define

Fi i= Fient ®0¢, Oc(nk - 00), I :=I;_pe ®id, T = Ti_pe ®1id.

Then (F;, I1;, 7;) is an abelian sheaf of rank r and dimension d over S. This
construction is also comdpatible with level structures and defines a 1-morphism
T : Pol;jld — Ab-Shlj’ x¢C'. One easily proves that T and T’ are mutually 2-
inverse. O

Remark 2.4. Example 1.8 together with Theorem 2.3 shows that every Drinfeld mod-
ule carries a canonical polarization. This parallels the situation for elliptic curves.

3 Algebraicity of the stacks of abelian sheaves

In this section we will prove the following theorem.
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Theorem 3.1. Ab-Sh;’Jd is an algebraic stack in the sense of Deligne—Mumford [9],
locally of finite type over C.

Note that the example in Section 4 below shows that it will in general not be smooth
over C. Nevertheless, if the characteristic is disjoint from oo and one stratifies the
stack according to the isomorphy type of the O¢-modules coker IT; and coker t;, then
each stratum will be smooth over C’.

More precisely, we let z be a uniformizing parameter on C at oo and we fix a flag
G. of Fy[z]/ z¥-submodules

0)C G C-CGi1 CGp = (Fylzl/zH® (3.1)

such that the successive quotients all have dimension d over IF,,. We say that an abelian
sheaf F of rank r and dimension d over S has isomorphy type G, of I if for every
point s € S the flag of O¢,-modules

O CcFi/FoC---CFe1/Fo C Fe/Fo=Folk-00)/Fo

is isomorphic to the flag Go ®F, « (s).

To fix the isomorphy type of t let S be a scheme with characteristic morphism
c¢:§ — C.Wedenote by J C Oc, the ideal sheaf defining the graph of ¢, by I'y
the closed subscheme of Cg defined by J' 4 and by Oy the structure sheaf Ocg/J d
of I';. We fix integers

(e1=e=---<e)=¢ (3.2
between 0 and d with e; + --- 4+ ¢, = d. We say that an abelian sheaf F of rank

r and dimension d over S has isomorphy type e of t if for every point s € S the
Oc,-module coker 7_1 is isomorphic to

P Oc./70c,.

v=1

Note that if the characteristic is disjoint from oo, then the cokernels of all 7; are
isomorphic.

We consider the locally closed subset (see Laumon—Moret-Bailly [32, Section 5])
of Ab-S h;f consisting of the points over which the universal abelian sheaf has iso-
morphy types G, of IT and e of t. We give this subset the reduced induced structure

[32, 4.10] and obtain a substack Ab-Sh 9 of Ab-Si’y'.
Theorem 3.2. The substack .zéllJ-gS'hrI’{d’g"g x cC" is smooth over C' of relative dimen-
sion y_, (e, — ey) if nonempty.

The proof of these theorems follows Laumon—Rapoport—Stuhler [33]. For a given
compact open subgroup H C GL,(A) consider a closed subscheme I C C’ which is
supported on the places v for which H, # GL,(A,) and satisfies

H S Hj = ker(GL,(A) — GL,(O))).
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Then .Ab-Sh;’fll is finite étale over Ab-Sh;’]d by Proposition 1.3. In fact it is even a
H / H;-torsor. Hence Ab—Sh;de is a quotient of .Ab—Sh;;‘j in the sense of stacks; cf.
[32, 4.6.1]. Therefore, it suffices to prove the two theorems for H = H;. We assume
this situation from now on.

We will cover Ab-S h?’id by open substacks corresponding to stable vector bundles
with additional level structure. To be precise we proceed as follows. Let F be a
locally free sheaf of rank r on Cg. An I-level structure on F is an isomorphism
n:Flixs — 07 g of Ojxs-modules.

Definition 3.3. We say that the pair (F, 1) is stable if for all algebraically closed
points s € S and all locally free Oc,-modules G properly contained in Fy, we have

deg(G) — deg(/) _ deg(Fy) — deg(/)
k(G) rk(Fy)

(compare Seshadri [39, 4.1, Définition 2]).

We denote by Ab-S h;:;,lsl the open substack of Ab-S h;;d of those abelian sheaves

for which (Fg, 1) is stable. We will show that .Ab—Sh?I‘fst is representable by a disjoint
union of quasi-projective schemes of relative dimension d (r — 1) over C \ I if I # (.
For this purpose we need to introduce some additional stacks.

We denote by Vec’, the stack classifying locally free sheaves of rank r on C with
I-level structure and by Vec (, the substack of such locally free sheaves which are
stable. Seshadri [39, 4.III] proves the following fact (see also [33, 4.3]). Note that
there is a typing error in the formula for the dimension in [39].

Proposition 3.4. If I # () the stack Vec;’ 5 18 representable by a disjoint union of

quasi-projective schemes over I, which are smooth of dimension r2(g —1+degl).
Here g is the genus of C.

Definition 3.5. Let S be a scheme and let (F;, I1;) be a sequence of locally free
sheaves on Cg as in the first row of the Definition 1.1 of an abelian sheaf. Suppose
that (F;, I1;) satisfies the conditions 2 and 3 of Definition 1.1. An I-level structure
on (F;, I1;) is a collection of I-level structures 1; on the F; that are compatible with
the morphisms I1;. We denote by Seq;’d the stack classifying sequences (F;, I1;) as
above together with I-level structures n; and by Seq?fjt the open substack of those
sequences for which F with its level structure is stable.

Lemma 3.6. The natural 1-morphism
Seq;" — Vec).  (Fi. T iip) = (Fo. iio)

is representable by a closed subscheme of a flag variety. The strata Seq;’d’g’ with
fixed isomorphy type G, of T1 are smooth over Vec'; if nonempty. In particular, Seq;’f,t

and Seq;’?;g' are representable by a disjoint union of quasi-projective schemes

(respectively, quasi-projective and smooth schemes) over Fq if I # (.
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Proof. Let Fy on Cys be given corresponding to a 1-morphism S — Vec’;. Due to
the periodicity condition 2, the sequence (F;, I1;) corresponds to a flag of length £
of Oc¢,-submodules

O CcFi/FoC---CFe1/Fo C Fe/Fo= Folk-00)/Fo (3.3)

such that the successive quotients are all locally free Og-modules of rank d. Hence
the first assertion follows.
To prove the statement about S eq;’d’g‘ note that locally on S the sheaf F;/Fy is

isomorphic to Og[z]/z*. By the elementary divisor theorem a point Spec K of S eq?d
belongs to Seq;‘d’g' if and only if the flag (3.3) is conjugate to G, under GL, (K [z]/z%).

Therefore, S eq;’d’g° is relatively representable over Vec’, by the homogeneous space

GL, (F,[z]/2")/ Stab(G.).

The group GL,(IF,[z] /zk) is the Weil restriction R(Fq [21/25)/F GL, and hence a
smooth connected algebraic group over F,. The stabilizer of é. corresponds to a
closed algebraic subgroup defined over IF,. Thus the above homogeneous space is a
smooth algebraic variety over IF,;. From this the lemma follows. O

Definition 3.7. We let Hecke;’d be the stack classifying the commutative diagrams
with I-level structures

M IT; i+
- —— Fii Fi Fir) —
T’i72 Tti—l Tfi
, 0, i , I
o Fi, Fi 7

such that the sequences (F;, I1;) and (‘7:1‘/ , l‘[;) with their I-level structures belong to

Seq?d and such that the t; satisfy conditions 1 and 4 of Definition 1.1 and respect
the I-level structures. Assigning to such a diagram over S the morphism S — C 1
on whose graph the cokernels of the t; are supported, defines a 1-morphism of stacks
Hecke;’d — CN L

The above stacks fit into the following 2-cartesian diagram of stacks

Ab—Sh;_’Id _— S eq;’d

J' J{(id’GSEq)

15t ,2“d
Hecke;’d (1%row,2™row) Seq?dXSeq;’d (3.4)

l

C~ 1.
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On the stack 'Hecke;’d the cokernel of 7_1 is a quotient of Fo which is locally free
of rank d over the base and supported on the graph of the characteristic morphism c.
We analyze this property. Let 7 be the stack

(C 1) x Seqy”.

On C x 7 consider the ideal sheaf 7 defining the graph I"(c) of the characteristic
morphism ¢ : 7 — C N1 C C (see [32, Section 12]). We denote by I'; the closed
substack of C x 7T defined by J¢ and by Oy the sheaf O¢,7/J%. The quotients of
Fo that are supported on I"(c) and are locally free over 7 of rank d are classified by
Grothendieck’s Quot-scheme relative to 7 [19, number 221, Théoréeme 3.1]

d
QuUOI'E 00,114/ T -

It is a stack projective over 7.
Lemma 3.8. The 1-morphism
r.d d r.d
Hecke}" — Q"‘Ot}‘o@Od/Fd/T x Seq;

given by the cokernel of t_1 and the second row, is representable by a closed immer-
sion. Over C (I U 00) the 1-morphism

r,d d
Hecke" — Quot}-(@od/rd/?—

obtained by projection onto the first factor is a 1-isomorphism. In particular, the
1-morphism Hecke;’d — Seq;’d X Seq;’d from (3.4) is representable by a quasi-
projective morphism.

Proof. The substack Hecke?d of Quot”;_-o@)od 1T ¥ Seq;’d is defined by the fol-
lowing conditions:

1. F’, equals the kernel of the morphism from Fj to the universal quotient;

2. foreachi = —¢, ..., —2, the sheaf ]—"l./ is contained in the intersection of F; |
and F” ,, which we view as subsheaves of Fo viaIT_j o---oIl;4jand 7_y;

3. if we let t; be the inclusion .7-'; C Fi+1, then coker ¢; is annihilated by J d,

4. t_1 is compatible with the I-level structures on F’_ 1 and Fo.

Namely, by descending induction on i, the short exact sequences of Og-modules

0 —cokert;_| — coker(Il; ot;_1) —— coker I[I; ——= 0

0 — coker IT; | —— coker(#; o IT}_;) — cokert; —= 0

imply that coker¢; is a locally free Og-module of rank d. Now clearly the above
conditions are represented by a closed immersion.
Over C (I Uoo) defining .7-'[ as the intersection F; 1 NF | inconditions 1 and 2

automatically gives an object (F, IT}) in S eq;’d. This proves that the projection onto
the first factor is a 1-isomorphism there. O
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Proof of Theorem 3.1. Recall that we have assumed H = Hj. Considering the dia-
gram (3.4), we conclude from the previous lemmas that Ab-S hrlj;,ist is representable
by a disjoint union of quasi-projective schemes over C I if I # (.

Now we let I C I' C C’ be two finite closed subschemes with I’ # @ and
we set H' = Hy . By restricting I’-level structures to I-level structures we obtain a

1-morphism of stacks
i Ab-SHE — Ab-Si!.
Over C I this 1-morphism is a torsor under the finite group
Gy :=ker(GL,(Op) — GL,(O))) = H/H'

due to Proposition 1.3. Since rl_,ll (Ab-Sh;;{‘?sl) C Ab-Sh;jﬁ ,;» the open substack

.Ab—Sh;jf ,; Which is stable under G/ ;, gives as a quotient in the sense of stacks an
open substack

r.d
Ab_ShH’,sl

/Gy C Ab-Shf!

that contains Ab-Sh;f” X o~ ;C ™ I'.Itis an algebraic stack in the sense of Deligne—
Mumford. If we let I’ vary among finite closed subschemes of C’ containing [ these
open substacks cover Ab-Sh;jld, since every vector bundle becomes stable for a suf-
ficiently high level structure. This proves Theorem 3.1 except for the assertion on the
dimension which follows from Theorem 3.2. O

Proof of Theorem 3.2. We denote by Quot¢ the reduced, locally closed substack
of Quotz;()@(,)d Ty T consisting of those points for which the universal quotient is
isomorphic to

,
@@cx/je”ocs-
v=1
We claim that Quor* is smooth over 7 of relative dimension } _ , _, (e, —ey). Indeed,
locally on 7 the sheaf Fo ® Oy is isomorphic to O!;. Let H C O, be the kernel
of the morphism from (92 to the universal quotient on Quot<. The condition on the
isomorphy type of the universal quotient implies that  is conjugate to &/ _, 7 /J' d
under GL, (O,). Therefore, Quot< is locally isomorphic to the homogeneous space

GL,(Og)/ Stab(&' _, T /T%).

As in the proof of Lemma 3.6, this homogeneous space is smooth and the claim
follows. The theorem can now be deduced using Lemma 3.8 and applying [33, Lemma
4.2] to diagram (3.4). O

4 An example

In this section let C = }P’ﬁr and A =TF,[t]. Let I = V(t) C C and H = Hj and set
q

z= % Then C I = SpecF,[z]. We consider the case whered =r =2,k =£ =1

and describe the algebraic stack Ab-Shz’z. It decomposes
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Ab-Shy? = | [ Ab-Shy;*(n)

nez

into the open and closed substacks on which the vector bundle Fy has degree n. The
shift by 1 from Definition 1.7 yields a 1-isomorphism Ab-Sh7;* (n) — Ab-Shi;”(n +
2). Soit suffices to describe Ab-Shi}2 (n) forn = 0, 1. We want to treat the casen = 0
here.

Let MIZ’2 be the scheme

Spec Fy[¢llau : 1 < pu, v < 21/(an + axn +2¢, anian — anaxy — ¢2).

We view (a,,) as a2 x 2 matrix with trace —2¢ and determinant ¢?. Mapping z to
¢ defines a morphism ¢ : M,Z’2 — C.On S = M?’z, we set fori € Z

Fi = 0cs(i -00)® and © = (1 +1(aw) -0 : 0*F; — Fiyl,

and we let Il; : F; — F;y1 be the morphism induced by the inclusion O¢g C
Oc4(00). Due to the trace and determinant condition on the matrix (a,,), the data
(Fi, ;, t;) is an abelian sheaf of rank 2, dimension 2, and characteristic ¢ over S.

We want to define an /-level structure on F = (F;, I;, 7;). Note that F|;x5s is
canonically isomorphic to (’)g with t|;xs = Idy -0*. Hence the identity morphism
on O% defines an [-level structure 1 on F.

Proposition 4.1. The 1-morphism MIZ’2 — .Ab-Shé’,2 induced by (F, n) identifies

M [2’2 with the (representable) open substack of.Ab—Shi}Z onwhich the underlying vec-
tor bundle with level structure (Fy, ) is stable (Definition 3.3) and has degree zero.

We will see below that (Fy, 1) is stable and of degree zero if and only if Fy = O%S .

Proof. Let T be a scheme together with a characteristic morphism ¢’ : T —
Spec F, [z] disjoint from /. Denote the image ¢'*(z) in Or by ¢’. Let (F/, IT;, t/, 77")
be an abelian sheaf of rank 2, dimension 2, and characteristic ¢’ over T with I-level
structure such that (.7-'(’), 77') is stable and of degree zero. We have to exhibit a uniquely
defined morphism f : T — M;? such that f*(F, ) = (F/, T}, ¢/, 7). Since the
morphisms IT} identify F with (i - o0) it suffices to concentrate on F) and ).

We claim that the stability condition implies F) = O%T globally on 7. Indeed,
let 7 : Cr — T be the projection onto the second factor. We first show that 7, F{ is
locally free of rank 2 on 7 and that 7 * 7, F; — J is an isomorphism. Let s € T be
an algebraically closed point. The stability implies that every invertible O¢,-module
G C Fjlc, has degree at most 0. Hence Fj|c, = O%g and thus H1(C;, File,) = (0).
By the theorem on cohomology and base change [25, II1.12.11] this implies that
Rln*]-'(’) vanishes and that 7, F{) is locally free of rank 2 on T'. Moreover, ", F;, —
F is an isomorphism in the fiber over s and hence on all of T’ by Nakayama. Now the
level structure 7" induces an isomorphism 7, F = (7*mF))|1x7 — (’)2T. From
this our claim follows.
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As ) maps o * F into F| = F(00), it is represented with respect to a basis of
F; by a matrix
0

‘L’é =Uy+1tU)) -0 with UyeGLy(O7) and U; € M2(O7).

Identifying ]—'6| IxT With O%, we can express 77’ by a matrix in GL,(O7). There is
a uniquely defined change of basis of 7, such that this matrix becomes the identity.
Then we also have Uy = Id. The condition on coker 7/, now implies that

det(Id +1Uy) = (1 — ¢'1)>.

Then the required morphism f : T — MIZ’2 is given by f*(a,) = Uy and f*(¢) =
I O

Remark 4.2. From this example one sees that Ab—Sh;_’Id need not be smooth over C.
Namely, M12‘2 is not smooth at the points with ajp = ax; = 0, a1 = ap = —¢.
The reason for this is that at these points the Oc,-module coker ¢ is isomorphic to
(k(s)[z]/(z — £))®? whereas at all other points it is isomorphic to « (s)[z]/(z — 0)2.
Compare with Theorem 3.2.

This example also shows that in general one cannot hope that the stacks Ab—Sh?Id
are schemes. Namely, for any level I, there are abelian sheaves of rank 2 and di-
mension 2 with an /-level structure that have nontrivial automorphisms. Indeed, let
I =V(a) C C'forana € Fy[r] with dega = n. Letc : S — C [ be arbitrary
and denote the image of z in Og by ¢. Let f € Og[r] have degree < n + 1. Then the
abelian sheaf with

1 —
Fi = Ocg((i +n)-00) @ Ocg(i-00), 7 =< ogt 1—fct) o

admits an /-level structure after a finite étale extension of S. It has nontrivial auto-
morphisms compatible with this level structure of the form

()

As a consequence .Ab-Sh?Id is not quasi-compact in general. Indeed, recall from

forx € Fy.

the proof of Theorem 3.1 the covering of Ab-S h;_’ld by open substacks
Up = Ab-Sht |, /(H/H))

where I C C’ runs through all finite subschemes with H; C H. Note that U; C Up
if I c I'. Now if Ab—Sh;’{d were quasi-compact this covering would have a finite
refinement. So A4b-S h;’]d would equal a single Uy for a large enough /. From this we
could deduce that

Ab-Sh! = Ab-Shy! |,

is in fact a scheme. Since for r = d = 2 the latter is not the case, .Ab-Shz’2 is not
quasi-compact.
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5 Isomorphism classes versus isogeny classes

The general yoga that mediates between isomorphism classes of abelian varieties
over Zp-schemes and prime-to- p isogeny classes of such can be transfered to abelian
sheaves. This will allow us to define H-level structures for arbitrary compact open
subgroups H C GL,(Ar). We begin by defining the notion of isogeny for abelian
sheaves.

Definition 5.1. A morphism between abelian sheaves (F;, I1;, t;) and (F], I1}, t))
over S is called an isogeny if

1. all morphisms F; — F| are injective,
2. coker(F; — .7-'; ) is supported on D x S for an effective divisor D C C, and
3. coker(F; — F)) is locally free of finite rank as an Os-module.

The isogeny is called finite (or prime to 0o) if for all i the support of coker (F; — F)
is disjoint from co. A (finite) quasi-isogeny between (F;, I1;, t;) and (F, 11}, t}) is a
(finite) isogeny between (F;, I1;, 7;) and (F(D), I}, t/) for some effective divisor
D C C (respectively, D C C  00).

Note that an isogeny between two abelian sheaves can only exist if they both have
the same rank and dimension. The following proposition is evident. It justifies our
definition of quasi-isogenies.

Proposition 5.2. Let o« : F — F' be an isogeny of abelian sheaves over S. Then
there exists an effective divisor D C C and an isogeny o" : F' — F(D) witha oo
and a” o o being the isogenies induced by the inclusion Oc C Oc¢ (D). If D is chosen
minimal, then D and o are uniquely determined.

Example 5.3. Let F = (F;, I1;, t;) be an abelian sheaf of rank » and dimension d
over S. Then the collection of the I1; defines an isogeny

(I;) : F[1] > F

where [1] denotes the shift by 1 (cf. Definition 1.7). Similarly, let P be a point on C
and let S € Nilp,, via the characteristic morphism ¢ : § — C. Then the collection
of the t; defines an isogeny

(t) 1 0" F[1] - F.

For abelian varieties there is a general principle relating isomorphism classes of
abelian varieties with level structure over Z,-schemes to prime-to- p isogeny classes
of such. This principle also applies to abelian sheaves. We need to introduce the
analogue for Z, in our situation.

Notation 5.4. The local ring O¢  is adiscrete valuation ring. Let z be a uniformizing
parameter. We identify the completion of O¢ o with IFy[[z] and Qo with F, (2)). Let
¢ be an indeterminant over I, and denote by IF,[[¢ ] the ring of formal power series
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in ¢. Fix the characteristic morphism ¢ : SpecF,[[¢]] — C defined by c*(z) = ¢.
Clearly, this morphism identifies F, [z]] with F, [ ]l. However, since z — ¢ does not
necessarily act trivially on coker 7; we use two different symbols to separate the two
roles played by z as a uniformizing parameter at co and as an element of Og. From
now on all base schemes for abelian sheaves will be schemes over Spec Fy [[¢]. We
consider the base change of our stacks

Ab-Sh;;,d x ¢ SpecFy[£].

For the sake of brevity we denote them again by Ab—Sh;’Id. This should not cause
confusion since from now on we work entirely in the local situation over Spec Iy [¢ ]

Working with isogeny classes instead of isomorphism classes we have to modify
our definition of H-level structures. The new definition will have the additional ad-
vantage that it extends to arbitrary compact open subgroups H C GL, (A y) which
are not necessarily contained in GL, (A). Let F be an abelian sheaf of rank r over S.
We define the functor

(Ela,)" : Schs — A g-modules
T/S — Ay @z (ZID(T).

Assume that S is connected. Choosing an algebraically closed base point¢ : s — §
we may view (£|Af)f as the A ¢[( (S, s)]-module (t*£|Af)f(s).

We consider the set IsomAf((£|Af)f, A}) = ISOII]A]((L*£|Af)T(S), A}) of
isomorphisms of A r-modules. Via its natural action on A’f the group GL, (A ) acts
on this set from the left. Via its action on (L*£|Af)t(s) the group 1 (S, s) acts on it
from the right.

Definition 5.5. Let H C GL, (A ) be a compact open subgroup. A rational H-level
structure on F over S is an H-orbit in Isomy ((£|Af)f, A;c) which is fixed by
71(S, ). (Again the latter condition implies that the notion of level structure is inde-
pendent of the chosen base point.)

Every quasi-isogeny « : F — F  induces an isomorphism
(alpa)"  (CEla ) () == FE a7 ()
and thus carries rational H -level structures on F to rational H-level structures on F.

Theorem 5.6. If H C GL, (X) is a compact open subgroup, then the stack Ab—Sh?Id
is canonically 1-isomorphic to the stack X whose category of S-valued points has

as objects all pairs (F, y) consisting of an abelian sheaf F of rank r and di-
mension d and a rational H-level structure y on F over S, and

as morphisms  all finite quasi-isogenies that are compatible with the rational H -
level structures.
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Proof. Let S be a SpecF,[[¢ ]l-scheme and let (F, 17) be an object of Ab-Sh;,d(S);
i.e., F is an abelian sheaf and 7 is an H-level structure on F over S (in the sense of
Definition 1.6). Then Ay ® 3 7 is a rational H-level structure on F. This defines a
canonical 1-morphism of stacks f : Ab-ShrI’id —- X.

For it to be a 1-isomorphism we have to show that f(S) : Ab—Sh;de(S) — X(S)
is an equivalence of categories for all S. Let (F = (F;, I1, i, 1;), ) be an object of
X (S). Choose an algebraically closed base point ¢ : s — S and a representative

y o Fla,) () = A
of y. There is an element a € A with y‘l(aZ’) C (*FEI2)F (). Then the sheaf

CFID () /y " (@A)

on C; has finite length and support disjoint from oo. Via the identification of (F|7)*
with (¢* F| 7)" (s) this sheaf can be viewed as a quotient sheaf of F; for all i. Its support
is of the form D x § where D C C’ is the divisor of zeros of a. Note that D x S is
disjoint from the characteristic of F. Therefore, the kernel of this quotient map is an
abelian sheaf (.7-"[.’ , 1'[;, ‘Ci/ ) of rank r and dimension d over S which is isogenous to F.
Consider the abelian sheaf F'(D) := (F/(D), I1;, t/) and the induced finite quasi-
isogeny o from F'(D) to F. By construction y o ((xlAf)T induces an isomorphism

i (F (D) —> A,

This yields an H-level structure 7 on &' (D). Clearly, this construction is independent
of the choice of y.

The pair (F/ (D), A F®zn)isisogenous to (F, y) by construction. This proves that
the functor f(S) is essentially surjective. Analyzing the above construction further
shows that it is also fully faithful. Hence f is a 1-isomorphism of stacks. O

The reader should note that if v is a finite place of C, the analogous statement
holds for abelian sheaves over A,-schemes and prime-to-v isogenies.

The above theorem enables us to define the stacks of abelian sheaves with H-level
structure for arbitrary compact open subgroups H € GL, (A ).

Definition 5.7. Ab-Sh;_’Id is the stack over SpecF,[¢]l whose category of S-val-
ued points has

as objects all pairs (F, y) consisting of an abelian sheaf F of rank r and di-
mension d and a rational H -level structure y on F over S, and

as morphisms  all finite quasi-isogenies that are compatible with the rational H-
level structures.

For varying H, the stacks Ab-S h;jld form a projective system of stacks. The
transition maps Ab-S h;jf,l — Ab—Sh;’{d for H' C H are representable by finite étale
morphisms of schemes. We define a right action of GL, (A ) on this projective system

by letting g € GL, (A r) act through the 1-isomorphisms
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d_~ .d
g Ab-Shyy' —> .,élb-Sh:d_lg,1

which are defined by (F,y) — (F, g !y) on S-valued points. Using these 1-
isomorphisms it follows from Theorem 3.1 that all the stacks Ab-Sh?Id are algebraic
in the sense of Deligne-Mumford and locally of finite type over Spec F,[[£ .

Part Two: z-Divisible Groups

Our ultimate goal in this article is to study the uniformization of the stacks Ab—Sh;_’Id
at oo. Classically, this corresponds to the p-adic uniformization of moduli spaces
of abelian varieties. For those uniformization questions the associated p-divisible
groups are an indispensable tool. In the same manner we are thus lead to the idea
of “z-divisible groups.” These groups were studied in detail in Hartl [23]. But they
already appeared in special cases in the work of Drinfeld [11], Genestier [18], Lau-
mon [31], Taguchi [41] and Rosen [38]. For the uniformization of Ab—Sh;_’Id these
z-divisible groups are of equal importance as p-divisible groups are for abelian va-
rieties. Therefore, the next few sections are devoted to them. We first review some
facts from [23] in Sections 6 and 7.

As z-divisible groups are of most use over schemes on which z is not a unit we
will from now on work over Spf F,[{]] (see Notation 5.4). Since we want to relate
z-divisible groups to abelian sheaves, we should also consider abelian sheaves over
Spf I, [[¢ I-schemes. Hence we right away introduce the base change

Ab-Shy x ¢ Spf By [[¢]).

This is no longer an algebraic stack. But it is a formal algebraic Spf IF,[[¢ ]-stack
(Definition A.5). Formal algebraic stacks are related to algebraic stacks in the same
way as formal schemes are related to usual schemes. For the necessary background,
we refer the reader to the appendix.

6 Definition of z-divisible groups

We continue to work in the local situation introduced in Notation 5.4. In particular,
z is a uniformizing parameter at oo and we identify Q. with F,;((z)). Let A be the
central skew field over O of invariant k/¢ and let O be its ring of integers. We
identify Oa with the F,-algebra F ¢ [[z, IT]] of noncommutative power series subject
to the relations

N¢=z =Mz zi=2z MA =21 forallieF,.

Denote by /\/'ilp]Fq 17 the category of schemes over Spec Fy[[£ ]| on which ¢ is locally
nilpotent. From now on in this article the scheme S will be in J\/ilp]Fq Il
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Definition 6.1. Let R be a unitary ring. We define an R-module scheme over S o be
a flat commutative S-group scheme E together with a unitary ring homomorphism
R — Endg E. It is called finite of order d if it is so as an S-group scheme. A
morphism of R-module schemes is a morphism of the underlying S-group schemes
which is compatible with the R-action.

For an R-module scheme E over S we define its co-Lie module Lie* E as the
Os-module of invariant differentials. It is canonically isomorphic to e*Qg,s where
e : S — E is the zero section. We have Lie E = Homg(Lie* E, Og) as Og-module.

The additive group scheme G, s is an example for an F;-module scheme over S.
Likewise every S-group scheme which locally on S is isomorphic to Gg) g for some
integer d > 0 is an F;-module scheme. Such a scheme is called an IF,-vector group
scheme of dimension d over §. For every a € IF, the endomorphism induced on its
co-Lie module equals the multiplication with a viewed as an element of I"(S, Oy).

Definition 6.2. Leth,d > 1 beintegers. A z-divisible group of height /2 and dimension
d over § is an inductive system of finite F [ z]l-module schemes over S,

E=E SB35 )

such that for each integer n > 1,

1. the Fy-module scheme E, can be embedded into an I -vector group scheme
over S;

2. the order of E, is qh";

3. the following sequence of Fy[z]l-module schemes over S is exact:

in "
0— E, — En+1 — En+1;

4. (z —¢)? = 0onLie* E,;
5. d = max{dim, s (Lie* E, ®og k(s)) s €8,n>1}

A morphism of z-divisible groups over S is a morphism of inductive systems of F, [[z]]-
module schemes.

We set Lie* E = lim Lie* E,,. Conditions 1-4 imply that this is a locally free

Og-module. Condition 5 asserts that its rank is the dimension of E.

The reader should observe that we do not require that z — ¢ acts trivially on
Lie* E. This is in conformity with the previous sections. In this respect our notion of
z-divisible group is more general than the variants considered in [11, 18, 41, 38] and
different from the classical case of p-divisible groups.

The group of morphisms Homg(E, E") between two z-divisible groups E and E’
over S is a torsion free F, [z]l-module. Let Hom¢(E, E’) denote the sheaf of germs
of morphisms on S.

Definition 6.3. The category of z-divisible groups over S up to isogeny has as objects
the z-divisible groups over S and as morphisms from E to E' all global sections of
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the sheaf Hom(E, E’) ®F, (121 Fy (z) on S. An isomorphism in this new category is
called a quasi-isogeny. An isogeny between z-divisible groups is a morphism between
z-divisible groups which also is a quasi-isogeny.

In particular, for every quasi-isogeny « there exists locally on § an integer n such
that z"« is an isogeny. Quasi-isogenies have the following rigidity property.

Proposition 6.4. Let 1 : ' < S be a closed subscheme defined by a sheaf of ideals
which is locally nilpotent. Let E and E' be two z-divisible groups over S. Then every
quasi-isogeny from * E to * E' lifts in a unique way to a quasi-isogeny from E to E'.

Proposition 6.5. Let o : E — E’ be a quasi-isogeny of z-divisible groups over S.
Then the functor on Mlp]Fq Il

T +— {¢ € Homg, (T, S) : @*a is an isogeny),
is representable by a closed subscheme of S.

Definition 6.6. A z-divisible Op-module over S is a z-divisible group E over S with
an action On — Endg E of O, which prolongs the natural action of F,[[z]. A
morphism of z-divisible Ox-modules which is an isogeny of z-divisible groups is
called an isogeny.

Definition 6.7. If S belongs to ./\/'ilpspfF (] @ z-divisible Ox-module E of height
q

r€ and dimension d{ over § is called special if the action of Op induced on Lie* E,
makes Lie* E into a locally free Foe® Og-module of rank d.

At the end of the next section, we will show that the latter are precisely the
z-divisible groups that arise from abelian sheaves.

Proposition 6.8. Fora z-divisible Ox-module E over S, the condition of being special
is represented by an open and closed immersion into S.

Proof. Clearly, Lie* E decomposes into a direct sum Zf;& (Lie* E); of components

(Lie* E); on which A € Iqu C Oa acts via A? = Ogs. Then E is special if and only
if all (Lie* E); are locally free Os-modules of rank d. The proposition follows. O

7 Dieudonné modules of z-divisible groups

We continue with the notation from Section 6. Let S be a scheme in MlpIFq rcy and
consider the completion of Cg along the closed subscheme co x V(¢). Its structure
sheaf is the sheaf Og[[z]] on S of formal power series in z. We denote the sheaf
Oa ®F, 7 Osliz] on S by OA®Os.

Consider the additive group G, s = Spec Og[£] over S. On G, 5 we have the
Frobenius isogeny Frob, : G, 5 — G, s defined by Frob; &) = &1. Let E =
(E,, in) be a z-divisible group over S. We associate to E the sheaf
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Mg = lim Homs(E,, G,.s)

n

on S. We make M into a sheaf of Og[[z]]-modules by letting z act through the isogeny
z on E. The og-linear multiplication with Frob, on the left defines a morphism

FEZU*ME e ME.

If E is, moreover, a z-divisible Ox-module, then Mg becomes an Ox @O g-module
through the action of Oa from the right. The module Mg may be viewed as the
analogue of the contravariant Dieudonné module associated to a p-divisible group.
See [23] for a general discussion of this analogy. We recall the following facts.

Deﬁniﬁon 7.1. A Dieudonné IF,[[z]]-module over S of dimension d and rank r is a
sheaf F_of Ogllz]l-modules on S equipped with an Osllz]l-module homomorphism
F : 0*F — F such that locally on S in the Zariski topology,

1.7 is free of rank r as an Og[[z]-module,
2. coker F is free of rank d as an Og-module,
3. (z = ¢)? = 0 on coker F.

A morphism between Dieudonné F ([ z]|-modules is a morphism of sheaves of Os[[z]l-
modules which is compatible with F.

Note that F is automatically injective. As for p-divisible groups the z-divisible
groups are classified by their Dieudonné F, [[z]]-modules.

Theorem 7.2. The functor E — (Mg, Fg) is an antiequivalence between the cate-
gory of z-divisible groups of height r and dimension d over S and the category of
Dieudonné IF,[[z]l-modules of rank r and dimension d over S. There is a canonical
isomorphism Lie* E = coker FE.

If one seeks a classification of p-divisible groups up to isogeny, one works with
isocrystals instead of crystals. For z-divisible groups we do the same.

Definition 7.3. A Dieudonné F, (z))-module over S is a finite locally free Og [[z]][%]-
module V together with an isomorphism F : o*V —> V).

To every Dieudonné F,[[z]-module z = (.7? , F) over § we associate its
Dieudonné I, ((z))-module

~[1 ~ 1
f[—] = (f Q021 Oslizll [E} F® id> :

Z

Definition 7.4. A morphism « : z — z/ of Dieudonné F,[z]l-modules is called
an isogeny if «a is injective and coker « is a locally free Og-module of finite rank.
We define a quasi-isogeny between Dieudonné IF,[z]l-modules F and f to be an

isomorphism between z [%] and z /[%].
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Proposition 7.5. The functor E — (Mg, Fg) maps isogenies to isogenies and quasi-
isogenies to quasi-isogenies.

Now let m/n be a rational number written in lowest terms with n > 0. Then we
define the Dieudonné I, (z))-module V(m /n) over Spec F; as

0... "
V=T, F=|'Tn i |etiev oy
10
There is the following analogue of Dieudonné’s Theorem [34].

Theorem 7.6. Let K be an algebraically closed field with Spec K € Mlp]Fq icy- Then
every Dieudonné F; (z))-module over Spec K is isomorphic to a direct sum

P vimi/ni) ®r, ) K (<)

for uniquely determined rational numbers my/ny < mp/np <---

Th1s result allows us to define the Newton polygon of a Dieudonné I, [ z]l-module

(.7-' F) over a field K in J\/llpF rcy- Namely, over an algebralcally closed

extensmn its Dieudonné F, (z))- module decomposes as in the theorem. Then the
Newton polygon is the polygon which passes through the points

(ni - +nj,m+---+m)

for all i and is extended linearly between them. It is independent of the chosen
algebraically closed extension. We also define the Hodge polygon as usual by the
elementary divisors of the K [[z]]-module coker F. The Hodge polygon lies below the
Newton polygon. They both have the same initial point (0, 0) and the same terminal
point (tk F F.dim F F). We obtain the analogue of the theorem of Grothendieck—Katz
[21, 27].

Theorem 7.7. Let z be a Dieudonné I, [[z]l-module of rank r over S and let P be
the graph of a continuous real-valued function on [0, r] which is linear between
successive integers. Then the set of points in S at which the Hodge (respectively,
Newton) polygon of z lies above P is Zariski closed.

Note that the stratification of Ab-Sh;;d considered in Section 3 is related to the
stratification according to the Hodge-polygon. This relation comes from Construc-
tion 7.13 below.

Definition 7.8. Let S € ./\/ilqu 1¢c7 be the spectrum of a field. We say that a Dieudonné
Iy [z]l-module over S is isoclinic if its Newton polygon has only a single slope.

Proposition 7.9. Let f be an isoclinic Dieudonné ¥ ([z]-module of rank r and di-
mension d over a perfect field K. Then F is isogenous over K to a Dieudonné
Fyl[z]l-module satisfying im F" = A F.
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Later we will also need the analogue of Katz’s Constancy Theorem.

Theorem 7.10. Let Spec K[ ] € Mlpﬁ?q ic7 be the spectrum of a power series ring
over an algebraically closed field K and let f be a Dieudonné F [ z]]-module over
Spec K[ ]l. Suppose that at the two points of Spec K [ ]| the Newton polygons co-
incide, and that this common Newton polygon has only a single slope. Then z is
isogenous to a constant Dieudonné F,(z]l-module (i.e., one obtained by pullback
under the morphism Spec K[ ]l — Spec K).

We now want to apply this theory to special z-divisible Ox-modules. Since for
every z-divisible group E there is a canonical isomorphism Lie* E = coker Fg
the property of being special reflects on Mg. We consider the following class of
Dieudonné F, [[z]l-modules. Let S be in /\/'ilp]Fq LT

Definition 7.11. A formal abelian sheaf of rank r and dimension d over S is a sheaf F
q]:OA@OS-modules on S together with a morphism of Ox@Os-modules F : 0*F —
F such that

1. (.f’-:, F) is a Dieudonné I, [[z]l-module over S of rank r¥,
2. coker F is locally free of rank d as an F ;¢ ® Og-module.

In the situation of special z-divisible Op-modules, Theorem 7.2 takes the follow-
ing form.

Theorem 7.12. The functor E — Mg is an antiequivalence between the category
of special z-divisible On-modules of height r{ and dimension d{ over S and the
category of formal abelian sheaves of rank r and dimension d over S.

Next, we want to describe the relation with abelian sheaves. We will obtain the
analogue of the classical functor which assigns to every abelian variety its p-divisible

group.
Construction 7.13. Let S be in /\filqu [cy and assume that there is a morphism g :
S — Spec qull{ 1. Let (F;, I1;, t;) be an abelian sheaf of rank » and dimension d

over S. Consider the completions .7/-:, =F ®OC5 Osllz]l of the sheaves F; at oo.
Using the periodicity Fy = Fo(k - 00) we obtain morphisms

M,: F — Fyy foralli=0,....6—2, ZXMy_i: Fooi—>Fo (1.1)
and
T a*]?i — f;’+1 foralli =0,...,¢—2, zktg,l : U*j-:g,l — j-:o. (7.2)

We set F = fo DD j-:g_1 and let the endomorphism IT : F— Fbe given by the
morphisms (7.1). We le/t\ S [/F\qz acton .f’-:l as the scalar g*A\4 " and we let the o -linear
endomorphism F : 0*F — F be given by the morphisms (7.2); i.e., I, A, and F are
expressed by the block matrices
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0 ... ol | ] B*r1d,
*14
= HO:'.. : , A= ﬂ)\tldf‘. ’
Mes O g 1d,
and
0... Zk‘rg_l
F=]T%
Te—2 0

In this way, (f , F) is a formal abelian sheaf of rank r and dimension d over S.
By Theorem 7.12, we obtain a functor from Ab-S R(S) to the category of special
z-divisible Ox-modules of height r£ and dimension d¢ over S.

Moreover, every isogeny of abelian sheaves over S induces an isogeny of the
associated formal abelian sheaves and an isogeny of the associated special z-divisible
Oa-modules.

8 The Serre-Tate Theorem

Classically the Serre—Tate Theorem relates the deformation theory of an abelian vari-
ety in characteristic p to the deformation theory of its p-divisible group. In the case of
abelian sheaves, the same principle prevails. We begin with the analogue of the follow-
ing classical construction. Let A be a fixed abelian variety over a scheme S € /\/ilpr
and let A[p®°] be its p-divisible group. Then to every pair (X, @) consisting of a
p-divisible group X over S and an isogeny @ : A[p™°] — X of p-divisible groups
there exists a uniquely determined abelian variety dy A and a p-isogeny a : A — @, A
which induces @ on p-divisible groups. This construction can be applied to abelian
sheaves as well.

Proposition 8.1. Ler S € Nilpg (iicy and let F be an abelian sheaf of rank r and
q

dimension d over S. Let z be the associated formal abelian sheaf and let a : Z '
F be a quasi-isogeny. Then there exists an abelian sheaf F' and a quasi-isogeny
a : F — F over S giving rise to @. If we require that a is an isomorphism over
C' then (F', a) is unique up to canonical isomorphism. In this case, we denote F’'
bya*F.

Proof. We denote by B : § — Spf F_¢[[{]] the structure morphism of S. For each
i=0,...,0—1we extract /from the sheaf F’ of Osllz]l-modules underlying f the
locally free subsheaf 7/ C F' of rank r on which A € [F,¢ acts through the character

A ,B*Mi. The quasi-isogeny @ gives an inclusion .7?1.’ — F R0, Og [[z]][%]. This
~ N
permits us to glue 7/ with the corresponding sheaf F; |Cr5 to obtain a locally free sheaf

.’Fl./ of rank r on Cy. For arbitrary i € Z we take n € Z such that 0 <i — nf < £ and
define
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Fl:=F_, ® Oc,(nk - 0).
From the morphisms IT" and F’ of 3’-_:' and I1; and t; of F, we obtain the morphisms

/. / /. ko /
Hi.}'l-—>}'i+1 and r».a}'i—>]-'i+1.

1

The morphism IT, , : 7, _, — F, is induced from Fa VU fé—l — fé(k-oo).The
same applies to 7,_,. These morphisms make a*F := (F/, I}, /) into an abelian
sheaf of rank r and dimension d over S whose associated formal abelian sheaf is f ',
By construction there is a quasi-isogeny « : @*F — F which is an isomorphism
over C’ and induces the quasi-isogeny @ on formal abelian sheaves. O

Proposition 8.2. Let S € Nilpy (lcy and let j S < S be a closed subscheme
q

defined by a sheaf of ideals which is locally nilpotent. Let F and F' be two abelian
sheaves of rank r and dimension d over S. Then every quasi-isogeny from j*F to
j*F' lifts in a unique way to a quasi-isogeny from F to F.

Proof. Leta : j*F — j*F ' bea quasi-isogeny. It suffices to treat the case where
the gth power of the ideal sheaf defining S is zero. In this case, the morphisms o
and o factor through j,

os=joc:S—>S—>S and og=60j:5—> 85— 8.

Consider the quasi-isogeny *a[1] : o*j*F[1] — o*j*F'[1], where [1] denotes
the shift by 1 (cf. Definition 1.7). We view the morphisms t; as an isogeny (t;) :
o*F[1] — F and obtain a commutative diagram

F*all]

o*j*Fl —— o*j*F[1]

(n)l l(f,-/)
F F

o
—_9 J,
which defines a quasi-isogeny «. Pulling back this diagram under j, we see that
Jj*a = a. Moreover, the diagram shows that « is uniquely determined by &. This

proves the proposition. O
From the proof, we even see the following.

Corollary 8.3. Keep the situation of the proposition.

1. Ifa : j*F — j*F is anisogeny, then the lift is an isogeny o : F — F'(n - 00)
for some integer n > 0.
2. If & is an isomorphism over C', then the same holds for a.

Next, we come to the analogue of the Serre-Tate Theorem. Let S € Nilpy (el
q
and let j : S’ < S be a closed subscheme defined by a sheaf of ideals which is
locally nilpotent. Let £’ be an abelian sheaf of rank r and dimension d over S’ and
let " be the associated formal abelian sheaf. The category of lifts of F' to S has



196 Urs Hartl

as objects all pairs (F, a : j*F —> F') where F is an abelian sheaf over §
and « an isomorphism of abelian sheaves over S,

as morphisms isomorphisms between the F's that are compatible with the as.

Similarly, we define the category of lifts of f " 10 S. By Propositions 8.2 and 6.4, all
Hom-sets in these categories contain at most one element.

Theorem 8.4 (analogue of the Serre-Tate Theorem). The category of lifts of F' to
S and the category of lifts of F " 10 S are equivalent.

Proof. Let ™ be the functor that assigns to a lift of ' the corresponding lift of f ' Full
faithfulness of ~ follows from Corollary 8.3. It remains to show that™is essentially
surjective. So let (z, o j*f% z/) be a lift off to S.

It suffices to treat the case where the gth power of the ideal sheaf defining S’ is
zero. In this case, the morphism o factors through j,

os=joo' :S—> 8§ = S.
Consider the abelian sheafz = (6"*FN)[1] over S; i.e.,
(‘%:l'v ﬁl" ?l) = (O—/*f-j/_]a G/*H;_]a G/*Tj/_1)~

The morphisms z/ constitute an isogeny ¢’ := (7)) : j *F — F' which is an isomor-
phism over C’. We let

V=T ew: FESE - '

be the resulting qua51 1sogeny of formal abelian sheaves. By Proposition 6.4 it lifts to

a quasi-isogeny ¥ : ]—' — .7-' We put F := A*]-' (Prop. 8.1) and we let y : F — }'
be the induced quasi-isogeny of abelian sheaves. Then (F, t’ o j*y) is the desired
lift of F. O

In the remainder of this section, we give an example for an abelian sheaf and we
compute the associated formal abelian sheaf. This example will be crucial for the
uniformization of Ab-Sh?,d in Part Three.

Example 8.5. On the scheme S = Spec F, wesetfori =0,...,¢
@i Dl—i
M; = Oci(k c00)Y @ OCS‘ '

We let I1; : M; — M;4+; be the morphism coming from the natural inclusion
OCS C OCS (k - 00) in the (i + 1)st summand. We define the o -linear morphism

0... 1
T = 1 0¥ oM — Mg
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For arbitrary i € Z, we take n € Z such that 0 <i — nf < £ and set
M = Mi_ne ® Oc; (nk - 00), IT; == TI1,_ ®id, T =T n ®id.

Then M := (M;, I1;, ;) is an abelian sheaf of rank £ and dimension k over Spec IF,.
We let e = 7 and set M = M®°. This is an abelian sheaf of rank r and dimension d.

We compute the formal abelian sheaf M associated to M. o
In order to do this, we have to extend the base scheme S to S’ = Spec qu. Since

we afterwards want to lift M to S’ = Spf F,ell¢1l, we describe this lift right away.

Fori =0,...,¢ — 1, we consider the £ x £-matrices
1 0... =20k
.. 1-. .
I, = Z* and T = L , 8.1)
" 1 0

where the z& in T1; sits in the (i + 1)st row. We let the formal abelian sheaf M of
rank ¢ and dimension k be the Og[z]]-module M = Og [[z]]e2 together with the
morphisms

0 ... My Ald,
.. . A1 1d, — —
In= HO._'._ : , A= - M= M,
My 0 A7 1d,
and
0... T
/AR
F = L o 0" M —> M
T 0

We set M = M®¢. If j : § < S’ denotes the inclusion, then j*M is the formal
abelian sheaf associated to M. We denote it by M. Via Theorem 7.12 we obtain from
M a spemal z-divisible Ox-module E over Spec ]F ¢« whose Dieudonné I, [ z]l-module

is M One easily checks F* = 7 onM. In the terminology of [23] this means

that I is descent. The Newton-polygon of M is a straight line between the end points
(0,0) and (re, d?). R

Via the Serre-Tate Theorem (Theorem 8.4), we obtain from the lift M of the
formal abelian sheaf of M an abelian sheaf M over Spf ¢ which lifts M.

Let us compute the group of quasi-isogenies of these (formal) abelian sheaves.

Proposition 8.6. Fix a generator 1 € F ¢ of the extension F ¢ /Fy. Let V be the
Vandermonde matrix



198 Urs Hartl

oA a2 . !
1 V.
Vv=1]. . . . and V, = - (8.2)
. . . . \%
1ag 2 =Dt

be the block diagonal matrix of dimension r. Then the group of quasi-isogenies of M
over leg is the group of Q-valued points of the algebraic group J = V, GL, Ve_1
over Q.

Proof. Let g € J(Q) and let D C C be an effective divisor satisfying div(g,,) >
—D for all entries of g. Then multiplication with g defines morphisms L*M?Be —
L*M?e(D) which form a quasi-isogeny of M (defined over Spec [F,¢). Conversely,
one computes that every quasi-isogeny of M arises in this way. O

If T € Nilpy (l¢1 is @ scheme, we let B : T — Spf I ([{]] be its structure
- q -
morphism and B : T — Spec F ¢ be the reduction modulo ¢.

Proposition 8.7. Let T € Nilpy ([ic1 be connected. Then there is a canonical iso-
q

morphism g — gr of J(Q) to the group Qlsogy (B*M) of quasi-isogenies of B*M
overT.

Proof. The map g — g7 is defined as
J(Q) —> Qlsog7(B*M) — Qlsog(8*M)
g B*g s ar,

the last isomorphism coming from Proposition 8.2. Clearly, this defines a monomor-
phism of groups.

We show that g — B*g is surjective. Let o : MT — Mf (D) be an isogeny for
some effective divisor D C C. There exists an a € A whose divisor is > D on C’.
We view a|c/f asamatrix U € M, (O7 ® A[%]). Then the matrix Ve’1 UV, satisfies

cwvoluvy =vo oy,
and hence lies in GL, (Q). We conclude that U € J(Q) and ,B_*U =a. O

Proposition 8.8. The group of quasi-isogenies of the formal abelian sheaf M is iso-
morphic to J(Q ).

Proof. A straightforward calculation shows that this isomorphism can be described
as follows. Let

8

k —1
(F1d 0 | wigw;
Wl—< 0 Idg,') and W=

We-18 Wg__ll

Then an element € (Q) is mapped to the quasi-isogeny W®¢ of M. O



Uniformizing the Stacks of Abelian Sheaves 199
9 Moduli spaces for z-divisible groups

Consider the formal abelian sheaf M from Example 8.5. We will define a moduli
problem for formal abelian sheaves which are quasi-isogenous to M. This is a higher
dimensional variant of a moduli problem studied by Drinfeld [11]. At the same time
it is a close analogue of a moduli problem for p-divisible groups considered by
Rapoport—Zink [36]. Like these two problems our moduli problem too will be solved
by a formal scheme over Spf Iqu [¢]. Following [11, 36] we will use this formal
moduli scheme in Section 12 to (partly) uniformize the stacks of abelian sheaves.
For a scheme S in /\/ilqu [c7> We denote by S the closed subscheme defined by

the sheaf of ideals ¢ Os. We call § the special fiber of S. If E is a z-divisible group
over § we denote by Egz = E xg S the base change to the special fiber. A similar
notation will be applied to Dieudonn€ F, [z]-modules, etc. If 8 : § — Spf qu [z1

is a morphism of formal schemes we denote by B : S — Spec [F ¢ its restriction to
special fibers. We define the following moduli problem for formal abelian sheaves.

Definition 9.1. Ler G be the contravariant functor J\/ilqu 1c) — Sets,

S+— {Isomorphism classes of triples (B, f , @), where

e B:S — SptF [l is a morphism of formal schemes,

) Z is a formal abelian sheaf of rank r and dimension d over S,
o : zg — B*M is a quasi-isogeny of formal abelian sheaves.}

Thereby two triples (8, F, @) and (8, F ,@') are isomorphic if 8 = B’ and if
there is an isomorphism between z and f over S which is compatible with @ and &’.

Using the equivalence between special z-divisible Ox -modules and formal abelian
sheaves from Theorem 7.12 we see that

Proposition 9.2. G can be described as the functor ./\/’ilp]Fq ey — Sets,

S+— {Isomorphism classes of triples (B, E, p), where
o B : S — Spt F cl¢ ]l is a morphism of formal schemes,
e E is a special z-divisible Op-module of height r¢ and dimension d{
over S,
op: f*E — E5 is a quasi-isogeny of z-divisible OA—modules.}
Sending (8, f @) to B gives a morphism G — Spf F,¢l[¢ 1. We define an action

of the Galois group Gal(F,¢/Fy) on G over Spf F ¢[[¢]. Namely, for each 7* €
Gal(F ¢ /Fq) = Gal(F ¢ [[¢1/F4[£1), consider the cartesian square

7 _7s S

lﬂ*ﬂ lﬁ

Spf Fe[¢] —— SpfF,[[¢].
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Then we let 7* act by mapping the element (8, z ,@) € G(S) to
(0B, wiF, mi@) € G(ST).

Following the arguments given in Rapoport—Zink [36] in the case of p-divisible
groups, one can prove the following representability theorem. Recall that an adic
formal scheme G over Spf Iqu [[¢1 is called locally formally of finite type if Gyeq 1S
locally of finite type over Spec ..

Theorem 9.3. The functor that assigns to a scheme S € Mlp]Fq i1 the set of isomor-
phism classes of triples (8, E, p), where

o pB:S— SpfF, ¢l is a morphism of formal schemes,
e Eisaz-divisible group of dimension d{ and height r€ over S,
o p:pB*E — Ejis a quasi-isogeny of z-divisible groups,

is representable by a quasi-separated, locally noetherian, adic formal scheme which
is locally formally of finite type over Spf F [ .

The proof of this theorem is given in [23]. It makes use of Dieudonné F,[[z]]-
modules which replace the crystals of the p-divisible groups in [36].

Corollary 9.4. The functor G is representable by a quasi-separated, locally noethe-
rian, adic formal scheme which is locally formally of finite type over Spf F [ .

Proof. Let G be the formal scheme whose existence is stated in Theorem 9.3. Let E
be the universal z-divisible group over G. We transport the Oa-action from E to E
via p. Then G is the closed formal subscheme of G on which E is special and O
acts through isogenies (Propositions 6.5 and 6.8). O

9.5. We define an action of the group J(Q«) on G. By Proposition 8.8 there is an

isomorphism &4 from the group J(Qoo) to the group of quasi-isogenies of M. We
let g € J(Qx) acton G through e,

(B, E.@) > (B.E. B esc(8) 0 0).
This action commutes with the Galois action on G.

Letnow I C J(Qx) be a discrete subgroup. We say that I” is separated if it is
separated in the profinite topology. This means that for every g € I there is a normal
subgroup I’ C I of finite index that does not contain g.

Again following the arguments of Rapoport—Zink, we prove the following in [23].

Theorem 9.6. Let I’ C J(Q o) be a separated discrete subgroup. Then the quotient
I’\G isalocally noetherian, adic formal algebraic Spf F ¢ [[§ 1|-stack locally formally
of finite type over Spf F ¢. Moreover, the 1-morphism G — I'\G is adic.

See A.5-A.9 in the appendix for an explanation of this statement.
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Part Three: Uniformization

We now turn towards the uniformization of the stacks Ab-Sth at 0o. Therefore, we
again consider their base change

Ab-SH ¢ Spf Fyll¢].

As remarked in Part Two these are formal algebraic Spf Fy[[¢]-stacks (Defini-
tion A.5). In analogy with the work of Rapoport—Zink [36] and Drinfeld [11], the
space used to uniformize these stacks will be the formal scheme G. We view it as
a formal algebraic Spf qu [[¢ ]-stack (Example A.10). The uniformization we obtain

will only be partial. To be precise, we find a closed subset Z in Ab—Sh?,d x coo and
we consider the formal completion Ab—Sh;;,d sz of Ab-S h;_’ld along Z. It is a formal

algebraic Spf I, [[{ ]l-stack (Proposition A.14). We will uniformize Ab-S h?ld /z- This
uniformization therefore takes place in the 2-category of formal algebraic Spf IF,[[¢ [I-
stacks.

10 Algebraizations

We first give still another interpretation of the moduli space G. Namely, since the
formal abelian sheaf M comes from thg abelian sheaf M, the universal formal abelian

sheaf on G and its quasi-isogeny @ to M can be algebraized; i.e., they too come from
an abelian sheaf, namely, from @*M. Now consider a scheme S € MIP]Fq[[;]] and

denote by S the closed subscheme of S defined by ¢ = 0.

Definition 10.1. Let G’ be the contravariant functor J\/i'lp]lzq ey — Sets.

S+ {Isomorphism classes of pairs (F, o), where

e F is an abelian sheaf of rank r and dimension d over S,

ox:Fi— Mg is a quasi-isogeny which is an isomorphism over C/}.

Thereby two such pairs (F, «) and (F’, «’) are isomorphic if there is an isomor-
phism between F and F’ over S which is compatible with o and «’.

Theorem 10.2. The functors G and G’ x Spf Fy [1¢1 Spf Fell¢ 1l are canonically iso-
morphic as Gal(qu/Fq)-modules (where Gal(Iqu/IFq) acts trivially on G').

Proof. We will exhibit two mutually inverse maps between these two functors. We
start by describing the morphism G’ xgp¢ F,1c1 SPE FpellS] — G.

Solet (F,a) € G'(S) and B : § — Spf Fgell¢1. By Construction 7.13, we
obtain from F and 8 a formal abelian sheaf z of rank r and dimension d over S. TEe
quasi-isogeny « induces a quasi-isogeny of formal abelian sheaves o f 5= B*M.
The triple (8, F, @) defines an S-valued point of the functor G. One easily checks
that the morphism just constructed is Gal(F ¢ /F4)-equivariant.
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Conversely, let (8, f , 5) € G(S). By Proposition 6.4 there is a unique lift of @
to a quasi-isogeny @ : f — B*M. From Proposition 8.1 we obtain an abelian sheaf
F = a*(B*M) whose formal abelian sheaf is F, and a quasi-isogeny o : F — B*M
which is an isomorphism over C’ and which induces @ on the formal abelian sheaves.
We have (F, ag) € G’(S). Thus we have constructed a morphism G — G'. Again
one checks that this morphism is Gal(F ¢ /IF¢)-invariant. The two morphisms just
described are mutually inverse and yield the desired isomorphism between G and

G’ X Spf Fy [ Spf qu [z (]
The action of J(Q«) on G from 9.5 induces an action of J(Q) on G’, since it

is compatible with the Galois action on G.

DeﬁEition 10.3. The pair (F,a) € G'(S) which is associated to an _element
(B, F, @) € G(S) by Theorem 10.2 will be called the algebraization of (8, F, @).

Example 10.4. We want to explain how a quasi-isogeny « : Fg — Mg which is an
isomorphism over C’ induces H-level structures on F for compact open subgroups
H C GL,(Ay).

Consider the abelian sheaf M = (./\/ll.@", I"Il@e, the) from Example 8.5 pulled
back to § = Spec IF,¢. The restrictions ./\/lf-Be |C’§ are all isomorphic via the morphisms

IT;. We denote this restriction by M|C§. The same holds for the morphisms 7;. So we

obtain a morphism
o— —
Tl 0" M| — M.
et e, e

Via the canonical identification M| cL = 024 this morphism is expressed by the block
S

diagonal matrix

. !
T|lc = ( ) -o*, where T = ! .o 1| € GLe(Fy).
N T P
10
Therefore, multiplication with the matrix V, from (8.2) defines an isomorphism

Y (M|c/s, T|c/§) %(Ogé, Id, - ™)

that commutes with the o -linear endomorphisms 7|~/ on one and Id, -o* on the other
N
side. This ¥ induces an isomorphism

y=Wla)" s Mlg,)" — A

which gives rise to an H-level structure on M.

Now let S € Aﬁlqu 17 be an arbitrary scheme equipped with a fixed morphism
B S — SptF c[¢]. Let F be an abelian sheaf over § and let o : F5 — Mg be
a quasi-isogeny which is an isomorphism over C’. For an algebraically closed base
point ¢ : s — S the composition of & with 8*y gives rise to an isomorphism
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yo@la)" = ((B*Y oa)a) : (FFla,) (s) —> A}

which is fixed under the action of 7 (S, s) on the source. This induces an H-level
structure on F.

11 Closedness of the uniformizable locus

In this section we show that an abelian sheaf of rank r and dimension d over an
algebraically closed field in NMilpp J[ic1 1s isogenous to M if and only if its formal
q

abelian sheaf is isoclinic. The locus of these points inside .Ab-Sh?Id xc Spf Fyell¢l
will be the one uniformized by G. We prove that this locus is formally closed. A
couple of lemmas are needed beforehand.

Lemma 11.1. Let F be an abelian sheaf of rank r and dimension d over a finite field

in Nilpg ([c]- Assume that the formal abelian sheaf associated to F is isoclinic. Then
q

for some integer n > 0 divisible by r there is an isomorphism (c™)*F = F which

maps the isogeny

T :=(t)oo*(t) o o(c" ) w): (") Flnl > F
to the isogeny (I1))" : F[n] — F.

Proof. 1t suffices to prove the assertion for an abelian sheaf isogenous to F. By
Proposition 7.9, the formal abelian sheaf associated to F is isogenous to a formal
abelian sheaf (f , F) which satisfies im F" = AF. Pulling back F along this isogeny
(Proposition 8.1), we can assume that (F, F) is the formal abelian sheaf associated to
F. Since F is defined over a finite field, we certainly obtain (¢"*)*F = F for a suitable
n > 0. We may even assume that r divides n. The isogeny T is an isomorphism over
C’.Now the equationim F" = AF implies that the image of T is F(— "Tk -00). Hence
T factors as T = « o (I1;)" for an automorphism « of F. Since the automorphism
group of F is finite by Proposition 1.5, the lemma follows. O

Definition 11.2. Let F and F' be abelian sheaves of rank r and dimension d over a
field K in Nilpg (1 We define the Q-vector space
q

Hom (£, F) = lim Hom (E, F'(D)),

D

where the limit is taken over all effective divisors D C C. Furthermore, for formal
abelian sheaves F and f over K, we define the Q »-vector space

Hom% (£, F) = Homg (F, F ) ®F, [ Qoo-

Note that each time the invertible elements in Hom® are precisely the quasi-isogenies.
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Corollary 11.3. Let F and F' be abelian sheaves of rank r and dimension d overa
Sfinitefield K in Nilpgp ([c1- Assume that their associated formal abelian sheaves JF and
q

z " are isoclinic. Then for a suitable finite extension K' /K, we have an isomorphism
Hom%, (F, F') ® Qoo —> Hom$,, (F, F).

Proof. We first assume that C = IP’]]F . Let Spec K[z] C ]P’}( be a neighborhood of
q

00 = V(z). Restricted to this neighborhood, all the sheaves F; and ]-"i/ are free of rank
r. We fix bases fori = 0, ..., £ — 1 and consider for the other i the bases induced by
the periodicity F; = F;_¢(k - 00). Then the morphism

—1 {—1 J2
B o — B
i=0 i=0 i=1

isrepresented by amatrix U € M, ,(K[z]). We endow the formal abelian sheaf (f ,F)
of F with the induced basis. With respect to this basis, F is of the form F = U - o*
for the matrix
I((j) = Id, N
U=|"" ... 1 | U=)_Uz" € Mu(KIz2)).
1d, 0 v=0

The same holds for F’, where we denote the corresponding matrix by U'. Let us for
a moment forget the structure of the (formal) abelian sheaves that is given by the ITs.
Let n = rm be the integer from Lemma 11.1 and let K’ be the compositum of Fyn
and K inside K2, We claim that there is an isomorphism of Q.-vector spaces

{® e My(Q®r, K): ®U =U"®} @ 0o (1L.1)

—> (P € Myo(K™8(2)) : 9T = U9},
where the superscript “® denotes the application of o * to the entries of the matrix ®.
The injectivity is obvious. We have to prove the surjectivity. So let an element of the

right-hand side be given. After multiplying it with a power of z, it is represented by
a matrix

o
® = Z ®,z* € Myo(KM8[2]).
n=0

We expand the equation ®U = U'® into powers of z and get, for all u,

N
0,00 — Up"®p = Y (®p—vUy — U, 0,y). (11.2)
v=1
Now by Lemma 11.1, we have

rm—1- m—1

U°v---°""U=z".1d,y, and U°U ---7" U =79 .1d,,.

This implies the equation 2 - ® = 74" - "'®, whence ®,, = "®, for all .
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We find &, € M,¢(K’). Now we consider for an integer i the sequence of matrices
(P, ..., Diyn). Asi varies, these sequences run through a finite set. Therefore, there
are infinitely many i giving rise to the same sequence. Let j be the difference of two
such i and consider the matrix

o0
S =3 B,
u=0

In this matrix, we find a sequence with P == <I~>,~+ ~ = 0. Looking at equation
(11.2), we see that we may set all @, = 0 for u > i + N to obtain a matrix

1
® =Y d,z" € My (K'[2])
0

n

which satisfies U = U'°® and is congruent to ® modulo z/. As j can be chosen
arbitrarily large, the surjectivity of (11.1) is established.

Now note that the ITs on the (formal) abelian sheaves induce endomorphisms
of the Qo-vector spaces in (11.1). So the compatibility with the ITs is a condition
that cuts out isomorphic linear subspaces on both sides of (11.1). From this the
corollary follows in the case C = P!. For arbitrary C, consider a finite flat morphism
7 : C — P! mapping ooc to co. We have just proved the assertion for 77, F and 7, F".
Since again the elements of O¢ induce endomorphisms of the Q.-vector spaces in
(11.1), we may deduce the assertion for F and F'. O

Recall the abelian sheaf M over Spf qu [[¢] and the level structures on M from
Example 10.4.

Proposition 11.4. Let S € Nilpg (li¢c1 be locally of finite type over F ¢ [£]] and let
q

H C GL,(Ay) be a compact open subgroup. Let F be an abelian sheaf of rank r
and dimension d with a rational H-level structure over S. Then for a point s € S the
following assertions are equivalent:

1. The formal abelian sheaf associated to F  is isoclinic.

2. Over a finite extension of the residue field k(s) of s there is a quasi-isogeny
between F; and M which is compatible with the H-level structures on both
sides.

3. There is an abelian sheaf F' over a finite field F C Fge, a finite quasi-isogeny

o : Ml — F' overF compatible with the H-level structures, and a quasi-isogeny
¢s : Fy — F, which is an isomorphism over C' and which is defined over a

finite extension of k (s).

Proof. Note that the formal abelian sheaf of F is isoclinic if and only if it is isogenous
over an algebraically closed extension of x (s) to the formal abelian sheaf M of M.
Therefore, 2 implies 1. Clearly, 2 follows from 3.

To prove that 1 implies 3, we proceed by induction on the transcendence degree
of the residue field k (s) of s over IF,. Observe that « (s) is finitely generated since S
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is locally of finite type over qu[[g 1. If «(s) C Fglg we obtain from Corollary 11.3
a quasi-isogeny o : My — Fy over a finite field F D «(s). Altering « by a quasi-
isogeny of Ml we can achieve that « is compatible with the H-level structures. Let
@ be the induced quasi-isogeny on formal abelian sheaves. We set ' = &* F. Then
«a factors as

— o i

where o’ is a finite quasi-isogeny compatible with the H-level structures, and a” is a
quasi-isogeny which is an isomorphism over C’.

Ifx(s) ¢ IFZIg , we choose a point s’ of codimension 1 in the closure of s inside
S. By Theorem 7.7 the formal abelian sheaf of F , is also isoclinic. So the induction
hypothesis asserts that there is an abelian sheaf F’ over a finite field F C [F¢, a finite

quasi-isogeny o : My — F’ over F compatible with the H-level structures, and a
quasi-isogeny ¢k : Fx — F over an algebraic closure K of k(s’), which is an
isomorphism over C’. A suitable extension of Om’ ¢ 1S @ power series ring in one
variable K [[7] over K.

Now consider the abelian sheaf F g over S’ := Spec K [7r]] which is the pullback
of F under the morphism S’ — S. Let z ¢ be the formal abelian sheaf associated
to F¢. The Newton polygon of f ¢ 1s constant over S’. So by Theorem 7.10 there
is a quasi-isogeny of formal abelian sheaves @ : f ;= f . After changing @ by a
quasi-isogeny of f , we may assume that g gives rise to ¢| . Due to the Serre-Tate
Theorem (Theorem 8.4) @ induces for all n a lift of pg to a quasi-isogeny ¢, over
S), := Spec K[[7]/(" 1. By Corollarly 8.3, ¢, is an isomorphism over C’. Let D
be the divisor of the pole of ¢ at co. Then ¢,, : F 3.; — F(D)g; is a true isogeny. So
in the limit we obtain a quasi-isogeny between F /S, and F ¢ over Spf K[z ] which
is an isomorphism over C’. By Grothendieck’s existence theorem it comes from a
quasi-isogeny over Spec K [z ] which gives us a quasi-isogeny ¢, : F, — F, over
K ((;r)). From the following lemma we obtain the desired quasi-isogeny over a finite
extension of k(s). O

Lemma 11.5. Let K D [ be an arbitrary field. Consider two abelian sheaves F and
F' over K and a quasi-isogeny ¢ : F, — F defined over some extension L of K.
Then there is a quasi-isogeny ¢’ : F' — F defined over a finite extension of K. If ¢
is an isomorphism over C' we can find a ¢’ which is also an isomorphism over C’.

Proof. Let D C C be an effective divisor such that ¢ : 7, — F; (D) is an isogeny.
In the description of the morphisms ¢; : F] — J;(D), there are only finitely many
coefficients from L involved due to the periodicity. Let R be the K-subalgebra of
L generated by these coefficients. Now consider the locally closed subscheme S of
Spec R defined by the conditions that the ¢; give an isogeny. These are the equations
IT; o g; = i1 0117 and 7; 0 0*¢; = ;41 o 7/ and the conditions that ¢; is injective
and that coker g; is locally free of finite rank and supported on D x S for an effective
divisor D C C.As S is of finite type over K we find a K’-rational point on it for a finite
extension K’/K. The data over this point defines a quasi-isogeny ¢’ : F' /K, — Fyr.
If ¢ is an isomorphism over C’, it is clear that we can achieve the same for ¢’. O
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Corollary 11.6. Let S € Nilpy oy and let H C GL,(Ay) be a compact open
P :

subgroup. Let F be an abelian sheaf of rank r and dimension d with a rational H -
level structure over S. Then the set of points in S over which there is a quasi-isogeny
between F and Ml which is compatible with the H -level structures, is closed.

Proof. By Theorem 7.7, the set of points over which the formal abelian sheaf asso-
ciated to  is isoclinic is closed in S. If § is locally of finite type over F ¢[[¢ ], then
the corollary follows from Proposition 11.4.

Let S be arbitrary. We only need to treat the case where § is reduced. Then
the abelian sheaf F induces a 1-morphism f : § — Ab—Sh;de X coo of algebraic
Spec F ¢-stacks. As the question is local on § we can assume that S is quasi-compact.

Since .Ab-Sh;}d is locally of finite type over C we may further assume that f factors

through a presentation X — Ab-Sh;’{d X c00, where X is a scheme of finite type over
]qu [¢ 1. Then the closedness of the set on X implies the closedness of the set on S.0O0

Example 11.7. Consider the universal abelian sheaf over M 12’2 from the example in

Section 4. Let § = MIZ’2 x ¢ 00. Pink has computed that the closed set from Corol-
lary 11.6 is the proper subset

UgV(C,an,azz,azl) CS,

where the union runs over all g € GL;(IF;) which act on the points (a,,) € S
by conjugation (a,,) + g(a,w)g_1 ; cf. [3, Section 7]. (Note that .Ab—Shi}lz is a
GL; (Fy)-torsor over Ab-Sh*?))

Remark 11.8. There is an interesting consequence for the uniformizability of z-
motives. Namely, by work of Gardeyn [17], the r-motive associated to an abelian
sheaf over a complete extension K of IF,; ((¢)) is uniformizable in the sense of Ander-
son [1], if and only if firstly the abelian sheaf extends to an abelian sheaf over the
valuation ring R of a finite extension of K, and secondly its reduction modulo the
maximal ideal of R is isogenous to M.

Let X be an admissible formal scheme in the sense of Raynaud [37, 4] and let
(F, n) be an abelian sheaf with H-level structure over X. Then we deduce that the
set of points on the associated rigid-analytic space X" over which the abelian sheaf
F is uniformizable, is formally closed. In particular, if X"€ is quasi-compact, then
the complement of this set is also quasi-compact. For more elaboration on this issue
see Bockle—Hartl [3].

In the remainder of this section, we prove a weak result on the uniform existence
of the quasi-isogeny between F and M which above has been studied point-wise.
It will suffice for our purposes in this article. Undoubtedly there should be much
stronger results in this direction.

Lemma 11.9. Let F D F, be a finite field and let S = Spec R € /\filqu 1cy be a
reduced noetherian affine scheme. Consider abelian sheaves F and F' of rank r and
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dimension d over S and F, respectively. Let s : Spec L — S be an algebraically

closed point over which a quasi-isogeny ¢ : F', — F is given. Assume that ¢y is an

isomorphism over C'. Then there exists a quasi-compact reduced scheme S’ of finite
type over S containing a lift of s, such that @, extends over all of S’ to a quasi-isogeny
Q: ]_:g, — F ¢ which is an isomorphism over C'.

Proof. We first treat the case where C = P]i-q and C" = Spec F,[r]. Then the projec-
tive R[t]-module F |C's underlying F is a direct summand of a free R[#]-module

Fle, @ F™" =F

of rank 7. We extend 7 by zero to the endomorphism 7 := 7z|c, © 0 : o*F — F.
After choosing bases of F and F ’|C/S, the coherent sheaves on C/S with o-linear

endomorphism (f ,7)and F ’|C& are isomorphic to
(RI1T, U -0*) and (R[], U -c")

for suitable matrices U = ), Uyt” € Mz(R[t]) and U’ = ) U}t € GL,(F[t]).
The quasi-isogeny ¢ : F ’S, — F ¢ we are looking for, then corresponds to a matrix
o = Zu D 1" € Myy,(Og[t]) satisfying the condition U’ = U’ P. We expand
this condition according to powers of ¢ to get

m
D,U) — Ug®y = Y (U, Py — @y, U)). (11.3)

v=1

The quasi-isogeny ¢, over Spec L corresponds to a matrix for some integer N
N
D =" Dyut" € My, (LIt])
u=0

satisfying (11.3). In order to extend ® to a neighborhood of s, we simply adjoin
the entries of indeterminant matrices ®o, ..., ®y to the ring R and divide out the
relations (11.3) for 4 = 0, ..., N. Thus we obtain an R-algebra R” and an étale
morphism S” = Spec R” — §. The point s lifts to a point s” : Spec L — S§” by
mapping ¢, to 5ﬂ.

We let S C §” be the closed subset on which the right-hand side of (11.3) and
the matrices @, are zero for all u > N. Clearly, s” lies in S. Over § the matrix
@ defines a morphism f : £/|C/§ — (F,7)3. Since Tx|¢ is an isomorphism and
7| i = O wesee that f factors through a morphism ¢ : F| o~ F |C;§.The coherent
sheaves ker ¢ and coker ¢ are supported on closed subschemes of C fS~ Observe that

Sis noetherian. So the projection of these closed subschemes to S are constructible
subsets of S by Chevalley’s theorem [20, Corollaire IV.1.8.5]. Their complement S’ is
also constructible. Hence S’ is a finite union of locally close reduced subschemes of S.
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We replace S” with the disjoint union of these subschemes. Then S’ is a quasi-compact
reduced scheme of finite type over S. Now ¢ defines a quasi-isogeny JF' ’S/ - Fg
which is an isomorphism over C’,. Moreover, s” € S" and ¢ specializes to ¢; at s”.

If C is arbitrary, we consider a finite flat morphism 7 : C — ]P’Iqu mapping coc

to oo. Then we have just proved the existence of a quasi-isogeny 7y F g — mF,
over S'. In order for this to give a quasi-isogeny F¢ — F ’S, it must commute with
the elements of O¢. Clearly, this condition cuts out a reduced closed subscheme of
S’ which contains s”. We replace S’ by this subset. This concludes the proof of the
lemma. O

Proposition 11.10. Let S € Nilpy ([c1 be a quasi-compact and reduced scheme and
q

let H C GL, (A ) be a compact open subgroup. Consider an abelian sheaf (F, y) of
rank r and dimension d with rational H -level structure over S. Assume that for every
point s € S the formal abelian sheaf associated to F ; is isoclinic. Then there exists a
surjective morphism of F ;¢ -schemes S’ — Swith S’ quasi-compact and reduced, and
a quasi-isogeny over S’ between F ¢ and Mg compatible with the H-level structures.

Proof. Since the data (F, y) involves only finitely many coefficients from Og we
may assume that § is of finite type over I ¢. In particular, § is noetherian. (We could

also use the fact that Ab-Sh;de is locally of finite type over C.)

Let s € S be a point. From Proposition 11.4 we obtain an abelian sheaf F’ over
a finite field T, a finite quasi-isogeny o : Mg — F’ over F compatible with the
H-level structures, and a quasi-isogeny ¢; : F, — JF, which is an isomorphism
over C’. The quasi-isogeny ¢; is defined over an algebraically closed extension of
k(s). So by the previous lemma there is a morphism S; — S of finite type from a
quasi-compact reduced scheme S ;, such that s lifts to a point of S_;, and ¢ extends to
a quasi-isogeny ¢ over all of S, which is an isomorphism over C’. Clearly, the quasi-
isogeny ¢ o « : MS.; - F s/ over S/ is compatible with the H-level structures. By
Chevalley’s theorem, the image of the morphism S; — S is a constructible subset S;
of § containing s. Since § is of finite type over F ¢ the S; form a countable covering of
S by constructible subsets. By [20, Corollaire 0.9.2.4] finitely many of the Sy suffice
to cover S. We let S’ be the finite disjoint union of the corresponding Sj. O

12 The Uniformization Theorem

Let H C GL,(Ay) be a compact open subgroup. We will define 1-morphisms of

formal algebraic Spf ]qu [[¢ ]I-stacks from G to the stacks .Ab-Sh;f xc Spf ]qu [z
of abelian sheaves with rational H-level structure (Definition 5.7). For this purpose
recall the H-level structures on M constructed in Example 10.4.

12.1. Let S be in /\filqu iz and denote by § its special fiber. The morphism G — G’

from Theorem 10.2 associates to an eﬁement (8, z ,®) € G(S) an abelian sheaf
F and a quasi-isogeny « : Fg — B*M which is an isomorphism over C’. For an
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algebraically closed base point: : s — S the quasi-isogeny « has lead in Example 10.4
to an isomorphism
y o @) (" Fla) () = AL

which is fixed under the action of 771 (S, s) on the source. Then we define a 1-morphism
® of formal algebraic Spf F¢[[¢ [l-stacks by the following map on S-valued points:

©:G x GLy(Ap)/H —> Ab-Sh};" ¢ Spf F ¢ [<]. (12.1)
(B, E.@) x hH v (F, ™'y (@la,)") x B.

It is equivariant with respect to the right GL, (A y)-action on the projective systems
on both sides of (12.1).

12.2. There is an action of J(Q) on the source, which we describe next. Recall that
we have defined in 9.5 an action of J (Qool\on G through the isomorphism &4, from

J(Qso) to the group of quasi-isogenies of M. We let J(Q) act on G via the inclusion
J(Q) C J(Qw)-

On the other hand, we have a morphism
e*:J(0) — GL,(Af)

which is defined by the commutative diagram

T

_ . (8lay) _ .
Mia,)* —— Ma,)

7| |7
A} £ (g) A;c

for g € J(Q). Note that £* identifies J (Q) with the diagonal embedding of GL, (Q)
into GL, (A r).
We define a left action of the group J(Q) on G x GL,(Ay)/H,

(B, F.@) x hH +—> (B, F, B*s00(g) 0 @) x £*(g)h H.

Proposition 12.3. We abbreviate Y = G x GL,(Ay)/H. The action of J(Q) induces
a 1-isomorphism of formal algebraic Spt F ¢ [{ ]I-stacks
Y X J(Q) ==Y X gy st sy i

Proof. We have to show that the functor between the categories of S-valued points
on both sides is an equivalence. Note that in the stack Y the only morphisms are the
identities. From this full faithfulness follows. For essential surjectivity, we have to
show that two S-valued points of Y lie in the same orbit if and only if they are mapped
to the same point by ®. So let (8, F, @, hH) and (8, f, o', hH) be in Y(S) and let
(F,a, hH) and (F', o, k' H) be their algebraizations.
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First we assume that

~/ o~

(B.F.@' . W'H) = (B, F, B e0o(g) 0@, £ (g)h H)
in Y(S) fora g € J(Q). Consider the following diagram of quasi-isogenies over S:

Fs —— Mg

¢ l lgs (12.2)

’
o _—
Fi —— M;,

where g3 is the quasi-isogeny obtained from g by Proposition 8.7. The quasi-isogeny
¢ defined by this diagram is finite by construction. By Proposition 8.2 it lifts uniquely
to a quasi-isogeny ¢ : F — JF’. We claim that ¢ is finite. Namely, the induced quasi-
isogeny ¢ on formal abelian sheaves satisfies g5 = id s Hence we find ¢ = id £ by

the uniqueness of the lift. This shows that ¢ is a finite quasi-isogeny.
Now ¢ induces on F the H-level structure

h'e® (@) y (@ la)" @la,)" =k y(ala,)"

Therefore, the two points have the same image under ®.
Conversely, let ¢ : F — F’ be a finite quasi-isogeny inducing an equality of
H-level structures on F,

W=y @ a) (@la,)" =h""y(@la,)"

This time diagram (12.2) defines a quasi-isogeny gz from Mg to itself. By Proposi-
tion 8.7 it comes from an element g € J(Q). Then we have

(B, F @ h'H) = (B, F, B*soo(g) 0@, £ (g)h H). O

Hence the map © factors through a 1-morphism of formal algebraic Spf F ¢ [¢]-
stacks
J(O\G xGL,(Ay)/H — Ab-Sh;’Id xc Spf Fyell¢1.

Note that the quotient J (Q)\G x GL, (A )/ H is aformal algebraic Spf qu [[¢]-stack
due to Theorem 9.6. Indeed, the subgroup J(Q) > J(Qoo) x GL, (Ay) is discrete.
Hence

J(Q\G x GL,(Af)/H =] [ I'\G,
r
where I" runs through a countable set of subgroups of J(Qs) of the form

(J(Qo) x gHg™H N J(Q) C J(Qc0).

These are separated discrete subgroups.
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Proposition 12.4. The 1-morphism © defines a 1-morphism of formal algebraic
Spf Fy (¢ I-stacks

® :G' x GL,(Ap)/H —> Ab-Sh xc Spf F, <1,

which is invariant with respect to the action of J(Q) on the source defined in Sec-
tion 10.

Proof. We have to show that ® and the action of J(Q) commute with the Galois-
descent data on the source and the target of the 1-morphism ®. For the J(Q)-action
this was already observed in 9.5. For ® we must check that

(E 'y @la)™) = (Eh 7y (@la)")

in Ab-Sh;f, where %y is obtained from y by the action of the generator Frob, of
Gal(F ;¢ /F,). Now ?y~1 5y comes in fact from an automorphism of M (cf. Exam-
ple 10.4). This induces an automorphism of F which carries the H-level structure
h=ly(@la,)T to ™% (ala,)" O

Let Z be the set of points s : Spec L — Ab-Sh;;d x coo such that the universal
abelian sheaf over s is isogenous to M over an algebraic closure of L. Consider the

preimage Z' C Ab-Sh'; H xF,F e of Z under the base change morphism coming from
F, CFe.
q

Lemma 12.5. The set Z' can also be described as the set of points s over which
the associated formal abelian sheaf is isoclinic. In particular, Z and Z' are closed
subsets.

Proof. The formal abelian sheaf M of M is isoclinic. Therefore, Z’ is contained in
the set of the lemma. Conversely, let s belong to this latter set. Since .4b- Shd 5 1s
locally of finite type over C we can assume that s comes from a point on a local
presentation X — Ab-Sh;de x coo where X is a scheme of finite type over . From
Proposition 11.4 we obtain a quasi-isogeny « : F; — M over an algebraic closure
of L. Hence s belongs to Z'.

Now Theorem 7.7 implies that the subset Z’ is closed. Namely, Z’ is the com-
plement of the open substack on which the associated Newton polygon lies strictly

below the Newton polygon of M. Therefore, also the image Z of Z is closed. O

We denote by Ab-Sh'y, / 7z the formal completion of Ab-Sh'; along Z (Defini-
tion A.12). It is a formal algebralc Spf F, [¢ ]-stack. By its deﬁnmon the 1-morphism
©’ factors through Ab-Sh; /z Indeed, if a point s € Ab-Sh’; H X 00 lies in the
image of ®’ the formal abelian sheaf associated to s is isogenous to M by definition
and hence isoclinic. We can now formulate our Uniformization Theorem.

Uniformization Theorem 12.6. There are GL, (A r)-equivariant 1-isomorphisms of
formal algebraic Spf Fy[[¢ ]|-stacks
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®: J(Q)\G x GL.(Af)/H — Ab-Sh;j]d/Z xp, Fye,
@' : J(Q\G' x GL,(Af)/H <> Ab-SH} 7.
Example 12.7. In the case of elliptic sheaves,
Ab-Shy 7 xp, Fye = Ab-Shy' xc Spf F e[ 1.

This follows from the fact that there is only one polygon between the points (0, 0) and
(r, 1) with nonnegative slopes and integral break points, namely, the straight line. So
all formal abelian sheaves are isoclinic and Z is all of Ab-Sh;f X coo. In this case,
the open and closed subscheme of G on which the universal quasi-isogeny has height
zero is the formal scheme Q) used by Drinfeld [11]. A detailed account on this can
be found in Genestier [18]. Therefore, we have an isomorphism of formal schemes
G = 7 x Q). This decomposition of G is compatible with the decomposition of
Ab-S h;ii = Z xDr-Mod’, from Example 1.8. So Drinfeld’s uniformization theorem,
which announces an isomorphism of formal schemes

GL(Q\Q") x GL,(Af)/H; —> Dr-Mod'; x ¢ Spf F ¢ [¢].
is equivalent to ours.

Example 12.8. Consider the algebraic stack Ab-Sh%f from Section 4. We describe
Z(0) := ZN Ab-S hi}z (0). In Example 11.7, we have remarked that

2,2
ZNMp® xcoo= UgV(i,all,a22,021)~

Now we claim that

Z(0) = (ZNM;?* x¢ 00) U (Ab-Sh3(0) ~ M%) x ¢ o0.

Indeed, let s : Spec L — (.Ab-Shi}2 OoO~M ,2’2) X ¢ 00 be a point. We must show

that the abelian sheaf F over L is isogenous to M. By what was said in Section 4 we
have Fo = O]PIL (m - 00) ® O]PlL (—m - 0o) for an integer m > 1. With respect to this
basis, 79 is described by a matrix

ap+ait bo+ -+ byyyrt? !
T0 = S0k,
0 do + dit

Due to the presence of the /-level structure, we may assume ag = dp = 1 and by = 0.
Since coker 1y is supported at co we must have a; = d; = 0. Now let u; € L2
be solutions of the equations u;’ —u; +b; =0fori =1,...,2m + 1. Then the
isomorphism

_ 1 wot+---4up 1l‘2m+1
Micr — Fler, (x) - " : (")
y 0 1 y

extends to a quasi-isogeny M — F over L€, Hence s belongs to Z(0).
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Remark 12.9. In [36] Rapoport—Zink study the uniformization of Shimura varieties
of EL- and PEL-type. One of their theorems yields the uniformization of the for-
mal completion of a Shimura variety along the most supersingular isogeny class [36,
6.30]. The Newton polygon in this isogeny class is maximal. In this sense our Uni-
formization Theorem is closely analogous to theirs. Beyond this, Rapoport—Zink also
obtain uniformization theorems of other isogeny classes. There is no doubt that these
theorems too have counterparts for abelian sheaves.

The remainder of this article is devoted to the proof of the Uniformization Theo-
rem.

13 Proof of the Uniformization Theorem

13.1. By Proposition 12.4, it suffices to prove the assertion for the 1-morphism ©.
We fix the following notation. On the formal scheme G we let 7 be the largest ideal
of definition of G; cf. [20, Iyew, 10.5.4]. For an integer n > 0 we denote by G, the
scheme (G, Og/J"+"). We set

Y =G xGL,(Ay)/H,

Y, =G, x GLr(Af)/H»

V:=J(Q\G x GL,(Ay)/H,

X = Ab-Shl 7 xspr B, 17 SPF Fe [ 1

Let S € ./\/ilqu[m] and let (F, y, B) € X(S) which we consider as a 1-morphism
S — X. We have to show that the stack

VxxyS

is a scheme mapping isomorphically to S. The proof relies on several intermediate
lemmas.

Lemma 13.2. The 1-morphism ® : Y — X isa I-monomorphism of formal alge-

braic stacks, i.e., for every S € Nilpgp (1 the functor ©(S) : Y(S) — X(S) is fully
q*

Saithful.

Proof. We can view the formal algebraic Spf F ¢ [[¢ ]I-stacks X and )V as Spec ¢ [ ]I

stacks X" and Y by setting for an Spec I ¢[[£ ]I-scheme S,

X(S) if S € Nilpg, ).

X(S) =
qt

Then the assertion follows from Proposition 12.3, Lemma A.13 and [32, Proposition
3.8]. O

Lemma 13.3. The 1-morphism of algebraic Spec qu-stacks Ored : Veed = Xeed
(see A.6 in the appendix) is representable by a morphism of schemes.
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Proof. This follows from the fact that every 1-monomorphism of algebraic stacks
is representable by a morphism of schemes; cf. [32, Théoreme A.2 and Corollaire
8.1.3].0

Lemma 13.4. O : Vied = Xed IS surjective.

Proof. Note that X;eq is the closed substack Z C Ab-Sh;_’Id X coo with its induced
reduced structure. Let s € Xj.q be a point. By definition of Z there is a quasi-isogeny
o : F, — M. We can multiply it with a quasi-isogeny of M and thus assume that o
is compatible with the H-level structures. The induced quasi-isogeny F, — a*M is
finite and also compatible with the H-level structures. Therefore, s lies in the image
of Oreq. ]

Lemma 13.5. Let S € Nilpy ([1c7 be quasi-compact and reduced, and consider a 1-
q

morphism § — Xreq. Then there exists a surjective morphism of F je-schemes S "'— 8
with S’ quasi-compact and reduced, and a 2-commutative diagram

S ——— Yred

l l

S ——— Xed-
Proof. This is just a reformulation of Proposition 11.10. O
Lemma 13.6. Oreq : Vied = Xed IS quasi-compact.
Proof. Let S € J\/'ilp]Fq . [c7 be quasi-compact and reduced, and let § — Xeq be a
I-morphism. Let S — S be the surjective morphism from Lemma 13.5. It gives rise
to a surjective morphism of schemes over F ¢,
Vred X Xyoy S <— Vred X Xy S’ <— Yred X1,y S

Since Yreq X 1, S = 8" x J(Q) by Proposition 12.3, we obtain an epimorphism
S" —> Vred X X,y S- Now the lemma follows from the quasi-compactness of §’. O

Lemma 13.7. Oeq : Vied = Xeed is proper.

Proof. Since Vyeq and X,eq are locally of finite type and ®eq is quasi-compact, we
see that O is of finite type. Being a 1-monomorphism it is also separated. So it
remains to prove that it is universally closed. For this we use the valuative criterion
[32, Théoreme 7.3]. Let R be a valuation ring with Spec R € ./\/ilqu (f¢cp and let K

be its field of fractions. We have to show that for every 2-commutative diagram

Spec K —— Vied

| l

Spec R —— Aled,

there exists a finite extension R’/ R of valuation rings and a 1-morphism of Spec Fge-
stacks Spec R" — Yieq Which 2-commutes with the above diagram. However, the
existence of this data follows from Lemma 13.5. o
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Lemma 13.8. The 1-morphism © : Y — X is adic (Definition A.9).

Proof. We will show that Oreq is @ 1-isomorphism. Since both X and ) are adic
(see A.7 in the appendix), this suffices.

Let P : X — Aleq be a presentation. Then P is an epimorphism since Xpeq is
an algebraic Spec qu-stack. Thus it suffices to show that Vieq X x,,, X — Xisal-
isomorphism. From the previous lemmas, we know that it is a proper monomorphism
of schemes, hence a closed immersion. Since it is also surjective and X is reduced it
is an isomorphism as desired. O

Lemma 13.9. The 1-morphism ®:Y — X is étale.

Proof. Since quasi-isogenies of z-divisible groups lift to infinitesimal neighborhoods
we first see that Y — X is étale.

Now let 7 be an ideal of definition of X" and let Z be the closed substack defined
by J. Since © and also the presentation Y — ) are adic (Theorem 9.6), we obtain
1-morphisms

YXy Z—>YVxy Z—> 2

of algebraic Spec IF ¢ [[¢ [I-stacks. Since these 1-morphisms are representable by mor-
phisms of schemes, we can apply [20] to see that ) x y Z — Z is étale. This proves
the lemma. O

We can now finish the proof of the Uniformization Theorem.

Proof of Uniformization Theorem 12.6. Keep the notation of the proof of Lem-
ma 13.9. We have to show that

yXXZ—>Z

is a l-isomorphism of algebraic Spec F [[¢ I-stacks. Let S be a Spec Fy [£ ]-scheme
and let S — Z be a I-morphism. Then from the previous lemmas we conclude that

VxyS—>S

is an étale monomorphism of schemes, hence an open immersion. Being also sur-
jective, it is indeed an isomorphism. This completes the proof of the Uniformization
Theorem. o

Appendix: Background on formal algebraic stacks

For a general introduction to the theory of algebraic stacks we refer to Laumon—
Moret-Bailly [32] or Deligne-Mumford [9]. In this appendix we propose the notion
of formal algebraic stacks which generalizes the notion of algebraic stacks in the
same way as formal schemes are a generalization of usual schemes. In fact much of
the theory of algebraic stacks can be developed also for formal algebraic stacks. See
Hartl [24] for details.
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For a scheme S let Schg be the category of S-schemes equipped with the étale
topology. An algebraic stack X over S is defined as a category fibered in groupoids
over Schy satisfying further conditions [32, Definition 4.1]. We transfer this concept
to the formal category.

For the rest of this appendix we let S be a formal scheme. We denote by Nilp ¢ the
category of schemes over S on which an ideal of definition of § is locally nilpotent.
We remind the reader that every scheme may be considered as a formal scheme having
(0) as an ideal of definition. In this sense every U € Milpy is itself a formal scheme.
We equip Nilp ¢ with the étale topology. We make the following definitions (compare
[31, 28]).

Definition A.1. A formal S-space is a sheaf of sets on the site Nilpy.

Definition A.2. A (quasi-separated) formal algebraic S-space is a formal S-space X
such that

1. the diagonal morphism X — X xg X is relatively representable by a quasi-
compact morphism of formal schemes, and

2. there is a formal scheme X' over S and a morphism of formal S-spaces X' — X
which is representable (automatic because of 1) by an étale surjective morphism
of formal schemes.

Definition A.3. A formal S-stack X is a category X fibered in groupoids over Nilpg
such that

1. for every U € Nilpg and every x,y € X(U), the presheaf

Isom(x,y) : Nilpy — Sets,
(V = U) — Homy ) (xv, yv)

is, in fact, a sheaf on Nilpy;;
2. for every covering U; — U in Nilpg, all descent data for this covering are
effective.

Definition A.4. A formal S-stack is called representable if it is 1-isomorphic to a
formal algebraic space.

A 1-morphism X — Y of formal S-stacks is called representable if for every
U € Nilpg and every y € Y(U) viewed as a 1-morphism U — Y of formal S-stacks
the fiber product X xy U (in the 2-category of formal S-stacks) is representable.

Definition A.5. A (quasi-separated) formal algebraic S-stack is a formal S-stack X
such that

1. the diagonal 1-morphism of formal S-stacks
X > X xgX

is representable, separated, and quasi-compact;
2. there exists a formal algebraic S-space X and a 1-morphism of formal S-stacks
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P:X—> X

which is representable (automatic because of 1) by a smooth and surjective
morphism of formal algebraic S-spaces.

The 1-morphism P is called a presentation of X. We say that X is of DM-type if the
presentation P in 2 can be chosen étale.

A.6. Let X be a formal algebraic S-stack and let P : X — X" be a presentation. We
define the underlying reduced stack Xq as follows: For every U € MNilpg we let
Xred (U) be the full subcategory of X' (U) whose objects are the x € X' (U) such that
there is a covering U’ — U in Nilpg, an element x” € Xq(U’), and an isomorphism
in X (U’) between xyr and P (x’). Then Xyeq is an algebraic Seq-stack. If, moreover, X’
is of DM-type, then X}.q is an algebraic S;.q-stack in the sense of Deligne—-Mumford.
In this way we obtain from every 1-morphism f : ) — X of formal algebraic S-
stacks a 1-morphism fireq : Vied = Ared Of algebraic Siq-stacks. We say that f is
locally formally of finite type if fieq is locally of finite type.

A.7. For an algebraic stack X one can define its structure sheaf O -, which is a sheaf
on the lisse-étale site of X'; cf. [32, Section 12]. Then one has the usual bijection
between closed substacks of X’ and quasi-coherent sheaves of ideals of O y.

The same can be done for formal algebraic S-stacks X'. In this setting we say that
a sheaf of ideals [J of Oy is an ideal of definition of X if for some (any) presentation
P : X — X of X the ideal sheaf P*J is an ideal of definition of X. The formal
algebraic S-stack is called J-adic if J" is an ideal of definition for every n. It is
called adic if it is J-adic for some J. If X (i.e., X) is locally noetherian then there
exists a unique largest ideal of definition IC of X, namely, the one defining the closed
substack Xeq of X'. Note that if X" is J-adic for some 7 then it is also K-adic. One
easily verifies the following proposition which generalizes A.6.

Proposition A.8. Let 7 be an ideal of definition of S and let [J be an ideal of definition
of a formal algebraic S-stack X withZ - Oy C J. Then the closed substack of X
which is defined by the ideal J is an algebraic (S, Og/T)-stack.

Definition A.9. A 1-morphism f : Y — X of locally noetherian formal algebraic
S-stacks is called adic if for some (any) ideal of definition J of X the ideal f*7J is
an ideal of definition of ).

We discuss some examples.

Example A.10. Every formal scheme G over S can be viewed as a sheaf of sets on
the category Nilpg. Moreover, every sheaf on Milpg is a formal S-stack. Therefore,
we can view every quasi-separated formal scheme G over S as a formal algebraic
S-stack of DM-type.

Example A.11. Let S92 pe a scheme and let Sy be a closed subscheme. (We allow
the case Sy = S%2.) We let the formal scheme S be the formal completion of S
along Sp. If X is an (algebraic) S22_stack (in the sense of Deligne-Mumford) then
X X galg S'is an adic formal (algebraic) S-stack (of DM-type).
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We generalize this example as follows.

Definition A.12. Ler S be a scheme and let Sy be a closed subscheme. We let the
formal scheme S be the formal completion of S™¢ along So. Let X be an algebraic
S¥e_stack and let Z C X be a closed substack, contained in X X guz So. We view
the objects of X as 1-morphisms U — X for varying U € Schgas. We define the
formal completion X. 'z of X along Z as the full subcategory of X consisting of those
objects U — X such that Ureq — X factors through Z, i.e., such that there exists a
2-commutative diagram of 1-morphisms

u — X

[

Uped — Z.

Note that if X is an S32-scheme this definition coincides with the usual definition
of formal completion along a closed subscheme.

One verifies directly that X. 'z is an S¥€-stack. The embedding X, 'z > Xisa
1-morphism of S32_gtacks which is a 1- monomorphism, i.e., the functors X =(U) —
X (U) are fully faithful. This implies that the diagonal 1-morphism

.5(\3 — /’?Z Xy /"Y\Z
is a l-isomorphism of S¥€-stacks [32, 2.3]. As a consequence we obtain

Lemma A.13. Let Y — X. zand ) — X, 'z be two 1-morphisms of S48 _stacks. Then
there is a 1-isomorphism of S™¢-stacks

Yxp, V-V xx ).

The fibration X 'z — Schgay factors through Nilpg <> Schgas. Note the fact
that for an étale covering U; — U in Schgae we have U € Nilpy if and only if
U; € Nilpg for all i. This implies that X, 'z is a formal S-stack. We show that X. 'z 18
even a formal algebraic S-stack. Namely, condition 1 of Definition A.5 can be read
off from the following 2-cartesian diagram of S*€-stacks

Xz - Xz xxy Xz —— Xz Xqug Xz — Xz x5 Xz

l !

X X Xgug X

Condition 2 results from the fact that every presentation X — X of X" induces a
presentation X7z — Xz of Xz by the formal completion Xz of X along the closed
subscheme Z = X x y Z. Thus we have proved

Proposition A.14. Keep the notation of Definition A.12. Then the formal completion
Xg of X along Z is a formal algebraic S-stack. If X is an algebraic S32_stack in
the sense of Deligne—Mumford then Xg is of DM-type. If J is the ideal sheaf on X
defining the closed substack Z then X zis J-O pi -adic.
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A.15. Let 52 be a scheme and let X’ be an algebraic S¥2-stack. There is a notion of
points of X. Namely, a point of X" is given by a 1-morphism Spec K — & for an
S22_field K. The set | X'| of points of X forms a topological space; cf. [32, Section 5].
Let Z C |X]| be a closed subset, i.e., there is an open substack &/ C X such that
Z = |X| |U|. We can equip Z in a unique way with a structure of reduced closed
substacks [32, 4.10]. By Definition A.12, we can consider the formal completion of
X along Z.

Example A.16 (quotients). Let U € MNilpg and let G be a formal U-group space
(i.e., a group object in the category of formal U-spaces). A (left) G-forsor is a formal
U-space P with an action of G (from the left) such that there is a covering U’ — U
in Vilpg for which P xy U’ is G xy U’-isomorphic to G x y U’ which acts on itself
by left translation.

Let X be a formal S-space, Y an X-space (i.e., a formal S-space equipped with a
morphism ¥ — X) and G an X-group space which acts on Y from the left. We define
the quotient stack G\Y as the following category fibered in groupoids over Milpg:
For every U € Nilpg the category (G\Y)(U) consists of all triples (x, P, &) where
x€XWU),PisaG xxyx U-torsoranda : P — Yx ,U isa G xx x U-equivariant
morphism of formal U-spaces. One easily verifies that the quotient G\Y is a formal
S-stack.

In particular, if X is an adic formal algebraic S-space and G a finite étale S-group
scheme, then the quotient G\ X is even an adic formal algebraic S-stack of DM-type.
In this case, the canonical projection X — G\ X is an étale presentation of G\ X.
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1 Introduction

The analogy between number fields and function fields extends to varieties defined
over such fields. Indeed, if one adds in on the arithmetic side contributions that
correspond to the complex embeddings of a number field, it becomes possible to
construct intersection theories with properties analogous to those that we have on the
function field side. The major ingredients of arithmetic intersection theory are the
product formula for number fields and complex differential geometry to deal with the
local intersections “at infinity.”

In this paper we consider the original intersection theory for arithmetic surfaces
developed by Arakelov [1] and Faltings [7]. Already in this theory, one encounters
interesting complex differential geometric invariants, and it is worthwhile to study
these invariants in more detail. We focus on the delta-invariant, which was defined in
[7], and give an explicit formula for it in the case of a hyperelliptic Riemann surface
of arbitrary genus. We note that [7] treats the case of elliptic curves, and that the case
of Riemann surfaces of genus 2 has been considered before in [3].

In order to state our result, let us recall some notation and earlier results. Let X be
a compact and connected Riemann surface of genus g > 0. Let G be the Arakelov-
Green function of X and let u be the fundamental (1, 1)-form on X as defined in
[1, 7]. Let S(X) be the invariant defined by

log S(X) = —/Xlog 191(gP — Q) - u(P).

Here ||| is the function on Pic,1(X) defined as on [7, p. 401] and Q can be any
point on X. The integral is well defined and is independent of the choice of the point

Q. In our paper [10], we gave an explicit formula for the Arakelov—Green function
of X.
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Theorem 1.1. Let W be the classical divisor of Weierstrass points on X. For P, Q
points on X, with P not a Weierstrass point, we have
I21(gP — Q)
[Twew 1911(gP — W)l/e’
Here the product runs over the Weierstrass points of X, counted with their weights.

The formula is also valid if P is a Weierstrass point, provided that we take the leading
coefficients of a power series expansion about P in both numerator and denominator.

G(P, Q)¢ = S(X)V/&" .

In the same paper, we also gave an explicit formula for the delta-invariant of X.
The delta-invariant is a fundamental invariant of X, expressing the proportionality
between two natural metrics on the determinant of the Hodge bundle. For P on X,
not a Weierstrass point, and z a local coordinate about P, we put

. PP -0
|F,I(P):= lim ——————.
0—P |2(P) —z(Q)[#
Further, we let W, (w)(P) be the Wronskian at P in z of an orthonormal basis
{w1, ..., wg} of the differentials H O(X , Qk) provided with the standard hermitian
inner product (w, n) +—> % f x @ A 7. We define an invariant 7'(X) of X by

— _ 3
T(X):=|FI(P)"$*V - TT I9lgP — W™V W (o) (P)I7,
Wew
where again the product runs over the Weierstrass points of X, counted with their
weights. It can be checked that this depends on neither the choice of P nor the choice
of local coordinate z about P. A more intrinsic definition is possible (see [10]), but

the above formula will be convenient for us. We remark that 7'(X) does not involve
an integral over X, contrary to the invariant S(X).

Theorem 1.2. For Faltings’ delta-invariant 6 (X) of X, the formula
exp(8(X)/4) = S(X)~EV/E . T (x)
holds.

In this paper, we make the invariant 7' (X) explicit in the case that X is a hyperel-
liptic Riemann surface of genus g > 2. We relate it to a nonzero invariant ||, [|(X)
of X, the Petersson norm of the modular discriminant associated to X, which we
introduce in Section 2. As we will see, for hyperelliptic Riemann surfaces, this is a
very natural invariant to consider. Unfortunately, it is not so clear how to extend its
definition to the general Riemann surface of genus g.

Definition 1.3. We denote by G’ the modified Arakelov—Green function
G'(P, Q) =S(X)""¢ . G(P, 0)

on X x X.
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We prove the following theorem dealing with G’ and T (X). Recall that the Weier-
strass points of X are just the ramification points of a hyperelliptic map X — P!

Theorem 1.4. Let W be a Weierstrass point of X. Let n = ( g2fl ). Consider the
product [ [y G'(W, W) running over all Weierstrass points W' different from
W, ignoring their weights. Then [ [y .y G"(W, W') is independent of the choice of
W and the formula

+1
[T 6/W. w)E D" =267 2252 7(x) % - || (X) 2
W/ AW
holds.

The next theorem will be derived in a forthcoming article [11]. The result looks
similar to the formula in Theorem 1.4, but the proof is very different.

Theorem 1.5. Let m = (2gg+2). Then we have

1—[ G'(W, W& = 7=28@+2m _(x)=(g+2m | qug”(X)—%(g—t-l)’
(W.W")

the product running over all ordered pairs of distinct Weierstrass points of X.

Combining the above two theorems yields a simple closed formula for the invari-
ant 7 (X) in terms of [|¢g || (X).

Theorem 1.6. Consider the modified discriminant || Ag || (X) := 2=#8F9m |0, ||(X).
Then the formula

—1

) _3¢
T(X)=Q2m)" = - [[Ag(X) ¥
holds.

Combining this with Theorem 1.2, we obtain the following corollary.

Corollary 1.7. For Faltings’ delta-invariant 6 (X) of X, the formula

2 _3g—1
exp(8(X)/4) = 2r) 7% - S(X)"E7V/E A, lI(X)” ¥
holds.

The significance of this result is that it makes the efficient calculation of the delta-
invariant possible for hyperelliptic Riemann surfaces. We have given a demonstration
of this in our paper [10].

We remark that in the case g = 2, an explicit formula for the delta-invariant
has been given already by Bost [3]. Apart from the Petersson norm of the modular
discriminant, his formula involves an invariant || H || (X). This invariant has properties
similar to our S(X).
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The idea of the proof of Theorem 1.4 is quite straightforward: we start with the
definition of the invariant 7'(X) and the formula for G in Theorem 1.1 and observe
what happens if we let P approach the Weierstrass point W on X. Thus we have
to perform a local study around W of the function [ [y [|9]|(gP — W') and of the
functions || F;||(P) and W, (w)(P) for a suitable local coordinate z. In Section 3, we
find a suitable local coordinate on an embedding of X into its jacobian. In Section 6, we
collect the local information that we need in order to complete the proof in Section 7.
Some preliminary work on this local information is carried out in Sections 4 and 5.
These two sections form the technical heart of the paper.

2 The modular discriminant

In this section, we introduce the modular discriminant ¢, and its Petersson norm
logll. The modular discriminant generalises the usual discriminant function A for
elliptic curves.

Let g > 2 be an integer and let 7 be the Siegel upper half-space of symmetric
complex g x g-matrices with positive definite imaginary part. For z € C8 (viewed
as a column vector), a matrix t € H, and /, " € %Zg , we have the theta function

/
with characteristic n = [:)7//] given by

Pnl(z; 7) = Z exp(ri' (n +n)T(n +n') + 2ri' (n + 1)z +n").

neZs
For any subset S of {1,2,...,2g + 1}, we define a theta characteristic ng as in [14,
Chapter IIla]: let
[70,...,0,1,0,...,0) b eni
2k—1 = ) =Kk = )
P 00,0 ¢
[t 1
©,...,0,5,0,...,0)
Mk = , 1<k=<g,
(1G5 3:5:0,...,0)

where the nonzero entry in the top row occurs in the kth position. Then we put
NS = Y res Nk Where the sum is taken modulo 1.

Definition 2.1 (cf. [13, Section 3]). Let 7 be the collection of subsets of {1,2, ...,
2g + 1} of cardinality g + 1. Write U = {1,3,...,2¢ + 1} and let o denote the
symmetric difference. The modular discriminant ¢, is defined to be the function

e (r) == [ | #nrov1(0; 7)°
TeT

on Hg. The function @g is a modular formon 'y (2) := {y € Sp(2g, Z)|y = I mod

2} of weight 4r, where r = (2gg_:r11 ).
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Consider an equation y> = f(x), where f € C[X] is a monic and separable
polynomial of degree 2g + 1. Write f(x) = ié:;l(x — ai) and denote by D =
[Tiei(ar — a;)? the discriminant of f. Let X be the hyperelliptic Riemann surface of
genus g defined by y> = f(x). Then X carries a basis of holomorphic differentials
Ui = xk_ldx/2y, where k = 1, ..., g. Further, in [14, Chapter Illa, Section 5],
it is shown how, given an ordering of the roots of f, one can construct a canonical
symplectic basis of the homology of X. Throughout this paper, we will always work
with such a canonical basis of homology, i.e., a certain ordering of the roots of a
hyperelliptic equation will always be taken for granted.

Let (iu|u) be the period matrix of the differentials uj; with respect to a chosen
canonical basis of homology, and let T = =1 /.

Proposition 2.2. We have the formula
D" = 7% (det 1)~ g4 (1)

relating the discriminant D of the polynomial f to the value ¢4(t) of the modular
discriminant.

Proof. See [13, Proposition 3.2]. O

Definition 2.3. Let X be a hyperelliptic Riemann surface of genus g > 2 and let T be
a period matrix for X formed on a canonical symplectic basis, given by an ordering
of the roots of an equation y* = f (x) for X. Then we write logll(t) for the Petersson
norm (detIm 7)% - lpg (T)] of wg(t). This does not depend on the choice of T and
hence it defines an invariant ||@g||(X) of X.

It follows from Proposition 2.2 that [|¢, || (X) is nonzero.

3 A local coordinate

For our local computations on our hyperelliptic Riemann surface we need a convenient
local coordinate. We find one by embedding the Riemann surface into its jacobian
and by taking one of the euclidean coordinates.

Let X be a hyperelliptic Riemann surface of genus g > 2, let y> = f(x) with
f monic of degree 2g + 1 be an equation for X, let u; be the differential given by
we = x¥dx/2y fork = 1,..., g, and let (u|u’) be their period matrix formed
on a canonical basis of homology. Let L be the lattice in C& generated by the
columns of (u|un). We have an embedding ¢ : X <> C8/L given by integration
P — fo}; (M1, ..., g). We want to express the coordinates zy, ..., zg, restricted
to ((X), in terms of a local coordinate about 0 = ¢(00). This is established by the
following lemma. In general, we denote by O (wy, ..., wy; d) a Laurent series in the
variables wi, ..., ws all of whose terms have total degree at least d. We owe the
argument to [12].

Lemma 3.1. The coordinate z is a local coordinate about 0 on 1(X), and we have
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1 2(g—k)+1

k= ek 418

+ O(zg;2(g — k) +2)

ont(X)fork=1,...,g.

Proof. We can choose a local coordinate ¢ about co on X such that x = =2 and
y = —t~@8*D 4 O(¢; —2g). For P € X in a small enough neighborhood of oo on
X and for a suitable integration path on X, we then have

P xk—ldx t(P) t—2(k—1) . (_zt—3dt)
Zk(P)=/ =/ Gt
o 2y 0o —27@tD +0(1; -2¢)

t(P)
= / >80 4+ 0(:2(g — k) + 1))dt
0

_ 1 2g—)+1 e
- z(g_k)+1t(P) + Ot(P); 2(g — k) +2).

By taking k = g, wefindz, =t + O(¢;2),and fork =1, ..., g — 1, then

1 2(g—k)+1
k=2 + O(zq;2(g — k) + 2),
TPt (2g:2(¢ = k) +2)

which is what we wanted. O

4 Schur polynomials

In this section, we assemble some facts on Schur polynomials. We will need these
facts at various places in the next sections. Fix a positive integer g. Consider the ring
of symmetric polynomials with integer coefficients in the variables x1, ..., x;. The
elementary symmetric functions e, are defined by means of the generating function
E(t) =Y ,moert” =TI_ (1 +xi0).

Definition 4.1. Let d be a positive integer and let 1 = {my, ..., 7} withmy > -+ - >
7y, be a partition of d. The Schur polynomial associated to 7 is the polynomial

Sq = det(er; k1) 1<k.1<h

where h is the length of the partition 7, and where 7' is the conjugate partition of
given by m; = #{l : m; > k}, i.e., the partition obtained by switching the associated
Young diagram around its diagonal. The polynomial S is symmetric and has total
degree d. We denote by S, the Schur polynomial in g variables associated to the
partitiont = {g, g — 1,...,2, 1}. Thus the formula

Sg = det(eg—2k+i+1)1<k.i<g

holds, and the polynomial Sq has total degree g(g + 1)/2.
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We denote by p, the elementary Newton functions (power sums) given by the
generating function P(z) = Zril ptt 7l = Zkzl xx/(1 — xgt). The following
proposition is then a special case of [5, Theorem 4.1].

Proposition 4.2. The Schur polynomial Sy can be expressed as a polynomial in the
g functions py, p3, ..., pag—1 only. This polynomial is unique.

Definition 4.3. We define s, to be the unique polynomial in g variables given by
Proposition 4.2.

The next proposition is a special case of [5, Theorem 6.2].

Proposition 4.4. Let s(x1, ..., xg) € Clx1, ..., x,] be a polynomial in g variables
such that for any set of g complex numbers wi, ..., wg, the polynomial s(z1 —
w, 7 —w, ..., g — wzg—l) in w either has exactly g roots wy, ..., Wg, or vanishes

identically, if we give z the value
z=(p1(wi, ..., wg), p3(W1, ..., We), ..., P2g—1(W1, ..., Wg)).
Then s is equal to the polynomial s up to a constant factor.
Definition 4.5. We define o, to be the polynomial in g variables given by the equation
0g(21, ..., 2¢) = 8g(2g, 3241, ..., (2¢ — Dz1).
The following proposition is then the result of a simple calculation.

Proposition 4.6. Up to a sign, the homogeneous part of least total degree of oy is
equal to the Hankel determinant

21 22 T Z(g+D)/2
He=de| 0 T
Z(g;l)/Z Z(5’4;3)/2 Z.g
if g is odd, or
21 2 o Zg)2
HZ) = det 2'3 Z(gfz)/z
Zg./2 Z(gJ;Z)/Z Zg.—l

if g is even.

We conclude with some more general facts. These can all be found, for example, in
[8, Appendix A].



230 Robin de Jong

Proposition 4.7. Let w1 = {m1, ..., wp} with wy > --- > 7y, be a partition. Then the
formula
e —m +1—k
Sz(1,...,1) = _—
7 ( ===
k<l

holds. In particular, Se(1,...,1) = 28(8—1/2,
Definition 4.8. Let i = (i1, ...,iq) be a d-tuple of nonnegative integers. The ith

generalized Newton function pW is defined to be the polynomial

i

pW = plopRee. P,
where the p, are the elementary Newton functions.

Proposition 4.9. The set of generalized Newton functions p®, where i runs through
the d-tuples i = (i1, ..., iq) of nonnegative integers with > _ aiy = d, forms a basis
of the Q-vector space of symmetric polynomials with rational coefficients of total
degree d.

Proposition 4.10. For a partition w of d and a d-tuple i = (i1, ..., i4), denote by
wx (1) the coefficient of the monomial xf' S xZ" in p®. Then the polynomial Sy
can be expanded on the basis {p®} of generalized Newton functions of total degree
das Sy =Y - - wr (i) - pV. Here z(i) = i1 - ip122 . ... iglda.

6

5 The sigma function

We consider again hyperelliptic Riemann surfaces of genus g > 2, defined by
equations y> = f(x) with f monic and separable of degree 2g + 1. We write
fx) = x28H 4o x28 4+ A2gX + A2gy1 and denote by A the vector of co-
efficients (A1, ..., A2g41). In this section, we study the sigma function o (z; A) with
argument z € C8 and parameter A. This is a modified theta function, studied exten-
sively in the 19th Century. Klein observed that the sigma function serves very well
to study the function theory of hyperelliptic Riemann surfaces. For us it will be a
convenient technical tool for obtaining the local expansions that we need. We will
give the definition of the sigma function, as well as its power series expansion in z, A.
For more details we refer to the Enzyklopddie der mathematischen Wissenschaften,
Band 1II, Teil 2, Kapitel 7.XII. A modern reference is [4], where one also finds ap-
plications of the sigma function in the theory of the Korteweg—de Vries differential

equation.
As before, let 1 be the holomorphic differential given by ux = x¥~1dx/2y
fork =1,..., g, and let (u|u’) be their period matrix formed on a canonical basis

of homology. Let L be the lattice in C8 generated by the columns of (u|u'). By
the theorem of Abel-Jacobi, we have a bijective map Picg_1(X) — C8/L given

by > mx P —> D my foik(ul, ..., [tg). Denote by ® the image of the theta
divisor of classes of effective divisors of degree g — 1, and let g : C8 — C8/L be
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the projection map. Let T = p~!y/. By a fundamental theorem of Riemann, there
exists a unique theta characteristic § such that 9 [§](z; ) vanishes to order 1 precisely
along ¢~ 1(®).

Definition 5.1. Let v be the matrix of A-periods of the differentials of the second kind
Vg = % Zfﬁ;k (I 4+ 1 —k)Ajxp1x*dx fork =1, ..., g. These differentials have a
second-order pole at 0o and no other poles. The sigma function is then the function

1 —1t —1
o(z; 1) :==exp <_§ZW z) ~O8l(u” 5 7).

Using some of the facts on Schur polynomials from the previous section, we
can give the power series expansion of o (z; A). The result is probably well known
to specialists, although we couldn’t find an explicit reference in the literature. For
the formulation and the proof, we were inspired by [12], as well as by a private
communication with the author. For the special case g = 2, a somewhat stronger
version of the result has been obtained by Grant; see [9, Theorem 2.11].

Proposition 5.2. The power series expansion of o (z; L) about 7 = 0 is of the form
o(z;A) =y -0g(2) + O,

where o is the polynomial given by Definition 4.5 and where the symbol O () denotes
a power series in z, A in which each term contains a Ay raised to a positive integral
power. The constant y satisfies the formula

y8n — n4g(r—n) (det M)—4(r—n)(pg(.[)'

If we assign the variable zj. a weight 2(g — k) + 1, and the variable Ay a weight
—2k, then the power series expansion in z, A of o(z; A) is homogeneous of weight
glg+1/2

Proof. First of all, the homogeneity of the power series expansion in z, A with respect
to the assigned weights follows from an explicit formula for o (z; A) given in [6]. This
homogeneity is also mentioned there; cf. the concluding remarks after Corollary 1.
Write o (z; A) = 09(2)+ O (A) where O (A) denotes a power series in z, A in which each
term contains a A raised to a positive integral power. Because of the homogeneity, the
series 0((z) is necessarily a polynomial in the variables z1, ..., zg. By the Riemann
vanishing theorem, there is a dense open subset U C C?¢*+! such that for any A € U,
the function o (z; A) satisfies the following property: for any set of g points Py, ..., P
on the hyperelliptic Riemann surface X = X, corresponding to A, the function
a(z—foi(ul, ..., Mg); A)in P on X either has exactly g roots Py, ..., P,,or vanishes

identically, when we give the argument z the value z = Y, [ 01;" (U1, ..., [g). Inthe
limit A — 0, we find, then, as in the proof of Lemma 3.1, that for any set of g complex
numbers wy, ..., wg, the polynomial

1 2 1 1
— w1 _ 283 o3 _
o0 (Zg—l(Zg w ), 2g_3(2g71 w ),...,3(@ w?), 21 w)
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in w either has exactly g roots wi, ..., w,, or vanishes identically, if z takes the
value z = (p1(w1, ..., wg), p3(W1, ..., We), ..., p2g—1(wi, ..., wg)). By Propo-
sition 4.4, the polynomial oy must be equal to the polynomial o, up to a constant
factor y. As to this constant y, we find in [2, Section IX] a calculation of a constant
y’such that o(z; M) = ¥’ - H(z) + O(z; (g + 3)/2]), where H(z) is the Hankel
determinant from Proposition 4.6 and where now we consider the power series ex-
pansion only with respect to the variables z1, ..., z; and with respect to their usual
weight deg(zx) = 1. By Proposition 4.6, this y’ is equal to our constant y, up to a
sign. We just quote the result of Baker’s computation:

yt =20 0" [] @ —a)?/ itz tagr),

k<l

k,leU
where
by = —i - l_[(ak —ay)/ H(ak —ar).
llf;U k¢U

Thomae’s formula (cf. [14, Chapter Illa, Section 8]) says that

9(0:0)° = et p)*z ™ [T (@ —a® [T (@ —an.
i st

Combining, we obtain , y8 = D - 7748 . (det u)*. The formula for y that we gave
then follows from Proposition 2.2. O

Example 5.3. By way of illustration, we have computed o, for small g:

g 9
1 21
2 —z1 + 323
3 2123 — Z% - %mz% + %zg
4 | 2123 — 23 — Baa+ 222325 — 12123 + 2225 — 752324 + 755280

Remark 5.4. As can be seen from Proposition 4.6, the homogeneous part of least total
degree (with respect to the usual weight deg(zx) = 1) of 0 (z) has degree [ (g+1)/2].
Hence, by a fundamental theorem of Riemann, the theta-characteristic § gives rise to
a linear system of dimension | (g — 1)/2] on X.

6 Leading coefficients
In this section, we calculate the leading coefficients of the power series expansions

in z; of the holomorphic functions ﬂ[&](gu_lz; 7)l(x) and W, (), the Wronskian
in z, of the basis {1, ..., ug}.
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Proposition 6.1. In the power series expansions of o (gz; A)|.(x), and hence also of
D[81(gn " z; ) |ux), the leading coefficient is equal to y - 28(=D/2,

Proof. By Lemma 3.1 and Proposition 5.2, we know that the power series expansion
of 0 (gz; A)|,(x) has the form

Zg_lzg 2g 3% 3
+0(zg: 8+ 1D/2+1).

8 2¢—1 8 2¢-3 8
oz Mixy =v -0y < § 7 —zz, gzg)

Hence we need to calculate crg(zgg;_], 2;;_3, e %, g). By Definition 4.5, this is equal
t0se(g, 8,...,8).Butwehavesy(g,g,...,8) = Sg(1,1,..., 1) by Proposition 4.2
and Definition 4.3, and by Proposition 4.7 we have S,(1,...,1) = 28@—D/2 The
proposition follows. O

Proposition 6.2. The leading coefficient of the power series expansion of the Wron-
skian W, (1) is equal to +286=D/2,

Proof. Expanding the Wronskian yields

W, (u) = d t(—l —del>
g /'L =de _ | ]
k=Dl )

282 2¢—4

Zg Zg ... Z; 1
2¢-3 2¢—5
2¢ — 2 2¢ — 4 -2 27,0 -1
— | B2 Ge Dz “U 4 06y —g(g2 ).
262 g 294 g2 .
(gg—l)zg (gg—l)zg - 00
Let A be the matrix of binomial coefficients A := ((25;, :%k))]sk’lsgfl. From the

expansion it follows that the required leading coefficient is equal to det A. We will
compute this number. First of all, note that

(25 =D —H!--- 2 ( 1 )
(g—Dig—2)! -1 (8 =2k + D) 12zt

det A =

where we define 1/n! := 0 forn < 0. Now let d = g(g — 1)/2 and consider the
ring of symmetric polynomials with integer coefficients in g — 1 variables. It is well
known that for the elementary symmetric functions e,, we have an expansion

oo 20
erz_det ,
r!
Pr—1 Pr-2 pr—3"'r_1
Pr DPr—1 Pr—2 -+ D1
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with p, the elementary Newton functions. From Definition 4.1 and this expansion, it
follows thatdet(1/(g — 2k +1)!) is the coefficient of p‘li in the expansion of S,_; with
respect to the basis of generalized Newton functions. By Proposition 4.10, this coeffi-

01ent1sequaltowg 1(d)/d!, where w,_1(d) is the coefficient of x§ lng 2~~~x§_1xg

in p1 . It immediately follows that det(1/(g — 2k + 1)) =1/(g — D(g —2)!--- 1L
Combining, one finds det A = 28(€~1/2, o

7 Proof of Theorem 1.4

Now we are ready to prove Theorem 1.4. Let X be a hyperelliptic Riemann surface
of genus g > 2, and let W be one of its Weierstrass points.

Proof of Theorem 1.4. Fix a hyperelliptic equation y> = f(x) for X with f monic
and separable of degree 2g 4- 1 that puts W at infinity. Choose a canonical basis of the
homology of X, and form the period matrix (u|u’) of the differentials xK=ldx /2y
fork = 1,..., g on this basis. Let L be the lattice in C8 generated by the columns
of (u|u’), and embed X into C&/L with base point W as in Section 3. We have the
standard euclidean coordinates z{, . .., z, on C8/L and according to Lemma 3.1 we
have that z; is a local coordinate about W on X. The weight w of W is given by
w = g(g — 1)/2. Consider then the following quantities:

s -Ww
AW’y ;= lim 1910 = W) for Weierstrass points W' # W;
o—->Ww |Zg|g
Vs -Ww
AW ot 120@O=W) I IQ)
o-w |Zg|w+g 0—-W |zg|V
W, (o
BW) = lim W, ( )(Q)I’
o—-W |Zg|w
where W, (w) is the Wronskian in zg of an orthonormal basis {w, ..., wg} of

HO(X, Q}(). We have by Theorem 1.1 that

/ / AW . i ,
G'(W,WHs = W for Weierstrass points W' # W,
W//
hence .
22
G'(W, W8 = w .
W];[W ( ) A(W) <ﬂ ( ))

Further, we have by the definition of 7'(X), letting P approach W,

w(g—1)
3

T(X):A(W)_(gH)-(l—[A(W/)) ° - B(W)2.
W/

Eliminating the factor [, A(W’) yields
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2 _2e+2 g+l
[] ¢w. wHE D" =awm)* - Bw) = - T(X) « .
W'EW

Now we use the results obtained in Section 6. Let t = =i/ A simple calculation
gives that A(W) is (det Im 7)!/# times the absolute value of the leading coefficient of
the power series expansion of z9[8](g,u,_1z; 7)|.(x) in z¢. Hence by Propositions 5.2
and 6.1, we have

AW) = 286=D/2 285" (detTm 1) /4 - | det |~ 5 - |y (T)] .

Next let || - || be the metric on A8 HO(X, Q ;) derived from the hermitian inner product
(w,n) — ’5 f ywAfqon H 0x, Q}(). Riemann’s second bilinear relations tell us that
iy A e+ A pgll* = (detImt) - |det u|?. This gives that [W, (0)| = |W, ()] -
(detIm7)~1/2 . | det u|~!. From Proposition 6.2, we derive then

B(W) =286"D/2 (detIm7)" /2. |det u| 7.
Plugging in our results for A(W) and B(W) finally gives the theorem. O

Remark 7.1. The fact that the product from Theorem 1.4 is independent of the choice
of the Weierstrass point W follows a fortiori from the computations in the above
proof. It would be interesting to have an a priori reason for this independence.

Remark 7.2. We have not been able to find in general a formula for G'(W, W’) with
W, W’ just two Weierstrass points. In the case g = 2, it can be shown that

G'W.WH=2" gl T I9Iw —w' + w”).
W//#W,W/

This formula should be compared with the explicit formula for G(W, W’) given in
[3], Proposition 4. We guess that in general G’(W, W’)$ is equal to

AX) - T IV =W W W),

with A (X) some invariant of X. Such aresult is consistent with Theorems 1.4 and 1.5.

Acknowledgments. The author wishes to thank Gerard van der Geer for his encouragement and
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Summary. We describe a tautological subring in the arithmetic Chow ring of bases of abelian
schemes. Among the results are an Arakelov version of the Hirzebruch proportionality principle
and a formula for a critical power of ¢ of the Hodge bundle.

Subject Classifications: 14G40, 58]52, 20G05, 20G10, 14M17

1 Introduction

The purpose of this note is to exploit some implications of a fixed-point formula
in Arakelov geometry when applied to the action of the (—1) involution on abelian
schemes of relative dimension d. It is shown that the fixed-point formula’s statement
in this case is equivalent to giving the values of arithmetic Pontrjagin classes of the
Hodge bundle E := (R'7, O, || - | 12)*, where these Pontrjagin classes are defined as
polynomials in the arithmetic Chern classes defined by Gillet and Soulé. The resulting
formula (see Theorem 3.4) is

2k1

2¢/(1 = 2k) Z‘_ 2log2

¢ - 2k) 4k (2k—1Dla(ch(E)*11) (1)

Pr(E) = (—D*

with the canonical map a defined on classes of differential forms. When combined
with the statement of the Gillet—Soulé’s nonequivariant arithmetic Grothendieck—Rie-
mann—Roch formula [GS8, Fal], one obtains a formula for the class cll +dd-1/2 of
the d-dimensional Hodge bundle in terms of topological classes and a certain special
differential form y (Theorem 5.1), which represents an Arakelov Euler class. Morally,
this should be regarded as a formula for the height of complete cycles of codimension

d in the moduli space (but the nonexistence of such cycles for d > 3 has been shown
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by Keel and Sadun [KS]). Still, it might serve as a model for the noncomplete case.
Finally, we derive an Arakelov version of the Hirzebruch proportionality principle
(not to be confused with its extension by Mumford [M]), namely a ring homomor-
phism from the Arakelov Chow ring CH*(L,_1) of Lagrangian Grassmannians to
the arithmetic Chow ring of bases of abelian schemes C/IPI*(B ) (Theorem 5.5).

Theorem 1.1. Let S denote the tautological bundle on Ly_1. There is a ring homo-
morphism

h: CH*(Lg-1)g — CH*(B)g/(a(y))

with

-1
o ¢'(1=2k)  log2 B [2k—1]
h@(S)) = ¢(E) (1 ta (1?_1( F oA T TGk Dieh (E)))

and

h(a(c(8))) = a(c(E)).

In the last section, we investigate the Fourier expansion of the Arakelov Euler
class y of the Hodge bundle on the moduli space of principally polarized abelian
varieties.

A fixed-point formula for maps from arithmetic varieties to Spec D has been
proven by Roessler and the author in [KR1], where D is a regular arithmetic ring.
In [KR2, Appendix], we described a conjectural generalization to flat equivariantly
projective maps between arithmetic varieties over D. The missing ingredient to the
proof of this conjecture was the equivariant version of Bismut’s formula for the
behavior of analytic torsion forms under the composition of immersions and fibrations
[B4], i.e., a merge of [B3] and [B4]. This formula has meanwhile been shown by
Bismut and Ma [BM].

There is a gap in our proof of this result (Conjecture 3.2), insofar as we only
give a sketch. While our sketch is quite exhaustive and provides a rather complete
guideline to an extension of a previous proof in [KR1] to the one required here, a fully
written-up version of the proof would still be basically a copy of [KR1] and thus be
quite lengthy. This is not the subject of this article.

We work only with regular schemes as bases; extending these results to moduli
stacks and their compactifications remains an open problem, as Arakelov geometry
for such situations has not yet fully been developed. A corresponding Arakelov in-
tersection ring has been established in [BKK] by Burgos, Kramer and Kiihn, but the
associated K-theory of vector bundles does not exist yet; see [MR] for associated
conjectures. In particular, one could search an analogue of the Hirzebruch-Mumford
proportionality principle in Arakelov geometry. Van der Geer investigated the classi-
cal Chow ring of the moduli stack of abelian varieties and its compactifications [G]
with a different method. The approach there to determine the tautological subring
uses the nonequivariant Grothendieck—Riemann—Roch theorem applied to line bun-
dles associated to theta divisors. Thus it might be possible to avoid the use of the
fixed-point formula in our situation by mimicking this method, possibly by extending
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the methods of Yoshikawa [Y]; but computing the occurring objects related to the
theta divisor is presumably not easy.

Results extending some parts of an early preprint form of this article [K2] in the
spirit of Mumford’s extension of the proportionality principle have been conjectured
in [MR]. That article also exploits the case in which more special automorphisms exist
than the (—1) automorphism. Their conjectures and results are mainly generalizing
Corollary 4.1.

2 Torsion forms

Let: E"9 — B denote a d-dimensional holomorphic vector bundle over a complex
manifold. Let A be a lattice subbundle of the underlying real vector bundle Eﬂlg’0 of
rank 2d. Thus the quotient bundle M := E'0/A — B is a holomorphic fibration by
tori Z. Let

= {1 e (Eg)* | n(») € 2nZ forall € A}

denote the dual lattice bundle. Assume that E'-? is equipped with an Hermitian metric
such that the volume of the fibers is constant. Any polarization induces such a metric.

Let Ny be the number operator acting on I'(Z, AT**!Z) by multiplica-
tion with ¢g. Let Try denote the supertrace with respect to the Z/27Z-grading on
AT*B ®End(AT**!'Z). Let ¢ denote the map acting on A*”T* B as multiplication
by (2wi)~P. We write 2(B) for A(B) := @p>0(9l1"1’(B)/(Im8 + Im d)), where
2AP-P(B) denotes the C* differential forms of type (p, p) on B. We shall denote a
vector bundle F together with an Hermitian metric 4 by F. Then ch < (F) shall denote
the Chern—Weil representative of the equivariant Chern character associated to the
restriction of (F, h) to the fixed-point subvariety. Recall (see, e.g., [B3]) also that
Tdg(F) is the differential form

Ctop (fg) _
Y k=0(=DF chg (AKF)

Tdg(F) ==

In [K1, Section 3], a superconnection A; acting on the infinite-dimensional vector
bundle I'(Z, AT**1Z) over B has been introduced, depending on r € R*. For a
fiberwise acting holomorphic isometry g the limit

lim ¢ Try g"‘NHe_Af2 = Weo
t—00
exists and is given by the respective trace restricted to the cohomology of the fibers.

The equivariant analytic torsion form T (7, Ou) € Ql(B) was defined there as the
derivative at zero of the zeta function Wlth values in differential forms on B given by

F(s)/ (@ Try g Nype ™ — woo)t*dt

forRes > d.
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Theorem 2.1. Letanisometry g act fiberwise with isolated fixed points on the fibration
by torim: M — B. Then the equivariant torsion form Tg(rw, Op) vanishes.

Proof. Let f,: M — C denote the function e'* for u € A*. As is shown in [K1,
Section 5], the operator At2 acts diagonally with respect to the Hilbert space decom-
position
Nz, AT*'2) = @ AE"' @ {fu).
HEN*

As in [KR4, Lemma 4.1] the induced action by g maps a function f, to a multiple
of itself if and only if 4 = 0 because g acts fixed point free on E!? outside the
zero section. In that case, f), represent an element in the cohomology. Thus the zeta
function defining the torsion vanishes. O

Remark. As in [KR4, Lemma 4.1], the same proof shows the vanishing of the equiv-
ariant torsion form Ty (7w, £) for coefficients in a g-equivariant line bundle £ with
vanishing first Chern class.

We shall also need the following result of [K1] for the nonequivariant torsion
form T (7, Op) = Tig(mw, Op): Assume for simplicity that 7 is Kéhler. Consider
for Re s < O the zeta function with values in (d — 1, d — 1)-forms on B,

r'@2d —s — 1)vol(M 99 Ad=1)
Z(s) = ( s — 1) vol(M) Z (_.||A1,0||2> (IO Ry +1-24.
I's)(d —1)! AeAN(o)

where 110 denotes a lattice section in E1-0. (In [K1] the volume is equal to 1.) Then
the limit y := lim,_, o~ Z’(0) exists and it transgresses the Chern—Weil form ¢, (E%-1)
representing the Euler class ¢ (E 0.1y,

39 —
—y = cq(EO).
2mi

In [K1, Theorem 4.1], the torsion form is shown to equal

14

T(T[, m) = ——
Td(EO-T)

in 51(3 ). The differential form y was intensively studied in [K1].

3 Abelian schemes and the fixed-point formula

We shall use the Arakelov geometric concepts and notation of [SABK] and [KR1]. In
this article, we shall only give a brief introduction to Arakelov geometry, and we refer
to [SABK] for details. Let D be a regular arithmetic ring, i.e., a regular, excellent,
Noetherian integral ring, together with a finite set S of ring monomorphisms of
D — C, invariant under complex conjugation. We shall denote by G := p, the
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diagonalizable group scheme over D associated to Z/nZ. We choose once and for
all a primitive nth root of unity {, € C. Let f: Y — Spec D be an equivariant
arithmetic variety, i.e., aregular integral scheme, endowed with a 1, -projective action
over Spec D. The groups of nth roots of unity acts on the d-dimensional manifold
Y (C) by holomorphic automorphisms and we shall write g for the automorphism
corresponding to &,.

We write f#» for the map Y,, — Spec D induced by f on the fixed-point
subvariety. Complex conjugation induces an antiholomorphic automorphism of ¥ (C)
and Y, (C), both of which we denote by Foo. The space Ql(Y ) is the sum over p
of the subspaces of AP-p (Y (©)) of classes of differential (p, p)-forms w such that
FXow = (—1)Pw. Let DP'P(Y(C)) denote similarly the F-equivariant currents as
duals of differential forms of type (d — p, d — p). It contains in particular the Dirac
currents 8z(c) of p-codimensional subvarieties Z of Y.

Gillet—Soulé’s arithmetic Chow ring CH*(Y ) is the quotient of the Z-module
generated by pairs (Z, gz) W1th Z an arithmetic subvariety of codimension p,

gz € DP~Lr=l(y(C)) with 2m gz + 8z(c) being a smooth differential form by

the submodule generated by the pairs (div f, — log || f||%) for rational functions f on
Y. Let CH*(Y) denote the classical Chow ring. Then there is an exact sequence, in
any degree p,

CHPP=1(y) L5 AP=1r=1(y) % CHP(Y) <> CHP(Y) — 0. (2)

For Hermitian vector bundles E on Y, Gillet and Soulé defined arithmetic Chern
classes ¢, (E) € C/fIP(Y)Q.

By “product of Chern classes,” we shall understand in this article any product of
at least two equal or nonequal Chern classes of degree greater than O of a given vector
bundle.

Lemma 3.1. Let

oo
a = Z a;cj + products of Chern classes
Jj=0

denote an arithmetic characteristic class withaj; € Qanda; # 0 for Jj > 0. Assume
that for a vector bundle F on an arithmetic varlety Y, we have ¢>(F) =m+a(B),
where B is a differential form on Y (C) with 83/3 =0andm € CHO(Y)Q. Then

Zaj?j(ﬁ) =m+a(p).

j=0

Proof. We use induction. For the term in CHC (Y)(, the formula is clear. Assume now

for k € Ny that
k k _
Y aici(Fy=m+Y ap)l.
j=0 Jj=0
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Thenc; (F) € a(ker 39) for 1 < j < k, thus products of these ¢;js vanish by [SABK,
Remark II1.2.3.1]. Thus the term of degree k + 1 of gb(F) equals Akt 1Cha1 (F) O

We define arithmetic Pontrjagin classes pj € CH2/ of arithmetic vector bundles

by the relation
> (=P = (sz ><Z< 27T,
j=0

Thus,

J
Pi(F) = (=1 (FOF*) =T(F) +2) (=11 (F)¢;1(F)
=1

for an arithmetic vector bundle F (compare [MiS, Section 15]). Similarly to the
construction of Chern classes via the elementary symmetric polynomials, the Pon-
trjagin classes can be constructed using the elementary symmetric polynomials in
the squares of the variables. Thus many formulae for Chern classes have an easily
deduced analogue for Pontrjagin classes. In particular, Lemma 3.1 holds with Chern
classes replaced by Pontrjagin classes.

Now let Y, B be u,-equivariant arithmetic varieties over some fixed arithmetic
ring D andlet 7 : ¥ — B be amap over D, which is flat, u,-projective, and smooth
over the complex numbers. Fix a u, (C)-invariant Kéhler metric on Y (C). We recall
[KR1, Definition 4.1] extendlrlg the definition of Gillet—Soulé’s arithmetic Ko-theory
to the equivariant setting: Let ch (8 ) be an equivariant Bott—Chern secondary class as
introduced in [KR1, Theorem 3 4]. The arithmetic equivariant Grothendieck group
K Hn (Y) of Y is the sum of the abelian group 2(Y,,) and the free abelian group
generated by the equivariant isometry classes of Hermitian vector bundles, together
with the following relations: For every short exact sequence £: 0 — E’ - E —
E” — 0Oand any equivariant metricson E, E’, ’,and E”, we have the relation ch (6’ ) =
E —E+E"in K" (Y). ‘We remark that KM (Y) has a natural ring structure. We
denote the canonical map Q((Y w) = K K Hn (Y) by a; the canonical trivial Hermitian
line bundle O shall often be denoted by 1.

If E is a w-acyclic (meaning that R¥7, E = 0if k > 0) u,-equivariant Hermitian
bundle on Y, let 77, E be the direct image sheaf (which is locally free), endowed with
its natural equivariant structure and L,-metric. Consider the rule which associates
the elerrlent 7. E — T, (m, E) of K g "(B) to every m-acyclic equivariant Hermitian
bundle E and the element

/ Tdg(T7)n € A(B,,)
Y(C)g/B(C),

to every n € Q[(Y ). This rule induces a group homomorphism m: K K" o' (Y) —
K“” (B) [KR2, Proposmon 3.1].

Let R be a ring as appearing in the statement of [KR1, Theorem 4.4] (in the
cases considered in this paper, we can choose R = D[1/2]) and let R(u,) be the
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Grothendieck group of finitely generated projective p,-comodules. Let A_(E) de-
note the alternating sum Zk(—l)kAkE of a vector bundle E. Consider the zeta
function L(w, s) = Z,fi] kSak forRes > 1, || = 1. Tt has a meromorphic contin-
uation to s € C, which shall be denoted by L, too. Then L(—1, s) = Q= — )¢ (s)
and the function

> (oL o) xf
R(a.x):=)" a(a,—k)+L(a,—k)Zz—j o
k=0 j=1

defines the Bismutequivariant R-class of an equivariant holomorphic hermitian vector
bundle £ with Ex, = ZC E; as

_ - QE: - QE:
Ry(E) := Z <TrR <;, —%> —TrR (1/;, %» .

ces!

The following result was stated as a conjecture in [KR2, Conjecture 3.2].
Conjecture 3.2. Set

A_1(T*N% /B,,)

)\‘_l (NT// Yll-n )

() = (1 — a(Ry(Nyy,,)) + a(Ry(* Nig/p,, )

Then the following diagram commutes:

7 Mn td(ﬂ)p, 7 Mn
Ky" (V) = K§"(Yy,) ®rgun R

Ln [

’

%2 n p %2 n
Kg (B) - K(l)L (Blin) ®R(Mn) R’
where o’ denotes the restriction to the fixed-point subscheme.

As this result is not the main aim of this paper, we only outline the proof; details
shall appear elsewhere.

Sketch of the proof. As explained in [KR2, Conjecture 3.2] the proof of the main
statement of [KR1] was already written with this general result in mind and it holds
without any major change for this situation, when using the generalization of Bismut’s
equivariant immersion formula for the holomorphic torsion [KR1, Theorem 3.11] to
torsion forms. The latter has now been established by Bismut and Ma [BM]. The
proof in [KR1] holds when using [BM] instead of [KR1, Theorem 3.11] and [KR2,
Proposition 3.1] instead of [KR1, Proposition 4.3].

Also one has to replace in Sections 5, 6.1, and 6.2 the integrals over Y, X, etc.
by integrals over Y,/ B, X4/ B,, while replacing the maps occurring there by corre-
sponding relative versions. As direct images can occur as non-locally-free coherent
sheaves, one has to consider at some steps suitable resolutions of vector bundles such
that the higher direct images of the vector bundles in this resolution are locally free
as, e.g., on [Fal, p. 74]. O
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Let f: B — SpecD denote a quasi-projective arithmetic variety and let
m:Y — B denote a principally polarized abelian scheme of relative dimension
d. For simplicity, we assume that the volume of the fibers over C is scaled to equal 1;
it would be 2¢ for the metric induced from the polarization. We shall explain the effect
of rescaling the metric later (after Theorem 5.1). Set E := (R'm,O, || - l2)*. This
bundle E = Lie(Y/B)* is the Hodge bundle. Then by [BBM, Proposition 2.5.2], the
full direct image of O under 7 is given by R*m,, O = A®E* and the relative tangent
bundle is given by T = 7*E*. By similarly representing the cohomology of the
fibers Y /B by translation-invariant differential forms, one shows that these isomor-
phisms induce isometries if and only if the volume of the fibers equals 1 (e.g., as in
[K1, Lemma 3.0]); thus

Rem,O = A°E* 3)
and
Tn =n*E*. )
See also [FC, Theorem VI.1.1], where these properties are extended to toroidal com-
pactifications. For an action of G = u, on Y Conjecture 3.2 combined with the
arithmetic Grothendieck—Riemann—Roch theorem in all degrees for 7 states (anal-
ogous to [KR1, Section 7.4]).

Theorem 3.3.
chg (R*7,0) — a(Ty(nic, 0)) = 28 (Tdg(Tr)(1 — a(Ry(Tc)))).

Asin [KR1], G = u, is used as the index for equivariant arithmetic classes, while
the chosen associated automorphism g over the points at infinity is used for objects
defined there. We shall mainly consider the case where 7 is actually a smooth
covering, Riemannian over C; thus the statement of the arithmetic Grothendieck—
Riemann—Roch is, in fact, very simple in this case. We obtain the equation

chg (A*E") — a(Ty (e, 0)) = 7 (Tdo(x*E*) (1 — a(Ry(*EE))).
Using the equation .
= e Cop(EY)
hg(A*E*) = ———_~
chg( ) Tdg (E)

this simplifies to

Cop(EY)

Tag(E) a(Ty(c. 0)) = Tdg (EM)(1 — a(Rg(ER)) ™1

or, using that a(ker 89) is an ideal of square zero,

Cop(E9)(1 + a(Rg(EL))) — a(Ty (e, 0) Tdg(Ec)) = Tdg(E) Tdg (E")mln*1
%)
Remarks. 1.1f G acts fiberwise with isolated fixed /Bomts (over C), by Theorem 2.1

the left-hand side of equation (5) is an element of CH (B)Q,) + alker 39). Set for
an equivariant bundle F in analogy to the classical A-class
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(6)

A, [0]
Ag(F) :=Tdg(F)exp (— c1l(F) +§hg(F) ) ’

and let A denote the corresponding arithmetic class (an unfortunate clash of no-
tations); in particular A\g(F*) = (—l)rk(F/FG)Zg(F). For isolated fixed points, by
comparing the components in degree 0 in equation (5), one obtains

71 = (=) (A, (E)) 72,

and thus by Theorem 2.1,

= __ 2
Ag(E) ) ' o

1+ a(Ry(EL) = | =—=
EAS©® ( Ag (E )[0]
(compare [KR4, Proposition 5.1]). Both sides can be regarded as products over the
occurring eigenvalues of g of characteristic classes of the corresponding bundles E .
One can wonder whether the equality holds for the single factors, similar to [KR4].
Related work is announced by Maillot and Roessler in [MR].
2.1f G (C) does not act with isolated fixed points, then the right-hand side vanishes,
Cop(E G vanishes and we find

Ciop(EY) = a(Ty (e, 0) Tdg (EQ)). (8)
As was mentioned in [K1, equation (7.8)], one finds, in particular,

Ca(E) = a(y). &)

For this statement, we need Gillet—Soulé’s arithmetic Grothendieck—Riemann—Roch
[GS8] in all degrees, while the above statements use this theorem only in degree 0.
The full result was stated in [S, Section 4]; a proof of an analogue statement is given
in [R2, Section 8]. Another proof was sketched in [Fal] using a possibly different
direct image. If one wants to avoid the use of this strong result, one can at least show
the existence of some (d — 1,d — 1) differential form y’ with ¢;(E) = a(y’) the
following way: The analogue proof of equation (9) in the classical algebraic Chow
ring CH*(B) using the classical Riemann-Roch-Grothendieck Theorem shows the
vanishing of ¢y (E). Thus by the exact sequence

qd-14-1(gy _“, CAY(B) => CHY(B) —> 0
we see that (9) holds with some form y’.

Now we restrict ourself to the action of the automorphism (—1). We need to
assume that this automorphism corresponds to a j,-action. This condition can always
be satisfied by changing the base Spec D to Spec D[%] (see [KR1, Introduction] or
[KR4, Section 2]).
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Theorem 3.4. Let w: Y — B denote a principally polarized abelian scheme of
relative dimension d over an arithmetic variety B. Set E := (R'7,0, |- l;2)*. Then
the Pontrjagin classes of E are given by

2 log 2
- 4k

Pe(E) = (=1 (2k — Dla(ch(E)*~1),

1
J

201 - 2k) 2k) 4
-2k Zl

(10)
The log 2-term actually vanishes in the arithmetic Chow ring over Spec D[1/2].

Remark. The occurrence of R-class-like terms in Theorem 3.4 makes it very unlikely
that there is an easy proof of this result which does not use arithmetic Riemann—Roch
Theorems. This is in sharp contrast to the classical case over C, where the analogues
formulae are a trivial topological result: The underlying real vector bundle of E¢ is
flat, as the period lattice determines a flat structure. Thus the topological Pontrjagin
classes p;(Ec) vanish.

Proof. Let Q(z) denote the power series in z given by the Taylor expansion of

1

41+ )1+ =
coshzg

at z = 0. Let @ denote the associated multiplicative arithmetic characteristic class.
Thus by definition for G = u»,

44Tdg(E) Tdg (E*) = O(E)

and Q can be represented by Pontrjagin classes, as the power series Q is even. Now
we can apply Lemma 3.1 for Pontrjagin classes to equation (5) of equation (7). By
a formula by Cauchy [Hi3, Section 1, equation (10)], the summand of Q consisting
only of single Pontrjagin classes is given by taking the Taylor series in z at z = 0 of

oot E) =z

1+—t h— 11
Q(\/_)d Q(x/_) coshzg 2 (a

and replacing every power z/ by 7;j- The bundle EO is trivial, hence Crop (EC) = 1.
Thus by equation (5) with 78G*1 = 44, we obtain

)k+1

> (@4k—1 =
Z %C(l —2k)pi(E) = —a(Rg(E¢)).
k=1 :

The function R (o, x) by which the Bismut equivariant R-class is constructed satisfies
for « = —1 the relation

00 2k—1
R-1Lx)—R(-1,—x) =) | @& - |20/ =2k +¢(1=2k) ) %

k=1 j=1
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2k—1
—2log2-4k¢(1—2k) | - . 12
g ¢( ) kD! (12)
Thus we finally obtain the desired result. O
The first Pontrjagin classes are given by
p1 = —20+73, P2 = 264 —203¢1 + 33, P3 = —206+2C5C1 — 2042+ 5.

In general, py = (—1)*2¢x+products of Chern classes. Thus knowing the Pontrjagin
classes allows us to express the Chern classes of even degree by the Chern classes of
odd degree.

Corollary 3.5. The Chern—Weil form representing the total Pontrjagin class vanishes
(except in degree 0):

cCEDEH =1, ie, det(l1+ Q5 =1

for the curvature QF of the Hodge bundle. The Pontrjagin classes in the algebraic
Chow ring CH(B) vanish:
cC(E®E")=1.

Proof. T/klese facts follow from applying the forget-functors w: éf-l(B) — A(B(C))
and ¢: CH(B) — CH(B). O

The first fact can also be deduced by “linear algebra,” e.g., using the Mathai—
Quillen calculus, but it is not that easy. The second statement was obtained in [G,
Theorem 2.5] using the nonequivariant Grothendieck—Riemann—Roch theorem and
the geometry of theta divisors.

4 A K-theoretical proof

The Pontrjagin classes form one set of generators of the algebra of even classes;
another important set of generators is given by (2k)! times the Chern character in
even degrees 2k. We give the value of these classes below. Let U denote the additive
characteristic class associated to the power series

0 2k—1

. (1 —2k) 1 log2 X
U(x) -—]; (1 —2k) +j2=;2j 1—4-%) Qk—1)!

2k—1

and let d again denote the relative dimension of the abelian scheme.
Corollary 4.1. The part of Efl(F) in CHeven (B)q is given by the formula

ch(E)leverl — g4 — a(U(E)).



248 Kai Kohler

Proof. The part of CTI(F) of even degree equals
~ 1] ~ — _—
ch(E)*" =~ ch(E ® E"),

thus it can be expressed by Pontrjagin classes. More precisely, by Newton’s formulae
[Hi3, Section 10.1],

(2k)1ch? — 5y - 2k — 2)1ch® 2 oo (—F 1521 b = (— 1)k

for k € N. As products of the arithmetic Pontrjagin classes vanish in CH(Y)@ by
Lemma 3.4, we thus observe that the part of ch(E ) in CHC"en(Y )@ is given by

~ DB (E)
[even]
ch(E) =d+ E 20k

Thus the result follows from Lemma 3.4. O

As Harry Tamvakis pointed out to the author, a similar argument is used in [T,
Section 2] and its predecessors.

Now we show how to deduce Corollary 4.1 (and thus the equivalent Theorem 3.4)
using only Conjecture 3.2 without combining it with the arithmetic Grothendieck—
Riemann—Roch Theorem as in Theorem 3.3. Of course the structure of the proof shall
not be too different as the Grothendieck—Riemann—Roch Theorem was very simple
in this case; but the following proof is quite instructive as it provides a different point
of view on the resulting characteristic classes. We shall use the A-ring structure on K
constructed in [R1].

Conjecture 3.2 applied to the abelian scheme 7 : ¥ — B provides the formula

—_ 1— R, (N
200 = 7l a(Rg( Y/Y,l,,))
’ l(Ny/yM )

In our situation, Ny,y,, = T . Combining this with the fundamental equations (3),
(4) and Theorem 2.1 yields
« 1 —a(Rg(E™))

AGEf =glPpt———8
’ A E

and using the projection formula, we find
A E @ E* =491 — a(Ry(E™))).

Let E’ denote the vector bundle E equipped with the trivial z2-action. Now one can
deduce from this that E’ @ E’* itself has the form 2d + a(n) with a d9-closed form
n: Apply the Chern character to both sides. Then use equation (11) and Lemma 3.1
to deduce by induction that all Chern classes of E/ @ E’* are in a(ker 99). Thus
using the fact that the arithmetic Chern character is an isomorphism up to torsion
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[GS3, Theorem 7.3.4] E@®E~ = 2d + a(n) with a(n) having even degrees, and
EQE*=Q2d+a(m)®(—1)in K“z(B)Q One could use the y-filtration instead
to deduce this result; it would be interesting to find a proof which does not use any
filtration. -

For a 8 € AP-P(B), the action of the A-operators can be determined as follows:
The action of the kth Adams operator is given by ¥*a(8) = kP*'a(B) [GS3, p. 235].
Then with ¥, := >, o t*¥%, & := 3. t*A* the Adams operators are related to
the A-operators via -

Yr(x) = —f% log A—;(x)
forx € I?“"_(B). As Y (a(B)) = Li_1—p(t)a(B) with the polylogarithm Li, we find,
for B € ker 00,
ri(a(B)) =1—Li_p(=0)a(p)
or Aka(ﬂ) = —(—l)kk”a(,B) (Li,p(ﬁ) is actually a polynomial in ¢; in this

context this can be regarded as a relation coming from the y-filtration). In par-

ticular, A_ja(B) = 1 — ¢(=p)a(B), and A_1(a(B) ® (=1)) = ra(B) ® 1 =
(1+ (1 = 2PN (=p)a(B)) ® 1 in KH2 ®r,, C.
By comparing

hoi@m) ® (=) =a (Z ¢l =2k (1 - 4k)77[2k_”) ®1=a(R(E*) ® 1,

k>0

we finally derive a(n) = a(—2U (E)) and thus
E' @ E* =2d —2a(U(E)).

In other words, the Hermitian vector bundle E’ & E™ equals the 2d-dimensional
trivial bundle plus the class of differential forms given by U(E) in K*? ® Ruy C.
From this Corollary 4.1 follows.

5 A Hirzebruch proportionality principle and other applications

The following formula can be used to express the height of complete subvarieties of
codimension d of the moduli space of abelian varieties as an integral over differential
forms.

Theorem 5.1. There is a real number ry € R and a Chern—Weil form ¢ (E) on Bc of
degree (d — 1)(d — 2)/2 such that

N+dd—-1)/2 dd—1)/2 —
M ERE) = atry - AUVHE) + $(Ey).

The form ¢ (E) is actually a polynomial with integral coefficients in the Chern
forms of E. See Corollary 5.6 for a formula for r4.

Proof. Consider the graded ring Ry given by Q[u1, ..., ugy] divided by the relations



250 Kai Kohler
d—1 d—1
1+Zuj l—i—Z(—l)fuj =1 and ug=0, (13)
j=1 j=1

where u ; shall have degree j (1 < j < d). This ring is finite dimensional as a vector
space over Q with basis

wj--uj,, 1<j<---<jn<d 1=m<d.

In particular, any element of R, has degree < @. As the relation (13) is verified
foruj =¢; (E) up to multiples of the Pontrjagin classes and ¢ (E), any polynomial
in the ¢j (E)s can be expressed in terms of the p; (E)s and ¢4 (E) if the corresponding
polynomial in the u ;s vanishes in Ry.

Thus we can express ’c\ﬁd(d_l)/ 2 (E) as the image under a of a topological char-
acteristic class of degree d(d — 1)/2 plus y times a Chern—Weil form of degree
(d — 1)(d — 2)/2. As any element of degree d(d — 1)/2 in Ry is proportional to

uf(d_l)/ 2, the theorem follows. O
Any other arithmetic characteristic class of E vanishing in Ry can be expressed
in a similar way.
Example 5.2. We shall compute E\}+d(dj)/ 2(F) explicitly for small d. Define topo-
logical cohomology classes r; by p;(E) = a(r;) via Theorem 3.4. For d = 1,
clearly .
Ci(E) = a(y).

In the case d = 2, we find by the formula for p1,
_ 8
EE)=a(r1+2y)=a [(—1 + 3 log2 + 244/(—1)) c1(E) + 24 .

Combining the formulae for the first two Pontrjagin classes, we get

1o 1,
§C1P1+Zl’1'

Thus for d = 3 we find, using c3(E) = 0 and clz(E) = 2¢3(E),

- . 1
P2 = 2C4 _2C3C1 + ZE? -

CHE) = aQcH(E)ry +4ry + 8c1(E)y)

17 48 ’ / 3 §7
=a (—? + ?10g2+48g (—1) — 480¢ (—3)) ci(E) +8ci(E)y |.

For d = 4 one obtains
E‘\Z(E) = a[64cr(E)c3(E)r1 — (8ci1(E)cr(E) + 32¢3(E))ro + 64ci(E)rs
+16(7c1(E)ca(E) — 4c3(E))y].

As in this case ch(E)!!! = ¢|(E), 3Ich(E)B! = —c}(E)/2 + 3c3(E), and
5!ch(E)! = ¢3(E)/16, we find
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_ 1 152
(E) = %(—% + % log2 + 96¢"(—1) — 600¢' (—3) + 2016g/(—5)>c?(E)

+16(7¢1(E)c2(E) — 4C3(F)))/i| )

For d = 5 one gets

_ 104611 113632
A E)=a [2816ycz(361C3 —8ca) +¢i° (— + 10g(2)

2520 2295

—3280¢'(—7) 423527’ (—5) — 760¢7(—3) + 176;“/(—1))] ,
and ford =6

C%E)=a |:425984)/(11C1€2C3C4 — 91cacses) + 40cicacs)

3684242 3321026752 36096
15 /
- log(2) + 22 ¢ (=9
“ ( 15045 T 37303605 (08D T T3¢9
526080 395136 136320
- -7 _5)— -3
143 =N+ 43 (=35 143 ¢'(=3)

264,
+TC (— )):|

Remark. We shall shortly describe the effect of rescaling the metric for the charac-
teristic classes described above. By the multiplicativity of the Chern character and
using ch(O, «| - |2) =1 —a(log@), ch(E) changes by

loga - a(ch(E))

when multiplying the metric on E* by a constant « GAR+ (or with a function « €
C>®(B(C), RT)). Thus we observe that in our case ch(E)[°d js invariant under
rescaling on E*, and we get an additional term

log a - a(ch(E)[°dd])

on the right-hand side in Corollary 4.1, when the volume of the fibers equals a?

instead of 1. Thus the right-hand side of Theorem 3.4 gets an additional term
— 1)kt
(=D 92 | (ch(E)k-11y,
22k — 1!

Similarly, o
ca(E) = a(y) +loga - a(cq—1(E))

for the rescaled metric. In Theorem 5.1, we obtain an additional

dd-1)+2  au-
loga - a <% (i 1)/2(E)>



252 Kai Kohler

on the right-hand side, and this shows

did—-1)+ ch(d—l)/Z
—

¢(E)cq—1(E) = 7

(E). (14)
Alternatively, one can show the same formulae by investigating directly the Bott—
Chern secondary class of Rz, O for the metric change.

Assume that the base space Spec D equals Spec Ok [%] for a number field K. We
consider the pushforward map

(TCTg: CH(B) — CH' <Spec (OK [%}))
— CH! <Spec (Z BD) ~R/(Qlog?2),

where the last identification contains the traditional factor %

As Keel and Sadun [KS] have shown by proving a conjecture by Oort, the moduli
space of principally polarized complex abelian varieties does not have any projective
subvarieties of codimension d, if d > 3. Thus the following two corollaries have a
nonempty content only for d = 2. Still it is likely that they serve as models for similar
results for nonprojective subvarieties in an extended Arakelov geometry in the spirit
of [BKK]. For that reason, we state them together with the short proof.

Using the definition

1 Al +dim B
h(B) := de “(E|p)
-Ql gc |
of the global height (thus defined modulo rational multiples of log 2 in this case) of
a projective arithmetic variety, we find the following.

Corollary 5.3. If dim B¢ = d(d D and B is projective, then the (global) height of
B with respect to det E is given by

hB) =" dea B 4+ E
(B) =" deg +2/BC¢( .

with deg denoting the algebraic degree.

Leta(E, A, wE) € /\* T* B be a differential form associated to bundles of prin-
cipally polarized abelian varieties (E, A, o) (with Hodge bundle E, lattice A and
polarization form %) in a functorial way: If f: B” — B is a holomorphic map
and (f*E, f*A, f*o%) the induced bundle over B”, then a(f*E, f*A, f*wf) =
f*a(E, A, ®¥); in other words, « shall be a modular form. Choose an open cover
(U;) of B such that the bundle trivializes over U;. To define the Hecke operator 7' (p)
for p prime, associated to the group Sp(n, Z), consider on U; the set L(p) of all
maximal sublattices A’ C Ay, such that o takes values in pZ on A’. The sums
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E

w
T(p)a(E, A, ")y, = Y a(E,A/, —)
AeLl(p) p

patch together to a globally defined differential form on B. Note that the set £(p) may
be identified with the set of all maximal isotropic subspaces (Lagrangians) A’/ pA of
the symplectic vector space (A/pA, o) over F -

Let B’ be a disjoint union of abelian schemes with one connected component for
each A’ € L(p) such that the Hodge bundle over each connected component over
Spec C is isomorphic to the Hodge bundle E(C) over B(C), but the period lattice and
polarization form are given by A’ and 0% /p.

Corollary 5.4. For B as in Corollary 5.3, set h'(B) := m The height
of B and B’ are related by
WB) = (B + L= L logr
pl+1 2

Proof. For this proof we need that y is indeed the form determined by the arithmetic
Riemann—Roch Theorem in all degrees (compare equation (9)). The action of Hecke
operators on y was investigated in [K1, Section 7]. In particular, it was shown that

T(p)y = ]_[(pf +1) (V +

-1
log p - ca— 1(E)>
j=1

pl+1

The action of Hecke operators commutes with multiplication by a characteristic class,
as the latter are independent of the period lattice in E. Thus by Corollary 5.3 the height
of B’ is given by

h(B’ )
ﬂ( +0(% deg o+ 5 [ o®y <L PR [ Eyey (k)
— e Cd— .
P g bc Y d +1 2 Be d—1
Combining this with equation (14) gives the result. O

Similarly, one obtains a formula for the action of any other Hecke operator using
the explicit description of its action on y in [K1, equation (7.4)].

The choice of B’ is modeled after the action of the Hecke operator T (p) on
the intersection cohomology on moduli of abelian varieties, as described in [FC,
Chapter VIL.3], where B should be regarded as a subvariety of the moduli space and
B’ as representing its image under T (p) in the intersection cohomology. This action
is only defined over Spec Z[1/p] though. As CH!(Spec Z[1/p]) = R/(Q - log p),
the additional term in the above formula would disappear for this base.

Now we are going to formulate an Arakelov version of Hirzebruch’s proportion-
ality principle. In [Hi2, p. 773] it is stated as follows: Let G/K be a noncompact
irreducible Hermitian symmetric space with compact dual G’/K and let ' C G be
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a cocompact subgroup such that '\G/K is a smooth manifold. Then there is a ring
monomorphism
h: H*(G'/K,Q) — H*(I'\G/K, Q)

such that 2(c(TG'/K)) = ¢(TG/K) (and similar for other bundles F’, F corre-
sponding to K-representation V', V dual to each other). This implies in particular
that Chern numbers on G’/K and '\G/K are proportional [Hil, p. 345]. Now in
our case think for the moment about B as the moduli space of principally polarized
abelian varieties of dimension d. Its projective dual is the Lagrangian Grassman-
nian L, over Spec Z parametrizing maximal isotropic subspaces in symplectic vector
spaces of dimension 2d over any field, L;(C) = Sp(d)/ U(d). But as the moduli
space is a noncompact quotient, the proportionality principle must be altered slightly
by considering Chow rings modulo certain ideals corresponding to boundary compo-
nents in a suitable compactification. For that reason, we consider the Arakelov Chow
group CH* (Lg—1) with respect to the canonical Kéhler metric on L4_1, which is the
quotient of CH* (Zd) modulo the ideal (4(S), a(cy (E))) with S being the tautolog-
ical bundle on L4, and we map it to CI\-I*(B) /(a(y)). Here Ly_; shall be equipped
with the canonical symmetric metric. For the Hermitian symmetric space L;—_1, the
Arakelov Chow ring is a subring of the arithmetic Chow ring éf{(Ld_ 1) [GS2,5.1.5]
such that the quotient abelian group depends only on Ly_1(C). Instead of dealing
with the moduli space, we continue to work with a general regular base B.

The Arakelov Chow ring CH* (Lz—1) has been investigated by Tamvakis in [T].
Consider the graded commutative ring

Zluy, ... . ug—11®Rluy, ..., ug—1]
where the ring structure is such that R[uy, ..., u4—_1] is an ideal of square zero. Let

R, denote the quotient of this ring by the relations

d—1 d—1
L+ uj | |1+ ) (=Diuj | =1
j=1 j=1

and
d—1 d—1
(1 + Zﬁk> (1 + Z(—l)’%)
k=1 k=1
d-1 (%1,
=1-> | D | @ —Dreh Uy, ... ug-1), (15)
k=1 \ j=1
where ch(uq, ..., ug—1) denotes the Chern character polynomial in the Chern classes,
takenofuy, ..., ug—1. Then by [T, Theorem 1], there is a ring isomorphism @ : ﬁd —
CH*(Lg_;) with ® (@) = ¢ (S*) and @ (ur) = a(ck(S*)). The Chern character term
in (15), which strictly speaking should be written as (0, chm‘*”(ul, Lo, Ug—1)), 18

thus mapped to _ _
a(ch®*~ (e (§%), ..., ca_1(5%))).
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Theorem 5.5. There is a ring homomorphism

h: CH*(L4—1)g —> CH*(B)g/(a(y))

with
L1 -2k log2
o~ - _ _ [2k—1]
h(@(S)) = ¢(E) (1+a<k§:l(§(l_2k) 4 p)k = Dich (E)))
and

h(a(e(8))) = a(c(E)).
Note that S* and E are ample. One could as well map a(c(S*)) to a(c(E)), but

the correction factor for the arithmetic characteristic classes would have additional
harmonic number terms.

Remark. For d < 6 one can, in fact, construct such a ring homomorphism which
preserves degrees. Still this seems to be a very unnatural thing to do. This is thus in
remarkable contrast to the classical Hirzebruch proportionality principle.

Proof. When writing relation (15) as

c(S)a(S*) =1 +a(er)
and the relation in Theorem 3.4 as

CEYAE") =1+a(e),

we see that a ring homomorphism 7% is given by

- 14+h — 1 1 —
h(©k($) = | %((:;)))?k@) = (1 + 5htate)) — 56!(62)) k(E)

(where h onim(a) is defined as in the theorem). Here the factor 1+ %h (a(er))— %a (€2)
has even degree, and thus

- 1 +h A_
@) = %(izl)”mm

which provides the compatibility with the cited relations. O

Remarks. 1. Note that this proof does not make any use of the remarkable fact that
h(a(egk])) and a(eék]) are proportional forms for any degree k.

2. It would be favorable to have a more direct proof of Theorem 5.5, which does
not use the description of the tautological subring. The R-class-like terms suggest
that one has to use an arithmetic Riemann—Roch Theorem somewhere in the proof;
one could wonder whether one could obtain the description of CH*(Ly_1) by a
method similar to Section 3. Also, one might wonder whether the statement holds for
other symmetric spaces. Our construction relies on the existence of a universal proper
bundle with a fiberwise acting nontrivial automorphism; thus it shall not extend easily
to other cases.
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In particular, Tamvakis’ height formula [T, Theorem 3] provides a combinatorial
formula for the real number r4 occurring in Theorem 5.1. Replace each term Hox—
occurring in [T, Theorem 3] by

L 20'(1-2k) 2"21 2 log 2
c(1 - 2k)

and divide the resulting value by half of the degree of L;_;. Using Hirzebruch’s

formula
dd—1)/2)!

degLy—1 =
4712k — 1t

for the degree of Ly_1 (see [Hil, p. 364]) and the Z_ -valued function g[“’b]ﬂl*1 from
[T] counting involved combinatorial diagrams, we obtain the following.

Corollary 5.6. The real number rq occurring in Theorem 5.1 is given by

2IHE=DE=D/2 T4~ (o) — 1)1

rq =
d(d—1)/2)!

”’i 20(=2k — 1) ZkillJr 2log2
' T A ook — 1) T 4~k
el W Ve IR
min{k,d—2—k}

Z (_1)b2—5b,kg[k—b,b]d—1 ,

b=0

where dp i is Kronecker’s 6.

One might wonder whether there is a “topological” formula for the height of
locally symmetric spaces similar to [KK, Theorem 8.1]. Comparing the fixed-point
height formula [KK, Lemma 8.3] with the Schubert calculus expression [T, Theo-
rem 3] for the height of Lagrangian Grassmannians, one finds

1
Z [lic;(eii +€;))

€1,...,€4—1€{%1}

d(d—1) d(d 1 dd=1) _ . .\ 2
ZZ(ZEVU) (ZGUV) 2 el (Zevv_(z_éij(eil +6/-]))
e=1i<j 20l €0

d-2 [2k-1 min{k,d—2—k}

- 1 b=k glk—b,bla
kgo ;j Y (—nhahig '

b=0

In [G, Theorem 2.5] van der Geer shows that R; embeds into the (classical) Chow
ring CH* (M) @ of the moduli stack M, of principally polarized abelian varieties.
Using this result, one finds the following.
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Lemma 5.7. Let B be a regular finite covering of the moduli space M g of principally
polarized abelian varieties of dimension d. Then for any nonvanishing polynomial
expression p(uy, ..., uq—1) in Ry,

h(pECi(S), ..., Ca-1(5))) ¢ ima.

In particular, h is nontrivial in all degrees. Furthermore, h is injective iff
a(e(EY!=D12) 3£ 0 in CHY=D2H (B) g/ (a(y))-

The need for a regular covering in our context is an unfortunate consequence
of the Arakelov geometry of stacks not yet being fully constructed. Eventually this
problem might get remedied. Until then, one can resort to base changes to ensure the
existence of regular covers as, e.g., the moduli space of p.p. abelian varieties with
level-n structure for n > 3 over Spec Z[1/n, ¢*™/"] [FC, Chapter IV.6.2¢].

Proof. Consider the canonical map ¢ : @*(B)@/(a(y)) — CH*(B)q. Then
t(R(pE1(S), ..., Ca-1())) = p(c1(E), ..., ca1(E)),

and the latter is nonvanishing according to [G, Theorem 1.5]. This proves the first
assertion.

If a(c (E)?@=D/2) £ 0 in CHY@=D/2+1(B)q /(a(y)), then by the same induc-
tion argument as in the proof of [G, Theorem 2.5] R; embeds in a(ker 99). Finally,
by [T, Theorem 2] any element z of I’?\d can be written in a unique way as a linear
combination of

Ujy - Uj

m

and wuj ---uj, with 1<j<---<jy<d, 1=<m<d.

Thusif z ¢ im a, then h(z) 7# 0 follows by van der Geer’s result, and if z € im a \ {0},
then i1(z) # O follows by embedding R; ® R. O

Using the exact sequence (2), the condition in the Lemma is that the cohomology
class ¢ (E)?@=1/2 should not be in the image of the Beilinson regulator.

Finally, by comparing Theorem 5.1 with Kiihn’s result [Kii, Theorem 6.1] (see
also Bost [Bo]), we conjecture that the analogue of Theorem 5.5 holds in a yet to be
developed Arakelov intersection theory with logarithmic singularities, extending the
methods of [Kii, BKK], as described in [MR]. In other words, there should be a ring
homomorphism to the Chow ring of the moduli space of abelian varieties

h: CH*(La)g — CH*(Ma)o
extending the one in Theorem 5.5, and y should provide the Green current corre-
sponding to ¢4 (E). This would imply the following.

Conjecture 5.8. For an Arakelov intersection theory with logarithmic singularities,
extending the methods of [Kii], the height of a moduli space M  over Spec Z of
principally polarized abelian varieties of relative dimension d is given by

h(Ma) = "% deg(Ma).

The factor 1/2 is caused by the degree map in Arakelov geometry.
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6 The Fourier expansion of the Arakelov Euler class of the Hodge
bundle

In this section, we shall further investigate the differential form y which played
a prominent role in the preceding results. We adapt most notations from [K1]. In
particular, we use as the base space the Siegel upper half-space

={Z=X+4iY €End(CH |'Z=2,Y > 0},

which is the universal covering of the moduli space of principally polarized abelian
varieties. Due to an unavoidable clash of notations, we are forced here to use the
letters Z and Y again. Choose the trivial C¢-bundle over $), as the holomorphic
vector bundle E and define the lattice A over a point Z € $4 as

Az = (Z,id)Z*",
where (Z, id) denotes a C4%2d _matrix. The polarization defines a Kihler form on E;
the associated metric is given by

| Zr +s||‘2z ="Zr+s)Y Y (Zr+s) forrseZ"

(One might scale the metric by a constant factor 1/2 to satisfy the condition vol(Z) =
1. The torsion form is invariant under this scaling.) The crucial ingredient in the
construction of y in [K1] was a series ,3, depending on real parameters ¢, b € R, such
that the Epstein zeta function Z(s) with y = Z’(0) can be constructed as the Mellin
transform of the b-linear term of ;. More precisely,

Z(s) := ! Oots_l d B: + cn1(E) | dt
§) = ——— — Cn—
I'(s) db p=0 el

which also leads to other expressions for y in terms of 8. We derive the Fourier
expansion for y by applying the Poisson summation formula to a lattice of half the
maximal rank in the Epstein zeta function defining the torsion form. This leaves us
with two infinite series which converge at s = 0, and another Epstein zeta function
for a lattice of half the previous rank. By iterating this procedure fg 2d times, one can
actually gain a convergent series expression for y; compare [E, Section 8], where a
similar procedure with 2d steps is described.

Set C := 1y=1(1 — z1-ReQf) and D := Ly~' =L Im QF. Thus 'C = C,
D = —D. Then by [K1, equation (6.0)],

() Bl () )

d
- <_—b> Z exp (—?’(Zr +u)(C + D)(Zr + u)) )

Tt
rueZd
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Now let B be a symmetric integral d x d-matrix. The space b of such matrices

embeds into Sp(d, Z) via
B id B
0id /-

The induced action of B € b on § is given by Z > Z + B. As B; is Sp(d, Z)-
invariant, it thus has a Fourier decomposition on the torus £J/b. Notice that the space
¢ of frequencies does not equal b but is the space

1
¢ = {E(B +'B) | B € gl(d, Z)}
of symmetric matrices integral along the diagonal and half-integral off the diagonal.

Using the Poisson summation formula applied to u € Z¢, we find, for ,3” 7z at
Z=X+1iY,

— d -
B = (_b> 3 exp <—§’(Zr +u)(C + D)(Zr + u))

it rueZd
—b\¢ T

- (_) 3 exp (--f(Xr+u)C(Xr+u)
i rueZd !

T, 2mi,
-7 rYCYr—T rYD(Xr +u)

= (__b>d E ! exp (—m"ﬁC‘lﬁ —2wi'aXr
7T\/; 7 \/detC
r,ueZ
n[ —1 t —1A
s rY(C—DC 'D)Yr —2x'rYDC™ 'u1).

For any symmetric A € R*? and M = %(r w4+ ur), we have (M, A) =
Tr M' A = "r Au. Thus the Fourier coefficient of e 27! (M-X) for M € ¢ equals

b\ 1
2 (Tﬁ) Jdet €
. exp (—mfuc—‘u — ;er(c — DC'DYYr — 2n'rYDc—1u) .
In particular, the occurring frequency matrices M in the Fourier decomposition are
among the matrices in ¢ which have at most two nonzero eigenvalues. Note that
C-DC'D=cd-c'Dc™'D)y=c@d-c 'D)add+ c 'D)
=(C-D)C ' (C+D)="(C+D)C ' (C+D), (16)
and, in particular, for a € RY,
'a(C=DC7'D)y la="a(C+ D) (CxD)(C+D)'a="a(C D) la
(this value does not depend on the choice of %), or

2C—DpCc'Dy '=C+D) '+ -D)N.
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6.1 The coefficients of the nonconstant terms

Proposition 6.1. Two vectors r, u € R? \ {0} are uniquely determined by the matrix
L t
M::z(}“ u+u-r)

up to order and multiplication by a constant.

Proof. Assume first that u and r are not colinear. The two nonvanishing eigenvalues
of M are given by

1
Az = Z((ru) £ [Ir{lull)

with corresponding eigenvectors vy 2 = ci2(||rllu £ |lu|lr) with c;2 € R\ {0}
arbitrary. In fact,

€12
Mv» = T(IIFIIF(u, u) £ lullrir, u) + NIrllulr, u) £ llullulr, r)) = ri2v12.
Now ||v1,2||2 = :l:4ci2||r||||s||)q,2 and thus
vz \/m — il Mu + Mr
lvr,2ll ’ 2\V Nl -l

Without loss of generality, we may assume the sign to be positive; we then have

||r
il + 2T
o fval

and

IIM
llv1 II\/T I 2IIF

Thus all possible sets {u, r} of solutions are given in terms of M by

{{ (n Y g 2llm) ( Vil - M)HCGR’ ”éo}'

In the case r, u colinear, the eigenvalue A, vanishes and the proof remains the same
with this simplification. O

llvrll

Remarks. 1. Note that A; > 0 and Ay < O.

2.There is a simpler formula for » and u up to two possibilities in every coordinate:
Necessarily one diagonal element of M is nonzero, say, M. By solving the system
of quadratic equations 2M1; = rqu; +rju1, one finds up to the scaling constant
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rj =M1j:l:‘/M12j —M11ij.

Alas determining the +-choice in every coordinate is not easy.

3. In our case, the condition r, s € Z4 implies that for every M € c¢ there are
primitive vectors rg, uo € Z¢ and ¢ € Z7 such that all possible sets {r, u} are given
by {{kro, c/k - up}lk € Z, k|c}.

Using the Taylor expansion of (1 — x)~!at x = 0, we find for the term in the
exponential function in B; »s with r = kro, u = cuo/k,

t -1 Ty -1 t -1
—nt'uC u—TrY(C—DC D)YYr —2n'rYDC™ 'u

n2c?

k2 t o k> W) !
_ t A o bl ~ el S
= =g 1'uoYuo — = FOYVo-i-kz;bl + - ;bl +; o (7

where wy, o}, w]" are differential forms of degree (/, /), depending on M but not on
k. Thus B,, m has the form

Bim = ( ) ( <_) al(b)>
= 2 \77) ZEcaremy 2@
2

. _nzcz ‘ _ kzt _7120 ‘ B kzt
- [exp tuoYug — —'roYro) +exp t'roYro — —'ugYuo
k2 t t

kZ

with o (b) being a differential form of degree greater than or equal to |/|, with coeffi-
cients in polynomials in 1/b. In particular, the sum over! is finite. Now fora, b € R™,
o € R the Bessel K-functions provide the formula

o

1 o0 2 [a*°
—/ e~ b=l - = T K(a—s,2vab)
I'(s) Jo INORR

3 (L / * e—ar—b/gs—l—%) —2 ﬁaK(a, 2vab).
ds1s=0 \I'(s) Jo b

We define

and thus

M, Y| :=~"rYr -'uYu,

by Proposition 6.1, we know that this value does not depend on the choice of r and
u. More easily, one can verify this using | M, Y||> + (M, Y)?> = 2Tr MYMY . Also

we set
( ) roYro
ro, up) = .
p "upYug

Hence we find for the derivative at s = 0 of the Mellin transform of ,5,, Mo
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9 ! /OOB 5~ ldr
dsis=0 \[(s) Jo "M

—b\?¢ 1
- 3 Do () e
Z Zaz( )|k| - i i)

keZ.,k|c leZ

d/2—1 d/2—1
5 w2c2 - tugYug N 72c2 - trgYrg
k4 troYrg k* - tugYug
cK(d/2—=1,2\7%|M,Y|?)

YD 2271 ()
— o (D)
! mltd/2|k|d/det C(1 + 8ry=up)

keZ,k|c leZ

(P, u0) ™2+ p(ro, ug)* 1) K(d/2 = 1, 27| M, Y )

Y w (b)z(ncrdﬂ—l(—b)dod(c)
P : Vdet C(1 + 8,y=u,)

(pr0.u0) =" + p(ro, u)* ) K (/2 = 1,27 |M, Y )

with o,,(¢c) = ZkeZﬂk\c k™ being the divisor function. For ¢ = ]_[p prime p'r,
one finds tD)
1— pfm vp
om(c) =c"
n(©) IT —= Pt
p prime

and thus oy, (c) € 1¢™, ¢(m)c™[. The form y is given by the linear term in b in the
above equation, for which |/| <d — 1. Set

n(ro, uo)

= eI (1, ug) =2 eXP(-CP(ro, uo) - 'uo(C~ — ¥ )ug

1
— 27" rgY DC ™ ug — w2cp(ro, uo) ™" - ’r0<Y(C - DC 'Dyy — —Y)ro)
T
_ —d/2 t -1 t -1
= p(ro, Up) exp (—cp(ro, ug) - ugC uy —2nc'roY DC™ "ug
— 22¢p(ro, o)~ - TroY (C — DC’lD)Yro) .

The Bessel K-functions have for |[x| — oo the asymptotics

T, 1
ko= [T (10 (1)

and thus we find for |M, Y| — oo by setting ¢ := 5p(r0, up) in the defining
equation for the oy,
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9 ! /OOB S~ Vdr
asis=o\T(s) Jo M

_ (me)~42(=b)4o4(c)
= /IM. YT et C(1 + 8rp—np)

1
(n(ro, ug) + n(uo, "0))<1 + 0(||M, Y||>>
(13)

For d odd the Bessel K -functions have special values, and one thus finds explicit ex-
pressions for the Fourier coefficients similar to (18). Using the polylogarithm defined
for |g] <1,/ € Rby

oo qk
Lii(q) : ZF’ (19)

we have the equality for m € Z*

Z"”‘(C) = Z"’” 'Lii(g").

c=1

Thus we obtain with

q(ro, ug) := exp(—p(ro, uo) - 'uoC ug — 27" roY DC ' uy
—72p(ro, ug) "' - 'roY(C — DC™'D)Yrg — 2miuoXro)
the following.

Lemma 6.2. When summing the part of the Fourier expansion corresponding to fre-
quency matrices which have the same pair of primitive vectors ro, ug, we obtain, with
Mo := L(ro " uo + uo ' ro),

Ze—2m<cMo,X>i <—1 fooﬁt Mts_ldt>
dsis=0 \['(s) Jo "

cel+t
7P (=b)?p(ro, uo)~ "

- T35 T T+ i)
1
nT Liaz1(q(ro, uo)") + O (—) Liass (g (ro, uo)”))
Z ( Mo, Y| 2
+ this same term with ro, ug exchanged

_d/z(—b)d [e¢)

s d—

= > 1T (000, u0) ™ Liagi (q(ro, uo)™)
VMo, YTTdet C(1 + 8yy=uy) 7 :

1
+ p(r0, u0)"" Liag1 (g (o, r0)")) - (1 +0 (HMO Y||)) '

Here polylogarithms of forms have to be interpreted via the power series in equa-
tion (19).
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6.2 The coefficient of the constant term

For M = 0, we find by applying again the Poisson summation formula to both sums

= —b\? 1 T, _1
Bio= Z (n«[> N Xp(—? rY(C — DC D)Yr) (20)

—b\¢ 1 b\¢ 1
—_— Cc™
+uEXZ:“’ (nﬁ) Jdet C Jamg S uC T - <7tf) JdetC

-y (—_b)d exp(—mt'FY~1(C — DC™'D)~ 1y —17)
B Jdet(C(C — DC-1D))detY

rezd
A b3 b\ 1
+ ) exp(-='aca) - <—) . 1)
ﬁeXZ;(m> p( t ) 7t) /detC

Using (16), we find
det(Y>C(C — DC™'D)) = det(YC + Y D)?

and (by Corollary 3.5)

d

S S L e I
det(nY(C+D))_det< Sy bQ) ;O( by~ 'c;(E),

and thus (21) simplifies to

1
+/det C’

_ b \?
Bro = 01(1) + 02(1) — (—) (22)

Tt

where

01(t) == Z (=b)? det (1 + Lsﬁ) exp(—mt - FY~N(C £ D)7y P,

o 2mib
—b\*¢ T
0>(1) = - (——.“ )
2(1) Z(m) exp (— - 'aca
nezd

Note that the term — ( )d 1 vanlshes under Mellin transformation [K1, Remark

on p. 12]. The b—lmear term of the second summand 6, (¢) in (22) is

1 -1 ¢ lz 1 1 t 16E =D
6 ) exp(—-tuylu) (—ur—'a
20 T =1 XZ;(J”) Xp( P “) (Zm't " ”)
ue

with Mellin transform
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Zy(s)!?!

d d—1
— _F(Zd —1-y) Z —_1 (uy ~ly)l-2d+s Lqu—lgEu na@=n
’ C(s)(d — 1)! g 2mi ’

ueZd

and thus the corresponding summand of y equals

Ald—1)
75(0) = (Zd 1)v2)d > Cuy ' < tuy~'QFu ) .
ueZN\ (0}
This term is homogeneous in ¥ of degree 2 — d; thus it behaves like |Y|>~¢ for
Y| > occor|Y| — 0.
By proceeding as in (17), we observe that the first summand 61 (¢) in (22) has
the form

0,(t) = Z( b)ddet(l—i—zleE)exp( xt'lry~'(c = DCc7'D)"'y"r)

reZd

= Z( b)? det < + nQE) exp(—m2'rY ™)
reZd

-exp(—nt'rY ' (C = DCT'D) ' —zv)Y'r)
=) - b)ddet< +LQE> exp(—mt'rY~'r)

b
rezd
d k
: (1 +y Zt@(—b)—kwkj)
k=1 t=1

with wy ¢ being a (k, k)-form, homogeneous in Y of degree —¢ —2k and homogeneous
in r of degree 2¢. The coefficient of b in 0; is given by

01O = 611(t) + 612(1),

where
011(t) == — Z exp(—nzt Y ')eq 1 (B),
reZd
d—1 k
O12(t) == — Z exp(—nzt . trY_lr) Zztlwk,ecd—l—k(E)
rezd k=1 t=1

The Mellin transform of this term thus equals

1 —
Zn(6)ea-1(E) + 55 Zin(s) = > @Y i ea 1 (E)
reZ4\{0}
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K ris+0
+ D DD s Y TN T  ea 1 (B),

which is homogeneous in Y of degree 2 — 2d + s. In particular, the Mellin trans-
form of 6; converges in (22) for Res > d/2 when subtracting the 7 = 0 summand
(and similarly in (20) for Res < O when subtracting the r = 0 summand). No-
tice that 6,(t) — 0 for + — oo and thus ﬁzzz(s) — 0 for s — 0. Hence

%|s=0ﬁzlz(s) = Z12(0). Furthermore, Z;1(0) = —1. Clearly, for « € R,

Z1(®)jey =’ Z11(9))y,

and thus
Zil(())my = —loga + Zil(())\y.

Concluding, we find the following.

Theorem 6.3. The differential form y representing the torsion form verifies, for
Y] - oo, B
v = Z110)ca—1(E) + Z12(0) + Z5(0) + 0=, (23)

where Z11 is a classical real-valued Epstein zeta function; Z1 is a sum of Epstein
zeta functions with polynomials in the numerator; and Z),(0) is given by a convergent
series. The first term in (23) behaves like — log |Y |- |Y |* 2 ¢y +|Y |*"*4¢», the second
term is homogeneous in Y of degree 2 — 2d, and the third term is homogeneous in Y
of degree 2 — d.
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Abstract. We study the basic height conjecture for points on curves defined over number
fields and show: On any algebraic curve defined over a number field the set of algebraic
points contains an unrestricted subset of infinite cardinality such that for all of its points their
canonical height is bounded in terms of a small power of their root discriminant. In addition,
if we assume GRH, then the upper bound is, as it is conjectured, linear in the logarithm of the
root discriminant.

1 Introduction

Let X be a smooth projective curve defined over a number field. Then we have the
Arakelov height function with respect to the metrized canonical bundle

htz: X(Q) — R,

whose definition will be given in the main text below, and the logarithmic root dis-

criminant .
disc: X(Q) — R.

For the latter map, we associate to a point P € X (@) the number field k(P) and we
set disc(P) = log(Akp)). Here Ag = |DK/Q|1/[K:Q] denotes the root discriminant
of a number field K. The above two maps are conjecturally related as follows.

Conjecture 1.1. Let X be a smooth projective curve defined over a number field. Let
& > 0. Then there exists a constant C (X, ¢) such that for P varying over all algebraic
points of X, we have

htz(P) < (1 +¢)disc(P) + C(X, ¢).

This conjectural height inequality is a special case of Vojta’s conjectures [La]
and also referred to as effective Mordell theorem [MB]. We remark that this conjec-
ture is equivalent to a uniform abc-conjecture for all number fields [Fr]. For a long
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list describing the relations of the abc-conjecture to other conjectures in arithmetic
geometry and analytic number theory, we refer to [Go] and [Ni].

Asubset Y C X (@) is called unrestricted if for all d, r > 0 the cardinality of the
set Vg, ={P €V | [k(P) : Q] = d, disc(P) > r} is infinite. The purpose of this
note is to show the following theorem.

Theorem 1.2. Let X be a smooth projective curve of genus g > 2 defined over a
number field. Let €, § > 0. Then there exists an unrestricted subset )V C X (Q) and a
constant C(X, ¢, 8, V) such that for all P € V, we have

htz(P) < eexp(6disc(P)) + C(X, ¢, 6, V). (1.1)

If, in addition, the Dirichlet series L(xp, s) for the characters (2), where D is a
negative prime number, have no zeros in a ball of radius 1/4 around 0, then for all
P €V, we have

htz(P) < edisc(P) + C(X, &, V). (1.2)

We should remark that our results only hold for an infinite subset of X (Q) and
the method of proof seems not to be general enough to cover all algebraic points
simultaneously.

2 Heights

The height of an algebraic point P on a smooth projective curve defined over a number
field K can be defined by means of Arakelov theory as follows.

Let 7: X — Spec Ok be a regular model for X over the ring of integers Ok of
K,i.e., X is a projective, regular scheme, flat over Spec Ok . In this note, a hermitian
line bundle £ = (£, || - ||) on X is a line bundle on X together with a continuous
hermitian metric on the induced complex line bundle £, over the complex manifold
Xoo = [k - Ao (C). A particular hermitian line bundle is the canonical bundle
equipped with the Arakelov metric. We denote this distinguished hermitian line bundle
by o; see, e.g., [La].

In what follows, we also allow that the metric associated with £ has logarithmic
singularities at a finite set S of algebraic points on X'(Q) of the following type: near
a singular point P, any section [ of £ has an expansion in a local coordinate ¢ of
the form

I211(2) = 161797 Dep (£) (— og ),

where ¢ (¢) is a continuous nonvanishing function and @ € R. If @ > 0 for all singular
points P, then the metric is called a positive logarithmically singular metric.

Let P be an algebraic point on X and £ be a hermitian line bundle. Possibly after
replacing K by a finite extension, we may assume that the algebraic point P, the
points in S, and X are all defined over K. Since the arithmetic surface X is proper,
we have X (K) = X(Og). Therefore, the Zariski closure P of P in X determines a
section sp: Spec Ox — X. With the above notation, we define the height of a point
P € X(K) \ S with respect to £ by
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1
hz(P) = o (log#@:ﬁ/(s?l))— > log ||l||<P°)>,

o:K—C

where [ is a regular section of £ which is nonzero at P. Observe that the height does
not depend on the choices of [ or K. If we denote by p a local equation for P, then
we have an equality

log#(sp L/ (spD) = > log#(Ox o /(p. ).
xeX

The above quantity is also denoted by (P, div(/))sy and there are only finitely many
x € X that give nonzero contribution to (P, div(/))gp.
We will need the following basic facts on heights.

Proposition 2.1. Let £ and M be hermitian line bundles on X. Assume deg(L) =
deg(M) > 0. If the metric on L is continuous and the metric on M is positive
logarithmically singular, then for all ¢ > 0 we can find a constant C(e, X, L, M)
such that

htz(P) < (14 &) htyg(P) + C(e, X, L, M).

Proof. 1t is well known (see, e.g., [Si, Proposition 3.6D th_at in the case where both
metrics are continuous, we can find a constant C (g, X', £, M) such that for all ¢ > 0,

htz(P) < (1 + &) hty(P) + C(e, X, L, M). 2.1

For simplicity of the argument, we assume that the metric || - | on M has only
0 € X(Q) as singular point. Let 1 be the canonical section of O(Q). Then we can
find continuous hermitian metrics || - || on M and || - || on O(Q) such that for all
P € X(C) \ {Q} and all sections m of M,

Im||(P) = lm|l"(P) - (—log [ 1o[I(P)".
Let Q be the Zariski closure of Q. Then since @ > 0, we obtain
htr(P) = ht (P) — alog(—log [[1o]I(P))
> htz (P) — alog(—log [[1o[I(P) + (P, Q)fin)
= ht— /(P) OllOghtm(P)

> (1 — &) htz(P) — ae’ htz(P) — C'(X, ¢, L, M).

de (£)
For the last inequality, we used (2.1) twice. If we take ¢ such that 1/(1 + ¢) =
1—¢(+a(l —¢")/deg(L)), we obtain the claim. O

Proposition 2.2. Let f: Y — X be a proper morphism of arithmetic surfaces. Then
we have

ht .. 7(P) = htz(f(P))
for any logarithmically singular hermitian line bundle L on X and P not in the

singular locus of the logarithmically singular metric on L.

Proof. See, e.g., [BGS, formula (3.2.1)]. O
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3 Arithmetic properties of Heegner points

Due to the modular description, the points on the modular curve X (1) are well un-
derstood. Recall that X (1)(C) = I'(1) \ H U {oo} and that X (1) is isomorphic to
P!. The regular model of X (1) will be denoted by X'(1). This arithmetic surface is
canonically isomorphic to IP’IZ. On X (1) we have the line bundle of modular forms
M 2. The natural metric on this line bundle is the Petersson metric, where we use the
normalization as given in [Kii, Definition 4.8]. This metric gives rise to the positive
logarithmically singular hermitian line bundle M, (see, e.g., [Kii, Propositions 4.9
and 4.12]). For any point P € X (1)(K) \ {oo} we have a well-defined height with
respect to M. It is called the modular height.

Let D be a negative fundamental discriminant and K = Q(+/D). We briefly recall
some properties of Heegner divisors. Every ideal class [a] of K defines a unique point
Py onI"'(1) \ H by associating with a fractional ideal a = Za + Zb with oriented (i.e.,
Im(ba) > 0) Z-basis a, b the point p, = b/a € H. We call P, the Heegner point to
a and sometimes write [p4] instead of Pyq.

The Heegner divisor H(D) on I'(1) \ H consists of the sum of the P,, where a
runs through all ideal classes of K, counted with multiplicity 2/w, where w is the
number of units in K. The cardinality of H (D) is equal to the class number /4 of K;
its degree is 2h(D)/w.

Proposition 3.1. Let f: X — X (1) be amorphism of algebraic curves that is defined
over the field over which X is defined. Let P € X (Q) be a point such that f(P) is
contained in a Heegner divisor H(D) with prime discriminant D. Then we have

. 1 55
dise(P) > 7 log D] - = 3.1)

Proof. The composition formula for the discriminant implies that for all morphisms
f:X — X(1) and points P € X (Q), we have the inequality

disc(P) > disc(f(P)).

Thus it suffices to bound the discriminant of a Heegner point P, = f(P). We consider
the following diagram of field extensions

H=QD,j(pa))

T

F=Q((pa) K = QD)

T

By the theory of complex multiplication, we have A(D) = [H : K] and Dy =
D"D) From [Gr, Lemma 12.1.2], we deduce Nm (D g r) = D. The composition
formula Dy = D%IQ -Nmp|g(D|F) gives rise to the equality

Q



On the Height Conjecture for Algebraic Points on Curves over Number Fields 273

disc(Py) =

1 1

h(D) 2 2n(D)

The class number of an imaginary quadratic number field with prime discriminant
satisfies (D) > 1/55 log | D] (see, e.g., [Oe]). Thus we have

disc(Pq) : : log |D| > 11 |D| »
isc =(z—=——|lo ~1lo - =.
< =\2 7 2y ) BT = 208 2

This proves the proposition. O

Proposition 3.2. If P, € H(D) is a Heegner point then its modular height is given by

L'(xp,0) 1
st =-6(£020 g o).

32
L(xp.0) 2 G-

where L(xp, s) is the Dirichlet L-function for the character (2).

Proof. Recall that A(t) = ¢** [172,(1 — ¢)", where ¢ = e?iT with v € H, is a
section of M 2, whose divisor equals the unique cusp oo of X'(1). Its Petersson norm
is given by the formula

1A Iper = |A(D)| (47 Im(2))°.

Therefore, the modular height of a Heegner point is given by

htygg,,(Pa) = (Pa.00)in — Y logllA(pa)llper | -

pa€H (D)

_
[F:Q

where F := Q(j (pq)) and where for each embeddingo : F — Qthe point pq € His
aliftof PJ (C) e I'(1) \ H. We now recall the well-known Kronecker limit formula. If

1 N
E(t,s) =3 yElZ\FI(Im(w»

is the real analytic Eisenstein series for I'(1), then the logarithm of the Petersson
norm of the Delta function is given by

log 1A (®) ) = —4x lim (af, -

+ 12log(4m).

T(1/2)T(s — 1/2)¢(2s — 1))
L (s)¢(2s)

We also point to the identity

w |D
Z E(pa,s) = E ‘Z

pa€H (D)

s/2

Lk (s)
7(2s)’
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where ¢k (s) = ¢(s)L(xp,s) denotes the Dedekind zeta function of K (see [GZ,
p- 210]). In [BK, p. 1726], we have derived from this the formulas

> —log(1A(pa)* (47 Im pa)'?)

pa€H (D)
ra/2)rs—1/2)¢@2s —1
—dntim| Y E(pars)—h /2T = 1/26@ = D | 45Dy ogan)
s—1 F(S){(zs)
Pa€H (D)
L'(xp,0 1
— —12h(D) (M + - log |D|> .
L(xp,0) 2
Since j(pq) is an algebraic integer, we have (Py, 00)q, = 0. This gives our
claim. O

Remark 3.3. Recall that X' (1) = IP’IZ, with My = O(1), and that the line bundle
O(1) equipped with a particular metric gives rise to the naive height htpi. For a
Heegner point Py € X (1)(K), this height is given by

htIPl (Pg) = (F 1 Ql ((Pa’ 00)fin — ZIOg max (1, j(pa)))

Pa
L'(xp,1) 1 loglog |DI\\
=6 <—(XD )y —10g|D|) <1 +0 (—Og og ] ')) .

L(xp, 1) 2 log|D|
Indeed, since j(pq) is an algebraic integer, we have (Pg4, 00)g, = 0. Now the claim
follows immediately from [GS] by combining their equation (7) with their Theorem 3.
Proposition 3.4. Let P, € H(D) be a Heegner point with prime discriminant.

(i) For all § > 0, there exists a constant S(8) such that
htﬂlz(Pa) < §(8) - exp(é disc(Py)). 3.3)

(ii) If the Dirichlet L-series L(xp, s) has no zero in the ball of radius 1/4 around
0, then there exist constants a and b such that the modular height of a Heegner
point of discriminant D satisfies

hty7,, (Pa) < adisc(Pa) + b. (3.4)

(iii) Assuming the generalized Riemann hypothesis (GRH) for the Dirichlet L-series
L(xp, s) in question, we have

htxz,, (Pa) = 6disc(Pa) + o(disc(Py)). (3.5)

Proof. (1)-(ii) Let Ep, be an elliptic curve with complex multiplication by O ; then
the Faltings height of E¢, equals 12 times the modular height of its modular point
Po,; see, e.g., [Co, pp. 362 and 365]. By means of the inequality (3.1), we derive
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that (i) is a reformulation of the corresponding formula in [Co, remark on p. 365] and
claim (ii) is a reformulation of [Co, Theorem 6 (ii)].

(iii) Using the functional equation for L(xp, s) we can express the right-hand
side of (3.2) as a special value at s = 1. Namely, we have

L'(xp.0) 1 Lp. D) 1
(=2 g |D|> = <— + ~log|D| —lo (2ney)>,
(L(xD,O) 2 8 L. 1) 28 £

where y is the Euler constant. Assuming the GRH, we have

L'(xp, D
L(xp. 1)

where the implied constant is uniform in D (see, e.g., [GS, Section 3.1]). This gives

= O(loglog |D|),

1
htﬂlz(Pa) =6 <§ log |D| + O(loglog |D|)> .

Since O (loglog|D)) is also of order o(log|D]), we derive by means of (3.1) the
claim. O

4 Main result

Definition 4.1. Let X be a curve defined over a number field, and let f be a noncon-
stant function in the function field of X. We consider f as a morphism f: X — P!
and identify P! with the modular curve X (1). Then we define

V(X, f) ={P € X(Q) | f(P) is a Heegner point with prime discriminant}.
Proposition 4.2. The subset V(X, f) € X (Q) is unrestricted.

Proof. The set of Heegner points with prime discriminant on X (1) is, as we have seen
already in the proof of Proposition 3.1, unrestricted. The composition formula for the
discriminant implies that for all morphisms f: X — X(1) and points P € X ),
we have the inequality

disc(f(P)) < disc(P).

Therefore, the set V(X, f) is also unrestricted. O
Theorem 4.3. Let X be a curve of genus g > 2 defined over a number field. Let f be
a nonconstant function in the function field of X, and let ¢, 6 > 0.
(i) There exist constants S(8) and C(X, e, V(X, f)) such that all P € V(X, f)
satisfy

htz(P) < (1 + 8)% exp(6disc(P)) + C(X, e, V(X, f)). #&.1)
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(ii) Assume that htm12 (Py) < adisc(Pq) + b for all Heegner points Py with prime
discriminant D. Then for all P € V (X, f), we have

a2g —2)
deg(f)

Proof. Let f: X — X (1) be an extension of the morphism f: X — X(1) given
by f. The degrees of the line bundles w®9¢8) and (f* M 2)®?8~2) are equal and
positive. We endow M, with the Petersson metric and by pullback we obtain the
positive logarithmically singular line bundle f* M1, on X Then by Propositions 2.1
and 2.2, we get, forall P € X(Q) \ {f~'(00)},

htz(P) < (1 +¢) disc(P) + C(X, &, V(X, ). 4.2)

2¢ —2
deg(f)

Here we wrote C' (X, ¢/, V(X, f))insteadof C'(¢/, X, @, f*M12).IfP € V(X, f) C
X(Q), then f(P)isa Heegner point with prime discriminant. Thus (4.1) follows im-
mediately from (3.3). Finally, (4.2) is an easy consequence of the assumed bound for
the modular height of f(P). O

htz(P) < (1 + &)

htyg,, (f(P) + C'(X, &, V(X, f)).

Remark 4.4.

(i) In Theorem 4.3 we can choose f with arbitrary large degree. If we let deg(f) >
(1+4+¢)-S0)-(2g —2)/e, we derive formula (1.1) of Theorem 1.2. If we let
deg(f) > (1+¢)-a-(2g —2)/e, we obtain formula (1.2).

(i) We note that because of [Fr] the exponential height inequality (1.1) should some-
how be related to the exponential abc-inequality [SY, Su]. We remark also that
(1.2) could be seen as a converse to a theorem of Granville and Stark [GS] saying
that the abc-conjecture implies that there are no Siegel zeros.
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1 Introduction

In studying the analogies between zeta functions of number fields and function fields
over finite fields, several authors have noted that certain properties of number fields
seem well described by viewing them as geometric objects over the “field with one
element.” Analogies in these directions have been formalized recently in Manin
[Ma95], Soulé [S099, So03], Kurokawa, Ochiai, and Wakayama [KOWO03], and Deit-
mar [De04]. There is also earlier work, noting analogies, such as Kurokawa [Ku92],
which can be traced in the references in the papers above.

In this direction, Kurokawa, Ochiai, and Wakayama [KOWO03] recently introduced
a notion of absolute derivation over the rational number field Q. Based on this, they
proposed a measure of “quantum noncommutativity”’ of pairs of primes over the
rational field, given as follows. For real variables x, y > 1, define

,xk
F(x,y) = Z = a 1

Now define, for x, y > 1,

1
ONC(x,y) := 2xy (x(y —DF(x,y) —y(x — DF(y, x)). (2)
The “quantum noncommutativity” of two primes p and ¢q is defined to be ONC (p, ¢q).
It is easy to see that ONC(x, y) = — ONC(y, x), whence OQNC (x, x) = 0, and one
has ONC (2, 3) = 0.00220482 . . ., for example. They then raised questions [KOWO03,
p- 580] whether there is a connection between the quantum noncommutativity measure
and zeta functions. They defined the infinite skew-symmetric matrix R = [R;;] whose
(@i, j)th entry
R;j := ONC(p;, pj),

where p; denotes the ith prime listed in increasing order, so that p; = 2, p» = 3,
p3 =5, etc.
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In question (A), they asked whether it could be true (in some suitable sense) that

det <I—R<s— %)) = c&(s), 3)

in which &(s) = %s(s - l)n_%F(%)g(s), is the Riemann &-function and ¢ is a
nonzero constant. (They proposed ¢ = 2.) They also asked a more general question
(B) for (suitable) automorphic or Galois representations p, which would involve a
skew-symmetric matrix R(p) with (7, j)th entry

p(p) + p(@)*
R;j(p) := fR,g/,
involving a weighted version of elements ONC(p;, p;), and asks whether it could be

true that
det (I —R(p) (s — %)) =cs" P (s — )P L(s, p), “4)

where I:(s, p) is the completed L-function attached to the representation p, and m(p)
is the multiplicity of the trivial representation in p.

The object of this note is to give a negative answer to question (A); the same
method should apply to give a negative answer to question (B). We also offer some
(inconclusive) remarks concerning whether the notion of “QNC”’ can be modified to
allow a positive answer to these questions.

In order to make questions (A) and (B) well defined, it is necessary to formulate a
definition of infinite determinant in (3). We take as a basic requirement of a definition
of such an infinite determinant that any zero s of a determinant (3) must necessarily
have z = S% belonging to the spectrum of R, i.e., that for this value the resolvent

2

(zI —R)~! is not a bounded operator on the full domain of R, assumed to be a Banach
space.

The basic requirement implies that if R acts as a bounded operator on a Hilbert
space in (3), then a positive answer to question (A) would necessarily imply the Rie-
mann hypothesis for ¢ (s), and to question (B) would imply the Riemann hypothesis
for L(s, m). This follows since R would then be skew-adjoint, hence have pure imag-
inary spectrum, whence the determinant (assumed defined) could only vanish when

s — % is pure imaginary. One can weaken question (A) so that it no longer implies the

Riemann hypothesis, by requiring that the left side det(I — R (s — %)) of (3) detect all
the zeta zeros that are on the critical line N(s) = %, and not required to detect zeros
off the line, and similarly for question (B). The result below gives a negative answer
to question (A) in this weaker formulation as well.

We treat the operator R as acting on the Hilbert space I, of column vectors, and
observe it defines a bounded operator. It follows that it is skew-adjoint and so has
spectrum confined to the imaginary axis. However, we show that its spectrum cannot

detect all the zeta zeros that lie on the critical line, whether or not the Riemann
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hypothesis holds. Note that p = % + iy is a zeta zero, the corresponding point of the
spectrum of Ris A = —}’,4.

The main point is that the quantum noncommutativity function is so rapidly de-
creasing as p, g increase that

ZI jkl < o0 )

k=

M

We show this in Section 2, and we deduce that the matrix R defines a trace class
operator on /5. The weaker condition

DY IR < oo (6)

j=1k=1

already implies that R is a compact operator (in fact, a Hilbert—-Schmidt operator);
see Akhiezer and Glazman [AG93, Section 28]. (In Akhiezer and Glazman, the term
“completely continuous operator” = “compact operator.””) A compact operator neces-
sarily has a pure discrete spectrum with all nonzero eigenvalues of finite multiplicity,
with only limit point zero [RS80, Theorem VI.15]. Since we now know R is skew-
adjoint, its eigenvalues, which necessarily occur in complex conjugate pure imaginary
pairs, and can be ordered by decreasing absolute value, {£ii; : j = 1,2, ...}, with
A1 > Az > --- > 0. A trace class operator A is a compact operator with the property

that its singular values i ; (eigenvalues of the positive self-adjoint operator (A*A)2)
satisfy

Zuj<oo. 7

For skew-adjoint operators, w; = |A;|, giving the trace-class condition

o]

> " Ixjl < oo (8)

Jj=1
For trace class operators A, there is an essentially unique definition of det(/ 4+ A) that
satisfies the basic requirement, see B. Simon [Si77], who reviews three equivalent

definitions of this determinant (see also [Si79, Chapter 3]). He bases his treatment on
the formula

o0 oo
det(I — wA) := ZTr(/\k(wA)) = ZTr(/\kA)wk,
k=0 k=0
which is also presented in Reed and Simon [RS78, Section XIII.17, p. 323]. This
determinant is an entire function in the variable w, given by a convergent infinite
product

det(/ — wA) = [ [(1 — wi;(A)),
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in which the eigenvalues A ;j(A) of A are counted with their algebraic multiplicity.
This determinant satisfies the basic requirement (see Reed and Simon [RS78, The-
orems XIII.105(c) and XIII.106]). The truth of (3) for the trace class operator R,
taking w =5 — %, would imply thatif s = % +iy; is a zeta zero on the critical line,
then the two values A; = :ty%_ belong to the spectrum of R. It is well known [TH86,
Chapter X] that a positive proportion of zeta zeros lie on the critical line fi(s) = %,
and the asymptotics of these zeros easily give

1
Z —| = +o00. )
{y:£(3+iy)=0)
This contradicts (8).

In Section 3 we discuss the problem of whether the notion of “QNC” can be
modified to give a positive answer to question (A).

2 Trace class operator

Our object is to show the following.

Theorem 1. The operator R acting on the column vector space lp defines a trace
class operator.

Proof. A bounded operator A is trace class if |A| = (A*A)% is trace class, i.e.,
the positive operator |A| has pure discrete spectrum and the sum of its eigenvalues
converges; cf. Reed and Simon [RS80, Section VI.6]. A necessary and sufficient
condition for an operator A to be trace class is that for every orthonormal basis
{¢n : 1 <n < oo} of I, one has

[e.e]

D 1{AGn, pu)l < 00 (10)

n=1

see Reed and Simon [RS80, Chapter VI, Example 26, p. 218].

Taking A = R, since it is skew-symmetric, we have R*R = —R2. It follows that
if |R] is trace class, then it has pure discrete spectrum and the singular values of R
are just the absolute values of the eigenvalues of R.

We first prove (5). We have

1
|ONC(p, q)| < E(F(p,q) + F(q, p).

Now we have p,qg > 2so (1 — p"f’k)2 > %, whence

Fp.g) = Sl <2g7r g7 (Z p"‘lq”"’k> <6q77.
k=1 k=2
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In the last step above we used (for k, p, g > 2)

k—1

pk—lqp—pk < pk—lz—p <2k—12—2"" <2—k+2.

(Note that x27* is decreasing for x > 2 > Tog2 5.) This yields

[ONC(p.q)| < E(lfq +4q77"),

from which we obtain
o o o0
DN TEDS (zm ) .
j=1k=1 m=2

as asserted.
We use (5) to verify criterion (10). Let {ex : 1 < k < oo} be the standard
orthonormal basis of column vectors of I, so that R(e;) = Z;’il Rjie;. Now let

¢n = Z,fil cnkex be an orthonormal basis of I, so that [c,x] is a unitary matrix.
Then we have ||¢,||? = 2130:1 lear? = 1, and unitarity also implies

o
Z lenk|> = 1. 1)
n=1

Now we compute

o oo oo o0 oo
ZI(Rd’n,an =Z <ZZanRjk€j,Zan€j>
n=1 n=1|\j=1k=1 j=1
o o0 0
<Y > lemR ity
n=1 j=1 k=1
X X0
=< ZZ jkl (Z |Cn]||cnk|>
o 1
<Y D IRy (Z 5 lenil* + |cnk|2)>
j=1k=1 n=1
o 0
<) D IRyl <o
j=1k=1
as required. O

3 Concluding remarks

It is an interesting question whether the concept of “QNC’” has a natural modification
to correct the difficulty observed here, and possibly to give a positive answer to
question (A). We have no proposal how to do this, but make the following remarks.
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The argument made above rests on the following fact: A necessary condition on a
skew-symmetric compact operator R acting on a Hilbert space to have a determinant
(3) satisfying the basic requirement that detects the zeta function zeros is that it be a
Hilbert—Schmidt operator not of trace class. In order to define an infinite determinant
on the full class of Hilbert—Schmidt operators, an extended definition of infinite de-
terminant is required. There are notions of regularized determinant det(/ + wA) that
apply to Hilbert—Schmidt operators A and satisfy the basic requirement. One such,
denoted detr (I + wA), in discussed in Simon [Si77] and Simon [Si79, Chapter 3].
See Pietsch [Pi87, Chapters 4 and 7] for further work on such questions.

The results of Kurokawa, Ochiai, and Wakayama [KOWO03] were motivated in
part by the function field case for the absolute function field K = F,(7), as noted
at the beginning of their paper. We note that one might reconsider the function field
analogy, varying the base function field. For the (absolute) function field case F, (T)
the corresponding matrix (and operator) R = 0, but if one allowed other function
fields K of genus 1 or higher, then the function field analogue of the quantity (9) also

diverges. This holds because the function field zeta zeros % + iy have y falling in a
2

finite number of arithmetic progressions (mod ;> o7 ), so that
1
— = +00.
il

Thus the difficulty above manifests itself already in the function field case. It therefore
might be useful to look for formulas for quantum noncommutativity for prime ideals
in a function field K of genus at least 1, intending to construct an analogous matrix
Rk . The operator corresponding to Rx on /; would necessarily be Hilbert—Schmidt,
but not of trace class, if it were to have eigenvalues :l:%, where % + iy runs over the
function field zeta zeros of K, counted with multiplicity. Perhaps such study could
clarify the notion of “QNC.”

Finally, we note that if to the sum defining the function F (x, y) in (1) the term k =
0 were added, the definition of QNC(p, ¢) would be modified to add the extra terms

1 1 1
12pg \ g — 1 p—1 ’

The resulting modified operator R then has
Y IRj| = +oo,
)

and is a Hilbert—Schmidt operator on /5 not of trace class.

Acknowledgment. The author thanks the reviewer for helpful comments.
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Summary. We give a new proof of the fact that the even terms (of a multiple of) the Chern
character of the Hodge bundles of semi-abelian schemes are torsion classes in Chow theory
and we give explicit bounds for almost all the prime powers appearing in their order. These
bounds appear in the numerators of modified Bernoulli numbers. We also obtain similar results
in an equivariant situation.

1 Introduction

Let g > 1 (respectively, n > 4) be an integer (respectively, an even integer) and
let A, , be the fine moduli scheme of principally polarized abelian varieties over
C with an n-level structure (see [CF, Chapter I]). By Kg,,, we denote a toroidal
compactification of Faltings—Chai type (see [CF, Chapter IV]). Let G — Kg,n be the
universal semi-abelian scheme over Kg,,,. We set |E := ¢*Q G/Agn’ where e: Kg,n —
G is the zero-section. For any integer k > 0, we shall write chS(V) for the additive
characteristic class on vector bundles V, such that chS(V) = ¢1(V)F when V is a
line bundle. Furthermore, for any integer / > 2, we shall write Bl’ for the numerator
of the rational number (ZZ — 1)B;, where By is the /th Bernoulli number. Recall that
the Bernoulli numbers are defined by the formula

t ti
—_— = E Bj—.
_ T
exp(t) — 1 >0 Jj!

Theorem 1. Let b: Kg,n — Kg,n be any desingularization and let | > 2 be an even
integer. Then we have the following:

(1) The characteristic class Chf)(b*]E) € CH! (Kg,n) is a torsion class.
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(2) Let t > 1 be the smallest natural number such that t - chl (b*E) = 0, and let p
be a prime number such that p > 1. If g > 0is the largest integer such that p?|t,
then p9|Bj.

Here are some numerical examples. Case / = 2: the class ch2 o(b*E) is a torsion
class of order a power of 2, since 22— 1B, = 3/6 =1/2. Casel = 12: there is an
integer r > 0 such that 691-2310” -ch}*(b*E) = 691-(2-3-5-7-11)" -ch)*(b*E) = 0,
since (212 — 1)B; = —2073/2 = —3 - 691/2.

Recall that CH(Ag n) refers to the Chow 1ntersect10n ring of A ¢.n (see [F]). The
ring CH(Ag .) carries a natural ring grading and CH' (Ag ) refers to its /th graded
term. Characteristic classes with values in a cohomology theory factor via the cycle
class map through their counterparts with values in the Chow ring. The Chow ring is
thus a universal target for characteristic classes.

If one replaces Kg,,, by A, in Theorem 1 (so that b becomes an isomorphism),
then the statement that the characteristic class chf)(b*E) is a torsion class was proven
by van der Geer in [VDG]. Prompted by his work, Esnault and Viehweg then proved
(1)in [EV1]. The original contribution of Theorem 1 thus consists of the information
(2) given about the order of the torsion.

For z belonging to the unit circle S ! we define the Lerch ¢-function ¢y (z, s) :=
Zk>1 Z* /k* for s € C such that 9(s) > 1, and using analytic continuation, we
extend it to a meromorphic function of s over C.

In the next theorem, 7 is an integer > 1 and D is any Dedekind ring containing
OqQ(u,) as a subring. Recall that Ogy,,,) is the ring of integers of the subfield Q(i,)
of C generated by the nth roots of unity. Let C be a smooth quasi-projective scheme
over Spec D[}l]. Let furthermore C — C be a polarized abelian scheme and let ¢ be
an automorphism of finite order n of C over C. Suppose that the fixed-point scheme
C, of ¢ is finite and flat over C. Let H := H R(C /C). The automorphism ¢ induces an
automorphism of finite order of H, which we also denote by ¢. For each u € w, (D),
let H, := Ker(t — u - Id).

Theorem 2. Let | > 1 be an integer. The meromorphic function ¢ (u, z) is regular
at z = 1 — [ and the complex number ¢y (u, 1 —1) lies in OQ(M)[#!]. The equality

> tu(u,1—1)chy(H,) =0

u€y (D)
holds in CH'(C) ® O[]

Theorem 2 is compatible with Theorem 1 in the following sense. Let C = A, ,
and let C be the restriction of G to A, ,. Let ¢ be the automorphism of order 2 of C
over C given by taking the inverse in the group scheme. Then the equality statement
in Theorem 2 is equivalent to Theorem 1 with Kg,n replaced by A, ;.

Theorem 2 overlaps with Stickelberger’s theorem; this is explained at the end of
Section 4.2.

We shall now describe our methods of proof. Theorems 1 and 2 are both proved by
applying a relative coherent Lefschetz fixed-point formula (see Section 2.3) to certain
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vector bundles and certain fibrations. A formula involving the extended Hodge bundle
b*E (respectively, the first Gauss—Manin bundle Hle) is then obtained and Theorem
1 (respectively, Theorem 2) is deduced from this formula, using some linear algebra
and some facts relating the exponential function and the Lerch zeta-function.

In the paper by Esnault and Viehweg quoted above [EV1], the Grothendieck—
Riemann—Roch theorem is applied to a quotient of a compactification of the group
scheme G to prove that chf) (b*E) is a torsion class. This method is conceptually close
to ours but its seems difficult to obtain fine information about denominators using it,
because it involves the Chow group of the compactification, where the denominators
of the Chern character can become large, when the dimension of the compactification
is large. By contrast, the relative Lefschetz formula only involves the Chow group of
the fixed-point set, which has the same dimension as the base. Another advantage of
the fixed-point formula is that it involves fewer denominators at the outset whereas
the Grothendieck—Riemann—Roch theorem would probably have to be replaced by
the Adams—Riemann—Roch theorem to make control of denominators possible.

The authors were led to Theorems 1 and 2 and the methods of proof presented here
by a conjecture on characteristic classes of Hodge bundles in the context of Arakelov
theory. For this we refer to Section 4.2.

The structure of the article is as follows. In the second section, we describe some
results from the book of Chai and Faltings on the toroidal compactification of the
universal semi-abelian family, as presented in the article [EV1]; we use these results
to relate the sheaf of relative differentials with logarithmic singularities to the normal
bundle of the fixed-point set of —1 (see Proposition 2). We then proceed to describe
the relative fixed-point formula which will be our main tool in the proof. In the third
section, we first prove Theorem 2 by applying the fixed-point formula to the relative
de Rham complex of the relevant abelian scheme; second we prove Theorem 1 by
applying the fixed-point formula to the relative logarithmic de Rham complex. In
the fourth section, we shall discuss some consequences of the above theorems, as
well as some conjectures to which they lead. A salient consequence of Theorem 2
is Corollary 1, which concerns abelian schemes with complex multiplications but
possibly no automorphisms of finite order other than —1.

2 Preliminaries
2.1 Differentials with logarithmic singularities

In this subsection, we shall review the definition of a sheaf of differentials with
logarithmic singularities along a divisor with normal crossings, as well as its basic
properties. Our basic reference is [EV2, Chapter 2].

Let Z be a quasi-projective nonsingular variety over C and let D be a normal
crossings divisor in Z. Let d be the dimension of Z. We set U := Z\ D and denote
by j: U < Z be the inclusion map. We shall write Q2% (log D) for the complex of
sheaves of differential forms with logarithmic singularities along D. The complex
Q7 (log D) is a subcomplex of the complex j,$27; and it has the following defining
property: if V € Z is an open set, p > 0 is an integer and w € j*Q‘Z(V) =
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Q[Z7(U NV),thenw € QZ (log D) (V) iff w and dw have simple poles along DNV. To
say that w has a simple pole along D NV in the latter situation means the following: in
any affine open subscheme W C V such that the ideal of DNW in Oz (W) is principal,
the section e - w|ynw lies in the image of the restriction map SZ’;(W) — QQ(U NwW)
for any generator e € Oz (W) of the ideal of D N W (this condition does not depend
on the choice of e). The definition of % (log D) implies that for each p > 0 the sheaf
Qg(log D) has the structure of Oz-module, which is compatible with the injection
Q% (log D) — Q) ; furthermore, Q4 (log D) is then locally free for this Oz-module
structure.

Abusing language, we shall write Op, for @!_, Oc,, where the C; run over the
irreducible components of D. Let P € Z and let m be the maximal ideal of the local
ring Op. We write s for the number of irreducible components of D which contain
P. We may suppose without restriction of generality that the components Cy, ..., C;
contain P. We denote by f1,..., f € m generators of the ideals of the compo-
nents Cq, ..., Cy. Since by definition f1, ..., f; form a regular sequence in Op and
since Op is a regular ring, we may find (see [M, Part 14, Theorem 14.2]) elements
fs+1, ---, fa € m, such that the elements f1, ..., fy form aregular system of param-
etersin O p. There is then a neighborhood V of P, such thatthe elementsd fi, ..., d fy
form a basis of Q7 (V) as a Oz(V)-module. It is shown in [EV2, Chapter 2, 2.2 (c),
p. 11] that in this situation the elements d f1/f1, ..., dfs/fs, d fs+1,...,d fqy form a
basis of 2z (log D)(V) as an Oz(V)-module.

Furthermore, there is a canonical exact sequence

0— Q) — QLdogD) 5 Op, — 0

where the morphism r has the following description. We shall use the terminology of
the last paragraph. The homomorphism Q7 (log D)(V) — Op, (V) = ®&;_,Oc; (V)
sends «-d f; / fi (respectively, o -d f;), wherea € Oz(V)and 1 < i < s (respectively,
d 2 i > s), to the image of o in Oc, (V') (respectively, on 0).

Now let Z’ be a nonsingular quasi-projective variety over Cand g: Z’ — Z bea
morphism over C. Let D’ := (g*(D))yeq and suppose that D’ is a divisor with normal
crossings. We write U’ for its complement and let j': U’ < Z’ be the inclusion
morphism. Notice that by adjunction, there is a natural morphism of coherent sheaves
J*Qz(log D) — j*Qz = Qus; this induces a morphism g|};(j*2z(log D)) —
gl};(j*Qz) and since j o gly = g o j’, we obtain a morphism g*Qz(log D) —
jij"* g* 2z by adjunction. Composing with the natural morphism g*Qz — Q/, we
finally obtain a morphism g*Qz(log D) — j.j"*Qz = j.Qu.

Lemma 1. The image of the morphism of coherent sheaves g*Qz(log D) — j.j"*Qz
JeQuy just given lies inside Q7 (log D).

We shall prove Lemma 1 together with Lemma 2, which we first describe. Consider
first the following diagram:

8*Qz; — g*Qz(log D) — g*Op, — 0

l l ey

0— Qz — QzlogD) — OD(/) — 0,
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where the middle vertical arrow is defined via Lemma 1. By construction this diagram
is commutative and its existence shows that there is a unique morphism g*Op, —
@) D}, such that the completed diagram

g*Qz — g*Qz(log D) — g*Op, — 0

|

00— QZ/ —> QZ/(IOgD/) —> OD() — 0
commutes.

Lemma 2. If D and g*(D) are normal schemes, then the morphism g*Op, — O D
Jjust described is an isomorphism.

Proof of Lemmas 1 and 2. Since Lemmas 1 and 2 are both local statements on Z and
Z',we may assume that Z’ = Spec A, Z = Spec B and that the morphism g is induced
by aring morphism go: A — B. We may also suppose that Q27 (log D)(Z) is free over
A and that a basis of Qz(log D)(Z) is givenby d f1/f1,...,dfs/fs, d fs+1, ..., d fa,
where the elements fi, ..., f; are generators of the ideals of the irreducible com-
ponents Cy, ..., Cs of D and the elements d f1, ..., d f; form a basis of 24 over
A. Similarly, we may also suppose that a basis of €27/ (log D")(Z’) over B is given
by df{/fi, ...,dfv’,/f;,,dfg’,ﬂ, ...,dfé,, where the elements f|, ..., f; are gen-
erators of the ideals of the irreducible components C/, ..., C., of D’ and the el-
ements dfj,...,dfy form a basis of Q2p over B. We may also suppose that

g0(f) = [T°—, urr £, where u, € B*, my, € Z2% and 1 < k < s. (This
follows from the fact that the local rings of Z’ are regular rings and hence unique
factorization domains.)

Notice that we have a canonical isomorphism j.Qu(Z) ~ Q4 7.5, (respec-

tively, j;Qu/(Z') ~ Qp, o ). If we follow the steps of the definition of the

morphism g*Qz(log D) — j.Qy, we see that it corresponds to the morphism
Qz(log D)(Z) @4 B — QB’f{,,,f/, of B-modules such that

s/

d fi (duk,r df/) )
poe (G em @

for1 <k <sand
d fx > d(go(fi)) (3)

for s < k < d. Since the expressions appearing after the arrows in (2) and (3) are
both linear combinations over B of the elements
dh A

S AR § 5
fl X/ s'+1 d

we have proven Lemma 1.
To prove Lemma 2, notice first that we may assume without loss of generality
in the situation of Lemma 2 that D and g*(D) are integral. We then have s = 1,
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s’ = 1 and my, = 1 for all k, r. The module associated to the coherent sheaf 8*Op,
(respectively, OD(’)) is then A/(f1) ®4 B (respectively, B/(go(f1))). Furthermore,
ifa®sb € A/(f1) ®4 B (respectively, b’ € B/(go(f1))), then a ®4 b is by
definition the image of the element a - d f1/f1 ® b € g*Qz(log D)(Z’) (respectively,
b'-df{/f| € Qz (og D')(Z")). Looking at the diagram (1), we see that the morphism
A/(f1) ® B — B/(go(f1)) sends a ®4 b to the image of g(a)b - (df{/f] +
duy,1/u1,1), i.e., g(a)b. Thus the morphism g*Op, — OD(’) is given by the natural
isomorphism A/(f1) ®4 B >~ B/(go(f1))- o

2.2 The toroidal compactification of the universal abelian scheme

We shall need the following result, whose proof can be found in [CF, Chapter I,
Proposition 2.7].

Proposition 1 (Raynaud). Let S be a noetherian normal scheme and let U C S be
an open dense subset. Let B — U be an abelian scheme. If there is a semi-abelian
scheme B — S extending B, then it is unique up to unique isomorphism.

We now quote a theorem stated in [EV1, Theorem 3.1], which sums up some
results that can be found in [CF, Chapter VI, par. 1]. Recall that n > 4 is an even
integer.

Theorem 3. There exists a cartesian diagram of morphisms of schemes

A — X

7| |7

Ag — B,

where f: A — A, , is the universal abelian scheme, such that we have the following:

(1) The horizontal morphisms are open immersions.

(2) The closed set T := B\Ayg ,,, endowed with its reduced induced subscheme struc-
ture, is a normal crossings divisor.

(3) The closed subscheme Y := (TkT)red is a normal crossings divisor.

(4) X and B are projective smooth varieties over C.

(5) There exists a semi-abelian scheme A — B which extends the universal abelian
scheme.

(6) The n-level structure sections S;: Ag , — A (i € (Z/nZ)*8) extend to pairwise
disjoint sections of X over B.

(7) The action of the inversion on A extends to an involution a of X over B whose
fixed-point scheme factors through | {;c(z,/nzy2s Si-

(8) Lete: B — A be the zero-section and let E := E*Q,Z/B' There is a natural
isomorphism

FE~ Qx(logY)/f (Q2p(og T)) = Qx5 (log),

where
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(9) there is a natural isomorphism
RIT,(Ox) = A1 (EY)
forallg > 0.

Notice that statement (7) implies that Xo = [ [;¢(z,/472¢ 2..—0 Si- The conormal
sheaf of X, in X is locally free since both X, and X are regular and we denote the
dual of the conormal sheaf by N.

Proposition 2. There is a natural isomorphism N ~ Qx/p(log)|x,.
For the proof, we shall need the following lemma.

Lemma 3. There exists an open neighborhood V of Xo such that fly is smooth.
Furthermore, the natural map N¥ — Qx /Blx, is an isomorphism.

Proof. Recall that there is an exact sequence
NY — Qx/Blx, — Qx,/x — 0

(see [H, IT, Proposition 8.12]). Using the determination of X, given above we deduce
that Qy,,x = 0. Furthermore, the restriction of the above sequence to X, N A is
exact, since 4 — A, » is smooth (cf. [FL, IV, Part 3, Proposition 3.7 (b)]). Hence
tk(N) = g. Now letr: X — Z be the function 7 (x) := dimy () Qx/B,x w(x) kK (X),
where « (x) is the residue field at x. This function is upper semicontinuous (see [H,
II, Example5.8 (a)]) and thus reaches its minimum at g, which is the rank of Qx,p
on the open dense subset A of X. The set V := {x € X|r(x) = g} is open and the
restriction of Qx,p to V is locally free of rank g (see [H, II, Example 5.8 (c)]). The
existence of the surjection N¥Y — Q x/Blx, implies that r(x) < g when x € X,
and thus r(x) = g on X,. Thus X, C V. The restriction f|y is smooth since V
and B are nonsingular varieties over C and dim(V) — dim(B) = g (see [H, III,
Proposition 10.4]). The morphism NV — Qx/,plx, is a surjection of locally free
sheaves of the same rank and is thus an isomorphism. This concludes the proof. O

Proof of Proposition 2. Consider the commutative diagram with exact rows on X:

Qg — fQplogT) — F O, —0

| | |

0— Qx — Qx(ogYy) —> Oy,

! l l

Qx/p — Qx/plog) —> Oy, /f Og

| | l

0 0 0,
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where the morphism ?*OTO — Oy, is defined by the two vertical morphisms on
its left side. Let V' C T be the open subset of 7 which consists of all the points
which do not lie at the intersection of two irreducible components of 7. The set V
has smooth disjoint irreducible components. Let U be the open neighborhood of X,
provided by Lemma 3. Let now Vp be an open subset of B such that Vg N T =V
andlet Up := Ag , U V. Finally, let U := ?71 (Up) N Up. Using Lemma 2 and the
snake lemma, we see that the restriction of the last diagram to U has the following
appearance:

7ply — F QplogD)ly — F Ogly — 0

| l |

0— Qxly — QxUogV)|ly — Oylu

l |

Qx/plu =~ Qx/plog)ly

| |

0 0.

Consider now an n-level section 0 : B — X whose image is an irreducible com-
ponent of X,. By the last diagram and the second statement in Lemma 3, we
have a|*;JB Qx/p(log) ~ o|’l“]BNV. Since B\Up has codimension 2 in B by con-
struction and since B is regular, there is a unique extension of the isomorphism
a|f]B Qyx/p(log) ~ (7|’{]BNv to an isomorphism 0*Qyx/g(log) >~ o*N". This con-
cludes the proof. O

2.3 A relative Lefschetz fixed-point formula

In this subsection, we shall review a relative fixed-point formula which is a corollary of
aformulain Arakelov theory proved in [KR1]. Let S be a noetherian affine scheme. Let
Z be aregular scheme which is quasi-projective over S. Let 1, be the diagonalizable
group scheme over S which corresponds to Z/nZ. Suppose that Z carries a ;-
action over §; furthermore, suppose that there is an ample line bundle on Z, which
carries a uy-equivariant structure compatible with the w,-equivariant structure of Z
(see [T2, par. 1.2] for more details about the latter notion). We shall write K(’)‘ "(Z)
for the Grothendieck group of locally free sheaves on Z which carry a compatible
Wn-equivariant structure. Replacing locally free sheaves by coherent sheaves in the
latter definition leads to a naturally isomorphic group (see [T2, Lemma 3.3]). If
the w,-equivariant structure of Z is trivial, then the datum of a (compatible) w,-
equivariant structure on a locally free sheaf E on Z is equivalent to the datum of a
Z/nZ-grading of E. The group Kg "(Z) carries a A-ring structure such that for any
wn-equivariant locally free sheaf E, the element A*(E) is represented in K(’)‘ "(Z)
by the kth exterior power of E, endowed with its natural u,-equivariant structure
(see [K, Lemma 3.4]). For any u,-equivariant locally free sheaf E on Z, we write
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A_1(E) for Zzl;(g)(—l)k)\k(E) € K(‘)‘" (Z). There is a unique isomorphism of rings
K{f”(S) ~ Ko(S)[T]/(1 — T™) with the following property: it maps the structure
sheaf of S endowed with a homogenous Z/nZ-grading of weight 1 to 7 and it maps
any locally free sheaf carrying a trivial equivariant structure to the corresponding
element of Ko(S) (= K" (5)).
The functor of fixed points associated to Z is by definition the functor

Schemes/S — Sets

described by the rule
T Z(T) 1)

Here Z(T),, () is the set of elements of Z(T) which are fixed under each element
of wu,(T). The functor of fixed points is representable by a scheme Z,,, and the
canonical morphism Z,, — Z is a closed immersion (see [SGA3, VIII, 6.5 dJ).
Furthermore, the scheme Z,,, is regular (see [T, Proposition 3.1]). We shall denote
the immersion Z,,, < Z by i. Write N for the dual of the conormal sheaf of the
closed immersion Z,, < Z. It is locally free on Z,, and carries a natural -
equivariant structure. This structure corresponds to a (t,-grading, since Z,, carries
the trivial p,,-equivariant structure and it can be shown that the weight-0 term of this
grading is O (see [T, Proposition 3.1]).

Let W be a regular scheme which is quasi-projective over S and suppose that
W carries a pp-action over S. Let h: Z — W be a projective S-morphism which
respects the w,-actions and write h,, for the induced morphism Z,, — W. The
morphism /4 induces a direct image map Rh, : K(’)L" (Z2) - Kg” (W), which is a ho-
momorphism of groups described by the formula Rh,(E) := Z,@O(—l)kRkh*(E)
for a u,-equivariant coherent sheaf £ on Z. Here R¥h,(E) refers to the kth higher
direct image sheaf of E under A; the sheaves Rkh*(E) are coherent and carry a
natural p,-equivariant structure. The morphism £ also induces a pull-back map
Lh*: K(’f” W) — K(’f” (Z); this is a ring morphism which sends a u,-equivariant
locally free sheaf £ on W on the locally free sheaf 42*(E) on Z, endowed with its
natural u,-equivariant structure. For any elements z € K(’; "(Z) and w € K(’f (W),
the projection formula Rh,(z - Lh*(w)) = w - Rh(z) holds. This implies that the
group homomorphism R#A, is a morphism of K{f” (S)-modules, if the group K(’)L” (2)
(respectively, K(’f "(W)) is endowed with the K(’f "(§)-module structure induced by
the pull-back map K(’)L” S — Kg” (Z) (respectively, K(‘)"' ) - K(’f” (W)).

Let R be a K{f” (S)-algebra such that 1 — T* is a unit in R for all k such that
1<k <n.

We shall refer to the following hypothesis as (H): S is the spectrum of a Dedekind
ring which can be embedded in C, Z and W are flat over S and Z,,, is flat over S.

Theorem 4. Let hypothesis (H) hold. The element A_1(N") is a unit in the ring
K(l)‘" (Zu,) ®K(')”’(S) R. If the p,-equivariant structure on W is trivial, then for any

element z € K(’f” (Z), the equality

Rh.(2) = Rhy, «(—1(NV) ™1 Li*(2))
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holds in Ky" (W) @ (s) R-

Proof. The theorem is a consequence of [KR1, Part 6, Theorem 6.1] if the morphism
h is an immersion. Furthermore, the theorem is a consequence of [KR1, Part 4,
Theorem 44]if W = §, Z = PI§ for some k > 0 and £ is the structural morphism
PI§ — S.These two cases combined with the projection formula and the determination
of K, (’f " (Plg) given in [T2, Theorem 3.1] imply the full statement. O

Remarks.

(1) Theorem 4, without hypothesis (H) but with the hypothesis that S is the spec-
trum of an algebraically closed field of characteristic not dividing », is proved
in [BFM].

(2) Theorem 4, without hypothesis (H) but with the requirement that R is a field is a
consequence of [T, Theorem 3.5].

(3) The proof of Theorem 4 given above only apparently refers to Arakelov theory;
its underlying structure is purely algebraic and is a variant of the proof of the main
result of [BFM]. This variant does not, in fact, use hypothesis (H). In particular,
Theorem 4 is true without hypothesis (H).

3 Proof of Theorems 1 and 2

The proofs of Theorems 1 and 2 are similar and proceed in two steps. In the first
one, we apply Theorem 4 to a certain geometrical situation and in the second one,
we transform the resulting expression using some combinatorics. The first subsec-
tion contains the combinatorial statements we shall need and in the second one the
computations leading to the proofs are given.

3.1 Combinatorics

Let’s consider the two following formal series

X
N
exp(x) ==y —

j=0 "

and

00 i
log(1 4 x) := Z(—I)JHT
=1

For [ > 1, we shall write C[x]¥! for the quotient of the ring C[[x]] by the ideal of
formal series divisible by x”, where r > [. We then define expgl (x) € Z[Z—ll][x] and
loggl(l +x) € Z[%][x] as the only polynomials of degree / representing the above
formal series exp(x) and log(1 4 x) in Clx1sh

About these polynomials, we have the following lemma.
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Lemma 4. Let u € 1,(C), u # 1. Then the equality

1—u-exp< ! j
loggz( u - exp (X)>=—Z§L(M,1—j)x.—‘
- J!

j=1

1 —u

holds in C[x1SL. In particular, the values ¢y (1, 1 — j)xj/j! liein OQ(M)[ﬁ] when
1<j<L

Proof. It will be sufficient to prove the identity

1 —u-exp(x) > xJ
log (——— ) ==Y @ 1-pH= @)
1—u P j!
in C[[x]]. In [MR2, (6), proof of Lemma 3.1], the identity of complex power series
u - exp(x) > xt
I s L —i)— 5
1 — u -exp(x) ;{L(u j)j! )

is proven. If one takes the formal derivative of both sides of equation (4) (for x),
one obtains equation (5). Hence it is sufficient to show that the constant terms of the
power series on both sides of (4) coincide. Since both constant terms can be seen to
vanish, we are done. O

The following lemma will be used in the proof of Theorem 1.
Lemma 5. The equality {p(—1,1 —1) = —(2! — 1)B; /1 holds for all | > 2.
Proof. Lets € C be such that f(s) > 1. By definition, we have
=D*
((=ls)=Yy_

Y
k=1

and

e =Y

k>1

where ¢ is Riemann’s ¢ -function. From these equalities, we deduce that {7, (-1, 5) =
CQ(S)(zl_‘Y — 1). Now ¢g(1 — 1) = —B;/I (see for example [W, Chapter 4, Theo-
rem 4.2]), whence the lemma. O

If Z is a scheme which is smooth over a Dedekind ring, we shall write CH(Z S

for the ring CH(Z)/ GB?O=1+1 CH/(Z).If E is a locally free sheaf on Z, we shall write

chs! (E) (“truncated Chern character”) for the element of CH(Z)S ® Z[Tl!] given

by the formula chgl(E ) = le:o % ché (E). The proof of the following lemma is

similar to the proof of the multiplicativity and additivity of the Chern character and
we shall omit it.
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Lemma 6. The map chs! factors through a ring homomorphism

< !
Ko(Z) - CH(Z)Y Q@ Z |:F:| .

Let CH(Z)Sh* be the multiplicative subgroup of CH(Z)S! consisting of elements
of the form 1 + z, where z has the property that its degree-0 part vanishes.

The following lemma is a consequence of the fact that log((1 + x)(1 + y)) =
log(1 + x) + log(1 + y) in the ring of power series C[[x, y]].

Lemma 7. The polynomial log<1 defines a map CH(Z)S* — CH(Z2)S @ Z[%]
which is a group homomorphism.

3.2 Final computations
We shall now prove Theorem 2.

Lemma 8. Let & be a primitive nth root of unity in Ogy,,,)- Then the elements 1 — & k
are units in OQ(ﬂn)[}l]for every integer k such that 1 < k < n.

Proof. Recall the polynomial identity H?;%(X —&/y=X"""4... 4+ X + 1. This
identity implies that the inverse of 1 — £¥ is given by n ' [[/Z{ ., (1 —&"). O

IfAisa D[%]-algebra such that Spec A is connected and nonempty, then A con-
tains exactly n distinct nth roots of unity, all of which are images of roots of unity
contained in D[%]. This is a consequence of the last lemma and of the Chinese re-
mainder theorem. Fix a primitive root of unity ¢. This choice fixes an isomorphism
Z/nZ >~ uy, (D[%]) and hence for each D[%]-algebra A, there is a canonical isomor-
phism of groups p,(A) =~ HCECC(A) Z/nZ, where CC(A) is the set of connected

components of Spec(A). We have thus described a D[}l]-isomorphism between the
constant group scheme over D[%] associated to Z/nZ and the group scheme u,
over D[%].

Let W be a scheme which is smooth over Spec D[%] and which carries the trivial
Wn-equivariant structure. For each u,-equivariant locally free sheaf E on C, define

ch/(E) = Z ok chSHEy).
keZ/nZ

We can see from the definitions that chif induces a ring morphism
1
chi!: K" (W) — CHS (W) ® Ogu,) [ﬁ} :

We shall now apply Theorem 4. Let us denote the morphism C — C by ¢ and its
relative dimension by d. The automorphism ¢ defines a Z/nZ-action on C over C and
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using the isomorphism described above, we obtain a u,-equivariant structure on C
over C. The fixed-point scheme ¢, : C,,, — C (which coincides with the fixed-point
scheme of ¢) is then étale over C. To see this, notice that we have an exact sequence
of coherent sheaves

1\]v —> QC/C'CM,, — QCM,,/C — 0,

where N is the normal bundle of the immersion C,,, < C and all the maps respect the
natural p,-actions on the sheaves. The two first sheaves in this sequence are locally
free, since C and C,,,, are regular and the map c is smooth. Hence the first morphism
in the sequence is injective, because it is injective on the dense open subset where
cy, 1s étale. If we now consider the weight-O part of the sequence, we obtain an
isomorphism (£2¢/clc,, Jo = €2¢,,/c and thus ¢, /¢ is locally free which in turn
implies that Q¢ /¢ = 0 since c is finite. Hence ¢ is étale.
We now compute

) 2d
ch! (RC* <Z(—1)k Ak (QC/C))) = en) (Z(_”k . (H))
k=0 "
(i) Chif(Rcﬂn*((Xfl (NV))_lkfl (QC/C|CILH )
3) gl(Rcun,*()\—l(Qcﬂn/C)))

= chy,
2 f®1eCHYC) ® Oy, [ﬁ} :

Here fy € CH(C) = Z is the degree of the finite morphism Cy,- Equality (1) is
justified by the fact that the Hodge to de Rham spectral sequence of ¢ degenerates
and the fact that there is a natural isomorphism Hj, (C/C) =~ A" (HG{R (C/C)) for all
r € 770 (see [BBM, 2.5.2]). Equality (2) is provided by Theorem 4, applied in the
case where S = Spec D[%], Z =C, h = c, the uy-equivariant structure on C is the
one described above and z = A_1(Q¢/c). Equality (3) is justified by the fact that
¢y, 1s étale and the multiplicativity of A_;. Equality (4) derives from the fact that
Qc,,/c = 0. We shall now rewrite the resulting equality

2d
1

k=0

using the combinatorics of the first subsection.

By the splitting principle, we may suppose without restriction of generality that
H = Zii] hy in K(’)‘ "(C), where hy is a line bundle which carries a homogenous
Z/nZ-grading. Write #; for the first Chern class c1 (hy) of hy. Let w(hy) € Z/nZ be
the weight of /. and let uy := ¢ %) Equality (6) implies that

2d
[Ta—uo=h.
k=1
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In particular, ux # 1 for all k. We now have the following reformulation of (6):

1 <! = NI Mn(l k)
% i > =DEAR ) H—(l_uk)

k=0 k=1

I QRS I
__ 1 —uyg -

If we apply the loggl map to the members of the last string of equalities and use
Lemma 4, we obtain

= 1—uy - expS (1)
Zlog<l< ) ZZCL(Mkyl—J) L
k=1

1 —uyg

k= 1] 1
i
=—ZZ¢L(uk,1—j)%
j—]k—l J:
ch H
=—Z > 1) ( )
j=lueu, (D)
=0, @)

which implies the result.
We now turn to the proof of Theorem 1. We use the notation of Theorem 3. We

shall apply Theorem 4 to the situation where Z = X, h = f, n = 2, the action
of uy is given by the involution & which extends the action of the inversion on A
(notice that over D[%] there is a unique isomorphism between 1, and the constant
group scheme associated to Z/27Z) and z = A_1(Q2x,p(log)). Let N be the dual of
the conormal sheaf of the immersion X, = X, < X.

We compute

8
chy (RT* (Z(—l)" ~ (szX/B(log»))

k=0
(D 8
=ch! | Y~ AF EDEY)
k=0

2 eh (R 1y (01 (NV) ™ 221 Qx5 (02 x,.,)))

1
@fo®leCH(C)®Z[2 l']

Here fo € CHY(C) = Z is the degree of the finite morphism 7M. Equality
(1) is justified by Theorem 3(9). Equality (2) is provided by Theorem 4, applied
in the situation just described. Equality (3) is justified by Lemma 3. Let us define
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H :=E@®EY. We can now repeat the computations from (6) to (7) verbatim, setting
n = 2. We obtain the equation

J
Z DR AC 1—J)Ch o7t) _

J=lueus(D)
in CH(B) ® Z[Z.i”]. In other words,

l

H h{ (E
Z;L(ll— 0() ZL<11—]>°J” 0

in CH(B) ® Z[5};1). Now notice that ¢, (—1,1 — 1) = —(2! — 1)B;/I by Lemma 5.
We have thus proven an analog of Theorem 1, where b*E is replaced by E. To
deduce Theorem 1 as stated from it, we shall make the following construction. Let
A Ay — Ag » X B be the diagonal immersion and let Aé, n — Zar(A(Ag n))
be a desingularization of the Zariski closure of A( n)- Let~p1 (respectively, p2)
be the map obtained by composing the natural map A on <> Agn X B and the first

(respectively, second) projection map A a2 X B— Ag n (respectively, A X B—

B).Leth' :=bop;. Themapb'isa also a desingularization of A, By Proposmon
1, we have an isomorphism p%.4 ~ b'*G on A’ . Hence

1 ] /%
chy(b'"E
23 (11— ) &—ZZM L1—j # — 0
in CH(A;,,H) ® Z[ﬁ]. Now notice that
/ J % l J (1%
chl (b'*E) chy (b*EE)
. 0 . 0
D1,% 22&(—1,1—])7 = p1+P] 22&(—1,1—])7
J= J=

l J (1%
..chy (b*E)
=pi()-2) (=11 - H———
— J!
J
in CH(Ag‘,,) ® Z[ﬁ]. We have used the projection formula for the last equality.
Since p; is birational, we have p; (1) = 1 and we have thus completely proven
Theorem 1.

4 Consequences and conjectures

4.1 A corollary of Theorem 2

Let c: C — C be a polarized abelian scheme, where C is a regular and quasi-
projective variety over C. Let K be a finite abelian extension of Q. Suppose that there
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is an embedding of rings Og < End¢(C).LetH := H le (C/C). The coherent sheaf
‘H carries a ring action of K. Choose an element ky € K such that K = Q(kop) (a
simple element of K over Q). For each 0 € Hom(K, C), define

Hs := Ker(kg — o (ko) - 1d).

The natural morphism @, cHom(k,c)Ho — H is an isomorphism, as can be seen by
considering its restriction to closed points of C. Furthermore, the sheaves H, do not
depend on the choice of k.

Now let x: Gal(K|Q) — S' be a one-dimensional character of K. We shall
show that the following proposition is a consequence of Theorem 2.

Proposition 3. The equality

Y x@ch(Ho)= > x(o)rk(H,)

oeHom(K,C) oeHom(K,C)

holds in CH(C) ® Q.

Notice that there is a noncanonical isomorphism Hom(K, C) >~ Gal(K|Q). The
equality in the proposition is true for any choice of such an isomorphism.

In the following, the use of Hom(-, C) instead of Gal(-) always implies that the
corresponding statement is independent of the choice of an identification of Hom(-, C)
and Gal(.).

Corollary 1. The equality ch(Hy) = rtk(Hy) in CH(C) ® Q is true for all o €
Hom(K, C).

Proof of Corollary 1. The content of Proposition 3 is that as functions of o, all the
Fourier coefficients of ch(H,) and rk(H, ) coincide. Hence the conclusion follows
from the uniqueness of the Fourier decomposition. O

Before coming to the full proof of Proposition 3, we shall prove the following
weaker statement.

Proposition 4. Proposition 3 holds for K = Q(u,,) for some n > 2.

In the proof of Proposition 4, we shall need the following lemma, which is sur-
prisingly difficult to prove. The hypotheses and the terminology of Proposition 4 are
in force.

Lemma9. Let ug := exp(2im/n) and let | > 1 be an integer.

(1) The following equalities of meromorphic functions of s € C hold. If x is an even
character, then

nl_sns_l/zw

Z x(0)¢r(o(up), s) = '(s/2)

o €Hom(Q(un),C)

L(X9 1 _5)7

while if x is an odd character, then
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S ), s) =il
o €Hom(Q(un),C) F(s+1)/2)

(2) We have
> x@)i(o(e), 1 =1) #0
ocHom(K,C)

when either (a) x is an even character and l is an even integer, or (b) x is an odd
character and l is an odd integer.

Recall that a character x as above is odd (respectively, even) if the image of
complex conjugation under x is —1 (respectively, 1). The symbol L(y, s) refers to
the meromorphic function of s € C which is defined by the formula

o0
R0
L(x.$) =) I
k=1
for M(s) > 1. Notice that the character x may be nonprimitive. If the character yx is
primitive, the equalities in (1) are consequences of the functional equation of Dirichlet
L-functions.

Proof of Lemma 9. The second equality in (1) is the content of [KR2, Lemma 5.2].
The proof of the first equality is similar and we shall omit it. Before beginning with the
proof of (2) we recall that the function 1/ I"(s) has zeros at the points 0, —1, —2, ...
and is # O for all the other values of 5. Recall also that L(x, s) has an Euler product
expansion when R (s) > 1 and thus L(x, s) # 0 when N(s) > 1. To prove (2)(a), we
compute (with x and / even)

12— /2

I N
Y x@)lowo). 1-1) =n'w T((1—10)/2)

oeHom(K,C)

L(x,1).

Using the remarks made before the computation, we can conclude the proof of (2)(a).
For the proof of (2)(b), we make a similar computation:

> x)Llowo). 1-1)

oeHom(K,C)
_ g2 ra/2+1/2)
T —1/2)
_ g2 ra+1/2)
T —1/2)

L(x,D

L(xprim> D) [ [(1 = Xprim(P) P ™).
pin

Here Xprim is the primitive Dirichlet character associated to x. It is shown in [W,
Chapter 4, Corollary 4.4]) that L (xprim, 1) 7 0 (it is only to treat the case [ = 1 that
we introduced Xprim). Using this fact and again the remarks made before the proof of
(2)(a), we can conclude. ]
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Proof of Proposition 4. Let ug := exp(2im/n). Let T € Gal(Q(u,)|Q); the root of
unity t(ug) acts on C as an automorphism of finite order n over C. The fixed-point
scheme of t(ug) on C can be shown to be finite and flat in this situation. We leave
this as an exercise to the reader. Applying Theorem 2 to this situation (with similar
notations and ¢ given by 7 (1)), we obtain the equation

Y o), 1 —Dehl(Hy) =0 ®
oeHom(Q(up),C)

in CH/(C) ® Q, for any / > 1. We now identify Hom(Q(u,), C) and Gal(Q(u,,)|Q)
via the natural embedding Q(u,) < C and we evaluate at ¥ = x~! the Fourier
transform of the left side of (8) for the variable T € Gal(Q(u,)|Q). We obtain

> 1 > tu(o(t(), 1 —1)ch' (M)
t€Gal(Q(un)|Q) o €Gal(Q(1n)|1Q)

=>"x( [Z SL(o (), 1 — l)Chl(Har)}

=) x(@ [Z cL(@t™ (o), 1= 1) chlma)}
= (Z X (@@t uo), 1 = l)) ch'(Ho)

= (Zy(z)g(r(uo), 1 —1)) (Z x(a)ch’(Hg)>

=0.

Now suppose that / is an even integer (respectively, odd integer) and that x is an even
character (respectively, odd character). Then, using Lemma 9, we deduce that

Y x(o)ch(Hy) =0

which is the equality to be proven. If [ is even (respectively, odd) and x is odd
(respectively, even) then ch! (Hy) is an even function of o (respectively, odd function
of o), which again implies that

Y x(@)chl (H) =0.

Indeed, the change of variables o — o ~! then changes the sign of the expression
> €Gal(Q(un)|Q) X (o) ch! (He ). The fact that ch! (Hy) is an even function of o (re-
spectively, odd function of o) when [ is even (respectively, odd) follows from the
fact that there is a ug-equivariant isomorphism H =~ V. This in turn follows from
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relative Lefschetz and Poincaré duality and the fact that there exists an ample invert-
ible sheaf £ on C, which carries a ug-equivariant structure. To obtain such a sheaf,
start with an ample invertible sheaf £’ on C and let £ := ®Z;(l)(u(f))*£/ . The sheaf L
carries a natural up-equivariant structure.

Combining the two last equations, we can conclude the proof. O

We shall need the following lemma in the proof of Proposition 3.

Lemma 10. Let L'|L be a finite extension of number fields such that Oy is free over
Oy, and that L' is abelian over Q. Let x1 be a one-dimensional character of L. If
Proposition 3 holds for K = L' and x = Indé/(XL), then it holds also for K = L
and x = L.

Recall that by definition Indf (x1) is a one-dimensional character of L’ such that
Ind% (xp) (o) = x(op/|p) for all o/ € Gal(L'|Q).

Proof. Letr :=[L': L]andletxy, ..., x, be abasis of O,/ over Oy . The mapping
¢: Op — M, (Op) of Oy into the r x r-matrices with entries in Oy which maps
an element of Oy to the matrix representation in this basis of the corresponding
Oy linear map O — Oy, is an embedding of rings. Via the map ¢, we obtain an
embedding of rings Oy — End¢(C"). There is a natural isomorphism of coherent
sheaves

D Hik (C/C) ~ Hi(C/C),

j=1

and under this isomorphism, there is a decomposition

P HR(C/Cro, = P HRC/C)s,

j=1 G'L/|L=UL

for any o7, € Gal(L|Q). Now choose an embedding L” < C to identify Hom(L’, C)
and Gal(L'|Q). We compute

> ch(Hg €7/ C)ay) Ind} () (01
=Y x(or) Y ch(Hf(C/C)op)
oL (TL/|L=(TL
= x(o1) Y ch(H(C/C)s,)
oL j=I

=r- ZCh(Hle(C/C)UL)X(O-L)f

oL

from which the conclusion follows. O
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Proof of Proposition 3. Class field theory implies that K can be embedded in Q(u,,)
for some n > 2. We claim that Ogy,,,) is free over O . To see this, let ug € Og,,)
be a primitive nth root of 1 and let k£ be the degree of the minimal polynomial of
up over K. The elements 1, ..., MS_I are then linearly independent over K, hence
over Ok. The minimal polynomial of ug over K is of the form ag + ait + --- +
ag—1t*=1 + t*, where {ao, ..., ar} € Ok. Hence ul(‘)ﬂ = —aoup — aluf)H — =
ak_1u’6_1+s for all integers s > 0. Applying induction over s, we see that all the
elements 1, ..., ug_l are contained in the Og module generated by 1, ..., MS_I.
Since the elements 1, ..., ugfl generate Ogy,,,) as an Og-module, we see that the
elements 1, ..., ug_l generate Og(,,) as an Og-module and thus form a basis of
Oq(u,) as an Og-module.

Now using Lemma 10, we see that we may assume without restriction of generality
that K = Q(uy,). In that case, Proposition 4 is equivalent to Proposition 3 and this

concludes the proof. O

4.2 Conjectures and speculations

Let C be a smooth quasi-projective scheme over C. Let furthermore C — C be a
polarized semi-abelian scheme and let K be a number field which is Galois over Q.
Suppose that there is an embedding K < End¢ (C)®Q. Let H := e*Q¢/c @e*Q\C//C
where e: C — C is the zero section. The coherent sheaf H carries a ring action of K.
Choose an element ky € K such that K = Q(kg). For each 0 € Hom(K, C), define

Hy = Ker(kg — o (ko) - 1d).

The natural morphism @, cHom(x.c)Hos — H is then an isomorphism, as before and
the sheaves H, do not depend on the choice of k.

Let now x: Hom(K, C) — C be a simple Artin character of K. We make the
following conjecture.

Conjecture 1. The equality

Y x@ch(Ho) = Y x(o)rk(H,)

oeHom(K,C) oeHom(K,C)
holds in CH(C) ® Q.
An even stronger conjecture is the following.
Conjecture 2. The equality ch(H,) = rk(H, ) holds for all o € Hom(K, C).

Notice that unlike in the case where K is an abelian extension of (@, Conjecture
2 is not a consequence of Conjecture 1.

Conjecture 1 is a consequence of [MR1, Conjecture 2.1], which can be considered
as a “lifting” of Conjecture 1 to Arakelov geometry.

We would also like to point out a general conjecture on Gauss—Manin bundles,
which overlaps with Conjecture 1 and is a consequence of [MR1, Conjecture 3.1].
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Conjecture 3. Let X and Y be smooth quasi-projective varieties over C. Let f: X —
Y be a smooth and projective morphism. Then ch(HéR(X/ Y)) = rk(HéR(X/ Y)) in
CH/(Y)® Q, forall/ > 1.

Conjecture 3 can be related to a conjecture of Bloch and Beilinson.

Suppose that Y is projective over C and has a model Yy over a number field. Let
CH(Yp)o be the subgroup of CH(Yj) ® Q consisting of homologically trivial cycles.
Recall that there is a map from CH(Y()g to the product of the intermediate Jacobians
of Y(C), called the Abel-Jacobi map. The conjecture of Bloch and Beilinson is that
the Abel-Jacobi map is injective in this situation (see [BB, after Lemma 5.6]).

Suppose now furthermore that there is a morphism Xo — Yy, such that the
morphism obtained after a field extension to C coincides with f. Notice that the
classes ch(H'g (Xo/Yo)) — rk(H.; (Xo/Yo)) lie in CH(Yp)o, because the bundles
H éR (Xo/Yo) carry an algebraic connection, the Gauss—Manin connection. The Abel—
Jacobi map can be described using Cheeger—Simons characteristic classes (see [S,
Proposition 2]) and it has been shown by Corlette and Esnault (see [CE]) that the
Cheeger—Simons classes of Gauss—Manin bundles vanish. All in all, this implies that
the image of the classes ch(HéR(Xo/ Yo)) — rk(HcllR(Xo/ Yo)) under the Abel-Jacobi
map vanish and thus Conjecture 3 is implied by the conjecture of Bloch and Beilinson
in this situation. The result of Corlette and Esnault could also have been replaced by
a general result of Reznikov (see [R]) in this setup.

Finally, we shall indicate how Theorem 2 overlaps with Stickelberger’s theorem.
Let K C Q be an abelian extension of Q and suppose that the conductor of K is n.
Let G := Gal(Q(u,)|Q) >~ (Z/nZ)*. By class field theory, we have an inclusion
K € Q(u,) and the group G thus acts on K by restriction. Via this action, we obtain
a Z|G]-module structure on the multiplicative group of the ideals of Ok. If A is an
ideal in Ok and v € Z[G], we write AV for the image of A under v. We write

0K)=0:= Y. {%}oa‘leQ[G],

ae(Z/nZ)*

where {-} denotes the fractional part of a real number. The element 6(K) is called the
Stickelberger element. Let 8 € Q[G] and suppose that 8 - 0 € Z[G]. Stickelberger’s
theorem asserts that if A is an ideal of O, then A#? is a principal ideal. In particular
A" is principal. Let now x : G — S! be an odd primitive Dirichlet character and let

e =Y x(@)0o~" € ZulGl.

oeG

Here Z,p, is the integral closure of Z in Q,p, the subfield of Q generated by all
the roots of unity. Let L(x,s) be the L-function of x, which is a meromorphic
function of s € C (see Section 4.1 or [W, Chapter 4] for the definition). We have
L(x,1)=—B1, =— Zae(Z/nZ)x{%}X(a)' We compute

€40 = Z {%}exagl = Z {%}7(%) €x = By y€y.

ae(Z/nZ)* ae(Z/nZ)*
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Now identify CH! (O ) with the class group of O . The last computation shows that
Stickelberger’s theorem implies that n By 3¢, annihilates any element of C H HOp®
L.

On the other hand, consider the situation of Theorem 2. With uq := exp(2im/n)
Theorem 2 says in particular that

Z Q(”&O)CI(HMS) =0
ael/nZ

in CH'(C) ® Zab[%]. More generally, let b € (Z/nZ)* and apply Theorem 2 again,
with (=% in place of 1. We obtain the identity

Y L’ 0y e (Hug) =0 (10)
a€Z/nZ

in CH'(C) ® Zu ;1.
Define the Gauss sum

()= Y. x(@uf.

ael/nZ

Itis shown in [W, Chapter 4, Lemma 4.7] that }_,c7,/,7 X (a)u(“)b = 1(x)x (b) holds
for any b € 7Z. This implies that

D XBLw’, 0) = x@TGOL(x,0).
beZ/nZ

We shall now exploit (10). We compute

Yoxw [ Y aw ol = DY D xB)wg’, 0)c (Hu)

beZ/nZ ac’Z/nZ a€Z/nZ beZ/nZ

=t(OLX0 Y x@c' (Hy)
acZ/nZ

in CH'(C) ® Zypl[i]. Since T(x)t(x) = [t()I> = n (see [W, Chapter 4,
Lemma 4.8]), (%) is a unit in Zab[%]. Hence

—L(x,0) Y x@c' Mg =B, Y. x@c'(Hg =0

aeZ/nZ acZ/nZ

inCH' (C)QZap| rll ]. Now suppose furthermore that D = Og,,,,) and that the fibration

C — C and the automorphism ¢ have models over Z[%]. Fix such models. We then
obtain
Bl’xéycl(Huo) =0,
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where CH! (C) ®Zab[,l,] is considered as Gal(Q(u,)|Q)-module via the given model
of C.

Stickelberger’s theorem and Theorem 2 thus lead to similar annihilation state-
ments. It is even possible to construct a geometrical situation where Theorem 2 is
implied by Stickelberger’s theorem. This is left as an exercise to the reader.

One is thus led to speculate whether (the Fourier transform of) Theorem 2 is
not a special case of a theorem generalizing Stickelberger’s theorem to the Chow
groups of the various Shimura varieties classifying abelian varieties with complex
multiplications.
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Summary. In[PR1],R. Pink and the author gave a short proof of the Manin—-Mumford conjec-
ture, which was inspired by an earlier model-theoretic proof by Hrushovski. The proof given in
[PR1] uses a difficult unpublished ramification-theoretic result of Serre. It is the purpose of this
note to show how the proof given in [PR1] can be modified so as to circumvent the reference
to Serre’s result. J. Oesterlé and R. Pink contributed several simplifications and shortcuts to
this note.

1 Introduction

Let A be an abelian variety defined over an algebraically closed field L of characteristic
0 and let X be a closed subvariety. If G is an abelian group, write Tor(G) for the
group of elements of G which are of finite order. A closed subvariety of A whose
irreducible components are translates of abelian subvarieties of A by torsion points
will be called a torsion subvariety. The Manin-Mumford conjecture is the following
Statement:

The Zariski closure of Tor(A(L)) N X is a torsion subvariety.

This was first proved by Raynaud in [R]. In [PR1], R. Pink and the author gave a new
proof of this statement, which was inspired by an earlier model-theoretic proof given
by Hrushovski in [H]. The interest of this proof is the fact that it relies almost entirely
on classical algebraic geometry and is quite short. Its only nonelementary input is
a ramification-theoretic result of Serre. The proof of this result is not published and
relies (see [Se, pp. 33—34, 56-59]) on deep theorems of Faltings, Nori, and Raynaud.
In this note, we show how the reference to Serre’s result in [PR1] can be replaced by
a reference to a classical result in the theory of formal groups (see Theorem 1(a)).
The structure of the paper is as follows. For the convenience of the reader, the
text has been written so as to be logically independent of [PR1]. In particular, no
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knowledge of [PR1] is necessary to read it. Section 2 recalls various classical results on
abelian varieties and also contains two less well known, but elementary propositions
(Propositions 1 and 2) whose proofs can be found elsewhere but for which we have
included short proofs to make the text more self-contained. The reader is encouraged
to proceed directly to Section 3, which contains a complete proof of the Manin—
Mumford conjecture and to refer to the results listed in Section 2 as needed.

Notation

— “w.r.0.g.” is short for without restriction of generality.

— If X is a closed subvariety of an abelian variety A defined over an algebraically
closed field L of characteristic 0, then we write Stab(X) for the stabiliser of X
this is a closed subgroup of A such that Stab(X)(L) :={a € A(L)|a+ X = X};
it has the same field of definition as X and A.

— If p is a prime number and G is an abelian group, we write Tor” (G) for the set
of elements of Tor(G) whose order is prime to p and Tor,(G) for the set of
elements of Tor(G) whose order is a power of p.

2 Preliminaries

Lemma 1. Let L C L’ be algebraically closed fields of characteristic 0. Let A be an
abelian variety defined over L and let X be a closed L-subvariety of A. Then

(a) X is a torsion subvariety of A iff X/ is a torsion subvariety of Ap/;
(b) the Manin—Mumford conjecture holds for X in A iff it holds for Xy in Ap.

Proof. We first prove (a). To prove the equivalence of the two conditions, we only
need to prove the sufficiency of the second one. The latter is a consequence of the fact
that the morphism 7 : A; — A is faithfully flat and that any torsion point and any
abelian subvariety of A;/ has amodel in A (see [Mi, Corollary 20.4, p. 146]). To prove
(b),let Z := Zar(Tor(A(L))NX) (respectively, Z’ := Zar(Tor(A(L"))NX/)). Using
again the fact that any torsion pointin Ay, has amodel in A and that i is faithfully flat,
we see that 7 ~1 (Tor(A(L)) N X) = Tor(A(L’)) N X ;. From this and the fact that the
morphism 7 is open [EGA, IV, 2.4.10], we get a set-theoretic equality 7~ (Z) = Z'.
Since 7 is radicial, the underlying set of 7*(Z) := Zj is P (Z2) [EGA, 1, 3.5.10].
Since Z/ isreduced [EGA, 1V, 4.6.1], we thus have an equality of closed subschemes
Z; = Z'. Now by (a), the closed subscheme Z; - is a torsion subvariety of A;/ iff Z
is a torsion subvariety of A. O

Proposition 1 (Pink—Roessler). Let A be an abelian variety over Cand let F : A —
A be an isogeny. Suppose that the absolute value of all the eigenvalues of the pull-
back map F* on the first singular cohomology group H'(A(C), C) is larger than 1.
Then any closed subvariety Z of A such that F(Z) = Z is a torsion subvariety.

The following proof can be found in [PR1, Remark after Lemma 2.6].
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Proof. W.r.o.g., we may replace F by one of its powers and thus suppose that each

irreducible component of Z is stable under F'. We may thus suppose that Z is irre-

ducible. Notice that F(Stab(Z)) C Stab(Z). Let us first suppose that Stab(Z) = 0.
Write cl(Z) for the cycle class of Z in H*(A(C), C). We list the following facts:

(1) The degree of F is the determinant of the restriction of F *to H'(A(C), ©).
(2) Eacheigenvalue of F*on H' (A(C), C) isthe product of i distinct zeroes (counted
with multiplicities) of the characteristic polynomial of F* on H L(A(C), ©).

Facts (1) and (2) follow from the fact that for all i > 0 there is a natural isomorphism
AI(H'(A(C), C)) ~ H'(A(C), C) (see [Mu, p. 3, equation (4)]).

Now notice that since Stab(Z) = 0, the varieties Z + a, where a € Ker(F)(C),
are pairwise distinct. These varieties are thus the irreducible components of F~1(Z).
Now we compute

c(F*(2)) = Z cl(Z 4+ a) = #Ker(F)(C) - cl(Z) = deg(F) cl(Z)
aeKer(F)

and thus cl(Z) belongs to the eigenspace of H*(A(C), C) corresponding to the
eigenvalue deg(F). Facts (1), (2) and the hypothesis on the eigenvalues imply that
cl(Z) e H24m(A)(A(C), C), which in turn implies that Z is a point. This point is a
torsion point since it lies in the kernel of F' — Id, which is an isogeny by construction.

If Stab(Z) # 0, then replace A by A/ Stab(Z) and Z by Z/ Stab(Z). The isogeny
F then induces an isogeny on A/ Stab(Z), which stabilises Z/ Stab(Z). We deduce
that Z/ Stab(Z) is a torsion point. This implies that Z is a translate of Stab(Z) by a
torsion point and concludes the proof. O

Corollary 1. Let A be an abelian variety over an algebraically closed field K of
characteristic 0. Let n > 1 and let M be an n x n-matrix with integer coefficients.
Suppose that the absolute value of all the eigenvalues of M is larger than 1. Then any
closed subvariety Z of A" such that M(Z) = Z is a torsion subvariety.

Proof. Because of Lemma 1(a), we may assume w.r.o.g. that K is the algebraic closure
of a field which is finitely generated as a field over Q. We may thus also assume that
K C C. Proposition 1 then implies the result for Z¢ in Al., and using Lemma 1(a)
again we can conclude. O

Proposition 2 (Boxall). Let A be an abelian variety over afield K of characteristic 0.
Let p > 2 be a prime number and let L := K (A[p]) be the extension of K generated
by the p-torsion points of A. Let P € Torp(A(f)) and suppose that P ¢ A(L). Then
there exists o € Gal(L|L) such that o (P) — P € A[p]\ {0}.

A proof of a variant of Proposition 2 can be found in [B]. For the convenience
of the reader, we reproduce a proof, which is a simplification by Oesterlé (private
communication) of a proof due to Coleman and Voloch (see [Vo]).

Proof. Let n > 1 be the smallest natural number so that p"P € A(L). For all
i €{l,...,n},let P, = p"7'P. Let also o1 be an element of Gal(L|L) such that

i—1
o] (p"_lP) * p"_lP. Furthermore, let o; := o  and Q; := 0;(P;) — P;.
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First, notice that we have pQ = o1(p"P) — p"P = 0and Q| = o1(p"~ ' P) —
p"'P #£ 0, hence Q1 € A[p]\{0}. We shall prove by induction on i > 1 that
Q; = Qg ifi < n. This will prove the proposition, since Q, = 0,(P) — P.

So assume that Q; = Q for some i < n. We have p*(0; — 1)(Piy1) = p(o; —
1)(P;) = pQ; = 0. Since any p-torsion point of A is fixed by o, and hence by o;,
we also have p(o; — 1)2(P,-+1) =0and (0; — 1)3(P,-+1) = 0. The binomial formula
shows that, in the ring of polynomials Z[T], T? is congruent to 1 + p(7 — 1) modulo
the ideal generated by p(T — 1) and (T — 1) (notice that p # 2!). We thus have
(0] = 1D)(Pi41) = p(oi —1)(Pit1) = (0; —1)(P,), idest Q;1 = Q;. This completes
the induction on i. m|

Suppose now that K is a finite extension of Q,, for some prime number p and let
K" be its maximal unramified extension. Let k be the residue field of K. Suppose that
A s an abelian variety over K which has good reduction at the unique nonarchimedean
place of K. Denote by A the corresponding special fiber, which is an abelian variety
over k.

Theorem 1.
(a) The kernel of the homomorphism
Tor(A(K"™)) — Ao (k)

induced by the reduction map is a finite p-group.
(b) The equality Tor? (A(K"™)) = Tor? (A(K)) holds.

Proof. For statement (b), see [Mi, Corollary 20.8, p. 147]. Statement (a), which is
more difficult to prove, follows from general properties of formal groups over K. See
[Oes2, Proposition2.3 (a)] for the proof. O

Let now ¢ € Gal(k|k) be the arithmetic Frobenius map.

Theorem 2 (Weil). There is a monic polynomial Q(T) € Z[T] with the following
properties:

(@) Q(¢)(P) =O0forall P € Ay(k).
(b) The complex roots of Q have absolute value /#k.

Proof. See [We]. O

3 Proof of the Manin—-Mumford conjecture

Proposition 3. Let A be an abelian variety over a field K that is finitely generated
as a field over Q. Then for almost all prime numbers p, there exists an embedding of
Ky into a finite extension K of Q, such that Ax has good reduction at the unique
nonarchimedean place of K.

Proof. Since by assumption K has finite transcendence degree over Q, there is a
finite map
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Spec Ko — Spec Q(X1, .., Xq)

for some d > 0 (notice that d = 0 is allowed). Let V — A% be the normalization of
the affine space A% in K. The scheme V is integral, normal and has K as a field of
rational functions. Furthermore, V' is finite and surjective onto A%. There is an open
subset B C V and an abelian scheme .4 — B, whose generic fiber is A. Choose B
sufficiently small so that its image f (B) is open and so that f ~1(f(B)) = B (this can
be achieved by replacing B by f~! (A%\f(V\B))). Let U := f(B). This accounts
for the square on the left of the diagram (x) below.

Now notice that U(Q) # @, since A?(Q) is dense in Aﬁé and U N Aﬁé is open
and not empty. Thus, for almost all prime numbers p, we have U(IF,) # @. Let p
be a prime number with this property. Let P € U(IF,) and let ay, ...,aq € F), be
its coordinates. Choose as well elements xp, ..., xs € Q, which are algebraically
independent over Q. The elements x, . .., x4 remain algebraically independent if we
replace some x; by 1/x; so we may suppose that {x1, ..., x4} € Z),. Notice also that
any element of the residue field I, of Z,, is the reduction mod p of an element of
Z C Z,. Furthermore, the elements xi, ..., x4 remain algebraically independent if
some x; is replaced by x; + m, where m is an integer. Hence, we may also suppose
that x; mod p = a; for alli € {1, ..., d}. The choice of the x; induces a morphism
e: SpecZ, — AdZ, which by construction sends the generic point of SpecZ, to
the generic point of A% and hence of U and sends the special point of SpecZ, to
P € U(F). Hence e ' (U) = SpecZ p- This accounts for the lowest square in (x).

The middle square in (x) is obtained by taking the fibre product of B — U and
Spec Z,, — U. The morphism B; — Spec Z,, is then also finite and surjective.

To define the arrows in the triangle next to it, consider a reduced irreducible
component Bj of By which dominates Spec Z . This exists, because the morphism
Bi — SpecZj is dominant. The morphism B — Spec Z, will then also be finite
and will thus correspond to a finite (and hence integral) extension of integral rings.
Let K be the function field of Bi , which is a finite extension of Q ps the ring associated
to By is by construction included in the integral closure Ok of Z,, in K and the arrow
Spec Ok — Bj is defined by composing the morphism induced by this inclusion with
the closed immersion B| — Bj.

The morphism Spec K — Spec Q,, has been implicitly defined in the last para-
graph and the morphisms Spec Q, — SpecZ, and Spec K — Spec Ok are the
obvious ones.

We have a commutative diagram (x):

Spec Ky B By < — — —Spec Og <—— Spec K
\H Cart. H Cart. H/ / H/
Spec Q(X1, ..., Xg) ——= U <—— SpecZ,, SpecQ,

i Cart.

A9 < SpecZ,
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The single-barreled continuous arrows (—) represent dominant maps; the double-
barreled continuous ones (=) represent finite and dominant maps; all the schemes in
the diagram apart from By are integral; the cartesian squares carry the label “Cart.”

Now notice that the map Spec K — B obtained by composing the connecting
morphisms sends Spec K to the generic point of B; to see this notice that the maps
Spec K — Spec Ok, Spec Ox = SpecZ, and SpecZ, — U are all dominant;
hence Spec K is sent to the generic point of U; since B — U is a finite map, this
implies that Spec K is sent to the generic point of B.

Thus the map Spec K — B induces a field extension K | K. Furthermore, as we
have seen, K is a finite extension of Q,, and by construction, the abelian variety A is
the generic fiber of the abelian scheme A x g Spec Ok . In other words A g is an abelian
variety defined over K which has good reduction at the unique nonarchimedean place
of K. O

Next, we shall consider the following situation. Let p > 2 be a prime number and
let K be a finite extension of Q.. Let k be its residue field. Let A be an abelian variety
over K. Suppose that A has good reduction at the unique nonarchimedean place of
K. Let Ag be the corresponding special fiber, which is an abelian variety over k.

Recall that K" refers to the maximal unramified extension of K. Let ¢ €
Gal(k|k) be the arithmetic Frobenius map and let T € Gal(K"™|K) be its canon-
ical lift.

Proposition 4. Let X be a closed K-subvariety of A. Then the Zariski closure of
X% N Tor(A(K"™™)) is a torsion subvariety.

Proof. W.r.o.g., we may suppose that Tor(A(K"")) is dense in X% (otherwise,
replace X by the natural model of Zar(X% N Tor(A(K"™))) over K). By Theo-
rem 1(a), the kernel of the reduction homomorphism Tor(A(K"™)) — Aok) is
a finite p-group. Let p” be its cardinality and let ¥ := p" - X. Let Q(T) :=
T" — (a,T""' 4 --- 4+ ap) € Z[T] be the polynomial provided by Theorem 2 (i.e.,
the characteristic polynomial of ¢ on Ao (k)). Let F be the matrix

o1... 0 O
00... 0 1
apg ay ... Ap—2 An—1

Forany a € A(K"™), write u(x) := (x, T(x), 2(x), ..., " L(x)) € A"(K"™). Let
Y :=Zar({u(a)la € (p" - Tor(A(K""))) N Yx}). Theorems 2(a) and 1(a) imply that

F(u(a)) = u(z(a))
forall a € p” - Tor(A(K"™)). Furthermore, by construction,

t(p" - Tor(A(K™))) € p" - Tor(A(K"™)).
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Hence F (17 ) = Y. Now Theorem 2(b) implies that the absolute values of the eigen-
values of the matrix F are larger than 1 and Corollary 1 then implies that Y isatorsion
subvariety of A% The variety Y is the projection of Y on the first factor and is thus
also a torsion subvariety. Finally, this implies that X+ is a torsion subvariety. O

Proposition 5. Let X be a closed K-subvariety of A. Then the Zariski closure of
X% NTor(A(K)) is a torsion subvariety.

Proof. We may suppose w.ro.g. that K = K(A[p]), that X is geometrically ir-
reducible and that X% N Tor(A(K)) is dense in X%. We shall first suppose that
Stab(X) = 0. Letx € X% N Tor(A(K)) and suppose that x ¢ A(K"™). Write
x = xP + x,, where x? € Tor”(A(K)) and x, € Tor,(A(K)). By Theo-
rem 1(b) x” € A(K"™) and thus x, ¢ A(K""). By Proposition 2, there exists
o € Gal(K|K") such that

o(xp) —xp =0(x) —x € A[p]\ {0}.

Now notice that for all y € X(K) and all T € Gal(K|K"™), we have t(y) €
X (K). Hence if the set {x € X% N Tor(A(K))|x ¢ A(K"™)} is dense in X% then
Stab(X)(K) contains an element of A[p] \ {0}. Since Stab(X) = 0, we deduce that
the set {x € X% N Tor(A(K))|x ¢ A(K"™)} is not dense in X% and thus the set
X% NTor(A(K"™)) is dense in X. Proposition 4 then implies that X+ is a torsion
point. If Stab(X) # 0, then we may apply the same reasoning to X/ Stab(X) and
A/ Stab(A) to conclude that X+ is a translate of Stab(X)# by a torsion point. O

We shall now prove the Manin—-Mumford conjecture. Let the terminology of the
introduction hold. By Lemma 1(b), we may assume w.r.o.g. that L is the algebraic
closure of a field K that is finitely generated as a field over Q and that A (respectively,
X) has a model A (respectively, X) over K¢. By Proposition 3, there is an embedding
of Ky into a field K, with the following properties: K is a finite extension of Q,,
where p is a prime number larger than 2 and Ak has good reduction at the unique
nonarchimedean place of K. Proposition 5 now implies that the Manin—-Mumford
conjecture holds for X% in A%, and using Lemma 1(b) we deduce that it holds for X
in A.

Remark. Let the notation of the introduction hold. Proposition 2 alone implies
the statement of the Manin—Mumford conjecture, with Tor(A(L)) replaced by
Tor,(A(L)), for any prime number p > 2. To see this, we may w.r.o.g. assume
that X is irreducible and that Tor,(A(L)) N X is dense in X. By an easy vari-
ant of Lemma 1(b), we may w.r.o.g. assume that L is the algebraic closure of a
field K that is finitely generated as a field over (Q and that A (respectively, X)
has a model A (respectively, X) over K. Finally, we may assume w.r.0.g. that
K = K(A[p]). Suppose first that Stab(X) = 0. By the same argument as above,
the set {a € Tor,(A(L))|la ¢ A(K),a € X} is not dense in X. Hence the set
{a € Tor,(A(L))|la € A(K), a € X} must be dense in X; the theorem of Mordell-
Weil (for instance) implies that this set is finite and thus X consists of a single torsion
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point. If Stab(X) # 0, then we deduce by the same reasoning that X/ Stab(X) is a
torsion point in A/ Stab(X) and hence X is a translate of Stab(X) by a torsion point.
This proof of a special case of the Manin—-Mumford conjecture is outlined in [B,
Remarque 3, p. 75].
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