




Trends in 
Partial Differential Equations 
of Mathematical Physics 

J o d  F, Rodrigues 
Gregory Seregin 
Jos6 Miguel Urbano 
Editors 

Birkhauser 
Base1 . Boston . Berlin 



Progress in Nonlinear Differential Equations 
and Their Applications 
Volume 61 

Editor 

Haim Brezis 
Universitk Pierre et Marie Curie 
Paris 
and 
Rutgers University 
New Brunswick, N.1 

Editorial Board 

Antonio Ambrosetti, Scuola Intemazionale Supcriore di Studi Avanzati, Trieste 
A. Bahri, Rutgers University, New Brunswick 
Felix Browder, Rutgers University, New Brunswick 
Luis Cafarelli, Institute for Advanced Study, Princeton 
Lawrence C. Evans, University of California, Berkeley 
Mariano Giaquinta, University of Pisa 
David Kinderlehrcr, Camegie-Mellon University, Pittsburgh 
Sergiu Klainerman, Princeton University 
Robert Kohn, New York University 
pL. Lions, University of Paris IX 
Jean Mahwin, Universitk Catholique dc Louvain 
Louis Nirenberg, New York University 
Lambertus Peletier, University of Leidcn 
Paul Rabinowitz, University of Wisconsin, Madison 
John Toland, University of Bath 



Editors: 

Josh Francisco Kodrigues Gregory Sercgin 
IJniversidade de Lisboa I CMAF Steklov Institute of Mathematics 
Av. Prof. Gama Pinto, 2 Russian Academy of Science 
1649-003 Lisboa 27, Fontanka 
Portugal St. Petcrsburg 191023 
rodrigue@ptmat.fc.uI.pt Russia 

seregin@pdmi.ras.ru 

Jose Miguel Urbano 
Departamento de Matematica 
Universidade de Coimbra I FCT 
Apartado 3008 
3001-454 Coimbra 
Portugal 
jmurb@mat.uc.pt 

2000 Mathematics Subject Classification 35-06; 35430, 76D05 

A CIP catalogue record for this book is available from the Library of Congress. 
Washington D.C., USA 

Bibliographic information published by Die Deutsche Bibliothek 
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; 
detailed bibliographic data is availahle in the Internet at <http:Ndnb.ddh.de>. 

ISBN 3-7643-7165-X Birkhauser Verlag, Base1 - Boston - Berlin 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of 
illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in 
data banks. For any kind of use whatsoever, permission from the copyright owner must be 
obtained. 

O 2005 Birkhauser Verlag, PO. Box 133, CH-4010 Basel, Switzerland 
Part of Springer Science+Business Media 
Printed on acid-free muer oroduced of ehlorine-free ~ u l n .  TCF- . .  . . . 
Printed in Germany 
ISBN-10: 3-7643-7165-X 



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

S.N. Antontsev, J.I. Dı́az and H.B. de Oliveira
Stopping a Viscous Fluid by a Feedback Dissipative Field:
Thermal Effects without Phase Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

M. Bonforte and G. Grillo
Ultracontractive Bounds for Nonlinear Evolution Equations
Governed by the Subcritical p-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

L. Brandolese
Weighted L2-spaces and Strong Solutions of the
Navier-Stokes Equations in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

L. Consiglieri, J.F. Rodrigues and T. Shilkin
A Limit Model for Unidirectional Non-Newtonian Flows
with Nonlocal Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

I.V. Denisova
Problem of Thermocapillary Convection for
Two Incompressible Fluids Separated by a Closed Interface . . . . . . . . . . 45

D. Andreucci, P. Bisegna and E. DiBenedetto
Some Mathematical Problems in Visual Transduction . . . . . . . . . . . . . . . . 65

C. Ebmeyer
Global Regularity in Sobolev Spaces for Elliptic Problems
with p-structure on Bounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A. Fasano and M. Primicerio
Temperature Driven Mass Transport in Concentrated
Saturated Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

E. Frolova
Solvability of a Free Boundary Problem for the
Navier-Stokes Equations Describing the Motion of
Viscous Incompressible Nonhomogeneous Fluid . . . . . . . . . . . . . . . . . . . . . . 109



vi Table of Contents

D.A. Gomes
Duality Principles for Fully Nonlinear Elliptic Equations . . . . . . . . . . . . . 125

G. Guidoboni and M. Padula
On the Bénard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Li Tatsien
Exact Boundary Controllability for Quasilinear
Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A. Mahalov, B. Nicolaenko, C. Bardos and F. Golse
Regularity of Euler Equations for a Class of
Three-Dimensional Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

P.B. Mucha
A Model of a Two-dimensional Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

J. Neustupa and P. Penel
Regularity of a Weak Solution to the Navier-Stokes Equation
in Dependence on Eigenvalues and Eigenvectors
of the Rate of Deformation Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

M. Padula
Free Work and Control of Equilibrium Configurations . . . . . . . . . . . . . . . . 213

D.L. Rapoport
Stochastic Geometry Approach to the Kinematic
Dynamo Equation of Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 225

R. Rautmann
Quasi-Lipschitz Conditions in Euler Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

S. Shmarev
Interfaces in Solutions of Diffusion-absorption Equations
in Arbitrary Space Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Hung-Ju Kuo and N.S. Trudinger
Estimates for Solutions of Fully Nonlinear Discrete Schemes . . . . . . . . . 275



Preface

Vsevolod Alekseevich Solonnikov is known as one of the outstanding mathemati-
cians from the St. Petersburg Mathematical School. His remarkable results on exact
estimates of solutions to boundary and initial-boundary value problems for linear
elliptic, parabolic, and Stokes systems, his methods and contributions to the in-
vestigation of free boundary problems, in particular in fluid mechanics, are well
known to specialists all over the world.

The International Conference on “Trends in Partial Differential Equations of
Mathematical Physics” was held on the occasion of his 70th birthday in Óbidos
(Portugal), from June 7 to 10, 2003. It was an organization of the “Centro de
Matemática e Aplicações Fundamentais da Universidade Lisboa”, in collaboration
with the “Centro de Matemática da Universidade de Coimbra”, the “Centro de
Matemática Aplicada do IST/Universidade Técnica de Lisboa”, the “Centro de
Matemática da Universidade da Beira Interior”, from Portugal, and with the Lab-
oratory of Mathematical Physics of the St. Petersburg Department of the Steklov
Institute of Mathematics from Russia.

The conference consisted of thirty eight invited and contributed lectures and
gathered, in the charming and unique medieval town of Óbidos, about sixty partic-
ipants from fifteen countries, namely USA, Switzerland, Spain, Russia, Portugal,
Poland, Lithuania, Korea, Japan, Italy, Germany, France, Canada, Australia and
Argentina. Several colleagues gave us a helping hand in the organization of the con-
ference. We are thankful to all of them, and in particular to Stanislav Antontsev,
Anvarbek Meirmanov and Adélia Sequeira, that integrated also the Organizing
Committee. A special acknowledgement is due to Elena Frolova that helped us in
compiling the short and necessarily incomplete bio-bibliographical notes below.

This book contains twenty original contributions, selected from the invited
talks of the Óbidos conference and complements the special issue “Boundary-Value
Problems of Mathematical Physics and Related Problems of Function Theory.
Part 34” published as Vol. 306 of “Zapiski Nauchnyh Seminarov POMI” (2003),
which is also dedicated to Professor Solonnikov.

Support from various institutions, in addition to the participating research
centers already mentioned, has been essential for the realization of the confer-
ence and this book. We acknowledge the financial support from the Portuguese
Fundação para a Ciência e Tecnologia and the Calouste Gulbenkian Foundation
and the Town of Óbidos for the generous support and hospitality that provided a
nice atmosphere for a very friendly meeting.

José Francisco Rodrigues, Gregory Seregin and José Miguel Urbano

Lisbon, St. Petersburg and Coimbra, September 2004
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On Vsevolod Alekseevich Solonnikov and his 70th birthday

Vsevolod Alekseevich Solonnikov (V.A.) was born on the 8th of June, 1933
in Leningrad, and was brought up by his mother and nurse. His mother died
in Leningrad during the Second World War, and V.A. spent several years in a
children’s house after the war. In his childhood, V.A. was keen on music and, in
1947, he entered the Music School at Leningrad Conservatoire where he studied
violoncello. Later on, in 1951 he entered the Leningrad Conservatoire. Due to his
talent, V.A. finished the first year at the Conservatoire with excellent marks, but,
nevertheless, he decided to change his future profession. His interest in physics
and mathematics prevailed, and in 1952 V.A. entered the physics department of
Leningrad State University, starting a new period of his life that would lead him
to mathematics.

At the physics department, V.A. attended lectures and seminars organized
by Olga A. Ladyzhenskaya and defended a diploma thesis under her supervision.
In 1957, V.A. graduated from the University with an excellent diploma and started
to work at the Leningrad Branch of the Steklov Mathematical Institute, in the
scientific group headed by O.A. Ladyzhenskaya.

In his candidate thesis (1961) V.A. proved the a priory estimates for so-
lutions of boundary value problems for elliptic and parabolic partial differential
equations, and also for the stationary Stokes system in Sobolev spaces. In 1965,
V.A. defended his doctoral thesis. In [1,2], he constructed the solvability theory for
parabolic systems of general type in Sobolev and Hölder spaces. Many interesting
results for parabolic problems are presented in chapters 4 and 7 of the classical
monograph [3]. In [4], he proved his famous coercive estimates for solutions to the
three-dimensional non-stationary Stokes system under Dirichlet boundary condi-
tions. With the help of these estimates, in [5] V.A. investigated the differentiabil-
ity properties of generalized solutions to the non-stationary Navier–Stokes system.
Later on, in 1973, V.A. gave another proof of those estimates which is nowadays
classical, see [5]. In the mid-1990s, in connection with the linearization of modified
Navier–Stokes equations suggested by O.A. Ladyzhenskaya, he obtained coercive
estimates for their solutions in anisotropic Sobolev spaces.

Since the 1970s, V.A. concentrated his scientific interests on various mathe-
matical problems of fluid dynamics. In the mid-70s, he began his studies of bound-
ary value problems for Stokes and Navier–Stokes equations in domains with non-
compact boundaries. Here, the important step forward was the right choice of the
main functional spaces made by him, together with O.A. Ladyzhenskaya. The most
significant results were the content of their fundamental papers [6,7]. In [8], they
also analyzed problems for domains with arbitrary “outlets” to infinity without
assumptions on boundedness of the Dirichlet integral. The review on problems for
noncompact boundaries can be found in [9,10].

One of the favorite topics of V.A. is free boundary problems for viscous
incompressible fluids. He started to think about them in the 1970s. One of the
remarkable results in this direction was about the properties of solutions in the
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vicinity of the contact between a free surface and a rigid wall, see [11,12]. At the
beginning of the 1980s, V.A. considered the problem of describing the motion of
a drop. The series of works on this theme started in 1984 with the small paper
[13], where he formulated a problem on the evolution of an isolated volume of vis-
cous incompressible capillary fluid and gave the plan of the proof of the local
unique solvability to this problem in anisotropic Sobolev–Slobodetskii spaces.
To prove the solvability of the corresponded linear problem, V.A. used the method
of construction of regularizers introduced by him earlier in the monograph [3].

The complete proof of the existence theorems to the problem of the motion of
a viscous drop was finished by the beginning of the 1990s [14,15]. In the case of
sufficiently small initial velocity and in the case the initial shape of the drop is
close to a ball, V.A. proved the existence of a global solution for the problem of
the motion of a finite volume of self-gravitating capillary incompressible [16] and
compressible [17] fluids. He showed that in a coordinate system connected with
the center of mass of the drop, for large moments of time, the solution approaches
the rotation of the liquid as a rigid body around a certain axis, and the domain
occupied by the fluid tends to an equilibrium figure.



x Preface

In the 1990’s, V.A. introduced also new ideas and obtained sharp results
on some classical free boundary problems for parabolic equations. Based on new
coercive estimates for solutions of linearized problems, obtained after the trans-
formation of the free boundary problems in highly nonlinear and nonstandard
evolution problems, he obtained, with some of his co-workers, interesting local
solvability of the Stefan problem in Sobolev spaces [18], deep estimates for cer-
tain systems, for instance in [19], and the classical solvability of the Stefan and
Muskat–Veregin two-phase problems in [20], obtaining the sharpest regularity in
Hölder spaces (at least equal regularity for t = 0 and for t > 0, at the lowest
possible order). A detailed presentation of this results and methods of analyzing
free boundary problems where given by V.A. in the lecture notes [21].

In the last years, V.A. analyzed the stability of axially symmetric and non-
symmetric equilibrium figures of rotating viscous incompressible liquid. This is a
famous classic problem that had attracted the attention of great mathematicians
like, for instance, Newton, Jacobi, Liouville, Poincaré and Lyapunov. Recently,
he succeed to prove that the positiveness of the second variation of the energy
functional on a certain subspace of functions is the sufficient (and correct) condi-
tion of stability of non-symmetric equilibrium figures [22]. This deep and remark-
able result can be considered as an extension of classical results on the stability
of ellipsoidal equilibrium forms of rotating fluid without taking into account the
surface tension, and the rigorous justification of the principle of minimum of the
energy functional was obtained after the recent analysis and progresses he made
on a certain evolution free boundary problem for the Navier–Stokes equations.

After 1969, V.A. has worked also at Leningrad State University (Department
of Mathematics and Mechanics). He gave basic and special courses of lectures,
and wrote lecture notes together with N.N. Uraltseva. Many students obtained a
diploma under his supervision, and he had also several post-graduate students.
V.A. always took care of his students, attentively looking after their work and
collaborating with them. Owing to the hospitality of his wife Tatiana Fedorovna,
his home became native for many of his students and friends.

V.A. Solonnikov continues to be a leading researcher at the St. Petersburg
Branch of the Steklov Mathematical Institute and pursues intensively and success-
fully his work, corresponding to multiple invitations, participations in international
conferences and visits in Europe and in Asia. Among many other distinctions, in
1997 he obtained a senior research fellowship at the University of Lisbon, Portugal,
and in 2002 he was awarded the prize of Humboldt Research Award, in Germany.
In recent years he is being also lecturing as Professor of Rational Mechanics at the
University of Ferrara, in Italy, where a second International Conference (“Direc-
tions on Partial Differential Equations”, 6–9 November 2003) on the occasion of
his 70th birthday took also place, following the one of Óbidos, in Portugal.



Preface xi

References

[1] V.A. Solonnikov, A priory estimates for solutions of second order equations of par-
abolic type, Trudy Mat. Inst. Steklov, 70 (1964), 133–212; English transl. in Amer.
Mat. Soc. Transl., 75(2) (1968).

[2] V.A. Solonnikov, On boundary value problems for linear parabolic systems of differ-
ential equations of general form, Trudy Mat. Inst. Steklov, 83 (1965), 3–162.

[3] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and quasi-linear equa-
tions of parabolic type, M., Nauka 1967; English transl.: Transl. Math. Monographs,
23, Amer. Math. Soc., Providence, RI, 1968.

[4] V.A. Solonnikov, Estimates of the solution of a time-depended linearized system
of Navier–Stokes equations, Trudy Mat. Inst. Steklov, 70 (1964), 213–317; English
transl. in Amer. Math. Soc. Transl., 75(2) (1968).

[5] V.A. Solonnikov, On differential properties of solutions of the first boundary value
problem for the non-stationary system of Navier–Stokes equations, Trudy Mat. Inst.
Steklov, 73 (1964), 221–291.

[6] O.A. Ladyzhenskaya and V.A. Solonnikov, On the solvability of boundary and initial-
boundary value problems for the Navier–Stokes equations in regions with noncompact
boundaries, Vestnik Leningrad. Univ. (1977), 13, 39–47; English transl. in Vestnik
Leningrad Univ. Math., 10 (1982), 271–279.

[7] O.A. Ladyzhenskaya and V.A. Solonnikov, Some problems of vector analysis, and
generalized formulations of boundary value problems for the Navier–Stokes equations,
Zap. Nauchn. Sem. LOMI, 59 (1976), 81–116; English transl. in J. Soviet. Math.,
10(2) (1978).

[8] O.A. Ladyzhenskaya and V.A. Solonnikov, Determination of solutions of boundary
value problems for steady-state Stokes and Navier–Stokes equations having an un-
bounded Dirichlet integral, Zap. Nauchn. Sem. LOMI, 96 (1979), 117–160; English
transl. in J. Soviet Math., 21 (1983), 728–761.

[9] V.A. Solonnikov, On the problems of a viscous incompressible liquid in domains
with noncompact boundaries, Algebra i Analyz, 4(6) (1992), 28–53; English transl.
in St. Petersburg Math. J., 4(6) (1993), 1081–1102.

[10] V.A. Solonnikov, Stokes and Navier–Stokes equations in domains with noncompact
boundaries, Nonlinear Partial Differential Equations and there Applications (College
de France Sem., 4 (1981/82); Res. Notes in Math., 84, Pitman (1983), 240–349.

[11] V.A. Solonnikov, Solvability of the problem of the plane motion of a heavy viscous
incompressible capillary liquid partially filling a container, Izv. Acad. Nauk SSSR Ser.
Mat., 43 (1979), 203–236; English transl. in Math. USSR Izv., 14 (1980), 193–221.

[12] V.A. Solonnikov, Solvability of three-dimensional problems with a free boundary for a
system of steady-state Navier–Stokes equations, Zap. Nauchn. Sem. LOMI, 84 (1979),
252–285; English transl. in J. Soviet Math., 21 (1983), 427–450.

[13] V.A. Solonnikov, Solvability of the problem of evolution of an isolated volume of
a viscous incompressible capillary fluid, Zap. Nauchn. Sem. LOMI, 140 (1984),
179–186; English transl. in J. Soviet. Mat., 32 (1986), 223–228.

[14] V.A. Solonnikov, An initial-boundary value problem for a Stokes system that arises
in the study of a problem with a free boundary, Trudy Mat. Inst. Steklov, 188 (1990),
150–188; English transl. in Proc. Steklov Inst. Math., 3 (1991), 191–239.



xii Preface

[15] V.A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible
fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3(1) (1991),
222–257; English transl. in St. Petersburg Math. J., 3(1) (1992), 189–220.

[16] V.A. Solonnikov, Unsteady motion of a finite isolated mass of a self-gravitating fluid,
Algebra i Analiz, 1(1) (1989), 207–249; English transl. in Leningrad Math. J., 1(1)
(1990), 227–276.

[17] V.A. Solonnikov, Evolution free boundary problem for equations of motion of viscous
compressible barotropic self-gravitating fluid, Stability Appl. Anal. Contin. Media,
3(4) (1993), 257–275.

[18] V.A. Solonnikov, E. Frolova, Lp-theory of the Stefan problem, Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 249 (1997) 299–323.

[19] J.F. Rodrigues, V.A. Solonnikov, F. Yi, On a parabolic system with time derivative in
the boundary conditions and related free boundary problems, Math. Ann., 315 (1999),
61–95.

[20] G. I. Bizhanova, V.A. Solonnikov, On problems with free boundaries for second-order
parabolic equations (Russian), Algebra i Analiz, 12(6) (2000), 98–139; translation in
St.Petersburg Math. J., 12(6) (2001), 949–981.

[21] V.A. Solonnikov, Lectures on evolution free boundary problems: classical solutions,
Lecture Notes in Math., Springer, 1812 (2003), 123–175.

[22] V.A. Solonnikov, On stability of non-symmetric equilibrium figures of rotating viscous
incompressible fluid, Interfaces and Free Boundaries, 6(4) (2004).



List of Participants

Carlos J.S. Alves, Instituto Superior Técnico, Portugal, calves@math.ist.utl.pt
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Stopping a Viscous Fluid by a
Feedback Dissipative Field:
Thermal Effects without Phase Changing

S.N. Antontsev, J.I. Dı́az and H.B. de Oliveira

Dedicated to Professor V.A. Solonnikov on the occasion of his 70th birthday.

Abstract. We show how the action on two simultaneous effects (a suitable
coupling about velocity and temperature and a low range of temperature
but upper that the phase changing one) may be responsible of stopping a
viscous fluid without any changing phase. Our model involves a system, on
an unbounded pipe, given by the planar stationary Navier-Stokes equation
perturbed with a sublinear term f(x, θ,u) coupled with a stationary (and
possibly nonlinear) advection diffusion equation for the temperature θ.

After proving some results on the existence and uniqueness of weak
solutions we apply an energy method to show that the velocity u vanishes for
x large enough.

Mathematics Subject Classification (2000). 76A05 ,76D07, 76E30, 35G15.

Keywords. Non-Newtonian fluids, nonlinear thermal diffusion equations, feed-
back dissipative field, energy method, heat and mass transfer, localization
effect.

1. Introduction

It is well known (see, for instance, [6, 8, 14]) that in phase changing flows (as the
Stefan problem) usually the solid region is assumed to remain static and so we can
understand the final situation in the following way: the thermal effect are able to
stop a viscous fluid.

The main contribution of this paper is to show how the action on two si-
multaneous effects (a suitable coupling about velocity and temperature and a low
range of temperature but upper the phase changing one) may be responsible of
stopping a viscous fluid without any changing phase. This philosophy could be
useful in the monitoring of many flows problems, specially in metallurgy.
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We shall consider a, non-standard, Boussinesq coupling among the temper-
ature θ and the velocity u. Motivated by our previous works (see [1, 2, 3, 4]), we
assume the body force field is given in a non-linear feedback form, f : Ω×R×R2 →
R2, f = (f1(x, θ,u), f2(x, θ,u)), where f is a Carathéodory function (i.e., contin-
uous on θ and u and measurable in x) such that, for every u ∈ R2, u = (u, v), for
any θ ∈ [m, M ], and for almost all x ∈ Ω

−f(x, θ,u) · u ≥ δ χf (x) |u|1+σ(θ) − g(x, θ) (1.1)

for some δ > 0, σ a Lipschitz continuous function such that

0 < σ− ≤ σ(θ) ≤ σ+ < 1, θ ∈ [m, M ], (1.2)

and

g ∈ L1 (Ωxg × R) , g ≥ 0, g(x, θ) = 0 a.e. in Ωxg for any θ ∈ [m, M ], (1.3)

for some xf , xg, with 0 ≤ xg < xf ≤ ∞ and xf large enough, where Ωxg = (0, xg)×
(0, L) and Ωxg = (xg,∞) × (0, L). The function χf denotes the characteristic
function of the interval (0, xf ), i.e., χf (x) = 1, if x ∈ (0, xf ) and χf (x) = 0,
if x /∈ (0, xf ). We shall not need any monotone dependence assumption on the
function σ(θ).

It seems interesting to notice that the term f(x, θ,u) plays a similar role to
the one in the penalized changing phase problems (see equation (3.13) of [14]),
although our formulation and our methods of proof are entirely different. We shall
prove that the fluid is stopped at a finite distance of the semi-infinite strip entrance
by reducing the nonlinear system to a fourth order non-linear scalar equation for
which the localization of solutions is obtained by means of a suitable energy method
(see [5]).

2. Statement of the problem

In the domain Ω = (0,∞)× (0, L), L > 0, we consider a planar stationary thermal
flow of a fluid governed by the following system

(u · ∇)u = ν�u −∇p + f(x, θ,u), (2.4)

divu = 0, (2.5)
u · ∇C(θ) = �ϕ(θ), (2.6)

where u = (u, v) is the vector velocity of the fluid, θ its absolute temperature, p
is the hydrostatic pressure, ν is the kinematics viscosity coefficient,

C(θ) :=
∫ θ

θ0

C(s) ds and ϕ(θ) :=
∫ θ

θ0

κ(s) ds,

with C(θ) and κ(θ) being the specific heat and the conductivity, respectively.
Assuming κ > 0 then ϕ is invertible and so θ = ϕ−1(θ) for some real argument θ.
Then we can define functions

C(θ) := C ◦ ϕ−1(θ), f(x, θ,u) := f ◦ ϕ−1(θ), µ(θ) := µ ◦ ϕ−1(θ).
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We point out that functions C, f and µ are Lipschitz continuous functions of θ.
Substituting these expressions in (2.4)–(2.6), we get, omitting the bars,

(u · ∇)u = ν�u −∇p + f(x, θ,u), (2.7)

divu = 0, (2.8)

u · ∇C(θ) = �θ. (2.9)
To these equations we add the following boundary conditions on u

u = u∗, on x = 0, (2.10)

u = 0, on y = 0, L, (2.11)

u → 0, when x → ∞, (2.12)
and on θ

θ = θ∗, on x = 0, y = 0, L, (2.13)

θ → 0, when x → ∞, (2.14)
where u∗ and θ∗ are given functions with a suitable regularity to be indicated later
on and

0 ≤ m ≤ θ∗(x) ≤ M < ∞. (2.15)
We assume the possible non-zero velocity u∗ and temperature θ∗ satisfy the com-
patibility conditions

u∗(0) = u∗(L) = 0,

∫ L

0

u∗(s)ds = 0, (2.16)

θ∗(x, y) → 0, when x → ∞ for any y ∈ [0, L]. (2.17)

3. Existence theorem

As in [1, 2, 3, 4], we introduce the functional spaces

H̃(Ω) =
{
u ∈ H(Ω) : u(0, .) = u∗(.), u(., 0) = u(., L) = 0, lim

x→∞ |u| = 0
}

,

H̃0(Ω) =
{
u ∈ H(Ω) : u(0, .) = u(., 0) = u(., L) = 0, lim

x→∞ |u| = 0
}

,

where H(Ω) =
{
u ∈ H1(Ω) : divu = 0

}
, and assume that

u∗ ∈ H
1
2 (0, L). (3.18)

We shall search solutions (θ,u) such that, additionally to assumptions (2.14) and
(2.12), satisfy ∫

Ω

|∇θ|2dx < ∞ and
∫

Ω

|∇u|2dx < ∞.

Moreover, due to the fact that the Poincaré inequality∫
Ω

|w|p dx ≤
(

L

π

)p ∫
Ω

|∇w|p dx, (3.19)
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holds for every w ∈ W1,p
0 (Ω) and 1 ≤ p < ∞ (see, e.g., [10]), our searched solutions

(θ,u) will be elements of the Sobolev space H1(Ω) × H1(Ω).
Let us still denote by u∗ and θ∗ the extensions of the boundary data to the

whole domain Ω in a way such that

u∗ ∈ H̃(Ω) and θ∗ ∈ W1,q(Ω) ∩ Cα(Ω), 2 < q < ∞, α > 0. (3.20)

Definition 3.1. The pair (θ,u) is said to be a weak solution of (2.7)–(2.14) if:

(i) θ − θ∗ ∈ W1,q
0 (Ω) ∩ Cα(Ω), α > 0, 2 < q < ∞, m ≤ θ ≤ M and for any test

function ζ ∈ W1,q′
0 (Ω) (1/q + 1/q′ = 1)∫

Ω

(∇θ − C(θ)u) · ∇ζ dx = 0.

(ii) u ∈ H̃(Ω), u − u∗ ∈ H̃0(Ω), f(x, θ(x),u(x)) ∈ L1
loc(Ω) and for every ϕ ∈

H̃0(Ω) ∩ L∞(Ω) with compact support,

ν

∫
Ω

∇u : ∇ϕ dx +
∫

Ω

u · ∇u·ϕ dx =
∫

Ω

f · ϕ dx. (3.21)

In this section, we shall assume that f : Ω × R × R2 → R2 is given by the
structural condition

f(x, θ,u) = −δ χf (x)(|u|σ(θ)−1u, 0) − h(x, θ,u), (3.22)

for any u = (u, v), any θ ∈ [m, M ] and almost every x ∈ Ω, for some δ > 0,
0 ≤ xf ≤ ∞ and σ(θ) satisfies (1.2). Here, h(x, θ,u) is a Carathéodory function
such that

h(x, θ,u) · u ≥ −g(x, θ), (3.23)
for every u ∈ R2, for any θ ∈ [m, M ] and almost all x ∈ Ω, for some function g
satisfying (1.3), and we assume

HK ∈ L1 (Ωxf ) for all K > 0, HK(x) = sup
|u|≤K, θ∈[m,M ]

|h(x, θ,u)| . (3.24)

Theorem 3.1. Under conditions (1.2), (2.15)–(2.17), (3.18), (3.20) and (3.22)–
(3.24), the problem (2.7)–(2.14) has, at least, one weak solution (θ,u).

Proof. We will prove this theorem in several steps.
First step: an auxiliary problem for the temperature θ. Let

w ∈ L2(Ω) ∩ Lq(Ω), with 2 < q < ∞, (3.25)

be a given function and let us consider the following problem for the temperature

w · ∇C(θ) = �θ (3.26)

completed with the boundary conditions (2.13)–(2.14). Since C is Lipschitz contin-
uous we know (see, e.g., [7, 10, 11]) that problem (3.26), (2.13)–(2.14), assuming
(3.25), has a unique weak solution θ such that

‖θ‖W1,q(Ω) , ‖θ‖Cα(Ω) ≤ C
(
q, ‖w‖Lq(Ω) , ‖θ∗‖W1,q(Ω)

)
(3.27)
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where α = 1 + [2/q] − 2/q > 0. Moreover, from the Maximum Principle,

m ≤ θ(x) ≤ M.

Then we can define the non-linear operator

Λ : L2(Ω) ∩ Lq(Ω) → W1,q(Ω) ∩ Cα(Ω), Λ(w) = θ, (3.28)

with α = 1 + [2/q] − 2/q > 0, 2 < q < ∞. The operator Λ is continuous, because
from [10, 11], we get that given a sequence wn such that

‖wn − w‖L2(Ω) + ‖wn − w‖Lq(Ω) → 0, as n → ∞,

then

‖Λ(wn) − Λ(w)‖W1,q(Ω) + ‖Λ(wn) − Λ(w)‖Cα(Ω) → 0, as n → ∞.

Second step: an auxiliary problem for the velocity u. Let ω be a given function
such that

ω ∈ W1,q(Ω) ∩ Cα(Ω), 2 < q < ∞, α > 0, m ≤ ω ≤ M (3.29)

and let us consider the problem for the velocity constituted by the following equa-
tion of motion

(u · ∇)u = ν�u −∇p + f(x, ω,u), (3.30)
the equation of continuity (2.8) and the boundary conditions (2.10)–(2.12). Apply-
ing the results of [4] (which is possible due to the assumptions (3.22)–(3.24) and
(3.29)), the problem (3.30), (2.8), (2.10)–(2.12) has, at least, one weak solution
u ∈ H1(Ω) which satisfies∫

Ω

(
|∇u|2 + χf |u|1+σ(θ) + |h(x, ω,u) · u|

)
dx ≤ C, (3.31)

where
C = C

(
L, m, M, δ, ν, ‖u∗‖

H
1
2 (0,L)

, ‖g‖L1(Ωxg×R)

)
and, in fact,

C = C0

(
L, m, M, δ, ν ‖u∗‖2

H
1
2 (0,L)

)
,

if g = 0. Then we can define the non-linear operator

Π : W1,q(Ω) ∩ Cα(Ω) → Lq(Ω), Π(ω) = u, (3.32)

with 2 < q < ∞ and α > 0, which is continuous.

Third step: application of Schauder’s theorem. Given q > 2, formulas (3.28) and
(3.32) allow to define the composition non-linear operator

Υ = ΠΛ : L2(Ω) ∩ Lq(Ω) → Lq(Ω). (3.33)

From (3.31) we get that Υ transforms L2(Ω) ∩ Lq(Ω) into a bounded subset of
H1(Ω) and, from the Sobolev compact embedding H1(Ω) → Lq(Ω), 2 < q < ∞,
it is completely continuous. Then, according to Schauder’s theorem, (3.33) has, at
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least, a fixed point. This proves the existence of a weak solution (θ,u) to problem
(2.7)–(2.14). �

Remark 3.1. Questions about the solvability of boundary value problems for the
Navier-Stokes system in domains with noncompact boundaries were discussed by
many authors amongst whom Solonnikov [13].

4. Uniqueness of weak solution

For the sake of simplicity in the exposition we will assume in this section that the
coupling thermal force obeys to the special form

f(x, θ,u) = −δ χf (x)(|u(x)|σ(θ)−1u(x), 0). (4.34)

The main result of this section, concerning the uniqueness of solutions, is the
following.

Theorem 4.1. Assume (1.2) and (2.15)–(2.17). We additionally suppose that

|C′(θ)| ≤ λ for every θ ∈ [m, M ], (4.35)

and
|σ′(θ)| ≤ λ for every θ ∈ [m, M ], (4.36)

for λ ≤ λ∗ and for some small enough positive constant λ∗ > 0. Then, if
‖u∗‖

H
1
2 (0,L)

≤ ε∗ for some small enough positive constant ε∗ > 0, the problem

(2.7)–(2.14), (4.34) has a unique weak solution (u, θ).

Proof. Let (θ1,u1), u1 = (u1, v1), and (θ2,u2), u2 = (u2, v2), be two weak solutions
to problem (2.7)–(2.14) and let us set θ = θ1 − θ2, u = u1 − u2. According
to Definition 3.1, u = u1 − u2 ∈ H1

0(Ω) and θ = θ1 − θ2 ∈ H1
0(Ω). Moreover,

functions θ, u satisfy to∫
Ω

[∇θ − (C(θ1)u1 − C(θ2)u2)u] · ∇ζ dx = 0,

ν

∫
Ω

∇u : ∇ϕ dx +
∫

Ω

[(u1 · ∇)u1 − (u2 · ∇)u2] · ϕ dx

= −δ

∫
Ω

χf (x)
(
|u1(x)|σ(θ1)−1u1(x) − |u2(x)|σ(θ2)−1u2(x), 0

)
· ϕ dx.

Setting ζ = θ and ϕ = u, we came to the relations∫
Ω

|∇θ|2dx =
∫

Ω

(C(θ1) − C(θ2))u1 · ∇θ dx (4.37)

+
∫

Ω

C(θ2)u · ∇θ dx := J1 + J2,

ν

∫
Ω

|∇u|2 dx + I1 = I2 + I3, (4.38)
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where

I1 := δ

∫
Ω

χf (x)
(
|u1(x)|σ(θ1)−1u1(x) − |u2(x)|σ(θ1)−1u2(x), 0

)
· u dx,

I2 := −δ

∫
Ω

χf (x)
(
|u2(x)|σ(θ1)−1u2(x) − |u2(x)|σ(θ2)−1u2(x), 0

)
· u dx

I3 := −
∫

Ω

(u · ∇)u2 · u dx.

Estimate for the temperature. Using (4.35) and Cauchy’s inequality, we get

|J1| ≤ λ

∫
Ω

|θ| |u1| |∇θ|dx ≤ 1
4

∫
Ω

|∇θ|2 dx + λ2

∫
Ω

|θ|2|u1|2 dx (4.39)

and

|J2| ≤ C

∫
Ω

|u| |∇θ|dx ≤ 1
4

∫
Ω

|∇θ|2 dx + C2

∫
Ω

|u|2 dx, (4.40)

with C = C(m, M) = maxm≤θ≤M |C(θ)|. In the sequel the letter C will be used
for different constants depending on L, m, M , δ and ν. We use the Poincaré
inequalities ∫ L

0

|u|2dy ≤ C

∫
Ω

|∇u|2 dx (4.41)

and

|θ(x, y)|2 ≤ L

∫ L

0

|θy(x, s)|2 ds, (4.42)

to obtain, from (3.31), that ∫
Ω

|θ|2|u1|2dx ≤ (4.43)

C

∫ ∞

0

(∫ L

0

|θy(x, s)|2 ds

)(∫
Ω

|∇u1|2 dx
)

dx ≤ C

∫
Ω

|∇θ|2 dx.

Joining (4.37), (4.39), (4.40) and (4.43), we arrive to

1
2

∫
Ω

|∇θ|2dx ≤ Cλ2

∫
Ω

|∇θ|2 dx + C

∫
Ω

|∇u|2 dx.

Choosing λ such that
2Cλ2 < 1, (4.44)

it results ∫
Ω

|∇θ|2dx ≤ C

∫
Ω

|∇u|2dx. (4.45)

Estimate for the velocity. Applying the inequality

σ |ξ − η|σ+1 ≤
(
|ξ|σ−1

ξ − |η|σ−1
η
)

(ξ − η)
(
|ξ|σ+1 + |η|σ+1

) 1−σ
1+σ

,
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with 0 < σ < 1 and using (1.2), we can write

0 < δ σ−
∫

Ω

χf (x)|u1 − u2|σ(θ1)+1
(
|u1|σ(θ1)+1 + |u2|σ(θ1)+1

) σ(θ1)−1
σ(θ1)+1

dx

≤ I1. (4.46)

By Lagrange’s theorem,

|u2|σ(θ1)−1u2 − |u2|σ(θ2)−1u2 = σ′(θ∗)|u2|σ(θ∗) ln |u2| θ,
for every θ∗ in the interval with extremities θ1 and θ2. Then we conclude

|I2| ≤ δ

∫
Ω

|σ′||u2|σ(θ∗) ln |u2|| θ||u| dx.

By (4.36), Cauchy’s inequality and (4.41) we obtain

|I2| ≤
ν

2

∫
Ω

|∇u|2 dx + λ2CI21, I21 =
∫

Ω

|θ|2 |u2|2σ(θ∗) (ln |u2|)2 dx.

Using (4.42) we get

I21 ≤ L

∫ ∞

0

(∫ L

0

|∇θ(x, s)|2 ds

) (∫ L

0

|u2(x, y)|2σ(θ∗) (ln |u2|)2 dy

)
dx.

Now we recall the following elementary inequalities

|u2|2σ(θ∗) (ln |u2|)2 ≤ C for |u2| ≤ 1, C = C(σ−, σ+)

|u2|2σ(θ∗) (ln |u2|)2 ≤ 1
ε2

|u2|2 for |u2| ≥ 1, ε = 1 − σ+ > 0.

Then, separating in two integrals for |u2| < 1 and for |u2| ≥ 1, we obtain∫ L

0

|u2(x, y)|2σ(θ∗) (ln |u2|)2 dy ≤ C

(
1 +

∫ L

0

|u2(x, y)|2dy

)
.

Using (3.31) and (4.41)∫ L

0

|u2(x, y)|2σ(θ∗) (ln |u2|)2 dy ≤ C.

Finally we obtain

I21 ≤ C

∫
Ω

|∇θ|2dx

and consequently

|I2| ≤
ν

2

∫
Ω

|∇u|2 dx + λ2C

∫
Ω

|∇θ|2dx

Using (4.45)

|I2| ≤
ν

2

∫
Ω

|∇u|2 dx + λ2C

∫
Ω

|∇u|2dx.
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Last inequality, (4.38) and (4.46), give us

ν

∫
Ω

|∇u|2 dx + δ

∫
Ω

χf (x)|u1 − u2|σ(θ1)−1
(
|u1|σ(θ1)+1 + |u2|σ(θ1)+1

)σ(θ1)−1
σ(θ1)+1

dx

≤ |I3| +
(ν

2
+ λ2C

) ∫
Ω

|∇u|2 dx. (4.47)

Choosing λ in (4.47) such that

2Cλ2 < ν,

we get that∫
Ω

|∇u|2 dx + δ

∫
Ω

χf (x)|u1 − u2|σ(θ1)−1
(
|u1|σ(θ1)+1 + |u2|σ(θ1)+1

)σ(θ1)−1
σ(θ1)+1

dx

≤ C|I3|. (4.48)

By using (3.31) and some well-known estimates (see, e.g., [9, 12]) we can estimate
|I3| in the following way

|I3| ≤
∫

Ω

|∇u2| |u|2 dx (4.49)

≤ ‖∇u2‖L2(Ω)‖u‖2
L4(Ω) ≤ C‖u∗‖

H
1
2 (0,L)

‖∇u‖2
L2(Ω).

Thus, by assuming that C‖u∗‖
H

1
2 (0,L)

< 1, using (4.49) and Poincaré’s inequal-

ity (3.19), we obtain, from (4.48), that u1 = u2 and, as consequence of (4.45),
θ1 = θ2. �

Remark 4.1. The conditions (4.35) and (4.36) may be replaced by the condition

M − m = λ

for some λ small enough, where m and M are given in (2.15). Here σ, C ∈
C2(m, M) and according to Lagrange’s theorem, C′ = C′′θ and σ′ = σ′′θ. Then
|C′| ≤ maxθ∈[m,M ] |C′′| |M − m| ≤ Cλ and |σ′| ≤ maxθ∈[m,M ] |σ′′| |M − m| ≤ Cλ.

Remark 4.2. It seems possible to prove the uniqueness of solutions for the problem
(2.7)–(2.14) with the body forces field given by (3.22) by proceeding as in [4] once
we assume the following non-increasing condition

(f(x, θ,u1) − f(x, θ,u2)) · (u1 − u2) ≤ 0 (4.50)

for every u1,u2 ∈ R2, for any θ ∈ [m, M ] and almost all x ∈ Ω.
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5. Localization effect

In this section we study the localization effect for the velocity u associated to
the problem (2.7)–(2.14). It turns out that the qualitative property of the spatial
localization of u is independent of the temperature component θ. So, if we are not
interested to know how big is the support of u but merely in knowing that support
of u is a compact subset of Ω we can assume θ be given. In this way, our problem
becomes simpler than before (since there is none PDE for θ) and so, given θ such
that

θ ∈ L∞(Ω), θ(x) ∈ [m, M ] for a.e. x ∈ Ω. (5.51)

we consider the following auxiliary problem

(u · ∇)u = ν�u −∇p + f(x, θ,u), (5.52)

div u =0, (5.53)

u = u∗, on x = 0, (5.54)

u = 0, on y = 0, L, (5.55)

u → 0, when x → ∞, (5.56)

where the forces field satisfy (1.1)–(1.3). In Section 3 (see (3.31)) has been estab-
lished the existence of a weak solution u having a finite global energy

E :=
∫

Ω

(
|∇u|2 + χf |u|1+σ(θ)

)
dx (5.57)

and consequently, from (1.2) and assuming that |u| ≤ 1,

E :=
∫

Ω

(
|∇u|2 + χf |u|1+σ+

)
dx < ∞. (5.58)

As in [3, 4] we introduce the associated stream function ψ

u = ψy and v = −ψx in Ω (5.59)

and we reduce the study of problem (5.52)–(5.56), to the consideration of the
following fourth order problem where the pressure term does not appear anymore,

ν�2ψ + ∂f1
∂y − ∂f2

∂x = ψy�ψx − ψx�ψy in Ω, (5.60)

ψ(x, 0) = ψ(x, L) = ∂ψ
∂n (x, 0) = ∂ψ

∂n (x, L) = 0 for x ∈ (0,∞), (5.61)

ψ(0, y) =
∫ y

0
u∗(s)ds, ∂ψ

∂n (0, y) = v∗(y) for y ∈ (0, L), (5.62)

ψ(x, y), |∇ψ(x, y)| → 0, as x → ∞ and for y ∈ (0, L). (5.63)

Here f = (f1, f2) = (f1(x, θ, ψy ,−ψx), f2(x, θ, ψy ,−ψx)) and we recall that θ is as-
sumed to be given. The notion of weak solution is adapted again to the information
we have on the function f .
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Definition 5.1. Given θ satisfying (5.51), a function ψ is a weak solution of problem
(5.60)–(5.63), if:

(i) ψ ∈ H2(Ω), f(x, θ, ψy ,−ψx) ∈ L1
loc(Ω);

(ii) ψ(0, y) =
∫ y

0 u∗(s)ds, ∂ψ
∂n (0, y) = v∗(y), ψ(x, 0) = ψ(x, L) = ∂ψ

∂n (x, 0) =
∂ψ
∂n (x, L) = ψ(0, L) = 0, and ψ, |∇ψ| → 0, when x → ∞;

(iii) For every φ ∈ H2
0(Ω) ∩ W1,∞(Ω) with compact support,

ν

∫
Ω

�ψ�φ dx −
∫

Ω

(f1φy − f2φx) dx =
∫

Ω

�ψ (ψxφy − ψyφx) dx. (5.64)

To establish the localization effect, we proceed as in [3, 4] and we prove the
followings lemmas.

Lemma 5.1. Given θ satisfying (5.51), if u is a weak solution of {(5.52)–(5.56),
(1.1)–(1.3)} in the sense of (ii) of Definition 3.1, then ψ, given by (5.59), is a weak
solution of (5.60)–(5.63) in the sense of Definition 5.1.

Lemma 5.2. Given θ satisfying (5.51), let ψ be a weak solution of (5.60)-(5.63)
with E finite. Assume that f satisfies (1.1)-(1.3) with xf = ∞. Then, for every
a > xg, and every positive integer m ≥ 2∫

Ω

(
ν|D2ψ|2 + δ|ψy|1+σ+

)
(x − a)m

+dx

≤ 2mν

∫
Ω

|�ψ||ψx|(x − a)m−1
+ dx + 2mν

∫
Ω

|ψy||ψxy|(x − a)m−1
+ dx (5.65)

+m(m − 1)ν
∫

Ω

|�ψ||ψ|(x − a)m−2
+ dx + m

∫
Ω

|�ψ||ψy||ψ|(x − a)m−1
+ dx,

where |D2ψ|2 = ψ2
xx + 2ψ2

xy + ψ2
yy.

From the left-hand side of (5.65), it will arise the energy type term which
depends on a

Em(a) =
∫

Ω

(
|D2ψ|2 + |ψy|1+σ+

)
(x − a)m

+dx

and we observe that

E0(0) = E , (Em(a))(k) = (−1)k m!
(m − k)!

Em−k(a), 0 ≤ k ≤ m.

Then, the following lemma is proved as in [4], where now σ depends on the tem-
perature θ and satisfies (1.2).

Lemma 5.3. Let ψ be a weak solution of (5.60)–(5.63) and let us assume f satisfies
(1.1)–(1.3) with xf = ∞. Then, the following differential inequality holds for a ≥ xg

(xg is given in (1.3)) :

Em(a) ≤ C (Em−2(a))µ1 + C (Em−2(a))µ2 , for any θ ∈ [m, M ],
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for every integer m > 3, where C = C(L, m, δ, ν, σ±) are different positive con-
stants and µj = µj(m, σ+) > 1, j = 1, 2. Moreover, E2(a) < ∞ for any a ≥ xg. In
fact,

E2(a) ≤ C (E0(a))µ1 + C (E0(a))µ2 , for any θ ∈ [m, M ],
where C are different positive constants, the first an absolute constant and the
others such that C = C(L, δ, ν, σ±), and µj = µj(σ+) > 1, j = 1, 2.

Starting with the case xf = ∞, we take m = 4 in Lemma 5.3 and then we have
the fractional differential inequality

E4(a) ≤ C (E2(a))µ1 + C (E2(a))µ2 ,

where, according to what we have done in [4], µj = µj(σ+) > 1, j = 1, 2 and
C = C(L, m, δ, ν, σ±) means two different positive constants. Using Lemma 5.3
with m = 2 and because of the finiteness of E (see (5.58)), we can easily see
that E2(a) is finite. Then, using Lemma 5.1 of [4] and proceeding as in this last
reference, we prove the support of E0(a) is a bounded interval [0, a∗] with a∗ ≤ a′,
where a′ is an upper limit to a∗ and given by

a′ =
C

1 − σ+
E

1
2(7+σ+) , C = C(E, L, δ, ν, σ±).

Then E0(a) = 0 for a > a′, which implies u = 0 almost everywhere for x > a′.
For the case xf < ∞, the proof follows exactly as in [3].

Remark 5.1. We obtain the same localization effect if we consider the non-constant
semi-infinite strip Ω = (0,∞) × (L1(x), L2(x)), with L1, L2 ∈ C2 (0,∞), k1 ≤
|L2(x) − L1(x)| ≤ k2, |L′

1(x)|, |L′
2(x)| ≤ k3, and |L′′

1(x)|, |L′′
2(x)| ≤ k4 for all

x ≥ 0, where ki, i = 1, . . . , 4, are positive constants.

6. Case of a temperature depending viscosity

A harder, but very interesting, problem arises when the viscosity depends also on
the temperature (which is very often the case in many concrete applications). In
this case, the equation of motion (5.52) must be replaced by

(u · ∇)u = div (2ν(θ)D) −∇p + f(x, θ,u), (6.66)

where D =
(
∇u + ∇uT

)
/2 is the rate of strain tensor. We assume that

0 < ν− ≤ ν(θ) ≤ ν+ < ∞, (6.67)

for some constants ν− and ν+, and the equation (3.21) of (ii) of Definition 3.1 is
replaced by

2
∫

Ω

ν(θ)D : ∇ϕ dx +
∫

Ω

u · ∇u·ϕ dx =
∫

Ω

f · ϕ dx. (6.68)

The main goal of this section is to indicate how the localization effect can be
proved still in this case. We assume the existence of, at least, one weak solution
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(θ,u), in the sense of Definition 3.1 with (3.21) replaced by (6.68), to problem
(6.66), (2.5)–(2.14) having a finite global energy (5.57).

To establish the localization effect, we proceed as in Section 5 by introducing
the stream function (5.59) associated with the vector velocity and we reduce the
problem {(6.66), (5.53)–(5.56)} to the following one,

[ν(θ) (ψxx − ψyy)]xx + [ν(θ) (ψyy − ψxx)]yy + 4 [ν(θ)ψxy ]xy (6.69)

+
∂f1

∂y
− ∂f2

∂x
= ψy�ψx − ψx�ψy

ψ(x, 0) = ψ(x, L) = ∂ψ
∂n (x, 0) = ∂ψ

∂n (x, L) = 0 for x ∈ (0,∞), (6.70)

ψ(0, y) =
∫ y

0 u∗(s)ds, ∂ψ
∂n (0, y) = v∗(y) for y ∈ (0, L), (6.71)

ψ(x, y), |∇ψ(x, y)| → 0, as x → ∞ and for y ∈ (0, L), (6.72)
where again f = (f1, f2) = (f1(x, θ, ψy ,−ψx), f2(x, θ, ψy ,−ψx)) and the notion of
weak solution to problem (6.69)–(6.72) is adapted, from Definition 5.1, by replacing
(5.64) by ∫

Ω

ν(θ) [(ψxx − ψyy) (φxx − φyy) + 4ψxyφxy] dx

−
∫

Ω

(f1φy − f2φx) dx =
∫

Ω

�ψ (ψxφy − ψyφx) dx.

In this case, the counterpart of (5.65) is∫
Ω

(
ν−|D2ψ|2 + δ|ψy|1+σ+

)
(x − a)m

+dx

≤ 2mν+

∫
Ω

(|ψxx| + |ψyy|)|ψx|(x − a)m−1
+ dx + 2mν+

∫
Ω

|ψxy||ψy|(x − a)m−1
+ dx

+m(m − 1)ν+

∫
Ω

(|ψxx| + |ψyy|)|ψ|(x − a)m−2
+ dx

+m

∫
Ω

|�ψ||ψy||ψ|(x − a)m−1
+ dx.

Proceeding as in Section 5 and using the assumptions (1.2) and (6.67), we obtain
the same localization effect mentioned in the precedent section.
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Ultracontractive bounds
for nonlinear evolution equations
governed by the subcritical p-Laplacian

Matteo Bonforte and Gabriele Grillo

Abstract. We consider the equation u̇ = 4p(u) with 2 ≤ p < d on a compact
Riemannian manifold. We prove that any solution u(t) approaches its (time
independent) mean u with quantitative bounds on the rate of convergence
‖u(t) − u‖∞ ≤ C‖u0 − u‖γr/tβ for any q ∈ [2,+∞] and t > 0. The proof
is based upon the connection between logarithmic Sobolev inequalities and
decay propertiesof nonlinear semigroups.
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58D07, 35K65.

Keywords. Contractivity properties, asymptotics of nonlinear evolutions, p–
Laplacian on manifolds.

1. Introduction

Let (M, g) be a smooth, connected and compact Riemannian manifold without
boundary, whose dimension is denoted by d with d ≥ 3 . Let ∇ be the Rieman-
nian gradient and dx the Riemannian measure and consider, for 2 ≤ p < d (the
subcritical case), the following functional:

Ep(u) =

∫
M

|∇u|p dx (1.1)

for any u ∈L2(M), where we adopt the convention that Ep(u) equals +∞ if the
distributional gradient of u does not belong to Lp(M). It is well–known that Ep
is a convex, lower semicontinuous functional. The subgradient of the functional
Ep/p, denoted by 4p, generates a (nonlinear) strongly continuous nonexpansive
semigroup {Tt : t ≥ 0} on L2(M). On smooth functions, the operator 4p reads

4pu = div
(
|∇u|p−2∇u

)
,

| · | = | · |x indicating the norm in the tangent space at x. We refer to [16] as
a complete general reference for parabolic equations driven by operators of p–
Laplace type in the Euclidean setting, there can be found also existence results
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(for weak solutions) in Euclidean setting as well as other properties of the solution.
It should be remarked here that the function u(t, x) := (Ttu)(x) is also a weak
solution in the sense of [16] of the equation u̇ = 4pu, so we will speak equivalently
of weak solution or time evolution associated to the semigroup at hand. To be
more precise, by weak solution to equation{

u̇ = 4p(u), on (0,+∞)×M
u(0, ·) = u0 ∈ L2(M)

(1.2)

corresponding to the initial datum u0 ∈ L2(M) we mean that

u ∈ Lp((0, T );W 1,p(M)) ∩ C([0, T ]; L2(M))

for any T > 0 and that, for any positive and bounded test function

ϕ ∈W 1,2(0, T ; L2(M)) ∩ Lp((0, T );W 1,p(M)), ϕ(T ) = 0,

one has:∫
M

u0(x)ϕ(0, x) dx =−
∫ T

0

∫
M

u(t)ϕ′(t, x) dxdt

+

∫ T

0

∫
M

|∇u(t, x)|p−2∇u(t, x) · ∇ϕ(t, x) dxdt.

Let us denote by u the mean of an integrable function u:

u =
1

vol(M)

∫
M

u dx.

Let finally u(t) := Ttu be the time evolution associated to the semigroup at hand
and to the initial datum u(0) = u ∈L1(M) (or the weak solution to problem (1.2),

as well). Then u(t) does not depend upon time, so that it equals u: we prove this
fact by means of abstract semigroup theory in Lemma 3.1.

Theorem 1.1. Let (M, g) be a smooth, connected and compact Riemannian ma-
nifold without boundary and with dimension d > 2. Consider, for any t > 0,
the solution u(t) to the problem (1.2) with u(0) ∈ Lq (M) with q ≥ 1. Then the
following ultracontractive bound holds true for all t ∈ (0, 1]:

‖u (t)− u‖∞ ≤
C(p, q, d, A,Vol(M))

tβ
‖u(0)− u‖γq (1.3)

with:

β =
d

pq + d(p− 2)
, γ =

pq

pq + d(p− 2)
(1.4)

where A are the constants appearing in the Sobolev inequality

‖u− u‖pd/(d−p) ≤ A ‖∇u‖p
If t > 1 one has instead, for all data belonging to L2(M):

‖u(t)− u‖∞ ≤
C(p, 2, d, A,Vol(M))(

Bt+ ‖u(0)− u‖2−p2

) 2p
(2p+d(p−2))(p−2)

(1.5)
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and in particular, for any ε ∈ [0, 1]:

‖u(t)− u‖∞ ≤
C(p, 2, d, A,Vol(M))‖u(0)− u‖

2p(1−ε)
(2p+d(p−2))

2

(Bt)
2pε

(2p+d(p−2))(p−2)

(1.6)

where

B =
(p− 2)

A
p
Vol(M)p

2p+d(p−2)
2(p−d)

.

The proof will show that identical conclusions hold for the solutions to the
equation u̇ = 4pu in bounded Euclidean domains, or in compact manifolds with
smooth boundary, with homogeneous Neumann boundary conditions.

Corollary 1.2 (absolute bound). For all t > 2, all ε ∈ (0, 1) and all initial data u0
in L1(M) there exists cε > 0 such that

‖u(t)− u‖∞ ≤ cεt−(1−ε)/(p−2). (1.7)

independently of the initial datum u0. Moreover, if the initial datum belongs to
Lr(M) with ‖u(0)‖r < 1 then

‖u(t)− u‖∞ ≤ cε‖u(0)− u‖εrt−(1−ε)/(p−2)

for all t ≥ 2‖u(0)− u‖2−pr .

The proof of this corollary is identical to the proof of the corollary (1.2) of
[5] since the proof presented there is independent on the range of p.

A few comments on the sharpness of the bound are now given:

• (compact manifold or Neumann cases). It is known from the results of [1]
that a lower bound of the form

‖u(t)− u‖2 ≥
C

t1/(p−2)

holds for any L2 data and all t sufficiently large. A similar bound for the L∞ norm
thus holds as well. Hence the bounds in Corollary 1.2 are close to the optimal ones
for large time. For small times a comparison with the Barenblatt solutions ([16])
shows that the power of time is the correct one for data belonging to L1, while for
data in Lq with q > 1 the L∞ our result is better in the sense that norm diverges
at a slower rate depending on q, a property which is familiar in the theory of linear
ultracontractive semigroups but which seems to have not been explicitly stated so
far in the nonlinear context.

• (Dirichlet case). A similar result can be shown on compact manifolds with
smooth boundary, homogeneous Dirichlet boundary conditions being assumed.
The main difference is in the fact that the solutions approach zero when t tends to
infinity. The proof stems from the appropriate Sobolev inequality for functions in
W 1,p

0 (M) and is easier than in the previous case. For short time remarks similar
to the Neumann case hold. By using the optimal logarithmic Sobolev inequality of
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[14] for the p–energy functional, bounds which are sharp also for general L1 data
and small times can be proved easily by the present methods in the Euclidean
case.

A comparison with some previous results is now given. While a discussion
of similar problems in the whole Rn has been given long ago in [19] by entirely
different methods, and recently improved in [12], nothing seem to have appeared,
apart of some estimates of a somewhat similar nature given in [16] (in any case the
Neumann case and the compact manifold case are not discussed there) concerning
asymptotics of evolution equations driven by the p–Laplacian in bounded domains
before the recent work [8]. In this paper a similar discussion is given for the Eu-
clidean p–Laplacian with Dirichlet boundary conditions on a bounded Euclidean
domain: the solution approaches zero, instead of u, in the course of time. In [10]
a generalization of such results to a much larger class of operators is given, but
Dirichlet boundary conditions are still assumed. The Dirichlet boundary condi-
tions determine the form of the Sobolev inequalities on which our work relies and
thus the situation is different from the very beginning. We shall also comment later
on the case of Dirichlet boundary conditions is much easier and can be dealt with
in the present case as well, and that the case of Neumann boundary conditions
displays exactly the same properties discussed in Theorem (1.1). In the case of the
present type of evolutions it seems that even the fact that u(t) approaches u in
the course of time is new. Similar results have been proved in [5] in the case p > d.

2. Entropy and Logarithmic Sobolev Inequalities

In this section we will prove a family of logarithmic Sobolev inequalities, which
will be an essential tool in the rest of the paper. They involve the entropy or Young
functional below:

J(r, u) =

∫
M

log

(
|u|
‖u‖r

)
|u|r

‖u‖rr
dx (2.1)

well defined for any r ≥ 1 and u ∈ X =
⋂+∞
p=1 Lp(M).

Proposition 2.1. The logartithmic Sobolev inequality

pJ(p, u) ≤ d

p

[
εA
‖∇f‖pp
‖f‖pp

+ εVol(M)p/p
∗

∣∣f ∣∣p
‖f‖pp

− log ε

]
(2.2)

holds true for any ε > 0, for all f ∈W 1,p(M), 1 ≤ p < d, d ≥ 2. Here

A = 2pA

and A is the constant appearing in the classical Sobolev inequality:

‖u− u‖p∗ ≤ A ‖∇u‖p , p∗ =
p d

d− p
(2.3)

Proof. First we notice that
‖u‖p∗ − |u|Vol(M)1/p

∗
= ‖u‖p∗ − ‖u‖p∗

≤ ‖u− u‖p∗ ≤ A‖∇u‖p.
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Thus
‖u‖pp∗ ≤

(
A‖∇u‖p + |u|Vol(M)1/p

∗
)p

≤ 2p−1
(
A‖∇u‖pp + |u|pVol(M)p/p

∗
) (2.4)

where we have used the numerical Young inequality (a+ b)p ≤ 2p−1(ap + bp).
Now we prove the LSI (2.2):

pJ(p, u) =

∫
M

log

(
|u(x)|p

‖u‖pp

)
|u(x)|p

‖u‖pp
dx =

d− p
p

∫
M

log

 |u(x)|
p2

d−p

‖u‖
p2

d−p
p

 |u(x)|p

‖u‖pp
dx

≤ d− p
p

log

∫
M

|u(x)|
p2

d−p+p

‖u‖
p2

d−p+p
p

dx



=
d− p
p

log

‖u‖
pd

d−p
pd

d−p

‖u‖
pd

d−p
p

 =
d

p
log
‖u‖pp∗
‖u‖pp

≤ d

p
log

(
2p−1A‖∇u‖pp + 2p−1Vol(M)p/p

∗ |u|p

‖u‖pp

)

≤ d

p
ε2p−1A

‖∇u‖pp
‖u‖pp

+
d

p
ε2p−1Vol(M)p/p

∗ |u|p

‖u‖pp
− log ε.

Indeed, we first used Jensen inequality for the probability measure |u(x)|
p

‖u‖pp dx, then

the inequality (2.4) and finally the numerical inequality log(t) ≤ εt− log ε, which
holds for any ε, t > 0.
The proof is thus complete. �

3. Preliminary Results

We first recall two facts proved in [5] for the case p > d remarking that their proof
do not depend upon the range of p.

Lemma 3.1. The semigroup {Tt}t≥0 associated with the functional Ep satisfies the
properties:

• Ttu = u for any u ∈L1(M) and any t ≥ 0;

• Ttu = Tt(u− u) + u for all u ∈L1(M).

In view of the above lemma it is clear that it suffices to prove theorem (1.1)
for data with zero mean.

Lemma 3.2. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean. Let also r : [0, t)→
[2,+∞) be a monotonically non-decreasing C1 function. Then
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d

ds
log ‖u(s)‖r(s) =

ṙ(s)

r(s)
J (r(s), u(s))

−
(

p

r(s) + p− 2

)p
(r(s)− 1)

‖u(s)‖r(s)r(s)

∥∥∥∇(|u(s)|
r(s)+p−2

p

)∥∥∥p
p

(3.1)

Lemma 3.3. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean.
Let also r : [0, t)→ [2,+∞) be a monotonically non-decreasing C1 function. Then

d

ds
log ‖u(s)‖r(s) ≤ −

ṙ(s)

r(s)

d(p− 2)

pr(s) + d(p− 2)
log ‖u(s)‖r(s)+ (3.2)

− ṙ(s)

r(s)

d

pr(s) + d(p− 2)
log

(
pp+2

dA

r(s)3(r(s)− 1)

ṙ(s)(r(s) + p− 2)p(pr(s) + d(p− 2))

)
+K‖u(0)‖p−22

where K = Vol(M)(3/2)p/A.

Proof. We can rewrite the LSI (2.2) in the following form:

‖∇f‖pp ≥
p‖f‖pp
εAd

[
J(1, fp) +

d

p
log(ε)

]
− |f |

p

A
.

Then we apply it to the function f = |u(s, x)|(r(s)+p−2)/p and obtain:

∥∥∥∇|u(s)|(r(s)+p−2)/p
∥∥∥p
p
≥
p‖u(s)‖r(s)+p−2r(s)+p−2

εAd

[
J(1, u(s)r(s)+p−2) +

d

p
log(ε)

]

−

∣∣∣|u(s)|(r(s)+p−2)/p)
∣∣∣p

A

(3.3)

since ‖|u(s)|(r(s)+p−2)/p‖pp = ‖u(s)‖r(s)+p−2r(s)+p−2. Then we apply this to the inequality

(3.1) of previous lemma and we obtain:

d

ds
log ‖u(s)‖r(s) =

ṙ(s)

r(s)
J (r(s), u(s))

−
(

p

r(s) + p− 2

)p
r(s)− 1

‖u(s)‖r(s)r(s)

∥∥∥∇(|u(s)|
r(s)+p−2

p

)∥∥∥p
p

(3.4)

so that

d

ds
log ‖u(s)‖r(s) ≤

ṙ(s)

r(s)2
J
(

1, u(s)r(s)
)
− pp+1(r(s)− 1)

εAd(r(s) + p− 2)p

‖u(s)‖r(s)+p−2r(s)+p−2

‖u(s)‖r(s)r(s)

×

×
[
J
(

1, u(s)r(s)+p−2
)
− d

p
log ε

]
+R(p, r(s), u(s), A, d)
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since J
(
1, u(s)r(s)

)
= r(s)J (r(s), u(s)), where

R =
pp(r(s)− 1)

A(r(s) + p− 2)p

∣∣∣|u(s)|(r(s)+p−2)/p
∣∣∣p

‖u(s)‖r(s)r(s)

.

Now choose

ε = ε(s) =
r(s)3

ṙ(s)

pp+2(r(s)− 1)

Ad(r(s) + p− 2)p(p(r(s) + d(p− 2)))

‖u(s)‖r(s)+p−2r(s)+p−2

‖u(s)‖r(s)r(s)

= ε1
‖u(s)‖r(s)+p−2r(s)+p−2

‖u(s)‖r(s)r(s)

and obtain from (3.4):

d

ds
log ‖u(s)‖r(s) ≤

ṙ(s)

r(s)2

[
J
(

1, u(s)r(s)
)
− pr(s)

pr(s) + d(p− 2)
J
(

1, u(s)r(s)+p−2
)

− pdr(s)

p(pr(s) + d(p− 2))
log
‖u(s)‖r(s)+p−2r(s)+p−2

‖u(s)‖r(s)r(s)


− ṙ(s)

r(s)2
pdr(s)

p(pr(s) + d(p− 2))
log ε1 +R

≤ ṙ(s)

r(s)2

[
J
(

1, u(s)r(s)
)
− pr(s)

pr(s) + d(p− 2)
J
(

1, u(s)r(s)+p−2
)

− (p− 2)pdr(s)

p(pr(s) + d(p− 2))
J
(

1, u(s)r(s)
)
− (p− 2)pdr(s)

p(pr(s) + d(p− 2))
log ‖u(s)‖r(s)r(s)

]
− ṙ(s)

r(s)2
pdr(s)

p(pr(s) + d(p− 2))
log ε1 +R

=
ṙ(s)

r(s)2
pr(s)

(pr(s) + d(p− 2))

[
J
(

1, u(s)r(s)
)
− J

(
1, u(s)r(s)+p−2

)]
− ṙ(s)

r(s)2
(p− 2)pdr(s)

p(pr(s) + d(p− 2))
log ‖u(s)‖r(s)

(3.5)

− ṙ(s)

r(s)2
pdr(s)

p(pr(s) + d(p− 2))
log ε1 +R

≤ − ṙ(s)
r(s)

(p− 2)d

pr(s) + d(p− 2)
log ‖u(s)‖r(s) −

ṙ(s)

r(s)

d

pr(s) + d(p− 2)
log ε1 +R

We used first the fact that

log
‖u(s)‖r(s)+p−2r(s)+p−2

‖u(s)‖r(s)r(s)

≥ (p− 2)
[
J (r(s), u(s)) + log ‖u(s)‖r(s)

]
(3.6)
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which follows from two basic facts. First, the function N(r, u) = log ‖u‖rr is convex
with respect to the variable r ≥ 1, so its derivative is an increasing function of
r ≥ 1. Moreover N

′
(r, u) = J(r, u) + log ‖u‖r, so the following inequality:

N(r + p− 2, u)−N(r, u) ≥ N
′
(r, u)(p− 2) = [J(r, u) + log ‖u‖r] (p− 2)

holds if p ≥ 2 and leads to (3.6).
The last estimate is obtained by the following monotonicity property of the Young
functional

J (1, ur)− J
(
1, ur+p−2

)
≤ 0, if p ≥ 2

the proof of the fact that J (1, ur) is a non-decreasing function of r ≥ 1 is a
consequence of the convexity (w.r.t. the variable r) of the function:

φ(r, u) = log ‖u‖1/r.
We refer to [3] for a proof of such fact, but comment that it is equivalent to the
well known interpolation inequality:

‖u‖1/r ≤ ‖u‖θ1/p‖u‖
1−θ
1/q

valid when 1
r = θ

p + 1−θ
q . Now deriving φ respect to r gives us:

d

dr
φ(r, u) = −1

r
J

(
1

r
, u

)
thus, as derivative of a convex functions, − 1

rJ
(
1
r , u
)

is non-decreasing.
Our next goal will be to give an estimate on the term R. To this end we use an
Hölder and an interpolation inequality to yield

‖u‖(r+p−2)/p ≤ Vol(M)1/(r+p−2)‖u‖(r+p−2)/(p−1)
≤ Vol(M)1/(r+p−2)‖u‖(p−2)/(r+p−2)1 ‖u‖r/(r+p−2)r .

Therefore ∣∣∣|u(s)|(r(s)+p−2)/p
∣∣∣p

‖u(s)‖r(s)r(s)

=
‖u(s)‖r(s)+p−2(r(s)+p−2)/p

‖u(s)‖r(s)r(s)

≤ Vol(M)
‖u(s)‖(r(s)+p−2)(r(s)+p−2)/(p−1)

‖u(s)‖r(s)r(s)

≤ Vol(M)‖u(s)‖p−21 .

The statement finally follows by the bounds

pp(r(s)− 1)

A(r(s) + p− 2)p
≤ pp

A(q + p− 2)p−1
≤ p

A

valid because r(s) ≥ q ≥ 1 and p ≥ 2 by assumption, together with the Hölder
inequality and the L2 contraction property of the evolution at hand:

‖u(s)‖1 ≤ Vol(M)(1/2)‖u(s)‖2 ≤ Vol(M)(1/2)‖u(0)‖2 = Vol(M)(1/2)‖u0‖2
which is well known to hold for any s > 0. �
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Lemma 3.4. Let u be a weak solution to the equation (1.2) corresponding to an
essentially bounded initial datum u0 ∈ L∞(M) with zero mean.
Let also r : [0, t)→ [2,+∞) be a monotonically non-decreasing C1 function. Then
the following differential inequality holds true for any s ≥ 0:

d

ds
y(s) + p(s)y(s) + q(s) ≤ 0 (3.7)

With

y(s) = log ‖u(s)‖r(s)

p(s) =
ṙ(s)

r(s)

d(p− 2)

pr(s) + d(p− 2)

q(s) =
ṙ(s)

r(s)

d

pr(s) + d(p− 2)
log

(
pp+2r(s)3(r(s)− 1)

Adṙ(s)(pr(s) + d(p− 2))(r(s) + p− 2)p

)
−K‖u0‖p−22 (3.8)

In particular, choosing r(s) = qt
t−s , one gets the bound:

y(t) = lim
s→t−

y(s) ≤ lim
s→t−

yL(s) = yL(t)

with

yL(t) =
pq

pq + d(p− 2)
yL(0)

− d

pq + d(p− 2)
log(t) + c2(p, q, d,Vol(M))‖u0‖p−22 t+ c1(p, q, d)

(3.9)

Proof. The fact that y(s) satisfies the differential inequality (3.7) follows imme-
diately by the inequality (3.2) of lemma (3.3), by our choice of p(s) and q(s).
Therefore y(s) ≤ yL(s) for any s ≥ 0 provided y(0) ≤ yL(0) where yL(s) is a
solution to:

d

ds
yL(s) + p(s)yL(s) + q(s) = 0

i.e.

yL(s) = e−P (s)

[
yL(0)−

∫ s

0

q(λ)eP (λ)dλ

]
= e−P (s) [yL(0)−Q(s)]

where

P (s) =

∫ s

0

p(λ)dλ, Q(s) =

∫ s

0

q(λ)eP (λ)dλ.

Choosing r(s) as in the statement one gets, after straightforward calculations and
beside noticing that r(0) = q and r(s)→ +∞ as s→ t−:

e−P (t) = lim
s→t−

e−P (s) =
pq

pq + d(p− 2)

and



24 M. Bonforte and G. Grillo

Q(t) = lim
s→t−

Q(s)

=
d

pq + d(p− 2)

pq + d(p− 2)

pq
log

(
pp+2qt

Ad

)
+ c0(p, q, d) + c2(p, q, d,Vol(M))‖u0‖p−22 t

for suitable numerical constants c0(p, q, d) and c2(p, q, d,Vol(M)). �

End of proof of Theorem 1.1.
The following contractivity property holds true for all 0 ≤ s ≤ t :

‖u (t)‖r ≤ ‖u (s)‖r
Therefore by the previous results one has, for all such s and t :

‖u (t)‖r(s) ≤ ‖u (s)‖r(s) = exp
(

log ‖u (s)‖r(s)
)

= ey(s) ≤ eyL(s)

whence, letting s→ t−, and recalling that r (s)→ +∞ as s→ t−, we deduce:

‖u (t)‖∞ = lim
s→t−

‖u (t)‖r(s) ≤ lim
s→t−

‖u (s)‖r(s)

= lim
s→t−

ey(s) ≤ lim
s→t−

eyL(s) = eyL(t).

By the explicit form for eyL(t) we can now prove the bound (1.3) for small times:
it is sufficient to let y(t) = log ‖u(t)‖∞, y(0) = yL(0) = log ‖u(0)‖q = log ‖u0‖q.
So we obtain:

‖u(t)‖∞ ≤ec1(p,q,d)+c2(p,q,d,Vol(M))‖u0‖p−2
2 t ‖u0‖

pq
pq+d(p−2)
q

t
d

pq+d(p−2)

To conclude the proof for small times, we prove an L2–L2 time decay estimate for
arbitrary time. We compute, for initial data with zero mean

d

dt
‖u(t)‖22 = −2‖∇u‖pp

≤ −2A
−p‖u(t)‖pp∗

≤ −2A
−p

Vol(M)−p
2p+d(p−2)

p−d ‖u(t)‖p2
where we have used the Sobolev inequality in the first step and the constant A
appearing in (2.3). Thus, setting f(t) = ‖u(t)‖22 we have proved that

ḟ(t) ≤ −2A
−p

Vol(M)−p
2p+d(p−2)

p−d f(t)p/2.

This yields the bound, valid for all positive t:

‖u(t)‖2 ≤
1(

Bt+ ‖u(0)‖2−p2

)1/(p−2)
where we have set
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B =
(p− 2)

A
p
Vol(M)p

2p+d(p−2)
p−d

.

This last estimate also gives the so called absolute bound:

‖u(t)‖2 ≤
1

(Bt)1/(p−2)

The absolute bound, together with the Lq–L∞ smoothing property above and with
the semigroup property yields the bound:

‖u(t)‖∞ ≤ ec1(p,q,d)+c2(p,q,d,Vol(M))‖u(t/2)‖p−2
2 t/2 ‖u(t/2)‖

2p
2p+d(p−2)
q

(t/2)
d

pq+d(p−2)

≤ ec1(p,q,d)+c2(p,q,d,Vol(M))B ‖u(t/2)‖
2p

2p+d(p−2)
q

(t/2)
d

pq+d(p−2)

≤ C(p, q, d, A,Vol(M))
‖u(0)‖

2p
2p+d(p−2)
q

t
d

pq+d(p−2)

in the last step we used the Lq contraction property, which is well known to hold
for any q ≥ 1 and t ≥ 0 and we obtained the desired bound for small times, at
least for essentially bounded initial data.
To deal with the case of general Lq–data, it suffices to refer to the discussion
given in [8], which does not depend either upon the value of p or on the Euclidean
setting. This concludes the proof for small times.

To deal with the case of large times, we use again the above L2–L∞ decay, the
L2–L2 time decay, together with the above absolute bound and the semigroup
property to yield, for all positive t:

‖u(t)‖∞ ≤ ec1(p,q,d)+c2(p,q,d,Vol(M))‖u(t/2)‖p−2
q t/2‖u(t/2)‖

2p
2p+d(p−2)

2

≤ ec1(p,q,d)+c2(p,q,d,Vol(M))2/B(
B(t/2) + ‖u(0)‖2−p2

) 2p
(2p+d(p−2))(p−2)

The latter statement is obtained from the numerical inequality
a+ b ≥ aεb1−ε

valid for all positive a, b and all ε ∈ (0, 1). Putting a = Bt and b = ‖u(0)‖2−p2 we
thus get, for all t > 1

‖u(t)‖∞ ≤
C(p, 2, d, A,Vol(M))‖u(0)‖

2p(1−ε)
(2p+d(p−2))

2

(Bt)
2pε

(2p+d(p−2))(p−2)

�
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Weighted L2-spaces and Strong Solutions
of the Navier-Stokes Equations in R

3

Lorenzo Brandolese

Abstract. We consider the velocity field u(x, t) of a Navier-Stokes flow in the
whole space.

We give a persistence result in a subspace of L2(R3, (1 + |x|2)5/2dx),
which allows us to fill the gap between previously known results in the
weighted-L2 setting and those on the pointwise decay of u at infinity.
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1. Introduction

In this paper we study the spatial localization of the velocity field u = (u1, u2, u3)
of a Navier-Stokes flow in R3. For an incompressible fluid and in the absence of
external forces, the Navier-Stokes equations can be written in the following integral
form:

∇ · a = 0, u(t) = et∆a −
∫ t

0

e(t−s)∆
P∇ · (u ⊗ u)(s), (IE)

where ∇ · a =
∑3

j=1 ∂jaj = 0 is the divergence-free condition and P is the Leray-
Hopf projector onto the soleinoidal vectors field, defined by Pf = f−∇∆−1(∇·f),
where f = (f1, f2, f3).

If a ∈ L2(R3), then we know since a very long time that a weak solution to
(IE) exists such that u ∈ L∞(]0,∞[, L2(R3)) and ∇u ∈ L2(]0,∞[, L2(R3)). If the
initial datum is well localized in R3, then these conditions, of course, do not give us
so much information on the spatial localization of u(t) during the evolution. Then
the natural problem arises of finding the functional spaces that would provide the
good setting for obtaining such information. Several papers have been written on
this topic, see, e.g., [6], [7], [9], [1], [14], [12] and the references therein contained
(see also [15]). In particular, it was shown in [10] that the condition a ∈ L2(R3, (1+
|x|2)δdx) (0 ≤ δ ≤ 3

2 ) is conserved during the evolution, for a suitable class of weak
solutions. Here and below, this weighted-L2 space is equipped with its natural
norm, namely

(∫
|a(x)|2(1 + |x|2)δ dx

)1/2. Moreover, the bound on δ seems to be
optimal, as far as we deal with data belonging to general weighted-L2 spaces.
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When dealing with strong solutions, it is not difficult to obtain much sharper
conclusions on the localization of u. For example, assuming that a ∈ L1 ∩L2(R3),
He [9] proves, among other things, that u(t) belongs to L2(R3, (1+|x|2)2dx) at least
in some time interval [0, T ], T > 0 (and uniformly in [0, +∞[, under a supplemen-
tary smallness assumption). In a slightly different context, we would like to mention
here also the work of Miyakawa [13], in which it is shown that u(x, t) ∼ |x|−αt−β/2

as |x| → ∞ or t → ∞, for all α, β ≥ 0 and 1 ≤ α + β ≤ 4, under suitable
assumptions on a.

If we compare these two results, we see that Miyakawa’s result seems to give
a slightly better conclusion, at least from the localization point of view. Indeed,
it implies that the condition a(x) ∼ |x|−4 at infinity is conserved during the evo-
lution (furthermore, |x|−4 is known to be the optimal decay in the generic case),
whereas the fact that u(t)∈L2(R3,(1+ |x|2)2dx) simply tells us that u(t)∼|x|−7/2

at infinity.
The purpose of this paper is to “fill this gap” and to obtain a persistence

result in suitable subspaces of L2(R3, (1 + |x|2)αdx), for all 0 ≤ α < 5
2 which, at

least formally, will allow us to recover the optimal decay of the velocity field. More
precisely, let us introduce the space Zδ of functions (or vector fields) f such that

f(x) ∈ L2(R3, (1 + |x|2)δ−2dx), (1.1)

∇f(x) ∈ L2(R3, (1 + |x|2)δ−1dx), (1.2)

∆f(x) ∈ L2(R3, (1 + |x|2)δdx) (1.3)

and equipped with its natural norm. Then we have the following

Theorem 1.1. Let 3
2 < δ < 9

2 (δ 
= 5
2 , 7

2) and let a ∈ Zδ be a soleinoidal vector
field. Then there exists T > 0 such that (IE) possesses a unique strong solution
u ∈ C([0, T ], Zδ).

The restriction δ < 9
2 is consistent with the instantaneous spreading of the

velocity field described, e.g., in [3]: we cannot have u ∈ C([0, T ], Z9/2) unless the
initial data have some symmetry properties. On the other hand, the condition
δ > 3

2 agrees with the limit case α + β = 1 of Miyakawa’s profiles.
In order to describe our second motivation for Theorem 1.1, let us first ob-

serve that the condition (1.3) on the Laplacian plays an important role also in a
previous work [8] of Furioli and Terraneo. Motivated by the problem of the unicity
of mild solutions to (IE) in critical spaces, they introduced (see also [11]) “a space
of molecules” Xδ (defined below) and proved that the Cauchy problem for (IE) is
locally well-posed in this space. But their proof is technical and involves the the-
ory of local Muckenoupt weights and other “hard analysis” tools. However, we will
show in the following section that the result of [8] is essentially equivalent to The-
orem 1.1 and can thus be proved in a simpler way. Moreover, we feel that making
evidence of the connection between the localization problem of the velocity field
and Furioli and Terraneo’s molecules provides also a better understanding of [8].
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2. Proof of Theorem 1.1

Throughout this section we shall assume 3
2 < δ < 9

2 and δ 
= 5
2 , 7

2 . The proof of
Theorem 1.1 relies on the decomposition into dyadic blocks of the elements of Zδ.
It will be convenient to introduce the space L2

δ of all functions f ∈ L2(R3, (1 +
|x|2)δdx) such that

∫
xαf(x) dx = 0 for all α ∈ N3, with 0 ≤ |α| ≤ [δ − 3

2 ] (where
[·] denotes the integer part and |α| = α1 + α2 + α3). Note that L2

δ is well defined
because of the embedding of L2(R3, (1 + |x|2)δdx) into L1(R3, (1 + |x|)[δ−3/2]dx).
We start stating a very simple lemma.

Lemma 2.1. We have f ∈ L2
δ if and only if f can be decomposed as

f = g +
∞∑

j=0

fj ,

where g and fj belong to L2(R3), supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−1 ≤ |x| ≤
2j+1} and, moreover,

||fj ||2 ≤ εj2−jδ, with εj ∈ �2(N),∫
xαg(x) dx =

∫
xαfj(x) dx = 0, if 0 ≤ |α| ≤ [δ − 3

2 ].
(2.1)

Proof. We start with a bad choice, namely,

g̃(x) = f(x)I|x|≤1 and f̃j(x) = f(x)I2j≤|x|≤2j+1 (j = 0, 1, . . .),

where I denotes the indicator function. Letting f̃−1 = g̃, we set

J(j, α) =
∫

xαf̃j(x) dx.

Since |α| < δ − 3
2 , the series J(j, α) converges and

∑∞
j=−1 J(j, α) = 0. We now

introduce a family of functions ψβ ∈ C∞
0 (R3), supported in 1

2 ≤ |x| ≤ 1 and such
that ∫

xαψβ(x) dx = δα,β (α, β ∈ N
3),

(with δα,β = 0 or 1 if α 
= β or α = β respectively) and we define

c(j, α) ≡ J(j, α) + J(j + 1, α) + · · · .

We finally set, for j = −1, 0, . . .

fj(x) = f̃j(x) −
∑

β

(
c(j, β)2−(3+|β|)jψβ(2−jx)

− c(j + 1, β)2−(3+|β|)(j+1)ψβ(2−j−1x)
)

,

the summation being taken over all β ∈ N
3 such that 0 ≤ |β| ≤ [δ − 3

2 ].
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Since |J(j, α)| ≤ 2j|α|23j/2−jδ ε̃j for some ε̃j ∈ �2(N), we have |c(j, α)| ≤
2j|α|23j/2−jδ ε̄j, with ε̄j ∈ �2(N). One now easily checks that

∞∑
j=−1

fj =
∞∑

j=−1

f̃j = f

and that g and fj satisfy (2.1). Lemma 2.1 thus follows. �

Let us show that a similar decomposition applies for Zδ.

Lemma 2.2. We have f ∈ Zδ if and only if

f = g +
∞∑

j=0

fj ,

with

supp g ⊂ {|x| ≤ 1}, supp fj ⊂ {2j−2 ≤ |x| ≤ 2j+2}
g ∈ L2(R3), ||fj||2 ≤ εj22j2−jδ, εj ∈ �2.

||∇fj ||2 ≤ ε̄j2j2−jδ, ||∆fj ||2 ≤ ε̃j2−jδ, ε̄j , ε̃j ∈ �2.

(2.2)

Proof. It is obvious that if (2.2) holds true then f = g +
∑∞

j=0 fj belongs to Zδ.
Conversely, let ϕ and ψ be two compactly supported smooth functions, such that 0
does not belong to the support of ψ and 1 ≡ ϕ(x)+

∑∞
j=0 ψ(2−jx). If we set g(x) =

f(x)ϕ(x) and fj(x) = f(x)ψ(2−jx), then we have ∇fj(x) = ψ(2−jx)∇f(x) +
2−j(∇ψ)(2−jx)f(x) and

∆fj(x) = ψ(2−jx)∆f(x) + 2−j+1(∇ψ)(2−jx) · ∇f(x) + 2−2j(∆ψ)(2−jx)f(x).

Decomposition (2.2) then directly follows from the definition of Zδ. �

Remark 2.3. If 7
2 < δ < 9

2 , then Zδ is embedded in L1(R3). In this case, using the
same arguments as in the proof of Lemma 2.1, one easily sees that an element of
Zδ has a vanishing integral if and only if in (2.2) we may choose g and fj such
that

∫
g =

∫
fj = 0 (j = 0, 1, . . .).

Following Furioli and Terraneo [8], we now denote by Xδ the set of all tem-
pered distributions f vanishing at infinity, such that ∆f ∈ L2(R3, (1 + |x|2)δ)dx)
and

∫
xα∆f(x) dx = 0 for all α ∈ N3 such that |α| ≤ [δ − 3

2 ]. The norm of Xδ is
defined by

||f ||2Xδ
≡
∫

|∆f(x)|2(1 + |x|2)δ dx.

This space is useful to model the fact the Laplacian of the velocity field is a non-
normalized molecule for the Hardy space IH1 (see [8], see also [12], [4] for other
applications of the Hardy spaces to the Navier-Stokes equations).

Our next result shows that Xδ can be characterized by means of a dyadic
decompositions very similar to the previous one:
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Proposition 2.4. We have f ∈ Xδ, with 3
2 < δ < 7

2 , δ 
= 5
2 , if and only if there

exist g and fj (j = 0, 1, . . .) satisfying (2.2), such that f = g +
∑∞

j=0 fj. In the
case 7

2 < δ < 9
2 we have f ∈ Xδ if and only if, in addition, we can choose g and

fj satisfying,
∫

g = 0 and
∫

fj = 0 for all j.

Proof. Let us assume that f ∈ Xδ. Applying Lemma 2.1 to ∆f and using the fact
that f vanishes at infinity, we see that we may write

f =
c

|x| ∗ p +
∞∑

j=0

c

|x| ∗ qj , (2.3)

c being an absolute constant. Here p and qj are compactly supported L2-functions,
satisfying

supp qj ⊂ {2j−1 ≤ |x| ≤ 2j+1},
||qj ||2 ≤ εj2−jδ (εj ∈ �2),∫

xαp(x) dx =
∫
xαqj(x) dx = 0, if |α| ≤ [δ − 3/2].

(2.4)

Let us show that, for all f ∈ Xδ and 2j ≤ |x| ≤ 2j+1, we have

|f(x)| ≤ ε̄j2j/22−jδ, with ε̄j ∈ �2. (2.5)

To prove (2.5) we set P = 1
|·| ∗p, Qj = 1

|·| ∗qj (j = 0, 1, . . .) and we pose d = [δ− 3
2 ].

Then we have

|Qj(x)| ≤ Cεj2−j(δ−1/2), if |x| ≤ 4 · 2j, (2.6)

|Qj(x)| ≤ C|x|−(d+2)εj2(d+ 5
2−δ)j , if |x| ≥ 4 · 2j . (2.7)

The first bound follows from the localization of qj and Hölder’s inequality and
the second from the last of (2.4), Taylor’s formula and, again, Hölder’s inequality.
Similar arguments allow us to see that |P (x)| ≤ C(1 + |x|)−(d+2). Summing upon
these inequalities immediately yields (2.5).

Another consequence of (2.3) is the following:(∫
2j≤|x|≤2j+1

|∇f(x)|2 dx

)1/2

≤ Cε̃j2j2−jδ, with ε̃j ∈ �2(N). (2.8)

To prove (2.8) we start from −∇f(x) = cx
|x|3 ∗ p +

∑∞
j=0

cx
|x|3 ∗ qj and we set

Rj = (x/|x|3) ∗ qj , for all j = 0, 1, . . .. Then,(∫
|x|≤4·2j

|Rj(x)|2 dx

)1/2

≤ Cεj2−j(δ−1), if |x| ≤ 4 · 2j , (2.9)

|Rj(x)| ≤ C|x|−(d+3)εj2(d+ 5
2−δ)j , if |x| ≥ 4 · 2j. (2.10)

Indeed, the proof of (2.10) again easily follows using the vanishing of the mo-
ments of qj and the Taylor formula. The proof of (2.9) deserves a more detailed
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explanation: for |x| ≤ 4 · 2j we write
x

|x|3 ∗ qj(x) = θj ∗ qj(x), where θj(x) =
x

|x|3 I{|x|≤6·2j}.

Then (2.9) comes from ||θj ∗ qj ||2 ≤ ||θj ||1||qj ||2 ≤ C2j ||qj ||2. Now, (2.8) follows
from (2.9) and (2.10) by summation.

We are now ready to show that, if f ∈ Xδ, then (2.2) holds true. Indeed,
using (2.5) and (2.8) we get Xδ ⊂ Zδ and our claim then follows from Lemma 2.2.
Note that, in the case 7

2 < δ < 9
2 , the moments of p and qj vanish up to the

order two (see (2.4)). We thus see via the Fourier transform that
∫

P (x) dx =∫
Qj(x) dx = 0 (j = 0, 1, . . .). This in turn implies

∫
f = 0 and the first part of

Proposition 2.4 immediately follows using Remark 2.3.

Conversely, let f = g +
∑∞

j=0 fj , such that (2.2) holds (in the case 7
2 < δ < 9

2

we assume, in addition,
∫

g =
∫

fj = 0 for all j). Then the bound ||f ||Xδ
< ∞ is

obvious. Moreover, by Hölder’s inequality,
∞∑

j=0

||xα∆fj ||1 < ∞, 0 ≤ |α| ≤ [δ − 3/2].

But, integrating by parts shows that
∫

xα∆g(x) dx =
∫

xα∆fj(x) dx = 0 for all
j = 0, 1, . . . and |α| ≤ [δ − 3

2 ] (in the case |α| = 2, we need to use
∫

g =
∫

fj = 0).
Hence

∫
xα∆f(x) dx = 0 and we have indeed f ∈ Xδ. �

Remark 2.5. Comparing the results of Lemma 2.2 and Proposition 2.4, we see that
Xδ = Zδ, for 3

2 < δ < 7
2 (δ 
= 5

2 ) and Xδ = Zδ ∩ {f :
∫

f = 0} for 7
2 < δ < 9

2 .

We finish our study of Zδ with the following lemma

Lemma 2.6. With the above restrictions on δ, the space Zδ is an algebra with
respect to the pointwise product.

Proof. For f ∈ Zδ we have |f(x)| ≤ C(1+ |x|)−δ+1/2ε(x), where ε(x) is a bounded
function such that ε(x) → 0 at infinity. Indeed, let us come back to the decompo-
sition (2.2) and observe that fj(x) =

∫
supp fj

|x − y|−1∆fj(y) dy. By the Hölder

inequality, |fj(x)| ≤ εj2−jδ2j/2 with εj ∈ �2 and our claim follows.
Another useful estimate (which follows interpolating ∇fj between ||∆fj ||2

and ||fj ||∞) is(∫
2j≤|x|≤2j+1

|∇f(x)|4dx

)1/4

≤ εj2j/4−jδ, with εj ∈ �2(N).

Using this, we immediately see that, if f and h belong to Zδ, then fh ∈ L2(R3, (1+
|x|2)2δ−5/2dx), ∇(fh) ∈ L2(R3, (1 + |x|2)2δ−3/2dx) and ∆(fh) ∈ L2(R3, (1 +
|x|2)2δ− 1

2 dx). Therefore, fh ∈ Z2δ−1/2 ⊂ Zδ and Zδ is indeed a pointwise al-
gebra. �
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In our last lemma we show that the operator et∆P∇ which appears in (IE) is
bounded in Zδ. The matricial structure of this operator will not have any special
role in the sequel, since we shall establish all the relevant estimates componentwise.

Lemma 2.7. The operator et∆P∇ is bounded from Zδ to Xδ for all t > 0, with an
operator norm bounded by C/

√
t as t → 0.

Proof. If 7
2 < δ < 9

2 then we introduce a function h such that

f(x) = cg(x) + h(x), where g(x) = (4π)−3/2e−|x|2/4

and the constant c is chosen in a such way that
∫

h(x) dx = 0. If, instead, 3
2 < δ <

7
2 , δ 
= 5

2 , then we simply set f(x) = h(x). In any case, we deduce from Remark 2.5
that h ∈ Xδ.

We start showing that et∆P∇g belongs to Xδ for all 0 ≤ δ < 9
2 . Note that

the components of (et∆P∇g)̂(ξ) are given by

iξh

(
1 − ξjξk

|ξ|2
)

exp(−(t + 1)|ξ|2) (j, h, k = 1, 2, 3)

and the inverse Fourier transform can be easily computed (see, e.g., [13]): we
immediately find that et∆P∇g is a smooth function in R3, such that

|∂αet∆
P∇g(x)| ≤ Cα(1 + |x|)−(4+|α|) for all α ∈ N3.

This bound implies that et∆P∇g ∈ Zδ, for all δ < 9
2 . But

∫
et∆P∇g = 0 and thus

et∆P∇g belongs, more precisely, to Xδ.
Let us now prove that et∆P∇h does also belong to Xδ. We start recalling

that the Sobolev space Hδ is defined by

||q||2Hδ ≡
∫

|q̂(ξ)|2(1 + |ξ|2)δ dξ

and that, for δ > 3
2 , Hδ ⊂ Cδ−3/2 (the Hölder-Zygmund space). Thus, stating that

h belongs to Xδ is equivalent to state that

q(ξ) ≡ |ξ|2ĥ(ξ) ∈ Hδ and ∂αq(0) = 0, for all 0 ≤ |α| ≤ [δ − 3
2 ].

These two conditions on q can be expressed by saying that q belongs to L2(R3) ∩
Ḣδ

rel, where Ḣδ
rel is the realization of the homogeneous Sobolev space Ḣδ (see

Bourdaud, [2]). Recall that Ḣδ
rel can be injected into S′(R3) (this would not be true

for Ḣδ, which instead is a space of tempered distributions modulo polynomials)
and hence the notion of pointwise multipliers makes sense in the realized space.
It follows from the result of [2] that m(ξ) ≡ ξh/|ξ| is a multiplier for Ḣδ

rel (this
would follow also from the general characterization of multipliers of Besov spaces
due to Youssfi [16]).

Since we already observed that h ∈ Xδ, it follows from the above discussion
that the components of |ξ|2P̂h(ξ), which are given by (1 − ξjξh|ξ|−2)q(ξ), belong
to L2(R3)∩Ḣδ

rel. Hence, Ph ∈ Xδ. Moreover, iξke−t|ξ|2 ∈ S(R3) is also a multiplier
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of Ḣδ
rel (with norm c/

√
t). Then we get ||et∆P∇f ||Xδ

≤ C(t−1/2 + tδ/2)||f ||Zδ
and

Lemma 2.7 is thus proven. �

We are now in the position to prove Theorem 1.1. The proof is based on
the application of Kato’s standard iteration argument in the space C([0, T ], Zδ).
We write (IE) in the compact form u(t) = et∆a − B(u, u), where B(u, v) =∫ t

0 e(t−s)∆P∇ · (u ⊗ v)(s) ds.
By Lemma 2.6 and Lemma 2.7, the bilinear operator B is bounded in

C([0, T ], Zδ) and ||B(u, v)|| ≤ CT ||u|| ||v||, where ||w|| ≡ supt∈[0,T ] ||w(t)||Zδ
and

CT = O(T 1/2) as t → 0. Since it is straightforward to check that et∆a be-
longs to C([0, T ], Zδ), if a ∈ Zδ, we see that the fixed point argument applies
in C([0, T ], Zδ), at least if T > 0 is small enough. Theorem 1.1 then follows.

Remark 2.8. Theorem 1.1 covers the result of Furioli and Terraneo. This is obvious
in the case 3

2 < δ < 5
2 and 5

2 < δ < 7
2 since we identified the spaces Xδ and Zδ.

In the case 7
2 < δ < 9

2 , we use the fact that Zδ ⊂ L1(R3). Since we know that
divergence-free vector fields in L1(R3) have vanishing integral, we deduce from
Remark 2.5 that u ∈ Zδ and ∇ · u = 0 if and only if u ∈ Xδ. Thus, Theorem 1.1
and the result of [8] turn out to be equivalent; however, the fact that the velocity
field itself, and not only its Laplacian, does belong to weighted L2-spaces does not
seem to have been noticed in [8].

As claimed in the introduction, the restriction δ < 9
2 cannot be removed.

Indeed, if u is a solution to (IE) such that u ∈ C([0, T ], Z9/2), for some T > 0,
then the initial datum must satisfy the conditions of Dobrokhotov and Shafarevich:∫
(ahak) = 0, if h 
= k and

∫
a2
1 =

∫
a2
2 =

∫
a2
3. This is due to the fact that the

localization condition a ∈ L2(R3, (1 + |x|2)5/2dx) is not conserved during the
evolution (see [3]).
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scribed by a coupled system involving the dissipation energy.
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1. Introduction

In a previous work [2] we have obtained a nonlocal model for an incompressible
viscous flow introduced by Ladyzhenskaya [7], in the two-dimensional periodic
case, as a limit problem for large values of the thermal conductivity (σ → ∞) and
vanishing latent heat (δ → 0) of a non-isothermal Newtonian flow in presence of
the dissipation energy. Contrary to the stationary problem that has only one limit
(σ → ∞) and has been completely studied in [1] for general non-Newtonian flows
in two and three dimensions, the evolutionary problem presents some difficulties
in the second passage to the limit δ → 0, due to the term of the dissipation of
energy. In [2] the technical restriction on the viscosity function µ of being monotone
nonincreasing was required.

In this note we extend the result of [2] to a scalar case corresponding to the
thermal viscous incompressible non-Newtonian flow in a tube, which is described
by the system

∂tu − div (µ(θ)|∇u|p−2∇u) = f in QT = Ω × (0, T ), (1.1)

u|t=0 = u0, u|∂Ω = 0, (1.2)

Partly supported by FCT research project POCTI/34471/MAT/2000 and by RFBR research
project no. 03-01-00638.
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δ∂tθ − σ∆θ + θ = µ(θ)|∇u|p in QT , (1.3)

θ|t=0 = θ0,
∂θ

∂n

∣∣∣
∂Ω

= 0. (1.4)

Here Ω ⊂ R
2 is an arbitrary open and bounded set denoting the cross section of

the tube, u : QT → R is the scalar velocity, θ : QT → R is the temperature, µ the
viscosity, f the given force incorporating the pressure variations in time, δ and σ
are positive constants representing the latent heat and the thermal conductivity,
respectively, and 1 < p < ∞. We assume there exist positive constants µ0 and µ1

such that the Lipschitz continuous function µ = µ(s) satisfies

0 < µ0 ≤ µ(s) ≤ µ1. (1.5)

Passing to the limit first in σ (σ → +∞) and afterwards in δ (δ → 0+), the
local system (1.1)–(1.4) becomes the nonlocal problem

∂tu − ν([∇u]p,Ω)∆pu = f in QT , (1.6)

with (1.2), where ν is a new viscosity related with the initial one µ by the functional
relation

ν = µ ◦ α, with α being the inverse function of β(s) = s/µ(s), (1.7)

∆pu = div(|∇u|p−2∇u)

denotes the p-Laplacian for 1 < p < ∞, and

[∇u(t)]p,Ω =
1
|Ω|

∫
Ω

|∇u(x, t)|pdx for a.e. t ∈ (0, T )

denotes the W 1,p
0 (Ω)-norm at power p, divided by |Ω| = meas(Ω).

In this work we shall assume that

µ(s) > sµ′(s) a.e. s ∈ R, (1.8)

which together with (1.5) implies that α and β given in (1.7) are strictly increasing
functions.

While the first limit σ → ∞ is based only in energy estimates for weak
solutions of (1.1)–(1.4), in particular, in a sharp Lq-estimate (q < 4/3) on the
gradient of θ in terms of the L1-norm of the right-hand side of (1.3), as obtained
in [2], the second limit δ → 0+ uses the uniform local Hölder continuity of the
gradient of the solution to the degenerate parabolic equation (1.6) (see [4]).

Here we have considered only scalar flows of pseudo-plastic type (1 < p < 2),
Newtonian (p = 2) or dilatant type (p > 2), but it is clear that similar results also
hold for other classes of quasi-Newtonian fluids in tubes as considered in [10].
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2. The limit problems and their formulations

For q ≥ 1, we shall use the usual Lebesgue and Sobolev spaces Lq(Ω), W 1,q(Ω) as
well as the vector valued evolutive spaces Lq(0, T ; B) (see [11]).

For any given δ > 0 and σ > 0, we shall be concerned with weak solutions
(u, θ) of the system (1.1)-(1.4) in the class

u ∈ C([0, T ]; L2(Ω)) ∩ Lp(0, T ; W 1,p
0 (Ω)), ∂tu ∈ Lp′

(0, T ; W−1,p′
(Ω)),

θ ∈ L∞(0, T ; L1(Ω)) ∩ Lq(0, T ; W 1,q(Ω)), ∂tθ ∈ L1(0, T ; (W 1,q(Ω))∗),

1 ≤ q < 4
3 ,

satisfying∫
QT

(−u∂tϕ + µ(θ)|∇u|p−2∇u · ∇ϕ) dx dt =
∫

QT

fϕ dx dt +
∫
Ω

u0(x)ϕ(x, 0) dx,

∀ϕ ∈ C1(Q̄T ) : ϕ|t=T = 0, ϕ|∂Ω = 0,
(2.1)∫

QT

(−δθ∂tη + σ∇θ · ∇η + θη) dx dt =
∫

QT

µ(θ)|∇u|pη dx dt

+δ
∫
Ω

θ0(x)η(x, 0) dx, ∀η ∈ C1(Q̄T ) : η|t=T = 0,
(2.2)

and the corresponding limit problems when σ → ∞ and δ → 0.

For given f ∈ L2(QT ), u0 ∈ L2(Ω) and θ0 ∈ L1(Ω), under the assumption
(1.5) the first asymptotic result can be formulated in the following theorem.

Theorem 2.1. Let δ > 0 be fixed and (uσ, θσ) be a solution to (2.1)–(2.2) corre-
sponding to each σ > 0. Then there exist

u ∈ C([0, T ]; L2(Ω)) ∩ Lp(0, T ; W 1,p
0 (Ω)), ∂tu ∈ Lp′

(0, T ; W−1,p′
(Ω)),

ξ ∈ W 1,1(0, T ),

and a subsequence σ → ∞, such that

uσ → u in Lp(0, T ; W 1,p
0 (Ω)), ∂tuσ ⇀ ∂tu in Lp′

(0, T ; W−1,p′
(Ω)),

θσ → ξ in Lq(0, T ; W 1,q(Ω)), ∇θσ → 0 in Lq(QT ),

and (u, ξ) satisfy the equations

∂tu − µ(ξ)∆pu = f in QT (2.3)

with (1.2) and

δ
dξ

dt
+ ξ = µ(ξ)[∇u]p,Ω, in (0, T ) (2.4)

with the initial condition

ξ|t=0 =
1
|Ω|

∫
Ω

θ0 dx. (2.5)
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By the theory of nonlinear parabolic equations [9], we know that if u0 ∈
W 1,p

0 (Ω) a solution to (2.3)–(1.2) can be written in the form

(∂tu, w) + µ(ξ)(|∇u|p−2∇u,∇w) = (f, w),
∀w ∈ W 1,p

0 (Ω), for a.e. t ∈ (0, T ),
u|t=0 = u0,

(2.6)

where (·, ·) means the duality between spaces W−1,p′
(Ω) and W 1,p

0 (Ω). Rewriting
(2.6) as

1
µ(ξ)

(∂tu, w) + (|∇u|p−2∇u,∇w) =
1

µ(ξ)
(f, w),

we can formally choose w = ∂tu as a test function (for instance, using the Faedo-
Galerkin method of approximation), obtaining for a.e. t ∈ (0, T )

1
µ1

‖∂tu‖2
2,Ω +

1
p

d

dt
‖∇u‖p

p,Ω ≤ 1
µ0

‖f‖2,Ω‖∂tu‖2,Ω,

and the following estimate holds

‖∂tu‖2
2,QT

+ sup
t∈[0,T ]

‖∇u(t)‖p
p,Ω ≤ C

(
‖∇u0‖p

p,Ω + ‖f‖2
2,QT

)
, (2.7)

where the constant C only depends on µ0, µ1 and p, but is independent of ξ and δ.
By the local regularity theory [4], if f ∈ L∞(QT ) by assumption (1.5) we

may also conclude that ∇uδ belongs to a bounded subset of Cγ(Q′), for some γ,
0 < γ < 1, for any compact subset Q′ = Ω′ × [s, t], Ω′ � Ω and 0 < s < t < T
uniformly in δ > 0.

Then we can formulate the second passage to the limit in δ → 0+.

Theorem 2.2. Suppose

f ∈ L∞(QT ), u0 ∈ W 1,p
0 (Ω), and µ satisfies (1.8).

For each δ > 0 let (uδ, ξδ) be a solution of (2.3)–(2.5) obtained in Theorem 2.1.
Then there exist u and a subsequence δ → 0+ such that

uδ → u in Lp(0, T ; W 1,p
0 (Ω)),

∇uδ → ∇u uniformly in Q′ � QT ,

and u satisfies the equation (1.6) with (1.2), where ν is given by (1.7).

3. Existence of weak solutions and their convergence

3.1. Proof of Theorem 2.1
The existence of at least one solution to (2.1)–(2.2) can be shown essentially as in
[2], so we only sketch its proof. Define the functional

T : ζ ∈ Lq(QT ) �→ uζ �→ θζ ∈ Lq(0, T ; W 1,q(Ω)),
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where uζ is the unique solution of∫
QT

(−uζ∂tϕ + µ(ζ)|∇uζ |p−2∇uζ · ∇ϕ) dx dt =
∫

QT

fϕ dx dt

+
∫
Ω

u0(x)ϕ(x, 0) dx, ∀ϕ ∈ C1(Q̄T ) : ϕ|t=T = 0, ϕ|∂Ω = 0,
(3.1)

satisfying the estimate (see [9] and note that the embedding W 1,p(Ω) ↪→ L2(Ω) is
valid for every p > 1 since n = 2)

‖uζ‖L∞(0,T ;L2(Ω)) + ‖uζ‖Lp(0,T ;W 1,p
0 (Ω)) + ‖∂tuζ‖Lp′(0,T ;W−1,p′(Ω))

≤ C
(
‖f‖2,QT + ‖u0‖2,Ω

)
;

(3.2)

and θζ is the unique solution of the problem∫
QT

(−δθζ∂tη + σ∇θζ · ∇η + θζη) dx dt =
∫

QT

µ(ζ)|∇uζ |pη dx dt

+δ
∫
Ω

θ0(x)η(x, 0) dx, ∀η ∈ C1(Q̄T ) : η|t=T = 0,
(3.3)

which satisfies the following estimates (see Proposition 3.2 of [2])

‖θζ‖L∞(0,T ;L1(Ω)) +
√

σ‖∇θζ‖q,QT + ‖θζ‖ 3q
2 ,QT

≤ F
(
‖∇uζ‖p

p,QT
, ‖θ0‖1,Ω

)
(3.4)

where the constant C and the majorant F (which is a nondecreasing continuous
function of its arguments) depend only on µ0, µ1, and δ. Then the Schauder fixed
point theorem yields the existence of a θ = T θ, which together with u = uθ

guarantees the existence of a solution to (2.1)–(2.2), satisfying the estimates (3.2)
and (3.4), independently of σ > 0.

Let σ → ∞. The estimates (3.2) and (3.4) allow us to extract a subsequence
such that

uσ ⇀ u in Lp(0, T ; W 1,p
0 (Ω)), ∂tuσ ⇀ ∂tu in Lp′

(0, T ; W−1,p′
(Ω)),

θσ ⇀ θ in Lq(0, T ; W 1,q(Ω)), ∇θσ → 0 in Lq(QT ).

Hence ∇θ = 0 and there exists ξ ∈ Lq(0, T ) such that θ(x, t) = ξ(t) a.e. (x, t) ∈ QT .
Denoting

θ̃σ(t) ≡ 1
|Ω|

∫
Ω

θσ(x, t) dx,

we have

θ̃σ ⇀ ξ in Lq(0, T ),

and arguing as in [2] we obtain the convergence

θσ → ξ in Lq(QT ).

Consequently we may pass to the limit as σ → ∞ in the equation (2.1) obtaining
(2.3). Since W 1,p

0 (Ω) ↪→ L2(Ω) is compact in n = 2 for p > 1, we have uσ(T ) →
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u(T ) in L2(Ω) and∫
QT

µ(θσ)|∇uσ|p dx dt =
∫

QT

fuσ dx dt +
1
2

∫
Ω

u2
0 dx − 1

2

∫
Ω

u2
σ(T ) dx

−→
∫

QT

fu dx dt +
1
2

∫
Ω

u2
0 dx − 1

2

∫
Ω

u2(T ) dx =
∫

QT

µ(ξ)|∇u|p dx dt,

which, in particular, implies the strong convergence uσ → u in Lp(0, T ; W 1,p
0 (Ω)).

Taking the limit σ → ∞ in (2.2) with test functions η = η(t) depending only
on t we obtain (2.4) and (2.5) in weak form, concluding the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2
Let (uδ, ξδ) be a solution of the system (2.3)–(2.5) and consider the equation

δ
dξδ

dt
+ ξδ = µ(ξδ)[∇uδ]p,Ω. (3.5)

Denote by gδ(t) = [∇uδ(t)]p,Ω − β(ξ(0)), α the inverse function of β(ξ) = ξ/µ(ξ)
as in (1.7), and a(ζ) ≡

∫ α(ζ+β(ξ(0)))

0
ds/µ(s) obtaining

δ
d

dt
a(ζδ) + ζδ = gδ for ζδ = β(ξδ) − β(ξ(0)) ⇔ ξδ = α(ζδ + β(ξ(0))). (3.6)

From nonlinear operator theory in L1(0, T ), we know that the resolvent Jδ =
(I + δ d

dta)−1 satisfies

Jδ →
δ→0

I and ‖Jδ‖L(L1(0,T );L1(0,T )) ≤ 1

since A = − d
dta is a maximal dissipative operator (see [3, 5.5.1.], for instance) with

dense domain D(A) = {ζ ∈ L1(0, T ) : Aζ ∈ L1(0, T ), ζ(0) = 0}. Indeed, taking
into account the assumption (1.8), we have

a′(ζ) =
α′(s)

µ(α(s))
=

µ2(s)
µ(α(s))(µ(s) − sµ′(s))

> 0,

for s = ζ + β(ξ(0)), and therefore∫ T

0
[ d
dta(ζ1) − d

dta(ζ2)]sign(ζ1 − ζ2)
=
∫ T

0 [ d
dta(ζ1) − d

dta(ζ2)]sign(a(ζ1) − a(ζ2)) = |a(ζ1(T )) − a(ζ2(T ))| ≥ 0

yields the dissipative property of A. Since D(0, T ) ⊂ D(A), the existence and
uniqueness of solution to (3.6) implies that A is a maximal operator in L1(0, T )
with dense domain.

For a subsequence {uδ} weakly convergent in Lp(0, T ; W 1,p
0 (Ω)), since ∇uδ

is uniformly Hölder continuous in each compact subset Q′ of QT we may suppose
that ∇uδ → ∇u uniformly in Q′, and also the strong convergence uδ → u in
Lp(0, T ; W 1,p

0 (Ω)). Therefore we get

gδ → g = [∇u]p,Ω − β(ξ(0)) a.e. t ∈ (0, T ),
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as gδ is uniformly bounded in L∞(0, T ) we have

gδ →
δ→0

g in Lq(0, T ), 1 ≤ q < ∞,

and we obtain the estimate for the solution ζδ of (3.6)

‖ζδ − g‖L1(0,T ) ≤ ‖Jδ‖L(L1(0,T );L1(0,T ))‖gδ − g‖L1(0,T ) + ‖Jδg − g‖L1(0,T ).

Then the sequence {ξδ} solving (3.5), or equivalently (3.6), is such that

ξδ → ξ = α
(
[∇u]p,Ω

)
in L1(0, T ).

Passing now to the limit δ → 0 in the equation (2.3) the conclusion follows imme-
diately.
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c© 2005 Birkhäuser Verlag Basel/Switzerland

On the Problem of Thermocapillary Convection
for Two Incompressible Fluids
Separated by a Closed Interface

Irina Vlad. Denisova

In honor of the jubilee of Vsevolod A. Solonnikov

Abstract. We consider the unsteady motion of a drop in another incompress-
ible fluid. On the unknown interface between the liquids, the surface tension
is taken into account. Moreover, the coefficient of surface tension depends on
the temperature. We study this problem of the thermocapillary convection by
M.V. Lagunova and V.A. Solonnikov’s technique developed for a single liquid.

The local existence theorem for the problem is proved in Hölder classes
of functions. The proof is based on the fact that the solvability of the problem
with a constant coefficient of surface tension was obtain earlier. For a given
velocity vector field of the fluids, we arrive at a diffraction problem for the heat
equation which solvability is established by well-known methods. Existence of
a solution to the complete problem is proved by successive approximations.

Mathematics Subject Classification (2000). Primary 35Q30,76D05; Secondary
35R35.

Keywords. Thermocapillary convection, Two viscous incompressible fluids,
Interface problem, Navier-Stokes system, Heat equation.

1. Statement of the problem and formulation of the main result

This paper deals with unsteady motion of two viscous incompressible fluids sep-
arated by a closed unknown interface Γt. Both liquids have finite volume, they
are bounded by a given surface S where the adhesion condition holds. We assume
that boundaries Γt and S have no intersection. On the interface Γt, we take into
account the surface tension depending on the temperature.

Partly supported by the US Civilian Reaserch and Development Foundation (CRDF) through
grant number RU-M1-2596-ST-04.
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The main result of the study is local (in time) unique solvability of the prob-
lem described in Hölder spaces of functions. The proof of this fact uses the tech-
nique of M.V. Lagunova and V.A. Solonnikov developed for the investigation of
the thermocapillary convection problem for a drop in vacuum [1], and it is based
on the existence theorem for the case of constant temperature [2, 3, 4].

Now give a mathematical formulation of the problem of thermocapillary con-
vection for two liquids in a reservoir [5, 6].

Let, at the initial moment t = 0, a fluid with the viscosity ν+ > 0 and
the density ρ+ > 0 occupy a bounded domain Ω+

0 ⊂ R3. We denote ∂Ω+
0 by Γ0.

And there let be a fluid with the viscosity ν− > 0 and the density ρ− > 0 in
the“exterior” domain Ω−

0 . The boundary S ≡ ∂(Ω+
0 ∪ Γ0 ∪ Ω−

0 ) is a given closed
surface, S ∩ Γ0 = ∅.

For every t > 0, it is necessary to find the interface Γt between the domains
Ω+

t and Ω−
t , as well as the velocity vector field v(x, t) = (v1, v2, v3), the pressure

function p and the temperature θ of both fluids satisfying the following initial-
boundary value problem:

Dtv + (v · ∇)v − ν±∇2v +
1

ρ±
∇p = f , ∇ · v = 0,

Dtθ + (v · ∇)θ − k±∇2θ = 0 in Ω−
t ∪ Ω+

t , t > 0,

v|t=0 = v0, θ|t=0 = θ0 in Ω−
0 ∪ Ω+

0 , (1.1)
[v]|Γt = lim

x→x0∈Γt,

x∈Ω+
t

v(x) − lim
x→x0∈Γt,

x∈Ω−
t

v(x) = 0, [θ]|Γt = 0,

v|S = 0, θ|S = a,

[Tn]|Γt = σ(θ)Hn + ∇Γtσ(θ),
[
k± ∂θ

∂n

]∣∣∣∣
Γt

+ κθ∇Γt · v = 0 on Γt.

Here Dt = ∂/∂t, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), ν±, ρ± are the step functions of
viscosity and density, respectively, f is the given vector field of mass forces, v0,
θ0 are the initial data, a is the given temperature on the surface S, T is the stress
tensor with the elements

Tik = −δk
i p + µ±(∂vi/∂xk + ∂vk/∂xi), i, k = 1, 2, 3;

µ± = ν±ρ±, δk
i is the Kronecker symbol, σ(θ) = σ1−κ(θ−θ1) > 0 is the coefficient

of the surface tension, σ1, κ, θ1 are the positive constants, n is the outward normal
to Ω+

t , H(x, t) is twice the mean curvature of Γt (H < 0 at the points where Γt

is convex towards Ω−
t ), k± is the step function of thermal conductivity, ∇Γt is the

gradient on Γt. We suppose that a Cartesian coordinate system {x} is introduced
in R3. The centered dot denotes the Cartesian scalar product.

We imply the summation from 1 to 3 with respect to repeated indexes. We
mark the vectors and the vector spaces by boldface letters.

Moreover, to exclude the mass transportation through Γt, we assume that
the liquid particles do not leave Γt. It means that Γt consists of the points x(ξ, t)
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such that the corresponding vector x(ξ, t) solves the Cauchy problem

Dtx = v(x(t), t), x|t=0 = ξ, ξ ∈ Γ0, t > 0. (1.2)

Hence, Γt = {x(ξ, t)| ξ ∈ Γ0}, Ω±
t = {x(ξ, t)| ξ ∈ Ω±

0 }.
Let us pass from the Eulerian to Lagrangian coordinates by the formula

x = ξ +
∫ t

0

u(ξ, τ)dτ ≡ Xu(ξ, t) (1.3)

(here u(ξ, t) is the velocity vector field in the Lagrangian coordinates). Next, we
apply the well-known relation

Hn = ∆(t)x,

where ∆(t) denotes the Beltrami-Laplace operator on Γt. This transformation
leads us to the problem for u and q = p(Xu, t) with the given interface Γ ≡ Γ0.
If the angle between n and the exterior normal n0 to Γ is acute this problem is
equivalent to the following system:

Dtu − ν±∇2
uu +

1
ρ±

∇uq = f (Xu, t),

∇u · u = 0, Dtθ̂ − k±∇2
uθ̂ = 0 in Q±

T = Ω±
0 × (0, T ),

u|t=0 = v0, θ̂|t=0 = θ0 in Ω−
0 ∪ Ω+

0 , (1.4)

[u]|GT = 0, [θ̂]|GT = 0, u|ST = 0, θ̂|ST = â (ST = S × (0, T )),

[Π0ΠTu(u)n]|GT = Π0Π∇uσ(θ̂),

[n0 · Tu(u, q)n]|GT − σ(θ̂)n0 · ∆(t)
∫ t

0

u
∣∣
Γ
dτ = σ(θ̂)H0(ξ) +

+ σ(θ̂)n0 ·
∫ t

0

∆̇(τ)ξ
∣∣
Γ
dτ + n0 · Π∇uσ(θ̂),

[k±n · ∇uθ̂]|GT + κθ̂Π∇u · u = 0 on GT = Γ × (0, T ).

Here we have used the notation: ∇u = A∇, A is the matrix of cofactors Aij to
the elements

aij(ξ, t) = δj
i +

∫ t

0

∂ui

∂ξj
dt′

of the Jacobian matrix of the transformation (1.3), the vector n is related to n0 as
n = An0/|An0|; Πω = ω−n(n ·ω), Π0ω = ω−n0(n0 ·ω) are the projections of
a vector ω onto the tangent plane to Γt and to Γ, respectively. The tensor Tu(w, q)
has the elements

(Tu(w, q))ij = −δi
jq + µ±(Ajk∂wi/∂ξk + Aik∂wj/∂ξk),

H0(ξ) = n0 · ∆(0)ξ is twice the mean curvature of Γ.
We remind the definition of Hölder spaces. Let Ω be a domain in R

n, n ∈ N;
for T > 0 we put ΩT = Ω× (0, T ); finally, let α ∈ (0, 1). By Cα,α/2(ΩT ) we denote
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the set of functions f in ΩT having norm

‖f‖(α,α/2)
ΩT

= ‖f‖ΩT + 〈f〉(α,α/2)
ΩT

,

where

‖f‖ΩT = sup
t∈(0,T )

sup
x∈Ω

|f(x, t)|, 〈f〉(α,α/2)
ΩT

= 〈f〉(α)
x,ΩT

+ 〈f〉(α/2)
t,ΩT

,

〈f〉(α)
x,ΩT

= sup
t∈(0,T )

sup
x,y∈Ω

|f(x, t) − f(y, t)||x − y|−α,

〈f〉(µ)
t,ΩT

= sup
x∈Ω

sup
t,τ∈(0,T )

|f(x, t) − f(x, τ)||t − τ |−µ, µ ∈ (0, 1).

We introduce the following notation:

Dr
x = ∂|r|/∂xr1

1 . . . ∂xrn
n , r = (r1, . . . , rn), ri ≥ 0, |r| = r1 + · · · + rn,

Ds
t = ∂s/∂ts, s ∈ N ∪ {0}.
Let k ∈ N. By definition, the space Ck+α,(k+α)/2(ΩT ) consists of functions f

with finite norm

‖f‖(k+α, k+α
2 )

ΩT
=

∑
|r|+2s≤k

‖Dr
xDs

t f‖ΩT + 〈f〉(k+α, k+α
2 )

ΩT
,

where

〈f〉(k+α, k+α
2 )

ΩT
=

∑
|r|+2s=k

〈Dr
xDs

t f〉
(α, α

2 )

ΩT
+

∑
|r|+2s=k−1

〈Dr
xDs

t f〉
( 1+α

2 )

t,ΩT
.

The symbol Ck+α,(k+α)/2(ΩT ) denotes the subspace of Ck+α,(k+α)/2(ΩT )
whose elements f have the property: Di

tf
∣∣
t=0

= 0, i = 0, . . . ,
[

k+α
2

]
.

We define Ck+α(Ω), k ∈ N∪ {0}, as the space of functions f(x), x ∈ Ω, with
the norm

‖f‖(k+α)
Ω =

∑
|r|≤k

‖Dr
xf‖Ω + 〈f〉(k+α)

Ω .

Here

〈f〉(k+α)
Ω =

∑
|r|=k

〈Dr
xf〉(α)

Ω =
∑
|r|=k

sup
x,y∈Ω

|Dr
xf(x) −Dr

yf(y)||x − y|−α.

We also need the following semi-norm with α, γ ∈ (0, 1):

|f |(1+α,γ)
ΩT

= 〈f〉(1+α,γ)
ΩT

+ 〈f〉(
1+α−γ

2 )

t,ΩT
,

here

〈f〉(1+α,γ)
ΩT

= max
t,τ∈(0,T )

max
x,y∈Ω

|f(x, t) − f(y, t) − f(x, τ) + f(y, τ)|
|x − y|γ |t − τ |(1+α−γ)/2

.

There exists the estimate

〈f〉(1+α,γ)
ΩT

≤ c1〈f〉(1+α, 1+α
2 )

ΩT
.
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We consider that f ∈ C(1+α,γ)(ΩT ) if

‖f‖ΩT + |f |(1+α,γ)
ΩT

< ∞.

Finally, if a function f has finite norm

‖f‖(γ,µ)
ΩT

≡ 〈f〉(γ)
x,ΩT

+ ‖f‖(µ)
t,ΩT

, γ ∈ (0, 1), µ ∈ [0, 1),

where

‖f‖(µ)
t,ΩT

=

{
‖f‖ΩT + 〈f〉(µ)

t,ΩT
if µ > 0,

‖f‖ΩT if µ = 0,

then it belongs to the Hölder space Cγ,µ(ΩT ).
We suppose that a vector-valued function is an element of a Hölder space if

all its components belong to this space, and its norm is defined as the maximal
norm of the components.

Let us set QT = Q−
T ∪ Q+

T and

‖f‖(k+α)
QT

= ‖f‖(k+α)

Q−
T

+ ‖f‖(k+α)

Q+
T

, ‖f‖(k+α)

∪Ω± = ‖f‖(k+α)

Ω− + ‖f‖k+α)

Ω+ .

Now, we formulate the main result of this paper.

Theorem 1.1. Suppose that Γ ∈ C3+α, f , Dxf ∈ Cα,(α+ε)/2(R3 × (0, T )), v0 ∈
C2+α(Ω−

0 ∪ Ω+
0 ), σ ∈ C3+α(R+), σ ≥ σ0 > 0, a ∈ C2+α,1+α/2(S), a > 0, S ∈

C2+α with some α ∈ (0, 1), ε ∈ (0, 1 − α), T < ∞. Moreover, let it hold the
compatibility conditions

∇ · v0 = 0, v0|S = 0, [v0]|Γ = 0, [θ0]|Γ = 0, θ0|S = a|t=0,

[Π0T(v0)n0]|Γ = Π0∇σ(θ0), [Π0(ν±∇2v0 −
1

ρ±
∇q0)]|Γ = 0,

(ΠS(ν−∇2v0 −
1

ρ−
∇q0))|S = 0, k−∇2θ0|S =

∂a

∂t

∣∣∣∣
t=0

, (1.5)

[k±∇2θ0]|Γ = 0,

[
k± ∂θ0

∂n0

]∣∣∣∣
Γ

+ κθ0(Π0∇) · v0 = 0,

where q0(ξ) ≡ q(ξ, 0) is a solution of the diffraction problem
1

ρ±
∇2q0(ξ) = ∇ · (f(ξ, 0) −DtB

∗∣∣
t=0

v0(ξ)), ξ ∈ Ω−
0 ∪ Ω+

0 ,

[q0]|Γ =
[
2µ± ∂v0

∂n0
· n0

]∣∣∣∣
Γ

σ(θ0)H0(ξ), ξ ∈ Γ,[
1

ρ±
∂q0

∂n0

]∣∣∣∣
Γ

=
[
ν±n0 · ∇2v0

]∣∣
Γ

(
∂

∂n0
= n0 · ∇), (1.6)

1
ρ−

∂q0

∂nS

∣∣∣∣
S

= ν−nS · ∇2v0

∣∣
S

(
∂

∂nS
= nS · ∇).

Here H0(ξ) = n0 ·∆(0)ξ
∣∣
Γ
, B = A− I, I is the identity matrix, B∗ is the transpose

to B, nS is the outward normal to S, ΠSω ≡ ω − nS(nS · ω).
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Then there exists a positive constant T0 ≤ T such that problem (1.4) has a
unique solution (u, q, θ̂) with the properties:

u ∈ C2+α,1+α/2(QT0), q ∈ C(1+α,γ)(QT0) (γ = 1 − ε > α),

∇q ∈ Cα,α/2(QT0), θ̂ ∈ C2+α,1+α/2(QT0).

The value of T0 depends on the data norms and on the curvature of Γ.

The proof of this theorem is based on the solvability of auxiliary linearized
problems.

2. Linearized problems

First, in this section, we discuss the following linear problem:

Dtw − ν±∇2
uw +

1
ρ±

∇us = f(ξ, t), ∇u · w = r in QT ,

w|t=0 = w0 in Ω− ∪ Ω+, (2.1)

[w]|GT = 0, w|S = 0, [µ±Π0ΠSu(w)n]|GT = Π0d,

[n0 · Tu(w, s)n]|GT − σ(ξ)n0 · ∆(t)
∫ t

0

w
∣∣
Γ
dτ = b +

∫ t

0

Bdτ on GT ,

where
(Su(w))ij = (Ajk∂wi/∂ξk + Aik∂wj/∂ξk),

Problem (2.1) was considered in [2]–[4]. In [4] (Theorem 3.1), it was proved unique
solvability for it in any finite time interval when S was absent and QT coincided
with the whole space R

3. This result was obtained in Hölder spaces with power-
like weights at infinity but it is valid also in our case. The proof is only simpler
without weight, in addition, the weighted spaces are equivalent to the ordinary
Hölder spaces in bounded domains. Now we cite this existence theorem.

Theorem 2.1. Let α, γ ∈ (0, 1), γ > α, and let T < ∞. Assume that Γ, S ∈ C2+α,
σ ∈ C1+α(Γ), σ ≥ σ0 > 0, and that for u ∈ C2+α,1+α/2(QT ), [u]|GT = 0, we have

(T + T γ/2)‖u‖(2+α,1+α/2)
QT

≤ δ (2.2)

for some sufficiently small δ > 0.
Moreover, we assume that the following four groups of conditions are fulfilled:

1) there exists a vector g ∈ Cα,α/2(QT ) and a tensor G = {Gik}3
i,k=1 with

Gik ∈ C(1+α,γ)(QT ) ∩ Cγ,0(QT ) such that

Dtr −∇u · f = ∇ · g, gi = ∂Gik/∂ξk, i = 1, 2, 3,

(these equalities are understood in a weak sense) and, moreover,

[(g + A
∗f) · n0]|GT = 0;
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2) f ∈ Cα,α/2(QT ), r ∈ C1+α, 1+α
2 (QT ), w0 ∈ C2+α(Ω− ∪ Ω+),

a ∈ C1+α, 1+α
2 (GT ), b ∈ C(1+α,γ)(GT ), B ∈ Cα,α/2(GT );

3) ∇ · w0(ξ) = r(ξ, 0) = 0, [w0]|Γ = 0,

[Π0T(w0(ξ))n0]|ξ∈Γ = Π0a(ξ, 0), ξ ∈ Γ,[
Π0

(
f (ξ, 0) − 1

ρ±
∇s(ξ, 0) + ν±∇2w0(ξ)

)]∣∣∣
ξ∈Γ

= 0,

ΠS

(
f (ξ, 0) − 1

ρ−
∇s(ξ, 0) + ν−∇2w0(ξ)

)∣∣∣
ξ∈S

= 0;

4) s0(ξ) = s(ξ, 0) is a solution of the problem

1
ρ±

∇2s0(ξ) = ∇ · (DtB
∗|t=0w0(ξ) − g(ξ, 0)) in Ω− ∪ Ω+,

[s0]|Γ =
[
2µ± ∂w0

∂n0
· n0

]∣∣∣
Γ
− b|t=0,[ 1

ρ±
∂s0

∂n0

]∣∣∣
Γ

= [n0 · (f |t=0 + ν±∇2w0)]|Γ,

1
ρ−

∂s0

∂nS

∣∣∣
S

= ν−nS · ∇2w0|S .

Under all these assumptions, the problem (2.1) has a unique solution (w, s) with the
properties: w ∈ C2+α,1+α/2(QT ), s ∈ C(1+α,γ)(QT ), ∇s ∈ Cα,α/2(QT ); moreover,
this solution satisfies the inequality

Nt′ [w, s] ≡ ‖w‖(2+α,1+α/2)
Qt′

+ ‖∇s‖(α,α/2)
Qt′

+ ‖s‖(1+α−γ
2 )

t,Qt′
+ 〈s〉(1+α,γ)

Qt′

≤ c1(t′)
{
‖f‖(α,α/2)

Qt′
+ ‖r‖(1+α, 1+α

2 )

Qt′
+ ‖w0‖(2+α)

∪Ω± + ‖g‖(α,α/2)
Qt′

+ |G|(1+α,γ)
Qt′

+ ‖G‖(γ,0)
Qt′

+ ‖d‖(1+α, 1+α
2 )

Gt′
+ ‖b‖Gt′ + |b|(1+α,γ)

Gt′

+ ‖∇Γb‖(α,α/2)
Gt′

+ ‖B‖(α,α/2)
Gt′

+ Pt′ [u]‖w0‖(1)

∪Ω±

}
≡ c1(t′)

{
F (t′) + Pt′ [u]‖w0‖(1)

∪Ω±
}
,

where c1(t′) is a monotone nondecreasing function of t′ ≤ T , ∇Γ = Π0∇, and

Pt[u] = t
1−α

2 ‖∇u‖Qt + ‖∇u‖(α,α/2)
Qt

.

Let us consider also the problem with the unknown temperature function ψ:

Dtψ − k±∇2
uψ = f in QT ,

ψ|t=0 = ψ0 in Ω− ∪ Ω+,

[ψ]|GT = 0, ψ|ST = ϕ, (2.3)
[k±n · ∇uψ]|GT + κψ(Π∇u) · w = d on GT .
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Remark 2.2. We observe that the differential operator Π∇u = Aij
∂

∂ξj
−ninkAkj

∂
∂ξj

has not the derivative ∂
∂n0

. Indeed, let us consider the multiplier of ∂
∂n0

in this
expression. It is Aijn0j − ninkAkjn0j = |An0|(ni − ninknk) = 0. Hence, the
quantity (Π∇u) · w is well defined on the boundary Γ, the vector field w being
continuous across Γ.

Theorem 2.3. Let surfaces Γ, S ∈ C2+α, function σ ∈ C1+α(Γ), σ ≥ σ0 > 0,
and vectors u, w ∈ C2+α,1+α/2(QT ), [u]|Γ = [w]|Γ = 0, and satisfy the inequal-
ity (2.2). Then for arbitrary f ∈ Cα,α/2(QT ), ϕ ∈ Cα,α/2(ST ), ψ0 ∈ C2+α(Ω− ∪
Ω+), d ∈ C1+α,(1+α)/2(GT ) which satisfy the compatibility conditions

[ψ0]|Γ = 0, ψ0|S = ϕ|t=0, [k±∇2ψ0]|Γ = [f |t=0]|Γ,

[k± ∂ψ0

∂n0
]|Γ + κψ0∇Γ · w(ξ, 0) = d(ξ, 0), ξ ∈ Γ, (2.4)

k−∇2ψ0|S + f |S,t=0 =
∂ϕ

∂t
|t=0,

problem (2.3) has a unique solution ψ ∈ C2+α,1+α/2(QT ) and the estimate

‖ψ‖(2+α,1+α/2)
QT

≤ c2(T )
{
‖f‖(α,α/2)

QT
+ ‖ψ0‖(2+α)

∪Ω± + ‖ϕ‖(2+α,1+α/2)
ST

+

+ ‖d‖(1+α, 1+α
2 )

GT
+ T

1−α
2 ‖∇u‖QT ‖∇w‖QT ‖ψ0‖(1)

∪Ω±
}
(2.5)

holds. Here c2 is a nondecreasing function of T .

Proof. We rewrite problem (2.3) in the form

Dtψ − k±∇2ψ = f + h1(ψ) in QT ,

ψ|t=0 = ψ0 in Ω− ∪ Ω+,

[ψ]|GT = 0, ψ|ST = ϕ, (2.6)
[k±n0 · ∇ψ]|GT + κψ(Π0∇) · w|GT = d + h2(ψ) + h3(ψ, w),

where

h1(ψ) = k±(∇2
uψ −∇2ψ),

h2(ψ) = [k±(n0 · ∇ψ − n · ∇uψ)]
∣∣
Γ
, (2.7)

h3(ψ, w) = κψ(Π0∇− Π∇u) · w
∣∣
Γ
.

We note that the function κ(Π0∇) · w|GT , the multiplier of ψ in the third
boundary condition, belongs to C1+α, 1+α

2 (GT ). Therefore, under hypotheses (2.4),
problem (2.6) with h1(ψ) = h2(ψ) = h3(ψ) = 0 is solvable in C2+α,1+ α

2 (QT ) [7].
Let us write problem (2.6) in the operator form

ψ = L[f + h1(ψ), ψ0, ϕ, d + h2(ψ) + h3(ψ, w)]
≡ L[f, ψ0, ϕ, d] + Ku,w(ψ). (2.8)

Here L is a linear continuous operator from the subspace of Cα, α
2 (QT )×C2+α(Ω−∪

Ω+)×C2+α,1+ α
2 (ST )×C1+α, 1+α

2 (Γ), which elements (f, ψ0, ϕ, d) satisfy (2.4), into
the Hölder space C2+α,1+ α

2 (QT ); Ku,w(ψ) = L[h1(ψ), 0, 0, h2(ψ) + h3(ψ, w)]. To
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every quadruple (f, ψ0, ϕ, d), the operator L poses in correspondence a solution of
(2.6) with h1(ψ) = h2(ψ) = h3(ψ) = 0.

We take into account that

h1(ψ) = k±(A∇ · B∇)ψ + k±
B∇ · ∇ψ,

h2(ψ) = [k±((n0 − n) · ∇ψ − n · B∇ψ)]
∣∣
Γ
,

h3(ψ, w) = κψ{n(n · ∇) − n0(n0 · ∇) − (ΠB∇)} · w
∣∣
Γ
,

where B = A − I. Then Lemma 3.1 from [4] implies the inequality

‖h1(ψ)‖(α,α/2)
QT

+ ‖h2(ψ)‖(1+α, 1+α
2 )

GT
≤ c{δ‖ψ‖(2+α,1+α/2)

QT

+ T
1−α

2 ‖∇u‖QT ‖ψ0‖(1)
∪Ω±},

‖h3(ψ, w)‖(1+α, 1+α
2 )

GT
≤ c{δ‖ψ‖(2+α,1+α/2)

QT
‖w‖(2+α,1+ α

2 )

QT
(2.9)

+ T
1−α

2 ‖∇u‖QT ‖ψ0‖(1)
∪Ω±‖∇w‖QT }.

Hence, the operator Ku,w(ψ) is a contraction for small δ, i.e., for arbitrary ψ, ψ′ ∈
C2+α,1+ α

2 (QT ) such that ψ − ψ′|t=0 = 0, ψ − ψ′|ST = 0, the estimate

‖Ku,w(ψ) −Ku,w(ψ′)‖(2+α,1+α/2)
QT

≤ ε‖ψ − ψ′‖(2+α,1+α/2)
QT

, ε < 1.

holds. Consequently, equation (2.8), and hence, problem (2.6) are uniquely solv-
able. Inequality (2.5) follows from (2.9) and boundedness of the operator L. �

Now we linearized boundary conditions in (1.4):

[Π0ΠTu(w)n]|GT = Π0Π∇uσ(θ̂) ≡ K1(θ̂),

[n0 ·Tu(w, s)n]|GT −σ(θ0)n0 ·∆(t)
∫ t

0

w
∣∣
Γ
dτ = K2(θ̂)+

∫ t

0

K3(w, θ̂)dτ on GT .

Here we use the notation:

K2(θ̂) = σ(θ̂)H0(ξ) + (n0 − n) · Π∇uσ(θ̂),

K3(w, θ̂) = σ(θ̂)n0 · ∆̇(t)ξ + (σ(θ̂) − σ(θ0))n0 ·
{
∆(t)w

∣∣
Γ

+ ∆̇(t)
∫ t

0

w
∣∣
Γ
dτ
}

+
∂σ(θ̂)

∂t
n0 ·

{∫ t

0

∆̇(τ)ξdτ + ∆(t)
∫ t

0

w
∣∣
Γ
dτ
}

.

As our Ki coincide with the operators corresponding to the case of a single
liquid, we cite two lemmas concerning them from [1] (see also [8]).

Lemma 2.4. Let continuous u across GT be subjected to (2.2). Then the increments
of the operators Ki with respect to the temperature θ ∈ C2+α,1+α/2(QT ) and to the
velocity w ∈ C2+α,1+α/2(QT ), which are also continuous across GT :

K1(θ) − K1(θ′) = Π0Π∇u(σ(θ) − σ(θ′)),
K2(θ) − K2(θ′) = (σ(θ) − σ(θ′))H0(ξ) + (n0 − n) · Π∇u(σ(θ) − σ(θ′)),
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K3(w, θ) − K3(w′, θ′)

= (σ(θ) − σ(θ′))n0 ·
{

∆̇(t)ξ + ∆(t)w
∣∣
Γ

+ ∆̇(t)
∫ t

0

w
∣∣
Γ
dτ

}
+ (σ(θ′) − σ(θ0))n0 ·

{
∆(t)(w − w′)

∣∣
Γ

+ ∆̇(t)
∫ t

0

(w − w′)
∣∣
Γ
dτ

}
+
(

∂σ(θ)
∂t

− ∂σ(θ′)
∂t

)
n0 ·

(∫ t

0

∆̇(τ)ξdτ + ∆(t)
∫ t

0

w
∣∣
Γ
dτ

)
+

∂σ(θ′)
∂t

n0 · ∆(t)
∫ t

0

(w − w′)
∣∣
Γ
dτ,

where θ|t=0 = θ′|t=0 = θ0, satisfy the inequalities

‖K1(θ) − K1(θ′)‖(1+α, 1+α
2 )

GT
+ ‖K2(θ) − K2(θ′)‖(1+α, 1+α

2 )

GT

≤ c
(
1 + ‖θ‖(2+α,1+ α

2 )

QT
+ ‖θ′‖(2+α,1+ α

2 )

QT

)2+α

×
(
1 + ‖H0‖(1+α)

Γ

)
‖θ − θ′‖(2+α,1+ α

2 )

QT
,

‖K3(w, θ) − K3(w′, θ′)‖(α, α
2 )

GT

≤ c(T + T 1/2)
{(

1 + ‖θ‖(2+α,1+ α
2 )

QT
+ ‖θ′‖(2+α,1+ α

2 )

QT

)2

×
(
‖∇u‖QT + ‖w‖(2+α,1+ α

2 )

QT

)
‖θ − θ′‖(2+α,1+ α

2 )

QT

+
∥∥∥∥∂θ′

∂t

∥∥∥∥(α, α
2 )

QT

(1 + 〈θ〉(α, α
2 )

QT
)‖w − w′‖(2+α,1+ α

2 )

QT

}
+ c‖θ′‖(2+α,1+ α

2 )

QT

(
1 + ‖θ′‖(2+α,1+ α

2 )

QT

)
MT [w − w′].

Here

MT (v) =
∫ T

0

‖v‖(2+α)
Ω−∪Ω+dt + sup

0<τ<t<T
τ−α/2

∫ t

t−τ

(‖∇v‖∪Ω± + ‖∇∇v‖∪Ω±)dτ ′.

Lemma 2.5. For the operator differences Ki − K ′
i corresponding to vectors u and

u′ which satisfy (2.2):

K1(θ) − K ′
1(θ) = Π0(ΠΠ′)A∇σ(θ) − Π0Π′(B − B

′)∇σ(θ),

K2(θ) − K ′
2(θ) = n0 · (Π − Π′)A∇σ + (n0 − n′) · Π′(A − A

′)∇σ

− (n0 − n′) · ΠA∇σ − n′ · (Π − Π′)A∇σ,



Thermocapillary Convection for Two Incompressible Fluids 55

K3(w, θ) − K ′
3(w, θ) = σ(θ)n0 · (∆̇(t) − ∆̇′(t))ξ

+(σ(θ) − σ(θ0))n0 ·
{
(∆(t) − ∆′(t))w + (∆̇(t) − ∆̇′(t))

∫ t

0

wdτ
}

+
∂σ(θ)

∂t
n0 ·

{∫ t

0

(∆̇(τ) − ∆̇′(τ))ξdτ + (∆(t) − ∆′(t))
∫ t

0

wdτ
}

,

the estimates

‖K1(θ) − K′
1(θ)‖

(1+α, 1+α
2 )

GT
+ ‖K2(θ) − K ′

2(θ)‖
(1+α, 1+α

2 )

GT

≤ c‖∇σ(θ)‖(1+α, 1+α
2 )

GT
MT [u − u′] + cT

1−α
2 ‖∇σ‖GT ‖∇(u − u′)‖QT ,

‖K3(w, θ) − K ′
3(w, θ)‖(α, α

2 )

GT
≤ c‖σ(θ)‖(α, α

2 )

GT
‖∇(u − u′)‖QT

+ c(T + T
1
2 )
∥∥∥∥∂θ

∂t

∥∥∥∥(α, α
2 )

QT

(1 + 〈θ〉(α, α
2 )

QT
)‖w‖(2+α,1+ α

2 )

QT
‖u − u′‖(2+α,1+ α

2 )

QT

+ c‖θ‖(2+α,1+ α
2 )

QT
(1 + ‖θ‖(2+α,1+ α

2 )

QT
)

×
{

MT [u − u′] + (T + T
1
2 )‖w‖(2+α,1+ α

2 )

QT
‖u − u′‖(2+α,1+ α

2 )

QT

}
hold.

In a similar way, we can obtain the following proposition.

Lemma 2.6. Let ψ ∈ C2+α,1+α/2(QT ), [ψ]|Γ = 0. For the operator differences

h1(ψ) − h′
1(ψ) = k±(∇2

uψ −∇2
u′ψ)

= k±
{

A∇ · (B − B
′)∇ψ + (B − B

′)∇ · A′ψ
}
,

h2(ψ) − h′
2(ψ) =

[
k±(n′ · ∇u′ψ − n · ∇uψ)

]∣∣∣
Γ

=
[
k±{(n′ − n) · A∇ψ + n · (B − B

′)∇ψ
}]∣∣∣

Γ
,

h3(ψ, w) − h′
3(ψ, w) = κψ

(
Π′∇u′ − Π∇u

)
· w

∣∣
Γ

= κψ
{
(Π′ − Π)A′∇ · w

∣∣
Γ

+ Π(B′ − B)∇ · w
∣∣
Γ

}
,

we have

‖h1(ψ) − h′
1(ψ)‖(α, α

2 )

QT
≤ c6‖ψ‖(2+α,1+ α

2 )

QT
MT [u − u′],

‖h2(ψ) − h′
2(ψ)‖(1+α, 1+α

2 )

GT

≤ c7‖ψ‖(2+α,1+ α
2 )

QT
MT [u − u′] + c8T

1−α
2 ‖∇ψ‖QT ‖∇(u − u′)‖QT ,
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‖h3(ψ, w) − h′
3(ψ, w)‖(1+α, 1+α

2 )

GT
≤ c9‖ψ‖(1+α, 1+α

2 )

QT

{
‖∇w‖(1+α, 1+α

2 )

QT
MT [u − u′]

+ T
1−α

2 ‖∇w‖QT ‖∇(u − u′)‖QT

}
.

3. Solvability of problem (1.4)

In this section we prove Theorem 1.1.

Proof. Put (u(0), q(0), θ(0)) = (v0, 0, θ0). Next, we define (u(m+1), q(m+1)), m =
0, 1, . . . , as a solution of the following problem:

Dtu
(m+1)−ν±∇2

mu(m+1) +
1

ρ±
∇mq(m+1) = f (Xm, t), ∇m ·u(m+1) = 0 in QT ,

u(m+1)|t=0 = v0 in Ω− ∪ Ω+,

[u(m+1)]|GT = 0, u(m+1)|ST = 0, (3.1)

[µ±Π0ΠmSm(u(m+1))nm]|GT = K
(m)
1 (θ̂(m)),

[n0 · Tm(u(m+1), q(m+1))nm]|GT − σ(θ0)n0 · ∆m(t)
∫ t

0

u(m+1)
∣∣
Γ

dτ

= K
(m)
2 (θ̂(m)) +

∫ t

0

K
(m)
3 (u(m), θ̂(m)) dτ on GT .

Here ∇m = ∇u(m) , Πmω = ω − nm(nm · ω), nm is the outward normal to Γm =
{x = Xm(ξ, t), ξ ∈ Γ}, Xm = Xu(m) ; Sm = Su(m) , Tm = Tu(m) ; ∆m is the
Beltrami-Laplace operator on Γm, K

(m)
1 = Π0Πm∇mσ etc.

Finally, we determine θ̂(m+1), m = 0, 1, . . . , as a solution to the problem

Dtθ̂
(m+1) − k±∇2

mθ̂(m+1) = 0 in QT ,

θ̂(m+1)|t=0 = θ0 in Ω− ∪ Ω+,

[θ̂(m+1)]|GT = 0, θ̂(m+1)|S = â, (3.2)

[k±nm · ∇mθ̂(m+1)]|GT + κθ̂(m+1)(Πm∇m) · u(m+1) = 0 on GT .

Let us successively apply Theorem 2.1 to problems (3.1). As to the first
hypothesis of it, we can put

g ≡ gm = −A
∗
mf , G ≡ Gm(ξ, t) = ∇

∫
∪Ω±

E(ξ, η)A∗
mf (η, t) dη, (3.3)

where Am = A(u(m)), E(ξ, η) = 1
4π

1
|ξ−η| is the fundamental solution of the

Laplace equation. The first equality in (3.3) follows from the identity ∂Aij

∂ξj
= 0

which is true for the co-factor matrix of the Jacobi matrix of an arbitrary trans-
formation and which implies A∇ · w = ∇ · A∗w. Moreover, it is obvious that[
n0 ·

(
gm + A∗

mf
)] ∣∣

Γ
= 0. The third and forth groups of the assumptions of The-

orem 2.1 follow from the hypotheses (1.5), (1.6).
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Next, we have the inequalities [4, 8]

‖gm‖(α,α/2)
QT

+ |Gm|(1+α,γ)
QT

+ ‖Gm‖(γ,0)
QT

≤ c(T )
(

1 + (1 + T )‖u(m)‖(2+α,1+α/2)
QT

)
‖f‖( 1+α−γ

2 )

t,QT

≤ c1(T )‖f‖(α, α+ε
2 )

QT
, (3.4)

‖σ(θ̂(m))H0(ξ)‖(1+α, 1+α
2 )

GT
≤ c‖σ(θ̂(m))‖(1+α, 1+α

2 )

GT
‖H0‖(1+α)

Γ

≤ c2

(
1 + ‖θ̂(m)‖(1+α, 1+α

2 )

QT

)
‖H0‖(1+α), (3.5)

‖σ(θ̂(m))n0 · ∆̇m(τ)ξ‖(α,α/2)
GT

≤ c‖σ(θ̂(m))‖(α,α/2)
GT

‖∇u(m)‖(α,α/2)
GT

≤ c3

(
1 + ‖θ̂(m)‖(α,α/2)

QT

)
‖u(m)‖(2+α,1+α/2)

QT
.

Thus, Theorem 2.1, inequalities (3.4), (3.5) and Lemma 2.5 with u′ = 0 imply
the estimate

NT [u(m+1), q(m+1)] ≤ c4(T )
{(

1 + ‖u(m)‖(2+α,1+ α
2 )

QT

)
‖f‖(α, α+ε

2 )

QT
+ ‖v0‖(2+α)

∪Ω±

}
+c5

(
1 + ‖θ̂(m)‖(1+α, 1+α

2 )

QT

)(
‖u(m)‖(2+α,1+ α

2 )

QT
+ ‖H0‖(1+α)

Γ

)
+c6T

1−α
2 ‖∇σ(θ̂(m))‖GT ‖∇u(m)‖QT (3.6)

+c7‖θ̂(m)‖(2+α,1+ α
2 )

QT

(
1 + ‖θ̂(m)‖(2+α,1+ α

2 )

QT

)
×
{
MT [u(m)] + (T + T 1/2)

(
‖u(m)‖(2+α,1+ α

2 )

QT

)2}
+c8

(
T

1−α
2 ‖∇u(m)‖QT + ‖∇u(m)‖(α, α

2 )

QT

)
‖v0‖(2+α)

∪Ω± .

Hence, for m = 0 we can conclude that

NT [u(1), q(1)] ≤ c4(T )
{(

1 + ‖v0‖(2+α)
∪Ω±

)
‖f‖(α, α+ε

2 )

QT
+ ‖v0‖(2+α)

∪Ω±

}
+c9

{(
1 + ‖θ0‖(2+α)

∪Ω±

)(
‖v0‖(2+α)

∪Ω± + ‖H0‖(1+α)
Γ

)
(3.7)

+ T
1−α

2 ‖v0‖(1)
∪Ω±

(
‖θ0‖(1)

∪Ω± + ‖v0‖(1+α)
∪Ω±

)
+ (T + T 1/2)‖θ0‖(2+α)

∪Ω±

(
1 + ‖θ0‖(2+α)

∪Ω±

)
× ‖v0‖(2+α)

∪Ω±

(
1 + ‖v0‖(2+α)

∪Ω±

)}
.
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The compatibility conditions (2.4) for problem (3.2) follow from relations
(1.5). Therefore, Theorem 2.3 gives us for all m = 0, 1, 2, . . .

‖θ̂(m+1)‖(2+α,1+ α
2 )

QT
≤ c10(T )

{
‖â‖(2+α,1+ α

2 )

ST
+ ‖θ0‖(2+α)

∪Ω±

+
(
δ + T

1−α
2 ‖v0‖(1)

∪Ω±
)
‖θ0‖(1)

∪Ω±‖u(m+1)‖QT

}
.(3.8)

In this way we deduce by induction that for every m ≥ 0 the systems (3.1),
(3.2) have solutions (u(m+1), q(m+1)), θ̂(m+1) on a time interval (0, Tm+1] ⊂ (0, T ]
such that the preceding approximation (u(m), q(m)), θ̂(m) is also defined on this
interval, while u(m) satisfies (2.2) with small δ on it.

Now, it is necessary to show that there exists such T ′ > 0 that for ∀m ∈
N Tm ≥ T ′, the norms NT [u(j), q(j), θ̂(j)] ≡ NT ′ [u(m), q(m)] + ‖θ̂(m)‖(2+α,1+ α

2 )

QT ′ are

uniformly bounded and the sequence {u(m), q(m), θ̂(m)}, m > 0, converges to a
solution of problem (1.4).

To this end, we compose the difference between systems (3.1) corresponding
to j + 1 and to j. Let us consider the functions w(j+1) = u(j+1) − u(j), s(j+1) =
q(j+1) − q(j), j = 1, 2, . . . , which satisfy the problem

Dtw
(j+1) − ν±∇2

jw
(j+1) +

1
ρ±

∇js
(j+1)

= l
(j)
1 (u(j), q(j)) − l

(j−1)
1 (u(j), q(j)) + f (Xj , t) − f (Xj−1, t) ≡ f (j),

∇j · w(j+1) = l
(j)
2 (u(j)) − l

(j−1)
2 (u(j)) ≡ r(j) in QTm+1 ,

w(j+1)|t=0 = 0 in Ω− ∪ Ω+,

[w(j+1)]|GTm+1
= 0, w(j+1)|STm+1

= 0, (3.9)

[µ±Π0ΠjSj(w(j+1))nj ]|GTm+1
= l

(j)
3 (u(j)) − l

(j−1)
3 (u(j))

+ K
(j)
1 (θ̂(j)) − K

(j−1)
1 (θ̂(j−1)),

[n0 · Tj(w(j+1), s(j+1))nj ]|GT m+1 − σ(θ0)n0 · ∆j(t)
∫ t

0

w(j+1)
∣∣
Γ
dτ

= l
(j)
4 (u(j), q(j)) − l

(j−1)
4 (u(j), q(j)) + K

(j)
2 (θ̂(j))

− K
(j−1)
2 (θ̂(j−1)) +

∫ t

0

(l(j)5 (u(j)) − l
(j−1)
5 (u(j)))dτ

+
∫ t

0

{
K

(j)
3 (u(j), θ̂(j)) − K

(j−1)
3 (u(j−1), θ̂(j−1))

}
dτ on GTm+1 .
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Here

l
(j)
1 (w, s) = ν±(∇2

j −∇2)w +
1

ρ±
(∇−∇j)s,

l
(j)
2 (w) = (∇−∇j) · w = −Bj∇ · w,

l
(j)
3 (w) = [Π0S(w)n0 − Π0ΠjSj(w)nj ]|Γ,

l
(j)
4 (w, s) = [n0 · (T(w, s)n0 − Tj(w, s)nj)]|Γ

= [sn0 · (nj − n0) + n0 · (S(w)n0 − Sj(w)nj)]|Γ,

l
(j)
5 (w) = σ(θ0)n0 · Dt

{
(∆(t) − ∆(0))

∫ t

0

w|Γdt′
}

= σ(θ0)n0 ·
{
(∆(t) − ∆(0))w + ∆̇(t)

∫ t

0

w|Γ dt′
}
,

Moreover, we observe that the function ψ(j+1) = θ̂(j+1) − θ̂(j), j = 1, . . . , is
a solution of the problem, the result of subtraction of systems (3.2) corresponding
to the neighboring indices j + 1 and j:

Dtψ
(j+1) − k±∇2

jψ
(j+1) = k±∇2

j θ̂
(j) − k±∇2

j−1θ̂
(j)

≡ h
(j)
1 (θ̂(j)) − h

(j−1)
1 (θ̂(j)) in QTm+1 ,

ψ(j+1)|t=0 = 0 in Ω− ∪ Ω+,

[ψ(j+1)]|Γ = 0, ψ(j+1)|S = 0,

[k±nj · ∇jψ
(j+1)]|Γ + κψ(j+1)(Πj∇j) · u(j+1) (3.10)

= −[k±nj · ∇j θ̂
(j)]|Γ − κθ̂(j)(Πj∇j) · u(j+1)

+ [k±nj−1 · ∇j−1 θ̂
(j)]|Γ + κθ̂(j)(Πj−1∇j−1) · u(j)

≡ h
(j)
2 (θ̂(j)) − h

(j−1)
2 (θ̂(j)) + h

(j)
3 (θ̂(j), w(j+1))

+ h
(j)
3 (θ̂(j), u(j)) − h

(j−1)
3 (θ̂(j), u(j)) on GTm+1 .

Here h
(j)
i are calculated by (2.7), where u replace with u(j).

In order to apply Theorem 2.1 to problem (3.9), we need verify the first
hypothesis of this theorem. Following [4], we set

g = g(j) = (B∗
j−1 − B

∗
j )Dtu

(j) + Dt(B∗
j−1 − B

∗
j )u

(j) − A
∗
jf

(j),

and we have

Dtr
(j) −∇j · f (j) = ∇ · g(j), [(g(j) + A

∗
jf

(j)) · n0]|Gt = 0.

Since

f (j) = ∂
(
L

(j)
1k (u(j), q(j)) − L

(j−1)
1k (u(j), q(j))

)
/∂ξk + f(Xj , t) − f(Xj−1, t)

and
Dtu

(j) = ∂M
(j)
k /∂ξk + f(Xj−1, t),
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where M
(j)
k = ν±(A∗

j−1ek · ∇j−1)u(j) − A∗
j−1ekq(j)/ρ±, we can write

g(j) = ∇ · G(j) ≡ ∂G
(j)
k /∂ξk,

where

G
(j)
k = (B∗

j−1 − B
∗
j )M

(j)
k − A

∗
j

(
L

(j)
1k (u(j), q(j)) − L

(j−1)
1k (u(j), q(j))

)
+

∂W (j)

∂ξk
,

W (j) = −
∫

Ω−∪Ω+
E(ξ, η)

{ ∂

∂ηi
(B∗

j−1 − B
∗
j )M

(j)
i − (B∗

j−1 − B
∗
j )f(Xj−1, t)

−Dt(B∗
j−1 − B

∗
j )u

(j) − ∂A
∗
j/∂ηi

(
L

(j)
1i (u(j), q(j)) − L

(j−1)
1i (u(j), q(j))

)
+ A

∗
j

(
f (Xj , t) − f (Xj−1, t)

)}
dη.

We assume that (u(j), q(j)), θ̂(j), j = 1, . . . , m, satisfy the inequality

(T + T γ/2)NT [u(j), q(j), θ̂(j)] < δ, T ≤ Tm+1, (3.11)

which is stronger than (2.2).
The norms of the right-hand sides of the system (3.9) were estimated in [4]

(Lemmas 4.1–4.4):

‖f (j)‖(α,α/2))
QT

+ ‖r(j)‖(1+α, 1+α
2 )

QT
+ ‖g(j)‖(α,α/2))

QT
+ |G(j)|(1+α,γ)

QT

+‖G
(j)‖(γ,0)

QT
+ ‖l(j)3 − l

(j−1)
3 ‖(1+α, 1+α

2 )

GT
+ ‖l(j)4 − l

(j−1)
4 ‖GT

+‖∇Γ(l(j)4 − l
(j−1)
4 )‖(α,α/2))

GT
+ ||l(j)4 − l

(j−1)
4 |(1+α,γ)

GT
+ ‖l(j)5 − l

(j−1)
5 ‖(α,α/2))

GT

≤ c11

{
(T + T γ/2)‖w(j)‖(2+α,1+α/2)

QT
NT [u(j), q(j)] + ‖∇w(j)‖(α,α/2)

QT
(3.12)

+(T + T 1/2)‖w(j)‖(α,α/2)
QT

+ PT [w(j)]‖u(j)(·, 0)‖(1)
Ω−∪Ω+

}
.

The rest norms are evaluated by Lemmas 2.4, 2.5:

‖K(j)
1 (θ̂(j)) − K

(j−1)
1 (θ̂(j−1))‖(1+α, 1+α

2 )

GT
+ ‖K(j)

2 (θ̂(j)) − K
(j−1)
2 (θ̂(j−1))‖(1+α, 1+α

2 )

GT

≤ c12

{(
‖θ̂(j)‖(2+α,1+ α

2 )

QT
+ ‖θ̂(j−1)‖(2+α,1+ α

2 )

QT

)2+α(
1 + ‖H0‖(1+α)

Γ

)
× ‖ψ(j)‖(2+α,1+ α

2 )

QT
+ ‖∇σ(θ̂(j))‖(1+α, 1+α

2 )

GT
MT [w(j)]

+ T
1−α

2 ‖∇σ(θ̂(j))‖GT ‖∇w(j)‖QT

}
, (3.13)

‖K(j)
3 (u(j), θ̂(j)) − K

(j−1)
3 (u(j−1), θ̂(j−1))‖(α, α

2 )

GT

≤ ‖K(j)
3 (u(j), θ̂(j)) − K

(j−1)
3 (u(j), θ̂(j))‖(α, α

2 )

GT

+‖K(j−1)
3 (u(j), θ̂(j)) − K

(j−1)
3 (u(j−1), θ̂(j−1))‖(α, α

2 )

GT
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≤ c13(T + T 1/2)
{(

1 + ‖θ̂(j)‖(2+α,1+ α
2 )

QT
+ ‖θ̂(j−1)‖(2+α,1+ α

2 )

QT

)2

×
(
‖∇u(j−1)‖QT + ‖u(j)‖(2+α,1+ α

2 )

QT

)
‖ψ(j)‖(2+α,1+ α

2 )

QT

+ ‖θ̂(j−1)‖(2+α,1+ α
2 )

QT

(
1 + ‖θ̂(j)‖(2+α,1+ α

2 )

QT

)
‖w(j)‖(2+α,1+ α

2 )

QT

}
+ c14

{
‖σ(θ̂(j))‖(α, α

2 )

GT
‖∇w(j)‖QT

+ ‖θ̂(j−1)‖(2+α,1+ α
2 )

QT

(
1 + ‖θ̂(j−1)‖(2+α,1+ α

2 )

QT

)
×
{
MT [w(j)] + (T + T 1/2)‖u(j)‖(2+α,1+ α

2 )

QT
‖w(j)‖(2+α,1+ α

2 )

QT

}}
.(3.14)

We estimate the solution of problem (3.10) using Theorem 2.3, Lemma 2.6
and inequality (2.9):

‖ψ(j+1)‖(2+α,1+ α
2 )

QT
≤ ‖h(j)

1 (θ̂(j)) − h
(j−1)
1 (θ̂(j))‖(α, α

2 )

QT

+ ‖h(j)
2 (θ̂(j)) − h

(j−1)
2 (θ̂(j))‖(1+α, 1+α

2 )

GT
+ ‖h(j)

3 (θ̂(j), w(j+1))‖(1+α, 1+α
2 )

GT

+ ‖h(j)
3 (θ̂(j), u(j)) − h

(j−1)
3 (θ̂(j), u(j))‖(1+α, 1+α

2 )

GT

≤ c15

{(
‖θ̂(j)‖(2+α,1+ α

2 )

QT
+ ‖θ̂(j)‖(1+α, 1+α

2 )

QT
‖∇u(j)‖(1+α, 1+α

2 )

QT

)
MT [w(j)]

+ T
1−α

2 ‖θ̂(j)‖(1+α, 1+α
2 )

QT

(
1 + ‖∇u(j)‖QT

)
‖∇w(j)‖QT

+ δ‖θ̂(j)‖(2+α,1+ α
2 )

QT
‖w(j+1)‖(2+α,1+ α

2 )

QT

+ T
1−α

2 ‖∇u(j)‖QT ‖θ0‖(1)
∪Ω±‖∇w(j+1)‖QT

}
, j = 1, 2, . . . .(3.15)

For j = 0 we have

‖ψ(1)‖(2+α,1+ α
2 )

QT
≤ ‖θ̂(1)‖(2+α,1+ α

2 )

QT
+ ‖θ0‖(2+α)

∪Ω±

≤ c(T )
{
‖â‖(2+α,1+ α

2 )

ST
+ ‖θ0‖(2+α)

∪Ω±

+
(
δ + T

1−α
2 ‖v0‖(1)

∪Ω±
)
‖θ0‖(1)

∪Ω±‖u(1)‖(1)
QT

}
≡ Ψ[T ].(3.16)

Since w(j)|t=0 = 0, ∇w(j)|t=0 = 0, we obtain

PT [w(j)]‖v0‖(1)
∪Ω±≤ c13(T + T 1/2)‖w(j)‖(2+α,1+ α

2 )

QT
‖v0‖(1)

∪Ω± ≤ c13δ‖w(j)‖(2+α,1+ α
2 )

QT
,

MT [w(j)] ≤ 2(T + T 1/2)‖w(j)‖(2+α,1+ α
2 )

QT
,

‖w(j)‖QT ≤
∫ T

0

‖Dtw
(j)(·, t)‖∪Ω± dt ≤

∫ T

0

Nt[w(j), s(j)] dt. (3.17)
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Next, we use the interpolation inequality

‖w(j)‖(α,α/2)
QT

+ ‖∇w(j)‖(α,α/2)
QT

≤ ε‖w(j)‖(2+α,1+ α
2 )

QT
+ c16(ε)‖w(j)‖QT .

For j = 0, 1, . . . , the estimates (3.8),(3.11) yield

‖θ̂(j)‖(2+α,1+ α
2 )

QT
≤ c10(T )

{
‖â‖(2+α,1+ α

2 )

ST
+ ‖θ0‖(2+α)

∪Ω±

+
(
δ2 + δ‖v0‖(1)

∪Ω± + T
1−α

2 ‖v0‖(1)
∪Ω±‖v0‖∪Ω±

)
‖θ0‖(1)

∪Ω±

}
≡ Θ[T ].

Collecting all of the inequalities beginning with (3.12), we arrive at the esti-
mate:

N
(j+1)
T ≡ NT [w(j+1), s(j+1), ψ(j+1)]

≤
{
c11

{
(1 + c13)δ + (1 + T + T 1/2)ε

}
+ c14(c17 + Θ[T ])ε + 2δ(c12 + c14)

+ δ(1 + Θ[T ])
{
c13 + c14Θ[T ] + 3c15

}}
‖w(j)‖(2+α,1+ α

2 )

QT

+c18(δ, Θ, H0)‖ψ(j)‖(2+α,1+ α
2 )

QT
(3.18)

+2c15δΘ[T ]‖w(j+1)‖(2+α,1+ α
2 )

QT
+ (c11 + c14)c16(ε)‖w(j)‖QT ,

where c18(δ, Θ, H0) = c12(2Θ[T ])2+α
(
1+‖H0‖(1+α)

Γ

)
+ c13δ(1+Θ[T ])2. We choose

δ so small that

2c15δΘ[Tm+1] <
1
2

and we take (3.15)–(3.17) for j − 1 into account. As a result, we have:

N
(j+1)
T ≤ κ1N

(j)
T + κ2N

(j−1)
T + c19

∫ T

0

N
(j)
t dt, (3.19)

where κ1(T ) = 2
{
c11

{
(1+c13)δ+(1+T +T 1/2)ε

}
+2c12δ+c13δ(1+Θ)+c14

{
(c17+

Θ)ε + 2δ(c12 + c14) + δ(1 + Θ[T ])
{
c13 + c14Θ[T ] + 3c15

}}
+ 4c15δΘc18(δ, Θ, H0),

κ2(T ) = 6c15δ(1 + Θ)c18(δ, Θ, H0) if j = 2, 3, . . . .
For j = 1, we deduce from (3.16),(3.18) that

N
(2)
T ≤ κ̂1N

(1)
T + 2c18(δ, Θ, H0)Ψ[T ] + c19

∫ T

0

N
(1)
t dt, κ̂1 < κ1.(3.20)

Finally, we take δ,ε so that κ ≡ κ1(Tm+1)+κ2(Tm+1) < 1. Summing inequal-
ities (3.19) from j = 2 to j = m and adding (3.20), for the expression

Σm+1(T ) =
m+1∑
j=1

NT [w(j), s(j)]
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we obtain the estimate

Σm+1(T ) ≤ κ1Σm(T ) + κ2Σm−1(T ) + c19

∫ T

0

Σm(t) dt + F (T )

≤ κΣm+1(T ) + c19

∫ T

0

Σm+1(t) dt + F (T ),

where F (T ) = N
(1)
T + 2c18(δ, Θ, H0)Ψ[T ].

Finally, from the Gronwall lemma applied to the inequality

Σm+1(T ) ≤ c20

∫ T

0

Σm+1(t) dt +
1

1 − κ
F (T ),

it follows that

NT [u(m+1), q(m+1), θ̂(m+1)] ≤ Σm+1(T ) + ‖v0‖(2+α)
∪Ω± + ‖θ0‖(2+α)

∪Ω±

≤ F (T )
1 − κ

ec20T + ‖v0‖(2+α)
∪Ω± + ‖θ0‖(2+α)

∪Ω± .(3.21)

As (w(1), s(1), ψ(1)) = (u(1) − v0, q
(1), θ̂(1) − θ0), the norm N

(1)
T can be evalu-

ated by (3.7), (3.16), hence, F (T ) is bounded by the norms of the given functions.
If

(T + T γ/2)
{
F (T )(1 − κ)−1ec20T + ‖v0‖(2+α)

∪Ω± + ‖θ0‖(2+α)
∪Ω±

}
≤ δ, (3.22)

then condition (3.11) is fulfilled also for u(m+1), q(m+1), θ̂(m+1). It is clear that
there is a number T = T0 satisfying (3.22).

Since the right-hand side of (3.21) is independent of m, for every m ∈ N

the functions u(m), q(m), θ̂(m) are defined on the interval (0, T0] and satisfy the
uniform estimate (3.21). It follows that the series

∑∞
j=1 N

(j)
T0

is convergent, whence
we see that the sequence u(m), q(m), θ̂(m) is also convergent in the norm NT0 .
Passing to the limit as m → ∞ in (3.1), (3.2), we make sure that (u, q, θ̂) =
limm→∞(u(m), q(m), θ̂(m)) is a solution of (1.4).

Now we prove the uniqueness of the solution obtained. Suppose that (u, q, θ̂)
and (u′, q′, θ̂′) are two solutions of (1.4) and consider the difference w = u − u′,
s = q− q′, ψ = θ̂− θ̂′. The triple (w, s, ψ) satisfies a problem of type (3.9), (3.10):

Dtw − ν±∇2
uw +

1
ρ±

∇us = l1(u′, q′) − l′1(u
′, q′) + f (Xu, t) − f (Xu′ , t),

∇u · w = l2(u′) − l′2(u
′), Dtψ − k±∇2

uψ = h1(θ̂′) − h′
1(θ̂

′) in QT0 ,

w|t=0 = 0, ψ|t=0 = 0 in Ω− ∪ Ω+,

[w]|Γ = 0, [ψ]|Γ = 0, w|S = 0, ψ|S = 0,

[Π0ΠSu(w)n]|Γ = l3(u′) − l′3(u
′) + K1(θ̂) − K′

1(θ̂
′),
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[n0 · Tu(w, s)n]|Γ − σn0 · ∆(t)
∫ t

0

w dτ |Γ = l4(u′, q′) − l′4(u
′, q′)

+ K2(θ̂) − K ′
2(θ̂

′) + σ

∫ t

0

(
l5(u′) − l′5(u

′) + K3(u, θ̂) − K ′
3(u

′, θ̂′)
)
dτ,

[k±n · ∇uψ]|Γ + κψ(Π∇u) · u = h2(θ̂′) − h′
2(θ̂

′) + h3(θ̂′, w)

+ h3(θ̂′, u′) − h′
3(θ̂

′, u′) on GT0 .

Repeating the above arguments, we arrive at an inequality similar to (3.19):

NT [w, s, ψ] ≤ κNT [w, s, ψ] + c21

∫ t

0

Nt[w, s, ψ]dt, κ < 1,

which, by the Gronwall lemma, implies that w = 0, s = 0, ψ = 0.
Theorem 1.3 is completely proved. �
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Some Mathematical Problems
in Visual Transduction

Daniele Andreucci, Paolo Bisegna and Emmanuele DiBenedetto

Abstract. We present a mathematical model for the phototransduction cas-
cade, taking into account the spatial localization of the different reaction
processes. The geometric complexity of the problem (set in the rod outer
segment) is simplified by a process of homogenization and concentration of
capacity.
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35K50.

Keywords. homogenization, signal transduction, concentrated capacity, retic-
ular structure.

1. The phototransduction cascade

Signal transduction in living cells occurs by precise, highly regulated localization
of key enzimes. The relevant diffusion and reaction processes take place in sub-
compartments of the cell.

The standard ODE approach, based on Michaelis-Menten well-stirred kinetics
averages concentrations within the whole cell volume, and therefore is unable to
predict the spatial localization of the signaling processes.

A PDE approach seems more suitable as takes into account the spatial depen-
dence of the signal. However, the geometry of the domain open to diffusion may be
so complex as to prevent in practice any affective qualitative or numerical analysis
of the problem. This occurs whenever the cell contains structures which impede,
or however influence, the diffusion of the signaling molecules, but whose detailed
geometry cannot be directly taken into account in the mathematical model.

In [2, 3, 4] we have addressed these issues in the context of the phototrans-
duction cascade in the rod outer segment (ROS) of vertebrates (Figure 1). The
ROS is a cylinder of height H and cross section a disc of radius R + σε, housing

Supported by grant NIH-1-RO1-GM 68953-01.
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Figure 1. On the left: Retina, rods and cones (Frog, Scansion
Electron Migrograph). On the right: Retina, rod cells (Transmis-
sion Electron Migrograph). From the Internet Atlas of Histology,
COM-UIUC

a longitudinal stack of equispaced, parallel, coaxial cylinders Cj , each of radius R
and thickness ε, called discs. The stack cuts between any two contiguous discs Cj

and Cj+1, an inter-discal space Ij , which is itself a cylinder of cross section a disc
of radius R and thickness νε (Figure 2).1

This stack is separated from the plasma membrane by a thin gap Sε, called
outer shell of thickness σε.

Each disc carries a large number of molecules of photoreceptor Rhodopsin,
clamped to it. Assume the ROS is in absence of light (dark-adapted). If a photon
hits a molecule of Rhodopsin on the disc Cjo , it generates a biochemical cascade
whose net result is depletion of cGMP (cyclic-guanosin monophosphate) in the
cytosol, and a consequent suppression of ionic current across the outer membrane
of the ROS. Such a current is the response of the phototransduction cascade and
it starts the process of vision by propagating the signal to the brain through the
optic nerve. The ROS is sufficiently sophisticated as being able to capture a single
photon of light; the corresponding current is called the single photon response,
from a dark-adapted ROS.

1Here ε, σ, ν R and H are given positive parameters. For the Salamander the stack contains about
1000 discs, and H ≈ 22µm, R ≈ 5.5, µm, ε ≈ 10nm, ν ≈ 0.5 and σ ≈ 1 (Lamb and Pugh [11]).
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H

Cjo

Cj
F+

j

Lj

2(R + σε)

photons

generic disc Cj of upper and
lower faces F±

j and lateral
boundary Lj

Figure 2. Geometry of the ROS and its discs

Diffusion and depletion of cGMP is modulated by the diffusion of Ca2+. Both
cGMP and Ca2+ are termed second messengers.

The diffusion process takes place within the thin layers Ij between the mem-
branous discs (transversal diffusion) and the equally thin outer shell Sε, (longitu-
dinal diffusion) as indicated in Figure 2.

Diffusion within the interdiscal spaces is important, because these are the
only physical spaces through which cGMP can be depleted by the enzyme phos-
phodiesterase, localized on the faces of the discs. The depletion of cGMP in turn
drives the closure of ion channels on the plasma membrane, lowering the influx of
Ca2+ ions and hyperpolarizing the cell. Therefore diffusion along the outer shell is
equally important, because this is the region where the channels reside and Ca2+

enters the cytosol.
We propose a mathematical approach that involves homogenized limits and

concentrated capacity as ε → 0, starting from its “initial” physical value εo. The
discs and the corresponding interdiscal spaces are regarded as becoming thinner
and thinner in size and larger and larger in number.

Denote by Ω̃ε the domain out of the ROS available for diffusion for a fixed
value of the parameter ε. This consists of the ROS from which the closed discs Cj

have been removed. If n = n(ε) is their number we let ε → 0 and n → ∞ in such a
way that the volume available for diffusion remains unchanged. Such a condition
implies that n and ε are linked by

nε = Hθo , where θo = 1 + ν.

As ε → 0, the domain Ω̃ε tends roughly speaking to a right circular cylinder (up to
a set of measure zero). Thus the original geometrical complexity is resolved into a
geometrical simplicity. This in turn lends itself to efficient computational analysis
and simulations, and casts light into the local phenomenon of spread of the signal.
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2. The physical model

Denote by uε and vε the ε-approximations of dimensionless concentration of cGMP
and Ca2+ respectively. Denote also by z the axial coordinate, by x = (x, y) the
transversal coordinates and by x = (x, z) the coordinates in R

3 as in Figure 2. Set

aε(x) =

⎧⎪⎨⎪⎩
1 for x ∈

⋃
j 
= jo

Ij

εo

ε
for x ∈ Ijo ∪ Sε

(2.1)

and consider the system of parabolic equations with discontinuous coefficients,

uε, vε ∈ C
(
0, T ; L2(Ω̃ε)

)
∩ L2

(
0, T ; W 1,2(Ω̃ε)

)
aε(x)

∂

∂t
uε − kudiv aε(x)∇uε = 0

aε(x)
∂

∂t
vε − kvdiv aε(x)∇vε = 0

(2.2)

weakly in Ω̃ε, where ku and kv are given diffusivities. For ε = εo the coefficients aε

are identically equal to 1 and the equations represent the classical Fick’s diffusion
of cGMP and Ca2+ in the cytosol. The mathematical model we propose for the
diffusion of cGMP and Ca2+ is the limiting u and v obtained from (2.2) as ε → 0,
each satisfying some corresponding limiting equation. The rationale is that, by this
process, the ROS reduces to a right circular cylinder from which, roughly speaking
the discs have been removed, and the outer shell reduces to its outer boundary.
As ε → 0 the coefficients aε(·) become unbounded in the shrinking outer shell Sε

and in the shrinking interdiscal space Ijo . This corresponds to concentrating the
capacity of cGMP and Ca2+ in these domains to recover their diffusion effect in
the limit (see [3]).

The boundary flux for uε on the faces of the interdiscal spaces is

ku∇uε · n = −νε

2
{
γouε − f(vε)

}
, (2.3)

where n is the exterior unit normal to Ω̃ε, γo is a given positive constant, and
f(·) is a given smooth function defined below in (2.6). Generation of cGMP on
the faces of the interdiscal spaces Ij , other than the special space Ijo , is modu-
lated by Ca2+ through Guanylyl Ciclase (GC), whereas its depletion is effected
by Phosphodiesterase (PDE) (Figure 3). While both PDE and GC are confined to
the faces of the discs, in the biological literature their densities [PDE] and [GC]
are measured as volumic quantities. To account for their surface action they have
to be converted into surface densities and distributed on the 2n(ε) faces of the
discs. Such a process generates the factor of ε on the right-hand side of (2.3). In
turn, such a factor of ε is the correct one to compute the homogenized limit of
(2.2). On the face where activation occurs, the flux of cGMP is given by

εo

ε
ku∇u · n = −νεo

2
{
γouε − f(vε)

}
− uεf1(vε, x, t) ; (2.4)
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Figure 3. A sketch of the phototransduction cascade

where f1 is a given, smooth, positive, bounded function of its arguments, which
takes into account the depletion of cGMP due to the presence of the activated
enzyme PDE∗. The remaining parts of ∂Ω̃ε are impermeable to cGMP; accordingly
on these parts, the flux of uε vanishes. For further mathematical and physical
motivations of the precise meaning of these boundary fluxes we refer to [3] and [4].

Calcium does not penetrate the discs so that vε has zero flux on their bound-
aries. Also Ca2+ does not outflow the top and bottom of the ROS. Outflow of
Ca2+ on the lateral surface of the ROS is proportional to the ionic current it gen-
erates. Inflow of Ca2+ is, roughly speaking, a function of the number of open ionic
channels, which in turn is a function of [cGMP]. These biological facts translate
into the flux condition,

εo

ε
kv∇vε · n = −g1(vε) + g2(uε) , on {|x| = R + σε}. (2.5)

In visual transduction the form of f(·), g1(·), and g2(·) are explicitly given by [12]

f(s) =
γ1

βm
1 + sm

; g1(s) =
c1 s

d1 + s
; g2(s) =

c2 sκ

dκ
2 + sκ

, s > 0 , (2.6)

for given positive constants γ1, β1, m, c1, c2, d1, d2, κ. The initial conditions are
those of dark equilibrium, i.e., uε(·, 0) =

o
u and vε(·, 0) =

o
v for two given positive

constants
o
u,

o
v.

3. The limiting equations

Let zo be the z-coordinate of the disc Cjo where activation occurs and let DR =
{|x| < R}. The limiting process is carried out so that zo remains constant as
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ε → 0 or equivalently the activated face remains at the same level. As ε → 0 the
layered domain Ω̃ε tends formally to the cylinder Ωo = DR × (0, H), the activated
interdiscal spaces Ijo , shrinks formally to the disc DR × {zo}, and the outer shell
Sε reduces formally to the lateral boundary S = ∂DR × (0, H) of Ωo.

The functions uε and vε generate three pairs of limiting functions, each rep-
resenting [cGMP] and [Ca2+] in different parts of the rod outer segment. Precisely:

u, v defined in Ωo and called the interior limit
o
u,

o
v defined in DR × {zo} and called the limit on the

activated level zo

û, v̂ defined in S and called the limit in the outer shell.

We next give the equations satisfied by these limiting quantities, each in its own
geometric portion, and illustrate how these seemingly different diffusion processes
interact with each other. To convey the main ideas we do this in a formal way. The
topology of convergence and the precise meaning of these equations is contained
in the weak formulations of Section 5. The analogues for v as well as justifications
and proofs are in [3].

The limiting equations will contain in various forms the forcing terms gener-
ated by (2.3)–(2.6). To simplify the symbolism we will set,

F (x, z, t) = γou − f(v); Fo(x, t) = γo
o
u −f(

o
v);

F∗(x, t) =
1

νεo

o
u f(

o
v, x, t).

3.1. Form of the interior limit

The interior limiting u satisfies,

ut − ku∆xu = −F in Ωo. (3.1)

Here ∆x is the Laplacian acting only on the transversal variables x = (x, y).
Since u is a function of the transversal variables x = (x, y) and the longitudinal
variable z, (3.1) can be regarded as a family of diffusion processes parametrized
with z ∈ (0, H), taking place on the disc DR. Thus the volumic diffusion in (2.2)
in the layered structure of the rod, is transformed into a family of 2-dimensional
diffusions. Also, the homogenized limit transforms the boundary fluxes in (2.3)
into volumic source terms holding in Ωo.

3.2. The limit at the activated level zo

The limiting
o
u satisfies,

o
ut −ku∆x

o
u= −Fo − F∗ on DR × {zo}. (3.2)

Thus also at the activated level zo, the volumic diffusion in (2.2) is transformed
into a 2-dimensional diffusion on the layer DR × {zo} and the fluxes in (2.4) are
transformed into sources defined in the interior of the same disc. Note that the
limit equation contains also the term F ∗ due to activation.
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3.3. Limiting equations in the outer shell

The limiting û on S is a function of θ ∈ [0, 2π) and z ∈ (0, H) and of time. Outside
the activated level zo it must equal the trace on S of the interior limit u. On the
activated level zo it must equal the trace on ∂DR × {zo} of

o
u, i.e.,

û(θ, z, t) = u(x, z, t)
∣∣
|x|=R

for all z 
= zo;

û(θ, zo, t) =
o
u (x, t)

∣∣
|x|=R

.

The interior limit u and the limit
o
u on the activated level zo are linked to the

limit û in the following more essential way. Let ∆S denote the Laplace-Beltrami
operator on S. Then

ût − ku∆S û = − (1 − θo)ku

σεo
uρ

∣∣
|x|=R

−δzo

νku

σ

o
uρ

∣∣
|x|=R

(3.3)

in S. Here δzo is the Dirac delta on S with mass on zo and uρ and
o
uρ are the normal

derivatives of u and
o
u on ∂DR×{zo}. Thus the diffusion of û on the limiting outer

shell S, is forced by the exterior fluxes on S of the interior limit u and the limit
o
u

on the activated disc DR × {zo}.
This is the biophysical law by which the homogenized-concentrated limiting

diffusions interact with each other. While it is somewhat intuitive that cGMP
coming from the transversal interstices should provide the driving force for the
movement of the cGMP on the longitudinal surface S, equations (3.1)–(3.3) provide
a precise law by which this occurs. Multiplying (3.3) by σεo, the left-hand side
represent the pointwise space-time variation of σεoû. The latter can be regarded
as a surface density of cGMP, which has been concentrated on the limiting surface
S, starting from the original shell Sεo . The factor (1 − θo) on the right hand side
signifies that only a fraction of (1 − θo) of S is exposed to the outflow of the
homogenized interior limit of cGMP. This is the same fraction of surface exposed
to inflow/outflow of cGMP from the interdiscal spaces into the outer shell Sεo in
the original, non homogenized configuration of the ROS.

4. Main ideas in computing the homogenized limit

We continue to limit our discussion to the net {uε}, the arguments for {vε} being
similar. By standard energy estimates,2

0 ≤ uε(x, t) ≤ γ for all (x, t) ∈ Ω̃ε,T , (4.1)

sup
0≤ t≤T

∥∥√aε uε(·, t)
∥∥

2,Ω̃ε
+
∥∥√aε∇uε

∥∥
2,Ω̃ε,T

≤ γ , (4.2)∫ T−h

0

∫
Ω̃ε

aε

[
uε(t + h) − uε(t)

]2
dxdt ≤ γ h for all h ∈ (0, T ) , (4.3)

for a positive constant γ independent from ε.

2For a set D ⊂ R
N and a positive number T we set DT = D × (0, T ).
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4.1. The interior limit

As ε → 0 the discs Cj become thinner while their radius remains R; consequently,
as the outer shell Sε shrinks to S, the resulting domain tends to be disconnected,
and the diffusion becomes degenerate, since the discs effectively prohibit transport
of mass in the axial direction. For this reason, energy estimates alone are not
enough to generate a sufficiently strong notion of limit. It appears that some
estimation is needed on the degree of intercommunication of mass between the
layers of Ω̃ε.

Observe that uε solves “similar” parabolic problems in any two interdiscal
spaces which are at mutual distance h. These two parabolic problems have “sim-
ilar” boundary data for {|x| = R}, in the following sense. Let Λj be the lateral
boundary of Ij . Then by the energy estimate (4.2) and the definition of the aε,

1
ε

∫∫
Λj,T

|uε(x, z, t) − uε(x, z + h, t)|dηdt ≤ γ
√
|h| (4.4)

where dη is the surface measure on Λj. Here h is an integral multiple of (1 + ν)ε,
so that (x, z + h) belongs to an interdiscal space whenever (x, z) does. Essentially,
(4.4) implies that vε is continuous in z, in the averaged L1 sense, on the lateral
surfaces Λj. As a consequence of the regularizing effect of diffusion, the estimate
above implies a stronger pointwise estimate inside the interdiscal spaces, i.e.,

|uε(x, z, t) − uε(x, z + h, t)| ≤ γ|h|α , |x| < R − δ , (4.5)

where the constant γ depends on δ but not on h, and α ∈ (0, 1) depends only on
the data of the problem. This estimate, though not valid when (x, z + h) or (x, z)
belong to the special interdiscal space, is still valid across it, i.e., when Ijo falls
between z and z + h.

Finally, it follows from the regularity theory of parabolic equations that inside
each interdiscal space Ij the functions uε and vε are uniformly smooth, i.e.,

|∇uε| + |∇vε| + |uε,t| + |vε,t| ≤ γ , |x| < R − δ , γ = γ(δ) . (4.6)

Then by the Kirzbraun-Pucci extension theorem [8], we may extend uε and
vε with functions uε, vε which are equi-Hölder continuous in the open cylinder
Ωo,T . Therefore, up to a subsequence relabelled with ε,

uε → u, and vε → v uniformly on compact subsets of Ωo,T .

Take a testing function ϕ ∈ C∞
o (Ωo,T ), ϕ(·, 0) = 0, ϕ(·, T ) = 0, and such that

ϕ(·, z, t) ∈ C∞
o

(
{|x| < (1 − δ)R}

)
, for all z ∈ (0, H), t ∈ (0, T ]. We also require

ϕ ≡ 0 in a neighborhood of Ijo . By the definition, aε ≡ 1 on the support of ϕ.
Denote by ∂±Ij respectively the upper and lower base of Ij , and let ζ±j be their
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z-levels. Using such a ϕ as a testing function in the weak formulation of (2.2) gives
n∑

j=0

∫ T

0

∫
Ij

{
− uεϕt − kuuε∆xϕ

}
dxdt +

n∑
j=0

∫ T

0

∫
Ij

kuuε,zϕzdxdt

= −1
2
νε

n∑
j=1

∫ T

0

∫
∂I−

j

(γouε − f(vε))ϕdxdt

− 1
2
νε

n−1∑
j=0

∫ T

0

∫
∂I+

j

(γouε − f(vε))ϕdxdt

= −
n∑

j=0

∫ T

0

∫
Ij

(γouε − f(vε))ϕdxdt

+
n∑

j=0

∫ T

0

∫
Ij

[(γouε − f(vε))ϕ]z(ζ+
j + ζ−j − 2z)dxdt .

(4.7)

Due to the energy estimates, the last sum above is O(ε). Then (4.7) can be rewrit-
ten as∫∫

Ωo,T

{
− uεϕt − kuuε∆xϕ

} n∑
j=0

χIj dxdt +
∫∫

Ωo,T

kuuε,zϕz

n∑
j=0

χIj dxdt

= −
∫∫

Ωo,T

(γouε − f(vε))ϕ
n∑

j=0

χIj dxdt + O(ε) . (4.8)

As ε → 0 and correspondingly n → ∞,
n∑

j=0

χIj −→ (1 − θo) weakly in L2(Ωo). (4.9)

The energy estimates ensure that (up to subsequences)

kuuε,z

n∑
j=0

χIj → ξ , weakly in L2(Ωo,T ). (4.10)

A variant of an argument known in the theory of homogenization of stratified
structures, yields ξ ≡ 0 (see [3], [7]). Therefore, taking the limit ε → 0 in (4.8)
gives

(1 − θo)
∫∫

Ωo,T

{
− uϕt − kuu∆xϕ + (γou − f(v))ϕ

}
dxdt = 0 . (4.11)

4.2. The limit in the outer shell

Let us introduce the radial average of uε in the outer shell

ûε(θ, z, t) =
1
σε

∫ R+σε

R

u(ρ cos θ, ρ sin θ, z, t)dρ . (4.12)
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Now require that for |x| > R the testing function ϕ be independent of x, that is

ϕ(θ, z, t) = ϕ
∣∣
|x|=R

. (4.13)

Require also that ϕ vanishes in a neighborhood of the special interdiscal space
Ijo . By the energy estimates (4.2), the nets {ûε} and {∇S ûε} are equi-bounded in
L2(ST ). Here ∇S denotes the gradient on the surface S. Moreover taking also into
account the uniform time-regularity estimates in (4.3), the net {ûε} is pre-compact
in L2(ST ). Therefore for subnets relabelled with ε,

{ûε} → û in L2(ST ) and {∇S ûε} → ∇S û weakly in L2(ST ). (4.14)

Writing the weak formulation for the testing function ϕ and letting ε → 0, recalling
that Rdθdz is the surface measure on S,

lim
ε→ 0

εo

ε

{∫∫
Sε,T

{
− uεϕt + ku∇uε · ∇ϕ

}
dxdt −

∫
Sε

o
u ϕ(x, 0)dx

}
outer shell

= σεo

{∫
ST

{−ûϕt + ku∇S û · ∇Sϕ} dηdt −
∫

S

o
u ϕ(x, 0)dη

}
outer shell

. (4.15)

Therefore, in the limit, the concentration of capacity in Sε leads to a differential
equation posed on the surface S. Finally the trace identification

û(θ, z, t) = u(x, z, t)
∣∣
|x|=R

in L2(∂DR,T

)
for all z ∈ (0, H) , (4.16)

follows from the energy estimate (4.2) and the uniform Hölder estimates of the
Kirzbraun-Pucci extensions uε via the triangle inequality.

4.3. The limit on the activated face DR × {zo}
Introduce the integral averages

o
uε (x, t) =

1
νε

∫ ζ+
jo

ζ−
jo

uε(x, ζ, t)dζ ,
o
vε (x, t) =

1
νε

∫ ζ+
jo

ζ−
jo

vε(x, ζ, t)dζ . (4.17)

By virtue of the energy estimates, subsequences can be selected and relabelled
with ε such that { o

uε} → o
u strongly in L2(DR,T ) and {∇x

o
uε} → ∇x

o
u weakly in

L2(DR,T ). The sequence
o
vε converges to

o
v in a similar fashion.

Select a testing function ϕ(x, t) not depending on z. The limit of the terms
in the equation for uε, relevant to the special interdiscal space, is,

νεo

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
DR,T

{
− o

u ϕt + ku∇x
o
u ·∇xϕ

}
dxdt −

∫
DR

o
u ϕ(x, 0)dx

+
∫
DR,T

{
γo

o
u −f(

o
v)
}
ϕdxdt +

1
νεo

∫
DR,T

o
u f1(

o
v, x, t)ϕdxdt.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
special
level zo

corresponding to a partial differential equation (in weak form) on the disc DR.
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5. Weak formulation of the homogenized problem

The homogenized-concentrated limit can be formulated in the weak integral form
(5.3), (5.4) below. Its main feature is that it combines the geometrical proper-
ties of the various compartments. This permits one to specialize it under various
simplifying assumptions such as transverse or global well-stirred cytosol.

The limit functions (u,
o
u, û) and (v,

o
v, v̂) are in the following regularity classes

u, v ∈ C
(
0, T ; L2(Ωo)

)
; |∇xu|, |∇xv| ∈ L2(Ωo,T );

o
u,

o
v ∈ C

(
0, T ; L2(DR)

)
; |∇x

o
u |, |∇x

o
v | ∈ L2(DR,T );

û, v̂ ∈ C
(
0, T ; L2(S)

)
; |(ûz, ûθ)| , |(v̂z, v̂θ)| ∈ L2(ST ),

(5.1)

and are mutually related by

û(θ, z, t) = u(x, z, t)
∣∣
|x|=R

in L2
(
(0, 2π] × (0, T ]

)
for all z 
= zo;

û(θ, zo, t) =
o
u (x, t)

∣∣
|x|=R

in L2
(
(0, 2π] × (0, T ]

)
;

v̂(θ, z, t) = v(x, z, t)
∣∣
|x|=R

in L2
(
(0, 2π] × (0, T ]

)
for all z ∈ (0, H).

(5.2)

They satisfy the integral identities

(1 − θo)
{∫∫

Ωo,T

{utϕ + ku∇xu · ∇xϕ} dxdt +
∫∫

Ωo,T

(
γou − f1(v)

)
ϕdxdt

}
interior

+σεo

{∫∫
ST

{ûtϕ + ku∇S û · ∇Sϕ} dSdt

}
outer shell

+νεo

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
DR,T

{
o
ut ϕ + ku∇x

o
u ·∇xϕ

}
dxdt

+
∫∫

DR,T

{
γo

o
u −f1(

o
v)
}
ϕdxdt

+
1

νεo

∫∫
DR,T

o
u f2(

o
v, x, zo, t)ϕdxdt

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
activated
level zo

= 0

(5.3)
for all testing functions ϕ ∈ C1(Ωo,T ) vanishing for t = T ;

(1 − θo)

{∫∫
Ωo,T

{vtψ + kv∇xv · ∇xψ} dxdt

}
interior

+σεo

⎧⎪⎪⎨⎪⎪⎩
∫∫

ST

{v̂tψ + kv∇S v̂ · ∇Sψ} dηdt

+
1

σεo

∫∫
ST

{
g1(v̂) − g2(û)

}
ψdηdt

⎫⎪⎪⎬⎪⎪⎭
outer shell

+νεo

{∫∫
DR,T

{
o
vt ψ + kv∇x

o
v ·∇xψ

}
dxdt

}
activated
level zo

= 0

(5.4)

for all testing functions ψ ∈ C1(Ωo,T ) vanishing for t = T .
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6. Cytosol well-stirred in the transversal variables (x, y)

Assume the cytosol is well stirred in the transversal variables (x, y). Thus the rod
outer segment is ideally lumped on its axis and transversal diffusion effects are
immaterial. Such an assumption is suggested by the idea that the system diffuses
with infinite speed on each transversal cross section and thereby responds with
an instantaneous transversal equilibration. The analysis below will permit one to
compare our model to the existing ones based on the assumption of well-stirred.

If u and v are regarded as lumped on the axis of the rod, they depend only
on z and t, and are independent of (x, y). Since there is no dependence on the
(x, y) variables, by (5.2)

u(z, t) = û(z, t) and
o
u (t) = û(zo, t). (6.1)

We insert this information into formula (5.3), and choose a test function ϕ in-
dependent of (x, y), thus obtaining the weak formulation relevant to the case of
cytosol well-stirred in the transversal variables (x, y). The corresponding pointwise
formal formulation is,{

σεo2πR + (1 − θo)πR2
}
ut − σεo2πRkuuzz

= −(1 − θo)πR2 F − δzoνεoπR2
(

o
ut +Fo + F∗

)
. (6.2)

Set,

fA =
σεo2πR

πR2
, fV =

(1 − θo)πR2H + σεo2πRH

πR2H
. (6.3)

These two parameters have a geometric and physical significance. Specifically, up
to higher-order corrections, fA is the fraction of the cross-sectional area of the
outer segment which is available for longitudinal diffusion, and fV is the fraction
of the total outer segment volume occupied by the cytosol [10, 14]. Then dividing
by fV the previous equation takes the more concise form,

ut −
fA

fV
kuuzz = −

(
1 − fA

fV

)
F − δzo

νεo

fV

(
o
ut +Fo + F∗

)
. (6.4)

This is the law of diffusion of cGMP under the assumption that the cytosol is well
stirred in the transversal variables. A key feature is that it distinguishes between
diffusion outside the activated level zo and diffusion at zo by the action of the
Dirac delta function δzo . If z is different than the activated level zo, equation (6.4)
implies,

ut −
fA

fV
kuuzz = −

(
1 − fA

fV

)
F,

(
z 
= zo

)
. (6.5)

Equation (6.5) is formally similar to a model proposed in [9]. In that work however
the term F∗ due to activation, is distributed along the longitudinal variable z.
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7. Globally well-stirred cytosol

Regard now the rod as a homogeneous bag of cytosol, and [cGMP], [Ca2+], [PDE],
[PDE∗], [GC] as lumped quantities depending only on time. Thus in particular
u =

o
u= û and similarly for v. We insert this information into formula (5.3), and

choose a test function ϕ dependent only on t, thus obtaining the weak formulation
relevant to the case of globally well-stirred cytosol. The corresponding pointwise
formulation, under suitable regularity assumptions, is, to get,(

1 +
νεo

H fV

)
d

dt
u = −

(
1 − fA

fV
+

νεo

H fV

)
F − νεo

H fV
F∗. (7.1)

Now fV is of the order of one and εo is of three orders of magnitude smaller than
H and R. Therefore,(

1 +
νεo

H fV

)
≈ 1;

(
1 − fA

fV
+

νεo

H fV

)
≈ 1. (7.2)

From the expression of fV and the form (3) of F∗, we obtain the dynamic equation,

d

dt
u = −F − 1

HfV
uf1(v, x, t), (7.3)

where F is defined in the first of (3). A similar analysis for Calcium gives,

d

dt
v =

2
RfV

[−g1(v) + g2(u)]. (7.4)

These formulae coincide with (A3), (A4) of [12], upon identifying the various
parameters.

8. Further results and open issues

The homogenized limit lends itself to efficient numerical simulations. We have
performed simulations on the full non-homogenized system (2.2) with ε = εo in
the original layered geometry of the ROS. Due to computational complexity the
simulations where carried with a photon falling exactly at the center of a disc
Cj and generating radial solutions. The same simulations were carried also for
the corresponding homogenized system and it was found that the two electrical
responses differ by no more than 0.1%. We refer to [4, 5] for such an analysis. An
advantage of the homogenized model is that simulations can be carried just as
easily for solutions that are not necessarily axially symmetric.

A peculiar feature of phototransduction is the local spread of the response;
that is, if a photon activates a disc at level say zo then the electrical response is
“felt” only in the vicinity of zo. In particular, two instantaneously activated sites at
level z1 and z2 sufficiently far apart, and each away from the top and bottom of the
ROS, exhibit essentially independent responses. This was theoretically conjectured
by McNaughton et al. [10], and some experimental evidence was gathered by Gray-
Keller et al. [9]. The numerical simulations on the homogenized model exhibit a
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Figure 4. Geometry of the incisure of the ROS discs

region of about 4µm, along the z-axis, on both sides of the activating site where
the relative current suppression is not less than 1% of the peak response. These
numerical experiments appear in [4, 5] to which we refer for a further discussion.

The problem we have presented is all but one aspect of phototransduction.
Other central problems include a modelling and mathematical analysis of the re-
covery phase and the response from a light-adapted steady state.

The ROS returns to its original state after about 8 sec, i.e., the system re-
covers. While the various biochemical steps of the recovery cascade are known, a
suitable mathematical analysis is still lacking.

Light adaptation is the steady-state uo, vo after having exposed the ROS to
light of a given intensity for a sufficiently long time. The system then adapts to
that state and a detectable response, from that adapted state, would occur only
for a beam of photons of sufficiently high intensity.

Even remaining in the context of a single photon response from a dark-
adapted state, the biochemical cascade taking place on the activated disc DR ×
{zo}, and leading to depletion of cGMP in the cytosol, still lacks an organic model
and a related mathematical analysis.

The discs Cj bear anatomical “incisures” as in Figure 4. In the Salamander
these can be up to 16, whereas in higher vertebrates there is only one incisure.
Their presence is believed to enhance the diffusion in the outer shell along the
vertical axis of the ROS. Regardless of their number per disc, they are in series
as in Figure 4. This suggests to carry the homogenized-concentrated limits for
these ROS, where the incisures are permitted to shrink to a “segment”. A suitable
homogenized limiting system would permit to test the intensity of the response
with and without the incisures and thus elucidate their function.
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Global Regularity in Sobolev Spaces
for Elliptic Problems with p-structure
on Bounded Domains

Carsten Ebmeyer

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with a smooth boundary. We consider
the Neumann problem (PN )

−
∑d

i=1 ∂iai(x,∇u) = f in Ω,∑d
i=1 ai(x,∇u) ηi = gN on ∂Ω,

where ∂i = ∂
∂xi

, η = (η1, . . . , ηn)T is the outward unit normal of ∂Ω, and the
functions ai : Ω×Rn → R have p-structure (e.g., ai = |∇u|p−2∂iu and 2 < p < ∞).

Problems with p-structure arise in several physical, engineering and mathe-
matical contexts, such as in elasticity and plasticity theory, or in non-Newtonian
fluids; see, e.g., [1, 4, 7]. In this paper we are concerned with the case that
2 < p < ∞. Our aim is to prove regularity in fractional order Nikolskij spaces
for the operator −∂iai(x,∇u). We show that each weak solution u of (PN ) satis-
fies

u ∈ N 1+ 2
p ,p(Ω) . (1)

Due to the embedding theorem of Nikolskij spaces into Sobolev spaces it follows
that u ∈ W s,p(Ω) for all s < 1 + 2

p . This result may be seen as a generalization of
the W 2,2-theory of the Laplace operator to problems with p-structure. Recently,
it was proved for the p-Laplacian under homogeneous Dirichlet boundary values
on convex polygonal domains; see [3].

Moreover, we prove a weighted estimate for the second derivatives of the form∫
Ω

|∇u|p−2|∇2u|2 < ∞ . (2)
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This result is known for the p-Laplace equation −∆pu := −div(|∇u|p−2∇u) = f ,
primarily on interior domains Ω0 ⊂⊂ Ω under some strong assumptions on the
data; see [2, 5, 8, 9, 10].

Let us emphasize that we do not make any assumptions on the structure
of the coefficients ai, we only assume growth conditions and an ellipticity con-
dition. In particular, we are able to treat variational as well as non-variational
problems. Our method of proof is a difference quotient technique. It requires only
minimal regularity on the data and can be applied to a wide range of problems
and data, e.g., systems with p-structure for all 1 < p < ∞, polyhedral domains,
Lipschitzian domains with a piecewise smooth boundary, and Dirichlet boundary
value conditions.

We conclude this introduction by comparing the results (1) and (2). The
function u = |x|α solves in the weak sense −∆pu = f with f = c|x|α(p−1)−p.
Iff α ≥ p+2−n

p it holds that u ∈ N 1+ 2
p ,p(Ω). Further, iff α > p+2−n

p we have

u ∈ W 1+ 2
p ,p(Ω) and |∇u| p−2

2 |∇2u| ∈ L2(Ω).
Moreover, let us note that 1 + 2

p < 2 for 2 < p < ∞. In general we cannot
expect u ∈ W 2,p(Ω) in the case of p > 2.

2. The main results

Let ai(x, s) be Caratheodory-functions, where x = (x1, . . . , xn) ∈ Ω, n ≥ 2, and
s ∈ R

n. We set ai,xk
(x, s) = ∂

∂xk
ai(x, s) and ai,k(x, s) = ∂

∂sk
ai(x, s). The following

assumptions on the data are made.

(H1) Ω ⊂ R
n, n ≥ 2, is a bounded domain with a C1,1-boundary.

(H2) f(x) ∈ W 1− 2
p ,p′

(Ω) and gN ∈ N
1
p′ ,p′

(∂Ω).

(H3) (Compatibility condition)
∫
Ω f +

∫
∂Ω gN = 0.

There are constants c1, c2, c3 > 0 and κ ≥ 0 independent of x and s such that

(H4) |ai(x, s)| + |ai,xk
(x, s)| ≤ g(x) + c1|s|p−1 for some g ∈ Lp′

(Ω),

(H5) |ai,k(x, s)| ≤ c2(κ2 + |s|2) p−2
2 ,

(H6) (Ellipticity condition) c3(κ2 + |s|2) p−2
2 ≤ ∑2

i,k=1 ai,k(x, s) ξi ξk for all ξ ∈
R

n.

For simplicity we shall restrict ourselves to the case that κ = 0.
We use Einstein’s summation convention saying that one has to sum over an

index that occurs twice. We call a function u ∈ W 1,p(Ω) a weak solution of (PN )
if ∫

Ω

ai(x,∇u) ∂iϕ =
∫

Ω

f ϕ +
∫

∂Ω

gN ϕ (3)

for all ϕ ∈ W 1,p(Ω). It is well known that there exists a weak solution that is
unique up to a constant. We now state our main results.
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Theorem 1. Let 2 < p < ∞ and u be the weak solution of (PN ). Then

u ∈ N 1+ 2
p ,p(Ω) . (4)

Further, it holds that

|∇u| p−2
2 |∇2u| ∈ L2(Ω) and |∇u| p−2

2 ∇u ∈ W 1,2(Ω; Rn) . (5)

We conclude this section by giving the definition of the Nikolskij spaces
N s,p(Ω) (1 ≤ p < ∞, s > 0 no integer); cf. [6]. The space N s,p(Ω) consists of
all functions for which the norm ‖f‖N s,p(Ω) = (‖f‖p

Lp(Ω) + |f |pN s,p(Ω))
1
p is finite,

where

|f |pN s,p(Ω) =
∑

|α|=m

sup
δ>0

0<|z|<δ

∫
Ωkh

|∂α∆k
zf(x)|p

|z|σp
dx,

s = m + σ, m ∈ N0, k ≥ 1 is an integer, σ > 0 is no integer, k > σ, z ∈ Rn,
∆zf(x) = f(x + z) − f(x), ∆k

z = ∆k−1
z ∆z, and Ωh = {x ∈ Ω : dist(x, ∂Ω) ≥ h}.

In particular, putting m = 1, σ = 2
p , and k = 1 yields a norm of N 1+ 2

p ,p(Ω), that
will be used in the sequel. Further, let us note that for all ε > 0 there holds the
embedding [6]

N s+ε,p(Ω) ↪→ W s,p(Ω) ↪→ N s,p(Ω) .

3. Proof of the theorem

Let R > 0, BR = {x ∈ Rn : |x| < R}, ΩR = Ω∩BR, and ΓR = ∂Ω∩BR. To begin
with we suppose that Ω4R = {x ∈ B4R : xn > 0}.

Let 0 < h < R
2 , ej ∈ Rn be the jth unit vector, T±h

j v(x) = v(x ± hej),

Dh
j v(x) =

T h
j v(x) − v(x)

h
, and D−h

j v(x) =
v(x) − T−h

j v(x)
h

.

Further, let the function τ ∈ W 2,∞(Rn) be a cut-off function satisfying τ ≡ 1 in
BR, supp τ = B2R, and ∂nτ = 0 in {x ∈ Rn : |xn| < R

2 }.
Notice that en is the inner unit normal of ∂Ω∩B3R. Let z ∈ ∂Ω∩B3R, λ > 0,

and z + λen ∈ Ω3R. Thus, z − λen ∈ B3R \ Ω. We define even extensions of the
functions ∂iu (1 ≤ i ≤ n), ai(·, s), and g onto B3R \ Ω by setting

∂iu(z − λen) := ∂iu(z + λen), (6)

ai(z − λen, s) := ai(z + λen, s), etc.
We now prove weighted estimates of difference quotients of ∇u in the case

that f and gN are sufficiently smooth. First, we consider directions ej parallel to
the boundary.
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Lemma 2. There is a constant c such that for 1 ≤ j ≤ n − 1

sup
0<h< R

2

∫
Ω3R

τ2
(
|T±h

j ∇u|2 + |∇u|2
) p−2

2
∣∣D±h

j ∇u
∣∣2 ≤ cσR ,

where σR = ‖∇u‖p
Lp(Ω3R) + ‖g‖p′

Lp′(Ω3R)
+ ‖f‖p′

W 1,p′(Ω3R)
+ ‖gN‖p′

N 1+ 1
p

,p′
(Γ3R)

.

Proof. Let j ∈ {1, . . . , n−1} be fixed. We take the test function ϕ = −τ2Dh
j D−h

j u

in (3). This yields

J0 := −
∫

Ω3R

τ2 ai(x,∇u)Dh
j D−h

j ∂iu

= +
∫

Ω3R

ai(x,∇u) ∂iτ
2 Dh

j D−h
j u −

∫
Ω3R

τ2 f Dh
j D−h

j u

−
∫

Γ3R

τ2 gN Dh
j D−h

j u =: J1 + J2 + J3.

Let us consider J0. There holds the identity

2J0 =
∫

Ω3R

Dh
j (τ2 ai(x,∇u))Dh

j ∂iu +
∫

Ω3R

D−h
j (τ2 ai(x,∇u))D−h

j ∂iu

−
∫

Ω3R

Dh
j (τ2 ai(x,∇u)D−h

j ∂iu) −
∫

Ω3R

D−h
j (τ2 ai(x,∇u)Dh

j ∂iu)

=: J01 + · · · + J04.

In view of the fact that supp τ = B2R we have J03 = J04 = 0. Further, the Leibniz
rule Dh

j (fg) = f Dh
j g + Dh

j f T h
j g yields

J01 =
∫

Ω3R

τ2 Dh
j ai(x,∇u)Dh

j ∂iu +
∫

Ω3R

Dh
j τ2 T h

j ai(x,∇u)Dh
j ∂iu.

Due to the Taylor expansion of ai(x, ·) and the ellipticity condition we deduce

[ai(x, T h
j ∇u) − ai(x,∇u)] [T h

j ∂iu − ∂iu]

= [T h
j ∂iu − ∂iu] [T h

j ∂ku − ∂ku]
∫ 1

0

ai,k(x, tT h
j ∇u + (1 − t)∇u) dt

≥ c|T h
j ∇u −∇u|2

∫ 1

0

|tT h
j ∇u + (1 − t)∇u|p−2dt

≥ c (|T h
j ∇u|2 + |∇u|2) p−2

2 |T h
j ∇u −∇u|2.
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Furthermore, recalling that supp τ = B2R we get∫
Ω3R

Dh
j τ2 T h

j ai(x,∇u)Dh
j ∂iu

=
∫

Ω3R

Dh
j (D−h

j τ2 ai(x,∇u) ∂iu) −
∫

Ω3R

Dh
j (D−h

j τ2 ai(x,∇u)) ∂iu

= −
∫

Ω3R

Dh
j D−h

j τ2 T h
j ai(x,∇u) ∂iu −

∫
Ω3R

D−h
j τ2 Dh

j ai(x,∇u) ∂iu.

We estimate these integrals by utilizing the hypotheses (H4), (H5), and the fact
that D−h

j τ2 = 2T−h
j τ D−h

j τ + h(D−h
j τ)2. Collecting the results we arrive at

J0 ≥ c

(∫
Ω3R

τ2
(
|T h

j ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

j ∇u
∣∣2

+
∫

Ω3R

τ2
(
|T−h

j ∇u|2 + |∇u|2
) p−2

2
∣∣D−h

j ∇u
∣∣2

−‖∇u‖p
Lp(Ω3R) − ‖g‖p′

Lp′(Ω3R)

)
.

Next, let us note that

J1 =
∫

Ω3R

Dh
j (ai(x,∇u) ∂iτ

2)Dh
j u +

∫
Ω3R

Dh
j (ai(x,∇u) ∂iτ

2 Dh
j u).

The second integral on the right-hand side vanishes. For δ > 0 we deduce

|J1| ≤ δ

∫
Ω3R

τ2
(
|T h

j ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

j ∇u
∣∣2

+cδ

(
‖g‖p′

Lp′(Ω3R)
+ ‖∇u‖p

Lp(Ω3R)

)
.

Further, in order to treat |J2| and |J3| we integrate by parts (in the discrete sense).
We see that we have to estimate the integrals∫

Ω3R

τ2 Dh
j f Dh

j u and
∫

Γ3R

τ2 Dh
j gN Dh

j u.

We find ∥∥τ Dh
j f τ Dh

j u
∥∥

L1(Γ3R)
≤ c

(∥∥τ Dh
j f
∥∥p′

Lp′(Ω3R)
+
∥∥τ Dh

j u
∥∥p

Lp(Ω3R)

)
and ∥∥τDh

j gN τDh
j u
∥∥

L1(Γ3R)
≤

∥∥τ Dh
j gN

∥∥
W

1
p

,p′
(Γ3R)

∥∥τDh
j u
∥∥

W
− 1

p
,p

(Γ3R)

≤ c

(
‖gN‖p′

N 1+ 1
p

,p′
(Γ3R)

+
∥∥τ Dh

j u
∥∥p

Lp(Ω3R)

)
.

Thus, the assertion follows. �
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Lemma 3. There is a constant c such that

sup
0<h< R

2

∫
Ω3R

τ2
(
|T±h

n ∇u|2 + |∇u|2
) p−2

2
∣∣D±h

n ∇u
∣∣2 ≤ cσ′

R ,

where σ′
R = ‖∇u‖p

Lp(Ω3R) + ‖g‖p′

Lp′(Ω3R)
+ ‖f‖p′

W 1,p′(Ω3R)
.

Proof. We take the test function ϕ = −τ2ψ in equation (3), where ψ(x) =
h−1D−h

n

∫ 1

0 ∂tu(x + then) dt. Let us note that this test function corresponds to
that in the previous proof, for ϕ(x) = −τ2(x)D−h

n Dh
nu(x) if xn > h. More pre-

cisely, we have ψ(x) = h−1D−h
n

∫ 1

0
∂tv(x + then) dt = D−h

n Dh
nv(x), where v is the

extension of u defined by reflection at the hyperplane {x ∈ Rn : xn = 0}. We
obtain

J0 := −
∫

Ω3R

τ2(x) ai(x,∇u)h−1D−h
n

∫ 1

0

∂i∂tu(x + then) dt dx

=
∫

Ω3R

ai(x,∇u) ∂iτ
2 ψ −

∫
Ω3R

τ2 f ψ −
∫

Γ3R

τ2 gN ψ

=: J1 + · · · + J3.

Due to the extensions (6) we have J0 = −
∫
Ω3R

τ2 ai(x,∇u)Dh
nD−h

n ∂iu. Thus,
proceeding as above and noting that ψ = 0 on Γ3R, the assertion follows. Here we
have used the facts that J03 + J04 = 0, for

J03 = h−2

∫
Ω3R\Ω3R+hen

τ2 ai(x,∇u) (∂iu − T−h
n ∂iu)

= −h−2

∫
Ω3R−hen\Ω3R

τ2 ai(x,∇u) (T h
n ∂iu − ∂iu) = −J04 ,∫

Ω3R
Dh

n(D−h
n τ2 ai(x,∇u) ∂iu) +

∫
Ω3R

D−h
n (Dh

nτ2 ai(x,∇u) ∂iu) = 0, for

−
∫

Ω3R\Ω3R+hen

D−h
n τ2 ai(x,∇u) ∂iu =

∫
Ω3R−hen\Ω3R

Dh
nτ2 ai(x,∇u) ∂iu ,∫

Ω3R
Dh

n(ai(x,∇u) ∂iτ
2 Dh

nv) +
∫
Ω3R

D−h
n (ai(x,∇u) ∂iτ

2 D−h
n v) = 0, for ∂nτ = 0

in Ω3R−hen \Ω3R +hen, and
∫
Ω3R

Dh
n(τ2 f D−h

n v)+
∫
Ω3R

D−h
n (τ2 f Dh

nv) = 0. �

Lemma 4. There is a constant c such that∫
ΩR

∣∣∣∇(|∇u| p−2
2 ∇u)

∣∣∣2 +
∫

ΩR

|∇u|p−2|∇2u|2 ≤ cσR ,

where σR = ‖∇u‖p
Lp(Ω3R) + ‖g‖p′

Lp′(Ω3R)
+ ‖f‖p′

W 1,p′(Ω3R)
+ ‖gN‖p′

N 1+ 1
p

,p′
(Γ3R)

.

Proof. Due to the previous lemmas there is a constant c such that∫
ΩR

(
|T h

j ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

j ∇u
∣∣2 ≤ cσR
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for 1 ≤ j ≤ n and 0 < h < R
2 . Let F (r) = |r| p−2

2 r. There are constants c1, c2 > 0
such that

c1|F (r) − F (s)|2 ≤ (|r|2 + |s|2) p−2
2 |r − s|2 ≤ c2|F (r) − F (s)|2 ;

see [3]. Putting r = T h
j ∇u and s = ∇u we get

∥∥Dh
j F (∇u)

∥∥2

L2(ΩR)
≤ cσR for

1 ≤ j ≤ n and 0 < h < R
2 . Utilizing a standard argument (cf. [5]) this implies that

‖∇F (∇u)‖2
L2(ΩR) ≤ cσR. Noting that |∇F (∇u)|2 ≥ p2

4 |∇u|p−2|∇2u|2 the assertion
follows. �

Theorem 5. Let f and gN be sufficiently smooth, i.e., f ∈ W 1,p′
(Ω) and gN ∈

N 1+ 1
p ,p′

(∂Ω). Then there is a constant c depending only on the data such that∫
Ω

∣∣∣∇(|∇u| p−2
2 ∇u)

∣∣∣2 +
∫

Ω

|∇u|p−2|∇2u|2 + ‖u‖p

N 1+ 2
p

,p
(Ω)

≤ c.

Proof. We cover Ω by a finite number of balls Bi ⊂⊂ Ω and a finite number of
sets Ωj , where each Ωj can be mapped in a smooth way onto {x ∈ BRj : xn > 0}
for some Rj > 0. Due to the smoothness of ∂Ω such a mapping is a C1,1- resp.
W 2,∞-mapping. Thus, the structure of the coefficients does not change. Utilizing
Lemma 4 we get ∫

Ω

∣∣∣∇(|∇u| p−2
2 ∇u)

∣∣∣2 +
∫

Ω

|∇u|p−2|∇2u|2 ≤ c.

Moreover, due to the estimate [2]

∃c > 0 : |r − s|p ≤ c(|r|2 + |s|2) p−2
2 |r − s|2

it follows for all 1 ≤ j ≤ n and h > 0 that∫
Ωh

h−2|T h
j ∇u −∇u|p ≤ c

∫
Ωh

(
|T h

j ∇u|2 + |∇u|2
) p−2

2
∣∣Dh

j ∇u
∣∣2 , (7)

and hence |u|p
N 1+ 2

p
,p

(Ω)
≤ c. Altogether, we obtain the assertion. �

Proof of Theorem 1. For sufficiently smooth data f and gN Theorem 5 yields the
assertion. Otherwise, we approximate f and gN by sequences (fk)k ∈ W 1,p′

(Ω)
and (gk

N )k ∈ N 1+ 1
p ,p′

(∂Ω). For each k ∈ N there is a function uk solving in the
weak sense

−∂iai(x,∇uk) = fk in Ω, ai(x,∇uk) ηi = gk
N on ∂Ω.

Below we will show there is a constant c independent of k such that∫
Ω

∣∣∣∇(|∇uk| p−2
2 ∇uk)

∣∣∣2 +
∫

Ω

|∇uk|p−2|∇2uk|2 ≤ c . (8)
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In view of (7) this implies that the sequence (uk)k is uniformly bounded in
N 1+ 2

p ,p(Ω). Thus, there is a subsequence, again denoted by (uk)k, that converges
to a function z ∈ W 1,p(Ω). From the estimates∥∥ai(x,∇uk) − ai(x,∇z)

∥∥
Lp′(Ω)

≤ c
∥∥∥(|∇uk|2 + |∇z|2) p−2

2 |∇uk −∇z|
∥∥∥

Lp′(Ω)

≤ c
(∥∥∇uk

∥∥p−2

Lp(Ω)
+ ‖∇z‖p−2

Lp(Ω)

) ∥∥∇uk −∇z
∥∥

Lp(Ω)

it follows that z satisfies (in the weak sense) −∂iai(x,∇z) = f in Ω and
ai(x,∇z) ηi = gN on ∂Ω. Thus, z = u.

Moreover, noting that ∆h
j ∆−h

j ∇uk converges to ∆h
j ∆−h

j ∇u in Lp(Ω), for any
1 ≤ j ≤ n and h > 0 there is a number k ∈ N such that∥∥∥h− 2

p ∆h
j ∆−h

j ∇u
∥∥∥

Lp(Ωh)
≤ 2

∥∥∥h− 2
p ∆h

j ∆−h
j ∇uk

∥∥∥
Lp(Ωh)

,

where Ωh = {x ∈ Ω : dist(x, ∂Ω) ≥ h}. In view of (7) and (8) the sequence (uk)k

is uniformly bounded in N 1+ 2
p ,p(Ω). Thus, we conclude that u ∈ N 1+ 2

p ,p(Ω).
Similarly, for any 1 ≤ j ≤ n and h > 0 there is a number k ∈ N such that∥∥∥D±h

j (|∇u| p−2
2 ∇u)

∥∥∥
L2(Ωh)

≤ 2
∥∥∥D±h

j (|∇uk| p−2
2 ∇uk)

∥∥∥
L2(Ωh)

.

Due to (8) the right-hand side is uniformly bounded. This implies that

∇(|∇u| p−2
2 ∇u) ∈ L2(Ω) .

Noting that
∫
Ω |∇u|p−2|∇2u|2 ≤ c‖∇(|∇u| p−2

2 ∇u)‖2
L2(Ω) the assertion (5) follows.

Furthermore, in view of (7) we obtain the assertion (4).
It remains to show (8). Therefore, we modify the proofs of the Lemmas 3

and 4: For δ > 0 and 1 ≤ j < n we estimate∥∥τDh
j gN τDh

j u
∥∥

L1(Γ3R)
≤

∥∥τ Dh
j gN

∥∥
W

− 1
p

,p′
(Γ3R)

∥∥τDh
j u
∥∥

W
1
p

,p
(Γ3R)

≤ cδ ‖gN‖p′

N
1
p′ ,p′

(Γ3R)
+ δ ‖u‖p

N 1+ 2
p

,p
(Ω3R)

,

for ‖τDh
j u‖

W
1
p

,p
(Γ3R)

≤ c‖τ Dh
j u‖

W
2
p

,p
(Ω3R)

,

∥∥τ f τ Dh
j D−h

j u
∥∥

L1(Ω3R)
=

1
2

∥∥τ f τ Dh
j D−h

j u
∥∥

L1(B3R)

≤ 1
2
‖τ f‖

W
1− 2

p
,p′

(B3R)

∥∥τ Dh
j D−h

j u
∥∥

W
2
p
−1,p

(B3R)

≤ cδ ‖f‖p′

W
1− 2

p
,p′

(Ω3R)
+ δ ‖u‖p

N 1+ 2
p

,p
(Ω3R)

,

and
‖τ f τ ψ‖L1(Ω3R) ≤ cδ ‖f‖p′

W
1− 2

p
,p′

(Ω3R)
+ δ ‖u‖p

N 1+ 2
p

,p
(Ω3R)

.
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Here we have used the fact that ψ(x) = h−1D−h
n

∫ 1

0
∂tv(x+then) dt = D−h

n Dh
nv(x),

where v is the extension of u defined by reflection at the hyperplane {x ∈ Rn :
xn = 0}, and the estimate ‖v‖p

N 1+ 2
p

,p
(B3R)

≤ c ‖u‖p

N 1+ 2
p

,p
(Ω3R)

. Altogether, we

deduce∫
Ω3R

τ2
(
|T±h

j ∇u|2 + |∇u|2
) p−2

2
∣∣D±h

j ∇u
∣∣2 ≤ cδσ

′′
R + δ ‖u‖p

N 1+ 2
p

,p
(Ω3R)

for all 1 ≤ j ≤ n and 0 < h < R
2 , where σ′′

R =
∥∥∇uk

∥∥p

Lp(Ω3R)
+ ‖g‖p′

Lp′(Ω3R)
+∥∥fk

∥∥p′

W
1− 2

p
,p′

(Ω3R)
+
∥∥gk

N

∥∥p′

N
1
p′ ,p′

(Γ3R)
. Utilizing (7) and arguing as above (8) follows.

�
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Temperature Driven Mass Transport
in Concentrated Saturated Solutions

Antonio Fasano and Mario Primicerio

Abstract. We study the phenomenon of thermally induced mass transport in
partially saturated solutions under a thermal gradient, accompanied by de-
position of the solid segregated phase on the “cold” boundary. We formulate
a one-dimensional model including the displacement of all species (solvent,
solute and segregated phase) and we analyze a typical case establishing exis-
tence and uniqueness.

1. Introduction

It is well known that saturation of a solution of a solute S in a solvent Σ is achieved
at some concentration cS depending on temperature T . Typically cS is a smooth
function of T such that c′S(T ) > 0. Therefore, if one excludes supersaturation, it
is possible to produce the following facts by acting on the thermal field:

(i) cooling a solution of concentration c∗ to a temperature T such that c∗ >
cS(T ), segregation of the substance S is produced as a solid phase, typically
in the form of suspended crystals,

(ii) maintaining a thermal gradient in a saturated solution creates a concentration
gradient of the solute inducing diffusion.

These phenomena are believed to be the most important origin of the formation
of a deposit of solid wax on the pipe wall during the transportation of mineral oils
with a high content of heavy hydrocarbons (waxy crude oils) in the presence of
significant heat loss to the surroundings (see the survey paper [1]).

In the paper [2] we have illustrated some general features of the behavior of
non-isothermal saturated solutions in bounded domains, including the appearance
of an unsaturated region and the deposition of solid matter at the boundary.

Work performed in the framework of the cooperation between Enitecnologie (Milano) and I2T3
(Firenze).
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The analysis of [2] was based on the following simplifying assumptions:
(a) the three components of the system, namely the solute, the solvent and the

segregated phase, have the same density (supposed constant in the range of
temperature considered),

(b) the concentrations of the solute and of the segregated phase are small in
comparison with the concentration of the solvent.

The consequences of (a) are that gravity has no effect and that the segrega-
tion/dissolution process does not change volume.

The consequences of (b) are that solvent can be considered immobile and
that the presence of a growing solid deposit has a negligible effect on the mass
transport process.

For the specific application to waxy crude oil assumption (a) is reasonable
on the basis of experimental evidence, but assumption (b) may not be realistic. Of
course eliminating (b) leads to a much more complex situation.

For this reason we want to formulate a new model in which, differently from
[2], the displacement of all the components is taken into account, as well as the
influence of the growing deposit on the whole process.

In order to be able to perform some mathematical analysis of the problem and
to obtain some qualitative results we confine our attention to the one-dimensional
case, considering a system confined in the slab 0 < x < L. Of course the results
can be adapted with minor changes to a region bounded by coaxial cylinders (the
geometry of some laboratory device devoted to the measure of thickness of deposit
layers formed under controlled temperature gradients).

The general features of the model are presented in Section 2. In Section 3 we
consider a specific experimental condition in which we pass through three stages:
at time t = 0 the system is totally saturated with the segregated phase present
everywhere, next a desaturation front appears and eventually the saturated zone
becomes extinct. The rest of the paper is devoted to the study of the three stages,
showing existence and uniqueness and obtaining some qualitative properties.

2. Description of physical system and
the governing differential equations

During the evolution of the process we are going to study we can find a saturated
and an unsaturated region. Supposing that at any point and at any time the segre-
gated phase is in equilibrium with the solution, there will be no solid component in
the unsaturated region. We recall that all the components have the same density
ρ, whose dependence on temperature is neglected.
The saturated region is a two-phase system:

– The solid phase is the segregated material. It is made of suspended particles
(crystals) having some mobility. We denote its concentration by Ĝ(x, t)

– The liquid phase is a saturated solution. Its concentrantion for the whole
system is Γ̂(x, t).
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In turn, the solution is a two-component system containing
– the solute with concentration ĉ (mass of solute per unit volume of the system)
– the solvent with concentration γ̂ (mass of solvent per unit volume of the

system).
In the sequel we will use the non-dimensional quantities

G = Ĝ/ρ, Γ = Γ̂/ρ, c = ĉ/ρ, γ = γ̂/ρ.

Clearly

Γ = γ + c (2.1)

G + Γ = 1. (2.2)

We can also introduce the relative non-dimensional concentrations (mass of
solute and of solvent per unit mass of the solution)

crel = c/Γ γrel = γ/Γ. (2.3)

As we pointed out, saturated region is characterized by the fact that crel =
cS(T ) where the latter quantity is the saturation concentration and depends on
the local temperature T only.

On cS(T ) we make the following assumption:

(H1) cS ∈ C3, c′S > 0

in a temperature interval [T1, T2].
Displacement of the various components is generated by spatial dishomogeneity.

Let JG, JΓ be the fluxes of segregated solid and of solution, respectively, in a
saturated region.

Let Q be the mass passing, per unit time and per unit volume (rescaled by
ρ), from segregated to dissolved phase. Then we have the balance equations

∂G

∂t
+

∂JG

∂x
= −Q, (2.4)

∂Γ
∂t

+
∂JΓ

∂x
= Q. (2.5)

From (2.2) it follows that
∂

∂x
(JG + JΓ) = 0, (2.6)

expressing bulk volume conservation and implying

JG + JΓ = 0 (2.7)

if there is no global mass exchange with the exterior, as we suppose.
At this point we do not take the general view point of mixture theory, but

we make the assumption that G is transported by diffusion. Thus

JG = −DG
∂G

∂x
, (2.8)

where DG is the diffusivity coefficient for the segregated phase.
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We notice that (2.8) is consistent with the fact that all the components of
the system have the same density, so that we may say that suspended particles do
not feel internal rearrangements of the solution components.

Next we have to describe the flow of the components in the solution, and
denote by Jγ and Jc the flux of solvent and of solute, respectively. Of course

JΓ = Jγ + Jc. (2.9)

Here too we take a simplification supposing that the solute flow J ′
c relative

to the solution is of Fickian type, i.e.,

J ′
c = −D

∂crel

∂x
, (2.10)

where D > DG is the solute diffusivity so that in the saturated region J ′
c is a given

function of the thermal gradient.
The flux Jc is the sum of ΓJ ′

c and of the convective flux due to the motion
of the solution. Introducing the velocity of the solution

VΓ = JΓ/Γ (2.11)

we have
Jc = cVΓ + ΓJ ′

c = crelJΓ + ΓJ ′
c. (2.12)

Consequently we have the following expression for Jc for the saturated and
unsaturated case (still retaining the basic assumption of absence of bulk mass
transfer, (2.7))

Jc = cSDG
∂G

∂x
− (1 − G)D

∂cS

∂x
, for the saturated case (2.13)

Jc = −D
∂crel

∂x
= −D

∂c

∂x
, for the unsaturated case (G = 0). (2.14)

At this point we can write the balance equation for the solute
∂c

∂t
+

∂Jc

∂x
= Q. (2.15)

While for the unsaturated case, (2.15) is nothing but

∂c

∂t
− D

∂2c

∂x2
= 0 (2.16)

in the saturated case we have c = cS(T )(1 − G) and hence

−cS
∂G

∂t
+

∂

∂x
{cSDG

∂G

∂x
− (1 − G)D

∂cS

∂x
} = Q, (2.17)

which provides the expression of Q. Thus (2.4) takes the form

∂G

∂t
− DG

∂2G

∂x2
+

1
1 − cS

{(DG + D)
∂cS

∂x

∂G

∂x
− (1 − G)D

∂2cS

∂x2
} = 0. (2.18)

It is also convenient to observe that from γ + c + G = 1 and c = cS(1 − G)
we obtain

γ = (1 − cS)(1 − G), (2.19)
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from which using (2.7), (2.9), (2.13) we deduce the expression

Jγ = −DG
∂γ

∂x
+ (D − DG)

γ

1 − cS

∂cS

∂x
. (2.20)

We are interested in the in which T is a linear function of x independent
of time:

T = T1 + (T2 − T1)
x

L
(2.21)

where the boundary temperatures T1, T2 (with T1 < T2) are given in such a way
that a saturation phase is present, at least for some time.

Remark 1. The assumption that temperature has the equilibrium profile (2.21) is
acceptable if heat diffusivity is much larger than D (which is certainly true), so
that thermal equilibrium is achieved before any significant mass transport takes
place, and if we may neglect the amount of heat that is released or absorbed during
the segregation/dissolution process. In the specific case of waxy crude oils it can be
seen that the latter assumption is fulfilled (the influence of latent heat associated
to deposition is likewise negligible).

3. Modelling a specific mass transport process with deposition

We restrict our analysis to the following process, easily reproducible in a laboratory
device.

We start with a solution at uniform concentration ĉ∗(< ρ) and uniform tem-
perature T ∗ with ĉ∗ below saturation. Then we cool the system rapidly to the
temperature profile (2.21) in such a way that c∗ = ĉ∗/ρ > cS(T2), so that the
whole system becomes saturated with a (non-dimensional) concentration

G0(x) = c∗ − cS(T (x))(1 − G0(x)) (3.1)

of segregated phase, with

c0(x) = cS(T (x))(1 − G0(x)) (3.2)

being the corresponding concentration of the solute.
These will be our initial conditions. Starting from t = 0 the system will evolve

through the following stages.

Stage 1. G > 0 throughout the system
The mass flow towards the cold wall x = 0 produced by the gradient of cS(T (x))
generates various phenomena:

• the solute mass leaving the warm wall x = L has to be replaced by the
segregated phase,

• mass exchange occurs between the solid and the liquid phase, as described in
the previous section,
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• the solute mass liberated at the cold wall has to be segregated: a fraction
χ ∈ (0, 1] of it is used to build up a deposit layer, while the complementary
fraction 1 − χ is released in the form of suspension.

As we shall see, this stage terminates at a finite time t1.

Stage 2. The measures of the sets {G > 0}, {G = 0} are both positive
At time t1 an unsaturated region appears. This stage is characterized by the simul-
taneous presence of saturated and unsaturated regions (not necessarily connected
for general initial data), separated by one or more free boundaries. Also Stage 2
has to terminate at a finite time t2, when G becomes zero everywhere.

Stage 3. The whole system is unsaturated

Deposition goes on as long as c = cS and
∂c

∂x
> 0 on the deposition front.

Remark 2. The asymptotic equilibrium is characterized by the absence of segre-
gated phase and uniform solute concentration cS(σ∞), where σ∞ denotes the non-
dimensional asymptotic thickness of the deposit. Therefore we can write the trivial
mass balance

σ∞ + (1 − σ∞)cS(σ∞) = c∗.
Since the l.h.s. is a function of σ∞ increasing from cS(0) < c∗ for σ∞ = 0 to

1 > c∗ for σ∞ = 1, there exists one and only one solution σ∞ ∈ (0, 1).

We have to write down the boundary conditions for the three stages.
However, before doing that, we introduce the non-dimensional variables:

ξ = x/L, τ = t/tD, δ = DG/D < 1, θ =
T − T1

T2 − T1

with tD = L2/D.
For simplicity we keep the symbols G(ξ, τ), Γ(ξ, τ), c(ξ, τ) and cS(θ(ξ)). Note

that
dcS

dξ
= c′S(θ),

d2cS

dξ2
= c′′S(θ), since θ(ξ) = ξ.

With the new variables equations (2.18), (2.16) take the form

∂G

∂τ
− δ

∂2G

∂ξ2
+

1
1 − cS

{(1 + δ)c′S(θ)
∂G

∂ξ
− (1 − G)c′′S(θ)} = 0, (3.3)

∂c

∂τ
− ∂2c

∂ξ2
= 0. (3.4)

Boundary conditions for stage 1
During Stage 1 equation (3.3) must be solved in the domain D1 = {(ξ, τ)|σ(τ) <
ξ < 1, 0 < τ < τ1}, where ξ = σ(τ) is the deposition front, with initial conditions

σ(0) = 0, G0(ξ) =
c∗ − cS(ξ)
1 − cS(ξ)

, ξ ∈ (0, 1). (3.5)

At the boundary ξ = 1 we just have Jγ = 0, meaning

δ
∂G

∂ξ
|ξ=1 = −c′S(1)

1 − G

1 − cS(1)
, 0 < τ < τ1. (3.6)
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Conditions on the deposition front depend on the way the deposit layer is
built. As we said, the primary source of the deposit is a fraction χ ∈ (0, 1] of the
incoming solute flux. In addition we expect that the advancing front can capture
by adhesion a fraction η ∈ [0, 1] of the suspension it finds on its way (in [2] we just
considered η = 1).

Therefore, with the adopted rescaling, the speed
dσ

dτ
is the sum of two terms

dσ

dτ
= χ(1 − G)c′S(σ) + η

dσ

dτ
G,

yielding
dσ

dτ
= χ

1 − G

1 − ηG
c′S(σ), 0 < τ < τ1. (3.7)

The most obvious way of deriving the second condition on the deposition

front is to impose that the solvent is displaced precisely with the speed
dσ

dτ
.

In the original physical variables the solvent velocity is

vγ =
JΓ − Jc

γ
=

DG
∂G

∂x
(1 − cS) + (1 − G)D

∂cS

∂x
(1 − G)(1 − cS)

(3.8)

from which we deduce the desired condition
dσ

dτ
=

1
(1 − G)(1 − cS(σ))

[δ
∂G

∂ξ
(1 − cS) + c′S(σ)(1 − G)], 0 < τ < τ1. (3.9)

Eliminating
dσ

dτ
between (3.7) and (3.9) we obtain the equivalent equation

δ

1 − G

∂G

∂ξ
|ξ=σ(τ) = c′S [χ

1 − G

1 − ηG
− 1

1 − cS
]|ξ=σ(τ) (3.10)

For instance, when χ = η = 1 (3.10) simply reduces to

δ

1 − G

∂G

∂ξ
|ξ=σ(τ) = − cS(σ)

1 − cS(σ)
c′S(σ), (3.11)

while for χ = 0 (no deposition, i.e.
dσ

dτ
= 0 from (3.7)) we find

δ
∂G

∂ξ
|ξ=σ(τ) = −(1 − G)

c′S(σ)
1 − c′S(σ)

, 0 < τ < τ1. (3.12)

(irrespectively of η which cancels out, having no role).
Thus we have now the complete model for Stage 1, which can be summarized

as follows:

Problem 1 (η 
= 1). Find the pair (σ, G) satisfying the differential equation (3.3)
in D1, with initial conditions (3.5), boundary condition (3.6), and free boundary
conditions (3.7), (3.10), all in the classical sense.
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For η = 1 condition (3.7) reduces to the o.d.e.
dσ

dτ
= χc′S(σ) and consequently

the motion of the deposition front becomes known. The problem is standard in
that case.

Boundary conditions for stage 2
Stage 2 differs from Stage 1 because of the simultaneous presence of a saturated
and an unsaturated region, separated by a free boundary ξ = s(τ), which, in the
specific case we refer to, is a curve starting from the point (1, τ1), where G(ξ, τ)
vanishes for the first time. We shall find sufficient conditions on cS ensuring that
G(ξ, τ1) > 0 for ξ ∈ [σ(τ1), 1) and that the unsaturated region remains connected.
We denote by τ2 the transition time to Stage 3.

In the region {s(τ) < ξ < 1, τ1 < τ < τ2}, corresponding to concentration
below saturation (G = 0, and hence crel = c < cS), the governing equation is (3.4).

The wall ξ = 1 is a no-flux boundary, i.e.,

∂c

∂ξ
|ξ=1 = 0, τ1 < τ < τ2, (3.13)

implying of course that also
∂γ

∂ξ
|ξ=1 = 0.

On the desaturation front we have

G(s(τ)−, τ) = 0 (3.14)

which implies that the absolute solute concentration equals cS(s(τ)) on both sides
of the front:

c(s(τ)+, τ) = cS(s(τ)). (3.15)

Continuity of (all) concentrations across the front implies in turn that the
total solvent flux has to be continuous, or equivalently that

(δ(1 − cS)
∂G

∂ξ
+

∂cS

∂ξ
)|ξ=s(τ)− =

∂c

∂ξ
|ξ=s(τ)+, τ1 < τ < τ2. (3.16)

The model for Stage 2 is completed by the conditions

G(ξ, τ1+) = G1(ξ), σ(τ1) < ξ < 1, s(τ1) = 1 (3.17)

where G1(ξ) = G(ξ, τ1−).
Thus we can state

Problem 2. Find the functions (σ, s, G, c) such that σ, G satisfy (3.3), (3.7), (3.10),
(3.17), and s, G, c satisfy (3.4), (3.13)–(3.16), all in the classical sense.

Boundary conditions for stage 3
At time τ2 the saturated region disappears, i.e., σ(τ2) = s(τ2) (we are still referring
to the particular case in which the unsaturated region during Stage 2 is connected).

From that time on deposition continues as long as c(σ, τ) = cS(σ),
∂c

∂ξ
|ξ=σ(τ) > 0

and necessarily all the incoming mass enters the deposit, irrespectively of the value
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of χ during Stage 2. Therefore the new conditions on the deposition front are

c(σ(τ), τ) = cS(σ(τ)), τ > τ2 (3.18)

dσ

dτ
=

∂c

∂ξ
|ξ=σ(τ), τ > τ2. (3.19)

Of course c(ξ, τ) satisfies (3.13) with initial condition

c(ξ, τ2+) = c2(ξ), σ(τ2) < ξ < 1, (3.20)

with c2(ξ) = c(ξ, τ2−).
Thus during this stage we have to solve

Problem 3. Find (σ, c) satisfying (3.4), (3.13), (3.18)–(3.20) in the classical sense.

4. Analysis of Stage 1

The overall mass balance during Stage 1 can be expressed by imposing that the
solvent mass is conserved, starting from the equation

∂γ

∂t
+

∂Jγ

∂x
= 0 (4.1)

and remembering that Jγ = JΓ − Jc = DG(1− cS)
∂G

∂x
+ D(1−G)

∂cS

∂x
, so that in

non-dimensional variables we have
∂γ

∂τ
+

∂

∂ξ
{δ(1 − cS)

∂G

∂ξ
+ (1 − G)c′S(θ)} = 0. (4.2)

Since G = 1− γ

1 − cs
, it is easily seen that the equation above is equivalent to

∂γ

∂τ
− δ

∂2γ

∂ξ2
+ (1 − δ)

∂

∂ξ
(

γc′S
1 − cS

) = 0. (4.3)

Integrating (4.2) over any domain Dτ = {(ξ, τ ′)|σ(τ ′) < ξ < 1, 0 < τ ′ < τ},
with τ ≤ τ1, we get∮

∂Dτ

{γdξ − [δ(1 − cS)
∂G

∂ξ
+ (1 − G)c′S(θ)]dτ ′} = 0, (4.4)

simply expressing
∮

∂Dτ
{γdξ − Jγdτ} = 0.

Since Jγ = 0 on ξ = 1, Jγ = γσ̇ on ξ = σ(τ), we obtain∫ 1

σ(τ)

γ(ξ, τ)dξ =
∫ 1

0

(1 − cs)(1 − G0)dξ,

as expected, which can also be written as∫ 1

σ(τ)

[G(ξ, τ) + c(ξ, τ)]dξ = c∗ − σ(τ) (4.5)

having an evident physical meaning.
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Remark 3. For η = 1 (complete inclusion of the suspended phase) (3.7) simplifies to

dσ

dc
= χc′S(θ(σ)) (4.6)

which can be integrated. In this case the deposition front becomes a known function
σ(1)(t). If we can establish an a priori upper bound Gmax < 1 for G, the factor
1 − G

1 − ηG
takes values in [

1 − Gmax

1 − ηGmax
, 1]. Denoting by σ(η) the integral of

dσ

dτ
=

χ
1 − Gmax

1 − ηGmax
c′S(θ(σ)) with zero initial value, we have the a priori bounds

σ(η)(τ) ≤ σ(τ) ≤ σ(1)(τ) for τ ∈ (0, τ1). (4.7)

Proposition 1. The extinction time τ1 of Stage 1 is finite. An upper estimate is
given by the solution τ∗ of

σ(η)(τ∗) = σ∞. (4.8)

Proof. Simply use the inequality (4.7) and Remark 2. �

Let us show that G never reaches 1, thus preventing the formation of a solid
layer inside the system. To assumption (H1) on cS we add

(H2) c′′S ≤ 0.

Proposition 2. Under assumptions (H1), (H2) during Stage 1 we have G < 1 in
D1.

Proof. We know that 0 < G0 < 1, so it will be G < 1 at least for some time.
Moreover G > 0 by definition. Moving the term (1 − G)c′′S(θ)/(1 − cS) to the
r.h.s. of (3.3) we see that it is nonpositive, thanks to (H2). Thus G has to take
its maximum on the parabolic boundary of D1. From (3.6) we see that, still for

G < 1, we have
∂G

∂ξ
< 0 on ξ = 1.

On the boundary ξ = σ(τ) (as long as G < 1) we see that for η = 1

δ

1 − G

∂G

∂ξ
= −c′S(

1
1 − cS

− χ) < 0, ∀χ ∈ [0, 1].

Thus
∂G

∂ξ
< 0 for η ∈ (0, 1) too because the r.h.s. of (3.10) is monotone in η.

We conclude that the maximum of G can be taken on ξ = σ(τ). However, if

G tends to 1 there,
∂G

∂ξ
tends to zero contradicting the boundary point principle

for equation (3.3). �

Since in our case we start with G′
0 < 0, we can have G monotone in ξ if we

add the assumption

(H3)
(

c′′s
1 − cS

)′
≤ 0.
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Proposition 3. Under assumptions (H1)–(H3) we have
∂G

∂ξ
< 0 during Stage 1.

Proof. Set ω =
∂G

∂ξ
. In the previous proposition we have seen that

∂G

∂ξ
< 0 on the

lateral boundaries. Moreover

G′
0 = −c′S

1 − c∗

(1 − cS)2
< 0. (4.9)

Differentiating (3.3) w.r.t. ξ we obtain

∂ω

∂τ
− δ

∂2ω

∂ξ2
+

1 + δ

1 − cS
c′S

∂ω

∂ξ
+ ω{ c′′S

1 − cS
(2 + δ) +

1 + δ

(1 − cS)2
c′2S } = (1−G)(

c′′S
1 − cS

)′,

(4.10)
from which the thesis follows easily using the maximum principle and assumption
(H3). �

Remark 4. An important consequence of the proposition above is that

G(ξ, τ1) > 0 for ξ ∈ [σ(τ1), 1), (4.11)

in other words the desaturation front starts from the point (1, τ1).

We conclude this section by proving existence and uniqueness of the solution
to Problem 1.

Theorem 1. Problem 1 has one unique solution under the assumptions (H1), (H2).

Proof. We start by noting that from (3.7) we have the obvious a priori estimate

0 ≤ dσ

dτ
≤ χ||c′s|| =: A, (4.12)

||c′s|| denoting the sup-norm (of course we recall that 0 < G < 1). �

Now, if we introduce the set

Σ = {σ ∈ C1([0, τ̃ ])|σ(0) = 0, 0 ≤ σ̇ ≤ A,
|σ̇(τ) − σ̇(τ ′′)|
|τ ′ − τ ′′|α ≤ B} (4.13)

for some B > 0 and α ∈ (0,
1
2
), and we take any σ ∈ Σ, we may formulate

the problem consisting of equation (3.3), initial condition (3.5) and boundary
conditions (3.6), (3.10). For the corresponding solution G of such a problem, whose
existence and uniqueness can be proved by means of standard methods, it is not
difficult to find τ̃ such that G > 0 for τ ∈ (0, τ̃) irrespectively of the choice of σ in
Σ. The inequality G < 1 can be established like in Proposition 2. Finally, working

on the problem satisfied by ω =
∂G

∂ξ
we can easily find the bound

|∂G

∂ξ
| ≤ B (4.14)

with B independent of σ in Σ.
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At this point existence can be proved using the following fixed point argu-
ment.

Taken σ ∈ Σ and computing G we can define σ̃ via

dσ̃

dτ
= χ

1 − G

1 − ηG
c′s(σ), σ̃(0) = 0, (4.15)

which automatically satisfies 0 ≤ dσ̃

dτ
≤ A.

Noting that | d

dG

1 − G

1 − ηG
| ≤ 1

1 − η
for η < 1 (while it just vanishes for η = 1,

which however is not the interesting case) for a pair (σ1, σ2) of functions in Σ, we
have the easy estimate

|dσ̃1

dτ
− dσ̃2

dτ
| ≤ A

1 − η
|G1(σ1(τ), τ) − G2(σ2(τ), τ)| + χ||c′′s || |σ1 − σ2| (4.16)

with obvious meaning of the symbols.
Therefore at this point we only need to show that G(σ(t), t) depends in a

Lipschitz continuous way on σ in the topology of Σ . More precisely, we want to
show that

||G1 − G2||τ ≤ K1||σ1 − σ2||τ + K2

∫ τ

0

||σ̇1 − σ̇2||τ ′(τ − τ ′)−1/2dτ ′ (4.17)

for some positive constants K1, K2, with || · ||τ denoting the sup-norm restricted
to the time interval (0, τ).

Now, G(ξ, τ) corresponding to a given σ ∈ Σ has the representation

G(ξ, τ) =
∫ τ

0

φ(τ ′)Γ(ξ, τ ; σ(τ ′), τ ′)dτ ′ (4.18)

+
∫ 1

0

G0(ξ′)Γ(ξ, τ ; ξ′, 0)dξ′ +
∫ τ

0

ψ(τ ′)Γ(ξ, τ ; 1, τ ′)dτ ′

+
∫ τ

0

∫ 1

σ(τ ′)
Γ(ξ, τ ; ξ′, τ ′)

c′′s (ξ′)
1 − cs(ξ′)

dξ′dτ ′,

with Γ(ξ, τ ; ξ′, τ ′) fundamental solution of the parabolic operator

L =
∂

∂τ
− δ

∂2

∂ξ2
+

1 + δ

1 − cs
c′s

∂

∂ξ
+

c′′s
1 − c′s

,

with τ ′ < τ and (ξ, τ), (ξ′, τ ′) varying in [0, 1] × [0, τ̃ ]. The densities φ(τ), ψ(τ),
together with a third unknown Gσ(τ), representing the value of G over ξ = σ(τ),
satisfy the system

1
2
φ(τ) =

∫ τ

0

φ(τ ′)Γξ(σ(τ), τ ; σ(τ ′), τ ′)dτ ′ (4.19)

+
∫ τ

0

ψ(τ ′)Γ(σ(τ), τ); 1, τ ′)dτ ′ +
∫ 1

0

G0(ξ′)Γξ(σ(τ), τ, ξ′, 0)dξ′
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+
∫ τ

0

∫ 1

σ(τ ′)
Γξ(σ(τ), τ ; ξ′, τ ′)

c′′s (ξ′)
1 − cs(ξ′)

dξ′dτ ′

− 1 − Gσ(τ)
δ

c′s(σ)[χ
1 − Gσ

1 − ηGσ
− 1

1 − cs(σ)
]

1
2
ψ(τ) = −

∫ τ

0

φ(τ ′)Γξ(1, τ ; σ(τ ′), τ ′)dτ ′ −
∫ τ

0

ψ(τ ′)Γξ(1, τ ; 1, τ ′)dτ ′ (4.20)

−
∫ 1

0

G0(ξ′)Γξ(1, τ ; ξ′, 0)dξ′

−
∫ τ

0

∫ 1

σ(τ ′)
Γξ(1, τ ; ξ′, τ ′)

c′′s (ξ′)
1 − cs(ξ′)

dξ′dτ ′ − 1
δ

c′s(1)
1 − cs(1)

G(1, τ)

Gσ(τ) =
∫ τ

0

φ(τ ′)Γ(σ(τ), τ ; σ(τ ′), τ ′)dτ ′ (4.21)

+
∫ 1

0

G0(ξ′)Γ(σ(τ), τ ; ξ′ , 0)dξ′ +
∫ τ

0

ψ(τ ′)Γ(σ(τ), τ ; 1, τ ′)dτ ′

+
∫ τ

0

∫ 1

σ(τ ′)
Γ(σ(τ), τ ; ξ′, τ ′)

c′′s (ξ′)
1 − cs(ξ′)

dξ′dτ ′,

where G(1, τ) in (4.20) must be replaced with expression obtained from (4.18).

Note that Gσ appears nonlinearly in (4.19) if η < 1, as we are supposing.

Eliminating Gσ leads to a nonlinear system of Volterra equations with weakly
singular kernels. Existence and uniqueness can anyway be proved by standard
methods, thanks to the fact that the dependence on Gσ in (4.19) is Lipschitz.
Functions φ, ψ, Gσ are bounded uniformly for σ ∈ Σ and as a consequence of

(4.19)–(4.21) they are at least Hölder continuous of order
1
2

with a Hölder norm
uniformly bounded in Σ.

In turn this implies that
∂G

∂ξ
|ξ=σ(τ) has the same type of regularity.

Our task now is to estimate |Gσ1 − Gσ2 |. Introducing the functions φi, ψi

corresponding to σi, i = 1, 2, from (4.21) we see that

|Gσ1 (τ) − Gσ2 (τ)| ≤
∫ τ

0

|φ1(τ ′) − φ2(τ ′)||Γ(σ1(τ), τ ; σ1(τ ′), τ ′)|dτ ′ (4.22)

+
∫ τ

0

|ψ1(τ ′) − ψ2(τ ′)||Γ(σ1(τ), τ ; σ1(τ ′); τ ′)|dτ ′

+ M

∫ τ

0

|Γ(σ1(τ), τ ; σ1(τ ′), τ ′) − Γ(σ2(τ), τ ; σ2(τ ′), τ ′)|dτ ′
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+ N

{∫ τ

0

|
∫ σ2(τ

′)

σ1(τ)

Γ(σ1(τ), τ ; ξ′, τ ′)dξ′|dτ ′

+
∫ τ

0

∫ 1

σ2(τ ′)
|Γ(σ1(τ), τ ; ξ′, τ ′) − Γ(σ2(τ), τ ; ξ′, τ ′)|dξ′dτ ′

}
.

which has to be coupled with similar inequalities for |φ1(τ) − φ2(τ)| and |ψ1(τ) −
ψ2(τ)|.

According to the parametrix method [3] the function Γ(ξ, τ, ξ′, τ ′) is con-
structed as follows

Γ(ξ, τ ; ξ′, τ ′) = Z(ξ, τ ; ξ′, τ ′) +
∫ τ

τ ′

∫ 1

0

Z(ξ, τ, η, θ)Φ(η, θ; ξ′, τ ′)dηdθ (4.23)

where

Z(ξ, τ ; ξ′, τ ′) =
1

2
√

πδ(τ − τ ′)
exp[− (ξ − ξ′)2

4δ(τ − τ ′)
] (4.24)

is the fundamental solution of the heat operator
∂

∂τ
− δ

∂2

∂ξ2
, and Φ(ξ, τ ; ξ′, τ ′) is

the solution of the integral equation

Φ(ξ, τ ; ξ′, τ ′) = LZ(ξ, τ ; ξ′, τ ′) +
∫ τ

τ ′
LZ(ξ, τ ; η, θ)Φ(η, θ; ξ′, τ ′)dηdθ. (4.25)

Since the operator L is particularly simple, we can calculate LZ explicitly:

LZ(ξ, τ ; ξ′, τ ′) = {− 1 + δ

1 − cs
c′s

ξ − ξ′

2δ(τ − τ ′)
+

c′′s
1 − cs

}Z(ξ, τ ; ξ′, τ ′), (4.26)

so that the development of the parametrix method is largely simplified.
In particular

|LZ(ξ, τ ; ξ′, τ ′)| ≤ const.

(τ − τ ′)µ

1
|ξ − ξ′|1−µ

, µ ∈ (
1
2
, 1) (4.27)

so that the kernel in (4.26) is integrable. Moreover Φ is continuous, Hölder con-
tinuous w.r.t. the first argument, for τ ′ < τ .

When calculating the differences

φ1 − φ2 or Γ(σ1(τ), τ ; σ1(τ ′), τ ′) − Γ(σ2(τ), τ ; σ2(τ ′), τ ′)

the main term which comes into play is

Γξ(σ1(τ), τ ; σ1(τ ′), τ ′) − Γξ(σ2(τ), τ ; σ2(τ ′), τ ′)

which in turn requires the computation of

Ω(τ, τ ′) = Zξ(σ1(τ), τ ; σ1(τ ′), τ ′) − Zξ(σ2(τ), τ ; σ2(τ ′), τ ′)

= −σ1(τ) − σ1(τ ′) − [σ2(τ) − σ2(τ ′)]
4
√

π[δ(τ − τ ′)]3/2
exp[− (σ1(τ) − σ1(τ ′))2

4δ(τ − τ ′)
]

− σ2(τ) − σ2(τ ′)
4
√

π[δ(τ − τ ′)]3/2
{exp[− (σ1(τ) − σ1(τ ′))2

4δ(τ − τ ′)
] − exp[− (σ2(τ) − σ2(τ ′))2

4δ(τ − τ ′)
]}.
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Writing

|σ1(τ) − σ1(τ ′) − [σ2(τ) − σ2(τ ′)]| = |σ̇1(τ̄ ) − σ̇2(τ̂ )|(τ − τ ′)

with τ̄ , τ̂ ∈ (τ ′, τ), and

| exp[− (σ1(τ) − σ1(τ ′))2

4δ(τ − τ ′)
]− exp[− (σ2(τ) − σ2(τ ′))2

4δ(τ − τ ′)
]| ≤ A

2δ
|σ̇1(τ̄ )− σ̇2(τ̂ )|(τ − τ ′),

we obtain the estimate

|Ω(τ, τ ′)| ≤ K
||σ̇1 − σ̇2||τ√

τ − τ ′ (4.28)

where K is a constant independent of the choice of σ1, σ2 in Σ.
Similar computations can be performed for the other terms involved, leading

to the desired estimate (4.17). Coupling (4.16) and (4.17) leads to the conclusion
that the mapping σ → σ̃ is contractive for τ̃ sufficiently small in the selected
topology.

By means of standard arguments we can infer existence and uniqueness (any
solution has to belong to Σ) up to the first time G vanishes.

5. Analysis of Stage 2: a priori results

First we prove that mass balance is expressed by an equation similar to (4.5)

Proposition 4. For all τ ∈ (τ1, τ2) we have

σ(τ)+
∫ s(τ)

σ(τ)

[G(ξ, τ)+c(ξ, τ)]dξ+
∫ 1

s(τ)

c(ξ, τ)dξ = c∗, where c = cS(1−G). (5.1)

Proof. Take the mass balance of the solvent separately in the domains σ(τ ′) <
ξ < s(τ ′), τ1 < τ ′ < τ ; s(τ ′) < ξ < 1, τ1 < τ ′ < τ , with τ ∈ (τ1, τ2).

Remembering that in the non-dimensional form Jγ is expressed by Jγ = δ(1−
cs)Gξ +(1−G)c′s in the first domain and simply by Jγ =

∂c

∂ξ
in the second domain,

and using Jγ = γσ̇ on the deposition front, Jγ = 0 on ξ = 1, G = 0, [γ] = [Jγ ] = 0

on the desaturation front, (5.1) easily follows by integration of
∂γ

∂r
+

∂Jγ

∂ξ
= 0. �

Since Stage 2 is characterized by the presence of a saturated region, the same
argument used in the proof of Prop. 1 leads to an analogous conclusion, i.e.,

Proposition 5. The extinction time τ2 of Stage 2 is finite. Moreover τ2 < τ∗ defined
by (4.8).

Likewise we can say that Proposition 2 (G < 1) is still valid. It is enough

to recall that G(ξ, τ1) < 1 and that
∂G

∂ξ
≤ 0 on the desaturation front, owing to

(3.17).
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Clearly we can also extend Proposition 3 (
∂G

∂ξ
< 0), implying that the satu-

rated region remains connected during Stage 2.
A peculiar feature of Stage 2 is that there cannot be the analog of a “mushy

region”, in the following sense

Proposition 6. During Stage 2 the complement of the set {G > 0} cannot contain
an open set where c ≡ cs.

Proof. The differential equation to be satisfied in such a set should be (3.4), with
∂c

∂τ
= 0. Thus the presence of such a region is compatible only with c′′s = 0.

Because of the analyticity with respect to ξ of the solution of (3.4), the unique
continuation of c up to ξ = 1 is a function constant in time, linear and increasing

in ξ, thus contradicting the boundary condition
∂c

∂ξ
= 0. �

6. Analysis of Stage 2: weak formulation and existence

Clearly the nature of the free boundary conditions on the desaturation front,
namely (3.14), (3.15), (3.16), is quite different from the conditions on the de-
position front, which involve the free boundary velocity in an explicit way.

In order to prove existence the most convenient approach is to introduce a
weak formulation, in which the desaturation front plays the role of a level set (the
set of discontinuity of some coefficients).

The natural approach to a weak formulation seems to re-write the problem
in terms of the solvent concentration γ.

We can identify the desaturation front with the level curve γ = 1 − cs(s).
We know that in non-dimensional variables the current density of the solvent

has the expression

jγ = −δ
∂γ

∂ξ
+ (1 − δ)

γc′s
1 − cs

, for γ < 1 − cs (6.1)

jγ = −∂γ

∂ξ
for γ > 1 − cs. (6.2)

If we set
v = 1 − cs − γ (6.3)

and we define
A(v) = {δ forv>0 (where v≡G(1−cs))

1 forv<0 (where v≡c−cs)
(6.4)

then the balance equation
∂γ

∂τ
+

∂jγ

∂ξ
= 0 (6.5)



Temperature Driven Mass Transport 107

can be written in the distributional sense in the whole domain Dσ = {(ξ, r) :
σ(τ) < ξ < 1, τ1 < τ < τ̄}:

∂v

∂r
− ∂

∂ξ
{A(v)

∂v

∂ξ
− [1 − A(v)]v

c′s
1 − cs

} = c′′s (6.6)

Here τ̄ is a time instant sufficiently close to τ1, still to be specified.
Equation (6.6) includes the free boundary conditions, that in the classical

statements are
v = 0 on both sides of x = s(t) (6.7)

[jγ ] = 0. (6.8)
The latter condition, taking into account (6.7), reduces to

[A(v)
∂v

∂ξ
] = 0. (6.9)

Thus, regarding the boundary ξ = σ(τ) as known, which is true for η = 1,
the weak formulation of the problem for v is: find v ∈ V 1,0(Dσ) such that∫

Dσ

{[A(v)
∂v

∂ξ
− (1 − A(v))v

c′s
1 − cs

+ c′s]
∂φ

∂ξ
− v

∂φ

∂τ
}dξdτ (6.10)

−
∫ ′

0

v(ξ, τ1)φ(ξ, τ1)dξ +
∫ τ̄

τ1

φ(σ(τ), τ)χc′s
1 − v

1 − ηv
(1 − cs)|ξ=σ(τ)dr

∀φ ∈ W 1,1
2 (Dσ) such that φ = 0 for τ = τ̄ . The notation of functional spaces is

taken from [4].
(For the formulation of a similar problem in a cylindrical domain see [4],

Chap. 3, Sect. 5). Existence and uniqueness can be established as in Theorem 5.1,
p. 170 of [4].

At this point we can use Theorem 10.1, p. 204, of [4], ensuring that v is Hölder
continuous, uniformly with respect to σ in the same class Σ used in the fixed point
argument of Section 4, in a closed domain separated from σ and including an
interval [ξ0, ξ1] ⊂ (0, 1) for τ = τ1, where we know that v is separated from zero.

Let Ξ ∈ (ξ0, ξ1). On the basis of the above Hölder estimate we can find τ̃

such that v(Ξ, τ) ≥ 1
2
v(Ξ, τ1) for τ ∈ [τ1, τ̃ ], for all σ ∈ Σ.

Thus, for a given σ we can solve the problem for G(ξ, τ) in the classical way
in the domain Dσ,Ξ = {σ(τ) < ξ < Ξ, τ1 < τ < τ̃} with the boundary condition

G(Ξ, τ) =
v(Ξ, τ)

1 − cs(Ξ)
.

The function v = G(1 − cs) will necessarily be the restriction of the weak
solution (i.e., the solution of (6.10)) to Dσ,Ξ.

Therefore, for each σ we know a domain Dσ,Ξ, such that Ξ − σ(τ̃ ) remains
positive for σ ∈ Σ, in which A(v) = δ.

This is enough to apply the machinery of Section 4 to obtain a similar exis-
tence and uniqueness result in the interval (τ1, τ̃). An additional information we
have to provide is the continuous dependence of v(Ξ, τ̃ ) on σ. Using the stability
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theorem on p. 166 of [4] in connection with the already quoted th. 10.1, p. 204,
we can see that if σ1, σ2 → 0 in the C1 norm, then the corresponding difference
v1(Ξ, τ) − v2(Ξ, τ) tends to zero in the Hölder norm. What mainly matters, how-

ever, is the dependence of Gσ on σ. It is well known that
∂G

∂ξ
can be estimated

uniformly w.r.t. σ ∈ Σ in a domain Dσ,Ξ′ , for some Ξ′ < Ξ. In practice it is pos-
sible to identify Ξ′ with Ξ, by possibly reducing τ̃ , thanks to the arbitrariness of
Ξ. In turn, writing the equation for the difference G1 −G2 after having performed
the transformation which maps Dσi,Ξ into the rectangle (0, Ξ) × (0, τ̃), it is easy
to realize that |Gσ1 (τ) − Gσ2 (τ)| can be estimated by a linear combination of

supτ ′∈(τ1,τ) |σ1(τ ′) − σ2(τ ′)| and
∫ τ

τ1

|σ̇1(τ ′) − σ̇2(τ ′)|√
τ ′ − τ

dτ ′.

This is the basic estimate in the fixed point argument already used in Stage
1 to obtain existence and uniqueness.

Precisely the same argument can be iterated (thanks to the a priori properties
illustrated in the previous section) up to the extinction of the saturated zone.

We summarize the above results in the following statement

Theorem 2. During Stage 2 the weak formulation of Problem 2 has one unique so-
lution (σ, v) with σ ∈ C1 and v ∈ V 1,0. The functions G and c can be easily deduced
from v in the sets {v > 0}, {v < 0}, where they satisfy their respective differential
equations in the classical sense. The set {v = 0} must have zero measure.

We conclude the paper by just remarking that the analysis of Stage 3 follows
the pattern of the analysis of Stage 1 and the problem of existence and unique-
ness Theorem for Problem 3 is in fact a simplification of the parallel result for
Problem 1.
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Abstract. We consider a time-dependent problem for a viscous incompressible
nonhomogeneous fluid bounded by a free surface on which surface tension
forces act. We prove the local in time solvability theorem for this problem
in Sobolev function spaces. In the nonhomogeneous model the density of the
fluid is unknown. Going over to Lagrange coordinates connected with the
velocity vector field, we pass from the free boundary problem to the problem
in the fixed boundary domain. Due to the continuity equation, in Lagrange
coordinates the density is the same as at the initial moment of time. It gives
us the possibility to apply the methods developed by V.A. Solonnikov for the
case of incompressible fluid with constant density.
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1. Statement of the problem

The motion of incompressible fluids with varying densities in domains with fixed
boundaries is considered in [1]–[8]. For the first time, the global existence of a
weak solution was established by A.V. Kajikov [1]. In 1975 O.A. Ladizhenskaya
and V.A. Solonnikov [3] proved local existence of a strong regular solution, and,
for the sufficiently small data, global existence. Later on J. Simon [5] obtained the

This work is parially supported by US Civilian Research and Development Foundation, grant
RU-M1-2596-ST04.
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global existence theorem for this problem for less regular data than in [3], he also
allows the initial density to have some zeros. In the present paper we consider a free
boundary problem for a viscous incompressible nonhomogeneous fluid and prove
local in time unique solvability of this problem in Sobolev-Slobodetskii spaces.
The proof is based on the methods developed by V.A. Solonnikov for the case of
incompressible fluid with constant density [9], [10].

We consider a horizontal layer of incompressible fluid with nonconstant den-
sity bounded below by a rigid plane and above by a free surface. Let x1, x2 are
axes on the rigid plane, and the axis x3 directed towards the upper surface Γt.
In this case the gravitational force per unity of mass can be written in the form
f = −g∇x3. We consider the periodic problem with respect to the variables x′ =
(x1, x2) and denote the periodicity cell by Σ. We assume that the free surface Γt can
be set by the explicit equation x3 = η(x′, t) and has no joint points with the bot-
tom. The problem is to find the domain Ωt = {(x′, x3) /x′ ∈ Σ, 0 < x3 < η(x′, t)},
t > 0 filled by the fluid, the velocity vector field u, the density ρ, and the pressure
p which are the solution of the following problem:

ρ
(∂u

∂t
+ (u · ∇)u

)
− ν∆u = −∇p − ρg∇x3 in Ωt,

∇ · u = 0 in Ωt,

dρ

dt
=

∂ρ

∂t
+ u · ∇ρ = 0 in Ωt, (1.1)

u(x′, 0, t) = 0,

Tn = (αH − p0)n on Γt,

Vn = u · n on Γt,

where T = −pI+νS is the stress tensor, S = ∂ui

∂xj
+ ∂uj

∂xi
is the strain velocity tensor,

ν and α are positive constants (the coefficient of viscosity and the surface tension),
H is the double mean curvature of Γ, which is negative for convex domains, I
is the unit matrix, n|Γt = n(x′, η(x′, t), t) is the unit outward normal to the
free boundary, Vn is the velocity of the free boundary in the direction of n. The
positive constants g and p0 are the gravitational constant and the external pressure
respectively.

The initial position of the free boundary Γ0 = Γ is known and set by the
equation x3 = η0(x′), where η0(x′) is a given function. In the domain Ω0 ={
x ∈ R

3 | 0 < x3 < η(x′)
}

the initial conditions

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) (1.2)

hold.
In [11] we investigate stability for problem (1.1) as t tends to infinity. In par-

ticular, we obtain control of perturbations in the L2 norm by initial data (stability
in the mean).

In the present paper we prove the local solvability theorem for problem (1.1).
Our proof is essentially based on the investigation of a linear non-coercive ini-
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tial boundary value problem for Stokes system, which arises in the linearization
of the free boundary problem. As a consequence of boundary condition (1.1)5,
which includes the surface tension on the unknown boundary, in the linear prob-
lem we have at the part of the boundary the condition which contains two terms
of different orders, neither of which can be considered dominant with respect to
the other. The corresponding half-space model problem is studied by V.A. Solon-
nikov. Namely, the unique solvability of this model problem is proved in weighted
Sobolev-Slobodetskii spaces [9]. As at the part of the boundary in the linearized
problem we have also Dirichlet boundary condition, we need the solvability the-
orem for the model half-space problem with Dirichlet boundary condition in the
same scale of function spaces. We prove this theorem in Section 5. Then, in Sec-
tion 6 we obtain the a priori estimates for a solution of a linearized problem. The
proof of the existence theorem for linear problem can be done by constructing a
regularizer in the same manner as in [9] for incompressible fluid and in [12] for
compressible fluid, and we omit the details. Then we use successive approxima-
tions and pass to the nonlinear problem. The scheme of this passage is described
in details in [10], where the motion of a finite volume of incompressible fluid was
studied, and then used in [13] for the case of two liquids.

2. Function spaces

We suppose that all the given functions are periodic with respect to the variables x′

and are looking for a solution in the spaces of periodic functions. Let us introduce
Sobolev-Slobodetskii spaces of periodic functions.

Let Ω ⊂ R3 be a periodic domain bounded by non-contacting surfaces S1 and
S2, ΩT = Ω × [0, T ), Σa – the periodicity cell connected with the point a ∈ R2.
For example, a can be a center of the periodicity cell, then

Σa =
{
x′ ∈ R

2 / |xi − ai| < εi, i = 1, 2
}

.

By Π(a) we mean Σa × R; Ω(a) = Ω ∩ Π(a). By W̃ r
2 (Ω) we denote the space of

periodic functions u(x) such that u|x∈Ω(a) ∈ W r
2 (Ω(a)), for any a ∈ R2 with the

finite norm

‖u‖2
W̃ r

2 (Ω)
= ‖u‖2

W r
2 (Ω(a)) =

∑
|α|<r

‖Dαu‖2
Ω(a) + ‖u‖2

Ẇ r
2 (Ω(a))

.

Here we denote by ‖ · ‖Ω(a) the L2 norm:

‖u‖2
Ω(a) =

∫
Ω(a)

|u(x)|2dx,

and by ‖ · ‖2
Ẇ r

2 (Ω(a))
the leading term which is equal to

‖u‖2
Ẇ r

2 (Ω(a))
=

∑
|α|=r

‖Dαu‖2
Ω(a)
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for integer r, and to

‖u‖2
Ẇ r

2 (Ω(a))
=

∑
|α|=[r]

∫
Ω(a)

∫
Ω(a)

|Dαu(x) − Dαu(y)|2 dx dy

|x − y|3+2(r−[r])

for non-integer r. Here [r] is the integral part of r, Dαu =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

is the

generalized derivative of order |α| = α1 + α2 + α3.
By W̃

r, r/2
2 (ΩT ) we denote the space of periodic functions u(x, t) defined in

Ω × [0, T ) which belong to W
r, r/2
2 (ΩT (a)) for any a ∈ R2 with the finite norm

‖u‖(r, r/2)
ΩT

= ‖u‖
W̃

r,r/2
2 (ΩT )

= ‖u‖
W

r,r/2
2 (ΩT (a))

=
(
‖u‖2

W r,0
2 (ΩT (a))

+ ‖u‖2

W
0, r/2
2 (ΩT (a))

)1/2

=
( T∫

0

‖u‖2
W r

2 (Ω(a))dt +
∫

Ω(a)

‖u‖2

W
r/2
2 (0,T )

dx
)1/2

,

where

‖u‖2
W r

2 (0,T ) =
[r]∑

j=0

∥∥∥dju

dtj

∥∥∥2

L2(0,T )
+

T∫
0

dt

t∫
0

∣∣∣d[r]u(t)
dt[r]

− d[r]u(τ)
dτ [r]

∣∣∣2 dτ

|t − τ |1+2(r−[r])
.

Periodic spaces W̃ r
2 (S) and W̃

r, r/2
2 (ST ) of functions defined on the periodic

surface S ⊂ R3 are introduced in the similar way. To analyze problems with zero
initial conditions, we use Sobolev-Slobodetskii spaces H

r,r/2
γ (ΩT ) with exponential

weight, which elements admit zero extension to the domain t < 0 without loss of
smoothness. These spaces were introduced by M.S. Agranovich and M.I. Vishik
[16]. We denote by H̃

r,r/2
γ (ΩT ) the space of periodic functions u(x, t) satisfying

the zero initial conditions
∂ju

∂tj

∣∣∣
t=0

= 0, for j = 0, . . . , [r/2] − 1

and belonging to H
r,r/2
γ (ΩT (a)) for any a ∈ R2, with the finite norm

‖u‖2

H̃
r,r/2
γ (ΩT )

= ‖u‖2

H
r,r/2
γ (ΩT (a))

= ‖u‖2
Hr,0

γ (ΩT (a))
+ ‖u‖2

H
0,r/2
γ (ΩT (a))

,

where

‖u‖2
Hr,0

γ (ΩT (a))
=

T∫
0

e−2γt
(
‖u‖2

Ẇ r
2 (Ω(a))

+ γτ‖u‖2
Ω(a)

)
dt,

‖u‖2

H
0,r/2
γ (ΩT (a))

=

T∫
0

e−2γt
∥∥∥∂r/2u

∂tr/2

∥∥∥2

Ω(a)
dt
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for integer r/2, and

‖u‖2

H
0,r/2
γ (ΩT (a))

=

T∫
0

e−2γt

∞∫
0

∥∥∥∂[r/2]u0(·, t − τ)
∂t[r/2]

− ∂[r/2]u0(·, t)
∂t[r/2]

∥∥∥2

Ω(a)

dτ

τ1+r−[r]
,

for non-integer r/2. Here

u0(·, t) = u(·, t) for t > 0, u0(·, t) = 0 for t ≤ 0.

The detailed list of properties of weighted Sobolev-Slobodetskii spaces can
be found in [9].

The norms in the spaces of vector fields u having components from W̃ r
2 (Ω)(

W̃
r, r/2
2 (ΩT )

)
are defined by the same formulas with replacement of the function

u by the vector field u.

3. Lagrange coordinates

Due to conditions (1.1)6, (1.1)4, domain Ωt, t > 0 can be determined on the base
of the given domain Ω0 as the set of points x = x(ξ, t) such that

∂x

∂t
= u(x, t), x(ξ, 0) = ξ ∈ Ω0.

Consequently, connection between Euler and Lagrange coordinates of a particle
being at t = 0 in the point ξ takes the form

x = ξ +

t∫
0

v(ξ, τ)dτ ≡ Xv(ξ), (3.1)

where v(ξ, t) is the velocity vector field expressed in Lagrange coordinates.
We denote by Jv(ξ, t) the Jacobi matrix of transform (3.1) with the elements

aij = δj
i +

∫ t

0
∂vi

∂ξj
dτ . Then the Jacobi matrix of the inverse transform has the

elements
(detJv(ξ, t))−1 Aij , i, j = 1, 2, 3,

where Aij is the algebraic complement of the element aij , and gradient in the
variables ξ connected with the vector field v can be expressed by the following
formula

∇v = A∇ =

(
3∑

m=1

A1m
∂

∂ξm
,

3∑
m=1

A2m
∂

∂ξm
,

3∑
m=1

A3m
∂

∂ξm

)
,

here A = {Aij}3
i,j=1 is the cofactor matrix for the matrix Jv(ξ, t).

Continuity equation dρ
dt = ∂ρ

∂t + u · ∇ρ = 0 means that in Lagrange coor-
dinates determined by (3.1), the density ρ is the same as at the initial moment
of time, which is known. Going over to Lagrange coordinates, we pass from the
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free boundary problem (1.1) to the following problem in a domain with a fixed
boundary

ρ0vt − ν∇2
vv + ∇vq = ρ0g∇ξ3 in Ω0, t > 0,

∇v · v = 0 in Ω0, t > 0,

v
∣∣∣
t=0

= u0, v
∣∣∣
ξ∈S

= 0, (3.2)

T vn − σ∆(t)Xv

∣∣∣
ξ∈Γ0

= p0n,

where q is the pressure expressed in Lagrange coordinates, S =
{
ξ ∈ R3|ξ3 = 0

}
,

n = (An0)/ |An0|, n0(ξ) is the unit vector of the outer normal to Γ0 at the point
ξ, ∆(t) is the Laplace-Beltrami operator on Γt = {x = Xv(ξ, t), ξ ∈ Γ0},

T v = −qI + νSv(v),

(Sv)ij =
3∑

m=1

(
Aim

∂vj

∂ξm
+ Ajm

∂vi

∂ξm

)
.

As it is suggested in [9], [10], we introduce for an arbitrary vector field w defined
on Γ the projections Π0 and Π onto the tangent planes to Γ and Γt, we have

Π0w = w − n0(w · n0), Πw = w − n(w · n).

Then we separate condition (3.2)5 on tangential and normal components. For
n · n0 > 0, we have

νΠ0ΠSv(v)n = 0, n0 · T v(v, q)n − σn0 · ∆(t)Xn = 0 on Γ0. (3.3)

Solvability theorem for problem (3.2) is formulated as follows:

Theorem 3.1. Let Γ0 ∈ W̃
5/2 +l
2 (R2), u0 ∈ W̃ 1+l

2 (Ω0) with some l ∈ (1/2, 1),
ρ0 ∈ W̃ 1+l

2 (Ω0), ρ0(x) ≥ β > 0, and the compatibility conditions

∇ · u0 = 0, Π0S(u0)n0

∣∣∣
ξ∈Γ0

= 0, u0

∣∣∣
x3=0

= 0

hold.
Then there exists a unique solution (v, q) to problem (3.2) defined on some

interval of time (0, T ) and having the following regularity properties:

v ∈ W̃
l+2,l/2+1
2 (Ω0

T ), q ∈ W̃
l, l/2
2 (Ω0

T ), ∇q ∈ W̃
l,l/2
2 (Ω0

T ),

q
∣∣∣
ΓT

∈ W̃
l+1/2,l/2+1/4
2 (ΓT ), Ω0

T = Ω0 × [0, T ), ΓT = Γ × [0, T ).

This solution satisfies the following estimate:

‖v‖(l+2,l/2+1)

Ω0
T

+ ‖q‖(l,l/2)

Ω0
T

+ ‖∇q‖(l,l/2)

Ω0
T

+ ‖q‖(l+1/2,l/2+1/4)
ΓT

≤ C
(
‖η0‖W̃

5/2+l
2 (R2)

, ‖ρ0‖W̃ 1+l
2 (Ω0)

)
‖u0‖W̃ l+1

2 (Ω0). (3.4)
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This theorem is proved by successive approximations, similar to the case of
incompressible fluid with constant density [10]. Namely, we set v(0) = 0, q(0) = 0
and for m ∈ N∪{0} determine v(m+1), q(m+1) as a solution of the following linear
problem

ρ0v
(m+1)
t − ν∇2

mv(m+1) + ∇mq(m+1) = ρ0g∇ξ3, ξ ∈ Ω0,

∇m · v(m+1) = 0, ξ ∈ Ω0,

v(m+1)
∣∣∣
t=0

= u0,

v(m+1)
∣∣∣
ξ∈S

= 0,

νΠ0ΠmSm(v(m+1))nm

∣∣∣
ξ∈Γ

= 0, (3.5)

n0 · T m(v(m+1), q(m+1))nm − σn0 · ∆m(t)

t∫
0

v(m+1)dτ
∣∣∣
ξ∈Γ

= σH0(ξ) + σ

t∫
0

n0 · ∆m(τ)ξdτ
∣∣∣
ξ∈Γ

,

here by ∇m we mean ∇v(m) , Sm = Sv(m) , T m = T v(m) , nm is the outward normal
to Γm(t) = {x = Xm(ξ, t), ξ ∈ Γ}, Xm = Xv(m) , ∆m(t) is the Laplace-Beltrami
operator on Γm(t).

4. Auxiliary linear problem

Existence of a solution to problem (3.5) for m ≥ 0 follows from the solvability of
the linear problem:

ρ0wt − ν∇2
vw + ∇vq = f in Ω0, t > 0,

∇v · w = ϕ(ξ, t) in Ω0, t > 0,

w
∣∣∣
t=0

= w0,

w
∣∣∣
ξ∈S

= 0, (4.1)

νΠ0ΠSv(w)n
∣∣∣
ξ∈Γ

= Π0d,

n0 · T v(w, q)n − σn0 · ∆(t)

t∫
0

wdτ |ξ∈Γ = b + σ

t∫
0

Bdτ,

where v ∈ W̃
l+2,l/2+1
2 (Ω0

T ) is a given vector field, ∆(t) is the Laplace-Beltrami
operator on the surface Γt = {x = Xv(ξ, t), ξ ∈ Γ}.
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Following the scheme suggested in [9], at first, we consider problem (4.1) with
v = 0 and zero initial conditions, it is reduced to the problem

wt −
ν

ρ0(x)
∇2w +

1
ρ0(x)

∇q = f in Ω0, t > 0,

∇ · w = ϕ in Ω0,

w
∣∣
t=0

= 0 in Ω0,

w
∣∣
ξ∈S

= 0, (4.2)

νΠ0ΠS(w)n
∣∣
ξ∈Γ

= Π0d,

(
n0 · T (w, q)n − σn0 · ∆

t∫
0

wdτ
)∣∣

ξ∈Γ
= b + σ

t∫
0

Bdτ.

The solvability theorem to problem (4.2) in weighted Sobolev-Slobodetskii
spaces is formulated as follows.

Theorem 4.1. Let η0 ∈ W̃
3/2+l
2 (R2), and ρ0 ∈ W̃ 1+l

2 (Ω0) with some l > 1/2
and satisfies the inequality 0 < β ≤ ρ0(x). Then for any f ∈ H̃

l,l/2
γ (Ω0

T ), ϕ ∈
H̃

1+l,1/2+l/2
γ (Ω0

T ) such that ϕ = ∇ ·Φ, Φ ∈ H̃
0,1/2+l
γ (Ω0

T ), d ∈ H̃
1/2+l,1/4+l/2
γ (ΓT ),

b ∈ H̃
l+1/2,l/2+1/4
γ (ΓT ), B ∈ H̃

l−1/2,l/2−1/4
γ (ΓT ), where T ≤ +∞ and the number

γ is supposed to be sufficiently large (γ ≥ γ0 > 1), problem (4.2) has a unique
solution (w, q) with the following properties:

w ∈ H̃ l+2,l/2+1
γ (Ω0

T ), q ∈ H̃ l,l/2
γ (Ω0

T ), ∇q ∈ H̃ l,l/2
γ (Ω0

T ),

and

‖w‖
H̃

l+2,l/2+1
γ (Ω0

T )
+ ‖q‖

H̃
l,l/2
γ (Ω0

T )
+ ‖∇q‖

H̃
l,l/2
γ (Ω0

T )

≤ C
(
‖f‖

H̃
l,l/2
γ (Ω0

T )
+ ‖ϕ‖

H̃
l+1,l/2+1/2
γ (Ω0

T )
+ ‖Φ‖

H̃
l+1,l/2+1/2
γ (Ω0

T )
(4.3)

+‖d‖
H̃

l+1/2,l/2+1/4
γ (ΓT )

+ ‖b‖
H̃

l+1/2,l/2+1/4
γ (ΓT )

+ σ‖B‖
H̃

l−1/2,l/2−1/4
γ (ΓT )

)
,

where the constant C depends on ρ0, η0 and can be chosen not depending on T .

To prove Theorem 4.1, we need to analyze the auxiliary model half-space
problems.
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5. Model problems

The non-coercive model problem arising as a consequence of the fact that condition
(1.1)5 includes the surface tension on the free boundary has the form:

vt −
ν

ρ
∇2v +

1
ρ
∇p = f in R

3
+,T = R

3
+ × [0, T ),

∇ · v = r in R
3
+,T ,

v
∣∣∣
t=0

= 0 in R
3
+, (5.1)

ν
(∂v3

∂yj
+

∂vj

∂y3

)∣∣∣
y3=0

= bj(y′, t), j = 1, 2,

(
− p + 2ν

∂v3

∂y3
+ σ

t∫
0

∇′2v3dτ
)∣∣∣

y3=0
= b3(y′, t) + σ

t∫
0

Bdτ,

here ν, ρ, σ are positive constants.
This problem contains in the boundary condition two terms of different orders

neither of which can be regarded as a dominant term with respect to the other and
so being nonstandard. Problem (5.1) (with ρ = 1) is carefully analyzed by V.A.
Solonnikov [9]. In particular, the solvability theorem for this problem in Sobolev-
Slobodetskii spaces is proved. It is clear that in the case when the positive constant
ρ is not equal to 1, the solvability result is just the same while at the estimates we
have a constant depending on ρ.

Theorem 5.1. Let l > 1/2, γ > 0. We assume that f ∈ H
l,l/2
γ (R3

+,T ), bj ∈
H

l+1/2,l/2+1/4
γ (R2

T ), j = 1, 2, b3 ∈ H
l+1/2,1/2,l/2
γ (R2

T ), B ∈ H
l−1/2,l/2−1/4
γ (R2

T ),
r ∈ H

l+1,l/2+1/2
γ (R3

+,T ), and r = ∇ · R, R ∈ H
0,l/2+1
γ (R3

+,T ). Problem (5.1) has

a unique solution (v, p) such that v ∈ H
l+2,l/2+1
γ (R3

+,T ), ∇p ∈ H
l,l/2
γ (R3

+,T ), and
the following estimate

‖v‖2

H
l+2,l/2+1
γ (R3

+,T )
+ ‖∇p‖2

H
l,l/2
γ (R3

+,T )
≤ c(γ, ρ)

(
‖f‖2

H
l,l/2
γ (R3

+,T )
(5.2)

+‖r‖2

H
l+1,l/2+1/2
γ (R3

+,T )
+ ‖R‖2

H
0,l/2+1
γ (R3

+,T )
+ ‖b1‖2

H
l+1/2,l/2+1/4
γ (R2

T )

+‖b2‖2

H
l+1/2,l/2+1/4
γ (R2

T )
+ σ2‖B‖2

H
l−1/2,l/2−1/4
γ (R2

T )
+ ‖b3‖2

H
l+1/2,l/2,l/2
γ (R2

T )

)
holds true.

The model problem with the Dirichlet boundary condition has the form

vt −
ν

ρ
∇2v +

1
ρ
∇p = f in R

3
+,T ,

∇ · v = g in R
3
+,T , (5.3)

v|t=0 = 0 in R
3
T , v|x3=0 = ψ,

where ν and ρ are positive constants.
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Theorem 5.2. Let l > 1
2 , γ > 0. We assume that

f ∈ H l,l/2
γ (R3

+,T ), ψ ∈ H l+3/2,l/2+3/4
γ (R2

T ), ψ3 = 0,

g ∈ H l+1,l/2+1/2
γ (R3

+,T ), g = ∇ · R, and R ∈ H0,l/2+1
γ (R3

+,T ).

Problem (5.3) has a unique solution v ∈ H
l+2,l/2+1
γ (R3

+,T ), ∇p ∈ H
l,l/2
γ (R3

+,T ),
and the following estimate

‖v‖2

H
l+2,l/2+1
γ (R3

+,T )
+ ‖∇p‖2

H
l,l/2
γ (R3

+,T )
≤ c(γ, ρ)

(
‖f‖2

H
l,l/2
γ (R3

+,T )
(5.4)

+‖g‖2

H
l+2,l/2+1
γ (R3

+,T )
+ ‖R‖2

H
0,l/2+1
γ (R3

+,T )
+ ‖ψ‖2

H
l+3/2,l/2+3/4
γ (R2

T )

)
holds true.

At first we consider problem (5.3) with homogeneous equations. In this case
we extend all the given functions for t ∈ [0, +∞) with preservation of class and
use the Laplace-Fourier transform

ũ(ξ1, ξ2, x3, s) =

+∞∫
0

e−stdt

∫
R2

u(x′, x3, t)e−i(x1ξ1+x2ξ2)dx′.

We arrive at

ν

(
− d2

dx2
3

+ r2

)
ṽj + iξj p̃ = 0, j = 1, 2,

ν

(
− d2

dx2
3

+ r2

)
ṽ3 +

dp̃

dx3
= 0, (5.5)

where r2 = sρ
ν + ξ2, ξ2 = ξ2

1 + ξ2
2 , arg(r) ∈ (−π

4 , π
4 ),

iξ1ṽ1 + iξ2ṽ2 +
dṽ3

dx3
= 0,

ṽj |x3=0 = ψ̃j , j = 1, 2, 3. ṽj → 0, p → 0 for x3 → +∞.

Problem (5.5) can be solved in the explicit form in the same way as it is done
in [14].

ṽ1 = ψ̃1e
−rx3 +

(ξ2
1 ψ̃1 + ξ1ξ2ψ̃2)

|ξ|
e−rx3 − e−|ξ|x3

r − |ξ| , (5.6)

ṽ2 = ψ̃2e
−rx3 +

(ξ2
2 ψ̃2 + ξ1ξ2ψ̃1)

|ξ|
e−rx3 − e−|ξ|x3

r − |ξ| ,

ṽ3 =
(
iξ1ψ̃1 + iξ2ψ̃2

) e−rx3 − e−|ξ|x3

r − |ξ| ,

p = −
ρs
(
iξ1ψ̃1 + iξ2ψ̃2

)
|ξ|(r − |ξ|) e−|ξ|x3.
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The equivalent norm in H
l,l/2
γ (R2

∞) connected with the Laplace-Fourier trans-
form has the form

‖| u ‖|2l,γ,R2∞
=
∫
R2

dξ

+∞∫
−∞

|ũ(ξ, γ + iξ0)|2(|s| + ξ2)ldξ0, s = γ + iξ0,

and in the space H
l,l/2
γ (R3

+,∞)

‖| u ‖|2l,γ,R3
+,∞

=
∑
j<l

∫
R2

dξ

+∞∫
−∞

∥∥∥ ∂j

∂x3
ũ(ξ, ·, s)

∥∥∥2

R+

(ξ2 + |s|)l−jdξ0

+
∫
R2

dξ

+∞∫
−∞

‖ ũ(ξ, ·, s) ‖2
Ẇ l

2(R+)
dξ0.

Theorem 5.3. Let in problem (5.3) f = 0, g = 0. For any ψ ∈ H
l+3/2,l/2+3/4
γ (R2

∞)
with ψ3 = 0, solution (5.6) of problem (5.3) satisfies the following estimate

3∑
j=1

‖| vk ‖|2l+2,γ,R3
+,∞

+ ‖| ∇p ‖|2l,γ,R3
+,∞

≤ c(γ, ρ)
2∑

k=1

‖| ψk ‖|2l+3/2,R2∞
,

where the constant c(γ, ρ) remains bounded for γ ≥ γ0 > 0.

Proof. The proof of Theorem 5.3 is based on the estimates of the functions e0(x3) =
e−rx3 and e1(x3) = e−rx3−e−|ξ|x3

r−|ξ| proved in [9].

Lemma 5.4. (Lemma 3.1 in [9]) For any ξ ∈ R2, s = γ + iξ0, γ > 0 the functions
e0(x3), e1(x3) satisfy the following estimates∥∥∥dje0(x3)

dxj
3

∥∥∥2

L2(R+)
≤ 1√

2
|r|2j−1,∥∥∥dje1(x3)

dxj
3

∥∥∥2

L2(R+)
≤ c|r|2j−1 + |ξ|2j−1

|r|2 , (5.7)

+∞∫
0

+∞∫
0

∣∣∣dje0(x3 + z)
dxj

3

− dje0(x3)
dxj

3

∣∣∣2 dx3dz

z1+2ς
≤ c|r|2(j+ς)−1,

+∞∫
0

+∞∫
0

∣∣∣dje1(x3 + z)
dxj

3

− dje1(x3)
dxj

3

∣∣∣2 dx3dz

z1+2ς
≤ c

|r|2(j+ς)−1 + |ξ|2(j+ς)−1

|r|2 .

Here j ≥ 0, ς ∈ (0, 1). Constants in (5.7) are independent on r, |ξ|.
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Taking into account that |r|2 ≤ c(|s| + ξ2) and using (5.7), we have for the
function v1(x′, x3, t) the estimate:

‖| v1 ‖|2l+2,γ,R3
+,∞

≤
∫
R2

dξ

+∞∫
−∞

(
|ψ̃1|2

( ∑
j<l+2

∥∥∥dje0(x3)
dxj

3

∥∥∥2

L2(R+)
(|s| + ξ2)l+2−j + ‖e0(x3)‖Ẇ l+2

2 (R+)

)

+
|ξ2

1ψ̃1 + ξ1ξ2ψ̃2|2
|ξ|2

( ∑
j<l+2

∥∥∥dje1(x3)
dxj

3

∥∥∥2

L2(R+)

× (|s| + ξ2)l+2−j + ‖e1(x3)‖Ẇ l+2
2 (R+)

))
dξ0

≤ c

∫
R2

dξ

+∞∫
−∞

2∑
k=1

|ψ̃k|2
( ∑

j<l+2

|r|2j−1(|s| + ξ2)l+2−j + |r|2(l+2)−1 + |ξ|2(l+2)−1

)
dξ0

≤ c

2∑
k=1

∫
R2

dξ

+∞∫
−∞

|ψ̃k|2(|s| + ξ2)l+3/2dξ0 = c

2∑
k=1

‖| ψk ‖|2l+3/2,R2∞
.

Similar estimates are evidently valid for ‖| vk ‖|2
l+2,γ,R3

+,∞
, k = 2, 3. To estimate

‖| ∇p ‖|2
l,γ,R3

+,∞
, we use estimates for the function e−|ξ|x3, which can be obtained

from estimates (5.7) for e0(x3) by replacement r to |ξ|. We have:

‖| ∇p ‖|2l,γ,R3
+,∞

≤ ρ2

∫
R2

dξ

+∞∫
−∞

|s|2|ξ|2(|ψ̃1|2 + |ψ̃2|2)
|r − |ξ||2⎛⎝∑

j<l

∥∥∥ dj

dxj
3

(e−|ξ|x3)
∥∥∥2

L2(R+)
(|s| + ξ2)l−j + ‖e−|ξ|x3‖Ẇ l

2(R+)

⎞⎠ dξ0

≤ cρ

∫
R2

dξ

+∞∫
−∞

|s||ξ|2
2∑

k=1

|ψ̃k|2
⎛⎝∑

j<l

|ξ|2j−1(|s| + ξ2)l−j + |ξ|2l−1

⎞⎠ dξ0

≤ c

2∑
k=1

∫
R2

dξ

+∞∫
−∞

|ψ̃k|2(|s| + ξ2)l+3/2dξ0 = c

2∑
k=1

‖| ψk ‖|2l+3/2,R2∞
.

�

Theorem 5.3 is proved. Theorem 5.2 is deduced from Theorem 5.3 on the base
of the same arguments as in [15] by construction the auxiliary vector field. As it is
clearly described in [15] (Section 9), under this construction, the assumption that
v3 = 0 on the plane x3 = 0 can be preserved.
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6. Proof of Theorem 4.1

Existence of a solution to linear problem (4.2) can be proved by construction of a
regularizer in the same way as it is done in [9] for the linear problem corresponding
to the case of incompressible homogeneous fluid and in [12] for the linear problem
corresponding to the case of compressible fluid. An example of construction of a
regularizer in a periodic layer is described in [17]. Here we concentrate on estimate
(4.3) and give the scheme of checking its validity as an a priori one by the Schauder
method. We introduce the partition of unity

1 =
N∑

j=1

ζj(x), x ∈ Ω,

where ζj(x) are smooth periodic functions such that

diam(suppζj ∩ Π(a)) < δ,

for any periodicity cell Σa ⊂ R2. Here δ is a sufficiently small positive number. For
every j = 1, . . . , N we choose the periodicity cell Σaj in such a way that ζj

∣∣∣
Π(aj)

is

a finite function in Π(aj). We consider the zero extension of the function ζj

∣∣∣
Π(aj)

to the space R3 and denote this extension by ηj(x). We fix points λj ∈ supp(ηj),
j = 1, . . . , N. Then we multiply all the relations in problem (4.2) by ζj and arrive
at a periodic problem for the unknown functions wζj , qζj . In accordance with the
definition of norms in periodic spaces, to estimate wζj , qζj , we are to estimate the
functions wj = wηj , qj = qηj .

1. In the case when supp(ηj) ⊂ Ω, we have for the functions wj , qj the Cauchy
problem.

2. In the case when supp(ηj) ∩ S 
= ∅, we have for the functions wj , qj the
half-space problem with the Dirichlet boundary condition.

3. In the case when supp(ηj) ∩ Γ 
= ∅, we make the coordinate transformation
straighten the boundary and obtain for the functions wj , qj the half- space
problem with the boundary conditions in the same form as in problem (5.1).

In the case of homogeneous incompressible fluid a detailed proof of estimates for
the functions wj , qj on the base of the estimates for solutions to corresponding
model problems is given in [9] for problems of types 1, 3. For a problem of type
2 these estimates are proved in the same way, on the base of Theorem 5.2. In
comparison with the homogeneous case, we have nonconstant coefficients at the
equation in problem (4.2). So, we have to freeze the coefficients at the selected
points λj , it generates additional terms at the right-hand sides of the equations.
Precisely, we have

wj
t −

ν

ρ0(λj)
∆wj +

1
ρ0(λj)

∇qj = fηj + Q1 + Q2 + Q3 + Q4,
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where

Q1 = ν

(
1

ρ0(x)
− 1

ρ0(λj)

)
∆wj , Q2 =

(
1

ρ0(λj)
− 1

ρ0(x)

)
∇qj ,

Q3 =
1

ρ0(x)
q∇ηj −

ν

ρ0(x)
(w∆ηj + 2∇ηj · ∇w) ,

the term Q4 is arising only if we make a coordinate transform (in problem of
type 3) and has the form

Q4 =
1

ρ0(x)
(∇−∇1) qj +

ν

ρ0(x)
(
∇2

1 −∇2
)
wj ,

where ∇1 = F ∗∇, F is the Jacobi matrix of the inverse coordinate transform.
It is clear that to obtain the estimates for wj , qj in our case, we need to

supplement the reasoning given in [9] by consideration of the terms Q1, Q2. To
estimate these terms, we use the product lemma.

Lemma 6.1. (Corollary from Lemma 4.1 in [9]) For any functions a ∈ W 1+l
2 (Ω),

f ∈ H
l,l/2
γ (Ω × [0, T )), where Ω ⊂ R

3, the following estimate

‖af‖
H

l,l/2
γ (ΩT )

≤ ‖f‖
H

l,l/2
γ (ΩT )

(
c1 sup

Ω
|a(x)| + (ε + c2(ε)γ−1/2)‖a‖W 1+l

2

)
holds true.

By Lemma 6.1 we have

‖Q1‖H
l,l/2
γ (R3

T )
+ ‖Q2‖H

l,l/2
γ (R3

T )
≤ c3

(
‖wj‖

H
l+2,l/2+1
γ (R3

T )
+ ‖∇qj‖

H
l,l/2
γ (R3

T )

)
(

sup
supp(ηj)

|ρ0(λj) − ρ0(x)| + (ε + c4(ε)γ−1/2)‖ρ0‖W̃ 1+l
2

)
. (6.1)

Because of the fact that diam(supp(ηj)) < δ, by the embedding theorem, we
conclude that [9], [12]

sup
supp(ηj)

|ρ0(λj) − ρ0(x)| ≤ c5‖ρ0‖W l+1
2

δα, α ∈ (0, 1), α < l − 1/2. (6.2)

If we choose parameter ε sufficiently small and parameter γ sufficiently large, then
(6.1), (6.2) imply

‖Q1‖H
l,l/2
γ (R3

T )
+ ‖Q2‖H

l,l/2
γ (R3

T )
≤ 1

4

(
‖wj‖

H
l+2,l/2+1
γ (R3

T )
+ ‖∇qj‖

H
l,l/2
γ (R3

T )

)
.

(6.3)
Inequality (6.3) gives us the possibility to use calculations which was done in [9]
for the case of homogeneous fluid and arrive at the estimate

‖wζj‖2

H̃
l+2,l/2+1
γ (Ω0

T )
+ ‖∇(qζj)‖2

H̃
l,l/2
γ (Ω0

T )

≤ c6

(
‖w‖2

H̃
l+3/2,l/2+3/4
γ (Ω0

T )
+ ‖q‖2

H̃
l,l/2
γ (Ω0

T )
+ ‖q‖2

H̃
0,l/2
γ (ΓT )

+ ‖f‖2

H̃
l,l/2
γ (Ω0

T )

+‖ϕ‖2

H̃
l+1,l/2+1/2
γ (Ω0

T )
+ ‖Φ‖

H̃
l+1,l/2+1/2
γ (Ω0

T )
+ K

)
, (6.4)
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where

K = ‖d‖
H̃

l+1/2,l/2+1/4
γ (ΓT )

+ ‖b‖
H̃

l+1/2,l/2+1/4
γ (ΓT )

+ σ‖B‖
H̃

l−1/2,l/2−1/4
γ (ΓT )

and arising in the case when we have for wζj , qζj problem of type 3.
Then we summarize estimates (6.4) on j = 1, . . . , N , use interpolation in-

equality for the norm ‖w‖2

H̃
l+3/2,l/2+3/4
γ (Ω0

T )
, estimates for pressure obtained in [9],

[13] and arrive at (4.3).
It is clear that for any T < +∞ we can pass from weighted spaces H̃

l,l/2
γ (Ω0

T )
to the spaces W̃

l,l/2
2 (Ω0

T ), because they are equivalent for finite values of T. The
solvability theorem to problem (4.1) with v = 0 and nonhomogeneous initial con-
ditions is deduced from Theorem 4.1 with the help of construction of the auxiliary
vector field V ∈ W̃

2+l,1+l/2
2 (Ω0

T ) such that V
∣∣∣
t=0

= w0.

7. Nonlinear problem

We have at linear problem (4.1) the same known function ρ0(x) as at nonlinear
problem (3.1), consequently, the proof of Theorem 3.1 is similar to the case when
ρ = 1 and can be done by the same scheme. The solvability theorem for problem
(4.1) with v ∈ W̃

l+2,l/2+1
2 (Ω0

T ) satisfying the condition

T 1/2‖v‖(l+2,l/2+1)

Ω0
T

≤ δ

with a sufficiently small δ is proved by successive approximations. Based on this
theorem, Theorem 3.1 is proved also by successive approximations, solving on
every step problem (3.4). As on every step we have at the equations coefficients
depending on one and the same function ρ0(x), this passage is just the same as in
[10], [12].

Returning from Lagrangian coordinates ξ to Eulerian coordinates, we find
the density ρ(x) by the following formula ρ(x, t) = ρ0(ξ(x, t)).

References

[1] A.V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous
fluids, Doklady Akad. Nauk, 216 (1974), No. 5, 1008–1010.

[2] S.N. Antonsev and A.V. Kajikov, The mathematical problems of the dynamics of
nonhomogeneous fluids, Novosibirsk, Lectures of the University, 1973.

[3] O.A. Ladyzhenskaya and V.A. Solonnikov, On unique solvability of an initial-
boundary value problem for viscous incompressible nonhomogeneous liquids, Zap.
Nauchn. Semin. LOMI 52 (1975), 52–109 (English transl. in J. Soviet Math., 9
(1978), 697–749.)

[4] A.A. Arkhipova and O.A. Ladyzhenskaya, On inhomogeneous incompressible fluids
and reverse Holder inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 25 (1997), no.
4, 51–67.



124 E. Frolova

[5] J. Simon, Sur les fluides visqueux incompressibles et non-homogènes, C.R.A.S. Paris,
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Duality Principles for
Fully Nonlinear Elliptic Equations

Diogo Aguiar Gomes

Abstract. In this paper we use duality theory to associate certain measures to
fully-nonlinear elliptic equations. These measures are the natural extension of
the Mather measures to controlled stochastic processes and associated second-
order elliptic equations. We apply these ideas to prove new a priori estimates
for smooth solutions of fully nonlinear elliptic equations.

1. Introduction

This paper builds upon the connections between variational principles in classical
mechanics, such as Aubry-Mather theory, and viscosity solutions of Hamilton-
Jacobi equations and tries to illustrate how similar techniques can be used to study
fully nonlinear elliptic equations and associated controlled Markov processes.

The variational principle in Classical Mechanics asserts that the trajectories
x(·) of a mechanical system are critical points of the action:∫ T

0

L(x(t), ẋ(t))dt.

Of particular interest are the minimizers of the action. In Mather’s theory, the
problem of determining minimizers is relaxed and, instead, one looks for probabil-
ity measures µ(x, v) which are generalized curves, that is,∫

vDxφ(x)dµ = 0,

for all C1 functions φ(x) and minimize the action, which is:∫
L(x, v)dµ. (1)

Supported in part by FCT/POCTI/FEDER.
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The support of such minimizing measures, the Mather set, is invariant under the
Euler-Lagrange equations

d

dt
DvL(x, ẋ) − DxL(x, ẋ) = 0.

Since the work of J. Mather [Mat91] this area of research has been extremely
active. Several authors [E99], [Fat97a, Fat97b, Fat98a, Fat98b], [EG01a, EG01b],
among others, have studied the connection between Mather’s theory and Hamilton-
Jacobi partial differential equations. The minimization problem (1) is a infinite-
dimensional linear programming problem. The dual problem is related with the
stationary Hamilton-Jacobi equation

H(Dxu, x) = H. (2)

As in finite-dimensional linear programming, the dual problem yields important
information about the primal and vice versa. For instance, if µ is a minimizing
measure and u a solution of (2) then µ is supported on a graph (x, v(x)), with
v(x) is defined through

v(x) = −DpH(Dxu, x).
In the other direction, one can use the measure to prove partial regularity [EG01a,
Gom03] for the solutions to (2), and, in fact, one has∫

|D2
xxu|2dµ ≤ C,

which is a weaker version of the Lipschitz graph theorem for Mather sets [Mat91].
In this paper we focus our attention at the class of nonlinear elliptic operators

which have the form:

H(D2
xxu, Dxu, x) = sup

ω∈U
[−Aωu − L(ω, x)] .

The set U ⊂ Rm is the control space. We assume U to be a closed and convex
set. The linear operator Aωu is, for each ω, a (possibly degenerate) second-order
elliptic operator whose zeroth-order coefficient vanishes, that is,

Aωu = aω(x) : D2
xxu + bω(x) · Dxu,

in which a : b = Tr(aT b). We assume that the Lagrangian L(ω, x) is a convex and
superlinear (if U is unbounded) function in ω. Observe that H(M, p, x) is jointly
convex in (M, p) and monotone in M , that is,

H(M + B, p, x) ≥ H(M, p, x)

for all non-negative matrices B. This class of operators arises in controlled Stochas-
tic Dynamics and has been studied extensively, see, for instance, [CC95], [FS93]
and the references therein for an introduction to fully nonlinear elliptic equations
and stochastic optimal control theory.

We are particularly interested in periodic solutions to the stationary Hamil-
ton-Jacobi equation

H(D2
xxu, Dxu, x) = H.
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We associate to this equation a variational problem in a space of measures. The
dual of this variational problem is closely related with the Hamilton-Jacobi equa-
tion. We apply these methods to study regularity of second-order Hamilton-Jacobi
equations, extending some of the results from [Gom02b] concerning generalizations
of Aubry-Mather theory to a stochastic setting.

The outline of the paper is as follows: in Section 2 we prove a representation
formula for H , and study its connections with generalized Mather measures. In
Section 3 we study some applications to prove a priori regularity results for smooth
solutions.

2. Duality

Proposition 1. There is at most one value H for which

H(D2
xxu, Dxu, x) = H. (3)

has a periodic viscosity solution.

Proof. Suppose, by contradiction, H1 > H2 are such that (3) admits a viscosity
solutions u1 and u2 for H = H1, H2. We may assume v1 ≡ u1 + C > u2, for a
sufficiently large positive constant C. For ε sufficiently small

εv1 + H(D2
xxv1, Dxv1, x) ≥ εu2 + H(D2

xxu2, Dxu2, x).

in the viscosity sense. The comparison principle for viscosity solutions implies
v1 ≤ u2, which is a contradiction. �

Proposition 2. Suppose that there exists a viscosity solution u of (3) then

H = inf
φ∈C2

per

sup
x

H(D2
xxφ, Dxφ, x). (4)

in which the infimum is taken over all C2 periodic functions.

Remark. In the case of first-order Hamiltonians this was proved in [CIPP98]. A
proof for a special class of second-order equations can be found in [Gom02b]
Proof. Let

H
∗

= inf
φ∈C2

per

sup
x

H(D2
xxφ, Dxφ, x).

At some point x0, u − φ has a local minimum. By the viscosity property

H(D2
xxφ, Dxφ, x0) ≥ H.

which implies H
∗ ≥ H .

To prove the reverse inequality we need to recall a few facts concerning the
sup convolution whose proof can be found in [FS93].

Lemma 1. Suppose u is a viscosity of (3). Define

uε(x) = sup
y

[
u(y) − |x − y|2

ε

]
.
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Then
1. uε → u uniformly as ε → 0,
2. uε is semiconvex,
3. uε satisfies

H(D2
xxuε, Dxuε, x) ≤ H + O(ε),

in the viscosity sense and almost everywhere.

Set vε = uε ∗ ηε. Then

H(D2
xxvε, Dxvε, x) ≤ H + O(ε),

thus H
∗ ≤ H . �

This representation formula can be best understood in light of a dual problem
that involves generalized Mather measures. Choose a function γ : T

n × U → R,
γ ≥ 1, that satisfies

lim
|ω|→∞

L(x, ω)
γ(ω)

= +∞ lim
|ω|→∞

|ω|
γ(ω)

= 0,

we use the convention that if U is bounded then the previous identities are trivially
satisfied.

Let M be the set of Radon measures on Tn × U that satisfy∫
Tn×U

γdµ ≤ ∞.

Note that M can be identified with the dual space of C0
γ(Tn ×U), that is, the set

of continuous functions φ such that

‖φ‖γ = sup
Tn×U

∣∣∣∣φγ
∣∣∣∣ lim

|ω|→∞
φ

γ
= 0.

Define M0 to be the set of all measures in M that satisfy the constraint∫
Tn×U

Aωφdµ = 0

for all φ ∈ C2(Tn). Let M1 ⊂ M be the set of all positive probability measures
that belong to M.

We look for measures in M0 ∩M1 that minimize the action∫
Tn×U

L(ω, x)dµ.

If L is strictly convex in ω and Aω is linear in ω then ω = ω(x) almost
everywhere in the support of µ. However, we do not make this assumption and
will work in a more general framework.

This variational problem is, in fact, a linear programming problem, in an
infinite-dimensional space, and by Fenchel-Rockafellar duality theory [Roc66] it
admits a dual problem. This is close in spirit to the papers [VL78a], [VL78b],
[LV80], [FV89], [FV88] and [Fle89], in which Fenchel-Rockafellar duality theory is
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used to analyze optimal control problems. In the first order case this dual problem
has been identified and studied [CIPP98] and involves a Hamilton-Jacobi equation.

Before proceeding we need to recall some facts concerning convex duality.
Let E be a Banach space with dual E′. The pairing between E and E′ is denoted
by (·, ·). Suppose h1 : E → (−∞, +∞] is a convex, lower semicontinuous function.
The Legendre-Fenchel transform h∗

1 : E′ → [−∞, +∞] of h1 is defined by

h∗
1(y) = sup

x∈E
(−(x, y) − h1(x)) ,

for y ∈ E′. Similarly, for concave, upper semicontinuous functions h2 : E →
(−∞, +∞] we define

h∗
2(y) = inf

x∈E
(−(x, y) − h2(x)) .

Theorem 1 (Rockafellar [Roc66]). Let E be a locally convex Hausdorff topological
vector space over R with dual E∗. Suppose h1 : E → (−∞, +∞] is convex and
lower semicontinuous, h2 : E → [−∞, +∞) is concave and upper semicontinuous.
Then

sup
x

h2(x) − h1(x) = inf
y

h∗
1(y) − h∗

2(y), (5)

provided that either h1 or h2 is continuous at some point where both functions are
finite.

To apply this theorem we define two functions h1 and h2 on C0
γ(Tn ×U) and

consider the dual problem of

sup
φ∈C0

γ(Tn×U)

h2(φ) − h1(φ).

The first function is defined by

h1(φ) = sup
(x,ω)∈Tn×U

[−φ(x, ω) − L(x, ω)] .

Let
C = cl

{
φ : φ = Aωϕ, ϕ ∈ C2(Tn)

}
,

and set

h2(φ) =

{
0 if φ ∈ C
−∞ otherwise.

Proposition 3. We have

h∗
1(µ) =

{∫
Ldµ if µ ∈ M1

+∞ otherwise,

and

h∗
2(µ) =

{
0 if µ ∈ M0

−∞ otherwise.
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Proof. The Legendre-Fenchel transform h∗
1 of h1 is

h∗
1(µ) = sup

φ∈C0
γ(Tn×U)

(
−
∫

φdµ − h1(φ)
)

.

We claim that for all non-positive measures µ, h∗
1(µ) = ∞.

Lemma 2. If µ 
≥ 0 then h∗
1(µ) = +∞.

Proof. If µ 
≥ 0 there is a sequence of non-negative functions φn ∈ C0
γ(Tn × U)

such that ∫
−φndµ → +∞.

Thus, since L ≥ 0,
sup

Tn×U
−φn − L ≤ 0.

Thus, if µ 
≥ 0, then h∗
1(µ) = +∞. �

Lemma 3. If µ ≥ 0 then

h∗
1(µ) ≥

∫
Ldµ + sup

ψ∈C0
γ(Tn×U)

(∫
ψdµ − supψ

)
.

Proof. Let Ln be a sequence of functions in C0
γ(Tn × U) increasing pointwise to

L. Any function φ in C0
γ(Tn ×U) can be written as φ = −Ln −ψ, for some ψ also

in C0
γ(Tn × U). Therefore

sup
φ∈C0

γ(Tn×U)

(
−
∫

φdµ − h1(φ)
)

= sup
ψ∈C0

γ(Tn×U)

(∫
Lndµ +

∫
ψdµ − sup(Ln + ψ − L)

)
.

Note that Ln − L ≤ 0 implies

sup
Tn×U

Ln − L ≤ 0,

thus
sup

Tn×U
(Ln + ψ − L) ≤ sup

Tn×U
ψ.

Thus

sup
φ∈C0

γ(Tn×U)

(
−
∫

φdµ − h1(φ)
)

≥ sup
ψ∈C0

γ(Tn×U)

(∫
Lndµ +

∫
ψdµ − sup(ψ)

)
.
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By the monotone convergence theorem
∫

Lndµ →
∫

Ldµ. Therefore

sup
φ∈C0

γ(Tn×U)

(
−
∫

φdµ − h1(φ)
)

≥
∫

Ldµ + sup
ψ∈C0

γ(Tn×U)

(∫
ψdµ − sup(ψ)

)
,

as required. �
If
∫

Ldµ = +∞ then h∗
1(µ) = +∞. Also if

∫
dµ 
= 1 then

sup
ψ∈C0

γ(D)

(∫
ψdµ − supψ

)
≥ sup

α∈R

α(
∫

dµ − 1) = +∞,

by taking ψ ≡ α, constant. So, h∗
1(µ) = +∞, and therefore a finite value of h∗

1 is
only possible if

∫
dµ = 1.

If
∫

dµ = 1 we have, from the previous lemma,

h∗
1(µ) ≥

∫
Ldµ,

by taking ψ ≡ 0.
Also, for any function φ∫

(−φ − L)dµ ≤ sup
Tn×U

(−φ − L),

if
∫

dµ = 1. Hence

sup
φ∈C0

γ(Tn×U)

(
−
∫

φdµ − h1(φ)
)

≤
∫

Ldµ.

Thus

h∗
1(µ) =

{∫
Ldµ if µ ∈ M1

+∞ otherwise.

Now we compute h∗
2. Note that if µ 
∈ M0 there exists φ̂ ∈ C such that∫

φ̂dµ 
= 0.

and so
inf
φ∈C

−
∫

φdµ ≤ inf
α∈R

α

∫
φ̂dµ = −∞.

If µ ∈ M0 then
∫

φdµ = 0, for all φ ∈ C. Therefore

h∗
2(µ) = inf

φ∈C
−
∫

φdµ =

{
0 if µ ∈ M0

−∞ otherwise.
�

Theorem 1 yields then

sup
φ∈C0

γ(Tn×U)

h2(φ) − h1(φ) = inf
µ∈M

h∗
1(µ) − h∗

2(µ),
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provided we prove that h1 is continuous on the set h2 > −∞. This is the content
of the next lemma.

Lemma 4. h1 is continuous.

Proof. Suppose φn → φ in C0
γ . Then ‖φn‖γ and ‖φ‖γ are bounded uniformly by

some constant C. The growth condition on L implies that there exists R > 0 such
that

sup
Tn×U

−φ̂ − L = sup
T n×(BR∩U)

−φ̂ − L,

for all φ̂ in C0
γ(Tn × U) with ‖φ̂‖γ < C. On BR ∩ U , φn → φ uniformly and so

sup
Tn×U

−φn − L → sup
Tn×U

−φ − L. �

The next theorem summarizes the main result of this section.

Theorem 2.

H = − inf
µ∈M0∩M1

∫
Ldµ. (6)

Proof. This is a corollary to Proposition 2 and the duality result proved above. �

3. A priori estimates

In this section we apply the ideas from the previous section to prove a-priori bounds
for smooth solutions of second-order nonlinear equations such as the maximal
eigenvalue operator, streamline diffusion controlled dynamics, and mean curvature
flow.

Proposition 4. Let u be a smooth periodic solution to

H(D2
xxu, Dxu, x) = H,

and µ a corresponding Mather measure. Then

ω ∈ argmin [Aωu + L(x, ω)]

µ almost everywhere.

Proof. Since
−H = −H(D2

xxu, Dxu, x) ≤ Aωu + L(x, ω),

with equality if and only if ω ∈ argmin [Aωu + L(x, ω)], integrating with respect
to µ yields

−H ≤
∫

L(x, ω)dµ,

and, unless
ω ∈ argmin [Aωu + L(x, ω)] ,

µ-a.e. this would yield a contradiction. �
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Proposition 5. Suppose u is a smooth periodic solution to

H(D2
xxu, Dxu, x) = H.

Then, µ almost everywhere,

Aωϕ = aω : D2
xxϕ + bω · Dxϕ,

for any φ ∈ C2(Tn), with

aω = −DMH(D2
xxu, Dxu, x),

and

bω = −DpH(D2
xxu, Dxu, x).

Proof. It suffices to observe that almost everywhere in the support of µ one has

Aωu + L(x, ω) = −H(D2
xxu, Dxu, x),

and, for any ϕ ∈ C2(Tn)

Aω(u + εϕ) + L(x, ω) ≥ −H(D2
xx(u + εϕ), Dx(u + εϕ), x).

Thus, by subtracting the last two equations and sending ε → 0 one gets the
theorem. �

Theorem 3. Suppose u is a smooth periodic solution to

H(D2
xxu, Dxu, x) = H.

Then u satisfies the following a priori identity: let ξ ∈ R
n be arbitrary, then∫ [

HMijMlm
ξkD3

xixjxk
uξk′D3

xixjxk′ u + 2HMijpmξkD3
xixjxk

uξk′D2
xmxk′u

+Hpipj ξkD2
xixk

uξk′D2
xjxk′u

]
dµ

= −
∫ [

2HMijxmξkD3
xixjxk

u + ξk′2Hpixk′ ξkD2
xixk

u + ξk′Hxkxk′

]
dµ.

Remark. Note that the left-hand side of this estimate is a non-negative quadratic
form on D2(Dξu) and D(Dξu) since H(M, p, x) is jointly convex in M and p and
the right-hand side depends on lower-order terms. Therefore this identity yields
an a priori estimate for second and third derivatives.

Proof. By differentiating the equation

H(D2
xxu, Dxu, x) = H

with respect to xk and multiplying by ξk we obtain

HMij ξkD3
xixjxk

u + HpiξkD2
xixk

u + ξkHxk
= 0.
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Differentiating this last expression with respect to xk′ and multiplying by ξk′ we
obtain

HMijMlm
ξkD3

xixjxk
uξk′D3

xixjxk′ u + 2HMijpmξkD3
xixjxk

uξk′D2
xmxk′u

+ Hpipj ξkD2
xixk

uξk′D2
xjxk′ u + 2HMijxmξkD3

xixjxk
u

+ 2ξk′Hpixk′ ξkD2
xixk

u + ξkξk′Hxkxk′ + HMij ξkξk′D4
xixjxkxk′ u

+ ξkξk′HpiD
3
xixkxk′u = 0.

Integrating with respect to µ, and observing that the last two terms integrate to
0 since

HMij ξkξk′D4
xixjxkxk′ u + ξkξk′HpiD

3
xixkxk′u

= HMij D
2
xixj

(D2
ξξu) + HpiDxi(D

2
ξξu),

we obtain the result. �

Next, we briefly illustrate the estimates discussed above for a fully nonlinear
second-order equation. Let u be a periodic solution to the one-dimensional equation

euxx +
u2

x

2
+ V (x) = H.

The projection θ(x) of a minimizing measure in the x-axis satisfies

(θ(x)euxx)xx − (θux)x = 0,

weakly as a measure. Furthermore∫ [
euxxu2

xxx + u2
xx

]
θdx ≤ C.

There are several important examples for which these estimates apply, two
of them, the Stochastic Mather problem [Gom02b]

Aωu + L(x, ω) = ∆u + ω · Dxu +
|ω|2
2

− V (x),

and the vakonomic mechanics operator [Gom02a]

Aωu + L(x, ω) = ωf(x) · Dxu +
|ω|2
2

− V (x),

have been studied in detail. However, important cases such as the maximal eigen-
value operator

Aωu =
ω ⊗ ω

|ω|2 : D2
xxu,

the related streamline-diffusion controlled dynamics problem

Aωu + L(x, ω) =
ω ⊗ ω

|ω|2 : D2
xxu + ω · Dxu +

|ω|2
2

+ V (x),



Duality Principles for Fully Nonlinear Elliptic Equations 135

and the mean curvature flow (see [ST02] for a control theory formulation of the
mean curvature flow) with drift

Aωu + L(x, ω) = (I − ω ⊗ ω

|ω|2 ) : D2
xxu + b(x)Dxu + V (x),

have not been studied using these techniques. We believe that our estimates and
ideas may give important insight on these problems.
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On the Bénard Problem

Giovanna Guidoboni and Mariarosaria Padula

Abstract. In literature there is no mathematical proof of the experimentally
trivial stability of the rest state for a layer of compressible fluid heated from
above. In the case of layer heated from below it is known that the system shows
a threshold in the temperature gradient below which the fluid is not sensible
to the imposed difference of temperature. Only semi-empirical justifications
are available for this phenomenon, see [6].

Neglecting the thermal conductivity, we are able to prove that for a layer
of compressible fluid between two rigid planes kept at constant temperature,
the rest state is linearly stable for every values of the parameters involved
in two cases: a) the layer is heated from above; b) the layer is heated from
below and the imposed gradient of temperature is less than a precise quantity,
namely g/cp, where g is the gravity constant, and cp is the specific heat at
constant pressure, known as adiabatic gradient.

1. Introduction

This represents part of a research on the Bénard problem shared with professor
T. Nishida, who should be considered morally as coauthor.

In the literature the Bénard problem refers to investigation of the onset of
convection in a horizontal layer of fluid heated from below. If we do not consider
surface effects (e.g., fluid between rigid planes), buoyancy rules the instability:
hotter particles are lighter and tend to rise as colder particles tend to sink accord-
ing to the action of the gravity force. To take this effect into account rigorously,
the density should be variable and then the compressible scheme should be used.
Since this approach is very complicated, to model the problem it is adopted the
Boussinesq approximation where the density is considered as a constant in all the
terms of the equations except for the gravity term in which it is assumed to vary
linearly with the temperature (see [3]).

Actually this approximation is reasonable only if the thickness of the layer is
small and then a large class of physical phenomena are left aside, as, e.g., convec-
tion in stars.
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This justifies the large extent of literature concerning a comparison between
the equations governing the real convection and those of the Boussinesq approxi-
mation. Here we wish to give small remarks on this subject considering the case of
a layer between rigid planes kept at constant temperature: mainly our observations
concern the most trivial case of a fluid heated from above.

Let us indicate with Θ0 and Θ1 the temperatures of the lower and the up-
per plane respectively. On one hand, if Θ1 > Θ0 (layer heated from above) it is
expected that the rest state is always nonlinearly stable, however, stability has
been proven only in the Boussinesq approximation, (see [3]). On the other hand, if
Θ1 < Θ0 (layer heated from below) experimentally the rest state is stable only if
the Rayleigh number is sufficiently small. By linear methods, for the general com-
pressible scheme, it is possible to compute only critical Rayleigh number Rc below
which there holds linear stability, above which also nonlinear instability holds (see
[1]). It is worth of notice that in the Boussinesq scheme the critical number Rc

ensures nonlinear stability too! This fact explains the reason of the success of the
Boussinesq method.

Our work begins just by noticing that in literature there is no mathematical
proof of the experimentally trivial stability for a layer of compressible fluid heated
from above. Moreover, in the case of Θ1 < Θ0 it is known that the system shows a
threshold in the temperature gradient below which the fluid is not sensible to the
imposed difference of temperature. Only semi-empirical justifications are available
for this phenomenon, see, e.g., Jeffreys [6].

Object of this note is to give rigorous mathematical proofs of facts that have
experimental evidence. Unfortunately we give only partial answers, precisely, for
zero thermal conductivity.

Actually, neglecting thermal conductivity, we are able to prove that for a
layer of compressible fluid between two rigid planes kept at constant temperature,
the rest state is linearly stable for every values of the parameters involved if

• the layer is heated from above; (see Section 3)
• the layer is heated from below and the imposed gradient of temperature is

less than a precise quantity, namely g/cp, where g is the gravity constant,
and cp is the specific heat at constant pressure, known as adiabatic gradient,
(see Section 4) the same that we find in Jeffreys’ paper.

Since the method employed is the energy method, the proof could infer also
nonlinear stability for small initial data, only if the kinematic and thermal diffu-
sivity are non zero, which is not our case!

We are conscious that the action of thermal conductivity cannot be neglected
because it acts in favor of stability, therefore our note should be considered only
as starting point, and we hope that these results could throw more light in the
comprehension of these phenomena. We expect that the terms related to the ther-
mal conductivity are dissipative but we were not able to prove their sign. We are
performing numerical computations to check if these terms can in some cases have
a destabilizing effect.
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The plane of the work is the following: in Section 2 we remind the Boussinesq
approximation; then, we study linear stability criteria for a compressible fluid
heated from above (in Section 3) and from below (in Section 4). The stability
criteria are deduced by use of the classical Liapunov method [2], [10], [9], however
for inviscid fluids, we have been not able to extend these results to the rigorous
nonlinear scheme.

2. Boussinesq approximation

Let us consider a horizontal layer of fluid bounded by two rigid planes. Let us
consider a cartesian coordinates system upward directed whose origin lies on the
lower plane. We consider a periodicity cell Σ in the horizontal direction and then
the domain is Ω = Σ × [z0, z0 + d]. In the Boussinesq approximation (see [3]) the
equations of motion are:⎧⎪⎪⎨⎪⎪⎩

∇ · u = 0

�0[∂tu + (u · ∇)u] = −∇p + µ∆u − g�0[1 − α(Θ − Θ0)]e3

cv�0[∂tΘ + (u · ∇)Θ] = χ∆Θ

(2.1)

where u is the velocity field, p the pressure, Θ the temperature, �0 the density,
α the coefficient of volume expansion, µ the dynamic viscosity, g the acceleration
of gravity, cv the specific heat at constant volume, χ the coefficient of termal
conductivity. We add the following boundary conditions:⎧⎨⎩ u = 0 at z = z0, z0 + d

Θ = Θ0 at z = z0

Θ = Θ1 at z = z0 + d.
(2.2)

A stationary solution of the previous problem is the rest state:

ur = 0, Θr = β0(z − z0) + Θ0 (2.3)

where β0 = Θ1 −Θ0/d is the imposed gradient of temperature. It is positive if the
layer is heated from above, negative otherwise.

We now have to write the problem in a dimensionless form. We introduce the
Rayleigh number and the Prandtl number defined as follows:

R =

√
gα|β0|d4�2

0cv

χµ
, Pr =

µcv

χ
. (2.4)

We remark that R is positive both in the case of layer heated from above and
below. Taking d, �d2/µ,

√
gα|β0|d2χ/cvµ, |β0|d,

√
gα|β0|χµ/cv as units of length,

time, velocity, temperature and pressure, we can write the dimensionless equations
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for the perturbations:⎧⎪⎨⎪⎩
∇ · u = 0

∂tu +
R

Pr
u · ∇u = −∇π + ∆u + Rθe3

Pr∂tθ + Ru · ∇θ = ∆θ − Ru · ∇Θ̃r

(2.5)

where u, π, θ are the dimensionless perturbations to the velocity, the pressure and
the temperature respectively, and ∇Θ̃r is the dimensionless temperature gradient
at the rest state. It is useful to remark that:

layer heated from above → ∇Θ̃r = e3

layer heated from below → ∇Θ̃r = −e3 .

The boundary conditions now read:{
u = 0 at z = Z0, Z0 + 1
θ = 0 at z = Z0, Z0 + 1 (2.6)

where Z0 = z0/d.
Multiplying scalarly in L2 (2.5)2 by u and (2.5)3 by θ we get:

1
2

d

dt
E =

1
2

d

dt
(‖u‖2+Pr‖θ‖2) = −‖∇u‖2−‖∇θ‖2+R

∫
Ω

θu3−R

∫
Ω

θu ·∇Θ̃r (2.7)

where ‖ · ‖ indicates the L2-norm on Ω.
In the case of layer heated from above

1
2

d

dt
E = −‖∇u‖2 − ‖∇θ‖2 (2.8)

which means that the rest state is nonlinearly stable for every R.
In the case of layer heated from below

1
2

d

dt
E = −‖∇u‖2 − ‖∇θ‖2 + 2R

∫
Ω

θu3 (2.9)

the rest state is stable only if R is small enough.

3. Compressible scheme: layer heated from above

The nonlinear stability of the rest state for a layer of compressible fluid heated from
below has been studied by Padula and Coscia [4], Padula and Benabidallah [2].
Actually the investigation of the stability of the rest state in the case of layer heated
from above is not immediate as in the previous section. This is the reason why in
the following we are dealing with the linearized equations for the perturbations:
we try to obtain some information from the simplified problem.

We consider separately the case of layer heated from above and below. We
begin with the first case.
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Let us consider a horizontal layer of fluid in the same frame of reference
described in the previous section. Let us consider a perfect gas

p = R∗�Θ (3.1)

where R∗ = cp − cv, and cp is the specific heat at constant pressure. The Navier-
Stokes equations for a viscous newtonian compressible fluid are:⎧⎪⎪⎨⎪⎪⎩

∂t� + ∇ · (�u) = 0

�[∂tu + (u · ∇)u] = −R∗∇(�Θ) + µ∆u + (µ + λ)∇(∇ · u) − g�e3

cv�[∂tΘ + (u · ∇)Θ] = χ∆Θ − R∗�Θ∇ · u + V : D

(3.2)

where D = (∇u+∇Tu)/2 is the rate-of-strain tensor and V = λ∇·u+2µD. The
domain is Ω = Σ × (z0, z0 + d), where Σ is the periodicity cell in the horizontal
plane. The boundary conditions:⎧⎨⎩ u = 0 at z = z0, z0 + d

Θ = Θ0 at z = z0

Θ = Θ1 at z = z0 + d.
(3.3)

Let us introduce a new dimensionless variable for the height

ζ =
z − z0

d
+

Θ0

β0d
, (3.4)

where we recall the definition of the imposed temperature gradient

β0 =
Θ1 − Θ0

d
> 0. (3.5)

The rest state Sr = (ur, Θr, �r) is then

ur = 0, Θr = β0dζ, �r = �0ζ
−m (3.6)

where
m = 1 +

g

R∗β0
. (3.7)

Since ζ is dimensionless, β0d and �0 have the dimensions of temperature and
density respectively. They will be taken as units of scale of the corresponding
quantities.

Let us consider a perturbed motion S = (u, Θ, �) with

u, Θ = Θr + θ, � = �r + σ (3.8)

where u, θ and σ are the disturbances in the velocity, temperature and density
respectively.

We write the linear equations for the disturbances:⎧⎪⎪⎨⎪⎪⎩
∂tσ + ∇ · (�ru) = 0

�r∂tu = −R∗∇(�rθ) − R∗∇(σΘr) + µ∆u + (µ + λ)∇(∇ · u) − gσe3

cv�r[∂tθ + (u · ∇)Θr] = χ∆θ − R∗�rΘr∇ · u.

(3.9)
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Let introduce the following dimensionless groups:

A = d/tV
B = V/R∗β0t
D1 = µV/R∗�0β0d

2

D2 = χ/R∗�0dV
l = 1 + λ/µ
n = cv/R∗

(3.10)

where d is the distance between the planes, t and V are the units of time and
velocity respectively.

Using (3.6) the dimensionless equations become:⎧⎪⎪⎨⎪⎪⎩
A∂tσ = −∇ · (ζ−mu)

Bζ−m∂tu = D1∆u + lD1∇(∇ · u) −∇(ζ−mθ) −∇(ζσ) + (1 − m)σ∇ζ

nAζ−m∂tθ = D2∆θ − nζ−mu · ∇ζ − ζ−m+1∇ · u.
(3.11)

This is not the usual dimensional analysis but it turns out to be useful from the
view point of mathematics since it puts the right-hand side of the equations in a
handling form.

Let us consider (3.11)2. We can see that:

−∇(ζσ) + (1 − m)σ∇ζ = −ζ∇σ − mσ∇ζ (3.12)

but since

∇(ζmσ) = mζm−1σ∇ζ + ζm∇σ (3.13)

the (3.11)2 reads

Bζ−m∂tu = D1∆u + lD1∇(∇ · u) −∇(ζ−mθ) − ζ−m+1∇(ζmσ) . (3.14)

Let us now consider (3.11)3. Noticing that

−nζ−mu · ∇ζ − ζ−m+1∇ · u = −ζ−m−n+1∇ · (ζnu) (3.15)

the (3.11)3 reads

nAζ−m∂tθ = D2∆θ − ζ−m−n+1∇ · (ζnu) . (3.16)

Then the equations (3.11) become⎧⎪⎪⎨⎪⎪⎩
A∂tσ = −∇ · (ζ−mu)

Bζ−m∂tu = D1∆u + lD1∇(∇ · u) −∇(ζ−mθ) − ζ−m+1∇(ζmσ)

nAζ−m∂tθ = D2∆θ − ζ−m−n+1∇ · (ζnu) .

(3.17)
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3.1. Case D2 = 0
We consider here a fluid whose thermal conductivity is equal to zero. The equations
are simply⎧⎪⎪⎨⎪⎪⎩

A∂tσ = −∇ · (ζ−mu)

Bζ−m∂tu = D1∆u + lD1∇(∇ · u) −∇(ζ−mθ) − ζ−m+1∇(ζmσ)

nAζ−m∂tθ = −ζ−m−n+1∇ · (ζnu) .

(3.18)

Remark 1. In this case temperature profile at rest state is not determined and can
be taken arbitrarily. We consider a linear profile in analogy with the classical case.

Multiplying scalarly in L2 (3.18)1 by ζm+1σ we obtain:
A

2
d

dt

∫
Ω

ζm+1σ2 = −
∫

Ω

ζm+1σ∇ · (ζ−mu) . (3.19)

Multiplying scalarly in L2 (3.18)2 by u we obtain:
B

2
d

dt

∫
Ω

ζ−mu2 = −D1‖∇u‖2− lD1‖∇·u‖2 +
∫

Ω

ζ−mθ∇·u+
∫

Ω

ζmσ∇· (ζ−m+1u) .

(3.20)
Multiplying scalarly in L2 (3.18)3 by ζ−1θ we obtain:

n
A

2
d

dt

∫
Ω

ζ−m−1θ2 = −
∫

Ω

ζ−m−nθ∇ · (ζnu) . (3.21)

Multiplying scalarly in L2 (3.18)1 by nθ, (3.18)3 by ζmσ and adding the
resulting equations we obtain:

nA
d

dt

∫
Ω

σθ = −n

∫
Ω

θ∇ · (ζ−mu) −
∫

Ω

ζ−n+1σ∇ · (ζnu) . (3.22)

Adding to (3.20) the (3.19), (3.21) and (3.22) multiplied respectively by the
coupling constants λ1, λ2 and λ3 respectively, we obtain:

dE
dt

= −D1‖∇u‖2 − lD1‖∇ · u‖2 + F (3.23)

where

E =
∫

Ω

{
B

2
ζ−mu2 + λ1

A

2
ζm+1σ2 + λ2n

A

2
ζ−m−1θ2 + λ3nAσθ

}

F = [1 − λ2 − λ3n]
∫

Ω

ζ−mθ∇ · u + [1 − λ1 − λ3]
∫

Ω

ζσ∇ · u

+[−m + 1 + mλ1 − nλ3]
∫

Ω

σw + [−nλ2 + mnλ3]
∫

Ω

ζ−m−1θw

where w is the vertical component of the velocity. It is possible to choose the
coupling constants in such a way that F = 0:

λ1 = 1 − 1
m + n

λ2 =
m

m + n
λ3 =

1
m + n

. (3.24)
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The energy functional now reads:

E=
∫

Ω

{
B

2
ζ−mu2 +

(
1− 1

m+n

)
A

2
ζm+1σ2 +

mn

m+n

A

2
ζ−m−1θ2 +

n

m+n
Aθσ

}
(3.25)

and we ask it is positive definite. A sufficient condition is that(
1 − 1

m + n

)
mn

m + n
>

n2

(m + n)2
(3.26)

which gives
(m + n)(m − 1) > 0 . (3.27)

We remind that

m = 1 +
g

R∗β0
n =

cv

R∗
R∗ = cp − cv (3.28)

and β0 is positive since the layer is heated from the top. In this case (3.27) is always
satisfied and the linear stability of the rest state follows from the inequality:

dE
dt

= −D1‖∇u‖2 − lD1‖∇ · u‖2 ≤ 0 . (3.29)

Remark 2. Case D2 
= 0
If we consider D2 
= 0 we obtain:

d

dt
E = −D1‖∇u‖2 − lD1‖∇ · u‖2 + λ2D2

∫
Ω

∆θ
θ

ζ
+ λ3D2

∫
Ω

∆θζmσ .(3.30)

Now we have the last two terms more whose sign is not defined.

4. Compressible scheme: layer heated from below

In this case we cannot anymore use the variable ζ in the same way, since it would
be negative! Then we take another frame of reference, with the origin on the upper
plane, downward directed. We rewrite the problem and redo the computations in
this new scenario:⎧⎪⎪⎨⎪⎪⎩

∂t� + ∇ · (�u) = 0

�[∂tu + (u · ∇)u] = −R∗∇(�Θ) + µ∆u + (µ + λ)∇(∇ · u) + g�e3

cv�[∂tΘ + (u · ∇)Θ] = χ∆Θ − R∗�Θ∇ · u + V : D

(4.1)

where D = (∇u+∇Tu)/2 is the rate-of-strain tensor and V = λ∇·u+2µD. The
domain is Ω = Σ × (z0, z0 + d), where Σ is the periodicity cell in the horizontal
plane. The boundary conditions:⎧⎨⎩ u = 0 at z = z0, z0 + d

Θ = Θ1 at z = z0

Θ = Θ0 at z = z0 + d
(4.2)
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Let us define the imposed temperature gradient

β0 =
Θ0 − Θ1

d
> 0. (4.3)

Let us introduce a new dimensionless variable for the height

ζ =
z − z0

d
+

Θ1

β0d
. (4.4)

The rest state Sr = (ur, Θr, �r) is then

ur = 0, Θr = β0dζ, �r = �0ζ
m (4.5)

where now
m =

g

R∗β0
− 1 (4.6)

is slightly different than the previous case. The one defined in the previous section
is always positive, while the parameter defined in (4.6) is positive if β0 < g/R∗,
and negative if β0 > g/R∗.

Following the line of the previous section, we write the linear equations for
the disturbances:⎧⎪⎪⎨⎪⎪⎩

∂tσ + ∇ · (�ru) = 0

�r∂tu = −R∗∇(�rθ) − R∗∇(σΘr) + µ∆u + (µ + λ)∇(∇ · u) + gσe3

cv�r[∂tθ + (u · ∇)Θr] = χ∆θ − R∗�rΘr∇ · u.

(4.7)

Introducing the dimensionless groups already defined, we write the dimen-
sionless equations:⎧⎪⎪⎨⎪⎪⎩

A∂tσ = −∇ · (ζmu)

Bζm∂tu = D1∆u + lD1∇(∇ · u) −∇(ζmθ) −∇(ζσ) + (1 + m)σ∇ζ

nAζm∂tθ = D2∆θ − nζmu · ∇ζ − ζm+1∇ · u.

(4.8)

Let us consider (4.8)2. We can see that:

−∇(ζσ) + (1 + m)σ∇ζ = −ζ∇σ + mσ∇ζ (4.9)

but since
∇(ζ−mσ) = −mζ−m−1σ∇ζ + ζ−m∇σ (4.10)

the (4.8)2 reads

Bζm∂tu = D1∆u + lD1∇(∇ · u) −∇(ζmθ) − ζm+1∇(ζ−mσ) . (4.11)

Let us now consider (4.8)3. Noticing that

−nζmu · ∇ζ − ζm+1∇ · u = −ζm−n+1∇ · (ζnu) (4.12)

the (4.8)3 reads
nAζm∂tθ = D2∆θ − ζm−n+1∇ · (ζnu) . (4.13)



146 G. Guidoboni and M. Padula

Then the equations (4.8) become⎧⎪⎪⎨⎪⎪⎩
A∂tσ = −∇ · (ζmu)

Bζm∂tu = D1∆u + lD1∇(∇ · u) −∇(ζmθ) − ζm+1∇(ζ−mσ)

nAζm∂tθ = D2∆θ − ζm−n+1∇ · (ζnu) .

(4.14)

4.1. Case D2 = 0
The equations are simply⎧⎪⎪⎨⎪⎪⎩

A∂tσ = −∇ · (ζmu)

Bζm∂tu = D1∆u + lD1∇(∇ · u) −∇(ζmθ) − ζm+1∇(ζ−mσ)

nAζm∂tθ = −ζm−n+1∇ · (ζnu) .

(4.15)

Multiplying scalarly in L2 (4.15)1 by ζ1−mσ we obtain:

A

2
d

dt

∫
Ω

ζ1−mσ2 = −
∫

Ω

ζ1−mσ∇ · (ζmu) . (4.16)

Multiplying scalarly in L2 (4.15)2 by u we obtain:

B

2
d

dt

∫
Ω

ζmu2 = −D1‖∇u‖2 − lD1‖∇ · u‖2 +
∫

Ω

ζmθ∇ · u +
∫

Ω

ζ−mσ∇ · (ζm+1u) .

(4.17)
Multiplying scalarly in L2 (4.15)3 by ζ−1θ we obtain:

n
A

2
d

dt

∫
Ω

ζm−1θ2 = −
∫

Ω

ζm−nθ∇ · (ζnu) . (4.18)

Multiplying scalarly in L2 (4.15)1 by nθ, (4.15)3 by ζ−mσ and adding the
resulting equations we obtain:

nA
d

dt

∫
Ω

σθ = −n

∫
Ω

θ∇ · (ζmu) −
∫

Ω

ζ−n+1σ∇ · (ζnu) . (4.19)

Adding to (4.17) the (4.16), (4.18) and (4.19) multiplied respectively by the
coupling constants λ1, λ2 and λ3 respectively, we obtain:

dE
dt

= −D1‖∇u‖2 − lD1‖∇ · u‖2 + F (4.20)

where

E =
∫

Ω

{
B

2
ζmu2 + λ1

A

2
ζ1−mσ2 + λ2n

A

2
ζm−1θ2 + λ3nAσθ

}

F = [1 − λ2 − λ3n]
∫

Ω

ζmθ∇ · u + [1 − λ1 − λ3]
∫

Ω

ζσ∇ · u

+[m + 1 − mλ1 − nλ3]
∫

Ω

σw + [−nλ2 − mnλ3]
∫

Ω

ζm−1θw
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where w is the vertical component of the velocity. It is possible to choose the
coupling constants in such a way that F = 0:

λ1 = 1 − 1
n − m

λ2 =
m

m − n
λ3 =

1
n − m

. (4.21)

The energy functional now reads:

E =
∫

Ω

{
B

2
ζmu2 +

(
1 − 1

n − m

)
A

2
ζ1−mσ2 +

mn

m − n

A

2
ζm−1θ2 +

n

n − m
Aθσ

}
(4.22)

and we ask it is positive definite. A sufficient condition is that(
1 − 1

n − m

)
mn

m − n
>

n2

(m − n)2
(4.23)

which gives
(m + 1)(m − n) > 0 . (4.24)

which is satisfied if m − n > 0, alias if β0 < g/cp.
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Exact Boundary Controllability
for Quasilinear Wave Equations

Li Tatsien

First of all, I would like to give all my congratulations and
best wishes to our friend, Prof. V.A. Solonnikov, for his 70th birthday,

for his great contribution to partial differential equations
and for his health, success and happiness.

1. Introduction and main results

There are many publications concerning the exact controllability for linear hyper-
bolic systems (see [9], [10] and the references therein). Using the HUM method
suggested by J.-L. Lions [9] and Schauder’s fixed point theorem, E. Zuazua [12]
proved the global (resp. local) exact boundary controllability for semilinear wave
equations in the asymptotically linear case (resp. the super-linear case with suit-
able growth conditions).

Moreover, in the one-dimensional case, E. Zuazua [13] obtained the global
exact controllability for semilinear wave equations. On the other hand, using a
global inversion theorem, I. Lasiecka and R. Triggiani [2] gave the global exact
boundary controllability for semilinear wave equations in the asymptotically linear
case. However, even in the one-dimensional case, only a few results are known for
quasilinear wave equations.

Consider the following quasilinear wave equation

∂2u

∂t2
− ∂

∂x
(K(u,

∂u

∂x
)) = F (u,

∂u

∂x
,
∂u

∂t
), (1.1)

where K = K(u, v) is a given C2 function of u and v, such that

Kv(u, v) > 0, (1.2)

and F = F (u, v, w) is a given C1 function of u, v and w, satisfying

F (0, 0, 0) = 0. (1.3)
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On one end x = 0, we prescribe any one of the following boundary conditions:

u = h(t) (of Dirichlet type), (1.4.1)

ux = h(t) (of Neumann type), (1.4.2)

ux − αu = h(t) (of the third type) (1.4.3)
or

ux − ᾱut = h(t) (of the dissipative type), (1.4.4)

where α and ᾱ are given positive constants, h(t) is a C2 function (in case (1.4.1))
or a C1 function (in cases (1.4.2)–(1.4.4)).

Similarly, on another end x = 1, the boundary condition is

u = h̄(t) (of Dirichlet type), (1.5.1)

ux = h̄(t) (of Neumann type), (1.5.2)

ux + βu = h̄(t) (of the third type) (1.5.3)
or

ux + β̄ut = h̄(t) (of the dissipative type), (1.5.4)

where β and β̄ are given positive constants, h̄(t) is a C2 function (in case (1.5.1))
or a C1 function (in cases (1.5.2)–(1.5.4)).

In the case that K and F in equation (1.1) are independent of u, if on one
end, say, on x = 0, the boundary condition is of Dirichlet type, by means of the
theory on the semi-global C1 solution and the local exact boundary controllability
for quasilinear hyperbolic systems without zero eigenvalues, Li Tatsien and Rao
Bopeng [5] established the corresponding local exact boundary controllability with
the boundary control h̄(t) acting on another end x = 1; while, if on x = 0, the
boundary condition is of the third type, by means of the theory on the semi-global
C1 solution and the local exact boundary controllability for quasilinear hyper-
bolic systems without zero eigenvalues together with a kind of nonlocal boundary
conditions, Li Tatsien and Xu Yulan [7] established the corresponding local exact
boundary controllability with the boundary control h̄(t) acting on another end
x = 1. However, the method used in [5] and [7] cannot be applied to the following
cases: (1). K and F in equation (1.1) depend explicitly on u; (2). The boundary
condition on x = 0 is of Neumann type or of the dissipative type; (3). Boundary
controls are simultaneously given on both ends x = 0 and x = 1.

In this talk, we will present a unified method to get the local exact boundary
controllability with boundary controls acting on one end or on two ends for equa-
tion (1.1) with boundary conditions (1.4) and (1.5) of different types. The main
results are the following two theorems.

Theorem 1 (Exact boundary controllability with boundary controls acting on two
ends). Let

T >
1√

Kv(0, 0)
. (1.6)

For any given initial data (ϕ, ψ) and final data (Φ, Ψ) with small norms

‖(ϕ, ψ)‖C2[0,1]×C1[0,1] and ‖(Φ, Ψ)‖C2[0,1]×C1[0,1],
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there exist boundary controls h(t) and h̄(t) with small norms

‖h‖C2[0,T ] and ‖h̄‖C2[0,T ]

(for (1.4.1) and (1.5.1)) or with small norms

‖h‖C1[0,T ] and ‖h̄‖C1[0,T ]

(for (1.4.2)–(1.4.4) and (1.5.2)–(1.5.4)), such that the mixed initial-boundary value
problem for equation (1.1) with the initial condition

t = 0 : u = ϕ(x), ut = ψ(x), 0 ≤ x ≤ 1, (1.7)

one of the boundary conditions (1.4) on x = 0 and one of the boundary conditions
(1.5) on x = 1 admits a unique C2 solution u = u(t, x) with small C2 norm on
the domain

R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, (1.8)

which exactly satisfies the final condition

t = T : u = Φ(x), ut = Ψ(x), 0 ≤ x ≤ 1. (1.9)

�
Theorem 2 (Exact boundary controllability with boundary controls acting on one
end). Let

T >
2√

Kv(0, 0)
. (1.10)

Suppose that

ᾱ 
= 1√
Kv(0, 0)

, (1.11)

where ᾱ is given in (1.4.4). For any given initial data (ϕ, ψ) and final data (Φ, Ψ)
with small norms ‖(ϕ, ψ)‖C2[0,1]×C1[0,1] and ‖(Φ, Ψ)‖C2[0,1]×C1[0,1] and any given
function h(t) with small norm ‖h‖C2[0,T ] (in case (1.4.1)) or with small norm
‖h‖C1[0,T ] (in cases (1.4.2)–(1.4.4)), such that the usual conditions of C2 com-
patibility are satisfied at the points (0, 0) and (T, 0), respectively, there exists a
boundary control h̄(t) with small norm ‖h̄‖C2[0,T ] (in case (1.5.1)) or with small
norm ‖h̄‖C1[0,T ] (in cases (1.5.2)–(1.5.4)), such that the mixed initial-boundary
value problem for equation (1.1) with the initial condition (1.7), one of the bound-
ary conditions (1.4) on x = 0 and one of the boundary conditions (1.5) on x = 1
admits a unique C2 solution u = u(t, x) with small C2 norm on the domain
R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, which exactly satisfies the final con-
dition (1.9). �
Remark 1. Comparing with Theorem 1, only one boundary control acting on one
end is used in Theorem 2, however, the exact controllability time is doubled.
Remark 2. The exact controllability time given in Theorem 1 or Theorem 2 is
optimal.
Remark 3. The boundary controls given in Theorem 1 or Theorem 2 are not unique.
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2. Reduction of equation and boundary conditions

Setting

v =
∂u

∂x
, w =

∂u

∂t
, (2.1)

equation (1.1) can be reduced to the following first-order quasilinear system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
= w,

∂v

∂t
− ∂w

∂x
= 0,

∂w

∂t
− Kv(u, v)

∂v

∂x
= F (u, v, w) + Ku(u, v)v � F̃ (u, v, w),

(2.2)

where F̃ (u, v, w) is still a C1 function of u, v and w, satisfying

F̃ (0, 0, 0) = 0. (2.3)

Noting (1.2), (2.2) is a strictly hyperbolic system with three distinct real eigenval-

ues
dx

dt
= λi(i = 1, 2, 3):

λ1 = −λ < λ2 = 0 < λ3 = λ, (2.4)

in which
λ =

√
Kv(u, v). (2.5)

The corresponding left eigenvectors can be taken as

l1 = (0,
√

Kv, 1), l2 = (1, 0, 0), l3 = (0,−
√

Kv, 1). (2.6)

Let
U = (u, v, w)T . (2.7)

Setting
vi = li(U)U (i = 1, 2, 3), (2.8)

namely,

v1 =
√

Kv(u, v) v + w, v2 = u, v3 = −
√

Kv(u, v) v + w, (2.8)′

we have {
v1 + v3 = 2w,

v1 − v3 = 2
√

Kv(u, v) v.
(2.9)

Changing the order of t and x, similarly to (2.2), equation (1.1) can be also
reduced to the following first-order quasilinear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂x
= v,

∂v

∂x
− 1

Kv(u, v)
∂w

∂t
= − F̃ (u, v, w)

Kv(u, v)
� ˜̃F (u, v, w),

∂w

∂x
− ∂v

∂t
= 0,

(2.10)
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where ˜̃F (u, v, w) is still a C1 function of u, v and w, satisfying
˜̃F (0, 0, 0) = 0. (2.11)

(2.10) is also a strictly hyperbolic system with three distinct real eigenvalue
dt

dx
=

µi (i = 1, 2, 3):

µ1 = − 1
λ

< µ2 = 0 < µ3 =
1
λ

, (2.12)

where λ is still given by (2.5). The corresponding left eigenvectors can still be
taken as (2.6), then we also have (2.8) and (2.9).

It is easy to get the following

Lemma 1.

(i) If on the domain

D = {(t, x)| t1 ≤ t ≤ t2, x1 ≤ x ≤ x2}, (2.13)

U = U(t, x) = (u(t, x), v(t, x), w(t, x))T is a C1 solution to system (2.2),
satisfying

t = t1 (or t2) : ux(t, x) = v(t, x), x1 ≤ x ≤ x2, (2.14)

then
∂u

∂x
= v on D, (2.15)

hence, on the domain D, U = U(t, x) is a C1 solution to system (2.10) and
u = u(t, x) is a C2 solution to equation (1.1).

(ii) If on the domain D, U = U(t, x) is a C1 solution to system (2.10), satisfying

x = x1 (or x2) : ut(t, x) = w(t, x), t1 ≤ t ≤ t2, (2.16)

then
∂u

∂t
= w on D, (2.17)

hence, on the domain D, U = U(t, x) is a C1 solution to system (2.2) and
u = u(t, x) is a C2 solution to equation (1.1). �
When equation (1.1) is reduced to system (2.2), it is easy to see that the

boundary condition (1.4) can be rewritten as

x = 0 : v1 + v3 = 2h′(t), (2.18.1)

x = 0 : v1 − v3 = 2
√

Kv(v2, h(t))h(t) � p2(h(t), v2) + p̄2(t), (2.18.2)

x = 0 : v1 − v3 = 2
√

Kv(v2, αv2 + h(t))(αv2 + h(t)) � p3(h(t), v2) + p̄3(t)
(2.18.3)

or
x = 0 : v3 = p4(h(t), v1, v2) + p̄4(t) (2.18.4)

and respectively (noting (1.11))

x = 0 : v1 = q4(h(t), v2, v3) + q̄4(t), (2.18.4)′



154 Li Tatsien

where vi (i = 1, 2, 3) are defined by (2.8),

p2(h(t), 0) ≡ p3(h(t), 0) ≡ p4(h(t), 0, 0) ≡ q4(h(t), 0, 0) ≡ 0. (2.19)

Moreover, when the C1 norm of h(t) is small enough, the C1 norms of p̄2(t), p̄3(t),
p̄4(t) and q̄4(t) are also small.

3. Semi-global C1 solution for quasilinear hyperbolic
systems with zero eigenvalues

Since the hyperbolic wave has a finite speed of propagation, the exact boundary
controllability of a hyperbolic equation (system) requires that the controllability
time T must be suitably large. In order to get the exact boundary controllability,
we should first prove the existence and uniqueness of the semi-global classical
solution, namely, the classical solution on the interval 0 ≤ t ≤ T0, where T0 > 0 is
a preassigned and possibly quite large number.

Noting that (2.2) or (2.10) is a hyperbolic system with one zero eigenvalue,
in order to study the exact boundary controllability for equation (1.1), the results
in [3] and [1] on the existence and uniqueness of semi-global C1 solution to the
mixed initial-boundary value problem for quasilinear hyperbolic systems without
zero eigenvalues should be generalized to quasilinear hyperbolic systems with zero
eigenvalues.

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= F (u), (3.1)

where u = (u1, . . . , un)T is a unknown vector function of (t, x), A(u) is a n × n
matrix with suitably smooth elements aij(u) (i, j = 1, . . . , n), F : R

n → R is a
vector function with suitably smooth components fi(u) (i = 1, . . . , n) and

F (0) = 0. (3.2)

By the definition of hyperbolicity, for any given u on the domain under consid-
eration the matrix A(u) has n real eigenvalues λi(u) (i = 1, . . . , n) and a complete
set of left eigenvectors li(u) = (li1(u), . . . , lin(u)) (i = 1, . . . , n):

li(u)A(u) = λi(u)li(u). (3.3)

We have
det |lij(u)| 
= 0. (3.4)

Moreover, suppose that on the domain under consideration we have

λp(u) < λq(u) ≡ 0 < λr(u) (p = 1, . . . , l; q = l + 1, . . . , m; r = m + 1, . . . , n).
(3.5)

For the mixed initial-boundary value problem of system (3.1) with the initial
condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ 1 (3.6)
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and the boundary conditions

x = 0 : vr = Gr(t, v1, . . . , vl, vl+1, . . . , vm) + Hr(t) (r = m + 1, . . . , n), (3.7)

x = 1 : vp = Gp(t, vl+1, . . . , vm, vm+1, . . . , vn) + Hp(t) (p = 1, . . . , l), (3.8)
where

vi = li(u)u (i = 1, . . . , n) (3.9)
and without loss of generality we assume that

Gr(t, 0, . . . , 0) ≡ Gp(t, 0, . . . , 0) ≡ 0 (r = m + 1, . . . , n; p = 1, . . . , l), (3.10)

we have the following lemma on the existence and uniqueness of semi-global C1

solution (see [11]).

Lemma 2. Under the previous assumptions, suppose that lij(u), λi(u), fi(u),
Gr(t, ·), Gp(t, ·), Hr(t), Hp(t) (i, j = 1, . . . , n; r = m + 1, . . . , n; p = 1, . . . , l) and
ϕ(x) are all C1 functions with respect to their arguments. Assume furthermore that
the conditions of C1 compatibility are satisfied at the points (0, 0) and (0, 1) respec-
tively. Then, for a given (possibly quite large) T0 > 0, the mixed initial-boundary
value problem (3.1) and (3.6)–(3.8) admits a unique C1 solution u = u(t, x) (called
the semi-global C1 solution ) with small C1 norm on the domain

R(T0) = {(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ 1}, (3.11)

provided that the C1 norms ‖ϕ‖C1[0,1] and ‖(Hr, Hp)‖C1[0,T0] (r = m+1, . . . , n; p =
1, . . . , l) are small enough (depending on T0). �

4. Proof of Theorems 1 and 2

In order to prove Theorem 1 it suffices to prove the following

Lemma 3. Let T > 0 be defined by (1.6). For any given initial data (ϕ, ψ) and final
data (Φ, Ψ) with small norms ‖(ϕ, ψ)‖C2[0,1]×C1[0,1] and ‖(Φ, Ψ)‖C2[0,1]×C1[0,1], the
quasilinear wave equation (1.1) admits a C2 solution u = u(t, x) with small C2

norm on the domain R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, which satisfies
simultaneously the initial condition (1.7) and the final condition (1.9). �

In fact, substituting a C2 solution u = u(t, x) given by Lemma 3 into the
boundary conditions (1.4) and (1.5), we get the boundary controls

h(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u|x=0,

ux|x=0,

(ux − αu)|x=0

or (ux − ᾱut)|x=0

and h̄(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u|x=1,

ux|x=1,

(ux + βu)|x=1

or (ux + β̄ut)|x=1.

Then u = u(t, x) is just the C2 solution to the mixed initial-boundary value
problem for equation (1.1) with the initial condition (1.7) and the corresponding
boundary conditions (1.4) and (1.5), which verifies the final condition (1.9).
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Similarly, in order to get Theorem 2, it suffices to prove the following

Lemma 4. Let T > 0 be defined by (1.10). Under the assumptions of Theorem 2, the
quasilinear wave equation (1.1) with the boundary condition (1.4) on x = 0 admits
a C2 solution u = u(t, x) with small C2 norm on the domain R(T ) = {(t, x)| 0 ≤
t ≤ T, 0 ≤ x ≤ 1}, which satisfies simultaneously the initial condition (1.7) and
the final condition (1.9). �

We now give the main steps of the proof of Lemma 3. The proof of Lemma
4 is similar (cf. [5]).

Proof of Lemma 3. Since system (2.2) or (2.10) possesses one zero eigenvalue, the
method used in [4] cannot be directly applied to the present situation and it should
be modified according to the concrete character of system (2.2).

By (1.6), there exists an ε0 > 0 so small that

T > max
|U|≤ε0

1√
Kv(u, v)

, (4.1)

where U = (u, v, w)T . Let

T1 =
1
2

max
|U|≤ε0

1√
Kv(u, v)

. (4.2)

We divide the proof into several steps.
(i) We first consider the following forward mixed initial-boundary value prob-

lem of system (2.2) with the initial condition

t = 0 : U = U0(x) � (ϕ(x), ϕ′(x), ψ(x))T , 0 ≤ x ≤ 1 (4.3)

and the boundary conditions

x = 0 : v3 = f3(t), (4.4)

x = 1 : v1 = f̄1(t), (4.5)
where vi (i = 1, 2, 3) are defined by (2.8), f3 and f̄1 are any given C1 functions
of t with small C1[0, T1] norm, such that the conditions of C1 compatibility are
satisfied at the points (0, 0) and (0, 1) respectively. By Lemma 2, on the domain

{(t, x)| 0 ≤ t ≤ T1, 0 ≤ x ≤ 1}, (4.6)

there exists a unique semi-global C1 solution U = U (1)(t, x) with small C1 norm
and

|U (1)(t, x)| ≤ ε0. (4.7)
Thus, we can determine the value of U (1)(t, x) on x = 1

2 as

x =
1
2

: U = a(t) � (a1(t), a2(t), a3(t))T , 0 ≤ t ≤ T1 (4.8)

and the C1[0, T1] norm of a(t) is small. Moreover, noting the first equation of (2.2),
we have

a3(t) = a′
1(t), 0 ≤ t ≤ T1, (4.9)

then a1(t) is a C2 function with small C2[0, T1] norm.
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(ii) Similarly, we consider the following backward mixed initial-boundary
value problem of system (2.2) with the initial condition

t = T : U = UT (x) � (Φ(x), Φ′(x), Ψ(x))T , 0 ≤ x ≤ 1 (4.10)

and the boundary conditions

x = 0 : v1 = g1(t), (4.11)

x = 1 : v3 = ḡ3(t), (4.12)
where vi (i = 1, 2, 3) are still defined by (2.8), g1 and ḡ3 are any given C1 functions
of t with small C1[T−T1, T ] norm, such that the conditions of C1 compatibility are
satisfied at the points (T, 0) and (T, 1) respectively. By Lemma 2, on the domain

{(t, x)| T − T1 ≤ t ≤ T, 0 ≤ x ≤ 1}, (4.13)

there exists a unique semi-global C1 solution U = U (2)(t, x) with small C1 norm
and

|U (2)(t, x)| ≤ ε0. (4.14)
Thus, we can determine the value of U (2)(t, x) on x = 1

2 as

x =
1
2

: U = b(t) � (b1(t), b2(t), b3(t))T , T − T1 ≤ t ≤ T (4.15)

and the C1[T − T1, T ] norm of b(t) is small. Similarly to (4.9), we have

b3(t) = b′1(t), T − T1 ≤ t ≤ T, (4.16)

then b1(t) is a C2 function with small C2[T − T1, T ] norm.
(iii) Noting (4.9) and (4.16), we can find c(t) = (c1(t), c2(t), c3(t))T ∈ C1[0, T ]

with small C1 norm, such that

c(t) =

{
a(t), 0 ≤ t ≤ T1,

b(t), T − T1 ≤ t ≤ T
(4.17)

and
c3(t) = c′1(t), 0 ≤ t ≤ T, (4.18)

then c1(t) ∈ C2[0, T ] with small C2 norm.
We now change the order of t and x, and on the domain

Rl(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1
2
} (4.19)

we consider the following leftward mixed initial-boundary value problem of system
(2.10) with the initial condition

x =
1
2

: U = c(t), 0 ≤ t ≤ T (4.20)

and the boundary conditions

t = 0 : v1 = l1(U0(x))U0(x), 0 ≤ x ≤ 1
2
, (4.21)

t = T : v3 = l3(UT (x))UT (x), 0 ≤ x ≤ 1
2
, (4.22)
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where li(U) (i = 1, 2, 3) are defined by (2.6), U0(x) and UT (x) are given in (4.3)
and (4.10) respectively.

By Lemma 1 (i), it is easy to see that the corresponding conditions of C1

compatibility are satisfied at the points (0, 1
2 ) and (T, 1

2 ) respectively. Hence, by
Lemma 2, there exists a unique semi-global C1 solution U = Ul(t, x) with small
C1 norm on the domain Rl(T ) and

|Ul(t, x)| ≤ ε0 on Rl(T ), (4.23)

provided that the C1 norms of U0(x), UT (x), f3(t), f̄1(t), g1(t) and ḡ3(t) are
small enough.

(iv) Similarly, the rightward mixed initial-boundary value problem of system
(2.10) with the initial condition (4.20) and the boundary conditions

t = 0 : v3 = l3(U0(x))U0(x),
1
2
≤ x ≤ 1, (4.24)

t = T : v1 = l1(UT (x))UT (x),
1
2
≤ x ≤ 1 (4.25)

admits a unique semi-global C1 solution U = Ur(t, x) with small C1 norm on the
domain

Rr(T ) = {(t, x)| 0 ≤ t ≤ T,
1
2
≤ x ≤ 1} (4.26)

and
|Ur(t, x)| ≤ ε0 on Rr(T ). (4.27)

(v) Let

U(t, x) =

{
Ul(t, x), (t, x) ∈ Rl(T ),
Ur(t, x), (t, x) ∈ Rr(T ).

(4.28)

We claim that
t = 0 : U = U0(x), 0 ≤ x ≤ 1, (4.29)

t = T : U = UT (x), 0 ≤ x ≤ 1. (4.30)

In fact, by Lemma 1 (i), the C1 solutions U = Ul(t, x) [resp. U = Ur(t, x)]
and U = U (1)(t, x) satisfy the system (2.10), the initial condition

x =
1
2

: U = a(t), 0 ≤ t ≤ T1 (4.31)

and the boundary condition (4.21) [resp. (4.24)]. By the uniqueness of C1 solution
(see [8]) and the choice of T1 given in (4.2), the mixed initial-boundary value
problem (2.10), (4.31) and (4.21) [resp. (4.24)] has a unique C1 solution on the
domain

{(t, x)| 0 ≤ t ≤ 2T1x, 0 ≤ x ≤ 1
2
} (4.32)

[resp. {(t, x)| 0 ≤ t ≤ 2T1(1 − x),
1
2
≤ x ≤ 1}].
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Then
U(t, x) ≡ U (1)(t, x) (4.33)

on these domains and, in particular, we get (4.29).
In a similar manner we obtain (4.30).
Thus, by Lemma 1 (ii), it is easy to see that the first component u = u(t, x)

of U = U(t, x) satisfies all the requirements of Lemma 3.

5. Remarks

If in the boundary conditions (1.4.2)–(1.4.4) on x = 0 and the boundary conditions
(1.5.2)–(1.5.4) on x = 1, ux is replaced by K(u, ux), the conclusions of Theorem 1
and Theorem 2 are still valid, provided that (1.11) is replaced by

ᾱ 
=
√

Kv(0, 0). (5.1)
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Abstract. The 3D incompressible Euler equations with initial data character-
ized by uniformly large vorticity are investigated. We prove existence on long
time intervals of regular solutions to the 3D incompressible Euler equations
for a class of large initial data in bounded cylindrical domains. There are no
conditional assumptions on the properties of solutions at later times, nor are
the global solutions close to some 2D manifold. The approach is based on fast
singular oscillating limits, nonlinear averaging and cancellation of oscillations
in the nonlinear interactions for the vorticity field. With nonlinear averag-
ing methods in the context of almost periodic functions, resonance conditions
and a nonstandard small divisor problem, we obtain fully 3D limit resonant
Euler equations. We establish the global regularity of the latter without any
restriction on the size of 3D initial data and bootstrap this into the regularity
on arbitrary large time intervals of the solutions of 3D Euler equations with
weakly aligned uniformly large vorticity at t = 0.
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1. Introduction and main results

The long-time solvability of the 3D Cauchy problem for the Euler equations is
an outstanding problem of applied analysis. At issue is the possible blow-up of
vorticity in finite times [7]. Whereas local regularity and long-time regularity for
small 3D initial data are well known ([32], [33], [16], [9]), there is a dearth of
results for large 3D initial data without conditional assumptions on the properties
of solutions at later times. Solutions in a 2D axisymmetric geometry have been
constructed in [19].
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We study an initial value problem for the three-dimensional Euler equations
with initial data characterized by uniformly large vorticity:

∂tV + (V · ∇)V = −∇p, ∇ · V = 0, (1.1)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω
2

e3 × y (1.2)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and p is the pres-
sure. In Eqs. (1.1) e3 denotes the vertical unit vector and Ω is a constant parameter.
The field Ṽ0(y) depends on three variables y1, y2 and y3. Since curl(Ω

2 e3×y) = Ωe3,
the vorticity vector at initial time t = 0 is

curlV(0, y) = curl Ṽ0(y) + Ωe3, (1.3)

and the initial vorticity has a large component weakly aligned along e3, when
Ω � 1. These are fully three-dimensional large initial data with large initial 3D
vortex stretching.

Eqs. (1.1) are studied in cylindrical domains

C = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 < R2} (1.4)

where α and R are positive real numbers. If h is the height of the cylinder, α =
2π/h. Let

Γ = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 = R2}. (1.5)

Without loss of generality, we can assume that R = 1. Eqs. (1.1) are considered
with periodic boundary conditions in y3

V(y1, y2, y3) = V(y1, y2, y3 + 2π/α) (1.6)

and vanishing normal component of velocity on Γ

V · N = Ṽ · N = 0 on Γ; (1.7)

where N is the normal vector to Γ. From the invariance of 3D Euler equations
under the symmetry y3 → −y3, V1 → V1, V2 → V2, V3 → −V3, all results in
this paper extend to cylindrical domains bounded by two horizontal plates. Then
the boundary conditions in the vertical direction are zero flux on the vertical
boundaries (zero vertical velocity on the plates). One only needs to restrict vector
fields to be even in y3 for V1, V2 and odd in y3 for V3.

We choose Ṽ0(y) in L2(C). We introduce Ṽ(t, y) such that

V(t, y) = Ṽ(t, y) +
Ω
2

e3 × y, curlV(t, y) = curl Ṽ(t, y) + Ωe3. (1.8)

For the vorticity field ω = curlV Eqs. (1.1) become

∂

∂t
ω + V · ∇ω = ω · ∇V, (1.9)

ω(0, y) = curl Ṽ0(y) + Ωe3, (1.10)

and the initial condition induces large initial vortex stretching.
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We present a simple case of results obtained in our joint work with C. Bardos
and F. Golse [6], where the initial value problem is solved in more general functional
spaces. We establish regularity for arbitrarily large finite times for the 3D Euler
solutions for Ω large, but finite. Our solutions are not close in any sense to those
of the 2D or “quasi 2D” Euler and they are characterized by fast oscillations in
the e3 direction, together with a large vortex stretching term ω(t, y) · ∇V(t, y) =
ω1

∂V1
∂y1

+ ω2
∂V2
∂y2

+ ω3
∂V3
∂y3

, t ≥ 0 with leading component Ω ∂
∂y3

V3(t, y) � 1. There
are no assumptions on oscillations in y1, y2 for our solutions (nor for the initial
condition Ṽ0(y)).

Our approach is entirely based on fast singular oscillating limits of Eqs. (1.9)–
(1.10), nonlinear averaging and cancellation of oscillations in the nonlinear inter-
actions for the vorticity field for large Ω. This has been developed in [3], [4], [5] and
[24] for the cases of periodic lattice domains and the infinite space R3. Through
the canonical transformation (1.17)–(1.18) in both the field V(t, y) and the space
coordinate y = (y1, y2, y3) for every Ω (not necessary large) we map every solution
V(t, y) of Eqs. (1.1) one-to-one to a solution U(t, x), x = (x1, x2, x3) of

∂tU + (U · ∇x)U + Ωe3 × U = −∇x(p − Ω2

4
|xh|2), ∇x · U = 0, (1.11)

U(t, x)|t=0 = U(0, x) = Ṽ0(x), (1.12)

where x = y at t = 0 and xh = (x1, x2). For Ω � 1 the nearly singular initial value
problem (1.1)–(1.2) (that is with large initial vorticity and vortex stretching) is
mapped into the problem (1.11)–(1.12) with the nearly singular Coriolis operator
term restricted to solenoidal fields:

1
ε
e3 × U, ∇ · U = 0, ε = 1/Ω << 1. (1.13)

As detailed in Section 2, the linear part of Eq. (1.11) is the Poincaré-Sobolev
nonlocal wave equations ([2], [12], [25], [29]):

∂tΦ + Ωe3 × Φ = −∇π, ∇ · Φ = 0. (1.14)

Interactions between the Poincaré waves generated by the quadratic nonlinearity
in Eq. (1.11) are ruled by resonance conditions and a small divisor problem in the
limit Ω → ∞. With nonlinear averaging methods in the context of Banach space
valued almost periodic functions we obtain fully 3D limit resonant Euler equations.
We establish the global regularity of the latter without any restriction on the size
of 3D initial data and bootstrap this into the global regularity of Eqs. (1.11)–(1.12)
for Ω large but finite. Then by the canonical transformation (1.17)–(1.18) of the
field V (which is an isometry on curl-based generalizations of Sobolev spaces) we
establish the long-time regularity of Eqs. (1.1)–(1.2) for large finite Ω, on arbitrarily
finite large time intervals.
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Our results crucially use the algebra of the curl operator with boundary
conditions, for the fast singular oscillating limits of ω̃ = curlU(t, x):

∂tω̃ + U · ∇ω̃ = ω̃ · ∇U + Ω
∂

∂x3
U. (1.15)

For this we rely on deep properties of curl−1, extending the early pioneering results
of O.A. Ladyzhenskaya, V.A. Solonnikov and co-workers which were obtained in
the context of Maxwell’s equations and magneto-hydrodynamics ([18], [21], [10],
[11], [30]). There are three foremost issues with the analysis of (1.1)–(1.2), (1.11)–
(1.15) for large parameter Ω. First, the nature of their fast singular oscillating limit
equations as Ω → +∞ and the global regularity of their solutions (3D resonant
limit Euler equations). Second, the strong convergence of solutions of (1.11)–(1.12)
to those of the limit equations; and, finally, bootstrapping from analysis of the first
two questions the long-time regularity of solutions of (1.1)–(1.2) for Ω large but
finite.

We now detail the canonical transformation between the original vector field
V(t, y) and the vector field U(t, x). Let J be the matrix such that Ja = e3 × a for
any vector field a. Then

J =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ , Υ(t) ≡ eΩJt/2 =

⎛⎝ cos(Ωt
2 ) − sin(Ωt

2 ) 0
sin(Ωt

2 ) cos(Ωt
2 ) 0

0 0 1

⎞⎠ . (1.16)

For any fixed parameter Ω (not necessary large) we introduce the following
fundamental transformation:

V(t, y) = e+ΩJt/2U(t, e−ΩJt/2y) +
Ω
2
Jy, x = e−ΩJt/2y. (1.17)

The transformation (1.17) is invertible:

U(t, x) = e−ΩJt/2V(t, e+ΩJt/2x) − Ω
2
Jx, y = e+ΩJt/2x. (1.18)

The transformations (1.17)–(1.18) establish a one-to-one correspondence between
solenoidal vector fields V(t, y) and U(t, x). We note that for t = 0 x = y and
therefore Ṽ0(y) = Ṽ0(x). Let x = (xh, x3) where xh = (x1, x2), |xh|2 = x2

1 + x2
2

and similarly for y. We have:

Lemma 1.1. The following identities hold for the vector fields V(t, y) and U(t, x)
and pressure p:

1. ∇y ·V(t, y) = ∇x ·U(t, x).
2. ∇yp = Υ(t)∇xp.
3. curly V(t, y) = Υ(t) curlx U(t, x) + Ωe3, curl2y V(t, y) = Υ(t) curl2x U(t, x).

4. D
DtV(t, y) = Υ(t)

(
D
DtU(t, x) + ΩJU − Ω2

2 xh

)
where D

Dt are the correspond-
ing Lagrangian derivatives, JU = e3 × U.
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Lemma 1.1 establishes that the transformation (1.17)–(1.18) is canonical for (1.1)–
(1.2). From the property 1 of Lemma 1.1 it follows that ∇x · U(t, x) = 0 since
∇y ·V(t, y) = 0. Now using 2–4 in the above Lemma 1.1 and the fact that Υ(t) is
unitary we can express each term in (1.1) in x and t variables to obtain the equa-
tions for U(t, x) (1.11)–(1.15). Under the transformation (1.17)–(1.18) Eqs. (1.1)–
(1.2) turn into Euler system (1.11)–(1.12) with an additional Coriolis term Ωe3×U
and modified initial data and pressure. The systems Eqs. (1.1)–(1.2) and (1.11)–
(1.12) are equivalent for every Ω (not necessary large) and the pair of transfor-
mations (1.17)–(1.18) establishes one-to-one correspondence between their fully
three-dimensional solutions.

Remark 1.2. The canonical transformation (1.17)–(1.18) preserves the boundary
conditions (1.7) which are transformed into

U ·N = 0, on Γ. (1.19)

Using elementary identities (U · ∇)U = curlU × U + ∇( |U|2
2 ) on divergence

free vector fields, Eqs. (1.11) can be rewritten in the form

∂tU + (curl U + Ωe3) × U = −∇(p − Ω2

4
|xh|2 +

|U|2
2

), (1.20)

∇ · U = 0, U(t, x)|t=0 = U(0) = Ṽ0(x). (1.21)

Remark 1.3. For large Ω the initial value condition (1.2) can be interpreted as
weak alignment of the initial vorticity at t = 0; in the distributional sense, for
every test function φ(y) ∈ C∞

0 (R3) we have:

|〈curlV(0, y)/Ω − e3, φ(y)〉| = |〈V(0, y)/Ω − 1
2
e3 × y, curlφ(y)〉|(1.22)

=
1
Ω
|〈U(0, x), curlφ(x)〉|,

with Ω ≥ Ω1 (Ω1 is defined in Theorem 1.4, Ω1 � 1).

The fast singular oscillating limits of Eqs. (1.20)–(1.21) are investigated as
Ω → +∞, after further transformation of Eqs. (1.20)–(1.21) with the Poincaré
propagator. The latter is the unitary group solution E(−Ωt)Φ(0) = Φ(t) in L2(C)
(E(0) = Id is the identity) to the linear Poincaré wave problem ([25], [12], [29]):

∂tΦ + ΩJΦ = −∇π, ∇ ·Φ = 0, (1.23)

or, equivalently,
∂tΦ + ΩPJPΦ = 0 (1.24)

where P is the Leray projection on divergence free vector fields; the solutions
E(−Ωt)Φ(0) are called Poincaré waves. Eqs. (1.23) give rise to a unitary group
of transformations E(−Ωt) on a space of square-integrable divergence-free vector
fields L2(C). The spectrum of the generator of the group of motions, that is the
spectrum of the skew-hermitian zero order pseudo-differential operator PJP is
[−i, i]. In the case of cylindrical domains considered in this paper the eigenvalues
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(point spectrum) of the operator PJP are dense in [−i, i]. The operator PJP has
norm one. Since PJP is bounded on L2(C), the solutions to (1.24) with initial
condition Φ(0) is given by

Φ(t) = E(−Ωt)Φ(0) =
+∞∑
j=0

(−Ωt)j

j!
(−PJP)j Φ(0). (1.25)

Applying to Eqs. (1.11)–(1.12) (equivalently, Eqs. (1.20)–(1.21)) the Leray
projection P onto divergence free vector fields, we obtain for U = P U

∂tU + ΩPJPU = B(U, U), (1.26)

U|t=0 = U(0) = Ṽ0

where
B(U, U) = −P(U · ∇U) = P(U × curlU). (1.27)

The proofs of regularity rely on the analysis of the dispersion relations for
Poincaré waves [25], [12] (solutions to Eqs. (1.23)–(1.24)). The resonance condition
for the interactions generated by the Euler quadratic nonlinearity in the limit
Ω → +∞ takes the form (see [3] and Sections 2, 3 below):

± k3√
β(k1,k2,k3)2

α2 + k2
3

± m3√
β(m1,m2,m3)2

α2 + m2
3

± n3√
β(n1,n2,n3)2

α2 + n2
3

= 0 (1.28)

with the convolution conditions n3 = k3+m3, n2 = k2+m2. Here m = (m1, m2, m3)

are three-dimensional wave vectors. The integers m1, m2 and m3 are for the radial,
azimuthal and axial directions, respectively. Similarly, for k and n. Eqs. (1.28) are
trivially satisfied for k3 = m3 = n3 = 0 which correspond to pure two-dimensional
interactions (dependence on x1, x2 and no dependence on x3 in physical space).
The nonlinear interactions with k3m3n3 = 0, k2

3 + m2
3 + n2

3 
= 0 correspond to
two-wave resonances and the interactions with k3m3n3 
= 0 correspond to strict
three-wave resonances. The quantities β are related to zeros of certain expressions
involving Bessel functions (see Eq. (2.27)).

We outline the structure of the fast oscillating limit equations obtained from
Eqs. (1.26) in the limit Ω → +∞:

∂tw = B̃(w, w), (1.29)

w|t=0 = w(0) = U(0) = Ṽ0.

Details are given in Sections 2 and 3.
We denote the orthogonal decomposition w = w + w⊥ where w(t, x1, x2) is

the barotropic projection (vertical averaging),

w(t, x1, x2) =
1

2πα

∫ 2πα

0

w(t, x1, x2, x3)dx3 (1.30)

and the orthogonal field w⊥(t, x1, x2, x3) verifies w⊥ = 0. Then

w = w + w⊥. (1.31)
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Eqs. (1.29) conserve both energy and helicity. These equations are genuinely three-
dimensional since they include all 3D modes but with wave-number interactions
restricted in B̃(w, w). We have (see below in Sections 2 and 3)

B̃(w, w) = B̃(w, w) (1.32)

implying
B̃(w, w) = BIII(w⊥, w⊥) + BII(w, w⊥) + B2D(w, w) (1.33)

where B2D corresponds to pure 2D interactions (k3 = m3 = n3 = 0), BII is the
‘catalytic’ operator (k3 = 0, m3n3 
= 0 or m3 = 0, k3n3 
= 0). The above implies
k3m3n3 
= 0 for interactions given by BIII. Such interactions are called strict 3-wave
interactions.

Since B̃(w, w)= B̃(w, w) the solutions w(t, x1, x2, x3) = (w1, w2, w3) of the
limit equations (1.29) split into an equation for w(t, x1, x2) which decouples and
an equation for w⊥(t, x1, x2, x3) with its coefficients depending on w. The field
w(t, x1, x2) satisfies the 2D-3C Euler equations (three components and dependence
on two variables x1, x2). Specifically,

∂tw + (w · ∇)w = −∇hq, ∇h · w = 0 (1.34)

w|t=0 = w(0) = U(0)

where ∇h denotes the gradient in horizontal variables x1, x2. The component
w⊥(t, x1, x2, x3) (orthogonal to w, that is with zero vertical average) satisfies limit
equations

∂tw
⊥ = BII(w, w⊥) + BIII(w⊥, w⊥) (1.35)

w⊥|t=0 = w⊥(0) = U⊥(0) = U(0) − U(0).

For w(t, x1, x2) we have the usual conservation laws and global existence theorems
for 2D Euler ([32], [33]).

For the generic case of no strict 3 wave resonances BIII = 0. In this case we
have global regularity of the limit resonant equations and long time regularity of
the 3D Euler equations (1.11)–(1.12) for Ω large. The set of parameters α where
BIII = 0 has full Lebesgue measure. In such cases, global regularity of the limit
resonant equations and long time regularity of the 3D Euler equations (1.11)–
(1.12) is proven using the new 3D conservation laws for BII (see Section 3) and
the convergence Theorem 4.6 in Section 4. More precisely, BIII 
= 0 for a countable
discrete set of parameters α. We now state our main existence theorem. For the
cylinder, denote by h the height and R the radius. We denote by Hs

σ(C) the usual
Sobolev spaces of solenoidal vector fields in the cylinder C, s ≥ 0.

Theorem 1.4. Consider the initial value problem for the 3D Euler equations (1.1)–
(1.2) with curlV(0, y) = Ωe3 + curl Ṽ0(y) and Ṽ0(y) ∈ Hs

σ(C), s ≥ 4. Let
curlj Ṽ0(y) · N = 0 on Γ, 0 ≤ j ≤ s. Let ||Ṽ0||Hs

σ(C) ≤ Ms. Let h/R /∈ K∗

where K∗ is a countable discrete set. Let Tm > 0 fixed, arbitrary large. Then there
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exists Ω1(h/R, Ms, Tm) such that for every fixed Ω ≥ Ω1 there exists a unique
regular solution of Eqs. (1.1)–(1.2) for 0 ≤ t < Tm:

||V(t, y)||Hs
σ(C) ≤ M̃s(h/R, Ms, Tm). (1.36)

Moreover, curlj V(t, y) · N = 0 on Γ, 0 ≤ j ≤ s. For Ms fixed, Tm → +∞ as
1/Ω1 → 0. Alternatively, we can take arbitrary large but bounded sets of initial
data: Ms → +∞ if 1/Ω1 → 0, Tm fixed.

The above theorem establishes a class of genuinely 3D solutions of Euler
equations which are regular on long time intervals even though the initial vorticity
and the vortex stretching term are large.

2. Poincaré-Sobolev equations in cylindrical domains

In this section we consider the eigenvalue problem for the Poincaré-Sobolev equa-
tions in the cylinder C ([2], [25], [12], [29]):

∂tΦ + ΩPJPΦ = 0, ∇ ·Φ = 0. (2.1)

The operator PJP is skew-symmetric with respect to the L2 inner product.
From the fundamental identity

curlPJP = − ∂

∂x3
P, (2.2)

the Poincaré problem is equivalent to the nonlocal wave operator (the Poincaré-
Sobolev equation), [29] and [2]:

∂2

∂t2
curl2 Φ − Ω2 ∂2

∂x2
3

PΦ = 0; (2.3)

its properties have been extensively investigated by the school of Sobolev (see
references in [2], [17], [26]) for various domain geometries.

Theorem 2.1. ([17]). PJP is a bounded skew-adjoint zero-order nonlocal operator
with a dense spectrum on [−i, +i].

This spectrum can be purely continuous on [−i, +i] in the case of resonant
domains which are ergodically filled by the characteristics of Eqs. (2.3) ([2]). The
situation is simpler in periodic domains T3, where PJP does commute with the
curl operator, hence with curl2α = (−∆)α on solenoidal fields, and E(−Ωt) =
exp(−ΩPJPt) preserves all Sobolev norms ([3], [4]).

In the cylindrical domains with boundary conditions ((1.7), (1.19)), the struc-
ture of PJP and E(−Ωt) is much more complex, as curl does not commute with
the operator PJP (but does commute with P), whereas the operators ∇ and
−∆ do not commute with P. The Helmholtz projection U → PU is such that (i)
div PU = 0 and (ii) PU·N = 0 on Γ. The Weyl-Helmholtz decomposition theorem
for L2(D) where D is a bounded domain, now involves harmonic distributions:
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Theorem 2.2. Every vector field U ∈ L2(D) admits a unique decomposition:

U = PU + ∇πH + ∇π0, (2.4)

where ∇πH and ∇π0 ∈ L2(D) and

∆π0 = div U, π0 = 0 on ∂D (2.5)

∆πH = 0,
∂πH

∂N
= (U −∇π0) ·N on ∂D, in H−1/2(∂D). (2.6)

Note that the set of harmonic distributions such that ∂πH

∂N = 0 on ∂D, reduces to
{0}, hence the uniqueness of PU.

To construct the eigenfunctions and eigenvalues of PJP and E(−Ωt), we
need to invert curl in the Poincaré-Sobolev equation (2.3) subject to the boundary
condition (1.19). This is where the potential theoretical result on curl inversion
by O.A. Ladyzhenskaya and V.A. Solonnikov are needed in an essential way ([18],
[10], [11], [21]). V.A. Solonnikov in [30] has further demonstrated that in bounded
geometries the curl operator is an overdetermined elliptic system on solenoidal
fields and does not admit any simple maximal self-adjoint extension. Nevertheless,
two different potential theoretic inverses can be constructed for curl with different
domains and ranges.

Recall the lemma for integration by parts for the curl operator

Lemma 2.3. For U, V ∈ H1(D)∫
D

curlU · Vdx =
∫

D

U · curlVdx +
∫

∂D

(N× U · V)dS, (2.7)

where the determinant in the boundary integral is taken in the sense N × U and
N× V ∈ H1/2(∂D), and U, V ∈ H1/2(∂D) ([10], [14]).

Lemma 2.4. ([21]). For U,V ∈ J0 ∩ J1 and such that curlU ·N = curlV ·N = 0
on ∂D, the operator curl is symmetric:∫

D

curlU ·V dx =
∫

D

U · curlV dx. (2.8)

To briefly review the results in [18], [21], [10], [11] we introduce the notations
of Ladyzhenskaya, where D is a bounded domain with boundary ∂D:

J = Clos{U ∈ C∞(D̄), div U = 0} in || · ||L2 ,J ≡ H0
σ; (2.9)

J1 = {U ∈ H1(D), div U = 0} ≡ H1
σ(D); (2.10)

J0 = Clos{U ∈ C∞(D̄), div U = 0,U · N = 0 on ∂D} in || · ||L2 (2.11)

J0
1,τ = Clos{U ∈ C∞(D̄), div U = 0,U× N = 0 on ∂D} in || · ||H1(D). (2.12)

Theorem 2.5. J0
1,τ (D) is dense in J(D).

Theorem 2.6. For every V ∈ J0(D), there exists a unique Ψ ∈ J0
1,τ (D) such that

V = curl Ψ and for some C1, C2 > 0:

C1||V||L2 ≤ ||Ψ||H1 ≤ C2||V||L2 . (2.13)
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Theorem 2.7. For every W ∈ J(D) there exists a unique Φ ∈ J0(D)∩H1(D) such
that W = curl Φ and for some C3, C4 > 0:

C3||W||L2 ≤ ||Φ||H1 ≤ C4||W||L2 . (2.14)

Theorem 2.6 implies the existence of a bounded operator curl−1 with domain
J0, range J0

1,τ ; and similarly Theorem 2.7 defines curl−1 with domain J, range J0∩
H1. Note that Theorem 2.7 implies the Poincaré inequality ||Φ||L2 ≤ C4||W||L2 .
Theorem 2.7 has been rederived by C. Bardos (see discussion in [14]) using non-
potential theoretic methods of K. Friedrichs [15].

Theorem 2.8. ([21], [2]). When restricted to the domain:

D(curl) = curl−1 J0, (2.15)

where the vector potential curl−1 is taken as in Theorem 2.7, the operator curl is
self-adjoint, invertible and with a compact inverse in J0.

Theorem 2.8 is a straightforward corollary of Theorem 2.7, with the remark
that J0 is a closed subspace of J.

Remark 2.9. D(curl) is a closed proper subspace of J1 ∩ J0. In fact,

J0 ∩ J1 = curl−1 J0
⊕

curl−1(∇πH), (2.16)

where curl−1 is again taken in the sense of Theorem 2.7. Theorem 2.8 has been
rediscovered in many publications from the mid-seventies on. Note that whereas
the eigenfunctions of curl are complete in J0, they are not complete in J0 ∩ J1,
only in D(curl) ⊂ H1(D).

We now explicit the common eigenfunctions to PJP and curl in the cylinder.
In cylindrical coordinates (r, φ, z) we have Φ = (Φr, Φφ, Φz) and Eqs. (2.1) take
the form

∂tΦr − ΩΦφ = −∂p

∂r
, ∂tΦφ + ΩΦr = −1

r

∂p

∂φ
, ∂tΦz = −∂p

∂z
, (2.17)

1
r

∂

∂r
(rΦr) +

1
r

∂Φφ

∂φ
+

∂Φz

∂z
= 0. (2.18)

The vector field Φ is 2π/α periodic in z and it satisfies Φr|r=R = 0 on Γ.
Applying curl operator to Eqs. (1.23) and using divergence free condition, we

obtain

∂t curlΦ = Ω∂zΦ. (2.19)

From Eqs. (2.19) we obtain Poincaré-Sobolev equations

∂2

∂t2
(curl2 Φ) − Ω2 ∂2

∂z2
(Φ) = 0. (2.20)

Eqs. (2.20) is a system of equations for three components of Φ. For the vertical
component Φz we have the following scalar equation

∂2

∂t2
∆Φz + Ω2 ∂2

∂z2
Φz = 0. (2.21)
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We look for normal modes in the form

ei(Ωσt+m2φ+m3αz)Φ̂(r). (2.22)

Recall that without loss of generality R = 1. Eqs. (2.21) imply

d2

dr2
Φ̂z +

1
r

d

dr
Φ̂z + (β2 − m2

2

r2
)Φ̂z = 0 (2.23)

where

β2 = m2
3α

2(
1
σ2

− 1) or equivalently σ2 =
m2

3α
2

β2 + m2
3α

2
. (2.24)

From the boundary condition Φr|r=1 = 0 and Eqs. (2.17) we obtain

d

dr
Φ̂z +

m2

σr
Φ̂z = 0 at r= 1. (2.25)

Eqs. (2.23), (2.25) is a Sturm-Liouville eigenvalue problem.
From Eqs. (2.23) we have

Φ̂z(r) = Jm2(βr), (2.26)

where Jm2(·), m2 = 0, 1, 2, . . . , are Bessel functions of the first kind; therefore,
Eqs. (2.25) imply

βJ ′
m2

(β) ± m2Jm2(β)

√
β2

m2
3α

2
+ 1 = 0. (2.27)

For fixed integers m2 (azimuthal wave number) and m3 (vertical direction) we solve
Eqs. (2.27) to obtain βm1(m2, m3); m1 = 1, 2, 3, . . . . Eqs. (2.27) have infinitely
many solutions. Then Eqs. (2.24) imply

σ(m1, m2, m3) = ± m3√
β(m1,m2,m3)2

α2 + m2
3

(2.28)

Clearly, iσ(m1, m2, m3) are eigenvalues of the skew-hermitian operator PJP.
The corresponding eigenvector functions Φm1m2m3 = (Φr, Φφ, Φz) form a complete
set in J0. They are independent of Ω and are explicitly expressed in terms of
Bessel functions (for example, see Eq. (2.26) for the radial component Φr). From
Eqs. (2.19) and (2.24) it follows that the eigenfunctions Φm1m2m3 with m3 
= 0
satisfy

curlΦm1m2m3 = ±
√

β(m1, m2, m3)2 + α2m2
3 Φm1m2m3 (2.29)

= ±λm1m2m3Φm1m2m3

= ± m3α

σm1m2m3

Φm1m2m3 where σ2
m1m2m3

=
m2

3α
2

β2
m1m2m3

+ m2
3α

2
.

and

(curlΦ) · N|Γ = 0. (2.30)
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The divergence free eigenvector functions Φm1m2m3 = (Φr, Φφ, Φz) are

Φr,m1m2m3 = ei(m2φ+m3αz) iσ

m3α(1 − σ2)
(σβJ ′

m2
(βr) +

m2

r
Jm2(βr)),

Φφ,m1m2m3 = ei(m2φ+m3αz) −σ

m3α(1 − σ2)
(βJ ′

m2
(βr) +

σm2

r
Jm2(βr)),

Φz,m1m2m3 = ei(m2φ+m3αz)Jm2(βr).

The eigenspace corresponding to the zero eigenvalue consists of all divergence
free vector fields independent of the vertical coordinate z (σ = 0 if m3 = 0 in
Eqs. (2.28)).

We can easily obtain asymptotic expressions of eigenvalues for large β. We
recall that we have for Bessel functions

J ′
l (ξ) =

l

ξ
Jl(ξ) − Jl+1(ξ), (2.31)

Jl+1(ξ) =
2l

ξ
Jl(ξ) − Jl−1(ξ), (2.32)

Jl−1(ξ) − Jl+1(ξ) = 2J ′
l(ξ) (2.33)

Jl(ξ) ∼
√

2
πξ

cos(ξ − π

4
− lπ

2
) as ξ → +∞. (2.34)

From Eqs. (2.27), (2.31)–(2.33) we obtain

Jm2+1(β)
Jm2(β)

=
m2

β
(1 ±

√
β2

m2
3α

2
+ 1). (2.35)

Then from Eqs. (2.35) using asymptotic expression for Bessel functions for large
β we have

tan(β − π

4
− m2π

2
) ≈ ± m2

m3α
. (2.36)

For fixed m2, m3 and α Eqs. (2.36) has infinitely many solutions βm1(m2, m3, α),
m1 = 1, 2, . . . .

In summary, with ň3 = αn3 = 2πn3/h denoting the vertical Fourier wave
number along x3, we have established that:

Proposition 2.10.

(i) On [−i, 0)∪(0, +i] the spectrum of PJP consists of a dense, but countable set
of eigenvalues ±iσn, with finite-dimensional eigenspaces for each eigenvalue.

(ii) Every eigenvector of PJP is an eigenvector of curl and vice versa, with eigen-
values ±iσn and λn mapped into each other by σ2

n = ň2
3

λ2
n
.

(iii) kerPJP =
{U ∈ J(C) : U ≡ U(x1, x2) = (U1(x1, x2), U2(x1, x2), U3(x1, x2))}.

(iv) On (kerPJP)⊥, E(−Ωt) = exp(−PJPΩt) is diagonalized in the curl-eigen-
vector functions basis, with eigenvalues exp(±iΩσnt) = exp(±iΩ ň3

λn
t)
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3. The structure and regularity of fast singular oscillating
limit equations

3.1. Fast singular oscillating limit equations

We introduce van der Pol transformation by setting in Eqs. (1.11)–(1.20)

U(t) = E(−Ωt)u(t) (3.1)

where u(t) is the “slow envelope” variable also denoted in this paper by Poincaré
variable. We note that E(−Ωt) = exp(−ΩPJPt) reduces to the identity operator
on any barotropic (vertically averaged) field implying

U = E(−Ωt)u = u. (3.2)

Since E(Ωt)|t=0 = Id

U|t=0 = u|t=0. (3.3)

Eqs. (1.26) written in u variables have the form ([3])

∂tu = B(Ωt, u, u),
B(Ωt, u, u) = E(Ωt)B(E(−Ωt)u, E(−Ωt)u) (3.4)

where B is given by Eqs. (1.27). We decompose

B(Ωt, u, u) = B̃(u, u) + Bosc(Ωt, u, u). (3.5)

Here Bosc(Ωt, u, u) contains all Ωt-dependent terms (that is non-resonant) and
B̃(u, u) contains all resonant (that is Ωt-independent) terms.

The fast singular oscillating limit equations ([3], [4]) are obtained from (3.4)
for ‘slow’ Poincaré variables w by dropping Bosc(Ωt, u, u) in (3.5):

∂tw = B̃(w, w), (3.6)

w|t=0 = w(0) = U(0) = Ṽ0. (3.7)

Here the operator B̃ is defined by (see Lemma 3.1 and Section 4 for a rigorous
statement)

B̃(v, v) = lim
Ω→+∞

1
T

∫ T

0

B(Ωs, v, v)ds = lim
T→+∞

1
T

∫ T

0

B(Ωs, v, v)ds

where arguments v are s-independent functions; limits are taken in the sense of
almost periodic functions in s with values in Banach spaces [8], [13], see Section 4.

The limit resonant operator B̃ inherits properties of the operator B:

Lemma 3.1. ([4]): Let (u, v, w) ∈ H1 × H1 × H1. Then

(B̃(u, v), w) = lim
Ω→∞

1
T

∫ T

0

(B(Ωs, u, v), w)ds (3.8)

= lim
T→∞

1
T

∫ T

0

(B(Ωs, u, v), w)ds. (3.9)
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From now on we shall restrict the initial data (1.12), (1.21), (1.29), (3.3),
(3.7) to the closed (proper) subspace of J0 ∩ Hs

σ, s ≥ 3, s integer, defined by
(with the vector potential curl−1 as in Theorem 2.7):

Hs
ν(C) = J0 ∩ Hs

σ ∩ curl−s (J0). (3.10)

We will similarly restrict solutions of Eqs. (1.1)–(1.2) to the space Hs
ν(C)

(see Theorem 4.5).

Remark 3.2. v ∈ Hs
ν is equivalent to v ∈ J0∩Hs

σ and curlj v ∈ J0, 0 ≤ j ≤ s. The
complement of Hs

ν in Hs
σ includes functions such as curl−j (∇πH), 1 ≤ j ≤ s and

is not dense even in H1
σ. The case of more general initial conditions and functional

spaces for Eqs. (1.1)–(1.2) will be treated in [6].

We can explicit the limit resonant operator B̃ with the help of the eigen-
functions Φn = Φn1n2n3 of curl and PJP, which form a basis in the space Hs

ν ;
expand

u =
∑

n

unΦn. (3.11)

From the diagonalization of E(−Ωt) and curl operator:

∂tun =
∑

k,m,k3+m3=n3

Bn(Ωt, uk, um), (3.12)

Bn(Ωt, uk, um) = ±λm exp
(

i

(
± ǩ3

λk
± m̌3

λm
± ň3

λn

)
Ωt

)
(3.13)

(Φk × Φm, Φn)L2 ukum,

where k, m, n now index the eigenvalues and eigenfunctions of curl and PJP.
The resonant nonlinear interactions of Poincaré waves with B(U,U) are

present when the Poincaré frequencies satisfy the relation ±σk ± σm ± σn = 0,
k3 + m3 = n3, with the resonant set K now defined in terms of vertical wave
numbers k3, m3, n3 and eigenvalues ±λk, ±λm, ±λn of curl:

K = {± k3

λk
± m3

λm
± n3

λn
= 0, n3 = k3 + m3}. (3.14)

Since the eigenvalues of curl are countable, so are the Dl(k, m, n) = ±σk±σm±σn,
where k, m, n are now indexing the eigenfunctions and eigenvalues of PJP (and
curl).

Now we prove that the nonlinear operator B̃ commutes with vertical averag-
ing. We have

Theorem 3.3. The operator B̃ commutes with vertical averaging. More precisely,

B̃(w, w) = B̃(w, w) = B2D(w, w) = −P(w · ∇w). (3.15)
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Proof. Let w = w + w⊥ where the orthogonal field w⊥ verifies w⊥ = 0. Clearly,

B̃(w, w) = B̃(w, w) + B̃(w⊥, w⊥) (3.16)

since w⊥ = 0. Thus, the theorem will be proven if we show that

B̃(w⊥, w⊥) = 0, w⊥ = 0. (3.17)

In the limit Ω → +∞ interactions in the bilinear term B̃ are restricted to the
resonant manifold

± k3α√
β(k1,k2,k3)2+k2

3α2
± m3α√

β(m1,m2,m3)2+m2
3α2

± n3α√
β(n1,n2,k3)2+n2

3α2
= 0 (3.18)

and we have n3 = k3 + m3, n2 = k2 + m2. Now vertical averaging in Eqs. (3.17)
implies n3 = 0, k3 + m3 = 0. Then from Eqs. (3.18) we obtain β(k1, k2, k3)2 =
β(m1, m2, m3)2. We use eigenvector functions Φm1m2m3(r, φ, z) to represent phys-
ical fields w⊥(r, φ, z), w⊥ = 0:

w⊥ =
∑

m1m2m3

w⊥
m1m2m3

Φm1m2m3(r, φ, z). (3.19)

We recall from Eqs. (2.29) that Φm1m2m3(r, φ, z), m3 
= 0 are eigenvector functions
of curl. Then we obtain

B̃(w⊥, w⊥)n

= Pn

∑
k3+m3=0,β2

k=β2
m

w⊥
k1k2k3

Φk1k2k3(r, φ, z) × curl w⊥
m1m2m3

Φm1m2m3(r, φ, z)

= ±Pn

∑
k3+m3=0,β2

k=β2
m

w⊥
k1k2k3

Φk1k2k3(r, φ, z)×

√
β(m1, m2, m3)2 + α2m2

3 w⊥
m1m2m3

Φm1m2m3(r, φ, z)

= ±Pn

∑
k3+m3=0,β2

k=β2
m

(β(k1, k2, k3)2 + α2k2
3)

1/4(β(m1, m2, m3)2 + α2m2
3)

1/4

w⊥
k1k2k3

Φk1k2k3(r, φ, z) × w⊥
m1m2m3

Φm1m2m3(r, φ, z)
= 0.

Clearly, the last sum is identically zero (it changes sign if we interchange indices k
and m in the summation). Then we obtain Eqs. (3.17). Theorem 3.3 is proven. �

3.2. Strict 3-wave resonances

In this section we show that for all values of α, except a countable set, the resonant
sets lie in {k3m3n3 = 0}. This is generic case of no strict 3-wave resonances.

In the case of strict 3-wave resonances we have k3m3n3 
= 0 and Eqs. (3.18)
become

± 1√
β2

k1
(k2,k3α)

k2
3α2 + 1

± 1√
β2

m1
(m2,m3α)

m2
3α2 + 1

± 1√
β2

n1
(n2,n3α)

n2
3α2 + 1

= 0. (3.20)
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We also have convolutions in the azimuthal φ and the axial z directions implying
n3 = k3 + m3, n2 = k2 + m2. We recall that for every pair of integers k2 and k3

the quantities βk1(k2, k3α) are found from the equation

βJk2
′(β) ± k2Jk2(β)

√
β2

k1
(k2, k3α)
k2
3α

2
+ 1 = 0. (3.21)

For every pair of integers k2 and k3, Eqs. (3.21) have a countable number of
solutions denoted by β(k1, k2, k3α); k1 = 1, 2, 3, . . . . Similarly, for β(m1, m2, m3α)
and β(n1, n2, n3α).

Eqs. (3.20) can be written in the form

± 1√
X

± 1√
Y

± 1√
Z

= 0 (3.22)

where

β2(k1, k2, k3α)
k2
3α

2
+ 1 = X ↔

(
βJk2

′(β)
k2Jk2(β)

)2

= X, (3.23)

with similar expressions for Y and Z.
Substituting Eqs. (3.21) in Eqs. (3.20) we obtain

± k2Jk2(β(k1, k2, k3α))
β(k1, k2, k3α)Jk2

′(β(k1, k2, k3α))
± m2Jm2(β(m1, m2, m3α))

β(m1, m2, m3α)Jm2
′(β(m1, m2, m3α))

± n2Jn2(β(n1, n2, n3α))
β(n1, n2, n3α)Jn2

′(β(n1, n2, n3α))
= 0. (3.24)

In Eqs. (3.24) k2, m2, n2, k3, m3, n3 ∈ Z and k1, m1, n1 = 1, 2, 3, . . . . Also,
n2 = k2 +m2 and n3 = k3 +m3. In fact, we can think of Eqs. (3.24) as a countable
set of nonlinear equations for α. Clearly, for every fixed kj , mj , nj Eq. (3.24) has
at most a countable number of solutions α. Thus, we have a countable number
of equations and each equation has at most a countable number of solutions α.
Therefore, the set of parameters α’s for which strict 3-wave resonances can occur
is countable.

Proposition 3.4. The set K∗ of parameters α’s for which strict 3-wave resonances
can occur is countable and discrete.

3.3. Regularity of fast singular oscillating limit equations

In the generic case of no strict 3-wave resonances BIII = 0 and the limit Euler
equations (1.35) become

∂tw
⊥ = BII(w(t), w⊥), w⊥|t=0 = w⊥(0) = U⊥(0) = U(0) − U(0). (3.25)

where w(t) satisfies 2D Euler equations with vertically averaged initial data w|t = 0

= w(0) = U(0). Eqs. (3.25) for w⊥(t) are solved with periodic boundary conditions
in the third coordinate and w⊥ ·N|Γ = 0. We also have curl w⊥ · N|Γ = 0.
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Eqs. (3.25) possess new 3D conservation laws:

Theorem 3.5. Let w(t) be a solution of 2D-3C Euler Eqs. (1.34). Then for every
w⊥(t) solution of Eqs. (3.25) with initial data w⊥(0) we have:

||∂3w
⊥(t)||2 = ||∂3w

⊥(0)||2, (3.26)

where ∂3 denotes the partial derivative with respect to x3.

Proof. Applying ∂3 to Eqs. (3.25) and using skew-symmetry property

(BII(w, ∂3w
⊥), ∂3w

⊥) = 0

we obtain
d

dt
||∂3w

⊥||2 = 0. � (3.27)

Moreover, for the initial data and solutions in the function space Hs
ν , we have

further conservation laws:

Theorem 3.6. Let w⊥(t) be solutions of the limit equations (3.25) in Hs
ν . We have,

for 0 ≤ j ≤ s, j even:

|| curlj w⊥(t)||2 = || curlj w⊥(0)||2. (3.28)

Proof. Proceed as in the proof of Theorem 3.3, but with k3 = n3 (and m3 = 0) or
with m3 = n3 (and k3 = 0), together with λ2

k = λ2
n, β2

k = β2
n (resp. λ2

m = λ2
n, β2

m =
β2

n). Note that expansion along the eigenfunctions of curl and PJP requires their
completeness at least in H1

ν , cf. Remark 3.2. �
Remark 3.7. Note that 2D-3C Euler equations only admit conservation of energy
and enstrophy. The above conservation laws (3.26)–(3.28) ensure global regularity
of the limit Euler equations (3.25).

Theorem 3.8. Let h/R /∈ K∗. Let ||w(0)||Hs
ν
≤ Ms, s ≥ 1. Let T1 > 0 fixed, arbi-

trary large. Then there exists a unique regular solution w(t) of the limit resonant
3D Euler equations (3.6)–(3.7), for 0 ≤ t ≤ T1:

||w(t)||Hs
ν
≤ M̃s(h/R, Ms, T1). (3.29)

4. Long time regularity for finite large Ω

Two major obstacles in extending the fast singular oscillating limit methods de-
veloped in [3]–[5] from the periodic lattice case to the cylinder (as well as other
axisymmetric domains) are that: (i) PJP is not skew-symmetric with respect to
the inner product of classical Sobolev spaces Hs

σ(C), s ≥ 1; (ii) E(Ωt) is not an
isometry in these spaces (∇ does not commute with PJP and E(Ωt)). Item (i)
implies that a priori estimates of Eqs. (1.11)–(1.12) in Sobolev spaces are 1/ε = Ω
dependent; and (ii) that estimates for u(t, x), the Poincaré slow variable (van der
Pol transformation of U(t, x), Eq. (3.1)) are not invariant for the physical variable
U(t, x). That invariance was used in an essential way in the convergence proofs
of [3]–[5] (periodic case). The resolution of the above requires the introduction
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of Hilbert spaces with the metric based on the operator curl-norms, with norms
equivalent to that of Hs

σ(C), s integer, s ≥ 1.
As before (cf. Eq. 3.10), we restrict ourselves to initial data and solutions in

the spaces (s ≥ 3):
Hs

ν(C) = J0 ∩ Hs
σ ∩ curl−s(J0), (4.1)

such that v ∈ Hs
ν implies curlj v ·N = 0 on Γ, 0 ≤ j ≤ s (cf., Remark 3.2). More

general functional spaces dense in H1
σ will be treated in [6].

Lemma 4.1. Let v ∈ Hs
ν , s ≥ 1. Then there exist constants C1, C2 > 0 such that:

C1||v||Hs
σ
≤ ||v||Hs

ν
≤ C2||v||Hs

σ
, (4.2)

where
||v||2Hs

ν
= ||v||2L2

+ || curls v||2L2
. (4.3)

Proof. Iterated applications of Theorem 2.7 and 2.8, we have equivalence of the
“curl-norms” with the usual Sobolev space norms. �
From now on, we designate by ||v||s the curl-norm of v defined in Eq. 4.3, and by
〈u,v〉s the corresponding inner product of u,v in Hs

ν . We have the:

Lemma 4.2. Let u,v ∈ Hs
ν , s ≥ 0; then we have skew-symmetry in the curl-norms:

〈PJPu,v〉s = −〈u,PJPv〉s (4.4)

and
〈PJPu,u〉s = 0. (4.5)

Proof. Obvious for s = 0; we outline the case s = 1:

(curlPJPu, curlv)L2 =
(
−∂u

∂z
, curlv

)
L2

=
(
u, curl

∂v
∂z

)
L2

=
(

curlu,
∂v
∂z

)
L2

= −(curlu, curlPJPv)L2 ,

since both u,v, ∂u
∂z , ∂v

∂z satisfies the conditions of Lemma 2.4. The cases s > 1
follows a similar proof. �
Remark 4.3. The all important Lemmas 4.1, 4.2 allow for local estimates of solu-
tions to the 3D Euler equations (1.11)–(1.12) which are 1/ε = Ω independent.

Corollary 4.4. The Poincaré-Sobolev unitary operator E(Ωt) is an isometry on the
curl spaces Hs

ν , s ≥ 0; in particular,

||U||s = ||u||s, (4.6)

where U(t) = E(−Ωt)u(t).

To establish long time regularity of the 3D Euler equations Eqs. (1.20)–(1.21)
on 0 ≤ t ≤ TM , TM fixed, arbitrary large, we first establish convergence in Hs

ν

(as Ω → ∞) of the solution to that of the limit resonant equations (1.34)–(3.25)
on the interval [0, Ts], where Ts is some local time of existence of (1.20)–(1.21).
We only consider the case of “catalytic resonances”, h/R /∈ K∗. With the help
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of the long time existence of solutions to the limit resonant equations on [0, TM ],
cf. Theorem 3.8, we extend local regularity on [0, Ts] to long-time regularity on
[0, TM ] by partitioning [0, TM ] into subintervals of length Ts and bootstrapping
estimates.

Theorem 4.5. Let U(0) ∈ Hβ
ν , β ≥ 3 and ||U(0)||β ≤ M0β, where the β-norm is

the curl-norm (4.3). Then:
(i) there exists Tβ > 0 such that there exists a unique regular solution of the 3D

Euler equations on 0 ≤ t ≤ Tβ which satisfies

||U(t)||2β ≤ M2
β , 0 ≤ t ≤ Tβ; (4.7)

moreover Mβ, Tβ do not depend on Ω, but only on M0β, h/R.
(ii) For every α such that β ≥ α ≥ 3, there exists a constant C(β) such that

||U(t)||2β ≤
(
||U(0)||2β

)
exp

((
C(β)

∫ Tβ

0

||V(τ)||α dτ

)
+ Tβ

)
, (4.8)

where α can be fixed independently of β.

Proof. (i) is proven by a straightforward adaptation of the proof of Kato [16] in
R3 to the cylinder C, replacing the usual Sobolev spaces by the spaces Hβ

ν . Kato’s
method is a vanishing viscosity limit via local existence for the Navier-Stokes
equations (the latter via fixed-point construction, not a Galerkin approximation).
That estimates are uniform in Ω stems from Lemma 4.1 and 4.2. (ii) can then
be derived exactly as in Theorem 4.1 of [3], replacing Fourier methods by curl
eigenvector function expansions. �

We now proceed to estimate the error between solutions u(t) of Eqs. (3.4)–
(3.5) with finite large Ω

∂tu = B(Ωt, u, u), (4.9)

B(Ωt, u, u) = E(Ωt)B(E(−Ωt)u, E(−Ωt)u) = B̃(u, u) + Bosc(Ωt, u, u) (4.10)

and solutions w(t) of the limit resonant 3D Navier-Stokes equations

∂tw = B̃(w, w), (4.11)
w|t=0 = w(0) = U(0) = u(0). (4.12)

Let

r(t) = u(t) − w(t), r(0) = 0. (4.13)

Recall that E(Ωt) is an isometry on the curl spaces Hs
ν spaces. Therefore, estimates

for norms of r(t) yield estimates for the norms of the error

R(t) = E(−Ωt)(u(t) − w(t)) = U(t) − E(−Ωt)w(t). (4.14)

The equation for the error r(t) is

r(t) =
∫ t

0

(
B̃(u, r) + B̃(r,w) + Bosc(Ωs, u(s), u(s))

)
ds, (4.15)
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where

Bosc
n (Ωt, u(t), u(t)) =

∑
l,k3+m3=n3,non−resonant

k2+m2=n2

exp(iΩtDl(k, m, n))uk(t)um(t)

(curl Φk × Φm, Φn). (4.16)

We have

Theorem 4.6. Assume that the regular solution U(t) of Eq. (1.11), (1.20) with
initial condition ||U(0)||s ≤ Ms0 exists on 0 ≤ t ≤ Ts, for some Ts (not necessary
small), with ||U(t)||s ≤ M̃s(Ms0, Ts, h/R). Then under conditions α ≥ 3, s−α ≥ 1
we have

||r(t)||α ≤ δ(Ω), ∀t ∈ [0, Ts], (4.17)
where δ(Ω) → 0 as Ω → +∞; Ts is independent from Ω; δ(Ω) depends on Ms0,
Ts, α, s, and h/R.

Recall that PJP is skew-symmetric under inner product in the curl-norm spaces,
therefore, local small time existence for (3.4)–(3.5) is independent of Ω.

To prove this convergence result we notice that the first two terms inside
the integral on the right-hand side of (4.15) are linear in r and we only need to
show that the contribution of Bosc can be made arbitrary small as ε = 1/Ω → 0.
From (4.16) note that Bosc

n (τ/ε, u(t), u(t)) is an almost periodic function of τ with
values in L∞(t;Hα

ν ) since the set Dl(k, m, n) = ±σk ± σm ± σn is countable. We
need the following lemma for almost periodic functions with values in Banach
spaces ([6], [8], [13], [27]).

Lemma 4.7. ([6], [27]). Let f(t, τ) ∈ AP (R; C0(t;E)) be almost periodic functions
of the variable τ , with values in C0(t;E), t ∈ [0, T0], E is a Hilbert space. Let

f(t, τ) ∼
∑
j∈J

fj(t) exp(iωjτ), (4.18)

in the sense of Banach space-valued almost periodic functions in τ , fj(t)∈C0(t;E),
over the (countable) set J of frequencies. If

sup0≤t≤T0 ||f(t, τ)||E ≤ Mf , and if |ωj| ≥ η > 0 on J (4.19)

then:

E− limε→0

∫ T

0

f(t, t/ε)dt = 0; (4.20)

the limit also converges uniformly on 0 ≤ T ≤ T0 provided ||f(t2, τ)−f(t1, τ)||E ≤
c|t2 − t1|, uniformly on [0, T0].

To apply Lemma 4.7 to Bosc(Ωt, u(t), u(t)) one needs |ωj| = |σk±σm±σn| > η
uniformly in k, m, n. For this, define πRu (similarly πRw) the projection of u onto
the curl eigenvector functions with |λk|, |λm|, |λn| ≤ R, with:

||u− πRu||Hα
ν
≤ MsR

α−s, s > α. (4.21)
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Then | ± σk ± σm ± σn| > η(R) for πRu in Eq. (4.16), which controls the small
divisor estimate ([1]). Bosc(Ωt, u(t), u(t)) is decomposed as

Bosc(Ωt, u, u) = πRBosc(Ωt, πRu, πRu) + πRBosc(Ωt, u, (I − πR)u) (4.22)

+ πRBosc(Ωt, (I − πR)u, u) + (I − πR)Bosc(Ωt, u, u).

Finally, apply Lemma 4.7 to the integral∫ t

0

πRBosc(Ωs, πRu(s), πRu(s))ds, with E = Hα
ν , (4.23)

and use (4.21) to bound the error terms involving (I − πR). This completes the
outline of the proof of the local convergence Theorem 4.6, with details following
along the proof of Theorem 6.3, p. 139–140 in [3], albeit curl eigenvector functions
replacing Fourier modes.

Remark 4.8. In Theorem 4.6 u(t) converges strongly to w(t). The original U(t)
also converges strongly to E(−Ωt)w(t). But U(t) has no strong limit in Hs

ν as
Ω → ∞, hence the singular nature of the fast oscillating limit.

From the global regularity Theorem 3.8 for the 3D resonant Euler equations
and Theorem 4.6 we bootstrap long-time regularity for Eqs.(1.11)–(1.12) for Ω
large but finite.

Proof of Theorem 1.4. We complete in some detail the proof of Theorem 1.4, as
the bootstrapping arguments are rather different from the usual classical procedure
for Navier-Stokes equations [20]. Let Tm fixed, arbitrary large. Let ||Ṽ0(y)||s =
||U0(x)||s ≤ Ms0, s ≥ 4. From Theorem 3.8, with ||w(0)||α = ||U0||α ≤ Mα0 ≤
Ms0, for some fixed α ≥ 3, s− α ≥ 1, there exists M̃α such that:

||w(t)||α ≤ M̃α(Ms0, TM , h/R) on 0 ≤ t ≤ Tm, (4.24)

for the solution of the resonant 3D Euler equations. We need the:

Corollary 4.9. Let ||U(t1)||α ≤ Rα at some t1 ≥ 0, α ≥ 3, Rα > 0 given. Then
there exists Tα(Rα, h/R) such that

||U(t)||α ≤ 4Rα on [t1, t1 + Tα]; (4.25)

moreover if U(t1) ∈ Hs
ν for some s > α:

||U(t)||2s ≤ ||U(t1)||2s exp
{(

C(s)
(

sup
t1≤t≤t1+Tα

||U||α
)

+ 1
)

(t − t1)
}

≤ ||U(t1)||2s exp{(4C(s)Rα + 1)(t − t1)} on [t1, t1 + Tα]. (4.26)

Proof. First, apply Theorem 4.5 with α = β to derive Eqs. (4.25). Then apply (ii)
in Theorem 4.5 with β = s. �

We now choose, with M̃α given by Eqs. (4.24):

Rα = 3M̃α, (4.27)
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hence Tα = Tα(Ms0, Tm, α, h/R). Let Qα = 4C(s)Rα + 1. We define:

M̃2
s = M2

s0 expQα(Tm + Tα), (4.28)

and we shall demonstrate that:

||U(t)||2s ≤ M̃2
s on 0 ≤ t ≤ Tm, (4.29)

by choosing Ω large enough to make the error δ(Ω) (in Theorem 4.6) uniformly
small on the sequence of intervals [0, Tα], [Tα, 2Tα], . . . , [nTα, (n + 1)Tα], where
nTα ≤ Tm < (n + 1)Tα. We apply Theorem 4.6 on the global interval [0, Tm],
assuming a priori the estimate (4.29) (which will be shown self-consistent under
bootstrapping); we choose such large Ω that δ(Ω) is so small and the assertion of
Theorem 4.6 holds with Ts ≡ Tm, and for Ω ≥ Ω1, the constant δ(Ω) satisfies:

δ(Ω) ≤ Rα/2 for Ω ≥ Ω1(M̃s, Tm, α, s, h/R); (4.30)

equivalently, Ω1 depends only on Ms0, Tm, α, s, h/R. Hence, for 0 ≤ t ≤ Tm:

||U(t)||α ≤ ||U(t) − E(−Ωt)w(t)||α + ||w(t)||α ≤ Rα/2 + Rα/3 ≤ Rα. (4.31)

We now apply Corollary 4.9 on [0, Tα], with the choice of Rα in Eqs. (4.27):

||U(Tα)||2s ≤ M2
s0 exp(QαTα). (4.32)

From the uniform estimate (4.31) for ||U(t)||α, valid at t = Tα, we apply again
Corollary 4.9 on [Tα, 2Tα]:

||U(t)||2s ≤ M2
s0 exp(QαTα) exp(QαTα); (4.33)

and repeating the argument on the interval [kTα, (k + 1)Tα], k ≤ n:

||U(t)||2s ≤ M2
s0 exp(kQαTα) exp(QαTα), (4.34)

since ||U(kTα)||α ≤ Rα. Completing the bootstrapping, the maximal estimate for
||U(t)||2s occurs on [nTα, Tm]:

||U(t)||2s ≤ M2
s0 exp(nQαTα) exp(Qα(Tm − nTα))

≤ M̃2
s ,

which corroborates the self-consistency of the choice ||U(t)||s ≤ M̃s in the ap-
plication of Theorem 4.6 for a uniform δ(Ω). The proof of Theorem 1.4 is then
completed with the canonical transformation (1.17)–(1.18) between V(t, y) and
U(t, x) and its isometry properties. �

Remark 4.10. The case h/R ∈ K∗ includes the quadratic resonant opera-
tor BIII(w⊥,w⊥) in Eqs. (1.35). We have not found new conservation laws for
the latter besides energy and helicity. A most interesting issue is the possibility of
singularity and blow-up for the full resonant Euler equations (1.35). Partial results
in the periodic lattice geometry are derived in [5], where (1.35) is demonstrated
to be equivalent to a countable sequence of uncoupled finite dimension dynamical
systems, in the generic case.
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A Model of a Two-dimensional Pump

Piotr Bogus�law Mucha

Dedicated to Professor V.A. Solonnikov

The aim of this note is to study the system of equations of motion of viscous
incompressible fluid in a time-dependent domain in the two-space-dimensional
case governed by the classical Navier-Stokes equations with the slip conditions at
the boundary. We look for periodic in time solutions. We are interested in data
with inhomogeneous boundary conditions. Also the dependence of the viscosity
coefficient will be important, since we want to study the inviscid limit for the
solutions of our model.

The equations read

vt + v · ∇v − ν∆v + ∇p = 0 in P,
div v = 0 in P,
n · T(v, p) · τ = 0 on ∂P,
n · v = V on ∂P,
v(·, t) = v(·, t + 1) on p(t),

(1)

where v = (v1, v2) describes the velocity vector, p the pressure. Time-dependent
domain is denoted by p(t) ⊂ R2 and

P =
⋃

0≤t<1

p(t) × {t}, ∂P =
⋃

0≤t<1

∂p(t) × {t}. (2)

By the periodicity with respect to time

p(t) = p(t + 1). (3)

Vectors n and τ are the normal and tangent unit vectors to boundary ∂p(t). T is
the stress tensor and

T(v, p) = {ν(vi
,j + vj

,i) − pδij}i,j=1,2, (4)

where ν is the viscous coefficient.
We may divide the boundary into two parts

∂p(t) = Γr ∪ Γm(t), (5)
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where Γr is the rigid part and Γm is the moving part of the boundary. We assume
that the boundary is sufficiently smooth at least C2,1-piecewise and interior angles
are π/2 – see the picture below. For simplicity we require the domain to be simply
connected.

p(t2) p(t3)
p(t1) p(t4)

t1 < t2 < t3 < t4��
x1

x2

This decomposition divides also the boundary datum V . On the rigid part
(1)4 decibels the inflow/outflow condition

V |Γr = V0 (6)

and on Γm we assume that

V |Γm = V1 =
∂

∂t
ϕ(x, t) · n|Γm , (7)

where ϕ describes the surface of the boundary. Relation (7) says that there is no
inflow through Γm.

Moreover, to keep compatibility conditions with (7)2 we require that∫
∂p(t)

V (·, t)dσ = 0. (8)

The system described above may be treated as a model of two-dimensional
pump. Question concerns existence of solutions for the large data is connected
with the effectiveness of the pump.

The first result of the paper is the following.

Theorem A. Let V ∈ C1,1/2(∂P ) and

||A0(p(t))||C(0,1)||2χ(x, t)||C(∂P ) < 1, (9)

where χ is the curvature of ∂p(t) and

A0(p(t)) = ||W ||C(∂p(t)), (10)

where W is the solution to the following problem

rot W = 1 in p(t),
div W = 0 in p(t),
n · W = 0 on ∂p(t).

Then system (1) admits at least one weak solution such that

rot v ∈ L∞(P ), v ∈ Ca,a/2(P )
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for any 0 < a < 1. Moreover

||rot v||L∞(P ) ≤ B(1 − ||A0||C ||2χ||C)−1||V ||C1,0 , (11)

where B is independent of the viscous coefficient ν.

Under a geometrical constraint, given by assumption (9), we are able to show
existence of solutions for any large inflow conditions. Of course, (9) restricts Vm,
however in a mild sense, since the effectiveness of the pump modelled by the
equations can be any large. To measure this quantity we may write the following
definition

E =
∫ 1

0

∫
Γm(t)

Vb(t)n · e1dσdt.

Adding to Vb term g(t)e1 · n with suitable large smooth function g(t) we may
increase E as we wish. Quantity V0 is not restricted.

A key element of our system is the slip boundary condition (1)3,4. Only for
this type of boundary relations it is possible to show estimate (11).

For the different boundary conditions, as for the most popular Dirichlet ones,
the theory gives a similar result [2, 3, 4, 6, 9]. The technique for this type of
problems are based on the energy approach and the Hopf extension. This method
delivers us main estimate which is highly dependent of the viscosity coefficient.

The initial-boundary value problem for the system with the external force
has been considered in [8].

Our model admits estimate (11) and properties of this bound (independence
of the viscosity) allows to examine the inviscid limit for the system (1).

The next result concerns this subject.

Theorem B. Let assumptions from Theorem A be fulfilled. Consider system (1) for
viscous coefficients ν → 0.

Then for a subsequence

νk → 0 with k → ∞;

we have
vνk → vE strongly in Ca,a/2(P )

and
rot vνk → rot vE weakly-∗ in L∞(P ),

where vνk is the solution to problem (1) with viscous coefficient equals νk and vE

fulfills the Euler system

vE,t + vE · ∇vE + ∇pE = 0 in P,
div vE = 0 in P,
n · vE = V on P.

(12)

Moreover
||rot vE ||L∞ ≤ B(1 − ||A0||C ||2χ||C)−1||V ||C1,0(∂P ). (13)

The inviscid limit is not unique, since even for the Navier-Stokes equations
we have not got this feature. Also it is impossible, because the inflow condition is
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non zero (on the rigid part of the boundary), thus to obtain the uniqueness of the
Euler system we need an extra condition. The result is so strong as for the torus
[5], although here our domain is time-dependent. It is a consequence of estimate
(11), which can be proved, provided condition (9).

Question concerns the Eulerian limit for the Navier-Stokes equations with
the slip boundary condition shave been investigated in [1, 7].

Throughout the paper we try to use standard notations as in [4, 10].

A priori bound

We want to show estimate (11) assuming that the solutions exist. The first step
is to reformulate the problem. By the two-dimensional properties the vorticity of
the velocity is a scalar function

α = rot v = v2
,1 − v1

,2.

Also the vorticity equation obtained form (1)1,2 has a special form

αt + v · ∇α − ν∆α = 0. (14)

To obtain a boundary condition to equations (14) we use properties of the slip
boundary condition (1)3,4, which enables to calculate the value of the vorticity at
the very boundary as follows

α = 2χv · τ − 2V,s, (15)

where s is the unit length parameter of ∂p(t) (it is enough to differentiate (1)4
with respect to s and use (1)3) and recall χ is the curvature of ∂p(t).

Examining system (14)–(15), we can apply the maximum principle, since the
form of the nonlinear term is proper for this technique. Then we get

||α||L∞(P ) ≤ ||2χ||C(∂P )||v||C(∂P ) + 2||V,s||C(P ). (16)

To find estimate on the velocity we consider the elliptic problem,

rot v = α in p(t),
div v = 0 in p(t),
n · v = V (·, t) on ∂p(t)

(17)

for t ∈ [0, 1).
The standard theory delivers us the following bound

||v||C(p(t)) ≤ A0(p(t))||α||L∞(p(t)) + c||V ||C1(p(t)), (18)

where A0 is the constant given by (10).
Combining (16) and (18) we obtain

||α||L∞(P ) ≤ ||A0(p(t))||C(0,1)||2χ||C(∂P )||α||L∞(P ) + B||V ||C1,0(∂P ), (19)

but we assumed that

||A0(p(t))||C(0,1)||2χ||C(∂P ) < 1.

Thus (19) gives

||α||L∞(P ) ≤ B(1 − ||A0(p(t))||C(0,1)||2χ||C(∂P ))−1||V ||V 1,0 . (20)
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The above considerations lead us to the following result.

Lemma 1. For sufficiently smooth solutions to problem (1) estimate (11) is valid,
provided constraint (9).

To clarify existence to the system we need regularity of solutions with respect
to time. It is possible to prove using the weak-∗ formulation to the coupled system
(14), (15) and (17).

Definition 1. We say that v ∈ Ca,0(P ) such that rot v ∈ L∞(P ), is the weak-∗
solution to problem (1), iff the following identity holds∫

P

αφtdxdt +
∫

P

αv · ∇φdxdt

+ν

∫
P

α∆φdxdt − 2ν

∫
∂P

(χv · τ − V,s)dσdt = 0 (21)

for any
φ ∈ W 2

1 (P ) ∩ {φ|∂P = 0}
and v fulfilling the following system

rot v = α in p(t),
div v = 0 in p(t),
n · v = V (·, t) on ∂p(t)

(22)

for t ∈ [0, 1).

By the weak-∗ formulation we prove the following Lemma.

Lemma 2. Weak-∗ solutions fulfilling Definition 1 belong to Ca,a/2(P ).

Proof. We need to show regularity with respect to time. By (21) we have that∫
P

αtφdxdt = −
∫

P

αv · ∇φdxdt

−ν

∫
P

α∆φdxdt + 2ν

∫
∂P

(χv · τ − V,s)
∂φ

∂n
dσdt (23)

which holds for φ as in Definition 1.
However we may examine only the r.h.s. of (23). Assuming that v is a weak-∗

solution, the r.h.s. of (23) is well defined for any

φ ∈ W 2,0
p (P ) ∩ {φ|∂P = 0}

for any p > 1.
Hence

|the r.h.s. of (23)| ≤ c||V ||C1,0(∂P )(ν + 1 + ||V ||C1,0(∂P ))||φ||W 2,0(P ). (24)

Hence by the definition of the weak derivative from the l.h.s. of (23) we conclude
that

αt ∈ Lp∗(0, 1; (W 2
p (p(t)))∗)

with 1/p + 1/p∗ = 1.
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Putting this information to the investigation of problem (22), remembering
that V ∈ C1,1/2(∂P ) we obtain the following bound on the stream function of the
velocity filed

||ψt||Lp∗(P ) ≤ c||αt||Lp∗(0,1;(W 2
p (p(t)))∗) + DATA, (25)

where ψ defines the velocity

v = ∇⊥ψ = (−∂x2ψ, ∂x1ψ).

Such a scalar function can be found since our domain is simply connected.
To obtain bound (25) we need to transform the time-dependent domain into

a rigid one to keep well-posedness of the differentiation with respect to time.
Since boundary ∂P ∈ C2,1 and also the curvature of ∂p(t) is also controlled, this
procedure delivers us only technical difficulties which we omit here.

Since bound (24) depends on ν in a mild sense (the estimate is valid for
ν → 0) and holds for any p > 1. Thus by estimate (20) and (24), and properties
of solvability of the elliptic system (22) we have

ψ ∈ W 2,1
q (P ) for any q < ∞

which follows that
v = ∇⊥ψ ∈ W 1,1/2

q (P );
and the embedding theorem gives that;

v ∈ Ca,a/2(P ) for 0 < a < 1.

By (24) we deduce that

||v||Ca,a/2(P ) ≤ c||V ||C1,1/2(∂P )(||V ||C1,1/2(P ) + 1 + ν). (26)

Lemma 2 is proved.

Existence

To show existence we apply the Leray-Schauder theorem. Lemmas 1 and 2 give
us a priori bound for the solutions. Now we need to consider a linearization of the
system.

For a function w we consider the following coupled system

βt + w · ∇β − ν∆β = 0 in P,
β = 2χu · τ − 2V,s on ∂P,

(27)

rot u = β in p(t),
div u = 0 in p(t),
n · u = V (·, t) on ∂p(t)

(28)

for t ∈ [0, 1).

Lemma 3. Let w ∈ Ca,a/2(P ), then if assumptions of Theorem A are fulfilled then

||u||Ca,a/2(P ) ≤ c||V ||C1,1/2(∂P )(||V ||C1,1/2(P ) + 1 + ν). (29)

System (27)–(28) describes us the following map

Ξ : Ca,a/2(P ) → Ca,a/2(P ),
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such that
Ξ(w) = u.

It is easy to check that the fixed point of the map will be the solution to problem
(1) in the sense of Definition 1. By considerations in Lemma 1 and 2, we can prove
the same bound (with the same constants) for system (27)–(28) which shows well-
posedness of map ξ.

One point, which will not be shown, is the continuity of the map. We should
show that if

w → w̄ in Ca,a/2(P ),
then

Ξ(w) → Ξ(w̄) in Ca,a/2(P ).
We omit the proof of this fact, since it follows from the standard energy approach.

Since P is bounded by the Ascoli-Arzeli theorem bounded set in Ca,a/2(P )
is compact. Moreover the set of solutions Ξ(u) = λu for λ ∈ [0, 1] is bounded in
Ca,a/2(P ) which is a consequence of a priori bounds obtained above. Thus by the
Leray-Schuader theorem we find at least one fixed point of map ξ.

It follows that we show existence of weak-∗ solution to problem (1). Theorem
A is proved.

The inviscid limit

Restate problem (1) underlining dependence of the viscosity

vν
t + vν · ∇vν − ν∆vν + ∇pν = 0 in P,

div vν = 0 in P,
n · T(vν , pν) · τ = 0 on ∂P,
n · vν = V on ∂P,
vν(·, t) = vν(·, t + 1) on p(t).

(30)

By Theorem A the following bounds hold

|| rot vν ||L∞(P ) ≤ S, ||vν ||Ca,a/2(P ) ≤ S (31)

for ν < 1. The restriction on the viscosity coefficient comes from (26). It is not
essential since we investigate the limit

ν → 0.

As we mentioned at the very beginning we will not obtain any uniqueness
result, hence we concentrate our attention to a subsequence

νk → 0 for k → +∞.

The subsequence has been chosen in such a way that

rot vνk ⇀ rot vE weakly-∗ in L∞(P )

and
vνk → vE strongly in Ca,a/2(P ).

Introduce a definition of weak solutions to the Euler system (12).
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Definition 2. Let p > 2. We say that

v ∈ C(P ) ∩ W 1,0
p (P ) such that v|∂P = V

is the weak solution to problem (12), iff the following identity is valid∫
P

vΦtdxdt −
∫

P

v∇vΦdxdt = 0 (32)

for any
Φ ∈ C∞(P ) ∩ {div Φ = 0} ∩ {n · Φ|∂P = 0}.

Since domains p(t) are simply connected we characterize vector functions Φ
by scalar functions ϕ as follows

Φ = ∇⊥ϕ = (−∂x2ϕ, ∂x1ϕ)

and ϕ ∈ C∞(P ) ∩ {ϕ|∂P = 0}.
Putting form of Φ into formula (32) we obtain∫

P

(rot v)ϕtdxdt +
∫

P

(rot v)v · ∇ϕdxdt = 0. (33)

Next, we recall Definition 1. The solution of (30) fulfills∫
P

(rot vνk)φtdxdt +
∫

P

(rot vνk)vνk∇φdxdt

+νk

∫
P

(rot vνk)∆φdxdt − 2νk

∫
P

(χvνk · τ − V,s)dσdt = 0 (34)

for φ as in Definition 1.
Then by (31) we see that if k → ∞, then∫

P

(rot vνk)φtdxdt →
∫

P

(rot vE)φtdxdt,∫
P

(rot vνk)vνk∇φdxdt →
∫

P

(rot vE)vE · ∇φdxdt,

|νk

∫
P

(rot vνk)∆φdxdt − 2νk

∫
P

(χvνk · τ + V,s)dσdt| → 0.

Thus vE fulfills Definition 2.
Next we increase the regularity of the obtained solution. By considerations

in the proof of Lemma 2 we deduce that

vE ∈ W 1,1/2
p (P )

for any p < ∞. Thus by the embedding theorem

vE · ∇vE ∈ Lp(P ).

By the definition of the distributional derivative and (32) we conclude that

vE,t ∈ Lp(P ),
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too. Construction of Φ together with Definition 2 guarantee existence of a scalar
function pE such that

vE,t + vE · ∇vE + ∇pE = 0
a.e. in P and ∇p ∈ Lp(Ω). Theorem B is proved.
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Abstract. We formulate sufficient conditions for regularity of a so-called suit-
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1. Introduction

This paper develops the announced results of our note in C. R. Acad. Sci. Paris
[11] and provides all detailed proofs.

Let Ω be a domain in IR3, T be a positive number and QT = Ω× ]0, T [. We
deal with the Navier-Stokes initial-boundary value problem

∂v

∂t
+ (v · ∇)v = −∇p + ν ∆v in QT , (1.1)

div v = 0 in QT , (1.2)

v = 0 on ∂Ω× ]0, T [ , (1.3)

v|t=0 = v0 (1.4)

where v = (v1, v2, v3) denotes the velocity, p denotes the pressure and ν > 0 is
the viscosity coefficient.
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The notions of a weak solution and a suitable weak solution to the problem
(1.1)–(1.4) are well known. The readers can find the definitions and surveys of their
important properties, e.g., in G.P. Galdi [6] and in J. Neustupa and P. Penel [10].

A point (x, t) ∈ QT is called a regular point of a weak solution v of (1.1)–(1.4)
if there exists a neighborhood U of (x, t) in QT such that v is essentially bounded
in U . Points of QT which are not regular are called singular. We shall denote by
S(v) the set of all singular points of v. S(v) is a closed set in QT .

We suppose that (v; p) is a suitable weak solution of the problem (1.1)–(1.4).
Then the singular set S(v) has the 1-dimensional parabolic measure, and conse-
quently also the 1-dimensional Hausdorff measure, equal to zero. (See L. Caffarelli,
R. Kohn and L. Nirenberg [3].)

We prove the local regularity of the solution (v; p) under a certain assumption
about one of the eigenvalues of the rate of deformation tensor in Section 2. The
result is an improvement of Theorem 2 from [10]. In Section 3, we study the
regularity of the solution (v; p) under the assumption about a certain smoothness
of the eigenvectors of the rate of deformation tensor.

We assume for simplicity that the external force in the Navier-Stokes equation
(1.1) is zero. However, the results can be extended to the case of a nonzero force
f ∈ Lq(QT )3 (for some q > 5

2 ).
Both the eigenvalues and the eigenvectors of the rate of deformation tensor

are the notions which are naturally connected with the flow field and are inde-
pendent of a system of coordinates. The results give the information on “what
types of deformations” of infinitely small volumes of the flow either contribute to
regularity or support a hypothetical singularity.

Suppose that D is a sub-domain of QT and D′ is a domain in D such that
D′ ⊂ D′ ⊂ D. Since S(v) is closed in QT , S(v) ∩ D′ is a closed set. Denote
by T (D′), respectively G′, the projection of D′, respectively the projection of
S(v)∩D′, onto the time axis. Then the 1-dimensional Hausdorff measure of G′ is
zero and

T (D′) =
⋃

γ∈Γ′
]a′

γ , b′γ [ ∪ G′ (1.5)

where the sets on the right-hand side are mutually disjoint. In accordance with the
terminology from [7] and [6], we will call time instants b′γ D′-epochs of irregularity .
Existence of a singular point of solution (v; p) in D′ implies the existence of at least
one D′-epoch of irregularity and vice versa. Thus, let us further assume that t0 is a
D′-epoch of irregularity of solution (v; p) and (x0, t0) (where x0 = (x01, x02, x03))
is a singular point of (v; p) in D′. Then t0 is equal to b′γ for some γ ∈ Γ′. We
will later show that these assumptions are in a contradiction with the conditions
of Theorem 1 in Section 2 or Theorem 2 in Section 3. However, we need several
auxiliary lemmas at first.

Lemma 1.1. There exist positive numbers τ , r1, r2 such that r1 < r2 and if we
denote C1 = ]x01 − r1, x01 + r1[× ]x02 − r1, x02 + r1[× ]x03 − r1, x03 + r1[ and
C2 = ]x01 − r2, x01 + r2[× ]x02 − r2, x02 + r2[× ]x03 − r2, x03 + r2[, then
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1. τ is so small that a′
γ < b′γ − τ = t0 − τ ,

2. C2 × [t0 − τ, t0] ⊂ D′,
3.
{(

C2 − C1

)
× [t0 − τ, t0]

}
∩ S(v) = ∅,

4. v and all its space derivatives are bounded on
(
C2 − C1

)
× [t0 − τ, t0].

5. p, respectively ∂v/∂t, has all space derivatives in Lα(t0−τ, t0; L∞(C2−C1)),
respectively in Lα(t0 − τ, t0; L∞(C2 −C1)3), for each α such that 1 ≤ α < 2.

Items 1–4 of Lemma 1.1 were proved in [8] with the unimportant difference that
we worked with the balls B1 = Br1(x0) and B2 = Br2(x0) instead the cubes C1

and C2 in [8]. The proof was commented in [10], too. Item 5 was proved in [10]
with B1 and B2 instead of C1 and C2. It is worth of mentioning that in the case
when Ω = IR3, the proof of statement 5 can be modified so that it is valid for all
α = ∞. However, the same approach cannot be applied if ∂Ω is not empty and
the improvement of statement 5 remains an open problem. This is remarkable,
because statement 5 concerns a local behavior of the solution and in spite of it we
are not able to exclude the influence of the boundary, no matter how far it is from
the considered domain C2 − C1.

Numbers r1, r2 and τ given by Lemma 1.1 are not unique. On the other hand,
there exist decreasing sequences {rn

1 }, {rn
2 }, {τn} of numbers with the properties

of r1, r2 and τ stated in Lemma 1.1 which tend to zero. This follows from the fact
that the 1-dimensional Hausdorff measure of the set S(v) is zero. We shall use the
possibility of choosing r1 as small as we need in Section 3.

Put r3 = (2r1 + r2)/3, r4 = (r1 + 2r2)/3 and
C3 = ]x01 − r3, x01 + r3[× ]x02 − r3, x02 + r3[× ]x03 − r3, x03 + r3[,
C4 = ]x01 − r4, x01 + r4[× ]x02 − r4, x02 + r4[× ]x03 − r4, x03 + r4[.

We shall use the spaces La,b(C2× ]t0 − τ, t0[ ) ≡ La(t0 − τ, t0; Lb(C2)). We
shall abbreviate their denotation to La,b. We shall also denote by ||| . |||a,b the norm
in La,b. ||| . |||(∞,2)∩(2,6) will mean the sum ||| . |||∞,2 + ||| . |||2,6. Analogously, ‖ . ‖k will
denote the norm in Lk(C2).

The restrictions of functions defined a.e. in QT to subsets of QT will be
denoted by the same letters. Thus, for example, v ∈ L∞(t0 − τ, t0; W 1,2(C2)3) is
the statement about the restriction of v to C2× ]t0 − τ, t0[.

The next lemma can be easily proved by means of the Hölder inequality.

Lemma 1.2. If g ∈ L∞,2∩L2,6, 2 ≤ a ≤ +∞, 2 ≤ b ≤ 6 and 3
2 ≤ 2/a+3/b ≤ 5

2
then

|||g|||a,b ≤ |||g|||2/a+3/b−3/2
2,2 |||g|||5/2−(2/a+3/b)

(∞,2)∩(2,6) . (1.6)

Analogously as in our previous paper [10], we can localize the Navier-Stokes
initial-boundary value problem to C2 in the spatial variables. We shall therefore
use an infinitely differentiable cut-off function η such that η = 0 on IR3 − C4,
η = 1 on C3 and 0 ≤ η ≤ 1 on C4 − C3. Since the product ηv does not satisfy the
equation of continuity, we put u = ηv − V where V is an appropriate function
such that div V = div (ηv) = ∇η ·v. The existence of function V follows, e.g., from
G.P. Galdi [5] (Theorem 3.2, Chap. III.3) and from W. Borchers and H. Sohr [2]
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(Theorem 2.4). One can observe (see, e.g., W. Borchers and H. Sohr [2], pp. 73–
76), that since

∫
C2

∇η · v dx =
∫

∂C2
ηv · n dS = 0 (where n is the outer

normal vector to ∂C2) and ∇η has a compact support in C2 −C1, V (. , t) also has
a compact support in C2 − C1. Moreover, it follows from the smoothness of the
function ∇η ·v (which is a consequence of item 2 of Lemma 1.1 and the smoothness
of v on supp (∇η)× [t0−τ, t0] – see item 4 of Lemma 1.1) that all space derivatives
of V are bounded on C2 × [t0 − τ, t0].

It can be verified that u (= ηv −V ) satisfies in a strong sense the equations
∂u

∂t
+ (u · ∇)u = h − ∇(η p) + ν ∆u (1.7)

div u = 0 (1.8)

where

h = −∂V

∂t
− V · ∇(η v) − (η v) · ∇V + V · ∇V + (η v · ∇η)v

− η (1 − η)v · ∇v − 2ν ∇η · ∇v − ν v ∆η + ν ∆V + p∇η.

u satisfies the initial and boundary conditions

u(. , t0 − τ) = η v(. , t0 − τ) − V (. , t0 − τ), (1.9)

u = 0 on ∂C2× ]t0 − τ, t0[ (1.10)

Moreover, since η v(. , t) and V (. , t) have a compact support in C2 for all t ∈
]t0 − τ, t0[, u has all derivatives equal to zero on ∂C2× ]t0 − τ, t0[.

If we also use item 5 of Lemma 1.1 and take into account that supp∇η ⊂
C2 − C1, we can observe that ∇η · ∂v/∂t has all space derivatives in Lα(t0 −
τ, t0; L∞(C2)) for each α between 1 and 2. Thus, ∂V /∂t has all space derivatives
in Lα(t0 − τ, t0; L∞(C2)3), too. The same holds about p∇η. All other terms in
function h have all space derivatives bounded in C2× [t0 − τ, t0]. We can therefore
conclude that function h has all its space derivatives in Lα(t0 − τ, t0; L∞(C2)3)
for every α ∈ ]1, 2[. Moreover, h has a compact support in

(
C2 −C1

)
× [t0 − τ, t0].

The components of u will be denoted by u1, u2 and u3. Partial derivatives
of ui with respect to xj will be denoted by ui, j . All these partial derivatives (for
i, j = 1, 2, 3) belong to L2,2. ω = (ω1, ω2, ω3) will denote curlu.

2. Regularity in dependence on eigenvalues of the rate of
deformation tensor

Suppose that t ∈ ]t0 − τ, t0[. Multiplying equation (1.7) by ∆u and integrating on
C2, we obtain

d

dt

1
2

∫
C2

|∇u|2 dx + ν

∫
C2

|∆u|2 dx = −
∫

C2

h · ∆u dx (2.1)

+
∫

C2

(u · ∇)u · ∆u dx = −
∫

C2

h · ∆u dx −
∫

C2

ui,j ui,k uj,k dx.
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Let us denote σij = 1
2 (ui,j + uj,i) and τij = 1

2 (ui,j − uj,i) (i, j = 1, 2, 3). The
last integral on the right-hand side of (2.1) can be written in the form

−
∫

C2

ui,j ui,k uj,k dx = −
∫

C2

σij ui,k uj,k dx

= −
∫

C2

σij (σik + τik) (σjk + τjk) dx = −
∫

C2

σij σik σjk dx

−
∫

C2

σij τik τjk dx = −
∫

C2

σij σik σjk dx +
1
4

∫
C2

σij ωi ωj dx.

(We have used the symmetry of (σij) and the skew-symmetry of (τij) which
implies that σij σik τjk = −σij σik τkj = −σik σij τjk = −σij σik τjk . Hence
σij σik τjk = 0. Similarly, σij τik σjk = 0.) Thus

d

dt

1
2

∫
C2

|∇u|2 dx + ν

∫
C2

|∆u|2 dx (2.2)

= −
∫

C2

h · ∆u dx −
∫

C2

σij σik σjk dx +
1
4

∫
C2

σij ωi ωj dx.

Applying operator curl to equation (1.7), multiplying the equation by ω and inte-
grating on C2, we obtain

d

dt

1
2

∫
C2

|ω|2 dx + ν

∫
C2

|∇ω|2 dx =
∫

C2

σij ωi ωj dx +
∫

C2

curlh ·ω dx. (2.3)

Since∫
C2

|ω|2 dx =
∫

C2

|∇u|2 dx and
∫

C2

|∇ω|2 dx =
∫

C2

|∆u|2 dx,

(2.3) implies

d

dt

1
2

∫
C2

|∇u|2 dx + ν

∫
C2

|∆u|2 dx =
∫

C2

σij ωi ωj dx +
∫

C2

curlh · ω dx. (2.4)

Multiplying equation (2.4) by − 1
4 and summing with equation (2.2), we obtain

d

dt

3
8

∫
C2

|∇u|2 dx +
3ν

4

∫
C2

|∆u|2 dx (2.5)

= −
∫

C2

σij σik σjk dx −
∫

C2

h · ∆u dx − 1
4

∫
C2

curlh · ω dx

= −
∫

C2

σij σik σjk dx − 5
4

∫
C2

h · ∆u dx .

Assume that x is a given point in C2 for a while. Then the system of coordinates
can be chosen so that the tensor (σij) has a diagonal representation at point x:

(σij)(x, t) =

⎛⎝ λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠
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where λ1, λ2, λ3 are the eigenvalues of (σij)(x, t). We can suppose without loss of
generality that

λ1 ≤ λ2 ≤ λ3 . (2.6)

Let us denote by e1, e2, e3 the corresponding eigenvectors. The eigenvectors are
(or can be chosen to be) orthogonal because (σij) is symmetric. The equation of
continuity (1.8) implies that

λ1 + λ2 + λ3 = 0. (2.7)

Then

(σij σik σjk)(x, t) = λ3
1 + λ3

2 + λ3
3 = 3 λ1 λ2 λ3 . (2.8)

The product λ1 λ2 λ3 is an invariant of the tensor (σij)(x, t) and so it is independent
of the choice of the system of coordinates. Hence (2.8) holds in all points x ∈ C2

and we have

d

dt

3
8

∫
C2

|∇u|2 dx +
3ν

4

∫
C2

|∆u|2 dx = −3
∫

C2

λ1 λ2 λ3 dx (2.9)

− 5
4

∫
C2

h · ∆u dx ≤ −3
∫

C2

λ1 λ2 λ3 dx + c1 ‖h(. , t)‖1 .

(h has the support in (C2 − C1)× ]t0 − τ, t0[ where v and V have all their space
derivatives bounded. Since u = ηv − V , u has all its space derivatives bounded
in (C2 − C1)× ]t0 − τ, t0[, too. Hence the integral of h∆u can be estimated by
c1 ‖h(. , t)‖1.) Note that an analogous equality as the first part of (2.9) was already
obtained by R. Betchow in [1], p. 502. The eigenvalues λ1, λ2, λ3 are functions
of x and t and the ordering (2.6) is supposed to be valid a.e. in C2× ]t0 − τ, t0[.
Thus, naturally, the corresponding eigenvectors can have jumps in those points
(x, t) where at least two of the eigenvalues coincide and this can happen even in
the situation when u is smooth.

We can now formulate the theorem. However, we wish to formulate it in terms
of solution v and not u (= ηv−V ). So we will speak about eigenvalues ζ1, ζ2 and
ζ3 of the symmetric tensor 1

2 (vi,j + vj,i) (so-called “rate of deformation tensor”)
and not about eigenvalues λ1, λ2, λ3 of the tensor (σij) = 1

2 (ui,j + uj,i).

Theorem 2.1. Suppose that D is an open sub-domain of QT , (v; p) is a suitable
weak solution of the problem (1.1)–(1.4), ζ1 ≤ ζ2 ≤ ζ3 are the eigenvalues of the
tensor 1

2 (vi,j + vj,i) in D and

(i) one of the functions ζ1, (ζ2)+, ζ3 belongs to Lr,s
loc(D) for some real numbers

r, s such that 1 ≤ r ≤ +∞, 3
2 < s ≤ +∞ and 2/r + 3/s ≤ 2.

((ζ2)+ denotes the positive part of ζ2.) Then the solution (v; p) is regular in D.

Proof. Suppose that (ζ2)+ ∈ Lr,s(D) and r > 1. The cases ζ1 ∈ Lr,s(D) or
ζ3 ∈ Lr,s(D) or r = 1 could be treated analogously.
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Eigenvalues ζ1, ζ2 and ζ3 satisfy, due to the equation of continuity and anal-
ogously to (2.7), the equation ζ1 + ζ2 + ζ3 = 0. Thus, since ζ1 ≤ ζ2 ≤ ζ3, ζ1

is non-positive and ζ3 is non-negative. The eigenvalues λ1, λ2, λ3 of (σij) coincide
with the eigenvalues ζ1, ζ2, ζ3 of

(
1
2 (vi,j + vj,i)

)
on C1 and λ1, λ2, λ3 are bounded

(due to the smoothness of v) on (C2 − C1)× ]t0 − τ, t0[. It follows from (2.9) that

d

dt

3
8

∫
C2

|∇u|2 dx +
3ν

4

∫
C2

|∆u|2 dx ≤ 3
∫

C1

(−ζ1)ζ2ζ3 dx + c2 (2.10)

+ c1 ‖h(. , t)‖1 ≤ 3
∫

C1

(−ζ1)(ζ2)+ζ3 dx + c2 + c1 ‖h(. , t)‖1 .

Integrating now with respect to time on the interval ]t0, t0 − τ [, we obtain:

|||∇u|||2(∞,2)∩(2,6) ≤ c3

∫ t0

t0−τ

∫
C1

(−ζ1)(ζ2)+ζ3 dx dt + c4

≤ c3 |||(ζ2)+|||r,s |||(−ζ1)ζ3|||r/(r−1),s/(s−1) + c4 .

The eigenvalues ζ1 and ζ3 obviously satisfy the inequality (−ζ1)ζ3 ≤ c5 |∇v|2 =
c5 |∇u|2 with some positive constant c5 a.e. in C1× ]t0 − τ, t0[. Then

|||∇u|||2(∞,2)∩(2,6) ≤ c3 c5 |||(ζ2)+|||r,s |||∇u|||22r/(r−1),2s/(s−1) + c4 .

Since
2

r − 1
2r

+ 3
s − 1
2s

=
5
2
− 1

2

(2
r

+
3
s

)
,

Lemma 1.2 gives:

|||∇u|||2(∞,2)∩(2,6) ≤ c3 c5 |||(ζ2)+|||r,s |||∇u|||2−(2/r+3/s)
2,2 |||∇u|||2/r+3/s

(∞,2)∩(2,6) + c4

≤ c6 |||(ζ2)+|||r,s |||∇u|||2/r+3/s
(∞,2)∩(2,6) + c4 . (2.11)

If we choose τ sufficiently small (i.e., the interval ]t0 − τ, t0[ sufficiently short), we
can achieve c6 |||(ζ2)+|||r,s to be less than 1. Then (2.11) implies that
|||∇u|||(∞,2)∩(2,6) < +∞. Now it can be easily verified that

lim
δ→0+

sup
1
δ

∫ t0

t0−δ2

∫
|x−x0|<δ

|∇u|2 dx dt = 0. (2.12)

Moreover, there exists a locally in time strong solution to the problem (1.7), (1.8),
(1.10) which coincides with u at a certain instant of time t′ ≤ t0 and which can
be also identified with u (due to the known results about uniqueness) on a time
interval ]t′, t0 + τ ′[ (for some τ ′ > 0). Hence u satisfies the condition

lim
δ→0+

sup
1
δ

∫ t0+δ2/8

t0

∫
|x−x0|<δ

|∇u|2 dx dt = 0, (2.13)

too. Thus, v also satisfies both conditions. Conditions (2.12) and (2.13) are known
to be sufficient for the regularity of the solution (v, p) at the point (x0, t0) (see,
e.g., L. Caffarelli, R. Kohn and L. Nirenberg [3], p. 776). Consequently, this means
that (v; p) can have no singular point in D. �
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It follows from the proof of Theorem 1 that the case ζ2 ≤ 0 supports regular-
ity, while the case ζ2 > 0 supports a hypothetical singularity of the solution (v; p).
Since the sign of ζ2 is connected with the types of deformation of “infinitely small”
volumes of the fluid, we can also interpret our result in this way: Deformations
where the “infinitely small” volumes of the fluid are compressed in two dimensions
and stretched in one dimension support regularity, while the cases when the “in-
finitely small” volumes of the fluid are compressed in one dimension and stretched
in two dimensions support the hypothetical “blow up”.

The proof of Theorem 2.1 is based on the control of the first integral on
the right-hand side of (2.10) which obviously equals negative integral of the de-
terminant of the matrix

(
1
2 (vi,j + vj,i)

)
. Although various numerical experiments

indicate a possibility to estimate this integral without additional assumptions, this
observation has not been rigorously confirmed yet. This is connected with a deep
geometric question whether the local deformations of the two types mentioned
above are always in a balance so that their total contribution over some part of
the flow field enables to derive a sufficient estimate of the discussed integral.

It is also seen from (2.3) that the integral
∫

C2
σij ωi ωj dx has the same im-

portance. D. Chae and H.J. Choe [4] have shown that an appropriate additional
information on only two components of vorticity enables to control this integral.
There arises a challenging question whether an information on only one component
of vorticity (analogously to the one-velocity-regularity-criterion, see J. Neustupa,
A. Novotny and P. Penel [9] or J. Neustupa and P. Penel [10]) can play the same
role or whether we should look for another description of the vorticity dynamics,
possibly in a different coordinate system or in terms of quantities which is more
naturally connected with the fluid dynamics.

3. Regularity in dependence on eigenvectors of the rate of
deformation tensor

Suppose that ei = (ei
1, e

i
2, e

i
3) (i = 1, 2, 3) are the eigenvectors of the rate of

deformation tensor 1
2 (vi,j + vj,i) in D such that ei · ej = δij (i, j = 1, 2, 3) for

a.a. (x, t) ∈ D. The denotation of the eigenvectors is independent of the ordering
of the associated eigenvalues in this section. Suppose further that

(ii) ei (i = 1, 2, 3) are continuous in D and their 1st-order derivatives with respect
to the space variables x1, x2, x3 are essentially bounded in D.

Then
(vk,l + vl,k) ei

k ej
l = 0 (i, j = 1, 2, 3; i 
= j) (3.1)

in a.a. points (x, t) ∈ D. As in Section 1, we assume that D′ is a sub-domain of
D such that D′ ⊂ D′ ⊂ D ⊂ QT , t0 is a D′-epoch of irregularity and (x0, t0) is a
singular point of (v; p) in D′. We can assume without loss of generality that

e1(x0, t0) = (1, 0, 0), e2(x0, t0) = (0, 1, 0), e3(x0, t0) = (0, 0, 1). (3.2)
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Function u (= ηv − V ) coincides with v in C1, hence

(uk,l + ul,k) ei
k ej

l = 0 (i, j = 1, 2, 3; i 
= j) (3.3)

in C1× ]t0 − τ, t0[. System (3.3) can be written in the form

A ·

⎛⎝ u1,2 + u2,1

u1,3 + u3,1

u2,3 + u3,2

⎞⎠ = −2u1,1

⎛⎝ e1
1 e2

1

e1
1 e3

1

e2
1 e3

1

⎞⎠− 2u2,2

⎛⎝ e1
2 e2

2

e1
2 e3

2

e2
2 e3

2

⎞⎠− 2u3,3

⎛⎝ e1
3 e2

3

e1
3 e3

3

e2
3 e3

3

⎞⎠
where

A =

⎛⎝ e1
1 e2

2 + e1
2 e2

1, e1
1 e2

3 + e1
3 e2

1, e1
2 e2

3 + e1
3 e2

2

e1
1 e3

2 + e1
2 e3

1, e1
1 e3

3 + e1
3 e3

1, e1
2 e3

3 + e1
3 e3

2

e2
1 e3

2 + e2
2 e3

1, e2
1 e3

3 + e2
3 e3

1, e2
2 e3

3 + e2
3 e3

2

⎞⎠ .

Obviously, A(x0, t0) is the 3 × 3 unit matrix and due to the continuity of the
eigenvectors ei (i = 1, 2, 3), A is regular in C1× ]t0−τ, t0[ if r1 and τ are sufficiently
small. Then

u1,2 + u2,1 = a1,2
k uk,k = a1,2

1 u1,1 + a1,2
2 u2,2 + a1,2

3 u3,3, (3.4)

u1,3 + u3,1 = a1,3
k uk,k = a1,3

1 u1,1 + a1,3
2 u2,2 + a1,3

3 u3,3, (3.5)

u2,3 + u3,2 = a2,3
k uk,k = a2,3

1 u1,1 + a2,3
2 u2,2 + a2,3

3 u3,3 (3.6)

where ⎛⎝ a1,2
i

a1,3
i

a2,3
i

⎞⎠ = −2A−1 ·

⎛⎝ e1
i e2

i

e1
i e3

i

e2
i e3

i

⎞⎠ (i = 1, 2, 3).

(We do not sum over i on the right-hand side.)
By saying that r1 is sufficiently small we mean that r1 takes the value of rn

1

for n sufficiently large. (The sequence {rn
1 } was discussed in Section 1.)

The continuity of the eigenvectors e1, e2, e3 and (3.2) also imply that
3∑

k=1

(
|a1,2

k | + |a1,3
k | + |a2,3

k |
)

≤ ε(rn
1 , τn) (3.7)

in C1× ]t0 − τn, t0[, where ε(rn
1 , τn) → 0 as n → +∞ (i.e., as rn

1 → 0+ and
τn → 0+).

Theorem 3.1. Suppose that D is an open sub-domain of QT , (v; p) is a suitable
weak solution of the problem (1.1)–(1.4), ei = (ei

1, e
i
2, e

i
3) (i = 1, 2, 3) are the

eigenvectors of the rate of deformation tensor 1
2 (vi,j +vj,i) in D such that ei ·ej =

δij (i, j = 1, 2, 3) for a.a. (x, t) ∈ D and ei (i = 1, 2, 3) satisfy condition (ii). Then
the solution (v; p) is regular in D.

Proof. Differentiating the equation of continuity (1.8) with respect to x1 and
substituting for u2,21 and u3,31 from (3.4) and (3.5), we obtain the spatial wave
equation

u1,11 − u1,22 − u1,33 = (a1,2
k uk,k),2 + (a1,3

k uk,k),3 . (3.8)
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This equation, as well as analogous equations which can be obtained by differ-
entiating equation (1.8) with respect to x2 and x3, plays a fundamental role in
this proof. Standard estimates from the theory of the wave equation, together
with delicate and laborious manipulation with the terms on the right-hand side of
equation (3.8), will lead to estimate (3.16) which will further imply the validity of
the regularity criteria (2.12) and (2.13).

Let us denote by C2,3
1 the square ]x02 − r1, x02 + r1[× ]x03 − r1, x03 + r1[.

Multiplying equation (3.8) by u1,1 and integrating on C2,3
1 with respect to x2 and

x3, we get:

∂

∂x1

1
2

∫
C2,3

1

(u2
1,1 + u2

1,2 + u2
1,3) dx2 dx3

=
∫ x03+r1

x03−r1

[
u1,2 u1,1

]x2=x02+r1

x2=x02−r1

dx3 +
∫ x02+r1

x02−r1

[
u1,3 u1,1

]x3=x03+r1

x3=x03−r1

dx2

=
∫

C2,3
1

[
(a1,2

k uk,k),2 + (a1,3
k uk,k),3

]
u1,1 dx2 dx3 .

In order to simplify the notation, we shall denote all the boundary integrals to-
gether by (BI). (BI) will change its value as we shall repeatedly use the integration
by parts and it will absorb more and more boundary terms. It can generally de-
pend on r1. However, as a consequence of Lemma 1.1, for each r1 fixed, it will be
a bounded function of x1 and t on ]x01 − r1, x01 + r1[× ]t0 − τ, t0[. We shall also
further omit writing dx2 dx3 behind the integrals on C2,3

1 and we shall write only
∂1 instead of ∂/∂x1. Thus,

∂1
1
2

∫
C2,3

1

(u2
1,1 + u2

1,2 + u2
1,3) =

∫
C2,3

1

(a1,2
k,2 + a1,3

k,3)uk,k u1,1

+
∫

C2,3
1

[
(a1,2

1 − a1,2
3 )u1,12 u1,1 + (a1,2

2 − a1,2
3 )u2,22 u1,1

]
+
∫

C2,3
1

[
(a1,3

1 − a1,3
2 )u1,13 u1,1 + (a1,3

3 − a1,3
2 )u3,33 u1,1

]
+ (BI),

∂1
1
2

∫
C2,3

1

(u2
1,1 + u2

1,2 + u2
1,3) =

∫
C2,3

1

(a1,2
k,2 + a1,3

k,3)uk,k u1,1

− 1
2

∫
C2,3

1

(a1,2
1,2 − a1,2

3,2 + a1,3
1,3 − a1,3

2,3)u2
1,1 −

∫
C2,3

1

(a1,2
2,2 − a1,2

3,2)u2,2 u1,1

−
∫

C2,3
1

(a1,2
2 − a1,2

3 )u2,2 u1,12 −
∫

C2,3
1

(a1,3
3,3 − a1,3

2,3)u3,3 u1,1

−
∫

C2,3
1

(a1,3
3 − a1,3

2 )u3,3 u1,13 + (BI)



Regularity of a weak solution to the Navier-Stokes equation 207

=
1
2

∫
C2,3

1

(a1,2
1,2 + a1,2

3,2 + a1,3
1,3 + a1,3

2,3)u2
1,1

+
∫

C2,3
1

[
(a1,3

2,3 + a1,2
3,2)u2,2 + (a1,2

3,2 + a1,3
2,3)u3,3

]
u1,1

−
∫

C2,3
1

(a1,2
2 − a1,2

3 )u2,2 u1,12 −
∫

C2,3
1

(a1,3
3 − a1,3

2 )u3,3 u1,13 + (BI).

Thus, we have

∂1
1
2

∫
C2,3

1

|∇u1|2 +
∫

C2,3
1

(a1,2
2 − a1,2

3 )u2,2 u1,12 (3.9)

+
∫

C2,3
1

(a1,3
3 − a1,3

2 )u3,3 u1,13 = I1(∇u1,∇u2,∇u3) + (BI)

where

|I1(∇u1,∇u2,∇u3)| ≤
(
c7 +

c8

ξ

) ∫
C2,3

1

|∇u1|2 + c9 ξ

∫
C2,3

1

[
|∇u2|2 + |∇u3|2

]
.

ξ is an arbitrarily small number and constants c7–c9 do not depend on ξ, r1 and τ
if ξ, r1 and τ are sufficiently small. Let us now deal with the integral of b2 u2,2 u1,12

in order to eliminate the second integral on the left-hand side of (3.9).∫
C2,3

1

b2 u2,2 u1,12 = ∂1

∫
C2,3

1

b2 u2,2 u1,2 −
∫

C2,3
1

b2,1 u2,2 u1,2 −
∫

C2,3
1

b2 u2,21 u1,2

= ∂1

∫
C2,3

1

b2 u2,2 u1,2 −
∫

C2,3
1

b2,1 u2,2 u1,2 +
∫

C2,3
1

b2 u1,22 u1,2

−
∫

C2,3
1

b2 (a1,2
k uk,k),2 u1,2

= ∂1

∫
C2,3

1

b2 u2,2 u1,2 −
∫

C2,3
1

b2,1 u2,2 u1,2 − 1
2

∫
C2,3

1

b2,2 u2
1,2

−
∫

C2,3
1

b2 (a1,2
1,2 − a1,2

3,2)u1,1 u1,2 −
∫

C2,3
1

b2 (a1,2
2,2 − a1,2

3,2)u2,2 u1,2

−
∫

C2,3
1

b2 (a1,2
1 − a1,2

3 )u1,12 u1,2 −
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,22 u1,2 + (BI)

= ∂1

∫
C2,3

1

[
b2 u2,2 u1,2 − 1

2 b2 (a1,2
1 − a1,2

3 )u2
1,2

]
+

1
2

∫
C2,3

1

(b2 (a1,2
1 − a1,2

3 )),1 u2
1,2

−
∫

C2,3
1

b2,1 u2,2 u1,2 − 1
2

∫
C2,3

1

b2,2 u2
1,2 −

∫
C2,3

1

b2 (a1,2
1,2 − a1,2

3,2)u1,1 u1,2
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−
∫

C2,3
1

b2 (a1,2
2,2 − a1,2

3,2)u2,2 u1,2 +
∫

C2,3
1

(b2 (a1,2
2 − a1,2

3 )),2 u2,2 u1,2

+
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,2 u1,22 + (BI)

= ∂1

∫
C2,3

1

[
b2 u2,2 u1,2 − 1

2 b2 (a1,2
1 − a1,2

3 )u1,2

]
+

1
2

∫
C2,3

1

(b2 (a1,2
1 − a1,2

3 )),1 u2
1,2

−
∫

C2,3
1

b2,1 u2,2 u1,2 − 1
2

∫
C2,3

1

b2,2 u2
1,2 −

∫
C2,3

1

b2 (a1,2
1,2 − a1,2

3,2)u1,1 u1,2

−
∫

C2,3
1

b2 (a1,2
2,2 − a1,2

3,2)u2,2 u1,2 +
∫

C2,3
1

(b2 (a1,2
2 − a1,2

3 )),2 u2,2 u1,2

−
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,2 u2,12 +
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,2 (a1,2
k uk,k),2

+ (BI)

= ∂1

∫
C2,3

1

[
b2 u2,2 u1,2 − 1

2 b2 (a1,2
1 − a1,2

3 )u2
1,2 − 1

2 b2 (a1,2
2 − a1,2

3 )u2
2,2

]
+

1
2

∫
C2,3

1

(b2 (a1,2
1 − a1,2

3 )),1 u2
1,2 −

∫
C2,3

1

b2,1 u2,2 u1,2

−
∫

C2,3
1

b2 (a1,2
1,2 − a1,2

3,2)u1,1 u1,2 − 1
2

∫
C2,3

1

b2,2 u2
1,2

−
∫

C2,3
1

b2 (a1,2
2,2 − a1,2

3,2)u2,2 u1,2 +
∫

C2,3
1

(b2 (a1,2
2 − a1,2

3 )),2 u2,2 u1,2

+
1
2

∫
C2,3

1

(b2 (a1,2
2 − a1,2

3 )),1 u2
2,2 +

∫
C2,3

1

b2 (a1,2
2 − a1,2

3 )u2,2 (a1,2
1,2− a1,2

3,2)u1,1

+
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,2 (a1,2
2,2 − a1,2

3,2)u2,2

+
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )u2,2 (a1,2
1 − a1,2

3 )u1,12

+
∫

C2,3
1

b2 (a1,2
2 − a1,2

3 )2 u2,2 u2,22 + (BI).

Thus, we have:∫
C2,3

1

b2 [1 − (a1,2
2 − a1,2

3 ) (a1,2
1 − a1,2

3 )] u2,2 u1,12 (3.10)

= ∂1

∫
C2,3

1

[
b2 u2,2 u1,2 − 1

2 b2 (a1,2
1 − a1,2

3 )u2
1,2 − 1

2 b2 (a1,2
2 − a1,2

3 )u2
2,2

]
+

1
2

∫
C2,3

1

(b2 (a1,2
1 − a1,2

3 )),1 u2
1,2 −

∫
C2,3

1

b2,1 u2,2 u1,2 − 1
2

∫
C2,3

1

b2,2 u2
1,2
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−
∫

C2,3
1

b2 (a1,2
1,2 − a1,2

3,2)u1,1 u1,2 +
∫

C2,3
1

b2,2 (a1,2
2 − a1,2

3 )u2,2 u1,2

+
1
2

∫
C2,3

1

(b2 (a1,2
2 − a1,2

3 )),1 u2
2,2 +

∫
C2,3

1

b2 (a1,2
2 − a1,2

3 )u2,2 (a1,2
1,2 − a1,2

3,2)u1,1

− 1
2

∫
C2,3

1

b2,2 (a1,2
2 − a1,2

3 )2 u2
2,2 + (BI).

If we now choose b2 so that

b2 [1 − (a1,2
2 − a1,2

3 ) (a1,2
1 − a1,2

3 )] = a1,2
2 − a1,2

3

then we can use (3.10) and express the second integral on the left-hand side of
(3.9): ∫

C2,3
1

(a1,2
2 − a1,2

3 )u2,2 u1,12 = ∂1

∫
C2,3

1

b2 u2,2 u1,2 (3.11)

− ∂1
1
2

∫
C2,3

1

[
b2 (a1,2

1 − a1,2
3 )u2

1,2 + b2 (a1,2
2 − a1,2

3 )u2
2,2

]
+ I2(∇u1,∇u2)

+ (BI) = ∂1

∫
C2,3

1

b2 u2,2 u1,2 + ∂1

∫
C2,3

1

[
β1,2u2

1,2 + γ1,2u2
2,2

]
+ I2(∇u1,∇u2) + (BI)

where

|I2(∇u1,∇u2)| ≤
(
c10 +

c11

ξ

)∫
C2,3

1

|∇u1|2 + [c12 ξ + c13 ε(r1, τ)]
∫

C2,3
1

|∇u2|2.

Constants c12–c11 do not depend on ξ, r1 and τ if ξ, r1 and τ are sufficiently small.
We can analogously derive that∫

C2,3
1

(a1,3
3 − a1,3

2 )u3,3 u1,13 = ∂1

∫
C2,3

1

b3 u3,3 u1,3 (3.12)

+ ∂1

∫
C2,3

1

[
β1,3u2

1,3 + γ1,3u2
3,3

]
+ I3(∇u1,∇u3) + (BI)

where

b3 [1 − (a1,3
3 − a1,3

2 ) (a1,3
1 − a1,3

2 )] = a1,3
3 − a1,3

2 , β1,3 = −1
2

b3 (a1,3
1 − a1,3

2 ),

γ1.3 = −1
2

b3 (a1,3
3 − a1,3

2 )

and

|I3(∇u1,∇u3)| ≤
(
c14 +

c15

ξ

)∫
C2,3

1

|∇u1|2 + [c16 ξ + c17 ε(r1, τ)]
∫

C2,3
1

|∇u3|2.

Constants c14–c17 are independent of ξ, r1 and τ if ξ, r1 and τ are sufficiently
small. Substituting from (3.11) and (3.12) into (3.9), we obtain:
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∂1

∫
C2,3

1

[
1
2 |∇u1|2 + β1,2 u2

1,2 + β1,3 u2
1,3

]
= −∂1

∫
C2,3

1

[
b2 u2,2 u1,2 + b3 u3,3 u1,3

]
+ ∂1

∫
C2,3

1

[
γ1,2u2

2,2 + γ1,3u2
3,3

]
+ I1 − I2 − I3 + (BI).

Integrating with respect to x1 from x01 − r1 to x1, we get:∫
C2,3

1

[
1
2 |∇u1|2 + β1,2 u2

1,2 + β1,3 u2
1,3

]∣∣∣
x1

= −
∫

C2,3
1

[
b2 u2,2 u1,2 + b3 u3,3 u1,3

]∣∣∣
x1

+
∫

C2,3
1

[
γ1,2 u2

2,2 + γ1,3 u2
3,3

]∣∣∣
x1

+
∫ x1

x01−r1

(I1 − I2 − I3) ds1 + (BI)

≤ ξ

∫
C2,3

1

[u2
1,2 + u2

1,3]
∣∣∣
x1

+
∫

C2,3
1

[(
γ1,2+

1
4ξ

b2
2

)
u2

2,2 +
(
γ1,3+

1
4ξ

b2
3

)
u2

3,3

]∣∣∣
x1

+
(
c18 +

c19

ξ

)∫ x1

x01−r1

(∫
C2,3

1

|∇u1|2
)

ds1

+ [c20ξ + c21ε(r1, τ)]
∫ x1

x01−r1

(∫
C2,3

1

[
|∇u2|2 + |∇u3|2

])
ds1 + (BI)

where c18 = c7+c10+c14, c19 = c8+c11+c15, c20 = c9+c12+c16 and c21 = c13+c17.
If we use the positive definiteness of the quadratic form 1

2 |∇u1|2 + β1,2 u2
1,2 +

β1,3 u2
1,3 − ξ u2

1,2 − ξ u2
1,3 in the range of sufficiently small β1,2, β1,3 and ξ (which

is true if r1 and τ are sufficiently small), we can further obtain:
1
2

∫
C2,3

1

|∇u1|2
∣∣∣
x1

≤ c22

∫
C2,3

1

[
1
2 |∇u1|2 + β1,2 u2

1,2 + β1,3 u2
1,3 − ξ u2

1,2 − ξ u2
1,3

]∣∣∣
x1

+ c22

(
c18 +

c19

ξ

) ∫ x1

x01−r1

(∫
C2,3

1

|∇u1|2
)

ds1 + g(x1)

where g(x1) = c22

∫
C2,3

1

[(
|γ1,2| + 1

4ξ
b2
2

)
u2

2,2 +
(
|γ1,3| + 1

4ξ
b2
3

)
u2

3,3

]∣∣∣
x1

+ c22 [c20ξ + c21ε(r1, τ)]
∫ x1

x01−r1

(∫
C2,3

1

[
|∇u2|2 + |∇u3|2

])
ds1 + (BI).

Applying Gronwall’s lemma, we get:
1
2

∫
C2,3

1

|∇u1|2
∣∣∣
x1

≤ g(x1) + c22

(
c18 +

c19

ξ

) ∫ x1

x01−r1

g(s1) exp
[
c22

(
c18 +

c19

ξ

)
s1

]
ds1

≤ c23

∫
C2,3

1

[(
|γ1,2| + 1

4ξ
b2
2

)
u2

2,2 +
(
|γ1,3| + 1

4ξ
b2
3

)
u2

3,3

]∣∣∣
x1

+ c24(ξ, r1, τ)
∫ x01+r1

x01−r1

(∫
C2,3

1

[|∇u2|2 + |∇u3|2]
)

ds1 + c25



Regularity of a weak solution to the Navier-Stokes equation 211

where c24(ξ, r1, τ) → 0 if ξ → 0, r1 → 0 and τ → 0. If ξ, r1 and τ are so small
that c24(ξ, r1, τ) ≤ 1 and

c23

∫
C2,3

1

[(
|γ1,2| + 1

4ξ
b2
2

)
u2

2,2 +
(
|γ1,3| + 1

4ξ
b2
3

)
u2

3,3

]∣∣∣
x1

≤ 1
8

∫
C2,3

1

[u2
2,2 + u2

3,3]
∣∣∣
x1

then
1
2

∫
C2,3

1

|∇u1|2
∣∣∣
x1

≤ 1
8

∫
C2,3

1

[u2
2,2 + u2

3,3]
∣∣∣
x1

+
∫ x01+r1

x01−r1

(∫
C2,3

1

[
|∇u2|2 + |∇u3|2

])
ds1 + c25.

If we integrate with respect to x1 on the interval ]x01 − r1, x01 + r1[ and take r1

so small that 1
8 + 2r1 ≤ 1

6 then we obtain the estimate

1
2

∫
C1

|∇u1|2 dx1 dx2 dx3 ≤
(

1
8

+ 2r1

)∫
C1

[
|∇u2|2 + |∇u3|2

]
dx1 dx2 dx3(3.13)

+ c26 ≤ 1
6

∫
C1

[
|∇u2|2 + |∇u3|2

]
dx1 dx2 dx3 + c26.

If we differentiate the equation of continuity (1.8) with respect to x2 and substitute
for u1,12 and u3,32 from (3.4) and (3.6), we obtain the wave equation

u2,22 − u2,11 − u2,33 = (a1,2
k uk,k),1 + (a2,3

k uk,k),3

instead of (3.8). Then, using the same approach as the one which has lead to
(3.14), we can derive the estimate

1
2

∫
C1

|∇u2|2 dx1 dx2 dx3 ≤ 1
6

∫
C1

[
|∇u1|2 + |∇u3|2

]
dx1 dx2 dx3 + c26. (3.14)

Analogously, we can also obtain the inequality
1
2

∫
C1

|∇u3|2 dx1 dx2 dx3 ≤ 1
6

∫
C1

[
|∇u1|2 + |∇u2|2

]
dx1 dx2 dx3 + c26. (3.15)

Summing (3.13), (3.14) and (3.15), we get:∫
C1

|∇u|2 dx ≤ 18 c26 . (3.16)

This estimate is valid for all t ∈ ]t0 − τ, t0[. v satisfies the same estimate (possibly
with a different constant on the right-hand side) because u and v coincide on
C1× ]t0 − τ, t0[. Now we can easily verify that conditions (2.12) and (2.13) are
again satisfied and consequently, the theory of the Navier-Stokes equation ((see,
e.g., L. Caffarelli, R. Kohn and L. Nirenberg [3], p. 776) says that the solution
(v; p) cannot have a singularity at the point (x0, t0). Since this point can be chosen
arbitrarily in D′ on the time level t0, t0 cannot be a D′-epoch of irregularity. Hence
the solution (v; p) has no epoch of irregularity in D′ and therefore it is regular in
D′. Consequently, it is also regular in D. �
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Free Work and Control of
Equilibrium Configurations

M. Padula

1. Introduction

We set y ∈ Ck (reference configuration), x∗ ∈ C∗ (equilibrium configuration), and
define by χt(y, t) the story of the particle. Let us begin with the general frame of
indefinite equations governing motions of a general continuum, that is,

ρ
[∂v

∂t
+ (v · ∇)v

]
= ∇ ·T + ρf ,

∂x
∂t

+ (v · ∇)x = v,

(1.1)

where x, ρ, and v denote the position, the density, and the velocity of a particle
at configuration C. Also, f is the external body force, and

T = −T(χt(y, t),∇yχt(y, t),∇y ⊗∇yχt(y, t)))

is the stress.
These equations represent a coupled hyperbolic-parabolic system.
Weak formulation is deduced by the equation∫

C

ρ
[∂v

∂t
+ (v · ∇)v

]
· ϕdc =

∫
C

∇ · T · ϕdc +
∫

C

ρf · ϕdc. (1.2)

If the elastic part of stress T, say T0 derives from an energy, putting in (1.2)
ϕ = v it is easy to deduce a balance equation for the kinetic plus internal energy,
see [3], [13].

Indeed, (1.2) contains much more information. Employing arbitrariness of
choice for the test function ϕ, we consider ϕ as a spatial vector w, say difference
between the coordinates of two points, in this way, we obtain a quantity dimen-
sionally equivalent to a finite work, and here named free work:∫

C

ρ
dv
dt

· ϕdc = ∆wLe + ∆wLi, (1.3)
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and ∆wLe, ∆wLi denote the finite works of external and internal forces, respec-
tively, corresponding to the given displacement w(x). In particular, if the forces
are conservative, the work of external and internal forces corresponding to the
given displacement w = x1 − x2, xi ∈ Ci, represents the opposite of the internal
plus potential energy E, and equation (1.3) reduces to∫

C

ρ
dv
dt

·wdc = −[E(C2) − E(C1)], (1.4)

Some remarks on free work are needed to understand its novelty. Free work is
only dimensionally a work, not a real work done by the force, because the position
vector w(x) may have no relation with the motion of x.

Usually, an equilibrium configuration C∗ of a continuum system is said stable
if its energy assumes a proper minimum in it. Some time this statement is not
proved dynamically. Indeed, this statement is a natural consequence of a correct
reading of (1.4). Here, we analyze a case where dynamical stability is not known, to
our knowledge: phase transitions. In the paper we consider only regular functions.

The internal energy E is usually not convex, one general expression for such
problems is given by, see [14]. Setting Fsl = ∂xr

∂yl
, we consider the following energy

E =
∫

Ck

ρk

[
ε0(F) + ε1(∇y ⊗ F) + ε2(x)

]
dck =

∫
Ck

ρkεdck. (1.5)

Here E is the elastic energy stored in the body (non convex functional),∫
Ckρkε1dck models the interfacial energy, and

∫
Ckρkε2dck is the energy of the

elastic foundation.
Let the position vector w be zero at boundary. To make assumptions on the

elastic behavior of the body we need the Lagrangian representation of the stress
which is furnished by the first Piola-Kirchoff tensor K(x). The link between the
Cauchy T0 and Piola-Kirchoff K tensors is given by:

(T0)rl =
1
J

Krs(x)Fsl , Fsl =
∂xs

∂yl
. (1.6)

We set ∂
∂yl

= ∂l, (
∫ yl

Frs = (
∫ yl Frs(y′, t)dy′

l), with y′ = (yi, y
′
l), i 
= l, and shall

assume that the material is hyperelastic in the following sense Let us compute the
first variation of E(x + tw) at t = 0, calling A = ∇yw = F(w), we get

δE(w) =
∫

Ck

ρk

[ ∂ε0
∂Frs

Ars +
∂ε1

∂ ∂lFrs
∂lArs +

∂ε2

∂
∫ yl Frs

∫ yl

Ars

]
dck

= −
∫

Ck

ρkwr∂s

[ ∂ε0
∂Frs

− ∂l
∂ε1

∂ ∂lFrs
−
∫ yl ∂ε2

∂
∫ yl Frs

]
dck = −∆wLi.

(1.7)

Hence, we obtain the expression for the Piola-Kirchoff tensor

Krs(x) =
∂ε0
∂Frs

− ∂l
∂ε1

∂ ∂lFrs
−
∫ yl ∂ε2

∂
∫ yl Frs

. (1.8)
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Substituting (1.7) into (1.3), and choosing ϕ = v, it is straightforward to obtain

d

dt

{∫
C

ρ
v2

2
dc +

∫
Ck

ρkεdck

}
=
∫

C

ρf · vdc. (1.9)

If external forces are conservative f = ∇U , U is the potential, then (1.9) reduces
to the conservation of total energy

d

dt

∫
C

ρ
{v2

2
+ ε −∇U

}
dc = 0. (1.10)

If forces are conservative, we get a conservation law for the total energy E =
T+E−U , where T is the kinetic energy. In particular, since E(C∗) = E(C∗)−U(C∗)
is constant in time, we know that

d[E(C) − E(C∗)]
dt

= 0.

Let ξ → E be function of x, v, ∇yx, ∇yx ⊗∇yx, and denote by Λ = x, v, ∇yx,
∇yx⊗∇yx. Assume that E has a local minimum at C∗ then, by Taylor expansion
it results

E(C) − E(C∗) =
∫

C∗
ρk

[
∇E(Λ∗) · Λ +

1
2
Λ · ∇ ⊗∇E(Λ̄) · Λ

]
, (1.11)

where Λ̄ is a point between Λ and Λ∗. If E has a proper minimum at C∗, then
E(C) − E(C∗) is equivalent to a L2 norm of motion, and it is a correct Lyapunov
functional.

Let us remark that our stability theorem is local with respect to initial data,
as it should be expected. We only consider small perturbations of the rest, because
for our proof to work we must fix initial data C(0) so close to C∗ that E(x(0))
follows in the neighborhood of x∗ where C∗ is a proper minimum.

Now we change again the displacement in a more physical way. Let us write
the displacement x = x∗ + u, where u is the perturbation. We choose w as the
displacement w = x − x∗ and we obtain the pivot equation. The name is due to
its direct relation with the proof of nonlinear instability. In case there is a internal
energy E, then we have

∆wLi = −∆wE.

To understand the reason of our definition, it is enough to consider a single ma-
terial particle, assume zero external forces, and observe the following elementary
things, [5]:

(i) The displacement w represents the difference between the position of the
same particle y ∈ Ck in two different motions x, x∗.

(ii) For a single point x, we have only kinetic and potential energy E. In order
a equilibrium position x∗ to be stable, it must occur that, if we remove the
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particle from x∗ to a position x belonging to a small finite neighborhood of
x∗ the force must tend to restore the old situation, say, it must be

f i · (x − x∗) = E(x∗) − E(x) < 0.

In equivalent way x∗ must be a proper minimum for the potential energy E.
(iii) For a single point x, in order an equilibrium position x∗ to be unstable, if we

remove a particle from x∗ to a position x belonging to a small neighborhood
of x∗ there must be an initial data such that forces tend to send the particle
far away from the initial position, say, it must be

f i · (x − x∗) = E(x∗) − E(x) > 0.

This is certainly true if x∗ is a proper maximum for the energy.
These remarks explain the name we gave to this work, which is just ruling the
property of stability for some equilibrium configuration.

Concerning previous results, we remind that in [7] it is formally proved ex-
ponential stability of the rest state of a compressible isothermal fluids in the L2

norm, while in [2], [4], the same problem is solved for thermally conducting flu-
ids. The use of such weak L2 norm was realized by using as test function in (1.2)
the function ϕ such that its product with the difference between the gradient of
pressure between the two motions C and C∗, −∇(ρ − ρ∗), equals the L2 norm of
ρ−ρ∗, say

∫
C ϕ ·∇(ρ−ρ∗)dc =

∫
C(ρ−ρ∗)2dc. In this way a (dissipative-like) term

for (ρ − ρ∗) was deduced, useful for the decay of perturbations (ρ − ρ∗) in the L2

norm. From this research it has been realized that the methods there employed
contain a deeper physical meaning, actually they are successful in several more
general problems [8], [10], [12], [6], [13]. This paper is a natural continuation of
this research, in particular the results of [7] can be obtained in much simpler way
with the use of lounching free equation.

More general extensions to steady (not rest) motions have been considered
in [8], [10].

The first part studies stability in the mean for hyperelastic materials, here
T1 may vanish, and the resulting stability is not asymptotic. This result is not
new, it was also analyzed deeply by Wang and Truesdell in [15].

The second part studies exponential stability in case of linear dissipative
hyperelastic materials, that is T1 
= 0, e.g. T1 = 2µD, with D (Dirichlet like).
The hypothesis of linearity for T1 in function of D is by no means needed, it is
done for sake of simplicity, here we follow the method introduced in [7].

The third part provides a nonlinear instability result (Chetaev like).

2. Stability in the mean

Theory of elasticity accounts for materials with capacity to store mechanical en-
ergy, here we consider continuous media that possess a capacity to both store and
dissipate mechanical energy.
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Nonlinear stability properties will be analyzed in the following four cases:

T = T0(F); T = T0(F, θ); T = T0(F)+T1(D); T = T0(F, θ)+T1(D),

where D = 1
2 (∇v+(∇v)T ) is the velocity deformation tensor; θ is the temperature.

Dissipative effect in the stress constitutive relation is inserted, in order to recover
asymptotic stability for certain rest states of the elastic body.

The objective of this paper is to adapt and extend Lyapunov ideas to non-
linear theory of elastic-viscous bodies.

For sake of simplicity, we consider hyperelastic materials, under the action of
dead loads, and with displacement condition at boundary.

We study stability of equilibrium solutions, say Ci, i = 1, . . . , n, in the corre-
spondence of given boundary data and given forces.

The stability of an equilibrium configuration Ci = C∗, is determined through
a precise rule. Here, we prove stability of C∗ in the class of regular unsteady
motions, with initial data belonging to a finite (not infinitesimal!) neighborhood
I∗ of C∗.
Basic equations
Set d

dt = ∂
∂t + v · ∇, ρ is the density, u the displacement, v the velocity. An

elasto-viscous material admits a stress tensor of the form T = T0 + T1.
To make assumptions on the elastic behavior of the body we need the La-

grangian representation of the stress which is furnished by the first Piola-Kirchoff
tensor K(F). The link between the Cauchy and Piola-Kirchoff tensor is given
by (1.6). We adopt the hypothesis that the material is hyperelastic, that means
Krl = ρkε

∂Frl
, ρ = ρk

J , where ρk denotes the density in the reference configuration,
and E denotes the elastic energy. As boundary and initial conditions, for sake of
simplicity, we suppose ∂C = ∂C∗ is a rigid fixed boundary where the displacement
is prescribed. Hence, the motion is given by the displacement, and velocity fields
solutions to the system

ρ
dv
dt

=
1
J
∇y ·K + ∇x ·T1 + ρf , x, t ∈ C × (0, T )

dw
dt

= v, x, t ∈ C × (0, T )

w(x, t) = 0, v(x, t) = 0, on ∂C,

v(x, 0) = v0(x) w(x, 0) = w0(x), x ∈ C.

(2.1)

The rest state
In order to have as basic state the rest we consider an external force satisfying the
following equation

0 =
1
J∗

∇y ·K(F∗) +
ρk

J∗
f , x ∈ C∗. (2.2)

Problem (2.2) may admit several equilibrium solutions, we assume that x∗(y) is a
proper minimum for the energy E. The Dirichlet-Lagrange theorem reads now
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Theorem 2.1 (Conservative force). Assume that the total energy E(F) has a strict
minimum at C∗, then C∗ is a stable equilibrium position.

Our condition should be compared with the Hadamard criterion (1903),
Langebach (1959). Alive conservative forces can be considered by following Beju
estimates (1971). The result is quite well established for isothermal elastic bodies,
it becomes original for heat conducting elastic bodies.

Theorem 2.2 (Non-conservative force). Assume that the elastic energy E(F) has a
strict minimum at C∗, then for C∗ it holds continuous dependence on the data.

Our result should be compared with the test proposed by Beatty (1965–68).
We omit the proof for conservative forces and consider only nonconservative

force. In this case, we must make a smallness assumption on the non-conservative
part of the force. Let us prove that the rest state is stable.

Subtracting (2.2) multiplied by (J∗/J)v from (2.1)1 multiplied by v, and
integrating over the actual domain C, we obtain

d

dt

∫
C

ρ
v2

2
dc+D =

∫
C

1
J
∇y(K(F)−K∗(F∗))

dx
dt

dc+
∫

C

ρ(f(x)−f(x∗))vdc, (2.3)

with the same definition for D.
Adding and subtracting the term∫

Ck

∂(ρkE)
∂F∗

dF(x∗)
dt

dck,

in the second term at the right-hand side of (2.3), we deduce∫
Ck

∂(ρkE)
∂F∗

dF(x)
dt

dck +
∫

C

ρ(f(x) − f(x∗))vdc

=
∫

Ck

∂(ρkE)
∂Frl

∣∣∣
∗
dFrl(x∗)

dt
dck +

∫
Ck

∂(ρkE)
∂Frl

∣∣∣
∗
dFrl(u)

dt
dck +

∫
C

ρ(f(x) − f(x∗))vdc

=
d

dt

∫
Ck

ρkE(F∗)dck +
d

dt

∫
Ck

∂(ρkE)
∂Frl

∣∣∣
∗
Frl(u)dck + r0(v,u),

(2.4)

where

r0(v,u) = −
∫

Ck

v · ∇x
∂ρkE
∂Frl

∣∣∣
∗
Frl(u)dck +

∫
C

ρ(f(x) − (x∗))vdc.

In this way, we obtain the energy identity

d

dt

{∫
C

ρ
v2

2
dc +

∫
Ck

[
ρk(E(F) − E(F∗)) −

∂(ρkE)
∂Frl

∣∣∣
∗
Frl(u)

]
dck

}
+ D = r(v,u).

(2.5)
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Furthermore, from the hypothesis that C∗ is a proper minimum for E , by the
Taylor expansion we have∫

Ck

ρk(E(F) − E(F∗)dck − ∂(ρkE)
∂Frl

∣∣∣
∗
Frl(u))dck

=
∫

Ck

∂2ρkE
∂Frl∂Fsm

(F̄)Frl(u)Fsm(u)dck ≥ a‖F(u)‖2dck,

(2.6)

with a positive constant, also ‖.‖ mean L2(C) norm. Therefore, from (2.5) we get

d

dt
V + D = r(v,u), (2.7)

where

V =
∫

C

ρ
v2

2
dc +

∫
Ck

{
ρk(E(F) − E(F∗)) −

∂ρkE
∂Frl

∣∣∣
∗
Frl(u)

}
dck

is a good Lyapunov functional, if C∗ is a minimum for E , that is

V ≥ b(‖v‖2 + ‖F(u)‖2)

with b positive constant. However, since D increases only the norm of velocity,
and r(F,v) is increased by the product of the L2-norms of v, and of F). Hence, if
the forces are not conservative, we cannot prove even stability in the mean, if the
term T1 is zero. Nevertheless, we are still able to prove continuous dependence on
initial data, in particular uniqueness from inequality

d

dt
V + D ≤ c(‖v‖2 + ‖F‖2) ≤ c1V . (2.8)

3. Asymptotic decay for hyperelastic, viscous materials

In this section we prove the following

Theorem 3.1 (Conservative force). Assume and that the total energy E(F) has
a strict minimum at C∗, and T1 = T1(D), then C∗ is a asymptotically stable
equilibrium position.

We prove exponential decay to zero for a suitable norm of each perturbation
(L2 for v, W 1

2 for u). The result will be achieved by using any external force f . To
this end, we multiply equation (2.3)1 by u, integrating over C, and integrating by
parts at the left-hand side, we have the pivot equation

d

dt

∫
C

ρv · udc −
∫

C

ρv2dc = −
∫

C

T1 : ∇xudc +
∫

C

1
J
∇y · [K(F) − K(F∗)] · udc.

(3.1)
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Derivating by parts, and employing the minimum hypothesis, we get∫
C

1
J
∇y · [K(F) − K(F∗)] · u = −

∫
Ck

∂2(ρkE)
∂Frl∂Fsm

∣∣∣
F(x̄)

Frl(u)Fsm(u)dck

≤ −a‖F(u)‖2. (3.2)

Hence, back into (3.1) we get

d

dt

∫
C

ρv · udc + a‖F(u)‖2 ≤
∫

C

ρv2dc −
∫

C

T1 : ∇xudc. (3.3)

Adding (2.5) to (3.3) multiplied by a small positive constant γ, we deduce

d

dt

[
V + γ

∫
C

ρv · udc
]

+
∫

C

T1 : Ddc + γa‖F(u)‖2

+ γ
(∫

C

T1 : ∇xudc −
∫

C

ρv2dc
)
− r(v,u) ≤ 0.

(3.4)

Since V is a positive definite quadratic form in the variables v, F(u), if γ is small
enough (but finite!), also V1 = V +

∫
C γρv · udc will be positive definite, that is

V + γ

∫
C

ρv · udc ≥ b1(‖v‖2 + ‖F(u)‖2). (3.5)

This states that V1 is equivalent to the L2 norms of v, F. Furthermore, since T1

is a dissipative term, by Clausius-Duhem inequality we know that
∫

C
T1 : Ddc

increases the norm of the gradient of velocity. In particular, we have∫
C

T1 : Ddc + γa‖F(u)‖2 + γ
(∫

C

T1 : ∇xudc −
∫

C

ρv2dc
)

− r(v,u) ≥ c1(‖v‖2 + ‖F(u)‖2),
(3.6)

with c1 function of γ, and the maximum in C of the derivatives of K(F∗).
It is worth of remarking that the on perturbations are done hypotheses of

regularity!
From (3.5), (3.6) we deduce the following differential inequality

d

dt
V + c2V ≤ 0, (3.7)

with c2 function of γ, and the maximum in C of the derivatives of K(F∗). For γ
small enough and under smallness assumption on f , it can be proved that c2 > 0,
this implies exponential nonlinear stability.

4. Nonlinear instability for hyperelastic bodies

We limit ourselves to internal energies of the forms E(F), and give the following
definition
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The Hessian of total energy E(F) enjoys property (HI) at C∗ iff there exists
a matrix L, such that

L · ∇ ⊗∇E(F∗)L < 0 (4.1)
In this section we prove the following two instability theorems.

Theorem 4.1 (Conservative force). Assume and that the Hessian of total energy
E(F) satisfies property (HI) at C∗, and T1 = 0, then the equilibrium position C∗
is instable.

We use the methods of [1]. Assume, by absurdum, that the motion is stable
in W 3,2 norm, this allows us to choose initial data u0 such small that u, in the
norm W 3,2 is less of a arbitrarily small constant ε for all times t. Furthermore, we
choose initial data such that ∇yu0 = εL. First we remind that the conservation of
total energy holds for the motion x(y, t) in the form∫

C

1
2
ρv2dc +

∫
Ck

Edck =
∫

C0

1
2
ρ0v2

0dC0 +
∫

Ck

E0dck. (4.2)

Since the first derivative of E at C∗ is zero, we deduce also∫
C

1
2
ρv2dc +

1
2

∫
Ck

∂2E

∂Frl∂Fsm

∣∣∣
x∗

Frl(u)Fsm(u)dck + 0(ε3)

=
∫

C0

1
2
ρ0v2

0dC0 +
∫

Ck

(E0 − Eb)dck. (4.3)

The right-hand side can be chosen negative, because the Hessian satisfies property
(HI). Therefore we have∫

C0

1
2
ρ0v2

0dC0 +
∫

Ck

(E0 − Eb)dck = −Aε2,

and ∫
C

1
2
ρv2dc + Aε2 = −1

2

∫
Ck

∂2E

∂Frl∂Fsm

∣∣∣
x∗

Frl(u)Fsm(u)dck + 0(ε3). (4.4)

Let us multiply equation (2.3)1 by u, and integrate over C, integrating by parts
at the left-hand side, we get

d

dt

∫
C

ρv · udc −
∫

C

ρv2dc = −
∫

C

1
J

[K(F) − K(F∗)] ·F(u)dct (4.5)

= −
∫

Ck

F(u) · ∇ ⊗∇E(F(x∗))F(u)dck − O(ε3) =
∫

C

ρv2dc + 2Aε2 − O(ε3),

where we have employed (4.4).
We deduce, integrating in time

d

dt

∫
C

1
2
ρu2dc ≥ d

dt

∫
C

1
2
ρu2dc

∣∣∣
0
. (4.6)

Finally, by taking as initial data v0 · u0 = b0 > 0, integrating again over t, we get
the growing to infinity of this solution.
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Theorem 4.2 (Dissipative force). Let T1 = T1(v) be not too large, then the equi-
librium position C∗ is nonlinear unstable if E assumes a maximum, for suitable
norms of perturbations (L2 for v, W 1

2 for u).

The result will be achieved by using any external force f , dead loads. To this
end, we multiply equation (2.3)1 by u, integrating over C, and integrating by parts
at the left-hand side, we have
d

dt

∫
C

ρv · udc −
∫

C

ρv2dc = −
∫

C

T1 : ∇xudc +
∫

C

1
J
∇y · [K(F) − K(F∗)] · udc,

(4.7)

Assume, by absurdum, that the motion is stable in W 3,2 norm, this allows us to
choose initial data u0 such small that u, v in the norm W 3,2 are less of a arbitrarily
small constant ε for all times t. Integrating by parts in (4.7), we get

−
∫

C

1
J

[K(F)−K(F∗)] ·F(u) = −F(u) ·∇⊗∇E(F(x∗))F(u)− o(ε3) ≥ a‖F(u)‖2,

(4.8)
where we have employed the maximum hypothesis for the energy, where a is a
positive constant.

Integrating in time

d

dt

∫
C

1
2
ρu2dc ≥ d

dt

∫
C

1
2
ρu2dc

∣∣∣
0

+
∫ t

0

∫
C

[
ρv2 + a‖F(u)‖2 − T1 : ∇xudCs

]
ds.

(4.9)

In (4.9) the last integral at the r.h.s. can be taken positive if T1 is not too large.
Finally, by taking as initial data v0 · u0 = b0 > 0, integrating again over t, we get
the growing to infinity of this solution.
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Stochastic Geometry Approach to the
Kinematic Dynamo Equation
of Magnetohydrodynamics

Diego L. Rapoport

Abstract. We review the geometry of diffusion processes of differential forms
on smooth compact manifolds, as a basis for the random representations of
the kinematic dynamo equations on these manifolds. We realize these repre-
sentations in terms of sequences of ordinary (for almost all times) differential
equations. We construct the random symplectic geometry and the random
Hamiltonian structure for these equations, and derive a new class of Poincaré-
Cartan invariants of magnetohydrodynamics. We obtain a random Liouville
invariant. We work out in detail the case of R3.

1. Introduction

Geometrical and topological invariants in hydrodynamics and magnetohydrody-
namics have been extensively considered by several authors (see [10, 16, 18]).
Thus, for the Euler equation for perfect fluids, an infinite-dimensional symplectic
geometry theory was constructed by V.I. Arnold (see refs. in [10]), followed by
work by D. Ebin and J. Marsden [17], which is widely perceived as a beautiful
example of the differential-geometrical methods in fluid-dynamics, while a theory
for the case of viscous fluids and for magnetohydrodynamics has only been recently
constructed by the present author. This theory stems from stochastic differential
geometry, i.e., a geometrical theory of diffusion processes or still, a stochastic the-
ory of gauge-theoretical structures (linear connections of Riemann-Cartan-Weyl),
so that geometrical and probabilistic structures become unified in a single theory
which has been applied to several areas of mathematical and theoretical physics
(see [5] and references therein); in particular, this theory has yielded a new class
of random symplectic invariants for the invariant Navier-Stokes equations (NS, for
short in the following), from which in the case of vanishing kinematical viscos-
ity, we retrieve the Arnold-Ebin-Marsden theory. Furthermore, this approach has
yielded analytical representations for NS on smooth compact manifolds with or
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without smooth boundaries, and still on Euclidean spaces and semispaces. [3,7].
The subject of this article is in giving for a start a rather sketchy (unfortunately
due to page limitations) review of the fundamental elements of stochastic differen-
tial geometry [1, 2, 11, 12], to further extend this methodology previously used to
construct the theory for NS, to the kinematic dynamo equation of magnetohydro-
dynamics (KDE, for short, in the following). Thus, in this article, we shall present
a realization by sequences of ordinary differential equations, of the random rep-
resentations of KDE on smooth compact connected manifolds without boundary,
M , which are further isometrically embedded in Euclidean space. Furthermore,
we shall extend these constructions to the cotangent manifold, T ∗M , which pro-
vided with the canonical symplectic structure, will allow us to construct a random
symplectic theory for KDE, and a new class of random invariants of passive mag-
netohydrodynamics. Our constructions will follow the formulation of stochastic
differential geometry that stems from the developing method due to E. Cartan,
for which a smooth curve lying on a Euclidean n-space is roled (keeping first-
order contact) on a smooth n-manifold, extending it to the random development
of Wiener processes on the same Euclidean space, as the geometrical construc-
tion of the most general diffusion processes on general manifolds [1, 2, 11]. This
is the transfer method from which stemmed our representations for NS and KDE
for smooth boundary compact manifolds [5], and will now be applied to KDE for
boundaryless manifolds. We shall finally present in detail, as an example of these
constructions, the Euclidean case R3.

2. Riemann-Cartan-Weyl geometry of diffusions

In this section we follow [3, 5]. In this article M denotes a smooth connected
compact orientable n-dimensional manifold (without boundary). We shall further
provide M with a linear connection described by a covariant derivative operator
∇ which we assume to be compatible with a given metric g on M , i.e., ∇g = 0.
Given a coordinate chart (xα) (α = 1, . . . , n) of M , a system of functions on M (the
Christoffel symbols of ∇) are defined by ∇ ∂

∂xβ

∂
∂xγ = Γ(x)α

βγ
∂

∂xα . The Christoffel
coefficients of ∇ can be decomposed as:

Γα
βγ =

{
α

βγ

}
+

1
2
Kα

βγ . (1)

The first term in (1) stands for the metric Christoffel coefficients of the Levi-Civita
connection ∇g associated to g, i.e.,

{
α
βγ

}
= 1

2 ( ∂
∂xβ gνγ + ∂

∂xγ gβν − ∂
∂xν gβγ)gαν , and

Kα
βγ = T α

βγ + Sα
βγ + Sα

γβ , (2)

is the cotorsion tensor, with Sα
βγ = gανgβκT κ

νγ , and T α
βγ = (Γα

βγ − Γα
γβ) the skew-

symmetric torsion tensor. We are interested in (one-half) the Laplacian operator
associated to ∇, i.e., the operator acting on smooth functions on M defined as

H(∇) := 1/2∇2 = 1/2gαβ∇α∇β . (3)
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A straightforward computation shows that H(∇) only depends in the trace of the
torsion tensor and g, since it is

H(∇) = 1/2�g + Q̂, (4)

with Q := Qβdxβ = T ν
νβdxβ the trace-torsion one-form and where Q̂ is the vector

field associated to Q via g: Q̂(f) = g(Q, df), for any smooth function f defined
on M . Finally, �g is the Laplace-Beltrami operator of g: �gf = divg gradf ,
f ∈ C∞(M), with divg the Riemannian divergence. Thus for any smooth function,
we have �gf = 1/[det(g)]

1
2 gαβ ∂

∂xβ ([det(g)]
1
2 ∂

∂xα f). Consider the family of zeroth-
order differential operators acting on smooth k-forms, i.e., differential forms of
degree k (k = 0, . . . , n) defined on M :

Hk(g, Q) := 1/2�k + LQ̂, (5)

In the first summand of the r.h.s. of (5) we have the Hodge operator acting on
k-forms:

�k = (d − δ)2 = −(dδ + δd), (6)

with d and δ the exterior differential and codifferential operators respectively, i.e., δ
is the adjoint operator of d defined through the pairing of k-forms on M : (ω1, ω2) :=∫
⊗kg(ω1, ω2)volg, for arbitrary k-forms ω1, ω2, where volg(x) = det(g(x))

1
2 dx is

the volume density. The last identity in (6) follows from the fact that d2 = 0 so
that δ2 = 0. Furthermore, the second term in (5) denotes the Lie-derivative with
respect to the vector field Q̂: LQ̂ = iQ̂d + diQ̂, where iQ̂ is the interior product
with respect to Q̂: for arbitrary vector fields X1, . . . , Xk−1 and φ a k-form defined
on M , we have (iQ̂φ)(X1, . . . , Xk−1) = φ(Q̂, X1, . . . , Xk−1). Then, for f a scalar
field, iQ̂f = 0 and

LQ̂f = (iQ̂d + diQ̂)f = iQ̂df = g(Q, df) = Q̂(f). (7)

Since �0 = (∇g)2 = �g, we see that from the family defined in (5) we retrieve for
scalar fields (k = 0) the operator H(∇) defined in (3 & 4). The Hodge Laplacian
can be further written expliciting the Weitzenbock metric curvature term, so that
when dealing with M = Rn provided with the Euclidean metric, �k is the standard
Euclidean Laplacian acting on the components of a k-form defined on Rn (0 ≤
k ≤ n).

Proposition 1. Assume that g is non-degenerate. There is a one-to-one mapping

∇ � Hk(g, Q) = 1/2�k + LQ̂

between the space of g-compatible linear connections ∇ with Christoffel coefficients
of the form

Γα
βγ =

{
α

βγ

}
+

2
(n − 1)

{
δα
β Qγ − gβγ Qα

}
, n 
= 1 (8)

and the space of elliptic second-order differential operators on k-forms (k=0,...,n).
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3. Riemann-Cartan-Weyl diffusions on the tangent manifold

In this section we shall present the setting for the extension of the correspondence
of Proposition 1 to a correspondence between RCW connections defined by (8)
and diffusion processes of k-forms (k = 0, . . . , n) having Hk(g, Q) as infinitesimal
generators (i.g. for short, in the following). For this, we shall see this correspon-
dence in the case of scalars, and then prepare the extension by defining diffusion
processes on the tangent manifold.1 We have already seen that introduction of
more general covariant derivative operators (or still, of linear connections) than
the Levi-Civita connection, is naturally associated with the appearance of an in-
teraction term in the generalized Laplacians, which is the vector field given by
the g-conjugate of a trace-torsion 1- form and thus with a RCW connection. We
shall further see that in introducing the Wiener processes (white noise) and the
rules of stochastic analysis [1], the present approach will lead us to associate the
noise tensor of a generalized diffusion process with the Riemannian metric and the
trace-torsion interaction term with the drift of a diffusion process.

For the sake of generality, in the following we shall further assume that Q =
Q(τ, x) is a time-dependent 1-form. The stochastic flow associated to the diffusion
generated by H0(g, Q) has for sample paths the continuous curves τ �→ x(τ) ∈ M
satisfying the Ito invariant non-degenerate s.d.e. (stochastic differential equation)

dx(τ) = X(x(τ))dW (τ) + Q̂(τ, x(τ))dτ. (9)

In this expression, X : M × Rm → TM is such that X(x) : Rm → TM is linear
for any x ∈ M , so that we write X(x) = (Xα

i (x)) (1 ≤ α ≤ n, 1 ≤ i ≤ m) which
satisfies Xα

i Xβ
i = gαβ, where g = (gαβ), and {W (τ), τ ≥ 0} is a standard Wiener

process on Rm. Here τ denotes the time-evolution parameter of the diffusion (in
a relativistic setting it should not be confused with the time variable), and for
simplicity we shall assume always that τ ≥ 0. Indeed, taking in account the rules
of stochastic analysis for which dWα(τ)dW β(τ) = δα

β dτ (the Kronecker tensor),
dτdW (τ) = 0 and (dτ)2 = 0, we find that if f : R × M → R is a C2 function on
the M -variables and C1 in the τ -variable, then a Taylor expansion yields

f(τ, x(τ)) = f(0, x(0)) + [
∂f

∂τ
+ H0(g, Q)f ](τ, x(τ))dτ

+
∂f

∂xα
(τ, x(τ))Xα

i (x(τ))dW i(τ)

and thus ∂
∂τ + H0(g, Q) is the infinitesimal generator of the diffusion represented

by integrating the s.d.e. (9). Furthermore, this identity sets up the so-called mar-
tingale problem approach to the random integration of linear evolution equations
for scalar fields [1], and further, for differential forms as we shall see next. Note,
that if we start with Eq. (9), we can reconstruct the associated RCW connection.

Our next step, is to extend the above results to differential forms. Consider
the canonical Wiener space Ω of continuous maps ω : R → Rm, ω(0) = 0, with the

1Thus, naturally we shall call these processes as RCW diffusion processes.
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canonical realization of the Wiener process W (τ)(ω) = ω(τ). The (stochastic) flow
of the s.d.e. (9) is a mapping Fτ : M×Ω → M, τ ≥ 0, such that for each ω ∈ Ω, the
mapping F.(. , ω) : [0,∞) × M → M, is continuous and such that {Fτ (x) : τ ≥ 0}
is a solution of equation (9) with F0(x) = x, for any x ∈ M . Let us assume in
the following that the components Xα

i , Q̂α, α, β = 1, . . . , n of the vector fields X

and Q̂ on M in Eq. (9) are predictable functions which further belong to Cm,ε
b

(0 < ε < 1, m a non-negative integer), the space of Hölder bounded continuous
functions of degree m ≥ 1 and exponent ε, and also that Q̂α(τ) ∈ L1(R), for
any α = 1, . . . , n. With these regularity conditions, if we further assume that
x(τ) is a semimartingale on a probability space (Ω,F , P ), then it follows that
the flow of Eq. (9) has a modification (which with abuse of notation we denote
as) Fτ (ω) : M → M, Fτ (ω)(x) = Fτ (x, ω), which is a diffeomorphism of class
Cm, almost surely for τ ≥ 0 and ω ∈ Ω [8]. We would like to point out that
a similar result follows from working with Sobolev space regularity conditions
instead of Hölder continuity. Indeed, assume that the components of X and Q̂,
Xα

i ∈ Hs+2(M) and Q̂β ∈ Hs+1(M), 1 ≤ i ≤ m, 1 ≤ β ≤ n, where the Sobolev
space Hs(M) = W 2,s(M) with s > n

2 +m, m ≥ 1. Then, the flow of Eq. (9) for fixed
ω defines a diffeomorphism in Hs(M, M), and hence by the Sobolev embedding
theorem, a diffeomorphism in Cm(M, M) [9]. Let us describe the (first) derivative
(or jacobian) flow of Eq. (9), i.e., the stochastic process {v(τ) := Tx0Fτ (v(0)) ∈
TFτ (x0)M, v(0) ∈ Tx0M}; here TzM denotes the tangent space to M at z and Tx0Fτ

is the linear derivative of Fτ at x0. The process {vτ , τ ≥ 0} can be described [12]
as the solution of the invariant Ito s.d.e. on TM :

dv(τ) = ∇gQ̂(τ, v(τ))dτ + ∇gX(v(τ))dW (τ) (10)

If we take U to be an open neighborhood in M so that the tangent space on U
is TU = U × Rn, then v(τ) = (x(τ), ṽ(τ)) is described by the system given by
integrating Eq. (9) and the invariant Ito s.d.e.

dṽ(τ)(x(τ)) = ∇gX(x(τ))(ṽ(τ))dW (τ) + ∇gQ̂(τ, x(τ))(ṽ(τ))dτ, (11)

with initial condition ṽ(0) = v0. Thus, {v(τ) = (x(τ), ṽ(τ)), τ ≥ 0} defines a
random flow on TM .

4. Realization of the RCW diffusions by ODE’s

To realize the s.d.e’s by o.d.e’s it is mandatory to pass to the Stratonovich mid-
point prescription, which are well known to have the same transformation rules in
stochastic analysis that those of classical flows [1,2]. The need for such approxi-
mations is obvious whenever the noise tensor is not trivial, and thus the random
integration may be extremely difficult; in the trivial noise case it becomes super-
fluous, as we shall see in the last section of this article. Thus, instead of Eq. (9)
we consider the Stratonovich s.d.e. (here denoted, as usual, by the symbol ◦) for
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it given by :

dx(τ) = X(x(τ)) ◦ dW (τ) + bQ,X(τ, x(τ))dτ,

where bQ,X(τ, x(τ)) = Q̂(τ, x(τ)) + S(∇g, X)(x(τ)), (12)

where the drift now contains an additional term, the Stratonovich correction term,
given by S(∇g, X) = 1

2 tr(∇g
XX), where ∇g

XX , the Levi-Civita covariant deriv-
ative of X in the same direction and thus it is an element of TM , so that in
local coordinates we have S(∇g, X)β = 1

2Xβ
i ∇

g
∂

∂xα
Xα

i . Now we also represent the
Jacobian flow using the Stratonovich prescription

dṽ(τ) = ∇gX(x(τ))(ṽ(τ)) ◦ dW (τ) + ∇gbQ,X(τ, x(τ))(ṽ(τ))dτ. (13)

Now we shall construct classical flows to approximate the random flow {x(τ) :
τ ≥ 0}. We start by constructing a piecewise linear approximation of the Wiener
process. Thus, we set for each k = 1, 2, . . .,

Wk(τ) = k[(
j + 1

k
− τ)W (

j

k
) + (τ − j

k
)W (

j + 1
k

)],

if
j

k
≤ τ ≤ j + 1

k
, j = 0, 1, . . . (14)

and we further consider the sequence {xk(τ)}k∈N satisfying

dxk(τ)
dτ

= X(xk(τ))
dWk

dτ
(τ) + bQ,X(τ, xk(τ)), (15)

dṽk(τ)
dτ

= ∇gX(xk(τ))(ṽk(τ))
dWk

dτ
(τ) + ∇gbQ,X(τ, xk(τ))(ṽk(τ)), (16)

dWk

dτ
(τ) = k[W (

j + 1
k

) − W (
j

k
)] for

j

k
< τ <

j + 1
k

, (17)

(otherwise, it is undefined) so that dWk

dτ (τ) exists for almost all values of τ . Since
{Wk(τ)}k∈N is differentiable a.e., thus {xk(τ) : xk(0) = x(0)}k∈N is a sequence
of flows obtained by integration of well-defined o.d.e’s on M , almost everywhere
(a.e.) on τ , for all W ∈ Ω. We remark that {xk(τ)}k∈n depends on the (here chosen
canonical) realization of W ∈ Ω so that in rigour, we should write {xk(τ,W,x0)}k∈N

to describe the flow; the same observation is valid for the approximation of the
derivative flow below. With the additional assumption that X and Q are smooth,
then the previous sequence defines for almost all τ and for all W ∈ Ω, a flow of
smooth diffeomorphisms of M , and thus, the flow {vk(τ) = (xk(τ), ṽk(τ)) : vk(0) =
(x(0), v(0))} defines a flow of smooth diffeomorphisms of TM . In this case, this
flow converges uniformly in probability, in the group of smooth diffeomorphisms
of TM , to the the flow of random diffeomorphisms on TM defined by Eqs. (12–13)
[1, 2, 11].
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5. RCW gradient diffusions of differential forms

Assume that there is an isometric immersion of an n-dimensional manifold M into
a Euclidean space Rm given by the mapping f :M →Rm,f(x)=(f1(x),...,fm(x)).
For example, M = Sn, T n, the n-dimensional sphere or torus respectively, and f is
an isometric embedding into Rn+1, or still M = Rm with f given by the identity
map. The existence of such a smooth immersion is proved by the Nash theorem
in the compact manifold case, yet the result is known to be valid as well for non
compact manifolds [15]. Assume further that X(x) : Rm → TxM , is the orthogonal
projection of Rm onto TxM the tangent space at x to M , considered as a subset
of Rm. Then, if e1, . . . , em denotes the standard basis of Rm, we have

X(x) = X i(x)ei, with X i(x) = grad f i(x), i = 1, . . . , m. (18)

We should remark for the benefit of the reader, that although the noise term is
provided by the isometric immersion and thus associated as in the general case
with the Levi-Civita covariant derivative operator, we still have a more general
covariant derivative, in fact a RCW connection, since the drift of the diffusion
process will continue to be associated with the g-conjugate of the trace-torsion of
this connection, which together with the metric, yields the RCW connection.

So we are interested in the RCW gradient diffusion processes on compact
manifolds isometrically immersed in Euclidean space, given by (9) with the dif-
fusion tensor X given by (18). We shall now give the Ito-Elworthy formula for
k-forms (0 ≤ k ≤ n) on compact manifolds which are isometrically immersed in
Euclidean space. Recall that the kth exterior product of k time-dependant vector
fields v1, . . . , vk is written as v1 ∧ v2 ∧ . . . ∧ vk and Λk(R × TM) is the vector
space generated by them. We further denote by C1,2

c (Λk(R × M)) the space of
time-dependant k-forms on M continuously differentiable with respect to the time
variable and of class C2 with respect to the M variable and of compact support
with its derivatives.

Theorem 1 (Ito-Elworthy Formula for k-forms [12]). Let M be isometrically im-
mersed in Rm as above. Let V0 ∈ ΛkTx0M , 0 ≤ k ≤ n. Set Vτ = Λk(TFτ )(V0), the
kth Grassmann product of the Jacobian flow of the RCW gradient diffusion with
noise tensor X = ∇f . Then ∂τ + Hk(g, Q̂) is the i.g. (with domain of definition
the differential forms of degree k in C1,2

c (Λk(R × M))) of {Vτ : τ ≥ 0}.
Remarks 2. Therefore, starting from the flow {Fτ : τ ≥ 0} of the s.d.e. (9) (or
its Stratonovich version given by Eq. (12)) with i.g. given by ∂τ + H0(g, Q), we
construct (fibered on it) the derived velocity process {v(τ) : τ ≥ 0} given by (10)
(or (9 & 11), with the diffusion tensor given by (18), or still, its Stratonovich version
given by Eqs. (12–13)) which has ∂τ + H1(g, Q) for i.g. Finally, if we consider the
diffusion processes of differential forms of degree k ≥ 1, we further get that ∂τ +
Hk(g, Q) is the i.g. of the process {Λkv(τ) : τ ≥ 0}, on the Grassmannian bundle
Λk(R × TM), (k = 0, . . . , n). Note that consistent with our notation, and since
Λ0(TM) = M we have that Λ0v(τ) ≡ x(τ), ∀τ ≥ 0. In particular, ∂τ + H2(g, Q) is
the i.g. of the stochastic process {v(τ) ∧ v(τ) : τ ≥ 0} on (R × TM) ∧ (R × TM).
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Consider on a smooth manifold M isometrically immersed in Euclidean space,
the following initial value problem: We want to solve

∂

∂τ
β = Hk(g, Q)βτ , with β(0, x) = β0(x), 0 ≤ k ≤ n, (19)

for an arbitrary time-dependant k-form β = βτ (x) = β(τ, x) defined on M which
belongs to C1,2

c (Λk(R×M)). Then, the formal solution of this problem is as follows
[13]: Consider the stochastic differential equation given by running backwards in
time Eq. (14)2:

dxτ,s,x = X(xτ,s,x) ◦ dW (s) + bQ,X(τ − s, xτ,s,x)ds, xτ,0,x = x ∈ M, (20)

and the derived velocity process {vτ,s,v(x), vτ,0,v(x) = v(x) ∈ TxM, 0 ≤ s ≤ τ}
which in a coordinate system we write as vτ,s,v(x) = (xτ,s,x, ṽτ,s,v(x)) verifying
(20) and the s.d.e.

dṽτ,s,v(x) = ∇gX(xτ,s,x)(ṽτ,s,v(x)) ◦ dW (s)

+ ∇gbQ,X(τ − s, xτ,s,x)(ṽτ,s,v(x))ds, ṽτ,0,v(x) = v(x). (21)

Notice that this system is nothing else than the Jacobian process running back-
wards in time until the beginning.

Theorem 2 [12]. The formal solution of the initial value problem (19) is

β(τ, x)(Λkv(x)) = Ex[β0(xτ,τ,x)(Λkṽτ,τ,v(x))], (22)

where the l.h.s. Λkv(x) denotes the exterior product of k linearly independant tan-
gent vectors at x, and in the r.h.s. Λkvτ,τ,v(x) denotes the exterior product of the
flows having initial condition given by Λkv(x).
Proof. It follows from the Ito-Elworthy formula.

6. KDE and RCW gradient diffusions

The kinematic dynamo equation for a passive magnetic field transported by an
incompressible fluid, is the system of equations [10] for the time-dependant mag-
netic vector field B(τ, x) = Bτ (x) on M defined by iBτ µ(x) = ωτ (x) (for τ ≥ 0),
satisfying

∂τω + (Lûτ − νm�n−1)ωτ = 0, ω(0, x) = ω(x), 0 ≤ τ, (23)

where νm is the magnetic diffusivity, and we recall that µ = vol(g) = det(g)
1
2 dx1∧

· · · ∧ dxn is the Riemannian volume; here the velocity 1-form uτ (x) = u(τ, x)
satisfies the incompressibility condition δuτ = −÷ (ûτ ) = 0, ∀τ and the invariant
Navier-Stokes equations (NS, on the following)

∂u

∂τ
= [ν�1 − Lûτ ]uτ − dpτ , (24)

2We can, of course, solve this problem by running the Ito form [12]
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where pτ is a time-dependant function, the pressure, ν is the kinematical viscosity,
or either, the Euler equations obtained by setting ν = 0. Note that we can rewrite
KDE as

∂τω = Hn−1(2νmg,− 1
2νm

uτ )ωτ , ω(0, x) = ω(x), 0 ≤ τ (25)

while NS can be written as
∂u

∂τ
= H1(2νg,

−1
2ν

uτ )uτ , δuτ = 0,

which by considering the vorticity time-dependant 2-form Ωτ := duτ we have the
equivalent system of equations

∂Ωτ

∂τ
= H2(2νg,

−1
2ν

uτ )Ωτ , H1(g, 0)uτ = −δΩτ ,

the first one being NS for the vorticity obtained by applying d to Eq. (24) and
the second one is the Poisson-de Rham equation, obtained by applying δ to the
definition of Ω. In [3–7], the geometrical theory of diffusion processes was applied to
give exact implicit representations for this system, in terms of stochastic differential
equations, and further realize these representations in terms of systems of ordinary
differential equations, and still to construct the random symplectic structure. In
this article, we shall follow the same line of approach but for KDE, which for n = 3
is identical to NS for the vorticity, with νm instead of ν, yet we must keep in mind
that for KDE we are after Bτ .

In the following we assume additional conditions on M , namely that it is
isometrically immersed in an Euclidean space, so that the diffusion tensor is given
in terms of the immersion f by X = ∇f . Let u denote a solution of Eq. (24) (or
still, of the Euler equation with ν = 0) and consider the flow {Fτ : τ ≥ 0}) of the
s.d.e. whose i.g. is ∂

∂τ + H0(2νmg, −1
2νm u); from Eq. (9) and Theorem 1 we know

that this is the flow defined by integrating the non-autonomous Ito s.d.e.

dx(τ) = [2νm]
1
2 X(x(τ))dW (τ) − û(τ, x(τ))dτ, x(0) = x, 0 ≤ τ. (26)

We shall assume in the following that X and û have the regularity conditions
stated in Section 3 so that the random flow of Eq. (26) is a diffeomorphism of M
of class Cm. Now if we express the random Lagrangian flow in Stratonovich form

dx(τ) = [2νm]
1
2 X(x(τ)) ◦ dW (τ) + b−u,X(τ, x(τ))dτ, (27)

with

b−u,X(τ, x(τ)) = νmtr (∇g
XX)(x(τ)) − û(τ, x(τ))), (28)

we can approximate in the group of diffeomorphisms of M this flow by considering
the sequence of a.e. o.d.e’s

dxk

dτ
(τ) = [2νm]

1
2 X(xk(τ))

dWk

dτ
(τ) + b−u,X(τ, xk(τ)), k ∈ N, (29)
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with dWk

dτ defined in Eq. (17), and we consider as well the Jacobian flow on TM ,
{v(τ) = (x(τ), ṽ(τ))} with ṽ(τ) satisfying the Stratonovich equations

dṽ(τ)(x(τ)) = [2νm]
1
2∇gX(x(τ))(ṽ(τ)) ◦ dW (τ) + ∇gb−u,X(τ, x(τ))(ṽ(τ))dτ,

(30)

which can be approximated by {xk(τ), ṽk(τ))}k∈N given by integrating the a.e.
o.d.e.

dṽk(τ)
dτ

= [2νm]
1
2∇gX(xk(τ))(ṽk(τ))

dWk

dτ
(τ) + ∇gb−u,X(τ, xk(τ))(ṽk(τ)). (31)

Thus, from [11] follows that the flow of the system of a.e. o.d.e’s given by Eqs.
(29, 31), and under the assumption that u is of class Cm (m ≥ 1), converges
uniformly in probability, in the group of diffeomorphisms of TM of class Cm−1 to
the random diffeomorphism flow, of the same class, that integrates KDE, as we
shall see next.

Let us find the form of the strong solution (whenever it exists) of the initial
value problem for ω(τ, x) satisfying (23) with initial condition ω(0, x) = ω0(x)
which we assume to be of class C2. For this, we run backwards in time the random
Lagrangian flow Eq. (26): For each τ ≥ 0 consider the s.d.e. (with s ∈ [0, τ ]):

dxτ,s,x = [2νm]
1
2 X(xτ,s,x) ◦ dW (s) + b−u,X(τ − s, xτ,s,x)ds, xτ,0,x = x. (32)

and the derived velocity process {vτ,s,v(x) : vτ,0,v(x) = v(x) ∈ TxM, 0 ≤ s ≤ τ}
which in a coordinate system we write as vτ,s,v(x) = (xτ,s,x, ṽτ,s,v(x)) verifying (32)
and the s.d.e.

dṽτ,s,v(x) = [2νm]
1
2∇gX(xτ,s,x)(ṽτ,s,v(x)) ◦ dW (s)

+ ∇gb−u,X(τ − s, xτ,s,x)(ṽτ,s,v(x))ds, ṽ
τ,0,v(x)
0 = v(x) ∈ TxM. (33)

Let v1(x), . . . , vn−1(x) linearly independent vectors in TxM , be initial conditions
for the flow ṽτ,x,v(x).

Theorem 3. If there is a C1,2 (i.e., continuously differentiable in the time variable
τ ∈ [0, T ), and of class C2 in the space variable) solution ω̃τ (x) of the initial value
problem, it is

ω̃τ (v1(x) ∧ . . . vn−1(x)) = Ex[ω0(xτ,τ,x)(ṽτ,τ,v1(x) ∧ · · · ∧ ṽτ,τ,vn−1(x))], (34)

where Ex denotes the expectation value with respect to the measure on {xτ,τ,x :
τ ≥ 0}.

Proof. It is evident from Theorems 1 and 2.
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Now we can approximate Equation (34) by taking the Jacobian flow
{(xτ,s,x

k ,ṽ
τ,s,v(x)
k )}k∈N on TM given by

dxτ,s,x
k

ds
(s) = [2νm]

1
2 X(xτ,s,x

k )
dWk(s)

ds
+ b−u,X(τ − s, xτ,s,x

k ), xτ,0,x
k = x,

dṽ
τ,s,v(x)
k

ds
(s) = [2νm]

1
2∇gX(xτ,s,x

k )(ṽτ,s,v(x)
k )

dWk(s)
ds

+ ∇gb−u,X(τ − s, xτ,s,x
k )(ṽτ,s,v(x)

k )ds, ṽ
τ,0,v(x)
k = v(x) ∈ TxM

where
dWk(s)

ds
= 2k{W (

[2ks/τ ] + 1
2k

) − W (
[2ks/τ ]

2k
)}, s ∈ [0, τ ], (τ > 0), (35)

with [z] the integer part of z ∈ (0, 1], is the Stroock & Varadhan polygonal ap-
proximation [11]. Thus, we can write the expression:

ω̃τ (v1(x) ∧ . . . vn−1(x)) = limk→∞Ex[ω0(x
τ,τ,x
k )(ṽτ,τ,v1(x)

k ∧ . . . ∧ ṽ
τ,τ,vn−1(x)
k )].

(36)

7. KDE and random symplectic diffusions

Starting with a general RCW diffusion of 1-forms generated by H1(g, Q), we in-
troduce a family of Hamiltonian functions, Hk(k ∈ N) defined on the cotangent
manifold T ∗M = {(x, p)/p : TxM → R linear} by

Hk = HX,k + HQ, (37)

with (in the following 〈−,−〉 denotes the natural pairing between vectors and
covectors)

HX,k(x, p) = 〈〈p, X(x)〉, dWk

dτ
〉, (38)

where the derivatives of Wk are given in (17), and

HQ̂(x, p) = 〈p, bQ,X(x)〉. (39)

Now, we have a sequence of a.a. classical Hamiltonian flow, defined by integrating
for each k ∈ N the a.a. system of o.d.e.’s

dxk(τ)
dτ

= X(xk(τ))
dWk

dτ
+ bQ,X(xk(τ)), (40)

dpk(τ)
dτ

= −〈〈pk(τ),∇gX(xk(τ))〉, dWk(τ)
dτ

〉 − 〈pk(τ),∇gbQ,X(τ, xk(τ))〉.(41)

which preserves the canonical 1-form pkdxk = (pk)αd(xk)α (no summation on k!),
and then preserves its exterior differential, the canonical symplectic form Sk =
dpk∧dxk. We shall denote this flow as φk

. (ω, .); thus φk
τ (ω, .) : T ∗

xk(0)M → T ∗
xk(τ)M ,

is a symplectic diffeomorphism, for any τ ∈ R+ and ω ∈ Ω. Furthermore, if we
consider the contact 1-form [14] on R × T ∗M given by γk := pkdxk − HX,kdτ −
HQ̂dτ, ∀k ∈ N , we obtain a classical Poincaré-Cartan integral invariant: Let two
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smooth closed curves σ1 and σ2 in T ∗M × {τ = constant} encircle the same
tube of trajectories of the Hamiltonian equations for Hk, i.e., Eqs. (40, 41); then∫

σ1
γk =

∫
σ2

γk. Furthermore, if σ1 − σ2 = ∂ρ, where ρ is a piece of the vortex
tube determined by the trajectories of the classical Hamilton’s equations, then it
follows from the Stokes theorem [14] that∫

σ1

γk −
∫

σ2

γk =
∫

σ1

pkdxk −
∫

σ2

pkdxk =
∫

ρ

dγk = 0. (42)

Returning to our construction of the random Hamiltonian system, we know already
that for X and Q̂ smooth, the Hamiltonian sequence of flows described by Eqs. (40,
41) converges uniformly in probability in the group of diffeomorphisms of T ∗M ,
to the random flow of the system given by Eqs. (27, 28) and

dp(τ) = −〈〈p(τ),∇gX(x(τ))〉, ◦dW (τ)〉 − 〈p(τ),∇gbQ,X(τ, x(τ))dτ〉. (43)

Furthermore this flow of diffeomorphisms is the mapping:

φτ (ω, ., .)(x, p) = (Fτ (ω, x), F ∗
τ (ω, x)p),

where F ∗
τ (ω, x) is the adjoint mapping of the Jacobian transformation. This map

preserves the canonical 1-form pdx, and consequently preserves the canonical sym-
plectic 2-form S = d(pdx) = dp ∧ dx, and thus φτ (ω, .) : T ∗

x(0)M → T ∗
x(τ)M is a

flow of symplectic diffeomorphisms on T ∗M for each ω ∈ Ω [11]. Consequently,
ΛnS is preserved by this flow, and thus we have obtained the Liouville measure
invariant by a random symplectic diffeomorphism. We shall write onwards, the
formal Hamiltonian function on T ∗M defined by this approximation scheme as

H(x, p) := 〈〈p, X(x)〉, dWτ

dτ
〉 + HQ̂(x, p). (44)

We proceed now to introduce the random Poincaré-Cartan integral invariant for
this flow. Define the formal 1-form by the expression

γ := pdx −HQ̂dτ − 〈p, X〉 ◦ dW (τ), (45)

and its formal exterior differential (with respect to the N = T ∗M variables only)

dNγ = dp ∧ dx − dNHQ̂ ∧ dτ − dN 〈p, X〉 ◦ dW (τ). (46)

Clearly, we have a random differential form whose definition was given by Bismut
[11,7]. Let a smooth r-simplex with values in R+ × T ∗M be given as

σ : s ∈ Sr → (τs, xs, ps),

where

Sr = {s = (s1, . . . , sr) ∈ [0,∞)r, s1 + . . . + sr ≤ 1}, (47)

with boundary ∂σ the (r−1)-chain ∂σ =
∑r+1

i=1 (−1)i−1σi, where σi are the (r−1)
singular simplexes given by the faces of σ. σ can be extended by linearity to any
smooth singular r-chains. We shall now consider the random continuous r-simplex,
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c, the image of σ by the flow of symplectic diffeomorphisms φ, i.e., the image in
R × T ∗M

φ(τs, ω, xs, ps) = (τs, Fτ (ω, xs), F ∗
τ (ω, xs)ps), for fixed ω ∈ Ω, (48)

where Fτ (ω, x) and F ∗
τ (ω, x)p are defined by Eqs. (27, 28 & 43), respectively.

Then, given α0 a time-dependant 1-form on N , β0, . . . , βm functions defined
on R ×N , the meaning of a random differential 1-form

γ = α0 + β0dτ + βi ◦ dW i(τ), i = 1, . . . , m, (49)

is expressed by its integration on a continuous 1-simplex

c : s → (τs, φτs(ω, ns)), where ns = (xs, ps) ∈ T ∗M, (50)

the image by φ.(ω, .), (ω ∈ Ω) the random flow of symplectomorphisms on T ∗M ,
of the smooth 1-simplex σ : s ∈ S1 → (τs, (xs, ps)). Then,

∫
c γ is a measurable real-

valued function defined on the probability space Ω in [11,7]. Now we shall review
the random differential 2-forms. Let now α̃0 be a time-dependant 2-form on N ,
thus α̃0(τ, n) which we further assume to be smooth. Furthermore, let β̃0(τ, n), . . . ,
β̃m(τ, n) be smooth time-dependant 1-forms on N and we wish to give a meaning
to the random differential 2-form

γ = α̃0 + dτ ∧ β̃0 + dW 1(τ) ∧ β̃1 + . . . + dWm(τ) ∧ β̃m. (51)

on integrating it on a continuous 2-simplex c : s → (τs, φτs(ω, ns)), or which we
define it as a measurable real-valued function on Ω in [11,7]. To obtain the random
Poincaré-Cartan invariant we need the following results on the approximations of
random differential 1- and 2-forms by classical differential forms. Given as before
α̃0 a time-dependant smooth 2-form on N and time-dependant smooth 1-forms
β̃1, . . . , βm on N , there exists a subsequence ki and a zero-measure Ω̂ subset of Ω
dependant on α̃0, β̃1, . . . , β̃m such that for all ω /∈ Ω̂, φki

. (ω, .) converges uniformly
on any compact subset of R+×R2n to φ.(ω, .) as well as all its derivatives ∂lφki

∂nl (ω, .)

with |l| ≤ m, converges to ∂lφ.

∂nl (ω, .), and for any smooth 2-simplex, σ : s → (τs, ns)
valued on R+ ×N , if

γk = α̃0 + dτ ∧ (β̃0 + β̃1
dW 1

k

dτ
+ . . . β̃m

dWm
k

dτ
) (52)

and if ck is the 2-simplex given by the image of a smooth 2-chain by the a.a.
smooth diffeomorphism φk

. (ω, .) defined by integration of Eqs. (40, 41): ck : s →
(τs, φ

k
τs

(ω, ns)), and c is the continuous 2-chain s → (φτs(ω, ns)), then
∫

cki
γki con-

verges to
∫

c
γ. If instead we take a time-dependant 1-forms α0 and time-dependant

functions β0, . . . , βm on N and consider the time-dependant 1-form on N given by

γk = α0 + (β0 + β1
dW 1

k

dτ
+ . . . βm

dWm
k

dτ
)dτ (53)

and for any a.e. smooth 1-simplex ck : s → (τs, φ
k
τs

(ω, ns)) then there exists a
subsequence ki and a zero-measure set Ω̂, dependant of α0, β0, . . . , βm, such that
for all ω /∈ Ω̂, φki

. (ω, .) converges uniformly over all compacts of R+ × R2n with
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all its derivatives of order up to m to those of φ.(ω, .), and if c is the continuous
1-simplex c : s → (τs, φs(ω, ns)), then

∫
cki

γki converges to
∫

c
γ, with γ defined in

Eq. (49).
Then, we can state the fundamental theorem of Stokes for this random set-

ting, which is due to Bismut [11] (Theorem 3.4). Let c be a random continuous
2-simplex image of an arbitrary smooth 2-simplex by the flow φ.(ω, .). There exists
a zero-measure set Ω̃ ⊂ Ω such that for any ω /∈ Ω, then

∫
c
dγ =

∫
∂c

γ, for any
differential random 1-form γ.

In the following in the case defined by KDE, for which Q̂ = −û with u a
solution of NS or Euler equations, so that from Eqs. (45 & 49) we set

α0 = pdx, β0 = −H−û ≡ Hû, βi = −(2νm)
1
2 〈p, Xi〉 ≡ pαXα

i , i = 1, . . . , m, (54)

where X : Rm → TM with X(x) = gradf with f : M → Rd is an isometric
immersion of M , then

γ = pdx + Hûdτ − (2νm)
1
2 〈p, X〉i ◦ dW i(τ)

≡ pα(dxα + (bu,X)αdτ − (2νm)
1
2 Xα

i ◦ dW i(τ)), (55)

is the random Poincaré-Cartan 1-form defined on R+ ×N . The Hamiltonian func-
tion for KDE is

H(x, p) := [2νm]
1
2 〈〈p, X(x)〉, dWτ

dτ
+ H−û(x, p), (56)

with

H−û(x, p) = pα(b−u,X)α = gαβpα(−uβ + νmXα
i ∇g

∂

∂xβ

Xβ
i ) (57)

so that the Hamiltonian system is given by Eqs. (27, 28 & 43). As in the general
case, we then obtain a Liouville invariant measure produced from the nth exterior
product of the canonical symplectic form.

8. The Euclidean case

To illustrate with an example, consider M = R3, f(x) = x, ∀x ∈ M , and then
X = ∇f ≡ I, the identity matrix, as well as g = XX† = I the Euclidean metric,
and ∇g = ∇, is the gradient operator acting on the components of differential
forms. Consequently, the Stratonovich correction term vanishes since ∇XX = 0
and thus the drift in the Stratonovich s.d.e’s. is the vector field b−u,X = −û = −u
(we recall that û is the g-conjugate of the 1-form u, but here g = I). In this case
the time-dependant ‘magnetic’ (n − 1)-form in KDE, ωτ (x) is a 2-form on R3 (or
still, an R3-valued function defined on R3). The stochastic flow which integrates
KDE is given by integrating the system of equations (s ∈ [0, τ ])

dxτ,s,x = [2νm]
1
2 ◦ dW (s) − u(τ − s, xτ,s,x)ds, xτ,0,x = x,

dṽτ,s,v(x)) = −∇u(τ − s, xτ,s,x)(ṽτ,s,v(x))ds, ṽτ,0,v(x) = v(x) (58)
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the second being an ordinary differential equation (here, in the canonical basis of
R3 provided with Cartesian coordinates (x1, x2, x3), ∇u is the matrix ( ∂ui

∂xj ) for
u(τ, x) = (u1(τ, x), u2(τ, x), u3(τ, x)). Since

∫ τ

0
◦dW (s) = W (τ) − W (0) = W (τ),

we obtain

xτ,s,x = x + [2ν]
1
2 W (s) −

∫ s

0

u(τ − r, xτ,r,x)dr, s ∈ [0, τ ], (59)

and

ṽτ,s,v(x) = e−s∇u(τ−s,xτ,s,x)v(x). (60)

Finally, from Theorem 3 we have (with vi(x), i = 1, 2 as before)

ω̃τ (v1(x) ∧ v2(x)) = Ex[ω0(xτ,τ,x)(ṽτ,τ,v1(x) ∧ ṽτ,τ,v2(x))], (61)

where the expectation value is taken with respect to the standard Gaussian func-
tion defined on R3, albeit not centered on the origin of R3 due to the last term in
Eq. (59). We would like to remark that we can still follow [3, 4] to give in closed
form, the implicit representation for u(τ, x) obeying NS on R3.

We finally proceed to present the random symplectic theory for KDE on R3.
In account of (44) with the above choices, the Hamiltonian function is

H(x, p) := [2νm]
1
2 〈p,

dW (τ)
dτ

〉 + H−û(x, p), (62)

with

H−û(x, p) = −〈p, u〉. (63)

The Hamiltonian system is described by the Stratonovich s.d.e. for x(τ) ∈ R3, ∀τ ≥
0:

dx(τ) = [2νm]
1
2 ◦ dW (τ) − u(τ, x(τ))dτ, (64)

and the o.d.e

dp(τ) = −〈p(τ),∇u(τ, x(τ))〉dτ. (65)

If we further set x(0) = x and p(0) = p, the Hamiltonian flow preserving the
canonical symplectic form S = dp ∧ dx on R6 is given by

φτ (., .)(x, p) = (x(τ), p(τ))

= (x + [2νm]
1
2 W (τ) −

∫ τ

0

u(r, x(r))dr, e−τ∇u(τ,x(τ))p). (66)

Finally, the Poincaré -Cartan 1-form takes the form

γ = 〈p, dx − udτ − (2νm)
1
2 ◦ dW (τ)〉, (67)

and the Liouville invariant is S ∧S ∧S. This completes the implementation of the
general construction on 3D.

Final Remarks. Geometrical-topological invariants in magnetohydrodynamics and
hydrodynamics have been widely studied [10,16,18]. Following the presentation
in [7] which lead to the random symplectic invariants of NS, in this article we
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have studied their extension to passive magnetohydrodynamics. The invariants
produced in this approach are new to the best understanding of this author. A
similar theory can be produced for the smooth boundary case.
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Quasi-Lipschitz Conditions in Euler Flows

Reimund Rautmann

Abstract. In mathematical models of incompressible flow problems, quasi-
Lipschitz conditions present a useful link between a class of singular integrals
and systems of ordinary differential equations. Such a condition, established
in suitable form for the first-order derivatives of Newtonian potentials in R

n

(Section 2) gives the main tool for the proof (in Sections 3–6) of the existence
of a unique classical solution to Cauchy’s problem of Helmholtz’s vorticity
transport equation with partial discretization in R

3 for each bounded time
interval. The solution depends continuously on its initial value and, in addi-
tion, fulfills a discretized form of Cauchy’s vorticity equation.

Mathematics Subject Classification (2000). 35 A 05, 35 A 35, 34 A 40, 34 A
12, 76 C 05.

Keywords. Helmholtz’s and Cauchy’s vorticity equations with a discretization
in Hölder spaces. Quasi-Lipschitz conditions.

1. Introduction

The aim of this note is point out the rôle of quasi-Lipschitz conditions as a useful
link between a class of singular integrals, representing solutions of partial differ-
ential equations, and systems of ordinary differential equations modelling incom-
pressible flow problems. Namely after having shown the quasi-Lipschitz condition
for gradients of Newtonian potentials in Rn(Section 2), in the following Sections
3–6 we will use it in order to prove the existence of a unique classical solution
to the Cauchy problem of Helmholtz’s vorticity transport equation with partial
discretization in R3 for each bounded time interval.

Let v denote a continuous function defined for (t, x) ∈ J × R
n, v(t, x) ∈ Rn,

J = [0, a], n ≥ 2. The global existence of a unique flow X = Lv, X = X(t, s, x) ∈
Rn solving the initial value problem of the differential equation

∂

∂t
X = v(t, X) , t ∈ J, (1.1)

X(s, s, x) = x , s ∈ J,
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is guaranteed by a uniform Lipschitz condition for v(t, x) with respect to x ∈ Rn,
but also by the more general condition

[v(t, ·)]� = sup
x,y∈Rn

x �=y

|v(t, y) − v(t, x)|
�(|y − x|) ≤ λ < ∞ (1.2)

with the function

�(r) =

⎧⎪⎨⎪⎩
0 , r = 0,

−r ln r , r ∈ (0, e−1),

r , r ≥ e−1,

and a constant λ. The uniqueness of (1.1) under condition (1.2) goes back to
Osgood [13], the global existence of the solution X(t, s, x) for all (t, s, x) ∈ J ×
J ×Rn results easily from (1.2) by Wintner’s criterium [5]. Following Kato [7], the
requirement (1.2) is referred to as quasi-Lipschitz condition for v.

In many nonlinear problems of fluid dynamics the direction field v (i.e., the
flow velocity) is represented by first-order derivatives of a Newtonian potential V
in which the mass density depends again on flow variables, but in such a way that
bounds for the supremum norm of the density are available. However, as shown
in potential theory [4], in order to get a Lipschitz bound for ∇V, stronger Hölder
norm estimates for the mass density in V would be required.

This shows the useful strength of quasi-Lipschitz conditions: Namely, such a
condition already holds for a direction field v = ∇V if the continuous mass density
in the Newtonian potential V has compact support in Rn.

In the case of a 2-dimensional Euler flow, representing the velocity v(t, x) in
terms of its vorticity w(t, x) = rot v(t, x), Wolibner [22], Hölder [6] and Kato [7]
have used condition (1.2) as a decisive tool for proving global existence of unique
classical solutions to the initial value problem of the Euler equations.

The analogous result for the Cauchy problem of the nonstationary vorticity
transport-diffusion equation in R2 has been established in [15] also by making
essential use of condition (1.2).

Notations. Besides the usual Banach space C0(Ω) of all uniformly bounded, con-
tinuous functions f , C0(Ω) being equipped with the norm |f |0Ω = sup

z∈Ω
|f(z)|,

f(z) ∈ Rn, n = 1, 3, where Ω denotes any one of the sets R3, J = [0, a], J × R3,
B = {x ∈ R

3
∣∣|x| ≤ R}, we will work with the space C1(Ω), or C0,1(J × Ω) of

all functions f ∈ C0(Ω), or f ∈ C0(J × Ω), which also have continuous and uni-
formly bounded first-order derivatives with respect to all coordinates (zi) ∈ Ω, or
in (t, (zi)) ∈ J × Ω only with respect to the coordinates (zi) ∈ Ω, respectively.

For any Hölder exponent α ∈ (0, 1), boundedness of the Hölder seminorm

[g]Ωα = sup
x,y∈Ω

0<|y−x|<1

|g(y) − g(x)|
|y − x|α (1.3)

is required in the Hölder spaces Cα(Ω) = {g ∈ C0(Ω)|[g]Ωα < ∞}, Cα(Ω) being
equipped with the Hölder norm |g|αΩ = |g|0Ω+[g]αΩ, C0,α(J×Ω) =

{
f ∈ C0(J×
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Ω)
∣∣ sup

t∈J
[f(t, ·)]Ωα < ∞

}
. We will omit the index Ω, if no confusion is possible. By

c0, c1, c
′, . . . we will denote constants which may have different values at different

places.

2. A quasi-Lipschitz condition for first-order derivatives of
Newtonian potentials in R

n.

With points x = (xi), y = (yi) ∈ Rn, r = |x − y|, these derivatives have the form

(Kif)(x) =
∫

Rn

(xi − yi) · r−n · f(y)dy , i = 1, . . . , n, (2.1)

where f denotes any given continuous real-valued function, f having compact
support. Thus Kif is continuous on Rn. Estimates of the type below go back to
[2,8].

Proposition 2.1. For all continuous functions f : Rn → R, n ≥ 2, f having compact
support supp f ⊂ Rn, the estimates

(i) |Kif |0 ≤ c · |f |0, c = ωn + | ◦
supp f |,

(ii) [Kif ]� ≤ c1 · |f |0, c1 = c0 · c,
(iii) |∇Kif |α· ≤ cα · |f |α hold, where ωn denotes the measure of the n − 1-

dimensional unit sphere in Rn, cα depending on α ∈ (0, 1), n, and | ◦
supp f |

only.

Proof. The proof given in [7] for 2-dimensional bounded domains easily can be
extended to Rn, but for completeness of our estimates in Section 5 and 6 below
we will stress the fact that the value of the bound c in (i) depends only on n and
the Lebesgue measure | ◦

supp f | of the open support of f .
Writing r = |x − y|, we find (i) from

|(Kif)(x)| ≤ |f |0 ·

⎧⎪⎨⎪⎩
∫

r≤1

r1−ndy +
∫

1<r,y∈ ◦
suppf

dy

⎫⎪⎬⎪⎭ .

To prove (ii), we consider two different points

xm = (xmi) ∈ R
n, with rm = |xm − y|, m = 0, 1 , d = |x1 − x0|.

The difference k = |(x1i − yi)r−n
1 − (x0i − yi)r−n

0 | |f(y)| firstly integrated over the
ball {y ∈ R3| r0 ≤ 2d} gives∫
r0≤2d

k dy ≤ |f |0 ·

⎧⎪⎨⎪⎩
∫

r0≤r1,r0≤2d

r1−n
0 dy +

∫
r1≤r0,r1≤2d

r1−n
1 dy +

∫
r0≤2d

r1−n
0 dy

⎫⎪⎬⎪⎭
≤ |f |0 · 6ωnd. (2.2)
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On the complementary region r0 > 2d we rewrite the integrand in the form

k =
∣∣(x1i − x0i)r−n

1 + (x0i − yi)(r−n
1 − r−n

0 )
∣∣∣∣f(y)

∣∣. (2.3)

On the line segment l = {xs} = {x0 + s(x1 − x0)
∣∣s ∈ [0, 1]}, with rs = |xs − y| we

find
∣∣r−n

1 − r−n
0

∣∣ ≤ n · d ·
∣∣ ∫ 1

0 r−n−1
s ds

∣∣. An elementary geometric consideration in
the plane through 3 linearly independent points x0, x1, y shows the relations

r0 = c · d, rs ≥ r1 ≥ (c − 1)d, thus
rs

r0
≥ r1

r0
≥ c − 1

c
≥ 1

2
(2.4)

which hold for all points y ∈ R
n on the sphere S = {y| |y−x0| = c · d} with c ≥ 2.

(i.e., on the line segment l the point x1 with r1 = (c − 1)d is the nearest one to
the sphere S around x0.) Introducing the latter bounds and |x0i − yi| ≤ r0 in k
from (2.3) we get∫

2d<r0

k dy ≤ |f |0 · d ·

⎧⎨⎩
∫

2d≤r0≤1

2nr−n
0 dy+

∫
◦

suppf

dy (2.5)

+n ·

⎛⎜⎝ ∫
2d≤r0≤1

2n+1r−n
0 dy +

∫
◦

suppf

dy

⎞⎟⎠
⎫⎪⎬⎪⎭

≤ |f |0 · d
{

2nωn(1 + 2n)|ln(2d)|+ (1 + n)| ◦
supp f |

}
,

where the first and the third integral above appear in case 2d < 1 only. Adding
(2.2) and (2.5) gives (ii) with suitable constant c0. The last estimate (iii) is well
known from potential theory, cf. [4] or [9 p. 46–49, 59–62]. �

3. The hydrodynamical equations of Euler and Helmholtz

The vorticity vector

w(t, y) = (wj(t, x)) = rot v(t, x) , j = 1, 2, 3 (3.1)

of any smooth solution v(t, x) to the Cauchy problem of Euler’s momentum trans-
port equation

∂

∂t
v + v · ∇v + ∇p = 0, div v = 0 in J × R

3, (3.2)

v = v0, t = 0,

containing the pressure function p(t, x), fulfills Helmholtz’s vorticity transport
equation

∂

∂t
w + v · ∇w = w · ∇v in J × R

3, w = w0 = rot v0, t = 0, (3.3)
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where the velocity vector v is given by Biot-Savart’s formula

v(t, x) =
1
4π

·
∫

R3
rotx

w(t, y)
|x − y| dy = (Kw(t, ·))(x) = (Kw)(t, x). (3.4)

Remark 3.1. Recalling the vector identity

rotx(|x − y|−1w(t, y)) = −|x − y|−3(x − y) × w(t, y),

we see that the components of the vector Kw are differences of terms having the
form 1

4π Kif in Proposition 2.1, where f = wj . Therefore if, e.g., w(t, ·) is Hölder
continuous in x ∈ R

3 having always compact support in R
3, the integral (3.4) exists

and besides (3.1) also div v(t, ·) = 0 holds.
We get Helmholtz’s equation (3.3) by taking the rotation in (3.2). Thus in R3 (un-
der the suitable smoothness assumption) equation (3.3) represents the necessary
and sufficient condition for the term ∂

∂tv + v · ∇v being a gradient field.
Since in any 2-dimensional flow parallel to the (x1, x2)-plane in R3 the right-

hand side in (3.3) vanishes, the resulting conservation law for w(t, x) along parti-
cle’s pathes opens the way to proofs for global existence of unique classical solutions
to (3.3), (3.4) and (3.2). The quasi-Lipschitz condition (1.2) depending on a bound
for |w(t, ·)|0 only is the decisive tool, cf. [6, 7, 22]. Concerning 3-dimensional Euler
flows a lot of work has been done on solutions to (3.2) which exist locally in time,
and on blow-up criteria, cf. [10–12] and the citations there. Thus at least from the
numerical point of view it seems to be a remarkable fact that a single discretization
transforms (3.3) together with (3.4) into a Cauchy problem which has a unique
classical solution on each bounded time interval.

4. Helmholtz and Cauchy’s vorticity equation with a discretization

In order to fix a domain for the linear map K : w → Kw, we introduce the linear
subspace C0

B ⊂ C0(J×R3), C0
B containing each function f ∈ C0(J×R3) for which

a ball Bf ⊂ R3 exists, Bf covering the support supp f(t, ·) for all t ∈ J :

C0
B

{
f ∈ C0(J × R

3)
∣∣∃Bf = {x ∈ R

3
∣∣|x| ≤ Rf

}
, supp f(t, ·) ⊂ Bf ∀t ∈ J

}
.

The point in our definition of C0
B is that for each single f ∈ C0

B we can find a ball
Bf such that f(t, x) is vanishing at all points x outside of Bf for all t ∈ J.

Theorem 4.1. Let the prescribed initial value w0 be one times continuously dif-
ferentiable, w0 having compact support, ε 
= 0 denoting a real constant. Then the
initial value problem

∂

∂t
w + v · ∇w =

1
ε
{v(t, x + εw(t, x)) − v(t, x)} , (t, x) ∈ J × R

3, (4.1)

w(0, x) = w0(x)
with v = Kw from (3.4) has a unique global solution w ∈ C1(J × R3) ∩ C0

B. The
function w can be approximated by iteration of a contracting map T and depends
continuously on w0.
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For a proof of Theorem 4.1. which follows the ideas we have formulated in
[14], in a preparatory step with prescribed v ∈ C0,1, we will integrate (4.1), getting
a discretized form of Cauchy’s vorticity equation.

Proposition 4.2. Assume v ∈ C0.1, w0 ∈ C1(R3) be given. Then

(i) each solution w ∈ C1(J × R3) of (4.1.) with w(0, ·) = w0 has the representa-
tion

w(t, x) =
1
ε
{X(t, 0, Z(·)) − X(t, 0, ·)} ◦ X(0, t, x) = (4.2)

= (HX)(t, x), (t, x) ∈ J × R
3 with

Z(x) = x + εw0(x), (4.3)

X = Lv denoting the solution of (1.1).
(ii) Conversely the function w = HX in (4.2) belongs to C1(J × R3) and solves

(4.1).

Proof. Recalling well-known facts from the theory of ordinary differential equa-
tions, in case v ∈ C0,1 the unique solution X(t, s, x̂) of (1.1) belongs to C1(J ×
J ×R

3), X(t, s, ·) = X−1(s, t, ·) representing a C1-diffeomorphism of R
3. Thus the

representation of any function w(t, x) in Lagrangian coordinates x̂,

ŵ(t, x̂) = w(t, X(t, 0, x̂)), (4.4)

is well defined. Because of the equation(
∂

∂t
ŵ(t, ·)

)
◦ X−1(t, 0, x) =

(
∂

∂t
w + v · ∇w

)
(t, x) (4.5)

which results immediately from the chain rule, initial value problem (4.1) is equiv-
alent to

∂

∂t
ŵ =

1
ε
{v(t, X + εw(t, X)) − v(t, X)} or (4.6)

∂

∂t

{
X + εŵ

}
= v(t, X + εŵ) , t ∈ J, with (4.7)

X + εŵ = x̂ + εw0(x̂), t = 0,

where v(t, X) = ∂
∂tX, X = X(t, 0, x̂). Equation (4.7) expresses the initial value

problem (1.1) for the function X + εŵ. Thus recalling again the unique solvability
of (1.1) we find

(X + εŵ)(t, x̂) = X(t, 0, x̂ + εw0(x̂)) or (4.8)

ŵ(t, x̂) =
1
ε

{
X(t, 0, Z(x̂)) − X(t, 0, x̂)

}
(4.9)

which shows (4.2) because of x̂ = X(0, t, x).
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Finally recalling X±1(t, 0, ·) ∈ C1(R3) in case v ∈ C0,1, from our requirement
in (ii) we conclude w = HX ∈ C1(J×R3), equation (4.2) being equivalent to (4.9).
Differentiating the latter with respect to t and using the representation (4.5) above
of ∂

∂t ŵ(t, x̂) with x̂ = X−1(t, 0, x) we get (4.1). �

Remark 4.3. Taking in (4.9) the limit ε → 0 we find Cauchy’s vorticity equation,
[19, p. 152].

5. The fixpoint equation

In order from (4.2) to get a fixpoint equation for w, we only have to find appropriate
domains for the maps K and L such that the composed map

T = HLK

is properly defined. For any given initial value f0 ∈ C1(R3) with
◦

supp f0 ⊂ BR0 , |
◦

suppf0| ≤ τ and fixed R1 ≥ R0, τ > 0,
we consider the class

(5.0) Cf0 = {f ∈ C0(J × R
3)|f(0, ·) = f0, supp f(t, ·) ⊂ BR1 , |

◦
suppf(t, ·)| ≤ τ}

of all continuous vector-valued functions f, f(t, x) ∈ R3, which always have their
support supp f(t, ·) inside the fixed ball BR1 = {x ∈ R

3||x| ≤ R1}, the Lebesgue
measure of the open support

◦
supp f(t, ·) being uniformly bounded by τ. As we

will see, for any w ∈ Cf0 the quasi-Lipschitz condition for v(t, x) = (Kw(t, ·)(x) in
(3.4) ensures the existence of the homeomorphisms X(t, s, ·) = X−1(s, t, ·) of R

3

which are uniquely defined by the solution X = Lv of (1.1) for all t, s ∈ J. Thus
we can calculate HX in (4.2), and T is well defined on Cf0 . More precisely we
have

Proposition 5.1. Assume w0 ∈ C1(R3), suppw0 ⊂ BR0 , |
◦

supp w0| ≤ τ, R1 ≥ R0.
Then the composed map T = HKL is defined for all w ∈ Cw0 and fulfills

(i) T (Cw0) ⊂ C0(J × R3), (Tw)(t, 0) = w0 for t = 0, w ∈ Cw0 ,

(ii)
◦

supp (Tw)(t, ·) = X(t, 0, ·)( ◦
supp w0).

(iii) In case w ∈ Cw0 ∩ C0,γ for some γ ∈ (0, 1), there holds

| ◦
supp w(t, ·)| = | ◦

supp w0|, and Tw ∈ C1(J × R
3).

Moreover, if in addition to (iii) we require |w(t, ·)|0 ≤ N(t) = |w0|0e
2c
|ε| t, t ∈

J, we have
(iv) |(Tw)(t·)|0 ≤ N(t), and with t∗ = max{t, s}
(v) |X(t, s, x) − x| ≤ c · |ε|

2 |w0|0 · |e
2c
|ε| t − e

2c
|ε| s| ≤ c · |ε|

2 {N(t∗) − |w0|0} = ρ(t∗).

Proof. Recalling Proposition 2.1. and Remark 3.1 we see that the continuous func-
tion v(t, x) = (Kw(t, ·))(x) = (Kw)(t, x) is defined for all w ∈ Cw0 , and for
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w ∈ Cw0∩C0,γ with some γ ∈ (0, 1), there exists even ∇xv(t, x) and div v(t, x) = 0
holds. Moreover, from Proposition 2.1. we find the estimates

|Kw(t, ·)|0 ≤ c|w(t, ·)|0 , (5.1)

[Kw(t, ·)]� ≤ c|w(t, ·)|0 , w ∈ Cw0 , (5.2)

|∇Kw(t, ·)|γ ≤ c1|w(t, ·)|γ , w ∈ Cw0 ∩ C0,γ , γ ∈ (0, 1), with (5.3)

c, c1 depending on the fixed τ ≥ | ◦
supp w(t, ·)|, but not on w ∈ Cw0 .

The continuity of v(t, x) = (Kw(t, ·))(x) or of ∇v(t, x) with respect to t ∈ J
results from the continuity of |w(t, ·)|0 or, for some γ ∈ (0, 1), of |w(t, ·)|γ in t,
respectively, which will be ensured by the following

Remark 5.2. (a) Since J = [0, a] and BR ⊂ R3 are compact, for any R > 0 from
suppw(t, ·) ⊂ BR for all t ∈ J and the continuity of w(t, x) in J ×R3 we conclude
that the function W (t) = sup

x∈BR

|w(t, x)| = |w(t, ·)|0 is uniformly continuous on J .

(b) In case w ∈ Cw0 ∩ C0,γ , for any γ′ ∈ (0, γ) the Hölder quotients

Hγ′w(t, x, y) =

{ |w(t,y)−w(t,x)|
|y−x|γ′ for x 
= y,

0 for x = y

are continuous in (t, x, y) ∈ J × R
3 × R

3. Therefore by (a) (with BR × BR in-
stead of BR) the Hölder seminorm [w(t, ·)]γ′ = sup

(x,y)∈BR×BR,|y−x|<1

Hγ′w(t, x, y)

is uniformly continuous in t εJ for each fixed γ′ ∈ (0, γ).

The quasi-Lipschitz condition (5.2) for the continuous direction field v(t, x) =
(Kw)(t, ·))(x) guarantees uniqueness and global existence of the flow X = Lv of
(1.1) on J × J × R

3, X(t, s, ·) = X−1(s, t, ·) being a homeomorphism of R
3 for

all t, s ∈ J, [1, 5]. Therefore with H from (4.2), X = Lv, the composed map
T = HLK is well defined, and we see T : Cw0 → C0(J × R3), which shows (i),
since (Tw)(0, ·) = w0 is clear from (4.2) and X(s, s, x) ≡ x.
Equations (4.2), (4.3) show that w(t, x) = (HX)(t, x) 
= 0 holds if and only if
w0(x̂) 
= 0, where x̂ = X(0, t, x). This proves (ii).

In the subspace Cw0 ∩C0,γ , from (3.4), from the inequalities (5.1), (5.3) and
Remark 5.2., we get v = Kw ∈ C0,1+γ , div v = 0, which gives the first statement
in (iii) by (ii), since then X(t, s, ·) is measure preserving. The second statement
Tw ∈ C1(J × R3) follows from X = Lv ∈ C1(J × J × R3), w0 ∈ C1(R3) by the
chain rule.

For proving (iv), (v), we assume w ∈ Cw0 ∩ C0,γ and

|w(t, ·)|0 ≤ N(t) (5.4)

with some continuous function N, t ∈ J. Since (5.1) gives |v(t, ·)|0 ≤ c ·N(t), from
the differential equation (1.1) we see

|X(t, s, x̂) − x̂| ≤ c
∣∣ ∫ t

s

N(t′)dt′
∣∣ for all x̂ ∈ R

3, (5.5)
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which because of (4.2) implies

|(Tw)(t, x)| ≤ 1
|ε|

⎧⎪⎨⎪⎩
|X(t, 0, Z(X(0, t, x))− Z(X(0, t, x)|+
|Z(X(0, t, x)) − X(0, t, x)|+
|X(0, t, x) − x|

⎫⎪⎬⎪⎭
≤ 2c

ε ·
∫ t

0
N(t′)dt′ + |w0|0.

Therefore T will preserve (5.4), if N(t) is positive solution of the linear Volterra
integral inequality

|w0|0 +
2c

|ε|

∫ t

0

N(t′)dt′ ≤ N(t), (5.6)

having the minimal solution

N(t) = |w0|0e
2c
|ε| t, t ∈ J. (5.7)

Thus (iv) holds. Integrating in (5.5) with N from (5.7) gives (v), too.
Immediate consequence of Proposition 5.1 is

Corollary 5.3. Under the assumptions of Proposition 5.1 (iii) and (iv), we have
(i) X(t, s, ·)(BR) ⊂ BR′ with any 0 < R and R′ = R + ρ(t∗),
(ii) supp(Tw)(t, ·) ⊂ BR1 with R1 = R0 + ρ(a), and
(iii) T (Cw0 ∩ C0,γ) ⊂ Cw0 if we require R1 = R0 + ρ(a).

Proof. From Proposition 5.1 (v) we see (i), which together with (ii) in Proposition
5.1. implies (ii) and (iii). �

6. Application of the contracting mapping principle

In order to find closed subsets of Cf0 ∩C0,γ in which the map T is contracting, we
need additional bounds in Hölder norms. For any function N = N(t) from (5.7),
any β ∈ (0, 1) and any constant M1 > 0, we define the bounded subsets

C0,β
N =

{
f ∈ C0,β(J × R3)

∣∣|f(t, ·)|0 ≤ N(t)
}
,

C0,β
N,M1

=
{
f ∈ C0,β(J × R3)

∣∣|f(t, ·)0| ≤ N(t), [f(t, ·)]β ≤ M1

}
of C0,β and write Aw0 = Cw0 ∩ C0,β

N,M1.

Proposition 6.1. Assume w0 ∈ C1(R3),

suppw0 ⊂ BR0 , |
◦

supp w0| ≤ τ. (6.1)

(i) Then the composed map T = HLK fulfills

T : Cw0 ∩ C0,γ
N −→ C0,β

N,M1
∩ Cw0 ∩ C1 = Aw0 ∩ C1, where (6.2)

N = N(t) = |w0| ∈
2c
|ε| t , R1 = R0 + ρ(a), (ρ from Proposition 5.1. (v).), (6.3)

α = e−cN(a)a, β = α2, (6.4)
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M1 =
1
|ε|
{
c′(1 + |ε||∇w0|0)α · (max{2eR4, 1})1+α + (2R4)1−β

}
. (6.5)

(ii) In case of two vector valued functions wm ∈ Awm0 having the initial
values wm(0, ·) = wm0 ∈ C1(R3) which both fulfill (6.1), the inequality

|Tw2 − Tw1|∗ ≤ c · |w20 − w10|0 +
c1

b
|w2 − w1|∗ (6.6)

holds in the norm
|f |∗ = sup

t∈J
e−(b+cM)t · |f(t, ·)|0 (6.7)

which is equivalent to the norm |f |0 for f ∈ C0(J ×R3), with M = c(N(a)+M1),
c1 = c

|ε|(3 + cecMa · (1 + |ε||∇w10|0)), and arbitrary b ∈ (0,∞).

Proof. In Proposition 5.1. (iii) and Corollary 5.3. we have already stated the inclu-
sion T (Cw0 ∩ C0,γ) ⊂ Cw0 ∩C1. Moreover in Corollary 5.3. (ii) we have seen that
for all w ∈ Cw0 ∩ C0,γ with |w(t, ·)|0 ≤ N(t) the function (Tw)(t, x) is vanishing
at all points x ∈ R3 outside of the ball BR1 , R1 = R0 + ρ(a). Consequently we
have to perform the estimates of (Tw)(t, x) only for points x ∈ BR1 , where, by
Corollary 5.3. (i), the values |X(t, s, x)| or |X(t, s, Z(x̂))|, with x̂ = X(0, t, x), are
uniformly bounded by R2 = R1 + ρ(a) or R3 = R2 + ρ(a) + |ε||w0|0, respectively,
and similarly for x ∈ BR3 we find |X(t, s, x)| ≤ R4 = R3 + ρ(a). Therefore the
Hölder estimates for X = Lv resulting on BR3 from the quasi-Lipschitz condition
(5.2) give

[X(t, s, ·)]αBR3 ≤ max{2eR4, 1} with α = e−cN(a)a, [15,17]. (6.8)

In addition, if wm ∈ Cwm0 ∩C0,γ , thus vm = Kwm ∈ C0,1+γ , the Lipschitz bound
for Xm = Lvm on BR3 reads

|X2(t, s, ·) − X1(t, s, ·)|0BR3 ≤ cecM|t−s| ·
∣∣ ∫ t

s

e−cM|t′−s| · δ(t′)dt′
∣∣, (6.9)

where |∇vm(t, ·)|0 ≤ M, δ(t) = |v2(t, ·) − v1(t, ·)|0BR4 , [15, 17].
(δ(t) being continuous in t ∈ J as shown in Remark 5.2. The supremum in the
definition of δ(t) is required over BR4 , since in the differential inequality resulting
from (1.1) for |X2(t, s, x)−X1(t, s, x)|, x ∈ BR3 , even the values Xm(t, s, x) ∈ BR4

enter the spatial argument of the direction field v.) In [17] we have proved that
statement (i) in Proposition 6.1. follows from (6.8), while (ii) results from (6.9),
since we have |∇vm(t, ·)|0 = |∇Kwm(t, ·)|0 ≤ c

{
|wm(t, ·)|0 + [wm(t, ·)]β

}
due to

(5.1), (5.3). �

Proposition 6.2. Assume w0 ∈ C1(R3) fulfills (6.1), and N = N(t), α, β, M1 are
given by (6.3)–(6.5). Then

(i) the class Cw0 ∩ C0,β
N,M1

= Aw0 constitutes a closed subset in C0(J × R3) with
respect to the norm | · |∗.

(ii) There holds TAw0 ⊂ Aw0 , T being in case b > c1 a contraction of Aw0 with
respect to | · |∗.
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(iii) The fixpoint equation w = Tw has a unique solution w ∈ Aw0 . The fixpoint
w belongs even to C1(J ×R3)∩Aw0 , w being there the unique solution of the
initial value problem (4.1) with v = Kw.

(iv) In the norm | · |0, the solution w = Tw ∈ Aw0 depends continuously on its
initial value w0 ∈ C1(R3), w0 fulfilling (6.1).

Proof. The norms | · |∗ and | · |0 being equivalent, we easily see the closeness of Aw0

with respect to | · |∗ in the Banach space C0(J × R3): Namely, in case of uniform
convergence |fk − f1|0 −→ 0 in Aw0 with k → ∞, each uniform Hölder estimate
|fk(t, ·)| ≤ N(t), [fk(t, ·)]β ≤ M1 remains valid for the limit f1, too, and the same
holds for the requirements supp fk(t, ·) ⊂ BR1 , fk(0, ·) = w0, since BR1 and w0 are
fixed independently of k.

In order also to verify the third requirement | ◦
supp f1(t, ·)| ≤ τ, we consider

the measurable sets Sm,k =
{
x ∈ R

3||fk(t, x)| > 1
m

}
, m = 1, 2, . . . . Because of

the uniform convergence fk → f1, for each m = 1, 2 · · · there exists some km with
Sm,1 ⊂ S2m,k for all k ≥ km, thus there holds |Sm,1| ≤ |S2m,k| ≤ τ, since fk ∈ Aw0 .

The sequence (Sm,1) being increasing with
◦

supp f1(t, ·) =
⋃∞

m=1 Sm,1, we conclude
| ◦
supp f1(t, ·)| = lim

m→∞ |Sm,1| ≤ τ. This proves (i).

The first statement in (ii) follows from Proposition 6.1. (i). If we take b > c1,
the contracting property of T on Aw0 follows from Proposition 6.1. (ii), since there
the first term on the right-hand side vanishes.

Because of (i) and (ii) the contraction mapping principle [21] ensures the
existence of a unique fixpoint w = Tw ∈ Aw0 , which can be approximated (with
respect to the norm | · |∗) by iteration of T .

For any fixpoint w = Tw ∈ Aw0 , from Proposition 2.1. (iii), Remark 3.1.,
5.2., Proposition 4.2. (ii) and Proposition 6.1. (i) we see that w ∈ C1 fulfills (4.1).
Conversely for each solution w ∈ C1 ∩ Aw0 ⊂ C0,γ ∩ Aw0 of the initial value
problem (4.1) we find v = Kw ∈ C0,1 from Proposition 2.1. and Remarks 3.1., 5.2.
Therefore, as stated in Proposition 4.2. (i), w has the representation w = HX in
(4.2), thus w = Tw holds because of X = Lv, v = Kw.

Finally, if wm = Twm ∈ Awm0 with initial values wm0 ∈ C1 fulfilling (6.1),
and if we take b > c1, setting q = c1

b , from Proposition 6.1. (ii) we get

|w2 − w1|∗ ≤ c

1 − q
|w20 − w10|0, (6.10)

which shows the continuous dependence of w on its initial value w0 even in the
norm of C0(J × R3.) �

With Proposition 6.2. (iii), (iv) we have proved the statement of Theorem
4.1., with the only exception that until now we have shown uniqueness of solutions
w to (4.1) and their continuous dependence on w0 in the classes Aw0 ∩C1(J ×R3),
but not yet in the class C0

B ∩C1(J ×R3). Therefore the proof of Theorem 4.1. will
be completed by
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Corollary 6.3. For two arbitrary vector-valued functions wm ∈ C0
B ∩ C1 (J × R3)

having the same initial value wm(0, ·) = w0, there always exists a class Aw0 =
Cw0∩C0,β

N,M1
as we had defined it in Proposition 6.1., Aw0 containing both wm, m =

1, 2. Thus, in particular, each solution w ∈ C0
B ∩C1 of (4.1) belongs to such a class

Aw0 , where existence, uniqueness and continuous dependence on the initial value
of solutions to (4.1) holds by Proposition 6.2.

Proof. Let wm ∈ C0
B ∩ C1(J × R3), with wm(0, ·) = w0 denote two vector-valued

functions which, by definition of C0
B, for all t ∈ J have their supports suppwm(t, ·)

in a suitable ball B = {x ∈ R
3
∣∣|x| ≤ R}. Taking

R1 ≥ R0 = R, τ ≥ |B| =
4
3
πR3, (6.11)

we find supp w0 ⊂ BR0 , |
◦

supp w0| ≤ τ , and consequently wm ∈ Cw0 from (5.0),
m = 1, 2. Moreover, a class C0,β

N,M1
certainly contains both wm, if there holds

|wm(t, ·)|0 ≤ N(t) , M1 ≥ [wm(t, ·)]β t ∈ J, m = 1, 2. (6.12)

Recalling Proposition 2.1. (i) we see that the bound c in (5.1), (5.7) considered in
dependence on τ can be written in the form

c = c1 · (1 + τ) (6.13)

with constant c1 ≥ 1. Therefore the function N(t) as well as the bound R1 =
R0 + ρ(a) in (6.3) are with τ → ∞ strictly increasing to ∞, whereas α in (6.4) is
strictly decreasing to 0. Nevertheless the bound M1 in (6.5) for α ≤ 1/2 has the
minorant

M∗ =
1
|ε|
{

c′ · max{2 | ∈ |R4, 1} + (2R4)3/4
}
≤ M1, (6.14)

M∗ being again strictly increasing to ∞ with τ → ∞. In addition we note that
the finite value M = c′(|∇w1|0 + |∇w2|0) (where the constant c′ ≥ 1 depends only
on the special norm we use for 3 × 3-matrices) gives a uniform upper bound of
the values [wm(t, ·)]β , which are decreasing with β → 0 due to our definition (1.3),
m = 1, 2, t ∈ J, β ∈ (0, 1). Finally we set M ′ = max

m=1,2

∣∣ ∂
∂twm

∣∣
0
, M ′ being finite

because of wm ∈ C0
B ∩ C1.

In order that N(t) in (6.3) becomes upper bound of both |wm(t, ·)|0, in a first
step for any fixed x ∈ B we consider the continuous function ϕm(t) = |wm(t, x)|
which has the Dini derivative

D+
t ϕm(t) ∈ [−∞,∞] with D+

t ϕm(t) ≤
∣∣ ∂

∂t
wm(t, x),

∣∣, (6.15)

[20]. Due to a basic Lemma in differential inequalities [20, p. 64, 70], for any
constant δ > 0 from the differential inequality

D+
t

{
N(t) − ϕm(t) − δ · t

}
> 0 for t ∈ J (6.16)

we can conclude that the function N(t) − ϕm(t) is monotone increasing and that

N(t) ≥ ϕm(t) (6.17)
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holds for t ∈ J, m = 1, 2, because of

N(0) = |w0|0 ≥ |w0(x)| = |wm0(x)|.

Recalling (6.3) and our definition of M ′ above, (6.16) results from the requirement

M ′ + δ <
2c

|ε| |w0|0. (6.18)

Using (6.13) we easily can fulfill (6.18) together with (6.11) for R1 = R0 + ρ(a)
and also M∗ ≥ M by taking τ ≥ |B| sufficiently large, which proves wm ∈ Aw0 ,
m = 1, 2. �
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Interfaces in Solutions of Diffusion-absorption
Equations in Arbitrary Space Dimension

Sergei Shmarev

Abstract. We study the Cauchy-Dirichlet problem for the degenerate para-
bolic equation

ut = ∆ um − aup in E
with the parameters a ∈ R, m > 1, p > 0, satisfying the condition m + p ≥ 2.
The problem domain E is the exterior of the cylinder bounded by a simple-
connected surface S, supp u0 is an annular domain R

n. We show that the
velocity of the outer interface Γ = ∂ {suppu(x, t)} is given by the formula

v =

[
− m

m − 1
∇um−1 + ∇Π

]∣∣∣∣
Γ

,

where Π(x, t) is a solution of the degenerate elliptic equation

div (u∇Π) = a up, Π = 0 on Γ,

depending on t as a parameter. It is proved that the solution and its interface
Γ preserve their initial regularity with respect to the space variables, and that
they are real analytic functions of time t. We also show that the regularity
of the velocity v is better than it was at the initial instant. For the space
dimensions n = 1, 2, 3, these results were established in [8]. We propose a
modification of the method of [8] that makes it applicable to equations with
an arbitrary number of independent variables.
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1. Introduction

We study the regularity properties of weak, nonnegative, continuous solutions of
the Cauchy-Dirichlet problem{

ut = ∆ um − a up in E ,

u = ψ > 0 on S, u(x, 0) = u0(x) ≥ 0 in E(0)
(1.1)

in the range of the parameters a ∈ R, m > 1, p > 0,

m + p ≥ 2. (1.2)

The domain E is the exterior of the cylinder bounded by a simple-connected sur-
face S.

Equation (1.1) is strictly parabolic for u > 0 and degenerates at the level
u = 0. In this paper we study the properties of the a priori unknown surface of
degeneracy alias the free boundary or the interface. A weak solution of problem
(1.1) is understood in the following sense.

Definition 1.1. A function u(x, t) is said to be a weak solution of problem (1.1) if

1. u(x, t) is bounded, nonnegative, and continuous in E; u = ψ on S, u(x, 0) =
u0 in E(0) = E ∩ {t = 0};

2. for every test-function η(x, t) ∈ C1(Rn × [0, T ]) vanishing when t = T , on S,
and for |x| > R with some R > 0, the following identity holds:∫

E(0)

u0η(x, 0) dx +
∫
E

(ηtu −∇xη · ∇x um − aη up) dx dt = 0.

The second term on the right-hand side of equation (1.1) models the process
of absorption (a > 0) or reaction (a < 0). It is known that in the range of the
exponents m > 1, p > 1, a < 0 the solutions may blowup in finite time, while
for 0 < p < 1 and a > 0 the support of the solution may shrink. As is proved in
[1, Chapter 3, Section 4], in the latter case even if the solution of equation (1.1)
is strictly positive on the parabolic boundary of a cylinder {x ∈ Rn : |x − x0| <
R}×{t ∈ (0, T )}, there always appears a zero cavern inside the cylinder, provided
that R and T are chosen sufficiently large. This is true for solutions of a nonlinear
equation which contains equation (1.1) as a partial case.

For n = 1, the study of the behavior and regularity of interfaces in solutions
of equation (1.1) was performed in the series of papers [2, 3, 4, 5]. It was shown
that in the range of parameters m > 1, p ∈ (0, 1), m+p ≥ 2, (a > 0), the interface
is governed by the first-order equation

η′(t) = − m

m − 1
(
um−1

)
x

(η(t), t) +
a(1 − p)

(u1−p)x (η(t), t)
, (1.3)

which generalizes the Darcy law. It is proved in [2, 3] that the both terms on
the right-hand side of (1.3) exist (finite or infinite) until the moment when the
solution vanishes, and that at each instant t only one of the two terms is distinct
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from zero. In this range of the exponents the interfaces are proved to be Lipschitz-
continuous [2, 3]. The behavior of interfaces in the multi-dimensional case is studied
in [8]. It was shown that in the case n = 1, 2, 3 the velocity of the outer interface
Γ = ∂ {suppu(x, t)} in the solutions of the Cauchy problem for (1.1) is given by
the formula

v =
[
− m

m − 1
∇um−1 + ∇Π

]∣∣∣∣
Γ(t)

, (1.4)

where Π(x, t) is the solution of the degenerate elliptic equation

div (u∇Π) = a up, Π = 0 on Γ,

depending on t as a parameter. It is proved that the solution u(x, t) and its interface
Γ preserve their initial regularity with respect to the space variables, that they are
real analytic functions of time t, and that the regularity of the velocity v is better
than it was at the initial instant. Formula (1.4) generalizes the interface equation
(1.3) to the cases n = 2, 3, for n = 1 (1.4) coincides with (1.3). These assertions
were proved in [8] by means of the method of Lagrangian coordinates. A drawback
of the method is that it is not applicable to the case n ≥ 4. This is the aim of
the present work to get rid of the restriction on the spatial dimension and to show
that the same results are true for any natural n.

Let us denote

P0 =
m

m − 1
um−1

0 , p =
m

m − 1
um−1,

and assume that the data of problem (1.1) satisfy the following properties:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

suppP0 is an annular domain in Rn

with the interior boundary s(0) = S ∩ {t = 0},
P0 ∈ C1(suppP0), P0 ∈ V (2k + 1, suppP0) with k ≥ 1
|∇P0| + P0 ≥ δ > 0 in suppP0, δ = const,
P0 and ψ satisfy the first-order compatibility conditions on s(0).

(1.5)

(The definition of the weighted Hölder spaces V (2k + 1, G) is given in Section 3.)⎧⎪⎨⎪⎩
S ∈ C2+α in the sense of the definition given in [7, Chapter IV, Section 7],
ψ > 0 on S, u0 and ψ satisfy the compatibility conditions:
u0 = ψ, ψt − ∆ um

0 + a up
0 = 0 on S ∩ {t = 0}.

(1.6)
The following is the main result of this paper.

Theorem 1.1. Let us assume that the data of problem (1.1) satisfy conditions (1.5)
and (1.6). There exist a∗ > 0, ε∗ > 0, M > 0, and T > 0 such that for every
|a| < a∗ and ‖P0‖V (2k+1,supp P0) < ε∗ the Cauchy-Dirichlet problem (1.1) has a
weak continuous nonnegative solution u(x, t) satisfying the properties:

1. for all t ∈ (0, T ] the set suppu(x, t) ∩ {t = const} ⊂ Rn is a finite annular
domain with the exterior boundary γ(t);
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2. the set γ(t) is obtained as a one-to-one mapping from the set

γ(0) = ∂{suppP0} ∩ {P0 = 0};
3. the function p(x, t) and the surface γ(t) preserve their initial regularity with

respect to the spatial variables;
4. the solution u(x, t) and the interface Γ =

⋃
t∈[0,T ] γ(t) are real analytic with

respect to the variable t;
5. the interface velocity is given by formula (1.4); for all t > 0 the regularity of

v with respect to te spatial variables in one order higher than it was at the
initial instant.

Assume that problem (1.1) has a weak continuous solution in the sense of
Definition 1.1. Let us take a smooth closed surface Σ =

⋃
t∈(0,T ) σ(t) such that

S ⊂ Σ and S ∩Σ = ∅, denote by D the exterior of the cylinder bounded by Σ, and
then set D(t) = D ∩ {t = const}.

By the continuity of u, the surface Σ can be chosen in the special way:

u > 0 on Σ, ∀ t ∈ (0, T )
∫

D(t)

u(x, t) dx =
∫

D(0)

u0(x) dx = const . (1.7)

The function u can be formally viewed now as a solution of the following problem:⎧⎪⎨⎪⎩
ut = ∆ um − a up, in D,

u(x, 0) = u0(x) in D(0),
the domain D(t) and the solution u(x, t) satisfy condition (1.7).

(1.8)

The solution of problem (1.8) is understood as follows:

Definition 1.2. A pair (u, Σ) is said to be a weak solution of problem (1.8) if
Σ ∈ C2+α, u is nonnegative in D, continuous in D, and for every test-function
η ∈ C1(D), vanishing on Σ, for t = T , and for all sufficiently large |x|, the
following identity holds:∫

D(0)

η(x, 0)u0 dx +
∫
D

[ηt u −∇ η · ∇um − a η up] dxdt = 0. (1.9)

Unlike the original problem (1.1) problem (1.8) contains two free boundaries:
the zero-level surface Γ = {(x, t) : u = 0} where the equation degenerates, and
a surface Σ that has to be chosen according to condition (1.7). Of course, such
a choice of Σ can be done in many different ways and the solution of problem
(1.8) need be unique. It will be sufficient for our purposes to construct any of the
possible solutions of problem (1.8). Given the initial surface σ(0), we explicitly
construct the corresponding surface σ(t) and the function u(x, t). The most of
attention is focused on the study of problem (1.8).

In Section 2 we introduce a system of Lagrangian coordinates generated by a
function u satisfying (1.8). Problem (1.8) is considered as the mathematical model
of motion of a continuum bounded by the free boundaries and preserving the
mass. The Lagrangian description of such a motion leads to a new problem posed



Interfaces in Solutions of Diffusion-absorption Equations 261

in a cylinder with the annular base and vertical lateral boundaries. Instead of the
free-boundary problem for a single degenerate parabolic equation we arrive at a
system of nonlinear equations posed in a time-independent domain. We show that
a classical solution of the new problem exists and allows one to define a solution
of (1.8) (u, Σ).

In Section 3 we define the weighted Hölder spaces V (2k + 1, G) and present
a decomposition of the space of vector-valued functions into the direct sum of
two orthogonal subspaces. In Section 4 we revisit the Lagrangian counterpart of
problem (1.8) and show that the particle velocity can be thought as a potential
vector on the plane of Lagrangian coordinates. This is the main novelty: instead of
searching the velocity in the form ∇ v + rotw [8], which is only possible if n ≤ 3
and requires solving the Poisson equation for the components of w, we deal with
the projection of the problem on the subspace of potential vectors. This allows
us to reduce the system of nonlinear equations to a system of scalar degenerate
elliptic and parabolic equations without any restriction on the space dimension.

The analysis of the problem posed in Lagrangian coordinates follows [8].
When problem (1.8) is solved, we recover the solution of the original problem
(1.1) by “pasting” the solution of (1.8) to the solution of the Dirichlet problem for
equation (1.8) in the annular cylinder E \ D with the natural boundary condition
on Σ.

The choice of the exterior Cauchy-Dirichlet problem is more the question of
presentation of the method. In the same way a set of local Lagrangian coordinates
can be introduced in any problem where the appearing free boundary is a simple
connected surface.

2. Lagrangian coordinates

Let u(x, t) be a solution of problem (1.8). Throughout the rest of the paper we use
the following notation:

Ω(t) = D(t) ∩ suppu(x, t), ∂Ω(t) = σ(t) ∪ γ(t),

where σ(t) and γ(t) are the interior and exterior boundaries of Ω(t),⎧⎪⎨⎪⎩
Ω0 = D(0) ∩ suppP0, Q = Ω0 × (0, T ],
Γ0 = γ(0) × [0, T ], Σ0 = σ(0) × [0, T ]
are the exterior and interior lateral boundaries of Q.

2.1. Auxiliary mechanical problem

Let u(x, t) be a solution of the free-boundary problem (1.8). Throughout the sec-
tion we assume that the solution is as smooth as is needed to perform all the
requested transformations.

Let us start with reformulation of problem (1.8) viewed as the mathematical
description of the process of propagation of a polytropic gas in a porous medium.
There are two possible ways to describe the motions of continua. The first one,
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usually referred to as the Euler method, consists in viewing the characteristics of
motion (such as velocity, density, etc.) as functions of time t and some Cartesian
coordinate system x1, . . . , xn not connected with the medium. The alternative
description is due to Lagrange. In this method all magnitudes describing the motion
are considered as functions of time and the initial state of the continuum.

Let Ω0 and Ω(t) ⊂ Rn be the domains occupied by a polytropic gas at the
moments t = 0 and t > 0. This correspondence defines the mapping

x = X(ξ, t), ξ ∈ Ω0,

which assigns the position X(ξ, t) to the particle initially located at the point
ξ ∈ Ω0. Given the velocity field v(x, t), the motion of this particle is controlled by
the trajectory equation {

Xt(ξ, t) = v [X(ξ, t), t] , t > 0,

X(ξ, 0) = ξ, ξ ∈ Ω0.
(2.1)

Another ingredient of the description is the mass conservation law. We assume that
any volume ω(t) constituted by the same particles at every instant t preserves its
mass in time:

d

dt

{∫
ω(t)

u(x, t) dx

}
= 0,

where u(x, t) denotes the density at the point (x, t). Let U(ξ, t) = u[X(ξ, t), t] will
be the density, P (ξ, t) = p[X(ξ, t), t] be the pressure, and

J = [Jij ], Jij =
∂Xi

∂ξj
, i, j = 1, . . . , n

be the Jacobi matrix of the mapping ξ �→ X and |J | ≡ det(∂X/∂ξ). Using the
trajectory equation (2.1) and applying the rule of differentiation of determinants,
it is easy to verify the validity of the relation

d|J |
dt

= |J | divxv,

called the Cauchy identity. Formally passing to the coordinates ξ, we have now:

0 =
d

dt

{∫
ω(t)

u(x, t) dx

}
=
∫

ω(0)

d

dt
{u |J |} dξ

=
∫

ω(0)

[ut + ∇xu · v[X(ξ, t), t] + u divxv] |J | dξ

=
∫

ω(0)

[ut + divx(uv)] |J | dξ =
∫

ω(t)

[ut + divx(uv)] dx.

(2.2)

Since the volume ω(t) is assumed to be arbitrary, the mass conservation law in the
Euler coordinates is given by the equation

ut + divx(uv) = 0 (2.3)
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and its Lagrangian counterpart has the form
d

dt
(u |J |) = 0. The mass conservation

law can be written then in the form

U(ξ, t) |J | = u(ξ, 0) in Ω0, t ≥ 0. (2.4)

We are able to state in this framework the Lagrangian analog of problem (1.8).
Let us assume that the density of the gas is u, and that the gas velocity follows
the law

v = −∇ p + ∇Π (2.5)

where Π(x, t) is an unknown scalar function to be defined. We will assume that

the velocity v is uniformly bounded throughout the problem domain. (2.6)

Let (u, Σ) be a solution of problem (1.8). Multiplying equation (2.3) by an arbitrary
test-function η satisfying the conditions of Definition 1.2 and integrating by parts
we have ∫

D(0)

η(x, 0)u0 dx +
∫
D

[ηt u + u∇ η · v] dxdt −
∫

Γ

uη v dS = 0

whence, using (2.5)–(2.6),∫
D(0)

η(x, 0)u0 dx +
∫
D

[ηt u − u∇ η · ∇ p + u∇ η · ∇Π] dxdt = 0.

Comparing this relation with the integral identity from Definition 1.2 we may
write: for every test-function η satisfying the conditions of Definition 1.2∫

D
[u∇ η · ∇Π − a η up] dxdt = 0. (2.7)

This is true if we take for Π any function satisfying the degenerate elliptic equation
end the boundary condition

div (u∇Π) = a up in D, u∇Π · n|Γ = 0. (2.8)

Recalculating the derivatives in x by the rule

∇x =
(
J−1

)∗ ∇ξ, (J−1)∗ is the matrix transposed to J−1,

we obtain the following system of equations posed in the annular cylinder Q =
Ω0 × (0, T ):

J∗Xt(ξ, t) = −∇ξP + ∇ξπ, (2.9)

P |J |m−1 = P0(ξ) in Q, (2.10)⎧⎪⎨⎪⎩
X(ξ, 0) = ξ, P (ξ, 0) = P (ξ, 0) in Ω0;
P (ξ, t) = 0 on the exterior lateral boundary of Q,

|∇ξP | + |∇ξπ| is bounded in Q.

(2.11)
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Passing to the variables ξ in the integral identity (2.7) and plugging (2.10), we
have that the function π(ξ, t) ≡ Π(X(ξ, t), t) satisfies the integral identity∫

Q

[u0|J |J−1(J−1)∗∇ξ η̃ · ∇ξπ − a η̃ u0U
p−1] dξdt = 0, η̃(ξ, t) ≡ η(X, t),

which means that on the plane of Lagrangian coordinates the function π satisfies
in the weak sense the degenerate elliptic equation

divξ

(
u0|J |J−1(J−1)∗∇ξπ

)
= a u0U

p−1 in Q. (2.12)

Let us notice that to formulate problem (2.9)–(2.11), (2.12) we only used a
resemblance between an evolution equation and the mass balance law in the motion
of a continuous medium, which is not a rigorous justification of the performed
change of the independent variables. The next indispensable step is to answer the
question whether the constructed solution of the auxiliary problem (2.9)–(2.11)
allows one to recover the solution of the free-boundary problem (1.8) and, finally,
of the original problem (1.1).

2.2. The inverse transformation

Let the triad (X, P, π) be a solution of problem (2.9)–(2.12). Let us assume that
P (ξ, t) is strictly positive in Q \ Γ0, bounded and continuous in Q, P = 0 on Γ0.
Define the mapping

x = X(ξ, t) in Q, X(ξ, 0) = ξ for ξ ∈ Ω0,

and assume that for every t ∈ (0, T ) it is a bijection of Ω0 onto Ω(t), and that |J |
is separated away from zero and infinity in Q. Set

X(ξ, t) = ξ −
∫ t

0

(
J−1

)∗
(∇ξP −∇ξπ) dτ, ξ ∈ Ω0, (2.13)

and

p(x, t) =
m

m − 1
um−1(x, t) =

{
P (ξ, t) if x = X(ξ, t) with ξ ∈ Ω0,

0 in {D(t) \ Ω(t)} × [0, T ].
(2.14)

If X(ξ, t) is continuos in Q, then the function u(x, t) defined in this way is strictly
positive in the image of Q \ Γ0 because of (2.10), vanishes on the image of Γ0, is
bounded and continuous in

⋃
t∈[0,T ] D(t), assumes its initial values by continuity

and satisfies equation (1.8) in the weak sense. Indeed, given an arbitrary test-
function η(x, t) ∈ C1(Rn × [0, T ]), vanishing for large |x|, for t = T , and on the
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image of σ(0) under the mapping (2.13), we may write:

−
∫

Ω0

u0(x)η(x, 0)dx =
∫ T

0

d

dt

{∫
Ω(t)

u(x, t)η(x, t)dx

}
dt

=
∫

Q

d

dt
(U |J |η[X(ξ, t), t]) dt dξ

=
∫

Q

d

dt
(U |J |) η dξ dt +

∫ T

0

∫
Ω0

U |J |dη

dt
dξ dt

=
∫

Q

[
ηt + ∇xη · dX

dt

]
U |J | dξ dt

=
∫

Q

[ηt − (∇xp −∇xΠ) · ∇xη] U |J | dξ dt

=
∫
D

(u ηt −∇xη · ∇xum − aη up) dx dt,

(2.15)

where we made use of (2.1), (2.4) and (2.7) (alias (2.12)).
We thus obtain the parametric representations for both the domain D and

the weak solution u(x, t) of problem (1.8) via the solution of problem (2.9)–(2.12).
If X(ξ, t) is continuous in Q, the free boundaries Σ and Γ in this solution are given
by equation (2.9) (or by (2.13)) with ξ ∈ ∂ Ω0, that is

σ(t) = {x : x = X(ξ, t), ξ ∈ σ(0)}, γ(t) = {x : x = X(ξ, t), ξ ∈ γ(0)}.
These arguments prove the following assertion:

Theorem 2.1. Let the functions (X, P, π) satisfy conditions (2.9)–(2.12). If

1. P ∈ C
(
Q
)
, P > 0 in Q \ Γ0, P0 = 0 on Γ0, |∇ξP | + |∇ξπ| ≤ C in Q,

2. |J | ≡ det [∂X/∂ξ] is separated away from zero and infinity in Q,
3. X(ξ, t) ∈ C(Q) and for every t ∈ (0, T ) the mapping ξ �→ X(ξ, t) is a bijection

between Ω0 and Ω(t),

then formulas (2.13)–(2.14) define a weak continuous solution of problem (1.8).

We may recover now the weak solution of problem (1.1) understood in the
sense of Definition 1.1. Let (u, Σ) be the constructed solution of problem (1.8). Set
φ = u|Σ and consider the problem⎧⎪⎨⎪⎩

vt = ∆ vm − a vp in the annular cylinder bounded by S and Σ,

v = ψ on S, v = φ on Σ,

v(x, 0) = u0 in E(0) \ D(0).
(2.16)

By assumption ψ > 0 on S, u0 > 0 in E(0)\D(0), and by construction φ > 0 on Σ.
It follows from the maximum principle that any classical solution of problem (2.16)
is separated away from zero, which allows us to treat the equation as nondegenerate
parabolic. It is then standard to show the existence of a unique classical solution
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provided that the solution of problem (1.8) (the pair (u, Σ)) is sufficiently smooth.
Moreover, one may show that the function

w(x, t) =

{
u(x, t) in D,

v(x, t) in E \ D
(2.17)

is the desired weak continuous solution of the original problem (1.1). The rigorous
proof is given in the end of the paper.

Since the assertion of Theorem 2.1 is true for any solution of problem (2.9)–
(2.12), it will be convenient to specify the boundary and initial conditions for the
function π. We will take for π(ξ, t) the solution of the problem{

divξ

(
u0|J |J−1(J−1)∗∇ξπ

)
= a u0U

p−1 in Ω0 for all t ∈ [0, T ],
π = 0 on ∂Ω0, π(ξ, 0) = π0(ξ), |∇π| ≤ C in Q,

(2.18)

where π0 is the solution of the problem

divξ (u0∇ξπ0) = a up
0 in Ω0, π0 = 0 on ∂Ω0. (2.19)

By Lagrangian counterpart of problem (1.8) we will now mean the follow-
ing problem: to find functions (X, P, π) satisfying conditions (2.9), (2.10), (2.11),
(2.18)–(2.19).

3. The weighted function spaces

3.1. Hölder spaces

Let P0 ∈ Ck(Ω0), k ≥ 1, P0 = 0 on γ(0), and |∇P0| + P0 ≥ κ > 0 in Ω0. Then
the (n− 1)-dimensional manifold γ(0) can be parametrized as follows: there exists
ε > 0 such that for every ξ0 ∈ γ(0) the set Bε(ξ0)∩γ(0) is defined by the formulas{

ξi = yi if i 
= n,
yn = P0(y′, ξn), y′ = (y1, . . . , yn−1) ∈ Bε(ξ0) ∩ {ξn = 0}.

Adopt the notation∣∣Dkv
∣∣ =

∑
β=(β1,...,βN ), |β|=k

∣∣Dβv
∣∣ .

Given a set G ⊆ Q and a function P0, we define the seminorms and norms:
|u|0,G = supG |u|,

{u}α,G = sup
(x,t),(y,τ)∈G,δ((x,t),(y,τ) 
=0

{
dα(x, y)

|u(x, t) − u(y, t)|
δα((x, t), (y, τ))

}
,

d(x, y) = min{P0(x), P0(y)}, δ((x, t), (y, τ)) =
√

d(x, y)|t − τ | + |x − y|2,
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〈u〉0,G = |u|0,G + {u}α,G,

〈u〉2k+1,G =
k∑

2r+|µ|=0

|Dr
t D

µu|0,G +
2k+1∑

2r+|µ|=k+1

∣∣∣d|µ|−k+r−βDr
t D

µu
∣∣∣
0,G

+
∑

2r+|µ|=2k+1

{dk+1−βDr
t D

µu}α,G for k ≥ 0, β, α ∈ (0, 1).

〈〈u〉〉k,G =
k∑

2r+|β|=0

∣∣∣dr+|β|Dr
t D

βu
∣∣∣
0,G

+
∑

2r+|β|=k

{
dr+|β|Dr

t D
βu
}

α,G
, k ≥ 0.

The Banach spaces V (2k + 1, Q) with k ≥ 0 and given parameters β, α ∈ (0, 1)
are defined as the completion of C∞

0 (Q) in the norm 〈·〉2k+1,Q.
If a function w does not depend on t we consider the function w̃(ξ, t) = w(ξ)

with the dummy variable t and use the notation

〈w̃〉k,Q = 〈w〉k,Ω0 , ‖w̃‖V (2k+1,Q) = ‖w‖V (2k+1,Ω0).

The Banach spaces Λi are defined as completion of C∞
0

(
Q
)

in the norms

‖u‖Λi =
∞∑

k=0

1
k!Mk

‖(tDt)ku‖V (i,Q).

In these definition M is a finite number which will be specified later. It is easy to
see that the elements of Λi, viewed as functions of the variable t and depending
on ξ ∈ Ω0 as a parameter, are real analytic. The radius of convergence of the
corresponding power series is defined through M . Given a function u ∈ Λi, we
introduce the new variable τ = ln t and the function U(ξ, τ) = u(ξ, t). The Taylor
expansion in τ of the function U has the form

U(ξ, τ) = U(ξ, τ0) +
∞∑

i=1

Di
τU(ξ, τ0)
M ii!

[M (τ − τ0)]
i .

This series is absolute and uniform convergent if |τ − τ0| < 1/M .

3.2. Hilbert space L2(Ω0, u0) and its orthogonal subspaces.

Let (X, P, π) be a solution of problem (2.9)–(2.11), and U be defined by formulas
(2.14). Assume that |J | is separated away from zero and infinity so that the inverse
matrix J−1 exists. Let us assume that the matrix J is symmetric. To be precise,
let

J = I + D(v), where [D(v)]ij = D2
ijv with v ∈ Λ2k+1.

We define the space L2(Ω0, u0) as he closure of C∞(Ω0) with respect to the
weighted norm

‖v‖2
2 =

∫
Ω0

u0|J−1v|2 dξ.

The space L2(Ω0, u0) is the Hilbert space with the scalar product

〈v,u〉 =
∫

Ω0

u0

(
J−1v · J−1u

)
dξ.
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The space L2(Ω0, u0) can be represented as the direct sum of the two subspaces
orthogonal in the sense of the scalar product in L2(Ω0, u0):

G(Ω0, u0) = {v = ∇w ∈ L2(Ω0, u0), w = 0 on σ(0)},
J = {w ∈ L2(Ω0, u0) : 〈w,v〉 = 0 ∀v ∈ G(Ω0, u0)}.

Let us show that every vector field Φ admits the representation

Φ = ∇ f + Ψ where Ψ ∈ J.

For f we take a function satisfying the conditions

div (u0 (J−1)2(∇ f − Φ)) = 0 in Ω0, f = 0 on ∂Ω0. (3.1)

Let us assume that equation (3.1) admits a classical solution f , and that Φ and
∇ f are uniformly bounded in Ω0. Set Ψ = Φ − ∇ f and let w ∈ G(Ω0, u0) be
arbitrary. There exists η such that η = 0 on σ(0), w = ∇ η, and

〈Ψ, w〉 =
∫

Ω0

u0 (J−1Ψ · J−1∇ η) dξ =
∫

Ω0

η div (u0 (J−1)2(∇ f − Φ) dξ

+
∫

∂Ω0

η u0 (J−1)2(∇ f − Φ, n) dS = 0.

The desired decomposition is constructed.

Proposition 3.1. Let um−2
0 div (u0(J−1)2Φ) ∈ Λ2k−1 with k ≥ 1, and Jij = δij +

D2
ijv for some v ∈ Λ2k+3 with the same k. If dist(σ(0), γ(0)) is appropriately small,

there holds the representation Φ = ∇ f + Ψ, where f ∈ Λ2k+1 is the solution of
problem (3.1) and Ψ = Φ −∇ f ∈ J. Moreover,

‖f‖Λ2k+1 ≤ C
∥∥um−2

0 div (u0(J−1)2Φ)
∥∥

Λ2k−1
(3.2)

with a constant C independent of f .

The proof of solvability of problem (3.1) in the function spaces Λ2k+3 is an
imitation of the proof given in [8, Section 5] for the case J ≡ I. The difference is
that now J = I + D(v) with v ∈ Λ2k+3.

3.3. Operators of orthogonal projection.

Let us define the operator P of the orthogonal projection onto the subspace
G(Ω0, u0). Given a vector field Φ and the matrix J = I + D(v) satisfying the
conditions of Proposition 3.1, we set

P〈Φ〉 = ∇ f , where f ∈ Λ2k+1 is the solution of problem (3.1).

We also introduce the operator of orthogonal projection onto the subspace J:

R〈Φ〉 = Φ − P〈Φ〉 ≡ Φ −∇ f.
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4. The gradient flow

It is shown in Section 2 that any solution of the problem formulated in Lagrangian
coordinates generates a solution of problem (1.8) in the plane of Euler coordinates.
Moreover, it is sufficient for our purposes to construct any of the possible solutions
of the problem posed in Lagrangian coordinates. This allows us to limit ourselves
to constructing special solutions that describe the gradient flows on the plane of
Lagrangian coordinates : X(ξ, t) = ξ + ∇ v(ξ, t).

Let us consider the new problem: to find a triad of scalar functions (v, P, π)
such that (v, P, π) is a classical solution of the system of equations

P〈J ∇ vt〉 + ∇ξ(P − π) = 0 in Q = Ω0 × (0, T ), (4.1)
P |J |m−1 − P0(ξ) = 0, (4.2)

divξ

(
u0|J |J−1(J−1)∗∇ξπ

)
= a u0U

p−1, (4.3){
v(ξ, 0) = 0, π(ξ, 0) = π0(ξ), P (ξ, 0) = P0 in Ω0,

π = v = 0 on ∂Ω0, P = 0 on Γ0, |∇π| + |∇P | ≤ C in Q.
(4.4)

Here π0 is the solution of problem (2.19), J is the symmetric matrix with the
entries Jij = δij + D2

ijv, so that the projection operator P is well defined.
Let us check that formulas (2.13)–(2.14) continue to define a weak solution

of problem (1.8). Let the triad (v, P, π) ∈ Λ2k+3 × (Λ2k+1)
2, k ≥ 1, be a solution

of problem (4.1), (4.2), (4.3), (4.4). Then for every t > 0

R〈J ∇ vt〉 = J ∇ vt − P〈J ∇ vt〉 ∈ L2(Ω0, u0).

Formulas (2.15) can be written in the form

−
∫

Ω0

u0(x)η(x, 0)dx =
∫ T

0

d

dt

{∫
Ω0

u(x, t)η(x, t)dx

}
dt

=
∫

Q

[ηt + ∇xη · Xt] U |J | dξ dt ≡
∫

Q

ηt U |J | dξ dt + Θ.

Since (v, P, π) is a solution of problem (4.1)–(4.4), then for every test-function
η ∈ C1(Ω0) vanishing on σ(0)

Θ=
∫

Q

u0(Xt ·∇xη)dξdt=
∫

Q

u0(J−1)2(JXt ·∇ξη)dξdt=
∫ T

0

〈
JXt,∇ξη

〉
dt

=
∫ T

0

〈
P〈JXt〉,∇ξη

〉
dt+

∫ T

0

〈
R〈JXt〉,∇ξη

〉
dt=−

∫ T

0

〈
∇ξ(P −π),∇ξη

〉
dt

=−
∫

Q

u∇x(p−Π) ·∇xη |J |dξdt=−
∫
D

[∇xum−aupη] ·∇xηdxdt.

Notice that the condition X = ξ + ∇ v ∈ C(Q), and items 1)–2) of the conditions
of Theorem 2.1 are automatically fulfilled because of the inclusions v ∈ Λ2k+3,
π ∈ Λ2k+1. The above arguments prove the following version of Theorem 2.1.
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Theorem 4.1. Let P0 ∈ V (2k + 1, Ω0), k ≥ 1, and (v, P, π) ∈ Λ2k+3 × (Λ2k+1)
2 be

a solution of problem (4.1)–(4.4). If
1. |J | ≡ det

[
I + D2v

]
is separated away from zero and infinity in Q,

2. the mapping ξ �→ X(ξ, t) is a bijection from Ω0 to Ω(t) for every t ∈ (0, T ],
then formulas (2.13)–(2.14) define a weak continuous solution of problem (1.8).

4.1. Solution of problem (4.1)–(4.4). The linearized problem

Theorem 4.2. Let conditions (1.5) be fulfilled and σ(0) ∈ C2+α. There exist a∗ > 0,
ε∗ < 1, M and T ∗ such that for every ‖P0‖V (2k+1,Ω0) < ε∗, |a| < a∗ problem (4.1)–
(4.4) has in the cylinder Q with T < T ∗ a unique solution (v, P, π). The function
P is strictly positive in Q and P = 0 on Γ0. The solution (v, P, π) satisfies the
estimate

‖π‖Λ2k+1 + ‖v‖Λ2k+3 + ‖P‖Λ2k+1 ≤ C
(
|a| + ‖P0‖V (2k+1,Ω0)

)
with a finite constant C independent of v, π, and P .

The proof literally repeats the proof of the analogous assertion given in [8],
which is why we omit all the technical details.

The solution of nonlinear problem (4.1)–(4.4) is obtained by means of the
modified Newton method. We consider problem (4.1)–(4.4) as the functional equa-
tion F(x) ≡ {F1(x), F2(x), F3(x)} = 0 where x = (v, P, π). The solution of the
equation F(x) = 0 is obtained as the limit of the sequence of solutions of the linear
problems {xn} where

xn+1 = xn − G−1〈F(xn)〉 with xn = (vn, Pn). (4.5)

The linear operator G is the Frechét derivative of F at the initial state x0 =
(0, P0, π0). To construct the operator G−1 we consider the problem G〈x〉 = g,
where x = (w, P, π) and g = (∇ f, Ψ, H).

G1〈(v, P )〉 =
dF1

dε
(ε∇ v, P0 + ε P )

∣∣∣∣
ε=0

= ∇ (P − π) + P〈∇ vt〉 ≡ ∇ (P − π + vt),

To linearize F2 we make use of the Newton formulas:

det [λ I − A] =
n∑

k=0

(−1)kαk λn−k,

α0 = 1, k αk =
∑k

i=1 αk−i trace
(
Ai
)

for 1 ≤ k ≤ n. We have |I + εD(v)| =
1 + ε ∆ v + O(ε2), so that

G2〈(v, P, π)〉 =
dF2

dε
(ε∇ v, P0 + ε P, π0 + επ)

∣∣∣∣
ε=0

= P + (m − 1)P0∆ v.

Next,

(
(I + εD(v))−1

)2
=

( ∞∑
k=0

(−ε)k (D(v))k

)2

= I − 2εD(v)) + O
(
ε2
)
,
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whence

G3〈(v, P, π)〉 = div (u0∇π − 2u0 D(v) · ∇π0) + a(1 − p)up
0∆ v.

The linear problem problem {G1, G2,G3}〈(v, P, π)〉 = (∇ f, H) takes on the form⎧⎪⎨⎪⎩
∇ vt + ∇ (P − π) = ∇ f,

P + (m − 1)P0 ∆ v = Ψ,

div (u0∇π − 2u0 D(v) · ∇π0) + a(1 − p)up
0∆ v = H.

(4.6)

Eliminating P we reduce this system to two scalar equations for the functions v
and π: {

vt − (m − 1)P0∆ v = f + π − Ψ in Q,

v = 0 on the parabolic boundary of Q,
(4.7)

{
div (u0∇π − 2u0 D(v) · ∇π0) = a(p − 1)up

0∆ v + H in Q,

π = 0 on the parabolic boundary of Q.
(4.8)

Once these problems are solved, P is restored from the second equation in (4.6).
The ensure the convergence of the sequence {xn} to the solution x of the

nonlinear problem F(x) = 0 we have to perform the following three steps [6]:

1. To solve the linear problem G
〈
x
〉

= F
〈
x0

〉
. The degenerate parabolic-elliptic

problem (4.7)–(4.8) reduces to problem (4.7) with the right-hand side P0,
while π ≡ 0. We define then P from the second equation in (4.6).

2. To show that the operators F and G are defined on the same pair of the
function spaces X = Λ2k+3 × (Λ2k+1)

2 and Y = (Λ2k+1)
2 × Λ2k−1 with

k ≥ 1:
F : X �→ Y, G−1 : Y �→ X .

This is done by deriving appropriate a priori estimates for the solutions of
the linear problem G

〈
x
〉

= g, (alias (4.7)–(4.8)). The existence of a unique
solution of this system (for small T ) is proved by means of the contraction
mapping principle.

The operator F = (F1,F2,F3) is understood in the following way: for
every element (v, P, π) ∈ Λ2k+3 × (Λ2k+1)

2 with k ≥ 1

F1(v, P, π) ≡ P〈(I + D(v))∇ vt〉 + ∇ (P − π) ≡ ∇ (f + P − π), (4.9)

where f ∈ Λ2k+1 is a solution of problem (3.1) with the right-hand side

φ = div
(
u0(I + D(v))−1∇ vt

)
, (4.10)

and
F2(v, P, π) = P det|I + D(v)|m−1 − P0. (4.11)

The norm of F(x) is defined by

‖F(x)‖Y = ‖f‖Λ2k+1 + ‖P‖Λ2k+1 + ‖F2(v, P, π)‖Λ2k+1 . (4.12)
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3. Denote by H(x) the Frechet derivative of F at the element x = (v, P, π). The
last step is to check that the H(x) is Lipschitz-continuous:

‖H(x) −H(y)‖Y ≤ L‖x − y‖X .

5. Solution of the free-boundary problem (1.1)

Let us show first that formula (2.17) indeed defines a weak continuous solution of
problem (1.1) in the sense of Definition 1.1. By definition

Σ = {x : x = ξ + ∇ v(ξ, t)with v ∈ Λ2k+3, ξ ∈ σ(0)} ∈ C2+α.

According to (2.14) and (2.10)

φ ≡ u(x, t)|Σ =
u0

|I + D(v)|

∣∣∣∣
Σ0

.

It follows that φ > 0 and φ = u0 on Σ∩ {t = 0}. Thus, the data of problem (2.16)
satisfy the zero-order compatibility condition and there exists a unique solution
v ∈ C(E \ D) ∩ C2,1(E \ D) [7, Chapter XIV].

According to the definition of u(x, t), for all ξ ∈ Q

dU(ξ, t)
dt

= ut(x, t) + ∇xu · Xt(ξ, t) = ut(x, t) + ∇xu · v.

On the other hand, we may calculate Ut(ξ, t) differentiating in t the mass conser-
vation law (2.10) and applying the Cauchy identity. We have:

|J | (Ut + U divxv) = 0 in Q ,

whence

ut(x, t) = Ut −∇xu · v = −Udivxv −∇xu · v = −divx(uv) in Q.

Plugging the definition of v (2.5) and letting t → 0 we conclude that the data of
problem (2.16) satisfy the first-order compatibility conditions on Σ ∩ {t = 0}. It
follows from the theory of nondegenerate parabolic equations that the Dirichlet
problem (2.16) has a unique solution v ∈ C2+α,(2+α)/2(E \ D) [7, Chapter XIV].
Thus, the solutions of problems (2.16) and (1.8) satisfy ∇ v = ∇u on Σ. For an
arbitrary test-function η satisfying the conditions of Definition 1.1 we have then:

0 = −
∫
D

η (ut − ∆ um + a η up) dxdt −
∫
E\D

η (vt − ∆ vm + a η vp) dxdt

=
∫

E(0)

u0η(x, 0) dx +
∫
E

(ηtw −∇xη · ∇wm − a η wp) dx dt

−
∫

Σ

η
[
un+

τ + vn−
τ

]
dS +

∫
Σ

η
[
(n+

x ,∇um) + (n−
x ,∇ vm

]
dS

=
∫

E(0)

u0η(x, 0) dx +
∫
E

(ηtw −∇xη · ∇wm − a η wp) dx dt,
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where n+ = −n− denote the unit normal vectors to Σ exterior and interior with
respect to D.

The proof of Theorem 1.1 repeats, with some obvious changes, the proofs in
[8, Subsection 8.2]. To show that the regularity of the interface velocity is better
than it was at the initial instant we make use of the double representation for
v = Xt(ξ, t): on one hand,

v(x, t) = −∇ p + ∇Π,

on the other hand

v(x, t) = ∇ξvt(ξ, t) with v ∈ Λ2k+3.
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Abstract. We describe some estimates for solutions of nonlinear discrete
schemes, which are analogues of fundamental estimates of Krylov and Safonov
for linear elliptic partial differential equations and the resultant Schauder es-
timates for nonlinear elliptic equations of Evans, Krylov and Safonov.
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1. Introduction

In this article we describe recent research of the authors and others concerning esti-
mates for solutions of nonlinear difference schemes which are discrete analogues of
nonlinear elliptic partial differential equations of second order. A general difference
equation may be written in the form,

F [u] := F (· , u, Tu) = 0 , (1.1)

where u : E → R is a mesh function defined on a mesh E, which is a discrete subset
of n-dimensional Euclidean space, Rn , Tu(x) = {u(z) | z 
= x} and F is a given
real-valued function on E × RE . We always assume that F [u](x) is independent
of the values u(z) for |z − x| sufficiently large, that is F [u](x) only depends on
finitely many u(z) for each x ∈ E. The equation (1.1) is linear if it can be written
in the form,

L[u](x) :=
∑
z∈E

a(x, z)u(z) = f(x) , (1.2)

The first author was supported by the Taiwan National Science Council; the second author was
supported by an Australian Research Council Grant.
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with coefficients a(x, z) having finite support in z for each x ∈ E. The operator F
is called monotone if

F (x, u, q + η ) ≥ F (x, u, q ) , (1.3)
for all x ∈ E, u, ∈ R, q, η ∈ RE−{x}, η ≥ 0, and positive if, in addition,

F (x, u + τ, q + η ) ≤ F (x, u, q ), (1.4)

for all x ∈ E, z, τ ∈ R, q, η ∈ R
E−{x}, with 0 ≤ ηz ≤ τ for each z ∈ E − {x}.

The linear operator (1.2) is monotone if a(x, z) ≥ 0 for all x 
= z ∈ E and positive
if also

∑
z∈E a(x, z) ≤ 0 for all x ∈ E. If F is differentiable with respect to z, q,

then F is monotone if ∂F
∂qz

(x, u, q) ≥ 0 for all z ∈ E − {x}, x ∈ E and positive if
in addition,

∑
z∈E

∂F
∂qz

(x, u, q) ≤ 0 for all x ∈ E. We also call F balanced if

F (x, u, q̃ ) = F (x, u, q ), (1.5)

whenever q̃z = qz + p · (z − x) for some p ∈ Rn . The linear operator (1.2) is
balanced if

∑
z a(x, z)(z − x) = 0 and if F is differentiable with respect to q, then

the operator (1.1) is balanced if
∑

z
∂F
∂qz

(z − x) = 0. If we also assume that F is
positive with equality holding in (1.4) for ηz = τ , we may write equation (1.1) in
the form,

F [u](x) = F (x, δu(x) ) = 0 , (1.6)
where

δu(x) = { u(z)− u(x) | z 
= x ∈ E }.
By using the Taylor expansion for u ∈ C2(Rn),

u(z) − u(x) = Du(x) · (z − x)

+
1
2
[
D2u(x)(z − x), (z − x)

]
+ o(|z − x|2) , (1.7)

we see that a balanced difference scheme, of the form (1.6), is consistent with a
partial differential operator of the form,

F [u] := F(x , D2u ) , (1.8)

with linearized principal coefficient matrix,

aij :=
∂F
∂uij

=
1
2

∑
z

∂F

∂qz
(z − x)i(z − x)j , (1.9)

if ∂F
∂qz

= O(|x − z|−2). In (1.7), (1.8), D2u = [uij ] denotes the Hessian matrix
of second derivatives of the function u. The above definitions are taken from our
papers [12] and [14].

In the next sections of this article we describe two types of estimates for
solutions of (1.1), which are discrete analogues of fundamental estimates for elliptic
equations. In Section 2, we present local pointwise estimates for solutions of linear
equations, which are the analogues of the Krylov-Safonov estimates [1, 3, 9, 22]
for partial differential operators, while in Section 3, we consider discrete analogues
of the nonlinear Schauder estimates of Evans, Krylov, Safonov and Caffarelli [1,
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2, 3, 8, 19, 20]. For the latter, we shall restrict our meshes E to be lattice meshes,
that is there exists a linearly independent set of vectors ξ1, ξ2 , . . . , ξn such that

E =
{

(m1ξ1 , m2ξ2 , . . . , mnξn)
∣∣mi ∈ Z, i =1, 2, . . . , n

}
. (1.10)

By appropriate coordinate transformation, the lattice mesh case can be reduced
to the special case of a cubic mesh

Z
n
h =

{
(m1 , m2 , . . . , mn)h

∣∣mi ∈ Z, i =1, 2, . . . , n
}

(1.11)

with mesh length h.

2. Linear equations

We consider here linear equations of the form (1.6), that is

L[u](x) =
∑

a(x, z)
(
u(z) − u(x)

)
= f(x) , (2.1)

which are monotone and balanced. In accordance with (1.7) , (1.8) , (1.9), these
correspond to degenerate elliptic partial differential equations of the form

L[u] := aijDij u = f (2.2)

with coefficient matrix

aij =
1
2

∑
z

a(x, z)(z − x)i(z − x)j . (2.3)

It is thus natural to call (2.1) elliptic if the matrix A = [aij ] is positive, that is
1
2

∑
z

a(x, z)[(z − x) · ξ]2 ≥ λ |ξ|2 , (2.4)

for all ξ ∈ Rn and some positive constant λ.

For local estimates, this notion is still inadequate as seen by the simple one-
dimensional example, E = Zh ,

L[u] = u(x + 2h) + u(x − 2h) − 2u(x) = 0 , (2.5)

which has solutions
u(mh) = a (−1)m + b

for constants a and b. It is thus necessary to assume that all points in E are
effectively linked by L, that is for any two points x, z ∈ E, there exist points
x0 , x1 , . . . , xk ∈ E such that x0 = x, xk = z and

a(xi−1 , xi) ≥ λ

(h)2 , (2.6)

k = k(x, z) ≤ k0
|x − z|

h
,

where k0 is a positive constant,

h = inf
x 
=z ∈E

|x − z| (2.7)
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denotes the minimum mesh width of E and

h = sup
a(x,z) 
=0

|x − z| (2.8)

denotes the maximum mesh width with respect to L. We also define an ellipticity
constant,

a0 =
1
2λ

sup
x∈E

∑
a(x, z)|x − z|2 . (2.9)

Note that when dealing with local estimates, we can assume (by replacing E by a
bounded subset) that h is positive and h, a0 are finite.

Under these assumptions we have Hölder and Harnack estimates for solutions
of the scheme (2.1) which are discrete analogues of the fundamental estimates of
Krylov and Safonov. In their formulation, we let for any R > 0 and y ∈ Rn , ER(y)
denote the mesh ball of radius R, and centre y, that is

ER(y) =
{

x ∈ E
∣∣ |x − y| < R

}
and define the Lp norm, ( 1 ≤ p < ∞ ), of a mesh function f over a set S ⊂ E, by

‖ f ‖Lp(S) =
{ ∑

x∈E

hn|f(x)|p
}1/p

Theorem 2.1. Let u be a solution of (2.1) in a mesh ball ER = ER(y) ⊂ E. Then
for any concentric ball EσR(R), 0 < σ < 1, we have the Hölder estimate

osc
EσR

u ≤ C σα
{

osc
ER

u +
R

λ
‖ f ‖Ln(ER)

}
, (2.10)

where α and C are positive constants depending on n, h/h , k0 and a0. If u is non-
negative in ER and h/(1−σ)R sufficiently small, we have the Harnack inequality,

max
EσR

u ≤ C
{

min
EσR

u +
R

λ
‖ f ‖Ln(ER)

}
, (2.11)

where C depends on n, h/h , k0 , a0 and σ.

Theorem 2.1 extends earlier estimates, under slightly stronger non-degeneracy
conditions than (2.4), in our papers [11, 13, 14]. To obtain the full strength of The-
orem 2.1, we use our discrete Aleksandrov maximum principle [16] in place of the
versions we used previously. As in our previous works, the balance condition can
be relaxed to allow “lower-order” dependence and we have separate complemen-
tary estimates for sub- and supersolutions. These results may also be extended to
boundary neighborhoods and parabolic equations as in [15].
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3. Schauder estimates for nonlinear schemes

Now we return to the general equation (1.1), or rather the special form (1.6) where,
as in the linear case of the previous section, F is assumed to be monotone and
balanced. The ellipticity conditions on F are imposed on the matrix A = [aij ],
given by (1.9). However for higher-order difference estimates, we need to assume
that E is a lattice mesh, which we can subsequently reduce to the case E = Zn

h by
a linear transformation. It is then convenient to write z = x + y in (1.6) so that

δu(x) =
{

u(x + y) − u(x)
∣∣ y ∈ YN

}
,

where
YN =

{
y ∈ E

∣∣ ‖y‖∞ ≤ Nh
}

for some N ∈ N.

Our Schauder estimates are discrete versions of the general Schauder esti-
mates of Safonov for [19, 20] uniformly elliptic partial differential equations of the
form (1.7), which extended the earlier estimates of Evans [2] and Krylov [8], under
stronger conditions on the dependence of F on x. Analogously to the continu-
ous case, we also assume that F is concave with respect to q ∈ R

Y
N and Hölder

continuous with respect to x ∈ R, in the sense that

|f(x, q) − f(z, q)| ≤ µ(1 + |q|) |x − z|γ

for all z, x ∈ Rn, q ∈ RYN where µ and γ (≤ 1) are positive constants. Our
ellipticity conditions are applied to the linearized frozen operator, in which case
the condition (2.4) becomes a consequence of (2.6). Indeed fixing z0 ∈ E, we define
the frozen operator

F0[u] = F ( z0 , δu ) , (3.1)
with linearized operator

L0[u] =
∑

y∈YN

a0(y)
(
u(x + y) − u(x)

)
, (3.2)

where
a0(y) = a(z0 , y) =

∂F

∂qy
( z0 , δu(x) ) , (3.3)

Accordingly we assume for any three points x, z, z0 ∈ E, there exist points x0 =
x, x1 , . . . , xk = z in E such that

∂F

∂qy
( z0 , q ) ≥ λh−2 , (3.4)

for all q ∈ RYN , y = yi = xi − xi−1, i = 1, . . . , k, where λ is a positive constant
and the number k = k(x, z; z0) satisfies

k(x, z; z0) ≤ k0 |x − z|
h

, (3.5)

for some positive constant k0. Clearly it is enough that x and z are neighbors, that
is |x − z| = h and moreover the constant k0 can be chosen to depend only on N .
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A simple way of ensuring (3.4) is to assume that F0 connects neighboring points
directly, that is (3.4) holds for y = ±hei, i = 1, . . . , n.

We believe that these conditions should suffice for the interior Schauder es-
timates. So far we have obtained these estimate for operators F of the form

F [u](x) = G
(
x, L1[u](x), . . . , LK [u](x)

)
, (3.6)

where G : E × RK → R satisfies

λ0 ≤ ∂G

∂pi
(x , p) ≤ Λ0 , (3.7)

for positive constants λ0 , Λ0 and for all i = 1, . . . , K, (x, p) ∈ E × RK , and the
operators L1, . . . , LK are monotone, balanced linear operators.

In order to formulate our main result, we need to define appropriate dis-
crete seminorms and norms. As usual, we define first- and second-order difference
operators by

δiu(x) =
u(x + hei) − u(x)

h
, (3.8)

δiju(x) = δi

(
δju(x)

)
,

δ1u =
(
δ1u , . . . , δnu

)
,

δ2u =
[
δiju

]
i,j =1, ... , n

.

For γ ∈ (0, 1] and Ω a bounded open set in R
n we define the Hölder semi-norm,

[u]0,γ;Ω = max
x 
=y,∈Ωh

|u(x) − u(y)|
|x − y|γ (3.9)

where Ωh = Ω∩E = Ω∩Zn
h . We can then define interior semi-norms, similarly to

the continuous case [3], by

[u]∗0,γ;Ω = sup
Ω′⊂Ω

(
d′
)γ [u]0,γ;Ω′ , (3.10)

[u]k;Ω = max
Ωh

∣∣ δku
∣∣ ,

[u]∗k;Ω = sup
Ω′⊂Ω

(
d′
)k[u]k;Ω′ ,

[u]∗k,γ;Ω = sup
Ω′⊂Ω

(
d′
)k+γ [δku]0,γ;Ω′ ,

where k = 0, 1, 2, . . . , and d′ = dist(Ω′ , ∂Ω) > kh. We also need to define the
quantity

a0 =
1
2λ

max
Ωh×R

Y
N

∑
y

∂F

∂qy
, (3.11)

corresponding to (2.9).
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Theorem 3.1. Let Ω be a bounded domain in Rn and u a solution of the difference
equation (1.6) in Ωh. Then we have the estimate

[u]∗2,γ;Ω ≤ C

for any γ < α, where α > 0 is a constant depending on n, a0 , N, Λ/λ0 and C is
a constant depending additionally on µ/λ , γ, |u|0;Ω and diamΩ.

The special case when L1, . . . , LK are independent of x is proved in [17]. It
extends earlier work of Holtby [4, 5] where the operators Li are pure second-order
differences. The proof of Theorem 3.1 is through a perturbation from the frozen
case (3.1), (as in the continuous case [19, 20, 24]), which is treated in [17] using
the results for linear equations [14] and an idea from [23]. The discrete Schauder
estimates for linear equations (1.2)[21] will also be a special case of Theorem 3.1,
which also extends to embrace lower-order dependence.
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