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Preface to the First Edition

In November of 1995, I was at the University of Massachusetts in
Amherst for a few days to attend a symposium held, in part, to celebrate
Professor Berthold Schweizer’s retirement from classroom teaching.
During one afternoon break, a small group of us were having coffee
following several talks in which copulas were mentioned. Someone
asked what one should read to learn the basics about copulas. We men-
tioned several references, mostly research papers and conference pro-
ceedings. I then suggested that perhaps the time was ripe for “some-
one” to write an introductory-level monograph on the subject. A
colleague, I forget who, responded somewhat mischievously, “Good
idea, Roger—why don’t you write it?”

Although flattered by the suggestion, I let it lie until the following
September, when I was in Prague to attend an international conference
on distributions with fixed marginals and moment problems. In Prague,
I asked Giorgio Dall’Aglio, Ingram Olkin, and Abe Sklar if they
thought that there might indeed be interest in the statistical community
for such a book. Encouraged by their responses and knowing that I
would soon be eligible for a sabbatical, I began to give serious thought
to writing an introduction to copulas.

This book is intended for students and practitioners in statistics and
probability—at almost any level. The only prerequisite is a good upper-
level undergraduate course in probability and mathematical statistics,
although some background in nonparametric statistics would be benefi-
cial. Knowledge of measure-theoretic probability is not required.

The book begins with the basic properties of copulas and then pro-
ceeds to present methods for constructing copulas and to discuss the
role played by copulas in modeling and in the study of dependence.
The focus is on bivariate copulas, although most chapters conclude with
a discussion of the multivariate case. As an introduction to copulas, it is
not an encyclopedic reference, and thus it is necessarily incom-
plete—many topics that could have been included are omitted. The
reader seeking additional material on families of continuous bivariate
distributions and their applications should see (Hutchinson and Lai
1990); and the reader interested in learning more about multivariate
copulas and dependence should consult (Joe 1997).

There are about 150 exercises in the book. Although it is certainly
not necessary to do all (or indeed any) of them, the reader is encour-
aged to read through the statements of the exercises before proceeding
to the next section or chapter. Although some exercises do not add
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anything to the exposition (e.g., “Prove Theorem 1.1.1”), many pre-
sent examples, counterexamples, and supplementary topics that are of-
ten referenced in subsequent sections.

I would like to thank Lewis & Clark College for granting me a sab-
batical leave in order to write this book; and my colleagues in the De-
partment of Mathematics, Statistics, and Computer Science at Mount
Holyoke College for graciously inviting me to spend the sabbatical year
with them. Thanks, too, to Ingram Olkin for suggesting and encourag-
ing that I consider publication with Springer’s Lecture Notes in Statis-
tics; and to John Kimmel, the executive editor for statistics at Springer,
for his valuable assistance in the publication of this book.

Finally, I would like to express my gratitude and appreciation to all
those with whom I have had the pleasure of working on problems re-
lated to copulas and their applications: Claudi Alsina, Jerry Frank, Greg
Fredricks, Juan Quesada Molina, José Antonio Rodríguez Lallena, Carlo
Sempi, Abe Sklar, and Manuel Úbeda Flores. But most of all I want to
thank my good friend and mentor Berthold Schweizer, who not only
introduced me to the subject but also has consistently and unselfishly
aided me in the years since and who inspired me to write this book. I
also want to thank Bert for his careful and critical reading of earlier
drafts of the manuscript and his invaluable advice on matters mathe-
matical and stylistic. However, it goes without saying that any and all
remaining errors in the book are mine alone.

Roger B. Nelsen
Portland, Oregon

July 1998



Preface to the Second Edition

In preparing a new edition of An Introduction to Copulas, my goals in-
cluded adding some topics omitted from the first edition while keeping
the book at a level appropriate for self-study or for a graduate-level
seminar. The major additions in the second edition are sections on:
• a copula transformation method;
• extreme value copulas;
• copulas with certain analytic or functional properties;
• tail dependence; and
• quasi-copulas.

There are also a number of new examples and exercises and new fig-
ures, including scatterplots of simulations from many of the families of
copulas presented in the text. Typographical errors in the first edition
have been corrected, and the references have been updated.

Thanks again to Lewis & Clark College for granting me a sabbatical
leave in order to prepare this second edition; and to the Department of
Mathematics and Statistics at Mount Holyoke College for again inviting
me to spend the sabbatical year with them. Finally, I would like to thank
readers of the first edition who found numerous typographical errors in
the first edition and sent me suggestions for this edition.

Roger B. Nelsen
Portland, Oregon

October 2005
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1 Introduction

The study of copulas and their applications in statistics is a rather mod-
ern phenomenon. Until quite recently, it was difficult to even locate the
word “copula” in the statistical literature. There is no entry for “cop-
ula” in the nine volume Encyclopedia of Statistical Sciences, nor in the
supplement volume. However, the first update volume, published in
1997, does have such an entry (Fisher 1997). The first reference in the
Current Index to Statistics to a paper using “copula” in the title or as a
keyword is in Volume 7 (1981) [the paper is (Schweizer and Wolff
1981)]—indeed, in the first eighteen volumes (1975-1992) of the Cur-
rent Index to Statistics there are only eleven references to papers men-
tioning copulas. There are, however, 71 references in the next ten vol-
umes (1993-2002).

Further evidence of the growing interest in copulas and their applica-
tions in statistics and probability in the past fifteen years is afforded by
five international conferences devoted to these ideas: the “Symposium
on Distributions with Given Marginals (Fréchet Classes)” in Rome in
1990; the conference on “Distributions with Fixed Marginals, Doubly
Stochastic Measures, and Markov Operators” in Seattle in 1993; the
conference on “Distributions with Given Marginals and Moment Prob-
lems” in Prague in 1996; the conference on “Distributions with Given
Marginals and Statistical Modelling” in Barcelona in 2000; and the
conference on “Dependence Modelling: Statistical Theory and Appli-
cations in Finance and Insurance” in Québec in 2004. As the titles of
these conferences indicate, copulas are intimately related to study of
distributions with “fixed” or “given” marginal distributions. The
published proceedings of the first four conferences (Dall’Aglio et al.
1991; Rüschendorf et al. 1996; Beneš and Štěpán 1997; Cuadras et al.
2002) are among the most accessible resources for the study of copulas
and their applications.

What are copulas? From one point a view, copulas are functions that
join or “couple” multivariate distribution functions to their one-
dimensional marginal distribution functions. Alternatively, copulas are
multivariate distribution functions whose one-dimensional margins are
uniform on the interval (0,1). Chapter 2 will be devoted to presenting a
complete answer to this question.

Why are copulas of interest to students of probability and statistics?
As Fisher (1997) answers in his article in the first update volume of the
Encyclopedia of Statistical Sciences, “Copulas [are] of interest to statis-
ticians for two main reasons: Firstly, as a way of studying scale-free
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measures of dependence; and secondly, as a starting point for con-
structing families of bivariate distributions, sometimes with a view to
simulation.” These topics are explored and developed in Chapters 3, 4,
and 5.

The remainder of this chapter will be devoted to a brief history of the
development and study of copulas. Readers interested in first-hand ac-
counts by some of those who participated in the evolution of the subject
should see the papers by Dall’Aglio (1991) and Schweizer (1991) in
the proceedings of the Rome conference and the paper by Sklar (1996)
in the proceedings of the Seattle conference.

The word copula is a Latin noun that means “a link, tie, bond”
(Cassell’s Latin Dictionary) and is used in grammar and logic to de-
scribe “that part of a proposition which connects the subject and predi-
cate” (Oxford English Dictionary). The word copula was first employed
in a mathematical or statistical sense by Abe Sklar (1959) in the theo-
rem (which now bears his name) describing the functions that “join to-
gether” one-dimensional distribution functions to form multivariate
distribution functions (see Theorems 2.3.3 and 2.10.9). In (Sklar 1996)
we have the following account of the events leading to this use of the
term copula:

Féron (1956), in studying three-dimensional distributions had introduced
auxiliary functions, defined on the unit cube, that connected such distribu-
tions with their one-dimensional margins. I saw that similar functions could
be defined on the unit n-cube for all n ≥ 2 and would similarly serve to link
n-dimensional distributions to their one-dimensional margins. Having
worked out the basic properties of these functions, I wrote about them to
Fréchet, in English. He asked me to write a note about them in French.
While writing this, I decided I needed a name for these functions. Knowing
the word “copula” as a grammatical term for a word or expression that links
a subject and predicate, I felt that this would make an appropriate name for a
function that links a multidimensional distribution to its one-dimensional
margins, and used it as such. Fréchet received my note, corrected one
mathematical statement, made some minor corrections to my French, and
had the note published by the Statistical Institute of the University of Paris
as Sklar (1959).

But as Sklar notes, the functions themselves predate the use of the
term copula. They appear in the work of Fréchet, Dall’Aglio, Féron,
and many others in the study of multivariate distributions with fixed
univariate marginal distributions. Indeed, many of the basic results
about copulas can be traced to the early work of Wassily Hoeffding. In
(Hoeffding 1940, 1941) one finds bivariate “standardized distribu-

tions” whose support is contained in the square [ , ]-1 2 1 2 2 and whose
margins are uniform on the interval [–1 2,1 2]. (As Schweizer (1991)

opines, “had Hoeffding chosen the unit square [ , ]0 1 2 instead of

[ , ]-1 2 1 2 2 for his normalization, he would have discovered copulas.”)
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Hoeffding also obtained the basic best-possible bounds inequality for
these functions, characterized the distributions (“functional depend-
ence”) corresponding to those bounds, and studied measures of de-
pendence that are “scale-invariant,” i.e., invariant under strictly in-
creasing transformations. Unfortunately, until recently this work did not
receive the attention it deserved, due primarily to the fact the papers
were published in relatively obscure German journals at the outbreak of
the Second World War. However, they have recently been translated into
English and are among Hoeffding’s collected papers, recently pub-
lished by Fisher and Sen (1994). Unaware of Hoeffding’s work, Fréchet
(1951) independently obtained many of the same results, which has led
to the terms such as “Fréchet bounds” and “Fréchet classes.” In rec-
ognition of the shared responsibility for these important ideas, we will
refer to “Fréchet-Hoeffding bounds” and “Fréchet-Hoeffding
classes.” After Hoeffding, Fréchet, and Sklar, the functions now known
as copulas were rediscovered by several other authors. Kimeldorf and
Sampson (1975b) referred to them as uniform representations, and
Galambos (1978) and Deheuvels (1978) called them dependence func-
tions.

At the time that Sklar wrote his 1959 paper with the term “copula,”
he was collaborating with Berthold Schweizer in the development of the
theory of probabilistic metric spaces, or PM spaces. During the period
from 1958 through 1976, most of the important results concerning
copulas were obtained in the course of the study of PM spaces. Recall
that (informally) a metric space consists of a set S and a metric d that
measures “distances” between points, say p and q, in S. In a probabil-
istic metric space, we replace the distance d(p,q) by a distribution func-
tion Fpq , whose value Fpq (x) for any real x is the probability that the
distance between p and q is less than x. The first difficulty in the con-
struction of probabilistic metric spaces comes when one tries to find a
“probabilistic” analog of the triangle inequality d(p,r) £ d(p,q) +
d(q,r)—what is the corresponding relationship among the distribution
functions Fpr , Fpq , and Fqr  for all p, q, and r in S? Karl Menger (1942)

proposed F x ypr ( )+  ≥ T( Fpq (x), Fqr (y)); where T is a triangle norm or t-

norm. Like a copula, a t-norm maps [ , ]0 1 2 to [0,1], and joins distribu-
tion functions. Some t-norms are copulas, and conversely, some copulas
are t-norms. So, in a sense, it was inevitable that copulas would arise in
the study of PM spaces. For a thorough treatment of the theory of PM
spaces and the history of its development, see (Schweizer and Sklar
1983; Schweizer 1991).

Among the most important results in PM spaces—for the statisti-
cian—is the class of Archimedean t-norms, those t-norms T that satisfy
T(u,u) < u for all u in (0,1). Archimedean t-norms that are also copulas
are called Archimedean copulas. Because of their simple forms, the ease
with which they can be constructed, and their many nice properties, Ar-
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chimedean copulas frequently appear in discussions of multivariate dis-
tributions—see, for example, (Genest and MacKay 1986a,b; Marshall
and Olkin 1988; Joe 1993, 1997). This important class of copulas is the
subject of Chapter 4.

We now turn our attention to copulas and dependence. The earliest
paper explicitly relating copulas to the study of dependence among
random variables appears to be (Schweizer and Wolff 1981). In that pa-
per, Schweizer and Wolff discussed and modified Rényi’s (1959) crite-
ria for measures of dependence between pairs of random variables, pre-
sented the basic invariance properties of copulas under strictly
monotone transformations of random variables (see Theorems 2.4.3
and 2.4.4), and introduced the measure of dependence now known as
Schweizer and Wolff’s s (see Section 5.3.1). In their words, since

... under almost surely increasing transformations of (the random vari-
ables), the copula is invariant while the margins may be changed at will, i t
follows that it is precisely the copula which captures those properties of the
joint distribution which are invariant under almost surely strictly increasing
transformations. Hence the study of rank statistics—insofar as it is the
study of properties invariant under such transformations—may be character-
ized as the study of copulas and copula-invariant properties.

Of course, copulas appear implicitly in earlier work on dependence
by many other authors, too many to list here, so we will mention only
two. Foremost is Hoeffding. In addition to studying the basic properties
of “standardized distributions” (i.e., copulas), Hoeffding (1940, 1941)
used them to study nonparametric measures of association such as

Spearman’s rho and his “dependence index” F2 (see Section 5.3.1).
Deheuvels (1979, 1981a,b,c) used “empirical dependence functions”
(i.e., empirical copulas, the sample analogs of copulas—see Section 5.5)
to estimate the population copula and to construct various nonparamet-
ric tests of independence. Chapter 5 is devoted to an introduction to the
role played by copulas in the study of dependence.

Although this book concentrates on the two applications of copulas
mentioned by Fisher (1997)—the construction of families of multivari-
ate distributions and the study of dependence—copulas are being ex-
ploited in other ways. We mention but one, which we discuss in the final
chapter. Through an ingenious definition of a “product” * of copulas,
Darsow, Nguyen, and Olsen (1992) have shown that the Chapman-
Kolmogorov equations for the transition probabilities in a real stochas-
tic process can be expressed succinctly in terms of the *-product of
copulas. This new approach to the theory of Markov processes may well
be the key to “capturing the Markov property of such processes in a
framework as simple and perspicuous as the conventional framework
for analyzing Markov chains” (Schweizer 1991).



1   Introduction      5

The study of copulas and the role they play in probability, statistics,
and stochastic processes is a subject still in its infancy. There are many
open problems and much work to be done.



2 Definitions and Basic Properties

In the Introduction, we referred to copulas as “functions that join or
couple multivariate distribution functions to their one-dimensional
marginal distribution functions” and as “distribution functions whose
one-dimensional margins are uniform.” But neither of these statements
is a definition—hence we will devote this chapter to giving a precise
definition of copulas and to examining some of their elementary prop-
erties.

But first we present a glimpse of where we are headed. Consider for a
moment a pair of random variables X and Y, with distribution functions
F(x) = P X x[ ]£  and G(y) = P Y y[ ]£ , respectively, and a joint distribu-
tion function H(x,y) = P X x Y y[ , ]£ £  (we will review definitions of
random variables, distribution functions, and other important topics as
needed in the course of this chapter). To each pair of real numbers (x,y)
we can associate three numbers: F(x), G(y), and H(x,y). Note that each
of these numbers lies in the interval [0,1]. In other words, each pair (x,y)
of real numbers leads to a point F x G y( ), ( )( )  in the unit square

[0,1]¥[0,1], and this ordered pair in turn corresponds to a number
H(x,y) in [0,1]. We will show that this correspondence, which assigns the
value of the joint distribution function to each ordered pair of values of
the individual distribution functions, is indeed a function. Such func-
tions are copulas.

To accomplish what we have outlined above, we need to generalize
the notion of “nondecreasing” for univariate functions to a concept
applicable to multivariate functions. We begin with some notation and
definitions. In Sects. 2.1-2.9, we confine ourselves to the two-
dimensional case; in Sect. 2.10, we consider n dimensions.

2.1 Preliminaries

The focus of this section is the notion of a “2-increasing” function—a
two-dimensional analog of a nondecreasing function of one variable.
But first we need to introduce some notation. We will let R denote the
ordinary real line (–•,•), R  denote the extended real line [–•,•], and

R2  denote the extended real plane R¥ R . A rectangle in R2  is the
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Cartesian product B of two closed intervals: B = [ , ]x x1 2 ¥[ , ]y y1 2 . The
vertices of a rectangle B are the points ( x1, y1), ( x1, y2 ), ( x2 , y1), and

( x2 , y2 ). The unit square I2 is the product I¥I where I = [0,1]. A 2-
place real function H is a function whose domain, DomH, is a subset of

R2  and whose range, RanH, is a subset of R.

Definition 2.1.1. Let S1 and S2 be nonempty subsets of R , and let H be
a two-place real function such that DomH = S1¥ S2. Let B =

[ , ]x x1 2 ¥[ , ]y y1 2  be a rectangle all of whose vertices are in DomH. Then
the H-volume of B is given by

V B H x y H x y H x y H x yH ( ) = - - +( , ) ( , ) ( , ) ( , )2 2 2 1 1 2 1 1 . (2.1.1)

Note that if we define the first order differences of H on the rectangle
B as

Dx
x H x y H x y H x y

1

2
2 1( , ) ( , ) ( , )= -  and Dy

y H x y H x y H x y
1

2
2 1( , ) ( , ) ( , )= - ,

then the H-volume of a rectangle B is the second order difference of H
on B,

V B H x yH y
y

x
x( ) ( , )= D D

1

2

1

2 .

Definition 2.1.2. A 2-place real function H is 2-increasing if V BH ( )  ≥ 0
for all rectangles B whose vertices lie in DomH.

When H is 2-increasing, we will occasionally refer to the H-volume of
a rectangle B as the H-measure of B. Some authors refer to 2-increasing
functions as quasi-monotone.

We note here that the statement “H  is 2-increasing” neither implies
nor is implied by the statement “H  is nondecreasing in each argu-
ment,” as the following two examples illustrate. The verifications are
elementary, and are left as exercises.

Example 2.1. Let H be the function defined on I2 by H(x,y) =
max(x,y). Then H is a nondecreasing function of x and of y; however,

VH ( )I2  = –1, so that H is not 2-increasing. �

Example 2.2. Let H be the function defined on I2 by H(x,y) =
( )( )2 1 2 1x y- - . Then H is 2-increasing, however it is a decreasing func-
tion of x for each y in (0,1/2) and a decreasing function of y for each x
in (0,1/2). �

The following lemmas will be very useful in the next section in es-
tablishing the continuity of subcopulas and copulas. The first is a direct
consequence of Definitions 2.1.1 and 2.1.2.
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Lemma 2.1.3. Let S1 and S2 be nonempty subsets of R , and let H be a
2-increasing function with domain S1¥ S2. Let x1, x2  be in S1 with x1 £
x2 , and let y1, y2  be in S2 with y1 £ y2 . Then the function t a
H t y( , )2 – H t y( , )1  is nondecreasing on S1, and the function t a

H x t( , )2 – H x t( , )1  is nondecreasing on S2.
As an immediate application of this lemma, we can show that with an

additional hypothesis, a 2-increasing function H is nondecreasing in
each argument. Suppose S1 has a least element a1 and that S2 has a
least element a2 . We say that a function H from S1¥ S2 into R is

grounded if H(x, a2 ) = 0 = H( a1,y) for all (x,y) in S1¥ S2. Hence we
have

Lemma 2.1.4. Let S1 and S2 be nonempty subsets of R , and let H be a
grounded 2-increasing function with domain S1¥ S2. Then H is nonde-
creasing in each argument.

Proof. Let a1,a2  denote the least elements of S1,S2, respectively, and
set x1 = a1, y1 = a2  in Lemma 2.1.3. �

Now suppose that S1 has a greatest element b1 and that S2 has a
greatest element b2. We then say that a function H from S1¥ S2 into R
has margins, and that the margins of H are the functions F and G given
by:

DomF = S1, and F x H x b( ) ( , )= 2  for all x in S1;

DomG = S2, and G y H b y( ) ( , )= 1  for all y in S2.

Example 2.3. Let H be the function with domain [–1,1]¥[0,•] given by

H x y
x e

x e

y

y
( , )

( )( )= + -
+ -
1 1

2 1
.

Then H is grounded because H(x,0) = 0 and H(–1,y) = 0; and H has
margins F(x) and G(y) given by

F x H x x( ) ( , ) ( )= • = +1 2 and G y H y e y( ) ( , )= = - -1 1 . �

We close this section with an important lemma concerning grounded
2-increasing functions with margins.

Lemma 2.1.5. Let S1 and S2 be nonempty subsets of R , and let H be a
grounded 2-increasing function, with margins, whose domain is S1¥ S2.

Let ( , )x y1 1  and ( , )x y2 2  be any points in S1¥ S2. Then

H x y H x y F x F x G y G y( , ) ( , ) ( ) ( ) ( ) ( )2 2 1 1 2 1 2 1- £ - + - .
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Proof. From the triangle inequality, we have

H x y H x y H x y H x y H x y H x y( , ) ( , ) ( , ) ( , ) ( , ) ( , )2 2 1 1 2 2 1 2 1 2 1 1- £ - + - .

Now assume x1 £ x2 . Because H is grounded, 2-increasing, and has

margins, Lemmas 2.1.3 and 2.1.4 yield 0 £ H( x2 , y2 ) – H( x1, y2 )

£ F x F x( ) ( )2 1- . An analogous inequality holds when x2  £ x1, hence it

follows that for any x1, x2  in S1, H x y H x y( , ) ( , )2 2 1 2-  £ F x F x( ) ( )2 1- .

Similarly for any y1, y2  in S2, H x y H x y( , ) ( , )1 2 1 1-  £ G y G y( ) ( )2 1- ,
which completes the proof. �

2.2 Copulas

We are now in a position to define the functions—copulas—that are the
subject of this book. To do so, we first define subcopulas as a certain
class of grounded 2-increasing functions with margins; then we define

copulas as subcopulas with domain I2.
Definition 2.2.1. A two-dimensional subcopula (or 2-subcopula, or
briefly, a subcopula) is a function ¢C  with the following properties:

1. Dom ¢C  = S1¥ S2, where S1 and S2 are subsets of I containing 0
and 1;

2. ¢C  is grounded and 2-increasing;
3. For every u in S1 and every v in S2,

¢ =C u u( , )1  and ¢ =C v v( , )1 . (2.2.1)

Note that for every (u,v) in Dom ¢C , 0 1£ ¢ £C u v( , ) , so that Ran ¢C  is
also a subset of I.
Definition 2.2.2. A two-dimensional copula (or 2-copula, or briefly, a

copula) is a 2-subcopula C whose domain is I2.

Equivalently, a copula is a function C from I2 to I with the following
properties:

1. For every u, v in I,

C u C v( , ) ( , )0 0 0= = (2.2.2a)
and

C u u( , )1 =  and C v v( , )1 = ; (2.2.2b)

2. For every u u v v1 2 1 2, , ,  in I such that u u1 2£  and v v1 2£ ,

C u v C u v C u v C u v( , ) ( , ) ( , ) ( , )2 2 2 1 1 2 1 1 0- - + ≥ . (2.2.3)
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Because C u v V u vC( , ) ([ , ] [ , ])= ¥0 0 , one can think of C u v( , ) as an as-
signment of a number in I to the rectangle [ , ] [ , ]0 0u v¥ . Thus (2.2.3)
gives an “inclusion-exclusion” type formula for the number assigned

by C to each rectangle [ , ] [ , ]u u v v1 2 1 2¥  in I2 and states that the number
so assigned must be nonnegative.

The distinction between a subcopula and a copula (the domain) may
appear to be a minor one, but it will be rather important in the next sec-
tion when we discuss Sklar’s theorem. In addition, many of the impor-
tant properties of copulas are actually properties of subcopulas.
Theorem 2.2.3. Let ¢C  be a subcopula. Then for every (u,v) in Dom ¢C ,

max( , ) ( , ) min( , )u v C u v u v+ - £ ¢ £1 0 . (2.2.4)

Proof. Let (u,v) be an arbitrary point in Dom ¢C . Now ¢C u v( , ) £
¢C u( , )1  = u and ¢C u v( , ) £ ¢C v( , )1  = v yield ¢C u v( , ) £ min(u,v). Fur-

thermore, V u vC ¢ ¥ ≥([ , ] [ , ])1 1 0  implies ¢C u v( , ) ≥ u v+ -1, which when

combined with ¢C u v( , ) ≥ 0 yields ¢C u v( , ) ≥ max( u v+ -1,0). �
Because every copula is a subcopula, the inequality in the above

theorem holds for copulas. Indeed, the bounds in (2.2.4) are themselves
copulas (see Exercise 2.2) and are commonly denoted by M(u,v) =
min(u,v) and W(u,v) = max( , )u v+ -1 0 . Thus for every copula C and

every (u,v) in I2,

W u v C u v M u v( , ) ( , ) ( , )£ £ . (2.2.5)

Inequality (2.2.5) is the copula version of the Fréchet-Hoeffding
bounds inequality, which we shall encounter later in terms of distribu-
tion functions. We refer to M as the Fréchet-Hoeffding upper bound
and W as the Fréchet-Hoeffding lower bound. A third important copula
that we will frequently encounter is the product copula P(u,v) = uv.

The following theorem, which follows directly from Lemma 2.1.5,
establishes the continuity of subcopulas—and hence of copulas—via a

Lipschitz condition on I2.

Theorem 2.2.4. Let ¢C  be a subcopula. Then for every u u v v1 2 1 2, , ,( ) ( )
in Dom ¢C ,

¢ - ¢ £ - + -C u v C u v u u v v( , ) ( , )2 2 1 1 2 1 2 1 . (2.2.6)

Hence ¢C  is uniformly continuous on its domain.
The sections of a copula will be employed in the construction of

copulas in the next chapter, and will be used in Chapter 5 to provide
interpretations of certain dependence properties:
Definition 2.2.5. Let C be a copula, and let a be any number in I. The
horizontal section of C at a is the function from I to I given by
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t C t aa ( , ); the vertical section of C at a is the function from I to I
given by t C a ta ( , ); and the diagonal section of C is the function d C

from I to I defined by d C t( )  = C(t,t).
The following corollary is an immediate consequence of Lemma

2.1.4 and Theorem 2.2.4.
Corollary 2.2.6. The horizontal, vertical, and diagonal sections of a
copula C are all nondecreasing and uniformly continuous on I.

Various applications of copulas that we will encounter in later chap-
ters involve the shape of the graph of a copula, i.e., the surface z =
C(u,v). It follows from Definition 2.2.2 and Theorem 2.2.4 that the

graph of any copula is a continuous surface within the unit cube I3

whose boundary is the skew quadrilateral with vertices (0,0,0), (1,0,0),
(1,1,1), and (0,1,0); and from Theorem 2.2.3 that this graph lies be-
tween the graphs of the Fréchet-Hoeffding bounds, i.e., the surfaces z =
M(u,v)  and z = W(u,v). In Fig. 2.1 we present the graphs of the copulas
M and W, as well as the graph of P, a portion of the hyperbolic
paraboloid z = uv.

v

z

u

v

z

u

v

z

u

z = M(u,v)

z  = P(u,v)

z  = W(u,v)

Fig. 2.1. Graphs of the copulas M, P, and W

A simple but useful way to present the graph of a copula is with a
contour diagram (Conway 1979), that is, with graphs of its level

sets—the sets in I2 given by C(u,v) = a constant, for selected constants
in I. In Fig. 2.2 we present the contour diagrams of the copulas M, P,
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and W. Note that the points (t,1) and (1,t) are each members of the level
set corresponding to the constant t. Hence we do not need to label the
level sets in the diagram, as the boundary conditions C(1,t) = t = C(t,1)
readily provide the constant for each level set.

P(u,v)M(u,v) W(u,v)

Fig. 2.2. Contour diagrams of the copulas M, P, and W

Also note that, given any copula C, it follows from (2.2.5) that for a

given t in I the graph of the level set ( , ) ( , )u v C u v tŒ ={ }I2  must lie in
the shaded triangle in Fig. 2.3, whose boundaries are the level sets de-
termined by M(u,v) = t and W(u,v) = t.

t

t

Fig. 2.3. The region that contains the level set ( , ) ( , )u v C u v tŒ ={ }I2

We conclude this section with the two theorems concerning the partial
derivatives of copulas. The word “almost” is used in the sense of
Lebesgue measure.
Theorem 2.2.7. Let C be a copula. For any v in I, the partial derivative
∂ ∂C u v u( , )  exists for almost all u, and for such v and u,

0 1£ £∂
∂u

C u v( , ) . (2.2.7)

Similarly, for any u in I, the partial derivative ∂ ∂C u v v( , )  exists for al-
most all v, and for such u and v,



14      2 Definitions and Basic Properties

0 1£ £∂
∂v

C u v( , ) . (2.2.8)

Furthermore, the functions u a ∂ ∂C u v v( , )  and v a ∂ ∂C u v u( , )  are
defined and nondecreasing almost everywhere on I.

Proof. The existence of the partial derivatives ∂ ∂C u v u( , )  and
∂ ∂C u v v( , )  is immediate because monotone functions (here the hori-
zontal and vertical sections of the copula) are differentiable almost eve-
rywhere. Inequalities (2.2.7) and (2.2.8) follow from (2.2.6) by setting
v1 = v2 and u1 = u2 , respectively. If v1 £ v2, then, from Lemma 2.1.3,
the function u a C u v C u v( , ) ( , )2 1-  is nondecreasing. Hence

∂ ∂C u v C u v u( , ) ( , )2 1-( )  is defined and nonnegative almost everywhere
on I, from which it follows that v a ∂ ∂C u v u( , )  is defined and nonde-
creasing almost everywhere on I. A similar result holds for u a
∂ ∂C u v v( , ) . �

Theorem 2.2.8. Let C be a copula. If ∂ ∂C u v v( , )  and ∂ ∂ ∂2C u v u v( , )

are continous on I2 and ∂ ∂C u v u( , )  exists for all u Œ (0,1) when v = 0,

then ∂ ∂C u v u( , )  and ∂ ∂ ∂2C u v v u( , )  exist in ( , )0 1 2 and ∂ ∂ ∂2C u v u v( , )

= ∂ ∂ ∂2C u v v u( , ) .
Proof. See (Seeley 1961).

Exercises

2.1 Verify the statements in Examples 2.1 and 2.2.

2.2 Show that M u v u v( , ) min( , )= , W u v u v( , ) max( , )= + -1 0 , and
P( , )u v  = uv are indeed copulas.

2.3 (a) Let C0 and C1 be copulas, and let q be any number in I. Show
that the weighted arithmetic mean ( )1 0 1- +q qC C  is also a copula.
Hence conclude that any convex linear combination of copulas is
a copula.
(b) Show that the geometric mean of two copulas may fail to be a
copula. [Hint: Let C be the geometric mean of P and W, and show

that the C-volume of the rectangle 1 2 3 4,[ ] ¥ 1 2 3 4,[ ]  is nega-
tive.]

2.4 The Fréchet and Mardia families of copulas.
(a) Let a, b be in I with a + b £ 1. Set
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C u v M u v u v W u va b a a b b, ( , ) ( , ) ( ) ( , ) ( , )= + - - +1 P .

Show that Ca b,  is a copula. A family of copulas that includes M,

P, and W is called comprehensive. This two-parameter compre-
hensive family is due to Fréchet (1958).
(b) Let q be in [–1,1], and set

  C u v M u v u v W u vq
q q q q q

( , )
( )

( , ) ( ) ( , )
( )

( , ).= + + - + -2
2

21
2

1
1
2

P (2.2.9)

Show that Cq  is a copula. This one-parameter comprehensive
family is due to Mardia (1970).

2.5 The Cuadras-Augé family of copulas.  Let q be in I, and set

C u v u v uv
uv u v

u v u v
q

q q
q

q( , ) [min( , )] [ ]
, ,

, .
= = £

≥

Ï
Ì
Ó

-
-

-
1

1

1

   

   
(2.2.10)

Show that Cq  is a copula. Note that C0 = P and C1 = M. This

family (weighted geometric means of M and P) is due to Cuadras
and Augé (1981).

2.6 Let C be a copula, and let (a,b) be any point in I2. For (u,v) in I2,
define

K u v V a u u a u b v v b va b C, ( , ) [ ( ), ( )] [ ( ), ( )]= - + - ¥ - + -( )1 1 1 1 .

Show that Ka b,  is a copula. Note that K u v C u v0 0, ( , ) ( , )= . Several
special cases will be of interest in Sects. 2.4, 2.7, and 6.4, namely:

K u v u C u v0 1 1, ( , ) ( , )= - - ,
K u v v C u v1 0 1, ( , ) ( , )= - - , and
K u v u v C u v11 1 1 1, ( , ) ( , )= + - + - - .

2.7 Let f be a function from I2 into I which is nondecreasing in each
variable and has margins given by f(t,1) = t = f(1,t) for all t in I.
Prove that f is grounded.

2.8 (a) Show that for any copula C, max( 2 1t - ,0) £ d C t( )  £ t for all t
in I.
(b) Show that d C t( )= d M t( )  for all t in I implies C = M.
(c) Show d C t( )= d W t( )  for all t in I does not imply that C = W.
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2.9 The secondary diagonal section of C is given by C t t( , )1- . Show
that C t t( , )1-  = 0 for all t in I implies C = W.

2.10 Let t be in [0,1), and let Ct be the function from I2 into I given
by

C u v u v t u v t
u vt ( , ) max( , ), ( , ) [ , ] ,

min( , ), .
= + - ŒÏ

Ì
Ó

1 1 2

              otherwise

(a) Show that Ct is a copula.

(b) Show that the level set ( , ) ( , )u v C u v ttŒ ={ }I2  is the set of
points in the triangle with vertices (t,1), (1,t), and (t,t), that is, the
shaded region in Fig. 2.3. The copula in this exercise illustrates
why the term “level set” is preferable to “level curve” for some
copulas.

2.11 This exercise shows that the 2-increasing condition (2.2.3) for
copulas is not a consequence of simpler properties. Let Q be the

function from I2 into I given by

Q u v
u v u v u v

u v

( , )
min , , , , ,

max , ,

=
+ -Ê

ËÁ
ˆ
¯̃

£ + £

+ -( )

Ï

Ì
Ô

ÓÔ

1
3

2
3

2
3

4
3

1 0 otherwise;

that is, Q has the values given in Fig. 2.4 in the various parts of I2.
(a) Show that for every u,v in I, Q u Q v( , ) ( , )0 0 0= = , Q u u( , )1 =
and Q v v( , )1 = ; W u v Q u v M u v( , ) ( , ) ( , )£ £ ; and that Q is continu-
ous, satisfies the Lipschitz condition (2.2.6), and is nondecreasing
in each variable.
(b) Show that Q fails to be 2-increasing, and hence is not a cop-

ula. [Hint: consider the Q-volume of the rectangle 1 3 2 3 2,[ ] .]

1/3u + v – (2/3)0

u

v

u + v – 1

Fig. 2.4. The function Q in Exercise 2.11
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2.3 Sklar’s Theorem

The theorem in the title of this section is central to the theory of copulas
and is the foundation of many, if not most, of the applications of that
theory to statistics. Sklar’s theorem elucidates the role that copulas play
in the relationship between multivariate distribution functions and their
univariate margins. Thus we begin this section with a short discussion of
distribution functions.

Definition 2.3.1. A distribution function is a function F with domain R
such that

1. F is nondecreasing,
2. F(–•) = 0 and F(•) = 1.

Example 2.4. For any number a in R, the unit step at a is the distribu-
tion function e a  given by

e a x
x a
x a

( )
, [ , ),
, [ , ];

= Œ -•
Œ •

Ï
Ì
Ó
0
1

and for any numbers a,b in R with a < b, the uniform distribution on
[a,b] is the distribution function Uab  given by

U x

x a
x a

b a
x a b

x b

ab ( )

, [ , ),

, [ , ],

, ( , ].

=

Œ -•
-
-

Œ

Œ •

Ï

Ì
ÔÔ

Ó
Ô
Ô

0

1 �

Definition 2.3.2. A joint distribution function is a function H with do-

main R2  such that
1. H is 2-increasing,
2. H(x,– •) = H(–•,y) = 0, and H(•,•) = 1.

Thus H is grounded, and because DomH = R2 , H has margins F and G
given by F(x) = H(x,•) and G(y) = H(•,y).  By virtue of Corollary
2.2.6, F and G are distribution functions.

Example 2.5. Let H be the function with domain R2  given by

H x y

x e

x e
x y

e x y

y

y

y( , )

( )( )
, ( , ) [ , ] [ , ],

, ( , ) ( , ] [ , ],

,

=

+ -
+ -

Œ - ¥ •

- Œ • ¥ •

Ï

Ì

Ô
Ô

Ó

Ô
Ô

-

1 1

2 1
11 0

1 1 0

0 elsewhere.
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It is tedious but elementary to verify that H is 2-increasing and
grounded, and that H(•,•) = 1. Hence H is a joint distribution function.
The margins of H are the distribution functions F and G given by

F U= -11,   and  G y
y

e yy( )
, [ , ),

, [ , ].
=

Œ -•
- Œ •

Ï
Ì
Ó

-
0 0

1 0

 [Cf. Examples 2.3 and 2.4.] �
Note that there is nothing “probabilistic” in these definitions of dis-

tribution functions. Random variables are not mentioned, nor is left-
continuity or right-continuity. All the distribution functions of one or
of two random variables usually encountered in statistics satisfy either
the first or the second of the above definitions. Hence any results we de-
rive for such distribution functions will hold when we discuss random
variables, regardless of any additional restrictions that may be imposed.
Theorem 2.3.3. Sklar’s theorem. Let H be a joint distribution function
with margins F and G.  Then there exists a copula C such that for all x,y
in R ,

H(x,y) = C(F(x),G(y)). (2.3.1)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on RanF ¥ RanG. Conversely, if C is a copula and F and G
are distribution functions, then the function H defined by (2.3.1) is a
joint distribution function with margins F and G.

This theorem first appeared in (Sklar 1959). The name “copula”
was chosen to emphasize the manner in which a copula “couples” a
joint distribution function to its univariate margins. The argument that
we give below is essentially the same as in (Schweizer and Sklar 1974).
It requires two lemmas.
Lemma 2.3.4. Let H be a joint distribution function with margins F and
G. Then there exists a unique subcopula ¢C  such that

1. Dom ¢C  = RanF ¥ RanG,

2. For all x,y in R , H(x,y) = ¢C (F(x),G(y)).
Proof. The joint distribution H satisfies the hypotheses of Lemma

2.1.5 with S1 = S2 = R . Hence for any points ( , )x y1 1  and ( , )x y2 2  in

R2 ,

H x y H x y F x F x G y G y( , ) ( , ) ( ) ( ) ( ) ( )2 2 1 1 2 1 2 1- £ - + - .

It follows that if F x F x( ) ( )1 2=  and G y G y( ) ( )1 2= , then H x y( , )1 1  =
H x y( , )2 2 . Thus the set of ordered pairs

F x G y H x y x y( ), ( ) , ( , ) ,( )( ) Œ{ }R
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defines a 2-place real function ¢C  whose domain is RanF ¥ RanG. That
this function is a subcopula follows directly from the properties of H.
For instance, to show that (2.2.2) holds, we first note that for each u in
RanF, there is an x in R  such that F(x) = u.  Thus ¢C (u,1) =

¢C (F(x),G(•)) = H(x,•) = F(x) = u. Verifications of the other condi-
tions in Definition 2.2.1 are similar. �
Lemma 2.3.5. Let ¢C  be a subcopula. Then there exists a copula C
such that C(u,v) = ¢C (u,v) for all (u,v) in Dom ¢C ; i.e., any subcopula
can be extended to a copula. The extension is generally non-unique.

Proof.  Let Dom ¢C  = S1¥ S2. Using Theorem 2.2.4 and the fact that
¢C  is nondecreasing in each place, we can extend ¢C  by continuity to a

function ¢¢C  with domain S1¥ S2, where S1 is the closure of S1 and S2 is
the closure of S2. Clearly ¢¢C  is also a subcopula. We next extend ¢¢C  to

a function C with domain I2. To this end, let (a,b) be any point in I2,
let a1 and a2  be, respectively, the greatest and least elements of S1 that
satisfy a1 £ a £ a2 ; and let b1 and b2 be, respectively, the greatest and

least elements of S2 that satisfy b1 £ b £ b2. Note that if a is in S1, then

a1 = a = a2 ; and if b is in S2, then b1 = b = b2. Now let

l1
1 2 1 1 2

1 21
= - - <

=
Ï
Ì
Ó
( ) ( ), ,
, ;
a a a a a a

a a
   if 

                            if 

m1
1 2 1 1 2

1 21
= - - <

=
Ï
Ì
Ó
( ) ( ), ,
, ;
b b b b b b

b b
   if 

                            if 
and define

C a b C a b C a b

C a b C a b

( , ) ( )( ) ( , ) ( ) ( , )

( ) ( , ) ( , ).

= - - ¢¢ + - ¢¢
+ - ¢¢ + ¢¢

1 1 1

1
1 1 1 1 1 1 1 2

1 1 2 1 1 1 2 2

l m l m
l m l m                   

(2.3.2)

Notice that the interpolation defined in (2.3.2) is linear in each place
(what we call bilinear interpolation) because l1 and m1 are linear in a
and b, respectively.

It is obvious that DomC = I2, that C(a,b) = ¢¢C (a,b) for any (a,b) in
Dom ¢¢C ; and that C satisfies (2.2.2a) and (2.2.2b). Hence we only must
show that C satisfies (2.2.3). To accomplish this, let (c,d) be another

point in I2 such that c ≥ a and d ≥ b, and let c1, d1, c2 , d2, l2 , m2 be
related to c and d as a1, b1, a2 , b2, l1, m1 are related to a and b. In
evaluating V BC ( )  for the rectangle B = [a,c] ¥ [b,d], there will be sev-
eral cases to consider, depending upon whether or not there is a point in
S1 strictly between a and c, and whether or not there is a point in S2
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strictly between b and d. In the simplest of these cases, there is no point
in S1 strictly between a and c, and no point in S2 strictly between b and
d, so that c1 = a1, c2  = a2 , d1 = b1, and d2 = b2. Substituting (2.3.2)
and the corresponding terms for C(a,d), C(c,b) and C(c,d) into the ex-
pression given by (2.1.1) for V BC ( )  and simplifying yields

V B V a c b d V a a b bC C C( ) ([ , ] [ , ]) ( )( ) ([ , ] [ , ])= ¥ = - - ¥l l m m2 1 2 1 1 2 1 2 ,

from which it follows that V BC ( )  ≥ 0 in this case, as c ≥ a and d ≥ b im-

ply l2  ≥ l1 and m2 ≥ m1.

( , )a b1 1

(a,b)

(a,d)

(c,b)

(c,d)

( , )a b1 2

( , )a d1 2

( , )a d1 1
( , )a d2 1

( , )a d2 2

( , )a b2 2

( , )a b2 1

( , )c b2 1

( , )c b2 2

( , )c d2 2

( , )c d2 1
( , )c d1 1

( , )c d1 2

( , )c b1 2

( , )c b1 1

Fig. 2.5. The least simple case in the proof of Lemma 2.3.5

At the other extreme, the least simple case occurs when there is at
least one point in S1 strictly between a and c, and at least one point in
S2 strictly between b and d, so that a < a2  £ c1 < c and b < b2 £ d1 < d.
In this case—which is illustrated in Fig. 2.5—substituting (2.3.2) and
the corresponding terms for C(a,d), C(c,b) and C(c,d) into the expres-
sion given by (2.1.1) for V BC ( )  and rearranging the terms yields

V B V a a d d V a c d d

V c c d d V a a b d

V a c b d

C C C

C C

C

( ) ( ) ([ , ] [ , ]) ([ , ] [ , ])

([ , ] [ , ]) ( ) ([ , ] [ , ])

([ , ] [ , ])

= - ¥ + ¥
+ ¥ + - ¥
+ ¥ +

1

1
1 2 1 2 1 2 2 2 1 1 2

2 2 1 2 1 2 1 1 2 2 1

2 1 2 1

l m m
l m l

l22 1 2 2 1

1 1 1 2 1 2

1 2 1 1 2 2 1 1 2 1 2

1 1

1 1

V c c b d

V a a b b

V a c b b V c c b b

C

C

C C

([ , ] [ , ])

( )( ) ([ , ] [ , ])

( ) ([ , ] [ , ]) ( ) ([ , ] [ , ]).

¥
+ - - ¥
+ - ¥ + - ¥

l m
m l m

The right-hand side of the above expression is a combination of nine
nonnegative quantities (the C-volumes of the nine rectangles deter-
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mined by the dashed lines in Fig. 2.5) with nonnegative coefficients,
and hence is nonnegative. The remaining cases are similar, which com-
pletes the proof. �

Example 2.6. Let (a,b) be any point in R2, and consider the following
distribution function H:

H x y
x a y b
x a y b

( , )
, ,
, .

= < <
≥ ≥

Ï
Ì
Ó
0
1

 or 
 and 

The margins of H are the unit step functions e a  and e b . Applying
Lemma 2.3.4 yields the subcopula ¢C  with domain {0,1}¥{0,1} such
that ¢C (0,0) = ¢C (0,1) = ¢C (1,0) = 0 and ¢C (1,1) = 1. The extension of

¢C  to a copula C via Lemma 2.3.5 is the copula C = P, i.e., C(u,v) = uv.
Notice however, that every copula agrees with ¢C  on its domain, and
thus is an extension of this ¢C . �

We are now ready to prove Sklar’s theorem, which we restate here for
convenience.
Theorem 2.3.3. Sklar’s theorem. Let H be a joint distribution function
with margins F and G.  Then there exists a copula C such that for all x,y
in R ,

H(x,y) = C(F(x),G(y)). (2.3.1)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on RanF¥ RanG. Conversely, if C is a copula and F and G
are distribution functions, then the function H defined by (2.3.1) is a
joint distribution function with margins F and G.

Proof. The existence of a copula C such that (2.3.1) holds for all x,y
in R  follows from Lemmas 2.3.4 and 2.3.5. If F and G are continuous,
then RanF = RanG = I, so that the unique subcopula in Lemma 2.3.4 is
a copula. The converse is a matter of straightforward verification. �

Equation (2.3.1) gives an expression for joint distribution functions
in terms of a copula and two univariate distribution functions. But
(2.3.1) can be inverted to express copulas in terms of a joint distribu-
tion function and the “inverses” of the two margins. However, if a
margin is not strictly increasing, then it does not possess an inverse in
the usual sense. Thus we first need to define “quasi-inverses” of distri-
bution functions (recall Definition 2.3.1).
Definition 2.3.6. Let F be a distribution function. Then a quasi-inverse

of F is any function F( )-1  with domain I such that

1. if t is in RanF, then F( )-1 (t) is any number x in R  such that F(x) =
t, i.e., for all t in RanF,

F( F( )-1 (t)) = t;

2. if t is not in RanF, then
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F t x F x t x F x t( )( ) inf{ ( ) } sup{ ( ) }- = ≥ = £1 .

If F is strictly increasing, then it has but a single quasi-inverse, which is
of course the ordinary inverse, for which we use the customary notation

F -1.

Example 2.7. The quasi-inverses of e a , the unit step at a (see Example
2.4) are the functions given by

e a t
a t
a t
a t

( )( )
, ,

, ( , ),
, ,

- =
=

Œ
=

Ï
Ì
Ô

ÓÔ
1

0

1

0
0 1

1

where a0  and a1 are any numbers in R  such that a0  < a £ a1. �
Using quasi-inverses of distribution functions, we now have the fol-

lowing corollary to Lemma 2.3.4.
Corollary 2.3.7. Let H, F, G, and ¢C  be as in Lemma 2.3.4, and let

F( )-1  and G( )-1  be quasi-inverses of F and G, respectively. Then for
any (u,v) in Dom ¢C ,

¢ = - -C u v H F u G v( , ) ( ( ), ( ))( ) ( )1 1 . (2.3.3)

When F and G are continuous, the above result holds for copulas as
well and provides a method of constructing copulas from joint distribu-
tion functions. We will exploit Corollary 2.3.7 in the next chapter to
construct families of copulas, but for now the following examples will
serve to illustrate the procedure.
Example 2.8. Recall the distribution function H from Example 2.5:

H x y

x e

x e
x y

e x y

y

y

y( , )

( )( )
, ( , ) [ , ] [ , ],

, ( , ) ( , ] [ , ],

,

=

+ -
+ -

Œ - ¥ •

- Œ • ¥ •

Ï

Ì

Ô
Ô

Ó

Ô
Ô

-

1 1

2 1
11 0

1 1 0

0 elsewhere.

with margins F and G given by

F x
x

x x
x

( )
, ,

( ) , [ , ],
, ,

=
< -

+ Œ -
>

Ï
Ì
Ô

ÓÔ

0 1
1 2 1 1

1 1
  and  G y

y

e yy( )
, ,

, .
=

<
- ≥

Ï
Ì
Ó

-
0 0

1 0

Quasi-inverses of F and G are given by F( )-1 (u) = 2 1u -  and G( )-1 (v)
= - -ln( )1 v  for u,v in I. Because RanF = RanG = I, (2.3.3) yields the
copula C given by
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C u v
uv

u v uv
( , ) =

+ -
.

 
( . . )2 3 4

�
Example 2.9. Gumbel’s bivariate exponential distribution (Gumbel
1960a). Let Hq  be the joint distribution function given by

H x y
e e e x yx y x y xy

q

q
( , )

, , ,

, ;

( )

= - - + ≥ ≥Ï
Ì
Ó

- - - + +1 0 0

0 otherwise

where q is a parameter in [0,1]. Then the marginal distribution func-

tions are exponentials, with quasi-inverses F( )-1 (u) = - -ln( )1 u  and

G( )-1 (v) = - -ln( )1 v  for u,v in I.  Hence the corresponding copula is

C u v u v u v e u v
q

q( , ) ( )( ) ln( ) ln( )= + - + - - - - -1 1 1 1 1 . ( . . )2 3 5
�

Example 2.10. It is an exercise in many mathematical statistics texts to
find an example of a bivariate distribution with standard normal mar-
gins that is not the standard bivariate normal with parameters mx  = my

= 0, s x
2 = s y

2 = 1, and Pearson’s product-moment correlation coeffi-

cient r.  With Sklar’s theorem and Corollary 2.3.7 this becomes triv-
ial—let C be a copula such as one in either of the preceding examples,
and use standard normal margins in (2.3.1). Indeed, if F denotes the
standard (univariate) normal distribution function and Nr  denotes the
standard bivariate normal distribution function (with Pearson’s product-
moment correlation coefficient r), then any copula except one of the
form

C u v N u v

s st t
dsdt

vu

( , ) ( ( ), ( ))

exp
( )

( )

( )( )

=

=
-

- - +
-

È

Î
Í
Í

˘

˚
˙
˙

- -

-•-•

--

ÚÚ

r

p r

r
r

F F

FF

1 1

2

2 2

2

1

2 1

2

2 1

11 (2.3.6)

(with r π –1, 0, or 1) will suffice. Explicit constructions using the
copulas in Exercises 2.4, 2.12, and 3.11, Example 3.12, and Sect. 3.3.1
can be found in (Kowalski 1973), and one using the copula C1 2  from
Exercise 2.10 in (Vitale 1978). �

We close this section with one final observation. With an appropriate

extension of its domain to R2 , every copula is a joint distribution func-
tion with margins that are uniform on I. To be precise, let C be a copula,

and define the function HC  on R2  via
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H x y

x y

C x y x y
x y x
y x y

x y

C ( , )

, ,

( , ), ( , ) ,
, , ,
, , ,
, .

=

< <
Œ

> Œ
> Œ
> >

Ï

Ì

Ô
Ô

Ó

Ô
Ô

0 0 0

1
1

1 1 1

2

 or 

 and 

I
I
I

Then HC  is a distribution function both of whose margins are readily
seen to be U01. Indeed, it is often quite useful to think of copulas as re-

strictions to I2 of joint distribution functions whose margins are U01.

2.4 Copulas and Random Variables

In this book, we will use the term “random variable” in the statistical
rather than the probabilistic sense; that is, a random variable is a quan-
tity whose values are described by a (known or unknown) probability
distribution function. Of course, all of the results to follow remain valid
when a random variable is defined in terms of measure theory, i.e., as a
measurable function on a given probability space. But for our purposes
it suffices to adopt the descriptions of Wald (1947), “a variable x is
called a random variable if for any given value c a definite probability
can be ascribed to the event that x will take a value less than c”; and of
Gnedenko (1962), “a random variable is a variable quantity whose val-
ues depend on chance and for which there exists a distribution func-
tion.” For a detailed discussion of this point of view, see (Menger
1956).

In what follows, we will use capital letters, such as X and Y, to repre-
sent random variables, and lowercase letters x, y to represent their values.
We will say that F is the distribution function of the random variable X
when for all x in R , F(x) = P[X £ x]. We are defining distribution func-
tions of random variables to be right-continuous—but that is simply a
matter of custom and convenience. Left-continuous distribution func-
tions would serve equally as well. A random variable is continuous if its
distribution function is continuous.

When we discuss two or more random variables, we adopt the same
convention—two or more random variables are the components of a
quantity (now a vector) whose values are described by a joint distribu-
tion function. As a consequence, we always assume that the collection of
random variables under discussion can be defined on a common prob-
ability space.

We are now in a position to restate Sklar’s theorem in terms of ran-
dom variables and their distribution functions:
Theorem 2.4.1. Let X and Y be random variables with distribution
functions F and G, respectively, and joint distribution function H.  Then
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there exists a copula C such that (2.3.1) holds. If F and G are continu-
ous, C is unique. Otherwise, C is uniquely determined on RanF¥RanG.

The copula C in Theorem 2.4.1 will be called the copula of X and Y,
and denoted CXY  when its identification with the random variables X
and Y is advantageous.

The following theorem shows that the product copula P(u,v) = uv
characterizes independent random variables when the distribution func-
tions are continuous. Its proof follows from Theorem 2.4.1 and the ob-
servation that X and Y are independent if and only if H(x,y) = F(x)G(y)

for all x,y in R2 .
Theorem 2.4.2.  Let X and Y be continuous random variables. Then X
and Y are independent if and only if CXY  = P.

Much of the usefulness of copulas in the study of nonparametric sta-
tistics derives from the fact that for strictly monotone transformations of
the random variables, copulas are either invariant or change in predict-
able ways. Recall that if the distribution function of a random variable X
is continuous, and if a is a strictly monotone function whose domain
contains RanX, then the distribution function of the random variable
a(X) is also continuous. We treat the case of strictly increasing trans-
formations first.
Theorem 2.4.3. Let X and Y be continuous random variables with cop-
ula CXY .  If a and b are strictly increasing on RanX and RanY, respec-
tively, then C X Ya b( ) ( )  = CXY . Thus CXY  is invariant under strictly in-
creasing transformations of X and Y.

Proof. Let F1, G1, F2 , and G2 denote the distribution functions of X,
Y, a(X), and b(Y), respectively. Because a and b are strictly increasing,

F2 (x) = P X x[ ( ) ]a £  = P X x[ ( )]£ -a 1  = F x1
1( ( ))a - , and likewise

G2(y) = G y1
1( ( ))b - . Thus, for any x,y in R ,

C F x G y P X x Y y

P X x Y y

C F x G y

C F x G y

X Y

XY

XY

a b a b

a b

a b

( ) ( )( ( ), ( )) [ ( ) , ( ) ]

[ ( ), ( )]

( ( ( )), ( ( )))

( ( ), ( )).

2 2

1 1

1
1

1
1

2 2

= £ £

= £ £

=
=

- -

- -

Because X and Y are continuous, Ran F2  = Ran G2 = I, whence it follows

that C X Ya b( ) ( )  = CXY  on I2. �
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When at least one of a and b is strictly decreasing, we obtain results

in which the copula of the random variables a(X) and b(Y) is a simple
transformation of CXY . Specifically, we have:
Theorem 2.4.4. Let X and Y be continuous random variables with cop-
ula CXY . Let a and b be strictly monotone on RanX and RanY, respec-
tively.

1. If a is strictly increasing and b is strictly decreasing, then

C u v u C u vX Y XYa b( ) ( )( , ) ( , )= - -1 .

2. If a is strictly decreasing and b is strictly increasing, then

C u v v C u vX Y XYa b( ) ( )( , ) ( , )= - -1 .

3. If a  and b are both strictly decreasing, then

C u v u v C u vX Y XYa b( ) ( )( , ) ( , )= + - + - -1 1 1 .

The proof of Theorem 2.4.4 is left as an exercise. Note that in each
case the form of the copula is independent of the particular choices of
a and b, and note further that the three forms for C X Ya b( ) ( )  that appear
in this theorem were first encountered in Exercise 2.6. [Remark: We
could be somewhat more general in the preceding two theorems by re-
placing phrases such as “strictly increasing” by “almost surely strictly
increasing”—to allow for subsets of Lebesgue measure zero where the
property may fail to hold.]

Although we have chosen to avoid measure theory in our definition
of random variables, we will nevertheless need some terminology and
results from measure theory in the remaining sections of this chapter
and in chapters to come. Each joint distribution function H induces a

probability measure on R2 via V x yH ( , ] ( , ]-• ¥ -•( )  = H(x,y) and a

standard extension to Borel subsets of R2 using measure-theoretic
techniques. Because copulas are joint distribution functions (with uni-

form (0,1) margins), each copula C induces a probability measure on I2

via V u vC ([ , ] [ , ])0 0¥  = C(u,v) in a similar fashion—that is, the C-
measure of a set is its C-volume VC . Hence, at an intuitive level, the C-

measure of a subset of I2 is the probability that two uniform (0,1) ran-
dom variables U and V with joint distribution function C assume values
in that subset. C-measures are often called doubly stochastic measures,
as for any measurable subset S of I, VC (S¥I) = VC (I¥S) = l(S), where l
denotes ordinary Lebesgue measure on I. The term “doubly stochas-
tic” is taken from matrix theory, where doubly stochastic matrices have
nonnegative entries and all row sums and column sums are 1.
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For any copula C, let

C(u,v) = AC (u,v) + SC (u,v),
where

   A u v
s t

C s t dtdsC

vu
( , ) ( , )= ÚÚ ∂

∂ ∂

2

00
 and SC (u,v)=C(u,v)– AC (u,v). (2.4.1)

Unlike bivariate distributions in general, the margins of a copula are

continuous, hence a copula has no “atoms” (individual points in I2

whose C-measure is positive).

If C ∫ AC  on I2—that is, if considered as a joint distribution func-

tion, C has a joint density given by ∂ ∂ ∂2C u v u v( , ) —then C is absolutely

continuous, whereas if C ∫ SC  on I2—that is, if ∂ ∂ ∂2C u v u v( , )  = 0 almost

everywhere in I2—then C is singular. Otherwise, C has an absolutely
continuous component AC  and a singular component SC . In this case
neither AC  nor SC  is a copula, because neither has uniform (0,1) mar-
gins. In addition, the C-measure of the absolutely continuous compo-
nent is AC (1,1), and the C-measure of the singular component is
SC (1,1).

Just as the support of a joint distribution function H is the comple-

ment of the union of all open subsets of R2 with H-measure zero, the
support of a copula is the complement of the union of all open subsets

of I2 with C-measure zero. When the support of C is I2, we say C has
“full support.” When C is singular, its support has Lebesgue measure
zero (and conversely). However, many copulas that have full support
have both an absolutely continuous and a singular component.
Example 2.11. The support of the Fréchet-Hoeffding upper bound M is

the main diagonal of I2, i.e., the graph of v = u for u in I, so that M is
singular.  This follows from the fact that the M-measure of any open
rectangle that lies entirely above or below the main diagonal is zero.

Also note that ∂ ∂ ∂2 0M u v =  everywhere in I2 except on the main di-
agonal. Similarly, the support of the Fréchet-Hoeffding lower bound W

is the secondary diagonal of I2, i.e., the graph of v = 1 – u for u in I,
and thus W is singular as well. �

Example 2.12. The product copula P(u,v) = uv is absolutely continu-

ous, because for all (u,v) in I2,

A u v
s t

s t dtds dtds uv u v
vu vu

P P P( , ) ( , ) ( , )= = = =ÚÚ ÚÚ∂
∂ ∂

2

00 00
1 . �
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In Sect. 3.1.1 we will illustrate a general procedure for decomposing
a copula into the sum of its absolutely continuous and singular compo-
nents and for finding the probability mass (i.e., C-measure) of each
component.

Exercises

2.12 Gumbel’s bivariate logistic distribution (Gumbel 1961). Let X
and Y be random variables with a joint distribution function given
by

H x y e ex y( , ) ( )= + +- - -1 1

for all x,y in R .
(a) Show that X and Y have standard (univariate) logistic distribu-
tions, i.e.,

F x e x( ) ( )= + - -1 1 and G y e y( ) ( )= + - -1 1.

(b) Show that the copula of X and Y is the copula given by (2.3.4)
in Example 2.8.

2.13 Type B bivariate extreme value distributions (Johnson and Kotz
1972). Let X and Y be random variables with a joint distribution
function given by

H x y e ex y
q

q q q( , ) exp[ ( ) ]= - +- - 1

for all x,y in R , where q ≥ 1. Show that the copula of X and Y is
given by

C u v u vq
q q q

( , ) exp ( ln ) ( ln )= - - + -[ ]Ê
Ë

ˆ
¯

1
. (2.4.2)

This parametric family of copulas is known as the Gumbel-
Hougaard family (Hutchinson and Lai 1990), which we shall see
again in Chapter 4.

2.14 Conway (1979) and Hutchinson and Lai (1990) note that Gum-
bel’s bivariate logistic distribution (Exercise 2.12) suffers from
the defect that it lacks a parameter, which limits its usefulness in
applications. This can be corrected in a number of ways, one of
which (Ali et al. 1978) is to define Hq  as

H x y e e ex y x y
q q( , ) ( )= + + + -( )- - - - -

1 1
1

for all x,y in R , where q lies in [–1,1]. Show that
(a) the margins are standard logistic distributions;



2.4 Copulas and Random Variables      29

(b) when q = 1, we have Gumbel’s bivariate logistic distribution;

(c) when q = 0, X and Y are independent; and
(d) the copula of X and Y is given by

C u v
uv

u vq q
( , )

( )( )
=

- - -1 1 1
. (2.4.3)

This is the Ali-Mikhail-Haq family of copulas (Hutchinson and
Lai 1990), which we will encounter again in Chapters 3 and 4.

2.15 Let X1 and Y1 be random variables with continuous distribution
functions F1 and G1, respectively, and copula C. Let F2  and G2

be another pair of continuous distribution functions, and set X2 =

F2
1( )- ( F1( X1)) and Y2 = G2

1( )- ( G1( Y1)). Prove that
(a) the distribution functions of X2 and Y2 are F2  and G2, re-
spectively; and
(b) the copula of X2 and Y2 is C.

2.16 (a) Let X and Y be continuous random variables with copula C
and univariate distribution functions F and G, respectively. The
random variables max(X,Y) and min(X,Y) are the order statistics
for X and Y. Prove that the distribution functions of the order sta-
tistics are given by

P X Y t C F t G t[max( , ) ] ( ( ), ( ))£ =
and

P X Y t F t G t C F t G t[min( , ) ] ( ) ( ) – ( ( ), ( ))£ = + ,

so that when F = G,

P X Y t F tC[max( , ) ] ( ( ))£ = d  and
P X Y t F t F tC[min( , ) ] ( ) – ( ( ))£ = 2 d .

(b) Show that bounds on the distribution functions of the order
statistics are given by

max( ( ) ( ) , ) [max( , ) ] min( ( ), ( ))F t G t P X Y t F t G t+ - £ £ £1 0
and

max( ( ), ( )) [min( , ) ] min( ( ) ( ), )F t G t P X Y t F t G t£ £ £ + 1 .

2.17 Prove Theorem 2.4.4.
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2.5 The Fréchet-Hoeffding Bounds for Joint Distribution
Functions

In Sect. 2.2 we encountered the Fréchet-Hoeffding bounds as universal
bounds for copulas, i.e., for any copula C and for all u,v in I,

W u v u v C u v u v M u v( , ) max( , ) ( , ) min( , ) ( , )= + - £ £ =1 0 .

As a consequence of Sklar’s theorem, if X and Y are random vari-
ables with a joint distribution function H and margins F and G, respec-
tively, then for all x,y in R ,

max( ( ) ( ) , ) ( , ) min( ( ), ( ))F x G y H x y F x G y+ - £ £1 0 (2.5.1)

Because M and W are copulas, the above bounds are joint distribution
functions and are called the Fréchet-Hoeffding bounds for joint distri-
bution functions H with margins F and G. Of interest in this section is
the following question: What can we say about the random variables X
and Y when their joint distribution function H is equal to one of its Fré-
chet-Hoeffding bounds?

To answer this question, we first need to introduce the notions of

nondecreasing and nonincreasing sets in R2 .

Definition 2.5.1. A subset S of R2  is nondecreasing if for any (x,y) and

(u,v) in S, x < u implies y £ v. Similarly, a subset S of R2  is nonin-

creasing if for any (x,y) and (u,v) in S, x < u implies y ≥ v.
Fig. 2.6 illustrates a simple nondecreasing set.

Fig. 2.6. The graph of a nondecreasing set

We will now prove that the joint distribution function H for a pair
(X,Y) of random variables is the Fréchet-Hoeffding upper bound (i.e.,
the copula is M) if and only if the support of H lies in a nondecreasing
set. The following proof is based on the one that appears in (Mi-
kusiński, Sherwood and Taylor 1991-1992). But first, we need two
lemmas:
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Lemma 2.5.2. Let S be a subset of R2 . Then S is nondecreasing if and

only if for each (x,y) in R2 , either
1. for all (u,v) in S, u £ x implies v £ y; or (2.5.2)

2. for all (u,v) in S, v £ y implies u £ x. (2.5.3)
Proof. First assume that S is nondecreasing, and that neither (2.5.2)

nor (2.5.3) holds. Then there exist points (a,b) and (c,d) in S such that
a £ x, b > y, d £ y, and c > x. Hence a < c and b > d; a contradiction. In
the opposite direction, assume that S is not nondecreasing. Then there
exist points (a,b) and (c,d) in S with a < c and b > d.  For (x,y) =

( ) ,( )a c b d+ +( )2 2 , neither (2.5.2) nor (2.5.3) holds. �

Lemma 2.5.3. Let X and Y be random variables with joint distribution
function H. Then H is equal to its Fréchet-Hoeffding upper bound if

and only if for every (x,y) in R2 , either P[X > x, Y £ y] = 0 or P[X £ x, Y
> y] = 0.

Proof: As usual, let F and G denote the margins of H. Then

F x P X x P X x Y y P X x Y y

H x y P X x Y y

( ) [ ] [ , ] [ , ]

( , ) [ , ],

= £ = £ £ + £ >
= + £ >

and
G y P Y y P X x Y y P X x Y y

H x y P X x Y y

( ) [ ] [ , ] [ , ]

( , ) [ , ].

= £ = £ £ + > £
= + > £

Hence H(x,y) = M(F(x),G(y)) if and only if min( [ , ],P X x Y y£ >
P X x Y y[ , ])> £  = 0, from which the desired conclusion follows. �

We are now ready to prove
Theorem 2.5.4. Let X and Y be random variables with joint distribution
function H. Then H is identically equal to its Fréchet-Hoeffding upper

bound if and only if the support of H is a nondecreasing subset of R2 .
Proof.  Let S denote the support of H, and let (x,y) be any point in

R2 . Then (2.5.2) holds if and only if ( , )u v u x v y S£ >{ } « = ∆ and ;

or equivalently, if and only if P[X £ x, Y > y] = 0. Similarly, (2.5.3)

holds if and only if ( , )u v u x v y S> £{ } « = ∆ and ; or equivalently, if

and only if P[X > x, Y £ y] = 0. The theorem now follows from Lemmas
2.5.2 and 2.5.3. �

Of course, there is an analogous result for the Fréchet-Hoeffding
lower bound—its proof is outlined in Exercises 2.18 through 2.20:
Theorem 2.5.5. Let X and Y be random variables with joint distribution
function H. Then H is identically equal to its Fréchet-Hoeffding lower

bound if and only if the support of H is a nonincreasing subset of R2 .
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When X and Y are continuous, the support of H can have no hori-
zontal or vertical line segments, and in this case it is common to say that
“Y is almost surely an increasing function of X” if and only if the cop-
ula of X and Y is M; and “Y is almost surely a decreasing function of
X” if and only if the copula of X and Y is W. If U and V are uniform
(0,1) random variables whose joint distribution function is the copula M,
then P[U = V] = 1; and if the copula is W, then P[U + V = 1] = 1.

Random variables with copula M are often called comonotonic, and
random variables with copula W are often called countermonotonic.

2.6 Survival Copulas

In many applications, the random variables of interest represent the
lifetimes of individuals or objects in some population. The probability
of an individual living or surviving beyond time x is given by the sur-
vival function (or survivor function, or reliability function) F x( ) =
P X x[ ]>  = 1- F x( ) , where, as before, F denotes the distribution func-
tion of X. When dealing with lifetimes, the natural range of a random
variable is often [0,•); however, we will use the term “survival func-

tion” for P X x[ ]>  even when the range is R .
For a pair (X,Y) of random variables with joint distribution function

H, the joint survival function is given by H x y( , ) = P X x Y y[ , ]> > . The
margins of H  are the functions H x( , )-•  and H y( , )-• , which are the
univariate survival functions F  and G , respectively. A natural question
is the following: Is there a relationship between univariate and joint sur-
vival functions analogous to the one between univariate and joint distri-
bution functions, as embodied in Sklar’s theorem? To answer this ques-
tion, suppose that the copula of X and Y is C. Then we have

H x y F x G y H x y

F x G y C F x G y

F x G y C F x G y

( , ) ( ) ( ) ( , )

( ) ( ) ( ( ), ( ))

( ) ( ) ( ( ), ( )),

= - - +
= + - +
= + - + - -

1

1

1 1 1

so that if we define a function Ĉ  from I2 into I by

ˆ( , ) ( , )C u v u v C u v= + - + - -1 1 1 , (2.6.1)
we have

H x y C F x G y( , ) ˆ( ( ), ( ))= . (2.6.2)

First note that, as a consequence of Exercise 2.6, the function Ĉ  in
(2.6.1) is a copula (see also part 3 of Theorem 2.4.4). We refer to Ĉ  as
the survival copula of X and Y. Secondly, notice that Ĉ  “couples” the
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joint survival function to its univariate margins in a manner completely
analogous to the way in which a copula connects the joint distribution
function to its margins.

Care should be taken not to confuse the survival copula Ĉ  with the
joint survival function C  for two uniform (0,1) random variables whose
joint distribution function is the copula C. Note that C (u,v) =
P U u V v[ , ]> >  = 1 – u – v + C(u,v) = Ĉ (1 – u,1 – v).

Example 2.13. In Example 2.9, we obtained the copula Cq  in (2.3.5)
for Gumbel’s bivariate exponential distribution: for q in [0,1],

C u v u v u v e u v
q

q( , ) ( )( ) ln( ) ln( )= + - + - - - - -1 1 1 1 1 .

Just as the survival function for univariate exponentially distributed
random variables is functionally simpler than the distribution function,
the same is often true in the bivariate case. Employing (2.6.1), we have

ˆ ( , ) ln lnC u v uve u v
q

q= - . �

Example 2.14. A bivariate Pareto distribution (Hutchinson and Lai
1990). Let X and Y be random variables whose joint survival function is
given by

H x y

x y x y

x x y

y x y
x y

q

q

q

q
( , )

( ) , , ,

( ) , , ,

( ) , , ,
, , ;

=

+ + ≥ ≥
+ ≥ <
+ < ≥

< <

Ï

Ì
ÔÔ

Ó
Ô
Ô

-

-

-

1 0 0

1 0 0

1 0 0
1 0 0

where q > 0. Then the marginal survival functions F  and G  are

F x x x
x

( ) ( ) ,
, ,

= + ≥
<

Ï
Ì
Ó

-1 0
1 0

q
  and  G y y y

y
( ) ( ) ,

, ,
= + ≥

<
Ï
Ì
Ó

-1 0
1 0

q

so that X and Y have identical Pareto distributions. Inverting the survival
functions and employing the survival version of Corollary 2.3.7 (see
Exercise 2.25) yields the survival copula

ˆ ( , ) ( )C u v u vq
q q q= + -- - -1 1 1 . (2.6.3)

We shall encounter this family again in Chapter 4. �
Two other functions closely related to copulas—and survival copu-

las—are the dual of a copula and the co-copula (Schweizer and Sklar
1983). The dual of a copula C is the function C̃  defined by
˜( , ) ( , )C u v u v C u v= + - ; and the co-copula is the function C *  defined

by C u v C u v* = - - -( , ) ( , )1 1 1 . Neither of these is a copula, but when C
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is the copula of a pair of random variables X and Y, the dual of the cop-
ula and the co-copula each express a probability of an event involving
X and Y.  Just as

P X x Y y C F x G y[ , ] ( ( ), ( ))£ £ =  and P X x Y y C F x G y[ , ] ˆ( ( ), ( ))> > = ,

we have

P X x Y y C F x G y[ ] ˜( ( ), ( ))£ £ = or , (2.6.4)
and

P X x Y y C F x G y[ ] ( ( ), ( ))> > = * or . (2.6.5)

Other relationships among C, Ĉ , C̃ , and C *  are explored in Exer-
cises 2.24 and 2.25.

Exercises

2.18 Prove the “Fréchet-Hoeffding lower bound” version of Lemma

2.5.2: Let S be a subset of R2 . Then S is nonincreasing if and

only if for each (x,y) in R2 , either
1. for all (u,v) in S, u £ x implies v > y; or

2. for all (u,v) in S, v > y implies u £ x.

2.19 Prove the “Fréchet-Hoeffding lower bound” version of Lemma
2.5.3: Let X and Y be random variables whose joint distribution
function H is equal to its Fréchet-Hoeffding lower bound. Then

for every (x,y) in R2 , either P X x Y y[ , ]> >  = 0 or P X x Y y[ , ]£ £
= 0

2.20 Prove Theorem 2.5.5.

2.21 Let X and Y be nonnegative random variables whose survival

function is H x y e ex y( , ) ( )= + - -1 1 for x,y ≥ 0.
(a) Show that X and Y are standard exponential random variables.
(b) Show that the copula of X and Y is the copula given by (2.3.4)
in Example 2.8 [cf. Exercise 2.12].

2.22 Let X and Y be continuous random variables whose joint distribu-
tion function is given by C(F(x),G(y)), where C is the copula of X
and Y, and F and G are the distribution functions of X and Y re-
spectively. Verify that (2.6.4) and (2.6.5) hold.
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2.23 Let X1, Y1, F1, G1, F2 , G2, and C be as in Exercise 2.15. Set X2 =

F2
1( )- (1 – F1( X1)) and Y2 = G2

1( )- (1 – G1( Y1)). Prove that
(a) The distribution functions of X2 and Y2 are F2  and G2, re-
spectively; and
(b) The copula of X2 and Y2 is Ĉ .

2.24 Let X and Y be continuous random variables with copula C and a
common univariate distribution function F. Show that the distri-
bution and survival functions of the order statistics (see Exercise
2.16) are given by

Order
statistic

Distribution
function

Survival
function

max(X,Y) d ( ( ))F t d *( ( ))F t
min(X,Y) ˜( ( ))d F t ˆ( ( ))d F t

where d, d̂ , d̃ , and d *  denote the diagonal sections of C, Ĉ , C̃ ,

and C * , respectively.

2.25 Show that under composition o, the set of operations of forming
the survival copula, the dual of a copula, and the co-copula of a
given copula, along with the identity (i.e.,  “ Ÿ ”, “~”, “*”, and

“i”) yields the dihedral group (e.g., C C* * = , so *o* = i; ˆ ˜C C* = ,

so Ÿo* = ~, etc.):

o

~
^

*

i
i ^ ~ *
i

i
i

i

^
^

^
^

~
~

~
~*
*

*
*

2.26 Prove the following “survival” version of Corollary 2.3.7: Let
H , F , G , and Ĉ  be as in (2.6.2), and let F ( )-1  and G ( )-1  be

quasi-inverses of F  and G , respectively. Then for any (u,v) in I2,

ˆ( , ) ( ( ), ( ))( ) ( )C u v H F u G v= - -1 1 .
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2.7 Symmetry

If X is a random variable and a is a real number, we say that X is sym-
metric about a if the distribution functions of the random variables
X a-  and a X-  are the same, that is, if for any x in R, P X a x[ ]- £  =
P a X x[ ]- £ . When X is continuous with distribution function F, this is
equivalent to

F a x( )+  = F a x( )- (2.7.1)

[when F is discontinuous, (2.7.1) holds only at the points of continuity
of F].

Now consider the bivariate situation. What does it mean to say that a
pair (X,Y) of random variables is “symmetric” about a point (a,b)?
There are a number of ways to answer this question, and each answer
leads to a different type of bivariate symmetry.
Definition 2.7.1. Let X and Y be random variables and let (a,b) be a

point in R2.
1. (X,Y) is marginally symmetric about (a,b) if X and Y are symmetric

about a and b, respectively.
2. (X,Y) is radially symmetric about (a,b) if the joint distribution

function of X a-  and Y b-  is the same as the joint distribution func-
tion of a X- and b Y- .

3. (X,Y) is jointly symmetric about (a,b) if the following four pairs of
random variables have a common joint distribution: ( X a- ,Y b- ),
( X a- ,b Y- ), ( a X- ,Y b- ), and ( a X- ,b Y- ).

When X and Y are continuous, we can express the condition for radial
symmetry in terms of the joint distribution and survival functions of X
and Y in a manner analogous to the relationship in (2.7.1) between uni-
variate distribution and survival functions:
Theorem 2.7.2. Let X and Y be continuous random variables with joint
distribution function H and margins F and G, respectively. Let (a,b) be

a point in R2. Then (X,Y) is radially symmetric about (a,b) if and only
if

H a x b y( , )+ +  = H a x b y( , )- -  for all (x,y) in R2. (2.7.2)

The term “radial” comes from the fact that the points ( , )a x b y+ +
and ( , )a x b y- -  that appear in (2.7.2) lie on rays emanating in oppo-
site directions from (a,b). Graphically, Theorem 2.7.2 states that re-
gions such as those shaded in Fig. 2.7(a) always have equal H-volume.
Example 2.15. The bivariate normal distribution with parameters mx ,

my , s x
2, s y

2, and r is radially symmetric about the point ( , )m mx y . The
proof is straightforward (but tedious)—evaluate double integrals of the
joint density over the shaded regions in Fig. 2.7(a). �
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(a,b)

(a+x,b+y)

(a–x,b–y)

H(a+x,b+y)

H(a–x,b–y)

v

u1–u

1–v

(a) (b)

Fig. 2.7. Regions of equal probability for radially symmetric random variables

Example 2.16. The bivariate normal is a member of the family of ellip-
tically contoured distributions. The densities for such distributions have
contours that are concentric ellipses with constant eccentricity. Well-
known members of this family, in addition to the bivariate normal, are
bivariate Pearson type II and type VII distributions (the latter including
bivariate t and Cauchy distributions as special cases). Like the bivariate
normal, elliptically contoured distributions are radially symmetric. �

It is immediate that joint symmetry implies radial symmetry and easy
to see that radial symmetry implies marginal symmetry (setting x = • in

(2.7.2) yields (2.7.1); similarly for y = •). Indeed, joint symmetry is a
very strong condition—it is easy to show that jointly symmetric random
variables must be uncorrelated when the requisite second-order mo-
ments exist (Randles and Wolfe 1979). Consequently, we will focus on
radial symmetry, rather than joint symmetry, for bivariate distributions.

Because the condition for radial symmetry in (2.7.2) involves both
the joint distribution and survival functions, it is natural to ask if copulas
and survival copulas play a role in radial symmetry. The answer is pro-
vided by the next theorem.
Theorem 2.7.3. Let X and Y be continuous random variables with joint
distribution function H, marginal distribution functions F and G, re-
spectively, and copula C. Further suppose that X and Y are symmetric
about a and b, respectively. Then (X,Y) is radially symmetric about
(a,b), i.e., H satisfies (2.7.2), if and only if C = Ĉ , i.e., if and only if C
satisfies the functional equation

C u v u v C u v( , ) ( , )= + - + - -1 1 1  for all (u,v) in I2. (2.7.3)

Proof. Employing (2.6.2) and (2.7.1), the theorem follows from the
following chain of equivalent statements:
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H a x b y H a x b y x y

C F a x G b y C F a x G b y x y

C F a x G b y C F a x G b y x y

C

( , ) ( , ) ( , )

( ( ), ( )) ˆ( ( ), ( )) ( , ) ,

( ( ), ( )) ˆ( ( ), ( )) ( , ) ,

(

+ + = - -
¤ + + = - -
¤ + + = + +
¤

 for all  in 

 for all  in 

 for all  in 

R

R

R

2

2

2

uu v C u v u v, ) ˆ( , ) ( , ) .=  for all  in I2
�

Geometrically, (2.7.3) states that for any (u,v) in I2, the rectangles
[0,u]¥[0,v] and [1- u ,1]¥[1- v ,1] have equal C-volume, as illustrated in
Fig. 2.7(b).

Another form of symmetry is exchangeability—random variables X
and Y are exchangeable if the vectors (X,Y) and (Y,X) are identically
distributed. Hence if the joint distribution function of X and Y is H, then

H(x,y) = H(y,x) for all x,y in R2 . Clearly exchangeable random vari-
ables must be identically distributed, i.e., have a common univariate
distribution function.  For identically distributed random variables, ex-
changeability is equivalent to the symmetry of their copula as expressed
in the following theorem, whose proof is straightforward.
Theorem 2.7.4. Let X and Y be continuous random variables with joint
distribution function H, margins F and G, respectively, and copula C.
Then X and Y are exchangeable if and only if F = G and C(u,v) =

C(v,u) for all (u,v) in I2.

When C(u,v) = C(v,u) for all (u,v) in I2, we will say simply that C is
symmetric.
Example 2.17. Although identically distributed independent random
variables must be exchangeable (because the copula P is symmetric),
the converse is of course not true—identically distributed exchangeable
random variables need not be independent. To show this, simply choose
for the copula of X and Y any symmetric copula except P, such as one
from Example 2.8, 2.9 (or 2.13), or from one of the families in Exer-
cises 2.4 and 2.5. �

There are other bivariate symmetry concepts. See (Nelsen 1993) for
details.

2.8 Order

The Fréchet-Hoeffding bounds inequality—W(u,v) £ C(u,v) £ M(u,v)
for every copula C and all u,v in I—suggests a partial order on the set
of copulas:
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Definition 2.8.1. If C1 and C2 are copulas, we say that C1 is smaller
than C2 (or C2 is larger than C1), and write C C1 2p  (or C C2 1f ) if
C u v C u v1 2( , ) ( , )£  for all u,v in I.

In other words, the Fréchet-Hoeffding lower bound copula W is
smaller than every copula, and the Fréchet-Hoeffding upper bound
copula M is larger than every copula. This point-wise partial ordering of
the set of copulas is called the concordance ordering and will be im-
portant in Chapter 5 when we discuss the relationship between copulas
and dependence properties for random variables (at which time the rea-
son for the name of the ordering will become apparent). It is a partial
order rather than a total order because not every pair of copulas is
comparable.

Example 2.18. The product copula P and the copula obtained by aver-
aging the Fréchet-Hoeffding bounds are not comparable. If we let
C(u,v) = [W(u,v)+M(u,v)]/2, then C(1/4,1/4) > P(1/4,1/4) and C(1/4,3/4)

< P(1/4,3/4), so that neither C p P nor P  p C holds. �
However, there are families of copulas that are totally ordered. We

will call a totally ordered parametric family Cq{ }  of copulas positively

ordered if C Ca bp  whenever a £ b; and negatively ordered if C Ca bf

whenever a £ b.

Example 2.19. The Cuadras-Augé family of copulas (2.2.10), intro-
duced in Exercise 2.5, is positively ordered, as for 0 £ a £ b £ 1 and u,v
in (0,1),

C u v

C u v

uv

u v
a

b

b a
( , )
( , ) min( , )

= Ê
ËÁ

ˆ
¯̃

£
-

1

and hence C Ca bp . �

Exercises

2.27 Let X and Y be continuous random variables symmetric about a
and b with marginal distribution functions F and G, respectively,
and with copula C. Is (X,Y) is radially symmetric (or jointly sym-
metric) about (a,b) if C is
(a) a member of the Fréchet family in Exercise 2.4?
(b) a member of the Cuadras-Augé family in Exercise 2.5?

2.28. Suppose X and Y are identically distributed continuous random
variables, each symmetric about a. Show that “exchangeability”
does not imply “radial symmetry,” nor does “radial symmetry”
imply “exchangeability.”
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2.29 Prove the following analog of Theorem 2.7.2 for jointly symmet-
ric random variables: Let X and Y be continuous random variables
with joint distribution function H and margins F and G, respec-

tively. Let (a,b) be a point in R2. Then (X,Y) is jointly symmetric
about (a,b) if and only if

H a x b y( , )+ +  = F a x H a x b y( ) ( , )+ - + -  for all (x,y) in R2

and

H a x b y( , )+ +  = G b y H a x b y( ) ( , )+ - - +  for all (x,y) in R2 .

2.30 Prove the following analog of Theorem 2.7.3 for jointly symmet-
ric random variables: Let X and Y be continuous random variables
with joint distribution function H, marginal distribution functions
F and G, respectively, and copula C. Further suppose that X and Y
are symmetric about a and b, respectively. Then (X,Y) is jointly
symmetric about (a,b), i.e., H satisfies the equations in Exercise
2.28, if and only if C satisfies

C u v u C u v( , ) ( , )= - -1  and C u v v C u v( , ) ( , )= - -1 (2.8.1)

for all (u,v) in I2. [Cf. Exercise 2.6 and Theorem 2.4.4].

2.31 (a) Show that C C1 2p  if and only if C C1 2p .

(b) Show that C C1 2p  if and only if ˆ ˆC C1 2p .

2.32 Show that the Ali-Mikhail-Haq family of copulas (2.4.3) from
Exercise 2.14 is positively ordered.

2.33 Show that the Mardia family of copulas (2.2.9) from Exercise 2.4
is neither positively nor negatively ordered. [Hint: evaluate C0,
C1 4 , and C1 2  at (u,v) = (3/4,1/4).]

2.9 Random Variate Generation

One of the primary applications of copulas is in simulation and Monte
Carlo studies. In this section, we will address the problem of generating
a sample from a specified joint distribution. Such samples can then be
used to study mathematical models of real-world systems, or for statisti-
cal studies, such as the comparison of a new statistical method with
competitors, robustness properties, or the agreement of asymptotic with
small sample results.

We assume that the reader is familiar with various procedures used to
generate independent uniform variates and with algorithms for using
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those variates to obtain samples from a given univariate distribution.
One such method is the inverse distribution function method. To obtain
an observation x of a random variable X with distribution function F:

1. Generate a variate u that is uniform on (0,1);

2. Set x = F( )-1 (u), where F( )-1  is any quasi-inverse of F (see Defi-
nition 2.3.6).

For a discussion and for alternative methods, see (Johnson 1987) or
(Devroye 1986).

There are a variety of procedures used to generate observations (x,y)
of a pair or random variables (X,Y) with a joint distribution function H.
In this section, we will focus on using the copula as a tool. By virtue of
Sklar’s theorem, we need only generate a pair (u,v) of observations of
uniform (0,1) random variables (U,V) whose joint distribution function
is C, the copula of X and Y, and then transform those uniform variates
via the algorithm such as the one in the preceding paragraph. One pro-
cedure for generating such of a pair (u,v) of uniform (0,1) variates is
the conditional distribution method. For this method, we need the con-
ditional distribution function for V given U = u, which we denote c vu ( ) :

c v P V vU u
C u u v C u v

u

C u v

uu
u

( ) [ ] lim
( , ) ( , ) ( , )= £ = = + - =

ÆD

D
D0

∂
∂

(2.9.1)

[Recall from Theorem 2.2.7 that the function v a ∂ ∂C u v u( , ) , which
we are now denoting c vu ( ) , exists and is nondecreasing almost every-
where in I].

1. Generate two independent uniform (0,1) variates u and t;

2. Set v = cu
( )-1 (t), where cu

( )-1  denotes a quasi-inverse of cu .
3. The desired pair is (u,v).

As with univariate distributions, there are many other algorithms—see
(Johnson 1987) or (Devroye 1986) for details.
Example 2.20. Let X and Y be random variables whose joint distribu-
tion function H is

H x y

x e

x e
x y

e x y

y

y

y( , )

( )( )
, ( , ) [ , ] [ , ],

, ( , ) ( , ] [ , ],

,

=

+ -
+ -

Œ - ¥ •

- Œ • ¥ •

Ï

Ì

Ô
Ô

Ó

Ô
Ô

-

1 1

2 1
11 0

1 1 0

0 elsewhere.

[recall Examples 2.5 and 2.8]. The copula C of X and Y is

C u v
uv

u v uv
( , ) =

+ -
,
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and so the conditional distribution function cu  and its inverse cu
( )-1  are

given by

c v
u

C u v
v

u v uvu ( ) ( , )= =
+ -

Ê
ËÁ

ˆ
¯̃

∂
∂

2

  and  c t
u t

u t
u
- =

- -
1

1 1
( )

( )
.

Thus an algorithm to generate random variates (x,y) is:
1. Generate two independent uniform (0,1) variates u and t;

2. Set v = 
u t

u t1 1- -( )
,

3. Set x = 2u – 1 and y = –ln(1 – v) [See Example 2.8 for the in-
verses of the marginal distribution functions.]

4. The desired pair is (x,y). �
Survival copulas can also be used in the conditional distribution

function method to generate random variates from a distribution with a
given survival function. Recall [see part 3 of Theorem 2.4.4 and
(2.6.1)] that if the copula C is the distribution function of a pair (U,V),
then the corresponding survival copula Ĉ (u,v) = u v C u v+ - + - -1 1 1( , )
is the distribution function of the pair (1- U ,1- V ). Also note that if U
is uniform on (0,1), so is the random variable 1- U . Hence we have the
following algorithm to generate a pair (U,V) whose distribution func-
tion is the copula C, given Ĉ :

1. Generate two independent uniform (0,1) variates u and t;

2. Set v = ˆ( )cu
-1 (t), where ˆ( )cu

-1  denotes a quasi-inverse of ĉu (v) =

∂ ∂ˆ( , )C u v u .
3. The desired pair is (u,v).

In the next chapter we will be presenting methods that can be used to
construct families of copulas. For many of those families, we will also
indicate methods for generating random samples from the distributions
that correspond to those copulas.

2.10 Multivariate Copulas

In this section, we extend the results of the preceding sections to the
multivariate case. Although many of the definitions and theorems have
analogous multivariate versions, not all do, so one must proceed with
care. In the interest of clarity, we will restate most of the definitions and
theorems in their multivariate versions. We will omit the proofs of theo-
rems for which the proof is similar to that in the bivariate case. Many of
the theorems in this section (with proofs) may be found in (Schweizer
and Sklar 1983) or the references contained therein.
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Some new notation will be advantageous here. For any positive inte-

ger n, we let Rn  denote the extended n-space R ¥ R ¥ … ¥ R . We will

use vector notation for points in Rn , e.g., a = ( , , , )a a an1 2 L , and we will
write a £ b when ak  £ bk  for all k; and a < b when ak  < bk  for all k. For

a £ b, we will let [a,b] denote the n-box B = [ , ]a b1 1 ¥[ , ]a b2 2 ¥…¥[ , ]a bn n ,
the Cartesian product of n closed intervals. The vertices of an n-box B
are the points c = ( , , , )c c cn1 2 L  where each ck  is equal to either ak  or

bk . The unit n-cube In  is the product I ¥ I ¥ … ¥ I. An n-place real

function H is a function whose domain, DomH, is a subset of Rn  and
whose range, RanH, is a subset of R. Note that the unit “2-cube” is the

unit square I2, and a “2-box” is a rectangle [ , ]x x1 2 ¥[ , ]y y1 2  in R2 .

Definition 2.10.1. Let S1, S2,LSn  be nonempty subsets of R , and let H

be an n-place real function such that DomH = S1¥ S2¥L¥ Sn . Let B =
[a,b] be an n-box all of whose vertices are in DomH. Then the H-
volume of B is given by

V B HH ( ) = Âsgn( ) ( )c c , (2.10.1)

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn( )
,

,
c =

=
- =

Ï
Ì
Ó

1

1

if  for an even number of ' s,

if  for an odd number of ' s.

c a k

c a k
k k

k k

Equivalently, the H-volume of an n-box B = [a,b] is the nth order
difference of H on B

V B H HH a
b

a
b

a
b

a
b

n

n

n

n( ) = =
-

-D D D D Da
b t t( ) ( )

1

1

2

2

1

1L ,

where we define the n first order differences of an n-place function
(such as H) as

Da
b

k k k n k k k nk

k H H t t b t t H t t a t t( ) ( , , , , , , ) ( , , , , , , )t = -- + - +1 1 1 1 1 1L L L L .

Example 2.21. Let H be a 3-place real function with domain R3, and
let B be the 3-box [ , ]x x1 2 ¥[ , ]y y1 2 ¥[ , ]z z1 2 . The H-volume of B is

V B H x y z H x y z H x y z H x y z

H x y z H x y z H x y z H x y z
H ( ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ).

= - - -
+ + + -

2 2 2 2 2 1 2 1 2 1 2 2

2 1 1 1 2 1 1 1 2 1 1 1 �

Definition 2.10.2. An n-place real function H is n-increasing if V BH ( )
≥ 0 for all n-boxes B whose vertices lie in Dom H.

Suppose that the domain of an n-place real function H is given by
DomH = S1¥ S2¥L¥ Sn  where each Sk  has a least element ak . We say
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that H is grounded if H(t) = 0 for all t in DomH such that tk  = ak  for at
least one k. If each Sk  is nonempty and has a greatest element bk , then
we say that H has margins, and the one-dimensional margins of H are
the functions Hk  given by Dom Hk  = Sk  and

H x H b b x b bk k k n( ) ( , , , , , , )= - +1 1 1L L  for all x in Sk . (2.10.2)

Higher dimensional margins are defined by fixing fewer places in H.

Example 2.22. Let H be the function with domain [–1,1]¥[0,•]¥
[0, p 2] given by

H x y z
x e z

x e

y

y
( , , )

( )( ) sin= + -
+ -

1 1

2 1
.

Then H is grounded because H(x,y,0) = 0, H(x,0,z) = 0, and H(–1,y,z) =
0; H has one-dimensional margins H1(x), H2(y), and H3(z) given by

H x H x x1 2 1 2( ) ( , , ) ( )= • = +p , H y H y e y
2 1 2 1( ) ( , , )= = - -p ,

and H z H z z3 1( ) ( , , ) sin= • = ;

and H has two-dimensional margins H1 2, (x,y), H2 3, (y,z), and H1 3, (x,z)
given by

H x y H x y
x e

x e

y

y1 2 2
1 1

2 1
,

)

( , ) ( , , )
( )( )= = + -

+ -
p ,

H y z H y z e zy
2 3 1 1, ( , ) ( , , ) ( ) sin= = - - , and

H x z H x z
x z

1 3
1
2, ( , ) ( , , ,)

( ) sin= • = +
. �

In the sequel, one-dimensional margins will be simply “margins,” and
for k ≥ 2, we will write “k-margins” for k-dimensional margins.

Lemma 2.10.3. Let S1, S2,LSn  be nonempty subsets of R , and let H be

a grounded n-increasing function with domain S1¥ S2¥L¥ Sn . Then H
is nondecreasing in each argument, that is, if ( t1,L, tk -1,x, tk +1,L, tn )
and ( t1,L, tk -1,y, tk +1,L, tn ) are in DomH and x y< , then

H( t1,L, tk -1,x, tk +1,L, tn ) £ H( t1,L, tk -1,y, tk +1,L, tn ).
The following lemma, which is the n-dimensional analog of Lemma

2.1.5, is needed to show that n-copulas are uniformly continuous, and
in the proof of the n-dimensional version of Sklar’s theorem. Its proof,
however, is somewhat more complicated than that of Lemma 2.1.5; see
(Schweizer and Sklar 1983) for details.

Lemma 2.10.4. Let S1, S2,LSn be nonempty subsets of R , and let H be
a grounded n-increasing function with margins whose domain is
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S1¥ S2¥L¥ Sn . Let x = ( , , , )x x xn1 2 L  and y = ( , , , )y y yn1 2 L  be any

points in S1¥ S2¥L¥ Sn . Then

H H H x H yk k k k
k

n
( ) ( ) ( ) ( )x y- £ -

=
Â

1
.

We are now in a position to define n-dimensional subcopulas and
copulas. The definitions are analogous to Definitions 2.2.1 and 2.2.2.
Definition 2.10.5. An n-dimensional subcopula (or n-subcopula) is a
function ¢C  with the following properties:

1. Dom ¢C  = S1¥ S2¥L¥ Sn , where each Sk  is a subset of I contain-
ing 0 and 1;

2. ¢C  is grounded and n-increasing;
3. ¢C  has (one-dimensional) margins ¢Ck , k = 1,2,L,n, which satisfy

¢ =C u uk ( )  for all u in Sk . (2.10.3)

Note that for every u in Dom ¢C , 0 1£ ¢ £C ( )u , so that Ran ¢C  is also a
subset of I.
Definition 2.10.6. An n-dimensional copula (or n-copula) is an n-

subcopula C whose domain is In .

Equivalently, an n-copula is a function C from In  to I with the fol-
lowing properties:

1. For every u in In ,

C(u) = 0 if at least one coordinate of u is 0, (2.10.4a)
and

    if all coordinates of u are 1 except uk , then C(u) = uk ; (2.10.4b)

2. For every a and b in In  such that a £ b,

VC ([ , ])a b ≥ 0. (2.10.4c)

It is easy to show (see Exercise 2.34) that for any n-copula C, n ≥ 3,

each k-margin of C is a k-copula, 2 £ k < n.

Example 2.23. (a) Let C(u,v,w) = w◊min(u,v). Then C is a 3-copula, as
it is easily seen that C satisfies (2.10.4a) and (2.10.4b), and the C-
volume of the 3-box B = [ , ]a b1 1 ¥[ , ]a b2 2 ¥[ , ]a b3 3  (where ak  £ bk) is

V B C u v w b a u vC a
b

a
b

a
b

a
b

a
b( ) = = - ≥D D D D D

3

3

2

2

1

1

2

2

1

1
3 3 0( , , ) ( ) min( , ) .
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The 2-margins of C are the 2-copulas C1 2, (u,v) = C(u,v,1) = 1◊min(u,v)

= M(u,v), C1 3, (u,w) = C(u,1,w) = w◊min(u,1) = P(u,w), and C2 3, (v,w) =

C(1,v,w) = w◊min(1,v) = P(v,w).
(b) Let C(u,v,w) = min(u,v) – min(u,v,1 - w ). The verification that C

is a 3-copula is somewhat tedious. Here the 2-margins are C1 2, (u,v) =
M(u,v), C1 3, (u,w) = u – min(u,1 - w ) = W(u,w), and C2 3, (v,w) = v –
min(v,1 - w ) = W(v,w). �

A consequence of Lemma 2.10.4 is the uniform continuity of n-
subcopulas (and hence n-copulas):
Theorem 2.10.7. Let ¢C  be an n-subcopula. Then for every u and v in
Dom ¢C ,

¢ - ¢ £ -
=

ÂC C v uk k
k

n
( ) ( )v u

1
. (2.10.5)

Hence ¢C  is uniformly continuous on its domain.
We are now in a position to state the n-dimensional version of Sklar’s

theorem. To do so, we first define n-dimensional distribution functions:
Definition 2.10.8. An n-dimensional distribution function is a function

H with domain Rn  such that
1. H is n-increasing,

2. H(t) = 0 for all t in Rn  such that tk  = –• for at least one k, and 

H(•,•,L,•) = 1.

Thus H is grounded, and because DomH = Rn , it follows from Lemma
2.10.3 that the one-dimensional margins, given by (2.10.2), of an n-
dimensional distribution function are distribution functions, which for n
≥ 3 we will denote by F1,F2 ,…, Fn .
Theorem 2.10.9. Sklar’s theorem in n-dimensions. Let H be an n-
dimensional distribution function with margins F1,F2 ,…, Fn . Then there

exists an n-copula C such that for all x in Rn ,

H x x x C F x F x F xn n n( , , , ) ( ), ( ), , ( )1 2 1 1 2 2L L= ( ). (2.10.6)

If F1,F2 ,…, Fn  are all continuous, then C is unique; otherwise, C is
uniquely determined on Ran F1 ¥Ran F2 ¥L¥Ran Fn . Conversely, if C is

an n-copula and F1,F2 ,…, Fn  are distribution functions, then the func-
tion H defined by (2.10.6) is an n-dimensional distribution function
with margins F1,F2 ,…, Fn .

The proof of Theorem 2.10.9 proceeds as in the case of two dimen-
sions—one first proves the n-dimensional versions of Lemma 2.3.4
(which is straightforward) and then Lemma 2.3.5, the “extension
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lemma.” The proof of the n-dimensional extension lemma, in which
one shows that every n-subcopula can be extended to an n-copula, pro-
ceeds via a “multilinear interpolation” of the subcopula to a copula
similar to two-dimensional version in (2.3.2). The proof in the n-
dimensional case, however, is somewhat more involved (Moore and
Spruill 1975; Deheuvels 1978; Sklar 1996).

Corollary 2.10.10. Let H,C, F1,F2 ,…, Fn  be as in Theorem 2.10.9, and

let F1
1( )- ,F2

1( )- ,…, Fn
( )-1  be quasi-inverses of F1,F2 ,…, Fn , respectively.

Then for any u in In ,

C u u u H F u F u F un n n( , , , ) ( ), ( ), , ( )( ) ( ) ( )
1 2 1

1
1 2

1
2

1L L= ( )- - - . (2.10.7)

Of course, the n-dimensional version of Sklar’s theorem for random
variables (again defined on a common probability space) is similar to
Theorem 2.4.1:

Theorem 2.10.11. Let X1, X2,…, Xn  be random variables with distribu-
tion functions F1,F2 ,…, Fn , respectively, and joint distribution function
H. Then there exists an n-copula C such that (2.10.6) holds. If
F1,F2 ,…, Fn  are all continuous, C is unique. Otherwise, C is uniquely
determined on Ran F1 ¥Ran F2 ¥L¥Ran Fn .

The extensions of the 2-copulas M, P, and W to n dimensions are de-

noted M n , Pn , and W n  (a superscript on the name of a copula will de-
note dimension rather than exponentiation), and are given by:

M u u u

u u u

W u u u n

n
n

n
n

n
n

( ) min( , , , );

( ) ;

( ) max( , , ).

u

u

u

=

=

= + + + - +

1 2

1 2

1 2 1 0

L

L

L

P (2.10.8)

The functions M n  and Pn  are n-copulas for all n ≥ 2 (Exercise

2.34), whereas the function W n  fails to be an n-copula for any n > 2
(Exercise 2.36). However, we do have the following n-dimensional ver-
sion of the Fréchet-Hoeffding bounds inequality first encountered in
(2.2.5). The proof follows directly from Lemmas 2.10.3 and 2.10.4.
Theorem 2.10.12. If ¢C  is any n-subcopula, then for every u in
Dom ¢C ,

W C Mn n( ) ( ) ( )u u u£ ¢ £ . (2.10.9)

Although the Fréchet-Hoeffding lower bound W n  is never a copula
for n > 2, the left-hand inequality in (2.10.9) is “best-possible,” in the
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sense that for any n ≥ 3 and any u in In , there is an n-copula C such

that C W n( ) ( )u u= :

Theorem 2.10.13. For any n ≥ 3 and any u in In , there exists an n-
copula C (which depends on u) such that

C W n( ) ( )u u= .

Proof (Sklar 1998). Let u = ( , , , )u u un1 2 L  be a (fixed) point in In

other than 0 = (0,0,…,0) or 1 = (1,1,…,1). There are two cases to con-
sider.

1. Suppose 0 < u u un1 2+ + +L  £ n – 1. Consider the set of points v
= ( , , , )v v vn1 2 L  where each vk  is 0, 1, or tk  =
min ( ) ( ) ,n u u u uk n- + + +{ }1 11 2 L . Define an n-place function ¢C  on

these points by ¢ =C W n( ) ( )v v . It is straightforward to verify that ¢C
satisfies the conditions in Definition 2.10.5 and hence is an n-
subcopula. Now extend ¢C  to an n-copula C via a “multilinear inter-
polation” similar to (2.3.2). Then for each x in the n-box [0,t], t =

( , , , )t t tn1 2 L  (which includes u), C W n( ) ( )x x= = 0.
2. Suppose n – 1 < u u un1 2+ + +L  < n, and consider the set of

points v = ( , , , )v v vn1 2 L  where now each vk  is 0, 1, or sk  = 1 –
( ) ( )1 2- - + + +[ ]u n u u uk i nL . Define an n-place function ¢C  on these

points by ¢ =C W n( ) ( )v v , and extend to an n-copula C as before. Let s
= ( , , , )s s sn1 2 L , then for each x in the n-box [s,1] (which includes u), we

have C W n( ) ( )x x= = x x x nn1 2 1+ + + - +L . �

The n-copulas M n  and Pn  have characterizations similar to the
characterizations of M and P given in Theorems 2.4.2 and 2.5.4.

Theorem 2.10.14. For n ≥ 2, let X1, X2,…, Xn  be continuous random
variables. Then

1. X1, X2,…, Xn  are independent if and only if the n-copula of

X1, X2,…, Xn  is Pn , and
2. each of the random variables X1, X2,…, Xn  is almost surely a

strictly increasing function of any of the others if and only if the n-

copula of X1, X2,…, Xn  is M n .
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Exercises

2.34 (a) Show that the ( )n -1 -margins of an n-copula are ( )n -1 -
copulas. [Hint: consider n-boxes of the form [ , ]a b1 1 ¥…

¥[ , ]a bk k- -1 1 ¥[0,1]¥ [ , ]a bk k+ +1 1 ¥…¥[ , ]a bn n .]

(b) Show that if C is an n-copula, n ≥ 3, then for any k, 2 £ k < n,

all n
k( ) k-margins of C are k-copulas.

2.35 Let M n  and Pn  be the functions defined in (2.10.4), and let [a,b]

be an n-box in In . Prove that

V b b b a a a
M n nn [ , ] max min( , , , ) max( , , , ),a b( ) = -( )1 2 1 2 0L L

and
V b a b a b an n nP [ , ] ( )( ) ( )a b( ) = - - -1 1 2 2 L ,

and hence conclude that M n  and Pn  are n-copulas for all n ≥ 2.

2.36 Show that
V n

W n 1 2 1,[ ]( ) = - ( )1 2 ,

where 1 = (1,1, …,1) and 1/2 = (1/2,1/2, …,1/2), and hence W n

fails to be an n-copula whenever n > 2.

2.37 Let X1, X2,…, Xn  be continuous random variables with copula C
and distribution functions F1,F2 ,…, Fn , respectively. Let X( )1  and

X n( )  denote the extreme order statistics for X1, X2,…, Xn  (i.e., X( )1

= min( X1, X2,…, Xn ) and X n( )  = max( X1, X2,…, Xn )) [cf. Exercise

2.16]. Prove that the distribution functions F( )1  and F n( ) , respec-

tively, of X( )1  and X n( )  satisfy

max ( ), ( ), , ( ) ( ) min ( ) ,( )F t F t F t F t F tn kk
n

1 2 1 1 1L( ) £ £ ( )=Â
and

max ( ) , ( ) min ( ), ( ), , ( )( )F t n F t F t F t F tkk
n

n n=Â - +( ) £ £ ( )1 1 21 0 L .



3 Methods of Constructing Copulas

If we have a collection of copulas, then, as a consequence of Sklar’s
theorem, we automatically have a collection of bivariate or multivariate
distributions with whatever marginal distributions we desire. Clearly this
can be useful in modeling and simulation. Furthermore, by virtue of
Theorem 2.4.3, the nonparametric nature of the dependence between
two random variables is expressed by the copula. Thus the study of
concepts and measures of nonparametric dependence is a study of
properties of copulas—a topic we will pursue in Chapter 5. For this
study, it is advantageous to have a variety of copulas at our disposal.

In this chapter, we present and illustrate several general methods of
constructing bivariate copulas. In the inversion method, we exploit
Sklar’s theorem, via Corollary 2.3.7, to produce copulas directly from
joint distribution functions. Using geometric methods, we construct sin-
gular copulas whose support lies in a specified set and copulas with sec-
tions given by simple functions such as polynomials. We also discuss
three geometrically motivated construction procedures that yield copu-
las known as ordinal sums, shuffles of M, and convex sums. In the alge-
braic method, we construct copulas from relationships involving the bi-
variate and marginal distributions functions—our examples concern
cases in which the algebraic relationship is a ratio. We conclude this
chapter with a study of problems associated with the construction of
multivariate copulas. Another general method, yielding bivariate and
multivariate Archimedean copulas, will be presented in the next chapter.

A note on notation is in order. Throughout this chapter, we will re-
peatedly use a, b, and q as subscripts to denote parameters in families of
copulas, i.e., Cq  represents a member of a one-parameter family, and
Ca b,  represents a member of a two-parameter family. The particular

family to which Cq  or Ca b,  belongs will be clear from the context of
the particular example or exercise.

3.1 The Inversion Method

In Sect. 2.3, we presented several simple examples of this procedure:
given a bivariate distribution function H with continuous margins F and
G, “invert” via (2.1.3) to obtain a copula:
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C u v H F u G v( , ) ( ( ), ( ))( ) ( )= - -1 1 . (3.1.1)

With this copula, new bivariate distributions with arbitrary margins, say
¢F  and ¢G , can be constructed using Sklar’s theorem: ¢H (x,y) =

C( ¢F (x), ¢G (y)). Of course, this can be done equally as well using sur-
vival functions from (2.6.2) (recall that Ĉ  is a copula):

ˆ( , ) ( ( ), ( ))( ) ( )C u v H F u G v= - -1 1 . (3.1.2)

where F ( )-1  denotes a quasi-inverse of F , defined analogously to F( )-1

in Definition 2.3.6; or equivalently, F ( )-1 (t) = F( )-1 (1- t ).
We will now illustrate this procedure to find the copulas for the Mar-

shall-Olkin system of bivariate exponential distributions and for the
uniform distribution on a circle.

3.1.1 The Marshall-Olkin Bivariate Exponential Distribution

The univariate exponential distribution plays a central role in mathe-
matical statistics because it is the distribution of waiting time in a stan-
dard Poisson process. The following bivariate exponential distribution,
first described by Marshall and Olkin (1967a,b), plays a similar role in a
two-dimensional Poisson process.

Consider a two-component system—such as a two engine aircraft, or
a desktop computer with both a CPU (central processing unit) and a co-
processor. The components are subject to “shocks,” which are always
“fatal” to one or both of the components. For example, one of the two
aircraft engines may fail, or a massive explosion could destroy both en-
gines simultaneously; or the CPU or the co-processor could fail, or a
power surge could eliminate both simultaneously. Let X and Y denote
the lifetimes of the components 1 and 2, respectively. As is often the
case in dealing with lifetimes, we will find the survival function H x y( , )
= P X x Y y[ , ]> > , the probability that component 1 survives beyond
time x and that component 2 survives beyond time y.

The “shocks” to the two components are assumed to form three in-
dependent Poisson processes with (positive) parameters l1, l2 , and l12;
depending on whether the shock kills only component 1, only compo-
nent 2, or both components simultaneously. The times Z1, Z2, and Z12
of occurrence of these three shocks are independent exponential ran-
dom variables with parameters l1, l2 , and l12, respectively.  So X =
min( Z1,Z12), Y = min( Z2,Z12), and hence for all x,y ≥ 0,

H x y P Z x P Z y P Z x y
x y x y

( , ) [ ] [ ] [ max( , )]
exp max( , ) .

= > > >
= - - -[ ]

1 2 12

1 2 12l l l
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The marginal survival functions are F x( ) = exp( ( ) )- +l l1 12 x  and
G y( )  = exp( ( ) )- +l l2 12 y ; and hence X and Y are exponential random
variables with parameters l1 + l12 and l2  + l12, respectively.

In order to find the survival copula ˆ( , )C u v  for this distribution, we
first express H x y( , ) in terms of F x( ) and G y( ) , recalling that H x y( , )

= ˆ( ( ), ( ))C F x G y . To accomplish this, we first replace max(x,y) by x + y
– min(x,y), so that

H x y x y x y
F x G y x y

( , ) exp( ( ) ( ) min( , ))
( ) ( )min{exp( ),exp( )}.

= - + - + +
=

l l l l l
l l

1 12 2 12 12

12 12

Now set u = F x( ) and v = G y( ) , and for convenience let a =

l l l12 1 12( )+  and b = l l l12 2 12( )+ . Then exp( l12x) = u -a  and

exp( l12y) = v - b , thus, using (3.1.2), the survival copula Ĉ  is given by

ˆ( , ) min( , ) min( , )C u v uv u v u v uv= =- - - -a b a b1 1 .

Note that because l1, l2 , l12 are positive, a and b satisfy 0 < a,b < 1.
Hence the survival copulas for the Marshall-Olkin bivariate exponential
distribution yield a two parameter family of copulas given by

C u v u v uv
u v u v

uv u v
a b

a b
a a b

b a b, ( , ) min( , )
, ,

, .
= = ≥

£

Ï
Ì
Ó

- -
-

-
1 1

1

1
(3.1.3)

This family is known both as the Marshall-Olkin family and the Gener-
alized Cuadras-Augé family. Note that when a = b = q, (3.1.3) reduces
to the Cuadras-Augé family in Exercise 2.5, corresponding to the case
in which l1 = l2 , i.e., the case in which X and Y are exchangeable. The
parameter range can be extended to 0 £ a,b £ 1 (Exercise 3.1) and in-

deed, Ca ,0 = C0,b  = P and C11,  = M.
It is interesting to note that, although the copulas in this family have

full support (for 0 < a,b < 1), they are neither absolutely continuous
nor singular, but rather have both absolutely continuous and singular
components Aa b,  and Sa b, , respectively. Because

∂
∂ ∂

a
ba b

a a b

b a b

2 1

1u v
C u v

u u v

v u v
, ( , )

( ) , ,

( ) , ,
= - >

- <

Ï
Ì
Ó

-

-
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the mass of the singular component must be concentrated on the curve

ua  = v b  in I2. Evaluating the double integral in (2.4.1) yields, for ua

< v b ,

A u v uv ua b
b a a b ab abab

a b ab,

( )
( , ) = - ( )- + -

+ -
1 ,

and a similar result when ua  > v b . Thus we have

A u v C u v u va b a b
a b a b ab abab

a b ab, ,

( )
( , ) ( , ) min ,= - ( )[ ]+ -

+ -
,

and consequently

S u v u v t dt
u v

a b
a b

a b ab
ab a bab

a b ab

a b

,

,
( , ) min , .

min
= ( )[ ] =

+ -

+ - + -( )Ú
1 1

2

0

Hence the Ca b, -measure of the singular component of Ca b,  is given by

Sa b, (1,1) = ab a b ab( )+ - . In other words, if U and V are uniform
[0,1] random variables whose joint distribution function is the copula

Ca b, , then P[U Va b= ] = ab a b ab( )+ - .
In Fig. 3.1 we have scatterplots for two simulations of Marshall-Olkin

copulas, each using 500 pairs of points with the algorithm in Exercise
3.4. The one on the left is for (a,b) = (1/2,3/4), the one on the right is

for (a,b) = (1/3,1/4). The singular component is clearly visible in each
case.

     

Fig. 3.1. Scatterplots for Marshall-Olkin copulas, (a,b) = (1/2,3/4), (1/3,1/4)
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The Marshall-Olkin family of copulas, endowed with non-
exponential margins, has been employed in a variety of applications.
See (Hutchinson and Lai 1990) for details and references.

3.1.2 The Circular Uniform Distribution

Let (X,Y) denote the coordinates of a point chosen “at random” on the
unit circle, where by “at random,” we mean that if the polar coordi-
nates of the point are (1,Q), then the random variable Q is uniformly

distributed on the interval [0,2p).
The joint distribution function H(x,y) of X and Y may be determined

by making use of the fact that X = cosQ and Y = sinQ. However, it is
more instructive to use a geometric approach. We will show that for

points (x,y) within the square [ , ]-11 2  (which contains the support of this
distribution), H is given by

H x y

x y
x y

x y
x y x y

x
x y x y

y
x y y x

x y x y

( , )

arccos arccos
, ,

arccos arccos
, , , ,

arccos
, , ,

arccos
, , ,

, , , .

=

- + + £

- + + > ≥

- + > < £

- + > < £

+ > <

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô

3
4 2

1

1 1 0

1 1 0

1 1 0

0 1 0

2 2

2 2

2 2

2 2

2 2

p

p

p

pÔÔ
Ô
Ô

(3.1.4)

Of course, outside this square H will be equal to zero or to one of its
margins, which are found below.

Suppose (x,y) is a point on or inside the unit circle. Then 2pH(x,y) is
the arc length of that portion of the circle shown in white within the
gray region in part (a) of Fig. 3.2. By using the symmetry of the circle
and the arcs whose lengths are given by arccosx and arccosy, we have
2pH(x,y) = 3p/2 – arccosx – arccosy.

When (x,y) is outside the circle but in the first quadrant portion of

[ , ]-11 2, as shown in part (b) of Fig. 3.2, we have 2pH(x,y) = 2p –
2(arccosx + arccosy). The values of H(x,y) for (x,y) in the other regions
can be found similarly.

Using a derivation similar to the one above, the margins F(x) and
G(y) are readily found—for x and y in [–1,1] they are given by the
functions in the third and fourth lines, respectively, in the displayed
equation (3.1.4) for H.
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arccosx

arccosy
(x,y)

arccosx

arccosy

(x,y)

(a) (b)

Fig. 3.2. Two cases for the joint distribution function H(x,y) in (3.1.4)

Because it will now be easy to express H(x,y) in terms of F(x) and
G(y), and thus to find the copula, the only remaining task is to find the

image of the circle x y2 2 1+ =  under the transformation x = F( )-1 (u), y

= G( )-1 (v). Substitution yields sin [ ( / )]2 1 2p u -  = cos [ ( / )]2 1 2p v - . But

if a and b are in [–p/2,p/2] such that sin2 a  = cos2 b , then

a b p+ = 2. Hence the image of the unit circle, i.e., the support of the

copula of X and Y, is u v- + - =1 2 1 2 1 2. The graph of this set is the

square whose vertices are the midpoints of the four sides of I2, as illus-
trated on part (a) of Fig. 3.3. Thus the copula of the coordinates X and
Y of a point chosen at random on the unit circle is given by

C u v

M u v u v

W u v u v

u v

( , )

( , ), ,

( , ), ,

,

=

- >

+ - >

+ -

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

1
2

1
1
2

2
1
4

   otherwise.

(3.1.5)

In part (b) of Fig. 3.3, we have written the values of C in each of the five
regions of I2 .

Note that ∂ ∂ ∂2C u v  = 0 almost everywhere in I2, hence C is singular.
It is easy to see that C is symmetric, and that it also satisfies the func-
tional equation C = Ĉ  for radial symmetry. Indeed, it satisfies the func-
tional equations (2.8.1) in Exercise 2.30 for joint symmetry (when en-
dowed with symmetric margins, as is the case for the circular uniform
distribution).
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(b)(a)

u

v0

u+v–1
u v+

-
2

1

4

Fig. 3.3. The copula of the circular uniform distribution and its support

We conclude this section with two examples of bivariate singular dis-
tributions constructed from this copula.
Example 3.1. A singular bivariate distribution whose margins are
Cauchy distributions. To obtain this joint distribution function, we en-
dow the copula C from (3.1.5) with standard Cauchy margins: F(x) =
1/2 + (arctanx)/p for all real x; and similarly for G(y). The expression
for H is quite similar to (3.1.4).  However, the support of H is the image
of the square u v- + - =1 2 1 2 1 2 under the transformation u = F(x),

v = G(y). This yields xy  = 1, so that the support of this bivariate distri-
bution consists of the four branches of the two rectangular hyperbolas
xy = 1 and xy = –1. �

Example 3.2. A singular bivariate distribution whose margins are nor-
mal. This example is similar to the preceding one, but with F = G = F,
the standard normal distribution function. The support now lies on the
four branches of the curve in the plane given by

F F( ) ( )x y- + - =1 2 1 2 1 2 , which is similar in appearance to xy  = 1.
Note that like the distributions in Example 2.10, we have a bivariate
distribution with standard normal margins that is not a standard bivari-
ate normal. Also note that this bivariate normal distribution does not
possess a density. �

Exercises

3.1 Show that when either of the parameters a or b is equal to 0 or 1,
the function Ca b,  given in (3.1.3) is a copula.

3.2 Show that a version of the Marshall-Olkin bivariate distribution
with Pareto margins (see Example 2.14) has joint survival func-
tions given by
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H x y x y x y( , ) ( ) ( ) max( , )= + + + +[ ]- - -1 1 1 11 2 12q q q ,

for x,y ≥ 0, where q1, q2, and q12 are positive parameters.

3.3 Prove the following generalization of the Marshall-Olkin family
(3.1.3) of copulas: Suppose that a and b are increasing functions
defined on I such that a(0) = b(0) = 0 and a(1) = b(1) = 1. Fur-
ther suppose that the functions u a a u u( )  and v a b v v( )  are

both decreasing on (0,1]. Then the function C defined on I2 by

C u v va u ub v( , ) min ( ), ( )= ( )
is a copula (Marshall 1996). Note that (3.1.3) is the special case

a(u) = u1-a  and b(v) = v1- b . The symmetric case (a = b) is
studied in detail in (Durante 2005).

3.4 (a) Show that the following algorithm (Devroye 1987) generates
random variates (x,y) from the Marshall-Olkin bivariate exponen-
tial distribution with parameters l1, l2 , and l12:

1. Generate three independent uniform (0,1) variates r, s, t;

2. Set x = min
ln

,
ln- -Ê

ËÁ
ˆ
¯̃

r t

l l1 12
, y = min

ln
,

ln- -Ê
ËÁ

ˆ
¯̃

s t

l l2 12
;

3. The desired pair is (x,y).
(b) Show that u = exp[–( l1 + l12)x] and v = exp[–( l2  + l12)y]
are uniform (0,1) variates whose joint distribution function is a
Marshall-Olkin copula given by (3.1.3).

3.5 Let (X,Y) be random variables with the circular uniform distribu-
tion.  Find the distribution of max(X,Y).

3.6 Raftery’s bivariate exponential distribution. Raftery (1984, 1985)
described the following bivariate distribution. Let Z1, Z2 and Z3
be three mutually independent exponential random variables with
parameter l > 0, and let J be a Bernoulli random variable, inde-

pendent of the Z’s, with parameter q in (0,1). Set

X Z JZ
Y Z JZ

= - +
= - +

( ) ,
( ) .
1
1

1 3

2 3

q
q

Show that
(a) for x,y ≥ 0, the joint survival function of X and Y is given by
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H x y x y

x y x y

( , ) exp ( )

exp ( ) exp

= - ⁄[ ]
+ +È

ÎÍ
˘
˚̇

- + Ÿ( )È
ÎÍ

˘
˚̇

Ï
Ì
Ó

¸
˝
˛

-

+

-

- -

l
q

q

l

q
l

q

q

1

1 1 1
1

1

where x y⁄  = max(x,y) and x yŸ  = min(x,y);
(b) X and Y are exponential with parameter l;
(c) the survival copula of X and Y is given by

ˆ ( , ) ( , ) max( , ) ;
( ) ( ) ( )C u v M u v uv u vq

q q qq

q
= + ( ) - [ ]{ }-

+
- - + -1

1

1 1 1 11

(d) Ĉq  is absolutely continuous, Ĉ0 = P, and Ĉ1 = M.

3.2 Geometric Methods

In the previous section, we illustrated how Sklar’s theorem could be
used to invert joint distribution functions to find copulas. In this section
we will, in essence, return to the definition of a copula—as given in the
paragraph following Definition 2.2.2—as our tool for the construction.
That is, without reference to distribution functions or random variables,

we will construct grounded 2-increasing functions on I2 with uniform
margins, utilizing some information of a geometric nature, such as a de-
scription of the support or the shape of the graphs of horizontal, verti-
cal, or diagonal sections. We will also examine the “ordinal sum” con-
struction, wherein the members of a set of copulas are scaled and
translated in order to construct a new copula; the “shuffles of M ,”
which are constructed from the Fréchet-Hoeffding upper bound; and
the “convex sum” construction, a continuous analog of convex linear
combinations.

3.2.1 Singular Copulas with Prescribed Support

In this section we illustrate, with three examples, the use of the definition
of a copula to construct singular copulas whose support lies in a given
set. In the first two examples, the support consists of line segments, and
in the third, arcs of circles.

Example 3.3. Let q be in [0,1], and suppose that probability mass q is

uniformly distributed on the line segment joining (0,0) to (q,1), and

probability mass 1 - q  is uniformly distributed on the line segment

joining (q,1) to (1,0), as illustrated in part (a) of Fig. 3.4. Note the two
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limiting cases: when q = 1, the support is the main diagonal of I2, and

the resulting copula is M; and when q = 0, the support is the secondary

diagonal of I2, resulting in W. That is, if we let Cq  denote the copula
with support as illustrated in part (a) of Fig. 3.4, then C1 = M and C0 =
W.

Using that fact that the support of Cq  lies on the two line segments,
we can now find an expression for Cq (u,v) by computing the Cq -

volume of appropriate rectangles in I2. Because the graph of the sup-

port divides I2 into three regions, we have three cases to consider, de-

pending upon where in I2 the point (u,v) lies.

q q q q

(a) (b) (c) (d)

u

v v

v

u u

Fig. 3.4. Computing Cq  in Example 3.3

Suppose that u v£ q , that is, (u,v) lies in the region above the first
segment of the support, as illustrated in part (b) of Fig. 3.4. Then the
Cq -volume of the rectangle [0,u]¥[0,v] is the same as the Cq -volume of

the rectangle [0,u]¥[0,1]—and VCq
([0,u]¥[0,1]) = u implies Cq (u,v) =

u.
Now suppose u > qv and u < 1 – (1 - q )v, that is, (u,v) lies in the re-

gion below both segments of the support, as illustrated in part (c) of the
figure. Then Cq (u,v) = Cq (qv,v) = qv, since the Cq -volume of the rec-

tangle [qv,u]¥[0,v] is zero.

Finally, suppose that u ≥ 1 – (1 - q )v, so that (u,v) lies in the region
above the second segment of the support, as illustrated in part (d) of the
figure. We could proceed as we did in the first two cases, but here it will
be advantageous to note that the Cq -volume of any rectangle that does
not intersect one of the line segments must be zero. Thus the Cq -
volume of the rectangle [u,1]¥[v,1] is zero—and VCq

([u,1]¥[v,1]) = 0

implies Cq (u,v) = u + v – 1. Hence we have
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C u v
u u v
v v u v

u v v u
q

q q
q q q

q q
( , )
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£ < < - -

+ - £ - - £ £

Ï
Ì
Ô
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0
0 1 1

1 1 1 1   

( . . )3 2 1
�

In several earlier examples (2.10, 2.17, and 3.2), we saw how copulas
can be used to construct “counterexamples,” that is, examples to show
that certain statements do not hold for all joint distributions. In Exercise
3.7, we will see how a member of the family of distributions in (3.2.1)
can be similarly employed.

Example 3.4. Again let q be in [0,1], and suppose the probability mass

is uniformly distributed on two line segments, one joining (0,q) to (q,0)

(with mass q), and the other joining (q,1) to (1,q) (with mass 1- q ), as
illustrated in part (a) of Fig. 3.5. These copulas have an interesting
probabilistic interpretation.  Let ≈ denote “addition mod 1,” that is,

x y≈  = x y x y+ - +Î ˚ , where tÎ ˚  denotes the integer part of t.  If U

and V are uniform (0,1) random variables such that U V≈  = q with
probability 1, then the support of the joint distribution of U and V lies
on the line segments in part (a) of Fig. 3.5, and their copula Cq  is this
joint distribution function. In passing we note the limiting cases: C0 =
C1 = W.

(a) (b) (c) (d)

u

v

v
v

u uq

q

Fig. 3.5. Computing Cq  in Example 3.4

As in the preceding example, we will find an expression for Cq (u,v)

by considering the regions of I2 in which (u,v) may lie. If (u,v) is in the
rectangle [0,q]¥[q,1], then VCq

([0,u]¥[0,v]) = VCq
([0,u]¥[0,1]) = u,

which yields Cq (u,v) = u. Similarly if (u,v) is in [q,1]¥[0,q],

then Cq (u,v) = v. Now suppose (u,v) is in [ , ]0 2q  but with u + v ≥ q, as

illustrated in part (b) of the figure.  Because VCq
([u,1]¥[v,1]) = 1- q , it

follows that Cq (u,v) = u v+ - q . If (u,v) is in [ , ]q 1 2  with u v+  < 1+ q ,
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as in part (c) if the figure, clearly Cq (u,v) = q. Finally, for (u,v) in

[ , ]q 1 2  with u v+  ≥ 1+ q , as in part (d) of the figure, VCq
([u,1]¥[v,1]) =

0 and hence Cq (u,v) = u v+ -1. Thus Cq  is given by

C u v

u v u v

u v u v
M u v

q

q q
q q( , )

max( , ), ( , ) [ , ] ,

max( , ), ( , ) ( , ] ,
( , ),

=
+ - Œ
+ - Œ

Ï

Ì
Ô

Ó
Ô

0 0

1 1

2

2

                  otherwise.  

( . . )3 2 2
�

Example 3.5. Is it possible to find a copula C whose support consists of
the two quarter circles shown in part (a) of Fig. 3.6? The upper quarter

circle is given by u v2 2+  = 2u, and the lower one by u v2 2+  = 2v. Be-
cause the support is symmetric with respect to the diagonal, we will con-
struct a symmetric copula, i.e., a C for which C(u,v) = C(v,u). As in the
earlier examples, it is easy to show that if (u,v) is in the region above the
upper arc, then C(u,v) = u; and if (u,v) is in the region below the lower

arc, then C(u,v) = v. Hence for u v2 2+  > 2min(u,v), we have C(u,v) =
M(u,v).

    (a) (b) (c)

v

u v

u

u v

v

u

Fig. 3.6. Computing Cq  in Example 3.5

Now assume u £ v, and that u v2 2+  £ 2u, so that (u,v) lies above the
main diagonal but below the upper arc, as shown in part (b) of the fig-
ure. Then VC ([u,v]¥[u,v]) = 0, which implies that C(u,v) + C(v,u) =

C(u,u) + C(v,v), or equivalently, C(u,v) = 1 2( ) +[ ]d d( ) ( )u v , where d is
the diagonal section of C. Now consider the situation when the point

(u,v) lies on the upper quarter circle u v2 2+  = 2u. By continuity, u =

C(u,v) = 1 2( ) +[ ]d d( ) ( )u v  so that d d( ) ( )u v+  = 2u = u v2 2+ . A solu-

tion to this equation is given by d ( )u u= 2, which leads to C(u,v) =

min , ,( )u v u v2 2 2+( ). Of course, it is necessary here to verify that C is

2-increasing on all of I2, which is readily done. �
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A word of caution is in order. The general problem of determining

just what curves in I2 can serve as the support of a copula is a difficult
one. For example, there is no copula whose support consists of the por-

tions of the parabolas v = u2 and u = v2 in I2. See (Kamiński et al.
1987-1988; Sherwood and Taylor 1988) for a discussion of the general
problem.

3.2.2 Ordinal Sums

The copula W for the Fréchet-Hoeffding lower bound is, of course,

singular, and the support of W is the secondary diagonal of I2, the line
segment with slope –1 connecting (0,1) to (1,0) Now recall Example 3.4
in the preceding section—in which the support (see part (a) of either
Fig. 3.5 or 3.7) of the copula consisted of two line segments each with
slope –1. One can view this support as consisting of two copies of the

support of W, scaled to fit the subsquares [ , ]0 2q  and [ , ]q 1 2 . This illus-
trates the idea behind the ordinal sum construction.

Let Ji{ }  denote a partition of I, that is, a (possibly infinite) collection
of closed, non-overlapping (except at common endpoints) nondegener-
ate intervals Ji = a bi i,[ ] whose union is I. Let Ci{ }  be a collection of

copulas with the same indexing as Ji{ } . Then the ordinal sum of Ci{ }
with respect to Ji{ }  is the copula C given by

C u v
a b a C

u a

b a

v a

b a
u v J

M u v

i i i i
i

i i

i

i i
i( , )

( ) , , ( , ) ,

( , ),

= + - -
-

-
-

Ê
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ˆ
¯̃

Œ
Ï
Ì
Ô

ÓÔ

2

                                           otherwise.

To obtain the graph of the support of an ordinal sum, “paste” onto

I2 appropriately scaled copies of the copulas Ci over the squares Ji
2, as

illustrated in part (b) of Fig. 3.7. Note that because the support of an
ordinal sum is contained in the shaded portion of the square, an ordinal
sum must agree with M on the unshaded portion.
Example 3.6. The ordinal sum of {W,W} with respect to {[0,q],[q,1]} is

the copula Cq  from Example 3.4.  Note that for (u,v) in [ , ]0 2q ,

q
q q

qW
u v

u v, max( , )
Ê
ËÁ

ˆ
¯̃

= + -0 ,

and for (u,v) in [ , ]q 1 2 ,

q q q
q

q
q

q+ - -
-

-
-

Ê
ËÁ

ˆ
¯̃

= + -( ) , max( , )1
1 1

1W
u v

u v . �
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M

M
C1

C2

Cn

(a) (b)

N

Fig. 3.7. Ordinal sums

The following theorem characterizes copulas that have an ordinal
sum representation.
Theorem 3.2.1. Let C be a copula. Then C is an ordinal sum if and
only if there exists a t in (0,1) such that C(t,t) = t.

Proof. Assume there exists a t in (0,1) such that C(t,t) = t. Let C1 and
C2 be the functions defined by C1(u,v) = C tu tv t( , )  and C2(u,v) =
C t t u t t v t t+ - + -( ) -[ ] -( ) , ( ) ( )1 1 1  for u,v in I. It is easy to verify that

C1 and C2 are copulas, and that C is the ordinal sum of {C1,C2} with
respect to {[0,t],[t,1]}. The converse is trivial. �

If U and V are uniform (0,1) random variables whose joint distribu-
tion function is the copula C, then the following conditions are equiva-
lent to the condition C(t,t) = t for some t in (0,1) in the above theorem:

1. P U V t t[max( , ) ]£ =  for some t in (0,1);
2. P U V t t[min( , ) ]£ =  for some t in (0,1);
3. P U V t[max( , ) ]£  = P U V t[min( , ) ]£  for some t in (0,1);
4. P U t V t[( )( ) ]- - ≥ =0 1 for some t in (0,1).

Exercises

3.7 Let U and V be uniform (0,1) random variables whose joint distri-
bution function is the copula Cq  from (3.2.1) in Example 3.3
with q = 1/2; i.e.,

C u v
u u v
v v u v
u v v u

1 2

0 2 1 2
2 0 2 1 2

1 1 2 1 2 1
( , )

, ,
, ,

, .
=

£ £ £
£ < < -

+ - £ - £ £

Ï
Ì
Ô

ÓÔ
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(a) Show that P[V = 1 2 1- -U ] = 1 and Cov(U,V) = 0, so that two
random variables can be uncorrelated although one can be pre-
dicted perfectly from the other.
(b) Show that C1 2  is not symmetric, so that two random variables
can be identically distributed and uncorrelated but not exchange-
able.
(c) Show that P[V U-  > 0] = 2/3, so that two random variables
can be identically distributed, however their difference need not
be symmetric about zero.
(d) Let X = 2 1U -  and Y = 2 1V - , so that X and Y are uniform on
( , )-1 1 . Show that P[ X Y+  > 0] = 2/3, so that two random vari-
ables can each be symmetric about zero, but their sum need not
be.

3.8 Let (a,b) be a point in I2 such that a > 0, b > 0, and a + b < 1.

Suppose that probability mass a is uniformly distributed on the

line segment joining (a,b) to (0,1), that probability mass b is uni-

formly distributed on the line segment joining (a,b) to (1,0), and
that probability mass 1- -a b  is uniformly distributed on the line
segment joining (a,b) to (1,1), as shown in part (a) of Fig. 3.8.
Show that the copula with this support is given by

C u v

u v u v

v u u va b

a

b
b

a
, ( , )

( ), ( , ) ,

( ), ( , ) ,

,

=

- - Œ

- - Œ

Ï

Ì

Ô
Ô

Ó

Ô
Ô

-

-

1

1

1

1

0

1

2

D

D

                         otherwise,

where D1 is the triangle with vertices (a,b), (0,1), and (1,1); and

D2 is the triangle with vertices (a,b), (1,0), and (1,1). Note the

limiting cases: C0 0,  = M; Ca a,1-  = W, and when a = 0 or b = 0 we
have one-parameter families of copulas similar to the one in Ex-
ample 3.3.

3.9 Let U and V be uniform (0,1) random variables such that V =
U ≈ q  with probability 1, where q is a constant in (0,1). Show that
if Cq  denotes the copula of U and V, then
(a) the support of Cq  is the set illustrated in part (b) of Fig. 3.8;
and
(b) Cq  is given by
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C u v
u v u v
u v u v

W u v
q

q q q
q q q( , )

min( , ), ( , ) [ , ] [ , ],
min( , ), ( , ) [ , ] [ , ],

( , ),
=

- Œ - ¥
+ - Œ - ¥

Ï
Ì
Ô

ÓÔ

0 1 1
1 1 1 0

                  otherwise.

For a related problem that leads to the same copula, see (Marshall
1989).

(b)

q

1–q

(a)

a

b

(c)

q

q

Fig. 3.8. The supports of the copulas in Exercises 3.8, 3.9, and 3.10

3.10 Let q be in I, and let U and V be random variables whose prob-
ability mass is uniformly distributed on the boundary of the rec-

tangle in I2 with vertices (q,0), (0,q), (1- q ,1), and (1,1- q ), as il-
lustrated in part (c) of Fig. 3.8 (Ferguson 1995).
(a) Show that the copula Cq  of U and V is given by

C u v

M u v v u

W u v u v
u v

q

q
q

q
( , )

( , ), ,

( , ), ,
( ) , .

=
- ≥
+ - ≥ -

+ -

Ï

Ì
Ô

ÓÔ
1 1

2 otherwise

(b) Show that Cq  satisfies the functional equation C = Ĉ  associ-
ated with radial symmetry.
(c) Show that this family is negatively ordered.
Note that C0 = M, C1 = W, and C1 2  is the copula of random vari-
ables with the circular uniform distribution (see Sect. 3.1.2).

3.11. (a) Show that a singular copula can have support that is symmetric

with respect to the diagonal v = u in I2 yet fail to be a symmetric
copula, i.e., C(u,v) π C(v,u). [Hint: Let Cq  be a member of the
family in Exercise 3.9, and consider C = ( ) ( )1 3 2 31 3 2 3C C+ .]
(b) Show that a singular copula can have support that is radially

symmetric with respect to the center of I2 (i.e., if (u,v) is in the
support, so is (1- u ,1- v )), yet fail to satisfy the functional equa-
tion C = Ĉ  in (2.7.3) associated with radial symmetry.
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3.12 Vaswani’s Bivariate Normal Distribution. Vaswani (1947) de-
scribed the following bivariate distribution: Let F denote the stan-
dard normal distribution function, let T be a uniform (0,1) ran-
dom variable, and set

X T

Y
T T

T T

=

=
- + Œ[ )
- - Œ( ]

Ï
Ì
Ô

ÓÔ

-

-

-

F
F
F

1

1

1

1 2 0 1 2

1 2 1 2 1

( ),

( ), , ,

( ), , .

  if  

  if  

(a) Show that X and Y are standard normal random variables.
(b) Show that F(X) ≈ F(Y) = 1/2 with probability 1.

(c) Show that the copula of X and Y is given by (3.2.2) with q =
1/2, or equivalently, the ordinal sum of {W,W} with respect to
{[0,1/2],[1/2,1]}.

3.13 Kimeldorf and Sampson (1975a) described the following abso-
lutely continuous joint distribution: Let q be in [0,1), and let X
and Y be random variables whose joint density function hq  is
given by

h x y

x y J

x y

i
i

q

b
b

b

b b
b b( , )

, ( , ) ,

, ( , ) , ,

,

=

Œ

Î ˚
Œ Î ˚( ]

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

=

Î ˚

-

U
1

2

2
1

0               otherwise,

where b = ( ) ( )1 1+ -q q , bÎ ˚  represents the integer part of b, and

Ji  = ( ) ,i i-[ ]1 b b .  Show that
(a) X and Y are uniform (0,1) random variables, and that
(b) the joint distribution function of X and Y is the ordinal sum of

{P,P,L,P} with respect to Ji i{ } Î ˚[ ]{ }=
Î ˚ »

1
1

b b b , .

3.2.3 Shuffles of M

The copulas in Example 3.4 and Exercise 3.9 have similar sup-
port—each is a collection of line segments with slope +1 or –1 (see
Figs. 3.5(a) and 3.8(b)). Among the copulas whose supports share this
property are the “shuffles of M.” The support of a shuffle of M can be
described informally as follows (Mikusiński et al. 1992):
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The mass distribution for a shuffle of M can be obtained by (1) placing the

mass for M on I2 , (2) cutting I2  vertically into a finite number of strips,
(3) shuffling the strips with perhaps some of them flipped around their ver-
tical axes of symmetry, and then (4) reassembling them to form the square
again. The resulting mass distribution will correspond to a copula called a
shuffle of M.

Formally, a shuffle of M is determined by a positive integer n, a finite
partition Ji{ }  = { J1,J2,..., Jn} of I into n closed subintervals, a permu-

tation p on Sn  = {1, 2, ..., n}, and a function w: Sn  Æ {–1,1} where w(i)

is –1 or 1 according to whether or not the strip Ji ¥I is flipped. We de-

note permutations by the vector of images (p(1),p(2),L,p(n)). The re-
sulting shuffle of M may then be unambiguously denoted by
M(n, Ji{ } ,p,w), where n is the number of connected components in its
support. We will assume that all shuffles of M are given in this form. A
shuffle of M with w ∫ 1, i.e., for which none of the strips are flipped, is a

straight shuffle, and a shuffle of M with w ∫ –1 is called a flipped shuffle.

We will also write In  for Ji{ }  when it is a regular partition of I, i.e.,
when the width of each subinterval Ji  is 1/n.

Example 3.7. The copula from Exercise 3.9 is the straight shuffle given
by M(2,{[0,1–q],[1–q,1]},(2,1),1), and the copula from Example 3.4 is

the flipped shuffle of M given by M(2,{[0,q],[ q,1]},(1,2),–1). �
Although shuffles of M are rather simple objects, they can be sur-

prisingly useful. As an example, consider the following question: What
is the “opposite” of independence, for random variables?  One possi-
ble answer is that X and Y should be as “dependent” as possible. We
say that X and Y are mutually completely dependent (Lancaster 1963) if
there exists a one-to-one function j such that P Y X[ ( )]= =j 1, i.e., X
and Y are almost surely invertible functions of one another. As noted in
(Kimeldorf and Sampson 1978), mutual complete dependence implies
complete predictability of either random variable from the other;
whereas independence implies complete unpredictability.

Now suppose that the copula of X and Y is a shuffle of M. Then, be-
cause the support of any shuffle is the graph of a one-to-one function,
it follows that X and Y are mutually completely dependent (the con-
verse, however, is not true—there are mutually completely dependent
random variables with more complex copulas, see Exercise 3.16). But,
as we will now show (using shuffles of M), there are mutually com-
pletely dependent random variables whose joint distribution functions
are arbitrarily close to the joint distribution function of independent
random variables with the same marginals. As noted in (Mikusiński et
al. 1991), this implies that in practice, the behavior of any pair of inde-
pendent continuous random variables can be approximated so closely
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by a pair of mutually completely dependent continuous random vari-
ables that it would be impossible, experimentally, to distinguish one pair
from the other. In view of Sklar’s theorem, we need only prove that that
the product copula P can be approximated arbitrarily closely by shuf-
fles of M. The proof of the following theorem is adapted from those in
(Kimeldorf and Sampson 1978; Mikusiński et al. 1991).

Theorem 3.2.2. For any e > 0, there exists a shuffle of M, which we de-
note Ce , such that

sup ( , ) ( , )
,u v

C u v u v
Œ

- <
I

e eP .

Proof: Let m be an integer such that m ≥ 4/e. Then as a consequence
of Theorem 2.2.4, for any copula C and for u, v, s, t in I,

C u v C s t u s
m

v t
m

( , ) ( , )- < - < - <e
2

1 1
  whenever   and  .

The integer m now determines Ce , a shuffle of M, in the following

manner: Let n = m2, and let Ji{ }  be the regular partition In  of I into n

subintervals of equal width. Let p be the permutation of Sn  given by

p( m j k( )- +1 ) = m k j( )- +1  for k,j = 1,2,L,m. Let w be arbitrary, and

set Ce  = M(n, Ji{ } ,p,w). The effect of this permutation is to redistribute
the probability mass of M so that there is mass 1 n  in each of the n sub-

squares of I2. Figure 3.9 illustrates such a shuffle of M when m = 3
(i.e., n = 9) in which p is the permutation (1,4,7,2,5,8,3,6,9).

Fig. 3.9. The example of a shuffle of M in the proof of Theorem 3.2.2

Because V p m q mCe
[ , ] [ , ]0 0¥( ) = V p m q mP [ , ] [ , ]0 0¥( ) = pq n  for

p,q = 0,1, L,m, it follows that Ce (p/m,q/m) = P(p/m,q/m) for p,q =
0,1,L,m.
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Now let (u,v) be a point in I2. Then there exists a pair (p,q) of inte-
gers with p,q Œ {0,1, L,m} such that u p m m- < 1  and v q m-  <
1 m . Hence

C u v u v C u v C p m q m

C p m q m p m q m

p m q m u v

e e e

e

e e e

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

,

- £ -
+ -

+ -

< + + =

P
P

P P

2
0

2

which completes the proof. �
The preceding theorem can be greatly generalized—the copula P

can be replaced by any copula whatsoever. That is to say, if C is any
copula, then C can be approximated arbitrarily closely—uniformly—by
certain shuffles of M. The proof uses the same permutations, but with
partitions Ji{ }  of I in which the widths of the subintervals are deter-

mined by the C-volumes of n (= m2) nonoverlapping subrectangles of

dimension (1/m)¥(1/m) in I2. To be precise, the width of Ji  is

V k m k m j m j mC [( ) , ] [( ) , ]- ¥ -( )1 1 , where i = m( j -1) + k, k,j =
1,2,L,m. See (Mikusiński et al. 1991) for details.

As a consequence, the shuffles of M are dense in the set of all copulas
endowed with the sup norm (as in Theorem 3.2.2). Thus we have the
phenomenon, alluded to earlier, in which the limit of a sequence of ran-
dom variables is independence but at each step in the limiting process,
each component of a pair of random variables in the sequence is almost
surely an invertible function of the other. For a discussion and refer-
ences, see (Vitale 1990).

When we possess information about the values of a copula at points

in the interior of I2, the Fréchet-Hoeffding bounds (2.2.4) can often be
narrowed. In the following theorem, we show that if the value of a cop-

ula is specified at a single interior point of I2, then the bounds can be
narrowed to certain shuffles of M.

In the proof of the following theorem, we let x + denote the positive

part of x, i.e., x + = max(x,0).

Theorem 3.2.3. Let C be a copula, and suppose C(a,b) = q, where

(a,b) is in ( , )0 1 2 and q satisfies max(a + b – 1,0) £ q £ min(a,b). Then

C u v C u v C u vL U( , ) ( , ) ( , )£ £ , (3.2.3)
where CU  and CL  are the copulas given by
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C M a a a b a bU = + - + -( ,{[ , ],[ , ],[ , ],[ , ]},( , , , ), )4 0 1 1 3 2 4 1q q q q
and

C M a a a a b bL = - - - + - + -( ,{[ , ],[ , ],[ , ],[ , ]},( , , , ), )4 0 1 1 1 4 2 31 1q q q q .

Because CL(a,b) = CU (a,b) = q, the bounds are best-possible.
Proof. Although the shuffle notation is useful to see the geometric

structure of CU  and CL , the positive part notation will be more useful in
the proof. The shuffles CU  and CL  are given explicitly by

C u v u v u a v bU ( , ) min , , ( ) ( )= + - + -( )+ +q
and

C u v u v a u b vL ( , ) max , , ( ) ( )= + - - - - -( )+ +0 1 q ,

and the supports of CU  and CL  are illustrated in Fig. 3.10 (the solid
line segments with slope ±1) for the case (a,b) = (0.6,0.3) and q = 0.2.

(a) (b)

a a

bb

Fig. 3.10. The supports of (a) CU  and (b) CL  for a copula C with C(a,b) = q.

If u ≥ a, then 0 £ C(u,v) – C(a,v) £ u – a; and if u < a, then 0 £
C(a,v) – C(u,v) £ a – u; from which it follows that

- - £ - £ -+ +( ) ( , ) ( , ) ( )a u C u v C a v u a .

Similarly, - - £ - £ -+ +( ) ( , ) ( , ) ( )b v C a v C a b v b , and adding yields

- - - - £ - £ - + -+ + + +( ) ( ) ( , ) ( , ) ( ) ( )a u b v C u v C a b u a v b .

Because C(a,b) = q, we have

q q- - - - £ £ + - + -+ + + +( ) ( ) ( , ) ( ) ( )a u b v C u v u a v b .
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Incorporating the Fréchet-Hoeffding bounds yields (3.2.3). Noting that
shuffles are copulas and that CU (a,b) = CL(a,b) = q completes the
proof. �

For an application of shuffles of M to the joint distribution of (U,V)
when U V+  and U V-  are independent, see (Dall’Aglio 1997a,b).

We close this section with the observation that copulas other than M
can be “shuffled,” as illustrated in the following example from (Mi-
kusiński et al. 1991).

Example 3.8. Let C be an arbitrary copula, let n = 2, w  ∫ 1, let p be

given by (2,1) and, for q in (0,1), consider the partition {[0,q],[q,1]}.

Equivalently, let the mass distribution for C be sliced vertically at u = q,
and the resulting two strips interchanged. Let Cq  denote this straight
“shuffle of C,” which we could also denote as C(2,{[0,q],[q,1]},(2,1),1).
If U and V are random variables whose joint distribution function is C,
then Cq  is the joint distribution function of the pair (U≈q,V) [cf. Exer-
cise 3.9]. Explicitly, we have

C u v P U u V v
P U u V v u
P U u V v u

C u v C v u
v C v C u v

q q
q q q

q q q
q q q

q q

( , ) [ , ]
[ ( , ], ], ,
[ ( , ] ( , ), ], ,

( , ) ( , ), ,
( , ) ( , ),

= ≈ £ £

= Œ - - + £ £
Œ - » - £ >

Ï
Ì
Ó

= - + - - £
- - + -

1 1
0 1 1

1 1
1 uu >

Ï
Ì
Ó q. �

3.2.4 Convex Sums

In Exercise 2.3, it was shown that if {Cq } is a finite collection of copu-
las, then any convex linear combination of the copulas in { Cq } is also a
copula. Convex sums are the extension of this idea to infinite collec-
tions of copulas indexed by a continuous parameter q.

We now consider the parameter q as an observation of a continuous

random variable Q with distribution function L.  If we set

¢ = ÚC u v C u v d( , ) ( , ) ( )q q
R

L , (3.2.4)

then it is easy to show (Exercise 3.17) that ¢C  is a copula, which we call
the convex sum of { Cq } with respect to L. In this context, L is often re-
ferred to as the mixing distribution of the family {Cq }. When the distri-
bution function of Q has a parameter, say a, then we have
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¢ = ÚC u v C u v da q a q( , ) ( , ) ( )
R

L . (3.2.5)

Example 3.9. Let {Cq } be the family of copulas from Exercise 3.10,
i.e., let

C u v

M u v v u

W u v u v
u v

q

q
q

q
( , )

( , ), ,

( , ), ,
( ) , ,

=
- ≥
+ - ≥ -

+ -

Ï

Ì
Ô

ÓÔ
1 1

2 elsewhere

for q in I; and let the mixing distribution La  be given by La (q) = qa ,

where a > 0.  Using (3.2.5) and evaluating the integral (over I) yields
the family { ¢Ca } of convex sums of { Cq } given by

¢ = +
+

- + -[ ] - -{ }+ +C u v W u v u v u va a
a a( , ) ( , )

( )
1

2 1
1 1

1 1 .

Note that ¢C1 = P, and the limits ¢C0 = M, ¢•C  = W. It is elementary but
tedious to show that each ¢Ca  is absolutely continuous as well, so that
with this mixing distribution, the convex sums of a family {Cq } of sin-
gular copulas form a comprehensive family { ¢Ca } of absolutely con-
tinuous copulas. For convex sums of {Cq } with other mixing distribu-
tions, see (Ferguson 1995). �

Example 3.10. Let C be an arbitrary copula, let q be in (0,1), and let
{Cq } be the family of “shuffles of C” from Example 3.8, i.e.

C u v
C u v C v u
v C v C u v uq

q q q
q q q( , )

( , ) ( , ), ,
( , ) ( , ), .

= - + - - £
- - + - >

Ï
Ì
Ó

1 1
1

If the mixing distribution is uniform on (0,1), i.e., L = U01, then ele-
mentary integration in (3.2.4) yields

C u v d uv u vq q( , ) ( , )
0

1

Ú = = P .

Mikusiński et al. (1991) describe this result as follows:

Visually one can see this by imagining that the unit square endowed with the
mass distribution for C is wrapped around a circular cylinder so that the left
and right edges meet. If one spins the cylinder at a constant rate one will see
the uniform distribution associated with P. �

We conclude this section with the following example from (Marshall
and Olkin 1988; Joe 1993), in which convex sums lead to copulas con-
structed from Laplace transforms of distribution functions.
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Example 3.11. The representation (3.2.4) can be extended by replacing
Cq  by more general bivariate distribution functions. For example, set

H u v F u G v d( , ) ( ) ( ) ( )=
•

Ú q q q
0

L , (3.2.6)

that is, let H be a convex sum (or mixture) of powers of distribution
functions F and G (which are not the margins of H, indeed, at this point
H may not even be a joint distribution function), and assume L(0) = 0.

Let y(t) denote the Laplace transform of the mixing distribution L, i.e.,
let

y qq( ) ( )t e dt= -•
Ú L

0
.

Note that y(–t) is the moment generating function of L. Now let F and

G be the distribution functions given by F(u) = exp[–y -1(u)] and G(v)

= exp[–y -1(v)] for u,v in I, then (3.2.6) becomes

H u v u v d

u v

( , ) exp ( ) ( ) ( )

( ) ( ) ,

= - +( )[ ]
= +( )

- -•

- -
Ú q y y q

y y y

1 1
0

1 1

L

which, as Marshall and Olkin (1988) show, is a bivariate distribution

function. Furthermore, because y -1(1) = 0, its margins are uniform,
whence H is a copula—that is, when y is the Laplace transform of a

distribution function, then the function C defined on I2 by

C u v u v( , ) ( ) ( )= +( )- -y y y1 1 (3.2.7)

is a copula. However, the right side of (3.2.7) is a copula for a broader
class of functions than Laplace transforms—these copulas are called Ar-
chimedean, and are the subject of the next chapter. �

Exercises

3.14 (a) Show that the graph of every shuffle of M is piecewise planar.
(b) Show that every copula whose graph is piecewise planar is sin-
gular.
(c) Show that the converses of (a) and (b) are false.
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q 1–q

Fig. 3.11. The support of the shuffle of M in Exercise 3.15

3.15 Mutually completely dependent uncorrelated random variables.
Let q be in [0,1/2], and let Cq  be the shuffle of M given by

M(3,{[0,q],[q,1- q ], [1- q ,1]},(3,2,1),w) where w(1) = w(3) = –1,

w(2) = +1. (See Fig. 3.11.)
(a) Show that Cq  is also given by

C u v
M u v u v

W u v
q

q q q
( , )

( , ) , ( , ) [ , ] ,

( , ),
= - Œ -Ï

Ì
Ó

1 2

otherwise.

(b) Show that if Cq  is the joint distribution function of U and V

with q  = ( )2 4 43-  @ 0.103, then Cov(U,V) = 0, that is, U and V
are mutually completely dependent uncorrelated uniform (0,1)
random variables.
(c) Let F denote the standard normal distribution function. Show

that if C x yq F F( ), ( )( ) is the joint distribution function of X and Y

with q near F(–1.538) @ 0.062, then Cov(X,Y) = 0, that is, X and Y
are mutually completely dependent uncorrelated standard normal
random variables (Melnick and Tennenbein 1982). Also note that
X and Y are exchangeable, and that X Y+  is not normal, as
P X Y[ ]+ = =0 2q .

3.16 Let X be a standard normal random variable, and define Y by

Y
X X

X X
= Î ˚

- Î ˚

Ï
Ì
Ô

ÓÔ

,     if  is even,

,   if  is odd.

Show that X and Y are mutually completely dependent but that the
copula of X and Y is not a shuffle of M.

3.17 Show that the function ¢C  given by (3.2.4) is a copula.
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3.18 Let { Ct } be the family of copulas from Exercise 2.10, i.e., for t in
I let

C u v u v t u v t
u vt ( , ) max( , ), ( , ) [ , ] ,

min( , ), ;
= + - ŒÏ

Ì
Ó

1 1 2

              otherwise

and let the mixing distribution La  be given by La (t) = ta ,
where a > 0. Show that the convex sum ¢Ca  of { Ct } is given by

¢ = -
+

[ ] - [ ]{ }+ +C u v M u v M u v W u va a
a a( , ) ( , ) ( , ) ( , )

1
1

1 1 .

Show that ¢C0 = W and ¢•C  = M.

3.19 Show that when y(s) = ( )1 1+ -s q , i.e., when y is the Laplace

transform of a gamma distribution with parameters a = 1/q, b = 1;
then the construction (3.2.7) generates the survival copulas for the
bivariate Pareto distribution in Example 2.14 (Joe 1993).

3.20 Show that the copulas ¢Ca  in Example 3.9 satisfy the functional

equation C = Ĉ  associated with radial symmetry.

3.2.5 Copulas with Prescribed Horizontal or Vertical Sections

Just how “simple” can the expression for a copula be? For example,
the product copula P(u,v) = uv is linear in both u and v—are there
other copulas which are linear in at least one variable? Are there “sim-
ple” copulas given by low degree polynomials in u or v? These ques-
tions lead us to a study of the sections (recall Definition 2.2.5) of a
copula, i.e., the functions u a C(u,v) and v a C(u,v). These sections
have several statistical interpretations—one of which is the following.
When U and V are uniform (0,1) random variables with a joint distribu-
tion function C, the sections are proportional to conditional distribution
functions. For example, for u0 in (0,1),

P V vU u P U u V v P U u C u v u[ ] [ , ] [ ] ( , )£ £ = £ £ £ =0 0 0 0 0 . (3.2.8)

Furthermore, several of the dependence concepts for random vari-
ables that we will encounter in Chapter 5 have geometric interpretations
in terms of sections of their copula.
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Copulas with Linear Sections

We begin by looking for copulas that are linear in one variable—say

u, that is, copulas of the form C(u,v) = a(v)u + b(v) for all (u,v) in I2.
The functions a and b are readily found from the boundary conditions
(2.2.2a) and (2.2.2b) in Definition 2.2.2. Thus

0 = C(0,v) = b(v) and v = C(1,v) = a(v),

whence there is only one copula with linear vertical (or horizontal) sec-
tions, namely P.

Copulas with Quadratic Sections

Are there copulas with quadratic sections in, say, u? If so, then C will

be given by C(u,v) = a v u b v u c v( ) ( ) ( )2 + +  for appropriate functions a,
b, and c.  Again employing the boundary conditions, we obtain

0 = C(0,v) = c(v) and v = C(1,v) = a(v) + b(v).

If we let a(v) = –y(v), then b(v) = v – a(v) = v + y(v), and we have

C(u,v) = uv v u u+ -y ( ) ( )1 (3.2.9)

where y is a function such that C is 2-increasing and y(0) = y(1) = 0
(so that C(u,0) = 0 and C(u,1) = u).
Example 3.12. The Farlie-Gumbel-Morgenstern family of copulas.
Suppose that C is symmetric and has quadratic sections in u. Then C
satisfies (3.2.9) and C(u,v) = uv u v v+ -y ( ) ( )1 . Consequently, y(v) =

qv(1 – v) for some parameter q, so that

C u vq ( , )  = uv uv u v+ - -q ( )( )1 1 . (3.2.10)

The Cq -volume of a rectangle [ u1,u2]¥[ v1,v2] is given, after some
simplification, by

V u u v v u u v v u u v vCq
q[ , ] [ , ] ( )( )[ ( )( )]1 2 1 2 2 1 2 1 1 2 1 21 1 1¥( ) = - - + - - - - .

Because ( )( )1 11 2 1 2- - - -u u v v  is in [–1,1] for all u1,u2,v1,v2  in I, it
follows that Cq  is 2-increasing, and hence a copula, if and only if q is in
[–1,1].

This family is known as the Farlie-Gumbel-Morgenstern family (of-
ten abbreviated “FGM”) and contains as members all copulas with
quadratic sections in both u and v. The family was discussed by
Morgenstern (1956), Gumbel (1958), and Farlie (1960); however, it
seems that the earliest publication with the basic functional form
(3.2.10) is Eyraud (1938). Additional properties of the FGM family are
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explored in Exercises 3.21 and 3.22. Primarily because of their simple
analytical form, FGM distributions have been widely used in modeling,
for tests of association, and in studying the efficiency of nonparametric
procedures.  For extensive lists of applications and references, see
(Conway 1983; Hutchinson and Lai 1990). �

However, FGM copulas can only model relatively weak dependence.
Using the algorithm in Exercise 3.2.3, we have simulated 500 observa-
tions from the two extreme members (q = 1 and q = –1) of this family
(see Exercise 3.21(b)). The scatterplots appear in Fig. 3.12.

We now return to the question of choosing y so that the function C in
(3.2.9) is a copula. Answers are provided by the following theorem and
corollary, due to (Quesada Molina and Rodríguez Lallena 1995):

Fig. 3.12. Scatterplots for FGM copulas with q = 1 (left) and –1 (right)

Theorem 3.2.4. Let y be a function with domain I, and let C be given
by (3.2.9) for u,v in I. Then C is a copula if and only if:

1. y0) = y(1) = 0; (3.2.11)

2. y(v) satisfies the Lipschitz condition

y y( ) ( )v v v v2 1 2 1- £ - (3.2.12)

for all v1,v2  in I.  Furthermore, C is absolutely continuous.
Proof: As noted earlier, the boundary conditions C(u,0) = 0 and

C(u,1) = u are equivalent to (3.2.11).  Furthermore, C is 2-increasing if
and only if

V u u v v

u u v v v v u u
C [ , ] [ , ]

( ) ( ) ( ) ( ) ( ) .
1 2 1 2

2 1 2 1 2 1 1 21 0

¥( ) =
- - + -[ ] - -{ } ≥y y
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If u1 = u2,v1 = v2 , or if u1 + u2 = 1, then V u u v vC [ , ] [ , ]1 2 1 2¥( ) = 0.

So for u1 < u2 and v1 < v2 , we have

y y( ) ( )v v

v v u u
2 1

2 1 2 1

1
1

-
-

£
+ -

 if u1 + u2 > 1,

and
y y( ) ( )v v

v v u u
2 1

2 1 2 1

1
1

-
-

≥
+ -

 if u1 + u2 < 1.

However, inf ( ) ,1 1 0 1 11 2 1 2 1 2u u u u u u+ - £ £ £ + >{ } = 1 and

sup ( ) ,1 1 0 1 11 2 1 2 1 2u u u u u u+ - £ £ £ + <{ }  = –1, and hence C is 2-
increasing if and only if

- £ -
-

£1 12 1

2 1

y y( ) ( )v v

v v

for v1,v2  in I such that v1 < v2 , which is equivalent to (3.2.12). Lastly,
the absolute continuity of C follows from the absolute continuity of y
(with ¢y ( )v  £ 1 almost everywhere on I), a condition equivalent to
(3.2.12). �

Of course, copulas with quadratic sections in v can be obtained by
exchanging the roles of u and v in (3.2.9) and Theorem 3.2.4. The
following corollary, whose proof is left as an exercise, summarizes the
salient properties of the function y for copulas with quadratic sections.

Corollary 3.2.5. The function C defined by (3.2.9) is a copula if and
only if y satisfies the following three properties:

1. y(v) is absolutely continuous on I;

2. ¢y ( )v  £ 1 almost everywhere on I;

3. y ( )v  £ min(v,1 - v) for all v in I.
Furthermore, C is absolutely continuous.

So, to construct copulas with quadratic sections in u, we need only
choose functions y satisfying the three properties in Corollary
3.2.5—that is, continuous piecewise differentiable functions whose
graphs lie in the shaded region in Fig. 3.13, and whose derivatives
(where they exist) do not exceed 1 in absolute value. One example of
such functions is y(v) = qv(1- v ) for q in [–1,1], and this leads to the
Farlie-Gumbel-Morgenstern family presented in Example 3.12. Other
examples of functions that lead to parametric families of copulas are
considered in Exercise 3.25. See (Quesada Molina and Rodríguez
Lallena 1995) for a discussion of these families and further examples.
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1/2

min(v,1–v)

–min(v,1–v)

1
0

1/2

–1/2

Fig. 3.13. Bounds for the graph of y(v)

Copulas with Cubic Sections

In a similar fashion, these ideas can be extended to construct copulas
whose horizontal or vertical sections are cubic polynomials. The devel-
opment is quite similar to that for copulas with quadratic sections, and
hence we will present the results without proof. The proofs can be
found in (Nelsen et al. 1997).

Let C be a copula with cubic sections in u.  Then C is given by C(u,v)

= a v u b v u c v u d v( ) ( ) ( ) ( )3 2+ + +  for appropriate functions a, b, c, and
d. Again employing the boundary conditions, we obtain 0 = C(0,v) =
d(v) and v = C(1,v) = a(v) + b(v) + c(v), so that c(v) = v – a(v) – b(v). If
we let a(v) = - -a v b v( ) ( )  and b(v) = - -2a v b v( ) ( ) , then we have

C(u,v) = uv u u v u v u+ - - +[ ]( ) ( )( ) ( )1 1a b (3.2.13)

where a and b are functions such that a(0) = a(1) = b(0) = b(1) = 0
(so that C(u,0) = 0 and C(u,1) = u) and for which C is 2-increasing.

The requisite conditions for C in (3.2.13) to be 2-increasing (and
hence a copula) are given in the next theorem, whose proof is similar to
that of Theorem 3.2.4.

Theorem 3.2.6. Let a,b be two functions from I to R satisfying a(0) =

a(1) = b(0) = b(1) = 0, and let C be the function defined by (3.2.13).
Then C is a copula if and only if for every u1,u2,v1,v2  in I such that u1
< u2,v1 < v2 , we have

( ) ( )
( ) ( )

( )( )
( ) ( )

.

1 1 1

1 1 1 1

1
2

2
2

1 2
2 1

2 1

1
2

2
2

1 2
2 1

2 1

- + - + -[ ] -
-

-

+ + - - -[ ] -
-

≥ -

u u u u
v v

v v

u u u u
v v

v v

a a

b b
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But this theorem is hardly a manageable result. However, the follow-
ing lemma is easily established:

Lemma 3.2.7. Let a, b, and C be as in Theorem 3.2.6. Then C is a cop-
ula if and only if

1. a(v) and b(v) are absolutely continuous and

2. 1 1 4 3 2 32 2+ ¢ - + + ¢ -a b( )( ) ( )( )v u u v u u  ≥ 0 for all u in I and al-
most all v in I.

With this lemma we can establish the following theorem, which will be
used in the sequel to construct copulas with cubic sections. Theorems
3.2.8 and 3.2.10 both refer to a set S, the union of the set of points in
the square -[ ]1 2,  ¥ -[ ]2 1,  and the set of points in and on the ellipse in

R2 whose equation is x xy y x y2 2 3 3 0- + - + = . The graph of S is
given in Fig. 3.14.

(–1,1)

(2,–2)

1

20
–1

–2

1 3

–3

y

x
–1

Fig. 3.14. The set S in Theorems 3.2.8 and 3.2.10

Theorem 3.2.8. Let a, b, and C be as in Theorem 3.2.6. Then C is a
copula if and only if

1. a(v) and b(v) are absolutely continuous and

2. for almost every v in I, the point ¢ ¢( )a b( ), ( )v v  lies in S. In other
words, for almost every v in I, either

- £ ¢ £1 2a ( )v   and  - £ ¢ £2 1b ( )v
or

¢[ ] - ¢ ¢ + ¢[ ] - ¢ + ¢ £a a b b a b( ) ( ) ( ) ( ) ( ) ( )v v v v v v2 2 3 3 0.

Moreover, C is absolutely continuous.
The next theorem gives necessary and sufficient conditions for a

copula with cubic sections to be associated with either a radially sym-
metric or jointly symmetric pair of random variables (recall Theorem
2.7.3 and Exercise 2.29). Its proof is left as an exercise.

Theorem 3.2.9. Let a, b, and C be as in Theorem 3.2.6. Then
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1. The survival copula Ĉ  associated with C is given by

Ĉ (u,v) = uv u u v u v u+ - - - + -[ ]( ) ( )( ) ( )1 1 1 1b a ; (3.2.14)

2. C  = Ĉ , i.e. C satisfies (2.7.3), if and only if a(v) = b(1 – v) for all
v in I; and

3. C satisfies (2.8.1) if and only if a(v) = b(1- v ) = –a(1- v ) = –b(v)
for all v in I.
Example 3.13. Iterated Farlie-Gumbel-Morgenstern Distributions. Let
Cq  be a member of the FGM family (3.2.10). The joint survival func-
tion (not the survival copula) Cq (u,v) = 1- - +u v C u vq ( , )  associated
with Cq  is

C u v u v uvq q( , ) ( )( )( )= - - +1 1 1 . (3.2.15)

Noting that both the joint distribution function uv and the joint survival
function (1- u)(1- v ) for independence appear in both (3.2.10) and
(3.2.15), Kotz and Johnson (1977) “iterated” the FGM distribution by
replacing the “ (1- u)(1- v )” term in (3.2.10) by Cq  (but with a new
parameter, say j) in (3.2.15) to obtain Kotz and Johnson’s iterated
FGM:

C u v uv uv u v uvq j q j, ( , ) ( )( )[ ]= + - - +1 1 1 . (3.2.16)

When Cq j,  is written in the form (3.2.13), a(v) = qv(1- v ) and b(v) =

qv(1- v )(1+ jv ).
In a similar vein, Lin (1987) iterated the FGM by replacing the “ u v ”

term in (3.2.15) by Cq  from (3.2.10) (but again with a new parameter,
say j) and then solved for Cq j,  to obtain Lin’s iterated FGM:

C u v uv uv u v u vq j q j, ( , ) ( )( )[ ( )( )]= + - - + - -1 1 1 1 1 ; (3.2.17)

which are also the survival copulas for the Kotz and Johnson family
given by (3.2.16). �

In Example 3.12, we saw that the Farlie-Gumbel-Morgenstern family
(3.2.10) had as its members all the copulas with quadratic sections in
both u and v. Note that the iterated FGM copulas in Example 3.13 have
cubic sections in both u and v. We now examine the extension of these
families to find all copulas with cubic sections in both u and v. That is,
we seek copulas C(u,v) which can be written both as (3.2.13) and as

C(u,v) = uv v v u v u v+ - - +[ ]( ) ( )( ) ( )1 1g c (3.2.18)

where a, b, g and c satisfy the hypotheses of Theorem 3.2.6. As a con-
sequence of Theorem 3.2.8, we have
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Theorem 3.2.10. Suppose that C has cubic sections in both u and v,
i.e., C is given by both (3.2.13) and (3.2.18). Then

C u v uv uv u v A v u

A v u B uv B u v

( , ) ( )( ) ( )

( )( ) ( ) ,

= + - - - +[
- - + + - ]

1 1 1

1 1 1
1

2 1 2
(3.2.19)

where A1, A2, B1, B2 are real constants such that the points ( A2, A1),
( B1,B2), ( B1, A1), and ( A2,B2) all lie in S.

Note that when C has cubic sections in both u and v, the functions
a, b, g and c  in (3.2.13) and (3.2.18) are given by

a ( ) ( ) ( )v v v A v A v= - + -[ ]1 11 2 ,

b( ) ( ) ( )v v v B v B v= - + -[ ]1 11 2 ,

g ( ) ( ) ( )u u u B u A u= - + -[ ]1 12 2 , and

c( ) ( ) ( )u u u B u A u= - + -[ ]1 11 1 .

Example 3.14. The two families of iterated FGM copulas in Example
3.13 have cubic sections in both u and v, and hence can be written in
the form (3.2.19). For the Johnson and Kotz family of copulas given
by (3.2.16), A1 = A2 = B2 = q and B1 = q j( )1+ ; and for the Lin fam-

ily of copulas in (3.2.17), A1 = B1 = B2 = q and A2 = q j( )1+ . If we

let x = q j( )1+ , then the ranges of the parameters q and x for both

families are: qŒ[–1,1] and - -1 q  £ x £ [ ( ) ]3 9 6 3 22 1 2- + - -q q q . �
As an immediate consequence of Theorem 3.2.9, we have

Corollary 3.2.11. Suppose that C has cubic sections in both u and v,
i.e., C is given by (3.2.19) in Theorem 3.2.10. Then

1. C is symmetric, i.e., C(u,v) = C(v,u), if and only if A1 = B2;

2. C  = Ĉ , i.e. C satisfies (2.7.3), if and only if A1 = B2 and A2 = B1;
3. C satisfies (2.8.1) if and only if A1 = B2 = – A2 = – B1.
The next two examples show the ease with which the procedures out-

lined in the above theorems can be use to construct families of copulas.

Example 3.15. If we set A1 = B2 = a – b and A2 = B1 = a + b in
(3.2.19), we obtain a two-parameter family of copulas each of which is
symmetric and satisfies the functional equation C  = Ĉ  associated with
radial symmetry. From Theorem 3.2.10, the constants a and b satisfy b

Œ [–1,2]; a  £ b + 1 for b Œ    [–1,1/2] and a  £ ( )6 3 2 1 2b b-  for b Œ
[1/2,2]. Explicitly we have

C u v uv uv u v a b u va b, ( , ) ( )( )[ ( )( )]= + - - + - -1 1 1 2 1 2 (3.2.20)



84      3 Methods of Constructing Copulas

for u,v in I. Several subfamilies are of interest.
1. When b = 0 the copulas given by (3.2.20) are the FGM family.

2. When a = 3q and b = 5 2q , we obtain a family constructed by
Sarmanov (1974) from the first two Legendre polynomials. Applica-
tions of this family are discussed in (Lee 1996).

3. When a = 0, we have a family in which each copula satisfies the
functional equations (2.8.1) associated with joint symmetry.
Additional subfamilies of (3.2.20) are considered in Exercises 3.39 and
4.9. �

Example 3.16. Theorem 3.2.10 can also be used to construct families
of asymmetric copulas. For example, if we set A1 = A2 = a and B1 =
B2 = b for –1 £ a,b £ 1; a π b, we obtain a family of asymmetric copu-
las with cubic sections in u but quadratic sections in v (when a = b we
have the FGM family)—see Exercise 3.30. If we set A1 = a, A2 = B1 =

B2 = b where b £ 1, [ ( ) ]b b b- - + -3 9 6 3 22 1 2  £ a £ 1, a π b, then we
have the following family of asymmetric copulas with cubic sections in
both u and v:

C u v uv uv u v a b v u b( , ) ( )( )[( ) ( ) ]= + - - - - +1 1 1 . �

The ideas developed in this section can be extended to investigate
copulas whose horizontal or vertical sections are higher degree poly-
nomials or other simple functions such as hyperbolas (see Exercise
3.26).

3.2.6 Copulas with Prescribed Diagonal Sections

We now turn to the construction of copulas having a prescribed diago-
nal section. Recall from Sects. 2.2 and 2.6 that the diagonal section of a
copula C is the function d C  from I to I defined by d C (t) = C(t,t), and
that the diagonal section of the dual of C (see Sect. 2.6) is the function
d̃ C (t) from I to I given by d̃ C (t) = 2t – d C (t). Diagonal sections are of
interest because if X and Y are random variables with a common distri-
bution function F and copula C, then the distribution functions of the
order statistics max(X,Y) and min(X,Y) are d C (F(t)) and d̃ C (F(t)), re-
spectively [see Exercises 2.16 and 2.24].

As a consequence of Theorem 2.2.4 and Exercise 2.8, it follows that
if d is the diagonal section of a copula, then

d(1) = 1; (3.2.21a)

0 £ d d( ) ( )t t2 1-  £ 2( t t2 1- ) for all t1, t2  in I with t t1 2£ ; (3.2.21b)
and
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d(t) £ t for all t in I. (3.2.21c)

In this section, any function d : I IÆ  that satisfies (3.2.21a)-(3.2.21c)
will be called simply a diagonal, while we will refer to the function
d C (t) = C(t,t)  as the diagonal section of C.

Now suppose that d is any diagonal. Is there a copula C whose diago-

nal section is d? The answer is provided in the following theorem.

Theorem 3.2.12. Let d be any diagonal, and set

C u v u v u v, min , , ( ) ( )( ) = ( ) +[ ]( )1 2 d d . (3.2.22)

Then C is a copula whose diagonal section is d.
The proof of the above theorem, which is a somewhat technical but

straightforward verification of the fact that C is 2-increasing, can be
found in (Fredricks and Nelsen 1997a). Copulas of the form given by
C(u,v) in (3.2.22) are called diagonal copulas.
Example 3.17. (a) Let d ( )t t= , the diagonal section of M. The diagonal
copula constructed from this diagonal is M, as it must be as the only
copula whose diagonal section is the identity is M [see Exercise 2.8].

(b) Let d(t) = max(0,2t – 1), the diagonal section of W. The diagonal
copula constructed from this diagonal is not W but rather the shuffle of
M given by M(2, I2,(2,1),1), i.e., the copula C1 2 from Exercise 3.9.

(c) Let d (t) = t2, the diagonal section of P. The diagonal copula
constructed from this diagonal is the singular copula from Example 3.5

that assigns the probability mass to two quarter circles in I2 with radius
1, one centered at (0,1) and one centered at (1,0). �

Because a diagonal copula is constructed from a function that can be
the distribution function of the maximum of two random variables, it is
natural to suspect that diagonal copulas are related to joint distributions
of order statistics. Such is indeed the case.
Theorem 3.2.13. Suppose X and Y are continuous random variables
with copula C and a common marginal distribution function. Then the
joint distribution function of max(X,Y) and min(X,Y) is the Fréchet-
Hoeffding upper bound if and only if C is a diagonal copula.

Proof. By virtue of Sklar’s theorem, we need only prove the follow-
ing: Suppose U and V are random variables whose joint distribution
function is the copula C. Then the joint distribution function of
max(U,V) and min(U,V) is the Fréchet-Hoeffding upper bound if and
only if C is a diagonal copula.

Let H(z, z̃ ) be the joint distribution function of Z = max(U,V) and Z̃
= min(U,V). Recall that d C  and d̃ C  are the distribution functions of Z
and Z̃ , respectively. Then, setting d C  = d,
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H z z P U V z U V z
z z z

C z z C z z z z z

( , ˜) [max( , ) ,min( , ) ˜)
( ), ˜,
( , ˜) ( ˜, ) ( ˜), ˜.

= £ £

= £
+ - ≥

Ï
Ì
Ó

d
d

                                

Assume C is a diagonal copula, i.e., C(u,v) =
min(u,v,(1/2)[d d( ) ( )u v+ ]). Then if z ≥ z̃ , H(z, z̃ ) = 2C(z, z̃ ) – d( z̃ ) =

min(2 z̃  – d( z̃ ),d(z)) = min( ˜( ˜)d z ,d(z)). If z < z̃ , then d(z) =

min( ˜( ˜)d z ,d(z)) since d(z) £ d( z̃ ) £ z̃  £ ˜( ˜)d z . Thus H(z, z̃ ) =

M( ˜( ˜)d z ,d(z)).

In the opposite direction, assume H(z, z̃ ) = M( ˜( ˜)d z ,d(z)), where again

d denotes the diagonal section of C. Assuming that C is symmetric, we
will show that C must be a diagonal copula [for the proof in the general
case, see (Fredricks and Nelsen 1997b)]. If z > z̃ , then 2C(z, z̃ ) – d( z̃ ) =

M( ˜( ˜)d z ,d(z)) = min( 2 ˜ ( ˜)z z- d ,d(z)), and hence C(z, z̃ ) =
min( z̃ ,(1/2)[d d( ) ( ˜)z z+ ]). By symmetry, C(z, z̃ ) =
min(z,(1/2)[d d( ) ( ˜)z z+ ]) when z £ z̃ . Thus C(u,v) =

min(u,v,(1/2)[ d d( ) ( )u v+ ]) for all u,v in I2. �
There are other ways to construct copulas with prescribed diagonal

sections. For example, Bertino (1977) shows that if d is a diagonal then

B u v
u t t u v

v t t v u
u t v

v t u

d

d

d
( , )

inf ( ) , ,

inf ( ) , ,
=

- -[ ] £

- -[ ] £

Ï
Ì
Ô

ÓÔ

£ £

£ £

(3.2.23)

is a copula whose diagonal section is d. For a thorough treatment of the
properties of Bertino copulas, including a characterization similar to
Theorem 3.2.13, see (Fredricks and Nelsen 2002).

Exercises

3.21 (a) Show that the arithmetic mean of two Farlie-Gumbel-
Morgenstern copulas is again a Farlie-Gumbel-Morgenstern cop-
ula, i.e., if Ca  and Cb  are given by (3.2.10), then the arithmetic

mean of Ca  and Cb  is C( )a b+ 2 (see Exercise 2.3).
(b) Show that each FGM copula is a weighted arithmetic mean of
the two extreme members of the family, i.e., for all q in [–1,1],

C u v C u v C u vq
q q

( , ) ( , ) ( , )= - + +
- +

1
2

1
21 1 .
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3.22 Show that each member of the Farlie-Gumbel-Morgenstern fam-
ily of copulas is absolutely continuous and satisfies the condition
C = Ĉ  for radial symmetry. Also show that the FGM family is
positively ordered.

3.23 Show that the following algorithm (Johnson 1986) generates ran-
dom variates (u,v) from an FGM distribution with parameter q:

1. Generate two independent uniform (0,1) variates u, t;

2. Set a = 1 + q(1 – 2u); b = a a t2 4 1- -( ) ;
3. Set v = 2t/(b + a);
4. The desired pair is (u,v).

3.24 Prove Corollary 3.2.4.

3.25 Show that for each of the following choices of y, the function C
given by (3.2.9) is a copula (Quesada Molina and Rodríguez
Lallena 1995):
(a) y(v) = min{av, b(1 - v)} (or –min{av, b(1 - v)}) for a,b in I;

(b) y(v) = (q/p)sin(pv) for q in [–1,1];

(c) y(v) = (q/2p)sin(2pv) for q in [–1,1];

(d) y(v) = q[z(v) + z(1 – v)] for q in [–1,1], where z is the piece-
wise linear function whose graph connects (0,0) to (1/4,1/4) to
(1/2,0) to (1,0).
(e) y(v) = qz(v) – (1- q )z(1- v ) for q in I, where z is the piece-
wise linear function in part (d).

3.26 Show that a family of copulas with hyperbolic sections in both u
and v is the Ali-Mikhail-Haq family, first encountered in Exercise
2.14. Are there other such families?

3.27 Prove Theorem 3.2.9.

3.28 Let C be a copula with cubic sections in u, i.e., let C be given by
(3.2.13) where a and  b satisfy Theorem 3.2.7. Prove that for all v

in I, max( -v ,3( v -1)) £ a(v) £ min(1- v ,3v) and max(–3v, v -1)

£ b(v) £ min(3(1- v ),v); that is, the graphs of a and  b  lie in the
shaded regions shown in Fig. 3.15.
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3/4

0

–3/4

1

a

v

3/4

0

–3/4

1

b

v

min(1–v, 3v) min(3(1–v),v)

max(–v, 3(v–1)) max(–3v,v–1)

Fig. 3.15. Regions for a and  b  in Exercise 3.28

3.29 Prove Corollary 3.2.11.

3.30 Let C be a copula with cubic sections in u and v, i.e., let C be
given by (3.2.19) in Theorem 3.2.10. Show that
(a) if A1 = A2 and B1 = B2, then the sections in v are actually
quadratic rather than cubic;
(b) if A1 = B1 and A2 = B2, then the sections in u are quadratic
rather than cubic;
(c) if A1 = A2 = B1 = B2 = q, then (3.2.19) degenerates to the
Farlie-Gumbel-Morgenstern family (3.2.10).

3.31 Let C be any symmetric copula whose diagonal section is d. Show

that C(u,v) £ min(u,v,(1/2)[d d( ) ( )u v+ ]) for all u,v in I2.

(b)(a)

Fig. 3.16. The supports of the copulas in Exercises 3.32 and 3.33

3.32 Let d(t) = min(max(0,2t – 1/2),max(1/2,2t – 1)), a piecewise linear
function whose graph connects (0,0) to (1/4,0) to (1/2,1/2) to
(3/4,1/2) to (1,1). Show that the diagonal copula constructed from
this diagonal is the straight shuffle of M given by
M(4, I4 ,(2,1,4,3),1}, whose support is illustrated in part (a) of Fig.
3.16.
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3.33 Let dq  be a convex combination of the diagonal sections of M
and W, i.e., dq (t) = q d M (t) + (1- q ) d W (t), where q is in I. Let Cq
be the diagonal copula constructed from dq . Show that the sup-

port of Cq  is the hexagon in I2 with vertices (0,0), (1/2,w),

(1- w ,1/2), (1,1), (1/2,1- w ), and (w,1/2), where w = q q( )4 2- , as

illustrated in part (b) of Fig. 3.16 for the case q = 2/3.

3.34 Let C be a copula whose support is a subset of the union of the

two diagonals of I2. Show that

C u v
u v u v

u v u v u v
( , )

min( , ) , ,

max( , ) , ,
=

( ) + £

- + ( ) + >

Ï
Ì
Ô

ÓÔ

d

d

1

1

where d is a diagonal such that t t- d ( )  = ( ) ( )1 1- - -t td  for t in I,
i.e., the graph of y = t t- d ( )  is symmetric with respect to t = 1/2.

3.3 Algebraic Methods

In this section, we will construct two well-known families of copulas, the
Plackett and Ali-Mikhail-Haq families, to illustrate the procedure for
using an algebraic relationship between the joint distribution function
and its univariate margins to find copulas. In both cases, the algebraic
relationship concerns an “odds” ratio—in the first case we generalize
2¥2 contingency tables, and in the second case we work with survival
odds ratios.

3.3.1 Plackett Distributions

A measure of “association” or “dependence” in 2¥2 contingency ta-

bles is the cross product ratio, or odds ratio, which we will denote by q.

To illustrate, consider the 2¥2 table in Fig. 3.17. For convenience, we
have labeled the categories for each variable as “low” and “high.” If
the observed counts in the four categories are a, b, c, and d, as shown,
then the cross product ratio is the positive real number  q given by q =
ad bc .
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Column variable
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e low high

a b

c d

low

high

a+c b+d

a+b

c+d

Fig. 3.17. A 2¥2 contingency table

The value q = 1 corresponds to independence, for when q = 1, ad =
bc, which implies that each “observed” entry (such as a) is equal to its
“expected value” under independence (here ( a b+ )( a c+ )/n, where n
= a b c d+ + + ). When q > 1, the observations are concentrated in the

“low-low” and “high-high” cells; and when q is between 0 and 1, the
observations are concentrated in the “low-high” and “high-low” cells.

With simple algebra, q is the ratio of the “odds” for the rows given
the column, or equivalently, for the columns given the row:

q = = + +

+ +

a c

b d

a
a c

c
a c

b
b d

d
b d

  and  q = = + +

+ +

a b

c d

a
a b

b
a b

c
c d

d
c d

.

Also note that the counts a, b, c, and d in q = ad bc  could just as well
be replaced by the proportions a/n, b/n, c/n, and d/n.

Plackett’s family of bivariate distributions (Plackett 1965) arises
from an extension of this idea to bivariate distributions with continuous
margins. Let X and Y be continuous random variables with a joint dis-
tribution function H, and margins F and G, respectively. Let x and y be
any pair of real numbers, and let the “low” and “high” categories for
the column variable correspond to the events “X £ x” and “X > x”, re-
spectively, and similarly for the row variable. Then replace the numbers
a, b, c, and d in q = ad bc  by the probabilities H(x,y), F(x) – H(x,y),
G(y) – H(x,y), and 1 – F(x) – G(y) + H(x,y), respectively, to obtain

q =
- - +[ ]

-[ ] -[ ]
H x y F x G y H x y

F x H x y G y H x y

( , ) ( ) ( ) ( , )

( ) ( , ) ( ) ( , )

1
. (3.3.1)

For most joint distributions, q will be a function of the point

(x,y)—but are there joint distributions for which q is a constant? As we
shall show, the answer is yes—and these are the members of Plackett’s
family, which are also known as constant global cross ratio distribu-
tions, or contingency-type (or C-type) distributions.
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Using the probability transforms u = F(x), v = G(y), and Sklar’s
theorem, we can rewrite (3.3.1) as (where C is the copula of X and Y)

q =
- - +[ ]

-[ ] -[ ]
C u v u v C u v

u C u v v C u v

( , ) ( , )

( , ) ( , )

1
,

and solve for C. When q = 1, the only solution is C = P; when q π 1,
clearing fractions yields a quadratic in C, the roots of which are

C u v
u v u v uv

( , )
( )( ) ( )( ) ( )

( )
=

+ - +[ ] ± + - +[ ] - -
-

1 1 1 1 4 1

2 1

2q q q q
q

. (3.3.2)

Following (Mardia 1970), we will now show that, for q > 0 but q π 1, the
root in (3.3.2) with the “+” sign preceding the radical is never a cop-
ula; whereas the root with the “–” sign always is.

Margins of the two roots in (3.3.2) are

C u
u u

( , )
( ) ( )

( )
0

1 1 1 1

2 1
=

+ -[ ] ± + -[ ]
-

q q
q

 and

C u
u u

( , )
( ) ( )

( )
1

1 1

2 1
=

+ -[ ] ± - -[ ]
-

q q q q
q

and hence (for q > 0, q π 1) the root with the “+” sign never satisfies
the boundary conditions, and the root with the “–” sign always does.
Now let Cq  denote the root in (3.3.2) with the “–” sign. To show that
Cq  is 2-increasing, it suffices to show that

∂
∂ ∂

q
2C u v

u v

( , )
 ≥ 0 and C u v

C s t

s t
dtds

vu
q

q∂
∂ ∂

( , )
( , )= ÚÚ

2

00

for (u,v) in I2. This is tedious but elementary—but also shows that each
of these copulas is absolutely continuous. Thus we have the Plackett
family of copulas: for q > 0, q π 1,

C u v
u v u v uv

q
q q q q

q
( , )

( )( ) ( )( ) ( )

( )
=

+ - +[ ] - + - +[ ] - -
-

1 1 1 1 4 1

2 1

2

, (3.3.3a)

and for q = 1,
C u v uv1( , ) .= (3.3.3b)

In addition to being absolutely continuous, these copulas form a
comprehensive family (like the Fréchet family in Exercise 2.4), because
the limits of Cq  as q goes to 0 and to • are the bounds W and M, re-
spectively (see Exercise 3.35). So it is not surprising that Plackett family
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copulas have been widely used both in modeling and as alternatives to
the bivariate normal for studies of power and robustness of various sta-
tistical tests (Conway 1986; Hutchinson and Lai 1990).

In Fig. 3.18 we have scatterplots for two simulations of Plackett
copulas, each using the algorithm in Exercise 3.38 with 500 observa-
tions. The one on the left is for q = 20, the one on the right is for q =
0.02.

Fig. 3.18. Scatterplots for Plackett copulas with q = 20 and 0.02

To fit a Plackett copula to a data set, one must estimate the parameter
q from the data. One estimator is the maximum likelihood estimator,
which must be found numerically. An attractive alternative is the ob-
served cross-product ratio q* = ad bc , where a, b, c, and d are the ob-

served frequencies in the four quadrants determined by lines in R2

parallel to the axes through a point (p,q).
An optimum choice for (p,q) is the sample median vector, which

minimizes the asymptotic variance of q* (Mardia 1970). In this case,

F(p) = G(q) = 1/2, and  q* = 4 1 22 2m m( )- , where m is the observed
frequency of observations in which neither variable exceeds its median
value. See (Mardia 1970) for details, and for an efficient estimator that
is asymptotically equivalent to the maximum likelihood estimator.

3.3.2 Ali-Mikhail-Haq Distributions

Let X and Y be continuous random variables with joint distribution
function H and marginal distribution functions F and G, respectively.
When X and Y denote lifetimes of objects, such as organisms or elec-
tronic components, it is natural to talk about the “odds for survival,”
that is (for X, say), the ratio P X x P X x[ ] [ ]> £  of the probability of
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survival beyond time x to the probability of failure before time x, i.e.,
F x F x( ) ( )  = 1-( )F x F x( ) ( ) . In an analogous fashion, we can define a
bivariate survival odds ratio P X x Y y P X x Y y[ ] [ , ]> > £ £ or , or
1-( )H x y H x y( , ) ( , ) .

Example 3.18. Suppose X and Y have Gumbel’s bivariate logistic dis-
tribution from Exercise 2.12, that is, for all x,y in R ,

H x y e ex y( , ) ( )= + +- - -1 1.

Then the bivariate survival odds ratio is (1 – H(x,y))/H(x,y) = e x-  +

e y- . But F(x) = ( )1 1+ - -e x , so that (1 – F(x))/F(x) = e x- ; and similarly
for Y. It follows that

1 1 1- = - + -H x y

H x y

F x

F x

G y

G y

( , )
( , )

( )
( )

( )
( )

.
  

( . . )3 3 4
�

Example 3.19. Suppose X and Y are independent random variables with
joint distribution function H and marginal distribution functions F and
G, respectively, where H(x,y) = F(x)G(y). Since F(x) =

1 1
1

+ -( )[ ]( )-
F x F x( ) ( ) , and similarly for G and H; we obtain

1 1 1 1 1- = - + - + - ◊ -H x y

H x y

F x

F x

G y

G y

F x

F x

G y

G y

( , )
( , )

( )
( )

( )
( )

( )
( )

( )
( )

. (3.3.5)

Noting the similarity between (3.3.4) and (3.3.5), Ali, Mikhail and
Haq (1978) proposed searching for bivariate distributions for which the
survival odds ratios satisfied

1 1 1
1

1 1- = - + - + - - ◊ -H x y

H x y

F x

F x

G y

G y

F x

F x

G y

G y

( , )
( , )

( )
( )

( )
( )

( )
( )

( )
( )

( )
q (3.3.6)

for some constant q.  Note that when q = 1, (3.3.6) reduces to (3.3.4);

and when q = 0, (3.3.6) reduces to the independence case (3.3.5).
As with the derivation of the Plackett family in the preceding section,

we use the probability transforms u = F(x), v = G(y) and Sklar’s theo-
rem to rewrite (3.3.6) as (where Cq  denotes the copula of X and Y)

1 1 1
1

1 1- = - + - + -( ) - ◊ -C u v

C u v

u

u

v

v

u

u

v

v
q

q
q( , )

( , )
.

Solving for Cq (u,v) yields the Ali-Mikhail-Haq family: for  q in [–1,1],

C u v
uv

u vq q
( , )

( )( )
=

- - -1 1 1
. (3.3.7)
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The task remains to verify that when q is in [–1,1], Cq  given by
(3.3.7) is indeed a copula. It is easy to check that the boundary condi-

tions (2.2.2a) and (2.2.2b) hold. To have Cq (u,v) ≥ 0 on I2 requires q
£ 1, and to have ∂ ∂ ∂q

2C u v u v( , )  ≥ 0 requires q ≥ –1. Finally

C u v
C s t

s t
dtds

vu
q

q∂
∂ ∂

( , )
( , )= ÚÚ

2

00
 for (u,v) in I2, so that the copulas in the

Ali-Mikhail-Haq family are absolutely continuous. As noted in Exercise
2.32, this family is positively ordered. �

Fig. 3.19. Scatterplots for Ali-Mikhail-Haq copulas, q = 1 (left) and –1 (right)

In Fig. 3.19 we have scatterplots for simulations of the two extreme
members of the Ali-Mikhail-Haq family (q = 1 and q = –1), using 500
observations and the algorithm in Exercise 3.42. These copulas are
similar to the FGM copulas, in that they can only model weak depend-
ence.

3.3.3 A Copula Transformation Method

In this section, we present a technique to transform one copula into an-
other. It is motivated by the following problem. Let ( , )X Y1 1 , ( , )X Y2 2 ,
L, ( , )X Yn n  be independent and identically distributed pairs of random
variables with common joint distribution function H, copula C and mar-
ginals F (of Xi ) and G (of Yi ). How are the “component-wise
maxima” X n( ) = max{ Xi } and Y n( )  = max{ Yi } distributed? We answer

this question by finding the distribution function H n( )  and the copula

C n( )  of X n( ) and Y n( ) .
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We first find the distribution functions F n( ) and G n( ) of X n( ) and

Y n( ) , respectively. Because P X x P X x P X xn i
n

[ ] [ ] [ ]( ) £ = £ = £( )all 1  and

similarly for Y n( ) , we have F n( )(x) = [ ( )]F x n  and G n( )(y) = [ ( )]G y n .
Thus

H x y P X x Y y P X x Y y

H x y C F x G y

C F x G y

n n n i i

n n

n
n

n
n n

( ) ( ) ( )

( ) ( )

( , ) [ , ] [ , ]

[ ( , )] [ ( ( ), ( ))]

[ ( )] ,[ ( )] .

= £ £ = £ £

= =

= ( )[ ]

all all 

1 1

Hence we have

C u v C u vn
n n n

( )( , ) ( , )= 1 1  for u,v in I. (3.3.8)

Thus we have proven
Theorem 3.3.1. If C is a copula and n a positive integer, then the func-
tion C n( )  given by (3.3.8) is a copula. Furthermore, if ( , )X Yi i , i =
1,2,L,n are independent and identically distributed pairs of random
variables with copula C, then C n( )  is the copula of X n( ) = max{ Xi }

and Y n( )  = max{ Yi }.

Example 3.20. (a) If Xi  and Yi  are independent, then so are X n( ) and

Y n( ) , as P( )n (u,v) = [ ]u vn n n1 1  = uv.

(b) If Xi  and Yi  are comonotonic, then so are X n( ) and Y n( ) , as

M n( ) (u,v) = [min( , )]u vn n n1 1  = M(u,v).

(c) However, if Xi  and Yi  are countermonotonic, then X n( ) and Y n( )

are not countermonotonic for any n ≥ 2, as W n( )(u,v) =

[max( , )]u vn n n1 1 1 0+ - , which is not W but rather a member of the
family given by (4.2.1) in the next chapter (with q = -1 n).

(d) Let C be the copula given by (2.3.4), i.e., C(u,v) = uv u v uv( )+ - .

Then C n( ) (u,v) = uv u v u vn n n n n( )1 1 1 1+ - , also a member of the

family given by (4.2.1) (but with q = 1 n ). �
Example 3.21. Let C be a member of the Marshall-Olkin family

(3.1.3), i.e., C(u,v) = min( , )u v uv1 1- -a b . A simple computation shows
that C n( )  = C for any positive integer n. �

The above examples motivate the following definition:
Definition 3.3.2. A copula C is max-stable if for every positive real
number r and all u,v in I,
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C u v C u vr r r( , ) ( , )= 1 1 . (3.3.9)

Example 3.22. Let Cq  be a member of the Gumbel-Hougaard family
(2.4.2), i.e.,

C u v u vq
q q q

( , ) exp ( ln ) ( ln )= - - + -[ ]Ê
Ë

ˆ
¯

1

for q ≥ 1. A straightforward calculation shows that C u vr r r
q ( , )1 1  =

Cq (u,v), and hence every member of the Gumbel-Hougaard family is
max-stable. �

The transformation in (3.3.8) above is a special case of a more gen-
eral result (Genest and Rivest 2001, Klement et al. 2004), which facili-
tates the construction of copulas from a given copula and certain in-
creasing functions on I.
Theorem 3.3.3. Let g:[0,1]Æ[0,1] be continuous and strictly increasing

with g(0) = 0, g(1) = 1, and let g -1 denote the inverse of g. For an ar-
bitrary copula C, define the function Cg  by

C u v C u vg g g g( , ) ( ), ( )= ( )( )-1  for u,v in [0,1]. (3.3.9)

Then Cg  is a copula if and only if g is concave (or equivalently, g -1 is
convex).

Proof. (i) Assume g -1 is convex. Because g(0) = 0 = g -1 0( )  and

g(1) = 1 = g -1 1( ) , it readily follows that Cg  satisfies the boundary con-

ditions for a copula. Now let u1, u2, v1, v2  be in I such that u1 £ u2,

v1 £ v2 ; and let a = C u vg g( ), ( )1 1( ), b = C u vg g( ), ( )1 2( ), c =

C u vg g( ), ( )2 1( ), and d = C u vg g( ), ( )2 2( ). Because C is a copula, a – b –

c + d ≥ 0, and we must show that g -1(a) – g -1(b) – g -1(c) + g -1(d) ≥
0. Note that both b and c lie between a and d, so that either a £ b £ c £
d or a £ c £ b £ d. If the four numbers a, b, c, d are distinct, then be-

cause g -1 is convex (Roberts and Varberg 1973),

g g g g- - - --
-

£ -
-

1 1 1 1( ) ( ) ( ) ( )b a

b a

d c

d c
.

But b – a £ d – c, and hence g -1(b) – g -1(a) £ g -1(d) – g -1(c), as re-
quired. If two or three of the numbers a, b, c, d coincide, the proof is
similar.

(ii) Assume Cg  is a copula for any copula C. For any a, d in [0,1]

such that a £ d, let u1 = v1 = g - +( )1 1 2( )a  and u2 = v2  =
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g - +( )1 1 2( )d  so that g ( )u1  = g ( )v1  = ( )a +1 2 and g ( )u2  = g ( )v2  =

( )d +1 2 . Setting C = W in (3.3.9), we have W u vg g( ), ( )1 1( ) = a,

W u vg g( ), ( )1 2( ) = W u vg g( ), ( )2 1( ) = ( )a d+ 2, and W u vg g( ), ( )2 2( ) =

d. Because Wg  is a copula, g -1(a) – 2 21g - +( )( )a d  + g -1(d) ≥ 0, i.e.

g -1 is mid-convex. But continuous mid-convex functions must be con-
vex (Roberts and Varberg 1973), which completes the proof. �

The theorem remains true if the hypothesis g(0) = 0 is dropped and

g -1(t) is defined on I as a quasi-inverse of g. See (Durante and Sempi
2005) for details.

3.3.4 Extreme Value Copulas

Let ( , )X Y1 1 , ( , )X Y2 2 , L, ( , )X Yn n  be independent and identically dis-
tributed pairs of random variables with a common copula C and again
let C n( )  denote the copula of the component-wise maxima X n( ) =

max{ Xi } and Y n( )  = max{ Yi }. From Theorem 3.3.1 we know that

C u vn( )( , )  = C u vn n n( , )1 1  for u,v in I. The limit of the sequence C n( ){ }
leads to the notion of an extreme value copula.
Definition 3.3.4. A copula C*  is an extreme value copula if there exists
a copula C such that

C u v C u v
n

n n n
*

Æ •
=( , ) lim ( , )1 1 (3.3.10)

for u,v in I. Furthermore, C is said to belong to the domain of attraction
of C* .

Note that if the pointwise limit of a sequence of copulas exists at each

point in I2, then the limit must be a copula (as for each rectangle in I2,
the sequence of C-volumes will have a nonnegative limit).
Theorem 3.3.5. A copula is max-stable if and only if it is an extreme
value copula.

Proof. Clearly every max-stable copula is an extreme value copula.
Conversely, if C*  is an extreme value copula, then C*  satisfies (3.3.10)
for some copula C. Hence for any positive real r,

C u v C u v C u vr r r

n

rn rn rn
*

Æ •
*= =( , ) lim ( , ) ( , )1 1 1 1 ,

so that C*  is max-stable. �
We now present a procedure (Pickands 1981) for constructing ex-

treme value (or equivalently, max-stable) copulas. Let C be a max-stable
copula, and let X and Y be standard exponential random variables whose
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survival copula is C. Thus the survival functions of X and Y are F x( ) =

e x- , x > 0, and G y( )  = e y- , y > 0, respectively, and the joint survival
function is given by

H x y P X x Y y C e ex y( , ) ( , ) ( , )= > > = - - .

Because C is max-stable,

H rx ry C e e H x yr x y r( , ) ( , ) [ ( , )]= =- -

for any real r > 0. Define a function A:[0,1]Æ[1/2,1] by

A t C e et t( ) ln ( , )( )= - - - -1 (3.3.11)

or equivalently, C e et t( , )( )- - -1  = exp{–A(t)}. Employing the change of
variables (x,y) = r t rt( ),1-( )  for r > 0, and t in (0,1) [or equivalently,

(r,t) = x y y x y+ +( ), ( ) ], we have

H x y H r t rt H t t

C e e rA t

x y A y x y

r

r t t

( , ) ( ), [ ( , )]

( , ) exp ( )

exp ( ) ( ) .

( )

= -( ) = -

= = -{ }
= - + +( ){ }

- - -

1 1
1

Because C(u,v) = H u v( ln , ln )- - , we have proven that if C is an extreme
value copula, then

C u v uv A
v

uv
( , ) exp ln( )

ln
ln( )

= Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

(3.3.12)

for an appropriate choice of the function A (called the dependence
function of the extreme value copula C) in (3.3.11). For the right side
of (3.3.12) to define a copula requires that A:[0,1]Æ[1/2,1] must satisfy

the following conditions: A A( ) ( )0 1 1= = , max{ , }t t1-  £ A(t) £ 1, and A
convex. Thus the graph of A must lie in the shaded region of Fig.
3.20(a). See (Joe 1997) for details.

When A(t) = 1, (3.3.12) yields P, and when A(t) = max{ , }t t1- ,
(3.3.12) yields M.
Example 3.23. (a) If A(t) = 1 1- -( )min , ( )b at t  for a,b in I, then
(3.3.12) yields the Marshall-Olkin family (3.1.3) of copulas, and if (b)

A(t) = t tq q q+ -( )( )1 1 , q ≥ 1, then (3.3.12) yields the Gumbel-

Hougaard family (2.4.2). �
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(a) (b)

b

a

Fig. 3.20. Regions containing (a) the graph of A  in (3.3.12) and (b) (a,b) in

Example 3.24

Example 3.24. Let A(t) = 1 1 1- - + -t t t t( )[ ( )]a b . ¢ +A ( )0  Œ [–1,0] and

¢ -A ( )1  Œ [0,1] requires a and b in I, and A will be convex when a £ 2b
and b £ 2a. So when the point (a,b) lies in the shaded region in Fig.
3.20(b), A(t) will generate an extreme value copula via (3.3.12). �

Exercises

3.35 For the Plackett family of copulas (3.3.3), show that

(a) C u v C u v
u v u v

W u v0
0

1 1

2
( , ) lim ( , ) ( , )= =

+ -( ) + + -
=

Æ +q
q ,

(b) C u v C u v
u v u v

M u v•
Æ •

= =
+( ) - -

=( , ) lim ( , ) ( , )
q

q 2
.

3.36 Let Cq  be a member of the Plackett family (3.3.3) of copulas,
where q is in (0,•).
(a) Show that C u v u C u v v C u v1 1 1q q q( , ) ( , ) ( , )= - - = - -  [see Ex-
ercise 2.6 and Theorem 2.4.4].
(b) Conclude that Cq  satisfies the functional equation C = Ĉ  for
radial symmetry [see Theorem 2.7.3].

3.37 Show that the Plackett family (3.3.3) is positively ordered.

3.38 Show that the following algorithm (Johnson 1986) generates ran-
dom variates (u,v) from a Plackett distribution with parameter q:
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1. Generate two independent uniform (0,1) variates u, t;

2. Set a = t t( )1- ; b = q q+ -a( )1 2 ; c = 2 12a u u( )q + -  +

q( )1 2- a ; and d = q q q◊ + - -4 1 1 2au u( )( ) ;
3. Set v = c t d b- -[ ]( )1 2 2 ;
4. The desired pair is (u,v).

3.39 (a) Show that the Farlie-Gumbel-Morgenstern family (3.2.10) is a
first-order approximation to the Plackett family, i.e., if Cq  in
(3.3.3), with q in [0,2], is expanded in a Taylor series in powers of
( q -1), then the first two terms are

uv uv u v+ - - -( ) ( )( )q 1 1 1 .

(b) Similarly, show that a second-order approximation to the
Plackett family consists of the copulas with cubic sections given

by (3.2.20) with a = (q -1) – ( )q -1 22  and b = ( )q -1 22  for q
in [0,3].

3.40 Let Cq  denote a member of the Ali-Mikhail-Haq family (3.3.7).
Show that

C u v uv u v k

k
q q( , ) ( )( )= - -[ ]

=

•

Â 1 1
0

and hence the FGM family (3.2.10) is a first-order approximation
to the Ali-Mikhail-Haq family, and the iterated FGM family
(3.2.17) of Lin (1987) with j = q is a second-order approxima-
tion.

3.41 (a) Show that the harmonic mean of two Ali-Mikhail-Haq copulas
is again an Ali-Mikhail-Haq copula, i.e., if Ca  and Cb  are given

by (3.3.7), then the harmonic mean of Ca  and Cb  is C( )a b+ 2.
(b) Show that each Ali-Mikhail-Haq copula is a weighted har-
monic mean of the two extreme members of the family, i.e., for
all q in [–1,1],

C u v

C u v C u v

q q q
( , )

( , ) ( , )

=
- ◊ + + ◊

- +

1
1

2
1 1

2
1

1 1

.

[Cf. Exercise 3.21.]
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3.42 Show that the following algorithm (Johnson 1986) generates ran-
dom variates (u,v) from an Ali-Mikhail-Haq distribution with pa-
rameter q:

1. Generate two independent uniform (0,1) variates u, t;

2. Set a = 1 – u; b = - + + +q q( )2 1 2 12 2at a t ; and

 c = q q2 24 4 1 4 4 2 1( ) ( )a t at at t- + - - + + ;

3. Set v = 2 1 2t a b cq -( ) +( );
4. The desired pair is (u,v).

3.4 Copulas with Specified Properties

In this short section, we investigate copulas with certain well-known
analytical or functional properties.

3.4.1 Harmonic Copulas

Let C be a copula with continuous second-order partial derivatives on

( , )0 1 2. Then C is harmonic in I2 if C satisfies Laplace’s equation in

( , )0 1 2:

— = + =2
2

2

2

2 0C u v
u

C u v
v

C u v( , ) ( , ) ( , )
∂

∂
∂

∂
.

Clearly P is harmonic. It is the only harmonic copula, because for
any other harmonic copula C, C - P would also be harmonic and equal

to 0 on the boundary of I2 and hence equal to 0 on all of I2.
Closely related notions are subharmonic and superharmonic copulas.

A copula C is subharmonic if —2C u v( , )  ≥ 0 and superharmonic if

—2C u v( , )  £ 0. For example, it is an elementary calculus exercise to
show that if Cq  is a FGM copula given by (3.2.10), then Cq  is subhar-
monic for q  Œ [–1,0] and superharmonic for q  Œ [0,1].

3.4.2 Homogeneous Copulas

Definition 3.4.1. A copula C is homogeneous of degree k if for some
real number k and all u,v,l in I,

C u v C u vk( , ) ( , )l l l= . (3.4.1)
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Example 3.25. (a) Since ( )( )l lu v  = l2uv , P is homogeneous of degree

2, and since min( , )l lu v  = lmin(u,v), M is homogeneous of degree 1.

(b) Let Cq  be a member of the Cuadras-Augé family (2.2.10), q Œ
[0,1]. Then

C u v M u v u v

M u v u v

C u v

q
q q

q q q q

q
q

l l l l l l

l l

l

( , ) [ ( , )] [ ( , )]

[ ( , )] ( ) [ ( , )]

( , ).

=

= ◊

=

-

- -

-

P

P

1

2 1 1

2

Thus Cq  is homogeneous of degree 2 - q . �
There are no other homogeneous copulas, as the following theorem

demonstrates.
Theorem 3.4.2. Suppose C is homogeneous of degree k. Then (i) 1 £ k

£ 2, and (ii) C is a member of the Cuadras-Augé family (2.2.10) with q
= 2 – k.

Proof. Setting u = v = 1 in (2.9.1) yields C(l,l) = lk , hence the di-

agonal section d C  of C is given by d C (t) = tk . Invoking Exercise 2.8(a)

yields 2 1t -  £ tk  £ t for t in I, so that 1 £ k £ 2. Setting v = 1 in (2.9.1)

yields C(lu,l) = lku  = ( )l lu k -1. Hence C(u,v) = uvk -1 for u £ v, and

similarly C(u,v) = u vk -1  for v £ u. Thus C is a Cuadras-Augé copula

with q = 2 – k as claimed. �

3.4.3 Concave and Convex Copulas

Definition 3.4.3. A copula C is concave (convex) if for all (a,b), (c,d) in

I2 and all l in I,

C a c b d C a b C c dl l l l l l+ - + -( ) ≥ £ + -( ) , ( ) ( ) ( , ) ( ) ( , )1 1 1 . (3.4.2)

Equivalently, C is concave if the set of points in the unit cube I3 be-
low the graph of C(u,v) is a convex set, and C is convex if the set of
points in the unit cube above the graph of C(u,v) is a convex set.
Example 3.26. (a) It is easily verified that M is concave. It is the only
concave copula, because if C were concave, then setting (a,b) = (1,1)
and (c,d) = (0,0) in (3.4.2) yields C(l,l) ≥ l. But this implies that d C (t)
= t on I, and hence (as a result of Exercise 2.8(b)) C must be M.

(b) It is also easily verified that W is convex. It is the only convex
copula, because if C were convex, then setting (a,b) = (1,0) and (c,d) =
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(0,1) in (3.4.2) yields C(l,1–l) £ 0. Hence C(t,1–t) = 0 on I, and as a
result of Exercise 2.9, C must be W. �

Thus convexity and concavity are conditions too strong to be of
much interest for copulas. Hence we consider weaker versions of these
properties.

Suppose that only the vertical or the horizontal sections of a copula C
are concave. As we shall see in Sect. 5.2.3, many copulas have this
property, and this geometric property of the graph of C corresponds to
a statistical positive dependence property known as stochastic
monotonicity.

We now weaken the notions in Definition 3.4.3 by replacing the
weighted average of C(a,b) and C(c,d) on the right in (3.4.2) by the
minimum or the maximum of C(a,b) and C(c,d):

Definition 3.4.4. A copula C is quasi-concave if for all (a,b), (c,d) in I2

and all l in I,

C a c b d C a b C c dl l l l+ - + -( ) ≥ { }( ) , ( ) min ( , ), ( , )1 1 , (3.4.3)

and C is quasi-convex if for all (a,b), (c,d) in I2 and all l in I,

C a c b d C a b C c dl l l l+ - + -( ) £ { }( ) , ( ) max ( , ), ( , )1 1 . (3.4.4)

In the next theorem, we show that the quasi-concavity of a copula C
is equivalent to a property of the level sets of C.
Theorem 3.4.5 (Alsina et al. 2005). Let C be a copula, and let Lt be
the function whose graph is the upper boundary of the level set

( , ) ( , )u v C u v tŒ ={ }I2 , i.e., Lt(u) = sup ( , )v C u v tŒ ={ }I  for all u in I.

Then C is quasi-concave if and only if the function Lt is convex for all t
in [0,1).

Proof. Suppose that Lt is convex for each t in [0,1), so that each of

the sets L(t) = ( , ) ( , )u v C u v tŒ ≥{ }I2  is convex. Choose points P =

( u1,v1), Q = ( u2 ,v2) in I2 and let a = min{C( u1,v1),C( u2 ,v2)}. Because
C( u1,v1) ≥ a and C( u2 ,v2) ≥ a, both P and Q are in L(a), hence the en-
tire line segment joining P and Q lies in L(a), and thus C is quasi-
concave.

In the other direction, assume La  is not convex for some a in [0,1),
so that the set L(a) is not convex. Hence there exist points P and Q in
L(a) and a point (u,v) on the segment joining P and Q such that C(u,v)
< a. Hence C is not quasi-concave. �

The next example shows that W is the only quasi-convex copula.
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Example 3.27. Suppose C is quasi-convex. Then setting (a,b) = (1,0)
and (c,d) = (0,1) in (3.4.4) yields C(l,1–l) £ 0, so that as in Example
3.23(b), C must be W. �

Closely related to quasi-concavity and -convexity are the notions of
Schur-concavity and -convexity:
Definition 3.4.6. A copula C is Schur-concave if for all a,b,l in I,

C a b C a b b a( , ) ( ) , ( )£ + - + -( )l l l l1 1 , (3.4.5)

and Schur-convex when the inequality in (3.4.5) is reversed.
Note that W is the only Schur-convex copula, because setting (a,b) =

(1,0) yields 0 ≥ C(l,1–l) (see Examples 3.26(b) and 3.27).

If C is Schur-concave, then setting l = 0 in (3.4.5) yields C(a,b) £

C(b,a) for all (a,b) in I2, hence C must be symmetric. Thus the Schur-
concavity of a copula can be interpreted geometrically as follows: the
graph of a section formed by intersecting the surface z = C(u,v) with the
plane u + v = t (t in [0,2]) is symmetric in the plane u + v = t with re-
spect to the vertical line through (t/2,t/2) and descends in both directions
from a maximum at (t/2,t/2,C(t/2,t/2)).

It is easy to show that M, W, and P are Schur-concave and that any
convex linear combination of Schur-concave copulas is a Schur-
concave copula. Thus every member of the Fréchet and Mardia families
in Exercise 2.4 is Schur-concave.

The next example shows that Schur-concavity neither implies nor is
implied by quasi-concavity:
Example 3.28. (a) Let C = ( )M W+ 2 . Because C is a member of both
the Fréchet and Mardia families, it is Schur-concave. Some of the con-
tours of C are illustrated in Fig. 3.21(a). These contours are the graphs
of the functions Lt in Theorem 3.4.5. Because Lt fails to be convex for
t in (0,1/4), C is not quasi-concave.

(b) Let Ca b,  be any copula from the family in Exercise 3.8 with a π
b. The contours of Ca b,  can be readily seen (see Figs. 3.8(a) and

3.21(b)) to be convex, so that Ca b,  is quasi-concave. But Ca b,  is not
symmetric, hence it is not Schur-concave. �

Finally, we note that if a copula is both quasi-concave and symmetric,
then it is Schur-concave: set (c,d) = (b,a) in (3.4.3). For further prop-
erties of Schur-concave copulas and additional examples, see (Durante
and Sempi 2003).
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(a) (b)

Fig. 3.21. Some contours of the copulas in Example 3.28

3.5 Constructing Multivariate Copulas

First, a word of caution: Constructing n-copulas is difficult. Few of the
procedures discussed earlier in this chapter have n-dimensional analogs.
In this section, we will outline some of the problems associated with the
construction of n-copulas and provide references to some techniques.
Most of our illustrations will be for 3-copulas; however, when appropri-
ate, we will provide the n-dimensional version of the relevant theorems.

Recall that 2-copulas join or “couple” one-dimensional distribution
functions to form bivariate distribution functions.  The “naive” ap-
proach to constructing multidimensional distributions via copulas would
be to use 2-copulas to join or couple other 2-copulas, as the following
example illustrates:
Example 3.29. (a) Define a 3-place function C via C(u,v,w) =
P(M(u,v),w) = w◊min(u,v). Then, as shown in Example 2.23(a), C is a 3-
copula.

(b) Define a 3-place function C via C(u,v,w) = W(M(u,v),w). Then
W(M(u,v),w) = min(u,v) – min(u,v,1 – w), and hence C is the 3-copula
in Example 2.23(b). �

Unfortunately, this procedure can fail:
Example 3.30. Define a 3-place function C via C(u,v,w) = W(W(u,v),w)

= max(u + v + w – 2,0). Thus C = W 3, which is not a 3-copula (see Ex-

ercise 2.35). Note that each of the 2-margins of W 3 is W, and it is im-
possible in set of three random variables X, Y, and Z for each random
variable to be almost surely a decreasing function of each of the re-
maining two. �

In fact, this procedure—replacing one of the arguments in a 2-copula
with another 2-copula—often fails. If C1 and C2 are 2-copulas such
that C2( C1(u,v),w) is a 3-copula, we say that C1 is directly compatible
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with C2 (Quesada Molina and Rodríguez Lallena 1994). The following
theorem provides criteria for direct compatibility when one of C1 or C2
is M, W, or P. Its proof can be found in (Quesada Molina and Ro-
dríguez Lallena 1994).

Theorem 3.5.1. 1. Every 2-copula C is directly compatible with P;
2. The only 2-copula directly compatible with M is M;
3. The only 2-copula directly compatible with W is M;
4. M is directly compatible with every 2-copula C;
5. W is directly compatible only with P; and

6. P is directly compatible with a 2-copula C if and only if for all v1,

v2 , w1, w2 in I such that v1 £ v2  and w1 £ w2, the function

u V uv uv w wCa [ , ] [ , ]1 2 1 2¥( )
is nondecreasing on I.

An important class of copulas for which this procedure—endowing a
2-copula with a multivariate margin—often succeeds is the class of Ar-
chimedean copulas. Archimedean n-copulas are discussed in Sect. 4.6.

From Sklar’s theorem, we know that if C is a 2-copula, and F and G
are univariate distribution functions, then C(F(x),G(y)) is always a two
dimensional distribution function. Can we extend this procedure to
higher dimensions by replacing F and G by multivariate distributions
functions? That is, given m n+  ≥ 3, for what 2-copulas C is it true that if
F(x) is an m-dimensional distribution function and G(y) is an n-
dimensional distribution function, then C(F(x),G(y)) is an ( m n+ )-
dimensional distribution function? The answer is provided in the fol-
lowing “impossibility” theorem (Genest et al. 1995):

Theorem 3.5.2. Let m and n be positive integers such that m n+  ≥ 3,
and suppose that C is a 2-copula such that H(x,y) = C(F(x),G(y)) is an
( m n+ )-dimensional distribution function with margins H(x,••••) = F(x)

and H(••••,y) = G(y) for all m-dimensional distribution functions F(x)

and n-dimensional distribution functions G(y). Then C = P.
The following theorem (Schweizer and Sklar 1983) presents related

results for the cases when the 2-copula C in the preceding theorem is P
or M, and the multidimensional distribution functions F and G are
copulas (or, if the dimension is 1, the identity function):

Theorem 3.5.3. Let m and n be integers ≥ 2. Let C1 be an m-copula,
and C2 an n-copula.

1. Let C be the function from Im n+  to I given by

C x x x M C x x x C x x xm n m m m m n1 2 1 1 2 2 1 2, , , , , , , , , ,L L L+ + + +( ) = ( ) ( )( ).
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Then C is an ( m n+ )-copula if and only if C1 = M m  and C2 = M n .
2. Let ¢C , ¢¢C , and ¢¢¢C  be the functions defined by

¢( ) = ( )( )+ +C x x x C x x x xm m m1 2 1 1 1 2 1, , , , , , ,L LP ,

¢¢( ) = ( )( )+ +C x x x x C x x xn n1 2 1 1 2 2 3 1, , , , , , ,L LP ,

¢¢¢( ) = ( ) ( )( )+ + + +C x x x C x x x C x x xm n m m m m n1 2 1 1 2 2 1 2, , , , , , , , , ,L L LP .

Then ¢C  is always an ( m +1)-copula, ¢¢C  is always an ( n +1)-copula,
and ¢¢¢C  is always an ( m n+ )-copula.

The results in the preceding theorems illustrate some aspects of what
has become known as the compatibility problem. Recall from Sect. 2.10
that if C is an n-copula, and we set n – k (for 1 £ k < n) of the argu-

ments of C equal to 1, then the result is one of the n
k( )  k-margins of C.

In the opposite direction, however, a given set of n
k( )  k-copulas rarely

are the k-margins of any n-copula. If they are, then these n
k( )  k-copulas

are said to be compatible.
The compatibility problem has a long history. To facilitate our dis-

cussion, let C3
12( )C  denote the class of 3-copulas of continuous ran-

dom variables X, Y, and Z such that the 2-copula of X and Y is C12 (i.e.,

CXY  = C12); C3
12 13( , )C C  the class of 3-copulas for which CXY  = C12

and CXZ  = C13; and similarly in higher dimensions. Note that parts 4,

5, and 6 of Theorem 3.5.1 deal with the class C3
12( )C  when C12 is M,

P, or W. For the more general problem of constructing a trivariate joint
distribution function given the three univariate margins and one bivari-
ate margin, see (Joe 1997).

Necessary and sufficient conditions for a 3-copula C to have speci-

fied 2-margins C12 and C13 (i.e., to be a member of C3
12 13( , )C C )

were first discussed (in terms of Fréchet-Hoeffding classes—i.e., joint
distribution functions with given margins—rather than copulas) in
(Dall’Aglio 1960, 1972). Compatibility questions and construction

procedures associated with the classes C3
12 13 23( , , )C C C ,

C4
123 124 134 234( , , , )C C C C , and Cn

ijC i j n( , )1 £ < £  are discussed
(again in terms of joint distributions functions rather than copulas) in
(Joe 1996, 1997). In 1983, Schweizer and Sklar noted that “the prob-
lem of extending [these results] to higher dimensions is perhaps the
most important open question concerning copulas;” and that remains
true today.
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The classes of n-copulas in the preceding paragraph all have over-
lapping margins, that is, given 2- or 3-margins that share a common
one-dimensional margin. For construction procedures (many of which
are based on conditional distributions) in the case for which the given
margins are nonoverlapping, see (Kellerer 1964; Rüschendorf 1985;
Cuadras 1992; Marco and Ruiz 1992; Chakak and Koehler 1995; Li et
al. 1996b) and the references therein.

We conclude this section with an n-dimensional extension of one of
the families discussed earlier in this chapter.
Example 3.31. Farlie-Gumbel-Morgenstern n-copulas. The FGM fam-

ily (3.2.10) has the following extension to a ( 2 1n n- - )-parameter
family of n-copulas, n ≥ 3 (Johnson and Kotz 1975):

C u u u u u un j j j j j j
j j nk

n

k k
k

( )u = +
È

Î
Í
Í

˘

˚
˙
˙£ < < £=

ÂÂ1 2
12

1
1 2 1 2

1

L LL
L

q

(where u u= -1 ). Each copula in this family is absolutely continuous
with density

∂
∂ ∂

q
n

n
j j j j j j

j j nk

nC

u u
u u u

k k
k

( )
( )( ) ( )

u

1 12
1 1 2 1 2 1 2

1 2 1 2
1

L
LL

L

= + - - -
£ < < £=

ÂÂ .

Because C( )u  is quadratic in each variable, the density

∂ ∂ ∂n
nC u u( )u 1L  is linear in each variable. Hence the density will be

nonnegative on In  if and only if it is nonnegative at each of the 2n  ver-

tices of In , which leads to the following 2n  constraints for the parame-
ters (Cambanis 1977):

1 0 1 1
1 2 1 2

1
1 2

12
+ ≥ Œ - +

£ < < £=
ÂÂ e e e q e e ej j j j j j

j j nk

n

j j jk k
k

n
L LL

L

, , , , { , },

(as a consequence, each parameter must satisfy q  £ 1).

Note that each k-margin, 2 £ k < n, of an FGM n-copula is an FGM k-
copula. See (Conway 1983) for applications and additional references.�



4 Archimedean Copulas

In this chapter, we discuss an important class of copulas known as Ar-
chimedean copulas. These copulas find a wide range of applications for
a number of reasons: (1) the ease with which they can be constructed;
(2) the great variety of families of copulas which belong to this class;
and (3) the many nice properties possessed by the members of this
class. As mentioned in the Introduction, Archimedean copulas origi-
nally appeared not in statistics, but rather in the study of probabilistic
metric spaces, where they were studied as part of the development of a
probabilistic version of the triangle inequality. For an account of this
history, see (Schweizer 1991) and the references cited therein.

4.1 Definitions

Let X and Y be continuous random variables with joint distribution
function H and marginal distribution function F and G, respectively.
When X and Y are independent, H(x,y) = F(x)G(y) for all x,y in R , and
this is the only instance in which the joint distribution function factors
into a product of a function of F and a function of G. But in the past
chapter we saw cases in which a function of H does indeed factor into a
product of a function of F and a function of G. In (3.3.6) of Sect. 3.3,
we observed that the joint and marginal distribution functions for mem-
bers of the Ali-Mikhail-Haq family satisfy the relationship

1 1 1
1

1 1- = - + - + - - ◊ -H x y

H x y

F x

F x

G y

G y

F x

F x

G y

G y

( , )
( , )

( )
( )

( )
( )

( )
( )

( )
( )

( )
q .

With a little algebra, this can be rewritten as

1 1
1

1 1
1

1 1
1+ - - = + - -È

ÎÍ
˘
˚̇

◊ + - -È

Î
Í

˘

˚
˙( )

( , )
( , )

( )
( )

( )
( )

( )
( )

q q qH x y

H x y

F x

F x

G y

G y
,

that is, l(H(x,y)) = l(F(x))l(G(y)), where l(t) = 1 1 1+ - -( )( )q t t .

Equivalently, whenever we can write l(H(x,y)) = l(F(x))l(G(y)) for a

function l (which must be positive on the interval (0,1)) then on setting
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j(t) = –lnl(t), we can also write H as a sum of functions of the mar-

ginals F and G, i.e., j(H(x,y)) = j(F(x)) + j(G(y)), or for copulas,

j(C(u,v)) = j(u) + j(v). (4.1.1)

Example 4.1. The copula Ĉq  given by (2.6.3) in Example 2.14 satisfies

(4.1.1) with j(t) = t- -1 1q . The copula Cq  from (2.4.2) in Exercise

2.13 satisfies (4.1.1) with j(t) = ( ln )- t q . �
Because we are interested in expressions that we can use for the con-

struction of copulas, we want to solve the relation j(C(u,v)) = j(u) +

j(v) for C(u,v), that is, C(u,v) = j j j[ ] ( ) ( )- +( )1 u v  for an appropriately

defined “inverse” j[ ]-1 . This can be done as follows:

Definition 4.1.1. Let j be a continuous, strictly decreasing function

from I to [0,•] such that j(1) = 0. The pseudo-inverse of j is the func-

tion j[ ]-1  with Domj[ ]-1  = [0,•] and Ranj[ ]-1  = I given by

j j j
j

[ ]( )
( ), ( ),

, ( ) .
-

-
= £ £

£ £ •

Ï
Ì
Ó

1
1 0 0

0 0
t

t t

t
(4.1.2)

Note that j[ ]-1  is continuous and nonincreasing on [0,•], and

strictly decreasing on [0,j(0)]. Furthermore, j j[ ] ( )- ( )1 u  = u on I, and

j j
j

j j

j

[ ]( )
, ( ),

( ), ( ) ,

min , ( ) .

-( ) =
£ £

£ £ •
Ï
Ì
Ó

= ( )

1 0 0

0 0

0

t
t t

t

t

Finally, if j(0) = •, then j[ ]-1  = j -1.

Lemma 4.1.2. Let j be a continuous, strictly decreasing function from I

to [0,•] such that j(1) = 0, and let j[ ]-1  be the pseudo-inverse of j
defined by (4.1.2). Let C be the function from I2 to I given by

C(u,v) = j j j[ ] ( ) ( )- +( )1 u v . (4.1.3)

Then C satisfies the boundary conditions (2.2.2a) and (2.2.2b) for a
copula.
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Proof. C(u,0) = j j j[ ] ( ) ( )- +( )1 0u  = 0, and C(u,1) =

j j j[ ] ( ) ( )- +( )1 1u  = j j[ ] ( )- ( )1 u  = u. By symmetry, C(0,v) = 0 and
C(1,v) = v. �

In the following lemma, we obtain a necessary and sufficient condi-
tion for the function C in (4.1.3) to be 2-increasing.

Lemma 4.1.3. Let j, j[ ]-1 and C satisfy the hypotheses of Lemma 4.1.2.
Then C is 2-increasing if and only if for all v in I, whenever u u1 2£ ,

C u v C u v u u( , ) ( , )2 1 2 1- £ - . (4.1.4)

Proof. Because (4.1.4) is equivalent to V u u vC [ , ] [ , ]1 2 1¥( )  ≥ 0, it
holds whenever C is 2-increasing. Hence assume that C satisfies (4.1.4).
Choose v1, v2  in I such that v1 £ v2 , and note that C(0, v2) = 0 £ v1 £

v2  = C(1, v2). But C is continuous (because j and j [ ]-1  are), and thus

there is a t in I such that C(t, v2) = v1, or j( v2) + j(t) = j( v1). Hence

C u v C u v u v u v

u v t u v t

C C u v t

( , ) ( , ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ,

( , ),

[ ] [ ]

[ ] [ ]

2 1 1 1
1

2 1
1

1 1

1
2 2

1
1 2

2 2

- = +( ) - +( )
= + +( ) - + +( )
= (

- -

- -

j j j j j j

j j j j j j j j

)) - ( )
£ -

C C u v t

C u v C u v

( , ), ,

( , ) ( , ),
1 2

2 2 1 2

so that C is 2-increasing. �
We are now ready to state and prove the main result of this section.

Theorem 4.1.4. Let j be a continuous, strictly decreasing function from

I to [0,•] such that j(1) = 0, and let j[ ]-1  be the pseudo-inverse of j
defined by (4.1.2). Then the function C from I2  to I given by (4.1.3) is
a copula if and only if j is convex.

Proof (Alsina et al. 2005). We have already shown that C satisfies the
boundary conditions for a copula, and as a consequence of the preced-
ing lemma, we need only prove that (4.1.4) holds if and only if j is

convex [note that j is convex if and only if j[ ]-1  is convex]. Observe
that (4.1.4) is equivalent to

u u v u u v1
1

2 2
1

1+ +( ) £ + +( )- -j j j j j j[ ] [ ]( ) ( ) ( ) ( )

for u u1 2£ , so that if we set a = j( u1), b = j( u2), and c = j(v), then
(4.1.4) is equivalent to

j j j j[ ] [ ] [ ] [ ]( ) ( ) ( ) ( )- - - -+ + £ + +1 1 1 1a b c b a c , (4.1.5)
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where a ≥ b and c ≥ 0. Now suppose (4.1.4) holds, i.e., suppose that

j[ ]-1  satisfies (4.1.5). Choose any s, t in [0,•] such that 0 £ s < t. If we
set a = ( )s t+ 2 , b = s, and c = ( )t s- 2  in (4.1.5), we have

j j j[ ]
[ ] [ ]( ) ( )-

- -+Ê
ËÁ

ˆ
¯̃

£ +1
1 1

2 2
s t s t

. (4.1.6)

Thus j[ ]-1  is midconvex, and because j[ ]-1  is continuous it follows

that j[ ]-1  is convex.

In the other direction, assume j[ ]-1  is convex. Fix a, b, and c in I
such that a ≥ b and c ≥ 0; and let g = ( ) ( )a b a b c- - + . Now a =

(1- g )b + g( a c+ ) and b c+  = gb + (1- g )( a c+ ), and hence

j g j gj[ ] [ ] [ ]( ) ( ) ( ) ( )- - -£ - + +1 1 11a b a c
and

j gj g j[ ] [ ] [ ]( ) ( ) ( ) ( )- - -+ £ + - +1 1 11b c b a c .

Adding these inequalities yields (4.1.5), which completes the proof. �
Copulas of the form (4.1.3) are called Archimedean copulas (the

meaning of the term “Archimedean” will be explained in Sect. 4.3).
The function j is called a generator of the copula. If j(0) = •, we say

that j is a strict generator. In this case, j[ ]-1  = j -1 and C(u,v) =

j j j- +( )1 ( ) ( )u v  is said to be a strict Archimedean copula. Figure 4.1
illustrates generators and their quasi-inverses in the strict and non-strict
cases. To be precise, the function j is an additive generator of C. If we

set l(t) = exp(–j(t)) and l[ ]-1 (t) = j[ ]-1 (–lnt), then C(u,v) =

l[ ]-1 [l(u)l(v)], so that l is a multiplicative generator. In the sequel, we
will deal primarily with additive generators.

Example 4.2. (a) Let j(t) = –lnt for t in [0,1]. Because j(0) = •, j is

strict. Thus j[ ]-1 (t) = j -1(t) = exp(–t), and generating C via (4.1.3)
yields C(u,v) = exp [( ln ) ( ln )]- - + -( )u v = uv = P(u,v). Thus P is a strict
Archimedean copula.

(b) Let j(t) = 1- t  for t in [0,1]. Then j [ ]-1 (t) = 1- t  for t in [0,1]

and 0 for t > 1; i.e., j[ ]-1 (t) = max(1- t ,0). Again using (4.1.3), C(u,v)
= max(u + v – 1,0) = W(u,v). Hence W is also Archimedean.

(c) M is not Archimedean—see Exercise 4.2. �
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(a) (b)

j

1

1
–1j

j

1

j(0)

[–1]

j(0)

j
1

Fig. 4.1. Strict (a) and non-strict (b) generators and inverses

Example 4.3. Let jq (t) = ln(1- q ln t ) for q in (0,1]. Because jq (0) =

•, jq  is strict, and jq
[ ]-1 (t) = jq

-1(t) = exp ( )[ ]1- et q . If Cq  denotes
the Archimedean copula generated by jq , then Cq (u,v) =
uv u vexp( ln ln )-q , the survival copula for Gumbel’s bivariate expo-
nential distribution (see Example 2.13). �

In the next section, we will present a number of one-parameter fami-
lies of Archimedean copulas and in Sect. 4.3 will study the fundamental
properties of Archimedean copulas, using many of those one-parameter
families as examples.  We conclude this section with two theorems con-
cerning some algebraic properties of Archimedean copulas.

Theorem 4.1.5. Let C be an Archimedean copula with generator j.
Then:

1. C is symmetric; i.e., C(u,v) = C(u,v) for all u,v in I;
2. C is associative, i.e., C(C(u,v),w) = C(u,C(v,w)) for all u,v,w in I;
3. If c > 0 is any constant, then cj is also a generator of C.
The proof of Theorem 4.1.5 is left as an exercise. Furthermore, it is

also easy to show  (see Exercise 4.2) that the diagonal section d C  of an
Archimedean copula C satisfies d C (u) < u for all u in (0,1). The fol-
lowing theorem states that this property and associativity characterize
Archimedean copulas. Its proof can be found in (Ling 1965).

Theorem 4.1.6. Let C be an associative copula such that dC (u) < u for
all u in (0,1). Then C is Archimedean.

Although there does not seem to be a statistical interpretation for
random variables with an associative copula, associativity will be a useful
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property when we construct multivariate Archimedean copulas in Sect.
4.6.

4.2 One-parameter Families

As seen in Examples 4.2 and 4.3, Archimedean copulas can be con-
structed at will using Theorem 4.1.4—we need only find functions that
will serve as generators, that is, continuous decreasing convex functions
j from I to [0,•] with j(1) = 0—and define the corresponding copulas

via (4.1.4). For another example let j(t) = (1/t) – 1, we then obtain the
copula C u v uv u v uv( , ) ( )= + - , which we first encountered in Example
2.8 and Exercises 2.12 and 2.21. Because this copula is a member of
several of the families which we present below, we henceforth designate
it as “ P S P( )- . ”

In Table 4.1 [adapted from (Alsina et al. 2005)], we list some im-
portant one-parameter families of Archimedean copulas, along with
their generators, the range of the parameter, and some special and lim-
iting cases. The limiting cases are computed by standard methods, in-
cluding l’Hôpital’s rule, and by Theorems 4.4.7 and 4.4.8 in Sect. 4.4.

As noted earlier, one reason for the usefulness of Archimedean
copulas in statistical modeling is the variety of dependence structures
present in the various families. Following Table 4.1, we present a sam-
pling of scatterplots from simulations for eight of the families (Figs.
4.2-4.9). In each case, we used 500 sample points and the algorithm in
Exercise 4.15 or 4.16. Additional scatterplots for members of the fami-
lies in Table 4.1 may be found in (Armstrong 2003).

In the following example, we show how one family of Archimedean
copulas arises in a statistical setting.
Example 4.4 (Schmitz 2004). Let X X Xn1 2, , ,L{ } be a set of independ-
ent and identically distributed continuous random variables with distri-
bution function F, and let X( )1  = min X X Xn1 2, , ,L{ } and X n( ) =

max X X Xn1 2, , ,L{ }. We now find the copula C n1,  of X( )1  and X n( ).

The distribution functions Fn  of X n( ) and F1 of X( )1  are given by

F xn ( )  = F x n( )[ ]  and F x1( )  = 1 1- -[ ]F x n( ) . For convenience, we will

first find the joint distribution function H D  and copula C D  of – X( )1

and X n( ), rather than X( )1  and X n( ):
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From Corollary 2.3.7 we have C D (u,v) = H D (G(–1)(u), Fn
(–1)(v)),

where G now denotes the distribution function of – X( )1 , G(x) =

1- -[ ]F x n( ) . Let u = 1- -[ ]F s n( )  and v = F t n( )[ ] , so that F(–s) =

1 1- u n  and F(t) = v n1 . Thus C D (u,v) = max ,u vn n n1 1 1 0+ -( )[ ] , a

member of the Clayton family (4.2.1) in Table 4.1 (with q = –1 n ).
Invoking part 2 of Theorem 2.4.4 now yields

C u v v C u v

v u v

n

n n n
1

1 1

1

1 1 0

, ( , ) ( , )

max ( ) , .

= - -

= - - + -( )[ ]
D

Although X( )1  and X n( ) are clearly not independent ( C n1,  π P), they
are asymptotically independent because (using the fact that the Clayton
copula with q = 0 is P) lim ( , ) ( , ),n nC u v v u v uvÆ • = - - =1 1P . �

4.3 Fundamental Properties

In this section, we will investigate some of the basic properties of Ar-
chimedean copulas. For convenience, let W denote the set of continuous

strictly decreasing convex functions j from I to [0,•] with j(1) = 0.
By now the reader is surely wondering about the meaning of the term

“Archimedean” for these copulas. Recall the Archimedean axiom for
the positive real numbers: If a,b are positive real numbers, then there
exists an integer n such that na > b. An Archimedean copula behaves
like a binary operation on the interval I, in that the copula C assigns to
each pair u,v in I a number C(u,v) in I. From Theorem 4.1.5, we see
that the “operation” C is commutative and associative, and preserves
order as a consequence of (2.2.5), i.e., u u1 2£  and v v1 2£  implies
C u v( , )1 1  £ C u v( , )2 2  (algebraists call (I,C) an ordered Abelian semi-
group). [Discussion continues after Fig. 4.9.]
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Table 4.1. One-parameter

(4.2.#) C u vq ( , ) jq ( )t

1 max ,u v- - -
+ -( )[ ]q q q

1 0
1 1

1
q

qt- -( )
2 max ( ) ( ) ,1 1 1 0

1
- - + -[ ]Ê

ËÁ
ˆ
¯̃

u vq q q
( )1- t q

3
uv

u v1 1 1- - -q( )( )
ln

( )1 1- -q t

t

4 exp ( ln ) ( ln )- - + -[ ]Ê
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ˆ
¯̃

u vq q q1
( ln )- t q

5 - + - -
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Ê
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¯
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- -

-
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1
1 1

1q

q q
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u v
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q
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1

6 1 1 1 1 1
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- - + - - - -[ ]( ) ( ) ( ) ( )u v u vq q q q q
- - -[ ]ln ( )1 1 t q

7 max ( )( ),q quv u v+ - + -( )1 1 0 - + -[ ]ln ( )q qt 1
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( ) ( )( )
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q
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2 2
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1 1 1
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u v

- - -
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ˆ

¯
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1 1

-
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t( )q
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10 uv u v1 1 1
1

+ - -[ ]( )( )q q q
ln 2 1t- -( )q

11 max ( )( ),u v u vq q q q q
- - -( )[ ]2 1 1 0

1
ln 2 -( )tq

12 1 1 11 1 1 1

+ - + -[ ]Ê
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ˆ
¯̃

- -
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( ) ( )u vq q q 1
1
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Families of Archimedean Copulas
q Œ Strict Limiting and Special Cases (4.2.#)

- •[ )1 0, \{ } q ≥ 0 C-1 = W, C0 = P, C1 = 
P

S P-
, C• = M 1

1,•[ ) no C1 = W, C• = M 2

[–1,1) yes C0 = P, C1 = 
P

S P-
3

1,•[ ) yes C1 = P, C• = M 4

-• •( ), \{ }0 yes C-•  = W, C0 = P, C• = M 5

1,•[ ) yes C1 = P, C• = M 6

(0,1] no C0 = W, C1 = P 7

1,•[ ) no C1 = W, C• = 
P

S P-
8

(0,1] yes C0 = P 9

(0,1] yes C0 = P 1 0

0 1 2,( ] no C0 = P 1 1

1,•[ ) yes C1 = 
P

S P-
, C• = M 12

0,•( ) yes C1 = P, C• = M 13

1,•[ ) yes C1 = 
P

S P-
, C• = M 14
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Table 4.1. One-parameter

(4.2.#) C u vq ( , ) jq ( )t
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ËÁ
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20 ln exp( ) exp( )u v e- - -
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1 1 1 1

1 1 1 0
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1 1
- - - - +

- - -
(
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[ ( ) ] , )}

u

v

q q

q q q q 1 1 1
1

- - -[ ]( )t q q

22
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1 1 1 1

1 1 1 0
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2 1

- - - -È
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Ê
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- - - - ˘
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ˆ
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u v
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q q

q q q arcsin 1-( )tq

Notes on some of the families in Table 4.1:
(4.2.1) This family of copulas was discussed by Clayton (1978),

Oakes (1982, 1986), Cox and Oakes (1984), and Cook and Johnson
(1981, 1986). Genest and MacKay (1986) call this the generalized
Cook and Johnson family; Hutchinson and Lai (1990) call it the Pareto
family of copulas—see Example 2.14; while Genest and Rivest (1993)
call it the Clayton family, as shall we. It is one of only two families (the
other is (4.2.5)) in the table that are comprehensive.

(4.2.3) This is the Ali-Mikhail-Haq family, which we derived alge-
braically in Sect. 3.3.2. Also see Example 4.8 in the next section.

(4.2.4) This family of copulas was first discussed by Gumbel
(1960b), hence many authors refer to it as the Gumbel family. However,
because Gumbel’s name is attached to another Archimedean family
(4.2.9) and this family also appears in Hougaard (1986), Hutchinson
and Lai (1990) refer to it as the Gumbel-Hougaard family. We en-
countered this family in Exercise 2.13 in conjunction with type B bi-
variate extreme value distributions. Also see (Genest and Rivest 1989).
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Families of Archimedean Copulas
q Œ Strict Limiting and Special Cases (4.2.#)

1,•[ ) no C1 = W, C• = M 15

0,•[ ) q > 0 C0 = W, C• = 
P

S P-
16

-• •( ), \{ }0 yes C-1 = P, C• = M 17

2,•[ ) no C• = M 18

0,•( ) yes C0 = 
P

S P-
, C• = M 19

0,•( ) yes C0 = P, C• = M 20

1,•[ ) no C1 = W, C• = M 21

0 1,( ] no C0 = P 22

Notes on some of the families in Table 4.1 (continued):
 (4.2.5) This is the Frank family, which first appeared in Frank

(1979) in a non-statistical context. Some of the statistical properties of
this family were discussed in (Nelsen 1986; Genest 1987). These are the
only Archimedean copulas which satisfy the functional equation C(u,v)
= Ĉ (u,v) in Theorem 2.7.3 for radial symmetry—see (Frank 1979) for
a proof of this remarkable result. As noted above, this is one of two
comprehensive families in the table.

(4.2.6) This family is discussed in (Joe 1993, 1997), and the co-
copulas for members of this family appear in (Frank 1981).

(4.2.9) The copulas in this family are the survival copulas associated
with Gumbel’s bivariate exponential distribution (Gumbel 1960a)—see
Examples 2.9 and 2.13. Although many authors refer to these copulas
as another Gumbel family, Hutchinson and Lai (1990) call it the Gum-
bel-Barnett family, as Barnett (1980) first discussed it as a family of
copulas, i.e., after the margins of the bivariate exponential were trans-
lated to uniform (0,1) margins.

(4.2.15) This family is discussed in (Genest and Ghoudi 1994).
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Fig. 4.2. Scatterplots for copulas (4.2.1), q = –0.8 (left) and q = 4 (right)

Fig. 4.3. Scatterplots for copulas (4.2.2), q = 2 (left) and q = 8 (right)

Fig. 4.4. Scatterplots for copulas (4.2.5), q = –12 (left) and q = 8 (right)
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Fig. 4.5. Scatterplots for copulas (4.2.7), q = 0.4 (left) and q = 0.9 (right)

Fig. 4.6. Scatterplots for copulas (4.2.12), q = 1.5 (left) and q = 4 (right)

Fig. 4.7. Scatterplots for copulas (4.2.15), q = 1.5 (left) and q = 4 (right)
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Fig. 4.8. Scatterplots for copulas (4.2.16), q = 0.01 (left) and q = 1 (right)

Fig. 4.9. Scatterplots for copulas (4.2.18), q = 2 (left) and q = 6 (right)

For any u in I, we can define the C-powers uC
n  of u recursively: uC

1  =

u, and uC
n +1 = C(u, uC

n ) [note that uC
2  belongs to the diagonal section

d C (u) of C]. The version of the Archimedean axiom for (I,C) is, For
any two numbers u, v in (0,1), there exists a positive integer n such that

u vC
n < . The next theorem shows that Archimedean copulas satisfy this

version of the Archimedean axiom and hence merit their name.  The
term “Archimedean” for these copulas was introduced in (Ling 1965).

Theorem 4.3.1. Let C be an Archimedean copula generated by j in
W. Then for any u,v in I, there exists a positive integer n such that

u vC
n < .
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Proof. Let u, v be any elements of (0,1). The nth C-power uC
n  of u is

readily seen to be j[ ]-1 (nj(u)). Since j(u) and j(v) are positive real
numbers, the Archimedean axiom applies, and thus there is an integer n
such that nj(u) > j(v).  But because v > 0, j(v) < j(0), and hence v =

j[ ]-1 (j(v)) > j[ ]-1 (nj(u)) = uC
n . [Note that the convexity of j is not

required in the proof of this theorem.] �
For an account of the history of the representation of associative

functions, which dates back to the early work of Niels Abel, see
(Schweizer and Sklar 1983; Alsina et al. 2005).

In the next theorem, we set the groundwork for determining which
Archimedean copulas are absolutely continuous, and which ones have
singular components. Recall (Sects. 2.2 and 3.4.3) that the level sets of

a copula C are given by ( , ) ( , )u v C u v tŒ ={ }I2 . For an Archimedean

copula and for t > 0, this level set consists of the points on the level

curve j j j( ) ( ) ( )u v t+ =  in I2 that connects the points (1,t) and (t,1).
We will often write the level curve as v = Lt (u), as solving for v as a
function of u yields

v L u t u t ut= = -( ) = -( )- -( ) ( ) ( ) ( ) ( )[ ]j j j j j j1 1 , (4.3.1)

where the last step (replacing j[ ]-1  by j -1) is justified because
j j( ) ( )t u-  is in the interval [0,j(0)). For t = 0, we call

( , ) ( , )u v C u vŒ ={ }I2 0  the zero set of C, and denote it Z(C). For many

Archimedean copulas, Z(C) is simply the two line segments {0}¥I and

I¥{0}. For others, Z(C) has positive area, and for such a zero set the
boundary curve j j j( ) ( ) ( )u v+ = 0 , i.e., v = L0(u), of Z(C) is called the
zero curve of C. See Fig. 4.2 for an illustration of the latter case—the
member of family (4.2.2) in Table 4.1 with q = 2, in which the level
curves and zero curve are quarter circles. Indeed, the graph of this cop-
ula is one-quarter of a circular cone whose vertex is one unit above
(1,1).

In Fig. 4.10, the level curves are convex. This must be the case for all
Archimedean copulas (but not all copulas—see Example 3.28 and Ex-
ercise 4.4), as the following theorem shows.
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level curves

zero curve

zero set

Fig. 4.10. Graphs of some level curves, the zero set, and the zero curve of the
Archimedean copula in (4.2.2) with q = 2

Theorem 4.3.2. The level curves of an Archimedean copula are convex.
Proof. Let C be an Archimedean copula with generator j. For t in

[0,1), the level curves of C are given by (4.3.1), and we need only show
that Lt  is midconvex because it is continuous. Now j is convex, so

j j j j j

j j j j

( ) ( )
( ) ( )

[ ( ) ( )] [ ( ) ( )]
;

t
u u

t
u u

t u t u

- +Ê
ËÁ

ˆ
¯̃

≥ - +

= - + -

1 2 1 2

1 2

2 2

2

and because j -1 is decreasing and convex, we have

L
u u

t
u u

t u t u

t u t u

L u

t

t

1 2 1 1 2

1 1 2

1
1

1
2

2 2

2

1
2

+Ê
ËÁ

ˆ
¯̃

= - +Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

£ - + -È
ÎÍ

˘
˚̇

£ -( ) + -( )[ ]
=

-

-

- -

j j j

j j j j j

j j j j j j

( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

( 11 2

2
) ( )

.
+ L ut �

The C-measure carried by each of the level curves of an Archimed-
ean copula C is given in the following theorem (Alsina et al. 2005).

Theorem 4.3.3. Let C be an Archimedean copula generated by j in W.
1. For t in (0,1), the C-measure of the level curve j j j( ) ( ) ( )u v t+ =

is given by
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j
j j

( )
( ) ( )

t
t t

1 1

¢
-

¢

È

Î
Í
Í

˘

˚
˙
˙- + , (4.3.2)

where ¢ -j ( )t  and ¢ +j ( )t  denote the one-sided derivatives of j at t. In
particular, if ¢j ( )t  exists—which is the case for all but at most a count-
ably infinite set of points—then this C-measure is 0.

2. If C is not strict, then the C-measure of the zero curve j ( )u  + j ( )v
= j ( )0  is equal to

-
¢ +

j
j

( )

( )

0

0
, (4.3.3)

and thus equal to 0 whenever ¢ +j ( )0  = –•.

Proof. We first note that because j is convex, the one-sided deriva-

tives ¢ -j ( )t  and ¢ +j ( )t  exist in (0,1] and [0,1), respectively (Roberts
and Varberg 1973). Let t be in (0,1), and set w = j(t). Let n be a fixed
positive integer, and consider the partition of the interval [t,1] induced
by the regular partition 0, , , , ,w n kw n wL L{ }  of [0,w], i.e., the parti-

tion t t t tn= ={ }0 1 1, , ,L  where tn k-  = j[ ]- ( )1 kw n , k = 0,1,L,n. Be-

cause w < j(0), it follows from (4.1.2) that

C t t t t

n j

n
w

n k

n
w w

n j k

n
w

j k j k( , ) ( ) ( )

.

[ ]

[ ] [ ]

= +( )
= - + -Ê

ËÁ
ˆ
¯̃

= + - -Ê
ËÁ

ˆ
¯̃

-

- -

j j j

j j

1

1 1

In particular, C t t w tj n j( , ) ( )[ ]
-

-= =j 1 .

Denote the rectangle t t t tk k n k n k- - - +[ ] ¥ [ ]1 1, ,  by Rk , and let Sn  =

» =k
n

kR1  [see Fig. 4.11(a)]. From the convexity of j[ ]-1  it follows that

0 11 0 2 1 1 1£ - £ - £ £ - = -- -t t t t t t tn n nL ,

and clearly lim ( )n ntÆ • --1 1  = 1 01- -j[ ]( )  = 0. Hence the C-measure
of the level curve j j j( ) ( ) ( )u v t+ =  is given by lim ( )n C nV SÆ • . For
each k we have

V R C t t t t C t t

w w n w w w w n
C k k n k k n k( ) ( , ) ( , )

.[ ] [ ] [ ] [ ]

= - - +
= +( ) - ( )[ ] - ( ) - -( )[ ]

- - - +
- - - -

1 1
1 1 1 1j j j j

Thus
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V S V R

w
w w n w

w n

w w w n

w n

C n C kk
n( ) ( )

[ ] [ ] [ ] [ ]

=

=
+( ) - ( )

-
( ) - -( )È

Î
Í
Í

˘

˚
˙
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=
- - - -

Â 1

1 1 1 1j j j j

from which (4.3.2) follows by taking the limit as nÆ•.

Rk

tn k-

t

t

tn k- +1

tk -1 tk 1

1

v

u
L L

tn k-

t

t

tn k- +1

tk -1 tk 1

1

v

u
L L

¢Rk

(a) (b)

v L ut= ( ) v L ut= ( )

Fig. 4.11. Rectangles Rk  and ¢Rk  in the proofs of Theorems 4.3.3 and 4.3.4

For a non-strict C and t = 0, j(0) is finite and C(u,v) = 0 in Z(C), i.e.,
on and below the level curve j j j( ) ( ) ( )u v+ = 0 . Thus for each k,
V RC k( )  = C t tk n k( , )- +1 , from which, using the above argument, (4.3.3)
follows. �
Example 4.5. Let q be in (0,1], and let jq  be the piecewise linear func-

tion in W whose graph connects (0, 2 - q ) to q q2 1 2, ( )-( ) to (1,0), as
illustrated in part (a) of Fig. 4.12. The slopes of the two line segments
in the graph are - -( )2 q q  and –1. If Cq  is the Archimedean copula
generated by jq , then it follows from (4.3.2) that the Cq -measure of
the level curve j jq q( ) ( )u v+  = j qq ( )2  is

1
2 2

1 1-Ê
ËÁ

ˆ
¯̃

-
-

+È
ÎÍ

˘
˚̇

= -q q
q

q ;

and from (4.3.3) that the Cq -measure of the zero curve jq ( )u +
j jq q( ) ( )v = 0  is  q. Because these measures sum to one, the Archimed-
ean copulas in this family are singular, and the support of Cq  consists
of the level curve j j j qq q q( ) ( ) ( )u v+ = 2  and the zero curve, as illus-
trated in part (b) of Fig. 4.12. [Note that both limq qÆ +0 C  and C1 are
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W.] Indeed, if the generator j of an Archimedean copula C is a piece-

wise linear function in W, then C must be singular. �

q 2

q 2

(a) (b)

1

1
jq

q 2

2 - q

1 2- ( )q

Fig. 4.12. The generator and support of the copula in Example 4.5

Using the same methods as in the proof of Theorem 4.3.3, we can

find the C-measure of the region in I2 lying on, or below and to the left
of, each level curve.

Theorem 4.3.4. Let C be an Archimedean copula generated by j in  W.

Let KC (t) denote the C-measure of the set ( , ) ( , )u v C u v tŒ £{ }I2 , or

equivalently, of the set ( , ) ( ) ( ) ( )u v u v tŒ + ≥{ }I2 j j j . Then for any t in

I,

K t t
t

t
C ( )

( )

( )
= -

¢ +
j

j
. (4.3.4)

Proof. Let t be in (0,1), and set w = j(t). Let n be a fixed positive in-
teger, and consider the same partitions of [t,1] and [0,w] as appear in the
proof of Theorem 4.3.3. Let ¢Rk  denote the rectangle

t t tk k n k- - +[ ] ¥ [ ]1 10, , , and set ¢ = ¢» =S Rn k
n

k1  [see Fig. 4.11(b)]. Proceed-

ing as before, KC (t) is given by the sum of the C-measure of [0,t]¥I and
lim ( )n C nV SÆ • ¢ , i.e., KC (t) = t + lim ( )n C nV SÆ • ¢ . For each k we have

V R C t t t w w n wC k k n k( ) ( , ) [ ] [ ]¢ = - = -( ) - ( )- +
- -

1
1 1j j ,

and hence

V S V R

w
w w w n

w n

C n C kk

n
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( ) - -( )È
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Í
Í

˘

˚
˙
˙

=
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1 1j j
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from which (4.3.4) follows by taking the limit as nÆ•. �
The following corollary, which is a generalization of Theorem 4.3.4,

is required for the proof of Theorem 4.4.7 in the next section.

Corollary 4.3.5. Let C be an Archimedean copula generated by j in  W.

Let ¢KC (s,t) denote the C-measure of the set ( , ) , ( , )u v u s C u v tŒ £ £{ }I2 .

Then for any s,t in I,

¢ =
£

- -
¢

>

Ï
Ì
Ô

ÓÔ
+

K s t

s s t

t
t s

t
s tC ( , )

,
( ) ( )

( )
, .

j j
j

(4.3.5)

Proof. When s £ t, ¢KC (s,t) = s, as ( , ) , ( , )u v u s C u v tŒ £ £{ }I2  =

( , )u v u sŒ £{ }I2 . Assume s > t. Proceeding as in Theorems 4.3.3 and

4.3.4, let z = j(s) and consider the partition of the interval [t,s] (rather
than [t,1]) induced by the regular partition of the interval [z,w] (rather

than the interval [0,w]). Here tn k-  = j[ ] [ ( ) ]- + -( )1 z k w z n , k =

0,1,L,n, and hence C( tk ,L( tk -1)) = j[ ] ( )- - -( )1 w w z n . Thus V RC k( )¢

= j[ ] ( )- - -( )1 w w z n  – j[ ]- ( )1 w , and the rest of the proof is analo-
gous to that of Theorem 4.3.4. Note that (4.3.5) reduces to (4.3.4)
when s = 1. �

A special subclass of Archimedean copulas consists of those for
which the generator is twice differentiable, i.e., when the copula C has a
generator j in W such that ¢j ( )t  < 0 and ¢¢j ( )t  > 0 for all t in (0,1). For
such copulas, Genest and MacKay (1986a,b) proved part 2 of Theorem
4.3.3 by using (2.4.1) to find the C-measure AC (1,1) of the absolutely
continuous component of C. For copulas in this subclass, the support of
the singular component (if any) consists of the zero curve; and moreo-
ver when C is absolutely continuous its density is given by

-
¢¢( ) ¢ ¢

¢( )[ ]
j j j

j

C u v u v

C u v

( , ) ( ) ( )

( , )
3

. (4.3.6)

Example 4.6. (a) Each of the copulas in the Clayton family (4.2.1) in

Table 4.1 is non-strict for q in the interval [–1,0). However, ¢ +jq ( )0  =

–• and ¢¢jq ( )t  > 0 for any such q, and hence every member of the
Clayton family is absolutely continuous.

(b) The copulas in family (4.2.2) are all non-strict, and an elemen-
tary computation shows that the Cq -measure of the zero curve is
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- ¢ +j jq q( ) ( )0 0  = 1/q. Thus the members of this family (aside from W)
have both a singular and an absolutely continuous component. �

y=j(x)

(t,j(t))

1t - j(t)
¢ j (t)

Fig. 4.13. A geometric interpretation of KC (t) = t t t- ¢( )j j( ) ( )

When the generator j of an Archimedean copula is continuously dif-

ferentiable, the C-measure of the set ( , ) ( , )u v C u v tŒ £{ }I2  given by

(4.3.4) is KC (t) = t t t- ¢( )j j( ) ( ) . As noted in (Genest and MacKay
1986b), there is a geometric interpretation of this result— KC (t) is the x-
intercept of the line tangent to the graph of y = j(x) at the point (t,j(t)),

as shown in Fig. 4.13. Furthermore, when j is non-strict, the x-intercept

KC (0) = - ¢j j( ) ( )0 0  of the line tangent to y = j(x) at its y-intercept

(0,j(0)) is the C-measure of the zero curve (which is positive when

¢j ( )0  > –•).
The following corollary presents a probabilistic interpretation of

Theorem 4.3.4 and Corollary 4.3.5 that will be useful in Chapter 5
when we consider the population version of the nonparametric measure
of association known as Kendall’s tau for Archimedean copulas.
Corollary 4.3.6. Let U and V be uniform (0,1) random variables whose
joint distribution function is the Archimedean copula C generated by
j  in  W. Then the function KC  given by (4.3.4) is the distribution func-
tion of the random variable C(U,V). Furthermore, the function ¢KC
given by (4.3.5) is the joint distribution function of U and C(U,V).

The next theorem (Genest and Rivest 1993) is an extension of Cor-
ollary 4.3.6. An application of this theorem is the algorithm for gener-
ating random variates from distributions with Archimedean copulas
given in Exercise 4.15.
Theorem 4.3.7. Under the hypotheses of Corollary 4.3.6, the joint dis-
tribution function H(s,t) of the random variables S =
j j j( ) ( ) ( )U U V+[ ]  and T = C(U,V) is given by H s t s K tC( , ) ( )= ◊  for
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all (s,t) in I2. Hence S and T are independent, and S is uniformly dis-
tributed on (0,1).

Proof. We present a proof for the case when C is absolutely continu-
ous. For a proof in the general case, see (Genest and Rivest 1993). The
joint density h(s,t) of S and T is given by

h s t
u v

C u v
u v

s t
( , ) ( , )

( , )
( , )

= ◊∂
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∂
∂

2

in terms of s and t, where ∂ ∂ ∂2C u v u v( , )  is given by (4.3.6) and
∂ ∂( , ) ( , )u v s t  denotes the Jacobian of the transformation j(u) = sj(t),

j(v) = (1 – s)j(t). But
∂
∂

j j
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and the conclusion follows. �
If one has a copula C that is associative and for which d C (u) < u on

(0,1), then it must be Archimedean by Theorem 4.1.6. The next theo-
rem yields a technique for finding generators of such copulas.

Theorem 4.3.8. Let C be an Archimedean copula with generator j in

W. Then for almost all u,v in I,

¢ = ¢j ∂
∂

j ∂
∂

( )
( , )

( )
( , )

u
C u v

v
v

C u v

u
. (4.3.7)

Proof. Because j is convex, ¢j  exists almost everywhere in (0,1).
From Theorem 2.2.7, the partials ∂ ∂C u v u( , )  and ∂ ∂C u v v( , )  exist for
almost all u,v in I. Hence, applying the chain rule to
j j jC u v u v( , ) ( ) ( )( ) = + , we have

¢( ) = ¢j ∂
∂

jC u v
C u v

u
u( , )

( , )
( ) ,  and  ¢( ) = ¢j ∂

∂
jC u v

C u v

v
v( , )

( , )
( ) .

But because j is strictly decreasing, ¢j (t) π 0 wherever it exists, from
which (4.3.7) now follows. �
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The next two examples illustrate the use of this theorem, in conjunc-
tion with Theorems 4.1.5 and 4.1.6, to determine if a particular copula
is Archimedean, and when it is, what a generator might be.
Example 4.7. The Farlie-Gumbel-Morgenstern family of copulas was
introduced in Example 3.12 in Sect. 3.2.5. Are any members of this
family Archimedean? If so, they must be associative. But it is easy to
show that if Cq  is given by (3.2.10), then

C C C Cq q q q
1
4

1
2

1
3

1
4

1
2

1
3

, , , ,
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

π Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

for all q in [–1,1] except 0. Hence, except for P, Farlie-Gumbel-
Morgenstern copulas are not Archimedean. �

Example 4.8. The Ali-Mikhail-Haq family of copulas was derived by
algebraic methods in Sect. 3.3.2. It is easy but tedious to show that
when Cq  is given by (3.3.7), then C u C v w C C u v wq q q q, ( , ) ( , ),( ) = ( )  for

u,v,w in I and all q in [–1,1], and that Cq (u,u) < u for all u in (0,1).
Hence, by Theorem 4.1.6, each Ali-Mikhail-Haq copula Cq  is Ar-
chimedean. To find a generator, we evaluate the partial derivatives of
Cq  and invoke (4.3.7) to obtain

¢
¢

= =
- -[ ]
- -[ ]

j
j

∂ ∂
∂ ∂

q
q

q

q

q

q

( )
( )

( , )
( , )

( )

( )
u

v

C u v u

C u v v

v v

u u

1 1

1 1
.

Hence ¢jq ( )t  = - - -( )c t tq q[ ( )]1 1  (where cq  > 0 since ¢jq ( )t  < 0),
from which it follows that a generator is given by

j
q

q
q

q( ) ln
( )

t
c t

t
=

-
- -

1
1 1

 for q in [–1,1), and j1 1
1

1( )t c
t

= -Ê
ËÁ

ˆ
¯̃

.

Upon setting c1 = 1 and cq  = 1- q  for q in [–1,1), we obtain the ex-
pression for jq  given in (4.2.3). �

As a consequence of Example 3.11, a source of generators of Ar-
chimedean copulas consists of inverses of Laplace transforms of distri-
bution functions. That is, if L(q) is a distribution function with L(0) = 0
and

y qq( ) ( )t e dt= -•
Ú L

0
,

then j = y -1 generates a strict Archimedean copula—see (3.2.7).

Example 4.9. If L is a gamma distribution function with parameters a
= 1 q  and b = 1 for q > 0, then the Laplace transform of L is y(t) =
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( )1 1+ -t q . Hence j(t) = y -1(t) = t- -q 1, which generates the strict
subfamily of (4.2.1). For further examples, see (Joe 1993). �

We close this section by noting that there are estimation procedures
for selecting the Archimedean copula which best fits a given random
sample (Genest and Rivest 1993), and for estimating the parameter q in
a given Archimedean family (Shih and Louis 1995).

Exercises

4.1 Prove Theorem 4.1.5.

4.2 The diagonal section of an Archimedean copula C with generator

j in W is given by d C (u) = j[ ]-1 [2j(u)]. Prove that if C is Ar-
chimedean, then for u in (0,1), d C (u) < u. Conclude that M is not
an Archimedean copula.

4.3 Show that j:IÆ[0,•] is in W if and only if 1 1- -j[ ]( )t  is a uni-

modal distribution function on [0,•] with mode at zero.

4.4 The converse of Theorem 4.3.2 is false. Using the copulas in Ex-
ample 3.3 and Exercise 3.8, show that non-Archimedean copulas
can have (a) non-convex level curves, and (b) convex level curves.

4.5 Let C be an Archimedean copula. Prove that C is strict if and only

if C(u,v) > 0 for (u,v) in ( , ]0 1 2.

4.6 This exercise shows that different Archimedean copulas can have
the same zero set. Let

j1
1
1

( ) arctant
t

t
= -

+
  and  j 2

2 1

2 1
( ) lnt

t

t
= + -

- +
.

(a) Show that j1 and j 2 are in W, and hence generate Archimed-
ean copulas C1 and C2, respectively.
(b) Show that

C u v
uv u v

u v uv1
1

1
0( , ) max ,= + + -

+ + -
Ê
ËÁ

ˆ
¯̃

and

C u v
uv u v

u v uv2
1

3
0( , ) max , .= + + -

- - +
Ê
ËÁ

ˆ
¯̃
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(c) Show that C1 and C2 have the same zero curve v =
( ) ( )1 1- +u u , from which it follows that Z( C1) = Z( C2).

4.7 Let C1 and C2 be non-strict Archimedean copulas with generators
j1 and j 2, respectively, normalized (via Theorem 4.1.5, part 3)

so that j1(0) = 1 = j 2(0). Let y j j( ) ( )t t= -
1 2

1o  for t in I. Prove
that Z( C1) = Z( C2) if and only if y(t) + y(1- t ) = 1 for all t in I,

i.e., if and only if the graph of y is symmetric with respect to the
point (1 2,1 2). (Alsina et al. 2005).

4.8 Let Cq  be a member of the Frank family (4.2.5) of copulas for q
in R.
(a) Show that C u v u C u v v C u v- = - - = - -q q q( , ) ( , ) ( , )1 1  [see Ex-
ercise 2.6 and Theorem 2.4.4].
(b) Conclude that Cq  satisfies the functional equation C = Ĉ  for
radial symmetry [see Theorem 2.7.3].
[Cf. Exercise 3.36.]

4.9 (a) Show that the Farlie-Gumbel-Morgenstern family (3.2.10) is a
first-order approximation to the Frank family, i.e., if Cq  in
(4.2.5), with q  in [–2,2], is expanded in a Taylor series in powers

of q, then the first two terms are

uv uv u v+ - -q
2

1 1( )( ) .

(b) Similarly, show that a second-order approximation to the
Frank family consists of the copulas with cubic sections given by

(3.2.20) with a = q 2 and b = q 2 12 for q in [–2,2].

4.10 (a) Show that the geometric mean of two Gumbel-Barnett copulas
is again a Gumbel-Barnett copula, i.e., if Ca  and Cb  are given by

(4.2.9), then the geometric mean of Ca  and Cb  is C( )a b+ 2.
(b) Show that each Gumbel-Barnett copula is a weighted geomet-
ric mean of the two extreme members of the family, i.e., for all q
in [0,1],

C u v C u v C u vq
q q( , ) ( , ) ( , )= [ ] ◊ [ ]-

0
1

1 .

[Cf. Exercises 2.5, 3.21 and 3.41.]
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4.11 Prove that, as in Example 4.6(a), ¢ +jq ( )0  = –• and ¢¢jq ( )t  > 0
holds for copulas in families (4.2.11), (4.2.15), (4.2.21), and
(4.2.22) in Table 4.1, and hence that members of these families
are absolutely continuous.

4.12 Prove that, as in Example 4.6(b), the Cq -measure of the zero
curve is 1/q for the members of families (4.2.8) and (4.2.18) in
Table 4.1; and is - -q q qln ( )1  for family (4.2.7).

4.13 Prove that every Archimedean copula is Schur-concave (Durante
and Sempi 2003). [Hint: use Theorems 3.4.5 and 4.3.2, and note
that every Archimedean copula is symmetric.]

4.14 Let C be a copula, and define C u v C u vg g g g( , ) ( ), ( )= ( )( )-1 , where

g and g -1 satisfy the properties in Theorem 3.3.3.
(a) Show that Pg  is a strict Archimedean copula. [Hint: is
- ln ( )g t  a generator?]
(b) Show that Wg  is a non-strict Archimedean copula. [Hint: is
1- g ( )t  a generator?]
(c) More generally, show that if C is Archimedean, so is Cg .

4.15 Use Theorem 4.3.7 to show that the following algorithm generates
random variates (u,v) whose joint distribution function is an Ar-
chimedean copula C with generator j in W:

1. Generate two independent uniform (0,1) variates s and t;

2. Set w = K tC
( )( )-1 , where KC  is given by (4.3.4);

3. Set u = j j[ ] ( )- ( )1 s w  and v = j j[ ] ( ) ( )- -( )1 1 s w ;
4. The desired pair is (u,v).

4.16 Show that the following algorithm (Genest and MacKay 1986a)
generates random variates (u,v) whose joint distribution function
is an Archimedean copula C with generator j in W:

1. Generate two independent uniform (0,1) variates u and t;

2. Set w = ¢ ¢( )-j j( ) ( )1 u t ;

3. Set v = j j j[ ] ( ) ( )- -( )1 w u ;
4. The desired pair is (u,v).
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4.17 Show that the following algorithm (Devroye 1986) generates ran-
dom variates (u,v) whose joint distribution function is the Clayton
copula (4.2.1) with parameter q > 0:

1. Generate two independent exponential (mean m = 1) vari-

ates x and y; and a gamma (a = q, b = 1) variate z, inde-
pendent of x and y;

2. Set u = 1+[ ]-( )x z q  and v = 1+[ ]-( )y z q ;
3. The desired pair is (u,v).

4.4 Order and Limiting Cases

Recall from Definition 2.8.1 the concordance ordering of copulas— C1
is smaller than C2 ( C C1 2p ) if C u v C u v1 2( , ) ( , )£  for all u,v in I. Also
recall that a family Cq{ }  of copulas is positively ordered if C Ca bp

whenever a £ b; and negatively ordered if C Ca bf  whenever a £ b. In
Exercise 2.32, we saw that the Ali-Mikhail-Haq family (4.2.3) of Ar-
chimedean copulas is positively ordered.

Example 4.10. Let C1 and C2 be the members of the Gumbel-Barnett
family (4.2.9) with parameters q1 and q2, respectively. If q1 £ q2, then

-q1 ln lnu v  ≥ -q2 ln lnu v  for u,v in (0,1), from which it follows that C1
f C2. Hence the Gumbel-Barnett family of copulas is negatively or-
dered. �

Example 4.11. Let C1 and C2 be the members of family (4.2.19) with
parameters q1 and q2, respectively. Using Definition 2.8.1 requires de-
termining the sense of the inequality (if one exists) between

q
q q q

1

1 1 1ln e e eu v+ -( )  and 
q

q q q
2

2 2 2ln e e eu v+ -( )
when q1 £ q2. �

As the preceding example shows, it is often not easy to verify directly
via Definition 2.8.1 that a pair of copulas are ordered. For Archimed-
ean copulas, the situation is often simpler in that the concordance order
is determined by properties of the generators. For the first of these re-
sults we need the notion of a subadditive function:

Definition 4.4.1. A function f defined on [0,•) is subadditive if for all

x,y in [0,•),
f x y f x f y( ) ( ) ( )+ £ + . (4.4.1)
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The next theorem (Schweizer and Sklar 1983) characterizes the con-
cordance ordering of Archimedean copulas in terms of the subadditiv-
ity of composites of generators and their inverses.

Theorem 4.4.2. Let C1 and C2 be Archimedean copulas generated, re-

spectively, by j1 and j 2 in W. Then C C1 2p  if and only if j j1 2
1o [ ]-

 is
subadditive.

Proof. Let f = j j1 2
1o [ ]- . Note that f is continuous, nondecreasing,

and f(0) = 0.  From (4.1.3), C C1 2p  if and only if for all u,v in I,

j j j j j j1
1

1 1 2
1

2 2
[ ] [ ]( ) ( ) ( ) ( )- -+( ) £ +( )u v u v . (4.4.2)

Let x = j 2(u) and y = j 2(v), then (4.4.2) is equivalent to

j j1
1

2
1[ ] [ ]( ) ( )- -+( ) £ +( )f x f y x y (4.4.3)

for all x,y in [0, j 2(0)].  Moreover if x > j 2(0) or y > j 2(0), then each
side of (4.4.3) is equal to 0.

Now suppose that C C1 2p . Applying j1 to both sides of (4.4.3) and

noting that j j1 1
1o [ ]- (w) £ w for all w ≥ 0 yields (4.4.1) for all x,y in

[0,•), hence f is subadditive. Conversely, if f satisfies (4.4.1), then ap-

plying j1
1[ ]-  to both sides and noting that j1

1[ ]- o f  = j 2
1[ ]-  yields

(4.4.2), completing the proof. �

Verifying the subadditivity of a function such as f = j j1 2
1o [ ]-  may

still be as difficult as verifying directly that a pair of copulas satisfies
Definition 2.8.1. So we now present several corollaries that give suffi-

cient conditions for the subadditivity of j j1 2
1o [ ]- , and hence for the

copula C1 to be smaller than C2. The first requires the following lemma
from (Schweizer and Sklar 1983), which relates subadditivity to con-
cavity.

Lemma 4.4.3. Let f be defined on [0,•). If f is concave and f(0) = 0,
then f is subadditive.

Proof. Let x,y be in [0,•). If x + y = 0, then x = y = 0, so that with
f(0) = 0, (4.4.1) is trivial. So assume x + y > 0, so that

x
x

x y
x y

y

x y
=

+
+( ) +

+
( )0  and y

x

x y

y

x y
x y=

+
( ) +

+
+( )0 .

If f is concave and f(0) = 0, then

f x
x

x y
f x y

y

x y
f

x

x y
f x y( ) ( ) ( ) ( )≥

+
+ +

+
=

+
+0
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and

f y
x

x y
f

y

x y
f x y

y

x y
f x y( ) ( ) ( ) ( )≥

+
+

+
+ =

+
+0 ,

from which (4.4.1) follows and f is subadditive. �
Combining Lemma 4.4.3 and Theorem 4.4.2 yields Corollary 4.4.4.

Corollary 4.4.4. Under the hypotheses of Theorem 4.4.2, if j j1 2
1o [ ]-  is

concave, then C C1 2p .

Example 4.12. Let C1 and C2 be members of the Gumbel-Hougaard
family (4.2.4) with parameters q1 and q2, so that the generators of C1

and C2 are j1 and j 2, respectively, where j k (t) = (– ln )t kq  for k = 1,2.

Then j j1 2
1o [ ]- (t) = tq q1 2 . So if q q1 2£ , then j j1 2

1o [ ]-  is concave and
C C1 2p . Hence the Gumbel-Hougaard family is positively ordered. �

Another useful test for the concordance ordering of Archimedean
copulas is the following result from (Genest and MacKay 1986a).

Corollary 4.4.5. Under the hypotheses of Theorem 4.4.2, if j j1 2  is
nondecreasing on (0,1), then C C1 2p .

Proof. Let g be the function from (0,•) to (0,•) defined by g(t) =

f t t( ) , where again f = j j1 2
1o [ ]- . Assume j j1 2  is nondecreasing on

(0,•). Because g oj 2  = j j1 2  and j 2 is decreasing, it follows that g is

nonincreasing on (0,j 2(0)), and hence on (0,•). Thus for all x,y ≥ 0,

x g x y g x( ) ( )+ -[ ] + y g x y g y( ) ( )+ -[ ] £ 0, or ( ) ( )x y g x y+ +  £ xg(x) +
yg(y). Hence f is subadditive, which completes the proof. �

Example 4.13. Let C1 and C2 be members of family (4.2.2) with pa-
rameters q1 and q2, that is, the generators of C1 and C2 are j1 and j 2,

respectively, where j k (t) = ( )1- t kq  for k = 1,2. Then j j1 2( ) ( )t t  =

( )1 1 2- -t q q . So if q1 £ q2, then j j1 2  is nondecreasing on (0,1) and
C C1 2p . Hence this family is also positively ordered. �

Yet another test—often the easiest to use—is the following, an exten-
sion of a result in (Genest and MacKay 1986a). The proof is from
(Alsina et al. 2005).

Corollary 4.4.6. Under the hypotheses of Theorem 4.4.2, if j1 and j 2
are continuously differentiable on (0,1), and if ¢ ¢j j1 2  is nondecreasing
on (0,1), then C C1 2p .

Proof. Because both j1 and j 2 are decreasing on (0,1), both ¢j1 and
¢j 2 are negative on (0,1). Let g = j j1 2  and f = ¢ ¢j j1 2 , and assume f is
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nondecreasing. Because f is also continuous, lim ( )t f tÆ -1  exists (finite

or infinite). But because lim ( )t tÆ -1 1j  = 0 = lim ( )t tÆ -1 2j , l’Hôpital’s

rule applies, and lim ( )t f tÆ -1  = lim ( )t g tÆ -1 . Now

¢ = ¢ - ¢ = ¢
¢

-
Ê
ËÁ

ˆ
¯̃

¢ = -( ) ¢
g f g

j j j j
j

j
j

j
j

j
j

j
j

2 1 1 2

2
2

1

2

1

2

2

2

2

2
. (4.4.4)

By Corollary 4.4.5, we need only show that ¢g  is nonnegative, or
equivalently, because ¢j j2 2  is negative, that f(t) – g(t) £ 0 on (0,1).
Suppose not, that is, suppose there is a t0  in (0,1) such that f( t0 ) – g( t0 )
> 0. Then

g t f t f t g t
t t

( ) ( ) lim ( ) lim ( )0 0
1 1

< £ =
Æ Æ- -

.

But by (4.4.4), ¢g ( t0) < 0, and hence there is a t1 in ( t0 ,1) such that

g( t1) < g( t0 ) and ¢g ( t1) = 0. But then g( t1) < g( t0 ) < f( t0 ) £ f( t1), so
that by (4.4.4), ¢g ( t1) < 0, a contradiction. �

Example 4.14. Let C1 and C2 be members of the Clayton family
(4.2.1) with parameters q1 and q2, and generators j1 and j 2, respec-

tively, where j k (t) = ( )t k
k

- -q q1  for k = 1,2. Then ¢ ¢j j1 2( ) ( )t t  =

tq q2 1- . So if q1 £ q2, then ¢ ¢j j1 2  is nondecreasing on (0,1) and C1 p
C2. Hence the Clayton family is also positively ordered. �

Example 4.15. Let C1 and C2 be members of family (4.2.19) with pa-
rameters q1 and q2, and generators j1 and j 2, respectively, where

j k (t) = e etq q-  for k = 1, 2. Then

¢ ¢j j1 2( ) ( )t t  = 
q
q

q q1

2

1 2exp
-Ê

ËÁ
ˆ
¯̃t

.

So if q1 £ q2, then ¢ ¢j j1 2  is nondecreasing on (0,1) and C C1 2p .
Hence the family (4.2.19) is positively ordered [cf. Example 4.11]. �

Whether a totally ordered family of copulas is positively or nega-
tively ordered is a matter of taste or convenience. The direction of the
order can be easily changed by reparameterization. For example if the
parameter space is (–•,•) or (0,•), then replacing q by –q or 1/q, re-
spectively, will suffice.

In the preceding four examples, we have seen that four of the fami-
lies of Archimedean copulas from Table 4.1 are ordered. However,
there are families of Archimedean copulas that are not ordered, as the
next example demonstrates.
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Example 4.16. The family of Archimedean copulas (4.2.10) is neither
positively nor negatively ordered. A simple calculation shows that for q
in (0,1), Cq 2(u,v) £ Cq (u,v) for u,v in I if and only if u vq q2 2 1+ £ . �

We conclude this section with two theorems that can often be used to
determine whether or not M, P, or W are limiting members of an Ar-
chimedean family. The first applies to Archimedean limits such as W or
P, and is from (Genest and MacKay 1986a). Because M is not Ar-
chimedean, we treat it separately in the second theorem, which is also
from (Genest and MacKay 1986a)—the proof is from (Alsina et al.
2005).

Theorem 4.4.7. Let Cq q Œ{ }Q  be a family of Archimedean copulas

with differentiable generators jq  in W. Then C = lim Cq  is an Ar-

chimedean copula if and only if there exists a function j in W such that
for all s,t in (0,1),

lim
( )
( )

( )
( )

j
j

j
j

q

q

s

t

s

t¢
=

¢
, (4.4.5)

where “ l im”  denotes the appropriate one-sided limit as q approaches

an end point of the parameter interval Q.
Proof. Let (Uq ,Vq ) be uniform (0,1) random variables with joint dis-

tribution function Cq , and let ¢Kq  denote the joint distribution function
of the random variables Uq  and Cq (Uq ,Vq ). Then from Corollaries
4.3.5 and 4.3.6; we have

¢ = £ £ = -
¢

+
¢

K s t P U s C U V t t
t

t

s

tq q q q
q

q

q

q

j
j

j
j

( , ) [ , ( , ) ]
( )
( )

( )
( )

(4.4.6)

whenever 0 < t < s < 1. Now let U and V be uniform (0,1) random vari-
ables with joint distribution function C, let ¢K  denote the joint distribu-
tion function of the random variables U and C(U,V). Assume that C =
lim Cq  is an Archimedean copula with generator j in W. It now follows
that

lim ( , ) ( , )
( )
( )

( )
( )

¢ = ¢ = -
¢

+
¢

K s t K s t t
t

t

s

tq
j

j
j
j

(4.4.7)

for 0 < t < s < 1, thus equation (4.4.5) is a consequence of (4.4.6) and
(4.4.7).

In the other direction, assume that (4.4.5) holds. Hence there is a set
of positive constants cq  such that for all t in (0,1], lim c tq qj ( )  = j(t). It

follows that the limit of jq q
[ ]-1 c  is j[ ]-1 , and thus for fixed u, v in I,
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lim ( ) ( ) ( ) ( )[ ] [ ]j j j j j jq q q
- -+[ ] = +[ ]1 1u v u v ,

which completes the proof. �
Because the generator of W is j(t) = 1 – t, W will be the limit of a

family Cq q Œ{ }Q  if lim ( ) ( )j jq qs t¢  = s – 1; and because the generator

of P is j(t) = - ln ,t   P will be the limit of a family Cq q Œ{ }Q  if

lim ( ) ( )j jq qs t¢  = tlns.
Example 4.17. (a) For the family of Archimedean copulas given by
(4.2.7) in Table 4.1, jq (t) = - + -[ ]ln ( )q qt 1  for q in (0,1]. Hence, us-
ing l’Hôpital’s rule,

lim
( )
( )

lim
ln ( )

( )
lim

( )

( )q
q

q q q

j
j

q q
q q q

q q
q qÆ Æ Æ+ + +¢

=
+ -[ ]
+ -[ ] =

+ -[ ] -( )
+ -

= -
0 0 0

21

1

1 1

1
1

s

t

s

t

t s

s
s

for s,t in (0,1). Thus C0 = W.
(b) For the same family, we have

lim
( )
( )

lim
ln ( )

( )
ln

q
q

q q

j
j

q q
q q qÆ Æ- -¢

=
+ -[ ]
+ -[ ] =

1 1

1

1
s

t

s

t
t s

for s,t in (0,1). Thus C1 = P. �

Theorem 4.4.8. Let Cq q Œ{ }Q  be a family of Archimedean copulas

with differentiable generators jq  in W. Then lim Cq (u,v) = M(u,v) if
and only if

lim
( )
( )

j
j

q

q

t

t¢
= 0 for t in (0,1),

where “lim” denotes the appropriate one-sided limit as q approaches

an end point of the parameter interval Q.

Proof. Let g denote the end point of Q and assume limj jq q( ) ( )t t¢  =

0. Fix an arbitrary t in (0,1) and choose e in (0,t). Then 0 £
- ¢j jq q( ) ( )t t  £ e for q sufficiently close to g (when g is finite) or for q
sufficiently large (when g is infinite). Because t – j jq q( ) ( )t t¢  is the t-
intercept of the tangent line to the graph of y = jq (x) at the point
(t,jq (t)) (see Fig. 4.13), invoking the convexity of jq  to compare the
y-coordinates of y = jq (x) and the above tangent line when x = t +
j jq q( ) ( )t t¢  yields, for these q,
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j j
j

jq
q

q
qt

t

t
t+

¢
Ê
ËÁ

ˆ
¯̃

>( )
( )

( )2 ,

thus

C t t t t
t

t
tq q q

q

q
j j j

j
e( , ) ( )

( )
( )

[ ]= ( ) > +
¢

> --1 2 .

Hence lim Cq (t,t) = t, so that lim Cq (u,v) = M(u,v). The converse follows
by reversing the argument. �
Example 4.18. For the family of Archimedean copulas given by

(4.2.12) in Table 4.1, jq (t) = ( )1 1t -( )q
 for q in [1,•) so that

j jq q( ) ( )t t¢  = ( )t t2 - q , and hence limq Æ • j jq q( ) ( )t t¢  = 0 for all t in
(0,1). Thus C•  = M. �

4.5 Two-parameter Families

In this section, we will consider some two-parameter families of Ar-
chimedean copulas. The first subsection deals with parametric families
generated by composing a generator j in W with the power function

t ta q , q > 0. In the second subsection, we consider a two-parameter
family that contains every Archimedean copula that is a rational func-
tion on the complement of its zero set.

4.5.1 Families of Generators

In this section, we first examine methods of constructing families of
generators of Archimedean copulas from a single generator j in W. As-

sume that j is a generator in W, for example, j(t) = (1/t) – 1, or j(t) =

–lnt. From such a j, we can create parametric families of generators,
which can then, in turn, be used to create families of Archimedean
copulas.

Theorem 4.5.1. Let j be in W, let a and b be positive real numbers, and
define

j ja
a

, ( ) ( )1 t t=  and j jb
b

1, ( ) ( )t t= [ ] . (4.5.1)

1. If b ≥ 1, then j b1,  is an element of W.

2. If a is in (0,1], then ja ,1  is an element of W.
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3. If j is twice differentiable and t t¢j ( )  is nondecreasing on (0,1),

then ja ,1  is an element of W for all a > 0.
The proof is elementary and consists of a straightforward verification

that the two compositions of j with the power function are decreasing

and convex for the specified values of the parameters a and b. Follow-
ing (Oakes 1994), we will refer to a family of generators

j j ja a
a

, , ( ) ( )1 1Œ ={ }W t t  as the interior power family associated with j

and a family j j jb b
b

1 1, , ( ) ( )Œ = [ ]{ }W t t  as the exterior power family

associated with j. We let Ca ,1 and C1,b  denote the copulas generated

by ja ,1 and j b1, , respectively.

Example 4.18. The interior power family associated with j(t) = (1/t) –

1 for a > 0 generates a subfamily of the Clayton family (4.2.1) in Table

4.1; and the exterior power family associated with j(t) = –lnt generates
the Gumbel-Hougaard family (4.2.4) in Table 4.1. Other interior power
families include (4.2.9), (4.2.10), (4.2.20), and (4.2.22); and other ex-
terior power families include (4.2.2) and (4.2.12). �

The next example illustrates the ease with which two-parameter fami-
lies of Archimedean copulas can be constructed by using Theorem
4.5.1 to add a parameter to one of the one-parameter familes in Table
4.1.
Example 4.19. (Fang et al. 2000) For q in [–1,1], jq (t) =

ln [ ( )]1 1- -( )q t t  [with j1(t) = (1/t) – 1] generates an Ali-Mikhail-Haq

copula [(4.2.3) in Table 4.1]. Because t t¢jq ( ) is nondecreasing for q in
[0,1], the interior power family generated by jq  is the two-parameter
family given by

C u v
uv

u v
q a a a aq; , ( , )

[ ( )( )]
1 1 11 1 1

=
- - -

for u,v in I, a > 0, 0 £ q £ 1. This family also appears in (Genest and

Rivest 2001). Note that C0 1; ,a  = P and that C1 1; ,a  is a member of the
Clayton family (4.2.1). �
Example 4.20. Let ( , )X Y1 1 , ( , )X Y2 2 , L, ( , )X Yn n  be independent and
identically distributed pairs of random variables with a common Ar-
chimedean copula C with generator j. Let C n( )  denote the copula of

the component-wise maxima X n( ) = max{ Xi } and Y n( )  = max{ Yi }.
From Theorem 3.3.1 we have
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C u v u vn
n n n

( )
[ ]( , ) ( ) ( )= +( )[ ]-j j j1 1 1

for u,v in I. The generator of C n( )  is j1 1n t, ( )  = j ( )t n1 , and thus the
copula of the component-wise maxima is a member of the interior
power family generated by j. �

In Example 3.22, we observed that each Gumbel-Hougaard copula is
max-stable and hence an extreme value copula. Are there other Ar-
chimedean extreme value copulas? The answer is no (Genest and Rivest
1989):
Theorem 4.5.2. Gumbel-Hougaard copulas (4.2.4) are the only Ar-
chimedean extreme value copulas.

Proof. Assume j generates an Archimedean extreme value copula C.

From part 3 of Theorem 4.1.5, we may assume j is scaled so that j(1/e)

= 1. Because C is max-stable, we have j ( )t s  = c tsj ( )  for s > 0, t in (0,1]
(we have replaced 1/r in Definition 3.3.2 by s for convenience). Now let

x = –lnt, then j ( )e sx-  = c es
xj ( )- , so that if we set g(x) = j ( )e x- , then

g(sx) = csg(x) for s,x > 0. Because g(1) = 1, cs  = g(s), and we have

g(sx) = g(s)g(x) for s,x > 0. This is a variant of Cauchy’s equation, the

solution to which (Aczél 1966) is g(x) = xq . Hence j ( )t  = g(–lnt) =

( ln )- t q , which generates the Gumbel-Hougaard family (4.2.4). �
As the examples in Sect. 4.4 illustrate, many of the interior and exte-

rior power families of Archimedean copulas are ordered.

Theorem 4.5.3. Let j be in W, and let ja ,1 and j b1,  be given by

(4.5.1). Further assume that ja ,1 and j b1,  generate copulas Ca ,1 and

C1,b , respectively. [It follows that b  ≥ 1 and that a is an element of a

subset A of (0,•), which includes (0,1].]

1. If 1 £ b1 £ b2, then C1 1,b  p C1 2,b .

2. If j j q[ ( )][ ]-( )1 t  is subadditive for all q in (0,1), and if a1, a 2  are

in A, then a1 £ a 2  implies Ca1 1,  p Ca 2 1, .

Proof. Part 1 follows from Corollary 4.4.5, because when b1 £ b2,

j jb b1 11 2, ,( ) ( )t t  = [ ( )]j b bt 1 2-  is nondecreasing. Part 2 follows from

Theorem 4.4.2, because j ja a1 2
1 1

1
, ,

[ ]( )o - t  = j j a a[ ( )][ ]-( )1 1 2t . �

Example 4.21. Let j(t) = (1/t) – 1, and consider the copulas Ca ,1 gen-

erated by ja ,1 for a > 0 [this is family (4.2.1) from Table 4.1]. Here
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j j q[ ( )][ ]-( )1 t  = ( )t + -1 1q , which is concave on (0,1), and

j j q[ ( )][ ]-( )1 0  = 0. Hence by Lemma 4.4.3 and part 2 of the above

theorem, this family is positively ordered (which of course has been
shown earlier, in Example 4.14). �

Note that every exterior power family of Archimedean copulas is
positively ordered. This is definitely not the case for interior power
families—recall Example 4.16, where it was shown that the interior
power family (4.2.10) is not ordered.

Corollary 4.5.4. Under the hypotheses of Theorem 4.5.3, if ¢j ja a  is
nonincreasing in a, then a1 £ a 2  implies Ca1 1,  p Ca 2 1, .

An examination of Table 4.1 shows that all the interior power fami-
lies in the table include P as a limiting case, while all the exterior power
families include M as a limiting case.

Theorem 4.5.5. Let j be in W, and let ja ,1 and j b1,  be given by

(4.5.1). Further assume that ja ,1  and j b1,  generate copulas Ca ,1 and

C1,b , respectively, where b  ≥ 1 and a is an element of a subset of (0,•)
which includes (0,1].

1. If j is continuously differentiable and ¢j (1) π 0, then

C u v C u v u v0 1
0

1, ,( , ) lim ( , ) ( , )= =
Æ +a

a P .

2. C u v C u v M u v1 1, ,( , ) lim ( , ) ( , )•
Æ •

= =
b

b .

Proof. Appealing to Theorems 4.4.7 and 4.4.8, we have

lim
( )

( )
lim

( )

( ) ( )
lim ( ) ln ln,

,a
a

a a

a

a a a
a aj

j
j

j a j
j

Æ Æ - Æ+ + +¢
=

¢
=

¢
¢ ◊ =

0

1

1 0 1 01

s

t

s

t t

t
s s s t s

and lim
( )

( )
lim

[ ( )]

[ ( )] ( )
lim

( )
( )

,

,b

b

b b

b

b b

j
j

j
b j j

j
bjÆ • Æ • - Æ •¢

=
¢

=
¢

=1

1
1

0
t

t

t

t t

t

t
. �

We are now in a position to create two-parameter families of Ar-
chimedean copulas by using generators which are the composites given
by

j ja b
a b

, ( ) ( )t t= [ ] . (4.5.2)

We illustrate the procedure via two examples.

Example 4.22. The function j(t) = (1/t) – 1 generates the copula C(u,v)
= uv u v uv( )+ - , which we denoted “ P S P( )- ” in Table 4.1. Using
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(4.5.2), we now let ja b, (t) = ( )t- -a b1  for a > 0, b ≥ 1. This generates
the two-parameter family of Archimedean copulas

C u v u va b
a b a b b a

, ( , ) ( ) ( )= - + -[ ] +Ï
Ì
Ó

¸
˝
˛

- -
-

1 1 1
1 1

. (4.5.3)

Using Theorem 4.5.5, we can extend the parameter range to include
a = 0 and b = • because C0 1,  = P, C0,b  is the Gumbel family (4.2.4)

in Table 4.1, and Ca ,•  = M. Furthermore, the subfamily Ca ,1 is the “ q
≥ 1” portion of the Clayton family (4.2.1) in Table 4.1; and for a =

1/b, b ≥ 1, we get family (4.2.14). From Theorem 4.5.3, it is easy to
verify that this family is positively ordered by both parameters, that is, if
a1 £ a 2  and b1 £ b2, then Ca b1 1,  p Ca b2 2, . This family has been used
as a family of survival copulas for a bivariate Weibull model, see (Lu
and Bhattacharyya 1990) for details. �

Example 4.23. Let j(t) = 1 – t, the generator of W. Using (4.5.2), let

ja b, (t) = ( )1- ta b  for a in (0,1], b ≥ 1. This generates the two-
parameter family of Archimedean copulas

C u v u va b
a b a b b a

, ( , ) max ( ) ( ) ,= - - + -[ ]Ï
Ì
Ó

¸
˝
˛

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 1 1 0

1 1

. (4.5.4)

Note that C1 1,  = W, C0 1,  = P, and Ca ,•  = M. Four subfamilies of

(4.5.4) appear in Table 4.1: for b = 1, we get the “ q  Œ (–1,0]” portion

of (4.2.1); for a = 1, we have family (4.2.2); for ab = 1, we have family

(4.2.15); and in the limit as a goes to zero, we have family (4.2.4). As
with the preceding example, this family is also positively ordered by
both parameters. �

One-parameter families of Archimedean copulas not in Table 4.1 can
be readily constructed from two-parameter families such as those in the
above examples. For example, set b = a + 1, a ≥ 0 in (4.5.3); or b =

1 1( )- a , 0 £ a < 1 in either (4.5.3) or (4.5.4); in each instance we ob-
tain a one-parameter family that is positively ordered and includes both
P and M as limiting cases.

Other choices for j in (4.5.2) lead to other two-parameter fami-

lies—for example, j(t) = ( ) ( )1 1- +t t , j(t) = ln( ln )1- t , j(t) = ( )1 t t- ,

j(t) = exp[( ) ]1 1 1t - - , and so on.
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4.5.2 Rational Archimedean Copulas

In Table 4.1, it is easy to find families of Archimedean copulas that are

rational functions on I2 \ ( )Z C , i.e., copulas C(u,v) such that if C(u,v) >
0, then C(u,v) = P u v Q u v( , ) ( , ) where P and Q are polynomials—for
example, families (4.2.3), (4.2.7), and (4.2.8). Are there others? We call
such copulas rational, and answer the question affirmatively by con-
structing a two-parameter family of all rational Archimedean copulas.

Because Archimedean copulas must be symmetric and associative
(recall Theorem 4.1.5), our starting point is the following theorem
(Alsina et al. 2005), which we state without proof:
Theorem 4.5.6. Let R be a rational 2-place real function reduced to
lowest terms, i.e., let

R u v
P u v

Q u v
( , )

( , )
( , )

=

where P and Q are relatively prime polynomials, neither of which is
identically zero. Then R is symmetric and associative if and only if

R u v
a uv b u v c

a b u v c uv
( , )

( )
( )

= + + +
+ + +

1 1 1

2 2 2
(4.5.5)

where
b b c c

b b c a c a b

b b c a c a b

1 2 1 2

1
2

2 1 1 1 2 1

2
2

1 2 2 2 1 2

=
+ = +
+ = +

,

,

.

(4.5.6)

Now let C be a function with domain I2 given by (4.5.5) and (4.5.6)
on the complement of its zero set. In order for C to be a copula, we
must impose further restrictions on the six coefficients in (4.5.5). The
boundary condition C(u,1) = u requires R(u,1) = u, or equivalently,

( ) ( ) ( )b c u a b a b u b c2 2
2

2 2 1 1 1 1 0+ + + - - + + =

for all u in I. Hence c b1 1= - , c b2 2= - , and a b1 1+  = a b2 2+ , and thus

R u v
a b uv b u v

a b b u v
( , )

( ) ( )( )
( ) ( )( )

= + - - -
+ - - -

1 1 1

2 2 2

1 1
1 1

.

Because R is not constant, we have a b1 1+  = a b2 2+  π 0, and, upon set-

ting a = b a b2 2 2( )+  and b = b a b1 1 1( )+ , it follows that on the com-
plement of its zero set, a rational Archimedean copula must have the
form

C u v
uv u v

u va b
b

a, ( , )
( )( )

( )( )
= - - -

- - -
1 1

1 1 1
(4.5.7)
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for appropriate values of a and b.

In order to find the values of a and b so that Ca b,  in (4.5.7) will be a

copula, we will first find a function ja b,  that generates Ca b, , and then

determine  a and b so that ja b,  is continuous, strictly decreasing and

convex on (0,1). To find a candidate for ja b, , we appeal to Theorem

4.3.8: If Ca b,  is an Archimedean copula, then its generator ja b,  must
satisfy

¢
¢

= + - - +
+ - - +

j
j

a a b b
a a b b

a b

a b

,

,

( )

( )
( )

( )

u

v

v v

u u

2

2
1

1
,

so that

¢ =
-

+ - - +
j

a a b ba b
a b

,
,

( )
( )

t
c

t t2 1
(4.5.8)

and

¢¢ =
+ - -[ ]

+ - - +[ ]
j

a a b

a a b b
a b

a b
,

,
( )

( )

( )
t

c t

t t

2 1

12 2
,

where ca b,  is a constant. Assume that ¢ja b, ( )t  < 0 and ¢¢ja b, ( )t  > 0 on

(0,1). Because ¢ +ja b, ( )0  = -ca b b,  and ¢ -ja b, ( )1  = -ca b, , we have

ca b,  > 0 and b ≥ 0. Then ¢¢ja b, ( )t  > 0 if 2 1a a bt + - -( )  > 0 for t in

(0,1), which requires that a + b £ 1 and b – a £ 1. Conversely, the con-

ditions b ≥ 0, a + b £ 1, and b – a £ 1 (or equivalently, 0 £ b £ 1- a )
are sufficient to insure that 2a t  + ( )1- -a b  > 0, which in turn implies
that the denominator of (4.5.8) is strictly positive on (0,1), and hence,
with ca b,  > 0, to give ¢ja b, ( )t  < 0 and ¢¢ja b, ( )t  > 0 on (0,1). Thus

(4.5.8) has a solution ja b,  that is continuous, strictly decreasing, and

convex on I, and which generates Ca b,  in (4.5.7). Hence we have

Theorem 4.5.7. The function Ca b,  defined on I2 by

C u v
uv u v

u va b
b

a, ( , ) max
( )( )

( )( )
,= - - -

- - -
Ê
ËÁ

ˆ
¯̃

1 1
1 1 1

0 (4.5.9)

is a (rational Archimedean) copula if and only if 0 £ b £ 1- a .

Note that C0 0,  = P, C0 1,  = W, and C1 0,  = P S P( )- .
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The parameter space for Ca b,  consists of the points in the a,b-plane
that are on and inside the triangle with vertices (–1,0), (0,1), and (1,0), as
illustrated in Fig. 4.14. The curve in the first quadrant will play a role
when we discuss the generators of Ca b, .

1

1

–1
a

b

0

Fig. 4.14. The parameter space for Ca b,  given by (4.5.9)

When Ca b,  is a rational Archimedean copula, Exercise 4.5 tells us

that Ca b,  is strict if and only if Ca b, (u,v) > 0 for u,v in (0,1], which is

equivalent to b = 0 in (4.5.9). Thus we have
Corollary 4.5.8. A rational Archimedean copula is strict if and only if
b = 0 in (4.5.9), i.e., if and only if it is a member of the Ali-Mikhail-Haq
family (4.2.3).

When b = 1, a = 0 and C0 1,  = W. When b is in (0,1), the zero curve
of Ca b,  is a portion of the graph of uv u v- - -b( )( )1 1  = 0, a rectan-

gular hyperbola with asymptotes u = - -b b( )1  and v = - -b b( )1 ,
one branch of which passes through (0,1) and (1,0). Indeed, all the level
curves of Ca b,  for b in [0,1) are portions of hyperbolas—see Exercise
4.22.

In order to obtain an explicit expression for the generator of Ca b, ,

we need only integrate both sides of equation (4.5.8) to find ja b, .
There are three cases to consider, depending on the whether the dis-

criminant D = ( )1 42- - -a b ab  of the quadratic in the denominator of
¢ja b, ( )t  in (4.5.8) is positive, zero, or negative. But within the parameter

space for a and b illustrated in Fig. 4.14, D = 0 if and only if a b+
= 1, i.e., if and only if the point (a,b) is on the curve in the first quad-

rant of Fig. 4.14, a portion of a parabola whose axis is b = a. Further-

more, D > 0 if and only if a b+  < 1, i.e., for (a,b) below and to the



4.5 Two-parameter Families      149

left of the curve; and D < 0 if and only if a b+  > 1, i.e., for (a,b)
above and to the right of the curve.

It is now a simple matter to exhibit the generators ja b,  explicitly:

j

a b
a b

a b

a b
a b

a b
a b

a b, ( )

, ,

ln , ,

arctan
( )

( )( )
, .

t

t

t

t

t

t

t

=

-
+

+ =

- + - -( ) -( )
- + - +( ) -( )

+ <

- -
- + - -

+ >

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô

1

1
1

2 1 1

2 1 1
1

1
2 1 1

1

D

D

D

We conclude this section by displaying some of the one-parameter
subfamilies of rational Archimedean copulas.

1. When b = 0, we obtain the Ali-Mikhail-Haq family (4.2.3) with q
= a.

2. When a = 0, we obtain family (4.2.7) with q = 1 – b.

3. When a b+  = 1, we obtain family (4.2.8) with q = 1 b .

4. When b a- = 1, we set q a b= - = -1  with q in [0,1] to obtain the
family

C u v
uv u v

u vq
q

q
( . ) max

( )( )( )
( )( )

,= - - - -
+ - -

Ê
ËÁ

ˆ
¯̃

1 1 1
1 1 1

0

with generators

j q
qq ( ) ln

( )

( )
t

t

t
= + -

- -
1 1

1 1
.

Note that C0  = W.
5. When a + b = 1, we set q a b= = -1  with q in [0,1] to obtain the

family

C u v
uv u v

u vq
q

q
( . ) max

( )( )( )
( )( )

,= - - - -
- - -

Ê
ËÁ

ˆ
¯̃

1 1 1
1 1 1

0

with generators

j q q
qq ( ) arctan

( ) ( )
( )

t
t

t
= - -

- -
1 1

1 1
.

Note that C0 = W and C1 = P S P( )- .
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Exercises

4.18 (a) Show that the following families of Archimedean copulas in
Table 4.1 are positively ordered: (4.2.3), (4.2.5)-(4.2.8), (4.2.12)-
(4.2.18), (4.2.20), and (4.2.21).
(b) Show that families (4.2.11) and (4.2.22) from Table 4.1 are
negatively ordered.

4.19 Let C be a strict Archimedean copula generated by j in W. Prove

that if - -lnj 1 is concave on (0,•), then C f P.

4.20 Prove that the only absolutely continuous rational Archimedean
copulas are the members of the Ali-Mikhail-Haq family (4.2.3).

4.21 Let Ca b,  be a rational Archimedean copula, as given by (4.5.9),

with b > 0. Show that the probability mass on the zero curve is
given by

b a b
b a b

a b
a b

b
a b

a b

, ,

ln , ,

arctan , ,

if 

if  and

if 

+ =
- + +
- + -

+ <

-
-

- +
+ >

1

1

1
1

2
1

1

D
D
D

D
D

where D = ( )1 42- - -a b ab .

4.22 Let Ca b,  be a rational Archimedean copula, as given by (4.5.9).

Show that if b is in [0,1), then the level curve Ca b, (u,v) = t for t in
I is a portion of one branch of the rectangular hyperbola whose
asymptotes are u = ( ) ( )a b a bt t- + -1  and v =
( ) ( )a b a bt t- + -1 .

4.23 Consider the family {Ca b, } of rational Archimedean copulas,

where Ca b,  is given by (4.5.9) with 0 £ b £ 1- a . Show that this

family is positively ordered by a and negatively ordered by b
—that is, if a1 £ a 2  and b1 ≥ b2, then Ca b1 1,  p Ca b2 2, .
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4.6 Multivariate Archimedean Copulas

We now turn our attention to the construction of Archimedean n-
copulas. Recall Example 4.2(a), in which we wrote the product copula P
in the form P(u,v) = uv = exp [( ln ) ( ln )]- - + -( )u v . The extension of
this idea to n dimensions, with u = ( , , , )u u un1 2 L , results in writing the

n-dimensional product copula Pn  in the form

Pn(u) = ( , , , )u u un1 2 L  = exp [( ln ) ( ln ) ( ln )]- - + - + + -( )u u un1 2 L .

This leads naturally to the following generalization of (4.1.3):

Cn (u) = j j j j[ ] ( ) ( ) ( )- + + +( )1
1 2u u unL , (4.6.1)

(where the superscript on C denotes dimension).

The functions Cn  in (4.6.1) are the serial iterates (Schweizer and
Sklar 1983) of the Archimedean 2-copula generated by j, that is, if we

set C u u2
1 2( , )  = C ( , )u u1 2  = j j j[ ] ( ) ( )- +( )1

1 2u u , then for n ≥ 3,

C u u un
n( , , , )1 2 L  = C( C u u un

n
-

-
1

1 2 1( , , , )L ,un ) [recall from Theorem
4.1.5 that Archimedean copulas are symmetric and associative]. But
note that this technique of composing copulas generally fails, as was il-
lustrated in Sect. 3.4.

Using j(t) = 1- t  in (4.6.1) generates W n , and W n  fails to be a
copula for any n > 2 (Exercise 2.35). Theorem 4.1.4 gives the proper-
ties of j (continuous, strictly decreasing and convex, with j(1) = 0)

needed for Cn  in (4.6.1) to be a copula for n = 2. What additional

properties of j (and j[ ]-1 ) will insure that Cn  in (4.6.1) is a copula for

n ≥ 3?

One answer involves the derivatives of j[ ]-1 , and requires that those
derivatives alternate in sign.
Definition 4.6.1 (Widder 1941). A function g(t) is completely mono-
tonic on an interval J if it is continuous there and has derivatives of all
orders that alternate in sign, i.e., if it satisfies

( ) ( )- ≥1 0k
k

k
d

dt
g t (4.6.2)

for all t in the interior of J and k = 0,1,2, L .

As a consequence, if g(t) is completely monotonic on [0,•) and g(c)

= 0 for some (finite) c > 0, then g must be identically zero on [0,•)
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(Widder 1941). So if the pseudo-inverse j[ ]-1  of an Archimedean gen-
erator j is completely monotonic, it must be positive on [0,•), i.e., j is

strict andj[ ]-1  = j -1.
The following theorem (Kimberling 1974) gives necessary and suffi-

cient conditions for a strict generator j to generate Archimedean n-

copulas for all n ≥ 2. See also (Schweizer and Sklar 1983, Alsina et al.
2005).

Theorem 4.6.2. Let j be a continuous strictly decreasing function from

I to [0,•] such that j(0) = • and j(1) = 0, and let j -1 denote the in-

verse of j. If Cn  is the function from In to I given by (4.6.1), then Cn

is an n-copula for all n ≥ 2 if and only if j -1 is completely monotonic

on [0,•).

Example 4.23. Let jq (t) = t- -q 1 for q > 0, which generates a sub-
family of the bivariate Clayton family (4.2.1), the subfamily whose

generators are strict. Here jq
-1(t) = ( )1 1+ -t q , which is easily shown to

be complete monotonic on [0,•). Thus we can generalize the Clayton

family of 2-copulas to a family of n-copulas for  q > 0 and any n ≥ 2:

Cn
q (u) = u u u nn1 2

1
1- - - -

+ + + - +( )q q q q
L . �

Note that the subfamily of the Clayton family (4.2.1) of copulas con-
sidered in the preceding example contains only copulas that are larger
than P. The following corollary guarantees that this must occur when

j -1 is completely monotonic.

Corollary 4.6.3. If the inverse j -1 of a strict generator j of an Ar-

chimedean copula C is completely monotonic, then C f P.
Proof. As a consequence of Exercise 4.17, we need only show that

- -lnj 1 is concave on (0,•). This is equivalent to requiring that (letting

g denote j -1 for simplicity) g g g◊ ¢¢ - ¢( )2  ≥ 0 on (0,•). But this ine-
quality holds for completely monotonic functions (Widder 1941). �

Three additional useful results are the following—the first is from
(Widder 1941), the next two are from (Feller 1971):

1. If g is completely monotonic and f is absolutely monotonic, i.e.,

d f t dtk k( )  ≥ 0 for k = 0,1,2, L, then the composite fog is completely
monotonic;

2. If f and g are completely monotonic, so is their product fg;
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3. If f is completely monotonic and g is a positive function with a
completely monotone derivative, then fog is completely monotonic. In
particular, e g-  is completely monotonic.

Example 4.24. Let jq (t) = - - -- -ln ( ) ( )( )e etq q1 1 , which generates
the bivariate Frank family (4.2.5). Although all the generators of this
family are strict, we must, as a consequence of Corollary 4.6.3, restrict q
to (0,•), the values of q for which Cq  f P. For the Frank family, jq

-1(t)
is given by

j
qq

q- - -= - - -[ ]1 1
1 1( ) ln ( )t e e t .

But for q > 0, the function f(x) = - -ln( )1 x q  is absolutely monotonic

for x in (0,1) and g(t) = ( )1- - -e e tq  is completely monotonic for t in

[0,•), from which it follows that jq
-1 is completely monotonic on [0,•).

Thus for q > 0, we can generalize the Frank family of 2-copulas to a

family of n-copulas for any n ≥ 2:

Cn
q (u) = - + - - -

-

Ê

Ë
Á

ˆ

¯
˜

- - -

- -
1

1
1 1 1

1

1 2

1q

q q q

qln
( )( ) ( )

( )

e e e

e

u u u

n

nL
.

When q < 0, jq
-1 fails to be completely monotonic. �

Example 4.25. Let jq (t) = ( ln )- t q , q ≥ 1, which generates the bivariate

Gumbel-Hougaard family (4.2.4). Here jq
-1(t) = exp( -t1 q ). But be-

cause e x-  is completely monotonic and t1 q  is a positive function with

a completely monotonic derivative, jq
-1 is completely monotonic. Thus

we can generalize the Gumbel-Hougaard family of 2-copulas to a fam-
ily of n-copulas for q ≥ 1 and  any n ≥ 2:

Cn
q (u) = exp ( ln ) ( ln ) ( ln )- - + - + + -[ ]Ê

ËÁ
ˆ
¯̃

u u un1 2
1q q q q

L . �

Other families in Table 4.1 can be extended to n-copulas (for values
of the parameter q for which Cq  is larger than P). See Exercise 4.24.

The procedure in the preceding example can be generalized to any
exterior power family of generators associated with a strict generator j
whose inverse is completely monotonic.
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Lemma 4.6.4. Let j be a strict generator whose inverse is completely

monotonic on [0,•), and set j jb
b

1, ( ) ( )t t= [ ]  for b ≥ 1. Then j b1
1

,
-  is

completely monotonic on [0,•).

Example 4.26. The two-parameter family of copulas presented in Ex-
ample 4.23 can be extended to a two-parameter family of n-copulas.

Let ja b, (t) = ( )t- -a b1  for a > 0, b ≥ 1. Because the inverse of ja ,1(t)

= t- -a 1 is completely monotonic on [0,•) (see Example 4.23),

Lemma 4.6.4 insures that ja b,
-1  is completely monotonic. Hence

C u u un
na b

a b a b a b b a

, ( ) ( ) ( ) ( )u = - + - + + -[ ] +Ï
Ì
Ó

¸
˝
˛

- - -
-

1 2
1 1

1 1 1 1L

is an n-copula for a > 0, b ≥ 1, and each n ≥ 2. �
Another source of generators for Archimedean n-copulas consists of

the inverses of Laplace transforms of distribution functions (see Exam-
ples 3.11 and 4.9), as the following lemma (Feller 1971) shows:

Lemma 4.6.5. A function y on [0,•) is the Laplace transform of a dis-

tribution function L if and only if y is completely monotonic and y(0)
= 1.

The arguments in (Alsina et al. 2005) for the proof of Theorem
4.6.2 can be used to partially extend the theorem to the case when

j[ ]-1  is m-monotonic on [0,•) for some m ≥ 2, that is, the derivatives of

j[ ]-1  up to and including the mth are defined and alternate in sign, i.e.,

(4.6.2) holds for k = 0,1,2,L,m, on (0,•). In such cases, if j[ ]-1  is m-

monotonic on [0,•), then the function Cn  given by (4.6.1) is an n-

copula for 2 £ n £ m.

Example 4.27. Let jq (t) = t- -q 1 for q Œ [–1,0), which generates the
non-strict subfamily of the bivariate Clayton family (4.2.1). Here
jq

-1(t) = ( )1 1+ -t q , which is readily shown to be m-monotonic on [0,•)

when q > - -1 1( )m . Thus we can generalize the Clayton family of 2-

copulas with a given q Œ [–1,0), to a family of n-copulas for n < 1 –

(1/q). �

Although it is fairly simple to generate Archimedean n-copulas, they
do have their limitations. First of all, in general all the k-margins of an
Archimedean n-copula are identical. Secondly, the fact that there are
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usually only one or two parameters limits the nature of the dependence
structure in these families.

Exercises

4.24 Show that the inverse of the generator of each of the following
families in Table 4.1 is completely monotone for the values of the
parameter q for which Cq  f P: (4.2.3), (4.2.6), (4.2.12), (4.2.13),
(4.2.14), and (4.2.19) [these are in addition to families (4.2.1),
(4.2.4), and (4.2.5), which were examined in Examples 4.23, 4.24,
and 4.25].

4.25 Let j(t) = 1 t t-  [this is the q = 1 member of familiy (4.2.16)],

and let C be the (strict) Archimedean copula generated by j.

(a) Show that C f P. [Hint: Corollary 4.4.6.]

(b) Show that j -1 is 3-monotonic but not 4-monotonic.
Conclude that the converse of Corollary 4.6.3 does not hold.



5 Dependence

In this chapter, we explore ways in which copulas can be used in the
study of dependence or association between random variables. As
Jogdeo (1982) notes,

Dependence relations between random variables is one of the most widely
studied subjects in probability and statistics. The nature of the dependence
can take a variety of forms and unless some specific assumptions are made
about the dependence, no meaningful statistical model can be contemplated.

There are a variety of ways to discuss and to measure dependence. As
we shall see, many of these properties and measures are, in the words of
Hoeffding (1940, 1941), “scale-invariant,” that is, they remain un-
changed under strictly increasing transformations of the random vari-
ables. As we noted in the Introduction, “...it is precisely the copula
which captures those properties of the joint distribution which are in-
variant under almost surely strictly increasing transformations”
(Schweizer and Wolff 1981). As a consequence of Theorem 2.4.3,
“scale-invariant” properties and measures are expressible in terms of
the copula of the random variables. The focus of this chapter is an ex-
ploration of the role that copulas play in the study of dependence.

Dependence properties and measures of association are interrelated,
and so there are many places where we could begin this study. Because
the most widely known scale-invariant measures of association are the
population versions of Kendall’s tau and Spearman’s rho, both of
which “measure” a form of dependence known as concordance, we will
begin there.

A note on terminology: we shall reserve the term “correlation coeffi-
cient” for a measure of the linear dependence between random vari-
ables (e.g., Pearson’s product-moment correlation coefficient) and use
the more modern term “measure of association” for measures such as
Kendall’s tau and Spearman’s rho.

5.1 Concordance

Informally, a pair of random variables are concordant if “large” values
of one tend to be associated with “large” values of the other and
“small” values of one with “small” values of the other. To be more
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precise, let ( , )x yi i  and ( , )x yj j  denote two observations from a vector

(X,Y) of continuous random variables. We say that ( , )x yi i  and ( , )x yj j

are concordant if x xi j<  and y yi j< , or if x xi j>  and y yi j> . Simi-

larly, we say that ( , )x yi i  and ( , )x yj j  are discordant if x xi j<  and

y yi j>  or if x xi j>  and y yi j< . Note the alternate formulation: ( , )x yi i

and ( , )x yj j  are concordant if ( )( )x x y yi j i j- -  > 0 and discordant if

( )( )x x y yi j i j- -  < 0.

5.1.1 Kendall’s tau

The sample version of the measure of association known as Kendall’s
tau is defined in terms of concordance as follows (Kruskal 1958; Hol-
lander and Wolfe 1973; Lehmann 1975): Let {( x1, y1),( x2 , y2 ),
L,( xn , yn )} denote a random sample of n observations from a vector

(X,Y) of continuous random variables. There are n
2( ) distinct pairs

( , )x yi i  and ( , )x yj j  of observations in the sample, and each pair is ei-
ther concordant or discordant—let c denote the number of concordant
pairs and d the number of discordant pairs. Then Kendall’s tau for the
sample is defined as

t
c d

c d
c d

n= -
+

= -( ) Ê
ËÁ

ˆ
¯̃2

. (5.1.1)

Equivalently, t is the probability of concordance minus the probabil-
ity of discordance for a pair of observations ( , )x yi i  and ( , )x yj j  that is
chosen randomly from the sample. The population version of Kendall’s
tau for a vector (X,Y) of continuous random variables with joint distri-
bution function H is defined similarly. Let ( X1,Y1) and ( X2,Y2) be in-
dependent and identically distributed random vectors, each with joint
distribution function H. Then the population version of Kendall’s tau is
defined as the probability of concordance minus the probability of dis-
cordance:

    t t= = - - > - - - <X Y P X X Y Y P X X Y Y, [( )( ) ] [( )( ) ]1 2 1 2 1 2 1 20 0 (5.1.2)

(we shall use Latin letters for sample statistics and Greek letters for the
corresponding population parameters).

In order to demonstrate the role that copulas play in concordance
and measures of association such as Kendall’s tau, we first define a
“concordance function” Q, which is the difference of the probabilities
of concordance and discordance between two vectors ( , )X Y1 1  and
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( , )X Y2 2  of continuous random variables with (possibly) different joint
distributions H1 and H2, but with common margins F and G. We then
show that this function depends on the distributions of ( , )X Y1 1  and
( , )X Y2 2  only through their copulas.

Theorem 5.1.1. Let ( X1,Y1) and ( X2,Y2) be independent vectors of
continuous random variables with joint distribution functions H1 and
H2 , respectively, with common margins F (of X1 and X2) and G (of Y1

and Y2). Let C1 and C2  denote the copulas of ( X1,Y1) and ( X2,Y2), re-
spectively, so that H1(x,y) = C1(F(x),G(y)) and H2(x,y) =
C2(F(x),G(y)). Let Q denote the difference between the probabilities of
concordance and discordance of ( X1,Y1) and ( X2,Y2), i.e., let

Q P X X Y Y P X X Y Y= - - > - - - <[( )( ) ] [( )( ) ]1 2 1 2 1 2 1 20 0 . (5.1.3)

Then
Q Q C C C u v dC u v= = -ÚÚ( , ) ( , ) ( , )1 2 2 14 12I

. (5.1.4)

Proof. Because the random variables are continuous,
P X X Y Y[( )( ) ]1 2 1 2 0- - <  = 1 01 2 1 2- - - >P X X Y Y[( )( ) ] and hence

Q P X X Y Y= - - > -2 0 11 2 1 2[( )( ) ] . (5.1.5)

But P X X Y Y[( )( ) ]1 2 1 2 0- - >  = P X X Y Y[ , ]1 2 1 2> > + P X X Y Y[ , ]1 2 1 2< < ,
and these probabilities can be evaluated by integrating over the distri-
bution of one of the vectors ( X1,Y1) or ( X2,Y2), say ( X1,Y1). First we
have

P X X Y Y P X X Y Y

P X x Y y dC F x G y

C F x G y dC F x G y

[ , ] [ , ],

[ , ] ( ( ), ( )),

( ( ), ( )) ( ( ), ( )),

1 2 1 2 2 1 2 1

2 2 1

2 1

2

2

> > = < <

= £ £

=

ÚÚ
ÚÚ

R

R

so that employing the probability transforms u = F(x) and v = G(y)
yields

P X X Y Y C u v dC u v[ , ] ( , ) ( , )1 2 1 2 2 12> > = ÚÚI
.

Similarly,

P X X Y Y

P X x Y y dC F x G y

F x G y C F x G y dC F x G y

u v C u v dC u v

[ , ]

[ , ] ( ( ), ( )),

( ) ( ) ( ( ), ( )) ( ( ), ( )),

( , ) ( , ).

1 2 1 2

2 2 1

2 1

2 1

2

2

2

1

1

< <

= > >

= - - +[ ]
= - - +[ ]

ÚÚ
ÚÚ
ÚÚ

R

R

I
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But because C1 is the joint distribution function of a pair (U,V) of uni-
form (0,1) random variables, E(U) = E(V) = 1 2, and hence

P X X Y Y C u v dC u v

C u v dC u v

[ , ] ( , ) ( , ),

( , ) ( , ).

1 2 1 2 2 1

2 1

1
1

2

1

2
2

2

< < = - - +

=

ÚÚ

ÚÚ
I

I
Thus

P X X Y Y C u v dC u v[( )( ) ] ( , ) ( , )1 2 1 2 2 10 2 2- - > = ÚÚI
,

and the conclusion follows upon substitution in (5.1.5). �
Because the concordance function Q in Theorem 5.1.1 plays an im-

portant role throughout this section, we summarize some of its useful
properties in the following corollary, whose proof is left as an exercise.

Corollary 5.1.2. Let C1, C2 , and Q be as given in Theorem 5.1.1. Then
1. Q is symmetric in its arguments: Q( C1, C2) = Q( C2,C1).
2. Q is nondecreasing in each argument: if C1 p ¢C1 and C2 p ¢C2 for

all (u,v) in I2, then Q( C1, C2) £ Q( ¢C1, ¢C2).
3. Copulas can be replaced by survival copulas in Q, i.e., Q( C1, C2)

= Q( Ĉ1,Ĉ2).
Example 5.1. The function Q is easily evaluated for pairs of the basic
copulas M, W and P. First, recall that the support of M is the diagonal v

= u in I2 (see Example 2.11). Because M has uniform (0,1) margins, it

follows that if g is an integrable function whose domain is I2, then

g u v dM u v g u u du( , ) ( , ) ( , )
I2 0

1
ÚÚ Ú= .

Hence we have

Q M M u v dM u v u du( , ) min( , ) ( , )= - = - =ÚÚ Ú4 1 4 1 12 0

1

I
;

Q M uv dM u v u du( , ) ( , )P = - = - =ÚÚ Ú4 1 4 1 1 32
2

0

1

I
; and

Q M W u v dM u v u du( , ) max( , ) ( , ) ( )= + - - = - - =ÚÚ Ú4 1 0 1 4 2 1 1 02 1 2

1

I
.

Similarly, because the support of W is the secondary diagonal v = 1 – u,
we have

g u v dW u v g u u du( , ) ( , ) ( , )
I2 1

0

1
ÚÚ Ú= - ,

and thus
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Q W uv dW u v u u du( , ) ( , ) ( )P = - = - - = -ÚÚ Ú4 1 4 1 1 1 32 0

1

I
; and

Q W W u v dW u v du( , ) max( , ) ( , )= + - - = - = -ÚÚ Ú4 1 0 1 4 0 1 12 0

1

I
.

Finally, because dP(u,v) = dudv,

Q uv d u v uv dudv( , ) ( , )P P P= - = - =ÚÚ ÚÚ4 1 4 1 02 0

1

0

1

I
. �

Now let C be an arbitrary copula. Because Q is the difference of two
probabilities, Q(C,C) Œ [–1,1]; and as a consequence of part 2 of Cor-
ollary 5.1.2 and the values of Q in the above example, it also follows
that

Q C M Q C W

Q C

( , ) [ , ], ( , ) [ , ],

( , ) [ , ].

Œ Œ -
Œ -

0 1 1 0

1 3 1 3and P
(5.1.6)

In Fig. 5.1, we see a representation of the set C of copulas partially
ordered by p (only seven copulas are shown, C1, C2, Ca , and Cb  are
“typical” copulas), and four “concordance axes,” each of which, in a
sense, locates the position of each copula C within the partially ordered
set (C,p).

M

P

W

C 1 Ca

C2C b

Q(C,C)

+1

0

–1

Q(C,P)

+1/3

0

–1/3

Q(C,M)

+1

0

Q(C,W)

0

–1

+1/3 –1/3

(C,p)

Fig. 5.1. The partially ordered set (C,p) and several “concordance axes”

A comparison of (5.1.2), (5.1.3), and (5.1.4) yields
Theorem 5.1.3. Let X and Y be continuous random variables whose
copula is C. Then the population version of Kendall’s tau for X and Y
(which we will denote by either t X Y,  or t C ) is given by

t tX Y C Q C C C u v dC u v, ( , ) ( , ) ( , )= = = -ÚÚ4 12I
. (5.1.7)
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Thus Kendall’s tau is the first “concordance axis” in Fig. 5.1. Note
that the integral that appears in (5.1.7) can be interpreted as the ex-
pected value of the function C(U,V) of uniform (0,1) random variables
U and V whose joint distribution function is C, i.e.,

t C E C U V= ( ) -4 1( , ) . (5.1.8)

When the copula C is a member of a parametric family of copulas
(e.g., if C is denoted Cq  or Ca b, ), we will write tq  and ta b,  rather than

t
qC  and t

a bC ,
, respectively.

Example 5.2. Let Cq  be a member of the Farlie-Gumbel-Morgenstern
family (3.2.10) of copulas, where q is in [–1,1]. Because Cq  is abso-
lutely continuous, we have

dC u v
C u v

u v
dudv u v dudvq

q∂
∂ ∂

q( , )
( , )

( )( )= = + - -[ ]
2

1 1 2 1 2 ,

from which it follows that

C u v dC u vq q
q

( , ) ( , )
I2

1
4 18ÚÚ = + ,

and hence t qq = 2 9. Thus for FGM copulas tq  Œ [–2/9,2/9] and, as Joe
(1997) notes, this limited range of dependence restricts the usefulness
of this family for modeling. See Fig. 3.12. �

Example 5.3. Let Ca b,  be a member of the Fréchet family of copulas

introduced in Exercise 2.4, where a ≥ 0, b ≥ 0, a + b £ 1. Then

C M Wa b a a b b, ( )= + - - +1 P ,
and

dC dM d dWa b a a b b, ( )= + - - +1 P ,

from which it follows from (5.1.7) (using the results of Example 5.1)
that

t a b a b
a b,

( )( )
.= - + + 2

3
�

In general, evaluating the population version of Kendall’s tau re-
quires the evaluation of the double integral in (5.1.7). For an Ar-
chimedean copula, the situation is simpler, in that Kendall’s tau can be
evaluated directly from the generator of the copula, as shown in the
following corollary (Genest and MacKay 1986a,b). Indeed, one of the
reasons that Archimedean copulas are easy to work with is that often
expressions with a one-place function (the generator) can be employed
rather than expressions with a two-place function (the copula).
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Corollary 5.1.4. Let X and Y be random variables with an Archimed-
ean copula C generated by j in W. The population version t C  of Ken-
dall’s tau for X and Y is given by

t j
jC

t

t
dt= +

¢Ú1 4
0

1 ( )
( )

. (5.1.9)

Proof. Let U and V be uniform (0,1) random variables with joint dis-
tribution function C, and let KC  denote the distribution function of
C(U,V). Then from (5.1.8) we have

t C CE C U V t dK t= ( ) - = -Ú4 1 4 1
0

1
( , ) ( ) (5.1.10)

which, upon integration by parts, yields

t C CK t dt= - Ú3 4
0

1
( )  . (5.1.11)

But as a consequence of Theorem 4.3.4 and Corollary 4.3.6, the distri-
bution function KC  of C(U,V) is

K t t
t

t
C ( )

( )

( )
= -

¢ +
j

j
,

and hence

t j
j

j
jC t

t

t
dt

t

t
dt= - -

¢

È

Î
Í

˘

˚
˙ = +

¢+Ú Ú3 4 1 4
0

1

0

1( )

( )

( )
( )

,

where we have replaced ¢ +j ( )t  by ¢j ( )t  in the denominator of the inte-
grand, as concave functions are differentiable almost everywhere. �

As a consequence of (5.1.10) and (5.1.11), the distribution function
KC  of C(U,V) is called the Kendall distribution function of the copula
C, and is a bivariate analog of the probability integral transform. See
(Genest and Rivest, 2001; Nelsen et al. 2001, 2003) for additional de-
tails.

Example 5.4. (a) Let Cq  be a member of the Clayton family (4.2.1) of
Archimedean copulas. Then for q ≥ –1,

j
j q

q

q

q( )
( )
t

t

t t

¢
= -+1

 when q π 0, and 
j
j

0

0

( )
( )

ln
t

t
t t

¢
= ;

so that

t q
qq =

+ 2
.
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(b) Let Cq  be a member of the Gumbel-Hougaard family (4.2.4) of
Archimedean copulas. Then for q ≥ 1,

j
j q

q

q

( )
( )

lnt

t

t t

¢
= ,

and hence

t q
qq = -1

. �

The form for t C  given by (5.1.7) is often not amenable to computa-
tion, especially when C is singular or if C has both an absolutely con-
tinuous and a singular component. For many such copulas, the expres-
sion

t ∂
∂

∂
∂C u

C u v
v

C u v dudv= - ÚÚ1 4 2 ( , ) ( , )
I

(5.1.12)

is more tractable (see Example 5.5 below). The equivalence of (5.1.7)
and (5.1.12) is a consequence of the following theorem (Li et al. 2002).

Theorem 5.1.5. Let C1 and C2  be copulas. Then

C u v dC u v
u

C u v
v

C u v dudv1 2 1 22 2

1
2

( , ) ( , ) ( , ) ( , )
I IÚÚ ÚÚ= - ∂

∂
∂

∂
. (5.1.13)

Proof: When the copulas are absolutely continuous, (5.1.13) can be
established by integration by parts. In this case the left-hand side of
(5.1.13) is given by

C u v dC u v C u v
C u v

u v
dudv1 2 1

2
2

0

1

0

1
2 ( , ) ( , ) ( , )

( , )
IÚÚ ÚÚ= ∂

∂ ∂
.

Evaluating the inner integral by parts yields

C u v
C u v

u v
du

C u v
C u v

v

C u v

u

C u v

v
du

v
C u v

u

C u v

v
du

u

u

1

2
2

0

1

1
2 1

0
1

0

1 2

1
0

1 2

( , )
( , )

( , )
( , ) ( , ) ( , )

,

( , ) ( , )
.

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Ú

Ú

Ú

= -

= -

=

=

Integrating on v from 0 to 1 now yields (5.1.13).
The proof in the general case proceeds by approximating C1 and C2

by sequences of absolutely continuous copulas. See (Li et al. 2002) for
details. �
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Example 5.5. Let Ca b,  be a member of the Marshall-Olkin family

(3.1.3) of copulas for 0 < a,b < 1:

C u v
u v u v

uv u v
a b

a a b

b a b, ( , )
, ,

, .
=

≥

£

Ï
Ì
Ô

ÓÔ

-

-

1

1

The partials of Ca b,  fail to exist only on the curve ua  = v b , so that

∂
∂

∂
∂

a

b
a b a b

a a b

b a bu
C u v

v
C u v

u v u v

uv u v
, ,( , ) ( , )

( ) , ,

( ) , ,
=

- >

- <

Ï
Ì
Ô

ÓÔ

-

-

1

1

1 2

1 2

and hence
∂

∂
∂

∂a b a b
ab

a ab bu
C u v

v
C u v dudv, ,( , ) ( , )

I2

1
4

1ÚÚ = -
Ê
ËÁ

ˆ
¯̃- +

,

from which we obtain

ta b
ab

a ab b, =
- +

.

It is interesting to note that ta b,  is numerically equal to Sa b, (1,1), the

Ca b, -measure of the singular component of the copula Ca b,  (see Sect.
3.1.1). �

Exercises

5.1 Prove Corollary 5.1.2.

5.2 Let X and Y be random variables with the Marshall-Olkin bivariate
exponential distribution with parameters l1, l2 , and l12 (see Sect.
3.1.1), i.e., the survival function H  of X and Y is given by (for x,y
≥ 0)

H x y x y x y( , ) exp max( , )= - - -[ ]l l l1 2 12 .

(a) Show that the ordinary Pearson product-moment correlation
coefficient of X and Y is given by

l
l l l

12

1 2 12+ +
.

(b) Show that Kendall’s tau and Pearson’s product-moment cor-
relation coefficient are numerically equal for members of this
family (Edwardes 1993).
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5.3 Prove that an alternate expression (Joe 1997) for Kendall’s tau
for an Archimedean copula C with generator j is

t jC u
d

du
u du= - È

ÎÍ
˘
˚̇

-•
Ú1 4 1

2

0
[ ]( ) .

5.4 (a) Let Cq , q Œ [0,1], be a member of the family of copulas intro-
duced in Exercise 3.9, i.e., the probability mass of Cq  is uni-
formly distributed on two line segments, one joining (0,q) to

(1- q ,1) and the other joining (1- q ,0) to (1,q), as illustrated in
Fig. 3.7(b). Show that Kendall’s tau for a member of this family
is given by

t qq = -( )1 2 2.

(b) Let Cq , q Œ [0,1], be a member of the family of copulas in-
troduced in Example 3.4, i.e., the probability mass of Cq  is uni-
formly distributed on two line segments, one joining (0,q) to (q,0)

and the other joining (q,1) to (1,q), as illustrated in Fig. 3.4(a).
Show that Kendall’s tau for a member of this family is given by

t qq = - -( )1 2 2 .

O B

A1

y

1
t

y = d(t)

area(DOAB)
t   =
C

area(     )

Fig. 5.2. A geometric interpretation of Kendall’s tau for diagonal copulas

5.5 Let C be a diagonal copula, that is, let C(u,v) =
min(u,v,(1/2)[d d( ) ( )u v+ ]), where d  satisfies (3.2.21abc).
(a) Show that Kendall’s tau is given by

t dC t dt= -Ú4 1
0

1
( ) .

(b) For diagonal copulas, Kendall’s tau has a geometric interpre-
tation. Because max( 2 1t - ,0) £ d(t) £ t for t in I for any diagonal
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d (Exercise 2.8), then the graph of d lies in DOAB, as illustrated in
Fig. 5.2. Show that t C  is equal to the fraction of the area of
DOAB that lies below the graph of y = d(t).

5.1.2 Spearman’s rho

As with Kendall’s tau, the population version of the measure of associa-
tion known as Spearman’s rho is based on concordance and discor-
dance. To obtain the population version of this measure (Kruskal 1958;
Lehmann 1966), we now let ( X1,Y1), ( X2,Y2), and ( X3,Y3) be three in-
dependent random vectors with a common joint distribution function H
(whose margins are again F and G) and copula C. The population ver-
sion rX Y,  of Spearman’s rho is defined to be proportional to the prob-
ability of concordance minus the probability of discordance for the two
vectors ( X1,Y1) and ( X2,Y3)—i.e., a pair of vectors with the same mar-
gins, but one vector has distribution function H, while the components
of the other are independent:

rX Y P X X Y Y P X X Y Y, [( )( ) ] [( )( ) ]= - - > - - - <( )3 0 01 2 1 3 1 2 1 3 (5.1.14)

(the pair ( X3,Y2) could be used equally as well). Note that while the
joint distribution function of ( X1,Y1) is H(x,y), the joint distribution
function of ( X2,Y3) is F(x)G(y) (because X2 and Y3 are independent).
Thus the copula of X2 and Y3 is P, and using Theorem 5.1.1 and part 1
of Corollary 5.1.2, we immediately have
Theorem 5.1.6. Let X and Y be continuous random variables whose
copula is C. Then the population version of Spearman’s rho for X and
Y (which we will denote by either rX Y,  or rC ) is given by

r rX Y C Q C

uv dC u v

C u v dudv

, ( , ),

( , ) ,

( , ) .

= =

= -

= -

ÚÚ
ÚÚ

3

12 3

12 3

2

2

P

I

I

(5.1.15a)

(5.1.15b)

(5.1.15c)

Thus Spearman’s rho is essentially the second “concordance axis”
in Fig. 5.1. The coefficient “3” that appears in (5.1.14) and (5.1.15a)
is a “normalization” constant, because as noted in (5.1.6), Q(C,P) Œ
[–1/3,1/3]. As was the case with Kendall’s tau, we will write rq  and ra b,
rather than r

qC  and r
a bC ,

, respectively, when the copula C is given by

Cq  or Ca b, .



168      5 Dependence

Example 5.6. Let Ca b,  be a member of the Fréchet family of copulas

introduced in Exercise 2.4, where a ≥ 0, b ≥ 0, a + b £ 1. Then

C M Wa b a a b b, ( )= + - - +1 P ,
from which it follows (using (5.1.4) and the results of Example 5.1)
that

Q C Q M Q Q W( , ) ( , ) ( ) ( , ) ( , ),

( ) ,

,a b a a b b

a a b b a b
P P P P P= + - - +

= ( ) + - - ( ) + -( ) = -

1

1 3 1 0 1 3
3

and hence
r a ba b a b, ,( , )= = -3Q C P . �

Example 5.7. (a) Let Cq  be a member of the Farlie-Gumbel-
Morgenstern family (3.2.10) of copulas, where q is in [–1,1]. Then

C u v uv uv u vq q( , ) ( )( )= + - -1 1 ,

thus

C u v dudvq
q

( , )
I2

1
4 36ÚÚ = + ,

and hence r qq = 3.
(b) Let Ca b,  be a member of the Marshall-Olkin family (3.1.3) of

copulas for 0 < a,b < 1:

C u v
u v u v

uv u v
a b

a a b

b a b, ( , )
, ,

, .
=

≥

£

Ï
Ì
Ô

ÓÔ

-

-

1

1

Then

C u v dudva b
a b

a ab b, ( , )
I2

1
2 2 2ÚÚ =

Ê
ËÁ

ˆ
¯̃

+
- +

,

so that

ra b
ab

a ab b, =
- +

3

2 2
.

[Cf. Examples 5.2 and 5.5.] �
Any set of desirable properties for a “measure of concordance”

would include those in the following definition (Scarsini 1984).

Definition 5.1.7. A numeric measure k of association between two con-
tinuous random variables X and Y whose copula is C is a measure of
concordance if it satisfies the following properties (again we write k X Y,

or kC  when convenient):
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1. k is defined for every pair X, Y of continuous random variables;

2. –1 £ k X Y,  £ 1, k X X,  = 1, and k X X,-  = –1;
3. k X Y,  = kY X, ;
4. if X and Y are independent, then k X Y,  = k P  = 0;
5. k - X Y,  = k X Y,-  = –k X Y, ;

6. if C1 and C2  are copulas such that C1 p C2, then kC1
 £ kC2

;

7. if {( Xn ,Yn )} is a sequence of continuous random variables with
copulas Cn , and if {Cn} converges pointwise to C, then
limn C CnÆ • =k k .

As a consequence of Definition 5.1.7, we have the following theorem,
whose proof is an exercise.

Theorem 5.1.8. Let k be a measure of concordance for continuous
random variables X and Y:

1. if Y is almost surely an increasing function of X, then k X Y,  = k M
= 1;

2. if Y is almost surely a decreasing function of X, then k X Y,  = kW  =
–1;

3. if a and b are almost surely strictly monotone functions on RanX
and RanY, respectively, then ka b( ), ( )X Y  =k X Y, .

In the next theorem, we see that both Kendall’s tau and Spearman’s
rho are measures of concordance according to the above definition.
Theorem 5.1.9. If X and Y are continuous random variables whose
copula is C, then the population versions of Kendall’s tau (5.1.7) and
Spearman’s rho (5.1.15) satisfy the properties in Definition 5.1.7 and
Theorem 5.1.8 for a measure of concordance.

Proof. For both tau and rho, the first six properties in Definition
5.1.7 follow directly from properties of Q in Theorem 5.1.1, Corollary
5.1.2, and Example 5.1. For the seventh property, we note that the Lip-
schitz condition (2.2.6) implies that any family of copulas is equicon-
tinuous, thus the convergence of { Cn} to C is uniform. �

The fact that measures of concordance, such as r and t, satisfy the
sixth criterion in Definition 5.1.7 is one reason that “p ” is called the
concordance ordering.

Spearman’s rho is often called the “grade” correlation coefficient.
Grades are the population analogs of ranks—that is, if x and y are ob-
servations from two random variables X and Y with distribution func-
tions F and G, respectively, then the grades of x and y are given by u =
F(x) and v = G(y). Note that the grades (u and v) are observations from
the uniform (0,1) random variables U = F(X) and V = G(Y) whose joint
distribution function is C. Because U and V each have mean 1 2 and
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variance 1 12, the expression for rC  in (5.1.15b) can be re-written in
the following form:

r rX Y C uv dC u v E UV

E UV E UV E U E V

U V

, ( , ) ( ) ,

( ) ( ) ( ) ( )

( ) ( )
.

= = - = -

= - = -
ÚÚ12 3 12 3

1 4
1 12

2I

Var Var

As a consequence, Spearman’s rho for a pair of continuous random
variables X and Y is identical to Pearson’s product-moment correlation
coefficient for the grades of X and Y, i.e., the random variables U =
F(X) and V = G(Y).

Example 5.8. Let Cq , q Œ I, be a member of the family of copulas in-
troduced in Exercise 3.9. If U and V are uniform (0,1) random vari-
ables whose joint distribution function is Cq , then V = U ≈ q  (where ≈
again denotes addition mod 1) with probability 1, and we have

E UV u u du

u u du u u du

( ) ( ) ,

( ) ( ) ,

( )
,

= ≈

= + + + -

= - -

Ú

Ú Ú
-

-

q

q q

q q

q
q

0

1

0

1

1

1
1

1
3

1
2

and hence

r q qq = - = - -12 3 1 6 1E UV( ) ( ). �

Another interpretation of Spearman’s rho can be obtained from its
representation in (5.1.15c). The integral in that expression represents
the volume under the graph of the copula and over the unit square, and
hence rC  is a “scaled” volume under the graph of the copula (scaled
to lie in the interval [–1,1]). Indeed, (5.1.15c) can also be written as

rC C u v uv dudv= -[ ]ÚÚ12 2 ( , )
I

, (5.1.16)

so that rC  is proportional to the signed volume between the graphs of
the copula C and the product copula P. Thus rC  is a measure of “av-
erage distance” between the distribution of X and Y (as represented by
C) and independence (as represented by the copula P). We shall exploit
this observation in Sect. 5.3.1 to create and discuss additional measures
of association.
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Exercises

5.6 Let Cq , q Œ [0,1], be a member of the family of copulas intro-
duced in Example 3.3, i.e., the probability mass of Cq  is distrib-
uted on two line segments, one joining (0,0) to (q,1) and the other

joining (q,1) to (1,0), as illustrated in Fig. 3.3(a). Show that Ken-
dall’s tau and Spearman’s rho for any member of this family are
given by

t r qq q= = -2 1.

5.7 Let Cq , q Œ [0,1], be a member of the family of copulas intro-
duced in Example 3.4, i.e., the probability mass of Cq  is uni-
formly distributed on two line segments, one joining (0,q) to (q,0)

and the other joining (q,1) to (1,q), as illustrated in Fig. 3.5(a).
Show that Spearman’s rho for any member of this family is given
by

r q qq = - -6 1 1( ) .

5.8 Let Cq  be a member of the Plackett family of copulas (3.3.3) for
q > 0. Show that Spearman’s r for this Cq  is

r q
q

q
q

qq = +
-

-
-

1
1

2

1 2( )
ln .

There does not appear to be a closed form expression for Ken-
dall’s t for members of this family.

5.9 Let Cq , q Œ R , be a member of the Frank family (4.2.5) of Ar-
chimedean copulas. Show that

t
q

qq = - -[ ]1
4

1 1D ( )   and  r
q

q qq = - -[ ]1
12

1 2D D( ) ( ) ,

where D xk ( )  is the Debye function, which is defined for any
positive integer k by

D x
k

x

t

e
dtk k

k

t

x
( ) =

-Ú
10

.

(Genest 1987, Nelsen 1986). For a discussion of estimating the
parameter q for a Frank copula from a sample using the sample
version of Spearman’s rho or Kendall’s tau, see (Genest 1987).
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5.10 Let Cq , q Œ [–1,1], be a member of the Ali-Mikhail-Haq family
(4.2.4) of Archimedean copulas.
(a) Show that

t q
q

q
q

qq = - - - -3 2
3

2 1

3
1

2

2

( )
ln( )

and

r q
q

q q
q

q q
qq = + - - - - - +12 1

1
24 1

1
3 12

2 2

( )
( )

( )
ln( )

( )
dilog ,

where dilog(x) is the dilogarithm function defined by

dilog( )
ln

x
t

t
dt

x=
-Ú 11

.

(b) Show that rq  Œ 33 48 2 4 392- -[ ]ln , p  @ [–0.2711, 0.4784]

and tq  Œ ( ln ) ,5 8 2 3 1 3-[ ]  @ [–0.1817, 0.3333].

5.11 Let Cq , q Œ [0,1], be a member of the Raftery family of copulas
introduced in Exercise 3.6, i.e.,

C u v M u v uv u vq
q q qq

q
( , ) ( , ) max( , )

( ) ( ) ( )= + ( ) - [ ]{ }-

+
- - + -1

1

1 1 1 11 .

 Show that

t q
qq =

-
2

3
  and  r q q

qq = -
-

( )

( )

4 3

2 2 .

5.12 (a) Let Cn , n a positive integer, be the ordinal sum of {W,W,L,W}
with respect to the regular partition In  of I into n subintervals, i.e.,

C u v
k

n
u v

k

n
u v

k

n

k

n
k n

u v
n ( , )

max , , ( , ) , , , , , ,

min( , ),

=
- + -Ê

ËÁ
ˆ
¯̃

Œ -È
ÎÍ

˘
˚̇

=
Ï

Ì
Ô

Ó
Ô

1 1
1 2

2

L

                     otherwise.

The support of Cn  consists of n line segments, joining the points
( ) ,k n k n-( )1  and k n k n,( )-( )1 , k = 1,2,L,n, as illustrated in

Fig. 5.3(a) for n = 4. Show that

t n n
= -1

2
  and  rn

n
= -1

2
2 .
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Note that each copula in this family is also a shuffle of M given
by M(n, In ,(1,2,L,n),–1).
(b) Let ¢Cn , n a positive integer, be the shuffle of M given by
M(n, In ,(n,n–1,L,1),1), i.e.,

¢ =

- -Ê
ËÁ

ˆ
¯̃

ŒÈ
ÎÍ

˘
˚̇

¥ È
ÎÍ

˘
˚̇

=

+ -

Ï

Ì
Ô
Ô

Ó
Ô
Ô

- - - - + -

C u v

u v u v

k n

u v

n

k

n

n k

n

k

n

k

n

n k

n

n k

n
( , )

min , , ( , ) ,

, , , ,

max( , ),

, ,
1 1 1

1 2

1 0

L

                otherwise.

The support of ¢Cn  consists of n line segments, joining the points
( ) ,( )k n n k n- -( )1  and k n n k n,( )- +( )1 , k = 1,2,L,n, as illus-

trated in Fig. 5.3(b) for n = 4. Show that

t n n
= -2

1  and  rn
n

= -2
12 .

(a) (b)

Fig. 5.3. Supports of the copulas C4  and ¢C4  in Exercise 5.12

5.13 Let C be a copula with cubic sections in both u and v, i.e., let C be
given by

C u v uv uv u v A v u

A v u B uv B u v

( , ) ( )( ) ( )

( )( ) ( ) ,

= + - - - +[
- - + + - ]

1 1 1

1 1 1

1

2 1 2

where the constants A1, A2, B1, and B2 satisfy the conditions in
Theorem 3.2.9. Show that

r = + + +A A B B1 2 1 2

12
  and  t = + + + + -A A B B A B A B1 2 1 2 2 1 1 2

18 450
.

5.14 Let C0, C1 be copulas, and let r0, r1, t 0, t 1 be the values of
Spearman’s rho and Kendall’s tau for C0 and C1, respectively.
Let Cq  be the ordinal sum of {C1,C0} with respect to
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{[0,q],[q,1]}, for q in [0,1]. Let rq  and tq  denote the values of
Spearman’s rho and Kendall’s tau for Cq . Show that

r q r q r q qq = + -( ) + -( )3
1

3
01 3 1

and

t q t q t q qq = + -( ) + -( )2
1

2
01 2 1 .

5.15 Let C be an extreme value copula given by (3.3.12). Show that

t C
t t

A t
dA t= - ¢Ú

( )
( )

( )
1

0

1
  and  rC A t dt= + --Ú12 1 32

0

1
[ ( ) ] .

(Capéraà et al. 1997).

5.1.3 The Relationship between Kendall’s tau and Spear-
man’s rho

Although both Kendall’s tau and Spearman’s rho measure the prob-
ability of concordance between random variables with a given copula,
the values of r and t are often quite different. In this section, we will

determine just how different r and t can be. In Sect. 5.2, we will inves-
tigate the relationship between measures of association and dependence
properties in order to partially explain the differences between r and t
that we observe here.

We begin with a comparison of r and t for members of some of the
families of copulas that we have considered in the examples and exer-
cises in the preceding sections.
Example 5.9. (a) In Exercise 5.6, we have a family of copulas for which
r = t over the entire interval [–1,1] of possible values for these meas-
ures.

(b) For the Farlie-Gumbel-Morgenstern family, the results in Exam-
ples 5.2 and 5.7(a) yield 3t = 2r, but only over a limited range, r £ 1 3

and t £ 2 9  [A similar result holds for copulas with cubic sections
which satisfy A B1 2 = A B2 1 (see Exercise 5.13)].

(c) For the Marshall-Olkin family, the results in Examples 5.5 and
5.7(b) yield r = 3 2t t( )+  for r and t both in [0,1].

(d) For the Raftery family, the results in Exercise 5.11 yield r =

3 8 5 4 2t t t( ) ( )- - , again for r and t both in [0,1]. �
Other examples could also be given, but clearly the relationship be-

tween r and t varies considerably from family to family. The next theo-
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rem, due to Daniels (1950), gives universal inequalities for these meas-
ures. Our proof is adapted from Kruskal (1958).
Theorem 5.1.10. Let X and Y be continuous random variables, and let
t and r denote Kendall’s tau and Spearman’s rho, defined by (5.1.2)
and (5.1.14), respectively. Then

–1 £ 3t – 2r £ 1. (5.1.17)

Proof. Let ( X1,Y1), ( X2,Y2), and ( X3,Y3) be three independent ran-
dom vectors with a common distribution. By continuity, (5.1.2) and
(5.1.14) are equivalent to

t = - - > -2 0 11 2 1 2P X X Y Y[( )( ) ] (5.1.18)
and

r = - - > -6 0 31 2 1 3P X X Y Y[( )( ) ] .

However, the subscripts on X and Y can be permuted cyclically to obtain
the following symmetric forms for t and r:

t = - - >{ + - - >

+ - - > } -

2
3

0 0

0 1

1 2 1 2 2 3 2 3

3 1 3 1

P X X Y Y P X X Y Y

P X X Y Y

[( )( ) ] [( )( ) ]

[( )( ) ] ;
and

r = - - >{ + - - >
+ - - > + - - >

+ - - > + - - > } -

P X X Y Y P X X Y Y

P X X Y Y P X X Y Y

P X X Y Y P X X Y Y

[( )( ) ] [( )( ) ]

[( )( ) ] [( )( ) ]

[( )( ) ] [( )( ) ] .

1 2 1 3 1 3 1 2

2 1 2 3 3 2 3 1

2 3 2 1 3 1 3 2

0 0

0 0

0 0 3

Because the expressions for t and r above are now invariant under any
permutation of the subscripts, we can assume that X1 < X2 < X3, in
which case

t = <{ + < + < } -2
3

11 2 2 3 1 3P Y Y P Y Y P Y Y( ) ( ) ( )

and
r = <{ + < + >

+ > + < + > } -

= <[ ] -

P Y Y P Y Y P Y Y

P Y Y P Y Y P Y Y

P Y Y

( ) ( ) ( )

( ) ( ) ( ) ,

( ) .

1 3 1 2 2 3

3 1 2 1 3 2

1 3

3

2 1

Now let pijk  denote the conditional probability that Yi < Yj  < Yk  given

that X1 < X2 < X3. Then the six pijk  sum to one, and we have
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t = + +{ + + + + + + } -

= + +( ) - +( ) -

2
3

1

1
3

1
3

123 132 312 123 213 231 123 132 213

123 132 213 231 312 321

( ) ( ) ( ) ,

,

p p p p p p p p p

p p p p p p

and
r = + +( ) -

= + + - - -
2 1123 132 213

123 132 213 231 312 321

p p p

p p p p p p

,

.
(5.1.19)

Hence
3 2 123 132 213 231 312 321

123 231 312 132 213 321

t r- = - - + + -

= + +( ) - + +( )
p p p p p p

p p p p p p

,

,
so that

–1 £ 3t – 2r £ 1. �

The next theorem gives a second set of universal inequalities relating
r and t. It is due to Durbin and Stuart (1951); and again the proof is
adapted from Kruskal (1958):

Theorem 5.1.11. Let X, Y, t, and r be as in Theorem 5.1.9. Then

1
2

1
2

2+ ≥ +Ê
ËÁ

ˆ
¯̃

r t
(5.1.20a)

and

1
2

1
2

2- ≥ -Ê
ËÁ

ˆ
¯̃

r t
. (5.1.20b)

Proof. Again let ( X1,Y1), ( X2,Y2), and ( X3,Y3) be three independent
random vectors with a common distribution function H. If p denotes the
probability that some pair of the three vectors is concordant with the
third, then, e.g.,

p P X Y X Y X Y= [ ]( , ) ( , ) ( , ) ,2 2 3 3 1 1 and  are concordant with 

= [ ]ÚÚ P X Y X Y x y dH x y( , ) ( , ) ( , ) ( , ),2 2 3 32  and  are concordant with 
R

= - - >[ ] - - >[ ]ÚÚ P X x Y y P X x Y y dH x y( )( ) ( )( ) ( , ),2 2 3 30 02R

= - - >[ ]( )ÚÚ P X x Y y dH x y( )( ) ( , ),2 2
2

02R

≥ - - >[ ][ ]ÚÚ P X x Y y dH x y( )( ) ( , ) ,2 2

2
02R
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= - - >[ ][ ] = +Ê
ËÁ

ˆ
¯̃

P X X Y Y( )( ) ,2 1 2 1
2

2

0
1

2
t

where the inequality results from E( Z 2) ≥ E Z( )[ ]2  for the (conditional)

random variable Z P X X Y Y X Y= - - >[ ]( )( ) ( , )2 1 2 1 1 10 , and the final
equality is from (5.1.18). Permuting subscripts yields

p P X Y X Y X Y

P X Y X Y X Y

P X Y X Y X Y

= [ ]{
+ [ ]

+ [ ]}

1
3 2 2 3 3 1 1

3 3 1 1 2 2

1 1 2 2 3 3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

 and  are concordant with 

 and  are concordant with 

 and  are concordant with 

Thus, if X1 < X2 < X3 and if we again let pijk  denote the conditional

probability that Yi < Yj  < Yk  given that X1 < X2 < X3, then

p p p p p p

p p p

= + + + +{ }

= + +

1
3

1
3

1
3

123 132 123 123 213

123 132 213

( ) ( ) ( ) ,

.

Invoking (5.1.19) yields

1
2

1
2123 132 213

2+ = + + ≥ ≥ +Ê
ËÁ

ˆ
¯̃

r t
p p p p ,

which completes the proof of (5.1.20a). To prove (5.1.20b), replace
“concordant” in the above argument by “discordant.” �

The inequalities in the preceding two theorems combine to yield

Corollary 5.1.12. Let X, Y, t, and r be as in Theorem 5.1.9. Then

and

3 1
2

1 2
2

0

2 1
2

1 3
2

0

2

2

t r t t t

t t r t t

- £ £ + - ≥

+ - £ £ + £

, ,

, .

(5.1.21)

These bounds for the values of r and t are illustrated in Fig. 5.4. For
any pair X and Y of continuous random variables, the values of the
population versions of Kendall’s tau and Spearman’s rho must lie in
the shaded region, which we refer to as the t-r region.
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  1 

 –1

r

t
1 –1

Fig. 5.4. Bounds for r and t for pairs of continuous random variables

Can the bounds in Corollary 5.1.12 be improved? To give a partial
answer to this question, we consider two examples.
Example 5.10. (a) Let U and V be uniform (0,1) random variables such
that V = U ≈ q  (where ≈ again denotes addition mod 1)—i.e., the joint
distribution function of U and V is the copula Cq  from Exercise 3.9,
with q  Œ [0,1]. In Example 5.8 we showed that rq  = 1 6 1- -q q( ), and in

Exercise 5.4(a) we saw that t qq = -( )1 2 2, hence for this family, r =

( )3 1 2t - , t ≥ 0. Thus every point on the linear portion of the lower
boundary of the shaded region in Fig. 5.4 is attainable for some pair of
random variables.

(b) Similarly, let U and V be uniform (0,1) random variables such
that U ≈ V = q, i.e., the copula of U and V is Cq  from Example 3.4,

with q  Œ [0,1]. From Exercises 5.4(b) and 5.7, we have t qq = - -( )1 2 2

and r q qq = - -6 1 1( ) , and hence for this family, r = ( )1 3 2+ t , t £ 0.
Thus every point on the linear portion of the upper boundary of the
shaded region in Fig. 5.4 is also attainable. �

Example 5.11. (a) Let Cn , n a positive integer, be a member of the
family of copulas in Exercise 5.12(a), for which the support consists of
n line segments such as illustrated for n = 4 in part (a) of Fig. 5.3.

When t = ( )n n- 2 , we have r = ( )1 2 22+ -t t . Hence selected points
on the parabolic portion of the upper boundary of the shaded region in
Fig. 5.4 are attainable.

(b) Similarly let Cn , n a positive integer, be a member of the family
of copulas in Exercise 5.12(b), for which the support consists of n line
segments such as illustrated for n = 4 in part (b) of Fig. 5.3. When t =
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– ( )n n- 2 , we have r = ( )t t2 2 1 2+ - . Hence selected points on the
parabolic portion of the lower boundary of the shaded region in Fig.
5.4 are also attainable. �

In Fig. 5.5, we reproduce Fig. 5.4 with the t-r region augmented by
illustrations of the supports of some of the copulas in the preceding two
examples, for which r and t lie on the boundary.

  1 

 –1

r

t
 1 –1

Fig. 5.5. Supports of some copulas for which r and t lie on the boundary of the

t-r region

We conclude this section with several observations.
1. As a consequence of Example 5.10, the linear portion of the

boundary of the t-r region cannot be improved. However, the copulas

in Example 5.11 do not yield values of r and t at all points on the
parabolic portion of the boundary, so it may be possible to improve the
inequalities in (5.1.21) at those points.

2. All the copulas illustrated in Fig. 5.5 for which r and t lie on the

boundary of the t-r region are shuffles of M.
3. Hutchinson and Lai (1990) describe the pattern in Fig. 5.5 by ob-

serving that

...[for a given value of t] very high r only occurs with negative correlation

locally contrasted with positive overall correlation, and very low r only
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with negative overall correlation contrasted with positive correlation lo-
cally.

4. The relationship between r and t in a one-parameter family of
copulas can be exploited to construct a large sample test of the hy-
pothesis that the copula of a bivariate distribution belongs to a particu-
lar family. See (Carriere 1994) for details.

5.1.4 Other Concordance Measures

In the 1910s, Corrado Gini introduced a measure of association g that
he called the indice di cograduazione semplice: if pi and qi  denote the
ranks in a sample of size n of two continuous random variables X and Y,
respectively, then

g
n

p q n p qi i
i

n

i i
i

n
=

Î ˚
+ - - - -

È

Î
Í

˘

˚
˙

= =
Â Â1

2
1

2 1 1
(5.1.22)

where tÎ ˚  denotes the integer part of t. Let g denote the population pa-
rameter estimated by this statistic, and as usual, let F and G denote the
marginal distribution functions of X and Y, respectively, and set U =
F(X) and V = G(Y). Because p ni  and q ni  are observations from dis-
crete uniform distributions on the set 1 2 1n n, , ,L{ } , (5.1.22) can be
re-written as

g
n

n

p

n

q

n

n

n

p

n

q

n n
i i

i

n
i i

i

n
=

Î ˚
+ - + - -

È

Î
Í

˘

˚
˙ ◊

= =
Â Â

2

2 1 12

1 1
.

If we now pass to the limit as n goes to infinity, we obtain g =

2 1E U V U V+ - - -( ) , i.e.,

g = + - - -( )ÚÚ2 12 u v u v dC u v
I

( , ) (5.1.23)

(where C is the copula of X and Y). In the following theorem, we show
that g, like r and t, is a measure of association based upon concordance.

Theorem 5.1.13. Let X and Y be continuous random variables whose
copula is C. Then the population version of Gini’s measure of associa-
tion for X and Y (which we will denote by either g X Y,  or g C ) is given by

g gX Y C Q C M Q C W, ( , ) ( , )= = + . (5.1.24)
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Proof. We show that (5.1.24) is equivalent to (5.1.23). Using (5.1.4)
and noting that M(u,v) = ( )1 2 u v u v+ - -[ ] , we have

Q C M M u v dC u v

u v u v dC u v

( , ) ( , ) ( , ) ,

( , ) .

= -

= + - -[ ] -

ÚÚ
ÚÚ

4 1

2 1

2

2

I

I

But because any copula is a joint distribution function with uniform
(0,1) margins,

u dC u v( , )
I2

1
2ÚÚ =   and  v dC u v( , )

I2

1
2ÚÚ = ,

and thus
Q C M u v dC u v( , ) ( , ).= - -ÚÚ1 2 2I

Similarly, because W(u,v) = ( )1 2 1 1u v u v+ - + + -[ ] , we have

Q C W W u v dC u v

u v u v dC u v

u v dC u v

( , ) ( , ) ( , ) ,

( , ) ,

( , ) ,

= -

= + - + + -[ ] -

= + - -

ÚÚ
ÚÚ
ÚÚ

4 1

2 1 1 1

2 1 1

2

2

2

I

I

I

from which the conclusion follows. �
In a sense, Spearman’s r = 3Q(C,P) measures a concordance rela-

tionship or “distance” between the distribution of X and Y as repre-
sented by their copula C and independence as represented by the cop-
ula P. On the other hand, Gini’s g = Q(C,M) + Q(C,W) measures a
concordance relationship or “distance” between C and monotone de-
pendence, as represented by the copulas M and W. Also note that g C  is
equivalent to the sum of the measures on the third and fourth “concor-
dance axes” in Fig. 5.1.

Using the symmetry of Q from the first part of Corollary 5.1.2 yields
the following expression for g, which shows that g depends on the cop-
ula C only through its diagonal and secondary diagonal sections:
Corollary 5.1.14. Under the hypotheses of Theorem 5.1.13,

g C C u u du u C u u du= - - -[ ]È
ÎÍ

˘
˚̇Ú Ú4 1

0

1

0

1
( , ) ( , ) . (5.1.25)

Proof. The result follows directly from

Q C M C u v dM u v C u u du( , ) ( , ) ( , ) ( , )= - = -ÚÚ Ú4 1 4 12 0

1

I
and
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Q C W C u v dW u v C u u du( , ) ( , ) ( , ) ( , )= - = - -ÚÚ Ú4 1 4 1 12 0

1

I
. �

Note that there is a geometric interpretation of the integrals in
(5.1.25)—the second is the area between the graphs of the diagonal
sections d M (u) = M(u,u) = u of the Fréchet-Hoeffding upper bound
and d C (u) = C(u,u) of the copula C; and the first is the area between the
graphs of the secondary diagonal sections C(u,1- u) of C and
W(u,1- u) = 0 of the Fréchet-Hoeffding lower bound.

We conclude this section with one additional measure of association
based on concordance. Suppose that, in the expression (5.1.3) for Q,
the probability of concordance minus the probability of discordance,
we use a random vector and a fixed point, rather than two random vec-
tors. That is, consider

P X x Y y P X x Y y[( )( ) ] [( )( ) ]- - > - - - <0 0 0 00 0

for some choice of a point ( x0 , y0 ) in R2. Blomqvist (1950) proposed
and studied such a measure using population medians for x0  and y0 .
This measure, often called the medial correlation coefficient, will be de-
noted b, and is given by

b b= = - - > - - - <X Y P X x Y y P X x Y y, [( ˜)( ˜) ] [( ˜)( ˜) ]0 0 (5.1.26)

where x̃  and ỹ  are medians of X and Y, respectively. But if X and Y are
continuous with joint distribution function H and margins F and G, re-
spectively, and copula C, then F( x̃ ) = G( ỹ ) = 1/2 and we have

b = - - > -
= < < + > >{ } -

= + - - +[ ]{ } -

= -

2 0 1

2 1

2 1 1

4 1

P X x Y y

P X x Y y P X x Y y

H x y F x G y H x y

H x y

[( ˜)( ˜) ] ,

[ ˜, ˜] [ ˜, ˜] ,

( ˜, ˜) ( ˜) ( ˜) ( ˜, ˜) ,

( ˜, ˜) .

But H( x̃ , ỹ ) = C(1/2,1/2), and thus

b b= = Ê
ËÁ

ˆ
¯̃

-C C4 1
1

2

1

2
, . (5.1.27)

Although Blomqvist’s b depends on the copula only through its value

at the center of I2, it can nevertheless often provide an accurate ap-
proximation to Spearman’s r and Kendall’s t, as the following example
illustrates.
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Example 5.12. Let Cq , q Œ [–1,1], be a member of the Ali-Mikhail-Haq
family (4.2.3) of Archimedean copulas. In Exercise 5.10 we obtained
expressions, involving logarithms and the dilogarithm function, for r
and t for members of this family.  Blomqvist’s b is readily seen to be

b b q
qq= =

-4
.

Note that b Œ [ -1 5,1 3]. If we reparameterize the expressions in Exer-

cise 5.10 for rq  and tq  by replacing q by 4 1b b( )+ , and expand each
of the results in a Maclaurin series, we obtain

r b b b= + + +4
3

44
75

8
25

3 4 L,

t b b b= + + +8
9

8
15

16
45

3 4 L.

Hence 4 3b  and 8 9b  are reasonable second-order approximations to
r and t, respectively, and higher-order approximations are also possi-
ble. �

Like Kendall’s t and Spearman’s r, both Gini’s g and Blomqvist’s b
are also measures of concordance according to Definition 5.1.7. The
proof of the following theorem is analogous to that of Theorem 5.1.9.
Theorem 5.1.15. If X and Y are continuous random variables whose
copula is C, then the population versions of Gini’s g (5.1.24) and

Blomqvist’s b (5.1.27) satisfy the properties in Definition 5.1.7 and
Theorem 5.1.8 for a measure of concordance.

In Theorem 3.2.3 we saw how the Fréchet-Hoeffding bounds—which
are universal—can be narrowed when additional information (such as

the value of the copula at a single point in ( , )0 1 2) is known. The same is
often true when we know the value of a measure of association.

For any t in [–1,1], let Tt  denote the set of copulas with a common
value t of Kendall’s t, i.e.,

T Ct C C t= Œ ={ }t ( ) . (5.1.28)

Let T t  and T t  denote, respectively, the pointwise infimum and supre-

mum of Tt , i.e., for each (u,v) in I2,

T u v C u v Ct t( , ) inf ( , )= Œ{ }T (5.1.29a)
 and
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T u v C u v Ct t( , ) sup ( , )= Œ{ }T . (5.1.29b)

Similarly, let Pt  and Bt denote the sets of copulas with a common
value t of Spearman’s r and Blomqvist’s b, respectively, i.e.,

P Ct C C t= Œ ={ }r( )  and B Ct C C t= Œ ={ }b( ) , (5.1.30)

and define Pt , Pt , Bt and Bt analogously to (5.1.29a) and (5.2.29b).
These bounds can be evaluated explicitly, see (Nelsen et al. 2001; Nel-
sen and Úbeda Flores, 2004) for details.
Theorem 5.1.16. Let T t , T t , Pt , Pt , Bt and Bt denote, respectively, the
pointwise infimum and supremum of the sets Tt , Pt  and Bt in (5.1.28)

and (5.1.30). Then for any (u,v) in I2,

T u v W u v u v u v tt ( , ) max ( , ), ( ) ( )= + - - + -È
ÎÍ

˘
˚̇

Ê
ËÁ

ˆ
¯̃

1
2

12 ,

T u v M u v u v u v tt ( , ) min ( , ), ( ) ( )= + - + + - + +È
ÎÍ

˘
˚̇

Ê
ËÁ

ˆ
¯̃

1
2

1 1 12 ,

P u v W u v
u v

p u v tt ( , ) max ( , ), ( , )= + - - -Ê
ËÁ

ˆ
¯̃2

1 ,

P u v M u v
u v

p u v tt ( , ) min ( , ), ( , )= + - + + - +Ê
ËÁ

ˆ
¯̃

1
2

11 ,

B u v W u v
t

u vt ( , ) max ( , ),= + - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

+ +
1

4
1
2

1
2

, and

B u v M u v
t

u vt ( , ) min ( , ),= + + -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

+ +
1

4
1
2

1
2

,

where p(a,b) = 
1
6

9 3 9 3 9 3 9 32 6
1 3

2 6
1 3

b b a b b a+ -Ê
Ë

ˆ
¯ + - -Ê

Ë
ˆ
¯

È

Î
Í

˘

˚
˙ . The

above bounds are copulas, and hence if X and Y are continuous ran-
dom variables with joint distribution function H and marginal distribu-
tion functions F and G, respectively, and such that t X Y,  = t, then

T F x G y H x y T F x G yt t( ), ( ) ( , ) ( ), ( )( ) £ £ ( )
for all (x,y) in R2, and these bounds are joint distributions functions
(and similarly when rX Y,  = t and bX Y,  = t).

For further details, including properties of the six bounds in Theo-
rem 5.1.16 and a comparison of their relative effectiveness in narrowing
the Fréchet-Hoeffding bounds, see (Nelsen et al. 2001; Nelsen and
Úbeda Flores 2004).
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Exercises

5.16 Let X and Y be continuous random variables with copula C.  Show
that an alternate expression for Spearman’s rho for X and Y is

r = + -[ ] - -[ ]( )ÚÚ3 1 2 2
2 u v u v dC u v

I
( , ) .

[Cf. (5.1.23).] Gini referred to this expression for rho as the in-
dice di cograduazione quadratico.

5.17 Let X and Y be continuous random variables with copula C. Es-
tablish the following inequalities between Blomqvist’s b and Ken-

dall’s t, Spearman’s r, and Gini’s g :
1
4

1 1 1
1
4

12 2( ) ( )+ - £ £ - -b t b ,

3
16

1 1 1
3

16
13 3( ) ( )+ - £ £ - -b r b ,

3
8

1 1 1
3
8

12 2( ) ( )+ - £ £ - -b g b .

[Hint:  Use Theorem 3.2.3.]

5.18 Let Cq  be a member of the Plackett family of copulas (3.3.3) for
q > 0. (a) Show that Blomqvist’s b for this family is

b q
qq = -

+
1

1
.

Recall (see Sect. 3.3.1) that for the Plackett family, q represents an

“odds ratio.” When q is an odds ratio in a 2¥2 table, the expres-

sion q q-( ) +( )1 1  is known as “Yule’s Y ,” or “Yule’s coef-
ficient of colligation.”
(b) Show that 4 3bq  is a second-order approximation to rq  for
this family (see Exercise 5.8).

5.19 Let Cq , q Œ R, be a member of the Frank family (4.2.5) of Ar-
chimedean copulas. In Exercise 5.9, we obtained expressions in-
volving Debye functions for rq  and tq  for members of this fam-
ily.
(a) Show that Blomqvist’s b is
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b b
q

q
q= = 4

4
lncosh .

(b) Show that Maclaurin series expansions for rq , tq  and bq  are

r q q qq = - + -1
6

1
450

1
23520

3 5 L,

t q q qq = - + -1
9

1
900

1
52920

3 5 L,

b q q qq = - + -1
8

1
768

1
46080

3 5 L,

so that for moderate values of the parameter q, 4 3b  and 8 9b
are reasonable approximations to r and t, respectively.

5.20 Let X and Y be continuous random variables whose copula C satis-
fies one (or both) of the functional equations in (2.8.1) for joint
symmetry. Show that

t r g bX Y X Y X Y X Y, , , ,= = = = 0.

5.21 Another measure of association between two variates is Spear-
man’s foot-rule, for which the sample version is

f
n

p qi i
i

n
= -

-
-

=
Â1

3

12
1

,

where pi and qi  again denote the ranks of a sample of size n of
two continuous random variables X and Y, respectively.
(a) Show that the population version of the footrule, which we will
denote f, is given by

f = - - = -[ ]ÚÚ1 3
1
2

3 12 u v dC u v Q C M
I

( , ) ( , ) .

where C is again the copula of X and Y.
(b) Show that f fails to satisfy properties 2 and 5 in Definition
5.1.7, and hence is not a “measure of concordance” according to
that definition.

5.2 Dependence Properties

Undoubtedly the most commonly encountered dependence property is
actually a “lack of dependence” property—independence. If X and Y
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are continuous random variables with joint distribution function H, then
the independence of X and Y is a property of the joint distribution
function H—namely, that it factors into the product of its margins. Thus
X and Y are independent precisely when H belongs to a particular subset
of the set of all joint distribution functions, the subset characterized by
the copula P (see Theorem 2.4.2). In Sect. 2.5, we observed that one
random variable is almost surely a monotone function of the other
whenever the joint distribution function is equal to one of its Fréchet-
Hoeffding bounds, i.e., the copula is M or W. Hence a “dependence
property” for pairs of random variables can be thought of as a subset
of the set of all joint distribution functions. Just as the property of inde-
pendence corresponds to the subset all of whose members have the
copula P (and similarly for monotone functional dependence and the
copulas M and W), many dependence properties can be described by
identifying the copulas, or simple properties of the copulas, which cor-
respond to the distribution functions in the subset. In this section, we
will examine properties of copulas that “describe” other forms of de-
pendence—dependence that lies “between” the extremes of independ-
ence and monotone functional dependence.

We begin with some “positive” and “negative” dependence prop-
erties—positive dependence properties expressing the notion that
“large” (or “small”) values of the random variables tend to occur to-
gether, and negative dependence properties expressing the notion that
“large” values of one variable tend to occur with “small” values of the
other.  See (Barlow and Proschan 1981; Drouet Mari and Kotz 2001;
Hutchinson and Lai 1990; Joe 1997; Tong 1980) and the references
therein for further discussion of many of the dependence properties
that we present in this section.

5.2.1 Quadrant Dependence

Definition 5.2.1 (Lehmann 1966). Let X and Y be random variables. X

and Y are positively quadrant dependent (PQD) if for all (x,y) in R2,

P X x Y y P X x P Y y[ , ] [ ] [ ]£ £ ≥ £ £ . (5.2.1)

or equivalently (see Exercise 5.22),

P X x Y y P X x P Y y[ , ] [ ] [ ]> > ≥ > > . (5.2.2)

When (5.2.1) or (5.2.2) holds, we will write PQD(X,Y). Negative quad-
rant dependence is defined analogously by reversing the sense of the
inequalities in (5.2.1) and (5.2.2), and we write NQD(X,Y).

Intuitively, X and Y are PQD if the probability that they are simulta-
neously small (or simultaneously large) is at least as great as it would be
were they independent.
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Example 5.13 (Barlow and Proschan 1981). Although in many studies
of reliability, components are assumed to have independent lifetimes, it
may be more realistic to assume some sort of dependence among com-
ponents. For example, a system may have components that are subject
to the same set of stresses or shocks, or in which the failure of one com-
ponent results in an increased load on the surviving components. In
such a two-component system with lifetimes X and Y, we may wish to
use a model in which (regardless of the forms of the marginal distribu-
tions of X and Y) small values of X tend to occur with small values of Y,
i.e., a model for which X and Y are PQD. �

If X and Y have joint distribution function H, with continuous mar-
gins F and G, respectively, and copula C, then (5.2.1) is equivalent to

H(x,y) ≥ F(x)G(y) for all (x,y) in R2, (5.2.3)
and to

C(u,v) ≥ uv for all (u,v) in I2. (5.2.4)

In the sequel, when continuous random variables X and Y are PQD, we
will also say that their joint distribution function H, or their copula C, is
PQD.

Note that, like independence, quadrant dependence (positive or
negative) is a property of the copula of continuous random variables,
and consequently is invariant under strictly increasing transformations
of the random variables. Also note that there are other interpretations of
(5.2.4). First, if X and Y are PQD, then the graph of the copula of X and
Y lies on or above the graph of the independence copula P. Secondly,

(5.2.4) is the same as C f P—i.e., C is larger than P (recall Sect. 2.8).
Indeed, the concordance ordering f is sometimes called the “more
PQD” ordering.

Many of the totally ordered one-parameter families of copulas that
we encountered in Chapters 2 and 3 include P and hence have sub-
families of PQD copulas and NQD copulas.  For example, If Cq  is a
member of the Mardia family (2.2.9), the FGM family (3.2.10), the Ali-
Mikhail-Haq family (3.3.7), or the Frank family (4.2.5), then Cq  is
PQD for q ≥ 0 and NQD for q £ 0 because each family is positively or-

dered and C0 = P.
Some of the important consequences for measures of association for

continuous positively quadrant dependent random variables are summa-
rized in the following theorem.
Theorem 5.2.2. Let X and Y be continuous random variables with joint
distribution function H, margins F and G, respectively, and copula C. If
X and Y are PQD, then

3 0t rX Y X Y, ,≥ ≥ , g X Y, ≥ 0, and bX Y, ≥ 0.
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Proof. The first inequality follows from Q(C,C) ≥ Q(C,P) ≥ Q(P,P);
the remaining parts from Theorem 5.1.14. �

Although PQD is a “global” property—(5.2.3) must hold at every

point in R2—we can think of the inequality “locally.” That is, at

points (x,y) in R2 where H(x,y) – F(x)G(y) ≥ 0, X and Y are “locally”

PQD; whereas at points (x,y) in R2 where H(x,y) – F(x)G(y) £ 0, X and

Y are “locally” NQD. Equivalently, at points (u,v) in I2 where C(u,v) –

uv ≥ 0, X and Y are locally PQD; whereas at points (u,v) in I2 where

C(u,v) – uv £ 0, X and Y are locally NQD. But recall from (5.1.16) that
one form of Spearman’s rho is

rC C u v uv dudv= -[ ]ÚÚ12 2 ( , )
I

,

and hence rC  (or, to be precise, rC 12) can be interpreted as a measure
of “average” quadrant dependence (both positive and negative) for
random variables whose copula is C.

Exercises

5.22 (a) Show that (5.2.1) and (5.2.2) are equivalent.
(b) Show that (5.2.3) is equivalent to

H (x,y) ≥ F (x) G (y) for all (x,y) in R2.

5.23 (a) Let X and Y be random variables with joint distribution func-
tion H and margins F and G. Show that PQD(X,Y) if and only if

for any (x,y) in R2,

H x y F x G y H x y F x H x y G y H x y( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , )1- - +[ ] ≥ -[ ] -[ ] ,

that is, the product of the two probabilities corresponding to the
two shaded quadrants in Fig. 5.6 is at least as great as the product
of the two probabilities corresponding to the two unshaded quad-
rants.
(b) Give an interpretation of quadrant dependence in terms of the
cross product ratio (3.3.1) for continuous random variables.
(c) Show that the copula version of this result for continuous ran-

dom variables is: PQD(X,Y) if and only if for any (u,v) in I2,

C u v u v C u v u C u v v C u v( , ) ( , ) ( , ) ( , )1- - +[ ] ≥ -[ ] -[ ];

and give an interpretation similar to that in Fig. 5.6.
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(x,y)

Fig. 5.6. A “product of probabilities” interpretation of PQD(X,Y)

5.24 (a) Show that if X and Y are PQD, then –X and Y are NQD, X and
–Y are NQD, and –X and –Y are PQD.
(b) Show that if C is the copula of PQD random variables, then so
is Ĉ .

5.25 Let X and Y be continuous random variables with joint distribu-
tion function H and margins F and G, and copula C. Consider the
random variable Z = H(X,Y) – F(X)G(Y).
(a) Show that E(Z) = ( )3 12t rC C- .
(b) Show that w t rC C CE Z= = -6 3 2( ) ( )  can be interpreted as a
measure of “expected” quadrant dependence for which w M  = 1,
w P = 0, and wW  = –1.
(c) Show that wC  fails to be a measure of concordance according
to Definition 5.1.7.

5.26 Hoeffding’s lemma (Hoeffding 1940; Lehmann 1966; Shea
1983). Let X and Y be random variables with joint distribution
function H and margins F and G, such that E X( ) , E Y( ) , and

E XY( )  are all finite. Prove that

Cov( , ) ( , ) ( ) ( )X Y H x y F x G y dxdy= -[ ]ÚÚR2 .

5.27 Let X and Y be random variables. Show that if PQD(X,Y), then
Cov(X,Y) ≥ 0, and hence Pearson’s product-moment correlation
coefficient is nonnegative for positively quadrant dependent ran-
dom variables.

5.28 Show that X and Y are PQD if and only if Cov[f(X),g(Y)] ≥ 0 for
all functions f, g that are nondecreasing in each place and for
which the expectations E[f(X)], E[g(Y)], and E[f(X)g(Y)] exist
(Lehmann 1966).
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5.29 Prove that if the copula of X and Y is max-stable, then PQD(X,Y).

5.2.2 Tail Monotonicity

The expression (5.2.1) for positive quadrant dependence can be written
as

P Y y X x P Y y[ ] [ ]£ £ ≥ £ ,
or as

P Y y X x P Y y X[ ] [ ]£ £ ≥ £ £ • .

A stronger condition would be to require that for each y in R, the con-
ditional distribution function P Y y X x[ ]£ £  is a nonincreasing function
of x. If X and Y represent lifetimes of components in a reliability con-
text, then this says that probability that Y has a short lifetime decreases
(to be precise, does not increase) as the lifetime of X increases. This be-
havior of the left tails of the distributions of X and Y (and a similar be-
havior for the right tails based on (5.2.2)) is captured in the following
definition (Esary and Proschan 1972).
Definition 5.2.3. Let X and Y be random variables.

1. Y is left tail decreasing in X [which we denote LTD(YΩX)] if

P Y y X x[ ]£ £  is a nonincreasing function of x for all y. (5.2.5)

2. X is left tail decreasing in Y [which we denote LTD(XΩY)] if

P X x Y y[ ]£ £  is a nonincreasing function of y for all x. (5.2.6)

3. Y is right tail increasing in X [which we denote RTI(YΩX)] if

P Y y X x[ ]> >  is a nondecreasing function of x for all y. (5.2.7)

4. Y is right tail increasing in X [which we denote RTI(XΩY)] if

P X x Y y[ ]> >  is a nondecreasing function of y for all x. (5.2.8)

Of course, if the joint distribution of X and Y is H, with margins F and
G, respectively, then we can write H x y F x( , ) ( )  (when F(x) > 0) rather

than P Y y X x[ ]£ £  in (5.2.5) and similarly in (5.2.6); H x y F x( , ) ( )

rather than P Y y X x[ ]> >  in (5.2.7) and similarly in (5.2.8). The terms
“left tail decreasing” and “right tail increasing” are from (Esary and
Proschan 1972) where, as is often the case, “decreasing” means nonin-
creasing and “increasing” means nondecreasing.

There are similar negative dependence properties, known as left tail
increasing and right tail decreasing, defined analogously by exchang-
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ing the words “nonincreasing” and “nondecreasing” in Definition
5.2.3.

Each of the four tail monotonicity conditions implies positive quad-
rant dependence. For example, if LTD(YΩX), then

P Y y X x P Y y X P Y y[ ] [ ] [ ]£ £ ≥ £ £ • = £ ,
and hence

P X x Y y P X x P Y y X x P X x P Y y[ , ] [ ] [ ] [ ] [ ]£ £ = £ £ £ ≥ £ £ ,

so that PQD(X,Y). Similarly, if RTI(YΩX),

P Y y X x P Y y X P Y y[ ] [ ] [ ]> > ≥ > > -• = > ,
and hence

P X x Y y P X x P Y y X x P X x P Y y[ , ] [ ] [ ] [ ] [ ]> > = > > > ≥ > > ,

and thus PQD(X,Y) by Exercise 5.22(a). Thus we have
Theorem 5.2.4. Let X and Y be random variables. If X and Y satisfy any
one of the four properties in Definition 5.2.3, then X and Y are posi-
tively quadrant dependent.

However, positive quadrant dependence does not imply any of the
four tail monotonicity properties—see Exercise 5.30.

The next theorem shows that, when the random variables are con-
tinuous, tail monotonicity is a property of the copula. The proof follows
immediately from the observation that univariate distribution functions
are nondecreasing.
Theorem 5.2.5. Let X and Y be continuous random variables with cop-
ula C. Then

1. LTD(YΩX) if and only if for any v in I, C u v u( , )  is nonincreasing
in u,

2. LTD(XΩY) if and only if for any u in I, C u v v( , )  is nonincreasing
in v,

3. RTI(YΩX) if and only if for any v in I, [ ( , )] ( )1 1- - + -u v C u v u  is
nondecreasing in u, or equivalently, if [ ( , )] ( )v C u v u- -1  is nonin-
creasing in u;

4. RTI(XΩY) if and only if for any u in I, [ ( , )] ( )1 1- - + -u v C u v v  is
nondecreasing in v, or equivalently, if [ ( , )] ( )u C u v v- -1  is nonin-
creasing in v.

Verifying that a given copula satisfies one or more of the conditions
in Theorem 5.2.5 can often be tedious. As a consequence of Theorem
2.2.7, we have the following criteria for tail monotonicity in terms of
the partial derivatives of C.
Corollary 5.2.6. Let X and Y be continuous random variables with
copula C. Then
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1. LTD(YΩX) if and only if for any v in I, ∂ ∂C u v u( , )  £ C u v u( , )  for
almost all u;

2. LTD(XΩY) if and only if for any u in I, ∂ ∂C u v v( , )  £ C u v v( , )  for
almost all v;

3. RTI(YΩX) if and only if for any v in I, ∂ ∂C u v u( , )  ≥
[ ( , )] ( )v C u v u- -1  for almost all u;

4. RTI(XΩY) if and only if for any u in I, ∂ ∂C u v v( , )  ≥
[ ( , )] ( )u C u v v- -1  for almost all v.

In the preceding section, we saw that there was a geometric interpre-
tation for the copula of positive quadrant dependent random vari-
ables—the graph of the copula must lie on or above the graph of P.
There are similar geometric interpretations of the graph of the copula
when the random variables satisfy one or more of the tail monotonicity
properties—interpretations that involve the shape of regions determined
by the horizontal and vertical sections of the copula.

To illustrate this, we first introduce some new notation. For each u0

in I, let S u1 0( ) = ( , , ) , ( , )u v x v z C u v0
3

00 1 0Œ £ £ £ £{ }I , i.e., S u1 0( )

consists of the points in the unit cube I3 below the graph of the vertical
section at u = u0 , i.e., lying in a plane perpendicular to the u-axis on or
below the graph z = C( u0 ,v). Similarly, for each v0 in I, we let S v2 0( )  =

( , , ) , ( , )u v x u z C u v0
3

00 1 0Œ £ £ £ £{ }I , i.e., S v2 0( )  consists of the

points in the unit cube I3 below the graph of the horizontal section at v
= v0, i.e., lying in a plane perpendicular to the v-axis on or below the
graph z = C(u, v0). The shaded region in Fig. 5.7 represents S v2 0( )  for
C = M and v0 = 0.4.

v

z

uP1

P2

S2 0 4( . )

Fig. 5.7. An example of S v2 0( ) for C = M and v0 = 0.4

Furthermore, we say that a plane region S is starlike with respect to
the point P in S if for every point Q in S, all points on the line segment
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PQ are in S.  In Fig. 5.7, the shaded region S2 0 4( . )  is starlike with re-
spect to both P1 = (0,0.4,0) and P2 = (1,0.4,0.4).

The next theorem expresses the criteria for tail monotonicity in terms
of the shapes of the regions S u1( )  and S v2( )  determined by the vertical
and horizontal sections of the copula.
Theorem 5.2.7. Let X and Y be continuous random variables with cop-
ula C. Then

1. LTD(YΩX) if and only if for any v in I, the region S v2( )  is starlike
with respect to the point (0,v,0) in S v2( ) .

2. LTD(XΩY) if and only if for any u in I, the region S u1( )  is starlike
with respect to the point (u,0,0) in S u1( ) .

3. RTI(YΩX) if and only if for any v in I, the region S v2( )  is starlike
with respect to the point (1,v,v) in S v2( ) .

4. RTI(XΩY) if and only if for any u in I, the region S u1( )  is starlike
with respect to the point (u,1,u) in S u1( ) .

Proof. We prove part 1, leaving the proof of the remaining parts as an
exercise. Assume LTD(YΩX) and fix v in I. To show that S v2( )  is star-

like with respect to the point (0,v,0), we will show that for 0 < t < 1, the
line segment joining (0,v,0) to (t,v,C(t,v)) lies inside S v2( ) . Consider the
points lt and t for 0 < l < 1. Because lt < t, C t v t( , )l l  ≥ C t v t( , )  (be-

cause C u v u( , )  is nonincreasing in u), or equivalently, C(lt,v) ≥ lC(t,v).

Hence C t v( ( ) , )l l+ -1 0  ≥ lC(t,v) + (1- l )C(0,v), so that every point on
the line segment joining (0,v,0) to (t,v,C(t,v)) lies inside S v2( ) . Con-
versely, assume that S v2( )  is starlike with respect to (0,v,0). Let 0 £ u1 <
u2  £ 1. Because the line segment joining (0,v,0) to ( u2 ,v,C( u2 ,v)) lies
inside S v2( ) , we have

C u v C
u

u
u

u

u
v

u

u
C u v

u

u
C v

u

u
C u v

1
1

2
2

1

2

1

2
2

1

2

1

2
2

1 0

1 0

, ,

, , , ,

( ) = + -
Ê
ËÁ

ˆ
¯̃

Ê

ËÁ
ˆ

¯̃

≥ ( ) + -
Ê
ËÁ

ˆ
¯̃

( ) = ( )

and thus C u v u( , )1 1  ≥ C u v u( , )2 2 . Hence LTD(YΩX). �
An important consequence of tail monotonicity is the following theo-

rem (Capéraà and Genest 1993), in which the bounds for Spearman’s
rho and Kendall’s tau in Corollary 5.1.11 can be narrowed when one
random variable is simultaneously left tail decreasing and right tail in-
creasing in the other. The proof proceeds along lines similar to those in
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the proofs of Theorems 5.1.9 and 5.1.10, and can be found in (Capéraà
and Genest 1993).
Theorem 5.2.8. Let X and Y be continuous random variables. If
LTD(YΩX) and RTI(YΩX), then rX Y,  ≥ t X Y,  ≥ 0 (and similarly if

LTD(XΩY) and RTI(XΩY)).
Because any one of the four tail monotonicity properties implies

positive quadrant dependence, Theorem 5.2.2 can be invoked to
strengthen the inequality in the preceding theorem to 3 t X Y,  ≥ rX Y,  ≥
t X Y,  ≥ 0. However, positive quadrant dependence alone is insufficient

to guarantee rX Y,  ≥ t X Y, , as the following example shows.

Example 5.14. Let U and V be uniform (0,1) random variables whose
joint distribution function is the diagonal copula constructed from the

diagonal d(t) = t2, i.e., C(u,v) = min(u,v, ( )u v2 2 2+ ) [see Examples 3.5

and 3.17(c)]. Because u ≥ uv, v ≥ uv, and ( )u v2 2 2+  ≥ uv, U and V are
positively quadrant dependent. However, it is easy to check that

P U V P U V£ £[ ] = £ £[ ] = @1 2 1 2 1 2 1 2 3 2 3 3 577  and  .

so that U is not left tail decreasing in V, and

P U V P U V> > -[ ] = @ > >[ ] =1 2 1 3 2 3 3 577 1 2 1 2 1 2.   and  ,

so that U is not right tail increasing in V. By symmetry, V is not left tail
decreasing in U, nor is V is not right tail increasing in U. Furthermore,
from Exercise 5.4,

t = - =Ú4 1
1
3

2
0

1
t dt ,

and from (5.1.15c),

r p= - = - @ÚÚ12 3 5
3
2

2882 C u v dudv( , ) .
I

,

and thus r < t. �

5.2.3 Stochastic Monotonicity, Corner Set Monotonicity, and
Likelihood Ratio Dependence

In the preceding section, we studied the monotonicity of P Y y X x[ ]> >
and similar expressions. Replacing P Y y X x[ ]> >  by P Y y X x[ ]> =
yields further forms of dependence collectively known as “stochastic
monotonicity”:
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Definition 5.2.9. Let X and Y be random variables.
1. Y is stochastically increasing in X [which we denote SI(YΩX)] if

P Y y X x[ ]> =  is a nondecreasing function of x for all y. (5.2.9)

2. X is stochastically increasing in Y [which we denote SI(XΩY)] if

P X x Y y[ ]> =  is a nondecreasing function of y for all x. (5.2.10)

Two negative dependence properties, SD(YΩX) (Y is stochastically de-

creasing in X) and SD(XΩY) (X is stochastically decreasing in Y) are de-
fined analogously by replacing “nondecreasing” by “nonincreasing”
in (5.2.9) and (5.2.10).
Example 5.15 (Barlow and Proschan 1981). Suppose X and Y are ran-
dom variables with the Marshall-Olkin bivariate exponential distribution
with parameters l1, l2 , and l12, as presented in Sect. 3.1.1. The condi-
tional survival probability P Y y X x[ ]> =  is

P Y y X x
y x y x y

y x y

[ ]
exp ( ) , ,

exp , .

> = = +
- - -( ) £

-( ) >

Ï

Ì
Ô

ÓÔ

l
l l

l l

l

1

1 12
12 2

2

Because this conditional survival probability is nondecreasing in x,
SI(YΩX). �

The term “stochastically increasing” is from (Shaked 1977; Barlow
and Proschan 1981). However, in (Lehmann 1966) this property is
called positive regression dependence, a term used by other authors as
well with the notation PRD(YΩX) and PRD(XΩY) rather than SI(YΩX)

and SI(XΩY). Although we obtained the two SI properties from the RTI
properties, they can also be obtained from the LTD properties, because
P Y y X x[ ]£ =  = 1- > =P Y y X x[ ]. Hence SI(YΩX) if P Y y X x[ ]£ =  is

a nonincreasing function of x for all y and similarly for SI(XΩY).
In the next theorem, we show that when the random variables are

continuous, stochastic monotonicity, like tail monotonicity and quad-
rant dependence, is a property of the copula.
Theorem 5.2.10. Let X and Y be continuous random variables with
copula C. Then

1. SI(YΩX) if and only if for any v in I and for almost all u,
∂ ∂C u v u( , )  is nonincreasing in u;

2. SI(XΩY) if and only if for any u in I and for almost all v,
∂ ∂C u v v( , )  is nonincreasing in v.
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Proof: Because the marginal distribution functions F and G, respec-
tively, of X and Y are nondecreasing, P Y y X x[ ]£ =  is a nonincreasing

function of x for all y if and only if P V vU u[ ]£ =  is a nonincreasing
function of u for all v, where U = F(X) and V = G(Y) are uniform (0,1)
random variables whose joint distribution function is the copula C. But,
as shown in (2.9.1), P V vU u[ ]£ =  = ∂ ∂C u v u( , ) . �

The following geometric interpretation of stochastic monotonicity
now follows [see (Roberts and Varberg 1973)]:
Corollary 5.2.11. Let X and Y be continuous random variables with
copula C. Then

1. SI(YΩX) if and only if for any v in I, C(u,v) is a concave function
of u,

2. SI(XΩY) if and only if for any u in I, C(u,v) is a concave function
of v.

Example 5.16. Let Cq  be a member of the Plackett family (3.3.3).
Then

∂
∂

q q

q q q
q

2

2 2 3 2

2 1 1

1 1 4 1u
C u v

v v

u v uv
( , )

( ) ( )

[ ( )( )] ( )
= - - -

+ - + - -( )
,

so that ∂ ∂q
2 2C u v u( , )  £ 0 for q ≥ 1, thus Cq (u,v) is a concave function

of u for q ≥ 1. It follows that if X and Y are continuous random vari-

ables with copula Cq , then SI(YΩX) (and by symmetry, SI(XΩY) as well)

for q ≥ 1 [Recall that for this family, C1 = P, C•  = M]. �
The stochastic monotonicity properties imply the tail monotonicity

properties:
Theorem 5.2.12. Let X and Y be continuous random variables with
copula C. Then

1. if SI(YΩX), then LTD(YΩX) and RTI(YΩX),

2. if SI(XΩY), then LTD(XΩY) and RTI(XΩY).

Proof. Assume SI(YΩX), fix v, and again let S v2( )  be the set of points

in the unit cube I3 lying in a plane perpendicular to the v-axis on or
below the graph of the copula. Because C(u,v) is a concave function of
u, it follows that S v2( )  is starlike with respect to both (0,v,0) and (1,v,v)
in S v2( ) , hence LTD(YΩX) and RTI(YΩX).  The second part of the
proof is analogous. �

The converse to Theorem 5.2.12 is false—the tail monotonicity
properties do not imply stochastic monotonicity—see Exercise 5.32.

Another pair of dependence properties, also derived from tail
monotonicity, are the “corner set monotonicity” properties, introduced
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in (Harris 1970). Because LTD(YΩX) is defined in terms of

P Y y X x[ ]£ £ , and LTD(XΩY) in terms of P X x Y y[ ]£ £ , we are led to
considering the behavior of the joint probability
P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  (and similarly for the right tail properties):

Definition 5.2.13. Let X and Y be continuous random variables.
1. X and Y are left corner set decreasing [which we denote

LCSD(X,Y)] if

P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  is nonincreasing in ¢x  and in ¢y (5.2.11)

for all x and y;
2. X and Y are right corner set increasing [which we denote

RCSI(X,Y)] if

P X x Y y X x Y y[ , , ]> > > ¢ > ¢  is nondecreasing in ¢x  and in ¢y (5.2.12)

for all x and y.
Two negative dependence properties, LCSI(X,Y) (X and Y are left

corner set increasing) and RCSD(XΩY) (X and Y are right corner set de-
creasing) are defined analogously by exchanging the words “nonde-
creasing” and “nonincreasing” in (5.2.11) and (5.2.12).

As an immediate consequence, we have that the corner set
monotonicity properties imply the corresponding tail monotonicity
properties:
Theorem 5.2.14. Let X and Y be continuous random variables.

1. If LCSD(X,Y)], then LTD(YΩX) and LTD(XΩY);

2. If RCSI(X,Y)], then RTI(YΩX) and RTI(XΩY).

Proof.  For part 1, set x = • and ¢y  = • to obtain LTD(YΩX), and set

y = • and ¢x  = • to obtain LTD(XΩY). Part 2 is similar. �
The converse to Theorem 5.2.14 is false—the tail monotonicity

properties do not imply corner set monotonicity—see Exercise 5.33.
The following theorem gives simple criteria for LCSD(X,Y) and

RCSI(X,Y) in terms of inequalities for the joint distribution and survival
function of X and Y:
Theorem 5.2.15. Let X and Y be continuous random variables with
joint distribution function H:

1. LCSD(X,Y) if and only if

H x y H x y H x y H x y( , ) ( , ) ( , ) ( , )¢ ¢ ≥ ¢ ¢ (5.2.13)

for all x, y, ¢x , ¢y  in R  such that x £ ¢x and y £ ¢y .
2. RCSI(X,Y) if and only if

H x y H x y H x y H x y( , ) ( , ) ( , ) ( , )¢ ¢ ≥ ¢ ¢ (5.2.14)
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for all x, y, ¢x , ¢y  in R  such that x £ ¢x and y £ ¢y .
Proof: We prove part 1, the proof of part 2 is similar. First assume

LCSD(X,Y). Thus P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  is nonincreasing in ¢x

and in ¢y  for all x and y, so that for y = •, P X x X x Y y[ , ]£ £ ¢ £ ¢  is

nonincreasing in ¢x  and in ¢y  for all x. Hence if x £ ¢x , then

P X x Y y

P X x Y y

[ , ]
[ , ]

£ £ ¢
£ ¢ £ ¢

is nonincreasing in ¢y . Thus, for y £ ¢y ,

P X x Y y

P X x Y y

P X x Y y

P X x Y y

[ , ]
[ , ]

[ , ]
[ , ]

£ £
£ ¢ £

≥ £ £ ¢
£ ¢ £ ¢

, (5.2.15)

which is equivalent to (5.2.13).
Conversely, assume that (5.2.15) holds. It follows that

P X x X x Y y[ , ]£ £ ¢ £ ¢   is nonincreasing in ¢x  and in ¢y  for all x, and

that P Y y X x Y y[ , ]£ £ ¢ £ ¢  is nonincreasing in ¢x  and in ¢y  for all y. If

x £ ¢x and y £ ¢y , then P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  is trivially nonin-

creasing in ¢x  and in ¢y . If x > ¢x  and y £ ¢y , then

P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  = P Y y X x Y y[ , ]£ £ ¢ £ ¢ , which we have

just shown is nonincreasing in ¢x  and in ¢y . The case x £ ¢x and y > ¢y

is similar, and when x > ¢x and y > ¢y , P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  = 1.
Hence LCSD(X,Y), as claimed. �

The criteria in Theorem 5.2.14 for LCSD(X,Y) and RCSI(X,Y) can be
succinctly expressed using the notion of “totally positive” functions. A

function f from R2  to R is totally positive of order two (Karlin 1968),

abbreviated TP2, if f(x,y) ≥ 0 on R2  and whenever x £ ¢x and y £ ¢y ,

f x y f x y

f x y f x y

( , ) ( , )

( , ) ( , )

¢
¢ ¢ ¢

≥ 0 (5.2.16)

(“order two” refers to the size of the matrix). When the inequality in
(5.2.16) is reversed, we say that f is reverse regular of order two (or re-
verse rule of order two), abbreviated RR2. In terms of total positivity,
we have
Corollary 5.2.16. Let X and Y be continuous random variables with
joint distribution function H. Then LCSD(X,Y) if and only if H is TP2,
and  RCSI(X,Y) if and only if H  is TP2.
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Example 5.17. Let X and Y be random variables with the Marshall-
Olkin bivariate exponential distribution presented in Sect. 3.1.1, with
parameters l1, l2 , and l12. If H  denotes the joint survival function of
X and Y, then

H x y x y x y( , ) exp max( , )= - - -[ ]l l l1 2 12 .
Thus

H x y H x y

x x y y x y x y

( , ) ( , )

exp ( ) ( ) [max( , ) max( , )]

¢ ¢ =
- + ¢ - + ¢ - + ¢ ¢[ ]l l l1 2 12

and
H x y H x y

x x y y x y x y

( , ) ( , )

exp ( ) ( ) [max( , ) max( , )] .

¢ ¢ =
- + ¢ - + ¢ - ¢ + ¢[ ]l l l1 2 12

So if 0 £ £ ¢x x and 0 £ £ ¢y y , then max( , )x y  + max( , )¢ ¢x y  £ max( , )¢x y

+ max( , )x y¢ . It follows that H x y H x y( , ) ( , )¢ ¢  ≥ H x y H x y( , ) ( , )¢ ¢ , and
hence RCSI(X,Y). �

In terms of the copula and survival copula of X and Y, we have:
Corollary 5.2.17. Let X and Y be continuous random variables with
copula C. Then LCSD(X,Y) if and only if C is TP2, and RCSI(X,Y) if and

only if Ĉ  is TP2.
Theorems 5.2.5, 5.2.12, and 5.2.14 yield the implications illustrated

in Fig. 5.8 among the various dependence properties presented so far.
Exercises 5.30, 5.32, and 5.33 show that none of the implications are
equivalences.

SI(YΩX) fi RTI(YΩX) ‹ RCSI(X,Y)

fl fl fl
LTD(YΩX) fi PQD(X,Y) ‹ RTI(XΩY)

› › ›
LCSD(X,Y) fi LTD(XΩY) ‹ SI(XΩY)

Fig. 5.8. Implications among the various dependence properties

The final dependence property that we discuss in this section is like-
lihood ratio dependence (Lehmann 1966). It differs from those consid-
ered above in that it is defined in terms of the joint density function
rather than conditional distribution functions.
Definition 5.2.18. Let X and Y be continuous random variables with
joint density function h(x,y). Then X and Y are positively likelihood ra-
tio dependent [which we denote PLR(X,Y)] if h satisfies

h x y h x y h x y h x y( , ) ( , ) ( , ) ( , )¢ ¢ ≥ ¢ ¢ (5.2.17)
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for all x, y, ¢x , ¢y  in R  such that x £ ¢x and y £ ¢y , i.e., h is TP2.
Some authors use the notation TP2(X,Y) rather than PLR(X,Y). This

property derives its name from the fact that the inequality in (5.2.17) is
equivalent to the requirement that the conditional density of Y given x
has a monotone likelihood ratio. Negative likelihood ratio dependence
is defined analogously, by reversing the sense of the inequality in
(5.2.17) (i.e., h is RR2).

Of the dependence properties discussed so far, positive likelihood ra-
tio dependence is the strongest, implying all of the properties in Fig.
5.8. To prove this statement, we need only prove Theorem 5.2.19.
Theorem 5.2.19. Let X and Y be random variables with an absolutely
continuous distribution function. If PLR(X,Y), then SI(YΩX), SI(XΩY),
LCSD(X,Y), and RCSI(X,Y).

Proof (Barlow and Proschan 1981). Let h, f, and g denote the joint
and respective marginal densities of X and Y, and assume PLR(X,Y).
Then if x £ ¢x and t £ ¢t , h x t h x t h x t h x t( , ) ( , ) ( , ) ( , )¢ ¢ ≥ ¢ ¢ , so that if we di-
vide both sides of the inequality by f x f x( ) ( )¢  and integrate with re-
spect to t from –• to y and with respect to ¢t  from y to • (where y is ar-

bitrary), we have P Y y X x P Y y X x[ ] [ ]£ = > = ¢  ≥ P Y y X x[ ]£ = ¢ ◊
P Y y X x[ ]> = ¢ . Adding P Y y X x P Y y X x[ ] [ ]> = ¢ > =  to both sides, the

inequality simplifies to P Y y X x[ ]> = ¢  ≥ P Y y X x[ ]> = , i.e.,

P Y y X x[ ]> =  is nondecreasing in x for all y, so that SI(YΩX). The

proof that PLR(X,Y) implies SI(XΩY) is similar.

To show that PLR(X,Y) implies LCSD(X,Y), we first note that if x £
¢x and y £ ¢y , then P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  is trivially nonincreas-

ing in ¢x  and in ¢y , and if x > ¢x  and y > ¢y , then
P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  = 1. So assume x > ¢x  and y £ ¢y , in which

case P X x Y y X x Y y[ , , ]£ £ £ ¢ £ ¢  = P Y y X x Y y[ , ]£ £ ¢ £ ¢ . As this is
clearly nonincreasing in ¢y , we need only show that
P Y y X x Y y[ , ]£ £ ¢ £ ¢  = P X x Y y P X x Y y[ , ] [ , ]£ ¢ £ £ ¢ £ ¢  is nonin-

creasing in ¢x , i.e., that for ¢x  £ ¢¢x ,

P X x Y y

P X x Y y

P X x Y y

P X x Y y

[ , ]
[ , ]

[ , ]
[ , ]

£ ¢ £
£ ¢ £ ¢

≥ £ ¢¢ £
£ ¢¢ £ ¢

. (5.2.18)

Assume PLR(X,Y), so that if s £ ¢s  and t £ ¢t , h s t h s t( , ) ( , )¢ ¢
≥ h s t h s t( , ) ( , )¢ ¢ . Integrating both sides of this inequality with respect to s

from –• to ¢x , with respect to ¢s  from ¢x  to ¢¢x , with respect to t from
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–• to y, and with respect to ¢t  from y to ¢y  yields

P X x Y y P x X x y Y y[ , ] [ , ]£ ¢ £ ¢ < £ ¢¢ < £ ¢  ≥ P X x y Y y[ , ]£ ¢ < £ ¢ ◊
P x X x Y y[ , ]¢ < £ ¢¢ £ . If we add P X x Y y[ , ]£ ¢ £ P x X x Y y[ , ]¢ < £ ¢¢ £  to
both sides, the inequality simplifies to P X x Y y[ , ]£ ¢ £ ◊
P x X x Y y[ , ]¢ < £ ¢¢ £ ¢  ≥ P X x Y y P x X x Y y[ , ] [ , ]£ ¢ £ ¢ ¢ < £ ¢¢ £ . Now add-
ing P X x Y y P X x Y y[ , ] [ , ]£ ¢ £ £ ¢ £ ¢  to both sides yields
P X x Y y P X x Y y[ , ] [ , ]£ ¢ £ £ ¢¢ £ ¢  ≥ P X x Y y P X x Y y[ , ] [ , ]£ ¢ £ ¢ £ ¢¢ £ ,

which is equivalent to (5.2.18). The case x £ ¢x  and y > ¢y  is similar,
which completes the proof that PLR(X,Y) implies LCSD(X,Y). The proof
that PLR(X,Y) implies RCSI(X,Y) is analogous. �

Although positive likelihood ratio dependence is a “global” prop-
erty, one can view it “locally,” as we did with positive quadrant de-
pendence (see the paragraph following Theorem 5.2.2). That is, for any
x, y, ¢x , ¢y  in R such that x £ ¢x and y £ ¢y , we evaluate the density h at
the four points (x,y), (x, ¢y ), ( ¢x ,y), and ( ¢x , ¢y ), and when
h x y h x y h x y h x y( , ) ( , ) ( , ) ( , )¢ ¢ - ¢ ¢  ≥ 0, (X,Y) is “locally positively likeli-
hood ratio dependent” (or h is “locally” TP2). When the inequality is
reversed, (X,Y) is “locally negatively likelihood ratio dependent” (or h
is “locally” RR2). In the next theorem, we relate local likelihood ratio
dependence to Kendall’s tau:
Theorem 5.2.20. Let X and Y be random variables with joint density
function h, and let

T h x y h x y h x y h x y dxdydx dy
xy= ¢ ¢ - ¢ ¢[ ] ¢ ¢

-•
¢

-•
¢

-•
•

-•
•

ÚÚÚÚ ( , ) ( , ) ( , ) ( , ) .

Then Kendall’s tau for X and Y is given by t X Y,  = 2T.
Proof: Let C, F, G, f, and g denote the copula, the marginal distribu-

tion functions, and the marginal densities of X and Y, respectively, and
set u = F(x), ¢u  = F( ¢x ), v = G(y), and ¢v  = G( ¢y ). Also let c(u,v) =

∂ ∂ ∂2C u v u v( , ) , so that h(x,y) = c(F(x),G(y))f(x)g(y). Then

T c u v c u v c u v c u v dudvdu dv
uv= ¢ ¢ - ¢ ¢[ ] ¢ ¢¢¢

ÚÚÚÚ ( , ) ( , ) ( , ) ( , )
000

1

0

1
. (5.2.19)

The inner double integral is readily evaluated to yield

T C u v
u v

C u v
u

C u v
v

C u v du dv

C u v dC u v
u

C u v
v

C u v dudv

= ¢ ¢
¢ ¢

¢ ¢ -
¢

¢ ¢
¢

¢ ¢
È

Î
Í
Í

˘

˚
˙
˙

¢ ¢

= -

ÚÚ

ÚÚ ÚÚ

( , ) ( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ( , ) . ( . .

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂

2

0

1

0

1

2 2 5 2
I I

2020)
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But from (5.1.7) the first integral is ( ),t X Y +1 4 , and from (5.1.9) the
second integral is ( ),1 4- t X Y , and the conclusion now follows. �

Recall that in Sect. 5.2.1 we observed that Spearman’s rho can be
interpreted as a measure of “average” quadrant dependence, and from
the above discussion we see that Kendall’s tau can be interpreted as a
measure of “average” likelihood ratio dependence. Of the dependence
properties discussed in this chapter, quadrant dependence is the weakest,
whereas likelihood ratio dependence is the strongest. Thus the two most
commonly used measures of association are related to two rather differ-
ent dependence properties, a fact that may partially explain the differ-
ences between the values of rho and tau that we observed in several of
the examples and exercises in earlier sections of this chapter.

The notion of positive likelihood ratio dependence can be extended
to random variables whose joint distribution function fails to be abso-
lutely continuous. To do so, we need some new notation: Let J and K
denote intervals in R . Then we will write H(J,K) for P[XŒJ,YŒK]. We

also write J < K whenever sŒJ and tŒK implies s < t.

Definition 5.2.21 (Block et al. 1982; Kimeldorf and Sampson 1987).
Let X and Y be continuous random variables with joint distribution
function H(x,y). Then X and Y are positively likelihood ratio dependent
if H satisfies

H J K H J K H J K H J K( , ) ( , ) ( , ) ( , )2 2 1 1 1 2 2 1≥ (5.2.21)

for all intervals J1,J2,K1,K2 in R  such that J1 < J2 and K1 < K2.
It is easy to verify that when H has a density h, then Definitions

5.2.18 and 5.2.21 are equivalent. Furthermore, (5.2.21) can be ex-
pressed in terms of the copula C of X and Y, because H(J,K) =
C(F(J),G(K)), where for any two intervals [ u1,u2 ] and [ v1,v2],
C([ u1,u2 ],[ v1,v2]) = C( u2 ,v2) – C( u1,v2) – C( u2 ,v1) + C( u1,v1).

Using Definition 5.2.21, it is possible to prove an extension of Theo-
rem 5.2.20 without the assumption that X and Y have a joint den-
sity—they need only be continuous. To do so, we use the copula C of X
and Y to construct a measure of “local” positive likelihood ratio de-
pendence analogous to that which appears in the integrand of (5.2.19).
We begin with partitioning the interval [0,1] on the u-axis in the usual

manner: choose points { }u p p
n

= 0 such that 0 = u0  < u1 <L< un  = 1 and

let J p = [ u p-1,u p ]. Similarly partition [0,1] on the v-axis into intervals

Kq  = [ vq -1,vq ] for 1 £ q £ m; thus generating a partition P of I2 into

mn rectangles J p¥ Kq . Let P  denote the norm of P. For each of the
n m
2 2( )( )  choices of intervals Jr , J p, Ks , and Kq , with 1 £ r < p £ n and 1

£ s < q £ m, the quantity
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C J K C J K C J K C J Kp q r s p s r q( , ) ( , ) ( , ) ( , )-

measures “local” positive (or negative) likelihood ratio dependence.
Analogous to (5.2.19), we now define

T C J K C J K C J K C J K
P

p q r s p s r q
s

q

r

p

q

m

p

n
= -[ ]

Æ =

-

=

-

==
ÂÂÂÂlim ( , ) ( , ) ( , ) ( , )

0 1

1

1

1

22
.

The inner double summation in T readily telescopes to yield

T

C u v C u v C u v C u v
P

p q p q p q p q
q

m

p

n

=

-[ ]
Æ

- - - -
==

ÂÂlim ( , ) ( , ) ( , ) ( , ) . ( . . )
0

1 1 1 1
22

5 2 22

It can be shown (Nelsen 1992) that T exists and t X Y,  = 2T, as in Theo-
rem 5.2.20.

Exercises

5.30 This exercise shows that positive quadrant dependence does not
imply any of the tail monotonicity properties. Let C be the ordi-
nal sum of {M,W,M} with respect to the partition
{[ , ]0 q ,[ , ]q q1- ,[ , ]1 1- q }, for any q in (1/4,1/2) [this copula is also
a shuffle of M]. Show that if X and Y are random variables with
copula C, then PQD(X,Y) but none of the four tail monotonicity
properties hold.

5.31 Let X and Y be continuous random variables whose copula is C.
(a) Show that if C = Ĉ , then LTD(YΩX) if and only if RTI(YΩX),

and LTD(XΩY) if and only if RTI(XΩY).
(b) Show that is C is symmetric [i.e., C(u,v) = C(v,u)], then
LTD(YΩX) if and only if LTD(XΩY), and RTI(YΩX) if and only if

RTI(XΩY).

5.32 This exercise shows that the tail monotonicity properties do not
imply the stochastic monotonicity properties. Let C be given by

C u v

uv u v
v u

uv
u v

M u v

( , )

, ,

, ,

( , ),

=

- + - £ £ - £

£ - £ £

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

3
2

1
2

1
3

1
2
3

3
2

1
3

1
2
3

otherwise.
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(a) Let X and Y be continuous random variables whose copula is
C. Show that LTD(YΩX), LTD(XΩY), RTI(YΩX), and RTI(XΩY).

(b) Show that SI(YΩX), and SI(XΩY) both fail.

5.33 This exercise shows that the tail monotonicity properties do not
imply the corner set monotonicity properties. Let C be the copula
whose probability mass is uniformly distributed on two line seg-
ments, one joining (0,0) to (1,1/2), and the other joining (0,1/2) to
(1,1).
(a) Show that C is given by

C u v u v
u

v( , ) min , , ( )= + -Ê
ËÁ

ˆ
¯̃

+

2
1 2 .

(b) Let X and Y be continuous random variables whose copula is
C. Show that LTD(YΩX) and RTI(YΩX).
(c) Show that LCSD(X,Y) and RCSI(X,Y) both fail. [Hint: Con-
sider the points ui  = vi = i 3, i = 1,2; and note that C = Ĉ .]

5.34 Let X and Y be random variables whose copula C is Archimedean
with a strict generator j in W. Prove that

(a) PQD(X,Y) if and only if - -ln j 1  is subadditive on (0,•).

(b) If j -1 is differentiable, then SI(YΩX) or SI(XΩY) if and only if

ln( - -d t dtj 1( ) ) is convex on (0,•) (Capéraà and Genest 1993).
(c) The LTD and LCSD properties are equivalent.

(d) If j -1 is completely monotone, then LCSD(X,Y) (Alsina et al.
2005).

5.35 Let X and Y be continuous random variables whose copula is C.
Show that
(a) LTD(YΩX) and LTD(XΩY) if and only if for all u, ¢u , v, ¢v  in I

such that 0 < u £ ¢u  £ 1 and 0 < v £ ¢v  £ 1,

C u v

uv

C u v

u v

( , ) ( , )≥ ¢ ¢
¢ ¢

.

(b) Conclude that LTD(YΩX) and LTD(XΩY) if and only if for

every point ( ¢u , ¢v ) in 0 1
2

,( ] , the graph of z = C(u,v) lies above
the graph of the hyperbolic paraboloid through the four points
(0,0,0), ( ¢u ,0,0), (0, ¢v ,0), and ( ¢u , ¢v ,C( ¢u , ¢v )), i.e., z =
C u v u v uv( , )¢ ¢ ¢ ¢[ ] ◊ .
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5.36 Let X and Y be continuous random variables whose copula is C.
Show that
(a) if the function u C u v- ( , )  is TP2, then LTD(YΩX) and

RTI(XΩY);

(b) if the function v C u v- ( , )  is TP2, then LTD(XΩY) and

RTI(YΩX);

(c) the function 1- - +u v C u v( , )  is TP2 if and only if Ĉ  is TP2.

5.37 Let X and Y be continuous random variables whose copula C has
cubic sections in both u and v, i.e., C satisfies the conclusion of
Theorem 3.2.8. Show that (Nelsen et al. 1997):
(a) PQD(X,Y) if and only if A1, A2, B1, B2 are all nonnegative;
(b) LTD(YΩX) if and only if 2 A1 ≥ B1 ≥ 0, 2 A2 ≥ B2 ≥ 0;

(c) RTI(YΩX) if and only if 2 B1 ≥ A1 ≥ 0, 2 B2 ≥ A2 ≥ 0;

(d) SI(YΩX) if and only if 2 A1 ≥ B1, 2 B1 ≥ A1, 2 A2 ≥ B2,

2 B2 ≥ A2;

(e) LTD(XΩY) if and only if 2 A2 ≥ A1 ≥ 0, 2 B2 ≥ B1 ≥ 0;

(f) RTI(XΩY) if and only if 2 A1 ≥ A2 ≥ 0, 2 B1 ≥ B2 ≥ 0;

(g) SI(XΩY) if and only if 2 A1 ≥ A2, 2 A2 ≥ A1, 2 B1 ≥ B2,

2 B2 ≥ B1.

5.38 Let X and Y be random variables such that SI(YΩX) and SI(XΩY).
Hutchinson and Lai (1990) conjectured that for such random
variables, r £ 3 2t . Let q be in [0,1/4], and let Cq  be the copula

C u v uv uv u v u v uvq q( , ) ( )( )( )= + - - + + -2 1 1 1 2 .

Note that Cq  is cubic in u and in v, so that Cq  is given by (3.2.19)
with A1 = B2 = 4q, A2 = B1 = 2q. Suppose the copula of X and Y
is Cq .
(a) Show that SI(YΩX) and SI(XΩY).
(b) Show (see Exercise 5.13) that

r qq =   and  t q qq = -2
3

2
75

2,

so that r > 3 2t  for q in (0,1/4], and hence that the conjecture is

false. Hutchinson and Lai also conjectured that when SI(YΩX) and

SI(XΩY),
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- + + £ £ -1 1 3 2 2t r t t ,

but this conjecture remains to be proven or disproven. However,
when C is an extreme value copula (see Sect. 3.3.4), Hürlimann
(2003) has shown that

- + + £ £ -1 1 3 3 2 2 2t r t t tmin{ , }.

5.39 This exercise provides an alternate proof (Joe 1997) that
PLR(X,Y) implies LCSD(X,Y). Let X, Y, and h be as in Theorem
5.2.19 and let H be the joint distribution function of X and Y.
Suppose that x £ ¢x and y £ ¢y . Show that PLR(X,Y) implies that

h s t h s t h s t h s t dt ds dtds
y

y

x

xyx
( , ) ( , ) ( , ) ( , )¢ ¢ - ¢ ¢[ ] ¢ ¢ ≥¢¢

-•-• ÚÚÚÚ 0,

which in turn implies

H x y H x y H x y H x y H x y

H x y H x y H x y H x y

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ,

¢ ¢ - ¢ - ¢ +[ ]
≥ ¢ -[ ] ¢ -[ ]

a condition equivalent to LCSD(X,Y). There is an analogous proof
that PLR(X,Y) implies RCSI(X,Y).

5.3 Other Measures of Association

In Sect. 5.1, we discussed four measures of association based on the no-
tion of concordance. There are many other nonparametric measures of
association that depend on the copula of the random variables. In Sect.
5.3.1, we discuss a class of measures, known as measures of dependence,
which are based on a “distance” between the copula of a pair of ran-
dom variables X and Y and the “independence” copula P. In Sect.

5.3.2, we consider measures derived from Gini’s g, measures that are
based on “distances” between the copula of X and Y and the copulas M
and W of the Fréchet bounds.

5.3.1 Measures of Dependence

In Definition 5.1.7, we presented a list of seven properties for one class
of measures of association—those known as “measures of concor-
dance.” In Theorems 5.1.9 and 5.1.14, we saw that Kendall’s t, Spear-

man’s r, Gini’s g, and Blomqvist’s b are measures of concordance. But
one defect of such measures is that for the fourth property in Definition



208      5 Dependence

5.1.7, which states that if the random variables are independent then the
measure equals zero, the converse fails to hold. Examples abound in
which a measure of concordance is zero but the random variables are
dependent.

In this section, we will consider measures of association that are
commonly called “measures of dependence” (Rényi 1959; Schweizer
and Wolff 1981; Jogdeo 1982; Lancaster 1982). Recall that measures of
concordance measure how “large” values of one variable tend be asso-
ciated with “large” values of the other (and “small” with “small”),
and consequently they attain their extreme values when the copula of
the random variables is either M (where the measure is +1) or W (where
the measure is –1). On the other hand, in the words of Lancaster (1982),
“a measure of dependence indicates in some defined way, how closely
X and Y are related, with extremes at mutual independence and (mono-
tone) dependence.” Here then is a minimal set of desirable properties
for a nonparametric measure of dependence. It is adapted from sets of
properties discussed in (Rényi 1959; Schweizer and Wolff 1981; Jogdeo
1982; Lancaster 1982):

Definition 5.3.1. A numeric measure d of association between two con-
tinuous random variables X and Y whose copula is C is a measure of de-
pendence if it satisfies the following properties (where we write d X Y,  or
d C  if convenient):

1. d is defined for every pair of continuous random variables X and
Y;

2. d X Y,  = d Y X, ;

3. 0 £ d X Y,  £ 1;
4. d X Y,  = 0 if and only if X and Y are independent;
5. d X Y,  = 1 if and only if each of X and Y is almost surely a strictly

monotone function of the other;
6. if a and b are almost surely strictly monotone functions on RanX

and RanY, respectively, then da b( ), ( )X Y  =d X Y, ,

7. if {( Xn ,Yn )} is a sequence of continuous random variables with
copulas Cn , and if {Cn} converges pointwise to C, then
limn C CnÆ • =d d .

Our first example of such a measure is closely related to Spearman’s
rho. Recall from (5.1.16) that for continuous random variables X and Y
with copula C, Spearman’s rho can be written as

r rX Y C C u v uv dudv, ( , )= = -[ ]ÚÚ12 2I
.

As noted before, rC  is proportional to the signed volume between the
graphs of the copula C and the product copula P. If in the integral
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above, we replace the difference C u v uv( , ) -[ ] between C and P by the

absolute difference C u v uv( , ) - , then we have a measure based upon

the L1 distance between the graphs of C and P. This measure
(Schweizer and Wolff 1981; Wolff 1977), which is known as Schweizer
and Wolff’s s, is given by

s sX Y C C u v uv dudv, ( , )= = -ÚÚ12 2I
. (5.3.1)

Theorem 5.3.2. Let X and Y be continuous random variables with cop-
ula C. Then the quantity s C  defined in (5.3.1) is a measure of depend-
ence, i.e., it satisfies the seven properties in Definition 5.3.1.

Proof (Schweizer and Wolff 1981). It is easy to see from its defini-
tion that s satisfies the first two properties. The third property is also

easily established for s by first showing that for any copula C,

C u v uv dudv( , ) - £ÚÚI2

1
12

. (5.3.2)

The fourth property follows from Theorem 2.4.2, and the fifth from
Theorems 2.5.4 and 2.5.5 and the observation the equality holds in
(5.3.2) if and only if C is M or W. If both a and b are almost surely

strictly increasing, s satisfies the sixth property as a consequence of

Theorem 2.4.3. If a is almost surely strictly increasing, and b almost

surely strictly decreasing, s satisfies the sixth property as a consequence

of Theorem 2.4.4 and the observation that C X Ya b( ), ( )(u,v) – P(u,v) =

P(1 – u,v) – CX Y, (1 – u,v). The remaining cases (for the sixth prop-
erty) are similar. For the seventh property, we note that the Lipschitz
condition (2.2.5) implies that any family of copulas is equicontinuous,
thus the convergence of { Cn} to C is uniform. �

Of course, it is immediate that if X and Y are PQD, then s X Y,  = rX Y, ;
and that if X and Y are NQD, then s X Y,  = – rX Y, . Hence for many of
the totally ordered families of copulas presented in earlier chapters
(e.g., Plackett, Farlie-Gumbel-Morgenstern, and many families of Ar-
chimedean copulas), s X Y,  = rX Y, . But for random variables X and Y
that are neither PQD nor NQD, i.e., random variables whose copulas are
neither larger nor smaller than P, s is often a better measure than r, as
the following examples (Wolff 1977; Schweizer and Wolff 1981) illus-
trate.
Example 5.18. Let X and Y be random variables with the circular uni-
form distribution presented in Sect. 3.1.2. Because X and Y are jointly
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symmetric, the measures of concordance t, r, b, and g are all 0 (see Ex-
ercise 5.20). But clearly X and Y are not independent, and hence a
measure of dependence such as s will be positive. The copula C of X

and Y is given by (3.1.5), from which it is easy to see that C(u,v) ≥ uv

for (u,v) in 0 1 2 1 2 12 2, ,[ ] » [ ] , and C(u,v) £ uv elsewhere in I2. Evalu-
ating the integral in (5.3.1) yields s X Y,  = 1 4 . �

Example 5.19. Let X and Y be continuous random variables whose
copula Cq , q Œ [0,1], is a member of the family of copulas introduced
in Example 3.3. Recall that the probability mass of Cq  is distributed on
two line segments, one joining (0,0) to (q,1) and the other joining (q,1)
to (1,0), as illustrated in Fig. 3.2(a). In Exercise 5.6, we saw that
t r qq q= = -2 1 so that when q = 1 2, t 1 2 = r1 2 = 0. However, X and Y

are not independent—indeed, Y is a function of X. For each q in [0,1],

Cq (u,v) ≥ uv for u in [0,q] and Cq (u,v) £ uv for u in [q,1], and it fol-
lows from (5.3.1) that

s q q q rq q= - - = + -[ ] = +( )1 2 1
1
2

1 2 1
1
2

12 2( ) ( ) .

Note that s 0 = s 1 = 1 and s 1 2 = 1 2. �

As Schweizer and Wolff (1981) note, “...any suitably normalized
measure of distance between the surfaces z = C(u,v) and z = uv, i.e., any
Lp  distance, should yield a symmetric nonparametric measure of de-

pendence.” For any p, 1 £ p < •, the Lp  distance between C and P is
given by

k C u v uv dudvp
p p

( , ) -Ê
Ë

ˆ
¯ÚÚI2

1
, (5.3.3)

where kp  is a constant chosen so that the quantity in (5.3.3) is 1 when C
= M or W (so that properties 3 and 5 in Definition 5.3.1 are satisfied).
The same techniques used in the proof of Theorem 5.3.2 can be used to
show that for each p, 1 < p < •, the quantity in (5.3.3) is a measure of
dependence. For example, when p = 2, we have

F FX Y C C u v uv dudv, ( , )= = -Ê
Ë

ˆ
¯ÚÚ90 2

2 1 2

I
. (5.3.4)

The square of this measure of dependence, i.e., FX Y,
2 , is called the “de -

pendence index” (Hoeffding 1940), while FX Y,  (but without the nor-
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malizing constant 90) was discussed in (Blum et al. 1961). When p = •,

the L•  distance between C and P is

L LX Y C
u v

C u v uv,
,

sup ( , )= = -
Œ

4
I

. (5.3.5)

It can be shown that this quantity satisfies all the properties in Definition
5.3.1 except the fifth (see Exercise 5.40).

Example 5.20. Let X, Y and Cq , q Œ [0,1], be as in Example 5.19.
Computations analogous to those in that example for s q  yield

Fq qq q q r= - - = + -[ ] = +( )1 3 1
1
2

1 3 2 1
1
2

1 32 1 2 2 1 2
( ) ( ) .

Note that F0 = F1 = 1 and F1 2 = 1 2 . To evaluate Lq  for this family,

we first note that for u in [0,q], Cq (u,v) ≥ uv, and that Cq (u,v) – uv at-
tains its maximum on the line v = u q . Elementary calculus then yields
a maximum value q at the point (q 2,1 2). For u in [q,1], Cq (u,v) £ uv,
and uv C u v- q ( , ) has a maximum value 1- q  at the point
( ( )1 2+ q ,1 2). Hence

Lq qq q q r= -( ) = + -[ ] = +( )max ,1
1
2

1 2 1
1
2

1 .

As with s q  and Fq , L0 = L1 = 1 and L1 2  = 1 2. �

5.3.2 Measures Based on Gini’s Coefficient

As a consequence of the expression C u v uv( , ) -  in (5.3.1), (5.3.4), and
(5.3.5), measures of dependence such as s C , FC , and LC  measure
“distances” from independence, i.e., distances between C and P. Alter-
natively, we could look at a “distance” from complete monotone de-
pendence, i.e., distances between C and either M or W, or both.

Let X and Y be continuous random variables with joint distribution
function H and margins F and G, and copula C. In Sect. 5.1.4, we saw
in (5.1.23) that the measure of concordance between X and Y known as
Gini’s g can be expressed as

g C u v u v dC u v= + - - -( )ÚÚ2 12I
( , ) .

In the derivation of this result, we noted that if we set U = F(X) and V =
G(Y), then U and V are uniform (0,1) random variables whose joint dis-
tribution function is C, and
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g C E U V U V= + - - -( )2 1 . (5.3.6)

There is a natural interpretation of (5.3.6) in terms of expected dis-

tances between (U,V) and the two diagonals of I2. Recall that for p ≥ 1,

the l p  distance between points (a,b) and (c,d) in R2 is

a c b d
p p p

- + -( )1
. The principal diagonal of I2 is ( , )t t t Œ{ }I , i.e.,

the support of M; while the secondary diagonal is ( , )t t t1- Œ{ }I , the

support of W. So if (u,v) represents a point in I2, then u v-  is the l1

distance between (u,v) and the foot ( ) ,( )u v u v+ +( )2 2  of the perpen-

dicular from (u,v) to the principal diagonal of I2, and u v+ -1  is the

l1 distance between (u,v) and the foot ( ) ,( )u v v u- + - +( )1 2 1 2  of the

perpendicular from (u,v) to the secondary diagonal of I2. Thus g C  in
(5.3.6) is twice the difference of the expected l1 distances of (U,V)
from “perfect” positive and “perfect” negative dependence.

In Exercise 5.16, we saw that Spearman’s rho can be written as

rC u v u v dC u v= + -[ ] - -[ ]( )ÚÚ3 1 2 2
2I

( , ) ,

from which it follows that, for U = F(X) and V = G(Y), then

rC E U V U V= + -[ ] - -[ ]( )3 1 2 2 . (5.3.7)

Thus rC  is proportional to the difference of the expected squared l 2
distances of (U,V) from “perfect” positive and “perfect” negative de-
pendence (Long and Krzysztofowicz 1996). Other l p  distances yield
other measures of association (Conti 1993).

Another form for Gini’s g is given by (5.1.25):

g C C u u du u C u u du= - - -[ ]È
ÎÍ

˘
˚̇Ú Ú4 1

0

1

0

1
( , ) ( , ) . (5.3.8)

The second integral above is the L1 distance between the diagonal sec-
tion d M (u) = M(u,u) = u of the Fréchet upper bound copula and the
diagonal section d C (u) = C(u,u) of C, while the first integral is the L1
distance between the secondary diagonal section W(u,1–u) = 0 of the
Fréchet lower bound copula and the secondary diagonal section of C.
Employing other Lp  distances between the diagonal sections of C and
M and the secondary diagonal sections of C and W yields other meas-
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ures. For example, using L•  distances yields the population version of
the rank correlation coefficient Rg in (Gideon and Hollister 1987):

R C u u u C u ug
u u

= - - -[ ]
< < < <

2 1 2
0 1 0 1
sup ( , ) sup ( , ) .

Exercises

5.40 Let X and Y be continuous random variables whose copula C is a
member of a totally ordered (with respect to the concordance or-
dering p) family that includes P. Show that s X Y,  = rX Y, .

5.41 Let X and Y be random variables with the circular uniform distri-
bution presented in Sect. 3.1.2. In Example 5.18, we saw that
s X Y,  = 1 4 . Show that FX Y,  = LX Y,  = 1 4 .

5.42 Show that LX Y,  defined in (5.3.5) satisfies all the properties in
Definition 5.3.1 for a measure of dependence except the fifth
property. [Hint: to construct a counterexample to the fifth prop-
erty, consider the copula Cq  from Example 3.4 with q = 1 2.]

5.43 Show that Gideon and Hollister’s Rg satisfies the properties in
Definition 5.1.7 for a measure of concordance.

5.44 Show that kp  in (5.3.3) is given by

kp  = 
G

G
( )

( )

2 3

2 12

p

p

+
+

.

5.45 Show that, for p in [1,•), the “ l p” generalization of g C  and rC

in (5.3.6) and (5.3.7), respectively, leads to measures of associa-
tion given by

( ) ( , )p u v u v dC u v
p p+ + - - -( )ÚÚ1 12I

.

5.46 Show that, for p in [1,•), the “ Lp” generalization of g C  in
(5.3.8) leads to measures of association given by

2 1 1
0

1

0

1p p pp C u u du u C u u du( ) ( , ) ( , )+ -[ ] - -[ ]È
ÎÍ

˘
˚̇Ú Ú .
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5.4 Tail Dependence

Many of the dependence concepts introduced in Sect. 5.2 are designed
to describe how large (or small) values of one random variable appear
with large (or small) values of the other. Another such concept is tail
dependence, which measures the dependence between the variables in

the upper-right quadrant and in the lower-left quadrant of I2.
Definition 5.4.1. Let X and Y be continuous random variables with dis-
tribution functions F and G, respectively. The upper tail dependence
parameter lU  is the limit (if it exists) of the conditional probability that
Y is greater than the 100t-th percentile of G given that X is greater than
the 100t-th percentile of F as t approaches 1, i.e.

lU
t

P Y G t X F t= > >[ ]
Æ

- -
-

lim ( ) ( )( ) ( )

1

1 1 . (5.4.1)

Similarly, the lower tail dependence parameter lL  is the limit (if it ex-
ists) of the conditional probability that Y is less than or equal to the
100t-th percentile of G given that X is less than or equal to the 100t-th
percentile of F as t approaches 0, i.e.

lL
t

P Y G t X F t= £ £[ ]
Æ

- -
+

lim ( ) ( )( ) ( )

0

1 1 . (5.4.2)

These parameters are nonparametric and depend only on the copula
of X and Y, as the following theorem demonstrates.
Theorem 5.4.2. Let X, Y, F, G, lU , and lL  be as in Definition 5.4.1,
and let C be the copula of X and Y, with diagonal section d C . If the
limits in (5.4.1) and (5.4.2) exist, then

l dU
t

C
C t t

t
= - -

-
= - ¢

Æ

-
-

2
1

1
2 1

1
lim

( , )
( ) (5.4.3)

and

l dL
t

C
C t t

t
= = ¢

Æ

+
+

lim
( , )

( )
0

0 . (5.4.4)

Proof: We establish (5.4.3), the proof of (5.4.4) is similar.

lU
t

t

t t

P Y G t X F t

P G Y t F X t

C t t

t

t C t t

t

= > >[ ]
= > >[ ]
=

-
= - +

-

Æ

- -

Æ

Æ Æ

-

-

- -

lim ( ) ( )

lim ( ) ( )

lim
( , )

lim
( , )

( ) ( )

1

1 1

1

1 11
1 2

1
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= - -

-
= - ¢

Æ

-
-

2
1

1
2 1

1
lim

( , )
( ).

t
C

C t t

t
d �

If lU  is in (0,1], we say C has upper tail tependence; if lU  = 0, we
say C has no upper tail dependence; and similarly for lL .
Example 5.21. The tail dependence parameters lU  and lL  are easily
evaluated for some of the families of copulas encountered earlier:

         Family lL lU

Fréchet (Exercise 2.4) a a
Cuadras-Augé (2.2.10) 0 q
Marshall-Olkin (3.1.3) 0 min(a,b)
Raftery (Exercise 3.6) 2 1q q( )+ 0
Plackett (3.3.3) 0 0 �

For an Archimedean copula, the tail dependence parameters can be
expressed in terms of limits involving the generator and its inverse (Nel-
sen 1997):
Corollary 5.4.3. Let C be an Archimedean copula with generator
j Œ W. Then

l j j j
jU

t x

t

t

x

x
= - -

-
= - -

-Æ

-

Æ

-

-- +
2

1 2
1

2
1 2

11

1

0

1

1lim
( ( ))

lim
( )

( )

[ ] [ ]

[ ]

and

l j j j
jL

t x

t

t

x

x
= =

Æ

-

Æ •

-

-+
lim

( ( ))
lim

( )

( )

[ ] [ ]

[ ]
0

1 1

1

2 2
.

Example 5.22. Using Theorem 5.4.2 and Corollary 5.4.3, the tail de-
pendence parameters lU  and lL  can be evaluated for all of the families
of Archimedean copulas in Table 4.1 (for the values of q in the “ q  Œ ”
column):

        Family (4.2.#) lL lU

3, 5, 7-11, 13, 17, 22 0 0
2, 4, 6, 15, 21 0 2 21- q

18 0 1
1 (q ≥ 0) 2 1- q 0
12 2 1- q 2 21- q

16 1 2 0
14 1 2 2 21- q

19, 20 1 0
The values of the parameters can be different for a limiting case. For
example, the copula denoted P S P( )-  has lL  = 1 2 although it is a
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limiting case in families (4.2.3), (4.2.8), and (4.2.19); and M has lU  =
1 although it is a limiting case in families (4.2.1), (4.2.5), (4.2.13), etc.�

Tail dependence can be observed in several of the scatterplots of the
Archimedean copula simulations in Figs. 4.2 through 4.9. It appears as
a pronounced “spike” in the data points in the upper-right or lower-
left corner of the plot.

When a two-parameter family of Archimedean copulas is an interior
or exterior power family associated with a generator j in W, the tail de-
pendence parameters are determined by the parameters of the copula
generated by j. The proof of the following theorem can be found in
(Nelsen 1997).
Theorem 5.4.4. Let j in W generate the copula C with upper and lower
tail dependence parameters lU  and lL , and let Ca ,1 and C1,b  denote

the copulas generated by ja ,1(t) = j a( )t  and j b1, (t) = j b( )t[ ] , re-
spectively. Then the upper and lower tail dependence parameters of

Ca ,1 are lU  and l a
L
1 , respectively, and the upper and lower tail de-

pendence parameters of C1,b  are 2 2
1- -( )l b

U  and l b
L
1 , respectively.

Example 5.23. In Example 4.22, we constructed a two-parameter fam-
ily Ca b,  in (4.5.3) from the generator j(t) = ( )1 1t - , which generates

the copula denoted by P S P( )-  with lU  = 0 and lL  = 1 2. Hence the

upper tail dependence parameter l a bU, ,  for Ca b,  is l a bU, ,  = 2 21- b

and the lower tail dependence parameter l a bL, ,  for Ca b,  is l a bL, ,  =

2 1- ( )ab . This pair of equations is invertible, so to find a member of the
family (4.5.3) with a predetermined upper tail dependence parameter

lU
*  and a predetermined lower tail dependence parameter lL

* , set a =

- - * *ln( ) ln2 l lU L  and b = ln ln( )2 2 - *lU . �

Exercises

5.47 Verify the entries for lU  and lL  in Examples 5.21 and 5.22.

5.48 Write lU (C) and lL (C) to specify the copula under consideration.

Prove that lU ( Ĉ ) = lL (C) and lL ( Ĉ ) = lU (C).

5.49 Let C be an extreme value copula given by (3.3.12). Prove that
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lL  = 
0 1 2 1 2

1 1 2 1 2

, ( ) ,

, ( ) ,

A

A

>
=

Ï
Ì
Ó

 and lU  = 2 1 1 2-[ ]A( ) .

[Note that A(1 2) = 1 2 if and only if C = M.]

5.50 Let C(u,v) = min ( ), ( )uf v vf u( )  where f is an increasing function
on I with f(1) = 1 and t f t ta ( )  decreasing on (0,1] [this is the
symmetric case of the copulas in Exercise 3.3, see (Durante

2005)]. Show that lU  = 1 1- ¢ -f ( )  and lL  = f(0).

5.5 Median Regression

In addition to measures of association and dependence properties, re-
gression is a method for describing the dependence of one random
variable on another. For random variables X and Y, the regression curve
y = E(YΩx) specifies a “typical” (the mean) value of Y for each value

of X, and the regression curve x = E(XΩy) specifies a “typical” value of

X for each value of Y. In general, however, E(YΩx) and E(XΩy) are pa-
rametric and thus do not have simple expressions in terms of distribu-
tion functions and copulas.

An alternative to the mean for specifying “typical” values of Y for
each value of X is the median, which leads to the notion of median re-
gression (Mardia 1970; Conway 1986):
Definition 5.5.1. Let X and Y be random variables. For x in RanX, let y
= ˜( )y x  denote a solution to the equation P Y y X x[ ]£ =  = 1 2. Then
the graph of y = ˜( )y x  is the median regression curve of Y on X.

Of course, the median regression curve x = ˜( )x y  of X on Y is defined
analogously in terms of P X x Y y[ ]£ = , so in the rest of this section we
present results only for median regression of Y on X.

Now suppose that X and Y are continuous, with joint distribution
function H, marginal distribution functions F and G, respectively, and
copula C. Then U = F(X) and V = G(Y) are uniform (0,1) random vari-
ables with joint distribution function C. As a consequence of (2.9.1), we
have

P Y y X x P V G y U F x
C u v

u u F x
v G y

[ ] [ ( ) ( )]
( , )

( )
( )

£ = = £ = = =
=

∂
∂

, (5.5.1)

which yields the following algorithm for finding median regression
curves for continuous random variables. To find the median regression
curve y = ˜( )y x  of Y on X:
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1. Set ∂ ∂C u v u( , )  = 1 2;
2. Solve for the regression curve v = ˜( )v u  (of V on U);
3. Replace u by F(x) and v by G(y).

Example 5.24. Let U and V be uniform random variables whose joint
distribution function Cq  is a member of the Plackett family (3.3.3) for
q in [0,•]. Thus

∂
∂

q q
q

C u v

u

v C u v

u v C u v

( , ) ( ) ( , )
( )[ ( , )]

= + -
+ - + -

1
1 1 2

,

so that setting ∂ ∂C u v u( , )  = 1 2 and simplifying yields

( ) ( )q q+ = + -1 1 1v u .

Thus the median regression curve of V on U is the line in I2 connecting
the points 0 1 1, ( )q +( )  and 1 1, ( )q q +( ). Note the special cases: when q
= 0, C0 = W and the median regression line is v = 1- u , the support of
W; when q = •, C•  = M and the median regression line is v = u, the

support of M; and when q = 1, C1 = P and the median regression line is
v = 1 2. The slope of the median regression line is ( ) ( )q q- +1 1 . Recall
(Sect. 3.3.1, also see Exercise 5.17) that for the Plackett family, q repre-

sents an “odds ratio.” When q is an odds ratio in a 2¥2 table, the ex-
pression ( ) ( )q q- +1 1  is known as “Yule’s Q ,” or “Yule’s coefficient
of association.”

If X and Y are continuous random variables with distribution func-
tions F and G, respectively, and copula Cq , then the median regression
curve is linear in F(x) and G(y):

( ) ( ) ( ) ( )q q+ = + -1 1 1G y F x . �

Example 5.25. Let C be an Archimedean copula with generator j in W.

From j(C) = j(u) + j(v) we obtain ¢ = ¢j ∂ ∂ j( ) ( , ) ( )C C u v u u . Setting
∂ ∂C u v u( , )  = 1 2 and solving for v yields the median regression curve
of V on U for Archimedean copulas:

v u u= ¢ ¢( )[ ] -{ }- -j j j j j[ ] ( )( ) ( ) ( )1 1 2 .

For example, for the Clayton family (4.2.1) with j(t) = ( )t - -q q1 , q >
–1, q π 0, we have

v u u= - +[ ]+( )( )2 11 1q q q q
. �
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5.6 Empirical Copulas

In this section, we will show that there are expressions for the sample
versions of several measures of association analogous to those whose
population versions were discussed in Sects. 5.1 and 5.2. The popula-
tion versions can be expressed in terms of copulas—the sample versions
will now be expressed in terms of empirical copulas and the corre-
sponding empirical copula frequency function:

Definition 5.6.1. Let ( , )x yk k k

n{ } =1
 denote a sample of size n from a

continuous bivariate distribution. The empirical copula is the function
Cn  given by

C
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nn
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.

where x i( )  and y j( ), 1 £ i,j £ n, denote order statistics from the sample.

The empirical copula frequency cn  is given by
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Note that Cn  and cn  are related via
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Empirical copulas were introduced and first studied by Deheuvels
(1979), who called them empirical dependence functions.

Recall the population versions of Spearman’s r, Kendall’s t, and

Gini’s g from (5.1.16), (5.2.19), and (5.1.25), respectively, for continu-
ous random variables X and Y with copula C:

r = -[ ]ÚÚ12 2 C u v uv dudv( , )
I

,

t = ¢ ¢ - ¢ ¢[ ] ¢ ¢¢¢
ÚÚÚÚ2
000

1

0

1
c u v c u v c u v c u v dudvdu dv

uv
( , ) ( , ) ( , ) ( , ) ,

and

g = - - -[ ]È
ÎÍ

˘
˚̇Ú Ú4 1

0

1

0

1
C u u du u C u u du( , ) ( , ) .
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In the next theorem, we present the corresponding version for a sample
(we use Latin letters for the sample statistics):

Theorem 5.6.2. Let Cn and cn  denote, respectively, the empirical cop-
ula and the empirical copula frequency function for the sample

( , )x yk k k

n{ } =1
. If r, t and g denote, respectively, the sample versions of

Spearman’s rho, Kendall’s tau, and Gini’s gamma, then
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and
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Proof. We will show that the above expressions are equivalent to the
expressions for r, t, and g that are usually encountered in the literature.
The usual expression for r is (Kruskal 1958; Lehmann 1975)

r
n n

kR
n n

k
k

n
=

-
- +È

Î
Í
Í

˘

˚
˙
˙=

Â12

1

1
42

1

2

( )

( )
, (5.6.4)

where Rk  = m whenever ( , )( ) ( )x yk m  is an element of the sample. To
show that (5.6.1) is equivalent to (5.6.4), we need only show that
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Observe that a particular pair ( , )( ) ( )x yk m  in the sample contributes 1 n

to the double sum in (5.6.5) for each pair of subscripts (i,j) with i ≥ k

and j ≥ m. That is, the total contribution to the double sum in (5.6.5) by
a particular pair ( , )( ) ( )x yk m  is 1 n  times (n – k + 1)(n – m + 1), the total

number of pairs (i,j) such that i ≥ k and j ≥ m. Hence, writing Rk  for m
and summing on k, we have
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as claimed.



5.6 Empirical Copulas      221

Next we show that (5.6.2) is equivalent to Kendall’s tau in (5.1.1),
i.e., the difference between number of concordant and discordant pairs

in the sample divided by the total number n
2( ) of pairs of elements from

the sample. Note that the summand in (5.6.2) reduces to ( )1 2n  when-
ever the sample contains both ( , )( ) ( )x yp q  and ( , )( ) ( )x yi j , a concordant

pair because x p( )  < x i( )  and y q( ) < y j( ); reduces to – ( )1 2n  whenever

the sample contains both ( , )( ) ( )x yp j  and ( , )( ) ( )x yi q , a discordant pair;

and is 0 otherwise. Thus the quadruple sum in (5.6.2) is ( )1 2n  times
the difference between the number of concordant and discordant pairs,
which is equivalent to (5.1.1). Evaluating the inner double summation
in (5.6.2) yields
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a sample version of (5.2.20) and (5.2.22).
To show that (5.6.3) is equivalent to the sample version of Gini’s

gamma in (5.1.19), we need only show that
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and
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where, recall, pi and qi  denote the ranks of xi  and yi , respectively. The

sample ( , )x yk k k

n{ } =1
 can be written ( , )( ) ( )x yp q i

n

i i{ } =1
. Because

n Cn( i n ,i n ) is the number of points ( , )( ) ( )x yp qi i
 in the sample for

which pi £ i and qi  £ i, the sample point ( , )( ) ( )x yp qi i
 is counted

n p qi i- ( ) +max , 1 times in the sum n S1
n Cn( i n ,i n ). Thus

2 1 2 1

2 1 2

1 1

1 1

n
i

n
C

i

n

i

n
n n n p q

p q n n p q p q

n
i

n

i i
i

n

i i
i

n

i i i i
i

n

- Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ = + - + -[ ]

=
È

Î
Í

˘

˚
˙ - + = - +[ ]

= =

= =

Â Â

Â Â

, ( ) ( ) max( , )

max( , ) ( ) max( , ) ( ) .

But 2max(u,v) – (u + v) = u v- , and hence
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The verification of (5.6.7) is similar. �
Empirical copulas can also be used to construct nonparametric tests

for independence. See (Deheuvels 1979, 1981a,b) for details.

5.7 Multivariate Dependence

As Barlow and Proschan (1981) note, “the notions of positive depend-
ence in the multivariate case are more numerous, more complex, and
their interrelationships are less well understood.” This is true as well of
the role played by n-copulas in the study of multivariate dependence.
However, many of the dependence properties encountered in earlier
sections of this chapter have natural extensions to the multivariate case.
We shall examine only a few and provide references for others.

In three or more dimensions, rather than quadrants we have        
“orthants,” and the generalization of quadrant dependence is known as
orthant dependence:

Definition 5.7.1. Let X = X X Xn1 2, , ,L( )  be an n-dimensional random
vector.

1. X is positively lower orthant dependent (PLOD) if for all x =

x x xn1 2, , ,L( ) in Rn ,

P P X xi i
i

n
[ ] [ ]X x£ ≥ £

=
’

1
. (5.7.1)

2. X is positively upper orthant dependent (PUOD) if for all x =

x x xn1 2, , ,L( ) in Rn ,

P P X xi i
i

n
[ ] [ ]X x> ≥ >

=
’

1
, (5.7.2)

3. X is positively orthant dependent (POD) if for all x in Rn , both
(5.7.1) and (5.7.2) hold.

Negative lower orthant dependence (NLOD), negative upper orthant
dependence (NUOD), and negative orthant dependence (NOD) are de-
fined analogously, by reversing the sense of the inequalities in (5.7.1)
and (5.7.2).

For n = 2, (5.7.1) and (5.7.2) are equivalent to (5.2.1) and (5.2.2),
respectively. As a consequence of Exercise 5.21, PLOD and PUOD are
the same for n = 2.  However, this is not the case for n ≥ 3.

Example 5.26. Let X be a three-dimensional random vector that as-
sumes the four values (1,1,1), (1,0,0), (0,1,0), and (0,0,1) each with
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probability 1 4 . It is now easy to verify that X is PUOD but not PLOD.
Note that P[X £ 0] = 0 while P[ X1 £ 0]P[ X2 £ 0]P[ X3 £ 0] = 1 8. �

If X has a joint n-dimensional distribution function H, continuous
margins F1, F2 ,L, Fn , and n-copula C, then (5.7.1) is equivalent to

H x x x F x F x F xn n n( , , , ) ( ) ( ) ( )1 2 1 1 2 2L L≥  for all x x xn1 2, , ,L  in R,

and to

C u u u u u un n( , , , )1 2 1 2L L≥  for all u u un1 2, , ,L  in I,

i.e., C(u) ≥ Pn (u) for all u = u u un1 2, , ,L( ) in In . Analogously, (5.7.2)
is equivalent to

H x x x F x F x F xn n n( , , , ) ( ) ( ) ( )1 2 1 1 2 2L L≥  for all x x xn1 2, , ,L  in R,

and to (where C  denotes the n-dimensional joint survival function cor-
responding to C)

C u u u u u un n( , , , ) ( )( ) ( )1 2 1 21 1 1L L≥ - - -  for all u u un1 2, , ,L  in I,

i.e., C ( )u  ≥ P n ( )u  for all u in In .
Closely related to the notion of orthant dependence is multivariate

concordance. Recall (see Sect. 2.9) that in the bivariate case, a copula
C1 is more concordant than (or more PQD than) C2 if C1(u,v) ≥

C2(u,v) for all (u,v) in I2. The multivariate version is similar:

Definition 5.7.2. Let C1 and C2 be an n-copulas, and let C1 and C2 de-
note the corresponding n-dimensional joint survival functions.

1. C1 is more PLOD than C2 if for all u in In , C1(u) ≥ C2(u);

2. C1 is more PUOD than C2 if for all u in In , C1(u) ≥ C2(u);
3. C1 is more POD than C2, or C1 is more concordant than C2,  if

for all u in In , both C1(u) ≥ C2(u) and  C1(u) ≥ C2(u) hold.
In the bivariate case, parts 1 and 2 of the above definition are

equivalent (see Exercise 2.30), however, that is not the case in higher
dimensions.

Many of the measures of concordance in Sect. 5.1 have multivariate
versions. In general, however, each measure of bivariate concordance
has several multidimensional versions. See (Joe 1990; Nelsen 1996) for
details. There are also multivariate versions of some of the measures of
dependence in Sect. 5.3.1. For example, the n-dimensional version of

Schweizer and Wolff’s s  for an n-copula C, which we denote by s C
n , is

given by
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s C
n

n

n n n
n

n
C u u u du du dun= +

- +
-ÚÚÚ

2 1

2 1
1 2 1 2

( )

( )
( )L L Lu

I
.

See (Wolff 1977, 1981) for details.
Extensions of some of the other dependence properties to the multi-

variate case are similar. A note on notation: for x in Rn , a phrase such
as “nondecreasing in x” means nondecreasing in each component xi , i
= 1, 2,L, n; and if A and B are nonempty disjoint subsets of {1, 2,L, n},

then XA  and XB denote the vectors X i Ai Œ( ) and X i Bi Œ( ), respec-

tively, where XiŒX. The following definitions are from (Brindley and
Thompson 1972; Harris 1970; Joe 1997).

Definition 5.7.3. Let X = X X Xn1 2, , ,L( )  be an n-dimensional random
vector, and let the sets A and B partition {1, 2,L, n}.

1. LTD( XBΩ XA ) if P B B A AX x X x£ £[ ]  is nonincreasing in xA  for

all xB;

2. RTI( XBΩ XA ) if P B B A AX x X x> >[ ]  is nondecreasing in xA  for

all xB;

3. SI( XBΩ XA ) if P B B A AX x X x> =[ ]  is nondecreasing in xA  for all

xB;
4. LCSD(X) if P X x X x£ £ ¢[ ]  is nonincreasing in ¢x  for all x;

5. RCSI(X) if P X x X x> > ¢[ ]  is nondecreasing in ¢x  for all x.
Two additional multivariate dependence properties are expressible in
terms of the stochastic increasing property (Joe 1997). When 
SI( XBΩ XA ) holds for all singleton sets A, i.e., A = {i}, i = 1,2,L,n; then
X is positive dependent through the stochastic ordering (PDS); and
when SI( XBΩ XA ) holds for all singleton sets B = {i} and A = {1,2,L,i
– 1}, i = 2,3,L,n, then X is conditional increasing in sequence (CIS).

Note that for n = 2, both PDS and CIS are equivalent to SI(YΩX) and

SI(XΩY).
In the bivariate case, the corner set monotonicity properties were ex-

pressible in terms of total positivity (see Corollary 5.2.16). The same is
true in the multivariate case with the following generalization of total

positivity: A function f from Rn  to R is multivariate totally positive of
order two ( MTP2) if

f f f f( ) ( ) ( ) ( )x y x y x y⁄ Ÿ ≥
for all x, y in Rn  where
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x y⁄ = ( )max( , ),max( , ), ,max( , )x y x y x yn n1 1 2 2 L ,

x yŸ = ( )min( , ),min( , ), ,min( , )x y x y x yn n1 1 2 2 L .

Lastly, X is positively likelihood ratio dependent if its joint n-
dimensional density h is MTP2.

For implications among these (and other) dependence concepts, see
(Block and Ting 1981; Joe 1997; Block et al. 1997).

We close this section with the important observation that the symmet-
ric relationship between positive and negative dependence properties
that holds in two dimensions does not carry over to the n-dimensional
case. In two dimensions, if the vector (X,Y) satisfies some positive de-
pendence property, then the vector (X,–Y) satisfies the corresponding
negative dependence property, and similarly for the vector (–X,Y).
Furthermore, as a consequence of Theorem 2.4.4, if C is the copula of
(X,Y), then ¢C (u,v) = u – C(u,1 - v) is the copula of (X,–Y), and it is easy
to show that for all u,v in I,

C u v u v u v C u v( , ) – ( , ) ( , ) ( , )P P= - - ¢ -1 1
and

M u v C u v C u v W u v( , ) – ( , ) ( , ) ( , )= ¢ - - -1 1 ;

that is, the graph of ¢C  is a “twisted reflection” in P of the graph of C,
and ¢C  has a relationship with W analogous to the relationship between
C and M.

There is no analog to these relationships in n dimensions, n ≥ 3. In-

deed, as n increases, the graphs of z = W n(u) and z = Pn (u) are much

closer to one another than are the graphs of z = M n(u) and z = Pn (u).
It is an exercise in multivariable calculus to show that the n-volume be-

tween the graphs of M n  and Pn  is given by

a M du du du
nn

n n
n nn= -[ ] =

+
-ÚÚÚL L( ) ( )u u

I
P 1 2

1
1

1

2
,

and the n-volume between the graphs of Pn  and W n  is given by

b W du du du
nn

n n
n nn= -[ ] = -

+ÚÚÚL LP ( ) ( )
( )!

u u
I 1 2

1

2

1
1

,

and hence

lim
n

n

n

b

aÆ •
= 0.

For a further discussion of negative multivariate dependence con-
cepts, see (Block et al. 1982).
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In this chapter, we consider four topics related to copulas. The first, dis-
tributions with fixed margins, dates back to the early history of the
subject. The original question whose answer leads to the Fréchet-
Hoeffding bounds (2.5.1) is: Of all joint distribution functions H con-
strained to have fixed margins F and G, which is the “largest,” and
which the “smallest”? Another example, which also involves optimiza-
tion when the margins are fixed, is the following. In studying “dis-
tances” between distributions, Dall’Aglio (1956, 1991) considered the
following problem (see Exercise 6.5): What is the minimum value of

E X Y x y dH x y- = -ÚÚa a
( , )

R2 ,

given that the margins of H are fixed to be F and G, respectively?
Secondly, we introduce quasi-copulas—functions closely related to

copulas—which arise when finding bounds on sets of copulas. They
also occur in the third section of this chapter, where we employ copulas
and quasi-copulas to study some aspects of the relationship between op-
erations on distribution functions and corresponding functions of ran-
dom variables.

The final topic in this chapter is an application of copulas to Markov
processes and leads to new interpretations of and approaches to these
stochastic processes.

6.1 Distributions with Fixed Margins

It is common in statistics and probability to know (or assume to know)
the distributions of each of two random variables X and Y but not to
know their joint distribution function H, or equivalently, their copula.
For example, one of the central problems in statistics concerns testing
the hypothesis that two random variables are independent, i.e., that their
copula is P. In such situations, it is often either assumed that the mar-
gins are normal, or no assumption at all is made concerning the mar-
gins. In this section, we will be concerned with problems in which it is
assumed that the marginal distributions of X and Y are known, that is,
the margins of H are given distribution functions FX  and FY , respec-
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tively. In this situation, we say that the joint distribution has “fixed
margins.”

The following problem, attributed to A. N. Kolmogorov in (Makarov
1981), is typical: Suppose X and Y are random variables with distribu-
tion functions FX  and FY , respectively. Let G denote the distribution

function of the sum X Y+ , i.e., G(z) = P X Y z[ ]+ £ . Find G zŸ ( )  =

supG(z) and G z⁄ ( )  = infG(z), where the supremum and infimum are
taken over the Fréchet-Hoeffding class H( FX ,FY ) of all joint distribu-
tion functions H with marginals FX  and FY . This problem leads to
copulas naturally, for if H is the joint distribution function of X and Y,
then H(x,y) = C( FX (x), FY (y)) for at least one copula C (exactly one if X
and Y are continuous). The problem can be solved without copulas
(Makarov 1981), but the arguments are cumbersome and nonintuitive.
The following theorem and proof are from (Frank et al. 1987). Another
proof can be found in (Rüschendorf 1982).
Theorem 6.1.1. Let X and Y be random variables with distribution
functions FX  and FY . Let G denote the distribution function of X Y+ .
Then

G z G z G z⁄ Ÿ£ £( ) ( ) ( ) (6.1.1)
where

G z W F x F y
x y z

X Y
⁄

+ =
= ( ){ }( ) sup ( ), ( ) (6.1.2a)

 and

G z W F x F y
x y z

X Y
Ÿ

+ =
= ( ){ }( ) inf ˜ ( ), ( ) , (6.1.2b)

and W̃ (u,v) = u v W u v+ - ( , )  = min( , )u v+ 1  is the dual of W.
Proof. Fix z in R, and let H denote the (unknown) joint distribution

function of X and Y. Then G(z) is the H-volume over the half-plane

( , )x y x y zŒ + £{ }R2 , i.e., the H-volume of the region below and to the

left of the line x y z+ =  in Fig. 6.1. If ( , )x y1 1  is any point on the line
x y z+ = , then H ( , )x y1 1  £ G(z) because the H-volume of the rectangle
( , ] ( , ]-• ¥ -•x y1 1  cannot exceed G(z). But H ( , )x y1 1  is bounded below
by its Fréchet-Hoeffding lower bound W F x F yX Y( ), ( )1 1( ), and thus

W F x F y H x y G zX Y( ), ( ) , ( )1 1 1 1( ) £ ( ) £ .

Because this inequality holds for every ( , )x y1 1  on the line x y z+ = , the
left-hand inequality in (6.1.1) follows. Similarly, if ( , )x y2 2  is any point
on the line x y z+ = , then



6.1 Distributions with Fixed Margins      229

G z H x y

W F x F y

F x F y W F x F y

W F x F y

X Y

X Y X Y

X Y

( ) , ,

( ), ( ) ,

( ) ( ) ( ), ( ) ,
~

( ), ( ) ,

£ - ( )
£ - ( )
£ + - ( )
= ( )

1

1

2 2

2 2

2 2 2 2

2 2

from which the right-hand inequality in (6.1.1) follows. �

( , )x y1 1

H x y( , )1 1

H x y( , )2 2

( , )x y2 2

x y z+ =

Fig. 6.1. Illustrating the inequalities in the proof of Theorem 6.1.1

Viewed as an inequality among all possible distribution functions,
(6.1.1) cannot be improved, for it is easy to show (see Exercise 6.1) that
if either FX  or FY  is the unit step function e a  for some finite a (see Ex-

ample 2.4), then for all z in R, G zŸ ( )  = G(z) = G z⁄ ( ) , i.e., we have
equality throughout (6.1.1).

But more is true. Given any pair of distribution functions FX  and FY ,

(6.1.1) cannot be improved, that is, the bounds G zŸ ( )  and G z⁄ ( )  for
G(z) are pointwise best-possible.

Theorem 6.1.2. Let FX  and FY  be any two distribution functions, and

let G zŸ ( )  and G z⁄ ( )  be given by (6.1.2ab). Let X and Y be random
variables whose distribution functions are FX  and FY , respectively, and
let G denote the distribution function of X Y+ . Let z0  be any number in

R, and set s = G zŸ ( )0  and t = G z⁄ -( )0  = lim ( )
t z

G tÆ
⁄

-
0

. Then:

1. There exists a copula Cs, dependent only on s, such that if the
joint distribution function of X and Y is Cs( FX (x), FY (y)), then

G z G z s( ) ( )0 0= =Ÿ .

2. There exists a copula Ct, dependent only on t, such that if the joint
distribution function of X and Y is Ct( FX (x), FY (y)), then
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G z G z t( ) ( )0 0
- ⁄ -= = . (6.1.3)

The proof of this theorem (Frank et al. 1987) is long and technical,
hence we will only present an outline here. In part 1, we need to show
G z( )0  ≥ s, as from (6.1.1) we have G z( )0  £ s. For the copula Cs  in part
1, we use

C u v
u v s u v s

u v
s( , )

max( , ), ( , ) [ , ] ,

min( , ),
= + - ŒÏ

Ì
Ó

0 0 2

elsewhere.

This copula is the ordinal sum of {W,M} with respect to the partition
{[0,s],[s,1]}, whose support is illustrated in Fig. 6.2(a). If we set Hs(x,y)
= Cs( FX (x), FY (y)), then, as a consequence of Theorems 2.5.4 and
2.5.5, the support of Hs  consists of two components: a nonincreasing
set in the quadrant ( , ] ( , ]-• ¥ -•x y0 0  and a nondecreasing set in the

quadrant [ , ) [ , )x y0 0• ¥ • , where x0  = F sX
( )( )-1  and y0  = F sY

( )( )-1 , as
illustrated in Fig. 6.2(b). Note that the Hs-measure of the nonincreas-
ing component is s. In the proof, one proceeds to show that every point
in the nonincreasing component of the support in ( , ] ( , ]-• ¥ -•x y0 0

lies on or below the line x y z+ = 0 . Because G z( )0  equals the Hs-

volume of the half-plane ( , )x y x y zŒ + £{ }R2
0 , it now follows that

G z( )0  ≥ s.

(a) (b)

s

s
x0

y0

x y z+ = 0

Fig. 6.2. The supports of (a) Cs  and (b) Hs

The procedure for proving part 2 is similar. Because G z( )0
-  ≥ t, we

need only show that G z( )0
-  £ t. For the copula Ct, we will use a member

of the family of copulas from Exercise 2.10:

C u v
u v t u v t

u v
t ( , )

max( , ), ( , ) [ , ] ,

min( , ),
= + - ŒÏ

Ì
Ó

1 1 2

elsewhere.



6.1 Distributions with Fixed Margins      231

This copula is the ordinal sum of {M,W} with respect to the partition
{[0,t],[t,1]}, whose support is illustrated in Fig. 6.3(a). If we now set
Ht(x,y) = Ct( FX (x), FY (y)), then, as with Hs , the support of Ht consists
of two components: a nondecreasing set in the quadrant
( , ] ( , ]-• ¥ -•x y1 1  and a nonincreasing set in the quadrant

[ , ) [ , )x y1 1• ¥ • , where x1 = F tX
( )( )-1  and y1 = F tY

( )( )-1 , as illustrated in
Fig. 6.3(b). Note that the Ht-measure of the nonincreasing component
is 1- t . One then proceeds to show that every point in the nonincreasing
component of the support in [ , ) [ , )x y1 1• ¥ •  lies on or above the line
x y z+ = 0 , from which it follows that the Ht-measure of the half-plane

( , )x y x y zŒ + ≥{ }R2
0  is at least 1- t . Because G z( )0

-  is the Ht-

measure of the (open) half-plane ( , )x y x y zŒ + <{ }R2
0 , we have

G z( )0
-  £ t.

(a) (b)

t

t x1

y1

x y z+ = 0

Fig. 6.3. The supports of (a) Ct  and (b) Ht

The second part of Theorem 6.1.2 cannot be strengthened to read

G z G z t( ) ( )0 0= =⁄  in (6.1.3), not even when the distribution functions
FX  and FY  are continuous. To see this, suppose that both FX  and FY

are U0 1, , the uniform distribution function on (0,1). Then G ⁄ = U1 2,

(see Example 6.1 below), and for any t in (0,1), G(1+ t ) = P[ X Y+  £

1+ t ] = 1, and thus t = G ⁄(1+ t ) < G(1+ t ) = 1.
Also note that the crucial property of the copula Cs  in the proof of

part 1 is the fact that for u + v = s, the Cs-volume of any rectangle of
the form [u,1]¥[v,1] is 1- s . Hence Cs  is not unique—indeed, we could
choose for Cs  the ordinal sum of {W,C} with respect to the partition
{[0,s],[s,1]} for any copula C.
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Example 6.1 (Alsina 1981). Let X and Y be random variables with uni-
form distributions, i.e., for a £ b and c £ d, let FX  = Uab and FY  =

Ucd . Let G, G ⁄, and G Ÿ be as in Theorem 6.1.1. Then for the lower

bound G z⁄ ( ) , from (6.1.2a) we have

G z W U x U y

z a c

x a

b a

y c

d c
a c z b d

z b d

x y z
a b c d

x y z

⁄

+ =

+ =

= ( )

=

£ +
-
-

+ -
-

-Ê
ËÁ

ˆ
¯̃

+ £ £ +

≥ +

Ï

Ì
Ô
Ô

Ó
Ô
Ô

( ) sup ( ), ( )

, ,

sup max , , ,

, .

, ,

0

1 0

1

If a d+  £ b c+ , then for a c+  £ z £ a d+ , the middle line in the last

display simplifies to 0; and when a d+  £ z £ b d+ , it simplifies to

[ ( )] ( )z a d b a- + - . Hence in this case, G ⁄ = Ua d b d+ +, . When b c+  £

a d+ , a similar analysis yields G ⁄ = Ub c b d+ +, , and thus

G ⁄ = U a d b c b dmin( , ),+ + + .

The evaluation of the upper bound G Ÿ is analogous, and yields

G Ÿ = Ua c a d b c+ + +,max( , ). �

Example 6.2. Let X and Y be normally distributed random variables,

with means mX , mY  and variances s X
2 , s Y

2 , respectively; so that if F de-
notes the standard normal distribution function, then

F x
x

X
X

X

( ) = -Ê
ËÁ

ˆ
¯̃

F m
s

  and  F y
y

Y
Y

Y

( ) = -Ê
ËÁ

ˆ
¯̃

F m
s

.

Let G, G ⁄, and G Ÿ be as in Theorem 6.1.1. There are two cases to con-
sider:

(1) If s X
2  = s Y

2  = s 2, then (6.1.2ab) yields

G z
x y

x y z

X Y⁄

+ =
= -Ê

ËÁ
ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ó

¸
˝
˛

( ) sup max ,F Fm
s

m
s

1 0

and

G z
x y

x y z

X YŸ
+ =

= -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

( ) inf min ,F Fm
s

m
s

1 .
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Using the method of Lagrange multipliers to find the extrema of
F ( )x X-( )m s  + F ( )y Y-( )m s  subject to the constraint x y z+ = , we
obtain

G z

z

z
z

X Y

X Y
X Y

⁄ =
£ +

- -Ê
ËÁ

ˆ
¯̃

- ≥ +

Ï
Ì
Ô

ÓÔ
( )

, ,

, ,

0

2
2

1

m m
m m

s
m mF

and

G z

z
z

z

X Y
X Y

X Y

Ÿ =
- -Ê

ËÁ
ˆ
¯̃

£ +

≥ +

Ï
Ì
Ô

ÓÔ
( )

, ,

, .

2
2

1

F m m
s

m m

m m

(2) If s X
2  π s Y

2 , then the same procedure yields

G z X Y

Y X

Y X

Y X

⁄ = - -
-

Ê

ËÁ
ˆ

¯̃
+ -

-

Ê

ËÁ
ˆ

¯̃
-( ) F Fs q s j

s s
s q s j

s s2 2 2 2 1

and

G z X Y

Y X

Y X

Y X

Ÿ = - +
-

Ê

ËÁ
ˆ

¯̃
+ +

-

Ê

ËÁ
ˆ

¯̃
( ) F Fs q s j

s s
s q s j

s s2 2 2 2 ,

where q = z X Y- -m m  and j = q s s s s2 2 2 1 2
2+ -[ ]( ) ln( )Y X Y X . �

Analogous results may be obtained for operations other than addi-
tion—i.e., in Theorem 6.1.1, the sum X Y+  can be replaced by L(X,Y)
where L is a function from R¥R to R, which is nondecreasing and con-
tinuous in each place. Similar results hold in higher dimensions as well
[see (Frank et al. 1987; Li et al. 1996a) for details]. It is also possible to

bound the distribution functions of the sum of squares X Y2 2+  and the

so-called radial error [ ]X Y2 2 1 2+  in a similar fashion—see Exercise 6.4
and (Nelsen and Schweizer 1991).

Exercises

6.1 Let X and Y be random variables with distribution functions FX

and FY , respectively. Assume FX  equals the unit step function e a
for some finite a. Show that equality holds throughout (6.1.1) by
showing that

G zŸ ( )  = G(z) = G z⁄ ( )  = FY (z – a).
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6.2 Let X and Y be exponentially distributed random variables with

means a and b, respectively. Let G, G ⁄, and G Ÿ be as in Theorem

6.1.1. Let q = ( ) ln( ) ln lna b a b a a b b+ + - - . Show that

G z
z

e zz
⁄

- - +=
£

- ≥
Ï
Ì
Ó

( )
, ,

, ,( ) ( )

0

1

q
qq a b

and

G z
z

e zz
Ÿ

-=
£

- ≥
Ï
Ì
Ó

( )
, ,

, .max( , )

0 0

1 0a b

6.3 Let X and Y be random variables with Cauchy distributions with
location parameters a X , a Y  and scale parameters bX , bY , re-
spectively, i.e.,

F x
z

X
X

X

( ) arctan= + -Ê
ËÁ

ˆ
¯̃

1
2

1
p

a
b

 and F y
z

Y
Y

Y

( ) arctan= + -Ê
ËÁ

ˆ
¯̃

1
2

1
p

a
b

. 

Let G, G ⁄, and G Ÿ be as in Theorem 6.1.1. Show that
(a) If bX  = bY  = b, then

G z

z

z
z

X Y

X Y
X Y

⁄ =
£ +

- -Ê
ËÁ

ˆ
¯̃

≥ +

Ï

Ì
Ô

Ó
Ô

( )

, ,

arctan , ,

0

2
2

a a

p
a a

b
a a

and

G z

z
z

z

X Y
X Y

X Y

Ÿ =
+ - -Ê

ËÁ
ˆ
¯̃

£ +

≥ +

Ï

Ì
Ô

Ó
Ô

( )
arctan , ,

, .

1
2

2

1

p
a a

b
a a

a a

(b) If bX  π bY , then

G z Y

Y X

X

Y X

⁄ = - +
-

Ê
ËÁ

ˆ
¯̃

+ -
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

( ) arctan arctan
1
p

q b j
b b

q b j
b b

and

G z Y

Y X

X

Y X

Ÿ = + - -
-

Ê
ËÁ

ˆ
¯̃

+ +
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

( ) arctan arctan1
1
p

q b j
b b

q b j
b b

,

where q = z X Y- -a a  and j = q b b b b2 2 1 2
- -[ ]{ }( )Y X X Y .



6.1 Distributions with Fixed Margins      235

6.4 Let X and Y be symmetric (about 0) random variables with a
common distribution function F that is concave on (0,•). Let G1

denote the distribution function of X Y2 2+ , and let G2 denote the

distribution function of [ ]X Y2 2 1 2+ . Show that

max , ( )4 2 3 0 2 11F z G z F z( ) -( ) £ £ ( ) -
and

max , ( )4 2 3 0 2 12F z G z F z( ) -( ) £ £ ( ) - .

These bounds are best-possible. See (Nelsen and Schweizer
1991).

6.5 (Dall’Aglio 1956, 1991). Let X and Y be random variables with
distribution functions F and G, respectively, and let

E X Y x y dH x y- = -ÚÚa a
( , )

R2 (6.1.4)

where H is any joint distribution function with margins F and G.
Show that
(a) If a = 1, then

E X Y F t G t H t t dt- = + -[ ]-•
•

Ú ( ) ( ) ( , )2 ;

and if a > 1, then

E X Y G y H x y x y dydx

F x H x y y x dxdy

x

y

- = - -[ ] -

+ - -[ ] -

-
-•-•

•

-
-•-•

•

ÚÚ

ÚÚ

a a

a

a a

a a

( ) ( ) ( , ) ( )

( ) ( ) ( , ) ( ) .

1

1

2

2

(b) When a > 1, (6.1.4) attains its minimum value precisely when

H(x,y) = M F x G y( ), ( )( ) ; and if a = 1, then there is a set of mini-
mizing joint distribution functions, the largest of which is
M F x G y( ), ( )( ) , and the smallest of which is given by

H x y

F x F t G t x y

G y G t F t x y

x t y

y t x

( , )

( ) max inf ( ) ( ) , , ,

( ) max inf ( ) ( ) , , .

=
- -[ ]Ê

ËÁ
ˆ
¯̃

£

- -[ ]Ê
ËÁ

ˆ
¯̃

≥

Ï

Ì
ÔÔ

Ó
Ô
Ô

£ £

£ £

0

0

[Also see (Bertino 1968).]



236      6 Additional Topics

6.2 Quasi-copulas

Quasi-copulas are functions from I2 to I that mimic many but not all of
the properties of copulas.

Definition 6.2.1. A quasi-copula is a function Q: I2ÆI that satisfies the
same boundary conditions (2.2.2a) and (2.2.2b) as do copulas, but in
place of the 2-increasing condition (2.2.3), the weaker conditions of
nondecreasing in each variable and the Lipschitz condition (2.2.6).

Clearly every copula is a quasi-copula, and quasi-copulas that are not
copulas are called proper quasi-copulas. For example, the function
Q(u,v) in Exercise 2.11 is a proper quasi-copula.

The conditions of being nondecreasing and Lipschitz in each vari-
able together are equivalent to only requiring that the 2-increasing con-
dition (2.2.3) holds when at least one of u u v v1 2 1 2, , ,  is 0 or 1. Geomet-

rically, this means that at least the rectangles in I2 that share a portion

of their boundary with the boundary of I2 must have nonnegative Q-
volume. See Fig. 6.4.

(a) (b)

Fig. 6 .4 .  Typical rectangles with nonnegative volume for (a) copulas and (b)
quasi-copulas

Quasi-copulas were introduced in Alsina et al. (1993) [see also (Nel-
sen et al. 1996)] in order to characterize operations on univariate distri-
bution functions that can or cannot be derived from corresponding op-
erations on random variables (defined on the same probability space),
which we discuss in the next section. The original definition was as fol-
lows (Alsina et al. 1993):

Definition 6.2.2. A quasi-copula is a function Q: I2ÆI such that for

every track B in I2 (i.e., B can be described as B = {(a(t), b(t)); 0 £ t £
1} for some continuous and nondecreasing functions a, b with a(0) =
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b(0) = 0, a(1) = b(1) = 1), there exists a copula CB  such that Q(u,v) =

CB (u,v) whenever (u,v) Œ B.
Genest et al. (1999) established the equivalence of Definitions 6.2.1

and 6.2.2, presented the Q-volume interpretation following Definition
6.2.1, and proved that quasi-copulas also satisfy the Fréchet-Hoeffding
bounds inequality (2.2.5). Indeed, any property of copulas that can be
established without appealing to the 2-increasing property will also be a
property of quasi-copulas. For a copula C, the C-volume of a rectangle
R = [a,b]¥[c,d] must be between 0 and 1 as a consequence of the 2-
increasing condition (2.2.3). The next theorem (Nelsen et al. 2002b)
presents the corresponding result for quasi-copulas.
Theorem 6.2.3. Let Q be a quasi-copula, and R = [a,b]¥[c,d] any rec-

tangle in I2. Then –1/3 £ VQ (R) £ 1. Furthermore, VQ (R) = 1 if and

only if R = I2, and VQ (R)  = –1/3 implies R = [ / , / ]1 3 2 3 2.
For example, the proper quasi-copula Q in Exercise 2.11 has

VQ ( [ / , / ]1 3 2 3 2) = –1/3. While Theorem 6.2.3 limits the Q-volume of a
rectangle, the lower bound of –1/3 does not hold for more general sub-

sets of I2. Let mQ  denotes the finitely additive set function on finite
unions of rectangles given by mQ Q iiS V R( ) ( )= Â  where S = U i iR  with

{ }Ri  nonoverlapping. Analogous to Theorem 3.2.2, the copula P can
be approximated arbitrarily closely by quasi-copulas with as much
negative “mass” (i.e., value of mQ ) as desired:

Theorem 6.2.4. Let e, M > 0. Then there exists a quasi-copula Q and a

set S Õ I2 such that mQ S M( ) < -  and

sup ( , ) ( , )
,u v

Q u v u v
Œ

- <
I

P e .

The proof in (Nelsen et al. 2002b) is constructive and can be gener-
alized by replacing P by any quasi-copula whatsoever.

Quasi-copulas arise in a natural fashion when working with copulas.
Example 6.3. Suppose we try to construct a copula C from two copulas
C1 and C2 via the construction C(u,v) = max ( , ), ( , )C u v C u v1 2{ }  for

each (u,v) in I2. Is such a C always a copula? The answer is no—let C1

and C2 be the copulas given by (3.2.2) in Example 3.4 with q = 1/3

and 2/3, respectively. Then C(u,v) = max ( , ), ( , )C u v C u v1 2{ }  is not a
copula but rather the proper quasi-copula in Exercise 2.11. �

However, the pointwise infimum and supremum of any nonempty set
of quasi-copulas (or copulas) are quasi-copulas:
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Theorem 6.2.5 (Nelsen et al. 2004). Let S be any nonempty set of
quasi-copulas, and define S  and S  by

S u v S u v S( , ) inf ( , )= Œ{ }S  and S u v S u v S( , ) sup ( , )= Œ{ }S

for all (u,v) in I2. Then S  and S  are quasi-copulas.
Proof. We show that S  is a quasi-copula, the proof for S  is similar.

For the boundary conditions (2.2.2a) and (2.2.2b), we have S (u,0) =
sup 0 S Œ{ }S  = 0, and S (u,1) = sup u S Œ{ }S  = u, and similarly S (0,v) =

0 and S (1,v) = v. Because each quasi-copula is nondecreasing in its ar-
guments, we have S ( u1,v) = sup ( , )S u v S1 Œ{ }S  £ sup ( , )S u v S2 Œ{ }S  £

S ( u2 ,v) whenever u1 £ u2 , so that S  is nondecreasing in u (and simi-

larly in v). To show that S  is Lipschitz, it will suffice to show that when-
ever u1 £ u2 , S u v S u v( , ) ( , )2 1-  £ u u2 1- . Let u2 ,u1 be fixed in I with

u1 £ u2 . For any e > 0, there exists a quasi-copula Qe  in S such that

Qe ( u2 ,v) > S ( u2 ,v) – e. Because Qe ( u1,v) £  S ( u1,v), it follows that

S u v S u v( , ) ( , )2 1-  £ Q u v Q u ve ee( , ) ( , )2 1+ -  £ u u2 1- + e . Because this

is true for every e > 0, we have S u v S u v( , ) ( , )2 1-  £ u u2 1-  as required.�
As a consequence of the preceding example and theorem, the par-

tially ordered set C,p( ) is not a lattice, as not every pair of copulas has a
supremum and infimum in the set C. However, when Q, the set of quasi-
copulas, is ordered with the same order p in Definition 2.8.1, then

Q,p( )  is a complete lattice (i.e., every subset of Q has a supremum and

infimum in Q). Furthermore, Q,p( )  is order-isomorphic to the Dede-

kind-MacNeille completion of C,p( ) (Nelsen and Úbeda Flores 2005).
Thus the set of quasi-copulas is a lattice-theoretic completion of the set
of copulas, analogous to Dedekind’s construction of the reals as a com-
pletion by cuts of the set of rationals.

Thus any nonempty set of copulas or quasi-copulas with a specific
property is guaranteed to have bounds in the set of quasi-copulas.
These bounds are often copulas, as occurred in Theorems 3.2.3 and
5.1.16. However, the bounds may be proper quasi-copulas, as in the
following example.
Example 6.4. Let d be a diagonal, and consider the set Qd  of quasi-

copulas with diagonal section d, i.e.,

Q Q Id d= Œ = Œ{ }Q Q t t t t( , ) ( ), .



6.2 Quasi-copulas      239

Let Qd  and Qd  be the pointwise infimum and supremum of Qd , i.e., let

Qd (u,v) = inf ( , )Q u v Q Œ{ }Qd  and Qd (u,v) = sup ( , )Q u v Q Œ{ }Qd  for

(u,v) in I2. Then Qd  and Qd  are quasi-copulas. Indeed, it can be shown

(Nelsen et al. 2004) that Qd  corresponds to the Bertino copula Bd  in

(3.2.23), and that Qd  is given by

Q u v
u v t t t u v u v

v u t t t v u v u
d

d

d
( , )

min , max ( ) [ , ] , ,

min , max ( ) [ , ] , .
=

- - Œ( ){ } £

- - Œ( ){ } £

Ï
Ì
Ô

ÓÔ

This may or may not be a copula, depending on d. For example, if d(t)

= ( )2 1t - + , then Qd  is the shuffle of M given by M(2, I2,(2,1),1), i.e., the

copula C1 2 from Exercise 3.9; and if d(t) = ( )t - +1 3  + ( )t - +2 3 , then

Qd  is the proper quasi-copula in Exercise 2.11. �
The quasi-copula concept can be extended to n dimensions, analo-

gous to the extension of copulas to n dimensions in Sect. 2.10 in equa-
tions (2.10.4a)-(2.10.4c). The following definition is from (Cuculescu
and Theodorescu 2001), where it is shown to be equivalent to the one in
(Nelsen et al. 1996).
Definition 6.2.6. An n-dimensional quasi-copula (or n-quasi-copula) is

a function Q: In ÆI such that:

1. for every u in In , Q(u) = 0 if at least one coordinate of u is 0, and
Q(u) = uk  if all coordinates of u are 1 except uk ;

2. Q is nondecreasing in each variable;
3. Q satisfies the Lipschitz condition

Q Q u ui i
i

n
u u( ) - ¢( ) £ - ¢

=
Â

1

for all u and ¢u  in In .
It is easy to show that n-quasi-copulas satisfy the n-dimension version

of the Fréchet-Hoeffding bounds inequality (2.10.9), and that W n  is a
proper n-quasi-copula for n ≥ 3 (see Exercise 6.8). We conclude this
section with a discussion of the distribution of positive and negative

“mass” (i.e., Q-volume) in I3 induced by the proper quasi-copula W 3.

Let n ≥ 2 and partition I3 into n3 3-boxes Bijk  = ( ) ,i n i n-[ ]1 ¥

( ) ,j n j n-[ ]1 ¥ ( ) ,k n k n-[ ]1 , 1 £ i,j,k £ n. The W 3-volume of Bijk  is
given by
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V B

n
i j k n

n
i j k nW ijk3

1
2 1

1
2 2

0

( ) =

+ + + = +

- + + = +

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

, ,

, ,

, .otherwise

The number of 3-boxes Bijk  with positive W 3-volume is equal to the

number of integer solutions to i j k+ +  = 2 1n +  with 1 £ i,j,k £ n, i.e.,
n +( )1

2 ; while the number of 3-boxes Bijk  with negative W 3-volume is

equal to the number of integer solutions to i j k+ +  = 2 2n +  with 1 £

i,j,k £ n, i.e., n
2( ). Note that the net W 3-volume is thus n n n+( ) - ( )[ ]1

2 2  =

1. However, the total W 3-volume of the 3-boxes with positive W 3-

volume is n n+( )1
2  = ( )n +1 2, whereas the total W 3-volume of the 3-

boxes with negative W 3-volume is -( )n n2  = ( )- +n 1 2 . Consequently

there are subsets of I3 with arbitrarily large W 3-volume and subsets of

I3 with arbitrarily small (i.e., very negative) W 3-volume. Similar results

hold for the W n-volume of subsets of In  for n ≥ 4.

Exercises

6.6 Prove the following extension of Theorem 6.2.3: Let R = u u1 2,[ ]
¥ v v1 2,[ ]  be a rectangle in I2. If VQ (R) = q for some quasi-
copula Q, then A(R), the area of R, satisfies

q q2 2
1 2£ £ +( )A R( ) ( ) .

Furthermore, when A(R) attains either bound, R must be a square
(Nelsen et al. 2002).

6.7 Prove that there are no proper Archimedean 2-quasi-copulas
[Hint: Lemma 4.2.3]. This is not the case in higher dimensions;
see (Nelsen et al. 2002a).

6.8 (a) Let Q be an n-quasi-copula, n ≥ 2. Prove that W n(u) £ Q(u) £

M n(u) for all u in In .
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(b) Prove that W n  is a proper n-quasi-copula for n ≥ 3. [See Ex-
ercise 2.36.]

6.3 Operations on Distribution Functions

It is common practice to use operations on distribution functions such
as convolution or discrete mixtures to construct new distribution func-
tions. We illustrate with two examples.
Example 6.5. For any two distribution functions F and G, the convolu-
tion FƒG of F and G is the function on R  defined by

F G x F x t dG t xƒ( ) = -
-•
•

Ú( ) ( ) ( ) for  in R,

with (FƒG)(–•) = 0 and (FƒG)(•) = 1. If X and Y are independent
random variables with distribution functions F and G, respectively, then
as is well-known FƒG is the distribution function of the sum X + Y; and
the study of sums of independent random variables plays a central role
in probability and statistics. �

Example 6.6 (Lawless 1982). Discrete mixture models arise in the the-
ory of reliability when individuals belong to one of n distinct types, with
a proportion pk  of the population being of the kth type, where the pk ’s
satisfy 0 < pk  < 1, p1 + p2 + L + pn  = 1. Individuals of type k are as-
sumed to have a lifetime distribution function Fk . An individual ran-
domly selected from the population then has the lifetime distribution
function

p F t p F t p F tn n1 1 2 2( ) ( ) ( )+ + +L .

In the simplest case, n = 2, the mixture of any two distribution functions
F and G is the distribution function pF p G+ -( )1 , where p is a fixed
real number in (0,1). �

Because the operation of convolution derives from the sum of (inde-
pendent) random variables, it is natural to ask whether a similar result
holds for mixtures. That is, does there exist a two-place function Z such
that, for any pair X,Y of random variables with respective distribution
functions F and G, the mixture pF p G+ -( )1  is the distribution func-
tion of the random variable Z(X,Y)? If so, we could say that mixtures are
“derivable” from a function on random variables. To be precise, we
have (Alsina and Schweizer 1988):

Definition 6.3.1. A binary operation y on the set of distribution func-
tions is derivable from a function on random variables if there exists a
Borel-measurable two-place function Z satisfying the following condi-
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tion: For every pair of distribution functions F and G, there exist ran-
dom variables X and Y defined on a common probability space, such
that F and G are, respectively, the distribution functions of X and Y, and
y(F,G) is the distribution function of the random variable Z(X,Y).

Mixtures are the binary operations m p on distribution functions
given by

m p F G( , )  = pF p G+ -( )1 , (6.3.1)

where p is a fixed number in (0,1). Somewhat surprisingly, mixtures are
not derivable (Alsina and Schweizer 1988):

Theorem 6.3.2. The mixture m p is not derivable from any binary op-
eration on random variables.

Proof. Assume that m p is derivable, i.e., that a suitable function Z ex-

ists. For any real numbers a and b (a π b), let F and G be the unit step
functions e a  and e b , respectively (see Example 2.4). Then F and G are,
respectively, the distribution functions of random variables X and Y,
which are defined on a common probability space and equal, respec-
tively, to a and b almost surely. Hence Z(X,Y) is a random variable de-
fined on the same probability space as X and Y and equal to Z(a,b) al-
most surely. Thus the distribution function of Z(X,Y) is the unit step
e Z a b( , ). But because m p is derivable from Z, the distribution function of

Z(X,Y) must be m e ep a b( , )  = p pa be e+ -( )1 ; and because p ae +
( )1- p be  π e Z a b( , ), we have a contradiction. �

This argument can be easily extended to mixtures of any finite col-
lection of distribution functions, such as in Example 6.4. It also shows
that if y is to be derivable, then for any unit step functions e a  and e b ,
y e e( , )a b  must also be a unit step function. But this condition is not suf-
ficient, as shown in the next theorem (Alsina and Schweizer 1988).
Theorem 6.3.3. The operation of forming the geometric mean g F G( , )

= FG  of two distribution functions is not derivable from any binary
operation on random variables.

Proof. Assume to the contrary that a suitable function Z exists. Then
proceeding as in Theorem 6.3.2, it follows that Z(a,b) = max(a,b) (be-
cause e ea b  =e max( , )a b ). Next, for any pair of continuous random vari-
ables X and Y with distribution functions F and G, respectively, and
copula C, it follows from Exercise 2.16 that the distribution function of
Z(X,Y) = max(X,Y) is C F t G t( ), ( )( ) . Hence

F t G t P Z X Y t C F t G t M F t G t( ) ( ) [ ( , ) ] ( ), ( ) ( ), ( ) .= £ = ( ) £ ( )
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But this is a contradiction, because uv  £ min(u,v) is not true for all u,v
in I. �

To proceed we need the following:

Definition 6.3.4. A binary operation y on distribution functions is in-

duced pointwise by a two-place function Y from I2 into I if for every
pair F, G of distribution functions and all t in R,

y ( , )( ) ( ), ( )F G t F t G t= ( )Y .

Thus the mixture m p F G t( , )( )  = pF t p G t( ) ( ) ( )+ -1  is induced point-

wise by the two-place function M u vp( , )  = pu p v+ -( )1 ; and the geo-

metric mean g F G t( , )( )  = F t G t( ) ( )  is induced pointwise by the two-

place function G u v( , )  = uv . But because the value of the convolution
of two distribution functions F and G at a point t generally depends on
more than the values of F and G at t, convolution is not induced point-
wise. Thus we are led to the question: Do there exist binary operations
on distribution functions that are both derivable and induced pointwise?

The answer to this question is given by the following theorem, whose
proof can be found in (Alsina et al. 1993) [the dual Q̃ of a quasi-

copula Q is the function from I2 to I given by Q̃(u,v) = u + v –
Q(u,v)]:

Theorem 6.3.5. Suppose that y is a binary operation on distribution

functions that is both induced pointwise by a two-place function Y from

I2 into I and derivable from a function Z on random variables defined
on a common probability space. Then precisely one of the following
holds:

1. Z(x,y) = max(x,y) and Y is a quasi-copula;

2. Z(x,y) = min(x,y) and Y is the dual of a quasi-copula;

3. Z and Y are trivial in the sense that, for all x,y in R and all u,v in

I, either Z(x,y) = x and Y(u,v) = u or Z(x,y) = y and Y(u,v) = v.
Taken together, the results in Theorems 6.3.2, 6.3.3, and 6.3.5 dem-

onstrate that “the distinction between working directly with distribu-
tions functions … and working with them indirectly, via random vari-
ables, is intrinsic and not just a matter of taste” (Schweizer and Sklar
1983) and that “the classical model for probability theory—which is
based on random variables defined on a common probability
space—has its limitations” (Alsina et al. 1993).

We conclude this section by noting that many of the results in this
section generalize to n dimensions [see (Nelsen et al. 1996) for details].
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6.4 Markov Processes

As we have noted before, it is the copula of a pair (X,Y) of continuous
random variables that captures the “nonparametric” or “scale-
invariant” nature of the dependence between X and Y. Chapter 5 was
devoted to a study of dependence between continuous random variables
with a given copula. In this section, we will investigate the role played
by copulas in another dependence structure—Markov processes.

Before reviewing the essential notions of Markov processes, we pre-
sent a “product” operation for copulas first studied in (Darsow et al.
1992). This product is defined in terms of the two first-order partial de-
rivatives of a copula C = C(u,v), which we will now denote

D C C u1 = ∂ ∂  and D C C v2 = ∂ ∂ . (6.4.1)

Definition 6.4.1. Let C1 and C2 be copulas. The product of C1 and C2

is the function C C1 2*  from I2 to I given by

C C u v D C u t D C t v dt1 2 2 1 1 20

1*( ) = ◊Ú( , ) ( , ) ( , ) . (6.4.2)

Theorem 6.4.2. C C1 2*  is a copula.
Proof. For the boundary conditions (2.2.2a) and (2.2.2b), we have

C C v D C t D C t v dt dt1 2 2 1 1 20

1

0

1
0 0 0 0*( ) = ◊ = =Ú Ú( , ) ( , ) ( , ) ,

and

C C v D C t D C t v dt

D C t v dt C v v

1 2 2 1 1 20

1

1 20

1
2

1 1

1

*( ) = ◊

= = =

Ú

Ú

( , ) ( , ) ( , )

( , ) ( , ) .

Similarly ( C C1 2* )(u,0) = 0 and ( C C1 2* )(u,1) = u. To show that
C C1 2*  is 2-increasing, we compute the ( C C1 2* )-volume of the rectan-
gle u u v v1 2 1 2, ,[ ] ¥ [ ] :

V u u v v

D C u t D C t v D C u t D C t v

D C u t D C t v D C u t D C t v dt

D C

C C1 2 1 2 1 2

2 1 2 1 2 2 2 1 1 1 2 20

1

2 1 2 1 2 1 2 1 1 1 2 1

2

* [ ] ¥ [ ]( )
= -[

- + ]
=

Ú

, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

11 2 1 1 1 2 2 2 10

1
( , ) ( , ) ( , ) ( , ) .u t C u t D C t v C t v dt-[ ] -[ ]Ú
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But as a consequence of Lemma 2.1.3, both D C u t C u t2 1 2 1 1( , ) ( , )-[ ]  and

D C t v C t v1 2 2 2 1( , ) ( , )-[ ]  are nonnegative, and thus

V u u v vC C1 2 1 2 1 2* [ ] ¥ [ ]( ), ,  ≥ 0. Hence C C1 2*  is a copula. �

The *-product of copulas is a continuous analog of matrix multipli-
cation and shares some of the properties of that operation, as the fol-
lowing example illustrates.
Example 6.7. Let C be a copula. Then

P P*( ) = = =Ú ÚC u v D u t D C t v dt uD C t v dt uv( , ) ( , ) ( , ) ( , )2 10

1
10

1
;

similarly C u v*( )P ( , )  = uv, and hence

P P P* = * =C C .

Because D M u t2 ( , )  is 1 for t < u and 0 for t > u, we have

M C u v D M u t D C t v dt D C t v dt C u v
u*( ) = = =Ú Ú( , ) ( , ) ( , ) ( , ) ( , )2 10

1
10

.

Similarly C M u v*( )( , )  = C(u,v), and hence

M C C M C* = * = .

So, if we view * as a binary operation on the set of copulas, then P is the
null element, and M is the identity. Furthermore, we have (see Exercise
6.9)

W C u v v C u v*( ) = - -( , ) ( , )1   and  C W u v u C u v*( ) = - -( , ) ( , )1

(also see Exercises 2.6, 2.30, and Theorem 2.4.4), hence * is not com-

mutative. However, * is associative—see (Darsow et al. 1992; Li et al.
1997) for proofs. Finally,

W W M* =   and  W C W C* * = ˆ . �

Before discussing Markov processes, we need to review some termi-
nology and notation. A stochastic process is a collection or sequence

X t Tt Œ{ } of random variables, where T denotes a subset of R. It is con-

venient to think of the index t as time, and the random variable Xt  as
the state of the process at time t. For each s, t in T, we let Fs  and Ft  de-
note the distribution functions of Xs and Xt , respectively, and Hst  the
joint distribution function of Xs and Xt . The process is continuous if
each Ft  is continuous. Finally, for each s, t in T, we let Cst  denote the
subcopula of Xs and Xt , that is, for all x, y in R, Hst (x,y) =
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Cst ( Fs (x), Ft (y)). When Fs  and Ft  are continuous, Cst  is a copula, oth-
erwise we extend Cst  to a copula via the “bilinear interpolation” con-
struction used in the proof of Lemma 2.3.5. Thus in this section, we will
refer to the copula of Xs and Xt , even when the random variables fail to
be continuous.

The process X t Tt Œ{ } is a Markov process if for every finite subset

t t tn1 2, , ,L{ }  of T and any t in T such that t t t tn1 2< < < <L ,

P X x X x X x X x P X x X xt t t t n t t nn n
£ = = =[ ] = £ =[ ]1 21 2, , ,L , (6.4.3)

i.e., in a Markov process, the conditional distribution functions only de-
pend on the most recent time and state of the process. We will adopt the
following notation for these conditional distribution functions:

P x s y t P X y X xt s, ; ,( ) = £ =[ ] . (6.4.4)

As a consequence of the Markov property (6.4.3), the conditional
probabilities P(x,s;y,t) in (6.4.4) satisfy the Chapman-Kolmogorov
equations, which relate the state of the process at time t with that at an
earlier time s through an intermediate time u:

P x s y t P z u y t
P x s z u

z
dz s u t, ; , , ; ,

, ; ,
, ( )( ) = ( ) ◊

( )
< <

-•
•

Ú
∂

∂
. (6.4.5)

If the conditional densities p x s y t P X y X xt s, ; ,( ) = = =[ ] exist, then
(6.4.5) takes the form

p x s y t p x s z u p z u y t dz s u t, ; , , ; , , ; , , ( )( ) = ( ) ( ) < <
-•
•

Ú .

In this form we see that the Chapman-Kolmogorov equations can be
viewed as a continuous version of the law of total probability, modified
by the Markov property: if As , Bu , and Et denote events at the times s,
u, t, respectively (s < u < t), then

P E A P E B P B At s t u u s
u

[ ] = [ ] ◊ [ ]Â ,

the summation being over all possible events Bu  at time u. The fact that

the conditional probability P E Bt u[ ]  depends only on t and u (u < t),
and not on events at times earlier than u, is the Markov property.

The main result of this section is the following theorem (Darsow et al.
1992), which relates the Chapman-Kolmogorov equations for a Markov
process to the copulas of the random variables in the process.
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Theorem 6.4.3. Let X t Tt Œ{ } be a stochastic process, and for each s, t

in T, let Cst  denote the copula of the random variables Xs and Xt .
Then the following are equivalent:

1. The conditional distribution functions P(x,s;y,t) satisfy the Chap-
man-Kolmogorov equations (6.4.5) for all s < u < t in T and almost all
x,y in R;

2. For all s < u < t in T,
C C Cst su ut= * . (6.4.6)

For a proof of this remarkable result, see (Darsow et al. 1992). Theo-
rem 6.4.3 is important not only because it provides a condition equiva-
lent to the Chapman-Kolmogorov equations for Markov processes, but
also because it is a new approach to the theory and yields a new tech-
nique for constructing such processes. As Darsow et al. (1992) observe,

In the conventional approach, one specifies a Markov process by giving
the initial distribution Ft0

 and a family of transition probabilities
P(x,s;y,t) satisfying the Chapman-Kolmogorov equations. In our approach,
one specifies a Markov process by giving all of the marginal distributions
and a family of 2-copulas satisfying (6.4.6). Ours is accordingly an alterna-
tive approach to the study of Markov processes which is different in princi-
ple from the conventional one. Holding the transition probabilities of a
Markov process fixed and varying the initial distribution necessarily varies
all of the marginal distributions, but holding the copulas of the process
fixed and varying the initial distribution does not affect any other marginal
distribution.

The next two examples, from (Darsow et al. 1992), illustrate the use
of Theorem 6.4.3 in the construction of Markov processes.
Example 6.8. Let T be the set of nonnegative integers, let C be any
copula, and set Cmn  = C C C* * *L , the ( m n- )-fold *-product of C
with itself. Then the set {Cmn } of copulas satisfies (6.4.6), so that a
Markov process is specified by supplying a sequence { Fk } of continu-
ous marginal distributions. Processes constructed in this manner are
similar to Markov chains. �

Example 6.9. In this example, we illustrate how one can calculate the
copulas for a known Markov process, then create a new process via the
same family of copulas but with new marginals. The transition prob-
abilities for standard Brownian motion are given by

P x s y t
y x

t s
s u t, ; , , ( )( ) = -

-
Ê
ËÁ

ˆ
¯̃

< <F ,

where F denotes the standard normal distribution function. From
(5.4.1) we have
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P x s y t
x

H x y D C F x F yst st s t, ; , ( , ) ( ), ( )( ) = = ( )∂
∂ 1 ,

and thus it follows that

C F x F y
y z

t s
dF zst s t s

x
( ), ( ) ( )( ) = -

-
Ê
ËÁ

ˆ
¯̃-•Ú F (6.4.7)

for 0 < s < t. If we assume that X0 = 0 with probability 1, then Ft (x) =

F( )x t  for t > 0. Substitution into (6.4.7) yields

C u v
t v s w

t s
dwst

u
,

( ) ( )( ) = -
-

Ê

ËÁ
ˆ

¯̃

- -

Ú F F F1 1

0
. (6.4.8)

This is a family of copulas that satisfies (6.4.6). When u and v are re-
placed by non-normal distribution functions in (6.4.8), we obtain joint
distribution functions with non-normal marginals for random variables
in a Brownian motion process. �

We close this section by recalling that the Chapman-Kolmogorov
equations (and hence (6.4.6)) are a necessary but not sufficient condi-
tion for a stochastic process to be Markov. Using an extension of
(6.4.6) to higher dimensions, it is possible to use copulas to give a con-
dition that is necessary and sufficient. See (Darsow et al. 1992) for de-
tails.

Exercises

6.9 Let C be a copula. Verify the claims in Example 6.5:
(a) W C u v*( )( , )  = v – C u v( , )1-  and C W u v*( )( , )  = u –
C u v( , )1- ;
(b) W W M* =  and W C W C* * = ˆ .

6.10 Let C1 and C2 be copulas.

(a) Show that if C = C C1 2* , then Ĉ  = ˆ ˆC C1 2* .

(b) Show that W C C W* = *1 1
ˆ .

(c) Show that C1 = Ĉ1 if and only if W C C W* = *1 1 .

6.11 Show that both the Fréchet and Mardia families (see Exercise 2.4)
are closed under the *-product operation; i.e.,
(a) if Ca b1 1,  and Ca b2 2,  are Fréchet copulas, then so is

C Ca b a b1 1 2 2, ,* , and
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C C Ca b a b a a b b a b a b1 1 2 2 1 2 1 2 1 2 2 1, , ,* = + + ;

(b) if Ca  and Cb  are Mardia copulas, then so is C Ca b* , and

C C Ca b ab* = .

6.12 Show that the Farlie-Gumbel-Morgenstern family (3.2.10) is
closed under the *-product operation; i.e., if Ca  and Cb  are FGM

copulas, then so is C Ca b* , and

C C Ca b ab* = 3.

6.13 Generalize Example 6.8 as follows (Darsow et al. 1992): Let T be
the set of integers, and to each k in T assign any copula Ck . Then
for m £ n in T, set

C
M m n

C C C m nmn
m m n

=
=

* * * <
Ï
Ì
Ó + -

, ,

, .

if 

if 1 1L

Show that upon assigning a continuous distribution function to
each element of T, this procedure yields a Markov process.
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Dom domain 8
e a unit step at a 17
F, G, FX , Fk distribution functions 17
F( )-1 , G( )-1 quasi-inverses of F, G 21
F , H , C survival functions corresponding to F, H, C 32

g, g C , g X Y, Gini’s coefficient 180
j generator of an Archimedean copula 112
j [ ]-1 pseudo-inverse of j 110
F standard normal distribution function 23
F2, FC

2 , FX Y,
2 Hoeffding’s dependence index 210

G Ÿ, G ⁄ upper, lower bound for G 228
H joint distribution function 17
H a Fréchet-Hoeffding class 228
I unit interval [0,1] 8
I2 unit square [0,1]¥[0,1] 8
In regular partition of I 68
KC Kendall distribution function of C 163
lU , lL upper, lower tail dependence parameters 214



264      List of Symbols

M Fréchet-Hoeffding upper bound copula 11
P probability function 24
P product copula 11
Q: I2ÆI quasi-copula 236
Q:C¥CÆ[–1,1] concordance function 158
Q the set of quasi-copulas 238
R real line (–•,•) 7
R extended real line [–•,•] 7
Ran range 8
r, rC , rX Y, Spearman’s rho 167
SC singular component of C 27

s, s C , s X Y, Schweizer and Wolff’s sigma 209
t, t C , t X Y, Kendall’s tau 158, 161
Uab uniform (a,b) distribution function 17
VC , VH C-volume, H-volume (or measure) of a set 8
W Fréchet-Hoeffding lower bound copula 11
X, Y, Z random variables 24
X( )1 , X n( ) order statistics 49
(X,Y), X random vectors 158, 222
y = ˜( )y x median regression curve of Y on X 217
W set of generators for Archimedean copulas 115
≈ addition mod 1 61
ƒ convolution 241
o composition of functions 35, 136
p point-wise or concordance ordering 39, 169

◊Î ˚ integer part 61, 180
x + positive part of x, x +  = max(x,0) 70

* product operation for copulas 244
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Absolutely continuous, 27
Absolutely monotonic, 152
Addition mod 1, 61
Ali-Mikhail-Haq copulas, 29, 40, 87,

92, 100, 118, 131, 142, 148, 150,
172, 183

Archimedean
axiom, 122
copula, 112

Association, measures of, 157, 207
Average

quadrant dependence, 189
likelihood ratio dependence, 203

Bertino copulas, 86
Bilinear interpolation, 19
Bivariate

Cauchy distribution, 57
exponential distributions, 23, 33,

52, 58, 196, 200
extreme value distributions, 28
logistic distribution, 28, 93
normal distributions, 57, 61, 75
Pareto distributions, 33

Blomqvist’s coefficient, 182

Chapman-Kolmogorov equations, 246
Circular uniform distribution, 55
Clayton copulas, 118, 128, 135, 138,

142, 152, 154, 163, 218
Co-copula, 33
Comonotonic, 32, 95
Compatibility, 107

direct, 105
Completely monotonic, 151
Component, 27

Comprehensive, 15
Concave copula, 102
Concordance, 157

function, 158
measures of, 168
ordering, 39, 169, 188

Convex
copula, 102
sum, 72

Convolution, 241
Cook and Johnson copulas, 118
Copula, 10

Archimedean, 112
rational, 146
strict, 112

associative, 113
compatible, 105
concave, 102
convex, 102
convex sum, 72
diagonal, 85, 166
dual of, 33
empirical, 219
extreme value, 97, 143, 207, 216
families of

Ali-Mikhail-Haq, 29, 40, 87, 92,
100, 118, 131, 142, 148, 150,
172, 183

Bertino, 86
Clayton, 118, 128, 135, 138,

142, 152, 154, 163, 218
comprehensive, 15
Cook and Johnson, 118
Cuadras-Augé, 15, 39, 53, 102,

215
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Farlie-Gumbel-Morgenstern
(FGM), 77, 86, 100, 131,
133, 162, 168, 249

Frank, 119, 133, 153, 171, 185
Fréchet, 14, 104, 162, 168, 215,

248
Generalized Cuadras-Augé, 53
Gumbel-Barnett, 119, 133, 135
Gumbel-Hougaard, 28, 96, 98,

118, 137, 142, 153, 164
Iterated Farlie-Gumbel-Morgen-

stern, 82
Mardia, 14, 40, 104, 248
Marshall-Olkin, 53, 95, 98, 165,

168, 215
Pareto, 33, 118
Plackett, 91, 98, 171, 185, 197,

215, 218
Raftery, 58, 172, 215

harmonic, 101
homogeneous, 101
max-stable, 95, 97
multivariate, 42, 105
n-dimensional, 45
ordinal sum, 63
product, 11
product operation, 244
quasi-, 236
quasi-concave, 103
quasi-convex, 103
rational, 146
Schur-concave, 104, 134
Schur-convex, 104
shuffles of M, 67
survival, 32
symmetric, 38
with cubic sections, 80
with linear sections, 77
with quadratic sections, 77

Corner set monotonicity, 198
Countermonotonic, 32, 95
Cross product ratio, 87
Cuadras-Augé copulas, 15, 39, 53,

102, 215

Daniels’ inequality, 175
Debye function, 171
Dependence

measures of, 207
properties, 186

Diagonal, 85
copula, 85
section, 12

secondary, 16
Dilogarithm, 172
Distribution

bivariate
Cauchy, 16
exponential, 23, 33, 52, 58, 196,

200
extreme value, 28
logistic, 28, 93
normal, 57, 61, 75
Pareto, 33

circular uniform, 55
elliptically contoured, 37
Gumbel’s bivariate exponential, 23,

33
Gumbel’s bivariate logistic, 28, 93
Marshall-Olkin bivariate exponen-

tial, 52, 196, 200
Plackett, 89
Raftery’s bivariate exponential, 58,

172, 215
Vaswani’s bivariate normal, 61

Distribution function, 17, 24
convolution of, 241
joint, 17
Kendall, 163
mixture of, 241
n-dimensional, 46

Domain of attraction, 97
Doubly stochastic measure, 26
Dual of a copula, 33
Durbin and Stuart’s inequality, 176

Empirical
copula, 219
dependence function, 219
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Exchangeable random variables, 38
Expected quadrant dependence, 190
Exterior power family, 142
Extreme value copula, 97, 143, 207,

216

Farlie-Gumbel-Morgenstern (FGM)
copulas, 77, 86, 100, 131, 133,

162, 168, 249
n-copulas, 108

Fixed margins, 227
Frank copulas, 119, 133, 153, 171,

185
Fréchet copulas, 14, 104, 162, 168,

215, 248
Fréchet-Hoeffding

bounds, 11, 30
class, 228

Function
absolutely monotonic, 152
completely monotonic, 151
concordance, 158
Debye, 171
dilogarithm, 172
distribution, 17, 24

joint, 17
Kendall, 163
n-dimensional, 46
quasi-inverse of, 21
uniform, 17
unit step, 17

grounded, 9, 44
joint survival, 32
m-monotonic, 154
n-increasing, 43
pseudo-inverse of, 110
quasi-monotone, 8
subadditive, 135
survival, 32
2-increasing, 8

Generator, 112
exterior power  family, 142
interior power family, 142

Gideon and Hollister’s Rg, 213

Gini’s coefficient, 180, 211
Grounded function, 9, 44
Gumbel’s bivariate

exponential distribution, 23, 33,
113

logistic distribution, 28, 93
Gumbel-Barnett copulas, 119, 133,

135
Gumbel-Hougaard copulas, 28, 96,

98, 118, 137, 142, 153, 164

Harmonic copula, 101
Hoeffding’s

dependence index, 210
lemma, 190

Homogeneous copula, 101
Horizontal section, 11

Interior power family, 142
Iterated Farlie-Gumbel-Morgenstern

copulas, 82

Joint
distribution function, 17
survival function, 32
symmetry, 36

Kendall distribution function, 163
Kendall’s tau, 158, 161
Kolmogorov’s problem, 228

Laplace transform, 74, 154
Laplace’s equation, 101
Left

corner set decreasing (LCSD), 198
tail decreasing (LTD), 191

Level curve, 124
Level sets of a copula, 12
Likelihood ratio dependence, 200

average, 203
Lipschitz condition, 11, 236
Lower tail dependence, 214
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m-monotonic, 154
Mardia copulas, 14, 40, 104, 248
Marginal symmetry, 36
Margins

of a 2-place function, 9
of an n-place function, 44

Markov process, 246
Marshall-Olkin

bivariate exponential distribution,
52, 196, 200

copulas, 53, 95, 98, 165, 168, 215
Max-stable copula, 95, 97
Measures

of association, 157
of concordance, 168
of dependence, 207

Medial correlation coefficient, 182
Median regression, 217
Mixture, 241
Mutually completely dependent, 68,

75

n-box, 43
n-copula, 45, 105

Archimedean, 151
n-increasing function, 43
n-subcopula, 45
Negative

lower orthant dependence (NLOD),
222

orthant dependence (NOD), 222
quadrant dependence (NQD), 187
upper orthant dependence (NUOD),

222
Nondecreasing set, 30
Nonincreasing set, 30

Odds ratio, 87
Order

concordance, 39, 169, 188
Archimedean copulas, 135
statistics, 29, 35, 49

Ordinal sum, 63
Orthant dependence, 222

Pareto copulas, 33, 118
Pearson’s correlation coefficient, 23,

165, 170
Plackett

copulas, 91, 99, 171, 185, 197,
215, 218

distributions, 89
Positive

likelihood ratio dependence (PLR),
200, 203

lower orthant dependence (PLOD),
222

part, 70
orthant dependence (POD), 222
quadrant dependence (PQD), 187
regression dependence, 196
upper orthant dependence (PUOD),

222
Product copula, 11
Product of copulas, 244
Pseudo-inverse of a function, 110

Quasi-copula, 236
n-dimensional, 239

Quasi-inverse of a distribution func-
tion, 21

Quasi-monotone function, 8
Quadrant dependence, 187

average, 189
expected, 190

Radial
error, 233
symmetry, 36

Raftery’s bivariate exponential distri-
bution, 58, 172, 215

Random variable, 24
exchangeable, 38
mutually completely dependent, 68,

75
Rational Archimedean copulas, 146
Regression, median, 217
Right corner set increasing (RCSI),

198
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Right tail increasing (RTI), 191

Schur
concave copula, 104, 134
convex copula, 104

Schweizer and Wolff’s s, 209, 223

Section
diagonal, 12, 85
horizontal, 11
secondary diagonal, 16
vertical, 12

Serial iterate, 151
Shuffles of M, 67
Singular, 27
Sklar’s theorem, 17, 24

n-dimensions, 46
Spearman’s

footrule, 186
rho, 167, 185

Starlike region, 193
Stochastic monotonicity, 195
Stochastically increasing (SI), 196
Strict Archimedean copula, 112
Strict generator, 112
Subadditive function, 135
Subcopula, 10

n-dimensional, 45
Subharmonic copula, 101
Superharmonic copula, 101
Support, 27
Survival

copula, 32
function, 32

Symmetric copula, 38
Symmetry, 36

joint, 36
marginal, 36
radial, 36

Tail dependence, 214
Tail monotonicity, 191
Total positivity of order two

bivariate ( TP2), 199
multivariate ( MTP2), 224

Track, 236
2-increasing function, 8

Uniform distribution function, 17
Unit step distribution function, 17
Upper tail dependence, 214

Vaswani’s bivariate normal distribu-
tion, 61

Vertical section, 12
Vertices

of an n-box, 43
of a rectangle, 8

Volume
of an n-box, 43
of a rectangle, 8

Yule’s coefficient
of association, 218
of colligation, 185

Zero set and curve, 123
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