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Preface

L’étude approfondie de la nature
est la source la plus féconde

des découvertes mathématiques.
J.B.J. Fourier (1768–1830)

Recent technological advances allow us to study and manipulate matter
on the atomic scale. Thus, the traditional borders between mechanics, physics
and chemistry seem to disappear and new applications in biology emanate.
However, modeling matter on the atomistic scale ab initio, i.e., starting from
the quantum level, is only possible for very small, isolated molecules. More-
over, the study of mesoscopic properties of an elastic solid modeled by 1020

atoms treated as point particles is still out of reach for modern computers.
Hence, the derivation of coarse grained models from well accepted fine-scale
models is one of the most challenging fields. A proper understanding of the
interaction of effects on different spatial and temporal scales is of fundamental
importance for the effective description of such structures. The central ques-
tion arises as to which information from the small scales is needed to describe
the large-scale effects correctly.

Based on existing research efforts in the German mathematical community
we proposed to the Deutsche Forschungsgemeinschaft (DFG) to strengthen
the mathematical basis for attacking such problems. In May 1999 the DFG
decided to establish the

DFG Priority Program (SPP 1095)
Analysis, Modeling and Simulation of Multiscale Problems.

After another reviewing process the official start in September 2000 involved
about 25 research groups all over Germany, see

http://www.mathematik.uni-stuttgart.de/∼mehrskalen
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for information about these groups and their activities. In the sequel, this
program has inspired a number of multiscale initiatives worldwide, for exam-
ple, the Center for Integrative Multiscale Modeling and Simulation (CIMMS)
at CalTech, the Bath Institute for Complex Systems and the European Net-
work Multi-scale modeling and characterization of phase transformations in
advanced materials (MULTIMAT).

The aim of our priority program has been to combine different expertise in
the mathematical community and to enhance the development of mathemat-
ical methods and concepts for the study of multiscale problems. On the one
hand, these problems are driven by needs in applications in physics, chem-
istry, or biology. On the other hand, the challenge to bridge theories at differ-
ent scales leads to deep and fundamental questions within mathematics. This
book tries to span this variety of the subject by surveying and highlighting
the work done in the groups of the priority program. In the vast mathemati-
cal area of multiscale problems the program has focused its efforts on several
specific fields that can be characterized by the following subjects:

• weak-convergence methods, relaxations, and Gamma convergence

• Young measures, gradient Young measures, Wigner measures

• homogenization, averaging, and adiabatic evolution

• singular perturbations, boundary layers, interfaces, and point defects

• formation, stability, and dynamics of sharp interfaces

• microstructures in elastic solids, thin films or rods, and in micro-magnetism

• derivation of continuous models from spatially discrete models

• quantum-chemical and quantum-mechanical models

• quantum and semi-classical models for semi-conductors and their coupling

• numerical algorithms for microstructures in solids

• exponential integrators for Hamiltonian systems with fast oscillations

• almost invariant sets and metastability

Most of the work reported in this book has been supported substantially by
the DFG through the priority program. The major part of the funding went
into positions for PhD students and post-doctoral researchers. In fact, this
program has been an ideal way to educate a new generation of young scientists
to cope with the future challenges in mathematical modeling, analysis and
numerics. We are glad to see that about half of the contributors to this book
are such young scientists. The additional support for travel and the guest
program has proved to be crucial for the interaction and mutual stimulation
of the participating groups, in particular the annual colloquia as wells as a
large series of specialized workshops.

Bernhard Nunner and Frank Kiefer from the DFG made our life as easy
as possible concerning the administrative duties while pushing our scientific
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achievements to new frontiers. In this goal, they could rely on the steady
support and expertise of the referees Wolfgang Dahmen, Gero Friesecke,
Thomas Y. Hou, Bernhard Kawohl, Volker Mehrmann, Umberto Mosco,
Marek Niezgódka, Tomaš Roub́ıček, Stefan Sauter, Valery P. Smyshlyaev, and
Gabriel Wittum. These referees have been valuable advisors for the projects
in this program and played an essential role in shaping our view of the math-
ematics for multiscale problems.

Finally, Alexander Mielke would like to thank Stefanie Siegert. Her ded-
ication and precise management was often hidden in the background, but
constituted an essential part of the smooth coordination of the program.

Of course, such a priority program on multiscale problems cannot be suc-
cessful without the creative work of the involved researchers and without their
openness for collaboration. We, as the initiators of this program, are grate-
ful to all these companions in this endeavor and hope that the achievements
within the program will prove to be rewarding for all of them.

München Folkmar Bornemann
Leipzig Stephan Luckhaus
Berlin Alexander Mielke (coordinator)
Leipzig Stefan Müller
May 2006
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Exponential Estimates in Averaging and
Homogenisation

Karsten Matthies

University of Bath, Department of Mathematical Sciences, Bath, BA2 7AY,
United Kingdom. K.Matthies@maths.bath.ac.uk

Summary. Many partial differential equations with rapid spatial or temporal scales
have effective descriptions which can be derived by homogenisation or averaging.
In this article we deal with examples, where quantitative estimates of the error is
possible for higher order homogenisation and averaging. In particular, we provide
theorems, which allow homogenisation and averaging beyond all orders by giving ex-
ponential estimates of appropriately averaged and homogenised descriptions. Meth-
ods include iterated averaging transformations, optimal truncation of asymptotic
expansions and highly regular solutions (Gevrey regularity). Prototypical examples
are reaction-diffusion equations with heterogeneous reaction terms or rapid exter-
nal forcing, nonlinear Schrödinger equations describing dispersion management, and
second-order linear elliptic equations.

1 Introduction

Many classical multiscale problems are modelled by (partial) differential equa-
tions which are heterogeneous in space (explicitly depending on the space
variable x) or nonautonomous (explicitly dependent on time t). The multi-
scale character is introduced, if these dependencies are rapid, i.e. they are
on a fast scale. Typically, this is achieved by introducing a small parameter ε
and considering dependencies of the form x/ε or t/ε. Application areas, where
such descriptions are used, include continuum mechanics, chemical reactions,
nonlinear optics, ecology, and celestial mechanics among others. The x/ε de-
scribes e.g. the underlying varying microstructure of the medium, whereas an
t/ε dependency is used for rapid external excitations.

Then there are two main approaches to such problems when comparing
the heterogeneous/ nonautonomous partial differential equations with their
homogeneous/ autonomous counterparts. Firstly one can identify effects that
are created by the multiscale structure. Secondly one can try to find effective
descriptions by homogeneous and autonomous equations without any explicit
multiscale structure. This process is usually called homogenisation for space-
dependent problems and averaging for time-dependent problems. Of course,
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these two approaches are related, as effective descriptions can be used to
estimate the size of effects.

There are many different methods to derive the homogenised or averaged
descriptions, these can be grouped roughly into two groups. The first one
is using weak convergence methods (see e.g. [Tar79, Tar86, Bor98, GM*97,
JKO94]), which are applicable to many problems but which usually do not
provide a quantitative bound on the effectiveness, i.e. on the error of ap-
proximation. The next group of methods is based on asymptotic expansions
in the small parameter ε. When ruling out purely formal methods, then the
rigorous asymptotic techniques can be also used to derive quantitative er-
ror bounds on the approximation error. These will be then in some finite
or even exponential order in ε. Some classical methods can be found in
[AKN97, BLP78, BP84, JKO94, LM88]. To derive such estimates, the finer
analysis often also requires additional assumptions on the structure of the
differential equation.

Besides certain regularity assumptions on the solutions, we will mainly
consider cases where the underlying microstructure and external excitation
is either periodic or quasiperiodic. When expanding a rigorous finite order
procedure into a series, even in a very benign example, like periodic averaging
of analytic ordinary differential equations

ẋ = f(x, t/ε),

convergence of the expansion cannot be expected in general. Nevertheless,
beyond a finite asymptotic expansion, there are exponential estimates in sev-
eral aspects, early examples are by Nekhoroshev, and Neishtadt; see, e.g.,
[Nek79, Nei84, LM88]. These then yield upper estimates on all kinds of effects
created by the periodic nonautonomous structure.

Here, the purpose of this article is to describe a number of asymptotic
techniques which provide effective descriptions up to exponentially small er-
rors for wide classes of multiscale problems. The remainder of the article
has the following structure. First we will provide a list of prototypical par-
tial differential equations and interesting solutions involving multiple scales
in Sect. 2. Then we will describe several finite order methods like classical av-
eraging, homogenisation and their relation to normal forms in the dynamical
systems literature (Sect. 3). Detailed results on techniques for upper exponen-
tial estimates for the earlier examples will be given in Sect. 4. In Sect. 5, we
will use these results to estimate several possible effects. We conclude with a
discussion, where we are e.g. describing some situations, where lower estimates
are possible, Sect. 6.
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2 Examples

We provide some typical examples for which effective descriptions beyond
every order will be possible. For larger classes of examples and more general
assumptions, we refer to the relevant papers [Mat01, MS03, Mat04, KMS06].

2.1 Partial differential equations with rapid time dependence

The basic example of nonautonomous differential equations is the periodic
ordinary differential equation

u̇ = f(u, t/ε) with f(., τ) = f(., τ + 1) for all τ ∈ R (2.1)

To describe more general dependencies than the purely periodic one, we intro-
duce the phase φ ∈ Tm = (R/Z)m,m ∈ N. Then we rewrite the autonomous
equation as

u̇ = f(u, φ)

φ̇ =
1
ε
Ω(u, φ) (2.2)

with Ω(u, φ) ≥ c0 > 0. Then m = 1, Ω(u, φ) = 1 recovers the periodic case.
Results on averaging in this situation, under certain assumptions on Ω, can
be found in [BM61, SV85]. Exponential estimates are due to Neishtadt [Nei84]
for m = 1 and to Simó [Sim94] for m > 1 and

Ω(u, φ) = ω ∈ Rm with Diophantine conditions on ω
|(�, ω)| ≥ γ|�|−τ for some γ > 0, τ > m− 1 and all � ∈ Zm (2.3)

Partial differential equations with such a structure can be found in the
context of systems of reaction-diffusion equations

ut = D∆u+ f(u) + g(u, φ)

φ̇ =
1
ε
Ω(u, φ) (2.4)

(u(0), φ(0)) = (u0, φ0) ∈ X × Tm

with D = diag(d1, . . . , dn). We will consider the functiion u on [0, 1]d with
periodic boundary conditions. Initial conditions are in the phase space X =
Hs

per([0, 1]d,Rn) with s > d/2 to ensure the embedding of X into C0 and
differentiability of the nonlinearities in X . Reaction diffusion equations are
the prime example for pattern formation, for a review see [FS03]. An external
forcing can be introduced in light sensitive reactors by periodic changes, see
e.g. [SSW99, RM*03] for a framework and an example.

Another example are nonlinear Schrödinger type equations, which e.g. de-
scribe the evolution of pulses in optical fibres [NM92]. The evolution then de-
scribes the changes of the pulse while propagating along the fibre, so changes
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in the material due to dispersion management and localised amplification are
described as

iut = d(φ)uxx + C(φ, |u|)u

φ̇ =
1
ε
Ω(u) + g(u, φ) (2.5)

As a phase-space we use as in (2.4) some Sobolev space, denoted again by X .
Variants describing general interaction between fast oscillations and pulses
can be also described in the setting of Hamiltonian PDE. For the necessary
frame work and the description of non-adiabatic coupling, we refer the reader
to [MS03].

2.2 Partial differential equations with rapid space dependence

First we consider a heterogeneous version of (2.4), where the heterogeneity
is in the reaction term, examples of these can be found in several modelling
areas [BHR05, Kee00, KS98]:

ut = ∆x,yu+ f(u, x/ε) (2.6)

We will be in particular interested in the behaviour in infinite cylinders, i.e.
x ∈ R and y ∈ Σ with Σ a bounded cross-section. In particular, let Σ = [0, 1]d

with periodic boundary conditions in y. When looking for stationary solutions,
we obtain

∆x,yu+ f(u, x/ε) = 0. (2.7)

We rewrite the equation and use the idea of spatial dynamics. It is a way to
construct special solutions to PDE on unbounded domains. For this we let

U =
(
u
ux

)
; A =

(
0 I

−∆y 0

)
; F (U, x/ε) =

(
0

−f(u, x/ε)

)
Renaming x as time t, we again obtain an equation

Ut = AU + F (U, t/ε), (2.8)

which has the form of a rapidly forced evolution equation. The phase space X
is a function space on the cross-sectionΣ likeX = Hs+1(Σ,Rn)×Hs(Σ,Rn).
Even if the Cauchy problem is not well-posed, this method of spatial dynamics
has a long history, see [Kir82] and further work (see, e.g.[IM91, AM95, FS03]
and the references therein).

When considering travelling waves in heterogeneous media one is using the
ansatz

u(x, y, t) = v(x − ct, y, x/ε),
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i.e. the profile v of the travelling wave is changing periodicly while moving
through the periodic medium. This can be also formulated as a spatial dy-
namics problem, for details see [MSU06].

Variants also include heterogeneities in the main part like in classical ho-
mogenisation theory. The homogenisation of heterogeneous second-order el-
liptic equations is appearing in many stationary problems, consider

−∇ · (A(x/ε)∇u)(x)) = f(x). (2.9)

The matrix A ∈ L∞(T d) on T d = (R/Z)d is assumed to be symmetric and
uniformly elliptic. Furthermore we assume boundary conditions for x in some
bounded domain, here again periodic boundary conditions.

3 Finite order estimates and normal forms

The basic idea of this approach is to transform the equation to derive an
effective, simpler version of the differential equation. The method proved to
be very successful in the analysis of finite dimensional dynamical systems
[LM88, SV85]. Now we consider problems, that can be written as an evolution
equation with external forcing like (2.4,2.8) and under further assumption also
(2.5) (see [Mat04]). More examples and references can be found in [Mat04,
Ver05, Ver06], including other variants of explicitly time dependent partial
differential equations and other near-identity transformations to obtain the
form in (3.1). We consider

ut = Au+ f(u, φ)

φ̇ =
1
ε
Ω(u, φ), (3.1)

where u ∈ X for some appropriate phase space X . Then a near-identity trans-
formation on a ball BR(X) can be written in the form

u = v + εW (v, φ) (3.2)

The transformed equation can be derived from

∂tu = ∂tv + ε∂vW (v, φ)∂tv + ε∂φW (v, φ)∂tφ

then

∂tv =(I + ε∂vW (v, φ))−1
{
A(v + εW (v, φ)) + f(v + εW (v, φ), φ)

− ε∂φW (v, φ)
1
ε
Ω(v, φ)

}
.

So depending on the form of Ω, one can try to reduce the externally forced
term f by an appropriate choice of W . It is notational convenient to split f
such that
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f(v, φ) = f̂(v) + g(v, φ) such that

〈g〉 =
∫
Tm

g(v, ψ)dψ = 0.

In the simplest case of periodic external forcing, i.e. m = 1, Ω ≡ 1, we let

W (v, φ) =
∫ φ

0

g(v, ψ)dψ,

then the transformed equation has the form

∂tv =(I + ε∂vW (v, φ))−1
{
A(v + εW (v, φ)) + f̂(v + εW (v, φ))

+ g(v + εW (v, φ), φ) − g(v, φ)
}
.

This removes the lowest order nonautonomous terms. A problem is to estimate
the remainder r, if we rewrite the equation as

vt = Av + f̄(v; ε) + r(v, φ; ε). (3.3)

The remainder involves terms depending on the unbounded operator A, such
that r is only formally small. A more promising variant is to use some bounded
Galerkin type approximation to perform the estimates, where the Galerkin
approximation vN is chosen depending on ε. For all our examples, there exists
a sequence of (Galerkin) projections (PN )N∈N which satisfy

1. the sequence of projections converges strongly to the identity on the phase
space X ,

lim
N→∞

PNu = u in X for all u ∈ X ; (3.4)

2. the projections PN commute with A on its domain of definition

PNAu = APNu for all u ∈ D(A); (3.5)

3. the operator A is bounded on RgPN ,

|APNu|X ≤ N |PNu|X for all u ∈ X. (3.6)

The equation with projection PN on the approximation space is

∂tuN = AuN + PNf(uN , φ). (3.7)

Then the transformed equation is

∂tvN = (I + ε∂vNW (vN , φ))−1
{
A(vN + εW (vN , φ)) + f(vN + εW (vN , φ), φ)

−ε∂φW (vN , φ)
1
ε
Ω(vN , φ)

}
. (3.8)

Regrouping again yields
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∂tvN = AvN + f̄N (vN ; ε) + r1(vN , φ; ε) (3.9)

then the remainder term is of order

sup
‖vN‖≤R

ε‖AvN‖‖g(vN , φ)‖,

for V in a large ball BR(X). The remainder is small for an appropriate choice
of N(ε). E.g. when we are choosing N(ε) such that ‖AvN‖ ∼ ε−1/2, we obtain
a rigorous estimate on r1 ∈ O(ε1/2) in the approximation space PNX , this is
uniform for ε→ 0, N(ε) →∞.

The important property is now, that (3.9) has still the form of the orig-
inal equation (3.7). So the equation can be transformed again to obtain a
new remainder term r2. This is of order sup‖vN‖≤R ε‖Avn‖‖r1(vN , φ)‖, such
that r2 ∈ O(ε) for the same choice of N(ε) with ε → 0, N(ε) → ∞. The
transformed equation has again the same form. Hence this procedure can be
iterated to obtain arbitrary finite order estimate O(εk), provided we can en-
sure enough regularity of the nonlinearity.

In a detailed analysis taking into account all parts of the remainder term
one can see, that the constant in the O(εk) remainder will become large with
k. So this procedure will not lead to a convergent asymptotic expansion. But
keeping track of the constants in the remainder estimates depending on k and
ε is crucial for later exponential estimates.

Here of course, the error of the Galerkin approximation is still to be esti-
mated. When extending the transformation back to the full space by

u = v + εPNW (PNv, φ),

this leads to
∂tv = Av + f̄(v; ε) + r(v, φ; ε)

with additional terms in f̄ and r due to the Galerkin approximation. The
additional terms are all of the form G(v − PNv).

Another situation with an explicit choice of W is for m = 1 and Ω(v, φ) =
Ω̄(v)+ εβ(v, φ). The phase φ will also be transformed. We choose the explicit
change of coordinate (uN , φ) = (vN , ψ) + εW (vN , ψ)

W (vN , ψ; ε) =
(
W 1(vN , ψ; ε)
W 2(vN , ψ; ε)

)
, (3.10)

with

W 1(vN , ψ; ε) =
1

Ω̄(vN )

∫ φ

0

g(vN , τ)dτ

and

W 2(vN , ψ; ε) =
1

Ω̄(vN )

∫ φ

0

β(vN , τ)

+ ∂vN Ω̄(vN )(W 1
k+1(vN , τ)− 〈W 1(vN , .)〉)dτ,

where 〈 . 〉 again denotes the T 1-average.
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The third situation is the quasiperiodic case, i.e. m > 1 and Ω(v, φ) = ω
with ω = (ω1, . . . , ωm) fulfilling Diophantine conditions: there are constants
γ > 0 and τ > m− 1 such that for all � ∈ Zp

|(�, ω)| ≥ γ|�|−τ (3.11)

as for the finite dimensional result (2.3). Then the transformation is given
terms of the Fourier expansion of the phase dependent term. Letting

g(uN , φ; ε) =
∑
�∈Zp

g�(uN ; ε) exp(i2π(�, φ))

then we transform uN = vN + εW (vN , φ; ε) with

W (vN , φ; ε) =
∑
�∈Zp

g�(vN ; ε)
2πi(�, ω)

exp(i2π(�, φ)) (3.12)

Classical homogenisation theory of (2.9) gives an asymptotic expansion
(cf. e.g. [BP84]):

uε,N(x) =
N+2∑
n=0

εmu(n) (x, x/ε) , (3.13)

where the functions u(l)(x, y) are required to be periodic in the fast variable
y. For this problem one can construct in this way a full asymptotic expansion
with u(l) adopting the following form (see e.g. [BP84], [CS04]):

u(n)(x, y) =
n∑
l=0

∑
|k|=l

Nk(y)Dk
x vn−l(x), (3.14)

where N0(y) ≡ 1 and Nk(y) are periodic solutions of the main (|k| = 1) and
higher order (|k| > 1) unit cell problems in y. The functions vs(x), s ≥ 0,
solve certain recurrent systems of equations in x, see [BP84, KMS06]. This
cannot be easily rephrased as an iterative procedure but the idea of track-
ing the dependence of the constants and taking expansion depending on ε
can also be used in the context of (2.9). For other quantitative estimates on
homogenisation involving quasiperiodic terms see [FV01].

The method of iterative transformation procedures are encountered widely
in dynamical systems theory as the concept of normal forms, see e.g. [AKN97,
Van89]. An important question is the description of the behaviour near an
equilibrium of

u̇ = Au+ f(u), u ∈ Rn,

where f is of higher order in u. A particular simple form is sought for f . If
A has purely imaginary spectrum and is semisimple (i.e. there are no Jordan
blocks of size 2 or bigger in its complex Jordan normal form), then we obtain
a normal form transformation by averaging, see [Van89][Sec.2.4]. When we
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assume that exp(At) is periodic with period T , then all terms can be removed
by appropriate coordinate changes, except those which are invariant under
the averaging operator

πf(u) =
1
T

∫ T

0

exp(−At)f(exp(At)u)dt

for all u ∈ R. But while removing terms, which are not invariant under π, one
also changes certain higher order invariant terms, such that pure averaging
will not give a correct normal form.

The relation of averaging and purely imaginary spectrum has also been
used in the context of wave equations and similar partial differential equations,
see [Bam03a, Bam03b, Bam06, Kr89, Ver05, Ver06]. Here also the reductions
to Galerkin approximations were used depending on a small parameter, which
is introduced via scaling u �→ εu to obtain

∂tu = Au + εf̃(u, ε),

with f̃(u, ε) = 1/ε2f(εu) ∈ O(1). The equation is then simplified by averaging
the semigroup exp(At). Here the name ‘Galerkin averaging’ was introduced.
The development of ‘Exponential averaging’ in [Mat01, MS03] was indepen-
dent of this.

4 Exponential estimates

We will now collect methods to move from finite order normal form and av-
eraging transformations to exponential estimates in the framework described
above. In particular, we obtain results to all orders O(εk) and beyond. In
the last section, we derived iterative estimates on the Galerkin approximation
space PNX , and obtained error terms due to the Galerkin approximation. We
will control both errors at the same time. There are three variables to choose
to minimise the error. Firstly there is ε, which is given, then we have the
choice of the number of normal form steps and there is also the index N of
the Galerkin approximation.

The crucial ingredient, which dictates the optimal coupling, is the depen-
dence of the error on N , which is in our examples a question of regularity.
As it is a question about the decay of spatial Fourier coefficients for peri-
odic boundary conditions or the decay of the Fourier transform for problems
on Rd. A class of function spaces is introduced to capture this. We define
the Gevrey space in the following way: Assuming that there exists a closed,
densely defined, boundedly invertible operator Γσ,p with domain of definition

Gσ,ν := D(Γσ,ν) ⊂ D(A), (4.1)

such that RgPN ⊂ Gσ,ν , Γσ,ν(RgPN ) = RgPN for all N , and
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Γσ,νAu = AΓσ,νu for all u ∈ RgPN .

We equip the Gevrey spaces Gσ,ν with the graph norm

|u|Gσ,p = |u|X + |Γσ,νu|X . (4.2)

For the theorem, we will assume that Gevrey-regular functions u ∈ Gσ,ν are
exponentially well approximated by the Galerkin projections PN , i.e.

|Γ−1
σ,ν (I − PN )| ≤ C0 exp(−σ/Nν), (4.3)

for N -independent constants C0(σ, ν). Now we are in a position to formulate
the following theorems about exponential estimates.

Theorem 4.1 (Exponential averaging of parabolic equation under
periodic forcing [Mat01]). Let the nonlineairties f, g be entire functions
on Rn, let g be continuous on T 1 and let Ω ≡ 1 in equation (2.4). Then
the equation can be transformed on bounded sets in X by a real analytic and
time-periodic change of coordinates for 0 < ε < ε0

u = v + εW (v, t/ε; ε) (4.4)

with W bounded on any ball of radius R in X. The transformed nonau-
tonomous terms r are exponentially small after a short transient, but the
equation may contain nonlocal terms f̄ :

∂

∂t
v(x, t) = D∆v(x, t) + f(v(x, t)) + f̄(v(t); ε)(x) + r(v(t), t/ε; ε)(x), (4.5)

with v(0) = u0, |v(0)|X < R and t ∈ (0, t∗)

sup
|v(0)|X<R

|α(v(t))|X ≤ Cε exp(−min(t, c)ε−1/3),

sup
|v(0)|X<R

|f̄(V (t))|X ≤ Cε+ C exp(−min(t, c)ε−1/3)

where C, c, ε0 do not depend on u0.

Proof. For a detailed proof see [Mat01]. We will sketch the proof using the
transformation of (3.7) in the previous section. Adapting the results of [Nei84]
and a coupling

N(ε)εα = 1

we can estimate the remainder term in the approximation space PNX . For
this we use a complex extension and a Cauchy estimate. Performing k =
[ε−1+α] transformation steps as in (3.9) and proving that |rj+1| ≤ |rj |/2 for
j = 1, . . . , k yields that the remainder term on the approximation space is

|rk| ≤ C2−k ≤ C exp(−cε−1+α)
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for an appropriate choice of C and c. The autonomous correction term is at
most of order O(ε). To estimate the effect of the transformation on the full
space X , we use a regularity result for equation (2.4). Letting A = ∆ and

Γσ,ν = exp(−σ|A|ν) (4.6)

we obtain that

u(t) ∈
{
Gt,1/2 for t ∈ [0, t∗]
Gt∗,1/2 for t > t∗

as long as |u(t)|X remains bounded. This and similar results can be found
in [Pro91, TB*96, FT98], adaptions to equations with nonlocal operators as
they appear in the transformed equations can be found in [Mat01]. Using this
regularity result and (4.3), we can estimate the additional error terms due the
Galerkin approximation of the form G(v − PNv). Thus the overall remainder
can be bounded by

|rk(ε)|X + |G(v(t) − PN(ε)v(t))|X
≤ C exp(−cε−1+α) + C0 exp(−min(t, t∗)/N(ε)1/2)

= C exp(−cε−1+α) + C0 exp(−min(t, t∗)ε−α/2).

Choosing α = 2/3 yields the desired result for an appropriate choice of C and
c. The other results including the estimate on f̄ are direct consequences of
the detailed analysis in [Mat01].

So far the analysis was about the equation, now we compare the solutions
of (4.5) with solutions of the truncated equation,

∂tu = ∆u+ f(u) + f̄(u; ε) (4.7)

Corollary 4.2 (Gronwall estimates with Gevrey initial data). Let the
assumptions of Theorem 4.1 hold, and additionally assume that (2.4) has only
globally bounded solutions. Fix R > 0, the maximal amplitude of the solution.
Then for any t0 > 0 there are constants ε0(t0) > 0, and C′(t0), c′(t0) > 0 such
that the following holds.

Let u(t) be a solution to the truncated equation (4.7) with norm bounded
by R in the Gevrey space Gt∗,1/2, for a time interval 0 ≤ t ≤ t0 <∞.

Then there exists a unique solution v(t) on 0 ≤ t ≤ t0 to (4.5) with initial
value u(0). Moreover, the solutions are exponentially close in ε < ε0,

|v(t) − u(t)|X ≤ C′ exp
(
−c′ε−1/3

)
,

for all 0 ≤ t ≤ t0.

Proof. The difference w(t) = v(t)− u(t) satisfies the equation

∂tw = A(t)w + r(t),
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where

A(t) = A+
∫ 1

0

(∂uf + ∂uf̄)(τu + (1− τ)v)dτ

and
r(t) = r(v(t)) − r(u(t)),

where for the sake of notation, we omitted the arguments t and ε. Since f ,
f̄ , and r possess bounded derivatives on bounded sets of Gt∗,1/2, the result is
an immediate consequence of a standard Gronwall lemma. Note that Gevrey
initial data will stay in the Gevrey space Gt∗,1/2, such that there is no transient
in the exponential estimate. We also note that the estimate on the remainder
r is in the X-topology, only, such that the closeness result only holds in this
topology. Furthermore when starting with arbitrary initial data, the transient
in the exponential estimate would destroy an exponential estimate.

In the next theorem, we use smooth initial data in Gσ,1/2, which is defined
in the same way as in (4.1) with the same function Γσ,ν as in (4.6). We denote
a ball of radius R in a Banach space Y by BR(Y ).

Theorem 4.3 (Exponential averaging of Gevrey regular solutions of
nonlinear Schrödinger equations [MS03]). Consider equation (2.5) with
analytic nonlinearities C, g. Assume Ω(u) ≥ c0 > 0 for all u ∈ X,φ ∈ T 1.
Consider initial data in Gσ,1/2. There exists a near-identity transformation
I +εW , defined on the ball BR(X)×T 1, which eliminates adiabatically the fast
phase, up to an exponentially small non-adiabatic effect and which is analytic
on BR(Gσ,1/2)× T 1. In the new variables (v, ψ), the evolution equation reads

i∂tv = ∆v + C̄(v; ε) + r1(v, ψ; ε), (4.8)

∂tψ =
1
ε
(Ω(v) + Ω̃(v; ε)) + r2(v, ψ; ε).

The transformed nonlinearities r1, r2, C̄ and Ω̃ are bounded on the ball BR(X)
and BR(Gσ,1/2) respectively, uniformly in 0 < ε < ε0.

The non-adiabatic interaction terms r1 and r2 are exponentially small in
ε, i.e., there exist constants c, C > 0 such that

|r1(v, ψ; ε)|X + |r2(v, ψ; ε)| < C exp
(
−cε−1/3

)
, (4.9)

for all v ∈ BR(Gσ,1/2), and all ψ ∈ T 1. The adiabatic corrections C̄ and Ω̃
are small in Gevrey spaces,

|C̃(v; ε)|Gσ,1/2 ≤ Cε1/3, |Ω̃(v; ε)| ≤ Cε,

for v ∈ BR(Gσ,1/2).
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Proof. A detailed proof for general evolution equation or Hamiltonian partial
differential equations can be found in [MS03]. The proof is similar to the proof
of theorem 4.1. The formal transformations we consider are given in (3.10).
Estimates on the remainder term in approximation space can be derived in
the same way as above. For the analysis of the error due to the Galerkin space,
we use that the initial data are in Gσ,1/2 and that (2.5) is well-posed on this
space for finite times. Then the estimates on the non-adiabatic remainder in
PNBR and the error of the Galerkin approximation can be balanced again to
obtain the desired exponential estimate.

A comparable corollary of Gronwall type also holds.

Theorem 4.4 (Averaging of Gevrey regular solutions of parabolic
equations under quasiperiodic forcing [Mat04]). Consider the reaction-
diffusion equation (2.4) with analytic nonlinearities and Ω(u, φ) = ω with Dio-
phantine conditions (3.11). Then, for any ball of radius R in Gσ,ν there exists
an ε0 > 0, such that for 0 < ε < ε0 there exists a near identity transformation
of both Gσ,1/2 and X to

∂tv = ∆v + f(v) + ḡ(v, ε) + r(v, ψ, ε) (4.10)

∂tψ =
1
ε
ω

with initial conditions v(0) = u0; θ(0) = θ0 and with ḡ and r both bounded on
balls in X, furthermore the remainder term is exponentially small on balls of
the Gevrey space.

|ḡ(v, ε)|X ≤ Cε(τ+1)/(τ+3)

|r(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−cε−1/(τ+3)).

Details, variants and extensions are given in [Mat04].

Proof. A major part is already the estimate on the approximation space, see
[Sim94]. The remainder on this space is O(exp(−cε(εN(ε))1/(1+τ)

)). The error
estimate of the Galerkin approximation is as above of orderO(exp(−cN(ε)1/2),
such that the optimal coupling is N(ε) = ε−2/(3+τ), which yields the expo-
nential estimate.

Theorem 4.5 (Homogenisation via spatial dynamics [Mat05]). Con-
sider (2.7) with analytic nonlinearity f(., .), which is periodic in the second
component. Then there exist ε0 > 0, c, C > 0 and a t-periodic transformation
of (2.8) on a ball BR(X) for 0 < ε < ε0 to

Vt = AV + F (V ) + F̄ (V, ε) + r(V, t/ε, ε), (4.11)

where F̄ , α are differentiable for V ∈ BR(X), nonlinear and nonlocal in
the cross-section, but local in t. When considering bounded solutions V (.) ∈
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BC(R, X) of the original equation (2.8) then the influence of the fast scale
on V (.) is exponentially small, uniformly on balls in BC(R, X):

‖r(V (.), ./ε, ε)‖BC(R,X) ≤ C exp(−cε−1/2).

The correction term can be estimated on BR(X) by

sup
V (.)∈BX(R)

‖F̄ (V (.), ε)‖BC(R,X) ≤ Cε.

Proof. A complete proof of this homogenisation and of variants can be found
in [Mat05, MW06]. The estimates on the approximation space are similar to
the estimates in theorem 4.1. Using again the coupling

N(ε)εα = 1.

Then we use again a regularity result. We let A as in (2.8) and use

Γσ,ν = exp(−σ|A|ν)

in the definition of the Gevrey norm in (4.1). Then we obtain that the globally
bounded solutions are in fact highly regular as functions on the cross-section
Ω

V (t) ∈ Gσ∗,1

for some σ∗ > 0 with estimates uniform in t. The set of all such solutions
is sometimes called the attractor of the spatial dynamics equation. Then the
overall remainder on bounded sets within the attractor can be bounded by

|rk(ε)|X + |G(V (t)− PN(ε)V (t))|X
≤ C exp(−cε−1+α) + C0 exp(−σ∗/N(ε))

= C exp(−cε−1+α) + C0 exp(−σ∗ε−α).

Choosing α = 1/2 yields the result for appropriate C and c. The results hold
in the same way for any function V (.), which is smooth enough, e.g. by being
a solution of a similar averaged equation.

Theorem 4.6 (Homogenisation of elliptic operators [KMS06]). Sup-
pose A ∈ L∞(T d), f ∈ Gσ,1/2 (as defined above) and

∫
Td f = 0 in equation

(2.9). Let uε be the solution. Then there exist ε-independent constants C > 0,
c > 0, κ > 0, such that for any N ∼ κε−1 the approximation (3.13) has the
error bound:

‖uε,N − uε ; H1(T)‖ ≤ C exp(−cε−1).

The proof in [KMS06] is based on a careful analysis of the remainder term
uε,k− uε, then the error can be estimated in an exponential way for k = N ∼
κε−1, where only regularity of f is needed, but not on the regularity of the
matrix A.
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5 Effects

In this section we discuss some effects due to the heterogeneous or nonau-
tonomous structure of the equation.

5.1 Splitting of homoclinic orbits

An important difference in the dynamics between autonomous and non-
autonomous differential equation are the existence of transversal homoclinic
orbits. So consider a parameter dependent version of (2.4) without rapid forc-
ing

∂tu = ∆u+ f(u, λ) (5.1)

with λ ∈ R. A homoclinic orbit is a solution, which is biasymptotic for
t → ±∞ to some hyperbolic equilibrium u0, i.e. ∆u0 + f(u0, λ) = 0 and
the operator ∆+Df(u0, λ) has only spectrum away from the imaginary axis.
Under some non-degeneracy conditions, this homoclinic orbit will only exist
for special values λ0. Whereas in the externally forced equation

∂tu = ∆u + f(u, λ) + g(u, t/ε) (5.2)

the stable and unstable manifold will intersect transversally, creating rich dy-
namics nearby. The main assertion of theorem 4.1 is, that the nonautonomous
dynamics of (5.2) can be described by the exponentially close autonomous
equation as in (4.7). It is possible to show by some further analysis that
the equilibrium persists as a hyperbolic periodic orbit, exponentially close to
an equilibrium of the truncated equation after the transformation of theo-
rem 4.1. Then also the phase-portraits with unstable and parts of the stable
manifolds will be exponentially close, see [Mat01]. From this, it is easy to
see, that transversality effects can only occur in a small parameter interval
(λ−(ε), λ+(ε)) with

|λ+(ε)− λ−(ε)| ≤ C exp(−cε−1/3),

such that these effects were called “invisible chaos” [FS96].
Using functional analytic methods as in [Mat03a] one obtains better results

for large classes of parabolic equations, by analysing the problem in complex
time. A more detailed analysis is possible for ordinary differential equations
including lower estimates, see e.g. [Gel99, HMS88].

5.2 Pinning

Pinning describes a phenomenon in equations like (2.6), where a travelling
wave does not propagate due to heterogeneous structures in the medium.
Thus travelling waves will be instead standing waves, i.e. they are solutions
to (2.7). A pinned wave is then homoclinic or heteroclinic orbit in the spatial
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dynamics setting (2.8). Pinning occurs when there a transversal intersection
of stable and unstable manifolds. The general idea is similar to the analysis of
the transversal intersection above. Here it is more convenient to find solutions
nearby a pulse U0 as zeros of

I(V ) = ∂t(U0 + V )−A(U0 + V )− F (U0 + V ) ∈ BC(R, X)

Using Fredholm properties or exponential dichotomies, the problem is reduced
to a low-dimensional problem, where the effects of the heterogeneous terms
can be estimated to be of order O(exp(−cε−1/2)), see [MW06].

6 Discussion

In this article we have given an overview on results about averaging and ho-
mogenisation for partial differential equations beyond every order. The first
step of this analysis are finite-order averaging estimates, which were iterated,
to obtain exponential estimates on the transformed equation. With Gronwall-
type estimates, we can extend this to estimates about the finite time be-
haviour. For particular solutions, equilibria, stable and unstable manifolds
and connecting orbits the analysis can be extended to infinite times too. Due
to the general nature of the procedure there remain several problem, which
require a finer analysis.

The construction of the transformation and the remainder terms are it-
erative so they are not easily computable, but they coincide to finite order
with their finite order counter-parts. Therefore, it is possible to show by direct
calculations, that the transformed nonlinearities are typically not-local in x,
even if the original nonlinearities are local, see [Mat04].

A very subtle point are lower estimates for both averaging procedures and
particular effects. For the general averaging procedure, there is an example in
[MS03], showing that the averaging results cannot be improved by any other
“averaging-type” transformation. In particular there is difference between or-
dinary differential equations and infinite dimensional systems in what kind of
exponents can be achieved by exponential averaging. In [KMS06], a particu-
lar simple choice of the heterogeneous matrix allows explicit calculations and
shows, that the truncation of the asymptotic expansion is optimal.

For particular effects like the splitting of homoclinic orbits, there are
several ways to obtain lower estimates in the finite dimensional case, see
[HMS88, Gel99]. A crucial part is extending the analysis to complex time and
analysing the time-singularities in the complex plane. This idea is also used
in other cases of exponential analysis [BT05, CM05] and references therein.
Some ways of introducing exponential asymptotics into numerical analysis
can be found in [MBS00, Mat03b]. The relation of exponential averaging and
integrable systems is still open, but see [Bam99, Pös99] for related results.

The analysis here was restricted to cases to some partial differential equa-
tions with periodic boundary conditions, the needed abstract properties, such
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that the theorems hold for large classes of evolution equations are given e.g.
in [MS03, Mat04]. Then these results will hold e.g. for problems on the do-
main Rd. The effect of boundary conditions and of boundary layers [Neu00]
on exponential homogenisation still remains to be analysed.
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Summary. Our objective is to describe solidification phenomena in alloy systems.
In the classical approach, balance equations in the phases are coupled to conditions
on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-
Thomson condition ensures that the evolution is consistent with thermodynamics.
We present a derivation of that condition by defining the motion via a localized
gradient flow of the entropy. Another general framework for modelling solidification
of alloys with multiple phases and components is based on the phase field approach.
The phase boundary motion is then given by a system of Allen-Cahn type equations
for order parameters. In the sharp interface limit, i.e., if the smallest length scale δ
related to the thickness of the diffuse phase boundaries converges to zero, a model
with moving boundaries is recovered. In the case of two phases it can even be shown
that the approximation of the sharp interface model by the phase field model is of
second order in δ. Nowadays it is not possible to simulate the microstructure evolu-
tion in a whole workpiece. We present a two-scale model derived by homogenization
methods including a mathematical justification by an estimate of the model error.

1 Introduction

Solidification of alloys based on iron, aluminum, copper, zinc, nickel, and
other materials which are of importance in industrial applications involves the
occurrence of structures on an intermediate length scale of some µm between
the atomic scale of the crystal lattice and the typical size of the workpiece.
This so-called microstructure consists of regions (in the following labelled
phases) differing in the crystalline structure, in the composition or only in the
orientation of the crystal lattice, and it is responsible for a broad range of
material properties and, hence, for the quality and durability of the material.

Being a result of the solidification process the microstructure is not in
thermodynamic equilibrium. Its formation is classically modelled using mov-
ing hypersurfaces for the phase boundaries. The Gibbs-Thomson condition
couples the form and the motion of the interface to its surface energy and
to the local thermodynamic potentials of the adjacent phases. In addition,



22 C. Eck, H. Garcke, B. Stinner

balance equations for the internal energy and the concentrations of the com-
ponents have to be taken into account. This leads to diffusion equations in
the phases and jump conditions on the moving phase boundaries.

In the last years, the phase field approach has emerged as a powerful tool
to simulate microstructure formation. Phase field variables are introduced
standing for the presence of related phases. Instead of jumping across the
phase boundaries, the phase field variables and all the thermodynamic quan-
tities change smoothly but rapidly within a narrow transition layer. It scales
with a new length scale δ smaller than the typical scale of the microstructure
to be described. This leads to the notion of a diffuse interface in contrast to the
sharp interface model with the moving phase boundaries. The Gibbs-Thomson
condition is replaced by a diffuse version which can be viewed as a gradient
flow of an appropriate Ginzburg-Landau energy. The balance equations for
the conserved quantities are reformulated in terms of the new variables where
the jump conditions enter in a natural way. As a main advantage, numeri-
cally simulating microstructure formation is restricted to solving a system of
parabolic differential equations, and explicit tracking of the phase boundaries
in the sharp interface model is avoided.

The limit of vanishing diffuse interface thickness, i.e., the limit as δ ↘ 0,
is of particular interest. The first question is whether a related sharp interface
model is obtained in the following sense: given solutions to the diffuse interface
model for every δ, is there a limit of the solutions, and which equations do
the limiting fields fulfill? This question is related to the calibrations problem
when quantitatively investigating a certain alloy. Usually, material parame-
ters such as latent heats, surface tensions, and several mobility and diffusion
coefficients entering the sharp interface model are measured in experiments,
and the question is how they should enter the diffuse interface model.

Problems involving multiple length scales not only result from the mod-
elling approach but are also inherent in the physical problems itself. Diffusion
of the temperature is much faster than mass diffusion. Because of the bound-
ary conditions – solidifying workpieces are usually cooled from outside – and
the release of latent heat the temperature field is expected to suffer changes
over a scale proportional to the size of the the workpiece. On the other hand,
the concentrations of the components should exhibit strong gradients only
near the solidification front. The available numerical techniques and compu-
tational power only allow for the simulation of small domains in acceptable
computation time, the direct computation of the microstructure of a whole
workpiece is not feasible. For the latter purpose, macroscopic models involv-
ing heuristic assumptions on the distribution of the solidified parts and the
released latent heat have been in use. Newer mathematical methods are based
on a two-scale approach and allow for effective, homogenized equations for
the temperature distribution but also for taking the microstructure evolution
into account.

The structure of the present article is as follows. The first section is dedi-
cated to models for alloy solidification. First, the governing equations from the
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classical approach for modelling alloy solidification are presented. In particu-
lar, the Gibbs-Thomson condition is derived by locally varying the entropy.
After, the phase field approach is presented. In the second section, the rela-
tion between the sharp and the diffuse approaches is elucidated. Comments
on the calibration problem are given including appropriate potentials for the
phase field model with good calibration properties. Exemplary, a model for
a binary alloy is derived. In the third section, a mathematically rigorous ap-
proach to the derivation of homogenized models for phase transitions with
equiaxed dendritic microstructure is given. Asymptotic expansions are used
to derive a macroscopic heat equation coupled to microscopic cell problems
for the dendritic growth. A mathematical justification is carried out, i.e., an
estimate is established comparing the solution to the two-scale model with
that to the original model.

Acknowlegdments. This work has been supported by the German Research
Foundation (DFG) through the Priority Program 1095 “Analysis, Modeling
and Simulation of Multiscale Problems”. We thank Britta Nestler and Frank
Wendler for the inspiring discussions, mainly emerging from numerical simu-
lations based on the presented phase field model (see also their contribution
on page 113).

2 Models for alloy solidification

The production of certain microstructural morphologies is often achieved by
imposing appropriate conditions before and during the solidification process.
In order to get a deeper understanding of the process, the scientific challenge
is to describe the microstructure formation with a mathematical model where
the imposed conditions enter the equations governing the evolution as initial
and boundary values or as additional forces and parameters.

A framework for continuum modelling of alloy solidification can be derived
from thermodynamic principles for irreversible processes (cf. [Mu01]). Balanc-
ing the conserved quantities energy and mass respectively concentrations of
the components yields diffusion equations in the bulk phases as well as con-
tinuity and jump conditions on the moving phase boundaries. A coupling of
the phase boundary motion to the thermodynamic quantities of the adjacent
phases, the Gibbs-Thomson condition, is derived by localizing an appropriate
gradient flow of the entropy. The balance equations and the Gibbs-Thomson
condition, together with certain angle conditions in junctions where several
phases meet and which are due to local force balance, enable to show that the
local entropy production is non-negative and to prove an entropy inequality.

An entropy functional involving bulk and surface contributions plays a cen-
tral role also in non-equilibrium thermodynamics. In the phase field approach,
the interfacial entropy (or energy) is modelled with the help of a Ginzburg-
Landau type functional. Evolution equations for the phase fields can then be
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derived as gradient flows (see [FP90]) or within the theory of rational thermo-
dynamics (see [AP96, Ha06]). A small length scale is involved which is related
to the thickness of the interfacial layers.

We proceed as follows. First, the classical approach to model alloy solid-
ification, namely with moving phase boundaries, is presented. In the second
subsection, the Gibbs-Thomson condition is derived. After, the phase field
variables are defined, and the phase field approach is presented. As an ex-
ample, a model for non-isothermal solidification of a binary alloy involving
two phases is derived. Finally we briefly comment on the solvability of the
differential equations of the phase field model.

For general informations on the theory and models of phase transitions
we refer to the books [BS96, Vi96]. In this section, partial derivatives some-
times are denoted by subscripts after a comma. For example, s,e is the partial
derivative of the function s = s(e, ĉ) with respect to the variable e.

2.1 Classical approach with moving hypersurfaces

An alloy of N ∈ N components occupying an open domain Ω ∈ Rd, d = 1, 2, 3,
during some time interval IT = (0, T ) is considered. Changes in volume or
pressure are neglected (cf. [Ha94], Sect. 5.1). Moreover, the mass density is
assumed to be constant (only concentrations will be considered). The only
transport mechanism is diffusion, and there are no forces present leading to
flows or deformations. Such effects can strongly influence the growing struc-
tures (cf. [Da01]). The applicability of the model presented in the following is
therefore restricted to cases where such effects can be neglected.

LetM ∈ N be the number of possible phases. The domainΩ is decomposed
into sub-domains Ω1(t), . . . , ΩM (t), t ∈ IT , which are called phases. The phase
boundaries Γαβ(t) := Ωα(t) ∩ Ωβ(t), 1 ≤ α �= β ≤ M , are supposed to be
piecewise smooth evolving points, curves, or hypersurfaces, depending on the
dimension (cf. Def. A.1 in the Appendix). The unit normal on Γαβ pointing
into phase Ωβ is denoted by ναβ . If d ≥ 2 the intersections of the curves or
hypersurfaces are denoted by Tαβδ(t) := Ωα(t) ∩ Ωβ(t) ∩ Ωδ(t) for pairwise
different α, β, δ ∈ {1, . . . ,M}, and the points where the phase boundaries hits
the external boundary by Tαβ,ext(t) := Ωα(t)∩Ωβ(t)∩∂Ω. If d = 2 then Tαβδ
is a set of triple junctions, i.e., piecewise smooth evolving points. If d = 3
triple lines can appear which are piecewise smooth evolving curves.

During evolution, it may happen that one of the phases vanishes, namely
if the adjoining phase boundaries coalesce. It is also possible that a piece of
a phase boundary vanishes so that one of the sets Tαβδ includes a quadruple
point or line. Typically, the latter configuration is not in mechanical equi-
librium and will instantaneously split up forming new phase boundaries (see
[GNS99, BGN06]). It is supposed that such singularities only occur at finitely
many times t ∈ IT during the evolution. This is why only piecewise smooth
evolution is assumed. The evolution equations stated in the following are only
valid for times at which no such singularity occurs.
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Before proceeding let us introduce some notation. For K ∈ N define the
sets

HΣK :=
{
v ∈ RK :

K∑
i=1

vi = 1
}
, ΣK :=

{
v ∈ HΣK : vi ≥ 0 ∀i

}
. (2.1)

The tangent space on HΣK can be naturally identified in every point v ∈ HΣK

with the subspace

TvHΣK ∼= TΣK :=
{
w ∈ RK :

K∑
i=1

wi = 0
}
. (2.2)

The map PK : RK → TΣK is the orthogonal projection given by

PKw =
(
wk −

1
K

K∑
l=1

wl

)K
k=1

=
(
IdK − 1

K
1K ⊗ 1K

)
w

where 1K = (1, . . . , 1) ∈ RK and IdK is the identity on RK .
The following bulk fields are considered in the phases Ωα, 1 ≤ α ≤M :

cαi : concentration of component i, 1 ≤ i ≤ N,

cα0 := eα : internal energy density,
fα : (Helmholtz) free energy density,
µαi : chemical potential of component i, 1 ≤ i ≤ N,

Tα : temperature,
sα : entropy density,

uα0 := −1
Tα : inverse negative temperature,

uαi := µα
i

Tα : reduced chemical potential difference of component i, 1 ≤ i ≤ N.

On the interfaces Γαβ , 1 ≤ α �= β ≤M , there are the following surface fields:

ναβ : unit normal pointing into Ωβ ,

σαβ(ναβ) : surface tension,
γαβ(ναβ) : capillarity coefficient,
mαβ(ναβ) : mobility coefficient,

vαβ : normal velocity towards ναβ ,
καβ : curvature.

The concentrations fulfill the constraint ĉα = (cα1 , . . . , cαN ) ∈ ΣN . Follow-
ing [Mu01], Sect. 11.2, the evolution in the phases is governed by balance
equations for the conserved quantities, i.e.,
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∂tc
α
i = −∇ · Jαi = ∇ ·

⎛⎝ N∑
j=0

Lαij∇uαj

⎞⎠ , 0 ≤ i ≤ N. (2.3)

Let us briefly comment on the fluxes Jαi . In thermodynamics of irreversible
processes the relations between the fields are based on the principle of local
thermodynamic equilibrium. In the present situation the entropy density sα

is a function of the conserved quantities. Its derivatives are the inverse tem-
perature and the chemical potential difference reduced by the temperature,
i.e.,

sα = sα(eα, ĉα) and dsα =
1
Tα

deα +
−µα
Tα

· dĉα = −uα · cα.

In the above equation the identity µα = PNµα was used, where µα =
(µα1 , . . . , µ

α
N )T . The fluxes are postulated to be linear combinations of the

thermodynamic forces ∇uαj , 0 ≤ j ≤ N , with coefficients Lαij which may
depend on the thermodynamic potentials uαj or on the conserved quantities
cαi . This phenomenological theory was already introduced in [On31]. It is as-
sumed that the matrix L = (Lαij)

N
i,j=0 is positive semi-definite. To fulfill the

constraint ĉα ∈ ΣN it is required that
∑N

i=1 L
α
ij = 0, 1 ≤ j ≤ N , which also

means that
∑N

i=1 J
α
i = 0.

Onsager’s law of reciprocity states the symmetry of L and can be proven
and experimentally observed if the fluxes and forces are independent (cf.
[KY87], Sect. 3.8). The above fluxes are not independent. But even in the
present case Onsager’s law can be shown to hold by a certain choice of the
coefficients (see [KY87], Sect. 4.2, and the reference therein; there the calcula-
tion is performed for the isothermal case, but another additional independent
force can be taken into account without any problem). We remark that, con-
sidering Ji − JN , the definition of the fluxes as above is equivalent to the
definition in [Mu01], Sect. 11.2.

On the phase boundaries Γαβ the continuity conditions

[ui]βα = 0, 0 ≤ i ≤ N, (2.4)

have to be satisfied. Mass and energy balance imply furthermore the jump
conditions

[ci]βαvαβ = [Ji]βα · ναβ , 0 ≤ i ≤ N. (2.5)

Here, [·]βα denotes the jump of the quantity in brackets across Γαβ , e.g., [e]βα =
eβ − eα.

The matrix of surface tensions (σαβ(ν))α,β is symmetric for every unit
vector ν (the diagonal entries are not of interest and may be set to zero). The
relation between surface tension and capillarity coefficient is given by

γαβ(ναβ) =
σαβ(ναβ)
Tref
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with some reference temperature Tref . The surface tensions are one-homo-
geneous in their argument while the mobility coefficients mαβ(ναβ) are zero-
homogeneous in their argument.

The evolution of the phase boundaries is coupled to the thermodynamic
fields by the Gibbs-Thomson condition

mαβ(ναβ)vαβ = −∇Γ ·Dγαβ(ναβ) +
[
− u0f(T, ĉ) +

N∑
i=1

uici

]β
α

(2.6)

which is derived in the following subsection. By ∇Γ · the surface divergence
is denoted. In the case of an isotropic surface entropy, i.e., γαβ(ν) = γαβ |ν|
with some constant γαβ independent of the direction, there is the identity
−∇Γ ·Dγαβ(ν) = γαβκαβ where καβ is the mean curvature.

To avoid wetting effects (cf. [Ha94], Sect. 3.4, for a discussion and refer-
ences) the surface tensions are assumed to fulfill the constraints

σαβ + σβδ > σαδ. (2.7)

Capillary forces acting on Γαβ are related to the vectors (cf. [CH74, WM97])

ξαβ(ναβ) := Dσαβ(ναβ) = σαβ(ναβ)ναβ +DSd−1σαβ(ναβ) (2.8)

where DSd−1 is the surface gradient on the sphere Sd−1. The identity D =
DSd−1 +ναβ(ναβ ·D) was used as well as the fact that σαβ is one-homogeneous
implying Dσαβ(ναβ) · ναβ = σαβ(ναβ).

In points x belonging to Tαβδ forces are in equilibrium. In the three-
dimensional case Tαβδ consists of triple lines that can be oriented with a unit
tangent vector ταβδ(x). If the whole space is cut with the plane orthogonal
to ταβδ(x) through x then the picture in Fig. 2.1 is obtained. Due to the sur-
face tension Γαβ exerts a force on x which is given by ξαβ(ναβ(x))× ταβδ(x),
whence equilibrium of forces means that

0 =
∑

(i,j)∈A
ξij(νij(x)) × ταβδ(x) (2.9)

where A := {(α, β), (β, δ), (δ, α)}. A short calculation shows that in the situ-
ation of Fig. 2.1

ξαβ(ναβ)× ταβδ = (∇σαβ(ναβ) · ταβ)(−ναβ) + σαβ(ναβ)ταβ .

Similarly, if x ∈ Tαβ,ext there is a unit tangent vector ταβ,ext(x), and the force
acting on x is given by ξαβ(ναβ(x))×ταβ,ext(x). Force balance in x implies that
this force is not tangential to ∂Ω. Since it is already orthogonal to ταβ,ext(x)
by definition this is true if and only if

ξαβ(ναβ(x)) · νext(x) = 0. (2.10)
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Fig. 2.1. On the left: triple junction x with orientations of the forming curves;
such a picture is also obtained in the 3D-case by cutting the space with the plane
spanned by ναβ(x), ταβ(x). On the right: local situation around a point x0 on a phase
boundary for the derivation of the Gibbs-Thomson condition; a local deformation is
indicated by the dashed line.

In particular, angle conditions in Tαβδ and Tαβ,ext are due to the above force
balance conditions (2.9) and (2.10).

To obtain a well-posed problem the governing equations (2.3)–(2.6), (2.9),
and (2.10) must be provided with initial conditions for the fields and the mov-
ing boundaries and boundary conditions. If not otherwise stated, the isolated
case

Jαi · νext = 0 on ∂Ω, 0 ≤ i ≤ N, 1 ≤ α ≤M, (2.11)

is considered.
The total entropy of the system being given by

S(t) =
M∑
α=1

∫
Ωα(t)

sα(cα)dLd −
M∑

α<β, α,β=1

∫
Γαβ(t)

γαβ(ναβ) dHd−1 (2.12)

it can be shown that the evolution equations (2.3)–(2.11) imply non-negative
entropy production:

Theorem 2.1. The entropy (2.12) satisfies

d

dt
S(t) =

∑
1≤α≤M

∫
Ωα(t)

N∑
i,j=0

∇uαi · Lαij∇uαj dLd

+
∑

1≤α<β≤M

∫
Γαβ(t)

mαβ(vαβ)2 dHd−1.

The proof can be found in the Appendix of [GNS04].
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2.2 Derivation of the Gibbs-Thomson condition

In this section a physical motivation of the Gibbs-Thomson condition (2.6)
based on thermodynamic principles is given. The idea is to define the mo-
tion of the phase boundaries as a gradient flow of the entropy. On the set of
admissible surfaces the tangent space of a surface is defined by the smooth
real valued functions f on the surface supplied with a weighted L2-product.
A variation of the surface entropy in the direction f is then the rate of change
of the entropy when deforming the surface towards its normal with a strength
given by f . Such a deformation of a phase boundary usually changes the vol-
umes of the adjacent phases. Thanks to this fact the bulk fields can enter the
Gibbs-Thomson condition. But changes in the conserved quantities must be
counterbalanced. Since (2.6) is a local motion law, only local deformations of
an η-ball around a point x0 on a phase boundary are considered. Conservation
of energy and mass is ensured by taking a non-local Lagrange multiplier into
account. In the limit as η → 0 all terms become local after appropriate scaling
so that the desired equation is obtained.

For keeping the presentation simple we do not consider the general situa-
tion as in the previous subsection but the one depicted in Fig. 2.1. There, Γ
is a smooth compactly embedded d − 1-dimensional hypersurface separating
two phases Ω+ and Ω− with unit normal ν pointing into Ω+. Such a surface
respectively configuration is said to be admissible.

Definition 2.2. Let G be the set of the admissible surfaces. The tangent space
is defined by TΓG := C1(Γ,R). A Riemannian structure on TΓG is defined by
the weighted L2 product

(v, ξ)Γ :=
∫
Γ

m(ν)vξ dHd−1 ∀ v, ξ ∈ TΓG

where m(ν) is a non-negative mobility function.

The bulk fields for energy density and concentrations, here denoted by c0,
are allowed to suffer jump discontinuities across Γ , but the potentials s,c = −u
are supposed to be Lipschitz continuous. Within the phases Ω+ and Ω− all
fields are smooth.

Variations of the entropy are based on local deformations of the domain.
Let x0 ∈ Γ and consider the family of open balls {Uη}η>0 centered in x0 with
radius η. Given arbitrary functions ξη ∈ C1

0 (Uη) it can be shown that that
there are vector fields

ξη ∈ C1
0 (Uη,Rd) with ξη = ξην on Γ η := Γ ∩ Uη. (2.13)

The solution θη : Uη → Uη to

θη(0, y) = y, θη,δ(δ, y) = ξη(θη(−δ, y)) for δ ∈ [−δη0 , δ
η
0 ],
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yields a local deformation of Uη. The restriction of δ is such that Γ η := Uη∩Γ
remains a smooth surface imbedded into Uη, i.e., the sets

Γ η
δ = {θη(δ, x) : x ∈ Γ η}, δ ∈ [−δη0 , δ

η
0 ],

define an evolving (d− 1)-dimensional surface in Uη in the sense of Def. A.1.
A short calculation yields the identity

d

dδ
det θη,x(δ, x) = ∇ · ξη(θη(δ, x)) det θη,x(δ, x). (2.14)

The functional mapping L1-functions on Uη onto their mean value is denoted
by Mη, i.e.,

Mη : L1(Uη) → Rm, Mη(f) :=
1

|Uη|

∫
Uη

f(x) dx = —
∫
Uη

f(x) dx

where |Uη| = Ld(Uη) with the d-dimensional Lebesgue measure Ld.

Definition 2.3. Under the local deformation θη of Uη the densities of the
conserved quantities are

c(δ, y) := c0(θη(−δ, y))−Mη
(
c0(θη(−δ, ·))− c0(·)

)
, y ∈ Uη. (2.15)

The local entropy consists of the bulk part

SηB(δ) :=
∫
Uη

s(c(δ, y)) dy (2.16)

and the surface part

SηS(δ) := −
∫
Γη

δ

γ(ν(δ)) dHd−1. (2.17)

The Lagrange multiplier Mη
(
c0(θη(−δ, ·))− c0(·)

)
in (2.15) ensures that en-

ergy and mass are conserved under the deformation.

Lemma 2.4. The derivative of the bulk entropy with respect to δ in δ = 0 is

d

dδ
SηB(0) =

∫
Uη

(
s(c0) +Mη(u) · c0

)
∇ · ξη dx.

Proof. By definition (2.15), the bulk entropy (2.16) is∫
Uη

s
(
c0(θη(−δ, y))−Mη

(
c0(θη(−δ, ·))− c0

))
dy

=
∫
Uη

s
(
c0(x) −Mη

(
c0(θη(−δ, ·))− c0

))
det θ,x(δ, x) dx
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where the transformation y = θη(δ, x) was used. The equation (2.14) yields
together with θη(0, x) = x and det(θη,x(0, x)) = det Id = 1

d

dδ

∫
Uη

c0(θη(−(·), z)) dz
∣∣∣
δ=0

=
d

dδ

∫
Uη

c0(x) det θη,x(δ, x) dx
∣∣∣
δ=0

=
∫
Uη

c0(x)∇ · ξη(x) dx.

With s,c = −u the desired identity can be shown as follows:

d

dδ
SηB(0) =

∫
Uη

s
(
c0(x) −Mη

(
c0(θη(0, ·))− c0

))
∇ · ξη(x) dx

−
∫
Uη

s,c(c0(x)) ·
d

dδ

1
|Uη|

∫
Uη

c0(θη(−(·), z)) dz
∣∣∣
δ=0

dx

=
∫
Uη

s(c0(x))∇ · ξη(x) dx +
1
|Uη|

∫
Uη

u(x) dx ·
∫
Uη

c0(x)∇ · ξη(x) dx

=
∫
Uη

(
s(c0) +Mη(u) · c0

)
∇ · ξη(x) dx.

Lemma 2.5. The derivative of the surface entropy with respect to δ in δ = 0
is

d

dδ
SηS(0) = −

∫
Γη

∇Γ ·Dγ(ν) ξη dHd−1.

Proof. Interpreting {Γ η
δ }δ as evolving surface, the scalar normal velocity is

ξη and the vectorial normal velocity is ξη = ξην. The scalar curvature is
denoted by κΓ . Applying Th. A.4 from the Appendix yields (observe that
the boundary integrals over ∂Γ η vanish since the velocity ξη has a compact
support in Uη)

d

dδ
SηS(0) = −

∫
Γη

(
∂◦γ(ν)− γ(ν) ξη · κΓ

)
dHd−1

which is using (A.3), (A.2), (A.4), and the one-homogeneity of γ

=
∫
Γη

(
∇γ(ν) · ∇Γ ξ

η +∇γ(ν) · ν κΓ ξη
)
dHd−1.

Applying Th. A.3 to ϕ = ∇γ(ν)ξη (again the boundary integral vanishes) and
again (A.2) on the last term it follows the desired identity:

. . . =
∫
Γη

(
−∇Γ · ∇γ(ν) ξη − κΓ · ∇γ(ν) ξη +∇γ(ν) · κΓ ξ

η
)
dHd−1

= −
∫
Γη

(
∇Γ · ∇γ(ν) ξη

)
dHd−1.
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As stated at the beginning of this section, the goal is to define the motion
as a localized version of a gradient flow. This is realized in the following
definition. Let |Γ η| := Hd−1(Γ η).

Definition 2.6. The motion of the phase boundary Γ is defined as follows:
In each point x0 ∈ Γ the identity

lim
η→0

1
|Γ η| (v, ξ

η)Γ = lim
η→0

1
|Γ η|

d

dδ
(SηB + SηS)(0) (2.18)

holds for all families of functions ξη ∈ C1
0 (Uη) where SηB(δ) and SηS(δ) are

defined by (2.16) and (2.17) respectively.

Theorem 2.7. The localized gradient flow (2.18) yields the Gibbs-Thomson
condition (2.6).

To prove the theorem the following lemma is useful:

Lemma 2.8. Let g ∈ L∞(Uη) with g ∈ C1(Ω+ ∩ Uη) and g ∈ C1(Ω− ∩ Uη),
and let z ∈ R be given. There is a family of functions {ξη}η>0 ⊂ C1(Uη) with
ξη(x0) = z for all η such that

1
|Γ η|

∫
Uη

g∇ · ξη dx = −—
∫
Γη

[g]+−ξ
η dHd−1 − 1

|Γ η|

∫
Uη

∇g · ξη dx

→ −[g(x)]+−z as η → 0

where the functions ξη are uniformly bounded and satisfy condition (2.13). By
g+ the limit of g in x ∈ Γ when approximated from the side Ω+ is denoted.
Analogously g− is defined when approximating x ∈ Γ from Ω−, and [g]+− =
g+ − g− is the difference.

Proof. The first identity follows from the divergence theorem applied to the
two parts Uη ∩Ω+ and Uη ∩Ω− of Uη using that ξη vanishes on the external
boundary ∂Uη. For the limiting behavior consider the functions

ξ̃η :=

{
z on Uη−η2

,

0 on Uη\Uη−η2
.

Let ζ be a smooth function with compact support on the unit ball U1(0) ⊂ Rd

such that
∫

Rd ζ = 1 and define ξη by the convolution of ξ̃η with η−3dζ(·/η3),
i.e.,

ξη(x) :=
(
η−3dζ( ·

η3 ) ∗ ξ̃η
)
(x).

Then for η small enough ξη = z on Γ ∩ Uη−2η2
=: Γ̃ η.

Observe that thanks to the smoothness of Γ the Hd−1-measure of Γ η\Γ̃ η

is of order ηd whence |Γ η\Γ̃ η|/|Γ η| = O(η) as η → 0. By assumption, the
function f = [g]+− is Lipschitz continuous on Γ . Thanks to the special choice
of ξη it can easily be derived that
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—
∫
Γη

fξη dHd−1 = —
∫
Γη

fz dHd−1 + —
∫
Γη

f(ξη − z) dHd−1 → f(x0)z

as η → 0. As moreover the Ld-measure of Uη is of order ηd but the Hd−1-
measure of Γ η is of order ηd−1 and since |∇g · ξη| is bounded in Uη the
assertion follows.

Proof. (Th. 2.7) First, observe that Mη(u) → u(x0) as η → 0 since u is
Lipschitz continuous. Choose some arbitrary z ∈ R and a family of functions
{ξη}η>0 as in Lemma 2.8 and let {ξη}η>0 be the corresponding vector fields.
Then

1
|Γ η|

∫
Uη

Mη(u) · c0(x)∇ · ξη(x) dx = Mη(u) · 1
|Γ η|

∫
Uη

c0(x)∇ · ξη(x) dx

→ u(x0) · [c0(x0)]+−z = [u · c0]+−(x0)z.

The limit of the right hand side of (2.18) is, using the Lemmata 2.4, 2.5, and
2.8,

1
|Γ η|

d

dδ
(SηB + SηS)(0)

=
1
|Γ η|

∫
Uη

(
s(c0) +Mη(u) · c0

)
∇ · ξη dx− —

∫
Γη

∇Γ · ∇γ(ν) dHd−1

→
(
−[s(c0)]+−(x0) +

[e0
T

]+

−
(x0) +

[−µ · ĉ0
T

]+

−
(x0)−∇Γ · ∇γ(ν(x0))

)
z

=

([
f(T, ĉ0)− µ · ĉ0

T

]+

−
(x0)−∇Γ · ∇γ(ν(x0))

)
z.

For the last two lines the identities c0 = (e0, ĉ0), u0 = − 1
T , (u1, . . . , uN)T = µ

T ,
and the thermodynamic relation e = f + sT were applied. The left hand side
of (2.18) yields in the limit as η → 0

1
|Γ η| (v, ξ

η)Γ = —
∫
Γη

m(ν)vξη dHd−1 → m(ν(x0))v(x0)z.

Since z ∈ R can be chosen arbitrarily the condition (2.6) follows in x0.

2.3 Phase field approach

In phase field models, the individual phases are distinguished by phase field
variables. In different phases they attain different values, and interfaces are
modelled by a diffuse interface layer, i.e., the phase fields and all other ther-
modynamic quantities change smoothly on a thin transition layer (the diffuse
interface) instead of suffering discontinuous transitions.

Let φ = (φα)Mα=1 where each variable φα describes the local fraction of a
corresponding phase α. The vector of these phase field variables is required to
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fulfill the constraint φ ∈ ΣM . The interfacial contribution in (2.12) is replaced
by a Ginzburg-Landau type functional (cf. [LG50]) of the form

−
∫
Ω

(
δa(φ,∇φ) +

1
δ
w(φ)

)
dx. (2.19)

The function a : ΣM × (TΣM )d → R is a gradient energy density which is
assumed to be smooth and to satisfy

a(φ,X) ≥ 0 and a(φ, ηX) = η2a(φ,X) ∀(φ,X, η) ∈ ΣM × (TΣM )d × R+.

The function w : ΣM → R is smooth and has exactly M global minima at
the points eβ = (δαβ)Mα=1, 1 ≤ β ≤M , with w(eβ) = 0, i.e.,

w(φ) ≥ 0, and w(φ) = 0 ⇔ φ = eβ for some β ∈ {1, . . . ,M}.

Possible choices for a and w will be given later. We also refer to the article of
Nestler and Wendler on page 113.

The surface contribution to the entropy is described above. Let us now
comment on the bulk entropy contribution and its dependence on the phase
field variables. The (Helmholtz) free energy of the system can be defined as
an appropriate interpolation of the free energies {fα(T, ĉ)}α of the possible
phases, i.e.,

f(T, ĉ, φ) =
M∑
α=1

fα(T, ĉ)h(φα) (2.20)

with an interpolation function h : [0, 1] → [0, 1] satisfying h(0) = 0 and h(1) =
1. By the thermodynamic relations s = −f,T and e = f +Ts the entropy and
the internal energy can be expressed in terms of (T, ĉ, φ). By appropriate
assumptions on f , inversely, the temperature can be expressed as a function
in (e, ĉ, φ) = (c, φ) whence also the entropy, s(c, φ) = −f,T (T (c, φ), ĉ, φ). Short
calculations taking the change of variables into account yield

s,c(c, φ) = −u(c, φ), s,φ(c, φ) = −f,φ(T (c, φ), ĉ, φ)
T (c, φ)

.

The total entropy of the system is now

S(c, φ) =
∫
Ω

(
s(c, φ)−

(
δa(φ,∇φ) +

1
δ
w(φ)

))
dx.

The evolution of the system is determined by a gradient flow of the entropy
for the phase field variables coupled to balance equations for the conserved
variables such that the second law of thermodynamics is fulfilled. To allow
for anisotropy in the mobility of the phase boundaries, again a weighted L2-
product is used. Given a smooth field φ : Ω → ΣM let

(w, v)ω,φ :=
∫
Ω

δ ω(φ,∇φ)w · v dx ∀w, v ∈ C∞(Ω; TΣM ).
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The function ω is supposed to be smooth, positive, and homogeneous of degree
zero in the second variable, i.e.,

ω(φ,X) ≥ 0 and ω(φ, ηX) = ω(φ,X) ∀(φ,X, η) ∈ ΣM × Rd×M × R+.

The evolution of the system is defined by

(∂tφ, v)ω,φ =
〈δS
δφ

(c, φ), v
〉

∀v ∈ C∞(Ω,TΣM ).

Taking the boundary condition

a,∇φα(φ,∇φ) · νext = 0, 1 ≤ α ≤M, (2.21)

into account this means that for all α ∈ {1, . . . ,M}

δω(φ,∇φ)∂tφα = δ∇·a,∇φα(φ,∇φ)−δa,φα(φ,∇φ)− 1
δ
w,φα(φ)+s,φα(c, φ)−λ

(2.22)
with the Lagrange factor (due to the constraint

∑
α φα = 1)

λ =
1
M

M∑
α=1

(
δ∇ · a,∇φα(φ,∇φ) − δa,φα(φ,∇φ) − 1

δ
w,φα(φ) + s,φα(c, φ)

)
.

It is also possible to consider multi-well potentials of obstacle type (cf. [BE91]).
Then the differential equation (2.22) becomes a variational inequality.

The balance equations for the conserved quantities read

∂tci = −∇ · Ji(c, φ,∇u(c, φ)) = ∇ ·
(

N∑
j=0

Lij(c, φ)∇uj(c, φ)

)
. (2.23)

The fact that the Onsager coefficients Lij(c, φ) can differ in the different
phases may be modelled by interpolating the coefficients {Lαij}α of the pure
phases analogously as done for the free energy. The matrix L = (Lij)Ni,j=0

then remains symmetric and positive semi-definite. Moreover, the condition∑N
i=1 Lij(c, φ) = 0, 1 ≤ j ≤ N , remains satisfied. In addition to initial condi-

tions boundary conditions are imposed which, in the isolated case, are of the
form

Ji(c, φ,∇u(c, φ)) · νext = 0, 0 ≤ i ≤ N. (2.24)

In [GNS04] the following entropy inequality is shown:

Theorem 2.9. If the system under consideration evolves following (2.22) and
(2.23) then it holds that

d

dt
s(c, φ) ≥ −∇ ·

( N∑
i=0

(−ui)Ji − δ
M∑
α=1

a,∇φα∂tφα

)
.

If the boundary conditions (2.21) and (2.24) hold then d
dtS(c, φ) ≥ 0.
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2.4 Example for calibration: binary alloy, two phases

The framework for phase field modelling of alloy solidification presented in
the previous subsection generalizes earlier models that have successfully been
applied to describe phenomena like dendritic and eutectic growth. By pos-
tulating appropriate free energies f , surface terms a and w, Onsager coeffi-
cients Lij , and a kinetic mobility function ω, for example, the models used in
[Ca89, PF90, WMB92] can be derived (see [GNS04, St05b]). In the following
we will exemplify the choices to model non-isothermal solidification of a binary
alloy involving a solid and as liquid phase. For more complex cases of multiple
phases and components we refer to the article of Nestler and Wendler.

Let M = 2 and N = 2. According to the model of an ideal solution, the
free energy density of the liquid phase is defined by

f (l)(T, ĉ) :=
2∑

i=1

−Li
2
T − Ti
Ti

ci +
Rg

vm
T

2∑
i=1

ci log(ci)− cpT log(
T

Tref
),

and the free energy of the solid phase by

f (s)(T, ĉ) :=
2∑

i=1

Li
2
T − Ti
Ti

ci +
Rg

vm
T

2∑
i=1

ci log(ci)− cpT log(
T

Tref
).

The quantities LA and LB are the latent heats of the pure substances A = 1
and B = 2, TA and TB are the melting temperatures, Rg is the gas constant,
vm the molar volume (supposed to be constant), cp the specific heat, and Tref
some reference temperature, e.g., the mean value of the melting temperatures.
In the following, the entropy differences sA and sB between the phases will
appear. They are defined by si := Li/Ti, i = A,B. Moreover let R := Rg/vm.
For simplicity assume that LA = sATA = LB = sBTB =: 2L.

To simplify the presentation further we now consider dimensionless equa-
tions. Whenever thermodynamic quantities appear in the following, we will
use the same letters but they are thought to be appropriately rescaled. In par-
ticular we are able to set cp = 1 and Tref = 1. Interpolating the free energies
of the pure phases with the interpolation function h(φ) = φ in the sense of
(2.20) yields

f(T, c, φ) :=
(
c1
sA
2

(TA − T ) + c2
sB
2

(TB − T )
)
(φ1 − φ2)

+ RT

2∑
i=1

ci log(ci)− T log(T ).

Since φ1 + φ2 = 1 and c1 + c2 = 1 it is sufficient to consider Φ = φ1 − φ2

and C = c1 in order to distinguish the phases and to describe the alloy
composition. We then have Φ = 1 in the liquid phase, Φ = −1 in the solid
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phase, and C is the concentration of component A. The free energy density
can then be written in the form

f̃(T,C, Φ) := f(T,C, 1− C, 1+Φ
2 , 1−Φ

2 )

= 1
2

(
CsA(TA − T ) + (1− C)sB(TB − T )

)
Φ

+RT
(
C log(C) + (1− C) log(1− C)

)
− T log(T ) (2.25)

resulting in the internal energy density

ẽ(T,C, Φ) = 1
2

(
CLA + (1− C)LB

)
Φ+ T =: LΦ+ T.

Setting L0i = Li0 := 0 for i = 1, 2 and L00 := K(Φ)T 2 the energy flux
becomes

−L00∇u0 = −K(Φ)T 2∇−1
T

= −K(Φ)∇T

whence the balance equation for the energy reads

∂tẽ = ∂tT + L∂tΦ = ∇ ·
(
K(Φ)∇T

)
. (2.26)

Since µ1 = f,c1 − 1
2 (f,c1 + f,c2) = 1

2 (f,c1 − f,c2) = 1
2 f̃,C we have

−u2 = u1 =
µ1

T
=

1
2
sB − sA

2
Φ+

R

2
(
log(C)− log(1− C)

)
whence

−∇u2 = ∇u1 =
1
2

(sB − sA
2

∇Φ+R
1

C(1− C)
∇C

)
.

Choosing D̃(Φ)C(1 − C) =: L11 = −L12 = −L21 = L22 with some diffusivity
coefficient D̃(Φ) a short calculation gives

−∂tc2 = ∂tc1 = ∂tC = ∇ ·
(
D̃(Φ)R∇C

)
+ ∇ ·

(
D̃(Φ)C(1 − C)

sB − sA
2

∇Φ
)
.

(2.27)

Subtracting the equations for the two phase field variables φ1 and φ2 yields

δ2ω∂tΦ = δ2
(
∇·(a,∇φ1−a,∇φ2)−(a,φ1−a,φ2)

)
−(w,φ1−w,φ2)−

δ

T
(f,φ1−f,φ2).

The standard double-well potential w(φ) := 9γφ2
1φ

2
2 for some γ > 0 related to

the surface tension (see below) gives

(w,φ1 − w,φ2)
(

1+Φ
2 , 1−Φ

2

)
= 9

4γp
′(Φ) where p(Φ) = 1

2 (Φ2 − 1)2.

Moreover it holds that

− δ
T (f,φ1 − f,φ2) = − δ

T 2f̃,Φ = − δ
T

(
CsA(TA − T ) + (1− C)sB(TB − T )

)
.
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The surface gradient term is set to a(φ,∇φ) := γ|φ1∇φ2 − φ2∇φ2|2 =
γ|14∇Φ|2. Short calculations give

a,φ1 − a,φ2 = 0, a,∇φ1 − a,∇φ2 = 2γ(φ1∇φ2 − φ2∇φ2)(φ1 − φ2) = γ∇Φ.

Finally, let ξ := 2
3δ, α := ω

γ , and replace the surface energy Tγ =: σ
by a temperature independent constant (i.e., replace T in that term by some
reference temperature Tref and assume that variations of σ in the temperature
can be neglected). Then the evolution of the phase field variable is governed
by

ξ2α∂tΦ = ξ2∆Φ− p′(Φ) − 2ξ
3σ

(
CsA(TA − T ) + (1− C)sB(TB − T )

)
. (2.28)

The model consisting of equations (2.26)–(2.28) and some additional con-
ditions will be used in the following section to sketch the method of relating a
phase field model to a sharp interface model and in the last section to describe
dendritic solidification.

2.5 Some remarks on the solvability of the phase field model

The reduced grand canonical potential is defined to be the Legendre transform
of the negative entropy with respect to the conserved quantities,

ψ(u, φ) = (−s)∗(c(u, φ), φ).

With its help it is possible to reformulate the differential equations using (u, φ)
as variables (cf. [St05b]). The parabolic system then has the structure

∂tψ,ui(u, φ) = ∇ ·
(

N∑
j=0

Lij(ψ,u(u, φ), φ)∇uj

)
,

ω(φ,∇φ)∂tφα = ∇ · a,∇φα(φ,∇φ) − a,φα(φ,∇φ) − w,φα(φ) + ψ,φα(u, φ)− λ

where 0 ≤ i ≤ N , 1 ≤ α ≤M . When rigorously analyzing these equations the
main difficulties arise from the growth properties of ψ in u and the nonlinear-
ities involving ∇φ.

An ideal solution formulation of the free energy density has the structure

f(T, c) = T log(T ) + T
∑
i

ci log(ci) + . . .

As a result, in ψ a term − log(−u0) appears. In particular, when solving
the differential equations it must be shown that u0 < 0 almost everywhere.
Moreover, ψ is only of at most linear growth in the ui, 1 ≤ i ≤ N . A control
of terms involving ψ,u obtained by standard estimates for parabolic equations
do not provide much information of u itself any more. These difficulties have
been independently tackled in [AP92] and [LV83] respectively.
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Based on those results, the above system including the phase field vari-
ables is analyzed in [St05b] by approximating ψ with a perturbed potential
of quadratic growth in u. The main task is to derive suitable estimates and,
based on the estimates, to develop and apply appropriate compactness argu-
ments in order to go to the limit as the perturbation vanishes. It is assumed
that the matrix of Onsager coefficients L = (Lij)ij is positive (on a certain
subspace) uniformly in their arguments. If a degenerating coefficient matrix
is considered as in the previous subsection it may be better to switch to (T, ĉ)
or (e, ĉ) as variables, e.g. cf. [Ec04a].

Managing the phase field variables is kept simple in [St05b] by appropriate
assumptions on a, w, and ω. The interesting case of a involving the terms
φα∇φβ − φβ∇φα (which give a good approximation of the direction of ναβ)
is still open. Non-local models have been considered by multiple authors (for
instance, we refer to [BS96, SZ03, KRS05]). There, the energy is the only
conserved quantity, and the difficulties with the logarithmic term in u0 are
tackled by performing a Moser type iteration to get L∞-bounds for u0 and
1/u0.

3 Relation between the approaches and calibration

The relation between the phase field model and the free boundary problem
presented in the previous chapter can be established using the method of
matched asymptotic expansions. Generalizing methods developed in [CF88,
Ca89, BGS98, GNS98] this has been done in [GNS04]. The procedure is as fol-
lows: It is assumed that the solution to the phase field model can be expanded
in δ-series in the bulk regions occupied by the phases (outer expansions) and,
using rescaled coordinates, in the interfacial regions (inner expansion). Given
suitable relations between the functions and parameters of the phase field
model on the one hand and the parameters in the free boundary problem on
the other hand the functions to leading order of the δ-series solve the gov-
erning equations of the free boundary problem. It should be remarked that
this procedure is a formal method in the sense that it is not rigorously shown
that the assumed expansions in fact exist and converge. But in some cases
this ansatz could be verified (cf. [DS95, St96, CC98, Di04]).

If the phase field model is considered as an approximation of the free
boundary problem fast convergence with respect to δ is desired. An improve-
ment of the approximation was obtained in [KR98] in the context of thin
interface asymptotics. The analysis led to a positive correction term in the ki-
netic coefficient of the phase field equation balancing undesired terms of order
δ in the Gibbs-Thomson condition and raising the stability bound of explicit
numerical methods. Besides, the better approximation allows for larger values
of δ and, therefore, for coarser grids. In particular, it is possible to consider
the limit of vanishing kinetic undercooling which is important in applications.
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Numerical simulations of appropriate test problems reveal an enormous gain
in efficiency thanks to a better approximation.

In [Al99] the analysis was extended to the case of different diffusivities in
the phases and both classical and thin interface asymptotics were discussed.
By choosing different interpolation functions for the free energy density and
the internal energy density (the function h in (2.20)) an approximation of
second order could still be achieved but the gradient structure of the model
and thermodynamic consistency were lost. Based on those ideas it was shown
in [An02] that even an approximation of third order is possible by using high
order polynomials for the interpolation. In [MWA00] an approach based on
an energy and an entropy functional was used providing more degrees of free-
dom to tackle the difficulties with unequal diffusivities in the phases while
avoiding the loss of the thermodynamic consistency. Both classical and thin
asymptotics are discussed in that article as well as the limit of vanishing ki-
netic undercooling. In a more recent analysis in [RB*04], a binary alloy also
involving different diffusivities in the phases was considered and a better ap-
proximation was obtained by adding a small additional term to the mass flux
(anti-trapping mass current, the ideas stem from [Ka01]).

We have shown in [GS06] that, for two-phase multi-component systems
with arbitrary phase diagrams, there is a correction term to the kinetic coeffi-
cient such that the model with moving boundaries is approximated to second
order in the small parameter δ. A new feature compared to the existing results
is that, in general, this correction term depends on temperature and chemical
potentials. Indeed, up to some numerical constants, the latent heat appears in
the correction term obtained by Karma and Rappel [KR98]. Analogously, the
equilibrium jump in the concentrations enters the correction term when in-
vestigating an isothermal binary alloy. But from realistic phase diagrams it is
obvious that this jump depends on the temperature leading to a temperature
dependent correction term in the non-isothermal case.

In this chapter, the procedure to get an second order approximation will be
sketched for a simple model describing solidification of a pure substance. The
model is based on the model in Sect. 2.4. There, the small quantity ξ = 2

3δ
was introduced and will be used instead of δ. In addition to the free boundary
problem which appears as problem to leading order a correction problem to
the next order is derived by continuing the asymptotic analysis. The goal is
to obtain that fields identically zero solve the correction problem. It turns out
that the above mentioned correction term to the kinetic coefficient is neces-
sary to allow for this solution. The model equations including assumptions,
asymptotic expansions, and matching conditions are listed in the following
subsection. After, the asymptotic analysis is performed. Finally, the leading
order problem and the correction problem are stated. In [GS06], numerical
tests have been performed to show that a better approximation of the free
boundary problem thanks to the kinetic correction term is really obtained.
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3.1 The simplified model and assumptions

In order to present the main ideas to obtain a second order approximation a
simple model for solidification of a pure substance is considered, namely, the
model in Sect. 2.4 where we set C ≡ 1. In the definition of the free energy
density (2.25) Φ is replaced by a term h(Φ) with an interpolation function
h : [−1, 1] → [0, 1] which is symmetric, i.e., h(−Φ) = −h(Φ), and fulfills
h′(±1) = 0. For sA we simply write s, and TA is replaced by Tm. The kinetic
coefficient splits into a main part and a positive correction term of order ξ,
i.e., α = α0 + ξα1. The correction term will later be determined and turn out
to be crucial to get a higher order approximation of the related free boundary
problem. The heat diffusivity K is assumed to be independent of the phase
field variable. The governing equations then have the form

ξ2(α0 + ξα1)∂tΦ = ξ2∆Φ− p′(Φ)− 2ξ
3σ

(
s(Tm − T )

)
h′(Φ), (3.1)

∂tT + L∂th(Φ) = K∆T. (3.2)

To obtain a well-posed problem initial and boundary conditions have to be
imposed. Consider a domain Ω ⊂ R2 and a time interval IT := (0, T ). For
ξ > 0 let (T (t, x; ξ), Φ(t, x; ξ)), x ∈ Ω, t ∈ IT , denote smooth solutions to
(3.1)–(3.2) given the same initial and boundary conditions. We suppose that,
for all times, there exist two phases separated by a diffuse interfacial layer
which is bounded away from the boundary of the domain Ω. Here, we do not
carry out the asymptotic analysis for the initial and boundary conditions but
only give some remarks. That analysis is carried out in [St05b], Sect. 3.2, and
[GS06].

The following procedure of matching asymptotic expansions is outlined
with great care in [FP95, DW05]. Here, only the main ideas for the two-
dimensional case are sketched. The family

Γ (t; ξ) :=
{
x ∈ Ω : Φ(t, x; ξ) = 0

}
, ξ > 0, t ∈ IT , (3.3)

is supposed to be a set of smooth curves in Ω. They are demanded to be
uniformly bounded away from ∂Ω and to depend smoothly on (ξ, t) such that,
if ξ ↘ 0, some limiting curve Γ (t; 0) is obtained. With Ωl(t; ξ) and Ωs(t; ξ)
we denote the regions occupied by the liquid phase (where Φ(t, x; ξ) > 0) and
the solid phase (where Φ(t, x; ξ) < 0) respectively.

Let γ(t, s; 0) be a parameterization of Γ (t; 0) by arc-length s for every
t ∈ IT . The vector ν(t, s; 0) denotes the unit normal on Γ (t; 0) pointing into
Ωl(t; 0), and τ(t, s; 0) := ∂sγ(t, s; 0) denotes the unit tangential vector. For ξ
small enough the curves Γ (t; ξ) can be parametrized over Γ (t; 0) using some
distance function d(t, s; ξ),

γ(t, s; ξ) := γ(t, s; 0) + d(t, s; ξ)ν(t, s; 0).

Close to ξ = 0 we assume that there is the expansion d(t, s; ξ) = ξ1d1(t, s) +
ξ2d2(t, s)+O(ξ3). Also the curvature κ(t, s; ξ) and the normal velocity v(t, s; ξ)
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of Γ (t; ξ) are smooth and can be expanded in ξ-series (cf. the Appendix of
[GS06]):

κ(t, s; ξ) = κ(t, s; 0) + ξ
(
κ(t, s; 0)2d1(t, s) + ∂ssd1(t, s)

)
+O(ξ2), (3.4)

v(t, s; ξ) = ∂tγ(t, s; ξ) · ν(t, s; ξ) = v(t, s; 0) + ξ ∂◦d1(t, s) +O(ξ2). (3.5)

Here, ∂◦ denotes the normal time derivative, see (A.1) for a definition.
We suppose that in each domain E ⊂ R2 such that E ⊂ Ω\Γ (t; 0) the

solution can be expanded in a series close to ξ = 0 (outer expansion):

T (t, x; ξ) =
K∑
k=0

ξkθk(t, x) +O(ξK+1),

Φ(t, x; ξ) =
K∑
k=0

ξkϕk(t, x) +O(ξK+1).

(3.6)

Let z be the 1
ξ -scaled signed distance of x from Γ (t; 0). Hence, in a neigh-

borhood of Γ (t; 0) we can write for z �= 0

T̂ (t, s, z; ξ) := T (t, x(t, s, z); ξ), Φ̂(t, s, z; ξ) := Φ(t, x(t, s, z); ξ).

An essential assumption is now that T̂ and Φ̂ can be expanded in these
new variables (inner expansion),

T̂ (t, s, z; ξ) =
K∑
k=0

ξkTk(t, s, z) +O(ξK+1), (3.7)

Φ̂(t, s, z; ξ) =
K∑
k=0

ξkΦk(t, s, z) +O(ξK+1), (3.8)

and that these expansions are valid for z ∈ R. The notion is that, since the
interfacial thickness scales with ξ, one can expect a meaningful convergence
behavior when rescaling the space with 1/ξ in the normal direction.

Given x �∈ Γ (t; 0) clearly z(t, x) = dist(x, Γ (t; 0))/ξ → ±∞ as ξ ↘ 0.
On the other hand, in that limit x is located in one of the two phases, and
the closer it lies to the interface Γ (t; 0) the better the series of the functions
θk(t, x) approximates the value of the temperature on the interface. These
facts are reflected by the following matching conditions relating the outer and
inner expansions (see [St05b], Sect. 3.1, and [GS06] for the derivation): As
z → ±∞

T0(z) ∼ θ0(0±), (3.9)

T1(z) ∼ θ1(0±) + (∇θ0(0±) · ν)z, (3.10)

∂zT1(z) ∼ ∇θ0(0±) · ν, (3.11)

∂zT2(z) ∼ ∇θ1(0±) · ν +
(
(ν · ∇)(ν · ∇)θ0(0±)

)
z (3.12)
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and analogously for Φ. Here, for a function g(t, x) = ĝ(t, s, r) with the signed
distance r = dist(x, Γ (t; 0))

g(0+) := lim
r↘0

ĝ(t, s, r), g(0−) := lim
r↗0

ĝ(t, s, r).

3.2 Outer solutions

Away from Γ (t; 0), i.e., in domains E ⊂ R2 with E ⊂ Ω\Γ (t; 0), the expan-
sions (3.6) are plugged into the differential equations. All terms are expanded
in ξ-series.

To leading order ξ0 equation (3.1) yields the identity 0 = −p′(ϕ0). The only
stable solutions are the minima of p, hence ϕ0 ≡ ±1. These values distinguish
the two phases because, since the result is independent of ξ, necessarily ϕ0 = 1
in Ωl and ϕ0 = −1 in Ωs.

To the next order ξ1 the identity

0 = −p′′(ϕ0)ϕ1 −
2
3σ
s(Tm − θ0)h′(ϕ0)

follows. By h′(±1) = 0 and p′′(±1) = 4 we obtain ϕ1 ≡ 0 as the only solution.
The energy balance equation (3.2) yields the heat equation, to leading

order for θ0 and to the next order for θ1:

∂tθk = K∆θk, k = 0, 1.

Observe that it is possible to replace θ0 by the internal energies e(l)(θ0) =
θ0 + L of the liquid phase or e(s) = θ0 − L of the solid phase.

The initial conditions and boundary conditions on ∂Ω are independent of
ξ and, hence, only enter θ0 and ϕ0 respectively. The higher order corrections
fulfill homogeneous initial and boundary conditions. Boundary conditions on
Γ (t; 0) will be obtained by matching the expansions with the expansions in
the interfacial region.

3.3 Inner solutions

Derivatives with respect to (t, x) transform into derivatives with respect to
(t, s, z) as follows:

d

dt
= − 1

ξ v∂z + ∂◦ − (∂◦d1)∂z +O(ξ),

∆x = 1
ξ2 ∂zz −

1
ξκ∂z

+ (∂sd1)2∂zz − 2∂sd1∂sz − (κ2(z + d1)− ∂ssd1)∂z + ∂ss +O(ξ).

The phase field equation first yields

0 = ∂zzΦ0 − p′(Φ0). (3.13)
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By (3.3) and the assumption that (3.8) holds true for ξ = 0 we have Φ0(z =
0) = 0. The matching conditions (3.9) imply

Φ0(t, s, z) → ϕ0(t, s; 0±) = ±1 as z → ±∞.

Hence, the solution to (3.13) is Φ0(t, s, z) = tanh(z) and only depends on z.
For the conserved variable we get 0 = K∂zzT0 to order ξ−2. By the match-

ing conditions (3.9) T0 has to be bounded as z → ±∞, hence we see that T0

must be constant with respect to z which means T0 = T0(t, s). The matching
condition (3.9) furthermore implies that T0(t, s) is exactly the value of θ0 in
the point γ(t, s; 0) ∈ Γ (t; 0) from both sides of the interface. In particular,

θ0 is continuous across the interface Γ (t; 0).

To order ξ1 equation (3.1) yields

−α0v∂zΦ0 = ∂zzΦ1 − κ∂zΦ0 − p′′(Φ0)Φ1 −
2
3σ
s(Tm − T0)h′(Φ0). (3.14)

From the outer solutions we have ϕ1(t, s, 0±) = 0 and ∇ϕ0(t, s, 0±) · ν = 0.
Due to the matching condition (3.10) we conclude Φ1(t, s, z) → 0 as z → ±∞.
The operator L(Φ0) = ∂zz−w′′(Φ0) is self-adjoint. Differentiating (3.13) with
respect to z we obtain that ∂zΦ0 lies in the kernel of L(Φ0). Since Φ0(−z) =
−Φ0(z), ∂zΦ0 and h′(Φ0) are even, (3.14) allows for an even solution. In the
following we will assume that Φ1 indeed is even.

A solvability condition can be deduced by multiplying the equation with
∂zΦ0 and integrating over R with respect to z:

0 =
∫

R

(
(κ− α0v)(∂zΦ0(z))2 +

2
3σ
s(Tm − T0)h′(Φ0(z))∂zΦ0(z)

)
dz

=
4
3
(κ− α0v) +

4
3σ
s(Tm − θ0) (3.15)

where we used that
∫

R
(∂zΦ0)2dz = 4

3 . Up to the factor 4
3 this is the Gibbs-

Thomson condition (2.6).
The system (3.2) becomes to the order ξ−1

−v∂z(T0 + Lh(Φ0)) = K∂zzT1.

Integrating two times with respect to z furnishes

T1 = − 1
K

(
vL

∫ z

0

h(Φ0)dz′ + (vT0 −A)z
)

+ τ̄ (3.16)

∼ − 1
K

(
(v(T0 + L)−A)z − vLH

)
+ τ̄ as z →∞

∼ − 1
K

(
(v(T0 − L)−A)z − vLH

)
+ τ̄ as z → −∞
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where A and τ̄ are integration constants and

H :=
∫ ∞

0

(1− h(Φ0(z′)))dz′ =
∫ 0

−∞
(1 + h(Φ0(z′)))dz′.

Here, we used the fact that Φ0 converges to constants exponentially fast, so
that the integral

∫ z

0 has been replaced by
∫∞
0 while the linear terms remain.

By (3.10)
θ1(0±) = τ̄ +

v

K
LH (3.17)

which means, in particular, that

θ1 is continuous across Γ (t; 0). (3.18)

With (3.11) and T0 = θ0(0±) the following jump condition is obtained on
Γ (t; 0):

[−K∇θ0]ls · ν =
(
v(T0 + L)−A

)
−

(
v(T0 − L)−A

)
= v[e(θ0(0))]ls. (3.19)

Since Φ0 only depends on z the phase field equation to order ξ2 gives

− α0v∂zΦ1 − α1v∂zΦ0 − α0(∂◦d1)∂zΦ0

= ∂zzΦ2 − p′′(Φ0)Φ2 + (∂sd1)2∂zzΦ0 − (κ2(z + d1) + ∂ssd1)∂zΦ0

− κ∂zΦ1 −
1
2
p′′′(Φ0)(Φ1)2 +

2
3σ
s(Tm − T0)h′′(Φ0)Φ1 +

2
3σ
sT1h

′(Φ0).

To guarantee that Φ2 exists there is again a solvability condition which is
obtained by multiplying with ∂zΦ0 and integrating over R with respect to
z. The terms involving Φ1 vanish. For this purpose, equation (3.14) and the
assumption that Φ1 is even is used. Let

J : =
∫ ∞

0

∂z(h ◦ Φ0)(z)
∫ z

0

(1 − (h ◦ Φ0)(z′))dz′dz

=
∫ 0

−∞
∂z(h ◦ Φ0)(z)

∫ 0

z

(1 + (h ◦ Φ0)(z′))dz′dz.

Using (3.16) to replace T1 and, after, (3.17) to replace τ̄ a short calculation
shows that the solvability condition becomes (remember that 2L = sTm)

0 = σ(−α0∂
◦ + ∂ss + κ2)d1 − sθ1

+ v
(
− σα1 + (H + J)

1
K
Tms

2
)
. (3.20)

We remark that ∂◦d1 and (∂ss+κ2)d1 are the first order corrections of the nor-
mal velocity and the curvature of Γ (t, s; ξ) (see (3.5) and (3.4) respectively).
Indeed, when inserting the expansions for T = θ0 +ξθ1 + . . . and the interface
distance d = ξd1+. . . into the Gibbs-Thomson condition σαv = σκ+s(Tm−T )
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then, to leading order, we get (3.15), and the first line of (3.20) is the equation
to first order in ξ.

The goal is to obtain that θ1 ≡ 0 and d1 ≡ 0 are solutions to the equations
they have to fulfill. For this purpose, the second line of (3.20) must vanish.
But by suitable choice of the additional correction term α1 in the kinetic
coefficient, namely

α1 = (H + J)
σ

K
Tms

2, (3.21)

this in indeed ensured.
Analogously to the above correction to the Gibbs-Thomson condition we

are interested in deriving a first order correction to the jump condition (3.19).
The equation (3.2) yields to order ξ0

− v∂z(T1 + Lh′(Φ0)Φ1) + (∂◦ − (∂◦d1)∂z)(T0 + Lh(Φ0))
= K (∂zzT2 − κ∂zT1 + ∂ssT0) .

Integrating once with respect to z leads to

−K∂zT2 = v(T1 + Lh′(Φ0)Φ1)−B︸ ︷︷ ︸
(i)

+
∫ z

0

(−∂◦ + (∂◦d1)∂z)(T0 + Lh(Φ0))dz′︸ ︷︷ ︸
(ii)

− κKT1︸ ︷︷ ︸
(iii)

+K∂ssT0z

where B is an integration constant. We need to collect the terms contributing
to ∇θ1 · ν. In view of (3.12) this means that the terms linear in z are not of
interest. Applying (3.10) to Φ1, T1 and by the assumption h′(0) = h′(1) = 0
it holds that

(i) ∼ vθ1 −B + (. . . )z as z → ±∞.

Furthermore, since ∂◦Φ0 = 0,

(ii) = −∂◦(T0 ± L)z + (∂◦d1)L(h(Φ0))
∣∣z
0

∼ −∂◦e(l) + (∂◦d1)L as z →∞,
∼ −∂◦e(l) − (∂◦d1)L as z → −∞.

By (3.10) and (3.18) we get (iii) = κKθ1 + (. . . )z as z → ±∞. Finally, the
first order correction of the jump condition (3.19) at the interface is

[−K∇θ1]ls · ν = vθ1 + 2L(∂◦d1).
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3.4 Summary of assumptions and stated problems

Let us now collect the equations. First, the problem to leading order is stated:

(LOP) Find a function θ0 : IT × Ω → R and a family of curves
{Γ (t; 0)}t∈IT separating Ω into two domains Ωl(t; 0) and Ωs(t; 0) such
that

∂te
(p)(θ0) = K∆θ0, in Ωp(t; 0), t ∈ IT , p = s, l,

and such that on Γ (t; 0) there holds for all t ∈ IT :

θ0 is continuous,

[−K∇θ0]ls · ν = v[e(θ0)]ls,
σα0v = σκ+ s(Tm − θ0).

If we define α1 as in (3.21) then the correction problem reads as follows:

(CP) Let (θ0, {Γ (t; 0)}t) be a solution to (LOP). Let l(t) be the length
of Γ (t; 0) and set SIT := {(t, s) : t ∈ IT , s ∈ [0, l(t))}. Then find
functions θ1 : IT ×Ω → R and d1 : SIT → R such that

∂tθ1 = K∆θ1, in Ωp(t; 0), t ∈ IT , p = s, l,

and such that on Γ (t; 0) there holds for all t ∈ IT :

θ1 is continuous,

[−K∇θ1]ls · ν = vθ1 + (∂◦d1) [e(θ0)]ls
σα0 ∂

◦d1 = σ(∂ss + κ2)d1 − sθ1.

Obviously, (θ1, d1) ≡ 0 is a solution to the correction problem (as previously
remarked, the boundary conditions on ∂Ω are homogeneous). If this solution
is unique then the leading order problem is approximated to second order
in ξ by the phase field model. Problem (CP) is in fact the linearization of
(LOP), i.e., the problem resulting from (LOP) when inserting the expansions
T = θ0+ξθ1+ . . . and d = ξd1+ . . . . We point out again that the choice (3.21)
is crucial in order to guarantee that the undesired terms in (3.20) vanish.

3.5 Numerical example

In [GS06] several numerical tests have been performed revealing that the
free boundary problem can indeed be better approximated by the phase field
model with the correction term. Fig. 3.1 shows the results for an undercooled
binary alloy (the potentials, physical parameters, and initial values are pre-
cisely stated in [GS06], Sect. 4.3). A planar solid-liquid front moves into the
liquid phase. On the right the figure shows the profiles of the concentration
of one component during the solidification. The position of the interface, i.e,
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Fig. 3.1. Numerical test of the correction term. On the left: the position of the
interface depicted over ξ. On the right: profiles of the concentration c during evolu-
tion.

the point where Φ(t, x; ξ) = 0, is depicted on the left for several values of ξ,
the other parameters being fixed.

Simulating with the correction term (3.21) in the phase field equation and
varying ξ the changes in the interface position turned out to be of about 10−3

which is smaller than the grid spacing ∆x = 0.02. In contrast, if the correction
term was not taken into account changes of several grid points were observed.
This behavior in ξ indicates that the approximation of the sharp interface
solution is improved thanks to the correction term.

3.6 Remarks on the multi-phase case

When multiple phases are present the asymptotic analysis leads to a leading
order problem consisting of the equations (2.3)–(2.6), (2.9), and (2.10) (cf.
[GNS98, GNS04]). Indeed, the procedure presented in the previous subsec-
tions yields the equations (2.3)–(2.6). To obtain the force balance (2.9) (and,
analogously, (2.10)) it is assumed that, away from the triple junction on a
diffuse phase boundary, the situation is just as in the case of two phases.

Aiming for a second order approximation of the force balance we observed
that, in general, in the interfacial regions not only the phase field variables of
the adjacent phases are present but also phase fields corresponding to other
phases appear. It turned out that these artificial third phase contributions do
not trouble the first order asymptotic analysis but a second order analysis.
As a first step we therefore developed and analyzed suitable multi-well poten-
tials w that avoid the third phase contributions (cf. [St05a, GHS06]), smooth
potentials as well as potentials of obstacle type.

As an additional feature, the calibration of the phase field model with
respect to given surface energies σαβ(ν) and mobility coefficients mαβ(ν) be-
comes much simpler. It is shown in [BBR05] that the Γ–limit of (2.19) as δ → 0
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has the form of the surface contribution in (2.12), and a relation between the
σαβ and the functions a and w is derived. Using matched asymptotic expan-
sions, [St91] for the isotropic case and [GNS98] for the general case proposed
the simpler relation

σαβ(ν) = inf
p

{∫ 1

−1

√
w(p)a(p, p′ ⊗ ν)dy,

p ∈ C0,1([−1, 1];ΣM), p(−1) = eα, p(1) = eβ

}
. (3.22)

Using numerical simulations they got evidence that this formula seems to hold
true for a large class of anisotropies.

The new potentials w are such that solutions to (3.22) exist with pi �≡ 0
only if i = α, β. Moreover, it is possible to adapt coefficients in w and cali-
bration functions in a such that the integral in (3.22) becomes a given surface
energy. Similarly, the relation between the mαβ(ν) and ω(φ,∇φ) becomes
much simpler thanks to the new potentials.

4 A homogenized two-scale model for a binary mixture

In this section we apply the theory of homogenization to a simplified physical
situation with periodic equiaxed dendritic microstructure which is described
by a phase field model for a binary alloy. The resulting model will be a two-
scale model that consists of a macroscopic heat equation and of microscopic
cell problems that describe the evolution of the phases and the microscopic
solute transport at each point of the macroscopic domain. In order to justify
the formal asymptotic expansion, an estimate is established that compares
the solution of the two-scale model to that of the original model.

The phase transition problem to be considered is given by equations (2.26)–
(2.28), i.e.,

∂tT + L∂tΦ−∇ · (K(Φ)∇T ) = 0, (4.1)
∂tC −∇ · (D1(Φ)∇C) −∇ · (D2(C,Φ)∇Φ) = 0, (4.2)

αξ2∂tΦ− ξ2∆Φ+ p′(Φ) + q(T,C, Φ) = 0, (4.3)

to be solved in the time-space cylinder QTΩ := IT × Ω with time interval
IT := [0, T ] and domain Ω ⊂ Rd. The diffusion tensors are assumed to be
Lipschitz-functions of the phase field Φ, they shall be symmetric, Kij = Kji,
D1,ij = D1,ji for i, j = 1, . . . , d, as well as elliptic and bounded,

k0|z|2 ≤ Kijzizj ≤ k1|z|2, d0|z|2 ≤ D1,ijzizj ≤ d1|z|2 (4.4)

for all z ∈ Rd with positive constants k0 ≤ k1 and d0 ≤ d1 independent of
Φ. Here and in the sequel, the sum convention is used. The function D2 :
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Fig. 4.1. Periodic microstructure

R2 → Rd,d is Lipschitz and bounded. The function p represents the double-
well potential p(Φ) = 1

2

(
Φ2 − 1

)2, and q : R3 → R is a Lipschitz function.
The differential equations are supplemented by Dirichlet conditions for the
temperature and homogeneous Neumann conditions for concentration and
phase field,

T = Tibc,
(
D1(Φ)∇C +D2(C,Φ)∇Φ

)
· νext = 0, ∇Φ · νext = 0 (4.5)

on STΩ := IT × ∂Ω, and by initial conditions

T (0, ·) = Tibc, C(0, ·) = Cic and Φ(0, ·) = Φic (4.6)

on Ω. For simplicity of the notation the Dirichlet condition and the initial
condition of the temperature are given by the same function Tibc that is defined
on QTΩ.

Let us introduce some notation for function spaces. Spaces of functions
with continuous derivatives of order β are denoted by Cβ(Q), Lr(Q) is the
Lebesgue space of functions whose r-th power has an integral, W k

r (Q) is the
Sobolev space of functions with derivatives of order k whose r-th power is
integrable, andHβ(Q) = W β

2 (Q). In anisotropic spaces of the type Ck,�(I×Q)
or W k,�

r (I × Q) with time interval I, the index k refers to the time variable
and � to the space variables.

4.1 Asymptotic expansion and the two-scale model

To construct a model that is suitable for a very small scale of the evolving
dendritic structures, we consider a sequence of problems of varying scale ε > 0,
study the limit ε → 0 of their solutions, and construct a limit problem that
is valid for the limit of these solutions. This limit problem may be used as an
approximation for situations with small but non-vanishing scale ε.

This procedure is done for an idealized equiaxed dendritic microstructure
that consists of equiaxed crystals growing at the nodes of a uniform grid with
edge length given by the scale parameter ε, see Fig. 4.1. This situation is
generated by the initial data

T
(ε)
ibc (x) = T

(0)
ibc (x), C

(ε)
ic (x) = C

(0)
ic

(
x, xε

)
and Φ

(ε)
ic (x) = Φ

(0)
ic

(
x, xε

)
(4.7)
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with functions T (0)
ibc ∈ L2(Ω), C(0)

ic , Φ
(0)
ic ∈ L2

(
Ω;C#(Y )

)
. The domain Y is a

unit cell, by definition this is a bounded, simply connected Lipschitz domain
with the property that Rd can be represented as union of shifted copies of Y
with no intersection of their interiors. For simplicity of the presentation, the
volume of the unit cell is scaled to one. The standard example for Y is the unit
cube Y = [0, 1]d. The set C#(Y ) contains all periodic continuous functions
in Rd with periodicity cell Y , the subscript # indicates periodic boundary
conditions with respect to y ∈ Y . Condition (4.7) describes instantaneous
nucleation at time t = 0 of a periodic distribution of nuclei. In order to obtain
a well-defined asymptotic limit for ε → 0, it is necessary to scale some given
data in dependence of ε. Here it is assumed

ξ = εξ0, α = ε−2α0, and D� = ε2D
(0)
� , � = 1, 2. (4.8)

The scaling of ξ is obvious: if the size of a solid crystal is proportional to
ε, and if we model this crystal by a diffuse interface model, then the width
of the diffuse interface must be bounded by const · ε with a constant that
is small compared to the size of the crystal. Hence ξ0 is a small phase field
parameter that is fixed in the asymptotic expansion. The relaxation parameter
α is scaled such that the total relaxation factor αξ2 in the phase field equation
remains constant. The scaling of the solute diffusivity is motivated by the fact
that dendritic structures are created by a competition between a diffusional
instability and surface energy. At least one of the diffusivities K or D1, D2

has to be scaled in dependence of ε. Since solute diffusivity is usually smaller
than heat conductivity, it is natural to scale D1 and D2. The fact that D� and
ξ are both scaled proportional to ε2 does not indicate that they are of similar
size: in fact we expect D(0)

� to be of the size 1 and ξ0 to be small compared
to D(0)

� , but the relation D�/ξ is kept fixed.
In order to study the limit ε→ 0, the existence of an asymptotic expansion

uε(t, x) = u0

(
t, x, xε

)
+ε u1

(
t, x, xε

)
+ε2u2

(
t, x, xε

)
+ · · · for u = T,C, Φ (4.9)

is assumed. The existence of such an asymptotic expansion is not guaranteed.
The result of the calculation will be justified in the next section. The gra-
dient of a function x �→ u(x, xε ) is given by ∇u = ∇xu + 1

ε∇yu, where ∇x

and ∇y denote the gradients with respect to the first and second variables
of u, respectively. The asymptotic expansions (4.9) and the formal relation
∇ = ∇x + 1

ε∇y are used in the differential equations (4.1)–(4.3). Then the
coefficients of different powers of ε are compared, starting from the lowest
order. For the Φ-dependent conductivities we use a Taylor expansion that is
abbreviated by Kε = K0 +εK1 +ε2K2 + · · · with K0 = K(Φ0) and analogous
expansions for D(0)

1 (Φ), D(0)
2 (C,Φ). The validity of these expansions with a re-

mainder of order εβ requires K,D(0)
1 ∈ Cβ

(
R; Rd,d

)
and D(0)

2 ∈ Cβ
(
R2; Rd,d

)
.

The problem of 1st order consists of the terms of order ε−2 in the heat
equation (4.1); these are
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−∇y ·
(
K0∇yT0) = 0 in QTΩY := IT ×Ω × Y,

T0 is Y -periodic with respect to y.

The solutions of this problem are constant with respect to y, hence T0(t, x, y) =
T0(t, x) is independent of y.

The problem of 2nd order is given by the terms of order ε−1 in the
heat equation,

−∇y ·
(
K0(∇yT1 +∇xT0)

)
= 0 in QTΩY ,

T1 is Y -periodic with respect to y.

This is a linear elliptic equation for T1 with right hand side defined in terms
of T0. Its solution can be represented by

T1(t, x, y) =
d∑

j=1

Hj(t, x, y) ∂xjT0(t, x)

with the solutions Hj of the local cell problem

−∇y ·
(
K0∇yHj

)
= ∇y ·

(
K0 ej

)
, Hj is Y -periodic,

where ej is the j-th unit vector of Rd. Both K0 and Hj depend on Φ0.
The problem of 3rd order consists of the terms of order ε0 in the heat

equation, the diffusion equation and the phase field equation,

∂tT0 + L∂tΦ0 −∇y ·
(
K0(∇yT2 +∇xT1) +K1(∇yT1 +∇xT0)

)
−∇x ·

(
K0(∇yT1 +∇xT0)

)
= 0,

(4.10)

∂tC0 −∇y ·
(
D

(0)
1 (Φ0)∇yC0

)
−∇y ·

(
D

(0)
2 (C0, Φ0)∇yΦ0

)
= 0, (4.11)

α0ξ
2
0∂tΦ0 − ξ20∆yΦ0 + p′(Φ0) + q(T0, C0, Φ0) = 0 (4.12)

on QTΩY , supplemented by periodic boundary conditions on ∂Y for T2, C0

and Φ0. Equations (4.11) and (4.12) do not contain any derivatives with re-
spect to x. Hence they can be interpreted as a set of differential equations
defined on QT Y := IT × Y for every parameter x ∈ Ω. Equation (4.10) is
transformed into a macroscopic equation for T0 = T0(t, x) by integration with
respect to y ∈ Y . Due to the periodic boundary conditions the ∇y·-term
disappears and the homogenized heat equation is obtained,

∂tT0 + L∂tΦ0 −∇ ·
(
K∗(Φ0)∇T0

)
= 0

with solid volume fraction Φ0(t, x) :=
∫
Y
Φ0(t, x, y) dy and the effective heat

conductivity

K∗
ij(Φ0) :=

∫
Y

(
Kij(Φ0) +

d∑
k=1

Kik(Φ0)∂yk
Hj(Φ0)

)
dy.
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The effective heat conductivity K∗
ij is symmetric, elliptic and bounded with

the same constants k0 and k1 as the original matrix K, see e.g. [JKO94] or
[Ho97].

Let us sum up the obtained two-scale model. It consists of

• The macroscopic heat equation

∂t
(
T0 + LΦ0

)
−∇ ·

(
K∗(Φ0)∇T0

)
= 0 in QTΩ = IT ×Ω (4.13)

with boundary conditions and initial conditions

T0 = T
(0)
ibc on STΩ = IT × ∂Ω and T0(0, ·) = T

(0)
ibc in Ω.

• The definition of the averaged phase field Φ0(t, x) =
∫
Y Φ0(t, x, y) dy and

the effective heat conductivity

K∗
ij(Φ0) =

∫
Y

Kik(Φ0)
(
δjk + ∂yk

Hj(Φ0)
)
dy (4.14)

with the Kronecker symbol δjk via the solutions Hj = Hj(Φ0) of the local
cell problems

−∇y ·
(
K(Φ0)(∇yHj + ej)

)
= 0 in Y (4.15)

with periodic boundary conditions.
• The microscopic problems

∂tC0 −∇y ·
(
D

(0)
1 (Φ0)∇yC0

)
−∇y ·

(
D

(0)
2 (C0, Φ0)∇yΦ0

)
= 0, (4.16)

α0ξ
2
0∂tΦ0 − ξ20∆yΦ0 + p′(Φ0) + q(T0, C0, Φ0) = 0 (4.17)

in QT Y = IT × Y with periodic boundary conditions and initial data

C0(0, x, y) = C
(0)
ic (x, y), Φ0(0, x, y) = Φ

(0)
ic (x, y) for y ∈ Y.

These equations must be solved for every point x ∈ Ω of the macroscopic
domain.

4.2 Analysis of the two-scale model

The existence of weak solutions to the two-scale model is proved in [Ec04c],
Theorem 3.3, by a fixed point approach. Uniqueness of the solution is also
proved in [Ec04c], Theorems 3.4 and 3.5. The results can be summed up as:

Theorem 4.1. Let Ω ⊂ Rd be a C2-smooth domain of dimension d = 2 or
d = 3, Y ⊂ Rd be a unit cell, let K,D1 : R → Rd,d be Lipschitz, symmetric
and satisfy the condition (4.4), let Tibc ∈ W 1,2

r (QTΩ) ∩H1
(
IT ;W 1

s (Ω)
)

with
r > d, s > 1 for d = 2 and s > 6/5 for d = 3, Cic, Φic ∈ L∞

(
Ω;W 2−2/�

�# (Y )
)
∩

W 1
r

(
Ω;L2(Y )

)
with � > 1 + d/2, 0 ≤ Cic ≤ 1, suppose D2 ∈ C0,1

(
R2; Rd,d

)
with D2(C,Φ) = 0 for C /∈ [0, 1], p(Φ) = 1

2

(
Φ2 − 1

)2, q : R3 → R is Lipschitz
and satisfies the growth condition |q(T,C, Φ)| ≤ const(1 + |T | + |C| + |Φ|),
and let L, ξ, α be positive constants. Then there exists a unique weak solution
(T,C, Φ) of the two-scale model (4.13)–(4.17).
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An estimate for the model error is derived in [Ec04b] under appropriate
assumptions concerning the regularity of the solutions for both the original
model and the two-scale model. Let (Tε, Cε, Φε) denote the solutions of the
original model (4.1)–(4.3), (4.5), (4.7) with the scaling (4.8) of the parameters
and (T0, C0, Φ0) be the solutions of the two-scale model (4.13)–(4.17) with
initial data T (0)

ibc , C(0)
ic , Φ(0)

ic . The error estimate is done in terms of macroscopic
reconstructions of scale ε for the solutions of the two-scale model:

uε0(t, x) := u0(t, x, x/ε) for u ∈ {T,C, Φ}.

The required regularity for the solutions of the original model is

‖Tε‖H1/2,1(QT Ω) + ‖Tε‖L∞(IT ;L2(Ω)) + ε‖Cε‖H1/2,1(QT Ω)

+ ε‖Φε‖H1/2,1(QT Ω) + ‖Cε‖L∞(QT Ω) + ‖Φε‖L∞(QT Ω) ≤ const1
(4.18)

with a constant const1 independent of ε. The solution of the two-scale model
is supposed to satisfy

T0 ∈W 1,2
r (QT Ω) ∩H1/2+β

(
IT ;H1(Ω)

)
,

C0, Φ0 ∈ L∞
(
Ω;C1,2(QT Y )

)
, ∇xC0,∇xΦ0 ∈ L∞

(
Ω;W 1,2

s (QT Y )
) (4.19)

with parameters r > d+ 2, s > d and β > 0.

Theorem 4.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and Y be a unit
cell, let K,D(0)

1 ∈ C2
(
R; Rd,d

)
be bounded and elliptic as described in (4.4),

D
(0)
2 ∈ C0,1

(
R2; Rd,d

)
be bounded, q : R3 → R be globally Lipschitz and p(Φ) =

1
2

(
Φ2−1

)2. The solutions of the original model and the two-scale model satisfy
the regularity properties (4.18) and (4.19). Let

T ε
1 (t, x) := T0(t, x) + εHj

(
t, x, xε

)
∂xjT0(t, x)

be the first order term in the asymptotic expansion for the temperature. Then

‖Tε − T0‖L∞(IT ;L2(Ω)) + ‖Cε − Cε
0‖L∞(IT ;L2(Ω)) + ‖Φε − Φε0‖L∞(IT ;L2(Ω))

+ ‖Tε − T ε
1 ‖L2(IT ;H1(Ω)) ≤ const ε1/2

with const independent of ε.

This theorem guarantees the order of approximation ε1/2 for the two-scale
model. The exponent of ε is limited to 1/2, because the two-scale model
does not approximate the original model of scale ε close to the boundary of
the domain. It must be expected that the domain of an equiaxed dendritic
crystal growing close to the boundary is not a full shifted copy of εY , but
a subdomain obtained by intersecting with Ω. This generates an additional
error of order ε1/2.
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2

Fig. 4.2. Macroscopic domain of the numerical example

4.3 Numerical example

In order to illustrate the two-scale model we present the results of numeri-
cal computations for two space dimensions. The computations are done with
constant heat conductivity K = 1 – hence no elliptic cell problem must be
solved, – constant solute diffusivity D1(Φ) = 1, D2(C,Φ) = −0.05 and latent
heat 2L = 1. The function q in the phase field model is given by

q(∇yΦ, T, c, Φ) =
(
1− Φ2

)
· 1.2 · arctan

(
ξ

1.2·σ(∇yΦ)

(
T + 10 · C − 1

2Φ− 2
))
.

The quantity σ here is correlated with the surface tension for the sharp in-
terface limit ξ → 0. Its dependence on ∇yΦ is introduced in order to describe
the dependence of the surface tension on the orientation of the surface. The
problem can be reformulated in terms of the function µ = 10 · C − 1

2Φ − 2
that plays the role of a chemical potential; the diffusion equation then takes
the form

∂t
(
µ+ 1

2Φ
)
−∆yµ = 0,

and the constitutive function q in the phase field equation is

q(∇yΦ, T, µ, Φ) =
(
1− Φ2

)
· 1.2 · arctan

(
ξ

1.2·σ(∇yΦ) (µ+ T )
)
.

The precise form of σ(∇Φ) is

σ(∇Φ) = σ0

(
1− (m2 − 1)σ1 cos(m(Θ(∇Φ) −Θ0))

)
,

where σ0 describes the average value, σ1 is the strength of the anisotropy, m
describes the symmetry pattern of the dendrites, Θ(∇Φ) is the angle between
∇Φ and the x1-axis and Θ0 is an offset angle. The special choice of q involving
the arctan function is chosen in order to ensure that the minima of the po-
tential for fixed T, µ,∇yΦ are kept at Φ = ±1, even for large deviations from
the equilibrium melting point; following the proposition of Kobayashi [Ko93].

Both the global heat equation and the microscopic problems are discretized
by bilinear finite elements on uniform rectangular grids. The equations are
decoupled by the time discretization in the following way: first a partially
linearized version of the phase field equation is solved with temperature, con-
centration and ∇yΦ taken from the previous time step, then the diffusion
equation is solved. This is done for every grid point of the macroscopic grid,
then the global heat equation is solved. The decoupled linear equations are
discretized with respect to time by the Crank-Nicolson scheme. This gives
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Fig. 4.3. Evolution of left and right crystal for Θ0 = 0
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Fig. 4.4. Evolution of specific data for Θ0 = 0

a semi-implicit time-discretization of the two-scale model, with an implicit
discretization of the main parts of the differential operators.

The examples to be presented are computed for σ0 = 0.0002, m = 4,
ξ = 0.005, α = 5 and σ1 = 0.05. The initial conditions are T = −0.1 and
µ(T, c, Φ) = −0.1, this adds up to a total initial undercooling of −0.2. The
unit cell for the microscopic problem is Y = [0, 1]2, the initial solid nucleus is a
sphere of radius r = 0.05 located at the midpoint (0.5, 0.5) of Y . The boundary
conditions are periodic boundary conditions for the microscopic problems and
given heat fluxes for the macroscopic equations. The macroscopic domain is
Ω = [0, 2] × [0, 0.5]; we prescribe homogeneous heat fluxes ∇T · νext = 0 on
[0, 2]×{0}, {2}× [0, 0.5] and [0, 2]×{0.5}, on the remaining part {0}× [0, 0.5]
of the boundary we prescribe the heat flux ∇T · νext = −1. The macroscopic
equation is discretized by a uniform rectangular grid with 19×1 elements; it is
essentially one-dimensional, the crystals evolving at the same x1-position are
equal. The microscopic problems are solved with uniform rectangular grids



Multiscale Problems in Solidification Processes 57

Fig. 4.5. Evolution of left and right crystal for Θ0 = 0.4
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Fig. 4.6. Evolution of specific data for Θ0 = 0.4

of 300 × 300 elements. The time step is ∆t = 2 · 10−5, the final time of all
computations is t = 0.2.

The figures show the results for three different orientations Θ0 = 0, Θ0 =
0.4 and Θ0 = π/4 for the anisotropy of the surface tension. Figures 4.3, 4.5 and
4.7 show the evolution of the left and right crystals from the initial time t = 0
to t = 0.2 in twenty steps. The left crystal is that growing at x1 = 0, the right
that at x1 = 2. Due to the boundary cooling at x1 = 0 the left crystal grows
quickly, whereas the right one evolves rather slowly; its driving force is limited
to the initial undercooling. For the left crystal, the offset angle Θ0 = 0 leads
to shorter dendrites than the other angles, here the interaction of neighboring
crystals happens earlier than in the cases Θ0 = 0.4 and Θ0 = π/4. This effect
is not visible for the right crystals which are in an early stage of their evolution.
In Fig. 4.4, 4.6 and 4.8 the evolution of the specific data (specific volume and
specific surface) is depicted for selected crystals in a row in x1-direction, the
number corresponds to the position of the crystal, starting with position 1 at
x1 = 0. Further examples are presented in [Ec04a] and [Ec04b].
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Fig. 4.7. Evolution of left and right crystal for Θ0 = π/4
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Fig. 4.8. Evolution of specific data for Θ0 = π/4

4.4 Some remarks on the numerical analysis

Error estimates for simple finite element discretizations of both the origi-
nal model for scale ε and the two-scale model are derived and compared in
[Ec02]. For linear or bilinear finite elements on a grid with mesh size h and
a discretization with respect to time by an implicit Euler scheme with time
step ∆t, the error for the original model of scale ε is

const1

((
h

ε

)2

+∆t

)
.

This estimate reveals the typical convergence properties of the chosen dis-
cretization for parabolic equations: convergence of second order with respect
to the space variables and of first order with respect to time. The factor 1/ε
of the mesh size h accounts for the obvious fact that the microstructure starts
to be properly resolved for h � ε only. The discretization of the two-scale
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model uses a global grid for the macroscopic heat equation defined on Ω, at
each node of this global grid the local cell problem defined on Y is solved with
a local grid for Y . The mesh size of both grids is related to h0, the time step
is again ∆t. Then the error estimate for the two-scale model is

const2
(
h2

0 +∆t
)
.

Obviously no dependence on ε is present here. In order to have comparable
computational complexity, the mesh sizes h0 for the two-scale model and h
for the original model should scale according to h0 ∼

√
h. Respecting also

the model error of order ε1/2 for the two-scale model we conclude that the
two-scale model is superior, if the mesh size used for the original model is
larger than the threshold hε = const3ε5/4 with a suitable const3.

4.5 Conclusion

The presented two-scale model is an approximate model for a problem with
scale ε of the microstructure, with increasing accuracy for decreasing ε. Nu-
merical computations with this model are valid for a whole range of microscale
parameters ε ∈ (0, ε0] with the appropriate diffusivities. The model is suit-
able for material with fast heat diffusion and slow solute diffusion, where the
temperature is assumed to be essentially constant on the microscopic scale,
while the solute transport is neglected on the macroscopic scale.

Extensions of the presented two-scale model may be possible for more com-
plex physical phenomena, for example phase transitions with convection, and
physically more realistic situations, in particular for non-periodic microstruc-
tures. The extension to models with convection is probably possible by the
application of techniques similar to those presented here to available phase
field models that include convection, see e.g. [AMW00], [BD*99], [NW*00].
For phase transitions with density differences between solid and liquid – where
convection cannot be avoided – it may be necessary to use a unit cell that
is fixed in Lagrangian coordinates but moves and deforms with the flow in
an Eulerian description. Non-periodic microstructures can be described by a
probabilistic description of the initial conditions, then it is possible to ap-
ply techniques of random homogenization of the type described in [JKO94].
A corresponding stochastic version of the two-scale model can be found in
[Ec04a].

A Facts on evolving surfaces and transport identities

Let IT = (0, T ) ⊂ R be a time interval and let m, d ∈ N with m ≤ d.

Definition A.1. (Σt)t∈IT is an evolving m-dimensional surface in Rd if

1. for each t ∈ IT , the surface Σt can be parameterized over a fixed smooth
orientable submanifold U ⊂ Rm+1,
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2. the set Σ′ := {x′ = (t, x) : t ∈ IT , x ∈ Σt} ⊂ R × Rd is a smooth
m+ 1-dimensional surface,

3. the tangent space Tx′Σ′ is nowhere purely spatial, i.e., Tx′Σ′ �= {0} × V
with V ∼= Rm.

The spatial tangent space of dimension m in x ∈ Σt is denoted by TxΣt,
the spatial normal space of dimension d − m by NxΣt := (TxΣt)⊥. There
is a unique vector field vΣ : Σ′ → Rd+1 such that (1,vΣ(t, x)) ∈ Tx′Σ′

and vΣ(t, x) ∈ NxΣt; vΣ(t, x) is the vectorial normal velocity of the evolving
surface. It can be verified that

Tx′Σ′ = {(s, svΣ(x′)) + (0, τ) : s ∈ R, τ ∈ TxΣt},
Nx′Σ′ = {(−vΣ(x′) · ν, ν) : ν ∈ NxΣt}.

Let ϕ be a smooth scalar field on Σ′. The derivative

∂◦ϕ(x′) := ∂(1,vΣ(x′))ϕ(x′) in x′ = (t, x) ∈ Σ′, (A.1)

is the normal time derivative of ϕ in x′ and describes the variation of ϕ
when following the curve δ �→ c(δ) ∈ Σt+δ defined by c(0) = x and ∂δc(δ) =
vΣ(t+ δ, c(δ)), δ ∈ (t− δ0, t+ δ0) with some small δ0 > 0.

Let (τk(t, x))mk=1 be an orthonormal basis of TxΣt. By ∂τk
ϕ(x) the dif-

ferential of ϕ into direction (0, τk) ∈ Tx′Σ′ is denoted. The surface gradient
of ϕ in x′ is defined by ∇Σϕ(x′) :=

∑m
k=1 ∂τk

ϕ(x′)τk ∈ TxΣt. Let ϕ be a
smooth vector field on Σ′. The surface divergence of ϕ in x′ is defined by
∇Σ ·ϕ(x′) :=

∑m
k=1 ∂τk

ϕ(x′) · τk.
If m = d − 1 the normal space NxΣt has dimension one, and Σ′ is ori-

entable. Then there is a smooth vector field νΣ of unit normals, νΣ(x′) ∈
NxΣt, |νΣ(x′)|2 = 1. The (scalar) curvature and the curvature vector then
are defined by

κΣ := −∇Σ · νΣ , κΣ := κΣνΣ. (A.2)

Moreover, the (scalar) normal velocity then is defined by

vΣ = vΣ · νΣ, (A.3)

and the following relation, derived in [Gu00], Chapter 15b, holds:

∂◦νΣ = −∇ΣvΣ . (A.4)

Definition A.2. Γ ′ := (Γt)t is an evolving m-dimensional subsurface of Σ′

if

1. the set Γt is a relatively open connected subset of Σt for each t ∈ IT ,
2. the boundary ∂Γ ′ := (∂Γt)t consists of a finite number of evolving m− 1-

dimensional surfaces such that, locally for each t ∈ IT , ∂Γt is the graph
of a Lipschitz continuous map.
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A vectorial normal velocity v∂Γ can be assigned to the pieces of ∂Γ ′ while Γ ′

obviously has the same vectorial normal velocity as Σ′, namely vΣ .
In some point x ∈ ∂Γt the tangent cone on Γt is denoted by TxΓt. If x is

in the interior of one of the pieces the cone is a half-space of TxΣt. Besides
then the boundary of TxΓt in TxΣt coincides with the tangent space of the
boundary ∂Γt, i.e., ∂TxΓt = Tx∂Γt. In such points x there is a unique unit
vector τΓ ∈ TxΣt ∩Nx∂Γt with τΓ · τ̃ ≤ 0 for all τ̃ ∈ TxΓt. This vector τΓ is
said to be the external unit normal of Γt with respect to Σt.

Letm = d−1 and d ≤ 3. First, a divergence theorem is stated for a smooth
surface with piecewise smooth Lipschitz boundary like Γt as in Definition A.2:

Theorem A.3. ([Be86], Corollary 4 ) In the above situation there is the
following identity:∫

Γt

(∇Σ ·ϕ + κΣ · ϕ) dHm(x) =
∫
∂Γt

ϕ · τΓdHm−1.

If ϕ is a tangent vector field then κΣ · ϕ = 0 so that one gets the usual
divergence theorem on surfaces. It should be remarked that the proof in [Be86]
is performed for smooth ∂Γt but there is a brief note on the above case of
a piecewise smooth boundary at the end of Sect. II(2). Finally, a transport
identity is stated:

Theorem A.4. ([Be86], Theorem 1) In the above situation it holds for every
t ∈ IT that

d

dt

(∫
Γt

ϕdHm

) ∣∣∣∣
t

=
∫
Γt

(∂◦ϕ− ϕvΣ · κΣ) dHm +
∫
∂Γt

(ϕv∂Γ · τΓ ) dHm−1.

Remark A.5. If vΣ = 0 and κΣ = 0 then Γt is flat, ∂◦ reduces to ∂t and v∂Γ

is tangential. Altogether, the Reynold’s transport theorem is obtained.
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Summary. Imposed by the crystal lattice, at the surface of a crystal, there exist
atomic steps, which separate exposed lattice planes that differ in height by a single
lattice spacing. These steps are long-living lattice defects, which make them suitable
as a basis for the description of surface morphology on a mesoscopic length scale and
thus are an ideal approach to overcome the different length scales, which range from
several atoms in lateral direction to micrometers in horizontal direction. This paper
summerizes an approach how the thermodynamics and kinetics of atomic steps can
be coarse grained to continuum models for the evolving surface. We discuss phase-
field approximations to the step dynamics model and apply them to various growth
procedures.

1 Introduction

A deep understanding of the fundamental physics underlying epitaxial growth
techniques is a prerequisite for any significant success in semiconductor nan-
otechnology. The frontiers in developing novel electronic devices lie in the
realm of the length scales from nanometers to microns. Controlling the surface
morphology during epitaxial growth at such scales is a challenging task. In this
regime kinetic effects on an atomistic scale strongly influence the morphology.
Thus a continuum theory cannot describe the growth process appropriately.
On the other hand the applicability of discrete models on an atomistic scale
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is limited due to its high computational cost if time and length scales related
to device applications are considered.

As first pointed out by Burton, Cabrera and Frank [7] an intermediate
regime between atomistic and continuum modeling can be used to combine the
appropriate atomistic properties with the computational ease of continuum
models. At crystalline surfaces the evolution of the steps, their advancement,
nucleation and annihilation, can be used to describe the surface morphology of
the growing film. This allows to break the model in a 2+1-dimensional model,
continuous in the lateral directions but discrete in height. The evolution of
steps is implicitly connected to atomistic motion via attachment and detach-
ment at step edges and therefore allows to incorporate essential kinetic effects
on an atomistic scale. Various step flow models have been developed which in-
corporate more and more of the relevant atomistic effects. These models have
proven to be extremely powerful in understanding surface morphologies and
the formation of patterns at the nanometer and micrometer scales, see [25, 37]
for recent reviews. During the last years powerful numerical techniques for the
solution of these problems have been developed and make step dynamics an
attractive alternative to atomistic modeling approaches in epitaxial crystal
growth. Level-set based methods [9, 35, 39], front-tracking type approaches
[3, 4], phase-field methods [30, 23, 36, 34, 53] and geometry-based simulations
[29] have been developed.

In this contribution we will mainly concentrate on phase-field approxima-
tions for the discrete-continuum model. Thereby the discrete height is ap-
proximated by a continuous phase-field variable. With this interpretation, the
phase-field approximation can be viewed as a coarse grained continuous model
for the underlying discrete-continuum step flow model. The contribution is or-
ganized as follows: In Section 2 we introduce the Burton-Cabrera-Frank model
and discuss some of its limitations. Sections 3 and 4 are devoted to two dif-
ferent growth methods, Liquid Phase Epitaxy (LPE) and Molecular Beam
Epitaxy (MBE), respectively. In the case of LPE, the film grows from a so-
lution and transport mechanisms in the solution can influence the surface
evolution and vice versa, and thus have to be considered in addition. In MBE
the film grows from a vapour phase, here transport in the vapour does not
need to be taken into account. For both situations we discuss a phase-field
approximation and apply it to simulate epitaxial growth in a spiral growth
model.

2 Burton-Cabrera-Frank model

In this section, we present a general BCF-like model for step-flow growth or
island growth of homoepitaxial films.
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Fig. 2.1. Microscopic processes in epitaxial growth of thin films.

2.1 The BCF framework

The Burton-Cabrera-Frank (BCF) equations [7] serve as a prototype of
discrete-continuous step flow models, discrete in the height resolving the
atomic layers in the growth direction, but coarse grained in the lateral di-
rection. The steps, separating terraces of different height, are assumed to be
smooth curves and serve as free boundaries for an adatom diffusion on ter-
races. Mathematically such a model is a free boundary problem that consists
of a diffusion equation for the adatom density on the terraces, boundary con-
ditions at the steps and a velocity law for the motion of the steps. For a
schematic picture of an epitaxial growing surface see Fig. 2.1.

We denote by Ω ⊂ R2 the projected domain of a film surface in a two-
dimensional Cartesian coordinate system, and assume that Ω is independent
of time t. In addition we denote by Ωi = Ωi(t) ⊂ R2, i = 0, 1, . . ., islands or
terraces of discrete height i. We denote further the corresponding steps (or
terrace boundaries) by

Γi(t) = Ωi(t) ∩Ωi−1(t), i = 1, 2, . . . .

Denote by ci = ci(x, t) the adatom concentration on terrace Ωi(t) at time t.
The adatom diffusion on a terrace is described by the diffusion equation for
the adatom density

∂tci −∇ · (DT,i∇ci) = −τ−1ci + FT −MT in Ωi(t), (2.1)

where DT,i is the adatom diffusion coefficient on a terrace Ωi, τ−1 is the
desorption rate, FT is the deposition flux rate onto the terrace and MT is the
loss due to nucleation of adatom islands. In this paper we will not address
the nucleation of adatom islands MT . For a detailed description on nucleation
and a way how to include it into the step flow model we refer to [38]. The
fluxes of adatoms to the steps are given by

−DT,i∇ci · ni − vici = fi,+, (2.2)
DT,i−1∇ci−1 · ni + vici−1 = fi,−, (2.3)
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V

Fig. 2.2. The Ehrlich-Schwoebel barrier.

where fi,+ is the net flux from the upper terrace Ωi(t) and fi,− the net flux
from the lower terrace Ωi−1(t) to the boundary Γi(t), ni is the unit normal of
the step Γi(t) pointing from the upper to the lower terrace, and vi is the normal
velocity of the step Γi(t) with the convention that vi > 0 if the movement
of Γi(t) is in the direction of ni. The terms vici describe the convection of
adatoms due to the motion of the step and are needed for mass conservation.
The fluxes are now related to the deviation of the adatom density at the step
from its equilibrium value

fi,+ = k+(ci − ceqi ), (2.4)
fi,− = k−(ci−1 − ceqi ), (2.5)

where k+ = k+(θ) and k− = k−(θ) are the kinetic attachment rates from the
upper and lower terrace to the step Γi(t), respectively; θ defines the angle
between the normal and a low index crystallographic direction. For finite k±
the adatom density is discontinuous at the steps and for k+ �= k− growth
instabilities can occur, see [25] for a recent review. Step meandering is known
for k+ > k− (step Ehrlich-Schwoebel barrier) and step bunching occurs for
k+ < k− (inverse step Ehrlich-Schwoebel barrier). It is observed in many
material systems that, in order to stick to a step from an upper terrace,
an adatom must overcome an additional energy barrier (see Fig. 2.2), the
Ehrlich-Schwoebel (ES) barrier [17, 43, 44]. Its inverse counterpart is much
less understood.

In the limit k+, k− →∞ the adatom density becomes continuous and the
boundary condition reduces to ci = ci−1 = ceqi , where the equilibrium adatom
density ceqi is given by

ceqi = c∗
(

1 +
Ωaγ̃

kBT
κi

)
, (2.6)

with γ̃ = γ̃(θ) the step stiffness, κi the curvature of Γi(t), c∗ the equilibrium
adatom density of a straight step, kB the Boltzmann constant, T the temper-
ature and Ωa the area of an adsorption site. For the motion of the moving
boundaries, we assume the following law for the normal velocity vi of the step
Γi(t):
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vi
Ωa

= fi,+ + fi,− + ∂s(ν∂s(Ωaγ̃κi)) + ∂s((fi,+ + fi,−)β), (2.7)

where ν = ν(θ) is the mobility for diffusion along the steps, β = β(θ) is an
effective anisotropy to model the effect of a kink Ehrlich-Schwoebel barrier.
The kink Ehrlich-Schwoebel barrier results from an additional energy barrier
for the diffusion of an edge-adatom around a kink or a corner. The presence
of such a barrier affects the nucleation of kinks at the steps and generates a
nonlinear current, which can also contribute to a meandering instability. The
last term in (2.7) is purely kinetic and has been introduced by [20]. ∂s denotes
the tangential derivative along the steps. The term ∂s(ν∂s(γ̃κi)) represents
diffusion along steps.

All the introduced models assume implicitly a close-to-equilibrium situa-
tion, which is not fulfilled in many applications related to epitaxy. This results
from the linear dependency of the flux fi,± on the equilibrium adatom density
ceqi in the boundary conditions (2.4) and (2.5). Step flow models without this
assumption are rare [8, 1, 2]. The idea behind these models is a mean field
approach, in which an atomistic description of the steps is incorporated into
the discrete-continuum model by allowing for two additional quantities along
the step: step adatoms and kinks.

However, for the applications presented in the following several simpli-
fications are possible: i) we can neglect nucleation MT , ii) we can neglect
desorption τ by assuming the average time for an adatom to reach a step is
much smaller than the time to desorb, which is fullfilled for small distances
between steps, iii) we assume that there is one diffusion coefficient DT for all
terraces. Thus the system reduces to

∂tci −∇ · (DT∇ci) = FT (2.8)

and

−DT∇ci · ni = fi,+, (2.9)
DT∇ci−1 · ni = fi,−. (2.10)

We further consider the case where the adatom concentration is continuous
at the boundary. Thus the boundary conditions at the steps read

ci = ci−1 = c∗
(

1 +
Ωaγ̃

kBT
κi

)
+ α

vi
Ωa
, (2.11)

where we have included a term αvi accounting for kinetic attachment effects.
In the velocity law we neglect diffusion along edges and the effect of the kink
Ehrlich Schwoebel barrier. Thus we obtain

vi
Ωa

= fi,+ + fi,−. (2.12)
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2.2 Thermodynamic consistency

As pointed out in [11] the above model is not necessarily consistent with
the second law of thermodynamics. To ensure consistency restrictions on the
constitutive relations (2.4) and (2.5) are required. [11] provide an alternative
set of boundary conditions, derived from a configurational force balance, for
which the second law holds, which corresponding to our situation reads

fi,+ = l+(µi − [[ωi]]), (2.13)
fi,− = l−(µi−1 − [[ωi]]), (2.14)

with µi the terrace chemical potential, defined through µi = ∂ciΨi, with Ψi(ci)
the terrace adatom free energy. Here ωi = Ψi − µici is the grand canonical
potential and [[ωi]] = ωi − ωi−1. The jump in the grand canonical potential
results from the discontinuity of the adatom concentration and might have
significant influence on the stability of steps. As in the case of an ideal lattice
gas Ψi(ci) is convex. If we further assume Ψi(0) = 0 and define the adatom
equilibrium density ceqi such that µi(c

eq
i ) = µi−1(c

eq
i ) = 0 we can expand µi

and ωi close to ceqi to obtain in leading order

µi(ci) = µ′i(c
eq
i )(ci − ceqi ), (2.15)

ωi(ci) = ωi(c
eq
i ) + ceqi µ

′
i(c

eq
i )(ci − ceqi ), (2.16)

which inserted into (2.13) and (2.14) yield

fi,+ = k+(ci − ceqi − ceqi [[ci]]), (2.17)
fi,− = k−(ci−1 − ceqi − ceqi [[ci]]), (2.18)

with k± = l±µ
′
i(c

eq
i ). The original form (2.4) and (2.5) is thus only obtained as

a first-order approximation under the additional assumption that the adatoms
are sufficiently rarified (ci � ceqi ) such that the term ceqi [[ci]] can be neglected.

2.3 Spiral growth

We will apply the BCF model in the following in its classical form to two
important growth technologies and numerically investigate a spiral growth
mode. Spiral growth remains to be an important growth mechanism for various
materials, including compound semiconductors, see e.g. [48]. The growth mode
is initiated from a screw dislocation from which a single step originates (see
Fig. 2.3). Thus the growth is not limited by the nucleation rate and therefore
allows growth also under low supersaturations [6]. Instead of the independent
layer structure discussed so far, the crystal surface is now just one layer, which
overlaps itself helicoidally. The crystal grows now by simply turning the screw,
through the advancement of the spiral emanating from the disclocation [31],
see also Fig. 2.4.
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Fig. 2.3. Dislocation at a flat surface. This dislocation might trigger spiral growth.

Fig. 2.4. Step formation due to the pinning at a screw dislocation.

A basic question arising in spiral growth is the prediction of the final
surface slope, which is influenced by the interplay of diffusion processes on the
terraces and along the steps, attachment kinetics at the steps and presumably
also from mass transport in the bulk.

2.4 Phase-field approximation

A phase-field model for this situation was considered in [41], where formal
matched asymptotic analysis was used to show the convergence for vanishing
interfacial thickness and kinetic parameter to the sharp interface model (2.8)–
(2.12). The phase-field model reads

1
Ωa
∂tφ+ ∂tc = ∇ · (DT∇c) + F (2.19)

α

Ωa
ε2∂tφ =

c∗Ωaγ̃

kBT
(ε2∆φ−G′(φ)) + ε(c− c∗), (2.20)

where φ is the phase-field variable, ε a small parameter determining the width
of the diffuse interface and α a kinetic parameter. For applications in step
flow or island growth G(φ) is a multiwell potential with minima at the dis-
crete heights of the terraces. A more general phase-field model incorporating
finite kinetic coefficients k+, k− has been introduced in [34]. An approxima-
tion in which the effect of edge diffusion is considered was discussed in [42]
and a combination of both and thus the general case described in Sect. 2 is
considered in a combined phase-field level-set approach in [21].

In order to adapt the phase-field model to the special situation of a spiral
growth mode we follow the approach in [23]. We define the multiwell potential
as

G(φ) = H(φ− φ0)

with φ0 representing the screw dislocation and defining an initial value; 2πφ0

defines the angle of (x, y) in the x− y plane. The phase transition happens in
radial direction and φ measures the continuous height of the spiral. H is now
defined through
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H(ψ) = (k + 1− ψ)2(k − ψ)2, ψ ∈ [k, k + 1], k ∈ Z.

We use no-flux conditions on the boundary of the domain Ω = (−L/2, L/2)2

∂nc = ∂nφ = 0.

3 Application in Liquid Phase Epitaxy

Liquid Phase Epitaxy [46] is the name for an epitaxial technique, which com-
bines solution growth and epitaxy taking advantage of the potentialities of
both. Its development was given impetus from (a) technical requirements for
thin (1 to 5 µm) garnet films, and (b) its ability to grow pure semiconductor
compounds and their alloys. Later it was developed further to manufacture
thin-film devices using compound semiconducting materials. It proved tremen-
dous superiority to the early attempts to fabricate such thin films by means
as e.g. polishing bulk crystals. Since then it has been successfully applied in
many laboratories around the world. Moreover, it allowed to obtain funda-
mental new information concerning the generic processes of crystal growth.

Despite its large fundamental and technological impact, models of LPE so
far are restricted to one-dimensional models predicting the evolution of the
integrated growth rate h(t) of the epitaxial surface. First results were obtained
neglecting hydrodynamic convection, which is a good approximation only for
quiescent liquids. For the case of first-order surface kinetics, one can reduce
this problem to various perturbation series [32, 27, 19, 49].

For LPE systems, where the assumption of a quiescent liquid is no longer
satisfied, hydrodynamics effects have to be taken into account. Usually one
imposes a forced flow to the substrate via a “rotating-disk” configuration. A
rotating disk tends to draw material towards its surface in the normal di-
rection, and then expells it radially in the manner of a centrifugal fan. If
one applies this picture to LPE one has to take into account that the fluid-
velocity’s normal component cannot vanish at the disk’s surface because mass
conservation requires it to be proportional to the crystal’s growth rate [51].
So far, hydrodynamics have adressed this problem when the amount of “suc-
tion” is indepentent of time. In this case the fluid flow problem is effectively
decoupled from the mass-transfer problem [47, 52]. Numerical simulations of
the coupled, time dependent problem are still lacking.

Moreover, two-dimensional studies of the problem, which do not only re-
solve the integrated growth rate but also the two-dimensional microscopic
morphology of the substrate’s surface, are still an open issue. LPE is particu-
larly rich in morphological features. It is tempting to apply [24, 12] the theory
of Mullins and Sekerka [33] for an analysis of the stability of these morpholo-
gies. But technically this is incorrect, because the unperturbed state is almost
always time dependent. Thus numerical simulations of the full time depen-
dent problem are essential to adress the question which processing parameters
trigger which final stage morphology.
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A previous approach to LPE developed by two of the authors [18] treats
this problem assuming a quiescent solution, i.e. negecting fluid flow, but taking
into account the evolution of the microscopic surface morphology. It is based
on a phase-field model which allows us to consider precisely the physics of
the underlying phase-diagram for the heteroepitaxial LPE growth process.
Moreover, it applies to the situation, where the main driving force of the
concentration field results from its gradients along the surface.

In the following subsection we will focus on an extension of this previous
approach, which takes into account also (a) adatom concentration gradients
perpendicular to the surface and (b) hydrodynamic transport in the solution.

3.1 A model for Liquid Phase Epitaxy

We consider the growth of a thin epitaxial layer at the bottom of a domain
Q ⊂ R3 filled with a liquid solution that contains the adatoms as depicted
in Fig. 3.1. The adatoms in the liquid solution are transported to the solid
layer by diffusion and convection, there they may deposit on the epitaxial
surface. At time t, the domain Q is partitioned into a domain QL(t) filled by
the liquid solution and a domain QS(t) filled by the solid phase. The interface
S = S(t) between QL and QS is represented by the graph of a function h over
the bottom surface S0 of Q,

S(t) =
{
x + h(t,x)e3 |x ∈ S0

}
, (3.1)

where e3 is the 3rd unit vector. Fluid flow and adatom transport in QL are
described by a Navier-Stokes system and a convection-diffusion equation,

∇ · v = 0
∂tv + (v · ∇)v − η∆v = ∇p,

(3.2)

∂tc
V + v · ∇cV −DV∆c

V = 0 (3.3)

with fluid velocity v, pressure p, viscosity η, mass specific concentration cV

and diffusion constantDV . The epitaxial growth is governed by a BCF-model,

0S
EQ

Q

S

Liquid
solutionL

Epitaxial layer

Fig. 3.1. Liquid Phase Epitaxy
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∂tc
S = DS∆c

S +
cV

τV
− cS

τS
in S0 \ Γ (t), (3.4)

cS = c∗
(
1 + κΩaγ/(kBT )

)
,

vΓ = DSΩa

[
∂cS

∂n

]
⎫⎪⎬⎪⎭ on Γ (t). (3.5)

Here cS is the surface density of adatoms, DS is a surface diffusion coefficient,
τV is the mean time for the deposition of adatoms from the solution to the
surface, τS is the mean time for the desorption of adatoms from the surface to
the solution, the curve Γ describes the monoatomar steps, vΓ is the velocity
of the steps, and

[
∂cS

∂n

]
is the difference of the normal derivatives on both

sides of the interface.
The volume equations (3.2), (3.3) and the surface equation (3.4) are cou-

pled by boundary conditions that model the conservation of total mass and
mass of the adatoms. If �V and �E denote the densities of the liquid and solid
adatom phase, ma is the mass of a single atom and JS is the density of the
surface measure for the surface S, parametrized over S0, then these conditions
are

vn =
ma

JS

(
1
�V

− 1
�E

)(
cV

τV
− cS

τS

)
and (3.6)

DV
∂cV

∂n
=
ma

JS

(
1− cV

)(cS
τS

− cV

τV

)
. (3.7)

The tangential fluid velocity at the interface S vanishes, vt(t,x) = 0 for
x ∈ S(t). The movement of the interface S is given by the condition

∂th =
ma

�E

(
cV

τV
− cS

τS

)
. (3.8)

The model is completed by initial conditions for v, cV and cS , by an initial
partition of Q into a liquid domain QL(0) and a solid domain QS(0) with
interface S(0) given by an initial condition for h(0,x), by initial steps Γ (0)
on the solid layer S0 and by boundary conditions for (3.2), (3.3), (3.4).

3.2 Homogenization and two-scale model

Liquid Phase Epitaxy involves various different length scales: the epitaxial
layer is measured in atom diameters, while the continuum models for diffusion
and fluid flow, and also the model for the adatom diffusion on the liquid-solid
interface, are valid for a much larger scale. The liquid-solid interface often
exhibits a specific microstructure, whose scale is larger than that of an atom
diameter but much smaller than that of the diffusion and fluid flow processes in
the liquid solution. In this section we use homogenization techniques to derive
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a model that is suitable for such situations. It is necessary to choose suitable
scaling properties of some coefficients in dependence of a scale parameter η
that represents the size of the microstructure. The size of the adatoms is scaled
proportional to η, this leads to

Ωa = η2Ω0
a, ha = η h0

a and ma = η3m0
a. (3.9)

The epitaxial microstructure of scale η requires the relations

DS = η2D0
S , τV = η3τ0

V , c∗ = η−2c∗0 and γ = η−1γ0. (3.10)

In the limit η → 0 two phenomena must be described: small scale oscillations
in the epitaxial microstructure, and boundary layers for the solutions of (3.2),
(3.3) close to the interface. These phenomena require a combination of the
standard homogenization technique for the oscillations and the technique of
matched asymptotic expansions for the computation of the boundary layer.

The homogenization is done for a simple periodic setting with periodicity
cell Y ⊂ R2 of area 1. A periodicity cell is a bounded Lipschitz domain with
the property that R2 can be represented as union of shifted copies of Y with
empty intersection; the simplest example is the unit square Y = [0, 1]2. The
corresponding initial conditions for the concentrations are

cS0
η (x) = η−2cS0(x,x/η) for x ∈ S0 and

cV 0
η (x) = η cV 0(x) for x ∈ QL(0).

The function cS0 = cS0(x,y) is Y -periodic in its second variable y ∈ Y .
The scaling of cS by η−2 makes sense, because cS measures the number of
atoms per unit area, and the area of single atoms is proportional to η2; the
scaling by η−2 keeps the area covered by adatoms constant. The scaling of cV

is motivated by the exchange of matter between solid and liquid phase: the
thickness of the solid phase is proportional to η, therefore the total mass of
adatoms that deposit on the surface is also proportional to η. The scaling by
η accounts for this rate of mass exchange; it is reasonable for a dilute solution.
The adatom density cS is expanded into the power series

cSη (t,x) = η−2cS0 (t,x,x/η) + η−1cS1 (t,x,x/η) + · · · . (3.11)

The surface Γ = Γη(t), its curvature κ = κη and its velocity vΓ = vΓη are
also expanded in an appropriate two-scale sense, for details we refer to [16].

The outer expansions for the volume fields v, p and cV are valid far away
from the liquid-solid interface Sη(t). They are given by the power series

vη(t,x) = v0(t,x) + η v1(t,x) + · · · ,
pη(t,x) = p0(t,x) + η p1(t,x) + · · · ,
cVη (t,x) = η cV0 (t,x) + η2cV1 (t,x) + · · · . (3.12)
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The inner expansion for v, p, cV is valid close to Sη(t). Since this interface is
a priori unknown, the inner expansion is done after the transform of variables
x̃ = x− hη(t,x)e3. Then v, p, cV are expanded in power series

vη(t,x) = v0(t,x,x/η) + η v1(t,x,x/η) + · · · ,
pη(t,x) = p0(t,x,x/η) + η p1(t,x,x/η) + · · · ,
cVη (t,x) = η cV0 (t,x,x/η) + η2cV1 (t,x,x/η) + · · · .

This expansion combines both the homogenization by formal asymptotics
and the inner expansion for the boundary layer. The former is realized
by Y -periodic oscillations of the components (y1, y2) in uV (t,x,y) for u ∈{
v, p, cV

}
, the latter via the component y3. As a consequence, the functions

y → uj(t,x,y) for u ∈
{
v, p, cV }, j = 0, 1, 2, . . ., are defined in the do-

main Y × (0,+∞), with periodic boundary conditions at the lateral surface
(y1, y2) ∈ ∂Y . The condition for y3 → +∞ is derived by matching the inner
and outer expansion and the condition for y3 = 0 is given by the coupling
conditions (3.6), (3.7). The height function h = hη is also expanded into a
series,

hη(t,x) = η h0(t,x,x/η) + η2h1(t,x,x/η) + · · · . (3.13)

Using these formal expansions in (3.2)–(3.8) it is possible to derive a two-scale
model that consists of the following relations:

• Macroscopic equations for fluid flow and solute diffusion in Q:

∂tc
V
0 + v0 · ∇cV0 −DV∆c

V
0 = 0, (3.14)

∇ · v0 = 0,
∂tv0 + (v0 · ∇)v0 − η∆v0 +∇p0 = 0.

(3.15)

• A microscopic BCF-model in Y to be solved for every x ∈ S0:

∂tc
S
0 −D0

S∆yc
S
0 =

1
τ0
V

cV0 − 1
τS
cS0 for y ∈ Y, (3.16)

cS0 = c∗0
(
1 + κ0Ω

0
aγ0/(kBT )

)
,

vΓ0 = D0
SΩ

0
a

[
∂cS0
∂n

] ⎫⎬⎭ for y ∈ Γ0(t,x). (3.17)

• Coupling conditions on S0

DV
∂cV0
∂n

= m0
a

(
cS0
τS

− cV0
τ0
V

)
, (3.18)

v = 0 (3.19)

with the microscopic mean value cS0 (t,x) =
∫
Y c

S
0 (t,x,y) dy. These equa-

tions serve as boundary conditions for (3.14), (3.15) on S0.
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The details of the derivation can be found in [16]. The equations for fluid flow
here decouple from the other equations. The fluid velocity can be computed
in a pre-processing step, and the main computation consists in solving the
remaining equations with given fluid velocity.

3.3 Analysis of the two-scale model

An analysis is available for a slightly modified version of the two-scale model,
where the sharp interface version (3.16), (3.17) of the BCF-model is replaced
by a the following adaption of the phase field model (2.19), (2.20) to liquid-
phase epitaxy:

∂tc
S
0 −D0

S∆yc
S
0 + (Ω0

a)
−1∂tφ0 =

cV0
τ0
V

− cS0
τS
, (3.20)

α0ε
2
0∂tφ0 − ε20∆yφ0 +G′(φ0) + p0(cS0 , φ0) = 0. (3.21)

The function p0 here represents a possibly generalized version of the term
εkBT
c∗γ̃Ωa

(c − c∗) in a rescaled variant of (2.20). The lower indices 0 indicate
solutions of the homogenized problem. A basic assumption for the analysis is
that G′ and p are Lipschitz functions with at most linear growth, |G′(φ)| ≤
C(1 + |φ|) and p0(c, φ) ≤ C(1 + |c| + |φ|). For the modified model (3.14),
(3.15), (3.20), (3.21), (3.18), (3.19), the existence and uniqueness of its solution
can be proved, see [16], Theorem 1. The main tool of the existence proof is
the Schauder fixed point theorem, applied to a composition of the solution
operators for the family of microscopic problems on one hand and for the
macroscopic problem on the other hand.

For the phase field versions of both the original and the two-scale model,
an estimate of the model error is avaliable. The original model of scale η is
given by the equations (3.2), (3.3), (3.6)–(3.8) and the phase field version of
the BCF-model

∂tc
S −DS∆c

S +Ω−1
a ∂tφ =

cV

τV
− cS

τS
, (3.22)

αε2∂tφ− ε2∆φ +G′(φ) + p(cS , φ) = 0. (3.23)

The scaling of the phase field variables ε and α is ε = ηε0 and α = η−2ε0, the
relation between p and p0 is

p(c, φ) = p0(η2c, φ).

This scaling property is in harmony with the scaling of cS in (3.11).
Let

(
vη, pη, c

V
η , c

S
η , φη

)
be the solution of the described original problem

for scale η and let
(
v0, p0, c

V
0 , c

S
0 , φ0

)
be the solution of the described two-scale

model. Due to the scaling relations (3.11), (3.12) the comparison of models is
done with the rescaled functions
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c̃Vη = η−1cVη and c̃Sη = η2cSη .

In order to compare the functions c̃Sη , φη of variables (t,x) and the functions
cS0 , φ0 of variables (t,x,y) we employ macroscopic reconstructions of two-scale
type

uη(t,x) = u0(t,x,x/η) for u = cS0 , φ.

Let Qη(t) be the liquid domain and Sη(t) be the liquid-solid interface for the
problem of scale η. The boundary conditions for both the original model of
scale η and the two-scale model on ∂Qη(t)\Sη(t) are Neumann conditions for
cVη , c

V
0 and Dirichlet conditions for vη, v0; the given boundary data for both

models are identical. Further boundary conditions are homogeneous Neumann
conditions for cSη , φη on ∂S0, for cS0 and φ0 there are no boundary conditions
on ∂S0, because there are no x-derivatives in the corresponding differential
equations. The initial conditions for both models are compatible in the sense
c̃Vη (0,x) = cV0 (0,x), vη(0,x) = v0(0,x) and

c̃Sη (0,x) = cS0 (0,x,x/η), φη(0,x) = φ0(0,x,x/η).

Then under some moderate additional assumptions on the regularity of the
solutions the following estimate for the model error is availabe, see [16]:∥∥c̃Sη − cSη0

∥∥
L∞(I;L2(S0))

+
∥∥Φη − Φη0∥∥H1(I;L2(S0))

+ sup
t∈I

(∥∥(c̃Vη − cV0
)
(t)

∥∥
L2(Qη(t))

+ ‖(vη − v0)(t)‖L2(Qη(t))

)
≤ Cη1/2.

(3.24)

The presented estimate reveals an approximation order of η1/2 that is lower
than the order η as could be expected from the asymptotic expansion. This
deterioration has two reasons. First, the macroscopic fluid flow and convection-
diffusion processes happen in the whole domain Q for the two-scale model and
in the liquid domain Qη(t) for the original model. These domains differ by
a volume of size proportional to η, which leads to an error of order η1/2 in
L2-type estimates. Second, in a general setting it must be expected that the
microstructure evolving at the boundary of S0 does not occupy a full shifted
periodicity cell η Y but some “truncated” domain; this generates an additional
error of order η1/2 in the L2(S0)-norm.

3.4 Numerical approach

The scheme we employ for the simulations in the following section is based on
the method of lines in time. After discretizing the problem by finite differences
in space, we solve the resulting ODE system by the standard Runge-Kutta
method of fourth order with fixed time step and impose a constant velocity
field defined as
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vijk =
(
v0

√
khVz , 0, 0

)
,

where the ijk denote the three spatial directions and hVz the mesh size in
the z direction in the volume. Moreover, in the following simulations we have
constant inflow at the left hand side of the simulated region and free outflow
at the right hand side.

3.5 Simulation results

First simulations allow to visualize e.g. how the variation of the macroscopic
flow field as depicted in Fig. 3.2 is accompanied by a variation of the con-
centration field in the melt which in turn results in a systematic variation of
microstructure evolution as depicted in Fig. 3.3. The parameters for the sim-
ulations are given in Table 3.1. Systematic parameter studies to show the lim-
itations of previous perturbative studies [24, 12] of microstructure evolution
in LPE are still open, just as their analysis to extract relations between pro-
cessing parameters and morphological stability of the material sample which
promise to allow for a desired more efficient parameter control in the sensitive
crystallization process of LPE grown material systems [13].

Fig. 3.2. Dynamics at the macroscale for the parameters given in Table 3.1.

Table 3.1. Simulation parameters for simulations depicted in Fig. 3.2 and 3.3

α 1
ε 1

λ1 19.591
DS 10

τS 5
τV 2

Ωa 2
DV 10

ma 0.009
v0 0.1
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Fig. 3.3. Dynamics at the microscale for the parameters given in Table 3.1.

4 Application in Molecular Beam Epitaxy

Here we will consider Molecular Beam Epitaxy (MBE), which allows a decou-
pling from macroscopic processes in the growth furnace and the microscopic
description on the surface of the growing film. Thus the model in Sect. 2 is
directly applicable.

4.1 Phase-field approximation

Now we are concerned with the phase-field model (2.19)–(2.20). Measuring
the length in atomic distances (i.e. Ωa = 1) the equations read

∂tφ+ ∂tc = ∇ · (DT∇c) + F (4.1)

αε2∂tφ =
c∗γ̃

kBT
(ε2∆φ−G′(φ)) + ε(c− c∗). (4.2)

We consider the initial conditions

φ(x, 0) = φ0(x), c(x, 0) = c∗,

where the function φ0 introduced in Sect. 2.4 represents a screw dislocation
and c∗ is the equilibrium concentration for straight steps. Furthermore we use
no-flux conditions on the boundary of the domain Ω = (−L/2, L/2)2

∂nc = ∂nφ = 0.

4.2 Numerical approach

Following the numerical approach for a viscous Cahn-Hilliard equation de-
scribed in [40] equations (2.19)–(2.20) are discretized in space by linear finite
elements and in time in a semi-implicit way. Here the derivative of the double
well G′(φ) is treated explicity. The resulting linear equations are solved as a
system.
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4.3 Simulation results

The algorithm is implemented in the adaptive finite element toolbox AMDiS
[50]. In the simulations the following parameters are used: DT = 10.0,
c∗ = 0.1, γ̃

kBT = 1.0 and α = 1.0. Fig. 4.1 shows the phase-field variable
and adatom density at a given time instant after the growth of several mono-
layers. A more quantitative picture is given in Fig. 4.2, which shows the devel-
opment towards a stationary profile. For t = 1500 the width of the terraces,
the stepspacing l, is constant. We can now investigate how the stepspacing l
depends on the deposition flux F . Before we analyse this numerically let us
consider a theoretical approach used in [23]. The stepspacing l can be com-
puted by solving the cubic equation

19c∗
γ̃

kBT
= l3

F

4DT

(
1 +

1
l

4DT c
∗γ̃α

kBT

)
.

A comparison of the numerical results with this theory is given in Table 4.1. A
second interesting quantity is the surface width ω, which is a common measure

Fig. 4.1. Phase-field variable φ (left) and adatom concentration c (right) at a given
time instant.

Fig. 4.2. Phase-field variable φ at different time steps t = 0, t = 100, t = 300
and t = 1500. The deposition flux used is F = 0.2. One only sees the height profile
measured from the minimal terrace height.
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Table 4.1. Comparison of theoretically and numerically obtained step spacing in
stationary profile.

F 0.2 0.1 0.05 0.025

ltheory 6.1 8.0 10.3 13.3
lsimulation 6.6 8.5 11.3 15.0

0

0.02

0.04

0.06

0.08

0 0.02 0.04 0.06 0.08 0.1

w
(t

)/
(L

/l)

Ft/(L/l)3

L = 75
L = 100
L = 150
L = 200

Fig. 4.3. Rescaled surface width ω l
L

as a function of rescaled time tF l3

L3 for various
values of L.

of film roughness and is defined as [23]

ω(t) =
1
2

(
1
|Ω|

∫
Ω

φ2 − φ2
dx

)1/2

with the mean value φ = |Ω|−1
∫
Ω
φ dx. In the limit t→∞ one obtains

lim
t→∞

ω(t) ∼ L

l
.

Fig. 4.3 shows the data collaps by rescaling the surface width and time using
this ansatz. Thus the time needed to reach the steady state solution scales as
(L/l)3.

A similar approach with the incorporation of the kinetic boundary condi-
tions (2.4), (2.5) is under investigation [26].
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126. Birkhäuser, Basel, 2005.

43. R. L. Schwoebel. Step motion on crystal surfaces II. J. Appl. Phys., 40:614–618,
1969.



Multiscale Modeling of Epitaxial Growth 85

44. R. L. Schwoebel, E. J. Shipsey. Step motion on crystal surfaces. J. Appl. Phys.,
37:3682–3686, 1966.

45. M. B. Small, E. Ghez, E. Giess. Liquid Phase Epitaxy. Handbook of Crystal
Growth, Vol. 3, ed. D. T. J. Hurle, North–Holland, Amsterdam, 1994.

46. M. B. Small, E. Ghez, E. Giess. Handbook of Crystal Growth, Vol. 3, ed.
D. T. J. Hurle, North-Holland, Amsterdam 1994.

47. E. M. Sparrow, J. L. Gregg. Mass transfer, flow and heat transfer about a
rotating disk. Trans. ASME J. Heat Transfer, 82C:294, 1960.

48. G. Springholz, A. Y. Ueta, N. Frank, G. Bauer. Spiral growth and threading dis-
locations for molecular beam epitaxy of pbte on BaF2(111) studied by scanning
tunneling microscopy. Appl. Phys. Lett., 69(19):2822–2824, 1996.

49. N. Tokuda. A solution to a crystal growth Stefan problem by Lagrange-Bürmann
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1 Introduction

The aim of this work is to study the sharp interface limit of the Cahn-Hilliard
equation in situations in which elastic stresses appear. The Cahn-Hilliard
equation is a phase field model in the sense that interfaces are diffuse, i.e.
across an interface an order parameter representing the phases changes its
state rapidly, but in a smooth way. If elastic stresses are present, the Cahn-
Hilliard equation has to be coupled to an elasticity system and this extended
set of equations is called the Cahn-Larché system. For the Cahn-Hilliard equa-
tion it is well known that if the interfacial thickness ε > 0 tends to zero, the
Mullins-Sekerka model is recovered. The Mullins-Sekerka model is a sharp in-
terface model and can be formulated as a classical free boundary model. Also
the sharp interface model can be extended to include elastic effects and it is the
goal of this paper to discuss recent attempts to relate the Cahn-Larché system
and the elastically modified Mullins-Sekerka model. We refer to the article by
Garcke et al. [GL*06] in this book for more information on phase separation
and Ostwald ripening which are both phenomena that can be modelled with
the help of the Cahn-Larché system and the extended Mullins-Sekerka model.
We also refer to [GL*06] for a discussion of situations where the two models
can be reasonably used to recover the above phenomena.

Some work has been done already to study the sharp interface limit of
the Cahn-Larché system. Fried and Gurtin [FG94] and Leo, Lowengrub and
Jou [LLJ98] used the method of formally matched asymptotic expansions to
relate the two models. Using this technique one has to assume that a smooth
solution of the sharp interface model exists and fulfills certain smoothness
properties, but to our knowledge there are no rigorous results known so far
for the asymptotic limit of the Cahn-Larché system.

We present three results which relate the Cahn-Larché model to the sharp
interface model. In Sect. 4 we will first show that the Cahn-Larché free en-
ergy, which is a Ginzburg-Landau type energy supplemented by contributions
from elasticity, has a Γ -limit for ε tending to zero. The Γ -limit contains the
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classical surface energy together with elastic terms. Furthermore we will show
in Section 4 that one can pass to the limit in the Euler-Lagrange equation for
minimizers of the Cahn-Larché energy in order to obtain an elastically mod-
ified Gibbs-Thomson equation. This result generalizes a result of Luckhaus
and Modica [LM89] to the Cahn-Larché system.

For general solutions we are going to use arguments and techniques from
geometric measure theory to get rigorous results. Here one uses a priori esti-
mates and compactness arguments to show convergence of the concentration,
the chemical potential and the deformation vector. The main part is then to
derive the Gibbs-Thomson law from the Cahn-Larché system. We are going to
use methods introduced by Ilmanen [Ilm93], Soner [Son95] and Chen [Che96]
in order to perform the limiting process in the context of the theory of vari-
folds. The analysis for the Cahn-Larché system is more complicated due to
the fact that elastic terms appear in the Gibbs-Thomson equation through
the so-called Eshelby tensor.

The outline of this work is as follows. After introducing the governing
models in Sect. 2 we review basic knowledge on geometric measure theory
and present related work in Sect. 3. In Sect. 4 we consider the stationary case
and in Sect. 5 we discuss the general case in the context of geometric measure
theory. Sect. 5 is part of the ongoing PhD thesis of the second author and we
refer to the thesis [Kwa06] for more details.

2 The models

We start reviewing elasticity theory and the models which our analysis is
based on.

2.1 Introduction to mechanics

We shortly introduce the basic concepts of linear elasticity, for a detailed intro-
duction we refer to [Gur72], [Cia88] and [Bra91]. Denoting by a bounded region
Ω ⊂ Rn the reference state, we introduce the deformation vector u : Ω → Rn.
Since in the applications we have in mind only small deformations appear, we
consider a theory which is based on the linearized strain tensor

E(u) = 1/2(∇u +∇uT ).

The elastic energy density W is typically of quadratic form

W (c, E) = 1
2

(
E − E∗(c)

)
: C(c)

(
E − E∗(c)

)
(2.1)

with a symmetric and positive definite elasticity tensor C(c). We call E∗(c) =
E∗c the eigenstrain corresponding to c which describes the energetically fa-
vorable strain at concentration c. If C(c) = C does not depend on the con-
centration, we speak of homogeneous elasticity, otherwise we use the term
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inhomogeneous elasticity. For the theory we are going to present in this work
we will make the assumption that for a suitable constant C > 0 the following
properties of W hold

W ∈ C1(R×Rn×n,R) such that

|W (c, E)| ≤ C(1 + |c|2 + |E|2),
|W,E(c, E)| ≤ C(1 + |c|2 + |E|),
|W,c(c, E)| ≤ C(1 + |c|+ |E|). (2.2)

We assume in addition that W (c, E) only depends on the symmetric part
of E ∈ Rn×n and W,E is strongly monotone, i.e. there exists a constant c1 > 0
such that

(W,E(c, E1)−W,E(c, E2)) : (E2 − E1) ≥ c1|E2 − E1|2. (2.3)

We remark that an elasticity energy W according to equation (2.1) with
E∗(c) = E∗c does not fulfill (2.2), if the elasticity tensor C depends on the
concentration c.

The mechanical equilibrium is attained on a much faster time scale com-
pared to concentration changing by diffusion. This is why we assume that
the mechanical equilibrium is attained instantaneously, so that the equation
for the mechanics (2.4) does not involve any time derivatives and we hence
consider at each time t > 0 the quasi-stationary system:

divS = divW,E(c, E(u)) = 0 (2.4)

where S = S(c, E) = W,E(c, E) is the stress tensor.
For definiteness we demand the deformation vector u to be in X⊥

ird with

Xird := {u ∈ H1,2(Ω,Rn) | there exist b ∈ Rn and a skew symmetric

A ∈ Rn×n such that u(x) = b+Ax}

and X⊥
ird is the space perpendicular to Xird where perpendicular is meant with

respect to the H1,2-inner product. We remark that the energies of both the
phase field and sharp interface models depend on u only through E(u) and
hence the infinitesimal rigid part of u has no influence on the evolution of c.
We have the Korn inequality

‖u‖H1,2(Ω) ≤ C̃‖E(u)‖L2(Ω)

for all u ∈ X⊥
ird for some constant C̃ (see Zeidler [Zei88]). In particular we ob-

tain using (2.3) and an energy argument that u ∈ X⊥
ird is uniquely determined

by (2.4) and a stress-free boundary condition.
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2.2 Phase field model

The Cahn-Larché model is based on the Ginzburg-Landau energy

Eε
pf(c,u) =

∫
Ω

(
ε

2
|∇c|2 +

1
ε
Ψ(c) +W (c, E(u))

)
(2.5)

where ε > 0 is a small parameter related to the thickness of the diffuse in-
terface, c is a scaled concentration difference, Ψ is a polynomial double well
potential which we take to be

Ψ(c) =
1
4
(c2 − 1)2. (2.6)

In the diffuse interface model the evolution problem related to (2.5) is the
Cahn-Larché system

∂tc = ∆w, (2.7)

w =
δEε

pf

δc
= −ε∆c+ 1

εΨ
′(c) +W,c(c, E(u)), (2.8)

divS = div
δEε

pf

δu
= 0 (2.9)

where w is the chemical potential. We can view this system as the H−1 gra-
dient flow of the energy functional (2.5), see [GL*06]. This structure will lead
to crucial energy estimates of the Cahn-Larché system. The existence of solu-
tions to this phase field system has been shown in [Gar00] and [Gar03]. The
results are cited in Subsection 3.2.

2.3 Sharp interface model

The energy for the sharp interface limit is given by

Esi =
∫
Γ

2σ dHn−1 +
∑

k=+,−

∫
Ωk

Wk(E(u)) dx (2.10)

where σ > 0 is a surface energy constant and Γ is the interface (a hyper-
surface). The notation

∫
Γ . dHn−1 denotes the integration with respect to the

(n−1)-dimensional surface measure (the Hausdorff measure) and Ω−, Ω+ are
the distinct regions occupied by the two phases with the corresponding elastic
energy densities

W−(E) := W (−1, E), W+ := W (+1, E).

To simplify notation we set W+ = 0 in Ω− and vice versa, since then we can
write

∑
k

∫
Ωk
Wk =

∫
Ω

∑
kWk. Furthermore the surface energy density is
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σ = 1
2

∫ ∞

−∞
(1
2 (z′(y))2 + Ψ(z(y)))dy,

where z is the solution of

−z′′ + Ψ ′(z) = 0 with z(−∞) = −1 and z(∞) = 1.

One can easily compute

σ =
∫ ∞

−∞
z′(y)

√
Ψ(z(y))/2dy =

∫ 1

−1

√
Ψ(y)/2 dy.

The evolution problem related to the sharp interface energy is a modified
Mullins-Sekerka problem

∆w = 0 in Ω−(t) and Ω+(t), (2.11)

V = − 1
2 [∇w]+− · ν on Γ (t), (2.12)

w = σκ+ 1
2ν

T [W Id− (∇u)TS]+−ν on Γ (t), (2.13)
divS = 0 in Ω−(t) and Ω+(t), (2.14)

[Sν]+− = [u]+− = 0, [w]+− = 0 on Γ (t)

where Ω−(t) and Ω+(t) are the regions occupied by the phases at time t,
Γ (t) is the interface separating these regions, ν is the unit normal along the
interface pointing towards Ω+, V is the normal velocity of the interface and
[ . ]+− denotes the jump of the quantity in the brackets across the interface, e.g.
[w]+− = w+−w−. κ is the mean curvature of Γ (t) with the sign convention that
κ is positive, if Γ (t) is curved in the direction of ν. In contrast to its standard
definition the mean curvature is taken here to be the sum of the principle
curvatures. The first two equations are classical laws describing quasi-static
diffusion driven by a chemical potential w. The third equation is the modified
Gibbs-Thomson equation stating that the system is in local thermodynamical
equilibrium.

Since we want to restrict our analysis to closed systems, we take homoge-
neous Neumann boundary conditions. In the phase field model this means

∇c · νΩ = ∇w · νΩ = 0, SνΩ = 0,

where νΩ denotes the outer unit normal of Ω. In the sharp interface model the
condition for the concentration changes to an angle condition for the interface,
so altogether the boundary conditions for the sharp interface model are

∠(Γ (t), ∂Ω) = 90◦, ∇w · νΩ = 0, SνΩ = 0.

3 Preliminaries

We introduce notations and recall some known facts about measures and var-
ifolds (see also [EG92], [Fed69] and [Sim83]). We end this section by precisely
stating the problems we want to analyze in this paper and with a discussion
of related work.
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3.1 Geometric measure theory

First we recall the definition of a Radon measure µ on an open set Ω ⊂ Rn

as a Borel regular measure that is finite on compact sets. To a measure µ we
introduce the notion of densities on Ω for x ∈ Ω

θ∗n−1(µ, x) = lim sup
ρ→0

µ(Ω ∩Bρ(x))
ωn−1ρn−1

,

θn−1
∗ (µ, x) = lim inf

ρ→0

µ(Ω ∩Bρ(x))
ωn−1ρn−1

.

Here ωn−1 is the volume of the (n − 1)-dimensional unit ball. If θ∗n−1(µ, x)
and θn−1

∗ (µ, x) coincide, this common value will be denoted by θn−1(µ, x).
Now we look on the set of (n− 1)-dimensional subspaces

Pn−1 := {P | P is a (n− 1)-dimensional subspace in Rn} = Sn−1/{±1}.

We will use the same notation P for the orthogonal projection onto the sub-
space P . On Pn−1 we use the metric induced by endomorphisms:

d(P,Q) := ‖P −Q‖End.

This enables us to define a varifold:

Definition 3.1. A varifold V is a Radon measure on the Grassmanian

G(Ω) := Ω × Pn−1.

Remark 3.2.

• Such varifolds are in fact (n− 1)-varifolds. We use such varifolds, since we
want to describe interfaces. One can see them to give spatial and tangential
information independently of each other.
Defining varifolds simply as Radon measures on Ω× Pn−1, we have weak-
ened the usual view that the tangential information is solely given by the
spatial information (of a neighborhood).

• For a C1-hypersurface M, we can introduce a corresponding varifold V by
setting

dV (x, P ) = dHn−1�M(x) δTxM(P ).

Finally we introduce the mass measure of a varifold.

Definition 3.3. The mass measure of a varifold is defined by

µV (A) :=
∫
A×Pn−1

dV (x, P ) for A ⊂ Ω.
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Fig. 3.1. An example where phase field interfaces lead to a varifold in the sharp
interface limit.

The motivation to use varifolds is that the limiting interface will not pro-
vide sufficient smoothness to fulfill some kind of Gibbs-Thomson law in the
classical sharp interface sense. In fact Schätzle has shown in [Sch97] that even
the BV-formulation of the Gibbs-Thomson law breaks down when two inter-
faces touch each other. Introducing the notion of varifolds enable us to come
up with a formulation which extends the model beyond the time of topological
changes.

Remark 3.4. Bronsard and Stoth studied the related Allen-Cahn equation and
proved that in the limit there exist interfaces with arbitrary high multiplicity,
also called phantom interfaces, see [BS96]. Figure 3.1 gives an illustration of
a time-independent example. Assume that the two regions of approximations
χε merge to one when letting ε→ 0. Then the dashed line is a phantom inter-
face. Such phantom interfaces are not captured when using only characteristic
functions.

First Variation of a varifold

In the smooth classical sense the Gibbs-Thomson law incorporates the mean
curvature κ. Actually the curvature term occurs through the first variation
of the area. For varifolds one has to use the first variation formula derived in
Allard [All72] and Simon [Sim83].

As it can be found in the aforementioned works of Allard and Simon, the
first variation of a varifold is given by

δV (X) =
∫
G(Ω)

DX(x) · P dV (x, P ) for X ∈ C1
0 (Ω,Rn) (3.1)
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where DX(x) · P is defined to be the inner product between linear mappings
and DX(x) ·P turns out to be the divergence of X with respect to the linear
subspace P .

In fact, this coincides with the mean curvature in the smooth case. Using
the Gauss theorem on a C2-hypersurface M∫

M
X · νMκM dHn−1 =

∫
M

divMX dHn−1

with νM an arbitrary unit normal to M and κM the mean curvature of M
with the sign according to νM. One notices that for X ∈ C1

0 (Ω,Rn) the
variation of the area can thus be read as the surface divergence of the vector
field, i.e. the full divergence minus the normal part of DX .

In the case that the varifold is less smooth, but still has locally bounded
first variation, one gets the following decomposition:

If ‖δV ‖ is a Radon measure, i.e.

∀K ⊂⊂ Ω ∃cK > 0: |δV (X)| < cK‖X‖∞ ∀X ∈ C1
0 (K,Rn),

the first variation of V can be seen as a bounded operator on C0(Ω,Rn) and
one has a ‖δV ‖-measurable function ν : Ω → Pn−1 such that

δV (X) = −
∫
Ω

X · ν d‖δV ‖.

We now take the Lebesgue decomposition of ‖δV ‖ with respect to µV :

δV (X) =
∫
Ω

X · ν d‖δV ‖ =
∫
Ω

X ·HV dµV +
∫
Z

X · ν dσ (3.2)

where HV is the Radon-Nikodym derivative of ‖δV ‖ with respect to µV mul-
tiplied with the normal function ν:

HV (x) = ν(x)DµV ‖δV ‖(x).

HV is called generalized mean curvature vector. The set of singularities
Z := {x ∈ Rn | DµV ‖δV ‖(x) = ∞} is the generalized boundary of V with gen-
eralized boundary measure σ, generalized unit co-normal ν|Z and µV (Z) = 0.

Rectifiability

For a (n − 1)-rectifiable set M ⊂ Ω there exists for Hn−1-a.e. x ∈ M the
approximate tangent plane to M , denoted by T app

x M (see [Sim83] for details).
To such a set M one can associate a varifold VM by setting

VM (A) := Hn−1
(
{x ∈ Ω | (x, T app

x M) ∈ A}
)

for A ⊂ G(Ω).
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Definition 3.5. A varifold V is rectifiable, if there exist θi > 0 and (n− 1)-
rectifiable sets Mi ⊂ Ω for i ∈ N such that

V =
∑
i∈N

θi VMi .

Since varifolds represent an abstract concept, one goal is to confirm recti-
fiability, if not even integrality, which is the case when all θi are integers in
the above identity.

The relation between rectifiability and the first variation is stated in the
following theorem by Allard (see [All72]).

Theorem 3.6 (Allard). Suppose a varifold V has locally bounded first vari-
ation in Ω and θn−1(µV , x) > 0 for µV -a.e. x ∈ Ω, then V is already a
rectifiable varifold.

Remark 3.7. Especially for a varifold V with locally bounded first variation
in Ω the restriction of V onto {x | θ∗n−1(µV , x) > 0} × Pn−1 is rectifiable.

The next theorem by Schätzle shows that the structure of the first variation
can lead to the desired rectifiability (see [Sch01]).

Theorem 3.8 (Schätzle). Let W be a varifold in Ω ⊂ Rn, w ∈ H1,p(Ω),
n/2 < p < n, F ⊂ Ω such that the characteristic function χF lies in BV (Ω).
Furthermore we suppose

1. δW (η) =
∫
Ω div(wη)χF ∀η ∈ C1

0 (Ω,Rn),
2. |∇χF | ≤ µW and
3. ‖w‖H1,p(Ω) + µW (Ω) ≤ Λ for some Λ ∈ R.

Then W is rectifiable and has locally bounded first variation satisfying

‖HW ‖Ls(µW B(x0,r)) ≤ Cn,p(r)Λ1+1/s ∀B(x0, 2r) ⊂ Ω,

where s ∈ R such that n−1
s = n

p − 1.

The main part of the proof is to show a particular monotonicity formula
for the density of the mass measure:

Lemma 3.9 (Monotonicity Formula). For a varifold W which fulfills the
assumptions of Theorem 3.8 the function

ρ �→ ρ−(n−1)µW (Bρ(x0)) + Cn,p min(1, d)−1Λρα ∀x0 ∈ Ω, 0 < ρ < d

is non-decreasing for α = 1− n−1
s ∈ (0, 1) with d = dist(x0, ∂Ω).

Once this monotonicity formula is verified, one can use the following the-
orem by Ziemer.
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Theorem 3.10 (Ziemer). Let µ be a Radon measure on Rn. Then the fol-
lowing statements are equivalent:

1. Hn−1(A) = 0 implies that µ(A) = 0 for all Borel sets A ⊂ Rn and there
is a constant C̄ such that

∣∣∫ φdµ∣∣ ≤ C̄‖φ‖BV (Rn) for all φ ∈ BV (Rn).
2. There is a constant C̄ such that µ(B(x, r)) ≤ C̄rn−1.

By the theorem of Ziemer we obtain from Lemma 3.9 local bounds for the
measure µW , i.e. for all φ ∈ BV (Ω) and Bρ(x0) ⊂ Ω∣∣∣∣∫

Ω

φχBρ(x0)dµW

∣∣∣∣ ≤ C̄‖φ‖BV (Rn).

Now, we choose φ = |w|s, which is in H1,1(Ω) by imbedding theorems, and
the first variation of the varifold W can be therefore estimated by

|δW (η)| ≤
∣∣∣∣∫ (wη)dµW

∣∣∣∣ ≤ ‖w‖Ls(µW )‖η‖Ls∗(µW ).

By this estimate the first variation can be interpreted as a Radon measure and
the above inequality leads to rectifiability of the varifold through the theorem
of Allard.

3.2 Assumptions and notations

We start with solutions of the Cahn-Larché systems fulfilling the following
assumptions (see also [Gar00] and [Gar03]) for Ω ⊂ Rn open and bounded
with smooth boundary. We consider for all ε > 0

cε ∈ L2
loc(0,∞;H2,2(Ω)) ∩H1,2

loc (0,∞;H−1,2(Ω)),

wε ∈ L2
loc(0,∞;H1,2(Ω)),

uε ∈ L2
loc(0,∞;H2,2(Ω)n)

such that the following weak formulation is fulfilled for all T > 0∫ T

0

〈∂tcε, ζ1〉dt =
∫ T

0

∫
Ω

∇wε · ∇ζ1 dxdt, (3.3)∫ T

0

∫
Ω

wεζ2 dxdt =
∫ T

0

∫
Ω

ε∇cε · ∇ζ2 + 1
εΨ

′(cε)ζ2 +W,c(cε,uε)ζ2 dxdt, (3.4)

0 =
∫ T

0

∫
Ω

S : Dζ3 dxdt (3.5)

for all ζ1 ∈ L2(0, T ;H1,2(Ω)), ζ2 ∈ L2(0, T ;H1,2(Ω)) ∩ L∞(Ω × [0, T ]) and
ζ3 ∈ L2(0, T ;H1,2(Ω)n). Here, the notation of cε ∈ L2

loc(0,∞;H1,2(Ω)) means
that for all times T > 0 one has cε ∈ L2(0, T ;H1,2(Ω)) and 〈., .〉 is the duality
pairing between H−1,2(Ω) and H1,2(Ω). In contrast to other notations we
define H−1,2(Ω) as the dual of {c ∈ H1,2(Ω) |

∫
Ω
c = 0}.
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As initial conditions we assume that for all ε > 0

1. the initial energy is bounded: Eε
pf(0) ≤ E0 and

2. the integral of the initial concentration does not depend on ε, i.e. there
exists a constant m0 ∈ (−1, 1) such that

∫
Ω c

ε
0 = m0|Ω|.

Remark 3.11. The existence of weak solutions of the Cahn-Larché system has
been shown in [Gar00] and [Gar03]. But so far it has not been verified in
general, if the concentration and deformation vector are indeed in H2,2(Ω)
for almost all t.

In the case that W is of the quadratic form (2.1) with constant elasticity
tensor C, i.e. in the homogeneous case, the equation determining u can be read
as an elliptic system with constant coefficients, where only the right-hand side
depends on the concentration:

divS = 0 ⇐⇒ div[CE(uε)] = div[CE∗(cε)].

Since cε is in H1,2(Ω), the right-hand side is in L2(Ω), which leads uε to be
in H2,2(Ω) by elliptic regularity theory.

On the other side, W,c = E∗ : C[E(uε)− E∗cε] is in L2(Ω). Now, equation
(3.4) can be read as an elliptic equation for cε and again elliptic regularity
theory can be used.

If one considers inhomogeneous elasticity, the elasticity system (2.4) con-
tains possibly non-continuous coefficients C(cε) so that one cannot argue as in
the homogeneous case. Though, in low dimensions due to Sobolev imbedding
theorems the concentration functions cε are continuous and therefore elliptic
regularity theory for smooth coefficients can be used.

Nevertheless, for the general case we are presenting in this work we have
to include this assumptions in order to get the correct Gibbs-Thomson law,
see Sect. 5.4.

One important first observation for the limiting process ε→ 0 is to identify

eε(cε) := ε
2 |∇c

ε|2 + 1
εΨ(cε)

as the interfacial energy density in the phase field model. Heuristically, this is
exactly the quantity one observes to carry the interfacial energy of the phase
field model, and the goal is to show convergence to a quantity that will be
understood up to a factor as the Hn−1-measure of the interface.

The second important function is the so-called discrepancy measure

ξε(cε) := ε
2 |∇c

ε|2 − 1
εΨ(cε). (3.6)

As it is stated in Theorem 5.7, in the limit ε→ 0 the discrepancy measure will
be non-positive, which means that the Ψ -part is larger than the |∇cε|2-part.
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3.3 Related works

One important source of this work is the paper by Chen [Che96]. He has
studied the asymptotic limit of the Cahn-Hilliard model. Chen showed for ar-
bitrary spatial dimensions that solutions of the Cahn-Hilliard system converge
globally in time to some generalized sharp-interface solution. He did not show
that the limit varifold is rectifiable, but in the case p = 2, n = 3 one can use
the Theorem 3.8 by Schätzle to deduce rectifiability for the limit varifold for
the Cahn-Hilliard systems without elasticity, see Remark 5.3.

There is one significant difference to results for the related Allen-Cahn
models which are proposed to describe motion of phase boundaries driven by
surface tension:

ε
∂c

∂t
= ε∆c− ε−1Ψ ′(c).

Ilmanen [Ilm93] has studied the limiting behavior of the Allen-Cahn equa-
tion towards the mean curvature flow in the sense of Brakke [Bra78] and
confirmed that one gets in the limit

ξ = 0.

This is also known as equipartition of energy. It is quite interesting to note that
the interface energy is asymptotically equally distributed between the |∇cε|2-
and the Ψ(cε)-part. Moreover this result can be used for further results, namely
it is easier to deduce the fact that the resulting interface varifold is rectifiable.

After Ilmanen [Ilm93] first used geometric measure theory to prove such
convergence in Ω = Rn, Soner [Son95] improved the result for more general
settings. Hutchinson and Tonegawa studied in [HT00] the asymptotic behavior
of critical, not necessarily minimal points of the Cahn-Hilliard energy func-
tional. In their work they also used geometric measure theory and derived local
estimates for the discrepancy measure (3.6). By that, they gained convergence
results for bounded domains. In their (time-independent) setting the limit var-
ifold turns out to be integral, i.e. the interface has indeed integer multiplicity
modulo a surface constant almost everywhere. Moreover local minimizers of
the Cahn-Hilliard energy functional converge to a local area minimizer subject
to a volume constraint. Later Tonegawa extended with similar estimates the
results by Ilmanen and showed that time-dependent solutions of the Allen-
Cahn equation converge to an integral varifold, cf. [Ton03].

4 The stationary case

Before we study the evolution problem, we consider the sharp interface limit
of the Ginzburg-Landau energy Eε

pf(c,u) in the limit ε tending to zero. As
the Cahn-Larché system conserves the integral of the concentration c, we will
consider Eε

pf subject to an integral constraint on c. In fact in this case one
can show that Esi is the Γ -limit of Eε

pf, even if we take the constraint into
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account. Furthermore, we present a result stating that the Lagrange multipli-
ers related to minimizers of Eε

pf will converge to a Lagrange multiplier related
to a minimizer of Esi subject to a volume constraint. The results we present
will generalize results of Modica [Mod87] and Luckhaus and Modica [LM89]
to the case including elastic effects.

4.1 The Γ -limit of the Cahn-Larché energy

In this subsection we study solutions of the variational problems:

(Pε) Find a minimizer (c,u) ∈ H1,2(Ω) ×X⊥
ird of Eε

pf subject to the
constraint 1

|Ω|
∫
Ω
c = m0, where m0 ∈ (−1, 1) is a given constant.

We will now present a result stating that solutions to (Pε) converge along
subsequences to a minimizer of the functional

E0 : L1(Ω)×X⊥
ird → R ∪ {∞}

where

E0(c,u) =

⎧⎪⎨⎪⎩
2σHn−1(∂{c = 1} ∩Ω) +

∫
ΩW (c, E(u)) if c ∈ BV (Ω, {−1, 1})

and 1
|Ω|

∫
Ω
c = m0,

∞ otherwise.

The following theorem now states that E0 is the Γ -limit of Eε
pf. We also

obtain that minimizers of Eε
pf approximate minimizers of Esi, if we take a vol-

ume constraint into account. The limiting variational problem is a partitioning
problem taking interfacial energy and elastic effects into account.

The following theorem has been shown in [Gar00].

Theorem 4.1. Assume that the assumptions of Ψ and W as stated above hold
and let Ω be a bounded domain with Lipschitz boundary. Then it holds:

1. For all (cεk ,uεk)k∈N ∈ H1,2(Ω)×X⊥
ird with cεk → c in L1(Ω) and uεk → u

in L2(Ω,Rn) as εk tends to zero, it holds

E0(c,u) ≤ lim inf
k→∞

Eεk

pf (c
εk ,uεk).

2. For any (c,u) ∈ L1(Ω) × X⊥
ird and any sequence εk → 0, k ∈ N, there

exists a sequence (cεk ,uεk)k∈N ∈ H1,2(Ω) × X⊥
ird with cεk → c in L1(Ω)

and uεk → u in L2(Ω,Rn) as εk → 0 such that

E0(c,u) ≥ lim sup
k→∞

Eεk

pf (c
εk ,uεk).
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3. Let (cε,uε) be solutions of problem (Pε). Then there exists a sequence
εk → 0, k ∈ N and (c,u) ∈ L1(Ω)× X⊥

ird such that

cεk → c in L1(Ω),

uεk → u in H1,2(Ω,Rn)

and (c,u) is a global minimizer of E0.

For the proof and for a generalization to the situation of more than two phases
we refer to [Gar00].

4.2 Convergence of the Lagrange multipliers

For a minimizer (c,u) of E0 it can be shown that a constant Lagrange multi-
plier ω exists such that

2σκ+ ν ·
[
W Id− (∇u)TW,E

]
ν = 2ω. (4.1)

A minimizer of E0 minimizes Esi subject to a volume constraint and ω is the
Lagrange multiplier related to this constraint.

In the case that no elastic effects are present, we obtain that the mean
curvature is constant and the term ν ·

[
W Id− (∇u)TW,E

]
ν modifies this law.

In particular the mean curvature can be inhomogeneous along the interface.
The identity (4.1) and its non-equilibrium analogue (2.13) can be interpreted
as a generalized Gibbs-Thomson equation.

Absolute minimizers (cε,uε) of Eε
pf have a constant Lagrange ωε which

fulfills in a distributional sense (see [Gar00])

−ε∆cε + 1
εΨ

′(cε) +W,c(cε, E(uε)) = ωε. (4.2)

In [Gar00] it is shown that the Lagrange multipliers of (cε,uε) converge
(along subsequences) to a Lagrange multiplier ω of the sharp interface varia-
tional problem. Here we state the result in detail.

Theorem 4.2. Let Ω be a domain with a C1-boundary and assume that Ψ and
W fulfill the conditions stated above. Furthermore let (cε,uε) ∈ H1,2(Ω)×X⊥

ird

be a solution of the variational problem (Pε) with Lagrange multipliers ωε.
Then for each sequence (εk)k∈N → 0 such that

cεk → c in L1(Ω),

uεk → u in H1,2(Ω,Rn)

it holds

ωεk → ω,

where ω is the Lagrange multiplier for the absolute minimizer (c,u) of E0,
compare (4.1).
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For a proof we refer to [Gar00]. We remark that although the method of
Luckhaus and Modica [LM89] for the case without elasticity is used in the
proof, one cannot follow their arguments in a straightforward way. This is due
to the fact that not enough regularity is known for the minimizer (cε,uε) of
Eε

pf. In the proof of Theorem 4.2 one uses variations of Eε
pf with respect to

the independent variables and shows that the resulting Lagrange multiplier is
related to the Lagrange multiplier from (4.2), which is the first variation with
respect to the dependent variables.

Remark 4.3. We also note that a minimizer (c,u) of E0 also fulfills∫
Ω

2σ(∇ · ξ − ν · ∇ξν)|∇χ{c=−1}|+
∫
Ω

(W Id− (∇u)TW,E) : ∇ξ =
∫
Ω

λc∇ · ξ

for all ξ ∈ C∞(Ω̄,Rn) with ξ · νΩ = 0 on ∂Ω. Here, ν = − ∇χ{c=−1}
|∇χ{c=−1}| is the

generalized outer unit normal to {c = −1} which is a |∇χ{c=−1}|-measurable
function. The above identity is a weak formulation of the modified Gibbs-
Thomson equation (4.1) (see [Gar00]).

5 The time-dependent case

For the evolutionary system we start with a suitable weak formulation of the
sharp interface problem. Through the limiting process one cannot expect that
the resulting limit objects are smooth enough such that equations (2.12)–
(2.14) can be verified in a classical way. Besides concentration, the chemical
potential and deformation vector which converge quite straightforward in the
limiting process, to formulate a Gibbs-Thomson law we need both a charac-
teristic function and a varifold, which represents the interface as motivated in
Sect. 3.1 including possible phantom interfaces.

After stating the theorem we give an overview on the proof, not giving all
the details due to the limited space and refer to [Kwa06] for a full treatment.

5.1 Statement of the main theorem

First we specify the notion of a generalized solution of the sharp interface
model.

Definition 5.1 (Generalized solution). (M,V,w,u) is said to be a gener-
alized solution of the modified Mullins-Sekerka problem, if

M ⊂ Ω × [0,∞), w ∈ L2
loc(0,∞;H1,2(Ω)),u ∈ L2

loc(0,∞;H1,2(Ω)n)

V is a Radon measure on Ω × Pn−1 × (0,∞).

Moreover χM ∈ C0([0,∞);L1(Ω)) ∩ L∞(0,∞;BV (Ω)) and

V t is a varifold on Ω for all t > 0



102 H. Garcke, D.J.C. Kwak

such that for all T > 0, for almost every 0 < τ < t < T and for all test
functions ζ ∈ C1

0 (Ω̄ × [0, T )), Y ∈ C1
0 (Ω,Rn) and X ∈ L2

0(0, T ;H1,2(Ω,Rn))
the following holds:

1.
∫ T

0

∫
Ω[−2χMt∂tζ +∇w∇ζ] =

∫
Ω 2χM0ζ(., 0),

2. 2
∫
Ω
χMt div(wY) = 〈∂V t,Y〉+

∑
k=+,−

∫
Ω

(W t
kId− (∇u)TStk) : DY,

3. dV t(x, P ) =
∑

i ρ
t
i(x)δνt

i (x)(P )dµt(x)dP,
4. dµt(x) ≥ 2σ|DχMt |(x)dx,
5. µt(Ω) +

∑
k

∫
Ω
W t

k +
∫ t

τ

∫
Ω
|∇w|2 ≤ µτ (Ω) +

∑
k

∫
Ω
W τ

k ,

6.
∫ T

0

∫
Ω S : DX dxdt = 0

where ρti ∈ [0, 1],
∑

i ρ
t
i ≥ 1,

∑
i ν

t
i ⊗ νti = Id and µt is a Radon measure on

Ω̄. An upper index {.}t denotes the time.

Remark 5.2. Let us discuss the definition in more detail. The first equation is
the weak formulation of the diffusion equations (2.11) and (2.12). In the bulk
the chemical potential will be harmonic. Equation 2 is the Gibbs-Thomson
law (2.13) in a weak formulation (cf. Remark 4.3 and [Gar00]). Equations 3
and 4 describe properties of the varifold. Inequality 4 allows that the varifold
can possibly see phantom interfaces. Equation 5 states the dissipation of the
free energy and equation 6 states in a weak form that the stress is divergence
free in the bulk, cf. (2.14), and at the same time one obtains that the normal
jump of the stress is zero across the interface.

One should notice that the Gibbs-Thomson law has two terms which rep-
resent the interface and vanish in the bulk, but the elastic term stays a volume
integral. The reason for this is that the elastic energy is a non-local volume
energy. So, one has to be aware in the limiting process that both ε

2 |∇cε|2 and
Ψ(cε) converge to a (n−1)-dimensional measure whileW stays n-dimensional.

Remark 5.3. In the case of Cahn-Hilliard systems, i.e. without any elastic
terms, equation 2 in Definition 5.1 becomes of the same form as in the Theorem
3.8 by Schätzle. This means that one can deduce rectifiability of the varifold
in the case without elasticity, at least for the case p = 2, n = 3.

Theorem 5.4 (Main). Let the assumptions mentioned in Sect. 3.2 hold.
Then there is a sequence εi → 0 and a generalized solution (M,V,w,u) as
in Definition 5.1 such that for all T > 0

1. cεi → −1 + 2χM in C1/9([0, T ];L2(Ω)) and almost everywhere,
2. wεi → w weakly in L2(0, T ;H1,2(Ω)),
3. uεi → u in L2(0, T ;H1,2(Ω)n).
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More precisely the varifold is obtained in the following way.

Proposition 5.5. For the sequence of Theorem 5.4 it further holds:

1. There exist Radon measures µ, µkl on Ω̄ × [0,∞) such that

eεi(cεi )dxdt→ dµ(x, t), (5.1)
εic

εi
xk
cεi
xl
dxdt→ dµkl(x, t) (5.2)

both as Radon measures on Ω̄ × [0, T ] for all T > 0.
2. For all Y ∈ C1

0 (Ω × [0, T ],Rn) it holds:∫ T

0

〈∂V t,Y〉 =
∫ T

0

∫
Ω

∇Y : [dµ(x, t)Id − (dµij(x, t))ij ].

Remark 5.6. The first part of the proposition follows easily by the energy
estimates and using compactness properties of Radon measures. So it is left
to show that the measures µ and µij can be indeed identified as a varifold.
This is essentially done by proving Theorem 5.7.

We define for ε > 0 the set

Kε := {(c, v) ∈ H2,2(Ω)× L2(Ω) | −ε∆c+ ε−1Ψ ′(c) = v in Ω and
∂νc = 0 on ∂Ω}.

Theorem 5.7. There exist a constant η0 ∈ (0, 1] and continuous and non-
increasing functions M1(η),M2(η) : (0, η0] → (0,∞) such that for every η ∈
(0, η0], every ε ∈ (0,M1(η)−1] and every (c, v) ∈ Kε it holds∫

Ω

(ξε(c))+ ≤ η

∫
Ω

eε(c) + εM2(η)
∫
Ω

v2. (5.3)

Remark 5.8. In the application of Theorem 5.7, v will be the sum

v = wε −W,c(cε, E(uε)).

5.2 Convergence of concentration and chemical potential

One crucial a priori estimate is due to the H−1 gradient flow property of
the Cahn-Larché system with respect to the energy functional (2.5) which we
already mentioned in Sect. 2.2. For more details see [Gar03].

Lemma 5.9. For all ε > 0 and 0 < τ < t it holds

Eε
pf(t) +

∫ t

τ

∫
Ω

|∇wε|2 ≤ Eε
pf(τ).

From equations (3.3) and (3.4) one easily gets the following a priori esti-
mates:
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Lemma 5.10. For all ε > 0 and almost all t > 0 it holds

1. 1
|Ω|

∫
Ω c

ε(., t) = m0,
2.

∫
Ω |cε|4 ≤ C(1 + E0),

3.
∫
Ω

(|cε| − 1)2 ≤ CεE0.

Remark 5.11. The first equation describes one feature of the phase field model:
conservation of mass over time. This is essentially due to the diffusion which
is driven by a potential and the Neumann boundary conditions.

We introduce the auxiliary function

c̃ε(x, t) :=
∫ cε(x,t)

−1

√
Ψ̃(s)/2ds,

which is also known as the Modica ansatz. Here Ψ̃(s) := min(Ψ(s), 1 + |s|2) is
used, so one has

C1|s1 − s2|2 ≤ |c̃(s1)− c̃(s2)| ≤ C2|s1 − s2|(1 + |s1|+ |s2|)

for some C1, C2 > 0. Using this auxiliary function it is possible to obtain
bounds in BV (Ω).

Lemma 5.12. For solutions to the Cahn-Larché system the Modica ansatz
leads to

‖c̃ε‖L∞(0,∞;H1,1(Ω)) + ‖c̃ε‖C1/8([0,∞);L1(Ω)) + ‖cε‖C1/8([0,∞);L2(Ω)) ≤ C. (5.4)

With these uniform bounds one can pass to the limit ε → 0 along a
sequence and together with Lemma 5.10 identify a set M ⊂ Ω × [0,∞) such
that we have the following lemma:

Lemma 5.13. For solutions of the Cahn-Larché system there exists a se-
quence εj → 0 such that

• c̃εj (x, t) → 2σχM in C1/9([0, T ];L1(Ω)),
• cεj (x, t) → −1 + 2χM in C1/9([0, T ];L2(Ω)) and almost everywhere

for all T > 0.

This set M then defines Ω−(t) for all t > 0.
This proves the first convergence statement of the main theorem. For the

chemical potential we observe that the following Poincaré type inequality
holds:

Lemma 5.14. For the solutions of the Cahn-Larché system we obtain

‖wε(., t)‖H1,2(Ω) ≤ C(Eε
pf (t) + ‖∇wε(., t)‖L2(Ω)). (5.5)
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To prove this lemma we test equation (3.4) with X·∇cε for X ∈ C1
0 (Ω,Rn)

to get∫
wεX·∇cε =

∫
ε∇cε · ∇(X·∇cε) + 1

εΨ
′(cε)X·∇cε +W,c(cε, E(uε))X·∇cε

=
∫
ε
(
∇cε ·DX∇cε − 1

2 div X |∇cε|2
)

+ (1
εΨ

′ +W,c)X · ∇cε.

Now we see that via partial integration∫
DX : (Ψ Id) =

∫
div XΨ = −

∫
X · ∇cε Ψ ′, (5.6)∫

DX : (W Id) =
∫

div XW = −
∫

X · ∇cεW,c + XiW,Ekl
∂i∂kuε

l (5.7)

= −
∫

X · ∇cεW,c − (∂kXi)W,Ekl
∂iuε

l , (5.8)

where we used equation (3.5). With W,Ekl
= Skl we obtain∫

div(wεX)cε =
∫
DX :

[
eε(cε)Id− ε∇cε ⊗∇cε +W Id− (∇uε)TS

]
.

(5.9)
We now introduce the mean value of wε as w̄ε and use integration by parts

to obtain∫
Ω

wεX·∇cε = −
∫
Ω

∇wε ·Xcε−
∫
Ω

(wε−w̄ε)cε div X−w̄ε

∫
Ω

cε div X. (5.10)

Combining equation (5.9) and (5.10), one arrives at

w̄ε =
1∫

Ω c
ε div X

∫
Ω

DX :
[
(eε(cε) +W (cε,uε))Id− ε∇cε ⊗∇cε − (∇uε)TS

]
−∇wε ·Xcε − (wε − w̄ε)cε div X dx,

where we choose a smooth X such that
∫
Ω
cε div X �= 0. Using elliptic regu-

larity theory, the lemma can be verified.
With this bound we conclude to weak convergence of the chemical poten-

tial.

Corollary 5.15. There exist constants C, ε0 > 0 such that for all ε ∈ (0, ε0]
and all T > 0 it holds ∫ T+1

T

‖wε(., t)‖H1,2(Ω) ≤ C. (5.11)

Therefore, for a sequence εj → 0 there exists a function w ∈ L2(0, T ;H1,2(Ω))
such that

wεj → w weakly in L2(0, T ;H1,2(Ω)).
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5.3 Convergence of deformation

Using the monotonicity of W,E , see (2.3), we obtain that the elastic energy
density fulfills

W (c, E) ≥ C0|E|2 − C1(|c|2 + 1)

for some constants C0, C1 > 0. Therefore we have for solutions (cε,uε)∫
Ω

|E(uε)|2 dx ≤ C

(
1 +

∫
Ω

W (cε, E(uε)) dx +
∫
Ω

|cε|2 dx
)
.

Since the W -term is bounded by the total energy Eε
pf and the cε-term by

the a priori estimate in Lemma 5.10, we have that ‖E(uε)‖L2(Ω) is bounded
uniformly in t and ε. By Korn’s inequality we can also control the deformation
vector uε in H1,2(Ω)n.

Since L2(0, T ;H1,2(Ω)n) is a reflexive space, we have weak compactness of
the deformation vector, i.e. for all sequences (εj)j∈N there exists a subsequence
(εjk

)k∈N such that

uεjk → u weakly in L2
loc(0,∞;H1,2(Ω)n)

for some u ∈ L2
loc(0,∞;H1,2(Ω)n).

Now we use again the monotonicity of W,E to get

c1‖E(uε − u)‖2
L2(Ω×(0,T ))

≤
∫
Ω×(0,T )

(
W,E(cε, E(uε))−W,E(cε, E(u))

)
: E(uε − u)

= −
∫
Ω×(0,T )

W,E(cε, E(u)) : E(uε − u). (5.12)

The last equality is due to the divergence free stress tensor, cf. (2.4). One
should notice that only W,E(cε, E(uε)), but not W,E(cε, E(u)) is divergence
free, since only in the former term the respective deformation function uε

meets the condition (2.4).
By the strong convergence of the concentration function and the weak

convergence of the deformation field, the right hand side of equation (5.12)
goes to zero, i.e. we obtain strong convergence of the strain tensor for the
sequence (εjk

)k∈N. By Korn’s inequality we have that the deformation vector
converges strongly in L2

loc(0,∞;H1,2(Ω)n). Then for almost all t we have that
∇uεjk (t) converges strongly to ∇u(t) in L2(Ω).

This verifies the third convergence statement of the main theorem. So far,
we have shown the convergences as stated in the theorem, but we still have
to verify, if the limit functions do represent a generalized solution according
to Definition 5.1. Indeed the first diffusion equation immediately follows from
equation (3.3) and the convergences of the concentration function and poten-
tial. The identity 6 in Definition 5.1 follows from (3.5) in the limit ε → 0, as
∇uε and cε converge strongly. The other conditions require the specification
of the varifold.
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5.4 The limit varifold and the Gibbs-Thomson law

This part deals with the limit varifold V . It is mainly derived from the con-
vergence mentioned in Proposition 5.5 and we show that using Theorem 5.7
we verify the remaining conditions of Definition 5.1.

The energy density eε(cε) := ε
2 |∇cε|2+

1
εΨ(cε) and ε∇cε⊗∇cε are bounded

by the initial energy:∫ T

0

∫
Ω

eε(cε) dx dt ≤
∫ T

0

Eε
pf (t) dt ≤ TE0∫ T

0

∫
Ω

ε |(∇cε)i(∇cε)j | dx dt ≤
∫ T

0

∫
Ω

eε(cε) dx dt ≤ TE0.

By compactness there exist Radon measures µ and µij according to (5.1) and
(5.2). But since we also have energy estimates for all times t, we can split
the measures dµ(x, t) and dµij(x, t) into a spatial and time component, both
being still Radon measures:

dµ(x, t) = dµt(x)dt, dµij(x, t) = dµtij(x)dt.

The energy estimates in Lemma 5.9 show that the energies of the phase
field solutions are non-increasing. This feature carries through the limit ε
going to zero:

Lemma 5.16. For a sequence εk → 0 there exists a non-increasing function
E : [0,∞) → [0,∞) such that for all t > 0

Eεk

pf (t) → E(t).

One has to verify that this function E is indeed the energy of the sharp
interface model. As mentioned above the interfacial energy converges to a
Radon measure µ. Together with the strong convergence of the deformation
vector u, the function E can be identified as the energy of the limiting system:

E(t) = µt(Ω) +
∫
Ω

∑
k=+,−

Wk(E(ut)).

This shows that part 5 of Definition 5.1 is fulfilled in the limit ε→ 0.
Equation (5.9) gives in the limit ε→ 0∫
2χΩ− div(wX) =

∫
DX : [dµId− (dµij)ij ] +

∫
DX : (W Id− (∇u)TS).

Remark 5.17. The claim is now that
∫
DX : [dµId− (dµij)ij ] can be seen as

the first variation of a varifold. This will prove Proposition 5.5. Hence, part 2
of Definition 5.1 will be verified.
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Proof (Proposition 5.5). For Y,Z ∈ C0(Ω̄ × [0, T ],Rn) one gets∫ T

0

∫
Ω

YT · (εk∇ck⊗∇ck)Z ≤
∫ T

0

∫
Ω

|Y||Z|eεk(cεk)+
∫ T

0

∫
Ω

|Y||Z|ξεk(cεk).

This means that in the limit ε → 0, the last integral is non-positive and
one gets the inequality∫ T

0

∫
Ω

YT · (dµij)ijZ ≤
∫ T

0

∫
Ω

|Y||Z|dµ

which means that the measures µij are absolutely continuous with respect
to µ. Then there exist µ-measurable functions νij such that dµij(x, t) =
νij(x, t)dµ(x, t) and we get

0 ≤
∫ T

0

∫
Ω

Y ·
(
Id− (νij)ij

)
Z dµ(x, t). (5.13)

Since the matrix (νij)ij inherits the symmetry from (5.2), the matrix is pos-
itive semi-definite and by (5.13) it further holds 0 ≤ (νij)ij ≤ Id. This
means one can write this matrix as (νij)ij =

∑n
i=1 ρ̃i νi ⊗ νi where ρ̃i ∈

[0, 1],
∑

i νi⊗νi = Id. Moreover
∑

i ρ̃i ≤ 1, since actually for y ∈ C0(Ω×[0, T ])∫ T

0

∫
Ω

y εk tr(∇ck ⊗∇ck)︸ ︷︷ ︸
=|∇cεk |2

=
∫ T

0

∫
Ω

y (eεk(cεk) + ξεk(cεk))

and limk→∞ εk tr(∇ck ⊗∇ck) =
∑

i(νii)dµ. Recall that the trace of a matrix
is the sum of its eigenvalues.

Setting ρi := ρ̃i + 1
n−1

(
1−

∑n
j=1 ρ̃j

)
∈ [0, 1] we get

Id− (νij)ij = Id−
∑
i

ρ̃i νi ⊗ νi =
∑
i

ρi (Id− νi ⊗ νi) .

Thus we can see the limiting varifold as

dV (x, P ) =
∑
i

ρi(x)dµ(x)δνi
(P )

where δνi
is the projection onto the hyperplane normal to νi.

5.5 Control of discrepancy measure

In the case of homogeneous elasticity we have

|W,c(c, E(u))| ≤ C(1 + |c|+ |E(u)|)
which leads W,c(cε, E(uε)) to be in L2(Ω) for almost all times t > 0. So we
can follow the proof of Chen in [Che96] for the estimation of the discrepancy
measure.

The proof is based on a blow-up technique for which we need some prepara-
tory lemmas.
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Lemma 5.18. For each η > 0 there is a constant R(η) > 2 such that for all
R > R(η) the following holds:

If
Ω̂ = {(x′, xn) ∈ BR | xn > Y (x′)}

is a domain in Rn, Y : Rn−1 → R satisfying

Y (0′) ≤ 0, ∇x′Y (0′) = 0′, ‖D2
x′Y ‖C0(B′

R) ≤ R−3 (5.14)

and if (c,v) ∈ H1,2(Ω̂)× L2(Ω̂) with

−∆c + Ψ ′(c) = v in Ω̂, (5.15)
∂
∂ν c = 0 on {(x′, xn) ∈ BR | xn = Y (x′)}, (5.16)

‖v‖L2(BR∩Ω̂) ≤ R−1 (5.17)

then the following inequality holds∫
B1∩Ω̂

(
|∇c|2 − 2Ψ(c)

)+ ≤ η

∫
B2∩Ω̂

(
|∇c|2 + Ψ ′(c)2 + Ψ(c) + v2

)
+

∫
{x∈B1∩Ω̂||c|≥1−η}

|∇c|2. (5.18)

Proof. For the proof, which we roughly sketch, one studies the interfacial
region:

Ω̂1 := {x ∈ B1 ∩ Ω̂ | |c| ≤ 1− η}.
For the case that |Ω̂1| is sufficiently small, one gets by Hölder inequality

‖∇c‖L2(Ω̂1)
≤ |Ω̂1|m

∗‖∇c‖L2∗(Ω̂1) ≤ Cη‖∇c‖H1,2(B1∩Ω̂)

where m∗ = 2 2∗

2−2∗ with 2∗ = 2n
n−2 for n > 2 and 2∗ = 7 otherwise. One can

notice that one η appears on the right hand side, which finally leads to the
statement. For the other case |Ω̂1| being large one can use a contradiction
argument. Through this assumption the homogeneous equation ∆c = Ψ ′(c)
is recovered. Here one can use elliptic regularity theory to get smoothness of
the function c. Comparison with viscosity functions yields that c would be
in fact bounded in [−1, 1]. Results by Modica [Mod85] then finally finish the
proof.

Now we need a control on the bulk energy of the interface. This is shown
in the following lemma.

Lemma 5.19. There exist positive constants C0 and η0 such that for every
η ∈ (0, η0], every ε ∈ (0, 1] and every (c, v) ∈ Kε the following holds∫

{x∈Ω||c|≥1−η}

(
eε(c) + ε−1Ψ ′(c)2

)
≤ C0η

∫
{x∈Ω||c|≤1−η}

ε|∇c|2 + C0ε

∫
Ω

v2. (5.19)
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The proof of this lemma is based on the convexity property of Ψ ′′ for values
|c| ≥ 1− η. One combines both∫

Ω

vψ =
∫
Ω

εψ′(c)|∇c|2 + ε−1Ψ ′(c)ψ

from the equation (3.4) and the Young inequality∫
Ω

vψ ≤
∫
Ω

(
ε
2v

2 + 1
2εψ

2
)

where ψ = Ψ ′ except in the bulk, so that one has bounds for ψ′ in {|c| ≥ 1−η}.

Proof (Theorem 5.7). We give a simple sketch of the proof for Theorem 5.7. As
already mentioned above we use a blow-up technique. The set Ω is covered by
balls BRε(xj) where R is as in Lemma 5.18. Changing variables to y → xj+εy
and rescaling vj(y) = εvε(xj + εy), one gets the equation

−∆ycj + Ψ ′(cj) = v.

By this blow-up process the right-hand side v can be decreased so much that
Lemma 5.18 is applicable. Using Lemma 5.19 this ends the proof. If v does
not fulfill the assumptions of Lemma 5.18, other elliptic estimates can be
used. The careful choice of the covering then ensures that by assembling the
covering the desired estimate is attained.
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Summary. In this article, we review the progress on phase-field modelling, sharp
interface asymptotics, numerical simulations and applications to microstructure evo-
lution and pattern formation in materials science. Model formulations and computa-
tions of pure substances and of binary alloys are discussed. Furthermore, a thermo-
dynamically consistent class of non-isothermal phase-field models for crystal growth
and solidification in complex alloy systems is presented. Explicit expressions for the
different energy density contributions are proposed. Multicomponent diffusion in the
bulk phases including interdiffusion coefficients as well as diffusion in the interfacial
regions are discussed. Anisotropy of both, the surface energies and the kinetic coeffi-
cients is incorporated in the model formulation. A 3D parallel simulator based on a
finite difference discretization is introduced illustrating the capability of the model
to simultaneously describe the diffusion processes of multiple components, the phase
transitions between multiple phases and the development of the temperature field.
The numerical solving method contains parallelization and adaptive strategies for
optimization of memory usage and computing time. Applying the computational
methods, we show a variety of simulated microstructure formations in complex mul-
ticomponent alloy systems occuring on different time and length scales. In particular,
we present 2D and 3D simulation results of dendritic and eutectic solidification in
pure substances and binary and ternary alloys. Another field of application is the
modelling of competing polycrystalline grain structure formation and grain growth.

1 Introduction

Materials science plays a tremendous role in modern engineering and technol-
ogy, since it is the basis of the entire microelectronics and foundry industry,
as well as many other industries. The manufacture of almost every man-made
object and material involves phase transformations and solidification at some
stage. Metallic alloys are the most widely-used group of materials in indus-
trial applications. During the manufacture of castings, solidification of metallic
melts occurs involving many different phases and hence, various kinds of phase
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a) b) c)

Fig. 1.1. Experimental micrographs of Al − Si alloy samples: a) Grain structure
with different crystal orientations, b) network of primary Al dendrites and c) in-
terdendritic eutectic microstructure of two distinguished solid phases in the regions
between the primary phase dendrites. (See page 683 for a colored version of the
figure.)

transitions [KF92]. The solidification is accompanied by a variety of differ-
ent pattern formations and complex microstructure evolutions. Depending on
the process conditions and on the material parameters, different growth mor-
phologies can be observed, significantly determining the material properties
and the quality of the castings. For improving the properties of materials in
industrial production, the detailed understanding of the dynamical evolution
of grain and phase boundaries is of great importance. Since numerical simu-
lations provide valuable information of the microstructure formation and give
access for predicting characteristics of the morphologies, it is a key to under-
standing and controlling the processes and to sustaining continuous progress
in the field of optimizing and developing materials.

The solidification process involves growth phenomena on different length
and time scales. For theoretical investigations of microstructure formation it
is essential to take these multiscale effects as well as their interaction into
consideration. The experimental photographs in Fig. 1.1 give an illustration
of the complex network of different length scales that exist in solidification
microstructures of alloys.

The first image (Fig. 1.1 a)) shows a polycrystalline Al-Si grain structure
after an electrolytical etching preparation. The grain structure contains grain
boundary triple junctions which themselves shown an individual physical be-
haviour. The coarsening by grain boundary motion takes place on a long time
scale. If the magnification is enlarged, a dendritic substructure in the interior
of each grain can be resolved (Fig. 1.1 b)). Each orientational variant of the
polycrystalline structure consists of a dendritic array in which all dendrites of
a specific grain have the same crystallographic orientation. The third image
in Fig. 1.1 c) displays the interdendritic eutectic structure at a higher reso-
lution, where eutectic lamellae solidify between the primary dendritic phase.
In a eutectic solidification of this kind, two distinct solid phases S1 and S2
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grow into an undercooled melt if the temperature is below the critical eutectic
temperature. Within the interdendritic eutectic lamellae, a phase boundary
triple junction of the two solid phases and the liquid occurs. The dendrites
and the eutectic lamellae grow into the melt on a micrometer scale and during
a short time period. Once the dendrites and the eutectic lamellae impinge one
another, grain boundaries are formed.

Alloy systems with multiple components are an important class of materi-
als, in particular for technical applications and processes. The microstructure
formation of a material plays a central role for a broad range of mechanical
properties and, hence, for the quality and the durability of the material. Aim-
ing for a continuous optimization of materials properties, the study of pattern
formation during alloy solidification has been a focus of many experimental
and, recently, also of computational work. Since the microstructure character-
istics are a result of the process conditions used during production, the analysis
of the fundamental correlation between the processing pathway and the mi-
crostructure is of fundamental importance. Multiple components in alloys are
combined with the appearance of multiple phases leading to complex phase
diagrams, various phase transformations and different types of solidification.
Modelling and numerical simulations aim to predict microstructure evolution
in multicomponent alloys in order to virtually design materials. However, the
great number of material parameters and of physical variables involved in sys-
tems yields a complexity that remains a big challenge for future work. In par-
ticular, the gain of statistically meaningful data from computations requires
simulations in sufficiently large domains with a tremendous need of memory
and computing time resources. To treat complex systems, high performance
computing, parallelization and optimized algorithms including adaptive mesh
generators are mandatory.

The phase-field method has become an important tool for tackling free
boundary problems such as grain boundary motion [Sea96, GNS99a], and for
simulating crystal growth, solidification and pattern formation phenomena
in alloys [WMB96, TN*98, BS98, KWC00, PK00, NW00, JGD01, SPG01,
BW*02, GBP02, AB*02, KO*03, RB*04]. The advantage of the phase-field
method lies in the formulation of diffuse interfaces of a finite thickness. Explicit
front tracking is avoided by using smooth continuous variables locating the
grain and phase boundaries. By asymptotic expansions for vanishing interface
thickness, it can be shown that classical sharp interface models including phys-
ical laws at interfaces and multiple junctions are recovered [Cag89, GNS98].
Since phase-field models can be derived on the basis of classical irreversible
thermodynamics [PF90, WS*93, GNS04], they can be applied to processes
close to thermodynamical equilibrium, i.e. at relatively small driving forces.
Extensions of the phase-field approach to describe strongly nonequilibrium
solidification, solute trapping and solute drag effects at large driving forces
are discussed in [AW*98, Gal01]. The scaling problem of quantitatively mod-
elling the low growth rate regime where the microstructure is typically several
orders of magnitude larger than the microscopic capillary length has been
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overcome by a so-called thin interface approximation of the phase-field model
[KR96, Al99, KKS99, MWA00, Kav01].

The purpose of this article is to extend the advances of the phase-field ap-
proach to model general multiphase solidification in situations close to local
thermodynamical equilibrium. The underlying formulation of an entropy den-
sity functional is given in Sect. 2 and explicit expressions for the free energy
densities of the bulk phases and of the interfaces are discussed. A method is
described how the artifical appearance of a foreign phase contributions at a
two-phase boundary can be avoided. Formulations defining the bulk, interdif-
fusion and interfacial diffusion coefficients as well as different types of surface
energies and kinetic anisotropies are presented. In particular, an expression
of crystalline (facetted) anisotropy is given that can be used for modelling
general crystal shapes with an arbitrary number of edges and corners in three
spatial dimensions. The essential ingredients of the phase-field model are sum-
marized, the numerical method for solving the governing equations is briefly
explained in Sect. 3. Examples of possible applications to numerically simulate
dendritic growth, eutectic solidification in binary and ternary alloys, moving
grain and phase boundaries and the formation of polycrystalline grain struc-
tures are given in Sect. 4. The simulation results are intended to illustratively
show the potential of the phase-field model in computing and numerically
analyzing complex pattern formation.

2 Phase-field Model for Multiphase and Polycrystalline
Systems

The phase-field model allowing for an arbitrary number of phases (or grains)
and components is derived from an entropy density functional in a thermody-
namically consistent way, [GNS04, NGS05]. The formulation is defined solely
via the bulk free energies of the individual phases, the surface energy den-
sities (surface entropy densities, respectively) of the interfaces, the diffusion
and mobility coefficients. Thus, the full set of phase-field evolution equations
is defined by quantities which can be measured. Since the bulk free energies
determine the phase diagrams (see, e.g., Chalmers [Cha77], Haasen [Haa94]),
the phase-field model can be used to describe phase transitions, in principal,
for arbitrary phase diagrams. For a number of binary and ternary alloys, the
bulk free energies are provided by thermodynamical data base programmes
and can be directly used in simulation applications.

The phase-field model for a general class of multicomponent and multi-
phase (or polycrystalline ) alloy systems is formulated consisting of K com-
ponents and N different phases (or grains) in a domain Ω ⊂ IR3. The domain
Ω is separated in phase regions Ω1, . . . , ΩN occupied by the N phases as
schematically illustrated in the left image of Fig. 2.1 for the situation N = 4.
The middle and right images show examples of an Al-Si grain structure with
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Fig. 2.1. Left image: Schematic drawing of a domain separation by four different
phase regions; Middle image: Polycrystalline grain structure in Al-Si; Right image:
Multiphase solification microstructure with dendrites and a eutectic structure. (See
page 683 for a colored version of the figure.)

grains of different crystallographic orientations and of a real multiphase struc-
ture with primary dendrites and an interdendritic eutectic substructure.

The concentrations of the components are represented by a vector c(x, t) =
(c1(x, t), . . . , cK(x, t)). Similarly, the phase fractions are described by a vector-
valued order parameter φ(x, t) = (φ1(x, t), . . . , φN (x, t)). The variable φα(x, t)
denotes the local fraction of phase of grain α. The phase-field model is based
on an entropy functional of the form

S(e, c,φ) =
∫
Ω

(
s(e, c,φ)−

(
εa(φ,∇φ) +

1
ε
w(φ)

))
dx.

We assume that the bulk entropy density s depends on the internal energy
density e, the concentrations c and the phase-field variable φ. We require that
the concentrations of the components and of the phase-field variables fulfill
the constraints

K∑
i=1

ci = 1,
N∑
α=1

φα = 1. (2.1)

2.1 Entropy density contributions

It will be convenient to use the free energy f(T, c,φ) as a thermodynamical
potential. We therefore postulate the Gibbs relation

df = −sdT +
K∑
i=1

µidci +
N∑
α=1

rαdφα.

Here, T is the temperature, µi = f,ci are the chemical potentials, and rα =
f,φα are potentials due to the appearance of different phases. We set

e = f + sT,

and hence
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de = Tds+
∑

i µidci +
∑

α rαdφα,

ds = 1
T de−

∑
i
µi

T dci −
∑

α
rα

T dφα.

If we interpret s as a function of (e, c,φ), then we have

s,e =
1
T
, s,ci =

−µi
T
, s,φα =

−rα
T
.

We note that given the free energy densities of the pure phases fα(T, c), we
obtain the total free energy f(T, c,φ) as a suitable interpolation of the free
energies fα of the individual phases in the system. By inserting the free energy
f into the phase-field method enables to model systems with a very general
class of phase diagrams. In the way it is formulated, the model can describe
systems with concave entropies sα(e, c) in the pure phases. This corresponds
to free energies fα(T, c) which are concave in T and convex in c. In the case
where f(T, c) is not convex in the variable c, the free energy needs to contain
gradients of the concentrations (as in the Cahn-Hilliard model).

Choosing the liquid phase to be the last component φN of the phase-field
vector φ, an ideal solution formulation of the bulk free energy density reads

fid(T ,c,φ) =
N∑
α=1

K∑
i=1

(
ciL

α
i
T−Tα

i

Tα
i
h(φα)

)
+

K∑
i=1

(
Rg

vm
Tci ln(ci)

)
− cvT ln( T

TM
),

with LNi = 0 and Lαi , i = 1, . . . ,K, α = 1, . . . , N − 1, being the latent heat
per unit volume of the phase transition from phase α to the liquid phase and
of pure component i. Furthermore, Tα

i , i = 1, . . . ,K, α = 1, . . . , N − 1 is
the melting temperature of the i-th component in phase α, TM is a reference
temperature. cv, the specific heat and vm, the molar volume are assumed to be
constant, Rg is the gas constant. With a suitable choice of the function h(φ)
satisfying h(0) = 0 and h(1) = 1, e.g. h(φα) = φα or h(φα) = φ2

α(3−2φα), the
free energy density f is an interpolation of the individual free energy densities
fα. We can calculate the entropy density

s = −f,T = −
N∑
α=1

K∑
i=1

(
ci
Lαi
Tα
i

h(φα)
)
−

K∑
i=1

(
R

vm
ci ln(ci)

)
+ cv ln(T ),

so that

e = f + Ts = −
N∑
α=1

K∑
i=1

(ciLαi h(φα)) + cvT.

We note that if Lαi = Lα for all components i, then e does not depend on c.
The chemical potentials µi(T, c,φ) = f,ci(T, c,φ) are given by

µi(T, c,φ) =
N∑
α=1

(
Lαi
T − Tα

i

Tα
i

h(φα)
)

+
R

vm
T (ln(ci) + 1). (2.2)
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A more general expression for the bulk free energy density of alloys is the
Redlich-Kister-Muggianu model of subregular solution

fsr = fid +
K∑
i=1

K∑
j=1

cicj

M∑
ν=0

M
(ν)
ij (ci − cj)ν ,

with binary interaction coefficients M (ν)
ij depending on the parameter ν. For

M = 0, the Redlich-Kister-Muggianu ansatz takes the form of a regular solu-
tion model. In most applications, in particular to metallic systems, M takes
a maximum value of two. A ternary term ∼ cicjck can be added to describe
the excess free enthalpy.

The thermodynamics of the interfaces gives additional contributions to the
entropy given by a Ginzburg-Landau functional of the form

−
∫
Ω

(
εa(φ,∇φ) +

1
ε
w(φ)

)
dx.

Here, a(φ,∇φ) is the gradient entropy density which is assumed to be homoge-
neous of degree two in the second variable; i.e., a(φ, η∇φ) = η2a(φ,∇φ), ∀η ∈
IR+. The simplest form of the gradient entropy density is

a(φ,∇φ) =
N∑
α=1

|∇φα|2.

However, it has been shown [GNS98, GNS99b] that gradient entropies of the
form

a(φ,∇φ) =
∑
α<β

Aαβ(φα∇φβ − φβ∇φα), (2.3)

where Aαβ are convex, homogeneous degree two functions, are more conve-
nient with respect to the calibration of parameters in the phase-field model
to the surface terms in the sharp interface model.

In liquid-solid and solid-solid phase transitions the anisotropy has a large
effect on the pattern formation. A choice of the gradient entropies that leads
to anisotropic surface terms is

a(φ,∇φ) =
∑
α<β

γαβ ac(qαβ)2 |qαβ |2, (2.4)

where γαβ represent surface entropy densities and qαβ = (φα∇φβ−φβ∇φα) are
generalized gradient vectors. The formulation using the generalized gradient
vectors qαβ allows to distinguish the physics of each phase (or grain) boundary
by providing enough degrees of freedom. Anisotropy of the surface entropy
density is modeled by the factor ac(qαβ)2 depending on the orientation of
the interface. Isotropic phase boundaries are realized by ac(qαβ) = 1. Weakly
anisotropic crystals with an underlying cubic symmetry in 3D can be modeled
by the expression
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ac(qαβ) = 1− δαβ
(
3− 4

|qαβ|44
|qαβ |4

)
, (2.5)

with δαβ being the strength of the anisotropy of the α-β interface. The

norms are given by |qαβ |44 =
∑3

i=1(q
4
i ) and |qαβ |4 =

(∑3
i=1(q

2
i )
)2

with

qi = (φα ∂
∂xi
φβ − φβ ∂

∂xi
φα).

The function in Eq. (2.5) for the cubic crystal symmetry is plotted in
Fig. 2.2 a) for an anisotropic strength δ = 0.15. The equilibrium shape of a
crystal can be determined by finding the inner envelope of the planes perpen-
dicular to all radius vectors from the center to the surface depicted in Fig. 2.2
(Wulff-construction). In the directions of the depressions, curved faces evolve
during growth.

For a strongly anisotropic crystal of facetted type, we define

ac(qαβ) = max
1≤k≤nαβ

{ qαβ
|qαβ |

· ηkαβ
}
, (2.6)

where ηkαβ , k = 1, . . . , nαβ are the nαβ corners of the Wulff shape of the α-β
transition leading to flat crystal faces with sharp edges. These evolve in the
direction of the cusps. In principal, Eq. (2.6) allows to model arbitrary crystal
shapes with nαβ corners. For a comparison with the expression for smooth
anisotropy in Eq. (2.5), we display in Fig. 2.2 b) the function ac(qαβ) in Eq.
(2.6) also for a cubic crystal symmetry. In Fig. c) the simulation results of two
crystals with 45◦ rotated orientation growing from adjacent nuclei are shown.
Each grain develops its minimum energy surfaces in contact with the melt
and at their interface.

The interfacial entropy density contribution w(φ) is a nonconvex function
with N global minima corresponding to the N phases or grains in the sys-
tem. As an extension of the standard double-well potential, one may take the
standard multi-well potential

Fig. 2.2. 3D surface plot of a) a smooth and b) a facetted cubic anisotropy. c)
contour plots of two adjacent growing, 45◦ misoriented cubic crystals applying the
smooth anisotropy formulation in Eq. (2.5) with δ = 0.2. (See page 684 for a colored
version of the figure.)
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Fig. 2.3. Plot of the multi-well potential wst(φ) for N = 3 and equal surface entropy
densities γαβ . (See page 684 for a colored version of the figure.)

wst(φ) = 9
∑
α<β

γαβφ
2
αφ

2
β (2.7)

or a higher order variant

w̃st(φ) = wst(φ) +
∑

α<β<δ

γαβδφ
2
αφ

2
βφ

2
δ. (2.8)

For practical computations the multi-obstacle potential yields good cali-
bration properties. It is defined by

wob(φ) =
16
π2

∑
α<β

γαβφαφβ , (2.9)

with a higher order variant

w̃ob(φ) = wob(φ) +
∑

α<β<δ

γαβδφαφβφδ, (2.10)

where wob and w̃ob are defined to be infinity whenever φ is not on the Gibbs
simplex. In Figs. 2.3 and 2.4, we show a plot of both expressions, the multi-well
and the multi-obstacle potential for the case of three phases (N = 3).

We refer to [GNS99a] and [GNS99b] for a further discussion of the proper-
ties of the surface terms wst, w̃st, wob and w̃ob. We assume for simplicity that
a(φ,∇φ) and w(φ) and, hence, the interfacial contributions to the entropy,
do not depend on (T, c).
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Fig. 2.4. Plot of the multi-obstacle potential wob(φ) for N = 3 and equal surface
entropy densities γαβ. (See page 684 for a colored version of the figure.)

2.2 Evolution equations

The energy and mass balance equations can be derived from the energy flux
J0 and from the fluxes of the components J1, . . . , JK by

∂e

∂t
= −∇ · J0 energy balance, (2.11)

∂ci
∂t

= −∇ · Ji mass balances (2.12)

and are coupled to a set of phase-field equations

τε
∂φα
∂t

=
δS

δφα
− λ phase-field equations, (2.13)

in such a way that the second law of thermodynamics is fulfilled in an appro-
priate local version.

In order to derive the expressions for the fluxes J0, . . . , JK , we use the
generalized thermodynamic potentials δS

δe = 1
T and δS

δci
=

(−µi

T

)
, which will

drive the transition. Now, we appeal to nonequilibrium thermodynamics and
postulate that the fluxes are linear functions of the thermodynamic driving
forces ∇ δS

δe ,∇
δS
δc1
, . . . ,∇ δS

δcK
to obtain

J0 = L00(T, c, φ)∇ δS
δe +

∑N
j=1 L0j(T, c, φ)∇ δS

δcj

= L00(T, c, φ)∇ 1
T +

∑N
j=1 L0j(T, c, φ)∇−µj

T ,

Ji = Li0(T, c, φ)∇ δS
δe +

∑N
j=1 Lij(T, c, φ)∇ δS

δcj

= Li0(T, c, φ)∇ 1
T +

∑N
j=1 Lij(T, c, φ)∇−µj

T ,
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with mobility coefficients (Lij)i,j=0,...,K . To fulfill the constraint
∑K

i=1 ci = 1
in Eq. (2.1) during the evolution, we assume

K∑
i=1

Lij = 0, j = 0, . . . ,K,

which implies
∑K

i=1 Ji = 0, and, hence, ∂t(
∑K

i=1 ci) = ∇ · (
∑K

i=1 Ji) = 0. We
further assume that L is symmetric (Onsager relations) and positive semidef-
inite; i.e.,

K∑
i,j=0

Lijξiξj ≥ 0 ∀ξ = (ξ0, . . . , ξK) ∈ RK+1.

This condition ensures that an entropy inequality is satisfied. Cross effects
between mass and energy diffusion are included in the model. One can neglect
them by setting Li0 = 0 and L0j = 0 for all i, j ∈ {1, . . . ,K}. In general, the
mobility coefficients (Lij)i,j=0,,...,K are allowed to depend on T , c and φ. Given
some heat and mass diffusion coefficients, k = k(T, c,φ) andDi = Di(T, c,φ),
the mobility coefficients Lij read

Lji = Lij =
vm
Rg
Dici

(
δij −

Djcj∑K
k=1Dkck

)
, (2.15)

for i, j = 1, . . . ,K and then recursively define

L0j = −vm
Rg

N∑
α=1

K∑
i=1

Ljih(φα)Lαi , (2.16)

L00 = kT 2 +
vm
Rg

N,N∑
α,β

K,K∑
i,j

h(φα)Lαi Ljih(φβ)Lβj , (2.17)

where δij denotes the Kronecker delta and Lαi are the latent heats of fusion.
The formulation in Eqs. (2.15)-(2.17) takes bulk diffusion effects includ-

ing interdiffusion coefficients into account. The dependence of the mass and
heat diffusion coefficients on φ can be realized by e.g. linear expansions. To
also consider enhanced diffusion in the interfacial region of phase or grain
boundaries, additional terms proportional to φαφβ with interfacial diffusion
coefficients Dαβ

i (T, c, qαβ) need to be added. Altogether, we suggest for mass
and heat diffusion

Di =
N∑
α=1

Dα
i (T, c)φα +

1
ε

∑
α<β

Dαβ
i (T, c, qαβ)φαφβ , (2.18)

k =
N∑
α=1

kα(T, c)φα, (2.19)
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i.e. in particular that the diffusion coefficients in Eq. (2.15) and (2.17) can be
anisotropic.

For the nonconserved phase-field variables φ1, . . . , φN , we assume that the
evolution is such that the system locally tends to maximize entropy conserving
concentration and energy at the same time. Therefore, we postulate

τε∂tφα = ε
(
∇·a,∇φα(φ,∇φ)−a,φα(φ,∇φ)

)
−w,φα(φ)

ε
−f,φα(T, c,φ)

T
−λ,

(2.20)
where we denote with a,φα , w,φα , f,φα and a,∇φα the derivative with respect
to the variables corresponding to φα and ∇φα, respectively.

For material systems with anisotropic kinetics, the kinetic coefficient τ
may depend on the generalized gradient vectors qαβ in a similar way as the
gradient energies a(φ,∇φ) in Eq. (2.5). The quantity τ = τ(φ,∇φ) in Eq.
(2.13) models an anisotropic kinetic coefficient of the form

τ(φ,∇φ) = τ0 +
∑
α<β

Bαβ(qαβ)

with Bαβ(qαβ) = 0 if qαβ = 0. Possible choices are

Bαβ = τ0
αβ

(
1 + ζαβ

(
3± 4

|qαβ|44
|qαβ |4

))
− τ0 or (2.21)

Bαβ = τ0
αβ max

1≤k≤rαβ

{ qαβ
|qαβ |

· ξkαβ
}
− τ0, (2.22)

if qαβ �= 0 for weakly cubic (Eq. (2.21)) or strongly facetted (Eq. (2.22))
kinetic anisotropies with rαβ corners ξkαβ . ζαβ determines the strength of the
kinetic anisotropy similar to δαβ in Eq. (2.5) for the surface energy anisotropy.
Systems with isotropic kinetics are realized by setting ζαβ = 0.

λ is an appropriate Lagrange multiplier such that the constraint
∑N

1 φα =
1 in Eq. (2.1) is satisfied; i.e.,

λ =
1
N

N∑
α=1

[
ε
(
∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ)

)
− 1
ε
w,φα(φ)− f,φα(T, c,φ)

T

]
It has been shown in [GNS04] as a result that inequality

∂t(entropy) = ∂t

(
s(e, c,φ)− εa(φ,∇φ)− 1

ε
w(φ)

)
≥ −∇ ·

(
K∑
i=0

−µi
T
Ji − ε

N∑
α=1

a,∇φα∂tφα

)

holds and therefor the derived phase-field equation ensures a positive local
entropy production.
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2.3 Non-dimensionalization

A dimensionless form of the system of governing equations was necessary on
account of computational efficiency and accuracy. To non-dimensionalize the
system with respect to time, space, temperature and inner energy density, we
assume

t[s] = τ∗ · t̃, x[m] = � · x̃, T [K] = ϑ · T̃ , e

[
J

m3

]
= (cvϑ) · ẽ,

where t̃, x̃, T̃ , ẽ are dimensionless and τ∗[s], �[m], ϑ[K], cv[J/m3K] are refer-
ence quantities. The notation˜indicates dimensionless quantities. Introducing
dimensionless latent heats L̃αi and a rescaled gas constant R̃v, the chemical
potential µj (Eq. (2.2)) follows as

µj

[
J

m3

]
= (cvϑ)·µ̃j with Lαi

[
JK

m3K

]
= (cvϑ)·L̃αi , R

[
J

molK

]
= vmcvR̃v.

With the dimensionless mobility coefficients (Eqs. (2.15)-(2.17)) L̃00, L̃0j , L̃i0,
L̃ij of the form

L00

[
JK

sm

]
=
�2cvϑ

2

τ∗
L̃00, L0j

[
m2K

s

]
=
�2ϑ

τ∗
L̃0j,

Li0

[
m2K

s

]
=
�2ϑ

τ∗
L̃i0, Lij

[
m5K

Js

]
=

�2

cvτ∗
L̃ij .

and with the dimensionless mass and heat diffusivities

Dα
i

[
m2

s

]
=
�2

τ∗
D̃α

i and kα
[

J

msK

]
=
�2cv
τ∗

k̃α,

the energy and mass diffusion equations (Eqs. (2.11) and (2.12)) can directly
be used with dimensionless quantities.

The phase-field equations with the surface contributions a(φ,∇φ) (Eq.
2.4) and w(φ) (Eqs. (2.7) - (2.10)) are treated as follows: The surface entropy
densities γαβ , the kinetic coefficients τ and the interface width ε are scaled as

γαβ

[
J

m2K

]
= γ0 · γ̃αβ , τ = τ0 · τ̃ and ε[m] = ε̃ · �.

Inserting these quantities into the phase-field equation (Eq. (2.13)) (both sides
with the dimension of an entropy density [J/m3K]) and division by cv gives

τ̃ ε̃
τ0�

τ∗ cv
∂t̃φα = ε̃

γ0

�cv

(
∇̃ · ã,∇̃φα

(φ, ∇̃φ)− ã,φα(φ, ∇̃φ)
)

−1
ε̃

γ0

�cv
w̃,φα(φ)− f̃,φα(T, c,φ)

T̃
− λ̃, α = 1, . . . , N.
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Table 2.1. Data set for pure Ni with dimensional and nondimensionalized values

Parameter label unit dim. value nondim. value

melting temperature Tm K 1728 1.0
latent heat L J/m3 2.35 · 109 0.251
specific heat cp J/m3K 5.42 · 106 1.0
average surface tension σ0 J/m2 0.37 1.58 · 10−4

thermal diffusivity kT m2/s 1.55 · 10−5 1.991 · 10−2

surface energy anisotropy δc 0.018
kinetic anisotropy δk 0.13

When making the choice γ0 = �cv and τ = �τ0
cv

, the phase-field equation
retains its original form (Eq. 2.13) with dimensionless quantities instead of
the dimensional ones. Finally, if we consider the Gibbs-Thomson equation de-
scribing the motion of a sharp interface with the curvature κ (square brackets
indicate a jump of the respective value)

βαβ v
[m
s

]
= γαβ

[
J

m2K

]
κ

[
1
m

]
+

([f ]βα −
∑

i µ̄i [ci]
β
α)

T

[
J

m3K

]
, (2.23)

it can easily be seen that the mobility coefficients βαβ are equal to the kinetic
coefficient τ in the phase-field equation (Eq. (2.13)).

The length scale parameter � can be related to the size of the domain
resolved with Nx grid points. In the case of the pure Ni system, the size of
a thermal dendrite is Nx · � · ∆x̃ = 2 · 10−5m. With a feasible number of
gridpoints Nx = 500 and a dimensionless cell spacing ∆x̃ = 1.0, we have
� = 4.0 · 10−8m. Using thermophysical data for pure Ni from [BK*02], we
obtain the nondimensional data set listed in Table 2.1.

3 Numerical Methods

In the previous section, a general multi-component multi-phase-field model
was formulated leading to a system of coupled partial differential equations
(Eqs. (2.11) - (2.13)). In the general case, there will be one energy equation,K
concentration equations and N phase-field equations to be solved numerically.

Our numerical algorithm for solving the general system of equations is
based on a finite difference scheme with explicit time update on a regular grid.
Despite its disadvantages concerning stability and limited time step size, this
straight forward approach is justified by the applicability of various sophisti-
cated techniques to reduce the computational effort and to save memory. This
becomes especially important when treating problems with a high number of
phases N as in the case of grain growth. Further, the coupling of the numer-
ical scheme with finite difference solvers for fluid flow or elasticity is greatly
facilitated (the approach of coupling to a Navier-Stokes solver is specified in
[SNW05]). In the following, the discretization of the balance equations (Eqs.
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(2.11) and (2.12)) and of the phase-field equation (Eq. (2.13)) is considered
in detail.

The phase-field variable φα defines the smallest length scale and the largest
spatial gradients due to its rapid change from 0 to 1 over the width of the inter-
face. When using a regular grid, it must be chosen fine enough to adequately
resolve the diffuse interface layer of the phase-field variables. Depending on
the kind of spatial discretization, it should extend over at least 5 to 10 grid
points. The diffusion lengths for the temperature T and for the concentrations
ci are much greater than the interface width, so that one could consider the
application of lower grid resolutions for these conserved fields. We anticipate
this option to keep a higher accuracy, since over the diffuse layer in general,
both, the phase-field as well as the diffusion fields may change rapidly.

3.1 FD discretization and staggered grid

The complete set of evolution equations of the model (Eqs. (2.11) - (2.13)) can
be treated in the following simplified divergence form, where ul, um stands for
the respective field quantity (l,m indicative for e, ci, φα):

∂ul
∂t

= rhs = ∇ · f
(
um,

∂um
∂xi

)
, (3.1)

All terms including field variables and their spatial derivatives are arguments
of the vector valued function f . In case of the phase-field equation (Eq. (2.13))
the right hand side (rhs) contains additional source terms, which in general
are small by a value compared to the divergence term, so that the general
character of Eq. (3.1) is kept preserved. Concerning the time discretization,
an explicit forward Euler scheme is applied with a time update according to
ul

n+1 = ul
n +∆t · rhsn (time steps are superscripted). This explicit scheme

requires a control of the temporal step width ∆t for each individual equation.
For the case of a 3D simulation and an identical grid step width ∆x in each
space dimension, the criterion for stability would suggest a stepwidth of

∆t ≤ min

{
∆x2

6kmax
,
∆x2

6Dmax
,
∆x2

6 γαβ

τ0

}
,

where kmax and Dmax are the maximum values for all heat and mass diffu-
sion coefficients, γαβ is the maximum surface entropy coefficient among all
appearing phases and τ0 is the kinetic coefficient.

Since the right hand sides of the conserved order parameter equations (Eqs.
(2.11) and (2.13)) as well as the first term in Eq. (2.13) consist of a divergence
term, a two-step algorithm was developed: First, the vector flux quantities are
calculated using right-sided finite differences and they are stored in a memory
buffer for multiple access. This buffer holds the flux values of three adjacent
2D-layers during the layerwise calculation, shifted through the 3D grid along
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the z-direction. In a second step, the divergence is evaluated using left-sided
differences. This results in an extremely memory saving numerical scheme
without any redundant calculations, since for each field variable only a single
3D array must be stored in memory ([WN06]). The spatial discretization of
the phase-field and of the balance equations differs and is described in the
following paragraph.

Balance equations:

In the nonlinear energy and mass diffusion equations, the physical diffusion
coefficients are incorporated in the Onsager coefficients Lij , which may depend
on φ, c and T . The discretization on a regular grid with spatial indices (i, j, k)
for the following simplified energy equation (mass diffusion cross terms have
been omitted for clarity):

∂e

∂t
= −∇ · J0 = −∇ ·

(
L00(T, c,φ)∇

( 1
T

))
(3.2)

is accomplished in the FTCS scheme (forward in time, centered in space).
First, to compute the divergence on the right hand side of Eq. (3.2), all com-
ponents of the energy flux vector are assembled. For a grid cell with indices
(i, j, k) the spatial derivatives are approximated with right sided finite differ-
ences, and the Onsager coefficients L00 are evaluated at the respective inter-
mediate grid positions, in the center boundary of two adjacent grid cells (see
Fig. 3.1 b)). For example, the x component of the energy flux reads:

L00
∂

∂x

( 1
T

)∣∣∣
i,j,k

� L00

∣∣∣
i+ 1

2 ,j,k
D+

x

( 1
T

)∣∣∣
i,j,k

(3.3)

with
L00

∣∣
i+ 1

2 ,j,k
=

1
2
(
L00

∣∣
i+1,j,k

+ L00

∣∣
i,j,k

)
and

D+
x

( 1
T

)∣∣∣
i,j,k

=
1
∆x

(
1
T

∣∣∣
i+1,j,k

− 1
T

∣∣∣
i,j,k

)
,

where D+
x indicates the forward difference operator in x direction. As a next

step, the divergence operation is carried out using left sided finite differences
of the flux components in Eq. (3.3). The resulting spatial-temporal scheme
has an accuracy of convergence of order (∆x)2 in space and of order ∆t in
time.

Phase-field equations:

For the phase-field equation (Eq. (2.20)), the correct treatment of anisotropy
in the gradient entropy density a(φ,∇φ) is important, especially when re-
ducing the numerical interface to a desirable low number of grid points.
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Fig. 3.1. a) Schematical view of a two-phase region with diffuse interface (shaded)
and generalized gradient vector qαβ . b) 2D sketch of the finite difference grid with
the field variables φ, c, T at central positions (◦), q-vectors and with transport
coefficients Lmn at staggered positions (×).

It is convenient to keep the formulation using generalized gradient vectors
qαβ = φα∇φβ − φβ∇φα (Fig. 3.1 a)) in the solution algorithm. We take
a(φ,∇φ) in the form of Eqs. (2.3) and (2.4) and carry out the variational
derivatives with respect to ∇φα and φα to get the two anisotropic rhs terms
of the phase-field equation, namely:

a,∇φα =
∑
β �=α

∂Aαβ

∂qαβ
(−φβ) (3.4)

a,φα =
∑
β �=α

∂Aαβ

∂qαβ
∇φβ (3.5)

with
∂Aαβ

∂qαβ
=2 γαβ

(
ac(qαβ)

∂ac
∂qαβ

|qαβ |2 + a2
c(qαβ) qαβ

)
. (3.6)

The entropy flux term a,∇φα in Eq. (3.4) needs a special attention due to
the influence of the anisotropy function ac(qαβ). Three different vectors qxαβ ,
qyαβ and qzαβ are computed for each grid point, evaluated at the upper side
x, y and z boundaries of the cell volume. The spatial derivatives of φα on
these staggered grid positions include a combination of right-sided and cen-
tral differences of the neighboured grid positions (see Fig. 3.1). To compute
each spatial component of the vector valued function a,∇φα , the respective
vector qx,y,zαβ is used. The divergence of a,∇φα appearing in Eq. (2.20) is cal-
culated subsequently with left sided differences, taking advantage of the same
3-layer buffer mechanism as described above. For the second anisotropic term,
a,φα , the gradient vectors qαβ are evaluated at central positions using central
differences of φα.
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We find that by this treatment (equivalent to a 16-point stencil) a second
order accuracy in space is obtained. For the 2D case the discretization is
equivalent to the scheme published in [And00]. If no anisotropy is present,
qαβ can be calculated exclusively with right-sided differences of φα within a
7-point stencil, in this case sufficient to guarantee second order accuracy.

3.2 Optimization of the Computational Algorithm

The phase-field model has been implemented in its complete generality for
simulations in 2D and 3D describing phase transitions with energy and mass
diffusion in alloy systems for an arbitrary number of components and phases.
An extensive program package (PACE3D : Parallel Algorithms for Crystal
Evolution in 3D) was developed in the programming language C due to perfor-
mance reasons, but uses an object oriented approach; a data base is provided
to choose different formulations of free energies, anisotropies, potentials, mass
and heat diffusion functions. Moreover, artificially generated noise of vari-
ous distributions can be added to the phase-field variable (non-conservative)
or to energy or concentration fields (conservative noise). Several adaptive
strategies reduce the computational effort:

• The equations for the phase fields are exclusively solved in their respective
diffuse interface area by the use of an activation flag field. This field is set
in each time step by an optimized gradient test routine.

• A dynamical memory concept reduces the memory costs especially for a
high number of phase-field variables: For the majority of the grid points,
φα assumes values of 1.0 or 0.0 in all regions of pure bulk phases and can
be referenced by pointers to constant unit vectors.

Since both strategies are especially effective with a narrow interface profile,
we favorize the use of the multi-obstacle potential in Eq. (2.9). This potential
has a strong separating character and reduces the number of interface grid
points (with 0 < φi,j,k < 1).

For most alloy systems, there are great differences in the thermal and mass
diffusivities leading to differences in the evolutional time scale. If the Eqs.
(2.11) and (2.12) are solved conjointly, the stability criterion demands for the
use of the small time step width which is usually the heat diffusion scale.
To reduce the computational effort, different step widths, integer multiples of
the smallest (heat diffusion) scale, are used to solve the three kinds of Eqs.
(2.11),(2.12) and (2.13).

3.3 Parallelization

Two parallelization concepts of the finite difference algorithm are integrated
in the source code and can be chosen aside or in combination: For high perfor-
mance computing on Linux clusters, distributed computing is realized via
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the (LAM-) Message Passing Interface (MPI) routines. The approach splits
the three-dimensional simulation grid into multiple sub-grids, so that each
available node gets assigned a specific part of the simulation space. To avoid
unnecessary complexity of the code and to reduce boundary data exchange,
the simulation is exclusively subdivided along the z-direction. In this way, we
have minimal interdependencies between neigbouring simulation subdomains
and a maximum speedup factor, a result of extensive software tests. By map-
ping the number Nz of grid points in z-direction to its value nz in each node
subdomain, we are able to use the same code base as well as simulation de-
scription for serial as well as distributed simulations, effectively decoupling
the simulation from the hardware executing it. An MPI-based boundary ex-
change mechanism ensures that before each simulation time step commences,
the outer planes of each node are copied into the excess space, provided by
its immediate neighbour. A more extensive description of the parallelization
can be found in [NW*05]

An additional approach to exploit the power of multiprocessor worksta-
tions and supercomputers was realized by shared memory parallelization
via OpenMP: the execution of the spacial loops is subdivided into different
threads running on different processors of a single node. Therefore, only slight
modifications of the code are necessary, e.g. the introduction of indexed loop
variables.

An important feature for parallel phase-field simulations is the implemen-
tation of an appropriate load balancing mechanism. Due to the advancing
fronts, which require more calculations, the demand for computational power
is locally non-uniform. In our case, this was achieved by performing statistics
of the load of each node and of the data transfer times. A redistribution of
the simulation area after an optimal number of time steps is initiated. Addi-
tionally, to adapt the code to networks with lower capabilities requiring data
compression, we evaluate run-length and quadtree encoding of the exchanged
boundary data.

4 Applications

To give an impression about the applicability of the model and simulation
tools, a selection of different microstructures examined in more detail is given
below. Here our focus lays on solidification processes in pure (Ni), in binary
alloys (Ni/Cu) and on the description of grain growth phenomena. In the
simulations, the complete binary coded data for temperature, concentrations
and phase-field parameters is stored in floating point accuracy and analyzed
a posteriori. To tackle the problem of 3D data analysis, a complete software
toolbox was developed, including means for visualization, determination of
front velocity, temperature and gradients, calculating contour lines, one and
two dimensional intersection profiles and growth rates.
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Fig. 4.1. a) Phase-field profile of a planar front growth in an undercooled melt (pure
Ni) for high grid resolution (double well potential). b) Phase-field and temperature
profiles with reduced resolution ensuring sufficient accuracy.

4.1 Parameter Tests

To verify the accuracy of the numerical method, different grid sizes and pa-
rameter tests were carried out for the Ni and NiCu data sets. The predictions
of the Gibbs-Thomson equation (Eq. (2.23)) for the growth of a planar front
resp. a spherical shape with radius R were examined. For these simple cases,
where the curvature κ is equal to 0 resp. to 1/R, the tests gave the predicted
growth velocities v by Eq. (2.23) very closely. Finite size effects of the numer-
ical grid were verified over a long simulation period by evaluating the shape
deformations of a spherical solid in equilibrium with the surrounding melt.
With the lateral and diagonal radii R10 and R11 from the simulation the grid
anisotropy δgrid = R10−R11

R10+R11
was evaluated. Grid anisotropy was found to be

always much below the anisotropy strength δ for sphere diameters greater
than 20 grid points with the Ni dataset (Table 2.1). 1D simulations of planar
front solidification with a diffusion field were used to optimize the values of
the grid spacing ∆x̃ and of the diffuse interface width ε with respect to an
agreement with the analytical solution.

The calculated phase-field profile corresponds well with the expected
1
2 (1 − arctan(x − x0)/ε) shape (Fig. 4.1 a)) and the temperature profile fol-
lows a erfc(x−x0) form (Fig. 4.1 b)) as expected from literature (cp. [Dav01]).
x0 denotes the front location. As a result the diffuse interface is adequately
resolved with about 5 to 8 grid points to produce correct results.

4.2 Dendritic Growth

The 2D and 3D simulations of dendritic solidification in pure Ni were accom-
plished with the dimensionless dataset of Table 2.1. In the simulation runs, a
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Fig. 4.2. a) A dendrite in a channel of width l with tip radius R and with a finger
width λ (l = 15 µm); b) liquid finger growth for a narrow channel with l = 1 µm.

small amplitude of gaussian distributed noise was added to the front, strong
enough to initiate the evolution of dendritic side arms. An example for this
pattern in 3D, an equiaxial Ni dendrite, is given in Fig. 4.5 c).

Real alloy microstructures are determined by the competitive growth with
a high number of initial dendrite tips, often starting from a planar configu-
ration. A quick selection of the tip spacing due to the retarding effect of the
emitted latent heat at the front follows, so that only a few dendritic fingers
survive. 2D simulations to study the influence of the dendritic spacing l, of the
undercooling ∆ = cp(Tm − T )/L and of the crystal orientation were carried
out. In order to mimic the situation of an array of dendrites, a single nucleus
was confined in a long simulation domain with isolation boundary conditions
at the bottom and periodic conditions at the long sides. The calculations were
executed until the tip velocity approximated an asymptotic value, i.e a steady
state was reached. The microscopic solvability theory predicts the operating
conditions for a steady state dendrite tip with radius R (inversely proportional
to the tip curvature) and tip velocity vtip [BM91]. In Fig. 4.2 a) the geometric
parameters of a channel dendrite: the tip radius R, the finger width λ and
the channel spacing l are shown. The tip radius was determined by fitting
a parabola to the tip region, as indicated by small circles. In a first series
the spacing was varied over more than one order of magnitude at a constant
undercooling ∆ = 0.4. The grid resolution therefore was adapted to avoid
finite size effects for narrow channels. The relation of the finger width and of
the channel spacing λ/l shows a clear increase from an asymptotic value of
λ/l = 0.4 for large spacings to λ/l = 0.85 at l = 1.0 µm (cp. Fig. 4.3 a)),
which can be explained with the increasing surface tension in a narrow chan-
nel. This can also be seen in Fig. 4.3 b), where the tip radius R deviates at the
left side from the strictly logarithmic characteristics for wider channels. Also
we observe for narrow channels an unsteady evolution of the tip and a viscious
finger like behaviour of the interface shape (Fig. 4.2 b)), in accordance with
an earlier phase-field study on a model data set [SPG01].

The orientation dependency, an important question when considering sit-
uations with more than one nucleus, is essential for selection and overgrowth
phenomena during grain formation processes in alloy systems. The effect on
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Fig. 4.3. Variation of the dendritic spacing l. a) dendritic finger width λ and
fraction λ/l, b) tip radius R (dashed line: value for an equiaxial dendrite).

the growth velocity v for an increasing orientation angle between the den-
drite and the long channel direction is given in Fig. 4.4 a). The profile of the
dendrite becomes asymmetric with side arms starting to evolve exclusively in
the front direction. At an angle of more than 40◦ two dendritic tips start to
compete, so that in a narrow channel a transition to cellular growth takes
place (Fig. 4.4 b and c).

Some examples for dendritic array simulations in 3D are shown in Fig. 4.5.
A single dendrite in a 7.5 µm channel (a) develops an approximately quadratic
cross section. Chart b) presents an array of dendrites emerging from a rough
front with a 15◦ inclined orientation with respect to the surface normal. Due
to the compact growth pattern, only a minor side arm formation appears as
compared to the equiaxed single nucleus in chart c) (domain: 15 µm).

For comparison, the case of solutal growth in a Ni0.59Cu0.61 melt with
an isothermal undercooling of 20 K below solidus is shown in Fig. 4.6. The
dendrite evolves with a pronounced side arm formation. The dependence of

Fig. 4.4. Variation of the orientation angle φ. a) tip vtip and front velocity vfront =
vtip cos(φ). Contour plots of growing dendrites with an orientation of 45◦ in a narrow
channel (b)) and in a wide domain (c)).
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Fig. 4.5. 3D Ni dendritic growth at an undercooling of ∆ = 0.6. a) single chan-
nel dendrite, b) dendritic array with an orientation inclination of 15◦ with rsp. to
normal, c) equiaxial dendrite. (See page 685 for a colored version of the figure.)

the tip velocity on the channel width is negligible when exceeding a critical
width, since the solutal diffusion coefficient is three to four orders of magnitude
lower than the thermal coefficient in pure Ni. However, for NiCu a strong
dependence on the growth orientation φ (anisotropy direction) was found. The
plot of the tip velocity vtip in Fig. 4.6 b) indicates the occurance of a minimum
at an angle of 15◦, whereas the actual front velocity vfront = vtip cos(φ) shows
only minor changes within a range of 15◦ to 35◦.

a) b)

Fig. 4.6. Channel growth for the Ni0.59Cu0.61 system. a) Single dendrite arm (unro-
tated) with Ni concentration map. b) Dependancy on orientation: tip vtip and front
velocity vfront = vtip cos(φ).
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4.3 Eutectic Growth

In the following, microstructure simulations of binary and ternary phase trans-
formation processes are shown to illustrate the wide variety of realistic growth
structures and morphologies in multicomponent multiphase systems that can
be described and investigated by the phase-field model. Fields of applications
are eutectic grain boundary formations and structure evolutions in ternary
systems [RMC03] as well as eutectic colony growth involving ternary impu-
rity effects [AF00] which will be shown by the following examples.

To perform the simulations in Figs. 4.7-4.13, we considered a ternary eu-
tectic model alloy of three components A, B and C (i = 1, . . . , 3), three solid
phases α, β, γ (α = 1, . . . , 3) and one liquid phase L (α = 4). We non-
dimensionalized the model equations (Eqs. (2.11-2.13)) and, for initialization
of the computations, chose the following parameter set: Equal grid spacings
for the two/three coordinates at a value ∆x = 0.01, a diffuse interface thick-
ness ε = 0.05, surface entropy densities γαβ = 0.001, an isotropic kinetic
coefficient τ = 0.2, zero diffusion in the solid phases Dα,β,γ

i=1,...,3 = 0.0 and dif-
fusion coefficients in the liquid DL

i=1,...,3 = 0.01. Further, we constructed a
completely symmetric phase diagram with dimensionless data for the latent
heats of fusion Lαi and for the melting temperatures Tα

i :

(Lαi ) i=1,...,3
α=1,...,4

=

⎛⎝1.47 1.00 1.00 0.00
1.00 1.47 1.00 0.00
1.00 1.00 1.47 0.00

⎞⎠ (4.1)

(Tα
i ) i=1,...,3

α=1,...,4
=

⎛⎝1.50 0.50 0.50 0.00
0.50 1.50 0.50 0.00
0.50 0.50 1.50 0.00

⎞⎠ , (4.2)

where α = 4 is assumed to be the liquid phase L. As a result, the phase
fractions of the three solid phases at the ternary eutectic temperature are
equal. Further, we considered the solidification process under the condition of
isothermally undercooled melts.

In Fig. 4.7, the formation of two eutectic grains in the binary A−B ’edge’
system of initial composition (cA, cB, cC) = (0.5, 0.5, 0.0) has been simulated
in a 2D domain of 270 × 540 grid points. The simulation involves pattern
formation on different length scales. On a larger scale, grains with different
orientations due to anisotropy of the surface entropy densities γαβ grow and
form a eutectic grain boundary. To include anisotropic effects, we used the
facetted formulation of Eq. (2.6) for a cubic crystal symmetry and defined
two sets of four corners for the upper and for the lower grain, whereas the
corners of the lower grain are rotated by 10◦ with respect to the growth di-
rection. On a smaller scale, a lamellar eutectic substructure solidifies: Below a
critical eutectic temperature Te (here Te = 1.0), a parent liquid phase L trans-
forms into two solid phases α and β in a binary eutectic reaction: L→ α+ β.
The white and light grey colored regions as well as the black and dark grey
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Fig. 4.7. Growth of two eutectic grains (white/black and light/dark-grey) of a
binary A-B alloy with different crystal orientations into an isothermally undercooled
melt (continuous grey scale) at four time steps.

colored regions represent the same solid phases, namely α and β, with just
a different orientation. The results illustrates the capability of the model to
distinguish several phases and grains at the same time. The images visualize
the phase evolution and the concentration profile of the alloy component B in
the liquid ahead of the growing solid phases at different time steps. Concen-
tration depleted zones occur in dark grey and concentration enriched zones
appear in light grey.

Fig. 4.8 shows in a) 2D and in b) 3D simulations results of regular eu-
tectic lamellae growing from an undercooled melt with initial composition
(cA, cB, cC) = (0.5, 0.5, 0.0). In a symmetric phase system, the two solid phases
grow with equal phase fractions. At off-eutectic composition c = 0.4, the vol-
ume fractions of the two solid phases are different. The proportions of the
phase fractions in our simulations can well be related to the classical lever
rule. Next, we investigate the widely observed phenomenon of regular oscil-
lations along the solid-solid interface driven by the motion of the triple junc-
tions, see Figs. 4.9 and 4.10. A transition from stable lamellar growth to an
oscillatory structure is found for varying initial phase fractions at the eutectic
composition. A characteristic amplitude and wave length of the oscillation is
established during solidification. The 3D microstructure performs an alter-
nating topological change from α-solid rods embedded in a β-solid matrix to
β-solid rods embedded in an α solid matrix and so on.

Depending on the position in the phase diagram, ternary alloy solidifica-
tion may involve phase changes of four different phases and diffusion of three
alloy components A, B and C. At the ternary eutectic composition, three solid
phases grow into an undercooled melt via the reaction L→ α+β+γ. While si-
multaneously growing, the solid phases mutually enhance each other’s growth
conditions as they reject opposite components of the alloy into the liquid. We
have set an equal initial composition vector of (cA, cB, cC) = (0.3, 0.3, 0.3).
For isotropic phases, this leads to very regular lamellar structures as those in
Fig. 4.11 a) and b). The three images in a) display the concentration fields of
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a)

b)

Fig. 4.8. Establishment of regular lamellar solidification at the eutectic composition
in 2D (a) and 3D (b). (See page 685 for a colored version of the figure.)

Fig. 4.9. Regular oscillations along the solid-solid interface driven by the motion
of the triple junction/triple line in 2D. (See page 685 for a colored version of the
figure.)

the three componentsA, B andC in front of the growing eutectic lamellae with
a phase sequence of α|β|α|γ|α| . . . at the same intermediate time step. It can
be observed that the white α phase consumes component A from the melt and
pushes components B and C into the melt. The respective process happens for
the two other solids β and γ. For comparison of the diffusion fields, Fig. 4.11b)
shows the concentration of C for a phase sequence α|β|γ|α| . . . By performing
phase-field simulations, the stability of different phase sequences for varying
solidification conditions can be investigated. The diffusion processes of the
three components are illustrated in a 2D domain of size 200× 200.

Fig. 4.12 shows a time sequence of a 3D simulation of ternary eutectic
solidification in a computational domain 60× 90× 90. The computation was
initialized with cubic crystal shapes. During the evolution, a regular hexagonal
structure of the three isotropic solid phases with 120◦ angles between the solid
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Fig. 4.10. Topological change of the microstructure due to oscillations along the
solid-solid interface in 3D. (See page 686 for a colored version of the figure.)

a) b)

Fig. 4.11. a) Concentration fields cA, cB and cC of a ternary eutectic lamellar
solidification front with a solid phase configuration (α|β|α|γ| . . .). b) Concentration
field cC for a phase sequence (α|β|γ| . . .).

Fig. 4.12. Formation of a 3D hexagonal rod-like structure in a ternary eutectic
system with isotropic surface energies and three different solid phases α, β and γ.
(See page 686 for a colored version of the figure.)

phases is established as steady growth configuration in 3D in analogy to the
lamellar structure in 2D. This symmetry breaks if anisotropy is included.

The simulation in Fig. 4.13 was conducted with an initial composition vec-
tor of (cA, cB, cC) = (0.47, 0.47, 0.06) so that the concentration component cC
acts as a ternary impurity of minor amount. As can be seen in the first two
images, the solid phase α in white color is formed by using up the concentra-
tion cA whereas solid phase β rejects A atoms. If a γ solid phase containing
cC as its major composition is introduced, it is instable and immediately dis-
solves for these concentration proportions. Neither the α phase nor the β
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Fig. 4.13. Simulation of lamellar eutectic growth in a ternary system with an
impurity component cC : The concentration profile of the main component cA in melt
is shown in the left and centered images for two time steps. The ternary impurity cC

is pushed ahead of the growing eutectic front so that concentration enriched zones
of component cC can be observed at the solid-liquid interface in the right image.

phase engulfs the concentration cC so that it increases all along the solid-
liquid interface. The simulated evolution process recovers the experimentally
observed effect that the impurity becomes enriched ahead of the solidifying
lamellae and builds up. At larger computational domains, we expect the effect
of cell/colony formation to occur.

4.4 From Solidification to Grain Coarsening

A problem with a high relevance to technical applications is the evolution of
polycrystalline alloy microstructures consisting of many grains with individ-
ual orientations. Solidification as well as grain boundary and concentration
reorganization are successive steps in casting respectively heat treatment.

The influence of crystal anisotropy is very important when examining non-
equilibrium structures such as dendrites or the interaction of different crystal
grains in a polycrystal. In our model, we treat each grain as an individual
phase with its own orientation, given by three angles of rotation with respect
to the coordinate axes. This approach is not the computationally most effec-
tive one as compared to two-phase models with an additional misorientation
variable (cp. [GP*04]), but offers benefits with respect to accuracy and pa-
rameter choice: if the angular dependence of the surface free energy is given,
correct surface energy contributions are incorporated and no additional un-
known model parameters, such as the mobility of reorientation, are necessary.

Concerning the numerical realisation in the model withN phases, anN×N
matrix is automatically generated at simulation start and keeps the informa-
tion of the orientation relations of each α−β interface. More precisely, a special
anisotropy is not related to a phase with a special orientation, but rather to a
phase boundary. This has the great advantage, that each α-β phase boundary
can be related to an individual surface energy as well as to an inclination
dependence. Both parameters: the misorientation of two grains and the in-
clination of the grain boundary with respect to a coordinate system fixed in
one of the grains, affect the surface energy (see Kazaryan et. al. [KW*00]). In
the phase-field equation, only two additional matrix multiplications, one for
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Fig. 4.14. Treatment of multi-phase anisotropy: For three solid phases α, β and γ,
the anisotropy with respect to the liquid as well to each solid phase must be defined.
Numerically, the qαβ vectors are rotated by the misorientation angle θα − θβ and
then used in the phase-field equation.

rotating the qαβ-vector and another for back-rotating the resulting entropy
flux vector a,∇φα (Eq. (3.4)) enter the program sequence. Fig. 4.14 gives an
overview of this relationship.

For the simulations presented in the following, the NiCu data set from
Sect. 4.2 with identical initial conditions (melt composition: Ni0.59Cu41, 20
K below solidus) were taken. First, the selection of dendritic grains with 10

Fig. 4.15. Selection process in a polycrystalline dendritic front: The colours in a)
and b) indicate the orientations of the dendrites for two different time steps, whereas
in c) the Ni concentration is shown. (See page 686 for a colored version of the figure.)
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Fig. 4.16. Three time steps of two misaligned NiCu grains in 3D starting from a
rough planar initial state (lateral periodic boundary conditions). (See page 687 for
a colored version of the figure.)

different orientation orientations over the range of [−45◦,+45◦] starting from
the bottom wall with periodic horizontal boundary conditions is depicted in
Fig. 4.15. A rapid overgrowth of the more vertically aligned orientations takes
place. The result is a nearly 45◦ misaligned growth direction of two surviving
dendrite branches. A similar process with two differently oriented, initially
planar and rough grains is shown in Fig. 4.16, where the grain with a stronger
inclination with respect to the vertical axis (lighter grey) overgrows the second.

As a final example, equiaxial grain growth processes for Ni0.59Cu0.41 poly-
crystals and for a random initial distribution of nuclei are discussed. The evo-
lution of the grain structure combines the growth of many differently aligned
crystal seeds into the same melt reservoir and the final interaction of the fully
solidified individual grains. In Fig. 4.17, three time steps of the solidification
process in 2D are shown on a computational domain of 800 × 800 grid points.
The release of Cu in front of the interface slows the phase transformation
down. The fully solidified crystals show a low Ni concentration at the grain
boundaries, frozen in due to the very slow solid-solid mass diffusion. The ana-
log situation in 3D is given in Fig. 4.18 a) and b) with about 30 separated
grains. Here the level sets φα = 0.5 are displayed for 9 grains.

When raising the temperature of this grain structure in a subsequent pro-
cess (Fig. 4.18 c)), but keeping it below the solidus temperature of the equi-
librium composition, the structure starts to melt along the edges separating
three or more grains. When continuing this processing, about 30 % of the
grains shrink and vanish, whereas the rest grows and the remolten liquid
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Fig. 4.17. Growth of dendritic NiCu grains into a 20 K undercooled melt illustrated
by the Ni concentration (range: 0.41−0.62). The complete solidification (right image)
is reached after further reducing the temperature by 15 K in a second step. (See page
687 for a colored version of the figure.)

fraction gradually disappears. A reduction of the interface curvature and a
minimization of grain boundary energy is the driving force of the process.

In addition to the visualization, the diffuse phase-field data can be used
for various analysis purposes of the material properties. An application useful
for the extraction of morphological information which is motivated by crys-
tallographic texture analysis is presented. The surfaces of a grain in contact
with neighbours of different orientation evolve due to local curvature, kinetic
and surface energy anisotropy. Since the surface normals can be computed by
∇φα/|φα|, a stereographic projection on the equatorial plane reveals infor-
mation about prefered faces or shape distributions. In Fig. 4.19 an originally
spherical grain in a matrix of a second phase with strong cubic anisotropy
develops an octahedral shape with distinct faces. This corresponds to the for-
mation of maxima (bright spots in Fig. 4.19 a)–c)) at these directions from
an originally homogeneous distribution. The method can also be useful to
get average values on a complete set of grains, if one backrotates the surface

Fig. 4.18. a) and b): Growth of a polycrystalline NiCu structure with 30 grains
on a domain of size 100 × 100× 100. The isosurfaces of selected grains for two time
steps are displayed. c): Heat treatment with partial melting along the grain vertices
(from [WN06]). (See page 688 for a colored version of the figure.)



144 B. Nestler, F. Wendler

Fig. 4.19. Analysis of surface orientations for an evolving grain (top) using a stere-
ographic projection of the surface normals for three time steps in a)–c). A spherical
grain turns into an facetted shape with distinct octahedral faces due to surface
energy anisotropy (triangle spots on diagonals in image c)).

normals according to the respective grain orientation before performing the
stereographic projection.

4.5 Grain Structures in Geological Materials

As shown in the previous subsection, a numerical scheme which efficiently han-
dles a large number of phase-field parameters can be used to simulate grain
growth. We applied our model to two basic geological topics in microstructure
evolution: first, grain growth with melt inclusions and second, the crack-seal
mechanism in rock veins. Both processes are characterized by a strong inter-
dependence between triple point movements on a small length scale and the
resulting large-scale grain morphology.

Geological Microstructure Evolution with Melt Inclusions

Rock formation takes place in deep inner layers of the earth’s crust under high
temperatures and pressures, where microscopic rock grains are in equilibrium
with a low fraction of melt. Fig. 4.20 shows a thin section of an experimental
model grain system, where some special local geometries are marked: fluid
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Fig. 4.20. Thin section of an experimental geological model system with grains and
intermediate melt pockets (from [BB05]). Typical morphologies of liquid inclusions
at grain boundaries and triple junctions are marked (see text).

boundaries (1), grain boundaries with melt lenses (2), edge shaped melt in-
clusions (3), ’dry’ triple junctions (4) and large melt pools (5).

The grain structure is expected to be porous with a high permeability: the
melt inclusions are thought to be connected in the third (hidden) dimension
allowing for an unlimited exchange of liquid between them. For the simula-
tions, the driving forces fφα(T, c,φ) for the phase transition in the phase-field
Eq. (2.20) were set to zero. Since the total amount of liquid phase is con-
served, a new mechanism for the preservation of phase volume was realized
in the framework of the multi-phase-field model. Volume preservation of an
individual phase α in the domain Ω requires∫

Ω

φα = const. ⇔ ∂t

∫
Ω

φα = 0.

This can be numerically fulfilled by a redistribution of the changed phase
volume after each time step at the diffuse interface, weighted with the local
kinetic coefficient τ(φ,∇φ). To add the missing phase volume fraction exclu-
sively to the interface area, the first derivative of the interpolation function
h(φ) is used, which differs from 0 only for 0 < φ < 1. The nonlocal correction
term produced in this way was shown to be equivalent to an additional driving
force −µαh(φα) on the right hand side of Eq. (2.20), where µα represents the
strength of this artificial force [WSN06].

2D Simulations were carried out for a various number of solid grains and
one fluid phase with preserved volume (see [WZ*06]). To exclude the influence
of the domain boundaries, periodic boundary conditions were applied. In a first
step, wetting angles and local dynamics of the fluid inclusions were examined.
Therefore, a special periodic geometry consisting of 4 hexagonal grains in Fig.
4.21 was designed. This configuration reveals 120◦ angles between the grains
and proved to be stable under calculation for identical solid-solid and solid-
liquid surface energies, γss = γsl. Melt inclusions were inserted for different
ratio of the surface energies γss/γsl and at different positions along the grain
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Fig. 4.21. Periodic test geometry with an inserted melt inclusion (light grey) at
the horizontal boundary, shown for three time steps (from left to right). (See page
688 for a colored version of the figure.)

boundaries. Fig. 4.21 shows the evolution of a square shaped inclusion, which
slowly moves into the nearby triple point. At this location, the total curva-
ture is minimized and the fluid phase reveals stable angles according to the
relationship 2cos(θ/2) = γss/γsl [BWT79]. If the liquid phase is distributed
at different positions along a grain boundary, a coarsening process starts in
the course of which grains with higher local curvature shrink faster until only
one melt pocket survives. This is also initiated for identical shaped inclusions
due to a small amount of artificial noise. On a larger scale, the evolution of
grain ensembles was studied. Using a Voronoi partitioning algorithm, a ran-
dom grain structure was produced and circular melt inclusions were placed
at the triple points. Besides the grain growth, a coarsening also of the liquid
pockets occurs associated with an enlargement of their average diameter. In
Fig. 4.22, two steps of the evolution can be seen: Within a small time period,
the melt inclusions at the triple points shrink away and on a comparatively
longer time scale the inclusions adjacent to four or more grain phases (quadru-
ple points, right picture) perform a ripening process. This is in agreement with

Fig. 4.22. Coarsening of a grain structure with fluid inclusions (light grey) at the
triple junctions for three time steps and for a ratio of the surface energies γss/γsl =
1.2. (See page 688 for a colored version of the figure.)
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the Neumann-Mullins law which anticipates an area shrinkage rate d
dtA(t) of

d
dtA(t) ∝ (n − 6), with n being the number of edges of the evolving grain
[Mul56]. Finally most of the melt is collected in the central hexagonal area.

The Crack-Seal Mechanism in Rock Vein Formation

Rock veins are clearly observable separated regions in a rock matrix consisting
of a different polycrystalline mineral. They were formed in solutal growth from
a hydrothermal solution which infiltrates a macroscopic crack in the rock. In
the veins, a various number of block shaped or fibroid textures were found,
an example is shown in Fig. 4.23 a). Essential for the formation of these elon-
gated fibrous crystals is a repeated opening of the crack and a resealing with
the mineral phase. In the resulting morphology, the history of the process is
stored, which takes place on a long geological time scale, whereas the seal-
ing of an individual crack opening happens quickly. For the 2D simulations,
inner boundaries were introduced to represent the outline of the crack (see
[NSW06]). As shown in the scheme in Fig. 4.23 b) the rock matrix is modeled
via two barrier areas on top and bottom, not linked to memory and con-
taining no phase-field information. The barrier cells serve as markers for the
boundary cells next to the gap in between, which contains the liquid phase.
As for the outer domain boundary, any boundary condition can be chosen at
the barrier walls. To initiate the polycrystalline growth process, a large num-
ber of seeds of 10 different orientations is distributed along the upper crack
boundary. After the complete solidification of the liquid gap, the lower part of
the barrier is shifted a definite number of cells in y- and x-direction to model
a crack opening combined with a shear. At the x borders of the simulation
domain, periodic conditions were assumed. The additional non-barrier cells

Fig. 4.23. a) Fibroid structure in a rock vein (taken from [Hil00]). b) Schematic
view of the simulation setup consisting of the rock matrix (barrier cells), of the inner
boundary, solid starting grains and the liquid gap area.
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in the simulation grid are initilized as liquid phase. This process is repeated
until the lower boundary of the simulation domain is reached. For the first re-
sults we desist from introducing a diffusion field or treating the advective flow
into the opened crack. A driving force is established only between the solid
phases with different orientations and the liquid phase. To amplify the role of
the solid-liquid phase transition, solid-solid kinetic coefficients were chosen as
τ0
ss = 10 τ0

sl (cp. Eq. (2.21)). Various anisotropies and crack geometries were
studied. As an example, three time steps of two different, randomly initiated
simulation runs are depicted in Fig. 4.24 for facetted anisotropies (Eqn. 2.6)
of the grains. Contrary to the case of weaker anisotropies, always grain orien-
tations with optimal alignment along the opening-shear direction of the crack
survive the selection process (dark and light grey regions). The morphology of
the resulting grain boundaries is dominated by the geometry and the opening
and shear rate of the crack. The dependence of the growth morphology on the
shear rate (the horizontal crack movement) is demonstrated in Fig. (4.25a)
and b)) for two simulation runs. A cubic surface energy anisotropy in the form
of Eqn. (2.5) with δsl = 0.08 was chosen. In the case of a vertical opening,
also grains with strongly misaligned growth directions (medium grey) tend to
be selected and form vertical grain boundaries. An increased horizontal shear
leads to a wave-like pattern with increasing frequency and a selection of the
optimal growth directions (dark and light grey).

Fig. 4.24. Polycrystalline grain growth in a crack-seal process with facetted
anisotropy of the surface energies of the grain boundaries. a) and b) show three
time steps of two simulation runs with different starting grain distribution. (See
page 689 for a colored version of the figure.)
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Fig. 4.25. Effect of different shear rates on the resulting morpholgy. From left to
right: no shear, ∆x = 10 cells, ∆x = 20 cells. Two simulation runs a) and b) with
different grain distributions are displayed. (See page 689 for a colored version of the
figure.)

5 Conclusion

A phase-field model for multiphase solidification has been formulated in a gen-
eral and thermodynamically consistent way. Explicit expressions for different
energy density contributions are given, which are appropriate to the specific
physical process. Multicomponent diffusion in the bulk phases including inter-
diffusion coefficients as well as diffusion in the interfacial regions are discussed.
Anisotropy of both, the surface energies and the kinetic coefficients is incorpo-
rated in the model formulation. Simulation results of dendritic, eutectic and
grain growth show the capability of the model to describe phase transitions
and complex multiscale microstructure formation. Building upon results on
modelling rapid solidification [AW*98, Gal01] and on deriving a thin interface
analysis [KR96, Al99, KKS99, MWA00, Kav01], challenges for future devel-
opments are the extension of the presented model to strong nonequilibrium
solidification and to small undercooling situations. The effective numerical
multi-phase algorithm can be utilized in a straight way to incorporate fluid
flow (see [SNW05]) and elasticity (in preparation).
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1 Introduction

In this article we review recent attempts to understand the interaction of dif-
ferent length and time scales in phase separating systems with elastic misfit.
Phase separation occurs for example if an alloy is quenched below a critical
temperature, where a homogeneous mixture of the alloy components is not
stable. The early stage of the separation process, where different phases, char-
acterized by the respective concentrations of the alloy components, appear is
called spinodal decomposition.

The Cahn-Hilliard model [CH58] and its extension with elasticity, the
Cahn-Larché model [CL82, CL73], have originally been introduced to model
spinodal decomposition. Later numerical simulations (see e.g. [Ell89]) and
formally matched asymptotic expansions (see [Pe89]) showed that the Cahn-
Hilliard equation can also describe a process on a slower intermediate time
scale in which the regions occupied by the phases rearrange in order to de-
crease their free energy. In the case that elastic contributions can be neglected,
the free energy is essentially given by the surface energy and the evolution
leads to nearly spherical disjoint components, called particles (see Fig. 1.1).
If anisotropic elastic effects are present the shapes resemble the anisotropy of
the elastic energy (see Fig. 1.2).

In the late stage, when the system has already minimized its energy lo-
cally, interactions between particles become important. In the case that no
elastic energy is relevant, small particles shrink, while larger ones grow, a
coarsening process known as Ostwald Ripening. The influence of elastic in-
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Fig. 1.1. Evolution starting from a perturbation of a uniform state. (See page 690
for a colored version of the figure.)

Fig. 1.2. Alignment of interfaces driven by homogeneous, anisotropic elasticity. (See
page 690 for a colored version of the figure.)

teractions, e.g. through an elastic misfit due to different lattice constants,
can drastically influence the coarsening process. The shape of the particles
changes from spherical to cuboidal or plate shape, particles can align or even
split. In particular on the large time scale the elastic energy which scales like
a volume becomes comparable to the surface energy and it might be possible
to stabilize the coarsening process (“inverse coarsening”). For a review on the
modelling of phase separation in alloys with elastic misfit we refer to [FPL99].
To model the late stage regime, often so called sharp interface models are
used, which also appear as singular limits of the Cahn-Hilliard equation (see
[GK06]). In contrast to the latter, the boundary between different phases is
given by a hypersurface.

In this overview we will discuss both the Cahn-Hilliard equation with
elasticity (the Cahn-Larché system) and a Mullins-Sekerka type model with
anisotropic and inhomogeneous elasticity. Although we will also discuss some
aspects of modelling and mathematical analysis, our main focus will be on
computational aspects.

First, we will introduce the governing models and their interpretation as a
gradient flow in Sect. 2. The latter will be relevant for the set up of a reduced
model to simulate large particle ensembles. In Sect. 3 we study the effect
of elastic contributions on spinodal decomposition within the Cahn-Larché
model. In Sect. 4 we will explain how the Cahn-Larché system can be solved
efficiently and present computational results for the Cahn-Hilliard equation
and the Cahn-Larché system. In Sect. 5 we study coarsening rates for a large
system of particles. Here we observe a transient coarsening behaviour in the
Cahn-Hilliard model without elasticity and we will also see effects of elasticity
on the ripening process.
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In Sect. 6 we introduce a boundary integral formulation of the Mullins-
Sekerka evolution and a corresponding boundary integral method. Simulations
for systems with a few particles will be presented, which in particular show
typical particle shapes and display when a certain pattern such as alignment of
particles appears. Finally, in Sect. 7, we will use the gradient-flow perspective
for the Mullins-Sekerka evolution to derive a reduced model, in which particle
shapes are extremely simple. With this approach we can efficiently simulate
larger particle systems.

2 The models

2.1 The Cahn-Larché model

We consider the case of a binary alloy, i.e. two alloy components are present
with concentrations c1 and c2. We choose the concentration difference c =
c1 − c2 as variable which due to the constraint c1 + c2 = 1 determines the
concentrations. The deformation field is denoted by u and since we consider
models that are based on linearized elasticity we introduce the linearized strain
tensor

ε(F ) :=
1
2
(F + FT ), with F = ∇u.

The free energy of the system is then given by

E [c, u] =
∫
Ω

{γ
2
|∇c|2 + ψ(c) +W (c,∇u)} dx (2.1)

where Ω ⊂ Rd is a bounded domain, γ > 0 is a small interfacial parameter,
ψ : R → R is the non-convex free energy density and W : R×Rd×d → R is
the elastic energy density. A homogeneous free energy density ψ for a mean
field model at a fixed absolute temperature is

ψ(c) = Rθ
2 {(1 + c) ln(1 + c) + (1− c) ln(1− c)}+ Rθc

2 (1− c2) . (2.2)

Here θc is the critical temperature and R is the gas constant scaled by the
(constant) molar volume. For θ below the critical temperature θc the energy
density ψ has two global minima c−, c+ and hence a non-convex form. For
shallow quenches, i.e. 0 � θ < θc one usually takes a smooth approximation
to (2.2) of the form

ψ(c) = b(c2 − a2)2 , 0 < a < 1, b > 0. (2.3)

As elastic energy density W we take a quadratic function in the strain
tensor ε and set

W (c,∇u) =
1
2
(ε(∇u)− ε(c)) : C(c)(ε(∇u) − ε(c)).
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Here ε(c) is the symmetric misfit strain (also called eigenstrain), C(c) is the
fourth rank elasticity tensor and A : B := tr(ATB) for linear mappings A
and B. As the elasticity tensor C is assumed to be symmetric and positive
definite we obtain that ε(c) is the energetically favourable and hence stress
free strain at concentration c. Typically ε is affine linear, i.e.

ε(c) = ε1 + ε∗c

where ε1, ε∗ ∈ Rd×d are symmetric. We allow for an elasticity tensor that
can be different for the two components and hence C can depend on the
concentration c.

For an isotropic material we obtain

C(c)ε = 2µ(c)ε+ λ(c) tr(ε)Id

where the Lamé moduli µ and λ depend on the concentration c.
For a material with cubic symmetry we have

C(c)ε = 2µ(c)ε+ λ(c) tr εId + µ′(c)diag ε

where diag ε is the matrix that one obtains, if all off-diagonal entries are set
to zero. In general C is an arbitrary fourth rank tensor C(c) = (Cij i′j′ (c))
and using the symmetry conditions

Cij i′j′ = Cij j′i′ = Cji i′j′ = Ci′j′ ij

one can compute that for d = 3 there are 21 degrees of freedom in C which
of course in general will be restricted by crystal symmetry.

For example in a cubic system we obtain that C1111 = C2222 = C3333,
Ciijj = Ciiκκ (for i, j, κ mutually different), C2323 = C3131 = C1212 and all
other entries in C either follow from the above by symmetry or they are zero.
Sometimes a fourth rank tensor in R3 is denoted by Cij (Voigt notation). In
this case the indices i, j take values 1, 2, 3, 4, 5, 6 and they stand for the pairs
11, 22, 33, 23, 31, 12 in the original notation. This means in a cubic system we
only need to specify C11, C12 and C44. All other parameters are determined
by symmetry. For a discussion of other symmetry classes we refer to Gurtin
[Gu72]. We will also always assume that C(c) is positive definite and bounded
uniformly in c.

Taking mechanical effects in the Cahn-Hilliard model into account we ob-
tain the system

∂tc = ∆w, (2.4)

w =
δE
δc

= −γ∆c+ ψ′(c) +W,c(c,∇u), (2.5)

0 =
δE
δu

= −∇ ·W,F (c, ε(∇u)), (2.6)
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which we sometimes also call the Cahn-Larché system (see [CL82, CL73]).
Here δE

δc denotes the first variation of E with respect to c and W,c is the
partial derivative with respect to c (the same notation holds with respect
to u). We remark that for simplicity in (2.4) the mobility is taken to be 1.
The chemical potential w is the diffusion potential and is given by the first
variation of energy with respect to concentration. The quantity S = W,F with
F = ∇u is the stress and hence (2.6) are the mechanical equilibrium equations
from the theory of elasticity.

The set of equations then has to be completed by appropriate boundary
conditions which can be e.g. periodic boundary conditions or Neumann bound-
ary conditions for w and c and a prescribed normal stress at the boundary for
the u-equation.

2.2 The Cahn-Larché system as a gradient flow

The Cahn-Larché system can be viewed as a gradient flow. A gradient flow
is the flow in the direction of steepest descent in an energy landscape. This
framework requires a differentiable manifold M, and a vector field f , which
attaches a tangent vector f(x) ∈ TxM to every point x ∈ M. The vector
field f defines a dynamical system ẋ = f(x). A gradient flow is a dynamical
system where f is the negative gradient −gradE of a function E on M. The
notion of a gradient requires a Riemannian structure, that is, a metric tensor
g on M. Then, the precise formulation of ẋ = −gradEx is

gx(t)(ẋ(t), y) + 〈diffEx(t), y〉 = 0 for all y ∈ Tx(t)M and for all t. (2.7)

If we choose y = ẋ(t) we observe that the value of E decreases along trajecto-
ries.

We now give two possibilities to view the Cahn-Larché system as a gradient
flow. First we choose

M :=
{
c : Ω → R

∣∣∣∣ ∫
Ω

c dx =
∫
Ω

c0 dx

}
,

where c0 : Ω → R is the concentration at time zero. The tangent space is
then given as

TcM :=
{
v : Ω → R

∣∣∣∣ ∫
Ω

v dx = 0
}

and the metric tensor on TcM is given by the H−1 norm, that is

gc(v, ṽ) :=
∫
Ω

∇µv · ∇µṽ dx

where µv (respectively µṽ) has mean value zero and fulfills∫
Ω

∇µv · ∇ξ dx =
∫
Ω

v ξ dx for all ξ ∈ H1(Ω).
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We remark that
gc(v, ṽ) =

∫
Ω

µvṽ dx.

In what follows we will write µv = (−∆)−1v.
We define

E(c) =
∫
Ω

{γ
2
|∇c|2 + ψ(c)} dx+ min

u

∫
Ω

W (c,∇u) dx (2.8)

and claim that

〈diff E(c), ṽ〉 =
∫
Ω

{−γ∆c+ ψ′(c) +W,c(c,∇uc)}ṽ dx

where uc solves (2.6) for given c. It should be remarked that the last term
in (2.8) can be written as

∫
ΩW (c,∇uc) dx which means that also u depends

on c. Since (2.6) holds it can be computed that this dependence gives no
contribution to the differential. We now obtain that

〈diff E , ṽ〉 = gc(∂tc, ṽ) =
∫
Ω

(−∆)−1∂tc ṽ dx

is equivalent to (2.4)–(2.5) if we set w := (−∆)−1∂tc.
Another gradient flow perspective for the Cahn-Larché system uses the

energy (2.1) and uses the manifold

M :=
{

(c, u) : Ω → R×Rd
∣∣∣ ∫

Ω

c =
∫
Ω

c0 + boundary conditions for u
}

with a corresponding tangent space T(c,u)M. The metric tensor is then chosen
to be degenerate with respect to u. In fact we choose

g(c,u)((v, w), (ṽ, w̃)) =
∫
Ω

∇µv · ∇µṽ dx

with µv and µṽ as above.
We remark that the gradient flow property has been used in Garcke

[Ga03b] to show existence of solutions to the Cahn-Larché system.

2.3 The Mullins-Sekerka evolution

In the Mullins-Sekerka model the interface between two phases is described
by the boundary ∂{χ = 1}, where χ is the characteristic function of one of
the phases. We restrict our presentation to the case Ω = Rd.

The evolution is driven by the reduction of an energy, which is given by

E [χ, u] :=
∫
Rd

|∇χ|+
∫
Rd

W (χ,∇u) dx,
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where
∫
Rd |∇χ| denotes the perimeter of the set {χ = 0} in Rd. That is, the

energy is the sum of interfacial area, which is due to surface tension, and an
elastic part, which depends on χ and the deformation field u. In the following
we consider linearized elasticity, that is we take

W (χ, F ) :=χW1(F ) + (1− χ)W0(F ) ,

Wα(F ) :=
1
2
Cα(ε(F )− ε̄α) : (ε(F )− ε̄α) ,

in particular, we allow as above that the elasticity tensor is anisotropic as
well as inhomogeneous, i.e. different in each phase; and we allow for a misfit
between the two phases, ε̄1 �= ε̄0. The misfit may also be anisotropic, i.e. it is
not necessarily a multiple of the identity.

The evolution of the interface is driven by the gradient of the chemical
potential µ, that is the normal velocity v is given by

v = [∂νµ] on the interface Γ := ∂{χ = 1}, (2.9)

where ν is the outer normal on ∂{χ = 1}, and

[∂νµ] := lim
x→Γ,x∈{χ=0}

∂νµ− lim
x→Γ,x∈{χ=1}

∂νµ

denotes the jump of the normal component of the gradient across the interface.
The chemical potential µ is determined for each time t via

−∆µ = 0 in the bulk Rd\Γ, (2.10)
µ = κ+ ν · [E(u)]ν on Γ , (2.11)

where the jump of the Eshelby tensor

E(χ, F ) := W (χ, F )1− FT ∂W

∂F
(χ, F ) (2.12)

can be computed from the solution of the elastic equation (see below in (2.13),
(2.14)).

We assume that the mechanical fields relax at each time t instantaneously
to equilibrium, which yields

divσ = 0, in Rd\Γ, (2.13)
[σ · ν] = 0, on Γ. (2.14)

Here, σ denotes the stress tensor, which is given by σ = ∂W
∂F (χ,∇u).

2.4 The Mullins-Sekerka evolution as a gradient flow

We now argue that also the Mullins-Sekerka free boundary problem formally
fits into the gradient flow framework: M has to be chosen as the manifold of
all sets, representing the particle phase, with fixed volume, i.e.
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M :=
{
χ : Rd → {0, 1}

∣∣∣∣ ∫
Rd

χdx = V , suppχ ⊂⊂ Rd

}
.

The tangent space TχM can be described by all admissible normal velocities
of Γ , that is

TχM :=
{
v : Γ → R

∣∣∣∣ ∫
Γ

v dHd−1 = 0
}
.

The metric tensor is given here by the H−1 norm in the bulk. More precisely

gχ(v, ṽ) :=
∫
Rd

∇µv · ∇µṽ dx ,

where µv (respectively µṽ) is the bounded solution of the elliptic problem

−∆µv =0 in Rd\Γ , (2.15)
[∇µv · ν] = v on Γ . (2.16)

After an integration by parts we obtain

gχ(v, ṽ) =
∫
Γ

−µvṽ dHd−1.

Our assumption in the previous chapter was that we have a clear separation
of time scales such that the mechanical fields can be assumed to relax instan-
taneously to equilibrium given a phase distribution χ. Thus, we replace our
energy by

E(χ) =
∫
|∇χ| + min

u

∫
Rd

W (χ,∇u) dx .

Indeed, it follows that minu
∫
Rd W (χ,∇u) dx =

∫
Rd W (χ,∇uχ) dx, where uχ

solves (2.13), (2.14) for given χ.
We have now all the ingredients for a gradient flow evolution at hand. In

order to compute it explicitly we have to calculate the differential of E .
First, we recall the well-known result that the first variation of surface

area is the mean curvature, that is for Ẽ(χ) :=
∫
|∇χ| we have

〈diff Ẽ , ṽ〉 =
∫
Γ

κ ṽ dHd−1

for all ṽ ∈ TχM. The differential of the elastic part of the energy is (compare
[Ga03a])

〈diffÊ , ṽ〉 =
d

dδ
Ê [χδ]|δ=0

=
∫
Γ

(
W (χ,∇u)1− (∇u)T ∂W

∂F
(χ,∇u)

)
ν · νṽ dHd−1 .
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The part in brackets is again the Eshelby tensor E(χ,∇u) (2.12), and the
jump of its normal part across the interface is the contribution of the elastic
energy to the evolution of the particles.

Therefore we have for the gradient flow, evaluating (2.7), that

0 = gχ(v, ṽ) + 〈diffE , ṽ〉 =
∫
Γ

(κ+ ν · [E(χ,∇u)]ν − µv) ṽ dHd−1 (2.17)

for all ṽ ∈ TχM. We see in fact that for the direction of steepest descent the
corresponding potential satisfies – up to an irrelevant additive constant – the
Gibbs-Thomson law with elasticity (2.11).

3 Spinodal decomposition

At high temperatures the free energy ψ is convex and hence a homogeneous
state is stable. If now the system is quenched below the critical tempera-
ture θc the homogeneous state becomes unstable and different phases form
which can be distinguished by a different chemical concentration. This pro-
cess happens on a very short time scale and the regions with different phases
have sizes which are given by a small length scale. If the elasticity tensor
or the eigenstrains are anisotropic, one will observe that the phase regions
orientate themself in certain directions (see [GMW03],[GRW01]) for numeri-
cal simulations). We will now describe how one can make these observations
quantitative. We first solve the linearized Cahn-Larché system with the help
of Fourier transformation (see Khachaturyan [Kha83]). Then a method de-
veloped by Maier-Paape and Wanner allows to show that one will see certain
patterns after spinodal decomposition with a probability close to one for the
nonlinear evolution (we refer to Garcke, Maier-Paape and Weikard [GMW03]
for details). We will assume here that C does not depend on c which is the
elastically homogeneous case.

Linearization of the Cahn-Larché system around a constant stationary
state (c, u) = (cm, 0), where cm ∈ R is constant, gives

∂tc = (−∆)(γ∆c− ψ′′(cm)c+ ε∗ : S), (3.1)
∇ · S = 0, (3.2)

S = C(ε(∇u)− ε∗c). (3.3)

We consider the system (3.1)–(3.3) on Ω = (0, 2π)×· · ·×(0, 2π) with periodic
boundary conditions. For a given c we can compute u from (3.2)–(3.3) by
Fourier transformation and we can express ε∗ : S as a function in c. The
result will be denoted as

L(c) = ε∗ : S.

For
ϕκ(x) = eiκ·x , i being the imaginary unit,
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with
κ = (κ1, . . . , κd) ∈ Zd

one obtains (see [Kha83, GMW03])

L(ϕκ) = L(κ)ϕκ

with
L(κ) = ε∗ : (C[Z(κ)S∗κκT ]− S∗)

where S∗ := C[ε∗] and Z(κ) is the inverse of

Z−1(κ) =

⎛⎝ d∑
j,m

Cijmnκjκm

⎞⎠
i,n=1,...,d

.

An important observation is that L is homogeneous of degree 0 which implies
that L is a pseudo-differential operator of order 0. The function L can be
computed more explicitly in certain cases, e.g. if C is isotropic or has a cubic
symmetry (see [GMW03]). In the particular case of cubic symmetry one ob-
tains that certain directions κ ∈ Zd are stronger amplified by L than others.
This has important consequences for (3.1)–(3.3). If we consider solutions to
(3.1)–(3.3) of the separation of variables form

c(x, t) = f(t)eiκ·x,

we obtain
f(t) = αeλκ,γ t , α ∈ R ,

with
λκ,γ = |κ|2(−γ|κ|2 − ψ′′(cm) + L(κ)).

If cm is such that ψ′′(cm) < 0, one obtains in the case without elasticity that all
κ with a certain wave length are amplified the most. Now in case of anisotropic
elasticity also the direction of κ plays an important role when we want to
determine the most unstable waves. It turns out (see [Kha83, GMW03] and
the references therein) that in case of cubic anisotropy either directions parallel
to the coordinate axes or directions parallel to the diagonals of the coordinate
axes are amplified more by the influence of elastic interactions. Which of the
two cases occur depends on the parameter ∆C := C11 − C12 − 2C44. One
speaks of positive anisotropy if ∆C > 0 and of negative anisotropy if ∆C < 0.

We will demonstrate this for the case of negative anisotropy. In Fig. 3.1 we
show the most amplified eigenmodes and a typical function which is a linear
combination of basis functions with these eigenmodes. In Fig. 3.2 we show a
typical solution of the Cahn-Larché system after spinodal decomposition. We
show the modulus of the Fourier coefficients and the sign of the concentration
difference in the case of cubic negative anisotropy. One clearly sees the cubic
anisotropy which is in contrast to the isotropic case where patterns do not



Phase Separating Systems with Elastic Misfit 163

Fig. 3.1. The most amplified eigenmodes in the (κ1, κ2)-plane (left) and a typical
pattern (right) for negative anisotropy (∆C < 0)

Fig. 3.2. Cubic anisotropy of the elasticity tensor; modulus of the Fourier coefficient
(left) and sign of the concentration difference c (right)

follow a direction. In fact typical solutions look like in Fig. 1.1 to the left
(see [GMW03] for more details). We also refer to [GMW03] for the proof of a
theorem which roughly speaking says that with a probability close to one, the
evolution to initial data which are randomly chosen out of a neighborhood of a
uniform state will be dominated by an invariant manifold which is tangential
to the most unstable eigenfunctions of the linearized operator.

4 Numerical approximation of the Cahn-Larché system

The Cahn-Larché system has a variational structure and hence it is natural
to use a finite element method for the discretization. The formulation of the
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Cahn-Larché system (2.4)–(2.6) is of second order in space and we will use
continuous piecewise affine elements to approximate c, w and u.

For a polyhedral domain Ω we choose a quasi-uniform family {T h}h>0

of partitionings of Ω into disjoint simplices with maximal element size h :=
max
s∈T h

{diam s}, so that Ω =
⋃

s∈T h s. Associated to T h is the finite element

space of continuous piecewise affine elements

Sh := {ϕ ∈ C0(Ω) | ϕ|s is linear for all s ∈ T h} ⊂ H1(Ω).

To formulate a finite element discretization we introduce the lumped mass
scalar product (·, ·)h instead of the L2 scalar product (·, ·) as follows: For
v1, v2 ∈ C0(Ω) let

(v1, v2)h :=
∫
Ω π

h(v1v2)

where πh : C0(Ω) → Sh is the interpolation operator, such that
(πhη)(p) = η(p) for all nodes of T h.

Then a semi-implicit scheme for (2.4)–(2.6) reads as follows.
We search for ch, wh : [0, T ] → Sh and uh : [0, T ] → (Sh)d such that

(∂tch, ϕh)h=−(∇wh,∇ϕh), (4.1)
(wh, ϕh)h=γ(∇ch,∇ϕh) + (ψ′(ch), ϕh)h + (W,c(ch,∇uh), ϕh),(4.2)

0=(ε(∇uh)− ε(ch), C(ch)ε(∇ξh)) (4.3)

holds for all ϕh ∈ Sh, ξh ∈ (Sh)d and all t ∈ [0, T ].
In order to obtain a fully discrete scheme one needs to introduce a time

discretization. The simplest implicit time discretization is the implicit Euler
scheme in which the time derivative in (4.1) is discretized in the following way

(∂tch, ϕh)h �

(
chn − chn−1

τn
, ϕh

)h

.

Here we divided the time interval [0, T ] into N steps with length τn and set
tn :=

∑n
i=1 τi. The discrete solution at time tn is denoted by (chn, w

h
n, u

h
n).

The resulting numerical scheme has been analyzed in [GRW01, GW05]. In
[GRW01] optimal error estimates have been shown in the case that C does
not depend on the concentration (homogeneous elasticity). In the case of in-
homogeneous elasticity a convergence proof has been given in [GW05].

The fully discrete scheme has the properties that mass is conserved and
that the total discrete free energy decreases (see [GRW01, GW05]). The last
observation is a consequence of the fact that the discrete problem reflects the
gradient flow property of the continuous problem and this is an important
fact in the analysis of the scheme (see [GW05]).

It turns out that the so-calledΘ-scheme [BGP87, MU94] leads to a more ef-
ficient but hard to analyze time discretization. All the computations presented
in the following are with the help of the Θ-scheme, but we made sure that com-
putations with the implicit Euler scheme lead to qualitatively similar results
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Fig. 4.1. Alignment of two particles (anisotropic inhomogeneous elasticity), adap-
tive computational grids

although with higher computational effort. We consider adaptive triangular
grids in space and a corresponding a posteriori error control [GRW01, GW05].
The discrete linear systems were solved with the help of the BICG and GM-
RES algorithms and for the nonlinear discrete problem we used Newton’s
method (see [GRW01, GW05] for more details).

Another approach to solve the Cahn-Larché system numerically uses spec-
tral methods. We refer e.g. to the work of Dreyer and Müller [DM00] and Leo,
Lowengrub and Jou [LLJ98] and the references therein. Due to the nonlinear
structure of the Cahn-Larché system, approaches based on spectral methods
loose their efficiency. This is in particular true in the case where the elastic
constants are different in the two phases (inhomogeneous elasticity).

To conclude this section we report on some numerical simulations with
the above robust and efficient numerical method. We have studied various
qualitative effects of the Cahn-Larché model including homogeneous elasticity.
We observe e.g. the following (see also [LLJ98])

• particles align their faces to the elastically soft directions of the material
(see Fig. 1.2),

• particles align in rows (see Fig. 4.1),
• always the harder phase forms particles in the softer phase independent of

the volume fraction (see Fig. 4.2),
• in the case of inhomogeneous elasticity one observes that particles do not

merge when close to each other but instead repel each other (see Fig. 4.3).

The numerical approach for the Cahn-Larché model turns out to be ef-
ficient for ensembles ranging from a couple of particles to a few thousand
particles and has been applied to derive experimental results on growth laws
(see the following section).
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Fig. 4.2. Effects of inhomogeneous elasticity: On the left side the green phase is the
elastically harder one, the blue phase is softer. On the right side it is vice versa. The
volume fraction of both phases are the same. (See page 690 for a colored version of
the figure.)

Fig. 4.3. Repulsion of two particles due to anisotropic elasticity

5 Ostwald ripening within the Cahn-Hilliard and
Cahn-Larché models

A relevant issue in coarsening systems is an estimate of the coarsening rate of
the system. The latter can be expressed by the rate of growth of mean particle
size or by the rate of decrease of surface energy. Dimensional arguments give,
that the coarsening rate in diffusion controlled coarsening, as described by
the Cahn-Hilliard equation or the Mullins-Sekerka evolution, is proportional
to t1/3. Weak time-averaged upper estimates of this coarsening rate have been
established in [KO02] for the Cahn-Hilliard model without elasticity. It turns
out that the proof goes through without any difference for the Cahn-Hilliard
equation with elasticity. Whether or not this estimate is sharp, say, for generic
data, in the case with elasticity is however not clear.

Using the adaptive finite element method described in Sect. 4 we made
an attempt to study coarsening rates for large particle systems. We first con-
sidered the Cahn-Hilliard model without elasticity. Due to the adaptive grids
(see Fig. 4.1) and the time discretization based on the Θ-scheme simulations
with about 4000 particles after the initial phase of the particle formation
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Fig. 5.1. Graph of the energy at an early and a very late stage of the evolution
(two graphs on the left side), different time steps of the evolution (on the right side).
(See page 691 for a colored version of the figure.)

have been feasible. Let us give a brief summary of the results for the original
Cahn-Hilliard model without elasticity (details can be found in [GN*03]):

• The observed decay rates for the energy and the growth of the averaged
particle size are in correspondence with the basic LSW theory. There in
2D one has a decay of the energy like:

E = Ct−
1
3 .

• Depending on the initial data (arbitrary distributed small particles (cf.
Küpper, Masbaum [MK94]), a slightly perturbed homogeneous mixture, a
homogeneous mixture with arbitrary positioned localized seeds for parti-
cles) we observe a rather long intermediate behaviour with energy decay
and particle growth rates different from the expectations.

Figure 5.1 shows results obtained by our extensive numerical tests. On
the left the energy is plotted in double logarithmic scale over time. In this
representation the expected polynomial decay should turn out as a straight
line. This is the case albeit with the unexpected exponent of − 1

6 . In fact, we
made the observation that after spinodal decomposition the system settles for
a wrong exponent for quite long time. Depending on the volume fractions of
the two phases the exponents observed range from − 1

6 to the expected − 1
3 in

the case where we start with equal volume fractions (see Figure 5.1 upper left
graph). However, after a long time the speed of the energy decay changes and
we see a behaviour in line with the expectations. In the example shown the
energy decay at times t > 7 differs significantly from the behaviour at earlier
times. We observe a graph like in the left lower part of Fig. 5.1. Here we see
time phases where the energy goes according to

E ≈ Ct−
1
3
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which are intersected by short periods, when the energy decays faster. In
these short periods one sees particles vanishing, whereas between these steeper
declines particles are just growing and shrinking with the number of particles
constant.

In the case of the Cahn-Larché model with elasticity we have observed
so far, that the coarsening rates are affected by the presence or absence of
elasticity as well as by the homogeneity of the elasticity. Anisotropy seems to
play a minor role (cf. Fig. 5.2). However, it may be the case that the coarsening
rates change at later times as in the standard Cahn-Hilliard model.

Fig. 5.2. Graph of the nonelastic part of the energy. (See page 691 for a colored
version of the figure.)

6 Simulation of the sharp interface model

Different from the diffuse interface model which allows a straightforward dis-
cretization via finite elements (cf. Sect. 4) the interface propagation in the
Mullins-Sekerka sharp interface model (2.9)–(2.14) and the computation of
the corresponding energy contributions and their variations has preferably
been implemented using the boundary element approach. Hence, the linear
elliptic subproblems for the chemical potential (2.10),(2.11) and the elastic
displacement (2.13),(2.14) are transformed into integral equations on the in-
terface between the different phases. They are then dicretized based on a
collocation-type ansatz. Thus, for d = 2 the interfaces are resolved by polygo-
nal lines whose vertex positions are updated in the actual evolution. The two
dimensional, evolving phase domains have not to be meshed and adapted in
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each time step of the evolution. Indeed the interface geometry enters the for-
mulation via appropriate Poisson type kernel functions and kernel functions
for linear, anisotropic elasticity to be integrated in the collocation ansatz on
the polygonal lines [Ha95]. In each time step only the vertex positions rep-
resenting the interface have to be updated. This discretization approach has
among others already been successfully applied by Voorhees, Lowengrub and
coworkers [ATV01, JLL97, TAV04a, TAV04b, VMJ92].

Let us first depict this transformation for the chemical potential subprob-
lem. Let ψx0(x) := − 1

2π ln |x− x0| be the fundamental solution for the Lapla-
cian in R2, i.e. ∆ψx0(x) = δ(x − x0) in the sense of distributions. Applying
Greens formula we obtain for points x0 on a smooth interface Γ :

µ(x0) =
∫
Γ

{[µ] (x)∂νψx0(x) − ψx0(x) [∂νµ] (x)} dx

+
∫
∂BR

{µ(x)∂ν̃ψx0(x)− ψx0(x)∂ν̃µ(x)} dx .

Here, µ is the chemical potential, [·] the usual jump operator and BR is a
large ball containing all particles. Recalling that µ is continuous across the
interface (2.11) the jump of the chemical potential [µ] vanishes. Furthermore,
for R→∞ the integral over ∂BR converges to a constant c(t) solely depending
on time. This additional degree of freedom reflects the conservation of the
overall particle volume. Finally taking into account the governing equation
for the normal velocity of the interface (2.9) the Mullins-Sekerka problem can
be rewritten in the following form:

Let Γ (t) be the interface with normal velocity v, κ its curvature, and
E = E(χ,∇u) the Eshelby tensor (2.12), then at time t

κ(x0, t) + [E(x0, t)]ν(x0, t) · ν(x0, t) + c(t) =
∫
Γ (t)

ψx0(x)v(x, t) dH1 (6.1)

for every x0 on Γ (t) and the velocity field fulfills the constraint 0 =
∫
Γ (t)

v dH1.

The solution of the quasi stationary elastic subproblem is required for the
evaluation of the Eshelby tensor E on Γ . Let Cα be the elasticity tensor, where
the index α indicates either the matrix or the particle phase, and denote by
ε̄α the misfit. Let u be the displacement on the interface and τ the normal
stress defined as the difference between actual strain and eigenstrain in normal
direction: τ = σν = C(ε(∇u)−ε̄α)ν. We recall from (2.14) that τ is continuous
across the interface. Now we consider the matrix valued fundamental solutions
ψαx0

for linear, anisotropic elasticity from [CR78, Cle87] and obtain again by
Greens formula an integral equation

1
2
u(x0) =

∫
Γ

∂Cανψ
α
x0

(x)u(x) − ψαx0
(x) (τ(x) + Cαε̄αν) dH1 .
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Let us remark that in case x0 coincides with a vertex on a polygonal interface,
a matrix c(x0) depending on the direction of the two edges at x0 is applied
to the displacement u(x0) on the left hand side replacing the factor 1

2 . Given
the above integral equation for the matrix and for the particle phase, the
displacement u and the normal stress τ are up to a constant displacement
uniquely determined. The computation of the Eshelby tensor requires the
evaluation of the full displacement gradient∇u. For given u and τ this gradient
can be computed differentiating the above integral equation with respect to x0.
This differentiation applies to the integral kernels, thus increasing the order
of singularity. In particular, for the kernel ∂Cανψ

α
x0

a hypersingular integral
has to be evaluated.

In the actual spatial discretization the integral equations are assumed to
be fulfilled at appropriate collocation points on a polygonal interface and the
displacement, the normal stresses, the chemical potential, and the interface
velocity are approximated in a corresponding discrete space. Two particular
useful choices are either piecewise constant ansatz functions on the polygon
segments and segment centers as collocation points, or a piecewise linear func-
tions and vertices as collocation points. For the elastic subproblem, piecewise
linear ansatz functions are the appropriate choice, since piecewise constant
ansatz functions do not make sense with respect to the above sketched eval-
uation of the deformation gradient on the interface.

For the notion of a discrete curvature on the polygonal interface we refer
to [Dz91] and define on vertex xi a curvature vector

κiνi :=−
xi+1−xi

‖xi+1−xi‖ −
xi−xi−1

‖xi−xi−1‖
‖xi+1−xi‖+‖xi−xi−1‖

2

, (6.2)

where νi represents a unit length vector and κi the discrete, scalar curvature
required for a spatially discrete Mullins-Sekerka model. Finally, a suitable
time discretization for (6.1) has to be considered. An explicit treatment of the
discrete curvatures κi would result in severe time step restrictions. Thus, we
evaluate the normal direction – according to the above equation – at the old
time step and redefine a semi-implicit scalar curvature as the scalar product
of this time explicit normal field with a semi-implicit curvature vector. For
the latter, we again follow [Dz91] and consider time implicit vertex positions
but a time explicit edge length in the above formula (6.2).

Let us depict two types of particle interaction in the presence of inhomo-
geneous and anisotropic elasticity. Figure 6.1 shows the attraction of particles
in case of a strongly inhomogeneous elasticity with a hard particle phase and
a considerably softer matrix phase. Figure 6.2 renders the alignment of parti-
cles, which can be observed in the presence of strongly anisotropic elasticity.
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Fig. 6.1. Three time steps of a discrete Mullins-Sekerka evolution showing the
attraction of two soft particles in case of isotropic but inhomogeneous elasticity.
The matrix phase is four times harder than the particle phase

Fig. 6.2. Three time steps of a discrete Mullins-Sekerka evolution with particles
lining up

7 Reduced sharp interface model for larger systems

In order to make simulations for large particle systems feasible, we now set
up a reduced model of the Mullins-Sekerka evolution with elasticity. The re-
duction is based on the observation that in the case of a cubic anisotropy
in the elasticity, particles become quickly rectangular, whereas the long-time
behavior is dominated by long-range interactions. This motivates to reduce
the gradient flow of the Mullins-Sekerka evolution to the submanifold of rect-
angular particles. We will see, that such a reduction is in very good agreement
with the full evolution for a small set of particles. We will then also present
first results for larger particle ensembles.

We restrict our dynamical system to the submanifold N ⊂M which con-
sists of sets which are the union of disjoint rectangular particles aligned with
the coordinate axes.

To define N we first need to introduce some notation. As indicated in
Fig. 7.1 each particle will be identified by the two points

p = (p−, p+) = ((p−x , p
−
y ), (p+x , p

+
y )) ∈ R2 ×R2.
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p+ = (p+
x , p+

y )

p− = (p−x , p−y )

v+
y

v−
x

v−
y

v+
x

Fig. 7.1. Configuration of one rectangular, axis-aligned particle

We denote the edges perpendicular to the x-axes by b−x and b+x , the ones
perpendicular to the y-axes by b−y and b+y , more precisely b−x := {p−x } ×
[p−y , p+y ], b+x := {p+x }×[p−y , p+y ] and b−y := [p−x , p+x ]×{p−y }, b+y := [p−x , p+x ]×{p+y }.
Consequently the volume of a particle p is given by ap = |b−x | · |b−y | and the
boundary length by lp := |b−x |+ |b−y |+ |b+x |+ |b+y |.

The normal velocities of the sides are given by

vp = (v−x , v
+
x , v

−
y , v

+
y ) ∈ R4.

Now our submanifold N can be identified with the space

N :=

{
P = {pi}i , i = 1, . . . , N

∣∣∣∣ ∑
pi

api = V
}
⊂ R4N ,

where N is the number of particles, and the tangent space with the hyperplane

TPN :=

{
V = {vi}i , i = 1, . . . , N

∣∣∣∣
∑

i

(
|b−x |((vi)−y + (vi)+y )
+|b−y |((vi)−x + (vi)+x )

)
= 0

}
.

The surface energy Ẽ can be expressed as

Ẽ =
∫
|∇χ| = 2

∑
i

(
|(bi)−x |+ |(bi)+y |

)
,

such that the variation of Ẽ with respect to ṽ ∈ TpN is given by

〈diffẼ , ṽ〉 = 2
∑
i

(
(ṽi)−x + (ṽi)+x + (ṽi)−y + (ṽi)+y

)
. (7.1)

We are now going to consider what interfacial condition is satisfied for the
direction of steepest descent as given in (2.17). For that notice that we can
for any vector w ∈ R4n construct an element ṽ ∈ TpN by setting
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ṽi = wi −
∑

j(wjbj)−x + (wjbj)+x + (wjbj)−y + (wjbj)+y∑
j lpj

=: wi − w̄.

Using (2.17) and (7.1) we easily find that there is a constant C such that for
all i ∈ 1, . . . , N we have

−
∫

(bi)
β
α

µ dH1 =
2

|(bi)βα|
+−
∫

(bi)
β
α

[E(bi)
β
α
] dH1 + C (7.2)

where α = x, y, β = +,−, i = 1, . . . , N, [Eb] := [E(χ,∇u)] : νbνTb and
−
∫
b

:= 1
|b|

∫
b
, where E(χ,∇u) is the Eshelby tensor from (2.12). The term

2

|(bi)
β
α| can be interpreted as a crystalline curvature which also appears for

surface energies with cubic crystalline anisotropy (see e.g. Taylor [Tay78] and
Gurtin [Gu93]).

We summarize the above to define the evolution in the restricted setting.
This will also motivate the order in which the equations are evaluated in the
numerical algorithm.

For a given particle configuration P = {pi : i = 1, . . . , N} we compute in
view of (2.13), (2.14) the elastic deformation u from

div
∂W

∂F
(χ,∇u) = 0 in R2\Γ ,

[u] =
[
∂W

∂F
(χ,∇u) · ν

]
= 0 on Γ :=

⋃
i,α,β

(bi)βα

for α = x, y, β = +,−, i = 1, . . . , N . The chemical potential µ is given (cf.
(2.15) and (7.2)) by

∆µ =0 in R2\Γ,

−
∫

(bi)
β
α

µdH1 =
2

|(bi)βα|
+−
∫

(bi)
β
α

[E(bi)
β
α
] dH1 + C

for α = x, y, β = +,− and i = 1, . . . , N , so that the velocities can be derived
from (2.16) via

(vi)βα = −[∂ν
(bi)

β
α

µ] for α = x, y, β = +,−, i = 1, . . . , N.

This evolution is well-defined until the side of a particle shrinks to zero. Then
we remove this particle and continue with the remaining particles.

To compare the reduced model to the full Mullins-Sekerka evolution, we
simulate the interaction of a group of particles. Indeed, from a start config-
uration for the full model, we compute a couple of small time steps to allow
the particle shapes to relax to their preferred form (which happens rather
quickly). For this configuration of nearly rectangular particles we construct a
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Fig. 7.2. Evolution of the interface for the full Mullins-Sekerka model (top) and
for the reduced model (bottom). In both cases the times t = 0; 0.0011; 0.004 are
depicted.

matching starting configuration for the reduced model. This configuration is
then considered as the initial data both for the reduced and the full model. In
both models particles below a certain small diameter are deleted completely.
Figure 7.2 shows computational results for both models at different time steps
of the evolution. The corresponding evolution of the interfacial energy over
time is depicted in Fig. 7.3. Furthermore, plots of the elastic strain, stress and
the energy density are compared in Fig. 7.4. Indeed, one observes a striking
qualitative similarity and basically the same temporal behaviour.

Mullins-Sekerka
Reduced Model

Fig. 7.3. The evolution of the interfacial energy is rendered for both models. Time
and energy axis are logarithmic
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Fig. 7.4. The trace of the elastic strain (both top rows, compared to zero strain
and eigenstrain), the trace of the stress (middle) and energy density (bottom) for
the Mullins-Sekerka (left) and the reduced model (right), in the initial configuration.
(See page 692 for a colored version of the figure.)
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Finally, time steps from the evolution of a moderately large particle ensem-
ble with about one thousand particles and homogeneous anisotropic elasticity
are shown in Fig. 7.5.

Fig. 7.5. Coarsening of a moderately large particle ensemble
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Summary. We derive a general theory for elastic phase transitions in solids subject
to diffusion under possibly large deformations. After stating the physical model, we
derive an existence result for measure-valued solutions that relies on a new approx-
imation result for cylinder functions in infinite settings.

1 Introduction

The general idea of the present work is to derive a satisfying mathematical
theory of phase transitions in single-crystals where the elastic properties of the
material are described by nonlinear laws, see [Ogd97], [Hol00]. This generalises
common existing models with linear stress-strain laws, starting with pioneer-
ing works by Khattchaturyan, [Kha83], and makes the model applicable to a
somewhat broader class of materials.

Beside prescribing the elastic behaviour of the material, the other funda-
mental assumption is that all occuring phase transitions are reconstitutive,
i.e. that there are no plastic deformations of the crystal.

For the proof of existence of solutions to our new model, the experiences
with the Stefan problem, [Vis96] and [LS95], were found to be very valuable.
But as it turns out, due to the nonlinear aspects of elasticity, a formulation
within the framework of Sobolev functions is not general enough. This leads in
a natural way to the formulation of the solution as Young measures presented
in Sect. 4.1.

Historically, there is a variety of approaches to phase transitions in solids
and it is not possible to give here a comprehensive overview. Instead, we refer
the interested reader to the monographs and survey articles [Vis96, WS*93,
Mül98, BS96, SR86] and [GHM01]. After these classifying comments we give
now a general survey of this article.
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We consider the elastic theory of single crystals at constant temperature
where the free energy density depends on the local concentration of one or
more species of particles in such a way that for a given local concentration
vector certain lattice geometries (phases) are preferred.

The local concentration of the molecules may change due to diffusion. The
time scales typical of diffusion and of elastic deformation are usually signif-
icantly different and in good approximation it is admissible to assume that
the deformation adjusts infinitely fast to the local situation. In the developed
model there is surface energy contributing to the free energy of the crystal and
the model allows for m different coexisting macroscopic phases. We will as-
sume that the crystal does not possess interstitials and that the time-evolution
of the boundary of the domain is known.

After deriving the physical model with the above properties we will discuss
the existence of solutions to this model by means of an implicit time discreti-
sation and will show that in the limit of vanishing time step the time-discrete
solutions converge in the sense of Young measures on suitable Banach spaces
with separable dual. To achieve this goal, we will derive a general approxima-
tion result for cylinder functions in the infinite setting. Finally we can proof
an energy inequality for the limit solution.

2 Model and implicit time discretisation

In this section we present our model. In the first subsection the mathematical
equations are derived whereas the second subsection presents a reasonable
solution strategy. This section is only heuristic and shall make the reader
familiar with the general ideas. A deep mathematical treatment is done later.

2.1 Derivation of the model

To describe the physical phenomenon presented in the introduction, we make
use of non-equilibrium thermodynamics, see [dGM84], [KP98], and of contin-
uum mechanics, see [Gur81], [Cia88]. We neglect the atomistic structure of
the crystal and disregard possible effects of the microstructure. The model is
based upon the following basic considerations: The diffusion is caused by the
gradients of the chemical potentials. The diffusive flux causes a local change of
the free energy of the crystal. The free energy shall depend on particle density,
elasticity of the crystal and phase parameter only with a term representing
the surface energy of the boundary layers.

In good approximation we can assume that the system is in mechanical
equilibrium. For the analytical treatment, we will assume in this work that
deformation and phase parameters are global minimisers of the free energy
with respect to the present particle densities.

At starting time t = 0 the crystal is described by a non-empty, bounded
Lipschitz domain Ω ⊂ R3. Let R+ := [0,∞[. The evolution of Ω is given by a
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family of C2-diffeomorphisms {Ψt : R3 → R3 : t ∈ R+} with

Ψ0(x) = x for all x ∈ Ω, (2.1)(
R+ × R3  (t, x) �→ Ψt(x) ∈ R3

)
∈ C2(R+ × R3,R3), (2.2)(

R+ × R3  (t, x) �→ Ψ−1
t (x) ∈ R3

)
∈ C2(R+ × R3,R3). (2.3)

The domain occupied by the crystal at time t ≥ 0 is denoted by Ωt := Ψt(Ω).
The mechanical deformation is given by a family of mappings {Φt : R+ ×

Ω → Ωt : t ∈ R+} that satisfy for all t ∈ R+ and for all x ∈ Ω

Φ0(x) = x, (2.4)
Φt ∈ W1,3+δ(Ω,R3) and Φ−1

t ∈ W1,3+δ(Ωt,R
3) exists, (2.5)

det∇Φt > 0 a.e. in Ω. (2.6)

Here, δ > 0 can be arbitrary. The conditions (2.5) and (2.6) ensure that
Φt are deformations. The condition δ > 0 guarantees the integrability of the
functional determinant and therefore that the volume is finite. Condition (2.4)
reflects the fact that the initial state is undeformed.

The space- and time-dependent particle densities of the n ∈ N different
species of molecules are described by ρi : R+ × R3 → R, i = 1, . . . , n. The
following natural conditions are postulated for t ∈ R+ and 1 ≤ i ≤ n:

ρi(t) ∈ L1(Ωt), (2.7)
ρi(t) ≥ 0 a.e. in Ωt, (2.8)∫
Ωt

ρi(t, x) dx =
∫
Ω

ρ0i(x) dx > 0, (2.9)

n∑
i=1

ρi(t) ◦ Φt det∇Φt ≤ 1 a.e. in Ω. (2.10)

The functions ρ0i are given initial values with

ρ0i ∈ L1(Ω), 0 <
∫
Ω

ρ0i(x) dx, 0 ≤ ρ0i a.e. in Ω, (2.11)

n∑
i=1

ρi ≤ 1 a.e. in Ω,
∫
Ω

n∑
i=1

ρ0i(x) dx < |Ω|. (2.12)

Equation (2.9) ensures the conservation of mass, (2.10) is due to the fact
that the crystal does not possess interstitials and that the number of lattice
positions in a volume element is a uniform constant. We assume (2.12)2 with
strict inequality as we assume a non-vanishing vacancy density.

Let m ∈ N denote the number of different possible phases. The phases are
described by a family of phase vectors

{
χt := (χjt)

m
j=1 : Ωt → R : t ∈ R+

}
,
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where the initial value χ0 is given. Here, χjt(x) determines whether the mate-
rial point x at time t ∈ R+ is in phase j, 1 ≤ j ≤ m, i.e. χjt are characteristic
functions. As any point in the crystal belongs to exactly one phase, the func-
tions χjt fulfil for any 1 ≤ j ≤ m and t ∈ R+

χjt(1− χjt) = 0, (2.13)
m∑
j=1

χjt = 1, (2.14)

χjt ∈ BV( Ωt ). (2.15)

With (2.14) we may write the surface energy between phase i and j at time t
as

St : L1(Ωt)× L1(Ωt) → R̄+ := R+ ∪ {+∞},

(p1, p2) �→

⎧⎨⎩
1
2

∫
Ωt

(|∇p1|+ |∇p2| − |∇(p1 + p2)|) , if
∫
Ωt

|∇pi| <∞, i = 1, 2,

∞, otherwise.
(2.16)

Assuming further that the densities of the surface energy ςij on the interface
between phase i and phase j are positive constants with ςij = ςji, the surface
energy F s

t (χt) at time t ∈ R+ can be introduced by

F s
t : L1 (Ωt,R

m) → R+, p = (pk)mk=1 �→
m∑
i=1

m∑
j=1

σijSt(pi, pj) (2.17)

with σij := ςij

2 , 1 ≤ i, j ≤ m. Additionally we postulate for 1 ≤ i, j, k ≤ m

σij = σji, (2.18)
(i �= j and k /∈ {i, j}) ⇒ σij ≤ σik + σkj . (2.19)

So, energetically it is not favourable to add a third phase between two other
existing phases.

We assume that the volume density of phase j depends on the particle
concentrations and the gradients of the deformations. It is given by a mea-
surable function (see p.9 in [Bau92]) fj : Rn ×M3 → R̄+, Mk := M(k × k,R),
k ∈ N.

Let for t ∈ R+

Bt := L1 (Ωt,R
n)×W1,3+δ

(
Ωt,R

3
)
× L1 (Ωt,R

m) , (2.20)
Deft := {(r, d, p) ∈ Bt : det∇d �= 0 a.e. in Ωt}, (2.21)
F v
t : Def t → R̄ := R ∪ {−∞,+∞},

(r, d, p = (pk)mk=1) �→
m∑
j=1

∫
Ωt

pj(x)fj
(
r(x), (∇d)−1(x)

)
dx.(2.22)
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By (2.22) the volumetric free energy F v
t

(
ρt, Φ

−1
t , χt

)
of the crystal at time

t ∈ R+ is introduced. For the total free energy of the system at time t ∈ R+

we write Ft(ρ(t), Φ−1
t , χt) with

Ft : Deft → R̄, (r, d, p) �→ F v
t (r, d, p) + F s

t (p). (2.23)

For the subsequent formal derivation we assume that all functions are suffi-
ciently smooth. We extend the density vector ρ(t) by 0 to a function on the
whole of Rn. We use the notation ∂v := (∂vl)

k
l=1, where ∂ is an arbitrary

differential operator.
The evolution in time of the particle densities is described by the continuity

equation

∂tρ(t) = −divFt in Ωt, (2.24)

where Ft := (Fit)
n
i=1, and Fit is the particle flux of species i, 1 ≤ i ≤ n, at

time t ∈ R+. In our case, Fit consists of two components, the diffusive flux
J̃it , and the mechanical flux Mit .

We write

Ft = −Jt +Mt,
(
Jt := (−J̃it)ni=1,Mt := (Mit)

n
i=1

)
, t ∈ R+. (2.25)

For the mechanical flux we easily find

Mit = ρi(t)∂tΦt ◦ Φ−1
t in Ωt, t ∈ R+, 1 ≤ i ≤ n. (2.26)

We introduce the notations ρ(t)∂tΦt ◦ Φ−1
t :=

(
ρi(t)∂tΦt ◦ Φ−1

t

)n
i=1

and write
(2.24) as

∂tρ(t) = div
(
Jt − ρ(t)∂tΦt ◦ Φ−1

t

)
in Ωt, t ∈ R+, (2.27)

or equivalently

∂t (ρ(t) ◦ Φtdet∇Φt) = divJt ◦ Φtdet∇Φt in Ω, t ∈ R+. (2.28)

At fixed constant temperature the diffusive fluxes are caused by the neg-
ative gradients of the chemical potentials which are the thermodynamic
forces, [KK93], [dGM84]. According to Onsager’s postulate, [KY87], [Ons31a],
[Ons31b], [dGM84], every thermodynamic flux is a linear combination of the
thermodynamic forces. So we set

Jit =
n∑

k=1

Lik∇µkt in Ωt, 1 ≤ i ≤ n, t ∈ R+, (2.29)

or Jt = L∇µt in Ωt, (µt = (µkt)
n
k=1) , t ∈ R+ (2.30)

with a symmetric and positive definite matrix L := (Lik)
n
i,k=1 and the chem-

ical potential µi of species i, where the symmetry and positive definiteness of
L comes from Onsager’s reciprocity relation, [Ons31a], [Ons31b], [dGM84].
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According to the definition of the chemical potential one has in Ωt for any
t ∈ R+ and i = 1, . . . , n

µit =
m∑
j=1

χjt∂rifj
(
ρ(t),∇Φt ◦ Φ−1

t

)
=

m∑
j=1

χjt∂rifj(ρ(t), (∇Φ−1
t )−1). (2.31)

Now we formulate the aforementioned minimality condition on the free energy.
Considering the time-evolution of the deformation of a representative volume
element and keeping in mind that the number of particles only changes due
to diffusion, we find for two possible deformations Φ1

t , Φ
2
t the relation

ρ1(t) ◦ Φ1
tdet∇Φ1

t = ρ2(t) ◦ Φ2
tdet∇Φ2

t in Ω, (2.32)

where ρ1(t), ρ2(t) are the densities corresponding to Φ1
t , Φ

2
t . So the minimality

condition for any t ∈ R+ reads

Ft
(
ρ(t), Φ−1

t , χt
)

= min
Φ̃∈Dt,χ̃∈Pt

Ft

(
ρ̂(t) ◦ Φ̃−1 det∇Φ̃−1, Φ̃−1, χ̃

)
, (2.33)

with

Dt :=
{
Φ∈Wδ : Φ̃(Ω)=Ωt, ∃Φ−1∈Wδ

t , det∇Φ > 0 a.e. in Ω
}
, (2.34)

Pt :=

⎧⎨⎩χ∈BV :
m∑
j=1

χj =1, χj(1− χj)=0, j = 1, . . . ,m

⎫⎬⎭ , (2.35)

ρ̂(t) := ρ(t) ◦ Φtdet∇Φt (2.36)

for t ∈ R+ and the setting BV := BV(Ωt,R
m), Wδ := W1,3+δ(Ω,R3), Wδ

t :=
W1,3+δ(Ωt,R

3).
To conclude, our model consists of the equations (2.4)–(2.6), (2.7)–(2.10),

(2.13)–(2.15), (2.27) or (2.28), (2.29) or (2.30), (2.31) and (2.33).

2.2 Solution strategy - implicit time discretisation

The objective is to solve the model equations. To this end we discretise the
equations implicitly in time. The ansatz is the same as in [Vis96], [Luc94],
[LS95].

The following argument is only heuristic. We exploit the minimality con-
dition on the free energy (2.33) and choose a suitable approximation of (2.28).

If we formally consider the time derivative of F = F (ρ, Φ, χ), we find
(omitting the dependence on t)

dtF = ∂ρF∂tρ+ ∂ΦF∂tΦ+ ∂χF∂tχ.

From (2.33) it follows ∂χF∂tχ = 0, ∂ρF∂Φρ+ ∂ΦF = 0. Consequently,
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dtF = ∂ρF (∂tρ− ∂Φρ∂tΦ). (2.37)

Now we compute ∂Φρ∂tΦ from (2.32) to obtain

∂Φρ∂tΦ = −ρTr(∇Φ−1∇∂tΦ ◦ Φ−1)− 〈∇ρ, ∂tΦ ◦ Φ−1〉 (2.38)
= −div(ρ∂tΦ ◦ Φ−1) = −divM, (2.39)

where Tr(A) :=
3∑

k=1

Akk is the trace of A ∈ M3. If we plug (2.27) and (2.39)

into (2.37) we find

dtF = ∂ρF (divJ − divM + divM) = ∂ρFdivJ.

Assuming that the surface terms do not depend on ρ, it follows, see [BB92]
p.58,

dtF (t) =
n∑
i=1

∫
Ωt

m∑
j=1

χjt(x)∂rifj
(
ρt(x),∇Φt ◦ Φ−1

t (x)
)
divJit(x) dx

=
n∑
i=1

∫
Ωt

µit(x)divJit(x) dx, t ∈ R+. (2.40)

Assuming further that the normal component of Ji,t vanishes on ∂Ωt, which

follows from (2.28) and (2.9), we get with the inner product 〈a, b〉 :=
3∑

k=1

akbk

in R3
n∑
i=1

µitdivJit =
n∑
i=1

div(µitJit)− 〈∇µit , Jit〉, t ∈ R+.

With the divergence theorem and (2.30) we find

dtF (t) = −
∫
Ωt

n∑
i=1

〈∇µit(x), Jit(x)〉 dx = −2Qt(Jt) = −2Q∗
t (∇µt) (2.41)

= −Qt(Jt)−Q∗
t (∇µt), (2.42)

where for t ∈ R+

Qt :
(
L2(Ωt,R

3)
)n → R, G �→ 1

2

∫
Ωt

(L−1G,G) dx, (2.43)

Q∗
t :

(
L2(Ωt,R

3)
)n → R, G �→ 1

2

∫
Ωt

(G,LG) dx. (2.44)

Here we introduced the symbol



186 S. Arnrich, T. Blesgen, S. Luckhaus

(·, ·) :
(
R3

)n → R, (a, b) �→
n∑

k=1

〈ak, bk〉. (2.45)

In (2.41) and (2.42), Q∗
t denotes the Fenchel conjugate to Qt. We call (2.42)

the Q−Q∗-formulation of the problem. In general, every system of equations
originating from non-equilibrium thermodynamics can be written in the form

dtF +Q+Q∗ +G+G∗ ≤ 0,

where Q and G are certain convex functionals and Q∗, G∗ are their convex
conjugates. Therefore, Eq. (2.41) can be written in the form∫

Ωt

〈∇rf(x), divJt(x)〉 dx + ∂JQt(Jt)(Jt) = 0, t ∈ R+, (2.46)

with 〈∇rf, divJt〉 :=
n∑
i=1

m∑
j=1

χjt∂rifj

(
ρt,

(
∇Φ−1

t

)−1
)

divJit .

Now we approximate (2.28) for given discrete step size h > 0 by

ρ(t+ h) = ρ̂(t) ◦ Φ−1
t+hdet∇Φ−1

t+h + hdivJt+h. (2.47)

We see that for known (ρ(t), Φt, χt), a minimiser (Φ, χ, J) of the functional

(Φ̃, χ̃, J̃) �→ Et+h(Φ̃, χ̃, J̃) := Ft+h

(
ρ̂(t) ◦ Φ̃−1det∇Φ̃−1, Φ̃−1, χ̃

)
+ hQt(J̃)

(2.48)
satisfies (2.46). Additionally, due to ρ := ρ̂(t) ◦ Φ̃−1det∇Φ̃−1 + hdivJ , every
minimiser fulfils the equation

0 = ∂JEt+h(Φ, χ, J)(δJ) = h

∫
Ωt+h

〈∇ρf(ρ,∇Φ, χ), divδJ〉 dx+ h∂JQ(J)(δJ)

= −h
∫

Ωt+h

(∇µ, δJ) dx + h

∫
Ωt+h

(L−1J, δJ) dx

and it holds J = L∇µ and (2.33) is fulfilled.
Motivated by these considerations we arrive at the following implicit time

discrete version of our original problem:
Let ρ(t), Φt, χt be the solutions of the problem at time t. Then ρ(t+ h),

Φt+h and χt+h are given by ρ(t+ h) := ρ̂(t) ◦ Φ̃−1det∇Φ̃−1 + hdivJ , Φt := Φ,
χt := χ, where (Φ, χ, J) is a minimiser of (2.48).

3 The time-discrete system

In this paragraph we show the existence of minimisers of (2.48) in a suitable
function space. To this end it is necessary to make (2.48) precise. We make
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further assumptions on the structure of f1, . . . , fm, which are motivated by
the direct method in the calculus of variations, see [BB92], [Dac89] and (2.6),
(2.10).

First we want to extend Deft on Bt (see (2.20), (2.21) ) and want to ensure
that the domain where Ft is finite is closed. The difficulty here is that in the
definition of Ft the inverse of the gradients of the deformations occur. The
following ansatz solves this problem, taking (2.6) and (2.10) into account.

For A ∈ M3 let

cofA :=

⎛⎝A22A33 −A23A32 A13A32 −A12A33 A12A23 −A22A23

A23A31 −A21A33 A11A33 −A13A31 A13A21 −A11A23

A21A32 −A22A32 A12A31 −A11A32 A11A22 −A12A21

⎞⎠ .

With this definition we have A cofA=(cofA)A=(detA)E3 :=(detA)(δkl)3k,l=1.
It is important to notice that for invertible A ∈ M3 it holds 1

detAcofA = A−1.
Therefore we make the following conditions on f1, . . . , fm:

There exist gj : Rn×M3×M3×R → R̄+ such that for all (r, A) ∈ Rn×M3

fj(r, A−1) = gj(r, A, cofA, detA), if detA �= 0. (3.1)

Furthermore we demand that for all (r, A,B, d) ∈ Rn ×M3 ×M3 × R

gj(r, A,B, d) ∈ R+ iff (r, A,B, d) ∈ Z, 1 ≤ j ≤ m, (3.2)

with the admissible set

Z :=

{
(r, A,B, d)∈Rn×M3×M3×R : d ≥ 0,

n∑
i=1

rid ≤ 1 and r ≥ 0

}
.(3.3)

Here, the condition r ≥ 0 for r ∈ Rn has to be understood componentwise.
As given in (3.1), gj denotes the argument of F v

t in the position of fj. Now
we define for t ∈ R+ with the abbreviation d := (∇d, cof∇d, det∇d), d ∈ Wδ

t ,

F v
t : Bt → R̄, (r, d, p) �→⎧⎨⎩

m∑
j=1

∫
Ωt

pj(x)gj(r(x),d(x))dx, if
m

sup
j=1

∫
Ωt

|pj(x)| gj(r(x),d(x)) dx <∞,

+∞, otherwise,
(3.4)

Ft : Bt → R̄, (r, d, p) �→ F s
t (p) + F v

t (r, d, p). (3.5)

Since Qt is defined on
(
L2(Ωt,R

3)
)n, it remains to define the divergence on

L2(Ωt,R
3). This is done in a way adapted to the equations such that the

conservation of mass (2.9) and the implication (2.40)⇒(2.41) holds.

divt : L2(Ωt,R
3) →W 1,−2(Ωt),

divtj(ξ) := −
∫
Ω̂

〈j,∇ξ〉 dx, ξ ∈ W 1,2(Ω̂,Rn). (3.6)
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In the following we write div instead of divt.

Remark.As is shown in [Anr06], for a lower semicontinuous convex function
g : Rn → R̄ that satisfies C1g(x) + C2 ≥ ‖x‖q for all x ∈ Rn and positive
constants C1, C2 and q > 1, one can define

∫
Ω
g(divJ) in a natural way by

setting ∫
Ω

g(divJ) = +∞, if divJ /∈ Lq(Ω,Rn).

Now we are in the position to formulate (2.48) appropriately. Let t ∈ R+,
h > 0, ρ(t) and Φt be given such that (2.4)–(2.6) and (2.7)–(2.10) are satisfied.
Then introduce

Et+h : Bt ×
(
L2(Ωt,R

3)
)n �→ R̄,

(d, p,G) �→ Ft+h(ρ̂(t) ◦ ddet∇d+ hdivG, d, p) + hQt(G). (3.7)

We call the variational problem Et+h → min the time-discrete system. The
existence of minimisers is ensured by the following theorem.

Theorem 3.1. Let t ∈ R+ and h > 0. In addition to the earlier assumptions,
let f1, . . . , fm be lower semicontinuous and convex, satisfying

cj1fj(r, A,B, d) + cj2 ≥ ‖A‖3+δ, (3.8)

cj3fj(r, A,B, d) + cj4 ≥
‖B‖3+δ

|d|2+δ
, (3.9)

cj5fj(r, A,B, d) + cj6 ≥ |d|1+ δ
3 (3.10)

for all (r, A,B, d) ∈ Rn ×M3 ×M3 × R with non-negative constants cjk, k =
1, . . . , 6. Then Et+h possesses a minimiser (Φ, χ, J) that fulfils (2.5), (2.6),
(2.7)–(2.10) and (2.13)–(2.15) with ρ := ρ̂(t) ◦ Φ̃−1det∇Φ̃−1 + hdivJ .

The proof of this theorem can be found in [Anr06].
Idea of proof: We use the direct method in the calculus of variations. First
we show the lower semicontinuity of the functionals in a suitable topology
(weak topology for J and Φ, strong topology for χ; a new proof for the
lower semicontinuity of F s

t with methods from elementary convex algebra is
given in [Anr04]). For a minimising sequence (Φk, χk, Jk)k∈N, Eq. (3.8) yields
the boundedness of ‖Φ−1

k ‖Wδ
t
, (3.9) gives the boundedness of ‖Φk‖Wδ , (3.10)

gives the boundedness of ‖ det∇Φ−1
k ‖

L1+ δ
3

which implies the boundedness of
‖divJk‖

L1+ δ
3
.

The norm ‖χk‖BV can be estimated by F s
t , see [Anr04], which guarantees

the compactness in L1, whereas the L2-norm of Jk is estimated by Qt.
Exploiting the differentiability properties of functions inWδ

t , see [GMS98],
and properties of the weak convergence in these spaces, see [Cia88], the exis-
tence of minimisers with the stated properties can be proved.
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Corollary 3.2. If for 1 ≤ i ≤ n, 1 ≤ j ≤ m the derivatives ∂rifj exist in
◦
Z

and if lim
k→∞

|∂rifj(rk, Ak, Bk, dk)| = +∞ for every sequence (rk, Ak, Bk, dk)k∈N

with lim
k→∞

(rk, Ak, Bk, dk) = (r, A,B, d) ∈ ∂Z, then for a minimiser of Thm. 3.1

it holds J = ∇µ with µi =
m∑
j=1

χj∂rifj(ρ,Φ), 1 ≤ i ≤ n.

The complete proof of this statement is given in [Anr06].
Idea of proof: Since the formal method presented at the end of Sect. 2.2
cannot be applied, we approximate fj by suitable smooth and convex functions
fkj from below and solve the corresponding variational problem Ek

t+h → min
for which we have Jk = ∇µk, µk = ∇rf

k(ρk,Φk) ∈ W1,2(Ωt).
Using convexity arguments and elementary measure-theoretic results one

can then show with the Poincaré inequality the existence of a subsequence
with Jkl → J , ∇µkl → ∇µ and ∇rf

kl(ρkl ,Φkl) → ∇rf(ρ,Φ) as l→∞.

4 The continuous system

According to Thm. 3.1 we can construct for given h > 0 a sequence of time-
discrete solutions. We discuss the limit h → 0 and show that the discrete
solutions converge in a sense that has yet to be specified to a solution of
the original problem. As we have at most weak convergence, due to the non-
linearity of Ft we cannot expect that the weak limit satisfies (2.33). Addi-
tionally, the equations do not provide a condition on Φt and χt in time. If we
consider the problem on a fixed given time interval [0, T ] for T > 0 and regard
ρ, Φ, χ, J, µ as mappings from [0, T ] to a certain topological space X , we notice
the analogy to Young measures that yield solutions to our problem in case X
is finite-dimensional (or locally compact), see [Eva91], [Mül04], [Ped99].

4.1 Formulation of the problem with Young measures

As the domain Ωt is time dependent, so is the function space Xt containing
ρ(t), Φt, χt, Jt, µt. The space X :=

⋃
t∈[0,T ]Xt has no ’nice’ topological prop-

erties. Therefore we consider the quantities ρ̂(t) := ρ(t) ◦ Φtdet∇Φt, Φ̂t :=
Ψ−1
t ◦Φt, χ̂t := χt ◦Ψt, Ĵt := Jt ◦Ψt, µ̂t := µt ◦Ψt on the reference domain Ω to

formulate the equations. So we transform with Φt respectively Ψt for t ∈ R+.
The corresponding time-discrete solutions exist according to Thm. 3.1 since
Φt possesses the transformation property, see [GMS98]. In the following, α̂ al-
ways denotes the transform of α. In analogy to the common weak formulation,
the measure-valued formulation reads:

Let X̂ := L2(Ω,Rn)×Wδ × L1+ 3
δ (Ω,Rm)×

(
L2(Ω,R3)

)n ×W1,2(Ω,Rn)
be equipped with the product topology of the weak topology in coordinates
2, 4, 5 and the strong topology in coordinates 1 and 3. We look for a mapping
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P : [0, T ] → R(X̂), t �→ Pt, whereR(X̂) is the space of signed Radon measures
over X̂ with Pt ≥ 0 and Pt(X̂) = 1 for almost all t ∈ [0, T ] such that (with
x̂ := (ρ̂, φ̂, χ̂, Ĵ , µ̂))

T∫
0

ϑ′(t)
∫
X̂

∫
Ω

ρ̂(y)ξ̂(y) dy dPt(x̂) dt

=

T∫
0

ϑ(t)
∫
X̂

∫
Ω

Ĵ(y)∇(ξ̂ ◦ Φ̂−1 ◦ Ψ−1
t ) ◦ Ψt(y)det∇Ψt(y) dy dPt(x̂) dt,(4.1)

T∫
0

ϑ(t)
∫
X̂

∫
Ω

ξ̂(y)L−1Ĵ(y)det∇Ψt(y) dy dPt(x̂) dt

= −
T∫

0

ϑ(t)
∫
X̂

∫
Ω

µ̂(y)div(ξ̂ ◦ Ψ−1
t ) ◦ Ψt(y)det∇Ψt(y) dy dPt(x̂) dt, (4.2)

T∫
0

ϑ(t)
∫
X̂

∫
Ω

µ̂(y)ξ̂(y)det∇Ψt(y) dy dPt(x̂) dt

=

T∫
0

ϑ(t)
∫
X̂

∫
Ω

m∑
j=1

χ̂j ◦ Φ̂(y)∂r f̂j
(
ρ̂(y), Φ̂(y)

)
ξ̂(y) dy dPt(x̂) dt (4.3)

for all ϑ ∈ C∞
0 ([0, T ]), ξ̂ ∈ C∞

0 (Ω̄,Rn) and

suppPt ⊂
{
(ρ̂, φ̂, χ̂, Ĵ , µ̂) ∈ X̂ : ρ̂ ∈ suppPt

∣∣
X̂1
,

F̂ (ρ̂, φ̂, χ̂) = min
(Φ̃,χ̃)∈X̂2×X̂3

F (ρ̂, Φ̃, χ̃)
}

(4.4)

for almost all t ∈ [0, T ]. Here, X̂l denotes the l-th component of X̂ , 1 ≤ l ≤ 5.
Furthermore, let the conditions analogous to (2.4)–(2.6), (2.7)–(2.10), (2.13)–
(2.15) be fulfilled for almost all t ∈ [0, T ] on suppPt.

4.2 Construction of the Young measures

The key to the proof of existence of measure-valued solutions to the continuous
problem is given by the following theorem.

Theorem 4.1. (Analogon to Young measures in the infinite setting)
Let IT := [0, T ] ⊂ R for T > 0 and λT be the Lebesgue measure on IT , (νi)i∈N
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be a sequence of positive Radon measures on IT with νi
∗→ λT for i→∞, let

X1, X2 be Banach spaces with separable X∗
1 , X∗

2 , define

(X, ‖ · ‖X) := (X1×X2, ‖ · ‖X1 +‖ · ‖X2), (X, τ) := (X1×X2, ‖ · ‖X1 ×wX2),

and (γi : [0, T ] → X)i∈N be a mapping.
If Kn

1 ⊂⊂ (X1, ‖ · ‖X1), Kn
2 ⊂⊂ (X2, wX2) and

νi (Mn
i := {t ∈ IT : γi(t) /∈ Kn

1 ×Kn
2 }) <

1
n

for i ∈ N, (4.5)

then there exists a subsequence (γik)k∈N and a mapping P : IT →R(X) with

Pt ≥ 0, Pt(X) = 1 for almost all t ∈ IT (4.6)

and (
[0, T ]  t �→

∫
X

f(t, x) dPt(x) ∈ R

)
∈ L∞([0, T ]), (4.7)

lim
k→∞

T∫
0

f(t, γik(t)) dνik (t) =

T∫
0

∫
X

f(t, x) dPt(x) dt (4.8)

for all f ∈ Cb([0, T ]×X).

Corollary 4.2. Additional to the assumptions of Thm. 4.1 let there exist a
q ≥ 0 such that for all i ∈ N

‖γi‖X ∈ L1(IT ) and
∫
Mn

i

‖γi‖qX dνi(t) <
1
n
. (4.9)

Let f : (IT ×X, | · | × τ) → R fulfil for a constant C > 0

f(t, x) ≤ C (1 + ‖x‖q) for all (t, x) ∈ IT ×X. (4.10)

Let f be bounded from below and let f be either lower semi-continuous or lower
semicontinuous with respect to the second argument and satisfy a uniform
continuity in time, i.e. for any n ∈ N and given ε > 0 there exists a δ(n, ε)
with |f(x, t)−f(x, t′)| < ε for |t− t′| < δ(n, ε), t, t′ ∈ IT and all x ∈ Kn

1 ×Kn
2 .

If one of these two conditions is met, it follows

f(t, ·) ∈ L1 (X,BX ,Pt) for almost all t ∈ IT , (4.11)⎛⎝[0, T ]  t �→
∫
X

f(t, x) dPt(x) dt ∈ R

⎞⎠ ∈ L1([0, T ]), (4.12)

lim inf
k→∞

T∫
0

f (t, γik(t)) dνik (t) ≥
T∫

0

∫
X

f(t, x) dPt(x) dt. (4.13)
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A continuous function f that is not necessarily bounded from below and sat-
isfies (4.10) fulfils

lim
k→∞

T∫
0

f (t, γik(t)) dνik(t) =

T∫
0

∫
X

f(t, x) dPt(x) dt. (4.14)

We remind that a cylinder function is defined as follows:

Definition 4.3. Let X be a topological vector space. A function f : X → R

is called a cylinder function on X if for some p ∈ N there exists a α ∈ X∗p

and a g ∈ Cb(Rp) such that f has the representation f = g ◦ α. The symbol
ZX denotes the set of all cylinder functions on X.

Corollary 4.4. From the assumptions of Thm. 4.1 it follows

Pt

(
X \

∞⋃
n=1

Kn
1 ×Kn

2

)
= 0 for almost all t ∈ IT . (4.15)

The longer, technical proofs of this statement can be found in [Anr06]. Crucial
is the following Lemma that is also proved in [Anr06].

Lemma 4.5. (Approximation Lemma.) Let X be a Banach space, f : X → R

be strongly continuous, g : X → R be weakly continuous, K ⊂ X strongly
compact and L ⊂ X weakly compact. Then for any ε > 0 there exist cylinder
functions Γε : X → R and Θε : X → R with

max
x∈K

|f(x) − Γε(x)| < ε and max
x∈L

|g(x)−Θε(x)| < ε.

In addition it holds max
x∈X

|Γε(x)| ≤ max
x∈K

|f(x)| and max
x∈X

|Θε(x)| ≤ max
x∈L

|g(x)|

Remark. The approximating cylinder functions can be chosen as elements of
a fixed countable set.

Idea of proof: The strategy to prove Thm. 4.1 is to first show the statements
in the finite-dimensional case using slicing theorems, [Ped04],, and then to
approximate with cylinder functions. Essentially, the extension to the infinite-
dimensional case is an application of Riesz’ representation theorem for positive
linear forms on the space of continuous functions on completely regular spaces.

The proofs of the corollaries rely on the fact that lower continuous func-
tions can be approximated on compact sets from below by continuous func-
tions, see [Anr06].

4.3 Measure valued solutions

In earlier sections we have established the mathematical tools needed to formu-
late the final theorem. The proof of the next theorem is contained in [Anr06].
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Theorem 4.6. The continuous system (2.4)-(2.6), (2.7)-(2.10), (2.13)-(2.15),
(2.27) or (2.28), (2.29) or (2.30), (2.31) and (2.33) possesses a solution in
the sense of Sect. 4.1 if the requirements of Thm. 3.1 and Corollary 3.2 are
met. There exists ρ̂ ∈ L2([0, T ] × Ω,Rn) with Pt = δρ̂(t) × P̃t for almost all
t ∈ [0, T ] and the following energy inequality holds:

E (τ2)− E (τ1) ≤ −
τ2∫

τ1

Q(t) + Q∗(t) dt for almost all τ1, τ2 ∈ [0, T ], (4.16)

where

E : [0, T ] → R, t �→
∫
X̂

F̂ (ρ̂, Φ̂, χ̂, t) dPt(x̂), (4.17)

Q : [0, T ] → R, t �→
∫
X̂

Q̂(Ĵ , t) dPt(x̂), (4.18)

Q∗ : [0, T ] → R, t �→
∫
X̂

Q̂∗(∇µ̂, t) dPt(x̂). (4.19)

Idea of proof: (All subsequences are labelled as the original sequence; we
use the abbreviation x̂ := (ρ̂, Φ̂, χ̂, Ĵ , µ̂).)

For i ∈ N let h(i) := T
2i . Then, according to Thm. 3.1 and Corollary 3.2,

we can construct recursively a finite sequence
(
x̂lh(i)

)2i

l=0
which solves the

time-discrete problem. Now we define x̂i for i ∈ N as the step function cor-
responding to the sequence which is continuous from left. One can show that(
γi := (ρ̂i, Φ̂i, χ̂i, Ĵi, µ̂i)

)
i∈N

satisfies the assumptions of Thm. 4.1. In the next

step one proves with the help of Kolmogoroff’s compactness criterium, see
[Wlo82], the existence of a subsequence with the property

For a given smooth Dirac sequence (φj)j∈N there exists for every j ∈ N a
ρ̂j ∈ L2([0, T ]×Ω,Rn) such that

lim
k→∞

T∫
0

∫
Ω

∣∣∣ρ̂ji (t, x)− ρ̂j(t, x)∣∣∣2 dx dt = 0.

Furthermore we need:

Lemma 4.7. Let X be a T3a-space, ν ∈ PM(X) with ν(X) = 1 and g ∈
C(X,X). If for every f ∈ Cb(X)

∫
X

f2(g(x)) dν(x) −

⎛⎝∫
X

f(g(x)) dν(x)

⎞⎠2

= 0, (4.20)

then there exists x0 ∈ X with g(x) = x0 for all x ∈ supp ν.
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Applying Thm. 4.1 and the above Lemma on the subsequence (γi)i∈N, we find
the existence of ρ̂ with Pt = δρ̂(t) × P̃t for almost all t ∈ [0, T ].

With the exception of (4.2) and (4.4), the remaining equations follow es-
sentially from Thm. 4.1 and the Corollaries 4.2 and 4.4.

For the proof of the minimality condition (4.4), we show with (4.1) that

E(t) = min
(Φ,χ)∈X̂2×X̂3

F̂ (t, ρ̂(t), Φ, χ) for t ∈ [0, T ].

The validity of (4.2) relies on the subgradient-inequality∫
X̂

∫
Ω

µ(ρ̃− ρ) dy dPt(x̂) ≤
∫
X̂

∫
Ω

f(ρ̃)− f(ρ) dy dPt(x̂),

where (4.4) is used.
The proof of the energy inequality is based on the following considerations.
Define for i ∈ N, 1 ≤ k ≤ 2i and t := kh(i)

J inf
ti := argmin

J∈L2(Ωt,R3)n

[Ft (ρi(t) + h(i)divJ, Φti , χti) + h(i)Qt(J)] ,

ρinf
i (t) := ρi(t) + hdivJ inf

ti

and the corresponding continuation for t �= kh(i). Then it holds

h(i)µinf
ji

divJ inf
i = µinf

ji

(
ρinf
i − ρi

)
≥ fj

(
ρinf
i ,Φi

)
− fj (ρi,Φi)

and (Young’s inequality)

Qt

(
J inf
ti

)
+Q∗

t

(
∇µinf

ti , t
)

=
∫
Ωt

〈
J inf
ti ,∇µ

inf
ti

〉
dx

= −
m∑
j=1

∫
Ωt

χjti
µinf
jti

divJ inf
ti dx

for i ∈ N, 1 ≤ j ≤ m, t ∈ [0, T ] and x ∈ Ωt. This yields

Ft
(
ρinf
i (t), Φti , χti

)
− F (ρi(t), Φti , χti)

≤ −h(i)
[
Qt

(
J inf
ti

)
+Q∗

t

(
∇µinf

ti

)]
which can be rewritten as

Ft
(
ρinf
i (t), Φti , χti

)
+ h(i)Qt

(
J inf
ti

)
≤ Ft (ρi(t), Φti , χti)− h(i)Q∗

t

(
∇µinf

ti

)
.

Therefore, due to
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Ft+h(i)

(
ρi(t+ h(i)), Φ(t+h(i))i

, χ(t+h(i))i

)
+ h(i)Qt+h(i)

(
J(t+h(i))i

)
≤ Ft

(
ρinf
i (t), Φti , χti

)
+ h(i)Qt

(
J inf
ti

)
,

we obtain the estimate

Ft+h(i)

(
ρi(t+ h(i)), Φ(t+h(i))i

, χ(t+h(i))i

)
− Ft

(
ρinf
i (t), Φti , χti

)
≤ −h(i)

[
Qt+h(i)

(
J(t+h(i))i

)
+Q∗

t

(
∇µinf

ti

)]
. (4.21)

Next, the inequality (4.21) is rewritten in terms of F̂ , Q̂, Q̂inf . Then we con-
sider the two sequences(
γ1
i := (ρ̂i, Φ̂i, χ̂i, Ĵi, µ̂i, µ̂infi)

)
i∈N

and
(
γ2
i := (ρ̂infi , Φ̂i, χ̂i, Ĵi, µ̂i, µ̂infi)

)
i∈N

and show that they generate the same measure P̆t = δρ̂(t) × P̄t for almost all
t ∈ [0, T ]. From (4.21) it follows (4.16) with the corresponding Q∗

inf . Estimating
the subgradient inequality we can finally show Q∗

inf = Q∗.
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Summary. We address the numerical analysis of relaxed formulations for scalar
and vectorial nonconvex variational problems originating from models for solid-solid
phase transitions and crystal plasticity. We discuss algorithms for the approximation
of the quasiconvex envelope using laminates, rank-one convexity, and polyconvexity,
and present some numerical applications to benchmarks problems, and to a model
for single-slip crystal plasticity.

1 Introduction

Variational models based on nonlinear elasticity, and their mathematical anal-
ysis, have proved useful for the study of phase transitions and microstructures
in elastic solids, starting with the seminal work of Ball & James [BJ87, BJ92].
The methods of relaxation have in some cases lead to new understandings
on the mesoscopic phase diagram [DSD02], on the microscopic origin of com-
plex domain patterns [KM94], and on geometrical conditions relevant for the
design of new devices and materials [Bha03].

Mathematically, one minimizes the functional

E(u) =
∫
Ω

W (Du) dx (1.1)

over the set of admissible deformations u : Ω ⊂ Rn → Rm, with u ∈
W 1,p(Ω; Rm), u = uD on ∂Ω, and W the energy density of the crystal. Here
W 1,p(Ω; Rm) denotes standard Sobolev spaces with p ∈ (1,∞) related to the
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growth of W , and (1.1) may include lower-order terms representing external
forces.

One says that the functional E predicts a microstructure if a minimum
does not exist, and gradients of infimizing sequences exhibit oscillations on
finer and finer scales. Objective of the research is the analysis and numerical
simulation of those infimizing sequences and/or their most relevant features.

The determination of low-energy states of such functionals E by standard
finite element methods will typically yield mesh dependent results with oscil-
lations in Duh on a length scale comparable with the mesh size. Further, the
computations can be very sensitive to mesh orientation and miss completely
the description of the real microstructural configuration. For instance, the
precise characterization of the minimizers of a non-convex problem in [BP04]
shows that they develop complicated branching structures and are therefore
difficult to detect numerically. One is therefore interested in alternative ap-
proaches, which do not attempt a direct numerical minimization, and is lead
to the concept of relaxation.

From a physical point of view, relaxation focuses on macroscopic features
and on the average material behaviour, rather than on the details of the mi-
crostructure. This means that one operates a separation of scales, and tries to
extract from the microscale all information that is relevant for the macroscale,
and no more. The macroscopic deformation is then determined by studying
a problem which contains an effective energy density, which automatically
accounts for the optimal local microstructure.

From a mathematical point of view, relaxation theory aims to replace an
ill posed problem with a well posed one (at least as far as existence is con-
cerned), preserving the essential features of the original problem. This can
be achieved following basically two approaches. The first option is to enlarge
the class of the competing functions, allowing for measure-valued solutions
[You80, Ped97, Rou96]. The second one is to focus on the weak limits of
infimizing sequences. Weak convergence, which qualitatively corresponds to
convergence of averages, eliminates the fine-scale oscillations and gives a limit
which only contains information on the macroscopic scale. The idea is, there-
fore, to study the behaviour of infimizing sequences by characterizing their
limit points as minimizers of a new functional [But89, Dac89, Mue99].

Lack of strong convergence of infimizing sequences, and lack of existence
of a minimizer, is strictly related to the lack of weak lower semicontinuity
of the functional (1.1) on the space W 1,p(Ω; Rm), which in turn is equiva-
lent to quasiconvexity of W , under suitable continuity and growth conditions
[Dac89, Mue99]. Precisely, if W is coercive then weak sequential lower semi-
continuity (and hence quasiconvexity) is a sufficient condition for the existence
of minimizers. If insteadW is not quasiconvex, then one must expect fine-scale
oscillations in the gradients of infimizing sequences. The relaxation of E(u)
is achieved in this case by replacing W with its quasiconvex envelope W qc,
the largest quasiconvex function bounded from above by W . Knowledge of
W qc would permit an accurate simulation of the macroscopic features of E.
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Unfortunately, analytical formulas for the quasiconvex envelope are known
only for very few energy densities W . Consequently, one is interested to nu-
merical relaxation, which aims at an efficient approximation of W qc. This
will be illustrated and discussed below, considering model examples of mi-
crostructures in phase transitions and in elastoplasticity described by scalar
and vector nonconvex variational problems. We call the minimization of (1.1)
scalar if n ∧m := min{n,m} = 1, vector otherwise.

The remaining part of the paper is organized as follows. Sect. 2 analyzes
generalized and relaxed formulations of a scalar nonconvex minimization prob-
lem for a two-well energy density. Sect. 3 deals, instead, with nonconvex vector
variational problems by introducing the notions of quasiconvexity, rank-one
convexity, and polyconvexity. Sect. 4 describes numerical algorithms for the
evaluation of the rank-one convex and polyconvex envelope as approximation
of the quasiconvex envelope. Applications to models for microstructure in
phase transitions and plasticity are given in Sect. 5. Finally, Sect. 6 concludes
the paper with some observations.

2 The scalar double-well problem and its relaxation

We consider in this section the anti-plane shear simplification of the Ericksen-
James energy density

W (F ) := |F − F1|2|F − F2|2 for F ∈ R2, (2.1)

with F1, F2 ∈ R2, F = Du, and u : Ω ⊂ R2 → R, as a typical example of a
scalar nonconvex minimization problem. This reads as follows.

Problem 2.1. Seek u ∈ A that minimizes

E(u) =
∫
Ω

W (Du) dx+ α

∫
Ω

|u− f |2 dx, (P)

over the set of admissible functions A := uD + W 1,4
0 (Ω; R), with uD ∈

W 1,4(Ω; R) prescribed, α ≥ 0, and f ∈ L2(Ω; R).

As discussed in the Introduction, direct minimization of (P) is difficult [Lus96].
The rest of this section discusses alternative approaches. Precisely, in Sect. 2.1
we introduce the concept of Young measures, and in Subsections 2.2 and 2.3
generalizations of (P) with Young measures (problem (GP)) and by convex-
ification (problem (CP)) are discussed. Convergence of adaptive mesh refine-
ment algorithms is discussed in the Sect. 2.4, whereas Sect. 2.5 summarizes
the main results for the formulations (CP) and (GP) for an ad hoc extension
to 2D of the broken Tartar problem [NW93] developed in [CJ03].
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2.1 Young measures capture oscillations

Infimizing sequences (u�) for (P) are typically weakly but not strongly con-
vergent in W 1,p(Ω; R) and the corresponding weak limits are in general not
solutions of (P), because of the lack of weak lower semicontinuity. Young
measures provide the mathematical tool for representing the weak-∗ limit,
whenever it exists, of sequences (f(u�)) ⊂ L∞(Ω; R) with f ∈ C0(R; R). Here
C0(Rm; R) for m ≥ 1 is the space of the functions f ∈ C(Rm; R) such that
lim|x|→∞f(x) = 0. Definitions and properties of Young measures are given
next in relation to their use for sequences (u�) ⊂ L∞(Ω ⊂ Rn; Rm).

Definition 2.2 ([Mue99]). Denote with M(Rm) the set of all finite signed
Radon measures supported in Rm, and with L∞

w (Ω;M(Rm)) the space of func-
tions ν = (νx)x∈Ω defined in Ω ⊂ Rn and with values in M(Rm) such that

〈ν; g〉 : Ω → R, x �→ 〈νx; g〉 :=
∫

Rm

g dνx

are measurable for all g ∈ C0(Rm; R). Let YM(Ω; Rm) be the set of all ν ∈
L∞
w (Ω;M(Rm)) which are probability measures, i.e. νx ≥ 0 and νx(Rm)=1

for almost all x ∈ Ω. The elements of YM(Ω; Rm) are called Young measures.

Theorem 2.3 (Existence theorem for Young measures [Mue99]). As-
sume the sequence (u�) bounded in L∞(Ω; Rm). Then there exists a com-
pact set K ⊂ Rm, a subsequence (u�j ) ⊂ (u�), and a Young measure
ν = (νx)x∈Ω ∈ L∞

w (Ω;M(Rm)) such that:

(i) supp νx ⊆ K a.e. in Ω

(ii)for each f ∈ C0(Rm; R) we have∫
Ω

f(u�j )h dx→
∫
Ω

f̄h dx for every h ∈ L1(Ω; R), (2.2)

where
f̄(x) = 〈νx; f〉 :=

∫
Rm

fdνx for a.e. x ∈ Ω. (2.3)

Definition 2.4. We call ν = (νx)x∈Ω in Thm. 2.3 the Young measure asso-
ciated with (or generated by) the sequence (u�j).

Remark 2.5. (i) From Thm. 2.3 one obtains a criterion for strong convergence,
and consequently a criterion to decide on the occurrence or not of oscillations.
Given u�

∗
⇀ u in L∞(Ω; Rm), then u� → u strongly in Lp(Ω; Rm) with p <∞

if and only if νx = δu(x) a.e. in Ω [Mue99].
(ii) By making specific choices for f , we can read off certain information
regarding the structure of the Young measures. For instance, if u�

∗
⇀ u in

L∞(Ω; Rm) and f = id in a neighbourhood of supp ν, then
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u(x) =
∫

Rm

λdνx(λ)

where (νx)x∈Ω is the Young measure associated with (u�).

Since microstructures are associated with oscillations in the gradients of in-
fimizing sequences, one is mainly interested in understanding what are the
Young measures associated with the sequence (Du�). These are called gradi-
ent Young measures.

Definition 2.6 ([Mue99]). An element ν ∈ L∞
w (Ω;M(Rm)) is called a

W 1,∞-gradient Young measure generated by (u�) if it is the Young measure
generated by the sequence of gradients (Du�) with (u�) weakly-∗ convergent in
W 1,∞(Ω; Rm).

Remark 2.7. (i) From eq. (2.2) with f = id in a neighbourhood of supp ν, the
weak-∗ limit Du of a sequence of gradients (Du�) for an infimizing sequence
(u�) for (P) is related to the gradient Young measure generated by (u�) by

Du(x) =
∫

R2
Fdνx(F ) = 〈νx; id〉 a.e. in Ω. (2.4)

Therefore the gradient Young measure ν permits to compute the macro-
scopic strain Du. Analogously, specifying f = DW around supp ν in (2.2), if
(DW (Du�)) is weakly-∗ convergent to some σ, one obtains

σ(x) =
∫

R2
DW (F )dνx(F ) = 〈νx;DW 〉 a.e. in Ω. (2.5)

(ii) Specifying then f = W around supp ν in (2.2) one has

lim
�→∞

∫
Ω

W (Du�) dx =
∫
Ω

〈νx;W 〉 dx. (2.6)

2.2 Relaxation with Young measures and their numerical
approximation

Equation (2.6) along with (2.4) motivate the following generalized problem.

Problem 2.8. Seek a minimizer (u, ν) ∈ B of

GE(u, ν) :=
∫
Ω

〈νx,W 〉 dx+ α

∫
Ω

|u− f |2 dx (GP)

over B := {(u, ν) ∈ A× YM(Ω; R2) : Du(x) = 〈νx; id〉 for a.e. x ∈ Ω}.

The relevance of problem (GP) follows from relaxation theory.
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Theorem 2.9 ([Rou96, Thm. 5.2.1][Ped97, Thm. 4.4]).
Problem (GP) has a solution and there holds

inf
u∈A

E(u) = min
(u,ν)∈B

GE(u, ν).

Moreover, if (u�) is a weakly convergent infimizing sequence for (P), with
weak limit u, that generates the gradient Young measure ν, then (u, ν) is a
minimizer for (GP). Vice versa, if (u, ν) is a solution of (GP) then there is
a weakly convergent infimizing sequence (u�) such that its weak limit is u and
ν is the Young measured generated by (u�).

Remark 2.10. Given ν ∈ L∞
w (Ω;M(R2), the compatibility condition 〈νx; id〉 =

Du(x) with u ∈ W 1,∞(Ω; R), and supp νx ⊆ K compact subset of R2, char-
acterize in the scalar case completely the gradient Young measures associated
with sequences.

Numerical approximations of (GP) have been proposed in [NW93, CR98,
Rou96a, Ped95, KMR05]. Those involve a discretization of the admissible set
A× YM(Ω; R2) and care of the differential constraint.

Within a finite element scheme, denote with T a regular triangulation
of Ω, and by E and N the set of all edges and vertices, respectively. Then
introduce the following finite dimensional spaces

S1(T ) :={vh ∈ C(Ω̄) : ∀T ∈ T , vh|T is affine},
S1

0 (T ) :={vh ∈ S1(T ) : vh = 0 on ∂Ω}.

Let K := N∩Ω denote the set of free nodes, the Dirichlet boundary conditions
uD are discretized by nodal interpolation, i.e. uD,h ∈ S1(T ) with

uD,h(z) = uD(z) if z ∈ K and uD,h(z) = 0 if z ∈ N \ K .

A conforming finite element method of (GP) is obtained by replacing the space
A with Ah := uD,h + S1

0 (T ) whereas the set of Young measures YM(Ω; R2)
is approximated by element-wise constant measures, i.e. homogeneous Young
measures νT expressed as a convex combination of Dirac measures supported
at the nodes of a triangulation τ of a convex polygonal domain ω ⊂ R2 with
mesh size d. That is, denote by Nd(ω) the set of nodes of the triangulation τ
of ω, we assume

νT,d =
∑

FT,j∈Nd(ω)

aFT,jδFT,j (2.7)

with known atoms FT,j ∈ Nd(ω), and unknown coefficients aT,j . We denote
this set with L0(T ;PMh,d) where PMh,d is the set of probability measures
expressed as in (2.7). Consider the set

Bh,d = {(vh, µh,d) ∈ Ah × L0(T ;PMh,d) : ∀T ∈ T , Dvh|T = 〈µh,d|T ; id〉},
(2.8)

the discrete generalized problem reads
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Problem 2.11. Seek (uh, νh,d) ∈ Bh,d such that

Minimize GE(uh, νh,d) over Bh,d. (GPh,d)

An existence result for (GPh,d) follows as for (GP). Let L0(T ; R2) be the
set of piecewise constant functions on T with values in R2, W ∗∗ the convex
envelope of W (defined in Sect. 2.3) and W c

d = (PτW )∗∗ the convex envelope
of PτW , the nodal interpolation of W associated with the triangulation τ of
ω. Let σ = DW ∗∗(Du) for a solution u ∈ A of (CP) (see Problem 2.13), then
we have the following a-priori and a-posteriori error bounds

Theorem 2.12 ([Bar04, Thm. 4.6 & Thm. 4.8]). Assume u ∈ A solution
of (CP), (uh, νh,d) ∈ Bh,d solution of (GPh,d), and λh,d ∈ L0(T ; R2) the
Lagrange multiplier associated with the constraint Dvh|T = 〈µh,d|T ; id〉. Then,
there holds

‖σ − λh,d‖ ≤ C inf
vh∈Ah

(‖∇(u − vh)‖+ α‖u− vh‖)

+ C‖∂W c
d −DW ∗∗‖L∞(ω) ; (2.9)

‖σ − λh,d‖2 ≤ C

{
(
∑
T∈T

h2
T ‖f + divλh,d + 2α(f − uh)‖)1/2

+ (
∑
E∈E

hE‖[λh,d · nE ]‖2)1/2 + ‖∂W c
d −DW ∗∗‖L∞(ω)

+ ‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD)

}
. (2.10)

Since ‖∂W c
d − DW ∗∗‖ can be bounded from above in terms of grid size d

and D2W ∗∗, together with the density of the finite element spaces in A, from
(2.9) one proves λh,d → σ in L2 as h, d→ 0, whereas (2.10) represents a basic
ingredient of the multilevel adaptive scheme for the definition of the support
of the Young measures developed by [Bar04].

2.3 Relaxation via convex envelopes

By minimizing the two contributions in (GP) separately one obtains another
relaxation of (P). For fixed F = Du one can find a probability measure
ν = (νx)x∈Ω such that ν minimizes the expression 〈µ;W 〉 among all the
probability measures µ satisfying 〈µ; id〉 = F . In some cases, it is also possible
to obtain an explicit expression for the convex hull of W , defined by

W ∗∗(F ) = min
µ∈Y M(Ω;R2)

〈µ;id〉=F

〈µ,W 〉. (2.11)

The notation is motivated by the fact that for continuous W the convex
envelope coincides with the bipolar function. We recall that, since we are in
the scalar case, convexity and quasiconvexity coincide.

Problem (GP) and (2.11) motivate to consider the convexified problem.
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Problem 2.13. Seek u ∈ A that minimizes

Ec(u) :=
∫
Ω

W ∗∗(Du) dx+ α

∫
Ω

|u− f |2 dx. (CP)

Likewise problem (GP), the importance of problem (CP) follows from
relaxation theory.

Theorem 2.14 ([Dac89]). Problem (CP) has a solution and there holds

inf
u∈A

E(u) = min
u∈A

Ec(u). (2.12)

Moreover, if (u�) is a weakly convergent minimizing sequence of (P) and u is
its weak limit, then u is a solution of (CP). Vice versa, if u is a solution of
(CP) then there exists a weakly convergent minimizing sequence of (P) having
u as weak limit. The stress field σ = DW ∗∗(u) is unique and independent of
u among the solutions of (CP) [Fri94].

Remark 2.15. Whenever α > 0 in (P), problem (CP) admits a unique solution
u. If α = 0, however, the numerical treatment of (CP) requires the introduc-
tion of a perturbation in Ec, usually in the form of a strictly convex functional
scaled by a small quantity. The introduction of the stabilized term finds its
justification in the need of including some kind of ‘selection mechanism’ in
the model which (i) ensures uniqueness on discrete level, (ii) is necessary for
the design of convergent iterative solvers [BCHH04], and (iii) with some sta-
bilizations terms for standard low-order finite element methods yields strong
convergence of the gradients [BCPP04]. The same happens when dealing with
quasiconvex envelopes in the vectorial case, see, e.g., [CDD02].

2.4 Adaptive finite element methods for relaxed formulations

An h-finite element adaptive algorithm consists of successive loops of the form

SOLVE → ESTIMATE → MARK → REFINE (2.13)

designed to produce with less computational effort more efficient meshes by
targeted local refinements. The use of such algorithms for the direct finite ele-
ment minimization, however, does not always lead to an improved convergence
rate in the stress error and also unclear is its convergence. For degenerately
convex problems with C1 energy density W characterized for some constants
p, r, s by the conditions

|DW (A)−DW (B)|r ≤ c(1 + |A|s + |B|s)(W (B) −W (A)
−DW (A) · (B −A)) ,

cl(|A|p − 1) ≤W (A) ≤ cu(|A|p + 1) ,
(2.14)

to hold for all A,B ∈ Rn, [Car06] proves the convergence of the stress fields
σ0, σ1, . . . produced by (2.13) to σ = DW ∗∗(Du) in Lr/(1+s/p)(Ω; R2). In the



Relaxation and the Computation of Microstructures 205

algorithm (2.13), the step MARK is realized by the criterion introduced by
[Dor96] where one marks the edges E ∈ M ⊂ E such that Θ

∑
E∈E η

2
E ≤∑

E∈M η2
E with ηE the edge contribution to the global error estimator. In the

step REFINE , on the other hand, one refines each triangle T with an edge
in M such that an inner node is created, with possible further refinements
that guarantee that ‖hjDf‖L2(Ω;R2) tends to zero as j →∞ and the resulting
triangulation is regular.

2.5 A 2D scalar benchmark problem

In this section we report on the analysis of (P) in the particular case of
α = 1, f and uD given in [CJ03], Ω = (0, 1) × (0, 3/2), and the two wells
F1 := −(3, 2)/

√
13 and F2 = −F1. The convex envelope W ∗∗ was computed

in [CP97], and is

W ∗∗(F ) = ((|F |2 − 1)+)2 + 4(|F |2 − ((3, 2) · F )2) (2.15)

with (·)+ := max{0, ·} and the symbol · the inner product in R2. From relax-
ation theory, we have the following result.

Theorem 2.16 ([CJ03]). The problem (CP) has a unique solution u ∈ A

inf
v∈A

E(v) = min
v∈A

E∗∗(v) = E∗∗(u), (2.16)

characterized as the solution of the Euler-Lagrange equation∫
Ω

σ ·Dv dx+ 2
∫
Ω

(u− f)v dx = 0 for all v ∈W 1,4
0 (Ω; R), (2.17)

where σ := DW ∗∗(Du). Furthermore, any infimizing sequence (u�) of (P) is
bounded in W 1,4(Ω; R) and generates a sequence of stresses σ� := DW (Du�)
convergent in measure toward σ = DW ∗∗(Du).

For this problem, moreover, one obtains an analytical expression for the
gradient Young measure which is unique and is given by

νx = λ(F )δS+(F ) + (1− λ(F ))δS−(F ), (2.18)

with F = Du and

λ(F ) =
1
2
(1 + F2 · F (1 − |PF |2)−1/2) ∈ [0, 1], (2.19)

S±(F ) =

{
PF ± F2(1− |PF |2)−1/2 for |F | < 1,

F for 1 < |F | ,
(2.20)

where P = I− F2 ⊗ F2 (with ⊗ tensor product of vectors of R2).



206 S. Bartels, C. Carstensen, S. Conti, K. Hackl, U. Hoppe, A. Orlando

Remark 2.17. Since σ� converges toward σ, from (2.5) the stress field σ =
DW ∗∗(Du) can then be represented as

σ(x) =
∫

R2
DW dνx, (2.21)

with ν given in (2.18) [Fri94].

With the notation of Sect. 2.2 the Galerkin discretization of (2.17) reads

Problem 2.18. Seek uh ∈ Ah such that∫
Ω

σh ·Dvh dx + 2
∫
Ω

(uh − f)vh dx = 0 for all vh ∈ S1
0 (T ) (CPh)

with σh := DW ∗∗(Duh)

Strong convergence in L4/3(Ω; R2) of the stress fields σh results from the a
priori error estimate [CP97]

‖σ − σh‖L4/3(Ω;R2) ≤ c1 inf
vh∈Ah

‖u− vh‖W 1,4(Ω;R). (2.22)

This is obtained using the condition

|DW ∗∗(A)−DW ∗∗(B)|2 ≤ c(1+|A|2+|B|2)(DW ∗∗(B)−DW ∗∗(A)) : (B−A)
(2.23)

that holds for any A,B ∈ R2 together with some p = 4 and q = 3 growth con-
ditions on W and on DW ∗∗, respectively. Another application of (2.23) also
shows the reliability of residual and averaging based error estimates whereas
the efficiency follows from standard arguments; that is, one has also

c2ηM − h.o.t. ≤ ‖σ − σh‖L4/3(Ω;R2) ≤ c2η
1/2
M + h.o.t. (2.24)

The minimal averaging error estimator ηM that enters (2.24) is defined by

ηM =
( ∑
T∈T

η
4/3
T

)3/4 for ηT = ‖σh − σ∗h‖L4/3(T ;R2),

with σ∗ ∈ S1(T )2 that minimizes

‖σh − τh‖L4/3(Ω;R2) among τh ∈ S1(T )2.

Figure 2.1 displays experimental convergence rates for ‖σ − σh‖L4/3(Ω;R2)

and the error estimators ηM and η1/2
M for uniform and adaptive mesh refine-

ment. The adaptive refinement strategy leads to significantly reduced error
and improved experimental convergence rates.

Remark 2.19. The two-sided estimates (2.24) shows that lower bounds are no
valid upper bounds and vice versa, due to the different exponents for ηM
in the reliability and efficiency estimate. This miss balance is referred to as
reliability-efficiency gap [CJ03].



Relaxation and the Computation of Microstructures 207

101

100

10-1

10-2
101 103102

1

1

0.4

0.6

|| h||4/3 (uniform)

|| h||4/3 (adaptive)

M (uniform)

M (uniform)1/2

M (adaptive)1/2
M (adaptive)

Fig. 2.1. The 2D benchmark problem. Experimental convergence rates for ‖σ −
σh‖L4/3(Ω;R2) and the error estimators ηM and η

1/2
M plotted against degrees of free-

dom N with a logarithmic scale for uniform and adaptive mesh refinement.

3 Nonconvex vector variational problems

For scalar nonconvex variational problems the convexity of W (Du) with re-
spect to F = Du ensures the weak (weak-∗) sequential lower semicontinuity
of the functional E(u) =

∫
Ω
W (Du) on W 1,p(Ω; Rm) for 1 ≤ p < ∞ (resp.

p = ∞). Along with suitable growth conditions on W , one can prove the ex-
istence of minimizers using the direct method of the calculus of variations. In
the vectorial case a weaker condition is sufficient, namely, quasiconvexity.

3.1 Quasiconvexity and effective energy density

Quasiconvexity was introduced by Morrey in 1952 as a condition on the energy
density W which is equivalent, under appropriate growth conditions, to weak
sequential lower semicontinuity of the functional E [Mor52].

Definition 3.1. Given a function W : R3×3 → R, we say that W is quasi-
convex at F ∈ R3×3 if for every open and bounded set ω ⊆ R3 one has∫

ω

W (F +Dy(x)) dx ≥
∫
ω

W (F ) dx = |ω|W (F ) for each y ∈W 1,∞
0 (ω; R3).

(3.1)

Quasiconvexity lies at the heart of the relaxation theory for functionals of
the type E(u) =

∫
ΩW (Du) dx. An instrumental role is played by the quasi-

convex envelope of W defined as the pointwise supremum of the quasiconvex
functions that are bounded from above by W , i.e., for each F ∈ R3×3,

W qc(F ) = sup {f(F ) : f ≤W with f quasiconvex}. (3.2)
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Under suitable growth conditions on W , the weakly (weakly-∗ for p = ∞)
sequentially lower semicontinuous envelope of the functional

E(u) =
∫
Ω

W (Du) dx+ L(u), (3.3)

has the following integral representation

Eqc(u) =
∫
Ω

W qc(Du) dx+ L(u). (3.4)

Here L(u) is a linear term representing external forces.
The link between the minimization of (3.3) and (3.4) is given by relaxation

theory.

Theorem 3.2 ([Dac89, Mue99]). Let uD ∈ W 1,p(Ω; R3) be fixed, A =
uD +W 1,p

0 (Ω; R3), and assume W to have p-growth and be p-coercive. Then
the relaxed problem

Minimize Eqc(u) amongst u ∈ A, (QP)

has a solution and there holds

min
u∈A

Eqc(u) = inf
u∈A

E(u). (3.5)

Furthermore, any solution u of (QP) is the weak limit of an infimizing se-
quence for (3.3).

The quasiconvex envelope of W at F can be characterized equivalently as
[Dac89, Mue99]

W qc(F ) = inf
y∈W1,∞(ω;R3)

y=F x on ∂ω

1
|ω|

∫
ω

W (Dy(x)) dx. (3.6)

Inequality (3.1) states that the deformation u(x) = Fx is a minimizer of∫
Ω
W (Dy) dx subject to its own boundary values. As such W qc(F ) represents

the infimum of the average energy taken over all possible microstructures
y = y(x) that satisfy the boundary condition y(x) = Fx on ∂Ω, with the
least energy achieved by the deformation y = Fx itself.

Remark 3.3. (i) For n ≥ 2, m ≥ 3 it has been shown in [Kri99] that there does
not exist a local characterization of (3.1), that is, there is no set of inequalities
on W and its derivatives at an arbitrary matrix F which is necessary and suf-
ficient for W to be quasiconvex. As a result, quasiconvexity is a very difficult
property to verify in practice. Only few examples of analytical expressions of
quasiconvex envelopes of particular functions are known with notable exam-
ples reported in [KS86, Koh91, DSD02, CT05, CO05].
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(ii) The generalized formulation with gradient Young measures does not cir-
cumvent the quasiconvexification. The set of admissible gradient Young mea-
sures, besides the conditions listed in Remark 2.10, is characterized by the
fact that Jensen’s inequality should hold for any quasiconvex function, i.e.
[KP91]

f(〈νx; id〉) ≤ 〈νx; f〉 a.e. x ∈ Ω, for all quasiconvex functions f . (3.7)

For the constructive characterization and evaluation of W qc for general W
one is, therefore, faced with a direct minimization of a nonconvex functional
with linear boundary conditions and no lower order terms on an arbitrary
domain ω, whose solution may be, however, very difficult to tackle with. Nec-
essary or sufficient conditions for quasiconvexity have been, therefore, intro-
duced providing some insight for the analysis of microstructures.

3.2 Rank-one convexity and laminated microstructures

A necessary condition for quasiconvexity is rank-one convexity, stating con-
vexity of the function W along all rank-one directions.

Definition 3.4. A function W : R3×3 → R is rank-one convex if for all
A,B ∈ R3×3 such that rank(A−B) ≤ 1 and all λ ∈ (0, 1),

W (λA+ (1 − λ)B) ≤ λW (A) + (1− λ)W (B). (3.8)

Equivalently, W is rank-one convex if for all A ∈ R3×3 and all a, n ∈ R3 the
function λ �→W (A+ λa⊗ n) is convex on R. This is in turn equivalent to

W (A+ λa⊗ n) ≤ λW (A+ a⊗ n) + (1− λ)W (A), (3.9)

for all λ ∈ (0, 1), and all A, a and n.

The following considerations illustrate the relevance of rank-one convexity in
the analysis of microstructures. By letting y ∈ W 1,∞(Ω; R3) with y(x) = Fx
on ∂ω, W qc(F ) provides a macroscopic description of all possible microstruc-
tures with average deformation F . In the evaluation of the infimum (3.6) it
may be convenient to restrict y = y(x) to a subclass of W 1,∞(Ω; R3) corre-
sponding only to certain microstructure patterns. For example, one can con-
sider the deformations y� = y�(x) describing first order laminates, and with
y�(x) = Fx on ∂ω. The corresponding sequence of gradients will, therefore,
oscillate between two phases

F0 = F + (1− λ)a⊗ n and F1 = F − λa⊗ n (3.10)

with some a, n ∈ R3×3, λ ∈ (0, 1), and F0 − F1 = a⊗ n. The gradient Young
measure associated with (y�) will be homogeneous and equal to

ν = λδF0 + (1− λ)δF1 .
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n

Dy = F0 F1 F0 F1

F

F0 F1

(a) (b)

Fig. 3.1. (a) Microstructural patterns in first order laminates. (b) Graph represen-
tation.

For such infimizing sequences (y�) one has [Dac89, Mue99]

lim
�→∞

1
|ω|

∫
ω

W (Dy�(x)) dx = λW (F0) + (1− λ)W (F1). (3.11)

In the class of the first order laminates defined by (3.10), those that realize
the lowest energetic content will therefore be solution of the problem

R(1)W (F ) = inf{λW (F + (1− λ)a⊗ n︸ ︷︷ ︸
F0

) + (1− λ)W (F − λa⊗ n︸ ︷︷ ︸
F1

)) :

0 ≤ λ ≤ 1 and a, n ∈ R3}.
(3.12)

If λ = 0 or λ = 1 then no microstructure will occur. The graphical interpre-
tation of condition (3.10) and the corresponding microstructure pattern are
depicted in Fig. 3.1.

For F0 and F1 given as above, consider the convex combination

F0 = λ0F00 + (1− λ0)F01 and F1 = λ1F10 + (1− λ1)F11, (3.13)

with
F00 − F01 = a0 ⊗ n0 and F10 − F11 = a1 ⊗ n1. (3.14)

By replacing (3.13) into (3.10) one obtains

F = λλ0F00 + λ(1 − λ0)F01 + (1− λ)λ1F10 + (1− λ)(1 − λ1)F11. (3.15)

The graphical interpretation of this decomposition and the corresponding mi-
crostructure pattern are shown in Fig. 3.2.

Microstructures defined by (3.15) are called second order laminates. One
can therefore inquire on the second order laminates (if they exist) that min-
imize 1/|ω|

∫
ω
W (Du) dx. Those will be solution of the following global non-

linear optimization problem
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Fig. 3.2. (a) Microstructural patterns in second order laminates. (b) Graph repre-
sentation.

R(2)W (F ) = inf
{
λλ0W (F00) + λ(1− λ0)W (F01) + (1− λ)λ1W (F10)+

(1− λ)(1 − λ1)W (F11) : 0 ≤ λ, λ0, λ1 ≤ 1, and

a, n, a0, n0, a1, n1 ∈ R3

}
.

(3.16)

It can be shown that it is also

R(2)W (F ) = inf
{
λR(1)W (F0) + (1− λ)R(1)W (F1) : 0 ≤ λ ≤ 1, a, n ∈ R3

}
(3.17)

with F0, F1 defined as in (3.10). The iteration of (3.17) produces laminates
of order k ∈ N such that [KS86]

W rc(F ) = lim
k→∞

R(k)W (F ), (3.18)

and there holds

W qc ≤W rc ≤ · · · ≤ R(k)W ≤ · · · ≤ R(2)W ≤ R(1)W ≤W. (3.19)

In (3.18), W rc denotes the rank-one convex envelope of W defined by (3.2)
with rank-one convex functions.

3.3 A lower bound to W qc: polyconvex envelope

Polyconvexity was introduced by Ball in [Bal77] as a structural condition on
W compatible with some physical requirements that simple convexity would
violate, and that was sufficient to ensure existence of minimizers for nonlinear
finite strain elasticity. Both polyconvexity and convexity provide sufficient
conditions for quasiconvexity.
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Definition 3.5 ([Bal77]). The function W : R3×3 → R is polyconvex if there
exists a convex function g : R3×3 × R3×3 × R → R such that

W (F ) = g(T (F )) for each F ∈ R3×3. (3.20)

Here

T : F ∈ R3×3 → T (F ) = (F, cof F, det F ) ∈ R3×3 × R3×3 × R. (3.21)

The function g is not defined uniquely from W . Using Carathéodory theorem
it can be shown that one possible choice is [Dac89]

g(T (F )) = inf
Ai∈R3×3

λi∈R

{
19∑
i=1

λiW (Ai) :λi ≥ 0,
19∑
i=1

λi = 1,

19∑
i=1

λiT (Ai) = T (F )} .

(3.22)

The value of the polyconvex envelope W pc at F ∈ R3×3, can be, therefore,
characterized equivalently as solution of the following minimization problem.

W pc(F ) = inf
Ai∈R3×3

λi∈R

{
19∑
i=1

λiW (Ai) :λi ≥ 0,
19∑
i=1

λi = 1,

19∑
i=1

λiT (Ai) = T (F )}.

(3.23)

The semiconvex notions introduced so far reduce to convexity in the scalar
case, whereas in the vector case, their relation is represented in the following
diagram

W convex ⇒W polyconvex ⇒W quasiconvex ⇒W rank-one convex,
(3.24)

with the converse not holding in general [Mue99]. In view of (3.24) one has

W c ≤W pc ≤W qc ≤W rc ≤ · · · ≤ R(k)W ≤ · · · ≤ R(2)W ≤ R(1)W ≤W,
(3.25)

with W pc and W rc providing lower and upper bound to W qc, respectively.
From Thm. 3.2 it follows

min
u∈A

∫
Ω

W qc(Du) dx = inf
u∈A

∫
Ω

W rc(Du) dx = · · · = inf
u∈A

∫
Ω

R(k)W (Du) dx

· · · = inf
u∈A

∫
Ω

R(1)W (Du) dx = inf
u∈A

∫
Ω

W (Du) dx.

(3.26)
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4 Numerical relaxation

The evaluation of rank–one convex and polyconvex envelopes for a character-
ization of the quasiconvex hull is an extremely complex task since the energy
density W is defined on four– or nine–dimensional matrix spaces in the space
dimension n = m = 2 or n = m = 3 but can be reduced using invariance un-
der rotations. Furthermore, the definition of an envelope is typically not local,
that is, the value at a given F ∈ Rn×n depends, in general, on the values of
W on the whole space Rn×n and not just on a bounded neighborhood of F .

In view of the difficulty involved in checking analytically the previous
notions, one tries to resort to efficient numerical algorithms for the approxi-
mation to rank–one convex and polyconvex envelope, referred to as numerical
relaxation, exploiting growth conditions and qualitative properties of W .

4.1 Numerical polyconvexification

For F ∈ R3×3 the value of the polyconvex envelope at F , W pc(F ), given by
eq. (3.23) involves a nonlinear optimization problem whose solution may be
very difficult. Given a finite set of nodes Nδ,r = δZ3×3∩Br(0) ⊆ R3×3, δ mesh
size such that 0 ≤ δ ≤ r and r large enough so that F ∈ co Nδ,r, convex hull
of Nδ,r, an approximation to W pc(F ) can be obtained by solving the following
linear optimization problem over the space R#Nδ,r with #Nδ,r the cardinality
of the discrete set Nδ,r.

W pc
δ,r(F ) = inf

θA∈R
#Nδ,r

{ ∑
A∈Nδ,r

θAW (A) : θA ≥ 0,
∑

A∈Nδ,r

θA = 1,

∑
A∈Nδ,r

θAT (A) = T (F )
}
.

(4.1)

Under the assumption that W ∈ C1,α
loc (R3×3; R) with α ∈ [0, 1] [Bar04a] shows

that there exists r′ < r such that the following estimates holds

|W pc
δ,r(F )−W pc(F )| ≤ cδ1+α|W |C1,α

loc (Br′ (0))
(4.2)

obtained by constructing a continuous piecewise multilinear approximation to
W pc. Furthermore, let λFδ,r ∈ R19 denote the Lagrangian multiplier associated
with the constraints∑

θAA = F,
∑

θAcofA = cofF, and
∑

θAdetA = detF. (4.3)

If additionally α > 0 andW pc ∈ C1,α
loc (R3×3; R) then an approximation to σ :=

DW pc(F ) is given by λFδ,r ◦DT (F ), where DT (F ) is the Gateaux derivative
of T , and ◦ denotes the composition operator between λFδ,r ∈ L(R19; R) and
DT ∈ L(R9; R19) (with L(Rm; Rn) space of linear operators of Rm into Rn).
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The solution of (4.1) involves a large number of unknowns equal to the
cardinality of the discrete set Nδ,r. The combination of an active set strategy
with local grid refinement and coarsening to avoid checking a Weierstrass-type
maximum principle in all the nodes of Nδ,r leads to a very efficient but still
reliable algorithm that computes W pc

δ,r(F ) [Bar04a].

4.2 Numerical finite lamination

Approximations to the rank-one convex envelope W rc can be realized by
R(k)W by iterating the construction described in Sect. 3 and motivated by
the condition (3.18). The algorithm proposed by [Dol99, Dol03], on the other
hand, performs convexification along rank-one directions until the function
is stable under this operation. A pseudo-algorithm for the approximation of
W rc would therefore have the following main ingredients:

Algorithm 4.1 (Numerical lamination)
(a) k = 0; R(k)W = W .
(b) For certain F , and for a, n ∈ R3, g(t) =convexify R(k)W (F + ta⊗ n).
(c) R(k+1)W (F ) = g(0) and compare with R(k)W (F ) to stop, otherwise set
k = k + 1 and go to (b).

Approximations are, therefore, introduced in step (a), by restricting the
space R3×3 where to evaluate W , and in step (b) where only discrete set of
rank-one directions will be considered.

With the notation of Sect. 4.1, introduce the discrete set of rank-one di-
rections

R1
δ =

{
δR ∈ R3×3 : R = a⊗ n, with a, n ∈ Z3

}
,

and for R ∈ R1
δ the following set �R,δ := {� ∈ Z : F + �δR ∈ coNδ,r}. For

assigned R ∈ R1
δ , the elements of �R,δ identify the intersection of the grid

coNδ,r with the direction F + tR. In step (a) of the Algorithm 4.1, one set
R(0)W = Iδ,rW as nodal interpolation of W in coNδ,r whereas at step (c) one
solves the following optimization problem

R
(k+1)
δ,r W (F ) = inf

R∈R1
δ

inf
θ∈R

#�R,δ

{ ∑
�∈�R,δ

θ�R
(k)
δ,rW (F+δ�R) : θ� ≥ 0,

∑
�∈�R,δ

θ� = 1
}
,

with R
(k)
δ,rW := ∞ in R3×3 and nodal interpolation of R(k)

δ,rW in coNδ,r at
variance of the algorithm proposed in [Dol99].

Assuming W ∈ C1,1(R3×3; R) and equal to W rc in R3×3 \Br(0) with some
r, bounds on a and b in the definition ofR1

δ , and that there exists a lamination
level L such that R(L)

δ,r W = W rc, [Bar04b] improves the estimate of [DW00]

‖R(k+1)
δ,r W −W rc‖L∞(coNδ,r ;R) ≤ cδ . (4.4)

Even if one does not know L and r, R(k+1)
δ,r W provides, however, an upper

bound to W rc for all k ≥ 0, r ≥ δ > 0 and F ∈ coNδ,r.
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5 Phase transitions and plasticity as vector nonconvex
minimization problems

This section discusses the numerical analysis and approximation of relaxed
formulations for two types of nonconvex vector stored energy densities. In
the first example the quasiconvex envelope is known whereas for the other
one no analytical expression of any semiconvex envelope is available. In the
latter case, therefore, we proceed to numerical relaxation by computing the
polyconvex and lamination convex envelope.

5.1 Compatible phase transitions in elastic solids

We consider a solid with two phases, whose energy density takes the form

W (F ) = min {W1(F ),W2(F )}. (5.1)

In a geometrically linear context, the energy of each phase is

Wj =
1
2

C(F − Fj) : (F − Fj) , (5.2)

where C is the linear elasticity tensor, the symbol : the inner product in
Rn×n, n = 2, 3, and Fj the stress-free configuration of phase j.

Since W is not rank-one convex, thus neither quasiconvex, the functional
E in (3.3) is not sequentially weakly lower semicontinuous. Assuming that
the two wells F1 and F2 are rank-one connected, then there exists an affine
function that equals W at the two wells and is elsewhere a strict lower bound
of W and, therefore, there is no attainment of minimizer.

The quasiconvex envelope of W is given by [Koh91]

W qc =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

W2(F ) if W2(F ) + γ ≤W1(F ),

1
2
(W1(F ) +W2(F ))

− 1
4γ

(W2(F )−W1(F ))2 − γ

4

if |W2(F )−W1(F )| ≤ γ,

W1(F ) if W1(F ) + γ ≤W2(F ),

(5.3)

with γ = 1/2〈F2− F1,C(F2 − F1)〉 for rank-one connected wells. In this case,
W qc belongs to C1(Rn×n; R) and is convex. Further, from a result of [CP00],
one can show that the following conditions hold true for W qc and are, in fact,
equivalent [HL93, CHO06]

|DW qc(E)−DW qc(F )| ≤ L|E − F | , (5.4)
1
L
|DW qc(E)−DW qc(F )|2 ≤ (DW qc(E)−DW qc(F )) : (E − F ) , (5.5)

1
2L
|DW qc(E)−DW qc(F )|2 ≤W qc(E)−W qc(F )−DW qc(F ) : (E − F ) ,

(5.6)
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for any E,F ∈ Rn×n. Given the functional

H(u) :=
∫
Ω

W qc(ε(u)) dx+
∫
Ω

fu dx+ ‖u‖2
L2(Ω;Rn) (5.7)

with ε(u) = symDu, using (5.4)–(5.6), and the following condition

W qc(E)−W qc(F )−DW qc(F ) : (E−F ) ≤ (DW qc(F )−DW qc(E)) : (F −E)
(5.8)

that holds for any E,F ∈ Rn×n for the convexity of W qc, [CHO06] prove
the convergence of (2.13) for the minimization of (5.7) over A := uD +
W 1,2

0 (Ω; Rn) and the preasymptotic convergence rate of the energy. More
precisely, let δh := H(uh)−H(u), with u and uh minimizers of H over A and
Ah, respectively. Then, there holds

δ� + ‖σ − σ�‖2
L2(Ω;Rn×n) + ‖u− u�‖2

L2(Ω;Rn) ≤ C
(
(δ� − δ�+1)1/2 + osc�

)
(5.9)

with σ := DW qc(ε(u)), C > 0 depending on the mesh regularity and material
parameters, and osc� a node-patchwise definition of the data oscillations. The
observation that (H�) is a Cauchy sequence yields, finally, that

σh → σ in L2(Ω; Rn×n) , and uh → u in L2(Ω; Rn) , (5.10)

provided that one controls also the data oscillations.

5.2 Single-slip elastoplasticity

We consider here a simplified model for plastic deformation in ductile single
crystals. We focus on two spatial dimensions, and on the case that only a sin-
gle slip system is active, which is described by an orthonormal pair of vectors
s and n, with s ∈ S1 (where S1 = {x ∈ R2 : |x| = 1}) the slip direction on the
slip plane and n ∈ S1 the normal to the slip plane. In a geometrically nonlin-
ear context, we assume the multiplicative decomposition of the deformation
gradient F = FeFp with Fp = I+ γs⊗n, where γ ∈ R is referred to as plastic
slip. Hardening is included through a single internal variable p ∈ R. Within
the framework of rate-independent processes [Mie03, Mie04a, Mie04b, Mie05],
we consider monotonic loading, or equivalently the first time step in a time-
discrete scheme, and, set equal to zero the initial values of the internal vari-
ables (γ, p). Minimizing out locally the internal variables leads to a variational
formulation analogous to (1.1), which can again be analysed using the dis-
cussed methods of the calculus of variations. The analogy with the study of
martensitic microstructures via continuum models based on nonlinear elastic-
ity, and the study via a variational problem expressed only in terms of the
deformation gradient F = Dφ, was advanced for the first time in [OR99].

The constitutive behaviour of the single crystal can be described in terms of
two potentials: the free energy density W (Fe, p) and the dissipation potential
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J(γ, p). The free energy density is sum of an elastic and a plastic contribution
as follows

W (Fe, p) = We(Fe) +Wp(p) , (5.11)

with
We(Fe) = U(Fe) +

µ

2
(|Fe|2 − 2) , Wp(p) =

h

2
p2 , (5.12)

and U(Fe) a polyconvex function defining a Neo-Hookian material, such as

U(Fe) =

⎧⎨⎩
κ

4
((detFe)2 − 1)− κ+ 2µ

2
log (detFe) if detFe > 0

+∞ else,
(5.13)

with µ, κ material constants and h the hardening moduli. The dissipation
potential J(γ, p) is

J(γ, p) =

{
τcr|γ| if |γ|+ p ≤ 0

∞ else ,
(5.14)

with τcr the critical shear stress. This is the same model considered in [CHM02,
BCHH04, MLG04].

For this particular example, by minimizing with respect to the internal
variables (γ, p), we obtain a closed form of the condensed energy Wcond(F ) as

Wcond(F ) = U(F ) +
µ

2
(|F |2 − 2)− 1

2
(max(0, µ|Cs · n| − τcr))2

µCs · s+ h
, (5.15)

with C = FTF . The energy density (5.15) is not rank-one convex and, hence,
not quasiconvex. As a result, one may expect non attainment of minimizers for
the corresponding functional, and developments of oscillations in the gradients
of low-energy deformations. For the case under consideration, the occurrence
of such microstructures can be shown by a direct finite element simulation
using representative volume elements under periodic boundary conditions, cf.
[HH02]. Figure 5.1 shows two typical results of these simulations: Oscillations
in the plastic slip field γ, forming first and second order laminates. These
oscillations are highly mesh-dependent with the number of oscillations growing
towards infinity when the mesh becomes finer and finer.

The macroscopic material behaviour can be, however, understood by min-
imizing out locally the possible microstructures and defining the quasiconvex
envelope of Wcond. Unfortunately, a closed form for condensed energies of the
kind of Wcond is known only in few simplified cases [Con03, CT05, CO05].
We therefore resort to an approximation to the rank-one convex envelope
W rc

cond(F ) (Sect. 4) based on laminates.
Let a, b ∈ S1 with a = (cosα, sinα) and b = (cos β, sinβ), then all the rank

one matrices can be expressed in R2×2 as ρa⊗ b for α, β, ρ ∈ R. Considering
first order laminates, the average energy is given by
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(a) (b)

Fig. 5.1. Single-slip plasticity (a) First order laminates and (b) Second order lami-
nates as from (3.12) and (3.16) respectively, assuming periodic boundary conditions.
(See page 693 for a colored version of the figure.)

Elc(1)(F ;α, β, λ, ρ) = λWcond(F + (1− λ)ρa⊗ b)

+(1− λ)Wcond(F − λρa⊗ b)
(5.16)

with the microscopic energy Wcond(F ) defined in (5.15). Let q = (α, β, λ, ρ)
and introduce the feasible set

Σ = {q ∈ R4 : α, β, ρ ∈ R, λ ∈ [0, 1]} ,

the first order laminate envelope is obtained by solving the following global
optimization problem

R(1)Wcond(F ) = min
q∈Σ

Elc(1)(F ; q) , (5.17)

under the constraints

det(F + (1− λ)ρa⊗ b) > 0 , det(F − λρa⊗ b) > 0 . (5.18)

Following the definitions in (3.15) corresponding minimization problems
can be set up for higher order laminates. The growing number of optimization
variables, however, strongly limits a practical application. Already for low
order laminates the numerical search for the minimizer of (5.17) turns out
to be difficult, because the objective function may present an exponential
number of nearby optimal local minima [Car01].

Within the techniques of global optimization for the solution of (5.17),
probabilistic global search procedures are the one commonly adopted. Apply-
ing a local search several times starting from randomly chosen sampling points
leads, however, to an inefficient global search, because the same local mini-
mum may be identified over and over. As an improvement, clustering methods
attempt to avoid this inefficiency by carefully selecting points at which the
local search is initiated.
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Algorithm 5.1 (Clustering method)
Input F , initial population qi ∈ Σ of n starting points, tolerance ε.
(a) (Sampling and reduction): Sample the objective function Elc(1) at qi and
reduce population taking the m best points giving the least value.
(b) (Clustering): Identify clusters, such that the points inside a cluster are
‘close’ to each other, and the clusters are ‘separated’ from each other.
(c) (Center of attraction): Identify a center of attraction in each cluster.
(d) (Local search): Start a local search from the center of attraction and stop
when a minimum is reached within the tolerance ε.
Output the value of R(1)Wcond(F ).

The final local search step is done by using sequential quadratic program-
ming methods with simple bounds [NW99]. Since in a finite element frame-
work the above algorithm has to be performed at every material point (e.g.
Gauss point), for real applications it is important to develop fast techniques
for the numerical relaxation. In the literature the computational effort re-
lated to the global search is usually reduced by fixing some laminate related
parameters on the basis of conjectures motivated by physical considerations
[ORS00, AFO03, ML03, MLG04].

Mixed analytical-numerical relaxation

A different approach to the relaxation of Wcond over laminates has been pur-
sued in [CCO06]. Rather than attacking the global minimization by a brute-
force global optimization algorithm that is anyway computationally very ex-
pensive, [CCO06] exploit the structure of the problem both to achieve a fun-
damental understanding on the optimal microstructure and, in parallel, to
design an efficient numerical relaxation scheme. Inspired by results based on
the global optimization [BCHH04] and on analytical relaxation in the case
of rigid elasticity and no self-hardening [CT05], we determine analytically a
second order laminate which has ‘good’ energy and furnishes an upper bound
to the relaxed energy.

We consider first an elastically rigid problem where the elastic part of the
deformation is assumed to be a rotation, and only the contribution from the
plastic free energy is considered, i.e., dissipation is neglected. The condensed
energy for this case is then given by

W ′(F ) =

{
h
2 γ

2 if F = Q(I + γs⊗m) Q ∈ SO(2) ,

∞ else ,
(5.19)

with the quasiconvex envelope obtained as follows

Theorem 5.1 ([Con03, Con05]). The quasiconvex, rank-one convex, and
polyconvex envelope of W ′(F ) are equal and given by

W ′
qc(F ) =

{
h
2 (|Fm|2 − 1) if detF = 1 and |Fs| ≤ 1 ,

∞ else .
(5.20)
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Fig. 5.2. (a) Bounds to the quasiconvex envelope of the condensed energy for zero
dissipation; (b) Polyconvex and second-order laminate envelope for the condensed
energy density in single-slip plasticity.

The optimal energy is given by a first-order laminate, which is supported on
two matrices which have plastic deformation γ of the same magnitude and
opposite sign.

We then construct a more refined model by assuming the microstructure to
have the form of a laminate of second order, which is supported either on
rigid-plastic deformations or on purely elastic ones. In this case, assuming
volume-preserving deformations, the relaxation is reduced to a global mini-
mization of a function of only one variable which defines the orientation of
the laminate. Using this solution and the splitting of Fp from Thm. 5.1, we
obtain an approximate second order laminate. The latter is then used as a
starting point for the local minimization of the full energy density, including
dissipation, and removing the kinematic constraint.

Figure 5.2(a) depicts the condensed energy Wcond (see eq. (5.15)) together
with We (see eq (5.12)), W ′

qc (see eq (5.20)) and the value of the energy over
the approximate second order laminate (which we denote by f∗∗(0)) for the
case of a pure shear strain F = I + ξr ⊗ r⊥ with r = (1, 0), r⊥ = (0, 1) and
for the material constants µ = 1.0 · 104MPa, κ = 1.5 · 104 MPa, h = 1.0 · 103

MPa and τcr = 10 MPa.
Figure 5.2(b) shows a very good quantitative agreement for the values of

the relaxed energy with those in [BCHH04] which had required a significantly
higher numerical effort and compares approximations of the polyconvex hull
W pc

δ,r(F ), realized with the procedure described in Sect. 4.1. A finer analysis at
small deformations reveals however some differences, which will be discussed
elsewhere [CCO06].

Figure 5.3 depicts finally the value of the volume fractions λ and λ1

whereas λ0 = 1. Initially, the material is in a homogeneous elastic state. Then
an elastic state and a mixture of two opposite–slip plastic states appears. The
volume fraction of the elastic phase starts at 100% and then decreases contin-
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Fig. 5.3. Volume fractions λ and λ1 for different values of ξ

uously until it vanishes at a shear ξ = 0.13. Both plastic phases then progress
with slowly varying volume fractions until the homogeneous phase F is stable.

6 Conclusions

In this paper we have considered the numerical analysis of relaxed formula-
tions for variational formulations lacking lower semicontinuity, and discussed
algorithms for the approximation of the quasiconvex envelope of energy den-
sities, in cases where it is not known in closed form. Relaxed solutions convey
important information on the macroscopic behaviour of the microstructure,
summarized by the relaxation theory. A resulting benefit is that the approxi-
mation of macroscopic quantities does not pose severe difficulties and classical
algorithms for numerical optimization can be efficiently employed.
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Summary. We discuss the derivation of two-dimensional models for thin elastic
sheets as Γ -limits of three-dimensional nonlinear elasticity. We briefly review recent
results and present an extension of the derivation of a membrane theory, first ob-
tained by LeDret and Raoult in 1993, to the case of incompressible materials. The
main difficulty is the construction of a recovery sequence which satisfies pointwise
the nonlinear constraint of incompressibility.

1 Introduction

The formulation and the study of reduced theories for the elastic properties of
thin films is a traditional field of (heuristic) multiscale analysis, dating back to
Euler. A rigorous derivation of such models from three-dimensional elasticity
theory is instead a recent development, and is based on the mathematical tools
of Γ -convergence, which permit passage to the limit for variational functionals.

The starting point is three-dimensional nonlinear elasticity. Precisely, let
the cylindrical domain Ωh = ω× (−h/2, h/2) represent the reference configu-
ration of the sheet, where ω ⊂ R2 is the cross-section and h the (small) height.
The deformation field u : Ωh → R3 is determined by minimizing the elastic
energy, which after scaling with the film thickness h takes the form

Eh[u, f ] =
1
h

∫
Ωh

(
W3D(∇u)− fh · u

)
dx , (1.1)

where fh is a given vector field representing the applied forces. The deforma-
tion u can be additionally subject to boundary conditions on all or part of
the lateral boundary (∂ω)× (−h/2, h/2). Different scalings of fh with h lead
to different scalings of the optimal energy, and correspondingly to different
limiting functionals. In the relevant cases the term fh · u turns out to be a
continuous perturbation of the term W3D(∇u).
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The history of the theory of thin sheets and shells is paved with a number
of simplifications of the general elasticity functional (1.1) aiming at a direct
description of the behavior of the sheet as a two-dimensional object, without
resolving explicitly the structure in the third dimension. Different assump-
tions on the energy density W3D and on the scaling of the forces (and hence
of the energy) lead to drastically different limiting functionals. Mathemati-
cally, for different energy scalings one deals with problems from relaxation,
from variational convergence of singularly perturbed problems, and from the
geometry of isometric immersions.

A number of heuristic derivations led to the formulation of the most rel-
evant limiting theories in the field; the study was then made systematic by
means of asymptotic expansions, which rely on a-priori assumptions on the
structure or at least on the regularity of the minimizers, see [Cia97]. Only
recently it has become possible to derive in a rigorous way two-dimensional
reduced models from the variational problem of elasticity (1.1), by using the
concept of Γ -convergence, as introduced by De Giorgi and his school [DGF75],
see also [Dal93, Bra02]. We focus here on the derivation of a nonlinear mem-
brane theory for incompressible materials, and generalize the result obtained
for finite-valued energy densities by LeDret and Raoult [LR93, LR95] to the
case where the nonlinear unit-determinant constraint is imposed. Essentially
the same result was independently obtained by Trabelsi [Tra05, Tra06].

2 Rigorous derivation of elastic theories for thin films

2.1 General framework

Γ -convergence corresponds to convergence of energy along minimizing se-
quences for a family of functionals and all continuous perturbations [DGF75,
Dal93, Bra02]. Precisely, a family of functionals Fε : X → R ∪ {∞} Γ -
converges to F0 : X → R ∪ {∞} if the following properties hold:

(i) For every pair of sequences εj → 0, uj → u, one has

F0[u] ≤ lim inf
j→∞

Fεj [uj ] .

(ii) For every u ∈ X and every sequence εj → 0 there is a sequence uj → u
with

F0[u] = lim
j→∞

Fεj [uj] .

The notion of Γ -convergence depends on the topology of the space X (which
in this discussion is assumed to be metrizable). The most natural choices are
those for which the family Fε is equicoercive, i.e.,

for any t ∈ R the set
⋃
ε

{u ∈ X : Fε[u] ≤ t} is precompact.
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Indeed, if Γ − limFε = F0 and the Fε are equicoercive, then the set of min-
imizers of F0 coincides with the set of accumulation points of minimizing
sequences of the family Fε. We also recall that functionals defined on sub-
spaces Y ⊂ X can be trivially extended setting them to be ∞ on X \ Y .

Appropriate notions for the convergence of a family of deformations uh :
Ωh → R3 to a limit v : ω → R3 are best defined after rescaling to a single,
fixed domain. We define the rescaling operator Th by

(Thu)(x′, x3) = u(x′, hx3) for x′ ∈ ω and x3 ∈
(
−1

2
,
1
2

)
. (2.1)

For the limiting map v : ω → R3 the rescaling reduces to (T0v)(x′, x3) =
v(x′). The relevant convergences are weak and strong convergence in
W 1,p(Ω1; R3)/R3. The quotient means that an additive constant has been
factored out, i.e., we say that Thuh → T0v in W 1,p(Ω1; R3)/R3 if there are
bh ∈ R3 such that Thuh−bh → T0v in W 1,p (weakly or strongly, respectively).

Given a Borel measurable functionW3D : M3×3 → [0,∞], we shall consider
the family of functionals Ih : W 1,p(Ωh; R3) → [0,∞] defined by

Ih[u] =
1
h

∫
Ωh

W3D(∇u) dx . (2.2)

2.2 Smooth energy densities

Γ -convergence of the functionals Ih to a membrane theory was obtained by
LeDret and Raoult in 1993-1995 [LR93, LR95], for energy densities with p
growth (see (2.6)). The limit functional J : W 1,p(ω; R3) → [0,∞) is

J [u] =
∫
ω

W qc
2D(∇u) dx′ . (2.3)

The energy density W qc
2D is obtained by first optimizing over all possible di-

rections of the normal gradient b, i.e., setting

W2D(F ′) = inf
{
W3D(F ′|b) : b ∈ R3

}
, (2.4)

and then replacing W2D by its quasiconvex envelope [Dac89, Mül99],

W qc
2D(F ′) = inf

{∫
(0,1)2

W2D(F ′ +∇ψ) dx′ : ψ ∈ W 1,∞
0 ((0, 1)2; R3)

}
. (2.5)

Theorem 2.1 (From [LR93, LR95]). Let ω be a bounded and connected
Lipschitz domain in R2, and suppose that W3D : M3×3 → R satisfies

1
c
|F |p − c ≤W3D(F ) ≤ c|F |p + c , for some p ∈ (1,∞) . (2.6)

Then the sequence Ih ◦ T −1
h is weak-W 1,p(Ω1; R3)/R3 equicoercive, and
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Γ − lim
h→0

Ih ◦ T −1
h = J ◦ T −1

0

with respect to the weak-W 1,p(Ω1; R3) topology.

The functional J ◦ T −1
0 is defined by (2.3) on T0W

1,p(ω; R3), and extended
by ∞ to the rest of W 1,p(Ω1; R3). By the compactness result, the statement
is equivalent to Γ -convergence with respect to the strong L1 topology.

If the energy tends to zero with h, one is interested in considering rescaled
functionals, such as h−αIh for α > 0. The limit can be finite only on the null
set of J . To analyze this regime we assume that

W3D(QF ) = W3D(F ) for all Q ∈ SO(3) and all F ∈ M3×3 , (2.7)

W3D(Id) = 0 , W3D(F ) ≥ Cdist2(F, SO(3)) , and (2.8)

W3D is C2 smooth in a neighborhood of Id. (2.9)

Then J is minimized by short maps, i.e., maps v : ω → R3 such that |v(x′)−
v(y′)| ≤ |x′ − y′| whenever the segment [x′, y′] is contained in ω.

Theorem 2.2 (From [CM05]). Let ω be a bounded Lipschitz domain in R2,
α ∈ (0, 5/3), and let W3D obey (2.7-2.9). Then

Γ − lim
h→0

1
hα
Ih ◦ T −1

h = I0 ◦ T −1 , I0[v] =

{
0 if v is short ,
∞ else ,

with respect to the weak W 1,p topology.

A different behavior is instead obtained if Dirichlet boundary conditions are
imposed, both in the compressive case [BC*00, JS01, BC*02, JS02, Con03]
and applying external forces to a membrane whose boundary is kept fixed
[CMM06]. The latter work has in particular permitted to derive by Γ -
convergence a relaxed version of the classical membrane theory by Föppl.

For α = 2 one obtains a plate theory, which describes the bending-
dominated regime. A rigorous derivation, confirming the expression first ob-
tained by Kirchhoff in 1850, was recently obtained by Friesecke, James and
Müller [FJM02] (see also [Pan03]).

Theorem 2.3 (From [FJM02]). Let ω be a bounded Lipschitz domain in
R2, and suppose that W3D satisfies (2.7-2.9). Then the sequence Ih ◦ T −1

h is
strong-W 1,2(Ω1; R3)/R3 equicoercive, and with respect to the same topology

Γ − lim
h→0

1
h2
Ih ◦ T −1

h = Jplate ◦ T −1
0 .

The limit Jplate is defined by

Jplate[v] =

⎧⎨⎩
1
24

∫
ω

Q2(IIv) dx′ if v ∈ W 2,2(ω; R3) , and ∇v ∈ O(2, 3) a.e.,

∞ else,
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IIv = (∇v)T∇(∂1v ∧ ∂2v) and

Q2(F ′′) = inf
{
Q3(F ′′ + d⊗ e3 + e3 ⊗ d) : d ∈ R3

}
, Q3 =

∂2W3D

∂F 2
(Id) .

2.3 Incompressible materials

The foregoing results assume that the free energy density is finite (or even
smooth) on an open set in the space of deformation gradients. This as-
sumption excludes the important class of rubber-like materials for which
the energy density incorporates an incompressibility constraint, in the sense
that the energy is infinite for all deformation gradients F that do not sat-
isfy the nonlinear condition detF = 1. This situation arises, for example,
in the analysis of soft elasticity in thin sheets of liquid crystal elastomers
[WT96, DD02, CDD02, WT03, ACD06].

We focus here on the derivation of a nonlinear membrane theory for in-
compressible materials. Theorem 2.1 concerns finite-valued energy densities;
it was later extended by Ben Belgacem to energy densities which are infinite
if the determinant of the deformation gradient is negative [Bel96b, Bel96a].
We characterize here the Γ -limit for incompressible materials and prove that
the mechanism by which the limiting energy density is obtained is similar.
It is a remarkable feature that the incompressibility constraint is lost in the
Γ -limit. Essentially the same result was independently obtained by Trabelsi
[Tra05, Tra06]. We give here a full proof, including a discussion of the relevant
ideas from differential geometry. At variance with [Tra05, Tra06], we do not
need to take the rank-one convex envelope of W2D first.

Theorem 2.4. Let ω be a bounded and connected Lipschitz domain in R2,
and suppose that W3D : M3×3 → R ∪ {∞} has the form

W3D(F ) =

{
W0(F ) if detF = 1,
∞ else,

(2.10)

where W0 : M3×3 → R is continuous, nonnegative, and satisfies

1
c
|F |p − c ≤W0(F ) ≤ c|F |p + c , for some p ∈ (1,∞) . (2.11)

Then the sequence Ih ◦ T −1
h is weak-W 1,p(Ω1; R3)/R3 equicoercive, and

Γ − lim
h→0

Ih ◦ T −1
h = J ◦ T −1

0

with respect to the weak-W 1,p(Ω1; R3) topology. Equivalently:

(i) (Compactness) For every sequence hj → 0, and every sequence uj : Ωhj →
R3 such that Ihj [uj ] < C < ∞, there exists a v ∈ W 1,p(ω; R3) and a
subsequence such that

Thjk
ujk

− 1
|ω|

∫
Ω1

Thjk
ujk

dxdx3⇀T0v in W 1,p(Ω1; R3) .
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(ii) (Lower bound) If additionally Thjuj⇀ T0v in W 1,p(Ω1; R3), then

lim inf
j→∞

Ihj [uj] ≥ J [v] .

(iii) (Upper bound) For any u ∈ W 1,p(ω; R3) and any sequence hj → 0 there
is a sequence uj ∈ C∞(Ωhj ; R3) such that Thjuj⇀ T0v in W 1,p(Ω1; R3)
and

lim sup
j→∞

Ihj [uj] ≤ J [v] .

The proof of this theorem involves two main parts: (i) the verification
of the compactness statement together with the liminf inequality, and (ii)
the construction of a recovery sequence. The definition of the limiting energy
W ∗

2D is based on the notion of quasiconvexity in the sense of Morrey, which
naturally relates the lower semicontinuity arguments needed in part (i) with
the explicit constructions needed in part (ii).

The main difficulty is here the construction of the recovery sequence for
the upper bound. This requires several steps that are carried out in Sect. 4–6.
The näıve idea is to try to extend a given function u : ω → R3 in such a way
that the gradient of the extension uh is approximately

F (x′, x3) =
(
∂1u(x′), ∂2u(x′),

∂1u ∧ ∂2u

|∂1u ∧ ∂2u|2
(x′)

)
.

This expression satisfies the condition detF (x, x3) = 1, however F is not,
in general, a gradient field. This construction method can in fact be made
precise if |∂1u ∧ ∂2u| �= 0 for all x in ω, see Sect. 5 and 6 for details. One
crucial step in the construction of the recovery sequence is therefore to show
the existence of a small perturbation of u in W 1,p with the property that the
wedge product does not vanish in ω. This is also a crucial step in the proof
of Whitney’s embedding theorem [Whi43, Whi44a, Whi44b], where Whitney
proves the existence of an approximation in C0. Indeed, Whitney’s arguments
can also be used in the situation at hand, and permit to obtain the desired
W 1,p approximation as well. We summarize the main steps of his argument
in Sect. 4, for the special case of interest here, focussing on the few additional
estimates and corrections needed for this application. Whitney’s construction
does not, however, provide a good energy estimate. In particular, in order to
control the energy of the modified function we need a good estimate for the
Lp norm of the inverse of the wedge product, i.e., for 1/|∂1u ∧ ∂2u|. This is
achieved by means of local perturbations with smooth oscillations in the spirit
of the work of Nash and Kuiper [Nas54, Kui55].

Also a plate theory can be obtained for incompressible materials. The
following result was announced in [CD05], its proof will appear elsewhere.

Theorem 2.5. Let ω be a bounded, convex Lipschitz domain in R2, let W3D

be as in (2.10), and W0 obey (2.11). Let Qinc
3 = ∂2W0/∂F

2(Id), and



Thin Membranes with Incompressibility 231

Qinc
2 (F ′′) = inf

{
Q3(F ′′ + d⊗ e3 + e3 ⊗ d) : d ∈ R3 , Tr(G|d) = 0

}
.

Then all assertions of Theorem 2.3 hold, with Jplate replaced by

J inc
plate[v] =

⎧⎨⎩
1
24

∫
ω

Qinc
2 (IIv) dx′ if v ∈ W 2,2(ω; R3) , and ∇v ∈ O(2, 3) a.e.,

∞ else.

3 Incompressible membranes: lower bound

We now start the proof of the equicoercivity and the lower bound. For sim-
plicity we drop in the following the prime on 3× 2 matrices. We first observe
that due to the continuity and coercivity of W0, (2.4) reduces to

W2D(F ) =

{
min
b∈R3

W (F |b) if rankF = 2,

∞ else.
(3.1)

The growth condition (2.11) implies, for all F ∈ M3×2 with rankF = 2,

1
c
|F |p +

1
c

1
|F1 ∧ F2|p

− c ≤W2D(F ) ≤ c|F |p + c
1

|F1 ∧ F2|p
+ c . (3.2)

We first study some properties of the relaxed energy W ∗
2D. It is convenient

to work with piecewise affine and continuous functions. We denote by P 1
c the

space of Lipschitz functions whose gradient is constant on each of at most
countably many disjoint open triangles Tj , whose union is, up to a null set,
equal to ω. The properties ofW ∗

2D listed in the next lemma follow immediately
using the results and the techniques of [BM84, Fon88, Dac89].

Lemma 3.1. The function W ∗
2D has the following properties:

(i) the definition does not depend on the choice of the domain ω, as long as
it is open, bounded, and |∂ω| = 0;

(ii) for any δ > 0 there is ϕ ∈ P 1
c ∩W

1,p
0 (ω; R3) such that

1
|ω|

∫
ω

W2D(F +∇ϕ) dx ≤W ∗
2D(F ) + δ and

∫
ω

|ϕ|p dx ≤ δ ;

(iii) there is a constant c such that

1
c
|F |p − c ≤W ∗

2D(F ) ≤ c|F |p + c ;

(iv) W ∗
2D is quasiconvex and Lipschitz continuous on bounded sets.

We are now ready to prove the compactness and the lower bound. This
part of our result follows from the characterization given above and the results
by LeDret and Raoult. For completeness we give a short self-contained proof.



232 S. Conti, G. Dolzmann

Proof of Theorem 2.4 (i) and (ii). We work with the rescaled functions Uj =
Thjuj . By the growth condition (2.11) we have∫

Ω

|∂1Uj|p + |∂2Uj|p +
1
hpj
|∂3Uj|p dx dx3 ≤ c . (3.3)

After subtracting the average value, the sequence Uj is uniformly bounded
in W 1,p(Ω; R3). We may choose a subsequence (not relabeled) that converges
weakly in W 1,p. Further, ∂3Uj → 0 strongly in Lp by (3.3), hence the limit
does not depend on x3. This concludes the proof of the compactness part.

The lower bound is proved by lower semicontinuity (see [LR95]). Con-
sider the function Z : M3×3 → R defined by Z(F ) = W ∗

2D(F̂ ) where
F̂ = (F1|F2). By Lemma 3.1 this function is quasiconvex, continuous, and
has p-growth from above. Therefore the functional Ĩ[u] =

∫
Ω
Z(∇u) dxdx3

is lower semicontinous with respect to weak W 1,p convergence [AF84]. Since
W (F ) ≥W2D(F̂ ) ≥W ∗

2D(F̂ ) = Z(F ) we obtain

lim inf
j→∞

∫
Ω

W

(
∂1Uj |∂2Uj |

1
hj
∂3Uj

)
dx dx3

≥
∫
Ω

Z (∂1V |∂2V ) dx dx3 =
∫
ω

W ∗
2D (∂1v|∂2v) dx ,

with V = T0v. This concludes the proof of the liminf inequality.

4 Approximation with regular maps

The key ingredient in the construction of a recovery sequence is an approxima-
tion result for functions in the Sobolev spaceW 1,p(ω; R3) by smooth and regu-
lar functions, i.e., by smooth functions u such that rank(∇u) = 2 everywhere,
as discussed above. This approximation theorem follows essentially from Whit-
ney’s [Whi43, Whi44a, Whi44b] work on the nature of singularities of maps
u : Rn → R2n−1. Moreover, it is crucial to ensure the lower bound (4.2)
below. We shall obtain it by using methods developed by Nash [Nas54] and
Kuiper [Kui55]. For the convenience of the reader we sketch below the con-
struction for the two-dimensional case of interest here.

The statement in the following proposition shows (i) that any smooth map
u : ω → R3 can be uniformly approximated by regular maps, i.e., maps which
fulfill rank∇u = 2 everywhere; (ii) that if the map u is regular away from
a connected set Γ ⊂ ω containing ∂ω, then the regular maps can be taken
to differ from u only in a neighbourhood of Γ , and (iii) that in a (smaller)
neighbourhood of Γ the stronger condition |∂1u ∧ ∂2u| > c can be enforced,
for some universal constant c (i.e. the approximating maps are order one away
from being degenerate).
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Fig. 4.1. The fundamental singularity of mappings from R2 into R3: “Whitney’s
umbrella”, given by the equations in (4.4) (up to a rigid rotation).

Proposition 4.1. Let ω ⊂ R2 be a Lipschitz domain, Γ ⊂ ω̄ a connected set
which contains ∂ω, and define for η > 0 the set Γη = {x ∈ ω̄ : dist(x, Γ ) < η}.
If u ∈ C∞(ω̄; R3) and rank∇u = 2 on ω \ Γη, then for any δ > 0 there exists
a w ∈ C∞(ω̄; R3) such that ‖u− w‖C0(ω) ≤ δ,

|∇w| ≤ c (|∇u|+ 1) , |∂1w ∧ ∂2w| ≥ c|∂1u ∧ ∂2u| on ω (4.1)

and

w = u on ω̄ \ Γ2η , |∂1w ∧ ∂2w| ≥ c on Γη . (4.2)

All constants are absolute constants.

Proof. We split the argument into several steps in which we use small pertur-
bations to show that we can accomplish the following goals: 1. The rank of ∇u
is greater than or equal to one everywhere. 2. The rank of ∇u is equal to two
everywhere except at finitely many points which correspond to the canonical
singularity of mappings from R2 into R3, called “Whitney umbrella”. This
means that for each p ∈ ω where ∇u does not have full rank, there is a
direction e = e(p) ∈ S1 with

∇eu = 0 , span
(
∇e⊥u,∇2

ee⊥u,∇2
eeu

)
= R3 (4.3)

(here ∇eu = ∇u · e, and so on). Equivalently, u can be locally represented,
after a smooth change of coordinates in the domain and in the target, as

(x1, x2) → (x2
1, x2, x1x2) (4.4)

(the equivalence is shown in [Whi43, Th. 1]). 3. The rank of ∇u is equal to
two everywhere. 4. The lower bound on the angle between ∂1u and ∂2u (see
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(4.2)) holds. The Steps 1.-3. follow Whitney’s original work, and the final step
is based on ideas of Nash and Kuiper.

Step 1: For all δ > 0 there exists a smooth function uδ such that u = uδ on
ω\Γ2η, |∇uδ−∇u| ≤ δ, |∂1uδ∧∂2uδ| ≥ 1

2 |∂1u∧∂2u| on Γ2η \Γη and ∂2uδ �= 0
everywhere.

Let ψη be a smooth cutoff function supported in Γ2η and such that ψη = 1
on Γη. We define, for α ∈ R3, the function u(α)(x) = u(x) + ψη(x)x2 α. For α
sufficiently small we get |∇(ψη(x)αx2)| ≤ δ. We assert that we can choose α
arbitrarily small so that u(α)

,2 (x) �= 0 everywhere, and rank∇u(α) = 2 outside

Γη. Consider first points in Γη, where u(α)
,2 = u,2 +α. The set u,2(ω̄) ⊂ R3 has

dimension two, hence there are arbitrarily small α such that −α �∈ u,2(ω̄), or
equivalently u,2(x) +α �= 0 for all x ∈ ω̄. Now consider points in the compact
set Γ̄2η \ Γη = Γ̄2η \

{
x ∈ R2 : dist(x, Γ ) < η

}
. Here

∇u(α)(x) = ∇u(x) + ψη(x)α ⊗ e2 + x2 α⊗∇ψη ,

hence the distance to ∇u is controlled by α times constants depending on
Γ and η. Since rank∇u = 2 on Γ̄2η \ Γη, the function |∂1u ∧ ∂2u| has a
positive minimum on the same set, hence for |α| sufficiently small we have
|∂1u

(α) ∧ ∂2u
(α)| ≥ 1

2 |∂1u ∧ ∂2u|. Finally, outside of Γ2η the two functions
coincide, hence uδ = u(α) has the desired properties for |α| small enough. For
simplicity we write in the following u for uδ.

Step 2: Suppose that u is a function with the properties established in Step 1.
Then for all δ > 0 there exists a smooth function uδ such that u = uδ on
ω \ Γ2η, |∇uδ −∇u| ≤ δ on ω, |∂1uδ ∧ ∂2uδ| ≥ 1

4 |∂1u ∧ ∂2u| on Γ2η \ Γη, and
rank(∇uδ) = 2 except at finitely many points in Γη which are of the Whitney
umbrella type (4.3).

For β, γ ∈ M3×2 and ψη as in Step 1, let uβ,γ(x) = u(x) + ψη(x) [βx + x1γx].
The fact that x1 appears explicitly in the perturbation is related to the choice
of having u,2 �= 0 in Step 1. As above, the function u has been modified only
inside Γ2η. For sufficiently small β and γ the gradient of the correction is
uniformly small, hence the bounds for |∇uδ−∇u| and |∂1uδ∧∂2uδ| follow. At
the same time the set of (β, γ) ∈ R12 for which uβ,γ has (in Γη) singular points
not of the type (4.3) has dimension at most 11 [Whi43, Th. 2]. Therefore one
can choose arbitrarily small β and γ so that all singular points of uβ,γ are of
that class. Finally, singularities of the type (4.3) are necessarily isolated, and
therefore uβ,γ can have at most finitely many singularities in the compact set
ω̄. As before, we are going to call uβ,γ again u.

Step 3: Suppose that u is a function with the properties established in Step 2.
Then for all δ > 0 there exists a smooth function uδ such that u = uδ on
ω\Γ2η, |∇uδ| ≤ C(|∇u|+1) and |u−uδ| ≤ δ on ω̄, |∂1uδ∧∂2uδ| ≥ 1

2 |∂1u∧∂2u|
on Γ2η \ Γη, and rank(∇uδ) = 2 everywhere.
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Fig. 4.2. (a) Modification of the map in Figure 4.1 in order to remove the singularity.
(b) Plot of one half of surface in (a). This view illustrates that the modification is a
smooth surface in R3 for which the tangent plane in each point has full rank. (See
page 693 for a colored version of the figure.)

This step cannot be accomplished with purely local perturbations. Indeed,
Whitney derived a sum rule which relates the total charge of the singularities
to the behavior of the map at the boundary [Whi44b]. This implies that they
cannot be eliminated without modifying the boundary values. The proof of
Whitney’s embedding builds upon the fact that singularities can be moved to
the boundary by means of C0 perturbations of the given map (this is, however,
in general impossible with C1 perturbations). We sketch the construction and
show in particular that one does not need to modify the map outside Γ2η, and
that the stated bounds can be satisfied.

Let p1, . . . , pk ∈ Γη be the finitely many points where ∇u has rank one. We
first assert that there are smooth arcsAi of finite length in Γη which are closed,
disjoint, and such that Ai starts in xi and ends on ∂ω. To construct these arcs,
we first choose k distinct points q1, . . . , qk ∈ ∂ω. Each pi can be connected to
qi by an arc of finite length contained in Γη. Indeed, Γ is connected and can
be covered by finitely many balls of radius η; we can therefore choose an arc
that has length at most 3η inside each of the balls and therefore finite total
length. By a standard perturbation argument the arcs can be modified (the
pairings of the points pi and qj may also change) so that the new arcs are
disjoint, and the assertion is proven. It follows that the distance dist(Ai, Aj),
i �= j, is bounded from below by a constant ε > 0, and we can also assume
ε < η.

In a neighbourhood of each xi the map u is, in suitable coordinates, of
the form (4.3) (see Fig. 4.1). We modify the surface as illustrated in Fig. 4.2,
inserting a thin cylinder which (in the original coordinates) follows the path
Ai from the singularity to the boundary of ω. If each of these corrections is
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supported on an ε/3-neighbourhood of the arc Ai then the ones constructed
for different singularities do not interfere, and do not change u outside of Γ2η.
Notice that this construction may generate large curvature in the cylinders,
but the increase in C1 norm is bounded. From now on we denote by u the
function obtained after these modifications.

Step 4: Suppose that u is a function with the properties established in Step 3.
For any δ > 0, there is a smooth function w such that

|∂1w ∧ ∂2w| >
1
2

on Γη, |∂1w ∧ ∂2w| ≥
1
8
|∂1u ∧ ∂2u| on Γ2η \ Γη

with w = u on ω \ Γ2η; |∇w| ≤ C(|∇u|+ 1) and |w − u| ≤ δ on ω̄.

In this step we need to modify u so that |w,1∧w,2| has a lower bound of order
one. We use hereafter for brevity the notation w,i = ∂iw. Our approach follows
that used by Nash and Kuiper [Nas54, Kui55], with the difference that here
we only need two iteration steps. The basic idea is to insert locally oscillations
to increase the appropriate components of the gradient.

We first sketch the construction for the simpler case of one spatial di-
mension. The corresponding statement is that any smooth parameterized
curve γ : [0, 1] → R2 with γ′ �= 0 can be modified so that |γ′| ≥ 1. The
key idea is to insert fine-scale oscillations normal to γ′, and to multiply
them by a cutoff function to localize the correction. Precisely, one writes
γε(t) = γ(t) + εψ(t)Φ(t/ε), with Φ a periodic oscillating vector field, and ψ a
smooth cutoff function, which is equal to one on the regions where γ′ is small.
Taking the derivative one sees that the term ψΦ′ is of order one, whereas εψ′Φ
is of order ε, hence negligible for small ε.

Assume now that γ parameterizes a line segment, γ(t) = (γ1(t), 0), with
γ′1 > 0. This is the generic case, if one works in a coordinate system that
moves with the curve (here one needs γ′ �= 0, and additional smoothness of
γ). Since the normal component Φ2 oscillates on a scale ε, its derivative is
often zero. Hence a uniform control on |γ′ε| from below cannot be gained via
the normal derivative alone. We therefore seek a bound from below for the
other component, |γ′1 + ψΦ′

1|. In the region where γ′1 is large, ψ = 0 and
there is no correction. In the region where γ′1 is small, ψ = 1 and the term
ψΦ′

1 dominates. Hence there are points where the two terms in |γ′1 +ψΦ′
1| are

equal, and one needs to ensure that no cancellation can occur.
The argument above illustrates that one cannot use simple oscillations,

like Φ(t) = (sin t, cos t), because the map t → Φ′(t) would move around the
unit circle without any sign condition. One resorts instead to a more elabo-
rated oscillation pattern, where the map t → Φ′(t) does not move around a
circle, but rather oscillates forward and backward on an arc of a circle, with
non-uniform speed so that its average vanishes (and the primitive Φ can be
periodic). The precise definition of ϕ = Φ′ is given in (4.5) below.

We now give the proof for the two-dimensional case. Our starting point is
the map u ∈ C∞(ω̄; R3) constructed in Step 3. Since u,1∧u,2 �= 0 everywhere,
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Fig. 4.3. The curves ϕ1(t) (full curve) and ϕ2(t) (dashed curve) given in (4.5),
as functions of t. Note that ϕ1 becomes negative only in a region where ϕ2 is well
separated from zero. The arc covered by the point (ϕ1, ϕ2) is illustrated in Figure 4.4.

there exists a ρ > 0 such that |u,1 ∧ u,2| ≥ ρ > 0 everywhere, and the normal
vector ν = u,1 ∧ u,2/|u,1 ∧ u,2| is smooth on ω̄. Let ψη be again a smooth,
nonnegative cutoff function such that ψη = 1 on Γη and ψη = 0 outside Γ2η.
We set, for ε > 0 to be chosen later,

v(x) = u(x) + εψη(x)
[
Φ1

(x1

ε

)
µ+ Φ2

(x1

ε

)
ν
]
.

Here µ = u,1/|u,1| and Φ1,2 are 2π-periodic primitives of

ϕ1(t) =
cos(α sin t)

sinα
, ϕ2(t) =

sin(α sin t)
sinα

(4.5)

with Φ1,2(0) = 0. The number α ∈ (0, π) is chosen so that ϕ1 has average
zero over its period (0, 2π) (the existence of α follows from the mean-value
theorem; numerically, α � 2.4, see also Fig. 4.3). We find that

∇v = ∇u+ (ψηϕ1µ+ ψηϕ2ν)⊗ e1 +O(ε) . (4.6)

Here and below, we denote by O(ε) quantities which are uniformly bounded
by Cu,ηε, where we write Cu,η for generic constants which can depend on u
(specifically, on ‖u‖C2 and min |u,1∧u,2|), on η, on Γ and on ω, but not on ε.

Consider now the derivative v,1. Up to O(ε) terms, it coincides with

z(x, t) = (|u,1|(x) + ψη(x)ϕ1(t))µ(x) + ψη(x)ϕ2(t)ν(x) (4.7)

evaluated at t = x1/ε. Considering z as a function of t for fixed x, we see that

|z| ≥ max(ψη, |u,1| sinα) (4.8)
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Fig. 4.4. For fixed x, the values of t → z(x, t) (see (4.7)) are located on an arc
of a circle in the µ, ν plane. The radius is ψ/ sin α, the center C = (m, 0), where
m = |u,1| ≥ 0. The closest point to the origin is A = (m − ψ cot α, ψ) (since two
distinct circles intersect in at most two points), and it corresponds to t = π/2. Its
distance |A| from the origin O = (0, 0) is greater than or equal to the distance d of
O to the orthogonal projection of O onto the line through A and C. This distance
is given by d = m sin(π − α) = m sin α. At the same time, |A| ≥ |A2| = ψ.

(see Fig. 4.4). In particular, in the region where ψη = 1 (covering Γη) |v,1| ≥
1+O(ε), whereas on the rest |v,1| ≥ (sinα)|u,1|+O(ε). We finally verify that
the wedge product v,1 ∧ v,2 does not vanish (the uniform lower bound on its
length will be obtained only after superposition of additional oscillations in
the next step). A direct computation shows that

v,1 ∧ v,2 = |u,1 ∧ u,2|
(

1 +
ψη
|u,1|

ϕ1

)
ν + |u,2|ψηϕ2 µ

′ +O(ε)

where µ′ = ν∧u,2/|u,2|. The two unit vectors ν and µ′ are orthogonal. Further,
|u,1 ∧ u,2|/|u,1| ≤ |u,2|. Therefore

|v,1 ∧ v,2| ≥ |u,1 ∧ u,2|
∣∣∣∣(1 +

ψη
|u,1|

ϕ1

)
ν +

ψη
|u,1|

ϕ2 µ
′
∣∣∣∣ +O(ε) .

Reasoning as in (4.7-4.8) we get

|v,1 ∧ v,2| ≥ |u,1 ∧ u,2| max
(
ψη
|u,1|

, sinα
)

+O(ε) .

Now we choose ε > 0 (depending on Cu,η) so small that all the O(ε) terms
in the foregoing equations are less than 1/4 of the leading-order terms. The
function v defined in this way belongs to C2(ω̄) and satisfies ‖v‖C2 ≤ Cu,η

and |v,1 ∧ v,2| ≥ |u,1 ∧ u,2|/2. Moreover, |v,1| ≥ 3/4 in Γη.
We finally insert oscillations in the orthogonal direction by defining

w(x) = v(x) + ε̃ψη(x)
[
Φ1

(x2

ε̃

)
µ̃+ Φ2

(x2

ε̃

)
ν̃
]
.
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Here Φ1,2 are the same functions as above, and

ν̃ =
v,1 ∧ v,2
|v,1 ∧ v,2|

, µ̃ =
ν̃ ∧ v,1
|ν̃ ∧ v,1|

=
ν̃ ∧ v,1
|v,1|

.

Note that (v,1/|v,1|, ν̃, µ̃) form an orthonormal basis. We find

∇w = ∇v + ψη (ϕ1µ̃+ ϕ2ν̃)⊗ e2 +O(ε̃) , (4.9)

and by the definition of the basis vectors,

w,1 ∧ w,2 = v,1 ∧ (v,2 + ψη (ϕ1µ̃+ ϕ2ν̃)) +O(ε̃)
= v,1 ∧ ((µ̃ · v,2 + ψηϕ1)µ̃+ ψηϕ2ν̃) +O(ε̃)
= (µ̃ · v,2 + ψηϕ1) v,1 ∧ µ̃+ ψηϕ2 v,1 ∧ ν̃ +O(ε̃).

The vectors v,1 ∧ µ̃ and v,1 ∧ ν̃ are orthogonal, both have length |v,1|, and

µ̃ · v,2 =
(ν̃ ∧ v,1) · v,2

|v,1|
=

(v,1 ∧ v,2) · ν̃
|v,1|

=
|v,1 ∧ v,2|2

|v,1| |v,1 ∧ v,2|
=
|v,1 ∧ v,2|
|v,1|

.

Reasoning as in (4.7-4.8) above (see also Fig. 4.4) we obtain

|w,1 ∧ w,2| ≥ |v,1|max
(
ψη,

|v,1 ∧ v,2|
|v,1|

sinα
)

+O(ε̃).

We choose ε̃ so that the last correction is smaller than

min
(

1
6
,
1
2

min
ω̄
|v,1 ∧ v,2| sinα

)
.

On Γη we get |w,1 ∧ w,2| ≥ |v,1| − 1/6 ≥ 1/2, and globally

|w,1 ∧ w,2| ≥ |v,1 ∧ v,2| sinα+O(ε̃) ≥ 1
2
|v,1 ∧ v,2| sinα.

The estimate for |∇w| follows from (4.6) and (4.9) and concludes the proof.

5 An extension subject to the incompressibility
constraint

The next important step in the construction of a recovery sequence is the
extension of a regular map w : ω → R3 to a map uh : Ωh → R3 with
det∇uh = 1 everywhere. In view of the previous results we may assume that
rank(∇w) = 2 everywhere. Heuristically, one can think of extending w by
setting u(x, x3) = w(x) + x3ν(x), where

ν =
∂1w ∧ ∂2w

|∂1w ∧ ∂2w|2
(5.1)
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(ν here does not represent a unit vector, but rather a scaled normal). In the
case that w is itself affine, the deformation gradient turns out to be ∇u =
(∇w, ν), which has determinant one. However, if the function w is not affine
one obtains additional terms from the x1 and x2 derivatives of ν. These will
be compensated for via a nonlinear change of coordinates.

Consider now the control of the energy. We focus here on the situation
that W2D(∇w) is small, and seek uh so that W3D(∇uh) is correspondingly
small. The additional step of passing from W ∗

2D to W2D will be dealt with in
Lemma 6.2 below. The definition of W2D in terms of W3D shows that, at least
on large parts of the domain, the x3 derivative of uh should not be ν, but rather
b as obtained from the minimization in (3.1). This b depends in a discontinuous
way on ∇w (generically), hence a suitable smoothing-interpolation scheme
will be needed (see Proof of Theorem 2.4(iii) in Sect. 6). Therefore in the next
proposition we assume only that ν satisfies the constraint

(∂1w ∧ ∂2w) · ν = 1 in ω . (5.2)

Proposition 5.1. Let w, ν ∈ C∞(ω̄; R3) satisfy (5.2) on ω̄. Then there ex-
ist an h0 > 0 and an extension v ∈ C∞(ω̄ × (−h0, h0); R3) such that
v(x, 0) = w(x) and det∇v = 1 everywhere. Moreover, for all x3 ∈ (−h0, h0)
the pointwise bound

|∇v − (∇w|ν)| ≤ Cx3 (5.3)

holds, where C can depend on w and ν.

Remark: If we define vh to be the restriction of v to Ωh, for h < h0, then
(5.3) implies that Thvh → T0w strongly in W 1,p(Ω; R3) as h→ 0.

Proof. We define u ∈ C∞(Ω̄; R3) by u(x, x3) = w(x) + x3ν(x) and compute

det∇u = det (∇w + x3∇ν |ν) = 1 + x3P (x) + x2
3Q(x) (5.4)

where P and Q are combinations of the components of ν, ∇ν, and ∇w, which
are all uniformly bounded in ω̄. Hence for small x3 the determinant is close to
one, and in particular | det∇u−1| ≤ Cx3 (C depends on w and ν). We define
v = u ◦ Φ, with Φ(x, x3) = (x, ϕ(x, x3)), and construct ϕ so that det∇v =
(det∇u ◦ Φ) ∂3ϕ = 1. Therefore ϕ has to be a solution of the ODE

∂3ϕ(x, x3) =
1

det∇u(x, ϕ(x, x3))

subject to ϕ(x, 0) = 0. It follows from standard results in the theory of
parameter-dependent ODEs that ϕ is smooth, and the previous bound on
det∇u implies that |ϕ(x, x3)− x3| ≤ Cx2

3. Hence there is h0 > 0 such that v
is smooth on ω̄ × (−h0, h0), with det∇v = 1.

The next step is the estimate for the gradient of v. By the chain rule, this
requires a good control of the gradient of ϕ. To this end we rewrite the ODE
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as an integral equation and differentiate. Let F be a primitive of det∇u with
respect to x3, i.e.

F (x, t) =
∫ t

0

det∇u(x, s) ds .

Then the ODE above is equivalent to the implicit equation F (x, ϕ(x, x3)) =
x3. Differentiating with respect to x1 we obtain∫ ϕ(x,x3)

0

∂

∂x1
det∇u(x, s) ds+ det∇u (x, ϕ(x, x3))

∂

∂x1
ϕ(x, x3) = 0 .

The expansion in (5.4) shows that for x3 < h0 the determinant det∇u takes
values between 1/2 and 2. Taking the x1 derivative of the same expression,
we see that also ∂1 det∇u is bounded by Cx3 (C depends here on ν and on
the first and second gradients of w and ν). It follows that

|∂1ϕ| ≤ 2
∫ ϕ

0

|∂1 det∇u| ds ≤ Cx2
3 .

The estimate for ∂2ϕ is analogous. We finally observe that v(x, x3) = w(x) +
ϕ(x, x3)ν(x), and hence

∇v = (∂1w + ∂1ϕν + ϕ∂1ν|∂2w + ∂2ϕν + ϕ∂2ν|∂3ϕν) .

Since |∂1ϕ| + |∂2ϕ| ≤ Cx2
3, and |∂3ϕ − 1| ≤ Cx3, we obtain (5.3), with C

depending on w and ν.

6 Construction of the recovery sequence

For any function u ∈ W 1,p(ω; R3) we need to construct functions uh ∈
W 1,p(Ωh; R3) such that Thuh converges weakly in W 1,p to T0u and

lim sup
h→0

Ih[uh] ≤ J [u].

In doing so we need to correctly account for the two relaxation steps, which
lead from W3D to W2D and then to W ∗

2D. It is natural to proceed in the
reverse order, and start by constructing a sequence uj such that the integral
of W2D(∇uj) converges to the integral W ∗

2D(∇u). We first reduce to the case
of piecewise affine functions u, and then insert a suitable test function in each
affine piece.

Lemma 6.1. For any u ∈ W 1,p(ω; R3) there is a sequence uj ∈ P 1
c ∩

W 1,p(ω; R3) such that uj → u strongly in W 1,p and

lim
j→∞

∫
ω

W ∗
2D(∇uj) dx =

∫
ω

W ∗
2D(∇u) dx .
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Proof. By density of P 1
c ∩ W 1,p(ω; R3) in W 1,p(ω; R3) there is a sequence

uj ∈ P 1
c ∩W 1,p converging to u in W 1,p. The energy converges since W ∗

2D is
continuous and has p-growth from above (Lemma 3.1, (iii) and (iv)). Indeed,
it suffices to apply Fatou’s lemma first to W ∗

2D(∇uj) and then to C|∇uj |p −
W ∗

2D(∇uj). The triangulation underlying uj is denoted by T (j).

Lemma 6.2. For any u ∈ W 1,p(ω; R3) there is a sequence of functions zj ∈
P 1
c ∩W 1,p(ω; R3) such that zj ⇀ u weakly in W 1,p(ω; R3) and

lim sup
j→∞

∫
ω

W2D(∇zj) dx ≤
∫
ω

W ∗
2D(∇u) dx .

Proof. Let uj be the sequence obtained in Lemma 6.1, and fix ηj → 0. By
definition, ∇uj is constant in each of the at most countably many triangles
T

(j)
n . We shall modify it separately in each of them. For any T (j)

n we can find
by (ii) of Lemma 3.1 a function ϕ(j)

n ∈ P 1
c ∩W

1,p
0 (T (j)

n ) such that

1

|T (j)
n |

∫
T

(j)
n

W2D(∇uj +∇ϕ(j)
n ) dx ≤W ∗

2D(∇uj) + ηj ,

and
∫
T

(j)
n
|ϕ(j)

n |p dx ≤ ηj |T (j)
n |. We define zj = uj +ϕ

(j)
n in each T (j)

n . We have∫
ω

W2D(∇zj) dx ≤
∫
ω

W ∗
2D(∇uj) dx + ηj |ω| and

∫
ω

|zj − uj |p dx ≤ ηj |ω| .

Using the coercivity of the energy, this implies that zj is uniformly bounded
in W 1,p(ω; R3). Since zj → u in Lp, by the uniqueness of the weak limit, zj
converges weakly in W 1,p(ω; R3) to u.

In order to use the results from Sect. 4 we need to pass to smooth functions.
This can be accomplished by convolution. However, we need to ensure that the
smoothing does not modify the energy significantly. This is not entirely trivial,
since we are now dealing with the non-convex, unbounded energyW2D. In this
smoothing step we make again use of the fact that the sequence is composed
of piecewise affine functions. Precisely, we show that the smoothing does not
change zj away from the “jump set” Γj , which is defined as the union of
the boundaries of the countably many triangles on which zj is affine. This
argument is for a single zj , for uniformity we keep the index j.

Lemma 6.3. Let zj ∈ P 1
c ∩ W 1,p(ω; R3). Then for any η > 0 there exists

aj,η ∈ C∞(ω̄; R3) such that

aj,η = zj on ω \ Γj,η , and lim
η→0

∫
Γj,η

(
1 + |∇aj,η|p

)
dx = 0 .

Here Γj = ∂ω ∪
⋃

n ∂T
(j)
n , where {T (j)

n }n∈N are the triangles on which zj is
affine, and

Γj,η = {x ∈ ω : dist(x, Γj) < η} .



Thin Membranes with Incompressibility 243

This implies immediately that aj,η → zj in W 1,p(ω; R3) as η → 0.

Proof. It is east to see that

lim
η→0

|Γj,η| = 0 and lim
η→0

∫
Γj,η

|∇zj |p dx = 0 . (6.1)

To construct the functions aj,η we choose an extension zj ∈ W 1,p(R2; R3)
(we use the same letter to denote this extension). We then mollify zj with a
kernel supported on a ball of radius η/2, and restrict the result to ω̄. Since zj
is locally affine on ω \ Γj , we have aj,η = zj on ω \ Γj,η. Further,∫

Γj,η

|∇aj,η|p dx ≤
∫
Γj,2η

|∇zj |p dx+
∫

(∂ω)2η

|∇zj|p dx ,

where (∂ω)2η = {x ∈ R2 : dist(x, ∂ω) < 2η}. Both terms tend to zero as
η → 0, hence aj,η → zj in W 1,p.

The following proposition summarizes what we have accomplished so far in
this section, and incorporates the result of Sect. 4.

Proposition 6.4. Let ω be a bounded Lipschitz domain in R2, and suppose
that W3D satisfies (2.10–2.11). Then for any u ∈W 1,p(ω; R3) there exists a se-
quence of functions uj ∈ C∞(ω̄; R3) such that uj ⇀ u weakly in W 1,p(ω; R3),
rank∇uj = 2 everywhere, and

lim sup
j→∞

∫
ω

W2D(∇uj) dx ≤
∫
ω

W ∗
2D(∇u) dx .

Moreover, each of the functions uj is affine on finitely many triangles T (j)
n ⊂

ω, n = 1, . . . , N(j), where we may choose N(j) such that the complement of
these triangles is small in the sense that

lim sup
j→∞

∫
ωj

(
W2D(∇uj) + 1

)
dx = 0 with ωj = ω \

N(j)⋃
n=1

T (j)
n . (6.2)

Proof. Let zj be the sequence given in Lemma 6.2. For each fixed j, and each
η > 0, let aj,η be as in Lemma 6.3. We shall now approximate the latter
with regular functions. In order to do this, we apply Proposition 4.1 to the
functions aj,η, and denote the result by bj,η (if ω is not connected, it suffices to
treat each connected component separately). On Γ2η we estimate the energy
by means of the upper bound in the growth condition (3.2), giving∫

Γ2η

W2D(∇bj,η) dx ≤ C

∫
Γ2η

(
|∇bj,η|p +

1
|∂1bj,η ∧ ∂2bj,η|p

+ 1
)

dx.

The term |∇bj,η|p + 1 is by (4.1) bounded by a constant times |∇aj,η|p + 1.
The second term in the integrand is bounded on Γη by a universal constant
by (4.2), and on Γ2η \ Γη, again in view of (4.1) and (3.2), by
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1
|∂1bj,η ∧ ∂2bj,η|p

≤ c

|∂1aj,η ∧ ∂2aj,η|p
≤ cW2D(∇aj,η) + c = cW2D(∇zj) + c ,

where in the last step we used that ∇aj,η = ∇zj outside Γη. We obtain∫
Γ2η

W2D(∇bj,η) dx ≤ c

∫
Γ2η

(
W2D(∇zj) + |∇aj,η|p

)
dx+ c|Γ2η|.

Both quantities converge to zero as η → 0. Since by construction bj,η = aj,η
on ω \ Γ2η, we conclude

lim
η→0

∫
ω

W2D(∇bj,η) dx ≤
∫
ω

W ∗
2D(∇zj) dx.

Moreover,∫
ω

|∇bj,η −∇zj |p dx ≤ C

∫
Γ2η

(
|∇bj,η|p + |∇zj|p

)
dx ≤ C

∫
Γ2η

(
|∇zj |p + 1

)
dx

tends to zero as η → 0, hence bj,η → zj strongly in W 1,p(ω; R3). Taking a suit-
able diagonal subsequence we can choose uj = bj,η(j) such that uj converges
weakly in W 1,p(ω; R3) to u. This concludes the proof.

Proof of Theorem 2.4 (iii). Given u ∈ W 1,p(ω; R3) and a sequence hj → 0,
we need to construct uj ∈ C∞(Ωhj ; R3) such that

lim sup
j→∞

Ihj [uj] ≤ J [u]

and Thjuj ⇀ T0u weakly in W 1,p(Ω; R3). By Proposition 6.4 we can find
uj ∈ C∞(ω̄; R3) such that uj ⇀ u in W 1,p, rank∇uj = 2 everywhere, and

lim sup
j→∞

∫
ω

W2D(∇uj) dx ≤
∫
ω

W ∗
2D(∇u) dx . (6.3)

For each j there are finitely many disjoint triangles T (j)
n ⊂ ω, n = 1, . . . , N(j),

such that uj is affine on each of these triangles, and such that ωj =
ω \ ∪N(j)

n=1 T
(j)
n is small, in the sense of (6.2). We now use Proposition 5.1 to

construct the extensions to the sets ω× (0, hj). For simplicity we drop in the
following argument the index j from all quantities except uj . We first choose
the field ν, which will determine the derivative of uj in the x3 direction. We
set (see (5.1)) ν0 = (∂1uj ∧ ∂2uj)/ |∂1uj ∧ ∂2uj |2 and then modify ν0 inside
each of the finitely many triangles on which uj is affine. Let Tn be one of
them, Fn = ∇uj on Tn, and bn ∈ R3 be such that

W3D(Fn|bn) = W2D(Fn) = min
a∈R3

W3D

(
Fn|a

)
.

By the growth condition |bn| ≤ c(|Fn| + |ν0| + 1), with c depending only on
W0. We define a smooth vector field ν by
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ν(x) =

{
ν0(x) + ψn(x)(bn − ν0(x)) if x ∈ Tn ,
ν0(x) else.

Here ψn ∈ C∞
0 (Tn; [0, 1]) is a cutoff function such that ψn = 1 on a subset T η

n

of Tn of area at least (1 − η)|Tn|. Since on Tn

0 = det(F |b)− det(F |ν0) = (F1 ∧ F2) · (b− ν0)
(we dropped here the index n as well) we obtain

(∂1uj ∧ ∂2uj) · ν = (F1 ∧ F2) · ν0 + ψ (F1 ∧ F2) · (b − ν0) = 1 ,

i.e. (5.2) is satisfied. Finally, consider the enlarged exceptional set Γ (η)
j =

ω \ ∪T η
n . From the above estimates it follows that

lim
j→∞

lim sup
η→0

∫
Γ

(η)
j

(
W2D(∇uj) + 1

)
dx = 0 . (6.4)

We now apply Proposition 5.1 to the pair (uj , ν), to obtain a function
vj ∈ C∞(Ω̄hj ; R3), with det∇vj = 1 everywhere. By the uniform estimate
(5.3) and the continuity of W0 we can estimate the energy, for h < hj , by

Ih[vj ] ≤
1
h

∫
Ωh

W0(∇vj) dx dx3 ≤
∫
ω

W0(∇uj |ν) dx + Ch .

The constant C can depend on uj and ν. We focus on the first term. In most
of the area, uj is affine and ν equals the corresponding bn. On the remainder,
the energy is small by the growth condition. Precisely,∫

ω

W0(∇uj |ν) dx ≤
∫
∪Tn

η

W0(Fn|bn) dx + C

∫
Γ

(η)
j

(
|∇uj|p + |ν|p + 1

)
dx

≤
∫
ω

W2D(∇uj) dx+ C

∫
Γ

(η)
j

(
W2D(∇uj) + 1

)
dx .

Therefore

lim sup
h→0

Ih[vj ] ≤
∫
ω

W2D(∇uj) dx+ C

∫
Γ

(η)
j

(
W2D(∇uj) + 1

)
dx .

By (6.3) and (6.4) we obtain

lim sup
j→∞

lim sup
η→0

lim sup
h→0

Ih[vj ] ≤ J [u]

hence taking a diagonal subsequence concludes the proof.
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linéaire. PhD thesis, Univ. Paris 6, 1996.
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1 Introduction

1.1 Multiscale problems in micromagnetics

Ferromagnetic materials show a fascinating variety of magnetization patterns
on scales ranging from a few nanometers to hundreds of microns. The for-
mation and evolution of these patterns is at the heart of numerous magnetic
devices, including the ubiquitous magnetic storage media. Somewhat surpris-
ingly, this large variety of patterns can be understood as (local) minimizers
of a simple, yet subtle, functional, the micromagnetic energy. Their dynam-
ics is described by an associated evolution equation, the Landau-Lifshitz (or
Landau-Lifschitz-Gilbert) equation, which combines Hamilitonian and dissi-
pative aspects.

Until recently the micromagnetic energy was mostly analyzed in one of
two ways. The first approach is to consider special ansatz functions (inspired
by physical intuition) with a few free parameters and then to optimize over
these parameters. While this approach has lead to valuable insights, it is also
limited in its scope. In particular one cannot detect something which has not
been put in the ansatz. The second approach is large scale computation. This
has been successful for answering specific questions for submicron devices.
Due to the wide separation of the relevant scales, direct numerical simulation
is, however, restricted to the smallest scales and cannot cover the full picture.
Perhaps even more importantly, it answers specific questions, but provides
little insight in general principles and understanding.

In the last decade a new approach to micromagnetics has emerged, and the
SPP 1095 has had an important impact in shaping it. This approach is based
on two ideas. First, considerable insight can be gained by the identification of
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optimal scaling laws involving the natural parameters, such as material con-
stants or geometric quantities, and the corresponding magnetization patterns.
This amounts to establishing upper and lower bounds on the micromagnetic
energy. While for the former one can often rely on intuition and test func-
tions developed in the physics community, the latter requires in general new
mathematical ideas. The second approach is to derive simplified theories in
certain limiting parameter regimes, e.g., for thin films. These theories reduce
the complexity of the magnetic energy landscape (and the dynamics in that
landscape) and allow one to get a better insight into the essential structures.

In this paper we focus on the mathematical analysis of the statics and
dynamics of magnetization structures in thin films. For a broader review of
recent developments, written for a more general science audience, we refer to
[DK*05].

1.2 The micromagnetic energy and associated variational problems

We first discuss the functional from which all our results are ultimately de-
rived, the micromagnetic energy. This energy is a sum of terms of various
types. Depending on certain material parameters and on the shape and size
of the ferromagnetic sample, any of these terms can play a dominant role,
or an interplay between several of them can take place. This explains the
multitude of different patterns derived from this theory.

We consider an open domain Ω ⊂ R3 which represents the ferromagnetic
body that we study. The magnetization of this body is given by a vector field
m : Ω → R3. Below the Curie temperature, the magnetization is saturated,
which means that m is of constant length. We use a normalization such that m
has values in the unit sphere S2. Now we consider several energies associated
to m.

The so-called exchange energy models the tendency towards parallel align-
ment of neighboring magnetization vectors in the underlying atomic lattice.
It is given by the functional

d2

2

∫
Ω

|∇m|2 dx.

Here d is a material constant, called the exchange length.
The ferromagnetic material may have crystalline anisotropies which prefer

certain directions of m. An integral of the form

Q

∫
Ω

φ(m) dx

represents such anisotropies. Here φ : S2 → [0,∞) is a fixed function and Q
is another material constant. Usually φ is assumed to be smooth, often even
a polynomial.
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The magnetization induces a magnetic field, often called the stray field
or demagnetizing field, which obeys the static Maxwell equations. It can be
represented by a potential u : R3 → R which solves the equation

∆u = div(χΩm) in R3.

Here χΩ is the characteristic function of Ω (in other words, we extend m
by 0 outside of Ω). If Ω is bounded, the saturation condition guarantees that
m ∈ Lp(Ω,R3) for every p ∈ [1,∞]. Hence there exists a unique solution of this
equation in the Sobolev space H1(R3). The induced field is then represented
by −∇u. Its energy is called the magnetostatic energy and given by

1
2

∫
R3
|∇u|2 dx.

The interaction with an external field h : R3 → R3 induces an energy term

−
∫
Ω

h ·m dx

that prefers alignment of the magnetization with the external field. In this
paper, applied fields appear as driving forces in the context of moving domain
walls.

The micromagnetic energy is the sum of all four energies, that is,

E(m) =
d2

2

∫
Ω

|∇m|2 dx+Q
∫
Ω

φ(m) dx+
1
2

∫
R3
|∇u|2 dx−

∫
Ω

h·m dx. (1.1)

The exchange term is of leading order in this functional, but the constant in
front of it is typically small. The other three terms are of order 0, but one
of them (the magnetostatic energy) involves the non-local pseudo-differential
operator ∇∆−1 div. In some situations, its behavior is quite different from the
behavior of the other terms. Under certain conditions, these energies may be
in competition with one another. For instance, the exchange energy favors con-
stant magnetizations, whereas the magnetostatic energy prefers vector fields
which are divergence free (in R3). Because of the jump at the boundary, the
two conditions cannot be satisfied simultaneously. The anisotropy term, on
the other hand, may not penalize a varying vector field in principle, at least
not if the function φ has several minima (which is usually the case), but it
favors rapid transitions between different states – unlike the exchange energy.
An analysis of such interplays can explain some of the observed patterns in
ferromagnets.

We study two types of variational problems associated to the micromag-
netic energy. Minimizers of E, or more generally, local minimizers and (stable)
critical points represent the stable magnetization patterns of our ferromagnet.
If we write

∇L2E(m) = −d2∆m +Q∇φ(m) +∇u− h (1.2)
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for the L2-gradient of E (without the saturation constraint), then these vari-
ational problems give rise to the Euler-Lagrange equation

(1−m⊗m)∇L2E(m) = ∇L2E(m)− (m · ∇L2E(m))m = 0 in Ω.

(Here 1 denotes the identity (3 × 3)-matrix.) That is, the projection of
∇L2E(m) onto the tangent space TmS2 vanishes. This equation can also be
expressed in the form

d2(∆m + |∇m|2m)−Q∇φ(m) + (1−m⊗m)(h−∇u) = 0 in Ω.

Moreover, we have homogeneous Neumann boundary conditions

∂m
∂ν

= 0 on ∂Ω.

A model for the dynamical behavior of the magnetization is given by the
Landau-Lifshitz equation

∂m
∂t

+ γm ∧ ∇L2E(m) + αm ∧ ∂m
∂t

= 0, (1.3)

also called the Landau-Lifshitz-Gilbert equation. Here ∧ denotes the vector
product in R3. Both γ and α are fixed constants, and we require that αγ > 0.
Another common way to write the equation is

∂m
∂t

= γ̂m ∧∇L2E(m) + α̂m ∧ (m ∧∇L2E(m)). (1.4)

The two versions are equivalent for

α̂ =
αγ

α2 + 1
and γ̂ = − γ

α2 + 1
.

The terms in (1.3) and (1.4) with coefficients γ and γ̂, respectively, describe
a magnetic precession. We call them the gyromagnetic terms. The terms with
coefficients α and α̂, respectively, are damping terms (hence the sign condition
on αγ, giving rise to the condition α̂ > 0). From the mathematical point of
view, the damping terms are the more important ones, because they make
the problem parabolic. Without them, the equations would be of the type of
a nonlinear Schrödinger equation.

Taking the vector product with m in all terms of (1.3), we obtain a third
equivalent version of the equation,

α̃
∂m
∂t

+ γ̃m ∧ ∂m
∂t

= (m⊗m− 1)∇L2E(m), (1.5)

where
α̃ =

α

γ
and γ̃ = − 1

γ
.
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Representing the equation in this form is convenient because it underlines the
similarity to the negative L2-gradient flow for the functional E subject to the
constraint |m| = 1. (In fact this gradient flow is (1.5) for α̃ = 1 and γ̃ = 0.)
We will normally use the Landau-Lifshitz equation in the form (1.5).

It is natural to impose a homogeneous Neumann boundary condition also
for the Landau-Lifshitz equation.

Apart from the obvious quantities d, Q, φ, and h, the qualitative behavior
of E and of solutions of the above variational problems also depends on the
shape and the size of the sample Ω. Some idea of the dependence on the
size can be gained by studying the scaling properties of the four terms which
contribute to the micromagnetic energy. Suppose for a number λ > 0, we
replace Ω by λΩ and the vector field m by m(x/λ) (and similarly h by
h(x/λ)). Then the exchange energy is multiplied by the factor λ, whereas
the other energy terms are multiplied by λ3. Thus it is to be expected that
for a very small sample, the exchange energy determines the behavior of m
to a large extent; that is, a minimizer of E is nearly constant. For a very
large sample, on the other hand, the exchange energy is insignificant, and the
behavior of m is ruled by the other terms.

On the other hand, we can use rescalings to eliminate one of the parameters
in our problem. Replacing Ω by λΩ, and replacing simultaneously d by λd, we
obtain a functional whose energy landscape differs only by a constant. This
way we can normalize the problem such that either d or Q become 1, or such
that Ω has unit size.

1.3 Thin films

The results in this paper are concerned with ferromagnetic bodies in the shape
of thin films. That is, we consider domains of the form

Ωδ = Ω × (0, δ),

where Ω is now a two-dimensional domain and δ > 0 is small compared
with the size of Ω. We either study the limit behavior of the micromagnetic
energy and its variational problems as δ ↘ 0, or we use the thinness of Ωδ

as a justification for working directly in two dimensions and with an energy
that approximates the micromagnetic energy for thin films. In both cases, the
projection of m onto the plane R2 × {0} and the third component of m play
different roles. It is therefore convenient to use the notation m = (m,m3) for
the magnetization vector field, where m = (m1,m2). Similarly we often write
x = (x, x3) = (x1, x2, x3) for a generic point in R3. Sometimes, however, it is
more convenient to use coordinates (x, y, z) in R3.

The reduction to two dimensions – whether by a rigorous asymptotic anal-
ysis or formally – decreases the complexity of the problems that we study.
Nevertheless, a rich variety of patterns can still be observed, and there exist
different asymptotic regimes for the thin-film limit which give rise to different
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reduced theories. These regimes are determined by certain relations between
the parameters involved in the problem, of which we have now four (under
the assumption that the shape of Ω is fixed, but the size can still be varied by
scaling): In addition to the material constants d and Q, we have the thickness
δ and a length scale L of the cross-section Ω. When we are not interested
in the behavior of m near ∂Ω, we may assume Ω = R2, and then L need
not be considered. If we choose to neglect certain terms of the micromagnetic
energy, this may of course reduce the number of parameters further. For in-
stance, if we consider only the exchange energy and the magnetostatic energy
(which we do in a substantial part of this paper), then the asymptotic regime
depends on the behavior of the ratio d/L as we let the aspect ratio δ/L con-
verge to 0. Some asymptotic regimes for this thin-film limit have been studied
by Gioia and James [GJ97]; Carbou [Car01]; DeSimone, Kohn, Müller, and
Otto [DK*02]; and Kohn and Slastikov [KS05a, KS05b]. Another regime is
discussed in this paper, first through a simplified model in two dimensions,
then by an asymptotic analysis for the micromagnetic energy on Ωδ for δ ↘ 0.
This theory also establishes a link to the theory of Ginzburg-Landau vortices,
which were first studied by Bethuel, Brezis, and Hélein [BBH93, BBH94].

A further dimensional reduction is made in the context of parametrized
domain wall models, that we investigate in detail. Such models represent the
basic building blocks within larger domain patterns or more complex domain
wall structures. Of particular interest is the regime of weakly anisotropic (soft)
thin films, where such transition layers significantly differ from those more
common in phase transitions.

2 Domain Walls: Internal Structure and Dynamics

The primary phenomenon that one associates with magnetic pattern forma-
tion is the decomposition of a magnetic body into almost uniformly magne-
tized regions. The so-called magnetic domains are separated by thin transition
layers, called domain walls, that interact in a complex network. The structure
of such domain walls is among the central concerns of micromagnetic theory.
While the analysis of domain walls is mathematically an interesting matter
of its own, the physical relevance relies in the resulting mutual interaction
having large impact on the global magnetic microstructure, especially when
nonlocal effects dominate. In reduced thin-film theories, domain walls often
emerge as line singularities while fine structural properties no longer have any
effect. Breaking the resulting degeneracy by means of transparent selection
principles rising from higher order contributions remains a major challenge.
On the other hand, magnetic domain walls can exhibit internal substructures
themselves or can be made up as a complex composite, such as the cross-tie
wall, cf. [HS98] pp. 240-241.
The simplest domain wall patterns are one-dimensional and appear as extreme
cases in a hierarchy of domain wall models that emerge in diverse parameter
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regimes: Within a Bloch wall, the magnetization vector performs a rotation
perpendicular to the transition axis. The main feature is the avoidance of mag-
netic volume charges, so that this wall type is energetically favorable in bulk
situations and essentially equivalent to the transition problem arising from
Cahn-Hilliard models. Such models exhibit sharply localized and rapidly de-
caying transition profiles. Our analysis shows that this behavior can largely
change when nonlocal interactions dominate and internal length scales fail to
be determined by dimensional analysis. The Néel wall, where the transition
proceeds in-plane, is preferred in suitable thin-film regimes and characterized
by the avoidance of magnetic surface charge. The presence of three energy
components with different scaling behavior gives rise to multiple length scales.
The typical feature of a Néel wall is the very long logarithmic tail of tran-
sition profiles. Such behavior has been predicted by heuristic arguments and
numerical simulation (cf. [RS71, Gra99]) in order to explain long-range in-
teraction of Néel walls, when neighboring tails overlap. Here we demonstrate
rigorously how the main analytical feature of the variational principle, a crit-
ical regularity property, gives rise to the typical logarithmic decay behavior
[Mel02, Mel03, Mel04a]. This global approach served in addition to resolve
the spatial scaling laws in terms of all involved parameters and to derive a
somewhat universal limiting profile that reflects the decay.
The evolution of magnetic patterns in the presence of applied fields is closely
related to the motion of domain walls. Gyrotropic domain wall motion is based
on the Landau-Lifshitz-Gilbert (LLG) equations, that describe a damped pre-
cession of the magnetization vector about the effective field, i.e. mathemat-
ically a hybrid heat and Schrödinger flow for the free energy. An appropri-
ate local description relies on the concept of moving fronts that propagate
with constant speed. Traveling wave solutions for the associate LLG dynam-
ics represent a natural dynamic counterpart to static domain walls. As it
turns out they provide valuable insight into the mechanisms and properties of
domain wall dynamics, where besides energetics and spatial structures, kine-
matic quantities as wall mobility and wall mass come into play.
Whereas in the equilibrium case the magnetization path is dictated by ener-
getics and particularly stray-field interactions, a second mechanism effects the
shape of a moving domain wall: the precession dynamics as prescribed by LLG
pushes the magnetization vector away from its optimal path, taking into ac-
count a gain in stray-field energy. Many interesting effects originate from this
balance of energetic and dynamic forces, especially when enhanced by strong
shape anisotropy in the regime of thin films. The bulk situation, however, can
surprisingly be solved explicitly by means of a famous construction by Walker,
i.e. a tilted version of the Landau and Lifshitz solution for the standard Bloch
wall, cf. [Wal63]. Again all spatial and temporal scales can be read off by
dimensional reasoning. The natural question on whether such a construction
can be perturbed to the regime of finite layers has been answered in the
affirmative [Mel04b]. Indeed, a suitable choice of canonical coordinates trans-
forms the associate LLG system into a weakly coupled Schrödinger/reaction-
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diffusion system and makes it accessible for spectral methods. The analysis
also demonstrates that the finite layer perturbation is indeed a singular one
and how this relates to slow decay.
In the regime of thin films the competition between stray field and preces-
sion is singular, that is to say, the asymptotically hard constraint of in-plane
magnetization is geometrically incompatible with LLG. In order to derive an
effective evolution equation, the change of spatial scaling has to be accompa-
nied with a change of times scale. An effective thin-film limit for LLG with
finite Gilbert damping has been carried out in [EG01, KS05a] and in Thm. 4.9,
where the gyromagnetic precession term effectively turns into a large damp-
ing term as well. While the overall relaxation dynamics is captured correctly,
oscillatory phenomena, such as spin waves or domain wall resonances, are sup-
pressed in such a limit. In order to account for these effects we consider the
complementary regime where Gilbert damping is comparable to the relative
thickness. We show that in this regime LLG keeps its oscillatory features and
turns into a damped nonlocal wave map equation [CMO06]. In the context
of domain wall motion it provides a mechanical analogy and sheds some new
light on the notion of wall mass. For small applied fields, the traveling wave
problem, modeled on this wave-type dynamics, reduces to the question of
linear stability for stationary Néel walls. Then the implicit function theorem
provides existence and determines the mobility of traveling Néel walls.

2.1 Mathematical framework for planar domain walls

Let us consider an infinitely extended uniaxial magnetic film that is repre-
sented by Ωδ = R2 × (0, δ) and oriented by the anisotropy (easy) axis R ê2.
We consider parameterized transitions along R ê1 (that we call transition axis)
that connect antipodal states on the easy axis, i.e.

m : R → S2 with m(±∞) = (0,±1, 0).

In the following we denote the transition parameter by x and the vertical
coordinate by z, i.e. we set x1 = x and x3 = z. Under the hypothesis that,
within the film, the magnetization varies only along the transition axis, we
identify the associated global magnetization field m(x) = m(x)χ(0,δ)(z) that
is defined for x ∈ R3. Then m = m(x) induces the stray field ∇u determined
by the potential equation ∆u = ∇ · m in D′(R3). We observe that u =
u(x, z) where the z dependence only stems from shape anisotropy. Thus the
micromagnetic energy induces the following averaged domain wall energy per
unit length:

E(m) =
1
2
−
∫ δ

0

{
d2

∫
|m′|2 dx+

∫
∇u ·m dx+Q

∫
(1 −m2

2) dx
}
dz. (2.1)

The vertical average in (2.1) is redundant for the exchange and anisotropy
portion. In order to perform a dimensional reduction for the stray field, we
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introduce a reduced stray-field operator

Sδ : m �→ −
∫ δ

0

∇u dz where ∆u = ∇ ·m in D′(R3).

Changing the order of integration, the averaged stray-field energy can be
expressed as

Estray(m) =
1
2
−
∫ δ

0

∫
∇u ·m dx dz =

1
2

∫
R

Sδ(m) ·m dx.

A straightforward calculation shows that the operator Sδ has an interpretation
in terms of Fourier multiplication operators. Indeed, we have

Sδ(m) =
[
σ(δD)m1, 0 ,

(
1− σ(δD)

)
m3

]
: R → R3,

where σ(D)f = F∗
(
ξ �→ σ(ξ)f̂ (ξ)

)
. The basic Fourier multiplier σ(ξ) is given

by

σ(ξ) =
(

1− 1− exp(−|ξ|)
|ξ|

)
∼

{
1
2 |ξ| for low frequencies ξ

1 for high frequencies ξ.
(2.2)

The reduced stray-field operator can equivalently be described by means of
convolution kernel, cf. [Gra99], [Mel03] for a derivation and a detailed discus-
sion. Accordingly, the reduced stray-field energy can be written as

Estray(m) =
1
2

∫
σ(δξ) |m̂1(ξ)|2 dξ +

1
2

∫ (
1− σ(δξ)

)
|m̂3(ξ)|2 dξ. (2.3)

The advantage of the Fourier representation is that one can easily read off
the asymptotic form of interaction from the asymptotic behavior of Fourier
multipliers. From (2.3) one can separate a local contribution and a nonlocal
one that vanishes in the bulk regime

Estray(m) =
1
2
‖m1‖2

L2 +
1
2

∫ (
1− σ(δξ)

){
|m̂3(ξ)|2 − |m̂1(ξ)|2

}
dξ. (2.4)

Indeed, from (2.2) we deduce that σ(δ ξ) → 1 in the regime when δ|ξ| → ∞.
Thus, for a corresponding family of transitions m so that m1 and m3 are
uniformly bounded in L2(R), we infer that

Estray(m) =
1
2
‖m1‖2

L2 + o(1). (2.5)

We observe that in the bulk regime, the stray-field interaction reduces to
a local contribution having the form of an additional anisotropy term that
penalizes magnetizations that point along the transition axis. In the comple-
mentary thin-film regime when δ|ξ| → 0 we have σ(δ ξ) → δ|ξ| and, for m1

and m3 uniformly bounded in H1(R), an asymptotic expansion
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Estray(m) =
1
2

∥∥m3

∥∥2

L2 +
δ

4

∥∥m1

∥∥2

Ḣ1/2 + o(δ), (2.6)

where ‖f‖2
Ḣ1/2 =

∫
|ξ||f̂(ξ)|2 dξ denotes the homogeneous H1/2-norm. The

zero order contribution can be interpreted as the residual surface charge in-
teraction having the form of an additional anisotropy that penalizes vertical
magnetizations. The first order term corresponds to residual volume charge
interaction.
From a variational point of view the leading order stray-field contribution in
(2.5) and (2.6), respectively, determines asymptotically a geodesic magneti-
zation path. Whereas in the bulk situation the stray field interaction can be
eliminated completely by choosing a path perpendicular to the transition axis,
i.e. m1 = 0 (Bloch walls), the penalty on the vertical component as δ → 0 en-
forces in-plane rotations, i.e. m3 = 0 (Néel walls), taking into account internal
stray fields that typically appear to the leading order, see Fig. 2.1.

Complete elimination of stray-field interaction cannot be achieved by
means of one-dimensional transition modes. In somewhat thicker films, how-
ever, the symmetric Néel wall would lead to comparatively large stray-field
contribution. But for an attempt to construct a stray-field free transition layer
one has to abandon the symmetry assumption and to permit variations in the
vertical direction. Such an object, referred to as asymmetric Bloch wall,
has been discovered by Hubert, cf. [HS98] pp. 245-249, where volume charges
are avoided by a vortex construction in the wall center. At the same time nu-
merical simulations have confirmed a dramatic decrease of energy by breaking
the wall symmetry. Recently, a rigorous verification based on an ansatz-free
interpolation argument has been provided by Otto in [Ott02].

Fig. 2.1. The figure shows the Bloch and the Néel wall path as perpendicular
geodesic connections of antipodal states. It also shows an intermediate geodesic
that corresponds to a moving domain wall in the bulk regime where dynamic forces
lead to an inclination towards the Néel wall path, the so-called Walker path. We
will refer to the polar angle ϕ between the Bloch wall and the Walker path as the
Walker angle.
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Bloch walls versus Néel walls

The infinite Bloch wall in bulk samples has been the first micromagnetic ob-
ject proposed and calculated in the seminal work by Landau and Lifshitz,
cf. [LL35]. Once the stray-field energy is fully eliminated by choosing an ap-
propriate path, the corresponding optimal profile and minimal energy can be
found by nowadays standard variational methods. Indeed, from (2.1) we get
for m = (0,m2,m3) : R → S2 with m2(±∞) = ±1,

E(m) =
d2

2

∫
|m′|2 dx+

Q

2

∫
(1 −m2

2) dx.

The length scale w =
√
d2/Q defines the typical Bloch wall domain width.

Rescaling by w and renormalizing the energy by the factor 4
√
d2Q yields

E(m) =
1
4

∫
|m′|2 dx+

1
4

∫
(1−m2

2) dx.

Using the identity |m′|2 = (m′
2)

2/(1−m2
2) we deduce the optimality relation

m′
2 = 1−m2

2 with m2(±∞) = ±1 (2.7)

that is uniquely solved by m2(x) = tanh(x). Thus in the original scaling

m(x) =
(
0, tanh(x/w), sech(x/w)

)
. (2.8)

Moreover we deduce from (2.7) and Young’s inequality that

E(m) ≥ 1
2

∫
|m′

2| dx ≥ 1,

that is attained under equipartition for m2(x) = tanh(x). Thus we re-
cover from scaling that the Bloch wall energy per unit length is given by
e0 = 4

√
d2Q. One may wonder whether the Bloch wall path is indeed opti-

mal; but this is a simply consequence of |m′|2 ≥ (m′
2)

2/(1 −m2
2) that holds

true for any m : R → S2 ∈ H1 and Young’s inequality that imply the same
lower energy bound.
Twenty years later, Louis Néel realized that in a regime where the film thick-
ness becomes comparable to the Bloch wall width, a transition mode within
the film plane can lower the total energy decisively, cf. [Née55]. New ideas,
however, had to be developed in order to provide a satisfactory analysis of this
multiscale object. Indeed, for an in-plane rotation m : R → S1 the thin-film
approximation of (2.1) yields

E(m) =
d2

2

∫
|m′|2 dx+

δ

4

∫
|ξ||m̂1(ξ)|2 dξ +

Q

2

∫
|m1|2 dx. (2.9)

Unlike the Bloch wall problem where only two energy components remain that
can be balanced by a single length scale, the Néel wall problem incorporates
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two characteristic length scales. Those are connected with the competition of
two energy components, respectively: In order to highlight the competition
between stray field and anisotropy we rescale by the tail width w = δ/(2Q).
With the small aspect ratio Q = 4 κ2Q where κ = d/δ � 1, we obtain the
following singular perturbation problem

EQ(m) =
Q
2

∥∥m∥∥2

Ḣ1 +
1
2

∥∥u∥∥2

Ḣ1/2 +
1
2

∥∥u∥∥2

L2 → min (2.10)

m = (u, v) : R → S1 with u(0) = 1

that captures the logarithmic decay behavior as we will see below. There is
a second characteristic length scale that is smaller than the tail width and
related to the width of the core in the very center of the Néel wall. In the
above regime it coincides merely with the exchange length d, and rescaling
yields an expression

1
2

∥∥m∥∥2

Ḣ1 +
1
4κ

∥∥u∥∥2

Ḣ1/2 +
Q

2

∥∥u∥∥2

L2

that, as Q tends to zero, highlights the competition between exchange and
reduced stray-field energy.

2.2 The logarithmic tail of Néel walls

The main analytical feature of the variational problem (2.10) is that the en-
ergy gives only uniform control of the H1/2-norm as Q tends to zero. Since the
H1/2(R) norm just fails to control the modulus of continuity, the pointwise
constraint u(0) = 1 is delicate and one might expect a logarithmic singu-
larity in a renormalized setting. Logarithmic tails of Néel walls have indeed
been predicted by heuristic arguments and the resulting very long range in-
teraction between different Néel walls has important consequences, cf. [HS98]
pp. 242-245, [RS71] with some extensions in [Gra99]. Logarithmic scaling for
the energy has recently been established in [Gra99] and the following refined
version is announced in [DK*99]:

Theorem 2.1. As Q tends to zero the minimal energies behave like

inf EQ =
π

2
(
1 + o(1)

)
ln(1/Q)−1

where the infimum is taken over transitions that are admissible according to
(2.10).

Similar scaling laws have been derived in the case of periodic Néel wall
arrays, where tails are confined by those of neighboring walls, cf. [DK*03].
They were used to heuristically quantify their mutual repulsive force, that is
particularly interesting in the context of optimal spacing for the cross-tie wall.
It is remarkable that, in case of finite Néel walls, the above energy asymptotics
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in Thm. 2.1 holds true when the infimum is taken over y-periodic transitions
m = m(x, y), cf. [DKO05]. Here, the quality factor Q is replaced by the aspect
ratio δ/w, i.e. film thickness by tail width, so that Q = 4 κ2 δ

w . The proof is
based on a dynamic system argument and a sharp interpolation inequality
between L∞ and BV. The result proves in particular (nonlinear) stability of
the one-dimensional Néel wall with respect to two-dimensional variations in
the plane, a result yet unknown for infinite Néel walls.

The proof of Thm. 2.1 is based on a perturbation argument; its shows
that minimal energies exhibit the same asymptotics as the minimal energies
for the relaxed problem (2.12) to be introduced below. It turns out to provide
an pointwise logarithmic lower bound as well and motivates the main result
[Mel03, Mel04a]:

Theorem 2.2. Let uQ be a minimizing profile for the variational principle
(2.10). Then uQ is symmetric-decreasing and exhibits a logarithmic tail in
the sense that

uQ(x) � ln(1/x)
ln(1/Q)

for all Q � x � 1 and 0 < Q < 1/4.

The notations a � b and a � b mean that, for some universal constant 0 <
c < ∞ we have a ≤ c b and 1

c b ≤ a ≤ c b, respectively. It can also be shown
that beyond the logarithmic tail a Néel wall profile decays only quadratically
ln(1/Q)uQ(x) � x−2 as |x| → ∞, cf. [Mel02], a fact that is related to the
limited regularity of associated Fourier multipliers. Renormalization yields in
addition a universal limiting profile that captures the essential decay behavior:

Theorem 2.3. For any sequence Q → 0 so that the corresponding sequence of
renormalized profiles UQ = ln(1/Q)uQ converges in the sense of distributions,
the weak limit U0 is a multiple of the fundamental solution of the operator
(−∆)1/2 + 1, and the convergence is strong in L2

loc.

For fractional derivatives of order s > 0 we use the notation (−∆)s/2f =
F∗(ξ �→ |ξ|sf̂(ξ)), where, for s = 2, we have (−∆)f = − d2f

dx2 . The fundamental
solution G ∈ L2(R) with (−∆)1/2G + G = δ0 is well known as a Fourier
integral. It is smooth away from the origin, symmetrically decreasing and has
the following expansion:

G(x) =
1
π

{
ln(1/|x|)− γ +O(x) as |x| → 0
x−2 +O(x−4) as |x| → ∞,

(2.11)

where γ denotes Euler’s constant.

Logarithmic lower bounds

We introduce a linear comparison problem arising from relaxation that can
be solved explicitly. It is shown in [Mel04a] that relaxation of (2.10) leads to
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E∗
Q(u) =

Q
2

∥∥u∥∥2

Ḣ1 +
1
2

∥∥u∥∥2

Ḣ1/2 +
1
2

∥∥u∥∥2

L2 → min in {u(0) = 1}. (2.12)

A standard convexity argument implies the existence of a unique minimizer
that satisfier the Euler-Lagrange equation

Q(−∆)u∗ + (−∆)1/2u∗ + u∗ = Λ(Q) δ0 in D′(R). (2.13)

Expanding the associate Fourier multiplier into partial fractions, (2.13) can
be solved in terms of the fundamental solution (2.11), so that the following
properties can be read off:

Proposition 2.4. The unique solutions u∗Q of the relaxed variational princi-
ples (2.12) exhibit logarithmic tails in the sense that for 0 < Q < 1/4:

u∗Q(x) =
Λ(Q)
π

(
1 + o(1)

) [
ln(1/x) + rQ(x)

]
for Q < x < 1/e,

where the functions rQ(x) are uniformly bounded in the above regime. The
Lagrange multiplier Λ(Q) agrees with twice the minimal energy and has the
asymptotic behavior (cf. Thm. 2.1)

Λ(Q) = π
(
1 + o(1)

)
ln(1/Q)−1.

Surprisingly, the relaxed variational principle not only provides an ener-
getic but also a pointwise lower bound, thus, in view of Proposition 2.4, a
logarithmic lower bound.

Proposition 2.5. Let uQ be a minimizing profile for variational principle
(2.10). Then the solution u∗Q of the relaxed variational principle (2.12) is a
pointwise lower bound.

Proof. The idea is to derive suitable pseudo-differential inequalities for the
profiles to be compared. We observe that |m′|2 = |u′|2/(1 − u2) and deduce
the following Euler-Lagrange equation

Q
{
− d

dx

(
u′

1− u2

)
+

(
u′

1− u2

)2

u

}
+ (−∆)1/2u+ u = 0 (2.14)

that holds true for a Néel wall profile u in {u �= 1}. By Proposition 2.8 this
equation holds true in R \ {0}. Now the essential ingredients are symmetric
convexity of comparison profiles stated in Proposition 2.4 and the following
global maximum principle for the nonlocal field operator (−∆)1/2:

Lemma 2.6. Suppose that the function u ∈ H1(R) is smooth in R \ {0} and
that u attains a global maximum at x0 �= 0. Then (−∆)1/2u is smooth in a
neighborhood of x0 and (−∆)1/2u(x0) ≥ 0.
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We consider w = u∗ − u ∈ H1(R) with w(0) = 0. From (2.13) and (2.14) we
deduce, with the positive coefficient a(x) = Q/(1− u2(x)), that

a(x)(−∆)w + (−∆)1/2w + w ≤ 0 in R \ {0}.

Since w is smooth away from the origin, the Lemma 2.6 applies and excludes
a global maximum in R\ {0}. But from Propositions 2.4 and 2.8 we infer that
w(x) decays as |x| → ∞, and the proof is complete.

Logarithmic upper bounds

The key observation is that logarithmic upper bounds are captured by sharp
elliptic regularity bounds that are uniform in Q. For magnetizations mQ of
bounded Néel wall energy (2.10) we have ‖uQ‖2

H1/2 ≤ EQ(mQ). Then Sobolev
embedding implies, for any p ∈ (2,∞), a bound ‖uQ‖2

Lp ≤ c(p)EQ(mQ).
A PDE argument, however, shows that for any such p the purely energetic
argument misses the optimal scaling by a full factor EQ(mQ) and provides in
addition an estimate on the growth of optimal constants. Qualitatively, the
same is true for fractional Sobolev norms H1/2

q that are strictly weaker than
H1/2.

Proposition 2.7. For a critical point mQ = (uQ, vQ) of (2.10) we have∥∥uQ∥∥
Lp ≤ c p EQ(mQ) for each p ∈ (1,∞) (2.15)

for some universal constant c > 0 and∥∥uQ∥∥
H

1/2
q

≤ c(q) EQ(mQ) for each q ∈ (1, 2), (2.16)

where the constant c(q) > 0 only depends on q.

Proof. We outline the main steps: Projection of the Euler-Lagrange system

∇EQ(m) = ∇EQ(m) m⊗m (2.17)

onto its first component equation yields, after a suitable decomposition of the
non-linearity, an equation of the form

Q (−∆)u+ (−∆)1/2u+ u = eQ[m]u+ r[u], (2.18)

where eQ[m] = Q |m′|2+|(−∆)1/4u|2+|u|2 is twice the energy density and r[u]
is a defect distribution arising from the in compatibility of nonlocal interaction
and the geometric constraint |m| = 1. In fact, for any test function ϕ, we have〈

r[u], ϕ
〉

=
〈
(−∆)1/4u,

[
(−∆)1/4, (uϕ)

]
u
〉
.

The operator on the left hand side of (2.18) is uniformly first-order elliptic,
while the right hand side is essentially L1-bounded by the energy, and in that
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case the claim would follow from a simple Fourier argument. Commutator
estimates, however, show that uniform bounds for r[u] are slightly weaker
than L1 and rather distributional, i.e in H

−1/2
q for q ∈ (1, 2). By means of

elliptic regularity theory we get a uniform bounds in H
1/2
q , and the claim

follows from asymptotic inequalities for fractional integration.

From strict rearrangement inequalities that are valid for fractional Sobolev
norms and a simple bootstrap argument based on the Euler-Lagrange system
(2.17), we deduce the following symmetry and smoothness result for optimal
profiles u = uQ.

Proposition 2.8. A Néel wall profile is smooth and symmetrically decreasing.

Remark 2.9. The above proposition is strict in the sense that a Néel wall
profile m = eiθ cannot have a plateau at 0, and the associate phase function
θ is strictly increasing, cf. Lemma 2.18.

Proof of Thm. 2.2

In view of Propositions 2.4 and 2.5 it remains to prove the logarithmic upper
bound. Let u = uQ be a Néel wall profile. Proposition 2.8 implies that the
pointwise values are below the local averages. Thus Hölder’s inequality and
Proposition 2.7 yield

0 ≤ u(x) ≤ −
∫ x

0

u dy ≤
(
−
∫ x

0

|u|p dy
)1/p

≤ c p

(
1
x

)1/p

inf
M
EQ

that is a family of upper bounds parameterized by p. The pointwise optimal
choice of p, given by p(x) = ln(1/x), and Thm. 2.1 yield the logarithmic upper
bound.

Proof of Thm. 2.3

From Thm. 2.1 and Proposition 2.7 we deduce that UQ is uniformly bounded
in, say, H1/2

3/2 (R), so we can assume that UQ ⇀ U0 weakly in L2(R) and
strongly on bounded intervals. From the profile equation (2.18) we get

Q (−∆)UQ + (−∆)1/2UQ + UQ = ln(1/Q)
(
eQ[mQ]uQ + r[uQ]

)
.

Obviously, the left hand side converges to (−∆)1/2U0 + U0 in the sense of
distributions. Thus it remains to show that

(i) the distribution (−∆)1/2U0 + U0 is supported at the origin
(ii) the distribution ln(1/Q)r[uQ] converges to a finite measure.
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Claim (i) can be deduced from (2.14) using the uniform pointwise convergence
of Néel wall profiles to zero away from the origin. Claim (ii) follows from an
iteration of the arguments in of Proposition 2.7. Indeed, for u = uQ we have
a decomposition of the remainder distribution 〈r[u], ϕ〉 = 〈f [u], ϕ〉+ 〈g[u], ϕ〉,
where 〈

f [u], ϕ
〉

=
〈
(−∆)1/4u, [(−∆)1/4, u2]ϕ

〉
,〈

g[u], ϕ
〉

=
〈
(−∆)1/4u, u2(−∆)1/4ϕ

〉
.

Product and commutator estimates for fractional derivatives (cf. [Hof98,
KP88]) and the energy estimate in Thm. 2.1 show that∣∣〈f [u], ϕ

〉∣∣ ≤ c
∥∥u∥∥

L∞

∥∥u∥∥2

H1/2

∥∥ϕ∥∥
C0 ≤ c ln(1/Q)−1

∥∥ϕ∥∥
C0 .

Thus we find that the contribution coming from ln(Q) f [u] is asymptotically a
finite measure. On the other hand, according to the H1/2

q estimate in Propo-
sition 2.7,∣∣〈g[u], ϕ〉∣∣ ≤ c

∥∥u∥∥
L∞

∥∥u∥∥
L6

∥∥u∥∥
H

1/2
3/2

∥∥ϕ∥∥
H

1/2
6

≤ c ln(1/Q)−2
∥∥ϕ∥∥

H
1/2
6
,

so that the contribution from ln(Q)g[u] vanishes as a distribution as Q tends
to 0.

2.3 Domain wall motion in finite layers

When an external magnetic field h = H ê2 is applied that points towards
the easy axis, the end-states are no longer equally preferred. Consequently,
one expects the domain wall to become unstable and start to move. In gy-
rotropic domain wall models the evolution of magnetization distributions is
characterized by the Landau-Lifshitz-Gilbert equation

m ∧ ∂tm + α∂tm + γ (1−m⊗m)∇E(m) = (1−m⊗m)h (2.19)

m : R× (0,∞) → S2 with m(±∞, t) = (0,±1, 0) for t ∈ (0,∞).

where E(m) is the internal domain wall energy. We introduce the aspect ratio
κ = d/δ and assume for simplicity that Q = 1. Renormalizing space and
energy by the exchange length d, we get from (2.1) and (2.4) an (internal)
domain wall energy of the form

Eκ(m) =
1
2

∫
|m′|2 +

1
2

∫
(1 −m2

2) dx+
1
2

∫
m2

1 dx+Gκ(m), (2.20)

where the nonlocal portion of the stray-field energy is given by

Gκ(m) =
1
2

∫ (
1− σ(κξ)

)(
|m̂3(ξ)|2 − |m̂1(ξ)|2

)
dξ. (2.21)
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Regarding the dynamic problem, a special class of solutions to constant
coefficient systems are traveling wave solutions, i.e. solutions of the form
m = m(x + c t), that describe a motion of constant speed c. In the case
κ = 0 the traveling wave ansatz turns (2.19) into a constrained nonlinear
system of ordinary differential equations. Surprisingly, these equations can be
solved explicitly. The solutions are referred to as Walker’s exact solutions, see
[Wal63, HS98]. Our goal is to show that this situation is indeed generic and
can be perturbed to layers of large but finite diameter. As this corresponds to
the case of small nonlocal interaction, the nonlocal character of the equations
will play a minor role. We will show that, in suitable coordinates, domain wall
motion according to Landau-Lifshitz dynamics fits into the context of nonlo-
cal, weakly coupled reaction-diffusion systems. But first we review Walker’s
construction.

Walker’s exact solutions

For κ = 0 we have a transition energy

E0(m) =
1
2

∫
|m′|2 dx+

1
2

∫
(1 −m2

2) dx+
1
2

∫
m2

1 dx.

The traveling wave ansatz m = m(x+ c γ t) yields the system

c αm′ + cm ∧m′ +
(
1−m⊗m

)
∇E0(m) =

(
1−m⊗m

)
· h. (2.22)

The above system can be solved explicitly, a calculation that has been first
carried out by Walker. The original calculations become more transparent,
when the equation is considered in the canonical orthogonal frame {m′,m ∧
m′} on the tangent space of S2 along m. It turns out that the following
assumptions can be met:

(I) Under the assumption that dissipation compensates the driving force, the
system decomposes into three equations,

c α |m′|2 = Hm′
2, ∇E0(m) ·m′ = 0, and ∇E0(m) ·m∧m′ = c |m′|2.

(II) Under the assumption that the wall moves with constant polar inclination
angle ϕ, i.e. m ∧m′ = |m′|ν for some constant unit vector ν, the energy
is the Bloch wall energy with increased anisotropy Q(ϕ) = 1 + sin2 ϕ,

E0(m) =
1
2

∫
|m′|2 dx+

Q(ϕ)
2

∫
(1−m2

2) dx.

Moreover |m′|2 = (m′
2)

2/(1−m2
2) and ∂m

∂ϕ = |m′|ν holds for such m.

We deduce that, up to scaling, all equations in (I) have the form |m′|2 =
1 − m2

2, i.e. m′
2 = 1 − m2

2, and can be solved jointly. Matching parameters
gives the transition profile, inclination angle, and propagation speed
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m2(x) = tanh
[√

1+ sin2 ϕ x
]
, sin(2ϕ) =

H

α
, and c =

sin(2ϕ)

2
√

1 + sin2 ϕ
. (2.23)

Obviously a peak velocity ∼ 0.4 (i.e. about ∼ 100 m
sec for a typical garnet ma-

terial) is reached at for finite field-strength H beyond which the construction
breaks down.
Walker’s construction shows that the dynamics of domain walls in bulks
samples is accompanied by a decrease of domain wall width by a factor
(1 + sin2 ϕ)−

1
2 and an increase of domain wall energy by the inverse fac-

tor. From Walker’s construction we deduce that the first order correction for
domain wall energies vanishes at small velocities:

eH = e0 (1 + sin2 ϕ)
1
2 = e0 +

1
2
M c2 + o

(
c2
)
.

The second order correction can be viewed as a kinetic energy contribution.
Thus, the factor M = ∂2

c eH at c = 0 is referred to as the wall mass, a notion
that has been introduced by Döring, cf. [Dör48]. In the original scaling the
wall mass is given by M = e0/(2d2). We will encounter the wall mass again
later in the context of traveling Néel walls rising naturally from a wave-type
interpretation of Landau-Lifshitz-Gilbert dynamics in thin films.

Stability and perturbation of Walker’s construction

Theorem 2.10. For sufficiently small field strength H there is a threshold
κ(H) > 0 such that, whenever κ < κ(H), there is a traveling wave for the
Landau-Lifshitz-Gilbert dynamics that connects antipodal states.

Proof. We perform a stability analysis based on a suitable choice of canonical
coordinates that transforms (2.19) into a weakly coupled 2 × 2 system of
reaction-diffusion type. For this purpose we combine standard stereographic
coordinates with a polar rotation by the Walker angle ϕ that maps the Walker
path into the Bloch wall path. In these coordinates C  z �→ m[z] ∈ S2,
the Walker path is given by the line segment z0 : R → {0} × [−1, 1]. For
m = m[z], functional gradients transform according to λ−2(z)∇zEκ(m) =
∇Eκ(m), where λ(z) is the conformal factor. Moreover, (2.19) becomes a
damped Schrödinger equation

α∂tz + i ∂tz − γ Dx∂xz + γ
(
f(H, z) + b(κ, z)

)
= 0, (2.24)

where z(·, t) : R → C with z(±∞, t) = (0,±1). The mapping

f(H, z) = λ−2(z)∇z

∫ [1
2
(m2

1 −m2
2)−Hm2

]
dx for m = m[z]

involves anisotropy, applied field, and the limiting (local) portion of stray-
field interaction. For small enough H , it is bi-stable in its second component.
With the notation in (2.21), the map b(κ, z) = λ−2(z)∇zGκ(m) is a nonlocal
perturbation from stray-field interaction that is continuous in κ with b(0, ·)=0.
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Remark 2.11. An important observation is that the mapping κ �→ b(κ, ·), con-
sidered as a family of nonlinear operators on suitable function spaces, is not
differentiable at κ = 0. Indeed,

d

dκ
Estray(m)

∣∣
κ=0

=
1
2
‖m1‖2

Ḣ−1/2 −
1
2
‖m3‖2

Ḣ−1/2

with singular behavior at low frequencies that conflicts with slow decay prop-
erties in the presence of internal stray fields. The perturbation at κ ∼ 0 is
therefore singular, and only continuous versions of the implicit function the-
orem are at our disposal.

Finally,
Dx∂xz = ∂2

xz + Γ (z)〈∂xz, ∂xz〉
denotes the second covariant derivative. Surprisingly, the form of Walker so-
lutions remains almost unchanged:

z0(x) =
(

0, tanh
[
1
2
(
1 + sin2 ϕ

)1/2
x

])
.

Recall that the associate propagation speed c0 inherits the Walker angle ϕ, so
for each H we identify the Walker solution with the pair (z0, c0). Introducing
a moving frame x �→ x+ c γ t, (2.24) reads like

G
(
(z, c), κ) = −Dx∂xz + c(α+ i)∂xz + f(H, z) + b(κ, z) = 0.

It turns out that our choice of canonical stereographic coordinates provides
an almost triangulation for the linearized problem. Its spectral properties can
be summarized as follows:

Proposition 2.12. For sufficiently small field strength H the linearization at
the Walker solution (z0, c0), has the form

∂G

∂z

(
(z0, c0), 0

)
=

[
L1 M2

M1 L2

]
: H2(R; C) → L2(R; C),

where L1 : H2(R) → L2(R) has a bounded inverse while L2 and its L2-adjoint
have zero as a simple eigenvalue with eigenfunctions v′0 = Im z′0 and ψ0,
respectively, so that the integral

∫
v0 ψ0 dx > 0 exists. Moreover, ‖M1‖ can be

made arbitrarily small by choosing H small.

Since z′0(x) = d
dλ |λ=0z0(x + λ) can be seen as the infinitesimal generator of

translation symmetry, the proposition suggests that degeneracy only stems
from translation invariance. Thus we introduce the extended functional equa-
tion

G
(
(z, c), κ

)
=

[
G
(
(z, c), κ

)
, Im z(0)

]
= (0, 0). (2.25)

Its linearization with respect to (z, c) at the Walker solution (z0, c0) has the
form
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L0 =

⎡⎣L1 M2 −v′0
M1 L2 α v

′
0

0 δ0 0

⎤⎦ .
In view of Proposition 2.12, the invertibility of L0 : H2(R; C)×R → L2(R; C)×
R for sufficiently small H would follow from a Schur-type argument once we
have shown invertibility of the 2×2 matrix on the lower right. But this follows
from a standard Fredholm argument (cf. the proof of Thm. 2.15), taking into
account Proposition 2.12 and the positivity of v′0. Now the continuous version
of the implicit function theorem implies the solvability of (2.25) for sufficiently
small κ > 0.

2.4 Domain wall motion in thin films

A wave-type limit for Landau-Lifshitz-Gilbert

Gyromagnetic precession is geometrically incompatible with the asymptotic
constraint of in-plane magnetization that is imposed by stray-filed interaction,
in other words, the competition between energetic and dynamic forces becomes
singular in a thin-film limit. Thus domain wall motion in thin films should be
governed by a suitable effective limit for LLG

∂tm + γ m ∧ ∇E(m) + α m ∧ ∂tm = 0 (2.26)

as the relative thickness δ/d tends to zero. We recall that Gilbert damping α is
a small parameter as well, that is to say, precession proceeds much faster than
relaxation. Prior work on thin-film reductions for LLG, leading to enhanced
dissipation, cf. [EG01, KS05a] and Thm. 4.9, consider the regime when δ/d�
α. In order to preserve the oscillatory features of LLG dynamics we take into
account small Gilbert damping as well. As it turns out, the effective dynamics
depends on asymptotic regime as α and the relative thickness δ/d tend to
zero. Rescaling space by the tail width w = δ/(2Q) and energy by the quality
factor, we get, for 3-dimensional transitions m = (m,m3) : R → S2, a domain
wall energy of the form

Eε(m) = E0(m) +
Q
2

∫
|m′

3|2 dx+
1

2ε2
‖m3‖2

L2 , (2.27)

where Q = 4 κ2Q and ε2 = Q. The in-plane portion of the energy E0(m) is
given by

E0(m) =
Q
2

∫
|m′|2 +

1
2

∥∥m1

∥∥2

Ḣ1/2 +
1
2

∫
(1 −m2

2) dx. (2.28)

For in-plane magnetizations, it agrees with the standard Néel wall energy that
we have considered before. We investigate the regime when ε → 0 while Q
is uniformly bounded from above and below; in other words ε ∼ δ/d can be
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considered as a relative thickness. Let us consider the associated LLG equation
in the asymptotic regime when α(ε)/ε→ ν. Rescaling time by ε/γ, the system
(2.26) becomes

mt + εm ∧ ∇Eε(m) + αm ∧mt = 0. (2.29)

Theorem 2.13. Let mε : R × (0,∞) → S2 be a family of global solutions
of (2.29) with uniformly bounded initial energy Eε(mε(0)) ≤ c. Suppose that
α(ε)/ε → ν and the in-plane components mε ⇀ m converge locally in L2.
Then [

∂2
tm+ ν ∂tm+∇E0(m)

]
∧m = 0. (2.30)

Proof. We let m = (m, εv), i.e. we blow-up the vertical component. Then the
energy can be written as Eε(m) = E0(m)+Gε(v), where Gε(v) = 1

2

∫
ε2|v′|2+

|v|2 dx. For νε = α(ε)/ε, the Landau-Lifshitz-Gilbert system (2.29) can be
written as

∂t

(
m

v

)
+

⎡⎣ 0 −ε2 v m2

ε2 v 0 −m1

−m2 m1 0

⎤⎦(
∇E(m) + νε ∂tm

∇Gε(v) + ε2νε ∂tv

)
= 0.

The energy inequality implies the requisite a priori estimates

νε

∫ T

0

‖∂tmε‖2
L2 + E0(mε(T )) ≤ Eε(mε(0)),

ε2 νε

∫ T

0

‖∂tvε‖2
L2 +Gε(vε(T )) ≤ Eε(mε(0)),

and passing to the limit yields the following set of equations

∂tm− vm⊥ = 0,
∂tv +m⊥ ·

[
∇E(m) + ν ∂tm

]
= 0.

From that system the vertical blow-up function v can be eliminated. Indeed,
the first equation is equivalent to ∂tv = ∂2

tm·m⊥. Substitution into the second
equation yields the result.

Remark 2.14. Under further regularity assumptions, especially the validity of
the energy inequality, the asymptotic limit holds true in higher dimensional
situations as well.

Traveling waves and kinematic properties of Néel walls

The latter asymptotic limit suggests the following dynamic model for the evo-
lution of Néel walls in thin films under the influence of a constant applied field
h = H ê2 that points towards one of the end states determined by anisotropy:
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∂2
tm+ ν ∂tm+∇E0(m)

)
∧m = h ∧m, (2.31)

m : R× [0, T ) → S1 with m(±∞, t) = (0,±1).

Representing the transition vector in polar coordinates m = eiθ, the tran-
sition energy becomes

E(θ) =
Q
2

∫
|θ′|2 dx+

1
2
‖ cos θ‖2

H1/2 for θ(±∞) = ±π
2
,

where ‖f‖2
H1/2 =

∫ (
1+|ξ|

)
|f̂(ξ)|2 dξ denotes the fullH1/2 norm incorporating

anisotropy and stray-field interaction. Then the reduced dynamic equation
(2.31) reads

∂2
t θ + ν ∂tθ +∇E(θ) = h · ieiθ, (2.32)

θ : R× [0, T ) → R with θ(±∞, t) = (0,±π/2).

The latter damped wave dynamics invites for a kinematic interpretation
for the wall center as a point mass with constant force and dynamic friction.
The argument will be rather informal; asymptotically, however, the kinematic
findings will be justified rigorously in the context of the traveling wave result
below. Indeed, if H is assumed to be suitably small, the moving phase θ =
θ(x, t) is presumably close to the stationary phase profile θ0 shifted by q(t), the
center of the wall at time t. Hence we make an ansatz θ(x, t) = θ0(x, t)+θ1(x, t)
where, with a slight abuse of notation, θ0(x, t) = θ0(x + q(t)) and θ1(x, t) is
assumed to be a small perturbation. Then we approximate

∇E(θ) = ∇E(θ0) + L0θ1, where L0 = D∇E(θ0),

and cos(θ) = cos(θ0) − sin(θ0)θ1. Now if θ1 is a solution of the linearized
problem ∂2

t θ1 + ν∂tθ1 + L0θ1 +H sin(θq) θ1 = 0, then

θ′′0 |q̇|2 + θ′0 q̈ + ν θ′0 q̇ = H cos θ0.

Thus, the associate momentum p(t) = M q̇(t), where M = 1
2

∫
|θ′0|2 dx can

be interpreted as the wall mass, satisfies the equation ṗ + ν p = H with
terminal momentum p∗ = H/ν. We observe that M is consistent with the
wall mass we encountered in section 2.3 rising from the infinitesimal increase
of energy. Accordingly, the mobility, i.e. the rate of change of propagation
speed with respect to H , is given by β = 1/(Mν), consistent with our rigorous
perturbation result:

Theorem 2.15. For sufficiently small field strength H there is a traveling
wave for the reduced Landau-Lifshitz-Gilbert dynamics

c2 θ′′ + c ν θ′ +∇E(θ) = H cos θ

that connects antipodal states at infinity θ(±∞) = ±π/2. Moreover, the prop-
agation speed has an expansion c = βH + o(H) where the wall mobility
β = 1/(Mν) is related to the wall mass M = 1

2

∫
|θ′0|2 dx taken from a

stationary Néel wall θ0.
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Proposition 2.16. Suppose that θ0 is a critical point of E(θ) subjected to
center and boundary conditions θ(0) = 0 and θ(±∞) = ±π/2. Then the
Hessian

D2E(θ0)〈ϕ, ϕ〉 ≥
∫
|θ′|2|ϕ|2 dx+

∥∥ϕ sin θ
∥∥2

H1/2 ≥ 0

is non-negative for any admissible variation ϕ.

Proof. Let 〈f, g〉H1/2 = Re
∫ (

1 + |ξ|
)
f̂(ξ) ¯̂g(ξ) dξ be the H1/2 inner product.

Then

D2E(θ0)〈ϕ, ϕ〉 = Q
∫
|ϕ′|2 −

〈
cos θ0, ϕ2 cos θ0

〉
H1/2 +

∥∥ϕ sin θ
∥∥2

H1/2 .

In order to estimate the middle term, we deduce from the Euler-Lagrange
equation

Q
∫
θ′0

(
ϕ2 cot θ0

)′
dx =

〈
cos θ0, ϕ2 cos θ0

〉
H1/2 .

Recalling that −d(cot θ)/dθ = 1 + cot2 θ, then the claim follows immediately.

The Proposition states in particular that any critical point of E is in fact
the phase of a minimizing Néel wall.

Corollary 2.17. For centered Néel walls θ0, the linearization L0 = D∇E(θ0)
extends to a self-adjoint operator on L2(R) having zero as a simple eigenvalue
with eigenspace spanned by θ′0.

We need the following refinement of Proposition 2.8 that in particular rules
out a plateau of Néel wall profiles:

Lemma 2.18. The phase θ0 of a stationary Néel wall is strictly increasing.

Now the proof of Thm. 2.15 follows closely the one carried out in [BF*97].
We let G

(
(θ, c), H

)
= c2 θ′′+c ν θ′+∇E(θ)−H cos θ and consider the extended

functional equation

G
(
(θ, c), H

)
=

[
G
(
(θ, c), H

)
, θ(0)

]
= (0, 0).

Observe that for a stationary Néel wall θ0 and θ = θ0 + δθ, the mapping(
(θ, c), H

)
�→ G

(
(θ, c), H

)
is smooth. The linearization with respect to the

first two components (θ, c) at the stationary Néel wall (θ0, 0) reads like

L0 =
[
L0 ν θ

′
0

0 δ0

]
.

As a mapping L0 : H2(R) × R → L2(R) × R it has a bounded inverse, i.e.
for every (f, b) ∈ L2(R) × R there is (φ, c) ∈ H2(R) × R so that L0ψ +
ν θ′0 c = f and φ(0) = b. According to the Fredholm alternative and Corollary
2.17 the first equation is solvable provided c ν

∫
|θ′0|2 dx =

∫
f θ′0 dx that

fixes c and determines φ up to a multiple of θ′0. But in view of Lemma 2.18,
the second equation provides uniqueness. Now the implicit function theorem
implies the existence of a differentiable branch H �→ (θ(H), c(H)), so that
c′(0) ν

∫
|θ′0|2 dx = 2H , and the claim follows.
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3 Boundary vortices in a 2D model

In this section, we present results on a specific thin-film limit of the magnetic
energy for a special regime of rather small films. We will analyze a limit of
a two-dimensional functional derived by Kohn and Slastikov [KS05b]. They
considered soft magnetic films without an external field, which corresponds
to a functional that uses only the exchange and magnetostatic terms. They
studied the asymptotic behavior of the corresponding version of (1.1) in a thin
film Ωδ = Ω × (0, δ) with diamΩ = 1 for δ → 0 and d2

δ log 1
δ

→ ε
2π ∈ (0,∞).

The energy divided by 2πδ2

εd2 then Γ -converges to the limit functional

Eε
KS(m) =

1
2

∫
Ω

|∇m|2 +
1
2ε

∫
∂Ω

(m · ν)2 (3.1)

defined on maps m ∈ H1(Ω,S1) (so m3 = 0). Here ν is a unit normal to ∂Ω.
The Kohn-Slastikov theorem shows that for this special scaling, the nonlocal
contribution arising as the energy of the induced field reduces to a local term
charging the boundary. The reason for this simplification of the functional
lies in a separation of scales between the energy contribution of volume and
surface charges to the field energy.

In the following, we present results of Kurzke [Kur06, Kur04, Kur05] on
the limit of (3.1) as ε → 0, for a simply connected domain Ω. The results
share some features with those of Moser [Mos03, Mos04] that are presented
in Section 4. In particular, sequences of minimizers develop vortices on the
boundary.

Due the two-scale process of first letting δ → 0 to obtain (3.1), a two-
dimensional problem, and then letting ε→ 0, our approach can be seen as a
simplified model for the boundary vortices in Section 4. Since our functional
here is local, the results are more detailed, especially for the asymptotic dy-
namics.

The sequence of functionals Eε
KS is rather similar to the Ginzburg-Landau

functional for superconductivity of [BBH94]. With m0 = τ being a continu-
ous unit tangent field to ∂Ω, we are (after rescaling and renaming variables)
considering the variational problem for m : Ω → R2: Minimize

1
2

∫
Ω

|∇m|2 +
1
2ε

∫
∂Ω

(1− (m ·m0)2)dH1

subject to |m| = 1 in Ω as ε→ 0. This problem has an interior constraint and
a boundary penalty.

Bethuel, Brezis and Hélein [BBH94] studied the behavior as ε→ 0 of

1
2

∫
Ω

|∇m|2 +
1

4ε2

∫
Ω

(1− |m|2)2

subject to m = m0 on ∂Ω, so this problem has a boundary constraint and an
interior penalty.
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Common to both problems is that, as long as m0 has nonzero topological
degree, there is no map in H1(Ω; R2) that satisfies the constraint and makes
the penalty term zero. This is due to the fact that a continuous map w : ∂Ω →
S1 can be extended to a continuous map w : Ω → S1 if and only if deg(w) = 0.
Although H1 maps need not be continuous, the argument still carries through
to show that there is not even an extension of finite H1 energy. Both problems
are thus forced to develop singularities as ε → 0, and the minimum energy
will become unbounded.

We call the singularities of both problems vortices, since minimizers con-
verge as ε → 0 to maps that have the form z−ai

|z−ai| near the singularities ai.
In the Ginzburg-Landau case, these vortices are interior and each carries a
topological degree of 1; in the Kohn-Slastikov case, the singularities lie on the
boundary, and we only see one half of the vortex. Each “boundary vortex”
corresponds to a transition from m0 to −m0 or vice versa, and can be viewed
as carrying 1

2 topological charge.
It was shown in [Kur06, Kur04] that a single boundary vortex carries an

energy of π
2 log 1

ε (see Thm. 3.3), and that the interaction of these vortices
is governed by the next order term in the energy expansion, a renormalized
energy that can be calculated by the solution of a linear boundary problem
(see 3.6). In [Kur05] it was shown that this renormalized energy actually
governs the motion of the vortices in the natural time scaling, when time is
accelerated by a factor of log 1

ε (see Thm. 3.19).
In the following, we will explain these results in more detail, and in the

proper frameworks of two orders of Γ -convergence and Γ -convergence of gra-
dient flows.

A major advantage of the simplified energy (3.1) is that the problem can
be made scalar sincem ∈ S1 can be written asm = eiv. The energy functional
can then be rewritten as

Eε(v) =
1
2

∫
Ω

|∇v|2 +
1
2ε

∫
∂Ω

sin2(v − g), (3.2)

where g is a function with ieig = ν. Since Ω is simply connected, the degree
of ν as a map from ∂Ω (which is homeomorphic to S1) to S1 is 1, and so g
needs to have a jump of height −2π, but can otherwise be chosen as smooth
as ∂Ω. As ε→ 0, minimizers vε of Eε will now satisfy sin2(vε−g) ≈ 0 on most
of ∂Ω, but due to the jump of g, this will not be possible everywhere, and so
singularities will develop that correspond precisely to the fast transition from
m ≈ τ to m ≈ −τ .

We can obviously generalize this to g having a jump of height −2πD,
D ∈ Z, corresponding to deg(eig) = D, which will we do in the following.
Without loss of generality, we will assume D ≥ 0. The magnetic case of the
Kohn-Slastikov functional is given by D = 1.
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3.1 Highest order asymptotics

The following calculation gives an upper bound for the energy of a single
boundary vortex. We will use a localized energy Eε(v;B) that is defined by

Eε(v;B) =
1
2

∫
Ω∩B

|∇v|2 +
1
2ε

∫
∂Ω∩B

sin2(v − g). (3.3)

To simplify matters we will assume that Ω∩BR(0) = B+
R(0) is a half-ball and

that g = 0, corresponding to the constant tangent. We set ΓR = ∂Ω ∩BR(0)
for the flat boundary which we assume to be part of the x-axis in z = x+ iy-
plane.

Proposition 3.1. There is a sequence vε ∈ H1(BR(0)) with vε|ΓR → v∗ =
πχx<0 in all Lp(ΓR) for 1 ≤ p <∞ and

Eε(vε;BR) ≤ π

2
log

R

ε
+ C. (3.4)

Proof. Set vε = arg(z) in B+
R(0)\B+

ε (0). Choose any H1 continuation w with
0 ≤ w ≤ π of arg|∂B+

1 (0) to B+
1 (0) and set vε(z) = w(εz) inside B+

ε (0). This
sequence obviously satisfies the claims.

This shows that for R = O(1), a typical vortex has an energy of approximately
π
2 log 1

ε + O(1). A combination of 2D such vortices to counter the jump of g
leads to the following upper bound:

Proposition 3.2. Minimizers vε of Eε satisfy

Eε(vε) ≤ πD log
1
ε

+ C(Ω). (3.5)

A different interpretation of “every vortex carries an energy of π
2 log 1

ε” is
given by the following Γ -convergence theorem:

Theorem 3.3. Assume (vε) is a sequence of functions with Eε(vε) ≤M log 1
ε .

Then there exists a sequence of aε ∈ 2πZ such that the boundary traces wε =
(vε − aε)|∂Ω are bounded in an Orlicz space of type eL, and in particular,
‖wε‖Lp(∂Ω) ≤ C(M).

The sequence wε is then precompact in the strong topology of L1(∂Ω), and
every cluster point w satisfies w − g ∈ BV(∂Ω;πZ). In addition, we have the
lower bound inequality

lim inf
ε→0

1
2 log 1

ε

∫
Ω

|∇vε|2 ≥
1
2

∫
∂Ω

|D(w − g)|. (3.6)

Conversely, for every u with u − g ∈ BV(∂Ω;πZ) there exists a sequence
uε ∈ H1(Ω) such that the trace satisfies uε → u in L1(∂Ω) and with

lim
ε→0

1
2 log 1

ε

∫
Ω

|∇uε|2 =
1
2

∫
∂Ω

|D(u− g)|. (3.7)
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We will not prove 3.3 here. A proof based on a nonlocal representation using
the H1/2 seminorm and rearrangement inequalities is given in [Kur06], and
an extension to higher dimensions via slicing that utilizes the Orlicz bound
is shown in [Kur05]. Both proofs are based on ideas of Alberti-Bouchitté-
Seppecher [ABS94, ABS98] for similar functionals with a coercive instead of
periodic potential.

Remark 3.4. Theorem 3.3 shows that, since the BV type limit functional has
a lower bound of πD, the energy of minimizers of Eε is πD log 1

ε +o(log 1
ε ). For

other converging sequences, we obtain just the number of jump points with
multiplicities, but the limit functional is independent of the position of these
jump points.

3.2 Separation of vortices and renormalized energy

We will relate the dependence of the energy on the position of the singularities
to a renormalized energy given as follows:

Definition 3.5 (Possible limit functions). Let di ∈ Z with
∑

i di = 2D
and ai ∈ ∂Ω be distinct points. We define the canonical limit function v∗ =
v∗(ai, di) to be a harmonic function with sin2(v∗ − g) = 0 such that its trace
on ∂Ω jumps by −πdi at the point ai.

The renormalized energy is defined to be

W (ai, di) =
1
2

lim
ρ→0

(∫
Ω\

S
i Bρ(ai)

|∇v∗|2 − π
∑
i

d2
i log

1
ρ

)
. (3.8)

The renormalized energy can be expressed via the solution of a linear bound-
ary value problem for the Laplacian, see [Kur04].

With the renormalized energy, we can formulate the following second-order
Γ -convergence type theorem. For minimizers, we will have N = 2D as above.

Theorem 3.6. If (vε) is a sequence of functions with Eε(vε) ≤ M log 1
ε and

vε → v∗(ai, di) in L2(∂Ω), with di ∈ {±1} and ai distinct, i = 1, . . . , N , then

lim inf
ε→0

(
Eε(vε)−

πN

2

(
log

1
ε

+ 1− log 2
))

≥W (ai, di). (3.9)

If additionally (vε) are stationary points of Eε, then vε → v∗ in W 1,p(Ω) for
p < 2 and in H1

loc away from the ai, and (3.9) holds with equality.
Furthermore, for any di ∈ {±1} and ai distinct, i = 1, . . . , N , there exists

a sequence of functions wε such that wε → v∗(ai, di) and

lim
ε→0

(
Eε(vε)−

πN

2

(
log

1
ε

+ 1− log 2
))

= W (ai, di). (3.10)
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We will prove this theorem only partially, for the special case of minimizers,
where the bounds and the convergence follow from a comparison argument.
The general case can be shown by means of some extra PDE estimates and a
regularization technique of Yosida type, replacing the sequence by an improved
sequence that minimizes a modified functional, see [Kur05].

Proposition 3.7 (Euler-Lagrange equations). Stationary points vε of Eε
satisfy the equations

∆vε = 0 in Ω, (3.11)
∂vε
∂ν

= − 1
2ε

sin 2(vε − g) on ∂Ω. (3.12)

Lemma 3.8 (Rellich-Pohoz̆aev identity). For a Lipschitz domain G and
a harmonic function v ∈ H2(G), there holds∫

∂G

∂v

∂ν
(z · ∇v) =

1
2

∫
∂G

z · ν|∇v|2. (3.13)

Proof. This is easily seen using by testing ∆v = 0 with z · ∇v.

An easy consequence is

Lemma 3.9. For a starshaped Lipschitz domain G, there exists constants
such that every harmonic function v ∈ H2(G) satisfies

c

∫
∂G

∣∣∣∣∂v∂τ
∣∣∣∣2 ≤ ∫

∂G

∣∣∣∣∂v∂ν
∣∣∣∣2 ≤ C

∫
∂G

∣∣∣∣∂v∂τ
∣∣∣∣2 . (3.14)

Following ideas of [BBH94] and [Str94], we relate the penalty term 1
2ε

∫
∂Ω sin2(v−

g) to a radial derivative of the energy:

Definition 3.10. For z0 ∈ ∂Ω and v ∈ H2(Ω) we set

A(ρ) = Av,ε,z0(ρ) = ρ

∫
∂Bρ(z0)∩Ω

|∇v|2dH1 +
ρ

ε

∫
∂Bρ(z0)∩∂Ω

sin2(v − g)dH0.

(3.15)

For stationary points of the energy, A can be used to bound the penalty term:

Proposition 3.11. There exists ε0 > 0 and C > 0 such that for all ε < ε0,
ρ < ε3/4, any stationary point v of Eε, and any z0 ∈ ∂Ω there holds

1
2ε

∫
Γρ(z0)

sin2(v − g) ≤ A(ρ) + C
√
ε. (3.16)

Proof. For simplicity, we show this only for g = 0 and a flat boundary. We
use z0 = 0 and apply (3.13) on the domain ωρ = Ω ∩Bρ(0), which shows
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1
2

∫
∂ωρ

z · ν|∇v|2 = ρ

∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣2 +

∫
Γρ

∂v

∂ν
z · ∇v. (3.17)

Using the Euler-Lagrange equations, we obtain

ρ

2

∫
∂Bρ∩Ω

|∇v|2 = ρ

∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣2 − 1

2ε

∫
Γρ

sin 2v(z · ∇v). (3.18)

Integrating by parts, we see that

1
2ε

∫
Γρ

sin2(v) =
ρ

2ε

∫
∂Bρ∩∂Ω

sin2(v)dH0 − 1
2ε

∫
Γρ

sin 2v(z · ∇v) (3.19)

=
ρ

2ε

∫
∂Bρ∩∂Ω

sin2(v)dH0 +
ρ

2

∫
∂Bρ∩Ω

|∇v|2 − ρ
∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣2

(3.20)

≤ 1
2
A(ρ). (3.21)

We obtain the following criterion for vortex-free parts of the boundary:

Proposition 3.12. There exist constants γ > 0 and C > 0 such that for every
z0 ∈ ∂Ω, ε < ε0, ρ < ε3/4 and every stationary point v of Eε with A(ρ) < γ
there holds

sup
Γρ/2

sin2(v − g) < 1
4

(3.22)

and
1
2ε

∫
Γρ/2

sin2(v − g) ≤ C. (3.23)

Proof. By Lemma 3.9, we can estimate∫
Γρ

∣∣∣∣∂v∂τ
∣∣∣∣2 ≤ C

∫
∂ωρ

∣∣∣∣∂v∂ν
∣∣∣∣2 ≤ C

∫
∂Bρ∩Ω

|∇v|2 + C

∫
Γρ

∣∣∣∣∂v∂ν
∣∣∣∣2 . (3.24)

We thus can estimate, using Sobolev embedding in one dimension

[v]2C0,1/2(Γρ) ≤ C

∫
Γρ

∣∣∣∣∂v∂τ
∣∣∣∣2

≤ C

(
1
ρ
A(ρ) +

1
ε2

∫
Γρ

sin2(v − g)
)
≤ C

ε
(2γ + C

√
ε0).

Assuming now that sin2(u(z)− g(z)) ≥ 1
4 for some z ∈ Γρ/2 and choosing γ

and ε0 sufficiently small then leads to a contradiction.
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Disintegrating the energy radially, we see

Lemma 3.13. Let (vε) be a sequence of stationary points of Eε satisfying
the logarithmic energy bound Eε(vε) ≤ M log 1

ε . Then for any z0 ∈ ∂Ω, the
function A(ρ) = Avε,ε,z0(ρ) defined above satisfies

inf
ε6/7≤ρ≤ε5/6

A(ρ) ≤ 84
log 1

ε

Eε(vε;Ω ∩Bε5/6(z0)) ≤ 84M (3.25)

and
inf

5ε5/6≤ρ≤5ε4/5
A(ρ) ≤ 60M. (3.26)

Using Vitali’s covering lemma, we can use this and (3.16) to show a local
upper bound on the penalty term near an almost singularity and in a second
step a covering of the set of almost singularities. This leads to

Proposition 3.14. There is a constant N = N(g,Ω,M) such that for any
sequence of stationary points vε satisfying the energy bound Eε(vε) ≤M log 1

ε ,
the approximate vortex set Sε = {z ∈ ∂Ω : sin2(vε(z) − g(z)) ≥ 1

4} can be
covered by at most N balls of radius ε, such that the ε/5 balls around the same
centers are disjoint.

For comparison arguments we shall need the following lower bound for the
energy on half-annuli whenever v− g is in different wells of sin2 on both parts
of the boundary:

Proposition 3.15. Let 0 < ρ < R ≤ R0, R0 sufficiently small, z0 ∈ ∂Ω,
w.l.o.g. z0 = 0. We examine the “half-annulus” DR,ρ = (BR \Bρ)∩Ω, which
can be described by choosing functions ϑ1(r), ϑ2(r) as {reiϑ : ϑ1(r) < ϑ <
ϑ2(r), ρ < r < R} with |ϑ2(r)−ϑ1(r)−π| ≤ Cr. Assume also that for j = 1, 2
there holds (v − g)(reiϑj(r)) ∈ (kjπ − δ, kjπ + δ) for some kj ∈ Z and some
small δ. Then

Eε(v;DR,ρ) ≥
π

2
(k2 − k1)2 log

R

ρ
− C(k2 − k1)2(R+

ε

ρ
). (3.27)

Proof. For simplicity, we will assume g = 0, ϑ1 = 0 and ϑ2 = π, corresponding
to a flat boundary. We will set vj(r) = v(reiϑj ) for the function on the two
boundary components. We also assume w.l.o.g. k1 = k and k2 = 0. Using
polar coordinates, disregarding the radial derivative and by use of Hölder’s
inequality, we calculate

∫
DR,ρ

|∇v|2 ≥
∫ R

ρ

1
r

∫ π

0

∣∣∣∣∂u∂ϑ
∣∣∣∣2 dϑdr
≥ 1
π

∫ R

ρ

(∫ π

0

∣∣∣∣ ∂v∂ϑ
∣∣∣∣)2

≥ 1
π

∫ R

ρ

(v1 − v2)2
r

dr.
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We rewrite v1−v2 = kπ−(v1−kπ)−v2. Using the lower bound sin2(t−kiπ) ≥
σt2 valid for |t| < δ with some σ = σ(δ), we can estimate

Eε(v;DR,ρ) ≥
1
2

∫ R

ρ

1
πr

(
kπ − ((v1 − kπ)− v2)

)2 +
σ

ε

(
v2
1 + v2

2

)2
dr.

On the last term, we use the inequality v2
1 +v2

2 ≥ 1
2 (v1−kπ+v2)2. Then we use

the inequality α(A−B)2 +βB2 ≥ 1
1
α + 1

β

A2 on A = kπ and B = (v1−kπ−v2).
The claim then follows by integration.

We now recall that vε are minimizers of Eε satisfying the upper bound

Eε(vε) ≤ πD log
1
ε

+ C0 (3.28)

for some constant C0, where D is the degree of eig. We will use an appropriate
lower bound for the energy away from the vortex set to show convergence by
a comparison argument. The same arguments also hold for stationary points
satisfying (3.28).

By Proposition 3.14, there exist aεj ∈ ∂Ω, 1 ≤ j ≤ Nε ≤ N such that
the approximate vortex set Sε satisfies Sε ⊂

⋃
1≤j≤Nε

Bε(aεj). Passing to a
subsequence of ε→ 0, we can assume that Nε = N0 is constant and aεj → a0

j

as ε → 0. Note that the a0
j need not be distinct. We define for 0 < σ <

1
2 mina0

j �=a0
j′

dist(a0
j , a

0
j′) the sets Ωε

σ = Ω\
⋃

j Bσ(aεj) and Ω0
σ = Ω\

⋃
j Bσ(a0

j).
With this setup (and this subsequence), the lower bound of Proposition 3.15
can be combined with the arguments of Struwe [Str94] to show

Proposition 3.16. There is a constant C = C(g,Ω,C0) such that Eε(vε;Ωε
σ) ≤

πD log 1
σ + C.

We obtain convergence to the canonical harmonic function:

Proposition 3.17. Let (vε) be a sequence of critical points satisfying the en-
ergy bound

Eε(vε) ≤ πD log
1
ε

+ C0.

Then there is a subsequence and N = 2D points a1, . . . , aN ∈ ∂Ω such that∫
Ω′
|∇vε|2 ≤M(Ω′) <∞ (3.29)

for all open Ω′ with Ω′ ⊂ Ω\{a1, . . . , aN}. Additionally, there hold the bounds∫
Ω

|∇vε|p ≤ C(p) (3.30)

uniformly in ε for all 1 ≤ p < 2. In particular, after adding a suitable zε ∈
2πZ, a subsequence of (vε) converges weakly in H1

loc and W 1,p, p < 2, to a
harmonic function v∗. The limit has the properties that (v∗ − g) is piecewise
constant on ∂Ω \ {a1, . . . , aN}, with values in πZ, and jumps by −π at the
points aj.
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Proof. We use the setup described above, in particular, we use the points a0
j

as defined there. Note that for ε < ε0(σ), there holds Ω0
σ ⊂ Ωε

σ/2 and so by
Proposition 3.16,∫

Ω0
σ

|∇vε|2 ≤ 2Eε(vε;Ωε
σ/2) ≤ 2πD log

2
σ

+ C, (3.31)

which proves (3.29). To obtain the Lp bounds (3.30), fix a σ > 0 and 1 ≤ p < 2.
Then by Hölder’s inequality and Proposition 3.16,∫

Ω

|∇vε|p ≤
∫
Ωε

σ

|∇vε|p +
∞∑
�=1

∫
Ωε

2−�σ
\Ωε

2−�+1σ

|∇vε|p

≤ C +
∞∑
�=1

|Ωε
2−�σ \Ωε

2−�+1σ|
1−p/2

(∫
Ωε

2−�σ

|∇vε|2
)p/2

≤ C + c

∞∑
�=1

2−(1−p/2)�

(
2πD log

1
2�σ

+ C

)p/2

≤ C.

From this Lp gradient bound, we obtain the weak compactness up to transla-
tion. The weak limit v∗ is harmonic since

∫
Ω ∇v∗·∇ϕ = limε→0

∫
Ω ∇vε·∇ϕ = 0

for all ϕ ∈ C∞
c (Ω). That the boundary values satisfy v∗−g ∈ πZ with possible

jumps at the ai follows from
∫
∂Ω

sin2(vε − g) → 0 and (vε − g) being close to
πZ outside the approximate vortex set Sε.

That the vortices are indeed single and N = 2D can then be shown by
some refined arguments which prove that higher-order vortices must have far
higher energy.

The energy of these limit functions v∗ away from ai is the renormalized energy
of (3.8), and the energy of vε onΩρ converges to that of v∗. To prove equality in
(3.9), we thus need to calculate the energy of vε close to ai. This is done by an
ε-scale blowup, which leads to a half-space problem. The solutions of the half-
space problem are explicitly known and essentially unique (Toland [Tol97], see
also Cabré and Sola-Morales [CS04] for a more general uniqueness theorem).
Comparing vε with the rescaled half-space solution and some estimates (see
[Kur04]) then show the rest of Thm. 3.6. One can even show

Proposition 3.18. For a sequence vε of stationary points of Eε, the configu-
ration of vortex points (ai) is stationary for the renormalized energy W (ai, di).
For minimizers vε, it is minimizing.

3.3 Motion of vortices

Theorem 3.6 and the previous proposition show that the renormalized energy
W governs the interaction of the vortices on an energetic level. It can be shown
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that also the motion of the vortices by the gradient flow (which corresponds
to the LLG flow since we restrict possible magnetizations to a plane) is given
by the renormalized energy:

Theorem 3.19. Let 0 < T ≤ ∞ and let (vε) be a sequence of solutions of

λε∂tvε = ∆vε in Ω × (0, T ) (3.32)
∂vε
∂ν

= − 1
2ε

sin 2(vε − g) on ∂Ω × (0,∞). (3.33)

For the initial conditions we assume that vε(0) → v∗(ai, di) for di ∈ {±1} and
distinct ai. Furthermore, vε is supposed to be initially well-prepared, meaning
that

Eε(vε(0))− πN

2
log

1
ε
− πN

2
(1− log 2) ≤W (ai, di) + o(1) (3.34)

as ε→ 0.
Depending on the asymptotic behavior of λε, we then have:

(i) If λε = 1
log 1

ε

, then there exists a time T ∗ > 0 such that for all t ∈ [0, T ∗),
there holds vε(t) → v∗(ai(t), di(0))). Furthermore, the ai(t) satisfy the
motion law

dai
dt

= − 2
π

∂

∂ai
W (ai(t), di(0)) (3.35)

in the tangent space at ai to ∂Ω. If T ∗ < T is the maximal time with
these properties, then as t → T ∗, there exist i �= j such that ai(t) and
aj(t) converge to the same point.
The energy of vε(t) satisfies the expansion

Eε(vε(t)) =
πN

2
log

1
ε

+
πN

2
(1− log 2) +W (a(t),d) + o(1) (3.36)

as ε→ 0.
(ii) If λε log 1

ε → 0 as ε→ 0, then for almost every t ∈ [0, T ) we have vε(t) →
v∗(ai(0), di(0)), so there is no motion.

(iii) If λε log 1
ε → ∞ as ε → 0, then for almost every t ∈ [0,∞) we have

vε(t) → v∗(bi, di) with ∇W (bi, di) = 0, so the system instantaneously
jumps into a critical point.

Again, there are strong similarities between this result for the motion of
boundary vortices and those in the theory of gradient flow motion of inte-
rior Ginzburg-Landau type vortices as studied by Jerrard and Soner [JS98]
and Lin [Lin96a, Lin96b].

The proof in [Kur05] is based on the technique of Γ -convergence of gradient
flows of Sandier and Serfaty [SS04a], applied to the functionals

Fε(u) = Eε(u)− πN

2
(log

1
ε

+ 1− log 2) (3.37)
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and the limit functional
F(ai) = W (ai, di). (3.38)

We need some additional definitions:

Definition 3.20. We say that functionals Fε Γ -converge to F along the tra-
jectory uε(t) with respect to the convergence “ S

⇀” if there exist u(t) and a
subsequence such that for all t, uε(t)

S
⇀u(t) and

lim inf
ε→0

Fε(uε(t)) ≥ F(u(t)). (3.39)

The energy excess Dε(t) and the limiting energy excess D(t) for a sequence
uε(t) are defined via

Dε(t) = Eε(uε(t))− E(u(t)), D(t) = lim sup
ε→0

Dε(t). (3.40)

If uε(t) are solutions to the gradient flow for Eε that satisfy D(0) = 0, they
are said to be initially well-prepared.

The proof of Thm. 3.19 relies on the following version of Sandier and Serfaty’s
theorem on the Γ -convergence of gradient flows:

Theorem 3.21 (Sandier-Serfaty [SS04a]). Assume Fε ∈ C1(M) and F ∈
C1(N ). Let uε be a sequence of solutions of the gradient flow for Fε on [0, T )
with respect to the metric structure Xε that satisfy

Fε(uε(0))−Fε(uε(t)) =
∫ t

0

‖∂tuε(s)‖2
Xε
ds. (3.41)

Assume uε(0) S
⇀u0, that Fε Γ -converges to F along the trajectory uε(t), and

that (uε) is initially well-prepared. Furthermore, assume that (LB) and (CON)
hold:

(LB) For a subsequence such that uε(t)
S
⇀u(t), we have u ∈ H1((0, T );N ) and

there exists f ∈ L1(0, T ) such that for every s ∈ [0, T ) there holds

lim inf
ε→0

∫ s

0

‖∂tuε(t)‖2
Xε
dt ≥

∫ s

0

(
‖∂tu‖2Tu(t)N − f(t)D(t)

)
dt. (3.42)

(CON) If uε(t)
S
⇀u(t), there exists a locally bounded function g on [0, T ) such

that for any t0 ∈ [0, T ) and any v defined in a neighborhood of t0 that
satisfies v(t0) = u(t0) and ∂tv(t0) = −∇Tu(t0)N E(u(t0)), there exists a
sequence vε(t) such that vε(t0) = uε(t0) and the following inequalities
hold:

lim sup
ε→0

‖∂tvε(t0)‖2
Xε

≤ ‖∂tv(t0)‖2
Tv(t0)N + g(t0)D(t0) (3.43)

lim inf
ε→0

(
− d

dt

∣∣∣
t=0

Fε(vε(t))
)
≥ − d

dt

∣∣∣
t=0

F(v(t)) − g(t0)D(t0). (3.44)
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Then uε(t)
S
⇀u(t) which is the solution of the gradient flow for E with respect

to the structure of TN .

This is applicable to our case since (3.32) with the nonlinear boundary con-
dition (3.33) is the gradient flow of Fε with respect to the norm

√
λε ‖·‖L2 ,

which we will use as the spaces Xε in the terminology of the theorem above.
The functionals Fε are defined on M = H1(Ω). As the sense of convergence,
we use vε

S
⇀(ai) if vε → v∗(ai, di) in L2(∂Ω). The necessary Γ -convergence for

S
⇀ follows from (3.9).

The limit functional is defined on N = {(ai)i=1,...,N : ai �= aj for i �=
j}, which is an open subset of the (flat) Riemannian manifold (∂Ω)N . The
approach of [SS04a] for Euclidean limit spaces carries over to this situation
without changes. As the limiting norm on the tangent spaces TaN which are
identified with RN we use the constant Riemannian metric

√
π
2 ‖·‖RN .

Theorem 3.21 allows us to break up the proof of Theorem 3.19 into two
separate parts, a lower bound and a construction. The proof of the lower
bound relies on an anisotropic version of (3.6) in higher dimensions. This
leads to a product estimate like the one of Sandier-Serfaty [SS04b], which can
then be used to separate space- and time-derivatives to show (3.42).

The construction used to show the upper bound inequalities is done by
taking a well-prepared sequence and “pushing” the vortices along the bound-
ary with the flow of a vector field that is conformal close to the vortex. The
conformality ensures that the highest order of the energy does not change
by the flow. With some more detailed local estimates related to (3.9), the
estimates (3.43) and (3.44) then follow, as is detailed in [Kur05].

4 Boundary vortices in a refined model

In this section we discuss a thin-film regime that is related to the theory of
the the previous section; indeed the theory of Section 3 can be regarded as a
simplified version of what is to follow (but, as mentioned earlier, it can also
be seen as an asymptotic analysis of a model arising in the thin-film theory of
Kohn and Slastikov [KS05b]). We now examine the development of boundary
vortices in thin films for a model that is closer to the actual micromagnetic
model than the one discussed previously, although we still use some simpli-
fications. In particular we consider now domains that are three-dimensional
(but thin in one dimension) and magnetization vector fields with values in
S2 (not S1). We continue to neglect the anisotropy term in the micromag-
netic energy functional and the external magnetic field, but we consider the
exchange energy and the magnetostatic energy in the form that they have in
the functional E.

Naturally, the problem becomes more difficult when we drop some of the
simplifications. It is not surprising, therefore, that we need more assumptions
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to obtain less information about the asymptotic behavior of the magnetiza-
tion. But the results we find for this model are consistent with those for the
more simplified model, which shows that the latter does indeed describe the
significant features of the thin-film limit in the asymptotic regime we study.

We consider the family of domains

Ωδ = Ω × (0, δ)

for δ > 0, where Ω ⊂ R2 is open and bounded. We also assume that Ω is
simply connected and that its boundary is smooth. The outer normal vector
on ∂Ω is denoted by ν. The energy functional (without the anisotropy term
and the external field) is then

E(m) =
d2

2

∫
Ωδ

|∇m|2 dx +
1
2

∫
R3
|∇u|2 dx,

where, as usual, the function u ∈ H1(R3) is determined by the condition

∆u = div(χΩδ
m) in R3.

We assume for the moment that the shape of Ω is fixed, whereas its size
can still be varied by scaling. The problem then involves three length scales:
the exchange length d, the thickness δ, and the length scale of the cross-
section, measured, e.g., by L = diamΩ. The asymptotic regime we consider
is characterized by the condition that d2 is of the same magnitude as Lδ. For
simplicity, we assume d2 = Lδ. Rescaling Ω allows us to normalize L = 1,
which gives rise to the relation d2 = δ between the exchange length and the
thickness (and which means that Ω is fixed henceforth).

Since we study the asymptotic behavior of variational problems associated
to the micromagnetic energy as δ ↘ 0, we now denote a generic magnetization
vector field in Ωδ by mδ = (mδ,mδ

3) ∈ H1(Ωδ, S
2). The corresponding poten-

tial for the induced magnetic field is then the unique solution uδ ∈ H1(R3)
of

∆uδ = div(χΩδ
mδ) in R3. (4.1)

We also consider the maps

mδ =
1
δ

∫ δ

0

mδ(x, s) ds, x ∈ Ω,

so that we can pass to a limit in certain spaces of functions on Ω (usually
Sobolev spaces). The limit will then be a map m = (m,m3) : Ω → S2. If
we consider the functions δ−1uδ and apply equation (4.1) to a test function
φ ∈ C∞

0 (R3), we can formally pass to the limit. We obtain (formally) a limit
function u : R3 → R with∫

R3
∇u · ∇φdx =

∫
Ω

m(x) · ∇φ(x, 0) dx (4.2)
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for all φ ∈ C∞
0 (R3). For the problems we consider here, we have typically

m3 = 0 in Ω and m ·ν = 0 on ∂Ω. If we have furthermore m ∈W 1,4/3(Ω, S1),
then equation (4.2) does in fact determine a function u ∈ H1(R3) uniquely.
We will see that this function describes in part the limit of the magnetostatic
energy. Also important is its trace on Ω × {0}. We denote this trace by u0.

It is convenient to divide the micromagnetic energy by δ2. That is, we
consider the family of functionals

Eδ(mδ) =
1
2δ

∫
Ωδ

|∇mδ|2 dx +
1

2δ2

∫
R3
|∇uδ|2 dx.

Critical points of Eδ satisfy the Euler-Lagrange equation

δ(∆mδ + |∇mδ|2mδ)− (1−mδ ⊗mδ)∇uδ = 0 in Ωδ. (4.3)

It is natural to impose homogeneous Neumann boundary conditions, i.e.,

∂mδ

∂x3
= 0 in Ω × {0, δ}, (4.4)

∂mδ

∂ν
= 0 on ∂Ω × (0, δ). (4.5)

Stable critical points also satisfy

d2

ds2

∣∣∣∣
s=0

Eδ

(
m+ sψ

|m+ sψ|

)
≥ 0

for all ψ ∈ C∞(Ωδ,R
3). Standard calculations transform this inequality into

0 ≤
∫
Ωδ

(|∇ṁδ|2− |ṁδ|2(|∇mδ|2 + δ−1mδ · ∇uδ) dx+
1
δ

∫
R3
|∇uδ|2 dx, (4.6)

where ṁδ = (1−mδ ⊗mδ)ψ.
For the Landau-Lifshitz equation, there exist two interesting time scales,

similarly as in the previous section. The first one gives rise to the equation

∂mδ

∂t
= −γ̂mδ ∧ (∆mδ − δ−1∇uδ)− α̂mδ ∧ (mδ ∧ (∆mδ − δ−1∇uδ)) (4.7)

in Ωδ × (0, T ), which is equivalent to

Rmδ

∂mδ

∂t
= ∆mδ + |∇mδ|2mδ − 1

δ
(1−mδ ⊗mδ)∇uδ. (4.8)

Here we use the abbreviations

RmδX = α̃X + γ̃mδ ∧X and α̃ =
α̂

α̂2 + γ̂2
, γ̃ =

γ̂

α̂2 + γ̂2
.
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We normally use the form (4.8) of the equation. We impose homogeneous
Neumann boundary data again, that is,

∂mδ

∂x3
= 0 in Ω × {0, δ} × [0, T ), (4.9)

∂mδ

∂ν
= 0 on ∂Ω × (0, δ)× [0, T ). (4.10)

This is the time scale where we expect the development of stationary boundary
vortices in the limit δ ↘ 0, in analogy to the results of the previous section.
To study the dynamical behavior of the vortices, on the other hand, we need
to rescale the time axis by the factor log log 1

δ (accelerating the time by this
factor). The equation then becomes

Rmδ
∂mδ

∂t

log log 1
δ

= ∆mδ + |∇mδ|2mδ− 1
δ
(1−mδ⊗mδ)∇uδ in Ωδ×(0, T ). (4.11)

The boundary conditions remain of the form (4.9), (4.10).
We want to reproduce the asymptotic theory of the previous section for

the model given by the energy Eδ and the equations (4.3), (4.8), and (4.11).
There are several additional difficulties here, however, that we have to over-
come. First, the target space for our maps is now S2, not S1, which means
that mδ can no longer be represented by a single phase function. The curva-
ture of S2 also has the consequence that we have to consider equations with
nonlinear terms involving first derivatives of mδ. Together with the fact that
our domains Ωδ are now three-dimensional, this means that we must expect
solutions of the equations with singularities. To simplify the presentation of
the results, we always assume here that we have smooth solutions; but without
this assumption, regularity is an issue that requires extra care.

The most important new aspect of this model, however, is the nonlocal
operator appearing in the magnetostatic energy. This is at first a major im-
pediment to using the methods from the theory of Ginzburg-Landau vortices,
for these methods require pointwise comparisons between integrands of the
lower order energy terms. To overcome this difficulty, we compare Eδ with
another functional that has only local terms, namely

Fδ(mδ) =
1
2δ

∫
Ωδ

(
|∇mδ|2 +

(mδ
3)2

δ

)
dx +

log 1
δ

2δ

∫
∂Ω×(0,δ)

(mδ · ν)2 dH2.

Here Hk denotes the k-dimensional Hausdorff measure. The functional Fδ can
be thought of as the three-dimensional equivalent of

Gδ(mδ) =
1
2

∫
Ω

(
|∇mδ|2 +

(mδ
3)

2

δ

)
dx+

1
2

log
1
δ

∫
∂Ω

(m · ν)2 dH1,

where for the latter functional, we consider mδ ∈ H1(Ω, S2).
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The connection to the theory discussed earlier is obvious. The connection
to the theory of Ginzburg-Landau vortices becomes even more apparent when
one observes that (mδ

3)
2 = 1− |mδ|2 (since mδ has values in the unit sphere),

recovering thus an integrand in the first integral of Gδ that is similar to
the one used in most works on Ginzburg-Landau vortices. Less obvious is the
connection between Eδ and Fδ. Before we give any rigorous arguments, we look
at this question heuristically. The magnetostatic energy seeks to minimize the
divergence of χΩδ

mδ, which consists of two parts: the divergence of mδ in the
interior of Ωδ on the one hand, and the distribution given by the perpendicular
part of mδ on ∂Ωδ on the other hand. The latter further splits into two parts
according to the natural decomposition of the boundary into Ω × {0, δ} and
∂Ω × (0, δ). The part coming from divmδ now gives a contribution to the
magnetostatic energy which is of the same order as the exchange energy. Both
of the other parts correspond to one of the terms in Fδ.

The next few lemmas give a more precise description of the relation be-
tween these functionals.

Lemma 4.1. For δ ∈ (0, e−e] and mδ ∈ H1(Ωδ,R
3), the inequality

‖∇uδ‖2
L2(R3) ≤ C

√
δ‖∇mδ‖2

L4/3(Ωδ) + C‖mδ
3( · , 0)‖2

L4/3(Ω)

+ C

∫
∂Ω

‖χ(0,δ)m
δ(x, · ) · ν(x)‖2

H−1/2(R)dH
1(x)

holds for a constant C that depends only on Ω. Here uδ ∈ H1(R3) is the
function determined by (4.1).

Proof. We have∫
R3
|∇uδ|2 dx =

∫
Ωδ

∇uδ ·mδ dx

=

(∫
Ω×{δ}

−
∫
Ω×{0}

)
uδmδ

3 dx+
∫
∂Ω

∫ δ

0

uδmδ · ν dx3 dH1

−
∫ δ

0

∫
Ω

uδ div mδ dx dx3.

Now we use the continuous trace operators H1(R3) → L4(Ω) for every slice
Ω×{x3} and the continuous trace operator H1(Ω) → L2(∂Ω,H1/2(−1, 1)) to
estimate the traces of u in these spaces. Furthermore, an integration of ∂mδ

3
∂x3

along vertical lines gives

‖mδ
3( · , 0)−mδ

3( · , δ)‖2
L4/3(Ω) ≤

√
δ‖∇m‖2

L4/3(Ωδ),

and the desired estimate then follows from the Hölder inequality.
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Lemma 4.2. For δ ∈ (0, e−e], letmδ ∈ H1(Ω, S1) and mδ(x, x3) = (mδ(x), 0).
Then

‖∇uδ‖L2(R3) ≤ Cδ2
(
‖∇mδ‖2

L4/3(Ω) + log
1
δ
‖mδ · ν‖2

L2(∂Ω)

)
for a constant C that depends only on Ω.

Proof. A direct computation shows that the characteristic function χ(0,δ) of
the interval (0, δ) satisfies

‖χ(0,δ)‖H−1/2(R) ≤ cδ2
(

1 + log
1
δ

)
for a certain constant c which is independent of δ. The claim now follows
directly from Lemma 4.1.

Proposition 4.3. There exists a constant C, dependent only on Ω, such that

inf
H1(Ωδ,S2)

Eδ ≤ π log log
1
δ

+ C

for δ ∈ (0, e−e].

Proof. We construct a map mδ ∈ H1(Ω, S1) with two standard vortices cen-
tered at two different points on the boundary, similarly as in the proof of
Proposition 3.1 (with ε = 1/ log 1

δ ). For mδ(x, x3) = (mδ(x), 0), the estimates
of Proposition 3.1, together with Lemma 4.2, give a bound for Eδ(mδ) of the
desired form.

In fact the quantity π log log 1
δ gives also a lower bound for the infimum

of Eδ in H1(Ωδ, S
2) up to a constant. That is, it determines the asymptotic

behavior of this infimum. The proof of the lower estimate is technically more
involved; we therefore give only a sketch of the proof here.

Lemma 4.4. For δ ∈ (0, e−e] and mδ ∈ H1(Ωδ, S
2), the inequality∫

Ωδ

(mδ
3)

2 dx ≤ C

[
δ

∫
Ωδ

|∇mδ
3|2 dx +

∫
R3
|∇uδ|2 dx + δ2

]
(4.12)

holds for a constant C that depends only on Ω.

Sketch of the proof. We test (4.1) with a function φ ∈ C0,1(R3) which is de-
fined on Ω × R by

φ(x, x3) =

⎧⎨⎩
0, if x3 ≤ 0 or x > 2δ,∫ x3

0
m3(x, s) ds if 0 < x3 ≤ δ,

(2− x3/δ)
∫ δ

0
m3(x, s) ds if δ < x3 ≤ 2δ,

and extended suitably to R3. We recover the left-hand side of (4.12) as one of
the terms in the resulting equation (after an integration by parts). All other
terms can then be estimated with standard methods.
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For s ≥ 0 we now define the sets

Vs = {x ∈ Ω : dist(x, ∂Ω) < s} , V δ
s = Vs × (0, δ),

Γs = {x ∈ Ω : dist(x, ∂Ω) = s} , Γ δ
s = Γs × (0, δ).

We fix s0 > 0 such that Γs is a smooth curve for every s ∈ (0, 2s0]. Moreover,
we define

κ(δ) =
1

log 1
δ

.

Lemma 4.5. There exists a constant C, depending only on Ω, such that for
every δ ∈ (0, e−e] and every s ∈ [0, s0] with s ≤ κ(δ), the inequality

log
1
δ

∫
Γ δ

s

(mδ · ν)2 dH2 ≤ C

∫
V δ

κ(δ)

(
|∇mδ|2 +

(mδ
3)

2

δ

)
dx

+
C

δ

∫
R3
|∇uδ|2 dx + Cδ (4.13)

is satisfied for any mδ ∈ H1(Ωδ, S
2).

Sketch of the proof. The idea is to test (4.1) with a suitably constructed func-
tion φ satisfying φ = mδ · ν on Γ δ

0 and supported on a κ(δ)-neighborhood of
Γ δ

0 . An integration by parts on one side of the resulting equation then yields,
among other terms, the left-hand side of (4.13) for s = 0. A careful estimate
of the other terms gives the required inequality for Γ δ

0 . To obtain the corre-
sponding inequality for other values of s, integrate the derivative of (mδ · ν)2
along rays in the direction of −ν.

Proposition 4.6. For any K ∈ R there exists a constant C, depending only
on Ω and K, such that the following holds. Suppose δ ∈ (0, e−e] and s ∈ [0, s0].
If mδ ∈ H1(Ωδ, S

2) satisfies

Eδ(mδ) ≤ π log log
1
δ

+K, (4.14)

then

1
δ

∫
Ωδ

(
|∇mδ

3|2 +
∣∣∣∣∂mδ

∂x3

∣∣∣∣2 +
(mδ

3)
2

δ

)
dx +

1
δ

∫
V δ

κ(δ)

|∇mδ|2 dx

+
1
δ2

∫
R3
|∇uδ|2 dx +

log 1
δ

δ

∫
Γ δ

s

(mδ · ν)2 dH2 ≤ C.(4.15)

Sketch of the proof. With the arguments from Section 3, combined with sim-
ilar arguments from the theory of Ginzburg-Landau vortices, applied to slices
of the form Ω\Vs × {t}, we obtain the estimate
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1
2δ

∫
Ωδ\V δ

s

(∣∣∣∣∂mδ

∂x1

∣∣∣∣2 +
∣∣∣∣∂mδ

∂x2

∣∣∣∣2 +
(mδ

3)
2

δ

)
dx

+
log 1

δ

δ

∫
Γ δ

s

(mδ · ν)2 dH2 ≥ π log log
1
δ
− C1 (4.16)

for a certain constant C1 that depends only onΩ. Combining this with Lemma
4.4, Lemma 4.5, and (4.14), we obtain the desired inequality.

Proposition 4.7. There exists a constant C, dependent only on Ω, such that

inf
H1(Ωδ,S2)

Eδ ≥ π log log
1
δ
− C

for δ ∈ (0, e−e].

Proof. Choose a minimizer mδ of Eδ in H1(Ωδ, S
2), then (4.14) holds for a

certain constant K by Proposition 4.3. Thus mδ satisfies (4.15) and (4.16),
and the claim follows.

Proposition 4.3 and Proposition 4.6 together describe the asymptotic be-
havior of the minimal energy as δ ↘ 0 up to an additive constant, and it is
the behavior we expect also for the functionals Fδ or Gδ. Moreover, if mδ is
independent of x3, we can estimate each term in Eδ by a combination of terms
in Gδ, and vice versa, according to Lemmas 4.1–4.5. This already relates the
asymptotic regime studied here to the model used in Section 3. We discover
more similarities, however, when we study the asymptotic behavior of critical
points of Eδ or solutions of the Landau-Lifshitz equations (4.8) and (4.11)

If we have a family of solutions mδ of one of the variational problems
associated to Eδ, it is natural to apply variants of the usual arguments from
the theory of Ginzburg-Landau vortices to the slices Ω × {s} with 0 < s < δ.
More precisely, we use arguments like those discussed in the previous section
for the behavior near ∂Ω, and arguments from the theory of Bethuel, Brezis,
and Hélein [BBH93, BBH94] for the behavior in the interior of Ω. This is
the key element in the proofs of each of the results that follow. We omit
a detailed presentation of these proofs (since similar arguments have been
discussed earlier), but we give a brief discussion of some additional arguments
that are needed in each case. For the complete proofs, the reader is referred
to [Mos03, Mos04, Mos05].

Theorem 4.8. For δ ∈ (0, e−e], suppose mδ ∈ C∞(Ω, S2) are stable critical
points of Eδ, i.e., solutions of (4.3) satisfying the boundary conditions (4.4)
and (4.5), such that (4.6) holds for every ψ ∈ C∞(Ωδ,R

3). Suppose further
that there exists a number K such that

Eδ(mδ) ≤ π log log
1
δ

+K
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for every δ. Then there exist a sequence δk ↘ 0, two distinct points x1, x2 ∈
∂Ω, and a map m = (m, 0) ∈ W 1,1(Ω, S1 × {0}) with m · ν = 0 on ∂Ω, such
that the following holds.

(i) For any p < 2, the sequence {mδk
} converges weakly in W 1,p(Ω,R3) to m.

The convergence also holds weakly in H1(Ω′,R3) for every Ω′ ⊂ Ω with
Ω′ ⊂ Ω\{x1, x2}.

(ii) The limit map m satisfies

∆m+ |∇m|2m−∇u0 + (m · ∇u0) = 0 in Ω, (4.17)

where u0 is the trace on Ω × {0} of the function determined by (4.2).
(iii) If R2 is identified with the complex plane C by z = x1 +ix2 (and similarly

z1 = x1
1 + ix1

2 and z2 = x2
1 + ix2

2 for x1 = (x1
1, x

1
2) and x2 = (x2

1, x
2
2)), then

m has the representation

m(z) =
z − z1

|z − z1|
z − z2

|z − z2|e
iθ(z)

for a function θ ∈ C0(Ω) which solves

∆θ = m1
∂u0

∂x2
−m2

∂u0

∂x1
in Ω. (4.18)

Thus at least at the lowest possible energy level, we observe the develop-
ment of two boundary vortices in the limit. Note also that the limit equation
(4.17) is formally the Euler-Lagrange equation for the (formal) functional

1
2

∫
Ω

|∇m|2 dx+
1
2

∫
R3
|∇u|2 dx,

where u denotes the function inH1(R3) defined by (4.2). It turns out, however,
that this quantity is identically infinite. It can be replaced by a functional
involving the Dirichlet energy of θ, and then (4.17) truly becomes an Euler-
Lagrange equation, but we omit the details here.

The stability condition (4.6) is needed in the proof of this theorem in order
to estimate the Dirichlet energy of mδ in small cylinders of the form

(Bµ
√
δ(x) ∩Ω)× (0, δ),

where µ > 0 is a fixed constant. This allows to use estimates from the regu-
larity theory of harmonic maps and to conclude that

|∇mδ| ≤ C√
δ

for a certain constant C which is independent of δ. Apart from the fact that
such a gradient estimate is normally used in the theory of Ginzburg-Landau
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vortices, it is in this context also important for another reason: It means that
mδ varies very little in the third direction if δ is small, for the thickness of
Ωδ is small compared with |∇mδ|. This permits to work on a suitable slice
Ω×{s} and pretend that the domain is two-dimensional for much of the proof.
The previously mentioned arguments then give (i) and the representation of
m in (iii).

To derive the limit equation (4.17), we first take the vector product with
mδ on both sides of (4.3), which gives

δ div(mδ ∧∇mδ) = mδ ∧ ∇uδ = 0 in Ωδ.

This form of the equation has the advantage that it does no longer explicitly
contain the term |∇mδ|2mδ (which would be difficult to handle with the weak
convergence that we have). In particular it is then possible to pass to the limit
and to show that m satisfies

div(m1∇m2 −m2∇m1) = m1
∂u0

∂x2
−m2

∂u0

∂x1
in Ω.

This equation is exactly (4.18) if m is represented by θ as in (iii). Finally, the
equation is also equivalent to (4.17).

Theorem 4.9. For T ∈ (0,∞] and δ ∈ (0, e−e], suppose mδ ∈ C∞(Ωδ ×
[0, T ), S2) satisfy the Landau-Lifshitz equations (4.11) with boundary condi-
tions (4.9), (4.10). Also suppose that the initial data

m̂δ(x) = mδ(x, 0)

satisfy

Eδ(m̂δ) ≤ π log log
1
δ

+K

and
|∇m̂δ| ≤ K√

δ

in Ωδ for a constant K that is independent of δ. Then there exist a sequence
δk ↘ 0, a map m = (m, 0) ∈ L∞([0, T ),W 1,1(Ω, S1 × {0})) with m · ν = 0
on ∂Ω × [0, T ), and two distinct points x1, x2 ∈ ∂Ω, such that the following
holds.

(i) The sequence {mδk} converges weakly* in L∞([0, T ),W 1,p(Ω,R3)) to m
for any p < 2, and also weakly* in L∞([0, T ), H1(Ω′,R3)) for any Ω′ ⊂ Ω
with Ω′ ⊂ Ω\{x1, x2}.

(ii) The limit map solves

α̃
∂m

∂t
= ∆m+ |∇m|2m−∇u0 + (m · ∇u0)m in Ω × (0, T ), (4.19)

where u0( · , t) is the trace on Ω×{0} of the function determined by (4.2)
for almost every fixed t ∈ [0, T ).
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(iii) It is of the form

m(z, t) =
z − z1

|z − z1|
z − z2

|z − z2|e
iθ(z,t),

where θ ∈ C0(Ω × [0, T )) is a solution of

α̃
∂θ

∂t
= ∆θ −m1

∂u0

∂x2
+m2

∂u0

∂x1
in Ω × (0, T ).

(Here we use an identification of R2 with C as in the previous theorem.)

This is the time scale where we have stationary boundary vortices. The
limit equation (4.19) is formally the L2-gradient flow for the formal functional
mentioned earlier (up to a constant). It is also the true gradient flow for a
related functional.

It is interesting here to compare the limit equation (4.19) with the original
Landau-Lifshitz equation, especially if the latter is in the form (4.7). We had
originally a gyromagnetic term with coefficient γ̂ and a damping term with
coefficient α̂. The gyromagnetic term has vanished in the thin-film limit (as
it is to be expected when m remains in the plane R2 × {0}). We still have a
damping term, but the damping coefficient is now

1
α̃

= α̂+
γ̂2

α̂
.

Thinking of γ̂ as a fixed constant and of α̂ as small in comparison, we are in the
seemingly paradox situation that decreasing the damping coefficient α̂ accel-
erates the dynamics in the thin-film limit. This phenomenon has already been
discovered by formal computations by W. E and C. Garćıa-Cervera [EG01].

With the gradient estimate that we impose on the initial data, we can use
the same methods as in the proof of Thm. 4.8 to obtain the same development
of boundary vortices for m̂δ that we have found for stable critical points. To
prove this for times t > 0, we need slightly different arguments. Here we
calculate how the energy develops locally with time, that is, for a function
η ∈ C∞

0 (R3) with η = 0 in a neighborhood of {x1, x2} × [0, δ], we calculate

d

dt

(∫
Ωδ

η|∇mδ|2 dx +
1
δ

∫
R3
η|∇uδ|2 dx

)
. (4.20)

We find that away from the vortex center points x1, x2, the energy increases
at most by a constant that is independent of δ in bounded time intervals. We
can then again use arguments from the theory of Ginzburg-Landau vortices
for fixed times t > 0.

Theorem 4.10. Under the conditions of Thm. 4.9, but with (4.8) replaced by
(4.11), there exist a sequence δk ↘ 0, two curves x1, x2 ∈ C0,1/2([0, T ), ∂Ω),
and a map
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m = (m, 0) ∈
⋂
p<2

L∞([0, T ),W 1,p(Ω,S1 × {0}))

with m · ν = 0 on ∂Ω × [0, T ), such that the following holds.

(i) For any p < 2 and any q < ∞, the sequence {mδk} converges weakly in
Lq([0, T ),W 1,p(Ω,R3)) to m.

(ii) For almost every t ∈ [0, T ) and every Ω′ ⊂ Ω with Ω′ ⊂ Ω\{x1(t), x2(t)},
the map m( · , t) belongs to H1(Ω′, S1).

(iii) The equation

∆m+ |∇m|2m−∇u0 + (m · ∇u0)m = 0 in Ω × (0, T )

holds, where u0( · , t) is the trace on Ω × {0} of the function determined
by (4.2) for almost every fixed t ∈ [0, T ).

(iv) The map m is of the form

m(z, t) =
z − z1(t)
|z − z1(t)|

z − z2(t)
|z − z2(t)|e

iθ(z,t),

where θ ∈ C0(Ω × [0, T ]) is a solution of

∆θ = m1
∂u0

∂x1
−m2

∂u0

∂x2
in Ω × (0, T ).

In contrast to the situation of Thm. 4.9, we now have moving boundary
vortices. This means in particular that when we calculate the evolution of the
localized energy in (4.20), the vortex centers may enter the support of η after
some time. For this reason, the estimates we obtain are not quite as good as
before, and the type of convergence we find is weaker. On the other hand, an
analysis of the energy increase over a fixed time interval permits to estimate
the distance that the vortex centers have moved in this time (since most of
the micromagnetic energy is concentrated in the vortex centers). This way we
obtain the Hölder continuity of x1 and x2.

Finally, comparing Thm. 4.10 with the results of Section 3, especially
Thm. 3.19, we see that one statement is missing here: We do not have any
information about the law that governs the motion of the vortices. There is
no obvious reason why the model discussed here should have a significantly
different behavior in this respect, but the technical difficulties mentioned ear-
lier make it hard to carry over the arguments from the simpler model. This
problem thus remains open.
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[EG01] W. E and C. J. Garćıa-Cervera, Effective dynamics in ferromagnetic thin
films, J. Appl. Phys. 90 (2001), no. 1, 370–374.
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Summary. In order to treat multiple energy- and length-scales in electronic struc-
ture calculations for extended systems, we have studied a wavelet based multireso-
lution analysis of electron correlations. Wavelets provide hierarchical basis sets that
can be locally adapted to the length- and energy-scales of physical phenomena. The
inherently high dimensional many-body problem can be kept tractable by using the
sparse grid method for the construction of multivariate wavelets. These so called
“hyperbolic” wavelets provide sparse representations for correlated wavefunctions
and can be combined with diagrammatic techniques from quantum many-particle
theory into a diagrammatic multiresolution analysis. Using sparsity features origi-
nating from the hierarchical structure and vanishing moments property of wavelet
bases, this leads to many-particle methods with almost linear computational com-
plexity for the treatment of electron correlations.

We are aiming towards applications in semiconductor physics where quasi two-
dimensional many-particle systems provide challenging computational problems.
Such kind of systems are metallic slabs and interacting excitons confined in quantum
wells of semiconductor heterostructures. As a first step we developed a multireso-
lution Hartree-Fock method suitable for quasi two-dimensional extended systems.
Special emphasis has been laid on low rank tensor product decompositions of or-
bitals, which take into account the strongly anisotropic character of these systems
in one direction.

1 Introduction

Quantum many-particle theory provides a general framework for the descrip-
tion of microscopic processes appearing in solid state physics and chemistry.
Some of the fundamental difficulties encountered for accurate calculations of
these processes are inherently related with their multiscale character. The
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huge diversity of methods and techniques in many-particle theory partly
emerged from efforts to create tailormade models which describe the essential
physics at certain energy or length-scales. However, synergetic effects, caused
by couplings between different scales, often prevent their separate treatment.
Due to a lack of a priori knowledge of the strength of these couplings, it
might become necessary to use many-particle models which provide an accu-
rate description of the system over a whole range of energy- or length-scales.
In virtue of the multiscale character of such models, it is tempting to study
possible applications of some recent mathematical developments in the field
of multiscale analysis. In particular wavelet based multiresolution analysis
[Dau92, Mal98, Mey92] proved to be a useful tool, both from the analytical
and computational point of view [Dah97, DeV98]. Wavelets represent sta-
ble multiscale basis sets that can be locally adapted according to the length-
and energy-scales of physical processes. Depending on the specific application,
wavelets can be equiped with a variety of useful properties including compact
support, (bi)orthogonality and vanishing moments [Dau92]. Sparse approx-
imations exist for functions containing local singularities [Mal98] and for a
large class of differential as well as (singular) integral operators [Dah97]. Fur-
thermore, because of the hierarchical structure of wavelet bases, it becomes
feasible to apply sparse grid methods [BG04] for high-dimensional problems.

We have studied possible applications of multiresolution analysis for many-
electron systems which can be considered as a paradigm for fermionic many-
particle systems in condensed matter physics. The antisymmetry of fermionic
wavefunctions introduces, via Pauli’s exclusion principle, a multiscale struc-
ture into these systems. Their multiscale character expresses itself in the
energy- and length-scales of physical processes extending over several orders of
magnitude. Typical examples, ranging from high (short) to low (large) energy-
(length-) scales, are processes inside atomic cores, covalent chemical bonding,
van der Waals interactions and magnetic couplings between unpaired electron
spins in molecules and solids. Besides conventional many-electron systems, we
want to consider quasiparticles, like electron hole systems, which are of fun-
damental interest in semiconductor physics. These quasiparticles combine to
excitonic systems similar to molecules. Of special interest are semiconductor
heterostructures [Chu95] where excitons are confined in the direction perpen-
dicular to the semiconductor layers. For nanostructured materials, the diam-
eter of a free exciton becomes larger than the thickness of a layer. These ex-
citons, therefore, provide interesting two-scale problems with properties that
lie somewhere between that of free 2d- and 3d-excitons.

During the last few years considerable interest in numerical techniques
from multiresolution analysis has been emerged within the field of elec-
tronic structure calculations. Most of this work has been done in the con-
text of density functional theory (DFT) and the Hartree-Fock (HF) method
[Ari99, Goe98, HF*04]. Recently published papers discuss applications to
solids [EA02, TBJ03] and possible extensions of multiresolution analysis to
the density-matrix approach [NTR02] which avoids the cumbersome calcu-
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lation of eigenvalues and provides linear scaling with respect to the size of
the system. Another interesting application are semi-classical calculations of
polarons and bipolarons solvated in a liquid [CF*05]. Wavelets were used for
the quantum description of the polaron and bipolaron, whereas the solvent
has been treated classically by an integral equation.

In DFT, the many-particle problem is mapped onto a system of noninter-
acting particles [Kohn99], resulting in a significant computational simplifica-
tion. All many-particle aspects are represented by an approximate exchange-
correlation potential in the Kohn-Sham (KS) equation. The fundamental prob-
lem of this approach is that the mapping can be done only approximately and
systematic ways for improvement are presently still missing. Multiresolution
analysis can therefore just be applied to multiscale aspects of independent-
particle systems. For such systems, the most important multiscale features are
variations of the electron density between atomic core and valence regions in
molecules and solids. The conventional numerical approach to a simultaneous
treatment of core and valence electrons in KS or HF equations uses Gaussian
type orbital (GTO) bases [HJO99], consisting of atomic centered Gaussian
basis functions with variable exponents, multiplied by harmonic polynomials.
GTO bases have already reached a high level of sophistication in quantum
chemistry and seem to be almost optimal for such kind of problems. How-
ever, in contrast to wavelets, GTO bases are not stable in a mathematically
rigorous sense and might become ill behaved if very high accuracies have to
be achieved. There exists a variety of many-particle models in solid state
physics where GTO bases are not really appropriate due to certain geomet-
rical constraints imposed on the system. This is the case e.g. for quasi two-
dimensional many-particle systems already mentioned above, like excitons in
semiconductor heterostructures. For such kind of systems wavelets seem to be
an interesting alternative. We proposed a multiresolution HF method for quasi
two-dimensional systems in Ref. [FH*05b], which will be briefly discussed in
Sect. 5.

Beside DFT, there exists another kind of approach where a direct solution
of the many-particle problem is tried to achieve. Starting from an effective
noninteracting particle model, like HF, the solution of the interacting many-
particle system can be approached via configuration interaction (CI) meth-
ods, many-body perturbation theory (MBPT) or coupled cluster (CC) methods.
All effects which are not taken into account by the HF solution are summa-
rized under the phrase of electron correlations. We refer to the monographs
[Ful93, HJO99] for a thorough discussion of this subject. The original formu-
lations of these post HF methods rely heavily on the eigenfunctions of the HF
Hamiltonian. This turns out to be an obstacle for a direct application of mul-
tiresolution analysis. In order to circumvent this problem, we have adopted
ideas from local correlation methods, which enable an efficient treatment of
electron correlations in extended systems. Here we have to mention the local
ansatz of Stollhoff and Fulde [Ful93, SF80], the increment method of Stoll
[Sto80] and the local correlation methods of Pulay and Saebø [SP93], which
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have been further developed into linear scaling methods by Werner and col-
laborators [SHW99]. Conventional numerical approaches for these methods
use GTO bases to represent electron correlations. It is common knowledge,
however, that GTO bases are not well adapted for this purpose [HJO99].
Within our approach, GTO bases were replaced by wavelets, which provide
stable multi-scale bases that can be locally adapted for the description of elec-
tron correlations. In Sect. 2, we discuss wavelet approximations of correlated
wavefunctions, cf. Refs. [FH*02, LK*02], and provide some simple examples in
order to illustrate the underlying concepts. These concepts have been set into
a broader context in Sect. 4, where we briefly outline various many-particle
methods and discuss their computational complexity using a diagrammatic
multiresolution analysis, see Refs. [FH*05a, LK*06] for further details.

The main part of the paper focus on wavelet methods and the nonrel-
ativistic many-particle Schrödinger equation. There are however many other
interesting topics concerning multiscale problems in electronic structure calcu-
lations. Two such topics related to recent work done by the group in Kassel are
briefly outlined at the end of the paper. Appendix B summarizes recent devel-
opments in multi-grid methods for KS and HF equations, whereas Appendix
C provides a short glimpse into the field of relativistic electronic structure
theory.

2 Wavelet approximation of correlated wavefunctions

The nonrelativistic Schrödinger equation within the Born-Oppenheimer ap-
proximation provides a firm basis for electronic structure calculations in quan-
tum chemistry and solid state physics. We are focusing on solutions of the
stationary Schrödinger equation

H Ψ (r1, r2, . . . , rN ) = E Ψ (r1, r2, . . . , rN ) , (2.1)

where the Hamiltonian

H =
N∑
i=1

(
−1

2
∆i + Vext(ri)

)
+

∑
i<j

1
|ri − rj |

includes Coulomb interactions between the electrons and an external poten-
tial due to the nuclei. Atomic units have been used throughout this paper.
Recently, interesting results concerning the regularity of the solutions of the
many-particle Schrödinger equation (2.1) in certain Sobolev spaces of mixed
derivatives have been obtained by Yserentant [Yse04, Yse05]. These regular-
ity results open the possibility for a multiscale approximation of the total
wavefunction Ψ . Closely related to this approach is the sparse grid method
of Griebel an coworkers [GG00]. We pursue a more restricted approach by
studying multiscale aspects within conventional many-particle theories. This
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has the significant advantage that we can rely on a wealth of experiences in
physics and chemistry. A natural framework for the representation of many-
electron wavefunctions Ψ is the product ansatz

Ψ (r1, r2, . . . , rN ) = F Φ (r1, r2, . . . , rN ) , (2.2)

where the correlation operator F acts on a mean-field solution Φ. In general,
F has to be understood as a linear operator, who’s specific properties must be
derived for example from MBPT or CC theory. We have adopted a simplified
ansatz, where the correlation factor F (r1, r2, . . . , rN ) represents a symmetric
function of the electron coordinates, which corrects for the inadequacies of
a given approximate wavefunction Φ. Typically, Φ is taken from the HF ap-
proximation of the original Schrödinger equation (2.1). The HF wavefunction
is given in terms of a Slater determinant which corresponds to an antisym-
metrized product of orbitals. These orbitals are single-particle wavefunctions
obtained by solving the HF equation. In general it is not possible to represent
the exact many-particle wavefunction via a correlation factor F (r1, . . . , rN ).
We have to deal with a constraint variational problem where the expectation
value of the energy

E[F ] =
∫
d3r1 . . . d

3rN FΦ (r1, r2, . . . , rN )H FΦ (r1, r2, . . . , rN )∫
d3r1 . . . d3rN FΦ (r1, r2, . . . , rN )FΦ (r1, r2, . . . , rN )

, (2.3)

is minimized only with respect to the correlation factor F instead of the full
wavefunction Ψ . The latter would be equivalent to solving the Schrödinger
equation (2.1). Within our previous work, we have studied wavelet approxima-
tions of correlation factors for simple atoms [FH*02], exactly solvable many-
particle models [LK*02] and the homogeneous electron gas [FH*05a]. This
can be done using either a linear ansatz

F (r1, r2, . . . , rN ) =
∑
p

∑
J

′
∑
A

f
(p)
J,A F (p)

J,A (r1, r2, . . . , rN ) , (2.4)

or an exponential ansatz, usually called Jastrow factor [Cla79],

F (r1, r2, . . . , rN ) = exp

[∑
p

∑
J

′
∑
A

f
(p)
J,A F (p)

J,A (r1, r2, . . . , rN )

]
, (2.5)

where symmetrized wavelet tensor products

F (1)
j,a (r1, . . . , rN ) = γ

(s)
j,a(r1) + γ

(s)
j,a(r2) + · · ·+ γ

(s)
j,a(rN ), (2.6)

F (2)
J,A (r1, . . . , rN ) = γ

(s1)
j1,a1

(r1) γ
(s2)
j2,a2

(r2) + · · ·+ γ
(s1)
j1,a1

(rN−1) γ
(s2)
j2,a2

(rN ),

...

are formed from isotropic 3d-wavelets γ(s)
j,a(r). These wavelets are constructed

by taking mixed tensor products of univariate wavelets ψj,a and scaling func-
tions ϕj,a on the same level j
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γ
(0)
j,a (r) = ϕj,ax(x) ϕj,ay(y) ϕj,az(z), (2.7)

γ
(1)
j,a (r) = ψj,ax(x) ϕj,ay(y) ϕj,az (z),

...
γ

(4)
j,a (r) = ψj,ax(x) ψj,ay(y) ϕj,az (z),

...
γ

(7)
j,a (r) = ψj,ax(x) ψj,ay(y) ψj,az (z).

For the sake of notational simplicity we have used the notation γ(0)
j,a for 3d-

scaling functions. A brief introduction into univariate wavelets has been given
in Appendix A. The isotropic 3d-wavelets belong to well defined levels j,
however, there are seven different types of them, according to the various
combinations of univariate wavelets and scaling functions. In those cases where
details concerning type, level and location of wavelets are not relevant, we use
single Greek wavelet indices (γα) to simplify our notation. Capital Latin and
Greek multi-indices are used to denote arrays of indices of the same kind like
in the case of the tensor products (2.6).

Isotropic wavelet constructions become impracticable beyond three di-
mensions. For the approximation of correlation factors, we, therefore, have
to switch to sparse grids [BG04]. This construction became known in the
wavelet community as hyperbolic wavelets [DKT98]. The concept of hyper-
bolic wavelets is based on a special kind of hierarchical ordering and truncation
scheme for standard tensor product wavelets

γ
(s1)
j1,a1

(r1) γ
(s2)
j2,a2

(r2) . . . γ
(sp)
jp,ap

(rp), (2.8)

which appear in the symmetrized products (2.6). Due to their anisotropic
character, we cannot assign a unique level to these tensor products. Instead, we
have to take their level sums in order to get a hierarchical ordering. The sparse
grid condition for the multilevel-index J can be expressed as a constraint on
the shifted sum of wavelet levels

|J| :=
p∑

i=1

(ji − l0 + 1) ≤ Q̃, (2.9)

where p is the number of 3d-wavelets in the tensor products (2.8) and ji
are their corresponding levels. According to relation (2.9), the sparse grid
threshold parameter Q̃ determines the possible combinations of 3d-wavelet
levels that are taken into account in the tensor product expansions (2.4) and
(2.5), starting at the coarsest level l0 which appears in the isotropic 3d-wavelet
basis. As a consequence of the sparse grid condition, the number of p-electron
tensor products (2.6) is of O(M log(M)p−1) with respect to the cardinality
M ∼ O(23Q̃) of the underlying 3d-wavelet basis. For small p, the growth is
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almost linear in M , however, it still increases exponentially with respect to p.
As a consequence we can achieve only modest values of p in the expansions
(2.4) and (2.5). A prime on the sum with respect to the multilevel-index
J indicates that only those tensor products are taken into account, which
either satisfy the sparse grid condition (2.9) or belong to a specific adaptive
refinement.

Recently, best N-term approximation theory [DeV98] has been extended
by Nitsche to hyperbolic wavelets [Nit03]. Taking into account the asymptotic
behaviour of Jastrow factors near coalescence points of electrons it is possi-
ble to derive an estimate for the approximation error of the pair-correlation
function in the H1 Sobolev space [FHS06a]

inf
#{F(2)

Ω }≤N

‖F (2) −
∑
Ω

f
(2)
Ω F (2)

Ω ‖H1 � N− 1
2 , (2.10)

where #{F (2)
Ω } denotes the number of two-electron tensor products (2.6) in

the expansion (2.5). In best N-term approximations these tensor products
have to be chosen in order to minimize the approximation error in H1. The
estimate (2.10) is sharp for all sufficiently regular wavelets with a minimum
number of vanishing moments. In the case of hyperbolic 6d-wavelets based
on isotropic 3d-wavelets γα, this estimate requires at least three vanishing
moments for the underlying univariate wavelet ψ. For comparison, a direct
construction of hyperbolic 6d-wavelets from a univariate wavelet basis re-
quires only two vanishing moments for the same estimate. It is essentially the
inter-electron cusp at coalescence points of electrons that restricts the order
of approximation. The hyperbolic tensor products from isotropic 3d-wavelets
are especially convenient for an adaptive refinement in the neighbourhood
of a cusp [FH*02, FH*05a]. Numerical studies for an exactly solvable many-
particle model [LK*02] and the homogeneous electron gas [FH*05a] demon-
strate that a hyperbolic tensor product construction according to the sparse
grid criteria (2.9) with additional diagonal refinement turns out to be very
close to best N-term approximation.

3 Variational calculations for the linear ansatz

The Rayleigh-Ritz variational principal can be applied without further ap-
proximations to the expectation value of the energy (2.3) for the linear expan-
sion of the correlation factor (2.4). It yields a generalized eigenvalue problem
of the form

H f = E M f , (3.1)

for the variational parameters fΛ, with matrix elements

HΩΛ =
∫
d3r1, . . . , d

3rN FΩΦ H FΛΦ (3.2)
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MΩΛ =
∫
d3r1, . . . , d

3rN FΩΦ FΛΦ. (3.3)

This direct approach avoids any uncontrolled approximations. We want to
mention however, that in order to develop methods suitable for large scale
applications it becomes necessary to switch from the linear to the exponential
ansatz (2.5) in order to keep the computational complexity within reasonable
bounds. This topic is further discussed in Sect. 3.2.

Before we start to review some applications of the linear ansatz, a few
remarks are in order concerning the computation of the matrix elements (3.2)
and (3.3). It turns out that this step is the bottleneck of our approach and
requires a careful analysis concerning the computational complexity. Due to
the tensor product ansatz for the correlation factorF , the Coulomb interaction
part of the matrix elements HΩΛ factors into the standard one-electron

〈ηA|
1
rC
〉 :=

∫
d3r

ηA(r)
| r−C | (3.4)

and two-electron

〈ηA|
1
r12

|ηB〉 :=
∫
d3r1d

3r2 ηA(r1)
1

| r1 − r2 |
ηB(r2) (3.5)

Coulomb integrals. These integrals have to be calculated for various products
of orbitals φi and isotropic 3d-wavelets

ηA(r) =

⎧⎨⎩φi(r)φj(r)
φi(r)φj(r)γα(r)
φi(r)φj(r)γα(r)γβ(r).

The factorization of matrix elements (3.2) and (3.3) into lower dimensional
integrals is already a complex task for systems containing more than two
particles. We have to rely on diagrammatic techniques from many-particle
theory in order to derive a recurrence scheme for the evaluation of these matrix
elements from the basic integrals (3.4) and (3.5). In Sect. 4.1, we present a
brief outline of the recurrence scheme and of the underlying diagrammatic
techniques.

A new numerical feature arises from the products of wavelets and orbitals
which appear in the integrals (3.4) and (3.5). Estimates for wavelet products,
based on their Sobolev regularity, have been derived in Ref. [FH*02], indicat-
ing that a sufficiently high regularity of the wavelet basis is required for an
efficient numerical treatment of these integrals. In an intermediate step, we
first calculate the auxiliary function

R(r1) :=
∫
d3r2

1
| r1 − r2 |

ηB(r2)

by performing a matrix times vector multiplication in the nonstandard rep-
resentation [BCR91, Bey92] of the Coulomb interaction and product function
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ηB. For wavelets with several vanishing moments, the Coulomb interaction
matrix elements decay very fast with increasing distance from the diagonal. If
wavelets appear in the product function ηB, it has compact support and the
corresponding wavelet expansion is strongly peaked around the wavelet be-
longing to the finest scale in the product. The auxiliary function R therefore
has a sparse representation in the dual wavelet basis

R(r) ≈
∑
α

Rα γ̃α(r).

In order to calculate the two-electron Coulomb integrals (3.5) it remains to
perform a scalar product with the product function ηA

〈ηA | 1
r12

| ηB〉 ≈
∑
α

〈ηA | γ̃α〉Rα

Both vectors involved in the scalar product have sparse representations in the
wavelet basis.

3.1 Results for the helium atom and a many-particle model

We have demonstrated the feasibility of our method by applying it to the
helium atom and isoelectronic Li+ ion. Actually this is a standard model for
electron correlations in quantum chemistry, which shows many characteristic
features of large systems. From a technical point of view, it already required
the full machinery for calculating one- and two-electron integrals within the
wavelet basis. For our calculations we have taken the biorthogonal SDD6
wavelets with six vanishing moments [Swe96]. Further details concerning the
wavelet basis are given in Appendix A. Our results obtained so far are only of
preliminary character, due to the fact that the isotropic 3d-wavelet basis γα
was only crudely adapted to the size of the atoms. For full technical details
we refer to Ref. [FH*02]. Nevertheless our wavelet approximations recovered
98% and 97% of the correlation energy 4 for He and Li+, respectively. The
correlation energies for various levels of refinement are shown in Fig. 3.1.
As a reference, the wavelet level j = 0 corresponds to a grid separation of
1 bohr. In the case of the He atom, the dominant contribution comes from
the level j = −2, which already recovered 83% of the correlation energy.
Compared with it, the contribution of the next coarser level j = −3 is almost
negligible (< 0.1 mhartree). At finer scales, contributions to the correlation
energy decrease quite fast. A definite statement concerning the asymptotic
convergence behaviour cannot yet be drawn from our calculations. According
to the estimate (2.10), we expect an asymptotic convergence of O(2−3j) where
we assumed diagonal dominance due to the inter-electron cusp. Our results
show that rather accurate energies can be achieved already with a rather
4 The correlation energy corresponds to the difference between exact and HF energy
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Fig. 3.1. Correlation energies of He and Li+ from variational and JPT2 calculations
for various levels of refinement. The level j = 0 corresponds to a resolution length
of 1 bohr. Calculations have been performed with the SDD6 wavelet.

small number of wavelets. This is encouraging in view of the fact that we have
used regular Cartesian grids, which were not especially adapted to spherical
symmetry, except that we have placed the nucleus at the origin.

Exactly solvable many-particle models provide an interesting playground
for method development. Especially convenient for our purposes was a one
dimensional bosonic model suggested by Koprucki and Wagner [KW00]. The
Hamiltonian of this model is given by

Hmodel = −1
2

N∑
i=1

∂2

∂x2
i

+
1
2

N∑
i=1

x2
i +

∑
i<j

(
δ(xi − xj)−

1
2
|xi − xj |

)
, (3.6)

which corresponds to a system of coupled harmonic oscillators with repulsive
contact and long-range interactions. The bosonic ground state wavefunctions
of this model

Ψ0(x1, x2, . . . , xN ) = N
∏
i<j

exp
[
1
2
|xi − xj |

] N∏
i=1

exp
[
−1

2
x2
i

]
,

have a simple product structure with a cusp similar to electrons. We have
studied the convergence behaviour of various approximation schemes [LK*02]
in L∞, L2 and H1 norms and for the energy. Because of the simplicity of
the model, we were able to consider fully adaptive wavelet grids where tensor
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Fig. 3.2. Fully adaptive wavelet grid for the two-particle model (3.6), based on the
contribution of tensor products ψj1,a1(x1) ψj2,a2(x2) to the energy.

products have been selected according to their contribution to the energy.
These grids, depicted in Fig. 3.2 for the two-particle case, show pronounced
diagonal dominance for wavelets on fine levels. It turned out that hyperbolic
wavelets with appropriate diagonal refinement at the cusps have comparable
computational complexity as a fully adaptive treatment based on the energy
contribution of individual wavelet tensor products. For both schemes, the
energy shows an asymptotic convergence rate of O(2−j) with respect to the
level of refinement. This roughly corresponds to O(N−1) convergence with
respect to number of tensor product wavelets.

3.2 Size-consistency error for the linear ansatz

The linear hyperbolic wavelet expansion of the correlation factor (2.4) enables
a strictly variational treatment of Schrödinger’s equation via the generalized
eigenvalue problem (3.1). For typical applications to extended systems, size-
consistency 5 is required, which means that expectation values of operators
5 In the terminology of quantum chemistry this property is often called size-

extensivity.
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Fig. 3.3. Size consistency error per atom ∆E = EHeN
/N − EHe (mhartree) of

hyperbolic wavelet and SDCI expansions for systems of noninteracting helium atoms.
The wavelet approximation for the correlation factor of a single helium atom has
been taken from Ref. [FH*02] (EHe = -2.89904 hartree, two levels j = −2,−1). Two
different sparse grid constraints Q̃ = 4 (◦) and Q̃ = 6 (∗) have been imposed to the
product wavefunction of the helium clusters. For comparison SDCI calculations (�)
have been performed with a s, p VQZ basis set (EHe = -2.90015 hartree).

that correspond to extensive thermodynamic properties, like the energy, are
proportional to the system size. Within the linear ansatz, size-consistency
is hard to achieve. Not only an inflationary number of variational parame-
ters, but even more severe, an increasing complexity of the matrix elements
(3.2) and (3.3) makes the linear hyperbolic wavelet expansion to a challeng-
ing problem for large systems. It has been already demonstrated by one of
us [Hac01], that in order to keep the computational complexity under control
an additional constraint has to be imposed. Besides the sparse grid condition,
we have to truncate the first sum in the expansion (2.4) at p ≤ pmax � N ,
where pmax may slightly vary with the size of the system. This resembles to
truncation schemes for the CI method in quantum chemistry, where typically
only single and double excitations (SDCI) are taken into account.

In order to illustrate this problem, we have studied the size-consistency
error of hyperbolic wavelet expansions for a standard benchmark problem in
quantum chemistry, namely systems of N noninteracting helium atoms. Such
kind of model recovers essential physical aspects of the problem [HJO99].
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Due to Pauli’s principle, molecules can roughly be described by interacting
electron pairs. The dominant intra-pair interactions are taken into account by
this model, whereas inter-pair correlation effects are excluded. The latter are
more subtle and not easily accessible to analysis. For the sake of computational
simplicity, we consider a standard wavelet tensor product expansion for a
single helium atom

ΨHe (r1, r2) =

[
2∑

p=0

∑
J

∑
A

f
(p)
J,A F (p)

J,A (r1, r2)

]
φ(r1)φ(r2), (3.7)

where the sparse grid condition has not been applied. The corresponding wave-
function for a cluster ofN noninteracting helium atoms is given by the product

ΨHeN
(r1 . . . r2N ) =

N∏
i=1

ΨHe (r2i−1, r2i) . (3.8)

A special permutational symmetry with respect to an interchange of variables
among different helium atoms is not required due to the underlying assump-
tion of a large spatial separation of the atoms. Obviously, the total energy
scales linearly with the number of helium atoms EHeN

= NEHe. After some
reordering of the product wavefunction (3.8), the wavelet tensor products for
the cluster can be arranged like in the linear ansatz (2.4)

F (p)

J,A (r1 . . . r2N ) =
N∏
i=1

F (pi)
Ji,Ai

(r2i−1, r2i) , with p =
∑
i

pi.

Applying the hyperbolic wavelet approximation to the reordered wavefunction

ΨHeN
(r1...r2N ) ≈

⎡⎣∑
p

∑
|J|≤Q̃

∑
A

f
(p)

J,A F (p)

J,A (r1...r2N )

⎤⎦ N∏
i=1

φ(r2i−1)φ(r2i),

only those tensor products F (p)

J,A are taken into account for which the sparse
grid condition (2.9) is satisfied. On each truncation level Q̃, the coefficients

f
(p)

J,A have been reoptimized with respect to the energy. In order to limit the
computational effort, we have contracted the atomic wavelet coefficients on
each of the tensor product levels J. This did not introduce any noticeable
error into our calculations. In Fig. 3.3 we have shown the size consistency
error per atom ∆E = EHeN

/N − EHe in the case of a two-scale wavelet
expansion for a single helium atom. We refer to Ref. [FH*02] for further details
concerning this wavefunction. For both thresholds Q̃ = 4, 6, a single helium
atom can afford all tensor products in the wavefunction (3.7), however, for
clusters of several helium atoms, restrictions with respect to the full product
wavefunction (3.8) are imposed. The hyperbolic wavelet approximation is less
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stringent than SDCI, in a sense that certain multicenter tensor products are
still possible. For illustration we compare in Fig. 3.3 with SDCI calculations
in a s, p valence quadruple zeta (VQZ) basis set. It can be seen that the size
consistency error is much smaller already for Q̃ = 4 compared to the SDCI
method. Increasing the sparse grid parameter to Q̃ = 6 results in a very
small size consistency error, which seems to be acceptable for systems with
up to twenty electrons. In principle it appears to be possible, to adjust the
parameter Q̃ to the system size in order to achieve a given accuracy. However
in view of the difficulties concerning the evaluation of matrix elements, this
becomes impracticable beyond a certain size of the system. For comparison,
the exponential Jastrow ansatz (2.5) preserves the product structure of the
wavefunction (3.8) if only one- and two-particle tensor products (2.6) are taken
into account.

4 Jastrow perturbation theory and the local ansatz

A rigorous treatment of the exponential ansatz (2.5), based on Rayleigh-Ritz’s
variational principle, is almost unfeasible due to the highly nonlinear character
of the variational problem. Instead it is possible to derive various approxima-
tion schemes which preserve the size-consistency of the exponential ansatz.
For Jastrow-type wavefunctions, such kind of methods are the local ansatz of
Stollhoff and Fulde [Ful93, SF80] and Krotscheck’s Fermi hypernetted chain
(FHNC) method [CKP92, Kro85]. Without additional symmetries, the non-
linear system of FHNC equations is very challenging from a computational
point of view and we refrain from a numerical treatment within multiresolu-
tion analysis. We have adapted, however, the diagrammatic representation of
matrix elements, which we have slightly modified by introducing additional
elements from multiresolution analysis. Instead of the nonlinear FHNC equa-
tions, we have taken the local ansatz as a guideline for our work. The local
ansatz can be considered as a power series expansion of the exponential ansatz
[SF80] which leads to a linear system of equations∑

Λ

(
〈F†

Ω H FΛ〉 − 〈F†
Ω FΛ〉〈H〉

)
fΛ = −〈F†

ΩH1〉 (4.1)

where the correlation energy is given by the expression

Ecorr =
∑
Λ

〈H1 FΛ〉 fΛ. (4.2)

To simplify our notation we have introduced a short-hand notation 〈· · · 〉 :=
〈ΦHF| · · · |ΦHF〉 for expectation values with respect to the HF wavefunction.
The residual interaction H1 := H −HSCF is defined as the difference between
the exact and HF Hamiltonian. Furthermore, we have assumed 〈FΛ〉 = 0,



Multiscale Electronic Structure Calculations 313

which can be imposed in a natural way using the formalism of second quan-
tization discussed below. The considerable simplification due to linearization
is at the expense of an accurate treatment of long-range correlations. For our
envisaged applications in quantum chemistry and solid state physics, where
electrons or excitons are confined by an external potential, this is perfectly jus-
tified. Whereas long-range correlations become important for metallic systems
[Ful93] where they cause a divergence in the energy for finite order perturba-
tion expansions. Guided by the local ansatz, we have studied a perturbative
approach for Jastrow factors [LK*06]. Such kind of approach seems to be nat-
ural from a physical point of view, however, to the best of our knowledge,
it has not been described in the literature. This is likely due to the failure
of finite order perturbation theory for most of the standard applications of
Jastrow factors in condensed matter physics, where long-range correlations
are important.

From a formal point of view, Jastrow perturbation theory (JPT) is closely
related to coupled cluster perturbation theory (CCPT) presented in [HJO99].
The symmetrized tensor products (2.6) are conveniently expressed in terms of
second quantization, which introduces additional flexibility into the perturba-
tion analysis. This can be used to remove redundancies from the many-particle
basis and to reduce computational complexity which is essential for practical
applications. In order to illustrate our assertions, we consider an arbitrary
two-particle basis function as an operator in second quantization

F (2)
α,β ≡ F̂ (2)

α,β :=
1
2

∑
pqst

〈pq|F (2)
α,β|st〉c†pc†qctcs, (4.3)

with

〈pq|F (2)
α,β |st〉 :=

∫ ∫
d3x1d

3x2 φp(x1)φq(x2)γα(r1)γβ(r2)φs(x1)φt(x2)

+ α ←→ β

where xi := (ri, σi) denotes the combined spatial and spin coordinate of a par-
ticle. The creation c†p and annihilation cs operators refer to the single particle
orbitals φq of HSCF. In the following, we denote virtual orbitals by a, b, · · · ,
occupied orbitals by i, j, · · · and arbitrary orbitals by p, q, · · · . We want to
mention that virtual orbitals {φa} are introduced for purely formal reasons
and that for actual calculations only occupied orbitals {φi} are required. This
is due to the fact that the underlying tensor product basis (2.6) consists of
simple functions which allows us to use the identity∑

a

φa(x1)φ∗a(x2) = δ(r1 − r2) δσ1,σ2 −
∑
i

φi(x1)φ∗i (x2), (4.4)

we refer to Ref. [FH*05a] for further details. An obvious choice, in the spirit
of CC theory, for simplified two-particle operators (4.3) are cluster-type op-
erators
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F̂ (2,c)
α,β :=

1
2

∑
abij

〈ab|F (2)
α,β|ij〉c†ac

†
bcjci, (4.5)

which preserve commutativity of the many-particle basis. This property turns
out to be essential for the exponential perturbation scheme. On a first glance,
the second quantized Jastrow ansatz (4.5) resembles closely to CC theory.
There is however an essential difference inasmuch as the underlying function
basis (2.6) does not guaranty convergence of the product ansatz (2.2) to the
exact wavefunction in the complete basis set limit. For that reason we take
the variational energy (2.3) as the starting point for our perturbation analysis
instead of the CC energy and projection equations. The latter assume an exact
ansatz for the wavefunction and provide the basis for the CCPT approach
[HJO99].

We have performed a perturbation analysis for the linear and exponential
representation of the correlation factor [LK*06]. For cluster-type operators,
we obtain in the linear case a natural truncation scheme with respect to
the degree p of the many-particle basis F (p) that preserves size-consistency
for the energy. It requires e.g. only two-particle operators at second-order
but four-particle operators already for third-order energies. In order to avoid
such an increase of computational complexity, we switched to the exponential
Jastrow-type ansatz, where size-consistency can be achieved by restricting to
two-particle operators at all orders of perturbation theory. The first order
approximation to the correlation operator F̂1 =

∑
Λ F̂Λ fΛ,1 given by∑

Λ

(
〈F̂†

Ω HSCF F̂Λ〉 − 〈F̂†
Ω F̂Λ〉〈HSCF〉

)
fΛ,1 = −〈F̂†

ΩH1〉, (4.6)

yields the second order (JPT2) correlation energy

E2 =
∑
Λ

〈H1F̂Λ〉 fΛ,1.

By comparison with the local ansatz (4.1) and (4.2), we observe a close rela-
tionship between both approaches. Actually it turns out that the local ansatz
is almost equivalent to third-order perturbation theory. Concerning compu-
tational complexity, the JPT2 method is considerably simpler than the local
ansatz. The Hamiltonian on the left hand side of Eq. (4.6) contains only one-
particle operators in contrast to the local ansatz (4.1) where the full Hamil-
tonian appears.

In order to demonstrate the accuracy of the JPT2 method, we compare
in Fig. 3.1 the correlation energies for He and Li+, at various levels of refine-
ment, with those obtained from variational calculations. It can be seen that
JMP2 overestimates the correlation energy by ≈ 10% for these two-electron
systems. This has to be compared with standard second order Møller-Plesset
perturbation theory which underestimates the correlation energy for He by
a similar amount. Another property of interest is the behaviour of the wave-
function near the inter-electron cusp. We have plotted in Fig. 4.1 the angular



Multiscale Electronic Structure Calculations 315

3π/2 0 π/2 π 3π/2
φ

−0.1

0

0.1

0.2

0.3

0.4
F

(2
)

jmax = −1
jmax = 0
jmax = 1
Hylleraas

r1 = r2 = 0.6 bohr

Fig. 4.1. Angular dependence of the correlation function F(1)+F(2) of the He atom
at various levels of refinement. The wavelet level j = 0 corresponds to a resolution
length of 1 bohr. Both electrons are at a distance of 0.6 bohr with respect to the
nucleus. Calculations have been performed with the SDD6 wavelet. For comparison,
the corresponding correlation function obtained from a highly accurate Hylleraas CI
calculation is shown.

dependence of the correlation function F (1) +F (2) of the He atom at various
levels of refinement. Both electrons were kept fixed at a distance of 0.6 bohr
with respect to the nucleus. The accuracy of the wavelet approximations can
be judged by comparing them with a correlation function obtained from a
very accurate Hylleraas CI calculation [FHM84]. Despite of the rather crude
approximation, our finest level corresponds to a resolution length of 0.5 bohr,
the JMP2 correlation function provides a fairly accurate description of the
correlation hole.

4.1 Diagrammatic multiresolution analysis

Straightforward application of diagrammatic techniques from many-particle
theory [LM86] enables a formal evaluation of the matrix elements which ap-
pear in the local ansatz (4.1) or JPT2 method (4.6). The resulting Goldstone
diagrams can be further transformed into FHNC diagrams [CKP92] using the
identity (4.4). We have studied the computational complexity for the evalua-
tion of these diagrams in detail for the local ansatz [FH*05a]. An important
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Fig. 4.2. Diagrammatic elements of multiresolution analysis.

aspect of this analysis is the multiscale structure of the underlying wavelet
basis. This leads to a diagrammatic multiresolution analysis where diagrams
can be classified according to their contribution on specific energy- and length-
scales. The diagrammatic elements of our multiresolution analysis, depicted
in Fig. 4.2, have been adopted from FHNC theory [CKP92]. By a slight abuse
of our notation (2.6), we have introduced the pair-correlation basis functions

F (2)
αβ (r1, r2) = γα(r1) γβ(r2) + γα(r2) γβ(r1). (4.7)

Each vertex in a diagram corresponds to an integral
∫
d3r. Spinless HF density

matrices ρ(r1, r2) are represented in terms of spatial orbitals

ρ(r1, r2) =
∑
i

ni φi(r1)φi(r2)∗,

where ni is the occupation number of the i’th orbital.
Because of the tensor product structure of pair-correlation basis functions

(4.7), it becomes possible to build up all the diagrams in a recurrent manner
from a few types of basic diagrams. At the onset of our recurrence scheme we
consider those parts of the diagrams which are directly linked to the Coulomb
interaction. These basic Coulomb diagrams, shown in Fig. 4.3, determine the
computational complexity of our approach. Various types of pointwise prod-
ucts and wavelet tensor products appear in the basic Coulomb diagrams. The
cardinalities of the corresponding sets with respect to the size M = O(23Q̃)
of the underlying isotropic 3d-wavelet basis (2.7) are listed in Table 4.1. In
order to derive these cardinality estimates, we have taken into account the
compact support and hierarchical structure of the 3d-wavelets as well as the
sparse grid condition (2.9) for hyperbolic tensor products.

The number of basic Coulomb diagrams increases almost quadratically
with respect to the isotropic 3d-wavelet basis. In order to achieve further re-
ductions to almost linear computational complexity, we considered the effects
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Fig. 4.3. Basic Coulomb diagrams of the recurrence scheme.

Table 4.1. Cardinalities of certain sets of pointwise and tensor products for isotropic
3d-wavelets which appear in the diagrammatic multiresolution analysis.

Wavelet (tensor) product Diagrammatic element Cardinality

γα(r) ♦ M

γα(r) γβ(r) ♦♦ O(M log(M))

Fαβ (r1, r2) O(M log(M))

γα(r1)Fνµ (r1, r2) ♦ O(M2)

Fαβ (r1, r2) Fνµ (r2, r3) ∨ O(M2 log(M))

Fαβ (r1, r2) Fνµ (r1, r2) O(M2)

of the vanishing moment property of wavelets on various sets of diagrams.
This requires further assumptions concerning the smoothness of the density
matrix. Obviously, nuclear cusps or a highly oscillating behaviour of the den-
sity matrix within the support of a wavelet spoils this useful property. If such
kind of behaviour is restricted to atomic core regions, which correspond to a
comparatively small portion of the total volume, it can be handled by adap-
tive local refinements of the 3d-wavelet basis. For our initial studies we have
neglected such kind of complications and essentially considered valence elec-
tron systems. A prominent example is the homogeneous electron gas, where
oscillations are bounded by the Fermi momentum. This led us to a simplified
model for the sets of basic type 3, 5 and 6 diagrams
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Fig. 4.4. a) Model integrals I
(s,t)
j,l (a, κ, κ′) for the basic type 3, 5, and 6 diagrams.

Absolute values of the integrals I
(1,0)
0,0 (a, κ, κ) are plotted on a logarithmic scale

versus the distance |a|. The plane wave parameters were chosen to be isotropic
κ1 = κ2 = κ3 with values κi = 2 (◦). Isotropic 3d-wavelets and scaling functions
were generated from the univariate SDD6 wavelet basis.

I
(s,t)
j,l (a,κ,κ′) =

∫
d3r1

∫
d3r2 e

−iκr1 γ
(s)
j,a(r1)

1
| r1 − r2 |

eiκ
′r2 γ

(t)
l,0(r2),

(4.8)
where only wavelets and the Coulomb interaction are left. All effects of the
remainder of the diagrams on the vertices are represented by plane waves,
through which we modulated the oscillations by varying the momenta κ,κ′.
The presence of oscillatory functions in the integrand has important conse-
quences for its large distance behaviour i.e. |a| → ∞. Our numerical studies
for the model integrals (4.8), shown in Fig. 4.4, demonstrate that the van-
ishing moment property only provides additional sparsity if 2−j |κi| is smaller
than a certain critical value. Such kind of sparsity can be related to the be-
haviour of the derivatives of the Fourier transform of the mother wavelet near
the origin.

Pointwise wavelet products on the vertices of diagrams also destroy the
vanishing moment property. This partially affects the sets of basic type 5 and
6 diagrams and is most severe for the sets of basic type 7 and 8 diagrams, where
wavelet products appear on both vertices of the Coulomb interaction. Since
the cardinalities of these sets of diagrams increase quadratically with the size
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Fig. 4.5. Selected diagrams for numerical studies with FHNC//0 pair-correlation
function for a homogeneous electron gas.

of the 3d-wavelet basis it is essential to achieve additional sparsity through the
vanishing moment property. A possible resolution to this problem are wavelet
expansions of pointwise wavelet products on the vertices of the diagrams. This
results in an almost linear complexity for all of the basic Coulomb diagrams.
Similar arguments apply to the remaining parts of the recurrence scheme.

We have studied the convergence behaviour of wavelet expansions for se-
lected diagrams, shown in Fig. 4.5, in the case of a homogeneous electron
gas for which “optimal” pair-correlation functions F (2)

FHNC (r1, r2) have been
obtained from FHNC//0 calculations [KKQ85]. For our calculations we have
chosen an electron density of rs = 2.07 (κF = 0.927 bohr−1). This corresponds
to the average valence electron density in aluminium. The cubic supercell with
edge length 12 bohr contains 54 electrons. The FHNC//0 pair-correlation
function was expanded in terms of hyperbolic wavelet tensor products with
additional diagonal refinement

F (2)
FHNC(r1, r2) =

∑
Λ

fΛF (2)
Λ (r1, r2).

The approximation error for the diagrams D1 to D4 provides some insight
into the performance of our approach for realistic problems. It can be seen
from Fig. 4.6 that the overall convergence of these diagrams is rather similar.
Fairly high accuracies have been already achieved at rather coarse levels. This
is due to relatively weak couplings between pair-correlation functions and the
Coulomb potential in the diagrams D1 to D4.

5 Multiresolution Hartree-Fock for quasi
two-dimensional extended systems

Our further development of diagrammatic multiresolution analysis is aim-
ing towards applications in the field of semiconductor physics, especially for
strongly anisotropic systems like semiconductor heterostructures. A common
feature of our envisaged applications is that they are closely related to molec-
ular systems. Traditional methods in quantum chemistry based on Gaussian
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Fig. 4.6. Convergence of selected diagrams for hyperbolic wavelet expansions with
diagonal refinement of a FHNC//0 pair-correlation function in the case of a homo-
geneous electron gas at rs = 2.07. Isotropic 3d-wavelets have been obtained from
the univariate SDD6 wavelet basis. Translational symmetry has been only taken into
account with respect to the coarsest wavelet level l0 = −2 in the expansion.

type basis functions, however, cannot be easily applied due to the pronounced
two-scale character of these systems. In contrast to this, wavelet bases can
be adapted in a straightforward manner to highly anisotropic problems. As a
preparatory step for the implementation of the local ansatz or JPT methods,
we have developed a multiresolution HF method for quasi two-dimensional
extended many-particle systems [FH*05b]. Most prominent examples are jel-
lium models for metallic surfaces and slabs. Within these models, the posi-
tively charged atomic cores are approximated by a constant background charge
density [NP01]. Such kind of models are homogeneous in two directions and
show a strongly inhomogeneous behaviour in the third direction, which is
perpendicular to the surface of the slab. Due to the homogeneity of jellium
models in two dimensions, HF orbitals

φκ
n (r) = ζκn (x) eıκ‖r‖ (5.1)

factor into products of two dimensional plane waves and functions ζκn (x) that
describe the behaviour of the orbitals perpendicular to the surface. Inside the
slab these functions behave like plane waves and decay exponentially at the
surface. Amazingly there has been no exact HF calculations for jellium sur-
faces or slabs reported in the literature. This is due to the nonlocal exchange
operator present in the HF equations, which makes the perpendicular part
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of the orbitals ζκn (x) depending on the momenta parallel to the slab. How-
ever, approximate HF calculations, following the pioneering work of Bardeen
[Bar36], have been published [SKG77, SM80]. Within these calculations, the
nonlocal exchange operator was approximated by a local potential. As a conse-
quence, the perpendicular part ζκx

n (x) does no longer depend on the momenta
in the parallel directions, which greatly simplifies the numerical treatment.
The same argument applies to DFT, where only local potentials appear in
the KS equation.

Starting with Lang and Kohn’s seminal paper [LK71], jellium surfaces
have been extensively studied for various kinds of density functionals [HJ74,
LP75, PE01]. They proved to be of considerable significance for the develop-
ment of new density functionals. Therefore a strong need for accurate many-
particle benchmark calculations exists. However, due to the presence of peri-
odic boundary conditions and the absence of localized orbitals, these systems
pose great technical difficulties for traditional quantum many-particle meth-
ods. There are essentially only two such methods which can deal with jellium
surfaces, quantum Monte Carlo (QMC) [AC96, LN*92] and the FHNC method
[KKQ85]. It exists an ongoing controversy concerning the accuracy of these
calculations [NP01]. Significant deviations with respect to results obtained
from DFT calculations exist and presently the reason for these discrepancies
has not been settled.

In order to solve the HF equation with periodic boundary conditions, we
have chosen a supercell approach, similar to the setting used for QMC calcu-
lations [AC96, LN*92]. This seems to be an appropriate choice with respect to
intended extensions to many-particle methods like the local ansatz. A further
significant advantage of this approach is that it can handle impurities, which
becomes important for applications where electrons or excitons are confined in
quantum dots embedded into a semiconductor heterostructure. The supercell
approach is based on the standard many-particle Schrödinger equation (2.1),
where the Coulomb interaction between electrons has been replaced by the
Ewald potential which takes into account the Coulomb interaction between
electrons inside the supercell as well as with all their images in periodic copies
of the supercell. Due to the quasi two-dimensional character of the systems,
we expect that the coupling between the perpendicular and parallel directions
in the Hamiltonian remains rather weak. The orbitals are therefore expressed
as linear combinations

φκ
n (r) =

K∑
i=1

(∑
α

Cκ
n,i,α ζ

κ
α,i(r)

)
(5.2)

of tensor product basis functions

ζκα,i(r) = ψκ1
α (x)Φκ‖

i (y, z),

where univariate supercell wavelets ψκ1
α are taken in the perpendicular direc-

tion and contracted isotropic 2d-supercell wavelets γκ‖
α in the parallel direc-
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tions
Φ
κ‖
i (y, z) =

∑
α

d
κ‖
i,α γ

κ‖
α (y, z). (5.3)

For a detailed presentation of our approach we refer to Ref. [FH*05b]. In view
of Eq. (5.1) for the jellium case, it is reasonable to assume that the Kronecker
rank K of the tensor product decomposition for HF orbitals (5.2) can be
kept small and almost independent of the size of the supercell through an
appropriate choice of the contracted basis functions (5.3). A possible choice
for these basis functions are HF orbitals of the corresponding two dimensional
homogeneous system or systematic basis functions like plane waves.
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Appendices

A Basic notions of multiresolution analysis

The purpose of this appendix is to provide some basic definitions and proper-
ties of wavelets which are required for this paper. For a complete exposition
of this subject, we refer to the excellent monographs of Daubechies [Dau92],
Meyer [Mey92] and Mallat [Mal98].

In one dimension, multiresolution analysis provides a partition of the
Hilbert space L2(R) into an infinite sequence of ascending subspaces · · · ⊂
Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · , where the index j runs over all integers. The union
of these subspaces

⋃
j Vj is dense in L2(R). On each subspace Vj , the scaling

function ϕ(x) generates a basis

ϕj,a(x) := 2j/2ϕ(2jx− a), (A.1)

via the operations of dilation and translation. The dilation factor 2j scales
the size of the basis functions, which means that with increasing j, the ϕj,a
provide a finer resolution in L2(R). An explicit embedding of Vj into the larger
space Vj+1 is given by the refinement relation

ϕ(x) = 2
∑
a

ha ϕ(2x− a),

where the number of nonzero filter coefficients ha is finite for the scaling func-
tions used in our applications. Wavelet spaces Wj are defined as complements
of Vj in Vj+1. The corresponding wavelet basis is generated from a mother
wavelet ψ(x) analogous to Eq. (A.1)

ψj,a(x) := 2j/2ψ(2jx− a).
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This construction leads to a hierarchical decomposition of L2(R) =
⊕

j∈Z
Wj

into wavelet subspacesWj [Dau92]. In a biorthogonal wavelet basis there exists
a sequence of dual spaces Ṽj , W̃j , which satisfy the orthogonality relations
W̃j ⊥ Vj and Ṽj ⊥Wj . The corresponding dual wavelets ψ̃j,a := 2j/2ψ̃(2jx−a)
and scaling functions ϕ̃j,a := 2j/2ϕ̃(2jx− a) generate a biorthogonal basis in
L2(R)

〈ϕj,a|ϕ̃j,b〉 = δa,b, 〈ψj,a|ψ̃l,b〉 = δj,l δa,b.

An arbitrary function in L2(R) can be expanded in a biorthogonal wavelet
basis

f(x) =
∑
a

〈ϕ̃l0,a|f〉ϕl0,a(x)︸ ︷︷ ︸
Vl0

+
∞∑

j=l0

∑
a

〈ψ̃j,a|f〉ψj,a(x)︸ ︷︷ ︸L
l0≤j Wj

, (A.2)

where the scaling function and wavelet coefficients are given by scalar prod-
ucts with respect to the dual basis. The multiscale approximation of smooth
functions reveals an important sparsity feature due to the vanishing moments
property of wavelets. Depending on the specific choice of the wavelet basis, a
certain number of moments vanish∫

dxxk ψ̃(x) = 0, for k = 0, . . . , n− 1.

This property has a significant effect on the magnitude of wavelet coefficients,
as can be seen from local Taylor series expansions

f(x) = c0 + · · ·+ cn−1(x − 2−ja)n−1 +Rn−1(x)(x − 2−ja)n, (A.3)

around the centers of wavelets ψ̃j,a(x). Inserting the Taylor series expansions
(A.3) into the scalar products yields the following estimate for the wavelet
coefficients∣∣∣〈ψ̃j,a|f〉∣∣∣ :=

∣∣∣∣∫ dx f(x) ψ̃j,a(x)
∣∣∣∣

≤ supsupp{ψ̃j,a} |Rn−1(x)| 2−j(n+1/2)

∫
dx

∣∣∣xnψ̃(x)
∣∣∣ ,

where the supremum of the remainder |Rn−1(x)| has to be taken with respect
to the support of the wavelet ψ̃j,a(x). For functions with rapidly converging
local Taylor series, the corresponding wavelet expansions (A.2), therefore,
converge very fast with respect to the level j. This leads to sparse wavelet
representations for these functions.

For our numerical studies, we have used the univariate symmetric biorthog-
onal wavelets with six vanishing moments of Sweldens [Swe96] and the corre-
sponding univariate scaling function of Deslauriers and Dubuc [DD89]. In the
text, we refer to this basis as the SDD6 wavelet basis.
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B Multi-grid methods for Kohn-Sham and Hartree-Fock
equations

An alternative approach to correlated many-electron systems is the density
functional method [Kohn99]. There, multiscale aspects arise from the use of
multi-grid (MG) methods for solving the discretized KS equation and from the
different spatial scales defined by the physics of the KS orbitals, in particular
if heavy atoms are involved. The spatial extension of core and valence orbitals
may differ by more than two orders of magnitude. This has to be compared
with the high accuracy requirements of quantum chemical calculations. A
relative accuracy of 10−8 to −9 in total energies is required in oder to obtain
three significant digits for the binding energy of a molecule with heavy atoms.
From these considerations it is obvious that measures have to be taken in
order to keep the computational effort under control.

The finite element method (FEM) can be used in order to discretize the
non-relativistic energy density functional

ES
tot =

N∑
i=1

〈φi | ĥ | φi〉 −
1
2

∫
ρ(r)VH(r)d3r (B.1)

−1
4

∫
ρ(r)Vexc(r)d3r + Enuc,

where the one-particle Hamiltonian

ĥ = −1
2
∆+ VH + Vexc + Vnuc,

contains the Hartree potential VH , the exchange-correlation potential Vexc,
and the electron-nucleus external potential Vnuc. Actually, ES

tot = ES
tot[ρ] can

be considered as a functional of the single particle density ρ =
∑

i |φi|2. Varia-
tion of the functional (B.1) with respect to the orbitals φi, under conservation
of their norms, leads to the KS eigenvalue equation

ĥφi(r) = εiφi(r). (B.2)

The KS equation was first solved, using a combination of FEM and MG,
for diatomic molecules which enable a reduction to two dimensional prob-
lems due to rotational symmetry. For a better analytic adaptation to the
Coulomb singularities, two successive transformations of the coordinates have
been performed. Namely first to elliptic hyperbolic coordinates and then by
a further transformation to intrinsic coordinates (see e.g. Ref. [KK01]) where
the ansatz functions are polynomials and the hierarchical grids are thus easily
established. In cartesian coordinates this corresponds to complicated transcen-
dental approximating functions on rotated triangular domains with curved
boundaries. The MG method allowed a fast and comprehensive investigation
of many different types of density functionals (LDA, GGA and the CS orbital
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functional) for dimers of the first long period chemical elements ranging from
He2 to F2.

Further extensions to a non-linear MG scheme for solids were considered
in Ref. [WW*05], where pseudo potentials have been used to get rid of the
core electrons. Therefore it was possible to treat the KS equations in three
dimensions on a finite difference grid. The non-linear MG proved to be quite
favorable in order to cut down the number of updates of the potentials. On
the other hand it has already been found in 2d molecular calculations, which
used a linear MG, that the self-consistent-field iterations could be favorably
coupled with the MG iterations and thus the gain by a non-linear MG would
not have been dramatic.

Another application of MG methods concerns the HF equation [BHK06]
which differs from Eq. (B.2) in such a way that the single particle Hamiltonian
is now orbital dependent via the non-local exchange potential which replaces
the local Vexc of the density functional. Otherwise things work rather simi-
larly, but of course the non-local HF equation requires a considerably more
complicated data handling in a MG scheme. The convergence properties are
better than in density functional calculations, because the HF exchange po-
tential does not have the ρ1/3 behaviour which is non-analytic for ρ→ 0 which
happens exponentially for r →∞.

C Relativistic aspects of electronic structure calculations

The non-relativistic treatment of many-electron systems misses essential
physics the heavier the atoms become. Therefore an extension to a relativistic
density functional description was done and pursued in the traditional 4-spinor
approach using FEM, after a relativistic linear combination of atomic orbitals
(LCAO) method had already been used since the early 80ties. Many problems
arose, unknown from non- relativistic approaches; they were finally traced to
the fact that the relativistic problem always has as solutions not only scatter-
ing states in the positive continuum of the spectrum and the discrete bound
states, but also positronic states in the negative continuum below -mc2.

The Dirac equation, which properly describes relativistic physics, can be
solved rather optimal for atoms on a logarithmic mesh ranging from some
small radius r0 to some rmax, big enough not to cut off too much from the
exponential tails of the solutions. Usually, the innermost region from r=0 to
r0 is treated analytically with a Taylor series approximation plus singular
factors, in order to account for the singular behaviour for point nuclei. The
wavefunction with total angular momentum j = 1/2 (generally for j = (2n+
1)/2 its nth derivative) diverges with non-integer powers at nuclei, unlike
the non-relativistic case where only cusps appear. Alternatively, nuclei can be
treated as extended objects which, however, leads to other kinds of difficulties
concerning the regularity of the wavefunction at the boundary of the nucleus.
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If more than one atom is involved (molecules, cluster, solids, plasmas, etc.)
one is faced with the problem of different scales defined by different atoms.
In a stationary problem this may be handled by different scales at the known
nuclear sites which can be done, but requires high effort. However in a non-
stationary case these centers are moving and this has to be accounted for by
a changing map of scales. This is a rather hopeless task except that physics
allows a separation into localized and non-localized contributions where the
localized terms have to be moved with the nuclei whereas for the non-localized
parts a simple multiscale treatment operating on a fixed multi-level space with
time evolving expansion coefficients suffices. Such a scheme consists of the
combination of analytical manipulations with fully numerical ones, which in a
rather simple two atomic case, using the Dirac-Fock Slater density functional,
has already been realized in a “stationary description”, see Ref. [DHK98] for
further details.

The Dirac equation results from a variation of the relativistic energy func-
tional under the contraint of norm conservation of the wavefunction. Unfor-
tunately there exists no simple way to separate minimum from stationary
solutions. In fact they always mix to some extend and these admixtures may
be identified as spurious contributions of the negative (positronic) contin-
uum to the electronic states one is interested in. This used to be an almost
unsurmountable problem for approximate solutions of the Dirac equation, ex-
cept for atoms where the asymptotic analytical behaviour of bound states is
known. For molecules, the recently developed relativistic minimax functionals
[ES99, DES00, ZKK04, ZK*05, KKR04, ZKK06] provide a loophole from this
dilemma. It was a big step ahead that one could prove the boundedness of the
minimax functional from below for any sufficiently smooth square integrable
(i.e. normalizable) function [DE*00] and thus may obtain the best solution in
an approximation space by minimization.

For the construction of the eigenvalues of an operator Ĥ which has a
gap (here −mc2 till +mc2) in its continuous spectrum and is unbounded from
above and below, the minimax principle can be expressed through the Raleigh
quotient

λk = inf
dimG=k

G subspace of F+

sup
φ 
=0

φ∈(G⊕F−)

〈φ | Ĥ | φ〉
〈φ | φ〉 ,

where F+ ⊕ F− is an orthogonal decomposition of a well-chosen space of
smooth square integrable functions. It has been proven in Refs. [ES99, DES00,
DE*00, DES03] that the sequence of minimax energies λk equals the sequence
of eigenvalues of Ĥ in the interval (−mc2,+mc2). There is however a price to
pay, namely the equations become non-linear in the eigenvalues. This causes
a severe completeness problem of the spectrum, as there is usually not known
a priori how many solutions are below a given energy. In the worst case one
has to construct one solution after the other starting from the lowest energy
solution. This at least can be formulated in a stable and absolutely safe way
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[ZKK04]. However it turned out to be possible to derive a very accurate linear
approximation (LARM) [ZK*05] by doubling the variational parameter space.
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matrix approach to electronic structure calculations. Phys. Rev. B, 66,
155120 (15 pages), 2002.

[Nit03] P.-A. Nitsche. Best N term approximation spaces for sparse grids. Research
Report No. 2003-11, Seminar für Angewandte Mathematik, ETH Zürich.
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Summary. This review is concerned with three classes of quantum semiconductor
equations: Schrödinger models, Wigner models, and fluid-type models. For each
of these classes, some phenomena on various time and length scales are presented
and the connections between micro-scale and macro-scale models are explained. We
discuss Schrödinger-Poisson systems for the simulation of quantum waveguides and
illustrate the importance of using open boundary conditions. We present Wigner-
based semiconductor models and sketch their mathematical analysis. In particular
we discuss the Wigner-Poisson-Focker-Planck system, which is the starting point
of deriving subsequently the viscous quantum hydrodynamic model. Furthermore, a
unified approach to derive macroscopic quantum equations is presented. Two classes
of models are derived from a Wigner equation with elastic and inelastic collisions:
quantum hydrodynamic equations and their variants, as well as quantum diffusion
models.

1 Introduction

The modern computer and telecommunication industry relies heavily on the
use of semiconductor devices. A very important fact of the success of these
devices is that their size can be very small compared to previous electronic
devices (like the tube transistor). While the characteristic length of the first
semiconductor device (a germanium transistor) built by Bardeen, Brattain,
and Shockley in 1947 was 20µm, the characteristic size has been decreased up
to now to some deca-nanometers only. With decreasing device length quan-
tum mechanical effects are becoming more and more important in actual
devices. In fact, there are devices, for instance tunneling diodes or quantum
wave guides, whose function is based on quantum effects. The development
of such devices is usually supported by computer simulations to optimize the
desired operating features. Now, in order to perform the numerical simula-
tions, mathematical equations are needed that are both physically accurate
and numerically solvable with low computational cost.
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We wish to model the flow of electrons in a semiconductor crystal with the
goal to predict macroscopically measurable quantities by means of computer
simulations. Although the physical process is always the transport of charged
particles in a solid crystal, we need to devise different mathematical models
because of the wide range of operating conditions and the desired need of ac-
curacy. Moreover, since in some cases we are not interested in all the available
physical information, we also need simpler models which help to reduce the
computational cost in the numerical simulations.

We shall discuss three model classes: Schrödinger, Wigner, and fluid-type
models. Schrödinger models describe the purely ballistic transport of electrons
and holes, and they are employed for simulations of quantum waveguides and
nano-scale semiconductor heterostructures. As soon as scattering mechanisms
(between electrons and phonons, e.g.) become important, one has to resort
to Wigner function or the equivalent density matrix formalism. For practical
applications Wigner functions have the advantage to allow for a rather simple,
intuitive formulation of boundary conditions at device contacts or interfaces.
On the other hand, the Wigner equation is posed in a high dimensional phase
space which makes its numerical solution extremely costly. As a compromise,
fluid-type models can provide a reasonable approximation and is hence often
used. Since one only computes the measurable physical quantities in these
fluid models, they are computationable cheap. Moreover, classical boundary
conditions can also be employed here.

The multi-scale character in semiconductor device modeling becomes man-
ifest in a hierarchy of models that differ in mathematical and numerical com-
plexity and incorporate physical phenomena on various time and length scales.
The microscopic models clearly include the highest amount of information, but
they involve the highly oscilatory Schrödinger and Wigner functions. How-
ever, the macroscopic variables of interest for practitioners (like particle and
current densities) are typically much smoother. Hence, it is very attractive
(particularly with respect to reduce numerical costs) to settle for simplified
macroscopic quantum transport models. Scaling limits allow to relate these
models and to obtain important information for the range of validity (and
the limitations) of the reduced macro-scale models. Starting from Wigner-
Boltzmann-type equations it is indeed possible to obtain a unified derivation
of quantum hydrodynamic and quantum diffusion models.

2 Microscopic picture I: Schrödinger models

This section is concerned with Schrödinger-Poisson models for semiconductor
device simulations. Such models are only applicable in the ballistic regime,
i.e. to devices or subregions of devices, where the quantum mechanical trans-
port is the dominant phenomenon and scattering plays only a minor role.
As particular examples we name interferences in quantum waveguides, the
tunneling through nano-scale semiconductor heterostructures (in a resonant
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tunneling diode, e.g.), and the ballistic transport along nano-size channels of
MOSFETs. In all of these examples we are dealing with open quantum sys-
tems, refering to a model on a finite geometry along with open boundaries (this
contrasts with the situation in Sect. 3.1, where we shall consider collisional
open quantum systems). Here, the transport model (the Schrödinger equa-
tion, e.g.) is posed on a finite domain Ω ⊂ Rd (d being the space dimension).
At the device contacts or interfaces open boundary conditions are specified,
such that an incoming current can be prescribed and outgoing electron waves
will not be reflected at such boundaries.

2.1 Quantum waveguide simulations

In this subsection we discuss simulation models for quantum waveguides.
These are novel electronic switches of nanoscale dimensions. They are made of
several different layers of semiconductor materials such that the electron flow
is confined to small channels or waveguides. Due to their sandwiched structure
the relevant geometry for the electron current is essentially two dimensional.
Figure 2.1 shows the example of a T-shaped quantum interference transistor.
The actual structure can be realized as an etched layer of GaAs between two
layers of doped AlGaAs (cf. [Ram02]). Applying an external potential at the
gate (i.e. above the shaded portion of the stub, the “allowed region” for the
electrons, and hence the geometry (in particular the stub length) can be mod-
ified. This allows to control the current flow through such an electronic device.
It makes it a switch, which resambles a transistor – but on a nano-scale. Such
a device shows sharp peaks in conductance that are due to the presence of
bound states in the stub (see Fig. 2.2, 2.3). It is expected that these novel
devices will operate at low power and high speed.

The electron transport through a quantum waveguide can be modeled
in good approximation by a two dimensional, time dependent Schrödinger-
Poisson system for the wave functions ψλ(x, t), indexed by the energy variable
λ ∈ Λ ⊂ R. The (possibly time-dependent) spatial domain Ω ⊂ R2 consists
of (very long) leads and the active switching region (e.g. T-shaped as in Fig.
2.1). In typical applications electrons are continuously fed into the leads as
plane waves ψpwλ . The Schrödinger model now reads

i
∂ψλ
∂t

= −1
2
∆ψλ + V (x, t)ψλ, x ∈ Ω, λ ∈ Λ, t > 0. (2.1)

The potential V = Ve+Vs consists of an external, applied potential Ve and the
selfconsistent potential satisfying the Poisson equation with Dirichlet bound-
ary conditions:

−∆Vs(x, t) = n(x, t) =
∫
Λ

|ψλ(x, t)|2g(λ) dλ, x ∈ Ω, (2.2)

Vs = 0, on ∂Ω.



334 A. Arnold, A. Jüngel
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Fig. 2.1. T-shaped geometry Ω ⊂ R2 of a quantum interference transistor with
source and drain contacts to the left and right of the channel. Applying a gate
voltage above the stub allows to modify the stub length from L1 to L2 and hence
to switch the transistor between the on- and off-states.

Here, n is the spatial electron density and g(λ) denotes the prescribed statis-
tics of the injected waves (Fermi-Dirac, e.g.). In the simplest case (i.e. a 1D
approximation) open or “transparent” boundary conditions at the contacts or
interfaces take the form

∂

∂η
(ψλ − ψpwλ ) = −e−iπ/4

√
∂t (ψλ − ψpwλ ), λ ∈ Λ, (2.3)

where η denotes the unit outward normal vector at each interface.
√
∂t is

the fractional time derivative of order 1
2 , and it can be rewritten as a time-

convolution of the boundary data with the kernel t−3/2. For the derivation of
the 2D-variant of such transparent boundary conditions and the mathematical
analysis of this coupled model (2.1)-(2.3) we refer to [BMP05, Ar01].

The discretization of such a model poses several big numerical challenges,
both for stationary and for transient simulations: Firstly, the wave function is
highly oscillatory for larger energies, while the macroscopic variables of inter-
est (particle density n and potential V ) are rather smooth. Secondly, solutions
to (2.1)-(2.3) can exhibit sharp peaks in the curve of conductance versus injec-
tion energy (both in quantum waveguides and in resonant tunneling diodes).
To cope with these two problems, WKB-type discretization schemes for the
1D stationary analogue of the above model and adaptive energy grids (for
λ ∈ Λ) were devised in [BP06].
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Fig. 2.2. Stationary Schrödinger wave function for T-shaped waveguide with short
stub (i.e. L1 = 32 nm) – “off state”

Thirdly, the numerical discretization of the transparent boundary condi-
tion (2.3) is very delicate in the time dependent case, as it may easily ren-
der the initial-boundary value problem unstable and introduce hugh spuri-
ous wave reflections. Based on a Crank-Nicolson finite difference discretiza-
tion of the Schrödinger equation, unconditionally stable discrete transparent
boundary conditions were developed in [Arn98] for the one-dimensional and in
[AES03, AS06] for the two-dimensional problem. An extension of such discrete
open boundary conditions for (multiband) kp-Schrödinger equations appear-
ing in the simulation of quantum heterostructures were developed in [ZA*05].

To close this subsection we present some first simulations of the electron
flow through the T-shaped waveguide from Fig. 2.1 with the dimensions X =
60 nm, Y1 = 20 nm. These calculations are based on the linear Schrödinger
equation for one wave function with V ≡ 0 and the injection of a mono-
energetic plane wave with 130 meV, entering in the transparent boundary
condition (2.3). The simulation was based on a compact forth order finite
difference scheme (“Numerov scheme”) and a Crank-Nicolson discretization
in time [AS06].

Important device data for practitioners are the current-voltage (I-V) char-
acteristics, the ratio between the on- and the (residual) off-current as well as
the switching time between these two stationary states. Depending on the size
and shape of the stub, the electron current is either reflected (off-state of the
device, see Fig. 2.2) or it can flow through the device (on-state, see Fig. 2.3).
Starting from the stationary state in Fig. 2.2, the swiching of the device was
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Fig. 2.3. Stationary Schrödinger wave function for T-shaped waveguide with long
stub (i.e. L2 = 40.5 nm) – “on state”

realized by an instantaneous extension of the stub length from L1 = 32 nm to
L2 = 40.5 nm. After a transient phase the new steady state Fig. 2.3 is reached
after about 4 ps.

3 Microscopic picture II: Wigner models

In this section we shall present and discuss semiconductor models that are
based on the quantum-kinetic Wigner formalism. As mentioned before there
are two main reasons for using this framework in applications (indeed, mostly
for time dependent problems): In contrast to Schrödinger models the Wigner
picture allows to include the modeling of scattering phenomena in the form
of a quantum Boltzmann equation. Secondly, this quantum-kinetic framework
makes is easier to formulate reasonable boundary conditions at the device
contacts, using guidance and inspiration from classical kinetic theory [Fre87].
This approach makes indeed sense, as quantum effects are not important close
to the (typically highly doped) contact regions.

The Wigner function f = f(x, v, t) is one of several equivalent formalisms
to describe the (mixed) state of a physical quantum system (cf. [Wig32]). It
is a real-valued quasi-distribution function in the position-momentum (x, p)
phase space at time t. In collision-free regimes, the quantum equivalent of the
Liouville equation of classical kinetic theory governs the time evolution of f .
In the d-dimensional whole space it reads
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∂tf + p · ∇xf + θ[V ]f = 0, t > 0, (x, p) ∈ R2d, (3.1)

where the (real-valued) potential V = V (x) enters through the pseudo-
differential operator θ[V ] defined by

(θ[V ]f)(x, p, t) =
i

(2π)d/2

∫
Rd

δV (x, η)Fp→ηf(x, η, t)eip·η dη

=
i

(2π)d

∫
Rd

∫
Rd

δV (x, η)f(x, p,, t)ei(p−p,)·η dp, dη. (3.2)

Here, δV (x, η) := 1
ε

[
V (x + εη

2 )− V (x− εη
2 )

]
, and Fp→ηf denotes the Fourier

transform of f with respect to p, and ε > 0 is the scaled Planck constant.
For semiconductor device simulations it is crucial to include the self-

consistent potential. The electrostatic potential V (x, t) is hence time-dependent
and obtained as a solution to the Poisson equation

∆xV (x, t) = n(x, t)− C(x), (3.3)

with the particle density

n(x, t) =
∫

Rd

f(x, p, t) dp. (3.4)

Here, C(x) denotes the time-independent doping profile of the device, i.e. the
spatial density of the doping ions implanted into the semiconductor crystal.

3.1 Wigner models for open quantum systems

Until now we only considered the ballistic and hence reversible quantum trans-
port of the electrons in a one-particle (Hartree) approximation. Such purely
ballistic models (either in the Wigner or Schrödinger framework - cf. Sect. 2)
are useful semiconductor models for device lengths in the order of the elec-
trons’ mean free path. For larger devices, however, scattering phenomena be-
tween electrons and phonons (i.e. thermal vibrations of the crystal lattice) or
among the electrons have to be taken into account. In this case an appropri-
ate collision operator Q(f) has to be added as a right hand side of (3.1). In
contrast to Sect. 2 the term open quantum system refers here to the interac-
tion of our considered electron ensemble with some ‘environment’ (an external
phonon bath, e.g.) and not to the influence of the boundaries or contacts.

For the classical semiconductor Boltzmann equation excellent models for
the most important collisional mechanisms have been derived (cf. [MRS90])
and are incorporated into today’s commercial simulation tools. In quantum
kinetic theory, however, realistic and numerically usable collison models are
much less developed. In contrast to classical kinetic theory, quantum collision
operators are actually non-local in time (cf. the Levinson equation [Lev70] as
one possible model). However, since most of the current numerical simulations
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involve only local in time approximations, we shall confine our discussion to
such collision operators. The three most used models are firstly relaxation
time approximations of the form

Q(f) =
f0 − f
τ

, (3.5)

with some appropriate steady state f0 and the relaxation time τ > 0 [KK*89,
Arn95a]. Secondly, many applications (cf. [Str86, GG*93, RA05]) use quantum
Fokker-Planck models:

Q(f) = βdivp(pf) + σ∆pf + 2γdivp(∇xf) + α∆xf, (3.6)

(cf. [CL83, CE*00] for a derivation) with the friction parameter β ≥ 0. The
non-negative coefficients α, γ, σ constitute the phase-space diffusion matrix of
the system. We remark that one would have α = γ = 0 in the Fokker-Planck
equation of classical mechanics [Ris84].

As a third option, the Wigner equation (3.1) is often augmented by a semi-
classical Boltzmann operator [KN05]. However, since this model is quantum
mechanically not consistent, we shall not discuss it any further. Finally, we
mention the quantum-BGK type models [DR03] that were recently introduced
for deriving quantum hydrodynamics (cf. Sect. 4.2 for details).

At the end of this section we briefly list the numerical methods developed
so far for Wigner function-based device simulations. Virtually all simulations
were carried out for one dimensional resonant tunneling diodes. The earli-
est approaches were based on finite difference schemes for the relaxation-time
Wigner-Poisson system [Fre87, KK*89]. Spectral collocation methods were de-
signed as an efficient alternative to discretize the non-local pseudo-differential
operator θ[V ] (cf. [Rin90]). In [AR95] this approach was combined with an
operator splitting between the transport term p · ∇x and θ[V ] which has
also been common practice for Boltzmann type equations. This mixed op-
erator splitting/spectral collocation technique was recently extended to the
Wigner-Fokker-Planck system in [DA06]. In [KN05] the classical Monte Carlo
method was extended to Wigner models, and it has the potential to make
multi-dimensional simulations feasible. Since the Wigner function takes both
positive and negative values, novel algorithms for particle creation and anni-
hilation had to be developed within this Monte Carlo approach.

3.2 Open quantum systems in Lindblad form

Since the Wigner function takes also negative values, it is a-priori not clear
why the macroscopic particle density satisfies n(x, t) :=

∫
f(x, p, t) dp ≥

0 ∀x, t. This physically important non-negativity is a consequence of the non-
negativity of the density matrix (operator) that is associated with a Wigner
function: Let ρ̂ be an operator on L2(Rd) with integral kernel ρ(x, x′) = ρ ∈
L2(R2d), i.e.
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(ρ̂φ)(x) =
∫

Rd

ρ(x, x′)φ(x′) dx′ ∀φ ∈ L2(Rd). (3.7)

The Wigner transform of the density matrix ρ̂ is now defined as the following
Wigner function f (cf. [Wig32, LP93]):

W (ρ̂)(x, p) := f(x, p) =
1

(2π)d

∫
Rd

ρ(x+
ε

2
η, x− ε

2
η)eiη·p dη. (3.8)

In terms of density matrices, a mixed quantum states is described as a
positive trace class operator on L2(Rd) (i.e. ρ̂ ∈ I1, ρ̂ ≥ 0), mostly with the
normalization Trρ̂ = 1, where Tr denotes the operator trace. The positivity
of ρ̂ as an operator then implies pointwise positivity of the particle density

n(x) := ρ(x, x) ≥ 0, x ∈ Rd, (3.9)

and of the corresponding kinetic energy

Ekin :=
1
2

∫
R2d

|p|2f(x, p) dxdp =
ε2

2
Tr(−∆ρ̂) =

ε2

2
Tr(

√
−∆ρ̂

√
−∆) ≥ 0.

(3.10)
The time evolution of a density matrix is given by the Heisenberg-von

Neumann equation, obtained by applying the Wigner transform (3.7), (3.8)
to the Wigner equation (3.1). It reads

iερ̂t = H(t)ρ̂− ρ̂H(t), t > 0,
ρ̂(t = 0) = ρ̂I ,

(3.11)

with the (possibly time dependent) Hamiltonian H(t) = − ε2

2 ∆+ V (x, t). For
an open quantum system the right hand side of (3.11) has to be augmented
by a non-Hamiltonian term iA(ρ̂). It is well known from [Lin76] that such
quantum evolution equations preserve the positivity of ρ̂(t) (more precisely,
it is actually the complete positivity) if and only if the dissipative term A(ρ̂)
satisfies the following structural condition. It must be possible to represent it
in the so-called Lindblad form:

A(ρ̂) =
∑
j∈J

L∗
jLj ρ̂+ ρ̂L∗

jLj − 2Lj ρ̂L∗
j , (3.12)

with some appropriate (but typically not uniquely defined) Lindblad operators
Lj , and a finite or infinite index set J ⊂ N. Furthermore, such models then
preserve the mass of the system, i.e. Tr ρ̂(t) = Tr ρ̂I , t ≥ 0.

For the relaxation time Wigner equation we have A(ρ̂) = bρ0−bρ
τ with some

steady state ρ̂0. Under the natural assumption Tr ρ̂I = Tr ρ̂0 = 1, and if the
relaxation time τ is constant, we have (cf. [Arn95b])

A(ρ̂) =
1
τ
(ρ̂0 Tr ρ̂− ρ̂Tr ρ̂0) =

∑
j,k∈N

L∗
jkLjkρ̂+ ρ̂L∗

jkLjk − 2Ljkρ̂L∗
jk,
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with the Lindblad operators Ljk =
√
µk/τ |ϕk >< ϕj |. Here, (µk, ϕk)k∈N

denotes the eigenpairs of ρ̂0. Hence, the relaxation time Wigner equation
(possibly with a selfconsistent potential) is an admissible open quantum model
in Lindblad form.

For the Wigner-Fokker-Planck (WFP) equation with Q(f) from (3.6), the
Lindblad condition (3.12) holds iff(

α γ + iε
4 β

γ − iε
4 β σ

)
≥ 0. (3.13)

Under this assumption the WFP model is also quantum mechanically cor-
rect. Here, the Lindblad operators are linear combinations of xj and ∂xj

(cf. [AL*04]).

3.3 Analysis of the Wigner-Poisson-Fokker-Planck system

In this section we will sketch the different approaches to the well-posedness
analysis for the Cauchy problem of the Wigner-Poisson-Fokker-Planck (WPFP)
system in three dimensions:

∂tf + p·∇xf + θ[V ]f = βdivp(pf) + σ∆pf + 2γdivp(∇xf) + α∆xf, t > 0,
f(x, p, t = 0) = fI(x, p), (x, p) ∈ R6, (3.14)

∆xV (x, t) = n(x, t) =
∫

R3
w(x, p, t) dp.

For simplicity we set here all physical constants equal to 1, and we chose
C ≡ 0 as this would not change the subsequent analysis. Also, the Lindblad
condition (3.13) is assumed to hold in the sequel.

First we remark that the WPFP model cannot be writen as an equiva-
lent system of countably many Schrödinger equations coupled to the Poisson
equation (and this is typical for open quantum systems). Therefore, the ap-
proach of [BM91] employed in the well-posedness analysis of the (reversible)
Wigner-Poisson system cannot be adapted to WPFP. Hence, there are two re-
maining frameworks for the analysis: the Wigner function and density matrix
formalisms, which we shall both briefly discuss here.

On the quantum kinetic level there are two main analytic difficulties for
the nonlinear WPFP system. Since the natural analytic setting for Wigner
functions is f(., ., t) ∈ L2(R6) we cannot expect that f(x, ., t) ∈ L1(R3) holds.
Hence, the definition of the particle density by n(x, t) =

∫
R3 f(x, p, t) dp is

purely formal. The second key problem is the lack of usable a-priori estimates
on the Wigner function which would be needed to prove global-in-time exis-
tence of WPFP-solutions: The only useful (and almost trivial) estimate is

||f(t)||L2(R6) ≤ e
3
2βt||fI ||L2(R6), t ≥ 0. (3.15)

The other physically obvious conservation laws
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f(x, p, t) dxdp = const (mass conservation),

and a simple energy balance involving the kinetic energy Ekin = 1
2

∫
|p|2

f(x, p, t) dxdp both include functionals of f that are, a-priori, not necessarily
positive and hence not useable on the quantum kinetic level.

Dispersive effects in quantum kinetic equations. Both of the described
analytic problems – proper definition of the particle density n (or, equivalently,
the electric field E = ∇xV ) and additional a-priori estimates – can be coped
with by exploiting dispersive effects of the free-streaming operator jointly with
the parabolic regularization of the Fokker-Planck term. Such dispersive tech-
niques for kinetic equations were first developed for the Vlasov-Poisson system
(cf. [Per96]) and then adapted to the Vlasov-Poisson-Fokker-Planck equation
in [Cas98]. In [ADM04, ADM05] these tools were extended to quantum ki-
netic theory. They yield first of all an a-priori estimate for the field E(t) in
terms of ‖f(t)‖L2(R6) only (remember (3.15) !). This estimate allows a novel
definition of the macroscopic quantities (namely, the self-consistent field, the
potential, and the density), which, in contrast to the definition (3.3), (3.4) is
now non-local in time. This way, no p-integrability of f is needed.

Next we illustrate these dispersive tools in some more detail. With G(t) =
G(x, p, x′, p′, t) denoting the Green’s function of the linear part of (3.14)
(cf. [SC*02]), the (linear) WFP equation can be rewritten as

f(x, p, t) =
∫∫

G(t)fI(x′, p′)dx′dp′ (3.16)

+
∫ t

0

∫∫
G(s)(θ[V ]f)(x′, p′, t− s) dx′dp′ds, t ≥ 0.

According to the two terms on the r.h.s. we split the electric field

E(x, t) = ∇xV (x, t) =
x

4π|x|3 ∗ n(x, t)

into E = E0 + E1 with

E0(x, t) =
x

4π|x|3 ∗x
∫∫∫

G(t)fI(x′, p′)dx′dp′dp, (3.17)

E1(x, t) =
x

4π|x|3 ∗x
∫ t

0

∫∫∫
G(s)(θ[V ]f)(x′, p′, t− s) dx′dp′dpds.

With some tricky reformulation this last equation can be rewritten as

(E1)j(x, t) (3.18)

=
1
4π

3∑
k=1

3xjxk − δjk|x|2
|x|5 ∗x

∫ t

0

ϑ(s)
R(s)3/2

N
(

x√
R(s)

)
∗x Fk[f ](x, t, s) ds,
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j = 1, 2, 3; with

Fk[f ](x, t, s) :=
∫

(Γk[E0 + E1]f) (x− ϑ(s)p, p, t− s) dp, k = 1, 2, 3,

N (x) := (2π)−3/2 exp
(
−|x|

2

2

)
,

ϑ(t) :=
1− e−βt

β
; ϑ(t) := t, if β = 0,

R(t) := 2αt+ σ

(
4e−βt − e−2βt + 2βt− 3

β3

)
+ 4γ

(
e−βt + βt− 1

β2

)
,

and the (vector valued) pseudo-differential operator Γ [E] is related to θ[V ] by

θ[V ]f(x, p) = divp (Γ [∇xV ]f) (x, p).

Notice that (3.18) is a closed equation (more precisely a linear Volterra inte-
gral equation of the second kind) for the self-consistent electric field E1 ∈ R3,
for any given Wigner trajectory f ∈ C([0, T ];L2(R6)).

These motivations lead to our new definition of the Hartree-potential:
Definition 3.1 (New definition of mean-field quantities) To a Wigner
trajectory f ∈ C([0, T ];L2(R6)) we associate

• the field E[f ] := E0 +E1[f ], with E0 given by (3.17), and E1[f ] the unique
solution of (3.18),

• the potential V [f ] := V0 + V1[f ] with

V0(x, t) :=
1
4π

3∑
i=1

xi
|x|3 ∗x (E0)i(x, t), (3.19)

V1[f ](x, t) :=
1
4π

3∑
i=1

xi
|x|3 ∗x (E1[f ])i(x, t), (3.20)

• and the position density n[f ] := divE[f ] (at least in a distributional sense).

In contrast to the standard definitions (3.3), (3.4), these new definitions
are non-local in time. Also, the map f �→ V [f ] is now non-linear. For a given
Wigner trajectory these two definitions clearly differ in general. However, they
coincide if f is the solution of the WPFP system. These new definitions of the
self-consistent field and potential have the advantage that they only require
f ∈ C([0, T ];L2(R6)) and not f(x, . , t) ∈ L1(R3). If f(t = 0) only lies in
L2(R6), the corresponding field and the potential will consequently only be
defined for t > 0.

The equation (3.18) now easily yields the announced ‖E(t)‖L2(R3)–estimate
for t ∈ (0,∞) in terms of fI and ‖f(t)‖L2(R6) only. The fixed-point map
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f �→ V [f ] �→ f̃ (where the last steps refers to solving the linear WFP equa-
tion (3.16) with given V (t), t ≥ 0) is now contractive in C([0, T ];L2(R6)) and
it yields the global mild solution for the WPFP system (3.14).

Without going into details we briefly list alternative kinetic approaches
for the WPFP system that were developed in the last few years: In [ADM04]
p-weighted L2-spaces were used to make the definition of the particle den-
sity by n =

∫
f dp meaningful. In [AL*04, CLN04], instead, an L1-setting

is chosen with the same motivation. The pseudo-differential operator θ[V ] is
rewritten there as a convolution operator in the p-variable. We remark that
such kinetic strategies are valuable as they can, possibly, be extended to the
WPFP boundary value problems used for semiconductor device modeling.

The quantum Fokker-Planck system for density matrices. Using the
Wigner transforms we first rewrite the WPFP system (3.14) for the integral
kernel ρ(x, x′, t) from (3.7):

ρt = −iHxρ+ iHx′ρ− β

2
(x − x′) · (∇x −∇x′)ρ (3.21)

+ α|∇x +∇x′ |2ρ− σ|x− x′|2ρ+ 2iγ(x− x′) · (∇x +∇x′)ρ,

coupled to the Poisson equation for V , where Hx′ is a copy of the Hamiltonian
H = Hx = − 1

2∆x +V (x, t), but acting on the x′–variable. The corresponding
density matrix ρ̂ then satisfies the evolution equation (3.11), augmented with
a r.h.s. iA(ρ̂) in Lindblad form (3.12) and coupled to the Poisson equation.

For the whole space case the density matrix formalism provides the most
elegant analytic setup. Motivated by the kinetic energy Ekin(ρ̂) defined in
(3.10) we define the “energy space”

E := {ρ̂ ∈ I1 |
√

1−∆ρ̂
√

1−∆ ∈ I1}.

For physical quantum states (i.e. ρ̂ ≥ 0) we then have

‖ρ̂‖E = Tr ρ̂+ Ekin(ρ̂).

The simple estimate
‖n‖L1(R3) ≤ ‖ρ̂‖I1

gives a rigorous meaning (in L1) to the definition of the particle density (3.9),
and the Lieb-Thirring-type estimate (cf. [Arn95a, LP93]) yields

‖n‖L3(R3) ≤ C‖ρ̂‖E .

Therefore the nonlinearity [V (x, t)−V (x′, t)]ρ(x, x′, t) in (3.21) is locally Lip-
schitz in E . Since the linear part of (3.21) generates a mass conserving semi-
group on E , standard semigroup theory yields a unique local-in-time solu-
tion to (3.21). A-priori estimates on the mass Tr (ρ̂) and the total energy
Etot(ρ̂) = Ekin(ρ̂) + 1

2‖∇xV [ρ̂]‖2
L2, due to the energy balance
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d

dt
Etot = 3σTr ρ̂I − 2βEkin(t)− α‖n(t)‖2

L2,

then shows that there exists a unique global mild solution of (3.21) in
C([0,∞); E) (cf. [AS04]).

4 Macroscopic picture: fluid-type models

The aim of this section is to derive macroscopic quantum models from the
following Wigner-Boltzmann equation for the distribution function f(x, p, t):

∂tf + p · ∇xf + θ[V ]f = Q(f), f(x, p, 0) = fI(x, p), (x, p) ∈ R2d, t > 0.
(4.1)

Here, (x, p) denotes the position-momentum variables of the phase space, t > 0
is the time, d ≥ 1 the dimension, Q(f) a collision operator, and θ[V ]f is the
pseudo-differential operator defined by (3.2). Notice that in the semi-classical
limit ε→ 0, the term θ[V ]f converges to ∇xV ·∇pf and thus, (4.1) reduces to
the semi-classical Vlasov equation [MRS90]. The electric potential V = V (x, t)
is selfconsistently coupled to the Wigner function f via Poisson’s equation

λ2
L∆V =

∫
Rd

fdp− C, (4.2)

where λL is the scaled Debye length and C = C(x) the doping concentration
characterizing the semiconductor device [Jün01].

In classical fluiddynamics, macroscopic models can be derived from the
Boltzmann equation by using a moment method. The idea is to multiply the
kinetic equation by some monomials κi(p) and to integrate the equation over
the momentum space. This yields the so-called moment equations. Usually,
not all integrals can be expressed in terms of the moments (which is called
the closure problem) and an additional procedure is necessary in order to
close the equations. Depending on the number of moments which are taken,
a variety of fluiddynamical models can be derived [BD96, Lev96]. The aim of
this section is to mimic this procedure in the quantum case. Figure 4.1 shows
the resulting models arising from special choices of the set of monomials. We
will discuss these models in detail in the following subsections. For this, we
need to specify the collision operator Q(f) in (4.1). First we introduce in the
following subsection the so-called quantum Maxwellian.

4.1 Definition of the quantum Maxwellian

In order to define the quantum Maxwellian, we use the Wigner transform
W (ρ̂) of an integral operator ρ̂ on L2(Rd) as defined in (3.7), (3.8). Its inverse
W−1, also called Weyl quantization, is defined as an operator on L2(Rd):
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Wigner-Boltzmann

quantum moment hydrodynamic 

models, k(p) = (k0(p),...,kN(p))

k(p) = (1,p,|p|2/2)

k(p) = (1,p)

quantum hydrodynamic 
equations

isothermal quantum hydrodynamic 
equations

quantum moment diffusion models

k (p) = (k0(p),...,kN(p)), ki(p) even

k(p) = (1,|p|2/2)

k(p) = (1)

quantum energy-transport 
equations

quantum drift-diffusion equations

moment method,
entropy minimization

moment method,
Chapman-Enskog

Fig. 4.1. Multiscale hierarchy of macroscopic quantum models.

(W−1(f)φ)(x) =
∫

R2d

f
(x+ y

2

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce as in [DR03] the quantum
exponential and the quantum logarithm formally by Exp f = W (expW−1(f))
and Log f = W (logW−1(f)), where exp and log are the operator exponential
and logarithm, respectively.

Inspired by Levermore’s moment method for the classical case [Lev96],
Degond and Ringhofer [DR03] have defined the quantum Maxwellian by us-
ing the entropy minimization principle. Let a quantum mechanical state be
described by the Wigner function f solving (4.1). Then its relative quantum
(von Neumann) entropy is given by

H(f) =
∫

R2d

f(x, p, ·)
(
(Log f)(x, p, ·)− 1 +

|p|2
2

+ V (x, ·)
)
dxdp.

Whereas the classical entropy is a function on the configuration space, the
above quantum entropy at given time is a real number, underlining the non-
local nature of quantum mechanics.

We define the quantum Maxwellian Mf for some given function f(x, p, t)
as the solution of the constrained minimization problem

H(Mf) = min
{
H(f̂) :

∫
Rd

f̂(x, p, t)κi(p)dp = mi(x, t) for all x, t, i
}
, (4.3)

where κi(p) are some monomials in p and mi(x, t) are the moments of f ,

mi(x, t) = 〈f(x, p, t)κi(p)〉, i = 0, . . . , N, (4.4)

where we have used the notation 〈g(p)〉 =
∫
g(p)dp for functions g(p). The

formal solution of this minimization problem (if it exists) is given by Mf =
Exp (λ̃ ·κ− 1

2 |p|2−V (x, ·)), where κ = (κ0, . . . , κN ), and λ̃ = (λ̃0, . . . , λ̃N ) are
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some Lagrange multipliers. If κ0(p) = 1 and κ2(p) = 1
2 |p|2, setting λ0 = λ̃0−V ,

λ2 = λ̃2 − 1 and λi = λ̃i otherwise, we can write

Mf = Exp (λ · κ(p)). (4.5)

4.2 Quantum moment hydrodynamic models

In this section we will derive the quantum moment hydrodynamic equations
from the Wigner-Boltzmann equation (4.1) with dominant elastic scattering
employing a moment method. For a special choice of the moments, the quan-
tum hydrodynamic equations are obtained. If a Fokker-Planck approach is
taken for the inelastic collision operator, viscous corrections to the quantum
hydrodynamic model are derived.

General quantum moment hydrodynamics. Introducing the hydrody-
namic scaling x′ = αx, t′ = αt, where 0 < α� 1 measures the typical energy
gain or loss during an electron-phonon collision, the Wigner-Boltzmann equa-
tion for (fα, Vα) becomes (omitting the primes)

α∂tfα + α(p · ∇xfα + θ[Vα]fα) = Q(fα), (x, p, t) ∈ R2d × (0,∞), (4.6)

together with an initial condition for fα and the Poisson equation (4.2) for
Vα. The collision operator is assumed to split into two parts:

Q(fα) = Q0(fα) + αQ1(fα),

where the first (dominant) part models elastic collisions and the second part
models inelastic scattering processes. The operator Q0 is supposed to satisfy
the following properties:

(i) If Q0(f) = 0 then f = Mf , (ii) 〈Q0(f)κ(p)〉 = 0, (4.7)

where Mf is the quantum Maxwellian introduced in section 4.1 and κ(p) is a
vector of some monomials κi(p). If κ(p) = (1, p, |p|2/2), condition (ii) expresses
the conservation of mass, momentum, and energy, which is meaningful for
elastic collisions. An example fulfilling conditions (i) and (ii) is the BGK-type
operator [BGK54] Q0(f) = (Mf − f)/τ with the relaxation time τ > 0. An
example of an inelastic collision operator Q1 will be given in the subsection
“Viscous quantum hydrodynamic equations” below.

In the following we proceed similarly as in [DR03]. The moment equations
are obtained by multiplying (4.6) by κ(p)/α, integrating over the momentum
space, and using condition (ii):

∂t〈κ(p)fα〉+ divx〈κ(p)pfα〉+ 〈κ(p)θ[Vα]fα〉 = 〈κ(p)Q1(fα)〉.

The second integral on the left-hand side of the moment equations cannot be
expressed in terms of the moments; this is called the closure problem. We can



Multi-Scale Modeling of Quantum Semiconductor Devices 347

solve this problem by letting α → 0. Indeed, the formal limit α → 0 in (4.6)
gives Q0(f) = 0 where f = limα→0 fα. Hence, by condition (i), f = Mf . Then
the formal limit α→ 0 in the above moment equations yields

∂tm+ divx〈κ(p)pMf 〉+ 〈κ(p)θ[V ]Mf 〉 = 〈κ(p)Q1(Mf )〉, (4.8)

where m = 〈κ(p)Mf 〉 are the moments (see (4.4)) and V = limα→0 Vα solves
(4.2) with f = Mf . The above equations have to be solved for x ∈ Rd and t >
0, and the initial condition becomes m(·, 0) = 〈κ(p)MfI 〉. In the classical case,
Levermore [Lev96] has shown that the moment equations are symmetrizable
and hyperbolic. In the present situation, this concept of hyperbolicity cannot
be used since (4.8) is not a partial differential equation but a differential
equation with non-local operators of the type λ �→ 〈Exp (λ · κ(p))〉.

The system (4.8) possesses the following (formal) property: If 1 and 1
2 |p|2

are included in the set of monomials and if the inelastic collision operator
conserves mass and dissipates energy, i.e. 〈Q1(f)〉 = 0 and 〈1

2 |p|2Q1(f)〉 ≤ 0
for all functions f , the total energy

E(t) =
∫

R2d

(〈1
2
|p|2Mf

〉
+
λ2
L

2
|∇xV |2

)
dxdp

is nonincreasing. To see this, we notice that for all (regular) functions f ,

〈θ[V ]f〉 = 0, 〈pθ[V ]f〉 = −〈f〉∇xV, 〈1
2 |p|2θ[V ]f〉 = −〈pf〉 · ∇xV. (4.9)

From the moment equations

∂t〈Mf 〉+ divx〈pMf 〉 = 0, ∂t〈1
2 |p|2Mf 〉+ divx〈1

2 |p|2pMf〉 ≤ 〈pMf 〉 · ∇xV

and the Poisson equation (4.2) we obtain formally

dE

dt
≤

∫
Rd

(〈pMf 〉 · ∇xV + λ2
L∇xV · ∂t∇xV )dx

=
∫

Rd

(〈pMf 〉 · ∇xV − V ∂t〈Mf 〉)dx

=
∫

Rd

(〈pMf 〉 · ∇xV + V divx〈pMf〉)dx = 0,

proving the monotonicity of the total energy.
In the following section we will specify the choice of the monomials, which

enables us to give a more explicit expression of the system (4.8).

Quantum hydrodynamic equations. In classical fluiddynamics, the Euler
equations are derived from the Boltzmann equation by using the monomials
κ(p) = (1, p, |p|2/2) in the moment equations. In this subsection, we derive the
quantum counterpart, the so-called quantum hydrodynamic (QHD) equations
(see [DR03, JMM05]).
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Let κ(p) = (1, p, |p|2/2). The moments n := m0, nu := m1, and ne := m2

are called the particle, current, and energy densities, respectively. We also
define the velocity u = nu/n and the energy e = ne/n. In this situation, the
quantum Maxwellian can be written as Mf = Exp (λ0 + λ1 · p + λ2|p|2) or,
equivalently, as

Mf (x, t) = Exp
(
A(x, t) − |p− w(x, t)|2

2T (x, t)

)
, (4.10)

where A, w, and T are defined in terms of λ0, λ1, and λ2. In the following we
will give a more explicit expression for the quantum moment equations (4.8).

Using (4.9) and observing that the second and third moments can be
written as

〈p⊗ pMf 〉 = P + nu⊗ u, where P = 〈(p− u)⊗ (p− u)Mf 〉,
〈1
2p|p|2Mf 〉 = S + (P + neI)u, where S = 〈1

2 (p− u)|p− u|2Mf〉,

the quantum moment equations (4.8) become

∂tn+ div(nu) = 〈Q1(Mf)〉, (4.11)
∂t(nu) + div(nu⊗ u) + divP − n∇V = 〈pQ1(Mf )〉, (4.12)

∂t(ne) + div
(
(P + neI)u

)
+ divS − nu · ∇V = 〈1

2 |p|2Q1(Mf )〉, (4.13)

where u⊗u denotes the matrix with components ujuk, P is the stress tensor,
S the (quantum) heat flux, and I is the identity matrix in Rd×d. The electric
potential is given by (4.2) with f = Mf or, in the above notation, by

λ2
L∆V = n− C(x). (4.14)

The above system, which is solved for x ∈ Rd and t > 0 with initial conditions
for n(·, 0), nu(·, 0), and ne(·, 0), is called the quantum hydrodynamic equations.
The quantum correction only appears in the terms P and S. We can derive an
explicit expression in the O(ε4) approximation. For this, we need to expand
the quantum Maxwellian Mf in terms of ε2. As the computations are quite
involved, we only sketch the expansion and refer to [JMM05] for details.

The quantum exponential can be expanded in terms of ε2 yielding Exp f =
ef − (ε2/8)efB + O(ε4), where B is a polynomial in the derivatives of f up
to second order. This allows for an expansion of the moments

(n, nu, ne) =
∫

Rd

Exp
(
A− |p− w|2

2T

)(
1, p,

1
2
|p|2

)
dp,

of the stress tensor

P = nTI +
ε2

12
n
{(d

2
+ 1

)
∇ logT ⊗∇ logT −∇ logT ⊗∇ logn

−∇ logn⊗∇ logT − (∇⊗∇) log(nT 2) +
R�R

T

}
(4.15)

+
ε2

12
Tdiv

(
n
∇ logT
T

)
I +O(ε4), (4.16)
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and of the quantum heat flux

S = − ε
2

12
n
{(d

2
+ 1

)
R∇ log

( n
T

)
+

(d
2

+ 2
)
divR+

3
2
∆u

}
+
ε2

12

(
d

2
+ 1

)
n
{
R∇ log

( n

T 2

)
+ divR

}
+O(ε4), (4.17)

where the matrix R with components Rij = ∂ui/∂xj − ∂uj/∂xi is the anti-
symmetric part of the velocity gradient and R� is the transpose of R. In the
semi-classical case ε = 0 the stress tensor reduces to the classical expression
P = nTI. The term S is purely quantum and vanishes if ε = 0. The energy
density is the sum of the thermal, kinetic, and quantum energy,

ne =
d

2
nT +

1
2
n|u|2 − ε2

24
n
{
∆ log n− 1

T
tr(R�R) +

d

2
|∇ logT |2 −∆ logT

−∇ logT · ∇ logn
}

+ O(ε4), (4.18)

where “tr” denotes the trace of a matrix.
A simplified quantum hydrodynamic model up to order O(ε4) can be ob-

tained under the assumptions that the inelastic collision part vanishes,Q1 = 0,
that the temperature is slowly varying, ∇ logT = O(ε2), and finally, that the
vorticity is small, R = O(ε2):

∂tn+ div(nu) = 0, (4.19)

∂t(nu) + div(nu⊗ u) +∇(nT )− ε2

12
div

(
n(∇⊗∇) logn

)
− n∇V = 0, (4.20)

∂t(ne) + div
(
(P + neI)u

)
− ε2

8
div(n∆u)− nu · ∇V = 0, (4.21)

with the stress tensor and energy density, respectively,

P = nTI − ε2

12
n(∇⊗∇) logn, ne =

d

2
nT +

1
2
n|u|2 − ε2

24
n∆ logn. (4.22)

We notice that if we choose κ(p) = (1, p), we obtain the isothermal quantum
hydrodynamic equations (4.19)-(4.20) with constant temperature T = 1.

The system (4.19)-(4.21) corresponds to Gardner’s QHD model except
for the dispersive velocity term (ε2/8)div(n∆u). The differences between our
QHD equations and Gardner’s model can be understood as follows. In both
approaches, closure is obtained by assuming that the Wigner function f is
in equilibrium. However, the notion of “equilibrium” is different. A quantum
system, which is characterized by its energy operator W−1(h), with the Weyl
quantization W−1 and the Hamiltonian h(p) = |p|2/2 + V (x), attains its
minimum of the relative (von Neumann) entropy in the mixed state with
Wigner function fQ = Exp (−h/T0). This state represents the unconstrained
quantum equilibrium. The expansion of fQ in terms of ε2 was first given in
[Wig32],
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fQ(x, p) = exp(−h(x, p)/T0)(1 + ε2f2(x, p)) +O(ε4)

with an appropriate function f2. As a definition of the quantum equilibrium
with moment constraints, Gardner employed this expansion of fQ and modified
it mimicking the moment-shift of the Gibbs state in the classical situation:

f̃Q(x, p) = n(x) exp
(
− h(x, p− u(x))

T (x)

)(
1 + ε2f2(x, p− u(x))

)
+O(ε4).

In contrast to the classical case, f̃Q is not the constrained minimizer for the
relative von Neumann entropy. On the other hand, the equilibrium state Mf

used here is a genuine minimizer of the relative entropy with respect to the
given moments. It has been shown in [JMM05] that both approaches coincide
if the temperature is constant and if only the particle density is prescribed as
a constraint.

Equations (4.19)-(4.22) are of hyperbolic-dispersive type, and the presence
of the nonlinear third-order differential operators in (4.20) and (4.21) makes
the analysis of the system quite difficult. In particular, it is not clear if the
electron density stays positive if it is positive initially. Since the total mass∫
ndx and the total energy,

E(t) =
∫

Rd

(d
2
nT +

1
2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇
√
n|2 +

ε2d

48
n|∇ logT |2

+
ε2

24T
n tr(R�R)

)
dx, (4.23)

are conserved quantities of the quantum moment equations (4.11)-(4.18) (if
Q1 = 0) [JMM05], this provides some Sobolev estimates. However, this esti-
mate seems to be not strong enough to prove the existence of weak solutions to
the system. Indeed, for a special model, a nonexistence result of weak solutions
to the QHD equations has been proved [GaJ01]. This result is valid for the
one-dimensional isothermal stationary equations, solved in a bounded inter-
val with Dirichlet boundary conditions for the electron density and boundary
conditions for the electric potential, the electric field, and the quantum Bohm
potential at the left interval point. Moreover, the term Tnx in (4.20) has
been replaced by a more general pressure function p(n) satisfying a growth
condition.

The nonexistence result is valid for sufficiently large current densities. On
the other hand, for “small” current densities fulfilling a subsonic condition
related to classical fluiddynamics, some existence results for the stationary
and transient equations have been achieved [HLMO05, Jün98, JL04, JMR02].

The QHD equations contain two parameters: the (scaled) Planck constant
ε and the Debye length λL. In special regimes of the physical parameters,
these constants may be small compared to one, such that the semi-classical
limit ε → 0 or the quasi-neutral limit λL → 0 may be of interest, leading to
simpler models. In fact, the QHD equations reduce in the semi-classical limit
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Fig. 4.2. Influence of the number of discretization points N on the current-voltage
characteristics for Gardner’s QHD equations (left) and for the new QHD model
(right).

to the Euler equations. This limit has been proved in the one-dimensional
isothermal steady state for sufficiently small current densities in [GyJ00] and
for arbitrary large current densities (after adding an ultra-diffusive term in
(4.20)) in [GaJ02]. The quasi-neutral limit in the isentropic QHD model has
been performed in [LL05], showing that the current density consists, for small
Debye length, of a divergence-free vector field connected with the incompress-
ible Euler equations and a highly oscillating gradient vector coming from high
electric fields.

The nonisothermal QHD equations have been first solved numerically by
Gardner using a finite-difference upwind method, considering the third-order
term as a perturbation of the classical Euler equations [Gar94]. However,
hyperbolic schemes have the disadvantage that the numerical diffusion may
influence the numerical solution considerably [JT06]. This can be seen in
Fig. 4.2 (left). The figure shows the current-voltage characteristics of a one-
dimensional resonant tunneling diode, computed from the QHD equations
(4.19)-(4.21) without the dispersive velocity term but including heat conduc-
tivity and relaxation-time terms of Baccarani-Wordeman type. The tunneling
diode consists of three regions: the high-doped contact regions and a low-
doped channel region. In the channel, a double-potential barrier is included
(see [JMM05] for the physical and numerical details).

Due to the numerical viscosity introduced by the upwind method, the solu-
tion of Gardner’s model strongly depends on the mesh size. On the other hand,
the solution to the new QHD equations (4.19)-(4.21) presented in [JMM05] is
much less mesh depending (see Fig. 4.2 right).

Notice that the main physical effect of a tunneling diode is that there
exists a region in which the current density is decreasing although the voltage
is increasing. This effect is called negative differential resistance and it is
employed, for instance, to devise high-frequency oscillator devices.
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The effect of the dispersive velocity term is a “smoothing” of the current-
voltage curve. In order to study the influence of this term, we replace the factor
ε2/8 in (4.21) by δ2/8 and choose various values for δ. Clearly, only δ = ε
corresponds to the physical situation. Figure 4.3 shows that the characteristics
become “smoother” for larger values of δ.

Viscous quantum hydrodynamic equations. We model the inelastic col-
lisions as electron interactions with a heat bath of oscillators in thermal equi-
librium (which models the semiconductor crystal). Castella et al. [CE*00]
derived for such a situation the collision operator

Q1(w) = ν∆xw + ν1∆pf + ν2divx(∇pf) +
1
τ

divp(pf).

The parameters ν, ν1, ν2 ≥ 0 constitute the phase-space diffusion matrix, and
τ > 0 is a friction parameter, the relaxation time. If ν = 0 and ν2 = 0, this
gives the Caldeira-Leggett operator [CL83]. This model allows to incorporate
inelastic scattering in the quantum hydrodynamic equations. Indeed, using
the definition of the moments, we compute

〈Q1(Mf)〉 = ν∆xn, 〈pQ1(Mf )〉 = ν∆x(nu)− ν2∇xn−
nu

τ
,

〈1
2 |p|2Q1(Mf )〉 = ν∆x(ne) + dν1n− ν2divx(nu)−

2ne
τ
.

For simplicity, we suppose in the following that ν1 = ν2 = 1/τ = 0. Assuming
as in the previous section that the temperature gradients and the vorticity
are of order ε2, we obtain the viscous quantum hydrodynamic equations:

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

Voltage U [V]

C
ur

re
nt

 D
en

si
ty

 J
 [A

m
−

2 ]

δ = 0.7ε
δ = ε
δ = 1.5ε

Fig. 4.3. Influence of the dispersive velocity term (δ2/8)(nuxx)x on the current-
voltage curve.
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∂tn+ div(nu) = ν∆n,

∂t(nu) + div(nu⊗ u) +∇(nT )− ε2

12
div

(
n(∇⊗∇) logn

)
− n∇V = ν∆(nu),

∂t(ne) + div
(
(P + neI)u

)
− ε2

8
div(n∆u)− nu · ∇V = ν∆(ne),

where P and ne are defined in (4.22), and V is given by (4.14). Notice that ν
is of the same order as ε2 [GuJ04].

Due to the dissipative terms on the right-hand side of the above system,
the total energy

E(t) =
∫

Rd

(d
2
nT +

1
2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇
√
n|2

)
dx

is no longer conserved but at least bounded:

dE

dt
+

ν

λ2
L

∫
Rd

n(n− C)dx = 0.

However, it is not clear how to prove the existence of weak solutions or the
positivity of the particle density from this equation.

A partial existence result, for sufficiently small current densities in the
isothermal stationary model, is presented in [GuJ04]. The main idea is the
observation that, in the one-dimensional steady state, we can integrate (4.24)
yielding nu − νnx = J0 for some integration constant J0 which we call the
effective current density (since it satisfies (J0)x = 0). A computation now
shows that( (nu)2

n

)
x
− ν(nu)xx = −ν2n

(
n(log n)xx

)
x

+
(J2

0

n

)
x

+ 2νJ0(log n)xx.

Hence, the coefficient of the quantum term becomes ε2/12+ν2, and the viscos-
ity term transforms to 2νJ0(log n)xx. The smallness condition on the current
density is needed in order to control the convective part (J2

0/n)x. Also in
[GuJ04], the inviscid limit ν → 0 and the semi-classical limit ε→ 0 have been
performed.

The isothermal viscous model has been numerically solved in [JMi06,
JT06]. The viscosity ν has the effect to “smoothen” the current-voltage char-
acteristics for a tunneling diode, as can be seen from Fig. 4.4 (left). We refer
to [JMi06] for details of the employed parameters. The curves are computed
from the isothermal model. Their behavior is unphysical due to the jump from
a low-current to a high-current state. This effect can be explained by the con-
stant temperature assumption. Indeed, in Fig. 4.4 (right) a curve computed
from the nonisothermal equations is presented. The characteristic shows the
correct physical behavior but the viscosity leads to rather small peak-to-valley
ratios (ratio of maximal to minimal current density).
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Fig. 4.4. Current voltage characteristics for a tunneling diode for the viscous QHD
model. Left: isothermal case for various values of the viscosity; right: non-isothermal
model.

4.3 Quantum moment diffusion models

In this section we derive quantum moment diffusion equations from a BGK-
type Wigner equation using a Chapman-Enskog method. For special choices of
the moments, the quantum energy-transport and the quantum drift-diffusion
equations in the O(ε4) approximation are obtained.

General quantum moment diffusion equations. We consider the Wigner-
Boltzmann equation (4.1) in the diffusion scaling x′ = αx, t′ = α2t, where
0 < α� 1 is as in the previous section (neglecting the primes):

α2∂tfα + α(p · ∇xfα + θ[Vα]fα) = Q(fα), (x, p, t) ∈ R2d × (0,∞). (4.24)

Our aim is to perform a Chapman-Enskog expansion in the corresponding
moment equations and to perform the formal limit α → 0. For this, we pro-
ceed similarly as in [DMR05] using only monomials of even order, for instance
κ(p) = (1, 1

2 |p|2, . . .). Then the quantum Maxwellian Mf is the formal so-
lution of the constrained minimization problem (4.3) with given moments
m0(x, t), . . . , mN (x, t) with respect to the above set of monomials.

We assume that the collision operator can be written as

Q(fα) = Q0(fα) + α2Q1(fα),

withQ0(fα) modeling the elastic scattering andQ1(fα) the inelastic scattering
processes. In contrast to the previous section, we assume here that the elastic
collisions are modeled by a BGK-type operator [BGK54],

Q0(f) =
1
τ
(Mf − f),

where τ = τ(x, t) > 0 is the relaxation time. Then Q0(f) satisfies the proper-
ties (4.7). Concerning inelastic scattering, we suppose only that it preserves
the mass, i.e. 〈Q1(f)〉 = 0 for all functions f .
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Multiplying (4.24) by κ(p)/α, integrating over the momentum space, and
using condition (ii) in (4.7), we obtain the moment equations

∂t〈κ(p)fα〉+ α−1(divx〈κ(p)pfα〉+ 〈κ(p)θ[V ]fα〉) = 〈κ(p)Q1(fα)〉.

In order to derive the diffusion models, we employ the Chapman-Enskog ex-
pansion fα = Mfα + αf1

α, which defines f1
α. The formal limit α→ 0 in (4.24)

gives Q0(f) = 0, where f = limα→0 fα and hence f = Mf , by condition (i)
in (4.7). Inserting the Chapman-Enkog expansion in the above moment equa-
tions, observing that the integrals 〈κ(p)pMfα〉 and 〈κ(p)θ[Vα]Mfα〉 vanish,
since κi(p) is even in p, and performing the limit α→ 0, we conclude that

∂t〈κ(p)Mf 〉+ divx〈κ(p)pf1〉+ 〈κ(p)θ[V ]f1〉 = 〈κ(p)Q1(Mf )〉, (4.25)

where f1 = limα→0 f
1
α. It remains to determine the limit f1. Since Q0 is a

BGK-type operator, it holds, using (4.24),

f1
α = − τ

α
Q0(fα) = −τ

(
α∂tfα + p · ∇xfα + θ[Vα]fα − αQ1(fα)

)
,

which implies in the limit α→ 0 that f1 = −τ(p ·∇xMf +θ[V ]Mf ). Inserting
this expression for f1 into (4.25) we obtain the general quantum diffusion
equations

∂tm− div
(
τdiv〈p⊗ pκ(p)Mf〉+ τ〈κ(p)pθ[V ]Mf 〉

)
+ 〈κ(p)θ[V ]f1〉

= 〈κ(p)Q1(Mf )〉, (4.26)

where we recall that m = 〈κ(p)Mf 〉. With the notation (4.5) we see that the
expression

div(τdiv〈p⊗ pκi(p)Mf 〉) =
∑
j,k,�

∂

∂xj

(
τ
〈
pjpkκiκ�Exp (λ · κ)

〉 ∂λ�
∂xk

)
=: div(B : ∇λ)

can be interpreted as a diffusion term, and (4.26) can be formulated in a
compact form as

A∂tλ− div(B : ∇λ) = g(λ),

where A = 〈κ ⊗ κMf〉 and g(λ) denotes the lower-order terms in λ. A more
explicit expression can be derived in the cases N = 1 and N = 0 which will
be discussed in the following subsections.

Quantum energy-transport equations. Let N = 1 and κ(p) = (1, 1
2 |p|2).

For simplicity, we also assume that the relaxation time is constant, τ = 1.
Then we can simplify the quantum diffusion equations of the previous sub-
section. Indeed, employing the formulas (4.9) and

〈1
2p|p|2θ[V ]f〉 = −(P + neI)∇V + ε2

8 n∇∆V for all functions f,
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we obtain from (4.26) the evolution equations for the particle density m0 = n
and the energy density m2 = ne (see [DMR05]):

∂tn− div J0 = 0, ∂t(ne)− div J2 − J0 · ∇V = 〈1
2 |p|2Q1(f)〉, (4.27)

J0 = divP − n∇V, J2 = divU − (P + neI)∇V +
ε2

8
n∇∆V, (4.28)

where P = 〈p⊗pMf〉 is the stress tensor, U = 〈1
2 |p|2p⊗pMf〉 is a fourth-order

moment, and V is given by (4.14). The variables J0 and J2 are the particle and
energy current densities, respectively. Noticing that the quantum Maxwellian
can be written here as

Mf (x, t) = Exp
(
A(x, t) − |p|2

2T (x, t)

)
,

one can show that the quantum fluid entropy

η(t) =
∫

Rd

Mf(LogMf − 1)dxdp =
∫

Rd

n(A− ne/T + 1)dx

is nonincreasing [DMR05].
More explicit equations are obtained in the O(ε4) approximation. For this,

we need to expand the terms P , U and the energy ne =
∫

1
2 |p|2Exp (A −

|p|2/2T )dp in terms of ε2. If ∇ logT = O(ε2) and up to order O(ε4), some
tedious computations lead to the expressions

P = nTI − ε2

12
n(∇⊗∇) logn, ne =

d

2
nT − ε2

24
n∆ logn, (4.29)

U =
1
2
(d+ 2)nT 2I − ε2

24
nT (∆ lognI + (d+ 4)(∇⊗∇) logn),

Equations (4.27)-(4.28) with the above constitutive relations for P , U , and
ne are called the quantum energy-transport equations. Notice that the expres-
sions of P and U differ from those presented in [DMR05]. We expect that
this O(ε4) model possesses an entropic formulation similar to the classical
energy-transport equations [DGJ97] but unfortunately, no entropic structure
is currently known.

The quantum drift-diffusion equations. In this subsection we set N = 0
and choose κ0(p) = 1. Then the quantum Maxwellian reads as Mf (x, t) =
Exp (A(x, t) − |p|2/2), and similar as in the previous subsection, we obtain

∂tn− divJ = 0, J = divP − n∇V,

where n and P are defined by

n =
∫

Rd

Exp
(
A− |p|2

2

)
dp, P =

∫
Rd

p⊗ pExp
(
A− |p|2

2

)
dp.
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Again, the electric potential V is given selfconsistently by (4.14). Some analyt-
ical properties and numerical results for this nonlocal equation can be found
in [GaM06]. In the O(ε4) approximation, we can simplify the above model. In-
deed, for T = 1, we obtain from (4.29) divP = ∇n−ε2n∇(∆

√
n/6

√
n)+O(ε4),

and up to order O(ε4) the quantum drift-diffusion equations

∂tn+
ε2

6
div

(
n∇

(∆√n√
n

))
− div(∇n− n∇V ) = 0.

This fourth-order equation is of parabolic type which simplifies the analysis
considerably, in particular compared to the third-order dispersive quantum
hydrodynamic equations (4.19)-(4.21). Notice that the quantum term can be
written as

div
(
n∇

(∆√n√
n

))
=

1
2
div div

(
n(∇⊗∇) logn

)
,

where ∇⊗∇ denotes the Hessian.
The quantum drift-diffusion equations can be also derived in the relaxation-

time limit from the isothermal QHD model including relaxation terms. This
limit has been made rigorous in [JLM06], for solutions close to the equilibrium
state.

The main mathematical difficulty is to prove the nonnegativity of the solu-
tions. Since the equation is of fourth order, maximum principle arguments can-
not be applied. The main idea of the existence analysis in the one-dimensional
situation is the observation that the functional η0(t) =

∫
(n− logn)dx is non-

increasing [JP00]. More precisely, if the equations are considered on a bounded
interval such that n = 1 and nx = 0 on the boundary,

dη0
dt

+
ε2

12

∫
I

(logn)2xxdx +
∫
I

(logn)2xdx+
1
λ2
L

∫
I

(n− C) logndx = 0.

By Poincaré’s inequality, this provides an H2 bound (if C ∈ L∞(I)) and
hence an L∞ bound for w = logn, showing that n = ew is nonnegative
(we loose positivity due to an approximation procedure). Applying a fixed-
point argument, the existence of weak solutions has been proved in [JP00,
JV05]. The one-dimensional equations are by now well understood and the
regularity, long-time behavior, and numerical approximation of nonnegative
weak solutions have been studied [DGJ05, JM06b, JP01, JV05].

Unfortunately, the above idea does not apply in the multi-dimensional case
since the functional

∫
(n − logn)dx seems not to be nonincreasing anymore.

The new idea is to show that the entropy η1(t) =
∫
n(logn−1)dx is bounded,

dη1
dt

+
ε2

12

∫
Rd

n|(∇⊗∇) logn|2dx+ 4
∫

Rd

|∇
√
n|2dx+

1
λ2
L

∫
Rd

(n−C)ndx = 0,

where ∇⊗∇ denotes the Hessian. Since the entropy production integral can
be estimated as
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Fig. 4.5. Current voltage characteristics for a tunneling diode from the quantum
drift-diffusion model for temperature T = 300 K (left) and T = 77K (right).

∫
Rd

|(∇⊗∇)
√
n|2dx ≤ c

∫
Rd

n|(∇⊗∇) logn|2dx,

for some constant c > 0 which depends on the space dimension d, this provides
estimates for

√
n in H2 and shows that n = (

√
n)2 ≥ 0. These estimates allow

for a fixed-point argument (see [GST06, JM06b] for a proof in the case of
vanishing second-order diffusion and vanishing electric fields).

Concerning the stationary equations, an existence analysis, even in several
space dimensions, can be found in [BU98]. When neglecting the second-order
diffusion (zero temperature case) and the electric field, we obtain the so-
called Derrida-Lebowitz-Speer-Spohn equation [DL*91], for which additional
nonincreasing functionals have been found [JM06a].

The current-voltage characteristics for a tunneling diode, computed from
the one-dimensional quantum drift-diffusion equations, are shown in Fig. 4.5
(left) with the lattice temperature T = 300K. We see that the model is not
capable to reproduce negative differential differential effects at room tempera-
ture. However, when using a smaller lattice temperature, negative differential
resistance can be observed (Fig. 4.5 right).

The quantum drift-diffusion model produces good numerical results when
coupled to the Schrödinger-Poisson system employed in the channel region
[EJ05]. This can be seen from Fig. 4.6 in which the coupled quantum
drift-diffusion Schrödinger-Poisson model is compared with the Schrödinger-
Poisson system and the coupled drift-diffusion Schrödinger-Poisson equations
(see [EJ05] for details).
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Fig. 4.6. Current voltage characteristics for a tunneling diode from the Schrödinger-
Poisson system (SP), the coupled quantum drift-diffusion Schrödinger-Poisson model
(QDD-SP), and the coupled drift-diffusion Schrödinger-Poisson model (DD-SP) for
temperature T = 300 K.
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[BMP05] N. Ben Abdallah, F. Méhats, O. Pinaud. On an open transient
Schrödinger-Poisson system. Math. Models Methods Appl. Sci. 15-5 (2005),
667–688.

[BP06] N. Ben Abdallah, O. Pinaud. Multiscale simulation of transport in an open
quantum system: resonances and WKB interpolation. J. Comput. Phys. 213-
1 (2006) 288–310.

[BU98] N. Ben Abdallah and A. Unterreiter. On the stationary quantum drift-
diffusion model. Z. Angew. Math. Phys. 49 (1998), 251–275.

[BGK54] P. Bhatnagar, E. Gross, and M. Krook. A model for collision processes in
gases. I. Small amplitude processes in charged and neutral one-component
systems. Phys. Review 94 (1954), 511–525.

[BM91] F. Brezzi, P.A. Markowich. The three-dimensional Wigner-Poisson problem:
existence, uniqueness and approximation. Math. Methods Appl. Sci. 14(1)
(1991), 35–61.

[CL83] A. Caldeira and A. Leggett. Path integral approach to quantum Brownian
motion. Phys. A 121A (1983), 587–616.
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[DGJ05] J. Dolbeault, I. Gentil, and A. Jüngel. A nonlinear fourth-order parabolic
equation and related logarithmic Sobolev inequalities. To appear in Commun.
Math. Sci., 2006.



Multi-Scale Modeling of Quantum Semiconductor Devices 361
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[GaJ01] I. Gamba and A. Jüngel. Positive solutions of singular equations of second
and third order for quantum fluids. Arch. Rat. Mech. Anal. 156 (2001), 183–
203.
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1 Introduction

Nanostructures are one of the basic features of quantum electronic semicon-
ductor devices. In order to cover quantum effects in semiconductor device
simulation, one has to compute the states of the acting electrons and one has
to incorporate adequate information about these electronic states into the
device simulation tools, which usually operate on a semi-classical level.

In semiconductor devices one basically distinguishes three spatial scales:
the atomistic scale of the bulk semiconductor materials (sub-Å), the scale
of the interaction zone at the interface between two semiconductor materials
together with the scale of the resulting size quantization (nanometer) and the
scale of the device itself (micrometer).

At the ab-initio level, the many-body Schrödinger equation for the elec-
trons in the potential of the nuclei gives a complete description of the elec-
tronic structure for a semiconductor bulk material. The electrons present in
semiconductor materials can be subdivided into two classes: the core electrons
and the valence electrons. On the energy scale, the core electrons have much
lower levels than the valence electrons. This allows to decouple them from the
valence electrons. Together with the nuclei, they form the ionic cores. The
valence electrons are responsible for the chemical bonds and for many elec-
tronical and optical properties. The electronic states of the valence electrons
can be described with high accuracy in the framework of density functional
theory. This approach results in a one-particle Schrödinger equation on the
atomistic scale with a potential given by the ionic cores and the mean field
contribution of the interaction between the valence electrons.

The prototype semiconductor nanostructure is a quantum well structure
which consists of a stack of different semiconductor materials grown on a
substrate, see Fig. 1.2. The thickness of these layers usually ranges from 2
to 20 nm, defining the nanoscale. The characteristic feature of the material
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Fig. 1.1. Schema of a SMQW laser diode by HHI, Berlin. Holes injected from the
p-contact and electrons injected from the n-contact recombine in the optical active
region. The optical active region consisting of six quantum wells is enlarged on the
right. Ec and Ev are the band edge profiles for the electrons and holes. The quantum
confinement of the electrons and holes within the wells is indicated.

interface between two layers is the abrupt change of the parameters of the
crystal (chemical composition, band structure) on a distance of the same order
of magnitude as the lattice constant. Basically, this leads to a coupling of
the electronic states of the different materials meeting at the interface. The
variation of material properties across nanoscale heterostructures induces size-
quantization.

The nanostructure is in the focus of the envelope function approximation,
which can be understood as a homogenization method with Bloch waves. It
leads to k·p multi-band Schrödinger-type equations with position-dependent
effective mass tensor and band-edge profile, which are state of the art for the
description of electronic states in semiconductor nanostructures.

Figure 1.1 shows the essential components of an edge-emitting strained
multiple quantum well (SMQW) semiconductor laser diode, the optical active
zone of which is a stack of quantum wells separated by barriers from a different
material. The transversal simulation of such a laser deals with a cross section
measuring up to several microns in diameter. Semi-classical models working
on the device scale such as drift-diffusion equations are state of the art for
the simulation of the electronic behavior of many microelectronic devices. For
opto-electronic devices based on nanostructures they can be applied success-
fully, supposed the constitutive laws in these semi-classical models take into
account quantum effects from smaller scale models for the embedded nanos-
tructure [BGK00, BHK03, BK*03, BGH05].

The present paper focuses on the two scale transitions inherent in the hi-
erarchy of scales in the device. In section 2, we start with the description of
the band structure of the bulk material by k·p Hamiltonians on the atom-
istic scale. Sect. 3 describes how the envelope function approximation allows
to construct kp Schrödinger operators describing the electronic states at the
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Fig. 1.2. Quantum well: one-dimensional semiconductor nanostructure consisting
of two semiconductor materials A and B and two planar material interfaces. The
unit cell for a binary semiconductor with zinc-blende crystallographic structure like
gallium arsenide is displayed.

nanoscale which are closely related to the k·p Hamiltonians from Sect. 2. Spe-
cial emphasis is placed on the possible existence of spurious modes in the k·p
Schrödinger model on the nanoscale which are inherited from anomalous band
bending on the atomistic scale. Sect. 4 is devoted to the mathematical analy-
sis of these multi-band k·p Schrödinger operators. Besides of the confirmation
of the main facts about the band structure usually taken for granted, key
results are conditions on the coefficients of the k·p Schrödinger operator for
the nanostructure, which exclude spurious modes and an estimate of the size
of the band gap. Sect. 5 gives an overview of properties of the electronic band
structure of strained quantum wells. Further, the assumption of flat-band con-
ditions across the nanostructure allows for upscaling of quantum calculations
to state equations for semi-classical models. In Sect. 6 we demonstrate this
approach for parameters such as the quantum corrected band-edges, the effec-
tive density of states, the optical response, and the optical peak gain. Sect. 7
is devoted to the application of the k·p Schrödinger theory to low gap quan-
tum wells, a case where a proper rescaling of the optical matrix element is
necessary to avoid spurious modes. In Sect. 8 we discuss the application of
the k·p Schrödinger models to biased quantum wells, the operation mode of
electro-optic modulators.

2 Near-band-edge states in semiconductor bulk crystals

The key property of bulk semiconductor materials is, that the atoms form a
periodic Bravis lattice defined by its crystallographic unit cell, see Fig. 1.2 and
[Car96]. The electronic states of the valence electrons in a semiconductor are
essentially given by the solution of the eigenvalue problem for a Schrödinger
operator
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H = − �2

2m0
∆+ Veff (r). (2.1)

m0 is the electron rest mass and Veff is the effective potential, consisting
of the potential of ionic cores (nuclei and core electrons) and the mean field
interaction between the valence electrons. This potential can be given by em-
pirical pseudopotential method (EPM) [CB66, CC76, Car96]. Alternatively,
density functional theory allows to obtain the electronic states by solving an
effective one-particle Schrödinger equation with a periodic potential.

Due to the translation invariance of the lattice periodic potential, the
eigenfunctions of the Schrödinger operator are Bloch waves

Ψ(r; k) = eikru(r; k), (2.2)

defined by a lattice periodic Bloch function u(r; k) depending on the real space
vector r = (x, y, z) and parametrically on the wave vector k = (kx, ky, kz),
Bloch theorem see [Blo32, Car96]. The Bloch waves as well as the corre-
sponding eigenvalue curves E(k) are periodic in the wave vector k. Thus, it
is sufficient (reduced zone scheme) to restrict the considerations to the first
Brillouin zone, the unit cell of the periodic lattice in the k space, see [Car96].

2.1 k·p equation for Bloch waves

The Bloch wave ansatz (2.2) leads to an eigenvalue problem for the Bloch
function u(r; k) [Kan66, Kan82]. Including the spin degree of freedom by using
a two-component Bloch function one arrives at the at the k·p equation. Using
the notation of [Bah90] it reads as:

Hun(r; k) = En(k)un(r; k) (2.3)

with
H = H0 +Hk·p +Hk +Hso +Hkso

H0 = − �2

2m0
∆+ Veff (x), Hk·p =

�

m0
k · p, Hk =

�2k2

2m0
,

Hso =
�

4m2
0c

2

(
(∇Veff )× p

)
· σ, Hkso =

�2

4m2
0c

2

(
(∇Veff )× k

)
· σ.

p denotes the quantum mechanical momentum operator defined by p = −i�∇.
σ = (σx, σy, σz) is the vector of the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Hso and Hkso describe the spin-orbit interaction.
The eigenvalue curves En(k) are the energy bands of the valence electrons

in a semiconductor material. Together they form the electronic band struc-
ture. The essential property of the band structure in a semiconductor is the
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Fig. 2.1. Schematic view of the band structure in a direct semiconductor material
(the lowest conduction band and the three topmost valence bands). Due to the
Kramers degeneracy (spin degeneracy) each state is doubly degenerate. For indirect
semiconductor materials the conduction band minimum is located outside the zone-
center k = 0 as indicated by the dashed line. Due to crystal symmetry there may
exist multiple equivalent band minima in this case, for instance, six in silicon.

existence of a fundamental spectral gap. Energy bands below and above this
gap are valence bands and conduction bands, respectively. For the cases of in-
terest, the maximum Ev of the valence band is located at the Γ point, center
k = 0 of the Brillouin zone. In direct semiconductor materials such as gallium
arsenide, the minimum Ec of the conduction bands is also located at the Γ
point, whereas for indirect semiconductors such as silicon, it is located outside
the zone-center. The band-edges Ec and Ev define the band gap Eg = Ec−Ev.
Fig. 2.1 shows a schematic band diagram. In thermodynamic equilibrium, the
carriers occupy the states near the band extrema. In particular, the conduc-
tion band states are occupied by the free roaming electrons and the valence
band states are occupied by the positively charged holes. Therefore, for many
applications it is sufficient to confine the description of band structure to the
near-band-edge states.

2.2 Eight-band k·p Hamiltonian for near band-edge states

Basically, any Bloch function u(r, k) can be represented in terms of the zone-
center solutions uΓn (r) = un(r, k = 0):

un(r, k) =
∑
n′

Cn′(k)uΓn′(r)

The first d near-band-edge states uΓn labeled n = 1, . . . , d form the set of
class-A bands. All remaining states, labeled class-B, are assumed to have only
a small influence on the near band-edge states. Typical number of class-A
bands are 1, 4, 6 or 8 [Kan82, Bas88, Chu95, Bah90, MGO94]. The class-B
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bands are far away from the band-edges Ec and Ev and thus have only a small
contribution to a state un(r, k) of class-A near zone-center. This gives rise to
the representation

un(r, k) ≈
d∑

n′=1

cn′(k)uΓn′(r), for n = 1. · · · , d, (2.4)

Taking into account remote band effects arising from the influence of the class-
B states by means of Löwdins perturbation scheme one arrives at a nonlinear
eigenvalue problem for the class-A bands, see [Kan66, Kan82]. A suitable
linearization of this problem provides the corresponding Hamiltonian.

In the following we regard eight class-A bands consisting of the lowest con-
duction band and the three topmost valence bands, all doubly degenerate, see
Fig. 2.1. For materials with diamond or zinc-blende crystallographic structure
the space of class-A bands is spanned by S ↑, X ↑, Y ↑, Z ↑, S ↓, X ↓, Y ↓,
Z ↓, where ↑ and ↓ indicate spin up and spin down, respectively. Following
the notation of [EW96], the Hamiltonian reads as:

H8×8(k) =
(
K(k) + i ·Gz + E Γ

Γ̄ K(k)− i ·Gz + E

)
(2.5)

where the k·p matrix is given by

K(k) =

⎛⎜⎜⎝
A · k2 iP0kx iP0ky iP0kz
−iP0kx (L−M)k2

x +Mk2 Nkxky Nkxkz
−iP0ky Nkxky Lk2

y +M(k2
x + k2

z) Nkykz
−iP0kx Nkxkz Nkykz Lk2

z +M(k2
x + k2

y)

⎞⎟⎟⎠

Gz =
∆so

3

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ , Γ =
∆so

3

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0

⎞⎟⎟⎠

E =

⎛⎜⎜⎝
Eg 0 0 0
0 −∆so/3 0 0
0 0 −∆so/3 0
0 0 0 −∆so/3

⎞⎟⎟⎠
As their influence is usually neglected, the matrix elements describing the
influence of bulk inversion asymmetry of potential Veff and the influence of
k dependent spin-orbit interaction have been omitted, see [Kan82, Bah90].

The parameters of the Hamiltonian are the (parabolic) conduction band
mass mc, the Luttinger parameters γL1 , γ

L
2 , γ

L
3 describing the the heavy hole

masses in different crystallographic directions, the band gap energy Eg, the
spin-orbit split-off energy ∆so, and the momentum matrix element P0. These
parameters define the coefficients of the Hamiltonian by
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L = − �2

2m0
(γL1 + 4γL2 ) +

P 2
0

Eg
,M = − �2

2m0
(γL1 − 2γL2 ), N = −6

�2

2m0
γL3 +

P 2
0

Eg

(2.7)

A =
�2

2m0

m0

mc
− P 2

0

Eg + 2/3∆so

Eg(Eg +∆so)
. (2.8)

P0 is defined by the Bloch functions S and X

P0
def= −i

�

m0

∫
unit cell

S̄(r)
�

i
∂

∂x
X(r) dr, (2.9)

and is a measure for the coupling between the conduction bands and the
valence bands. It is also known as the optical matrix element, which plays a
role in the calculation of the strength of optical transitions. Usually it is given
by an energy parameter

Ep =
2m0

�2
P 2

0 . (2.10)

It is possible to obtain the parameters Eg,∆so, mc, γL1 ,γL2 , γL3 and Ep of the
Hamiltonian from experimentally determined properties of the bulk material.
There exists a compilation [VM*01] of these band parameters for the 12 major
III-V binary semiconductor materials and their ternary and quaternary alloys.

In the literature, also simplified k·p Hamiltonians for the valence bands
are used. They include the four-band Luttinger-Kohn Hamiltonian for heavy
holes and light holes and six-band valence band Hamiltonians [Bas88, Chu95,
Car96]. For semiconductors with wurtzite crystallographic structure such as
gallium nitride k·p Hamiltonians have been established as well [CC96].

2.3 Anomalous band bending

The reciprocal masses A and L on the diagonal of (2.5) depend on the ratio
ζ = Ep/Eg. For ζ > ζcrit one of them changes the sign. For large wave
vectors k parallel to one of the axis in the k space, these diagonal k2 terms
dominate the behavior of the energy bands. Thus, for ζ > ζcrit the energy
dispersion becomes anomalous in the sense that e.g. for A < 0 the bending
of the conduction bands becomes negative, see Fig. 3.2. It is known, that this
behavior of the band structure can lead to the formation of spurious modes,
if k·p method is applied to heterostructures, see Sect. 3.4 and [For97, Sol03,
MGO94].

2.4 Modification of the band structure by mechanical strain

If a semiconductor material is grown on a substrate with a different lattice
constant, e.g. indium gallium arsenide on gallium arsenide, we observe me-
chanical strain induced by the lattice mismatch between the two crystals.
Basically, this mechanical strain leads to a shift of band-edges Ec, Ev result-
ing in an altered band gap Eg and to a splitting of the heavy hole and light
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hole bands at the Γ point. Additionally, it has an impact on the anisotropy
of the effective mass tensor and the warping of the band structure [CC92].

The influence of strain ε can be included in the k·p Hamiltonian by adding
the Pikus-Bir deformation interaction matrix D(ε) defined by deformation
potentials [BP74, Bah90, Chu95, EW96].

2.5 Mixed crystal systems

So far, our considerations apply to elementary semiconductors like silicon or
binary semiconductors such as gallium arsenide or indium phosphite. Mixed
crystal systems are alloys of binary semiconductors. They are of particular
interest, because they allow for band gap engineering in the case of ternary
compounds like In1−xGaxAs and additionally for design of the mechanical
strain in the case of quaternary materials like In1−xGaxAsyP1−y. Though
strictly speaking, the basic assumptions of a periodic crystal lattice do not
hold for these materials, they can be treated by similar methods assuming the
so-called virtual crystal approximation.

Within the kp framework the band structure of mixed crystal systems can
be described by the same Hamiltonian used for the elementary and binary
semiconductors. Their parameters can be obtained by interpolation of those
of the binary constituents. Often linear interpolation according to the mole
fraction x yields a sufficient approximation. For some parameters such as the
band gap energy Eg this interpolation has to include a bowing parameter. All
the related data can be found in [VM*01].

3 Envelope function approximation for layered
semiconductor nanostructures

We have discussed the modeling of the band structure of bulk materials by
k·p Hamiltonians. Now, this approach is extended to layered semiconductor
nanostructures like quantum wells, multiple quantum wells (see Fig. 1.2) and
double barrier structures [Sin93], [Bas88], [Chu95]. For these heterostructures,
the translation invariance is broken and the microscopic potential Veff can-
not be periodic in all space directions. Nevertheless, the heterostructure is
a crystalline solid and the atoms form an approximate Bravis lattice. The
microscopic potential now consists of a oscillatory part, which corresponds
to the potential of the ionic cores, and a globally slowly varying part, which
corresponds to the composition of the heterostructure from different bulk ma-
terials, see Fig. 3.1.

3.1 Envelope function approximation of the wavefunctions

This obvious two-scale nature of the microscopic potential and of the corre-
sponding microscopic wave function encourages to treat this problem as a mul-
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Fig. 3.1. Schematic view of the microscopic potential V (z), the atomistic wave
function Ψ , the Bloch waves un(r) and the envelope function F (z;k‖) in a one-
dimensional heterostructure consisting of atoms of type A and B. The lattice con-
stant is a0 (typically 0.5 nm). un(r) is highly oscillatory on the sub-Å-scale.

tiscale problem. After first heuristic approaches to this problem, see G. Bas-
tard [Bas88], the first rigourous approach was made by Burt [Bur92, Bur94],
who showed, that it is possible to derive a theory for the slowly-variing part
of the wave functions, the envelope functions, in terms of the atomistic scale.
This approach leads to a k·p Hamiltonian for the envelope functions.

For layered nanostructures, the crystal remains periodic in the in-plane
directions r‖ = (x, y), perpendicular to the growth direction z. This choice
of the coordinate system corresponds to epitaxially grown nanostructures on
[001] oriented substrates. As in bulk k·p theory, we approximate the electronic
state in the nanostructure in the subspace spanned by d lattice periodic, zone-
center Bloch functions uΓn (r), n = 1, . . . , d of class-A. However, we replace the
coefficients cn in (2.4) by the envelope functions Fn(z; k‖) depending on the
reduced wave vector k‖ = (kx, ky):

Ψ(r; k‖) = exp(ik‖ · r‖)
d∑

n=1

Fn(z; k‖)uΓn (r).

3.2 k·p-Schrödinger operators for layered nanostructures

According to [Bur92],[Bur94],[Bur99] the vector of the envelope functions F =
(F1, · · · , Fd) for a given reduced wave vector k‖ is the solution of an eigenvalue
problem

H
(
k‖,−i

∂

∂z

)
F (z; k‖) = E(k‖)F (z; k‖). (3.1)

A A A AB B B B

V(z)

a0

z
AA

(r)Ψ

n

n
u   (r)

||F(z,k  )
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(3.1) is a family iof spatially one-dimensional eigenvalue problems indexed
by k‖. It provides a description of the in-plane band structure for layered
nanostructures, for examples see Sect. 5.

Far away from the interface between two materials, the Schrödinger op-
erator H is formally identical with the bulk Hamiltonian (replacing kz →
−i∂/∂z) shifted by the band-edge Ev [Bur92, Bur94]. Therefore, the band-
offset ∆Ev between two materials enters as an additional parameter, available
for the many material interfaces [VdW89, Kri91, VM*01]. Near the interface
between two materials, non-local effects are present which lead to a coupling
of the states across the interface [Bur92],[Bur94]. The approximation of these
non-local interactions by an interface condition for the envelope functions is
sufficient for many applications.

However, one has to be aware that the Burt-Foreman approach relies on
the assumption that the Bloch functions used in the approximation are the
same for all material layers. As a consequence, the momentum matrix element
P0 has the same value in all materials. However, the experimentally measured
value of P0 given by the optical matrix element Ep (2.10) is varying. Therefore,
it is necessary to incorporate this effect in the k·p Schrödinger operator by
additional interface conditions.

This suggests the following general structure of the Schrödinger operator:

• In each material layer, the Schrödinger operator is derived from a bulk
Hamiltonian like (2.5) resulting in a system of d coupled stationary
Schrödinger equations, see (4.1).

• At the material interfaces the continuity of the envelope functions and of
a flux vector (4.10) is assumed.

• If the optical matrix element P0 differs only slightly between the materials,
one can define an effective value by suitable averaging. Otherwise, by an
additional interface condition, one has to define the coupling between the
envelope functions related to the Bloch functions S and envelopes related
to the Bloch functions X , Y , Z across the interface [Bur99, For97].

The conventional k·p Schrödinger operators have been derived from the
bulk Hamiltonian by replacing kz → −i∂/∂z, see for instance [Bas88]. This ap-
proach also has to be supplemented by coupling conditions at the material in-
terfaces. These interface conditions have been established implicitly using the
so-called operator ordering. For the second order terms the BenDaniel-Duke
operator ordering Ak2

z → −∂/∂zA(z)∂/∂z has been used. For the first order
terms the heuristic symmetrization rule Akz → − i

2 [A(z)∂/∂z + ∂/∂z(A(z)·)]
has been applied [Bas88]. The resulting interface conditions differ from those
derived by Burt-Foreman. For a comparison of the different interface condi-
tions see [For93, MGO94].
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3.3 Confined states in quantum wells

A quantum well structure consists of a well material layer embedded between
two barrier material layers such that band-edge profiles Ev(z) and Ec(z) form
a potential well for both holes and electrons, see Fig. 1.1. This potential well
leads to the localization of the carriers in the quantum well region. This effect
is known as carrier confinement. Another key feature of quantum wells is the
appearance of discrete energy levels due to the size quantization induced by
the small width of the quantum well, typically ranging from 2-20 nm. Repeated
quantum well structures form multiple quantum wells (MQW), see Fig. 1.1.

The effect of carrier confinement is utilized in strained multiple-quantum
well (SMQW) laser diodes in order to increase the density of states and the
material gain in optical active region of the device. The confined carriers in
quantum wells are described by the bounded states of the corresponding k·p
Schrödinger operator (3.1) which are characterized by the discrete part of
the spectrum. The bounded states decay exponentially in the barrier region.
Therefore it is possible to use a finite-domain approximation by artificially
cutting out a simulation domain Ω and applying homogenous Dirichlet (hard
wall) or Neumann (soft wall) boundary conditions.

3.4 Spurious modes

It is known [For97, Sol03] that if the ratio ζ = Ep/Eg, exceeds a critical value
ζcrit due to anomalous band bending (see Sect. 2.3) spurious modes occur
as eigenfunctions of the k·p Schrödinger operator. These spurious modes are
concentrated around a large value of kz , typically outside the first Brillouin
zone, and thus spatially oscillatory. The spurious modes lead to a pollution of
the spectrum of the operator or even to band gap solutions [For97, Sol03].

Fig. 3.2. Schematic view of the dependence of the bending of the energy bands on
the ratio ζ = Ep/Eg. In the case ζ > ζcrit the bending for large k vectors becomes
anomalous. In the case of heterostructures this behavior can lead to pollution of the
spectrum by spurious modes or even to band gap solutions, as indicated.
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This difficulty can be overcome in several ways:

• Appropriate rescaling of the conduction-valence band coupling to achieve
ζ < ζcrit.

• Fitting of a set of bulk band parameters which ensure ζ < ζcrit.
• Approximation of the eigenfunctions in a function space which guarantees

kz < kcrit, kcrit is the value for which the bending changes its sign.

[Sti01] achieved a conforming set of band parameters by fitting the Hamil-
tonian to the real bandstructure in a larger part of the Brilluoin zone (≈20%)
and not only at the zone center. These effective parameters meet the con-
ditions given by Property 4.2 in Sect. 4 which guarantee that there are no
spurious modes.

We have obtained a conforming parameter set by rescaling, see Sect. 7.

4 Mathematical analysis of k·p Schrödinger operators

We review the spectral properties of Schrödinger type operators occurring
in k·p theory of layered semiconductor heterostructures. In this section we
denote the growth direction of the layers by x and reduced wave vector k‖ by
k = (k1, k2) ∈ C2. The formal structure of these operators is – for d bands
ϕ = (ϕ1, . . . , ϕd):

− d

dx

(
mj

∂

∂x
ϕj

)
+

d∑
l=1

(
M0 j l

∂

∂x
ϕl −

d

dx

(
M0 l j ϕl

))

+
∑
α=1,2

kα

d∑
l=1

(
Mα j l

∂

∂x
ϕl −

d

dx

(
Mα l j ϕl

))

+
∑
α=1,2

kα

d∑
l=1

Uα j l ϕl +
∑

α,β=1,2

kαkβ

d∑
l=1

Uαβ j l ϕl

+
d∑

l=1

vj l ϕl + ejϕj , j = 1, . . . d

(4.1)

We assume the following general properties of the coefficients mj , M0 j l,
Mα j l, Uα j l, Uαβ j l, vj l and ej on the space intervall Ω = (x0, xL) of the
coordinate of quantization:

Property 4.1. All coefficients are essentially bounded, namely
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mj ∈ L∞(Ω,R), j = 1, . . . , d,
ej ∈ L∞(Ω,R), j = 1, . . . , d,

Mα ∈ L∞(Ω;B(Cd)), α ∈ {0, 1, 2},
Uα ∈ L∞(Ω;B(Cd)), α ∈ {1, 2},
Uαβ ∈ L∞(Ω;B(Cd)), α, β ∈ {1, 2},
v ∈ L∞(Ω;B(Cd)),

where B(Cd) is the Banach space of bounded linear operators on Cd.

Property 4.2. The set of band indices is a disjoint union {1, . . . , d} = D+∪D−
of conduction and valence bands that means

min
j∈D+

vraimin
x∈Ω

mj(x) > 0, max
j∈D−

vraimax
x∈Ω

mj(x) < 0,

min
j∈D+l

vraimin
x∈Ω

ej(x) > 0, max
j∈Di

vraimax
x∈Ω

ej(x) < 0;

D+ or D− may be empty. We introduce the conjugation operator Θ on Cd by

Θ(c1, . . . , cd) = (r1 c1, . . . , rd cd), rj =

{
1 if j ∈ D+,
−1 if j ∈ D−.

Property 4.3. For almost all x ∈ Ω and all α, β ∈ {1, 2} the operators Uα(x),
Uαβ(x), and v(x) are selfadjoint over Cd.

Property 4.4. There is a finite, disjoint partition x0 < x1 < . . . < xL of the
interval Ω = (x0, xL) such that the functions mj ∈ R, j = 1, . . . , d, and
Mα ∈ B(Cd), α = 0, 1, 2, take exactly one value m̂j,l and M̂α,l, respectively,
on each of the intervals [xl, xl+1).

Following [BK*00] we define parts of the k·p Schrödinger operator between
W 1,2

0
def= W 1,2

0 (Ω; Cd) and its dual space W−1,2, the space of anti-linear forms
on W 1,2

0 . For ϕ, ψ ∈ W 1,2
0 we set

〈Hϕ,ψ〉 =
d∑

j=1

∫
Ω

mj
∂

∂x
ϕj

∂

∂x
ψj dx, (4.2)

〈Aαϕ, ψ〉 =
∫
Ω

〈
Mα(x)

∂

∂x
ϕ(x), ψ(x)

〉
Cd

+
〈
M∗

α(x)ϕ(x),
∂

∂x
ψ(x)

〉
Cd
dx, α = 0, 1, 2, (4.3)
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〈Bα ϕ, ψ〉 =
∫
Ω

〈
Uα(x)ϕ(x), ψ(x)

〉
Cd dx, α = 1, 2, (4.4)

〈Bαβ ϕ, ψ〉 =
∫
Ω

〈
Uαβ(x)ϕ(x), ψ(x)

〉
Cd dx, α, β = 1, 2, (4.5)

〈V ϕ, ψ〉 =
∫
Ω

〈
v(x)ϕ(x), ψ(x)

〉
Cd dx, (4.6)

〈Eϕ,ψ〉 =
d∑

j=1

∫
Ω

ej ϕj(x)ψj(x) dx. (4.7)

Now we define for each reduced wave vector k = (k1, k2) ∈ C2 the k·p
Schrödinger operator

Hk : W−1,2 →W−1,2 (4.8a)

by the sum

Hk = H +A0 +
∑
α=1,2

kα(Aα +Bα) +
∑

α,β=1,2

kα kβ Bαβ + V + E. (4.8b)

The terms in (4.8) relate to (2.5): E represents the basic energies of the (class
A) bands involved; V contains the spin-orbit interaction and the influence of
strain; the operators

A0 +
∑
α=1,2

kαBα and H +
∑
α=1,2

kαAα +
∑

α,β=1,2

kα kβ Bαβ

describe the first and second order k·p interactions, respectively. They rep-
resent, e.g. for diamond like crystal structures, interband (interaction within
conduction bands and valence bands, respectively) and intraband (interac-
tion between conduction and valence bands) coupling, respectively. Making
use of the conjugation operator Θ we can split the Schrödinger operator into
intraband and interband coupling terms in the following way:

Hk,intra =
1
2
(Hk +ΘHkΘ), Hk,inter =

1
2
(Hk −ΘHkΘ).

4.1 Spectral properties

We first state spectral properties of the operator (4.8) on the space W−1,2.

Theorem 4.5. See [BK*00]. We assume Properties 4.1–4.4. For any k ∈ C2

the operator (4.8) has the same domain as H, namely W 1,2
0 , and all these

operators are closed and have a compact resolvent. For any one dimensional
complex analytic submanifold S of C2 the operator family {Hk}{k∈S} is a
holomorphic operator family of type (A), see [Kat84, VII.2]. The spectrum of
Hk only consists of at most countably many eigenvalues with finite multiplicity,
which do not accumulate at any finite point.
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The restriction of the operator (4.8) to the space L2 def= L2(Ω; Cd) has the
following spectral properties.

Theorem 4.6. See [BK*00]. We assume Properties 4.1–4.4. The spectra of
Hk|L2 and Hk are the same. The resolvent of Hk|L2 is nuclear. For any k ∈ C2

the geometric spectral multiplicity is at most d. The domain of Hk|L2 is given
by

dom(Hk|L2) = W 1,2 ∩
{
ϕ

∣∣∣∣ ϕ|]xl,xl+1[ ∈W 2,2(]xl, xl+1[),

m̂l lim
x→xl
x>xl

∂

∂x
ϕ(x) − m̂l−1 lim

x→xl
x<xl

∂

∂x
ϕ(x) +

(
M̂∗

0,l+1 − M̂∗
0,l

)
ϕ(xl)

+
∑
α=1,2

kα
(
M̂∗

α,l+1 − M̂∗
α,l

)
ϕ(xl) = 0, l = 0, . . . , L− 1

}
. (4.9)

For functions ϕ from the domain of Hk|L2 the vector

m
∂

∂x
ϕ(x) −

(
M∗

0 (x) +
∑
α=1,2

kαM
∗
α(x)

)
ϕ(x) (4.10)

is continuous across the material interfaces.

Theorem 4.7. See [BK*00]. We assume Properties 4.1–4.4. If the reduced
wave vector k = (k1, k2) is from R2, then the operator Hk|L2 is selfadjoint, has
an orthonormal basis of eigenfunctions in L2, and its geometric and algebraic
eigenspaces coincide.

We now investigate how the spectral properties of the operators Hk|L2 de-
pend on the reduced wave vector k. Unfortunately, the domain of the op-
erators Hk|L2 is not independent of k. Hence, in contrast to Theorem 4.5,
the concept of a holomorphic operator familiy of type (A) does not apply
anymore. However we can prove, see [BK*00], that for any one dimensional
complex analytic submanifold S ∈ C2 the family {Hk|L2}k∈S , is an analytic
family of operators in the sense of Kato [Kat84, VII.1.2]. This implies that
a closed curve, separating two parts of the spectrum of Hk for k = k0, also
separates corresponding parts of the spectrum of Hk for k from a suitable
neighbourhood of k0, see [Kat84, Th. VII.1.7].

4.2 Gap estimate

From the point of view of electronic structure calculation it is of interest for
which k ∈ R2 the spectral gap between the positive and negative parts of the
band-edge operator E can be found in the spectrum of Hk, and how one can
estimate the size of the gap in terms of k and the data of the problem. This
relates also to the problem of spurious modes in bandstructure calculation.
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According to Property 4.2, the lower bound

e
def= min

j=1,...,d
vraimin

x∈Ω
|ej(x)| (4.11)

of the spectral gap in E is positive, and so is the lowest eigenvalue µ of |H |.
We define the weighted strength of the band couplings by

M
def=

max
α=1,2

‖Mα‖2
L∞(Ω;B(Cd))

min
j=1,...,d

vraimin
x∈Ω

|mj(x)|
. (4.12)

Moreover, we assume the following property of the coupling matrix M0:

Property 4.8. M0(x) is skewadjoint and ΘM0(x) is selfadjoint for almost all
x ∈ Ω.

Property 4.8 implies M0 + ΘM0Θ that means that the intra-band part of
the operator M0,intra, see (4), vanishes. This property is satisfied by the usual
eight-band Hamiltonian and its heterostructure equivalent, see (2.5). The ske-
wadjointness of M0 is a consequence of symmetric operator ordering of the
first order terms of conduction-valence band coupling.

Theorem 4.9. See [BK*00]. In addition to Properties 4.1–4.4 and Property
4.8 we assume that for almost all x ∈ Ω

ΘUα(x) are skewadjoint, α ∈ {1, 2}, (4.13)
ΘUαα(x) are nonnegative operators, α ∈ {1, 2}, (4.14)

and
1
2

vraimin
η∈[0,2π[,x∈Ω

inf spec
(
ΘUη(x) + Uη(x)Θ

) def= ν ≥ 0, (4.15)

where

Uη(x)
def= cos2 ηU11(x) + sin2 ηU22(x) + sin η cos η

(
U12(x) + U21(x)

)
.

If |k|, and λ satisfy the relations

0 ≤ λ ≤ e− ‖v‖L∞([0,xL];B(Cd)). (4.16a)

|k| ≤ 1
δ
√

2
(4.16b)

0 < µ− |k|
√

2
(
µδ +

M

δ

)
+ |k|2ν − ‖v‖L∞(Ω;B(Cd)) + e− λ, (4.16c)

for some δ > 0, then λ belongs to the resolvent set of Hk.
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Thus, we have established a spectral gap (−λ,+λ) in Hk. In case of v ≡ 0
(4.16c) means that Hk at zone center k = 0 has the same spectral gap as the
band-edges E. Thus, spurious modes, that means band gap solutions, can be
excluded in this case.

By properly choosing δ in (4.16) one may obtain sharp estimates of the
gap, see [BK*00]. For the optimal choice of δ = δopt(|k|) one obtains the
following range of k

0 ≤ |k|2 <
e− ‖v‖L∞(Ω;B(Cd))

2M
. (4.17)

for which a spectral gap in Hk persists.

4.3 Remarks

Apart of k·p Schrödinger operators with interband coupling there are also
operators with a positive or negative definite main part. In the terms of Prop-
erty 4.2 this means that D− = ∅ or D+ = ∅, respectively. Important examples
are the 4-band Luttinger-Kohn-Hamiltonian [Chu95] and 6-band valence band
Hamiltonians, see [Car96, CKI94, Chu95, For93, MGO94, Sin93]. If the oper-
ator H from (4.2) is definite, then the operatorsHk are semibounded and one
obtains more results about the way the eigenvalues and eigenvectors depend
on k, see [BK*00].

The whole theory considerably simplifies, if one relaxes Property 4.4 such
that the coefficient functions Mα, α = 0, 1, 2 are continuous. This allows for
a regularization of the operators (4.8). One can prove, see [BK*00], that the
resolvents of a regularizing sequence converge in trace class to the operator
(4.8) with jumping coefficients Mα.

5 Electronic states in strained quantum wells

The band structure in quantum wells is given by the eigenvalue curves Ei(k‖)
and the vector of eigenfunctions Fi(z; k‖) = (Fi,1(z; k‖), . . . , Fi,d(z; k‖)) of
the k·p Schrödinger operator (3.1) depending on the reduced wave vector
k‖ = (kx, ky). We regard an eight-band kp Hamiltonian of the type (2.5) in
the formulation given by [EW96]. Thus, the mathematical results of Sect. 4
apply. The numerical calculations have been performed by means of WIAS-
QW [BKqw] using a finite volume method.

In particular, the structure under consideration is a In1−xGaxAsyP1−y

based strained MQW structure. The stack consists of six 1% compressively
strained 7 nm thick quantum wells (x = 0.239, y = 0.826), which are separated
by 10 nm thick 0.3% tensile strained barriers (x = 0.291, y = 0.539), see
[BHK03]. As confirmed by the calculation of the mini-band formation in the
MQW structure [BHK03], the barrier width is such that the lowest states in
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Fig. 5.1. Band structure and warping in a 7nm InGaAsP compressively strained
quantum well, calculated with WIAS-QW. Top: conduction bands, bottom: valence
bands. k‖ in [100]- (solid) and [110]-direction (dashed). We remark that the bands
are twice degenerate due to symmetry. Reprinted with permission from [BHK03].
c© 2003, IEEE.

the wells decouple, that means, they are strongly localized in the individual
quantum wells. This allows to restrict ourselves in the following to single
quantum well calculations.

5.1 Band structure

Fig. 5.1 displays the band structure Ei(k‖) for the 7 nm InGaAsP quantum
well under consideration. Due to their different effective mass, in quantum
wells the confinement energy Econf = Ev,qw − Ei(k‖ = 0) of the heavy hole
states is smaller than for light-hole states (Ev,qw is the valence band-edge of
the well material). Thus, the degeneracy (at k = 0) between light and heavy
holes in bulk materials, see Fig. 2.1, is lifted. The compressive strain increases
the splitting between the heavy hole and light hole states while energetically
favoring the heavy holes. Thus, the highest two valence bands correspond to
heavy hole states.

We have investigated two different crystallographic directions to demon-
strate the angular dependence of the dispersion (warping effect). We observe
weak warping for the conduction band, and strong warping and strong non-
parbolicities for the valence bands, see Fig. 5.1.

5.2 Momentum matrix elements for interband transitions

Important information on the electronic states within the quantum well is
encoded in the intersubband momentum matrix elements. For the transition
from the conduction band state Fi to the valence band state Fj these are
defined, see [EBWS95], by
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Fig. 5.2. Momentum matrix element dispersion |epij(k‖)|2 (5.1) for transitions be-
tween the lowest conduction band CB1 shown in Fig. 5.1 top, and the upper valence
bands shown in Fig 5.1 bottom. Different polarization directions e are shown. Top:
TE-polarization (p||ex), bottom: TM-polarization (p||ey). Note the normalization to
the same quantity P0 in both pictures. Reprinted with permission from [BHK03].
c© 2003, IEEE.

pij =
m0

�

∑
µ,ν

∫
Ω

F̄i,µ

(
∇kHµν(k‖, kz)

)∣∣∣
ikz= ∂

∂z

Fj,νdz. (5.1)

Fig. 5.2 displays the most prominent interband momentum matrix elements
for TE and TM polarization. These momentum matrix elements have a dis-
tinctive dispersion and warping. In particular, the dominant transition for
TE polarization is between the lowest conduction band CB1 and the topmost
valence band HH1.

6 Upscaling to semi-classical state equations

In the simulation of opto-electronic devices such as strained multiple quan-
tum well (SMQW) laser diodes, semi-classical models turned out to be very
successful, provided that information about the optical active zone is derived
from smaller scale models. This requires suitable upscaling schemes for semi-
classical constitutive laws.

The simulation of opto-electronic devices requires at least the description
of the flow of electrons and holes, the description of the optical field, and
the coupling of these models by the radiative recombination of electrons and
holes. In the following, we focus on a semi-classical carrier flow model, and
on a specific part of radiative recombination; for models of the optical field,
see [BGK00, BGH05, BK*03, BHK03]. In particular, we deal with upscaling
schemes for quantities such as the density of states, the optical response, and
the optical peak gain, from electronic structure calculations as described in
Sect. 5.
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6.1 Drift-diffusion equations

The most popular semi-classical models for the carrier flow in a semiconductor
device are drift-diffusion models. The basic model of this type is the van
Roosbroeck system, see [Gaj93] and the references therein, which describes the
flow of electrons and holes in a selfconsistent field due to drift and diffusion. It
comprises current-continuity equations for the densities n and p of electrons
and holes, respectively, and a Poisson equation for the electrostatic potential
ϕ:

q
∂n

∂t
−∇ · jn = −qR, q

∂p

∂t
+∇ · jp = −qR (6.1)

ε0∇(εs∇ϕ) = −q(C + p− n). (6.2)

ε0 is the vacuum dielectric constant, εs is the static dielectric constant, q
is the elementary charge, and C is the net doping. The recombination rate
R in (6.1) involves all non-radiative and radiative recombination processes,
and depends at least on n and p. The currents jn and jp are driven by the
negative gradients of the quasi-Fermi potentials Fn and Fp for electrons and
holes, respectively:

jn = −qnµn∇Fn, jp = −qpµp∇Fp; (6.3)

µn and µp are the mobilities of electrons and holes.
The current continuity equations describing the motion of electrons and

holes have to be completed by laws for the recombination of electrons and
holes, and by Fermi-Dirac distributions for the densities of electrons and holes:

n = NcF1/2

(
qϕ− qFn − Ec

kBT

)
, p = NvF1/2

(
Ev + qFp − qϕ

kBT

)
. (6.4)

Ec and Ev denote the conduction and valence band edges, respectively.Nc and
Nv are the corresponding densities of states (DOS) given by the expressions

Nc = 2
(
mckBT

2π�2

)3/2

, Nv = 2
(
mvkBT

2π�2

)3/2

. (6.5)

mc and mv are the density of state masses, T is the temperature, kB is Boltz-
mann’s constant, and F1/2 Fermi’s integral of the order 1/2:

F1/2(x) =
2√
π

∫ ∞

0

√
y

1 + exp(y − x)dy. (6.6)

The constitutive equations link the classical drift-diffusion equations to the
quantum mechanical model for the electronic structure. Typically one derives
parameters in a constitutive law by upscaling of electronic structure infor-
mation. Examples are the band-edges Ec, Ev and the density of states Nc,
Nv.
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6.2 Effective band-edges and densities of states

In the flat-band case, qϕ − qFn and qϕ − qFp are approximately constant
across the nanostructure. Therefore, we can define the quasi Fermi levels of the
quantum confined electrons and holes by EFn = qϕ−qFn and EFp = qϕ−qFp,
respectively. SMQW lasers are usually designed such that they operate in this
flat-band mode. Assuming thermodynamic equilibrium of confined electrons
and holes, respectively, their local density distributions for given quasi Fermi
levels EFn and EFp are calculated by

nqw(z) =
∑
i∈c

1
2π2

∫
f
(
Ei(k‖)− EFn

)
‖Fi(z; k‖)‖2

Cd dk‖, (6.7)

pqw(z) =
∑
j∈v

1
2π2

∫
f
(
EFp − Ej(k‖)

)
‖Fj(z; k‖)‖2

Cd dk‖, (6.8)

with Fermi’s function

f(E) =
(

1 + exp
(

E

kBT

))−1

. (6.9)

We introduce the average carrier densities per quantum well by
n̄ =

∫
Ω
nqw(z)dz/dqw and p̄ =

∫
Ω
pqw(z)dz/dqw, where dqw is the thickness

of the well. For our example quantum well structure from Sect. 5 the local
carrier distributions are plotted in Fig. 6.1 for different values of the sheet
concentrations N = n̄ dqw and P = p̄ dqw.

For a calculated band structure we regard the averaged carrier densities
in their dependence on EFn, EFp and kBT :

Fig. 6.1. Local carrier density distributions (6.7) and (6.8) for different values of the
sheet concentrations N = P = 2·10−12cm−2, 3·10−12cm−2, 4·10−12cm−2 for ambient
temperature. One observes a stronger confinement of the holes in comparison to the
electrons.
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level EF n relative to the net band edge Ec for temperatures T=290K, 315K, 340K.
The dashed lines indicate the fit to the macroscopic state-equation (6.11). Reprinted
with permission from [BHK03]. c© 2003, IEEE.

n̄ = n̄ (EFn, kBT ) , p̄ = p̄ (EFp, kBT ) , (6.10)

see Fig. 6.2 and Fig. 6.3 for our example. These relations are fitted to the
Fermi-Dirac distributions

n̄ = NcF1/2

(
EFn − Ec

kBT

)
, (6.11)

p̄ = NvF1/2

(
Ev − EFp

kBT

)
(6.12)

by adjusting the parameters Nc,Ec and Nv, Ev for a specified reference tem-
perature T0. By (6.5) we obtain the density of state masses mc and mv. This
procedure provides quantum corrected band-edges Ec, Ev and density of state
masses mc and mv. Thus, one can treat individual quantum wells as an artifi-
cial classical material, whose parameters significantly differ from bulk values
of the quantum well materials. This approach has been applied to the the

-60 -40 -20 0 20
Ev-EFp [meV]

1

2

3

4

5

6

7

8

9

10

C
ar

rie
r 

D
en

si
ty

 [1
018

/c
m

3 ]

kp-calculation
fit

temperature

Fig. 6.3. Relation (6.10) (kp-calculation) between hole density p and Fermi level
EF p relative to the net band edge Ev for temperatures T=290K, 315K, 340K. The
dashed lines indicate the fit to the macroscopic state-equation (6.12). Reprinted with
permission from [BHK03]. c© 2003, IEEE.
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MQW structure discussed in Sect. 5. Fig. 6.3 and Fig. 6.2 demonstrate the
high quality of the fit for this particular structure [BHK03].

6.3 Material gain

Still assuming the flat-band conditions, the band structure and the momentum
matrix elements (5.1) enter the expression for the material gain

g(ω) =
π�q2

ε0m2
0nrc

1
dqw

1
4π2

∑
i∈c
j∈v

∫ |pije|2
Ei − Ej

f(Ei − EFn) (1− f(Ej − EFp))×

[
1− exp

(
�ω − (EFn − EFp)

kBT

)]
1
π

Γ

[(Ei − Ej)− �ω]2 + Γ 2
dk‖,

(6.13)

where the last factor includes broadening due to collision processes [End97].
The latter have been parametrized by a characteristic intra-band relaxation
time τ of 60 fs (Γ = �/τ). c is the speed of light and nr the refractive index.

For the case of an undoped active region and local charge neutrality the
calculated gain spectra are drawn in Fig. 6.4 for different excitations and tem-
peratures. The evolution of the corresponding maximum material gain with
the carrier density shown in Fig. 6.5 for different temperatures. In [BHK03] it
is discussed how to fit the calculated peak gain characteristics to a logarithmic
model g(n) = g0 log(n/nt), which is used as a state equation in semi-classical
equations.
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Fig. 6.5. Maximum material gain for different carrier densities and temperatures
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6.4 Spontaneous radiative recombination rate

The spontaneous radiative recombination rate Rrad is calculated according to
[Wen] by

Rrad =
nrq

2

π�2c3ε0m2
0

1
dqw

1
4π2

∑
i∈c
j∈v

∫
(Ei − Ej)

∣∣pij∣∣2×
f(Ei − EFn)f(EFp − Ej) dk‖.

(6.14)
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It is shown in Fig. 6.6 together with the fit to Rrad = Bnα. The exponent
was approximately α = 1.5 which differs from the commonly used models
corresponding to α = 2.

7 Avoiding spurious modes by adjusting Ep

For low band gap semiconductors, the parameters of the eight-band Hamil-
tonian often cause anomalous band bending, see Sect. 2.3. This may lead
to spurious modes of the k·p Schrödinger operator for heterostructures, see
Sect. 3.4. However, it is possible to fullfil the condition ζ < ζcrit by lowering
the value of Ep (2.10):

Ep → E′
p = αEp, α < 1 (7.1)

This adjustment has only a small influence on the band structure for low
values of k and therefore leaves the confined states nearly untouched.

Fig. 7.1. (a) Calculated conduction and valence band structures for a
InAsxSb1−x/GaSb quantum well with the As mole fraction of x = 0.82 at ambi-
ent temperature, see [KB*05]. (b) Comparison between eight-band k·p-band struc-
ture calculations and experiments for a set of InAsSb/GaSb multiple quantum well
samples with different As mole fractions. Full circles indicate the MQW-edge as
determined from transmittance, whereas open circles point to the edge as deduced
from PL. Squares mark the edge as obtained from the energy difference of the lowest
conduction band (at k = 0) and the highest valence band (at k = 0) according to
8-band k·p-calculations. One observes a systematic IR-shift of the QW-edge data
experimentally determined compared to the k·p calculation. This tendency is also
present in the InAs0.895Sb0.105 bulk-like sample, indicated as ’Reference’. Thus it is
not likely to be a residual effect of the k·p calculation. (b) reprinted with permission
from [KB*05]. c© 2005 American Institute of Physics.
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In the limit case Ep → 0 the conduction bands and the valence bands
decouple, and one arrives at the usual six-band Hamiltonian for valence band
states. This Hamiltonian still provides a reasonable approximation of the va-
lence band structure [CC92, For93, MGO94, CC96].

The InAsxSb1−x system is the alloy with the lowest direct band-gap value
of all III-V-semiconductor materials. This mixed crystal system is of utmost
interest for infrared (IR) optoelectronic applications such as heterostructure-
based lasers and detectors [WG*00, GKS00]. In [KB*05] the rescaling ap-
proach is applied to the calculation of the electronic states in a set of samples
with different mole fractions x. For a comparison of eight-band k·p calculation
with the experimentally measured properties of the samples, see Fig. 7.1.

8 Biased quantum wells

Typical applications of biased quantum well structures are photonic integrated
chips consisting of integrated semiconductor laser/electro-absorption modu-
lator [Bas95, Ch. 6], [Chu95, Ch. 13]. In such devices, the external electric
field allows to modulate the absorption or the reflectivity for specific spectral
regions.

The applied voltage leads to tilted band edges in the quantum well region,
hence, to meta-stable states. If the applied bias is small with respect to the
band-edge offsets ∆Ev and ∆Ec of the quantum well to the barrier, then hard
wall or soft wall boundary conditions can still be applied for the calculation of
the electronic states [SB87, DF93, ASV98]. The calculated eigenvalues Ei(k‖)
yield an reasonable approximation of the real parts of the complex eigenvalues
corresponding to the meta-stable states of the biased structure.

As an example we discuss the application of this approach to the calcu-
lation of the band structure and the local carrier density distributions for a
13 nm thick InGaAsP quantum well, lattice-matched to InP barriers. In Figs.
8.1 and 8.2 we present the results of eight-band k·p calculations for various
values of the electrical field. Due to the Kramers degeneracy the heavy and
light hole bands are double degenerate for an unbiased quantum well, see Fig.
8.1a. This spin degeneracy is lifted if an electric field is applied to the quan-
tum well, see Fig. 8.1b. The spin splitting of the valence bands induced by
the external electric field is known as the Rashba effect.

Fig. 8.2 shows titled band edge profiles and carrier density distributions
for different applied biases. For the electric field strength F = 6 V/µm one
observes the onset of accumulation of the hole density in the barrier region,
marking the limit of the approach based on the use of hard wall boundary
conditions.
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Fig. 8.1. Band structure ([100] direction) in a 13 nm InGaAsP quantum well lattice-
matched to InP barriers for two different external electric fields. (a) F=0 V/µm,
and (b) F=4 V/µm. At F=0 V/µm, the valence bands are double degenerate. At
F=4 V/µm, they split due to the applied external electric field (Rashba effect).

Fig. 8.2. Tilted band edge profiles Ec(z) and Ev(z) and local density distributions
for electrons and holes in a 13 nm InGaAsP quantum well lattice-matched to InP
barriers for different external electric fields. F=0 V/µm, 2 V/µm, 4 V/µm, 6 V/µm.
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Summary. We consider the modeling, simulation, and optimization of microstruc-
tural cellular biomorphic ceramics obtained by biotemplating. This is a process
in biomimetics, a recently emerged discipline in materials science where engineers
try to mimick or use biological materials for the design of innovative technological
devices and systems. In particular, we focus on the shape optimization of micro-
cellular silicon carbide ceramic materials derived from naturally grown wood. The
mechanical behavior of the final ceramics is largely determined by the geometry of
its microstructure which can be very precisely tuned during the biotemplating pro-
cess. Our ultimate goal is to determine these microstructural details in such a way
that an optimal mechanical performance is achieved with respect to merit criteria
depending on the specific application. Within the shape optimization problem the
state variables are the displacements subject to the underlying elasticity equations,
and the design variables are the geometrical quantities determining the microstruc-
ture. Since a resolution of the microstructure is numerically cost-prohibitive, we use
the homogenization approach, assuming periodically distributed microcells. Adap-
tive mesh-refinement techniques based on reliable and efficient a posteriori error
estimators are applied in the microstructure to compute the homogenized elastic-
ity coefficients. The shape optimization problem on the macroscopic homogenized
model is solved by primal-dual Newton-type interior-point methods. Various numer-
ical experiments are presented and discussed.

1 Introduction

Biomimetics, also called bionics or biomimicry, is a discipline in materials
science that has recently attracted a lot of attention. It allows the cost-
effective production of high performance technological devices and systems
by either mimicking or using naturally grown biological structures (cf., e.g.,
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[Eli00, HDL02, GA88]). In contrast to engineering materials, biological struc-
tures exhibit a hierarchically built anatomy, developed and optimized in a
long-term genetic process. Their inherent cellular, open porous morphology
can be used for liquid or gaseous infiltration and subsequently for high tem-
perature reaction processes. A specific example of such a naturally grown
biological material is wood which exhibits an anisotropic, porous morphology
with excellent strength at low density, high stiffness, elasticity, and damage
tolerance. Typical feature of the wood structure is the system of the tracheidal
cells which provide the transportation path for water and minerals within the
living tree. This open porous system is accessible for infiltration of various
metals.

A recent idea in biomimetical applications is to take advantage of naturally
grown wood in the production of high performance ceramics to be used as fil-
ters and catalysts in chemical processing, heat insulation structures, thermally
and mechanically loaded lightweight structures, and medical implants (for in-
stance, for bone substitution). In particular, silicon carbide (SiC) is known as
a material that is not only suitable in microelectronical applications due to its
bandwidth structure but also useful in mechanical and high temperature appli-
cations with regard to its excellent thermomechanical properties. Since wood
essentially consists of carbon (C), the idea is to use it as a basic material for
the production of highly porous ceramics. Among the large variety of ceramic
composites, new biomorphic cellular silicon carbide ceramics from wood were
recently produced and investigated, see [GLK98a, GLK98b, OT*95, VSG02].
The conversion of naturally grown wood to highly porous SiC ceramics is
done by a process called biotemplating which includes two processing steps,
illustrated in Fig. 1.1.

Biological porous carbonized preforms (also called C−templates) can be
derived from different wood structures by drying and high-temperature py-
rolysis at temperatures between 800 and 1800oC and used as templates for
infiltrations by gaseous or liquid silicon (Si) to form SiC and SiSiC-ceramics,
respectively. During high-temperature processing, the microstructural prop-
erties of the bioorganic preforms were retained, so that a one-to-one reproduc-

SiC-CeramicC-Preform

Drying

 Pyrolysis

(800-1800 C, N ,4h)

Si-Infiltration

(1600 C, vac., 4h)(70 C, 15h)

gaseous SiC

liquid SiSiC

2

o

oo

Wood

Fig. 1.1. Processing scheme of SiC-ceramics from wood
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Fig. 1.2. SiC-ceramic derived from pine wood a) radial direction; b) axial direction

tion of the original wood structure was obtained, see Fig. 1.2. The resulting
cellular composites show low density, high specific strength, and excellent high
temperature stability.

The geometry of the final ceramics, i.e., the widths and lengths of the
different layers forming the struts, can be determined very precisely by an
appropriate tuning of the process parameters. This raises the question how to
choose these microstructural geometrical data in order to achieve an optimal
performance with respect to a prespecified merit criterion depending on the
specific application. From a mathematical point of view, this issue represents
a shape optimization problem where the state variables are subject to the
underlying elasticity equations and the microstructural data serve as design
variables. As far as the solution of such a shape optimization problem is con-
cerned, the resolution of the microstructure is cost-prohibitive with respect
to both computational time and storage. Therefore, the idea is to perform
homogenization, assuming a periodically distributed microstructure, and to
apply the optimization to the homogenized model.

In this study, we focus both on the homogenization process and on the
application of state-of-the-art optimization strategies for the numerical solu-
tion of the shape optimization problem under consideration. The remaining
of the paper is organized as follows: In Sect. 2, we describe in detail the ho-
mogenization technique that provides a macromechanical model where the
components of the homogenized elasticity tensor reflect the microstructural
details. Section 3 deals with the setting of our shape optimization problem. In
Sect. 4, we present a primal-dual Newton interior-point method and in Sect. 5
we comment on the numerical solution of the condensed primal-dual system.
Section 6 concerns adaptive grid-refinement procedures based on a posteriori
error estimators. In particular, we use the Zienkiewicz-Zhu error estimator
proposed in [ZZ87]. Iterative solution techniques for the homogenized elas-
ticity equation and the microcell problem are discussed in Sect. 7. Various
numerical results are given in Sect. 8.
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2 Homogenized computational model

In this section, we briefly explain the derivation of the homogenized compu-
tational model on the macroscale by using the asymptotic homogenization
theory. Homogenization has been successfully used in the last three decades
for solving multi-scale problems on computational regions occupied by hetero-
geneous microstructural materials (see, cf., [BP84, BLP78, JKO94, SP80]).

Let Ω ⊂ Rd, d = 2, 3, be a domain occupied by a heterogeneous ma-
terial with microstructures of periodically distributed constituents. Suppose
that the boundary of Ω, denoted by Γ , consists of a prescribed displacement
boundary ΓD (meas ΓD > 0) and a prescribed traction boundary ΓT , such
that Γ = ΓD ∪ΓT , ΓD ∩ΓT = ∅. Let b be the body force, ū be the prescribed
displacement on ΓD, and t̄ be the prescribed traction on ΓT .

The homogenized model for our original heterogeneous material occupying
the domain Ω, Ω ⊂ Rd, d = 2, 3, is illustrated in Fig. 2.1. The main idea of
the homogenization is to replace the heterogeneous material by an equivalent
homogenized material, extracting the information for the material properties
of the various microstructural constituents (or different phases).

The microscopic and macroscopic models are considered simultaneously
supposing a strong scale separation, i.e., a large gap in length scale between
the macroscopic component and the microstructure. In practical applications
the microscopic length scales are orders of magnitude smaller than the physical
macroscopic length scale. A main assumption in the homogenization approach
is that the original heterogeneous material workpiece is composed of peri-
odically distributed microstructures of various constituents. To couple prop-
erly the micro- and macro-scales, we choose a representative volume element
(RVE) or a unit microstructure.

Consider a stationary microstructure with a geometrically simple tra-
cheidal periodicity cell Y = [0, 1]d, d = 2, 3, (see Fig. 2.2) consisting of
an outer layer of carbon (C), interior layer of silicon carbide (SiC), and a
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Fig. 2.1. The macroscopic homogenized material model
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Carbon
SiC

Pore

Fig. 2.2. a) 3-D unit periodicity cell Y , b) 2-D unit periodicity cell Y = P ∪SiC∪C

centered pore channel (P, no material). We introduce two space variables x
(macroscopic/slow variable) and y (microscopic/fast variable) and denote by
ε, y = x/ε, ε � 1, the scale parameter (dimensionless number) which, in
fact, represents the periodicity under the assumption that ε is very small
with respect to the size of Ω, i.e., there exists a large scale gap between the
microstructure and the macroscopic component.

The parameter ε allows us to define macrofunctions in terms of the mi-
crostructural behavior and vice versa. Thus, for any state function f(y) :=
f(x/ε), one can compute the spatial derivatives by using the following differ-
entiation rule

d

dx
f
(
x,

x

ε

)
=
∂f(x,y)
∂x

+ ε−1 ∂f(x,y)
∂y

.

Consider the following elasticity equation defined in the microstructure Y

−∇ · σ = F in Y (2.1)

with a load vector F. Here, σ is the microscopic symmetric stress, u ∈ H1(Y ),
is the corresponding displacement at point y ∈ Y , and e is the microscopic
symmetric strain with components

eij(u(y)) =
1
2

(
∂ui(y)
∂yj

+
∂uj(y)
∂yi

)
. (2.2)

The problem (2.1) is subject to periodic boundary conditions on the outer
part of ∂Y , Neumann boundary conditions around the pore, and continuity
conditions [u] = 0 and [σ · n] = 0 on the interfaces between the different
phases, see Fig. 2.2. The symbol [ ] denotes the jump of the function across
the corresponding interface with a normal vector n (cf., e.g., [BP84]).

Assuming linearly elastic constituents, the unit microstructure is governed
by the Hooke law σ = E : e with componentwise (i, j, k, l = 1, . . . , d) consti-
tutive relations as follows
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σij(u) = Eijkl(y) ekl(u(y)). (2.3)

Here, we adopt the Einstein convention of a summation on repeated indices.
The 4-th order elasticity (also called plain-stress) tensor E(y) with compo-
nents Eijkl(y) characterizes the behavior of the material at point y and de-
pends on material constants like Young’s modulus and Poisson’s ratio. Note
that E(y) is zero if y is located in the porous subdomain of the microstructure
and coincides with the elasticity tensor of the material if y is located in the
corresponding microstructural constituent. The elasticity tensor is symmetric
in the following sense

Eijkl = Ejikl = Eijlk = Eklij (2.4)

and satisfies the following ellipticity conditions

Eijkl χijχkl ≥ c χ2
ij , ∀χij = χji,

for a constant c > 0 (cf., e.g., [BP84, BLP78, JKO94]).
Denote by uε(x) := u(x/ε) the unknown macroscopic displacement vector

and consider the following family of elasticity problems

−∇ · σε = b in Ω, (2.5)

subject to a macroscopic body force b and a macroscopic surface traction t
applied to the portion ΓT ⊂ ∂Ω. Here, σε(uε) := Eε(x)e(uε(x)) is the stress
tensor for x ∈ Ω and Eε(x) := E(x/ε) = E(y) is the piecewise constant
elasticity tensor defined in Y . Following, for instance, [BLP78] for the basic
concepts of the homogenization method, the unknown displacement vector is
expanded asymptotically as

uε(x) = u(0)(x,y) + εu(1)(x,y) + ε2 u(2)(x,y) + . . . , y = x/ε, (2.6)

where u(i)(x,y), i ≥ 0, are Y−periodic in y, i.e., take equal values on opposite
sides of Y . Consider the space H := {u|u ∈ H1(Ω), u = 0 on ΓD}. Under
the assumptions of symmetry and ellipticity of the elasticity coefficients, it
was shown in the homogenization theory that the sequence {uε} of solutions
of (2.5) tends weakly in H as ε → 0 to a function u(0)(x) ∈ H , the solution
of the following macroscopic homogenized problem with a constant elasticity
tensor.

−∇ · σ = b in Ω, (2.7)

where σ = σ(u(0)) := EHe(u(0)(x)), x ∈ Ω, and EH stands for the homog-
enized elasticity tensor. Note that u(0)(x) depends only on the macroscopic
variable x and is independent of the microscopic scale y. The leading term
u(0) in (2.6) is called a macroscopic displacement and the remaining terms
u(i), i > 0, are considered as perturbed displacements.

The homogenization method requires to find periodic functions ξkl satisfy-
ing the following problem in a weak formulation to be solved in the microscopic
unit cell
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Y

Eijpq(y)
∂ξklp
∂yq

∂φi
∂yj

dY =
∫
Y

Eijkl(y)
∂φi
∂yj

dY, (2.8)

where φ ∈ H1(Y ) is an arbitrary Y−periodic variational function. The func-
tion ξkl, also referred to as the characteristic displacement, is found by solv-
ing (2.8) in Y with periodic boundary conditions. After computing ξkl, one
defines the homogenized coefficients by the following formulas (we refer to
[BP84, BLP78, JKO94] for details)

EH
ijkl =

1
|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξklp
∂yq

)
dY. (2.9)

Due to the symmetry conditions (2.4), the 4-th order homogenized elas-
ticity tensor EH = (EH

ijkl) can be written as a symmetric and usually a dense
matrix. In the case d = 2 it is a 3× 3 matrix and has the form

EH =

⎛⎜⎝ EH
1111 EH

1122 E
H
1112

EH
2222 E

H
2212

SYM EH
1212

⎞⎟⎠ . (2.10)

The 3-d homogenized tensor can be written, respectively, as a 6×6 matrix

EH =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

EH
1111 EH

1122 E
H
1133 E

H
1112 E

H
1123 E

H
1113

EH
2222 E

H
2233 E

H
2212 E

H
2223 E

H
2213

EH
3333 E

H
3312 E

H
3323 E

H
3313

EH
1212 E

H
1223 E

H
1213

EH
2323 E

H
2313

SYM EH
1313

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.11)

The computation of the homogenized elasticity coefficients can be done
analytically for some specific geometries as, for instance, layered materials
or checkerboard structures. In case of more complicated microstructures, the
computation of EH

ijkl has to be done numerically through a suitable micro-
scopic modeling.

Once the constant homogenized coefficients from (2.9) are computed, one
comes up with the homogenized macroscopic equation (2.7) given in a weak
form as follows∫

Ω

EH
ijkl

∂u0
k

∂xl

∂vi
∂xj

dΩ =
∫
Ω

b · v dΩ +
∫
ΓT

t̄ · v dΓ, ∀ v ∈ H, (2.12)

where u(0)(x) := u(0)(x,y) is the homogenized solution occurring in (2.6).

3 Shape optimization by primal-dual methods

Structural optimization has recently become of increasing interest in computer
aided design and optimization of composite structures in materials science (cf.,
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e.g., [Ben95] and the references therein). A typical problem of structural opti-
mization is to minimize a function (called objective, cost or criterion function)
over a set of geometrical or behavioral requirements (called constraints). The
set of structural parameters includes the so-called state and design param-
eters, and the problem consists in computing optimal values of the design
parameters, such that they minimize the specific objective function. Sizing,
shape, and topology optimization problems are different types in structural
optimization. Detailed classification of these problems is given, for instance,
in [OT83]. In the sizing problems, the goal is to find the optimal thickness
distribution of a given material structure. The main difficulty in shape op-
timization problems arises from the fact that the geometry of a structure is
a design variable which means, in particular, that the discretization model
associated with the structure has to be changed in the process of optimiza-
tion, see [All02, SZ92]. In the topology optimization of solid structures we are
interested in the determination of the optimal placement of material in space,
i.e., one has to determine which points of space are material and which points
should remain void (no material). Hence, the main goal of these problems is
to find the location of holes and the connectivity of the domain, see [BS03].

Our goal is to optimize mechanical performances of the ceramic composites
described in Sect. 1 (such as the compliance or the bending strength) taking
into account technological and problem specific constraints on the state and
design parameters. Denote the state variables u = (u1, ..., uN )T , which are
the nodal values of the components of the discrete displacement vector, and
the design variables α = (α1, ..., αM )T chosen as the microstructural data
determining the geometry of the periodicity cell (widths and lengths of the
different materials layers forming the cell walls, see Fig. 2.2). Since the geo-
metrical properties of the final ceramics are not fixed but can be changed and
precisely tuned within the processing, we focus on shape optimization of our
microcellular SiC ceramic materials. Depending on the specific application,
the objective functional J = J(u,α) can be chosen according to the following
criteria:

• mechanical properties (minimum compliance),
• loading (bending, tension, torsion),
• thermal properties (shock resistance),
• technological properties (minimum weight),
• economical properties (cheapness).

For simplicity, we consider the mean compliance of the structure defined
as

J(u,α) =
∫
Ω

b · u dΩ +
∫
ΓT

t̄ · u dΓ, (3.1)

Our shape optimization problem reads: Find (u,α) ∈ RN ×RM such that

J(u,α) = inf
v,β

J(v,β), (3.2)
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subjected to the following equality and inequality constraints

A(α)u = f , g(α) :=
M∑
i=1

αi = C, αmin ē ≤ α ≤ αmax ē, (3.3)

where J(u,α) is defined by (3.1),A(α) is the stiffness matrix corresponding to
the homogenized equilibrium equation (2.12), u is the discrete homogenized
displacement vector, f is the discrete load vector, and ē = (1, 1, . . . , 1) ∈
RM . Note that αmin and αmax are technologically motivated lower and upper
bounds for the design parameters. In the case of unit microstructure Y , we
take the limits αmin = 0, αmax = 0.5, and 0 < C ≤ 0.5.

4 Primal–dual Newton interior–point method

In the optimization algorithm, we are typically faced with constrained non-
convex nonlinear minimization problems with both equality and inequality
constraints on the state variables and design parameters. For the discretized
optimization problem we use the primal-dual Newton interior-point meth-
ods, recently a topic of intensive research [BHN99, ET*86, FGW02, GOW98,
HPS02, HP04b, VS99]. The main idea of these methods is to generate it-
eratively approximations of the solution which strictly satisfy the inequality
constraints. Details are given in this section.

4.1 General nonlinear optimization problem

We consider the following general constrained nonlinear nonconvex program-
ming problem with both equality and inequality constraints

min
x∈Rn

f(x), (4.1)

subject to
h(x) = 0, g(x) ≥ 0, (4.2)

where f : Rn → R, h : Rn → Rm,m < n, and g : Rn → Rl are assumed to
be twice Lipschitz continuously differentiable. Note that the constraints (4.2)
have to be understood componentwise.

The Lagrangian function associated with (4.1)–(4.2) is defined by

L(x,y, z) = f(x) + yTh(x)− zTg(x), (4.3)

where y ∈ Rm and z ∈ Rl are the Lagrange multipliers for the equality and
inequality constraints, respectively.

The first-order Karush-Kuhn-Tucker (KKT) necessary conditions for op-
timality of (4.1)–(4.2) read
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∇xL(x,y, z) = 0, h(x) = 0, g(x) ≥ 0, Z g(x) = 0, z ≥ 0,

where

∇xL(x,y, z) = ∇f(x) +
m∑
i=1

yi∇hi(x)−
l∑

i=1

zi∇gi(x) (4.4)

is the gradient of the Lagrangian function and Z is the diagonal matrix with
a diagonal z. We also consider the Hessian of the Lagrangian with respect to
x defined by

∇2
xL(x,y, z) = ∇2f(x) +

m∑
i=1

yi∇2hi(x)−
l∑

i=1

zi∇2gi(x), (4.5)

where∇2f(x), ∇2hi(x), 1 ≤ i ≤ m, ∇2gi(x), 1 ≤ i ≤ l stand for the Hessians
of f(x), hi(x), and gi(x), respectively. Denote by

A(x) = {i, gi(x) = 0, i = 1, . . . , l}

the set of all indices for which the inequality constraints are equal to zero
at x. We are interested in finding local minimizers of our optimization prob-
lem (4.1)–(4.2). Assume that at least one such point x∗ exists satisfying the
conditions:

• Feasibility. h(x∗) = 0 and g(x∗) ≥ 0.
• Regularity. The set {∇h1(x∗), . . . ,∇hm(x∗)} ∪ {∇gi(x∗), i ∈ A(x∗)} of

gradients of equality and active inequality constraints is linearly indepen-
dent.

• Smoothness. The Hessian matrices ∇2f(x), ∇2hi(x), 1 ≤ i ≤ m, and
∇2gi(x), 1 ≤ i ≤ l, exist and are locally Lipschitz continuous at x∗.

• Second-order sufficiency condition. ηT∇2
xL(x∗)η > 0 for all vectors

η �= 0 satisfying ∇hi(x∗)Tη = 0, 1 ≤ i ≤ m, and ∇gi(x∗)T η = 0, i ∈
A(x∗).

• Strict complementarity. z∗i > 0 if gi(x∗) = 0, 1 ≤ i ≤ l.

Well-known approaches from the optimization theory for handling prob-
lems with inequality constraints are, for instance, the slack variable approach,
the active set strategy, and the logarithmic barrier function approach. Each of
these approaches results in a nonlinear programming problem with only equal-
ity constraints. For example, in the first approach, the constraint g(x) ≥ 0
can be replaced by g(x)−s = 0, s ≥ 0 by adding a nonnegative slack variable
to each of the inequality constraints. Transformation of the original inequality
problem into an equality one, by adding slacks, have been a frequently applied
tool in scientific computations in the past twenty years and recently used in
cf., [BHN99, ET*86, VS99]. The introduction of slack variables is associated
with a small amount of additional work and storage, since they do not enter
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the objective function and are constrained by simple bounds. The second,
active set strategy, approach in nonlinear programming is directly related to
the idea of the simplex method in linear programming. At each iterative step
from this approach, applying, for example, Newton’s method, one has to define
which constraints are active at the solution and treat them as equality con-
straints by ignoring the others. The third approach was used in our practical
implementations and we explain it in detail in the next subsection.

4.2 Logarithmic barrier interior-point method

The logarithmic barrier function method was first introduced in [Fri55] and
later on popularized by [FM68] in the late sixties of the last century. The
basic idea of this method is to replace the optimization problem (4.1)–(4.2)
with the following equality constrained optimization problem

min
x∈Rn

β(ρ)(x), (4.6)

subject to
h(x) = 0, (4.7)

where ρ is a positive scalar, called barrier parameter, and

β(ρ)(x) = f(x)− ρ
l∑

i=1

log gi(x) (4.8)

is often referred to as a barrier function. To insure existence of the logarithmic
terms in (4.8) we implicitly require gi(x) > 0, 1 ≤ i ≤ l. In such a way, we
get a family of subproblems depending on ρ for which it is well-known that
under the assumptions conditions from Sect. 4.1 the solution of (4.6)–(4.7)
converges to a solution of the original problem (4.1)–(4.2) as ρ decreases to
zero (cf., [FM68]). This method obviously is an interior-point method since it
keeps the sequence of iterating solutions strictly feasible with respect to the
inequality constraints. Note that the logarithmic terms serve as a barrier and
result in finding a solution x(ρ) such that g(x(ρ)) > 0. The solution points
x(ρ) parameterized by ρ define the so-called central path or also called barrier
trajectory.

The gradient of (4.8) is given by

∇β(ρ)(x) = ∇f(x)−
l∑

i=1

ρ

gi(x)
∇gi(x)

and the Hessian of β(ρ)(x) is defined by

∇2β(ρ)(x) = ∇2f(x)−
l∑

i=1

ρ

gi(x)
∇2gi(x)+

l∑
i=1

ρ

g2
i (x)

∇gi(x)(∇gi(x))T . (4.9)
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The Lagrangian function associated with (4.6)–(4.7) is

L(ρ)(x,y) = β(ρ)(x) + yTh(x) = f(x)− ρ
l∑

i=1

log gi(x) + yTh(x)

and the gradient of L(ρ)(x,y) with respect to x is given by

∇xL(ρ)(x,y) = ∇f(x)−
l∑

i=1

ρ

gi(x)
∇gi(x) +

m∑
i=1

yi∇hi(x). (4.10)

The logarithmic barrier function method consists now of generating a se-
quence of iterative solutions {x} = {x(ρ)}, local minimizers of the equality
constrained subproblems, with ρ > 0 decreasing at each iteration. Taking into
account the first-order optimality conditions and especially ∇xL(ρ)(x,y) = 0,
we see that convergence of {x(ρ)} to an optimal solution x∗ requires that

lim
ρ→ 0

y
(ρ)
i = y∗i , 1 ≤ i ≤ m and lim

ρ→ 0

ρ

gi(x(ρ))
= z∗i , 1 ≤ i ≤ l, (4.11)

where {y∗i } and {z∗i } are the Lagrange multipliers associated with the equal-
ity and inequality constraints gi(x(ρ)) > 0, respectively. From gi(x(ρ)) → 0
and the second relation in (4.11) we get ρ/g2

i (x
(ρ)) →∞ and hence, the Hes-

sian of the logarithmic barrier function (4.9) would become arbitrarily large.
Comparing now relations (4.4) and (4.10), we see that ρ/gi(x(ρ)) serves as a
Lagrange multiplier for the inequality constraints. Thus, we can introduce an
auxiliary variable zi = z

(ρ)
i = ρ/gi(x(ρ)), 1 ≤ i ≤ l which can also be written

in the form z
(ρ)
i gi(x(ρ)) = ρ. The last relation is usually called perturbed com-

plementarity and can be used as a remedy, so that the differentiation will not
create ill-conditioning.

We formulate now the perturbed KKT conditions for the logarithmic bar-
rier function problem (4.6)–(4.7), namely

∇f(x) +∇h(x)y −∇g(x)z = 0, h(x) = 0, Zg(x) = ρē, g(x) > 0. (4.12)

In matrix-vector notations, (4.12) results in the following nonlinear equation
with n+m+ l components

F (ρ)(x,y, z) = 0 with F (ρ)(x,y, z) =

⎛⎜⎝ t + JTeqy − JTinz

h
Gz − ρ ē

⎞⎟⎠ , (4.13)

where F (ρ) = ∇L(ρ) is the gradient of the Lagrangian function with respect
to x,y, and z; t = ∇f(x) is the gradient of the objective function, Jeq is
the Jacobian m× n matrix of the equality constraints h(x) = 0 and Jin

is the Jacobian l× n matrix of the inequality constraints g(x) ≥ 0. In the
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last equation of (4.13) we have denoted G = diag(gi), gi > 0, 1 ≤ i ≤ l and
ē = (1, 1, . . . , 1)T . Note that at each iteration we have three sets of unknowns:
the primal variable x, the dual variable y, and the perturbed complementarity
variable z which we consider independently.

Denote the unknown solution by Φ = (x,y, z) and apply the New-
ton method to the nonlinear system (4.13) to find the increments ∆Φ =
(∆x, ∆y, ∆z), namely

K∆Φ = −F (ρ)(Φ), (4.14)

which is often referred to as a primal-dual system. The vector ∆Φ is called
search direction. The so-called primal-dual matrix K =

(
F (ρ)

)′(Φ) of second
derivatives of the Lagrangian function is defined as follows

K =

⎛⎝ H JTeq −JTin
Jeq 0 0
ZJin 0 G

⎞⎠ , (4.15)

where the Hessian of the Lagrangian function H = ∇2
xL is given by (4.5).

Note that the matrix K is sparse, nonsymmetric, independent of ρ, and usu-
ally well-conditioned in a sense that its condition number is limited when
ρ→ 0 (see [Wri98] for more details). In the case of convex optimization (i.e.,
convex objective function f(x), linear equality constraints h(x), and concave
inequality constraints g(x)), the Hessian matrix H is positive semidefinite.
The properties of the Hessian matrix for inequality constrained optimization
problem with logarithmic barrier function method are discussed in [FGW02].

One possible way for solving (4.14) is to symmetrizeK taking into account
the fact that Z and G are diagonal matrices. This method is proposed in
[FGS96] and results in the following symmetric matrix

K̂ =

⎛⎝ H JTeq −JTin
Jeq 0 0
−Jin 0 −Z−1G

⎞⎠ ,

which is strongly ill-conditioned with some diagonal elements becoming un-
bounded as ρ → 0. In particular, for the active inequality constraints, the
diagonal entries of Z−1G go to zero, and for the inactive constraints they go
to infinity. As the iterates converge, the ill-conditioning of K increases, but
it was shown in [FGS96] that the primal-dual solution of the optimization
problem is actually independent of the size of the large diagonal elements and
can be found by using, for instance, a symmetric indefinite factorization of
the primal-dual system.

Another alternative way for solving (4.14) which we use in our practical
applications is to eliminate the (1,3) block of (4.15), i.e., due to g(x) > 0, we
eliminate ∆z from the third equation of (4.14)

∆z = −z +G−1(ρ ē− ZJin∆x) (4.16)
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and replace it in the first equation. This method produces a symmetric linear
system with n+m equations of the form(

H̃ JTeq
Jeq 0

)(
∆x
∆y

)
= −

(
t + JTeqy − ρJTinG−1ē

h

)
, (4.17)

where H̃ = H + JTinG
−1ZJin is often referred to as a condensed primal-dual

Hessian and (4.17) is called a condensed primal-dual system. A detailed anal-
ysis of the properties of the condensed primal-dual matrix can be found in
[Wri98] where it was shown that the inherent ill-conditioning of the reduced
primal-dual matrix is usually benign and does not influence the accuracy of
the solution.

Various methods for solving (4.17) and finding the primal-dual steps
(∆x, ∆y) are proposed in the literature (cg., e.g., [ET*86, GOW98, Wri98]).
Note that one needs a reliable and efficient solver of (4.17), since the con-
densed primal-dual system is solved at every iteration of the optimization
loop. In practice, we apply transforming iterations (see [Wit89]) to find the
increments. This method will be explained in more detail in Sect. 5.

After finding the solution of (4.17), the algorithm proceeds iteratively from
an initial point (x(0),y(0), z(0)) through a sequence of points determined from
the search directions described by (4.16) and (4.17) as follows

x(k+1) = x(k) + α(k)
x ∆x, y(k+1) = y(k) + α(k)

y ∆y, z(k+1) = z(k) + α(k)
z ∆z.

The parameters α(k)
x , α

(k)
y , α

(k)
z ∈ (0, 1] are called steplengths and their choice

at each iteration is a critical feature of the algorithm to find a local minimizer
of the optimization problem.

4.3 Merit functions. Computing the steplengths

In all optimization algorithms it is important to have a reasonable way of
deciding whether the new iterate is better than the previous one, i.e., it is
essential to measure appropriately the progress in finding a local solution.
Merit functions of different types have been a subject of great interest over
the past years (see, e.g., [ET*86, GOW98, Wri98]). The main idea of a merit
function is to ensure simultaneously a progress toward a local minimizer and
toward feasibility. The method of choosing α(k) at each iteration becomes
more complicated in general nonlinear programming problems as it is well-
known that the Newton method may diverge when the initial estimate of the
solution is bad.

Two versions of the Newton method can be applied, namely, the trust-
region and the line-search approach. The first method has recently been ap-
plied in, e.g., [BHN99]. Typical for this method is to find a step d(k) which
is restricted to a set, called the trust region. This set is practically obtained



Shape Optimization 409

by limiting |d(k)| ≤ r(k), where r(k) is the trust region radius. At each it-
eration, r(k) is updated according to how successful the step has been. For
instance, if the a priori chosen merit function M decreases, we accept the
step d(k), update the solution Φ(k+1) = Φ(k) + d(k) and possibly increase the
trust region radius r(k). Otherwise, we decrease r(k) by a damping factor, e.g.,
r(k) = r(k)/2 and compute again the step d(k).

We apply the second variant of the Newton method, the line-search ap-
proach. Once the solution ∆Φ(k) of (4.14) has been determined, we find a
steplength α(k) > 0 such that Φ(k+1) = Φ(k)+α(k)∆Φ(k) measuring a progress
in minimization at each iteration and reducing the merit function in the sense
M(Φ(k+1)) < M(Φ(k)). The ideal value α(k) = 1 may not always happen
so that various modifications of the basic Newton method have to be imple-
mented. The following basic model algorithm can be considered:

S1. If the conditions for convergence are satisfied, the algorithm terminates
with Φ(k) as the solution.

S2. Compute a search direction ∆Φ(k) solving (4.14).
S3. Compute the steplength α(k) > 0 for which M(Φ(k) + α(k)∆Φ(k)) <

M(Φ(k)).
S4. Update the estimate for the minimum by Φ(k+1) := Φ(k)+α(k)∆Φ(k), k :=

k + 1, and go back to step S1.

A standard convergence monitor in nonlinear programming is to choose
the Euclidean norm ‖F (ρ)(x,y, z)‖ of the residual produced by the KKT
conditions (4.13) as a merit function. However, in many practical implemen-
tations, this choice of the merit function is not sufficient, since it does not
allow to tell the difference between a local minimizer and a stationary non-
minimizing point. The KKT conditions are necessary optimality conditions
and hence, the optimization problem (4.1)–(4.2) and the nonlinear problem
(4.13) are not equivalent, i.e., the Newton method may find solutions of (4.13)
which do not minimize the objective function f(x). Therefore, in order to
find simultaneously solutions of both problems, a better approach is to rely
on a hierarchy of two merit functions (cf., e.g., [GOW98, HPS02]). In general,
the choice of merit functions in nonlinear constrained optimization problems
is complicated. Several ideas have recently been proposed in the context of
primal-dual interior methods (cf., e.g., [BHN99, ET*86, FGW02]). In particu-
lar, our primary merit function is related to those suggested in [GOW98] and
is chosen as a modified augmented Lagrangian incorporating the logarithmic
barrier function (4.8) as follows

M := M(x,y, ρ, ρA) = f(x)− ρ
l∑

i=1

log gi(x) + yTh(x) +
1
2
ρA h(x)Th(x),

(4.18)
where ρA is a positive parameter. Our purpose now is to satisfy the descent
conditions and to guarantee a reduction of the merit function in the sense that
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each iterate should be an improved estimate of the solution of (4.6)–(4.7). Note
that a descent is sought only with respect to x taking into account the original
optimization problem. A standard way to achieve M(x + α∆x,y, ρ, ρA) <
M(x,y, ρ, ρA) is to require that∆x is a descent direction, i.e.,∆xT∇xM < 0,
where ∇xM is the gradient of the primary merit function with respect to the
primal variable x. In particular, we have

∆xT∇xM = ∆xT (t− ρJTinG−1ē + JTeq y + ρAJ
T
eq h)

= ∆xT (t− ρJTinG−1ē)− hTy − ρAhTh, (4.19)

due to Jeq∆x = −h from the second equation of (4.17). Hence,∆xT∇xM < 0
can be satisfied if the augmented Lagrangian parameter ρA is sufficiently large,
namely

ρA >
∆xT (t− ρJTinG−1ē)− hTy

hTh
.

Hence, ρA can be changed within the optimization loop, if ∆x is not a descent
direction. In our algorithm, we choose

ρA = min
(

5
hTh

(∆xT (t− ρJTinG−1ē)− hTy), 100
)

(4.20)

in the case ∆xT∇xM ≥ 0 and continue the loop (see [GOW98, HPS02] for
details).

For the secondary merit function we choose the l2− norm of the resid-
ual with respect to perturbed KKT-conditions (4.13). We apply the Newton
method and choose the steplengths to strictly satisfy the inequality constraints
g(x) > 0 and the complementarity constraints z > 0. Hence, the first require-
ment for the line-search approach is to insure a strict feasibility. Let α̂ and γ̂
be separate steplengths defined as follows

α̂ = max{α|g(x) + αJin∆x ≥ 0}, γ̂ = max{γ|z + γ∆z ≥ 0}.

Since we maintain interior (i.e., strict feasible) iterates, usually we take a
parameter τ ∈ (0, 1) bounded strongly away from unity and define α =
min(1, τ α̂) and γ = min(1, τ γ̂). We use the same steplength γ for the La-
grange multiplier y. In practice, both merit functions are used by means of
the following strategy: If the steplengths α and γ lead to a reduction of M ,
they are accepted. If M does not decrease, we check the secondary merit func-
tion. If the latter decreases, the steplengths are accepted; otherwise damp the
Newton steps by a certain factor and continue the procedure. The barrier pa-
rameter ρ > 0 is updated by decreasing values until an approximate solution
of the nonlinear problem is obtained (cf., e.g., [ET*86, GOW98, HPS02]). We
rely on a watchdog strategy (see [CL*82]) to ensure progress in finding a local
minimizer. If after some fixed number of iterations there is no reduction of
M , the augmented Lagrangian parameter ρA is chosen sufficiently large in
accordance with (4.20).
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5 Solving the condensed primal–dual system

The discretized constrained optimization problem (3.2)–(3.3) is solved by the
primal-dual interior-point method described in Sect. 4. We consider the diag-
onal matrices D1 := diag(αi−αmin) and D2 := diag(αmax−αi) and introduce
z := ρD−1

1 ē ≥ 0 and w = ρD−1
2 ē ≥ 0 serving as perturbed complementarity.

We note that 1 ≤ i ≤ N where N is the number of finite elements in the dis-
cretized domain and ē = (1, 1, . . . , 1)T ∈ RM . The primal-dual Newton-type
interior-point method is applied to three sets of variables: primal feasibil-
ity (u,α), dual feasibility (λ,η), and perturbed complementarity related to
(z,w).

Denote the Lagrangian function of (3.2)–(3.3) by

L(u,α; λ, η; z,w) := f(u,α) (5.1)
+ λT (A(α)u− f ) + η (g(α)− C)
− zT (α− αmin ē)−wT (αmaxē−α).

The Newton method applied to the KKT conditions of (5.1) results in⎛⎜⎜⎜⎜⎜⎜⎝
0 Luα Luλ 0 0 0

Lαu Lαα Lαλ Lαη −I I
Lλu Lλα 0 0 0 0

0 Lηα 0 0 0 0
0 Z 0 0 D1 0
0 −W 0 0 0 D2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
)u
)α
)λ
)η
)z
)w

⎞⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎝
∇uL
∇αL
∇λL
∇ηL
∇zL
∇wL

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.2)

where I stands for the identity matrix, Z = diag(zi) and W = diag(wi) are
diagonal matrices. Following Sect. 4 we eliminate the increments for z and w
from the 5th and 6th rows of (5.2), namely,

)z = D−1
1 (−∇zL − Z)α), )w = D−1

2 (−∇wL+W )α) (5.3)

and substitute (5.3) in the second row of (5.2). We get the linear system
K̃)ψ = −ξ̃ for the increments of ψ := (u,α,λ, η), denoted by )ψ :=
()u,)α,)λ,)η) where K̃ is the matrix and (−ξ̃) is the right-hand side of
the following condensed primal-dual system⎛⎜⎜⎝

0 Luα Luλ 0
Lαu L̃αα Lαλ Lαη

Lλu Lλα 0 0
0 Lηα 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
)u
)α
)λ
)η

⎞⎟⎟⎠ = −

⎛⎜⎜⎝
∇uL
∇̃αL
∇λL
∇ηL

⎞⎟⎟⎠ . (5.4)

The αα-entry of K̃ and the modified entry for the right-hand side are

L̃αα = Lαα +D−1
1 Z+D−1

2 W, ∇̃αL = ∇αL+D−1
1 ∇zL−D−1

2 ∇wL.

Direct methods for the solution of (5.4) can be divided into two classes:
range space methods and null space methods. These approaches essentially
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differ in the grouping of the matrix into a 2 × 2-block structure. The de-
composition of the condensed primal-dual system (5.4) is related to the first
approach. In this section, we consider the null space decomposition of the con-
densed primal-dual matrix interchanging the second and the third rows and
columns. The resulting matrix can be written according to

K̃ =
(
A11 A12

A21 A22

)
=

⎛⎜⎜⎜⎝
0 Luλ Luα 0

Lλu 0 Lλα 0

Lαu Lαλ L̃αα Lαη

0 0 Lηα 0

⎞⎟⎟⎟⎠ ,

where the first diagonal block

A11 =
(

0 Luλ
Lλu 0

)
(5.5)

is now an indefinite but nonsingular matrix. We remind that Lλu = A(α) is
exactly the stiffness matrix corresponding to the equilibrium equation (2.12).
Hence, A−1

11 exists, and the Schur complement S := A22 − A21A
−1
11 A12 is

defined correctly.
We use the following regular splitting of K̃

KLK̃R = M1 −M2 (5.6)

with left and right factors given below and reasonable matrices M1 and M2 ∼
0. For solving the system of the form K̃)ψ = −ξ̃, starting with an initial
guess for )ψ := ()u,)λ,)α,)η)T , the transforming iteration proposed in
[Wit89] is described by

)ψ(ν+1) := )ψ(ν) +KRM−1
1 KL(−ξ̃ − K̃)ψ(ν)), (5.7)

where the new iterate ψ(new) is obtained by a line-search in the direction )ψ,
namely

ψ
(new)
j = ψ

(old)
j + αj()ψ)j , 1 ≤ j ≤ 4.

The line-search approach and the choice of the steplengths parameters αj are
discussed in Sect. 4.3.

Using an appropriate preconditioner for the stiffness matrix, we approxi-
mate the first diagonal block (5.5) as follows

A11 =
(

0 Luλ
Lλu 0

)
∼

(
0 L̃uλ

L̃λu 0

)
=: Ã11.

Usually, the left and right transformations are of the form

KL = I, KR =
(
I −Ã−1

11 A12

0 I

)
=

⎛⎜⎜⎝
I 0 −L̃−1

λu
Lλα 0

0 I −L̃−1

uλ
Luα 0

0 0 I 0
0 0 0 I

⎞⎟⎟⎠ .
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In this case, the regular splitting (5.6) becomes KKR = M1 −M2 where

M1 =

⎛⎜⎜⎝
0 Luλ 0 0

Lλu 0 0 0
Lαu Lαλ S̃ Lαη

0 0 Lηα 0

⎞⎟⎟⎠ =
(
A11 0
R Q

)
(5.8)

and

M2 =

⎛⎜⎜⎝
0 0 Luα − LuλL̃

−1

uλ
Luα 0

0 0 Lλα − LλuL̃
−1

λu
Lλα 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (5.9)

Note that M2 ∼ 0 if we have a good preconditioner for the stiffness matrix.
In our numerical experiments, we choose a Cholesky decomposition of Luλ.
The second diagonal block Q in (5.8) is symmetric and indefinite given by

Q :=
(

S̃ Lαη

Lηα 0

)
with S̃ := L̃αα−LαuL̃−1

λu
Lλα−LαλL̃

−1

uλ
Luα.

We denote the defect in (5.7) by d = −ξ̃ − K̃)ψ(ν) and compute the corre-
sponding entries

du = −∇uL− Luλ)λ− Luα)α,

dλ = −∇λL− Lλu)u− Lλα)α,

dα = −∇̃αL − Lαu)u− Lαλ)λ− L̃αα)α− Lαη)η,
dη = −∇ηL − Lηα)α.

Taking into account (5.7) one needs to compute δ = M−1
1 d, i.e., M1δ = d.

Consequently, we find δλ = L̃−1

uλ
du and δu = L̃−1

λudλ. To compute the
remaining components of δ we have to solve systems with an indefinite matrix
Q of the form(

S̃ Lαη

Lηα 0

)(
δα
δη

)
=

(
dα − Lαuδu − Lαλδλ

dη

)
.

Iterative procedures such as MINRES or Bi-CGSTAB (see [VdV92]) with
appropriate stopping criteria can be applied in this case. Compute KRδ and
find the increments from (5.7) as follows

)u(new) = )u(old) + δu − L̃−1

λu
Lλαδα, )α(new) = )α(old) + δα,

)λ(new) = )λ(old) + δλ − L̃−1

uλ
Luαδα, )η(new) = )η(old) + δη.

We apply the above algorithm (with a fixed number of iterations) to find
the increments of the primal and dual variables )u,)α,)λ,)η and then
use (5.3) to determine the global search direction )Φ.
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6 Adaptive grid refinement

Advanced finite element applications in science and engineering provoke the
extensive use of adaptive mesh-refinement techniques to optimize the number
of degrees of freedom and obtain accurate enough numerical solutions. The
adaptive framework requires a locally refined discretization in regions where
a better accuracy is necessary.

The computation of the homogenized elasticity coefficients requires the nu-
merical solution of (2.8) with the unit cell as the computational domain. Previ-
ous works on shape and topology optimization (cf., e.g., [Ben95, BS03, SZ92])
strongly suggest the use of locally refined grids particularly at material inter-
faces. In the context of shape optimization such local refinements have been
mostly done before the computations relying on a priori geometric informa-
tions or in an interactive way (manual remeshing based on computational
results). In case of local singularities of the discrete solution, a priori error
estimates typically give information about the asymptotic error behavior and
thus, are not the best choice to control the mesh. In those parts of the do-
main where the solution changes rapidly, an automatic grid refinement on the
basis of reliable and robust a posteriori error estimators is highly beneficial.
In practice, the main goal in adaptive mesh-refinement procedures is to refine
the mesh so that the discretization error is within the prescribed tolerance
and as possible equidistributed throughout the domain.

In the past twenty years, numerous studies have been devoted to an er-
ror control and a mesh-design based on efficient postprocessing procedures
(cf., e.g., [CF01, EE*95, HP04a, ZZ87]). A natural requirement for a poste-
riori error estimates is to be less expensive than the cost of the numerically
computed solution. Moreover, appropriate refinement techniques have to be
applied to construct the adaptive mesh and implement the adaptive solver.
Local reconstruction of the grid is necessary to be done with a computational
cost proportional to the number of modified elements.

The a posteriori adaptive strategy can be described as follows:

A1. Start with an initial coarse mesh T0 fitting the domain geometry. Set
n := 0.

A2. Compute the discrete solution on Tn.
A3. Use a posteriori error indicator for each element T ∈ Tn.
A4. If the global error is small enough, then stop. Else refine the marked

elements, construct the next mesh Tn+1, set n := n+1, and go to step A2.

The solution of our linear elasticity equation (2.8) is computed by using
adaptive finite element method based on the Zienkiewicz-Zhu (referred as ZZ)
error estimator. For instance, a recovery technique is analyzed in [ZZ87] for
determining the derivatives (stresses) of the finite element solutions at nodes.
The main idea of the recovery technique is to develop smoothing procedures
which recover more accurate nodal values of derivatives from the original finite
element solution.
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The necessity of derivative recovering arises from the fact that in the finite
element approach the rate of convergence of the derivatives is usually one
order less than that of the discrete solution. In particular, the accuracy of the
derivatives (stresses) computed by directly differentiating the discrete solution
is inferior. Therefore, in many practical problems an improved accuracy of the
stresses at nodes is needed.

Denote by σ the exact stress, by σ̂ the discrete finite element discontinuous
stress, and by σ∗ the smoothed continuous recovered stress. The computation
of σ∗ was proposed and discussed in [ZZ87] under the assumption that the
same basis functions for interpolation of stresses are used as those for the
displacements. The recovered stress σ∗ is computed by smoothing the discon-
tinuous (over the elements) numerical stress σ̂. The smoothing procedure can
be accomplished by nodal averaging method or the L2-projection technique.
Note that the components of σ∗ are piecewise linear and continuous.

The computational of the globalL2-projection is expensive and the authors
of [ZZ87] proposed to use a lumping form of the mass matrix. Thus, the value
of the recovered stress σ∗ at a node P can be computed by averaging the
stresses σ̂ at the elements that share that node. Denote by YP ⊂ Y the
neighborhood patch as an union of all triangles/tetrahedra T having node P .
Consider

σ∗(P ) =
∑
T∈YP

ω|T σ̂|T , ω|T =
|T |
|YP |

, T ∈ YP , (6.1)

i.e., σ∗(P ) is a weighted average of σ̂ with weights ω|T defined on the elements
belonging to YP . Least-square technique can also be applied to approximate
the stress field at a given node.

It was shown in [ZZ87] that σ∗ is a better approximation to σ than σ̂ and
the following estimate holds

‖σ − σ∗‖0,Y � ‖σ − σ̂‖0,Y , (6.2)

where Y is the periodicity microcell into consideration. Furthermore, the re-
covered technique was used in a formulation of a posteriori error estimator
by comparing the recovered solution σ∗ with the finite element solution σ̂. In
particular, the estimate (6.2) allows us to replace the exact (unknown) stress
σ by σ∗ and consider ‖σ∗ − σ̂‖0,Y as an error estimator.

In many practical implementations reliability and efficiency are highly de-
sirable properties in a posteriori error estimation. It basically means that
there exist constants independent of the discrete solution and the mesh which
limit the error (in a suitable norm) from below and above. Moreover, techni-
cally it is better to use local error estimators which are computationally less
expensive. The following local estimator is considered

ηT := ‖σ∗ − σ̂‖0,T . (6.3)

The nodal values of the recovered stresses are found locally. The elementwise
contributions (6.3) are used further as local error indicators in the adaptive
mesh-refinement procedure.
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The global ZZ-error estimator is defined by

ηY :=
(∑

T∈Tn

η2
T

)1/2

. (6.4)

Based on a posteriori processing, the local estimator (6.3) is practically
efficient providing recovered values are more accurate, i.e., the quality of the
a posteriori error estimator strongly depends on the approximation properties
and the accuracy of the recovered solution.

Arbitrary averaging techniques in low order finite element applications for
elasticity problems are subject of investigations in [CF01]. In the latter study
the authors considered the following global averaging estimator

ηA := min
σ∗

‖σ∗−σ̂‖0,Y (6.5)

and proved an equivalence to the error ‖σ − σ̂‖0,Y with lower and upper
bounds independent of the shape-regular mesh. Note that in (6.5) σ∗ is a
smoother approximation to σ̂ obtained by any averaging procedure. In partic-
ular, the final error estimate in [CF01] explains the reliability and robustness
of the ZZ- a posteriori error estimators in practice.

7 Iterative solution techniques

In this section, we comment on the iterative solvers for the microcell problem
(2.8) defined in Y to find the effective coefficients and for the homogenized
elasticity equation (2.12) on the global domain Ω. After finite element dis-
cretization of the corresponding domain we get the following system of linear
equations

Au = f , (7.1)

where u is the vector of unknown displacements and f is the discrete right-
hand side. The stiffness matrix A is symmetric and positive definite but not
an M -matrix.

Two typical orderings of the unknowns are often used in practice. In the
3-dimensional case they are presented as follows(

u
(x)
1 , u

(y)
1 , u

(z)
1 , u

(x)
2 , u

(y)
2 , u

(z)
2 , . . . , u

(x)
N , u

(y)
N , u

(z)
N

)
, (7.2)

referred to as a pointwise displacements ordering and(
u

(x)
1 , u

(x)
2 , . . . , u

(x)
N , u

(y)
1 , u

(y)
2 , . . . , u

(y)
N , u

(z)
1 , u

(z)
2 , . . . , u

(z)
N

)
, (7.3)

called the separate displacements ordering. Here, u(x)
k , u

(y)
k , and u(z)

k are the
corresponding x, y-, and z- displacement components. For the the first or-
dering (7.2), the resulting stiffness matrix A = A(point) can be seen as a
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discretization matrix consisting of elements which are small 3× 3 blocks. For
the second ordering (7.3), the matrix A = A(block) admits the following 3× 3
block decomposition

A =

⎡⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ . (7.4)

In case of isotropic materials, the diagonal blocks Ajj , j = 1, 2, 3, in (7.4)
are discrete analogs of the following anisotropic Laplacian operators

D̃1 =a ∂2

∂x2 + b ∂2

∂y2 + b ∂2

∂z2 , D̃2 =b ∂2

∂x2 + a ∂2

∂y2 + b ∂2

∂z2 , D̃3 =b ∂2

∂x2 + b ∂2

∂y2 + a ∂2

∂z2

with coefficients a = E(1−ν)/((1+ν)(1−2ν)) and b = 0.5E/(1+ν) where E
is the Young modulus and ν is the Poisson ratio of the corresponding material.
This anisotropy requires a special care to construct an efficient preconditioner
for the iterative solution method. Based on Korn’s inequality, it can be shown
that A and its block diagonal part are spectrally equivalent. The condition
number of the preconditioned system depends on the Poisson ratio ν of the
materials and the constant in the Korn inequality. For the background of the
spectral equivalence approach using block diagonal displacement decomposi-
tion preconditioners in linear elasticity problems we refer to [BLA94]. Note
that the spectral equivalence estimate will deteriorate for ν close to 0.5 which
is not the case in our particular applications.

The PCG method is applied to solve the linear system (7.1). We propose
two approaches to construct a preconditioner for A:

(i) construct a preconditioner for A(point)

(ii) construct a preconditioner for A(block) of the type M = diag(Mjj),
where Mjj ∼ Ajj , j = 1, 2, 3, are “good” approximations to the diagonal
blocks of A. In case (i) we have chosen the incomplete Cholesky (IC) factor-
ization of A with an appropriate stopping criterion.

An efficient preconditioner for Ajj in case (ii) turns out to be a matrix
Mjj corresponding to a Laplacian operator (−div (c grad u)) with a fixed scale
factor c. In our case we use, for instance, c = b/2 for all three diagonal blocks.
Algebraic MultiGrid (AMG) method is applied as a “plug-in” solver for A
(see [RS86] for details). This method is a purely matrix-based version of the
algebraic multilevel approach and has shown in the last decade numerous
efficient implementations in solving large sparse unstructured linear systems
of equations without any geometric background.

8 Numerical experiments

In this section, we comment on some computational results concerning the
microscopic problem to find the homogenized elasticity coefficients and the
macroscopic shape optimization problem. For simplicity, we suppose linear
elasticity with homogeneous and isotropic constituents in terms of carbon
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and SiC. The Young modulus E (in GPa) and the Poisson ratio ν of our two
materials are, respectively, E = 10, ν = 0.22 for carbon and E = 410, ν =
0.14 for SiC.

The computation of the characteristic displacement fields ξkl and the ho-
mogenized elasticity coefficients (2.9) requires the solution of linear elastic
boundary value problems with the periodicity cell Y as the computational
domain. The elasticity equation (2.8) is solved numerically using a conform-
ing finite element discretization of the periodicity cell Y by linear basis func-
tions. Since the periodic displacements ξkl = ξlk are symmetric, the equation
(2.8) is computed numerically 3 times in the case d = 2 and respectively,
6 times in the case d = 3. Due to the composite character of our microcell
there are material interfaces where the solution changes significantly. Hence,
local refinement of the underlying finite element mesh is strongly advised. As
discussed in Sect. 6, we use an adaptive grid refinement strategy based on a
posteriori error estimator of Zienkiewicz-Zhu type obtained by local averaging
of the computed stress tensor. Note that the adaptivity procedure is local and
computationally cheap.

Denote the global density of the solid material part in the microstructure
by µ, 0 < µ < 1. Note that the density of the tracheidal cells of the wood
essentially depends on the growth of the tree. If µ is relatively small, we speak
about an early wood (grown in spring and summer) and respectively, about
late wood (grown in autumn and winter) for values of µ, close to 1.

We present first some numerical experiments on a plane microstructure
(d = 2) shown in Fig. 2.2 b). More experiments can be found in [HP04a]. We
assume that the material layers in the periodicity cell have equal widths from
all sides of the cell. Denote by αi, i = 1, 2, the widths of the carbon and SiC
layers, respectively. Figure 8.1 a) illustrates the behavior of the homogenized
coefficient EH

1212 in case of square hole versus α1 and α2 which vary between 0
and 0.5. We compute the effective coefficients EH

ijkl only for a fixed number of
values of the design parameters (e.g., 20× 20 grid as shown on Fig. 8.1) and
then interpolate the values by splines. With regard to the homogenized state
equation (2.12), this procedure results in having explicit formulas at hand
for the gradients and the Hessian of the Lagrangian function needed in the
optimization procedure.

In principal, the hole is located inside the microstructure but we find
interesting to demonstrate the behavior, for instance, of EH

1212 depending on
a rectangular hole [1 − a] × [1 − b], see Fig. 8.1 b). Note that a = b = 0
represents a complete void, a = b = 1 realizes a complete solid material, and
0 < a < 1, 0 < b < 1 characterize a general porous material. We consider in
this example the case when the carbon has completely reacted with the SiC
which strongly concerns the so-called pure biomorphic SiC-ceramics. Very
recently, the chemical experiments have shown that the carbon phase limits
the mechanical properties of the composite materials and restricts their high-
temperature applications. The final transformation of the original carbonized
template to pure ceramic composite requires to offer enough silicon during



Shape Optimization 419

0
0.1

0.2
0.3

0.4
0.5 0

0.1
0.2

0.3
0.4

0.5

0

60

120

180

EH_1212

0
0.2

0.4
0.6

0.8
1

a 0
0.2

0.4
0.6

0.8
1

b

0

60

120

180

EH_1212

Fig. 8.1. Homogenized coefficient EH
1212: a) w.r.t. the widths of carbon and SiC

layers (square hole); b) w.r.t. the sizes 1− a and 1− b of the rectangular hole (pure
SiC-ceramic)

the infiltration process and to wait an appropriate time until the carbon is
completely consumed by the silicon resulting in a SiC-phase.

Figure 8.2 displays the dependence of the homogenized elasticity coeffi-
cients on the density µ of the cell. In particular, we show this behavior versus
the width of the SiC layer in case of pure SiC-ceramics. Figure 8.2 a) shows the
behavior of the effective coefficients for early wood (0 ≤ α2 ≤ 0.15, µ = 51%)
and Fig. 8.2 b) demonstrates the coefficients for late wood (0 ≤ α2 ≤ 0.3,
µ = 84%). One can easily observe from both pictures on this figure a highly
nonlinear behavior of the homogenized coefficients.

The mesh-adaptive process is visualized in Fig. 8.3. We see that in case
of one material available in the microstructure, an appropriate refinement is
done around the corners where the hole with a complete pore is located, see
Fig. 8.3 a). In case of more materials, additional mesh-adaptivity is needed
across the material interfaces in the microstructure due to the strongly varying
material properties in terms of Young’s modulus and Poisson’s ratio.

In Table 8.1 we give some results for the homogenized elasticity coefficients
on the first ten adaptive refinement levels for various values of the density. We
report the number of triangles NT and the number of nodes NN on each level
when solving problem (2.8). We see from the computed values that the mesh
sensitivity on the successive levels is very small. Our adaptive mesh-refinement
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Fig. 8.2. Homogenized coefficients w.r.t. the width α2 of SiC layer for pure SiC-
ceramic: a) early wood, density 51%; b) late wood, density 84%
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Fig. 8.3. Late wood, density µ = 84%, 9 adaptive refinement levels: a) SiC, 1527
triangles, 818 nodes; b) carbon and SiC, 3752 triangles, 1916 nodes

procedure stops when a priori given limit for the number of refinement levels
is reached.

We are now concerned with the solution of problem (3.2)–(3.3). In Ta-
ble 8.2 we report some numerical results from running the optimization code
varying the constant C with respect to (3.3). Our purpose is to find the op-
timal widths/lengths of the layers in the composite material and to show the
convergence behavior of the optimization algorithm. The domain Ω is chosen
to be a circle which corresponds naturally to a cross section of the original
wood structure. We have fixed the discretization and vary the initial values
for the lengths of the carbon and SiC layers denoted, respectively, by α(0)

1 and
α

(0)
2 . As before, we report the number of iterations ITER to get convergence,

the optimal lengths α1 and α2 of the carbon and SiC layers, the last value of
the barrier parameter ρ, the final value of the primary merit function M , the
l2-norm of the residual, and the l2-norm of the complementarity conditions
v = (z,w) at the last iteration. We see from the experiments that the optimal

Table 8.1. Homogenized coefficients w.r.t. refinement level, a) µ = 51%, b) µ = 84%

level EH
1111 EH

1122 EH
1212 NT NN

1 64.975 7.664 12.116 168 100
2 63.336 6.642 9.750 220 126
3 58.466 6.682 8.073 288 162
4 56.572 7.012 6.643 484 262
5 54.385 6.245 6.212 712 378
6 52.936 6.091 5.474 1208 630
7 51.914 5.458 5.306 1800 932
8 50.861 4.790 5.217 2809 1444
9 50.455 4.571 5.029 3754 1919
10 49.591 4.359 4.983 5918 3013

level EH
1111 EH

1122 EH
1212 NT NN

1 33.430 3.885 9.893 168 100
2 33.064 3.929 9.577 216 126
3 32.844 4.024 9.283 300 168
4 32.291 4.254 8.970 544 296
5 32.144 4.312 8.809 828 438
6 31.909 4.372 8.703 1354 705
7 31.862 4.379 8.526 1892 980
8 31.735 4.399 8.470 2894 1485
9 31.711 4.400 8.373 3752 1916
10 31.487 4.497 8.321 5716 2906
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Table 8.2. Convergence results for biomorphic microcellular SiC ceramics

α
(0)
1 α

(0)
2 C ITER α1 α2 ρ M ‖F (ρ)‖2 ‖v‖2

0.05 0.05 0.3 11 3.6e-12 0.3 1.3e-17 1.24 9.63e-6 e-10

0.1 0.1 0.3 11 5.5e-14 0.3 3.0e-21 1.24 1.03e-6 e-12

0.1 0.1 0.4 12 1.6e-16 0.4 1.2e-26 0.85 8.63e-9 e-14

0.2 0.2 0.1 16 5.5e-17 0.1 2.2e-25 7.73 2.23e-8 e-13

0.2 0.2 0.2 13 1.0e-16 0.2 5.3e-26 2.34 1.54e-8 e-14

0.2 0.2 0.3 11 2.5e-16 0.3 6.7e-26 1.24 1.79e-8 e-14

0.24 0.24 0.15 11 5.4e-15 0.15 4.1e-12 3.81 4.99e-7 e-12

0.3 0.1 0.4 11 1.3e-12 0.4 8.5e-19 0.85 5.07e-6 e-10

0.4 0.05 0.1 17 9.8e-15 0.1 6.9e-21 7.73 9.49e-7 e-11

length α1 of the carbon layer in all the runs is very close to zero, i.e., the solid
part of the body is entirely occupied by a silicon carbide layer due to the
higher stiffness of this material.

In case of 3-dimensional implementations we decompose the periodic mi-
crocell Y first in hexahedra and further we use continuous, piecewise linear
finite elements on tetrahedral shape regular meshes. The adaptive grid refine-
ment process is visualized in Fig. 8.4. The mesh adaptivity around the material
interfaces has been realized by means of Zienkiewicz-Zhu type a posteriori er-
ror which is used heuristically (as an error indicator). One computes the error
(6.3) locally for each element and mark for refinement those tetrahedra {T }
for which

ηT ≥ γ max
T ′∈Tn

ηT ′ ,

where 0 < γ < 1 is a prescribed threshold, for instance, γ = 0.5. The refine-
ment process is visualized in Fig. 8.4 b) on the cross section of the microstruc-

Fig. 8.4. Adaptive refinement a) 3-D unit periodicity cell Y , b) Cross section of Y
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Table 8.3. Homogenized coefficients for late wood, density µ = 91%

level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 148.35 152.57 153.96 60.22 62.46 59.50
2 154.34 162.64 162.77 69.71 71.31 65.79
3 142.66 148.42 162.79 60.51 65.26 63.23
4 145.84 137.61 161.70 53.91 59.04 62.92
5 127.99 134.32 161.43 49.41 56.19 56.49
6 98.29 111.65 160.71 40.44 46.14 48.45
7 91.79 90.23 158.29 35.70 43.69 46.03
8 82.42 83.00 160.57 30.59 41.03 43.70
9 75.05 75.11 160.22 26.93 39.75 40.97
10 69.66 70.30 159.82 25.47 37.16 39.30

ture Y for widths of the C- and SiC- layers α1 = α2 = 0.15. Additional adap-
tive refinement is generated in the stiffer material (SiC) and on the interface
between the materials due to the different characteristic constants.

In Table 8.3 we report some values of the computed 3-dimensional ho-
mogenized coefficients with respect to the adaptive refinement level for a late
wood with density µ = 91%. More numerical experiments for various values
of the density and various number of adaptive levels can be found in [HP06a].

Table 8.4 presents some convergence results for the proposed precondition-
ers within PCG method. For various values of the density µ of the periodical
microstructure we report the number of degrees of freedom NDOF, the num-
ber of iterations ITER, and the CPU-time in seconds for the first 11 adaptive
refinement levels. One can see from the numerical results a better convergence
of AMG-preconditioner compared to IC-factorization. We observe an essential
efficiency of AMG for a larger number of unknowns.

Table 8.4. Convergence results with IC and AMG preconditioners, density µ

density level 1 2 3 4 5 6 7 8 9 10 11

µ = 51% NDOF 78 90 126 225 336 579 1185 1908 3360 5598 9987
IC ITER 9 8 14 23 40 66 105 150 235 269 299

CPU e-16 e-16 e-16 0.1 0.2 0.2 0.9 2.4 8.2 20.9 59.1
AMG ITER 11 13 13 15 18 23 38 57 89 94 99

CPU e-16 e-16 e-16 0.2 0.3 0.5 1.5 3 7.6 14.8 23.5

µ = 84% NDOF 78 93 150 261 510 1047 2103 3843 6537 10485 18459
IC ITER 10 11 16 21 44 78 117 171 226 273 301

CPU e-16 e-16 0.1 0.1 0.1 0.6 2.4 8.4 24.3 63.7 187.1
AMG ITER 12 14 14 14 18 31 43 73 69 74 75

CPU e-16 e-16 e-16 0.2 0.4 1.1 3 7.5 15.5 25.6 33.8
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Summary. We discuss two different approaches related to Γ -limits of free energy
functionals. The first gives an example of how symmetry breaking may occur on the
atomistic level, the second aims at deriving a general analytic theory for elasticity
on the lattice scale that does not depend on an explicitly chosen reference system.

1 Introduction

The analysis of the mechanical properties of crystals gives rise to internal ener-
gies that are connected to the geometry of the considered crystal and are often
linked to properties of the atomistic scale as explained in [CK88] and [JF00].
Applications to this theory include among others fatigue phenomena and frac-
ture mechanics. In the past, various attempts were made to develop a math-
ematically rigid theory. In particular we want to mention [Bal77], [CLL98],
[AO05], [OP99], [FT02] and [Tru96]. Nevertheless, up to now, the relationship
between macroscopic and atomistic scale is not completely understood.

Here we contribute to this topic. The text is subdivided into two parts. The
first gives a simple example where symmetry breaking occurs in the Γ -limit of
a one-dimensional monatomic chain when the interatomic distance vanishes.
Effects similar to the one presented in this first part may also show to be
relevant for numerical approximation schemes where in certain cases a com-
petition between elastic energy and surface energy leads to wrong numerical
solutions, see [Ble06].

The second line of investigation is the use of many-body Hamiltonians
of Kac type to describe elastic deformations, phase changes and eventually
plastic deformations of a domain Ω ⊂ Rn without postulating a reference
configuration on the particle level. It is interesting to compare this ansatz to
[AO05], where a theory based on algebraic topology is developed.
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One of the aims is to make a connection with the existing theory on linear
elastic dislocations, see [TK76], [Mer79], [CC*97], [BC05].

2 Phase transitions with symmetry breaking

2.1 The energy functional

For given length L > 0, let Ω := (0, L) ⊂ R be a domain that contains a
regular monatomic chain.

We suppose that the undeformed discrete reference configuration of Ω is
given by a system of n+1 atoms with equal distance located at points Rn

i ∈ R,

Rn
i := ihn 0 ≤ i ≤ n.

Here, the setting hn := L/n defines for given number n ∈ N the interatomic
distance. The limit n → ∞ corresponds to hn ↘ 0. The superscript n is
always used to indicate the dependence on the number of subdivisions.

By R̂n
i , 0 ≤ i ≤ n we denote the position of atom i after the deformation.

Finally, by uni , 0 ≤ i ≤ n we denote the two-dimensional displacement vector
of atom i, given by the relationship

uni = R̂n
i −Rn

i , 0 ≤ i ≤ n.

For given deformations {uni }0≤i≤n we introduce the abbreviations

pni :=
uni+1 − uni

hn

and for shortness the numbers s1 := 1, s2 := 2 and s3 := 1
2 .

We will study the behaviour of the following energy functional.

Wn(un) :=
{

+∞ if pni = 0 for some i,∑3
k=1W

n
k (un) else

where

Wn
1 (un) :=

n−2∑
i=0

(hn)−α
3∏

k=1

∣∣∣sk − pni+1

pni

∣∣∣2, Wn
2 (un) :=

n−3∑
i=0

∣∣∣1− pni+2

pni

∣∣∣2,
Wn

3 (un) := hn
n−2∑
i=0

[(pni + pni+1

2
− α1

)2

βni +
(pni + pni+1

2
− α2

)2

γni

]
and

βni :=
[
1− (hn)−α

∣∣∣1− pni+1

pni

∣∣∣2]
+
, γni :=

[
1− (hn)−α

∣∣∣2− pni+1

pni

∣∣∣2∣∣∣1
2
−
pni+1

pni

∣∣∣2]
+
.
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Here, 0 < α < 1 and [x]+ = x for x ≥ 0 and [x]+ = 0 for x < 0.
The concept behind this ansatz is the following. A minimiser of Wn

1 either
fulfils pni+1 � pni which specifies one lattice order that is in the sequel referred
to as Phase 1, or pni+1 � 2pni resp. pni+1 � 1

2p
n
i which characterises Phase 2.

Wn
2 represents a surface energy. It counts(and limits) the number of tran-

sitions between the two phases, as within a phase one asymptotically has
pni+2 = pni . Finally, Wn

3 represents an elastic energy. We will show below that
βni converges in L1(Ω) to the indicator function of Phase 1 and γni to the
indicator function of Phase 2 as n→∞; αk is the elastic constant to Phase k.

The functional Wn
1 represents the electrostatic energy due to interatomic

potentials that force the atoms to positions of a certain given lattice order.
For the analysis we extend the discrete deformation values {uni }i, to piece-

wise linear functions un in L2(Ω)∩An, where An denotes the space of piece-
wise linear functions, see [BDG99].

2.2 Identification of the Γ -limit for W n

Now we can state the main result. It characterises the Γ -limit ofWn as n tends
to infinity. Let χ1 := χ, χ2 := 1− χ. For u ∈ H1,2(Ω), χ ∈ BV (Ω, {0, 1}) set

E(u, χ) :=
1
4

∫
Ω

|∇χ|+
2∑

k=1

∫
Ω

χk (u′ − αk)2.

Additionally we introduce W : L2(Ω) → R by

W (u) :=
{

infχ∈BV (Ω,{0,1})E(u, χ) if u ∈ H1,2(Ω) is strictly monotone,
+∞ else.

Theorem 2.1 (Characterisation of the Γ -limit of Wn).
The following statements are valid:
(i) The boundedness of the energy functional Wn(un) implies the boundedness
of

( ∫
Ω

|(un)′|2
)
n

uniformly in n.

(ii) W is the Γ -limit of Wn as n→∞ with respect to convergence in L2(Ω).

Proof of (i):
Step 1: Construction of the characteristic function χ:
By C we denote various positive constants that may change from line to line.

Let (un) ⊂ L2(Ω) be a sequence with Wn(un) ≤ C. We set

dik :=
∣∣∣pni+1

pni
− sk

∣∣∣, ki0 := argmin
{
k �→ dik

∣∣ 1 ≤ k ≤ 3
}
.

The boundedness of Wn
1 (un) implies
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n−1∑
i=0

(hn)−α
3∏

k=1

(
sk −

pni+1

pni

)2

≤ C.

Therefore there exists a constant C > 0 such that

sup
i
diki

0
≤ C(hn)α/2. (2.1)

For n large enough we can thus define an indicator function χn to Phase 1 by

χn(x) :=

⎧⎨⎩
0 if x ∈ [ihn, (i+ 1)hn), i ≤ n− 2, ki0 �= 1,
1 if x ∈ [ihn, (i+ 1)hn), i ≤ n− 2, ki0 = 1,

χn(L− 2hn) if x ∈ [L− hn, L].

Next we show that χn ∈ BV (Ω; {0, 1}), i.e.∫
Ω

|∇χn| ≤ C. (2.2)

This follows from the boundedness of Wn
2 (un). Since for large n

pni+1

pni
= sk + o(1) for some k ∈ {1, 2, 3},

we see that if χn(x) jumps in x = (i+ 1)hn between 0 and 1, then(
1−

pni+2

pni

)2

≥ 1
4

+ o(1)

which showsWn
2 (un) ≥

(
1
4+o(1)

) ∫
Ω
|∇χn| and proves (2.2). Here we adapted

the Landau notation and denote by o(1) terms that tend to 0 as n→∞.
With (2.2), well-known compactness results imply the existence of a subse-
quence (again denoted by) χn and a χ ∈ BV (Ω, {0, 1}) such that χn → χ in
L1(Ω).

Step 2: Convergence of βn, γn in L1(Ω):
We extend the discrete quantities {βni }i, {γni }i to piecewise constant func-

tions in L1(Ω) by the definition

βn(x) :=
{
βni if x ∈ [ihn, (i+ 1)hn) and i ≤ n− 2,
0 if x ∈ [L− hn, L].

In the same manner, the extension γn of {γni }i is defined.
Straightforward computations show

βn → χ, γn → (1− χ) in L1(Ω) for n→∞, (2.3)
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where the function χ ∈ BV (Ω, {0, 1}) is the limit of χn found in Step 1.

Step 3: Boundedness of
∫
Ω

|(un)′|2 uniformly in n:

We choose constants a ∈ R+, b ∈ R such that

min{(x− α1)2, (x− α2)2} ≥ ax2 − b.

Due to the boundedness of Wn
3 (un) we thus find that there exist constants

C1, C2 > 0 such that

C1 ≥ (hn)2C2

n−2∑
i=0

(pni+1 + pni
2

)2(
βni + γni

)
.

Since pni+1 = skp
n
i + o(1) for a k ∈ {1, 2, 3} and large n we find that(pni+1 + pni

2

)2

≥
(
1 +

1
2

+ o(1)
)(pni

2

)2

.

The term
(
βni + γni

)
can for large n be estimated from below by a constant.

So we find the existence of a constant C > 0 with

C ≥ (hn)2
n−2∑
i=0

(pni
2

)2

. (2.4)

Due to the estimate (pnn−1)2 ≤ (2+o(1))pnn−2 the sum in (2.4) can be extended
to i = n− 1 and the estimate still holds.

The sum
∑

i(p
n
i )2 is directly related to

∫
Ω
|(un)′|2 where un is the piecewise

affine linear extension of {uni }i. With (2.4) extended to i = n− 1 this yields

sup
n

∫
Ω

|(un)′|2 = sup
n

hn
n−1∑
i=0

(pni )2 ≤ C. (2.5)

Proof of (ii):
Step 4: Lower semicontinuity of Wn:

We have to show: for every sequence (un)n∈N with un → u in L2(Ω) there
exists a subsequence (unk)k∈N with

W (u) ≤ lim inf
k→∞

Wnk(unk).

For unbounded Wn(un) there is nothing to show. So let Wn(un) ≤ C for all
n. From (2.5) follows un, u ∈ H1,2(Ω) for all n ∈ N. Because of the reflexivity
of the Hilbert space H1,2(Ω) we know that there exists a subsequence (again
denoted by) un such that un ⇀ u, in H1,2(Ω) for n → ∞. From Step 2 we
know that χn → χ, βn → χ, γn → 1 − χ in L1(Ω) for n → ∞. Because of
pn

i+1
pn

i
≥ 1

2 + o(1), for n ≥ n0 we find that un is monotone for large n.
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Now we estimate Wn(un) from below. We claim

lim inf
n→∞

Wn(un) ≥ E(u, χ) ≥W (u). (2.6)

With the help of Theorem 3.4, p.74 in [Dac89], the proof of (2.6) is straight-
forward, estimating every component of Wn(un) separately.

Step 5: Existence of a ”recovery sequence”:
We have to find a sequence (un) ⊂ L2(Ω) converging to u in L2(Ω) with

W (u) ≥ lim sup
n→∞

Wn(un).

If W (u) = +∞, there is nothing to show. Due to the monotonicity prop-
erties of u demonstrated above we know that the functional χ �→ E(u, χ) is
bounded from below in the BV-norm. Using the compactness properties of
BV (Ω) and the coercivity of E, it is clear that E(u, ·) attains its minimum,
i.e. W (u) = E(u, χ) for some χ ∈ BV (Ω, {0, 1}).

Next we show that for piecewise affine, strictly monotone u there exists
a sequence un with un → u and Wn(un) → E(u, χ). We start with special
cases, then generalise.
Case 1: u′ ≡ a1 > 0, χ ≡ const in Ω:
(a) χ ≡ 1 in Ω: We simply set un := u for all n.
(b) χ ≡ 0 in Ω: For x > 0 choose un such that pni is alternating between 2

3a1

and 4
3a1. Furthermore un satisfies un(x = 0) = u(x = 0).

Case 2: u′ ≡ a1 > 0, χ ≡ 1 for 0 ≤ x ≤ L
2 , χ ≡ 0 for x > L

2 .
The treatment of this case is more difficult. It is not possible to directly

combine the two ansatz functions for un of Case 1 because for one index i this
would mean pni = a1h

n and either pni+1 = 2
3a1h

n or pni+1 = 4
3a1h

n, leading to
limn→∞Wn

1 (un) = ∞.
Therefore we have to introduce a transition layer of width (hn)s between

the two phases, where s > 0 is a small constant to be chosen later. We define

ϕn(x) :=

⎧⎨⎩
a1 for 0 ≤ x ≤ L

2 ,
a1 + a1

3 (hn)−s(x− L
2 ) for L

2 < x ≤ L
2 + (hn)s,

4
3a1 for L

2 + (hn)s < x ≤ L.

We set un such that un(x = 0) = u(x = 0) and

pni :=
{

ϕn(ihn) for ihn ≤ L
2 ,

1
2ϕ

n(ihn), ϕn(ihn) alternating for ihn > L
2 .

With this construction, the proof of convergence to 0 of the pni -terms in
Wn

1 is straightforward. Hence Wn
1 (un) → 0 as n→∞.

For the estimation of the functional Wn
2 (un) we have∣∣∣1− pni+2

pni

∣∣∣2 =
∣∣∣1− 1

2
ϕn((i+ 2)hn)
ϕn(ihn)

∣∣∣2 =
∣∣∣1
2
− 1

2
ϕn(ihn)− ϕn((i+ 2)hn)

ϕn(ihn)

∣∣∣2.



Discrete Free Energy Functionals for Elastic Materials 431

For I := ϕn(ihn)−ϕn((i+2)hn)
ϕn(ihn) simple computations yield

I =

⎧⎪⎪⎨⎪⎪⎩
0 if (ihn > L

2 ) or ((i+ 1)hn ≤ L
2 )

or (L2 < ihn ≤ L
2 + (hn)s and (i+ 2)hn > L

2 + (hn)s),
−sk(hn)1−s if (ihn > L

2 and (i+ 2)hn ≤ L
2 + (hn)s)

or (ihn ≤ L
2 and L

2 < (i+ 1)hn ≤ L
2 + (hn)s).

and for 0 < s < 1 the convergence of Wn
2 (un) to 1

4 can be assured.
For the estimation of Wn

3 (un), it is clear that outside the strip of width
(hn)s the summands in Wn

3 (un) equal (hn)s
[
χ(a1−α1)2 +(1−χ)(a1−α2)2

]
.

Inside the strip, we have approximately (hn)s−1 summands, where each sum-
mand is of the form (hn)C. Thus, the part inside the strip tends to 0 for
n→∞ as long as s > 0.

Case 3: General χ ∈ BV (Ω; {0, 1}) and piecewise affine, monotone and con-
tinuous u: The construction of un can be done by iteratively applying the
construction given in Case 2.

Case 4: General monotone u ∈ H1,2(Ω):
Let u be a generic monotone function in H1,2(Ω) and let {un} be a se-

quence in An such that un → u in H1,2(Ω). For every n we can apply
Case 3 to find a sequence {wn

l }l such that wn
l → un in L2(Ω) as n → ∞

and lim suplW l(wn
l ) ≤W (un). Then we have

lim sup
n→∞

lim sup
l→∞

W l(wn
l ) ≤ lim sup

n→∞
W (un) = W (u), (2.7)

where (2.7) holds because of the strong convergence of un to u in H1,2(Ω). By
diagonalisation, we find a sequence ũn := wn

l(n) such that ũn → u in L2(Ω)
and lim supn→∞Wn(ũn) ≤W (u, v). *+

3 An atomistic model for phase transitions of elastically
stressed solids

In this section we present work planned for the last year of support within
the priority program. We start with the following Hamiltonian that has been
proposed by S. Luckhaus,

H({xi}i∈I) :=
∫
Ω

ψ(x, {xi}i∈I)dx,

with

ψ(x, {xi}i∈I) = inf
A,τ,α

[∑
i∈I

ψ
(x− xi

λ

)
Wα(Axi + τ) + F (A)

]
. (3.1)
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Here, I is a finite index set, {xi}i∈I denotes the positions of the atoms, Wα

is a periodic, non-negative potential whose zeros are on the unstrained lattice
Λα corresponding to phase α; F plays the role of an elastic energy, and ψ is
a cutoff function, λ ∈ R+ a scaling parameter. For a spatial point x ∈ Ω,
the infimum in (3.1) is taken with respect to deformations A = Ax ∈ GL(n),
translations τ = τx ∈ Rn and phase α.

In a suitable way, Wα can be interpreted as a mean field Hamiltonian that
is acting on the ’one-particle density’.

This Hamiltonian gives a reasonable description for states which have a
lower and upper density close to that of a sheared lattice. One way to in-
corporate this restriction on the level of the Hamiltonian itself could be to
define

ψ̃(x, {xi}i∈I) = inf
A,τ,α

(∑
i∈I

ψ
(x− xi

λ

)
Wα(Axi + τ) + F (A)

+
∫
Ω

ψ
(x− y

λ

)[
δ −Wα(Ay + τ)−

∑
i∈I

ϕ(y − xi)
]
+
dy

)
and to set

h̃({xi}i∈I) :=
∫
Ω

ψ̃(x, {xi}i∈I) +
∑
i�=j

ϕ(xi − xj).

In the last line, ϕ may have compact support or can be a hard core potential,
the positive part [z]+ of z is [z]+ := z for z ≥ 0 and [z]+ := 0 for z < 0.

If λ is large it makes sense to speak of the open connected sets where

ψ̃(x, {xi}i∈I) < o(λn)

as the domains of one elastic phase.
For x in these phase domains we conjecture that the minimal Ax, τx, αx

satisfy that (Ax, τx) is unique modulo the affine isotropy group of the lattice,
and αx is constant in each domain.

A precise (and hopefully not too restrictive) estimate when this is the case
is currently work in progress.

If one assumes the uniqueness of Ax, τx and the constancy of αx in a
simply connected subdomain Ω̃, then one may construct an elastic deforma-
tion Φ such that the projection of Φ−1(x) is τx and such that ∇(Φ−1)x has a
projection close to Ax.

Without assuming simple connectedness of Ω̃ there may be an obstruction
to the existence of Φ. Topologically speaking this obstruction is a homomor-
phism

B : π1(Ω̃) → Λα

from the group of affine mappings into the lattice corresponding to phase α.
If the linear component is the identity, B coincides with the Burgers vector.
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Since the functional – in terms of A – is automatically invariant under the
lattice group, it does not make sense to investigate energy minimisers. It is
well-known that energy minima do not sustain shear, [FT89].

So, the question is to characterise metastable states. This is completely
open at this time.
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Summary. The passage from microscopic systems to macroscopic ones is studied
by starting from spatially discrete lattice systems and deriving several continuum
limits. The lattice system is an infinite-dimensional Hamiltonian system displaying
a variety of different dynamical behavior. Depending on the initial conditions one
sees quite different behavior like macroscopic elastic deformations associated with
acoustic waves or like propagation of optical pulses. We show how on a formal level
different macroscopic systems can be derived such as the Korteweg-de Vries equation,
the nonlinear Schrödinger equation, Whitham’s modulation equation, the three-wave
interaction model, or the energy transport equation using the Wigner measure. We
also address the question how the microscopic Hamiltonian and the Lagrangian
structures transfer to similar structures on the macroscopic level. Finally we discuss
rigorous analytical convergence results of the microscopic system to the macroscopic
one by either weak-convergence methods or by quantitative error bounds.

1 Introduction

A major topic in the area of multiscale problems is the derivation of macro-
scopic, continuum models from microscopic, discrete ones. The prototype of
a discrete many-particle system is a periodic lattice for modeling a crystal.
Starting from the seminal work of Fermi, Pasta, and Ulam ([FPU55]), a lot of
interest and work has been attracted to the study of the statical and dynam-
ical behavior of ordered discrete systems. In the dynamical situation one is
interested in macroscopic limits that are obtained by choosing well-prepared
initial conditions: We choose the initial data in a specified class of functions
and want to obtain an evolution equation within this function class, which we
call the macroscopic limit problem. This approach is motivated by the the-
ory of modulation equations, which evolved in the late 1960’s for problems in
fluid mechanics (see e.g. [Mie02] for a survey on this subject). If the linearized
model has a space-time periodic solution, one asks how initial modulations
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of this pattern evolve in time. The modulations occur on much larger spatial
and temporal scales; thus the modulation equation is a macroscopic equation.

In mathematically rigorous terms this can be described by studying the
following coarse graining diagram:

microscopic
Sε−−−−−→ macroscopic

initial data t = 0 z0
ε

ε→ 0−−−−−−−−→ A0

time evolution

⏐⏐⏐⏐Ct > 0 τ > 0

⏐⏐⏐⏐C
zε(τ/εσ) ε→ 0−−−−−−−−→ A(τ)

discrete, atomistic coarse graining continuum

Here zε : [0, τ∗/εσ] → Zε denotes the solution of the microscopic model de-
pending on the microscopic time t and A : [0, τ∗] → Z0 is the solution of the
macroscopic model. In the best case the diagram commutes, i.e., if the coarse
graining Sεzε(τ/εσ) → A(τ) holds at time τ = 0, then it also holds for all
τ ∈ [0, τ∗]. Examples of such results will be Theorems 5.1, 5.2, 7.1 and 7.2.

Before establishing these results, we survey methods to derive macroscopic
models on the formal level by using a suitable multiscale ansatz and expanding
the coefficients of equal powers of the small parameter and of the harmonics
of the microscopic fluctuation to 0. The emphasis is to survey the theory and
to explain the main techniques and results on simple models like the FPU
chain or the Klein-Gordon chain, see Sect. 2.3.

Naturally, our survey can only cover a small part of the rich subject of
dynamics in discrete systems. We will totally omit any of the works on static
solutions for lattices, see e.g. [FJ00, BG02b, BG02a, Sch05a, Ble05, MBL06].
Moreover, there is a huge body of work concerning the understanding of
special solution classes like traveling or standing pulses with or without pe-
riodic modulations, see [FW94, MA94, Kon96, FP99, Ioo00, IK00, FM02,
FP02, FM03, Jam03, FP04a, FP04b, IJ05, DHM06]. The response of oscillator
chains to a simple initial disturbance or to Riemann initial data is studied in
[DKV95, DK*96, DK00, BCS01, DHR06], where in particular completely in-
tegrable systems like the Toda lattice are of interest. Finally in the framework
of non-equilibrium statistical mechanics (cf. for a survey e.g. [Spo91, Bol96])
one is interested in highly disordered systems, where only statistical averages
satisfy nice macroscopic equations.

2 The discrete models

In the first subsection we write down the class of systems that can be treated
with the methods surveyed below. This includes general polyatomic lattices in
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any space dimension. The interactions can be general and can occur between
several atoms, not just pair potentials, and can have arbitrary range. In the
second subsection we treat the linearizations, which simplify a lot and can
be treated in particular by Fourier transform methods. There, the central
structure are the different dispersion relations, which will be used heavily in
the subsequent analysis. Finally we present two simple model problems that
represent most of the interesting features. These models will be addressed in
most of the following results to illustrate the general results.

2.1 General lattices systems

We model a perfectly period crystal based on a d-dimensional Bravais lattice
Γ embedded into Rd. This lattice is homeomorphic to the additive group Zd

but might have a different metric structure. Each lattice point γ ∈ Γ denotes
a unit cell in the actual crystal and, hence, the vectors xγ ∈ Rm and ẋγ
are collections of all the relevant positions and velocities, respectively, of the
atoms inside this unit cell. By (x, ẋ) ∈ �2(Γ )m×�2(Γ )m we denote the state of
the system, where x = (xγ)γ∈Γ and ẋ = (ẋγ)γ∈Γ . By M ∈ Rm×m we denote
the mass matrix for each cell, which is assumed to be symmetric and positive
definite. The total kinetic energy in the crystal is

K(ẋ) = 1
2 〈〈M ẋ, ẋ〉〉 def=

∑
γ∈Γ

1
2 〈Mẋγ , ẋγ〉.

The potential energy V(x) is obtained by adding up all contributions acting
on one cell via a single potential Vcell : �2(Γ )m → R given the forces of the
state x on the cell at γ = 0:

V(x) =
∑

α∈Γ Vcell(Tαx).

Here Tα is the translation operator with Tαx = (xα+γ)γ∈Γ . In the case of
finite-range interaction the potential Vcell only depends on finitely many com-
ponents, e.g., Vcell(x) = V0(x0) +

∑
0<|γ|≤R Vγ(xγ−x0) for pair interactions.

The Newtonian equations for this lattice model are given as

Mẍγ = −DxγV(x) = −
∑

α∈Γ ∇xγ−αVcell(Tαx) for γ ∈ Γ. (2.1)

Of course this system is invariant under the translations Tα, α ∈ Γ , and has
the total energy E(x, ẋ) = K(ẋ) + V(x) as first integral. Moreover, it is a
canonical Hamiltonian system with momenta p = M ẋ, Hamiltonian function
H, and symplectic form ωcan:

H(x,p) = 1
2 〈〈M−1p,p〉〉+ V(x) and

ωcan

(
(v1,q1), (v2,q2)

)
= 〈〈v1,q2〉〉 − 〈〈v2,q1〉〉.

(2.2)

Clearly, the Newtonian equations (2.1) are equivalent to the Hamiltonian
equations ẋ = ∂pH(x,p), ṗ = −∂xH(x,p). Moreover, they can be obtained
as the Euler-Lagrange equation for the Lagrangian

L(x, ẋ) = K(ẋ)− V(x). (2.3)
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2.2 Linear systems and dispersion relations

Linearization leads us to linearized systems, where the potential V is a
quadratic form. The linear equation takes the form

Mẍγ = −
∑

β∈Γ Aβxγ+β =
∑

α∈Γ Aγ−αxα for γ ∈ Γ, (2.4)

where the interaction matrices satisfy the symmetry condition Aβ = A�
−β and

a decay condition like ‖Aβ‖ ≤ Ce−b|β|. The quadratic potential energy then
reads V(x) = 1

2

∑
α,γ∈Γ 〈Aγ−αxα, xγ〉.

An essential feature of such harmonic lattices is the presence of many
traveling wave solutions in the form of plain waves:

xγ(t) = ei(θ·γ+ωt)Φ where θ ∈ Rd
∗ and (A(θ) − ω2M)Φ = 0. (2.5)

The wave vectors θ are taken from the torus TΓ , which is obtained by factoring
Rd

∗ = Lin(Rd) with respect to the dual lattice. The symbol matrix A(θ) reads

A(θ) =
∑

β∈Γ eiθ·βAβ ∈ Cm×m for θ ∈ TΓ .

Hence, A(θ) is Hermitian, and we always impose the basic assumption of
stability in the form A(θ) ≥ 0 for all θ ∈ TΓ .

Plane-wave solutions as in (2.5) exist if ω and θ satisfy the dispersion
relation

0 = Disp(ω, θ) def= det
(
ω2M − A(θ)

)
.

Under our stability condition, there are always m non-negative eigenvalue
curves

ω = Ωk(θ), k = 1, . . . ,m,

which we order such that 0 ≤ Ω1 ≤ Ω2 ≤ · · · ≤ Ωm. The index k is called the
band index. Two velocities will be important below, the phase velocity cph

and the group velocity cgr:

cph = cph,k(θ)
def= Ωk(θ)

|θ|2 θ and cgr = cgr,k(θ)
def= ∇Ωk(θ).

The dynamics of the linear system is completely determined by M and
the symbol matrix A : TΓ → Cm×m

≥0 . This is easily seen by transforming
(2.5) into wave vector space. For this define X(θ) = Fx : TΓ → Cm via
Fx def=

∑
γ e−iθ·γxγ , then X(t) = Fx(t) : TΓ → Cm satisfies the equation

M∂2
tX(t, θ) = −A(θ)X(t, θ) (2.6)

if and only if x satisfies (2.5). However, the latter equation is an ODE for each
fixed θ ∈ TΓ .

For studying the qualitative behavior of the solutions in the subsequent
sections, this is not sufficient, and we need to understand the back-transform
for large times t. Then, the smoothness properties of the dispersion relations
will be important, see Sect. 5.3 and 6.2.
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2.3 The chain models of FPU and KG

To illustrate our abstract theory we will frequently refer to the simple scalar
and one-dimensional case, viz., Γ = Z ⊂ R and xj ∈ R. The models have the
general form

ẍj = −V ′
0(xj) +

∑K
k=1

(
V ′
k(xj+k−xj)− V ′

k(xj−xj−k)
)
, j ∈ Z. (2.7)

Here V0 is called the on-site potential that couples the atoms to a background
field. The interaction is assumed to be pairwise and involves K neighboring
atoms.

The Fermi-Pasta-Ulam chain (FPU) is obtained by omitting the on-site
potential and choosing K = 1:

ẍj = V ′
1(xj+1−xj)− V ′

1(xj−xj−1), j ∈ Z. (2.8)

The importance of this model is its Galilean invariance, i.e., for all ξ, c ∈ R

the transformation (x, ẋ) �→ (xj+ξ + ct, ẋj+c)j∈Z leaves (2.8) invariant.
Another simple class is obtained by assuming again K = 1 with linear

nearest-neighbor interaction and a nonlinear background potential. In analogy
to the Klein-Gordon equation this model is called Klein-Gordon chain (KG):

ẍj = xj+1 − 2xj + xj−1 − V ′
0(xj), j ∈ Z. (2.9)

In these two models the dispersion relation has the structure

0 = Disp(ω, θ) = ω2 − a− 2b(1− cos θ) with a = V ′′
0 (0) and b = V ′′

1 (0),

where a, b ≥ 0 is equivalent to our stability condition. The solution reads

ω = Ω(θ) =
(
a+ 2b(1− cos θ)

)1/2
,

which is smooth for a > 0. For a = 0 we find Ω(θ) =
√
b 2 |sin(θ/ 2)|, which

is not differentiable at θ = 0, but the two limits ±
√
b of Ω′ at θ = 0 are the

macroscopic wave speeds.

3 Formal derivation of continuum models

3.1 General multiscale approach

We discuss here the derivation of macroscopic models that appear for solutions
having a relatively small amplitude, but we refer to [DHR06] and Sect. 3.7 for
results on large amplitude solutions.

The basic ansatz relies on modulations of basic plane waves ei(ωt+θ·γ)Φ on
large spatial scales and suitably chosen slow time scales. We choose ε > 0
to be the small parameter that relates the microscopic and the macroscopic
temporal and spatial scales, i.e., we set
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τ = εst and y = εγ ∈ Rd for γ ∈ Γ ⊂ Rd.

Of course, there are cases where different scalings in different spatial directions
are useful, but for simplicity we restrict ourselves to this case.

We now choose a finite set of wave vectors θ1, . . . , θN ∈ TΓ and associated
band indices k1, . . . , kN ∈ {1, . . . ,m} and consider the associated plane waves

xγ(t) = En(t, γ)Φn, where En(t, γ) def= ei(ωnt+θn·γ)

with ωn = Ωkn(θn) and Φn = Φkn(θn).

This may include the case θ = 0 and ω = 0, which relates to the macroscopic
limit of solutions without microstructure.

The two-scale method now starts from the ansatz

(xγ(t), ẋγ(t)) = Rε(A)γ(t), where A = (A1, . . . , AN ) and

Rε(A)γ(t) =
∑N

n=1 ε
σnAn(εst, εγ)En(t, γ)Φn

+
∑N

n,k=1 ε
σn+σkΨn,k(εst, εγ)EnEk

+
∑N

n,k,l=1 ε
σn+σk+σlΨn,k,l(εst, εγ)EnEkEl + h.o.t.

(3.1)

Here the powers s, σ1, . . . , σN ∈ R have to be chosen appropriately. We refer to
the variety of different models that can be obtained in this way. To obtain real-
valued solutions one chooses An = AN−n and similarly for the higher order
terms. In cases with θn �= 0 the functions An are the modulating amplitudes
of the basic periodic plane wave.

The aim is to derive suitable equations for A1, . . . , AN , which make this
ansatz (3.1) consistent with the discrete model (2.1). The obtained equa-
tions are partial differential equations combined with some algebraic relations.
These equations are called the macroscopic equations, because they are posed
in terms of the macroscopic variables τ = εst and y = εγ. Inserting the ansatz
(3.1) into the nonlinear system (2.1) we have to expand both sides in terms
of the products εeqΠN

n=1E
qn
n with q̃ =

∑N
n=1 σnqn. Here we have to expand

difference quotients xγ+α− xγ in terms of spatial derivative of An. Moreover,
the resonances between the plane waves are important to allow for nontrivial
nonlinear interaction. They are characterized by vectors q ∈ NN such that
ΠN

n=1E
qn
n ≡ 1, see Sect. 7.2 for a general theory.

We arrive at a hierarchy of equations that can be parametrized by the
multi-index q = (q1, ..., qN ) ∈ NN . These equations decompose into two
groups. If the term Eq = ΠN

n=1E
qn
n is nonresonant, i.e., different from all

the terms ei(ωt+θ·γ) that satisfy the dispersion relation, then the equation for
Ψq(τ, y) is uniquely solvable. The resonant groups associate with the terms
Eq = ΠN

n=1E
qn
n that equal one of the terms ei(Ωj(θ)t+θ·γ), which without loss

of generality is already in our list, let us say Em. Naturally, the coefficient
Ψq cannot be determined uniquely, because the plane wave EmΦm solves the
linear problem. Thus, by Fredholm’s alternative we obtain a solvability con-
dition for the terms on the left-hand side that contains only lower order terms
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that are already determined. This gives either a PDE or an algebraic equation
on the previously chosen functions. Moreover, the general solution contains a
new scalar function Bq, namely Ψq = BqΦm + Ψ0

q.
We refer to [Mie02, GM04, GM06] for a more detailed description of this

procedure. In fact, without doing any explicit calculation on the specific dis-
crete lattice system (2.1) it is possible to describe the form of the macroscopic
equations as follows:

If ωk �= 0 : ∂τAk =
∑

q∈Mk(s) cqΠ
N
n=1A

qn
n ,

If ωk = 0 : ∂2
τAk =

∑
q∈Mk(2s) c̃qΠ

N
n=1A

qn
n ,

(3.2)

where Mk(s)
def= {q | σk+s=

∑N
1 σnqn, 0=

∑N
1 ωnqn,

∑N
1 qnθn = 0 on TΓ }.

For more details see [Gia06, GMS06] and Sect. 7.2.
The following Sect. 3.2 to 3.7 treat a list of examples, which highlight the

generality of the approach.

3.2 The quasilinear wave equation

A simple but important macroscopic model for FPU chains results by the
following multiscale ansatz with hyperbolic scaling:

xj(t) = ε−1X(εt, εj), τ = εt, y = εj. (3.3)

Note that here xj denotes the spatial position of atom j rather than its dis-
placement. We insert the ansatz (3.3) into (2.8) and eliminate the relative
displacements by the Taylor expansion xj±1 − xj ≈ ±ε∂yX(εt, εj). Using
∂τ = ε∂t we can identify the macroscopic modulation equations as the non-
linear wave equation

∂ττX − ∂yV ′
1(∂yX) = 0. (3.4)

Via r = ∂yX and v = ∂τX it transforms into the quasilinear first-order system

∂τr − ∂yv = 0, ∂τv − ∂yV ′
1(r) = 0. (3.5)

These equations describe the macroscopic evolution of non-oscillatory solu-
tions of FPU. However, due to the nonlinearity V ′

1 smooth solutions of (3.5)
can form shocks in finite times, and in this case the quasilinear wave equation
is not longer an appropriate macroscopic model for FPU. This problem is
addressed in [DHR06].

3.3 The Korteweg-de Vries equation

Another example for macroscopic modulation equations, see [SW00, FP99],
relies on the KdV-ansatz
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xj(t) = εU
(
ε3t, ε(j+ct)

)
(3.6)

with scaling τ = ε3t, y = ε(j+ct). We insert the ansatz into (2.8) and use
Taylor expansion up to order O

(
ε6

)
. Comparing the leading order terms we

find that c is given by c2 = V ′′
1 (0). Since the next order terms all cancel,

the modulation equation is determined by the terms corresponding to ε5, and
finally we obtain

2 c ∂τyU − 1
12 c

2 ∂yU ∂yyU − V ′′′
1 (0)∂yyyyU = 0, (3.7)

which is a KdV equation for ∂yU .

3.4 The nonlinear Schrödinger equation

We consider the scalar, d-dimensional lattice (2.1) (i.e., d ∈ N and m = 1)

ẍγ =
∑

0<|β|≤R[V ′
β(xγ+β−xγ)−V ′

β(xγ−xγ−β)]− V ′
0(xγ), γ ∈ Γ, (3.8)

and are interested in the macroscopic deformations of a modulated plane wave
solution of the linearized system

xγ(t) = εA(τ, y)E(t, γ) + c.c.+O(ε2) with E(t, γ) = ei(ωt+θγ) (3.9)

(c.c.: conjugate complex) for a fixed wave vector θ ∈ TΓ with frequency ω
satisfying the dispersion relation ω2 = Ω2(θ) > 0.

Since the system is dispersive and nonlinear and the amplitude A is weakly
scaled by 0 < ε� 1, we need a slow macroscopic time scale τ = ε2t comparing
to the macroscopic space scale y = ε(γ−cgrt), in order to see the evolution of
A as time passes. This is the so called dispersive scaling. The choice of y also
reflects that we are moving with the pulse at its microscopical group velocity
cgr = ∇θΩ(θ). By this scaling it turns out that the evolution of A is given by
the nonlinear Schrödinger equation

i∂τA = Divy(
1
2
D2
θΩ(θ)∇yA) + ρ|A|2A. (nlS)

For the justification of this equation we refer to Sect. 7.1.

3.5 Three-wave interaction

For the lattice (3.8) we are now interested in a macroscopic description for the
evolution of the amplitudes An, n = 1, 2, 3, of three nonlinearly interacting
modulated plane waves with different wave numbers θn and frequencies ωn,
where ω2

n = Ω2(θn). Thus, ansatz (3.1) takes the special form

xγ(t) = ε
∑3

n=1An(τ, y)En(t, γ) + c.c.+O(ε2) with En(t, γ) = ei(ωnt+θn·γ)
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Fig. 3.1. Three-wave interaction. Left: typical initial condition. Right: energy-
distribution in space-time.

but now using the hyperbolic scaling τ = εt, y = εγ again. It turns out that,
if the wave vectors θn and frequencies ωn are in resonance, viz.,

θ1 + θ2 + θ3 = 0 mod TΓ and ω1 + ω2 + ω3 = 0, (3.10)

the amplitudes An, n = 1, 2, 3, satisfy the so called three-wave interaction
equations ⎧⎪⎪⎨⎪⎪⎩

ω1∂τA1 = ω1∇θΩ(θ1)·∇yA1 + cA2A3,

ω2∂τA2 = ω2∇θΩ(θ2)·∇yA2 + cA1A3,

ω3∂τA3 = ω3∇θΩ(θ3)·∇yA3 + cA1A2,

(3.11)

with c = 2
∑

0<|β|≤R V
′′′
β (0)

∑3
n=1 sin(θn ·β)+iV ′′′

0 (0). Each equation consists
of a transport part via the group velocity and a nonlinear coupling to the
two other modes. Figure 3.1 illustrates the behavior. Without the resonance
condition (3.10) being fulfilled, nonlinear terms would not arise and the pulses
would just pass through each other. For the justification of this equation we
refer to Sect. 7.2.

3.6 Coupled systems

While the two examples above apply to a system with or without background
potential V0, we are now looking at systems with Galilean invariance, where
the canonical example is FPU from (2.8). The aim is to understand the
coupling between macroscopic deformations and microscopically oscillating
pulses. Since in general the macroscopic wave speeds and the microscopic
group velocity are different, we use the hyperbolic time scale τ = εt. Ansatz
(3.1) reduces to

xγ(t) = εαX(τ, y) + εβA(τ, y)E + εβA(τ, y)E + h.o.t.

with E = ei(ωt+θ·γ) and ω = Ω(θ). Here α and β might be different and depend
on the nonlinearities as well as the scaling of the initial data. We treat the
case of the FPU chain with V1(r) = a

2 r
2 + b

3r
3 + c

4r
4 with a > 0 and b, c ∈ R.
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As a first example we consider the case α = 0, β = 1 and find the system

∂2
τX = c2m∂

2
ξX, i∂τA = icgr∂yA− ρ0(∂yX)A

with cm := Ω′(0) =
√
a, cgr := Ω′(θ) and ρ0 := 2bΩ(θ)/a. Since the contribu-

tions X and A scale differently, the coupling of X and A takes place only in
one equation. We have the two conserved quantities

H(A) =
∫

R
ω2|A|2 dy and E(X,Xτ ) =

∫
R

1
2X

2
τ + c2m

2 X
2
y dy.

The second example has α = 0 and β = 1/2, which leads to the system

Xττ =
(
c2mXy + ρ1|A|2

)
y
, 2iωAτ = iωcgrAy −

(
ρ1Xy + 2ρ2|A|2

)
A,

where ρ1 := 2b(1− cos θ) and ρ2 := 3c(1− cos θ)2 . This system is a Lagrangian
and Hamiltonian system in the sense to be discussed in Sect. 4. The La-
grangian reads

L(X,A,Xτ , Aτ )
=

∫
R
ω Im

(
A(2Aτ−cgrAy)

)
+ 1

2X
2
τ −

c2m
2 X

2
y − |A|2

(
ρ1Xy+ρ2|A|2

)
dy.

There are two first integrals

H(A) =
∫

R
ω2|A|2 dy,

E(X,A,Xτ )=
∫

R
ωcgr Im(AAy)+ 1

2X
2
τ+

c2m
2 X

2
y+|A|2

(
ρ1Xy+ρ2|A|2

)
dy.

The symplectic structure of the associated Hamiltonian system for (X,A,Xτ )
is non-canonical and can easily be deduced as in Sect. 4.2.

3.7 Whitham’s modulation equation

In [Whi74] Whitham studies certain nonlinear PDEs and relying on the hyper-
bolic scaling he develops a theory that is capable to describe the macroscopic
evolution of large microscopic oscillations. Here we apply Whitham’s approach
to three different chain models. We start with KG, cf. (2.7), and make the
following multiscale ansatz

xj(t) = X
(
εt, εj, ε−1Θ(εt, εj)

)
, (3.12)

where X is assumed to be 2π-periodic with respect to the phase variable
φ = ε−1Θ. In this ansatz both the wave number θ and the frequency ω
depend on the macroscopic coordinates (τ, y) and are defined by the modulated
phase Θ via θ = ∂yΘ and ω = ∂τΘ. It can be shown that to leading order
the function X must satisfy the following nonlinear advance-delay-differential
equation

ω2 ∂2
φX = ∇−θ∇+θX− V ′

0 (X) (3.13)
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with (∇±θX)(φ) = ±X(φ± θ) ∓ X(φ). As usual we refer to solutions of this
equation as traveling waves. The existence problem for solutions of (3.13) with
small amplitudes is investigated in [IK00]. For convex potentials V0 we can
provide existence of solutions by adapting an idea from [FV99], compare with
the similar problem for FPU in [DHR06]. According to (3.13), the action L
of a traveling wave is given by

L(θ, ω) = 1
2π

∫ 2π

0
ω2

2 (∂φX)2 − (∇+θX)2 − V0(X)dφ. (3.14)

To identify the macroscopic modulation equations it is convenient to use the
Lagrangian formalism, see [Whi74] and Section 4.1, because direct expansions
in powers of ε turn out to be quite complicate. With some simple averaging the
total action of the chain can be expressed by a functional L, which depends on
(Θ, ∂τΘ) only, and we can derive the modulation equations by the principle
of least action. It comes out that the modulation equations are equivalent to
the following nonlinear system of conservations laws

∂τθ − ∂yω = 0, ∂τS + ∂yg = 0, (3.15)

where S = ∂ωL and g = ∂θL. In particular, the system (3.15) is closed by the
equation of state (3.14) and the Gibbs equation dL = Sdω+gdθ.

The modulation theory for FPU, see [DHM06, DHR06] and the references
therein, is more complicate than in the KG case due to the nonlinearity of
V1, and the Galilean invariance of (2.8). In particular, we must combine (3.3)
and (3.12) as follows

xj(t) = ε−1X(εt, εj) + X
(
εt, εj, ε−1Θ(εt, εj)

)
, (3.16)

where as before the profile function X is assumed to be 2π-periodic with
respect to φ = ε−1Θ. This ansatz gives rise to four important macroscopic
fields, namely the wave number θ = ∂yΘ, the frequency ω = ∂τΘ, the specific
length r = ∂yX , and the macroscopic velocity v = ∂τX . To leading order, the
profile function X must satisfy the traveling wave equation

ω2 ∂2
φ X = ∇−θV

′
1(∇+θ X). (3.17)

For convex potentials V1 the existence of solutions can be proved by an convex
optimization problem, see [DHR06], and rigorous results without convexity
assumptions can be found in [FW94, PP00, Ioo00]. The derivation of the
modulation equations for (3.16) again relies on Lagrangian reduction, see for
instance [Her04, DHM06], and leads to the following nonlinear system

∂τr − ∂yv = 0, ∂τv + ∂yp = 0, ∂τθ − ∂yω = 0, ∂τS + ∂yg = 0. (3.18)

These equations can be interpreted as the macroscopic conservation laws of
mass, momentum, wave number and entropy. As for KG, the constitutive re-
lations for (3.18) result from a careful investigation of the thermodynamic
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properties of traveling waves. More precisely, it can be shown, at least for-
mally, that (3.17) provides an equation of state U = U(r, θ, S) as well as
the universal Gibbs equation dE = ωdS − pdr − gdθ + vdv, where U and
E = 1

2v
2 + U denote the internal and total energy, respectively.

The third example is the discrete nonlinear Schrödinger equation

−i ȧj + aj+1 − 2 aj + aj−1 + � |aj |2 aj = 0, j ∈ Z, (3.19)

with complex valued aj and real parameter �. This equation has exact solu-
tions (traveling waves) of the form aj = B ei(θj+ωt) with real amplitude B
if ω obeys the nonlinear dispersion relation ω + cos θ − 2 + �B2 = 0. The
modulation theory for several variants of (3.19) was studied in [HLM94] and
bases on the multiscale ansatz aj(t) = B(εt, εj) eiΘ(εt, εj)/ε, where as before
we set θ = ∂yΘ and ω = ∂τΘ. One obtains the macroscopic balance laws

∂τ
(
A2

)
− ∂y

(
2A2 sin θ

)
= 0, ∂τθ + ∂y

(
�A2 + cos θ

)
= 0, (3.20)

where the second evolution equation is equivalent to ∂τθ− ∂yω = 0. We men-
tion that (3.20) can also be derived by means of Hamiltonian or Lagrangian
reduction discussed in the next section, see [HLM94] for the details.

4 Hamiltonian and Lagrangian structures

The derivation of macroscopic equations for discrete models (or continuous
models with microstructure) can be seen as a kind of reduction of the infinite
dimensional system to a simpler subclass. If we choose well ordered initial con-
ditions, we hope that the solution will stay in this order and evolve according
to a slow evolution with macroscopic effects only. We may interprete this as a
kind of (approximate) invariant manifold, and the macroscopic equation de-
scribes the evolution on this manifold, the functions A1, ..., AN defining kind
of coordinates. For such a reduction procedure it is a natural question how
the original Hamiltonian and Lagrangian structures, as described in Sect. 2.1,
“reduce” to the macroscopic equation. Here we just survey the main ideas and
some examples and refer to [GHM06] for the full details.

Before addressing this question we first address the exact reduction of a
Hamiltonian and Lagrangian systems to exactly invariant manifolds (cf. e.g.
[Mie91]). First consider the Lagrangian setting for L defined on TQ. Assume
that we have an invariant manifold M ⊂ TQ given in the form

M = { (q, q̇) = S(p, ṗ) ∈ TQ | (p, ṗ) ∈ TP }.

Then, we may define the reduced Lagrangian Lred = L◦S : TP → R. An easy
calculation proves that any solution p of the reduced Lagrangian system

0 = − d
dt

(
∂ṗL

red(p, ṗ)
)

+ ∂pL
red(p, ṗ)
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leads to a solution (q, q̇) = S(p, ṗ) of the original Lagrangian system. Vice
versa, any solution of the latter system that also lies in M solves the reduced
Lagrangian system.

In the Hamiltonian case the tangent bundle structure of Z = TQ is gen-
eralized to a general symplectic structure ω on the state space Z. Together
with the Hamiltonian H the Hamiltonian system reads

Ω(z)ż = DH(z) or ż = J(z)DH(z),

where ωz(v1, v2) = 〈Ω(z)v1, v2〉 and J(z) = Ω(z)−1 : T∗
zZ → TzZ. For a

symplectic, flow-invariant submanifold M = { z = R(y) ∈ Z | y ∈ Y } we
define the reduced symplectic structure Ωred and the reduced Hamiltonian
Hred via

Ωred(y) = DR(y)∗Ω(R(y))DR(y) and Hred(y) = H(R(y)).

Using the flow-invariance of M it is easy to see that any solution of the reduced
Hamiltonian system Ωred(y)ẏ = DHred(y) solves the original system and vice
versa if starting on M.

Our applications will of course use the ansatz Rε from (3.1) for the reduc-
tion, which can be seen as an approximation of an invariant manifold.

4.1 Lagrangian reduction

The multiscale ansatz (3.1) discussed above was chosen such that it is formally
consistent and in many cases it is possible to justify the ansatz by a rigorous
error analysis, as surveyed in Sections 6.1 and 7. Hence, we consider the mul-
tiscale ansatz as a parametrization of an (approximate) invariant manifold.
Inserting the ansatz (3.1) into the Lagrangian L defined in (2.3) we obtain a
reduced Lagrangian in the form

Lred(ε,A, ∂τA) = ερL(A, ∂τA) +O(ερ+1), where A = (A1, . . . , AN ).

Here Lred is still an infinite sum over γ ∈ Γ . However, when expanding in
powers of ε, the multiscale ansatz leads to a limit that is an integral over the
macroscopic space variable y ∈ Rd. The infinite sum can be considered as a
Riemann sum for the spatial integral.

Since Lred is independent of τ , the solutions of the reduced Euler-Lagrange
equation conserve the associated energy E obtain as

E(A,Aτ ) = 〈〈∂τA, ∂Aτ L(A,Aτ )〉〉 − L(A,Aτ ).

It is proved in [GHM06] that the Lagrangian equation for A associated with
the lowest order term L of the reduced Lagrangian Lred(ε, ·) really provides
exactly the macroscopic equation (3.2) derived in Sect. 3.1.

Here we illustrate this result using a simple example based on the Klein-
Gordon chain (2.9) with the potential V0(x) = a

2x
2+ b

4x
4. We consider a single

modulated pulse in the form



448 J. Giannoulis, M. Herrmann, A. Mielke

xj(t) = ε1/2A(εt, εj)E + ε1/2A(εt, εj)E with E = ei(ωt+θj), (4.1)

where ω = Ω(θ). Inserting this ansatz into L and using ϑ = eiθ−1 we find

Lred(ε,A,Aτ )=
∑

Z

(
ε
2ω

2|AE−AE|2 + ε2iω(AE−AE)
(
AτE+AτE

)
− ε

2 |AϑE+AϑE|2 − ε2
(
AϑE+AϑE

)(
AyE+AyE

)
− εa

2 |AE+AE|2 − ε2b
4 |AE+AE|4 +O(ε3)

)
= εL(A,Aτ ) +O(ε2) with

L(A,Aτ )=
∫

R
iω

(
AAτ−AAτ

)
−

(
ϑAAy+ϑAAy

)
− 3b

2 |A|4 dy.

The important observation for this calculation is that the lowest order terms
cancel, which can be seen as a manifestation of equipartition of kinetic and
potential energy in the plane waves. Moreover, the terms involving Ek with
k �= 0 also drop out by periodicity. This averaging is a formal procedure here,
but we will see in the next subsection that in a two-scale setting with an extra
phase variable it can be made exact.

Using ϑ−ϑ = 2i sin θ = 2iω(θ)ω′(θ) the Euler-Lagrange equation reads

0 = −∂τ
(
∂Aτ

L
)
− ∂y

(
∂Ay

L
)

+ ∂AL = −2iωAτ + 2iωω′Ay − 3b|A|2A. (4.2)

Of course, this is exactly the desired macroscopic modulation equation, which
can be obtained as in Sect. 3.1. Moreover, because of invariance in τ , there is
a first integral, namely the associated energy

E(A, ∂τA) =
∫

R
iωω′ (AAy −AAy

)
+ 3b

2 |A|4 dy.

4.2 Hamiltonian reduction

In the Hamiltonian setting we might also try to derive the reduced Hamilto-
nian by inserting the multiscale ansatz (3.1) into the Hamiltonian H defined
in (2.2). We obtain

H̃(ε,A, ∂τA) = ε H(A, ∂τA) +O(ε +1).

In the example of the previous subsection we immediately find � = 0 < ρ =
1 and H(A, ∂τA) =

∫
R

2ω2|A|2 dy. Moreover, the symplectic form can be
reduced and we obtain

Ωred
ε = Ω0 + O(ε) with Ω0 = 2iω.

It is easy to see that the function H is also a first integral of the macro-
scopic system (4.2). However, it is not the desired energy E, and the flow
associated with the Hamiltonian system Ω0∂τA = DH(A) is the phase trans-
lation A(0, ·) �→ e−2iωtA(t, ·). The discrepancy is easily understood, because
in H the leading terms of the kinetic and potential theory are added while
they cancel in L. Note that H is associated with the phase symmetry of (4.2)
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that is not present in the original discrete system. It is introduced into the
problem via the multiscale ansatz and it manifests itself only in the limit.

Thus, to treat the Hamiltonian limit correctly it is suitable to embed the
discrete Hamiltonian system into a continuous one that has the corresponding
symmetries. In this systems we can compensate for drifts in the phases via the
phase velocity and for drifts with the group velocities by going into suitably
moving frames. On the level of Hamiltonians this leads to a subtraction of the
corresponding first integrals. The terms balance in exactly the right way such
that the same cancellations occur as in the Lagrangian setting. This is the
content of the following classical result in the theory of Hamiltonian systems
with symmetry.

Proposition 4.1. Let (Z,H,Ω) be a Hamiltonian system, which is equi-
variant with respect to the one-parameter symmetry group (Tα)α∈R with asso-
ciated first integral I. Then z : [0, T ] → Z solves Ωż = DH(z) if and only if
z̃ : t �→ Tctz(t) solves Ω ˙̃z = DH̃c(z̃), where H̃c,ω = H−cI.

We illustrate the idea in the pulse propagation problem treated in the
previous subsection. The continuous Hamiltonian system is defined on the
cylinder space-phase Ξ = R× S1 and has the configuration space L2(Ξ). For
functions u ∈ L2(Ξ) we consider the system

∂2
t u = ∆(1,0)u− au− bu3 with a > 0 and
∆(ε,δ)u(η, φ) = u(η+ε, φ+δ)− 2u(η, φ) + u(η−ε, φ−δ).

(4.3)

Introducing p = ∂τu this is a canonical Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2p

2 + 1
2

(
∇(1,0)u

)2 + a
2u

2 + b
4u

4 dηdφ. (4.4)

Here the important fact is that this system contains the KG chain exactly,
because the system decouples completely into an uncountable family of KG
chains just displaced by (η, φ) ∈ [0, 1)×S1. Moreover, (4.3) is invariant under
translations in the spatial direction η as well as in the phase direction φ. This
leads to the two first integrals

Isp(u, p) =
∫
Ξ p ∂ηudηdφ and Iph(u, p) =

∫
Ξ p ∂φudηdφ. (4.5)

The flows associated with the canonical symplectic structure and with one of
these first integral leads to the transport along the corresponding direction
with constant speed one.

Using the symmetry ofHcond we can go into a frame moving with the phase
speed cph = ω/θ. According to Proposition 4.1 the corresponding Hamiltonian
is Hph(u, p) = Hcont(u, p) − ωIph(u, p). Into this Hamiltonian we insert the
suitably adjusted multiscale ansatz (4.1), namely

u(t, η, φ)= ε1/2A(εt, εη)Eph + ε1/2A(εt, εη)Eph,

p(t, η, φ) = ε1/2iω
(
A(εt, εη)Eph −A(εt, εη)Eph

)
+ε3/2

(
∂τA(εt, εη)Eph + ∂τA(εt, εη)Eph

)
,
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where Eph = ei(φ+θε) does no longer depend on time. Through the subtraction
of the properly chosen multiple of the corresponding first integral we exactly
obtain the cancellation of the leading terms. Moreover, integration over φ ∈ S1

makes all terms Ek
ph with k �= 0 exactly 0. Hence, the resulting reduced

Hamiltonian has the expansion

Hred
ε (A, ∂τA) = εE(A) +O(ε2)

with E from above. A simple calculation shows that Ω0∂τA = DE(A) is
exactly the macroscopic equation (4.2).

4.3 Derivation of KdV from the FPU chain

Here we apply both the Lagrangian and Hamiltonian reduction from above
to the FPU chain with KdV-multiscale ansatz, see (3.6). For simplicity we
restrict to the infinite chain with V1(0) = V ′

1(0) = 0, and we always assume
that all arising integrals do exist.

Following the idea in [BP06] we embed the discrete system into a contin-
uous one. For this example we choose the continuous configuration space Q
to be L2(R) and identify each discrete configuration (xj)j∈Z

with an piece-
wise linear function w = w(η) ∈ L2(R) defined by xj = w(j). Since (3.6),
i.e. w(t, η) = εU(ε3t, ε(η+ct)), describes slow macroscopic modulations with-
out fast oscillations, there is no need for introding phase variables. The La-
grangian L of the continuous system is given by L(w, ẇ) = K(ẇ) − V(w),
with

V(w) =
∫

R
V1(∇+w)dη, K(ẇ) =

∫
R
ẇ2 dη (4.6)

with (∇+w)(η) = w(η+1) − w(η). The continuous system is invariant under
the group of translations, and this gives rise to a further conserved quantity I.
Exploiting Noether’s theorem we find the first integral I(w, ẇ) =

∫
R
ẇ ∂ηwdη,

which has no counterpart in the discrete microscopic FPU chain.
Inserting the ansatz (3.6) into the energies and using

∫
R
∂yU∂yyUdy = 0,∫

R
∂yU∂yyyUdy = −

∫
R

(∂yyU)2dy, and c2 = V ′′
1 (0) we find

K(ẇ) = ε3 1
2 H(U) + ε5 I(U, ∂τU) +O(ε7),

V(w) = ε3 1
2 H(U) + ε5 E(U) +O(ε7),

I(w, ẇ) = ε3 c−1 H(U) + ε5 c−1 I(U, ∂τU) +O(ε7),

where

H(U)= c2
∫

R
(∂yU)2 dy, I(U, ∂τU) = c

∫
R
∂τU ∂yUdy,

E(U)= − 1
24 c

2
∫

R
(∂yyU)2dy + 1

6 V
′′′
1 (0)

∫
R

(∂yU)3dy.

Consequently, with L = I− E we find
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L(w, ẇ)= ε5 L(U, ∂τU) +O(ε7),
H(w, ẇ)= ε3 H(U) + ε5 I(U, ∂τU) + ε5 E(U) +O(ε7),

H(w, ẇ)− c I(w, ẇ)= ε5 E(U) +O(ε7),

and it follows that the reduced Lagrangian equation equals (3.7).
In the next step we reduce the Hamiltonian structure. For the microscopic

continuous system the canonical momentum is given by p = ẇ with Hamilto-
nian H(w, p) = K(p) + V(w). For (w, p) the multiscale ansatz (3.6) means

(w, p) = Rε(U)(η) =
(
εU(εη), ε4 ∂τU(εη) + ε2 c ∂yU(εη)

)
,

where the last term is due to the frame moving with speed c. Reduction of the
canonical symplectic form Ω with 〈Ω (w, p), (w̃, p̃)〉 =

∫
R
wp̃−w̃pdη leads to

〈ΩRε(U), Rε(Ũ)〉 = ε2〈ΩredU, Ũ〉+O
(
ε4

)
with

〈ΩredU, Ũ〉 = c
∫

R

(
U∂yŨ−Ũ∂yU

)
dη = −2 c

∫
R
∂yU Ũ dη.

From this we conclude Ωred = −2 c ∂y. Note that Ωred is defined on L2(R),
whereas Ω lives on L2(R)×L2(R). This dimension reduction is natural, be-
cause the multiscale ansatz (3.6) yields a coupling of w and p in leading
order. Finally it follows immediately that the reduced Hamiltonian equation
ΩredUτ = DE(U) is again equivalent to (3.7).

4.4 Derivation of nlS from the KG chain

We consider the KG chain (2.9) with V0(x) = a
2x

2 + b
4x

4. The sum of the
kinetic and potential energy gives the Hamiltonian

H(x, ẋ) =
∑

j∈Z

(
1
2 ẋ

2
j+

1
2 (xj+1−xj)2+a

2x
2
j+

b
4x

4
j

)
.

Since we are interested in modulated pulses, we proceed as in Section 4.2 and
embed the discrete chain on Z into the cylinder Ξ = R×S1 leading to the
continuous Hamiltonian system (4.3) with Hamiltonian Hcont in (4.4).

Again we have the two symmetries of spatial translations T sp and phase
translations T ph leading to the two first integrals Isp and Iph given in (4.5).
However, we proceed differently, because we are interested in a dispersive
ansatz u(t, η) = εA(ε2t, ε(η+ct))E + c.c. + h.o.t., where c = cgr, cf. (3.9).
Thus, we apply Proposition 4.1 using the symmetry transformation

(ũ, p̃) = T sp
ct T

ph
(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph.

The associated canonical Hamiltonian system Ωcan(ũ, p̃) = DH̃(ũ, p̃) on
L(Ξ)2 is still fully equivalent to a family of uncoupled KG chains.

Inserting the scaling exposes the macroscopic behavior. For this define

(u(η, φ), p(η, φ)) = (εU(εη, φ−θη), εP (εη, φ−θη)),
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which keeps the canonical structure, if we move a factor the ε, which arises
from the transformation rule dy = ε dη, into a the time parametrization
τ = ε2t. We obtain the new Hamiltonian

Hε(U,P ) =
∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2 +
(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2 )+ b
4U

4 dydφ,

where ∇(ε,θ)U(y, φ) = U(y+ε, φ+θ) − U(y, φ). Now we see that the suitably
transformed version of the modulational ansatz (3.9), viz.,

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (ReA(y)eiφ, ωReA(y)eiφ) +O(ε),

leads to the expansion

Hε(Rε(A)) = HnlS(A) +O(ε) with HnlS(A) =
∫

R
ωω′′|Ay|2 + 3b

8 |A|4 dy

and the reduced symplectic structure Ωred = 2iω. Thus, we recover the one-
dimensional version of nlS given in Sect. 3.4.

5 Weak convergence methods

For static problems there is a rich literature concerning the Γ -convergence
of potential energy functionals of discrete models to continuum models (cf.
[FJ00, FT02, BG02a, BG02b, MBL06]). Here we want to summarize some
first results for dynamic problems that rely on weak convergence.

5.1 An abstract weak convergence result

In [Mie06a] it was shown that linear elastodynamics can be derived from a
general linear lattice model as described in Sect. 2. However, this result used
exact periodicity and linearity in an essential way. The abstract approach pre-
sented here will be discussed in [Mie06b] in full details. Its main advantage
lies in the flexibility, which allows for applications in nonlinear and macro-
scopically heterogeneous settings.

We consider a family of Hamiltonian systems parametrized by ε ∈ [0, 1],

Ωε(z)ż = DHε(z), (5.1)

and we are interested in the limit behavior for ε → 0. Again, ε measures the
ratio between the microscopic and the macroscopic spatial scales, viz., y = εγ.

We consider the situation that all Hε are defined on one reflexive Banach
space Z, but may take the value +∞ outside the subspace Zε. It is a question
of general interest to characterize the further conditions on the convergence
of Hε to H0 and of Ωε to Ω0 such that suitable limits z of solutions zε of
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(5.1) are solutions of the limit problem (5.1) for ε = 0. A first guess would be
that H0 is the Γ -limit of Hε, i.e.

(G1) zε ⇀ z =⇒ H0(z) ≤ lim inf
ε→0

Hε(zε),

(G2) ∀ z ∈ Z ∃(z̃ε)ε∈(0,1) : z̃ε ⇀ z and H0(z) = lim
ε→0

Hε(z̃ε).

However, we will see below that it cannot be expected in general.
We assume that the subspaces Zε ⊂ Z are closed and that Hε ∈ C1(Zε,R)

for ε ∈ [0, 1]. Moreover, there exist mappings Gε ∈ Lin(Z0, Zε) such that we
have

Zε  zε ⇀ z ∈ Z0 =⇒ G∗
εDHε(zε) ⇀ DH0(z) in Z∗

0 . (5.2)

Finally we assume that the symplectic operators Ωε are independent of z ∈ Z
and that there exists a larger Banach space W such that Z embeds continu-
ously and densely into W such that Ωε : W → Z∗ has an inverse operator for
all ε ∈ [0, 1] with the norm bounded independently of ε. For the convergence
we ask the condition

Zε  zε ⇀ z ∈ Z0 =⇒ G∗
εΩεzε ⇀ Ω0z in Z∗. (5.3)

Now we use the fact that solutions zε of (5.1) also solve the weak equation∫ T

0 〈DHε(zε(t)), ϕε(t)〉+ 〈Ωεzε(t), ϕ̇ε(t)〉dt − 〈Ωεzε, ϕε〉
∣∣T
0

= 0 (5.4)

for all ϕε ∈ C1([0, T ], Zε). Choosing ϕε(t) = Gεϕ(t) for some ϕ ∈ C1([0, T ], Z0)
and using suitable a priori bounds on zε in C0([0, T ], Z) ∩ C1([0, T ],W ) it is
possible to extract a weakly convergent subsequence with zε(t) ⇀ z(t) for
some z ∈ C0([0, T ], Zw) ∩ L∞([0, T ],W ). By the assumptions (5.2) and (5.3)
we pass to the limit in (5.4) and obtain∫ T

0 〈DH0(z), ϕ〉+ 〈Ω0z, ϕ̇〉dt− 〈Ω0z, ϕ〉
∣∣T
0

= 0.

Under suitable assumptions it then follows that z solves (5.1) for ε = 0.

5.2 Elastodynamics

The program described in the previous subsection can be applied to poly-
atomic Klein-Gordon chains, which we also allow to have large-scale variations
in the stiffness and masses. The KG chains under consideration are assumed
to have a periodicity of N on the microscopic level, and all quantities may
change also on the macroscopic scale y = εj. For k ∈ ZN = { jmodN |j ∈ Z }
we have given functions mk, ak, bk, ck ∈ L∞(R), which are all bounded from
below by a positive constant. The KG chain is then given by the canonical
Hamiltonian system on �2 × �2

Hdiscr
ε (x,p) =

∑
j∈Z

(
p2

j

2m[j](εj)
+ a[j](εj)

2 (xj+1−xj)2

+ ε2b[j](εj)

2 x2
j + ε2c[j](εj)

4 x4
j

)
,

(5.5)
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where [j] = jmodN . To derive a suitable continuum model we embed �2× �2
into Z = Z0 = H1(R)× L2(R) via

Zε = { (u, v) ∈ Z | u|[εj,εj+ε] affine, v|(εj−ε/2, εj+ε/2) constant }and
(u, v) = Eε(x,p) with (u(εj), v(εj)) = (xj , pj) for all j ∈ Z.

(5.6)

The associated Hamiltonian Hε coincides with Hdiscr
ε up to a factor ε, which

relates to the time rescaling, namely Hε(u, v) =∫
R

v(y)2

2M(y,y/ε) + A(y,y/ε)
2 u′(y)2 dy +

∑
j∈Z

ε
(B(εj,j)

2 u(εj)2 + C(εj,j)
4 u(εj)4

)
,

where M(y, z) = m[k](y) for z ∈ (k−1/2, k+1/2), A(y, z) = a[k](y) for z ∈
(k, k+1) for k ∈ Z, with similar formulas for B and C.

The important step in the analysis is the construction of the operator
Gε: Z0 → Zε. We define (uε, vε) = Gε(u, v) via vε(y) = M(y,y/ε)

M∗(y) v(y) and∫
R
A(y, y/ε)u′ε(y)ũ

′(y)+uε(y)ũ(y)dy =
∫

R
A∗(y)u′ũ′+uũdy

for all ũ with (ũ, 0) ∈ Zε, see (5.6). Here A∗ is the averaged stiffness and M∗

the averaged masses

A∗(y) =
(

1
N

∫ N

0 A(y, z)−1 dz
)−1 and M∗(y) = 1

N

∫ N

0 M(y, z)dz.

It is then possible to prove the abstract conditions 5.2 and 5.3, which leads
to the following results, cf. [Mie06b].

Theorem 5.1. Let Eε : �2 × �2 → Z = H1(R) × L2(R) be the embedding in
(5.6). Let (xε, pε) : [0, T/ε] → �2×�2 be solutions of the canonical Hamiltonian
system associated with Hdiscr

ε in (5.5). If for τ = 0 we have(
I 0
0 M(·, ·/ε)

)
Eε

(
xε(τ/ε)
εpε(τ/ε)

)
⇀

(
u(τ)

M∗(·)v(τ)

)
in Z,

then this convergence holds for all τ ∈ [0, T ], where (u, v) : [0, T ] → Z is a
solution of the macroscopic wave equation arising from the canonical Hamil-
tonian system with

H0(u, v) =
∫

R

1
2M∗(y)v

2 + A∗(y)
2 (u′)2 + B∗(y)

2 u2 + C∗(y)
4 u4 dy,

where B∗(y) = 1
N

∫ N

0
B(y, z)dz and C∗(y) = 1

N

∫ N

0
c(y, z)dz.

It should be noted that H0 is not the Γ -limit of Hε when using canon-
ical variables. However, if we use the Lagrangian coordinates (uε, u̇ε) =
(uε,M(·, ·/ε)−1pε), then it is the Γ -limit.
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5.3 Energy transport via Wigner-Husimi measures

Waves in dispersive media travel with a speed that depends on their wave
length. We now discuss this for the general linear model introduced in
Sect. 2.2. Wave propagation is driven by the group velocity cgr = ∇Ωj(θ),
which depends on the wave vector θ ∈ TΓ and the band number j ∈
{1, . . . ,m}. Thus, at each macroscopic point y ∈ Rd we need to know how
much energy is located in which band and in which wave-vector regime.

The relevant mathematical tool is the Wigner measure or the Husimi mea-
sure, which was used in [Gér91, LP93, MMP94, GMMP97, TP04] to study
transport of oscillations (relating to energy, density, or other physical quan-
tities). The case of discrete lattices is analyzed in detail in [Mac04, Mie06a].
For this we rewrite (2.6) into diagonal and rescaled form

∂

∂τ
Uε(τ, θ) = B(ε, θ)Uε(τ, θ) with B(ε, θ) =

i
ε
diag(Ω1(θ), ..., Ωm(θ)). (5.7)

The Wigner transform W ε[uε] of uε = F−1Uε is now defined as a matrix-
valued distribution on R× TΓ . For the diagonal entries it is possible to pass
to the limit ε → 0 and one finds the Wigner measure µW

j = lim
ε→0

(W ε[u3])jj .

More precisely, we have the following result, see [Mie06a].

Theorem 5.2. Let uε : [0, T ] → L2(TΓ ,Cm) be a family of solutions for (5.7)
with ‖uε(0)‖L2 ≤ C. Let j ∈ {1, ...,m} and Sj ⊂ TΓ be given such that
Ωj ∈ C1(TΓ \Sj). If for τ = 0 we have

lim
ε→0

(W ε[uε](τ))jj = µW
j (τ) in D(Rd×TΓ ) and µW

j (0,Rd×Sj) = 0,

then this convergence holds for all τ ∈ [0, T ], where µW
j : [0, T ] →M(Rd×TΓ )

is a solution of the energy-transport equation

∂τµ
W
j = ∇Ωj(θ) · ∂yµW

j on [0, T ]×Rd×TΓ .

Using this result it is possible to obtain the energy distribution by inte-
gration over θ, namely

e(τ, y)dy =
m∑
j=1

∫
θ∈TΓ

µW
j (0, y−∇Ωj(θ)τ, dθ).

The above theorem is restricted to the case that no mass concentrates on the
singular set Sj , where the dispersion relation is not smooth and, hence, the
group velocity is not defined. However, using the Husimi measure as developed
in [Mie06a] it is possible to treat this case also in some cases.

6 Quantitative estimates via Gronwall estimates

Another technique for the justification of continuum models uses quantita-
tive estimates to control the error between the macroscopic equation and the
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Fig. 5.1. Left: energy distribution at t = 200 for the linear chain ẍj = xj+1 −2xj +
xj−1 with initial data xj(0) = δj and ẋj(0) = 0. Right: displacement for the square
lattice Z2 with simple nearest-neighbor interaction at time t = 120, cf. [Pat06].

microscopic equation. We present the abstract idea in Sect. 6.1 and apply in
Sect. 7. This method can also be used to prove dispersive stability results as
discussed Sect. 6.2.

We work totally in the original microscopic lattice model

ż = Lz +N (z), (6.1)

where Z is the Banach space for the state z(t), and L : Z → Z is the linear
part, which is assumed to generate a bounded semigroup (eLt)t≥0, i.e.

∃CL > 0 ∀ t ≥ 0 ∀ z ∈ Z : ‖eLtz‖ ≤ CL‖z‖. (6.2)

We also rely on our standard assumption that the solution z = 0 is energeti-
cally stable, as the Hamiltonian energy is conserved. Here it means

∃CE > 0 ∀ sln. z of (6.1) ∀ t ≥ 0 : ‖z(t)‖ ≤ CE‖z(0)‖. (6.3)

The nonlinearity N : Z → Z is assumed to be locally Lipschitz. However,
the essential features have to be addressed by using additional Banach spaces
Y and W such Y ⊂ Z ⊂W with continuous embeddings and

(i) ∀ z ∈ Z: ‖z‖W ≤ ‖z‖ (ii) ∀ z̃ ∈ Y : ‖z̃‖ ≤ ‖z̃‖Y . (6.4)

In applications to lattices we have in mind

Y = �1(Γ,Rk)2, Z = �2(Γ,Rk)2, W = �∞(Γ,Rk)2. (6.5)

In Sect. 6.1 the importance is that N satisfies

∃C > 0 ∃ ν > 0 ∀ z1, z2 ∈ Z with ‖z1‖W , ‖z2‖W ≤ 1 :

‖N (z1)−N (z2)‖ ≤ CN
(
‖z1‖W+‖z2‖W

)ν‖z1−z2‖. (6.6)

In Sect. 6.2 the importance of Y is the dispersive decay estimate
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∃κ ∈ (0, 1) ∃CW > 0 ∀ z ∈ Y ∀ t > 0 : ‖eLtz‖W ≤ CW

(1 + t)κ
‖z‖Y . (6.7)

of the linear semigroup. For the nonlinearity we then use

∃CN > 0 ∃α, ν > 0 ∀ z ∈ Z : ‖N (z)‖Y ≤ CN ‖z‖νW‖z‖α. (6.8)

With Y, Z andW as in (6.5) a standard nonlinearityN ((xγ)γ∈Γ ) = (n(xγ))γ∈Γ
with |n(ξ1)−n(ξ2)| ≤ C(|ξ1|+ |ξ2|)β |ξ1− ξ2| will satisfy (6.6) with ν = β and
(6.8) with ν = β−1 and α = 2.

6.1 Error control for approximate solutions

The basic idea is to construct an approximate solution zapp, which in fact
will be given in the form zapp = Rε(A), and to derive an estimate for the
associated error. For any z ∈ C1([0, T ], Z) we define the residual via

Res(z)(t) = ż(t)− Lz(t)−N (z(t)). (6.9)

The following result shows that the smallness of the residual together with
the stability condition (6.2) implies that the error between zapp and an exact
solution is small.

Theorem 6.1. Assume that the conditions (6.2), (6.4i) and (6.6) hold. More-
over, let CR, CA, τ∗, σ, α, � > 0 be given as well as a family (zεapp)ε∈(0,1) of
approximate solutions zεapp ∈ C1([0, τ∗/εσ], Z) satisfying

‖zεapp(t)‖W ≤ CAε
α and ‖Res(zεapp)(t)‖ ≤ CRε

 (6.10)

for all t ∈ [0, τ∗/εσ]. Moreover, assume

� > α+ σ and να ≥ σ. (6.11)

Then, for each d > 0 there exist ε0 ∈ (0, 1) and D > 0 such that for all
ε ∈ (0, ε0] any exact solution z of (6.1) with ‖z(0)−zεapp(0)‖ ≤ dε −σ satisfies

‖z(t)− zεapp(t)‖ ≤ Dε −σ for t ∈ [0, τ∗/εσ]. (6.12)

In (6.11) the case να > σ is not really interesting, as in this regime the
nonlinearity is not really active. In the first inequality � may be as big as we
like, what improves the order of approximation in (6.12) but does not allow
us to extend the length of the time interval, i.e, to make σ bigger, because it
is restricted by the second inequality.

Proof. For the construction of ε and D we define C1 = CL(d + CRτ∗) and
C2 = CLCN (3CA)ν and let D = 2C1eC2τ∗ and ε0 = min{1, (CA/D)δ}, where
δ = 1/(�− α− σ) > 0.
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We write the exact solution z of (6.1) in the form z(t) = zεapp(t) + εβR(t)
with β = �− σ. Clearly ‖R(0)‖ ≤ d and we have to show ‖R(t)‖ ≤ D for all
t ∈ [0, τ∗/εσ]. Inserting this ansatz into (6.1) and applying the variation-of-
constants formula we find

R(t) = eLtR(0)+
t∫
0

eL(t−s)

εα

(
N (zεapp(s)+εβR(s))−N (zεapp(s))−Res(zεapp)(s)

)
ds.

Defining r(t) = ‖R(t)‖ and using the available estimates give

r(t) ≤ CLd+
∫ t

0
CL

(
CN [CAε

α + CAε
α + εβD]νr(s) + CRε

 −β
)
ds,

where we assumed r(s) ≤ D on [0, tD] and t ≤ tD. Note that d < D and r is
continuous, which implies tD > 0. We will show that tD = τ∗/ε

σ.
Assuming ε ∈ (0, ε0] we arrive at r(t) ≤ CLd+CLCRε

σt+C2ε
αν

∫ t

0 r(s)ds.
Because of εσt ≤ τ∗ we find r(t) ≤ C1 +εσC2

∫ t

0 r(s)ds and Gronwall’s lemma
gives r(t) ≤ C1eC2ε

σt ≤ C1eC2τ∗ = D/2 for all t ∈ [0, tD]. However, this shows
that r(t) cannot reach D. As a consequence we may choose tD = τ∗/ε

σ and
we are done.

6.2 Dispersive stability

Here we present conditions which guarantee that the dispersive decay estimate
(6.7) for the linear semigroup can be transfered to the full nonlinear problem.
We follow ideas from [Sch96, MSU01] and refer to [Pat06] for more satisfactory
results.

Theorem 6.2. Assume that (6.3), (6.7), and (6.8) hold with νκ > 1. Then,
there exist C, η > 0 such that all solutions z of (6.1) with ‖z(0)‖Y ≤ η satisfy

‖z(t)‖W ≤ C

(1 + t)κ
‖z(0)‖Y for all t > 0. (6.13)

Proof. We follow the ideas in [MSU01] Lemma 3 and adapt it to the more
general case. We rely on 0 < κ < 1 < νκ, which yield the estimate∫ t

0
ds

(1+s)κν(1+t−s)κ ≤ cν,κ

(1+t)κ with cν,κ =
(

2κ

κν−1 + 2κν

1−κ

)
. (6.14)

This is easily obtained by estimating
∫ t/2

0 and
∫ t

t/2 separately. Using the
variation-of-constants formula together with the available estimates we find

‖z(t)‖W ≤ CW

(1+t)κ ‖z(0)‖Y +
∫ t

0
CW

(1+t−s)κ CN ‖z(s)‖νW‖z(s)‖αds.

With r(t) = max{ (1 + s)κ‖z(s)‖W | s ∈ [0, t] } and δ = ‖z(0)‖Y we obtain

(1 + t)κ‖z(t)‖ ≤ CW δ +
∫ t

0
CWCNCα

Er(t)νδα

(1+t−s)κ(1+s)κν ds.
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Employing (6.13) and using that r is nondecreasing we find

r(t) ≤ CW δ + C∗δ
αr(t)ν for all t ≥ 0, where C∗ = cν,κCWCNC

α
E .

We now choose η such that C∗η
α(3CW η)ν ≤ CW η and claim that r(t) remains

less than 3CW δ if ‖z(0)‖Y = δ ≤ η, i.e., the desired assertion holds with
C = 3CW . Let tW = sup{ t ≥ 0 | ∀ s ∈ [0, t] : r(s) ≤ 3CW δ }, then for
t ∈ [0, tW ] and 0 < δ ≤ η we have

r(t) = CW δ + C∗δ
α(3CW δ)ν ≤ 2CW δ < 3CW δ.

Since r is also continuous, we conclude tW = ∞.

The typical application of the above result involves the spaces Y = �1
and Z = �2 and W = �∞. Hence, for a nonlinearity with N (x) = (n(xj))j∈Γ
and |n(xj)| ≤ Cn|xj |β we have (6.8) with α = 2 and ν = β−2. Moreover,
the theory in [Pat06] provides explicity values of κ, which can be determined
directly for the properties of the dispersion relations ω = Ωm(θ) discussed in
Sect. 2.2. For this note that eLt can be written as a discrete convolution

eLt(x, ẋ) =
(∑

α∈Γ Gγ−α(t)(xα, ẋα)
)
γ∈Γ ,

where the Green’s functions Gγ(t) ∈ R2m×2m satisfy G0(0) = id and Gγ(0) =
0 for γ �= 0. Each component of each Gγ(t) can be calculated via oscillatory
integrals of the type ∫

θ∈TΓ
ei(Ωk(θ)t+θ·γ)g(θ)dθ

with given smooth functions g. Uniform decay properties in γ ∈ Γ for such
integrals strongly depend on the non-degeneracy of D2Ωk(θ). Integrating over
balls in TΓ , where det D2Ωk(θ) is bounded away from 0, we easily obtain a
decay like t−d/2. However, due to periodicity, degeneracies must occur, and
the uniform decay is always worse.

For instance, the one-dimensional FPU and the KG chains from Section
2.3 lead to κ = 1/3, because Ω : S1 → R has turning points and the third
derivative is nonzero in these points. As a consequence the above method leads
to the following very preliminary dispersive decay result.

Proposition 6.3. Consider the KG chain (2.9) with V0 of the form V ′
0(x) =

ax+ O(|x|β) for |x| → 0 with a > 0 and β > 5. Then, there exists δ > 0 and
C > 0 such that for each initial condition (x(0), ẋ(0)) we have

‖(x(0), ẋ(0))‖�1 ≤ δ =⇒ ‖(x(t), ẋ(t))‖�∞ ≤ C‖(x(0),ẋ(0))‖�1
(1+t)1/3 for all t ≥ 0.

This result is still very weak in terms of the restriction on β, and we refer
to [Pat06] for improved results . See also [Zua05, IZ05] for related dispersive
decay results in discrete approximations of PDEs.
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7 Justification of modulation equations

In this section we provide rigorous justification results for two examples. In
contrast to Sect. 5 we will use the quantitative estimates provided in Sect. 6.1.
The ideas are based on the justification theory developed for general modula-
tion equations, see [KSM92, Sch94, Sch98] and the surveys [MSU01, Mie02].
In particular, we mention the papers [Sch95, Sch05b], which contain examples,
where the modulation equations, derived formally as in Sect. 3, fail to pre-
dict the dynamics of the microscopic system correctly. Thus, the justification
results are needed to validate the formally obtained macroscopic equations.

To explain the main ideas and still stay sufficiently simple we consider for
both subsequent examples the d-dimensional, scalar model (3.8). The main
observation about the multiscale ansatz xA,εγ = εσA(εγ)E + c.c. is that it
satisfies the estimates

‖(xA,εγ )γ∈Γ ‖�2 ≤ Csε
σ−d/2‖A‖Hs and ‖(xA,εγ )γ∈Γ ‖�∞ ≤ Csε

σ‖A‖Hs ,

for any s > d/2. Thus, our solutions z = (x, ẋ) will be small only in
W = �∞(Γ )2 but may be large in Z = �2(Γ )2. However, for using the ab-
stract approach provided in Theorem 6.1 we need to make the residual of the
approximate solution zapp = Rε(A) small in Z. This means that the order of
approximation of the formal ansatz Rε in (3.1) has to be taken sufficiently
high depending on the dimension d.

7.1 Nonlinear Schrödinger equation

We want to justify the nonlinear Schrödinger equation

i∂τA = divy(
1
2
D2
θΩ(θ)∇yA) + ρ|A|2A (nlS)

as a macroscopic modulation equation for the microscopic lattice system (3.8),
for the formal derivation see Sect. 3.4. We use the dispersive scaling τ = ε2t
and y = ε(t−cgrt) for the basic periodic pattern E = ei(ωt+θ·γ), where ω =
Ω(θ) and cgr = Ω′(θ). To derive an evolution equation for the macroscopic
modulation amplitude A : [0,∞)×Rd → C we have to use the improved ansatz

xγ(t) = RK
ε (A)γ(t) :=

∑K
k=1 ε

k
∑k

n=−k Ak,n(τ, y)En,

where all the coefficient functions Ak,n can be calculated formally if the non-
resonance condition of order K holds, namely

n2Ω(θ)2 �= Ω(nθ)2 for n = 0, 2, 3, ...,K. (7.1)

Of course, we have A = A1,1, where A satisfies (nlS). The other coeffi-
cient functions satisfy Ak,−n = Ak,n and are either algebraic expressions
of functions ∂rτ∂

s
yA

q
p,n with r+2|s|+pq = k, p ≤ k−1 or (for n = 1, where
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the non-resonance condition fails) they satisfy some linear inhomogeneous
Schrödinger-type equations.

Since all coefficients of the terms εkEn with k = 1, ...,K are equated to 0,
the residual of the ansatz zapp = (RK

ε (A), d
dtR

K
ε (A)) : [0, τ∗/ε2] → Z = �(Γ )2

satisfies

‖Res(zapp)(t)‖�∞ ≤ CεK+1‖A‖Hs and ‖Res(zapp)(t)‖�2 ≤ CεK+1−d/2‖A‖Hs

for any suitable s > K+2+d/2. Thus, we have all the ingredients to apply
Theorem 6.1. However, we note that the dispersive time scale τ = ε2t needs
σ = 2, while the amplitude ‖zapp(t)‖�∞ ∼ εα with α = 1. Now condition
(6.11) only holds for ν ≥ 2. Thus, the nonlinearity N needs to be cubic (cf.
(6.6)). The following result realizes this condition by assuming V ′′′

β (0) = 0,
see [GM04] for the case d = 1.

Theorem 7.1. Let K ∈ N with K > 2+d/2 and assume that the scalar d-
dimensional lattice model (3.8) has potentials Vβ ∈ CK+2(R) with Vβ(0) =
V ′
β(0) = V ′′′

β (0) = 0. Choose a wave vector θ ∈ TΓ satisfying the non-resonance
conditions (7.1). Let A ∈ C([0, τ∗],HK+3(Rd,C))∩C1([0, τ∗],HK+1(Rd,C)) be
an arbitrary solution of (nlS). Then, for each d > 0 there exist ε0 ∈ (0, 1) and
D > 0 such that for all ε ∈ (0, ε0] any exact solution x of (3.8) with

‖(x(0), ẋ(0))− (RK−2
ε (A)(0), ṘK−2

ε (A)(0))‖�2 ≤ dεK−1−d/2

satisfies, for all t ∈ [0, τ∗/ε2],

‖(x(t), ẋ(t))− (RK−2
ε (A)(t), ṘK−2

ε (A)(t))‖�2 ≤ DεK−1−d/2.

The condition V ′′′
β (0) = 0 allows us to apply the simple abstract result of

Sect. 6.1. However, this condition is not necessary. In the case of nonlinearities
that also have a quadratic part it is still possible to derive a similar result if
we impose more restrictive non-resonance conditions. To treat that case one
uses ideas from the theory of normal forms to transform the system via a
near identity transform into a system that has the same linear part but no
quadratic part in the nonlinearity. We refer to [Sch98, GM06] for positive
results and mention also [Sch05b] for an example, where the result fails due
to fact that the more restrictive non-resonance condition is violated.

7.2 Interaction of several modulated pulses

We report on results in [Gia06] and consider the scalar d-dimensional model
(3.8) for which we want to show how the three-wave interaction equations
(3.11) can be justified in terms of explicit error estimates. Given are three
wave vectors θn ∈ TΓ and associated frequencies ωn with ω2

n = Ω2(θn), which
are in resonance, namely

θ1 + θ2 + θ3 = 0 in TΓ , ω1 + ω2 + ω3 = 0. (7.2)
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Following [Gia06, GMS06] we use the following type of non-resonance condi-
tion for other combinations of these wave vectors. We set θ−n := −θn and
ω−n := −ωn and say that the mode system {(θn, ωn) : n = 1, 2, 3} is closed of
order K, if for all k ∈ {1, ...,K} and all n1, ..., nk ∈ Ñ = {−3,−2,−1, 1, 2, 3}
the following holds:

(∑k
1 ωnl

)2 = Ω
(∑k

1 θnl

)2 ⇐⇒
{
∃n∗ ∈ Ñ : θn∗ =

∑k
1 θnl

and ωn∗ =
∑k

1 ωnl
.

(7.3)

Here we use the hyperbolic scaling τ = εt and y = εγ and, as explained at
the beginning of Sect. 7, we need the improved multiscale ansatz

x(t) = RK
ε (A)(t) =

∑K
k=1 ε

k
∑

n1,...,nk∈ eN Bn1,...,nk
(τ, y)En1 . . .Enk

(7.4)

with A = (A1, A2, A3), En = ei(ωnt+θn·γ), Bn = An and Bn1,...,nk
=

B−n1,...,−nk
. Thus, to leading order we have three wave packets, which we

expect to travel with their group velocities and to have interactions with the
other wave packets.

As explained in Sect. 3.1 it is possible to determine the coefficient functions
Bn1,...,nk

in such a way that the approximate solution zapp = (RK
ε (A)(t), ṘK

ε (A)(t))
and the residual Res(zapp) satisfy

‖zapp(t)‖�∞ ≤ Cεα with α = 1 and ‖Res(zapp)(t)‖�2 ≤ CεK+1−d/2

if the triple A = (A1, A2, A3) : [0, τ∗] → L2(Rd,C)3 is a sufficiently smooth
solution of the three-wave interaction equation (3.11). Since τ = εσt with
σ = 1, we may apply Theorem 6.1 with ν = 1, which means that nonlinearities
with quadratic parts are allowed.

The precise statement from [Gia06] reads as follows.

Theorem 7.2. Let K ∈ N with K > 1 + d/2 and assume that the scalar,
d-dimensional lattice model (3.8) has potentials Vβ ∈ CK+2(R) with Vβ(0) =
V ′
β(0) = 0 for |β| < R. Assume that the mode system {(θn, ωn) : n = 1, 2, 3}

satisfies the resonance condition (7.2) and is closed of order K (cf. (7.3)). Let
A ∈ C([0, τ∗],HK+2(Rd; C))∩CK+1([0, τ∗],H1(Rd; C)) be an arbitrary solution
of (3.11). Then, for each d > 0 there exist ε0 ∈ (0, 1) and D > 0 such that
for all ε ∈ (0, ε0] any exact solution x of (3.8) with

‖(x(0), ẋ(0))− (RK−1
ε (A)(0), ṘK−1

ε (A)(0))‖�2 ≤ dεK−d/2

satisfies, for all t ∈ [0, τ∗/ε],

‖(x(t), ẋ(t)) − (RK−1
ε (A)(t), ṘK−1

ε (A)(t))‖�2 ≤ DεK−d/2.

The whole theory can be generalized in several aspects. First we may con-
sider mode systems with N different wave vectors, where N ≥ 4. Then, we ob-
tain a system of N equations for A1, ..., AN , where only those quadratic terms
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An2An3 occur in the equation for ∂τAn1 if the three modes (θnl
, ωnl

)l=1,2,3

satisfy the resonance condition (7.2). Other triple interactions do not mat-
ter on this time scale either because the frequencies or the wave vectors do
not resonate. Quadruple or higher interactions are too small in amplitude to
influence the macroscopic behavior (cf. [Gia06]).

Second it is possible to do the very same analysis for systems rather than
for a scalar problem. Of course, then we have to pay attention to the different
frequency bands. We also refer to [GMS06], where multipulse interactions
are treated for nonlinear Schrödinger equations with periodic potentials, see
[CMS04, Spa06].

Similar phenomena arise in such different subjects as phonon collisions (cf.
[Spo05]) and in surface water waves (cf. [SW03]).
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Summary. We present an overview of recent results concerning wave trains, soli-
tons and their modulation in FPU chains. We take a thermodynamic perspective
and use hyperbolic scaling of particle index and time in order to pass to a macro-
scopic continuum limit. While strong convergence yields the well-known p-system of
mass and momentum conservation, we generally obtain a weak form of it in terms
of Young measures. The modulation approach accounts for microscopic oscillations,
which we interpret as temperature, causing convergence only in a weak, average
sense. We present the arising Whitham modulation equations in a thermodynamic
form, as well as analytic and numerical tools for the resolution of the modulated
wave trains. As a prototype for the occurrence of temperature from oscillation-free
initial data, we discuss various Riemann problems, and the arising dispersive shock
fans, which replace Lax-shocks. We predict scaling and jump conditions assuming a
generic soliton at the shock front.

1 Introduction

We consider chains of N identical particles as plotted in Fig. 1.1, nearest
neighbor coupled in a nonlinear potential Φ : R → R by Newton’s equations

ẍα = Φ′(xα+1 − xα)− Φ′(xα − xα−1), (1.1)

where ˙ = d
dt is the time derivative, xα(t) the atomic position, and α =

1, . . . , N the particle index. Since the work of Fermi, Pasta and Ulam [FPU55]
one usually refers to (1.1) as FPU chains.

We mainly consider general, convex potentials Φ. While our focus lies
on nonlinear Φ′, the harmonic potential with linear forces is an instructive,
completely integrable example. A nonlinear example, but still completely in-
tegrable, is the famous Toda chain, see [Tod70, DK*74, Hén74] with potential

Φ(r) = exp (1− r)− (1− r). (1.2)



468 W. Dreyer, M. Herrmann, J. Rademacher

xα−1 xα
xα+1 xα+2

rα

Fig. 1.1. The atomic chain with nearest neighbour interaction.

For our purposes it is convenient to use the atomic distances rα = xα+1 − xα
and velocities vα = ẋα as the basic variables, changing (1.1) to the system

ṙα = vα+1 − vα , v̇α = Φ′(rα)− Φ′(rα−1). (1.3)

Rather than investigating solutions of (1.3) for finite N , we focus on the
thermodynamic limit ε = 1/N → 0 in the hyperbolic scaling of the microscopic
coordinates t and α, which is defined by the macroscopic time t = εt and
particle index α = εα. It is natural to scale the atomic positions in the same
way, i.e. x = εx, which leaves atomic distances and velocities scale invariant.
For a survey on other reasonable scaling we refer to Sect. 2 and [GHM06a].

Our main goal is to derive a micro-macro transition for the atomic chain,
i.e. we aim to replace the high dimensional ODE (1.1) by a few macroscopic
PDEs. The derivation of such a continuum limit is simple as long as the
atomic data vary on the macroscopic scale only, see (1.9) below. If, however,
the atomic data oscillate on the microscopic scale, the problem is tremen-
dously complicated, because then distances and velocities do not converge
to macroscopic functions. Instead, at each point in the macroscopic space-
time, the local (r, v)-distribution converges to a nontrivial Young-measures,
see Sect. 5. We interpret the microscopic oscillations as a form of temperature
in the chain, see Sect. 2, and refer to oscillation-free limits as cold.

The main problem in the case of temperature is to find an appropriate
description for the structure and evolution of the oscillations. Even if we are
interested in the macroscopic behavior of averaged quantities only, the mi-
croscopic oscillations determine the evolution of the internal energy, that is,
the amount of energy which is stored in purely microscopic motion. In other
words, any reasonable macroscopic limit for oscillatory solutions needs to de-
scribe thermodynamic effects, such as creation of temperature and transport
of heat. Unfortunately, no rigorous theory is known that applies without fur-
ther assumptions.

Numerical simulations as discussed in Sect. 5 and Sect. 6, as well as rigor-
ous results for the Toda chain, cf. [HFM81, Kam91, VDO91, DK*96, DM98],
suggest that for certain solutions of (1.1), the arising microscopic oscillations
can be described by modulated traveling waves. Traveling waves are highly os-
cillatory exact solutions of (1.1). The most relevant kind for our purposes are
wave trains which are periodic functions of a single phase variable, depending
on four characteristic parameters. Modulated wave trains arise when these
parameters vary on the macroscopic scale.
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A characteristic property of wave trains is that the arising Young measures
are supported on closed curves. As a consequence, they correspond to a very
special kind of temperature which is not related to our usual notion of ther-
malization. However, they give rise to a thermodynamically consistent macro-
scopic theory involving temperature, entropy, and so on. Moreover, if cold
initial data form macroscopic shocks, then Newton’s equations self-organize
into microscopic oscillations in form of modulated wave trains, and in this
sense our notion of temperature turns out to be generic.

Some aspects of the problems addressed in this article have much in com-
mon with certain zero dispersion limits, which we will briefly discuss next
to illustrate our point of view. This is not to be confused with so called zero
diffusive-dispersive limits, where diffusive effects prevail, cf. e.g. [Sch82, KL02].
The most prominent example is Burger’s equation

∂ t u+ u ∂α u = 0, (1.4)

which, on a formal level, is the zero dispersion limit of the KdV equation

∂ t u+ u ∂α u+ ε ∂ 3
α u = 0. (1.5)

The main question is under which conditions the solutions of (1.5) converge as
ε→ 0 to (weak) solutions of (1.4). The rigorous theory for this problem was
developed by Lax and Levermore in [LL83, Ven85] by relying on the complete
integrability of (1.5).

It is well known that generic initial data uini yield a critical time tcrit such
that (1.4) has a unique smooth solution for 0 < t < tcrit, but for t > tcrit
solutions exist in a weak sense only, having at least one discontinuity at some
αcrit, and satisfying ∂ t u+ 1

2∂α
(
u2

)
= 0 in the sense of distributions.

Imposing the same initial datum uini for KdV, the typical behavior for
ε→ 0 is as follows, see for instance the surveys in [Lax86, Lax91, LLV93]. For
0 < t < tcrit the solutions uε of (1.5) converge strongly to the unique smooth
solution of (1.4). However, for t > tcrit the KdV-solutions become highly
oscillatory in a neighborhood of αcrit with wavelength 1/

√
ε, and converge to

a weak limit 〈u〉 only. The main point is that 〈u〉 does not satisfy Burgers
equation, i.e. ∂ t 〈u〉+ 1

2∂α 〈u〉
2 �= 0, because 〈u〉2 �= 〈u2〉.

A discrete zero dispersion limit was studied in [GL88], replacing (1.4) by

u̇α + 1
2 uα (uα+1 − uα−1) = 0. (1.6)

This scheme is equivalent to a dispersive spatial discretization of (1.4), because
the identification uα(t) = u(εt, εα) transforms (1.6) into ∂ t u + u∇±εu = 0
with ∇±εu

(
t, α

)
=

(
u
(
t, α+ ε

)
− u

(
t, α− ε

))
/2ε, The numerical study in

[GL88] provides evidences for the same qualitative limiting behavior as for
KdV. Further examples for numerical schemes with interesting zero dispersion
limit can be found in [HL91] and [LL96].
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Towards modulation theory, [GL88] found a simple description for mod-
ulated binary oscillations, which provides an approximate solution of (1.6)
satisfying uα ≈ vα + (−1)αwα, where vα and wα vary on the macroscopic
scale only. The modulation equations for binary oscillations read

∂ t a+ a ∂α b = 0, ∂ t b+ b ∂α a = 0. (1.7)

where a = v+w and b = v−w. This system is strictly hyperbolic if and only
if a and b have the same sign, and conservation laws for ln a and ln b imply
that strictly positive initial data stay positive for all times.

Let a = a
(
t, α

)
and b = b

(
t, α

)
be a smooth solution of (1.7) defined until

tcrit, and denote the corresponding modulated binary oscillations by

umod
α (t) = v(εt, εα) + (−1)αw(εt, εα). (1.8)

It is proven in [GL88] that (1.8) indeed yields approximate solutions of the
microscopic system for t < ε−1tcrit in the sense that umod

α (t)−uα(t) converges
to zero as ε → 0 for t < tcrit if uα(0) = umod

α (0). For larger times we expect
that modulated binary oscillations are not longer close to an exact solution.

Returning to the atomic chain (1.1), we next derive the macroscopic evo-
lution of cold data, i.e. we assume macroscopic fields r(t, α) and v(t, α) such
that rα(t) = r(εt, εα), vα(t) = v(εt, εα). Substitution into (1.3) yields

∂ t r −∇+εv = 0, ∂ t v −∇−εΦ′(r) = 0, (1.9)

In the limit ε→ 0 we formally obtain the so called p-system consisting of the
macroscopic conservation laws for mass and momentum given by

∂ t r − ∂α v = 0, ∂ t v − ∂αΦ′(r) = 0. (1.10)

It is well known that, for convex Φ, the p-system is hyperbolic and that for
smooth solutions the energy is conserved according to

∂ t
(

1
2v

2 + Φ(r)
)
− ∂α (v Φ′(r)) = 0. (1.11)

In analogy to the previous discussion, the p-system describes the thermody-
namic limit for cold atomic data as long as these data are smooth on the
macroscopic scale. However, we will show next that, if the nonlinearity forms
a shock, then the p-system is no longer a thermodynamically consistent model
for the macroscopic evolution. For simplicity, we assume that the flux func-
tion Φ′ is convex so that all eigenvalues of (1.10) are genuinely nonlinear.
According to the Lax theory of hyperbolic system, cf. [Smo94, Daf00, LeF02],
a shock wave propagates with a constant shock speed c so that r and v satisfy
the Rankine-Hugoniot jump conditions across the shock given by

−c|[r]| − |[v]| = 0, −c|[v]| − |[Φ′(r)]| = 0, (1.12)
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where |[ · ]| denotes the jump. However, (1.12) implies that the jump condition
for the energy must be violated, i.e. for shocks with (1.12) we have

−c|[ 1
2
v2 + Φ(r)]| − |[v Φ′(r)]| �= 0.

Consequently, the p-system predicts some production for the macroscopic en-
ergy (the Lax criterion selects only shocks with negative production).

In contrast, Newton’s equations always conserve mass, momentum and
energy. Therefore, the p-system cannot describe the thermodynamic limit be-
yond the shock at which the atomic data start to oscillate. Indeed, some
amount of energy is dissipated into internal energy leading to a dispersive
shock fan. It is one of the merits of modulation theory that it can describe the
microscopic oscillations emerging from cold shocks as discussed in Sect. 6.

The article is organized as follows. In Sect. 2: we briefly sketch the thermo-
dynamical framework. We survey some existence and approximation results
of wave trains and solitons in Sect. 3, including multi-phase wave trains,
thermodynamic properties and new a priori estimates. Section 4 gives a brief
overview on Whitham’s modulation theory applied to FPU chains, leading
to a system of four conservation laws for wave train parameters. In Sect. 5
we briefly summarize some aspects of numerical justification by evaluating
the aforementioned Young measures and testing assumptions of modulation
theory. The shock problem for cold Riemann data is discussed in Sect. 6, and
we characterize the behavior of all macroscopic fields at the shock front by
assuming that is consists of a generic soliton.

2 Thermodynamic framework

Thermodynamics describes the evolution of deformation and heat on the
macroscopic scale in a body, which may be isolated from the surroundings
or is subjected to external supply of mechanical forces and heat. In the fol-
lowing we will illustrate the strategy of thermodynamics for a macroscopic
body in one space dimension, that is microscopically constituted by an atomic
chain. To this end thermodynamics considers, at any Lagrangian space-time
point (t̄, ᾱ) a certain number of specific densities uj(t̄, ᾱ), j = 1...M , and
determines these fields by means of a system of PDEs for given initial and
boundary data. The most important densities in 1D are the specific volume
(mean distance) r, the macroscopic velocity v, and the specific total energy
E = 1

2v
2 + U , uniquely decomposed into kinetic energy and specific internal

energy U .

The PDE system relies on M equations of balance that read in regular
points

∂ t uj + ∂αFj = Pj , j ∈ {1, 2, . . . , M}, (2.1)
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where fj and Pj are called fluxes and productions, respectively. The funda-
mental balance equations are the conservation laws for mass, momentum and
energy given by

∂ t r − ∂α v = 0 , ∂ t v + ∂α p = 0 , ∂ tE + ∂α f = 0, (2.2)

where p denotes the pressure and f is the energy flux, satisfying f = pv + q
with heat flux q. Further conservation laws are possible, but those are material
and process dependent.

In order that (2.1) becomes a closed system for the variables, thermody-
namics has to model constitutive equations that relate, in a material depen-
dent manner, the fluxes and productions to the densities themselves and/or
their time and space derivatives. The generality of the constitutive functions
is restricted by universal principles like Galileian invariance and the entropy
principle, and by material dependent symmetry principles. The entropy prin-
ciple consists of several parts, see [MR98] for more details.

1. There exists an entropy pair (S, g), given by (material dependent) consti-
tutive functions in terms of the densities uj, so that the entropy density
S is a concave function.

2. The constitutive laws closing (2.1) yield a further balance equation

∂ t S + ∂α g = Σ ≥ 0 with Σ = 0 ⇐⇒ Pj = 0, (2.3)

where Σ denotes the non-negative entropy production.
3. The definition of (absolute) temperature Tmacro is given by

Tmacro =
∂U

∂S
. (2.4)

Note that this phenomenological definition is a priori unrelated to any
microscopic model.

4. The law of Clausius-Duhem holds, i.e. Tmacrog = q.

This abstract framework is the basic paradigm of Rational Thermodynam-
ics and assumed to hold in all cases. However, the constitutive laws depend on
the chosen macroscopic scaling and are generally unknown. Nevertheless, the
scaling predicts the way in which the fluxes (and productions) can and cannot
depend on the densities. For instance, in the hyperbolic scaling, the macro-
scopic equations must be invariant (to leading order) under (t̄, ᾱ) �→ (λt̄, λᾱ),
whereas the parabolic scaling (t̄, ᾱ) = (ε2t, εα) implies macroscopic invariance
under (t̄, ᾱ) �→ (λ2t̄, λᾱ).

Therefore, in the hyperbolic scaling all constitutive relations for the fluxes
must be local, i.e. Fj depends pointwise on the densities uj , so that (2.2) is
a first order system. We mention that hyperbolicity of (2.1) is guaranteed if
the entropy S is a concave function, see [MR98]. Generally, for the hyperbolic
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scaling, all constitutive relations can be encoded in a Gibbs equation with
a single thermodynamic potential. On the other hand, for parabolic scaling,
we expect that the fluxes depend (mainly) on the spatial derivatives of the
densities. In the simplest case the energy flux f is given by Fourier’s law, i.e.
f = ∂ᾱU , so that the energy balance leads to the heat equation.

In conclusion, we sketch the macroscopic thermodynamics for the atomic
chain (1.1) as it results from modulated wave trains. It turns out that the
macroscopic system (2.1) consists of the three fundamental and a fourth equa-
tion, the conservation of wave number ∂ t k − ∂α ω = 0, with wave number k
and frequency ω. In addition, there is a fifth conservation law for the entropy
S, i.e. Σ = 0 in (2.3), and all fluxes are given by the thermodynamic potential
U = U(r, k, S) through the Gibbs equation

dE = ω dS − p dr − g dk + v dv. (2.5)

Note that the equation of state depends on the chain, i.e. on the potential Φ,
whereas (2.5) is universal. From (2.4) and (2.5), we infer that the macroscopic
temperature Tmacro equals the wave train frequency ω. Interestingly, here there
is a difference between Tmacro and the kinetic temperature defined as the
mean kinetic energy of the atoms, see Sect. 3. However, it turns out that the
Clausius-Duhem law is satisfied, i.e. we find q = ωg.

3 Traveling waves

Traveling waves are exact solutions of the infinite chain (1.1) for N = ∞ of the
form xα(t) = x(α − ct) depending on a single phase variable φ and traveling
with a constant speed c. In the context of the macroscopic limits that we
consider, relevant traveling waves are solitons, which vanish as φ→ ±∞, and
wave trains, which are periodic in φ. Due to Galilean invariance, we can allow
additional drift in space-time of the form

xα(t) = rα + vt+ yα(t),

where the profile yα(t) solves the modified lattice equations

ÿα = Φ′(r + yα+1 − yα)− Φ′(r + yα − yα−1) (3.1)

and traveling waves yα(t) = Y(α − ct) solve the second order advance-delay
differential equation

c2∂φφY(φ) = Φ′(r + Y(φ + 1)− Y(φ)) − Φ′(r + Y(φ)− Y(φ− 1)). (3.2)

3.1 Wave trains

Normalizing the period of wave trains to 1 and using c = ω/k with wave
number k and frequency ω, we obtain the form
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xα(t) = rα+ vt+ X(kα+ ωt), (3.3)

where X(ϕ) is the 1-periodic wave profile function. There are unique choices
for the average distance r and the average velocity v such that

∫ 1

0 X(ϕ)dϕ = 0.
Upon substitution into Newton’s equations, we obtain the analogue of (3.2)

ω2∂ϕϕX = Φ′(r + X(ϕ+ k)− X(ϕ)) − Φ′(r + X(ϕ)− X(ϕ− k)), (3.4)

with the three parameters r, k, ω. Another useful formulation is the fixed
point equation, or nonlinear eigenvalue problem, for V = ∂ϕX

ω2V = F(V) := Âk∂Φ
(
r + ÂkV

)
, (3.5)

where the operator Âk and the Nemyckii operator ∂Φ are defined by

(ÂkV)(ϕ) := AkV(ϕ) − k
∫ 1

0

V(s)ds , AkV(ϕ) :=
∫ ϕ+k/2

ϕ−k/2

V(τ)dτ

∂Φ(V)(ϕ) := Φ′(V(ϕ)).

Distances and velocities of the microscopic wave trains are then

rα(t) = r +AkV(kα+ ωt+ k/2) , vα(t) = v + ωV(kα+ ωt). (3.6)

Existence and approximation of wave trains

We give an overview of the variational approach to wave train existence and
approximation by numerical schemes that are based on maximizing

W(V) =
∫ 1

0

Φ
(
r + ÂkV

)
dϕ, V ∈ Hγ :=

{
V ∈ L2([0, 1]) :

1
2
‖V‖2

L2 ≤ γ

}
.

Problem 3.1. For given parameters r, k and γ > 0 we seek maximizers of W
in Hγ , i.e. we solve W (r, k, γ) = max

V∈Hγ

W(V).

Theorem 3.2. Problem 3.1 always has a solution. In particular, there exists a
maximizer V with ‖V‖L2=

√
2γ together with a positive Lagrangian multiplier

ω2
1 > 0 such that V and ω2 solve (3.5).

Scheme 3.3. Let any parameter set for problem 3.1 be given, and let V0 ∈ Hγ

be an arbitrary initial datum with ÂkV0 �= 0. Then we define inductively two
sequences (Vn)n∈N

⊂ Hγ and (ωn)n∈N
by the following iteration step

Vn+1 =
1
fn

Wn , Wn = FVn , fn =
‖Wn ‖L2√

2γ
, ωn+1 =

√
fn.

In [Her04] it is proved that this scheme is compact, and numerical simulations
indicate that Scheme 3.3 converges.
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Remark 3.4. In fact, Theorem 3.3.2 in [Her04] proves that every closed cone
of functions that is invariant under F contains at least one traveling wave.
For the cone of even monotone functions used below, this was also shown in
[FV99], Theorem 2.14.

By means of Scheme 3.3 we can compute wave trains with prescribed
parameter γ = 1

2 ‖V ‖2
L2 . There are variants of 3.3 which allow to prescribe

either the entropy S or the temperature T of a wave train (for the definition
of S and T see Sect. 3.1 below). Hence, wave trains are parametrized (at least)
by (k, r, γ), as well as trivially by v; the latter is relevant for the modulation
equations discussed in Sect. 4. On may view the parameter ω of the wave
train equation (3.4) depending on (r, k, γ) via a ’dispersion relation’, here
expressed as the Lagrange multiplier. We emphasize, that it is not known
whether the set of wave trains is a smooth three-dimensional manifold of
orbits; note that phase shifts V(· + s) trivially give rise to an (at least) one-
dimensional kernel of the linearization ω2 −DF(V) of (3.5) spanned by ∂ϕV.
Moreover, for given parameters there is a discrete multiplicity of solutions,
because solutions for mk, m ∈ N, are solutions for k as well, though these
do not have minimal period 1. We conjecture that wave trains are unique in
cones defined by monotonicity properties of V as discussed below.

Existence and approximation of multi-phase wave trains

We present new results concerning the existence of multi-phase waves, which
will be published with full details elsewhere. As before, our variational ap-
proach is essentially restricted to convex interaction potentials Φ, but allows
for arbitrary large amplitudes.

For simplicity we consider only two-phase wave trains having two wave
numbers k1 and k2. However, all results can easily be generalized to other
multi-phase wave trains. Moreover, to avoid technicalities we always suppose
that Φ is defined on the whole real axis with bounded and continuous second
derivative Φ ′′.

A two-phase wave train is an exact solution of Newton’s equations satis-
fying

xα(t) = rα+ vt+ X(k1α+ ω1t, k2α+ ω2t). (3.7)

Here r, v, k1, k2, ω1 and ω2 are given parameters, and the profile function X

is assumed to have zero average and be 1-periodic with respect to each phase
variable ϕi = kiα + ωit. The ansatz (3.7) gives rise to the advance-delay
differential equation(

ω2
1 ∂

2
ϕ1

+ ω2
2 ∂

2
ϕ2

)
X = ∇−∂Φ

(
r +∇+X

)
(3.8)

where ∇± are difference operators defined by(
∇±X

)
(ϕ1, ϕ2) := ±X(ϕ1 ± k1, ϕ2 ± k2)∓ X(ϕ1, ϕ2)
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Our aim is to identify an optimization problem with a single scalar constraint
such that (3.8) is equivalent to the corresponding Euler-Lagrange equation
with multiplier ω2

1. Consequently, we regard the ratio β = ω2/ω1 as parameter
of this problem.

Let T2
∼= [0, 1]× [0, 1] be the two dimensional torus with its canonic Lebesgue

measure, and let all function spaces which follow be defined on T2. We consider
the Sobolev space

H1
0 =

{
X ∈ H1 :

∫
T2

X = 0
}
, ‖X ‖2

H1
0
:=

∫
T2

(∂ϕ1X)2 + β2 (∂ϕ2X)2. (3.9)

This norm is equivalent to the standard norm on H1
0 as long as β �= 0. Let

E be the canonic embedding E : H1
0 → L2, and E∗ its adjoint operator E∗ :

L2 → H−1 =
(
H1

0

)∗. Note that E is compact, and that here we have identified
L2 with its dual L2∗. By ) we denote the Laplace operator corresponding to
(3.9), i.e.

) := ∂2
ϕ1

+ β2 ∂2
ϕ2
.

Recall that −) : H1
0 → H−1 is an isometric isomorphism between Hilbert

spaces, and that the difference operators ∇± : L2 → L2 are continuous with
(∇+)∗ = −∇−. Moreover, our assumptions on Φ imply that the convex func-
tional X �→

∫
T2
Φ(X) is well defined and continuous on L2.

The spaces and operators from above allow to regard the wave train equa-
tion as an equation in H−1. In particular, (3.8) is equivalent to

−ω2
1)X = E∗(∇+

)∗
∂Φ

(
r +∇+EX

)
, (3.10)

where the Nemyckii operator ∂Φ : L2 → L2 with X �→ Φ′(X) is the Gateaux
differential of the functional (3.11). For fixed γ > 0 we define the closed convex
set Hγ ∈ L2 and the convex Gateaux differentiable functional W as follows

Hγ =
{
X ∈ H1

0 : 1
2 ‖X ‖2

H1
0
≤ γ

}
, W(X) :=

∫
T2

Φ
(
∇+E X

)
. (3.11)

Now (3.10) yields the following constrained optimization problem.

Problem 3.5. For given parameters r, k1, k2, γ > 0 and β �= 0 we seek
maximizers of W in Hγ , i.e. we solve

W (r, k1, k2, β, γ) = max
X∈Hγ

W(X).

Theorem 3.6. Problem 3.5 always has a solution. In particular, there exists a
maximizer X with ‖X‖H1

0
=
√

2γ together with a positive Lagrangian multiplier
ω2

1 > 0 such that X and ω2
1 solve (3.10).
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Remark 3.7. By construction, (3.10) is an identity in H−1. However, X ∈ H1

implies that the right hand side of (3.10) is again an element of H1, and the
theory of elliptic regularity provides X ∈ H3. Moreover, we can prove further
regularity by exploiting Sobolev’s embedding theorems.

In analogy to the single-phase wave trains, we can solve the optimization
problem 3.5 iteratively using an adapted abstract approximation scheme.

Geometry and phase velocity of wave trains

Since the modulation equations for the macroscopic limit of the chain depend
on wave trains, it is essential to understand properties of wave trains and their
parameter variation. Motivated by numerical simulations, we investigate geo-
metric properties of wave trains in the phase space of distances and velocities.
With the shock problem in mind, see Sect. 6, we are also interested in the
transition to solitons as the wave number tends to zero.

From (3.5) we infer that if (V, ω, k, r) is a solution to (3.5), then (−V, ω, 1−
k, r) is also a solution, and vice versa: V(ϕ; k) = −V(ϕ + 1/2; 1− k). In case
of a binary oscillation, k = 1/2, the symmetry implies that (3.4) reduces to
the planar Hamiltonian ODE

ω2∂ϕϕX = Φ′(r − 2X)− Φ′(r + 2X). (3.12)

More generally, for rational k = n/m equation (3.4) can be written as an
m-dimensional second order Hamiltonian ODE with components Xj = X(·+
jn/m), j = 0, . . .m − 1. This system is equivariant under the Zm action
Xj → Xj+1, where indices are taken modulo m, and Zm lies in the isotropy
subgroup of wave trains.

The microscopic phase space of distances and velocities is in fact the phase
space of the ODE (3.12) for k = 1/2. Therefore, the orbits

Q := {(r +AkV(ϕ+ k/2), v + ωV(ϕ)) | 0 ≤ ϕ < 1} (3.13)

are convex, non self-intersecting curves and nested for different ω with fixed
(r, k).

We can prove some of these properties for general wave number k, see also
Fig. 5.4, and define the positive cones

M± := {V(1 + ϕ) = V(ϕ),
∫ 1

0

V(s)ds = 0, V(ϕ) = V(−ϕ),

sgn(V(ϕ1)− V(ϕ2)) = ±1, 0 < ϕ1 < ϕ2 < 1/2},

so that W ∈ M± has unique global extrema at ϕ = 0 and ϕ = 1/2, and
W(ϕ1) = W(ϕ2) is equivalent to ϕ1 ∈ {ϕ2,−ϕ2, 1 − ϕ2}. By symmetry W ∈
M±, implies W(· + 1/2) ∈ M∓. The basis of the following results is the
observation F : M± → M±, which was noted in [FV99]. Throughout this



478 W. Dreyer, M. Herrmann, J. Rademacher

article, we are only interested in wave trains in M+ ∪M−, and conjecture
that wave trains are unique within these cones.

Let QΦ = {Φ′′(r + AkV(ϕ)) | 0 < ϕ ≤ 1}. We will estimate the phase
velocity cph := ω/k of wave trains and the size of Q in terms of

M := maxQΦ(V) , m := minQΦ(V).

Remark 3.8. Note that
√
m,

√
M are the characteristic velocities of the p-

system. Applying Theorem 3.10 below for monotone Φ′′, these values are at-
tained at ϕ = 0, 1/2, respectively.

Next, we report our main, new results concerning the general geometry
and phase velocity of wave trains; full proofs will appear elsewhere.

Theorem 3.9. Assume Φ′′ > 0. Then (3.5) has solutions (ω,V) ∈ R0 ×M+

for any (γ, r, k) ∈ R2 × (0, 1/2) such that k → 0 ⇔ ω → 0.
More precisely, the phase velocity of these wave trains satisfies

b(k)
√
m ≤ |ω|

k
≤

√
M, (3.14)

where b(k) ∈ (0, 1/2), b(k) = 1/2 for k ≤ 2ϕ∗ with V(ϕ∗) = 0 the unique root
of V. For 2ϕ∗ < k < 1/2, we can take

b(k) =
1
4
−

∫ k/4

−k/4 |V(ϕ)|2 + |V(ϕ+ 1/2)|2dϕ
4||V||22

.

Theorem 3.9 states that the lower phase velocity bound of wave trains is
estimated by a correction of the p-system characteristic. Indeed, small am-
plitude wave trains have m ∼ Φ′′(r), so that the harmonic phase velocities√
m sin(πk)/πk apply, which, being smaller than

√
m, necessitate a correction

such as b(k).

Theorem 3.10. Assume Φ′′ > 0 and consider solutions V ∈ M+ to (3.5)
for given (r, k, γ). Then the curve Q is smooth, closed, convex and non self-
intersecting. Its unique extrema in r-direction lie at ϕ = −k/2, (1− k)/2 and
in v-direction at ϕ = 0, 1/2, and it is bounded by |ω| ≤ k

√
M and

1
2
k|V(ϕ)| ≤ |AkV(ϕ)| ≤

√
k||V||2. (3.15)

If Φ′′ is monotone, and ω independent of (r, k), then ω is a strictly monotone
function of γ and the curves Q are nested near the extrema in r- and v-
directions for fixed (r, k). The sign of monotonicity is that of ω.

While the unique points on Q with vertical and horizontal slope lie at
ϕ = (1 − k)/2, 1/2 and ϕ = 0,−k/2, the limiting profile for k → 0 is not
necessarily parametrized by ϕ. Indeed, for a limiting soliton, we expect that
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only one of these pairs converges to the point (r, v) of the soliton’s background
state as k → 0.

The harmonic dispersion relation (3.18) renders ω a function of k, so that
the last part of Theorem 3.10 does not apply. Indeed, in this case V is inde-
pendent of k and ω, see (3.17).

Remark 3.11. The estimates on the size of Q imply that a nontrivial solitary
limit as k → 0 requires unbounded norm parameter γ, growing at least like
1/k. Since Theorem 3.9 also implies ω → 0 as k → 0, we expect that the
monotonicity of γ in ω holds in general for small ω.

Nestedness of Q near the extrema in r and v directions for fixed (r, k) is a
biproduct of our approach. However, it seems difficult to prove the numerical
observation that the entire phase plots are nested.

Thermodynamics of wave trains

Wave trains represent exact solutions of Newton’s equations which are highly
oscillating on the microscopic scale. However, on the macroscopic scale we
cannot resolve the microscopic oscillations but must pass to a thermodynamic
description involving energy, pressure, temperature and the like. It turns out
that for each wave train all these thermodynamic quantities are constant on
the macroscopic scale. As a consequence, we can interpret each exact wave
train solution of Newton’s equation as a “thermodynamic state” of the chain.
This idea turns out to be fruitful in modulation theory discussed in Sect. 4,
where we allow for macroscopic modulations of the thermodynamic states.

Most thermodynamic quantities are defined as mean values of the oscillat-
ing atomic data in a wave train solution:

W =
∫ 1

0

Φ(r +AkV(ϕ)) dϕ specific internal potential energy density,

p = −
∫ 1

0

Φ′(r +AkV(ϕ)) dϕ pressure = negative specific force density,

K =
ω2

2

∫ 1

0

V(ϕ)2 dϕ specific internal kinetic energy density,

and further

T = 2K kinetic temperature,
F = K −W specific internal action density,
U = K +W specific internal energy density,

E =
1
2
v2 + U specific total energy density.

Note that K = ω2γ, where γ is norm parameter used above. All these quanti-
ties are constants for exact wave trains. However, in modulation theory they
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become fields in t and α whose macroscopic evolution is described by the
modulation equations. In particular, although all quantities are defined by in-
tegrals over the phase variable ϕ, in modulation theory they represent specific
densities.

There are other important thermodynamic quantities which are not di-
rectly related to mean values of the atomic data. It turns out that

S := ω

∫ 1

0

V(ϕ)2 dϕ , g := −
∫ 1

0

V(ϕ)Φ′(r +AkV(ϕ)) dϕ (3.16)

can be interpreted as the macroscopic entropy density and entropy flux, respec-
tively. It is proven in [Her04, DHM06] that any smooth family of wave trains
provides an equation of state together with a corresponding Gibbs equation.

independent
variables

thermodynamic
potential

Gibbs equation

(r, k, γ) W = W (r, k, γ) dW = ω2 dγ − p dr − g dk
(r, k, ω) F = F (r, k, ω) dF = S dω + p dr + g dk
(r, k, S) U = U(r, k, S) dU = ω dS − p dr − g dk

The different variants of equations of state and Gibbs equations are all equiv-
alent as long as the respective changes of coordinates are well defined.

The Gibbs equation becomes very important in modulation theory, where
it provides the closure for the modulation equations. In particular, if the
equation of state is known, then all other constitutive relations are determined
by the Gibbs equation.

Examples for wave trains

For a few specific potential, explicit expressions are known for both the profile
functions and the equation of state. The following examples are taken from
[Her04, DHM06].

The harmonic chain with interaction potential Φ(r) = c0 + c1 r + c2
2 r

2.
Here the linearity of Φ ′ implies that (3.5) may be solved by means of Fourier
transform. Some simple calculations yield the following family of traveling
waves, parameterized by (r, k, γ),

V(ϕ) = 2
√
γ sin (2πϕ), AkV(ϕ+ k/2) = (sin (π k)/π) V(ϕ). (3.17)

Here V is independent of (r, k) and AkV independent of r. Degeneracy of the
harmonic chain is also reflected by the harmonic dispersion relation

ω(k) =
√
c2 sin (πk)/π, (3.18)

which provides the frequency ω as function of k, and does not depend on r or
γ. Consequently, for the harmonic chain we cannot choose r, k and ω as set of
independent variables. From (3.17) we infer that the equation of state reads
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W (r, k, γ) = c0 + c1 r +
1
2
c2 r

2 + ω(k)2γ,

which implies g(r, k, γ) = −c2 sin (2πk)γ and S(r, k, γ) = 2ω(k)γ. Moreover,
we can replace γ by S, and obtain

U(r, k, S) = c0 + c1r +
1
2
c2r

2 + ω(k)S. (3.19)

The hard sphere model with interaction radius r0. Here all atomic inter-
action are modeled as elastic collision between hard spheres with radius r0.
This gives rise to an interaction potential Φ with

Φ(r) = +∞ for r < r0, Φ(r) = 0 for r ≥ r0.

Although this potential is not smooth the notion of traveling waves may be
generalized to this case, and again we are able to derive explicit expressions
for wave trains. Some basic arguments lead to the following family of traveling
waves, parameterized by (r, k, ω),

V(r, k, ϕ) =
{
−(r − r0)/k if 0 ≤ ϕ < k,
+(r − r0)/(1− k) if k ≤ ϕ < 1.

Note that here the frequency ω > 0 is a free parameter and may be chosen
independently of r and k. The corresponding equation of state reads

U(r, k, S) = 1
2 (r − r0)−2

S2 k (1− k). (3.20)

We mention that the hard sphere model describes the high energy limit for
certain potentials, see [Tod81] for the Toda potential, and [FM02], as well as
Sect. 3.2, for Lennard-Jones potentials.

The third example is the small amplitude limit, where the amplitude
δ of V is defined as the first fourier coefficient, i.e. for odd V we find
δ =

∫ 1

0
V(ϕ) cos (2πϕ) dϕ. To identify the leading order terms we expand

the nonlinear interaction potential Φ around the mean distance r up to fourth
order. To leading order the frequency ω must satisfy the harmonic disper-
sion relation which now reads Ω0(r, k) =

√
Φ′′(r) sin (k π)/π. According to

[DHM06], the amplitude δ and the action F can be expressed in powers of
ω −Ω0(r, k) as follows

δ2 =
ω2 −Ω0(r, k)

2

2Ω0(r, k)
2 G(r, k),

F (r, k, ω) = −Φ(r) +G(r, k)(ω −Ω0(r, k))2 +O
(
(ω −Ω0(r, k))3

)
, (3.21)

where G(r, k) is given by

G(r, k) =
Φ′′(r)2

2 π2 Φ′′(r)Φ(4)(r)
(
1− cos (2πk)

)
+

(
Φ′′′(r)

)2(1 + cos (2πk)
) .
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3.2 Solitary waves

Homoclinic orbits in ODEs are typically accompanied by large wave length
periodic orbits in the sense that there exists a parameter curve of periodic
orbits converging to the homoclinic orbit as the period tends to infinity [VF92].
For the lattices we consider, the situation is similar: wave trains exist for
arbitrarily larger wave number and limit to solitons as the wave number tends
to zero. This was proven for certain monotone waves and potentials under
growth assumptions in [PP00] by a mountain pass approach.

We thank Karsten Matthies (University of Bath) for providing notes on
which the remaining part of this section is based. We report some of his joint
work with Gero Friesecke, mainly concerning solitons in (1.1) in the form (3.1)
for a large class of possibly non-convex potentials Φ.

A prototype of physically realistic interaction is given by the standard
Lennard-Jones potentials

Φ(r) = a
(
r−m − r−m

∗

)2

for r > 0, a > 0, m ∈ N.

where Φ is minimized when neighbouring particles are placed at some spe-
cific equilibrium distance r = r∗ > 0, and tends to infinity as the neighbour
distance tends to zero.

Since the particle positions xα corresponding to displacements yα are xα =
r∗α + yα, this means that Φ(r) must have a minimum at r = r∗ and that
Φ(r) →∞ as r → 0. More precisely we assume:

(H1) (Minimum at r∗) Φ ∈ C3(0,∞), Φ(r∗) = Φ′(r∗) = 0, Φ′′(r∗) > 0
(H2) (Growth) Φ(r) ≥ c0r

−1 for some c0 > 0 and all r close to 0
and Φ(r) = ∞ for r ≤ 0 .

(H3) (Hardening) Φ′′′(r) < 0 in (0, r∗], Φ(r∗ + r) < Φ(r∗ − r) in (0, r∗).

Here we seek solitons whose profile Y(φ) solves (3.2) with r = r∗. The con-
struction in [FW94] for the existence of solitons is based on the variational
problem

Minimize γ∗(Y) :=
1
2

∫
R

∂φY(φ)2dφ among Y ∈W 1,2
loc (R) satisfying

∂ϕY ∈ L2(R), W∗(Y) :=
∫

R

Φ(r + Y(φ+ 1)− Y(φ))dφ. (3.22)

Remark 3.12. It is instructive to compare this ansatz with the one used for
wave trains in Sect. 3.1, where the real line is replaced by the unit interval
and W maximized for fixed norm parameter γ. This lead to a relatively simple
convex maximization problem for convex potentials. In contrast, (3.22) is a
kind of dual problem, whereW∗ is fixed and the norm parameter γ∗ minimized;
a more challenging formulation that allows for non-convex potentials.
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The goal is to determine the Γ -limit of the variational problem and the
limiting profile in the high-energy regime. Since this regime is highly discrete
and involves strong forces, neither classical continuum approximations nor
weak coupling approximations are possible.

The limiting profile for W∗(Y) → ∞ was derived in [FM02]. Here we
recover this as a corollary of the following Γ -convergence result. We let

H∗ := {Y ∈ W 1,2
loc (R)|Y(0) = 0, ∂φY ∈ L2(R)},

and for every displacement profile Y we denote the relative displacement pro-
file by r(φ) = Y(φ + 1) − Y(φ). As in (3.22) we consider the functional γ∗
on

H∗
K = {Y ∈ H∗ |W∗(Y) = K}

H∗
∞ = {Y ∈ H∗ | r(φ) ≥ −r∗; ∀φ ∈ R

∃ compact nonempty set SY ⊂ R with r|SY
= −r∗}.

Theorem 3.13. (Γ -convergence) Assume that the interaction potential satis-
fies (H1), (H2). Then the problem ’Minimize γ∗(Y) for Y ∈ H∗

K ’ Γ -converges
to the problem ’Minimize γ∗(Y) for Y ∈ H∗

∞’ in the sense that

1. (lim-inf-inequality) If Y(K) ⇀ Y in H∗ with Y(K) ∈ H∗
K , Y(K) translation

normalized (i.e. r(K)(0) = minφ∈R r
(K)(φ)), then Y ∈ H∗

∞ and γ∗(Y) ≤
lim infK→∞ γ∗(Y(K)),

2. (Existence of recovery sequence) For all Y ∈ H∗
∞ there exists a sequence

Y(K) ∈ H∗
K with Y(K) ⇀ Y in H∗ and γ∗(Y(K)) → γ∗(Y).

A consequence is the following piecewise linear asymptotic displacement pro-
file, corresponding to piecewise constant velocity profile.

Corollary 3.14. (Asymptotic shape of minimizers) Every translation nor-
malized sequence Y(K) of minimizers of γ∗ on H∗

K converges in H weakly
to the up to translation unique minimizer Y∞ of the limit problem, where

Y∞(φ) =

⎧⎨⎩
0, φ ≤ 0

−r∗φ, φ ∈ [0, 1]
−r∗, φ ≥ 1.

In a mechanical interpretation, this is a compression wave localized on a
single atomic spacing. The limiting dynamics are hard-sphere dynamics like in
a Boltzmann gas, see Fig. 3.1. In particular the work shows that dispersionless
transport of energy is not restricted to the long-wave regime.

We mention that Friesecke and Matthies analyse a two dimensional coun-
terpart of (3.1) in [FM03], see Fig. 3.1. The existence of longitudinal solitary
waves along one of the lattice directions was shown for typical potentials un-
der some mild nondegeneracy assumptions. These traveling waves are unique,
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Fig. 3.1. Left: Hard-sphere soliton. Right: cell of springs in 2D lattice.

i.e. there are no other localized traveling wave in the same direction, e.g. there
do not exist transversal traveling waves. It is surprising that purely harmonic
springs are included here, because solitary waves do not occur in harmonic
chains.

4 Modulation Theory

4.1 Macroscopic evolution of data with temperature

In this section we use the theory of Young measures, see for instance [Tay96,
War99, Daf00], and derive some restrictions for any thermodynamic limit of
the chain.

Let Ω = {
(
t, α

)
: 0 ≤ t ≤ tfin, α ∈ [0, 1]}, and let (Ni)i be a sequence

with Ni →∞. Moreover, for any i let Q(i)
α (t) = (r(i)α (t) v(i)

α (t)), 0 ≤ t ≤ Nitfin

and α = 1, ..., Ni, be a solution of Newton’s equation, and suppose that the
total energy of the initial data is proportional to Ni, i.e.

Ni∑
α=1

(
1
2

(
v(i)
α (0)

)2

+ Φ
(
r(i)α (0)

))
= O(Ni). (4.1)

Under some suitable assumptions on the potential (say boundedness of Φ′′ for
simplicity) the functions Q(i)

α (t) are compact with respect to the convergence
of Young measures in the following sense. There is at least a subsequence, still
denoted by (Ni)i, and a family of probability measures

(
t, α

)
�→ µ

(
t, α, dQ

)
such that for any continuous observable ψ = ψ(Q) = ψ(r, v) the following
convergence is satisfied∫

Ω

ψ
(
Q(i)

(
Ni t, Ni α

))
ξ
(
t, α

)
dt dα i→∞−−−−→

∫
Ω

〈ψ〉
(
t, α

)
ξ
(
t, α

)
dt dα.

(4.2)
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Here ξ is an smooth test function, and 〈ψ〉
(
t, α

)
is given by

〈ψ〉
(
t, α

)
=

∫
R2
ψ(Q)µ

(
t, α, dQ

)
. (4.3)

For fixed
(
t, α

)
∈ Ω, the probability measure µ

(
t, α, dQ

)
describes the mi-

croscopic oscillations in the vicinity of
(
t, α

)
, and for any observable Ψ the

number 〈Ψ〉
(
t, α

)
gives the local mean value of Ψ .

Here we consider the common probability distribution of distance and
velocity instead of their separate statistics so that any measure µ

(
t, α, dQ

)
can be interpreted as a weight function defined on the microscopic state space
which is spanned by distance and velocity.

In Sect. 1 we have seen that Newton’s equations are equivalent to the
two microscopic conservation laws (1.3), from which one can derive the mi-
croscopic conservation of energy ėα(t) = −fα(t) + fα+1(t) with eα(t) =
1
2v

2
α+1(t)+Φ(rα(t)) and fα(t) = −vα(t)Φ′(rα(t)). As a direct consequence, ev-

ery Young measure limit must satisfy the following macroscopic conservation
laws of mass, momentum and energy

∂ t 〈r〉 − ∂α 〈v〉 = 0,
∂ t 〈v〉 − ∂α 〈Φ′(r)〉 = 0, (4.4)

∂ t
〈

1
2v

2 + Φ(r)
〉
− ∂α 〈v Φ′(r)〉 = 0.

This system of PDEs gives some restrictions for any young measure limit of the
atomic chain. However, in general we can not express the fluxes in terms of the
densities, and hence the system (4.4) is not closed, i.e. it does not determine
the macroscopic evolution completely. We mention that (4.4) shows that any
Young measure limit is a measure-valued solution of the p-system in the sense
of DiPerna, see [Hör97, Daf00]. In addition, it is a measure-valued solution of
the energy equation (1.11).

Within modulation theory we will start with some assumptions concerning
the structure of the microscopic oscillations in the chain. Afterwards we will
identify further macroscopic evolution laws extending (4.4), and constitutive
relations that close the extended system.

4.2 Whitham modulation equations for wave trains

Here we describe Whitham’s modulation theory for the atomic chain with
hyperbolic scaling. For further examples concerning modulation theories of
discrete system we refer to [HLM94, SW00, FP99, DK00, GM04, GM06], and
to [GHM06a, GHM06b] for an overview.

A modulated traveling wave is an approximate solution of Newton’s equa-
tion (1.1) satisfying

xα(t) =
1
ε
X(εt, εα) + X̃

(
εt, εα,

1
ε
Θ(εt, εα)

)
, (4.5)
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where X and Θ are macroscopic functions. The generic traveling wave param-
eters (r, v, k, ω) now are macroscopic fields depending on

(
t, α

)
, and read

ω = ∂ tΘ, k = ∂αΘ, v = ∂ tX r = ∂αX. (4.6)

The microscopic oscillations are described by

X̃
(
t, α, ϕ

)
= X

(
r
(
t, α

)
, v

(
t, α

)
, k

(
t, α

)
, ω

(
t, α

)
, a

(
t, α

)
, ϕ

)
, (4.7)

where X(r, v, k, ω, a, ϕ) is a smooth family of 1-periodic wave trains depend-
ing on the parameters u = (r, v, k, ω, a) as well as on the phase ϕ. We use
an additional parameter a, which might be the entropy S or the parameter γ.
However, in any case we impose an abstract dispersion relation

ω = Ω(r, k, a). (4.8)

The modulation equations are PDEs which describe the macroscopic evolu-
tion of the modulated parameter (r, v, k, ω, a), and ensure that (4.5) indeed
provides approximate solutions. For their formal derivation we use Whitham’s
variational approach, see [Whi74, FV99, DHM06], and [GHM06a, GHM06b]
for a more general setting.

In a first step we insert the ansatz (4.5) into the expression for the total
action in the atomic chain, and expand all arising terms in powers of ε. This
gives rise to the reduced action integral

total action = L(X, Θ, a) =

tfin∫
0

1∫
0

L
(
u
(
t, α

))
dα dt, (4.9)

with L(u) = L(u, X(u, ·)) and

L(u, X) =
∫ 1

0

(
1
2
(v + ω ∂ϕX)2 − Φ(r +∇kX)

)
dϕ,

where (∇kX)(ϕ) = X(ϕ+ k). In a second step we apply the principle of least
action to (4.9). The variation with respect to a gives ∂aL = 0, which recovers
the dispersion relation (4.8), and the variations with respect to X and Θ yield

∂ t ∂vL+ ∂α ∂rL = 0 and ∂ t ∂ωL+ ∂α ∂kL = 0, (4.10)

respectively. Moreover, the definitions (4.6) imply two further evolution equa-
tions, namely ∂ t r − ∂α v = 0 and ∂ t k − ∂α ω = 0.

In the last step we reformulate all macroscopic identities by using the
thermodynamic definitions from Sect. 3, and as a consequence we find that
the modulation equations take the form

∂ t

(
r, v, k, S

)
+ ∂α

(
−v, +p, −ω, +g

)
= 0. (4.11)
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These equations represent the macroscopic conservation laws for mass, mo-
mentum, wave number and entropy. Moreover, they imply the conservation of
energy via

∂ tE + ∂α
(
pv + gω

)
= 0. (4.12)

and thus we can regard the system (4.11) as an extension of (4.4). Recall
that the closure for (4.11) and (4.12) is provided by the equation of state
E = 1

2v
2 + U(r, k, S) and the Gibbs equation (2.5). However, for almost all

interaction potential Φ we lack explicit expressions for the equations of state,
and therefore we cannot characterize the properties of (4.11).

Finally, we display the modulation equations for the harmonic chain

∂ t

(
r, v, k, S

)
− ∂α

(
v, c2 r, ω(k), ω′(k)S

)
= 0, (4.13)

which follow from (4.11) by means of the equation of state (3.19), and the
harmonic dispersion relation (3.18).

4.3 The justification problem

So far, there is no known rigorous derivation of the modulation equations
for the nonlinear case. For this reason we formulate a conjecture, following
similar results for partial differential equations [KSM92, Sch98, Mie02]. We
assume that the potential Φ is sufficiently smooth, and that a smooth family
of traveling waves X(u, ϕ) with independent parameters u = (r, v, k, ω) is
given. Moreover, we assume that the following set M is open

M =
{
u = (r, v, k, ω)

∣∣∣∣ the system (4.11) is strictly hyperbolic in u,
the traveling wave X(u, ·) is linearly stable

}
.

For a given solution ũ = ũ
(
t, α

)
of (4.11) we define

M ε
α(t) =

⎛⎝ r̃(εt, εα) + (ÂkV)
(
ũ(εt, εα), 1

ε Θ̃(εt, εα) + 1
2 k̃(εt, εα)

)
ṽ(εt, εα) + ω̃(εt, εα) V

(
ũ(εt, εα), 1

ε Θ̃(εt, εα)
) ⎞⎠ ,

where V abbreviates ∂ϕX, and the modulated phase Θ̃ is given by (4.6). We
believe that the following conjecture is in the heart of the matter.

Conjecture 4.1. Let ũ be a sufficiently smooth solution of Whitham’s equation
defined for t ∈ [0, tfin], and suppose that ũ takes values in M. Then there
exists a suitable Banach space Υε, and some exponent κ > 0 such that

‖Qε(t)−M ε(t)‖Υε
= O(εκ), ‖Qε(0)‖Υε

= O(1) (4.14)

for all ε, and all t with 0 ≤ εt ≤ tfin.
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At the moment we are far from being able to prove this conjecture in this
general form. However, it does hold rigorously for the harmonic chain and the
hard sphere model.

The proof for the harmonic chain essentially relies on the linearity of
Newton’s equations, which allows to control the residuum, see [DHM06].
In addition, there is further rigorous derivation of (4.11) in the context of
Wigner measures. For the details we refer to [Mie06], and for similar results to
[Mac02, Mac04]. The rigorous justification for the hard sphere model is based
on the observation that both the microscopic dynamics and the macroscopic
equations become much simpler in the Eulerian representation of thermody-
namics, cf. [Her04]

On a formal level we expect a close relation between stability of wave trains
and hyperbolicity of modulation equations; if Whitham’s equations (4.11) are
not hyperbolic, then the corresponding initial value problem is ill-posed, which
indicates that traveling waves are unstable due to a Benjamin-Feir instability,
see e.g. [Whi74, BM95]. However, for arbitrary interaction potential Φ, nei-
ther stability criterions nor hyperbolicity conditions are available up to now.
Having linearly degenerate eigenvalues, the harmonic chain and hard sphere
model are not prototypical and do not provide further insight. Only the small
amplitude limit gives some criteria for the hyperbolicity of (4.11). Starting
with the equation of state (3.21) we can compute the characteristic speeds
for (4.11), see [DHM06], and end up with the following criterion. The system
(4.11) has four real eigenvalues, and is thus hyperbolic, if

N̂(r, k) =
(
Φ′′′(r)

)2 (
7− 8 cos (2πk) + cos (4πk)

)
+

Φ′′(r)Φ(4)(r)
(
4 cos (2πk)− 3− cos (4πk)

)
is positive, but has two imaginary eigenvalues for N̂(r, k) < 0. For k = 1/2
the corresponding formula was already given in [Fla96].

5 Numerical justification of modulation theory

Although there is no rigorous justification for the modulation equations (4.11),
numerical simulations strongly indicate that they provide the right thermo-
dynamic description for a wide class of initial value problems for the atomic
chain. We refer to [DH06] which gives a detailed thermodynamic interpreta-
tion of several numerical experiments. The main results can be summarized
as follows.

(i) If all macroscopic fields are smooth, then the arising oscillations in the
atomic data can be described in terms of modulated traveling waves, and
the macroscopic dynamics is governed by the modulation system (4.11).

(ii) Modulated traveling waves describe the microscopic oscillations emerging
when cold data form shocks.
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(iii) If the shocks emerge from data with temperature, then usually the mi-
croscopic oscillations exhibit a more complicated structure, and (single-
phase) modulation theory fails in this case.

Concerning the last item, results for the Toda chain suggest a hierarchy of
modulation models, enumerated by the number of phases, where shocks on a
lower level require the model of the next level, see e.g. the review [LLV93]
and the references therein.

Note that these numerical observation are valid only if the interaction po-
tential Φ is convex, the macroscopic scale results from the hyperbolic scaling,
and the microscopic initial data are given by modulated traveling waves.

In this section we give an brief survey on the numerical justification from
[DH06], and present a typical example with periodic boundary conditions
and smooth macroscopic fields. Moreover, in Sect. 6 we study the numerical
solution of a Riemann problem with cold initial data, and give an improved
discussion of its macroscopic limit.

In order to study the macroscopic behavior of the atomic chain for large N
we must evaluate the thermodynamic properties of the numerical data which
are the macroscopic fields of the local mean values, and the local distribution
functions of the atomic data. The computation of both mean values and dis-
tribution functions relies on mesoscopic space-time windows. In what follows
let F = IFT × IFP be such a window where IT and IP are sets of time steps
and particle indices, respectively. The window F is mesoscopic if and only if
it is very small on the macroscopic scale, but contains a lot of particles as
well as time steps, i.e. (IT, (IP ∼ Nκ for some exponent κ with 0 < κ < 1. In
particular, any F describes the microscopic vicinity of a certain macroscopic
point ZF = (tF , αF).

For any atomic observable ψ we can easily compute the mean value 〈ψ〉F
of ψ with respect to each window F by a simple averaging formula. Note that
there is a close relation to the notion of Young measures. In particular, if the
atomic data converge for N →∞ in the sense of Young measures, then 〈ψ〉F
is a good approximation for 〈ψ〉(tF , αF) from (4.3). Moreover, by means of
F we can compute the complete measure µ

(
tF , αF , dQ

)
, see [DH06] for the

details.

The micro-macro transition of modulation theory relies on the hypothesis
that all atomic oscillations can be described by modulated wave trains. If this
is right, then the microscopic distributions functions within any space-time
window F must be equivalent to an exact wave train. Of course, the parame-
ters of this wave train may depend on F . In order to justify this hypothesis for
given F , we have to identify four wave train parameters, namely the specific
length rF , the mean velocity vF , the wave number kF and a fourth parameter
which might be the parameter γF , the frequency ωF , the entropy SF , or the
temperature TF .
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The values of rF , vF and TF are given by mean values of microscopic
observables. This reads rF = 〈r〉F , vF = 〈v〉F , and TF =

〈
v2

〉
F − 〈v〉2F .

Determining kF and ωF is not so obvious, because they have no immediate
physical interpretation on the microscopic scale. To overcome this problem we
introduce auxiliary observables Ψk and Ψω, see [DH06] for their definitions, and
set

kF := 〈Ψk〉F , ωF := 〈Ψω〉F .

In the next step we start a numerical scheme similar to (3.3), which allows to
prescribe the values rF , vF , kF and TF , see [DH05] for details, and compute
an exact wave train with these parameters. For any F , the scheme yields a
profile function VF as well as a frequency ωTW

F which does not result from
the auxiliary observable Ψω but satisfies a dispersion relation.

Finally, we compare the microscopic distribution functions from the nu-
merical data with their macroscopic predictions which can be expressed in
terms of VF . In particular, according to modulation theory, the support of
the microscopic distribution functions must equal the curve

ϕ �→ QTW(ϕ) =
(
rF + ÂkVF (ϕ+ kF/2), vF + ωF VF(ϕ)

)
. (5.1)

This rather strong prediction can be check for given numerical data.

Smoothly modulated initial data

We study the evolution of data with temperature by imposing initial data in
form of smoothly modulated binary oscillations, i.e. we set

rα(0) =
{
r odd(εα) if α is odd,
r even(εα) if α is even, vα(0) =

{
v odd(εα) if α is odd,
v even(εα) if α is even,

where r odd, r even, v odd and v even may be read off from Fig. 5.1. We solved
Newton’s equation for the Toda chain with N = 4000 up to the macroscopic
time tfin = 0.4 by means of the Verlet scheme, see [SYS97, HLW02].
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Fig. 5.1. Snapshots of the atomic distances and velocities at several macroscopic
times. The vertical lines at t = 0.4 mark the space-time windows for Fig. 5.4.
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Fig. 5.2. Selected macroscopic fields as functions of α for t = 0.4.

Figure 5.1 contains snapshots of the atomic data for several macroscopic
times, where the black colored curves represent the local mean values, and
Figure 5.2 shows the profiles for some macroscopic fields at time t = 0.4. We
observe that the atomic data are highly oscillating on the microscopic scale so
that any appropriate mathematical descriptions of the limitN →∞ must rely
on measures. The computation of wave number and frequency is illustrated
in Fig. 5.3, showing the oscillating values of the auxiliary observables Ψk and
ΨΩ as well as their macroscopic mean values.

In Fig. 5.4 we compare the microscopic distribution functions with their
macroscopic predictions from modulation theory for six mesoscopic space-time
windows at t = 0.4. For each of these windows we represent the distribution
function of microscopic data by a density plot with high (Gray) and low
(White) probability for finding a particle. Note that the support of every
distribution functions is contained in closed curves, and that the distribution
functions vary on the macroscopic scale.

The black dots in Fig. 5.4 represent the macroscopic predictions: we project
20 points Qi = QTW(i/20) of the curve (5.1), into the density plots. Figure
5.4 reveals that the curve (3.13) coincides with the support of the microscopic
distribution functions, and that the distance between Qi+1 and Qi is related
to the gray level of the microscopic distribution functions. In conclusion, we
can describe the microscopic oscillations within any window F by a periodic
wave train. Moreover, we can conclude that the macroscopic evolution of the
thermodynamic fields is indeed governed by the modulation equations (4.11),
see the discussion in [DH06].
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Fig. 5.3. Wave number and frequency: oscillating auxiliary variables and macro-
scopic mean values.
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Fig. 5.4. Distribution functions of the atomic data in three selected space-time
windows at t = 0.4; for the α-coordinates see Figure 5.1. Each picture contains a
density plot of the atomic data (White and Gray) together with an illustration of
the macroscopic prediction (Black).

6 The shock problem

Since we expect a hyperbolic system describing the macroscopic limit, it is
natural to investigate Riemann problems and interpret the results in terms of
hyperbolic theory. A goal of this is to indicate selection principles for Riemann
solvers that account for the macroscopic limit of atomic chains.

We would naively expect to find rarefaction fans, shocks and possibly
contact discontinuities, that are selected by characteristic curves and entropy
conditions and whose velocities are determined by characteristic velocities and
Rankine-Hugoniot conditions.

It turns out that this picture is invalid when microscopic oscillations oc-
cur, leading to modulated wave trains as mentioned in Sect. 4. Instead, we
find a situation very similar to the zero dispersion limit of the KdV equa-
tion mentioned in Sect. 1, where dispersive shock fans replace Lax-shock,
and where velocities are not given by characteristic velocities of the limiting
Burger’s equation, corresponding to the p-system in our case. Faced with a
large number of publications on this matter, we restrict references here to
[LLV93, LP05, El05] and the bibliographies therein.

We focus on cold initial data, i.e. constant displacements and velocities
with a single jump at some ᾱ∗, i.e.

(r, v)(ᾱ, 0) = (r−, v−) , ᾱ ≤ ᾱ∗ , and (r, v)(ᾱ, 0) = (r+, v+) , ᾱ > ᾱ∗.

The macroscopic limit of the harmonic potential for such Riemann problems
is cold and described by (4.13). It is therefore described by the corresponding
p-system, which is a linear 1D wave equation, whose dynamics can be under-
stood directly from the d’Alembert solution form, so there are only contact
discontinuities.

For general nonlinear potentials, there is numerical evidence that disper-
sive shocks appear for initial data leading to Lax-shocks of the p-system, while
rarefaction data leads to cold macroscopic limits described by the p-system.
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Fig. 6.1. Riemann problem with N = 4000 and Φ(r) = (r− 1)2/2− cos(2(r− 1))/4
with one rarefaction wave and one dispersive shock: snapshots of atomic distances
and velocities for t̄ = 0.0, t̄ = 0.15, and t̄ = 0.3.

In Fig. 6.1 we plot a typical situation for illustration, and sketch a dispersive
shock fan in Fig. 6.3. We are particularly interested in the transition of the
Whitham modulation at its front.

Remark 6.1. For convex flux, i.e. Φ′′′ > 0, the p-system can be solved uniquely
in terms of at most two rarefaction or shock waves [Smo94]. For non-convex
flux the situation is more complicated, and the entropy conditions for the p-
system no longer agree, because eigenvalues are no longer genuinely nonlinear
[KS97, LeF02]. A specific choice of a convex-concave potential for (1.1), nu-
merically yields a macroscopically cold, strong shock, connecting states with
equal characteristic velocities, and traveling with a different Rankine-Hugoniot
velocity. In particular, it is not a contact discontinuity or Lax shock, but a
(fast) undercompressive shock. Details on this phenomenon will be published
elsewhere.

The macroscopic dynamics in space-time for Riemann data appear to be
self-similar, hence reducible to a macroscopic velocity variable c = α/t =
ᾱ/t̄. More formally, we assume that the Young measure µ(c) arising in the
macroscopic limit for (initially cold) Riemann problems at each c is either a
point measure or supported on a closed curve, corresponding to a wave train,
so that from the modulation ansatz (4.5) we obtain X̃(c, ϕ) and analogously,
from Sect. 4.3, an expression M ε(c, ϕ) for the vector of modulated distances
and velocities. We use the phase variable ϕ to parametrize the support of µ(c).
In case µ(c) is a point measure, we obtain a strong limit where X̃(c, ϕ) ≡ 0.

A dispersive shock spans a range of speeds from the shock back velocity,
cb, to the shock front velocity, cf . To ease notation, we assume 0 < cb < cf ,
and that the constant states to the left and right of the dispersive shock are
(r−, v−) and (r+, v+) as sketched in Fig. 6.3.

It is instructive to view the modulation of wave trains in a dispersive shock
as the selection of a curve in the set of wave trains X̃(c, ϕ) parametrized by
cb < c < cf in terms of the wave train parameters (r(c), k(c), ω(c)). This curve
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Fig. 6.2. Example for dispersive shocks. Left: snapshots of atomic distances and
their local mean values. Center: superposition of several distribution functions within
the shock; positions of the space-time windows are marked by vertical lines. Right:
snapshots of temperature and entropy.

bridges the energy jump between the constant states (r−, v−) and (r+, v+),
and the wave trains become singular at cb and cf . Based on numerical evi-
dence [HFM81] and results for the Toda chain [VDO91, Kam91], we assume
that M ε(cb) ≡ (r−, v−) has zero amplitude, and the shock front M ε(cf) corre-
sponds to a soliton with background state (r+, v+), where k(cf) = ω(cf) = 0.
Note that this is a singular limit of (3.4) and that Theorem 3.10 implies in-
finite kinetic energy γ(cf). We plot wave trains and fields within a dispersive
shock in Fig. 6.2.

More precisely, the shock front is assumed to be a homoclinic orbit

H(s) := lim
c→cf

M ε(cf)

in the phase scaling ϕ = ωs with asymptotic state lims→±∞H(s) = (r+, v+).
We expect the convergence to the asymptotic state is exponential in s, thus
Lp-norms of [H(s) − (r+, v+)] are finite. In terms of the wave train profile X

and V = ∂ϕX we can write the second component H2 of H as

H(s) := H2(s)− v+ = lim
c→cf

ω(c)V(c, ω(c)s) = lim
c→cf

d
ds

X(c, ω(c)s).

Both the vanishing amplitude at cb and sinusoidal oscillations, and the homo-
clinic orbit at cf are natural codimension-1 singularity along a curve of wave
trains viewed as periodic orbits.

Assuming a soliton at the shock front means in particular that the mod-
ulation system does not have a strong shock, which is challenging to confirm
numerically as discussed below. Instead, we conjecture that at the shock front
the entropy S jumps and (r, v, k, ω) are continuous with unbounded deriva-
tive. Heuristically, the excess energy at the jump in the initial data cannot
be dissipated by the conservative system, but is transported dispersively via
oscillations with two new degrees of freedom, frequency and wave number.
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Properties at and near the soliton

We predict the scaling of temperature and related quantities assuming the
scaling in generic or conservative homoclinic bifurcations of ODEs [VF92],
where the unfolding parameter, here c, is exponentially small in the period,
here 1/ω. We thus expect cf − c ∼ e−κ/ω, for some κ > 0, and so

ω(c) ∼ k(c) ∼ 1/ log(cf − c),

because Theorem 3.9 implies the same scaling in k. Indeed, this scaling could
be confirmed for the case of Toda potential using the explicit solutions in
[DKV95], and also appears in the formal derivations in [El05].

Temperature, entropy, entropy flux. The definition T = ω2
∫ 1

0
V(ϕ)2dϕ of

the temperature of a wave train yields

T (c) =
∫ 1

0

[ω(c)V(c, ϕ)]2 dϕ = ω(c)
∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 ds

and thus (assuming smoothness) the limiting temperature of the soliton

lim
c→cf

T (c) = lim
c→cf

ω(c)
∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 ds =
∫ ∞

0

H(s)2ds lim
c→cf

ω(c) = 0,

because the L2 norm of H is finite. Then the scalings of temperature T , entropy
S and entropy flux g, see (3.16), are given by

T (c) ∼ (log(cf − c))−1 , g(c) ∼ S(c) = T (c)/ω ∼ 1,

where we used cS′ = g′. We thus predict that the temperature is continuous
for all c and decays to zero like 1/ log. Entropy and entropy flux vanish in
cold regions, but continuously approach a finite, non-zero value and jump to
zero beyond the shock front.

Since the temperature also decays towards the shock back, we expect a
unimodal curve T (c) with a unique maximum, as is the case in e.g. a planar
ODE where the interior of a homoclinic orbit is filled with periodic orbits and
an elliptic equilibrium.

However, these scalings and limiting values are difficult to confirm numer-
ically, because the 1/ log decay is hard to resolve, and the shock front could
not be simulated in isolation from the rest of the modulation region due to
boundary effects.

Norm parameter γ. On account of Theorem 3.10, the norm parameter γ
grows at least like 1/k, so that γ(c) ≥ −C log(cf − c), for a constant C > 0.
This agrees with the prediction from the above entropy scaling, because

γ(c) =
S

2ω
=

T

2ω2
∼ 1
ω
∼ log(cf − c).
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Mean distance and velocity. Assuming that c unfolds the homoclinicity as
a generic (or Hamiltonian) ODE, the flow time through a fixed small region
near (r+, v+) grows logarithmically in c and thus for the average values we
obtain the scaling

r(c) = r+ − r1/ log(cf − c) + h.o.t. v(c) = v+ − v1/ log(cf − c) + h.o.t.,

with some constants r1, v2, since the limiting values are those of the corre-
sponding Riemann data.

Note that the first equation in (4.4) implies −cr′ = v′ in the sense of
distributions, where ′ = d/dc. Therefore, −cfr1 = v1, and so

cf = −v1/r1 (6.1)

replaces the Rankine-Hugoniot jump condition.
Propagation speeds. The modulation equations yield five equations for the

propagation speed of the shock front; four in term of leading order expansions
such as −cr′ = v′ → −c = dv/dr above, and one jump condition c|[S]| = |[g]|.
Indeed, in numerical simulations of dispersive shocks all these velocities are
close to that obtained from the slope of the shock front in space-time.

The conservation of wave number implies −ck′ = ω′ and thus throughout
the dispersive shock we have −c = cg := dω/dk, which is the group velocity
and not the phase velocity cph := −ω/k of wave trains. Note that here, −c is
the expected propagation velocity due to the choide of sign for ω in (3.3) and
(4.7).

In particular, the shock front should move with the limiting group velocity,
while the soliton speed naturally is the limiting phase velocity. However, in
the solitary limit, phase and group velocity typically coincide, because for
L = 1/k we have the identity

cg = cph − Ldcph
dL ,

where dcph
dL is exponentially small for generic and conservative homoclinic bi-

furcations in ODE [VF92]; the identity follows from dcph
dk = cg−cph

k .
Recall that the phase velocities of wave trains were estimated in (3.14) and

rigorously imply that the soliton velocity is bounded (essentially) by p-system
characteristics velocities c−, c− of the left and right states r−, r+. However,
in numerical simulations, the shock front velocity cf never exhausted these
bounds, but was strictly between c− and c+.

On the other hand, the shock velocity of the p-system is given by the
Rankine-Hugoniot condition crh =

√
(Φ′(r−)− Φ′(r+))/(r− − r+), and in all

cases (for Φ′ monotone) we numerically found the velocity ordering sketched
in Fig. 6.3, that is,

cb < c+ < crh < cf < c−,

where crh − cf ∼ 5%. Characteristics point into the dispersive shock fan, and
indeed, we seem to find dispersive shocks only if c− < crh < c+, see also
Remark 6.1.
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Fig. 6.3. Left: Sketch of a dispersive shock for the macroscopic limit of a shock
problem in (1.1). Dashed line is the p-system Lax shock with speed crh, dotted the
p-system characteristic velocities c± of left and right states (r±, v±). Right: sketch
of the r-modulation at some time t̄∗ > 0 with 1/ log scaling at cf .

Finally, we mention that the velocity cb of the shock back, where wave
trains have small amplitude, numerically agrees with the prediction from har-
monic modulation equations, i.e. cb =

√
Φ′′(r−) sin(πk(cb))/πkb.

Remarks and open problems

The occurrence of dispersive shocks has only been proven rigorously for some
completely integrable cases, in particular the Toda chain [VDO91, Kam91].
Unfortunately, the literature on this issue is not easily accessible to non-
specialists, and we found it inconclusive concerning the rigorous justification
of a hyperbolic system of Whitham modulation equations. In fact, neither the
observation that the shock front is a soliton, nor the scaling at the shock front,
nor the velocity of the shock back seem to be worked out.

Similarly, to our knowledge, the selection mechanism for the soliton has not
been formulated in terms of initial values for the Riemann problem (though
the shock front velocity for the Toda shock problem can be computed ex-
plicitly [VDO91]). An observation towards a selection principle could be that
in numerical experiments for vanishing initial velocities, the dispersive shock
exhausts precisely the range between the initial jump in the r-component.
We also observe that the dispersive shock in (c, r, v)-space is a graph over the
plane (0, r, v). In other words, the modulation parameter curve (r, v, k, ω)(c)
appears to be selected in such a way that wave train orbits Q are (nested)
level sets of an unknown function.

We hope that a study of the explicit solutions for the case of Toda poten-
tial, and results for zero dispersion limits mentioned in Sect. 1, provide more
insight into the general situation, in particular the prediction of dispersive
shocks and the shock front velocity.
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ETH Zürich. Birkhäser, Basel, 2002.
[LL83] P. Lax and C. Levermore. The small dispersion limit of the Korteweg-de

Vries equation, I, II, III. Comm. Pure Appl. Math., 36, no.3, 253–290; no.5,
571–593; no.6, 809–830, 1983.

[LL96] C. Levermore and J. Liu. Large oscillations arising in a dispersive numerical
scheme. Physica D, 99, 191–216, 1996.

[LLV93] P. D. Lax, C. D. Levermore, and S. Venakides. The generation and propa-
gation of oscillations in dispersive initial value problems and their limiting
behavior. In A. Fokas and V. Zakharov, editors, Important developments in
soliton theory, pages 205–241. Springer, Berlin, 1993.

[LP05] P. Lorenzoni and S. Paleari. Metastability and dispersive shock waves in
fermi-pasta-ulam system. oai:arXiv.org:nlin/0511026, 2005.
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1 Introduction

A phenomenon of fundamental importance in materials science is the late
stage coarsening in a phase transformation in two-phase mixtures. Phase sepa-
ration occurs for example during heat treatment, where the mixture is brought
into a thermodynamically unstable state, in which two different phases are
energetically favored. If the volume fraction of one phase is small, phase sep-
aration, triggered by thermal fluctuations, results in a polydisperse mixture
of spherical particles of the minority phase, immersed in a background phase,
the “matrix”. Due to the large surface energy of the fine mixture the system
is still far from equilibrium. In the last stage of the phase transformation the
particles compete to reduce the total surface area by transferring mass from
smaller to larger particles. As a consequence, large particles grow at the ex-
pense of the smaller ones which eventually disappear. This particular form of
coarsening is also known as Ostwald ripening.

The process is well-described by a class of free boundary problems (cf.
Sect. 2.1), which are however too complex to allow for predictions on the
dynamics of large particle ensembles. A major advance was made in the late
50’s by Lifshitz and Slyozov [LS61] and independently by Wagner [Wag61],
in their nowadays classical LSW-theory for Ostwald ripening. They derived a
mean-field model in the regime of vanishing volume fraction of particle phase.
Within this mean-field theory they predicted universal self-similar large time
asymptotics, which enabled them to make quantitative predictions on the
coarsening statistics. In particular, this analysis implies universal growth rates
for the mean particle size, which serves as a measure for the coarsening rate,
and a universal particle size distribution.

More than 25 years after the theory was developed, a lively discus-
sion started in the physics and metallurgical community [Bro89, Bro90a,
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Bro90b, HHR92, HH*89, Hoy90] whether universal large-time behavior within
the LSW model is indeed strictly valid or whether the asymptotics de-
pend on the initial data. This issue has by now been resolved by care-
ful numerical simulations and also by a rigorous mathematical analysis
[GMS98, Mee99, NP99, NP01]. In fact, it turns out that the LSW model
alone does not display universal self-similar large-time behavior if no addi-
tional effects are taken into account.

While the latter disadvantage of the LSW theory was not generally ac-
cepted, the limited regime of validity of the LSW model due to the mean-field
assumption, which neglects local interactions between particles, was recog-
nized early as a significant shortcoming. Several approaches were taken to de-
velop theories which take into account finite volume fraction of the new phase
(see e.g. [AV94, BW79, HV88, KET86, Mar87, MR84, TE93, TK84, TKE87,
VG84, YE*93]). A key question in this topic is whether and how correlations
between particles develop during the evolution and how they influence the
coarsening rate.

In this article we review recent progress in the mathematical analysis of
fundamental issues in models of Ostwald ripening. We will describe the regime
of validity of zero-order mean-field models and their failure in predictive power
due to weak selection of self-similar asymptotic states. To overcome these
drawbacks we consider extensions of the mean-field model in the sense of a
perturbative theory which accounts for finite volume fraction of particles. A
main part of this article will be devoted to a review of recent results deter-
mining the scaling and precise form of the corrective terms.

First we will clarify why the first order corrections have different relative
size in finite and infinite systems respectively. Second, as a main part of this
review, we describe the main ideas and results of a perturbative theory which
takes correlations between particles into account. Under the assumption that
particles are weakly correlated we derive a closed system of equations for
the one- and two-particle distribution function. By our method we recover
a theory proposed by Marder [Mar87] in the applied literature, but under a
more natural closure hypothesis. However, it appears, that the assumption
of small correlations is destroyed for the largest particles by the evolution.
Here fluctuations are relevant and we present the results of a corresponding
recent theory [NV06a] which takes this effect into account. We also briefly
discuss the possible role of collisions between particles. This effect seems on
first glance negligible, but on closer inspection it turns out, that it might have
an important effect on the long-time behavior.

The problem of Ostwald ripening is not only a basic phenomenon in the
aging of materials. The structure of the model also poses interesting and chal-
lenging mathematical problems and can be viewed as a paradigm of a many-
particle system with long range interactions through a slowly decaying field.
Similar problems and questions arise for example in sedimentation problems.

We limit our discussion to the issues related to the mathematical analysis
of basic models for Ostwald ripening. Further aspects, which are relevant for
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applications, such as the role of mechanical stresses, but seem presently much
less accessible by a mathematical analysis, are discussed for example in the
review papers [FPL99, Voo85, Voo92] and the references therein.

2 Models

2.1 The Mullins-Sekerka evolution

The Cahn-Hilliard model [Peg89] describes nucleation, growth and the early
stages of coarsening. We are interested in the case where an initially uniform
mixture is unstable which means that the free energy E favors two phases.
Each phase is characterized by a specific value of the concentration and they
are separated by an interfacial layer of characteristic width and of minimal
area. The dynamics, driven by the negative gradient −∇u of the chemical
potential u and limited by the diffusion of each component, reduces the free
energy while the spatial average of the relative concentration is preserved.

Coarsening in the Cahn-Hilliard model is well-described by the Mullins-
Sekerka sharp-interface model [ABC94, Peg89]. It describes the position of the
interfacial layer by the boundary ∂D of a region D ⊂ Ω ⊂ R3. It is based on
the assumption that diffusion in the bulk takes place on a much faster time
scale than evolution of the interface. Thus, the potential relaxes at each time
instantaneously to equilibrium. The model is given in dimensionless variables
by

∆u = 0 in the bulk Ω\∂D, (2.1)
u = κ at the interface ∂D , (2.2)
V = [∇u · n] at the interface ∂D. (2.3)

Here κ denotes the mean curvature of the interface, n its normal,
[
∇u · n

]
the jump of the normal component of the gradient ∇u ·n across the interface
and V its normal velocity. Equation (2.2) is the well known Gibbs-Thomson
law, which accounts for surface tension and (2.3) is the Stefan condition, which
reflects local conservation of energy. The main global features of this interfacial
motion are that it reduces the area of ∂D while it preserves the volume of D, if
(2.1), (2.2) are supplemented with periodic or Neumann boundary conditions
on ∂Ω.

Some of the upcoming analysis is motivated by the fact that the Mullins-
Sekerka evolution has an interpretation as a gradient flow. It is the gradient
flow of the surface energy on the manifold of phase distributions with constant
volume where the metric tensor is given by the H−1 norm in the bulk.

2.2 Small volume fraction

In the following we consider the regime where the volume fraction covered
by D is very small. Once the interfacial regime emerges, D consists of many
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disconnected “particles”, which quickly become approximately radially sym-
metric, and whose centers essentially do not move. Then it is legitimate to
replace (2.3) by taking the average over each particle. The particles are then
characterized by their immovable center Xi and their radii Ri(t) and (2.3)
reduces to

Ṙi =
1

4πR2
i

∫
∂Pi

[
∇u · n

]
dS, (2.4)

where Pi := B(Xi, Ri(t)), and (2.2) gives

u =
1
Ri

on ∂Pi. (2.5)

It has been established by a rigorous analysis in [AF99, AF03] that the
Mullins-Sekerka problem is in the regime of small volume fraction well ap-
proximated by (2.1), (2.5) and (2.4).

It is not difficult to establish that the system (2.1), (2.4) and (2.5) is locally
well-posed if initially particles do not overlap. Such a local in time solution can
be extended up to a time when a particle vanishes or when two particles touch.
The first event is not critical; we just extend the evolution up to the time when
a particle disappears, remove the particle and continue with the remaining
ones. In this way we obtain a continuous in time, piecewise smooth solution.
The second phenomenon, that particles touch, is problematic. In particular
so, as the simplification to spherical shape is not a good approximation if
particles are close. In principle one has to go back to the full Mullins-Sekerka
evolution (2.1)-(2.3), or one constructs an ad-hoc regularization by merging
the two particles into one with the same volume. Since we are interested in
the dynamics of a large set of particles with small volume fraction, we expect
that such an event is rare if it occurs at all and does not have an influence
on the global behavior of the system. The latter is certainly true to leading
order, but we will in particular also be interested in higher order terms, where
the effect of collisions might have to be taken into account. We will address
this issue in the end of this article.

During the subsequent evolution, the large particles grow at the expense
of small particles, which eventually vanish. The state of the system is now
completely described by the radii {Ri}i of the particles and it is tempting to
try to identify the evolution law for {Ri}i. Lifshitz, Slyozov and Wagner [LS61,
Wag61] have done this by formal arguments and found that this evolution
reduces to leading order solely to an evolution of the distribution of the
{Ri}i. We now investigate in more detail the formal argument of LSW and
discuss its crucial assumptions.

2.3 Leading order approximation

In the following we denote by
• φ the volume fraction of the particles,
• ρ the density of particles.
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The typical distance 〈d〉 between neighboring particles is given by ρ−1/3,
whereas the typical particle radius 〈R〉 is given by

4π
3
〈R〉3 = ρ φ.

We are always interested in the regime of small volume fraction, i.e.

φ� 1 (2.6)

which in particular implies that

〈R〉 � 〈d〉. (2.7)

According to (2.1), the chemical potential u is a harmonic function outside
the particles. Thanks to the separation of particles expressed in (2.7) there
exists a function ū such that

• ū is “slowly varying” in the sense that the length scale of variations of ū
is much larger than 〈d〉,

• ū ≈ u at distances from the particles which are much larger than 〈R〉.
This function ū is called the mean field.

Now recall that u is harmonic outside the particles and satisfies the Gibbs-
Thomson law (2.5) on the boundary of the particles. Since u ≈ ū away from
the particles and since ū is approximately constant for |x−Xi| � 〈d〉, we find
that

u

{
= 1

Ri
for Ri ≥ |x−Xi|

≈ (1 −Ri ū) 1
|x−Xi| + ū for Ri ≤ |x−Xi| � 〈d〉

and thus according to (2.4)

Ṙi = [∇u · n] ≈ 1
R2
i

(Ri ū− 1). (2.8)

The mean-field ū has still to be determined. It turns out that the length scale
over which ū is varying is intrinsically determined by the screening effect
between particles. This effect is crucial in the theory of Ostwald ripening and
we will address is separately in the next section.

2.4 The screening length

The screening length ξ describes the effective range of particle interactions.
It is analogous to the classical Debye-Hückel screening length in electrostatics
and can heuristically be derived as follows.

Consider a point charge at X0 ∈ R3 surrounded by conducting balls
B(Ri, Xi) which are uniformly distributed according to a number density
ρ and have volume fraction φ� 1. The point charge at X0 creates an electric
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field and a corresponding potential G and thus induces a negative charge on
∂B(Ri, Xi). This induced charge roughly equals −4πRiG(Xi), where 4πRi is
the capacity of a single ball in R3. In a dilute system capacity is approximately
additive which implies that the total negative charge is approximately given
by −4π〈R〉ρG. Hence the effective electric potential satisfies

−∆G = δX0 − 4π〈R〉ρG in R3,

and thus
G(x) =

1
4π|x−X0|

e−
|x−X0|

ξ , (2.9)

where
ξ =

1√
4π〈R〉ρ

(2.10)

is the screening length.
Formula (2.9) shows that the presence of the balls has the effect that the

effective range of the electric potential is limited to ξ, whereas the electric
potential in a system without balls is just 1

4π|x−X0| and decays only slowly.

2.5 The classical LSW model

The classical theory by Lifshitz, Slyozov and Wagner (LSW) [LS61, Wag61] is
based on (2.8) and the assumption that the interaction range between particles
is infinite. Hence, the mean-field ū is constant in space and for each time
determined by the constraint that the volume fraction of particles is conserved.
This leads to the set of equations

Ṙi =
1
R2
i

(
Riū− 1),

ū(t) =
∑

i 1∑
iRi(t)

,

(2.11)

where the sum extends over the particles with positive volume. Notice that
the critical radius is given by 1/ū, in other words, the critical radius is just
the mean radius in the systems. Particles larger than the critical radius grow,
smaller ones shrink. However, the critical radius typically increases over time,
so that more and more particles start to shrink and finally disappear.

The system (2.11) now translates without further approximation into the
following evolution law for the one-particle number density f1 = f1(R, t):

∂tf1 + ∂R

( 1
R2

(Rū(t)− 1) f1
)

= 0 (2.12)

with

ū(t) =
∫
f1(R, t) dR∫
Rf1(R, t) dR

. (2.13)
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It is interesting to note that the LSW-model has an interpretation as a gradi-
ent flow, a structure which is inherited from the Mullins-Sekerka model (see
also [FSF03] for a direct derivation from thermodynamic extremal princi-
ples). This structure is most easily described for a finite collection of particles
R := {Ri}i, which corresponds to a discrete size distribution. The correspond-
ing manifold of a set of particles with fixed volume is characterized by

M :=
{
R = {Ri}i |

∑
i

R3
i = const.

}
(2.14)

and the tangent space by

TRM :=
{
V = {Vi}i |

∑
i

R2
i Vi = 0

}
.

The energy is given by the surface energy

E(R) = 1
2

∑
i

R2
i . (2.15)

On M we introduce a Riemannian metric via the metric tensor g given by

gR(V,W) =
∑
i

R3
i ViWi for all V,W ∈ TRM. (2.16)

For a system to be a gradient flow, it means that the direction of the evolution
at each time, here represented by Ṙ = {Ṙi}, is in the direction of steepest
descent on the energy landscape. This implies that for every time the equation

gR(Ṙ,V) = −dE(R)V for all V ∈ TRM

must be satisfied. In view of (2.15) and (2.16) this is equivalent to

Ṙi = − 1
R2
i

+
λ

Ri

for a Lagrange-multiplier λ, which is defined by volume conservation. One
easily finds that λ =

∑
i 1/

∑
iRi, i.e. λ = ū as defined in (2.11).

A recent proof of well-posedness of the LSW model and variants of it
[NP05] makes significant use of the corresponding dissipation identity (see
also [CG00, Lau01, Lau02, NP00] for further results on well-posedness).

Of main interest is whether the LSW model exhibits universal dynamic
scaling. In fact, the model has the scale invarianceR ∼ t1/3. Therefore, it is not
surprising that it has one smooth self-similar solution. Folklore suggests that
this self-similar solution characterizes the long-time behavior of all solutions,
thereby capturing the statistical self-similarity of Ostwald ripening. Based on
this, LSW have predicted the following growth law for the expected particle
radius 〈R〉:
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〈R〉 ≈
(4

9
t
)1/3

(2.17)

and a specific unique shape for the rescaled size distribution. Unfortunately,
the classical LSW-theory has two serious shortcomings which will be discussed
in the next section.

3 Validity and failure of classical mean-field models

3.1 Long-time dynamics and weak selection

In fact, (2.12) has not only one but a one-parameter family of self-similar
solutions. All members of this family have compact support and can be char-
acterized by their behavior at the end of the support, that is their behav-
ior for large particles. More precisely, for any α ∈ (−1,∞] there exists a
self-similar solution behaving like a polynomial with power α (resp. like an
exponential for α = ∞) at the end of its support. While Wagner [Wag61]
seems not to recognize the existence of self-similar solutions for α < ∞, Lif-
shitz and Slyozov [LS61] find all self-similar solutions, but argue that only
the one with α = ∞ is stable. Their stability argument takes so called ”en-
counters” between particles into account, which are not represented in the
LSW model (2.12). However, it seems that the latter argument has not been
taken into account in the controversial discussion in the applied literature
[Bro89, Bro90a, Bro90b, HHR92, HH*89, Hoy90] and the question remained,
whether or not, universal self-similar behavior in the LSW model (2.12). Only
several years later it has been recognized in [GMS98, MS96] and shown by a
rigorous analysis in [NP99, NP01] that the long-time behavior of the LSW-
equation is not at all universal but depends very sensitively on the data.

Let us describe the main features of the long-time behavior in more de-
tail: the first mathematically rigorous results were obtained in [NP99] (and
in [NP01] for a related problem; see also [CG04] for simulations) for data
with compact support. The main result gives a necessary condition for con-
vergence towards any self-similar solution with α ∈ (−1,∞). It turns out that
the data have to be regularly varying at the end of their support with the
same power α. This result in particular also implies that for a large class
of data - the ones which are not regularly varying - no self-similar behavior
occurs. The results of [NP99] were improved in [NV06b], where it is shown
that the condition of regular variation is also sufficient for convergence for
data which are small perturbations of the self-similar solution. Convergence
for general regularly varying data has been established for the case that α
is not too large. Furthermore, a kind of stability result is provided, which is
perhaps the most interesting from the point of view of applications. It states
– roughly speaking – that for data which are not regularly varying, but whose
variation is bounded, the system still coarsens with the expected rates. In
contrast to [KO02], where weak upper bounds for coarsening rates within the
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Cahn-Hilliard model are established (see also [CNO06] for the dependence of
coarsening rates on volume fraction), the analysis in [NV06b] concerns the
simpler mean-field model but provides much stronger results, namely point-
wise upper and lower bounds.

All the results [NP99, NP01, NV06b] are for self-similar solutions with
finite α. In [NV06c] the case α = ∞, that is the case of the LSW solution, is
considered. A necessary and locally sufficient criterion on the data for conver-
gence to this self-similar solution is established. In a certain sense the domain
of attraction is much larger, since the corresponding condition is much less
stringent than regular variation. We also refer to [Car06, CP98], where anal-
ogous results for a simplified LSW model have been obtained.

While the case α = ∞ is already more involved than for finite α, the
analysis of the long-time behavior of the LSW-model for data with noncom-
pact support is again much harder. Partial results have been obtained in
[Vel06a, Vel06b], which show that also in this case the long-time behavior is
extremely sensitive to the initial data.

Let us also mention here an ad-hoc approach to overcome the unphysical
“weak selection problem” in the LSW model. was added in (2.12) In [Mee99]
and [Vel98] a second-order term was added to (2.12) accounting for fluctua-
tions from the nucleation regime. The main role of this term is to create an
infinite tail for the radius distribution and it is argued that then the only pos-
sible limit is the LSW-solution. However, this regularization is derived on an
ad-hoc basis and the physical relevance seems not clear at this stage. In Sect. 5
below, we will present results from a recent analysis [NV06a], where a second
order term is derived from the Mullins-Sekerka evolution, which accounts for
pair-interaction between particles.

3.2 Narrow range of validity of the classical LSW-theory

The second problem within the classical LSW-theory is that all self-similar
profiles and the corresponding coarsening rates do not agree with experiments.
It is common belief that this discrepancy is due to the finiteness of the volume
fraction of particles. As mentioned previously, one can find a large variety of
approaches in the physics literature to predict the first-order correction to the
zero order theory (e.g. [AV94, BW79, HV88, KET86, Mar87, MR84, TE93,
TK84, TKE87, VG84, YE*93]). One main goal of this paper is to summarize
how to access the first-order correction analytically.

Before we start let us briefly summarize the by now fairly complete results
on the rigorous derivation of zero-order models. The first rigorous derivation of
the classical LSW-model in the case that the total system size is much smaller
than the screening length was obtained in [Nie99, Nie00]. In this regime it has
been shown in [Vel00] that stochastic effects through noise in the data cannot
regularize the weak selection problem in the LSW theory over the relevant
time scales (times over which still a sufficiently large number of particles is
present). In the case that the system is of the order of the screening length or
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larger one obtains in fact an inhomogeneous extension of the LSW model. In
this regime the evolution for {Ri}i reduces only to an evolution of the joint
distribution of particle radii and particle centers f1(R,X, t). We have again
(2.8), but (2.13) generalizes to

−∆X ū + 4π
(
ū

∫
Rf1 dR −

∫
f1 dR

)
= 0. (3.1)

The kinetic equation (2.12) now has X as a parameter. Again, this equa-
tion clearly demonstrates effective screening in an arrangement of charged
particles, since the Green’s function of the operator −∆u + µu = 0, where
µ = 4π

∫
Rf dR, decays exponentially fast over length scales of the order of

ξ. Since in view of (2.10) we have ξ ∼
(

〈d〉3
〈R〉

)1/2

∼ 〈d〉φ−1/6 we have in the
regime of small volume fraction that ξ - 〈d〉 and consequently the interaction
range of one particle still contains a large number of particles.

In the case that the system is of the order of the screening length equa-
tion (3.1) coupled with (2.12) has been rigorously derived in [NO01b] (see
also [NO01a] for the more difficult two-dimensional case), a construction of
correctors and deterministic error estimates is provided in [GN02].

The work [NV04a, NV04b] handles the most relevant situation where the
system size is much larger than the screening length. This implies that when
rescaling the system with respect to the natural length scale, the screening
length, one obtains a homogenization problem in an unbounded domain. One
important step in the analysis is well-posedness for the limit problem in un-
bounded domains [NV04c] and the result [NV06d] which establishes that the
fundamental solution of the microscopic problem decays exponentially w.r.t.
the screening length. This allows to ”localize” the homogenization procedure
in [NV04a, NV04b]. Special care is taken to have sufficiently weak assumptions
on the particle distribution which include an initially random distribution of
particles. First, it is shown that the evolution preserves such a statistically uni-
form distribution over time, which allows a proper definition of “the” screening
length. Second, it is established that only a very small fraction of particles
can overlap and that this does not affect the macroscopic evolution law for
the remaining particles. Thus, this result also rules out corrections on the zero
order level due to a stochastic nature of the data.

4 First-order corrections

We have seen that the LSW mean-field model is in a certain sense degenerate
since it allows for a family of self-similar solutions, where none of them is in
any sense distinguished.

Experiments on Ostwald ripening on the other hand only partly confirm
the predictions of the LSW-theory: The growth exponent in (2.17) is confirmed
but the rate is considerably larger, see [AS*99] for a recent experiment. The
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general belief is that the deviation is due to the finiteness of φ. The zero
order theory treats the spatial arrangement as if the particles were infinitely
far away. Hence it tends to overestimate the distance over which particles
have to diffuse and thus the constant in (2.17) underestimates the rate of
coarsening. The magnitude of the expected correction will depend on the
spatial correlation between growing and shrinking particles (sinks and sources
for the diffusion field u).

4.1 Finite systems

If one tries to analytically access the scaling of the lowest order correction
to LSW, one finds that the analysis for large but finite clusters is quite dif-
ferent from that for infinite clusters and yields a different prediction of the
scaling. This has lead to a controversy about the relevance of either analysis.
More precisely, there seems to be a contradiction between the analysis for in-
finite systems, which predicts the scaling φ1/2 of the correction term and the
analysis for finite systems, which predicts the scaling φ1/3. Based on “snap-
shot” numerical simulations, Fradkov, Glicksman & Marsh [FGM96], see also
[MG*98], predict a cross-over from φ1/3 to φ1/2 with increasing system size.
We will now explain the results as well as the snapshot perspective in more
detail.

4.1.1 Heuristic arguments

We will give a heuristic argument for a cross-over of the order of the correction
to the LSW theory in finite systems. This is most easily explained by the
monopole approximation of (2.1)-(2.2), which seems to go back to Weins and
Cahn [WC73]: In this approximation, the growth rates {Bi}i of the particle
volumes, that is −Bi := d

dt [
4π
3 R3

i ] = 4 π R2
i
dRi

dt , are obtained by solving the
linear system of equations

1
Ri

= ū+
Bi

Ri
+

∑
j �=i

Bj

dij
(4.1)

and ∑
i

Bi = 0, (4.2)

where dij := |Xi−Xj| is the distance between particle centers. Observe that
ū can be interpreted as a Lagrange multiplier for (4.2). It has been argued
that the error coming from the monopole approximation is of higher order in
φ than the first-order correction to the LSW theory. Indeed, the error is of
order φ2/3 as can be deduced e.g. from equation (2.42) of [AV94].

We consider a periodic setting with n particles in the box
Ωn := (− 1

2 (nρ )1/3, 1
2 (nρ )1/3)3. Then, solving the monopole approximation (4.1)
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means to invert the matrix Id − g, where g = gij = − Ri

dij
. This is possible if

g is small enough in an appropriate sense. If we take for instance the matrix
norm corresponding to maxi |Bi| we find

‖g‖ = sup
i

∑
j

|gij | ∼ 〈R〉ρ
(n
ρ

)2/3

.

In view of (2.10) this gives ‖g‖ ∼
( system size

screening length

)2

. Thus, g is invertible
if the system size is much smaller than the screening length. In this case, the
system (4.1) can be solved by an asymptotic expansion using the Neumann
series, which leads to

Bi = (1−Riū) +
∑
j

gij(1−Rj ū) +
∑
j

∑
k

gijgjk(1−Rkū) + . . .

and ū has to be determined such that
∑

iBi = 0 holds to the desired order.
Since the entries of the matrix scale as φ1/3, the ratio between 〈R〉 and 〈d〉,
this yields an expansion for Bi in the parameter φ1/3.

4.1.2 Numerical simulations

The starting point in the numerical simulations of Fradkov, Glicksman and
Marsh [FGM96, MG*98] is a fixed joint distribution of particle centers {Xi}i
in the sphere of volume n

ρ and particle radii {Ri}i with the following properties

• {Xi}i has number density ρ in the sphere of volume n
ρ .

• Ri is distributed according to the self-similar LSW distribution with mean
volume φ.

• Ri and Rj are independent for i �= j.
• {Xi}i and {Ri}i are independent.

The parameters to be varied are the average number n - 1 and the volume
fraction φ� 1 of particles within Ωn.

“Snapshot” analysis means the study of the joint distribution of
{Xi, Ri, Bi}i, where the {Bi}i are determined according to (4.1). In partic-
ular, one is interested in the deviation of {Bi}i from the LSW growth rates
{BLSW

i }i, implicitly given by the obvious truncation of (4.1)

1
Ri

= ūLSW +
BLSW
i

Ri
and

∑
i

BLSW
i = 0. (4.3)

In [FGM96, MG*98], the deviation is measured by considering the rate of
change of particle radius dRi

dt = − 1
4πR2

i
Bi. It is found by numerical simula-

tions for n ∈ [100, 3162] [FGM96, MG*98] that the quantity
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〈 1
4πR2

i
(Bi −BLSW

i )〉
〈 1
4 πR2

i
BLSW
i 〉

shows a cross-over between φ1/3 and φ1/2 when the sphere becomes larger
than the screening length. In view of (2.10) this means when

n ∼ φ−1/2. (4.4)

4.1.3 Rigorous results

To our knowledge, the numerically observed cross-over has first been unam-
biguously reproduced by analytical tools in [HNO05b]. This is done under
assumptions used in the numerical simulation [FGM96], that is, the monopole
approximation and the snapshot perspective.

We have argued that the cross-over in the correction term occurs when the
system size becomes of the order of the screening length, in other words, when
(4.4) holds. We call in the following particle systems “subcritical systems” or
“supercritical systems” if they are smaller or larger than the screening length,
respectively.

Heuristic arguments and the numerical simulations in [FGM96, MG*98]
suggest that the correction in a supercritical system should scale as:

〈 1
4πR2

i
(Bi −BLSW

i )〉
〈 1
4 πR2

i
BLSW
i 〉

∼ φ1/2 for n - φ−1/2. (4.5)

In view of (2.10), the quantity φ1/2 is just the ratio between the relevant
length scales 〈R〉 and ξ. Furthermore, we gave some heuristic arguments that
the correction term for subcritical systems should scale as φ1/3. Therefore,
both scalings coincide at the cross-over n ∼ φ−1/2 when the correction term
in a subcritical system scales as

〈 1
n

∑
i

1
R2

i
(Bi −BLSW

i )〉
〈 1
n

∑
i

1
R2

i
BLSW
i 〉

∼ n−1/3 φ1/3 for n � φ−1/2. (4.6)

Instead of considering the expected relative deviation in the rate of change
of the mean radius we will investigate the relative deviation in the rate of
change of energy. This idea is motivated by the gradient flow structure of the
Mullins-Sekerka evolution. More precisely we consider

ĖLSW − Ė
|〈ĖLSW 〉|

, (4.7)

where E is the interfacial energy of the particles, i.e.

E =
1
2n

∑
i

R2
i ,
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and its rate of change is

Ė = − 1
n

∑
i

Bi

Ri
,

while

ĖLSW = − 1
n

∑
i

BLSW
i

Ri
,

with

BLSW
i = 1−Riū

LSW , ūLSW =
∑

i 1∑
iRi

.

Since the energy is decreasing, Ė is always negative. Likewise ĖLSW is always
negative, but we expect the difference in (4.7) to be positive for most realiza-
tions, since the LSW theory should underestimate the coarsening rate. The
reason for measuring the correction in terms of (4.7) is that because of the
gradient flow structure of the evolution, the quantity (4.7) can be expressed
variationally (see (4.9)).

The main result in [HNO05b] is that with high probability

ĖLSW − Ė
|〈ĖLSW 〉|

∼
{
n−1/3 φ1/3 for n� φ−1/2

φ1/2 for n- φ−1/2

}
. (4.8)

Observe that this result is somewhat stronger than (4.5) and (4.6) in the sense
that we make a qualitative statement about the entire distribution, not just
its expected value.

The result is derived under some regularity assumptions on the distribution
of the particle centers, which are satisfied with high probability for indepen-
dently distributed centers (see Sect. 2.4 of [HNO05b] for details). Furthermore
it is assumed that the radii are independently and identically distributed with
respect to a probability density with compact support. In the following 〈·〉 de-
notes the expected value with respect to the joint probability measure P of
the variables {Ri}i.

Henceforth we say that a stochastic variable F satisfies F ≤ C with high
probability if for any ε > 0 there exists C(ε) such that P

(
{F ≤ C}c

)
≤ ε.

Theorem 4.1. ([HNO05b], Thm. 2.1) (The sub-critical regime)
If n� φ−1/2 we have with high probability that

Ė − ĖLSW

|〈ĖLSW 〉|
≥ −C n−1/3 φ1/3.

Furthermore
〈Ė − ĖLSW 〉
|〈ĖLSW 〉|

≤ − 1
C
n−1/3φ1/2.
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Theorem 4.2. ([HNO05b], Thm. 2.2) (The super-critical regime)
If n� φ−1/2 and φ ≤ φ0 we have with high probability that

−C φ1/2 ≤ Ė − ĖLSW

|〈ĖLSW 〉|
≤ − 1

C
φ1/2.

The proof of these estimates relies on the fact that the underlying evo-
lution has the structure of a gradient flow and thus (4.7) has a variational
formulation. To see this, note that a solution of (4.1) can be characterized as
a solution of

min
{B̃i}i;

P
i B̃i=0

⎧⎨⎩ 1
n

∑
i

1
2Ri

B̃2
i +

1
n

∑
i

∑
j �=i

B̃iB̃j

2dij
− 1
n

∑
i

B̃i

Ri

⎫⎬⎭ .

For the solution Bi we have

1
n

∑
i

1
2Ri

B2
i +

1
n

∑
i

∑
j �=i

BiBj

2dij
− 1
n

∑
i

Bi

Ri
= − 1

n

∑
i

Bi

2Ri
=

1
2
Ė.

Therefore we can write the deviation in the rate of change of energy from the
LSW result in the form:

Ė − ĖLSW = min
{B̃i}i,

P
i B̃i=0

{
1
n

∑
i

1
Ri
B̃2
i

+
1
n

∑
i

∑
j �=i

B̃iB̃j

dij
− 1
n

∑
i

2B̃i

Ri
+

1
n

∑ BLSW
i

Ri

}
.

We recall that BLSW
i = 1 − Ri

R
, where R = 1

n

∑
iRi, and use

∑
i B̃i = 0 to

find∑
i

1
Ri

(
B̃i −

(
1− Ri

R

))2

=
∑
i

1
Ri
B̃2
i −

∑
i

2
Ri
B̃i

(
1− Ri

R

)

+
∑
i

1
Ri

(
1− Ri

R

)2

=
∑
i

1
Ri
B̃2
i −

∑
i

2B̃2
i

Ri
+

∑
i

(
1
Ri

− 1
R

)
.

Thus we can express the deviation of the rate of change of energy in the
compact form:

Ė − ĖLSW = min
{B̃i}i;

P
i B̃i

⎧⎨⎩ 1
n

∑
i

1
Ri

(
B̃i −BLSW

i

)2

+
1
n

∑
i

∑
j �=i

B̃iB̃j

dij

⎫⎬⎭ .

(4.9)
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The variational formulation has the advantage that one can obtain a useful
upper bound by finding a suitable trial field B̃i. The construction of a proper
trial field in the super-critical case is guided by the intuition that due to the
screening effect the system separates into independent subsystems of the size
of the screening length. Indeed, the LSW construction in subsystems of the
size of order of the screening length provides a suitable upper bound. The
mathematically most interesting part is the lower bound, which is established
in Prop. 3.3 of [HNO05b] by the use of Fourier analysis and a suitable splitting
of the interaction field in near- and far-field respectively.

Remark: Notice that in the sub-critical regimes we only succeed to derive a
lower bound, whereas we obtain an upper bound only for the expected value.
It is not surprising, that subcritical systems have less good self-averaging
properties than supercritical systems and, in fact, a recent rigorous result
[CH*06] shows, that for any M > 0 there is a finite probability ρM > 0 such
that (Ė − ĖLSW )/|〈ĖLSW 〉| > M .

4.2 Infinite systems

We are now interested in the precise form of the expected growth rate of
a particle up to order φ1/2 in large (or infinite) systems and under natural
assumptions on the statistics of the particles.

We start by reviewing some results from the physics literature. Marqusee
and Ross [MR84] derive the evolution of the one-point statistics under the as-
sumption of independently and identically distributed particles. They do this
by manipulating the non-convergent series in the monopole approximation,
which they interpret as a multiple scattering series.

However, it is obvious that the assumption that {(Ri, Xi)}i are statistically
independent is not preserved by the evolution: A medium sized particle in the
neighborhood of a large particle will shrink faster than in an average environ-
ment. Hence a large particle eventually influences the statistics of {(Ri, Xi)}i
within the screening length. This in turn will influence the evolution of that
large particle.

Marder [Mar87] takes this effect into account and derives the evolution of
the two-point statistics up to an error o(φ1/2). Starting from the monopole
approximation he generates a hierarchy of equations for the expectation value
of B1 conditioned on the position and radius (R1, X1), · · · , (Rk, Xk) of a finite
number of particles. He truncates the hierarchy on the level of two-particle
statistics by a closure hypothesis.

In the second part of the paper, Marder performs an analysis of the evolu-
tion for the two-point statistics. He assumes that particles are initially inde-
pendently distributed and then linearizes around the Marqusee-Ross theory.
The resulting equations are solved numerically. As an effect of correlations,
Marder’s theory predicts a significantly stronger broadening of the self-similar
particle size distribution than the Marqusee-Ross theory.
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Yet a different calculus has been developed in Tokuhama, Enomoto and
Kawasaki [KET86, TE93, TK84, TKE87]. They also start from the monopole
approximation (4.1) but allow for arbitrary correlations. By splitting the ma-
trix in the monopole approximation into a deterministic and a fluctuating
part they obtain a first-order correction in φ1/2 which resemble the theory
of Marqusee-Ross and in addition contains a term coming from correlations
which is however not explicit.

4.3 A perturbative theory to capture correlations

A new method to identify the conditional expectations of particle growth
rates has recently been proposed in [HNO05a]. We will now summarize the
method and results of this work, which recovers Marder’s theory but under a
more natural closure assumption. As a byproduct, one also obtains a simple
derivation of Marqusee-Ross’s evolution for the one-particle statistics.

The main step is to rederive the expected value of the growth rate of par-
ticle 1 conditioned on particles 1 and 2, denoted by 〈B1|(R1, X1), (R2, X2)〉.
Motivated by a cluster expansion, we assume that the joint probability distri-
bution of {(Ri, Xi)}i≥1 has a special form which only depends on the one- and
two-particle statistics. To express 〈B1|(R1, X1), (R2, X2)〉 in terms of these
one- and two-particle statistics we employ a method which allows us to sepa-
rate screening and correlation effects. The idea is to relate the system with all
particles {(Ri, Xi)}i≥1 to the system {(Ri, Xi)}i≥k+1 where k particles have
been removed. This amounts to one step in the Schwarz alternating method, a
deterministic argument which captures the screening effects. If {(Ri, Xi)}i≥1

are independent, {(Ri, Xi)}i≥1 and {(Ri, Xi)}i≥k are statistically equivalent
in an infinite system. Hence expectations conditioned on the removed particles
{(Ri, Xi)}i≤k can be replaced by unconditioned expectations. This allows to
derive closed equations for conditional expectations.

4.3.1 Statistical setup

As before we consider a periodic setting with n particles in the box Ωn, but
think now of the limit n ↑ ∞. In particular we always assume n2φ - 1, i.e.
the box size is much larger than the screening length.

We make the following assumptions on the statistics of our system. The
distribution of {(Ri, Xi)}i≥1 is defined by a probability distribution

pn(R1, X1, . . . , Rn, Xn) dR1 d
3X1 . . . dRn d

3Xn =: pn(1, . . . , n) d(1) . . . d(n).

It is natural to assume that the distribution is invariant under particle ex-
change, that is

pn(σ(1), . . . , σ(n)) = pn(1, . . . , n) (4.10)

for all permutations σ, and invariant under translation, that is
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pn(R1, X1 − x, . . . , Rn, Xn − x) = pn(R1, X1, . . . , Rn, Xn) (4.11)

for all x ∈ R3. The probability distribution of the k-particle statistics
{(Ri, Xi)}1≤i≤k is then given by

pk(1, . . . , k) =
∫
pn(1, . . . , n) d(k + 1) . . . d(n).

Conditional expectations of a random variable v = v(1, . . . , n) are given by

〈v(1, . . . , n) | 1, . . . , k〉 =
∫
v(1, . . . , n)

pn(1, . . . , n)
pk(1, . . . , k)

d(k + 1) . . . d(n).

In the limit n→∞ it is more convenient to work with number densities. The
one-particle density is given by

f1(R)
(4.11)
= f1(R,X) = 〈

n∑
i=1

δ(R−Ri)δ(X −Xi)〉
(4.10)
= np1(R,X). (4.12)

The two-particle density is given by

f2(R, R̃,X − X̃)
(4.11)
= f2(R,X, R̃, X̃)

= 〈
n∑
i=1

n∑
j �=i

δ(R −Ri)δ(X −Xi)δ(R̃ −Rj)δ(X̃ −Xj)〉

(4.10)
= n(n− 1)〈δ(R −R1)δ(X −X1)δ(R̃ −R2)δ(X̃ −X2)〉

= n(n− 1)p2(R,X, R̃, X̃)

and so on. The volume fraction φ is given by the one-particle density via

φ =
∫

4 π
3
R3 f1(R) dR ,

the number density by

ρ =
∫
f1(R) dR ,

and the capacity density, which defines the screening length, via

1
ξ2

=
∫

4 πR f1(R) dR . (4.13)

We are ultimately interested in the expected values of the growth rates 〈B1 | 1〉,
〈B1 | 1, 2〉, 〈B1 | 1, 2, 3〉 etc., which appear in the evolution equations for the
one-, two- and three-particle statistics. Indeed, we have for f1 = f1(R1, t) and
f2 = f2(R1, X1, R2, X2, t) that

∂f1
∂t

=
∂

∂R1

( 1
R2

1

〈B1 | 1〉 f1
)
,

∂f2
∂t

=
∂

∂R1

( 1
R2

1

〈B1 |1, 2〉 f2
)

+
∂

∂R2

( 1
R2

2

〈B2 |1, 2〉 f2
)
, etc.

(4.14)
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4.3.2 Statistical assumptions

As pointed out before, we will derive the growth rates 〈B1 | 1〉 etc. under
different assumptions on the distribution of particles.

Marqusee-Ross assumed that at any time the system described by
{(Xi, Ri)}i≥1 is statistically homogeneous and uncorrelated. More precisely,
this means in terms of the probability distribution that

pn(1, . . . , n) = Π
n

i=1p1(i). (4.15)

Our main goal however is to allow also for correlations between particles.
Pair-, triple- and higher correlations in the particle distribution are given by

q2(1, 2) = p2(1, 2)− p1(1)p1(2),

q3(1, 2, 3) = p3(1, 2, 3)−
(
p1(1)p1(2)p1(3)

+ q2(1, 2)p1(3) + q2(2, 3)p1(1) + q2(1, 3)p1(2)
)
,

etc..
In the following we only retain pair correlations, that is we postulate

qk ≡ 0 for k ≥ 3.

Moreover, we neglect products of p2 in the cluster expansion, such that we
arrive at

pn(1, . . . , n) = Π
n

i=1p1(i) +
n∑
i=1

∑
j>i

q2(i, j)Πk �=i,jp1(k). (4.16)

In the large system limit it is convenient to work with number density based
quantities:

g2(1, 2) := n(n− 1)q2(1, 2) = f2(1, 2)− n−1
n f1(1)f2(2)

g3(1, 2, 3) := f3(1, 2, 3)− (n−1)(n−2)
n2 f1(1)f1(2)f1(3)

− (n−2)
n

(
g2(1, 2)f1(3) + g2(2, 3)f1(1) + g2(1, 3)f1(2)

)
.

We assume that pair correlations are small, that is

g2(i, j)
f1(i)f1(j)

= O(φ1/2), (4.17)

and vanish for large distances, that is

g2(i, j)
f1(i)f1(j)

= o(φ1/2) for ξ � |Xi −Xj | �
(n
ρ

)1/3

. (4.18)

Due to the good ergodicity properties enforced by (4.18) the spatial average
of u equals the ensemble average, that is

−
∫

Ωn

u(x) d3x = 〈−
∫

Ωn

u(x) d3x〉 =: ū in the limit n→∞. (4.19)
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4.3.3 On the expected value of the Green’s function

As we have seen in Sect. 2.4, one way to express the screening effect is to
establish that the effective operator of the Laplace operator in domains with
holes is the Helmholtz operator (see e.g. [CM97] and the references therein).

We will present here the main ideas of another derivation of this fact, which
will also illustrate our method by a simplified problem. The link is made via
the expected value of the Green’s function which agree up to order O(φ1/2).

We denote by G
(1,...,k)
j (x) the Green’s function for R3\ ∪i≥k+1 Pi with

singularity in Xj , j ∈ {1, . . . , k}: i.e.

−∆xG
(1,...,k)
j = 4πδXj in R3\ ∪i≥k+1 Pi,

G
(1,...,k)
j = 0 in ∪i≥k+1 Pi.

(4.20)

Lemma 4.3. ([HNO05a], Lemma 3.3)
Under the assumptions (4.16), (4.17) and (4.18) we obtain in the infinite

volume limit

〈G(1)
1 (x) | 1〉 − 1

|x−X1|
e−

|x−X1|
ξ = O(φ1/2)min

{1
ξ
,

1
|x−X1|

}
,

for all x ∈ R3\P1.

We indicate the main idea of the proof. Roughly speaking, our claim is that
〈G(1)

1 (x) | 1〉 is an approximate solution of

−∆〈G(1)
1 (x) | 1〉+

1
ξ2
〈G(1)

1 (x) | 1〉 = 4πδ(x−X1). (4.21)

We give here a sketch of the argument; the control of the error terms can be
found in the proof of Lemma 4.4 in [HNO05a].

To this purpose we introduce the charges of G(1)
1 on {∂Pi}i≥2 by

B
(1)
1,i :=

1
4π

∫
∂Pi

∂G
(1)
1

∂n
, (4.22)

so that up to dipolar terms

−∆G(1)
1 (x) = 4πδ(x −X1) +

∑
i≥2

B
(1)
1,i 4πδ(x−Xi). (4.23)

As a first approximation the Green’s function for the system {(Ri, Xi)}i≥2 can
be approximated by the Green’s function for the reduced system {(Ri, Xi)}i≥3

as follows:
G

(1)
1 (x) ≈ G

(1,2)
1 (x) −G(1,2)

1 (X2)R2G
(1,2)
2 (x),

which in view of (4.22) leads to
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B
(1)
1,2 ≈ −R2G

(1,2)
1 (X2).

Inserting this into (4.23) (with particle 2 replaced by i) already yields a form
similar to (4.21):

−∆G(1)
1 (x) +

∑
i≥2

4πRi δ(x−Xi)G
(1,i)
1 (x)

= −∆G(1)
1 (x) +

∑
i≥2

4πRi δ(x−Xi)G
(1,i)
1 (Xi)

≈ 4πδ(x−X1).

(4.24)

We now take conditional expectations:

−∆〈G(1)
1 (x) | 1〉+

〈∑
i≥2

4πRi δ(x−Xi) 〈G(1,2)
1 (x) | 1, 2〉 | 1

〉
(4.10)
= −∆〈G(1)

1 (x) | 1〉+
〈∑
i≥2

4πRi δ(x−Xi) 〈G(1,i)
1 (x) | 1, i〉 | 1

〉
= −∆〈G(1)

1 (x) | 1〉+
〈∑
i≥2

4πRi δ(x−Xi)G
(1,i)
1 (x) | 1

〉
≈ 4πδ(x−X1). (4.25)

Since our system is nearly decorrelated, we expect

〈G(1,2)
1 (x) | 1, 2〉 ≈ 〈G(1,2)

1 (x) | 1〉 . (4.26)

This allows us to appeal to the following argument: In the infinite volume
limit the removal of one particle is immaterial:

〈G(1,2)
1 (x) | 1〉 ≈ 〈G(1)

1 (x) | 1〉 . (4.27)

Inserting (4.26) and (4.27) into (4.25) yields

−∆〈G(1)
1 (x) | 1〉+ 〈

∑
i≥2

4πRi δ(x−Xi) | 1〉〈G(1)
1 (x) | 1〉 ≈ 4πδ(x−X1). (4.28)

Since our system is nearly decorrelated, we expect〈∑
i≥2

4πRi δ(x−Xi) | 1
〉
≈

〈∑
i≥2

4πRi δ(x−Xi)
〉
. (4.29)

In the infinite volume limit, we have〈∑
i≥2

4πRi δ(x −Xi)
〉

≈
〈∑
i≥1

4πRi δ(x−Xi)
〉

(4.12)
=

∫
4πR1δ(x −X1)f1(R1) dR1 d

2X1

=
∫

4πR1 f1(R1) dR1

(4.13)
=

1
ξ2
. (4.30)
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Inserting (4.29) and (4.30) into (4.28) yields (4.21).

4.3.4 Separation of screening and correlations

Using the same strategy as in Lemma 4.3 one can also relate the growth rate
of particle 1 conditioned on a finite number of particles to the system where
this finite number of particles has been removed.

In analogy to the last section we denote by u(1,...,k) the solution of the
elliptic boundary value problem (2.2), (2.3) in the system where particles
1, . . . , k have been removed. Our crucial result in the derivation of first order
corrections to LSW is the following hierarchy for the expected growth rates.

Lemma 4.4. ([HNO05a], Lemma 3.5) Under the assumptions (4.16), (4.17)
and (4.18) we obtain

〈B1 | 1〉 =
(
1 +

R1

ξ

)(
1−R1〈u(1)(X1) | 1〉

)
+ o(φ1/2), (4.31)

(
〈B1 | 1, 2〉
〈B2 | 1, 2〉

)
=

(
1 + R1

ξ − R1
d12
e−

d12
ξ

− R2
d12
e−

d12
ξ 1 + R2

ξ

)

·
(

1−R1 〈u(1,2)(X1) | 1, 2〉
1−R2 〈u(1,2)(X2) | 1, 2〉

)
+ o(φ1/2) ,

(4.32)

⎛⎝ 〈B1 | 1, 2, 3〉
〈B2 | 1, 2, 3〉
〈B3 | 1, 2, 3〉

⎞⎠ =

⎛⎜⎜⎝
1 + R1

ξ − R1
d12
e−

d12
ξ − R1

d13
e−

d13
ξ

− R2
d12
e−

d12
ξ 1 + R2

ξ − R2
d23
e−

d23
ξ

− R3
d13
e−

d13
ξ − R3

d23
e−

d23
ξ 1 + R3

ξ

⎞⎟⎟⎠
·

⎛⎝1−R1 〈u(1,2,3)(X1) | 1, 2, 3〉
1−R2 〈u(1,2,3)(X2) | 1, 2, 3〉
1−R3 〈u(1,2,3)(X3) | 1, 2, 3〉

⎞⎠ + o(φ1/2) .

(4.33)

Like in LSW, that is B1 = 1 − R1ū, the formulas in Lemma 4.4 relate the
conditional particle growth rates to mean-fields 〈u(1)(X1) | 1〉, etc. The new
elements are the factors(

1 +
R1

ξ

)
,

(
1 + R1

ξ − R1
d12
e−

d12
ξ

− R2
d12
e−

d12
ξ 1 + R2

ξ

)
, . . . ,

which capture screening. As opposed to the LSW-theory, which overestimates
the distance between particles, these screening factors reflect the fact that the
interaction range is finite and contributes as an amplification factor in the
growth rates.

The effect of correlations in the particle distribution are contained in the
expressions for the mean-field 〈u(1)(X1) | 1〉, 〈u(1,2)(X1) | 1, 2〉 etc..



Correlations, Fluctuations and Collisions in Ostwald Ripening 523

4.3.5 Independent particles

The results of the previous section now allow an easy derivation of the theory
for independently distributed particles which was first derived by Marqusee-
Ross. Our approach avoids the non-converging series in the monopole ap-
proximation, instead we directly calculate finite particle statistics. In fact,
our hierarchy of formulas, Lemma 4.4, allows us to make efficient use of the
assumption of statistical independence (4.15).

Proposition 4.5. ([HNO05a], Proposition 3.7) Under the assumption (4.10),
(4.11) and (4.15) we find in the infinite volume limit

〈B1〉 = 0, (4.34)

〈B1 | 1〉 =
(
1 +

R1

ξ

)
(1 −R1ū) + o(φ1/2). (4.35)

It is straightforward to derive (4.35) from formula (4.31) in Lemma 4.4. In-
deed, since u(1) does not depend on particle 1, we have 〈u(1)(x) | 1〉 = 〈u(1)(x)〉.
Now, since particles are statistically independent, we find 〈u(1)(x)〉 = 〈u(x)〉.
However, the infinite system {(Ri, Xi)}i≥1 is statistically equivalent to
{(Ri, Xi)}i≥2. Hence, due to translation invariance we find that 〈u(x)〉 is
constant and recalling (4.19) we finally have 〈u(1)(x) | 1〉 = ū. Since particles
are identically distributed we obtain (4.34) directly from (4.2). The mean field
ū is determined by (4.34) & (4.35) and given by

ū =
1 + 〈R1〉

ξ

〈R1〉+ 〈R2
1〉
ξ

+
1

〈R1〉
o(φ1/2). (4.36)

The system (4.14), (4.35) and (4.36) is precisely the Marqusee-Ross theory.

4.3.6 Weakly correlated particles

In this section, we rederive the Marder theory under assumptions (4.16), (4.17)
and (4.18) on the statistics of the particles.

Proposition 4.6. ([HNO05a], Proposition 3.9)
Under the assumptions (4.10), (4.11), (4.16), (4.17) and (4.18) we find in

the infinite volume limit

〈B1〉 = 0,

〈B1 |1〉 =
(
1 +

R1

ξ

)
(1−R1(ū + δu1)) + o(φ1/2), (4.37)

〈B1 |1, 2〉 =
(
1 +

R1

ξ

)
(1−R1(ū + δu1 + δu2))

−R1

d12
e−

d12
ξ (1−R2ū) + o(φ1/2) , (4.38)
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where for i = 1, 2

δui =
∫
e−

|y−X1|
ξ

|y −X1|
(
1−Rū

)g2(Ri, Xi, R, y)
f1(Ri)

dR d3y = O(φ1/2). (4.39)

The mean field ū is as in the Marqusee-Ross theory implicitly determined by
〈B1〉 = 0.

The last term in (4.38) quantifies how a large particle 2 will negatively
affect the growth rate −B1 of particle 1: Particle 1 will grow below average.
Hence the large particle 2 over the course of time affects the particle cloud in
its neighborhood, as described by (4.14). The quantity g2(R2, X2, R, y) keeps
book of this impact. which leads to the deviation δu2 in the mesoscopic mean
field from its average value ū as described by (4.39). The equation (4.37) (with
particle 1 replaced by particle 2) shows how this in turn influences the growth
rate of particle 2.

Up to an implicit term of order O(φ), (4.37), (4.38) is indeed identical
with Marder’s result [Mar87, (2.31)]. Our derivation differs however from
Marder’s in the initial assumption. Marder postulates, cf. [Mar87, (2.25)], the
following relation between conditional expected charge distributions

〈
∑
i≥1

Biδ(x−Xi) | 1, 2〉 = 〈
∑
i≥1

Biδ(x−Xi) | 1〉+ 〈
∑
i≥1

Biδ(x−Xi) | 2〉.

This assumption seems unsatisfactory, since it is an assumption on the so-
lution {Bi}i≥1. We replace this assumption on the solution by the assump-
tion on the cluster expansion (4.16), which is an assumption on the data
{(Ri, Xi)}i≥1.

4.3.7 Is Marder’s model self-consistent?

The model derived in Sect. 4.3 has still a snapshot perspective in the sense
that we derive the results under the assumptions (4.16) and (4.17) which are a
priori not preserved under the evolution. One can show (cf. [HNO05a], Ch. 3.6)
that the assumptions are self-consistent for times of order 〈R〉3 (the natural
time scale) for the ”bulk” of particles. However, it is argued in [NV06a] that
the assumptions are not self-consistent in a boundary layer near the largest
particles in the system.

The basic reasoning goes as follows. Suppose one solves the model (4.14),
(4.37), (4.38) for uncorrelated initial data, where f1(R1, 0) has compact sup-
port. Consequently, the support of f2 = f2(R1, R2, X1−X2, 0) is also compact
in R1 and R2. However, the evolution of R1 and R2, determined by (4.38),
depends on space due to the term e−d12/ξ/d12 in (4.38). Therefore, particles
R1 and R2 which are at a distance smaller than ξ evolve differently than par-
ticles R1 and R2 which are at a distance much larger than ξ. As a consequence
also the support of f2 in R1 and R2 varies in space. It is not too difficult to
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see (cf. [NV06a]), that regions in the variables (R1, R2, X) develop where f2
identically vanished but where f1(R1) and f1(R2) not. In these regions g2 is
of the order f1(R1)f1(R2), such that (4.17) is not satisfied.

5 Fluctuations of largest particles

For the reasons described in the previous section one cannot assume that
correlations are small around the largest particles. Consequently, a different
kind of correction has to be derived. The onset of large correlations for the
largest particles is a kind of hydrodynamic regime which has to be described by
a suitable boundary layer. Such a model has been derived in [NV06a]. A main
ingredient is a closure relation which expresses f2 by evaluating f1 at a certain
shift in the variable R1. The second main task is then to explicitly compute
the shift term to leading order. Similarly to the derivation of the results of
Sect. 4.3, a main idea in the analysis is to express relevant quantities in a
system of particles through the ones in a system where a particle has been
removed. The final step consists in a Taylor expansion of f1 that leads to a
second order equation for the evolution of f1.

The resulting model has the following form:

∂f1 (R1, t)
∂t

− ∂

∂R1

((
1

(R1)
2 −

1
R1 〈R〉

)
f1 (R1, t)

)
(5.1)

=
∂

∂R1

([
1
R1

∫ t

0

∫
R3 W (s, t, x) 1

4π|x|dx

RL (s, t, R1)
∂RL(s,t,R1)

∂R

ds

]
∂f1 (R1, t)
∂R1

)

where the function W satisfies the integral equation

W (s, t, x) +
4π

〈R〉 (s)

∫ s

0

K (s, τ, t̄)
(∫

R3
G (x− y, t)W (τ, t, y) dy

)
dτ (5.2)

= 4πG (x, t)
∫ (

1− RL (s, t, R)
〈R〉 (s)

)(
1− R

〈R〉 (t)

)
f1 (R, t)dR

and the kernel K is given by

K (s, τ, t̄) =
∫
{R : RL(s,t,R)>0}

∂RL(s,t,R)
∂R

RL (τ, t, R) ∂RL(τ,t,R)
∂R

f1 (R, t̄) dR (5.3)

Here G is as in (2.9) (with X0 = 0) and RL = RL(s, t, R) satisfies the LSW
equation, that is ∂sRL = 1

R2
L

(
RL/〈R〉 − 1

)
), with RL(t, t, R) = R.

If we investigate the order of terms, one finds that (5.2) implies that W
is of order 1

ξ . This in turn gives that the ”diffusion coefficient”, the term in
front of ∂f1

∂R1
is also of order 1

ξ . Compared with the terms on the left-hand
side, we find that the relative size of the diffusive term if indeed of order
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〈R〉
ξ = O(φ1/2). However, close to the end of the support, where f1 is small,

e.g. like a power law or an exponential, the term ∂f1
∂R1

becomes large to f1 and
the second order term is of the same order as f1 in a boundary layer of size
φ1/4 at the end of the support. This effect is exactly the same as in other well-
known situations where boundary layer develop, such as in the Navier-Stokes
equation with no-slip boundary conditions.

In [NV06a] also self-similar solutions to (5.1)-(5.3) are investigated. By
asymptotic expansions a self-similar solution is constructed, which is a per-
turbation of the LSW self-similar solution. The perturbation has the shape of
a Gaussian tail and induces correction to the mean particle size of order φ1/4.
We find

6 Collisions versus Correlations and Fluctuations

We already pointed out in Sect. 2.2 that particles may collide during their
evolution and that in a discussion of corrections to the LSW model such
events have to be taken into account. At first glance, this effect seems to be of
higher order than correlations, since the number of particles per unit volume
which are involved in collisions is of order ρφ, hence the correction of the LSW
model due to collisions should have relative size of order φ.

However, the situation is more subtle, because collision of particles of
medium size produces a large particle which might dominate the long-time
behavior. In fact, ideas along these lines have already been formulated by
Lifshitz and Slyozov in their original paper [LS61]. They suggest that a co-
agulation term with a kernel which is additive in the volume variable should
be added on the right hand side of the LSW model. It is predicted that the
corresponding correction to the self-similar LSW solution is of order ln 1

φ .
The main reason for this large correction is due to the kinetic character of
collisions. This implies that the fraction of particles which are transported to
the super-critical regime is of order φ, whereas the diffusive correction due
to fluctuations in (5.1) transports only the largest particles to a supercritical
regime. This effect is exponentially small in φ.

In a forthcoming article [NV06e] we will investigate the derivation and
analysis of the ”coagulation model” by a mathematical analysis and compare
the size of the effects with the ones induced by (4.38) and (5.1) respectively.

This discussion highlights that there are many analogies in the analysis
of Ostwald ripening to the mathematical analysis of gas dynamics. In gas
dynamics there exist two relevant limits to obtain kinetic equations for the
distribution of particle positions and velocities, namely the Boltzmann and
the Bogoliubov [AP81] limit. The assumptions in the Boltzmann limit are
that the range of interactions between particles is small compared to their
average distance. In this case it is possible to reduce the dynamics to an
equation for the one-particle distribution function, the well-known Boltzmann
equation. In the second limit, the range of interactions between particles is
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large compared with their average distance. The dynamics can be simplified
under the assumption of that the ratio between average potential energy and
kinetic energy is small. The resulting model are equations for the one- and two-
particle distribution function. In Ostwald ripening, collisions between particles
play a role which is analogous to collisions of gas particles in the Boltzmann
equation, whereas the results in [Mar87, HNO05a] might be considered as a
generalization of the Bogoliubov method.
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4, 371–393, 2002.

[HHR92] M. Hillert, O. Hunderi, and N. Ryum. Instability of distribution functions
in particle coarsening. Scripta metall., 26, 1933–1938, 1992.

[HH*89] M. Hillert, O. Hunderi, N. Ryum, and T. Saetre. A comment on the
Lifshitz-Slyozov-Wagner theory of particle coarsening. Scripta metall., 23,
1979–1982, 1989.

[HNO05a] A. Hönig, B. Niethammer, and F. Otto. On first–order corrections to the
LSW theory I: infinite systems. J. Stat. Phys., 119 1/2, 61–122, 2005.

[HNO05b] A. Hönig, B. Niethammer, and F. Otto. On first–order corrections to
the LSW theory II: finite systems. J. Stat. Phys., 119 1/2, 123–164, 2005.

[Hoy90] J. J. Hoyt. On the steady-state particle size distribution during coarsening.
Scripta metall., 24, 163–166, 1990.

[HV88] S. Hardy and P. Voorhees. Ostwald Ripening in a System with a High
Volume Fraction of Coarsening Phase. Met. Trans. A, 19 A, 2713–2721,
1988.

[KET86] K. Kawasaki, Y. Enomoto, and M. Tokuhama. Elementary derivation of
kinetic equation for Ostwald ripening. Physica A, 135, 426–445, 1986.

[KO02] R. V. Kohn and F. Otto. Upper bounds for coarsening rates. Comm. Math.
Phys., 229, 375–395, 2002.
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Summary. We consider an ensemble of classical particles modelled by means of
a continuity equation for a distribution function which is coupled back to the self-
induced fields. For such infinite dimensional systems simpler effective equations are
derived in the limit c → ∞. A main emphasis is on higher order approximations, in
particular on the first post-Newtonian order where radiation starts to play a role.

1 Introduction

The most precise existing theory of gravitation, the theory of general relativ-
ity, predicts that certain astrophysical systems, such as colliding black holes
or neutron stars, will give rise to gravitational radiation. There is a major
international effort under way to detect these gravitational waves [Bra04]. In
order to relate the general theory to predictions of what the detectors will
see it is necessary to use approximation methods since the exact theory is
too complicated. The mathematical status of these approximations remains
unclear and only very partial results exist. Therefore it is useful to start with
model problems. One option is the relativistic Vlasov-Maxwell system which
plays an important role in plasma physics. Although the field part of this
system is electromagnetic and spacetime is flat, such a model is already fairly
difficult. It is often used to gain a better understanding of the mathemati-
cal structures involved in more realistic gravity models. A further option for
a simplified model is the scalar theory of gravitation, as described by the
Vlasov-Nordström theory [Cal03]. It has already been considered as a model
problem for numerical relativity in [ST93].

Among the approximation methods used to study gravitational radiation
those which are most accessible mathematically are the post-Newtonian ap-
proximations. Some information on these has been obtained in [Ren94, Ren92]
but further rigorous progress seems difficult at this point. For that reason
it seems to be useful to investigate (from the viewpoint of approximation
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methods) the two systems presented above, i.e., Vlasov matter coupled to
the Maxwell fields and Vlasov matter coupled to a scalar gravitational field
governed by the Nordström equation. We shall explain the post-Newtonian
expansion of the Vlasov-Maxwell system in some detail in Sect. 2 and sketch
our results concerning the Vlasov-Nordström system in Sect. 3.
Remark: Our contribution is one part of the research project jointly with
G. Panati, H. Spohn, and S. Teufel within the Schwerpunkt. The second part
will be covered in the separate contribution [PST06].

2 The Vlasov-Maxwell system

The Vlasov-Maxwell system from kinetic theory models the evolution of a
plasma or gas composed of many collisionless particles which move under the
influence of their self-generated electromagnetic field. For the sake of simplic-
ity we assume that there are only two different species of particles with mass
normalized to unity and charge normalized to plus unity and minus unity,
respectively. The particle distributions on phase space are modelled through
the nonnegative distribution functions f+ and f−, f± = f±(t, x, p), depend-
ing on time t ∈ R, position x ∈ R3, and momentum p ∈ R3. It is assumed
that collisions between single particles are sufficiently rare such that they can
be neglected. Therefore all forces between the particles are mediated by the
electromagnetic fields. The dynamics are governed by

∂tf
± + p̂ · ∇xf

± ± (E + c−1p̂×B) · ∇pf
± = 0,

c∇× E = −∂tB, c∇×B = ∂tE + 4πj

∇ ·E = 4πρ, ∇ · B = 0,

ρ :=
∫

(f+ − f−) dp, j :=
∫
p̂ (f+ − f−) dp

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(RVMc)

Here
p̂ = (1 + c−2p2)−1/2p ∈ R3 (2.1)

is the relativistic velocity associated to p. The Lorentz force E + c−1p̂ × B
realizes the coupling of the Maxwell fields E = E(t, x) ∈ R3 and B = B(t, x) ∈
R3 to the Vlasov equation, and conversely the density functions f± enter the
field equations via the scalar charge density ρ = ρ(t, x) and the current density
j = j(t, x) ∈ R3, which act as source terms for the Maxwell equations. The
parameter c denotes the speed of light for given units of time and space of
the physical system. In order to state the Cauchy problem for (RVMc) initial
data for the densities and for the fields have to be prescribed,

f±(0, x, p) = f◦,±(x, p), E(0, x) = E◦(x), B(0, x) = B◦(x). (2.2)

Henceforth we treat the speed of light c as a parameter and study the behavior
of the system as c → ∞. It will be explained below that after a suitable
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rescaling the fields are slowly varying in their space and time variables. Thus
the limit c → ∞ corresponds to an adiabatic limit and to slowly moving
particles. Our general goal is to establish conditions under which the solutions
of (RVMc) converge to a solution of an effective system. For the Vlasov-
Maxwell system the first result in this direction was obtained in [Sch86], where
it has been shown that as c→∞ the solutions of (RVMc) approach a solution
of the Vlasov-Poisson system at the rate O(c−1); see [AU86, Deg86] for similar
results and [Lee04] for the case of two spatial dimensions. The respective
Newtonian limits of other related systems are derived in [Ren94, CL04].

It was one aim of this project to replace the Vlasov-Poisson system by
other effective equations to achieve higher order convergence and more pre-
cise approximations. In [BK05] this led to an effective system whose solutions
stay as close as O(c−3) to a solution of the full Vlasov-Maxwell system. In the
context of individual particles, this post-Newtonian (PN) order of approxima-
tion is usually called the Darwin order; see [KS00, Spo04] and the references
therein. We also mention that weak convergence properties of other kinds of
Darwin approximations for the Vlasov-Maxwell system have been studied in
[DR92, BF*03].

In the next order, and in analogy to the case of individual particles [KS01],
radiation effects play a role for the first time. Therefore the well-known prob-
lems related to the existence of unphysical solutions, usually called “run-away
solutions”, are expected to turn up [Jac99]. For individual particles these
problems can be resolved rigorously by restricting the dynamics to a suitable
center-like manifold in the phase space; see [KS01, Spo04]. Since the phase
space of the Vlasov-Maxwell system is infinite dimensional (as densities are
considered), it is clear that several new mathematical difficulties have to be
surrounded in this step. In [Bau06b] we determined effective equations for the
Vlasov-Maxwell system on the center manifold, which led to a slightly dis-
sipative Vlasov-like effective equation, free of “run-away” solutions, and we
proved that solutions of these equations stay as close as O(c−4) to a solution
of the full Vlasov-Maxwell system.

Compared to systems of coupled individual particles, for the Vlasov-
Maxwell system one immediately is faced with the fact that so far only the
existence of local solutions is known in general. These solutions are global
under additional conditions, for instance if a suitable a priori bound on the
velocities is available; see [GS86]. This means that from the onset we will have
to restrict ourselves to solutions of (RVMc) which are only defined on some
time interval [0, T ] that may be very small. On the other hand, in [Sch86] it
has been shown that such a time interval can be found which is uniform in
c ≥ 1, so it seems reasonable to accept this limit.

In Sect. 2.1 we first carry out a formal expansion of (RVMc) in c−1 as
c → ∞. It turns out that up to the Darwin order this approximation yields
the correct effective system. However, for the next order this naive procedure
does not yield the optimal result. To get a clue on how an improved approx-
imation may look like we derive the leading order dipole radiation term in
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Sect. 2.2, and thereafter we establish an improved system (called the radia-
tion approximation) which gives a better approximation to the full Vlasov-
Maxwell system. More details on this are elaborated in Sect. 2.3. Finally a
comparison of the continuous models to the individual particle models is done
in Sect. 2.4.

2.1 The naive post-Newtonian expansion

We adopt the definition of a post-Newtonian approximation from [KR01b];
see also [Ren92] for the Einstein case. Thus the matter and the fields are de-
scribed by a one-parameter family (f±(c), E(c), B(c)) of solutions to (RVMc),
depending on the parameter c ∈ [c0,∞[. This means that (f±(c), E(c), B(c))
describes a family of solutions of physical systems which are represented in
parameter-dependent units, where the numerical value of the speed of light is
given by c. A more conventional physical description of the post-Newtonian
expansion would say that in a fixed system of units the occurring velocities
are small compared to the speed of light. Taking this viewpoint means that
we consider (RVMc) at a fixed c (say c = 1) by rescaling the prescribed non-
negative initial densities f◦,±, for which we suppose that f◦,± ∈ C∞(R3×R3)
have compact support. To be more precise, denote v̄ =

∫ ∫
p̂f◦,±(x, p) dx dp,

where p̂ is taken for c = ε−1/2; cf. (2.1). Then v̄ is viewed as an average veloc-
ity of the system. Then we introduce f◦,±,ε(x, p) = ε3/2f◦,±(εx, ε−1/2p) and
consider f◦,±,ε for c = 1. It follows that

v̄ε =
∫ ∫

p̂f◦,±,ε(x, p) dx dp =
√
ε

∫ ∫
p̂f◦(x, p) dx dp =

√
ε v̄,

i.e., the systems with initial distribution functions f◦,±,ε have small velocities
compared to the systems associated to f◦,±. Under this scaling the masses re-
main unchanged, as

∫ ∫
f◦,±,ε(x, p) dx dp =

∫ ∫
f◦,±(x, p) dx dp. Next observe

that (f±, E,B) is a solution of (RVMc) with c = ε−1/2 if and only if

f±,ε(t, x, p) = ε3/2f±(ε3/2t, εx, ε−1/2p),
Eε(t, x) = ε2E(ε3/2t, εx), (2.3)
Bε(t, x) = ε2B(ε3/2t, εx),

is a solution of (RVMc) with c = 1. By definition of the rescaled fields these
fields are slowly varying in their space and time variables. Thus the limit
c → ∞ corresponds to an adiabatic limit. Henceforth we will return to the
original formulation and consider the system as c → ∞, treating the speed
of light c as a parameter. However, due to the rescaling outlined above all
theorems can also be formulated in a parameter independent fashion. In that
case the value of c is fixed, say c = 1, and the initial data have to be modified
according to (2.3); see [BK05] for details.

We start with a formal expansion of all quantities occurring in (RVMc) in
powers of c−1,
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f± = f±0 + c−1f±1 + c−2f±2 + c−3f±3 + . . . ,

E = E0 + c−1E1 + c−2E2 + c−3E3 + . . . ,

B = B0 + c−1B1 + c−2B2 + c−3B3 + . . . , (2.4)
ρ = ρ0 + c−1ρ1 + c−2ρ2 + c−3ρ3 + . . . ,

j = j0 + c−1j1 + c−2j2 + c−3j3 + . . . .

In addition, also the initial densities are assumed to allow an expansion as
f◦,± = f◦,±0 + c−1f◦,±1 + ... . Finally p̂ = p− (c−2/2)p2p+ . . . by (2.1), where
p2 = |p|2. These expansions can be substituted into (RVMc). Comparing
coefficients at every order gives a hierarchy of equations for the coefficients.
The equations at order k will be addressed as the k/2 PN equations, and

f±,k/2PN =
k∑

j=0

c−jf±j , Ek/2 PN =
k∑

j=0

c−jEj , Bk/2 PN =
k∑

j=0

c−jBj ,

is the k/2 PN approximation. This notation is used due to the fact that in
the context of general relativity post-Newtonian approximations are usually
counted in orders of c−2.

At order zero the well known Vlasov-Poisson system of plasma physics is
obtained,

∂tf
±
0 + p · ∇xf

±
0 ± E0 · ∇pf

±
0 = 0,

E0(t, x) = −
∫
|z|−2z̄ ρ0(t, x + z) dz,

ρ0 =
∫

(f+
0 − f−0 ) dp,

f±0 (0, x, p) = f◦,±0 (x, p),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(VPplasma)

where z̄ = |z|−1z. Note that the degrees of freedom of the electromagnetic
fields up to this order are lost, reflecting that the limit c→∞ is singular and
the hyperbolic field equations become elliptic. As mentioned above, this 0 PN
approximation is made rigorous in [Sch86].

Concerning a general k we assume that the lower order coefficients have
already been computed. Then the fields at order k have to solve

∇× Ek = −∂tBk−1, ∇ · Ek = 4πρk,
∇×Bk = ∂tEk−1 + 4πjk−1, ∇ ·Bk = 0.

The Vlasov equation to that order is

∂tf
±
k + p · ∇xf

±
k ± E0 · ∇pf

±
k = ∓Ek · ∇pf

±
0 +R±

k ,

where the R±
k can be calculated from the known quantities f±j , ∇xf

±
j , ∇pf

±
j ,

Ej , and Bj for j = 0, . . . , k−1. A special feature of this hierarchy is as follows.
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If we assume for the initial data that f◦,±k = 0 for all odd k, then using the
explicit form of Rk it can be shown that we can set

f±2l+1 = 0, E2l+1 = 0, B2l = 0 (2.5)

consistently, for l = 0, 1, 2, . . .. This simplification will be employed through-
out. To solve the equations for (fk, Ek, Bk), we observe that once Ek is known,
then f±k can be calculated using characteristics. Note that for all orders k the
characteristic flow is determined by the vector field (p,±E0). On the other
hand, if the f±k are known, then ρk and jk are fixed. Using the vector identity
−∇×∇×+∇∇· = ∆, we can rewrite the field equations as

E2k = 4π∆−1(∇ρ2k + ∂tj2k−2) +∆−1(∂2
tE2k−2),

B2k+1 = ∆−1(∂2
tB2k−1)− 4π∆−1(∇× j2k), (2.6)

where quantities carrying a negative index are understood to be zero. Assum-
ing that all densities are compactly supported we can solve these field equa-
tions. Of course without boundary conditions the solutions are not unique,
and at least for higher orders they will not vanish at infinity. Nevertheless, if
we take those fields, then the coupled equations can be solved by a fixed-point
iteration for Ek. Thus on a formal level the (naive) PN approximation scheme
is well defined.

According to this scheme, B1 is given by

B1(t, x) =
∫
|z|−2z̄ × j0(t, x+ z) dz, (2.7)

where j0 =
∫
p (f+

0 − f−0 ) dp. The couple (f±2 , E2) is the solution to

∂tf
±
2 + p · ∇xf

±
2 ± E0 · ∇pf

±
2

= 1
2p

2 p · ∇xf
±
0 ∓ (E2 + p×B1) · ∇pf

±
0 ,

E2(t, x) =
1
2

∫
z̄ ∂2

t ρ0(t, x+ z) dz −
∫
|z|−1∂tj0(t, x+ z) dz

−
∫
|z|−2z̄ ρ2(t, x+ z) dz,

ρ2 =
∫

(f+
2 − f−2 ) dp,

f2(0, x, p) = f◦,±2 (x, p).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(LVPplasma)

Thus the 1 PN approximation (Darwin approximation) corresponding to k = 2
is

f±,1PN = f±0 + c−2f±2 , E1PN = E0 + c−2E2, B1 PN = c−1B1. (2.8)

This Darwin system is Hamiltonian in the following sense. If the conserved
energy
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E =
∫ ∫ √

1 + c−2p2/2 (f+ + f−) dx dp+
1
8π

∫
(E2 +B2) dx

of (RVMc) is expanded according to (2.4), then the Darwin energy ED =
ED, kin + ED, pot is obtained. Explicitly its kinetic energy and potential energy
parts are given by

ED, kin =
∫ ∫

[(p2/2− c−2p4/8)(f+
0 + f−0 ) + c−2p2/2(f+

2 + f−2 )] dx dp,

ED, pot =
1
8π

∫
[E2

0 + 2c−2E0 ·E2 + c−2B2
1 ] dx.

It can be checked that ED is conserved along solutions of the 1 PN approxi-
mation. The approximation properties of the Darwin system w.r. to solutions
of the full Vlasov-Maxwell system are investigated in [BK05]. In this paper it
is shown that if we adapt the initial data (2.2) to suit the initial data of the 1
PN approximation, then the solutions are tracked down with an error of order
c−3. Hence the naive post-Newtonian expansion is valid up to this order.

For the next level (k = 3 or 1.5 PN), B3 = ∆−1(∂2
tB1) − 4π∆−1(∇× j2)

and also B1 = −4π∆−1(∇ × j0) by (2.6). Thus B3 = −4π∆−2(∂2
t∇× j0) −

4π∆−1(∇× j2) allows for the solution

B3(t, x) =
1
2

∫
|z| ∂2

t∇× j0(t, x+ z) dz +
∫
|z|−1∇× j2(t, x+ z) dz, (2.9)

where
j2 =

∫
[p (f+

2 − f−2 )− (p2/2)p (f+
0 − f−0 )] dp.

It follows that f±,1.5PN = f±0 + c−2f±2 + c−3f±3 = f±,1PN, E1.5PN = E0 +
c−2E2 + c−3E3 = E1PN, and B1.5PN = c−1B1 + c−3B3 = B1PN + c−3B3,
due to (2.5) and (2.8). Therefore the energy ED from above does not have
to be changed in comparison to the 1 PN order. Hence at the 1.5 PN order
(corresponding to c−3) we would obtain a Hamiltonian system with no effects
due to radiative friction visible. This suggests that the naive post-Newtonian
approximation has to be improved in order to resolve such effects which are
indeed present in the system. In order to get a clue on how such a refinement
should look like it is useful to study the energy which is radiated to future
null infinity by the full Vlasov-Maxwell system.

2.2 Dipole Radiation

The starting point for the following calculation is the local energy conservation
∂te+∇·P = 0 for classical solutions of the Vlasov-Maxwell system. The energy
density e and the momentum density P are given by

e(t, x) = c2
∫ √

1 + c−2p2 (f+ + f−)(t, x, p) dp+
1
8π

(
|E(t, x)|2 + |B(t, x)|2

)
,

P(t, x) = c2
∫
p(f+ + f−)(t, x, p) dp+

c

4π
E(t, x) ×B(t, x).
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Defining the local energy in the ball of radius r > 0 as Er(t) =
∫
|x|≤r

e(t, x) dx,
this conservation law and the divergence theorem imply that d

dt Er(t) =
−

∫
|x|=r

x̄ · P(t, x) dσ(x), where x̄ = |x|−1x denotes the outer unit normal.
Our assumptions on the support of the distribution functions are such that
the contribution of

∫
p (f+ + f−) dp to P vanishes for |x| = r large. Hence we

arrive at
d

dt
Er(t) =

c

4π

∫
|x|=r

x̄ · (B × E)(t, x) dσ(x).

Therefore the energy flux radiated to null infinity at time t is obtained as

lim
r→∞

c

4π

∫
|x|=r

x̄ · (B × E)(t+ c−1r, x) dσ(x),

where t + c−1r is the advanced time. In [BL*06, Thm. 1.4] it is shown that
for suitable solutions of the Vlasov-Maxwell system which are isolated from
incoming radiation in the limit c→∞ the total amount of radiated energy is
given by

2
3c3

|D̈(t)|2, (2.10)

where D is the dipole moment of the Newtonian limit (VPplasma), defined as
D(t) =

∫
xρ0(t, x) dx; see [BL*06, Thm. 1.4] for the exact statement and the

remarks below for the retarded system (retRVMc) which models “no incom-
ing radiation”. This result yields a mathematical formulation and a rigorous
proof of the Larmor formula in the case of Vlasov matter. Returning to the
approximations, we should therefore introduce into the effective equation a
radiation reaction force causing this loss of energy. As already suggested in
[KR01a, KR01b] we thus modify the Vlasov equation of the Newtonian dis-
tribution by incorporating a small correction into the force term as

∂tf
±
0 + p · ∇xf

±
0 ±

(
E0 +

2
3c3

...
D

)
· ∇pf

±
0 = 0. (2.11)

The additional term is the generalization of the radiation reaction force used
in particle models; see [Jac99, (16.8)]. We also note that for this system the
quantity

ES(t) =
1
2

∫ ∫
p2(f+

0 + f−0 )(t, x, p) dx dp +
1
8π

∫
|E0(t, x)|2 dx

− 2
3c3

Ḋ(t) · D̈(t) (2.12)

is decreasing. More precisely one obtains d
dt ES(t) = − 2

3c3 |D̈(t)|2, cf. (2.10).
The subscript S refers to Schott who considered similar quantities for particle
models; see [Spo04]. Although ES has no definite sign, its decrease can be
attributed to the effect of radiation damping. If instead of ES the usual positive
energy EVP = 1

2

∫ ∫
p2(f+

0 + f−0 ) dx dp + 1
8π

∫
|E0|2 dx of the Vlasov-Poisson
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system is considered, then along solutions of (2.11) the relation d
dt EVP =

2
3c3 (D̈ ·

...
D − |D̈|2) is obtained which has no straightforward interpretation.

Thus we consider (2.11) to be a promising candidate of an effective equa-
tion for the relativistic Vlasov-Maxwell system. However, one immediately
runs into the problem that initial data have to be supplied for D(0), Ḋ(0),
and D̈(0), as third derivatives of D occur in the equations. Since only D(0)
and Ḋ(0) are determined by f◦,±0 and since there is no obvious way to extract
the missing information from the approximation scheme, additional degrees
of freedom seem to be generated. This phenomenon is also known from the
theory of accelerated single charges and leads to a multitude of unphysical (so-
called run-away) solutions. In [KS01] it has been observed that in the particle
model this problem has the structure of a geometric singular perturbation
problem, and the “physical” dynamics are obtained on a center-like manifold
of the full dynamics.

In order to adopt this language to the model under consideration, we
assume that we are supplied with a (local in time) classical solution (f±0 , E0)
of (2.11) and assume that the support of f±0 (t, ·, ·) remains compact for all t in
the interval of existence of the solution. We define the bare mass by M(t) =∫ ∫

(f+
0 + f−0 )(t, x, p) dx dp. Then (2.11) yields mass conservation ∂tM = 0

as well as charge conservation for both species ∂tρ±0 + ∇ · j±0 = 0, where
j±0 =

∫
pf±0 dp and ρ±0 =

∫
f±0 dp. From D =

∫
xρ0 dx and (2.11) we then find

that Ḋ =
∫ ∫

p (f+
0 − f−0 ) dx dp and D̈ = D[2] + 2

3c3M
...
D, where

D[2](t) =
∫ ∫

E0(t, x)(f+
0 + f−0 )(t, x, p) dx dp. (2.13)

Defining y = D̈ and η = 2
3c3M , this can be rewritten as y = D[2] + η

...
D.

Putting

F±(f±0 , y) = −p · ∇xf
±
0 ∓ (E0 +M−1(y −D[2])) · ∇pf

±
0 ,

G(f±0 , y) = y −D[2],

it follows that (2.11) can be recast as the singular perturbation problem

˙f±0 = F±(f±0 , y)
ηẏ = G(f±0 , y)

}
(SGPPη)

In contrast to [KS01] we are dealing with a phase space of infinite dimension.
Thus the proof of the existence of an invariant manifold is hard. We shall
return to that question in a forthcoming paper. For the moment we shall take
the existence of a smooth invariant manifold for granted and assume that it
is given as a smooth graph hη = hη(f◦0 ), where hη is defined on (a subset of)
C∞

0 (R3×R3)×C∞
0 (R3×R3) and takes values in R3. For the moment f◦0 denotes

(f◦,+0 , f◦,−0 ), and similarly f0 = (f+
0 , f

−
0 ) and F = (F+, F−). The manifold

Mη = {(f◦0 , hη(f◦0 ))} is invariant under the flow of (SGPPη) if the solution of
(SGPPη) subject to the initial conditions (f0(0), y(0)) = (f◦0 , hη(f

◦
0 )) satisfies
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y(t) = hη(f0(t, ·, ·)). (2.14)

We want to determine a system of Vlasov-Poisson type which is a good ap-
proximation of the dynamics on the manifold. For this reason we assume that
we can expand hη in η about 0 as hη = h0 + ηh1 +O(η2). Setting η = 0 in the
second relation of (SGPPη), 0 = G(f0, h0(f0)) = h0(f0)−D[2] is obtained, so
that h0 = D[2]; note that D[2] depends on f0. Thus

ηẏ = G(f0, h0(f0) + ηh1(f0) +O(η2)) = h0(f0) + ηh1(f0) +O(η2)−D[2]

= ηh1(f0) +O(η2).

On the other hand, differentiating (2.14) yields

ηẏ = η 〈h′η(f0), ḟ0〉 = η 〈h′0(f0), ḟ0〉+O(η2),

and consequently h1(f0) = 〈h′0(f0), F (f0, h0(f0))〉 by (SGPPη). Explicitly,

〈h′0(f0), F (f0, h0(f0))〉

= h′0(f0) ·
∫ ∫ (

− p · ∇x(f+
0 − f−0 )− E0 · ∇p(f+

0 + f−0 )
)
(·, x, p) dx dp.

From (2.14) and the above it follows that y = hη(f0) = h0(f0) + ηh1(f0) +
O(η2) = D[2] + η 〈D[2]′(f0), F (f0, D[2](f0))〉 +O(η2). After a straightforward
computation we obtain

〈D[2]′(f0), F (f0, D[2](f0))〉 = D[3], (2.15)

where

D[3](t) = 2
∫ (

H+(t, x)j−0 (t, x)−H−(t, x)j+0 (t, x)
)
dx, (2.16)

defining

H±(t, x) :=
∮
|z|−3(−3z̄ ⊗ z̄ + id)ρ±0 (t, x+ z) dz ∈ R3×3. (2.17)

Note that H(z) = −3(z̄ ⊗ z̄) + id is bounded on R3 \ {0}, homogeneous of
degree zero, and satisfies

∫
|z|=1H(z) dσ(z) = 0. Formally, D[3] is close to

...
D,

since
...
D = d

dt (D
[2] + 2

3c3M
...
D) = d

dtD
[2] +O(c−3) = D[3] +O(c−3) by (2.15).

We introduce the “reduced radiating Vlasov-Poisson system” as

∂tf
±
0 + p · ∇xf

±
0 ±

(
E0 +

2
3c3

D[3]
)
· ∇pf

±
0 = 0,

E0(t, x) = −
∫
|z|−2z̄ ρ0(t, x+ z) dz,

ρ0 =
∫

(f+
0 − f−0 ) dp,

f±0 (0, x, p) = f◦,±0 (x, p),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(rrVPc)
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where D[3] is defined by (2.16) and (2.17). The next proposition addresses the
existence and uniqueness of local classical solutions of (rrVPc). Furthermore,
it provides some useful estimates. For the initial data we assume

f◦,±0 ∈ C∞
0 (R3 × R3), f◦,±0 ≥ 0,

f◦,±0 (x, p) = 0 for |x| ≥ r0 or |p| ≥ r0, ‖f◦,±0 ‖W 4,∞ ≤ S0, (2.18)

with some r0, S0 > 0 fixed.

Proposition 2.1. If f◦,±0 satisfies the above hypotheses, then there exists 0 <
T̃ ≤ ∞ such that the following holds for c ≥ 1.

(a) There is a unique classical solution (f±0 , E0) of (rrVPc) existing on a time
interval [0, Tc[ with T̃ ≤ Tc ≤ ∞. In addition, d

dtD
[2] = D[3], where D[2]

is defined by (2.13).
(b) For every T < T̃ there is a constantM1(T ) > 0 such that for all 0 ≤ t ≤ T ,

f±0 (t, x, p) = 0 if |x| ≥M1(T ) or |p| ≥M1(T ).

(c) Even f±0 ∈ C∞ holds, and for every T < T̃ there is constant M2(T ) > 0
such that for all 0 ≤ t ≤ T ,

|∂αf±0 (t, x, p)|+ |∂βt E0(t, x)| + |∂γt D[3](t)| ≤M2(T )

for every x ∈ R3, p ∈ R3, |α| ≤ 4, β ≤ 2, and γ ≤ 1.

See [Bau06a] for the proof. Note that the constants T̃ , M1(T ), and M2(T ) do
only depend on the “basic” constants r0 and S0. In particular T̃ , M1(T ), and
M2(T ) are independent of c. Since the second moment

∫ ∫
p2(f+

0 + f−0 ) dx dp
cannot be bounded a priori by using energy conservation, it seems difficult
to prove global existence of classical solutions to (rrVPc). Recall that both
methods yielding global existence of Vlasov-Poisson type systems essentially
relied on such an a bound; see [Pfa92, Sch91, LP91].

By means of (rrVPc) the approximations are improved by replacing at
order zero the solution to (VPplasma) by the solution to (rrVPc). Thus let
(f0, E0) be the solution of (rrVPc); note that this solutions depends on c,
as opposed to the solution of (VPplasma). Next define B1, (f±2 , E2), and B3

according to (2.7), (LVPplasma), and (2.9), respectively. We remark that so-
lutions to (LVPplasma) do exist on [0, Tc[ (where Tc is from Proposition 2.1)
and enjoy the usual properties, provided that both f◦,±0 and f◦,±2 satisfy the
assumptions (2.18); see [Bau06a].

In the following section we are going to explain that

f±,R = f±0 + c−2f±2 ,

ER = E0 + c−2E2 + (2/3)c−3D[3], (2.19)
BR = c−1B1 + c−3B3,
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yields a higher order pointwise approximation of (RVMc) than the Vlasov-
Poisson or the Darwin system considered in [BK05]. We call (2.19) the radia-
tion approximation. In the terminology of post-Newtonian approximations it
is the 1.5 PN approximation.

Using the Vlasov equation and integration by parts the following formulas
are found.

Proposition 2.2. The fields ER and BR can be written as

ER(t, x) = −
∫
|z|−2z̄(ρ0 + c−2ρ2)(t, x+ z) dz

+
1
2
c−2

∫ ∫
|z|−2

{
3(z̄ · p)2z̄ − p2z̄

}
(f+

0 − f−0 )(t, x + z, p) dz dp

−c−2

∫ ∫
|z|−1

{
z̄ ⊗ z̄ + 1

}
(
E0(t, x+ z) + (2/3)c−3D[3](t)

)
(f+

0 + f−0 )(t, x+ z, p) dz dp

+
2
3
c−3D[3](t), (2.20a)

and

BR(t, x) = c−1

∫ ∫
|z|−2(z̄ ∧ p)(f+,R − f−,R)(t, x+ z, p) dz dp

−3
2
c−3

∫ ∫
|z|−2(z̄ · p)2(z̄ ∧ p)(f+

0 − f−0 )(t, x + z, p) dz dp

+
1
2
c−3

∫ ∫
|z|−1

{
(z̄ ∧ p)⊗ z̄ + (z̄ · p)z̄ ∧ (· · · )

}
(
E0(t, x+ z) + (2/3)c−3D[3](t)

)
(f+

0 + f−0 )(t, x+ z, p) dz dp

−c−3

∫
z̄ ∧

(
H+(t, x+ z)j−0 (t, x+ z)

−H−(t, x+ z)j+0 (t, x+ z)
)
dz.

(2.20b)

At the end of this section we want to mention that there is another variant of a
damped Vlasov Poisson type system, considered in [KR01a, KR01b]. While for
that system a global solution theory is at hand, the authors did not compare
approximations based on their solutions to solutions of the full system.

2.3 1.5 PN comparison dynamics

For the 1.5 PN comparison dynamics, as outlined in Sect. 2.2, the initial
data (f◦,±0 , f◦,±2 ) are given. The field quantities are to be computed from
the resulting densities (f±0 , f

±
2 ) by means of (2.20a), (2.20b), f±,R = f±0 +
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c−2f±2 , and (2.17). In comparison to that, for the Cauchy problem of (RVMc)
the initial fields E◦ and B◦ also have to be specified; see (2.2). Thus it is
the question for which choice of initial data (2.19) yields a good comparison
dynamics and for which not. Certainly it is possible to choose initial data for
the fields such that the densities of the two dynamics evolve in a completely
different way.

In the first part of this section we therefore fix the initial fields for the
Vlasov-Maxwell dynamics from the comparison dynamics; see formula (IC)
below. From a mathematical viewpoint this procedure comes with the addi-
tional advantage that results on the existence and uniqueness of local-in-time
solutions for both the full dynamics and the comparison dynamics have been
established; see [GS86, Sch86, Bau06a]. This way it is possible in Theorem
2.4 to obtain a pointwise approximation up to the order O(c−4). It should be
mentioned that in [Sch86, Deg86, BK05] the fields are adapted in the same
way up to the relevant orders.

There are two drawbacks of this method. In essence post-Newtonian ex-
pansion is an expansion of the relativistic velocity p̂ and the retarded time
t− c−1|x− y|. It is clear that assuming localized sources the expansion of the
retarded time is only a good approximation in the near zone of the source
where |x − y| � c. This is reflected in the fact that the estimates for the
fields in Theorem 2.4 and Theorem 2.5 are only local in the space variable x.
Thus also the adapted initial fields are only reliable in the near zone, as is
underlined by the fact that they have infinite energy. From a more physical
point of view it is moreover questionable to use the Cauchy problem at all. For
post-Newtonian expansions the main interest lies in localized systems which
are isolated from the rest of the world and which have already evolved for a
long time with small velocities. Therefore the Cauchy problem might not be
the right formulation since it is not clear how to incorporate these properties
into the initial fields.

In physics textbooks isolated systems are characterized by the absence of
incoming radiation, i.e., there is no energy coming into the system from past
null infinity; see [Cal04]. Here past null infinity is that region of spacetime
which is reached along backward light cones. In case that the sources are
given, fields which are free of incoming radiation are usually calculated by
means of retarded potentials. In the second part of this section we consider
a family of solutions of (RVMc), parameterized by c, passing through f◦,±

at time t = 0; in fact the initial data may also depend on c according to
(IC), but this dependence is suppressed in our notation. Then in contrast to
the Cauchy problem for (RVMc) the electromagnetic fields are just computed
by means of the retarded potentials; see (retRVMc). The underlying physical
picture is that in the absence of incoming radiation every solution of (RVMc)
will approach a solution of (retRVMc), i.e., solutions of (retRVMc) form a kind
of initial layer. Since it is our goal to model slow systems we assume that
the momenta are bounded uniformly in c ≥ 1 and time t ∈ R. It is beyond
the scope of the present survey paper to investigate the existence of solutions
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with mathematical rigor. Instead we simply introduce Assumption (A) which
summarizes all the properties needed. Note however that in [Cal04] the exis-
tence of such global solutions is proved for small f◦,± and also uniqueness is
discussed.

Vlasov-Maxwell dynamics with adapted initial data

To achieve the improved approximation accuracy we match the initial data of
(RVMc) by the data for the radiation system. For prescribed initial densities
f◦,±0 and f◦,±2 we determine (f±0 , E0), B1, (f±2 , E2), and B3 according to what
has been explained above. Then we consider the Cauchy problem for (RVMc),
where the initial data are taken as

f±(0, x, p) = f◦,±(x, p) = f◦,±0 (x, p) + c−2f◦,±2 (x, p) + c−4f◦,±c, free(x, p),

E(0, x) = E◦(x) = E0(0, x) + c−2E2(0, x) + (2/3)c−3D[3](0)
+c−4E◦

c, free(x),

B(0, x) = B◦(x) = c−1B1(0, x) + c−3B3(0, x) + c−4B◦
c, free(x).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(IC)

In contrast to the contributions at orders 0 to 3, which are fixed by the values
of the approximations, (f◦,±c, free, E

◦
c, free, B

◦
c, free) can be chosen freely. They are

only subjected to the constraints ∇ · E◦
c, free = 4π

∫
(f◦,+c, free − f◦,−c, free) dp and

∇ · B◦
c, free = 0. Note that the constraint equations at the lower orders are

satisfied by fiat. Furthermore, we shall assume that

f◦,±c, free ∈ C
∞(R3 × R3), E◦

c, free, B
◦
c, free ∈ C∞

0 (R3),

f◦,±c, free = 0 if |x| ≥ r0 or |p| ≥ r0, (2.21)

‖f◦,±c, free‖L∞ ≤ S0, ‖E◦
c, free‖W 1,∞ + ‖B◦

c, free‖W 1,∞ ≤ S0,

holds uniformly in c, with some r0, S0 > 0 fixed. Before we formulate the
approximation result, let us recall that solutions of (RVMc) with initial data
(IC) exist at least on some time interval [0, T̂ [ which is independent of c ≥ 1;
see [Sch86, Thm. 1].

Proposition 2.3. Assume that f◦,±0 and f◦,±2 satisfy (2.18). If f◦,±, E◦, and
B◦ are defined according to (IC), then there exists 0 < T̂ ≤ ∞ (independent
of c) such that for all c ≥ 1 there is a unique smooth solution (f±, E,B) of
(RVMc) with initial data (IC) on the time interval [0, T̂ [. In addition, for every
T < T̂ there are constants M3(T ),M4(T ) > 0 such that for all 0 ≤ t ≤ T ,

f±(t, x, p) = 0 if |x| ≥M3(T ) or |p| ≥M3(T ),

|f±(t, x, p)|+ |E(t, x)|+ |B(t, x)| ≤M4(T ),

for every x, p ∈ R3 and c ≥ 1.
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Actually in [Sch86, Thm. 1] E◦ and B◦ do not depend on c, but an inspection
of the proof shows that the assertions remain valid for initial fields as defined
by (IC).

The first main approximation result at 1.5 PN is as follows; see [Bau06b].

Theorem 2.4. Assume that f◦,±0 and f◦,±2 satisfy (2.18). Then calculate
(f±0 , E0), B1, (f±2 , E2), and B3 by means of (rrVPc), (2.7), (LVPplasma),
and (2.9), respectively. Thereafter choose the initial data (f◦,±, E◦, B◦) for
(RVMc) according to (IC) and (2.21). Let (f,E,B) denote the solution of
(RVMc) with initial data (IC) and let (f±,R, ER, BR) be defined by (2.19).
Then for every T < min{T̃ , T̂} and r > 0 there are constants M(T ) > 0 and
M(T, r) > 0 such that for all 0 ≤ t ≤ T ,

|f±(t, x, p)− f±,R(t, x, p)| ≤ M(T )c−4 (x ∈ R3),
|E(t, x)− ER(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),
|B(t, x)−BR(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

for every p ∈ R3 and c ≥ 1.

The constants M(T ) and M(T, r) are independent of c ≥ 1, but they do
depend on the basic constants r0 and S0. Note that if (RVMc) is compared
to the Vlasov-Poisson system (VPplasma) only, one obtains the Newtonian
approximation

|f±(t, x, p)− f±0 (t, x, p)|+ |E(t, x) − E0(t, x)| + |B(t, x)| ≤M(T )c−1,

see [Sch86, Thm. 2B]. If it is compared to the Darwin system the estimates

|f±(t, x, p)− f±,1PN(t, x, p)|+ |B(t, x) −B1PN(t, x)| ≤M(T )c−3,

|E(t, x)− E1 PN(t, x)| ≤M(T, r)c−3,

are found; see [BK05, Thm. 1.1] and recall (2.8). At first glance it could
seem it is a strong limitation to Theorem 2.4 that the time interval [0, T ] ⊂
[0,min{T̃ , T̂}[ might be very small, as T̃ and T̂ might be very small. Regarding
this point we remind the rescaling from Sect. 2.1 which allows to reformulate
the result in an ε-dependent fashion on the time interval [0, ε−3/2T ] as ε→ 0,
i.e., for long times.

The retarded Vlasov-Maxwell dynamics

Following [Cal04] we introduce the retarded relativistic Vlasov-Maxwell sys-
tem as

∂tf
± + p̂ · ∇xf

± ± (E + c−1p̂×B) · ∇pf
± = 0,

E(t, x) = −
∫

dy

|x− y|
(
∇ρ+ c−2∂tj

)
(t− c−1|x− y|, y),

B(t, x) = c−1

∫
dy

|x− y|∇ × j(t− c−1|x− y|, y),

ρ =
∫

(f+ − f−) dp, j =
∫
p̂ (f+ − f−) dp.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(retRVMc)
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If we assume that (f±, E,B) is a smooth solution of (retRVMc), then ρ and j
satisfy the continuity equation ∂tρ+∇·j = 0. Therefore the retarded fields are
a solution of the Maxwell equations, i.e., (f,E,B) also solves (RVMc). Note
that it is necessary to know the densities for all times ] − ∞, t] in order to
compute the fields at time t. Hence there is no sense to the notation of a local
solution of this system. As in the case of the Cauchy problem every solution
of (retRVMc) satisfies f±(t, x, p) = f±(0, X±(0; t, x, p), P±(0; t, x, p)), where
s �→ (X±(s; t, x, p), P±(s; t, x, p)) solves the characteristic system

Ẋ = P̂ , Ṗ = ±(E + c−1P̂ ×B), (2.23)

with initial dataX±(t; t, x, p) = x and P±(t; t, x, p) = p. Thus 0 ≤ f±(t, x, p) ≤
‖f±(0, ·, ·)‖∞ holds.

As before let f◦,±0 , f◦,±2 , and f◦,±c, free satisfy (2.18) with some r0, S0 > 0.
Put

f◦,± = f◦,±0 + c−2f◦,±2 + c−4f◦,±c, free.

We make the following Assumption (A):

(a) For every c ≥ 1 there is a global solution f± ∈ C4(R × R3 × R3) of
(retRVMc) passing through f◦,± at time t = 0, i.e., f±(0, x, p) = f◦,±(x, p)
for x, p ∈ R3.

(b) There is a constant P1 > 0 such that f±(t, x, p) = 0 for |p| ≥ P1 and c ≥ 1.
In particular, f±(t, x, p) = 0 for |x| ≥ r0 + P1|t| by (2.23).

(c) For every T > 0, R > 0, and P > 0 there is a constant M5(T,R, P ) > 0
such that

|∂α+1
t f±(t, x, p)|+ |∂αt ∇xf

±(t, x, p)| ≤M5(T,R, P )

for |t| ≤ T , |x| ≤ R, |p| ≤ P , and |α| ≤ 3, uniformly in c ≥ 1.

Our second main approximation result at 1.5 PN is taken from [Bau06b].

Theorem 2.5. Assume that (f±, E,B) is a family of solutions of (retRVMc)
satisfying Assumption (A) with constants P1 and M5(T,R, P ). Take T̃ > 0
from Proposition 2.1. Then for every T < T̃ and r > 0 there are constants
M(T ) > 0 and M(T, r) > 0 such that for all 0 ≤ t ≤ T ,

|f±(t, x, p)− f±,R(t, x, p)| ≤ M(T )c−4 (x ∈ R3),
|E(t, x)− ER(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),
|B(t, x)−BR(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

for every p ∈ R3 and c ≥ 2P1. The constants M(T ) and M(T, r) do only
depend on r0, S0, P1, and M5(·, ·, ·). In particular they are independent of
c ≥ 2P1.
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2.4 Comparison to the particle model

We shall compare our results for the continuous density Vlasov models to the
corresponding results for individual particle models. Usually the latter are
denoted the Abraham-Lorentz system; see [KS00, KS01, Spo04]. Both systems
are quite similar for the Hamiltonian approximations up to 1 PN. In addition,
dissipative corrections at 1.5 PN make it necessary to have a closer look at
the underlying phase space. The true comparison dynamics lives on a center-
like manifold in an extended phase space. In addition, the dynamics on this
manifold can be approximated by a modified Vlasov-Poisson system coupled
to a second order equation, as in (SGPPη). In [KR01b, Sect. 3] it is argued that
the force term of the 1.5 PN approximation used in that paper can be obtained
formally in the limit “number of particles →∞” from the individual particle
models. In comparison to [KS00, KS01] the main difference to the present
paper lies in the treatment of the initial data. For the individual particle model
the initial data for the fields are supposed to be of “charged soliton” type.
One can think of these fields as generated by charges forced to move freely
for −∞ < t ≤ 0 with their initial velocities. For the approximation this leads
to an initial time slip t0 which the charges need to “forget” their initial data.
The initial data for the approximation are then fixed by matching the data
of the full system at time t0. Therefore the initial data for the approximation
are given only implicitly, since first one has to compute a solution of the full
system over [0, t0]. Regarding the Cauchy problem for the Vlasov-Maxwell
system, the matching is done the other way round. For a given initial density
one computes the fields of the approximations and imposes their values at
t = 0 as initial data for the fields of the full system. Hence these initial data
are given more explicitly. In fact it is possible to calculate them by fixing only
f◦,±0 and f◦,±2 ; see (2.20a) and (2.20b). Also Theorem 2.4 and Theorem 2.5
seem to be stronger than the results obtained for the particle model, as the
passage from 1 PN to 1.5 PN did improve the approximation only in certain
directions [KS01, (3.21), (3.32)]. It seems reasonable to expect that a matching
of the initial data at t = 0 as described above could also improve the earlier
results on the Abraham-Lorentz system.

3 The Vlasov-Nordström system

Recently there has been some interest in a simplified but still relativistic
model of gravitation in which Vlasov matter is coupled to a scalar theory of
gravitation; the latter essentially goes back to Nordström [Nor13]. The metric
tensor used in General Relativity is replaced by a scalar function and the
Einstein equations are replaced by a wave equation. In [CR03] the following
system (VNc) has been considered.

S(f)−
(
S(ϕ)p+ γc2∇xϕ

)
· ∇pf = 4S(ϕ)f, −∂2

t ϕ+ c2∆xϕ = 4πµ,
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where µ =
∫
γf dp. Once again f = f(t, x, p) denotes the density to find a

particle at time t at position x with momentum p, where t ∈ R, x ∈ R3, and
p ∈ R3. The scalar gravitational potential ϕ = ϕ(t, x) is generated by the
particles via the source µ, and c denotes the speed of light. In addition,

p2 = |p|2, γ = (1 + c−2p2)−1/2, p̂ = γp, and S = ∂t + p̂ · ∇x.

The initial data are

f(0, x, p) = f◦(x, p), ϕ(0, x) = ϕ0(x), ∂tϕ(0, x) = ϕ1(x).

For a physical interpretation and a derivation of this system see [CL04]. In
this formulation (VNc) exhibits many similarities to the relativistic Vlasov-
Maxwell system. Thus it is not surprising that many techniques developed
for the Vlasov-Maxwell system also apply to the Vlasov-Nordström system.
However, regarding basic questions like existence and uniqueness of solutions
(VNc) is by far better understood than (RVMc). Global existence of classical
solutions for unrestricted data is proved in [Cal06], also see [Lee05] for the 2D
case.

Again we are concerned with the non-relativistic limit c → ∞ of (VNc).
Under certain circumstances it has been made rigorous in [Ren94] that the
(gravitational) Vlasov-Poisson system is the non-relativistic limit of the full
Einstein-Vlasov system. In [CL04] it has been shown that as c → ∞ also
solutions of (VNc) converge to a solution of a Vlasov-Poisson system with an
error of the order O(c−1). These facts support the belief that (VNc) may serve
well as a model problem for Einstein-Vlasov.

To derive the higher order (post-Newtonian) approximations we follow the
naive approach from Sect. 2.1 and first expand all relevant quantities in powers
of c−1,

f = f0 + c−1f1 + c−2f2 + . . . ,

µ = µ0 + c−1µ1 + c−2µ2 + . . . ,

ϕ = ϕ0 + c−1ϕ1 + c−2ϕ2 + . . . .

Comparing coefficients yields the equations −∆xϕ0 = 0 and −∆xϕ1 = 0.
Thus we set ϕ0 = ϕ1 = 0. As mentioned above, at order zero the gravitational
Vlasov-Poisson system (VPgrav)

∂tf0 + p · ∇xf0 −∇x ϕ2 · ∇pf0 = 0, µ0 =
∫
f0 dp,

ϕ2(t, x) = −
∫
|z|−1µ0(t, x+ z) dz, f0(0, x, p) = f◦(x, p),

is obtained; see [CL04] for a proof including the necessary error estimates. At
the first order the linearized Vlasov-Poisson system
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∂tf1 + p · ∇xf1 −∇xϕ3 · ∇p f0 −∇x ϕ2 · ∇p f1 = 0,

µ1 =
∫
f1 dp, ∆xϕ3 = 4πµ1 + ∂2

t ϕ1,

⎫⎬⎭
appears. Hence if we suppose that f1(0, x, p) = 0, then we can set f1 = 0
and ϕ3 = 0, which also yields µ1 = 0. For the second order one derives an
inhomogeneous Vlasov equation coupled to a Poisson equation (LVPgrav),

∂tf2 + p · ∇xf2 −∇x ϕ2 · ∇pf2 −∇xϕ4 · ∇p f0

= 4f0S̃(ϕ2) + (p2/2) p · ∇xf0 +
(
S̃(ϕ2)p− (p2/2)∇xϕ2

)
· ∇pf0,

µ2 =
∫

(f2 − (p2/2)f0) dp, ∆xϕ4 = 4πµ2 + ∂2
t ϕ2,

where S̃ = ∂t + p · ∇x. For (LVPgrav) we choose homogeneous initial data
f2(0, x, p) = 0.

We now follow the route of adapted initial data as above. Similarly as
before it would also be possible to approximate solutions to the retarded
Vlasov-Nordström system, the latter being defined analogously to (retRVMc).
For the retarded Vlasov-Nordström system the leading order radiation contri-
bution can be determined explicitly. It is due to monopole radiation and does
not vanish for spherically symmetric solutions [BL*06, ST93].

For the adapted initial data let f◦ be given. Then we calculate (f0, ϕ2)
and (f2, ϕ4) according to (VPgrav) and (LVPgrav). Now we consider (VNc)
with initial data

f(0, x, p) = f◦(x, p),
ϕ0(x) = ϕ(0, x) = c−2ϕ2(0, x) + c−4ϕ4(0, x) + c−6ϕ0

free(x),
ϕ1(x) = ∂tϕ(0, x) = c−2∂tϕ2(0, x) + c−4∂tϕ4(0, x) + c−6ϕ1

free(x),

where ϕ0
free, ϕ

1
free ∈ C∞

0 (R3). The following approximation theorem from
[Bau05] shows that the Darwin approximation

fD = f0 + c−2f2, ϕD = c−2ϕ2 + c−4ϕ4,

yields a higher order pointwise approximation of the Vlasov-Nordström (VNc).
Before we formulate this result let us recall that solutions of (VNc) with
matched initial data do exist at least on some time interval [0, T ] which is
independent of c ≥ 1; see [CL04, Thm. 3].

Theorem 3.1. Assume that f◦ ∈ C∞(R3×R3) is nonnegative and compactly
supported. From f◦ calculate (f0, ϕ2) and (f2, ϕ4). Thereafter introduce the
matched initial data for (VNc) as above. Let (f, ϕ) denote the corresponding
solution of (VNc) and let (fD, ϕD) be defined as the Darwin approximation.
Then there is a constant M(T ) > 0, and for every r > 0 one can select
M(T, r) > 0, such that for all 0 ≤ t ≤ T ,
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|f(t, x, p)− fD(t, x, p)| ≤ M(T )c−4 (x ∈ R3),
|ϕ(t, x)− ϕD(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

|∂tϕ(t, x) − ∂tϕD(t, x)| ≤ M(T )c−4 (x ∈ R3),
|∇xϕ(t, x)−∇xϕ

D(t, x)| ≤ M(T, r)c−6 (|x| ≤ r),

for every p ∈ R3 and c ≥ 1. The constants M(T ) and M(T, r) are independent
of c ≥ 1.
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Summary. Numerical methods for oscillatory, multi-scale Hamiltonian systems are
reviewed. The construction principles are described, and the algorithmic and ana-
lytical distinction between problems with nearly constant high frequencies and with
time- or state-dependent frequencies is emphasized. Trigonometric integrators for
the first case and adiabatic integrators for the second case are discussed in more
detail.

1 Introduction

Hamiltonian systems with oscillatory solution behaviour are ubiquitous in
classical and quantum mechanics. Molecular dynamics, in particular, has mo-
tivated many of the new numerical developments in oscillatory Hamiltonian
systems in the last decade, though the potential range of their applications
goes much farther into oscillatory multi-scale problems of physics and engi-
neering.

Since the publication of the last review article on the numerical solution of
oscillatory differential equations by Petzold, Jay & Yen [PJY97] in 1997, algo-
rithms and their theoretical understanding have developed substantially. This
fact, together with the pleasure of presenting a final report after six years of

Fig. 1.1. Oscillations and long time steps
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funding by the DFG Priority Research Program 1095 on multiscale systems,
have incited us to write the present review, which concentrates on Hamiltonian
systems. A considerably more detailed (and therefore much longer) account
than given here, appears in the second edition of the book by Hairer, Lubich
& Wanner [HLW06, pp. 471–565]. Numerical methods for oscillatory Hamil-
tonian systems are also treated in the book by Leimkuhler & Reich [LR04,
pp. 257–286], with a different bias from ours.

The outline of this review is as follows. Sect. 2 describes some classes of os-
cillatory, multi-scale Hamiltonian systems, with the basic distinction between
problems with nearly constant and with varying high frequencies. Sect. 3
shows the building blocks with which integrators for oscillatory systems have
been constructed. As is illustrated in Fig. 1.1, the aim is to have methods that
can take large step sizes, evaluating computationally expensive parts of the
system more rarely than a standard numerical integrator which would resolve
the oscillations with many small time steps per quasi-period. Sect. 4 deals
with trigonometric integrators suited for problems with almost-constant high
frequencies, and Sect. 5 with adiabatic integrators for problems with time- or
solution-dependent frequencies.

2 Highly oscillatory Hamiltonian systems

We describe some problem classes, given in each case by a Hamiltonian func-
tion H depending on positions q and momenta p (and possibly on time t).
The canonical equations of motion ṗ = −∇qH, q̇ = ∇pH are to be integrated
numerically.

2.1 Nearly constant high frequencies

The simplest example is, of course, the harmonic oscillator given by the Hamil-
tonian function H(p, q) = 1

2p
2 + 1

2ω
2q2, with the second-order equation of

motion q̈ = −ω2q. This is trivially solved exactly, a fact that can be exploited
for constructing methods for problems with Hamiltonian

H(p, q) =
1
2
pTM−1p+

1
2
qTAq + U(q) (2.1)

with a positive semi-definite constant stiffness matrix A of large norm, with a
positive definite constant mass matrix M (subsequently taken as the identity
matrix for convenience), and with a smooth potential U having moderately
bounded derivatives.

The chain of particles illustrated in Fig. 2.1 with equal harmonic stiff
springs is an example of a system with a single high frequency 1/ε. With the
mid-points and elongations of the stiff springs as position coordinates, we have
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stiff
harmonic

soft
nonlinear

Fig. 2.1. Chain with alternating soft nonlinear and stiff linear springs

A =
1
ε2

(
0 0
0 I

)
, 0 < ε� 1. (2.2)

Other systems have several high frequencies as in

A =
1
ε2

diag(0, ω1, . . . , ωm), 0 < ε� 1, (2.3)

with 1 ≤ ω1 ≤ · · · ≤ ωm, or a wide range of low to high frequencies without
gap as in spatial discretizations of semilinear wave equations.

In order to have near-constant high frequencies, the mass matrix need not
necessarily be constant. Various applications lead to Hamiltonians of the form
studied by Cohen [Coh06] (with partitions p = (p0, p1) and q = (q0, q1))

H(p, q) =
1
2
pT0M0(q)−1p0+

1
2
pT1M

−1
1 p1+

1
2
pTR(q)p+

1
2ε2

qT1 A1q1+U(q) (2.4)

with a symmetric positive definite matrix M0(q), constant symmetric positive
definite matrices M1 and A1, a symmetric matrix R(q) with R(q0, 0) = 0,
and a potential U(q). All the functions are assumed to depend smoothly on q.
Bounded energy then requires q1 = O(ε), so that pTR(q)p = O(ε), but the
derivative of this term with respect to q1 is O(1). A simple example of (2.4)
is given by a triatomic (water) molecule as illustrated in Fig. 2.2, with strong
linear forces that approximately keep the distances and the angle fixed.

2.2 Explicitly time-dependent high frequencies

Here the prototype model is the harmonic oscillator with time-dependent
frequency,H(p, q, t) = 1

2p
2+ 1

2ε
−2ω(t)2q2, with ω(t) and ω̇(t) of magnitude∼ 1

and ε� 1. Solutions of the equation of motion q̈ = −ε−2ω(t)2q oscillate with a
quasi-period ∼ ε, but the frequencies change on the slower time scale ∼ 1. The
action (energy divided by frequency) I(t) = H(p(t), q(t))/ω(t) is an almost-
conserved quantity, called an adiabatic invariant; see, e.g., Henrard [Hen93].

Fig. 2.2. Triatomic molecule
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Numerical methods designed for problems with nearly constant frequencies
(and, more importantly, nearly constant eigenspaces) behave poorly on this
problem, or on its higher-dimensional extension

H(p, q, t) =
1
2
pTM(t)−1p+

1
2ε2

qTA(t)q + U(q, t), (2.5)

which describes oscillations in a mechanical system undergoing a slow driven
motion. Here M(t) is a positive definite mass matrix, A(t) is a positive semi-
definite stiffness matrix, and U(q, t) is a potential, all of which are assumed to
be smooth with derivatives bounded independently of the small parameter ε.
This problem again has adiabatic invariants associated with each of its high
frequencies as long as the frequencies remain separated. However, on small
time intervals where eigenvalues almost cross, rapid non-adiabatic transitions
may occur, leading to further numerical challenges.

2.3 State-dependent high frequencies

Similar difficulties are present, and related numerical approaches have recently
been developed, in problems where the high frequencies depend on the posi-
tion, as in the problem class studied analytically by Rubin & Ungar [RU57],
Takens [Tak80], and Bornemann [Bor98]:

H(p, q) =
1
2
pTM(q)−1p+

1
ε2
V (q) + U(q), (2.6)

with a constraining potential V (q) that takes its minimum on a manifold
and grows quadratically in non-tangential directions, thus penalizing motions
away from the manifold. In appropriate coordinates we have

V (q) =
1
2
qT1 A(q0)q1 for q = (q0, q1)

with a positive definite matrix A(q0).
A multiple spring pendulum with stiff springs as illustrated in Fig. 2.3 is a

simple example, with angles as slow variables q0 and elongations of stiff springs
as fast variables q1. In contrast to the triatomic molecule of Fig. 2.2, where
also the angle is kept approximately constant, here the frequencies of the high

Fig. 2.3. Triple pendulum with stiff springs
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oscillations depend on the angles which change during the motion. Different
phenomena occur, and different numerical approaches are appropriate for the
two different situations.

As in the case of time-dependent frequencies, difficulties (numerical and
analytical) arise when eigenfrequencies cross or come close, which here can lead
to an indeterminacy of the slow motion in the limit ε→ 0 (Takens chaos).

2.4 Almost-adiabatic quantum dynamics and
mixed quantum-classical molecular dynamics

A variety of new developments in the numerics of oscillatory problems within
the last decade were spurred by problems from quantum dynamics; see,
e.g., [BN*96, DS03, FL06, HL99b, HL99c, HL03, Jah03, Jah04, JL03, LT05,
NR99, NS99, Rei99]. Though these problems can formally be viewed as be-
longing to the classes treated above, it is worthwhile to state them separately:
time-dependent quantum dynamics close to the adiabatic limit is described
by an equation

iεψ̇ = H(t)ψ (2.7)

with a finite-dimensional hermitian matrixH(t) with derivatives of magnitude
∼ 1 representing the quantum Hamiltonian. This is a complex Hamiltonian
system with the time-dependent Hamiltonian function 1

2ψ
∗H(t)ψ (consider

the real and imaginary parts of ψ as conjugate variables, and take an ε−1-
scaled canonical bracket).

A widely used (though disputable) model of mixed quantum-classical me-
chanics is the Ehrenfest model

q̈ = −∇q

(
ψ∗H(q)ψ

)
iεψ̇ = H(q)ψ

(2.8)

with a hermitian matrix H(q) depending on the classical positions q. This cor-
responds to the Hamiltonian function 1

2p
T p+ 1

2ψ
∗H(q)ψ. The small parameter

ε here corresponds to the square root of the mass ratio of light (quantum) and
heavy (classical) particles. While this is indeed small for electrons and nuclei,
it is less so for protons and heavy nuclei. In the latter case an adiabatic reduc-
tion to just a few eigenstates is not reasonable, and then one has to deal with a
quantum Hamiltonian which is a discretization of a Laplacian plus a potential
operator that depends on the classical position. Both cases show oscillatory
behaviour, but the appropriate numerical treatment is more closely related
to that in Sects. 2.3 and 2.1 in the first and second case, respectively. Irre-
spective of its actual physical modeling qualities, the Ehrenfest model is an
excellent model problem for studying numerical approaches and phenomena
for nonlinearly coupled slow and fast, oscillatory motion.
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3 Building-blocks of long-time-step methods:
averaging, splitting, linearizing, corotating

We are interested in numerical methods that can attain good accuracy with
step sizes whose product with the highest frequency in the system need not be
small; see Fig. 1.1. A large variety of numerical methods to that purpose has
been proposed in the last decade, and a smaller variety among them has also
been carefully analysed. All these long-time-step and multiscale methods are
essentially based on a handful of construction principles, combined in different
ways. In addition to those described in the following, time-symmetry of the
method has proven to be extremely useful, whereas symplecticity appears to
play no essential role in long-time-step methods.

3.1 Averages

A basic principle underlying all long-time-step methods for oscillatory differ-
ential equations is the requirement to avoid isolated pointwise evaluations of
oscillatory functions, but instead to rely on averaged quantities.

Following [HLW06, Sect. VIII.4], we illustrate this for a method for second-
order differential equations such as those appearing in the previous section,

q̈ = f(q), f(q) = f [slow](q) + f [fast](q). (3.1)

The classical Störmer-Verlet method with step size h uses a pointwise evalu-
ation of f ,

qn+1 − 2qn + qn−1 = h2 f(qn), (3.2)

whereas the exact solution satisfies

q(t+ h)− 2q(t) + q(t− h) = h2

∫ 1

−1

(1− |θ|) f
(
q(t+ θh)

)
dθ . (3.3)

The integral on the right-hand side represents a weighted average of the force
along the solution, which will now be approximated. At t = tn, we replace

f
(
q(tn + θh)

)
≈ f [slow](qn) + f [fast]

(
u(θh)

)
where u(τ) is a solution of the differential equation

ü = f [slow](qn) + f [fast](u) . (3.4)

We then have

h2

∫ 1

−1

(1−|θ|)
(
f [slow](qn)+ f [fast]

(
u(θh)

))
dθ = u(h)−2u(0)+u(−h) . (3.5)

For the differential equation (3.4) we assume the initial values u(0) = qn and
u̇(0) = q̇n or simply u̇(0) = 0. This initial value problem is solved numeri-
cally, e.g., by the Störmer-Verlet method with a micro-step size ±h/N with



Integrators for Highly Oscillatory Hamiltonian Systems 559

N - 1 on the interval [−h, h], yielding numerical approximations uN(±h) and
u̇N (±h) to u(±h) and u̇(±h), respectively. No further evaluations of f [slow]

are needed for the computation of uN(±h) and u̇N (±h). This finally gives the
symmetric two-step method of Hochbruck & Lubich [HL99a],

qn+1 − 2qn + qn−1 = uN (h)− 2uN(0) + uN (−h) . (3.6)

The method can also be given a one-step formulation, see [HLW06, Sect. VIII.4].
Further symmetric schemes using averaged forces were studied by Hochbruck
& Lubich [HL99c] and Leimkuhler & Reich [LR01].

The above method is efficient if solving the fast equation (3.4) over the
whole interval [−h, h] is computationally less expensive than evaluating the
slow force f [slow]. Otherwise, to reduce the number of function evaluations we
can replace the average in (3.5) by an average with smaller support,

qn+1 − 2qn + qn−1 = h2

∫ δ

−δ

K(θ)
(
f [slow](qn) + f [fast]

(
u(θh)

))
dθ (3.7)

with δ � 1 and an averaging kernel K(θ) with integral equal to 1. This is fur-
ther approximated by a quadrature sum involving the values f [fast]

(
uN(mh/N)

)
with |m| ≤ M and 1 � M � N . The resulting method is an example of a
heterogeneous multiscale method as proposed by E [E03] and Engquist & Tsai
[ET05], with macro-step h and micro-step h/N . Method (3.7) is in between
the Störmer-Verlet method (3.2) (δ = 0) and the averaged-force method (3.6)
(δ = 1).

In the above methods, the slow force is evaluated, somewhat arbitrarily,
at the particular value qn approximating the oscillatory solution q(t). Instead,
one might evaluate f [slow] at an averaged position qn, defined by solving ap-
proximately an approximate equation

ü = f [fast](u), u(0) = qn, u̇(0) = 0, and setting qn =
∫ δ

−δ

K̃(θ)u(θh) dθ,

with another averaging kernel K̃(θ) having integral 1. Such an approach
was first studied by Garćıa-Archilla, Sanz-Serna & Skeel [GSS99] for the im-
pulse method (see below), and subsequently in [HL99a] for the averaged-force
method, in order to reduce the sensitivity to step size resonances in the nu-
merical solution. For that purpose, it turned out that taking δ = 1 (or an
integer) is essential.

3.2 Splitting

The Störmer-Verlet method (see [HLW03]) can be interpreted as approximat-
ing the flow ϕHh of the system with Hamiltonian H(p, q) = T (p) + V (q) with
T (p) = 1

2p
T p by the symmetric splitting
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ϕVh/2 ◦ ϕTh ◦ ϕVh/2 .

In the situation of a potential V = V [fast] + V [slow], we may instead use a
different splitting of H = (T + V [fast]) + V [slow] and approximate the flow ϕHh
of the system by

ϕV
[slow]

h/2 ◦ ϕT+V [fast]

h ◦ ϕV
[slow]

h/2 .

This is the impulse method that was proposed in the context of molecular
dynamics by Grubmüller, Heller, Windemuth & Schulten [GH*91] and Tuck-
erman, Berne & Martyna [TBM92]:

1. kick: set p+n = pn − 1
2h∇V [slow](qn)

2. oscillate: solve q̈ = −∇V [fast](q) with initial values (qn, p+n )
over a time step h to obtain (qn+1, p

−
n+1)

3. kick: set pn+1 = p−n+1 − 1
2h∇V [slow](qn+1) .

(3.8)

Step 2 must in general be computed approximately by a numerical integrator
with a smaller time step. If the inner integrator is symplectic and symmetric,
as it would be for the Störmer-Verlet method, then also the overall method is
symplectic and symmetric.

Garćıa-Archilla, Sanz-Serna & Skeel [GSS99] mollify the impulse method
by replacing the slow potential V [slow](q) by a modified potential V [slow](q),
where q represents a local average as considered above.

3.3 Variation of constants formula

A particular situation arises when the fast forces are linear, as in

q̈ = −Ax+ g(q) (3.9)

with a symmetric positive semi-definite matrix A of large norm. With Ω =
A1/2, the exact solution satisfies(

q(t)
q̇(t)

)
=

(
cos tΩ Ω−1 sin tΩ

−Ω sin tΩ cos tΩ

)(
q0
q̇0

)
(3.10)

+
∫ t

0

(
Ω−1 sin(t− s)Ω

cos(t− s)Ω

)
g
(
q(s)

)
ds .

Discretizing the integral in different ways gives rise to various numerical
schemes proposed in the literature for treating (3.9) (the earliest references
are Hersch [Her58] and Gautschi [Gau61]). This also gives reinterpretations
of the methods discussed above when they are applied to (3.9). We consider a
class of trigonometric integrators that reduces to the Störmer-Verlet method
for A = 0 and gives the exact solution for g = 0 [HLW06, Chap.XIII]:
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qn+1 = coshΩ qn +Ω−1 sinhΩ q̇n +
1
2
h2Ψ g(Φqn) (3.11)

q̇n+1 = −Ω sinhΩ qn + coshΩ q̇n +
1
2
h
(
Ψ0 g(Φqn) + Ψ1 g(Φqn+1)

)
. (3.12)

Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the filter functions ψ and φ are
smooth, bounded, real-valued functions with ψ(0) = φ(0) = 1. Moreover,
we have Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even functions ψ0, ψ1 satisfying
ψ0(0) = ψ1(0) = 1. The method is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ) , ψ0(ξ) = cos(ξ)ψ1(ξ) , (3.13)

where sinc(ξ) = sin(ξ)/ξ. In addition, the method is symplectic (for g =
−∇U) if and only if

ψ(ξ) = sinc(ξ)φ(ξ) . (3.14)

The two-step form of the method reads

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψg(Φqn) . (3.15)

Various methods of Sects. 3.1 and 3.2 can be written in this way, with different
filters Ψ and Φ, when they are applied to (3.9):

ψ(ξ)= sinc2(1
2ξ) φ(ξ)=1 Gautschi [Gau61] and averaged method (3.6)

ψ(ξ)= sinc(ξ) φ(ξ)=1 Deuflhard [Deu79] and impulse method (3.8)
ψ(ξ)= sinc2(ξ) φ(ξ)= sinc(ξ) Garćıa-Archilla & al. [GSS99]: mollified i.m.
ψ(ξ)= sinc2(ξ) φ(ξ)=1 Hairer & Lubich [HL00]
ψ(ξ)= sinc3(ξ) φ(ξ)= sinc(ξ) Grimm & Hochbruck [GH06]

As will be seen in Sect. 4, the choice of the filter functions has a substantial
influence on the long-time properties of the method.

3.4 Transformation to corotating variables

For problems where the high frequencies and the corresponding eigenspaces
depend on time or on the solution, as in (2.5)–(2.8), it is useful to transform
to corotating variables in the numerical treatment.

We illustrate the basic procedure for Schrödinger-type equations (2.7) with
a time-dependent real symmetric matrixH(t) changing on a time scale∼ 1, for
which the solutions are oscillatory with almost-period ∼ ε. A time-dependent
linear transformation η(t) = Tε(t)ψ(t) takes the system to the form

η̇(t) = Sε(t) η(t) with Sε = ṪεT
−1
ε − i

ε
TεHT

−1
ε . (3.16)

A first approach is to freeze H(t) ≈ H∗ over a time step and to choose the
transformation
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Fig. 3.1. Oscillatory solution component and adiabatic variable as functions of time

Tε(t) = exp
( it
ε
H∗

)
yielding a matrix function Sε(t) that is highly oscillatory and bounded in norm
by O(h/ε) for |t− t0| ≤ h, if H∗ = H(t0 + h/2). Numerical integrators using
this transformation together with an appropriate treatment of the oscillatory
integrals, are studied by Hochbruck & Lubich [HL99c], Iserles [Ise02, Ise04],
and Degani & Schiff [DS03]. Step sizes are still restricted by h = O(ε) in
general, but can be chosen larger in the special case when the derivatives of
1
εH(t) are moderately bounded.

A uniformly bounded matrix Sε(t) in (3.16) is obtained if we diagonalize

H(t) = Q(t)Λ(t)Q(t)T

with a real diagonal matrix Λ(t) = diag (λj(t)) and an orthogonal matrix Q(t)
of eigenvectors depending smoothly on t (possibly except where eigenvalues
cross). We define η(t) by the unitary adiabatic transformation

η(t) = exp
( i
ε
Φ(t)

)
Q(t)Tψ(t) with Φ(t) = diag (φj(t)) =

∫ t

0

Λ(s) ds,

(3.17)
which represents the solution in a rotating frame of eigenvectors. Such trans-
formations have been in use in quantum mechanics since the work of Born &
Fock [BF28] on the adiabatic invariants Ij(t) = |ηj(t)|2 in Schrödinger equa-
tions. Figure 3.1 illustrates the effect of this transformation, showing solution
components in the original and in the adiabatic variables.

The transformation (3.17) to adiabatic variables yields a differential equa-
tion where the ε-independent skew-symmetric matrix

W (t) = Q̇(t)TQ(t)

is framed by oscillatory diagonal matrices:

η̇(t) = exp
( i
ε
Φ(t)

)
W (t) exp

(
− i
ε
Φ(t)

)
η(t). (3.18)

Numerical integrators for (2.7) based on the transformation to the differential
equation (3.18) are given by Jahnke & Lubich [JL03] and Jahnke [Jah04]. The
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simplest of these methods freezes the slow variables η(t) and W (t) at the mid-
point of the time step, makes a piecewise linear approximation to the phase
Φ(t), and then integrates the resulting system exactly over the time step. This
gives the following adiabatic integrator :

ηn+1 = ηn + hB(tn+1/2)
1
2
(ηn + ηn+1) with (3.19)

B(t) =
(

exp
(
− i
ε

(
φj(t)− φk(t)

))
sinc

( h
2ε

(
λj(t)− λk(t)

))
wjk(t)

)
j,k

.

More involved – and substantially more accurate – methods use a Neumann
or Magnus expansion in (3.18) and a quadratic phase approximation. Numer-
ical challenges arise near avoided crossings of eigenvalues, where η(t) remains
no longer nearly constant and a careful choice of step size selection strat-
egy is needed in order to follow the non-adiabatic transitions; see [JL03] and
[HLW06, Chap. XIV].

The extension of this approach to (2.5), (2.6), and (2.8) is discussed in
Sect. 5. The transformation to adiabatic variables is also a useful theoretical
tool for analysing the error behaviour of multiple time-stepping methods ap-
plied to these problems in the original coordinates, such as the impulse and
mollified impulse methods considered in Sect. 3.2; see [HLW06, Chap. XIV].

4 Trigonometric integrators for problems with nearly
constant frequencies

A good understanding of the behaviour of numerical long-time-step methods
over several time scales has been gained for Hamiltonian systems with almost-
constant high frequencies as considered in Sect. 2.1. We here review results
for single-frequency systems (2.1) with (2.2) (and M = I) from Hairer &
Lubich [HL00] and [HLW06, Chap. XIII], with the particle chain of Fig. 2.1
serving as a concrete example. The variables are split as q = (q0, q1) according
to the blocks in (2.2). We consider initial conditions for which the total energy
H(p, q) is bounded independently of ε,

H(p(0), q(0)) ≤ Const.

The principal theoretical tool is a modulated Fourier expansion of both the
exact and the numerical solution,

q(t) =
∑

k z
k(t) eikt/ε, (4.1)

an asymptotic multiscale expansion with coefficient functions zk(t) changing
on the slow time scale 1, which multiply exponentials that oscillate with fre-
quency 1/ε. The system determining the coefficient functions turns out to
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have a Hamilton-type structure with formal invariants close to the total and
oscillatory energies.

The results on the behaviour of trigonometric integrators (3.15) on differ-
ent time scales have been extended from single- to multi-frequency systems
(possibly with resonant frequencies) by Cohen, Hairer & Lubich [CHL05], and
to systems (2.4) with non-constant mass matrix by Cohen [Coh04, Coh06].

4.1 Time scale ε

On this time scale the system (2.1) with (2.2) only shows near-harmonic oscil-
lations with frequency 1/ε and amplitude O(ε) in the fast variables q1, which
are well reproduced by just any numerical integrator.

4.2 Time scale ε0

This is the time scale of motion of the slow variables q0 under the influence
of the potential U(q). Here it is of interest to have an error in the numerical
methods which is small in the step size h and uniform in the product of the
step size with the high frequency 1/ε. The availability of such uniform error
bounds depends on the behaviour of the filter functions ψ and φ in (3.15) at
integral multiples of π. Under the conditions

ψ(2kπ) = ψ′(2kπ) = 0, ψ((2k − 1)π) = 0, φ(2kπ) = 0 (4.2)

for k = 1, 2, 3, . . . , it is shown in [HLW06, Chap. XIII.4] that the error after
n time steps is bounded by

‖qn − q(nh)‖ ≤ C h2, ‖q̇n − q̇(nh)‖ ≤ C h for nh ≤ Const., (4.3)

with C independent of h/ε and of bounds of derivatives of the highly oscilla-
tory solution.

Error bounds without restriction of the product of the step size with the
frequencies are given for general positive semi-definite matrices A in (2.1) by
Garćıa-Archilla, Sanz-Serna & Skeel [GSS99] for the mollified impulse method
(ψ(ξ) = sinc2(ξ), φ(ξ) = sinc(ξ)), by Hochbruck & Lubich [HL99a] and
Grimm [Gri05a] for Gautschi-type methods (ψ(ξ) = sinc2(ξ/2) and suitable
φ), and most recently by Grimm & Hochbruck [GH06] for general A and
general classes of filter functions ψ and φ.

4.3 Time scale ε−1

An energy exchange between the stiff springs in the particle chain takes place
on the slower time scale ε−1. To describe this in mathematical terms, let q1,j
be the jth component of the fast position variables q1, and consider

Ij =
1
2
q̇21,j +

1
2ε2

q21,j ,
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which in the example represents the harmonic energy in the jth stiff spring.
The quantities Ij change on the time scale ε−1. To leading order in ε, their
change is described by a differential equation that determines the coefficient
of eit/ε in the modulated Fourier expansion (4.1). It turns out that for a
trigonometric method (3.15), the differential equation for the corresponding
coefficient in the modulated Fourier expansion of the numerical solution is
consistent with that of the exact solution for all step sizes if and only if

ψ(ξ)φ(ξ) = sinc(ξ) for all ξ ≥ 0.

It is interesting to note that this condition for correct numerical energy ex-
change is in contradiction with the condition (3.14) of symplecticity of the
method, with the only exception of the impulse method, given by ψ =
sinc, φ = 1. That method, however, does not satisfy (4.2) and is in fact
extremely sensitive to near-resonances between frequency and step size (h/ε
near even multiples of π). A way out of these difficulties is to consider trigono-
metric methods with more than one force evaluation per time step, as is shown
in [HLW06, Chap. XIII].

In Fig. 4.1 we show the energy exchange of three numerical methods for
the particle chain of Fig. 2.1, with ε = 0.02 and with potential and initial
data as in [HLW06, p. 22]. At t = 0 only the first stiff spring is elongated,
the other two being at rest position. The harmonic energies I1, I2, I3, their
sum I = I1 + I2 + I3, and the total energy H (actually H − 0.8 for graphical
reasons) are plotted along the numerical solutions of the following methods,
with step sizes h = 0.015 and h = 0.03:

(A) impulse method (ψ = sinc, φ = 1)
(B) mollified impulse method (ψ = sinc2, φ = sinc)
(C) heterogeneous multiscale method (3.7) with δ =

√
ε.
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Fig. 4.1. Energy exchange between the stiff springs for methods (A)-(C), with
h = 0.015 (upper) and h = 0.03 (lower), for ε = 0.02
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For this problem with linear fast forces, the averaging integrals of Sect. 3.1
and the solution of (3.8) are computed exactly. We notice that for the larger
step size only method (A) reproduces the energy exchange in a correct way.
Method (C) behaves very similarly to the Störmer-Verlet method.

4.4 Time scales ε−N with N ≥ 2

In Fig. 4.1 it is seen that the total oscillatory energy I remains approximately
conserved over long times. Along the exact solution of the problem, I is in
fact conserved up to O(ε) over exponentially long times t ≤ ec/ε; see Benettin,
Galgani & Giorgilli [BGG87] and Cohen, Hairer & Lubich [CHL03] for differ-
ent proofs based on canonical transformations of Hamiltonian perturbation
theory and modulated Fourier expansions (4.1), respectively. Along the nu-
merical solution by a trigonometric integrator (3.15), near-conservation of the
oscillatory energy I and the total energy H are shown in [HL00] and [HLW06,
Chap. XIII] over times t ≤ ε−N under a non-resonance condition between the
frequency and the step-size:∣∣∣ sin(kh

2ε

)∣∣∣ ≥ c
√
h for k = 1, . . . , N.

It is known from [HL00] that the condition

ψ(ξ) = sinc2(ξ)φ(ξ)

is necessary to have long-time conservation of the total energy uniformly for
all values of h/ε, and numerical experiments indicate that this condition on
the filter functions may also be sufficient. Otherwise, energy conservation is
lost at least when h/ε is close to an even multiple of π.

Figure 4.2 shows, for the same data and methods as before, the maximum
deviations of H and I on the interval [0, 1000] as functions of h/ε.
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Fig. 4.2. Maximum deviation of total energy (upper) and oscillatory energy (lower)
as functions of h/ε (for step size h = 0.02)



Integrators for Highly Oscillatory Hamiltonian Systems 567

5 Adiabatic integrators for problems with varying
frequencies

Adiabatic integrators are a novel class of numerical integrators that have been
devised in [JL03, Jah04, Jah03, LJL05, Lor06, HLW06] for various kinds of
oscillatory problems with time- or solution-dependent high frequencies, in-
cluding (2.5)–(2.8). These integrators have in common that the oscillatory
part of the problem is transformed to adiabatic variables (cf. Sect. 3.4) and
the arising oscillatory integrals are computed analytically or approximated by
an appropriate expansion. The methods allow to integrate these oscillatory
differential equations with large time steps in the adiabatic regime of well-
separated frequencies and follow non-adiabatic transitions with adaptively
refined step sizes.

5.1 Adiabatic integrators for quantum-classical molecular
dynamics

Following Jahnke [Jah03], we sketch how to construct a symmetric long-time-
step method for problem (2.8), which couples in a nonlinear way slow motion
and fast oscillations with frequencies depending on the slow variables.

Proceeding as in Sect. 3.4, the quantum system is transformed to adiabatic
variables by

η(t) = exp
(
i

ε
Φ(t)

)
Q
(
q(t)

)T
ψ(t) , (5.1)

where H(q) = Q(q)Λ(q)Q(q)T is a smooth eigendecomposition of the Hamil-
tonian and

Φ(t) =
∫ t

t0

Λ
(
q(s)

)
ds, Φ = diag(φj) (5.2)

is the phase matrix, a diagonal matrix containing the time integrals over the
eigenvalues λj(q(t)) along the classical trajectory. Inserting (5.1) into (2.8)
yields the new equations of motion

q̈ = −η∗ exp
(
i

ε
Φ

)
K(q) exp

(
− i
ε
Φ

)
η, (5.3)

η̇ = exp
(
i

ε
Φ

)
W (q, q̇) exp

(
− i
ε
Φ

)
η (5.4)

with the tensor K(q) and skew-symmetric matrix W (q, q̇) given as

K(q) = Q(q)T∇qH(q)Q(q),

W
(
q, q̇

)
=

(
d

dt
Q
(
q
))T

Q
(
q
)

=
(
∇qQ

(
q
)
q̇
)T
Q
(
q
)
. (5.5)



568 D. Cohen, T. Jahnke, K. Lorenz, Ch. Lubich

Equations (5.3) and (5.4) can be restated as

q̈ = −η∗
(
E(Φ) •K(q)

)
η, (5.6)

η̇ =
(
E(Φ) •W (q, q̇)

)
η. (5.7)

where • means entrywise multiplication, and E(Φ) denotes the matrix

E(Φ) =
(
ejk(Φ)

)
, ejk(Φ) = exp

(
i

ε
(φj − φk)

)
. (5.8)

The classical equation can be integrated using the averaging technique from
Sect. 3. We insert (5.6) into (3.3) and, in order to approximate the integral,
keep the smooth variables η(t) and K(q(t)) fixed at the midpoint tn of the
interval [tn−1, tn+1]. Since more care is necessary for the oscillating exponen-
tials, we replace Φ by the linear approximation

Φ(tn + θh) ≈ Φ(tn) + θhΛ
(
q(tn)

)
. (5.9)

These modifications yield the averaged Störmer-Verlet method of [Jah03]:

qn+1 − 2qn + qn−1 = −h2 η∗n

(
E(Φn) • I(qn) •K(qn)

)
ηn (5.10)

with I(qn) =
∫ 1

−1

(1− |θ|)E
(
θhΛ(qn)

)
dθ.

The matrix of oscillatory integrals I(qn) can be computed analytically: its
entries Ijk(qn) are given by

Ijk(qn) =
∫ 1

−1

(1− |θ|) exp(iθξjk) dθ = sinc2(1
2ξjk)

with ξjk =
h

ε

(
λj(qn)− λk(qn)

)
. (5.11)

Note that in the (computationally uninteresting) small-time-step limit h/ε→
0 the integrator (5.10) converges to the Störmer-Verlet method.

The easiest way to approximate the quantum vector η(t) is to keep
η(t) ≡ η(0) simply constant. According to the quantum adiabatic theorem
[BF28] the resulting error is only O(ε) as long as the eigenvalues of H(q(t))
are well separated and the eigendecomposition remains smooth. A more re-
liable method, which in its variable-time-step version follows non-adiabatic
transitions in η occurring near avoided crossings of eigenvalues, is obtained
by integrating Eq. (5.7) from tn − h to tn + h, using the linear approxima-
tion (5.9) for Φ(t), and freezing the slow coupling matrix W (q(t), q̇(t)) at the
midpoint tn. This yields the adiabatic integrator from [Jah03],
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ηn+1 − ηn−1 =2h
(
E(Φn) • J (qn) •Wn

)
ηn (5.12)

with J (qn) =
1
2

∫ 1

−1

E
(
θhΛ(qn)

)
dθ.

The (j, k)-entry of the matrix of oscillatory integrals J (qn) is simply

Jjk(qn) =
1
2

∫ 1

−1

exp(iθξjk) dθ = sinc ξjk.

The explicit midpoint rule is recovered in the limit h/ε → 0. The derivative
contained in (5.5) and the integral in (5.2) are not known explicitly but can
be approximated by the corresponding symmetric difference quotient and the
trapezoidal rule, respectively. These approximations are denoted by Wn and
Φn in the above formulas.

The approximation properties of method (5.10), (5.12) for large step sizes
up to h ≤

√
ε are analysed in [Jah03]. A discrete quantum-adiabatic theorem

is established, which plays an important role in the error analysis.

5.2 Adiabatic integrators for problems with time-dependent
frequencies

Adiabatic integrators for mechanical systems with a time-dependent multi-
scale Hamiltonian (2.5) are presented in [HLW06, Chap. XIV] and [Lor06],
following up on previous work by Lorenz, Jahnke & Lubich [LJL05] for sys-
tems (2.5) with M(t) ≡ I and A(t) a symmetric positive definite matrix. To
simplify the presentation, we ignore in the following the slow potential and
set U ≡ 0.

The approach is based on approximately separating the fast and slow time
scales by a series of time-dependent canonical linear coordinate transforma-
tions, which are done numerically by standard numerical linear algebra rou-
tines. The procedure can be sketched as follows:

• The Cholesky decomposition M(t) = C(t)−TC(t) and the transformation
q �→ C(t)q change the Hamiltonian in such a way that the new mass matrix
is the identity.

• The eigendecomposition

A(t) = Q(t)
(

0 0
0 Ω(t)2

)
Q(t)T , Ω(t) = diag(ωj(t))

of the symmetric stiffness matrix A(t) allows to split the positions q =
(q0, q1) and momenta p = (p0, p1) into slow and fast variables q0, p0 and
q1, p1, respectively.

• The fast positions and momenta are rescaled by ε−1/2Ω(t)1/2 and by
ε1/2Ω(t)−1/2, respectively.
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• The previous transforms produce a non-separable term qTK(t)p in the
Hamiltonian. One block of the matrix K(t) is of order O(ε−1/2) and has
to be removed by one more canonical transformation.

The Hamiltonian in the new coordinates p = (p0, p1) and q = (q0, q1) then
takes the form

H(p, q, t) =
1
2
pT0 p0 +

1
2ε
pT1Ω(t)p1 +

1
2ε
qT1 Ω(t)q1 + qTL(t)p+

1
2
qTS(t)q

with a lower block-triangular matrix L and a symmetric matrix S of the form

L =
(

L00 0
ε1/2L10 L11

)
, S =

(
S00 ε1/2S01

ε1/2S10 εS11

)
.

Under the condition of bounded energy, the fast variables q1 and p1 are now
of order O(ε1/2). The equations of motion read

ṗ0 = f0(p, q, t)
q̇0 = p0 + g0(q, t)(

ṗ1
q̇1

)
=

1
ε

(
0 −Ω(t)

Ω(t) 0

)(
p1
q1

)
+

(
f1(p, q, t)
g1(q, t)

)
with functions (

f0
f1

)
= −L(t)p− S(t)q,

(
g0
g1

)
= L(t)T q,

which are bounded uniformly in ε. The oscillatory part now takes the form of
a skew-symmetric matrix multiplied by 1/ε, similar to (2.7). We diagonalize
this matrix and define the diagonal phase matrix Φ as before:(

0 −Ω(t)
Ω(t) 0

)
= ΓiΛ(t)Γ ∗, Γ =

1√
2

(
I I
−iI iI

)
, (5.13)

Λ(t) =
(
Ω(t) 0

0 −Ω(t)

)
, Φ(t) =

∫ t

t0

Λ(s) ds. (5.14)

The transformation to adiabatic variables is now taken as

η = ε−1/2 exp
(
− i
ε
Φ(t)

)
Γ ∗

(
p1
q1

)
(5.15)

with the factor ε−1/2 introduced such that η = O(1). The equations of motion
become

ṗ0 = −L00p0 − S00q0 − εS01Q1η

q̇0 = p0 + LT00q0 + εLT10Q1η (5.16)
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for the slow variables, and

η̇ = exp
(
− i
ε
Φ
)
W exp

( i
ε
Φ
)
η − P ∗

1

(
L10p0 + S10q0

)
(5.17)

for the adiabatic variables, where

W = Γ ∗
(
−L11 −εS11

0 LT11

)
Γ,

(
P1

Q1

)
= Γ exp

( i
ε
Φ
)
.

Slow and fast degrees of freedom are only weakly coupled, because in the
slow equations (5.16) the fast variable η always appears with a factor ε. The
oscillatory part has the familiar form of a coupling matrix framed by oscilla-
tory exponentials, cf. (3.18) and (5.4). Under a separation condition for the
frequencies ωj(t), the fact that the diagonal of W is of size O(ε) implies that
the expressions Ij = |ηj |2 are adiabatic invariants. Ij is the action (energy
divided by frequency)

Ij =
1
ωj

(1
2
p21,j +

ω2
j

2ε2
q21,j

)
.

An adiabatic integrator for (2.5) is obtained by the following splitting (for
details see [HLW06, Chap.XIV] and Lorenz [Lor06]):

1. Propagate the slow variables (p0, q0) with a half-step of the symplectic
Euler method. For the oscillatory function Q1(t), replace the evaluation
at tn+1/2 = tn + h/2 by the average

Q−
1 ≈ 2

h

∫ tn+1/2

tn

Q1(t) dt,

obtained with a linear approximation of the phase Φ(t) and analytic com-
putation of the integral.

2. Propagate the adiabatic variable η with a full step of a method of type
(3.19) for (5.17).

3. Propagate the slow variables (p0, q0) with a half-step of the adjoint sym-
plectic Euler method, with an appropriate average of Q1(t).

The approximation properties of this method are analyzed in [HLW06, Chap.XIV],
where it is shown that the error over bounded time intervals, in the original
variables of (2.5), is of order O(h2) in the positions and O(h) in the momenta,
uniformly in ε for h ≤

√
ε. Numerical comparisons with other methods illus-

trate remarkable benefits of this approach [Lor06, LJL05].
We present numerical illustrations from Lorenz [Lor06] for the time-

dependent Hamiltonian (2.5) with M(t) ≡ I and

A(t) =
(
t+ 3 δ
δ 2t+ 3

)2
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Fig. 5.1. Frequencies ωj (upper) and ‖Q̇‖ (lower) for δ = 1, 0.1, 0.01

on the time interval [−1, 1]. The behaviour of the components of the solution
q(t) and the adiabatic variable η(t) are as in Fig. 3.1 for δ = 1 and η = 0.01.

Figure 5.1 shows the frequencies and the norm of the time derivative of
the matrix Q(t) that diagonalizes A(t) for various values of the parameter δ.
For small values of δ, the frequencies approach each other to O(δ) at t = 0,
and ‖Q̇(0)‖ ∼ δ−1. This behaviour affects the adiabatic variables ηj(t), as is
shown in Fig. 5.2.

For δ ∼ ε1/2, there appears an O(1) change in η in an O(δ) neighbourhood
of t = 0, and for smaller values of δ the components of η essentially exchange
their values; cf. Zener [Zen32] for the analogous situation in Schrödinger-
type equations (2.7). Small step sizes are needed near t = 0 to resolve this
behaviour. Figure 5.3 shows the step sizes chosen by a symmetric adaptive
step selection algorithm described in [HLW06, Chap. XIV] for different values
of δ. Errors of similar size are obtained in each case.

5.3 Integrators for motion under a strong constraining force

The methods and techniques of the previous subsection can be extended to
problems (2.6) with solution-dependent high frequencies [HLW06, Lor06]. The
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Fig. 5.2. Adiabatic variables ηj as functions of time
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procedure is again to apply a series of canonical coordinate transformations
to transform (numerically) to a system with nearly-separated slow and fast
components:

ṗ0 = −∇q0

(1
2
pT0M0(q0)−1p0 + U(q0, 0)

)
−∇q0

( 1
2ε
pT1Ω(q0)p1 +

1
2ε
qT1 Ω(q0)q1

)
+ f0(p, q)

q̇0 = M0(q0)−1p0 + g0(p, q) (5.18)(
ṗ1
q̇1

)
=

1
ε

(
0 −Ω(q0)

Ω(q0) 0

)(
p1
q1

)
+

(
f1(p, q)
g1(p, q)

)
with the diagonal matrix Ω(q0) of frequencies ωj(q0) and smooth functions of
magnitude f0 = O(ε), g0 = O(ε) and f1 = O(ε1/2), g1 = O(ε1/2) in the case
of bounded energy and well-separated frequencies. The fast motion of (p1, q1)
is followed numerically in the adiabatic variables η, which are again defined
by (3.17). In these coordinates, the integrator used is then similar to those
of Sects. 5.1 and 5.2. Alternatively, the system is integrated in the original
coordinates by multiple time-stepping methods such as the (mollified) impulse
method of Sect. 3.2, and the above-mentioned transformations are only used
as a theoretical tool for analysing the numerical method. We refer to [HLW06,
Chap. XIV] for more details.

The actions Ij = |ηj |2 are again adiabatic invariants in the case of well-
separated frequencies, remaining O(ε1/(m+1)) close to their initial values over
bounded time intervals if additionally all the expressions ωj ± ωk ± ωl have
zeros of multiplicity at most m. It is worthwhile to note that the oscillatory
energy appearing in (5.18) can be written as

1
2ε
pT1Ω(q0)p1 +

1
2ε
qT1 Ω(q0)q1 =

∑
j Ij ωj(q0)

so that the limit equation of the slow variables for ε→ 0 takes the form first
discovered by Rubin & Ungar [RU57],
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ṗ0 = −∇q0

(1
2
pT0M0(q0)−1p0 + U(q0, 0) +

∑
j Ij ωj(q0)

)
q̇0 = M0(q0)−1p0

with the oscillatory energy acting as an extra potential. However, as was noted
by Takens [Tak80], the slow motion can become indeterminate in the limit ε→
0 when the frequencies do not remain separated; see also Bornemann [Bor98].
In contrast to the integration of the slow limit system with constant actions
Ij , the numerical integration of the full oscillatory system by an adiabatic
integrator with adaptive time steps detects changes in the actions. Moreover, it
can follow an almost-solution (having small defect in the differential equation)
that passes through a non-adiabatic transition.
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[BS99] F. A. Bornemann, C. Schütte, On the singular limit of the quantum-classical
molecular dynamics model, SIAM J. Appl. Math., 59 (1999) 1208–1224.

[Coh04] D. Cohen, Analysis and numerical treatment of highly oscillatory differen-
tial equations, Doctoral Thesis, Univ. de Genève (2004).
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Summary. Energy level crossings are the landmarks that separate classical from
quantum mechanical modeling of molecular systems. They induce non-adiabatic
transitions between the otherwise adiabatically decoupled electronic level spaces.
This review covers results on the analysis of propagation through level crossings of
codimension two, a mathematical justification of surface hopping algorithms, and a
spectral study of a linear isotropic system.

1 Introduction

Molecular systems are a prime example of a multiscale problem. The light
electrons move rapidly, in a highly oscillatory fashion, while the nuclei, as the
heavier parts of the molecule, move much slower. T his separation of mass
and subsequently time and space scales is at the heart of Born-Oppenheimer
approximation. It allows for a drastic reduction of problem size when dealing
with molecular systems.

A quantum mechanical, non-relativistic description of a molecule is given
by the molecular Schrödinger operator

Hmol = −
N∑
j=1

1
2Mj

∆qj −
n∑

j=1

1
2∆xj

+
∑
j<k

|xj − xk|−1 +
∑
j<k

ZjZk|qj − qk|−1 −
∑
j,k

Zk|xj − qk|−1,

where the vectors q and x denote the positions of N nuclei and n electrons,
and Mj , Zj denote mass and charge of the jth nucleus. For the simplicity of
notation, one assumes that the nuclei have identical mass M and introduces
a scale parameter

0 < ε =
√

1/M � 1,

which is of the order 10−2, typically. One rewrites the operator as
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Hmol = − ε
2

2
∆q +Hel(q),

where the electronic Hamiltonian Hel(q) acts, for a fixed nuclear configuration
q, on the electronic degrees of freedom only.

The first step of Born-Oppenheimer approximation consists in solving the
electronic eigenvalue problem for all nuclear configurations,

∀q : Hel(q)χ(q, x) = E(q)χ(q, x).

For the second step, one assumes that the electronic energy levels of in-
terest are uniformly separated from the remainder of the electronic spectrum.
That is, if one is interested in two levels E−(q) and E+(q),

∀q : dist({E+(q), E−(q)}, σ(Hel(q)) \ {E+(q), E−(q)}) > δ

for some δ > 0. Then, one looks for a diabatic basis {χ̃±(q, x)} of the electronic
subspace span{χ±(q, x)}, such that the mapping q �→ χ̃±(q, x) is smooth. If
one replaces the Coulomb interactions inbetween nuclei, and between nuclei
and electrons, by a mollified charge distribution, then the electronic Hamilto-
nian depends smoothly on X , which guarantees existence of a diabatic basis.
A diabatic basis {χ̃±(q, x)} is expected to be different from the adiabatic basis
{χ±(q, x)} if the electron energy levels E±(q) have the same symmetry, see
[LS06]. Given a diabatic basis, one builds a hermitian matrix

V (q) =
(
V−−(q) V−+(q)
V+−(q) V++(q)

)
,

whose entries consists of the expectation values of the electronic Hamiltonian
with respect to the diabatic basis functions,

Vkl(q) =
〈
χ̃k(q, ·), Hel(q)χ̃l(q, ·)

〉
L2

el

, k, l ∈ {−,+}.

The Born-Oppenheimer Hamiltonian is then given as

HBO = − ε
2

2
∆q + V (q).

It is a two-level Schrödinger operator acting only on the nucleonic degrees
of freedom. Let χ̃(q, x) = (χ̃+(q, x), χ̃−(q, x))t. If ψ(q, t) is a solution of the
time-dependent Born-Oppenheimer problem

iε∂tψ = HBOψ, ψ(q, 0) = ψ0(q), (1.1)

then ψ(q, t) · χ̃(q, x) is an approximate solution of the full molecular problem

iε∂tΨ = HmolΨ, Ψ(q, x, 0) = ψ0(q) · χ̃(q, x)

by an error of order ε as ε→ 0, see [ST01].
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Fig. 1.1. The energy levels of the model for the cis-trans isomerization of retinal in
rhodopsin of [HS00]. They cross, when the angular variable φ is approximately π

2
or

3π
2

, and the collective coordinate vanishes. In the plot, the abscissa corresponds to
φ, the ordinate to y. The two local minima of the lower energy level are associated
with the cis and the trans configuration of the molecule. (See page 694 for a colored
version of the figure.)

For polyatomic molecules, which consist of more than two nuclei, one has to
expect the crossing of electron energy levels, that is the existence of nucleonic
configurations q with E+(q) = E−(q). These crossings, or more precisely,
those with a crossing manifold of codimension two or higher,

codim{q ∈ Rd; E+(q) = E−(q)} ≥ 2,

induce non-adiabatic transitions that are of leading order in ε as ε→ 0: Denote
the orthogonal eigenprojectors of the matrix V (q) by Π±(q). There is a large
set of initial data ψ0 with

Π±ψ0 = 0 and ∃t > 0 : Π±(e−iHBOt/εψ0) = O(1), ε→ 0.

That is, the solution of the two-level system performs a non-adiabatic tran-
sition from the eigenspace associated with the eigenvalue E∓(q) to the one
associated with E±(q).

Non-adiabatic transitions are typically linked with ultrafast isomerization
processes, radiationless decay, or molecular collisions. The most spectacular
example of a femtosecond isomerization modelled by an electron level crossing,
the cis-trans isomerization of retinal in rhodopsin, is the first step of vision,
see [HS00]. Rhodopsin is the light-absorbing pigment of the rods, which are
responsible for the acute, but coarse colorless vision. The model incorporates
two electronic levels E−(q) and E+(q) and considers two nucleonic degrees
of freedom q = (φ, y), an angular variable φ ∈ T and a collective coordinate
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y ∈ R. The levels E±(q) cross twice, when φ ≈ π
2 or φ ≈ 3π

2 and y = 0, see
Fig. 1.1. The two local minima of E−(q) are associated with the cis and the
trans configuration of the molecule; the lower steeper one represents the stable
cis configuration and the higher flatter one the unstable trans configuration.
Initially, the wave function is localized in the cis minimum. After photons
excited the wave function vertically to the upper level E+(q), it runs down
to approach the two crossing points and performs a non-adiabatic transition
there, down to the trans minimum of the lower level E−(q). This isomerization
is considered the first step in a chain of events that culminate in a change of
the impulse pattern sent along the optic nerve.

Generally, physical models incorporate more than two nucleonic degrees
of freedom. The numerical solution of Schrödinger equations with high di-
mensional configuration spaces, however, is a challenging task. A grid based
representation of the wave function scales exponentially in the number of
space dimensions. Since the wave function is highly oscillatory, with oscilla-
tions in space and time of about the order ε, a full grid based discretization in
four space dimensions is still considered at the borderline of current computer
power.

On the other hand, the wave function itself does not have any direct phys-
ical interpretation. Meaningful are quadratic quantities of the wave function
like the position density or expectation values. A suitable vehicle for encod-
ing quadratic quantities of a wave function ψ ∈ L2(Rd,C2) is the associated
Wigner function

W (ψ)(q, p) = (2π)−d

∫
Rd

ei y·pψ(q − ε
2y)⊗ ψ(q + ε

2y)dy, (q, p) ∈ R2d,

which is a function on phase space R2d taking values in the space of hermi-
tian 2 × 2-matrices. We refer to Chapter 1.8 in [Fol89] for an exposition of
the basic properties. Here, we will restrict ourselves to mentioning marginal
distributions and the relation to expectation values.

Integration of the Wigner function with respect to momentum and position
space result in position and momentum density, respectively,∫

Rd

tr (W (ψ)(q, p)) dp = |ψ(q)|2,
∫

Rd

tr (W (ψ)(q, p)) dq = (2πε)−d |ψ̂(p/ε)|2.

Recall that Weyl quantization associates with a smooth, compactly supported
function on phase space, a ∈ C∞

0 (R2d,C2×2), a bounded operator a(q,−iε∇q)
on the Hilbert space L2(Rd,C2), whose action is defined by

a(q,−iε∇q)ψ(q) =
∫

R2d

ei(q−y)·pa(1
2 (q + y), εp)ψ(y)dydp.

The expectation values of a Weyl quantized operator is encoded by the Wigner
function, too:
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R2d

tr (W (ψ)(q, p)a(q, p)) dqdp = 〈ψ, a(q,−iε∇q)ψ〉L2 .

The last identity, combined with the theorem of Calderón-Vaillancourt that
asserts that the operator norm of a(q,−iε∇q) is bounded by a finite sum of
sup-norms of derivatives of a, allows one to view the Wigner function as a
distribution,

W (ψ) : a �→
∫

R2d

tr (W (ψ)(q, p)a(q, p)) dqdp.

Let ψ be the solution of the two-level system (1.1). If one considers the
Wigner matrix W (ψ) with respect to an eigenbasis of the eigenvalues E±(q),
the diagonals of the matrix W (ψ) show a much more favorable behavior as
compared to the highly oscillatory wave function ψ. In the semiclassical limit
ε → 0 the diagonals can approximately be described by classical transport
and a non-adiabatic transfer of weight between them, see Theorem 2.2 below.
Hence, level populations, that is

‖Π±ψ(t)‖2
L2 =

∫
R2d

Π±(q)W (ψ(t))(q, p)Π±(q)dqdp

or other quadratic quantities related to the projected wave functions Π±ψ(t),
can be computed efficiently, even in high dimensional situations.

2 Analysis of the dynamics

The mathematical analysis of time-dependent two-level Schrödinger systems

iε∂tψ
ε =

(
− ε2

2 ∆q + V (q)
)
ψε, ψε(0) = ψε0 ∈ L2(Rd,C2) (2.1)

with crossing eigenvalues has been pioneered by Hagedorn [Hag94]. For time-
reversible molecular systems the potential matrix is real-symmetric,

V (q) = w(q)Id +
(
v1(q) v2(q)
v2(q) −v1(q)

)
, (2.2)

where w, v1, v2 ∈ C∞(Rd,R) are smooth, real-valued functions with decay
properties guaranteeing the essential self-adjointness of the Hamilton operator

H = − ε2

2 ∆q + V (q).

Denoting v(q) = (v1(q), v2(q))t, the matrix V (q) has the eigenvalues

w(q)±
√
v1(q)2 + v2(q)2 = w(q) ± |v(q)|.
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The crossing manifold {q ∈ Rd; v(q) = 0} of coinciding eigenvalues has codi-
mension two if one assumes

v(q) = 0 ⇒ rankDv(q) = 2,

where Dv(q) = (∇qv1(q),∇qv2(q)). These crossings are called conical inter-
sections in the chemical physics literature, see [DYK04]. They seem to be the
most commonly studied type of level crossings.

The mathematical results on the dynamics near conical intersections rely
on the smallness of the semiclassical parameter 0 < ε � 1, giving dynam-
ical descriptions that are asymptotic with respect to ε → 0. They fall into
three groups: the propagation of Gaussian wave packets [Hag94], of two-
scale Wigner measures [FG02, FG03, Fer03, FL03], and of Wigner functions
[LT05, FL06]. Resolving the non-adiabatic transitions at the crossing mani-
fold, all approaches rely on some kind of normal form, which in its essence is
the Landau-Zener operator [Zen32]

−iε∂s +
(
s γ
γ −s

)
, γ ∈ R.

In the framework of microlocal analysis, that is, locally in phase space,
normal forms for generic level crossings have been derived by Fermanian Kam-
merer and Gérard [FG02, FG03]. T he microlocal normal forms of Colin de
Verdière [CdV03, CdV04] even allow for superpolynomial error estimates.

2.1 Heuristics

An intuitive, but non-rigorous argument that shows the Landau-Zener oper-
ator to essentially gear the dynamics through conical intersections has been
given for the linear isotropic potential

V (q) =
(
q1 q2
q2 −q1

)
(2.3)

by Teufel and the second author [LT05]. We will adapt these heuristics to
general conical intersections in the following. We note, that they result in an
explicit formula for the gap γ, which will be a crucial ingredient of the effective
asymptotics and the subsequent numerical algorithm that we aim for.

The Schrödinger operator H is the semiclassical Weyl quantization of the
matrix-valued symbol

R2d → R2×2, (q, p) �→ 1
2 |p|

2 + V (q).

Given its eigenvalues

R2d → R, (q, p) �→ 1
2 |p|

2 + w(q) ± |v(q)|
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one associates the two Hamiltonian systems

q̇ = p, ṗ = −∇qw(q) ∓ Dv(q)v(q)
|v(q)| (2.4)

and the corresponding classical flows Φt±, which are well-defined away from
the crossing manifold.

As a first step, one formally inserts a classical trajectory (q(t), p(t)) of one
of the Hamiltonian systems into the trace-free part of the symbol of the full
operator, obtaining the purely time-dependent problem

iεφ̇(t) =
(
v1(q(t)) v2(q(t))
v2(q(t)) −v1(q(t))

)
φ(t). (2.5)

Such systems show non-adiabatic transitions in the region, where the gap be-
tween the eigenvalues is minimal (see e. g. [Bor98, HJ04, BT05]). A necessary
condition for the gap between the eigenvalues to become minimal along the
chosen trajectory is

d
dt |v(q(t))|

2 = 0.

This condition is satisfied if the trajectory passes the hypersurface

S =
{
(q, p) ∈ R2d; Dv(q)p · v(q) = 0

}
.

Let α ∈ [−1, 1] be an angle to be determined later. A conjugation by the
half-angle rotation matrix (

cos α
2 − sin α

2
sin α

2 cos α
2

)
transforms problem (2.5) to

iεφ̇(t) =
(

(cosα, sinα)t · v(q(t)) (cosα, sinα)t ∧ v(q(t))
(cosα, sinα)t ∧ v(q(t)) −(cosα, sinα)t · v(q(t))

)
φ(t),

where x ∧ y = x1y2 − x2y1 denotes the symplectic product of the two vectors
x, y ∈ R2. Assuming that the chosen trajectory passes the hypersurface of
minimal gap through the point (q∗, p∗) at time t = 0, one linearizes,

v(q(t)) = v(q∗) + tDv(q∗)p∗ +O(t2).

Aiming at a Landau-Zener problem with the diagonals linearly depending on
time and the off-diagonals constant, one chooses the rotation angle as

α = arccos
(
∇qv1(q∗) · p∗
|Dv(q∗)p∗|

)
= arcsin

(
∇qv2(q∗) · p∗
|Dv(q∗)p∗|

)
.

Since Dv(q∗)p∗ · v(q∗) = 0, the linearized system then reads as
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iεφ̇(t) =

(
t|Dv(q∗)p∗| Dv(q∗)p∗∧v(q∗)

|Dv(q∗)p∗|
Dv(q∗)p∗∧v(q∗)

|Dv(q∗)p∗| −t|Dv(q∗)p∗|

)
φ(t).

If |Dv(q∗)p∗| - 0, one sets a new semiclassical parameter ε̃ = ε/|Dv(q∗)p∗|,
and obtains the Landau-Zener problem

iε̃φ̇(t) =
(
t γ
γ −t

)
φ(t)

with gap

γ =
Dv(q∗)p∗ ∧ v(q∗)
|Dv(q∗)p∗|2

.

Let φ±(t) denote the components of the vector φ(t) with respect to the
eigenbasis of the Landau-Zener matrix, and put φ±(±∞) = limt→±∞ φ±(t).
If (

φ+(−∞)
φ−(−∞)

)
=

(
1
0

)
or

(
φ+(−∞)
φ−(−∞)

)
=

(
0
1

)
,

then (
|φ+(+∞)|2
|φ−(+∞)|2

)
=

(
1− T T
T 1− T

)(
|φ+(−∞)|2
|φ−(−∞)|2

)
with a transition rate

T ∼ exp
(
−π
ε̃
γ2

)
, ε̃→ 0.

In particular, the Landau-Zener rate T exhibits that the non-adiabatic tran-
sitions are of leading order in ε̃ if the chosen trajectory experiences a gap γ
that is of order

√
ε̃.

Remark 2.1. We note that even though the time-dependent problem (2.5) we
started with is formulated just in terms of the position coordinate q(t), the
resulting Landau-Zener problem has a gap γ that depends on phase space
information, namely the point (q∗, p∗) at which the trajectory attains the
minimal gap between the eigenvalues w(q)± |v(q)|.

2.2 Branching process

The heuristics motivates the following definition of random trajectories and a
corresponding Markov process for effectively describing the dynamics through
conical intersections.

One attaches to points (q, p) ∈ R2d in phase space a label −1 or +1,
indicating reference to the eigenvalue w(q)−|v(q)| or w(q)+ |v(q)|. Moreover,
one chooses a positive number R > 0, defining the set{

(q, p) ∈ R2d; |v(q)| ≤ R
√
ε
}
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as a distinguished tubular neighborhood of the crossing manifold. For labelled
phase space points (q, p, j) ∈ R2d × {−1,+1}, one sets

T (q,p,j) : [0,+∞) → R2d × {−1,+1}

such that T (q,p,j)(t) = (Φtj(q, p), j) as long as

|v(qj(t))| > R
√
ε or Dv(qj(t))pj(t) · v(qj(t)) �= 0.

A jump from j to −j occurs with probability

T (q∗, p∗) = exp
(
−π
ε

(Dv(q∗)p∗ ∧ v(q∗))2
|Dv(q∗)p∗|3

)
(2.6)

whenever Φtj(q, p) hits the manifold of minimal gap

S =
{
(q, p) ∈ R2d; Dv(q)p · v(q) = 0

}
.

at time t in a point (q∗, p∗) ∈ S with |v(q∗)| ≤ R
√
ε.

The randomized evolution T (q,p,j)(t) defines a Markov process. The asso-
ciated backwards semi-group Lt is given by its action on a class of continuous
scalar-valued functions a = a(q, p, j) satisfying suitable boundary conditions
at the manifold of minimal gap S,

Lta(q, p, j) := E(q,p,j)a
(
T (q,p,j)(t)

)
,

see [LT05, FL06]. This definition naturally extends to matrix-valued functions
of the form a = a+Π++a−Π− with a± ∈ C∞

0 (R2d\S,C), that is, to functions
that commute with the potential matrix V . By duality, the semigroup acts on
Wigner functions also,

LtW (ψ) : a �→
∫

R2d

tr
(
W (ψ)(q, p)(Lta)(q, p)

)
dqdp.

Theorem 2.2 ([LT05, FL06]). Let (ψε0)ε>0 be a bounded sequence in L2(Rd,C2)
such that Π−ψε0 = 0 and there exists δ > 0 with

lim
ε→0

∫
Sδ

|W (ψε0)(q, p)| dqdp = 0,

where Sδ = {(q, p) ∈ R2d; |v(q)|, |Dv(q)p · v(q)| ≤ δ}. Let V be a matrix with
conically intersecting eigenvalues as given in (2.2). Suppose, that q �→ |v(q)|
is convex, and that Dv(q)∇w(q) · v(q) ≤ 0 for all q ∈ Rd.
Then, for all T > 0, the solution ψε(t) of the Schrödinger equation (2.1) with
initial data ψε(0) = ψε0 satisfies

sup
t∈[0,T ]

∫
R2d

(
W (ψε(t))− LtW (ψε0)

)
a(q, p) dqdp

= O(R−1) +O(R3√ε) +O(
√
ε | ln ε|)

for all a = a+Π+ + a−Π− with a± ∈ C∞
0 (R2d \ S,C).
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Remark 2.3. Note, that the error is minimal as R = ε−1/8 and is of order ε1/8.

Remark 2.4. The assumptions on the potential V (q) guarantee that minus-
trajectories issued from the upper level never meet the crossing again. Hence,
the system dealt with does not show any interlevel interferences, which could
not be resolved by merley working on the diagonal of the Wigner matrix.

Remark 2.5. The assumptions on the initial data (ψε0)ε>0 ensure that the wave
function does not localize near the manifold of minimal gap and the crossing
manifold initially. This is due to the semigroup encorporating only an effective
treatment of the non-adiabatic transitions, which becomes valid when the
solution has passed by the crossing and the manifold of minimal gap.

In [LT05], Theorem 2.2 has been proven for the linear isotropic potential
(2.3) with an error of o(1) as ε → 0. The proof for general potentials pro-
viding the error bound with respect to ε and R is given in [FL06]. It falls
into two parts: Away from the crossing, there is only classical transport. One
shows by semiclassical Weyl calculus that the error of propagation is of order
O(R−1) + O(

√
ε). Near the crossing, non-adiabatic transitions become rele-

vant. For proving the correctness of the asymptotic transition rates one resorts
to a refined version of the microlocal normal form of [CdV03].

2.3 Surface hopping algorithm

The semigroup Lt suggests a numerical algorithm that can be seen as a rigor-
ous counterpart to the surface hopping algorithms of chemical physics. Such
algorithms have been introduced by Tully and Preston in [TP71] for studies
of molecular collisions. To our knowledge Theorem 2.2 is the first mathemat-
ically rigorous justification for such an approach. For high dimensional prob-
lems in photochemistry surface hopping seems to be one of the most popular
algorithms employed. We refer to the review [ST05] as a pointer to the vast
chemical literature on algorithms of this type.

A numerical realization of the semigroup Lt is achieved by the following
steps: one projects the initial wave function to the energy levels and com-
putes the associated Wigner functions. After sampling the Wigner functions,
one propagates along the classical trajectories of the Hamiltonian systems
(2.4) and opens up a new trajectory on the other level whenever a trajectory
passes through the hypersurface of minimal gap. When splitting up, the weight
associated with the trajectories is distributed according to the Landau-Zener
transition coefficient (2.6).

[LST06] thoroughly validates this algorithm for systems with linear isotropic
potentials. Figure 2.1 shows the relative error of level populations for the fol-
lowing test case: the initial data are Gaussian wave packets associated with
the upper level localized at a distance of 5

√
ε from the crossing with aver-

age momentum of order one. The time evolution stops at time t = 10
√
ε.
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Fig. 2.1. The absolute error of the surface hopping algorithm versus a Strang
splitting scheme for level populations with respect to the semiclassical parameter ε.
The dashed line is the function 1

2

√
ε, while the solid line is the absolute error for

the final populations on the two levels.

The level populations ‖Π±ψ(t)‖2
L2 are computed by the rigorous surface hop-

ping algorithm as well as by a numerically converged Strang splitting scheme.
As a function of the semiclassical parameter, the resulting absolute error is
bounded by 1

2

√
ε. All the other experiments of [LST06] show a comparable

error of order
√
ε, indicating, that the ε1/8 error bound of Theorem 2.2 is not

sharp.

3 Spectral study

Mathematically rigorous spectral studies of operators with crossing eigenval-
ues have aimed at resolvent estimates [Jec0303, Jec05] and bounds on the num-
ber of resonances [Néd96, Néd01, Néd03]. More explicit, quantitative investi-
gations showing a clear spectral fingerprint of non-adiabatic origin have been
undertaken by Avron and Gordon in the zero energy regime [AG00a, AG00b].
Complementarily to these results, the joint work of the second author with Fu-
jiié and Nédélec [FLN06] deals with Bohr-Sommerfeld conditions for energies
bounded away from zero.

The common model operator of [AG00a, AG00b, FLN06] has a linear
isotropic potential matrix with conically intersecting eigenvalues,

H = −ε2∆q + V (q) = −ε2∆q +
(
q1 q2
q2 −q1

)
.
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Its scalar counterparts are the one-level operators

H± = −ε2∆q ± |q|.

The upper level operator H+ has a confining potential, which is bounded
from below by zero and increases to infinity as |q| → ∞. Hence, H+ has purely
discrete spectrum with strictly positive eigenvalues (see Theorems XIII.47 and
XIII.67 in [RS78]). The lower level operator H− has a repulsive potential. Its
commutator with the generator of dilations D = 1

2i(q ·∇q +∇q · q) is positive,

[H−, iD] = −2∆q + |q|,

and yields a global Mourre estimate. Hence, H− has purely absolutely contin-
uous spectrum (see Corollary 4.10 in [CF*87]). The full operator H , however,
inherits the purely absolutely continuous spectrum of H−, while echoing the
discrete spectrum of H+ with resonances close to the real axis.

The resonances of the operator H are defined by complex dilation (see
Theorem 2.1 in [Néd96]). They are the eigenvalues E ∈ C of the complex
scaled Hamiltonian

Hθ = −ε2e−2iθ∆q + eiθV (q),

which is a non-selfadjoint operator with discrete spectrum in the lower half-
plane independent of the dilation parameter θ ∈]0, π3 [.

Remark 3.1. For a large class of scalar Schrödinger operators, resonances de-
fined by complex dilation have been identified with the poles of a suitable con-
tinuation of the resolvent or of the scattering matrix. The underlying physical
picture is that of a slowly decaying state, whose life-time is set by the imag-
inary part of the resonance. We refer to Chapter 8 in [CF*87], Chapter 16
in [HS96], or the review [Zwo99] as introductory reading for the theory of
resonances.

A resonance E of H is determined by solving Hψ = Eψ in the distri-
butional sense and validating decay and regularity properties of the dilated
resonant state q �→ ψ(e−iθq). One uses the radial symmetry in V (q) to reduce
the partial differential operator H to a direct sum of ordinary differential
systems: the operator P is unitarily equivalent to⊕

ν∈Z+ 1
2

Hν(r,−iε∂r; ε), Hν(r, ρ; ε) =
(
r2 − ρ εν/r
εν/r r2 + ρ

)
, (3.1)

where (r, ρ) ∈ R+ × R. Nédélec [Néd96] has derived this equivalence by a
Fourier transformation, a change to polar coordinates (r, φ) ∈ R+ × T, a
conjugation by the half-angle rotation matrix(

cos φ
2 − sin φ

2

sin φ
2 cos φ

2

)
,
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and a final Fourier series ansatz in the angular variable φ. A similar decom-
position labelled by half-integers has been obtained by Avron and Gordon
[AG00a, AG00b], using the commutation relation of H with an angular mo-
mentum operator L,

[H,L] = 0, L = q ∧ (−iε∇q) + 1
2

(
0 i
−i 0

)
.

Both decompositions share the fact, that the half-integer labelling turns
the conical intersection q �→ ±|q| into a family of avoided crossings. However,
while in [AG00a, AG00b] the ordinary differential systems are solved in the
zero energy regime in terms of generalized hypergeometric functions, the aim
of [FLN06] is an explicit asymptotic analysis (ε→ 0) of non-zero energies by
means of an exact WKB method.

According to the decomposition (3.1) one associates with a resonance E
of H an angular momentum number ν ∈ Z + 1

2 if E corresponds to a distri-
butional solution of the ordinary differential problem

Hν(r,−iε∂r; ε)u = Eu,

such that r �→ u(e−iθr) satisfies appropriate boundary conditions as r → 0
and r → +∞. Consider E ∈]a, b[ for positive numbers 0 < a < b. If ε > 0 is
sufficiently small, the energy surface{

(r, ρ) ∈ R+ × R; det (Hν(r, ρ; ε)− E) = 0
}

consists of two connected curves, a closed simple one and one being un-
bounded. Let Aν(E, ε) be the action associated with the closed curve,

Aν(E, ε) = 2
∫ r1

r0

√
det(Hν(r, 0; ε)− E) dr,

where 0 < r0 < r1 are the first and second positive zero of the mapping
r �→ det(Hν(r, 0; ε)−E), and the square root is taken positive. As a function
of E, the action Aν(E, ε) is extended analytically into a complex neighborhood
of the interval ]a, b[. The first result is the following Bohr-Sommerfeld type
quantization condition of resonances with fixed angular momentum.

Theorem 3.2 ([FLN06]). Let E0 > 0 and ν ∈ Z + 1
2 be given. Then there

exist δ > 0, ε0 > 0, and a function c(E, ε) : {(E, ε) ∈ C×]0, ε0[; |E − E0| <
δ} → C with c(E, ε) → 0 uniformly in E as ε→ 0, such that E is a resonance
of H = −ε2∆q +V (q) with angular momentum ν if and only if (E, ε) satisfies
the following quantization condition:√

πε

2
ν e−iπ/4E−3/4 eiAν(E,ε)/ε + 1 = c(E, ε). (3.2)



590 F. Bornemann, C. Lasser, T. Swart

To our knowledge, Theorem 3.2 is the first Bohr-Sommerfeld quantization
condition for a Schrödinger system with crossing eigenvalues. The prefactor
before the exponential of the action carrying the second scale

√
ε is a clear

signature of non-adiabaticity, stemming from a connection formula involving
the Landau-Zener problem

iε∂ru =
(
r −γ
γ −r

)
u, γ = ε ν√

2
E−3/4 +O(ε2). (3.3)

For the proof of Theorem 3.2, the exact WKB method of Gérard and Grigis
[GG88] is extended from scalar Schrödinger equations to a class of 2× 2 first
order differential systems, covering the case Hν(r,−iε∂r; ε)u = Eu. The exact
WKB solutions are of the form

u(r) = e±iz(r)/εw(r), z(r) =
∫ r

r∗

√
det(Hν(s, 0; ε)− E) ds.

They are locally defined away from turning points, which are the zeros of
the mapping r �→ det(Hν(r, 0; ε) − E). For E ∈]a, b[, there are three positive
turning points r0 < r1 < r2, where r0 tends to zero, while r1 and r2 coalesce
at
√
E as ε→ 0.

For obtaining global solutions, one connects the exact WKB solutions at
the turning points, using the good ε-asymptotics of the amplitude vector w.
More precisely, one constructs an exact solution, which vanishes at the origin,
and represents it after several connection procedures as a linear combination
of solutions with controlled behavior at infinity. For r → +∞, there is a fun-
damental system of solutions u±∞, such that r �→ u+

∞(e−iθr) is exponentially
growing and r �→ u−∞(e−iθr) exponentially decaying. The quantization for-
mula (3.2) corresponds to the condition that the connection coefficient of the
exponentially growing solution u+

∞ vanishes.
The origin is a regular singular point of the equationHν(r,−iε∂r; ε)u = Eu

with indices ±ν. Moreover, the first turning point r0 tends to zero as ε → 0.
One constructs an exact WKB solution in a small complex neighborhood of
the origin, which corresponds to the index +ν. Studying the two parameter
asymptotics of this solution as (r, ε) → (0, 0), one encounters the same diffi-
culties as in the context of the Langer modification for the radial Schrödinger
equation, see also [FR00]. The o(1) error estimate in Theorem 3.2 originates
just from here. The rest of the proof gives better control on the convergence
rate.

At r =
√
E, the second and third turning points r1 and r2 coalesce as

ε→ 0. The connection formula at this double turning point is calculated using
a microlocal reduction to a normal form. Microlocally near (r, ρ) = (

√
E, 0),

the equationHν(r,−iε∂r; ε)u = Eu looks like the Landau-Zener problem (3.3).
A further reduction step leads to the saddle-point problem

r(−iε∂r)u = |γ|2
2 u.
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Fig. 3.1. Resonances of the model operator H = −ε2∆q + V (q). The parameter
k lies in {11, 12, . . . , 60}, while ν is chosen in {1.5, 2.5, . . . , 5.5}. The semiclassical
parameter ε varies from 10−3 to 1. (See page 694 for a colored version of the figure.)

For this problem exact microlocal connection formulas are known [CP94,
Ram96] and one has to lift them to the exact WKB solutions. The second
scale

√
ε in the quantization condition (3.2) originates from this connection.

An asymptotic study (Proposition 8.2 in [FLN06]) of the action yields

Aν(E, ε) = 4
3E

3/2 + πνε+O(ε2| ln ε|) (ε→ 0).

Plugging this expansion into the Bohr-Sommerfeld condition (3.2), one is mo-
tivated to define the following family of almost horizontal sequences:

Γν(a, b; ε) =
{
λ ∈ C; λ = λkνε− i 3

8

(
ε ln 1

ε − ε ln
πν2

2λkνε

)
,

k ∈ Z s.t. λkνε ∈]a, b[
}

with
λkν = 3π

16 (8k − 4ν + 5) (k ∈ Z, ν ∈ Z + 1
2 ).

Since λkνε ∈]a, b[, the second term of the imaginary part of λ ∈ Γν(a, b; ε)
is of O(ε) and smaller than the first term − 3

8ε ln
1
ε . Hence, Γν(a, b; ε) is an

almost horizontal sequence in the lower half-plane with distance of O(ε ln 1
ε )

from the real axis. The asymptotic distribution of resonances with real part
in the positive interval ]a, b[ reads as follows:

Theorem 3.3 ([FLN06]). Let N ∈ N and 0 < a < b be given. Then there is
ε0 > 0 and a positive function c : ]0, ε0[→ R+ with c(ε) = o(ε) as ε → 0 such
that for each λ ∈

⋃
ν≤N Γν(a, b; ε) there exists one and only one resonance of

H = −ε2∆q + V (q) within the set
{
E ∈ C; |E − λ2/3| < c(ε)

}
.
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The plots in Fig. 3.1 illustrate the distorted lattice of resonances given by
Theorem 3.3. The larger the angular momentum number ν is taken, the closer
the resonance is to the real axis and the longer the life time of the correspond-
ing resonant states will be. This observation is in wonderful agreement with
the dynamical properties of the operator P . The one-level operators H± in-
duce Hamiltonian systems conserving angular momentum q∧p = q1p2− q2p1,
which also encodes how close classical trajectories arrive near the crossing
manifold {q = 0}. On the one hand, a high angular momentum number ν
of a resonance mirrors a periodic orbit of the upper level with high angu-
lar momentum. Such orbits in turn imply existence of localized quasimodes
and long-living resonant states. On the other hand, small angular momentum
numbers ν correspond to orbits close to the crossing manifold. Close to the
crossing, non-adiabatic transitions to the unbounded motion of the minus-
system are possible. In this regime shorter life-times and resonances far away
from the real axis have to be expected.
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Summary. We study the motion of electrons in a periodic background potential
(usually resulting from a crystalline solid). For small velocities one would use either
the non-magnetic or the magnetic Bloch hamiltonian, while in the relativistic regime
one would use the Dirac equation with a periodic potential. The dynamics, with the
background potential included, is perturbed either through slowly varying external
electromagnetic potentials or through a slow deformation of the crystal. In either
case we discuss how the Hilbert space of states decouples into almost invariant
subspaces and explain the effective dynamics within such a subspace.

1 Introduction

In a crystalline solid the conduction electrons move in the potential created
by the ions and the core electrons. Somewhat mysteriously and linked to the
Pauli exclusion principle, the Coulomb repulsion between conduction electrons
may be ignored, within a good approximation. Thereby one arrives at a fun-
damental model of solid state physics, namely an ideal Fermi gas of electrons
subject to a periodic crystal potential. Let Γ be the periodicity lattice. It is
a Bravais lattice and generated through the basis {γ1, γ2, γ3}, γj ∈ R3, as

Γ = {γ =
3∑

j=1

αjγj with α ∈ Z3} . (1.1)

The crystal potential VΓ is then Γ -periodic, i.e., VΓ : R3 → R and VΓ (x +
γ) = VΓ (x) for all γ ∈ Γ , and the electrons are governed by the one-particle
hamiltonian

HSB = −1
2
∆x + VΓ . (1.2)

HSB is the (Schrödinger)-Bloch hamiltonian. A wave function ψt ∈ L2(R3)
evolves in time according to the Schrödinger equation
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i
∂

∂t
ψt = HSBψt . (1.3)

We have chosen units such that the mass of an electron me = 1 and � = 1.
The electron charge, e, is absorbed in VΓ . Since VΓ is periodic, electrons move
ballistically with an effective dispersion relation given by the Bloch energy
bands En, see below for a precise definition. En is periodic with respect to
the lattice Γ ∗ dual to Γ , En(k + γ∗) = En(k) for all γ∗ ∈ Γ ∗, k ∈ R3. This
feature makes the dynamical properties of a Bloch electron very different from
a massive particle with dispersion Efree(k) = 1

2k
2 valid in case VΓ = 0.

The thermodynamics of the electron gas is studied takingHSB as a starting
point. Dynamically, however, one wants to probe the response of the electrons
to external forces which very crudely come in two varieties.

(i) External electromagnetic potentials. Electrostatic potentials manufactured
in a lab have a slow variation on the scale of the lattice Γ . Therefore we
set Vext(x) = eφ(εx), e the charge of the electron, with ε a dimensionless
parameter and φ independent of ε. ε� 1 means that the potential Vext has a
slow variation when measured with respect to the lattice spacing of Γ . Note
that the electrostatic force is O(ε) and thus weak. External magnetic fields
on the other hand can be so strong that the radius of gyration is comparable
to the lattice spacing. It then makes sense to split the vector potential as
A0 +Aext, where A0(x) = − 1

2B0 ∧ x with B0 ∈ R3 a constant magnetic field.
Included in HSB, this yields the magnetic Bloch hamiltonian

HMB =
1
2
(−i∇x −A0)2 + VΓ . (1.4)

Aext is a probing vector potential in addition to A0. Aext is slowly varying
on the scale of the lattice, Aext(x) = A(εx) with A independent of ε, and the
corresponding magnetic field is small of order ε. Including all electromagnetic
potentials, for simplicity with the electric charge absorbed into A and φ, the
hamiltonian becomes

H =
1
2
(
− i∇x −A0(x)−A(εx)

)2 + VΓ (x) + φ(εx) . (1.5)

(ii) Mechanical forces. The crystal lattice can be deformed through exter-
nal pressure and shear. Thereby an electric polarization is induced, an ef-
fect which is known as piezoelectricity. If charges are allowed to flow, in this
way mechanical pressure can be transformed into electric currents. The me-
chanical forces are time-dependent but slow on the typical time-scale of the
electrons. Therefore in (1.2) VΓ (x) is replaced by VΓ (εt)(x, εt). Γ (εt) is the
instantaneous periodicity lattice and is defined as in (1.1). VΓ (t) is space-
periodic, i.e. VΓ (t)(x + γ, t) = V (x, t) for all γ ∈ Γ (t). The special case of a
time-independent lattice, Γ (t) = Γ , but a still slowly in time varying crystal
potential is also of interest. For example, one may imagine a unit cell with
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two nuclei. If the two nuclei are displaced relative to each other, then Γ re-
mains fixed while the crystal potential in the unit cell changes with time. The
resulting piezoelectric hamiltonian reads

HPE(t) = −1
2
∆x + VΓ (εt)(x, εt) . (1.6)

Our general goal is to understand, in each case, the structure of the solu-
tion of the time-dependent Schrödinger equation for small ε. Obviously, H in
(1.5) is a space-adiabatic problem, while (1.6) corresponds to a time-adiabatic
problem. However in the latter case it turns out to be profitable to transform
to a time-independent lattice, say Γ (0). Then also terms varying slowly in
space are generated. Thus, in the general case the full power of the space-
adiabatic perturbation theory [PST03a, Teu03] will be needed. A word of
caution must be issued here for the magnetic Bloch hamiltonian. To use the
methods from [PST03a] in this context, the unperturbed Hamiltonian must
be periodic, which is the case only if the magnetic flux per unit cell is rational.
One can then define an enlarged magnetic unit cell such that HMB is invariant
with respect to magnetic translations. If the magnetic flux is not rational, the
crutch is to include in A0 a nearby rational flux part of the magnetic field,
with a small denominator, and to treat the remainder as Aext.

To achieve our goal, depending on the context we use one of the peri-
odic hamiltonians as backbone. The periodic hamiltonian is denoted by Hper

with Hper either HSB, or HMB, or HPE at fixed t, or HLS from (1.8), or HDB

from (1.9). As explained below, the Hilbert space H = L2(R3) then splits
as H =

⊕∞
n=0Hn, where n is the band index. Each subspace Hn is invari-

ant under exp[−itHper] and Hper restricted to Hn is unitarily equivalent to
multiplication by En(k). En(k) is the effective hamiltonian associated to the
n-th band. The complexity of the full problem has been reduced substan-
tially, since only a single band dynamics has still to be studied. Modifying
Hper such that it becomes slowly varying in space-time is, vaguely speaking,
a small perturbation. Thus one would expect that the invariant subspace Hn

is to be substituted by a slightly tilted subspace. On this subspace En(k)
will turn into a more complicated effective hamiltonian. The difficulty is that,
while the dynamics generated by Hper can be computed by solving a purely
spectral problem, none of the perturbed hamiltonians can be understood in
this way. In particular, one has to spell out carefully over which time scale
the slightly tilted subspace associated to Hn remains approximately invari-
ant and in what sense the dynamics generated by the effective hamiltonian
approximates the true time evolution.

To lowest order the effective hamiltonian can be guessed from elementary
considerations and belongs to a standard tool of solid state physics [AM76].
The guess provides however little hint on the validity of the approximation.
There one needs a mathematical theorem which states precise conditions on
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the initial wave function and provides an error bound, from which the time
scale for validity can be read off.

Under the header “geometric phase” physicists and quantum chemists have
realized over the past twenty years, say, that the first order correction to the
effective hamiltonian carries a lot of interesting physics, see [BM*03] for a
recent comprehensive overview. For the magnetic Bloch hamiltonian the first
order correction yields a Hall current proportional to the Chern number of the
magnetic Bloch vector bundle. Similarly, the modern theory of piezoelectricity,
expresses the piezocurrent as an integral of the Berry connection over the
Brillouin zone, see King-Smith, Vanderbilt [KSV93] and Resta [Res94]. First
order effective Hamiltonians are no longer guessed so easily and it is convenient
to have the systematic scheme [PST03a] available.

In nature electrons are spin 1
2 particles. The wave function is thus C2-

valued and the hamiltonian in (1.5) is modified to

H =
1
2
(
− i∇x−A0(x)−A(εx)

)2 +VΓ (x)+φ(εx)− 1
2
σ ·

(
B0 +εB(εx)

)
(1.7)

with B = ∇ ∧ A for the slowly varying part of the magnetic field. Here
σ = (σ1, σ2, σ3) is the 3-vector of Pauli spin matrices. Besides the term pro-
portional to the uniform magnetic field B0, H acquires a subleading term of
order ε. More accurately one may want to include the spin-orbit coupling.
The periodic piece of the hamiltonian reads then

HLS = −1
2
∆x + VΓ (x) +

1
4
σ ·

(
∇VΓ (x) ∧ (−i∇x)

)
(1.8)

and the slowly varying potential is added as in (1.7) with the additional sub-
leading term ε 1

4σ · (∇φ(εx) ∧ (−i∇x)).
Depending on the crystalline solid, the conduction electrons can move so

fast that relativistic corrections become important. On the one-particle level
an obvious choice is then the Dirac equation with a periodic potential VΓ .
Wave functions are C4-valued and the hamiltonian reads

HDB = βmec
2 + cα · p+ VΓ , p = −i∇x . (1.9)

We introduced here the mass, me, of the electron and the speed of light, c.
The 4× 4 matrices β, α1, α2, α3 are standard and defined in [Tha94, Ynd96],
for example. Note that the Lorentz frame is fixed by the solid, i.e. by VΓ .

In fact, the non-relativistic limit for HDB yields the spin-orbit hamiltonian
HLS [Tha94, Ynd96]. If ‖VΓ ‖ is bounded, for sufficiently large c, the Dirac
hamiltonian HDB has a spectral gap, which widens as c → ∞. Projecting
onto the electron subspace, to leading order in 1/c one obtains the Pauli-
Bloch hamiltonian −(1/2me)∆x + VΓ with the spin-orbit coupling in (1.8) as
a correction of strength 1/(mec)2. In addition the crystal potential is corrected
by −∆xVΓ (x)/8(mec)2.

In our contribution we will provide some background on how to establish,
including error bounds, the validity of the approximate dynamics as generated
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by an effective hamiltonian, including order ε corrections, for most of the
models mentioned in the introduction. For this purpose it is necessary to
briefly recall the spectral theory for the periodic hamiltonian, which is done
in the following section. In the subsequent sections we deal with particular
cases in more detail. We start with the non-magnetic Bloch hamiltonian, see
(1.5) with B0 = 0. For the magnetic Bloch hamiltonian we explain howB0 → 0
and B0 →∞ may be viewed as particular adiabatic limits. Piezoelectricity is
discussed in the last section.
Remark. Our contribution is one part of the research project jointly with
S. Bauer and M. Kunze within the Schwerpunkt. Their part will be covered in
[BK06]. Both contributions appear now as almost disjoint, which only reflects
that we wanted to present a coherent story. The unifying aspect is an adiabatic
limit for wave-type evolution equations. In this contribution we stay on the
level of effective hamiltonians while in [BK06] one pushes the scheme to the
first dissipative correction.

2 The periodic hamiltonians

We consider a general dimension, d, and assume that the periodicity lattice
Γ is represented as

Γ =
{
x ∈ Rd : x =

∑d
j=1αj γj for some α ∈ Zd

}
, (2.1)

where {γ1, . . . , γd} are vectors spanning Rd. We denote by Γ ∗ the dual lattice
of Γ with respect to the standard inner product in Rd, i.e. the lattice generated
by the dual basis {γ∗1 , . . . , γ∗d} determined through the conditions γ∗i · γj =
2πδij , i, j ∈ {1, . . . , d}. The centered fundamental domain M of Γ is defined
by

M =
{
x ∈ Rd : x =

∑d
j=1βj γj for βj ∈ [− 1

2 ,
1
2 ]
}
, (2.2)

and analogously the centered fundamental domain M∗ of Γ ∗. The set M∗ is
the first Brillouin zone in the physics parlance.

Assumption 1. The crystal potential VΓ : Rd → R satisfies VΓ (x + γ) =
VΓ (x) for all γ ∈ Γ , x ∈ Rd. VΓ is infinitesimally bounded with respect to
−∆.

It follows from Assumption 1 that the periodic hamiltonians discussed
below are self-adjoint on the domain of −∆.

2.1 The Bloch hamiltonian

We consider
H = −1

2
∆+ VΓ . (2.3)
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The periodicity of H is exploited through the Bloch-Floquet-Zak transform,
or just the Zak transform for sake of brevity [Zak68]. The advantage of such
a variant is that the fiber at k of the transformed Hamiltonian operator has
a domain which does not depend on k.

The Zak transform is defined as

(UZψ)(k, x) :=
∑
γ∈Γ

e−ik·(x+γ)ψ(x+ γ) , (k, x) ∈ R2d, (2.4)

initially for a fast-decreasing function ψ ∈ S(Rd). One directly reads off from
(2.4) the following periodicity properties(

UZψ
)
(k, y + γ) =

(
UZψ

)
(k, y) for all γ ∈ Γ , (2.5)(

UZψ
)
(k + λ, y) = e−iy·λ (

UZψ
)
(k, y) for all λ ∈ Γ ∗ . (2.6)

From (2.5) it follows that, for any fixed k ∈ Rd,
(
UZψ

)
(k, ·) is a Γ -periodic

function and can thus be regarded as an element of Hf = L2(M). M =
Rd/Γ and it has the topology of the d-dimensional torus Td. On the other
side, Equation (2.6) involves a unitary representation of the group of lattice
translations on Γ ∗ (isomorphic to Γ ∗ and denoted as Λ), given by

τ : Λ→ U(Hf) , λ �→ τ(λ) ,
(
τ(λ)ϕ

)
(y) = eiy·λϕ(y). (2.7)

It is then convenient to introduce the Hilbert space

Hτ =
{
ψ ∈ L2

loc(R
d,Hf) : ψ(k − λ) = τ(λ)ψ(k) for all λ ∈ Λ

}
= L2

τ (R
d , Hf) , (2.8)

equipped with the inner product

〈ψ, ϕ〉Hτ =
∫
M∗

dk 〈ψ(k), ϕ(k)〉Hf . (2.9)

Obviously, there is a natural isomorphism between Hτ and L2(M∗,Hf) given
by restriction from Rd to M∗, and with inverse given by τ -equivariant con-
tinuation, as suggested by (2.6). Equipped with these definitions, one checks
that the map in (2.4) extends to a unitary operator

UZ : L2(Rd) → Hτ
∼= L2(M∗, L2(M)), (2.10)

with inverse given by

(U−1
Z ϕ)(x) =

∫
M∗

dk eik·xϕ(k, [x]), (2.11)

where [ · ] refers to the a.e. unique decomposition x = γx + [x], with γx ∈ Γ
and [x] ∈M .
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As already mentioned, the advantage of this construction is that the trans-
formed hamiltonian is a fibered operator over M∗. Indeed, for the Zak trans-
form of the hamiltonian operator (2.3) one finds

UZHU−1
Z =

∫ ⊕

M∗
dkH(k) (2.12)

with fiber operator

H(k) =
1
2
(
− i∇y + k

)2 + VΓ (y) , k ∈M∗ . (2.13)

By Assumption 1, for fixed k ∈ M∗, the operator H(k) acts on L2(M)
with the Sobolev space H2(M) as domain independently of k ∈ M∗. Each
fiber operator H(k) has pure point spectrum accumulating at infinity. For
definiteness the eigenvalues are enumerated according to their magnitude
E0(k) ≤ E1(k) ≤ E2(k) ≤ . . . and repeated according to their multiplicity.
En : M∗ → R is the n-th energy band function. It is continuous on M∗ when
viewed as a d-torus. Generically the eigenvalues En(k) are non-degenerate.
Of course, there may be particular points in k-space where particular energy
bands touch each other and the corresponding eigenvalue becomes degenerate.
The normalized eigenfunction corresponding to En(k) is the Bloch function
and denoted by ϕn(k) ∈ H2(M). It is determined only up to a k-dependent
phase factor. A further arbitrariness comes from points where energy bands
touch. We denote by Pn(k) the projection along ϕn(k) and set

Pn =
∫ ⊕

M∗
dkP (k) , Hn = PnL

2(Rd) . (2.14)

Through the Zak transform we have achieved the product structure

H = Hs ⊗Hf , Hs = L2(M∗) , Hf = L2(M) . (2.15)

ψ ∈ Hn is of the form φ(k)ϕn(k, y). The band index n fixes the local pattern of
the wave function ψ while φ(k) provides the slow variation. Therefore L2(M∗)
is the Hilbert space of the slow degrees of freedom. On the other hand for
fixed k, one has oscillations in time determined by the eigenvalues En(k). On
long time scales, these become fast oscillations. Therefore Hf = L2(M) is the
Hilbert space of the fast degrees of freedom.

Since [Pn, H ] = 0, the subspaces Hn are invariant under e−iHt. Pne−iHtPn
is unitarily equivalent to multiplication by e−iEn(k)t on L2(M∗). Note that, in
general, Hn is not a spectral subspace for H . The band functions generically
have overlapping ranges. Therefore, if slowly varying terms are added to the
hamiltonian, the dynamics can no longer be captured so easily by a spectral
analysis of the perturbed hamiltonian.
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2.2 The magnetic Bloch hamiltonian

We consider d = 3. The hamiltonian reads

H =
1
2
(
− i∇x −A(x)

)2 + VΓ (x) , x ∈ R3 , (2.16)

with A(x) = − 1
2B ∧ x, B ∈ R3. Physically the most relevant case is d = 2. It

is included here by setting x = (x1, x2, 0) and B = (0, 0, B0). Following Zak
[Zak64], see also [DGR02], one introduces the magnetic translations

(Tαψ)(x) =
(
e−iα·(−i∇x+A(x))ψ

)
(x) = eiαA(x)ψ(x− α) (2.17)

with α ∈ R3. They satisfy the Weyl relations

TαTβ = e−
i
2B·(α∧β)Tα+β = e−iB·(α∧β)TβTα . (2.18)

To have a commuting subfamily we need

Assumption 2. The magnetic field B is such that B · (γ ∧ γ′) ∈ 2πQ for all
γ, γ′ ∈ Γ .

In the two-dimensional case our assumption requires that the magnetic
flux per unit cell, B0 · (γ1 ∧ γ2), is a rational multiple of 2π.

Under the Assumption 2 there exists a sublattice Γ0 ⊂ Γ such that B ·(γ∧
γ′) ∈ 2πZ for every γ, γ′ ∈ Γ0. Γ0 is not unique. The set {Tα}α∈Γ0 is a family
of commuting operators, which commute with H . Since TαTβ = ±Tα+β, the
magnetic translations still form only a projective group. It becomes a group
by an even smaller sublattice Γ1 ⊂ Γ0 such that B · (γ ∧ γ′) ∈ 4πZ for all
γ, γ′ ∈ Γ1. Another common choice is a further modification of the phase
through

Tα = e−
i
2ϕ(α)Tα (2.19)

with ϕ(α) = B1α2α3+B3α1α2−B2α1α3. Then TαTβ = Tα+β for all α, β ∈ Γ0.
We can now proceed as in the non-magnetic case. The Zak transform

becomes

(UZψ)(k, x) =
∑
γ∈Γ0

e−ik·(x+γ)Tγψ(x) , (k, x) ∈ R6 . (2.20)

The properties of UZψ are as in (2.2), (2.3) provided Γ is replaced by Γ0,
and Hτ is replaced by HB

τ = {u ∈ L2
loc(R

d,Hf) : (2.23) below holds true}. In
particular, H of (2.16) admits the fiber decomposition

UZHU−1
Z =

∫ ⊕

M∗
dkH(k) (2.21)

with M∗ the first Brillouin zone of Γ ∗
0 and with the fiber operator

H(k) =
1
2
(−i∇y +

1
2
B ∧ y + k)2 + VΓ (y) . (2.22)
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The domain of H(k) is independent of k but, in contrast to H(k) from (2.13),
a function u in the domain has to satisfy the more complicated boundary
condition

e−
i
2y·(α∧B)u(y − α) = u(y) . (2.23)

2.3 Dirac hamiltonian, spin-orbit coupling

The Dirac hamiltonian with periodic potential reads

H = β − iα · ∇x + VΓ (x) , (2.24)

where we have set me = 1, c = 1. As for the Bloch hamiltonian, H admits the
fiber decompositon

H =
∫ ⊕

M∗
dkH(k) (2.25)

with fiber hamiltonian

H(k) = β + α · (−i∇y + k) + VΓ (y) . (2.26)

H(k) acts on L2(M,C4) with periodic boundary conditions (2.5). The free
Dirac operator has a spectral gap of size 2, in our units, between the elec-
tron and positron subspace. If we assume ‖VΓ ‖ < 1, then this gap persists
and the eigenvalues can be labelled as E0(k) ≤ E1(k) ≤ . . . in the electron
subspace and as E−1(k) ≥ E−2(k) ≥ . . . in the positron subspace. One has
E−1(k) < E0(k) for all k ∈M∗. (In fact the labelling can be achieved without
a restriction on ‖VΓ ‖, see [Mau03]).

For VΓ = 0, the eigenvalue E(k) is two-fold degenerate reflecting the spin
1
2 of the electron, resp. positron. This degeneracy persists if the periodic po-
tential is inversion symmetric, see [Mau03] for details.

Proposition 2.1. Let H be given by (2.24) with ‖VΓ ‖ < 1. Let there exist
a ∈ R3 such that VΓ (x + a) = VΓ (−x + a). Then each En(k) is at least
two-fold degenerate.

Proof. Without loss of generality we may assume a = 0. We use the standard
basis for the α-matrices, see [Tha94]. In this basis time-reversal symmetry is
implemented by the anti-unitary operator

Tψ(y) = −iα3α1ψ
∗(y) , (2.27)

where the complex conjugation is understood component-wise. Using that
α�α3α1 = −α3α1α�, � = 1, 2, 3, where α� refers to matrix element-wise com-
plex conjugation, one checks that

−i∇yα�T = −iT∇yα� , kα�T = −Tkα� (2.28)

and therefore
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T−1H(k)T = H(−k) . (2.29)

Secondly we use space inversion as

Rψ(y) = βψ(−y) . (2.30)

Then
R−1H(k)R = H(−k) . (2.31)

Combining both symmetries implies

T−1R−1H(k)RT = H(k) . (2.32)

If H(k)ψ = Eψ, then also RTψ is an eigenfunction with the same eigen-
value. Thus our claim follows from 〈ψ,RTψ〉 = 0. To verify this identity we
note that −iα3α1 = diag (σ2, σ2) and 〈χ,Rσ2χ

∗〉 = 0 for an arbitrary two-
spinor χ.

Corollary 2.2. The eigenvalue En(0) of H(0) is at least two-fold degenerate.

Proof. Since T ∗H(0)T = H(0) by (2.29) and 〈ψ, (−iα3α1)ψ∗〉 = 0, the claim
follows.

If VΓ is not inversion symmetric, generically an energy band is two-fold de-
generate at k = 0 and then splits into two non-degenerate bands. Note that a
non-degenerate eigenvalue En(k) has an associated eigenvector with a definite
spin orientation.

The Pauli equation with spin-orbit coupling has the hamiltonian

H = −1
2
∆x + VΓ (x) +

1
4
σ ·

(
∇VΓ (x) ∧ (−i∇x)

)
. (2.33)

After Zak transform the corresponding fiber hamiltonian becomes

H(k) =
1
2
(−i∇y + k)2 + VΓ (y) +

1
4
σ ·

(
∇VΓ (y) ∧ (−i∇y + k)

)
(2.34)

with periodic boundary conditions. H of (2.33) is bounded from below. But
otherwise the band structure is similar to the periodic Dirac operator. Proposi-
tion 2.1 and Corollary 2.25 hold as stated. In the proof one only has to use the
appropriate time-reversal operator, which is Tψ = σ2ψ

∗ in the σ3-eigenbasis.

2.4 Gap condition and smoothness

Let us consider one of the periodic hamiltonians, Hper, with fiber decompo-
sition H(k). Hper is adiabatically perturbed to Hε. Very crudely the corre-
sponding unitary groups should be close. To make such a notion quantitative
a gap condition must be imposed. We denote by σ(H) the spectrum of the
self-adjoint operator H .
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Gap condition: We distinguish a family of m physically relevant energy
bands {Ej(k) , n ≤ j ≤ n + m − 1} = σ0(k). This family satisfies the gap
condition if

dist{σ0(k) , σ(H(k)) \ σ0(k)} ≥ g > 0 for all k ∈M∗ . (2.35)

We repeat that the gap condition is not a spectral condition for Hper. Let us
set P 0 =

⊕n+m−1
j=n Pj .

Under the gap condition the projector P (k) depends smoothly, in many
cases even (real) analytically, on k. RanP 0(k) is spanned by the basis
{ϕj(k)}j=n,...,n+m−1. If them relevant energy bands have no crossings amongst
each other, then ϕj is necessarily an eigenvector ofH(k) satisfyingH(k)ϕj(k)=
Ej(k)ϕj(k). But if there are band crossings, it can be convenient not to insist
on ϕj(k) being an eigenvector of H(k). Thus, while P 0(k) is unique, the span-
ning basis is not. In applications it is of importance to know whether there is at
least some choice of ϕj(k), j = n, . . . , n+m−1, such that they have a smooth
k-dependence. Locally, this can be achieved. However, since M∗ has the topol-
ogy of a torus, a global extension might be impossible. In fact this will gener-
ically happen for the magnetic Bloch hamiltonian, see [DN80, Nov81, Lys85]
for examples. Somewhat surprisingly, a reasonably general answer has been
provided only recently [Pan06]. For the case of the Bloch hamiltonian, ana-
lyticity has been proved before in cases d = 1, m arbitrary, and d arbitrary,
m = 1, see Nenciu [Nen83, Nen91] and Helffer, Sjöstrand [HS89]. They rely
on analytical techniques. In [Pan06] topological methods are developed.

Proposition 2.3. In case of the non-magnetic Bloch hamiltonian let either
d ≤ 3, m ∈ N or d ≥ 4, m = 1. Then there exists a collection of smooth maps
Rd  k �→ ϕj(k) ∈ L2(M), j = n, . . . , n+m− 1, with the following properties
(i) the family {ϕj(k)}j=n,...,n+m−1 is orthonormal and spans the range of
P 0(k).
(ii) each map is equivariant in the sense that

ϕj(k) = τ(λ)ϕ(k + λ) for all k ∈ Rd , λ ∈ Λ , (2.36)

where τ(λ) is multiplication by eiλ·y. The same property holds for the non-
magnetic periodic Dirac operator and Pauli operator with spin-orbit coupling.

Remark. The proof uses the first Chern class of the vector bundle whose
fiber at k is the span of the family {ϕj(k)}j=n,...,n+m−1 i.e. RanP 0(k). To
establish continuity, and thus smoothness, this first Chern class has to vanish,
a property, which does not hold for a magnetic Bloch hamiltonian except for
some particular energy bands.

If ε is small, excitations across the energy gap are difficult to achieve.
More precisely to P 0 one can associate a projection operator Πε such that for
arbitrary �, �′ ∈ N, τ ∈ R+, it holds
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‖(1−Πε)e−iHεtΠεψ‖ ≤ c�,�′(τ)ε�‖ψ‖ (2.37)

for 0 ≤ t ≤ ε−�′τ with suitable constants c�,�′(τ) independent of ε. In other
words that the subspaces ΠεH and (1−Πε)H almost decouple, i.e. decouple
at any prescribed level of precision and over any polynomial length of the time
span under consideration. For the specific case of the Bloch hamiltonian more
quantitative details on the decoupling are provided in Sect. 3.

If the gap condition is not satisfied, the dynamical properties are much
more model dependent. Firstly the gap condition can be violated in various
ways. In our context, since H(k) has discrete spectrum, the violation comes
through band crossings. The behavior close to a band crossing has to be
studied separately [LT05, BT05]. In other models the energy band sits at the
bottom of the continuous spectrum of H(k) without gap [Teu02]. Then an
assertion like Equation (2.37) holds only under a suitable restriction to small
�, �′, usually �, �′ = 1 or perhaps � = 2, �′ = 1.

The inequality (2.37) makes no assertion about the dynamics inside the
almost invariant subspace ΠεH. While there is a general theory available
[PST03a], we prefer to discuss the examples separately in the subsequent
sections.

3 Nonmagnetic Bloch hamiltonians: Peierls substitution
and geometric phase corrections

We discuss in more detail the effective dynamics for the Schrödinger equation
with a periodic potential. For concreteness we fix the spatial dimension to be
3. Under Zak transform the nonmagnetic Bloch hamiltonian becomes

UZ
(1

2
(
− i∇x −A(εx)

)2 + VΓ (x) + φ(εx)
)
U−1
Z = Hε

Z (3.1)

with
Hε

Z =
1
2
(
− i∇y + k −A(iε∇τ

k)
)2 + VΓ (y) + φ(iε∇τ

k) . (3.2)

Here ∇τ
k is differentation with respect to k and satisfying the y-dependent

boundary conditions (2.6). Hε
Z is a self-adjoint operator on L2

τ (R
3, H2(M)),

compare with (2.8).
In (3.2) we observe that the external potentials couple the fibers. To em-

phasize this feature we think of (3.2) as being obtained through Weyl quan-
tization from the operator valued function

H0(k, r) =
1
2
(
− i∇y + k −A(r)

)2 + VΓ (y) + φ(r) (3.3)

as defined on (r, k) ∈ R6 and acting on Hf with fixed domain H2(M), see
[PST03b] for details. In this form one is reminded of the Weyl quantization
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of the classical hamiltonian function hcl(q, p) = 1
2p

2 + V (q) which yields the
semiclassical hamiltonian

Hsc =
1
2
(−iε∇x)2 + V (x) (3.4)

acting in L2(R3). The analysis of (3.4) yields that on the time-scale ε−1t the
wave packet dynamics governed by Hsc well approximates the flow generated
by hcl. In contrast, the adiabatic analysis deals with operator valued symbols,
as in (3.3), and has as a goal to establish that the dynamics decouples into
almost invariant subspaces and to determine the approximate dynamics within
each such subspace.

To be specific, let us then fix throughout one band index n and let us
assume that the band energy En is nondegenerate and satisfies the gap condi-
tion. Therefore we know that En : M∗ → R is smooth and we can choose the
family of Bloch functions ϕn(k), with H(k)ϕn(k) = En(k)ϕn(k), such that
ϕn depends smoothly on k. For each � ∈ N = {0, 1, . . .} there exists then an
orthogonal projection Πε

� on Hτ such that

‖[Hε
Z , Π

ε
� ]‖ ≤ c�ε

�+1 (3.5)

for some constants c�. Integrating in time one concludes that the subspaces
Πε

�Hτ are almost invariant in the sense that

‖(1−Πε
� )e

−iε−�′ tHε
ZΠε

�ψ‖ ≤ ‖ψ‖(1 + |t|)c� ε�+1ε−�′ (3.6)

for any �, �′ ∈ N. Note that the adiabatic time scale, order ε−�′ , can have any
power law increase, at the expense of choosing the order of the projection
Πε

� sufficiently large. Only for times of order e1/ε one observes transitions
away from the almost invariant subspace. The zeroth order projection is at-
tached to the n-th band under consideration, while the higher orders are
successively smaller corrections to Πε

0 . To construct Πε
0 one considers the

projection onto the n-th band, |ϕn(k)〉〈ϕn(k)|, as an operator valued function
with values in B(Hf). From it we obtain the minimally substituted projection
|ϕn(k−A(r))〉〈ϕn(k−A(r))|. Its Weyl quantization is ε-close to the orthogonal
projection Πε

0 .
The second task is to determine the approximate time-evolution on Πε

�Hτ .
Since the subspace changes with ε, it is more convenient to unitarily map
Πε

�Hτ to an ε-independent reference Hilbert space, which in our case is simply
L2(M∗). The dynamics on L2(M∗) is governed by an effective hamiltonian. It
is written down most easily in terms of a hamiltonian function hε� : M∗×R3 →
R. hε� is a smooth function. We also may regard it as defined on R3 ×R3 and
Γ ∗-periodic in the first argument. hε� admits the power series

hε� =
�∑

j=0

εjhj (3.7)
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with ε-independent functions hj . The effective quantum hamiltonian is ob-
tained from hε� through Weyl quantization. The index � regulates the time
scale over which the approximation is valid and the size of the allowed error.

In [PST03b] we provide an iterative algorithm to compute hj . In practice
only h0 and h1 can be obtained, at best h2 under simplifying assumptions.
While this may look very restrictive, it turns out that already h1 yields novel
physical effects as compared to h0. Even higher order corrections seem to be
less significant.

To lowest order one obtains

h0(k, r) = En(k −A(r)) + φ(r) , (3.8)

which Weyl-quantizes to

Wε[h0] = En(k −A(iε∇k)) + φ(iε∇k) (3.9)

acting on L2(M∗), where i∇k is the operator of differentiation with periodic
boundary conditions. (The twisted boundary conditions appearing in (3.2) are
absorbed into the unitary map of Πε

0H to L2(M∗).) In solid state physics the
Weyl quantization (3.9) is referred to as Peierls substitution. (3.8), (3.9) have a
familiar form. The periodic potential merely changes the kinetic energy 1

2k
2 of

a free particle to En(k). The main distinctive feature is the periodicity of the
kinetic energy. For example, in presence of a linear potential φ, φ(x) = −E ·x,
an electron, initially at rest, will start to accelerate along E but then turns
back because of periodicity in k.

To first order the effective hamiltonian reads

h1(k, r) =
(
∇φ(r) −∇En(k̃) ∧B(r)

)
· An(k̃)−B(r) · Mn(k̃) , (3.10)

with the kinetic wave number k̃ = k −A(r). The coefficients An and Mn are
the geometric phases. They carry information on the Bloch functions ϕn(k).
An is the Berry connection given through

An(k) = i〈ϕn(k) , ∇kϕn(k)〉Hf
(3.11)

and Mn is the Rammal-Wilkinson phase given trough

Mn(k) =
1
2
i〈∇kϕn(k),∧(H(k) − En(k))∇kϕn(k)〉Hf

. (3.12)

The Bloch functions ϕn are only determined up to a smooth phase α(k),
i.e. instead of ϕn(k) one might as well use e−iα(k)ϕn(k) with smooth α : M∗ →
R. Clearly Mn is independent of the gauge field α. On the other hand, A is
gauge-dependent while its curl

Ωn = ∇ ∧An (3.13)

is gauge independent. From time-reversal one concludes that
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Ωn(−k) = −Ωn(k) . (3.14)

In particular, in dimension d = 2 for the first Chern number of the Bloch
vector bundle one obtains ∫

M∗
dkΩn(k) = 0 . (3.15)

For the magnetic Bloch hamiltonian, (3.14) is violated in general, see
Sect. 4. The integral in (3.15) can take only integer values (in the appropriate
units) and the first Chern number may be different from zero. Physically this
leads to the quantization of the Hall current [PST03b, SN99].

We still owe the reader precise a statement on the error in the approxi-
mation. At the moment we work in the representation space at precision level
� = 1. Let Heff be the Weyl quantization of h0 + εh1, see (3.8) and (3.10).
There is then a unitary Uε : Πε

1Hτ → L2(M∗) such that for all ψ ∈ Hτ

‖
(
e−iHε

Z t − Uε∗e−iHeff tUε
)
Πε

1ψ‖ ≤ c‖ψ‖(1 + |τ |)ε2 (3.16)

with |t| ≤ ε−1τ and some constant c independent of ‖ψ‖, τ , and ε.

4 Magnetic Bloch hamiltonians: the Hofstadter butterfly

We turn to a magnetic Bloch hamiltonian in the form (1.4), in dimension d = 2
and with a transverse constant magnetic field B0. We want to explain how
the limits B0 → ∞ and B0 → 0 can be understood with adiabatic methods.
As a remark, it is worthwhile to recall that, when the physical constants are
restored, the dimensionless parameter B0 is given by

B0 =
B0S

2π�c/e
, (4.1)

where S is the area of the fundamental cell of Γ and B0 the strength of
the magnetic field, both expressed in their dimensional units. Thus B0 corre-
sponds physically to the magnetic flux per unit cell divided by hc/e, as the
fundamental quantum of magnetic flux. This section is based essentially on
[FP06], which elaborates on previous related results [Bel86, HS89].

Adiabatic limits are always related to separation of time-scales. In the
present case, one indeed expects that asB0 →∞ the cyclotron motion induced
by B0 is faster than the motion induced by VΓ , while in the limit B0 → 0 the
microscopic variations of the wave function induced by VΓ are expected to be
faster than the cyclotron motion.

Let us focus first on the Landau regime B0 →∞. In order to make quan-
titative the previous claim, one introduces the operators⎧⎨⎩

L1 = 1√
B0

(
p1 + 1

2B0 x2

)
,

[L1, L2] = i1,
L2 = 1√

B0

(
p2 − 1

2B0 x1

)
,

(4.2)
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and the complementary pair of operators⎧⎨⎩
G1 = 1

B0

(
p1 − 1

2B0 x2

)
,

[G1, G2] = i
B0

1,
G2 = 1

B0

(
p2 + 1

2B0 x1

)
,

(4.3)

where the relative sign is chosen such that [Li, Gj ] = 0, for i, j = 1, 2.
If VΓ = 0, then HMB describes a harmonic oscillator, with eigenfunctions

localized on a scale |B0|−1/2; this corresponds to the cyclotron motion in
classical mechanics. Since [Gi, HMB] = 0, the operators G1 and G2 describe
conserved quantities, which semiclassically correspond to the coordinates of
the center of the cyclotron motion.

If VΓ �= 0, but the energy scale ‖VΓ ‖ is smaller than the cyclotron en-
ergy ≈ B0, then the operators Gi have a non-trivial but slow dynamics. By
introducing the adiabatic parameter η = 1/B0 the hamiltonian reads

HMB =
1
2η

(
L2

1 + L2
2

)
+ VΓ (G2 −

√
ηL2, −G1 +

√
ηL1) . (4.4)

In view of the commutator [G1, G2] = iη1, one can regard η HMB as the
η-Weyl quantization (in the sense of the mapping (q, p) �→ (G1, G2)) of the
operator-valued symbol

hMB(q, p) =
1
2
(
L2

1 + L2
2

)
+ η VΓ (p−√

ηL2,−q +
√
ηL1) . (4.5)

For each fixed (q, p) ∈ R2, hMB(q, p) is an operator acting in the Hilbert space
Hf

∼= L2(R) corresponding to the fast degrees of freedom. If ‖VΓ ‖B(H) < ∞,
then hMB(q, p) has purely discrete spectrum, with eigenvalues

λn, η(q, p) = (n+
1
2
) + ηVΓ (p,−q) +O(η3/2), n ∈ N,

as η ↓ 0. The index n ∈ N labels the Landau levels. For η small enough, each
eigenvalue band is separated from the rest of the spectrum by an uniform gap.
Thus we can apply space-adiabatic perturbation theory to show that the band
corresponds to an almost-invariant subspace Πn,ηL

2(R2). Let us focus on a
specific n ∈ N. One can prove that the dynamics inside RanΠn,ηL

2(R2) is de-
scribed by an effective hamiltonian, which at the first order of approximation
in η reads

hη1 = (n+
1
2
) + ηVΓ (G1,−G2). (4.6)

The first term in (4.6) is a multiple of the identity, and as such does not
contribute to the dynamics as far as the expectation values of observables
are concerned. Leading-order dynamics is thus described by the second term,
which does not depend on the Landau level n ∈ N. Since VΓ is a biperi-
odic function and (G1, G2) a canonical pair, the second term is a Harper-like
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operator. The spectrum of such operators exhibit a complex fractal behav-
ior (Hofstadter butterfly) sensitively depending on the diophantine properties
of α = B0

2π (notice that VΓ (G1, G2) depends on α through the commutator
[G1, G2] = iB−1

0 1). The Cantor structure of the spectrum was proven first in
[BS82] for the case VΓ (x1, x2) = λ cosx1 + cosx2 (Harper model), for a dense
set of the parameter values. Later Helffer and Sjöstrand accomplished a de-
tailed semiclassical analysis of the Harper operator [HS89]. As a final step the
Cantor spectrum has been proven by Puig (λ �= 0, α Diophantine) [Pui04],
and by Avila and Jitomirskaya [AJ05] for all the conjectured values of the
parameters: λ �= 0, α irrational (the Ten Martini conjecture, as baptized by
B. Simon).

Secondly we turn to the opposite limit B0 → 0, where the slow part of the
dynamics is still described by the magnetic momentum operators L̃j =

√
B0Lj

(j = 1, 2), with commutator of order O(B0). However the decomposition given
by (4.2) and (4.3) is no longer convenient.

Since A0 is a linear function, A0(εx) = 1
2εB0 ∧ x, the slow variation limit

ε→ 0 agrees with the weak field limit B0 → 0. We then pose ε = B0 and we
regard HMB in (1.4) as an adiabatic perturbation of the periodic hamiltonian
(2.3). Thus we are reduced to the situation described in Sect. 3: to each isolated
Bloch band of the unperturbed hamiltonian there corresponds a subspace
Πn,εL

2(R2) which is approximately invariant under the dynamics as ε ↓ 0.
The dynamics inside this subspace is described by Peierls substitution (3.9),
which now reads

Wε[h0] = En(k − 1
2
e3 ∧ (iε∇k)), (4.7)

as an operator acting in L2(T2, dk). Here B0 = (0, 0, ε) and ei is the unit
vector in the i-th direction.

Formula (4.7) shows that the leading order effective hamiltonian depends
only on the operators (K1,K2) = K,

K = k − 1
2
e3 ∧ (iε∇k),

which roughly speaking are the Fourier transform of the pair (L̃1, L̃2), and
not on the complementary pair of operators. The same property holds true for
the effective hamiltonian hε� , at any order of approximation � ∈ N, see [FP06],
with important consequences on the splitting of magnetic subbands at small
but finite B0.

An operator in the form (4.7), shortly written En(K1,K2), is isospectral
to an Harper-like operator, namely En(G1, G2) acting in L2(R). Indeed the
first numerical evidence of the butterfly-like Cantor structure of the spectrum
of Harper-like operators appeared when Hofstadter investigated the spectrum
of cosK1 + cosK2 as a function of ε [Hof76]. On the other side, an operator
of the form En(K1,K2) is not unitarily equivalent to the Harper operator
En(G1, G2). The important geometric and physical consequences of this fact
are developed in [FP06].
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Having explained the two extreme cases, B0 → 0 and B0 →∞, the reader
may wonder about the intermediate values of the magnetic field, B0 ≈ 1.
As explained already in Sect. 2.3 it is convenient to introduce the magnetic
translations

Tα = e−
i
2ϕ(α) exp(iB0 α ·G), α ∈ Γ0,

see (2.17) and (2.19). If B0 satisfy Assumption 2, then {Tα} is a commutative
group, thus leading to the magnetic Zak transform (2.20). HMB is then a
fibered operator over the magnetic Bloch momentum κ ∈ T2. At each κ the
spectrum of HMB(κ) is pure point and the corresponding eigenvalues EB0

n are
the magnetic Bloch bands.

In view of this structure, one might argue that the adiabatic perturbation
of the hamiltonian which includes, on top of the constant magnetic field B0,
a slowly varying magnetic potential A(εx) as in (1.5) can be treated with
the methods of Sect. 3. There is however one crucial element missing. Indeed
one can still associate to each magnetic Bloch band EB0

n , isolated from the
rest of the spectrum, an almost-invariant subspace RanΠB0

n . On the other
side the construction of the effective hamiltonian relies on smoothness which
may be impeded for topological reasons. Indeed the analogue of Proposition
2.3 is generically false for magnetic Bloch hamiltonians, as well-understood
[DN80, Nov81, Lys85]. In geometric terminology this fact is rephrased by say-
ing that the magnetic Bloch bundle is generically non-trivial (in technical
sense). This important fact has sometimes been overlooked. For example, As-
sumption B in [DGR04] is equivalent to the triviality of the magnetic Bloch
bundle. Under this assumption the magnetic case is already covered by the
results in [PST03b]. Thus the problem of adiabatic perturbation of a generic
magnetic Bloch hamiltonian appears to be an open, in our view challenging,
problem for the future.

5 Piezoelectricity

In the year 1880 the brothers Jacques and Pierre Curie discovered that some
crystalline solids (like quartz, tourmaline, topaz, . . . ) exhibit a macroscopic
polarization if the sample is strained.

It turns out that also this effect can be understood in the framework of
adiabatically perturbed periodic hamiltonians, cf. [PST06, Lei05]. The per-
turbation is now slowly in time,

HPE(t) = −1
2
∆x + VΓ (εt)(x, εt) . (5.1)

If the potential VΓ (x, εt) has no center of inversion, i.e. there is no point with
respect to which the potential has space-reflection symmetry, then the slow
variation of the periodic potential is expected to generate a non-zero current
and can be shown to do so for particular examples [ABL97]. By translation
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invariance this current if averaged over a unit cell is everywhere the same and
we denote the average current by Jε(t). For the following discussion we assume
that VΓ varies only for times in the finite interval [0, T ]. Integrating the current
per volume over the relevant time interval yields the average polarization,

∆Pε =
∫ T

0

dt Jε(t) .

In this section we discuss results that relate the current Jε(t) directly to the
quantum mechanics of non-interacting particles governed by the hamiltonian
(5.1), without the detour via the semiclassical model. For this we need to solve
the Schrödinger equation with initial state ρ(0) = P (0) being the spectral pro-
jection of HPE(0) below the Fermi energy E(0). Since the piezo effect occurs
only for insulators, we can assume that E(0) lies in a gap of the spectrum
of HPE(0) and, in order to simplify the discussion, we also assume that this
gap does not close in the course of time. Hence there is a continuous function
E : [0, T ] → R such that E(t) lies in a gap of HPE(t) for all t. The state at
time t is given by

ρε(t) = Uε(t, 0)P (0)Uε(t, 0)∗ ,

where the unitary propagator Uε(t, 0) is the solution of the time-dependent
Schrödinger equation

iε
d
dt
Uε(t, 0) = HPE(t)Uε(t, 0) with Uε(0, 0) = 1 . (5.2)

With the current operator given by

jε :=
i
ε

[H(t), x] = − i
ε
∇x , (5.3)

and the trace per volume defined as

T (A) := lim
Λn→R3

1
|Λn|

Re Tr(1ΛnA) , (5.4)

with 1Λn being the characteristic function of a 3-dimensional box Λn with
finite volume |Λn|, the average current in the state ρε(t) is

Jε(t) = T (ρε(t) jε) .

Finally the average polarization is

∆Pε =
∫ T

0

dt T (ρε(t)Jε) , (5.5)

which is the main quantity of physical interest. The given framework allows
us to describe the macroscopic polarization of a solid by a pure bulk property,
i.e. independently of the shape of the sample.
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In the simplest but most important case (see Paragraph (ii) in Sect. 1
for a discussion of the model), the periodic potential VΓ (x, εt) is periodic
with respect to a time-independent lattice Γ . For this case King-Smith and
Vanderbilt [KSV93] derived a formula for∆P based on linear response theory,
which turned out to make accurate predictions for the polarization of many
materials. Their by now widely applied formula reads

∆P =
1

(2π)3

Nc∑
n=0

∫
M∗

dk
(
An(k, T )−An(k, 0)

)
, (5.6)

where the sum runs over all the occupied Bloch bands and An(k, t) is the
Berry connection coefficient for the n-th Bloch band at time t ∈ R,

An(k, t) = i〈ϕn(k, t),∇kϕn(k, t)〉L2(M) .

Although An depends on the choice of the Bloch function ϕn, the average
polarization (5.6) defines a gauge invariant quantity, i.e. it is independent of
the choice of Bloch functions.

In [PST06] we show that ∆Pε defined in (5.5) approaches ∆P as given
by the King-Smith and Vanderbilt formula (5.6) with errors smaller than any
power of ε, whenever the latter is well defined. More precisely we show that
under suitable technical conditions on VΓ (t) the average polarization is well
defined and that for any N ∈ N

∆Pε = − 1
(2π)d

∫ T

0

dt
∫
M∗

dk Θ(k, t) +O(εN ) , (5.7)

where
Θ(k, t) := −i tr (P (k, t) [∂tP (k, t), ∇kP (k, t) ] ) , (5.8)

and P (k, t) is the Bloch-Floquet fiber decomposition of the spectral projector
P (t) = 1(−∞,E(t)](HPE(t)). Whenever all Bloch bands within RanP (k, t) are
isolated, the explicit term in (5.7) agrees with (5.6). Note however that (5.7)
is more general, since it can be applied also to situations where band crossings
occur within the set of occupied bands.

From the point of view of adiabatic approximation, this result is actually
quite simple, since one just needs the standard time-adiabatic theory. At time
t = 0 the state ρ(0) is just the projection P (0) onto the subspace of the iso-
lated group of occupied bands. Since these bands remain isolated during time
evolution, this subspace is adiabatically preserved according to the original
adiabatic theorem of Kato [Kat50], i.e.

ρε(t) = P (t) +O(ε) ,

and one can compute the higher order corrections to ρε(t) using the higher
order time-adiabatic approximation due to Nenciu [Nen93]. In order to get
explicit results, one has to do the adiabatic approximation for each fixed
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k ∈ M∗ separately. This is possible since HPE(t, k) is still fibered in k, due
to translation invariance with respect to a time-independent lattice. However,
since we need to differentiate with respect to k in order to compute the current,
as suggested by formula (5.8), the expansion needs to be done uniformly on
spaces of suitable equivariant functions. This makes the proof more technical
than expected at first sight.

Alternatively one can derive also for HPE(t) the semiclassical equations of
motion including first order corrections:{

q̇ = ∇kEn(k, t)− εΘn(k, t),

k̇ = 0 .
(5.9)

And again averaging the velocity over the first Brillouin zone yields the correct
quantum mechanical average current that is the contribution from the n-th
band.

Note the striking similarity between the semiclassical corrections in (5.8)
and the electromagnetic field. If we define the geometric vector potential

An(k, t) = i〈ϕn(k, t),∇kϕn(k, t)〉L2(M),

and the geometric scalar potential

φn(k, t) = −i〈ϕn(k, t), ∂tϕn(k, t)〉L2(M),

in terms of the Bloch function ϕn(k, t) of some isolated band, then in complete
analogy to the electromagnetic fields we have

Θn(k, t) = −∂tAn(k, t)−∇kφn(k, t), (5.10)

and
Ωn(k, t) = ∇k ∧ An(k, t) . (5.11)

Time-dependent deformations of a crystal generically also lead to a time-
dependent periodicity lattice Γ (t), see (5.1). This more general situation is
considered in [Lei05, LP06]. Now the lattice momentum k is no longer a con-
served quantity and the full space-adiabatic perturbation theory is required
in order to compute the corresponding piezoelectric current. As a result an
additional term appears in the semiclassical equations of motion, reflecting
the deformation of the lattice of periodicity.
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1 Introduction

This article is concerned with the numerical analysis of dynamical systems
using methods that are based on a discretized description of the system as
a graph. The graph-based description provides a unifying framework to ap-
proach a wide and diverse variety of dynamical systems, from time-discrete
maps via ordinary differential equations to stochastic differential equations
describing e. g. diffusion in a potential landscape.

Within this variety, this article focusses on those dynamical systems that
can possess a ‘multiscale structure’ in the sense that they exhibit interest-
ing dynamical behavior on more than one timescale. We will explain what
we mean with this phrase by means of some examples. Consider in Fig. 1
one trajectory of Chua’s circuit, that is described by the well-known three-
dimensional ordinary differential equation

ẋ = α(y −m0x−
1
3
m1x

3)

ẏ = x− y + z

ż = −βy

(see e. g. [HP*96]). It is clearly visible that relatively long parts of the whole
trajectory are contained in two ‘leaves’ within which the trajectory shows a
spiralling motion, with only some quick ‘jumps’ between the two leaves.

Similar phenomena can be observed in systems of quite different mathe-
matical type. As an example, consider a stochastic process in Rn describing
diffusion within a potential given by a function V : Rn → R. The system is
given by the Smoluchovski equation

Ẋ(t) = −∇V (X(t)) + εẆ (t)
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Fig. 1.1. A trajectory of Chua’s circuit that switches relatively rarely between two
almost invariant sets.

with Wt being a standard n-dimensional Wiener process and ε a small param-
eter. (A variation of this example is described in more detail in Sect. 4.) If we
assume V (x) → ∞ for ‖x‖ → ∞ (in order to avoid sample paths drifting off
to infinity), then any sample path will spend most of the time in the vicinity
of the local minima of V , with transitions between the minima being rare
events.

The common feature of the Chua circuit example and of the diffusion
example is the existence of subsets of the state space that are, although not
being invariant under the dynamics considered, nevertheless almost invariant
in the sense that on a short timescale, a change of a trajectory between the
sets is an event rarely encountered. This suggests to analyze such systems on
the short timescale as if those almost invariant sets were indeed invariant,
concentrating on features of the dynamics within the sets, and neglecting
outside interactions. On the long timescale, on the contrary, the dynamics
of such systems can be considered as some kind of ‘flipping process’ between
several almost invariant ‘superstates’. In this view, the first step of an analysis
that separates different timescales is the identification of almost invariant sets
in the dynamics, which forms the prime motivation for the work presented in
this article.

As was already alluded to in the beginning, we choose the approximation
of continuous dynamics through discrete Markov chains as the unifying ap-
proach to various kinds of dynamical systems. Reading a transition matrix
as the adjacency matrix of a graph naturally transforms the situation into a
graph theoretic framework. The problem of identifying almost invariant sets
thus becomes the problem of finding partitions of a graph that are optimal
with respect to certain cost functions, for which a plethora of solution or
approximation methods is at hand.
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The remainder of this article is organized as follows. In Sect. 2, together
with some notation we introduce the basic concepts used in this work, in par-
ticular the concept of almost invariant sets that is central for the contents
of this article. We formulate the problem of identifying almost invariant par-
titions and then reformulate it first as a discrete optimization problem and
then as a graph-theoretic problem. Sect. 3 takes up the last formulation and
introduces algorithmic possibilities graph theory offers for the solution of the
problem. We pay particular attention to the concept of the congestion of a
graph with its connection to dynamical systems concepts. Sect. 4 illustrates
the use of shortest-path-algorithms for the detection of dynamically meaning-
ful transition paths between almost invariant sets. Here the crucial point is
the appropriate choice of edge weights in the graph, for which two particular
examples are presented.

2 Numerical Analysis of Dynamical Systems

In this section we introduce the concept of almost invariant sets of a dynamical
system, and we describe a standard framework for their numerical analysis
using hierarchical set oriented methods.

2.1 Dynamical Systems and Invariant Measures

A map f : X → X on a compact subset X ⊂ Rn defines a discrete-time
dynamical system with state spaceX . Trajectories of the system are sequences
of points in X of the form

xk+1 = f(xk), k = 0, 1, . . . .

A particularly important class of such maps f is that of time-T maps of
an ordinary differential equation. In this case, under mild assumptions on
the ODE (local existence and uniqueness) f is even a diffeomorphism; in the
following we will assume this to be the case. Note that the state space X need
not be the maximal domain of the map f . In many cases it is more appropriate
to consider the dynamical system on some (invariant) subset of the maximal
domain, e. g. an attractor, an ergodic component, the set of non-wandering
points or the chain recurrent set.

In this work, we are interested in questions about the global dynamical
behavior of the dynamical system f : X → X . A powerful approach to these
questions is to use the transfer operator (or Perron-Frobenius operator) asso-
ciated with f , which, instead of generating single trajectories of points in X ,
describes the evolution of sets or, more generally, of (signed) measures on X .
More precisely, the transfer operator associated with f is the linear operator
P : M→M,
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(Pν)(S) = ν(f−1(S)), S measurable,

on the space M of signed measures on the Borel σ-algebra over X .
In the following we will assume that µ is an invariant measure for f , that

is, the probability measure µ satisfies

µ(S) = µ(f−1(S)) = (Pµ)(S) for all measurable S ⊂ X ,

and thus is a fixed point of the transfer operator. Moreover we assume that µ is
a unique so-called SRB-measure (Sinai-Ruelle-Bowen) in the sense that this is
the only invariant measure which is robust under small random perturbations,
in other words the only physically relevant invariant measure for the dynamical
system f .

2.2 Almost Invariant Sets

For two measurable sets S1, S2 ⊂ X we define the transition probability ρ from
S1 to S2 as

ρ(S1, S2) :=
µ(S1 ∩ f−1(S2))

µ(S1)
,

whenever µ(S1) �= 0. The transition probability ρ(S) := ρ(S, S) from a set
S ⊂ X into itself is called the invariance ratio of S. If for a number δ ∈ [0, 1]
the relation

ρ(S) ≥ δ

holds, S is called an δ-almost invariant set. In practice, we will be interested
in numbers δ = 1 − ε with 0 < ε << 1. When no precise bound δ on the
invariance ratio is important, we will also simply speak of almost invariant
sets.

The following observation will be crucial for the rest of this article. Let S
be an δ-almost invariant set, with δ = 1− ε. From µ(S) = µ(f−1(S)) one has
on the one hand that

µ(S) = µ(f−1(S)) = µ(S ∩ f−1(S)) + µ(X \ S ∩ f−1(S)). (2.1)

On the other hand,

µ(X \ S) = µ(X \ S ∩ f−1(S)) + µ(X \ S ∩ f−1(X \ S)). (2.2)

As S is δ-almost invariant, (2.1) means that

µ(X \ S ∩ f−1(S)) ≤ εµ(S) (2.3)

which together with (2.2) implies that

µ(X \ S ∩ f−1(X \ S)) ≥ µ(X \ S)− εµ(S)

=
(

1− ε µ(S)
µ(X \ S)

)
· µ(X \ S),
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and thus

ρ(X \ S) ≥
(

1− ε µ(S)
µ(X \ S)

)
.

In short, this means that the complement of an almost invariant set is also
almost invariant, with the respective invariance ratios being the more similar
the closer the ratio µ(S)

µ(X\S) is to one.
This observation naturally motivates the problem of determining a parti-

tion of X consisting of almost invariant sets of roughly equal weight. For the
rest of this article we will be concerned with this problem.

Although it may seem obvious, it is important to note that unlike e. g.
the decomposition into ergodic components, which is unique for any given
system, the decomposition of the state space into almost invariant sets will
in general not be unique. In fact, any small (with respect to e. g. Lebesgue
measure) variation of an almost invariant set will also be an almost invariant
set, probably with a slightly different invariance ratio.

We now formally define the problem of finding a partition of almost invari-
ant sets in the spatially continuous setting we have been considering so far.
It will be reformulated twice in the course of this article, first for a spatially
discretized setting and later in the language of graph theory.

Problem 2.1. For some fixed p ∈ N+ find a collection of pairwise disjoint
sets S = {S1, . . . , Sp} with

⋃
1≤i≤p Si = X and µ(Si) > 0, 1 ≤ i ≤ p, such

that

ρ(S) :=
1
p

p∑
i=1

ρ(Si) → max .

2.3 Discretization of the Transfer Operator

For the detection and approximation of almost invariant sets we need to ex-
plicitly deal with the transfer operator. Since an analytical expression for it
will only be derivable for none but the most simple systems, we need to derive
a finite-dimensional approximation to it. The following description is based
on results from e.g. [DH*97, DJ99, DFJ01, DJ02].

The basic idea for the discretization is to construct a sufficiently fine cov-
ering of the state space of the system consisting of boxes, i. e. generalized
rectangles, by means of a subdivision algorithm as described in [DH97]. The
basic principle of the subdivision algorithm is as follows. One starts with a
box Q ⊃ X containing the state space. Setting B0 = {Q}, a sequence (Bn)n∈N

is iteratively constructed, with each iteration step i → i + 1 of the iteration
consisting of two parts. In the first part, from the collection Bi a new collec-
tion B̃i+1 is constructed by subdividing each box B ∈ Bi along a prescribed
coordinate axis into two new boxes. In the second part, Bi+1 is constructed
as the collection of those boxes that do intersect with X , i. e.

Bi+1 =
{
B ∈ B̃i+1 | B ∩X �= ∅

}
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There are several modifications of this scheme, in particular regarding the
choice of boxes to be subdivided. While in the simple scheme every box is
subdivided in every step, one can reduce the numerical effort by introducing
an additional selection criterion that decides which boxes to subdivide and
which ones to leave at the present level. More detailed expositions of the
subdivision scheme can be found e. g. in [DH97, DJ99, Jun01].

Of course, in practice one cannot infinitly go on with the construction of
an arbitrarily fine box covering, but will have to stop the process at some
level, which results in a covering of the state space X by a finite collection
B = {B1, . . . , Bb} of boxes, i. e.

X ⊂
b⋃

i=1

Bi with m(Bi ∩Bj) = 0 for i �= j .

Here m denotes Lebesgue measure.
To discretize the transfer operator, we replace the space M of signed

measures over the Borel σ-algebra by the finite-dimensional space MB of
signed measures on the σ-algebra that is given by the set of arbitrary unions
of boxes in B. The standard basis for this vector space is given by those
measures that assign the weight 1 to precisely one box in B and 0 to all other
boxes.

With respect to this basis, the discretized transfer operator PB : MB →
MB is represented by the matrix of transition probabilities

PB = (pij), where pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, 1 ≤ i, j ≤ b. (2.4)

In the compution of the transition probabilities pij , the denominator poses
no problem, as the boxes Bi are generalized rectangles. For the computation
of m(f−1(Bi) ∩Bj), that is, the measure of the subset of Bj that is mapped
into Bi, there are several possibilities described e. g. in [DFJ01]. A method
that is often used is the Monte Carlo approach as described in [Hun94]:

m(f−1(Bi) ∩Bj) ≈
1
K

K∑
k=1

χBi(f(xk)),

where the xk’s are selected at random in Bj from a uniform distribution.
Evaluation of χBi(f(xk)) only means that we have to check whether or not
the point f(xk) is contained in Bi. There are efficient ways to perform this
check based on a hierarchical construction and storage of the collection B (see
[DH97, DH*97]).

Note that once we have computed an approximation PB of the transfer
operator we can obtain a discretized version of the natural invariant measure
µ of the box covering B of A as the eigenvector to the eigenvalue 1 of PB.

As described in the beginning of this section, a region will be of interest if it
is almost invariant in the sense that typical points are mapped into the region
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itself with high probability. Evidently the infinite dimensional optimization
problem 2.1 needs to be discretized in order to be treated numerically. To this
end we again restrict ourselves to subsets that are unions of elements of the
partition B. Consider the transition matrix PB from (2.4). Then, our goal in
the discretized setting is to solve the following problem.

Problem 2.2 (Boxes). For some p ∈ N+ find a collection of pairwise disjoint
sets S = {S1, . . . , Sp} with

⋃
1≤i≤p Si = B and µ(Sk) > 0, 1 ≤ i ≤ p, such

that

ρ(S) =
1
p

p∑
k=1

ρ(Sk) =
1
p

p∑
k=1

∑
Bi,Bj⊂Sk

pij · µ(Bj)∑
Bj⊂Sk

µ(Bj)
→ max .

2.4 Graph Formulation

In this section, we go one step further with reformulating the problem of
finding almost invariant sets of a dynamical system. As it turns out, the
optimization problem 2.2 can be translated into the problem of finding an
optimal cut in a graph. To see this, we first show how the matrix describing
the discretized transfer operator can also be understood as a matrix describing
a directed graph, and then show that the quantity ρ(S) can be naturally
expressed in terms of edge and vertex weights of the graph.

As in the previous section, let B be a box covering of X . Let G = (V,E)
be a graph with vertex set V = B and directed edge set

E = E(B) = {(B1, B2) ∈ B × B : f(B1) ∩B2 �= ∅} .

The function vw : V → R with vw(Bi) = µ(Bi) assigns a weight to the
vertices and the function ew : E → R with ew((Bi, Bj)) = µ(Bi)pji assigns a
weight to the edges. Furthermore, let

Ē = Ē(B) = {{B1, B2} ⊂ B : (f(B1) ∩B2) ∪ (f(B2) ∩B1) �= ∅} .

This defines an undirected graph Ḡ = (V, Ē) with a weight function ēw :
Ē → R with ēw({Bi, Bj}) = µ(Bj)pij +µ(Bi)pji on the edges. The difference
between the graphs G and Ḡ is that in Ḡ the edge weight between two vertices
is the sum of the edge weights of the two directed edges between the same
vertices in G. Thus, the total edge weights of both graphs are identical.

To formulate the problem of partitioning the state space into almost in-
variant sets, we will define two cost functions that describe how much weight
remains within a certain set on the one hand, and how much weight changes
the set of a partition on the other hand. In order to so, we first need some
more notation and write µ(S) =

∑
i∈S µ(Bi) for S ⊂ V , and with S̄ = V \ S

we further denote

ES,S =
∑
i,j∈S

µ(Bi)pij and ES,S̄ =
1
2

∑
i∈S,j∈S̄

µ(Bi)pij + µ(Bj)pji.
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Definition 2.3. For a set S ⊂ V we define

Cint(S) =
ES,S

µ(S)

as the internal cost of S, and

Cext(S) =
ES,S̄

µ(S) · µ(S̄)

as the external cost of S.

Note that both cost functions are independent from the choice between
the directed graph G or the undirected graph Ḡ. We can therefore choose the
simpler undirected graph, and we will do that in the following.

Definition 2.4. For a partition S = {S1, . . . , Sp} of V we define

Cint(S) =
1
p

p∑
i=1

Cint(Si) (2.5)

as the internal cost of S, and

Cext(S) =

∑
1≤i<j≤p ESi,Sj∏p

i=1 µ(Si)
(2.6)

as the external cost of S.

Intuitively, optimal almost invariant partitions have maximal internal cost
and minimal external cost. Therefore, both the internal and external costs
are useful cost functions for the problem of computing almost invariant sets.
However, the minimization of the external cost is not equivalent to the max-
imization of the internal cost. In fact, the maximization of the internal cost
favors in general parts that are on average very loosely coupled to the rest
of the system. However, the size of these parts can in principle become very
small. On the other hand the minimization of the external cost favors balanced
weighting of the components.

It is an easy task to check that ρ(S) = Cint(S). Thus, the optimization
of problem 2.2 is identical to the optimization of the internal costs of the
partition S in equation (2.5) written in graph notation. Therefore, we have
established the following graph partitioning problem.

Problem 2.5 (Graph). For some fixed p ∈ N+ find a collection of pairwise
disjoint sets S = {S1, . . . , Sp} with

⋃
1≤i≤p Si = V and vw(Si) > 0, 1 ≤ i ≤ p,

such that
Cint(S) → max . (2.7)

One can also consider the analogous problem for the external cost function.

Problem 2.6 (Graph). For some fixed p ∈ N+ find a collection of pairwise
disjoint sets S = {S1, . . . , Sp} with

⋃
1≤i≤p Si = V and vw(Si) > 0, 1 ≤ i ≤ p,

such that
Cext(S) → min . (2.8)
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3 Computation of Almost Invariant Sets as a Graph
Partitioning Problem

In this section we show how existing graph partitioning methods and tools can
be applied to compute almost invariant sets. We first describe some state of the
art graph partitioning heuristics. Then, we introduce the notion of congestion
in a graph and its use in the analysis of dynamical systems, in particular in
view of the problem of finding a partition of almost invariant sets. Finally, we
explain how the congestion can be used as a criterion to decide on the number
of almost invariant sets.

3.1 Graph Partitioning Heuristics

In this section we briefly review existing approaches and algorithms for parti-
tioning the vertex set of a graph. As most variations of the partitioning prob-
lem – including those we are interested in in this article – are NP-complete,
the algorithms we present are approximation algorithms that are often based
on some heuristic for obtaining good partitionings.

The existing methods and tools for graph partitioning do not exactly op-
timize the cost functions we introduced in the previous section. We therefore
give an overview of the most successful graph partitioning methods and im-
plementations and point out the necessary modifications to such tools.

For the remainder of this section we assume that we aim to partition a
the vertex set of a graph into a known number of p parts. In Sect. 3.3 we will
present a way to identify this number.

We want to calculate a partition of the vertex set V of a graph G = (V,E)
into p parts V = S1 ∪ · · · ∪ Sp such that one of our cost functions of equa-
tions (2.5) or (2.6) is optimized. However, the calculation of an optimal solu-
tion of both cost functions is NP-complete. Another widely discussed parti-
tioning problem is to minimize the cut size cut(π) =

∑
1≤i<j≤p ESi,Sj of the

partition π under the constraint that all parts have an equal (or almost equal)
number of vertices. This problem is sometimes called Balanced Partitioning
Problem and is NP-complete, even in the simplest case when a graph with
constant vertex and edge weights is to be partitioned into two parts [GJ79].

Efficient graph partitioning strategies have been developed for a number
of different applications. Efficiency and generalizations of graph partitioning
methods strongly depend on specific implementations. There are several soft-
ware libraries, each of which provides a range of different methods. Examples
are CHACO [HL94], JOSTLE [Wal00], METIS [KK98a], SCOTCH [Pel96] or
PARTY [Pre98]. The goal of the libraries is to both provide efficient imple-
mentations and to offer a flexible and universal graph partitioning interface to
applications. These libraries are designed to create solutions to the balanced
partitioning problem.

The tool PARTY has been developed by one of the authors and we have
used it for partitioning the graphs in this paper. PARTY, like other graph par-
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titioning tools, follows the Multilevel Paradigm. The multilevel graph parti-
tioning strategies have been proven to be very powerful approaches to efficient
graph-partitioning [Bou98, Gup97, HL95, KK98b, KK99, MPD00, PM*94,
Pre00]. The efficiency of this paradigm is dominated by two parts: graph
coarsening and local improvement.

The graph is coarsened down in several levels until a graph with a suffi-
ciently small number of vertices is constructed. A single coarsening step be-
tween two levels can be performed by the use of graph matchings. A matching
of a graph is a subset of the edges such that each vertex is incident to at most
one matching edge. A matching of the graph is calculated and the vertices
incident to a matching edge are contracted to a super-vertex. Experimental
results reveal that it is important to contract those vertices which are con-
nected via an edge of a high weight, because it is very likely that this edge
does not cross between parts in a partition with a low weight of crossing edges.
PARTY uses a fast approximation algorithm which is able to calculate a good
matching in linear time [Pre00].

PARTY stops the coarsening process when the number of vertices is equal
to the desired number of parts. Thus, each vertex of the coarse graph is one
part of the partition. However, it is also possible to stop the coarsening process
as soon as the number of vertices is sufficiently small. Then, any standard
graph partitioning method can be used to calculate a partition of the coarse
graph.

Finally, the partition of the smallest graph is projected back level-by-level
to the initial graph. The partition is locally refined on each level. Standard
methods for local improvement are Kernighan/Lin [KL70] type of algorithms
with improvement ideas from Fiduccia/Mattheyses [FM82]. An alternative
local improvement heuristic is the Helpful-Set method [DMP95] which is de-
rived from a constructive proof of upper bounds on the bisection width of
regular graphs [HM92, MD97, MP01].

As mentioned above, the tools are designed for solving the balanced graph
partitioning problem. Thus, the optimization criterion is different from our
cost functions of Sect. 2.4. The coarsening step of the multilevel approach does
not consider the balancing of the weights of the super-vertices. It is the local
refinement step which not only improves the partition locally but also balances
the weights of the parts. Thus, we have to modify the local improvement part
of the multilevel approach. We therefore modified the Kernighan/Lin imple-
mentation in PARTY such that it optimizes the cost-function Cint. Overall,
we use the algorithm of Fig. 3.1 to calculate almost invariant sets.

As an example to illustrate the partitioning we consider a graph that was
obtained as the discretization of the dynamics of a pentane molecule that is
considered in detail in [DH*00]. This molecule has two dihedral angles which
are used as state space coordinates. The left plot of Fig. 3.2 shows the box
collection and all transitions between boxes. As we will see in sect. 3.3, it is
adequate to partition the graph into five or seven parts. These are shown in
the center and right plots of Fig. 3.2.
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Partition graph G0 = (V0, E0) into p parts

i = 0;
WHILE (|Vi| > p)

calculate a graph matching Mi ⊂ Ei;
use Mi to coarse graph Gi = (Vi, Ei) to a graph Gi+1 = (Vi+1, Ei+1);
i := i + 1;

END WHILE
let πi be a p-partition of Gi such that each vertex is one part;
WHILE (i > 0)

i := i − 1;
use Mi to project πi+1 to a p-partition πi of Gi;
modify the partition πi on Gi locally to optimize Cint(πi);

END WHILE
output π0.

Fig. 3.1. Computing a graph partitioning with the multilevel approach.
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Fig. 3.2. Partition of graph describing the dynamics Pentane300. Left: The graph
with all edges. Center: Partition consisting of five parts with Cint = 0.980. Right:
Partition consisting of seven parts with Cint = 0.963. (See page 695 for a colored
version of the figure.)

3.2 Congestion

Standard graph partitioning methods partition the graph into a predefined
number of parts. However, if we do not know the resulting number of almost
invariant sets a priori, we need to find mechanisms which help us to decide on
a natural number of parts. As we will see, such a mechanism can be devised
on the basis of the concept of congestion of a graph.

Intuitively, the congestion of a graph is a quantity that can be used to
identify ‘bottlenecks’ in the graph, i. e. edges that connect subgraphs which
have relatively many internal and relatively few external edges. This descrip-
tion already explains the relevance of the congestion for the problem of finding
almost invariant sets of a dynamical system. The concept is based on the idea
of so-called multi-commodity flows on the graph (see e.g. [Lei92, Sin93]).
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In the following, we first formally define the congestion. As it is often
not feasibly to precisely compute this quantity for a given graph, we will
then shortly discuss heuristics for an approximation of the congestion. These
heuristics will produce upper bounds on the congestion, which we can use in
a lower bound on the external cost of a bisection of a graph that is discussed
immediately afterwards.

The first concept we need for the definition of the congestion is that of a
single-commodity flow in a graph. Such a flow may be imagined as a way of
describing the transport of a certain quantity c of some good from a source s
to a target t through a network of roads that is given by the graph.

Definition 3.1. Let G = (V,E) be an undirected graph with the vertex set
V = {1, . . . , d}. Let s, t ∈ V be vertices of G with s �= t, let c ∈ R. A
single-commodity flow f of the commodity c from s to t on G is a function
f : V × V → R such that

i. f(v, w) = 0 for all {v, w} /∈ E (flow on edges only),
ii. f(v, w) = −f(w, v) for all v, w ∈ V (symmetry),
iii.

∑
w∈V

f(v, w) = 0 for all v ∈ V \{s, t} (flow conservation) and

iv.
∑
w∈V

f(s, w) =
∑
w∈V

f(w, t) = c.

As the next step, we will define multi-commodity flows which general-
ize single-commodity flows. Intuitively, a multi-commodity flow describes the
transport of certain commodities from every vertex to every vertex of the
graph. The formal definition is as follows.

Definition 3.2. Let cs,t ∈ R for 1 ≤ s, t ≤ d. A multi-commodity flow F
of the commodities cs,t on G is a function F : V × V × V × V → R such that
for each pair (s, t) ∈ V ×V , the function F (s, t, ·, ·) is a single-commodity flow
of the commodity cs,t from s to t on G.

With these concepts, we are in a position that allows us to introduce the
congestion of a graph as we are using it in this work.

Definition 3.3. Let G = (V,E) be an undirected graph with the vertex set
V = {1, . . . , d}, vertex weights µdi for i ∈ V , and edge weights Aij for {i, j} ∈
E. For s, t ∈ V , let cs,t = µds ·µdt . Denote by F the set of all multi-commodity
flows of the commodities cs,t on G. For an edge {v, w} ∈ E and F ∈ F , the
edge congestion of {v, w} in F is

cong({v, w}, F ) =

∑
1≤s,t≤d |F (s, t, v, w)|

Avw
. (3.1)

The flow congestion of F on G is

cong(F ) = max
{v,w}∈E

cong({v, w}, F ) , (3.2)
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and finally the congestion of the graph G is

cong(G) = min
F∈F

cong(F ) . (3.3)

In principle, other choices of commodities cs,t than those used in this
definition are also possible. However, the choice we made here seems the most
appropriate for the use we will make of the congestion in this paper, as will
become clear in the following section.

Approximation of the congestion

The computation of the congestion cong(G) of a graph can be costly and is
often infeasible. We will see in the next section that the congestion can be
used to bound the external cost of a partition. However, that bound holds for
the congestion cong(F ) of any multi-commodity flow F . Thus, a sub-optimal
flow produces a sub-optimal, but still valid bound. In this section we discuss
heuristics for calculating a flow with a small flow congestion.

There are some hints of how to construct a flow with a small flow con-
gestion. Clearly, cycles in the flow should be avoided. Furthermore, it is easy
to imagine that a low-congestion flow should - at least primarily - go along
shortest paths between the pairs of vertices. Here, the length of a path is the
sum of the reciprocal values of the edge weights along the path.

A straightforward method is to send the flow along shortest paths only. If
more than one shortest paths exist, the flow value can be split among them.
If the edge weights are constant, all shortest paths can be calculated in time
O(|V | · |E|). This can be done by |V | independent Breath-First searches in
time O(|E|) each. If the edge weights are non-negative, all shortest paths can
be calculated in time O(|V | · (|V | · log |V | + |E|)), e.g. with |V | runs of the
single-source shortest path Dijkstra algorithm using Fibonacci heaps. We refer
to [CLR90] for a deeper discussion of shortest paths algorithms.

A different method is to consider n commodities at a time. For each vertex
vs, 1 ≤ s ≤ n, consider the commodities cs,t, 1 ≤ t ≤ n, i.e. all commodi-
ties with vs as the source. For each source vs we calculate a flow Fs which
transports all commodities from vs to all other vertices, i.e. it replaces n single-
commodity flows such that Fs(v, w) =

∑n
t=1 F (s, t, v, w). Fs is a single-source,

multiple-destination commodity flow. Definitions (i.) and (ii.) for the single-
commodity flow (Definition 3.1) remain unchanged whereas the definitions of
(iii.) and (iv.) are replaced by

v.
∑
w∈V

Fs(vt, w) = −cs,t for all t �= s (from source s to target t) and

vi.
∑
w∈V

Fs(vs, w) =
n∑
t=1

cs,t − cs,s (from source s to all targets t except to

source s itself).

It is left to show how we calculate a single-source flow Fs. We use algo-
rithms from diffusion load balancing on distributed processor networks for
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this task, see e.g. [DFM99, EF*99, EMP00]. Here, the problem is to balance
the work load in a distributed processor network such that the volume of data
movement is as low as possible. We use these algorithms in the setting that the
vertex vs models a processor with load

∑n
t=1 cs,t and all other vertices model

a processor with no load. Furthermore, the processors are heterogeneous with
a capacity of cs,t for processor vt [EMP00]. The diffusion algorithms calculate
a balancing flow such that each vertex/processor vt gets a load of cs,t. That is
exactly what we need in our context. The resulting balancing flow has a nice
property: it is minimal in the l2-norm, i.e. the diffusion algorithms minimize
the value

√∑
1≤v,w≤n |Fs(v, w)|. This ensures that there are no cycles in any

flow Fs. Furthermore, the flows are not restricted along shortest paths and
can avoid high traffic along shortest paths. However, the flows are still fa-
vored to be along reasonably short paths. Thus, it is expected that the overall
edge congestion of the resulting flow is reasonably small and that the flow
congestion is close to the congestion of the graph.

The PARTY library includes efficient code of a variety of diffusion algo-
rithms. We use them to calculate the single-source, multiple-destination flows
for each source s and then add up the values to get the multi-commodity flow.
Numerical experiments indicate that the resulting flow is indeed very small.

An Example: Pentane

To illustrate the meaning of the congestion in the context of dynamical sys-
tems, we again consider as example the graph describing the dynamics of a
pentane molecule from [DH*00]. The graph corresponding to this dynamical
system is shown in the left part of Fig. 3.3. The middle and the right part of
Fig. 3.3 show the edges with low and with high congestion, respectively. The
coloring of the boxes indicates the partition into seven almost invariant sets.
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Fig. 3.3. Congestion of the Pentane. Left: all transitions. Center: only transitions
with a low congestion. Right: only transitions with a high congestion. (See page 695
for a colored version of the figure.)
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It can be observed that – as expected – edges with low congestion can
mainly be found inside the almost invariant sets. On the other hand edges
between different almost invariant sets have a large congestion. Thus, a high
congestion indicates that there are at least two regions in the phase space
which are only loosely coupled. As we will see in Sect. 3.3, this observation
is the basis for using the congestion as an identifier for the number of almost
invariant sets which have to be approximated.

The congestion bound on Cext

We will now see how the concept of congestion of a graph can be used for
the analysis of dynamical systems, in particular for the problem of finding a
partition into almost invariant sets.

The congestion can be used to derive a lower bound on Cext(S) for any
S ⊂ I. As before, we use multi-commodities cs,t = vw(vs) · vw(vt) for each
source vs ∈ V and each destination vt ∈ V . On the one hand side, for any
multi-commodity flow with commodities cs,t as given above, at least µ(S)·µ(S̄)
‘units’ have to cross the cut between S and S̄, and as many in the opposite
direction. On the other hand, with ES,S̄ being the sum of edge weights of
edges crossing the cut, by definition of the congestion, at most cong(G) ·ES,S̄

units can cross the cut. Therefore we have 2 · µ(S) · µ(S̄) ≤ cong(G) · ES,S̄ ,
which at once gives the important inequality

Cext(S) =
ES,S̄

µ(S) · µ(S̄)
≥ 2

cong(G)
. (3.4)

Obviously, a high and tight lower bound can only be achieved with a small
congestion. Although the congestion can be computed in polynomial time, it
remains to be very costly. Nevertheless, the congestion can be approximated
by the congestion of any flow. Heuristics for calculating a small congestion
were discussed above. Further discussion of lower bounds based on different
variations of multi-commodity flows can be found in [Sen01].

3.3 Identification of the Number of Almost Invariant Sets

We now discuss the problem of identifying an appropriate number of almost
invariant sets a given space should be partitioned into.

Informally, we want to determine a number p ∈ N such that there is a
partition of V consisting of p parts V = S1∪· · ·∪Sp with a high internal cost.
As the internal cost is monotonically decreasing for the optimal partitions with
an increasing number of parts p, we are looking for a number p such that an
(almost) optimal partition into p−1 parts has an only slightly higher internal
cost than an (almost) optimal partition consisting of p parts while (almost)
optimal partitions into p + 1 parts have a substantially lower internal cost.
The idea is that if we try to split a compact set (one with a small congestion),
the internal cost will drop substantially. Thus, our strategy is to start with
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the whole vertex set as the initial set and keep on bisecting the sets until they
become compact sets. This leads us to a strategy of how to determine the
number of compact parts. It can be phrased as a general method:

Recursively bisect the vertices of the graph until all parts are compact.

Recursive bisection is a widely used technique in graph partitioning. Al-
though there are many partitioning methods which directly partition the ver-
tices of a graph into a number of parts, we cannot apply them here, because
we do not know the number of parts a priora priori. Aditionally, the graph
bisection methods are often much more efficient than their generalized coun-
terparts.

We have seen in the previous section that the congestion of a graph can be
used to derive a lower bound on the external cost of a set bisection, i.e. a large
congestion indicates a large external cost and, therefore, also a small internal
cost. We use the congestion in order to decide whether a set is compact or not.
In our experiments we use a threshhold of 5 and say that if the congestion
is larger than 5 than the set has at least one bottleneck and is not compact.
Thus, our strategy is to subdivide the parts until all parts have a congestion
of at most 5.

One needs to solve two tasks in order to follow the recursive bisection
strategy and we described both in the previous sections. We use the methods
described in Sect. 3.1 to recursively calculate bisections of a graph. Further-
more, we use the congestion in order to indicate whether a part is compact
or not.

Figure 3.4 illustrates the recursive bisection process in the partitioning of
the graph in the pentane molecule example from [DH*00] which we already
used before. From the top left to the bottom right picture, the levels of the
recursive procedure are shown rowwise. As we can observe in the first picture,
the first bisection results in one part of 43 boxes and a very low congestion of
0.88. However, the other part consisting of 212 boxes has a high congestion
of 168.82. We continue to bisect parts with a congestion value higher than 5.
Thus, after a total of 4 bisection levels we get a partition into 7 parts and the
highest congestion of any part is 3.67 .

4 Short Paths

Broadly speaking, the previous section has been concerned with the use of
graph partitioning algorithms to obtain information about almost invariant
sets of a dynamical system. In this section, we will consider the use of another
class of graph algorithms, namely that of shortest-path algorithms, in the
context of dynamical systems. We will see that such algorithms can be used
to compute discrete approximations to transition paths of a dynamical system.
The crucial question for this undertaking is the choice of a weight function that
defines the length of an edge. We will present two such functions for different
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Fig. 3.4. Recursive bisection of the graph for the pentane example. The values
indicate: number of boxes / invariant measure / internal cost Cint / congestion of
subgraph. The graph has 255 vertices and a congestion of 139.67. (See page 696 for
a colored version of the figure.)

types of dynamics. Both have a natural motivation, and we will compare the
results of both approaches.

Definition 4.1. Let G = (V,E) be any graph with edge weights given by a
function ew : E → R. A sequence [(v1, v2), (v2, v3), . . . (vi, vi+1)] of edges
(vj , vj+1) ∈ E, 1 ≤ j ≤ i, is called a path from vertex v1 to vertex vi+1 of
size i and of length l =

∑i
j=1 ew((vj , vj+1)). A shortest path from a vertex

vs to a vertex vd is a path of minimum length from vs to vd. The distance
dist(vs, vd) from vs to vd is the length of a shortest path from vs to vd.

The standard algorithm used for computing shortest paths in graphs is the
Dijkstra algorithm. It solves the so called Single Source Shortest Path Problem
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where the shortest paths from one source vertex vs ∈ V to all other vertices
v ∈ V have to be determined. The Single Source, Single Destination Shortest
Path Problem is a special case in which only one path from vs to a designated
destination vertex vd has to be determined. In both cases the runtime of the
Dijkstra algorithm is O(|V | log(|V |) + |E|). For a profound discussion of this
standard algorithm we refer to e. g. [CLR90], in the following we will only
roughly sketch its basic principle.

Given a vertex vs as starting vertex, the algorithm maintains a list of
distances to vs assigned to every other vertex that is initialised with the value
∞ and in the end contains the lengths of the shortest paths from vs to any
vertex. In the first step, the distances of all neighbors of vs are set to the
weight of the edge connecting them to vs. These vertices form the initial halo
set, i.e. they are the vertices for which one path from vs is known but it
is not known whether this path is a shortest path. In the main loop of the
algorithm, it removes a vertex vmin with the minimum known distance from
the halo set, and considers all neighbors of vmin. If a neighbor is also in the
halo set, the algorithm checks whether a path through vmin would result in a
distance from vs less than the current known distance. If a neighbor is not yet
in the halo set, it is added to it, with its distance value being the sum of the
distance of vmin and the length of the edge connecting the neighbor to vmin.
The algorithm terminates when a prescribed target vertex is reached or when
the halo set becomes empty.

By two slight modifications, the Dijkstra algorithm can be generalized to
find a shortest path from any vertex of a source set Vs ⊂ V to any vertex of
a destination set Vd ⊂ V . The first modification is that in the initialization
step all vertices of Vs are assigned the distance value 0, and that all neighbors
of vertices from Vs that do not themselves belong to Vs form the initial halo
set. The second modification is that in the main loop, every time a vertex v
is removed from the halo set, it is checked whether v ∈ Vd.

4.1 Several Short Paths

For the purposes of this article, the purely graph theoretic consideration of
shortest paths we have seen until now has to be extended by some ideas
related to the specialized setting of graphs describing (temporal and/or spa-
tial) discretizations of continuous dynamical systems. In particular we have in
mind the fact that the numerical realizations of these graphs necessarily come
with a discretization error which makes it doubtful whether the notion of the
shortest path between two vertices vs and vd is really a meaningful quantity
in our applications – even leaving out the possible existence of several shortest
paths. Therefore, we are not only interested in one (or all) precisely shortest
paths, but we are also interested in all paths which are only slightly longer
than a path with the shortest length.

For this reason, we want to calculate all paths from a vertex vs to a vertex
vd which have a length of at most (1 + ε) dist(vs, vd). In order to do so, we
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need to apply the Dijkstra algorithm only two times. Firstly, we calculate all
distances from vs to all other vertices and denote these distances by dist1(v)
for all vertices v ∈ V . Among all distances this also includes the distance
between vs and vd. Secondly, we consider a new graph Gr = (V, F ) where
F consists of the edges in E with direction reversed. Then, we calculate all
distances from vd to all other vertices in Gr, and denote these distances by
dist2(v) for all vertices v ∈ V . Note that dist2(v) is also the distance from v
to vd in G for any vertex v ∈ V .

It is now simple to decide whether or not an edge (vi, vj) lies on a path
between vs and vd of length at most dist(vs, vd)(1 + ε). Such a path has to
consist of three parts: a path from vs to vi, the edge (vi, vj) itself and a
path from vj to vd. The shortest length for the first part is dist1(vi) and the
shortest length of the last part is dist2(vj). Thus, an edge (vi, vj) lies on a
path between vs and vd of length at most (1 + ε) dist(vs, vd) if and only if

dist1(vi) + ew((vi, vj)) + dist2(vj) ≤ (1 + ε) dist(vs, vd) .

The result is a subset Esp ⊂ E of edges belonging to the short paths.

4.2 Choices of edge weights

Until now, we have considered graphs with edge weights ew((vi, vj)) = µdiPji
that where introduced in Sect. 2.4. While this weighting is appropriate for
graph partitioning algorithms which aim to minimize the internal cost of a
partition, it is less useful for shortest path algorithms.

Instead, we want to use an edge weight such that the length of a path
((v1, v2), (v2, v3), . . . , (vi, vi+1)) from a vertex v1 to a vertex vi+1 reflects the
product of the probabilities to choose the next edge along the path, i.e.∏i

j=1 Pj+1,j . Thus, a high probability to go along this path should be re-
flected by a short path and vice versa.

We can do this by using shortest paths algorithms on the graph with edge
weights

ew(vi, vj) :=
1

log(Pji)
= − log(Pji) .

Then the length of a path ((v1, v2), (v2, v3), . . . , (vi, vi+1)) is

l =
i∑

j=1

ew((vj , vj+1)) = − log(
i∏

j=1

Pj+1,j) .

Note that the product of probabilities on the right hand side of this equation
is the probability that the Markov chain described by the matrix P produces
the considered sample path when started in v1.
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A B C

2 1 3 4 5

Fig. 4.1. Schematic representation of the example. The rectangular domain of the
pure diffusion with a reflecting boundary is discretized into 8 boxes.

Motivational example

As an example for a type of dynamics for which the edge weight introduced
in the previous section seems inappropriate, we consider diffusion in a flat
potential landscape (i. e. with V ≡ 0, see below). We choose a rectangu-
lar domain and apply reflecting boundary conditions. In Fig. 4.1 we give a
schematic picture of the situation. Suppose, we start the process in box B.
From the symmetry of the domain and the nature of diffusion, it is clear that
the probability to end up in box A is the same as to reach the box C, namely
0.5. But the particular decomposition of the domain, with the boxes 3, 4 and
5 having only two thirds of the width of the boxes 1 and2, implies that the
transition probabilities between boxes 1 and 2 on the one hand side and be-
tween boxes 3 and 4, and 4 and 5 on the other hand are all equal. This means
that the discrete path (B, 3, 4, 5, C) is less probable than the path (B, 1, 2, A),
in contradiction to the continuous picture.

Free Energy

Another important quantity to characterize the transition behavior of a dy-
namics in a complex system is the free energy barrier which the dynamics
has to overcome on its way between two almost invariant sets. Suppose we
consider the Smoluchowsky dynamics generated by the stochastic differential
equation

Ẋ(t) = −∇V (X(t)) +
√

2β−1Ẇ (t) (4.1)

whereX(t) ∈ Rn,W is a standard Browian motion, V : Rn → R is a potential
and β is a parameter that is referred to as the inverse temperature. The
probability to find the equilibrated system in a certain region, say C ⊂ Rn,
is given by

µ(C) = Z−1

∫
C

exp(−βV (x))dx (4.2)

where Z is the normalization factor. The traditional way to define the free
energy is by means of the marginal density with respect to a given reaction
coordinate ξ : Rn �→ R

Z(q) = Z−1

∫
Rn

exp(−βV (x))δ(ξ(x) − q)dx. (4.3)
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Then the free energy is given by the logarithm of the partition sum Z(q):

F (q) = −β−1 lnZ(q). (4.4)

Discrete free energy

Now consider a reversible Markov process on a finite state space S =
{s1, . . . , sn} and let π = (π1, . . . , πn) its unique stationary distribution. Anal-
ogously to the continuous case, we define the free energy in terms of a prob-
ability distribution

F (i) = − lnπi > 0, i ∈ S. (4.5)

New weight

Given two disjoint sets A,B ⊂ S, we are interested in the state space path
which crosses the lowest free energy barriers on its way from A to B. To this
end, we introduce the new edge weights

w(i, j) = |Fj − Fi|. (4.6)

Let p = (i1, . . . , is) be a path such that

Fij ≤ Fij+1 ⇔ πij ≥ πij+1 , j = 1, . . . , s− 1 (4.7)

then the length of the path is

l(p) =
s−1∑
j=1

wij ,ij+1 = Fis − Fi1 . (4.8)

This means that the weight of such a path is simply given by the free energy
difference between the last and the first state of the path. Moreover, if we fix
the states i1 and is, then all paths connecting these two states and satisfying
(4.7), have the same length. Next consider a path p = (i1, . . . , in) which can
be decomposed into two parts p1 = (i1, . . . , is) and p2 = (is, . . . , in) such that{

Fij ≤ Fij+1 , j = 1, . . . , s− 1
Fij ≥ Fij+1 , j = s, . . . , n− 1

. (4.9)

One immediately verifies that the length of such a path is given by

l(p) = 2Fis − (Fi1 + Fin) ≥ 0. (4.10)

Again, the length of the path depends only on free energy differences, namely
the barriers Fis − Fi1 and Fis − Fin . Consequently, if we fix the states i1 and
in then the shortest path between i1 and in w.r.t. to the weights (4.6) is the
one which crosses the lowest free energy barriers.
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A B C

2 1 3 4 5

Fig. 4.2. Schematic representation of the modified example.

Interpretation

The first observation is that the new weight allows to find barriers between
invariant sets. Furthermore, it is more insensitive with respect to the under-
lying discretization. To explain this issue, let us go back to example in 4.2.
The probabilities to find the equilibrated dynamics in the boxes 1 and 2 are
equal, and so are the probabilities of the boxes 3, 4 and 5. That means that
there are no free energy barriers for the dynamics on its way to the box A
or C, respectively, conditioned on starting in the box B and thus the paths
are equal. But this exactly results from the new weight: The lengths of both
paths are equal,

l(B, 1, 2, A) = FA − FB = FC − FB = l(B, 3, 4, 5, C) = const.

In the previous example the volumes of the boxes are equal. What happens
if the volumes of the boxes differ? Suppose we decompose the box 4 into two
boxes with equal volume. In Fig. 4.2 we give a schematic representation of
the modified example. For this discretization both weights would tell that the
path (B, 1, 2, A) is the preferred one since both the transition probabilities
w.r.t. the box 4 and its stationary distribution decrease. But nevertheless, the
new weight is more insensitive to the underlying discretization because the
length of a path does not depend on the entire path but only on the barriers
which the path overcomes.

4.3 Modified update step in the Dijkstra algorithm

The twofold contribution of a barrier can be seen as reflecting the reversibility
of the process. If it is necessary to know the value of the sum of barriers only
in one direction then this can be done by modifying the update step in the
Dijkstra algorithm. Let v be the current node in the main loop of the Dijkstra
algorithm and let k be a neighbor which has to be updated. Instead of using
the weight w(v, k) we propose to use the weight w̃(v, k) = max{0, Fk − Fv}
for updating the distance of the node k. Doing so, the bidirectional Dijkstra
algorithm with the modified update-step computes the same paths as the
unmodified one, but the length of a path only depends on the barrier in one
direction.
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Fig. 4.3. Left :Contour plot of the three-hole potential. Right: Equilibrium distri-
bution at β = 1.67.

4.4 Illustrative example: diffusion in a potential landscape

In the following example we study the behavior of the bidirectional Dijkstra-
Algorithm in the presents of two possible transition channels. We compare
the families of transition paths resulting from the probability weight and the
free energy weight. For this purpose we choose the three-well potential

V (x, y) = 3e−x2−(y− 1
3 )2 − 3e−x2−(y−5

3 )2

−5e−(x−1)2−y2
− 5e−(x+1)2−y2

which already has been investigated in [PS*03]. As one can see in the left
picture of Fig. 4.3 the two deep minima at (−1, 0) and (1, 0) are connected
by an upper and a lower channel. We choose the inverse temperature β =
1.67 such that despite the dominance of the two deep minima there is still a
little probability to find the dynamics in the shallow minimum around (0, 5

3 ).
The dynamical bottlenecks in the upper channel are two saddle points with
equal potential energy whereas the dynamics in the lower channel only has
to overcome one saddle point with potential energy higher than that of the
upper ones.

The following experiments are based on a discrete realization of the dy-
namics given in (4.1) for the inverse temperature β = 1.67. To be more precise,
we use the Euler-Maruyama-scheme

xn+1 = xn −∇V (xn)τ +
√

2β−1τ ηn, n = 0, . . . , N − 1 (4.11)

to discretize the SDE (4.1) in time, where xn ∈ R2, τ is the time step and
ηn denotes a realization of a gaussian random variable with mean zero and
variance one. We choose the time step τ = 10−3 and generate a trajectory of
total length τN with N = 106.
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Fig. 4.4. Left: Stationary distribution of the transition matrix. Right: The free
energy of the boxes.

Equidistant discretization

Next we decompose the rectangular domain into 30× 30 equidistantly spaced
boxes. In the left picture of Fig. 4.4 we depict the stationary distribution of the
reversible transition matrix and in the right picture we plot the corresponding
free energy.

In Fig. 4.5 we illustrate the results of bidirectional Dijkstra for both
weights, the weights which are based on the transition probability and the
weights (4.6) incorporating the free energy. For all computations we use the
same sets A and B which consists of boxes covering the two deep minima,
respectively. In the two columns of Fig. 4.5 we draw the edges which belong
to the family of shortest paths between the sets A and B. From top to bot-
tom we increase the parameter ε which results in increasing number of edges.
The left column shows the edges of the most probable paths, whereas in the
right column we draw the edges of paths which crosses the lowest free energy
barriers.

As one can see, both methods detect for small ε the lower transition channel
as the preferred one. But with increasing ε the families of transition paths
differ. The family of transition paths resulting from transition probability
weight for ε = 0.6 includes paths which overcome the big barrier in the middle
of the potential. Since the probability that the dynamics leaves the basin of
attraction scales exponentially with the barrier which has to be overcame,
the paths over the big barrier make no sense. Although the dynamics could
get trapped in the upper shallow minima, the two lower saddle points rather
should allow the dynamics to make transition than to go over the big barrier
in the middle. This behavior is reflected by the free energy weight as can be
seen in the last picture of the right column.
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[DFM99] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25(7), 789–812, 1999.

[DH97] M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation
of unstable manifolds and global attractors. Numerische Mathematik, 75,
293–317, 1997.

[DH*00] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. Identification of
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1993.

[Wal00] C. Walshaw. The Jostle user manual: Version 2.2. University of Greenwich,
2000.



Conditional Averaging for Diffusive Fast-Slow
Systems: A Sketch for Derivation

Jessika Walter1 and Christof Schütte2
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Summary. This article is concerned with stochastic differential equations with dis-
parate temporal scales. We consider cases where the fast mode of the system rarely
switches from one almost invariant set in its state space to another one such that
the time scale of the switching is as slow as the slow modes of the system. In such
cases descriptions for the effective dynamics cannot be derived by means of stan-
dard averaging schemes. Instead a generalization of averaging, called conditional
averaging, allows to describe the effective dynamics appropriately. The basic idea of
conditional averaging is that the fast process can be decomposed into several ’almost
irreducible’ sub-processes, each of which can be treated by standard averaging and
corresponds to one metastable or almost invariant state. Rare transitions between
these states are taken into account by means of an appropriate Markov jump process
that describes the transitions between the states. The article gives a derivation of
conditional averaging for a class of systems where the fast process is a diffusion in
a double well potential.

1 Introduction

In complex system modeling, one often finds mathematical models that consist
of differential equations with different temporal and spatial scales. As a con-
sequence, mathematical techniques for the elimination of some of the smallest
scales have achieved considerable attention in the last years; the derivation
of reduced models by means of averaging techniques [FW84, AKN93, SV85,
Kif02, Fre78, Kif01, Kif92, BLP78], homogenization techniques [BS97, Bor98,
BS99], or stochastic modelling [MTV01, Mor65, Zwa73, MTV02] may serve
as typical links to this discussion.

This article is concerned with stochastic differential equations where the
fast mode of the system rarely switches from one almost invariant set in its
state space to another one such that the time scale of the switching is as
slow as the slow modes of the system. The basic idea is that the fast process
then can be decomposed into several ’almost irreducible’ subprocesses, each
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of which corresponds to one metastable or almost invariant state. To quantify
this principle, the rare transitions between these states are described by means
of the expected exit times that can be used to parametrize a Markov chain
model mimicking the transitions between the states.

The Averaging Principle

Let V : Rm ×Rn → R and consider the SDE

ẋε = −DxV (xε, yε) + σẆ1 (1.1)

ẏε = −1
ε
DyV (xε, yε) +

ς√
ε
Ẇ2, (1.2)

with ε > 0 and Wj (j = 1, 2) standard Brownian motions. If we assume
σ = ς, the above SDE is well-known as the Smoluchowski equation. For ε� 1,
this system consists of a fast variable, y, and a slow one, x. Under suitable
conditions on V (cf. [FW84]), averaging completely characterizes the limit x0

of the slow dynamics xε for ε→ 0 by an averaged SDE

ẋ0 = −
∫
Rn

DxV (x0, y)µx0(y)dy + σẆ1, (1.3)

where µx denotes the invariant density of the fast dynamics for fixed x:

µx(y) =
1
Zx

exp(− 2
ς2
V (x, y)), Zx =

∫
Rn

exp(− 2
ς2
V (x, y)) dy, (1.4)

which is assumed for each x to be the unique invariant density.

Metastable Fast Dynamics & Exit Times

Let us now assume that the fast dynamics exhibit metastable states , i.e., that
the effective dynamics in the fast degrees of freedom (DOF) can be described
by (rare) jumps between these sets, while in between the jumps the dynamics
remains within one of these metastable subsets. Under this condition averaging
may fail to reproduce the effective dynamics of the original system, mainly
for the following reason: The averaging principle is based on the fact that
the fast DOF completely explore the accessible state space before any change
in the slow DOF happen; this can fail to hold if metastability is observed in
the fast dynamics; in particular there is some subset of the accessible state
space from which the fast motion will most probably exit only on some scale
of order ord(1) or even larger. Let us make this rigorous by introducing the
mean exit time for the process yεx from one of the metastable subsets, where
yεx is governed by the SDE (1.2) for fixed x. If we assume the existence of two
metastable sets Rn = Bx ∪ Bc

x with Bx ∩ Bc
x = ∅, the mean exit time τ̄ εx(y)

from Bx is the expected value of the first exit time τ εx(y) of the process yεx
from Bx started at yεx(t = 0) = y, which is defined by
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τ εD(y) = inf
{
t ∈ R+ :

∫ t

0

1Dc(yεx(s)) ds > 0, yεx(0) = y

}
(1.5)

τ εx(y) = τ εBx
(y)

where Dc denotes the complement of the set D.
Although we would expect that exit times depend on the starting point,

i.e., yεx(0) = y, it can be shown that there do exist subsets D, for which
the exit time is basically independent for all states y ∈ D. Especially for a
metastable collection of sets Di of the Smoluchowski dynamics, in the limit
of vanishing noise intensity we are able to assign a first exit time τ̄ ε to an
entire subset Di rather than to single points y ∈ Di, see [HMS02, SH02,
SH00]. The question of the asymptotic behaviour of the mean exit time for
vanishing noise term ς has been discussed in detail by, for example, Freidlin
and Wentzell in [FW84], from which the following result is taken (up to
some slight modifications tailored to (1.1)&(1.2)) :

Theorem 1.1 ( [FW84, Thm. 4.1 of Chap. 4], [SH00]). Let the potential
V (x, ·) be twice continuously differentiable, let ymin be one of its local minima,
and Bx a metastable subset with sufficiently smooth boundary ∂Bx containing
ymin in its interior, but containing no other local minimum of V (x, ·) within
its interior. Without loss of generality we may assume that V (x, ymin) = 0.
Suppose that y0 is the unique point on the boundary ∂Bx with

V x
bar = V (x, y0) = min{V (x, y) : y ∈ ∂Bx}.

The mean exit time τ̄ εx for the process yεx with yεx(0) ∈ Bx then satisfies

lim
ς→0

ς2 ln
τ̄ εx
ε

= 2V x
bar.

As we are interested in the case where the averaging principle fails, let us have
a closer look on the relation between the time scale of the fast motion and the
exit times from metastable subsets in the fast DOF. The result of the above
theorem tells us two things: First, rapid mixing of the fast DOF ( τ̄ εx � 1) can
be realized by fixing ς and the potential energy function; then we are always
able to find an ε small enough such that averaging yields a good approximation
of the effective dynamcis. Second, if we decrease ς or increase the potential
energy barrier, the smallness parameter ε has to be chosen exponentially small
such that the averaged system still is a satisfactory approximation. If we want
to study the effect of metastabilities in the fast motion, it is natural to relate
V x

bar/ς
2 to ε so that the exit times from metastable sets vary on a timescale

of order ord(1), that is, so that

τ̄ εx � C(x) ε exp(
2
ς2
V x

bar) = ord(1), (1.6)

where C(x) denotes the subexponential pre-factor that necessarily depends
on x. Subsequently, the relation symbol � denotes asymptotic equality and
ord is used to indicate comparison to the same order.
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Conditional Averaging

The scaling assumption (1.6) on ς represents a modeling step which will lead
towards the derivation of the principle of conditional averaging that may yield
an appropriate reduced model in cases where the ordinary averaging scheme
fails: Since we observe rapid sampling of the invariant density µx in each of the
metastable subsets, we propose to average over each of these sets alone and to
couple the resulting systems by a Markovian switching process which describes
the flipping behaviour between the metastable sets. Then, in the case of (at
most) two metastable subsets B(1)

x and B
(2)
x for fixed x, the conditionally

averaged limit dynamics has the form

ẋ0 = −
∫
DxV (x0, y)µ(Ĩ(t,x0))

x0 (y) dy + σẆ1, (1.7)

µ(1)
x (y) =

1

µx(B
(1)
x )

µx(y)1B(1)
x

(y), µ(2)
x (y) =

1

µx(B
(2)
x )

µx(y)1B(2)
x

(y),(1.8)

with Ĩ(t, x) denoting the Markov chain model with state space S = {1, 2},
where the rates of the jumps reproduce the transition rates of the original
system. In [SW*03] explicit values for the generating rate matrix are obtained
by using the most dominant eigenvalue λε1(x) < 0 of the generator of the fast
dynamics (1.2) together with the weights µx(B

(i)
x ) of the metastable states on

the fiber of the fast state space.

Approach

The authors of [SW*03] derived the limit dynamics (1.7) in terms of multiscale
analysis of the Fokker-Planck equation, but there is no rigorous proof. The goal
of this paper is to obtain a deeper insight into the nature of the conditionally
averaged system.

Subsequently we consider the SDE

ẋε = −DxV (xε, yε) + σẆ1 (1.9)

ẏε = −1
ε
DyV (xε, yε) +

ς√
ε
Ẇ2, (1.10)

with ε > 0 and Wj (j = 1, 2) standard Brownian motions. We assume the fast
dynamics (1.10) to exhibit metastable states B(1)

x and B(2)
x so that the exit

times from the metastable subsets happen on a time scale of order ord(1) or
even larger.

Under these assumptions, we may take advantage of the methodology em-
ployed to extract the effective dynamics (1.7). This result (each metastable
subset of the fast dynamics is connected to one averaged equation) motivates
the idea to construct a system of fast-slow equations which allows for the
incorporation of temporal fast scale effects in a natural way: the fast motion
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within one metastable subset is approximated by an irreducible subprocess
that corresponds to a stochastic differential equation. The result is quanti-
fied by the parametrization of a Markov chain model I(t, x) that controls
the switches from one (sub)process to the other according to the transition
rates between the metastable subsets of the original dynamics. We thus ob-
tain a stochastic process where the slow variable at each instance is coupled
to one of two fast variables but where a stochastic switching process controls
the switches from one fast variable to the other. Then, under appropriate as-
sumptions on the potential V and for ς small, a good approximation of the
original dynamics (1.9)&(1.10) may be given by

ẋε = −DxV (xε, yε) + σẆ1 (1.11)

ẏε = −1
ε
ω(I(t,xε))(xε)

(
yε −m(I(t,xε))(xε)

)
+

ς√
ε
Ẇ2, (1.12)

where ω(i)(x) denotes curvature of V (x, ·) in the potential minima of the
metastable subsets B(i)

x for i = 1, 2, and m(i)(x) the respective minima.
A reduced system in the slow variable solely is then obtained by applying

the well-known averaging results from [Pap76, Kur73, FW84] to each of these
stochastic differential equations. Denoting µOU(i)

x the (unique) invariant den-
sity of the process defined by (1.12) for fixed x and I(t, x) = i, the averaged
system then has the form

ẋ0 = −
∫
DxV (x0, y)µOU(I(t,x0))

x0 (y) dy + σ Ẇ1, (1.13)

where the µOU(i)
x denote the invariant densities of the Ornstein-Uhlenbeck

(OU) processes (1.12) (for these we have explicit expressions).
That is, we derive a description of the effective dynamics in two steps. In

a first step we replace the fast dynamics in each of the metastable subsets by
appropriate OU processes which are coupled to each other by a Markovian
switching process that reproduces the transition times between B(1)

x and B(2)
x

of the original process. In a second step we simply use the invariant density
of the OU processes in order to obtain the reduced system (1.13) by means of
standard averaging. Recalling the conditionally averaged system

ẋ0 = −
∫
DxV (x0, y)µ(Ĩ(t,x0))

x0 (y) dy + σẆ1, (1.14)

with µ(i)
x , i = 1, 2 defined by (1.8), it is of considerable interest to compare the

effective dynamics obtained by the two different approaches, namely (1.13) on
the one hand and (1.14) on the other. Note that the jump processes I that
corresponds to (1.13) will be derived in a different way than the jump process
Ĩ of (1.14). However, we will see that I and Ĩ are comparable in a certain way.
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2 System under Consideration

Subsequently we study the SDE (1.1)&(1.2), where the following basic as-
sumptions about the potential V = V (x, y) are made:

Assumption 2.1 (i) V ∈ C∞(Rm+1);
(ii) V (x, ·) is a double-well potential for all x ∈ Rm with two local minima at

y = m(1),m(2) and one local maximum at y = y0 with m(1) < y0 < m(2);
to point out the dependence on x we will also write m(i)(x), i = 1, 2.

(iii) the position of the saddle point does not depend on x, without loss of
generality we may assume y0(x) = 0 for every x;

(iv) the extrema are non-degenerate uniformly in x, i.e., for i = 1, 2

DyyV (x,m(i)) = ω(i)(x) ≥ ω̃(i) > 0, DyyV (x, y0) = −ω0(x) ≤ −ω̃0 < 0.

Therefore, for fixed x, the particle spends a ’long time’ in one basin (=potential
well), then quickly undergoes a transition into the other basin, in which it
spends another ’long time’, and so on. The condition y0(x) = 0 implies that
for every x ∈ Rm the locations of the two basins do not depend on x such that
the natural decomposition of the entire state space into metastable subsets is
simply given by B(1) ∪B(2), where3

B(1) = {(x, y) ∈ Rm+1 | y < 0}, B(2) = {(x, y) ∈ Rm+1 | y > 0}.(2.1)

The double-well potentials may serve as toy models mimicking a larger sys-
tem whose potential energy surface presents several basins corresponding to
metastable states.

As outlined in the introduction, we proceed in two steps to derive a reduced
model for the effective slow variable dynamics. The key point for the first step
is rooted in the design of V (x, ·) which already suggests that an averaging
procedure should incorporate metastabilities in the fast dynamics that are
induced by the double-well structure: If the noise level in the fast equation is
small, the diffusion sample paths of the fast process are located near the local
minima of the potential wells, and transitions between the two potential wells
can be considered as rare events. Then, the diffusion can be decomposed into
two sub-processes

(xε(t), yε(i)(t)) = (xε(t), yε(t))1B(i)(xε(t), yε(t)), i = 1, 2,

and a two-state Markov chain I(t, x) mimicking the transitions between B(1)

and B(2) which happen along the y dynamics and thus depend on the position
of the slow one. Our approach is based on a quantification of the rates at
3 In [SW*03], the metastable decomposition for fixed x is defined by the zero z

of the second eigenfunction u1(x, ·) of the fast dynamics generator. It is shown
in [Wal05] that the zero z of u1(x, ·) actually is approximated by the saddle point
of the potential V (x, ·).
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which the fast process moves between the two subsets on the one hand and,
on the other, on an appropriate replacement of the almost irreducible fast
(sub)processes by appropriately chosen OU-processes evolving independently
of each other. Thus, the most basic questions we have to address concern
the fast process (1.2) for fixed slow variable x, which is done in Sect. 3. In so
doing, we basically have to decompose the fast process into the intra-well small
fluctuations of the diffusion around the potential minima and the inter-well
dynamics of the diffusion. For both parts we then obtain by means of small
noise asymptotics basic results that are then picked up in order to assemble
in Sect. 4 the full dynamics approximation (1.11)&(1.12) including the slow
variables motion.

The second step of the approach relies on the small noise approximation
and is based upon averaging results that can be found in a vast number of
articles. A simple application of a theorem in [FW84] then provides us in
Theorem 4.1 with the reduced dynamics (1.13). In the Appendix we show
how the averaged dynamics can be derived by using multiscale asymptotics
of the Fokker-Planck equation corresponding to the small noise approxima-
tion (1.11)&(1.12). In Sect. 5 we compare the averaged dynamics (1.13) to
the conditionally averaged system (1.7).

Another important concern of the approach is the relationship between
the noise level ς in the fast diffusion and the smallness parameter ε: The fast
diffusions inter-well and intra-well approximations are justified for vanishing
noise ς, so that we suggest ς → 0 to zero as ε → 0. Our considerations will
result in a coupling rule for ς and ε that incorporates the asymmetry of the
double-well potential. In Lemma 3.5 the choice of the noise level ς is coupled
to ε as well as the slow variable x so that the exit times from the metastable
subsets of the fast dynamics vary on a time scale of ord(1) or larger resulting
in (1.6).

Biomolecules operate at ambient temperature and solvent condition, and
most biomolecular processes can only be understood in a thermodynamical
context. Therefore, most experiments on biomolecular systems are performed
under the equilibrium conditions of constant temperature T , particle num-
ber, and volume. Statistical mechanics tells us that statistical ensembles of
molecular systems with internal energy V under these circumstances should
be modelled by the equilibrium density exp(−βV ). For the Smoluchowski
system (1.1)&(1.2) this means to enforce σ = ς (for fixed ε), such that ex-
periments can be arranged with inverse temperature β = −2/ς2. However, if
the noise intensity ς depends on the slow variable x, it is hardly possible to
interpret the model system in the context of equilibrium ensembles. Therefore
our later Lemma 3.5 is not satisfactory as its application removes the system
under consideration far away from the mathematical modeling of biological
processes. Thus, the investigations have to be extended to situations where ς
depends on ε solely. This will be done in Appendix B.
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3 Basic Results on Fast Process

Let Assumption 2.1 be valid in all of the following. For small noise intensity
ς, the process yε corresponding to the Smoluchowski equation (1.2) for fixed
x is almost decomposable into two subprocesses yε(1), y

ε
(2), each attracted to a

minimum m(i)(x), i = 1, 2 of the function V (x, ·).
Thus, we consider the fast motion yεx(t) for fixed slow variables x ∈ Rm:

ẏεx = −1
ε
DyV (x, yεx) +

ς√
ε
Ẇ2, (3.1)

and distinguish between the two different regions of attraction O(1)
x and O(2)

x

where O(i)
x is an open subset of B(i)

x with m(i)(x) in its interior. The subsets
B

(1)
x and B(2)

x are defined by the potential energy barrier:

B(1)
x = {y ∈ R : y < y0(x)}, and B(2)

x = {y : y > y0(x)}, (3.2)

with y0(x) = 0 denoting the saddle point of the potential V (x, ·).
In the limit of small noise level ς, Theorem 3.1 below will provide us for

small ς with an approximation of the fast dynamics (3.1) restricted to a single
metastable set by a simple Ornstein-Uhlenbeck (OU) process mimicking the
rapid mixing in each of these subsets prior to exiting. There is no information
in these stationary limits about the possible jumps from the branch y =
m(1)(x) to the branch y = m(2)(x), or conversely. To address the question of
the overall behaviour of the stationary state, we will consider in Theorem 3.3
and Corollary 3.4 below the new discrete-space process on {m(1)(x),m(2)(x)}
assigning information about the inter-well dynamics.

3.1 Approximation of Intra-well Dynamics

For vanishing noise intensity ς, in each of the subsets O(i)
x the fast diffusion will

consist of small fluctuations around the potential minimam(1)(x) andm(2)(x),
respectively. The drift term in (1.2) can now be expanded in a Taylor series
with respect to y. Taylor-expansion of DyV (x, ·) aroundm(i)(x), i = 1, 2 gives

DyV (x, y) = DyyV (x,m(i)(x)) (y −m(i)(x)) +O(|y −m(i)(x)|2), (3.3)

where we have used DyV (x,m(i)(x)) = 0. For y sufficiently close to m(i)(x),
this provides us with an approximation of the SDE (3.1):

ẏεOU(i) = −1
ε
ω(i)(x) (yεOU(i) −m(i)(x)) +

ς√
ε
Ẇ2, (3.4)

with ω(i)(x), i = 1, 2 denoting the curvature of V (x, ·) inm(i)(x), see Assump-
tion 2.1. The solution of the stochastic differential equation (3.4) is known as
a process of Ornstein-Uhlenbeck type, or OU process for short. To distinguish
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it from the ’decoupled’ processes yε(i) ∈ O
(i)
x , i = 1, 2 that originate from (3.1)

we denote it yεOU(i) for i = 1, 2. We omit the index for the fixed variable x.
The quality of the approximation will depend on how close the original

motion stays in the vicinity of the minima m(i)(x), i = 1, 2. This can be made
more precise by applying the small noise expansion method for stochastic
differential equations. The basic assumption of asymptotically expanding the
solution process yε(i) for i = 1, 2 into powers of the noise intensity ς leads to
a reduction of the equation (3.1) into a sequence of time-dependent OU pro-
cesses. Mostly the first order is quite adequate and amounts to a linearisation
of the original equation about the deterministic solution. The reader may refer
to [Gar85], where it is shown that the procedure yields a convergent power
series of ς. Tailored to the approach (3.4), the procedure yields a power series

yεx = yεOU(i) + ς2R(ς),

where the remainder R(ς, t) is the solution of an SDE and stochastically con-
verges to r(0, t). That is, it exists a limiting SDE with solution R(0, t) such
that for all T ∈ R+

st- lim
ς→0

{ sup
t∈[0,T ]

|R(ς, t)−R(0, t)|} = 0,

where st- limn→∞ ξn = ξ denotes limn→∞ P{|ξn− ξ| ≥ δ} = 0 for every δ > 0
and a sequence {ξn} of random variables.

Theorem 3.1 ( [Gar85, Chapters 6.2, 4.3.7]). Let yεx be given by the
SDE (3.1) where ε and x are chosen arbitrary but fixed. Suppose that the
process starts for some i = 1, 2 in an open subset O(i)

x of B(i)
x containing

m(i)(x) in its interior, and let yεOU(i) be the solution of (3.4). Then we have
for all T ∈ R+

|yεx(t) − yεOU(i)(t)| = O(ς2),

where O is understood as being satisfied with respect to stochastic convergence
uniformly in t ∈ [0, T ] (as ς → 0).

Remark 3.2. As the OU process (3.4) is ergodic, the stationary density µOU(i)
x

is simply given by the Gaussian with meanm(i)(x) and variance ς2/(2ω(i)(x)).
Aiming at a comparison of µOU(i)

x and µ(i)
x , as defined by (1.8) and (1.4), it is

shown in [Wal05] that

lim
ς→0

(µOU(i)
x − µ(i)

x ) = 0 in L1(R).

Note that we do not get convergence in L∞.
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3.2 Asymptotics of Inter-well Dynamics

To give a picture of the essential dynamics in the fast state space, we con-
sider the statistics of the exit times from the metastable sets and approxi-
mate the transition events of the diffusion by jump times of an associated
continuous-time, finite state-space Markov chain (the double-well potential
implies a two-state Markov chain). In principle, one can compute the exit
times via direct numerical simulation. The approximated exit times can then
be used to construct a transition rate matrix Q that generates stochastic
matrices exp(tQ) for all times t > 0. However, the computational effort of
estimating the expected exit times can be avoided by resorting to the rich
literature on the derivation of asymptotic formula for the jump times that
are strongly connected to the dominant spectrum of the corresponding gen-
erator, see e.g. [Pav02, BGK02, BE*02, HKN04]. Whereas the first papers
only gave the asymptotic behaviour of the logarithm of expected exit times
(cf. Theorem 1.1), in [Pav02, BGK02, BE*02] one also finds estimates for the
prefactor.

For small noise intensity ς, transitions between the potential wells occur
at Kramers’ time that is given up to exponential order by exp((2/ς2)∆V ),
where ∆V is the potential barrier that the process must cross to reach the
other potential well. The first exit time of the Markov process yεx(t) from D
started at yεx(0) = y as defined in (1.5) measures only exits that happen for
some non-null time interval and depends on the realization of the Markov
process.

We are interested in the transition times between the metastable subsets
B

(1)
x and B(2)

x . If the noise intensity does not vanish, they are not identical
to the exit times τ ε

B
(i)
x

, i = 1, 2. Instead we have to modify the metastable
subsets slightly such that a (small) neighbourhood around the saddle point is
included, i.e., we consider B(1)

x + δ = (−∞, δ) and B(2)
x − δ = (−δ,∞) instead

with δ > 0 being a small parameter. Recall that O(i)
x ⊂ B

(i)
x , i = 1, 2 are some

regions of attraction (excluding a neighbourhood around the saddle point and
including the potential minima, that is, m(i)(x) ∈ O(i)

x for i = 1, 2). Then, the
first exit times from B

(1)
x + δ and B(2)

x − δ are basically independent for all
starting points y ∈ O(1)

x and y ∈ O(2)
x , respectively. This enables us to assign

the expected exit times from B
(1)
x + δ and B(2)

x − δ to the entire subsets O(1)
x

and O(2)
x rather than to single points.

In the next theorem, we denote the expected transition times from B
(i)
x to

B
(j)
x with i �= j by T ε

i→j(x), i = 1, 2.

Theorem 3.3 ( [Pav02, BGK02]). The metastable inter-well transitions of
the dynamics (3.1) are given by the following precise asymptotic estimates4

as ς → 0:
4 We emphasize again that in the following we will speak of (metastable) transition

times between B
(1)
x and B

(2)
x or metastable exit times instead of exit times from
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T ε
1→2(x) = E

y∈O(1)
x

[τ ε
B

(1)
x +δ

] � ε
2π√

ω(1)(x)ω0(x)
exp

( 2
ς2
V

(1)
bar (x)

)
, (3.5)

T ε
2→1(x) = E

y∈O(2)
x

[τ ε
B

(2)
x −δ

] � ε
2π√

ω(2)(x)ω0(x)
exp

( 2
ς2
V

(2)
bar (x)

)
, (3.6)

where V (1)
bar (x) = V (x, y0)−V (x,m(1)(x)) and V (2)

bar (x) = V (x, y0)−V (x,m(2)(x))
denote the left and right potential barriers.

In [Pav02] the result is obtained in terms of the largest eigenvalue �= 0 of
the associated infinitesimal generator, which corresponds (apart from suitable
weights) to the inverse of the expected diffusion exit times. The connection
will be discussed in the next corollary.

Our goal is to build a two-state Markov chain and view inter-well tran-
sitions of the diffusion as simple jumps of this chain. Correspondence be-
tween the diffusion and the chain will be established by exploiting that exit
times are asymptotically almost exponential random variables which is shown
in [SH02, HMS02]. Relying on this fact, we define the jump rates for the reduc-
ing Markov-chain as the reciprocal of the expected exit times T ε

i→j(x), i �= j,
which provides us with the rate matrix Qε

x being defined by

Qε
x :=

(
−1/T ε

1→2(x) 1/T ε
1→2(x)

1/T ε
2→1(x) −1/T ε

2→1(x)

)
, Qε

x

(
1
1

)
= 0. (3.7)

The following corollary shows that the invariant density of the reducing
Markov chain is asymptotically given by the weights over the potential wells.

Corollary 3.4. Let us denote the (assumed positive and unique) invariant
density of Qε

x by ψ(x) = (ψ1(x), ψ2(x)), that is,

ψ(x)Qε
x = 0 with ψ1(x) + ψ2(x) = 1.

Then we find that ψ(x) is given asymptotically as ς → 0 by (µx(B
(1)
x ), µx(B

(2)
x )),

explicitly,

ψi(x) � µx(B(i)
x ), i = 1, 2. (3.8)

The rate matrix Qε
x can be expressed in terms of the invariant density by

introducing the second eigenvalue λε1(x) of the infinitesimal generator that
corresponds to the diffusion (3.1). In so doing, we asymptotically obtain

T ε
1→2(x) �

1

|λε1(x)|µx(B
(2)
x )

and T ε
2→1(x) �

1

|λε1(x)|µx(B
(1)
x )

,

and, conclusively,

B
(i)
x , i = 1, 2, for the asymptotic estimates are given for the mean values of the

first exit times from B
(1)
x + δ and B

(2)
x − δ with δ > 0, where the precise choice of

the parameter δ is not important.
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Qε
x � |λε(x)|

(
−µx(B(2)

x ) µx(B
(2)
x )

µx(B
(1)
x ) −µx(B(1)

x )

)
. (3.9)

Proof. To establish (3.8), we simply have to verify

µx(B
(1)
x )

µx(B
(2)
x )

� T ε
1→2(x)
T ε

2→1(x)
. (3.10)

To this end, we may apply Laplace’s method of asymptotic evaluation of
integrals depending on the parameter ς. According to Laplace , we easily get
the asymptotic estimates in the small noise limit

µx(B
(1)
x )

µx(B
(2)
x )

= (3.11)√
ω(2)(x)
ω(1)(x)

exp
(
− 2
ς2

(
V (x,m(1)(x)) − V (x,m(2)(x))

)) (
1 +O(ς)

)
,

and, by using V (x,m(1)(x))− V (x,m(2)(x)) = −(V (1)
bar (x)− V

(2)
bar (x)) together

with (3.5)&(3.6), we end up with (3.10). The informations about the behaviour
of λε1(x) are again based on the results of Pavlyukevich in [Pav02] who
derived the asymptotic formula of λε1(x) in the small noise limit by expanding
λε1 into a power series. For asymmetric double-well potential this gives the
accurate asymptotics for λε1(x) in terms of quantities concerning the shallow
well of the potential:

|λε1(x)| =
1
ε

√
ω(1)(x)ω0(x)

2π
exp

(
− 2
ς2
V

(1)
bar (x)

) (
1 +O(ς)

)
,

where we assume without loss of generality

V
(1)
bar (x) = min{V (1)

bar (x), V
(2)
bar (x)}.

This result has been derived for asymmetric double-well potentials, such that
the weight on the deep well is approximately 1, that is, µx(B

(2)
x ) ≈ 1. This

obviously is fulfilled for small values of ς due to µx(B
(2)
x ) → 1 as ς → 0.

However, to include the case of symmetric double-well potentials (then we
have µx(B

(2)
x ) = µx(B

(1)
x ) = 0.5) we prefer to rewrite the asymptotics of λε1

according to

|λε1(x)|µx(B(2)
x ) =

1
ε

√
ω(1)(x)ω0(x)

2π
exp

(
− 2
ς2
V

(1)
bar (x)

) (
1 +O(ς)

)
,(3.12)

which allows us due to (3.5) to express the transition rate 1 → 2 asymp-
totically by |λε1|µx(B

(2)
x ). Using the asymptotic estimates (3.11) and (3.12)
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provides us with an alternative formulation for the asymptotics of λε1(x) by
using the curvature in the deep well (and the weight over the shallow well):

|λε1(x)|µx(B(1)
x ) =

1
ε

√
ω(2)(x)ω0(x)

2π
exp

(
− 2
ς2
V

(2)
bar (x)

) (
1 +O(ς)

)
.

3.3 Freezing Metastable Transitions

We complete the analysis of the fast process (3.1) with establishing a rela-
tionship between the smallness parameter ε and the noise level ς such that
the scaling assumption (1.6) is fulfilled. According to Theorem 3.3 this can
explicitly be realized only if exp(−(2/ς2)∆V ) scales like ε. Here, ∆V denotes
the barrier that has to be crossed, that is, ∆V = V

(1)
bar (x) or ∆V = V

(2)
bar (x).

A natural way of realizing (1.6) was to rescale the potential energy barrier in
an appropriate manner (see [Wal05]).

However, due to the asymptotic investigations in Theorem 3.3 we leave the
potential untouched and rescale the diffusion ς instead. An easy calculation
leads to the following lemma.

Lemma 3.5. To freeze the metastable transition times on a time scale t ≥
ord(1) for every x as ε→ 0 it is convenient to set

ς = ς(ε, x) =

(
2 min{V (i)

bar(x) | i = 1, 2}
ln(K/ε)

)1/2

, K > 0. (3.13)

Remark 3.6. In Lemma 3.5 we actually have to use the minimum of the two
barriers V (1)

bar , V
(2)
bar : Replacing min{V (i)

bar(x)} by V (2)
bar = (1 + δ)V (1)

bar for δ >
0 would lead to T ε

1→2 = ord(εδ). According to Corollary 3.4, the need for
using the minimal barrier is equally expressed by demanding that the second
eigenvalue λε1(x) asymptotically is part of the dominant spectrum.

As outlined in Sect. 2, it is of considerable interest to study how to avoid
coupling of the diffusion ς to x and still obtain large time conformational
changes in the asymptotic limit ε → 0. Based upon Lemma 3.5, the fol-
lowing considerations will lead to meaningful conclusions (a short descrip-
tion is given in Appendix B) that are strongly connected to results obtained
by the approach via multiscale asymptotics with disparate transition scales
(see [Wal05, Chapter 3]): Depending on the noise intensity σ in the slow vari-
able dynamics (1.1), the x trajectory will stay with overwhelming probability
in a bounded domain D(σ) of its state space5; if we choose V small

bar according
to the rule
5 Note that σ is not related to ς, and we do not demand for small values of σ.

However, it should be clear that a choice of V small
bar could depend on the actual

size of σ. This becomes more clear by considering Figures 6.5 and B.1. Therefore,
we write D = D(σ) for the bounded region.
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V small
bar = min{V (i)

bar(x) |x ∈ D(σ), i = 1, 2},

and set

ς(ε) =
(

2V small
bar

ln(K/ε)

)1/2

, K > 0, (3.14)

we expect the metastable transitions to happen on a time scale t ≥ ord(1). If
the potential energy barriers outside the domainD(σ) are smaller than V small

bar ,
the particle will for very small ε instantly jump over the barrier once it has
reached the complement of D(σ). Then, the time of the metastable transitions
will be somehow connected to the expected exit time of the x dynamics from
D(σ). The above idea is justified by rigorously examining the asymptotics of
the metastable transition times considered in the entire state space. Tailored
to exemplary situations we outline the procedure in Appendix B.

4 Derivation of Reduced Dynamics

We return to the dynamics (1.1)&(1.2) and use the results of the preceding
section for the design of a small noise approximation of the original process.
The approximated system is then used in Theorem 4.1 as the basic system for
the application of standard averaging theorems resulting in the reduced slow
variable dynamics.

Small Noise Approximation

In all of the following let (xε, yε) be the solution of the SDE (1.1)&(1.2).

Exact jump process.

As a first step let us introduce the process Î that describes the jumps between
the metastable sets in y-direction as given by the original dynamics:

Î(t) = 1 + 1
B

(2)
xε(t)

(yε(t)). (4.1)

With this defined, let us denote by (x̂εOU, ŷ
ε
OU) the random process determined

by

ẋ = −DxV (x, y) + σẆ1 (4.2)

ẏ = −1
ε
ω(Î(t))(x)

(
y −m(Î(t))(x)

)
+

ς√
ε
Ẇ2, (4.3)

Now, suppose that the initial points are chosen such that (xε(0), yε(0)) =
(x̂εOU(0), ŷεOU(0)) = (x, y).
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According to Theorem 3.1 we obtain for any x, y, T > 0 and ε > 0 that the
process (xε(t), yε(t)), t ∈ [0, T ] of the original dynamics and the random
process (x̂εOU(t), ŷεOU(t)) get arbitrarily close to each other for ς → 0.

However, we will not concentrate on the rigorous mathematical justifica-
tion of this result, mainly for reasons given in the next paragraph.

Approximate jump process.

This result may be very nice. However, it has the crucial disadvantage that
we will never have the process Î without knowing the actual solution of the
original process. Therefore, we replace the jump process Î by its approximate
version I as constructed above. Obviously, this will prevent us from being
able to construct any kind of pathwise convergence. However, it will finally
allow to construct an approximate dynamics that is explicit in the sense that
it does not depend on any knowledge about the original process. To this end,
we denote by (xεOU, y

ε
OU) the random process determined by

ẋ = −DxV (x, y) + σẆ1 (4.4)

ẏ = −1
ε
ω(I(t,x))(x)

(
y −m(I(t,x))(x)

)
+

ς√
ε
Ẇ2, (4.5)

with I(t, x) ∈ S = {1, 2} denoting the x-dependent Markov chain model whose
transition rate matrix Qε

x = (qij)i,j is given by its entries

q11(x) = −q12(x), q22(x) = −q21(x),

q12(x) =
1
ε

√
ω(1)(x)ω0(x)

2π
exp(− 2

ς2
V

(1)
bar (x)), (4.6)

q21(x) =
1
ε

√
ω(2)(x)ω0(x)

2π
exp(− 2

ς2
V

(2)
bar (x)).

Again, suppose that the initial points are chosen such that (xε(0), yε(0)) =
(xεOU(0), yεOU(0)) = (x, y) and I(t = 0, x) = i for (x, y) ∈ B(i).

According to Theorems 3.1 and 3.3 and Corollary 3.4 we can expect for
any x, y, T > 0 and ε > 0 to obtain a good approximation of (xε(t), yε(t)), t ∈
[0, T ] by the random process (xεOU(t), yεOU(t)) whenever the noise level ς in
the fast equation is small enough.
We will call the dynamics (4.4)&(4.5) in the following small noise approxima-
tion or OU approximated dynamics.

Averaging

In Theorem 4.1 we finally arrive at the reduced slow variable system by apply-
ing standard averaging theorems to the small noise approximation (4.4)&(4.5)
where the transition rates of the jump process I(t, x) are given by (4.6).
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Theorem 4.1 ( [FW84, Chapter 7]). Let (xεOU, y
ε
OU) be given by (4.4)&(4.5)

and denote by x0(t) the solution of the differential equation

ẋ = −
∫
DxV (x, y)µOU(I(t,x))

x (y) dy + σ Ẇ1, (4.7)

where µOU(i)
x is the (unique) invariant density of the process defined by (3.4)

for fixed x. Then for any T > 0 and ς > 0 we have

st- lim
ε→0

{ sup
t∈[0,T ]

|xεOU(t)− x0(t)|} = 0.

Subsequently, we refer to the slow variable dynamics (4.7) as the OU averaged
dynamics. In Appendix A we use multiscale asymptotics of the corresponding
Fokker-Planck equation to derive the OU averaged dynamics from the small
noise approximation.

5 Comparison to Conditional Averaging

To complete the discussion and re-establish reference to the conditionally aver-
aged system (1.7) we finally examine its closeness to the OU averaged dynam-
ics (4.7). In so doing, we basically compare the behaviour in the asymptotic
limit ς → 0 of

1. the drift term in (4.7) and (1.7) for fixed Ĩ(t, x) = I(t, x) = i;
2. the corresponding transition chains Ĩ and I that control the switches

between i = 1 and i = 2.

First, let us consider the transition chain Ĩ(t, x) of the conditionally aver-
aged system (1.7) as given in [SW*03]. There, the transition rates of the jump
process Ĩ are defined by the rate matrix

Q̃x = |λε1(x)|
(
−µx(B(2)

x ) µx(B
(2)
x )

µx(B
(1)
x ) −µx(B(1)

x )

)
, (5.1)

where λε1(x) is the second eigenvalue of the infinitesimal generator of the dif-
fusion (1.2) that is assumed to be of order ord(1). We compare the entries
in (5.1) to the transition rates qij of the jump process I(t, x) corresponding to
the OU averaged dynamics that are defined in (4.6). Exploiting the asymptotic
results of Corollary 3.4 and under a certain additional assumption, the tran-
sitions rates qij are asymptotically equal to the rates of Q̃x. The additional
assumption that has to be fulfilled concerns the metastable decomposition as
derived by applying conditional averaging: In [SW*03], the limit dynamics are
derived by projecting the ensemble dynamics of the original system onto the
subspace spanned by the dominant spectrum of the infinitesimal generator Lx

of (1.2). Then, the metastable decomposition B(1)
x and B(2)

x will be defined in
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Fig. 5.1. Asymmetric double-well potential. Any decomposition defined by a point
z∗ that is situated between the dashed lines leads to asymptotically wrong results if
the decomposition is used for the conditionally averaged dynamics.

terms of the second eigenfunction u1(x, ·) of Lx and not by the saddle point
of the potential V (x, ·) as is done in (3.2). Thus, for the definition of Q̃ we
have to use

B(1)
x = {y : u1(x, y) < 0} and B(2)

x = {y : u1(x, y) > 0},

where we can assume that B(1)
x is the left subset. It should be clear that the

zero z of u1(x, ·) must be somewhere between the two potential minima m(1)

and m(2), and in fact, it is only a small step from using results in [Pav02]
to show that z asymptotically (as ς → 0) approaches the saddle point y0(x),
cf. [Wal05]. The attentive reader may convince himself that it the result is
of crucial importance, as other choices of the zero z between the potential
minima may lead to fatal approximation errors (not only for the transition
rates but also for the drift term), compare illustration in Fig. 5.1.

Having obtained the asymptotic equality as ς → 0 of the jump rates of
Ĩ and I, we still have to compare the drift terms in (4.7) and (1.7) for fixed
Ĩ(t, x) = I(t, x) = i. The terms vary for fixed x in the probability density that
is used to obtain the averaged force on the slow variable x. We apply standard
Laplacian asymptotics in the limit of vanishing noise ς → 0, which provides
us for i = 1, 2 with the precise estimates∫

DxV (x, y)µOU(i)
x (y) dy = DxV (x,m(i)(x))

(
1 +O(ς)

)
, (5.2)∫

DxV (x, y)µ(i)
x (y) dy = DxV (x,m(i)(x))

(
1 +O(ς)

)
,

where the derivative DxV (x,m(i)(x)) is taken wrt. the first component solely.
Conclusively, let us suppose that ς = ς(ε) is coupled to ε by using (3.14).

Replacing ς by ς(ε) in the fast equation (1.2) of the original process will lead
to a time scale separation of the fast dynamics in y and the metastable transi-
tions between the potential wells. Then, application of the ordinary averaging
procedure will destroy the information about slow mixing between the two
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branches and the result becomes inappropriate to render the effective dynam-
ics. By contrast, application of Theorem 4.1 does not require to fix ς: Even
if ς = ς(ε) due to (3.14), the reduced model (4.7) will represent the effective
dynamics of (4.4)&(4.5). We get this result because the averaging procedure
does not affect the Markov chain I(t, x) that stores the distributional infor-
mation of the metastable transitions. Therefore, by examining the averaged
system (4.7) as ς → 0, we will obtain the differential equation

ẋ = DxV (x,m(I(t,x))(x)) + σ Ẇ ,

that is considered as the final limit SDE of the original process (1.1)&(1.2)
with ς = ς(ε) given by (3.14) as ε→ 0.

6 Numerical Experiments

In this section we illustrate the results from the preceding section by numerical
experiments with an appropriate test example.

We consider the Smoluchowski equation (1.1)&(1.2) where the potential
for the numerical analysis is given by:

V (x, y) = 2.5 (y2 − 1)2 − 0.8 x y3 + 0.005 x4 + 1.6, (6.1)
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Fig. 6.3. Typical realization of the original dynamics for σ = 1.0, ς = 0.75 and
ε = 0.0064. Left: trajectories x coordinate; right: trajectories y coordinate.

which clearly satisfies Assumption 2.1. The potential energy surface is shown
in Fig. 6.1. At the left hand side of Fig. 6.2 we illustrate the double-well
potentials V (x, ·) for different values of x. The saddle point always is y0(x) = 0
and takes the value V (x, 0) = 4.1 + 0.005 x4, the potential minima are

m(i)(x) = 0.12 x + (−1)i
√

0.0576 x2 + 4, i = 1, 2.

The right side of Fig. 6.2 shows the potential barriers V (1)
bar (x) (the left barrier)

and V (2)
bar (x) (the right barrier) as functions of x.

In Fig. 6.3 we show a typical realization of the dynamics (1.1)&(1.2) with
σ = 1.0, ς = 0.75 and ε = 0.0064. For the generation of the trajectories we
use the Euler-Maryuana scheme with internal time step dt = ε/100. We
clearly observe that jumps between the metastable decomposition B(1) =
{(x, y) | y < 0} and B(2) = {(x, y) | y > 0} induce metastable transitions
in the x dynamics between x < 0 and x > 0. Comparison with the averaged
trajectory in Fig. 6.4 reveals inappropriateness of the standard averaging pro-
cedure (1.3). In Fig. 6.4 right we illustrate the averaged potential V (known as
Fixman potential or conformational free energy landscape)that is associated
with the realization at the left:
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Fig. 6.4. Left: Typical realization of the simply averaged dynamics (1.3) for σ =
1.0, ς = 0.75. Right: Fixman potential that corresponds to the trajectory at the left.
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V (ς, x) = − ς
2

2
ln

∫
exp

(
− 2
ς2
V (x, y)

)
dy.

Using standard Laplace asymptotics provides us with the potential in the limit
ς → 0 of vanishing fast diffusion

V (x) = min
{
V
(
x,m(1)(x)

)
, V

(
x,m(1)(x)

)}
.

In Fig. 6.4 we additionally plotted V (x), which graphically is completely iden-
tical to V (ς = 0.75, x).

Fig. 6.3&6.4 explicitly visualize the simply averaged dynamics to be inap-
propriate to render the effective dynamical behaviour of xε(t) as ε → 0. For
small ε diffusion in y is very fast compared to diffusion in x. However, the im-
portant (and only) barriers of the potential are barriers in y direction. Thus,
for fixed ε, decreasing the noise intensity ς in the fast equation increases the
metastability in y. Consequently, by choosing different ς one can analyze the
effect of increasing metastability on averaging. To this end, it is convenient
to use the x averaged values of the expected transition rates 1/T ε

i→j(x). As
detailed in Appendix B this provides us in the asymptotic limit ς → 0 with
the expected transition times T ε

1→2 between the metastable decomposition
B(1) ∪B(2) in the (x, y) state space.

We generated N = 2000 realizations of the original dynamics for ε =
0.0064, σ = 1.0 and ς = 0.75, 0.7, 0.65, 0.60, and waited for the first exit times
from B(1). The top row in Fig. 6.5 illustrates the location of the trajectories
x-coordinate right before the transitions occured; the pictures at the bottom
display the function under the integral in (B.4) (normalized to 1) and nicely
illustrate that the major contribution to the integral in (B.4) will move right-
wards as ς → 0, for V (1)

bar (x) → 0 as x → ∞. Comparison of the upper and

Fig. 6.5. Top: Transition location (from B(1) to B(2)) of the trajectories x-
coordinate computed by means of N = 2000 realizations of the conditionally av-
eraged dynamics for σ = 1.0, ε = 0.0064 fixed and ς = 0.75, 0.7, 0.65, 0.6. Bottom:
Function under the integral in (B.4) normalized to 1 by using the same parameters
as above.
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Table 6.1. Expectation values of transition times from B(1) to B(2) corresponding
to Fig. 6.5. The values for T ε

1→2 are obtained by using (B.2) or (B.4).

Mean transition times ς = 0.75 ς = 0.7 ς = 0.65 ς = 0.60

mean value from 2000 real. 213 462 1240 4285

averaged value T ε
1→2 119 323 1037 4157

the lower pictures reveals almost coincidence between the contribution to the
integral in (B.4) and the actual location in the x space of the jumps from B(1)

to B(2). Finally, we compare in Table 6.1 the averaged values of the tran-
sition times to the numerically obtained values by means of the N = 2000
realizations. We observe that ς has to be chosen small to get closeness.

Discretization

The pathwise simulation of the dynamics consisting of the two state Markov
jump process I(t, x) is developed by using a specific stochastic particle method
( [HSS01]). To this end, recall the infinitesimal generatorQε

x = (qεij(x))i,j that
allows to calculate the hopping probabilities between the states S = {1, 2}.
The transition matrix P ε

τ (x) = (pεij(τ, x)) at time τ is then obtained by

P ε
τ (x) = exp(τQε

x).

A straightforward calculation reveals

pε12(τ, x) =
qε12(x)

qε12(x) + qε21(x)
(1− e−τ(qε

12(x)+qε
21(x))), (6.2)

pε21(τ, x) =
qε21(x)

qε12(x) + qε21(x)
(1− e−τ(qε

12(x)+qε
21(x))). (6.3)

The entries of Qε
x are given in (4.6) by the inverse of the precise estimates of

the expected transition times over the potential energy barrier in y direction.
The stochastic particle method requires two steps. We shortly demonstrate

it for the OU averaged dynamics (4.7).
Step 1: Transport. The first step consists of determining an updated position
x(t+ dt) by solving

ẋ = −
∫
DxV (x, y)µOU(i)

x (y) dy + σẆ1,

over [0, dt] with initial point x(t).
Step 2: Exchange. The second step models the exchange between the states
I(t, x) = 1 and I(t, x) = 2. Thus, if i = 1, we set i = 2 with hopping
probability p1→2 = pε12(dt, x(t + dt)) and remain at i = 1 with probability
1 − p1→2. Vice versa, if i = 2, we set i = 1 with hopping probability p2→1 =
pε21(dt, x(t + dt)) and remain at i = 2 with probability 1 − p2→1. Return to
step 1 by setting x(t) = x(t+ dt).
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Parameter Choice

Subsequently, we choose the noise intensity in the slow equation σ = 1 and the
smallness parameter is ε = 0.0064. Trajectories are illustrated with ς = 0.75,
whereas for comparison of exit times we use different values of ς.

Recalling coupling ς to ε according to (3.14), some words seem to be neces-
sary concerning the comparison of the full dynamics to the OU approximated
ones: Without loss of generality we can choose ς arbitrary without considering
the coupling, for the experiments are performed for a fixed value of ε. There-
fore, for fixed ε = ε∗ and fixed ς = ς∗ we can always find a constant K = K∗

(or a barrier V small
bar = V small∗

bar ) such that ς(ε∗) = ς∗ under (3.14). Even if we
take (3.13) as the basis of our computation, we can desist from the coupling
rule, for the constant K then can be chosen dependent of x, such that we
still arrive at ς(ε∗, x) = ς∗. Actually, the postulation of relating ς to ε only
serves as a formal justification of the OU approximation. For the numerical
implementation only the size of ς by its own is of importance, not its relation
to ε.

The motivation to choose σ = 1.0 and not σ = ς can be infered from
Fig. 6.5. In case of smaller values of σ, say σ = 0.75, the x-coordinate of
the trajectory will hardly reach the region where the jumps mostly happen.
Then we had to choose ς larger, which on its part would result in a worse
approximation of the intra-well fast dynamics. We will come back to this
problem below.

6.1 Comparison Between Original Dynamics and Small Noise
Approximation

Here, we carry out numerical studies in order to compare the Smoluchowski
dynamics (1.1)&(1.2) with those governed by system (4.4)&(4.5) with fast
OU processes and transition chain I(t, x) that controls the switches between
the two OU processes.

Typical realizations of both the original dynamics and the OU approxi-
mated ones are shown in Fig. 6.6. The trajectories have been generated using
the Euler-Maruyama scheme with time step dt = ε/100 for both systems. Ap-
parently, the transition rates between B(1) and B(2) coincide to some extend
and the oscillating motion (around the potential minima in y) inbetween the
transitions seems to be well approximated by using OU processes in the fast
equation. We clearly observe that jumps induce metastable transitions in the
x dynamics between x < 0 and x > 0. However, for the trajectories being in
B(1) we observe that the x-coordinate of the original dynamics spreads con-
siderably further rightwards than the x trajectory of the OU approximated
system (and for the trajectories in B(2) the original dynamics x-coordinate
spreads further leftwards).

The above observation suggests that the original dynamics have noticeable
smaller transition times between B(1) and B(2), as the original dynamics more
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Fig. 6.6. Typical realization of the original dynamics (top) and the approximated
dynamics with fast OU processes (bottom). At the left we see the x, at the right
the y coordinate. The realizations have been computed for the same realization of
the white noise (in the slow and in the fast equation).

often reaches a domain where the potential barriers (in y direction) are small.
This is confirmed by Table 6.2, where we computed the expected transition
times from B(1) to B(2) by means of N = 2000 realizations for two different
values of ς and σ = 1.0, ε = 0.0064 fixed. We come back to this problem in
the next section where we include the averaged dynamics into the numerical
examinations. Actually, it will turn out that ς has to be chosen very small to
get perfect coincidence of both the original and the OU approximated system.

6.2 Results Including Averaged Dynamics

We now demonstrate pre-eminence of the OU averaged dynamics (4.7). To
complete the representation we include the conditionally averaged dynam-
ics (1.7).

In Fig. 6.7 we compare realizations of the averaged to the full dynamics’ x-
coordinate. Every trajectory has been computed with the same realization of
white noise Ẇ1, Ẇ2, such that the internal time step has been set to dt = ε/100

Table 6.2. Exit times from the set B(1) for the original dynamics and the OU
approximated system.

dynamical model ς = 0.8 ς = 0.75

original dynamics 113 210

OU approximated dynamics 136 265
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0 500 1000 1500 2000
−4

−3

−2

−1

0

1

2

3

4

t

xε (t)
 w

ith
 ε=

0.
00

64
,ς

=0
.7

5,
σ=

1

0 500 1000 1500 2000
−4

−3

−2

−1

0

1

2

3

4

t

x O
Uε

(t)
 w

ith
 ε=

0.
00

64
,ς

=0
.7

5,
σ=

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3

−2

−1

0

1

2

3

4

t

x0 Co
nd

Av
(t)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3

−2

−1

0

1

2

3

4

t

x0 O
Ua

v(t)

Fig. 6.7. Realizations of the original dynamics x coordinate (top, left), the x co-
ordinate of the (full) OU approximated dynamics (top, right), the OU averaged
dynamics (bottom, right), and the conditionally averaged system (bottom, left).

even for the averaged dynamics. The Markov jump process I(t, x) is realized
by using the same realization of random numbers for every concerned system.
Concerning the systems with OU processes (full and OU averaged), we observe
pathwise convergence of the x trajectories, whereas comparison of the orig-
inal dynamics with the conditionally averaged system reveals distributional
coincidence.

In order to present numbers instead of pictures we want to compute the
expectation values of the metastable transition times from x < 0 to x >
0 for different values of ς. It is natural to expect that this is realized by
computing the first exit times from the set S + δ with S = {x ∈ R |x < 0},
where δ > 0 has to be large enough to guarantee that the process effectively
reaches some (small) region of attraction in the complement of S. But Fig. 6.5
nicely shows that the x-coordinate can spread far into the positive region even
when it is restricted to the metastable set S. Thus, we suggest to define the
stopping time as the first exit from B(1) instead, respectively the first jump
from I(t, x) = 1 to I(t, x) = 2. At least for ς ≤ 7.5 (compare Fig. 6.6) this is
equivalent to the metastable transitions from x < 0 to x > 0. From N = 2000
realizations for ε = 0.0064 and σ = 1.0 we get a very good agreement between
the OU approximated dynamics and the OU averaged dynamics, and a good
agreement between the original and the conditionally averaged dynamics.

However, there still remains the problem of difference between the OU av-
eraged and the conditionally averaged dynamics. To overcome the problem, we
illustrate in Fig. 6.8 the potentials that correspond to the respective trajecto-
ries for ς = 0.75, 0.60, 0.3. For I(t, x) = i ∈ {1, 2} and ς fixed, the conditionally
averaged potential V

(i)
(ς, x) and the OU averaged potential V

OU(i)
(ς, x) are
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Table 6.3. Comparison of exit times from the metastable set S = {x ∈ R | x < 0}.
For ς = 0.65, it was not possible to compute the exit times of the full dynamics’
motion within a reasonable period of time.

dynamical model ς = 0.8 ς = 0.75 ς = 0.65

original dynamics 113 210 −−
conditinally averaged dynamics 105 213 1240

OU approximated dynamics 136 265 −−
OU averaged dynamics 135 265 1537

defined implicitly by

DxV
OU(i)

(ς, x) =
∫
DxV (x, y)µOU(i)

x (y) dy,

DxV
(i)

(ς, x) =
∫
DxV (x, y)µ(i)

x (y) dy,

and we easily show that

V
(i)

(ς, x) = − ς
2

2
ln

∫
B

(i)
x

exp
(
− 2
ς2
V (x, y)

)
dy.

Exploiting the estimation method of Laplace we obtain asymptotical identity
of both potentials:

lim
ς→0

V
(i)

(ς, x) = lim
ς→0

V
OU(i)

(ς, x) = V (x,m(i)(x)).

Fig. 6.8 reveals V (i)(ς, x) ≈ V
OU(i)

(ς, x) for ς ≤ 0.3, whereas they differ
visibly for ς ≥ 0.60 mainly in that region where the jumps from i = 1 to i = 2
mostly happen. This perfectly explains the significant difference concerning
the transition times in Tables 6.2&6.3.

A Derivation of Reduced System by Multiscale Analysis

Here, we show how the averaged system (4.7) can be derived from the sys-
tem (4.4)&(4.5) with fast OU processes by using multiscale asymptotics wrt.
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Fig. 6.8. Comparison of conditinally averaged (full line) to OU averaged potentials
(dashed line). From left to right: ς = 0.75, 0.60, 0.3.
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the smallness parameter ε. As the method is applied to ensemble instead of
single dynamics we have to set up before the necessary requirements concern-
ing the evolution of probability densities.

Let us extend the fast-slow system with two OU processes to a finite
number of OU processes. Thus, we consider the process (xεOU, y

ε
OU) ∈ Rm×R

that is determined by the following SDE:

ẋ(t) = −DxV (x, y) + σẆ1, (A.1)

ẏ(t) = −1
ε
ω(I(t,x))(x)

(
y −m(I(t,x))(x)

)
+
ς(x)√
ε
Ẇ2, (A.2)

where I(t, x) is a right-continuous Markov chain on a probability space taking
values in a finite state space S = {1, 2, ..., N} and ω(i)(x) takes values in
R+ for all i ∈ S. The noise intensity of the fast diffusion may depend on
x, but is assumed to be strictly positive, that is ς(x) ≥ c > 0. To simplify
notation we perform the asymptotic procedure without a possible dependence
of ς on the Markov chain I(t, x); a generalization in this direction had no
effect on the computation. The generator Qx = (qij(x))N×N of the switching
chain I(t, x) depends on the slow variable x and contains the transition rates
qij = qij(x) > 0 from i to j if i �= j while

qii(x) = −
∑
i�=j

qij(x). (A.3)

For fixed x ∈ Rm and i ∈ S the diffusion dynamics (A.2) is known as OU
process and consequently ergodic. The (unique) stationary density µOU(i)

x is
given by

µOU(i)
x (y) =

1
ς(x)

√
ω(i)(x)
π

exp
(
− ω(i)(x)

(
y −m(i)(x)

)2

ς(x)2
)
, (A.4)

which is a Gaussian with mean m(i)(x) and variance ς(x)2/(2ω(i)(x)), and
thus independent of ε.

The evolution of probability densities pε ∈ L1(Rm+1 × S) under the dy-
namics given by (A.1)&(A.2) is described by the forward Fokker-Planck equa-
tion. Here, we are working in unweighted function spaces, that is, the density
pε gives the physical probability to find the system in state (x, y) at time t.
For later use it may be helpful to slightly change notation for the densities
pε: The agreement pε(i)(t, x, y) := pε(t, x, y, i) enables us to represent pε as an
N -dimensional vector according to pε = (pε(1), ..., p

ε
(N)) with pε(i) ∈ L1(Rm+1).

Now, the Fokker-Planck equation is regarded on some suitable subspace of
L1(Rm+1 × S), and reads

∂tp
ε = Aεpε, Aε =

1
ε
Ax + Ay + QT , (A.5)
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Ax =

⎛⎜⎜⎜⎜⎝
A(1)
x 0 0 0
0 A(2)

x 0 0

0 0
. . . 0

0 0 0 A(N)
x

⎞⎟⎟⎟⎟⎠ , Ay =

⎛⎜⎜⎜⎜⎝
A(1)
y 0 0 0
0 A(2)

y 0 0

0 0
. . . 0

0 0 0 A(N)
y

⎞⎟⎟⎟⎟⎠
where A(i)

x and A(i)
y are given for f ∈ L1(Rm+1) by

A(i)
x f(x, y) =

ς(x)2

2
∆yf(x, y) + Dy

(
ω(i)(x)

(
y −m(i)(x)

)
f(x, y)

)
A(i)
y f(x, y) =

σ2

2
∆xf + Dx

(
DxV (x, y) f(x, y)

)
.

Note that we actually have to use QT in (A.5), for the rate matrix Q is basi-
cally considered to be part of the backward Chapman-Kolmogorov equation,
that is, it describes the evolution of the expectations of functions of the state
of the system. Consequently, the probability to be in state (x, y) is given by

〈pε(t, x, y),1〉S =
∑
i∈S

pε(i)(t, x, y),

〈·, ·〉S denoting the Euclidean inner product in RN .
Our aim is to average with respect to the fast variable y and obtain an

averaged equation for the slow variable x alone. To this end, we will use
multiscale analysis.

Projection Operator

We would like to derive an equation for the distribution function in x:∫
〈pε(t, x, y),1〉S dy =

∑
i∈S

∫
pε(i)(t, x, y) dy,

which would be valid in the limit where ε becomes very small. To this end, we
introduce the vector pε(t, x) = (pε(1), ..., p

ε
(N))

T with densities pε(i) ∈ L1(Rm)
defined by

pε(i)(t, x) =
∫
pε(i)(t, x, y) dy.

It is expected that an approximate solution of the full dynamics would be
obtained by multiplying each pε(i)(t, x) by the stationary distribution µOU(i)

x of
the SDE (A.2) for fixed I(t, x) = i. We formalize this by defining a projection
operator Π = diag(Π(1), ..., Π(N)) acting on functions f = (f1, ..., fN )T ∈
L1(Rm+1 × S) by

(Πf)(x, y) = diag(µOU(1)
x , ..., µOU(N)

x )
∫
f(x, y) dy.
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It is obvious that Π projects any function into the subspace of all functions
which can be written in the form

f = (f1, ..., fN)T , fi(x, y) = f i(x)µ
OU(i)
x (y), (A.6)

where f i is an arbitrary function of L1(Rm), thus f = (f1, ..., fN )T ∈
L1(Rm × S). In the following we study the case where the initial condition
pε(t = 0, x, y) can be expressed by

pε(t = 0, x, y) = (Πpε(t = 0))(x, y).

However, functions f of the form (A.6) are all solutions of

Axf = 0,

that is, the space into which Π projects is the kernel or nullspace of Ax

expressed byAxΠ = 0. Due to the properties ofA(i)
x considered as an operator

acting on functions g in y, that is g = g(y) ∈ L1(R), we furthermore have:

ΠAx = 0 = AxΠ. (A.7)

This is easily seen by introducing the formal adjoint T (i)
x of A(i)

x , i.e., a dif-
ferential operator such that for all u ∈ L1(R), v ∈ L∞ (or u, v ∈ L2(R)) we
have

〈A(i)
x u, v〉L2 = 〈u, T (i)

x v〉L2 , 〈u, v〉L2 :=
∫
u(y) v(y) dy.

If we consider Π(i) – for fixed x – as an operator acting on functions in y, we
can rewrite it by

Π(i)u = 〈u,1〉L2 µOU(i)
x .

Together with the well-known fact that T (i)
x 1 = 0 (see, e.g., [SHD01, Hui01])

we finally get the desired result (A.7).

Multiscale Analysis

We now make the following ansatz for the solution of the Fokker-Planck equa-
tion with the initial conditions described above:

pε = p0 + ε p1 + ε2 p2 + ...

This ansatz is inserted into the Fokker-Planck equation (A.5) and then, by
comparison of coefficients of different powers of ε we get:

ε−1 : Ax p
0 = 0 (A.8)

ε0 : Ax p
1 + (Ay +QT ) p0 = ∂tp

0 (A.9)
ε1 : Ax p

2 + (Ay +QT ) p1 = ∂tp
1 (A.10)
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Step 1: (A.8) immediately yields that p0 ∈ N (Ax), i.e.,

Πp0 = p0, equivalently (A.11)
p0(t, x, y) = diag(µOU(1)

x , ..., µOU(N)
x ) p0(t, x),

for a function p0 ∈ L1(Rm × S) depending only on x.

Step 2: Let Π act on (A.9) and use (A.7). This time we get:

Π(Ay +QT )Πp0 = ∂tΠp
0. (A.12)

By using (A.11) simple calculations reveal for p0 = (p0(1), ..., p
0
(N))

T :

∂tp
0 = (A + QT ) p0, (A.13)

with

A =

⎛⎜⎜⎜⎜⎝
A(1)

0 0 0
0 A(2)

0 0

0 0
. . . 0

0 0 0 A(N)

⎞⎟⎟⎟⎟⎠ ,

A(i)
=
σ2

2
∆x + Dx

( ∫
DxV (x, y)µOU(i)

x (y) dy ·
)
,

A acting on L1(Rm×S). Thus p0 is determined by a Fokker-Planck equation,
and its solution gives us pε up to error O(ε). The associated SDE is given by

ẋ = −
∫
DxV (x, y)µOU(I(t,x))

x (y) dy + σẆ1, (A.14)

with solution process x0(t) where I(t, x) ∈ S controls the switches between
the different OU processes due to the rate matrix Q = Qx. The SDE (A.14)
describes the limit dynamics of (A.1)&(A.2) in the sense that its solution
satisfies xεOU → x0 as ε → 0 either pathwise [FW84], or in the distributional
sense [Kur73, MTV99].

B Asymptotics of Transition Times

Here, we come back to the problem addressed in Sect. 3.3. In order to avoid
coupling ς to the slow variable dynamics x we relax the postulation T ε

i→j(x) ≥
ord(1), i �= j in Lemma 3.5 that is required for every x and i = 1, 2. Instead
of considering the transition times on every fibre of the fast state space for
fixed x, we introduce the expected transition times T ε

1→2 and T ε

2→1 between
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the metastable decomposition B(1)∪B(2) in the entire (x, y) state space. This
enables us to identify large time conformational changes with the stipulation

T ε

1→2, T
ε

2→1 ≥ ord(1).

We obviously have

T ε
i→j(x) ≥ ord(1) =⇒ T ε

1→2, T
ε

2→1 ≥ ord(1),

whereas the other direction need not to be valid.
With these preparations we claim the following: If we define the relation-

ship between ς and ε by

ς(ε) =
(

2V small
bar

ln(K/ε)

)1/2

, (B.1)

V small
bar = min{V (i)

bar(x) |x ∈ D(σ), i = 1, 2},

where D(σ) is some appropriately chosen bounded connected domain6 of the
slow variable state space, the metastable transitions T ε

1→2, T
ε

2→1 are of order
one or even larger.

In what follows we show how to compute T ε

i→j which is strongly con-
nected to the asymptotic order of the transition times T ε

i→j(x) on every fiber.
We will consider two possible situations that are exemplary for the different
approaches. We first examine the consequences of the asymptotic order of
T ε
i→j(x) in general, and afterwards relate the results to the functions V (i)

bar(x)
and a coupling ς = ς(ε) given by (B.1).

In Theorem B.1 below we assume the transition times T ε
i→j(x) to asymp-

totically go to infinity, where we do not specify wherefrom the asymptotic
investigations come from, that is, we leave open which parameter causes the
asymptotic behaviour. Thus, possible (and reasonable) choices were ς → 0
and ε fixed, ε → 0 so that ς(ε) → 0, or, not less supposable, we could as-
sume a scaling of the potential barrier. The next result becomes apparent
in [Wal05, Chapter 3], where the approach is justified by means of multi-
scale analysis for distinguished time scales. There the metastable transitions
are assumed to happen on the longest time scale, which requires the averag-
ing of the metastable transition rates (represented by the second eigenvalue
of the corresponding generator) for fixed x wrt. the invariant density of the
conditionally averaged potentials.

Theorem B.1 ( [Wal05, Chapter 3.3.3]). Suppose T ε
i→j(x) → ∞ almost

everywhere for i, j = 1, 2 and i �= j. Then the metastable transition times T ε

i→j

are basically independent of the starting point and are asymptotically derived
by means of averaging the x-dependent transition rates7 against the invariant
6 See explanation in Sect. 3.3.
7 Note, that we actually have to average the transition rates and not the transition

times.
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probability distribution of the x dynamics conditioned upon remaining within
the metastable set B(i) and taking the inverse of the averaged transition rates,
that is,

T ε

i→j �
1

Eµ̄(i) [1/T ε
i→j(x)]

,

where the quantity Eµ̄(i) [1/T ε
i→j(x)] is given by

Eµ̄(i) [1/T ε
i→j(x)] =

∫
1/T ε

i→j(x) µ̄
(i)(x) dx, (B.2)

µ̄(i)(x) =
1
Z(i)

exp
(
− 2
σ2

(
− ς2

2
ln

∫
B

(i)
x

exp
(
− 2
ς2
V (x, y)

)
dy

))
. (B.3)

Here, Z(i) denotes the normalization constant and depends on ς as well.
Define the jump process I(t) by its transition rates 1/T ε

i→j . Then we find that
the random process (xεOU, y

ε
OU) determined by system (4.4)&(4.5) is asymp-

totically given by the SDE

ẋ = −DxV (x, y) + σẆ1

ẏ = −1
ε
ω(I(t))(x)

(
y −m(I(t))(x)

)
+

ς√
ε
Ẇ2.

In the limit of small noise ς the evaluation of the expression (B.2) asymptot-
ically reduces to

Eµ̄(i) [1/T ε
i→j(x)] � (B.4)

1
ε

1
Z(i)

∫ √
ω(i)(x)ω0(x)

2 π
exp(− 2

ς2
V

(i)
bar(x)) exp(− 2

σ2
V (x,m(i)(x))) dx.

Proof. We only have to show (B.4). The rest is verified in [Wal05]. First, we
consider the averaged density µ̄(i)(x): Using standard Laplacian asymptotics,
we get for ς small∫
B

(i)
x

exp
(
− 2
ς2
V (x, y)

)
dy = ς

√
π

ω(i)(x)
exp

(
− 2
ς2
V (x,m(i)(x))

)(
1+O(ς)

)
,

and, exploiting (ς2/2) ln(ς
√
π/ω(i)(x)) → 0 as ς → 0, we end up with the

asymptotic limit (from (B.3))

µ̄(i)(x) � 1
Z(i)

exp
(
− 2
σ2
V (x,m(i)(x))

)
.

Together with Theorem 3.3 we immediately obtain (B.4).

Remark B.2. If we consider the asymptotics of the transition times for van-
ishing ς and ε fixed, it is easily seen that the assumptions of Theorem B.1 are
fulfilled. However, if we consider the asymptotic limit for ε→ 0 and ς = ς(ε)
as given by (B.1), the behaviour of T ε

i→j(x) will depend on the course of the

functions V (i)
bar(x), i = 1, 2.
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Fig. B.1. Exemplary possibilities for the functions V
(i)
bar(x), i = 1, 2. In the left

picture we find that the left and right potential barriers are bounded away from
zero by a positive constant. This is prevented in the picture at the right, for V

(1)
bar

converges to zero.

In the situation illustrated in the left panel of Fig. B.1 we may apply the
approach in Theorem for sure, if the relationship between ς and ε is defined
in an appropriate way. This is formulated in the next corollary.

Corollary B.3. Suppose that inf{V (i)
bar(x) |x ∈ R, i = 1, 2} = V small

bar > 0 and
V

(i)
bar > V small

bar almost everywhere. Let us define the small noise intensity ς by

ς(ε) =
(

2V small
bar

ln(K/ε)

)1/2

, K > 0. (B.5)

Then, we obtain in the asymptotic limit ε→ 0

T ε

i→j �
(∫

1/T ε
i→j(x) µ̄

(i)(x) dx
)−1

Assume in addition that V (1)
bar attains its smallest value and let the minimum

of V (1)
bar occur at, say, x0. Moreover, we assume V (1)

bar > V
(1)
bar (x0) ≥ V small

bar for
all x �= x0 and DxxV

(1)
bar (x0) �= 0. Then

Eµ̄(1) [1/T ε
1→2(x)] � (B.6)√

ω(1)(x0)ω0(x0)

4 π ∂2
xV

(1)
bar (x0)

1
Z(1)

exp(− 2
σ2
V (x0,m

(1)(x0)))
ς

ε
exp(− 2

ς2
V

(1)
bar (x0)).

For δ ≥ 0 so that V (1)
bar (x0) = (1 + δ)V small

bar , we finally obtain

T ε

1→2 = ord(ε−δ
√

ln(1/ε)). (B.7)

Proof. The first part immediately follows from Theorem B.1, for we have
almost everywhere

V
(i)
bar(x) = (1 + δ(i)x )V small

bar , δ(i)x > 0 =⇒ T ε
i→j(x) = ord(ε−δ(i)x ).
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(B.6) follows from (B.4) by using Laplace’s method in the limit of vanishing
noise ς. With the assumed coupling of ς according to (B.5), we then obtain
from (B.6)

Eµ̄(1) [1/T ε
1→2(x)] = ord(ε−δ

√
ln(1/ε)).

One could also contemplate a situation, such as that schematically indi-
cated at the right-hand side of Fig. B.1. Here, V (1)

bar (x) → 0 as x → ∞, and
there is no local minimum V small

bar such that V small
bar ≤ V

(1)
bar (x) for all x. Access

to this problem is established in the next proposition where the argumenta-
tion has to be carried out rather intuitively. As outlined in Remark B.2, in
Proposition B.4 it is coercive to consider the asymptotic behaviour as ε → 0
together with a reasonable coupling of V (i)

bar(x)/ς
2 that is not yet specified.

Proposition B.4. Suppose that min{T ε
1→2(x), T ε

2→1(x)} → 0 asymptotically
for x ∈ D where D is some subset of positive Lebesgue measure. We define a
decomposition of D = D1 ∪D2 by

D1 = {x ∈ D | min{T ε
1→2(x), T ε

2→1(x)} = T ε
1→2(x)},

D2 = {x ∈ D | min{T ε
1→2(x), T ε

2→1(x)} = T ε
2→1(x)}.

To simplify argumentation, we assume that Di, i = 1, 2 are connected sub-
sets of D and (D1 ∩ D2)\∂(D1 ∩ D2) = ∅. Moreover, we restrict to the
case where for x ∈ Dc with Dc denoting the complement of D we have
min{T ε

1→2(x), T ε
2→1(x)} → ∞. Now, the following is satisfied: The metastable

transition times T ε

i→j from B(i) to B(j) will depend on the starting point
x0 = xε(0) and we write T ε

i→j [x0]. For (xε(0), yε(0)) ∈ B(1) with xε(0) = x0

we asymptotically obtain

T ε

1→2[x0] � Ex0 [τDc∪D2(x
ε(t))], (B.8)

where τDc∪D2(xε(t)) denotes first exit time of the process xε(t) from the set
Dc ∪D2. Instead of considering the exit times of the process xε(t), we can
equally well consider the exit times of the conditionally averaged dynam-
ics (1.7) with I(t, x) = 1 fixed. In the limit of ς → 0 we will be allowed
to replace xε in (B.8) by the small noise approximation or the OU averaged
dynamics as defined in Sect. 4 and still obtain the correct asymptotics. And,
conclusively, by using (5.2), we arrive for vanishing ς at

T ε

1→2[x0] � Ex0[τDc∪D2(x
0(t))] = ord(1)

where x0(t) is determined by

ẋ = −DxV (x,m(1)) + σẆ1.

In exact the same way we obtain asymptotics for T ε

2→1.
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Fig. B.2. left: Illustration of V
(i)
bar, i = 1, 2 and V small

bar and the resulting subsets
D1, D2, D

c; middle: transition probabilities (time step dt = 0.01) corresponding

to (B.1) with V small
bar < V

(1)
bar (m) and ε = 10−3; right: transition probabilities with

ε = 10−12.

Proof. A careful inspection of the transition probabilities pε12(t, x) as defined
in (6.2) and (6.3) with qεij(x) = 1/T ε

i→j reveals for each time step dt pointwise
convergence for almost every x

lim
ε→0

pε12(dt, x) = 0, x ∈ D2 ∪Dc, lim
ε→0

pε12(dt, x) = 1, x ∈ D1.

This shows that for ε small enough, the particle in B(1) will instantly jump
over the barrier once it has reached D1 and as long as it stays in D2 ∪ Dc

nothing will happen.

Example B.5. Let V (i)
bar be given as illustrated in the left picture8 of Fig. B.2,

that is, V (1)
bar is strictly monotonically decreasing with V (1)

bar (x) → 0 as x→∞,
and V (2)

bar is strictly monotonically increasing with V (2)
bar (x) → 0 as x → −∞.

Then there exists an intersection point m such that V (1)
bar (m) = V

(2)
bar (m). Now,

choose V small
bar such that V small

bar < V
(i)
bar(m) and define the relation between ε

and ς according to (B.1). The resulting subsets D1, D2 and Dc = (D1 ∪
D2)c are shown in Fig. B.2. The picture in the middle shows the transition
probabilities p1→2 = pε12(dt, x), p2→1 = pε21(dt, x) to jump over the barrier
for moderately chosen ε = 10−3 and time step dt = 1/100. At the right we
illustrate the transition probabilities for very small ε = 10−12. We clearly
observe that for vanishing ε the particle will jump over the barrier once it has
reached D1 and D2, respectively.

Example B.6. Let the assumptions be given as in Example B.5, but this time
we choose V small

bar > V
(i)
bar(m). In this case, Dc = ∅ and the state space is

decomposed into the sets D1 and D2 that are separated by the point m with
V

(1)
bar (m) = V

(2)
bar (m). An illustration is given in Fig. B.3. Again, the transition

probabilities for ε = 10−12 at the right-hand side reveal

p1→2 = pε12(dt, x) ≈ 0 for x ∈ D2, p2→1 = pε12(dt, x) ≈ 1 for x ∈ D1.

8 We have chosen the potential from Sect. 6.
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Fig. B.3. Same as Fig. B.2, but this time V small
bar > V

(1)
bar (m).
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[SH02] C. Schütte and W. Huisinga. Biomolecular conformations can be identified
as metastable sets of molecular dynamics. In P. G. Ciaret and J.-L. Lions,
editors, Handbook of Numerical Analysis, volume Computational Chemistry.
North–Holland, 2002. in press.
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Colored Plates

B. Nestler, F. Wendler:
Simulations of Complex Microstructure Formations.

a) b) c)

Fig. 1.1. Experimental micrographs of Al − Si alloy samples: a) Grain structure
with different crystal orientations, b) network of primary Al dendrites and c) inter-
dendritic eutectic microstructure of two distinguished solid phases in the regions be-
tween the primary phase dendrites. (This figure is displayed in the text on page 114.)

Fig. 2.1. Left image: Schematic drawing of a domain separation by four different
phase regions; Middle image: Polycrystalline grain structure in Al-Si; Right image:
Multiphase solification microstructure with dendrites and a eutectic structure. (This
figure is displayed in the text on page 117.)
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Fig. 2.2. 3D surface plot of a) a smooth and b) a facetted cubic anisotropy. c)
contour plots of two adjacent growing, 45◦ misoriented cubic crystals applying the
smooth anisotropy formulation in Eq. (2.5) with δ = 0.2. (This figure is displayed
in the text on page 120.)

Fig. 2.3. Plot of the multi-well potential wst(ϕ) for N = 3 and equal surface entropy
densities γαβ . (This figure is displayed in the text on page 121.)

Fig. 2.4. Plot of the multi-obstacle potential wob(ϕ) for N = 3 and equal surface
entropy densities γαβ. (This figure is displayed in the text on page 122.)
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Fig. 4.5. 3D Ni dendritic growth at an undercooling of ∆ = 0.6. a) single chan-
nel dendrite, b) dendritic array with an orientation inclination of 15◦ with rsp. to
normal, c) equiaxial dendrite. (This figure is displayed in the text on page 135.)

a)

b)

Fig. 4.8. Establishment of regular lamellar solidification at the eutectic composition
in 2D (a) and 3D (b). (This figure is displayed in the text on page 138.)

Fig. 4.9. Regular oscillations along the solid-solid interface driven by the motion of
the triple junction/triple line in 2D. (This figure is displayed in the text on page 138.)
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Fig. 4.10. Topological change of the microstructure due to oscillations along the
solid-solid interface in 3D. (This figure is displayed in the text on page 139.)

Fig. 4.12. Formation of a 3D hexagonal rod-like structure in a ternary eutectic
system with isotropic surface energies and three different solid phases α, β and γ.
(This figure is displayed in the text on page 139.)

Fig. 4.15. Selection process in a polycrystalline dendritic front: The colours in a)
and b) indicate the orientations of the dendrites for two different time steps, whereas
in c) the Ni concentration is shown. (This figure is displayed in the text on page 141.)
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Fig. 4.16. Three time steps of two misaligned NiCu grains in 3D starting from
a rough planar initial state (lateral periodic boundary conditions). (This figure is
displayed in the text on page 142.)

Fig. 4.17. Growth of dendritic NiCu grains into a 20 K undercooled melt illustrated
by the Ni concentration (range: 0.41−0.62). The complete solidification (right image)
is reached after further reducing the temperature by 15 K in a second step. (This
figure is displayed in the text on page 143.)
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Fig. 4.18. a) and b): Growth of a polycrystalline NiCu structure with 30 grains on
a domain of size 100 × 100 × 100. The isosurfaces of selected grains for two time
steps are displayed. c): Heat treatment with partial melting along the grain vertices
(from [WN06]). (This figure is displayed in the text on page 143.)

Fig. 4.21. Periodic test geometry with an inserted melt inclusion (light grey) at the
horizontal boundary, shown for three time steps (from left to right). (This figure is
displayed in the text on page 146.)

Fig. 4.22. Coarsening of a grain structure with fluid inclusions (light grey) at the
triple junctions for three time steps and for a ratio of the surface energies γss/γsl =
1.2. (This figure is displayed in the text on page 146.)
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Fig. 4.24. Polycrystalline grain growth in a crack-seal process with facetted
anisotropy of the surface energies of the grain boundaries. a) and b) show three
time steps of two simulation runs with different starting grain distribution. (This
figure is displayed in the text on page 148.)

Fig. 4.25. Effect of different shear rates on the resulting morpholgy. From left to
right: no shear, ∆x = 10 cells, ∆x = 20 cells. Two simulation runs a) and b) with
different grain distributions are displayed. (This figure is displayed in the text on
page 149.)
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Garcke, Lenz, Niethammer, Rumpf, Weikard:
Multiple Scales in Phase Separating Systems

with Elastic Misfit.

Fig. 1.1. Evolution starting from a perturbation of a uniform state. (This figure is
displayed in the text on page 154.)

Fig. 1.2. Alignment of interfaces driven by homogeneous, anisotropic elasticity.
(This figure is displayed in the text on page 154.)

Fig. 4.2. Effects of inhomogeneous elasticity: On the left side the green phase is
the elastically harder one, the blue phase is softer. On the right side it is vice versa.
The volume fraction of both phases are the same. (This figure is displayed in the
text on page 166.)
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Fig. 5.1. Graph of the energy at an early and a very late stage of the evolution
(two graphs on the left side), different time steps of the evolution (on the right side).
(This figure is displayed in the text on page 167.)

Fig. 5.2. Graph of the nonelastic part of the energy. (This figure is displayed in the
text on page 168.)
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692 Colored Plates

Fig. 7.4. The trace of the elastic strain (both top rows, compared to zero strain and
eigenstrain), the trace of the stress (middle) and energy density (bottom) for the
Mullins–Sekerka (left) and the reduced model (right), in the initial configuration.
(This figure is displayed in the text on page 175.)
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Bartels, Carstensen, Conti, Hackl, Hoppe, Orlando:
Relaxation and the Computation of Effective Energies

and Microstructures in Solid Mechanics.

Fig. 5.1. Single-slip plasticity (a) First order laminates and (b) Second order lami-
nates as from (3.12) and (3.16) respectively, assuming periodic boundary conditions.
(This figure is displayed in the text on page 218.)

S. Conti, G. Dolzmann:
Derivation of Elastic Theories for Thin Sheets and

the constraint of incompressibility.

Fig. 4.2. (a) Modification of the map in Figure 4.1 in order to remove the singularity.
(b) Plot of one half of surface in (a). This view illustrates that the modification is a
smooth surface in R3 for which the tangent plane in each point has full rank. (This
figure is displayed in the text on page 235.)
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F. Bornemann, C. Lasser, T. Swart:
Energy Level Crossings in Molecular Dynamics.

Fig. 1.1. The energy levels of the model for the cis-trans isomerization of retinal in
rhodopsin of [HS00]. They cross, when the angular variable φ is approximately π

2
or

3π
2

, and the collective coordinate vanishes. In the plot, the abscissa corresponds to
φ, the ordinate to y. The two local minima of the lower energy level are associated
with the cis and the trans configuration of the molecule. (This figure is displayed in
the text on page 579.)

Fig. 3.1. Resonances of the model operator H = −ε2∆q + V (q). The parameter
k lies in {11, 12, . . . , 60}, while ν is chosen in {1.5, 2.5, . . . , 5.5}. The semiclassical
parameter ε varies from 10−3 to 1. (This figure is displayed in the text on page 591.)
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Dellnitz, Hessel-von Molo, Metzner, Preis, Schütte:
Graph Algorithms for Dynamical Systems.

Fig. 3.2. Partition of graph describing the dynamics Pentane300. Left: The graph
with all edges. Center: Partition consisting of five parts with Cint = 0.980. Right:
Partition consisting of seven parts with Cint = 0.963. (This figure is displayed in the
text on page 629.)

Fig. 3.3. Congestion of the Pentane. Left: all transitions. Center: only transitions
with a low congestion. Right: only transitions with a high congestion. (This figure
is displayed in the text on page 632.)
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Fig. 3.4. Recursive bisection of the graph for the pentane example. The values
indicate: number of boxes / invariant measure / internal cost Cint / congestion of
subgraph. The graph has 255 vertices and a congestion of 139.67. (This figure is
displayed in the text on page 635.)
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Fig. 4.5. Left column: Family of most probable paths between the set A (left min-
imum) and the set B (right minimum). From the top to the bottom we choose
ε = 0.1, ε = 0.3 and ε = 0.6. Right column: Family of paths which crosses the lowest
free energy barriers. From the top to the bottom we choose ε = 0.01, ε = 0.05 and
ε = 0.13. (This figure is displayed in the text on page 643.)
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